-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathcfAppLib.sml
151 lines (145 loc) · 5.66 KB
/
cfAppLib.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
(*
Defines app_of_Arrow_rule function that converts the translator's
Arrow to CF's app judgement.
*)
structure cfAppLib :> cfAppLib = struct
open preamble
open ml_translatorSyntax helperLib semanticPrimitivesSyntax
open cfHeapsBaseSyntax cfAppSyntax
open set_sepTheory cfHeapsBaseLib cfAppTheory ml_translatorTheory
fun mk_app_of_Arrow_goal ffi_ty t = let
val (t_hyps, t_concl) = strip_imp t
val (args_pred, ret_pred) = t_concl |> rator |> rator |> strip_Arrow
val f = t_concl |> rator |> rand
val f_v = t_concl |> rand
val fvs = free_vars t_concl
fun pred_ty pred = pred |> type_of |> dest_type |> snd |> hd
val xs = mapi (fn i => fn pred =>
variant fvs (mk_var ("x" ^ (Int.toString i), pred_ty pred))
) args_pred
val vs = mapi (fn i => fn pred =>
variant fvs (mk_var ("v" ^ (Int.toString i), v_ty))
) args_pred
val args_hyps = map2 (fn pred => fn (x, v) =>
list_mk_comb (pred, [x, v])
) args_pred (zip xs vs)
val hyps_tm_opt =
SOME (list_mk_conj (args_hyps @ (map strip_conj t_hyps |> flatten)))
handle HOL_ERR _ => NONE
val proj_tm = variant fvs (mk_var ("p", mk_ffi_proj_ty ffi_ty))
val post_v = variant fvs (mk_var ("v", v_ty))
val post_body =
mk_cond (
list_mk_comb (ret_pred, [list_mk_comb (f, xs), post_v])
)
fun mk_POSTv Qvtm = (lhs o concl) (SPEC Qvtm cfHeapsBaseTheory.POSTv_def)
val post_tm = mk_POSTv (mk_abs (post_v, post_body))
val app_spec_tm =
mk_app (
proj_tm,
f_v,
listSyntax.mk_list (vs, v_ty),
emp_tm,
post_tm
)
val goal_body =
case hyps_tm_opt of
SOME hyps_tm => list_mk_imp ([t, hyps_tm], app_spec_tm)
| NONE => mk_imp (t, app_spec_tm)
in
list_mk_forall (xs @ vs, goal_body)
end
fun mk_Arrow_of_app_goal t = let
fun find_remove p l = let
fun aux acc [] = NONE
| aux acc (x::xs) =
if p x then SOME (x, List.rev acc @ xs)
else aux (x::acc) xs
in aux [] l end
fun strip_n n tm =
if n = 0 then (tm, [])
else let
val (tm', arg) = dest_comb tm
val (tm'', args) = strip_n (n-1) tm'
in (tm'', args @ [arg]) end
fun dest_pred t = strip_n 2 t
fun pred_v t = case dest_pred t of (_, [_, v]) => v | _ => failwith "pred_v"
fun pred_x t = case dest_pred t of (_, [x, _]) => x | _ => failwith "pred_x"
val (t_vars, t_body) = strip_forall t
val (hyps1, concl_tm) = strip_imp t_body
(* hyps: list of hypothesis *)
val hyps = flatten (map strip_conj hyps1)
(* conclusion: of the form "app fv [v1,...,vn] emp post" *)
val (_, fv, argsv, _, post) = dest_app concl_tm
(* list of value arguments: v1,...,vn *)
val (argsv_list, _) = listSyntax.dest_list argsv
(* hyps are either representation predicates (aka refinement invariants) about
arguments, or something else
*)
val (pred_hyps, other_hyps) = partition (fn p =>
exists (fn argv => pred_v p ~~ argv handle HOL_ERR _ => false) argsv_list
) hyps
val other_hyps_fvs = free_varsl other_hyps
(* Mapping with the logical counterparts of v1,...,vn *)
val assoc_argsv_args = List.map (fn p => (pred_v p, pred_x p)) pred_hyps
(* Gives the predicate for an argument value.
We may need to wrap the predicate using Eq if v appears elsewhere. *)
fun pred_for v = let
val x = tassoc v assoc_argsv_args
val need_Eq = tmem x other_hyps_fvs
val base_pred =
case List.find (fn p => pred_v p ~~ v) pred_hyps of
NONE => fail()
| SOME p => (fst o dest_pred) p
in if need_Eq then mk_Eq (base_pred, x) else base_pred end
(* stripping post... *)
val (_, post_body1) = dest_comb post (* dest_POSTv *)
val (_, post_body2) = dest_abs post_body1
val (_, pure_post) = dest_comb post_body2 (* dest_cond *)
val (concl_pred, f_x, v) =
(case dest_pred pure_post of
(concl_pred, [f_x, v]) => (concl_pred, f_x, v)
| _ => failwith "dest_pred")
val (f, _) = strip_n (List.length argsv_list) f_x
(* build the iterated Arrows *)
val arrows = foldl (fn (argv, arrows) =>
mk_Arrow (pred_for argv, arrows)
) concl_pred (List.rev argsv_list)
(* re-generalize in the post what was originally quantified *)
val other_hyps_vars = op_intersect aconv t_vars other_hyps_fvs
fun mk_list_conj_imp ([], concl) = concl
| mk_list_conj_imp (hyps, concl) = mk_imp (list_mk_conj hyps, concl)
val arrows_full_tm =
list_mk_forall (other_hyps_vars,
mk_list_conj_imp (other_hyps,
list_mk_comb (arrows, [f, fv])))
in mk_imp (t, arrows_full_tm) end
fun auto_prove proof_name (goal,tac) = let
val (rest,validation) = tac ([],goal) handle Empty => fail()
in if length rest = 0 then validation [] else let
in failwith("auto_prove failed for " ^ proof_name) end end
fun app_of_Arrow_rule ffi_ty thm = let
val thm' = DISCH_ALL thm
val proof_tac =
rpt strip_tac \\
rewrite_tac [app_def] \\
last_x_assum (fn asm =>
(drule asm \\ rpt (disch_then drule) \\ strip_tac
handle HOL_ERR _ => NO_TAC) ORELSE
(assume_tac asm)) \\
ASSUM_LIST (fn assums =>
foldr (fn (asm, tac_acc) =>
(* use old_drule and hope that p in theorem will be the same as p
in the goal *)
old_drule (INST_TYPE [ffi_varty |-> ffi_ty] Arrow_IMP_app_basic) \\
disch_then (fn th => mp_tac (MATCH_MP th asm)) \\
match_mp_tac app_basic_weaken \\
Cases THEN_LT REVERSE_LT THEN1 (simp [cfHeapsBaseTheory.POSTv_def]) \\
fs [cond_def, SEP_EXISTS_THM] \\ rpt strip_tac \\
qexists_tac `emp` \\ fs [SEP_CLAUSES] \\ tac_acc
) all_tac (rev assums)
)
val rule_thm = auto_prove "app_of_Arrow_rule"
(mk_app_of_Arrow_goal ffi_ty (concl thm'), proof_tac)
in MATCH_MP rule_thm thm' |> SIMP_RULE std_ss [PRECONDITION_def, Eq_def] end
end