From 92cb0900436b15ae247acae0df758cabf0606497 Mon Sep 17 00:00:00 2001 From: Prabhas26 <140480287+Prabhas26@users.noreply.github.com> Date: Sun, 2 Jun 2024 19:55:42 +0530 Subject: [PATCH 1/5] Task 1 --- Prabhas Palamangalam/Task 1 | 36 ++++++++++++++++++++++++++++++++++++ 1 file changed, 36 insertions(+) create mode 100644 Prabhas Palamangalam/Task 1 diff --git a/Prabhas Palamangalam/Task 1 b/Prabhas Palamangalam/Task 1 new file mode 100644 index 0000000..6e27128 --- /dev/null +++ b/Prabhas Palamangalam/Task 1 @@ -0,0 +1,36 @@ +from PIL import Image +import os + +def convert_image(input_path, output_path, output_format): + try: + # Open the image + with Image.open(input_path) as img: + # Convert and save the image to the desired format + img.save(output_path, format=output_format) + print(f"Image converted successfully to {output_format} format.") + except Exception as e: + print(f"An error occurred: {e}") + +def main(): + input_path = input("Enter the path to the input image: ") + output_format = input("Enter the desired output format (e.g., JPEG, PNG, BMP, GIF): ").upper() + + # Validate output format + if output_format not in ['JPEG', 'PNG', 'BMP', 'GIF']: + print("Invalid output format. Please choose from JPEG, PNG, BMP, or GIF.") + return + + # Extract the file name and extension + file_name, file_extension = os.path.splitext(input_path) + + # If the input file already has an extension, remove it + file_name_without_ext = file_name.split('.')[0] + + # Set the output path + output_path = f"{file_name_without_ext}_converted.{output_format.lower()}" + + # Convert the image + convert_image(input_path, output_path, output_format) + +if __name__ == "__main__": + main() From eeffcb1c3c0fa32d38ea216d5602e1a56b1cb943 Mon Sep 17 00:00:00 2001 From: Prabhas26 <140480287+Prabhas26@users.noreply.github.com> Date: Sun, 2 Jun 2024 19:58:49 +0530 Subject: [PATCH 2/5] Task 2 --- Prabhas Palamangalam/Task 2 | 43 +++++++++++++++++++++++++++++++++++++ 1 file changed, 43 insertions(+) create mode 100644 Prabhas Palamangalam/Task 2 diff --git a/Prabhas Palamangalam/Task 2 b/Prabhas Palamangalam/Task 2 new file mode 100644 index 0000000..2fee7c7 --- /dev/null +++ b/Prabhas Palamangalam/Task 2 @@ -0,0 +1,43 @@ +import seaborn as sns +import pandas as pd +import matplotlib.pyplot as plt + +# Load the Iris dataset from Seaborn +iris = sns.load_dataset("iris") +numeric_iris = iris.drop(columns='species') + +# Display the first few rows of the dataset +print("First few rows of the dataset:") +print(iris.head()) + +# Summary statistics +print("\nSummary statistics:") +print(iris.describe()) + +# Checking for missing values +print("\nMissing values:") +print(iris.isnull().sum()) + +# Visualizations +# Pairplot +sns.pairplot(iris, hue="species") +plt.title("Pairplot of Iris Dataset") +plt.show() + +# Boxplot +plt.figure(figsize=(10, 6)) +sns.boxplot(data=iris, orient="h") +plt.title("Boxplot of Iris Dataset") +plt.show() + +# Histograms +plt.figure(figsize=(10, 6)) +iris.hist() +plt.suptitle("Histograms of Iris Dataset") +plt.show() + +# Correlation heatmap +plt.figure(figsize=(8, 6)) +sns.heatmap(numeric_iris.corr(), annot=True, cmap="coolwarm") +plt.title("Correlation Heatmap of Iris Dataset") +plt.show() From 15be4e619c93b7c5b1a3328f08469fbe7b07c006 Mon Sep 17 00:00:00 2001 From: Prabhas26 <140480287+Prabhas26@users.noreply.github.com> Date: Sun, 2 Jun 2024 20:00:49 +0530 Subject: [PATCH 3/5] Task 3 --- Prabhas Palamangalam/Task 3 | 45 +++++++++++++++++++++++++++++++++++++ 1 file changed, 45 insertions(+) create mode 100644 Prabhas Palamangalam/Task 3 diff --git a/Prabhas Palamangalam/Task 3 b/Prabhas Palamangalam/Task 3 new file mode 100644 index 0000000..5bb8616 --- /dev/null +++ b/Prabhas Palamangalam/Task 3 @@ -0,0 +1,45 @@ +import numpy as np +import matplotlib.pyplot as plt +from sklearn.model_selection import train_test_split +from sklearn.linear_model import LinearRegression +from sklearn.metrics import mean_squared_error +import pandas as pd +data_url = "http://lib.stat.cmu.edu/datasets/boston" +raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None) +data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]]) +target = raw_df.values[1::2, 2] + +# Load the Boston housing dataset + +X = data +y = target + +# Split the data into training and testing sets +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) + +# Initialize the linear regression model +model = LinearRegression() + +# Fit the model on the training data +model.fit(X_train, y_train) + +# Predict on the training and testing data +y_train_pred = model.predict(X_train) +y_test_pred = model.predict(X_test) + +# Calculate the scores +train_score = model.score(X_train, y_train) +test_score = model.score(X_test, y_test) + +print("Training score:", train_score) +print("Testing score:", test_score) + +# Plot residuals +plt.scatter(y_train_pred, y_train_pred - y_train, c='blue', marker='o', label='Training data') +plt.scatter(y_test_pred, y_test_pred - y_test, c='lightgreen', marker='s', label='Testing data') +plt.xlabel('Predicted values') +plt.ylabel('Residuals') +plt.legend(loc='upper left') +plt.hlines(y=0, xmin=0, xmax=50, lw=2, color='red') +plt.title('Residual plot') +plt.show() From 40e544d6be69dcfb1f00ad855de06e5d8c18384c Mon Sep 17 00:00:00 2001 From: Prabhas26 <140480287+Prabhas26@users.noreply.github.com> Date: Sun, 2 Jun 2024 20:04:15 +0530 Subject: [PATCH 4/5] Task 4 Instead of wp25262.jpg use any other example image --- Prabhas Palamangalam/Task 4 | 52 +++++++++++++++++++++++++++++++++++++ 1 file changed, 52 insertions(+) create mode 100644 Prabhas Palamangalam/Task 4 diff --git a/Prabhas Palamangalam/Task 4 b/Prabhas Palamangalam/Task 4 new file mode 100644 index 0000000..8b207ec --- /dev/null +++ b/Prabhas Palamangalam/Task 4 @@ -0,0 +1,52 @@ +from PIL import Image +import os + +def get_size_format(b, factor=1024, suffix="B"): + """ + Scale bytes to its proper byte format. + e.g: 1253656 => '1.20MB', 1253656678 => '1.17GB' + """ + for unit in ["", "K", "M", "G", "T", "P", "E", "Z"]: + if b < factor: + return f"{b:.2f}{unit}{suffix}" + b /= factor + return f"{b:.2f}Y{suffix}" + +def compress_img(image_name, new_size_ratio=0.9, quality=90, width=None, height=None, to_jpg=True): + # Load the image into memory + img = Image.open(image_name) + + # Print the original image shape + print("[*] Image shape:", img.size) + + # Get the original image size in bytes + image_size = os.path.getsize(image_name) + print("[*] Size before compression:", get_size_format(image_size)) + + if new_size_ratio < 1.0: + # If resizing ratio is below 1.0, multiply width & height with this ratio to reduce image size + img = img.resize((int(img.size[0] * new_size_ratio), int(img.size[1] * new_size_ratio)), Image.ANTIALIAS) + elif width and height: + # If width and height are set, resize with them instead + img = img.resize((width, height), Image.ANTIALIAS) + + # Split the filename and extension + filename, ext = os.path.splitext(image_name) + + # Make a new filename appending "_compressed" to the original file name + if to_jpg: + # Change the extension to JPEG + new_filename = f"{filename}_compressed.jpg" + else: + # Retain the same extension of the original image + new_filename = f"{filename}_compressed{ext}" + + # Save the compressed image + img.save(new_filename, optimize=True, quality=quality) + + # Print the new image shape + print("[+] New Image shape:", img.size) + print(f"[*] Compressed image saved as: {new_filename}") + +# Example usage: +compress_img("wp25262.jpg", new_size_ratio=0.8, quality=80, width=800, height=600) From 1366d04174d9bced7495954c96cd67baee986f63 Mon Sep 17 00:00:00 2001 From: Prabhas26 <140480287+Prabhas26@users.noreply.github.com> Date: Sun, 2 Jun 2024 20:11:05 +0530 Subject: [PATCH 5/5] README.md --- Prabhas Palamangalam/README.md | 20 ++++++++++++++++++++ 1 file changed, 20 insertions(+) create mode 100644 Prabhas Palamangalam/README.md diff --git a/Prabhas Palamangalam/README.md b/Prabhas Palamangalam/README.md new file mode 100644 index 0000000..ea5b06b --- /dev/null +++ b/Prabhas Palamangalam/README.md @@ -0,0 +1,20 @@ +Advance Level + +Task 1 :Image Converter: + +Where the program that accepts images in multiple formats that may be in JPEG, PNG, BMP, GIF and converts them into a desired format using Python Imaging Library (PIL) that may be any of the formats mentioned. + + +Task 2:Data Analysis with Pandas: + +In the program on loading the "Iris" dataset from Seaborn and analyzing it using Pandas and performed exploratory data analysis, cleaning, aggregation, visualizations, and correlation calculations. +The output of the program will consits of calculations , graph which will be more understanding to users. + + +Task 3:Linear Regression with Scikit-learn: + +Completed a program by applying linear regression to predict house prices from the Boston housing dataset using scikit-learn and compared train and test scores and plot residuals. + +Task 4:Image Compression: + +Developed a Python program for compressing images while maintaining quality by exploring compression techniques like RLE and DCT and allowing users to adjust compression quality, support various image formats, and provide output options. Optionally, include a user interface.