-
-
Notifications
You must be signed in to change notification settings - Fork 283
/
core-cpu-cache.c
1328 lines (1157 loc) · 31 KB
/
core-cpu-cache.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (C) 2016-2017 Intel, Ltd.
* Copyright (C) 2016-2021 Canonical, Ltd.
* Copyright (C) 2021-2024 Colin Ian King.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "stress-ng.h"
#include "core-asm-x86.h"
#include "core-arch.h"
#include "core-builtin.h"
#include "core-cpu-cache.h"
#include <ctype.h>
#if defined(HAVE_SYS_AUXV_H)
#include <sys/auxv.h>
#endif
typedef enum {
STRESS_CACHE_SIZE,
STRESS_CACHE_LINE_SIZE,
STRESS_CACHE_WAYS
} cache_size_type_t;
#if defined(__linux__)
static const char stress_sys_cpu_prefix[] = "/sys/devices/system/cpu";
static const char stress_cpu_cache_dir[] = "cache";
#endif
/*
* stress_cpu_cache_get_cpu()
*
*/
static inline unsigned int stress_cpu_cache_get_cpu(const stress_cpu_cache_cpus_t *cpus)
{
const unsigned int cpu = stress_get_cpu();
return (cpu >= cpus->count) ? 0 : cpu;
}
#if defined(__linux__)
/*
* stress_get_string_from_file()
* read data from file into a fixed size buffer
* and remove any trailing newlines
*/
static int stress_get_string_from_file(
const char *path,
char *tmp,
const size_t tmp_len)
{
char *ptr;
ssize_t ret;
/* system read will zero fill tmp */
ret = stress_system_read(path, tmp, tmp_len);
if (ret < 0)
return -1;
ptr = strchr(tmp, '\n');
if (ptr)
*ptr = '\0';
return 0;
}
#endif
/*
* stress_cpu_cache_get_by_cpu()
* @cpu: cpu to consider.
* @cache_level: numeric cache level (1-indexed).
* Obtain the cpu cache indexed by @cache_level.
*
* POTENTIAL BUG: assumes only 1 data cache per CPU cache level.
*
* Returns: stress_cpu_cache_t, or NULL on error.
*/
static stress_cpu_cache_t * stress_cpu_cache_get_by_cpu(
const stress_cpu_cache_cpu_t *cpu,
const int cache_level)
{
uint32_t i;
if (!cpu || !cache_level)
return NULL;
for (i = 0; i < cpu->cache_count; i++) {
stress_cpu_cache_t *p = &cpu->caches[i];
if (p->level != cache_level)
continue;
/* we want a data cache */
if (p->type != CACHE_TYPE_INSTRUCTION)
return p;
}
return NULL;
}
/*
* stress_cpu_cache_get_max_level()
* @cpus: array of cpus to query.
* Determine the maximum cache level available on the system.
*
* Returns: 1-index value denoting highest cache level, or 0 on error.
*/
uint16_t stress_cpu_cache_get_max_level(const stress_cpu_cache_cpus_t *cpus)
{
stress_cpu_cache_cpu_t *cpu;
uint32_t i;
uint16_t max = 0;
if (!cpus) {
pr_dbg("%s: invalid cpus parameter\n", __func__);
return 0;
}
cpu = &cpus->cpus[stress_cpu_cache_get_cpu(cpus)];
for (i = 0; i < cpu->cache_count; i++) {
const stress_cpu_cache_t *cache = &cpu->caches[i];
max = cache->level > max ? cache->level : max;
}
return max;
}
/*
* stress_cpu_cache_get()
* @cpus: array of cpus to query.
* @cache_level: numeric cache level (1-indexed).
* Obtain a cpu cache of level @cache_level.
*
* Returns: stress_cpu_cache_t pointer, or NULL on error.
*/
stress_cpu_cache_t *stress_cpu_cache_get(const stress_cpu_cache_cpus_t *cpus, const uint16_t cache_level)
{
const stress_cpu_cache_cpu_t *cpu;
if (!cpus) {
pr_dbg("%s: invalid cpus parameter\n", __func__);
return NULL;
}
if (!cache_level) {
pr_dbg("%s: invalid cache_level: %d\n",
__func__, cache_level);
return NULL;
}
cpu = &cpus->cpus[stress_cpu_cache_get_cpu(cpus)];
return stress_cpu_cache_get_by_cpu(cpu, cache_level);
}
#if defined(__linux__) && \
defined(STRESS_ARCH_SPARC)
static int stress_cpu_cache_get_value(
const char *cpu_path,
const char *file,
uint64_t *value)
{
char path[PATH_MAX];
char tmp[128];
(void)stress_mk_filename(path, sizeof(path), cpu_path, file);
if (stress_get_string_from_file(path, tmp, sizeof(tmp)) == 0) {
if (sscanf(tmp, "%" SCNu64, value) == 1)
return 0;
}
return -1;
}
#endif
#if defined(__linux__) && \
defined(STRESS_ARCH_ALPHA)
/*
* stress_cpu_cache_get_alpha()
* find cache information as provided by linux Alpha from
* /proc/cpu. Assume cache layout for 1st CPU is same for
* all CPUs.
*/
static int stress_cpu_cache_get_alpha(
stress_cpu_cache_cpu_t *cpu,
const char *cpu_path)
{
FILE *fp;
const size_t count = 4;
size_t idx = 0;
(void)cpu_path;
/*
* parse /proc/cpu info in the form:
* L1 Icache : 64K, 2-way, 64b line
* L1 Dcache : 64K, 2-way, 64b line
* L2 cache : n/a
* L3 cache : n/a
*/
cpu->caches = (stress_cpu_cache_t *)calloc(count, sizeof(*(cpu->caches)));
if (!cpu->caches) {
pr_err("failed to allocate %zu bytes for cpu caches\n",
count * sizeof(*(cpu->caches)));
return 0;
}
fp = fopen("/proc/cpuinfo", "r");
if (fp) {
char buffer[4096];
while ((idx < count) && fgets(buffer, sizeof(buffer), fp)) {
stress_cpu_cache_type_t cache_type = CACHE_TYPE_UNKNOWN;
uint16_t cache_level = 0;
char *ptr;
uint64_t cache_size;
int cache_ways, cache_line_size, n;
if (!strncmp("L1 Icache", buffer, 9)) {
cache_type = CACHE_TYPE_INSTRUCTION;
cache_level = 1;
} else if (!strncmp("L1 Dcache", buffer, 9)) {
cache_type = CACHE_TYPE_DATA;
cache_level = 1;
} else if (!strncmp("L2 cache", buffer, 8)) {
cache_type = CACHE_TYPE_DATA;
cache_level = 2;
} else if (!strncmp("L3 cache", buffer, 8)) {
cache_type = CACHE_TYPE_DATA;
cache_level = 3;
} else {
continue;
}
ptr = strchr(buffer, ':');
if (!ptr)
continue;
ptr++;
cache_size = 0;
cache_ways = 0;
cache_line_size = 0;
n = sscanf(ptr, "%" SCNu64 "K, %d-way, %db line",
&cache_size, &cache_ways, &cache_line_size);
if (n != 3)
continue;
cpu->caches[idx].type = cache_type;
cpu->caches[idx].level = cache_level;
cpu->caches[idx].size = cache_size * 1024;
cpu->caches[idx].ways = cache_ways;
cpu->caches[idx].line_size = cache_line_size;
idx++;
}
(void)fclose(fp);
}
if (idx == 0) {
free(cpu->caches);
cpu->caches = NULL;
cpu->cache_count = 0;
return 0;
}
cpu->cache_count = idx;
return idx;
}
#endif
#if defined(__APPLE__)
/*
* stress_cpu_cache_get_apple()
* find cache information as provided by BSD sysctl
*/
static int stress_cpu_cache_get_apple(stress_cpu_cache_cpu_t *cpu)
{
typedef struct {
const char *name; /* sysctl name */
const stress_cpu_cache_type_t type; /* cache type */
const uint16_t level; /* cache level 1, 2 */
const cache_size_type_t size_type; /* cache size field */
const size_t idx; /* map to cpu->cache array index */
} cache_info_t;
static const cache_info_t cache_info[] = {
{ "hw.cachelinesize", CACHE_TYPE_DATA, 1, STRESS_CACHE_LINE_SIZE, 0 },
{ "hw.l1dcachesize", CACHE_TYPE_DATA, 1, STRESS_CACHE_SIZE, 0 },
{ "hw.cachelinesize", CACHE_TYPE_INSTRUCTION, 1, STRESS_CACHE_LINE_SIZE, 1 },
{ "hw.l1icachesize", CACHE_TYPE_INSTRUCTION, 1, STRESS_CACHE_SIZE, 1 },
{ "hw.l2cachesize", CACHE_TYPE_UNIFIED, 2, STRESS_CACHE_SIZE, 2 },
{ "hw.l3cachesize", CACHE_TYPE_UNIFIED, 3, STRESS_CACHE_SIZE, 2 },
};
const size_t count = 3;
size_t i;
bool valid = false;
cpu->caches = (stress_cpu_cache_t *)calloc(count, sizeof(*(cpu->caches)));
if (!cpu->caches) {
pr_err("failed to allocate %zu bytes for cpu caches\n",
count * sizeof(*(cpu->caches)));
return 0;
}
for (i = 0; i < SIZEOF_ARRAY(cache_info); i++) {
const size_t idx = cache_info[i].idx;
uint64_t value;
value = stress_bsd_getsysctl_uint64(cache_info[i].name);
cpu->caches[idx].type = cache_info[i].type;
cpu->caches[idx].level = cache_info[i].level;
switch (cache_info[i].size_type) {
case STRESS_CACHE_SIZE:
cpu->caches[idx].size = value;
valid = true;
break;
case STRESS_CACHE_LINE_SIZE:
cpu->caches[idx].line_size = (uint32_t)value;
valid = true;
break;
case STRESS_CACHE_WAYS:
cpu->caches[idx].size = (uint32_t)value;
valid = true;
break;
default:
break;
}
}
if (!valid) {
free(cpu->caches);
cpu->caches = NULL;
cpu->cache_count = 0;
return 0;
}
cpu->cache_count = count;
return count;
}
#endif
#if defined(__linux__) && \
defined(STRESS_ARCH_SPARC)
/*
* stress_cpu_cache_get_sparc64()
* find cache information as provided by linux SPARC64
* /sys/devices/system/cpu/cpu0
*/
static int stress_cpu_cache_get_sparc64(
stress_cpu_cache_cpu_t *cpu,
const char *cpu_path)
{
typedef struct {
const char *filename; /* /sys proc name */
const stress_cpu_cache_type_t type; /* cache type */
const uint16_t level; /* cache level 1, 2 */
const cache_size_type_t size_type; /* cache size field */
const size_t idx; /* map to cpu->cache array index */
} cache_info_t;
static const cache_info_t cache_info[] = {
{ "l1_dcache_line_size", CACHE_TYPE_DATA, 1, STRESS_CACHE_LINE_SIZE, 0 },
{ "l1_dcache_size", CACHE_TYPE_DATA, 1, STRESS_CACHE_SIZE, 0 },
{ "l1_icache_line_size", CACHE_TYPE_INSTRUCTION, 1, STRESS_CACHE_LINE_SIZE, 1 },
{ "l1_icache_size", CACHE_TYPE_INSTRUCTION, 1, STRESS_CACHE_SIZE, 1 },
{ "l2_cache_line_size", CACHE_TYPE_UNIFIED, 2, STRESS_CACHE_LINE_SIZE, 2 },
{ "l2_cache_size", CACHE_TYPE_UNIFIED, 2, STRESS_CACHE_SIZE, 2 },
};
const size_t count = 3;
size_t i;
bool valid = false;
cpu->caches = (stress_cpu_cache_t *)calloc(count, sizeof(*(cpu->caches)));
if (!cpu->caches) {
pr_err("failed to allocate %zu bytes for cpu caches\n",
count * sizeof(*(cpu->caches)));
return 0;
}
for (i = 0; i < SIZEOF_ARRAY(cache_info); i++) {
const size_t idx = cache_info[i].idx;
uint64_t value;
if (stress_cpu_cache_get_value(cpu_path, cache_info[i].filename, &value) < 0)
continue;
cpu->caches[idx].type = cache_info[i].type;
cpu->caches[idx].level = cache_info[i].level;
switch (cache_info[i].size_type) {
case STRESS_CACHE_SIZE:
cpu->caches[idx].size = value;
valid = true;
break;
case STRESS_CACHE_LINE_SIZE:
cpu->caches[idx].line_size = (uint32_t)value;
valid = true;
break;
case STRESS_CACHE_WAYS:
cpu->caches[idx].size = (uint32_t)value;
valid = true;
break;
default:
break;
}
}
if (!valid) {
free(cpu->caches);
cpu->caches = NULL;
cpu->cache_count = 0;
return 0;
}
cpu->cache_count = count;
return count;
}
#endif
#if defined(STRESS_ARCH_X86)
/*
* stress_cpu_cache_get_x86()
* find cache information as provided by CPUID. Currently
* modern Intel x86 cache info only. Also assumes cpu 0 == cpu n
* for cache sizes.
*/
static int stress_cpu_cache_get_x86(stress_cpu_cache_cpu_t *cpu)
{
uint32_t eax, ebx, ecx, edx;
if (!stress_cpu_is_x86())
return 0;
eax = 0;
ebx = 0;
ecx = 0;
edx = 0;
stress_asm_x86_cpuid(eax, ebx, ecx, edx);
if (eax < 0x0b) {
/* Nehalem-based processors or lower, no cache info */
return 0;
}
eax = 1;
ebx = 0;
ecx = 0;
edx = 0;
stress_asm_x86_cpuid(eax, ebx, ecx, edx);
/* Currently only handle modern CPUs with cpuid eax = 4 */
if (edx & (1U << 28)) {
uint32_t subleaf;
int i;
/* Gather max number of cache entries */
for (i = 0, subleaf = 0; subleaf < 0xff; subleaf++) {
uint32_t cache_type;
eax = 4;
ebx = 0;
ecx = subleaf;
edx = 0;
stress_asm_x86_cpuid(eax, ebx, ecx, edx);
cache_type = eax & 0x1f;
if (cache_type == 0)
break;
if (cache_type > 3)
continue;
i++;
}
/* Now allocate */
cpu->caches = (stress_cpu_cache_t *)calloc(i, sizeof(*(cpu->caches)));
if (!cpu->caches) {
pr_err("failed to allocate %zu bytes for cpu caches\n",
i * sizeof(*(cpu->caches)));
return 0;
}
/* ..and save */
for (i = 0, subleaf = 0; subleaf < 0xff; subleaf++) {
uint32_t cache_type;
eax = 4;
ebx = 0;
ecx = subleaf;
edx = 0;
stress_asm_x86_cpuid(eax, ebx, ecx, edx);
cache_type = eax & 0x1f;
if (cache_type == 0)
break;
switch (cache_type) {
case 1:
cpu->caches[i].type = CACHE_TYPE_DATA;
break;
case 2:
cpu->caches[i].type = CACHE_TYPE_INSTRUCTION;
break;
case 3:
cpu->caches[i].type = CACHE_TYPE_UNIFIED;
break;
default:
continue;
}
cpu->caches[i].level = (eax >> 5) & 0x7;
cpu->caches[i].line_size = ((ebx >> 0) & 0xfff) + 1;
cpu->caches[i].ways = ((ebx >> 22) & 0x3ff) + 1;
cpu->caches[i].size = ((uint64_t)(((ebx >> 12) & 0x3ff) + 1) *
cpu->caches[i].line_size *
cpu->caches[i].ways *
(ecx + 1));
i++;
}
cpu->cache_count = i;
return i;
}
return 0;
}
#endif
#if defined(__linux__) && \
defined(STRESS_ARCH_SH4)
static int stress_cpu_cache_get_sh4(stress_cpu_cache_cpu_t *cpu)
{
FILE *fp;
char buffer[1024];
cpu->caches = NULL;
cpu->cache_count = 0;
/*
* parse the following
* icache size : 4KiB (2-way)
* dcache size : 4KiB (2-way)
*/
fp = fopen("/proc/cpuinfo", "r");
if (!fp)
return 0;
cpu->caches = (stress_cpu_cache_t *)calloc(2, sizeof(*(cpu->caches)));
if (!cpu->caches) {
pr_err("failed to allocate %zu bytes for cpu caches\n",
2 * sizeof(*(cpu->caches)));
(void)fclose(fp);
return 0;
}
(void)shim_memset(buffer, 0, sizeof(buffer));
while ((cpu->cache_count < 2) && fgets(buffer, sizeof(buffer), fp) != NULL) {
const char *ptr = strchr(buffer, ':');
if (ptr &&
(strncmp("cache size", buffer + 1, 10) == 0) &&
((buffer[0] == 'i') || (buffer[0] == 'd'))) {
size_t size;
if (sscanf(ptr + 1, "%zuKiB)", &size) == 1) {
cpu->caches[cpu->cache_count].type =
(buffer[0] == 'i') ? CACHE_TYPE_INSTRUCTION : CACHE_TYPE_DATA;
cpu->caches[cpu->cache_count].size = size * KB;
cpu->caches[cpu->cache_count].line_size = 64; /* Assumption! */
cpu->caches[cpu->cache_count].ways = cpu->caches[cpu->cache_count].size / 64;
cpu->caches[cpu->cache_count].level = 1;
cpu->cache_count++;
}
}
}
(void)fclose(fp);
return cpu->cache_count;
}
#endif
#if defined(__linux__) && \
defined(STRESS_ARCH_M68K)
static int stress_cpu_cache_get_m68k(stress_cpu_cache_cpu_t *cpu)
{
FILE *fp;
char buffer[1024];
size_t i, count;
size_t cache_type[2] = { 0, 0 };
size_t cache_size[2] = { 0, 0 };
int cpu_id = -1;
cpu->caches = NULL;
cpu->cache_count = 0;
fp = fopen("/proc/cpuinfo", "r");
if (!fp)
return 0;
(void)shim_memset(buffer, 0, sizeof(buffer));
while (fgets(buffer, sizeof(buffer), fp) != NULL) {
if (strncmp("CPU:", buffer, 4) == 0) {
if (sscanf(buffer + 4, "%d", &cpu_id) == 1)
break;
}
}
(void)fclose(fp);
switch (cpu_id) {
case 68020:
count = 1;
cache_type[0] = CACHE_TYPE_INSTRUCTION;
cache_size[0] = 256;
break;
case 68030:
count = 2;
cache_type[0] = CACHE_TYPE_INSTRUCTION;
cache_size[0] = 256;
cache_type[1] = CACHE_TYPE_DATA;
cache_size[1] = 256;
break;
case 68040:
count = 2;
cache_type[0] = CACHE_TYPE_INSTRUCTION;
cache_size[0] = 4096;
cache_type[1] = CACHE_TYPE_DATA;
cache_size[1] = 4096;
break;
case 68060:
count = 2;
cache_type[0] = CACHE_TYPE_INSTRUCTION;
cache_size[0] = 8192;
cache_type[1] = CACHE_TYPE_DATA;
cache_size[1] = 8192;
break;
default:
return 0;
}
cpu->caches = (stress_cpu_cache_t *)calloc(count, sizeof(*(cpu->caches)));
if (!cpu->caches) {
pr_err("failed to allocate %zu bytes for cpu caches\n",
count * sizeof(*(cpu->caches)));
return 0;
}
for (i = 0; i < count; i++) {
cpu->caches[i].type = cache_type[i];
cpu->caches[i].level = 1;
cpu->caches[i].size = cache_size[i];
cpu->caches[i].line_size = 64; /* Assumption! */
cpu->caches[i].ways = cache_size[i] / 64;
}
cpu->cache_count = count;
return count;
}
#endif
#if defined(__linux__)
/*
* stress_cpu_cache_size_to_bytes()
* Convert human-readable integer sizes (such as "32K", "4M") into bytes.
*
* Supports:
*
* - bytes ('B').
* - kibibytes ('K' - aka KiB).
* - mebibytes ('M' - aka MiB).
* - gibibytes ('G' - aka GiB).
* - tebibutes ('T' - aka TiB).
*
* Returns: size in bytes, or 0 on error.
*/
static uint64_t stress_cpu_cache_size_to_bytes(const char *str)
{
uint64_t bytes;
int ret;
char sz;
if (!str) {
pr_dbg("%s: empty string specified\n", __func__);
return 0;
}
ret = sscanf(str, "%" SCNu64 "%c", &bytes, &sz);
if (ret != 2) {
pr_dbg("%s: failed to parse suffix from \"%s\"\n",
__func__, str);
return 0;
}
switch (sz) {
case 'B':
/* no-op */
break;
case 'K':
bytes *= KB;
break;
case 'M':
bytes *= MB;
break;
case 'G':
bytes *= GB;
break;
case 'T':
bytes *= TB;
break;
default:
pr_err("unable to convert '%c' size to bytes\n", sz);
bytes = 0;
break;
}
return bytes;
}
#endif
#if defined(__linux__) || \
defined(__APPLE__)
#if defined(__linux__)
typedef struct {
const char *name; /* cache type name */
const stress_cpu_cache_type_t value; /* cache type ID */
} stress_generic_map_t;
static const stress_generic_map_t stress_cpu_cache_type_map[] = {
{ "data", CACHE_TYPE_DATA },
{ "instruction", CACHE_TYPE_INSTRUCTION },
{ "unified", CACHE_TYPE_UNIFIED },
{ NULL, CACHE_TYPE_UNKNOWN }
};
/*
* stress_cpu_cache_get_type()
* @name: human-readable cache type.
* Convert a human-readable cache type into a stress_cpu_cache_type_t.
*
* Returns: stress_cpu_cache_type_t or CACHE_TYPE_UNKNOWN on error.
*/
static stress_cpu_cache_type_t stress_cpu_cache_get_type(const char *name)
{
const stress_generic_map_t *p;
if (!name) {
pr_dbg("%s: no cache type specified\n", __func__);
goto out;
}
for (p = stress_cpu_cache_type_map; p && p->name; p++) {
if (!strcasecmp(p->name, name))
return p->value;
}
out:
return CACHE_TYPE_UNKNOWN;
}
#endif
#if defined(__linux__)
/*
* stress_add_cpu_cache_detail()
* @cache: stress_cpu_cache_t pointer.
* @index_path: full /sys path to the particular cpu cache which is to
* be represented by @cache.
* Populate the specified @cache based on the given cache index.
*
* Returns: EXIT_FAILURE or EXIT_SUCCESS.
*/
static int stress_add_cpu_cache_detail(stress_cpu_cache_t *cache, const char *index_path)
{
int ret = EXIT_FAILURE;
char tmp[2048];
char path[PATH_MAX];
(void)shim_memset(path, 0, sizeof(path));
if (!cache)
goto out;
if (!index_path)
goto out;
(void)stress_mk_filename(path, sizeof(path), index_path, "type");
if (stress_get_string_from_file(path, tmp, sizeof(tmp)) < 0)
goto out;
cache->type = (stress_cpu_cache_type_t)stress_cpu_cache_get_type(tmp);
if (cache->type == CACHE_TYPE_UNKNOWN)
goto out;
(void)stress_mk_filename(path, sizeof(path), index_path, "size");
if (stress_get_string_from_file(path, tmp, sizeof(tmp)) < 0)
goto out;
cache->size = stress_cpu_cache_size_to_bytes(tmp);
(void)stress_mk_filename(path, sizeof(path), index_path, "level");
if (stress_get_string_from_file(path, tmp, sizeof(tmp)) < 0)
goto out;
cache->level = (uint16_t)atoi(tmp);
(void)stress_mk_filename(path, sizeof(path), index_path, "coherency_line_size");
if (stress_get_string_from_file(path, tmp, sizeof(tmp)) < 0)
goto out;
cache->line_size = (uint32_t)atoi(tmp);
(void)stress_mk_filename(path, sizeof(path), index_path, "ways_of_associativity");
if (stress_get_string_from_file(path, tmp, sizeof(tmp)) < 0) {
cache->ways = 0;
} else {
if (sscanf(tmp, "%" SCNu32, &cache->ways) != 1)
cache->ways = 0;
}
ret = EXIT_SUCCESS;
out:
return ret;
}
#endif
#if defined(__linux__)
/*
* index_filter()
* return 1 when filename is index followed by a digit
*/
static int index_filter(const struct dirent *d)
{
return ((strncmp(d->d_name, "index", 5) == 0) && isdigit(d->d_name[5]));
}
#endif
#if defined(__linux__)
/*
* index_sort()
* sort by index number (digits 5 onwards)
*/
static int index_sort(const struct dirent **d1, const struct dirent **d2)
{
const int i1 = atoi(&(*d1)->d_name[5]);
const int i2 = atoi(&(*d2)->d_name[5]);
return i1 - i2;
}
#endif
/*
* stress_cpu_cache_get_index()
* find cache information as provided by cache info indexes
* in /sys/devices/system/cpu/cpu*
*/
static int stress_cpu_cache_get_index(
stress_cpu_cache_cpu_t *cpu,
const char *cpu_path)
{
#if defined(__linux__)
struct dirent **namelist = NULL;
int n;
uint32_t i;
char path[PATH_MAX];
(void)stress_mk_filename(path, sizeof(path), cpu_path, stress_cpu_cache_dir);
n = scandir(path, &namelist, index_filter, index_sort);
if (n <= 0) {
cpu->caches = NULL;
return 0;
}
cpu->cache_count = (uint32_t)n;
cpu->caches = (stress_cpu_cache_t *)calloc(cpu->cache_count, sizeof(*(cpu->caches)));
if (!cpu->caches) {
size_t cache_bytes = cpu->cache_count * sizeof(*(cpu->caches));
pr_err("failed to allocate %zu bytes for cpu caches\n",
cache_bytes);
cpu->caches = NULL;
cpu->cache_count = 0;
goto list_free;
}
for (i = 0; i < cpu->cache_count; i++) {
const char *name = namelist[i]->d_name;
char fullpath[PATH_MAX];
(void)shim_memset(fullpath, 0, sizeof(fullpath));
(void)stress_mk_filename(fullpath, sizeof(fullpath), path, name);
if (stress_add_cpu_cache_detail(&cpu->caches[i], fullpath) != EXIT_SUCCESS) {
free(cpu->caches);
cpu->caches = NULL;
cpu->cache_count = 0;
goto list_free;
}
}
list_free:
n = (int)cpu->cache_count;
stress_dirent_list_free(namelist, n);
return n;
#else
(void)cpu;
(void)cpu_path;
return 0;
#endif
}
/*
* stress_cpu_cache_get_auxval()
* find cache information as provided by getauxval
*/
static int stress_cpu_cache_get_auxval(stress_cpu_cache_cpu_t *cpu)
{
#if defined(HAVE_SYS_AUXV_H) && \
defined(HAVE_GETAUXVAL) && \
(defined(AT_L1D_CACHESIZE) || \
defined(AT_L1I_CACHESIZE) || \
defined(AT_L2_CACHESIZE) || \
defined(AT_L3_CACHESIZE))
typedef struct {
const unsigned long auxval_type;
const stress_cpu_cache_type_t type; /* cache type */
const uint16_t level; /* cache level 1, 2 */
const cache_size_type_t size_type; /* cache size field */
const size_t idx; /* map to cpu->cache array index */
} cache_auxval_info_t;
static const cache_auxval_info_t cache_auxval_info[] = {
#if defined(AT_L1D_CACHESIZE)
{ AT_L1D_CACHESIZE, CACHE_TYPE_DATA, 1, STRESS_CACHE_SIZE, 0 },
#endif
#if defined(AT_L1I_CACHESIZE)
{ AT_L1I_CACHESIZE, CACHE_TYPE_INSTRUCTION, 1, STRESS_CACHE_SIZE, 1 },
#endif
#if defined(AT_L2_CACHESIZE)
{ AT_L2_CACHESIZE, CACHE_TYPE_UNIFIED, 2, STRESS_CACHE_SIZE, 2 },
#endif
#if defined(AT_L3_CACHESIZE)
{ AT_L3_CACHESIZE, CACHE_TYPE_UNIFIED, 3, STRESS_CACHE_SIZE, 2 },
#endif
};
const size_t count = 4;
size_t i;
bool valid = false;
cpu->caches = (stress_cpu_cache_t *)calloc(count, sizeof(*(cpu->caches)));
if (!cpu->caches) {
pr_err("failed to allocate %zu bytes for cpu caches\n",
count * sizeof(*(cpu->caches)));
return 0;
}
for (i = 0; i < SIZEOF_ARRAY(cache_auxval_info); i++) {
const uint64_t value = getauxval(cache_auxval_info[i].auxval_type);
const size_t idx = cache_auxval_info[i].idx;
if (value)
valid = true;
cpu->caches[idx].type = cache_auxval_info[i].type;
cpu->caches[idx].level = cache_auxval_info[i].level;
switch (cache_auxval_info[i].size_type) {
case STRESS_CACHE_SIZE:
cpu->caches[idx].size = value;
break;
case STRESS_CACHE_LINE_SIZE:
cpu->caches[idx].line_size = (uint32_t)value;
break;
case STRESS_CACHE_WAYS:
cpu->caches[idx].size = (uint32_t)value;
break;
default:
break;
}
}
if (!valid) {
free(cpu->caches);
cpu->caches = NULL;
cpu->cache_count = 0;
return 0;
}
cpu->cache_count = count;
return count;
#else
(void)cpu;
return 0;
#endif
}
/*