-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathErrorBoundsScript.sml
553 lines (531 loc) · 22.4 KB
/
ErrorBoundsScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
(**
Proofs of general bounds on the error of arithmetic Expressions.
This shortens soundness proofs later.
Bounds are exprlained in section 5, Deriving Computable Error Bounds
**)
open simpLib realTheory realLib RealArith
open AbbrevsTheory ExpressionsTheory ExpressionSemanticsTheory RealSimpsTheory
FloverTactics MachineTypeTheory ExpressionAbbrevsTheory EnvironmentsTheory;
open preambleFloVer;
val _ = new_theory "ErrorBounds";
val _ = Parse.hide "delta"; (* so that it can be used as a variable *)
Overload abs[local] = “realax$abs”
val triangle_tac =
irule triangle_trans \\ rpt conj_tac \\ TRY (fs[REAL_ABS_TRIANGLE] \\ NO_TAC);
Theorem const_abs_err_bounded:
∀ (n:real) (nR:real) (nF:real) (E1 E2:env) (m:mType) Gamma.
eval_expr E1 (toRTMap Gamma) (Const REAL n) nR REAL ∧
eval_expr E2 Gamma (Const m n) nF m ⇒
abs (nR - nF) <= computeError n m
Proof
rpt strip_tac
\\ fs[eval_expr_cases, mTypeToR_def, perturb_def] \\ rveq
\\ Cases_on `m` \\ fs[Excl "RMUL_LEQNORM", perturb_def, computeError_def]
\\ TRY COND_CASES_TAC \\ fs[Excl "RMUL_LEQNORM", Rabs_err_simpl, REAL_ABS_MUL, mTypeToR_def]
\\ TRY (REAL_ASM_ARITH_TAC)
\\ irule REAL_LE_RMUL_IMP \\ rewrite_tac[GSYM REAL_INV_1OVER] \\ fs[REAL_ABS_POS]
QED
val float_add_tac =
rewrite_tac [GSYM REAL_ADD_ASSOC, computeError_def]
\\ COND_CASES_TAC \\ simp[]
>- (
‘e1R + (e2R + - (e1F + (e2F + deltaF))) = (e1R - e1F) + ((e2R - e2F) - deltaF)’
by REAL_ASM_ARITH_TAC
\\ pop_assum (rewrite_tac o single)
\\ triangle_tac
\\ irule REAL_LE_ADD2 \\ conj_tac \\ fs[]
\\ ‘e2R - e2F - deltaF = e2R - e2F + - deltaF’ by REAL_ASM_ARITH_TAC
\\ pop_assum (rewrite_tac o single)
\\ triangle_tac
\\ irule REAL_LE_ADD2 \\ conj_tac \\ fs[])
\\ `e1R + (e2R + -((e1F + e2F) * (1 + deltaF))) =
(e1R + - e1F) + ((e2R + - e2F) + - (e1F + e2F) * deltaF)`
by REAL_ASM_ARITH_TAC
\\ pop_assum (fn thm => once_rewrite_tac [thm])
\\ triangle_tac
\\ irule REAL_LE_ADD2 \\ conj_tac
>- fs[GSYM real_sub]
\\ triangle_tac
\\ irule REAL_LE_ADD2 \\ conj_tac
>- fs[GSYM real_sub]
\\ once_rewrite_tac [REAL_ABS_MUL]
\\ simp[computeError_def]
\\ metis_tac [REAL_ABS_POS, REAL_LE_LMUL_IMP, REAL_MUL_COMM];
Theorem add_abs_err_bounded:
!(e1:real expr) (e1R:real) (e1F:real) (e2:real expr) (e2R:real) (e2F:real)
(err1:real) (err2:real) (vR:real) (vF:real) (E1 E2:env) (m m1 m2:mType)
(Gamma: real expr -> mType option).
eval_expr E1 (toRTMap Gamma) (toREval e1) e1R REAL /\
eval_expr E2 Gamma e1 e1F m1 /\
eval_expr E1 (toRTMap Gamma) (toREval e2) e2R REAL /\
eval_expr E2 Gamma e2 e2F m2 /\
eval_expr E1 (toRTMap Gamma) (toREval (Binop Plus e1 e2)) vR REAL /\
eval_expr (updEnv 2 e2F (updEnv 1 e1F emptyEnv))
(updDefVars (Binop Plus (Var 1) (Var 2)) m
(updDefVars (Var 2) m2 (updDefVars (Var 1) m1 Gamma)))
(Binop Plus (Var 1) (Var 2)) vF m /\
abs (e1R - e1F) <= err1 /\
abs (e2R - e2F) <= err2 ==>
abs (vR - vF) <= err1 + err2 + (computeError (e1F + e2F) m)
Proof
rpt strip_tac \\ fs[toREval_def]
\\ inversion `eval_expr E1 _ (Binop Plus _ _) _ _` eval_expr_cases
\\ rename1 `vR = perturb (evalBinop Plus v1R v2R) REAL deltaR`
\\ rename1 `isJoin m1R m2R REAL`
\\ inversion `eval_expr _ _ (Binop Plus (Var 1) (Var 2)) _ _` eval_expr_cases
\\ rename1 `vF = perturb (evalBinop Plus v1F v2F) mF deltaF`
\\ `(m1R = REAL) /\ (m2R = REAL)`
by (conj_tac \\ irule toRTMap_eval_REAL \\ qexistsl_tac [`E1`, `Gamma`]
THENL [qexistsl_tac [`e1`, `v1R`], qexistsl_tac [`e2`, `v2R`]]
\\ fs[])
\\ `v1R = e1R` by metis_tac [meps_0_deterministic]
\\ `v2R = e2R` by metis_tac [meps_0_deterministic]
\\ rveq \\ fs [perturb_def]
\\ rpt (inversion `eval_expr (updEnv 2 e2F (updEnv 1 e1F emptyEnv)) _ _ _ _`
eval_expr_cases)
\\ fs [updEnv_def] \\ rveq
\\ once_rewrite_tac[real_sub]
\\ Cases_on `mF` \\ fs[perturb_def, evalBinop_def]
>- (`e1R + e2R + -(e1F + e2F) = (e1R + - e1F) + ((e2R + - e2F))`
by REAL_ASM_ARITH_TAC
\\ simp[computeError_def]
\\ irule REAL_LE_TRANS
\\ qexists_tac `abs (e1R + - e1F) + abs (e2R + - e2F)`
\\ fs[REAL_ABS_TRIANGLE]
\\ REAL_ASM_ARITH_TAC)
>- float_add_tac
>- (float_add_tac)
>- (float_add_tac)
\\ simp[computeError_def]
\\ `e1R + e2R + - (e1F + e2F + deltaF) = (e1R + - e1F) + (e2R + - e2F + - deltaF)`
by (REAL_ASM_ARITH_TAC)
\\ simp[]
\\ triangle_tac
\\ rewrite_tac [GSYM REAL_ADD_ASSOC]
\\ irule REAL_LE_ADD2 \\ fs[real_sub]
\\ rewrite_tac [REAL_ADD_ASSOC]
\\ triangle_tac
\\ irule REAL_LE_ADD2 \\ fs[real_sub]
\\ REAL_ASM_ARITH_TAC
QED
val float_sub_tac =
rewrite_tac [GSYM REAL_ADD_ASSOC, computeError_def]
\\ COND_CASES_TAC \\ simp[]
>- (‘e1R + (-e2R + -(e1F + (-e2F + deltaF))) = (e1R - e1F) + (-(e2R - e2F) + - deltaF)’
by REAL_ASM_ARITH_TAC
\\ pop_assum (rewrite_tac o single)
\\ triangle_tac \\ irule REAL_LE_ADD2 \\ conj_tac
>- fs[GSYM real_sub]
\\ triangle_tac \\ irule REAL_LE_ADD2 \\ conj_tac
>- fs[GSYM real_sub]
\\ fs[ABS_NEG, mTypeToR_def, real_sub])
\\ `e1R + (-e2R + -((e1F + -e2F) * (1 + deltaF))) =
(e1R + - e1F) + ((- e2R + e2F) + - (e1F + - e2F) * deltaF)`
by REAL_ASM_ARITH_TAC
\\ pop_assum (once_rewrite_tac o single)
\\ triangle_tac
\\ irule REAL_LE_ADD2 \\ conj_tac
>- fs[GSYM real_sub]
\\ triangle_tac
\\ irule REAL_LE_ADD2 \\ conj_tac
>- REAL_ASM_ARITH_TAC
\\ rewrite_tac [REAL_ABS_MUL, ABS_NEG]
\\ irule REAL_LE_LMUL_IMP \\ fs[mTypeToR_def, real_sub];
Theorem subtract_abs_err_bounded:
!(e1:real expr) (e1R:real) (e1F:real) (e2:real expr) (e2R:real) (e2F:real)
(err1:real) (err2:real) (vR:real) (vF:real) (E1 E2:env) (m m1 m2:mType)
(Gamma: real expr -> mType option).
eval_expr E1 (toRTMap Gamma) (toREval e1) e1R REAL /\
eval_expr E2 Gamma e1 e1F m1 /\
eval_expr E1 (toRTMap Gamma) (toREval e2) e2R REAL /\
eval_expr E2 Gamma e2 e2F m2 /\
eval_expr E1 (toRTMap Gamma) (toREval (Binop Sub e1 e2)) vR REAL /\
eval_expr (updEnv 2 e2F (updEnv 1 e1F emptyEnv))
(updDefVars (Binop Sub (Var 1) (Var 2)) m
(updDefVars (Var 2) m2 (updDefVars (Var 1) m1 Gamma)))
(Binop Sub (Var 1) (Var 2)) vF m /\
abs (e1R - e1F) <= err1 /\
abs (e2R - e2F) <= err2 ==>
abs (vR - vF) <= err1 + err2 + computeError (e1F - e2F) m
Proof
rpt strip_tac \\ fs[toREval_def]
\\ inversion `eval_expr E1 _ (Binop Sub _ _) _ _` eval_expr_cases
\\ rename1 `vR = perturb (evalBinop Sub v1R v2R) REAL deltaR`
\\ rename1 `isJoin m1R m2R REAL`
\\ inversion `eval_expr _ _ (Binop Sub (Var 1) (Var 2)) _ _` eval_expr_cases
\\ rename1 `vF = perturb (evalBinop Sub v1F v2F) mF deltaF`
\\ `(m1R = REAL) /\ (m2R = REAL)`
by (conj_tac \\ irule toRTMap_eval_REAL \\ qexistsl_tac [`E1`, `Gamma`]
THENL [qexistsl_tac [`e1`, `v1R`], qexistsl_tac [`e2`, `v2R`]]
\\ fs[])
\\ `v1R = e1R` by metis_tac[meps_0_deterministic]
\\ `v2R = e2R` by metis_tac[meps_0_deterministic]
\\ rveq \\ fs[perturb_def]
\\ rpt (inversion `eval_expr (updEnv 2 e2F (updEnv 1 e1F emptyEnv)) _ _ _ _`
eval_expr_cases)
\\ fs [updEnv_def] \\ rveq
\\ Cases_on `mF`
\\ fs[perturb_def, evalBinop_def, computeError_def]
\\ rewrite_tac[real_sub]
>- (`e1R - e2R + - (e1F - e2F) = e1R + - e1F + (- e2R + e2F)`
by REAL_ASM_ARITH_TAC
\\ simp[]
\\ irule REAL_LE_TRANS
\\ qexists_tac `abs (e1R + - e1F) + abs (-e2R + e2F)`
\\ fs[REAL_ABS_TRIANGLE]
\\ REAL_ASM_ARITH_TAC)
>- (float_sub_tac)
>- (float_sub_tac)
>- (float_sub_tac)
\\ `e1R + - e2R + - (e1F + - e2F + deltaF) = (e1R + - e1F) + (- e2R + e2F + - deltaF)`
by (REAL_ASM_ARITH_TAC)
\\ simp[]
\\ triangle_tac
\\ rewrite_tac [GSYM REAL_ADD_ASSOC]
\\ irule REAL_LE_ADD2 \\ fs[real_sub]
\\ rewrite_tac [REAL_ADD_ASSOC]
\\ triangle_tac
\\ irule REAL_LE_ADD2 \\ fs[real_sub]
\\ REAL_ASM_ARITH_TAC
QED
val float_mul_tac =
COND_CASES_TAC \\ simp[]
>- (‘e1R * e2R + - (e1F * e2F + deltaF) = (e1R * e2R + - (e1F * e2F)) + - deltaF’
by REAL_ASM_ARITH_TAC
\\ pop_assum (rewrite_tac o single)
\\ triangle_tac \\ irule REAL_LE_ADD2 \\ fs[computeError_def])
\\ `e1R * e2R + -(e1F * e2F * (1 + deltaF)) =
(e1R * e2R + - (e1F * e2F)) + - (e1F * e2F * deltaF)`
by REAL_ASM_ARITH_TAC
\\ pop_assum (once_rewrite_tac o single)
\\ triangle_tac \\ irule REAL_LE_ADD2 \\ conj_tac >- fs[]
\\ rewrite_tac [ABS_NEG, computeError_def, REAL_ABS_MUL]
\\ fs[]
\\ ‘abs deltaF * abs e1F * abs e2F = abs e1F * abs e2F * abs deltaF’
by fs[]
\\ pop_assum (rewrite_tac o single)
\\ metis_tac [REAL_LE_LMUL_IMP, REAL_ABS_MUL, REAL_ABS_POS];
Theorem mult_abs_err_bounded:
∀ (e1:real expr) (e1R:real) (e1F:real) (e2:real expr) (e2R:real) (e2F:real)
(err1:real) (err2:real) (vR:real) (vF:real) (E1 E2 :env) (m m1 m2:mType)
(Gamma: real expr -> mType option).
eval_expr E1 (toRTMap Gamma) (toREval e1) e1R REAL /\
eval_expr E2 Gamma e1 e1F m1 /\
eval_expr E1 (toRTMap Gamma) (toREval e2) e2R REAL /\
eval_expr E2 Gamma e2 e2F m2 /\
eval_expr E1 (toRTMap Gamma) (toREval (Binop Mult e1 e2)) vR REAL /\
eval_expr (updEnv 2 e2F (updEnv 1 e1F emptyEnv))
(updDefVars (Binop Mult (Var 1) (Var 2)) m
(updDefVars (Var 2) m2 (updDefVars (Var 1) m1 Gamma)))
(Binop Mult (Var 1) (Var 2)) vF m /\
abs (e1R - e1F) <= err1 /\
abs (e2R - e2F) <= err2 ==>
abs (vR - vF) <= abs (e1R * e2R - e1F * e2F) + computeError (e1F * e2F) m
Proof
rpt strip_tac \\ fs[toREval_def]
\\ inversion `eval_expr E1 _ (Binop Mult _ _) _ _` eval_expr_cases
\\ rename1 `vR = perturb (evalBinop Mult v1R v2R) REAL deltaR`
\\ rename1 `isJoin m1R m2R REAL`
\\ inversion `eval_expr _ _ (Binop Mult (Var 1) (Var 2)) _ _` eval_expr_cases
\\ rename1 `vF = perturb (evalBinop Mult v1F v2F) mF deltaF`
\\ `(m1R = REAL) /\ (m2R = REAL)`
by (conj_tac \\ irule toRTMap_eval_REAL \\ qexistsl_tac [`E1`, `Gamma`]
THENL [qexistsl_tac [`e1`, `v1R`], qexistsl_tac [`e2`, `v2R`]]
\\ fs[])
\\ `v1R = e1R` by metis_tac[meps_0_deterministic]
\\ `v2R = e2R` by metis_tac[meps_0_deterministic]
\\ rveq \\ fs[perturb_def, evalBinop_def]
\\ rpt (inversion `eval_expr (updEnv 2 e2F (updEnv 1 e1F emptyEnv)) _ _ _ _`
eval_expr_cases)
\\ fs [updEnv_def] \\ rveq
\\ rewrite_tac [real_sub]
\\ Cases_on `mF` \\ fs[perturb_def]
>- (rewrite_tac [REAL_LE_ADDR] \\ fs[computeError_def])
>- (float_mul_tac)
>- (float_mul_tac)
>- (float_mul_tac)
\\ `e1R * e2R + - (e1F * e2F + deltaF) =
(e1R * e2R + - (e1F * e2F)) + - deltaF`
by REAL_ASM_ARITH_TAC
\\ simp[]
\\ triangle_tac
\\ fs[ABS_NEG, computeError_def]
QED
Theorem REAL_LE_MUL_SWAP:
∀ (a b c:real).
a * b ≤ a * c ⇒ b * a ≤ a * c
Proof
rpt strip_tac \\ fs[]
QED
val float_div_tac =
COND_CASES_TAC \\ simp[]
>- (‘e1R / e2R + - (e1F / e2F + deltaF) = (e1R / e2R + - (e1F / e2F)) + - deltaF’
by REAL_ASM_ARITH_TAC
\\ pop_assum (rewrite_tac o single)
\\ triangle_tac \\ irule REAL_LE_ADD2 \\ fs[computeError_def])
\\ `e1R / e2R + -(e1F * inv e2F * (1 + deltaF)) =
(e1R / e2R + - (e1F * inv e2F)) + - (e1F * inv e2F * deltaF)`
by REAL_ASM_ARITH_TAC
\\ pop_assum (once_rewrite_tac o single)
\\ triangle_tac \\ irule REAL_LE_ADD2 \\ conj_tac >- fs[real_div]
\\ fs[real_div, ABS_NEG, computeError_def, REAL_ABS_MUL]
\\ ‘abs deltaF * abs e1F = abs e1F * abs deltaF’
by fs[]
\\ pop_assum (rewrite_tac o single)
\\ metis_tac [REAL_LE_LMUL_IMP, REAL_ABS_MUL, REAL_ABS_POS];
Theorem div_abs_err_bounded:
!(e1:real expr) (e1R:real) (e1F:real) (e2:real expr) (e2R:real) (e2F:real)
(err1:real) (err2:real) (vR:real) (vF:real) (E1 E2 :env) (m m1 m2:mType)
(Gamma: real expr -> mType option).
eval_expr E1 (toRTMap Gamma) (toREval e1) e1R REAL /\
eval_expr E2 Gamma e1 e1F m1 /\
eval_expr E1 (toRTMap Gamma) (toREval e2) e2R REAL /\
eval_expr E2 Gamma e2 e2F m2 /\
eval_expr E1 (toRTMap Gamma) (toREval (Binop Div e1 e2)) vR REAL /\
eval_expr (updEnv 2 e2F (updEnv 1 e1F emptyEnv))
(updDefVars (Binop Div (Var 1) (Var 2)) m
(updDefVars (Var 2) m2 (updDefVars (Var 1) m1 Gamma)))
(Binop Div (Var 1) (Var 2)) vF m /\
abs (e1R - e1F) <= err1 /\
abs (e2R - e2F) <= err2 ==>
abs (vR - vF) <= abs (e1R / e2R - e1F / e2F) + computeError (e1F / e2F) m
Proof
rpt strip_tac \\ fs[toREval_def]
\\ inversion `eval_expr E1 _ (Binop Div _ _) _ _` eval_expr_cases
\\ rename1 `vR = perturb (evalBinop Div v1R v2R) REAL deltaR`
\\ rename1 `isJoin m1R m2R REAL`
\\ inversion `eval_expr _ _ (Binop Div (Var 1) (Var 2)) _ _` eval_expr_cases
\\ rename1 `vF = perturb (evalBinop Div v1F v2F) mF deltaF`
\\ `(m1R = REAL) /\ (m2R = REAL)`
by (conj_tac \\ irule toRTMap_eval_REAL \\ qexistsl_tac [`E1`, `Gamma`]
THENL [qexistsl_tac [`e1`, `v1R`], qexistsl_tac [`e2`, `v2R`]]
\\ fs[])
\\ `v1R = e1R` by metis_tac[meps_0_deterministic]
\\ `v2R = e2R` by metis_tac[meps_0_deterministic]
\\ rveq \\ fs[perturb_def, evalBinop_def]
\\ rpt (inversion `eval_expr (updEnv 2 e2F (updEnv 1 e1F emptyEnv)) _ _ _ _`
eval_expr_cases)
\\ fs [updEnv_def] \\ rveq
\\ rewrite_tac [real_sub]
\\ Cases_on `mF` \\ fs[perturb_def]
>- (rewrite_tac [REAL_LE_ADDR] \\ fs[computeError_def])
>- (float_div_tac)
>- (float_div_tac)
>- (float_div_tac)
\\ `e1R / e2R + - (e1F / e2F + deltaF) =
(e1R / e2R + - (e1F / e2F)) + - deltaF`
by REAL_ASM_ARITH_TAC
\\ simp[]
\\ triangle_tac
\\ fs[ABS_NEG, computeError_def]
QED
val float_fma_tac =
COND_CASES_TAC \\ simp[]
>- (‘e1R * e2R + e3R + - (e1F * e2F + e3F + deltaF) =
(e1R * e2R + - (e1F * e2F)) + (e3R + - e3F) + - deltaF’ by REAL_ASM_ARITH_TAC
\\ pop_assum (rewrite_tac o single)
\\ triangle_tac \\ irule REAL_LE_ADD2 \\ fs[])
\\ `e1R * e2R + e3R + -((1 + deltaF) * (e1F * e2F + e3F)) =
(e1R * e2R + e3R + -(e1F * e2F + e3F)) + (- (e1F * e2F + e3F) * deltaF)`
by REAL_ASM_ARITH_TAC
\\ simp[]
\\ triangle_tac
\\ irule REAL_LE_ADD2 \\ conj_tac
\\ TRY (REAL_ASM_ARITH_TAC)
\\ rewrite_tac[REAL_ABS_MUL, ABS_NEG]
\\ metis_tac [REAL_LE_LMUL_IMP, REAL_MUL_COMM, REAL_ABS_POS, REAL_LE_MUL_SWAP];
Theorem fma_abs_err_bounded:
!(e1:real expr) (e1R:real) (e1F:real) (e2:real expr) (e2R:real) (e2F:real)
(e3:real expr) (e3R:real) (e3F:real) (err1:real) (err2:real) (err3:real)
(vR:real) (vF:real) (E1 E2 :env) (m m1 m2 m3:mType)
(Gamma: real expr -> mType option).
eval_expr E1 (toRTMap Gamma) (toREval e1) e1R REAL /\
eval_expr E2 Gamma e1 e1F m1 /\
eval_expr E1 (toRTMap Gamma) (toREval e2) e2R REAL /\
eval_expr E2 Gamma e2 e2F m2 /\
eval_expr E1 (toRTMap Gamma) (toREval e3) e3R REAL /\
eval_expr E2 Gamma e3 e3F m3 /\
eval_expr E1 (toRTMap Gamma) (toREval (Fma e1 e2 e3)) vR REAL /\
eval_expr (updEnv 3 e3F (updEnv 2 e2F (updEnv 1 e1F emptyEnv)))
(updDefVars (Fma (Var 1) (Var 2) (Var 3)) m
(updDefVars (Var 3) m3
(updDefVars (Var 2) m2 (updDefVars (Var 1) m1 Gamma))))
(Fma (Var 1) (Var 2) (Var 3)) vF m /\
abs (e1R - e1F) <= err1 /\
abs (e2R - e2F) <= err2 /\
abs (e3R - e3F) <= err3 ==>
abs (vR - vF) <=
abs ((e1R * e2R - e1F * e2F) + (e3R - e3F)) +
computeError (e1F * e2F + e3F) m
Proof
rpt strip_tac \\ fs[toREval_def]
\\ inversion `eval_expr E1 _ (Fma _ _ _) _ _` eval_expr_cases
\\ rename1 `vR = perturb (evalFma v1R v2R v3R) REAL deltaR`
\\ rename1 `isJoin3 m1R m2R m3R REAL`
\\ inversion `eval_expr _ _ (Fma (Var 1) (Var 2) (Var 3)) _ _` eval_expr_cases
\\ rename1 `vF = perturb (evalFma v1F v2F v3F) mF deltaF`
\\ `(m1R = REAL) /\ (m2R = REAL) /\ (m3R = REAL)`
by (rpt conj_tac \\ irule toRTMap_eval_REAL \\ qexistsl_tac [`E1`, `Gamma`]
THENL [qexistsl_tac [`e1`, `v1R`],
qexistsl_tac [`e2`, `v2R`],
qexistsl_tac [`e3`, `v3R`]]
\\ fs[])
\\ `v1R = e1R` by metis_tac[meps_0_deterministic]
\\ `v2R = e2R` by metis_tac[meps_0_deterministic]
\\ `v3R = e3R` by metis_tac[meps_0_deterministic]
\\ rveq \\ fs[evalFma_def, evalBinop_def]
\\ rpt (inversion `eval_expr
(updEnv 3 e3F (updEnv 2 e2F (updEnv 1 e1F emptyEnv))) _ _ _ _`
eval_expr_cases)
\\ fs [updEnv_def] \\ rveq
\\ Cases_on `mF`
\\ fs[computeError_def, perturb_def]
\\ rewrite_tac[real_sub]
>- (`e1R * e2R + e3R + - (e1F * e2F + e3F) =
(e1R * e2R + - (e1F * e2F) + (e3R + - e3F))`
by REAL_ASM_ARITH_TAC
\\ simp[])
>- (float_fma_tac)
>- (float_fma_tac)
>- (float_fma_tac)
\\ `e1R * e2R + e3R + -(e1F * e2F + e3F + deltaF) =
(e1R * e2R + e3R + - (e1F * e2F + e3F)) + - deltaF`
by REAL_ASM_ARITH_TAC
\\ simp[]
\\ triangle_tac
\\ irule REAL_LE_ADD2
\\ REAL_ASM_ARITH_TAC
QED
Theorem round_abs_err_bounded:
!(e:real expr) (nR:real) (nF1:real) (nF:real) (E1:env) (E2:env) (err:real)
(m1:mType) (m:mType) (Gamma: real expr -> mType option).
eval_expr E1 (toRTMap Gamma) (toREval e) nR REAL /\
eval_expr E2 Gamma e nF1 m /\
eval_expr (updEnv 1 nF1 emptyEnv)
(updDefVars (Downcast m1 (Var 1)) m1
(updDefVars (Var 1) m Gamma))
(Downcast m1 (Var 1)) nF m1 /\
abs (nR - nF1) <= err ==>
abs (nR - nF) <= err + computeError nF1 m1
Proof
rpt strip_tac
\\ `nR - nF = (nR - nF1) + (nF1 - nF)` by REAL_ASM_ARITH_TAC
\\ fs []
\\ triangle_tac
\\ irule REAL_LE_ADD2 \\ fs[]
\\ inversion `eval_expr (updEnv _ _ _) _ _ _ _` eval_expr_cases
\\ inversion `eval_expr (updEnv _ _ _) _ _ _ _` eval_expr_cases
\\ fs [updEnv_def] \\ rveq \\ fs[]
\\ Cases_on `m1` \\ fs[perturb_def, computeError_def]
\\ once_rewrite_tac [REAL_LDISTRIB]
\\ simp[real_sub, REAL_NEG_ADD, REAL_ADD_ASSOC, ABS_NEG, ABS_MUL]
\\ COND_CASES_TAC \\ fs[REAL_NEG_ADD, REAL_ADD_ASSOC]
\\ ‘delta * nF1 = nF1 * delta’ by fs[] \\ pop_assum (rewrite_tac o single)
\\ rewrite_tac [ABS_MUL] \\ irule REAL_LE_LMUL_IMP \\ fs[]
QED
Theorem sqrt_abs_err_bounded:
!(e:real expr) (nR:real) nR1 (nF1:real) (nF:real) (E1:env) (E2:env) (err:real)
(m1 m:mType) (Gamma: real expr -> mType option).
eval_expr E1 (toRTMap Gamma) (toREval e) nR1 REAL /\
eval_expr E2 Gamma e nF1 m1 /\
eval_expr E1 (toRTMap Gamma) (toREval (Unop Sqrt e)) nR REAL /\
eval_expr (updEnv 1 nF1 emptyEnv)
(updDefVars (Unop Sqrt (Var 1)) m
(updDefVars (Var 1) m1 Gamma))
(Unop Sqrt (Var 1)) nF m /\
abs (nR1 - nF1) <= err ⇒
abs (nR - nF) <= abs (sqrt nR1 - sqrt nF1) + computeError (sqrt nF1) m
Proof
rpt strip_tac
\\ inversion `eval_expr (updEnv _ _ _) _ _ _ _` eval_expr_cases \\ gs[]
\\ inversion `eval_expr (updEnv _ _ _) _ _ _ _` eval_expr_cases \\ gs[]
\\ rveq \\ gs[toREval_def, updDefVars_def] \\ rveq
\\ inversion `eval_expr _ _ (Unop Sqrt _) _ _` eval_expr_cases \\ gs[]
\\ rveq \\ gs[]
\\ ‘m1' = REAL’ by (Cases_on ‘m1'’ \\ gs[isCompat_def])
\\ rveq \\ gs[perturb_def]
\\ ‘v1 = nR1’ by (imp_res_tac meps_0_deterministic \\ gs[])
\\ rveq
\\ Cases_on ‘m’ \\ gs[perturb_def, evalUnop_def, computeError_pos, real_sub]
\\ TRY (COND_CASES_TAC \\ gs[])
\\ rewrite_tac [REAL_NEG_ADD, REAL_ADD_ASSOC, REAL_ADD_LDISTRIB]
\\ triangle_tac \\ gs[computeError_def, REAL_ABS_MUL]
\\ irule REAL_LE_TRANS THENL [
qexists_tac ‘mTypeToR M16 (sqrt nF1) * abs (sqrt nF1)’,
qexists_tac ‘mTypeToR M32 (sqrt nF1) * abs (sqrt nF1)’,
qexists_tac ‘mTypeToR M64 (sqrt nF1) * abs (sqrt nF1)’]
\\ conj_tac
\\ TRY (irule REAL_LE_RMUL_IMP \\ gs[])
\\ gs[REAL_MUL_COMM, mTypeToR_def]
QED
Theorem nonzerop_EQ1_I'[simp]:
0 < r ⇒ (nonzerop r = 1)
Proof
rw[nonzerop_def]
QED
Theorem err_prop_inversion_pos:
∀ (nF:real) (nR:real) (err:real) (elo:real) (ehi:real).
0 < elo - err ∧ 0 < elo ∧
abs (nR - nF) ≤ err ∧
elo ≤ nR ∧ nR ≤ ehi ∧
elo - err ≤ nF ∧ nF ≤ ehi + err ∧
0 ≤ err ⇒
abs (inv nR - inv nF) ≤ err * inv ((elo - err) * (elo - err))
Proof
rpt strip_tac
\\ ‘nR ≠ 0’ by REAL_ASM_ARITH_TAC
\\ ‘-nF ≠ 0’ by REAL_ASM_ARITH_TAC
\\ ‘inv nR - inv nF = - ((nR - nF) / (nR * nF))’
by (gs[real_div, real_sub] \\ rewrite_tac[realTheory.REAL_LDISTRIB, REAL_NEG_ADD]
\\ rewrite_tac [GSYM REAL_MUL_ASSOC]
\\ gs[REAL_MUL_LINV] \\ REAL_ASM_ARITH_TAC)
\\ pop_assum $ gs o single
\\ gs[real_div, Once REAL_ABS_MUL]
\\ irule REAL_LE_TRANS \\ qexists_tac ‘abs (inv nF * inv nR) * err’
\\ conj_tac \\ gs[] \\ irule REAL_LE_LMUL_IMP \\ gs[]
\\ ‘abs (inv nF * inv nR) = inv (abs (nF * nR))’ by gs[GSYM REAL_INV_MUL, ABS_INV]
\\ pop_assum $ rewrite_tac o single
\\ irule REAL_INV_LE_ANTIMONO_IMPR \\ rewrite_tac [POW_2] \\ rpt conj_tac
>- gs[]
>- (irule REAL_LT_MUL \\ gs[])
\\ rewrite_tac [ABS_MUL]
\\ irule REAL_LE_MUL2 \\ gs[]
\\ rpt conj_tac
>- (irule REAL_LE_TRANS \\ qexists_tac ‘nF’ \\ gs[ABS_LE])
>- (irule REAL_LE_TRANS \\ qexists_tac ‘elo’ \\ conj_tac \\ REAL_ASM_ARITH_TAC)
\\ REAL_ASM_ARITH_TAC
QED
Theorem err_prop_inversion_neg:
!(nF:real) (nR:real) (err:real) (elo:real) (ehi:real).
ehi + err < 0 /\ ehi < 0 /\
abs (nR - nF) <= err /\
elo <= nR /\
nR <= ehi /\
elo - err <= nF /\
nF <= ehi + err /\
0 <= err ==>
abs (inv nR - inv nF) <= err * inv ((ehi + err) * (ehi + err))
Proof
rpt strip_tac
\\ ‘0 < (-ehi) + -err’ by REAL_ASM_ARITH_TAC
\\ qspecl_then [‘-nF’, ‘-nR’, ‘err’, ‘-ehi’, ‘-elo’] mp_tac err_prop_inversion_pos
\\ impl_tac
>- (
rpt conj_tac \\ TRY (gs[real_sub] \\ NO_TAC)
>- (gs[real_sub] \\ REAL_ASM_ARITH_TAC)
\\ REAL_ASM_ARITH_TAC)
\\ strip_tac
\\ ‘nR ≠ 0 ∧ nF ≠ 0’ by REAL_ASM_ARITH_TAC
\\ ‘abs (inv nR - inv nF) = abs (inv (-nR) - inv (- nF))’
by (gs[GSYM REAL_NEG_INV, real_sub] \\ REAL_ASM_ARITH_TAC)
\\ pop_assum $ rewrite_tac o single
\\ irule REAL_LE_TRANS \\ asm_exists_tac \\ gs[]
\\ irule REAL_LE_LMUL_IMP \\ gs[]
\\ irule REAL_INV_LE_ANTIMONO_IMPR \\ rpt conj_tac
>- (rewrite_tac[REAL_POW_POS] \\ DISJ2_TAC \\ DISJ1_TAC \\ gs[real_sub])
>- (rewrite_tac[REAL_POW_POS] \\ DISJ2_TAC \\ DISJ2_TAC \\ gs[])
\\ ‘-ehi - err = -1 * (ehi + err)’ by REAL_ASM_ARITH_TAC
\\ pop_assum $ rewrite_tac o single
\\ rewrite_tac [POW_MUL] \\ gs[POW_MINUS1]
QED
val _ = export_theory();