-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathclos_annotateProofScript.sml
1647 lines (1557 loc) · 67 KB
/
clos_annotateProofScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*
Correctness proof for clos_annotate
*)
open preamble
db_varsTheory
closSemTheory closPropsTheory
clos_annotateTheory backendPropsTheory
val _ = new_theory"clos_annotateProof";
val _ = temp_bring_to_front_overload"do_app"{Name="do_app",Thy="closSem"};
val _ = temp_bring_to_front_overload"compile"{Name="compile",Thy="clos_annotate"};
val EVERY2_EL = LIST_REL_EL_EQN |> SPEC_ALL |> EQ_IMP_RULE |> fst
|> UNDISCH |> CONJUNCT2 |> DISCH_ALL;
(* alternative definition of free_vars (fv) function *)
Definition alt_fv_def:
alt_fv n xs = has_var n (SND (alt_free xs))
End
Theorem alt_free_thm:
!xs.
let (ys,l) = alt_free xs in
!n. (alt_fv n xs = has_var n l)
Proof
fs [alt_fv_def,UNCURRY]
QED
Theorem alt_fv:
(∀n. alt_fv n [] ⇔ F) ∧
(∀y xs x n. alt_fv n (x::y::xs) ⇔ alt_fv n [x] ∨ alt_fv n (y::xs)) ∧
(∀v0 v n. alt_fv n [Var v0 v] ⇔ n = v) ∧
(∀x3 x2 x1 v1 n.
alt_fv n [If v1 x1 x2 x3] ⇔ alt_fv n [x1] ∨ alt_fv n [x2] ∨ alt_fv n [x3]) ∧
(∀xs x2 v2 n.
alt_fv n [Let v2 xs x2] ⇔
if clos_annotate$no_overlap (LENGTH xs) (SND (alt_free [x2])) /\ EVERY pure xs then
alt_fv (n + LENGTH xs) [x2]
else
alt_fv n xs ∨ alt_fv (n + LENGTH xs) [x2]) ∧
(∀x1 v3 n. alt_fv n [Raise v3 x1] ⇔ alt_fv n [x1]) ∧
(∀x1 v4 n. alt_fv n [Tick v4 x1] ⇔ alt_fv n [x1]) ∧
(∀xs v5 op n. alt_fv n [Op v5 op xs] ⇔ alt_fv n xs) ∧
(∀x2 x1 v6 n loc_opt.
alt_fv n [App v6 loc_opt x1 x2] ⇔ alt_fv n [x1] ∨ alt_fv n x2) ∧
(∀x1 vs v7 num_args n loc.
alt_fv n [Fn v7 loc vs num_args x1] ⇔ alt_fv (n + num_args) [x1]) ∧
(∀x1 vs v8 n loc fns.
alt_fv n [Letrec v8 loc vs fns x1] ⇔
(*
if clos_annotate$no_overlap (LENGTH fns) (SND (alt_free [x1])) then
alt_fv (n + LENGTH fns) [x1]
else
*)
EXISTS (λ(num_args,x). alt_fv (n + num_args + LENGTH fns) [x]) fns ∨
alt_fv (n + LENGTH fns) [x1]) ∧
(∀x2 x1 v9 n. alt_fv n [Handle v9 x1 x2] ⇔ alt_fv n [x1] ∨ alt_fv (n + 1) [x2]) ∧
∀xs v10 ticks n dest. alt_fv n [Call v10 ticks dest xs] ⇔ alt_fv n xs
Proof
rw [alt_fv_def,alt_free_def]
\\ rpt (pairarg_tac \\ fs [])
\\ Cases_on `has_var (n + LENGTH fns) l2` \\ fs []
\\ fs [EXISTS_MAP,UNCURRY] \\ fs []
\\ TRY (rw [] \\ fs [EXISTS_MEM,EVERY_MEM] \\ res_tac \\ fs [] \\ NO_TAC)
\\ AP_THM_TAC \\ AP_TERM_TAC
\\ fs [FUN_EQ_THM,FORALL_PROD]
QED
Theorem alt_fv_nil[simp]:
alt_fv v [] ⇔ F
Proof
rw[alt_fv]
QED
Definition alt_fv1_def:
alt_fv1 v e = alt_fv v [e]
End
Theorem alt_fv1_intro[simp] =
GSYM alt_fv1_def
Theorem alt_fv1_thm =
alt_fv |> SIMP_RULE (srw_ss())[]
Theorem alt_fv_cons[simp]:
alt_fv v (x::xs) ⇔ alt_fv1 v x ∨ alt_fv v xs
Proof
Cases_on `xs` \\ fs [alt_fv]
QED
Theorem alt_fv_REPLICATE[simp]:
alt_fv n (REPLICATE m e) ⇔ 0 < m ∧ alt_fv1 n e
Proof
Induct_on `m` >> simp[REPLICATE, alt_fv,alt_fv1_thm] >>
simp[] >> metis_tac[]
QED
(* value relation *)
Overload alt_fv_set = ``λx y. alt_fv y x``
Inductive v_rel:
(v_rel (Number j) (Number j))
/\
(v_rel (Word64 w) (Word64 w))
/\
(EVERY2 v_rel (xs:closSem$v list) (ys:closSem$v list) ==>
v_rel (Block t xs) (Block t ys))
/\
(v_rel (ByteVector ws) (ByteVector ws))
/\
(v_rel (RefPtr b r1) (RefPtr b r1))
/\
((shift (FST (alt_free [c])) m num_args i = [c']) /\
(!n. alt_fv_set [c] n /\ num_args <= n ==>
env_ok m 0 i env env' (n - num_args)) /\
every_Fn_vs_NONE [c] ∧
(LENGTH env = m) /\ EVERY2 v_rel vals vals' ==>
v_rel (Closure p vals env num_args c) (Closure p vals' env' num_args c'))
/\
(EVERY2 ( \ (num_args,c1) (num_args',c1').
?m i.
(num_args' = num_args) /\
(shift (FST (alt_free [c1])) m (LENGTH cs + num_args) i = [c1']) /\
(!n. alt_fv_set [c1] n /\ num_args + LENGTH cs <= n ==>
env_ok m 0 i env env' (n - (num_args + LENGTH cs))) /\
every_Fn_vs_NONE [c1] ∧
(LENGTH env = m)) cs cs' /\
EVERY2 v_rel vals vals' /\ index < LENGTH cs ==>
v_rel (Recclosure p vals env cs index) (Recclosure p vals' env' cs' index))
/\
(l + m <= n ==>
env_ok m l i (env2:closSem$v list) (env2':closSem$v list) n)
/\
(n < l /\ v_rel (EL n env2) (EL n env2') /\
n < LENGTH env2 /\ n < LENGTH env2' ==>
env_ok m l i env2 env2' n)
/\
(l <= n /\ n < l + m /\
n < l + m /\ (lookup (n - l) i = SOME v) /\
n < LENGTH env2 /\
l + v < LENGTH env2' /\
v_rel (EL n env2) (EL (l + v) env2') ==>
env_ok m l i env2 env2' n)
End
Theorem v_rel_simp =
map (SIMP_CONV (srw_ss()) [Once v_rel_cases])
[``v_rel (Number x) y``,
``v_rel (Word64 n) y``,
``v_rel (Block n l) y``,
``v_rel (ByteVector ws) y``,
``v_rel (RefPtr b x) y``,
``v_rel (Closure n l v x w) y``,
``v_rel (Recclosure x1 x2 x3 x4 x5) y``,
``v_rel y (Number x)``,
``v_rel y (Block n l)``,
``v_rel y (ByteVector ws)``,
``v_rel y (RefPtr b x)``,
``v_rel y (Closure n l v x w)``,
``v_rel y (Word64 n)``,
``v_rel y (Recclosure x1 x2 x3 x4 x5)``]
|> LIST_CONJ
Theorem v_rel_Boolv[simp]:
(v_rel x (Boolv b) ⇔ (x = Boolv b)) ∧
(v_rel (Boolv b) x ⇔ (x = Boolv b))
Proof
Cases_on`b`>>EVAL_TAC>>ntac 2(simp[Once v_rel_cases])
QED
Theorem v_rel_Unit[simp]:
(v_rel x Unit ⇔ (x = Unit)) ∧
(v_rel Unit x ⇔ (x = Unit))
Proof
EVAL_TAC>>ntac 2(simp[Once v_rel_cases])
QED
val env_ok_def = v_rel_cases |> CONJUNCT2
Triviality env_ok_EXTEND:
EVERY2 v_rel env1 env2 /\ (l1 = LENGTH env1) /\
(l1 <= n ==> env_ok m l i env1' env2' (n - l1)) ==>
env_ok m (l + l1) i (env1 ++ env1') (env2 ++ env2') n
Proof
SRW_TAC [] [] \\ SIMP_TAC std_ss [env_ok_def]
\\ Cases_on `n < LENGTH env1` \\ full_simp_tac(srw_ss())[] THEN1
(DISJ2_TAC \\ DISJ1_TAC \\ REPEAT STRIP_TAC
\\ IMP_RES_TAC EVERY2_LENGTH
\\ full_simp_tac(srw_ss())[rich_listTheory.EL_APPEND1]
\\ IMP_RES_TAC EVERY2_EL \\ full_simp_tac(srw_ss())[] \\ DECIDE_TAC)
\\ full_simp_tac(srw_ss())[NOT_LESS]
\\ full_simp_tac(srw_ss())[env_ok_def]
THEN1 (DISJ1_TAC \\ DECIDE_TAC)
THEN1
(DISJ2_TAC \\ DISJ1_TAC
\\ IMP_RES_TAC EVERY2_LENGTH
\\ full_simp_tac(srw_ss())[rich_listTheory.EL_APPEND2]
\\ DECIDE_TAC)
\\ DISJ2_TAC \\ DISJ2_TAC \\ Q.EXISTS_TAC `v` \\ full_simp_tac(srw_ss())[]
\\ IMP_RES_TAC EVERY2_LENGTH
\\ full_simp_tac(srw_ss())[rich_listTheory.EL_APPEND2]
\\ `n - (l + LENGTH env2) = n - LENGTH env2 - l` by DECIDE_TAC \\ full_simp_tac(srw_ss())[]
\\ `LENGTH env2 <= l + LENGTH env2 + v` by DECIDE_TAC
\\ full_simp_tac(srw_ss())[rich_listTheory.EL_APPEND2]
\\ `l + LENGTH env2 + v - LENGTH env2 = l + v` by DECIDE_TAC \\ full_simp_tac(srw_ss())[]
\\ DECIDE_TAC
QED
val env_ok_cons = env_ok_EXTEND
|> Q.INST [`env1`|->`[v1]`,`env2`|->`[v2]`] |> Q.GEN `l1`
|> SIMP_RULE (srw_ss()) []
val env_ok_1 = env_ok_EXTEND
|> Q.INST [`env1`|->`[v1]`,`env2`|->`[v2]`,`l`|->`0`] |> Q.GEN `l1`
|> SIMP_RULE (srw_ss()) []
val env_ok_some = env_ok_EXTEND
|> DISCH ``l + LENGTH (env1:closSem$v list) = k``
|> Q.GEN `l1` |> SIMP_RULE std_ss []
|> REWRITE_RULE [AND_IMP_INTRO] |> GEN_ALL
val env_ok_append = env_ok_EXTEND
|> GSYM |> Q.INST [`l`|->`0`]
|> SIMP_RULE (srw_ss()) []
Triviality env_ok_EXTEND_IGNORE:
(LENGTH env2 = LENGTH env1) /\ LENGTH env1 <= n /\ l1 = LENGTH env1 /\
env_ok m l i env1' env2' (n - l1) ==>
env_ok m (l + l1) i (env1 ++ env1') (env2 ++ env2') n
Proof
SRW_TAC [] [] \\ SIMP_TAC std_ss [env_ok_def] \\ fs []
\\ Cases_on `n < LENGTH env1` \\ fs []
\\ full_simp_tac(srw_ss())[NOT_LESS]
\\ full_simp_tac(srw_ss())[env_ok_def]
\\ fs [rich_listTheory.EL_APPEND2]
QED
Definition state_rel_def:
state_rel (s:('c,'ffi) closSem$state) (t:('c,'ffi) closSem$state) <=>
(s.clock = t.clock) /\
(s.ffi = t.ffi) /\
(s.max_app = t.max_app) /\
(t.compile_oracle = (I ## (annotate 0) ## compile) o s.compile_oracle) /\
(s.compile = (λcfg (es,aux). t.compile cfg (annotate 0 es, compile aux))) /\
EVERY2 (OPTREL v_rel) s.globals t.globals /\
(FDOM s.refs = FDOM t.refs) /\
(!n r1.
(FLOOKUP s.refs n = SOME r1) ==>
?r2. (FLOOKUP t.refs n = SOME r2) /\ ref_rel v_rel r1 r2) /\
(FDOM s.code = FDOM t.code) /\
(!name arity c.
(FLOOKUP s.code name = SOME (arity,c)) ==>
?c2.
(shift (FST (alt_free [c])) 0 arity LN = [c2]) /\
(FLOOKUP t.code name = SOME (arity,c2)))
End
Theorem state_rel_max_app:
state_rel s t ⇒ s.max_app = t.max_app
Proof
rw[state_rel_def]
QED
(* some syntactic properties of the compiler *)
Theorem MAP_FST_compile[simp]:
MAP FST (clos_annotate$compile p) = MAP FST p
Proof
rw[compile_def,MAP_MAP_o,o_DEF,UNCURRY,ETA_AX]
QED
Theorem REVERSE_compile:
REVERSE (clos_annotate$compile ls) = compile (REVERSE ls)
Proof
rw[compile_def,MAP_REVERSE]
QED
Theorem ALOOKUP_compile:
ALOOKUP (clos_annotate$compile ls) =
OPTION_MAP (λ(args,e). (args, HD (annotate args [e])))
o (ALOOKUP ls)
Proof
rw[GSYM ALOOKUP_MAP]
\\ rw[FUN_EQ_THM,compile_def,LAMBDA_PROD]
QED
Theorem compile_append:
clos_annotate$compile (p1 ++ p2) = compile p1 ++ compile p2
Proof
rw[clos_annotateTheory.compile_def]
QED
(* semantic functions respect relation *)
Theorem list_to_v_v_rel:
!xs ys. LIST_REL v_rel xs ys ==> v_rel (list_to_v xs) (list_to_v ys)
Proof
Induct
>- rw [LIST_REL_EL_EQN, v_rel_simp, list_to_v_def]
\\ rw [] \\ fs [v_rel_simp, list_to_v_def]
QED
Triviality v_to_list:
!h h'.
v_rel h h' ==>
(v_to_list h = NONE /\
v_to_list h' = NONE) \/
?x x'. (v_to_list h = SOME x) /\
(v_to_list h' = SOME x') /\
EVERY2 v_rel x x'
Proof
HO_MATCH_MP_TAC v_to_list_ind
\\ full_simp_tac(srw_ss())[v_rel_simp]
\\ full_simp_tac(srw_ss())[v_to_list_def]
\\ REPEAT STRIP_TAC \\ SRW_TAC [] []
\\ full_simp_tac(srw_ss())[v_to_list_def]
\\ Cases_on `v_to_list h'` \\ full_simp_tac(srw_ss())[]
\\ Cases_on `v_to_list y'` \\ full_simp_tac(srw_ss())[]
\\ CCONTR_TAC \\ RES_TAC \\ full_simp_tac(srw_ss())[]
\\ RES_TAC \\ full_simp_tac(srw_ss())[] \\ SRW_TAC [] [] \\ fs[]
QED
val do_app_lemma = prove(
``state_rel s t ∧ LIST_REL v_rel xs ys ⇒
case do_app opp xs s of
Rval (x,s1) =>
∃y t1. v_rel x y ∧ state_rel s1 t1 ∧ do_app opp ys t = Rval (y,t1)
| Rerr err1 =>
∃err2. do_app opp ys t = Rerr err2 ∧ exc_rel v_rel err1 err2``,
match_mp_tac simple_val_rel_do_app
\\ conj_tac THEN1
(fs [simple_val_rel_def]
\\ once_rewrite_tac [v_rel_cases]
\\ fs [] \\ rw [] \\ fs [])
\\ fs [simple_state_rel_def,state_rel_def]
\\ rpt strip_tac \\ fs [FLOOKUP_DEF]
THEN1
(`ref_rel v_rel (s.refs ' ptr) (t.refs ' ptr)` by fs []
\\ rpt (qpat_x_assum `!x. _` kall_tac) \\ rfs []
\\ Cases_on `s.refs ' ptr` \\ fs [ref_rel_def])
THEN1
(`ref_rel v_rel (s.refs ' ptr) (t.refs ' ptr)` by fs []
\\ rpt (qpat_x_assum `!x. _` kall_tac) \\ rfs []
\\ Cases_on `s.refs ' ptr` \\ fs [ref_rel_def])
\\ rfs [] \\ fs [FAPPLY_FUPDATE_THM] \\ rveq
\\ fs [ref_rel_def] \\ rw []);
Triviality do_app_thm:
state_rel s1 t1 /\ EVERY2 v_rel xs ys /\
(do_app op xs s1 = Rval (v,s2)) ==>
?w t2. (do_app op ys t1 = Rval (w,t2)) /\
v_rel v w /\ state_rel s2 t2
Proof
rpt strip_tac
\\ drule (GEN_ALL do_app_lemma)
\\ disch_then drule
\\ disch_then (qspec_then `op` mp_tac) \\ fs []
\\ rpt strip_tac \\ fs []
QED
val v_rel_Number = prove(
``(v_rel x (Number i) <=> (x = Number i)) /\
(v_rel (Number i) x <=> (x = Number i)) /\
(v_rel (ByteVector ws) x <=> (x = ByteVector ws)) /\
(v_rel x (Word64 w) <=> (x = Word64 w)) /\
(v_rel (Word64 w) x <=> (x = Word64 w))``,
once_rewrite_tac [v_rel_cases] \\ fs []);
Triviality do_app_err_thm:
state_rel s1 t1 /\ EVERY2 v_rel xs ys /\
do_app op xs s1 = Rerr err /\ (err <> Rabort Rtype_error) ==>
?w. do_app op ys t1 = Rerr w /\
exc_rel v_rel err w
Proof
srw_tac[][] >>
imp_res_tac do_app_err >> fsrw_tac[][] >>
Cases_on `?i. op = EqualConst i`
THEN1 (rw [] \\ fsrw_tac[][do_app_def] \\ every_case_tac >> fs[])
\\ Cases_on `err` \\ fs []
\\ fs [do_app_cases_err]
\\ Cases_on `a` \\ fs []
\\ imp_res_tac do_app_ffi_error_IMP
\\ fs[do_app_def]
\\ rpt(PURE_TOP_CASE_TAC >> fs[] >> rveq >> fs[v_rel_simp]
\\ rveq >> fs[] >> fs[v_rel_simp])
\\ rpt(PURE_FULL_CASE_TAC \\ fs[])
\\ fs[state_rel_def] \\ first_x_assum drule \\ strip_tac \\ fs[]
\\ rveq \\ rfs[]
QED
Theorem v_to_bytes:
v_rel x y ==> (v_to_bytes x) = (v_to_bytes y)
Proof
rw[v_to_bytes_def]
\\ DEEP_INTRO_TAC some_intro
\\ rw[OPTREL_def]
\\ DEEP_INTRO_TAC some_intro \\ rw[]
\\ imp_res_tac v_to_list \\ fs[] \\ rw[]
\\ TRY (strip_tac \\ rw[])
\\ fs[EVERY2_MAP,v_rel_Number]
\\ fsrw_tac[ETA_ss][EQ_SYM_EQ]
\\ fs[LIST_EQ_REWRITE,EL_MAP,LIST_REL_EL_EQN] \\ rfs[EL_MAP]
\\ METIS_TAC[EL_MAP,o_DEF]
QED
Theorem v_to_words:
v_rel x y ==> (v_to_words x) = (v_to_words y)
Proof
rw[v_to_words_def]
\\ DEEP_INTRO_TAC some_intro
\\ rw[OPTREL_def]
\\ DEEP_INTRO_TAC some_intro \\ rw[]
\\ imp_res_tac v_to_list \\ fs[] \\ rw[]
\\ TRY (strip_tac \\ rw[])
\\ fs[EVERY2_MAP,v_rel_Number]
\\ fsrw_tac[ETA_ss][EQ_SYM_EQ]
\\ fs[LIST_EQ_REWRITE,EL_MAP,LIST_REL_EL_EQN] \\ rfs[EL_MAP]
\\ METIS_TAC[EL_MAP,o_DEF]
QED
Theorem do_install_thm:
state_rel s1 t1 /\ LIST_REL v_rel xs ys /\
do_install xs s1 = (res1,s2) /\
do_install ys t1 = (res2,t2)
==>
result_rel (λe1 e2. e2 = (annotate 0 e1)) (=) res1 res2 /\
state_rel s2 t2
Proof
fs[do_install_def]
\\ simp[CaseEq"list",CaseEq"prod",CaseEq"option"]
\\ strip_tac \\ rveq \\ fs[]
\\ imp_res_tac v_to_words
\\ imp_res_tac v_to_bytes
\\ fs [] \\ rveq
\\ `FDOM s1.code = FDOM t1.code` by fs[state_rel_def]
\\ `t1.compile_oracle = (I ## (annotate 0) ## compile) o s1.compile_oracle`
by fs[state_rel_def]
\\ Cases_on`s1.compile_oracle 0` \\ fs[]
\\ fs[CaseEq"bool"] \\ fs[] \\ rveq \\ fs[]
\\ `s1.compile = λcfg (e,aux). t1.compile cfg (annotate 0 e,compile aux)`
by fs[state_rel_def]
\\ fs[]
\\ Cases_on `r` \\ fs []
\\ fs[CaseEq"option",CaseEq"prod"] \\ rveq \\ fs[]
\\ fs[shift_seq_def]
\\ `s1.clock = t1.clock` by fs[state_rel_def]
\\ rveq
\\ qmatch_asmsub_rename_tac`annotate 0 es`
\\ `annotate 0 es = [] ⇔ es = []` by (
simp[annotate_def]
\\ rewrite_tac[GSYM LENGTH_NIL]
\\ rewrite_tac[shift_LENGTH_LEMMA, LENGTH_FST_alt_free])
\\ fs[]
\\ fs[CaseEq"bool"] \\ rveq \\ fs[] \\ rw[]
THEN (
rw [] \\ fs[state_rel_def,FUN_EQ_THM,FDOM_FUPDATE_LIST]
\\ conj_tac >- metis_tac[]
\\ simp[flookup_fupdate_list,REVERSE_compile,ALOOKUP_compile]
\\ rpt gen_tac
\\ TOP_CASE_TAC \\ fs[]
\\ simp[annotate_def]
\\ Cases_on`alt_free [c]`
\\ imp_res_tac alt_free_SING \\ fs[])
QED
(* compiler correctness *)
Triviality lookup_EL_shifted_env:
!y n k. n < LENGTH y /\ ALL_DISTINCT y ==>
(lookup (EL n y) (shifted_env k y) = SOME (k + n))
Proof
Induct \\ full_simp_tac(srw_ss())[] \\ Cases_on `n` \\ full_simp_tac(srw_ss())[shifted_env_def,lookup_insert]
\\ SRW_TAC [] [ADD1,AC ADD_COMM ADD_ASSOC]
\\ full_simp_tac(srw_ss())[MEM_EL] \\ METIS_TAC []
QED
Triviality env_ok_shifted_env:
env_ok m l i env env2 k /\ MEM k live /\ ALL_DISTINCT live /\
(lookup_vars (MAP (get_var m l i) (FILTER (\n. n < m + l) live)) env2 =
SOME x) ==>
env_ok (m + l) 0 (shifted_env 0 (FILTER (\n. n < m + l) live)) env x k
Proof
REPEAT STRIP_TAC
\\ Q.ABBREV_TAC `y = FILTER (\n. n < m + l) live`
\\ `ALL_DISTINCT y` by
(UNABBREV_ALL_TAC \\ MATCH_MP_TAC FILTER_ALL_DISTINCT \\ full_simp_tac(srw_ss())[])
\\ Cases_on `~(k < m + l)` THEN1 (full_simp_tac(srw_ss())[env_ok_def,NOT_LESS] \\ DECIDE_TAC)
\\ full_simp_tac(srw_ss())[]
\\ `MEM k y` by (UNABBREV_ALL_TAC \\ full_simp_tac(srw_ss())[MEM_FILTER])
\\ POP_ASSUM MP_TAC
\\ simp [MEM_EL] \\ STRIP_TAC
\\ POP_ASSUM (ASSUME_TAC o GSYM)
\\ Q.PAT_X_ASSUM `MEM k live` (K ALL_TAC)
\\ Q.PAT_X_ASSUM `Abbrev vvv` (K ALL_TAC)
\\ `(EL n (MAP (get_var m l i) y) = get_var m l i k) /\
n < LENGTH (MAP (get_var m l i) y)` by full_simp_tac(srw_ss())[EL_MAP]
\\ Q.ABBREV_TAC `ys = (MAP (get_var m l i) y)`
\\ MP_TAC lookup_vars_MEM \\ full_simp_tac(srw_ss())[] \\ STRIP_TAC
\\ `v_rel (EL k env) (EL (get_var m l i k) env2)` by
(full_simp_tac(srw_ss())[env_ok_def] THEN1 (`F` by DECIDE_TAC) \\ full_simp_tac(srw_ss())[get_var_def]
\\ `~(k < l)` by DECIDE_TAC \\ full_simp_tac(srw_ss())[zlookup_def])
\\ Q.PAT_X_ASSUM `EL n x = yy` (ASSUME_TAC o GSYM) \\ full_simp_tac(srw_ss())[]
\\ full_simp_tac(srw_ss())[env_ok_def] \\ DISJ2_TAC
\\ TRY (`k < l + m` by DECIDE_TAC) \\ full_simp_tac(srw_ss())[]
\\ SRW_TAC [] [] \\ full_simp_tac(srw_ss())[lookup_EL_shifted_env]
\\ IMP_RES_TAC lookup_vars_SOME \\ full_simp_tac(srw_ss())[]
QED
Triviality EL_shift_alt_free:
!fns index.
index < LENGTH fns ==>
([EL index (shift (FST (alt_free fns)) l m i)] =
(shift (FST (alt_free [EL index fns])) l m i))
Proof
Induct \\ full_simp_tac(srw_ss())[] \\ REPEAT STRIP_TAC
\\ ONCE_REWRITE_TAC [alt_free_CONS]
\\ SIMP_TAC std_ss [Once shift_CONS]
\\ Cases_on `index` \\ full_simp_tac(srw_ss())[]
\\ full_simp_tac(srw_ss())[LET_DEF,alt_free_def]
\\ REPEAT (AP_TERM_TAC ORELSE AP_THM_TAC)
\\ full_simp_tac(srw_ss())[SING_HD,LENGTH_FST_alt_free]
QED
val FOLDR_mk_Union = prove(
``!ys aux l.
FOLDR (λ(x,l) (ts,alt_frees). (x::ts,mk_Union l alt_frees)) (aux,l) ys =
(MAP FST ys ++ aux, FOLDR mk_Union l (MAP SND ys))``,
Induct \\ fs [FORALL_PROD]);
(*
Theorem MAPi_MAPi:
!xs. MAPi f (MAPi g xs) = MAPi (\i x. f i (g i x)) xs
Proof
...
QED
*)
Theorem evaluate_shift_REPLICATE_const_0[simp]:
evaluate (shift (REPLICATE n (clos_annotate$const_0 v8)) m l i,env,t1) =
(Rval (REPLICATE n (Number 0)),t1)
Proof
Induct_on `n` \\ fs [REPLICATE,shift_def]
\\ once_rewrite_tac [shift_CONS]
\\ fs [EVAL ``shift [clos_annotate$const_0 t] a2 a3 a4``]
\\ once_rewrite_tac [evaluate_CONS]
\\ fs [EVAL ``evaluate ([Op v8 (Const 0) []],env,t1)``]
QED
val no_overlap_has_var_IMP = prove(
``!n l2 x. clos_annotate$no_overlap n l2 /\ has_var x l2 ==> n <= x``,
Induct \\ fs [no_overlap_def] \\ rw [] \\ res_tac
\\ Cases_on `x = n` \\ fs []);
val evaluate_pure_IMP = prove(
``evaluate (xs,env,(s:('c,'ffi)closSem$state)) = (q,r) /\ EVERY pure xs /\
q <> Rerr (Rabort Rtype_error) ==>
?vs. q = Rval vs /\ r = s /\ LENGTH vs = LENGTH xs``,
rw[]
\\ imp_res_tac EVERY_pure_correct \\ fs[]
\\ first_x_assum(qspecl_then[`s`,`env`]mp_tac)
\\ simp[case_eq_thms]
\\ CASE_TAC \\ simp[]
\\ CASE_TAC \\ simp[]
\\ strip_tac \\ fs[]);
val every_Fn_vs_NONE_EVERY_MAP =
every_Fn_vs_NONE_EVERY
|> Q.SPEC`MAP f ls`
|> SIMP_RULE std_ss [EVERY_MAP]
|> GSYM
val code_tac =
imp_res_tac evaluate_code
\\ fs[DISTINCT_FUPDATE_LIST_UNION,DISJOINT_FEVERY_FUNION,
ALL_DISTINCT_FEVERY_alist_to_fmap,EVERY_FLAT,
EVERY_MAP,EVERY_GENLIST,shift_seq_def]
\\ fs[every_Fn_vs_NONE_EVERY_MAP,o_DEF];
Triviality shift_correct:
(!xs env (s1:('c,'ffi) closSem$state) env' t1 res s2 m l i.
(evaluate (xs,env,s1) = (res,s2)) /\ res <> Rerr (Rabort Rtype_error) /\
(LENGTH env = m + l) /\
alt_fv_set xs SUBSET env_ok m l i env env' /\
every_Fn_vs_NONE xs ∧ FEVERY (λp. every_Fn_vs_NONE [SND (SND p)]) s1.code ∧
(∀n. every_Fn_vs_NONE (FST(SND(s1.compile_oracle n))) ∧
every_Fn_vs_NONE (MAP (SND o SND) (SND(SND(s1.compile_oracle n))))) ∧
state_rel s1 t1 ==>
?res' t2.
(evaluate (shift (FST (alt_free xs)) m l i,env',t1) = (res',t2)) /\
result_rel (LIST_REL v_rel) v_rel res res' /\
state_rel s2 t2) /\
(!loc_opt f args (s1:('c,'ffi) closSem$state) res s2 f' args' s1'.
(evaluate_app loc_opt f args s1 = (res,s2)) /\
v_rel f f' /\ EVERY2 v_rel args args' /\
FEVERY (λp. every_Fn_vs_NONE [SND (SND p)]) s1.code ∧
(∀n. every_Fn_vs_NONE (FST(SND(s1.compile_oracle n))) ∧
every_Fn_vs_NONE (MAP (SND o SND) (SND(SND(s1.compile_oracle n))))) ∧
state_rel s1 s1' /\ res <> Rerr (Rabort Rtype_error) ==>
?res' s2'.
(evaluate_app loc_opt f' args' s1' = (res',s2')) /\
result_rel (LIST_REL v_rel) v_rel res res' /\
state_rel s2 s2')
Proof
HO_MATCH_MP_TAC (evaluate_ind |> Q.SPEC `λ(x1,x2,x3). P0 x1 x2 x3` |> Q.GEN `P0`
|> SIMP_RULE std_ss [FORALL_PROD])
\\ REPEAT STRIP_TAC
THEN1 (* NIL *)
(full_simp_tac(srw_ss())[alt_free_def,shift_def,evaluate_def]
\\ SRW_TAC [] [])
THEN1 (* CONS *)
(full_simp_tac(srw_ss())[alt_free_def,evaluate_def]
\\ `?y1 l1. alt_free [x] = ([y1],l1)` by METIS_TAC [PAIR,alt_free_SING]
\\ `?y2 l2. alt_free (y::xs) = (y2,l2)` by METIS_TAC [PAIR] \\ full_simp_tac(srw_ss())[]
\\ full_simp_tac(srw_ss())[LET_DEF]
\\ `?r1 s2. evaluate ([x],env,s1) = (r1,s2)` by METIS_TAC [PAIR]
\\ full_simp_tac(srw_ss())[]
\\ `?y3 y4. y2 = y3::y4` by
(IMP_RES_TAC alt_free_LENGTH
\\ Cases_on `y2` \\ full_simp_tac(srw_ss())[has_var_def,alt_fv,alt_fv1_thm])
\\ full_simp_tac(srw_ss())[shift_def]
\\ Cases_on `r1` \\ full_simp_tac(srw_ss())[]
\\ SRW_TAC [] [markerTheory.Abbrev_def]
\\ SRW_TAC [] [markerTheory.Abbrev_def]
\\ `?t. shift [y1] m l i = [t]` by METIS_TAC [shift_SING]
\\ full_simp_tac(srw_ss())[] \\ ONCE_REWRITE_TAC [evaluate_CONS]
\\ FIRST_X_ASSUM (MP_TAC o Q.SPECL [`env'`,`t1`])
\\ REPEAT STRIP_TAC \\ POP_ASSUM (MP_TAC o Q.SPECL [`m`,`l`,`i`])
\\ `alt_fv_set [x] SUBSET env_ok m l i env env' /\
alt_fv_set (y::xs) SUBSET env_ok m l i env env'` by
(full_simp_tac(srw_ss())[SUBSET_DEF,IN_DEF,alt_fv,alt_fv1_thm]
\\ full_simp_tac(srw_ss())[] \\ REPEAT STRIP_TAC
\\ full_simp_tac(srw_ss())[])
\\ fs[] \\ rpt strip_tac
\\ `?r2 s3. evaluate (y::xs,env,s2') = (r2,s3)` by METIS_TAC [PAIR] \\ full_simp_tac(srw_ss())[]
\\ FIRST_X_ASSUM (MP_TAC o Q.SPECL [`env'`,`t2`])
\\ code_tac
\\ Cases_on `r2` \\ full_simp_tac(srw_ss())[]
\\ REPEAT STRIP_TAC \\ POP_ASSUM (MP_TAC o Q.SPECL [`m`,`l`,`i`]) \\ full_simp_tac(srw_ss())[]
\\ REPEAT STRIP_TAC \\ full_simp_tac(srw_ss())[] \\ SRW_TAC [] [] \\ full_simp_tac(srw_ss())[]
\\ IMP_RES_TAC evaluate_SING \\ full_simp_tac(srw_ss())[])
THEN1 (* Var *)
(Cases_on `n < LENGTH env`
\\ full_simp_tac(srw_ss())[alt_free_def,evaluate_def,shift_def]
\\ full_simp_tac(srw_ss())[SUBSET_DEF,IN_DEF,alt_fv,alt_fv1_thm]
\\ Cases_on `l + m <= n`
THEN1 (full_simp_tac(srw_ss())[env_ok_def] \\ rev_full_simp_tac(srw_ss())[] \\ `F` by DECIDE_TAC)
\\ reverse (sg `get_var m l i n < LENGTH env' /\
v_rel (EL n env) (EL (get_var m l i n) env')`)
THEN1 (full_simp_tac(srw_ss())[] \\ SRW_TAC [] [] \\ full_simp_tac(srw_ss())[])
\\ full_simp_tac(srw_ss())[get_var_def,env_ok_def]
\\ Cases_on `n < l` \\ full_simp_tac(srw_ss())[zlookup_def]
\\ `F` by DECIDE_TAC)
THEN1 (* If *)
(full_simp_tac(srw_ss())[alt_free_def]
\\ `?y1 l1. alt_free [x1] = ([y1],l1)` by METIS_TAC [PAIR,alt_free_SING]
\\ `?y2 l2. alt_free [x2] = ([y2],l2)` by METIS_TAC [PAIR,alt_free_SING]
\\ `?y3 l3. alt_free [x3] = ([y3],l3)` by METIS_TAC [PAIR,alt_free_SING]
\\ full_simp_tac(srw_ss())[LET_DEF,shift_def,evaluate_def]
\\ `?r1 s2. evaluate ([x1],env,s1) = (r1,s2)` by METIS_TAC [PAIR] \\ full_simp_tac(srw_ss())[]
\\ `alt_fv_set [x1] SUBSET env_ok m l i env env' /\
alt_fv_set [x2] SUBSET env_ok m l i env env' /\
alt_fv_set [x3] SUBSET env_ok m l i env env'` by
(full_simp_tac(srw_ss())[SUBSET_DEF,IN_DEF,alt_fv,alt_fv1_thm])
\\ `r1 <> Rerr(Rabort Rtype_error)` by (REPEAT STRIP_TAC \\ full_simp_tac(srw_ss())[])
\\ FIRST_X_ASSUM (MP_TAC o Q.SPECL [`env'`,`t1`,`m`,`l`,`i`]) \\ full_simp_tac(srw_ss())[]
\\ REPEAT STRIP_TAC \\ full_simp_tac(srw_ss())[]
\\ Cases_on `r1` \\ full_simp_tac(srw_ss())[] \\ SRW_TAC [] []
\\ full_simp_tac(srw_ss())[] \\ SRW_TAC [] []
\\ IMP_RES_TAC evaluate_SING \\ full_simp_tac(srw_ss())[] \\ SRW_TAC [] []
\\ code_tac
\\ full_simp_tac(srw_ss())[] \\ SRW_TAC [] []
\\ full_simp_tac(srw_ss())[v_rel_simp] \\ SRW_TAC [] []
\\ Cases_on `r1 = Boolv T` \\ full_simp_tac(srw_ss())[v_rel_simp]
\\ Cases_on `r1 = Boolv F` \\ full_simp_tac(srw_ss())[v_rel_simp])
THEN1 (* Let *)
(full_simp_tac std_ss [alt_free_def]
\\ `?y2 l2. alt_free [x2] = ([y2],l2)` by METIS_TAC [PAIR,alt_free_SING]
\\ full_simp_tac std_ss [LET_DEF]
\\ IF_CASES_TAC
THEN1
(fs [shift_def]
\\ full_simp_tac(srw_ss())[alt_free_def,evaluate_def,case_eq_thms]
\\ Cases_on `evaluate (xs,env,s1')` \\ fs []
\\ Cases_on `q = Rerr (Rabort Rtype_error)` \\ fs []
\\ drule (GEN_ALL evaluate_pure_IMP) \\ fs [] \\ strip_tac \\ fs []
\\ rveq \\ fs []
\\ first_x_assum match_mp_tac \\ fs []
\\ asm_rewrite_tac [alt_fv1_def,alt_fv_def]
\\ fs [SUBSET_DEF,IN_DEF]
\\ rpt strip_tac
\\ match_mp_tac (GEN_ALL env_ok_EXTEND_IGNORE)
\\ fs [] \\ rveq \\ fs []
\\ imp_res_tac no_overlap_has_var_IMP \\ fs []
\\ first_x_assum match_mp_tac
\\ asm_rewrite_tac [alt_fv1_def,alt_fv_def]
\\ fs [alt_free_def])
\\ full_simp_tac(srw_ss())[alt_free_def]
\\ `?y1 l1. alt_free xs = (y1,l1)` by METIS_TAC [PAIR,alt_free_SING]
\\ full_simp_tac(srw_ss())[LET_DEF,shift_def,evaluate_def]
\\ rename1`Let tra xs x2` \\ rename1`evaluate(xs,env,s1)`
\\ `?r1 s2. evaluate (xs,env,s1) = (r1,s2)` by METIS_TAC [PAIR]
\\ full_simp_tac(srw_ss())[]
\\ `alt_fv_set xs SUBSET env_ok m l i env env'` by
(fs[SUBSET_DEF,IN_DEF,alt_fv_def,alt_fv1_thm]
\\ `~(EVERY pure xs)` by fs []
\\ full_simp_tac std_ss [SUBSET_DEF,IN_DEF,alt_fv_def,alt_fv1_thm])
\\ `r1 <> Rerr(Rabort Rtype_error)` by (REPEAT STRIP_TAC \\ fs[])
\\ FIRST_X_ASSUM (MP_TAC o Q.SPECL [`env'`,`t1`,`m`,`l`,`i`])
\\ full_simp_tac(srw_ss())[]
\\ REPEAT STRIP_TAC \\ full_simp_tac(srw_ss())[]
\\ Cases_on `r1` \\ full_simp_tac(srw_ss())[] \\ SRW_TAC [] []
\\ full_simp_tac(srw_ss())[] \\ SRW_TAC [] []
\\ FIRST_X_ASSUM (qspecl_then[`v'++env'`,`t2`,
`m`,`l + LENGTH y1`,`i`]mp_tac)
\\ MATCH_MP_TAC IMP_IMP \\ STRIP_TAC
\\ REPEAT STRIP_TAC \\ full_simp_tac(srw_ss())[]
\\ full_simp_tac(srw_ss())[] \\ full_simp_tac(srw_ss())[SUBSET_DEF,IN_DEF]
\\ REPEAT STRIP_TAC
\\ IMP_RES_TAC alt_free_LENGTH
\\ IMP_RES_TAC EVERY2_LENGTH
\\ IMP_RES_TAC evaluate_IMP_LENGTH
\\ full_simp_tac(srw_ss())[shift_LENGTH_LEMMA,AC ADD_COMM ADD_ASSOC]
\\ code_tac
\\ MATCH_MP_TAC env_ok_EXTEND \\ full_simp_tac(srw_ss())[]
\\ full_simp_tac(srw_ss())[alt_fv_def,alt_fv1_thm]
\\ REPEAT STRIP_TAC
\\ Q.PAT_X_ASSUM `!x.bbb` (K ALL_TAC)
\\ FIRST_X_ASSUM MATCH_MP_TAC
\\ `x - LENGTH v' + LENGTH v' = x` by DECIDE_TAC \\ full_simp_tac(srw_ss())[])
THEN1 (* Raise *)
(full_simp_tac(srw_ss())[alt_free_def]
\\ `?y1 l1. alt_free [x1] = ([y1],l1)` by METIS_TAC [PAIR,alt_free_SING]
\\ full_simp_tac(srw_ss())[LET_DEF,shift_def,evaluate_def]
\\ `?r1 s2. evaluate ([x1],env,s1) = (r1,s2)` by METIS_TAC [PAIR] \\ full_simp_tac(srw_ss())[]
\\ `alt_fv_set [x1] SUBSET env_ok m l i env env'` by
(full_simp_tac(srw_ss())[SUBSET_DEF,IN_DEF,alt_fv,alt_fv1_thm])
\\ `r1 <> Rerr(Rabort Rtype_error)` by (REPEAT STRIP_TAC \\ full_simp_tac(srw_ss())[])
\\ FIRST_X_ASSUM (MP_TAC o Q.SPECL [`env'`,`t1`,`m`,`l`,`i`]) \\ full_simp_tac(srw_ss())[]
\\ REPEAT STRIP_TAC \\ full_simp_tac(srw_ss())[]
\\ Cases_on `r1` \\ full_simp_tac(srw_ss())[] \\ SRW_TAC [] []
\\ full_simp_tac(srw_ss())[] \\ SRW_TAC [] []
\\ IMP_RES_TAC evaluate_SING \\ full_simp_tac(srw_ss())[])
THEN1 (* Handle *)
(full_simp_tac(srw_ss())[alt_free_def]
\\ `?y1 l1. alt_free [x1] = ([y1],l1)` by METIS_TAC [PAIR,alt_free_SING]
\\ `?y2 l2. alt_free [x2] = ([y2],l2)` by METIS_TAC [PAIR,alt_free_SING]
\\ full_simp_tac(srw_ss())[LET_DEF,shift_def,evaluate_def]
\\ `?r1 s2. evaluate ([x1],env,s1) = (r1,s2)` by METIS_TAC [PAIR] \\ full_simp_tac(srw_ss())[]
\\ `alt_fv_set [x1] SUBSET env_ok m l i env env'` by
(full_simp_tac(srw_ss())[SUBSET_DEF,IN_DEF,alt_fv,alt_fv1_thm])
\\ `r1 <> Rerr(Rabort Rtype_error)` by (REPEAT STRIP_TAC \\ full_simp_tac(srw_ss())[])
\\ FIRST_X_ASSUM (MP_TAC o Q.SPECL [`env'`,`t1`,`m`,`l`,`i`]) \\ full_simp_tac(srw_ss())[]
\\ imp_res_tac evaluate_const
\\ REPEAT STRIP_TAC \\ full_simp_tac(srw_ss())[]
\\ Cases_on `r1` \\ full_simp_tac(srw_ss())[] \\ SRW_TAC [] []
\\ full_simp_tac(srw_ss())[] \\ SRW_TAC [] []
\\ Cases_on `e` \\ full_simp_tac(srw_ss())[] \\ SRW_TAC [] []
\\ full_simp_tac(srw_ss())[] \\ SRW_TAC [] []
\\ FIRST_X_ASSUM (MP_TAC o Q.SPECL [`v'::env'`,`t2`,`m`,`l+1`,`i`]) \\ full_simp_tac(srw_ss())[]
\\ MATCH_MP_TAC IMP_IMP \\ STRIP_TAC \\ full_simp_tac(srw_ss())[]
\\ full_simp_tac(srw_ss())[AC ADD_ASSOC ADD_COMM,ADD1]
\\ full_simp_tac(srw_ss())[SUBSET_DEF,IN_DEF]
\\ code_tac
\\ REPEAT STRIP_TAC
\\ MATCH_MP_TAC env_ok_cons \\ full_simp_tac(srw_ss())[]
\\ RES_TAC \\ REPEAT STRIP_TAC
\\ full_simp_tac(srw_ss())[alt_fv,alt_fv1_thm]
\\ Cases_on `x` \\ full_simp_tac(srw_ss())[]
\\ Q.PAT_X_ASSUM `!x.bbb` (K ALL_TAC)
\\ FIRST_X_ASSUM MATCH_MP_TAC \\ full_simp_tac(srw_ss())[ADD1])
THEN1 (* Op *)
(full_simp_tac(srw_ss())[alt_free_def]
\\ `?y1 l1. alt_free xs = (y1,l1)` by METIS_TAC [PAIR,alt_free_SING]
\\ full_simp_tac(srw_ss())[LET_DEF,shift_def,evaluate_def]
\\ `?r1 s2. evaluate (xs,env,s1) = (r1,s2)` by METIS_TAC [PAIR] \\ full_simp_tac(srw_ss())[]
\\ `alt_fv_set xs SUBSET env_ok m l i env env'` by
(full_simp_tac(srw_ss())[SUBSET_DEF,IN_DEF,alt_fv,alt_fv1_thm])
\\ `r1 <> Rerr(Rabort Rtype_error)` by (REPEAT STRIP_TAC \\ full_simp_tac(srw_ss())[])
\\ FIRST_X_ASSUM (MP_TAC o Q.SPECL [`env'`,`t1`,`m`,`l`,`i`]) \\ full_simp_tac(srw_ss())[]
\\ REPEAT STRIP_TAC \\ full_simp_tac(srw_ss())[]
\\ Cases_on `r1` \\ full_simp_tac(srw_ss())[] \\ SRW_TAC [] []
>- ( (* Install case *)
pop_assum mp_tac
\\ simp[case_eq_thms,pair_case_eq,PULL_EXISTS]
\\ drule (GEN_ALL do_install_thm)
\\ qmatch_assum_rename_tac`LIST_REL v_rel vs ws`
\\ disch_then(qspecl_then[`REVERSE ws`,`REVERSE vs`]mp_tac)
\\ simp[EVERY2_REVERSE]
\\ Cases_on `do_install (REVERSE vs) s2'` \\ fs []
\\ Cases_on `do_install (REVERSE ws) t2` \\ fs []
\\ reverse (rpt strip_tac) THEN1
(rveq \\ fs [] \\ rveq \\ fs []
\\ Cases_on `err` \\ fs []
\\ imp_res_tac do_install_not_Rraise \\ fs [])
>- (
rveq \\ fs[] \\ rfs[]
\\ fsrw_tac[DNF_ss][annotate_def]
\\ first_x_assum match_mp_tac \\ fs[]
\\ qpat_x_assum`_ = (Rval _,r)`mp_tac
\\ simp[do_install_def,case_eq_thms]
\\ strip_tac \\ pairarg_tac \\ fs[CaseEq"bool",CaseEq"option",CaseEq"prod"]
\\ rveq \\ fs[]
\\ qpat_x_assum`evaluate (xs,env,s1) = _`assume_tac
\\ code_tac
\\ simp[env_ok_def,SUBSET_DEF,IN_DEF]
\\ metis_tac[FST,SND] )
\\ rveq \\ fs [] \\ rveq \\ fs []
\\ fsrw_tac[DNF_ss][annotate_def]
\\ qmatch_goalsub_abbrev_tac`evaluate (_,[],tt1)`
\\ first_x_assum(qspecl_then[`[]`,`tt1`,`LN`]mp_tac)
\\ impl_tac
>- (
qpat_x_assum `_ = (Rval x,r)` mp_tac
\\ simp[do_install_def,case_eq_thms]
\\ strip_tac
\\ pairarg_tac \\ fs[bool_case_eq,case_eq_thms,pair_case_eq]
\\ rveq \\ fs[]
\\ qpat_x_assum `evaluate (xs,env,s1) = _` assume_tac
\\ code_tac
\\ rveq \\ fs[]
\\ simp[env_ok_def,SUBSET_DEF,IN_DEF]
\\ metis_tac[FST,SND])
\\ strip_tac
\\ asm_exists_tac \\ fs[]
\\ Cases_on`es = []` >- (
fs[do_install_def, case_eq_thms]
\\ pairarg_tac \\ fs[case_eq_thms,bool_case_eq,CaseEq"prod"]
\\ pairarg_tac \\ fs[case_eq_thms,bool_case_eq,CaseEq"prod"] )
\\ imp_res_tac evaluate_IMP_LENGTH
\\ fs[shift_LENGTH_LEMMA, LENGTH_FST_alt_free]
\\ Q.ISPEC_THEN`vs'`FULL_STRUCT_CASES_TAC SNOC_CASES \\ fs[]
\\ fs[LIST_REL_SNOC] )
\\ full_simp_tac(srw_ss())[] \\ SRW_TAC [] [] >>
last_x_assum mp_tac >>
reverse BasicProvers.CASE_TAC >- (
srw_tac[][] >>
IMP_RES_TAC do_app_err >> full_simp_tac(srw_ss())[] >> srw_tac[][] >>
imp_res_tac EVERY2_REVERSE >>
IMP_RES_TAC do_app_err_thm >> rev_full_simp_tac(srw_ss())[] ) >>
BasicProvers.CASE_TAC >> srw_tac[][] >>
IMP_RES_TAC EVERY2_REVERSE
\\ IMP_RES_TAC do_app_thm \\ full_simp_tac(srw_ss())[])
THEN1 (* Fn *)
(full_simp_tac(srw_ss())[alt_free_def,evaluate_def]
\\ full_simp_tac(srw_ss())[clos_env_def]
\\ SRW_TAC [] [] \\ SRW_TAC [] [markerTheory.Abbrev_def]
\\ `?y1 l1. alt_free [exp] = ([y1],l1)` by METIS_TAC [PAIR,alt_free_SING]
\\ Cases_on `num_args <= s1.max_app` \\ full_simp_tac(srw_ss())[]
\\ Cases_on `num_args <> 0` \\ full_simp_tac(srw_ss())[] \\ SRW_TAC [] []
\\ full_simp_tac(srw_ss())[shift_def,LET_DEF,evaluate_def,clos_env_def,
PULL_EXISTS,v_rel_simp]
\\ Q.ABBREV_TAC `live =
FILTER (\n. n < m + l) (vars_to_list (Shift num_args l1))`
\\ full_simp_tac(srw_ss())[MAP_MAP_o,o_DEF]
\\ Cases_on `lookup_vars (MAP (get_var m l i) live) env'`
\\ full_simp_tac(srw_ss())[] THEN1
(full_simp_tac(srw_ss())[SUBSET_DEF,IN_DEF,alt_fv,alt_fv1_thm]
\\ full_simp_tac(srw_ss())[lookup_vars_NONE] \\ UNABBREV_ALL_TAC
\\ full_simp_tac(srw_ss())[MEM_FILTER,MEM_vars_to_list,MEM_MAP]
\\ MP_TAC (Q.SPEC`[exp]` alt_free_thm)
\\ full_simp_tac(srw_ss())[LET_DEF] \\ CCONTR_TAC \\ full_simp_tac(srw_ss())[] \\ RES_TAC
\\ SRW_TAC [] []
\\ full_simp_tac(srw_ss())[env_ok_def] \\ rev_full_simp_tac(srw_ss())[]
\\ full_simp_tac(srw_ss())[get_var_def,zlookup_def]
\\ DECIDE_TAC)
\\ reverse IF_CASES_TAC >- (
imp_res_tac state_rel_max_app \\ fs[])
\\ simp_tac (srw_ss())[]
\\ Q.EXISTS_TAC `shifted_env 0 live` \\ full_simp_tac(srw_ss())[]
\\ REPEAT STRIP_TAC \\ Cases_on `n` \\ full_simp_tac(srw_ss())[]
\\ MP_TAC (Q.SPEC `[exp]` alt_free_thm)
\\ full_simp_tac(srw_ss())[LET_DEF] \\ STRIP_TAC
\\ full_simp_tac(srw_ss())[SUBSET_DEF,IN_DEF,alt_fv,alt_fv1_thm]
\\ full_simp_tac(srw_ss())[ADD1] \\ RES_TAC \\ UNABBREV_ALL_TAC
\\ Q.ABBREV_TAC `live = vars_to_list (Shift num_args l1)`
\\ MATCH_MP_TAC (GEN_ALL env_ok_shifted_env)
\\ Q.LIST_EXISTS_TAC [`i`,`env'`] \\ full_simp_tac(srw_ss())[]
\\ `n' + 1 = (n' + 1 - num_args) + num_args` by DECIDE_TAC
\\ STRIP_TAC THEN1 METIS_TAC []
\\ STRIP_TAC THEN1 (UNABBREV_ALL_TAC \\ full_simp_tac(srw_ss())[MEM_vars_to_list] \\ METIS_TAC [])
\\ UNABBREV_ALL_TAC \\ full_simp_tac(srw_ss())[ALL_DISTINCT_vars_to_list])
THEN1 (* Letrec *)
(full_simp_tac std_ss [alt_free_def]
\\ `?y2 l2. alt_free [exp] = ([y2],l2)` by METIS_TAC [PAIR,alt_free_SING]
\\ full_simp_tac std_ss [LET_DEF]
(*
\\ IF_CASES_TAC
THEN1
(fs [shift_def]
\\ full_simp_tac(srw_ss())[alt_free_def,evaluate_def,case_eq_thms]
\\ qpat_x_assum `_ = (res,_)` mp_tac \\ IF_CASES_TAC \\ fs []
\\ strip_tac \\ fs []
\\ first_x_assum match_mp_tac \\ fs []
\\ asm_rewrite_tac [alt_fv1_def,alt_fv_def]
\\ fs [SUBSET_DEF,IN_DEF]
\\ rpt strip_tac
\\ match_mp_tac (GEN_ALL env_ok_EXTEND_IGNORE)
\\ fs [] \\ rveq \\ fs []
\\ imp_res_tac no_overlap_has_var_IMP \\ fs []
\\ first_x_assum match_mp_tac
\\ asm_rewrite_tac [alt_fv1_def,alt_fv_def]
\\ fs [alt_free_def])
*)
\\ full_simp_tac(srw_ss())[alt_free_def,evaluate_def]
\\ full_simp_tac(srw_ss())[clos_env_def]
\\ SRW_TAC [] [] \\ SRW_TAC [] [markerTheory.Abbrev_def]
\\ `EVERY (\(num_args,e). num_args <= s1.max_app /\
num_args <> 0) fns` by
(CCONTR_TAC \\ FULL_SIMP_TAC std_ss [])
\\ Cases_on `build_recc F loc env names fns` \\ full_simp_tac(srw_ss())[]
\\ Q.ABBREV_TAC `rec_res = MAP
(\(n,x).
(let (c,l) = alt_free [x] in
((n,HD c),Shift (n + LENGTH fns) l))) fns`
\\ full_simp_tac(srw_ss())[shift_def,LET_DEF,evaluate_def,
build_recc_def,clos_env_def,shift_LENGTH_LEMMA]
\\ Q.PAT_ABBREV_TAC `ev = EVERY PP xx`
\\ `ev` by
(UNABBREV_ALL_TAC \\ full_simp_tac(srw_ss())[MAP_MAP_o,o_DEF]
\\ CONV_TAC (DEPTH_CONV PairRules.PBETA_CONV)
\\ full_simp_tac(srw_ss())[EVERY_MAP]
\\ full_simp_tac(srw_ss())[EVERY_MEM,FORALL_PROD] \\ rpt strip_tac \\ RES_TAC
\\ imp_res_tac state_rel_max_app \\ fs[])
\\ full_simp_tac(srw_ss())[] \\ POP_ASSUM (K ALL_TAC) \\ POP_ASSUM (K ALL_TAC)
\\ Q.ABBREV_TAC `live = FILTER (\n. n < m + l)
(vars_to_list (list_mk_Union (MAP SND rec_res)))`
\\ Cases_on `lookup_vars (MAP (get_var m l i) live) env'`
\\ full_simp_tac(srw_ss())[] THEN1
(full_simp_tac(srw_ss())[SUBSET_DEF,IN_DEF,alt_fv,alt_fv1_thm]
\\ full_simp_tac(srw_ss())[lookup_vars_NONE] \\ UNABBREV_ALL_TAC
\\ full_simp_tac(srw_ss())[MEM_FILTER,MEM_vars_to_list,MEM_MAP]
\\ full_simp_tac(srw_ss())[EXISTS_MEM,PULL_EXISTS,EXISTS_PROD]
\\ NTAC 3 (POP_ASSUM MP_TAC)
\\ full_simp_tac(srw_ss())[MAP_MAP_o,o_DEF,MEM_MAP,EXISTS_PROD]
\\ REPEAT STRIP_TAC
\\ Q.MATCH_ASSUM_RENAME_TAC `MEM (p_11,p_21) fns`
\\ Cases_on `alt_free [p_21]` \\ full_simp_tac(srw_ss())[]
\\ SRW_TAC [] [] \\ full_simp_tac(srw_ss())[]
\\ MP_TAC (Q.SPEC`[p_21]` alt_free_thm)
\\ full_simp_tac(srw_ss())[LET_DEF] \\ CCONTR_TAC
\\ full_simp_tac(srw_ss())[AC ADD_ASSOC ADD_COMM] \\ RES_TAC
\\ SRW_TAC [] [] \\ full_simp_tac(srw_ss())[]
\\ full_simp_tac(srw_ss())[env_ok_def] \\ rev_full_simp_tac(srw_ss())[]
\\ full_simp_tac(srw_ss())[get_var_def,zlookup_def]
\\ DECIDE_TAC)
\\ FIRST_X_ASSUM MATCH_MP_TAC
\\ IMP_RES_TAC alt_free_LENGTH \\ full_simp_tac(srw_ss())[]
\\ `LENGTH rec_res = LENGTH x` by
(UNABBREV_ALL_TAC \\ full_simp_tac(srw_ss())[] \\ SRW_TAC [] [] \\ full_simp_tac(srw_ss())[])
\\ STRIP_TAC THEN1 (full_simp_tac(srw_ss())[AC ADD_COMM ADD_ASSOC,Abbr`rec_res`])
\\ full_simp_tac(srw_ss())[SUBSET_DEF,IN_DEF,alt_fv,alt_fv1_thm]
\\ REPEAT STRIP_TAC
\\ MATCH_MP_TAC (env_ok_EXTEND |> GEN_ALL) \\ full_simp_tac(srw_ss())[]
\\ reverse (REPEAT STRIP_TAC) THEN1
(FIRST_X_ASSUM MATCH_MP_TAC \\ DISJ2_TAC
\\ UNABBREV_ALL_TAC \\ full_simp_tac(srw_ss())[]
\\ SRW_TAC [] [] \\ full_simp_tac(srw_ss())[]
\\ IMP_RES_TAC (DECIDE ``n <= m:num <=> (m - n + n = m)``)
\\ full_simp_tac(srw_ss())[] \\ rfs [])
\\ SRW_TAC [] []
\\ full_simp_tac(srw_ss())[LIST_REL_GENLIST] \\ REPEAT STRIP_TAC
\\ full_simp_tac(srw_ss())[v_rel_simp]
\\ Q.UNABBREV_TAC `rec_res`
\\ full_simp_tac(srw_ss())[EVERY2_MAP]
\\ MATCH_MP_TAC listTheory.EVERY2_refl
\\ REPEAT STRIP_TAC
\\ PairCases_on `x` \\ full_simp_tac(srw_ss())[]
\\ `?y1 y2. alt_free [x1] = ([y1],y2)` by METIS_TAC [alt_free_SING,PAIR]
\\ full_simp_tac(srw_ss())[] \\ Q.EXISTS_TAC `shifted_env 0 live`
\\ STRIP_TAC THEN1 SIMP_TAC std_ss [AC ADD_COMM ADD_ASSOC]
\\ reverse strip_tac >- (
full_simp_tac(srw_ss())[Once every_Fn_vs_NONE_EVERY,EVERY_MAP,EVERY_MEM] >>
res_tac >> full_simp_tac(srw_ss())[] )
\\ REPEAT STRIP_TAC
\\ UNABBREV_ALL_TAC
\\ MATCH_MP_TAC (GEN_ALL env_ok_shifted_env)
\\ Q.LIST_EXISTS_TAC [`i`,`env'`] \\ full_simp_tac(srw_ss())[]
\\ full_simp_tac(srw_ss())[AC ADD_COMM ADD_ASSOC,ALL_DISTINCT_vars_to_list]
\\ full_simp_tac(srw_ss())[MEM_vars_to_list]
\\ STRIP_TAC THEN1
(FIRST_X_ASSUM MATCH_MP_TAC \\ DISJ1_TAC
\\ full_simp_tac(srw_ss())[EXISTS_MEM,EXISTS_PROD]
\\ Q.LIST_EXISTS_TAC [`x0`,`x1`] \\ full_simp_tac(srw_ss())[]
\\ full_simp_tac(srw_ss())[MEM_EL,PULL_EXISTS]
\\ `x0 + (n - (x0 + LENGTH fns) + LENGTH fns) = n` by DECIDE_TAC
\\ METIS_TAC [])
\\ full_simp_tac(srw_ss())[EXISTS_MEM,EXISTS_PROD,PULL_EXISTS]
\\ full_simp_tac(srw_ss())[MEM_MAP,EXISTS_PROD,PULL_EXISTS]
\\ CONV_TAC (DEPTH_CONV (PairRules.PBETA_CONV)) \\ full_simp_tac(srw_ss())[]
\\ Q.LIST_EXISTS_TAC [`x0`,`x1`] \\ full_simp_tac(srw_ss())[]
\\ MP_TAC (Q.SPEC `[x1]` alt_free_thm)
\\ IMP_RES_TAC (DECIDE ``n <= m:num <=> (m - n + n = m)``)
\\ full_simp_tac(srw_ss())[LET_DEF] \\ STRIP_TAC \\ full_simp_tac(srw_ss())[])
THEN1 (* App *)
(full_simp_tac(srw_ss())[alt_free_def]
\\ `?y1 l1. alt_free xs = (y1,l1)` by METIS_TAC [PAIR]
\\ `?y2 l2. alt_free [x1] = ([y2],l2)` by METIS_TAC [PAIR,alt_free_SING]