forked from MerlijnBroekers2/ScreamingInsects
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSensitivity.py
532 lines (448 loc) · 22.7 KB
/
Sensitivity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
import numpy as np
import matplotlib.pyplot as plt
from InsectSim import run_simulation
import seaborn as sns
import time
import pandas as pd
def average_fitness_over_runs(runs, **simulation_params):
fitness_values = []
for _ in range(runs):
fitness, _ = run_simulation(**simulation_params)
fitness_values.append(fitness)
return np.mean(fitness_values)
def grid_size_vs_num_agents():
grid_sizes = np.arange(20, 201, 40)
num_agents = np.arange(20, 401, 40)
fitness_matrix = np.zeros((len(grid_sizes), len(num_agents)))
for i, grid_size in enumerate(grid_sizes):
for j, agents in enumerate(num_agents):
fitness_matrix[i, j] = average_fitness_over_runs(
5, grid_size=grid_size, num_agents=agents, scout_percentage=0.1,
resource_positions=[(10, 10), (70, 60)], base_positions=[(50, 50)],
max_hearing_distance=10, predator_radius=5, hazard_positions=[(25, 25), (60, 60)],
hazard_radius=7, agent_speed=1.0, base_speed=0.0, resource_speed=0.0, predator_speed=0.25,
steps=500, detection_radius=5, resource_quantity=300, aggressiveness=0.5, num_predators=2,
safe_zone=None, create_csv=False)
plt.figure(figsize=(10, 8))
plt.imshow(fitness_matrix, aspect='auto', cmap='viridis', extent=[20, 400, 200, 20])
plt.colorbar(label='Average Fitness')
plt.xlabel('Number of Agents')
plt.ylabel('Grid Size')
plt.title('Grid Size vs Number of Agents')
plt.show()
def base_resource_speed_vs_fitness():
base_resource_speeds = np.arange(0.05, 0.55, 0.05)
fitness_values = []
for speed in base_resource_speeds:
fitness = average_fitness_over_runs(
10, grid_size=80, num_agents=100, scout_percentage=0.1,
resource_positions=[(10, 10), (70, 60)], base_positions=[(50, 50)],
max_hearing_distance=10, predator_radius=5, hazard_positions=[(25, 25), (60, 60)],
hazard_radius=7, agent_speed=1.0, base_speed=0.0, resource_speed=speed, predator_speed=0.25,
steps=500, detection_radius=5, resource_quantity=300, aggressiveness=0.5, num_predators=2,
safe_zone=None, create_csv=False)
fitness_values.append(fitness)
plt.figure()
plt.plot(base_resource_speeds, fitness_values, marker='o')
plt.xlabel('Base Resource Speed')
plt.ylabel('Average Fitness')
plt.title('Base Resource Speed vs Fitness')
plt.grid(True)
plt.show()
def predator_speed_vs_fitness():
predator_speeds = np.arange(0.1, 1.1, 0.1)
fitness_values = []
for speed in predator_speeds:
fitness = average_fitness_over_runs(
10, grid_size=80, num_agents=100, scout_percentage=0.1,
resource_positions=[(10, 10), (70, 60)], base_positions=[(50, 50)],
max_hearing_distance=10, predator_radius=5, hazard_positions=[(25, 25), (60, 60)],
hazard_radius=7, agent_speed=1.0, base_speed=0.0, resource_speed=0.0, predator_speed=speed,
steps=500, detection_radius=5, resource_quantity=300, aggressiveness=0.5, num_predators=2,
safe_zone=None, create_csv=False)
fitness_values.append(fitness)
plt.figure()
plt.plot(predator_speeds, fitness_values, marker='o')
plt.xlabel('Predator Speed')
plt.ylabel('Average Fitness')
plt.title('Predator Speed vs Fitness')
plt.grid(True)
plt.show()
def detection_radius_vs_fitness():
detection_radii = np.arange(1, 21, 1)
fitness_values = []
for radius in detection_radii:
fitness = average_fitness_over_runs(
10, grid_size=80, num_agents=100, scout_percentage=0.1,
resource_positions=[(10, 10), (70, 60)], base_positions=[(50, 50)],
max_hearing_distance=10, predator_radius=5, hazard_positions=[(25, 25), (60, 60)],
hazard_radius=7, agent_speed=1.0, base_speed=0.0, resource_speed=0.0, predator_speed=0.25,
steps=500, detection_radius=radius, resource_quantity=300, aggressiveness=0.5, num_predators=2,
safe_zone=None, create_csv=False)
fitness_values.append(fitness)
plt.figure()
plt.plot(detection_radii, fitness_values, marker='o')
plt.xlabel('Detection Radius')
plt.ylabel('Average Fitness')
plt.title('Detection Radius vs Fitness')
plt.grid(True)
plt.show()
def fitness_vs_steps():
steps_values = np.arange(100, 1100, 100)
fitness_values = []
for steps in steps_values:
fitness = average_fitness_over_runs(
10, grid_size=80, num_agents=100, scout_percentage=0.1,
resource_positions=[(10, 10), (70, 60)], base_positions=[(50, 50)],
max_hearing_distance=10, predator_radius=5, hazard_positions=[(25, 25), (60, 60)],
hazard_radius=7, agent_speed=1.0, base_speed=0.0, resource_speed=0.0, predator_speed=0.25,
steps=steps, detection_radius=5, resource_quantity=300, aggressiveness=0.5, num_predators=2,
safe_zone=None, create_csv=False)
fitness_values.append(fitness)
plt.figure()
plt.plot(steps_values, fitness_values, marker='o')
plt.xlabel('Steps')
plt.ylabel('Average Fitness')
plt.title('Fitness vs Steps of the Simulation')
plt.grid(True)
plt.show()
def grid_size_vs_detection_radius():
grid_sizes = np.arange(40, 201, 20)
detection_radii = np.arange(1, 21, 1)
fitness_matrix = np.zeros((len(grid_sizes), len(detection_radii)))
for i, grid_size in enumerate(grid_sizes):
for j, radius in enumerate(detection_radii):
fitness_matrix[i, j] = average_fitness_over_runs(
10, grid_size=grid_size, num_agents=100, scout_percentage=0.1,
resource_positions=[(10, 10), (70, 60)], base_positions=[(50, 50)],
max_hearing_distance=10, predator_radius=5, hazard_positions=[(25, 25), (60, 60)],
hazard_radius=7, agent_speed=1.0, base_speed=0.0, resource_speed=0.0, predator_speed=0.25,
steps=500, detection_radius=radius, resource_quantity=300, aggressiveness=0.5, num_predators=2,
safe_zone=None, create_csv=False)
plt.figure(figsize=(10, 8))
plt.imshow(fitness_matrix, aspect='auto', cmap='viridis', extent=[1, 20, 200, 40])
plt.colorbar(label='Average Fitness')
plt.xlabel('Detection Radius')
plt.ylabel('Grid Size')
plt.title('Grid Size vs Detection Radius')
plt.show()
def num_agents_vs_agent_speed():
num_agents = np.arange(20, 401, 20)
agent_speeds = np.arange(0.2, 2.2, 0.2)
fitness_matrix = np.zeros((len(num_agents), len(agent_speeds)))
for i, agents in enumerate(num_agents):
for j, speed in enumerate(agent_speeds):
fitness_matrix[i, j] = average_fitness_over_runs(
10, grid_size=80, num_agents=agents, scout_percentage=0.1,
resource_positions=[(10, 10), (70, 60)], base_positions=[(50, 50)],
max_hearing_distance=10, predator_radius=5, hazard_positions=[(25, 25), (60, 60)],
hazard_radius=7, agent_speed=speed, base_speed=0.0, resource_speed=0.0, predator_speed=0.25,
steps=500, detection_radius=5, resource_quantity=300, aggressiveness=0.5, num_predators=2,
safe_zone=None, create_csv=False)
plt.figure(figsize=(10, 8))
plt.imshow(fitness_matrix, aspect='auto', cmap='viridis', extent=[0.2, 2.0, 400, 20])
plt.colorbar(label='Average Fitness')
plt.xlabel('Agent Speed')
plt.ylabel('Number of Agents')
plt.title('Number of Agents vs Agent Speed')
plt.show()
def predator_speed_vs_hazard_radius():
predator_speeds = np.arange(0.1, 1.1, 0.1)
hazard_radii = np.arange(1, 11, 1)
fitness_matrix = np.zeros((len(predator_speeds), len(hazard_radii)))
for i, speed in enumerate(predator_speeds):
for j, radius in enumerate(hazard_radii):
fitness_matrix[i, j] = average_fitness_over_runs(
10, grid_size=80, num_agents=100, scout_percentage=0.1,
resource_positions=[(10, 10), (70, 60)], base_positions=[(50, 50)],
max_hearing_distance=10, predator_radius=5, hazard_positions=[(25, 25), (60, 60)],
hazard_radius=radius, agent_speed=1.0, base_speed=0.0, resource_speed=0.0, predator_speed=speed,
steps=500, detection_radius=5, resource_quantity=300, aggressiveness=0.5, num_predators=2,
safe_zone=None, create_csv=False)
plt.figure(figsize=(10, 8))
plt.imshow(fitness_matrix, aspect='auto', cmap='viridis', extent=[1, 10, 1.0, 0.1])
plt.colorbar(label='Average Fitness')
plt.xlabel('Hazard Radius')
plt.ylabel('Predator Speed')
plt.title('Predator Speed vs Hazard Radius')
plt.show()
def grid_size_vs_num_agents_3d():
grid_sizes = np.arange(40, 201, 20)
num_agents = np.arange(20, 401, 20)
X, Y = np.meshgrid(grid_sizes, num_agents)
Z = np.zeros(X.shape)
for i in range(X.shape[0]):
for j in range(X.shape[1]):
Z[i, j] = average_fitness_over_runs(
10, grid_size=grid_sizes[j], num_agents=num_agents[i], scout_percentage=0.1,
resource_positions=[(10, 10), (70, 60)], base_positions=[(50, 50)],
max_hearing_distance=10, predator_radius=5, hazard_positions=[(25, 25), (60, 60)],
hazard_radius=7, agent_speed=1.0, base_speed=0.0, resource_speed=0.0, predator_speed=0.25,
steps=500, detection_radius=5, resource_quantity=300, aggressiveness=0.5, num_predators=2,
safe_zone=None, create_csv=False)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X, Y, Z, cmap='viridis')
ax.set_xlabel('Grid Size')
ax.set_ylabel('Number of Agents')
ax.set_zlabel('Average Fitness')
ax.set_title('Grid Size and Number of Agents vs Fitness')
plt.show()
def fitness_with_randomization(runs, **simulation_params):
fitness_values = []
for seed in range(runs):
np.random.seed(seed)
fitness, _ = run_simulation(**simulation_params)
fitness_values.append(fitness)
return fitness_values
def analyze_randomization_impact():
grid_size = 80
num_agents = 100
scout_percentage = 0.1
resource_positions = [(10, 10), (70, 60)]
base_positions = [(50, 50)]
max_hearing_distance = 10
predator_radius = 5
hazard_positions = [(25, 25), (60, 60)]
hazard_radius = 7
agent_speed = 1.0
base_speed = 0.0
resource_speed = 0.0
predator_speed = 0.25
steps = 500
detection_radius = 5
resource_quantity = 300
aggressiveness = 0.5
num_predators = 2
# Run the simulation with randomization
runs = 30
fitness_values = fitness_with_randomization(
runs, grid_size=grid_size, num_agents=num_agents, scout_percentage=scout_percentage,
resource_positions=resource_positions, base_positions=base_positions,
max_hearing_distance=max_hearing_distance, predator_radius=predator_radius,
hazard_positions=hazard_positions, hazard_radius=hazard_radius,
agent_speed=agent_speed, base_speed=base_speed, resource_speed=resource_speed, predator_speed=predator_speed,
steps=steps, detection_radius=detection_radius, resource_quantity=resource_quantity,
aggressiveness=aggressiveness, num_predators=num_predators, safe_zone=None, create_csv=False)
# Plot the distribution of fitness values
plt.figure(figsize=(10, 6))
sns.boxplot(data=fitness_values)
plt.title('Impact of Randomization on Fitness')
plt.ylabel('Fitness')
plt.xlabel('Simulation Runs')
plt.show()
def predator_radius_vs_aggressiveness():
predator_radii = np.arange(1, 22, 2)
aggressiveness_levels = np.arange(0.1, 1.1, 0.1)
fitness_matrix = np.zeros((len(predator_radii), len(aggressiveness_levels)))
for i, radius in enumerate(predator_radii):
for j, aggressiveness in enumerate(aggressiveness_levels):
fitness_matrix[i, j] = average_fitness_over_runs(
40, grid_size=100, num_agents=50, scout_percentage=0.1,
resource_positions=[(10, 10), (70, 70)], base_positions=[(50, 50)],
max_hearing_distance=45, predator_radius=radius, hazard_positions=[],
hazard_radius=1, agent_speed=1.0, base_speed=0.0, resource_speed=0.0, predator_speed=0.25,
steps=250, detection_radius=5, resource_quantity=300, aggressiveness=aggressiveness, num_predators=4,
safe_zone=None, create_csv=False)
plt.figure(figsize=(10, 8))
plt.imshow(fitness_matrix, aspect='auto', cmap='viridis', extent=[0.1, 1.0, 1, 20])
plt.colorbar(label='Average Fitness')
plt.xlabel('Aggressiveness')
plt.ylabel('Predator Radius')
plt.title('Predator Radius vs Aggressiveness')
plt.show()
def measure_runtime(num_agents, steps, **simulation_params):
start_time = time.time()
run_simulation(num_agents=num_agents, steps=steps, **simulation_params)
return time.time() - start_time
def sensitivity_analysis_runtime():
num_agents = np.arange(20, 401, 40)
steps = np.arange(100, 2001, 200)
runtime_matrix = np.zeros((len(num_agents), len(steps)))
for i, agents in enumerate(num_agents):
for j, step in enumerate(steps):
runtime_matrix[i, j] = measure_runtime(
num_agents=agents, steps=step, grid_size=80, scout_percentage=0.1,
resource_positions=[(10, 10), (70, 60)], base_positions=[(50, 50)],
max_hearing_distance=10, predator_radius=5, hazard_positions=[(25, 25), (60, 60)],
hazard_radius=7, agent_speed=1.0, base_speed=0.0, resource_speed=0.0, predator_speed=0.25,
detection_radius=5, resource_quantity=300, aggressiveness=0.5, num_predators=2,
safe_zone=None, create_csv=False)
plt.figure(figsize=(10, 8))
sns.heatmap(runtime_matrix, xticklabels=steps, yticklabels=num_agents, cmap='viridis', annot=True, fmt=".2f")
plt.xlabel('Steps')
plt.ylabel('Number of Agents')
plt.title('Runtime Sensitivity Analysis\n(Number of Agents vs Steps)')
plt.show()
def is_valid_position(position, other_positions, grid_size, buffer=5):
"""Check if a position is valid, i.e., within the grid and not overlapping with other positions."""
x, y = position
if x < 0 or x >= grid_size or y < 0 or y >= grid_size:
return False
for other in other_positions:
ox, oy = other
if np.sqrt((x - ox) ** 2 + (y - oy) ** 2) < buffer:
return False
return True
def generate_valid_positions(grid_size, num_positions, buffer=5):
"""Generate valid positions for resources and bases."""
positions = []
while len(positions) < num_positions:
candidate = (np.random.randint(0, grid_size), np.random.randint(0, grid_size))
if is_valid_position(candidate, positions, grid_size, buffer):
positions.append(candidate)
return positions
def agents_hearing_gridsize():
# Define the ranges for grid size, number of agents, and hearing distance
grid_sizes = np.arange(40, 201, 40) # Grid sizes from 40 to 200 in steps of 40
num_agents = np.arange(20, 101, 20) # Number of agents from 20 to 100 in steps of 20
hearing_distances = np.arange(20, 101, 20) # Hearing distances from 20 to 100 in steps of 20
# Initialize a dictionary to store fitness values
results = []
# Iterate over all combinations of the parameters
for grid_size in grid_sizes:
resource_positions = generate_valid_positions(grid_size, 2, buffer=5)
base_positions = generate_valid_positions(grid_size, 1, buffer=5)
hazard_positions = generate_valid_positions(grid_size, 2, buffer=5)
for agents in num_agents:
for hearing_distance in hearing_distances:
average_fitness = average_fitness_over_runs(
10, grid_size=grid_size, num_agents=agents, scout_percentage=0.1,
resource_positions=resource_positions, base_positions=base_positions,
max_hearing_distance=hearing_distance, predator_radius=5, hazard_positions=hazard_positions,
hazard_radius=1, agent_speed=1.0, base_speed=0.0, resource_speed=0.0, predator_speed=0.25,
steps=500, detection_radius=5, resource_quantity=300, aggressiveness=0.5, num_predators=0,
safe_zone=None, create_csv=False)
results.append((grid_size, agents, hearing_distance, average_fitness))
# Convert results to a DataFrame
df_results = pd.DataFrame(results, columns=['grid_size', 'num_agents', 'hearing_distance', 'fitness'])
# Create plots to visualize the sensitivity analysis
fig, axes = plt.subplots(1, 3, figsize=(20, 6))
sns.heatmap(
data=df_results.pivot_table(index='grid_size', columns='num_agents', values='fitness'),
ax=axes[0],
cmap='viridis',
cbar_kws={'label': 'Average Fitness'},
)
axes[0].set_title('Grid Size vs Number of Agents')
axes[0].set_xlabel('Number of Agents')
axes[0].set_ylabel('Grid Size')
sns.heatmap(
data=df_results.pivot_table(index='grid_size', columns='hearing_distance', values='fitness'),
ax=axes[1],
cmap='viridis',
cbar_kws={'label': 'Average Fitness'},
)
axes[1].set_title('Grid Size vs Hearing Distance')
axes[1].set_xlabel('Hearing Distance')
axes[1].set_ylabel('Grid Size')
sns.heatmap(
data=df_results.pivot_table(index='num_agents', columns='hearing_distance', values='fitness'),
ax=axes[2],
cmap='viridis',
cbar_kws={'label': 'Average Fitness'},
)
axes[2].set_title('Number of Agents vs Hearing Distance')
axes[2].set_xlabel('Hearing Distance')
axes[2].set_ylabel('Number of Agents')
plt.tight_layout()
plt.show()
def fitness_vs_hearing_distance():
# Define the grid size and number of agents
grid_size = 100
num_agents = 50
hearing_distances = np.arange(5, 101, 5) # Hearing distances from 1 to 100 in steps of 5
# Initialize a list to store fitness values
fitness_values = []
# Iterate over hearing distances and calculate average fitness
for hearing_distance in hearing_distances:
average_fitness = average_fitness_over_runs(
40, grid_size=grid_size, num_agents=num_agents, scout_percentage=0.1,
resource_positions=[(10, 10), (90, 90)], base_positions=[(50, 50)],
max_hearing_distance=hearing_distance, predator_radius=5, hazard_positions=[(25, 25), (75, 75)],
hazard_radius=7, agent_speed=1.0, base_speed=0.0, resource_speed=0.0, predator_speed=0.25,
steps=500, detection_radius=5, resource_quantity=300, aggressiveness=0.5, num_predators=0,
safe_zone=None, create_csv=False)
fitness_values.append(average_fitness)
# Plot fitness against hearing distance
plt.figure(figsize=(10, 6))
plt.plot(hearing_distances, fitness_values, marker='o')
plt.xlabel('Hearing Distance')
plt.ylabel('Average Fitness')
plt.title('Fitness vs Hearing Distance for Grid Size 100 and 50 Agents')
plt.grid(True)
plt.show()
def fitness_vs_hearing_distance_and_agents():
# Define the grid size and the range for hearing distances and number of agents
grid_size = 100
hearing_distances = np.arange(5, 101, 5) # Hearing distances from 5 to 100 in steps of 5
num_agents_list = np.arange(50, 101, 25) # Number of agents from 20 to 100 in steps of 20
# Initialize a dictionary to store results
results = {num_agents: [] for num_agents in num_agents_list}
# Iterate over number of agents and hearing distances, and calculate average fitness
for num_agents in num_agents_list:
for hearing_distance in hearing_distances:
average_fitness = average_fitness_over_runs(
40, grid_size=grid_size, num_agents=num_agents, scout_percentage=0.1,
resource_positions=[(10, 10), (90, 90)], base_positions=[(50, 50)],
max_hearing_distance=hearing_distance, predator_radius=5, hazard_positions=[(25, 25), (75, 75)],
hazard_radius=7, agent_speed=1.0, base_speed=0.0, resource_speed=0.0, predator_speed=0.25,
steps=500, detection_radius=5, resource_quantity=300, aggressiveness=0.5, num_predators=0,
safe_zone=None, create_csv=False)
results[num_agents].append(average_fitness)
# Plot fitness against hearing distance for different number of agents
plt.figure(figsize=(12, 8))
for num_agents, fitness_values in results.items():
plt.plot(hearing_distances, fitness_values, marker='o', label=f'{num_agents} Agents')
plt.xlabel('Hearing Distance')
plt.ylabel('Average Fitness')
plt.title('Fitness vs Hearing Distance for Different Numbers of Agents')
plt.legend()
plt.grid(True)
plt.show()
def fitness_with_spread(runs, **simulation_params):
fitness_values = []
for _ in range(runs):
fitness, _ = run_simulation(**simulation_params)
fitness_values.append(fitness)
return fitness_values
def fitness_vs_steps_with_spread():
steps_values = np.arange(10, 101, 1)
all_fitness_values = []
for steps in steps_values:
fitness_values = fitness_with_spread(
50, grid_size=100, num_agents=50, scout_percentage=0.1,
resource_positions=[(10, 10), (70, 70)], base_positions=[(50, 50)],
max_hearing_distance=45, predator_radius=5, hazard_positions=[(25, 25), (60, 60)],
hazard_radius=1, agent_speed=1.0, base_speed=0.0, resource_speed=0.0, predator_speed=0.25,
steps=steps, detection_radius=5, resource_quantity=4000, aggressiveness=0.5, num_predators=0,
safe_zone=None, create_csv=False)
all_fitness_values.append((steps, fitness_values))
# Calculate mean, 25th, and 75th percentiles
steps_list = []
mean_fitness = []
lower_percentile = []
upper_percentile = []
for steps, fitness_values in all_fitness_values:
steps_list.append(steps)
mean_fitness.append(np.mean(fitness_values))
lower_percentile.append(np.percentile(fitness_values, 25))
upper_percentile.append(np.percentile(fitness_values, 75))
# Plotting the results
plt.figure(figsize=(12, 8))
plt.plot(steps_list, mean_fitness, label='Mean Fitness', color='b')
plt.fill_between(steps_list, lower_percentile, upper_percentile, color='gray', alpha=0.3,
label='25th-75th Percentile')
plt.title('Sensitivity Analysis: Fitness vs Steps')
plt.xlabel('Steps')
plt.ylabel('Fitness')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
if __name__ == "__main__":
# fitness_vs_hearing_distance()
# fitness_vs_steps_with_spread()
# grid_size_vs_num_agents()
predator_radius_vs_aggressiveness()
# sensitivity_analysis_runtime()