-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathclos_mtiProofScript.sml
1559 lines (1472 loc) · 60 KB
/
clos_mtiProofScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*
Correctness proof for the clos_mti compiler pass. The theorem is
proved using a backwards simulation, i.e. against the direction of
compilation.
*)
open preamble backendPropsTheory closPropsTheory
clos_mtiTheory closSemTheory helperLib;
val _ = new_theory "clos_mtiProof";
val _ = temp_delsimps ["NORMEQ_CONV"]
val _ = diminish_srw_ss ["ABBREV"]
val _ = set_trace "BasicProvers.var_eq_old" 1
fun bring_fwd_ctors th ty = map ((fn s=> Parse.bring_to_front_overload s {Name = s,Thy = th}) o term_to_string) (TypeBase.constructors_of ty)
val _ = bring_fwd_ctors "closLang" ``:closLang$exp``
(* code relation *)
Theorem no_mti_def = closPropsTheory.no_mti_def
|> CONV_RULE (DEPTH_CONV ETA_CONV)
Definition code_rel_def:
code_rel max_app e1 e2 <=>
EVERY no_mti e1 /\ (e2 = intro_multi max_app e1)
End
Theorem code_rel_IMP_LENGTH:
code_rel max_app xs ys ==> LENGTH ys = LENGTH xs
Proof
rw [code_rel_def,clos_mtiTheory.intro_multi_length]
QED
Theorem HD_intro_multi[simp]:
[HD (intro_multi max_app [e2])] = intro_multi max_app [e2]
Proof
`?x. intro_multi max_app [e2] = [x]` by metis_tac [intro_multi_sing]
\\ fs []
QED
Theorem intro_multi_cons:
!xs x. intro_multi m (x::xs) = HD (intro_multi m [x]) :: intro_multi m xs
Proof
Induct \\ fs[intro_multi_def]
QED
Theorem code_rel_CONS_CONS:
code_rel m (x1::x2::xs) (y1::y2::ys) <=>
code_rel m [x1] [y1] /\ code_rel m (x2::xs) (y2::ys)
Proof
fs [code_rel_def,intro_multi_def]
\\ `?t1. intro_multi m [x1] = [t1]` by metis_tac [intro_multi_sing]
\\ `?t2. intro_multi m [x2] = [t2]` by metis_tac [intro_multi_sing]
\\ fs [] \\ eq_tac \\ rw []
\\ pop_assum mp_tac
\\ once_rewrite_tac [intro_multi_cons] \\ fs []
QED
(* value relation *)
Definition mk_Fns_def:
mk_Fns [] e = e /\
mk_Fns (t::ts) e = Fn t NONE NONE 1 (mk_Fns ts e)
End
Definition f_rel_def:
f_rel max_app (a1,e1) (a2,e2) <=>
?b1 ts.
code_rel max_app [b1] [e2] /\ a2 <= max_app /\ no_mti b1 /\
a1 = 1n /\ e1 = mk_Fns ts b1 /\ a2 = LENGTH ts + 1
End
Inductive v_rel:
(!i. v_rel (max_app:num) (Number i) (closSem$Number i)) /\
(!w. v_rel max_app (Word64 w) (Word64 w)) /\
(!w. v_rel max_app (ByteVector w) (ByteVector w)) /\
(!n b. v_rel max_app (RefPtr b n) (RefPtr b n)) /\
(!tag xs ys.
LIST_REL (v_rel max_app) xs ys ==>
v_rel max_app (Block tag xs) (Block tag ys)) /\
(!args1 args2 env1 env2 arg_count e1 ts e2.
1 + LENGTH ts + LENGTH args1 = arg_count /\
code_rel max_app [e1] [e2] /\
LIST_REL (v_rel max_app) env1 env2 /\
LIST_REL (v_rel max_app) args1 args2 ==>
v_rel max_app
(Closure NONE [] (args1 ++ env1) 1 (mk_Fns ts e1))
(Closure NONE args2 env2 arg_count e2)) /\
(!env1 funs1 env2 funs2 n.
LIST_REL (f_rel max_app) funs1 funs2 /\
LIST_REL (v_rel max_app) env1 env2 /\
n < LENGTH funs2 ==>
v_rel max_app
(Recclosure NONE [] env1 funs1 n)
(Recclosure NONE [] env2 funs2 n)) /\
(!args1 env1 funs1 args2 env2 funs2 n recc ts e1 e2 arg_count.
LIST_REL (f_rel max_app) funs1 funs2 /\
LIST_REL (v_rel max_app) env1 env2 /\
LIST_REL (v_rel max_app) args1 args2 /\ args2 <> [] /\
n < LENGTH funs2 /\ EL n funs2 = (arg_count,e2) /\
1 + LENGTH ts + LENGTH args1 = arg_count /\
code_rel max_app [e1] [e2] /\
LIST_REL (v_rel max_app) recc
(GENLIST (Recclosure NONE [] env2 funs2) (LENGTH funs2)) ==>
v_rel max_app
(Closure NONE [] (args1 ++ recc ++ env1) 1 (mk_Fns ts e1))
(Recclosure NONE args2 env2 funs2 n))
End
Definition v_rel_opt_def:
(v_rel_opt max_app NONE NONE <=> T) /\
(v_rel_opt max_app (SOME x) (SOME y) <=> v_rel max_app x y) /\
(v_rel_opt max_app _ _ = F)
End
Inductive ref_rel:
(!bs. ref_rel max_app (ByteArray bs) (ByteArray bs)) /\
(!xs ys.
LIST_REL (v_rel max_app) xs ys ==>
ref_rel max_app (ValueArray xs) (ValueArray ys))
End
Definition FMAP_REL_def:
FMAP_REL r f1 f2 <=>
FDOM f1 = FDOM f2 /\
!k v. FLOOKUP f1 k = SOME v ==>
?v2. FLOOKUP f2 k = SOME v2 /\ r v v2
End
(* state relation *)
Theorem SND_compile_inc[simp]:
SND (clos_mti$compile_inc max_app p) = []
Proof
Cases_on`p` \\ EVAL_TAC
QED
Definition state_rel_def:
state_rel (s:('c,'ffi) closSem$state) (t:('c,'ffi) closSem$state) <=>
(!n. SND (SND (s.compile_oracle n)) = [] /\
EVERY no_mti (FST (SND (s.compile_oracle n)))) /\
s.code = FEMPTY /\ t.code = FEMPTY /\
t.max_app = s.max_app /\ 1 <= s.max_app /\
t.clock = s.clock /\
t.ffi = s.ffi /\
LIST_REL (v_rel_opt s.max_app) s.globals t.globals /\
FMAP_REL (ref_rel s.max_app) s.refs t.refs /\
s.compile = pure_cc (clos_mti$compile_inc s.max_app) t.compile /\
t.compile_oracle = pure_co (clos_mti$compile_inc s.max_app) o s.compile_oracle
End
(* evaluation theorem *)
Theorem collect_args_IMP:
!max_app k e1 num_args e2.
collect_args max_app k e1 = (num_args,e2) /\ k <= max_app ==>
k <= num_args /\ num_args <= max_app
Proof
recInduct collect_args_ind
\\ rpt conj_tac \\ rpt gen_tac \\ strip_tac
\\ fs [collect_args_def]
\\ rw [] \\ fs []
QED
Theorem collect_args_ok_IMP:
!max_app k e num_args e2.
collect_args max_app k e = (num_args,e2) /\ no_mti e ==>
?ts. e = mk_Fns ts e2 ∧ num_args = k + LENGTH ts /\ no_mti e2
Proof
recInduct collect_args_ind
\\ rw [] \\ fs []
\\ fs [collect_args_def] \\ rveq
\\ TRY (fs [collect_args_def] \\ rveq
\\ qexists_tac `[]` \\ fs [mk_Fns_def] \\ NO_TAC)
\\ FULL_CASE_TAC \\ rveq
\\ TRY (fs [collect_args_def] \\ rveq
\\ qexists_tac `[]` \\ fs [mk_Fns_def] \\ NO_TAC)
\\ first_x_assum drule
\\ fs [no_mti_def] \\ rveq
\\ strip_tac \\ fs [] \\ rveq
\\ qexists_tac `t::ts` \\ fs [mk_Fns_def]
QED
Theorem dest_closure_SOME_IMP:
dest_closure max_app loc_opt f2 xs = SOME x ==>
(?loc arg_env clo_env num_args e. f2 = Closure loc arg_env clo_env num_args e) \/
(?loc arg_env clo_env fns i. f2 = Recclosure loc arg_env clo_env fns i)
Proof
fs [dest_closure_def,case_eq_thms] \\ rw [] \\ fs []
QED
val collect_apps_acc = prove(
``!max_app acc e res s.
collect_apps max_app acc e = (res,s) ==>
?other. res = acc ++ other``,
recInduct collect_apps_ind \\ rw []
\\ pop_assum mp_tac
\\ simp [collect_apps_def]
\\ IF_CASES_TAC \\ fs []
\\ rw [] \\ res_tac \\ fs []);
val collect_apps_cons_lemma = prove(
``!e1 m ys other e2.
collect_apps (m+LENGTH ys) ys e1 = (ys ++ other,e2) <=>
collect_apps m [] e1 = (other,e2)``,
Induct \\ fs [collect_apps_def]
\\ rw [] \\ Cases_on `o'` \\ fs [collect_apps_def]
\\ rw [] \\ fs []
\\ fs [LESS_EQ_EXISTS]
\\ Cases_on `collect_apps (p + LENGTH l) l e1`
\\ drule collect_apps_acc
\\ strip_tac \\ rveq \\ fs []
\\ Cases_on `collect_apps (p + (LENGTH l + LENGTH ys)) (ys ⧺ l) e1`
\\ drule collect_apps_acc
\\ strip_tac \\ rveq \\ fs []
\\ pop_assum mp_tac
\\ `(LENGTH l + LENGTH ys) = LENGTH (ys ++ l)` by fs []
\\ asm_rewrite_tac []
\\ rfs []);
val collect_apps_cons = prove(
``!e1 m x other e2.
collect_apps m [x] e1 = (x::other,e2) /\ m <> 0 ==>
collect_apps (m-1) [] e1 = (other,e2)``,
once_rewrite_tac [collect_apps_cons_lemma |> GSYM
|> Q.SPECL [`e1`,`m`,`[x]`]
|> SIMP_RULE std_ss [LENGTH,APPEND]] \\ rw []);
Definition mk_Apps_def:
mk_Apps e [] = e /\
mk_Apps e ((t,other)::ts) = App t NONE (mk_Apps e ts) [other]
End
Theorem collect_apps_IMP_mk_Apps:
!e max_app (acc:closLang$exp list) other e3.
collect_apps max_app [] e = (other,e3) /\ no_mti e ==>
?ts. e = mk_Apps e3 (ZIP (ts, other)) /\ LENGTH other = LENGTH ts /\
LENGTH other <= max_app
Proof
Induct \\ fs [] \\ rw []
\\ fs [collect_apps_def] \\ rveq
\\ TRY (qexists_tac `[]` \\ fs [mk_Apps_def]
\\ FULL_CASE_TAC \\ fs [] \\ rveq \\ fs [mk_Apps_def] \\ NO_TAC)
\\ fs [no_mti_def] \\ rveq
\\ fs [collect_apps_def] \\ rveq
\\ FULL_CASE_TAC \\ fs [] \\ rveq
\\ TRY (qexists_tac `[]` \\ fs [mk_Apps_def] \\ NO_TAC)
\\ fs [no_mti_def]
\\ imp_res_tac collect_apps_acc \\ rveq \\ fs []
\\ Cases_on ‘l’ \\ gvs []
\\ drule (GEN_ALL collect_apps_cons) \\ fs []
\\ strip_tac \\ first_x_assum drule
\\ strip_tac \\ rveq \\ fs []
\\ qexists_tac `t::ts` \\ fs [ZIP,mk_Apps_def]
QED
val mk_Apps_err_1 = prove(
``∀ts other env1 s1 e3.
evaluate (other,env1,s1) = (Rerr e2,s2) /\
LENGTH other = LENGTH ts ==>
evaluate ([mk_Apps e3 (ZIP (ts,other))],env1,s1) = (Rerr e2,s2)``,
Induct
\\ fs [evaluate_def]
\\ Cases_on `other` \\ fs [ZIP,mk_Apps_def]
\\ once_rewrite_tac [evaluate_CONS]
\\ rw [] \\ fs [case_eq_thms,pair_case_eq]
\\ rveq \\ fs [] \\ fs [evaluate_def]);
val mk_Apps_err_2 = prove(
``∀ts other env1 s1 e3 vs.
evaluate ([e3],env1,s2) = (Rerr e2,s2') /\
evaluate (other,env1,s1) = (Rval vs,s2) /\
LENGTH other = LENGTH ts ==>
evaluate ([mk_Apps e3 (ZIP (ts,other))],env1,s1) = (Rerr e2,s2')``,
Induct
\\ fs [evaluate_def,mk_Apps_def]
\\ Cases_on `other` \\ fs [ZIP,mk_Apps_def]
\\ once_rewrite_tac [evaluate_CONS]
\\ rw [] \\ fs [case_eq_thms,pair_case_eq]
\\ rveq \\ fs [] \\ fs [evaluate_def]
\\ imp_res_tac evaluate_SING \\ rveq \\ fs []);
Theorem collect_apps_no_mti:
!k aux e res e1.
collect_apps k aux e = (res,e1) /\
no_mti e /\ EVERY no_mti aux ==>
EVERY no_mti res /\ no_mti e1
Proof
recInduct collect_apps_ind
\\ rw [collect_apps_def] \\ fs []
\\ fs [no_mti_def, ETA_THM]
QED
val evaluate_mk_Apps_err = prove(
``!other ts env1 s1 vs.
evaluate (other,env1,s1) = (Rval vs,s3) /\
evaluate ([e],env1,s3) = (Rerr e3,s2') /\
LENGTH other = LENGTH ts ==>
evaluate ([mk_Apps e (ZIP (ts,other))],env1,s1) = (Rerr e3,s2')``,
Induct \\ Cases_on `ts` \\ fs [mk_Apps_def]
\\ fs [evaluate_def]
\\ simp [Once evaluate_CONS] \\ rw []
\\ fs [case_eq_thms,pair_case_eq] \\ rveq);
Definition evaluate_apps_def:
evaluate_apps f [] s = (Rval [f], s) /\
evaluate_apps f (x::xs) s =
case evaluate_apps f xs s of
| (Rval [v], s1) => evaluate_app NONE v [x] s1
| res => res
End
val evaluate_mk_Apps_ok = prove(
``!other ts env1 s1 vs.
evaluate ([e],env1,s3) = (Rval [f],s2') /\
evaluate (other,env1,s1) = (Rval vs,s3) /\
LENGTH other = LENGTH ts ==>
evaluate ([mk_Apps e (ZIP (ts,other))],env1,s1) =
evaluate_apps f vs s2'``,
once_rewrite_tac [CONJ_COMM]
\\ Induct \\ Cases_on `ts` \\ fs [mk_Apps_def]
\\ fs [evaluate_def,evaluate_apps_def]
\\ simp [Once evaluate_CONS] \\ rw []
\\ fs [case_eq_thms,pair_case_eq] \\ rveq
\\ first_x_assum (qspec_then `t` mp_tac) \\ fs []
\\ rpt (disch_then drule)
\\ strip_tac \\ fs []
\\ Cases_on `evaluate_apps f vs' s2'` \\ fs []
\\ imp_res_tac evaluate_SING \\ fs []
\\ rveq \\ fs []
\\ fs [evaluate_apps_def]
\\ Cases_on `q` \\ fs []
\\ imp_res_tac evaluate_SING \\ fs []
\\ rveq \\ fs []);
val dest_closure_NONE_IMP_apps = prove(
``!xs f1 s1.
dest_closure s1.max_app NONE f1 [LAST xs] = NONE /\ xs <> [] ==>
evaluate_apps f1 xs s1 = (Rerr (Rabort Rtype_error),s1)``,
Induct \\ fs [evaluate_apps_def]
\\ Cases_on `xs` \\ fs [evaluate_apps_def]
\\ fs [evaluate_apps_def,evaluate_def]);
val evaluate_apps_SNOC = prove(
``!xs x f s.
evaluate_apps f (SNOC x xs) s =
case evaluate_app NONE f [x] s of
| (Rval [v], s) => evaluate_apps v xs s
| res => res``,
Induct
THEN1 (fs [evaluate_apps_def] \\ rw []
\\ every_case_tac \\ fs [])
\\ fs [SNOC_APPEND]
\\ fs [evaluate_apps_def] \\ rw []
\\ Cases_on `evaluate_app NONE f [x] s` \\ fs []
\\ Cases_on `q` \\ fs []
\\ Cases_on `a` \\ fs []
\\ Cases_on `t` \\ fs []);
val evaluate_apps_Clos_timeout = prove(
``!ys ts s1 e1 env.
s1.clock < LENGTH ys /\ LENGTH ys <= LENGTH ts /\
1 ≤ s1.max_app ==>
evaluate_apps (Closure NONE [] env 1 (mk_Fns ts e1))
ys s1 = (Rerr (Rabort Rtimeout_error),s1 with clock := 0)``,
recInduct SNOC_INDUCT \\ rw []
\\ fs [evaluate_apps_SNOC]
\\ fs [evaluate_def,dest_closure_def,check_loc_def]
\\ IF_CASES_TAC \\ fs []
\\ Cases_on `ts` \\ fs [mk_Fns_def,evaluate_def]
\\ fs [EVAL ``(dec_clock 1 s).max_app``]
\\ `(dec_clock 1 s1).clock < LENGTH l` by (EVAL_TAC \\ fs [])
\\ first_x_assum drule
\\ fs [dec_clock_def]);
val evaluate_apps_Clos_timeout_alt = prove(
``!ys ts s1 e1 env.
s1.clock <= LENGTH ts /\ LENGTH ts < LENGTH ys /\
1 ≤ s1.max_app ==>
evaluate_apps (Closure NONE [] env 1 (mk_Fns ts e1))
ys s1 = (Rerr (Rabort Rtimeout_error),s1 with clock := 0)``,
recInduct SNOC_INDUCT \\ rw []
\\ fs [evaluate_apps_SNOC]
\\ fs [evaluate_def,dest_closure_def,check_loc_def]
\\ IF_CASES_TAC \\ fs []
\\ Cases_on `ts` \\ fs [mk_Fns_def,evaluate_def]
\\ fs [EVAL ``(dec_clock 1 s).max_app``]
\\ `(dec_clock 1 s1).clock <= LENGTH t` by (EVAL_TAC \\ fs [])
\\ first_x_assum drule
\\ fs [dec_clock_def]);
val evaluate_apps_Clos_short = prove(
``!ys ts s1 e1 env.
LENGTH ys <= s1.clock /\ LENGTH ys <= LENGTH ts /\
1 ≤ s1.max_app ==>
evaluate_apps (Closure NONE [] env 1 (mk_Fns ts e1)) ys s1 =
(Rval [Closure NONE [] (ys ++ env) 1
(mk_Fns (DROP (LENGTH ys) ts) e1)],
dec_clock (LENGTH ys) s1)``,
recInduct SNOC_INDUCT \\ rw []
\\ fs [evaluate_apps_SNOC,evaluate_apps_def]
THEN1 (fs [state_component_equality,dec_clock_def])
\\ fs [evaluate_def,dest_closure_def,check_loc_def]
\\ Cases_on `ts` \\ fs [mk_Fns_def,evaluate_def]
\\ fs [EVAL ``(dec_clock 1 s).max_app``]
\\ `LENGTH l <= (dec_clock 1 s1).clock` by (EVAL_TAC \\ fs [])
\\ first_x_assum drule
\\ fs [EVAL ``(dec_clock 1 s).max_app``]
\\ disch_then drule
\\ fs [dec_clock_def,ADD1]);
val evaluate_apps_Clos_long = prove(
``!ys ts s1 e1 env.
LENGTH ts < s1.clock /\ LENGTH ts < LENGTH ys /\
1 ≤ s1.max_app ==>
evaluate_apps (Closure NONE [] env 1 (mk_Fns ts e1)) ys s1 =
case evaluate ([e1],REVERSE (TAKE (1+LENGTH ts) (REVERSE ys)) ++ env,
dec_clock (1+LENGTH ts) s1) of
| (Rval [v],s) =>
evaluate_apps v (REVERSE (DROP (1+LENGTH ts) (REVERSE ys))) s
| res => res``,
recInduct SNOC_INDUCT \\ rw []
\\ fs [evaluate_apps_SNOC,evaluate_apps_def]
\\ fs [evaluate_def,Once dest_closure_def,check_loc_def]
\\ Cases_on `ts` \\ fs [mk_Fns_def,evaluate_def]
THEN1
(fs [REVERSE_SNOC]
\\ Cases_on `evaluate ([e1],x::env,dec_clock 1 s1)` \\ fs []
\\ Cases_on `q` \\ fs []
\\ Cases_on `a` \\ fs []
\\ Cases_on `t` \\ fs [])
\\ fs [EVAL ``(dec_clock 1 s).max_app``]
\\ `LENGTH t < (dec_clock 1 s1).clock` by (EVAL_TAC \\ fs [])
\\ first_x_assum drule
\\ fs [EVAL ``(dec_clock 1 s).max_app``]
\\ disch_then kall_tac
\\ fs [REVERSE_SNOC] \\ fs [ADD1]
\\ fs [dec_clock_def,ADD1]
\\ simp_tac std_ss [GSYM APPEND_ASSOC,APPEND]);
val LIST_REL_f_rel_IMP = prove(
``!fns funs1. LIST_REL (f_rel max_app) funs1 fns ==> !x. ~(MEM (0,x) fns)``,
Induct \\ fs [PULL_EXISTS] \\ rw [] \\ res_tac
\\ res_tac \\ fs []
\\ Cases_on `x` \\ Cases_on `h` \\ fs [f_rel_def]);
Theorem v_rel_simps[simp] =
LIST_CONJ ([
SIMP_CONV (srw_ss()) [v_rel_cases] ``v_rel max_app x (Number n)``,
SIMP_CONV (srw_ss()) [v_rel_cases] ``v_rel max_app x (Block n p)``,
SIMP_CONV (srw_ss()) [v_rel_cases] ``v_rel max_app x (Word64 p)``,
SIMP_CONV (srw_ss()) [v_rel_cases] ``v_rel max_app x (ByteVector p)``,
SIMP_CONV (srw_ss()) [v_rel_cases] ``v_rel max_app x (RefPtr b p)``,
SIMP_CONV (srw_ss()) [v_rel_cases] ``v_rel max_app x (Closure x1 x2 x3 x4 x5)``,
SIMP_CONV (srw_ss()) [v_rel_cases] ``v_rel max_app x (Recclosure y1 y2 y3 y4 y5)``,
prove(``v_rel max_app x (Boolv b) <=> x = Boolv b``,
Cases_on `b` \\ fs [Boolv_def,Once v_rel_cases]),
prove(``v_rel max_app x Unit <=> x = Unit``,
fs [closSemTheory.Unit_def,Once v_rel_cases])]
|> map GEN_ALL)
val v_rel_opt_thm = prove(
``v_rel_opt m = OPTREL (v_rel m)``,
fs [FUN_EQ_THM] \\ Cases \\ Cases \\ fs [OPTREL_def,v_rel_opt_def]);
Theorem simple_val_rel:
simple_val_rel (v_rel max_app_n)
Proof
fs [simple_val_rel_def] \\ rpt strip_tac \\ fs []
QED
Theorem simple_state_rel:
simple_state_rel (v_rel max_app_n)
(\s t. s.max_app = max_app_n ∧ state_rel s t)
Proof
fs [simple_state_rel_def,state_rel_def] \\ rw []
\\ fs [FMAP_REL_def,FLOOKUP_DEF] \\ rfs []
\\ res_tac \\ fs [v_rel_opt_thm]
THEN1
(Cases_on `s.refs ' ptr` \\ fs []
\\ Cases_on `t.refs ' ptr` \\ fs [ref_rel_cases]
\\ fs [] \\ rveq \\ fs [])
THEN1
(Cases_on `s'.refs ' ptr` \\ fs []
\\ Cases_on `t.refs ' ptr` \\ fs [ref_rel_cases]
\\ fs [] \\ rveq \\ fs [])
THEN
(rpt gen_tac \\ Cases_on `k = p` \\ fs []
THEN1 (fs [ref_rel_cases])
\\ fs [FAPPLY_FUPDATE_THM])
QED
val do_app_inst =
simple_val_rel_do_app_rev
|> Q.INST [`vr`|->`v_rel s.max_app`]
|> INST_TYPE [``:'a``|->``:'c``]
|> Q.INST [`sr`|->`\r t. (r.max_app = s.max_app) /\ state_rel r t`]
|> SIMP_RULE std_ss [simple_val_rel, simple_state_rel]
Theorem do_app_lemma:
state_rel s (t:('c,'ffi) closSem$state) /\ LIST_REL (v_rel s.max_app) xs ys ==>
case do_app opp ys t of
| Rerr err2 => (?err1. do_app opp xs s = Rerr err1 /\
exc_rel (v_rel s.max_app) err1 err2)
| Rval (y,t1) => ?x s1. v_rel s.max_app x y /\ state_rel s1 t1 /\
do_app opp xs s = Rval (x,s1)
Proof
mp_tac do_app_inst \\ fs [] \\ EVERY_CASE_TAC \\ metis_tac []
QED
val v_rel_IMP_v_to_bytes = prove(
``v_rel max_app x y ==> v_to_bytes y = v_to_bytes x``,
metis_tac [simple_val_rel, simple_val_rel_v_to_bytes]);
val v_rel_IMP_v_to_words = prove(
``v_rel max_app x y ==> v_to_words y = v_to_words x``,
metis_tac [simple_val_rel, simple_val_rel_v_to_words]);
val do_install_inst =
simple_val_rel_do_install
|> Q.INST [`vr`|->`v_rel s.max_app`]
|> Q.INST [`sr`|->`\r t. (r.max_app = s.max_app) /\ state_rel r t`,
`cr`|->`code_rel s.max_app`]
|> SIMP_RULE bool_ss [simple_val_rel, simple_state_rel]
|> Q.SPEC `clos_mti$compile_inc s.max_app`
val do_install_lemma = prove(
``state_rel s t /\ LIST_REL (v_rel s.max_app) xs ys ==>
case do_install xs s of
| (Rerr err1, s1) => ?err2 t1. do_install ys t = (Rerr err2, t1) /\
exc_rel (v_rel s.max_app) err1 err2 /\
s1.max_app = s.max_app /\ state_rel s1 t1
| (Rval exps1, s1) => ?exps2 t1. (s1.max_app = s.max_app /\
state_rel s1 t1) /\ (~ (exps1 = [])) /\
code_rel s.max_app exps1 exps2 /\
do_install ys t = (Rval exps2, t1)``,
strip_tac
\\ irule do_install_inst
\\ fs [simple_compile_state_rel_def, simple_state_rel]
\\ qexists_tac `s`
\\ fs [compile_inc_def, pairTheory.FORALL_PROD,
clos_mtiTheory.intro_multi_length, code_rel_def, state_rel_def]
\\ rw [shift_seq_def, backendPropsTheory.pure_co_def, FUN_EQ_THM] \\ rfs []
\\ fs [PAIR_FST_SND_EQ] \\ rveq \\ fs []
);
Theorem intro_multi_EQ_NIL[simp]:
∀max_app es. intro_multi max_app es = [] ⇔ es = []
Proof
ho_match_mp_tac clos_mtiTheory.intro_multi_ind >>
simp[clos_mtiTheory.intro_multi_def] >> rpt strip_tac >>
rpt (pairarg_tac >> fs[])
QED
Theorem intro_multi_nil:
intro_multi x [] = []
Proof
metis_tac[intro_multi_EQ_NIL]
QED
Theorem result_rel_Rval2:
result_rel P P' x (Rval v') = (?v. x = Rval v /\ P v v')
Proof
Cases_on `x` \\ fs []
QED
Theorem evaluate_intro_multi:
(!ys env2 (t1:('c,'ffi) closSem$state) env1 t2 s1 res2 xs.
(evaluate (ys,env2,t1) = (res2,t2)) /\
EVERY2 (v_rel s1.max_app) env1 env2 /\
state_rel s1 t1 /\ code_rel s1.max_app xs ys ==>
?res1 s2.
(evaluate (xs,env1,s1) = (res1,s2)) /\
result_rel (LIST_REL (v_rel s1.max_app)) (v_rel s1.max_app) res1 res2 /\
state_rel s2 t2) /\
(!loc_opt f2 args2 (t1:('c,'ffi) closSem$state) res2 t2 f1 args1 s1.
(evaluate_app loc_opt f2 args2 t1 = (res2,t2)) /\ loc_opt = NONE /\
v_rel s1.max_app f1 f2 /\ EVERY2 (v_rel s1.max_app) args1 args2 /\
state_rel s1 t1 /\ LENGTH args1 <= s1.max_app ==>
?res1 s2.
(evaluate_apps f1 args1 s1 = (res1,s2)) /\
result_rel (LIST_REL (v_rel s1.max_app)) (v_rel s1.max_app) res1 res2 /\
state_rel s2 t2)
Proof
ho_match_mp_tac (evaluate_ind |> Q.SPEC `λ(x1,x2,x3). P0 x1 x2 x3`
|> Q.GEN `P0` |> SIMP_RULE std_ss [FORALL_PROD])
\\ rpt strip_tac
\\ TRY (drule code_rel_IMP_LENGTH \\ strip_tac)
THEN1 (* NIL *)
(fs [evaluate_def] \\ rveq \\ fs [])
THEN1 (* CONS *)
(rename1 `_ = LENGTH zs`
\\ Cases_on `zs` THEN1 fs [LENGTH]
\\ Cases_on `t` THEN1 fs [LENGTH]
\\ fs [evaluate_def,closSemTheory.case_eq_thms,pair_case_eq]
\\ rveq \\ fs []
\\ first_x_assum drule \\ fs [code_rel_CONS_CONS]
\\ disch_then drule \\ strip_tac \\ fs []
\\ Cases_on `res1` \\ fs []
\\ `s1.max_app = s2'.max_app` by (imp_res_tac evaluate_const \\ fs [])
\\ fs [] \\ first_x_assum drule \\ fs []
\\ disch_then drule \\ strip_tac \\ fs []
\\ Cases_on `res1` \\ fs []
\\ imp_res_tac evaluate_SING \\ rveq \\ fs [])
THEN1 (* Var *)
(Cases_on `xs` \\ fs [] \\ rveq
\\ Cases_on `h` \\ fs [code_rel_def,intro_multi_def] \\ rveq \\ fs []
\\ fs [no_mti_def] \\ rveq \\ fs [intro_multi_def]
\\ TRY pairarg_tac \\ fs []
\\ fs [evaluate_def]
\\ imp_res_tac LIST_REL_LENGTH \\ fs []
\\ IF_CASES_TAC \\ fs [] \\ rveq \\ fs []
\\ fs [LIST_REL_EL_EQN])
THEN1 (* If *)
(Cases_on `xs` \\ fs [] \\ rveq
\\ Cases_on `h` \\ fs [code_rel_def,intro_multi_def] \\ rveq \\ fs []
\\ fs [no_mti_def] \\ rveq \\ fs [intro_multi_def]
\\ TRY pairarg_tac \\ fs []
\\ reverse (fs [evaluate_def,case_eq_thms,pair_case_eq] \\ rveq)
\\ fs [HD_intro_multi]
THEN1
(first_x_assum drule \\ fs []
\\ disch_then (qspec_then `[e]` mp_tac) \\ fs []
\\ strip_tac \\ fs [])
\\ first_x_assum drule \\ fs []
\\ disch_then (qspec_then `[e]` mp_tac) \\ fs []
\\ strip_tac \\ fs []
\\ Cases_on `res1` \\ fs []
\\ imp_res_tac evaluate_SING \\ fs []
\\ rveq \\ fs []
\\ `(Boolv T = y <=> Boolv T = r1) /\
(Boolv F = y <=> Boolv F = r1)` by
(fs [EVAL ``closSem$Boolv T``,EVAL ``closSem$Boolv F``]
\\ qpat_x_assum `v_rel _ _ _` mp_tac
\\ rpt (pop_assum kall_tac)
\\ rw [] \\ eq_tac \\ rw []
\\ rpt (pop_assum mp_tac)
\\ simp [Once v_rel_cases])
\\ ntac 2 (pop_assum (fn th => fs [th]))
\\ IF_CASES_TAC \\ fs [] \\ rveq
\\ `s1.max_app = s2.max_app` by (imp_res_tac evaluate_const \\ fs [])
\\ fs [] \\ IF_CASES_TAC \\ fs [] \\ rveq \\ fs[])
THEN1 (* Let *)
(Cases_on `xs` \\ fs [] \\ rveq
\\ Cases_on `h` \\ fs [code_rel_def,intro_multi_def] \\ rveq \\ fs []
\\ fs [no_mti_def] \\ rveq \\ fs [intro_multi_def]
\\ TRY pairarg_tac \\ fs [evaluate_def,HD_intro_multi]
\\ reverse (fs [evaluate_def,case_eq_thms,pair_case_eq] \\ rveq)
\\ first_x_assum drule \\ fs []
\\ disch_then drule \\ fs []
\\ disch_then (qspec_then `l` mp_tac) \\ fs []
\\ strip_tac \\ fs []
\\ Cases_on `res1` \\ fs []
\\ `s1.max_app = s2.max_app` by (imp_res_tac evaluate_const \\ fs [])
\\ fs [] \\ first_x_assum match_mp_tac
\\ fs [] \\ metis_tac [EVERY2_APPEND])
THEN1 (* Raise *)
(Cases_on `xs` \\ fs [] \\ rveq
\\ Cases_on `h` \\ fs [code_rel_def,intro_multi_def] \\ rveq \\ fs []
\\ fs [no_mti_def] \\ rveq \\ fs [intro_multi_def]
\\ TRY pairarg_tac \\ fs []
\\ fs [evaluate_def,case_eq_thms,pair_case_eq] \\ rveq
\\ fs [HD_intro_multi]
\\ first_x_assum drule \\ fs []
\\ disch_then (qspec_then `[e]` mp_tac) \\ fs []
\\ strip_tac \\ fs []
\\ Cases_on `res1` \\ fs []
\\ imp_res_tac evaluate_SING \\ fs [] \\ rw [])
THEN1 (* Handle *)
(Cases_on `xs` \\ fs [] \\ rveq
\\ Cases_on `h` \\ fs [code_rel_def,intro_multi_def] \\ rveq \\ fs []
\\ fs [no_mti_def] \\ rveq \\ fs [intro_multi_def]
\\ TRY pairarg_tac \\ fs [evaluate_def,HD_intro_multi]
\\ reverse (fs [evaluate_def,case_eq_thms,pair_case_eq] \\ rveq)
\\ first_x_assum drule \\ fs []
\\ disch_then drule \\ fs []
\\ disch_then (qspec_then `[e]` mp_tac) \\ fs []
\\ strip_tac \\ fs [PULL_EXISTS]
\\ Cases_on `res1` \\ fs [] \\ rveq \\ fs[]
\\ `s1.max_app = s2.max_app` by (imp_res_tac evaluate_const \\ fs [])
\\ fs [] \\ first_x_assum match_mp_tac)
THEN1 (* Op *)
(Cases_on `xs` \\ fs [] \\ rveq
\\ Cases_on `h` \\ fs [code_rel_def,intro_multi_def] \\ rveq \\ fs []
\\ fs [no_mti_def] \\ rveq \\ fs [intro_multi_def]
\\ TRY pairarg_tac \\ fs [evaluate_def,HD_intro_multi]
\\ reverse (fs [evaluate_def,case_eq_thms,pair_case_eq] \\ rveq)
\\ first_x_assum drule
\\ disch_then drule \\ fs[]
\\ disch_then drule \\ fs[] \\ strip_tac \\ fs []
\\ rename1 `(if opp = _ then _ else _) = _`
\\ Cases_on `opp = Install` \\ fs [] \\ rveq
THEN1 (* Op = Install *)
( fs [result_rel_Rval2]
\\ drule (GEN_ALL do_install_lemma)
\\ imp_res_tac evaluate_const \\ fs []
\\ drule EVERY2_REVERSE \\ disch_tac
\\ disch_then drule
\\ fs [CaseEq "prod"]
\\ TOP_CASE_TAC
\\ TOP_CASE_TAC \\ rw [] \\ fs [] \\ rveq \\ fs []
\\ fs [code_rel_def]
\\ fs [CaseEq "prod", CaseEq "result"] \\ first_x_assum drule
\\ rpt (disch_then drule)
\\ rw []
\\ fs [result_rel_Rval2]
\\ ho_match_mp_tac LIST_REL_LAST
\\ fs []
\\ CCONTR_TAC
\\ fs [])
(* do_app *)
\\ Cases_on `res1` \\ fs []
\\ imp_res_tac evaluate_const \\ fs []
\\ drule (GEN_ALL do_app_lemma)
\\ imp_res_tac evaluate_const \\ fs []
\\ `LIST_REL (v_rel s1.max_app) (REVERSE a) (REVERSE vs)` by
(match_mp_tac EVERY2_REVERSE \\ fs [])
\\ disch_then drule
\\ disch_then (qspec_then `opp` mp_tac) \\ fs []
\\ rw [] \\ fs []
\\ Cases_on `do_app opp (REVERSE vs) s'` \\ fs []
\\ rveq \\ fs []
\\ rename1 `_ = Rval aa` \\ Cases_on `aa` \\ fs [] \\ rveq \\ fs [])
THEN1 (* Fn *)
(Cases_on `xs` \\ fs [] \\ rveq
\\ Cases_on `h` \\ fs [code_rel_def,intro_multi_def] \\ rveq \\ fs []
\\ fs [no_mti_def] \\ rveq \\ fs [intro_multi_def]
\\ TRY pairarg_tac \\ fs [] \\ rveq
\\ `1 <= s1.max_app` by fs [state_rel_def]
\\ fs [evaluate_def]
\\ drule (GEN_ALL collect_args_IMP) \\ fs [] \\ strip_tac
\\ `t1.max_app = s1.max_app` by fs [state_rel_def] \\ fs []
\\ rveq \\ fs []
\\ once_rewrite_tac [v_rel_cases] \\ fs [code_rel_def]
\\ rename1 `_ = (_,e2)` \\ qexists_tac `e2`
\\ fs [HD_intro_multi]
\\ drule collect_args_ok_IMP \\ fs [])
THEN1 (* Letrec *)
(Cases_on `xs` \\ fs [] \\ rveq
\\ Cases_on `h` \\ fs [code_rel_def,intro_multi_def] \\ rveq \\ fs []
\\ fs [no_mti_def] \\ rveq \\ fs [intro_multi_def]
\\ TRY pairarg_tac \\ fs [] \\ rveq \\ fs []
\\ fs [evaluate_def]
\\ reverse IF_CASES_TAC
THEN1
(fs [EXISTS_MEM] \\ rename1 `MEM eee l`
\\ fs [EVERY_MEM] \\ res_tac
\\ PairCases_on `eee` \\ fs []
\\ fs [state_rel_def])
\\ fs [AND_IMP_INTRO,PULL_FORALL]
\\ first_x_assum match_mp_tac
\\ conj_asm1_tac
THEN1
(fs [EVERY_MAP] \\ fs [EVERY_MEM,FORALL_PROD]
\\ rw [] \\ rpt (pairarg_tac \\ fs []) \\ rveq
\\ drule collect_args_IMP
\\ res_tac \\ fs [] \\ rveq
\\ fs [state_rel_def])
\\ fs []
\\ match_mp_tac EVERY2_APPEND_suff \\ fs [LIST_REL_GENLIST]
\\ rw [] \\ simp [Once v_rel_cases]
\\ fs [EVERY2_MAP]
\\ match_mp_tac EVERY2_refl
\\ fs [EVERY_MEM,FORALL_PROD]
\\ rw [] \\ rpt (pairarg_tac \\ fs []) \\ rveq
\\ drule collect_args_IMP
\\ res_tac \\ fs [] \\ rveq \\ rw [f_rel_def]
\\ drule collect_args_ok_IMP \\ fs []
\\ strip_tac \\ fs [code_rel_def]
\\ asm_exists_tac \\ fs []
\\ qexists_tac `ts` \\ fs [])
THEN1 (* App *)
(Cases_on `xs` \\ fs [] \\ rveq
\\ Cases_on `h` \\ fs [code_rel_def,intro_multi_def] \\ rveq \\ fs []
\\ fs [no_mti_def] \\ rveq \\ fs [intro_multi_def]
\\ TRY pairarg_tac \\ fs [] \\ rveq \\ fs []
\\ fs [intro_multi_length]
\\ fs [DECIDE ``n > 0n <=> n <> 0``]
\\ imp_res_tac collect_apps_acc \\ rveq
\\ `?x. l = [x]` by (Cases_on `l` \\ fs [] \\ Cases_on `t`) \\ rveq \\ fs []
\\ `EVERY no_mti other /\ no_mti x /\ no_mti e'` by
(drule collect_apps_no_mti \\ fs [])
\\ drule collect_apps_cons
\\ impl_tac THEN1 fs [state_rel_def] \\ strip_tac
\\ drule collect_apps_IMP_mk_Apps \\ fs []
\\ strip_tac \\ rveq \\ fs [GSYM mk_Apps_def]
\\ fs [evaluate_def]
\\ fs [intro_multi_length]
\\ fs [DECIDE ``n > 0n <=> n <> 0``]
\\ reverse (fs [closSemTheory.case_eq_thms,pair_case_eq])
\\ rveq \\ fs []
\\ first_x_assum drule \\ fs []
\\ disch_then (qspec_then `x::other` mp_tac) \\ fs []
\\ strip_tac \\ Cases_on `res1` \\ fs [] \\ rveq
\\ rewrite_tac [GSYM ZIP]
THEN1
(drule (GEN_ALL mk_Apps_err_1)
\\ disch_then (qspec_then `t::ts` mp_tac) \\ fs [])
THEN1
(rename1 `_ = (Rval vs, s3)`
\\ first_x_assum (qspecl_then [`env1`,`s3`,`[e']`] mp_tac)
\\ impl_tac THEN1 (imp_res_tac evaluate_const \\ fs [])
\\ strip_tac \\ rveq
\\ drule (GEN_ALL mk_Apps_err_2)
\\ disch_then (qspec_then `t::ts` mp_tac) \\ fs []
\\ disch_then drule
\\ fs [] \\ imp_res_tac evaluate_const \\ fs [])
\\ rename1 `_ = (Rval vs, s3)`
\\ first_x_assum (qspecl_then [`env1`,`s3`,`[e']`] mp_tac)
\\ impl_tac THEN1 (imp_res_tac evaluate_const \\ fs [])
\\ strip_tac \\ rveq
\\ Cases_on `res1` \\ fs []
\\ drule evaluate_SING \\ strip_tac \\ rveq
\\ drule (GEN_ALL evaluate_mk_Apps_ok)
\\ disch_then drule
\\ disch_then (qspec_then `t::ts` assume_tac) \\ rfs []
\\ rveq \\ fs []
\\ `s1.max_app = s2'.max_app` by (imp_res_tac evaluate_const \\ fs [])
\\ `s3.max_app = s2'.max_app` by (imp_res_tac evaluate_const \\ fs [])
\\ fs [GSYM CONJ_ASSOC]
\\ first_x_assum drule
\\ rpt (disch_then drule)
\\ impl_tac \\ fs [] \\ rw [] \\ fs []
\\ imp_res_tac evaluate_IMP_LENGTH \\ fs [intro_multi_length]
\\ fs [state_rel_def])
THEN1 (* Tick *)
(`t1.clock = s1.clock` by fs [state_rel_def]
\\ Cases_on `xs` \\ fs [] \\ rveq
\\ Cases_on `h` \\ fs [code_rel_def,intro_multi_def] \\ rveq \\ fs []
\\ fs [no_mti_def] \\ rveq \\ fs [intro_multi_def]
\\ TRY pairarg_tac \\ fs []
\\ fs [evaluate_def,case_eq_thms]
\\ IF_CASES_TAC \\ fs [] \\ rveq \\ fs []
\\ `LIST_REL (v_rel (dec_clock 1 s1).max_app) env1 env2` by fs [dec_clock_def]
\\ first_x_assum drule
\\ fs [dec_clock_def]
\\ disch_then (qspec_then `[e]` mp_tac)
\\ fs [HD_intro_multi]
\\ impl_tac \\ fs []
\\ fs [state_rel_def])
THEN1 (* Call *)
(Cases_on `xs` \\ fs [] \\ rveq
\\ Cases_on `h` \\ fs [code_rel_def,intro_multi_def] \\ rveq \\ fs []
\\ fs [no_mti_def] \\ rveq \\ fs [intro_multi_def]
\\ TRY pairarg_tac \\ fs [])
THEN1 (* app NIL *)
(fs [evaluate_def,evaluate_apps_def] \\ rveq \\ fs [])
(* app CONS *)
\\ fs [evaluate_def] \\ rveq \\ fs []
\\ fs [case_eq_thms] \\ fs [] \\ rveq
THEN1 (* dest_closure returns NONE *)
(`?y. dest_closure s1.max_app NONE f1 (x::xs) = NONE` by
(fs [dest_closure_def,case_eq_thms]
\\ qpat_x_assum `v_rel _ f1 f2` mp_tac \\ fs []
THEN1
(strip_tac \\ fs [] \\ rveq \\ fs [check_loc_def]
\\ imp_res_tac LIST_REL_LENGTH \\ fs [state_rel_def]
\\ CCONTR_TAC \\ fs []
\\ every_case_tac \\ fs [])
THEN1
(strip_tac \\ fs [] \\ rveq \\ fs [check_loc_def]
\\ imp_res_tac LIST_REL_LENGTH \\ fs [state_rel_def]
\\ CCONTR_TAC \\ fs []
\\ every_case_tac \\ fs [])
\\ Cases_on `EL i fns` \\ fs []
\\ fs [METIS_PROVE [] ``(if b then SOME x else SOME y) =
SOME (if b then x else y)``]
\\ strip_tac \\ fs [] \\ rveq \\ fs [check_loc_def]
\\ imp_res_tac LIST_REL_LENGTH \\ fs [state_rel_def]
\\ CCONTR_TAC \\ fs []
\\ every_case_tac \\ fs []
\\ Cases_on `EL i funs1` \\ fs []
\\ imp_res_tac EL_MEM
\\ imp_res_tac LIST_REL_f_rel_IMP \\ rfs [] \\ fs [])
\\ `dest_closure s1.max_app NONE f1 [LAST (x::xs)] = NONE` by
(pop_assum mp_tac
\\ simp [dest_closure_def,case_eq_thms,UNCURRY] \\ rw []
\\ qpat_x_assum `v_rel _ f1 f2` mp_tac \\ fs []
\\ strip_tac \\ fs [] \\ rveq \\ fs [check_loc_def]
\\ fs [METIS_PROVE [] ``(if b then SOME x else SOME y) =
SOME (if b then x else y)``])
\\ drule dest_closure_NONE_IMP_apps \\ fs [])
THEN1 (* dest_closure returns Patrial_app *)
(qpat_x_assum `v_rel _ f1 f2` mp_tac \\ fs []
\\ drule dest_closure_SOME_IMP \\ strip_tac \\ fs []
\\ strip_tac \\ fs [] \\ rveq
THEN1
(qpat_x_assum `_ = SOME (Partial_app _)` mp_tac
\\ simp [Once dest_closure_def]
\\ IF_CASES_TAC \\ fs [] \\ strip_tac \\ rveq \\ fs []
\\ fs [dest_closure_def,check_loc_def,ADD1]
\\ `s1.clock = t1.clock` by fs [state_rel_def] \\ fs []
\\ imp_res_tac (GSYM LIST_REL_LENGTH) \\ fs []
\\ `LENGTH xs < LENGTH ts` by fs []
\\ Cases_on `t1.clock < LENGTH xs + 1` \\ fs [] \\ rveq \\ fs []
THEN1
(qexists_tac `s1 with clock := 0`
\\ reverse conj_tac THEN1 fs [state_rel_def]
\\ match_mp_tac (GEN_ALL evaluate_apps_Clos_timeout) \\ fs [])
\\ fs [evaluate_apps_Clos_short,ADD1]
\\ reverse conj_tac THEN1 fs [state_rel_def,ADD1,dec_clock_def]
\\ qexists_tac `x::xs ++ args1`
\\ qexists_tac `env1` \\ fs []
\\ qexists_tac `e1` \\ fs []
\\ qexists_tac `(DROP (LENGTH xs + 1) ts)` \\ fs []
\\ imp_res_tac LIST_REL_LENGTH
\\ imp_res_tac LIST_REL_APPEND_EQ \\ fs [])
THEN1
(qpat_x_assum `_ = SOME (Partial_app _)` mp_tac
\\ simp [Once dest_closure_def]
\\ pairarg_tac \\ fs []
\\ IF_CASES_TAC \\ fs [] \\ strip_tac \\ rveq \\ fs []
\\ fs [dest_closure_def,check_loc_def,ADD1]
\\ `s1.clock = t1.clock` by fs [state_rel_def] \\ fs []
\\ imp_res_tac (GSYM LIST_REL_LENGTH) \\ fs []
\\ rename1 `EL i fns = (num_args,e)`
\\ `f_rel s1.max_app (EL i funs1) (EL i fns)` by fs [LIST_REL_EL_EQN]
\\ `?y ys. x::xs = SNOC y ys` by metis_tac [NOT_CONS_NIL,SNOC_CASES]
\\ simp [evaluate_apps_SNOC]
\\ `LENGTH (x::xs) = LENGTH (SNOC y ys)` by asm_rewrite_tac []
\\ fs [evaluate_def,dest_closure_def,check_loc_def]
\\ Cases_on `EL i funs1` \\ fs [] \\ rfs [f_rel_def]
\\ IF_CASES_TAC \\ fs[] \\ rveq
THEN1 (fs [state_rel_def])
\\ Cases_on `t1.clock < LENGTH ys + 1` \\ fs [] \\ rveq \\ fs []
THEN1
(qexists_tac `s1 with clock := 0`
\\ reverse conj_tac THEN1 fs [state_rel_def]
\\ `(dec_clock 1 s1).clock < LENGTH ys` by fs [dec_clock_def]
\\ drule (GEN_ALL evaluate_apps_Clos_timeout)
\\ Cases_on `ts` \\ fs [mk_Fns_def,evaluate_def]
\\ `LENGTH ys <= LENGTH t` by fs []
\\ disch_then drule
\\ fs [dec_clock_def])
\\ Cases_on `ts` \\ fs [mk_Fns_def,evaluate_def]
\\ `1 ≤ (dec_clock 1 s1).max_app` by rfs [state_rel_def,dec_clock_def]
\\ fs []
\\ `LENGTH ys <= (dec_clock 1 s1).clock` by fs [dec_clock_def]
\\ drule (GEN_ALL evaluate_apps_Clos_short) \\ fs []
\\ `LENGTH ys <= LENGTH t` by fs []
\\ disch_then drule \\ fs [] \\ disch_then kall_tac
\\ reverse conj_tac THEN1 fs [state_rel_def,ADD1,dec_clock_def]
\\ simp [ADD1]
\\ qexists_tac `ys ++ [y]`
\\ qexists_tac `env1` \\ fs []
\\ qexists_tac `funs1` \\ fs []
\\ qexists_tac `DROP (LENGTH ys) t` \\ fs []
\\ qexists_tac `b1` \\ fs []
\\ qpat_x_assum `x::xs = _` (fn th => simp [GSYM th])
\\ fs [LIST_REL_GENLIST] \\ rw []
\\ simp [ADD1])
THEN1
(qpat_x_assum `_ = SOME (Partial_app _)` mp_tac
\\ simp [Once dest_closure_def]
\\ IF_CASES_TAC \\ fs [] \\ strip_tac \\ rveq \\ fs []
\\ fs [dest_closure_def,check_loc_def,ADD1]
\\ `s1.clock = t1.clock` by fs [state_rel_def] \\ fs []
\\ imp_res_tac (GSYM LIST_REL_LENGTH) \\ fs []
\\ `LENGTH xs < LENGTH ts` by fs []
\\ Cases_on `t1.clock < LENGTH xs + 1` \\ fs [] \\ rveq \\ fs []
THEN1
(qexists_tac `s1 with clock := 0`
\\ reverse conj_tac THEN1 fs [state_rel_def]
\\ match_mp_tac (GEN_ALL evaluate_apps_Clos_timeout) \\ fs [])
\\ fs [evaluate_apps_Clos_short,ADD1]
\\ reverse conj_tac THEN1 fs [state_rel_def,ADD1,dec_clock_def]
\\ qexists_tac `x::xs ++ args1`
\\ qexists_tac `env1` \\ fs []
\\ qexists_tac `funs1` \\ fs []
\\ qexists_tac `(DROP (LENGTH xs + 1) ts)` \\ fs []
\\ qexists_tac `e1` \\ fs []
\\ fs [LIST_REL_APPEND_EQ]))
(* dest_closure returns Full_app *)
\\ qpat_x_assum `v_rel _ f1 f2` mp_tac
\\ once_rewrite_tac [v_rel_cases] \\ fs []
\\ drule dest_closure_SOME_IMP \\ strip_tac \\ fs []
\\ strip_tac \\ fs [] \\ rveq
\\ qpat_x_assum `_ = SOME _` mp_tac
\\ simp [Once dest_closure_def]
\\ rename1 `LIST_REL (v_rel s1.max_app) xs ysss`
THEN1
(Cases_on `t1.clock < SUC (LENGTH ysss) − LENGTH rest_args` \\ fs []
THEN1
(IF_CASES_TAC \\ fs [] \\ strip_tac \\ rveq \\ fs [NOT_LESS]
\\ qexists_tac `s1 with clock := 0`
\\ reverse conj_tac THEN1 fs [state_rel_def]
\\ match_mp_tac evaluate_apps_Clos_timeout_alt
\\ fs [check_loc_def,state_rel_def]
\\ imp_res_tac LIST_REL_LENGTH \\ fs [ADD1])
\\ simp [check_loc_def,ADD1]
\\ qmatch_goalsub_abbrev_tac `Full_app e e5 e6`
\\ IF_CASES_TAC \\ fs [] \\ strip_tac \\ rveq \\ fs [NOT_LESS]
\\ imp_res_tac (GSYM LIST_REL_LENGTH) \\ fs []
\\ `LENGTH e6 = LENGTH xs - LENGTH ts` by simp [Abbr `e6`] \\ fs []
\\ `LENGTH ts < s1.clock` by fs [state_rel_def]
\\ `LENGTH ts < LENGTH (x::xs)` by fs []
\\ drule evaluate_apps_Clos_long \\ simp []
\\ disch_then drule \\ fs []
\\ disch_then kall_tac \\ fs [ADD1]