-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathpackingScript.sml
598 lines (547 loc) · 14.6 KB
/
packingScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
(*
Packing chromatic number
*)
open preamble satSemTheory lprTheory balanced_mapTheory;
val _ = new_theory "packing";
Definition l1_dist_def:
l1_dist (x1,y1) (x2,y2) =
Num (ABS (x1-x2) + ABS (y1-y2))
End
(*
f is a packing coloring on the set of points D
- f assigns colors 1 ≤ f p ≤ k
- Inside the domain D, distinct points with
the same color c have L1 distance > c
*)
Definition is_dom_packing_col_def:
is_dom_packing_col f D k ⇔
(∀p. f p ≥ 1 ∧ f p ≤ k) ∧
∀p1 p2.
p1 ∈ D ∧ p2 ∈ D ∧ p1 ≠ p2 ∧
f p1 = f p2 ⇒
l1_dist p1 p2 > f p1
End
(* f is a plane packing coloring iff D is the entire plane *)
Definition is_plane_packing_col_def:
is_plane_packing_col f k ⇔
is_dom_packing_col f UNIV k
End
(* ball centered at C of radius r ≥ 1 *)
Definition ball_def:
ball C r = {p | l1_dist p C ≤ r}
End
Theorem in_ball_translate:
(a,b) ∈ ball (0,0) r ⇒
(a+Cx,b+Cy) ∈ ball (Cx,Cy) r
Proof
rw[ball_def,l1_dist_def]>>
intLib.ARITH_TAC
QED
Theorem is_dom_packing_translate:
is_dom_packing_col f (ball C r) k ⇒
is_dom_packing_col (λ(a,b). f (a + FST C,b + SND C)) (ball (0,0) r) k
Proof
Cases_on`C`>>rename1`(Cx,Cy)`>>
simp[is_dom_packing_col_def]>>
simp[FORALL_PROD]>>
rw[]>>
first_x_assum(qspecl_then
[`p_1 + Cx`,`p_2 + Cy`,
`p_1' + Cx`,`p_2' + Cy`] mp_tac)>>
impl_tac>-
(simp[]>>
metis_tac[in_ball_translate])>>
simp[l1_dist_def]>>
rpt(pop_assum kall_tac)>>
intLib.ARITH_TAC
QED
Theorem is_dom_packing_subset:
A ⊆ B ⇒
is_dom_packing_col f B k ⇒
is_dom_packing_col f A k
Proof
rw[is_dom_packing_col_def,SUBSET_DEF]
QED
Theorem is_plane_packing_dom_packing:
is_plane_packing_col f k ∧ c ≥ 1 ∧ c ≤ k ⇒
∃g.
is_dom_packing_col g (ball (0,0) r) k ∧ g (0,0) = c
Proof
rw[is_plane_packing_col_def]>>
Cases_on`∃x y. f (x,y) = c`>>fs[]
>- (
(* c is already used *)
`is_dom_packing_col f (ball (x,y) r) k` by
(last_x_assum mp_tac>>
match_mp_tac is_dom_packing_subset>>
simp[])>>
imp_res_tac is_dom_packing_translate>>
asm_exists_tac>>simp[])>>
Cases_on`∃x y. f (x,y) > c`>>fs[]
>- (
(* higher than c *)
`is_dom_packing_col f (ball (x,y) r) k` by
(last_x_assum mp_tac>>
match_mp_tac is_dom_packing_subset>>
simp[])>>
imp_res_tac is_dom_packing_translate>>
qmatch_asmsub_abbrev_tac` _ g (ball _ _) k`>>
qexists_tac`λp. if g p = f (x,y) then c else g p`>>
simp[Abbr`g`]>>
pop_assum mp_tac>>
qpat_x_assum`is_dom_packing_col _ _ _` kall_tac>>
qpat_x_assum`is_dom_packing_col _ _ _` kall_tac>>
fs[is_dom_packing_col_def]>>
strip_tac>>CONJ_TAC >- rw[]>>
rw[]
>- (
first_x_assum(qspecl_then[`p`,`p'`] mp_tac)>>
simp[]>>
qpat_x_assum`_ > _` mp_tac>>
rpt(pop_assum kall_tac)>> intLib.ARITH_TAC)
>- (
Cases_on`p'`>>fs[]>>
metis_tac[PAIR])
>- (
Cases_on`p`>>fs[]>>
metis_tac[]))>>
qexists_tac`λp. if p = (0,0) then c else f p`>>
fs[is_dom_packing_col_def]>>
rw[]>>
metis_tac[PAIR]
QED
Definition in_ball_def:
in_ball r (x,y) <=>
Num (ABS x + ABS y) ≤ (r:num)
End
(* All vertices within radius r as a list *)
Definition vertices_def:
vertices r =
FILTER (in_ball r)
(FLAT (GENLIST (λi.
GENLIST (λj. (&i-&r):int,(&j-&r):int) (2*r+1)
) (2*r+1)))
End
Theorem in_ball_iff:
in_ball r p <=> p ∈ ball (0,0) r
Proof
Cases_on`p`>>EVAL_TAC
QED
Theorem set_vertices:
set (vertices r) =
ball (0,0) r
Proof
rw[vertices_def,ball_def,EXTENSION,MEM_FILTER,MEM_FLAT,MEM_GENLIST,PULL_EXISTS]>>
Cases_on`x`>>EVAL_TAC>>
intLib.ARITH_TAC
QED
Theorem MEM_vertices:
MEM p (vertices r) ⇔
p ∈ ball (0,0) r
Proof
rw[set_vertices]
QED
(* x_{c,i,j} means vertex at (i,j) gets color c *)
Definition fix_col_def:
fix_col k (i,j) =
GENLIST (λc. INL (c+1,i,j)) k
End
Definition fix_cols_def:
fix_cols r k =
MAP (fix_col k) (vertices r)
End
(* Restrict vertices with distance ≤ c in a square from a vertex
(i,j) to not share color c *)
Definition restrict_col_def:
restrict_col r c (i,j) =
let vs =
GENLIST (λjj. (i,j+ &jj +1:int)) c in
let rs =
(FLAT
(GENLIST (λii.
(i + &ii + 1:int,j)::
FLAT (
GENLIST (λjj.
[(i + &ii + 1:int,j + &jj + 1);(i + &ii + 1,j - &jj -1)]) (c-ii-1))
) c)) in
let fil = FILTER (in_ball r) (vs ++ rs) in
MAP (λp. [INR (c,i,j); INR (c,p)]) fil
End
Definition restrict_cols_def:
restrict_cols r c =
FLAT (MAP (restrict_col r c) (vertices r))
End
Definition full_restrict_def:
full_restrict r k =
FLAT (GENLIST (λc. restrict_cols r (c+1)) k)
End
Definition encode_def:
encode r k c = fix_cols r k ++ full_restrict r k ++ [[INL (c,0:int,0:int)]]
End
(* Turn a packing coloring into an assignment *)
Definition assg_of_def:
assg_of f =
(λ(c,p). f p = c)
End
Theorem satisfies_clause_assg_of_fix_col:
f p ≥ 1 ∧ f p ≤ k ⇒
satisfies_clause (assg_of f) (set (fix_col k p ))
Proof
Cases_on`p`>>
rw[satisfies_clause_def,assg_of_def,fix_col_def,PULL_EXISTS,MEM_GENLIST,satisfies_literal_def]>>
qexists_tac`f(q,r)-1`>>fs[]
QED
Theorem satifies_assg_of_fix_cols:
(∀p. f p ≥ 1 ∧ f p ≤ k) ⇒
satisfies (assg_of f) (set (MAP set (fix_cols r k)))
Proof
rw[satisfies_def,MEM_MAP,fix_cols_def]>>
match_mp_tac satisfies_clause_assg_of_fix_col>>
metis_tac[]
QED
Theorem satisfies_assg_of_restrict_col:
g p ≠ c ∨
(∀p'. p' ∈ ball (0,0) r ∧ p ≠ p' ∧ l1_dist p p' ≤ c ⇒ g p' ≠ c) ⇒
satisfies (assg_of g) (set (MAP set (restrict_col r c p)))
Proof
Cases_on`g p = c`>>
strip_tac>>fs[]>>
rw[satisfies_def,MEM_MAP]>>
Cases_on`p`>>
gvs[restrict_col_def,MEM_MAP,MEM_FILTER,MEM_FLAT,MEM_GENLIST,satisfies_clause_def,assg_of_def,in_ball_iff]>>
simp[RIGHT_AND_OVER_OR,PULL_EXISTS,EXISTS_OR_THM,satisfies_literal_def]>>
first_x_assum match_mp_tac>>fs[l1_dist_def]>>
intLib.ARITH_TAC
QED
Theorem satisfies_set_FLAT:
satisfies w (set (FLAT ls)) =
(∀x. MEM x ls ⇒ satisfies w (set x))
Proof
rw[satisfies_def,MEM_FLAT]>>
metis_tac[]
QED
Theorem satisfies_assg_of_encode:
is_dom_packing_col g (ball (0,0) r) k ∧ g (0,0) = c ⇒
satisfies (assg_of g) (set (MAP set (encode r k c)))
Proof
rw[encode_def,is_dom_packing_col_def]>>
simp[satisfies_union]>>rw[]
>-
metis_tac[satifies_assg_of_fix_cols]
>- (
simp[full_restrict_def,MAP_FLAT,satisfies_set_FLAT,MEM_MAP,PULL_EXISTS,restrict_cols_def,MEM_GENLIST]>>
rw[]>>
match_mp_tac (GEN_ALL satisfies_assg_of_restrict_col)>>
rw[]>>
CCONTR_TAC>>fs[MEM_vertices]>>
metis_tac[NOT_GREATER])>>
simp[satisfies_def,satisfies_clause_def,satisfies_literal_def,assg_of_def]
QED
(* Turn an encoded CNF into numbers *)
Definition remap_var_def:
remap_var cmp v (next:num,mv) =
case lookup cmp v mv of
NONE =>
(next, (next+1, insert cmp v next mv))
| SOME n => (n, (next,mv))
End
Definition remap_lit_def:
(remap_lit cmp (INL v) nmv =
let (v', nmv') = remap_var cmp v nmv in
(&v':int, nmv')) ∧
(remap_lit cmp (INR v) nmv =
let (v', nmv') = remap_var cmp v nmv in
(-&v', nmv'))
End
Definition remap_clause_def:
(remap_clause cmp [] nmv = ([],nmv)) ∧
(remap_clause cmp (l::ls) nmv =
let (l',nmv') = remap_lit cmp l nmv in
let (ls',nmv'') = remap_clause cmp ls nmv' in
(l'::ls',nmv''))
End
Definition remap_fml_def:
(remap_fml cmp [] nmv = ([],nmv)) ∧
(remap_fml cmp (c::cs) nmv =
let (c',nmv') = remap_clause cmp c nmv in
let (cs',nmv'') = remap_fml cmp cs nmv' in
(c'::cs',nmv''))
End
Definition inj_map_def:
inj_map cmp (n:num) mv ⇔
1 ≤ n ∧
(∀v m. lookup cmp v mv = SOME m ⇒ 1 ≤ m ∧ m < n) ∧
(∀v v'.
lookup cmp v mv = lookup cmp v' mv ⇒
lookup cmp v mv = NONE ∨ v = v')
End
Definition submap_def:
submap cmp mv mv' ⇔
(∀x v. lookup cmp x mv = SOME v ⇒ lookup cmp x mv' = SOME v)
End
Theorem remap_var_lookup:
TotOrd cmp ∧ invariant cmp mv ∧
inj_map cmp n mv ∧
remap_var cmp v (n,mv) = (v',n',mv') ⇒
invariant cmp mv' ∧
inj_map cmp n' mv' ∧
lookup cmp v mv' = SOME v' ∧
submap cmp mv mv'
Proof
rw[remap_var_def]>>
imp_res_tac comparisonTheory.TotOrder_imp_good_cmp >>
every_case_tac>>fs[]>>
rw[]
>-
metis_tac[insert_thm]
>- (
fs[inj_map_def]>>rw[]
>- (
pop_assum mp_tac>>
DEP_REWRITE_TAC[lookup_insert]>>
rw[]>>fs[]>>
first_x_assum drule>>fs[])
>- (
pop_assum mp_tac>>
DEP_REWRITE_TAC[lookup_insert]>>
rw[]>>fs[]>>
first_x_assum drule>>fs[])>>
pop_assum mp_tac>>
DEP_REWRITE_TAC[lookup_insert]>>
fs[]>>rw[]
>-
metis_tac[totoTheory.TotOrd]
>- (
pop_assum (assume_tac o SYM)>>
first_x_assum drule>>fs[])>>
first_x_assum drule>>fs[])
>- (
DEP_REWRITE_TAC[lookup_insert]>>
fs[]>>
metis_tac[comparisonTheory.good_cmp_def])
>- (
rw[submap_def]>>
DEP_REWRITE_TAC[lookup_insert]>>
fs[]>>
rw[]>>
metis_tac[totoTheory.TotOrd,option_CLAUSES])>>
rw[submap_def]
QED
Theorem inj_map_select_lookup:
inj_map cmp n mv ∧
lookup cmp x mv = SOME v ⇒
(@x. lookup cmp x mv = SOME v) = x
Proof
rw[inj_map_def]>>
`lookup cmp (@x. lookup cmp x mv = SOME v) mv = SOME v` by
metis_tac[SELECT_THM]>>
metis_tac[option_CLAUSES]
QED
Theorem ge_1:
1 ≤ v ⇒ (&v > 0:int) ∧ ¬(-&v' > 0:int)
Proof
rw[integerTheory.int_gt]
QED
Theorem remap_lit_satisfies_literal:
∀l n mv l' n' mv'.
TotOrd cmp ∧ invariant cmp mv ∧
inj_map cmp n mv ∧
remap_lit cmp l (n,mv) = (l',n',mv') ⇒
invariant cmp mv' ∧
inj_map cmp n' mv' ∧
l' ≠ 0 ∧
(∀r nn. inj_map cmp nn r ∧ submap cmp mv' r ⇒
(satisfies_literal w l ⇔
satisfies_literal
(w o (λv'. @v. lookup cmp v r = SOME v')) (interp_lit l'))) ∧
submap cmp mv mv'
Proof
Cases>>simp[remap_lit_def]>>
ntac 6 strip_tac>>
pairarg_tac>>gvs[]>>
drule_all remap_var_lookup>>
simp[satisfies_literal_def,interp_lit_def]>>
strip_tac>>
(CONJ_TAC >- (
fs[inj_map_def,submap_def]>>
first_x_assum drule>>
fs[]))>>
rw[]>>fs[submap_def]>>
first_x_assum drule>>
metis_tac[inj_map_select_lookup,ge_1,inj_map_def]
QED
Theorem submap_trans:
submap cmp x y ∧ submap cmp y z ⇒ submap cmp x z
Proof
rw[submap_def]
QED
Theorem remap_clause_satisfies_clause:
∀cl n mv cl' n' mv'.
TotOrd cmp ∧ invariant cmp mv ∧
inj_map cmp n mv ∧
remap_clause cmp cl (n,mv) = (cl',n',mv') ⇒
invariant cmp mv' ∧
inj_map cmp n' mv' ∧
wf_clause cl' ∧
(∀r nn. inj_map cmp nn r ∧ submap cmp mv' r ⇒
(satisfies_clause w (set cl) ⇔
satisfies_clause
(w o (λv'. @v. lookup cmp v r = SOME v')) (interp_cclause cl'))) ∧
submap cmp mv mv'
Proof
Induct>>simp[remap_clause_def]
>-
simp[satisfies_clause_def,submap_def]>>
ntac 7 strip_tac>>
rpt (pairarg_tac>>gvs[])>>
Cases_on`nmv'`>>
drule_all remap_lit_satisfies_literal>>
strip_tac>>gs[GSYM PULL_FORALL]>>
first_x_assum drule_all>>
strip_tac>>
rw[]
>-
fs[wf_clause_def]
>- (
simp[satisfies_clause_INSERT,Once interp_cclause_cons,Once interp_cclause_def,satisfies_clause_union]>>
first_x_assum drule_all>>
simp[]>>
disch_then kall_tac>>
first_x_assum drule>>
impl_tac>-
metis_tac[submap_trans]>>
simp[satisfies_clause_def])>>
metis_tac[submap_trans]
QED
Theorem remap_fml_satisfies:
∀fml n mv fml' n' mv'.
TotOrd cmp ∧ invariant cmp mv ∧
inj_map cmp n mv ∧
remap_fml cmp fml (n,mv) = (fml',n',mv') ⇒
invariant cmp mv' ∧
inj_map cmp n' mv' ∧
EVERY wf_clause fml' ∧
(∀r nn. inj_map cmp nn r ∧ submap cmp mv' r ⇒
(satisfies w (set (MAP set fml)) ⇔
satisfies
(w o (λv'. @v. lookup cmp v r = SOME v')) (interp fml'))) ∧
submap cmp mv mv'
Proof
Induct>>simp[remap_fml_def]
>-
rw[submap_def,satisfies_def,interp_def]>>
ntac 7 strip_tac>>
rpt (pairarg_tac>>gvs[])>>
Cases_on`nmv'`>>
drule_all remap_clause_satisfies_clause>>
strip_tac>>gs[GSYM PULL_FORALL]>>
first_x_assum drule_all>>
strip_tac>>
rw[]
>- (
fs[satisfies_INSERT,interp_def]>>
first_x_assum drule_all>>
simp[]>>
disch_then kall_tac>>
first_x_assum drule>>
impl_tac>-
metis_tac[submap_trans]>>
simp[])>>
metis_tac[submap_trans]
QED
Definition cmp_num_def:
cmp_num (n:num) n' =
if n < n' then Less
else if n > n' then Greater
else Equal
End
Definition cmp_int_def:
cmp_int (i:int) i' =
if i < i' then Less
else if i > i' then Greater
else Equal
End
Definition cmp_pair_def:
cmp_pair cmpx cmpy (x,y) (x',y') =
case cmpx x x' of
Equal => cmpy y y'
| res => res
End
Definition cmp_nii_def:
cmp_nii =
cmp_pair cmp_num (cmp_pair cmp_int cmp_int)
End
Theorem TotOrd_cmp_num:
TotOrd cmp_num
Proof
rw[totoTheory.TotOrd,cmp_num_def]>>
rw[]>>fs[]>>
every_case_tac>>fs[]
QED
Theorem TotOrd_cmp_int:
TotOrd cmp_int
Proof
rw[totoTheory.TotOrd,cmp_int_def]>>
rw[]>>fs[]>>
every_case_tac>>fs[]>>
intLib.ARITH_TAC
QED
Theorem TotOrd_cmp_pair:
TotOrd cmpx ∧ TotOrd cmpy ⇒
TotOrd (cmp_pair cmpx cmpy)
Proof
rw[]>>
simp[totoTheory.TotOrd]>>reverse (rw[])
>- (
Cases_on`x`>>Cases_on`y`>>Cases_on`z`>>
fs[cmp_pair_def]>>
every_case_tac>>fs[]>>
fs[totoTheory.TotOrd]>>
metis_tac[totoTheory.all_cpn_distinct])>>
Cases_on`x`>>Cases_on`y`>>simp[cmp_pair_def]>>
every_case_tac>>
fs[totoTheory.TotOrd]>>
metis_tac[totoTheory.all_cpn_distinct]
QED
Definition remap_nii_def:
remap_nii fml =
FST (remap_fml cmp_nii fml (1,empty))
End
(* Can prove stronger theorem but not needed here *)
Theorem remap_nii_correct:
remap_nii fml = fml' ⇒
EVERY wf_clause fml' ∧
(satisfiable (set (MAP set fml)) ==> satisfiable (interp fml'))
Proof
strip_tac>>
fs[satisfiable_def,remap_nii_def]>>
`∃a b c. remap_fml cmp_nii fml (1,empty) = (a,b,c)` by
metis_tac[PAIR]>>
(drule_at Any) remap_fml_satisfies>>
simp[GSYM PULL_FORALL]>>
impl_tac >- (
simp[inj_map_def,empty_thm]>>
simp[empty_def,lookup_def,cmp_nii_def]>>
metis_tac[TotOrd_cmp_pair,TotOrd_cmp_int,TotOrd_cmp_num] )>>
rw[]>>
first_x_assum drule>>
simp[submap_def]>>
metis_tac[]
QED
Definition full_encode_def:
full_encode r k c = remap_nii (encode r k c)
End
Theorem unsat_is_plane_packing:
c ≥ 1 ∧ c ≤ k ∧
unsatisfiable (interp (full_encode r k c)) ⇒
¬ is_plane_packing_col f k
Proof
rw[]>>CCONTR_TAC>>fs[]>>
drule_all is_plane_packing_dom_packing>>
fs[unsatisfiable_def,full_encode_def]>>
`¬ satisfiable (set (MAP set (encode r k c)))` by
metis_tac[remap_nii_correct]>>
fs[satisfiable_def]>>
metis_tac[satisfies_assg_of_encode]
QED
val _ = export_theory();