-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathdiffScript.sml
1352 lines (1246 loc) · 47 KB
/
diffScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*
Implementation and verification of diff and patch algorithms
*)
open preamble lcsTheory mlintTheory mlstringTheory;
val _ = new_theory "diff";
val _ = temp_delsimps ["NORMEQ_CONV"]
val _ = temp_delsimps ["lift_disj_eq", "lift_imp_disj"]
val _ = diminish_srw_ss ["ABBREV"]
val _ = set_trace "BasicProvers.var_eq_old" 1
fun drule0 th =
first_assum(mp_tac o MATCH_MP (ONCE_REWRITE_RULE[GSYM AND_IMP_INTRO] th))
(* Diff algorithm definition *)
Definition line_numbers_def:
line_numbers l n =
if LENGTH l <= 1 then
toString (n:num)
else
strcat (toString n) (strcat(implode ",") (toString (n+LENGTH l)))
End
Definition acd_def:
acd [] [] = #" " ∧
acd l [] = #"d" ∧
acd [] l = #"a" ∧
acd l l' = #"c"
End
Definition diff_single_header_def:
diff_single_header l n l' n' =
line_numbers l n ^ implode [acd l l'] ^ line_numbers l' n' ^ «\n»
End
Definition diff_add_prefix_def:
diff_add_prefix l h = MAP (strcat h) l
End
Definition diff_single_def:
diff_single l n l' n' =
diff_single_header l n l' n'::
if l = [] then (* add *)
diff_add_prefix l' (strlit "> ")
else if l' = [] then (* delete *)
diff_add_prefix l (strlit "< ")
else (* change *)
diff_add_prefix l (strlit "< ")
++ (strlit "---\n")::diff_add_prefix l' (strlit "> ")
End
Definition diff_with_lcs_def:
(diff_with_lcs [] l n l' n' =
if l = [] /\ l' = [] then
[]
else
diff_single l n l' n') ∧
(diff_with_lcs (f::r) l n l' n' =
let (ll,lr) = SPLITP ($= f) l in
let (l'l,l'r) = SPLITP ($= f) l' in
if ll = [] /\ l'l = [] then
diff_with_lcs r (TL lr) (n+1) (TL l'r) (n+1)
else
diff_single ll n l'l n' ++ diff_with_lcs r (TL lr) (n+LENGTH ll+1) (TL l'r) (n'+LENGTH l'l+1))
End
Definition diff_alg_def:
diff_alg l l' = diff_with_lcs (optimised_lcs l l') l 0 l' 0
End
Definition diff_alg_offs_def:
diff_alg_offs l n l' n' = diff_with_lcs (dynamic_lcs l l') l n l' n'
End
Definition diff_alg2_def:
diff_alg2 l l' =
let prefix_length = LENGTH(longest_common_prefix l l');
l = DROP prefix_length l;
l' = DROP prefix_length l';
llength = LENGTH l;
l'length = LENGTH l';
suffix_length = if llength = l'length then
longest_common_suffix_length l l' 0
else if llength < l'length then
longest_common_suffix_length l (DROP (l'length-llength) l') 0
else
longest_common_suffix_length (DROP (llength-l'length) l) l' 0;
l = TAKE (llength - suffix_length) l;
l' = TAKE (l'length - suffix_length) l'
in
diff_with_lcs (dynamic_lcs l l') l prefix_length l' prefix_length
End
Theorem diff_alg2_thm:
diff_alg2 l l' =
let prefix_length = LENGTH(longest_common_prefix l l');
l = DROP prefix_length l;
l' = DROP prefix_length l';
llength = LENGTH l;
l'length = LENGTH l';
suffix_length = LENGTH(longest_common_suffix l l');
l = TAKE (llength - suffix_length) l;
l' = TAKE (l'length - suffix_length) l'
in
diff_with_lcs (dynamic_lcs l l') l prefix_length l' prefix_length
Proof
PURE_ONCE_REWRITE_TAC [diff_alg2_def]
>> ntac 5 (PURE_ONCE_REWRITE_TAC [LET_THM])
>> ntac 5 (Ho_Rewrite.PURE_ONCE_REWRITE_TAC [BETA_THM])
>> PURE_ONCE_REWRITE_TAC [longest_common_suffix_length_if]
>> REFL_TAC
QED
(* Diff algorithm properties *)
Triviality diff_with_lcs_refl:
∀n n'. diff_with_lcs l l n l n' = []
Proof
Induct_on ‘l’ >> rw[diff_with_lcs_def,SPLITP]
QED
Theorem diff_alg_refl:
diff_alg l l = []
Proof
rw[diff_alg_def,lcs_refl',diff_with_lcs_refl,optimised_lcs_refl]
QED
Theorem diff_alg2_refl:
diff_alg2 l l = []
Proof
rw[diff_alg2_thm,lcs_refl',diff_with_lcs_refl,dynamic_lcs_refl,
longest_common_prefix_refl]
QED
(* Patch algorithm definition *)
Definition parse_patch_header_def:
parse_patch_header s =
case tokens (\x. x = #"a" \/ x = #"d" \/ x = #"c" \/ x = #"\n") s of
| [l;r] =>
(case tokens ($= #",") l of
| [ll;lr] =>
(case (fromNatString ll, fromNatString lr) of
| (SOME lln, SOME lrn) =>
(case tokens ($= #",") r of
| [rl;rr] =>
(case (fromNatString rl, fromNatString rr) of
| (SOME rln, SOME rrn) =>
SOME (lln,SOME(lrn),strsub s (strlen l),
rln,SOME(rrn))
| _ => NONE)
| [r] =>
(case fromNatString r of
| SOME rn =>
SOME (lln,SOME(lrn),strsub s (strlen l),rn,NONE)
| _ => NONE)
| _ => NONE)
| _ => NONE)
| [l'] =>
(case fromNatString l' of
| (SOME l'n) =>
(case tokens ($= #",") r of
| [rl;rr] =>
(case (fromNatString rl, fromNatString rr) of
| (SOME rln, SOME rrn) =>
SOME (l'n,NONE,strsub s (strlen l),rln,SOME(rrn))
| _ => NONE)
| [r] =>
(case fromNatString r of
| (SOME rn) =>
SOME (l'n,NONE,strsub s (strlen l),rn,NONE)
| _ => NONE)
| _ => NONE)
| _ => NONE)
| _ => NONE)
| _ => NONE
End
Definition depatch_line_def:
depatch_line s =
if strlen s > 1 then
if substring s 0 2 = strlit "> " then
SOME(substring s 2 (strlen s - 2))
else
NONE
else
NONE
End
Definition depatch_lines_def:
depatch_lines [] = SOME [] ∧
depatch_lines (s::r) =
case depatch_line s of
NONE => NONE
| SOME s' =>
case depatch_lines r of
NONE => NONE
| SOME r' => SOME(s'::r')
End
Definition patch_aux_def:
(patch_aux [] file remfl n = SOME file) /\
(patch_aux (h::patch) file remfl n =
case parse_patch_header h of
| NONE => NONE
| SOME(orig,NONE,#"a",dest,opt) =>
let dest' = case opt of NONE => dest+1 | SOME dest' => dest' in
if orig < n \/ remfl < (orig-n) \/ dest' <= dest \/ LENGTH patch < (dest' - dest) then
NONE
else
(case depatch_lines(TAKE (dest'-dest) patch) of
NONE => NONE
| SOME p =>
let lf = TAKE (orig-n) file in
let rf = DROP (orig-n) file in
(case patch_aux (DROP (dest'-dest) patch) rf (remfl-(orig-n)) orig of
SOME rf' => SOME(lf++p++rf')
| NONE => NONE))
| SOME(orig,opt,#"d",dest,NONE) =>
let orig' = case opt of NONE => orig+1 | SOME orig' => orig' in
if orig < n \/ orig' < orig \/ remfl < (orig'-n) then
NONE
else
let lf = TAKE (orig-n) file in
let rf = DROP (orig'-n) file in
(case patch_aux (DROP (orig'-orig) patch) rf (remfl-(orig'-n)) orig' of
SOME rf' => SOME(lf++rf')
| NONE => NONE)
| SOME(orig,opt,#"c",dest,opt') =>
let orig' = case opt of NONE => orig+1 | SOME orig' => orig' in
let dest' = case opt' of NONE => dest+1 | SOME dest' => dest' in
if orig < n \/ orig' < orig \/ remfl < (orig'-n) \/ dest' <= dest \/ LENGTH patch < (dest' - dest) then
NONE
else
let relevant_patch = DROP (1+orig'-orig) patch in
(case depatch_lines(TAKE (dest'-dest) relevant_patch) of
NONE => NONE
| SOME p =>
let lf = TAKE (orig-n) file in
let rf = DROP (orig'-n) file in
(case patch_aux (DROP (dest'-dest) relevant_patch) rf (remfl-(orig'-n)) orig' of
SOME rf' => SOME(lf++p++rf')
| NONE => NONE))
| SOME _ => NONE
)
Termination
WF_REL_TAC `inv_image $< (LENGTH o FST)` >> fs[]
End
Definition patch_alg_def:
patch_alg patch file = patch_aux patch file (LENGTH file) 0
End
Definition patch_alg_offs_def:
patch_alg_offs n patch file = patch_aux patch file (LENGTH file) n
End
(* Patch cancels diff *)
Theorem tokens_append_strlit:
∀P s1 x s2. P x ⇒ tokens P (s1 ^ strlit [x] ^ s2) = tokens P s1 ++ tokens P s2
Proof
rw[] >> drule tokens_append >> rw[str_def,implode_def]
QED
Theorem tokens_append_right_strlit:
∀NP s x. P x ⇒ tokens P (s ^ strlit [x]) = tokens P s
Proof
rw[] >> drule tokens_append_strlit >>
disch_then $ qspecl_then [`s`,`strlit ""`] mp_tac >>
rw[tokens_def,tokens_aux_def]
QED
Triviality one_to_ten:
∀P. P 0 /\ P 1 /\ P 2 /\ P 3 /\ P 4 /\ P 5 /\ P 6 /\ P 7 /\ P 8 /\ P 9 /\ (∀n. (n:num) >= 10 ==> P n) ==> ∀n. P n
Proof
ntac 2 strip_tac >>
rpt(Cases >> simp[] >>
(fn g as (hs,c) => ID_SPEC_TAC (hd $ free_vars c) g))
QED
Triviality SPLITP_HEX:
∀n. n < 10 ==> SPLITP (λx. x = #"a" ∨ x = #"d" ∨ x = #"c" ∨ x = #"\n")
(STRING (HEX n) acc) =
let (l,r) = SPLITP (λx. x = #"a" ∨ x = #"d" ∨ x = #"c" ∨ x = #"\n") acc in
(STRING (HEX n) l,r)
Proof
recInduct one_to_ten >> fs[ELIM_UNCURRY,SPLITP]
QED
Overload ml_num_toString[local] = ``mlint$num_to_str``
Overload hol_int_toString[local] = ``integer_word$toString``
Overload num_toString[local] = ``num_to_dec_string``
Triviality SPLITP_num_toString:
∀i.
SPLITP (λx. x = #"a" ∨ x = #"d" ∨ x = #"c" ∨ x = #"\n")
(toString (i:num)) = (toString i,[])
Proof
recInduct COMPLETE_INDUCTION >> rpt strip_tac
>> fs[ASCIInumbersTheory.num_to_dec_string_def]
>> fs[ASCIInumbersTheory.n2s_def]
>> PURE_ONCE_REWRITE_TAC[numposrepTheory.n2l_def] >> rw[] >> fs[SPLITP,SPLITP_HEX]
>> first_x_assum (qspec_then `n DIV 10` assume_tac) >> rfs[]
>> fs[SPLITP_APPEND,SPLITP_NIL_SND_EVERY]
>> ‘n MOD 10 < 10’ by fs[] >> rename [`HEX n`]
>> pop_assum mp_tac >> rpt(pop_assum kall_tac)
>> qid_spec_tac ‘n’
>> recInduct one_to_ten >> fs[]
QED
Triviality SPLITP_int_toString:
∀i. SPLITP (λx. x = #"a" ∨ x = #"d" ∨ x = #"c" ∨ x = #"\n")
(toString (i:int)) = (toString i,[])
Proof
rpt strip_tac >> fs[integer_wordTheory.toString_def] >> rw[] >> fs[SPLITP,SPLITP_num_toString]
QED
Triviality TOKENS_tostring:
TOKENS (λx. x = #"a" ∨ x = #"d" ∨ x = #"c" ∨ x = #"\n") (toString(n:num)) = [toString n]
Proof
Cases_on `num_toString n` >> fs[TOKENS_def]
>> qpat_x_assum `_ = STRING _ _` (assume_tac o GSYM) >> fs[]
>> pairarg_tac >> pop_assum (assume_tac o GSYM)
>> fs[SPLITP_num_toString,TOKENS_def]
>> qpat_x_assum `STRING _ _ = _` (assume_tac o GSYM) >> fs[]
QED
Triviality num_le_10:
∀n. 0 ≤ n /\ n < 10 ==> Num n < 10
Proof
Cases >> fs[]
QED
Triviality tokens_toString:
tokens (λx. x = #"a" ∨ x = #"d" ∨ x = #"c" ∨ x = #"\n") (toString (n:num)) = [toString n]
Proof
simp [toString_thm, num_to_str_thm, TOKENS_eq_tokens_sym, TOKENS_tostring]
QED
Triviality tokens_strcat:
l ≠ [] ==>
(tokens (λx. x = #"a" ∨ x = #"d" ∨ x = #"c" ∨ x = #"\n")
(toString (n:num) ^
strlit (STRING (acd l r) "") ^ toString (m:num) ^ strlit "\n")
= [toString n; toString m])
Proof
Cases_on `l` >> Cases_on `r` >> fs[acd_def] >>
fs[tokens_append_strlit,strcat_assoc,tokens_append_right_strlit,tokens_toString]
QED
Triviality tokens_strcat':
r ≠ [] ==>
(tokens (λx. x = #"a" ∨ x = #"d" ∨ x = #"c" ∨ x = #"\n")
(toString (n:num) ^
strlit (STRING (acd l r) "") ^ toString (m:num) ^ strlit "\n")
= [toString n; toString m])
Proof
Cases_on `l` >> Cases_on `r` >>
fs[acd_def,tokens_append_strlit,strcat_assoc,tokens_append_right_strlit,tokens_toString]
QED
Triviality strsub_strcat:
∀s s'. strsub(s ^ s') n = if n < strlen s then strsub s n else strsub s' (n - strlen s)
Proof
Induct >> simp[strcat_thm,implode_def,strsub_def,EL_APPEND_EQN]
\\ gen_tac \\ Cases \\ simp[]
QED
Triviality strsub_str:
strsub (str c) 0 = c
Proof
rw[str_def,implode_def,strsub_def]
QED
Triviality acd_simps:
(l ≠ [] ⇒ acd [] l = #"a" ∧ acd l [] = #"d") ∧
(l ≠ [] ∧ r ≠ [] ⇒ acd l r = #"c")
Proof
strip_tac >> fs[oneline acd_def] >>
rpt(PURE_TOP_CASE_TAC >> fs[])
QED
Triviality HEX_isDigit:
!n. n < 10 ==> isDigit(HEX n)
Proof
recInduct one_to_ten >> fs[isDigit_def]
QED
(* TODO: move at least these (and probably others in this file) *)
Theorem toString_isDigit:
∀n. EVERY isDigit (toString(n:num))
Proof
recInduct COMPLETE_INDUCTION
>> rpt strip_tac
>> fs[ASCIInumbersTheory.num_to_dec_string_def]
>> fs[ASCIInumbersTheory.n2s_def]
>> PURE_ONCE_REWRITE_TAC[numposrepTheory.n2l_def]
>> rw[] >> fs[HEX_isDigit]
QED
(* -- *)
(*`!n. explode (toString n) = toString n`*)
Theorem int_abs_toString_num:
∀n. toString (&n) = toString n
Proof
recInduct COMPLETE_INDUCTION >> strip_tac
>> fs[integer_wordTheory.toString_def]
QED
Triviality substring_adhoc_simps:
∀h.
substring (strlit "> " ^ h) 0 2 = strlit "> " ∧
substring (strlit "> " ^ h) 2 (strlen h) = h ∧
substring (strlit "< " ^ h) 0 2 = strlit "< " ∧
substring (strlit "< " ^ h) 2 (strlen h) = h
Proof
Induct >> rpt strip_tac >> fs[strcat_thm,implode_def,substring_def,strlen_def]
>> fs[ADD1,MIN_DEF] >> fs[SEG_compute] >> simp_tac pure_ss [ONE,TWO,SEG_SUC_CONS]
>> fs[SEG_LENGTH_ID]
QED
Triviality depatch_lines_strcat_cancel:
∀r. depatch_lines (MAP (strcat (strlit "> ")) r) = SOME r
Proof
Induct >> fs[depatch_lines_def,depatch_line_def,strlen_strcat,substring_adhoc_simps]
QED
Triviality depatch_lines_diff_add_prefix_cancel:
depatch_lines (diff_add_prefix l (strlit "> ")) = SOME l
Proof
fs[diff_add_prefix_def,depatch_lines_strcat_cancel]
QED
Triviality patch_aux_nil:
patch_aux [] file remfl n = SOME file
Proof
fs[patch_aux_def]
QED
Triviality line_numbers_not_empty:
∀l n . line_numbers l n <> strlit ""
Proof
fs[line_numbers_def, num_to_str_thm, implode_def]
\\ rw []
\\ simp_tac std_ss [GSYM explode_11, explode_strcat]
\\ simp []
QED
Theorem tokens_eq_sing:
∀s f. EVERY ($¬ ∘ f) (explode s) ∧ s <> strlit "" ⇒ tokens f s = [s]
Proof
Cases
\\ fs[TOKENS_eq_tokens_sym,toString_thm,explode_implode,implode_def]
\\ Cases_on `s'` \\ fs [TOKENS_def] \\ rw []
\\ fs [o_DEF,SPLITP_EVERY,TOKENS_def]
QED
Triviality tokens_toString_comma:
tokens ($= #",") (toString (n:num)) = [toString n]
Proof
rw [] \\ match_mp_tac tokens_eq_sing
\\ fs [num_to_str_thm,implode_def]
\\ fs [num_to_str_def]
\\ match_mp_tac (MP_CANON EVERY_MONOTONIC)
\\ qexists_tac `isDigit`
\\ fs [EVERY_isDigit_num_to_dec_string] \\ EVAL_TAC
QED
Triviality tokens_comma_lemma:
tokens (λx. x = #"a" ∨ x = #"d" ∨ x = #"c" ∨ x = #"\n")
(line_numbers l n) = [line_numbers l n]
Proof
‘EVERY (λx. isDigit x ∨ x = #",") (explode(line_numbers l n))’
by(fs[line_numbers_def] >> rw[]
\\ fs[toString_thm,num_to_str_def]
\\ fs[explode_implode,strcat_thm]
\\ match_mp_tac (MP_CANON EVERY_MONOTONIC)
\\ qexists_tac `isDigit` \\ fs [toString_isDigit])
\\ match_mp_tac tokens_eq_sing
\\ conj_tac THEN1
(match_mp_tac (MP_CANON EVERY_MONOTONIC)
\\ goal_assum (first_x_assum o mp_then Any mp_tac)
\\ fs [] \\ CCONTR_TAC \\ fs [] \\ rveq \\ fs [isDigit_def])
\\ rw [line_numbers_def,num_to_str_thm,implode_def]
\\ fs [strcat_def,concat_def]
QED
Triviality parse_header_cancel:
l ≠ [] ∨ l' ≠ [] ⇒
parse_patch_header(diff_single_header l n l' n') =
SOME(n,
if LENGTH l <= 1 then NONE else SOME(n+LENGTH l),
if l = [] then
#"a"
else if l' = [] then
#"d"
else
#"c",
n',
if LENGTH l' <= 1 then
NONE
else
SOME(n'+LENGTH l'))
Proof
rw[diff_single_header_def,parse_patch_header_def,
option_case_eq,list_case_eq,PULL_EXISTS,
strsub_strcat,tokens_append_right_strlit,GSYM str_def,
tokens_append,acd_simps,tokens_comma_lemma,
tokens_comma_lemma]
\\ rw[line_numbers_def,tokens_toString_comma,
fromNatString_toString,
GSYM str_def,tokens_append,strsub_str]
QED
Triviality patch_aux_cancel_base_case:
patch_aux (diff_with_lcs [] r n r' m) r (LENGTH r) n = SOME r'
Proof
fs[diff_with_lcs_def,diff_single_def] >> rw[]
>> fs[patch_aux_def]
>> fs[patch_aux_def,parse_header_cancel,
diff_add_prefix_def,depatch_lines_strcat_cancel,
GSYM MAP_TAKE,GSYM MAP_DROP,DROP_APPEND,TAKE_APPEND]
>> rw[]
>> fs[DROP_LENGTH_TOO_LONG,TAKE_LENGTH_TOO_LONG,patch_aux_def,
quantHeuristicsTheory.LIST_LENGTH_0,
DROP_APPEND,depatch_lines_strcat_cancel]
>> ‘LENGTH r = 1’ by (Cases_on ‘LENGTH r’ >> fs[])
>> fs[depatch_lines_strcat_cancel]
QED
Theorem SPLITP_NIL_FST:
∀ls P r. SPLITP P ls = ([],r) ⇔ (r = ls ∧ ((ls <> []) ==> P(HD ls)))
Proof
Cases >> rpt strip_tac >> fs[SPLITP,EQ_IMP_THM] >> IF_CASES_TAC
>> strip_tac >> fs[]
QED
Theorem diff_add_prefix_length:
∀l s. LENGTH (diff_add_prefix l s) = LENGTH l
Proof
fs[diff_add_prefix_def]
QED
Theorem diff_add_prefix_TAKE:
∀l n s. TAKE n (diff_add_prefix l s) = diff_add_prefix (TAKE n l) s
Proof
fs[diff_add_prefix_def,MAP_TAKE]
QED
Theorem diff_add_prefix_DROP:
∀l n s. DROP n (diff_add_prefix l s) = diff_add_prefix (DROP n l) s
Proof
fs[diff_add_prefix_def,MAP_DROP]
QED
Theorem diff_add_prefix_nil:
∀s. (diff_add_prefix [] s) = []
Proof
fs[diff_add_prefix_def]
QED
Triviality ONE_MINUS_SUCC:
1 - SUC x = 0
Proof
intLib.COOPER_TAC
QED
Triviality SUCC_LE_ONE:
SUC n ≤ 1 ⇔ n = 0
Proof
intLib.COOPER_TAC
QED
Triviality patch_aux_keep_init:
∀l p t n t' m.
common_subsequence l t t' ==>
patch_aux (diff_with_lcs l t (n + LENGTH p) t' (m + LENGTH p)) (p ++ t) (LENGTH t + LENGTH p) n
=
case patch_aux (diff_with_lcs l t (n + LENGTH p) t' (m + LENGTH p)) t (LENGTH t) (n+LENGTH p) of
SOME r => SOME(p++r)
| NONE => NONE
Proof
Induct >> rpt strip_tac
>- (fs[patch_aux_cancel_base_case]
>> fs[diff_with_lcs_def,diff_single_def,diff_add_prefix_def] >> rw[]
>> fs[patch_aux_def,parse_header_cancel] >> rw[]
>> fs[quantHeuristicsTheory.LIST_LENGTH_0,GSYM MAP_TAKE,GSYM MAP_DROP,
depatch_lines_strcat_cancel,DROP_LENGTH_NIL,DROP_LENGTH_TOO_LONG,
TAKE_LENGTH_TOO_LONG,patch_aux_nil,DROP_APPEND,TAKE_APPEND,
ONE_MINUS_SUCC]
>> Cases_on `t` >> fs[ONE_MINUS_SUCC])
>> fs[diff_with_lcs_def]
>> rpt(pairarg_tac>>fs[]) >> rw[]
>- (fs[SPLITP_NIL_FST] >> rveq
>> Cases_on `lr` >> gvs[common_subsequence_empty']
>> Cases_on `l'r` >> gvs[common_subsequence_empty']
>> first_assum(qspecl_then [`p++[h]`,`t`,`n`,`t'`,`n`] mp_tac)
>> first_x_assum(qspecl_then [`[h]`,`t`,`n+LENGTH p`,`t'`,`n+LENGTH p`] mp_tac)
>> fs[cons_common_subsequence]
>> full_simp_tac pure_ss [GSYM APPEND_ASSOC,APPEND,ADD1]
>> rpt strip_tac >> fs[] >> TOP_CASE_TAC)
>> Cases_on `ll` >> Cases_on `l'l`
>> fs[diff_single_def,patch_aux_def,parse_header_cancel,SPLITP_NIL_FST]
>> rveq >> fs[]
>> IF_CASES_TAC >> fs[]
>> rw[]
>> fs[TAKE_APPEND,DROP_APPEND,diff_add_prefix_length,diff_add_prefix_TAKE,
depatch_lines_diff_add_prefix_cancel,ONE_MINUS_SUCC,SUCC_LE_ONE,
quantHeuristicsTheory.LIST_LENGTH_0,diff_add_prefix_DROP,diff_add_prefix_nil,
DROP_LENGTH_NIL,DROP_LENGTH_TOO_LONG]
>> PURE_TOP_CASE_TAC >> fs[]
QED
Triviality patch_aux_keep_init_cons:
∀l t n t' h m.
common_subsequence l t t' ⇒
patch_aux (diff_with_lcs l t (n + 1) t' (m + 1)) (h::t) (SUC (LENGTH t)) n
=
case patch_aux (diff_with_lcs l t (n + 1) t' (m + 1)) t (LENGTH t) (n+1) of
SOME r => SOME(h::r)
| NONE => NONE
Proof
rpt strip_tac >> drule patch_aux_keep_init >>
disch_then $ qspec_then ‘[h]’ assume_tac >> fs[ADD1]
QED
Triviality list_nil_sub_length:
l ≠ [] ⇒ 1 - LENGTH l = 0
Proof
Cases_on `l` >> fs[]
QED
Triviality list_length_1_lemma:
l ≠ [] ∧ LENGTH l <= 1 ⇒ LENGTH l = 1
Proof
Cases_on `LENGTH l` >> fs[]
QED
Triviality minus_add_too_large:
a - ((a:num) + n) = 0
Proof
intLib.COOPER_TAC
QED
Triviality minus_add_too_large':
(a + 1) - ((a:num) + 2) = 0
Proof
intLib.COOPER_TAC
QED
Theorem patch_aux_diff_cancel:
∀l r n r' m.
common_subsequence l r r' ==>
(patch_aux (diff_with_lcs l r n r' m) r (LENGTH r) n = SOME r')
Proof
Induct
>> rpt strip_tac
>- fs[patch_aux_cancel_base_case]
>> fs[diff_with_lcs_def,diff_single_def,
diff_add_prefix_def]
>> rpt(pairarg_tac >> fs[])
>> rw[]
>- (fs[SPLITP_NIL_FST] >> rveq
>> Cases_on `lr` >> fs[common_subsequence_empty']
>> Cases_on `l'r` >> fs[common_subsequence_empty']
>> rveq >> fs[cons_common_subsequence,patch_aux_keep_init_cons])
>- (fs[SPLITP_NIL_FST] >> rveq
>> Cases_on `lr` >> fs[common_subsequence_empty']
>> Cases_on `l'r` >> fs[common_subsequence_empty',SPLITP_NIL_SND_EVERY]
>> rveq
>> fs[cons_common_subsequence,patch_aux_keep_init_cons]
>> drule common_subsequence_split_css2
>> fs[SPLITP_EVERY,o_DEF,common_subsequence_empty',SPLITP]
>> drule SPLITP_IMP >> rpt strip_tac >> fs[] >> rveq >> fs[cons_common_subsequence]
>> fs[patch_aux_def] >> rw[]
>> fs[parse_header_cancel,TAKE_APPEND]
>> rw[] >> fs[quantHeuristicsTheory.LIST_LENGTH_0,TAKE_LENGTH_TOO_LONG,list_nil_sub_length,
depatch_lines_strcat_cancel,DROP_LENGTH_TOO_LONG,DROP_APPEND]
>> drule patch_aux_keep_init_cons
>> disch_then(qspecl_then [`n`,`h`,`m + LENGTH l'l`] assume_tac)
>> drule SPLITP_JOIN
>> fs[])
>- (fs[SPLITP_NIL_FST] >> rveq
>> Cases_on `lr` >> fs[common_subsequence_empty']
>> Cases_on `l'r` >> fs[common_subsequence_empty',SPLITP_NIL_SND_EVERY]
>> rveq
>> fs[cons_common_subsequence,patch_aux_keep_init_cons]
>> drule common_subsequence_split_css
>> fs[SPLITP_EVERY,o_DEF,common_subsequence_empty',SPLITP]
>> drule SPLITP_IMP >> rpt strip_tac >> fs[] >> rveq >> fs[cons_common_subsequence]
>> fs[patch_aux_def] >> rw[]
>> fs[parse_header_cancel,TAKE_APPEND]
>> rw[]
>> drule SPLITP_JOIN >> strip_tac >> fs[]
>> fs[quantHeuristicsTheory.LIST_LENGTH_0,TAKE_LENGTH_TOO_LONG,list_nil_sub_length,
depatch_lines_strcat_cancel,DROP_LENGTH_TOO_LONG,DROP_APPEND,list_length_1_lemma,
minus_add_too_large]
>> drule patch_aux_keep_init_cons
>> disch_then(qspecl_then [`n + LENGTH ll`,`h`,`m`] mp_tac)
>> fs[list_length_1_lemma,ADD1])
>- (fs[SPLITP_NIL_FST] >> rveq
>> Cases_on `lr` >> fs[common_subsequence_empty']
>> Cases_on `l'r` >> fs[common_subsequence_empty',SPLITP_NIL_SND_EVERY]
>> rveq
>> fs[cons_common_subsequence,patch_aux_keep_init_cons]
>> drule common_subsequence_split_css >> strip_tac >> drule common_subsequence_split_css2
>> fs[SPLITP_EVERY,o_DEF,common_subsequence_empty',SPLITP]
>> drule SPLITP_IMP >> qpat_x_assum `SPLITP _ _ = _ ` mp_tac
>> drule SPLITP_IMP >> rpt strip_tac >> fs[] >> rveq >> fs[cons_common_subsequence]
>> fs[patch_aux_def] >> rw[]
>> fs[parse_header_cancel,TAKE_APPEND]
>> rw[]
>> drule SPLITP_JOIN >> qpat_x_assum `SPLITP _ _ = _` mp_tac
>> drule SPLITP_JOIN >> ntac 3 strip_tac
>> fs[quantHeuristicsTheory.LIST_LENGTH_0,TAKE_LENGTH_TOO_LONG,list_nil_sub_length,
depatch_lines_strcat_cancel,DROP_LENGTH_TOO_LONG,DROP_APPEND,list_length_1_lemma,
minus_add_too_large,TAKE_APPEND,minus_add_too_large',ONE_MINUS_SUCC]
>> drule patch_aux_keep_init_cons
>> disch_then(qspecl_then [`n + LENGTH ll`,`h`,`m + LENGTH l'l`] mp_tac)
>> fs[ADD1,list_length_1_lemma])
QED
Theorem patch_diff_cancel:
patch_alg (diff_alg l r) l = SOME r
Proof
fs[patch_alg_def,diff_alg_def] >>
irule patch_aux_diff_cancel >>
irule $ cj 1 $ iffLR lcs_def >>
irule optimised_lcs_correct
QED
Definition headers_within_def:
headers_within n m l =
EVERY (OPTION_ALL (λ(n':num,m':num option,c,_,_).
(n <= n' ∧ n' <= m ∧ (IS_NONE m' ∧ (c = #"d" ∨ c = #"c") ⇒
n'+1 <= m) ∧
(IS_SOME m' ==> (n ≤ THE m' ∧ THE m' ≤ m)))))
(MAP parse_patch_header l)
End
Theorem headers_within_IMP:
headers_within n m (h::t) ∧ parse_patch_header h = SOME(q,NONE,c,tup)
⇒ n <= q ∧ q <= m ∧ ((c= #"d" ∨ c = #"c") ⇒ q+1 <= m)
Proof
rpt strip_tac >> fs[headers_within_def] >> rfs[ELIM_UNCURRY]
QED
Theorem headers_within_IMP_SOME:
headers_within n m (h::t) ∧ parse_patch_header h = SOME(q,SOME q',c,tup)
⇒ n ≤ q ∧ q ≤ m ∧ n ≤ q' ∧ q' ≤ m
Proof
rpt strip_tac >> fs[headers_within_def] >> rfs[ELIM_UNCURRY]
QED
Theorem headers_within_grow:
headers_within n' m' l ∧ n ≤ n' ∧ m' ≤ m ⇒ headers_within n m l
Proof
Induct_on `l` >> rpt strip_tac >> fs[headers_within_def]
>> Cases_on `parse_patch_header h` >> fs[pairTheory.ELIM_UNCURRY]
>> rw[] >> fs[]
QED
Theorem headers_within_append:
headers_within n m (l++l') = (headers_within n m l ∧ headers_within n m l')
Proof
simp[headers_within_def]
QED
Theorem headers_within_dest_cons:
headers_within n m (e::l') ⇒ headers_within n m l'
Proof
simp[headers_within_def]
QED
Theorem headers_within_drop:
headers_within n m (l) ⇒ headers_within n m (DROP x l)
Proof
simp[headers_within_def,MAP_DROP,EVERY_DROP]
QED
Theorem fromString_gt:
fromString (implode (STRING #">" x)) = NONE ∧
fromString (implode (STRING #"<" x)) = NONE
Proof
rw [] \\ match_mp_tac fromString_EQ_NONE \\ EVAL_TAC
QED
Theorem fromNatString_gt:
fromNatString (implode (STRING #">" x)) = NONE ∧
fromNatString (implode (STRING #"<" x)) = NONE
Proof
rw [fromNatString_def,fromString_gt]
QED
Triviality parse_nonheader_lemma:
∀f r. EVERY (OPTION_ALL f) (MAP parse_patch_header (diff_add_prefix r (strlit "> ")))
Proof
strip_tac >> Induct
>- fs[diff_add_prefix_def]
>> strip_tac >> Cases_on `h`
>> fs[parse_patch_header_def,diff_add_prefix_def]
>> every_case_tac
>> fs[strcat_def,mlstringTheory.concat_def]
>> fs[tokens_append_strlit,TOKENS_eq_tokens_sym]
>> fs[TOKENS_def,pairTheory.ELIM_UNCURRY,SPLITP] >> rveq
>> fs[explode_implode,TOKENS_def,SPLITP,pairTheory.ELIM_UNCURRY]
>> rveq
>> fs[explode_implode,isDigit_def,fromNatString_gt]
QED
Triviality parse_nonheader_lemma2:
∀f r. EVERY (OPTION_ALL f) (MAP parse_patch_header (diff_add_prefix r (strlit "< ")))
Proof
strip_tac >> Induct
>- fs[diff_add_prefix_def]
>> strip_tac >> Cases_on `h`
>> fs[parse_patch_header_def,diff_add_prefix_def]
>> every_case_tac
>> fs[strcat_def,mlstringTheory.concat_def]
>> fs[tokens_append_strlit,TOKENS_eq_tokens_sym]
>> fs[TOKENS_def,pairTheory.ELIM_UNCURRY,SPLITP] >> rveq
>> fs[explode_implode,TOKENS_def,SPLITP,pairTheory.ELIM_UNCURRY]
>> rveq
>> fs[explode_implode,isDigit_def,fromNatString_gt]
QED
Triviality parse_nonheader_lemma3:
parse_patch_header (strlit "---\n") = NONE
Proof
fs[parse_patch_header_def]
>> every_case_tac
>> fs[strcat_def,mlstringTheory.concat_def]
>> fs[tokens_append_strlit,TOKENS_eq_tokens_sym]
>> fs[TOKENS_def,pairTheory.ELIM_UNCURRY,SPLITP] >> rveq
QED
Theorem diff_with_lcs_headers_within:
∀l r n r' m.
common_subsequence l r r' ⇒
headers_within n (n + LENGTH r) (diff_with_lcs l r n r' m)
Proof
Induct
>> rpt strip_tac
>- (fs[diff_with_lcs_def,headers_within_def,diff_single_def]
>> rw[] >> fs[parse_header_cancel]
>> rw[]
>> fs[parse_nonheader_lemma,parse_nonheader_lemma2,
parse_nonheader_lemma3]
>> Cases_on `r` >> fs[])
>> fs[diff_with_lcs_def]
>> rpt(pairarg_tac >> fs[])
>> IF_CASES_TAC
>- (drule split_common_subsequence
>> strip_tac
>> first_x_assum drule >> fs[]
>> disch_then(qspecl_then [`n+1`,`n+1`] assume_tac)
>> drule headers_within_grow
>> disch_then match_mp_tac
>> fs[SPLITP_NIL_FST]
>> Cases_on `r` >> fs[common_subsequence_empty'])
>> simp[headers_within_append]
>> strip_tac
>- (fs[headers_within_def,diff_single_def]
>> fs[parse_header_cancel]
>> rw[]
>> fs[parse_nonheader_lemma,parse_nonheader_lemma2,
parse_nonheader_lemma3]
>> drule common_subsequence_split >> strip_tac >> gvs[]
>> imp_res_tac SPLITP_JOIN >> gvs[])
>> drule split_common_subsequence
>> drule common_subsequence_split
>> drule common_subsequence_split2
>> rpt strip_tac
>> gvs[] >> first_x_assum drule
>> disch_then(qspecl_then [`n + (LENGTH ll + 1)`,`m + (LENGTH l'l + 1)`] assume_tac)
>> drule headers_within_grow
>> disch_then match_mp_tac
>> imp_res_tac SPLITP_JOIN >> gvs[]
QED
Theorem headers_within_cons:
headers_within (n+1) m p1 ∧ m >= n+1 ⇒
patch_alg_offs n p1 (e::l) = OPTION_MAP (CONS e) (patch_alg_offs (n+1) p1 l)
Proof
Cases_on `p1` >> rpt strip_tac >>
gvs[headers_within_def,patch_alg_offs_def,patch_aux_def,
oneline OPTION_ALL_def] >>
rpt(PURE_FULL_CASE_TAC >> gvs[]) >>
gvs[DROP_DROP_T,ADD1]
QED
Theorem IS_SUFFIX_induct:
∀P. P [] ∧ (∀h l. (∀sl. IS_SUFFIX l sl ⇒ P sl) ⇒ P (h::l)) ⇒ ∀l. P l
Proof
rpt strip_tac
\\ completeInduct_on ‘LENGTH l’
\\ rw [] \\ gvs [PULL_FORALL]
\\ Cases_on ‘l’ \\ gvs []
\\ last_x_assum irule \\ rw []
\\ last_x_assum irule \\ rw []
\\ gvs [IS_SUFFIX_compute]
\\ drule IS_PREFIX_LENGTH \\ gvs []
QED
Theorem IS_SUFFIX_DROP:
!l n. IS_SUFFIX l (DROP n l)
Proof
Induct >> rpt strip_tac >> rw[DROP_def]
>> metis_tac[IS_SUFFIX_CONS]
QED
Triviality headers_within_snoc:
∀p1 n l m e.
headers_within m (n + LENGTH l) p1 ∧ m <= (n + LENGTH l) ⇒
patch_alg_offs n p1 (SNOC e l) = OPTION_MAP (SNOC e) (patch_alg_offs n p1 l)
Proof
ho_match_mp_tac IS_SUFFIX_induct
>> rpt strip_tac
>> fs[patch_alg_offs_def,patch_aux_def]
>> every_case_tac >> fs[] >> rfs[]
>> fs[DROP_DROP_T]
>> TRY(qmatch_goalsub_abbrev_tac `F`
>> qmatch_asmsub_abbrev_tac `patch_aux (DROP a1 _) _ _ a2`
>> `IS_SUFFIX p1 (DROP a1 p1)`
by(MATCH_ACCEPT_TAC IS_SUFFIX_DROP)
>> first_assum drule0
>> qunabbrev_tac `a1`
>> disch_then(qspecl_then [`a2`,`DROP (a2 - n) l`,`m`,`e`] mp_tac)
>> impl_tac
>- (qunabbrev_tac `a2`
>> match_mp_tac(GEN_ALL headers_within_grow)
>> MAP_EVERY qexists_tac [`m`,`n + LENGTH l`]
>> fs[]
>> match_mp_tac headers_within_drop
>> imp_res_tac headers_within_dest_cons)
>> fs[]
>> FULL_SIMP_TAC bool_ss [NOT_LESS, GSYM DROP_SNOC,LE]
>> fs[ADD1]
>> fs[SNOC_APPEND,DROP_APPEND,DROP_LENGTH_TOO_LONG]
>> rfs[DROP_LENGTH_TOO_LONG]
>> fs[DROP_def] >> imp_res_tac headers_within_IMP >> fs[]
>> qunabbrev_tac `a2` >> fs[]
>> qmatch_asmsub_abbrev_tac `patch_aux _ _ _ a2`
>> (first_assum drule0
>> disch_then(qspecl_then [`a2`,`[]`,`m`,`e`] mp_tac)
>> impl_tac
>- (match_mp_tac(GEN_ALL headers_within_grow)
>> MAP_EVERY qexists_tac [`m`,`n+LENGTH l`]
>> qunabbrev_tac `a2` >> fs[]
>> match_mp_tac headers_within_drop
>> imp_res_tac headers_within_dest_cons)
>> TRY(
`(n + (LENGTH l + 1) − a2) = 0` by(intLib.COOPER_TAC)
>> pop_assum(fn x => fs[x])
>> `(n + LENGTH l - a2) = 0` by(intLib.COOPER_TAC)
>> pop_assum(fn x => fs[x]) >> rveq >> fs[]
>> (first_assum drule0
>> disch_then(qspecl_then [`a2`,`[]`,`m`,`e`] mp_tac)
>> impl_tac
>- (match_mp_tac(GEN_ALL headers_within_grow)
>> MAP_EVERY qexists_tac [`m`,`n+LENGTH l`]
>> qunabbrev_tac `a2` >> fs[]
>> match_mp_tac headers_within_drop
>> imp_res_tac headers_within_dest_cons)
>> impl_tac >> fs[]
>> rpt strip_tac >> fs[]
>> imp_res_tac headers_within_IMP_SOME >> fs[] >> NO_TAC))
>> `n + LENGTH l - a2 = 0` by(intLib.COOPER_TAC)
>> pop_assum (fn x => fs[x])
>> qunabbrev_tac `a2`
>> `n + LENGTH l - q = 0` by(intLib.COOPER_TAC)
>> pop_assum (fn x => fs[x])
>> imp_res_tac headers_within_IMP >> fs[]
>> `n + (LENGTH l + 1) - q = 1` by(intLib.COOPER_TAC)
>> pop_assum (fn x => fs[x])
>> imp_res_tac headers_within_IMP
>> `q - (n + LENGTH l) = 0` by(intLib.COOPER_TAC)
>> pop_assum (fn x => fs[x])))
>> TRY(qmatch_goalsub_abbrev_tac `F`
>> qmatch_asmsub_abbrev_tac `DROP 1 _`
>> `IS_SUFFIX p1 (DROP 1 p1)`
by(MATCH_ACCEPT_TAC IS_SUFFIX_DROP)
>> first_assum drule0
>> disch_then(qspecl_then [`q`,`DROP (q - n) l`,`m`,`e`] mp_tac)
>> impl_tac
>- (match_mp_tac(GEN_ALL headers_within_grow)
>> MAP_EVERY qexists_tac [`m`,`n + LENGTH l`]
>> fs[]
>> match_mp_tac headers_within_drop
>> imp_res_tac headers_within_dest_cons)
>> fs[]
>> FULL_SIMP_TAC bool_ss [NOT_LESS, GSYM DROP_SNOC,LE]
>> fs[ADD1]
>> fs[SNOC_APPEND,DROP_APPEND,DROP_LENGTH_TOO_LONG]
>> rfs[DROP_LENGTH_TOO_LONG]