-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
134 lines (109 loc) · 5.36 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import time
import random
import argparse
import numpy as np
import torch
from terminaltables import AsciiTable
from torch.autograd import Variable
from model.model import Yolo
from tools.load import split_data
from tools.scheduler import CosineAnnealingWarmupRestarts
from tools.logger import *
def weights_init_normal(m):
if isinstance(m, torch.nn.Conv2d):
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
elif isinstance(m, torch.nn.BatchNorm2d):
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
def init():
random.seed(42)
np.random.seed(42)
torch.manual_seed(42)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--train_folder", type=str, default="data/train", help="path to dataset")
parser.add_argument("--weights_path", type=str, default="weights/yolov4_kun.pth", help="path to weights file")
parser.add_argument("--class_path", type=str, default="data/coco.names", help="path to class label file")
parser.add_argument("--epochs", type=int, default=10, help="number of epochs")
parser.add_argument("--lr", type=float, default=0.001, help="learning rate")
parser.add_argument("--batch_size", type=int, default=4, help="size of batches")
parser.add_argument("--subdivisions", type=int, default=4, help="size of mini batches")
parser.add_argument("--img_size", type=int, default=608, help="size of each image dimension")
args = parser.parse_args()
print(args)
logger = Logger("logs")
init()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
pretrained_dict = torch.load(args.weights_path)
model = Yolo(n_classes=2)
model = model.to(device)
model_dict = model.state_dict()
# 1. filter out unnecessary keys
# 第552項開始為yololayer,訓練時不需要用到
# pretrained_dict = {k: v for k, v in pretrained_dict.items() if np.shape(model_dict[k]) == np.shape(v)}
pretrained_dict = {k: v for i, (k, v) in enumerate(pretrained_dict.items()) if i < 552}
# 2. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
# 3. load the new state dict
model.apply(weights_init_normal) # 權重初始化
model.load_state_dict(model_dict)
train_dataset, train_dataloader = split_data(args.train_folder, args.img_size, args.batch_size)
num_iters_per_epoch = len(train_dataloader)
scheduler_iters = round(args.epochs * len(train_dataloader) / args.subdivisions)
total_step = num_iters_per_epoch * args.epochs
# optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
scheduler = CosineAnnealingWarmupRestarts(optimizer,
first_cycle_steps=scheduler_iters,
cycle_mult=1.0,
max_lr=args.lr,
min_lr=0,
warmup_steps=round(scheduler_iters * 0.1),
gamma=1.0)
for epoch in range(args.epochs):
total_loss = 0.0
start_time = time.time()
print("\n---- [Epoch %d/%d] ----\n" % (epoch + 1, args.epochs))
model.train()
for batch, (_, imgs, targets) in enumerate(train_dataloader):
global_step = num_iters_per_epoch * epoch + batch + 1
imgs = Variable(imgs.to(device), requires_grad=True)
targets = Variable(targets.to(device), requires_grad=False)
outputs, loss = model(imgs, targets)
loss.backward()
total_loss += loss.item()
if global_step % args.subdivisions == 0:
optimizer.step()
optimizer.zero_grad()
scheduler.step()
# ---------------------
# - logging -
# ---------------------
tensorboard_log = []
loss_table_name = ["Step: %d/%d" % (global_step, total_step),
"loss", "reg_loss", "conf_loss", "cls_loss"]
loss_table = [loss_table_name]
temp = ["YoloLayer1"]
for name, metric in model.yolo1.metrics.items():
if name in loss_table_name:
temp.append(metric)
tensorboard_log += [(f"{name}_1", metric)]
loss_table.append(temp)
temp = ["YoloLayer2"]
for name, metric in model.yolo2.metrics.items():
if name in loss_table_name:
temp.append(metric)
tensorboard_log += [(f"{name}_2", metric)]
loss_table.append(temp)
temp = ["YoloLayer3"]
for name, metric in model.yolo3.metrics.items():
if name in loss_table_name:
temp.append(metric)
tensorboard_log += [(f"{name}_3", metric)]
loss_table.append(temp)
print(AsciiTable(loss_table).table)
logger.list_of_scalars_summary(tensorboard_log, global_step)
print("Total Loss: %f, Runtime %f" % (total_loss, time.time() - start_time))
torch.save(model.state_dict(), "weights/yolov4_train.pth")