-
Notifications
You must be signed in to change notification settings - Fork 1
/
hd_seq_id
475 lines (320 loc) · 16.6 KB
/
hd_seq_id
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import os
import argparse
import numpy
import random
import cv2
import time
import matplotlib.pyplot as plt
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
import torchvision
import nibabel
import shutil
import tempfile
import matplotlib.pyplot as plt
import PIL
import torch
from sklearn.metrics import classification_report
import monai
from monai.apps import download_and_extract
from monai.config import print_config
from monai.data import decollate_batch
from monai.metrics import ROCAUCMetric
from monai.networks.nets import DenseNet121
from monai.transforms import (
Activations,
AddChannel,
AsDiscrete,
Compose,
LoadImage,
CropForeground,
RandGaussianNoise,
RandFlip,
RandRotate,
RandZoom,
ScaleIntensity,
NormalizeIntensity,
EnsureType,
)
from monai.utils import set_determinism
from monai.data import ImageDataset
from monai.transforms import AddChannel, Compose, RandRotate90, Resize, ScaleIntensity, EnsureType
import SimpleITK as sitk
import re
import logging
import sys
import torch
from torch.utils.data import DataLoader
# from torch.utils.tensorboard import SummaryWriter
import glob
import scipy.ndimage
#%%
def fix_random_seeds():
torch.backends.cudnn.deterministic = True
random.seed(1)
torch.manual_seed(1)
torch.cuda.manual_seed(1)
numpy.random.seed(1)
fix_random_seeds()
set_determinism(seed=1)
def seed_worker(worker_id):
worker_seed = torch.initial_seed()
numpy.random.seed(worker_seed)
random.seed(worker_seed)
g = torch.Generator()
g.manual_seed(1)
#%%
image_4d_3d_2d_file_names = []
image_files_list = []
image_midslice_list = []
#%%
def process_midslice(INPUTPATH='', OUTPUTPATH=''):
input_images = []
for root, dirs, files in os.walk(INPUTPATH):
for file in files:
if file.endswith(".nii.gz"):
input_images.append(os.path.join(root, file))
renamed_niftis = []
for i in range(len(input_images)):
renamed_niftis.append(re.sub("\\\\","/",input_images[i]))
input_images = renamed_niftis
for i in range(len(input_images)):
image_files_list.append(input_images[i])
print(i," ",(i/(len(input_images))*100)," % "," ","\n",input_images[i])
try:
img = nibabel.load(input_images[i])
if len(img.shape) == 3:
print(img.shape)
# robustfov
inputfile = input_images[i]
last_vol_name = re.sub(".nii.gz","_main.nii.gz",re.sub(INPUTPATH,OUTPUTPATH,inputfile))
if not (os.path.isdir(os.path.dirname(last_vol_name))):
os.makedirs(os.path.dirname(last_vol_name))
shutil.copy(inputfile,re.sub(INPUTPATH,OUTPUTPATH,inputfile))
output_torobust = re.sub("_main.nii.gz", "_main-rf00.nii.gz", last_vol_name)
robust_code = 'robustfov -i ' + inputfile + ' -b 100 -r ' + output_torobust
os.system(robust_code)
robust_3d_img_name = output_torobust
new_img_name = output_torobust
# new_image
img_rf100 = nibabel.load(new_img_name)
print(img_rf100.shape)
roi_data = img_rf100.get_fdata()
CM = scipy.ndimage.measurements.center_of_mass(numpy.array(roi_data))
round(CM[2])
mid_slice_num = int(round(CM[2]))
img_midslice = img_rf100.slicer[:,:,mid_slice_num:(mid_slice_num+1)]
midslice_newname = re.sub("_main-rf00.nii.gz","_CMmidslice_main.nii.gz",new_img_name)
nibabel.save(img_midslice, midslice_newname) # 2D main volume will be saved
os.unlink(output_torobust) # delete output_robust
image_midslice_list.append(midslice_newname)
image_4d_3d_2d_file_names.append([input_images[i],re.sub(INPUTPATH,OUTPUTPATH,inputfile),midslice_newname])
elif len(img.shape) > 3:
print(img.shape)
# convert 4D to 3D
img4d = img.get_fdata()
first_vol_img = img4d[..., 0]
last_vol_img = img4d[..., -1]
# save the last volume as 3d nifti in the OUTPUTPATH
inputfile = input_images[i]
# find the sequence folder name
first_foldername = os.path.basename(os.path.dirname(inputfile)) + '_first'
last_foldername = os.path.basename(os.path.dirname(inputfile)) + '_last'
first_vol_name = re.sub(INPUTPATH,OUTPUTPATH,inputfile)
first_vol_name2 = re.sub(os.path.basename(os.path.dirname(inputfile)),first_foldername,first_vol_name )
last_vol_name = re.sub(INPUTPATH,OUTPUTPATH,inputfile)
last_vol_name2 = re.sub(os.path.basename(os.path.dirname(inputfile)),last_foldername,last_vol_name )
if not (os.path.isdir(os.path.dirname(first_vol_name2))):
os.makedirs(os.path.dirname(first_vol_name2))
if not (os.path.isdir(os.path.dirname(last_vol_name2))):
os.makedirs(os.path.dirname(last_vol_name2))
first_vol_img_new = nibabel.Nifti1Image(first_vol_img, affine=img.affine)
last_vol_img_new = nibabel.Nifti1Image(last_vol_img, affine=img.affine)
outtarget_file_first = re.sub(".nii.gz","__3d_first.nii.gz",re.sub(INPUTPATH,OUTPUTPATH,inputfile))
outtarget_file_last = re.sub(".nii.gz","__3d_last.nii.gz",re.sub(INPUTPATH,OUTPUTPATH,inputfile))
nibabel.save(first_vol_img_new,outtarget_file_first) # 3D first volume will be saved
nibabel.save(last_vol_img_new,outtarget_file_last) # 3D last volume will be saved
###### robustfov
first_inputfile_torobust = outtarget_file_first
last_inputfile_torobust = outtarget_file_last
first_output_torobust = re.sub("_first.nii.gz", "_first-rf00.nii.gz", first_inputfile_torobust)
last_output_torobust = re.sub("_last.nii.gz", "_last-rf00.nii.gz", last_inputfile_torobust)
first_robust_code = 'robustfov -i ' + first_inputfile_torobust + ' -b 100 -r ' + first_output_torobust
last_robust_code = 'robustfov -i ' + last_inputfile_torobust + ' -b 100 -r ' + last_output_torobust
os.system(first_robust_code)
os.system(last_robust_code)
first_robust_3d_img_name = first_output_torobust
last_robust_3d_img_name = last_output_torobust
# find center of mass (CM)
first_robust_3d_img = nibabel.load(first_robust_3d_img_name)
last_robust_3d_img = nibabel.load(last_robust_3d_img_name)
first_robust_3d_img.get_fdata()
last_robust_3d_img.get_fdata()
first_CM = scipy.ndimage.measurements.center_of_mass(numpy.array(first_robust_3d_img.get_fdata()))
round(first_CM[2])
last_CM = scipy.ndimage.measurements.center_of_mass(numpy.array(last_robust_3d_img.get_fdata()))
round(last_CM[2])
first_mid_slice_num = int(round(first_CM[2]))
last_mid_slice_num = int(round(last_CM[2]))
first_img_midslice = first_robust_3d_img.slicer[:,:,first_mid_slice_num:(first_mid_slice_num+1)]
last_img_midslice = last_robust_3d_img.slicer[:,:,last_mid_slice_num:(last_mid_slice_num+1)]
first_midslice_newname = re.sub('.nii.gz','_first_CMmidslice.nii.gz',first_robust_3d_img_name)
last_midslice_newname = re.sub('.nii.gz','_last_CMmidslice.nii.gz',last_robust_3d_img_name)
try:
first_new_image = nibabel.Nifti1Image(first_img_midslice.get_fdata(), affine=first_robust_3d_img.affine)
last_new_image = nibabel.Nifti1Image(last_img_midslice.get_fdata(), affine=last_robust_3d_img.affine)
except:
print('an error occured at ==> try: new_image = nibabel.Nifti1Image(img_midslice_new, affine=robust_3d_img.affine)')
nibabel.save(first_new_image, first_midslice_newname)
nibabel.save(last_new_image, last_midslice_newname)
os.unlink(first_robust_3d_img_name) # delete the robust 3D first volume
os.unlink(last_robust_3d_img_name) # delete the robust 3D last volume
image_midslice_list.append(first_midslice_newname)
image_midslice_list.append(last_midslice_newname)
image_4d_3d_2d_file_names.append([input_images[i],first_inputfile_torobust,first_midslice_newname])
image_4d_3d_2d_file_names.append([input_images[i],last_inputfile_torobust,last_midslice_newname])
else:
print('check image shape or readability...')
except:
print('an error occurred for the image: ')
print(" ".join([str(i),input_images[i]]))
return image_4d_3d_2d_file_names
#%% Define transforms
test_transforms = Compose([AddChannel(), Resize((200, 200, 1)), NormalizeIntensity(), EnsureType()])
test_transforms.set_random_state(seed=1)
#%% Define resnet18
def resnet18(n_slices = 1, num_classes = 9):
net = torchvision.models.resnet18(num_classes = num_classes)
net.conv1 = nn.Conv2d(n_slices, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
net.fc = nn.Linear(in_features = 512, out_features = 9, bias = True)
return net
if torch.cuda.is_available():
print("Running on GPU")
else:
print("Running on CPU")
#%%
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#%% Upload model weights
def create_CNN_models(models_folder):
if os.path.isdir(models_folder):
model_names = []
for root, dirs, files in os.walk(models_folder):
for file in files:
if file.endswith(".pth"):
model_names.append(os.path.join(root, file))
else:
print('check models folder')
model_1 = resnet18(n_slices = 1, num_classes = 9)
model_1 = model_1.to(device)
model_1.load_state_dict(torch.load(model_names[0])) #, map_location='cuda'
time.sleep(1)
model_1.eval()
model_2 = resnet18(n_slices = 1, num_classes = 9)
model_2 = model_2.to(device)
model_2.load_state_dict(torch.load(model_names[1])) #, map_location='cuda'
time.sleep(1)
model_2.eval()
model_3 = resnet18(n_slices = 1, num_classes = 9)
model_3 = model_3.to(device)
model_3.load_state_dict(torch.load(model_names[2])) #, map_location='cuda'
time.sleep(1)
model_3.eval()
model_4 = resnet18(n_slices = 1, num_classes = 9)
model_4 = model_4.to(device)
model_4.load_state_dict(torch.load(model_names[3])) #, map_location='cuda'
time.sleep(1)
model_4.eval()
model_5 = resnet18(n_slices = 1, num_classes = 9)
model_5 = model_5.to(device)
model_5.load_state_dict(torch.load(model_names[4])) #, map_location='cuda'
time.sleep(1)
model_5.eval()
return model_1,model_2,model_3,model_4,model_5
#%%
def hd_seq_id(input_dir,output_dir,models_folder):
# Preprocessing
filenames_all = process_midslice(input_dir, output_dir)
print(filenames_all)
# Models
model_1,model_2,model_3,model_4,model_5 = create_CNN_models(models_folder)
# Postprocessing
midslice_images = []
output3d_images = []
for i in range(len(filenames_all)):
print(i)
midslice_images.append(re.sub("\\\\", "/", filenames_all[i][2])) #image_4d_3d_2d_file_names => 2d
output3d_images.append(re.sub("\\\\", "/", filenames_all[i][1])) #image_4d_3d_2d_file_names => 3d
# Test ImageDataset
x_test_fold = numpy.array(midslice_images)
test_ds_fold = ImageDataset(image_files=x_test_fold, transform=test_transforms)
dict_labels = {0:'T2star-DSCrelated', 1:'T1', 2:'T2', 3:'CT1', 4:'FLAIR', 5:'ADC', 6:'SWI', 7:'Low-B-DWI', 8:'High-B-DWI'}
predictions_list = []
ensamble_voter = monai.transforms.VoteEnsemble(num_classes=9)
with torch.no_grad():
for i in range(len(test_ds_fold)):
# break
try:
listo = [model_1(test_ds_fold[i].to(device).unsqueeze(0).squeeze(-1)).argmax(),
model_2(test_ds_fold[i].to(device).unsqueeze(0).squeeze(-1)).argmax(),
model_3(test_ds_fold[i].to(device).unsqueeze(0).squeeze(-1)).argmax(),
model_4(test_ds_fold[i].to(device).unsqueeze(0).squeeze(-1)).argmax(),
model_5(test_ds_fold[i].to(device).unsqueeze(0).squeeze(-1)).argmax()]
predicted_label = ensamble_voter(listo)
predictions_list.append(int(predicted_label.cpu()))
print(int(predicted_label.cpu()))
except:
predictions_list.append(int(9))
print("an error occured, check model weights...")
for k in range(len(output3d_images)):
mid_image_nib = nibabel.load(output3d_images[k])
out_newname = re.sub('.nii.gz','____'+dict_labels[predictions_list[k]]+'.nii.gz',re.sub(input_dir,output_dir,output3d_images[k]))
try:
nibabel.save(mid_image_nib, out_newname)
str_label_list = [dict_labels[x] for x in predictions_list]
output_list = [os.path.basename(base) for base in output3d_images]
df_pred = pd.DataFrame({"input":output_list,"predicted_label":str_label_list})
df_pred.to_csv((output_dir+"/"+"predictions.csv"), sep='\t')
print(" ")
print("Perictions are added as suffix to the end of the output file: *____<prediction>.nii.gz")
print(" ")
print("Please check the predictions.csv file in the output folder.")
print(" ")
os.unlink(midslice_images[k])
os.unlink(output3d_images[k])
except:
print('an error occured by trying to save the image, check for corrupt files...')
#%% Define args
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input', default='', help='input. Should be an input folder containing 4d or 3d NIfTI images, all files ending with .nii.gz. '
'Subfolder structure is irrelevant ', required=False, type=str)
parser.add_argument('-o', '--output', help='output. Should be a folder. If it does not exist, the folder'
' will be created', required=False, type=str)
parser.add_argument('-m', '--models', help='models folder, where 5 .pth files are downloaded'
' ', required=False, type=str)
# parser.add_argument('-write', '--writeniftis', help='creates rename nifti files in the output folder. by default only the .csv file with predictions for each input file is created'
# ' ', required=False, type=bool)
args = parser.parse_args()
input_dir = args.input
output_dir = args.output
models_folder = args.models
# nifti_write = args.writeniftis
if output_dir is None:
output_dir = os.path.join(os.path.dirname(input_dir), os.path.basename(input_dir) + "_OUTPUT")
if os.path.isdir(input_dir):
input_files = []
for root, dirs, files in os.walk(input_dir):
for file in files:
if file.endswith(".nii.gz"):
input_files.append(os.path.join(root, file))
if len(input_files) == 0:
raise RuntimeError("input is a folder but no nifti files (.nii.gz) were found in here")
input_files = [os.path.join(input_dir, i) for i in input_files]
else:
"Check input folder..."
### Start postprocessing ###
hd_seq_id(input_dir,output_dir,models_folder)