-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathFig.4E.RandomForestPrediction.2019.04.05.Rmd
112 lines (94 loc) · 4.75 KB
/
Fig.4E.RandomForestPrediction.2019.04.05.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
title: "Untitled"
author: "Cheng Gao"
date: "4/5/2019"
output: html_document
---
```{r, message=FALSE, warning=FALSE, fig.height = 2.5, fig.width = 11, fig.align = "center"}
library(tidyverse)
library(reshape2)
library(forcats)
library(randomForest)
library(lubridate)
library(vegan)
library(broom)
library(biobroom)
library(pheatmap)
library(splitstackshape)
library(caTools)
library(colorRamps)
setwd("/Users/chengg/Google Drive/EPICON/Mycobiome/Fungal ITS/statistic/Total.fungi")
rm(list = ls())
load("EPICON.data.preparation.RC.bNTI.ted.2019.04.19.Rdata")
tc_map<-env
otu_table<-data.frame(t(fung.raw))##Read in the raw data###
ID$newID<-paste(ID$Guild, ID$Phylum, ID$Class, ID$Order, ID$Family, ID$Genus,ID$aa, sep="_")
row.names(otu_table)<-ID$newID
otu_table<-otu_table[ID$Fungi=="Fungi",]
dataset<-data.frame(tc_map$TP, tc_map$Habitat, tc_map$Treatment1,t(otu_table))
rfprect<-function(habitat) {
pre<-dataset[dataset$tc_map.Habitat == habitat & dataset$tc_map.Treatment1 == "Pre_flowering_drought" & dataset$tc_map.TP>0, ]
post<-dataset[dataset$tc_map.Habitat == habitat & dataset$tc_map.Treatment1 == "Post_flowering_drought"& dataset$tc_map.TP>0, ]
ck<-dataset[dataset$tc_map.Habitat == habitat & dataset$tc_map.Treatment1 == "Control"& dataset$tc_map.TP>0, ]
set.seed(315)
split = sample.split(ck$tc_map.TP, SplitRatio = 0.5)
ck.training_set = subset(ck, split == TRUE)
ck.test_set = subset(ck, split == FALSE)
rf = randomForest(ck.training_set[,c(-1:-3)], factor(ck.training_set[,1]), importance=TRUE, proximity=TRUE, ntree = 1000)
rf.ck<-data.frame(predict(rf, ck.test_set))
rf.ck<-data.frame("Sample"=row.names(rf.ck),"Prediction"=rf.ck[,1])
rf.ck<-data.frame("Sample_time" = as.numeric(substring(rf.ck$Sample, 3, 4)), "Predicted_time"=as.numeric(rf.ck$Prediction))
rf.ck$Treatment="Control"
rf.pr<-data.frame(predict(rf, pre))
rf.pr<-data.frame("Sample"=row.names(rf.pr),"Prediction"=rf.pr[,1])
rf.pr<-data.frame("Sample_time" = as.numeric(substring(rf.pr$Sample, 3, 4)), "Predicted_time"=as.numeric(rf.pr$Prediction))
rf.pr$Treatment="Pre_flowering_drought"
rf.po<-data.frame(predict(rf, post))
rf.po<-data.frame("Sample"=row.names(rf.po),"Prediction"=rf.po[,1])
rf.po<-data.frame("Sample_time" = as.numeric(substring(rf.po$Sample, 3, 4)), "Predicted_time"=as.numeric(rf.po$Prediction))
rf.po$Treatment="Post_flowering_drought"
rf.prediction<<-rbind(rf.ck, rf.pr, rf.po)
rf.prediction$Habitat<<-habitat
}
rfprect("Leaf")
rf.prediction.Leaf<-rf.prediction
rfprect("Root")
rf.prediction.Root<-rf.prediction
rfprect("Rhizosphere")
rf.prediction.Rhizosphere<-rf.prediction
rfprect("Soil")
rf.prediction.Soil<-rf.prediction
rf.prediction<-rbind(rf.prediction.Leaf, rf.prediction.Root, rf.prediction.Rhizosphere, rf.prediction.Soil)
library(colorRamps)
rf.prediction$Habitat<-factor(rf.prediction$Habitat, levels = c("Leaf", "Root", "Rhizosphere", "Soil"))
rf.prediction$Treatment<-factor(rf.prediction$Treatment, levels = c("Control", "Pre_flowering_drought", "Post_flowering_drought"))
ggplot() + geom_jitter(data=rf.prediction, height = 0,
aes(x= Sample_time, y=Predicted_time, color = Treatment, shape = Treatment) , alpha = 0.5, size =3) +
geom_smooth(data=rf.prediction,aes(x= Sample_time, y=Predicted_time, color = Treatment))+
labs(x = "Sample time",y = "Predicted time")+
geom_abline(slope=1, intercept=0, color="white")+
xlim(0,17)+ylim(0,17)+ theme_bw()+
scale_color_manual(values=c("black", "blue", "red"))+
facet_wrap(~Habitat, ncol = 4,strip.position= 'top')+
theme(strip.text = element_text(size = 15,face="bold"),
panel.spacing = unit(0, "lines"),
legend.title = element_text(colour="black", size=15, face="bold"),
legend.text = element_text(colour="black", size=15, face="bold"),
axis.text=element_text(size=10,face="bold"),
axis.title=element_text(size=15,face="bold"))
ggplot() + geom_jitter(data=rf.prediction, height = 0,
aes(x= Sample_time, y=Predicted_time, color = Treatment, shape = Treatment) , alpha = 0.8, size =1) +
geom_smooth(data=rf.prediction,aes(x= Sample_time, y=Predicted_time, color = Treatment))+
labs(x = "Sample time",y = "Predicted time")+
geom_abline(slope=1, intercept=0, color="white")+
xlim(0,17)+ylim(0,17)+ theme_bw()+
guides(color=FALSE, shape = FALSE)+
scale_color_manual(values=c("black", "blue", "red"))+
facet_wrap(~Habitat, ncol = 4,strip.position= 'top')+
theme(strip.text = element_text(size = 15,face="bold"),
panel.spacing = unit(0, "lines"),
legend.title = element_text(colour="black", size=15, face="bold"),
legend.text = element_text(colour="black", size=15, face="bold"),
axis.text=element_text(size=10,face="bold"),
axis.title=element_text(size=15,face="bold"))
```