-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathbackend_passesScript.sml
523 lines (480 loc) · 20.4 KB
/
backend_passesScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
(*
Reformulates compile definition to expose the result of each internal
compiler pass
*)
open preamble backendTheory presLangTheory
val _ = new_theory"backend_passes";
val _ = set_grammar_ancestry ["backend"];
Datatype:
any_prog = Source (ast$dec list)
| Flat (flatLang$dec list)
| Clos (closLang$exp list) ((num # num # closLang$exp) list)
| Bvl ((num # num # bvl$exp) list) (mlstring sptree$num_map)
| Bvi ((num # num # bvi$exp) list) (mlstring sptree$num_map)
| Data ((num # num # dataLang$prog) list) (mlstring sptree$num_map)
| Word ((num # num # α wordLang$prog) list) (mlstring sptree$num_map)
| Stack ((num # α stackLang$prog) list) (mlstring sptree$num_map)
| Lab (α sec list) (mlstring sptree$num_map)
End
Definition to_flat_all_def:
to_flat_all (c:'a config) p =
let ps = [] in
let ps = ps ++ [(strlit "original source code",Source p)] in
let p = source_let$compile_decs p in
let ps = ps ++ [(strlit "after source_let",Source p)] in
let (c',p) = source_to_flat$compile_prog c.source_conf p in
let ps = ps ++ [(strlit "after source_to_flat",Flat p)] in
let p = flat_elim$remove_flat_prog p in
let ps = ps ++ [(strlit "after remove_flat",Flat p)] in
let p = MAP (flat_pattern$compile_dec c'.pattern_cfg) p in
let ps = ps ++ [(strlit "after flat_pattern",Flat p)] in
let c = c with source_conf := c' in
((ps: (mlstring # 'a any_prog) list),c,p)
End
Theorem to_flat_thm:
SND (to_flat_all c p) = to_flat c p
Proof
fs [to_flat_all_def,to_flat_def,source_to_sourceTheory.compile_def,
source_to_flatTheory.compile_prog_def,
source_to_flatTheory.compile_def,
source_to_flatTheory.compile_flat_def]
\\ rpt (pairarg_tac \\ gvs [])
QED
Definition to_clos_all_def:
to_clos_all (c:'a config) p =
let (ps,c,p) = to_flat_all c p in
let p = flat_to_clos$compile_prog p in
let ps = ps ++ [(strlit "after flat_to_clos",Clos p [])] in
((ps: (mlstring # 'a any_prog) list),c,p)
End
Theorem to_clos_thm:
SND (to_clos_all c p) = to_clos c p
Proof
assume_tac to_flat_thm
\\ fs [to_clos_all_def,to_clos_def]
\\ rpt (pairarg_tac \\ gvs [])
QED
Definition to_bvl_all_def:
to_bvl_all (c:'a config) p =
let (ps,c,es0) = to_clos_all c p in
let c0 = c.clos_conf in
let es = clos_mti$compile c0.do_mti c0.max_app es0 in
let ps = ps ++ [(strlit "after clos_mti",Clos es [])] in
let loc = c0.next_loc + MAX 1 (LENGTH es) in
let loc = if loc MOD 2 = 0 then loc else loc + 1 in
let (n,es) = clos_number$renumber_code_locs_list loc es in
let ps = ps ++ [(strlit "after clos_number",Clos es [])] in
let (kc,es) = clos_known$compile c0.known_conf es in
let ps = ps ++ [(strlit "after clos_known",Clos es [])] in
let (es,g,aux) = clos_call$compile c0.do_call es in
let ps = ps ++ [(strlit "after clos_call",Clos es aux)] in
let prog = chain_exps c0.next_loc es ++ aux in
let prog = clos_annotate$compile prog in
let ps = ps ++ [(strlit "after clos_annotate",Clos [] prog)] in
let c1 = c0 with
<|start := c0.next_loc; next_loc := n; known_conf := kc;
call_state := (g,aux)|> in
let init_stubs = toAList (init_code c1.max_app) in
let init_globs =
[(num_stubs c1.max_app − 1,0,
init_globals c1.max_app (num_stubs c1.max_app + c1.start))] in
let comp_progs = clos_to_bvl$compile_prog c1.max_app prog in
let prog' = init_stubs ++ init_globs ++ comp_progs in
let func_names =
make_name_alist (MAP FST prog') prog (num_stubs c1.max_app)
c0.next_loc (LENGTH es0) in
let ps = ps ++ [(strlit "after clos_to_bvl",Bvl prog' func_names)] in
let c2 = c1 with start := num_stubs c1.max_app − 1 in
let p = code_sort prog' in
let c = c with clos_conf := c2 in
((ps: (mlstring # 'a any_prog) list),c,p,func_names)
End
Theorem to_bvl_thm:
SND (to_bvl_all c p ) = to_bvl c p
Proof
assume_tac to_clos_thm
\\ fs [to_bvl_all_def,to_bvl_def,clos_to_bvlTheory.compile_def,
clos_to_bvlTheory.compile_common_def]
\\ rpt (pairarg_tac \\ gvs [])
QED
Definition to_bvi_all_def:
to_bvi_all (c:'a config) p =
let (ps,c,p,names) = to_bvl_all c p in
let start = c.clos_conf.start in
let c0 = c.bvl_conf in
let limit = c0.inline_size_limit in
let split_seq = c0.split_main_at_seq in
let cut_size = c0.exp_cut in
let (inlines,prog1) = bvl_inline$tick_compile_prog limit LN p in
let prog = MAP (λ(name,arity,exp). (name,arity, HD (remove_ticks [exp]))) prog1 in
let ps = ps ++ [(strlit "after bvl_inline and remove_ticks",Bvl prog names)] in
let prog = MAP (λ(name,arity,exp). (name,arity, let_op_sing exp)) prog in
let ps = ps ++ [(strlit "after let_op_sing",Bvl prog names)] in
let prog = MAP (λ(name,arity,exp). (name,arity,
bvl_handle$compile_any split_seq cut_size arity exp)) prog in
let ps = ps ++ [(strlit "after bvl_handle",Bvl prog names)] in
let (loc,code,n1) = bvl_to_bvi$compile_prog start 0 prog in
let (n2,code') = bvi_tailrec$compile_prog (bvl_num_stubs + 2) code in
let (s,p,l,n1,n2,names) = (loc,code',inlines,n1,n2,get_names (MAP FST code') names) in
let names = sptree$union (sptree$fromAList $ (data_to_word$stub_names () ++
word_to_stack$stub_names () ++ stack_alloc$stub_names () ++
stack_remove$stub_names ())) names in
let ps = ps ++ [(strlit "after bvl_to_bvi",Bvi code names)] in
let ps = ps ++ [(strlit "after bvi_tailrec",Bvi code' names)] in
let c = c with clos_conf updated_by (λc. c with start := s) in
let c = c with bvl_conf updated_by
(λc. c with <| inlines := l; next_name1 := n1; next_name2 := n2 |>) in
((ps: (mlstring # 'a any_prog) list),c,p,names)
End
Theorem to_bvi_thm:
SND (to_bvi_all c p ) = to_bvi c p
Proof
assume_tac to_bvl_thm
\\ fs [to_bvi_all_def,to_bvi_def,bvl_to_bviTheory.compile_def,
bvl_inlineTheory.compile_inc_def,bvl_inlineTheory.compile_prog_def]
\\ rpt (pairarg_tac \\ gvs [])
\\ gvs [MAP_MAP_o,o_DEF]
\\ rpt $ pop_assum mp_tac
\\ qpat_abbrev_tac ‘f1 = MAP _ prog1’
\\ qpat_abbrev_tac ‘f2 = MAP _ prog1’
\\ qsuff_tac ‘f1 = f2’ >- (rw [] \\ gvs [])
\\ unabbrev_all_tac
\\ fs [FUN_EQ_THM,FORALL_PROD,MAP_EQ_f]
\\ gvs [bvl_inlineTheory.optimise_def]
QED
Definition to_data_all_def:
to_data_all (c:'a config) p =
let (ps,c,p,names) = to_bvi_all c p in
let p = MAP (λ(a,n,e). (a,n,FST (compile n (COUNT_LIST n) T [] [e]))) p in
let ps = ps ++ [(strlit "after bvi_to_data",Data p names)] in
let p = MAP (λ(a,n,e). (a,n,FST (data_live$compile e LN))) p in
let ps = ps ++ [(strlit "after data_live",Data p names)] in
let p = MAP (λ(a,n,e). (a,n,data_simp$simp e Skip)) p in
let ps = ps ++ [(strlit "after data_simp",Data p names)] in
let p = MAP (λ(a,n,e). (a,n,data_space$compile e)) p in
let ps = ps ++ [(strlit "after data_space",Data p names)] in
((ps: (mlstring # 'a any_prog) list),c,p,names)
End
Theorem to_data_thm:
SND (to_data_all (c:'a config) p) = to_data c p
Proof
assume_tac to_bvi_thm
\\ fs [to_data_all_def,to_data_def,bvi_to_dataTheory.compile_prog_def]
\\ rpt (pairarg_tac \\ gvs [])
\\ gvs [MAP_MAP_o,o_DEF,LAMBDA_PROD]
\\ gvs [MAP_EQ_f,FORALL_PROD,bvi_to_dataTheory.compile_part_def,
bvi_to_dataTheory.compile_exp_def,bvi_to_dataTheory.optimise_def]
QED
(* NOTE: this definition is meant to minimize code duplication
in the explorer pretty printing. *)
Definition word_internal_def:
word_internal asm_conf ps names p =
let two_reg_arith = asm_conf.two_reg_arith in
let p = MAP (λ((name_num,arg_count,prog)).
((name_num,arg_count,word_simp$compile_exp prog))) p in
let ps = ps ++ [(strlit "after word_simp",Word p names)] in
let p = MAP (λ((name_num,arg_count,prog)).
((name_num,arg_count,
inst_select asm_conf (max_var prog + 1) prog))) p in
let ps = ps ++ [(strlit "after word_inst",Word p names)] in
let p = MAP (λ((name_num,arg_count,prog)).
((name_num,arg_count,full_ssa_cc_trans arg_count prog))) p in
let ps = ps ++ [(strlit "after word_ssa",Word p names)] in
let p = MAP (λ((name_num,arg_count,prog)).
((name_num,arg_count,remove_dead_prog prog))) p in
let ps = ps ++ [(strlit "after remove_dead in word_ssa",Word p names)] in
let p = MAP (λ((name_num,arg_count,prog)).
((name_num,arg_count,word_common_subexp_elim prog))) p in
let ps = ps ++ [(strlit "after word_cse",Word p names)] in
let p = MAP (λ((name_num,arg_count,prog)).
((name_num,arg_count,copy_prop prog))) p in
let ps = ps ++ [(strlit "after word_copy",Word p names)] in
let p = MAP (λ((name_num,arg_count,prog)).
((name_num,arg_count,
three_to_two_reg_prog two_reg_arith prog))) p in
let ps = ps ++ [(strlit "after three_to_two_reg from word_inst",Word p names)] in
let p = MAP (λ((name_num,arg_count,prog)).
((name_num,arg_count,remove_unreach prog))) p in
let ps = ps ++ [(strlit "after word_unreach",Word p names)] in
let p = MAP (λ((name_num,arg_count,prog)).
((name_num,arg_count,remove_dead_prog prog))) p in
let ps = ps ++ [(strlit "after remove_dead in word_alloc",Word p names)] in
(p,ps)
End
Definition to_word_all_def:
to_word_all (c:'a config) p =
let (ps,c,p,names) = to_data_all c p in
let word_conf = c.word_to_word_conf in
let data_conf = c.data_conf in
let asm_conf = c.lab_conf.asm_conf in
let data_conf =
data_conf with
<|has_fp_ops := (1 < asm_conf.fp_reg_count);
has_fp_tern :=
(asm_conf.ISA = ARMv7 ∧ 2 < asm_conf.fp_reg_count)|> in
let p = stubs (:α) data_conf ++ MAP (compile_part data_conf) p in
let ps = ps ++ [(strlit "after data_to_word",Word p names)] in
let (p,ps) = word_internal asm_conf ps names p in
let reg_count = asm_conf.reg_count − (5 + LENGTH asm_conf.avoid_regs) in
let alg = word_conf.reg_alg in
let (n_oracles,col) = next_n_oracle (LENGTH p) word_conf.col_oracle in
let p = MAP (λ((name_num,arg_count,prog),col_opt).
((name_num,arg_count,
remove_must_terminate
(word_alloc name_num asm_conf alg reg_count prog col_opt)))) (ZIP (p,n_oracles)) in
let ps = ps ++ [(strlit "after word_alloc (and remove_must_terminate)",Word p names)] in
let c = c with word_to_word_conf updated_by (λc. c with col_oracle := col) in
((ps: (mlstring # 'a any_prog) list),c,p,names)
End
Theorem LENGTH_next_n_oracle:
next_n_oracle n col = (a,b) ⇒ LENGTH a = n
Proof
rw[word_to_wordTheory.next_n_oracle_def]>>fs[LENGTH_TAKE]
QED
Triviality ZIP_MAP_1:
∀l1 l2 f1 f2.
LENGTH l1 = LENGTH l2 ⇒
ZIP (MAP f1 l1,l2) = MAP (λp. (f1 (FST p),SND p)) (ZIP (l1,l2))
Proof
metis_tac[ZIP_MAP]
QED
Theorem to_word_thm:
SND (to_word_all (c:'a config) p) = to_word c p
Proof
assume_tac to_data_thm
\\ fs [to_word_all_def,
to_word_def,data_to_wordTheory.compile_def,
word_to_wordTheory.compile_def]
\\ rpt (pairarg_tac \\ gvs [])
\\ gvs[word_internal_def, Excl "MAP_APPEND", MAP_MAP_o, o_DEF,LAMBDA_PROD]
\\ DEP_REWRITE_TAC[ZIP_MAP_1]
\\ imp_res_tac LENGTH_next_n_oracle
\\ CONJ_TAC >- (
simp[])
\\ simp[MAP_MAP_o,MAP_EQ_f,MEM_ZIP]
\\ gvs [MAP_EQ_f,FORALL_PROD,word_to_wordTheory.full_compile_single_def,
word_to_wordTheory.compile_single_def]
QED
Definition to_stack_all_def:
to_stack_all (c:'a config) p =
let (ps,c,p,names) = to_word_all c p in
let (bm,c',fs,p) = word_to_stack$compile c.lab_conf.asm_conf p in
let ps = ps ++ [(strlit "after word_to_stack",Stack p names)] in
let c = c with word_conf := c' in
((ps: (mlstring # 'a any_prog) list),bm,c,p,names)
End
Theorem to_stack_thm:
SND (to_stack_all (c:'a config) p) = to_stack c p
Proof
assume_tac to_word_thm
\\ fs [to_stack_all_def,to_stack_def]
\\ rpt (pairarg_tac \\ gvs [])
QED
Definition to_lab_all_def:
to_lab_all (c:'a config) p =
let (ps,bm,c,p,names) = to_stack_all c p in
let stack_conf = c.stack_conf in
let data_conf = c.data_conf in
let max_heap = 2 * max_heap_limit (:'a) c.data_conf - 1 in
let sp = c.lab_conf.asm_conf.reg_count - (LENGTH c.lab_conf.asm_conf.avoid_regs + 3) in
let offset = c.lab_conf.asm_conf.addr_offset in
let prog = stack_rawcall$compile p in
let ps = ps ++ [(strlit "after stack_rawcall",Stack prog names)] in
let prog = stack_alloc$compile data_conf prog in
let ps = ps ++ [(strlit "after stack_alloc",Stack prog names)] in
let prog = stack_remove$compile stack_conf.jump offset (is_gen_gc data_conf.gc_kind)
max_heap sp InitGlobals_location prog in
let ps = ps ++ [(strlit "after stack_remove",Stack prog names)] in
let prog = stack_names$compile stack_conf.reg_names prog in
let ps = ps ++ [(strlit "after stack_names",Stack prog names)] in
let p = MAP prog_to_section prog in
let ps = ps ++ [(strlit "after stack_to_lab",Lab p names)] in
((ps: (mlstring # 'a any_prog) list),bm:'a word list,c,p:'a labLang$prog,names)
End
Theorem to_lab_thm:
SND (to_lab_all (c:'a config) p) = to_lab c p
Proof
assume_tac to_stack_thm
\\ fs [to_lab_all_def,to_lab_def,stack_to_labTheory.compile_def]
\\ rpt (pairarg_tac \\ gvs [])
QED
Definition to_target_all_def:
to_target_all (c:'a config) p =
let (ps,bm,c,p,names) = to_lab_all c p in
let p = filter_skip p in
let ps = ps ++ [(strlit "after filter_skip",Lab p names)] in
let p = compile_lab c.lab_conf p in
((ps: (mlstring # 'a any_prog) list), attach_bitmaps names c bm p)
End
Theorem to_target_thm:
SND (to_target_all c p) = to_target c p
Proof
assume_tac to_lab_thm
\\ fs [to_target_all_def,to_target_def,lab_to_targetTheory.compile_def]
\\ rpt (pairarg_tac \\ gvs [])
QED
Definition from_lab_all_def:
from_lab_all ps (c:'a config) names p (bm:'a word list) =
let p = filter_skip p in
let ps = ps ++ [(strlit "after filter_skip",Lab p names)] in
let p = compile_lab c.lab_conf p in
((ps: (mlstring # 'a any_prog) list), attach_bitmaps names c bm p)
End
Theorem from_lab_thm:
SND (from_lab_all ps c names p bm) = from_lab c names p bm
Proof
gvs [from_lab_all_def,from_lab_def,lab_to_targetTheory.compile_def]
QED
Definition from_stack_all_def:
from_stack_all ps (c:'a config) names p bm =
let stack_conf = c.stack_conf in
let data_conf = c.data_conf in
let max_heap = 2 * max_heap_limit (:'a) c.data_conf - 1 in
let sp = c.lab_conf.asm_conf.reg_count - (LENGTH c.lab_conf.asm_conf.avoid_regs + 3) in
let offset = c.lab_conf.asm_conf.addr_offset in
let prog = stack_rawcall$compile p in
let ps = ps ++ [(strlit "after stack_rawcall",Stack prog names)] in
let prog = stack_alloc$compile data_conf prog in
let ps = ps ++ [(strlit "after stack_alloc",Stack prog names)] in
let prog = stack_remove$compile stack_conf.jump offset (is_gen_gc data_conf.gc_kind)
max_heap sp InitGlobals_location prog in
let ps = ps ++ [(strlit "after stack_remove",Stack prog names)] in
let prog = stack_names$compile stack_conf.reg_names prog in
let ps = ps ++ [(strlit "after stack_names",Stack prog names)] in
let p = MAP prog_to_section prog in
let ps = ps ++ [(strlit "after stack_to_lab",Lab p names)] in
from_lab_all ps c names p bm
End
Theorem from_stack_thm:
SND (from_stack_all ps c names p bm) = from_stack c names p bm
Proof
gvs [from_stack_all_def,from_stack_def,stack_to_labTheory.compile_def,
from_lab_thm]
QED
Definition from_word_all_def:
from_word_all ps (c:'a config) names p =
let (bm,c',fs,p) = word_to_stack$compile c.lab_conf.asm_conf p in
let ps = ps ++ [(strlit "after word_to_stack",Stack p names)] in
let c = c with word_conf := c' in
from_stack_all ps c names p bm
End
Theorem from_word_thm:
SND (from_word_all ps c names p) = from_word c names p
Proof
gvs [from_word_all_def,from_word_def,word_to_stackTheory.compile_def]
\\ pairarg_tac \\ gvs [from_stack_thm]
QED
Definition from_word_0_all_def:
from_word_0_all ps (c:'a config) names p =
let word_conf = c.word_to_word_conf in
let asm_conf = c.lab_conf.asm_conf in
let (p,ps) = word_internal asm_conf ps names p in
let reg_count = asm_conf.reg_count − (5 + LENGTH asm_conf.avoid_regs) in
let alg = word_conf.reg_alg in
let (n_oracles,col) = next_n_oracle (LENGTH p) word_conf.col_oracle in
let p = MAP (λ((name_num,arg_count,prog),col_opt).
((name_num,arg_count,
remove_must_terminate
(word_alloc name_num asm_conf alg reg_count prog col_opt)))) (ZIP (p,n_oracles)) in
let ps = ps ++ [(strlit "after word_alloc (and remove_must_terminate)",Word p names)] in
let c = c with word_to_word_conf updated_by (λc. c with col_oracle := col) in
from_word_all ps c names p
End
Theorem from_word_0_thm:
SND (from_word_0_all ps c names p) = from_word_0 c names p
Proof
gvs [from_word_0_all_def,from_word_0_def]
\\ fs [data_to_wordTheory.compile_def,
word_to_wordTheory.compile_def]
\\ rpt (pairarg_tac \\ gvs [])
\\ gvs[word_internal_def, Excl "MAP_APPEND", MAP_MAP_o, o_DEF,LAMBDA_PROD]
\\ DEP_REWRITE_TAC[ZIP_MAP_1]
\\ imp_res_tac LENGTH_next_n_oracle
\\ CONJ_TAC >- simp[]
\\ simp[from_word_thm]
\\ AP_TERM_TAC
\\ gvs [MAP_MAP_o,o_DEF,LAMBDA_PROD]
\\ gvs [MAP_EQ_f,FORALL_PROD,word_to_wordTheory.full_compile_single_def,
word_to_wordTheory.compile_single_def,from_word_thm]
QED
Definition from_data_all_def:
from_data_all ps c names p =
let data_conf = c.data_conf in
let word_conf = c.word_to_word_conf in
let asm_conf = c.lab_conf.asm_conf in
let data_conf =
data_conf with
<|has_fp_ops := (1 < asm_conf.fp_reg_count);
has_fp_tern :=
(asm_conf.ISA = ARMv7 ∧ 2 < asm_conf.fp_reg_count)|> in
let p = stubs (:α) data_conf ++ MAP (compile_part data_conf) p in
let ps = ps ++ [(strlit "after data_to_word",Word p names)] in
from_word_0_all ps c names p
End
Theorem from_data_thm:
SND (from_data_all ps c names p) = from_data c names p
Proof
gvs [from_data_all_def,from_data_def,from_word_0_thm]
\\ gvs [backendTheory.from_word_0_def]
\\ gvs [data_to_wordTheory.compile_def]
QED
Theorem to_data_all_from_data_all_correctness:
to_target_all c p =
let (ps,c',p,ns) = to_data_all c p in
from_data_all ps c' ns p
Proof
gvs [to_target_all_def,to_lab_all_def,to_stack_all_def,to_word_all_def]
\\ rpt (pairarg_tac \\ gvs [])
\\ gvs [from_data_all_def,from_word_0_all_def,from_word_all_def,
from_stack_all_def,from_lab_all_def]
QED
Theorem compile_eq_to_target_all:
compile c p = SND (to_target_all c p)
Proof
rewrite_tac [compile_eq_to_target,GSYM to_target_thm]
QED
Theorem number_of_passes:
LENGTH (FST (to_target_all c p)) = 39
Proof
fs [to_target_all_def] \\ rpt (pairarg_tac \\ gvs [])
\\ fs [to_lab_all_def] \\ rpt (pairarg_tac \\ gvs [])
\\ fs [to_stack_all_def] \\ rpt (pairarg_tac \\ gvs [])
\\ fs [word_internal_def,to_word_all_def] \\ rpt (pairarg_tac \\ gvs [])
\\ fs [to_data_all_def] \\ rpt (pairarg_tac \\ gvs [])
\\ fs [to_bvi_all_def] \\ rpt (pairarg_tac \\ gvs [])
\\ fs [to_bvl_all_def] \\ rpt (pairarg_tac \\ gvs [])
\\ fs [to_clos_all_def] \\ rpt (pairarg_tac \\ gvs [])
\\ fs [to_flat_all_def] \\ rpt (pairarg_tac \\ gvs [])
QED
Definition any_prog_pp_def:
any_prog_pp p = case p of
| Source p => source_to_strs p
| Flat p => flat_to_strs p
| Clos decs funs => clos_to_strs (decs,funs)
| Bvl p names => bvl_to_strs names p
| Bvi p names => bvi_to_strs names p
| Data p names => data_to_strs names p
| Word p names => word_to_strs names p
| Stack p names => stack_to_strs names p
| Lab p names => lab_to_strs names p
End
Definition pp_with_title_def:
pp_with_title pp (title,p) acc =
Append (List [strlit "# "; title; strlit "\n\n"]) $
Append (pp p) acc
End
Definition compile_tap_def:
compile_tap (c:'a config) p =
if c.tap_conf.explore_flag then
let (ps,out) = to_target_all c p in
(out, FOLDR (pp_with_title any_prog_pp) Nil ps)
else (compile c p, Nil)
End
Theorem compile_alt:
compile c p = FST (compile_tap c p)
Proof
rw [compile_tap_def]
\\ mp_tac compile_eq_to_target_all
\\ pairarg_tac \\ gvs []
QED
val _ = export_theory();