-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathaudioSettings.py
500 lines (477 loc) · 29.6 KB
/
audioSettings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
# -*- coding: utf-8 -*-
###################################################################
###################################################################
# The maximum supported scenario is "m telegrams with each n chunks"
#
# with: m = MAX_NR_OF_TELEGRAMS_IN_PARALLEL
# n = MAX_NR_OF_CHUNKS_PER_TELEGRAM
#
# But under normal conditions we will transmit less than m telegrams each
# having different number of chunks < n
#
# ---- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- -----
# | | | |...| | | ----- | | | |...| | | ----- | | | |...| | |
# ---- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- -----
#
# c0 c1 c2 cn-2 cn-1 c0 c1 c2 cn1 c0 c1 c2 cn-1 (chunks)
#
# telegram 0 telegram 1 telegram m-1 (telegrams)
#
# Each chunk has AUDIO_TX_CHUNK_SAMPLES_LEN samples per chunk
# and audio data is a numpy array of the form
# [[0.1]
# [0.2]
# ..
# [0.4]]
# with shape (AUDIO_TX_CHUNK_SAMPLES_LEN, 1)
#
# Note that we work with only one audio channel (mono) because teleconference systems are mono.
# The default audio channel is the left channel (e.g. for skype microphone).
###################################################################
###################################################################
import numpy as np
import audioSettings # needs to import itself !?
import os
import configuration
import configparser
#############################################
# NOTE: capacity vs. robustness
# *** for LOW OVERHEAD => HIGHER PAYLOAD, e.g. with:
# TELEGRAM_MAX_LEN_BYTES = 1920
# and
# MAX_NR_OF_CHUNKS_PER_TELEGRAM = 60
# we have 32 bytes per audio chunk TX in 200ms = blocksize of stream.
#
# *** for ROBUSTNESS IN NOISY CHANNEL => LOWER PAYLOAD, e.g. with:
# TELEGRAM_MAX_LEN_BYTES = 256 # WARNING: not set over GUI, check value in config.ini as well
# and
# MAX_NR_OF_CHUNKS_PER_TELEGRAM = 8
# we have AGAIN 32 bytes per audio chunk TX in 200ms = blocksize of stream.
# but we retransmit smaller telegrams that actually "go through" thus incrasing performance
# in case of nosiy channels.
# The same is also valid for VoIP channels with low QoS or smartphone devices using
# COMMUNICATION_MODE instead of CALL_MODE.
#############################################
#############################################################
# only these parameters can be set in the GUI or in the .ini file (the other definitions are derived from them)
CURRENT_FREQUENCY_CHANNEL = 5 # be aware of ALLOWED_FREQUENCY_CHANNELS
SAMPLING_FREQUENCY = int(48000) # int(44100) # TODO: get this from config or interface...
AMPLITUDE = float(0.5)
FFT_DETECTION_LEVEL = float(0.001)
# we assume channel maximum delay in one direction
# NOTE: measure this and adapt as corresponding.
# TODO: Or even better, do it automatically and adapt the channel delay value used below...
CHANNEL_DELAY_TRIFA_MS = 1500
CHANNEL_DELAY_CABLE_MS = 350 # 500 # 250
CHANNEL_DELAY_MS = CHANNEL_DELAY_CABLE_MS
CHANNEL_DELAY_SEC = float(CHANNEL_DELAY_MS/1000.0)
# max. resends
MAX_RESENDS = 3
# detect using Grötzel algorithm NOT USED FOR NOW..
DETECT_USING_GROETZEL = False
# value of "carrier" frequency determined during tests. 200Hz and 400Hz work also but nr. of samples not round.
CARRIER_FREQUENCY_HZ = 375
CARRIER_AMPLITUDE = 0.01 # 0.01 # 0.05
# carrier on/off
ADD_CARRIER = False
REMOVE_RX_CARRIER = True
#############################################################
'''
Protocol:
######
Preamble - Header - Data - Footer - Terminator
################################
-------------------------------- ---- ---- ----- ---- ---- ---- ---- ------------------------
| PRE | S | A | SN | SNA | CMD |SZ | d0 ... dn | E |CHK| TERM |
-------------------------------- ---- ---- ----- ---- ---- ---- ---- ------------------------
4 1 1 1 1 1 1 n (mx242) 1 1 1
Field nr.bytes description
###################
Preamble 4 -20 Synchronization and Carrier Detect
Start byte 1 0xAA or 0x00 or 0xF2 or some useful information instead like src-address???
Address 1 0:chat, 1:console, 2-255:files (here we could also TX source-address e.g. Gateway or Socket or is this already covered by Mode ?!)
Sequence Number 1 0-255 "own" Seq. Nr. (TX)
Seq. Nr. ACK 1 0-255 "remote" Seq. Nr. (RX)
Command 1 command
Nrofdata bytes 1 size of data
Data 0-255 data
End byte 1 0x55 or 0xAA or 0xFF or 0xF2 or ~0xF2=0x0D or some useful information instead???
Checksum 1 XOR of all bytes from Start Byte to Last Byte of Data
Terminator 1 Workaround to NOT distort Checksum bits due to signal-deformation (or echoes?)
'''
# TODO: if we need to define TELEGRAM_MAX_LEN_BYTES > 256, then we need to increase size of ADDRESS field e.g. to 2 bytes.
# We may need that in order to increase capacity by reducing ACKs and corresponding delays BUT,
# the precondition is that the complete bit-stream can go through the channel without disturbances (high-quality channel).
# Smaller telegrams have more overhead BUT they are more robust against low-quality communication channels.
TELEGRAM_MAX_LEN_BYTES = 32 # 32 # 256 # 512 # 1024 # 2048 # 4096 ...
# TELEGRAM_PREAMBLE_LEN_BYTES can be 2,4,8,16,...,max= TELEGRAM_MAX_LEN_BYTES/MAX_NR_OF_CHUNKS_PER_TELEGRAM
# that is, it has to fit exactly a number of times inside AUDIO_RX_CHUNK_SAMPLES_LEN so we can split incoming audio data into arrays of PREAMBLE length
TELEGRAM_PREAMBLE_LEN_BYTES = 4 # 4 # 8 # NOTE: *** shall be "exactly" divisible by TELEGRAM_PREAMBLE_LEN_BYTES so we obtain an int rounds in thread_decode
START_LEN_BYTES = 1
ADDRESS_LEN_BYTES = 1
SEQ_NR_LEN_BYTES = 1
SEQ_NR_ACK_LEN_BYTES = 1
COMMAND_LEN_BYTES = 1
DATA_SIZE_LEN_BYTES = 1 # limits max. data-len to 255 bytes
END_LEN_BYTES = 1
CHECKSUM_LEN_BYTES = 1
# WORKAROUND: the "Terminator" shall get rid of signal deformation at the end of the bit-stream, or even "echoes" produced by previous ones which may falsify the last bits of the checksum.
TELEGRAM_TERMINATOR_LEN_BYTES = 1 # 1 # TELEGRAM_PREAMBLE_LEN_BYTES
HEADER_LEN_BYTES = START_LEN_BYTES + ADDRESS_LEN_BYTES + SEQ_NR_LEN_BYTES + SEQ_NR_LEN_BYTES + COMMAND_LEN_BYTES + DATA_SIZE_LEN_BYTES
FOOTER_LEN_BYTES = END_LEN_BYTES + CHECKSUM_LEN_BYTES
# NOTE:
# REQUEST-RESPONSE: responses at application layer shall set ACK bit as well
# these are cases where a clear request-response sequence shall be attained and
# the ACK can be sent within timeout, even if it is triggered at application level
# CALL_ACCEPT is in turn a Request to send key-start -> KEY_START
# KEY_START is in turn a Request to send key-end -> KEY_END
# protocol definitions
# commands
COMMAND_NONE = 0x00 # usually XORed with ACK
COMMAND_CALL = 0x01
COMMAND_CALL_ACCEPTED = 0x02 # answered with app-level ACK
COMMAND_CALL_REJECTED = 0x03
COMMAND_CALL_END = 0x04
COMMAND_KEY_START = 0x05 # used together with ACK - answered with app-level ACK
COMMAND_KEY_PART = 0x06 # used together with ACK - answered with app-level ACK
COMMAND_KEY_END = 0x07 # used together with ACK - answered with app-level ACK
COMMAND_STARTUP_DATA = 0x08 # used together with ACK - answered with app-level ACK
COMMAND_STARTUP_DATA_COMPLETE = 0x09 # sent by part who accepted the call, used together with ACK - NOT answered with app-level ACK
COMMAND_CHAT_DATA_START = 0x0A
COMMAND_CHAT_DATA_PART = 0x0B
COMMAND_CHAT_DATA_END = 0x0C
COMMAND_CHAT_DATA = 0x0D
# especial commands
COMMAND_ERROR = 0x7E
COMMAND_BROADCAST = 0x7F
# ack
COMMAND_TELEGRAM_ACK = 0x80
# masks
COMMAND_MASK = 0x7F
ACK_MASK = 0x80
######################
# command strings
CMD_STR = [""]*255
CMD_STR[COMMAND_NONE] = "NONE"
CMD_STR[COMMAND_CALL] = "CALL"
CMD_STR[COMMAND_CALL_ACCEPTED] = "CALL ACCEPTED"
CMD_STR[COMMAND_CALL_REJECTED] = "CALL REJECTED"
CMD_STR[COMMAND_CALL_END] = "CALL END"
CMD_STR[COMMAND_KEY_START] = "KEY START"
CMD_STR[COMMAND_KEY_PART] = "KEY PART"
CMD_STR[COMMAND_KEY_END] = "KEY END"
CMD_STR[COMMAND_STARTUP_DATA] = "STARTUP"
CMD_STR[COMMAND_STARTUP_DATA_COMPLETE] = "STARTUP COMPLETE"
CMD_STR[COMMAND_CHAT_DATA_START] = "DATA START"
CMD_STR[COMMAND_CHAT_DATA_PART] = "DATA PART"
CMD_STR[COMMAND_CHAT_DATA_END] = "DATA END"
CMD_STR[COMMAND_CHAT_DATA] = "DATA"
CMD_STR[COMMAND_ERROR] = "ERROR"
CMD_STR[COMMAND_BROADCAST] = "BROADCAST"
CMD_STR[COMMAND_TELEGRAM_ACK] = "ACK"
###########################################
# example of startup/initialization sequence
'''
-------------------
\ CALL
--------------------->
...
-------------------
\ CALL
--------------------->
---------------------- (button_press)
/ ACCEPT
<-------------------
(
-------------------
\ KEY_START
--------------------->
)
----------------------
/ KEY_START
<-------------------
(
-------------------
\ KEY_END
--------------------->
)
----------------------
/ KEY_END
<-------------------
(
-------------------
\ STARTUP
--------------------->
)
----------------------
/ STARTUP_DATA_COMPLETE
<-------------------
(
-------------------
\ ACK
--------------------->
'''
###########################################
# fix definitions (cannot be set in GUI or .ini file)
#############################
# TODO: decouple TELEGRAM_MAX_LEN_BYTES from blocksize in audio streams
# big blocksize is good to avoid overload of audio interface
# but telegrams which are too big may become problematic...
print("TELEGRAM_MAX_LEN_BYTES = "+str(TELEGRAM_MAX_LEN_BYTES))
print("TELEGRAM_PREAMBLE_LEN_BYTES = "+str(TELEGRAM_PREAMBLE_LEN_BYTES))
print("HEADER_LEN_BYTES = "+str(HEADER_LEN_BYTES))
print("FOOTER_LEN_BYTES = "+str(FOOTER_LEN_BYTES))
OVERHEAD_MAX_LEN_BYTES = TELEGRAM_PREAMBLE_LEN_BYTES + HEADER_LEN_BYTES + FOOTER_LEN_BYTES + TELEGRAM_TERMINATOR_LEN_BYTES
# NOTE: AUDIO_RX_CHUNK_SAMPLES_LEN must be exactly divisible by N! so DATA_MAX_LEN_BYTES cannot have any value.
DATA_MAX_LEN_BYTES = TELEGRAM_MAX_LEN_BYTES - OVERHEAD_MAX_LEN_BYTES # 505 # 241 # 49 # 50 # 64 # 242 # 255 # limited by DATA_SIZE_LEN_BYTES
print("DATA_MAX_LEN_BYTES = "+str(DATA_MAX_LEN_BYTES))
print("OVERHEAD_MAX_LEN_BYTES = "+str(OVERHEAD_MAX_LEN_BYTES))
# TODO: check this..
# got value experimentally seeing problems when texts in Chat are too large -> audio overflow/underflow
# may need to tie this value to some audio settings?
MAX_TEXT_LEN = (DATA_MAX_LEN_BYTES*5000)
print("MAX_TEXT_LEN = "+str(MAX_TEXT_LEN))
# NOTE: MAX_NR_OF_TELEGRAMS_IN_PARALLEL determines how much memory we pre-allocate to be able to store all those telegrams in a buffer.
MAX_NR_OF_TELEGRAMS_IN_PARALLEL = 8 # 8 # 64
# nr of chunks per tel.
MAX_NR_OF_CHUNKS_PER_TELEGRAM = 1 # 2 # 4 # 8 # 64
print("MAX_NR_OF_CHUNKS_PER_TELEGRAM = "+str(MAX_NR_OF_CHUNKS_PER_TELEGRAM))
ALLOWED_FREQUENCY_CHANNELS = [0, 2, 3, 4, 5, 6, 7] # TODO: remove constraint?
DEFAULT_FREQUENCY_CHANNEL = 1 # selected on incorrect configuration
if CURRENT_FREQUENCY_CHANNEL not in ALLOWED_FREQUENCY_CHANNELS:
print("ERROR: configuration problem, check the default value of CURRENT_FREQUENCY_CHANNEL in audioSettings.py. Change to first default.")
CURRENT_FREQUENCY_CHANNEL = ALLOWED_FREQUENCY_CHANNELS[DEFAULT_FREQUENCY_CHANNEL]
print("CURRENT_FREQUENCY_CHANNEL = "+str(CURRENT_FREQUENCY_CHANNEL))
# INFO: Frequency channels / bands:
# Narrowband (Tel. call): 300Hz - 3.4kHz (sampling freq. 8kHz, 8-bit per sample, BitRate = 64kbps) -> G.711 ?
# -> because of subsampling (8kHz) we have only 4kHz bandwidth = LPF
# Wideband (VoIP): 50Hz - 7kHz (sampling freq. 16kHz, 16-bit per sample, BitRate = 64kbps) -> G.722 ?
# -> because of subsampling (16kHz) we have only 8kHz bandwidth = LPF
# Enhanced Voice Services (EVS for VoLTE / LTE-Networks): -> 20kHz
# when both smartphones support EVS and communicate over LTE-Network (e.g. Telekom or Vodafone in Germany)
# TODO: add definitions for EVS
# round nr. of samples per bit (note: overlaps with AFSK): f1 = 1225Hz (36 samples @ 44100), f2 = 2205Hz (20 samples @ 44100)
# f1 = 1200Hz (40 samples @ 48000), f2 = 2400Hz (2x20 samples @ 48000 -> same nr. of samples for ONE and ZERO)
# V.23: f1=1300Hz for ONE, f2 = 1700Hz (Mode1) or 2100Hz (Mode2) for ZERO (note: overlap with other channels)
FREQUENCY_CHANNELS = ["0: 600Hz, 1200Hz", "1: 1200Hz, 1700Hz (V.23 Mode 1)", "2: 1200Hz, 2100Hz (V.23 Mode 2)", "3: 1200Hz, 2200Hz (AFSK, Bell 202)", "4: 1225Hz, 2205Hz (exact samples x 44100)", "5: 1200Hz, 2400Hz (exact samples x 48000)", "6: 3kHz, 4kHz", "7: 3kHz, 6kHz", "8: 4.8kHz, 5.8kHz", "9: 6.6kHz, 6.8kHz" ]
CODE_SINE_IN_CHANNEL = [[600, 1200], [1200, 1700], [1200, 2100], [1200, 2200], [1225, 2205], [1200, 2400], [3000, 4000], [3000, 6000], [4800, 5800], [6600, 6800]]
# NOTE-1: we only use the left channel (mono only) as required e.g. for VoIP or telephone.
# NOTE-2: both communication parties use the same channel to TX/RX in half-duplex mode,
# tests showed that even coding in different frequency-ranges will not avoid "HALF-DUPLEX-BEHAVIOR"
# FORCED by most of the messengers (Skype, Messenger, TRIfA, Signal, WhatsApp, Discord, Wire, Citadel, etc.)
DEFAULT_CHANNEL = 0 # index to left channel
# plot parameters
TIME_WINDOW_MS = 400
INTERVAL = 30
DOWNSAMPLE = 10
# configuration parameters determined during initialization from .ini file:
#########################################
# script or .exe?
runningScript = os.path.basename(__file__)
# different relative paths depending if we debug the script or run the executable file
if(runningScript=="audioSettings.py"):
# .py script
configuration.IS_SCRIPT = True
configuration.PATH_PREFIX = "./dist/"
else:
# .exe file
configuration.IS_SCRIPT = False
configuration.PATH_PREFIX = "./"
print("audioSettings.py: load config.init file.")
config = configparser.ConfigParser(allow_no_value=True)
config_filename = configuration.CONFIG_FILENAME
# Load the configuration file
#################
print("Reading "+config_filename)
try:
config.read(config_filename)
print("sections: ", config.sections())
if "myConfig" in config:
print("keys in section myConfig:")
if "TELEGRAM_MAX_LEN_BYTES" in config["myConfig"]:
audioSettings.TELEGRAM_MAX_LEN_BYTES = config.getint('myConfig','TELEGRAM_MAX_LEN_BYTES')
print("TELEGRAM_MAX_LEN_BYTES = ", audioSettings.TELEGRAM_MAX_LEN_BYTES)
if "MAX_NR_OF_CHUNKS_PER_TELEGRAM" in config["myConfig"]:
audioSettings.MAX_NR_OF_CHUNKS_PER_TELEGRAM = config.getint('myConfig','MAX_NR_OF_CHUNKS_PER_TELEGRAM')
print("MAX_NR_OF_CHUNKS_PER_TELEGRAM = ", audioSettings.MAX_NR_OF_CHUNKS_PER_TELEGRAM)
if "CURRENT_FREQUENCY_CHANNEL" in config["myConfig"]:
audioSettings.CURRENT_FREQUENCY_CHANNEL = config.getint('myConfig','CURRENT_FREQUENCY_CHANNEL')
print("CURRENT_FREQUENCY_CHANNEL = ", audioSettings.CURRENT_FREQUENCY_CHANNEL)
# check CURRENT_FREQUENCY_CHANNEL
if CURRENT_FREQUENCY_CHANNEL not in ALLOWED_FREQUENCY_CHANNELS:
print("ERROR: configuration problem, check the default value of CURRENT_FREQUENCY_CHANNEL in .ini file. Change to first default.")
CURRENT_FREQUENCY_CHANNEL = ALLOWED_FREQUENCY_CHANNELS[DEFAULT_FREQUENCY_CHANNEL]
if "SAMPLING_FREQUENCY" in config["myConfig"]:
audioSettings.SAMPLING_FREQUENCY = config.getint('myConfig','SAMPLING_FREQUENCY')
print("SAMPLING_FREQUENCY = ", audioSettings.SAMPLING_FREQUENCY)
if "AMPLITUDE" in config["myConfig"]:
audioSettings.AMPLITUDE = config.getfloat('myConfig','AMPLITUDE')
print("AMPLITUDE = ", audioSettings.AMPLITUDE)
if "FFT_DETECTION_LEVEL" in config["myConfig"]:
audioSettings.FFT_DETECTION_LEVEL = config.getfloat('myConfig','FFT_DETECTION_LEVEL')
print("FFT_DETECTION_LEVEL = ", audioSettings.FFT_DETECTION_LEVEL)
if "CHANNEL_DELAY_MS" in config["myConfig"]:
audioSettings.CHANNEL_DELAY_MS = config.getint('myConfig','CHANNEL_DELAY_MS')
print("CHANNEL_DELAY_MS = ", audioSettings.CHANNEL_DELAY_MS)
if "MAX_RESENDS" in config["myConfig"]:
audioSettings.MAX_RESENDS = config.getint('myConfig','MAX_RESENDS')
print("MAX_RESENDS = ", audioSettings.MAX_RESENDS)
if "CARRIER_FREQUENCY_HZ" in config["myConfig"]:
audioSettings.CARRIER_FREQUENCY_HZ = config.getint('myConfig','CARRIER_FREQUENCY_HZ')
print("CARRIER_FREQUENCY_HZ = ", audioSettings.CARRIER_FREQUENCY_HZ)
if "CARRIER_AMPLITUDE" in config["myConfig"]:
audioSettings.CARRIER_AMPLITUDE = config.getfloat('myConfig','CARRIER_AMPLITUDE')
print("CARRIER_AMPLITUDE = ", audioSettings.CARRIER_AMPLITUDE)
if "ADD_CARRIER" in config["myConfig"]:
audioSettings.ADD_CARRIER = config.getboolean('myConfig','ADD_CARRIER')
print("ADD_CARRIER = ", audioSettings.ADD_CARRIER)
if "REMOVE_RX_CARRIER" in config["myConfig"]:
audioSettings.REMOVE_RX_CARRIER = config.getboolean('myConfig','REMOVE_RX_CARRIER')
print("REMOVE_RX_CARRIER = ", audioSettings.REMOVE_RX_CARRIER)
except (configparser.NoSectionError, configparser.MissingSectionHeaderError):
print("Exception raised in init.loadConfigFile() trying to load config file!\n")
pass
# derived definitions
############
# frequency codes
CODE_SINE_FREQUENCY_ONE = CODE_SINE_IN_CHANNEL[CURRENT_FREQUENCY_CHANNEL][0]
CODE_SINE_FREQUENCY_ZERO = CODE_SINE_IN_CHANNEL[CURRENT_FREQUENCY_CHANNEL][1]
# Nyquist frequency
NYQUIST_FREQUENCY = (SAMPLING_FREQUENCY/2.0)
# coding parameters AFSK
# samples
SAMPLES_PER_CYCLE_ONE = int(SAMPLING_FREQUENCY / CODE_SINE_FREQUENCY_ONE)
print("SAMPLES_PER_CYCLE_ONE = "+str(SAMPLES_PER_CYCLE_ONE))
SAMPLES_PER_CYCLE_ZERO = int(SAMPLING_FREQUENCY / CODE_SINE_FREQUENCY_ZERO)
print("SAMPLES_PER_CYCLE_ZERO = "+str(SAMPLES_PER_CYCLE_ZERO))
LEN_BIT_ONE = SAMPLES_PER_CYCLE_ONE
print("LEN_BIT_ONE = "+str(LEN_BIT_ONE))
LEN_BIT_ZERO = (SAMPLES_PER_CYCLE_ZERO*2) # NOTE: *2 to have the same nr. of samples as ONE
print("LEN_BIT_ZERO = "+str(LEN_BIT_ZERO))
LEN_BIT_BETWEEN_ZERO_AND_ONE = (LEN_BIT_ZERO + (LEN_BIT_ONE - LEN_BIT_ZERO)//2)
LEN_BIT_ZERO_MIN = (LEN_BIT_ZERO - (LEN_BIT_ONE - LEN_BIT_ZERO)//2)
LEN_BIT_ONE_MAX = (LEN_BIT_ONE + (LEN_BIT_ONE - LEN_BIT_ZERO)//2)
# FIX - derived from definitions above
TELEGRAM_MAX_LEN_BITS = (TELEGRAM_MAX_LEN_BYTES*8)
TELEGRAM_PREAMBLE_LEN_BITS = (TELEGRAM_PREAMBLE_LEN_BYTES*8)
OVERHEAD_MAX_LEN_BITS = (OVERHEAD_MAX_LEN_BYTES*8)
DATA_MAX_LEN_BITS = (DATA_MAX_LEN_BYTES*8)
# samples
TELEGRAM_MAX_LEN_SAMPLES = (LEN_BIT_ONE*TELEGRAM_MAX_LEN_BITS)
TELEGRAM_MAX_LEN_SECONDS = (TELEGRAM_MAX_LEN_SAMPLES/SAMPLING_FREQUENCY)
TELEGRAM_PREAMBLE_LEN_SAMPLES = (LEN_BIT_ONE*TELEGRAM_PREAMBLE_LEN_BITS)
START_LEN_SAMPLES = (START_LEN_BYTES*4*LEN_BIT_ONE) + (START_LEN_BYTES*4*LEN_BIT_ZERO)
print("TELEGRAM_MAX_LEN_SAMPLES = "+str(TELEGRAM_MAX_LEN_SAMPLES))
print("TELEGRAM_MAX_LEN_SECONDS = "+str(TELEGRAM_MAX_LEN_SECONDS))
print("TELEGRAM_PREAMBLE_LEN_SAMPLES = "+str(TELEGRAM_PREAMBLE_LEN_SAMPLES))
print("START_LEN_SAMPLES = "+str(START_LEN_SAMPLES))
# chunks
AUDIO_TX_CHUNK_SAMPLES_LEN = int(TELEGRAM_MAX_LEN_SAMPLES/MAX_NR_OF_CHUNKS_PER_TELEGRAM)
# poll period for transmission (and reception?)
TX_POLL_PERIOD_SEC = 0.01
# Roundtrip delay until we get the ACK (maximum values):
# TX-Telegram + Channel-delay + RX-processing + TX-processing + ACK-Telegram + Channel-delay + RX-processing
# = 2*Telegram-delay + 2*Channel-delay + RX-TX-processing
# we assume RX-TX + RX-processing delay to be max.
TX_RX_PROCESSING_SEC = (3*TX_POLL_PERIOD_SEC)*2 # *2 is security factor due to rounding polling errors
# retransmission delay
# we may miss the audio chunk and need to wait until the current audio chunk is transmitted (fix delay in our system due to buffering)
AUDIO_CHUNK_DELAY_SEC = (AUDIO_TX_CHUNK_SAMPLES_LEN//SAMPLING_FREQUENCY)
TX_RETRANSMISSION_SEC = (2*TELEGRAM_MAX_LEN_SECONDS + 2*CHANNEL_DELAY_SEC + TX_RX_PROCESSING_SEC + AUDIO_CHUNK_DELAY_SEC)
TX_RETRANSMISSION_POLL_PERIODS_SHORT = int(TX_RETRANSMISSION_SEC/TX_POLL_PERIOD_SEC)
TX_RETRANSMISSION_POLL_PERIODS_LONG = int(1.5*TX_RETRANSMISSION_POLL_PERIODS_SHORT)
print("TX_RETRANSMISSION_POLL_PERIODS_SHORT = "+str(TX_RETRANSMISSION_POLL_PERIODS_SHORT))
print("TX_RETRANSMISSION_POLL_PERIODS_LONG = "+str(TX_RETRANSMISSION_POLL_PERIODS_LONG))
# NOTE: reduce AUDIO_RX_CHUNK_SAMPLES_LEN for faster recognition of
# preambles and processing of telegrams...especially the short ones...otherwise additional delays introduced. -> have really advantages?
AUDIO_RX_CHUNK_SAMPLES_LEN = AUDIO_TX_CHUNK_SAMPLES_LEN # TELEGRAM_PREAMBLE_LEN_SAMPLES == AUDIO_TX_CHUNK_SAMPLES_LEN or TELEGRAM_MAX_LEN_SAMPLES
print("AUDIO_TX_CHUNK_SAMPLES_LEN = "+str(AUDIO_TX_CHUNK_SAMPLES_LEN))
print("AUDIO_RX_CHUNK_SAMPLES_LEN = "+str(AUDIO_RX_CHUNK_SAMPLES_LEN))
AUDIO_CHUNK_BYTES_LEN = int(TELEGRAM_MAX_LEN_BYTES/MAX_NR_OF_CHUNKS_PER_TELEGRAM) # not used anywhere, just for info - TODO: check
# coding AFSK - further parameters
t = np.linspace(0.0, TELEGRAM_MAX_LEN_SAMPLES, TELEGRAM_MAX_LEN_SAMPLES) / SAMPLING_FREQUENCY
PREAMBLE = AMPLITUDE * np.sin(2 * np.pi * audioSettings.CODE_SINE_FREQUENCY_ONE * t[:TELEGRAM_PREAMBLE_LEN_SAMPLES])
ONE = AMPLITUDE * np.sin(2 * np.pi * audioSettings.CODE_SINE_FREQUENCY_ONE * t[:LEN_BIT_ONE])
ZERO = AMPLITUDE * np.sin(2 * np.pi * audioSettings.CODE_SINE_FREQUENCY_ZERO * t[:LEN_BIT_ZERO])
ONE = ONE.reshape(-1, 1)
ZERO = ZERO.reshape(-1, 1)
# carrier
CARRIER = CARRIER_AMPLITUDE * np.sin(2 * np.pi * CARRIER_FREQUENCY_HZ * t[:AUDIO_TX_CHUNK_SAMPLES_LEN])
CARRIER = CARRIER.reshape(-1, 1)
SILENCE = [[0.0]]*AUDIO_TX_CHUNK_SAMPLES_LEN
# for FFT, plot
N = TELEGRAM_PREAMBLE_LEN_SAMPLES # //2 # *2 # FFT on audio-input-chunks..
print("N = "+str(N))
# sample spacing
T = (1.0 / SAMPLING_FREQUENCY)
# check:
if int(audioSettings.AUDIO_RX_CHUNK_SAMPLES_LEN/audioSettings.N) != (audioSettings.AUDIO_RX_CHUNK_SAMPLES_LEN/audioSettings.N):
print("Configuration ERROR: AUDIO_RX_CHUNK_SAMPLES_LEN must be exactly divisible by N!")
exit()
# TODO: how do we consider digits after the comma?
BIN_FREQUENCY_ONE = int(round(CODE_SINE_FREQUENCY_ONE*N/SAMPLING_FREQUENCY))
BIN_FREQUENCY_ZERO = int(round(CODE_SINE_FREQUENCY_ZERO*N/SAMPLING_FREQUENCY))
#####################################################################
# NOTE: we decode a single bit, where we only have e.g. 40 samples and therefore 1 BIN for every 1000Hz, which results in:
# 20 samples per FFT ==> 20.000 Hz / 20 = 1000 Hz per Frequency-Bin ==>
# bin-ONE = 1, bin-ZERO = 2
# *** therefore, we can distinguish ONEs and ZEROs coded in frequencies separated by "at least" 1kHz ! ***
BIN_FREQUENCY_ONE_FINE = int(round(CODE_SINE_FREQUENCY_ONE*LEN_BIT_ONE/SAMPLING_FREQUENCY))
BIN_FREQUENCY_ZERO_FINE = int(round(CODE_SINE_FREQUENCY_ZERO*LEN_BIT_ONE/SAMPLING_FREQUENCY))
#####################################################################
print("BIN_FREQUENCY_ONE = "+str(BIN_FREQUENCY_ONE))
print("BIN_FREQUENCY_ZERO = "+str(BIN_FREQUENCY_ZERO))
print("BIN_FREQUENCY_ONE_FINE = "+str(BIN_FREQUENCY_ONE_FINE))
print("BIN_FREQUENCY_ZERO_FINE = "+str(BIN_FREQUENCY_ZERO_FINE))
# definitions needed to soften borders of telegram with Gauss-/Normal- shape
# this shall avoid generating high-frequencies when coding (beginning of sine from silence is like a step-signal):
#
# |
# | /
# _| ==> _/
#
# for now we use LEN_BIT_ZERO as a reference for the length because it's usually shorter(?) than LEN_BIT_ONE
LEN_BORDER = 0 # LEN_BIT_ZERO*TELEGRAM_TERMINATOR_LEN_BYTES*8
CODE_TRANSITION_SAMPLES = 0 # LEN_BORDER//4 - 1 # 0 # LEN_BORDER//2 - 1
def updateDerivedAudioSettings():
audioSettings.CHANNEL_DELAY_SEC = float(audioSettings.CHANNEL_DELAY_MS/1000.0)
audioSettings.CODE_SINE_FREQUENCY_ONE = audioSettings.CODE_SINE_IN_CHANNEL[CURRENT_FREQUENCY_CHANNEL][0]
audioSettings.CODE_SINE_FREQUENCY_ZERO = audioSettings.CODE_SINE_IN_CHANNEL[CURRENT_FREQUENCY_CHANNEL][1]
audioSettings.NYQUIST_FREQUENCY = (audioSettings.SAMPLING_FREQUENCY/2.0)
audioSettings.SAMPLES_PER_CYCLE_ONE = int(audioSettings.SAMPLING_FREQUENCY / audioSettings.CODE_SINE_FREQUENCY_ONE) + 0 # + 1
audioSettings.SAMPLES_PER_CYCLE_ZERO = int(audioSettings.SAMPLING_FREQUENCY / audioSettings.CODE_SINE_FREQUENCY_ZERO) + 0
audioSettings.LEN_BIT_ONE = audioSettings.SAMPLES_PER_CYCLE_ONE
audioSettings.LEN_BIT_ZERO = (audioSettings.SAMPLES_PER_CYCLE_ZERO*2)
audioSettings.LEN_BIT_BETWEEN_ZERO_AND_ONE = (audioSettings.LEN_BIT_ZERO + (audioSettings.LEN_BIT_ONE - audioSettings.LEN_BIT_ZERO)//2)
audioSettings.LEN_BIT_ZERO_MIN = (audioSettings.LEN_BIT_ZERO - (audioSettings.LEN_BIT_ONE - audioSettings.LEN_BIT_ZERO)//2)
audioSettings.LEN_BIT_ONE_MAX = (audioSettings.LEN_BIT_ONE + (audioSettings.LEN_BIT_ONE - audioSettings.LEN_BIT_ZERO)//2)
audioSettings.TELEGRAM_MAX_LEN_SAMPLES = (audioSettings.LEN_BIT_ONE*audioSettings.TELEGRAM_MAX_LEN_BITS)
audioSettings.TELEGRAM_MAX_LEN_SECONDS = (audioSettings.TELEGRAM_MAX_LEN_SAMPLES/audioSettings.SAMPLING_FREQUENCY)
audioSettings.TELEGRAM_PREAMBLE_LEN_SAMPLES = (audioSettings.LEN_BIT_ONE*audioSettings.TELEGRAM_PREAMBLE_LEN_BITS)
audioSettings.START_LEN_SAMPLES = (audioSettings.START_LEN_BYTES*4*audioSettings.LEN_BIT_ONE) + (audioSettings.START_LEN_BYTES*4*audioSettings.LEN_BIT_ZERO)
audioSettings.MAX_TEXT_LEN = (audioSettings.DATA_MAX_LEN_BYTES*500)
audioSettings.AUDIO_TX_CHUNK_SAMPLES_LEN = int(audioSettings.TELEGRAM_MAX_LEN_SAMPLES/audioSettings.MAX_NR_OF_CHUNKS_PER_TELEGRAM)
audioSettings.AUDIO_RX_CHUNK_SAMPLES_LEN = audioSettings.AUDIO_TX_CHUNK_SAMPLES_LEN
audioSettings.AUDIO_CHUNK_BYTES_LEN = int(audioSettings.TELEGRAM_MAX_LEN_BYTES/audioSettings.MAX_NR_OF_CHUNKS_PER_TELEGRAM)
audioSettings.AUDIO_CHUNK_RESOLUTION_DELAY_SEC = audioSettings.AUDIO_TX_CHUNK_SAMPLES_LEN/audioSettings.SAMPLING_FREQUENCY
audioSettings.TX_RETRANSMISSION_SEC = 2*audioSettings.TELEGRAM_MAX_LEN_SECONDS + 2*audioSettings.CHANNEL_DELAY_SEC + audioSettings.TX_RX_PROCESSING_SEC + audioSettings.AUDIO_CHUNK_RESOLUTION_DELAY_SEC
audioSettings.TX_RETRANSMISSION_POLL_PERIODS_SHORT = int(audioSettings.TX_RETRANSMISSION_SEC/audioSettings.TX_POLL_PERIOD_SEC)
audioSettings.TX_RETRANSMISSION_POLL_PERIODS_LONG = int(1.5*audioSettings.TX_RETRANSMISSION_POLL_PERIODS_SHORT)
audioSettings.t = np.linspace(0.0, audioSettings.TELEGRAM_MAX_LEN_SAMPLES, audioSettings.TELEGRAM_MAX_LEN_SAMPLES) / audioSettings.SAMPLING_FREQUENCY
audioSettings.t = audioSettings.t.reshape(-1, 1)
audioSettings.ONE = audioSettings.AMPLITUDE * np.sin(2 * np.pi * audioSettings.CODE_SINE_FREQUENCY_ONE * audioSettings.t[:audioSettings.LEN_BIT_ONE])
audioSettings.ZERO = audioSettings.AMPLITUDE * np.sin(2 * np.pi * audioSettings.CODE_SINE_FREQUENCY_ZERO * audioSettings.t[:audioSettings.LEN_BIT_ZERO])
audioSettings.CARRIER = audioSettings.CARRIER_AMPLITUDE * np.sin(2 * np.pi * audioSettings.CARRIER_FREQUENCY_HZ * t[:audioSettings.AUDIO_TX_CHUNK_SAMPLES_LEN])
###audioSettings.CARRIER[0:audioSettings.SAMPLING_FREQUENCY//audioSettings.CARRIER_FREQUENCY_HZ] = 5.0*audioSettings.CARRIER[0:audioSettings.SAMPLING_FREQUENCY//audioSettings.CARRIER_FREQUENCY_HZ]
audioSettings.ONE = audioSettings.ONE.reshape(-1, 1)
audioSettings.ZERO = audioSettings.ZERO.reshape(-1, 1)
audioSettings.CARRIER = audioSettings.CARRIER.reshape(-1, 1)
audioSettings.SILENCE = [[0.]]*audioSettings.AUDIO_TX_CHUNK_SAMPLES_LEN
audioSettings.N = audioSettings.TELEGRAM_PREAMBLE_LEN_SAMPLES # *2
audioSettings.BIN_FREQUENCY_ONE = int(round(audioSettings.CODE_SINE_FREQUENCY_ONE*audioSettings.N/audioSettings.SAMPLING_FREQUENCY))
audioSettings.BIN_FREQUENCY_ZERO = int(round(audioSettings.CODE_SINE_FREQUENCY_ZERO*audioSettings.N/audioSettings.SAMPLING_FREQUENCY))
audioSettings.BIN_FREQUENCY_ONE_FINE = int(round(audioSettings.CODE_SINE_FREQUENCY_ONE*audioSettings.LEN_BIT_ONE/audioSettings.SAMPLING_FREQUENCY))
audioSettings.BIN_FREQUENCY_ZERO_FINE = int(round(audioSettings.CODE_SINE_FREQUENCY_ZERO*audioSettings.LEN_BIT_ONE/audioSettings.SAMPLING_FREQUENCY))
audioSettings.T = (1.0 / audioSettings.SAMPLING_FREQUENCY)
audioSettings.LEN_BORDER = 0 # audioSettings.LEN_BIT_ZERO*audioSettings.TELEGRAM_TERMINATOR_LEN_BYTES*8
audioSettings.CODE_TRANSITION_SAMPLES = 0 # audioSettings.LEN_BORDER//4 # audioSettings.LEN_BORDER//2 - 1