-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathholSyntaxLibScript.sml
372 lines (320 loc) · 9.93 KB
/
holSyntaxLibScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
(*
Definitions for manipulating (deeply embedded) HOL syntax.
*)
open preamble mlstringTheory
val _ = new_theory"holSyntaxLib"
Definition ALPHAVARS_def:
(ALPHAVARS [] tmp ⇔ (FST tmp = SND tmp)) ∧
(ALPHAVARS (tp::oenv) tmp ⇔
(tmp = tp) ∨
(FST tp ≠ FST tmp) ∧ (SND tp ≠ SND tmp) ∧ ALPHAVARS oenv tmp)
End
Theorem ALPHAVARS_REFL:
∀env t. EVERY (UNCURRY $=) env ==> ALPHAVARS env (t,t)
Proof
Induct >> simp[ALPHAVARS_def,FORALL_PROD]
QED
Theorem ALPHAVARS_MEM:
∀env tp. ALPHAVARS env tp ⇒ MEM tp env ∨ (FST tp = SND tp)
Proof
Induct >> simp[ALPHAVARS_def] >> rw[] >> res_tac >> simp[]
QED
Definition REV_ASSOCD_def:
(REV_ASSOCD a [] d = d) ∧
(REV_ASSOCD a (p::t) d = if SND p = a then FST p else REV_ASSOCD a t d)
End
Theorem REV_ASSOCD:
(∀a d. REV_ASSOCD a [] d = d) ∧
(∀a x y t d. REV_ASSOCD a ((x,y)::t) d =
if y = a then x else REV_ASSOCD a t d)
Proof
rw[REV_ASSOCD_def]
QED
Theorem REV_ASSOCD_ALOOKUP:
∀ls x d. REV_ASSOCD x ls d = case ALOOKUP (MAP (λ(x,y). (y,x)) ls) x of NONE => d | SOME y => y
Proof
Induct >> simp[REV_ASSOCD] >>
Cases >> simp[REV_ASSOCD] >> rw[]
QED
Theorem PRIMED_INFINITE:
INFINITE (IMAGE (λn. APPEND x (GENLIST (K #"'") n)) UNIV)
Proof
match_mp_tac (MP_CANON IMAGE_11_INFINITE) >>
simp[] >> Induct >- metis_tac[NULL_EQ,NULL_GENLIST] >>
simp[GENLIST_CONS] >> qx_gen_tac`y` >>
Cases_on`GENLIST (K #"'") y`>>simp[]>>rw[]>>
Cases_on`y`>>fs[GENLIST_CONS]
QED
Theorem REV_ASSOCD_FILTER:
∀l a b d.
REV_ASSOCD a (FILTER (λ(y,x). P x) l) b =
if P a then REV_ASSOCD a l b else b
Proof
Induct >> simp[REV_ASSOCD,FORALL_PROD] >>
rw[] >> fs[FORALL_PROD,REV_ASSOCD] >> rw[] >> fs[]
QED
Theorem REV_ASSOCD_MEM:
∀l x d. MEM (REV_ASSOCD x l d,x) l ∨ (REV_ASSOCD x l d = d)
Proof
Induct >> simp[REV_ASSOCD,FORALL_PROD] >>rw[]>>fs[]
QED
Theorem tyvar_inst_exists:
∃i. ty = REV_ASSOCD tyvar i b
Proof
qexists_tac`[(ty,tyvar)]` >> rw[REV_ASSOCD]
QED
Datatype:
result = Clash 'a | Result 'a
End
Definition IS_RESULT_def:
IS_RESULT(Clash _) = F ∧
IS_RESULT(Result _) = T
End
Definition IS_CLASH_def:
IS_CLASH(Clash _) = T ∧
IS_CLASH(Result _) = F
End
Definition RESULT_def:
RESULT(Result t) = t
End
Definition CLASH_def:
CLASH(Clash t) = t
End
val _ = export_rewrites["IS_RESULT_def","IS_CLASH_def","RESULT_def","CLASH_def"]
Theorem NOT_IS_CLASH_IS_RESULT:
∀x. IS_CLASH x ⇔ ¬IS_RESULT x
Proof
Cases >> simp[]
QED
Theorem RESULT_eq_suff:
x = Result y ⇒ RESULT x = y
Proof
Cases_on`x`>>simp[]
QED
Theorem IS_CLASH_IMP:
!x. IS_CLASH x ==> !tm. ~(x = Result tm)
Proof
Cases \\ simp[]
QED
Theorem NOT_IS_CLASH_IMP:
!x. ~IS_CLASH x ==> !tm. ~(x = Clash tm)
Proof
Cases \\ simp[]
QED
Theorem IS_RESULT_IMP:
!x. IS_RESULT x ==> (!tm. ~(x = Clash tm))
Proof
Cases \\ simp[]
QED
Theorem NOT_IS_RESULT_IMP_Clash:
!x. ~IS_RESULT x ==> ?var. x = Clash var
Proof
Cases \\ simp[]
QED
Theorem IS_RESULT_IMP_Result:
!x. IS_RESULT x ==> ?res. x = Result res
Proof
Cases \\ simp[]
QED
Theorem NOT_IS_CLASH_IMP_Result:
!x. ~IS_CLASH x ==> ?res. x = Result res
Proof
Cases \\ simp[]
QED
Definition LIST_INSERT_def:
LIST_INSERT x xs = if MEM x xs then xs else x::xs
End
Theorem MEM_LIST_INSERT:
∀l x. set (LIST_INSERT x l) = x INSERT set l
Proof
Induct >> simp[LIST_INSERT_def] >> rw[] >>
rw[EXTENSION] >> metis_tac[]
QED
Definition LIST_UNION_def:
LIST_UNION xs ys = FOLDR LIST_INSERT ys xs
End
Theorem MEM_LIST_UNION:
∀l1 l2. set (LIST_UNION l1 l2) = set l1 ∪ set l2
Proof
Induct >> fs[LIST_UNION_def,MEM_LIST_INSERT] >>
rw[EXTENSION] >> metis_tac[]
QED
Theorem MEM_FOLDR_LIST_UNION:
∀ls x f b. MEM x (FOLDR (λx y. LIST_UNION (f x) y) b ls) ⇔ MEM x b ∨ ∃y. MEM y ls ∧ MEM x (f y)
Proof
Induct >> simp[MEM_LIST_UNION] >> metis_tac[]
QED
Theorem LIST_UNION_NIL:
∀l2. (LIST_UNION [] l2 = l2)
Proof
simp[LIST_UNION_def]
QED
val _ = export_rewrites["LIST_UNION_NIL"]
Theorem set_LIST_UNION:
∀l1 l2. set (LIST_UNION l1 l2) = set l1 ∪ set l2
Proof
rw[EXTENSION,MEM_LIST_UNION]
QED
val _ = export_rewrites["set_LIST_UNION"]
Theorem LIST_UNION_NIL_2:
∀ls. ALL_DISTINCT ls ⇒ LIST_UNION ls [] = ls
Proof
Induct >> simp[LIST_UNION_def,LIST_INSERT_def] >>
rw[] >> fs[] >> rfs[LIST_UNION_def]
QED
Theorem LIST_UNION_same:
∀l1 l2. set l1 ⊆ set l2 ⇒ LIST_UNION l1 l2 = l2
Proof
Induct >> simp[LIST_UNION_def] >>
fs[pred_setTheory.SUBSET_DEF] >>
fs[LIST_UNION_def,LIST_INSERT_def]
QED
Definition INORDER_INSERT_def:
INORDER_INSERT x xs =
APPEND (FILTER (λy. string_lt y x) xs)
(APPEND [x] (FILTER (λy. string_lt x y) xs))
End
Triviality LENGTH_INORDER_INSERT:
!xs. ALL_DISTINCT (x::xs) ==> (LENGTH (INORDER_INSERT x xs) = SUC (LENGTH xs))
Proof
FULL_SIMP_TAC std_ss [INORDER_INSERT_def,LENGTH_APPEND,LENGTH]
\\ FULL_SIMP_TAC std_ss [ALL_DISTINCT] \\ REPEAT STRIP_TAC
\\ ONCE_REWRITE_TAC [DECIDE ``1 + n = SUC n``]
\\ FULL_SIMP_TAC std_ss [GSYM ADD1,ADD_CLAUSES]
\\ MATCH_MP_TAC (GSYM LENGTH_EQ_FILTER_FILTER)
\\ FULL_SIMP_TAC std_ss [EVERY_MEM] \\ REPEAT STRIP_TAC
\\ Q.MATCH_ASSUM_RENAME_TAC `MEM y xs`
\\ FULL_SIMP_TAC std_ss []
\\ Cases_on `x = y` \\ FULL_SIMP_TAC std_ss []
\\ METIS_TAC [stringTheory.string_lt_cases,stringTheory.string_lt_antisym]
QED
Triviality ALL_DISTINCT_INORDER_INSERT:
!xs h. ALL_DISTINCT xs ==> ALL_DISTINCT (INORDER_INSERT h xs)
Proof
FULL_SIMP_TAC (srw_ss()) [ALL_DISTINCT,INORDER_INSERT_def,
ALL_DISTINCT_APPEND,MEM_FILTER] \\ REPEAT STRIP_TAC
\\ TRY (MATCH_MP_TAC FILTER_ALL_DISTINCT)
\\ FULL_SIMP_TAC (srw_ss()) [stringTheory.string_lt_nonrefl]
\\ METIS_TAC [stringTheory.string_lt_antisym]
QED
Triviality ALL_DISTINCT_FOLDR_INORDER_INSERT:
!xs. ALL_DISTINCT (FOLDR INORDER_INSERT [] xs)
Proof
Induct \\ SIMP_TAC std_ss [ALL_DISTINCT,FOLDR] \\ REPEAT STRIP_TAC
\\ MATCH_MP_TAC ALL_DISTINCT_INORDER_INSERT \\ FULL_SIMP_TAC std_ss []
QED
Theorem MEM_FOLDR_INORDER_INSERT:
!xs x. MEM x (FOLDR INORDER_INSERT [] xs) = MEM x xs
Proof
Induct \\ FULL_SIMP_TAC std_ss [FOLDR,INORDER_INSERT_def,MEM,MEM_APPEND,
MEM_FILTER] \\ METIS_TAC [stringTheory.string_lt_cases]
QED
val _ = export_rewrites["MEM_FOLDR_INORDER_INSERT"]
Definition STRING_SORT_def:
STRING_SORT xs = FOLDR INORDER_INSERT [] xs
End
Theorem PERM_STRING_SORT:
∀ls. ALL_DISTINCT ls ⇒ PERM ls (STRING_SORT ls)
Proof
Induct >>
simp[STRING_SORT_def] >>
simp[INORDER_INSERT_def] >>
fs[STRING_SORT_def] >>
simp[PERM_CONS_EQ_APPEND] >>
gen_tac >> strip_tac >> fs[] >>
qho_match_abbrev_tac`∃M N. A ++ [h] ++ B = M ++ [h] ++ N ∧ (Z M N)` >>
map_every qexists_tac[`A`,`B`] >>
simp[Abbr`Z`] >>
match_mp_tac PERM_ALL_DISTINCT >>
simp[ALL_DISTINCT_APPEND] >>
simp[Abbr`A`,Abbr`B`,MEM_FILTER] >>
metis_tac[FILTER_ALL_DISTINCT,ALL_DISTINCT_PERM,string_lt_antisym,string_lt_cases,MEM_PERM]
QED
Theorem LENGTH_STRING_SORT:
∀ls. ALL_DISTINCT ls ⇒ (LENGTH (STRING_SORT ls) = LENGTH ls)
Proof
metis_tac[PERM_STRING_SORT,PERM_LENGTH]
QED
val _ = export_rewrites["LENGTH_STRING_SORT"]
Theorem MEM_STRING_SORT:
∀ls. set (STRING_SORT ls) = set ls
Proof
Induct >>
simp[STRING_SORT_def,INORDER_INSERT_def,EXTENSION,MEM_FILTER] >>
rw[] >> metis_tac[string_lt_cases]
QED
val _ = export_rewrites["MEM_STRING_SORT"]
Theorem ALL_DISTINCT_STRING_SORT:
!xs. ALL_DISTINCT (STRING_SORT xs)
Proof
Induct
>> FULL_SIMP_TAC std_ss [STRING_SORT_def,FOLDR,ALL_DISTINCT,INORDER_INSERT_def]
>> FULL_SIMP_TAC std_ss [ALL_DISTINCT_APPEND,MEM_FILTER,MEM,MEM_APPEND,
ALL_DISTINCT,stringTheory.string_lt_nonrefl]
>> REPEAT STRIP_TAC \\ FULL_SIMP_TAC std_ss []
>> TRY (MATCH_MP_TAC FILTER_ALL_DISTINCT)
>> FULL_SIMP_TAC std_ss []
>> METIS_TAC [stringTheory.string_lt_antisym,stringTheory.string_lt_trans,
stringTheory.string_lt_cases]
QED
val _ = export_rewrites["ALL_DISTINCT_STRING_SORT"]
Theorem STRING_SORT_SORTED:
∀ls. SORTED $< (STRING_SORT ls)
Proof
Induct >> simp[STRING_SORT_def,INORDER_INSERT_def] >>
rw[] >>
‘transitive ($string_lt)’ by METIS_TAC [string_lt_trans,relationTheory.transitive_def] >>
simp [SORTED_APPEND] >>
simp[MEM_FILTER] >> fs[GSYM STRING_SORT_def] >>
simp[SORTED_FILTER] >>
rw[] >> fs[relationTheory.transitive_def] >>
METIS_TAC[]
QED
Theorem STRING_SORT_EQ:
∀l1 l2. ALL_DISTINCT l1 ∧ ALL_DISTINCT l2 ⇒
(STRING_SORT l1 = STRING_SORT l2 ⇔ PERM l1 l2)
Proof
rw[] >>
imp_res_tac PERM_STRING_SORT >>
`transitive string_lt ∧ antisymmetric string_lt` by (
simp[relationTheory.transitive_def,relationTheory.antisymmetric_def] >>
METIS_TAC[string_lt_trans,string_lt_antisym] ) >>
`SORTED $< (STRING_SORT l1) ∧ SORTED $< (STRING_SORT l2)`
by METIS_TAC[STRING_SORT_SORTED] >>
METIS_TAC[SORTED_PERM_EQ,PERM_REFL,PERM_SYM,PERM_TRANS]
QED
Theorem ALL_DISTINCT_LIST_UNION:
∀l1 l2. ALL_DISTINCT l2 ⇒ ALL_DISTINCT (LIST_UNION l1 l2)
Proof
Induct >> fs[LIST_UNION_def,LIST_INSERT_def] >> rw[]
QED
Theorem set_MAP_implode_STRING_SORT_MAP_explode:
set (MAP implode (STRING_SORT (MAP explode ls))) = set ls
Proof
rw[EXTENSION,MEM_MAP,PULL_EXISTS,mlstringTheory.implode_explode]
QED
Definition mlstring_sort_def:
mlstring_sort ls = MAP implode (STRING_SORT (MAP explode ls))
End
Theorem mlstring_sort_eq:
∀l1 l2. ALL_DISTINCT l1 ∧ ALL_DISTINCT l2 ⇒
((mlstring_sort l1 = mlstring_sort l2) ⇔ PERM l1 l2)
Proof
rw[mlstring_sort_def] >>
qspecl_then[`l1`,`l2`]mp_tac(MATCH_MP PERM_MAP_BIJ mlstringTheory.explode_BIJ) >>
disch_then SUBST1_TAC >>
imp_res_tac ALL_DISTINCT_MAP_explode >>
imp_res_tac STRING_SORT_EQ >>
first_x_assum(CHANGED_TAC o (SUBST1_TAC o SYM)) >>
match_mp_tac INJ_MAP_EQ_IFF >>
mp_tac mlstringTheory.implode_BIJ >>
simp[BIJ_DEF,INJ_DEF,MEM_MAP,PULL_EXISTS]
QED
Theorem mlstring_sort_nil:
!l. mlstring_sort l = [] ⇒ l = []
Proof
fs[Once MONO_NOT_EQ,GSYM NULL_EQ,NOT_NULL_MEM,
REWRITE_RULE[pred_setTheory.EXTENSION,GSYM mlstring_sort_def]
set_MAP_implode_STRING_SORT_MAP_explode]
QED
val _ = export_theory()