-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathcfDivLib.sml
97 lines (92 loc) · 3.69 KB
/
cfDivLib.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
(*
Tactics for reasoning about divergent programs
*)
structure cfDivLib =
struct
open cfTacticsLib cfNormaliseTheory cfDivTheory;
local
fun naryFun_repack_conv tm =
let
val (base_case, rec_case) = CONJ_PAIR (GSYM naryFun_def)
val Fun_pat = ``Fun _ _``
val conv =
if can (match_term Fun_pat) tm then
(RAND_CONV naryFun_repack_conv) THENC
(REWR_CONV rec_case)
else
REWR_CONV base_case
in conv tm
end
val naryClosure_repack_conv =
(RAND_CONV naryFun_repack_conv) THENC (REWR_CONV (GSYM naryClosure_def))
in
fun xcf_div_FFI_full name st =
let
val f_def = fetch_def name st
in
rpt strip_tac
\\ simp[f_def]
\\ match_mp_tac(GEN_ALL IMP_app_POSTd)
(* TODO: we could look at the goal state and generate a fresh name instead*)
\\ qmatch_goalsub_abbrev_tac `make_stepfun_closure highly_improbable_name`
\\ CONV_TAC(QUANT_CONV(PATH_CONV "l" EVAL))
\\ qunabbrev_tac `highly_improbable_name`
\\ qmatch_goalsub_abbrev_tac `highly_improbable_name = _`
\\ qexists_tac `highly_improbable_name`
\\ conj_tac >- MATCH_ACCEPT_TAC(Q.REFL `highly_improbable_name`)
\\ conj_tac >- EVAL_TAC
\\ qunabbrev_tac `highly_improbable_name`
\\ CONV_TAC(STRIP_QUANT_CONV(PATH_CONV "rrl" (DEPTH_CONV naryClosure_repack_conv)))
\\ CONSEQ_CONV_TAC(
DEPTH_CONSEQ_CONV(
ONCE_CONSEQ_REWRITE_CONV
([],[GEN_ALL(REWRITE_RULE [AND_IMP_INTRO] app_of_cf)],[])))
\\ CONV_TAC(
STRIP_QUANT_CONV(
PATH_CONV "rrlr" (
QUANT_CONV(
RATOR_CONV(SIMP_CONV list_ss [])
THENC PURE_REWRITE_CONV [AND_CLAUSES]
THENC SIMP_CONV (srw_ss()) [cf_def,is_bound_Fun_def,astTheory.op_case_def,
dest_opapp_def]))))
\\ CONV_TAC(DEPTH_CONV BETA_CONV)
end
fun xcf_div_rule thm name st =
let
val f_def = fetch_def name st
in
rpt strip_tac
\\ simp[f_def]
\\ match_mp_tac(GEN_ALL thm)
(* TODO: we could look at the goal state and generate a fresh name instead*)
\\ qmatch_goalsub_abbrev_tac `make_stepfun_closure highly_improbable_name`
\\ CONV_TAC(STRIP_QUANT_CONV(PATH_CONV "l" EVAL))
\\ qunabbrev_tac `highly_improbable_name`
\\ qmatch_goalsub_abbrev_tac `highly_improbable_name = _`
\\ qexists_tac `highly_improbable_name`
(* TODO: give an error if 'limited_parts' is not present *)
\\ qmatch_assum_abbrev_tac `limited_parts another_highly_improbable_name _`
\\ qexists_tac `another_highly_improbable_name`
\\ conj_tac >- MATCH_ACCEPT_TAC(Q.REFL `highly_improbable_name`)
\\ conj_tac >- EVAL_TAC
\\ conj_tac >- fs []
\\ qunabbrev_tac `highly_improbable_name`
\\ qunabbrev_tac `another_highly_improbable_name`
\\ CONV_TAC(STRIP_QUANT_CONV(PATH_CONV "rrl" (DEPTH_CONV naryClosure_repack_conv)))
\\ CONSEQ_CONV_TAC(
DEPTH_CONSEQ_CONV(
ONCE_CONSEQ_REWRITE_CONV
([],[GEN_ALL(REWRITE_RULE [AND_IMP_INTRO] app_of_cf)],[])))
\\ CONV_TAC(
STRIP_QUANT_CONV(
PATH_CONV "rrlr" (
QUANT_CONV(
RATOR_CONV(SIMP_CONV list_ss [])
THENC PURE_REWRITE_CONV [AND_CLAUSES]
THENC SIMP_CONV (srw_ss()) [cf_def,is_bound_Fun_def,astTheory.op_case_def,
dest_opapp_def]))))
\\ CONV_TAC(DEPTH_CONV BETA_CONV)
end
val xcf_div = xcf_div_rule IMP_app_POSTd_one_FFI_part
end (* local *)
end