-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathstack_namesProofScript.sml
677 lines (635 loc) · 23 KB
/
stack_namesProofScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
(*
Correctness proof for stack_names
*)
open preamble
stack_namesTheory
stackSemTheory stackPropsTheory
local open dep_rewrite in end
val _ = bring_to_front_overload"prog_comp"{Name="prog_comp",Thy="stack_names"};
val _ = bring_to_front_overload"comp"{Name="comp",Thy="stack_names"};
val _ = new_theory"stack_namesProof";
val _ = temp_delsimps ["fromAList_def"]
Definition rename_state_def:
rename_state compile_rest f s =
s with
<| regs := MAP_KEYS (find_name f) s.regs
; code := fromAList (compile f (toAList s.code))
; compile := compile_rest
; compile_oracle := (I ## compile f ## I) o s.compile_oracle
; ffi_save_regs := IMAGE (find_name f) s.ffi_save_regs
|>
End
Theorem rename_state_with_clock:
rename_state c f (s with clock := k) = rename_state c f s with clock := k
Proof
EVAL_TAC
QED
Theorem rename_state_const[simp]:
(rename_state c f s).memory = s.memory ∧
(rename_state c f s).be = s.be ∧
(rename_state c f s).mdomain = s.mdomain ∧
(rename_state c f s).sh_mdomain = s.sh_mdomain ∧
(rename_state c f s).code_buffer = s.code_buffer ∧
(rename_state c f s).clock = s.clock ∧
(rename_state c f s).compile = c ∧
(rename_state c f s).use_stack = s.use_stack ∧
(rename_state c f s).fp_regs = s.fp_regs
Proof
EVAL_TAC
QED
Theorem rename_state_with_memory:
rename_state c f (s with memory := k) = rename_state c f s with memory := k
Proof
EVAL_TAC
QED
Theorem dec_clock_rename_state:
dec_clock (rename_state c x y) = rename_state c x (dec_clock y)
Proof
EVAL_TAC >> simp[state_component_equality]
QED
Theorem mem_load_rename_state[simp]:
mem_load x (rename_state c f s) = mem_load x s
Proof
EVAL_TAC
QED
Theorem mem_store_rename_state[simp]:
mem_store x y (rename_state c f s) = OPTION_MAP (rename_state c f) (mem_store x y s)
Proof
EVAL_TAC >> rw[] >> EVAL_TAC >> rw[]
QED
Theorem get_var_find_name[simp]:
BIJ (find_name f) UNIV UNIV ==>
get_var (find_name f v) (rename_state c f s) = get_var v s
Proof
fs [get_var_def,rename_state_def,FLOOKUP_DEF,MAP_KEYS_def]
\\ rpt strip_tac \\ imp_res_tac BIJ_IMP_11 \\ fs []
\\ rw [] \\ fs [] \\ once_rewrite_tac [EQ_SYM_EQ]
\\ match_mp_tac (MAP_KEYS_def |> SPEC_ALL |> CONJUNCT2 |> MP_CANON)
\\ fs [INJ_DEF]
QED
Theorem get_var_imm_find_name[simp]:
BIJ (find_name f) UNIV UNIV ⇒
get_var_imm (ri_find_name f ri) (rename_state c f s) =
get_var_imm ri s
Proof
Cases_on`ri`>>EVAL_TAC>>strip_tac>>
dep_rewrite.DEP_REWRITE_TAC[FLOOKUP_MAP_KEYS] >>
conj_tac >- metis_tac[INJ_DEF,BIJ_IMP_11,IN_UNIV] >>
DEEP_INTRO_TAC some_intro >> simp[] >>
fs[GSYM tlookup_def] >>
metis_tac[BIJ_DEF,INJ_DEF,IN_UNIV,FLOOKUP_DEF]
QED
Theorem FLOOKUP_rename_state_find_name[simp]:
BIJ (find_name f) UNIV UNIV ⇒
FLOOKUP (rename_state c f s).regs (find_name f k) = FLOOKUP s.regs k
Proof
rw[BIJ_DEF] >>
rw[rename_state_def] >>
simp[FLOOKUP_MAP_KEYS_MAPPED]
QED
Theorem sh_mem_load_rename_state[simp]:
BIJ (find_name f) UNIV UNIV ⇒
sh_mem_load (find_name f x) y (rename_state c f s) =
(FST (sh_mem_load x y s), (rename_state c f) (SND (sh_mem_load x y s)))
Proof
rw[sh_mem_load_def,ffiTheory.call_FFI_def]>>every_case_tac>>
gs[rename_state_def,BIJ_DEF]>>
dep_rewrite.DEP_REWRITE_TAC[MAP_KEYS_FUPDATE]>>
metis_tac[BIJ_IMP_11,INJ_DEF,IN_UNIV]
QED
Theorem sh_mem_store_rename_state[simp]:
BIJ (find_name f) UNIV UNIV ⇒
sh_mem_store (find_name f x) y (rename_state c f s) =
(FST (sh_mem_store x y s):'a result option, (rename_state c f) (SND (sh_mem_store x y s)))
Proof
strip_tac>>
simp[sh_mem_store_def,ffiTheory.call_FFI_def,get_var_def]>>every_case_tac>>
gs[rename_state_def]
QED
Theorem sh_mem_load_byte_rename_state[simp]:
BIJ (find_name f) UNIV UNIV ⇒
sh_mem_load_byte (find_name f x) y (rename_state c f s) =
(FST (sh_mem_load_byte x y s), (rename_state c f) (SND (sh_mem_load_byte x y s)))
Proof
rw[sh_mem_load_byte_def,ffiTheory.call_FFI_def]>>every_case_tac>>
gs[rename_state_def,BIJ_DEF]>>
dep_rewrite.DEP_REWRITE_TAC[MAP_KEYS_FUPDATE]>>
metis_tac[BIJ_IMP_11,INJ_DEF,IN_UNIV]
QED
Theorem sh_mem_store_byte_rename_state[simp]:
BIJ (find_name f) UNIV UNIV ⇒
sh_mem_store_byte (find_name f x) y (rename_state c f s) =
(FST (sh_mem_store_byte x y s), (rename_state c f) (SND (sh_mem_store_byte x y s)))
Proof
simp[sh_mem_store_byte_def,ffiTheory.call_FFI_def]>>every_case_tac>>
gs[rename_state_def]
QED
Theorem sh_mem_load32_rename_state[simp]:
BIJ (find_name f) UNIV UNIV ⇒
sh_mem_load32 (find_name f x) y (rename_state c f s) =
(FST (sh_mem_load32 x y s), (rename_state c f) (SND (sh_mem_load32 x y s)))
Proof
rw[sh_mem_load32_def,ffiTheory.call_FFI_def]>>every_case_tac>>
gs[rename_state_def,BIJ_DEF]>>
dep_rewrite.DEP_REWRITE_TAC[MAP_KEYS_FUPDATE]>>
metis_tac[BIJ_IMP_11,INJ_DEF,IN_UNIV]
QED
Theorem sh_mem_store32_rename_state[simp]:
BIJ (find_name f) UNIV UNIV ⇒
sh_mem_store32 (find_name f x) y (rename_state c f s) =
(FST (sh_mem_store32 x y s), (rename_state c f) (SND (sh_mem_store32 x y s)))
Proof
simp[sh_mem_store32_def,ffiTheory.call_FFI_def]>>every_case_tac>>
gs[rename_state_def]
QED
Theorem sh_mem_op_rename_store[simp]:
BIJ (find_name f) UNIV UNIV ⇒
sh_mem_op op (find_name f r) a (rename_state c f s) =
(FST (sh_mem_op op r a s), (rename_state c f) (SND (sh_mem_op op r a s)))
Proof
Cases_on ‘op’>>rw[sh_mem_op_def]
QED
Triviality prog_comp_eta:
prog_comp f = λ(x,y). (x,comp f y)
Proof
rw[prog_comp_def,FUN_EQ_THM,FORALL_PROD]
QED
Theorem find_code_rename_state[simp]:
BIJ (find_name f) UNIV UNIV ⇒
find_code (dest_find_name f dest) (rename_state c f s).regs (rename_state c f s).code =
OPTION_MAP (comp f) (find_code dest s.regs s.code)
Proof
strip_tac >>
Cases_on`dest`>>rw[find_code_def,rename_state_def,dest_find_name_def] >- (
simp[lookup_fromAList,compile_def,prog_comp_eta,ALOOKUP_MAP,ALOOKUP_toAList] >>
metis_tac[] ) >>
dep_rewrite.DEP_REWRITE_TAC[FLOOKUP_MAP_KEYS] >>
conj_tac >- metis_tac[BIJ_IMP_11,INJ_DEF,IN_UNIV] >>
DEEP_INTRO_TAC some_intro >> simp[] >>
reverse conj_tac >- (
rw[] >> simp[FLOOKUP_DEF] >> rw[] >> metis_tac[] ) >>
rw[] >>
`x = y` by metis_tac[BIJ_IMP_11] >>
rw[FLOOKUP_DEF] >>
simp[lookup_fromAList,compile_def,prog_comp_eta,ALOOKUP_MAP,ALOOKUP_toAList] >>
CASE_TAC >> simp[] >>
CASE_TAC >> simp[] >>
metis_tac[]
QED
Theorem set_var_find_name:
BIJ (find_name f) UNIV UNIV ⇒
rename_state c f (set_var x y z) =
set_var (find_name f x) y (rename_state c f z)
Proof
rw[set_var_def,rename_state_def,state_component_equality] >>
match_mp_tac MAP_KEYS_FUPDATE >>
metis_tac[BIJ_IMP_11,INJ_DEF,IN_UNIV]
QED
Theorem set_fp_var_find_name:
rename_state c f (set_fp_var x y z) =
set_fp_var x y (rename_state c f z)
Proof
rw[set_fp_var_def,rename_state_def,state_component_equality]
QED
Theorem inst_rename:
BIJ (find_name f) UNIV UNIV ⇒
inst (inst_find_name f i) (rename_state c f s) =
OPTION_MAP (rename_state c f) (inst i s)
Proof
rw[inst_def] >>
rw[inst_find_name_def] >>
CASE_TAC >> fs[] >- (
EVAL_TAC >>
simp[state_component_equality] >>
dep_rewrite.DEP_REWRITE_TAC[MAP_KEYS_FUPDATE] >>
conj_tac >- (
fs[BIJ_IFF_INV,INJ_DEF] >>
metis_tac[] ) >>
simp[fmap_eq_flookup,FLOOKUP_UPDATE] >>
gen_tac >>
`INJ (find_name f) (FDOM s.regs) UNIV` by
metis_tac[BIJ_IMP_11,INJ_DEF,IN_UNIV] >>
simp[FLOOKUP_MAP_KEYS] >>
DEEP_INTRO_TAC some_intro >> simp[] >>
simp[tlookup_def] ) >>
CASE_TAC >> fs[assign_def,word_exp_def] >>
CASE_TAC >> rfs[get_vars_def,get_fp_var_def] >>
every_case_tac >> fs[LET_THM,word_exp_def,ri_find_name_def] >>
rw[] >> fs[] >> rfs[] >> rw[set_var_find_name,set_fp_var_find_name]
\\ every_case_tac \\ fs [wordLangTheory.word_op_def]
\\ rw [] \\ fs [] \\ fs [BIJ_DEF,INJ_DEF] \\ res_tac
\\ fs [rename_state_with_memory]
QED
Theorem MAP_FST_compile[simp]:
MAP FST (stack_names$compile f c) = MAP FST c
Proof
rw[compile_def,MAP_MAP_o,MAP_EQ_f,prog_comp_def,FORALL_PROD]
QED
Theorem domain_rename_state_code[simp]:
domain (rename_state c f s).code = domain s.code
Proof
rw[rename_state_def,domain_fromAList,toAList_domain,EXTENSION]
QED
Triviality comp_STOP_While:
comp f (STOP (While cmp r1 ri c1)) =
STOP (While cmp (find_name f r1) (ri_find_name f ri) (comp f c1))
Proof
simp [Once comp_def] \\ fs [STOP_def]
QED
Triviality get_labels_comp:
!f p. get_labels (comp f p) = get_labels p
Proof
HO_MATCH_MP_TAC stack_namesTheory.comp_ind \\ rw []
\\ Cases_on `p` \\ once_rewrite_tac [comp_def] \\ fs []
\\ every_case_tac \\ fs [get_labels_def]
QED
Triviality loc_check_rename_state:
loc_check (rename_state c f s).code (l1,l2) =
loc_check s.code (l1,l2)
Proof
fs [loc_check_def,rename_state_def,lookup_fromAList,compile_def,prog_comp_def]
\\ simp[lookup_fromAList,compile_def,prog_comp_eta,ALOOKUP_MAP,ALOOKUP_toAList]
\\ fs [PULL_EXISTS,get_labels_comp]
QED
Theorem comp_correct[local]:
∀p s r t.
evaluate (p,s) = (r,t) /\ BIJ (find_name f) UNIV UNIV /\
~s.use_alloc /\ ~s.use_store /\ ~s.use_stack /\
s.compile = (λcfg. c cfg o (stack_names$compile f))
==>
evaluate (comp f p, rename_state c f s) = (r, rename_state c f t)
Proof
recInduct evaluate_ind \\ rpt strip_tac
THEN1 (fs [evaluate_def,comp_def] \\ rpt var_eq_tac)
THEN1 (fs [evaluate_def,comp_def] \\ rpt var_eq_tac \\ CASE_TAC \\ fs []
\\ rw [] \\ fs [rename_state_def,empty_env_def])
THEN1 (fs [evaluate_def,comp_def,rename_state_def] \\ rpt var_eq_tac \\ fs [])
THEN1 (fs [evaluate_def,comp_def,rename_state_def] \\ rpt var_eq_tac \\ fs [])
THEN1 (fs [evaluate_def,comp_def] >>
every_case_tac >> fs[] >> rveq >> fs[] >>
imp_res_tac inst_rename >> fs[])
THEN1 (fs [evaluate_def,comp_def,rename_state_def] >> rveq >> fs[])
THEN1 (fs [evaluate_def,comp_def,rename_state_def] >> rveq >> fs[])
THEN1 (fs [evaluate_def,comp_def,rename_state_def] >> rveq >> fs[])
THEN1 (fs [evaluate_def,comp_def,rename_state_def] \\ rw []
\\ fs [] \\ rw [] \\ fs [empty_env_def,dec_clock_def])
THEN1
(simp [Once evaluate_def,Once comp_def]
\\ fs [evaluate_def,LET_DEF] \\ rpt (pairarg_tac \\ fs [])
\\ rw [] \\ fs [] \\ rfs [] \\ fs []
\\ imp_res_tac evaluate_consts \\ fs [])
THEN1 (fs [evaluate_def,comp_def] \\ rpt var_eq_tac \\ every_case_tac \\ fs [])
THEN1 (fs [evaluate_def,comp_def] \\ rpt var_eq_tac \\ every_case_tac \\ fs [])
THEN1 (
fs[evaluate_def] >>
simp[Once comp_def] >>
simp[evaluate_def] >>
BasicProvers.TOP_CASE_TAC >> fs[] >>
BasicProvers.TOP_CASE_TAC >> fs[] >>
BasicProvers.TOP_CASE_TAC >> fs[] >>
BasicProvers.TOP_CASE_TAC >> fs[] >>
BasicProvers.TOP_CASE_TAC >> fs[] )
THEN1 (* While *)
(simp [Once comp_def] \\ fs [evaluate_def,get_var_def]
\\ reverse every_case_tac
\\ fs [LET_THM]
\\ qpat_x_assum`(λ(x,y). _) _ = _`mp_tac
\\ pairarg_tac \\ fs []
\\ Cases_on `res = NONE` \\ fs []
\\ Cases_on `s1.clock = 0` \\ fs []
\\ strip_tac
THEN1 (rpt var_eq_tac \\ fs [rename_state_def,empty_env_def])
\\ `(rename_state c f s1).clock <> 0` by fs [rename_state_def] \\ fs []
\\ fs [comp_STOP_While] \\ rfs []
\\ fs [dec_clock_def,rename_state_def]
\\ imp_res_tac evaluate_consts \\ fs [])
(* JumpLower *)
THEN1 (
simp[Once comp_def] >>
fs[evaluate_def] >>
BasicProvers.TOP_CASE_TAC >> fs[] >>
BasicProvers.TOP_CASE_TAC >> fs[] >>
BasicProvers.TOP_CASE_TAC >> fs[] >>
BasicProvers.TOP_CASE_TAC >> fs[] >>
BasicProvers.TOP_CASE_TAC >> fs[] >>
fs[find_code_def] >>
simp[Once rename_state_def] >>
simp[lookup_fromAList] >>
BasicProvers.TOP_CASE_TAC >> fs[] >- (
imp_res_tac ALOOKUP_FAILS >>
qpat_x_assum`_ = (r,_)`mp_tac >>
BasicProvers.TOP_CASE_TAC >> fs[] >>
`dest ∈ domain s.code` by metis_tac[domain_lookup] >>
`¬MEM dest (MAP FST (compile f (toAList s.code)))` by (
simp[MEM_MAP,EXISTS_PROD] ) >>
fs[] >>
metis_tac[toAList_domain] ) >>
simp[Once rename_state_def] >>
imp_res_tac ALOOKUP_MEM >>
`MEM dest (MAP FST (compile f (toAList s.code)))` by (
simp[MEM_MAP,EXISTS_PROD] >> metis_tac[]) >>
fs[] >>
`dest ∈ domain s.code` by metis_tac[toAList_domain] >>
fs[domain_lookup] >> fs[] >>
IF_CASES_TAC >> fs[] >- (rveq >> EVAL_TAC >> simp[state_component_equality] ) >>
qpat_x_assum`_ = (r,_)`mp_tac >>
BasicProvers.TOP_CASE_TAC >> fs[] >>
fs[compile_def,MEM_MAP,EXISTS_PROD,prog_comp_def] >>
fs[MEM_toAList] >> rveq >>
fs[dec_clock_rename_state] >>
BasicProvers.TOP_CASE_TAC >> fs[])
(* RawCall *)
THEN1
(simp [comp_def,evaluate_def]
\\ `lookup dest (rename_state c f s).code =
find_code (dest_find_name f (INL dest))
(rename_state c f s).regs (rename_state c f s).code` by
(simp_tac std_ss [find_code_def,dest_find_name_def] \\ fs [])
\\ simp [] \\ fs [find_code_def]
\\ fs [evaluate_def,CaseEq"option",CaseEq"bool",pair_case_eq] \\ rveq \\ fs []
THEN1 (disj1_tac \\ Cases_on `prog` \\ fs [dest_Seq_def,Once comp_def]
\\ CASE_TAC \\ fs [dest_Seq_def])
\\ Cases_on `prog` \\ fs [dest_Seq_def] \\ rveq \\ fs []
\\ once_rewrite_tac [comp_def] \\ fs [dest_Seq_def]
THEN1 (fs [empty_env_def,rename_state_def])
\\ fs [rename_state_def,dec_clock_def])
(* Call *)
THEN1 (
simp[Once comp_def] >>
fs[evaluate_def] >>
BasicProvers.TOP_CASE_TAC >> fs[] >- (
pop_assum mp_tac >>
reverse BasicProvers.TOP_CASE_TAC >> fs[] >- (
BasicProvers.TOP_CASE_TAC >> simp[] >>
BasicProvers.TOP_CASE_TAC >> simp[] >>
BasicProvers.TOP_CASE_TAC >> simp[] ) >>
qpat_x_assum`_ = (r,_)`mp_tac >>
BasicProvers.TOP_CASE_TAC >> fs[] >>
reverse(Cases_on`handler`)>>fs[]>-(
split_pair_case_tac >> simp[] ) >>
simp[Once rename_state_def] >>
IF_CASES_TAC >> fs[] >- (
rw[] >> EVAL_TAC >> simp[state_component_equality] ) >>
simp[dec_clock_rename_state] >>
BasicProvers.TOP_CASE_TAC >> fs[] >>
BasicProvers.TOP_CASE_TAC >> fs[] ) >>
split_pair_case_tac >> simp[] >>
rveq >> pop_assum mp_tac >>
BasicProvers.TOP_CASE_TAC >> fs[] >>
split_pair_case_tac >> simp[] >>
strip_tac >> rveq >> fs[] >>
simp[Once rename_state_def] >>
simp[DOMSUB_MAP_KEYS] >>
simp[
find_code_rename_state
|> Q.GEN`s` |> Q.SPEC`s with regs := s.regs \\ lr`
|> SIMP_RULE (std_ss)[Once rename_state_def] |> SIMP_RULE (srw_ss())[]
|> SIMP_RULE std_ss [EVAL``(rename_state c f (s with regs := x)).code = (rename_state c f s).code``|>EQT_ELIM]] >>
qpat_x_assum`_ = (r,_)`mp_tac >>
BasicProvers.TOP_CASE_TAC >> fs[] >>
simp[Once rename_state_def] >>
IF_CASES_TAC >> fs[] >- (
rw[] >> EVAL_TAC >> simp[state_component_equality] ) >>
simp[GSYM set_var_find_name,dec_clock_rename_state] >>
BasicProvers.TOP_CASE_TAC >> fs[] >>
BasicProvers.TOP_CASE_TAC >> fs[] >>
BasicProvers.TOP_CASE_TAC >> fs[] >- (
rw[] >> rfs[] >>
first_x_assum match_mp_tac >>
imp_res_tac evaluate_consts >>
fs[rename_state_def] ) >>
BasicProvers.TOP_CASE_TAC >> fs[] >>
BasicProvers.TOP_CASE_TAC >> fs[] >>
BasicProvers.TOP_CASE_TAC >> fs[] >>
BasicProvers.TOP_CASE_TAC >> fs[] >>
strip_tac >> fs[] >>
first_x_assum match_mp_tac >>
imp_res_tac evaluate_consts >>
fs[rename_state_def] )
THEN1 (
(* Install *)
simp[Once comp_def] >>
fs[evaluate_def] >>
ntac 8 (TOP_CASE_TAC \\ fs[]) \\
pairarg_tac>>fs[]>>
pairarg_tac>>fs[]>>
qpat_x_assum`(rename_state c f s).compile_oracle _ = _`mp_tac>>
simp[Once rename_state_def]>> strip_tac>>fs[]>>
ntac 2 (TOP_CASE_TAC>>fs[])>>
qpat_x_assum`_ = (r,t)` mp_tac>>
TOP_CASE_TAC \\
rveq>>fs[compile_def]>>
ntac 2 (TOP_CASE_TAC>>fs[])>>
TOP_CASE_TAC>>simp[prog_comp_eta]>>
fs[rename_state_def,shift_seq_def]>>
TOP_CASE_TAC>>fs[]>>strip_tac>>
fs[state_component_equality]>>
CONJ_TAC>-(
qpat_x_assum`_=t.regs` sym_sub_tac>>
dep_rewrite.DEP_REWRITE_TAC[DRESTRICT_MAP_KEYS_IMAGE] >>
conj_tac >- metis_tac[BIJ_DEF] \\
dep_rewrite.DEP_REWRITE_TAC[MAP_KEYS_FUPDATE] \\
fs[INJ_DEF,BIJ_DEF])>>
CONJ_TAC>-(
qpat_x_assum`_ = t.compile_oracle` sym_sub_tac>>
simp[FUN_EQ_THM])>>
qpat_x_assum`_ = t.code` sym_sub_tac>>
simp[compile_def,GSYM prog_comp_eta] \\
dep_rewrite.DEP_REWRITE_TAC[spt_eq_thm] \\
simp[wf_union,wf_fromAList] \\
simp[lookup_union,lookup_fromAList,ALOOKUP_MAP,prog_comp_eta,ALOOKUP_toAList] \\
gen_tac \\
TOP_CASE_TAC \\ fs[] \\
TOP_CASE_TAC \\ fs[] )
THEN1 (
(* ShMemOp *)
simp[Once comp_def] \\
fs[evaluate_def] \\
fs[word_exp_def,IS_SOME_EXISTS,empty_env_def]>>
simp[sh_mem_op_rename_store]>>
rpt (CASE_TAC>>gs[])>>
gs[wordLangTheory.word_op_def,dec_clock_rename_state]>>
rveq>>gs[rename_state_def])
THEN1 (
(* CodeBufferWrite *)
simp[Once comp_def] \\
fs[evaluate_def] \\
TOP_CASE_TAC \\ fs[] \\
TOP_CASE_TAC \\ fs[] \\
TOP_CASE_TAC \\ fs[] \\
TOP_CASE_TAC \\ fs[] \\
TOP_CASE_TAC \\ fs[] \\ rw[] \\
EVAL_TAC)
THEN1 (
(* DataBufferWrite is not needed anymore *)
simp[Once comp_def] \\
fs[evaluate_def])
(* FFI *)
THEN1 (
simp[Once comp_def] >>
fs[evaluate_def] >>
rpt(BasicProvers.TOP_CASE_TAC >> fs[]) >>
simp[Once rename_state_def] >>
simp[Once rename_state_def] >>
simp[Once rename_state_def] >>
fs[LET_THM] >>
simp[EVAL``(rename_state c f s).ffi``] >>
fs[] >> rveq >> fs[rename_state_def,state_component_equality] >>
dep_rewrite.DEP_REWRITE_TAC[DRESTRICT_MAP_KEYS_IMAGE] >>
metis_tac[BIJ_DEF])
THEN1 (
simp[Once comp_def] >> fs[evaluate_def,loc_check_rename_state] >>
rw[] >> fs[] >> rveq >> fs[set_var_find_name] )
\\ (
simp[Once comp_def] >> fs[evaluate_def] >>
simp[Once rename_state_def] >> rveq >> simp[])
QED
Theorem compile_semantics:
BIJ (find_name f) UNIV UNIV /\
~s.use_alloc /\ ~s.use_store /\ ~s.use_stack /\
s.compile = (λcfg. c cfg o (compile f)) ==>
semantics start (rename_state c f s) = semantics start s
Proof
simp[GSYM AND_IMP_INTRO] >> ntac 4 strip_tac >>
simp[semantics_def] >>
simp[
comp_correct
|> Q.SPEC`Call NONE (INL start) NONE`
|> SIMP_RULE(srw_ss())[comp_def,dest_find_name_def]
|> Q.SPEC`s with clock := k`
|> SIMP_RULE(srw_ss()++QUANT_INST_ss[pair_default_qp])[GSYM AND_IMP_INTRO]
|> SIMP_RULE std_ss [rename_state_with_clock]
|> UNDISCH_ALL] >>
simp[rename_state_def] >>
srw_tac[QUANT_INST_ss[pair_default_qp]][]
QED
Triviality compile_semantics_alt:
!s t.
BIJ (find_name f) UNIV UNIV /\ (rename_state t.compile f s = t) /\
s.compile = (λc. t.compile c o (compile f)) /\
~s.use_alloc /\ ~s.use_store /\ ~s.use_stack ==>
semantics start t = semantics start s
Proof
metis_tac [compile_semantics]
QED
Definition make_init_def:
make_init f code oracle (s:('a,'c,'ffi) stackSem$state) =
s with
<| code := code;
regs := MAP_KEYS (LINV (find_name f) UNIV) s.regs;
compile := (λcfg. s.compile cfg o (compile f));
compile_oracle := oracle;
(*
code_buffer := <| position := 0w; buffer := []; space_left := 0 |>;
data_buffer := <| position := 0w; buffer := []; space_left := 0 |>;
*)
ffi_save_regs := IMAGE (LINV (find_name f) UNIV) s.ffi_save_regs|>
End
Theorem make_init_semantics:
~s.use_alloc /\ ~s.use_store /\ ~s.use_stack /\
BIJ (find_name f) UNIV UNIV /\ ALL_DISTINCT (MAP FST code) /\
s.code = fromAList (compile f code) /\
s.compile_oracle = (I ## compile f ## I) o oracle
==>
semantics start s = semantics start (make_init f (fromAList code) oracle s)
Proof
fs [make_init_def] \\ rw []
\\ match_mp_tac compile_semantics_alt \\ fs []
\\ fs [rename_state_def,state_component_equality]
\\ `find_name f o LINV (find_name f) UNIV = I` by
(imp_res_tac BIJ_LINV_INV \\ fs [FUN_EQ_THM])
\\ fs [GSYM IMAGE_COMPOSE] \\ fs [MAP_KEYS_BIJ_LINV]
\\ fs [spt_eq_thm,wf_fromAList,lookup_fromAList,compile_def]
\\ rw[prog_comp_eta,ALOOKUP_MAP_2,ALOOKUP_toAList,lookup_fromAList]
QED
Theorem stack_names_lab_pres:
∀f p.
extract_labels p = extract_labels (comp f p)
Proof
HO_MATCH_MP_TAC comp_ind>>Cases_on`p`>>rw[]>>
once_rewrite_tac [comp_def]>>fs[]>>
BasicProvers.EVERY_CASE_TAC>>fs[extract_labels_def]
QED
Triviality names_ok_imp:
names_ok f c.reg_count c.avoid_regs ⇒
∀n. reg_name n c ⇒
reg_ok (find_name f n) c
Proof
fs[names_ok_def,EVERY_GENLIST,reg_name_def,asmTheory.reg_ok_def]
QED
Triviality names_ok_imp2:
names_ok f c.reg_count c.avoid_regs ∧
n ≠ n' ∧
reg_name n c ∧ reg_name n' c ⇒
find_name f n ≠ find_name f n'
Proof
rw[names_ok_def]>>fs[ALL_DISTINCT_GENLIST,reg_name_def]>>
metis_tac[]
QED
Triviality stack_names_comp_stack_asm_ok:
∀f p.
stack_asm_name c p ∧ names_ok f c.reg_count c.avoid_regs ∧
fixed_names f c ⇒
stack_asm_ok c (stack_names$comp f p)
Proof
ho_match_mp_tac comp_ind>>
Cases_on`p`>>rw[]>>
simp[Once comp_def]>>fs[stack_asm_ok_def,stack_asm_name_def]
>-
(simp[Once inst_find_name_def]>>every_case_tac>>
fs[asmTheory.inst_ok_def,inst_name_def,arith_name_def,asmTheory.arith_ok_def,addr_name_def,asmTheory.fp_ok_def,fp_name_def,asmTheory.fp_reg_ok_def,asmTheory.fp_reg_ok_def]>>
(* Some of these are extremely annoying to prove with the separation of
stack_names and configs... *)
TRY(metis_tac[names_ok_imp,names_ok_imp2])
>-
(rw[]>>
TRY(metis_tac[names_ok_imp])
>-
(Cases_on`r`>>fs[ri_find_name_def])
>>
Cases_on`r`>>
fs[reg_imm_name_def,asmTheory.reg_imm_ok_def,ri_find_name_def]>>
metis_tac[names_ok_imp])
>>
rw[]>>
fs[fixed_names_def]>>
metis_tac[names_ok_imp,names_ok_imp2])
>-
(every_case_tac>>fs[dest_find_name_def]>>
metis_tac[names_ok_imp,asmTheory.reg_ok_def])
>- metis_tac[names_ok_imp,asmTheory.reg_ok_def]
>- metis_tac[names_ok_imp,asmTheory.reg_ok_def]
>- (CASE_TAC>>gs[stack_asm_ok_def]>>
metis_tac[names_ok_imp,asmTheory.reg_ok_def,addr_ok_def,addr_name_def])
>- metis_tac[names_ok_imp,asmTheory.reg_ok_def]
QED
Theorem stack_names_stack_asm_ok:
EVERY (λ(n,p). stack_asm_name c p) prog ∧
names_ok f c.reg_count c.avoid_regs ∧
fixed_names f c ⇒
EVERY (λ(n,p). stack_asm_ok c p) (compile f prog)
Proof
fs[EVERY_MAP,EVERY_MEM,FORALL_PROD,prog_comp_def,compile_def,MEM_MAP,EXISTS_PROD]>>
rw[]>>
metis_tac[stack_names_comp_stack_asm_ok]
QED
Theorem stack_names_call_args:
compile f p = p' ∧
EVERY (λp. call_args p 1 2 3 4 0) (MAP SND p) ==>
EVERY (λp. call_args p (find_name f 1)
(find_name f 2)
(find_name f 3)
(find_name f 4)
(find_name f 0)) (MAP SND p')
Proof
rw[]>>fs[compile_def]>>
fs[EVERY_MAP,EVERY_MEM,FORALL_PROD,prog_comp_def]>>
rw[]>>res_tac>> pop_assum mp_tac>> rpt (pop_assum kall_tac)>>
map_every qid_spec_tac[`p_2`,`f`]>>
ho_match_mp_tac comp_ind>>
Cases_on`p_2`>>rw[]>>
ONCE_REWRITE_TAC [comp_def]>>
fs[]>>fs[call_args_def]>>
BasicProvers.EVERY_CASE_TAC>>fs[call_args_def]
QED
val _ = export_theory();