-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo1.py
350 lines (315 loc) · 16.3 KB
/
demo1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import argparse
import time
from pathlib import Path
import sys
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
import numpy as np
import time
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages, letterbox, reloadFrame
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
class YoloCv():
def __init__(self):
self.source = opt.source
self.weights = opt.weights
self.view_img = opt.view_img
self.save_txt = opt.save_txt
self.imgsz = opt.img_size
self.trace = not opt.no_trace
self.stride = None
self.model = None
#self.dataset = reloadFrame(self.source, img_size=self.imgsz, stride=None)
def detect(self):
save_img = not opt.nosave and not self.source.endswith('.txt') # save inference images
webcam = self.source.isnumeric() or self.source.endswith('.txt') or self.source.lower().startswith(
('rtsp://', 'rtmp://', 'http://', 'https://'))
# Directories
self.save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
(self.save_dir / 'labels' if self.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True) # make dir
print("save_dir: {}".format(self.save_dir))
# Initialize
set_logging()
device = select_device(opt.device)
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
self.model = attempt_load(self.weights, map_location=device) # load FP32 model
self.stride = int(self.model.stride.max()) # model stride
imgsz = check_img_size(self.imgsz, s=self.stride) # check img_size
if self.trace:
self.model = TracedModel(self.model, device, opt.img_size)
if half:
self.model.half() # to FP16
# Second-stage classifier
classify = False
if classify:
modelc = load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
# Set Dataloader
vid_path, vid_writer = None, None
blindImg = False
if webcam:
view_img = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = reloadFrame(self.source, img_size=imgsz, stride=self.stride)
else:
view_img = check_imshow()
dataset = reloadFrame(self.source, img_size=imgsz, stride=self.stride)
# Get names and colors
self.names = self.model.module.names if hasattr(self.model, 'module') else self.model.names
self.colors = [[random.randint(0, 255) for _ in range(3)] for _ in self.names]
# Run inference
if device.type != 'cpu':
self.model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(self.model.parameters()))) # run once
old_img_w = old_img_h = imgsz
old_img_b = 1
print("start of for-loop")
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
if img[0][0][0] == 0:
blindImg = True
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Warmup
if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
old_img_b = img.shape[0]
old_img_h = img.shape[2]
old_img_w = img.shape[3]
for i in range(3):
self.model(img, augment=opt.augment)[0]
# Inference
t1 = time_synchronized()
with torch.no_grad(): # Calculating gradients would cause a GPU memory leak
pred = self.model(img, augment=opt.augment)[0]
t2 = time_synchronized()
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t3 = time_synchronized()
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
else:
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(self.save_dir / p.name) # img.jpg
item = 0
trackers = []
txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
x0,x1,y0,y1=[list() for _ in range(4)] # 4 empty list for to store items
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
if self.save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img or view_img: # Add bbox to image
label = f'{self.names[int(cls)]} {conf:.2f}'
plot_one_box(xyxy, im0, label=label, color=self.colors[int(cls)], line_thickness=1)
x0.insert(item,int(xyxy[0]))
y0.insert(item,int(xyxy[1]))
x1.insert(item,int(xyxy[2]))
y1.insert(item,int(xyxy[3]))
print("box: {}".format(xyxy))
#x0, x1, y0, y1 = int(xyxy[0]),int(xyxy[1]), int(xyxy[2]), int(xyxy[3])
item += 1
# Print time (inference + NMS)
print(f'{s}Done. 1({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS')
# Stream results
# if view_img:
# cv2.imshow(str(p), im0)
# cv2.waitKey(2000) # 1 millisecond
# print("image window close")
# print("end-loop")
# cv2.destroyAllWindows()
break
else:
print("bling")
break
else:
print("not classify")
return x0, y0, x1, y1
def reloadFunc(self):
imgsz = check_img_size(self.imgsz, s=self.stride) # check img_size
dataset = reloadFrame(self.source, img_size=imgsz, stride=self.stride)
device = select_device(opt.device)
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Warmup
if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
old_img_b = img.shape[0]
old_img_h = img.shape[2]
old_img_w = img.shape[3]
for i in range(3):
self.model(img, augment=opt.augment)[0]
# Inference
with torch.no_grad(): # Calculating gradients would cause a GPU memory leak
pred = self.model(img, augment=opt.augment)[0]
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
# Apply Classifier
for i, det in enumerate(pred): # detections per image
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(self.save_dir / p.name) # img.jpg
item = 0
trackers = []
txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
x0,x1,y0,y1=[list() for _ in range(4)] # 4 empty list for to store items
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
if self.save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
#if save_img or view_img: # Add bbox to image
label = f'{self.names[int(cls)]} {conf:.2f}'
plot_one_box(xyxy, im0, label=label, color=self.colors[int(cls)], line_thickness=1)
x0.insert(item,int(xyxy[0]))
y0.insert(item,int(xyxy[1]))
x1.insert(item,int(xyxy[2]))
y1.insert(item,int(xyxy[3]))
print("box: {}".format(xyxy))
#x0, x1, y0, y1 = int(xyxy[0]),int(xyxy[1]), int(xyxy[2]), int(xyxy[3])
item += 1
# Stream results
#if view_img:
cv2.imshow(str(p), im0)
cv2.waitKey(2000) # 1 millisecond
print("image window close")
print("end-loop")
# cv2.destroyAllWindows()
break
else:
print("bling")
break
else:
print("not classify")
return x0, y0, x1, y1
def tracking(self):
Firstload = False
dect = False
multiTracker = cv2.legacy.MultiTracker_create()
window = cv2.VideoCapture(0)
ret, frame = window.read()
if not ret:
print('Failed to read webcam')
sys.exit(1)
while True:
ret, frame = window.read()
if dect:
success, boxes = multiTracker.update(frame)
if success:
for i, box in enumerate(boxes):
x,y,w,h = [int(v) for v in box]
#print("x: {} y: {} w: {} h: {} ".format(x,y,w,h))
cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),2)
else:
dect = False
Firstload = False
print("lost contact")
cv2.imshow("img",frame)
ret_value = cv2.waitKey(1)
if ret_value==ord('q') or ret_value==ord('Q'):
break
if Firstload:
for target in range(len(x0)):
bbox = (x0[target], y0[target],x1[target],y1[target]) # (x, y, x1, y1)
#print("x0:{} y0: {} x1: {} y1: {}".format(x0[target], y0[target],x1[target],y1[target]))
width = x1[target] - x0[target]
height = y1[target] - y0[target]
blx = (x0[target], y0[target],width,height)
x, y, w, h = [int(v) for v in bbox]
tracker = cv2.legacy.TrackerKCF_create()
try:
multiTracker.add(tracker,frame,blx)
print("added")
except Exception as e:
print('Failed to add tracker', e)
Firstload = False
dect = True
elif not Firstload and not dect:
print("not Firstload")
window.release()
dect = False
x0, y0, x1, y1 = self.reloadFunc()
Firstload = True if len(x0)>0 else False
while not Firstload:
x0, y0, x1, y1 = self.reloadFunc()
if len(x0)>0:
Firstload = True
break
multiTracker = cv2.legacy.MultiTracker_create()
window = cv2.VideoCapture(0)
else:
print("scanning")
window.release()
cv2.destroyAllWindows()
cv2.waitKey(1) # To prevent freezing after closing the window
print("end")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
opt = parser.parse_args()
#print(opt)
#check_requirements(exclude=('pycocotools', 'thop'))
with torch.no_grad():
if opt.update: # update all models (to fix SourceChangeWarning)
for opt.weights in ['yolov7.pt']:
yolo = YoloCv()
x0, y0, x1, y1 = yolo.detect()
yolo.tracking()
yolo.reloadFunc()
strip_optimizer(opt.weights)
else:
yolo = YoloCv()
x0, y0, x1, y1 = yolo.detect()
yolo.tracking()