-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet_xpu_ddp.py
179 lines (137 loc) · 6.31 KB
/
resnet_xpu_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import torch
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
import torchvision
import torchvision.transforms as transforms
from torchvision.models.resnet import ResNet, Bottleneck
import argparse
import os
import random
import numpy as np
import intel_extension_for_pytorch as ipex
import oneccl_bindings_for_pytorch
def set_random_seed(random_seed: int = 42) -> None:
"""
Set random seed for reproducibility.
Args:
random_seed (int, optional): The random seed to set. Defaults to 42.
"""
torch.manual_seed(random_seed)
np.random.seed(random_seed)
random.seed(random_seed)
class ResNet50(ResNet):
"""
Initialize a ResNet50 object, based on the ResNet base class.
Args:
ResNet (_type_): _description_
"""
def __init__(self, *args, **kwargs):
super(ResNet50, self).__init__(
Bottleneck, [3, 4, 6, 3], *args, **kwargs)
def evaluate(model, device, test_loader):
model.eval()
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data[0].to(device), data[1].to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = correct / total
return accuracy
def setup_ddp():
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
init_method = 'tcp://127.0.0.1:29305'
# init_method = 'file:///home/hpccai1/pytorch_tests/sync_file'
# init_method = 'file:///tmp/sync_file'
# init_method = 'env://'
local_rank = int(os.environ.get('PMI_RANK', 0))
mpi_world_size = int(os.environ.get('PMI_SIZE', -1))
print('world size', mpi_world_size)
torch.distributed.init_process_group(backend="ccl", init_method=init_method, world_size=mpi_world_size, rank=local_rank)
return mpi_world_size, local_rank
def parse_arguments():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--local_rank", type=int, help="Local rank. Necessary for using the torch.distributed.launch utility.")
parser.add_argument("--num_epochs", type=int, help="Number of training epochs.", default=100)
parser.add_argument("--batch_size", type=int, help="Training batch size for one process.", default=1024)
parser.add_argument("--learning_rate", type=float, help="Learning rate.", default=1.e-2)
parser.add_argument("--random_seed", type=int, help="Random seed.", default=42)
parser.add_argument("-d", "--device", type=str, help="Compute device", default='xpu')
args = parser.parse_args()
return args
def load_cifar10(data_root, batch_size=1024, test_batch_size=128, num_workers=8, distributed=False):
transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
train_set = torchvision.datasets.CIFAR10(root=data_root, train=True, download=False, transform=transform)
test_set = torchvision.datasets.CIFAR10(root=data_root, train=False, download=False, transform=transform)
if not distributed:
train_loader = DataLoader(dataset=train_set, batch_size=batch_size, shuffle=True, num_workers=num_workers)
else:
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset=train_set)
train_loader = DataLoader(dataset=train_set, batch_size=batch_size, sampler=train_sampler, num_workers=num_workers)
test_loader = DataLoader(dataset=test_set, batch_size=test_batch_size, shuffle=False, num_workers=num_workers)
num_images = len(train_set)
return train_loader, test_loader, num_images
def train(model, train_loader, test_loader, optimizer, criterion, device, num_images, mpi_world_size, local_rank, epochs=20, evalulate_every_n_epochs=10):
for epoch in range(epochs):
if epoch % evalulate_every_n_epochs == 0:
accuracy = evaluate(model=model, device=device, test_loader=test_loader)
print("-" * 75)
print("Epoch: {}, Accuracy: {}".format(epoch, accuracy))
print("-" * 75)
model.train()
with tqdm(total=num_images, disable=local_rank>0) as pbar:
for step, data in enumerate(train_loader):
inputs, labels = data[0].to(device), data[1].to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
pbar.update(len(data[0]) * mpi_world_size)
def main():
# Parse command line arguments
args = parse_arguments()
# Initialize DDP environment
mpi_world_size, local_rank = setup_ddp()
# set the random seed to make results reproducible
set_random_seed(random_seed=args.random_seed)
# Load the CIFAR10 dataset
train_loader, test_loader, num_images = load_cifar10(data_root='../datasets', batch_size=args.batch_size, distributed=True if mpi_world_size > 1 else False)
# Initialize the model
model = ResNet50(num_classes=10)
print(model)
# Wrap the model with DDP
# device = torch.device("{}:{}".format(args.device, local_rank))
device = torch.device("xpu:{}".format(local_rank))
model = model.to(device)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], output_device=local_rank)
# Send the model to the device
# device = torch.device(args.device)
# Define training criterion (i.e., loss function) and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=args.learning_rate, momentum=0.9, weight_decay=1e-5)
model, optimizer = ipex.optimize(model, optimizer=optimizer)
train(model,
train_loader=train_loader,
test_loader=test_loader,
optimizer=optimizer,
criterion=criterion,
device=device,
num_images=num_images,
mpi_world_size=mpi_world_size,
local_rank=local_rank,
epochs=args.num_epochs,
evalulate_every_n_epochs=10
)
if __name__ == "__main__":
main()