-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtest_pose.py
124 lines (93 loc) · 5.1 KB
/
test_pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import torch
from torch.autograd import Variable
from scipy.misc import imresize
import numpy as np
from path import Path
import argparse
from tqdm import tqdm
from models import PoseNet
from inverse_warp import pose_vec2mat, invert_mat, compensate_pose
parser = argparse.ArgumentParser(description='Script for DispNet testing with corresponding groundTruth',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("pretrained_posenet", type=str, help="pretrained PoseNet path (for scale factor)")
parser.add_argument("--img-height", default=128, type=int, help="Image height")
parser.add_argument("--img-width", default=416, type=int, help="Image width")
parser.add_argument("--no-resize", action='store_true', help="no resizing is done")
parser.add_argument("--min-depth", default=1e-3)
parser.add_argument("--max-depth", default=80)
parser.add_argument("--dataset-dir", default='.', type=str, help="Dataset directory")
parser.add_argument("--sequences", default=['09'], type=str, nargs='*', help="sequences to test")
parser.add_argument("--output-dir", default=None, type=str, help="Output directory for saving predictions in a big 3D numpy file")
parser.add_argument("--gt-type", default='KITTI', type=str, help="GroundTruth data type", choices=['npy', 'png', 'KITTI', 'stillbox'])
parser.add_argument("--img-exts", default=['png', 'jpg', 'bmp'], nargs='*', type=str, help="images extensions to glob")
parser.add_argument("--rotation-mode", default='euler', choices=['euler', 'quat'], type=str)
@torch.no_grad()
def main():
args = parser.parse_args()
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
if args.gt_type == 'KITTI':
from kitti_eval.pose_evaluation_utils import test_framework_KITTI as test_framework
elif args.gt_type == 'stillbox':
from stillbox_eval.pose_evaluation_utils import test_framework_stillbox as test_framework
weights = torch.load(args.pretrained_posenet)
seq_length = int(weights['state_dict']['conv1.0.weight'].size(1)/3)
pose_net = PoseNet(seq_length=seq_length).to(device)
pose_net.load_state_dict(weights['state_dict'], strict=False)
dataset_dir = Path(args.dataset_dir)
framework = test_framework(dataset_dir, args.sequences, seq_length)
print('{} snippets to test'.format(len(framework)))
errors = np.zeros((len(framework), 2), np.float32)
if args.output_dir is not None:
output_dir = Path(args.output_dir)
output_dir.makedirs_p()
predictions_array = np.zeros((len(framework), seq_length, 3, 4))
for j, sample in enumerate(tqdm(framework)):
imgs = sample['imgs']
h,w,_ = imgs[0].shape
if (not args.no_resize) and (h != args.img_height or w != args.img_width):
imgs = [imresize(img, (args.img_height, args.img_width)).astype(np.float32) for img in imgs]
imgs = [torch.from_numpy(np.transpose(img, (2,0,1))) for img in imgs]
imgs = torch.stack(imgs).unsqueeze(0).to(device)
imgs = 2*(imgs/255 - 0.5)
poses = pose_net(imgs)
inv_transform_matrices = pose_vec2mat(poses, rotation_mode=args.rotation_mode)
transform_matrices = invert_mat(inv_transform_matrices)
# rot_matrices = np.linalg.inv(inv_transform_matrices[:,:,:3])
# tr_vectors = rot_matrices @ inv_transform_matrices[:,:,-1:]
# transform_matrices = np.concatenate([rot_matrices, tr_vectors], axis=-1)
# first_transform = transform_matrices[0]
# final_poses = np.linalg.inv(first_transform[:,:3]) @ transform_matrices
# final_poses[:,:,-1:] -= np.linalg.inv(first_transform[:,:3]) @ first_transform[:,-1:]
final_poses = compensate_pose(transform_matrices, transform_matrices[:,0])[0].cpu().numpy()
if args.output_dir is not None:
predictions_array[j] = final_poses
ATE, RE = compute_pose_error(sample['poses'][1:], final_poses[1:])
errors[j] = ATE, RE
mean_errors = errors.mean(0)
std_errors = errors.std(0)
error_names = ['ATE','RE']
print('')
print("Results")
print("\t {:>10}, {:>10}".format(*error_names))
print("mean \t {:10.4f}, {:10.4f}".format(*mean_errors))
print("std \t {:10.4f}, {:10.4f}".format(*std_errors))
if args.output_dir is not None:
np.save(output_dir/'predictions.npy', predictions_array)
def compute_pose_error(gt, pred):
ATE = 0
RE = 0
snippet_length = gt.shape[0]
scale_factor = np.sum(gt[:,:,-1] * pred[:,:,-1])/np.sum(pred[:,:,-1] ** 2)
for gt_pose, pred_pose in zip(gt, pred):
ATE += np.linalg.norm(gt_pose[:,-1] - scale_factor * pred_pose[:,-1])
# Residual matrix to which we compute angle's sin and cos
R = gt_pose[:,:3] @ np.linalg.inv(pred_pose[:,:3])
s = np.linalg.norm([R[0,1]-R[1,0],
R[1,2]-R[2,1],
R[0,2]-R[2,0]])
c = np.trace(R) - 1
# Note: we actually compute double of cos and sin, but arctan2 is invariant to scale
RE += np.arctan2(s,c)
return ATE/snippet_length, RE/snippet_length
if __name__ == '__main__':
main()