forked from e0404/matRad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
matRad_siochiLeafSequencing.m
358 lines (311 loc) · 13.2 KB
/
matRad_siochiLeafSequencing.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
function resultGUI = matRad_siochiLeafSequencing(resultGUI,stf,dij,numOfLevels,visBool)
% multileaf collimator leaf sequencing algorithm
% for intensity modulated beams with multiple static segments according to
% Siochi (1999)International Journal of Radiation Oncology * Biology * Physics,
% originally implemented in PLUNC (https://sites.google.com/site/planunc/)
%
% Implemented in matRad by Eric Christiansen, Emily Heath, and Tong Xu
%
% call
% resultGUI =
% matRad_siochiLeafSequencing(resultGUI,stf,dij,numOfLevels)
% resultGUI =
% matRad_siochiLeafSequencing(resultGUI,stf,dij,numOfLevels,visBool)
%
% input
% resultGUI: resultGUI struct to which the output data will be
% added, if this field is empty resultGUI struct will
% be created
% stf: matRad steering information struct
% dij: matRad's dij matrix
% numOfLevels: number of stratification levels
% visBool: toggle on/off visualization (optional)
%
% output
% resultGUI: matRad result struct containing the new dose cube
% as well as the corresponding weights
%
% References
% [1] https://www.ncbi.nlm.nih.gov/pubmed/10078655
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Copyright 2015 the matRad development team.
%
% This file is part of the matRad project. It is subject to the license
% terms in the LICENSE file found in the top-level directory of this
% distribution and at https://github.com/e0404/matRad/LICENSES.txt. No part
% of the matRad project, including this file, may be copied, modified,
% propagated, or distributed except according to the terms contained in the
% LICENSE file.
%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% if visBool not set toogle off visualization
if nargin < 5
visBool = 0;
end
numOfBeams = numel(stf);
if visBool
% create the sequencing figure
sz = [800 1000]; % figure size
screensize = get(0,'ScreenSize');
xpos = ceil((screensize(3)-sz(2))/2); % center the figure on the screen horizontally
ypos = ceil((screensize(4)-sz(1))/2); % center the figure on the screen vertically
seqFig = figure('position',[xpos,ypos,sz(2),sz(1)]);
end
offset = 0;
for i = 1:numOfBeams
numOfRaysPerBeam = stf(i).numOfRays;
% get relevant weights for current beam
wOfCurrBeams = resultGUI.wUnsequenced(1+offset:numOfRaysPerBeam+offset);%REVIEW OFFSET
X = ones(numOfRaysPerBeam,1)*NaN;
Z = ones(numOfRaysPerBeam,1)*NaN;
for j = 1:stf(i).numOfRays
X(j) = stf(i).ray(j).rayPos_bev(:,1);
Z(j) = stf(i).ray(j).rayPos_bev(:,3);
end
% sort bixels into matrix
minX = min(X);
maxX = max(X);
minZ = min(Z);
maxZ = max(Z);
dimOfFluenceMxX = (maxX-minX)/stf(i).bixelWidth + 1;
dimOfFluenceMxZ = (maxZ-minZ)/stf(i).bixelWidth + 1;
%Create the fluence matrix.
fluenceMx = zeros(dimOfFluenceMxZ,dimOfFluenceMxX);
% Calculate X and Z position of every fluence's matrix spot z axis =
% axis of leaf movement!
xPos = (X-minX)/stf(i).bixelWidth+1;
zPos = (Z-minZ)/stf(i).bixelWidth+1;
% Make subscripts for fluence matrix
indInFluenceMx = zPos + (xPos-1)*dimOfFluenceMxZ;
%Save weights in fluence matrix.
fluenceMx(indInFluenceMx) = wOfCurrBeams;
% Stratification
calFac = max(fluenceMx(:));
D_k = round(fluenceMx/calFac*numOfLevels);
% Save the stratification in the initial intensity matrix D_0.
D_0 = D_k;
% container to remember generated shapes; allocate space for 10000
% shapes
shapes = NaN*ones(dimOfFluenceMxZ,dimOfFluenceMxX,10000);
shapesWeight = zeros(10000,1);
k = 0;
if visBool
clf(seqFig);
colormap(seqFig,'jet');
seqSubPlots(1) = subplot(2,2,1,'parent',seqFig);
imagesc(D_k,'parent',seqSubPlots(1));
set(seqSubPlots(1),'CLim',[0 numOfLevels],'YDir','normal');
title(seqSubPlots(1),['Beam # ' num2str(i) ': max(D_0) = ' num2str(max(D_0(:))) ' - ' num2str(numel(unique(D_0))) ' intensity levels']);
xlabel(seqSubPlots(1),'x - direction parallel to leaf motion ')
ylabel(seqSubPlots(1),'z - direction perpendicular to leaf motion ')
colorbar;
drawnow
end
D_k_nonZero = (D_k~=0);
[D_k_Z, D_k_X] = ind2sub([dimOfFluenceMxZ,dimOfFluenceMxX],find(D_k_nonZero));
D_k_MinZ = min(D_k_Z);
D_k_MaxZ = max(D_k_Z);
D_k_MinX = min(D_k_X);
D_k_MaxX = max(D_k_X);
%Decompose the port, do rod pushing
[tops, bases] = matRad_siochiDecomposePort(D_k,dimOfFluenceMxZ,dimOfFluenceMxX,D_k_MinZ,D_k_MaxZ,D_k_MinX,D_k_MaxX);
%Form segments with and without visualization
if visBool
[shapes,shapesWeight,k,D_k]=matRad_siochiConvertToSegments(shapes,shapesWeight,k,tops,bases,visBool,i,D_k,numOfLevels,seqFig,seqSubPlots);
else
[shapes,shapesWeight,k]=matRad_siochiConvertToSegments(shapes,shapesWeight,k,tops,bases);
end
sequencing.beam(i).numOfShapes = k;
sequencing.beam(i).shapes = shapes(:,:,1:k);
sequencing.beam(i).shapesWeight = shapesWeight(1:k)/numOfLevels*calFac;
sequencing.beam(i).bixelIx = 1+offset:numOfRaysPerBeam+offset;
sequencing.beam(i).fluence = D_0;
sequencing.beam(i).sum = zeros(dimOfFluenceMxZ,dimOfFluenceMxX);
for j = 1:k
sequencing.beam(i).sum = sequencing.beam(i).sum+sequencing.beam(i).shapes(:,:,j)*sequencing.beam(i).shapesWeight(j);
end
sequencing.w(1+offset:numOfRaysPerBeam+offset,1) = sequencing.beam(i).sum(indInFluenceMx);
offset = offset + numOfRaysPerBeam;
end
resultGUI.w = sequencing.w;
resultGUI.wSequenced = sequencing.w;
resultGUI.sequencing = sequencing;
resultGUI.apertureInfo = matRad_sequencing2ApertureInfo(sequencing,stf);
doseSequencedDoseGrid = reshape(dij.physicalDose{1} * sequencing.w,dij.doseGrid.dimensions);
% interpolate to ct grid for visualiation & analysis
resultGUI.physicalDose = matRad_interp3(dij.doseGrid.x,dij.doseGrid.y',dij.doseGrid.z, ...
doseSequencedDoseGrid, ...
dij.ctGrid.x,dij.ctGrid.y',dij.ctGrid.z);
% if weights exists from an former DAO remove it
if isfield(resultGUI,'wDao')
resultGUI = rmfield(resultGUI,'wDao');
end
end
function [tops, bases] = matRad_siochiDecomposePort(map,dimZ,dimX,minZ,maxZ,minX,maxX)
%Returns tops and bases of a fluence matrix "map" for Siochi leaf
%sequencing algorithm (rod pushing part). Accounts for collisions and
%tongue and groove (Tng) effects.
tops = zeros(dimZ, dimX);
bases = zeros(dimZ, dimX);
for i = minX:maxX
maxTop = -1;
TnG = 1;
for j = minZ:maxZ
if i == minX
bases(j,i) = 1;
tops(j,i) = bases(j,i)+map(j,i)-1;
else %assign trial base positions
if map(j,i) >= map(j,i-1) %current rod >= previous, match the bases
bases(j,i) = bases(j,i-1);
tops(j,i) = bases(j,i)+map(j,i)-1;
else %current rod <previous
if map(j,i) == 0 %rod length=0, put in in next slab after top of previous
bases(j,i) = tops(j,i-1)+1;
tops(j,i) = bases(j,i)-1;
else %rod length~=0, match tops
tops(j,i) = tops(j,i-1);
bases(j,i) = tops(j,i)-map(j,i)+1;
end
end
end
%determine which rod has the highest top in column
if tops(j,i) > maxTop
maxTop = tops(j,i);
maxRow = j;
end
end
%Correct for collision and tongue and groove error
while(TnG)
%go from maxRow down checking for TnG. This occurs when a shorter
%rod is "peeking over" a longer one in the direction transverse to
%the leaf motion. To fix this, match either the tops or bases of
%the rods.
for j = (maxRow-1):-1:minZ
if map(j,i) < map(j+1,i)
if tops(j,i) > tops(j+1,i)
tops(j+1,i) = tops(j,i);
bases(j+1,i) = tops(j+1,i)-map(j+1,i)+1;
elseif bases(j,i) < bases(j+1,i)
bases(j,i) = bases(j+1,i);
tops(j,i) = bases(j,i)+map(j,i)-1;
end
else
if tops(j,i) < tops(j+1,i)
tops(j,i) = tops(j+1,i);
bases(j,i) = tops(j,i)-map(j,i)+1;
elseif bases(j,i) > bases(j+1,i)
bases(j+1,i) = bases(j,i);
tops(j+1,i) = bases(j+1,i)+map(j+1,i)-1;
end
end
end
%go from maxRow up checking for TnG
for j = (maxRow+1):maxZ
if map(j,i) < map(j-1,i)
if tops(j,i) > tops(j-1,i)
tops(j-1,i) = tops(j,i);
bases(j-1,i) = tops(j-1,i)-map(j-1,i)+1;
elseif bases(j,i) < bases(j-1,i)
bases(j,i) = bases(j-1,i);
tops(j,i) = bases(j,i)+map(j,i)-1;
end
else
if tops(j,i) < tops(j-1,i)
tops(j,i) = tops(j-1,i);
bases(j,i) = tops(j,i)-map(j,i)+1;
elseif bases(j,i) > bases(j-1,i)
bases(j-1,i) = bases(j,i);
tops(j-1,i) = bases(j-1,i)+map(j-1,i)-1;
end
end
end
%now check if all TnG conditions have been removed
TnG = 0;
for j = (minZ+1):maxZ
if map(j,i) < map(j-1,i);
if tops(j,i) > tops(j-1,i)
TnG = 1;
elseif bases(j,i) < bases(j-1,i)
TnG = 1;
end
else
if tops(j,i) < tops(j-1,i)
TnG = 1;
elseif bases(j,i) > bases(j-1,i)
TnG = 1;
end
end
end
end
end
end
function [shapes,shapesWeight,k,D_k] = matRad_siochiConvertToSegments(shapes,shapesWeight,k,tops,bases,visBool,i,D_k,numOfLevels,seqFig,seqSubPlots)
%Convert tops and bases to shape matrices. These are taken as to be the
%shapes of uniform level/elevation after the rods are pushed.
if nargin < 6
visBool = 0;
end
levels = max(tops(:));
for level = 1:levels
%check if slab is new
if matRad_siochiDifferentSlab(tops,bases,level)
k = k+1; %increment number of unique slabs
shape_k = (bases <= level).*(level <= tops); %shape of current slab
shapes(:,:,k) = shape_k;
end
shapesWeight(k) = shapesWeight(k)+1; %if slab is not unique, this increments weight again
if visBool
%show the leaf positions
[dimZ,dimX] = size(tops);
seqSubPlots(4) = subplot(2,2,3.5,'parent',seqFig);
imagesc(shape_k,'parent',seqSubPlots(4));
hold(seqSubPlots(4),'on');
set(seqSubPlots(4),'YDir','normal')
xlabel(seqSubPlots(4),'x - direction parallel to leaf motion ')
ylabel(seqSubPlots(4),'z - direction perpendicular to leaf motion ')
title(seqSubPlots(4),['beam # ' num2str(i) ' shape # ' num2str(k) ' d_k = ' num2str(shapesWeight(k))]);
for j = 1:dimZ
leftLeafIx = find(shape_k(j,:)>0,1,'first');
rightLeafIx = find(shape_k(j,:)>0,1,'last');
if leftLeafIx > 1
plot(seqSubPlots(4),[.5 leftLeafIx-.5],j-[.5 .5] ,'w','LineWidth',2)
plot(seqSubPlots(4),[.5 leftLeafIx-.5],j+[.5 .5] ,'w','LineWidth',2)
plot(seqSubPlots(4),[ leftLeafIx-.5 leftLeafIx-.5],j+[.5 -.5] ,'w','LineWidth',2)
end
if rightLeafIx<dimX
plot(seqSubPlots(4),[dimX+.5 rightLeafIx+.5],j-[.5 .5] ,'w','LineWidth',2)
plot(seqSubPlots(4),[dimX+.5 rightLeafIx+.5],j+[.5 .5] ,'w','LineWidth',2)
plot(seqSubPlots(4),[ rightLeafIx+.5 rightLeafIx+.5],j+[.5 -.5] ,'w','LineWidth',2)
end
if isempty(rightLeafIx) && isempty (leftLeafIx)
plot(seqSubPlots(4),[dimX+.5 .5],j-[.5 .5] ,'w','LineWidth',2)
plot(seqSubPlots(4),[dimX+.5 .5],j+[.5 .5] ,'w','LineWidth',2)
plot(seqSubPlots(4),.5*dimX*[1 1]+[0.5],j+[.5 -.5] ,'w','LineWidth',2)
end
end
pause(1);
%Plot residual intensity matrix.
D_k = D_k-shape_k; %residual intensity matrix for visualization
seqSubPlots(2) = subplot(2,2,2,'parent',seqFig);
imagesc(D_k,'parent',seqSubPlots(2));
set(seqSubPlots(2),'CLim',[0 numOfLevels],'YDir','normal');
title(seqSubPlots(2),['k = ' num2str(k)]);
colorbar
drawnow
axis tight
drawnow
end
end
end
function diffSlab = matRad_siochiDifferentSlab(tops,bases,level)
%Returns 1 if slab level is different than slab level-1 0 otherwise
if level == 1 %first slab is automatically different
diffSlab = 1;
else
shapeLevel = (bases <= level).*(level <= tops); %shape of slab with current level
shapeLevel_1 = (bases <= level-1).*(level-1 <= tops); %shape of slab with previous level
diffSlab = ~isequal(shapeLevel,shapeLevel_1); %tests if slabs are equal; isequaln was not giving correct results
end
end