-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathqueueProgScript.sml
258 lines (226 loc) · 9.21 KB
/
queueProgScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
(*
An example of a queue data structure implemented using CakeML arrays, verified
using CF.
*)
open preamble basis
val _ = new_theory "queueProg";
val _ = translation_extends"basisProg";
Datatype:
exn_type = FullQueue | EmptyQueue
End
val _ = register_exn_type ``:exn_type``;
val queue_decls = process_topdecs
‘fun empty_queue sz err = Ref (Array.array sz err, 0, 0, 0)
fun full q =
case !q of (a,f,r,c) => c = Array.length a
fun enqueue q e =
if full q then raise Fullqueue
else
case !q of
(a,f,r,c) =>
(Array.update a r e;
q := (a,f,(r + 1) mod Array.length a,c+1))
fun dequeue q =
case !q of
(a,f,r,c) =>
if c = 0 then raise Emptyqueue
else let val e = Array.sub a f
in
q := (a, (f + 1) mod Array.length a, r, c - 1);
e
end’;
val _ = append_prog queue_decls;
Definition EmptyQueue_exn_def:
EmptyQueue_exn v = QUEUEPROG_EXN_TYPE_TYPE EmptyQueue v
End
val EmptyQueue_exn_def = EVAL ``EmptyQueue_exn v``;
Definition lqueue_def:
lqueue qels f r els ⇔
f < LENGTH qels ∧ r < LENGTH qels ∧
(f ≤ r ∧
(∃pj rj. qels = pj ++ els ++ rj ∧ LENGTH pj = f ∧
r + LENGTH rj = LENGTH qels) ∨
r ≤ f ∧ (∃p s mj. qels = s ++ mj ++ p ∧ els = p ++ s ∧
r = LENGTH s ∧ f = r + LENGTH mj))
End
Theorem lqueue_empty:
i < LENGTH xs ⇒ lqueue xs i i []
Proof
simp[lqueue_def] >> strip_tac >>
map_every qexists_tac [‘TAKE i xs’, ‘DROP i xs’] >> simp[]
QED
Theorem lqueue_enqueue:
∀x f r vs aels n.
LENGTH vs < LENGTH aels ∧ lqueue aels f r vs ∧ (n = LENGTH aels) ⇒
lqueue (LUPDATE x r aels) f ((r + 1) MOD n) (vs ++ [x])
Proof
rw[lqueue_def] >> fs[]
>- (Cases_on ‘r + 1 = LENGTH pj + (LENGTH rj + LENGTH vs)’ >> simp[]
>- ((* wrap around happened *)
disj2_tac >> qexists_tac `pj` >> simp[] >>
simp[rich_listTheory.LUPDATE_APPEND2] >>
‘LENGTH rj = 1’ by simp[] >>
‘r = LENGTH pj + LENGTH vs’ by simp[] >> simp[] >>
Cases_on `rj` >> fs[] >> simp[LUPDATE_def]) >>
map_every qexists_tac [`pj`, `TL rj`] >> simp[] >>
Cases_on `rj` >> fs[] >> simp[LUPDATE_APPEND2, LUPDATE_APPEND1] >>
`r = LENGTH pj + LENGTH vs` by simp[] >> simp[LUPDATE_def]) >>
(* already wrapped around *) disj2_tac >>
map_every qexists_tac [‘p’, ‘s ++ [x]’, ‘TL mj’] >> Cases_on ‘mj’ >> fs[] >>
simp[LUPDATE_APPEND2, LUPDATE_APPEND1]
QED
Theorem lqueue_dequeue:
lqueue aels f r (v::vs) ⇒ lqueue aels ((f + 1) MOD LENGTH aels) r vs
Proof
rw[lqueue_def] >> fs[]
>- (disj1_tac >> map_every qexists_tac [‘pj ++ [v]’, ‘rj’] >> simp[]) >>
Cases_on ‘LENGTH p = 1’ >> simp[]
>- ((* f wraps around *) disj1_tac >> Cases_on ‘p’ >> fs[]) >>
map_every qexists_tac [‘TL p’, ‘s’, ‘mj ++ [v]’] >> simp[] >>
Cases_on ‘p’ >> fs[]
QED
(* Heap predicate for queues:
QUEUE A mx vs qv means qv is a reference to a queue of elements vs, with A
the refinement invariant satsfied by the elements of the queue, and mx
being the largest the queue can be allowed to get.
There are two levels of representation from memory to value here:
1. first there is an array/list of values (the qelvs) that actually appear
in memory. This representation step is captured by LIST_REL below.
This list is accompanied by values that encode the front
index, rear index, and count of the number of things in the queue.
2. then there is another step that extracts the queue elements (els) in the
right order from the sequence of HOL values that were encoded in the
array (qels).
The QUEUE predicate mentions els so that the specifications of the
operations can be expressed in terms of the abstract value
*)
Definition QUEUE_def:
QUEUE A sz els qv ⇔
SEP_EXISTS av fv rv cv qelvs.
REF qv (Conv NONE [av;fv;rv;cv]) *
ARRAY av qelvs *
& (0 < sz ∧ NUM (LENGTH els) cv ∧
∃qels f r. LIST_REL A qels qelvs ∧ NUM f fv ∧ NUM r rv ∧
lqueue qels f r els ∧ LENGTH qels = sz)
End
(*
type_of “QUEUE”;
*)
(* Some simple auto tactics *)
val xsimpl_tac = rpt(FIRST [xcon, (CHANGED_TAC xsimpl), xif, xmatch, xapp]);
val xs_auto_tac = rpt (FIRST [xcon, (CHANGED_TAC xsimpl), xif, xmatch, xapp, xlet_auto, xref]);
val st = get_ml_prog_state ();
Theorem empty_queue_spec:
NUM n nv ∧ 0 < n ∧ A a errv ⇒
app (p:'ffi ffi_proj) ^(fetch_v "empty_queue" st) [nv; errv]
emp (POSTv qv. QUEUE A n [] qv)
Proof
strip_tac \\
xcf "empty_queue" st \\
xs_auto_tac >> simp[QUEUE_def] >> xsimpl >>
qexists_tac `REPLICATE n a` >>
simp[lqueue_def, LIST_REL_REPLICATE_same]
QED
val EqualityType_INT = prove(``EqualityType INT``, simp[EqualityType_NUM_BOOL])
val eq_int_thm = mlbasicsProgTheory.eq_v_thm
|> INST_TYPE [alpha |-> “:int”]
|> Q.INST [‘a’ |-> ‘INT’]
|> PROVE_HYP EqualityType_INT
Theorem full_spec:
app (p:'ffi ffi_proj) ^(fetch_v "full" st) [qv]
(QUEUE A mx vs qv)
(POSTv bv. &(BOOL (LENGTH vs = mx) bv) * QUEUE A mx vs qv)
Proof
xcf "full" st >> simp[QUEUE_def] >> xpull >> xs_auto_tac >>
reverse (rw[]) >- EVAL_TAC (* validate_pat *) >>
xlet_auto >- xsimpl >>
xapp_spec (cf_spec “:'ffi” Translator_spec eq_int_thm) >> xsimpl >>
fs[ml_translatorTheory.BOOL_def, ml_translatorTheory.NUM_def] >>
rpt (goal_assum (first_assum o mp_then (Pos hd) mp_tac)) >>
imp_res_tac LIST_REL_LENGTH >> simp[] >> metis_tac[]
QED
Theorem enqueue_spec:
!qv xv vs x. app (p:'ffi ffi_proj) ^(fetch_v "enqueue" st) [qv; xv]
(QUEUE A mx vs qv * & (A x xv ∧ LENGTH vs < mx))
(POSTv uv. QUEUE A mx (vs ++ [x]) qv)
Proof
rpt strip_tac >>
xcf "enqueue" st >>
xpull >> xs_auto_tac >>
xlet ‘POSTv bv. QUEUE A mx vs qv * &(BOOL (LENGTH vs = mx) bv)’
>- (xapp >> xsimpl >> qexists_tac `emp` >> xsimpl >>
map_every qexists_tac [`vs`, `mx`, `A`] >> xsimpl) >>
xs_auto_tac >> qexists_tac `F` >> simp[] >>
simp[QUEUE_def] >> xpull >> xs_auto_tac >> reverse (rw[])
>- EVAL_TAC >>
xs_auto_tac
>- (imp_res_tac LIST_REL_LENGTH >> fs[lqueue_def])
>- (imp_res_tac LIST_REL_LENGTH >> strip_tac >> fs[]) >>
simp[ml_translatorTheory.UNIT_TYPE_def] >>
qexists_tac ‘LUPDATE x r qels’ >> simp[EVERY2_LUPDATE_same] >>
fs[ml_translatorTheory.NUM_def] >>
qpat_x_assum `INT (_ % _) _` mp_tac >> imp_res_tac LIST_REL_LENGTH >>
‘qelvs ≠ []’ by (strip_tac >> fs[]) >> simp[integerTheory.INT_MOD] >>
strip_tac >>
rpt (goal_assum (first_assum o mp_then (Pos hd) mp_tac)) >>
simp[lqueue_enqueue]
QED
Theorem LIST_REL_REL_lqueue_HD:
LIST_REL A qels qelvs ∧ lqueue qels f r (h::t) ⇒ A h (EL f qelvs)
Proof
simp[lqueue_def] >> rw[]
>- (fs[LIST_REL_SPLIT1] >> rw[] >>
imp_res_tac LIST_REL_LENGTH >>
simp[EL_APPEND1, EL_APPEND2]) >>
Cases_on `p` >> fs[] >> rw[] >>
fs[LIST_REL_SPLIT1] >> rw[] >>
imp_res_tac LIST_REL_LENGTH >> fs[] >>
simp[EL_APPEND1, EL_APPEND2]
QED
Triviality dequeue_spec_noexn:
!qv xv vs x. app (p:'ffi ffi_proj) ^(fetch_v "dequeue" st) [qv]
(QUEUE A mx vs qv * &(vs ≠ []))
(POSTv v. &(A (HD vs) v) * QUEUE A mx (TL vs) qv)
Proof
rpt strip_tac >>
xcf "dequeue" st >> simp[QUEUE_def] >> xpull >> xs_auto_tac >>
reverse(rw[]) >- EVAL_TAC >> xlet_auto >- xsimpl >> xif >>
qexists_tac `F` >> simp[] >> xs_auto_tac
>- (imp_res_tac LIST_REL_LENGTH >> fs[lqueue_def])
>- (strip_tac >> fs[]) >>
dsimp[] >> fs[ml_translatorTheory.NUM_def] >>
rpt (goal_assum (first_assum o mp_then Any mp_tac)) >>
qpat_x_assum ‘INT (_ % _) _’ mp_tac >> imp_res_tac LIST_REL_LENGTH >>
‘qelvs ≠ []’ by (strip_tac >> fs[]) >> simp[integerTheory.INT_MOD] >>
strip_tac >>
rpt (goal_assum (first_assum o mp_then Any mp_tac)) >>
Cases_on `vs` >> fs[integerTheory.INT_SUB] >>
metis_tac[lqueue_dequeue, LIST_REL_REL_lqueue_HD]
QED
Theorem dequeue_spec:
∀p qv xv vs x A mx.
app (p:'ffi ffi_proj) ^(fetch_v "dequeue" st) [qv]
(QUEUE A mx vs qv)
(POSTve (λv. &(vs ≠ [] ∧ A (HD vs) v) * QUEUE A mx (TL vs) qv)
(λe. &(vs = [] ∧ EmptyQueue_exn e) * QUEUE A mx vs qv))
Proof
rpt strip_tac >>
xcf "dequeue" st >> simp[QUEUE_def] >> xpull >> xs_auto_tac >>
reverse(rw[]) >- EVAL_TAC >> xlet_auto >- xsimpl >> xif
>- ((* throws exception *)
xs_auto_tac >> rw[] >> xraise >> xsimpl >> dsimp[] >> fs[] >>
simp[EmptyQueue_exn_def] >> metis_tac[]) >>
(* as before *)
xs_auto_tac
>- (imp_res_tac LIST_REL_LENGTH >> fs[lqueue_def])
>- (strip_tac >> fs[]) >>
dsimp[] >> fs[ml_translatorTheory.NUM_def] >>
rpt (goal_assum (first_assum o mp_then Any mp_tac)) >>
qpat_x_assum ‘INT (_ % _) _’ mp_tac >> imp_res_tac LIST_REL_LENGTH >>
‘qelvs ≠ []’ by (strip_tac >> fs[]) >> simp[integerTheory.INT_MOD] >>
strip_tac >>
rpt (goal_assum (first_assum o mp_then Any mp_tac)) >>
Cases_on `vs` >> fs[integerTheory.INT_SUB] >>
metis_tac[lqueue_dequeue, LIST_REL_REL_lqueue_HD]
QED
val _ = export_theory ()