-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy patheqSolveRewriteLib.sml
123 lines (107 loc) · 3.52 KB
/
eqSolveRewriteLib.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
(*
Defines ELIM_UNKWN_CONV conversion
*)
structure eqSolveRewriteLib :> eqSolveRewriteLib =
struct
open HolKernel boolLib Conv helperLib
(* TODO: helperLib is used for list_dest - it should be added to HOL more prominently *)
fun xor x y = (x orelse y) andalso (not (x andalso y));
(* [is_known]
Return true if the given term contains an unknown variable, false otherwise.
*)
fun is_knwn knwn_vars tm =
case (dest_term tm) of
VAR _ => HOLset.member (knwn_vars, tm)
| CONST _ => true
| COMB (tm1, tm2) => is_knwn knwn_vars tm1 andalso is_knwn knwn_vars tm2
| LAMB (v, tm') => is_knwn (HOLset.add (knwn_vars, v)) tm';
(* [find_possible_rws]
Return the list of equalities between known and unknown terms.
*)
fun find_possible_rws knwn_vars tm =
let
val clauses = list_dest dest_conj tm
fun unkwn_def_eq e =
if is_eq e then
let
val (t1, t2) = dest_eq e
val (b1, b2) = (is_knwn knwn_vars t1, is_knwn knwn_vars t2)
in
xor b1 b2
end
else
false
in
List.partition unkwn_def_eq clauses
end;
(* [reconstruct_conj]
Reconstruct a conjunction so that the selected clause is moved to the first position.
*)
fun reconstruct_conj knwn_vars tm eq clauses =
let
val recon_tm = mk_conj (eq, list_mk mk_conj clauses ``T``)
(* Prove that this new term is egal to the original one *)
val conv_th = AC_CONV (CONJ_ASSOC, CONJ_SYM) (mk_eq (tm, recon_tm)) |> EQT_ELIM
(* If necessary, invert the equality *)
val must_inverse = let val (x, y) = dest_eq eq in
(is_knwn knwn_vars x, is_knwn knwn_vars y) = (true, false) end
val final_th = if must_inverse then CONV_RULE (PATH_CONV "rlr" SYM_CONV) conv_th else conv_th
in
final_th
end;
(* [rewrite_with_first] *)
fun rewrite_with_first t =
let
val eq_clause = dest_conj t |> fst
val eq_thm = ASSUME eq_clause
val conv_equiv = CHANGED_CONV (RAND_CONV(PURE_REWRITE_CONV [eq_thm])) t
val (imp, recip) = EQ_IMP_RULE conv_equiv
fun prove_imp imp =
let
val t = dest_imp (concl imp) |> fst
val t_imp_eq = ASSUME t |> CONJUNCT1
val t_imp = MP (DISCH_ALL imp) t_imp_eq
in
DISCH_ALL (UNDISCH_ALL t_imp)
end
val (imp', recip') = (prove_imp imp, prove_imp recip)
val final_eq = IMP_ANTISYM_RULE imp' recip'
in
final_eq
end;
(* [ELIM_UNKWN_ONCE] *)
fun ELIM_UNKWN_ONCE knwn_vars t =
let
val (eq_clauses, other_clauses) = find_possible_rws knwn_vars t
fun try_elim eq clauses =
let
val conv1 = reconstruct_conj knwn_vars t eq clauses
val t' = concl conv1 |> dest_eq |> snd
val conv2 = rewrite_with_first t'
val conv3 = Thm.TRANS conv1 conv2
in
conv3
end
fun try_all_elim (eq::eqs) clauses =
(try_elim eq (List.revAppend(eqs, clauses)) handle _ => try_all_elim eqs (eq::clauses))
| try_all_elim [] clauses = failwith ""
val t' = try_all_elim eq_clauses other_clauses
in
t'
end
handle _ => failwith "ELIM_UNKWN_ONCE"
(* [ELIM_UNKWN_CONV] *)
fun ELIM_UNKWN_CONV knwn_vars t =
let
val conv_t = ELIM_UNKWN_ONCE knwn_vars t
in
let
val conv_t' = ELIM_UNKWN_CONV knwn_vars (concl conv_t |> dest_eq |> snd)
val conv_t'' = Thm.TRANS conv_t conv_t'
in
conv_t''
end
handle _ => conv_t
end
handle _ => Thm.REFL t;
end