-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_tensorboard.py
609 lines (458 loc) · 24.7 KB
/
train_tensorboard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
import logging
import os
from collections import OrderedDict
import numpy as np
from tqdm import tqdm
import torch
from torch.nn.parallel import DistributedDataParallel
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer, PeriodicCheckpointer, Checkpointer
from detectron2.config import get_cfg
from detectron2.data import (
MetadataCatalog,
build_detection_test_loader,
build_detection_train_loader,
)
from detectron2.engine import default_argument_parser, default_setup, default_writers, launch
from detectron2.evaluation import (
CityscapesInstanceEvaluator,
CityscapesSemSegEvaluator,
COCOEvaluator,
COCOPanopticEvaluator,
DatasetEvaluators,
LVISEvaluator,
PascalVOCDetectionEvaluator,
SemSegEvaluator,
inference_on_dataset,
print_csv_format,
)
from detectron2.modeling import build_model
from detectron2.solver import build_lr_scheduler, build_optimizer
from detectron2.utils.events import EventStorage
from detectron2.structures import BoxMode
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog
from detectron2.data.datasets.coco_panoptic import register_coco_panoptic_separated,register_coco_panoptic
import detectron2.modeling.meta_arch
import detectron2.modeling.backbone
from detectron2.modeling.backbone.build import BACKBONE_REGISTRY
from detectron2.modeling.meta_arch.build import META_ARCH_REGISTRY
from detectron2.modeling.backbone import build_backbone
from detectron2.modeling.meta_arch import build_model
from detectron2.utils.visualizer import ColorMode
from detectron2.utils.events import CommonMetricPrinter, EventStorage, JSONWriter, TensorboardXWriter
from PIL import Image
import torchvision
from IPython.display import clear_output, display
import copy
from models import add_da_panfpn_config
from models.da_panfpn import DAPanopticFPN
from datasets import register_datasets
from panopticapi.utils import save_json
from models.lr_scheduler import WarmupPolyLR
from detectron2.solver import build_lr_scheduler as build_d2_lr_scheduler
from detectron2.config import CfgNode
logger = logging.getLogger("detectron2")
def build_lr_scheduler(
cfg: CfgNode, optimizer: torch.optim.Optimizer
) -> torch.optim.lr_scheduler._LRScheduler:
"""
Build a LR scheduler from config.
"""
name = cfg.SOLVER.LR_SCHEDULER_NAME
if name == "WarmupPolyLR":
return WarmupPolyLR(
optimizer,
cfg.SOLVER.MAX_ITER,
warmup_factor=cfg.SOLVER.WARMUP_FACTOR,
warmup_iters=cfg.SOLVER.WARMUP_ITERS,
warmup_method=cfg.SOLVER.WARMUP_METHOD,
power=cfg.SOLVER.POLY_LR_POWER,
constant_ending=cfg.SOLVER.POLY_LR_CONSTANT_ENDING,
)
else:
return build_d2_lr_scheduler(cfg, optimizer)
def get_pred(model, batch, dataset_metadata, step=4,plot=False):
processed_preds = []
for idx in range(0,len(batch), step):
sub_batch = batch[idx:(idx+step)]
preds = model(sub_batch)
for img_data, pred in zip(sub_batch, preds):
v = Visualizer( img_data['image'].numpy().transpose((1,2,0)), #im,
metadata=dataset_metadata,
scale=1,
instance_mode=ColorMode.IMAGE # remove the colors of unsegmented pixels. This option is only available for segmentation models
)
pan_seg, seg_info = pred['panoptic_seg']
out = v.draw_panoptic_seg(pan_seg.to('cpu'),
seg_info, area_threshold=None, alpha=0.7)
if plot:
display(Image.fromarray(out.get_image()) )
processed_preds.append(out.get_image())
return processed_preds
def fill_batch(dataloader, batch_size=8):
iterator = iter(dataloader)
batch = []
while len(batch) < batch_size:
curr_batch = next(iterator)
curr_batch_copy = copy.deepcopy(curr_batch)
del curr_batch
batch.extend(curr_batch_copy )
del iterator
return batch[:batch_size]
def get_evaluator(cfg, dataset_name, output_folder=None):
"""
Create evaluator(s) for a given dataset.
This uses the special metadata "evaluator_type" associated with each builtin dataset.
For your own dataset, you can simply create an evaluator manually in your
script and do not have to worry about the hacky if-else logic here.
"""
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
evaluator_list = []
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
if evaluator_type in ["sem_seg", "coco_panoptic_seg"]:
evaluator_list.append(
SemSegEvaluator(
dataset_name,
distributed=True,
output_dir=output_folder,
)
)
#if evaluator_type in ["coco", "coco_panoptic_seg"]:
# evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder))
if evaluator_type == "coco_panoptic_seg":
evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder))
if evaluator_type == "cityscapes_instance":
return CityscapesInstanceEvaluator(dataset_name)
if evaluator_type == "cityscapes_sem_seg":
return CityscapesSemSegEvaluator(dataset_name)
if evaluator_type == "pascal_voc":
return PascalVOCDetectionEvaluator(dataset_name)
if evaluator_type == "lvis":
return LVISEvaluator(dataset_name, cfg, True, output_folder)
if len(evaluator_list) == 0:
raise NotImplementedError(
"no Evaluator for the dataset {} with the type {}".format(dataset_name, evaluator_type)
)
if len(evaluator_list) == 1:
return evaluator_list[0]
return DatasetEvaluators(evaluator_list)
def do_test(cfg, model):
results = OrderedDict()
for dataset_name in cfg.DATASETS.TEST:
data_loader = build_detection_test_loader(cfg, dataset_name)
evaluator = get_evaluator(
cfg, dataset_name, os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name)
)
results_i = inference_on_dataset(model, data_loader, evaluator)
results[dataset_name] = results_i
if comm.is_main_process():
logger.info("Evaluation results for {} in csv format:".format(dataset_name))
print_csv_format(results_i)
if len(results) == 1:
results = list(results.values())[0]
return results
def do_train(cfg_source, cfg_target1, cfg_target2, model, resume = False):
model.train()
print(f'MAXIMUM NUMBER OF ITERATIONS: {cfg_source.SOLVER.MAX_ITER}')
optimizer = build_optimizer(cfg_source, model)
scheduler = build_lr_scheduler(cfg_source, optimizer)
checkpointer = DetectionCheckpointer(
model, cfg_source.OUTPUT_DIR, optimizer = optimizer, scheduler = scheduler
)
start_iter = (
checkpointer.resume_or_load(cfg_source.MODEL.WEIGHTS, resume = resume).get("iteration", -1) + 1
)
max_iter = cfg_source.SOLVER.MAX_ITER
periodic_checkpointer = PeriodicCheckpointer(
checkpointer, cfg_source.SOLVER.CHECKPOINT_PERIOD, max_iter = max_iter
)
writers = (
[
CommonMetricPrinter(max_iter),
JSONWriter(os.path.join(cfg_source.OUTPUT_DIR, "metrics.json")),
TensorboardXWriter(cfg_source.OUTPUT_DIR),
]
if comm.is_main_process()
else []
)
i = 1
min_data_len = min(len(DatasetCatalog.get(cfg_source.DATASETS.TRAIN[0])),
len(DatasetCatalog.get(cfg_source.DATASETS.TRAIN[0])) )#cfg_target.DATASETS.TRAIN[0])) )
max_epoch = max_iter / min_data_len
current_epoch = 0
data_len = min_data_len
lambda_ = cfg_source.DA.MODEL.LAMBDA
# upper bounds to the alpha values
ub_alpha_dict = {
'res2': cfg_source.DA.MODEL.res2,
'res3': cfg_source.DA.MODEL.res3,
'res4': cfg_source.DA.MODEL.res4,
'res5': cfg_source.DA.MODEL.res5,
'p2': cfg_source.DA.MODEL.p2,
'p3': cfg_source.DA.MODEL.p3,
'p4': cfg_source.DA.MODEL.p4,
'p5': cfg_source.DA.MODEL.p5,
'p6': cfg_source.DA.MODEL.p6,
}
train_alpha_dict = ub_alpha_dict.copy()
data_loader_source = build_detection_train_loader(cfg_source)
data_loader_target1 = build_detection_train_loader(cfg_target1)
data_loader_target2 = build_detection_train_loader(cfg_target2)
# although these are test dataloaders, these have to be created with build_detection_train_loader
# otherwise this would not yield batches needed for computing validation
# (detectron2 creates single sample batches when creating test dataloader)
# need batches with the same format to the train ones to compute the val loss
cfg_source_val = copy.deepcopy(cfg_source)
cfg_target1_val = copy.deepcopy(cfg_target1)
cfg_target2_val = copy.deepcopy(cfg_target2)
cfg_source_val.DATASETS.TRAIN = cfg_source_val.DATASETS.TEST
cfg_target1_val.DATASETS.TRAIN = cfg_target1_val.DATASETS.TEST
cfg_target2_val.DATASETS.TRAIN = cfg_target2_val.DATASETS.TEST
cfg_source_val.INPUT.MIN_SIZE_TEST = 0
cfg_target1_val.INPUT.MIN_SIZE_TEST = 0
cfg_target2_val.INPUT.MIN_SIZE_TEST = 0
data_loader_source_test = build_detection_train_loader( cfg_source_val)
data_loader_target1_test = build_detection_train_loader( cfg_target1_val)
data_loader_target2_test = build_detection_train_loader(cfg_target2_val)
BATCH_SIZE = 4
data_loader_source_val = build_detection_test_loader(cfg_source_val, cfg_source_val.DATASETS.TEST[0] )
data_loader_target1_val = build_detection_test_loader(cfg_target1_val, cfg_target1_val.DATASETS.TEST[0])
data_loader_target2_val = build_detection_test_loader(cfg_target2_val, cfg_target2_val.DATASETS.TEST[0])
source_batch = fill_batch(data_loader_source_val, batch_size=BATCH_SIZE)
target1_batch = fill_batch(data_loader_target1_val, batch_size=BATCH_SIZE)
target2_batch = fill_batch(data_loader_target2_val, batch_size=BATCH_SIZE)
batch = {cfg_source_val.DATASETS.TRAIN[0] :source_batch,
cfg_target1_val.DATASETS.TRAIN[0] :target1_batch,
cfg_target2_val.DATASETS.TRAIN[0] :target2_batch,
}
bdd10k_metadata = MetadataCatalog.get("cityscapes_train_separated" )
logger.info("Starting training from iteration {}".format(start_iter))
def aggregate_losses(curr_dict, dest_dict, alpha_dict):
for da_module_name, _ in alpha_dict.items():
da_loss_name = f'loss_{da_module_name}'
if da_module_name in train_alpha_dict and np.isclose(train_alpha_dict[da_module_name], 0.).item():
continue
dest_dict[da_loss_name] += curr_dict[da_loss_name]
def reduce_losses(comm, loss_distributed_dict, train_alpha_dict, prefix='total'):
loss_dict_reduced = {}
for k, v in comm.reduce_dict(loss_distributed_dict).items():
loss_comp_type = k.split('_')[1]
if loss_comp_type in train_alpha_dict and np.isclose(train_alpha_dict[loss_comp_type], 0.).item():
continue
loss_dict_reduced[f'{prefix}_{k}' if prefix is not None else k ] = v.item()
return loss_dict_reduced
with EventStorage(start_iter) as storage:
for data_source, data_target, data_source_test, data_target1_test, data_target2_test, iteration \
in zip(data_loader_source, data_loader_target1,
data_loader_source_test,
data_loader_target1_test,
data_loader_target2_test,
range(start_iter, max_iter)):
storage.step()
model.train()
if ( (iteration+1) % data_len) == 0:
current_epoch += 1
i = 1
i += 1
# scheduling of the alpha coefficients for domain adaptation, based on percentage of completed training iterations
p = iteration/max_iter
Q = 1
F = 0.5
PWR = 3.
alpha = Q / ( 1. + np.exp( - PWR*p)) - F
for da_module_name, ub_alpha in ub_alpha_dict.items():
# clip values of the alphas of the domain adaptation
train_alpha_dict[da_module_name] = min(alpha, ub_alpha)
loss_dict = model(data_source, False,train_alpha_dict, validation=False)
loss_dict_target = model(data_target, True, train_alpha_dict, validation=False)
source_prefix = f'train_source_{cfg_source.DATASETS.TRAIN[0].split("_")[0] }'
target_prefix = f'train_target_{cfg_target1.DATASETS.TRAIN[0].split("_")[0] }'
source_loss_dict_log = reduce_losses(comm, loss_dict, train_alpha_dict, prefix=source_prefix)
target_loss_dict_log = reduce_losses(comm, loss_dict_target, train_alpha_dict, prefix=target_prefix)
aggregate_losses(loss_dict_target, loss_dict, train_alpha_dict)
for da_module_name, da_alpha in train_alpha_dict.items():
da_loss_name = f'loss_{da_module_name}'
# loss is already zeroed by the backward, if alpha is set 0, hence the loggers have to also report the correct value, as the multiplication
# by da_alpha=0 happens
# in the backward call of the gradreverse layer
loss_dict[da_loss_name] *= (lambda_ if da_alpha > 0. else 0 )
k = f'{source_prefix}_{da_loss_name}'
if k in source_loss_dict_log:
source_loss_dict_log[f'{source_prefix}_{da_loss_name}'] *= (lambda_ if da_alpha > 0. else 0 )
k = f'{target_prefix}_{da_loss_name}'
if k in target_loss_dict_log:
target_loss_dict_log[f'{target_prefix}_{da_loss_name}'] *= (lambda_ if da_alpha > 0. else 0 )
source_losses_reduced_log = sum(loss for loss in source_loss_dict_log.values())
target_losses_reduced_log = sum(loss for loss in target_loss_dict_log.values())
losses = sum(loss_dict.values())
# it can happen that train diverges due to the interaction between each task loss and the ones from the domain adversarial components,
# hence, this check is required
assert torch.isfinite(losses).all(), loss_dict
total_loss_dict_log = reduce_losses(comm, loss_dict, train_alpha_dict, prefix='total')
total_losses_reduced_log = sum(loss for loss in total_loss_dict_log.values())
if comm.is_main_process():
storage.put_scalars(train_total_loss=total_losses_reduced_log, **total_loss_dict_log)
storage.put_scalars(train_source_total_loss=source_losses_reduced_log, **source_loss_dict_log)
storage.put_scalars(train_target_total_loss=target_losses_reduced_log, **target_loss_dict_log)
alphas_dict = { f'alpha_{k}':v for k,v in train_alpha_dict.items()}
storage.put_scalars(**alphas_dict)
optimizer.zero_grad()
losses.backward()
optimizer.step()
storage.put_scalar("lr", optimizer.param_groups[0]["lr"], smoothing_hint=False)
scheduler.step()
if (
cfg_source.TEST.EVAL_PERIOD > 0
and (iteration + 1) % cfg_source.TEST.EVAL_PERIOD == 0
):
model.eval()
val_source_prefix = f'val_source_{cfg_source.DATASETS.TRAIN[0].split("_")[0] }'
val_target1_prefix = f'val_target1_{cfg_target1.DATASETS.TRAIN[0].split("_")[0] }'
val_target2_prefix = f'val_target2_{cfg_target2.DATASETS.TRAIN[0].split("_")[0] }'
res_target1 = do_test(cfg_target1, model)
res_target2 = do_test(cfg_target2, model)
for k, metrics in res_target1.items():
res_target1[k] = { f'{val_target1_prefix}_{k}': v for k,v in metrics.items() }
for k, metrics in res_target2.items():
res_target2[k] = { f'{val_target2_prefix}_{k}': v for k,v in metrics.items() }
# avoid storing the gradients when computing the validation loss
with torch.no_grad():
model.train()
source_preds_loss = model(data_source_test, False,train_alpha_dict, validation=True)
target1_preds_loss = model(data_target1_test, True,train_alpha_dict, validation=True)
target2_preds_loss = model(data_target2_test, True,train_alpha_dict, validation=True)
source_loss_dict_log = reduce_losses(comm, source_preds_loss, train_alpha_dict, prefix=val_source_prefix)
target1_loss_dict_log = reduce_losses(comm, target1_preds_loss, train_alpha_dict, prefix=val_target1_prefix)
target2_loss_dict_log = reduce_losses(comm, target2_preds_loss, train_alpha_dict, prefix=val_target2_prefix )
val_losses_dict_log = reduce_losses(comm, source_preds_loss, train_alpha_dict, prefix=None)#copy.deepcopy(source_loss_dict_log)
aggregate_losses(reduce_losses(comm, target1_preds_loss, train_alpha_dict, prefix=None), val_losses_dict_log, train_alpha_dict)
aggregate_losses(reduce_losses(comm, target2_preds_loss, train_alpha_dict, prefix=None ), val_losses_dict_log, train_alpha_dict)
for da_module_name, da_alpha in train_alpha_dict.items():
da_loss_name = f'loss_{da_module_name}'
if da_loss_name in val_losses_dict_log:
val_losses_dict_log[da_loss_name] *= (lambda_ if da_alpha > 0. else 0 )
k =f'{val_source_prefix}_{da_loss_name}'
if k in source_loss_dict_log:
source_loss_dict_log[k] *= (lambda_ if da_alpha > 0. else 0 )
k = f'{val_target1_prefix}_{da_loss_name}'
if k in target1_loss_dict_log:
target1_loss_dict_log[k] *= (lambda_ if da_alpha > 0. else 0 )
k = f'{val_target2_prefix}_{da_loss_name}'
if k in target2_loss_dict_log:
target2_loss_dict_log[k] *= (lambda_ if da_alpha > 0. else 0 )
source_losses_reduced_log = sum(loss for loss in source_loss_dict_log.values())
target1_losses_reduced_log = sum(loss for loss in target1_loss_dict_log.values())
target2_losses_reduced_log = sum(loss for loss in target2_loss_dict_log.values())
val_losses_reduced = sum(val_losses_dict_log.values())
if comm.is_main_process():
val_losses_dict_log = {f'val_total_{k}':v for k,v in val_losses_dict_log.items() }
storage.put_scalars(val_total_loss=val_losses_reduced, **val_losses_dict_log)
storage.put_scalars(val_source_total_loss=source_losses_reduced_log, **source_loss_dict_log)
storage.put_scalars(val_target1_total_loss=target1_losses_reduced_log, **target1_loss_dict_log)
storage.put_scalars(val_target2_total_loss=target2_losses_reduced_log, **target2_loss_dict_log)
for k, metrics in res_target1.items():
storage.put_scalars(**metrics)
for k, metrics in res_target2.items():
storage.put_scalars(**metrics)
model.eval()
for batch_name, curr_batch in batch.items():
outputs = get_pred(model, curr_batch, bdd10k_metadata)
for idx, output in enumerate(outputs):
torch_uint8_image = torch.ByteTensor(output).permute(2,0,1)
storage.put_image(f'{batch_name} {idx}', torch_uint8_image)
# the three line of code below are an alternative way to the immediate above for loop, to store prediction results in a rectangular grid
# of images
#tensor = torch.Tensor(outputs).permute((0, 3,1,2))
#grid_results = torchvision.utils.make_grid(tensor, nrow=4)
#storage.put_image('image predictions', grid_results)
#grid_numpy = grid_results.numpy().astype(np.uint8).transpose(1,2,0)
# Compared to "train_net.py", the test results are not dumped to EventStorage
comm.synchronize()
if iteration - start_iter > 5 and (
(iteration + 1) % 20 == 0 or iteration == max_iter - 1
):
for writer in writers:
writer.write()
periodic_checkpointer.step(iteration)
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_da_panfpn_config(cfg)
cfg.DATASETS.TRAIN = (cfg.DA.TRAIN.SOURCE_DATASET_NAME, )
cfg.DATASETS.TEST = ( cfg.DA.TEST.SOURCE_DATASET_NAME,)
cfg.SOLVER.IMS_PER_BATCH = cfg.DA.TRAIN.SOURCE_BATCH_SIZE
cfg.OUTPUT_DIR = os.path.join(cfg.LOG.LOG_FOLDER, cfg.DATASETS.TRAIN[0])
os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)
cfg_target1 = copy.deepcopy(cfg)
cfg_target1.DATASETS.TRAIN = (cfg.DA.TRAIN.TARGET_DATASET_NAME,)
cfg_target1.DATASETS.TEST = (cfg.DA.TEST.TARGET_DATASET_NAME,)
cfg_target1.INPUT.MIN_SIZE_TRAIN = (0,)
cfg_target1.SOLVER.IMS_PER_BATCH = cfg.DA.TRAIN.TARGET_BATCH_SIZE
cfg_target1.OUTPUT_DIR = os.path.join(cfg.LOG.LOG_FOLDER, cfg_target1.DATASETS.TRAIN[0])
os.makedirs(cfg_target1.OUTPUT_DIR, exist_ok=True)
cfg_target2 = copy.deepcopy(cfg)
cfg_target2.DATASETS.TRAIN = (cfg.DA.TRAIN.OUT_OF_SAMPLE_DATASET_NAME ,)
cfg_target2.DATASETS.TEST = (cfg.DA.TEST.OUT_OF_SAMPLE_DATASET_NAME,)
cfg_target2.INPUT.MIN_SIZE_TRAIN = (0,)
cfg_target2.SOLVER.IMS_PER_BATCH = cfg.DA.TRAIN.TARGET_BATCH_SIZE
cfg_target2.OUTPUT_DIR = os.path.join(cfg.LOG.LOG_FOLDER, cfg_target2.DATASETS.TRAIN[0])
os.makedirs(cfg_target2.OUTPUT_DIR, exist_ok=True)
default_setup(
cfg, args
)
default_setup(
cfg_target1, args
)
default_setup(
cfg_target2, args
)
return cfg,cfg_target1, cfg_target2
def main(args):
cfg_source, cfg_target1, cfg_target2 = setup(args)
cfg_target = cfg_target1
model = build_model(cfg_source)
register_datasets(args)
logger.info("Model:\n{}".format(model))
if args.eval_only:
DetectionCheckpointer(model, save_dir=cfg_source.OUTPUT_DIR).resume_or_load(
cfg_source.MODEL.WEIGHTS, resume=cfg_source.resume
)
return do_test(cfg_target, model)
distributed = comm.get_world_size() > 1
if distributed:
model = DistributedDataParallel(
model, device_ids=[comm.get_local_rank()], broadcast_buffers=False
)
do_train(cfg_source, cfg_target1, cfg_target2, model, resume=args.resume)
res_source = do_test(cfg_source, model)
res_target1 = do_test(cfg_target1, model)
res_target2 = do_test(cfg_target2, model)
out_path_source = os.path.join(cfg_source.LOG.LOG_FOLDER, cfg_source.DATASETS.TEST[0] + '_test_results.json')
out_path_target1 = os.path.join(cfg_target1.LOG.LOG_FOLDER, cfg_target1.DATASETS.TEST[0] + '_test_results.json')
out_path_target2 = os.path.join(cfg_target2.LOG.LOG_FOLDER, cfg_target2.DATASETS.TEST[0] + '_test_results.json')
save_json(res_source, out_path_source)
save_json(res_target1, out_path_target1)
save_json(res_target2, out_path_target2)
return do_test(cfg_target2, model)
if __name__ == "__main__":
parser = default_argument_parser()
parser.add_argument("--data-root", help="path to the top directory containing all datasets")
args = parser.parse_args()
print( default_argument_parser())
print(type( default_argument_parser()))
print(type(args))
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)