diff --git "a/08.\345\215\225\347\273\206\350\203\236RNA-seq/README.md" "b/08.\345\215\225\347\273\206\350\203\236RNA-seq/README.md" deleted file mode 100644 index a4089b3..0000000 --- "a/08.\345\215\225\347\273\206\350\203\236RNA-seq/README.md" +++ /dev/null @@ -1,697 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "7371b57a", - "metadata": {}, - "source": [ - "### `Seurat` 专用于单细胞RNA-seq数据的QC、分析和探索研究。\n", - "- Seurat 使用各种计算技术(包括降维、聚类和可视化)来分析 scRNA-seq 数据。\n", - "- 它采用主成分分析 (PCA) 和 t 分布随机邻域嵌入 (t-SNE) 算法将高维基因表达数据减少到低维空间。\n", - "- 通过这样做,它揭示了单个细胞之间的潜在模式和关系,使研究人员能够识别不同的细胞类型、状态或种群\n", - "### 数据下载和软件安装\n", - "- [X] 2700个外周血单个核细胞(PMBC)的转录组数据,测序平台是Illumina NextSeq 500测序仪\n", - "\n", - "- [X] 数据下载 https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz\n", - "\n", - "- [X] 安装Seurat软件\n", - "```\n", - "install.packages('Seurat')\n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e0387240", - "metadata": {}, - "outputs": [], - "source": [ - "library(dplyr)\n", - "library(Seurat)\n", - "library(patchwork)" - ] - }, - { - "cell_type": "markdown", - "id": "e287490b", - "metadata": {}, - "source": [ - "### 1 创建Seurat对象" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "87b114db", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "\"Feature names cannot have underscores ('_'), replacing with dashes ('-')\"\n" - ] - }, - { - "data": { - "text/plain": [ - "An object of class Seurat \n", - "13714 features across 2700 samples within 1 assay \n", - "Active assay: RNA (13714 features, 0 variable features)\n", - " 1 layer present: counts" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# 加载数据,Read10X函数从指定目录中读取数据集,会返回一个UMI计数矩阵\n", - "pbmc.data <- Read10X(data.dir = \"./filtered_gene_bc_matrices/hg19/\")\n", - "\n", - "# 初始化数据, CreateSeuratObject函数创建一个Seurat对象\n", - "pbmc <- CreateSeuratObject(counts = pbmc.data, project = \"pbmc3k\", \n", - " min.cells = 3, min.features = 200)\n", - "pbmc" - ] - }, - { - "cell_type": "markdown", - "id": "7526eb2c", - "metadata": {}, - "source": [ - "### 2 过滤\n", - "- 根据nFeature_RNA和MT基因占比过滤一些细胞" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "id": "e3a28c2a", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "\"Default search for \"data\" layer in \"RNA\" assay yielded no results; utilizing \"counts\" layer instead.\"\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAANlBMVEUAAAAzMzNNTU1oaGh8\nfHyMjIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD4dm3///8twelHAAAACXBIWXMA\nABJ0AAASdAHeZh94AAAgAElEQVR4nO2di5qrKgyFsdNOZ6a7F9//ZXe9AEkIahVbxLW+c/ZY\nRUTCbwKimhqCoMUyny4ABJUggARBCQSQICiBABIEJRBAgqAEAkgQlEAACYISCCBBUAIBJAhK\nIIAEQQkEkCAogQASBCUQQIKgBAJIEJRAAAmCEgggQVACASQISiCABEEJBJAgKIEAEgQlEECC\noAQCSBCUQFsByTBN2OF6SnfE08/dr/sl223avzbZ38IjlqDbz+lZE1/nf0sy0W2Xt0EKBel6\nmkTb9CNe3LoD2W7THts0x4VH3L7uJ1dhx9vcTGK2y9sghYI00W1NP6K5u3U/wSHuNM2OdTuQ\nCjvMJSlmu7wNApCmHdGc/bq7PMRfn2bnsd39wGrsa2Y2E0HKzCBbAmm95MNZ3L9ts+jMc5KH\naAKJs9l9bNfGdd9N7+jytaAZD4HULeVokExBaivl+n0whzNZwfXvWZ2H72v/63ZujHf6tYl7\nz+X2swvt31OfL89CKYJY7rO98u1NIHGoD2ZnsZ200a1Zcek3Hr1L+msAO/3RveiCyIbYTjue\nWM7HIBmDdOkq6eBW8CRn6uLri63/r3ocpFN/seJZKEWQy/3OX3z7X5vFef41eJuSNvp5Lnzb\njfev86Vtxf9svHe4ur3YgsjmdZDyMEjGIFn92BUsxY/b3jghEp6fx0Hq9+JZaEXolq7HHrx2\nXXPhvbDtzeZ/9T+zs9hO2ujUVoPQP5KI+w1pkD6bKSDlaJCcQfqr76zGaB233vtaX3v//WTi\neO9cDL86qXbrLo4iC7UIXn8uk7O/dNYun+ffvcV20kYHrfU3K7/vXa/mYPeq6YJq6ujxsjVI\nxiA1buKqXbeaFT/9ZehfV6XP/lEz2nqnyWt1ob/whVloRfA6+kwa7/dLcu4CiXp3sZ20kQZA\nUzfdUMCprx3VIIGpY8fL1yAZg3SzC/YvBelI7HHi+9G/ut26aD2SBc3KiQ15/LZXOpdzF0jU\nu4vtpI00AHy496+vZdUggaljx8vXIBmDxBYkSPRnPzp0//dznAaSv+8gspBF6HW8k3V1GzOc\nXYY2kNhdbCerVgOArJOpoqaaAFKGBtkSSDIBBav++aK/hkGKZKEW4dJY48jXNbGDi0T+WD47\niu1k1bLBhn7ULjVIdbYGKQSkdtTu+++WHqRu3suJr/vqhtDb5SPLZ0exnaxaNvzd/PhaBaRM\nDbJVkI78dzModNWS24VwGEJmES1CO4L7y9bZQd3aT+uy2k9sJ+u4dQn9DdlbX2fxPlJ8XGgM\npDwNslWQzt5oZLPukRrC/sKMRBbRIrR9WT9Hsl11cnazQ0SNGpz3E9sFNmor5fys7fuvbcL6\nqJ1ukMkgZWmQrYLUXP4Oz2vdn4/Ff7sbdWQo6N65nWfX9O8QZiSyiBahy+TE1l2d3ewQUaPm\nBv1+YrvARjc+abX1GfQ+UjuiEzdIYLvY8bI0yFZBctN7uir9JgZsTNDFyd/9xctKZMSziBah\nd3TsJki/L4lQ3D67ie0CG3GSxNQt+1xF3CB2wdkudrwsDbJZkDw7DQS9Cb/sTdbOXM3FqO96\n/mgZsSyiRai7rjO7ed5H4l0g4W2+q9guBKm++Qf7+oeEukG21jb980lRg9gFb7vI8eocDbJd\nkOp/308bfX133Zzb88fXb1udLRWXY/PAc7N0PrQTvNWMWBaxIjT66sxD1vUN4WhoR2tXsZ0C\n0jPEOrex2w9xA3z2d9wgbsHbTj9eo+wMkilIELQtASQISiCA1MkIfbo8u9fWDJJ9Ad+krdmt\neG3NINkX8E3amt2K19YMkn0BIWgLAkgQlEAACYISCCBBUAIBJAhKIIAEQQkEkCAogQZA+v0y\nh7N/538/lN9MOezW0kUI2rfiIHUPeBzu7qEp8rDIl1iEoJ0rCtK1ebCx/m3mql/98zr/+neT\n/mOLELR3RUE62YdEGprsU1pPN9U86/HXrCCLELR3jQ02dCC5l8yf2pditi6KLE7PDvqYYJpV\nNVK99+b5wpO5fLuv19T2D1mcnB30OcE0q2qken+b+K1/EL95ZDcO0kYm6e5XMM2qGq7e26F7\np9/f0zeduzf+d3vBI21OMM2qGqze+4G8OOLevYK22wsgbU4wzaoarN4ju0nUIHMw2uLE7KBP\nCqZZVQPVe/s63lhSY4fqbn7U7oZRu40IpllV8eq9uBeCHdqXVbbI/LQ3jy7NazTJ4pTsoA8L\npllV0eq9+RfrnRtY7u0N2LGZDbBWtoJpVlW0et3rfN0nw1vX8+VGwunieHbQpwXTrKpo9dLX\nt9zP7fuA636xuzdLF8ezK0Nbvk+2uaJvq7ITF3YT517N3nNbtuXaQtErapptVTZA2ou2YJpq\nu6YBSHvRFkwDkFbKbh1t11pLtAXTAKSVsltH27XWEsE0qwog7UUwzaoCSHsRTLOqANJeBNOs\nKoC0F8E0qwog7UVbMA1G7VbKbh1t11pLtAXTAKSVsltH27XWEm3BNJNAynPqEEDai7ZgGoC0\nUnbrCCDlKoR2K2W3jrZrrSXagmkA0krZraPtWmuJtmAagLRSdutou9Zaoi2YBiCtlN062q61\nlmgLpgFIK2W3jrZrrSXagmkA0krZraPtWmuJtmAagLRSdutou9Zaoi2YBiCtlN062q61lmgL\npgFIK2W3jrZrrSXagmlSg/TGSRAAaS/agmkA0krZrSOAlI94U0dot1J262i71lqiPE0DkN6S\n3TrarrWWaAumAUgrZbeOtmutJdqCaQDSStmto+1aa4m2YBqAtFJ262i71lqiLZgGIK2U3Tra\nrrU60S/u+KW6bj+zc5eLbq93F3OOtmsagLQ9WY4OdX0lIB3bpS+x6Pf6QElf1nZNA5C2qkvz\n0dGr/xZ2EV8l3a5pANJGdT80CP2aH7ui/cZv/desIIteMM2qAkgb1an91Pyv+fUrbnXvosii\nF0yzqgaq9/dL67tuv0e74aEhr2v3beyTuXz3H/LtRxyaP2TRawumKRKkc9ehbUDRu7Fb7dEW\nAVLnkJ5/3Kfl4yDRkb3MtV3TRKv3ar7vTejwHevGbrZHWwJI18YudcPIX/N5+SbAg0f6qKLV\ne/LG0Luxm+3RVo8q07d1TldX+Vb3Ji4ASB/VWPU2xtC7sZvt0YYgbQ+rAy9xcwIHoy2SNG8q\n2iIVC9K9Cb/1a91mL3sNSFybA0lcvsjl7uavcbftXePKBem3CSEmgbSdHq0DaX5pP32ebtT7\n0I45tMj8tNHepRnNI4temzBNqSDd2rt+pXqk7YJ0Mtdu4dzAcm97TBgH+qgGq/d+OLZpCgVp\nkT7K0pfpb9/dD20ccO5W2pFwuui0CdMUCtKxu0mkd2M326MtACR/8Pv5YL5+3WJ3b5Yu+n3e\nV7zZegdIKxluINfb1/HWLujd2A30aPU6SwPS5pSXaXQVCdLFhQZ6N3YDPVqARJSXaXSVGNrd\nfIhdxMwGDxVAevuhpx47DUgfibqjx/wmj2Hq3dht9WgB0gcPvWeQ6PPMejd2sz1agJSrSgzt\nsshuRgEGStBvA0jZCiCtlN2MAoyCVAGknMQMBpBWym4NVQ+AlJEA0qrZrdJf7D0SQMpWAGlh\ndgE3ACm5ANKqyhSkFUVBSnncT09kHVPmxWsFkFbKbg0BpNk5rH6GAGml7NYQQrvZOSS3rswR\nIK2U3RoCSPkIIL0puzU0C6Tc47YJ2sIZAKSVsltDAClfzQIpD9sAJE152CattnBKAGml7Fy2\nCfMFSPkKod1K2bls3wzSXOUMYMZFcwJIK2W3hgBSvtrwfOLiQKJtWW3XDUibNdcCfd404wJI\nK2U3pwQTQFphakPOvqhTsgKmOVUtly3f4isOpFEBpKUZrQhS/tUY085B2pE2YRoC0saYKhSk\nASsApGzFuq8AKQflA1I27SGXcsT0rKjFpvlgZW8EpHQ1VAGkGfu+4SRWB2ndk9gfSI/Hm8a/\ns0GoU34gBbmue40DSOwAS4/QgvQWl1QQSMsOHDvym0FaV/mBNNz+xNaXG2u1HkiZgSOVH0iB\ntnyvPHuQXuJqXB1Hc+w1eiiAtFS4IbtWdjVpnv4bm0uy60FK/0hS5hgBJPSRbNYfBiksDSvJ\nfkBa70wB0uLs3tUMn6YyZhWQstfuQVpXGwdJ3y+eW1KQtqU3F3hOBS0D6bMmyQSkdt8ZO08A\nib9c+sFCu+3hMF8AaVVtCqRZVaWD1FkMIGUlhHZrZSdzN+HSa7IgGbNZi83VRkDaql02BRI5\nzsy7OgApZ2Fmw1rZvTC9ZFICH9m1BttTZJfsXvn0sODV6q3eNXlrDQ2e66+7dWO/JlvX7Ydj\n73JxUnZDxYjsOGWU+YUbTASkxmIpQNoMjB8HabSmigXp2p/6lYB0bJe+xOKk7AaLMbDjGCjz\nQYoc/SU2+sTBPs8VeTH26cKMR+Pvm5i/ggZO7npwIJ3sun/mcG02/GOLk7JbrOXtsloBpNg+\nRYOU7k4FVXQ+cV4VqStexF9z7E/g1/zYlWdzef7716wgi1OyGy9JdF9ty6yZBZSjKTHEFgw4\nWZ8GaVRV1C7jc7E+b6l4Acy5diD92pUnc6t7F0UWp2Q3XpLZIE2uRQ5ShCTiSj5vnoR6y7lM\nrjElYRwksaey7+ctFS/A1RXvZC7f5nBuk/segdo5WH4+M6pkHkgxi8Viss/bapk+CNK0lj8R\npEwtMVgmB1KrYz0EEh3ZW1QgIxeUXzPFQXpx8vaSi20O+mCppg3vzX9ULAdNAcmYv7q+n5sA\nb32P5I+dGUiTBZBeVVtjVaonXD6jKSB1ujcj3e8Eafb26KbKM7RZg83WfNPMvzK8sqeYT/yG\nIybVdJDaXwejLU7M7oVSjeezAKQmBJ1nsJFyzRpKfJcWgxQb8xnfc5KSgJSiczHzyIMbA5C6\nobqbH7W7pR+1m3YHZkaNVdQfAaSXM3gTSNt8lGIKSAfTzANqkflpbx5dzJktTsxupCTDIEUG\nIWKpNPEuEkK7FJnGcn39Ht8oSAuvriszNgWkcwPLvb0B+7mZDW5IMBlI80jKweOMz31MNg1S\nm7ExtHl0Q0zVqF0mDAq/AFJqO04B6X5o7da6ni83Ek4Xp2U3qTx6DjZoGj79kcrRQXrxplHC\nYGauxuc+ppsGGQFpzp2O4VFSYpx0dE4tTYr8phzs/rzAff26xe7eLF2clt2k8sRB8n9jlTCM\nmuToEctsWidtyuHXwWp07uP6wcKc6QXLQcpZ7+Qy3VFMuBRfYxUBKdx/riFfKcwSjc59TD0N\nkmm2sx7WeB8pb20FpBFPNWWvACTFYuxKO783tq5G5z6mngbJtPTEY/sDpBWzIxkbfVlGffG9\nJoIU+zGYckGaGRqd+6gOy7wP/LGOrL55FZDed7nbCkjsIMxpDIHEVlf9/SMdpPEqn2iUqS5t\nvkbnPgqQUk2DnKp54zEAacXs9GNw5zTVbNXrICmubxJva9+yGJv7uLpHmlgV03MzJg7SNsYe\nsgMpmWcQqSlFdnn80Zd5B3+L6QfmPn4SpGnnLkNoY+KDDQBpXg5m+Pfc/FSQEgQRnzNzc2R9\n7uMa0yCnnucMkFqN35BNpXUslh1IQY56F+j14KIKOHImW1K1nwVJn/uYeBrkS3U9tz4AUrLs\n3Amq3fUBkGI1wzZXHiEKUtsLj4ZDeWp07mPiaZCRgYrXQ7uhcaGKBApaS8hduYFE2rRbN2VH\nbdy6Xx+ARIcbxBS+z03Df0Gjcx9Tz2yYgswrtwNGQHoApNWmCE3eT4YhdrEK7yLxKKKjLrHl\n1mkI43MfV5kGOayFpxp7U1qSI7+Dx9xAWlyASDyvcyRsJgbWJx1rYYpZGp37uMo0yFU16U1p\nM8cJ3xJmlAZSGOe1ai94QWD3GHhx8SuT9kc6aXkoSVmm3rR7WWzO6msgjSqyW1rr5AFS70fi\npzb9pPUQTe8h2fGGycd80SQlgDTcExI+PBVI8x/te0GFg6SPNERPeqxpk5GGQN2bG0Ym3LF1\ng3UvipsVRXUikIa2Ljlh0YWNPCmWW5VSZQESHTh7cchuzG20P/SRBhP7mqw2Eh4/TmzUPjer\nLy/Oa2f0Umr1LQCr1mDqzLPI7tWTmn6V7FSpYZ19mVA8Ih++3o7Go3kpJUgzL3FxLX2dRh/Q\njxbntVN4qQQ5ZTctTgv/jkgfaHiu6V2SMnIXRnJv6bGuqZQFfeGsJyUNQoZqQounzUIDibcS\n++9aBtsASCYAya4bqhS/LTLQQOY3hLPAI8iORXs560OlnQaSNMqrIA1tF0bbF0iqL2CdkLCW\neDr3q4qP2I1EEm4YSn+D0bhJskItp7JIhSBpvaSsqlMqK5BIPlqL1UZxCDSuh8/S8aghwpP3\nSWMEv1Ds9a5+s5Sw+xqLHGYdoVYHVVOB9DYT5ASScTNI5frI75CwYGcRfccck7ubxAoQtwId\nlouMM775sdRRvRGkcRMyVZVioERTwAGSW6elG19T90xUAT/9skDKz14lgMRdUgSkmlGe18cv\nkxZl+MRo7XS/h0HSrnRb+7pLLiDJuqfrR3ccAMmax0hTGU6S0uoJKK+PUuXljRqlKM6UYNfw\n4ZrR3cI3AERIerFCp7WcZMoJpLFYauIG0oaDTixZDECK5zd4UH0AoiCQeOg6ZijaMwx8tnbV\nIyA1S2QwVVzBRo8cLfbMBC8pE5DoZeyFsDyWlwdpcLSOXwH9gXwxtP4PtW+7HOkkvVrulZUC\npHpic/YdTmU954OaiIHUx/mycvOpUK5sQPJ/YlHenFxfAalye70OUthnirWljyllQcbOaiB+\nkNWqzd7qgOrmrprRF67Fjz4N9zTKBCS7+8QqiO7HFIu+vbX84vO/aqDti3UTBh86xF46i3W1\nvCxhzMZ/T4iKgzty6qBqN+A5+5UaAEnJr7t+jfWdAkN2DXvQA3W2ahP1nmsw8I//0teMlPv9\nSgmSviW42kx4Loa/kobEdW2QkLCIa2szIEWqSLoCcsHjY95GWoyAZC1XTbSDuOSNN5cclLAo\n006L3T6Qzl4HSegVkEJTvLfycwbJx9NxkGR335EnZzQoIIWGGwsK9K4cPXpWTogpKUgvh96x\nqHnO1K3IIUbXrGqarEAKYwO+ktrDtmGRxnFVxWgJRV7S5ftJag937ILnQZIPKX5eia9x2u9J\nIa+MkodAWlKBYRHH4odFyhCk+JVkGCTnjJp1/aMTc0DipRgYgQjKx9IXDVKQ+USQgtAi8nan\nCEjRClWBlZflvt3sACQCBF0zdFkjFvRXHDszKILMAF7NizfUqo4GfSK0ZFty4mjp7K006QOX\nrk2z8yCpu2j5RUwWsjTlwjhLWYGkPGUUOe9Iy+0XqnCGXQiSRpPpRsGHzqK/qslOmd/EziYj\nlt4M0vgOAyD1iz1IEwb/pm8uHCQaqGkBgtFmi+i/fLggBlPFDx0kZRA8tGNoWhJWKueVheaV\nRJzR5POZ2PYjkZ2RJM0p+KsFW6bBbH/t1pW/Qc97FtpWwZcGkk1TSeMYE4BknGsKcGoH/NgL\nWAXFwgXxIuTDTaD3gjSUo1/WOKJ3JdQp4OPd1djleHHZBzSU+dUeeu1v0OslG6gTLWmXUjFN\nT46RxoqBxCwoIgHSY2XuZ62AIaGSFC3qcAdj7Wi16PODiEm0cbtpIIVrPgbS9dAf+l3foOeX\nfVkDhk9xE5taVerjsA4kOjuSPmDBcBr+dhLxnCY0l10eaV+fUXLT1DGQnGHsQiw4q7SOEf0R\nCZVfCTCjeyQ2TTy3X3Psj/WOb9CHHXVZg12lkHrxZmpWVQ1FbBTB9L8sJ0aCZIO8AKR+x4q+\nOUA1hWtTHB7vnwoHSU/CbGl7j5Gu7BhIA+94mlBiLeGom5yneG7mbI+1+jfomW3CYMp2VJSt\n/XJFx+no9DlLCkOE3TkSW3g23QxkahPhekgxGUg2/stI6QvzYvdJwKSOM2jTTV6acac6S8NT\nrGKXeJ5X2XhIRYjFKdkNFsKQf0TUZEODcG2vqqLvCSLuyAhcyA82cuejCLqr92ZGvK3LM00I\ni3jKjFhKUZKgSb64M9kj9vZbzTnxYw4eNBI4yBUrXFUGN74AklEGf18rCW2VMh92hSdHJxAZ\n4kcIDMwiJIU1mGPmEQWpC/LYifatgoYPamegKJCso52S0tYTX0k4GvRF4gcbRZ1WpS/jtlTJ\nQJqQ3YTSiEDJWs7Xnv3RNu5K8SwOD+1yZxExJK1FJjBrn02forL2NIY3CVEsrVay0IJgwS3H\n+h0ytQaSM2WtuiNuPQGTuCHxYrlpsLOa8gXJuTgZTRkHkQjfjLcB9SpsAMEYCgkBiZrT2HQk\nuTWo/MafWza+9fgmlBFQy0EaTxCedrBkmh4t7cIqRAmQugvZ9GIFAagHab3L3BSQ3vAN+iBq\nYIEi6Xp0gZZv49bDeJBYbGc5oHGev4dEPRX5GwaGLlN6dYzEOcYPLRYzajdwGtxlKZsD300r\nUxtdCNYafmtPzVZsY6NA3pEaE7PaYk0B6Q3foLftnkQArDL6JJWjg2JAuDBMHhbD7yJ51xSC\nRPenQxhkh4Zk5VWg9OpL+3R5aDlIo0GdiAO1K2016X00zFxu3cDtCHrNIrG3X6RtaxVNAeld\n36A3xDMRb2xP3VPE/AmFgZDg3ApxMy4li/HoJZDk4ZybuERaviqLvqyuml4U86FpZjlYlEAW\njZ6M+uPw1KMPTQTuSdq3X0Hng5NDSZBcIf1241esYpIpIL1lZoP3SeSEvViXyPHgFwg5tKND\nQCKui3kjnltoXbFo2IErfgK2gTmQtNb0IS0HibgCQ8Cxf+k1UG2wwWRiDSRqLBldP1iAR0Gi\nZJPWQ6AjTvVjIL3hG/QUo6AqKoeTuGa5/g8Bx3adSOfISBNpIfhYwGHC3Zu/VeUDDtKdJVfN\nXLSwJBwPcqFjyzSlaNt+/tZgVQfwyGuceG2a7wowqgPvE4kdkmkSSOt/g57UAz1/4lS4d/Et\n2niRWqet3oPke1GMDIooH5MwIpHSClwZaI3RK+XMGkmuBCDRX97dinOml0OafPDOUewiRyMA\nt6KicYuFRlJjjKx6IzrdaZU4x9nZBc7IdZBcg/YgiViaYUSA0Nr8w3eAqP8iAaHnj2Xn7ckj\nPgdSxSIJEVpkoGUFEVf2oJkK+wUnXgVQGGFFWvvE6RvFikGlGlI8FnnyMq9pjXxAIhZq4wDS\nLyJt2MhGza9rhDzCw8P94oN8dqNxBqJ8cCN6hlkqezB76MrSnxFCnVKDxCKI8ELITt9NhWQg\niUucqE1CmLiEOZ8Uls53UukWVpiVLm85gUTckMKGq2pa06zGGTyG7e47Uw6tEKTgcsmYDMxv\nd6Z//QI5qTy0pBzhSUiQxC+yg7zWCXYecpsPqV3Fc1t3tUx6Sp4UrZwMHBM8p5lKWYDkKDLt\nk3mCHO9NSNslnsW1edaYPSqy08qSMHaYQ3o82DHJJs+j63nR33YEgiKVgZKBpPXfw8ZJXZTs\nfj5ItT0ebC3vpcpdyD7+xeDW58gyBHAZdjs2sWEyAsnGcr5908ZKDeJarTcJadx+BwIS9zDM\nHTFO6DAEzYL3nkghRHlt9t35kM+XfVzJyhGAFLZg36wrZzTN+0jR6vexQkRdhGdcf9SPN7h1\nAdvGD6yWB5KfN0eaNWnCDCsWUdFrGyWMhXiKG1LhI50vyiPliWx0CD1oHp5ad7wql0/PJQSJ\nj30FLdb+7h78pxejAJmALHopoqGBQlRbuaS35mO8CEj1mgMOHwapf5hItlDnMzRHZLht7Bq5\nmWdIyGAYEKLob5ecOjKJnKFLZCtxcC7SS1vNc5Rm+NuoQRwLn6zcIy5BvURAIiYwpApZbUsY\nq4pAJIfcg9KrYWkafRKkit3q1rwSvXMkeKBJBUg+sxCkwIGQeEKg4doAg1qkISVwiXkputJ/\nHqbVQCJbSfOt5FWJ1wcJI4iHsVahdemuY5JE2zrsQ8yWKBq6GfqD/ikHJPqiEhpoOaB8B4eh\nJP9KdgR1Pglp7R4TmpZ7MdK/Cg5IXRXJ8EG2siM8HExpa/slLbA0GZDTBrfZb9M++E+elHBV\nSzxMHCTKiLvQGdJE/L+8oVBofHn6JdKDWmn0+2MgsemLpM4oHcqiaMxGrn8EVqHNm4EULNEV\nCox8jaBOFNE2D1aklqW01f2K5o4D1ba74XFyzZP/7aRallaDrBOGE7kcCvhoLbPo2Sag3xIJ\nQCJr/L8p9TGQtJpkjZM2fKVRCzBoW7fxQOAnWPt2PoUdVvFldmcWfPjDhyTSa7EE6XMkzQbJ\nsPk2bKiua6C+mfZ3L8JggmFBq4SZ9CGqj6QJr5seU7tcyQn5xv12+PQOiSVLog+Gdsplyfj6\ncc2UtUZak6Jitdbv6KFxQmCkAZA4DOQySI/tLqPs0C5QpRht0SP55liLRspWdU8th62d1Z13\n5RpItjZ9ndNYg5nCm5JucEUl4HA/xcb4UuqD2bHXObIK5c2UXcNcM1UbvLQEtYG8unETRDLm\ne4hy8E4dc1P8MMkp+v2yL4t2Tade523SbiDZR3R0k/2Xj9CRugxACixKDEYr01a+3q2iv1lL\naf+pvOOpQ3TYKEQyfTY7/xIgwyqTtWRajdZKrPKJC7M1y3LljsxTEF7U/C7uQKJsD1IgH10E\nrkp6vrS+6Nwe43Bv3yrtQFrlbdKGOSE9DX9Awlf4g1jkQWtFosU9ulvmlzfBnQSJNZSqH8mz\nldP+K0CaVR0DFfXp7Nx7THitBCjRaicD32EMTg1FcqBcPKRFifENE/0ZZk0PS0vK9quSj3xf\nzfe9eRPuN3s/50rPXJKhMLmuUWVkE7cksbqOgCQq1kHl6pOYQZiWtQlpKVvtrtSGUBWcQxJl\nkV3X3mR8Ry82bj2tO5eUXAPDmuY+g4MSBuSsCXBLSpZcJywoHj9Q2hqum7dl9LXW0OTeGL3O\n26TF8Jdd7hb6TlFQK9w/EJBo/OCuPvISJTCjaXxroNgyS/qVbQo2T9yexBpD4Flk150g6asK\nGGh90S4ijTcAACAASURBVFqW1uJoeTB41CAs5LPlvovLX2kNzY1C7LLqVrnoIm0N01prQPq1\nP9d6m7QJbh21S1X7qB6vcF8bD1mn/GLDKjj4QezAkDNUrNYpt8zsrW8iPSUa56W1TCYgucXK\nP5PsLjsOC1dN7CJlLeNrlXp+43d2NvI5EyQNT8kvlDyA4B5IMOkGYc2qGNX35in/k7l8948p\nk5v3/D6+reR5hyEgsQE6X8m+HiUP7NLCr1C0xbO1KhsikBCiV7uH8rN7WQEdgRQf5Umh3ECy\ncV4f6ZFYmbZvbydf8f6XChLvhtGLpcfA2dKwzaodH+R/stT5IWKvNPWq6LeJ307dcY71EEi2\nMLNkbDTUZ+IhYu37wZowucB4Gz58QtpRpSwwaEQ2MbkLokseZtY6poqMhs+vj2g95ZAds7P9\n0V3ZmcchLoS4dkoCAYlUJr/Wkaud8DgCJMIbPZRvB35Na6m+4N7GiSpV1e1wao/117w8ownw\nVvJINQGptm9e8L6bB8cPaghfrd4hEfvRq6JhC9RKgiNuCbGPL5Pcs/tReaMUCpK97hnifNl1\n0F9wiN28+djlx5nTp6E8EgvRnZ0FCGbCJ7FjEh5N/2S8DbwZSGvRdD+Q1zfdm5HudUDq+em6\nFn6U21mCeBRbZaSps2hOuCL6g0LhzO1yJLZjNg0MQSN1v80XrzOVMcUONpDLHkGqX2N6C/ra\nFmYJQRJAeBsEmAgzSVdGWwjjzP2uiB9i0wBWBunIbhI1R1nnbdIWpL4BuqjaM0Cu/My72FSE\nJ16JjI/AxTNO7WHodY+bmDUQchEUbcImSD/DJBOQ3P62X0FIav64ET1vHlaJnB4ajj+IdR2F\nFDfqd3j1G8UcDKfK9ohq7k29a1pYHTHdvo43Xm1rvk26otVHG7lzLYatILXJOCO+iI66UsZE\nVtxR+cyYGxPW5FdO1hRoC9K+TrtEWYDEesX6FA7Tx0/sOicQYkZiliYJOHE8F5IpNcUjOGC7\nzD/m50DyI6urgXRxr+U8mGYeUIvMKm+TroKm7GqZoMUswCUQULEg9MiYmduDxub+74MZirUB\nEfDRk3gkfng5F5CMH+wPbwG6pllRz+TqRwGJx3r0f8IW9frBL+XqSDb3sxVsGfvNrqj+vt8a\nuvnX254bWO7tDdjUMxvsU0Wi5ROX5JsoGfAJ649xQ5mQlEm0xIWL/GXIUMPZAxDTuyhUlsja\nMQ1NWYBU164/6/nxjZS1SH83nVQ8sWh4MaMAPUQb4OAEliKHormTL44ZW3Bf3FWDukbfxh3v\nfmgXWteT9G3SfkKxry8WOIlqDwIE0WbFj4e2IdTDpZBXOrKGbCe+hxeEOChSDndVTGCUXEBq\nd7atkpETDEFVrlK8D+LmdBUVXiBVZqT5bRrD93FBIilnu8iLq6xMK9cU6u690V/d7IaEb5Nm\nTy/7uIjGdaJJhtXvO6WUNpLc8CyUDNmwnjRMYFQPF0GdZfjw+fH4IwFKeYFEr/L9GrKRJrOV\nI5s/54RewQJ4+D6+qvlO7kB97bOnx/pF6jptada8FztL04sjnnElLd37cd72la6PY4HWI0mg\nRWGSiyDrsFfkkrMmQNPz0rNCktNcHOHlBJIfa/UrSHfeJelXVUqtUZ/OqNKCA2IEaxO+hjan\nR8+QHEOgVLlhB0NPKBNNLkglzpzGdbJ6eURAWymtbe+MJBSkfr3jUsxKQjQPEmGF+Rl2DHY8\nsjEwcSkgkXsvZA0fgBD+iryFyHBg6GXLb7MpH9zMHiQPkDef+0nmPhrmKY0YWigOJOZSwsqV\n8RfxNqQFhw3bE0JtIyhiGQQ48cOJVAFehPxCQZJ3muWgF+nGi40VMS9r/2FNiViEkiPrlIFk\nTPdFc0NKaVjoRsbr5ZmsPOzwiqaDFJJkfIOU1yudD17ZDAr/hxPD4jqPCwWJHIk7wgffxsC3\nx3KwsjbgOSoFJLfAR49J8zQha/09dzrC5DjSRK3mOj4aSA4mf1gatnGQSIECbDYIkhxroA3Z\nX+I5SAyXwPFzB2X4qmBD4Jio5dhO3KokOKSH6E1pV7OWQjh6Y/W+ITsW3/Hekd4gbbsmQZ5C\nkVzh65RuCTyYM5ssIu+zsfKpwyNZ6KXSVBWrBbbkY2U63EziLV91rs06DnylavLkOjKoyVSc\nWMnIYThQFGh+Xo80LwLIByQZyYXL0bXNT/IJHoERv/rwMJBf1hhMzQrxSXr1jwNJuqTMRu5e\nLAp7DS4LxXgATa/5Pjlp0RIA3uJ9vQsnR+Ei+dM1Mle/MiwIJYx6umSv08gEpPbE6A+/rCd3\nm8j9JfqkTMiOj+c0xgyt9/Z3UMEMFRN4IC222zBIdTi3gV7YRat2Ven+iYNE//N8smsba+7u\nH3c4NVTkTklcM/nx+x9VytdpTKre/sjt8hrvfAoGkSc1QCOirEYOJXLJcZSo7oonsUF2pQGh\neUqJfxjh5aKZJXLP/9NGSKtKBYndMyWdF+pZyHXNU2fxJDAIkDTnxcgLQSLGJ1mltdGUzFZ/\n51O3qz5WRxMEeyjZ+A/yiKiNmYBV8IPVepO6EkeYEnYyy5i1pwm9rvnXuP7DO/TCTqI9Q5r1\nw8jmLzyHg4faQuDgkfRoUi4ZHvwyKA7EKKKHka9kfVP1rv/Op25fdRxMbBdjy1pKNopH615x\nR+zaZ1N5dx9W9nj/jeybFUmzC9M1OjdfmLV+0uwtCtyvkG6L/1dc6sQVz5A9aEYPcrjQhi4b\nl4k7gi+XfYzZpL/QTcls9Xc+2Z21EWQxDGa0lizX2e9bMXRopEcYoy2h36ocPVLp8UAugP7j\nWgiSsa/g0T6szLtEhlWzMd53CQB58Gd9kAfJm0oBieApi+Lx81n3NwJrFy18BKSV3/nESyQD\nJr5l8PSdw65I1XOQeMTgN/S/I51Px4XROFNwywuiRgtA6v61EUHnn1grpd1SisODpGLJbKTF\nrONNQ2GULoh6QBIrikukd0bNYkWbjjuNNPVqa2lCmvXf+RQr3Kun65u5excyqXy5qKjnSL1a\nSZBCrjMb8OZa5pG6v/Z/0w/pVQwLApF3RQ/aoC1IYZTNPRBPKgIGghANCh+Sqsejm5JSGWYp\n4y8JKTUNpFYrvvNJL5rNb9oogxDrKPnLk/Yvq3iCCy8APTtvmSAQlamy0fzC9JZl8ZCxcV5F\n/Yxv79RFOJB8Q6cOSKAj+kxk1M51ab0vohwy0npbGncC7irnQXp7aPeGdz7p3YyXQaIbwju0\nYaDng4+OIzn0FgdJcT5ByFAQSLVjiVw3+xOsLE3cA7GmTnpDokvkmKAWkYltZChR1aOLtqwV\n8aQ1BYmeVUJNz2zFdz65bLS2qRxF29f9E0Z3Shwhqr3/E/SP4oeNg5SrZpaM9JBozCGij7b2\n7LuefItnnVHqfnijp5GfJYb7IR8RBnv7xfZaGEwwlhc339H7EEhtadZ55xM7hLpCdVhsiTFn\nL5XOgnrAwS+WA05xjBHDJtrmqSUgeYpYrbPLqqHv9PRIOQy8+xc+xa7hYaDvLQkelcii36Pq\nn3QxsS/F2tg0A5DWeucTOcTwCm1T6Br6NZWRV0PFGHZJdUc6SOLiscIr2VfQkmBBO0UFpJo0\n/AddevCVvNfqOz8DFzotoKM9rqpyL3WKmIJEpmtc9KZktvY7n8jukf1Hz5l5LopYhB4ah/cx\nwQsH5RHnPkCqR31y7Try/Ygecfb+H+enZNjn+0ihnRyTSj+XvQlooPdMItNPgbTiO5/Gy2fP\n2VtKS0RBoinYt+SUvqnv+M4oWSw6yJOpZaGdtibaSewW6ICeq2rvfsJxAhrfuVU0iwfJwV7/\nyI2/yOWM+Mp5VTBJU/Je7Z1PU8rHrcZqgzgGWkesvip6JdMGHqx9tEMP1nywmfup7HiaVxql\nDlwkFwHJ+I3sY4ycDyVY0BMy7/PwGHbxXDzilquDwDStJuW3zjufpisy5BCpQ1ljzHgaSI1J\n1KO+Vttau8pIC0AKayL0U2KbXfLPXNLqpoYgIZ0DKph9wlNZt0SOFiugdh0YKPt8Jc5vvbYT\nXAKjEQYXe9FhCFG3RZ8YlBkJC7XgZDTna+TQmNKU+zQ8vhbkKAOqFqTQYn7Xqqro4aOkx0BK\nrpxAGomktBU6SP5a1fR8dXq45Vxyf31TndwUK2TKX8pSGTZiV/ddEOVC1//bPybG7wBF6TLM\n8YQhX3vh455SOXLs50raFEgDCSI2nAKSkSD5ID8Yw4hEOlNL+UnNLlW0A89+W5AirbgSNNA+\nj7vf+iCLPpUY4HNjf501fKAm+6i+ZHPP/BXlBFLYGSJXNWKkKZb1CmL0gCQR2JHLnN71Ir3p\nwWLkRdQikFh/pI41WrIiqIiqouyISxklZSCeoyDZjAVI9BrqYNNLmlaZgCSqXwEpTDxZlRYd\nsGuinj0PVgRURmlVIm0hILU7x0FiKwdiLRUk6XKEXRTsujt+LOZwJaEb3Hg3K9F6VOUF0jry\n70QJbwA+HvL9DBPLJa5/fIe8EOq0oEiD/sfQrcYor9xwV0ktHOAuh6UJhyF6jmzdy0OLkE5C\nVu8ApKEsB2cNTKoRcTuPX9+UAbvJ1Ry2sFJBMvr0DRHj2n4kj31dP2kwyCbXNjFAzpjrP0vl\nD610kuxhHcGRu2EplXd2bZZyhCg0nVinZGH4CKz7MWPce7xvlKcW9ZG0MFfpSrIFJbqruAmk\n/xkEqd8SZB+rej+O+BaL5Z2dyHwImnhtdVu0y+Gsj/IqB4oYJS+65hWGABQDqVau931TDy54\nlQRJjCGo0xs8dPa6x0Hih1f7RCS+nFUN49oSSK+LVmYVoMQnmPCdJq0c2VgGSPrlKxbn0WUN\nMGmEKEgSqnZGkH4kCZI8LO1AUfqTmqdskLiEEf3oD9dWY7cRzT0BPaDWKy5y1Wcr9J5S4IxC\n7zQ5elBBCtfsDaSE58tsmPCL1ptQStMMu2AFJBpvuXcAyO5SOG43Hj6EvTHqCeP9p2nn+YJK\nAEkbe9B/E5L2xtH7goUhL985h4qhM+SFKEeiw+NGCOPdpKhv1ALThco7u4kHnQySJ+mV5/jG\nDroglzdqScFeOqugexT2YYw+EG4iY3XBPQpj7yEND90FQw21u00LkBaqJ2nJzaPB5MWBFB9A\nHtpFB8n5AzPQU9IwMmQe3/jwm+KQPDzuHldiS+0CJFpnlXaF24NmgxT2ykfaYDQs4IMOkQcp\ngt9d70iANFSmqNNhYAEkf7CpR2MgVbpDKl7zR+2CVjf0S1+jJjIVAycEq38IVi/V0Arbfxo4\nqeimmdoFSEzVPh3S4kmr0dqeDpJo7CLAC+M6fsN8QqdorBQrassgzVO1T4e02DQz26XSWaKB\nl9pX6pHSvvb2Akjv1VZASnk3CSAlzHWs/xQN8+yGcMaJfZZ8+nGnto4V8dsjSLuM7D4F0hRV\nipaVYmG6GdoKSNBSwTSrCiDtRTDNqgJIexFMs6oA0l4E06wqgLQXwTSrCiDtRTDNqgJIexFM\ns6oA0l4E06wqgLQXwTSrCiDtRTDNqkoNEpRKaQ0D0ySUWr2p7bUB7fGcN6Ltmma7JZ+vPZ7z\nRrRd02y35PO1x3PeiLZrmu2WfL72eM4b0XZNs92Sz9cez3kj2q5ptltyCMpIAAmCEgggQVAC\nASQISiCABEEJBJAgKIEAEgQlEECCoAQCSBCUQAAJghJopyDd/j5dAiiijZpmnyDdD7+fLgKk\na6um2RtI52Pz79Vs01pFa9um2R1IpjHX1fz7dEEgqW2bZm8gdea6muunywEF2rRpdgdSa66r\n+dmmucrWlk2zK5Du7b9Pc/1r3gVzPP9t0mRFavOm2RFIfwdjzs3C2RzM3+/p+bP7DX1aBZhm\nPyCdzfn3ZL67xTYQv122ecuiOJVgmt2AdDWNaU7d+XYDRFAeKsI0uwHppz3TX1Nfb/V2zVWk\nijDNbkA6m+7fZ/j9XW/WXEWqCNPsBqRLc8f8Zr5+f7/M6fn7vLHObMEqwjS7Aan+ef5/aa91\nR3P7cFkgphJMsx+QvP5tdDrXDrRd0+wRpK3Oi9yBtmuanYB0//32Nyb+Nhs/lKhCTLMPkC7N\nrfJL3dzoe171Dt+fLg/kVIppdgHSzXzf63Z2/tEcvjY5ulqqijHNLkD6/uoXbvfz6bS1ySdF\nqxjT7AKk9u7EU+ev4XTQ21WMafYBUh8x/G70obGCVYxpdgHSuX98eatPXxasYkyzC5Du5tCO\nqv6Z+6eLAnEVY5rCQfr3ZU73ZjbX4W/Tg6sFqjDTlA3StRlSbS55zd2Kg+3YQhmoNNOUDdLx\n2AQNjbnuP6fvy6eLA3mVZpqyQWp7sJc+DIdyUmmmKRik2/ncDQUVZK5CVKBpygXpYtyraMox\nVxkq0TTlgnQ43v8dTBd8X8zPh0sDEZVomlJBul+bM7tZc238bl9RKtM0hYJ0PxzbyVvOXFAu\nKtQ0hYLUvGiwjb0LM1cJKtM0pYLkXur0NFchwUMxKtI0xYLkzVVGZ7YklWiaAkG6nbs75dt8\n0WDRKtg0RYHUfjzxYszRtIYq0FybVfGmKQukxjyHc13fvws112ZVvGmKAqn7UFW/1L5Geosv\nvy1TpZumLJDaN7F3S6etPylWmgo3TWEgNTcpOiv9Mxt+JU2RKts0pYHUBw5bfvltsSraNMWB\n1HxHsflz2ezLb8tVyaYpCaT+LsXZnP7Vl8PmH14uSeWbpiCQLuZwMs3D/2ezvY9il60dmKYg\nkJq7FHV7l+Jcpq22qx2YphiQuqdcekuVdpNi29qFaUoB6X44lnyXYsvah2lKAanwuxSb1i5M\nUwxIZd+l2Lb2YJpyQCr6LsXGtQPTFARSyXcptq7yTVMSSAXfpdi8ijdNUSCV95RLOSrdNGWB\nVLy5NqzCTVMYSKWba8sq2zSlgdR0az9dBEhX0aYpDqT6p9wh1q2rZNOUBxIEfUAACYISCCBB\nUAIBJAhKIIAEQQkEkCAogQASBCUQQIKgBAJIEJRAAAmCEqg8kIyJ/Qh0/XJJ2kVoXZVsml2D\n1G7tkgwnhJKoZNNsopAv6VVrTUkIJVHJptlEIV9SydbauEo2zSYK+ZL6ev93NIef/sf9fDCH\n71u/9bnFfF+bxUZtkm7RHLoc7nYBSquSTVMqSJe2+r/bH7dDZ4xLu7XbYq6htb7bFHX9V/Rb\nOj6okk1TKEjPK9dfU+3tj4P5vdf1rzncW7uc7/X12L6yUPRor/2z0Efz72OlL1olm6ZQkH66\nK9il+fHbv9/zz/w0W9sfV28oMjR0fF4Mm+Vcw4etq2TTFAqSfW178/3fkz3H5qpm+pd9qta6\ntBfDS7bhw9ZVsmkKBcmO9Bx9d7WNut0G1Vr1V/O2dxuPQ6lVsmkKB8m8Zq3f5op3KK9OMlHJ\npsm3ZHPFrPVNDOS31jFr1YdD/a//dAKUXCWbplCQbCD+Y8RIz4i1zuZyzjd82LpKNk2hIJ27\nQZ5nZN1YrHsv4b+uR0tShda6m2PG4cPWVbJpMi7aTNmbFc+L17+v5sf9YE63ur4cmsufsNbN\nW6sbMvo2Rb9Y97Mq2TSFgtTfPv/ph047nWthraO9fd4v1u1djHI/z/hplWyaUkFq7pCzCV3N\nl65qYa3blzn0a9rFRseCPxj8aZVsmvJAWqZ7zuHDvpW3aQASVztZBcpReZsGIDHdv3IOH3at\nzE0DkKiaCfufLgOkKnfTACSqr3wnRe5duZsGIEFQAgEkCEoggARBCQSQICiBABIEJRBAgqAE\nAkgQlEAACYISCCBBUAIBJAhKIIAEQQkEkCAogQASBCUQQIKgBAJIEJRAAAmCEgggQVACASQI\nSiCABEEJBJAgKIEAEgQlEECCoAQCSBCUQAAJghIIIDldT2skhfYhgNTrejJT6+KFpNBehBbR\ny5jJdLyQFNqL0CJ6ASRoidAiegEkaIk21iLaNnx59lG+fu2qf9/GHL6vZPvJHNovF1y/D8+E\n52s0YZOgS2qsxKFcin/umEpSCNpYc2g/3Nu14/47iGfyOd9u+6nfaLeYSyRh/yXgQx0F6cce\nihwTIEGKNtYcDFE7BP3jfjJ38Uu3NN+ejyVscYmCZHUg+wIkSNHGmoNtzb/N32vzgd5nK7/W\n16al3/vthzZ6uzVLl/p+7ByJltD8uc1Kx6dP0Tuj58J3NCkEbaxFNG24jc3O3ULjZ5rI7V/X\n1uvewfQJGt9z/zpf7nrCZvPVUqGC1GZgF27RpBC0sRbRtOFbs9AA8FXXR9um+1Cvd1R1t4V8\nvFdLeLM50r/hocaTQtDGWoRvw90S7ch89WvvIqX7KROydCpI+gJAggJtrEUMgWSU7WxHNSFA\nglJoYy0CIEF5amMtomnDzWB22/M/kq4P2d4tNVtufkM0IUCCUmhjLaJpw9/NQjMKd+7G5i5i\ne7ckRu2iCQESlEIbaxFtZPYE6K/5e+0G7w5PF/XX4ULaeLulv4/0NZCQ0nGr7wou8aQQZLVF\nkHq1nunsf9tR7T6pmNkQS2gXjjbPcZBcUgiy2iBI/RS5fq7dN8WDRV0Ond+hhHbh12Y6DpJL\nCkFWGwSpvj6ZOP7ZVf/aOd7fF7+dbTmS2d9aQrdwOTZTxaeA5JJCkNUWQYKg7LSxZgmQoDy1\nsWYJkKA8tbFmCZCgPLWxZgmQoDyFZglBCQSQICiBABIEJRBAgqAEAkgQlEAACYISCCBBUAIB\nJAhKIIAEQQkEkCAogQASBCVQYpDAJbRPASQISiCABEEJBJAgKIEAEgQl0IKW37/dKlV2ELRh\nzW/5V4AEQVZLQDqlzA6Ctqz5Lf+3/8ZkouwgaMtaAtJvyuwgaMua3/JP5vJtDuLFvfsECW82\ngpaAxN4lrw09vFlTjl71evuBobI1vwkY81fX9zMP8PIH6dEqMUkvFwMqTUuNfm+/EZ4su9XV\ng/SYDdI4JgBpj1psdPFp1qXZraxqOkgRHoAJpKlUkCLtvXoYE8Z2amI9hykcgbUdar7ND6b5\niuqN35bNpgmNgfRQQEoFyTMNWNqb5hv83HwU+X5m3wrPB6SIbGSnxnYJWr/NAiDtTfMNfj+0\n4938RtIb2s9LbZQlfv4YBCmBANBetcDw9/PBfInZDZmDVK0NUuTIUPHa1/NIniOABCXVFkBK\n1yYngAQAoDnKG6SuVQMkKHttAaSEubyvjwTtS3mDlEYACVpd+YD0lpgKIEHraMcgrXhAdLR2\np3xAeosAErSO8gRptYY4NbQDCdBr2hdIk2c2RAsAwiBVeYK0lpbPbABIkKq9gWSfopgI0lJu\nwN1etF+QJpEEkKBp2htI82O7SUwAnL0qY5AGGuXc9gqQoJVUNkgiXcuR9qz5wuJAUMYgJRBA\ngt6kskESopEdZttBKbU/kF4aAIcbgqZpTyB1DullkJbBBBT3oUxAGmtuSZojj+wid5LCIwEk\naFy7AYm9iyvmktRXO75+bMCzP2UCUjzDVDkaIznSQRoowuSyAKT9KVOQXm+845oA0sRCQZBU\n7iAlVAASBsChZMoUpBVUzQBp/hcpoJ1pGyCleL+d4KgZBV8OEpiCOu0bpMWxHUCCOm0DpOFj\nhmPWWvsOI7uxN6DMpQR07VBZgzStRaogBXtqHK0PEpjaixYa+p9swYtym+JYhneNf+hLB6l6\n7SgvCyDtRcsMfT+kB2le2xv9eqUK0mMQpCUUgKCdaZm9T4EPWZRdl8ULebyQ1oHkJq2ODoDP\nfHzw1ZJBJWiRvf+CvshazSfSLqc3V++QJoOEGUHQdC1pAzdzXBMkmvfitqpHdoMkJfw2M1S8\nllj6aG7rgpTwC2MzQEoggLQbLbD0j/kjLcV0SlEmp5nZKbvFOEpwTxaC6iUgXc1JGbBeWJwk\nUsa+oyC96JLgYiBd8xvG1+H+FpAG2+7Eoes4Ry+6pOB4uPkKtZpt/G9zqT8BEv9JQ0v2l49U\nDICkuaTBNzXECgCQdq3ZxjdOSbJTp/XoyYbXKzd12YD3FJc0BFLqfiBUhjYH0rScgsBuAKae\npImHB0eQpoXNYguDDVX1pGjIK3mQkj/IB+z2oixAWrW5NRwNxnakmwSQoJnKHKTFDbEZaBjj\naMFtWYACdcr0eaT44xDD+yjD0+MYKQMOk4Y0MPIAOWUOUnyFvk+QrO0gDajb+vRb0w4XH2QH\nUvtWpiCFGRu5MElDN5CGQBo7UrgNIO1bWwGpy90MTWXVpthVlBfpm0YeqJj1FDp42qkyAiny\nfFwQPr0CEmNoGKRKz0M9mrJy9BFdqGjlDZIx2lvtwx0iXqoKcBm7L7sYpElrofKUEUhadoP5\njYDkoCH06Iux4G5R6aYmgYpQJiDx0bA0LVQDadA5jdyXHSxDZBgPIO1FeYDkRhCmgTQY8DmN\njtipwd3o8fVbXBgP37kyA2lq8gnbohxFbtE+104K7uLMA50dKw+QyAV9aWsMQAqwiYIUJSn6\nCBJAgnoVB5KV/h67oWkODUh6NwmEQGPKBCQlp4kDdpGt7cygEJt+TZSn18YbABhklSVIdtZc\n3EFNBSlCjF09MHI3UryBUkweeYQKUm4gsUHjMZDijTXaQQqAEnMeqkqf/BoefGQzQNqXcgHp\nxecmRhorf0ExpUkZeuBrm+ni/F7veKFBDZQXSIkaZPUCSJIpGdwNwUK2AaWdKxeQ+t3N0M9u\n1fjUu7FnkIZBCp7ys4y/MvoBrvambECKzP0OV8mgK3AZVeXitfigglgff6LCOpuAlGAqw9jZ\nQCUra5CGkpmgKfcLTVxHQFIfoBgGiX1+LEqKBhL42a2yAWkk3yDj6OQ28Ra7WVFe5YfgY8cf\nLCaA2p02C1JkQ/i6/IHXn8Tvy1Zi7jZAgoaVCUizWyAN7Jr7sFXgjeaA1GyaeSbQPpUXSKJj\nPzpCR+KvHiQR1ukThSaAlOALZGBxT8oCJDleEM5skH16MoGIgmSdjx+tU0DyvxWQ3KrY517C\nIirn0RdyVmVAm1ReIIWrvasyIn3YUDWQVD804KIIeTpJwyCFYx/QPpQFSGE2psfCR3oKNsGK\ntfCFQgAAGehJREFUiQN0Y7Ge5VF/G8powaE9KguQgsu79UUCJC2O8vMZprxSdYAiZSKRCy3J\n24yMOpEW92X3rsxAouPN4b3OIZDYuHes8xN834WPTAQ4eZ84GaR4pwkqWQssff825vuaLLt2\ndzpfYbAVDtw/Gvgakj73W6BGHNIMEADSPrXA0oe22XOSkoGkbZO/yBrLkRilmzd5lT1V4VzS\nnFMDSLvRfEufzXfzzylRdt3uA/tHZwnV9vmjcGbdOEiDKTosu0O9xAQA2p3mW/xg7nXQZFJ3\nueSYt56o4lCQMfDBuQsCJO0ND0/FbigNlZPfV4Z2oKW2Noek2cncp+Q3MLKgv0LIIRQdeHi4\nBM2rhYLh9+Bukb5xrJ8HFaSFhj6b35TZuWxGRpPp9nCaavj8OPc+7OGJ6JuGHu7+bvv1JDpI\nGLvtqt0jXlwX0Ca0yNB/xpxdRmZopGBaWfQxZL/CzmgwhKhKoSAStal3bOMgkemuyvvuXFlY\nKTFkt1ctMvbv6WB+0mXn2uHQuIKchyMRUm4GPQQY+ph3iBVJHrwW3LjJFwOns6QyoG1pqbG/\neWy3HCS1r663yWYgIERCuBgTYBNy5ldrvaZ+vlDliuhglp0gdIr2q6V2v/PRhrnZsZkDBKT+\n/1hnXkZlHJPIlNWpyYV3ox8ii09kCO92QbvQYkuLljM7F97z8WuDLry8exRXbO63dFmRHSxI\nYUeJliIY0qPb8Zqu3WjpfaSb+UqSnQWJzVgIrv9UFf9A7ESS6KMWwTC4/jCtX0dQMob4TQYM\nj0sB0k60cGbD/ZSqjxRODx1W5Rs5GWbQEJADCO5RCf74UjQXm8KYiFOqmdcklwL0mfajBXbu\n5todU2Vnc7BtcDAr1rMZByl0NT5s44MUwyDpz82GHhQg7U5L7Hw+mC9+PzbJDVkbLNWRwMgY\n9+yR8SjEmj/zQ8F265VouDcy/S5ESYCEftEelXpOz5J9yQWd9TCC257kI2Kat5HkGBPxOMFa\nAZIy86GfezfUBVLnX0CFKy+QHDdywgD/GSNG+hrCA+kD8fVGoWUQpJYk9TaSfjrQLpQRSPL+\nkVxvVcm2LmDhziaGhg/qtOlDsdHAdifbUYqCYoxzq4BpJ8oKJJfLQDbiUxMqSApFwj1JcqRj\ni4P0cOEdLW0AvvVWAGknyg+kwYCpqkT7nnbTVQHpwf0XGXMgA+T6QdrhO96Rk+N10N6UC0gD\nM7/JKv9EuR1kiMxLGBjL1sI/Q5+tZSGfSmt3YOV2sezdQbtRXiCJtsm79FWlj9bx6E5nhq4b\ndWgjufbcVX18Fwx+x/t6ULnKBaR+935unSFc2Wu8fN9WANIADWw3ylSkLyQS8U1+jNzOCLeF\np2cBkPalTECi8xlkA2yXqTd6yDCOATUU4QVMKHgF6SR6tABVpQRzGGXYofIDSWmXPKiTN3c0\nkGw3Z2j+HGVkwAXRFMrEBzrVgUZ5AGlfygQkmoV0RsrowOigHPUaAy5KSxYHSYG4/cken2X9\nOtC0G2UBUmyiTeOg6H2j2K2fcKQ65oTYyHbPJQ/w5CCDkdNaNZFxBzlQAu1DmYCkD3l3z5KH\nHoXQw3tMGgkBRm4pYEPs7uLDPqLzgWKYdzOGZyRI4Gg/ygKkiEuqSPt+8OZNYXBtm4deosXT\n2XfR0TrKlHn4LhaJCEm2IpeKsQOQ9qUsQApmpdbsKy2h22A0GQISxc0xZr1KLERk9EhAwwOS\nQ3Ic2VCJcrsWKlh5geSmf/uQLojU6IAcHZDm7sRvJr5IG0dgfHEshSv02NKDcnorN4gHkPal\nLECizc4+tucbv+JFBFjUQXgkAqwU5MhOjA/pw1hqz5sAqVPbW8JDfjtTJiDVhKWKt0vZkll3\nhQ43uEEBxgfJSzoYDwvt97gNjxAkd5x4/8o7re5sQNI+lBtI/t1AstE7kEg/xv2gS7qfiIDk\nc+UJLS2qW1L5YRFeN+HBAwWVrixAIrO7bVgXegHW+BknyuiAACnmP1xuAS88xnO5aowHIDVq\nTgT+aEfKCaSnNyItm7VUGbpxSmxkRuI+2sSH4kQfw4W9Il8YDpKad7Dvo8JQw46UBUiduniI\nX+vpH9fomRfyg23BYIIYMQiI4uGgp4rtrwIoD6KCxF5yDBWubEDqBrxJQ6ZtmoVXLLbzhDhq\n2F4kOUkSYEJ29OzyEkRBkn0vn686NxwqUpmARD6mTNwEa6HEORltRI0MNLAWT/+hrBmamhOo\n9Idk3CecGaWQA5q0eqFslQdIbe+IQcFHFOS4nTo0LahyO4qVPETUu09iI/NlzDcG/o4f6gGH\ntBflAFLVz2Nw3RzXZBUeuGuQboi5G9nFIW7pwfOgG2mAydCTHs7j6P8N8DTaq1mh8pQBSFXl\nWqsDibducY1n3ZwHbck+yKJOhyLovYcjlFBrxG4+djP0JzmGQpylymENknagz4NEukfSewQe\n4yEbLWFEeCDBEAPp4WglWDxEburR9QBO7iFAAkk70MdBCj9K7hut3oEh7ZU1aRHziQgwAIP4\nLxYQEixE9hKkMAgNjtb/UD9iAZWkJSD9fpnD+b4sO+WrexwklQa6ikZT7Pk7w5s3jcceATys\n1xM4Gh/DuQ0UJOKvIoUFSaVrAUjnts0dGEmvZic5CroopA1LN+FSG0INd2OiP+WwI5BQxyYS\nMMpkX0jgZNgxQupBUuGaD9LVfD8Z+m2+2zc7uyCuC0Hyfw1rywIOJRB0mFHHRRq5z457LiMd\nk0jNhiecF3MOT+nOtSTNrmhoC5oP0kl7cu217ML+Eb3O8y6+bO406QBI1ONwOMhKxSUJ6Hw5\npIf0vinsUbG94ZOK1uLBhgUgRcYZgrbKGzshigdrD86ad0gCHfGLQsoDRcV7CT9lXI/MFZOB\nxASQStZSkO78I7KvgRRQ5Boi7w+xHgntw1gQREeIZMdBYkFXmDlNY0RnSw3YZCLFj4KkfWgp\nSL/m0mfU6YVdxVuIg2u7vKiLrov4a/cW/RWfxodrjjGWOTuKXaJ46CDxJepMg9gQwV3BWgjS\n7XCanZ13SK7JuZgq0t8nMLCVHiQSkRkGh+9KcSYINAQ35rEElRJi9w91qSLq60laVtlQxloG\n0v1w5CteyI5/XII1c7IkQeI9EQKSSuTjQTNSOjosM48xcZKGw0J3ElRx8pROEkAqWMtAOn7N\nzy7sIVGoeMskDVi0cL8To0YFyR+IofigyZhnYSB5PizPbjMj2RXgIY+B2K5gLQHp9nW8zc9O\neqTHg0JCL/xB/4W2aQYSb7rKRvaTZk8hkSTT0pDEAiSbiuEqDg2QitUCkC7mGKybnp34NrnW\nD+EOg3AToEbWcYCMzMhSEvo931EyRA/ClsCRQ6XEcqRIAKl0zQfppnA0FyStL28imMgkpGci\nQBJdG5aI8+S9C3V6Lon0lbRQNHGIuhBiu2I1H6Rv23rmZSc+ZOkat5sjRC/5UXGUQnKU5Oyo\nDCRfFMPRIIEkC/ZIfhQkh2VYGIBUquaD5NravOwGQep/8Y10JW3NtH0HbZegI/mizATAsR0I\na6QL5Rh8GIoiDykNQNqHPvU8kjbLLmCAb5HtksZdouXz3WjEp7R5l0TEkgpYrM8VuiCX2POM\nTtJOlAlImk+QHol0QYL9SPzFsrPhG6WKNnTrYJROmZGJbCHUMmiAKz0lgFSqcgKJtlLXeHmE\nR8IxupdDRHoWBSSyzINJHgMawgLpDCnEK8yo/SOQVLIyAck2P9rWuQ+ivwKQSNBlf2ldIx0k\nB6uMAcMMXDHpr2B1HCOAVKxyAsn5DwqS0mSVJuxRYP6BRYO0OxTmLrtLPhFZRUJAko84DkkV\nsITx71KVDUiaB6AxluSIdHcoHMytWAykbyMAKA/1uVz5eILIgoeLDBrqKCVIaasbykYfe4uQ\n8pA5C6pEoKQ5EOEcKAUyzKNOhZDFYkAeMQZehkZrIghk4SSDDSDtRZ8DSe8lcaZ4kKaSx0Ei\ncZ73E6y75LEMmnnQ+eGMiWMroJHjSy8FjgrX595rV1WsXartl0Vthq3ncd+DUOPo8U2aH4f/\nkZAJ8Ghkx47N+Xa7+kAvBAkclasPviBSPiEbLvN+ewwk2oIDIOVeLKGHkPg2AQGNAh/+iIQm\nih8tjHRx4KhkffJNq1UVzBPiUR25tD+4nN+SUNDWG+xKQKKux7CsOKAMDe/pnMMzfD9fBB75\nPTBgV7g++8pi+t5vQ9onv/QHhDByBns6hvHFu1Vat8umkFsYlMJ30fSs6FTAqHB9+t3fHUqu\n/bHLvOjShwDQ8MmBItu07yppBArq1K7N46FRR3pQPrMYSOCodH0aJBvg2VZtmzztgARBExuA\nMHRLFKTQb4U00D0YXQpKLur0haLRJqO2Akbl6/MgPVUZ3nRpEzacEOqSSNPllNAsxAJLITNw\nPoo4K+JlRJzJQOJBJD0ZULQLZQFSLTCSnSUBEkeBg2R3DUDiFLrxgdCJEZpsiBlCFko4MmC0\nM+UBUueU3IWeXOpjvkZ6Dc6goEtAyt0HSapkzgI2EiWGHk6A1KdKWblQxsoDpGeDM83V24MU\ncOMaM2+8fjXbVfoajROfkIIUw9ADFAEpyLiqGo7A0j6UDUjto+t2DI+PJrCfKkgECbGKYhVA\nEHaQQiIIP+odLZWnR+eMANJ+lAdIvUsy3XD4EEjEKSitWLRzH42RfZXhBMGAoM+wHwHMKlDo\nGu1NWYHU/q3orSXtgi9Gl2NxoNtMQGFIkvE45tO0rBmcmtMTSZJWKrQBZQJS3YZ2/f+9W2J0\nkAYbBYk3dA0v0qkyFCBCVOjTglhQHFqUoekaGXdOCO12onxAane3nQo+oZW32Xg/xUZfHCvZ\nr1JGxzloxF+5paDT5f44/Jr/23uvxpEEkHajjEBy/SQ68MAiMtvnD7wDhUZEXgIl8SOaEUko\nfvgCiYCwKbM7D3tG0E6UDUjGGD/I5QYeaLu1jbb3JEHfiI8G0GEFOTwgw7fHsFgo6cNAsaOL\n6OwpEM8EFa/cQPI/m3+r4fEDNvimDEXEGOFOze42AFK4yEB6LjxDurbIpHtkANKOlA1ItdHj\noaoK2rEYhpNUhYN0MTp8dkFPSqUnKEf3tzJKNNdhBJL2orxAIncxfRN8dj20Ju0iODGux4fg\n4uMSfgAvDNTCwUC+kvq+qius5MauXVSd0Ga0AZBq/yytaOxsTTBGTUcmZHrDQBJ9Lg6LAhLh\nqAvpbFTn3BL42ZuWWfxX7r60AbF+Bb0dUwcoERZUnyMBkmEhgUcdvTPxoXbrC7vZdGwqUI8U\nQNqbFln8GjSYFCCRH2xdVbXDeBpIOksUoXCgLoj8Yl2hyM+qci40BKmuEdXtS0usfT2sAJL/\nQ+5qOinDePEWLzpRZDP3Uvq4XCRWtBRVLpbTicGQ3b60wNi/5pgOJBsS2dtIdlXQTLlb0pmi\nCARhmxauBSPm4Wggzc1NSR0YTgBI+9KS0YFz2IrmZUe66/Y33eb+9ssRt6RQovWjxO1VFT/B\nGv1V0TcwjI3LgaXdaIGlr0pDmQ3SpDQeqopNxosAIRlgvSV39yhwPLp/shj54mi4iyIDpN1o\nmaXZyMD8O/nxznms/1H7O7UMJAEEXxmAFA44yB3ZRuuL2AA9+VcWFiDtSMlAWpJdfMx4JHCq\nwigvvG0aEsGclEIQ3dFDVNmjisuHXlgwtC9lAVKXFbttNHAMtmkIpICNmKI+zGMUKY8onBwH\nh3ajjECK5CpHICRxlXNLymC2ikXAnAqSglFssJsVSJQXQO1D2YAkmmNss9oTa2fjqXeFhiQn\n2Kn7VpWdvlCHIGmjjJIggLQP5QGSv4ukXfTV4THRTpXe0gSQwr6Q7BkNjnBHb8VGt0GlKiOQ\nordlhsaW/bZK/QbgkLdRBhXEKF3s4CMnA5D2pzxAev1A6rphrySngmuxIEnSTwKaVpbXk0Bl\nKXeQRnoaYoiif9PD4IQ854bit13dLaOhzs+CUkPlKbGp1wLJ/pA9KP/DDUGMzMWLb/T+KfJ6\nx7EJQcOFh4pW7iDRvE0IEt3qFkc7S1FH1K8eKsN4KV8/M2j7yhikocG70V2nuCKjPLrHPwo2\n+ZDUM04uJVSQsgZpyuy9yHiA/v4hBS52M0nGdNMm/bwc8kHlKTuQ+E0jHaTRedd1f5NWAqRP\nUHVrh199/+LtpKENUHHKF6R4K5w6qVq+5iHyBoY+ifal10kDdIvLCRWg7EDyWQ000Kl58GGH\noecBdW+0FKSp5YQ2r3xBSiHySrxhosiEOgiaoc2CNKnhG6OOhdPbsTaqk+Nuszo+oHG3KhIk\nvk2/rURAElGdClJ0fHvawB5UujYLUnc43XmIFSM3aCd9pXKKgwrTAKzdqEiQpCr6kIXoICX8\n2itA2rG2DdJkRUHCR5OhJCoXpCkdJXAEJdJeQNJJmsoRQjRoRKWANN7UQ5Kmd48AEjSi/YAU\nTgmv+NZFhwRqO1cmIL2jHcpprNrdo5eyA0iQ045A8tFdC9LScQZMSYWIMgHpTaoicd0sASTI\na18gEZIw8A2l1N5AqsARtIZ2BpJ1SQknBkFQvV+QPl0OqDDtDaSeJIAEpdU+QUJkByXWTkGa\nvTvGvCFV+wOpSgISgIKYdgdSvQwkK4AEMW0NpOUNeDFIYAgKtaRRnA/mcL4ny26SABKUpRY0\nimP7RuGvVNm9S2lCOwhimt/y/5nDtb4ezL802b1NAAlaQfNb/tlcnv/+mZ802b1NFTiC0mt+\nyz+Z2/Pfqzmlye5tAkjQCprf8tXvpM7O7n09+MQg6QXHgMTelAykaZ8FG8vtDaq077fMF0CC\nGuXikSBo0wJIEJRA81v+ASBBkNXSUbvb5kbtIGgFzW/5P+19pIs5p8kOgras/c1sgKAVtKDl\nf7Xj3cdU2UHQhrWg5d/b2d/JsoOgDWtrzyNBUJYCSBCUQKlBglIprWGglbVHe+3xnKGVtcdG\ntcdzhlbWHhvVHs8ZWll7bFR7PGdoZe2xUe3xnKGVhUYFQQkEkCAogQASBCUQQIKgBAJIEJRA\nAAmCEgggQVACASQISiCABEEJBJAgKIF2CtLt79MlgMrSPkG6H34/XQSoLO0NpHP71qOrAUhQ\nUu0OpPb9YVf+Nj4IWqq9gdSRdDXXT5cDKku7A6kl6Wp+QBKUUrsC6d7++yTpX/OanuP5DzRB\nibQjkP4Opnvj/9kczN/v6fnTnMd2gqBJ2g9IZ3P+PZnvbrHtI90uuJsEJdJuQLqahppTd75n\n8e5/CFqo3YD0057pr6mvzffRQBKUVrsB6Wy6f589o+8aJEGJtRuQLs1khpv5+v39ar/WecY4\nA5RQuwGp/nn+f2nd0LH9+i0EJdR+QPL6h5l2UGrtESRMWYWSaycg3X+//T2jP4R2UGrtA6RL\nM4vhUjf3YJ8O6fD96fJAxWkXIN3M971uH5w4msMXBr6h9NoFSN9f/cLtfj6dMC8ISq9dgNTe\nOHrq/DWcDoLmah8g9cHcL57ng1bSLkA690+W48FYaC3tAqS7ObQD3n/m/umiQIWqcJD+fZnT\nvZlod/jDuDe0osoG6dqMdjfeqLmRdLBjDhCUXGWDdDw28VxD0v3n9H35dHGgclU2SO3gwqXv\nIUHQeioYpNv53I3SgSRodZUL0sW4twSBJGhtlQvS4Xj/dzBdv+hifj5cGqhwlQrS/dqc2c2S\nhBux0LoqFKT74djOq3MkQdCqKhSk5h2QbbcIJEFvUakgufdtPUlCXAetrmJB8iRhnAFaXwWC\ndDt3kxjwDkjofSoKpPa7lhdjjqZlCCRBb1NZIDXkHM51ff8GSdBbVRRI3TfE+qX2Dd94LzH0\nHpUFUvuS/G7phIf4oDeqMJCa+0cdQP8M3hYEvU+lgdTHdHgvMfReFQdS84nL5s8F7yWG3qiS\nQOpvIJ3N6V99OeC5cuiNKgikizmcTPNehrPB98qhN6sgkJobSHV7A+kMjKA3qxiQugeQeohw\n/wh6s0oB6X444gYS9DmVAhJuIEEfVTEg4QYS9EmVAxJuIEEfVEEg4QYS9DmVBBJuIEEfU1Eg\n4QEk6FMqCySQBH1IhYEEkqDPqDSQmhGHTxcB2qGKA6n+weg39H6VBxIEfUAACYISCCBBUAIB\nJAhKIIAEQQkEkCAogQASBCUQQIKgBAJIEJRAAAmCEqg8kIyJ/Qh0/XJJ2kUImqtdg9Ru7ZIM\nJ4SgEZXXfl4FaUpCCBpRee0HIEEfUHntp0fi39Ecfvof9/PBHL5v/dbnFvN9bRYbtUm6RXPo\ncrjbBQiaqlJBurRkfLc/boeOk0u7tdtiriFI322Kuv7DC1SgV1UoSE+n8tcQ0f44mN97Xf+a\nw71F5nyvr8f2bZJisOHaP6Z+NP8+VnpooyoUpJ/OuVyaH7/9q1f/zE+ztf1x9QyRUbvj0081\ny4jsoFdVKEj2jfrNp5lP9hwbh2P697CqIF1aP3VBZAe9rEJBsoNwRz+S0HaI3AYVpPqreRG/\n7SpB0HQVDpJ5DaTfxhkdyqsTaHWV12gYSN+EHb+1joFUHw71v/6rFhD0ggoFyfaRfowYhBsB\n6WwuZ0R20OsqFKRzN/727PQ0MHWvjPzXDTaQVCFId3NEZAfNUHmtxt5HevqVf1/Nj/vBnG51\nfTk0nkmAdPMgdaN53wbvPIZmqFCQ+pkNP/2odqdzLUA62pkN/WLd3mDClzOh11UqSM3kBTbX\nrvkIWS1Aun2ZQ7+mXWx0xLecoRkqD6RluiOyg+YIIHG184gg6FUBJKb7FyI7aI4AElXzLMWn\nywBtUgCJ6gvzVaF5AkgQlEAACYISCCBBUAIBJAhKIIAEQQkEkCAogQASBCUQQIKgBAJIEJRA\nAAmCEgggQVACASQISiCABEEJBJAgKIEAEgQlEECCoAQCSBCUQAAJghIIIEFQAgEkCEqg/3dd\nLh0ld+IVAAAAAElFTkSuQmCC", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 420, - "width": 420 - } - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAM1BMVEUAAABNTU1oaGh8fHyM\njIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD4dm3///+f4zgCAAAACXBIWXMAABJ0\nAAASdAHeZh94AAAgAElEQVR4nO2d54KrIBBGMRo3N0V9/6e9sQ8wFBUU43d+7FoQ0J2zIDbR\nAAA2I46uAAC/AEQCIAAQCYAAQCQAAgCRAAgARAIgABAJgABAJAACAJEACABEAiAAEAmAAEAk\nAAIAkQAIAEQCIAAQCYAAQCQAAgCRAAgARAIgABAJgABAJAACAJEACABEAiAAEOkw3vdMZPe3\ndXElJvauHlgE/j5HUQ6C/NkWvyDSScDf5yCekyEvy+IHRDoJ+PscRCZE9m7eX0Myy+JCiMcx\n9QPLgEjH8Bp6b6XcJKmLM4h0EiDSMfx9TWkHFEZz+MXVMAuSByIdw7fPJj7f35/v78K4uPWp\n/C67oVlKHYh0DLdx+OD7+2Zc/DcNNeRHVBL4A5GOQRBjhHFxIWDSSYBIx+ApUiGyZ9M8s+/c\n84hqAl8g0jH4iTTSXk6671k9sBSItCvT1dVlIlXq5SaQGhBpVyaRMn6wwbBY8QqkB/48uzKJ\n1A4jVA07/M0shkjJgz/PrkwilcOl1rd8QdawuMKwXepApGNob04tm/5K0cu4uCiyroF6CO0u\ncZAWEOkgsq7teWfDudDYd5MX39uW6NPNdkKBZIFIB/FvutTaXSAaRZIXf7Jp9t+htQUuINJR\njLf/lN3cNJogL36NJqFjlzgQ6TCkZ8rnYTnlCfS/XHAPpIPEgEgABAAiARAAiARAACASAAGA\nSAAEACIBEACIBEAAIBIAAYBIAAQAIgEQAIgEQAAgEgABgEgABAAiARAAiARAACASAAHYUyRI\nC34WiARAACASAAGASAAEACIBEACIBEAAYgX3+I7rPcoC4HAiBfcbIoFLEU2kQl8IkcDPEim4\nH9w7diES+FmiifTYrSwAjidScBfieRdZuUtZe1LX9dFVAEkSTaSO8Stz3NDDGrziOGKw1zVM\nAiyRROq+51OVcgdvc1lecRwz2CESMBC1u1VJX+beXFa9VaTNFkAkYCDueYvcm9tYVr1VpAAa\nwCPAk7pIJHJHj7hgpsvU9dO8ZXsAthFJpP5j3B/5suyKsmgjMnugmaAkM6zrp0J0z+AiUIgk\nUtl+A7Uq+w8NbyhLivp+0iGStlpeF6qDB5OARCSRqox8UXhNWUOkMiG7QaRxDiKB0MQ6R6rK\nTNyUuxsWlDWFKhOx9nMkPch5j7aoAJGASqLPI9nHsK1RbF1LBd1m0uptz1Qm8Ob3RPLL93SN\nyukqfDESFcny/3dzWxJqyGFfTlfhi5GqSEY8A8op4tnCEiKlTVoiuWPF36MoXcMDOWetL0NS\nInnE+HVFAklzPZHwrx1E4AQiycs8NYAtYFeSEsl0rRVWgNRJSySGOshNPQDE5fdFgoRgB04j\n0lod0JyBPUhepK0mpSFSCnUAMUlfpI6Ti5REJUBMLiHS8Jtbt75KSysBkX6ak4i0OubHEOZC\neb/whkg/z1lEWkt4kVYpAY9+nV8RyRSpwUVC4wI4khBpe2iaw7uenj4Kc44EkQBHCiI5LPCJ\nd3t4hwx+iAQ4khapX+ETuvuJhNMdwAGRAAhACiI5Rgq2i+TfRQRgHUmIZMRfgDGNJS3aJRCP\ntEWScGngar0MI+DbKgVAx3lEcjUo9YR/BuQq06a6gcvzCyKRS65DIj6l4ZKsqR3bZBfUvBjJ\nimRsPbiU8ysfyaRfIUaRNp1S4XzsaqQqEt8Pk36rSefl/mFsFsnaS/TMF1yHE4lkWqMnXRDG\nxnMkiASW8AMi8ec+y6q2pAK+m2+tATgTqYpkjkTbudLyOq2oAAA6SYpki2GuZ8ev2ASGxcEi\nUhTJqoS6cpoPKpJtWBwAnYREmoJ2uUj+Ub9kXBwiAW/SEWmOWnv8KqlqapI9e2fWamUgEvAl\nRZF871Il0e7cgmrnU1fPcySIBnqSFGmYtaSkdwRJIpk2WyqSHyuyg3q/SUyRXkrmvudIw4zl\nhiDSEGkeWe8jChzHy0VCb/FHiShSlS0TScIUcLM3ukXKZnIGUSIYIoGBiCIVIqpI+py8md5V\njGMSM2nfACL9IvFE+ie2iGSKS8UcyxwrUrwg9s0cHv0m0UT6iHyTSCYsHbbp5Elf1UQ3CU3N\ntYkmUi4+UUSSYRqkmpikp4VIIAqxRPoT/5pZJNETvhiDSN43joetSqysQfpEEuktiqbZu0Vq\natf1WfOJV/iqgUsRSaRbVh0g0rzI89KuMZNgwNGLEEeku3g2m0TS488yiqem0popx6XYiCLh\nzOkqxBFJTKwrS48/U0TKmgxz+ri3NaQhEtjMSUQynvfImpBUdMIqEnNOFS74IdJViHmv3Zqu\n3Rz020TSpqwZaP3DkCYFygkkTWIi1TP6ctMWZD3bDhnylEpkC4MFwJdkRdJXuDbUMzI9a6GX\nyGyLfhlYQDrPI3VYG49FcA2SqUkyLFpbjxD6QeGTkZhIU/wvyNaSWmpbuJbHlfGacA7xfwCN\n4dlIRKQ5bBYHkBRznCu0j2fckKkJn9vCCq0EIp2NNESa42Z5BCnbcmdXbIPE9/Vs5XvWDSJd\nkTOKJKWYfSC2KM2KJtLcSJlrYqvlgvqtBB6djHOIpKtj2rTWrhnxHvGtl4dIazp7y9OCs5GG\nSMr1HzXiJFlcIjWsaswVVz6wbeFuyMiPJWnB6UhEpBnOJNkQk0gNaY7oskayg+Zgbl9c7dX8\nCyKBluRE4iJOaWqk1STka4ohL8UjKTc9J1PVauqs315BpN/mFCLZ7jUwiVTL0khtiJZeLdgk\nktwSyVmt2S/wMyQokuVeA2aV7IoB/dKsnJ5kRTN1XOhV0nvsFkT6WVIUqVkywsU3MbxIczMy\nt1I0vKUpaxUkOSESSFSkBTHHtilGo/hBPf9d0MpeUl81Dbz6IU4vktqkuHt5IZsG0iSt2RYm\n/QwJi+TTu+K2m9bGN8mekaMQiPRLpC6S43zfttDcKDHbrovp5TVk1kOnX8AS3OS5PJFFLquH\nNCerRJK2IDmQdsiQsbzEO7TdNXSY5MoDnAUvkbSXDwcvq2MKKYtIchru2qwsjb52bJL4bLUZ\nZ5Xtu4PBvItgCO6bkLlFLGtCl2RuTmgSZux6TElEUQO0VmGL1macVXbsj3OgDiL9BIbgfsse\n5Z+IZU3MITV7oeikOKA1QG5X+JVShPuHtiOl3VeuaHBW/M6RopfVoyoyi6QYI6VqbCLNAmpn\nYF71cFbY4yzIPz04LUmJNCOZoPThFJMaWQ2SXmrP5gEyKQstr0UsFQMi/SxpDn83cqjL9ujR\nOKeQ9FNtZM661HJolp719N+pFenBWUhHJLMseiukjNdJ2ugj6IpPczK1bVI2D7HPcTlFJa+B\nLbhfOf8O7xhlqWcumid6Sv2EyrZ0vmQzLVDXkO3J8gA7HosddE/7ACSEJbj/0XG7yGVZhwDU\n5ZME6ra06dG6d1q3T2+aNJEskbp/hOklxhdpB1V/BEtw38S92qss+1haXWtvWNBFUs+UDOdJ\njbmpMqQxV3fBvm+PR6ZEiJQO6YzaWaK2Yf6i0uw0QxVqSPOiZs83QOwAvNoWGupjJ0BAcllE\nj3KI5Iu1RdqvrDHWzatpW2HJRWlq2BwavcFhMuU94sf4nEQSKT7wyBPrOdLfXmXxQSJHrdp4\ncON8LpHUC0+2YpmVSnmu/XXu4DIQ0ylja3X+ieK9T1lSlCsLG61BUk5jpBmDItzqOZ2UlirL\nV3MN5g3hx09gE+ld7DVqN8UzG9FqS1DLL8af2w+DH1aLNOtsthgV49P5JJKKs20H4ZLGYshz\nx+HvmhlsJrOMR4oDjELjOi+PlLMn96mYbUeZBHqeczleIxjOQsGhJDP83fDXi/j+nuqAMiFn\nZxCHF0nKiKkgV0/njtA6qInUCjtEgk2Jks7wd8NHyRRcVBRJBnq2RGJxmrR6NHcS5eKMLrDr\n+MZG25YTSRtSMR8bvfcLksES3PmBd3/PyNErSaCN2DWyd7JSsm16SyCdjukxTYtkPaLthdkj\nWTc9D8c5EkRKFUtwf7Jyt7LMKOqoUmi9JsWIRvVIykxaT7bSgl4ZI7TV0rTW2S/zkQQipYr1\nplVxD/JkrE9ZZjSPZBEUK+hmzkG7RlpPNjKLZK4kI1KtSe3YUa9E0m+QCNZzpA2jdtVdiLty\nFcr/JfrMIhKpkgiGIJ2T8ArqItHMOGvsoTsXpdTBY1s1tQeLEoMdiCVS1m0lm+SXCRcj1IRG\njksS+3p6zRtOpEaaMunpFbhynsuiHSKdmkgP9pXi3v4oPMvyNcOwrRq0vEWyQHyGxnIsFTBW\nCiJdiEgiZaK9BKU0ZMaydAv0UDGHDrWFa3c4jyb3+DFuwyi8f/DS2viyKDU8Soyoj5orL2j1\nE4nKoCRit7SNyrEYOnhTRcKJZKk4+DH8RFp3bbYUD7+yuBBllhkSLYQZD2fzU4pcJpJ+3mXd\n2p0xbEyceCL9E2K6DuUasTC2AWOTMy+QNpnSbEIpkyyWjVoXzFIdbUmcmcClhInXtXsUmfJA\n08KyzFHdSOGppF3ilXYuM2SoFUknvGqu7IYyxs7tqdexcJd9TaR/0vZ/++/blOQd5E3cQ6Hh\nstK5y327ECLVcwshdZhIwtq0oWoRM+InZysFP3/mZq44naVNCpMFRNrKApG6tX2SkHeTRv2s\nSyVvt0Uk1g01PCWRGmVezWIqghkZ0NK6RJKWskFvE8nvHAkimVkqkk/ChTXwKXH1Z13k7Vxv\nEdKXSLrU6gLyf1r3SEutLWw4keSi5zW6UFp6dVNmb5S0y4BHZpIVaetnXfrrSB95O1u1jcHc\nWJomzhB7alUR1iQmU7qOqe08z28ldffUVVruq9iw6Q8wKPHKRfY3zFRlJrL+ZtHvgvZlp+0t\na8OoV5tkCO2h01Rt/JhepM+6dHc2VIX/ORIJvVr7z22TwWIKMwbBb8uMY/CrnCKRgvXd8+u/\nOdKE3/QX6N3pn+m+dzOf/iY18ezWDk97v3WR7l2KdpB527MOsR7s63cj9y1L/Z/eqLFHYlpW\npvFssfpki0RSKkbmNC2k1ExAe3kEkVbTxeq3UfnXvyC4aQPw8e0UPURWdcqUVfPO2//u6mDD\newjSXLy21cBRudV8G9abfD3W8xxpColajT7qD412L5EkZ7aKZBt0MItk2mNrKk8gUtP89Y3L\ns515DJ2h7p1yop95zw6RUbu8v7V662eS0/kaxQgJCTU6WAkag2EOkaRRgemnVIpeh2k5XVpr\nsjMxrS1ik22Q4dIejUr0M9n3dzEGW9vgCPGZU6kiPbt26rmxZ5egSI0Uoi6R5k28PFLt0RTT\nht10keyV1EziI9zg2zKuLQ+F2NELJT0BNK5gRWpu7cDYeKq0vgaWde/7jl+j6FAiwxCjkgmG\ntSZ9SJy7/CK5ahUiSy0i1TU3tk6TuY6A62jBpB5JJLFMpEfbGGVbI9yyvTRyt7EYV1k9amTI\nMc0OXRvWujBuoIS4Eu7TjFkksr1cHLOrrEce3UJbYjuLNzgJkkh34s68tjGJ1GRZ+1aFrTUw\nr7qLPOgbizeIJLcOw28vMSzwPUWanWmowSpSM4WrUn02jeMI6MvItClrM8u3OAnSOdKfUAbh\nHCKV4llu7dnZR+3CerRcJBrqwyxJpxhAktucsqwjVdBXKPWbl5qD0yqS5xFQl6kz3jk76hqD\nHcvqlCiHgG0/o/I3PJ396gcbSCpdpErkm3t2yb0gUjn2TDQ3NNrVc3sfW5weGYbYTXFojpep\nlv7Q1LXktukQLWFXkfYsbLyO9G1XXrd2pspE8WmaZ9a2TIpIn1mkfjTvrl7xXFMD86pchH1j\nsUskXZiG/6+uR9Y0z/nhEkn3UheJJFmoxvpgmnZLkWtLdO7o0f4iDXc2/A2j2j1lo4iUj3c2\nDJNNNxrwb3MNzKteW4fWF5TVmMaxlICel2kJ9OQsBo/4tFNRNKj9AmRpesMBMeV7gmGD/UVq\nb16Q7rUTxYus7X9/biIblnSTLQHaDFtwP8VjxxdEssedi2xuBGBa4PTI3kCZzmskoUhVnHvD\nZ9dYBhvsB8RrZSKkX8OBanvPLtp77RaW1Th7Mkq0K9t5myQnsG0gneEwItlCec7eJBK/tbzU\n5tpSkU4T1EcQ4tuU6YjEnFvTGFTCf95AXb5EJNvYA5PGKNJcdakK6rS8s06RTEfJPO7h2gpw\nVLcAowHp3SI0/83lEKSBTRNKy/2lkBYwI+qaM3IBuvD6iRTdJWUHl4qk7fXywUCIZKB9liJA\nLtuzCFzW/DdXxGE7cXJLxaujndqoq5nM9Manlk1lglsujtkvshce50jsMVmpBEQycwsyqGYN\n7uovbzt1+bYnNfzKmjGKREYaFIUsHintFDP6PZfFdN3kpY1m87xknjB5RKXmnTFFO81xnRHw\nKDLWUbtsvOcvzDj4ApEkVbSVNGDduE+b5oyJJ2rwzvNyreZcmFzVvZr/OXCJ2A2tK/zZnAGw\nYgnuT3uZqhXplW18etBdFkUKxlr/1y+vXWGOng+zheoLf07UaE2NlCu7VyT3aZVWBNlMSrIW\ntk4gHNabVh/Ts0+FOVmQsnpq6z92slCOdQ8trHAbkGyU4tVToimNVD1252j2WnYNF+36kpUE\nywjwWII70+7ui1dWB4lq7VSEj0KDGPbVzAa2EyfdJLpNww96m/evJptJ2TUNbXhqy7DFGthC\nQDhcN60eIVJDY06ZlYNwIabtDC2SVAVD50yppfS7YTdUc7SeLWnr9KSuFep6rjiwGWuLVI23\nJ219M4SzrA4pemjQ8fFNwtCIdsLlSsWlJrWzbKLthjSvpSIp1cXTNo22Ts/DtWJDSrAAS3CX\n0zlSEWbYbs050hhp/gFtwtKOOUTy9JfshUkkfof5I8GuM2UEkY7GEtxV9jWpfUllIcI8ULF8\n1E42gKxerROLRSS+PA+R5gVMEs9DYDk27ArvzH3rAbyxBff4ssrueanIZRFIIEoxXdOWobG3\nGJux58j3NskOSIEtp/U+BOYuHLfOnvuCsqNs//vYg/tRtK9L/Qv0gN8ikaZpulRqnUyRHQJa\nJr+2rrVrtOo+LBvJpmutaaVSnUfTq+zY21+A9O614+JjDmEllqOglWpMU0vKafXV98G607JJ\n7uPjyNG/7OjbX4AURSLU6qgdCeQtpthX++TPVpTM0TzmZaYNVsWq/ya2lD55rKjc1bAG96P/\nKsvwcYy4ZbGwMe4lwwKInMxSqR5kZq6hsd7MdnIKbZMVR8c76aZMFtftctiCOx+uw4rxbSsR\ny+LRg96gT7R+nlQRWiey3FRxTkBlz+RN3EeDK2QbQTIBtuB+jC+IrPKdriNp8HHNB/wWXSyo\nBTbzr2YOw1oNRrK6tohkDeHa1WY5tvfCWYtfxO9Oneref5zMK70lxW16QeR7nzsbJmqlJVAe\n3zObFMEmj1FwSzTWZI2cqK6NGzX6CLqXeOug9Qufe5r4iZQNHyfbKlLwj20uGLXTziak8G2i\ntT+kFOW3tqKeJTOIVNfzdVk6ze6mfgToenV+KR5bbsn+bHjFc/fVybJ78GGbSNl8P8ORItFZ\ndTIijtFv8nPegtmNYYUpge0IkG2MZaw7oqvT/Ape8dzHv/R6fluW5lX36SVFjxBvhwgr0mIx\nFmMrohksoGn53ZhTj5Om3dRX1UqD5Hn43Ed0dZoTYN6Jrw2lyEp98q99q+R3wTASUGb0m8nd\nWU0vUml7a5cluN/Dqda7DPQ6/RXnSMOcPtq8yREv5MFwOqwwjUDYz1zIxmyTYt7SY5xh/SH0\n3OSkWPa0e5lx/5ZvIYp5slv6zMf3G3cT2dgZ6+7cHt/Rb3uNpP1NqyO73munwR2a9X74JpFK\naaY/kTyr66HUW81J3YMNh8CWQM2bzPkXekYsB/Wrx7t5Z+1rvqXJvPp2ufqfWfuyyO/UfWic\n/g2tVCuS3SOPtwjtfq+d4W+tRQaJ/EVe2RPLZekijevUjebFaq1to3a+R8QFI46tnQxVbHpY\nRWrbg+61CdLkqxm/S9H6UrTz1TBM/SiyrjvXdQXtrzWOdovQ4/bthMoGrjxHIqcjchIayF4K\n+aIVM9dKnlXKZ/6ONEdplZZyE2pu5tzDlpse5r2bbi9gJuef6rjC8OaSXDheAGR7sG/LC5FL\nIXU1XWVJKH9rJYKnRVIkr7eGgxmUk2fmOgx/uWHxXEs5laFvuqSfxSelxbhTcykvwzqRusap\nDWVxs+fuLHgVb3GvtNG+NSLpob3DOIMTUjO5zvJaugO1Gr6GxT4HhVnqnc+PnyNZWCfSsPDl\n+oZSJJGKuaZeZcl/3VrzqG7WOxTIvIadVes8LiIryTbKLs9L1ZXsEbKJBJz0nbNn+899nCx0\nkfLpHKm/jvRpW6J2xZ/99h7rOxs2D3r7imSMh7pW422zAWu34BfKddX3iE0t52bbf9ch8tgQ\nDIxDdU9lsl83/ny0o3ZlO1jX3dlQFdObS27Wj7/YWp17tvFDY8oHnJaLpIahFJKbtLBuYN1C\nOTky7UOte6Q1s9NCZVvTMfJeChi6EQMx3PJznycb+ed8Ham/1y4fV7ytry6xdu22fh/pMV6A\ncmUyhZQcF4aIc8Y6H/n+K/yyJbWcqsbvmLKRnge7LQjLN/4KcXsMk2V3OwMjUjtOVvQNSJnN\n6Zv5S+l87raCN4r0yeSC7edIU2SrS5moC3PhSMt/SaaG9sW0siG2TIVL+zntGohDmBtGjbnH\ny7rKlEtYtrLkyKYLlWXcqhAwuTKD4EyNrCvpHknFMDuvXfMFQTmtSLk68O4vEglDSS49QLnQ\nX4mWqzSmzW9gv9Qk1dTSf5OKR0cvEgeKtOVDY59bro5UWMuSI1leUSsR5ieGHSYTk0iWVseS\nv7YDXENTS/8gaKYrDjmwcpxIWz409mRuTXLviBSGWhC7WoitGEYJG228Wptq1BVcR7QhO6Ut\nb8haJgOQOpbg3vKhsQ93i59DJENQew4VRGCsk34Cp9ZBvc9h2B1516QJZbl2JPwPNUgC64N9\n6z80dudG++wiqVHMTG1wYtVGygXhaSk3qj1Pkd2hc8xStD2/g/VR80YeYF+SbRyR5MjmUgRF\nvbNCmZjKJjtgv6zE9+W4hOzx8UgFDsJ1r91+HxqzBTGN2unXtE28Tp7a32SWTpWXuoHevTY5\nGyaBlJBfbj2sYB9cLz/Z8UNjc0hMoWg4y1cGIraKZB7EbnidNZGmDZdeXJWzacy+WMSESSlg\nvWl17w+NEUh8aQGspNn8dSTuVMg21N40ijM0nNUa2vYQIv0OluA+6kNjLTS+tBiXUixzhl+6\nNDPFNTmcaw8rGklXmsi8ib5croMtJYiOLbiP+dBYrfynrmmw1Zs88sVyeqYtmWvD7opDJD3o\nzVvwOejpbaWCWNiD+4APjRkCeFilJWO22A6bpVaSUoeFIW1b54cph+05g+VEvW1iTVmO2NaT\n7SWSegFJPcGZF0o7Y9vRdYdROgRMXmR5jGIBS7oiGZzS0oU1SRknVEs2z6gjefW2gPXZvCYe\nLdDXOJixrIZAIjmRlpgUUCGvrBpDkyTXe043V3QpZPOwqU1JlxUINBJ8QSQTqUo060k3Y8+K\nHY2f/GlUqxsamFqlvY9BoNS10lpBpBjYgvux1yuL6d+Qhi97dq9uGQR7VlNJav34atAlm0Xy\n2tiWSK+qRyqwFItILyHK7iX698ifvqR/RDki1Whk/thenrixZESLcYqkLVoZouNG3lsbk3nm\nsKaSYMYiUt69iL8l8mdd6J9aCT8pjuVNSPLIfTxT9mo1yBytdL0mRMfc5lz90ksVYA9d8pys\nugN+L4iMe9Mq/VNLoSunYbZYpYoVLktXMdxgXkNqt+ZYjRv6ZkDTKdusrMFRrD5kx2K7aXW+\nUzXy3d/0yJHYNCWJKNK6HJnhO7Ivq8Ji2tJzc1rO2jLT4KS1txjymM6M/u1z02pN/wfXjDly\ngDY7i+RRGqndljE7ksuS9PLBOisnrb0tuP+y/p3F72zpA7LLy2qoQbUaRfIystY/xr3g1KRi\nMJP69pJJ08Ry2E29cltdZBKcs/auF0TmIr9te92qV1kteohKa9QYllZpyZajl6VmSGuppmno\nT7V7t+5w1cym3DKQAr5vWt1RJGUMrOFFktc0WzVSGpN5keEMSC1X8V9LvwZmww257co5ahmS\nlG4RqtWWhaxQg5mJ+/C4Rapr1Zl6+mdA6x7qEK7ILGDpS8q8mkkpiTRAApkMQIQ+HfLKTG0L\nm0YXWHWm5vZmwVGyp+bWWrdYWnwQDin0WNITafgj1KZenKciPumduWq9SqmKzAUbPsypbfwe\nuzLxOGCr1vpkvm4riHR0WdIfwSPe9SEBH0XYTZ3puVpJC2tDg8GvYXY4MZHWbr2lzHNyDpGW\ny7BmGydjfAwl6Bdv6toQQPqaeV5eZ87DFJ2WLSxb+eHIG0ykJ5LW02m0MWn1tN6pRshLt1oV\np4rO67l9kteQBco6UxbmoDZusR3zHgGZ9ESyBan8X9ww+swG/3JfZG/kFUyVlQqq+6FupOyM\nzzE5JKjhkSfJicSEC41sNR0J7sWuWD0yikSqQVerIecI+9qxnjkmtDqeG4LdOJFIUgCNyaQY\nC6cRMabmHNXroNab2Q92p4Zpn2NSK2doICGSEKlmDJFX17XSIklBHLYxImhdyHpesFGkRs/H\nI6lXcnAAKYikxQmfgMQt+X/OR/5SYVzbkYLmCtI66P07V7TPe03237CRtJgkB8mQnkjaOmPH\njWy9jUabYIuipeoVJzVl9sGwa0o2/Pae+YEjSVwkGspscIcc2LZgqKi6QEvg2D1pF8i+WFOD\nFElBJEuokVC2BfdGSzzWToVx1bPvCLuQT6PsGzgPpxFJD26SIEazNNVr+tk0U7gr1aP1Newd\nt0Y/AlqG4CSkJZIaQs5Q1/t7WpoF5mjZ28v2jfupWtYkxv4jd2BAaiQhkukKiTPynSK5M7Fs\nTBsjruwlDYgrGVnLJPQsBBxHGiINqPHiinMujX2jNedUXDFy385j333Thdx6S4lgIecQaQwK\ndSOLtq0AACAASURBVF5O5aGKQ6SGS8KX4rEv3J6tC+5VIm1zFywjokgPNW93WepfXg9bJpJl\nQ1a0OdIge8NloC121l9JNc6uFWqNEhBpT+KJ9NZelrKmLCmOG6mRoinoKdYWkUwZNI2PSGSV\nQ6Q9gjxhkZKt2HqiifTOwookhSD5Q9BZ2Q2zUX69wUYdb9PdMlWW7aVqe7HicCwi2XBNWPHV\nxBLpIfIgIjVSFDfqpHq6L0W5WST32F5jz1+LhDlXpd76bmi7cDl+ce9jiSRK/YXhvmXNwSYv\nZIO0X666I82sQcpe7aNpIo0LjPGhhc7vRdICIJI/b+bN+0tex2XsHHHJtX6fflJT60mMCtWa\np3wVpzW6WYZ9OguxK3uqg+FHxFE76bMwC97UahBpXqvP1VNkW0QiuTtMUnPmazGvMohEFjlN\nS4pTVTYR9hFpUVkmkZSlNJY5kXhB9IVsOmnKXs/GpIm08FQmnamuqZCgSPw5krm5mVuE+ZfJ\nI2W0QEs0JJQ20WtGsmKWM+u1ubQ5U11TIUWReJwiNdL/fadGrEJy5mwV1P6kvcKGucQ5UVVT\nIX2RdDPm2cbkj3pNSZ6weaTJR6pBcmncIvGnc+A3SUokLtbksCUp5ElVN04kF3JCphoLRQIX\nIiWR2MBURXJsuMoZfaGhiFoa74BHYCJxkea4pivVZMo6tz58MvU0zFKEx+6DS5G2SDSqFVfU\ndNpGkiJWc6a16gi7sQgAFFJ7HkmecbcOfC66SLYWaN7IJ3sAGJISiaI0KA3RzEck58kSKYMW\nJxUEgC8piaQ2SHKTxCllz8dTpEZKvGK/AEhJJDmOhzlnj8sc+4OIxtsX+EEKZ7aW6i/cAvwQ\niYo0BrXaZPAbsSGs9dpkiegKOsMW5iEJmrNrk6ZI46Qa94aNzIZJaYwi1VyDxN7eY5YFIl2b\nhESaBp8NIvFbGESS2xopKXPFiWuCOJEs9YFI1yYlkVr6eDSJpMQq08rIq+YcGel0kfTOnFIN\nmy3w6NKkKRIdeNNXmhIz+TSqBSSL2dlGF0ktwC0SuDRJimSKVoNIahrpt1kkSUCtVGqQZKXH\nToDrkZJIpI/Fx6u2Ql4wNjDyEkkpc5vCOTrVRMsTAJmERPLoQGnLlQZGkZDmSLpy9jqYMmNK\nBGAkNZF8xurUbaTtOZEmhVzZSn04rjmCSIAnRZEW9J40kfQTn0btp5kLUJLUpCFjSwRgJCGR\nVsWo/ezF7BE32qf25fj2ER4BhpREihSjmkdMV29ue0xD4ADYSEqkOLDayEusJ1HwCLg5u0ge\nUc505NSTH0NfDwBfTi6SV7/LlERtogBYTdoiqeNlXIJtBtRLxwkB4EhMJMtQ85qRAGZcbtH2\nAHiSlkj6+LNDpPG2H0t2lnmIBEJxdpFsKyAS2I3ziGQbM1h/tzg8AkFISyTmHmy/bcx9O+s8\nAIFITKRVQA9wOL8gEgCHA5EACABEAiAAEAmAAEAkAALw6yJhRA/swo+LhDsXwD6kIlKkeIdI\nYB8SESlWwEMksA8pihQy+OER2IUERarRjIDTkYhIjdIgQSRwLqKJVGYiK6s1ZUEkcD5iiZSL\nltuqsuAROB2RRHqJ7N28M/HaoSwAjidScJfi+f35T/ztUBYAxxMpuAvx+f58i8K3LJwYgVMT\nSSQh6C93WXUNk8CZ2Uck0WNOD5HAuUGLBEAAEhEJ50jg3EQSKVsqEgCnJuqo3cd/1A6AUxMp\nuP+660hPUe5QFgDHgzsbAAhArOC+dePd+S5lAXA4sYK76u7+3qcsAA4nleeRADg1EAmAAEAk\nAAIAkQAIwK4iAbCNHaN1IQlXbR/SPgCo3Vm4/LFI+wCgdmfh8sci7QOA2p2Fyx+LtA8AancW\nLn8s0j4AqN1ZwLEAIAAQCYAAQCQAAgCRAAgARAIgABAJgABAJAACcC2RHrfxo030JkjyKSfm\nq0674a7SgbWjt40meOyO51IilV0AZFX7ev85GMinnLivOu2Fu0pH1m70KEvy2CXAlUR6i/vX\noYe4S9/JIC88Yt99tF/tHFU6tHY9z7bwBI9dAlxJpGJ+/etj/nIT+ZQT+1WnvXBW6dDadVRZ\nq1CCxy4BriTSQC/SY5wln3Jiv+q0F84qHVq7oV7tKVCCxy4BridS1b5trxDP+/C6MPK+f/bV\n/3vhrNKhtWt59y/OTfDYJcD19vvR9kGK/ny5fYFlKsHgrNLhodo3SCkeuwS43H5/un6+EP/a\nl1i2nZRUgsFZpaND9d2O0jRJHrsEuNp+Vxl5jXLVjtamFQyWKh1du344YSTBY3coV9vvXLrQ\n0f7Zyaec2K867Yy5SkfXLpMLTqx2R3Ot/f7c8g+db//s5FNO7FeddsZcpYNrpw7IJXjsjuRS\nIj2nz2Nk3Xlz92cnn3Jiv+q0F84qHVo7Muqd4LFLgCuJ9Jk/M1O2f/Cq6/WncnXeWaWD7x0o\nxNuzopfkSiLd5xsvq6yb6P59kk85cV912gt3lY6sXVt65VvRK3IlkegdzO33m259X4V8yon7\nqtNuOKt0aO3IMEKCx+54riQSANGASAAEACIBEACIBEAAIBIAAYBIAAQAIgEQAIgEQAAgEgAB\ngEgABAAiARAAiBSNd3kTIrs/3SnnTfT3K043COaPccFjXkdSra8oCACOfyyK0YAFj7oxOoiZ\nfFiQVWry53ftEmFBcCBSJDJx+/cN+OqRLXi0gBVpmHhmYngF1qTmtC4X5XUfYEgDiBSHYgrs\nTzb3xVzYRGre/Yu1vx61r/Gh6yqRDc+tgqOASMH4hvUrF+LePkj6bt82P/DsBfh0z+t8hpTj\nFnSr+d30cq7ypBDVmPm47u/bVpWXfVlwGkCkYHxPU3oV3u3j2KQV6h7RHtZlz0YVadrKIdLU\nIvXfASDrbuLTfK77IYgkgEjBaB+/rpp33kZ5Pr7gYKTK2k9hVPdupEAWad7K1rWrnkMXsV2Q\n969GGNa9Oodul31dQhJApGAM49Jv8rrEmb9hhKBoe2CySPNWnqN2tHFqKbtzpn+XfYFPEkCk\nYAjxGX4zRgxtyLf1yFWR5q2sIhXPeaOvl39zctGNM1S4lHQkOPjBUIYQ+JXSWnXa3LUrRS5f\nPLqJ9zj5nBo7XEo6DogUDKpEoZ4jbRTpK04uLSAtW670/cARQKRgUCX+yKhdld23i/Q9h/qT\nFty/JfQvFiNnUbiUdBgQKRhUCToY/WhHAbhzpM8Ckb5qDo3cuCAT1XC6NA4y4FLSgUCkYEhK\nFFN4f7LWAGXUrnPisUSkJiOjdi3/RNFN3sT4XYA3LiUdB0QKhqRElYnb89vT+jyyrp2QriPd\nRf5uqodgRPqYcm2v6P6TFhTd9i9yZpTjUtJhQKRgSEo0n9t44tL3t4b7F7qRtfcwqYmU2+5s\nyPs7g6YF7Tu45c9/XfdbEMcDkYIhi/QN6+Ib6bdyHL7r77XrhwM+dyHylz7Y8LUva2ToLUKd\nJ/OCvmtIN8jw5zwKHHkAAgCRAAgARAIgABApMYTE0bUBvuBPlRgQ6ZzgTwVAACASAAGASAAE\nACIBEACIBEAAIBIAAYBIAAQAIgEQAIgEQAAgEgABgEgABAAiARAAiARAACASAAGASAAEACIB\nEACIBEAAIBIAAYBIAAQAIgEQAIgEQAAgEgABgEgABAAiARAAiHQE73smsvtbXfwvbz9fMXy/\nssJrIs8E/kgHUEpfTpoYvqqc9R88ekGkM4E/0v48J0OkD+zNXycfP4wJkc4D/kj7k31bnXf3\n2T76kbBWr7xq/n1/dZ+CLQT5MjpIHYi0O6+hU1fKTVIxzD6G3xlEOhMQaXf+hs7bKNTA2Ier\n+sXV2MUDpwAi7U7b9LQfL/98fxfz4ulkqF/calZ+k97QLJ0CiLQ7N2LMbV5MRcr6dqsnP6KS\nYCEQaXeoMeTwtw1VO/D96hcXAiadCYi0OwaR2uG6djAvG0QqugtKz2zwC6QNRNodg0jkOhJd\n3A7i3fetIFgBRNodk0ifW39jw01aXCmXm0CaQKTdyfjBhi+Pm8jun0I+K8KtDacAf6PdaYcR\n2htTleHviUxeDJFOAf5Gu1MOl1rf+m2rLW1f7iHPYtgufSDS7rQ31ZVNf6WI3iJU5F1D9eiv\n1xZFNs0yuoHEgEj7k3VNUjvO3Z0iDX23ez8892/o8LWz+acfDa+OrS/wACLtz79plLu7QDSI\n9J6WZt0ZVDbN/zu2usAHiHQA4+0/ZTc3jiaMDyDdPt3i12gSOnZnACIdgfSo+TQs1y4Vxdz+\n/OWCeyAdpAhEAiAAEAmAAEAkAAIAkQAIAEQCIAAQCYAAQCQAAgCRAAgARAIgABAJgABAJAAC\nAJEACABEAiAAa0Vq39PRfxKLvkCqzMaldBKAn2elSOX0BNqbiNS/me2mTALw+6wT6S3uVfsk\n2r2dnF558xreFPqSJgG4AOtEKsYXs7U2TU9wlt2j0//aBWRya1kAnIBNwd2LNL07qui+VtI1\nUWQyUFkApMyW4K7aF64V4nkXWff2ATG3U2QyTFkAJM2W4H60/bdi/vSIWSTt1fAA/BYbgvuT\ntR237m1RVdl28NAigcuyPrirjLxJt2pHuiESuCzrgzuXLhK1ymSCmwxRFgCJsza4P7f8I+Uj\nxqG6zzxq98GoHbgIK4P7OX0hIRs+UVK0LxB9dqtKaXJzWQCkz7rg/sxfGilbWaruAqzrzgaI\nBH6WdcF9n791WmXza6xv00g4ndxYFgAnYF1w048GV2Umbv3dDVV3y7c6ubEsAE7AnsENkYAH\ndV0fXYUVQCSQFnV9SpMgEkgLiJRUWeCsQKSkygKn5ZQeQSQAQgCRAAgARAIgABAJgABAJAAC\nAJEACABEAiAAEAmAAEAkAAIAkQAIAEQCIAAQCYAAQCQAAgCRAAgARAIgABAJgABAJAACAJEA\nCABEAiAAEAmAAEAkAAIAkQAIAEQCIAAQCYAAQCQAAgCRAAgARAIgABAJgABAJAACAJEACABE\nAiAAEAmAAEAkAAIAkQAIAEQCIAAQCYAAQCQAAgCRAAgARAIgABAJgACsDe7HTWRl1U2WmWNy\na1kAJM/K4C5FS9aKkneTt8Y4ubUssA91XR9dhROzLrjf4v516CHuTfMS2bt5Z+JlmtxaFtiH\nut7PpB90dl1wF/1mQrRt0/M79U/8mSa3lgX2YUeR9nR2LzYFdytSIT5N20QVpslAZYHIhI9u\nY34QSaYSeS9T0//iJ8OUBaITMrjbvMy6QCSZR9t/8xJJ9GypKDgR9YRx/b4Vis+G4P5kbccN\nLdIPsjXQXSL9IOuDu8ryLgOI9HNsVqDP4EoebQjuvL9IlM3K8JMhygJrWB3I29uSSznUsTa4\nP7f8003043OfeahOndxeFljFeh2u1SkLg1dwv0o12VPkw9Rfd8XoKUrT5MKyQCg26ACPFuMO\n7urvJkQmL/tMHuHOhmQJ2a7ALBeu4H62N83lT2XpXcwD2rduohOLn/QuC4QlqEcwyY41uF/d\nvanlW9+KiFR193l3i/lJv7JAwkAkJ+bg7rp0ogh4GRUiHc5KHyCSE1Nwd12627+qgUg/xOqL\npPDIhSG424eNyk8/FbsssBtXu91gR4wildNU7LLAbkCkaKBFuhSLRYJ2nuAc6XxsCu7FHsEk\nLzBqdzoCB7c1M4jki891pM8eZQFfFga3I7E9N4jky7o7G+KUBbxYFtyu1BApDOvutYtVFvBh\naYMEkXZg5d3f8coCYXGqgHOkIOCVxb+OagKGv6MAkS4G2pg4mC/IykQsC+wJRIoDRLoYECkO\nHsFdFSJ77FQWiAORByZFwR3cDyGKypkqTFnAl/V3+kCkKLiC+52L7N9OZQFvlt/dAJHi4gju\nP9F+umWfsoA/G0TCiHYU7Pfa3cTtZUsQsCywhBVPQzjSQ69t2IL7LuTvG8UsCyzDdV8Pt2z9\nnULAiTm4/2Ui198fFKcsEBD24T2IFBlTcFeFEEHGvD3KAkGBSEdgCO5HFmrM210WCAsnEs6R\nYoM7G06Dd6iv8QhsBCKdhS0yQKTo4O7vc1BPHbY1SkCk6ECkU1BPIq1zAh7FBiKdAqlBkqSA\nImngGdylO0mwsn6WDTE/66OINM1CqGMxBnd5E7fxQtK/DIMN29l0omK66dTUUIGdMQV3Pn8o\n7J1j1C4EW0UaN1ZaJ4iUBKYLssOnK5/dDeCB7hWCSNvGr9XOHfHIljkM2wNDcOfDx5SL6tsc\nZWHeD3l1kTafI7Ei0QTmTdeWC3wxXpBtf1bftijgHeBXF2kDVKRGM4r5XIuPYiAgVpHaGxxu\n4e4Ah0jrIZeRtGW8R/opFYiIS6Qg4972sq7FuqgeVZGssIw0KL2+9dUFnrhE2qGsS7G0fVCa\nHHlzP5HAHkCkWPCRvDDCVX+Uzck5klfpIBoQKRIGY8KKBJIBIkXCFPKLe3bTLd/TOdLKk6wV\nWwFv8DxSJAK1HcowNiuSR0FoyWIDkWJhjFxrSJtXMiJJIxFWTyBSbPAYxd5YY3oa5JbHEaZe\nXaN4JLG2UBAAiLQ3dOCAX0nNsKmyQCScI8VmQXAr/buHGBfPfb8yE1lZqZMryvphJEXYlWtF\ngioHslqk9zD7JiL1z17clMk1Zf0yc4NkePucr0j01iCIdDBrRXpnk0jFuOw1PHvxkiZXlXUB\nzE2Mfq+3ucWRkkWuMbCwUqRHe1v4MDXdHV52z178axeQyVVlXYE58lVppDapsYrE5HZFpH/y\n9jHm921K8r7ZEi6swYKkJK0om0mk6c3Ghfg0QxNFJleVdQGURmeakERSendH1jdpFojUre2T\nhLzfYKVI72m2EM+7yEqSoP3F3hkBkQjs+c20cEWTdGmWiuSTcGENFiQV3Gwhprc7mEUKeFX3\nV1BbHLKMmqSlBhw/IJIQ/5qmKtsOHlqkBSjK0GUUaYODqnoChkB75SL7Gx/vbi/A3D/D2u8a\ncX+P/9KHGO3I+hyqcWJtDRZXlp2t2pFuiLQA5nzI6hGw0QfaszPj3s18st6TZ7e2XyPeukh3\n0b+R5N/GZ1gDidTNZYKbXFXWiVgZ7lZ/YNFCukCruu+G/+vPITLxqLq3YVWdMmXVvlbuPiad\nBxve/Tvnmlxs+8hrSJH6obrPPGr3ucCo3dqQN+szdvjQmfOnC8a/vnF5tjPjYHJ3BWb4Zt57\ndoiM2uWieyvJxp7ddpEy0d4H1CnzN7zDq5QmV5V1HlaK5NEOoVXyZ1Cin8m6f+rjmrxd+5lT\nqSI9u3bqufXtJJtFKtsaVN0F2Eve2eAO92m9bkmtnyMtyRmMEDt6oaQngObB40YXqbm1TcF4\nqrS+Bgsrq81W/Uld2Vdpes8xmVxT1knw6YBNPtAJ6VFXqU/HbEhLs81fGEkksUykRxu8m99u\nb92++utuBMrZ07Cxdu0w4/C6/W7EsVQn/co6Ba5QN2wjXy6arKGCcUZaS9MasEsjiXQXyn99\nu0hNln17UPetNbCse2aj0GHebnd6kdTQ9QnlMd7nwJcXyH0779J9NrgQ0jnSn1AG4Rwifc9L\nyq09O1twf9prrW1Zr2zj0KC7rHOwQiTdI/VZCYmGPmVhKx0iSXRKlP342/e0opWpHzB+9YMN\nJJUuUiXy7d8tsmRwn+5WeMrD2BHKOgda6Ho2SEpHTPFIvitV/qXmJecLj0bG60jtkNetnfme\nuhefrlP10kT6zCL1o3l39Wx+TQ3MqzJN3XhlnQR354tZxNw6NzZUUivE+WTOHhZR6J0Nf8M/\nfzGNgkki5eOdDcNk011g+re5Bo7KQSR/uAaL6bvNa1Qd7CKhCTIzBOhbuddOFC+ytv/9uYls\nWNJNtuSi0rJcWgPzqu5Sa1/21su+zrJ+AjXSGY9UkZgMaq9zJBCQanvPzhbc8x3dRZhhu0uJ\nxFk0rla1YjIwaRav9hfmX4BvgFmC+3u+9ujuQC/E9pbPUdZvsNQjzhWyuSV7EJDqFiC+bcE9\n3oke6tuXPy8SwdKt83niVV0Lh+LRPksRIBfr2kf7/Gv+F6Q9upRIukSqSPaemrISvbqI3IKc\nuOwZ3L8rEg1zQ6dO6dsZmqWaP0eCSMljG2wI9hVmd1nnhsa53SPqEmOSSRiIlDyu60g7lXVW\nanr33LjEx6RlIuEcKXkg0haGwKc+qNKEEQmkjvU60nu3sk6H3BQta5KUVHq24HzYgvuePT57\nlXUyaFPUEJGoJmxjVMujCRDnV7B27fDFPhPEoHG+IV08e2sEfhCI5INmgC6F0uzMzY8mktx4\ngd8A15E8YNoSpX2xNEGqSPIv8CNAJA/UoNd6amaPFJsaiPSjQCQPlKDXOms+F49koyDSr4Fz\nJAU2vMfQn+a8pOHvuBsNgkc/BUSSYRsKr+bH2lApj5zvvVcgOh7B/XlsfleRd1mH4xJpQesz\nDkjM04YHY8EP4BXcj+u8jsshkglbkikPnBj9MF7BHeKZdt+yjoZG+jg9NTCML763e08ZQaTj\n8TtVqe79x8m80vsF9y+fI/GhXdfSy7IWjjPoKtW4CpsQfvGcDR8nCyfS+zdFsvS2pOZkuUiG\ndPvuHjDiFc9l+wR62b0bNZBIw6fONpOYSCTk5yV03dyY1OaunUUkOSOYlA5eIvVf/pJez2/L\n0lbaTJC7wFMXSZskHi2DZAWR9sV8lL82lMMXUuTJv/atkt8Fw7sbykzkc7x3r3TsRSptb+3y\nEuke5sGkFEWqG1YkkwmsNdodq43p6u3eu3g9LIe5e5lx/5ZvIYp5slv6zMf3G3cT2fi+n+7l\njuM7+m1Dble+RYhtPKR1Xg+8yq0WzV3dfvc9vB5WkfqvSP5TJvOqeQw/s/Zlkd+p+9A4/Rta\nqVYku0eej5r/5iuLVZFot4AxhHOI1UrLAKN1u2EVqf+ucaFMvprxuxT9F8Vf3Xctuk0eRdZ1\n57quoP0SkJdIn98ctbNeJKUeeCo0iqRN779n18V8uIcgJt/CnCfnn2qoDx83yoXjpgRDcN+E\nzM13P1aUdTQ1e4mHKLRQJE2qY3YLKKwTqWuc2rMmhwOG4H7LHuW/OGonM4W+PIcG6WdYJ9Kw\n8OX6htLlXsdlCuw5+E0zEOnc9J2zZ3tNdJwsdJHy6Rypv470aVuidsWffaDgQiLZI5tzx1ci\nKZm+kVwDcBDjUN1TmezXjT8f7ahd2Q7WdXc2VMX0caOb9eMv1xn+JiFvWKmI1Hg3RopIcobK\nix122FPA0o0YiOGWn/s82cg/5+tI/b12+bjibf26kd9tsK8f+BizLBKN+EYXQffDQyf9QhQ3\nfgEO4mtDIW6PYbLsbmdgRGpvcSj6MYEym9M385fS+dwtJb/yX3pClrqh3Au39qZuziRaGkRK\nieCnKnLu5lVk5O72Aw/2Sa1GJJGU0lRtuGVgLw4T6f49ucrFp/ncA3xi01FWeAxRXLMiLR/l\n9hKJrRVMOojDRGrPrf66e/bu53vU3NgeDMuntfV8VrT6ub3pVtW5JMMIHUQ6jgNFGkbdm4o7\ny3qMm35PybKyskx6lBWcKWKpMVzT0Whr13jEl22pFvgxHCK9+xsjGJmnp2bz+R4iftKnrOCM\nETtHri3uN4pkKJu7cASPfhRLcBftHbHd2Hmli/TOhmWv4drWyzTpVVZ4aukcqNFVadilQUXi\nVoLfxBLc/9pb7Ir+Gq96C/mjvbjVTZXdHen/xJ9p0qusaMjOzIvqJRdczQbxqkgl7bWn4FBs\nwd268ukv76qDDV+9BpG6duvb0StMk35lxYI6Iy0KiL3wXXYTHI01uB/fc5zPXYhcG7R7S3fQ\nNoZ7apVzqwNEUpuOaTK8R5wz8OgyrA/uJSIFvD1iCSTYyc9oHsGaC7OPSFvLWgeN9qDqcCZB\npGtjDe7qrxtS0Ht23ZaXFUn1ai5s5x0E6WAL7mfW98fGF34pW/abZrMy/KRfWTHYVSScD10b\nS3B/2odrWxVeGXeLkDRq95mH6tRJr7KiEF0h6hG4NtabVsdnA5/cLUKDSH/Dm41K06RXWaGp\nN9+tAI/AEizB3XXP6BNPypYJ39nQh3hcgVSPINWlcb2zwSnS8Oau3DzpU1ZgoiqkGkSK3G0H\nQWpYW6Rq0OXDvUBlFKnq7vO2TPqUFZh9RarxviBgCe5yOkcq2GG7kGWFot7t3Eh9pwlEujaW\n4K6yr0lfkV6F9fUpQcoKxC4C8SLhHOna2IJ7uGFViOwsXzXfwyOTSODS2IP70X5GJv8L0h6d\nWiTttj2M1wGJ33pBZDyR5uzRBAEGiLRAJhgETBiCO8ojD/uM2kU2Kf4+gDNiFymsT7FFimoR\nHAI2fkik2B5BJGDmV0SKbhE8AjZ+RKSY7sAh4AYiOUUaC4hXe3B+Ti1STd7DGN0jmAQsnFmk\nPrrjW4TvsQAnpxcpHlpBgasPfgmjSAoRy1rNziIFrj34Kc4sUmSTlHJCVx78FOe+1y6CPJJH\nNUbAgR8QSRGJnhBNEwA4gEi8Sw2GGMASzi1S9LfiQyTghy243/e0BxvqOFeR5tzhEfDFEtzv\nxEftIhikiRS2xuB3sb6yOH/vVdYawnskD8/BI+CP9U2rYT1KW6SwdQNXw/XK4p3KWkYd9DWQ\n6MSB7ViCOw/zWkivshYRTKFBIIgENmMJ7leYFxV7lbWIwB7hbAhsx/rFPvH47FXWEoIJBEAo\nrOdIqQ5/QySQGqcUKYBK4aoCQHPCW4Rqeh8cPAKJcDaReg1W+wOLQBxOIJIU+hubIbRHIA7p\ni0RDf4tGEAlE5FQibfMIIoF4XEikKYtQ+wPARPoikXOk7R4BEIcTiDQDkUCqnEakTRJBJBCZ\ns4i02BrJIHgEIvOjIqElAvvy4yIFqzsAVk4iEhwCafNbIg3XiSSR4BTYge0i0ecsykxkZaVO\nbi5rcSMkewSTQHQ2i/QmIuXd1E2Z3FzWps4cRAJ7EECkYpx8iezdvDPxkia3lTX11NaaBJHA\nHmwW6SH+xslSPL8//7ULyOSmsjwFcjRJy8sFYBkBRHqMk4Vo35XSNVFkclNZTndGgdDwZd5l\n6wAABzVJREFUgEPZLFIhnneRdS/uIh+eZb9Bu7As7x6d9rJhAPYmgEgdeWMTadkbVEgb4+0R\nAIeyWSQh/jVNVbYdvEAt0iAHHAInItAF2aod6T5AJJgE0iDUnQ2tMpngJheX5WNPjTcCgaQI\nKVI/VPeZR+0+60btPJshiATSYbNIWffNik6Zv+7i0bN99z6ZXFWWV38OHoFk2CxS2cpSdRdg\nA97ZgDMjcC42i1Rl3ch21/TcppFwOrm8LM++HQDJsP0cqSozcXtMk/21WTq5uCyrQRAJpEiC\nzyM5miJ4BBLkZCLBIZAmSYlUu5+Z2KOeACwmJZEcDkEkkC4nEWlcH7+SAKzhHCLtUj0A1nMK\nkXapHQAbOIVIMAmkDkQCIABJiMTLA5HAeUhBJEMrBI/AeUhWJHzvFZyJVEWal+9YQQDWkoJI\niknzhVeIBM5CciJpy+PXC4DNJCaSviJynQAIQgoiYZwbnJ7ERIJJ4JykJhJMAqckBZHQJIHT\nk4RIDXFpt9oAEJBERIJH4NykJNJ+NQEgMBAJgACkIRI8AicnCZHgETg7EAmAAEAkAAKQhEi4\nORWcnTREAuDkQCQAAgCRAAgARAIgABAJgABAJAACAJEACABEAiAAEAmAAEAkAAKwq0gAbGPH\naF1IwlXbh7QPAGp3Fi5/LNI+AKjdWbj8sUj7AKB2Z+HyxyLtA4DanYXLH4u0DwBqdxZwLAAI\nAEQCIAAQCYAAQCQAAgCRAAgARAIgABAJgABcS6THTWRl1U7RmyDLbFxKJ3fHXaUDa0dvG03w\n2B3PpUQquwDIvn/sNwmGvJu6KZO7467SkbUbPcqSPHYJcCWR3uL+degh7u1kMS59iezdvDPx\nkiaPqJ2jSofWrufZFp7gsUuAK4lU9Dvb/i99iL9xaSme35//2gVkcn+cVTq0dh1V1iqU4LFL\ngCuJNNCL9BhnC/Fphn+zZHJ/nFU6tHZDvdpToASPXQJcT6RK5O2f/Xn/nhq382Jup8jk/jir\ndGjtWt6iq12Cxy4Brrffj7YPUvTny1+lkgkGZ5UOD9W+QUrx2CXA5fb70/Xzhfj3bZvKtpOS\nSjA4q3R0qL7bUZomyWOXAFfb7yrLyUw7WptWMFiqdHTt+uGEkQSP3aFcbb9z6UJH+2fPBDd5\nGOYqHV27TC44sdodzbX2+3PLP3S+/bP3w02feeTpc+jIk7lKB9dOHZBL8NgdyaVEeoqxX5d1\n583dn/2v67E82xEpMrk/ziodWjsy6p3gsUuAK4n0mTz69vfL7oT5mc7VeWeVDr53oBBvz4pe\nkiuJdJ9vvKyybqL793mbRnPp5O64q3Rk7drSK9+KXpEriUTvYK7KTNz6vkrV3basTu6Ps0qH\n1o4MIyR47I7nSiIBEA2IBEAAIBIAAYBIAAQAIgEQAIgEQAAgEgABgEgABAAiARAAiARAACAS\nAAGASNF4lzchsvvTnXLeRH+/4nSDYP4YFzzmdSTV+oqCAOD4x6IYDVjwqBujg5jJhwVZpSZ/\nftcuERYEByJFIhO3f9+Arx7ZgkcLWJGGiWcmhldgTWpO63JRXvcBhjSASHEopsD+ZHNfzIVN\npObdv1j761H7Gh+6rhLZ8NwqOAqIFIxvWL9yIe7tg6Tv9m3zA89egE/3vM5nSDluQbea300v\n5ypPClGNmY/r/r5tVXnZlwWnAUQKxvc0pVfh3T6OTVqh7hHtYV32bFSRpq0cIk0tUv8dALLu\nJj7N57ofgkgCiBSM9vHrqnnnbZTn4wsORqqs/RRGde9GCmSR5q1sXbvqOXQR2wV5/2qEYd2r\nc+h22dclJAFECsYwLv0mr0uc+RtGCIq2ByaLNG/lOWpHG6eWsjtn+nfZF/gkAUQKhhCf4Tdj\nxNCGfFuPXBVp3soqUvGcN/p6+TcnF904Q4VLSUeCgx8MZQiBXymtVafNXbtS5PLFo5t4j5PP\nqbHDpaTjgEjBoEoU6jnSRpG+4uTSAtKy5UrfDxwBRAoGVeKPjNpV2X27SN9zqD9pwf1bQv9i\nMXIWhUtJhwGRgkGVoIPRj3YUgDtH+iwQ6avm0MiNCzJRDadL4yADLiUdCEQKhqREMYX3J2sN\nUEbtOiceS0RqMjJq1/JPFN3kTYzfBXjjUtJxQKRgSEpUmbg9vz2tzyPr2gnpOtJd5O+meghG\npI8p1/aK7j9pQdFt/yJnRjkuJR0GRAqGpETzuY0nLn1/a7h/oRtZew+Tmki57c6GvL8zaFrQ\nvoNb/vzXdb8FcTwQKRiySN+wLr6RfivH4bv+Xrt+OOBzFyJ/6YMNX/uyRobeItR5Mi/ou4Z0\ngwx/zqPAkQcgABAJgABAJAACAJESQ0gcXRvgC/5UiQGRzgn+VAAEACIBEACIBEAAIBIAAYBI\nAAQAIgEQAIgEQAAgEgABgEgABAAiARAAiARAACASAAGASAAEACIBEACIBEAAIBIAAYBIAAQA\nIgEQAIgEQAAgEgAB+A8StzvZ3qraJgAAAABJRU5ErkJggg==", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 420, - "width": 420 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "# 计算每个细胞中线粒体(MT)基因的百分比\n", - "pbmc[[\"percent.mt\"]] <- PercentageFeatureSet(pbmc, pattern = \"^MT-\")\n", - "\n", - "# 小提琴图展示每个细胞的RNA特征数\n", - "VlnPlot(pbmc, features = c(\"nFeature_RNA\", \"nCount_RNA\", \"percent.mt\"), \n", - " ncol = 2)\n", - "\n", - "# 根据特征绘制散点图\n", - "plot1 <- FeatureScatter(pbmc, feature1 = \"nCount_RNA\", feature2 = \"percent.mt\")\n", - "plot2 <- FeatureScatter(pbmc, feature1 = \"nCount_RNA\", feature2 = \"nFeature_RNA\")\n", - "plot1 / plot2" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "d4320d64", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "An object of class Seurat \n", - "13714 features across 2638 samples within 1 assay \n", - "Active assay: RNA (13714 features, 0 variable features)\n", - " 1 layer present: counts" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# 根据上述小提琴图和散点图的分布情况,\n", - "# 选择nFeature_RNA大于200并且小于2500以及MT基因占比小于5的细胞\n", - "pbmc <- subset(pbmc, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5)\n", - "\n", - "pbmc" - ] - }, - { - "cell_type": "markdown", - "id": "e0c8f425", - "metadata": {}, - "source": [ - "### 3 特征选择\n", - "- 计算数据集中表现出细胞间高变异的特征(在某些细胞中高表达,而在其他细胞中低表达)\n", - "- 使用`FindVariableFeatures`函数选择在单个细胞之间具有高度变异性的特征(基因),并选择了前2000个作为高变异性的特征\n", - "- 使用`VariableFeaturePlot`函数绘制变异特征的图形,并用`LabelPoints`函数标记top10的特征" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "38746370", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "\"package 'ggplot2' was built under R version 4.2.3\"\n", - "Finding variable features for layer counts\n", - "\n", - "When using repel, set xnudge and ynudge to 0 for optimal results\n", - "\n", - "Warning message:\n", - "\"\u001b[1m\u001b[22mTransformation introduced infinite values in continuous x-axis\"\n", - "Warning message:\n", - "\"\u001b[1m\u001b[22mTransformation introduced infinite values in continuous x-axis\"\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAXVBMVEUAAAAzMzNHR0dNTU1g\nYGBoaGh8fHyBgYGMjIyampqkpKSnp6eurq6ysrK3t7e9vb3AwMDHx8fIyMjPz8/Q0NDW1tbZ\nAADZ2dnd3d3h4eHp6enr6+vw8PD/AAD///8DK8mlAAAACXBIWXMAABJ0AAASdAHeZh94AAAg\nAElEQVR4nO2diZarvJJm9Rdtl92u7LzZ190uT7z/Yxaj0BAhBAgkwbfXOmnGIAzaB0lgECUA\nYDEidgIA7AGIBEAAIBIAAYBIAAQAIgEQAIgEQAAgEgABgEgABAAiARAAiARAACASAAGASAAE\nACIBEACIBEAAIBIAAYBIAAQAIgEQgPki/QOOSsDytxsWiLRks+8lK0eIi4SVuBCJACLFDZxj\nwhCJACLFDZxjwhCJACLFDZxjwhCJACLFDZxjwhCJACLFDZxjwhCJACLFDZxjwhCJACLFDZxj\nwhCJACLFDZxjwhCJACLFDZxjwhCJACLFDZxjwhCJACLFDZxjwhCJACKFCvz9fleJOxOItC0Q\nKVDg73eWSRBpJ0CkQIEh0rGBSIECQ6RjA5FCBUYb6dBApLiBc0wYIhFApLiBc0wYIhFApLiB\nc0wYIhFApLiBc0wYIhFApLiBc0wYIhFApLiBc0wYIhFApLiBc0wYIhFApLiBc0wYIhFApLiB\nc0wYIhFApLiBc0wYIhFApLiBc0wYIhFApLiBc0wYIhFApLiBc0wYIhFApLiBc0wYIhFApLiB\nc0wYIhFApLiBc0wYIhFApLiBc0wYIhFApLiBc0wYIhFApLiBc0wYIhEsEOkNjglEIsAZKW7g\nHBOGSAQQKW7gHBOGSAQQKW7gHBOGSAQQKW7gHBOGSAQQKW7gHBOGSAQQKW7gHBOGSAQQKW7g\nHBOGSAQQKW7gHBOGSAQQKW7gHBOGSAQQKW7gHBOGSAQQKW7gHBOGSAQQKW7gHBOGSAQQKW7g\nHBOGSAQQKW7gHBOGSAQQKW7gHBOGSAQQKW7gHBOGSAQQKW7gHBOGSAQQKW7gHBOGSAQQKW7g\nHBOGSAQQKW7gHBOGSAQQKW7gHBOGSAQQKW7gHBOGSAQQKW7gHBOGSAQQKW7gHBOGSAQQKW7g\nHBOGSAQQKW7gHBOGSAQQKW7gHBOGSAQQKW7gHBOGSAQQKW7gHBOGSAQQKW7gHBOGSAQQKW7g\nHBOGSAQQKW7gHBOGSAQQKW7gHBOGSAQQKW7gHBOGSAQQKW7gHBOGSAQQKW7gHBOGSAQQKW7g\nHBOGSARTRCoqhjGIlHJciLQxE0Qq5J8GiJRyXIi0MRApbuAcE4ZIBBApbuAcE4ZIBPNE+qfm\nDY4JRCKYKFKBM1IecXFG2piJvXao2mUSFyJtDC/S70WI8vw0pkKkPOJCpI3hRPqcREUpxENO\nQmdDRnEh0sZwIl3FrbKo/BNnOQkiZRQXIm0MJ1IlkfzXgzsb8okLkTZmikg6ECnluBBpY0aq\ndjdx5daESCnHhUgbw3Y2FKKheHFrQqSU40KkjeG7v39OQpxuH3Y+REo5LkTaGPweKW7gHBOG\nSAQQKW7gHBOGSASsSJdmjjihjbRq4BwThkgEnEi3tt9boNdu3cBB4n6/X69pIYBINJxIRXtv\n0BPXkdYNHCLu92tbQ00LAkSicV2QVT9tIFIqcSFSAnCeXMT1U5afm3KvnQFESiUuREoATqRX\nf0HW/B2FBCIlExdtpPiwNbfPrbkgy3baQaSk46LXbmNwHSlu4BwThkgEEClu4BwThkgErEi3\nrpGEXrsJgac3TCDSTnBckIVIUwPP6CqDSDuBvyD7O7ImRLKASMdl7IIsD0SygEjHhb8gy/8S\nqQUi2aCNdFj4C7Jn/hJSA0RKOS5E2hi+aofOhi0C55gwRCKASHED55gwRCLABdm4ga24oe6R\ng0jbApHiBjbjBrtrGyJtC39nA6p2WwSGSDsBdzbEDQyRdgJ/Z8PzLF6fs/I2CgOItEpctJHy\nxHFnw4+4lx/8QnbdwDleQYZIBA6R7vXtdqjarRs4x3uaIBIBf4vQ30ucygdEWjcwRNoJnCe1\nQee6rwHPtVs1METaCewJ536q3+0ibuyaECnluGgjbQwuyMYNnGPCEIlggUhvcEwgEgEpUvM6\nc1yQ3SJwjglDJAKIFDdwjglDJAK0keIGzjFhiETAiXRmu717IFLKcSHSxvD32o2tCZFSjguR\nNobz5Xl2PPa7ASKlHBcibQx+au4deJX3O0CknQCRfAOv88YhiLQT0GvnGxgi9XEhEgFE8g0M\nkfq4EIkAz2zwDow2UhcXIhHgmQ1xA+eYMEQiwDMb4gbOMWGIRIBnNsQNnGPCEIkAz2yIGzjH\nhCESAZ7ZEDdwjglDJAI8syFu4BwThkgEeGZD3MA5JgyRCHBBNm7gHBOGSASkSCP3fbdApJTj\nQqSNoX9qfv4be4MsREo7LkTaGFKkkxDjLkGklOM6Ay+52Qki0dBtpNdP7dLl7loTIqUc1xV4\n0e23EImG7WxoXbryLkGklONCpI1x9dq1LnFzIVLKcSHSxox0f98h0rqB0UbaCaNnpIKbC5FS\njoteu41BGylu4BwThkgErl47h0UlREo7LkTaGPY6krvvu4RIaceFSBuDOxviBs4xYYhEQIo0\nblEJkdKOC5E2Bnd/xw2cY8IQiQAixQ2cY8IQiQAixQ2cY8IQiQAixQ2cY8IQiQAixQ2cY8IQ\niYB5h6zCMLmoGMYgUspxExdJaB9TVlEH558FrChKWRfmApOi6RNJkQr5pwEipRw3dZGMMjtx\nbeNz4mpaCuqTG4U2zt+vPR5c4XJ+leXrfBmmQKSM4iYhEv8jHNEV2nk5hBCpy0B+9vPFcLYM\nItJFtFdlxWCScR84REo5bgoiOd7BoIjULSQU7eTpSplHLatMkhss1cW6KO3izVRXBVGrb4oQ\nVbtSntc+WtVOtpH+qXmDYxJEpFIMH60zpVWUzXnEuHpiE6WxGLW6loPjM5RIZ9FW7dQzUm0R\nqnZ5xE3+jGSJ1H32s9Vhc56yjiVSaYfUPrUc+E81Ay+4hV9F29VQDM+4Qxspo7gpiORsI5km\n0CK1Kg7z9PGuvia7DZS1F4qkZeP3XbkZn9tJiNOPcv8qRMoobhIi8XQF1S7tQyuoX0wVyT6L\nCTNoOVckoU4fecke9438gEgZxc1VJDlfPS84PlcSSR/w/kZ+QKSM4uYgUilYkZSTkLFM2/9W\naiIJfR1rcXW6mcP6Iv1e6je7PJUpuLMhn7hZiCRrUSUtUtl1WCtWdeNe3d/m6u7u75VE+pza\nbne8Q3bdwDkmjHvtCDiRruJWnxb/8A7ZdQPnmDBEIuBE6quiR3xAJPX8xKQT3jIwRKKBSBbk\nE33fy55PyjIh4Wnbh0jbMlK1ux3wHbKMSIuemM3in7Bj+xufQiESAdvZYN/ZYACRQhBCJO4U\nugoQiYbv4qsftnq68U/m2q1IzH/wEKmPC5EIJvWVa+xXJCZwsm0kiJQAEClu4By7GSESAd9r\nd+4+uTUhUspxIdLG8CK1JkGkdQPnmDBEInCckRqTINK6gXNMGCIROC7InutrSBBp3cA5JgyR\nCFx3Npzbi7IMECnluBBpY1wifQpxg0jrBs4xYYhE4BKpfXADtyZESjkuRNoYp0iNSdyaECnl\nuBBpY3BBNm7gHBOGSASkSEIoj//m1oRIKcdNWyTjV97mZH6JaVuxf3mufQYFIsUNnGPCq4k0\naQnnanKYe5hQcJNQtYsbOHzc7sa7FETib/MVyl/HAhBpjHzK5cqBg8ftbwVPQCTHD08GkVZ9\nTn5skej3IxlApCTj5iFSKZR/Zf9IA0GOqwWfPcuoqxvbgUgJxc0n4cxE6ke00q2Xekuk0iEU\nt5l4VTv7RWMGECnNuFm0kRSR1nxOfgIiES8aM4BIKcdNQiQXwxvz9NJtVvGIDoTSWyThWjYs\nXEDiRWMGECnluLmI5DRiqUjCuWxYuIDEi8YM9ieS66EMSSYcI3CwOxuUE5JRykM9J9+xznYi\nES8aM9idSM7HBMVMeNZTVzIRacXn5Mu2Vbw7G2rsF40ZQKT525kUl85rzK7kRdoZ89WESCE2\nM1ek0afsQaRtYdtI7KOKe3Yn0kZtJIi0SziRitFT1f5E2ibwZJFIwSFSYnC+PM83tpuhBSLx\nOAv51DbSjE0sCTwCRKLhryMd6Rah8X6xSYEnPCY8EfMnxYVIBAtEeu+GpuAnHC8xIBIBeu1K\nrzMIzkhDXIhEAJHK8CJNuITqG3fyRVmItC2sSDe0kQIEHsUz7vSXM0GkbeE8uR2qsyFeYIi0\nE/jrSM+zeH3O4sGtCZE2jAuRUsfxM4ofcS8/3WuSCCDSlnHRRkoch0h38St/l0QAkVKOC5E2\nhv+F7N9LnMoHRFo3cI4JQyQCzpNH84KkCvbm1X2LZFalkk94q8AQiYY94dxPZXkV4sauuWuR\nrMZ96glvFhgi0Rz0guxY2x0iOeJCJIJjijTamwyRHHEhEgEp0u4fEDl+WQZtJD4uRCI4nEiN\nIUld38wrMESiYT3Z6ZNWO4VYj7gZEGmIC5EI+OtI+3zS6si5iJ0NkYa4EIngaE9ahUjL40Ik\ngsM9adXdOIJIHnEhEgGetKrj0Uaa9eBTDoi0E/Ck1amBp/f4+cUNDETalmNekF0SGCJBJAKI\nNDUwRIJIBPwzG4p9XpBdHhhtpJVCZw2e2TAncDiXINJO4J/Z8DuyZpYizTZACxywdgeRdsLI\nBVkHOYo03wBCJCbUtC1ApJ0wdosQT4YifUOKxMTSJod5Xt6snCHStvAXZM/7exvFfJGM1boT\n0phIYZ7gOi9piLQth3obxRKPtBUtkYaqHkQ6JocSqfxOqXWpa8myPPycyfBITrAnL0hYRvHN\ndUrgWUAkmqNekPUrnZo2w2pWG4lrM42b5CnS+FIzAs8CItFApNGFjBPSFJHGm2Vet6tDpPTZ\n79so3MWPqIhxCzV/39pqVN2ODmVVC/mERzKdCETalt3e2TBW/qRHjqUGbWRg7dTkU77NaiGb\n8EgSU4FI27Lbt1H4lb+RpYaZjoRHtjNXJGngLI8g0sbs9m0UejHkCqP3f/cjBd61qt6+8o3L\ntro8gUjbMuVtFEXFMJa4SFrdjS+SvkV1gkhsyEltJIiUFxPeRlHIPw2pi9QyJhKFT4EfllGr\nbtq4FxBpJ0x4G8VRRPKpgqnLGALZq7u27dFGmgdE2papb6NIXCS76E1vsCt9dQMOkUr9liGq\nqsdvHXd/74SpF2Rbkf6peadHU2b1cWax0SB91YpeV5/1/SpLW2uRYXIGIhFMEin5zgb7RDH6\nSwdutnSjnfjWZhrnK7mGHDFn4oy0d8Z+2Keq04zLoUxFGm/EWyJ99QuyZp3O/g3SWBLKBIi0\nE0iRCiG4u7/TFslo2NBl2E+kwbi2akaGHD8/MZ0PPhd6lwGRtoUU6VfxaHh0Q369dg6RXEG+\nqgQlIZJcgA4l7VOCcGlN3BEjmStApG2Z8MyG/Yg0DJNBqLqZJZLZ5U3F4C/Mzrz1aPT/gAGI\ntC1TOhuyubPBPBkYtbFhiC6V5oyv2UbSTkl0JOeJT5kxdh1pQk+6DkTaFlqkz62e/leIC//g\nhmREUsvWu5sw1lRyTKZnvLWZ9Abs8xgVXp86LpLHN6GASNtCi1TUNbtH8zYK9mFCqYikFS5/\nkchSag1J9Jv4yBOFMdlPX+pWDC1Bz/v4LCDStjCdDefKn9O5/lmSeWuDJG+Rpv5vP/pUFdsv\nWswRkZTZlEj+QKRtIUU6i/olY/Vtdh9RUAvUpCuS9f/292v9ftUuovYJRZ37NmdYlTm+1Gsz\n+pFukkMk6pv4A5G2hXmrefXnrzkZZfALWbWwuW+mpsaHj6/qhjn/XQ7uDOeffnCIML5t6VHz\nOSLSfCDStjAXZMu6VvcssxBJLfzeIhnF/6ujnTj6Ak8uKVfQqmKMtMQ0vo1kLT3NL4i0LaQn\nzfOKT6ey7nDI4BeyqgzOZdh1GdT5bpGGBahMiE1rIo1JourqC0TaFqaz4VrexU/VRDrzL6WI\nLpIsWfbJgb5CygRxeWRU4abg2Kgy613ykltJeu2WDoi0LaRIn6Lr+BbixK4ZWyTNGqMETyh2\ngyW2KVPdcadBprSpSBNDcHEhEgHdBHqe2kuxfOd3SiIZDZ3SWyS5sBpyMdQZks3JS6RAbaTp\nQei4EIkg3yetmqVUneZXZMz/50NJpAcyo+s5eLWR5gCRtiVfkcji10/zKjF60Q6hUal/yuCa\nXVqqW/6MAiKtSJ4isQViUlyzrDNyeCtWWiIZG1IndoOb/h4pgEcQiSFLkdpC+CXOPtPieork\nZZIekfCIOgHih327IV+RtJPAvLgukfTI3SAxX46rrmg5qVYZdkGk3ZCwSFqhM+cMpXW5SFY7\nRp2tLGisZKpHqGjGsb+ed8JUCBcQaVvSFcn4f96ep5bnCXGJMP1IKXUa5ivLmZvWrGFFGkYo\nF3x/IUvL6AAibUviIhH/vxszPdtIZDFUY2vxVGm024T4phTjkTKshPDZEfq3hkiJk79I2lzu\nsgxTDs1irgckFHH0SZAiWcNmKhBpJ6QrklKrs8uQMt0SySxzlm3c1gyRxtwxvBkRyVpOS5hL\nSP8W9qC1wyQQaVsSFqmhd8WaSnQJlKRIatH+GvPkFrT6m7Fw86E8lthTJE1G01OZxps/2Th8\n8TAPIm1L6iLV6GWzNIuMWXwokZSTl1EKjSI/lHX1Ly3KKENYy1MPkZy7Y3Q6RNqWzETSm+3E\ngsqHunZJ6Kj1eJulnGj1TOhosGKo9mhZQKSdkK9IdvuBKGFf68wiyzfVAzfntONF2f8Zvs6w\nI6ysx/fH+HSItC2pi2SWeDlVFkrjnGOuTXYDKNP9OuXCYbWRvnrO34lWcUCkbUlcpKHEKYVv\nmK4UTXVhbYL2oBJlbatgmyOr0+yIfujLnlXX3cMz4kIkgoRF+qonDbrhY5RKtTBy/WjKAvZS\n8UTqJ8gZS4FI25KWSGohYkqetqQ1762s6dcGIvrrZsLf9sDPL9/6EtpZdckOhkgbk5RIshQN\nI0bpJteYVp4D47+1kugmJBeRS4Xfw8uBSDSpiySHhqJWUjW7WUV7ORO3ZX6bbqI2327SBdzD\nHoxsFyLR5CCSdUqaVnrTInWRxjYMkWiSEkm7oiqLXT+HKmrepTVhhi9U6t+uXNJSgkjbkpZI\nLd2x/JKXejZvBK2I0U+vmKR2ptB7aNEeHt/5rrgQiSBdkRzlL2+TzFtZ5Vf+WiWYmsZP9t/D\nI3t/JC5EIkhDJP3gteVks4IdDd0Idbh0TOMnu/ZwMCASzQKR3sFoCoY5OlYM36NLJI7xxdVh\ndVfw++tr7LRwB8QNRCJI4ozUFIxuoNzvGYn+SsxN69QEfU63trEL6T0cDpyRaJISaShYuxTJ\nhbF/vh7XZLX51sJhHgptT4RINPFEUg/TV79jc/i7dXleH+4qsgY3XdlX64tEbx8i0UQTiTpM\n3TRl1golOU2IHUHNMHeONt3Yw0shNw+RGCBSEgwifOUekLOofeSxh2fyJc94alyIRJCUSPpl\nSFG/v9YqVyrVEvZo/49fzpzdj3OLCWHOYeKSi3DThzllqdVq3SY1a3rt4Xkom7S23cWFSARp\ntJF02mPZFt/uH1eOhT4m5ErWHLb8y7nqgDouhvV746jtG37qsajU5ZzhO5O36uo7p13Taw/P\ngtikGRciESTRa2fQHkuhY5VC3RdhQxRaw4thLWXoq08YNjdY0Z35OF+V3NQM7USdIjF3O0Ck\nNElRpPZkRaghy7E5jVxWfPVZnQi2O+ZazlFq+8p22LRFV/rtOcp3bj67JYWs2Wp0m1m4h8d2\nvjMuRCJIUqQGppxnDPOdHF97mGbMLsk56qi6h62NkJP8gEg0iYvUF489oxVqY5ayJ9TZ+j7S\nV1OVkn9JXeceOYhEEFokx/FRZ709/k8U6v/Ie8fxJZX/UkwB+lF7cWVFQ0Rlj7qPFw1Eogks\nknGg2VlvfVQ5vuqotfp+8ft+pEhsJN0vdXEpkhHPA4hEk4RI/bB+dPU/U8rbvrF26jBHaKc2\nq8InjFlq/dkXiESTrkiLC9w+kXts2HNyhvKhDQlrd2rNJyXuOBCJJok2knbcIZKTYYe5p771\n0xPZiwGRwpFGr51SFORHuLK3K0pqzxAT392MfglzeWXPG5NGjxxEIkhDJBIhayBDQYBetjL9\nztJ5y5lUDGJP+x85iESQsEhOQpfPZBj7atZ85vz9dsRbeOQgEkGuIo3EnVOE4+OTOd2ipBZ0\nb2fBHoZIBDsVaWBqYY6Kd7ryi41eyGXWXrKHIRLB7kXqmVCck0DrBhD2jUD0So4ebyXswj0M\nkQgOI1JPmGK+PjLbKbmPLxNiD0MkgsOJ1BOktK+LftWUTZo5UdlXjkQAjyASw2FF6ghZ8Bcy\n5omaMXH3j/urhNzDEIng6CL1LJQgBOpdctSZhUnYI/mFO1UDItFAJJVQTsxBuwmBFUkMlTRi\nEbngsEJoIBINRLJZxZNRuJqdcg9qSdToqDUg0vZApBGCieLAuhVbk4L+XQQr0rBK8H1RA5Fo\nIJJv4FDW8EV/3CR9jj1JSHvESh5BJAaIND1wSImUC0bkWYndoDF5sz0BkWgg0pLAk6Xp/8iG\nj3ZzoBpSq56p6ytnm2EV34SXA5FoIFL4wHrBpkt7b4kl0lgcXyDStkCkSIE7L97GeDAg0rZA\npLiBc0wYIhFApLiBc0wYIhFApLiBc0wYIhFMEamoGMYgUspxIdLGTBCpkH8aIFLKcSHSxiwQ\naUkvE8rlynEh0sYsEWmBSSiXK8eFSBszT6R/aoR4gyMCkQhwRoobOMeEIRIB2khxA+eYMEQi\nQK9d3MA5JgyRCCBS3MA5JgyRCCBS3MA5JgyRCHBnQ9zAOSYMkQhwr13cwDkmDJEIIFLcwDkm\nDJEIIFLcwDkmDJEIIFLcwDkmDJEIIFLcwDkmDJEIIFLcwDkmDJEIIFLcwDkmDJEIIFLcwDkm\nDJEIIFLcwDkmDJEIFogEjkrA8rcbVnrUeiyyO8ZIeCdApLgg4Z0AkeKChHfCzkQCIA4QCYAA\nQCQAAgCRAAgARAIgABAJgADkLlJBTOoeLaE/YiINmITSTTm7hGORuUjEYewfdmQ89CgJmFKX\nbsrZJRyNvEUqiKOY8EG20y2GvymmnF3C8chbJHlglRqGdnBTO8hmusmXS3fCpfp5bHYhkn1c\nUz3IZrp5iMQmXKqfx2bfIiV3jLV0i5Z8RLISVj6Ozj5EKpS6XdIH2Uw3kzMSl7DycXT2IVI3\nbP5vmd4xNlXJRCRjPO19HIc9iWROSfAY706ktLKNyH5Esqp2KR5jugRmIRKVcGLJxmQXIukX\n2LsRreGUCkS66oT0MnYnnOQ+jkPuIgGQBBAJgABAJAACAJEACABEAiAAEAmAAEAkAAIAkQAI\nAEQCIAAQCYAAQCQAAnAgkYRY/mWFZO76i1MASXKcA3uvSv99aRCIBGiOc2Cv4iKuS4NABEBz\nnIIhxKfW4CNOzehJPMvPVYjrp5n3LM5l+bgIUdzqua+zON0ba+QyXRAZ71IFKJ/iXE+7iPNr\nCDOs8lOI06860Kz/que3y78u3QZB5hxGpHt1OrrWdbuLqMvwq/apqOtotVdCnKvZ97bSVhXs\nTyHrb3KZBkWkxshzZVNlRbVI8enDDKvcmiC/ykCjcjO/Xb7oNghy5zAi1RLVMlV/6oJ7q0Z/\n6qFbW77raSfxV59jql3yU51oPud2qF+mQW0i/Yj7Xz230udTGXXrw6hhX+VDFNpAPetc9stX\na/4K/DJuBxxGpKbsN39O7W87a3GaGZe2oNe87j+NPqd6/NUO9ct0UZS+hu7XoaKu4zVnuDbM\nsEohrm33hhxQgsvl0e7aA0c5iF21ra7b/YpHdXr4GayQZfmsj7dDWiedVuj/RH0K0xZuh/pV\n7lXN7VS7IgfM4FZMkClHOYjXrnRf68bNtapefWyRruL0e38FFKmqKJ5E8VAGINJeOcpBLGpz\nKofquthVvJq62kl+eaVEf6iqXakv2Mc8ndqqXbPwuZ+rr/Lbr/Lbq6NW7ayYIFMOchAf3SWk\na1Wtq0ZE/VGdlm71aeU8lOhH18XQ9QcIdZmyXWSI+SPu97aG2PRM/PRzh1WKKuCzdlcOmJ0N\nZkyQKwc5iLfGnL7L7tT2Z3ed3M/BgL5ONnR/D8s0KHc2NN3fp+pEV3d6C9Gem/SwbcAfZcDs\n/i5LiLQPDnIQhyeD1wO/TdumvTJ6rg3rynIz2l4zPYvTn7x6en70cRSRuguyl7pqd+4vsOph\ny1shih91wLwgW5YQaR/gIPJ4XuCBCAAi0TRtqJvnrXkQCUAkmq619PJaGCIBiMTwe+qaMR5A\nJACRAAgCRAIgABAJgABAJAACAJEACABEAiAAEAmAAEAkAAIAkQAIAEQCIAAQCYAAQCQAAgCR\nAAgARAIgABAJgABAJAACAJEACMB8kf4BRyVg+dsNC0Rastn3kpUjxEXCSlyIRACR4gbOMWGI\nRACR4gbOMWGIRACR4gbOMWGIRACR4gbOMWGIRACR4gbOMWGIRACR4gbOMWGIRACR4gbOMWGI\nRACR4gbOMWGIRACRwgfuX1f7ZIYfyvC/10kXIm0NRAofWL6M7MkM3/Xp0ROeGBciEUCk8IG7\n11PchrfTasM/w3uY2+mrAJG2BSKFD9y/56V/jfnY8CpApG2BSOEDj8jzM7zQHCLtBogUKvD3\n++2GupebX+tXZ+rDXQ+DsUykhGfHhUgEEClQ4O9XmiQ7El708MVYJk7C8+NCJAKIFCiwJVKh\ndHn3w83sv7Zq105H9/dOgEiBAmsiDZOpYVEMw0k06ibGhUgEEClUYLONxA+rnRAQaSdApPCB\n3SJ9bnUjCSLtDIgUPjAvknqXw/S4k4BI2wKRwgd2i6R1PKSR8MS4EIkAIsUNnGPCEIkAIsUN\nnGPCEIkAIsUNnGPCEIkAIsUNnGPCEIkAIsUNnGPCEIkAIsUNnGPCEIkAIsUNnGPCEIkAIsUN\nnGPCEIkAIsUNnGPCEIkAIsUNnGPCEIkAIsUNnGPCEIkAIsUNnGPCEIkAIsUNnGPCEIkAIsUN\nnGPCEIkAIsUNnGPCEIlggUhvcEwgEgHOSHED55gwRCKASHED55gwRCKASFSi4r4AACAASURB\nVHED55gwRCKASHED55gwRCKASHED55gwRCKASHED55gwRCKASHED55gwRCKASHED55gwRCKA\nSHED55gwRCKASHED55gwRCKASHED55gwRCKASHED55gwRCKASHED55gwRCKASHED55gwRCKA\nSHED55gwRCKASHED55gwRCKASHED55gwRCKASHED55gwRCKASHED55gwRCKASHED55gwRCKA\nSHED55gwRCKASHED55gwRCKASHED55gwRCKASHED55gwRCKASHED55gwRCKASHED55gwRCKA\nSHED55gwRCKASHED55gwRCKASHED55gwRCKASHED55gwRCKASHEDz4j7+b0U4vzbj97aQ/g4\nC3F5DENtYCG6A/w8i+L2WZptCZE4IFLcwNPjPgvRULRa3FpVPu3Epxz6dz31Xg3cm5XaVV5B\nEoZIBBApbuDpcU/iWin0OotbPXbtzjm/9ehV/Mih/93OvYhrO/DbzQmQMEQigEhxA0+P21XW\nPs1nUTza8Ut9MnqKixz6z3bZdrFuJXEOkjBEIoBIcQNPj3tpK2stt96RQvoyDFU1u2t1LrqX\nUqT5R1sCkWggUtzA0+O+CnG6/Q2tHe2UI7TxWqJ7U7c711W7G0RaD4gUN/CcXrufU9UwOj26\nUYdIw59H3ddwhkjrMWXXFhXDGESKF/d5u57FXzvMi3Rv+++aut39JC4fiLQeE3ZtIf80QKS4\ncUV3KDSRCjn0H22PXs21W+OFzob1gEhxA8/ptft0n6XyeZK9difZa1c0S35646r6Hbq/VwMi\nxQ08Pe5NnKvm0edWS1PTinSrzzvXtkuhGfqvypv2VHQVj8que/lpOsYDJAyRCOaJ9E/NG0Th\nf7UVtv/4f+2oEPXff7cT/1sZuor/2yzwL3F9/1dbxwuTAEQimChSgTNS/Li/Z6HcOCeGe+3O\nj2HoPRyreuD3JE6/RKzJ4IxEw4v0e6kO0VmtDNSddhApj7i4+3tjOJE+9bUKUf1399CnQ6Q8\n4kKkjeFEuopbXWn4U3pM0dmQftzhcEKkbeFE6i/tKdfwIFLycZWjCZG2ZYJIuLMh9bjqwYRI\n2zJStbvJy+IWECm5uBApHmxnQ/87TPZHlRAptbjasYRI28J3f9f3GJ8cP/OHSInF1Q8lRNoW\n/IwibuBwcY0jCZG2BSLFDRwsrnkgIdK2sCJd2rvxT2gjrRoYIu0ETqRb/zMX9NqtGjhUXOs4\nfr/fQKF1IBINJ1LR3hv05H9UCZGSifv9Uh6tYxJEonFdkFU/bSBSKnEpacxp8jhe+98x1U+8\n635CK07+G4NINJwnl+YxhJ8b/+tkiJRK3EkiVXWN5mEPf+3P0lt+/DcGkWg4kV79BVn2R5UQ\nyUVXcP8u1S68PpQp2lBXkhfmRlbjjEnDRh7Nw44/hbyv/6Pe+DUKRKJhD+Ln1lyQ5Z8WDZFc\ntAX33P2PfytpkZ5BRCI7FoyElY1c2+exyl6k86RfoEMkGlxHWidwU3DP7eMV/oq6qFIi3flO\n0aXwIlWVu+dTPhGl/BGTfjkLkWgg0jqB2+fKdY34xhdKpF/xf4JkR+AQ6SEuF1mxe/SdD/5x\nIRIBK9KtaySh125W4Hq/XeVTuj8lLdJV/OsiTgGe7WPjEKl+4F1/JpzWQCohEofjgixEmhx4\naKwMj7MvlSnm0KXdxQFeW2ThEkkZm9ZAKiESB39BdqzmDJEslO4z9eHB7X9HlEhC/Kuu363R\nUPITaWIDqYRIHGMXZHkgksVkkdq4IR7JbeEl0tQGUgmROPgLsmMvHIVIFoZIw5uM5oqkXYZS\nHppP36fgSpgUaXIDqYRIHPwF2fNIzR0i2ehtJNlrx4pUiEYk7g4d/TJU92NlPZZ6n4IrYb3F\n233+jDaEbSASDV+1Q2fDksDddaRT80qVCydS/Yjuqo3EtFOMy1Dd3Vp6LOs+BSZhUqQTRAoG\nRFonsH5nQ/FQi/Iw1N6IxZyQzMtQXceA8Wwn8z6FuQn7ApFocEF2ncBdUb9fK1Uuf+0UW6Ty\n9Z9VxY1pjVqXoU5NP7n1kDTtPoXZCfsCkWggUtzAVtyhmWVdhmpfFGaKpN2n4AgcCIhEw9/Z\ngKrdFoHNuEbHn9573rSmTJHU+xQcgUMBkWhwZ0PcwJNEqtpcL1skuvscIm0Lf2fDszpqnzNR\naeiASGvEVUQiLkO9xAkipYnjzoaf+nWJ+IXsuoEdbSTqMtSv+Akq0vQHO0AkGodI975GTgOR\n1o5LXYY6i5AizXhECkSi4W8R+qvrEQ+ItG5gZ1z9MlQzqb7yxFxenRC4ByIFg/OkNqg5jniu\n3aqB3XG1y1DtpD+IlCTsCed+ajpWb+yaECnluGgjbQwuyMYNnGPCEIkAIsUNnGPCEImAFEkI\nn5tW32BvyIOuDDbD2lIQiWCBSEs2i//gV447L7By0IU2rMWFSASo2s0J3BWx67PUCl/Nedoe\nTU0kchQijcMd9vPoAzkgUsXTFOl34gMYINJO4O+1G1vz2CI1H80rBrTC93TUhT3iBgQibQt3\n2J9nx2O/GyAS8ZOGU5G5SFq7GCL5g5+azwnMifQj/iDSMYFI3oGVuwDavfK5tg9TkPvpKS5T\nH1KXmkjkKEQaB712voHV+9Lk/zIvTaSi+ECkgwKRfAPbIhVd93e/TPO0Eoh0TPDMBt/AukjD\nHPV5dSO7jIy7EhBpW/DMBu/AVhvJHN6xSMP3gkg0eGbDnMC0SNTotLgBgUjbgmc2zAm8V5H8\n4kIkAjyzYU5giAQM8MyGuIFzTBgiEeCZDXED55gwRCLAMxviBs4xYYhEgAuycQPnmDBEIiBF\n8nrLNkRKOS5E2hj6p+bnv7E3yEKktONCpI0hRapfiTjqEkRKOS5E2hi6jfT6qV263MmZHRAp\n5bjOwNMfC6nFhUgEbGdD69KVdwkipRzXFXjGg4q1uBCJwNVr17rEzYVIKceFSBsz0v19h0jr\nBoZIO2H0jGS/L7sDIqUc17ONpPzyQ2jDcn77eZPlBCLRoI0UN3DkhD1FugmINIKr185hUQmR\n0o7rLRI5aoh0FRBpDPY6krvvu4RIaccNKVJRPCDSGLizIW7gHES6qctBJBpSpHGLSoiUdtyJ\nbSQ5qk8WllkQiQF3f8cNDJF2AkSKGzi6SOSo46HFEIkGIsUNDJF2AkSKGxgi7QSIFDcwRNoJ\ndPe3sFqbNhAp5biJiyS0jymrqIPzzwJWFKWsC3OBSdH0ibRIRcUwBpFSjpu6SEaZnbi28Tlx\nNS0FdRcIbXzaEwrZhS/nV1m+zpdhSiH/NECklOMm8QtZvj4jukI7L4cQInUZyM9+vhjOlkFE\nuoj2qqwYTIJIGcVNQSRHy0ARqVtIKNrJ05Uyj1pWmSQ3WKqLdVFKeVeus4Ko1TdFiKpdKc9r\nH2VPGD+ogEgpx01epFIMH60zpVWUzXnEuHpiE6WxGLW6loPjM5RIZ9FW7bQzkmwj/VPzBsdk\nHZHU0ij0YXOeso4lUmmH1D61HPhPNQMvuIVfRdvVUAzPuGssQtUuj7gpnJGcbSTTBFqk7udR\nJT3e1ddkt4Gy9kKRtGz8vis343M7CXH6Ue5fPWYb6e9Sv+PyUQcW4q+d1h25bla/5PAr0pv/\nIdi1SDxdQbVL+9AK6hdTRbLPYsIMWjICjYok1Okjl364b+THIUU6d7u0fpeAPD+3e7if1T0e\nffgV6W3CEYBI3ah+DhDaecHxuZJI+oD3N/LjiCJVTcXqjPP5K8Sz+W+qfe1aI4o2S/0V6XXK\nf2VHFqkURGlXFxDEMvKX8MJajRLH2oSZw/oi/V7qN7s8hwkHFOkuTv3AtT4oP/W719qjo89S\nfkWq/Z50lEOLJGtRZUmKVHYd1opV3bhX97e5urv7eyWRPqe22119h+zx7my4iv4H9/9dNv6c\nxKsdUGY1zcjhV6Ta70lHOahI+4M75Neq6l+Vh79jv0O2kLun7WwoX83+qEUprD2n/s/ovQWI\ntBO4Q95XRY990+pQU+j3xW//Yl191rCwPjQKRNoJEMlGfX5i+3cQqTxXlbs4Ik17PCpE2paR\nqt3tgO+QVZ7oe5ENoWpffBs/6ldU1wPaLO1zJZHUBw1/fi+FOP/2s7rrVo+zEJeHPlQOV0Xr\niWelyTsPiETDdjbYdzYYHEEk2TVXFcdvJVI9+Vf8aL12EUR69genvVx+axP7tBOf6lDz9PZW\n+Xs7cexxhR4JQyQC/pDXD1s93fgncx1BpKoid6pL3v0yiNRciNVntctuJ9JJXD/NjZDNteD6\nulU957cevYqfdujdDNUTLm2t4lR3wD6k/nOBSDST+so1diuS1hjpb1/4j4cUqb4NUZ1VyDpU\nv9LabSTt1vyi+P+tSJf6FPSs7zKuh97P9n5jIT59c25iamzCEIkAIo1wv1beXP6qwN++EP51\nA92sfsnteu0uagXtVidWi1RIU+qhd5tFfbm4veR1ac9IFzrklIQhEgHfa6fcDUNyEJFWDjwr\nbnVOPN3+htZre6ocTjliEKmWqL33om5KyRsDFyUMkQh4kVqTINK6gefF/TRvCzn1XXBm3U0R\nafhTnZIqlp6QIBKD44wkL+LTQKSocZ+361n/WQclUtdVV9ftbvWl5N/FpySIROO4IHtub9Tk\n1oRI0eP2r1PURCqkSEXbo9f9CmSYvQiIROO6s+HcXpRlgEjR4or+yTRax/tJ9tqdZK9d0Sz5\n6e1Cr91quET6FMLxGzWIFC3urf0p1K1v8bQHqbkL5VpX4Oqhdz306G5MuYpH1UT6q6t27E3I\n/glDJAKXSO2DG7g1IVK8uCf9tpP2ID3biR9l6Nb9CuZe1S2eyu0OyxKGSAROkeS1RwqIFDHu\n77nSSN52IoZ77c4PdUj+fqweeF6EuCz1CCIx4IJs3MA5JgyRCEiRhOgfo4Kq3cqBc0x4uUjG\nr7zNyfwS07Zi//Jc+wwKRIobOMeEVxNp0hLO1eSw4D/Dgqpd3MDh43b3tqYgEv9TRKH8dSwA\nkcbIp1yuHDh43P7XFgmIpP4exWAQST5ESKzwnPzYIgkVbk2IlGTcPEQqhfKvFP09geS4WvDZ\ns4y6urEdiJRQ3HwSzkykfkQr3Xqpt0QqHUJxm4lXtbNfNGYAkdKMm0UbSRGp/c96KN36uOj/\nWx9WG5bMQSTiRWMGECnluEmI5GJ4Y55eus0qHtGBUHqLJFzLhoULqP2amQQipRw3F5GcRiwV\nSTiXDQsXkHjRmAFESjlu8iKpJySjlMvHBjJtJGpxdbq+hcgiES8aM9ifSK4nMMZMeNqTIScE\nnkNgkfon2w9VOxHqOfmybRXvzoYa+0VjBrsTydXJFDNhZ15LAs8C99rRzFcTIs3fzqS4dF5j\nckGkbWHbSOyjinsgUojNzBVp9DQFkbaFE8l+a4nJ7kTaqI00WSQyL4iUGJwvz/ON7WZo2Z9I\n2wSeLtJ4FAKItC38daQj3SI03pqfFtgZb2obacYmlgQeASLRLBDpvRua/94TjpcYEIkAvXal\nVwfzpMATOqwzqItacSESAUQqIdLEuBCJgBXphjbS/MD+V1B9406+JguRtoXz5HaozoZ4gT3j\nTr+7ASJtC38d6XkWr89ZsC8dhUgbxoVIqeP4GcWPuJcf/hG3EGnDuBApdRwi3evHSKNqt25g\ntJF2Av8L2b+XOJUPiLRu4BwThkgEnCeP5gVJQgj25lWIlHJciLQx7AnnfmpeU8W/4G3fIplV\nqeQT3iowRKLBBVkSq3GfesKbBYZINAcVaaztDpEccSESASnS7h8QOdqbDJEccSESweFEagQZ\nvyyDNhIfFyIRsJ7s9EmrrUJJXd/MKzBEouGvI+3zSaudQqxH3AyINMSFSARHe9LqyLmInQ2R\nhrgQieBwT1p11+kgkkdciESAJ61q+Ig068GnHBBpJ+BJqzrjbaR5Dz7lgEg74aAXZBcEhkgQ\niQAiTQ0MkSASAf/MhmKfF2SXB0YbaaXQWYNnNswJHM4liLQT+Gc2/I6smaVIsw3QAges3UGk\nnTByQdZBjiLNN8BfpGlbgEg7YewWIZ4MRfoGFYkOpW0i9PPyJgCRtoW/IHve39so5otkrOa4\n8VWdHOgJrrNyhkjbcqi3USzxSFvREomWJ4xI87KGSNtyKJFm9jV8lTPZ8HMmy5huVNcLIh2E\nw16Q9S+chiX9yYgSyQw5XpeESDvhqCL5lU71/KOs5i3SuEqeIo0vNSPwLCASzVHfRtGXb2ch\nVbR5a6tZ4oyItOTdtPNOSBBpY/Z7Z4O7+KlGeCwkA6tVPGNNMpJxOnMl7E5iKhBpW3b7Noqx\n8idPSOMi6YHV1c1BLobSvmIT5laESFmw27dReNXdPH55bgWeGGIIMk2kobI4yyOItDG7fRuF\n/v85Wxh9S+kEkbiQc0WaB0TalilvoygqhrHERdLqbouKpBlYiV6Wih+uGpyxDh9XXRgiZcSE\nt1EU8k9D6iK1zBHJo8CrAQ2BPHshuIT1Tcy3HyJty4S3UWQpknIpyDcGWRt0iFTqtwxRVT1+\n47hpdSdMvSCbuEhcc0Wf7tMBYVSt3src0pTj+1WWhkiHZJ5I/9S806Mps+zoyGR9tnSDXpfY\nTjfJXIuKkjcQiWDsh31q90KZfGeDXeNibn/zvJ9hqOS9tZnqsuZEMzyxNWUCzkg7gRSpEIK7\n+zvtqp1XGfYTaTCuPaOQIZXqnLn+V6lV2p0PHtenFgKRtoUU6VfxyHh0Q9oi2W0hTqSRIGrT\nyhZJLkCHkvZROZWLRBrJXAEibcuEZzbk12vHiTQShDqvWSKZXd5UDP4isI9IxPo+2Y8HXgRE\nopnQ2ZCfSMolHnOSOdlYy+rko0Xi79hznviUGWPXkSZ0AOpApG2hRfrc6ul/hbioD27I5s4G\nv+LHlkpqxlubaZtmXXliRdKnjos0UlflgEjbQotU1DW7R/M2CvZhQsmIpJatdzfBp/hRJx47\nohpYWY8wlaoRjm6VuhVD3Yy9JTskCUTaFqaz4Vz5czrXP0u6UQvUpCKSVtj8RbJKqft/+9Gn\nqth+sSckl0jKbEokfyDStpAinUX9krH6NruPKKgFavIRqS/n1lou3Yzl3+QMY5gr9dZiwzSH\nSEQWE4BI28K81bz689ecjNL/GYUtkk9/lxwfPtop6rgy/22uOFTmtAijGRr9EyMizQcibQtz\nQbasa3XPMgeRtDLv/lUCMT7oow5Y85uE1QW+OjKkdrphtl2WvEj0OWiGXBBpW0hPmucVn05l\n3eGQwS9k1bLtXMaYYK1r2DGIpLhlLqMsLIeMjY2KNOaJYqs3EGlbmM6Ga3kXP1UT6cy/lCK6\nSLJomaeGkiqaTEFkvfjqpxmXQvzajm1/hyrjqCVEyFEg0raQIn2KruNbiBO7ZmyRhqLFFP8J\nYb5Kv5saaqI7VB7aluzNbyrSxBBcXIhEQDeBnqf2Uizf+Z2SSEa7pfQW6au2htxnpykG2UIZ\n+Ro7YjzbMCJNjsHEhUgE+T5p1Syl6jS/ItMtZfi4XCI9kLY1Ky2vNpLvMlZg8vsuAyLR5CuS\ns5Pbq8ToJTuERnqn3xBes0tLf8ufUUCkFclTJLZATCopWsketWOmSHZsZeMb/x4pgEcQiSFL\nkdpCqCgwM66PSK556mLfoU75Ne4X0qbFFClQXIhEkK9IfaFUi2xAkfTI3SAxXzPJUlAJ3Q+W\nWkSItBOyEOlrVEm00hpIJE0EZTY9aFlDoG+G+VLeCVMhXECkbUlYpF4ToiAq5TiASOrJQoum\nztMHfdA2MmxBx/cXsrSMDiDStqQrEvf/uzHXs41EFkM1tjL8Nc5DX30ebQ3jkTJshXfvCP1b\nQ6TEyVQkswRrcYkix5RDQiQlIKGIo0+CFMkaNlOBSDshB5EIM5TplkhmmbNsMyPpm1PPHE53\nDG9GRJJD2vzhrnL6+9t5sst7n+qWAZFo0hVpaCPZJUctimMiqUX7a8yTm+FF8m0VEYuVhD7m\nhdk3f7Jx+OJhHkTaloRFkuhlszR9MIsPJZJy8jJKoVHklS3p5X5CL4MZw9BHy8IhknN3jE6H\nSNuSmUh6s51YUPlQ1y4JHfUeb2spu5XG+sLOIOqHEGmf5CuS3X4gSpgsw0YQShSXEksp+z/D\n1xl2hJX1+P4Ynw6RtiV1kcwSL6fKQmmcc8y1yW4AZbpfp1w4rDbSV8/5O9EqDoi0LYmLNJQ4\npfAN05WiqS6sTVDtUNe2CrY5sjrNjuiHvuxZdd09PCMuRCJIWKSvetKgGz5GqVQLI2WFtja1\nVDyR+glyxlIg0rakJZJaiJiSpy1pzXsra/q1gfQgE1XgI3nOL9/6EtpZdckOhkgbk5RIshQN\nI0bpJteYVp5dRX3VdUq7m5BeRC4Vfg8vByLRpC6SHBqKWknV7GYV7eVM3Jb5bbqJ2ny7SRdw\nD3swsl2IRJODSNYpaVrpTYvURRrbMESiSUok7YqqLHb9HKqoeZfWhBm+UKl/uyU7GCJtTFoi\ntXTH8kte6lnUCEoMo59eMUn7LyX8Hh7f+a64EIkgXZEc5S9vk8xbWeVX/lolmJrWTV+0h0f2\n/khciESQhkj6wWuLz4ZFOxK6KOpw6ZjGT3bt4WBAJJoFIr2D0RQMc3SsGI4ukDrGF1eHmR1j\nTP4aOy3cAXEDkQiSOCM1BaMbKPd7RqK/EnPTer8f+Pu8tbnWojgjbUtSIg0Fa5ciuTD2z9d9\nTfZr1gtXEYncPESiiSeSepi++h2bw9+Ni/MGcFeRNbjpyr5aXyR6+xCJJppI1GHqpimzVijJ\naULsCGqGuXO06cYeXgq5eYjEAJGSYBDhK/eAnEXtI489PJMvecZT40IkgqRE0jobSlG/v9Yq\nVyrVEvZo/49fzpzdj3OLCWHOYeKSi3DThzllqdVq3SY1a3rt4Xkom7S23cWFSARptJF02mPZ\nFt/uH1eOhT4m5ErWHLb8y7nqgDouhvV746jtG37qsajU5ZzhO5O36uo7p13Taw/PgtikGRci\nESTRa2fQHkuhY5VC3RdhQxRaw4thLWXoq08YNjdY0Z35XL4q6+qaERkO35ms1uo7ByKlSYoi\ntScrQg1Zjs1p5LKWLF/VC8GsZE43R6ntKymwaYuu9NtzlO/cfHZLClmz1eg2s3APj+18Z1yI\nRJCkSA1MOZ8E61gUmO/k+NrDNGN2Sc5RR9U9bG2EnOQHRKJJXKS+eOwZrVAbs5Q9oc7W95G+\nmqqU/EvqOvfIQSSC0CI5jo866+3xf6JQ/0feO44vqfyXYgrQj9qLKysaIip71H28aCASTWCR\njAPNznrro8rxVUet1feL3/cjRWIj6X6pi0uRjHgeQCSaJETqh/Wjq/+ZUt72jbVThzlCO7VZ\nFT5hzFLrz75AJJp0RVpc4PaJ3GPDnpMzlA9tSFi7U2s+KXHHgUg0SbSRtOMOkZwMO8w99a2f\nnsheDIgUjjR67ZSiID/Clb1dUVJ7hpj47mb0S5jLK3vemDR65CASQRoikQhZAxkKAvSylel3\nls5bzqRiEHva/8hBJIKERRojdBFNg7HvZc0fOX/7iDTxyEEkgoxFcsWdXH6TwCdzukU5fTsL\n9jBEItipSAMzylk8vNOVX2z0Qi6z9pI9DJEIdi9Sz4TinARaN4CwbwSiV3L0eCthF+5hiERw\nGJEkYcr56shkp6SuLsOqtngPQySC44nUEarAr4h+1ZRNmjxR9Ze8lWCLT0b9HoZIBIcVqSNs\n0V/EmCdqxsTdP+6vEnIPQySCo4vUs1CCEKjVMqqpwyTskfzCnaoBkWggkkooJ+bA9SXoIomh\nkkYuLcSg1uK9SQGRaCCSTXhJfOBqdso9qCVRo6PWgEjbA5FGCCaKA+tWbE0KpiOOS21YJfi+\nqIFINBDJN3Aoa/iiP26SPseeJKQ9YiWPIBIDRJoeOKREygUjsoeb3aAxebM9AZFoINKSwEop\n9pRGqPcsNJd7lEj6sKlZv2qpTlY+fBJeDkSigUjhA+sFmynt3TglkjOOLxBpWyBS3MAy7kRP\n/AMHBiLRQKS4gXNMGCIRQKS4gXNMGCIRQKS4gXNMGCIRTBGpqBjGIFLKcSHSxkwQqZB/GiBS\nynEh0sYsEGlJLxPK5cpxIdLGLBFpgUkolyvHhUgbM0+kf2qEeIMjApEIcEaKGzjHhCESAdpI\ncQPnmDBEIkCvXdzAOSYMkQggUtzAOSYMkQggUtzAOSYMkQhwZ0PcwDkmDJEIcK9d3MA5JgyR\nCCBS3MA5JgyRCCBS3MA5JgyRCCBS3MA5JgyRCCBS3MA5JgyRCCBS3MA5JgyRCCBS3MA5JgyR\nCCBS3MA5JgyRCBaIBI5KwPK3G1Z6QnQssjvGSHgnQKS4IOGdAJHigoR3AkSKCxLeCTsTCYA4\nQCQAAgCRAAgARAIgABAJgABAJAACkLtIBTGpe7SE/oiJNGASSjfl7BKOReYiEYexf9iR8dCj\nJGBKXbopZ5dwNPIWqSCOYsIH2U63GP6mmHJ2Cccjb5HkgVVqGNrBTe0gm+kmXy7dCZfq57HZ\nhUj2cU31IJvp5iESm3Cpfh6bfYuU3DHW0i1a8hHJSlj5ODr7EKlQ6nZJH2Qz3UzOSFzCysfR\n2YdI3bD5v2V6x9hUJRORjPG093Ec9iSSOSXBY7w7kdLKNiL7Ecmq2qV4jOkSmIVIVMKJJRuT\nXYikX2DvRrSGUyoQ6aoT0svYnXCS+zgOuYsEQBJAJAACAJEACABEAiAAEAmAAEAkAAIAkQAI\nAEQCIAAQCYAAQCQAAnAgkYRY/mWFZO76i1MASXKcA3uvSv99aRCIBGiOc2Cv4iKuS4NABEBz\nnIIhxKfW4CNOzehJPMvPVYjrp5n3LM5l+bgIUdzqua+zON0ba+QyXRAZ71IFKJ/iXE+7iPNr\nCDOs8lOI06860Kz/que3y78u3QZB5hxGpHt1OrrWdbuLqMvwq/apqOtotVdCnKvZ97bSVhXs\nTyHrb3KZBkWkxshzZVNlRbVI8enDDKvcmiC/ykCjcjO/Xb7oNghy4Z90CQAAAklJREFU5zAi\n1RLVMlV/6oJ7q0Z/6qFbW77raSfxV59jql3yU51oPud2qF+mQW0i/Yj7Xz230udTGXXrw6hh\nX+VDFNpAPetc9stXa/4K/KBnBxxGpKbsN39O7U/SanGaGZe2oNe87j+NPqd6/NUO9ct0UZS+\nhu5HbaKu4zVnuDbMsEohrm33hhxQgsvl0e7aA0c5iF21ra7b/YpHdXr4GayQZfmsj7dDWied\nVuj/RH0K0xZuh/pV7lXN7VS7IgfM4FZMkClHOYjXrnRf68bNtapefWyRruL0e38FFKmqKJ5E\n8VAGINJeOcpBLGpzKofquthVvJq62kl+eaVEf6iqXakv2Mc8ndqqXbPwuZ+rr/Lbr/Lbq6NW\n7ayYIFMOchAf3SWka1Wtq0ZE/VGdlm71aeU8lOhH18XQ9QcIdZmyXWSI+SPu97aG2PRM/PRz\nh1WKKuCzdlcOmJ0NZkyQKwc5iLfGnL7L7tT2Z3ed3M/BgL5ONnR/D8s0KHc2NN3fp+pEV3d6\nC9Gem/SwbcAfZcDs/i5LiLQPDnIQhwca1wO/TdumvTJ6rg3rynIz2l4zPYvTn7x6en70cRSR\nuguyl7pqd+4vsOphy1shih91wLwgW5YQaR/gIPJ4XuCBCAAi0TRtqJvnrXkQCUAkmq619PJa\nGCIBiMTwe+qaMR5AJACRAAgCRAIgABAJgABAJAACAJEACABEAiAAEAmAAEAkAAIAkQAIAEQC\nIAAQCYAAQCQAAgCRAAgARAIgABAJgABAJAACAJEACABEAiAA/wO8k0sp5oOJOQAAAABJRU5E\nrkJggg==", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 420, - "width": 420 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "# Vst(方差稳定化变换)方法确定具有高度变异性的特征\n", - "pbmc <- FindVariableFeatures(pbmc, selection.method = \"vst\", nfeatures = 2000)\n", - "# 确定10个变异最大的基因\n", - "top10 <- head(VariableFeatures(pbmc), 10)\n", - "\n", - "# 绘制带标签和不带标签的变量特征图\n", - "plot1 <- VariableFeaturePlot(pbmc) + theme_bw()\n", - "plot2 <- LabelPoints(plot = plot1, points = top10, repel = TRUE) + theme_bw()\n", - "plot1 / plot2" - ] - }, - { - "cell_type": "markdown", - "id": "52736291", - "metadata": {}, - "source": [ - "### 4 数据归一化和线性变换\n", - "- 数据归一化\n", - " - 从数据集中过滤不需要的细胞后,对数据进行归一化处理\n", - " - 默认采用全局尺度归一化方法`LogNormalize`,通过总表达式对每个细胞的特征表达式测量值进行归一化,将其乘比例因子(默认为10,000),并对结果进行对数转换\n", - "- 线性变换\n", - " - 之后,对数据进行线性变换,作为`PCA`等降维处理之前的标准预处理步骤\n", - " - `ScaleData`函数对每个基因的表达值进行平移,使所有细胞的平均表达值为0,并使所有细胞的表达值的方差为1,这一步骤使得在后续的分析中各个基因的权重相等,避免高表达基因对结果的主导影响" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "id": "a07317e3", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Normalizing layer: counts\n", - "\n", - "Centering and scaling data matrix\n", - "\n" - ] - } - ], - "source": [ - "# 数据归一化\n", - "pbmc <- NormalizeData(pbmc, normalization.method = \"LogNormalize\", \n", - " scale.factor = 10000)\n", - "\n", - "# 线性变换\n", - "all.genes <- rownames(pbmc)\n", - "pbmc <- ScaleData(pbmc, features = all.genes)" - ] - }, - { - "cell_type": "markdown", - "id": "c9596ff7", - "metadata": {}, - "source": [ - "### 5 线性降维\n", - "- 默认情况下,`RunPCA`只对先前确定的变量特征进行降维" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "id": "eb896d35", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "PC_ 1 \n", - "Positive: CST3, TYROBP, LST1, AIF1, FTL, FTH1, LYZ, FCN1, S100A9, TYMP \n", - "\t FCER1G, CFD, LGALS1, S100A8, CTSS, LGALS2, SERPINA1, IFITM3, SPI1, CFP \n", - "\t PSAP, IFI30, SAT1, COTL1, S100A11, NPC2, GRN, LGALS3, GSTP1, PYCARD \n", - "Negative: MALAT1, LTB, IL32, IL7R, CD2, B2M, ACAP1, CD27, STK17A, CTSW \n", - "\t CD247, GIMAP5, AQP3, CCL5, SELL, TRAF3IP3, GZMA, MAL, CST7, ITM2A \n", - "\t MYC, GIMAP7, HOPX, BEX2, LDLRAP1, GZMK, ETS1, ZAP70, TNFAIP8, RIC3 \n", - "PC_ 2 \n", - "Positive: CD79A, MS4A1, TCL1A, HLA-DQA1, HLA-DQB1, HLA-DRA, LINC00926, CD79B, HLA-DRB1, CD74 \n", - "\t HLA-DMA, HLA-DPB1, HLA-DQA2, CD37, HLA-DRB5, HLA-DMB, HLA-DPA1, FCRLA, HVCN1, LTB \n", - "\t BLNK, P2RX5, IGLL5, IRF8, SWAP70, ARHGAP24, FCGR2B, SMIM14, PPP1R14A, C16orf74 \n", - "Negative: NKG7, PRF1, CST7, GZMB, GZMA, FGFBP2, CTSW, GNLY, B2M, SPON2 \n", - "\t CCL4, GZMH, FCGR3A, CCL5, CD247, XCL2, CLIC3, AKR1C3, SRGN, HOPX \n", - "\t TTC38, APMAP, CTSC, S100A4, IGFBP7, ANXA1, ID2, IL32, XCL1, RHOC \n", - "PC_ 3 \n", - "Positive: HLA-DQA1, CD79A, CD79B, HLA-DQB1, HLA-DPB1, HLA-DPA1, CD74, MS4A1, HLA-DRB1, HLA-DRA \n", - "\t HLA-DRB5, HLA-DQA2, TCL1A, LINC00926, HLA-DMB, HLA-DMA, CD37, HVCN1, FCRLA, IRF8 \n", - "\t PLAC8, BLNK, MALAT1, SMIM14, PLD4, LAT2, IGLL5, P2RX5, SWAP70, FCGR2B \n", - "Negative: PPBP, PF4, SDPR, SPARC, GNG11, NRGN, GP9, RGS18, TUBB1, CLU \n", - "\t HIST1H2AC, AP001189.4, ITGA2B, CD9, TMEM40, PTCRA, CA2, ACRBP, MMD, TREML1 \n", - "\t NGFRAP1, F13A1, SEPT5, RUFY1, TSC22D1, MPP1, CMTM5, RP11-367G6.3, MYL9, GP1BA \n", - "PC_ 4 \n", - "Positive: HLA-DQA1, CD79B, CD79A, MS4A1, HLA-DQB1, CD74, HLA-DPB1, HIST1H2AC, PF4, TCL1A \n", - "\t SDPR, HLA-DPA1, HLA-DRB1, HLA-DQA2, HLA-DRA, PPBP, LINC00926, GNG11, HLA-DRB5, SPARC \n", - "\t GP9, AP001189.4, CA2, PTCRA, CD9, NRGN, RGS18, GZMB, CLU, TUBB1 \n", - "Negative: VIM, IL7R, S100A6, IL32, S100A8, S100A4, GIMAP7, S100A10, S100A9, MAL \n", - "\t AQP3, CD2, CD14, FYB, LGALS2, GIMAP4, ANXA1, CD27, FCN1, RBP7 \n", - "\t LYZ, S100A11, GIMAP5, MS4A6A, S100A12, FOLR3, TRABD2A, AIF1, IL8, IFI6 \n", - "PC_ 5 \n", - "Positive: GZMB, NKG7, S100A8, FGFBP2, GNLY, CCL4, CST7, PRF1, GZMA, SPON2 \n", - "\t GZMH, S100A9, LGALS2, CCL3, CTSW, XCL2, CD14, CLIC3, S100A12, CCL5 \n", - "\t RBP7, MS4A6A, GSTP1, FOLR3, IGFBP7, TYROBP, TTC38, AKR1C3, XCL1, HOPX \n", - "Negative: LTB, IL7R, CKB, VIM, MS4A7, AQP3, CYTIP, RP11-290F20.3, SIGLEC10, HMOX1 \n", - "\t PTGES3, LILRB2, MAL, CD27, HN1, CD2, GDI2, ANXA5, CORO1B, TUBA1B \n", - "\t FAM110A, ATP1A1, TRADD, PPA1, CCDC109B, ABRACL, CTD-2006K23.1, WARS, VMO1, FYB \n", - "\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAM1BMVEUAAAAAAP9NTU1oaGh8\nfHyMjIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD////UNI3wAAAACXBIWXMAABJ0\nAAASdAHeZh94AAAgAElEQVR4nO2di7aqOBBEMyjgG/7/a4e8SHeA3IiB1kPttWYuAmqfLhtC\nSArVAwA+RkkHAMBfAIUEQAFQSAAUAIUEQAFQSAAUAIUEQAFQSAAUAIUEQAFQSAAUAIUEQAFQ\nSAAUAIUEQAFQSAAUAIUEQAFQSAAUAIUEQAFQSAAUAIUEQAFQSAAUQL6Q5CMACSBPHvJ5ko8A\nJIA8ecjnST4CkADy5CGfJ/kIQALIk4d8nuQjAAkgTx7yeZKPACSAPHnI50k+ApAA8uQhnyf5\nCEACyJOHfJ7kIwAJIE8e5fL0bCrV3N2Lrj0pdb7qLyAM6xulmudGEQAGFcTm/9R24YXRo+/b\nSp29an2lqvhTIE8exfLUOq1e+kVX2VdVFxWSXc8qCUptAxPEK1C96Ith+WyWLvYt92HxHn0M\n5MmjVJ4uqhok6C5Wqkadh39eZ9W6b3Ff06pG/6/eIgLA4IJYAQZBzuMOd/Xo+6s6d7qZYA9t\njTICMSBPHoXy9LJ6aS20EkqZNkTnC8j/W5n1in0plNL8999/RT9vIohdfRrPOF2lD2dnXU3D\nzvaAN5yjqlgOyNNnqVMoT61vHXS1vTCKvoWXDmuIQ6neKFW2khYEuY9nnJoe0+yJ6jbUU6tu\n/IMgT546hfJ05tc9Qwvhxb5FsY3XDSL4af77r3QlRYJ4ATp1sgtPexLyhaTsex79gzT+7KaC\nQf0oWeoUylN8CjrrLqLH3Oab8hdO/qq3TAQ/TflCitI6vvQL9oQ0NPX0Ae9h1nampWBb33ZX\nyGOQLKT+3uhuoft087WufKujaAQ/ze6F9HRNvIuqu/55Nmtv5ggXt+0gj2whDTwulXrMbW5Y\n2w5K9RtcI/2jkFrf6WDuR9Rm7cmo9fSNP/+GklH9KDteI9Vjk/zehbWjKFzWjvU2QClN6V67\nSBAvwMtdAo2dc12jqovZ/Bpv9/HL26Jh/Sj79dpdfHPtoWtn0iJfOj4WjAAwuCBjxm3zbTjC\nsVt55oB3GQsJLe8VlL6PdNbNttq13cZTD7+P9GKtByi1BVwQch/JNLavvnFtBbnqujq5MxFX\nB/JkUipPjelZeNWmdB5KXQeBHmevFxvZ0NW4RtoeJkg8smFs+BlBHid1Iycp3nMOefIolqcz\nHdrlxnmN9yTGtlzFVpeNADCYIGysnT77uCtZNyiyJt0P/T3cn+ghTy7l8nSrhwrxXad65HF4\nRS6K2kqd2P1YKLUVVBB3XPNXP0GPVzOUkS6hKnQAVegLeh/5PMlHABJAnjzk8yQfAUgAefKQ\nz5N8BCAB5MlDPk/yEYAEkCcP+TzJRwASQJ485PMkHwFIAHnykM+TfAQgAeTJQz5P8hGABJAn\nD/k8yUcAEkCePPLyRD21mjByuNYjtfxoID8f1ljaOQe18Zb6g7yoGozT35qqvrohqNfajlMI\nToOWx5h3ZmZ3hfnJOt4vpP7kx5xe3Qh9hy2Wm395Z+980hcVrSQotQH6gGcWGjdZnDgN9u61\n25WZ2T0nMzQhTx5v5Mnn+Ommfr1seYxzLs1Q1EGWVlvatU4dZ+dpNzpNzxgVuTVDm8CeZqqT\nTXrsNFiPFUPN7J4VCmklKwqpv9iyONsZYGzyXjce3e724MdsatwLzJCllJ4baxgOZ+Yo9xz+\ndalnToO34GpCzOyu6oxCGnlPmDWFZEvIlRMvpEs42bR0RhmdFYMZspTibg2G4Xhm0n9VN3YM\nc7xCxVAzu2ERheR5U5hVhTQ06vSx7UVX29ZbsAoYrmbrcauzssMZaUJ5/yDDcAIy6a/VyytA\nu3jOfjU3s3vOuNgcVZ53hVlVSMOB7tKG2a+kP4HqYJbdtpZ8ArUEP7xx2maF1J9M+isvCXUa\nvAxnIHZQo2Z25DOOLM8+haRlCbNfbQ/3M96HFtKZ99oRp6HDHvIs2xVSa041TXArHp0Gzazy\n8WKJm9nhjOTYqZA6xY9hp+o+2ccVkl68W4c73EeastU10lAiF3rq0TinwZM+kLnVsZkdCsmz\nxzUSe2GWHu6KiRhnPMk10vDiHH/Cigj+JBv12hkLu+FaiCddV0xjOlZdM3tsmL/GN0afVD64\nH2GHXrt+UkjDVa0Z78B67S5kP3J6Wh8ByEVnerjw0RdAPPPDArm3PjWzQyGtpFQhPW1nw9J9\nJHtNi0LaC51pd6fVJJ06DdJCmpjZoZBWUqqQ/CmJjGy4ha1uMAMKaS90pvVN11toenOnQbt6\namaHQlpJsULq3Hi6uz/cuXt8tKMOhbQX3sz7Fe7kue5TuseMmR0KaSXFCml8NGx30aO/L2z0\nd+Ufp/1ZBCAXk+mKtqcjp0G3x8TMDoW0Evk8yUcAEkCePOTzJB8BSAB58pDPk3wEIAHkyUM+\nT/IRgASQJw/5PMlHABJAnjzk8yQfAUgAefKQz5N8BCAB5MlDPk/yEYAEkCcP+TzJRwASQJ48\n5PMkHwFIAHnyKJgnNvFvtCNUBLMptiCEUpsQ510PEWrufhvdkwjCvCLdvptG+XfYppCIHeFE\n0Hg0F5TahCjvbtCqfzQz2ZEIwrwi/efsEOtfYJtCiu0Iw6apBSGU2g5iRai9ALqLNbmlElBB\nqFfk+BGbB/k32KaQIjvCsGnGgvDgSm0y09zjc/3yLtGNKRTmB0UEIV6R4SO2i+5rWaPJVoW0\nsGnGgvCISgW28T7xhCkubiZ5VxPXTrMHEYR6RYYdNgvua1mlyTaFxO0IyaYZC8IDKhXYyI3L\nE1wgn3Orey4I9YoM+24V29eyTpONeu2oHWG0aWJBWC6C32OnQoqSzF/6V1OvyGPK81WFROwI\n4004IxG+qZBir0i3davYvpbvKqR+tCOMN6GQKPtcI2UVUuwV6bZuFtzX8kXXSI7nnMkTComx\nS69deLbBfWpC415NvCLd1u2i+1q+pteO2hFGm1BIe+JzffG9dg/3kMWZnSZekW7r9lH+CTYp\nJGpHGG1CIe3J5D7SWUXd3+HVxCvSbd06xj/CJoU0sSNEIckw5roxHT+vmj/wje409Yp0WzcP\n8m9QtJDikV3k0S90t80iABEh12c+1o72bHsHydgr0m3dJ9KfZ5tCiu0IUUgykFzf6iDIXCFN\nvSLd1s2D/BvI50k+ApAA8uQhnyf5CEACyJOHfJ7kIwAJIE8e8nmSjwAkgDx5yOdJPgKQAPLk\nIZ8n+QhAAsiTh3ye5CMACSBPHvJ5ko8AJIA8ecjnST4CkADy5LFBnoI5mr1nzm3t4Gv3OXx0\nPR8qMrGmc2ODWj/x1VgOhpfRO2J1IE8m5fNEzNHmCgm+dp+TKKSpNZ3Pvhv/ffOvr3PvmKgD\neTIpnydijuYLiWyFr10BEoU0taazm19nO4J4qKNWWw62YyXRd0zVgTyZlM8TMUebFhJ87Tjr\n5scmCmlqTRdmkt+NBa47+9yd9yB9x4w6R5RnlSjF80TN0aaFBF87xkrHhuVCmrGm85vv+rxz\nDVMknNcd02uqzgHlWSdK8TxRc7RpIcHXjrLWQ2i5kGas6YLb1omaN/jd6Dtm1DmePCtFKZ0n\nZo7GOxv8N4avPKhx2sj6QqIdOCSDsTVd30dVN5kYNjWzi7/l7eh+nC8pJGaO9q9C2iSCH6J4\nIc1Z06ULKX4HzkhfUkjMHG2m1w6FRCl9jTRnTZcupPgdKKTvuEbi5mgopH9RtteOZn9ywnrp\nCyFyjWTcTiZmdiik7+i14+ZoKKRtWCokmv1JIZlGnOu1e76c28nEzA6FtJLCeeLmaCikbVgq\npFlrunAf6THeR6pVfTP7TN6BQlpJ2TxF5mgopG1YKKR5azo+suFuRzZc7JCh6TtQSCspm6fI\nHA2FtA1xIblm3Lw1XTTW7j425q5zZnYopJWUzVNkjoZC2oaFQpq3prMbz6Ohtxv9fT8PZ6Pp\nO1BIK5HPk3wEB+V++fc+kCcX+TzJRwASQJ485PMkHwFIAHnykM+TfAQgAeTJQz5P8hGABJAn\nD/k8yUcAEkCePOTzJB8BSAB58pDPk3wEIAHkyUM+T/IRgASQJw/5PMlHABJAnjw2ylOYwUlm\nc0YTy7aN4C9T0CDSDSB6+L1hELkSFNIPUtAg0r9yo8VhELmWzQpp/iUKqQQFDSLt1tbbCMEg\nci0oJEnWzTRPFdK7BpFuq/0HBpH9ek1Kx+E+FoWUwUrvk0QhvW0Q6QvJXFjBIPIDTYpHYj8W\nhfRv1rpxJQrpbYNI37Qz7TwYRH6gSflYzMeO3QvuZbxA9tomgh/gg0Ii/Tc0p+8bRLqPaSd7\nj5veD++X+c1C2jKCH6B8Ib1vEOk+5vyM9x73ej+8X+b7Cmn+JQqJUvwa6X2DSLviXqlHtPe4\n14r4fhlcI/0ihXvt3jeI9Fuf/rrq8IWEXrsDsVRI7xtEjlvjf8N3bfZX/C1QSD/IUiG9bxDp\nt3Z+YBEKaSUopB9koZDeN4j0W7uz77dDIa1k90Ka9KlCqbeJC8nl9H2DSLK1iz56fPt2f8af\nAoX0gywU0vsGkX5r1c48aMyt2OQv+HvI50k+goMCg8iSyOdJPgKQAPLkIZ8n+QhAAsiTh3ye\n5CMACSBPHvJ5ko8AJIA8ecjnST4CkADy5CGfJ/kIQALIk4d8nuQjAAkgTx7yeZKPACSAPHmU\ny1OYa0bmnanpMLvYOQ1KfUbCCeVfJnd+Vt9jcX/Ik8vuhTRxToNSn5EopH+Z3I0qPZb2hzy5\nlCyk2ZdRIU2d06DUZyQK6V8md25n72o3sz/kyWXnQppxTjuuUivnYkYkCukfJnfTWX2T/Q8o\nj/gM2axCmnFOO5xSnrXuABHLhfQvk7tYo5n9jyePvGdDViHNOKcdTSnPar+aiOVC+pfJXdy0\nm9n/cPJ8gYtQNNUoFJLiW4jUk7lJR6JcIdEEk3T+0+QuvPU5t/906tgB+M1CKhzBb7F5If3T\n5G7s/n4u7n84eb6ikGZfzlTWVhH8GFtfI/3T5M7+71Tdl/c/njw/co003e9wSgW27bX7t8md\nffVQ1nuI7k8/vkCIP8Vv9NpN9zueUoVZKqR/m9y5V7U1H6L704/f/i/4E6CQfp2lQvq3yZ2/\nR247G2b3hzy5oJB+nYVCyjG5czubU9L8/pAnFxTSrzPfo51lcufe2ulT0vz+kCcXFNKvs1BI\nOSZ3/q3tcDaa3x/y5CKfJ/kIQALIk4d8nuQjAAkgTx7yeZKPACSAPHnI50k+ApAA8uQhnyf5\nCEACyJOHfJ7kIwAJIE8e8nmSjwAkgDx5yOdJPgKQAPLkIZ8n+QhAAsiTh3ye5CMACSBPHpvk\naRy10owjIftaNWEyJ5trtkUEfxs2W9/87842PJtKNX7oXFuNT7bki2e3x/U0rn02SjVsOhLk\nyWTbQupP9pG/2ofrFAaCsRkvUOptpoVU0Q2tO1qZijiHI9dk8RL2Ng9jvofF8AWb/zV/g40L\n6RmmX45j8zs2KBJKvc+0kNyhyby6KD15vLuYId4PVT21K+eDLV7Vueu7RmvyVE2nV2h7rmrY\noavZ4G/Ik8nGhTSoama+nMlJqFYPtvMWEfwEq6eaTwvJzcrTr15ujsTQrm56NzviptNPFs9G\ngpcumVqNn2OnzXbqyMe59ZqUjcN9KPlUU0IX4pZ240e8oykVWG9+Mi0kNy1Pv2r9Maurr7pO\ndFWZzWTRfQBRRa9p2Iw+v2FVhL/KB5oUjsR+KPnUoVGnZ469wutTtPMWEfwAH9hxTQtpKAI/\ndzya4BpOOPOLlk7X1En1l8q09OgHrAnwV/lEk9KxmA+ln3pVl9Z3OfRa5xfZ73gOhCNlCylY\np/KEzlePbQk+wq5X3exTqjadDeNbDyfPVxeS7iEKTYgLqakNI/gByhbSUArX/EK6qLrrn+F5\nBq+qNlt0Z0NzYBeh7y6koWE3thaesbX0wZSilLxG6vVZpssupL7S55ra79pVzgtFNwoP7SL0\nxddI/OWJ36TYLIKfoGCvXa8bao1ZqMdrpHvX+8e06A1kUZ93qsv4OecT/dioEteF+Kt8b68d\ne9nEDw3ZKoK/zWwh6QqyzTbXNHvoU4vtqnuFXrtXGGzi3Ilfp7O9bK1RSOvZtZDuk+fBbRXB\n32a+kIY2GbuPdNZXTRdz88g4bJFF+8iJq6mp+9jatju8ogfBbP7X/A32LKRoSMOWEfxt5gvJ\nmA73+rSvRza8atP9Nj+ywTzh8nHS7QNSN0MlmvEO/NFku/xFv89GhcR6Tv1CcJem3wql3oZk\nkdmruufznulYu5N1suOLnelsMCekhnzYJewbvmuvP+rH2bOQTiikMiwV0t0t3OqhHNx5pTND\nvuPF11A/9Z1+lnnn/ex3CN+18d/yV5DPk3wEIAHkyUM+T/IRgASQJw/5PMlHABJAnjzk8yQf\nAUgAefKQz5N8BCAB5MlDPk/yEYAEkCcP+TzJRwASQJ485PMkHwFIAHnykM+TfAQgAeTJo1Se\n+JgFYqwWe6711+grodRGUHc7N2jI2tcxrYLBnV13fvBPgTx5bFJI1Fgt8lzrn3iG7D4wdzuv\nTvWiL3pmcOdXcwcUyJNHuUIKy8xYTTHPNT36GIW0B0wEP9HiTEak3iODu9FdEoNW17BBIXFj\nNea5poVDIXlWz8bMgItAxg17J+PO2DQQg7v5CbIHkuczOTYoJG6sxjzX+kExFJJjvT9ABlwE\nMj7cT62szdw+anDnl/mkscPI86EcGxTSxFgteK71z8kR7zhKRXzgWJMBFyHMrfTOJk9r00nP\nQr5px22ejiLPp3KU7mzoJ3P+qedazzdP5iYdiW0LaWm2v1+wJyRmcOcUbMN7jiTPLxRS8Fzr\nJ5uPc8iLES2kp2viUYM7p+D5mL1231NIc4v+lfdcm24+jlITNr1G+kchtb7TgRjcuUmy1UGf\ncfB910jcWI15rkV7Fo3g99iy146LMCbdW51UPuvE4G48WR3URejreu24sRrzXIv2LBoBoHAR\nxqS7R4E8g7mdfblwEdtDnly2vI90DpdGznMt2rNoBIDCRSD3kUy77eq75qjBndvn2M9HWs0W\nIxuYsRr3XOtRSDvBRIhHNowNP2Jw5/bpznhi3xq2KCRmrBZ5rqGQ9oK527Gxdrbzx0AM7sI+\neIbsCjYpJGqsFnuuoZD2grrbuZ5t/8CWoEEwuHP7+AeceyBPHvJ5ko8AJIA8ecjnST4CkADy\n5CGfJ/kIQALIk4d8nuQjAAkgTx7yeZKPACSAPHnI50k+ApAA8uQhnyf5CEACyJOHfJ7kIwAJ\nIE8e8nmSjwAkgDx5yOdJPgKQAPLksSpPXXtS6jzO7R8tH82jFbt4UY+zGwcUBz/CjyIASULC\n3bifxoyxq+qrHWv3utZVetcRyJPHmjy5kY5+dOM408gOkzxFi2aYnZ+QSfwIP4kAJCEJj50h\n7QzzRpEhkLO7jkCePNbkqVHnlxmTbyeJ+XHd80+iN/u3TkDqR/hJBCBJSDifGzEc2uzppxpn\nhy3tOgJ58liTJ2UH4XeR5aP1Abjp8w1Z1PtXfmoz9SP8JII/wYbOJ2PC+Ww9NVSNPoY9h39V\netfwWUUi2nJW/XewrpDoi9HysTbWTmYWM1m005tbM3WM+RF+EsFfYDvvE5JwPn98aMWZqbFX\ndXPrF3cdKSLPpj4v38GaPA2NgdCMDpaP5B+2Rp+GHrZ25lxxD1pIG7pxkYTHZ6TOHNuG45xS\n6V1HSsizrfPYd7AqT2f9hJBg2pQuJCuMNQegfoS9v7xdG/pvs92PiyY8zDF37t4nc2aq/AXR\n4q792PlQICIU0hJ33e1T+W7sdCFZ4xrbfqB+hJ9F8PNs9+OiCefzx4e8t+YU5M3RlncdQSHl\nsTpPj8voJJguJGtcYx2fqB/hxxH8OJv9tljC2c2hIe+6A+gyFI6VYHnXEVwj5fFBnp7+PpGr\niypUD1l8+QOdadURP8ICEfw2G/22eMJ5qpVxiDwPW8z6xK7hPUWC+vN1tCZPE0N21mv3Cr12\nZvEyijXehh0rcG0EIAFPeFxI+oJIXxiZ9Yldw3v2iPkPsCJPtXMX7KKHWl7MzaO7bnaTRfeY\nMW0Ryf0IP4gAJGAJnxaSuwPrWt2Lu4b3bBvtn2FFnh5KXYd6eJy9XWdqZEMwx9VP7KF+hB9E\nAJbhCZ8W0m04/9zsYmrX8J5No/07rLuP5GzS/Ge4DzmFtePi+NgDc36ifoSfRAAW4QmfFtLL\nXhHpxdSu4T2bRvt3WJUn/eD50XswKNCZId98sQp39/Qi8SP8KAKwRJTwSSG54d7mcimxa3jP\nRnH+NeTzJB8BSAB58pDPk3wEIAHkyUM+T/IRgASQJw/5PMlHABJAnjzk8yQfAUgAefKQz5N8\nBCAB5MlDPk/yEYAEkCcP+TzJRwASQJ485PMkHwFIAHny+DRPitCEsT+1HlQ3sVGbnfECpbZB\nLaC36aEpjRtg0jWDctbWqWNuhO5j9o36ZylZSP3JD2O9uuHEkY3aOAeTVhKU2oZEIbnBkvY5\nzXb4o66kVzVVB/JkUiRPfpTW084Q0wMjn2Z1ZKM265wGpTaEjp8bly/GJaC7mJIxA/Jb05Zo\n3MTzhn3CbrH+NkULaZDIjP0+20l8Exu1WZ+awyq1x6zRuUJ6+XNOY9rfqvPb5jyeik01L/Ex\n30zZQrIldBn9nSIbtVnntKMW0i4+BnOF1Pq5yl092rc7N6GwHN5VIIoDWDaULiTtl9a5Bt7U\nRg1npMA+zjpzhXRmjtGG1hzwLq5pV9qa/QgmQqULaTj7XFoyc5bbqM07p5WI4PeQK6RJxof2\nghXkqnsbquu4fyF5UEjZH0I+5cxmznIbtbHXjvawopA2JKuQrnVlz0KX0QiFvOvzIFBI2R9C\nPqVzFvt2NbdRw30kgtg10txJptGtiKs+MXWNutItuEbKo3ghkRexjdr8ZOajFpJYr109XiPd\nx5aBuWw9mUNgx8zS0GuXycaFxGzUUEi7M1dIF994e5CSif1xw4ZtA/wzbF1I1EYNhbQ7yftI\nxk/N3kdyroN67SbPR/r7bF1IxEYNhbQ/syMbGjOy4VWbijHHuc6YfrZKj7Nr8cS+NWxdSMRG\nDYW0P7OF5J7ky8bancP6M/+EXeL8fbYuJGKjhkLan/lC6m818SVsK3W6josVOx9Bnlzk8yQf\nAUgAefKQz5N8BCAB5MlDPk/yEYAEkCcP+TzJRwASQJ485PMkHwFIAHnykM+TfAQgAeTJQz5P\n8hGABJAnD/k8yUcAEkCePOTzJB8BSAB58sjPEzNGY85ozOrJLZ0f/n3X8Su6az1sqa/R534Q\nPfgX8SPou/ak1Ml719EJYo0bG3SGi9AaVhYSc0abKySlXCU9Rynv1ZytHZTalKiQbl6du1tJ\nFKmcU03FP2DHYH+ZdwopLDNntNmhdq07vj0rv/WuVKOL61FjnP5+8EIaNGgHxV6tqyRmNPjQ\nw4u7Sj34B+wZ7Q+zqpC4M9r8mFX771Wd/YpqfIY2n8x8VKX2mTXKCqnzZ6KhoqoubHVTkHTj\nruYNu2JTzQt8ynezqpAiZ7REIQ2HOrfiFozBXy096B20kHbyMWCFdAlTjazVU2TjUKlL1LAr\nIs8RLBvWFVLkjJZo2j3HFXXUZFgRwV9iL2cdVkjBrWFox9V9fEbSjbuJSp/LcwgToRWdDf1k\nXhHrhhhfPMet9J+ZN66K+9fZr5CIOpPZSbHRYEMbdqqQPCikaM+3Cun8DFv5P7E6KKQt+Vch\nuV471x1eTVp2OCNlsqppNymk+MWpusdbUUgciWukhUIajQYbNelrwDVSJqsKKXJGmxbSw9t/\nh630GgmF1Iv02pFr2ye9RnI8jLd0dJGEXrs8VhVS5Iw209lQhz66sdeuifZ5OwLwPsu9dpc+\nLqRK3Sb3YyFPJp/dRzqrhe7v56SzgdxH6lBIu5F1H8lin1wajRCCPJmsG9nAnNFmu7/DKYmM\nbKjNyIZW4bEuu7E4suHGtvamOW6tInnjDvLksa6QuDNaNNbO7NCNp6TxfQ8/1g6jIvcjGmt3\n9xLc+NbeD7WbDLaDPHmsLCTmjDZXSO6xpPx9t3qopfOFjVmFUpsyGf190aO/L120NQz+jht3\nkCcP+TzJRwASQJ485PMkHwFIAHnykM+TfAQgAeTJQz5P8hGABJAnD/k8yUcAEkCePOTzJB8B\nSAB58pDPk3wEIAHkyUM+T/IRgASQJw/5PMlHABJAnjzk8yQfAUgAefLYIk+z5pHj8uhOuGEE\nYMQ4Qp7tMDo/e9mPSmWOnePIcD4WDPLksUGe5s0jyTIMIvejq8hk8lEMW0ncsXMck49CWkP5\nPC2bR45WG+y52VBqSxp1fo32JtzhKXLsHArKTtdEIa2heJ4S5pF++aTu5A3HVGqv2dd2kpGb\nS8lt7CLHzqENoV59X76QjjDRfIOfccI8MkzxO/w4/d38QJbNO2PHTqWsj0PpQjqE9ckGP+OE\neaRf7ozTw2YR/AD7OVS1qglXpKxpFzt2Dhsbs6psIR3DjGuDn/GC5x3bFI6MkTXXUdjx13XW\n/aSuZMbOhmc/EUq/7piXzdQ5bQ0opLUf+EYhbRPBD7Dnr+ve6H459/AJ2/39tC96ss6+vtqL\nJfp2FFIe2xfSzPLhC2nnC4fHpQqNNm/eOVdI/Ul1uEZaRfGfccI80i+/WP/3IQtp766sZ2i0\nefPO2LHTbWzQa7eK4j/jhHmkX74Fn8ItIgAB3ghg5p2xY6ff+CxdSMdgu/tIU/PIcB8Jz0fa\nidp5bHXunqte9uadkWOnu12uTiikNZTP07J5JEY27M7QjrsOLewHO6q5U1Lk2Ok2XhQKaQ0b\n5CkyjyTfhbF2u9P6njr9IjLv5I6dwVoahbSCLfLEzSPJd1lJL9tHAEb0UHyvxsS8kzp2Emtp\n+n7Ik4d8nuQjAAkgTx7yeZKPACSAPHnI50k+ApAA8uQhnyf5CEACyJOHfJ7kIwAJIE8e8nmS\njwAkgDx5yOdJPgKQAPLkIZ8n+QhAAsiTh3ye5CMACSBPHm/mid31ZrZommp8/Cjdjzqr9Xry\n2Cg2WUYAACAASURBVEcRgBSxAvrpy32Y0TcOFg4iUBPCrlGqYU4BkCeXDwqJ26L19km/U5NB\n5qxmxh5/FAFIECsw5N4NsmOGdkQEZkJYjfPQA5Anj/WFFNmi9Xrcd+vnuPCn/AZntf5ZoZC2\nI1bg7KThhnZEBGZCaN7bBnMh+9ZdAv991hdSZIumN1bDysl+zFntqs4opO3mjEYKXN1k2MjQ\nLojATQgrFc9p7j+W5xjTY/sPCim2RbMTX1t1i/aLDBraqXvNexH8ATZzMYgUeE5a2s6Epg2n\nKGZCaPfxV1nu5UcRHcSwof+gkGJbNN2OePQP13gg1cKc1Z6TI97xCmk7X51IgdM4pZ837YII\nkQmh3efKXn8kz1EshPoPCmlieGZnM9vmAdtKndX66GR1RF+7zX5dkQKNa1T3pLPhOa6g/wRu\nKvhpFPC1QyEt7h4XUsi2tTRxLQuWf+KsFm96P4LfZ7NfV6SAvjXhtjBDO7uC/hO41pXiEy9R\nSHmUKyRraWJ9nyYKeWe1mU2HK6TNLhwiBaqLUnSe8qkKzy5YKqQ+dB35PT8K6TB1VOYaSa99\njc2H+Gkulqc3/EYhbdSVFStwH2qC9tp5Q7txxcSE0NDx3gb02uXxQa8dt0W7jDJe+pkzV9xz\ntDoCsMSMAifW91OHjtbRMoiZELJt/tWmMf8dStxHMreI3MN1tDFaz89c1FmtRyFtxowCL/fw\nMG5oN66ITAhtN8WLPSsE8mTy0cgGYov2HI92pks17Med1XoU0lbMKnBjT56oSe+D/ZeZEJqR\nDV1d8hrpOLxdSKFPlNmiteP56a77jsh+zFmtRyFtxUQBs9zQBkI3npJGEZgJYcWEcntuHfcf\n4YNCYrZoVbhCrSq+H3VW61FIWzFRwC6f9GFuYmhHrnWJCWHfVurE78dCnkzk8yQfAUgAefKQ\nz5N8BCAB5MlDPk/yEYAEkCcP+TzJRwASQJ485PMkHwFIAHnykM+TfAQgAeTJQz5P8hGABJAn\nD/k8yUcAEkCePOTzJB8BSAB58pDPk3wEIAHkyWNVnpYsH9tKVW0XL1Lbwo6tXx8ByIY6QM54\n0sAgsgxr8rRk+WgHQJ6iRWpb+LLvZE9jhlKbwhwgp4UEg8hCrMnTguXjQ1VP/erBFntqW9g4\nV4GGfBqU2hLmADktJBhElmJNnhYsH+04/pueSkYW9f6jbeGcVcChlNp75jV3gJwU0tYGkYeZ\naL62kOiLNkwb06KY+WVkkdkW+nqirgBHKqTdvUAiB8i4kDY2iDyO9cm6PC1YPpJ/2BpiW3hx\nTTvq+HSgQtrfnSpygIwLaVuDyAOZca3M07zl40IhMdvCq76era7jGz91IPwt9v9lxe20qJC2\nNYhEIf2TWcvHhUJitoWX0eXmwwh+ku8vpKIGkSikHKaWjwuFRG0Lr7qoOm5BeKBC2v+i4d1C\n6osaRB6ojj7JU2z5SHrmyCKzLTyZBl7HDJ+OVEi7d2NFDpBxIW1tEHmcOlqTpyXLR9tV9wq9\ndmaR2RYevvt7byIHyLiQYBBZjBV5WrJ8vJibR8YLiiwy20J7puoO2/29O9wBcvk+EgwiP2VF\nnpYsH2dHNnDbwlbpcXZt6BlaFwHIhjlATkc2wCCyFOvuI81bPp7C2nExsi08Ty0IodSmMAdI\nYjfoRINBZCFW5WnB8tEO7eaLkW1hH3b5KAKQDXWAnBYSDCILIZ8n+QhAAsiTh3ye5CMACSBP\nHvJ5ko8AJIA8ecjnST4CkADy5CGfJ/kIQALIk4d8nuQjAAkgTx7yeZKPACSAPHnI50k+ApAA\n8uQhnyf5CEACyJNHqTwFezRF6CMPvMgQr2gEYJnGjfs5O/+mBa+7/nqKXQchTyaF8kTs0Xgh\nMQ+8yBCvaAQgRWVGol7dsPslr7t2qg7kyaRMnrh7Wk/UYR543BCvaAQgyUPPq+zcnOYlr7un\najpdbdR1EPJkUiRPkXtazyb/EQ889qJoBL+C2JRR3birrTqLXnf1zLTLT6eaf/Du36LIz3hq\njzaZRTt9UTSCH0HQxKBSl7Fht+R1ZylWSEeybCjzM57ao41iMA889qJoBL+BpK3O0LhzZjXL\nXneGrtR0sUOZCJX5GU/PNGEN88CbGOLB1243ps3u2ZfDNdLYnfeZPCik9z8kUUjcA48b4pWL\n4DcQ/WlVkcWGJ3r5qkqZ6KOQ3v+QVCH1zAMvelEqgh9B9ITk+hrShdRVfKY5rpEyKfIzntqj\nxaX1pNY0T/ja7c5jOB+5i6Rlr7uB8yl6I3rt8ijyM57ao0WWdz31X4WvnQCVuvn7scted/3r\ndI57gyBPHmXvI8UOXdwDb2KIVy4CkKYxrmh2hNCy1909chDSQJ48yuSJu6f1QR3mgTcxxCsY\nAUjxUM770TTulrzuXjN1BHkyKZQnZo/Ws/tIxAMvNsQrGQFIULlDl2vcLXjdNWqmxxvy5FEq\nT8wejQ3goh54kSFe0QjAIs146HLDv+e97hQKaT3yeZKPACSAPHnI50k+ApAA8uQhnyf5CEAC\nyJOHfJ7kIwAJIE8e8nmSjwAkgDx5yOdJPgKQAPLkIZ8n+QhAAsiTh3ye5CMACSBPHvJ5ko8A\nJIA8ecjnST4CkADy5PFmntjwke5aK6XqMAK1mgxaNbtRV8ipBSGU2gzuA2mG1/nccx0eKuyC\nIUKr+KCQ7s7ucTSzuw/LU/tO5go5Y0EIpbYi8oGkYnEdBonYLvRDIE8e6wtpKJtGD8p/jJMn\nGtXOGGxQV8g5C0IotRFzPpCDDHr8aqRDzY6PzAgA8mSyvpAqf/YZSsW224aCquKZsdwVcs6C\n8FBK7Tj5esEH8qRl4zrcFGtAlDE/OdI0c83qQrqpMeEv67B1G845rbpF+825Qh62kPa0A1nw\ngbyT5oA7S6kzEaRWRUz0D2V8olldSDVvAfR6rstjuGo9R/vNuEJyC8IDFdKuBlULPpBdcJ5x\nOpzVi/p/U1/2fq08x7Li0qwupMmJxjoxVPaARrdGrpATC8L3Ivhldv15LbluhfVWh8vQiKDH\nxy68Y708KKR/7R4XUsj2zRzLXNuO5T9yhYwsCFFI2/DPQrI6PHUTfVz35I+i6HFGyqVcIZ1M\nW8951sUHMuIKGVsQHqiQdr1y+FchOR1Oug+cWGwwF9we10i5FLlG0mtf4+08/tAdz+gKGVsQ\nHqmQ9uzLWvCBHK2CrA6NqZxRrmqiBnrt8vig1473/lzGQrr0M2eusYtoYkF4qELakQUfSNsC\nH3UYVTObn6qOPwby5FHiPpK5RXRStkBekX0nd4WcsSCEUtuw4ANpW+CjDryQruoafwzkyeOj\nkQ21GdnQ6kEl4Vhmul3DfswVcs6CEEptxJwPpBvZEOsQjHHjB11BnkzeLqRw+Hr4sXa6kReu\nUu+67UD2o66QcxaEUGorZn0gzWkq1iGcrrr4QyBPHh8UkvYZ1H6PFy1NFUY66kXW8A6ukCoS\ncEUEIJ+pD+T5Ql5MC2luFMoOcf4F5PMkHwFIAHnykM+TfAQgAeTJQz5P8hGABJAnD/k8yUcA\nEkCePOTzJB8BSAB58pDPk3wEIAHkyUM+T/IRgASQJw/5PMlHABJAnjzk8yQfAUgAefJI5In6\n0bGxjX7Mz4Nsqho3EMX8LzLlqqjD0zX6Sii1B9TiLja8G3eaDjuBPLks54n50c0Vkn1ENh/E\n5ba7unGaEL87PVIfhbQ/zOIuNrzzOz1RSOtZzhP1o4t8f+yL1g4htq86sp9S6kJ3JH53/bNC\nIe0Pt7ibM7zTzMxGgjy5LOeJ+tHNFpL7172y843czm5ykp+OHvzursz66R8R/EFk5o1yi7sF\nwzstzmX63lXyHG16bJ8upH+9YIXUh4JTyh3b7Cbmd9dORhgfqZCEnAy4xd2C4d3stL518hzO\nsKFP5Yn50f2zacfPSMPB7jFuon53z/7IhSTlrcMt7hYM7/S0vnujqs997Y5nIdQn80T96NgE\nlvHF077S/3+xayRnQ2heMb+7nhXSzLXtn0bqF8ZzvGQvpC3ATW/suGGlPCikCOJHN1dIZ3tg\nG3vtRq8a/T/TTJj63fU4I31vISmtUdfyBh4KKY9/5Mn70U2bdqeK2aXy+0i9nbU89buLP+rf\nEfwphH5gmYVkIZ7GZvOK7ztgHf07T8/IFci/eChnGzTd5LY3M3538f45EfwlZH5g3OJuwfBu\nJCq7NV94vDpazhOfzz/T2VC7uw4LhaT1mvrdxfunIgCl4BZ3C4Z3IwUK6YAs5on70c0U0pN1\nNtBNrvtBnaZ+d/H+qQhAKbjF3YLhne8QeqmjWrN/xGKemB/dbPd3TW8W0U1ujT4XxX538f6p\nCEAxuMXdnOGdptXdQl1k/w158kjdRyK9odFYO7NDZ09Ji4XU69FAkd9dvH8yAlAMZnE3b3g3\njq7kN5IgTx6JPBE/utlCGoqk7lOFdB8WIr+7eP90BKAY1OJuzvDO3vJrK3WKRjdAnjzk8yQf\nAUgAefKQz5N8BCAB5MlDPk/yEYAEkCcP+TzJRwASQJ485PMkHwFIAHnykM+TfAQgAeTJQz5P\n8hGABJAnD/k8yUcAEkCePOTzJB8BSAB58pDPk3wEIAHkyWN9nqJp526NUnQ0UVVf3djva20G\nCHWNUg1/4C+UKgGbwhzZQXZXPYm8vrI9nb0nF4Q5ebrdt437z7BtISnlDO0aJ7EdFsnNN1ZH\nAAKskLgd5N0/NLtig1StvScThDl5+g/e6y/4cT4vpHgNXzjZQ1xl5ib1rX0AOia8FIfqwA0g\nh+podM08+LQJ6wHFBaFOnuMHbx7632DrQmrN0e45/KvX2aljh52CueEMbJLTyACyGk8yDZta\nNiMIcfIMH/x2KAecZ95vX0h3I95V3agLF2uIH6eQtvQEIenlBpC3cP5/tdTHZioIdfIM296N\n5IjOJ/32hdQZHWv1ohMxP/V7+k02dakiOnADyFo9ZvdsR/+6URDq5Bl2fzOQQ3px9eU6G8Ka\naOFkuiGqcd2NTMEk/UwHYONCmsy79BsW9vTlNgoydfJcIw8K6e135hVSaw5zzbjuWlfcqx2F\nVIJ/FRLdbLu//WlrFCR28nTvfzMQFNLb78xq2g3yXPrLIA7ZsWFtu8MU0l7XSP8spJ7Yexqs\nILGTp3v/u5Ecs462L6TX0Og+qxfdsWO9DccppJ167WI7yAffyfxvtPc0GEEmTp7uPW+Hcsg6\n2r6QdKNb6zS742cRgABJKTeAvJE7Q6TlV7ObeXrdxMnTbdou5j/F9oXk7vKR2xYv1nqAUiWY\nu49kLQnDfST6zDhn70kEmTh5ug/eOvI/wvaFdFPmKQdhZENXH/QaaUuoDtwA8q5UbUY2tIqa\n5tpTUhBk6uTpPniP6P8A2xfSy7a66Vg7dqsCSpWAtZa5HeTDj7WzjTy3Z+dPSU6QqZOn++Dt\nY/8TbF9Ibkixvw84sSCEUiXgXXXcDnJ4qa0+L/zpIW6EnRdk6uTpPnijgP8a8nmSjwAkgDx5\nyOdJPgKQAPLkIZ8n+QhAAsiTh3ye5CMACSBPHvJ5ko8AJIA8ecjnST4CkADy5CGfJ/kIQALI\nk4d8nuQjAAkgTx7yeZKPACSAPHmUzlPXnpQ627ELzgSqcS5Qbo9r9JVQakuYp904vlsPS409\nB6fjUuyrHYP9ZQrnyT3PV1XWnIb4qXl5nvHkZSi1IdzTjk2UUJHnIArpIwrnqVHnQbHX2Yx7\ntIp09EX/rFBI+xF72hm6yvnbcc9BFNJHFM6TstYZdOaLmxBrX1zV+cCFtPvc0djTzuDmzMae\ng4UK6ZjzYzcopJkXRKfh5HTcQtrdzWDiaWdX2lkSsedgmUI6qGND8Z9xq5ow43/mjPSMdTpQ\nIe3vrzPxtOvJBNjYc7BIIR3VQ6j8z3houZ38wc8qwi6YeqYTfO22ZS63Z+9tEnsOqoDf4X15\nUEjFuOtOIGv2NPbaMcNvnJF2Y2LFpS1OrmEj8xycFJLb7a1vRCGV5HGplHWZnruPdNhC2v/6\nYVpIzzDNP/YcxDXSR2zzM7Yug7M9DwcupN17tCaedv2p6sgK5jmIXruPKPsz5mKgkISZeNo1\nxI849hzEfaSPKJsnb7RFO+r8F6GQ9ifytLvTx4jFnoMopI8om6eHUteh7fA4s0da2S9CIe0P\n97TruD2Q4p6DKKSPKH4fSQXnOhSSOMzT7sL65WLPQRTSR5TOk36etrdUQyF9AcTT7jQpJOo5\niEL6CPk8yUcAEkCePOTzJB8BSAB58pDPk3wEIAHkyUM+T/IRgASQJw/5PMlHABJAnjzk8yQf\nAUgAefKQz5N8BCAB5MlDPk/yEYAEkCcP+TzJRwASQJ485PMkHwFIAHny2CRPepxQ48Yd81Ep\nZKbfphGACCpJLBDb8YERXKvYIk9u5OrJzYyNC0n5x9dvFwGIYJLEAtEduwqFtIoN8nQxlg3d\nhTus9uOyc4zcMAIQwSVZFkjPKEMhraJ8nl7+hNOYaWQzjz3v1CEfmy03CZtLkhDITFDi78VU\n8zzK/4xb4yw90NXx7D7mGLldBN+JoC0IlyQh0OtjI1yYnxTjbIxwwxfgjGSQNKrikiQEOjuz\nSLr5rW+CHVfBT1TRy2AGxRwjx23FI/hKJH9i0VS9WKBxcbTmchtgEJnPzoVEHCO3i+Ar+YFC\nemoLY5yR1rFDIdHlA99HEvyFZRaSMb3DNdI6yv+M67EJfmdWxf1UpI0i+FLkfmFckiWBGuPd\nhV67dZT/GV98p9BjYrd67EKSg0uyJFAJ7+/jsuF9pKm5HQpJBi7JkkAopE/YIE+NuXH+ck9b\nRCF9AVySZYGmLyFPJlvk6bw0lAuFJAWTJBaInYZQSOvYJE+3ejSJRCF9B1SSWCAUUgHk8yQf\nAUgAefKQz5N8BCAB5MlDPk/yEYAEkCcP+TzJRwASQJ485PMkHwFIAHnykM+TfAQgAeTJQz5P\n8hGABJAnD/k8yUcAEkCePOTzJB8BSAB58iiTJz7RqGtPSp2vfmM1ziw/9HykXaESRFk3m05t\n57Yxd7vrSVVtxz4J8uRRspCcYV1XsXmwd0XUgq/dLjAJeNZv/qXRRPmDnCmkdjp/GfJkUqqQ\n9P+dYV2jzi/izNCo1tg+xbuVjQBQmAQs68NhrdWbWuWm8bnJSXqnp2qGGrp6tSyQJ4+SheTs\ngZTq7Au7cljn3TuP7CK069xRJgHNeje2Du7KTiw/qXGQfu0E+2A+0lHnxxYupOg584bbcCBs\n1W26W9kIvp893Qx4gknWL6Ex0OppfUoZxxP2jg8K6bCODZuckYaWHLkGOqtH/1Dn6W5lI/h6\ndvXXYRLQrAe/hkEU6xnUDALR6umcWP7db3ztcT2EyhaSvyw6616hh91ii6ayTQ342u31I6MS\n0KzHs8OG/7rIWuMadQ298a0opI8/hRvW3Ru9bPS4maJxbTv42u32IyMS0KzPFNJQOVey4VXV\n7INQSHlscR9J87hUpslwMv9/mqPese8j7f4b8xLQrM8V0qBRN27oqjP/FFwj5VG2s4Fiiuc1\nOtNMnyBSNIIfYP/f2HNiiEZ8v4Ov6kM1407nU/QZ6LXLo3whsdn/l7GQLv3RC2k/uAEDzTrr\ntbv4bbV6ugup05m1FnrIk0v5QqqVHZliuhncXYrhzBQfGwtHAAhMApb16X0kvTyoYxbuKmrX\n9ZAnl/KF9FDqOkj00PaD7iZF79oUKKR9oBJEWScjG25h28X0zr1m6gjyZLLBNZJ7QqlWpfXH\nv0HAFoW0G0SCOOt339a+0W2VXmgiZy4D5Mlji84G/cxsa5tWhTuvehGFtBdBgknWu4se/X3p\n2La77cJDIa1GPk/yEYAEkCcP+TzJRwASQJ485PMkHwFIAHnykM+TfAQgAeTJQz5P8hGABJAn\nD/k8yUcAEkCePOTzJB8BSAB58pDPk3wEIAHkyUM+T/IRgASQJ4+SebK3xOn9cWdg0yjVuOH7\nbRU7p0GpHXEjh9zc2WBjV9VXN7r4Wlf8HfsG+LPsUUjWZM1Ukn16KZvzAqV2xGtjxCA2dsO/\n1oSriSeXQ548tiikaI2xtWvNOPCHqp79007c3CIC8A+sOK0ZzUpt7IaDmz0RVScU0ip2KCTr\nfOJqSo8GvzlTwvIRfDNfMXnUew3qf6iNnVKtOUs9h39XFdJX/HWS7FBIblEf8Wozzy/MUiod\nwRfzHXYGwbSTr1LqbuYuXdVtVSF9x18nyV6F1NI5Zgc0iPwSgx3ftBufcOBs7JTqzNFtONKt\nKaQv+esk2a6zIawxzu0teR28Pw/ja/clPzWnDfFevzoP8P5kzkwVNXzIludL/jpJ9imka11R\n9xOckaTwM2dHLyFnYzco0hpL3KbHGWkVu10jNcSG8ICF9CVXETbz97Hf1NvYDet1F9BF3VYV\n0pf8dZLsVkjG0aY6biF9R7+Wy/zT25x4G7thvbY+OavXukL6jr9Okt0KySzbXrvXEXvtvoNw\ndar/H2zs9OtKmYMd7iOtYrf7SMbZ7mKubO940JgUThxreEds7KyJkLl1jkJaxV4jGzpjWoiR\nDcK4wY/myRTUxk6vv1mPLhTSKvZo2lXBY+0UFreIAPwD36WqB9hRGzvrD2kc2lFIq9jlGqmt\n1MmZ6JrR35tFAP6BK6OWPqR5HF1cTRyOe8iTi3ye5CMACSBPHvJ5ko8AJIA8ecjnST4CkADy\n5CGfJ/kIQALIk4d8nuQjAAkgTx7yeZKPACSAPHnI50k+ApAA8uQhnyf5CEACyJOHfJ7kIwAJ\nIE8e8nmSjwAkgDx5lMtT156UOo9mAJUz2FAEs+IafSWU2pruWg/Jr60042PNifFgrwfejVNb\namdx53bbJ8afp1ieuioMh+ztM3+NYnEhPWMXACi1MffKj1TVk4+UdxDihdSfvCHKFf6dayiW\np0bpSWKvs5tr5Ca3+G8Zv+ZZoZD2ZTikNXrayqN2Y1Kdq2BUSE8z9NuMAX/St0OePIrlSZnp\ne30XnNMqRTa6has6H7SQxOZiV74t520zTrZiokLqL3Z2y5m5d2bIc/hJ5paChURf3YYTU6tu\nk43D6mMWkpg7yC1c/Lzah5bC+XPGhWRL6MIni/1bHtieWIr9jIeW3Cu8OhtvJzaT2fCczHc5\nRiHJ+VXVbDqySX9jVk0KSVtDdq6BR/ZPfzyMuBzlfsZDm+3Uepcn0xy3Zg3mW+YNUY5jECn3\ne5sct3S1nPqZQhra3RfqwZplEIlCchT8Gd/13OXKNMhvpsshtO2WnIUKR/C9iBfSWBX6v+vo\nMcjFOKu4YYczUi5lf8aPizU2OZn/P8eO1MMXktylxFwhDfp0c4XUKdVN3v+Pz0cdWUr/jE3x\nvMY7R8Q2bfzGQxaSWOcWvUYaC2m0Jo4NGqZioNcuj1I/Y2K9rrt+PJdoa3/YQpLiFt3Os+mv\n1bNUIQFDqTzV7irVdDO4OxXWFNJ8CwpJjHAfqQuFNCiDQipKqTw9lLoO7evHeSio8CCxs7tL\njkKS465UbUY2tIo4El8UCqkoBe8jKW/+2I7HQG9OjEIS5OHH2rmnxdq1lSsk1seNQlpNuTw9\nm0Gbs+7wrsKDFSs/BJx8Iwppb261luYSRgb15kTVo5DKIZ8n+QhAAsiTh3ye5CMACSBPHvJ5\nko8AJIA8ecjnST4CkADy5CGfJ/kIQALIk4d8nuQjAAkgTx7yeZKPACSAPHnI50k+ApAA8uQh\nnyf5CEACyJPHJ3nSYxkaPxrI+tqdzEMVIw8ufr8cvnZ7EjSKfNGCDWE12tb4hYp8AOTJ44M8\nudF1JzvS++ZF0qolCgm+dntCNOKaEBtCN2NpdCJ8BLuUHvLksj5PFzOtvLtY38FBhlb72rWj\nk2c/O4ILvnZ7wjXqiRTEhvBqZ8BoJ0IzxPhKfBsgTy6r8/Ty4jR6UHE31s/de63OFhJ87faE\na6Qhmow2hA+7cWjh2TZdw3yHMEM2j9U/49bPfu20qfTFzZcwG9wBba6Q4Gu3J1wjzZwm1lTo\nNTToajMh88SMG+DZkMfqn/GZOdvW4dXYxJ4TDb52e8I10ozJpzaExhJXN+hso471NcBFKJPV\nP2NeD3MTjhZmucDXbjemuQ1riA2hOQrqs5E+K4X5zfC1ewfRQvosgl/i+wqJ2BBejM2dtfQ0\nNpHsHemvQCE5UEj7IPJzSxZSP9oQ3lXjehx0P0Mzdrvad/zjO1BHltU/43BVdO9Ya/yZukaa\nvDpKIYl0bnGNNHHynQ3heTgr6fK5D2ejM3f/Rq9dHqt/xhffAnhoLVivXWxmh0ISgmukmW8t\nDP+zXXW6Ay82Ftoj0D/A5/eRtAFX9n2kySsotSFcI41PPrMhHF7dXaWdhqWafQbkyWN9nhpz\npfqyz4GjIxsmzvkoJCm4Rn1IPrUh1I0I/3ixizqHtoV9x37R/jQf5OnMxtrd/TiumaeLsY5U\nFNKOcI3YfaTRhtCOk7Q94Q8qoH3HXqH+OJ/k6VY7IztDd9Gjvy/hrjgK6QvgGpHkBxtCM5CY\naMVv4kKePOTzJB8BSAB58pDPk3wEIAHkyUM+T/IRgASQJw/5PMlHABJAnjzk8yQfAUgAefKQ\nz5N8BCAB5MlDPk/yEYAEkCcP+TzJRwASQJ485PMkHwFIAHnykM+TfAQgAeTJIz9PwVHQMPo8\ntpWqrC0kXdSzLcncf+IKCYPIjVBsKFZ3rYfFYHoStrlBdg+yoXIGDtcTEdC9c7f4f5vsPBFH\nQc3o82iHRZ6iReI3yPaGQeR2sEK6+ycwV694m1980g1mt5Yq7D917z/jR8nOE3EU7InP40NV\nT/3qwRZ76zfozNSoKyQMIjeDJnY4jDVah4ebQTG1AmjtwG/7ojOyPlXT6RZD0xMgTx7ZeSKO\ngtTnsTWnnZuezkIWe2OmUbkPJ66QMIjcDprYamwNNNZia+qpYf/xDUFdbzXdMO6d+kpMMx95\no5Doi9Hn0XoKGp8GsqjrqR0q6xbtDYPIDSGJvYVpri/juTVXSOxUxUzS2KcmvhHGJ4HsmSPz\nCgAAFFBJREFUnzF1FCQ+j+QftuY8tPAetvVAXSFhELkdJLE1cx3u5wrJGeLSM1LvFs/snctf\nCCsuQv7PmDgKmjcmC6lzNmkd33uyCIPIcrD+hOVtfrl1G/T/X2SC+dW3CtW/5EEhEd74GQdH\nQfPGZCHdjDDt1L8BZ6TNmBbStKeOrD3zXjt/yHtV2eYnKCTCez9j5yho3pgspJPZ7en7wg9f\nSDtfI80UUrzf3SrJ7yPpuxysYYdrpFze/Rk/I4e0KlQPWXyN9y3i5/IctZD27bWj10gLhTQo\nee6napxP/DV67TLJ/RlPvLVYr90r9NqZxctYSLFZ5GELaXtYr13DV88U0nTDIN7pzGxWe8iT\nS26euKNgPyrgrW5btnhyZ6JX7PDZo5A2Y/4+UrdUSFZJpsZdRe26HvLkkpsn7ijYjwrMjmwY\n7b9HT3AU0vZEIxtqM7KhVZN6oYMZ2IbXTB1BnkzeuI/kOnv8G907T2HtuNiOx8M762WNF9+L\nAKRhiX34sXa2kccLiXTU0Q0N7dsb994y5D9Efp6oo2AfFOjMkG++WIVx324RhbQ9UWJvtdbr\n8ppsc2VkR3nPVRgKaQXyeZKPACSAPHnI50k+ApAA8uQhnyf5CEACyJOHfJ7kIwAJIE8e8nmS\njwAkgDx5yOdJPgKQAPLkIZ8n+QhAAsiTh3ye5CMACSBPHvJ5ko8AJIA8eZTJkwqzKvvJHBc9\nJKLxY4amzmlQakuYvd04dEEPJa7qqxtZfK39SBTmRWiBPHmUKiQ6JnwczGWEcoP0TuQFc06D\nUhvC7e3Y5BY/DM8MsXN7K+JF6IA8eZQqJG/CFcbsu+HFFzM7vbsYKeec06DUdsT2doaucv5B\nJ7uuOvlCol6EHsiTR6lCcjOQ6OQXM+Hl5c5Lg0jNvHPaMZSSmUsa29sZ3PRZNVSNnuPyHP71\nU/2CF+HIvDyYGhtTqpDcFCQ2i0z/2/o5sl19JbsXj+DLkXE3mNjb2ZV+ZsvdFNdV3Zwe1Itw\nZFYemDVMKFVIwyFvNCKkZyQ/s4/CndOOUEhCfjsTe7ueTVruTJ3V6uUEo16EI3PywD5oSrFC\n6oxApJCsV9qcL1rknFYkgu9G6Jc3l9sz8aM5GbUqf1E78SJckgeFNKVYIQ3lcY177bpZLSPn\nNBTSZkxcuXTfzzVsbM0pqHH7xV6EbreZz0UhTSlXSMPxrZveR5oWUuycdoRCErqomBbSM7Tc\nhhX6gQeXoXDsttiL0O0298GoowkFC2k8ttHiqcdrpLtrMsTOaYcoJJlurom9XX8Kt/CGFdrt\nRDf1zLaJF6HbbfaTUUcxBQtJF82kkC6+1+5hj3RT57RjFJIIE3u7hrTbrKenuTAy2yZehG63\nvYL9cUoW0kudJoU03keyPl4zzmlQajsie7s7vd2qV7g7sK5lHnkRut12CvXXKVlI5qDWR9dF\njRnZ8LK31uec06DUdnB7u66iI+m0SrdBsJtdnHoRut32i/anKVpIfTVjg3smY+3mnNOg1IYw\ne7vQePMqvewVkb1zHnsRWiBPHmUL6T5TSP2tHv3w5pzToNSmEHu706SQ3HBvc7k08SK0QJ48\n5PMkHwFIAHnykM+TfAQgAeTJQz5P8hGABJAnD/k8yUcAEkCePOTzJB8BSAB58pDPk3wEIAHk\nyUM+T/IRgASQJw/5PMlHABJAnjzk8yQfAUgAefKQz5N8BCAB5MmjeJ6YI6EfE3R2vjXURnKz\nCADhDYNIKlUA8uRROk/ckTBIZ51RqI3kVhEAwjsGkX4jd6uBPHkUzlPsSOhKpjXTJxSzkdwo\nAkB4yyDS/r9VB3QCKEDhPMWOhNTiLrKR3CiCr0RqZvZbBpGjwwP7iCXPhvLB/jZlf8YTR8Ko\nkKiN5DYRfCVSXiHvGUT6QuI++osuQuXD/WnK/ownjoRR047aSG4TwTci5l71nkGkb9pd2f4z\n8sCNa4ayP+OJ+ZaiV7DcRnLcWjSCb0Tsh/eeQaRTqg3vXpAHhTTDJoVEp2HaPtWn3xpsJLeJ\n4BuRLiRaEQmDSKZV+Izpx6KQZti8kHptpnYPW0cbyW0i+EqkfnfvGUTa/98r3h7ENVIe210j\nhUJ6KNJZF46Am0TwnQj97t4yiPSqPHn/N3rt8ijdaxc5EnrnSNJZ520kt4kAEN4yiOQ9rGG3\nHeL8C2x2H6kjhfQcOxv6YCO5UQSA8I5BpC+gjvd/Q548yo9sII6Eozj2lMRtJDeKABDeMIj0\n/3dPLA277RftT1M6T8yRkBzl9CmJ20huFQEg5BtEhlsVFR46v4LyeSKOhKF2Wn1K4jaS20UA\nCLkGkb6QqpbVEeTJRD5P8hGABJAnD/k8yUcAEkCePOTzJB8BSAB58pDPk3wEIAHkyUM+T/IR\ngASQJw/5PMlHABJAnjzk8yQfAUgAefKQz5N8BCAB5MlDPk/yEYAEkCePN/PExiRwC7ve3yeP\n9+vak1Jnu1fXKNXA72l/nk2lmnEE66iIIsw+mBTyZPJBIUUWdmboz4wFZFeRIVzV1DkNSu1A\nazUwT8SmiswWEkZ/r2B9IU0909yg/Gi/Rp0H+V5mULHZ3gZvmxURgBVclJ6k3F3sMY8qouGn\noPu/Z8iCKesLaeqZNhRUNZ0cppQZBdm5iWR9LNyfV0p+OunLNxoac6CjivR93F6v2GFuaar5\nBlH+NqsLaeqZpg3TWjcFkxXS5EMO1Xb4AoOD1jnc9l1NXTs97HWt/jn6+wv+ou9jdSFNPdPO\nxpPmHO2nm3Mvtl/knPbHC+kbLHfO/Ko0VoQW0pNP65uT5xv+ou9jdSFNTjR2irJtvLGt5+Ei\nd/T51JMyI+e09yL4Nb7hZxfnmCvCNpMT0kwXnuEb/qLv49NCCtm2Vriubcfyf9fPO3CWXP21\nrnxDY1UEv8Y3/Owm1cAUoZuf1NXBbpx82jf8Rd9HuUI6mbbe0zrixtI9LsQurWFtuz9eSN9w\nRTF31ieKsHb4PdoP10h5FLlG8tP/La9+Trqn95yOfWr+eiF9QR9XPV4j3UlPwjO4gI/rqoka\n6LXL44NeO+6ZFpw1Lv3MmWu5I+/PF5I8F9+YfujamSgS5HjyW3xm4+bR/Q1K3EcyNyTco4/c\n0w7omcsNDtKnIdsV8Qonp/cjAO8z3kc6azGYIpog1jV6FEUPeXL5aGQD8UwLx7Izdd4yfsXX\noXoeRkMzsqGrD3WN9A00pmfhZcegMEU09Kj3jN8KefJ4u5BCnyjzTAtXqXfde0f2c8O87A2m\nKiyujACs4UzH2jFFelpIp+hubA95cvmgkJhnGjHxrCq+nx54rM7OdLqt1OmfT7ICxbnVQQOu\nSPLmIOTJRT5P8hGABJAnD/k8yUcAEkCePOTzJB8BSAB58pDPk3wEIAHkyUM+T/IRgASQJw/5\nPMlHABJAnjzk8yQfAUgAefKQz5N8BCAB5MlDPk/yEYAEkCcP+TzJRwASQJ48PshT5A+54Dro\nn6g42gRcY+uN9RGATJgGfqTdg2waR33F6kCeTNbnKfKHXHIdDLaDtpKeEw+b9cGDTJgGozYP\nusnKMFEH8mSyOk+xP+Si6yB/6vyzQiHtD9PACdDa0d9Mjqk6kCeT1XmK/SEXXQfdgp1GdlXn\nQxXSl0zKZhpwhagcM+pgqnkma3/GE3/IRddBpttwSDxSIX2LTQjXYLGQZtSB+Ukma3/GE3/I\nRddBdjR8zlTcygh+gK8xrpo7I8007WbUgR1XJmt/xtMpYEuug3Zh1rKddhf9Rb7mJ8c0GLsX\nnj15xfbsyZbJh33NX/VVfFhINNkLroNjj1EXbfgwgh/ga35yTAPf/f1km8Y947dOPuxr/qqv\nomAh9fOug/F9pAMV0tdcTUT3kYb/narpk6xmXuIaKZcS10jchD12HUw+++CDCH6CL/nFcSNB\n/eKhnH3aikL6lr/qq1jfa8f9IZddBw9dSF/CtJCGI2E93ZRZSGBKgftI5tbRsusgCkmemUJ6\njp0Ny3uaFZsG9nf4ZGQD8YdMuA6ikOSZKSR/SkIhlWF9npg/ZMJ1EIUkz1whdfaUhEIqwyd5\nIv6Q/bLrIApJnrlCcg/FRiGVQT5P8hGABJAnD/k8yUcAEkCePOTzJB8BSAB58pDPk3wEIAHk\nyUM+T/IRgASQJw/5PMlHABJAnjzk8yQfAUgAefKQz5N8BCAB5MlDPk/yEYAEkCePt/JU1Vf3\n6PJr7R91WflRqtFNcb+ee3P18LXbG6XozCMrwl25+crMm5Dr5N++Y6i/zFt58uPq+mbM9iCJ\nmpsiNq6PCwm+djuj2Hh887+uckMiuTfhOI+WvX3faH+WNwvpZJNcnXw5NKr1M5NYhZD1bBN8\n7fZmqIyLW/D/O7taib0J3UpmawN58nizkFozYvg5/Ovn71VDI85vpbuG9XTTP3ztMPWyPMPR\nT4Up5vp/Vz87NvYm1HRVzd8eFqFOgjcL6W4SflU3Vw63oa3dqpvbGvak6+mmtK8dzAA2QKkn\nmXk0/O/pG+MTb0JNrTr+9nEJ6qR4s5A6k/tavVw5nId2wMM1uGmF0PV0U9LXDvY0WzDku1Gj\nhefwv5M3Rpt4E/amsRG93S9AnSRvFtKgQm/abbYc7MTyyh7ESIWw9XxTwtcOUm3BkODOONK4\nQmqUWjBG05ATUtSFB3WSvFtIrTnVNE6Emzl+uTYc0YWt7xcLKYoAUm2BvSq6joWku7vDlp4X\nzJP0ELmd/ALUSfJuId3Upb8MBWITfzKNA2fBRSqEre9zCwmt8C2wNnaq84VUXRS/qKWF1I7d\nD+PbxyWok+LdQnoNFz5n9bIivMY7RPY2hN+Pr++zCwn9QhvgbOwaX0h3fRfQ6DLjTVhNfg/o\ntcvj3ULSFz76Asgk/jIWzKWnFcLX9/mFBMrjbeye4T7SyXYDxd6Eug1RT96+S5C/z9uF5O60\nOkHciKFwMWvg63sUkiQ234MUoZBe7ggXeRO6a6no7TuF+eu8XUg3ZZrYejEcv86K9mtH63sU\nkiQu3xdFxtrdrBVX5E1ozluTt+8X6U/zdiG97JWPXgxXpnfdSzeOqIvW9ygkSXy+K1JIQ7vC\ntBUib0LTJxG/facwf523C8kN6zaXS2GAVlWRQorW9ygkScjwYvLq5EqHexPO3FmCPHnI50k+\nApAA8uQhnyf5CEACyJOHfJ7kIwAJIE8e8nmSjwAkgDx5yOdJPgKQAPLkIZ8n+QhAAsiTh3ye\nFJgiLUpAOhPfyGye9hbmH6yMZ9e37Rvjj7PZX73VB/8RdVFIfwwUkgwopD8GCkkGFNIfA4Uk\nAwrpj4FCAgBkg0ICoAAoJAAKgEICoAAoJAAKgEICoAAoJAAK8AWF1FaqarnpxvhUv5lti28L\nK5bGFibekvimFV/0wZ/1V0j9+QU/tVAmP49WvpDO5rd4oqvGp/rNbFt8W1jxXPh9J96S+KYV\nX/TBn/VXSP35BT+1UCYLRCteSA9VPfVz/MgTRsan+s1sW3wbWTHjF/qvtyx/04ov+uDP+iuk\n/vyCn1ookyWiFS8ka4J38+bGPX2q33Tb8tvIiuvcG9JvWf6mFV/0wZ/1V0j9+QU/tVAmS0Qr\nXki1sTemx/bwVL/ptuW3kRUzxrv/esvyN634og/+rL9C6s8v+KmFMlkiWvFCGp8tMq55xivn\n/qTJJrKiVvdmuHZ85y3L37Tiiz74s/4KqT+/4KcWymSJaMXFnM3Fp4VkOL/xlrWFNPtFH/xZ\nf4XUn1/wUzcrpPc/VFzMDQrJuPx3bdzuKl9IC1/0wZ/1V0Ah7c4GhWTp4l7R8oW08EWLoaOQ\nCn8qCknHae/AVIk/Ymbb4tum+8aZSL1lNop/vmvhixZCT/1Zf4UcVdeToUWZz13xoeKFZHtM\nXrzjxf0RM9sW3zbdN85E6i2zUfzzXQtftBB66s/6K+Soup4MLcp8ruZXCslzMX34/kFKDvdH\nzG5beBtZUZmn/EzSm3rL8jet+KIP/qy/QurPL/iphTJZIlrxQpq9Oe3+iJUjG1qdkW7ygO7y\nIxsWvuiDP+uvkPrzC37qdiMbfq+Q+lPoQh5j9wunxe7l6dvCis4+h25ymEq8JfFNK77ogz/r\nr5D68wt+aqFMFohWvpA6M/LWLE7+CLLtn28jK/Tiadon/a+3zH/Tii/64M/6K6T+/IKfWiiT\nBaKVLyQA/gAoJAAKgEICoAAoJAAKgEICoAAoJAAKgEICoAAoJAAKgEICoAAoJAAKgEICoACH\nKyTn6ajO4xC5Z3tSqmpmhnBbLofLkRzvqfNsKqXqReF25XA/EjXixgzX/vXC7LD7X5zJ+q28\npU7rNn3F8N/D/Uh8WTwq61lSqdOt6/vuWs2Pxr8rFNJ+vKPOU6lrp80FtQWNOIf7kYxl8TDS\n1KNAr2rODeiiPnfaBdm8o07jCuj2FS7qh/uRcAuap6rGLfcZQYYj4guFtB/vqFOVm+dUgG+I\nYVe4VMyT7jmz9/VLdDoI76njd60WN+3H4X4ko1R33Ww4q2V9Ju8Am/O+OnrXZsuQMjncj8RL\nda+0Z0lOkaCQ9uN9dbThwmvLkDI53I8kdLC2PQrp23hfnb6ZM3Han8P9SJxOlb2Ph0L6Lt5X\nZ9YMTYDD/Ui4ODWukb6Kt9X5ljo6eiFdSL9QV81ftKKQ9uNddepvqaOjF9KL3J24Low1QSHt\nx3vqvE5fU0dHL6ThkOb1eVULDQkU0n68pc5dOw1/C4f7kURSdZU63btBqGu19EhfFNJ+vKPO\nS1Xf0O/tONyPJC6L18l3uC49GhuFtB/vqNOEvvKdokvxDTHsyjTr97pS6tQuthK+QqeD8I46\nCoUEwF8DhQRAAVBIABQAhURRDOloAOer1fm2eGT5aqkOz1er823xAPCToJAAKAAKCYACoJAA\nKAAKCYACoJAAKAAKCYACoJAAKAAKCYACoJAAKAAKCYACoJAAKAAKCYACoJAAKAAKCYACoJAA\nKAAKCYACoJAAKAAKCYACoJAAKMD/uK5iegMtGwQAAAAASUVORK5CYII=", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 420, - "width": 420 - } - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAM1BMVEUAAABNTU1oaGh8fHyM\njIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD4dm3///+f4zgCAAAACXBIWXMAABJ0\nAAASdAHeZh94AAAgAElEQVR4nO2di3ajKhRATdvJ9Hbawf//2jtJFA4vRUUF3HvWmibGV8Tt\ngQOargeAzXRn7wBACyASQAYQCSADiASQAUQCyAAiAWQAkQAygEgAGUAkgAwgEkAGEAkgA4gE\nkAFEAsgAIgFkAJEAMoBIABlAJIAMIBJABhAJIAM7ioSjcB0QCSADiASQAUQCyAAiAWQAkQAy\ngEgAGUAkgAwgEkAGEAkgA4gEkAFEAsgAIgFkAJEAMoBIABlAJIAMIBJABhAJIAOIBJABRALI\nACIBZACRADKASAAZQCSADCASQAYQCSADiASQAUQCyAAiAWQAkQAygEgAGUAkgAwgEkAGGhFJ\nHbgtAJ82RFIKk+BU2hCJiAQn04hIAOeCSAAZQCSADCASQAYQCSADiASQAUQCyAAiAWSgBZHo\njYXTaUCk5/ggZIJTaUCkh0QMtoNzaUGkB8r5C3AorYg0QGSCc9h4tn+Oy99v3e3+N+eq14FH\ncArbzvbvblj+vXvwlnHVADWx6Wz/vg0i/elu3493f7KtGqAqtpztn937INK9+/r3/3/d71yr\nBqiLLWd7d+8HkT66n/5R0fvItWqAuthytn/3o0j2nwyrBqiLjWd7WKTuxbZVA1TELiJlWfUk\nZLmhLOoUiX5XKIw8It2ISHBt8oj0ytr97J21i+mDVnA2eUT6/exH+uruGVftE6vQUdGD08kj\n0kEjG4hIUCp5ROrfnvnu95yrXggywZlkEunvc/R31lUvg+odnEoz9yPhEZxJMyIBnAkiAWSg\nLpGU/g+gKKoS6fXgLT+toCbepXwAsJWqRIpEJFutaP6OxB7sR10iRSAiwdk0IRLA2SASQAaq\nE8mtn1FfgxKoRqRBGDdjQAYBiqAWkbQwRCQokVpEShVGRV4D7Eo1IgVRz39ygqjpUeuD46hC\nJCX+t6a/8Gf1XwPsSg0ivVwRxogXCl2gBGoQyY1I1NmgOKoQyUVZL7EKzqcekQK+qN5vJMXm\nBdiTakQK3T2hVDgiDY2qrNsHmKIakcIRaWJeYx5Gwe7UI5JkUo0hGpmxEO6oor32Ci5MlSJN\npu2eFT6lrCR58sIA66hPJKdPKTBDMP9grwAgL9WJFE0k6K7ZGY8AdqBSkZxJvYhDkUwewJ5U\nJ9KQS7AHpw7ThnfEJDic+kTyu2FNnlvpj3faNkCY+kRS45hvb0y4FshpRWEV7E6hIs1k3Uzm\n7mWUTjPoAa5yrHhg2DhAXsoUaapu5nS0inuSdA+SU7lj2DjsTpkiuZUz7zPzYqzlvfzRuYiZ\nRQHyUqhIfUL40E9D0RU9EZn0HOTC4QjKFWnu/LereON/Q1eSlitynwVAXgoWaQY76T3W8/Q0\nMXQVj2B3qhPJVqUfw5BdpxONLCyCI6hNJOsuozHVbTeRnFkxCQ6gNpGcDtjeSXrrmUxEooUE\nB1CdSAKdo1OmTdTrIUR6rr13A6BqkUSHrMjS9XL8kJh5552Bi1OxSK9Wkow+Kjj2e/ZOQIDN\nlC+Ssv44n4l63WsmP78gan3IBHtRvEjuaAXnU2swkT+TNdSIsAS7UbxIcmR35KPohKkn7APk\npHyRBmwnTJTSdTbfEgYHwWFUI5J3B5/SQ4ACT+CiTQTHUo9IBplhsDplTQgiFsGx1CGScgPS\neO/R6I5vUr6NA8xThUjuvRCiNqfvRhr7YsMryLYrAEGqECl0d95wR6wYAq4Cc+lP8+0LQIA6\nRPIJDA+Ki0REgr2pTyQzUnXoj/VemtkADqI6kXS2TkwQI7/lnbHIBIdRm0iBEUPWvUiyS0k8\nwmFurXvsKlyJ2kQKjmE1Jo2pvNdkFbpxNrROkhGwkapEiqUSdN1utEhHLacauHDFAKnUJFI0\ncMgUgxz1MLccBkEuihQpdnp7w1aHV1ZHbGAAa9wj6nSQhxJFSokg4ma+EXsGZ41z6wPYRIki\nJUUQ+XxIk6ELO8j9FLA3RYoURya9lfW3D0akibsCATJSk0gq+G4q3BCJ4CAqEilSbXNNmry5\nnOEOsA8ViRRI2plfmwhlIQJr0FkJdIKs1CSSRj6jWPw80vihN4BVLrn7g4xR9JLUKJJ4YsPz\n7ThNfP7slZ1cx547B9ejRpFsdby62itKnXZC49ElqVKkJ3ZbyL2TghMaDqVOkbx7JMQIOwyC\nE6hSJNEGkva4gxtMTy1uwc5UKZLsOhL1ufCgb+spXQD7UJFIcz2tXv5OByuedwd7U49Ic1HF\n6pI1PUlqbEDFV4JcsJl6RJo53834BqVDkCNTZCXU+2A7FYk0xSvkmJaS+e1Lp8UUXhhgI22I\nNDaCpobRoQvsSBMiiScHTd1WgUqwG02IZD39JGDSRKIBIAv1iyTVsZ66Ku6P3XvEN1yeAkVa\ndrqr8ceSeimU+Uis0bufSVHbg0yUJ9KSwPEaEiRe26uIr2jM7xGkIA/liTQdJezhDXJgkBw0\nNK8HEQmyUqBIUzghRKa7TTTCDjicykQKhhCr7eM+dBXgCGoTKYDzECEV+UDMsvMOwQVpQKRA\nuyn0QXAOgDy0IJIgkmiwJ+/iEXJem4pESjhVI4Maltzat1IIwtzFqUekpFPVFUbnxlMFWS0E\nHl2bekRKPFUXDbPjLj/IREUizeI5QNoBjqIhkfz20fyvMO+2M3AxGhJpKiIB7EtDIrm3x/rx\nCLFgL9oRScmnrfZuAu81ThyTYCfaEcnrLbJfyxv+Fqxz+27BJWhAJGtwXezMX2cEMQwSqV8k\nrwa3cPENnwKM1C/StpOdmANZKEekXRswEzedL94sgE8xIi0PDQvqdMQd2JliRNoWkZKfsA+w\nC+WItJLAo7YADqd2kTbm7ADyULtI8fpdfVbVt8egqV4kifM4ocO3v4369hgMzYpU4fW9vj0G\nTUsicUmH02hJJC7pcBpNiRQg1S0chE1UKNKScz61tketELZRn0jLzvnUu2TxCDZRn0iM9oYC\nqVCkFJJGe69VChXBoz6RUk7j1KeyrtoqQQ18ThVpzQmZdhonjQVf4pESzyjCI/A4U6R1l/bt\nFbI12x0fxr9y49A6JUWkXc/SLL/kt2hBpLsSBbWRdr7eTzyPa58fTFr3ddCvTgoSaf9zKHJu\n72TwOo+oPdZJSSLtT9E/Kksmo2auJtLm83S3E51YVDWFirTlnJIP03fXs/VcTf8JzRXr3mvF\ncABlirTldH0uq3/yMu/ZuadHUDVlirRbRNrK/hqt2AJuF0ChIu1DBWfcipC34tGaSzcBs1xJ\npCrqZQdEpCqOQ22cLNKxJXrM1so/S8vfw/o4V6QWr40nfqfcOUpIp5CINFPkx50RGbZ0nkeO\nwi1epoqljDbSTJEfcUaojVsq4ZwlIp1HGSKdH5FGg5JurZ1Yft3SeRbDmxMpRKSR886FuS1v\nM2Xls/6X3cRLTe5EyhKphHMhtgfb9mzlreqL5jz/2F2YskTa9XRIW/EBLu+xgRIuQZemMJF2\nPCMCKw7fnbR9S7svHZgHj86lOJEOjEh73dC3abUpSxN+yqM8kdLIkubbditddLmdI5LauuOw\nA8WKtCnbvOR2h7WX97PCgk7UE5dKolSR9FkiT5b0FPIik5bs1srl1m/f2yIeFUmpIukbiuRT\ntFY+GjUfW0/e0NLT6/S+f/AKA6dTnkgq8LaYc2ejR0FnlkakxG0l7hPkoTiRQidbM7WYAwff\ntnLIaqEwkSIdskeMVCsBNfEuPm16VdUdhDopRSR/8HWGjtH8V+V9z0qxw2pxbI58EFzLmp2D\nSQoR6VXc6vlPTtlGfo92rjAZj9TS2BzdtSQbUWsrhYj0LMlHAZtCLrJsD9uppRtK+0Wo4b+j\nxnhciVJEejBEpTIVKh0VfWOmWunz+NKwgoJEEl32CxdcuKFyyfRN/CMoxhS1c7SKoiCRQn2w\nSYs1Uy/Z/k0GVTyP2jlGpVKQSPGE7Ux1r51zJP5N1OSneq5Y5S3RpHaO5OGUI5JT1Mr65BpX\n1Pi3tPMwfTzZ7X5mkqCbtg9zlCOS01x2zpoGSzjwlSYjkkyJzyS77TT61Pyp24cZTv0x5qlJ\n8538lbPqkd3xIatSGLtjNzw/5OVEkULFbZ1cSs7a3pmgJt+mLaSjtf04sfYOVvEUIZK5zqrg\n59qkmROk5vMn4VIR7ABSaYcmcXWwljKqdk7NP1R9caoswfVVFbbCXT1TCwSzMavbj3UdreIp\nJ9lgTLGGCVmV/IYi0pofQlq+fEKvQU0HrWCKEWl06Pl6+E/kvdfWX8plMu22fnl7nvmfcfee\nvJ+6fbAoRqTBHrvdJPO9/aqreG722IFYw3DjWuNXnokeqQIOcZ2UI9KLcP4uMdkwt9Lt7HGe\nBVKVGTYymeicWH+8T3jb/rROaSLJNpFzpV5dkjnP/r0j0mvCkqtG9MQPJvnmJkSPM6FqmrNF\ncivosnNJWbf5bSjH6k4BL+USzwzIoxRekTPz9IQFEam6o7orZ/9in9dzZNXeTRYvPhKvWWQt\nd/j64fvGp4foeRMsJ9cfSEKUxekRKZLeFj1Lr9Sd9dG1CnEyIsWnOp+MJjpObjBp9ZItcr5I\nOr1t52R1OSt9SRaJ8MsW4pLOn0C/kx+Rcl6SLlsq/fkiBVtBygx80S9lPe+6TFTxxEzWvPbU\nWJMox0G9dNGcLpLB6SU0EcnUSpzZLoNf5Z2YNz5CPJiks/5u44pFM1KQSBJdvnrCRD6peWKD\n4iPzRmYIti2V8xdWUqxISrSUVJv3USTjth+HF5GZp1YS6J+68HHNSXEimQqcztaNqbuse1cV\nodS/3c+UsGy4fXXp45qR0kSSqQWlxHV0XYdg4ArcDGr4dtPXGGv0YuhABvvnqPEt5SSRJno+\ndKVOe+QsE05KRVdW7CV3827pboHQUQpMiNxEG6g2+jmIQo9hOZwjUvjkFr2uOllnQsqYybPb\nCDMFXHBEyiC4/nZSlrm8hNuL4AzKei3mRaZSr0bFUEBEklWP4dRQ9rAYXbzeYM6aC3ifPbei\nTuB2CWXN4exHPBde72E+iPPbSCbCKOOPGRVkPApW0yjgEIHxP26qYbpZtTAjCAWIZFVQZER6\nThKFKn/0xVo8uXhrPA8SGoJT0wLVNruCHFg2FMisdYBPASL1Y7SReQSRcwhW1OUJkjriwa8Z\nls/8uZuYs3OVirhi3oeqeXUdu0MpQ6Qx3a37jWTuTosSaBb3OiIlJfES5yuJdRFp6sPQrRWh\nuZIPK/RFiGTCUC9aSFKk4WMr7RBbTerm6mXlF4gn4ILByVy91m3uapwvkkzV9fJKaEUpaZJs\nOF2PYLpg9nBYbc35dffiSF/3UC/hfJF0hctu6yiLfsg16IiUf3dLxvq6gUrX7Nke9mhsBoU2\nZKUmvH1YwjXKqgCRdDgademNRrqqJ17stb/l4niyMiKJF8ORnovvsk25OjJdJKSVIJIuW6t1\n1I8miexD73clNVVKsS8z70loQsA+Za5a+ppkQr4ztz2ZiDRJASIZOQZXrPF2o01WiBILt3S9\ny3fVDxwpOZ8liDP0SjZUzYLeC7A5aaydfC0vjeNf1fdSJpnBcyo2TdX1ln2VYNtmnKDMvcXT\nGzB1PrFgwEv7ReJ+XYdTRLKLQ4nJpvKuxmy4XdfzV9FUTFrC5BfX7Z/UtRhXwqFsfDHMsna/\nmuX8iCQnm/aQkoQusIFqx9WY/OJqfpbnDFYiNJDGsGcb30y6cskCKaCN5Az3EVX20Ss7y3DJ\ncooTSuhNzSIDikzy6P+DIcXZyiWDziQFiGRX2HQrV7Rv7cYRhSixUmvhY+PnZ6zG6Oul+D/h\nUkUhuBQgklVhM5dEUXezqxJWQqn58gxkDLwZ5qJ1PCJ5KsWWmFkllCCSj6zi6f4kWR/xmsg7\ncuo5o5yrSGw25694N+mEso+kFMyeK7pFeFGOSGOpjzHJ+KNzEFqiBenYzQV+ci1mNiJZM/vn\nv1+v8zegN6RiJs1sCcoRSWe5lWNSL7N5o0xmsbnk1fYCr+mMmYlIs0crtqa5LUExItkRyU5/\nK6nVGKPEbLOrvRix7xw/VGSzt1KOSAYrJOk4ZIKVTO6pvlcLrqOtEfy+k9W34ELeEuJ90L41\nQrbNmSJFjroQxg1MvbHM9CyJZvLVau5WhkBMDs0WeRecYoX5kEeR43y14y84USRx1O0rpQxB\nOuVgJvbaIqsW2Mu87lXwswmBOYJNJ/FBILEwJwQRyaWIiKTcgWGuSXb9Tocmk7pLHVnWIvEv\nLTULRiFTRbanz686ssFrlsCDMtpIY2gZ3+rgo9Pedi1PzCZHQVRRisftpDJRW4ypsw7WdPPH\neJG601WUwC6UIdILXdh24FG9jFCiM7Y3DaV6CvDIi7ZlUj+maZTyq3KxtIVZUWSueg78zpwr\nkpNFsgvb5BKc+89NYmH8qKYqxf57atXNnAqzCfJ2fmaupTUmSP2sRK69rpxTRQo0bZQZyTAq\nMkYiJ1JZ6QWKs/dqca+JoU5W67CnVItNIzWyTWcDF6SAiOQ3eXQ1zs3S2XW+fmxIeWu9YIHK\ntqOcOLFE8nS/PtgHKwJXjk/nt5GsltEwSRed0UdW8GVlRVrjrehKBL+0H0T6mSnOAY6tJlCZ\nCK75MpwvUj/W0ZQITTocjSL19nVRpOvMJPEq5/cog/mvFJ7D9ys2RbRI7UqCvxHzKK/ZvboK\nRYhkhDHve1sk8/iG3itts5bcX6Ec1n+5cPyJ1tOUXMav0OlAVFuOZ28KEMk4oFNDSrwyFTpL\nsEC1oulSnftyy758SpwSHpmqnUnxBR42dGVKEMlUGER6SDn9sM8Z7Eqe3y1/BVJrcJMLBFM0\nwbXKSrVsOjVeA1hMGSI90XGoN1FJGqMnv8pUib7aCyEOhj19fgE5aSabZ2cbnJr1+ImXJLwy\nZYikxP/9qMlQf3BN6i3Hmq/SechDMT+nuTaZyXZ0cX2IVJv1Mn767lrHP0IRIomykLmFXkQn\np3Uk6xZXLclZj8xRdLq8LVW8o2gyeHJTuhGrPCvXf4WGKEIkq2PISTb0okYuPFJj5BLzBNbX\nz59v7QU0zwgnIjlpOxORQhk6+Wosl9DGZvemccoQySCTCvpq9zJm/M/Nj5tXeiXiKjl7xWzu\nkrr6C/kVOufVGLx6W1Z3NXn2pjLOHWsXfO1W5+ws+DhNz6YXsiqI4Y3M7kUTJHyhSOov8qnd\n0S1rhgFN4jo2zak39omaQqjOrmtz4rWu8Y0xayxmv9JxPYIXkuCMZihDPwii3E+tv1ZLKzEi\nXas4zo5IsoVj19F0HW7URparlmgsZlHr6K0XF8Kc6WkJPXk8rUXMgR3nGCYvOapXqdMNnN1G\nEhbIoGM+tQOSklN7U8zijiWz2iRaKu2Uy0ggJSPHOZrLmR+ZEo8qEemUVYtAYnWxivDkN5FM\nmBpWIopamdWmbP5a183A93WDTqDzNdQHHD3McslFbdW6OV0kiaifSWNMntsKTWqs3PVCx8Ve\nVFq+q3fbTyQo82cM86LNZNfxnMXs+sP4ibtu73WLFCWSa0WvBwJJj2TrVxZx60Ul2fBdAxHJ\nZA+8OKMvWeK463nsakFgz4hIi7nfutv9b4ZVW7cVWRHKNsnxSAenRsorJVuwcJZo6zHFBZOX\nsN5bm1nSPG2kmAyZRHrvHrxtX7WR43W5E7V2UcewrHotZ5Zf9w3KYuJrrG39xVqPyp3kNI+U\nO7czWZu1pHnaSDEJ8oj0p7t999+37s/mVQ8NIl1tkA2kXqukm0qvZcTSE8VYVdHFPVqdjwwv\nF4pQ8q+5QoVXJi97iTsW35mKySPSvfv69/9/3e9Nq7YzDaZC1/dOLDKJBtU7yTt5fZ240JbP\n5ogUXthfOrA+t44muh5Cq1R977eVwvMm7maF5BHpo/v59/9397Fl1VZ1wW4caUdEJ6x4Qso4\nr936jdRK6mAf7eM6hLYtr09+u0ler2Q8mjjolV3LFpFHpK6Tf9auOpAs6qU0WirrhVjAjWfr\nvkwZ7LPzaWeyF8qVPJxKFo6Yoj+1l42vuCl2Eal7sWWNoqhEXkGkHMTLXoewYdmJikiLZPyq\nKvRaHPve9kpOC+/NZYqhpIg0Yo39cRPdvRDLCkx21eMyBbiswjQzp1yVt1qrxSSnKRPpLnTY\nHQoUyU4sqPE+JKflK5J6SrUchGLfSs3OEVhm7hi5tevIFtyWj4hMyfvSGHlEumUTaajNvV5b\nOQVT0euFTaLSJ5pJ3irrJXZurjtnlzSRRP5gOtknKgB1H+st5Mza/WzK2um02/hGNoAso/p+\n/FQHLJMG92sklV8l5yNS7g36aU+/ASQbRe3WBhaQR6Tfz36kr+6+etV2PJHhx1TDZQRyUhAy\nhWRW0/fua0jA0SZc3bOVih7jSDurPQoZ2WBd05T0yYpAw5TX+2EcQ+iCGL5CtluKKwjHkMBE\n61iGXoY/Diys37ZYEJnG2r09893v61cto4l92ZMRyOTvrMaTDEhydc4mqH8YwrWx8MRgrkHW\n+ybaUqGI1KROmUT6+xz9vXbVTkE4NXPT9rWqc3YuYqxiuEaFNnMopZ4u0YjkWeM5Z1+35OeJ\nX1brVOrBWUEJ9yMFC8IdTWwkMkk6UbXTMoUeE3oi+4TBfOv0Ioa/w+757h/fdV9y7XJlUoJI\noeSpuc5ZjaThgTd2bLLfROrlZ7GLR9m+UuBYzceJcIQa3yRtdsnMdVCESANOgejupPFD2S7S\ntXzzVs/snh0r979gMnwlu948vg4cvsBGnVdygSTHvZkaKKKSRPLyrrJjaKxSj5W5lzrimcWi\ngthAuWQjcixCeYHpcT4hRby0gQoJOrtTLVTxihJpxG0djROVI5Wsijh1QcfJyxI9R4PpuelV\nBd4EjVDOZmOVxVCIq5YSRXLSREqEnvG1Tn8/Z9BZBr2wbFht+hLVk7U5Yi5PkY46XYUINned\nuZsqmgJFUtaR13k52XUkPbJaTUYut763fDfWLlgk6w6ErBjYK/FSeeJj1dtHbz4iNUCBIlmd\nGWNr6FVQIrcgc3dCL6eiv76sqr9eZmjPy0aqV1/zaw29GaPvRqX2KVGkEaveZuKS6C2S/owf\nyoU3b71eslwIdOuz11Vn5zPrXW9dx6q/FC2iYJFMQViy9KLyp8aOJVHcYuErFaRHri8/HurJ\nRJ+Z4L++RikUJVKkNmJV3sT78aW5csoq4dUuiQmsOxyhBGgw7jutJqtD3W03NUdJIjnVbjNV\niZyDl18wxng1+BZKLuN3iF1YEjbhBR73gAdWL2WzqwstUpJIdqpHJrDNSyHOEIZ68zJwyayd\nrGdfxCMVS6vpRcReiCSOW32e2tNWrmtRihLJwrSHxpau3XM0ziSkMstu23RJHPBVJoKFvpy5\nE8ap/pINHfslFCeSZ4Op1DmhycrW2aMZxubx6n2/2tkwE5EmJrjl1XYFLk5pIoXLQY2Zu2EW\nHZ5E/duNTTrHl20vCuDI3Vq4LS94XYvSRLI7K/yauXwMteyzMJ22Ypn1db1Cz4ZcgqesZfG2\nCj1mB1GgSMp/rYONrt4pZxkRnUL1kVIjzFIyeTR7OAJH8dLxZp5yRAp1TchGkZUkUiIa6bre\n64NgHpbyt5j1KNb3uu6KdIWjX4xIkcaRTNZZ+QS5lGgOmdTDzJrLorQ9VP4br4sheZ9rKIDN\nFCNSJD8k8wgmJW5n76ylX2JZqym/GIs+1WSzM1TvDh1hr0rQPOWI5CJqb1YHkvFH1OicRUOr\nKZr8+7g6YRmepPxPtUd+erSOg56VckWymzZ27U30I1nz6xn6wORLsehUlgcxvNzk6mYj0hUo\nVyRleWLV78wwh0BVQ1kvxfq27U5tWFeY6e8evhxF50je9KWOeLkiObkF/U6EJidkmb9Wi6r3\n3+xLYSfQfM/0/A4vOXpOg/YiFCySQDZsex1u3BatF4bmL7V7UNwJlCHdQkSaow6RZMPWvLI6\nX+0uWWexY6nlBFoWZNaodCEqEUljJV2V6GKSI1rDS+6xOzUzFTndT5bcTWQGRa7csSqpSSRR\nOmPsCeXvIh6VVuE6nwmPAv2uc4dPVhq8ztvEdVRMoSIFe4fcjkGRuJuqeQS6QC5M2mEI9bvO\nLKE842TNe9G6aqQckfxeVNcAk94Wlz/5cs6/ZlmeUktfrR+bFuyDs7mGS6IYkfxe1LGmbTd0\nzbCG3vpYd9P6a16649Wx5HRNPBpe3mZlGqf9gz9QikihupmOSFbjVUnG930/jvu+QPzxyV6B\nklWCUONz7TbaLZxCRJooGLvxOsYinbEbn6I/xqnwmtotwAA5vqy5cq0+oIErY8OXuWJESvhM\nOU1aWZnTHtljY/Qqmi3AzPgt1WVeTmUpPI9aKpQyRJo80a2Rc05jwAxncKohzlpbKrJczGVG\n1xy1UN48usWmLm9liDTVQBJtI3tecZvFZdMMGwgdMa+HYWLxRZMzzFw4hYjkIVJ2epL1iblF\nSdfwTFByE+cQYKbpM+NRlmjSUAGVKtKEC5ZQY7tJt5/kuKGWqg6FsfzQhkqyoQIqVqQQllwm\nu6DTevpTPd4BtqKcv8O70PGd7r9qvO5dg0imUWRV97Q85seSYuUOaxEVaXu6Pc2vAHgF0HiJ\nVCCSufqN1rwm925+W0Wue7CW2JXJrXf7AWpBQbRRYtGz/b+37vbrZ5xrjRRZI5JMMei45KQY\nhr9tFEwJeIlSd7qZ4i87+enkyqokdrbfuydfw1ynivTE1DDMD8oGR383UjBF4CRK3emBN8G1\nTJdIG8UVOdu/uu6/f/+/DSYdK9LEkZWJuWFWLVTC4rCKSRESLlxXKJHI2f7RfT7//nqZdKhI\nM+Pu+qExZH9wicIamOkAyr3qGVVWVQDaK63I2a7NuT9NOjUiebVtE5DCCzTOzJCE3KvuRcNz\n3ZZ3292SmBPpZdIZbSQn6W3S3c5IBt1rdBmyRiQ/qx2cSzdJvdnkMOKJZae22gKRs/3W/R1f\nfnTfZ4ik3AISfUWq16/Hj9LOh007tMM6zyf1GmRFJGuhWE+Tu2zyHi2auxgiZ/uvoY304O32\ns69SY0AAABaUSURBVJ9I8cMW7tGzSjA28x4RqtWo54T7pJnDWbs8x6fW4xw527+fWbsXP91t\nN5GWHzYlIpTVC6ic/3OXR53lm4iyQ/zUXMmrXLsrK5c7mal+pPH1V3d0RJKpbXuySHTbA1Pd\ncaq1XtlOQgUOd2iu9BVe7PhHz/bvXzf9+ufXsW2k8fro9KwPGYZhjKpbJ3Fv57xWOW4m+4l/\nseNf5lg7JyIN47vlDUjWEFVx6wSshaO3iQVn+9L6XT5HnXy3fP7WOGUyCc45stMx4MBqqhBp\nrM09X5qJbvZoSUfG1djlGKQMXr0K5YukHFtW6HLd4jUcEpHsDqY9tlgsxYskx6OqqQocYecE\nJiLSxeoBxYskTBqHNYwfuLMFp8MyFh29SVmuVQ6li2QFIVk00WFB4cK9VqnOMTGeZPLWowUr\nuhqFizQmtkXx6ug0DmJIafBerJ4xw9TRcD3iwKVRuEi99bt8zwn2AGQVbzSJubh02mQe6cPB\nLV+kXoxdCI6stIY5eItyPT0A7k7uCxXJS3grM2jI+mSYeyKVt3ofIB1nwGP6cnvszEmUJZLI\nzsmJoyhOY8ncbeaXX0tlVAAzXQ6TEekaHeVFieSO4DYfmFFAtkmvD/0q3zXuyjwMpYIPxUga\n33iRoVtFiWTdU+R8Mt58pLzZ5QzBj4IzwBLsQcJmcsgub8IluiPKEmmC2ST3rCfNlV1/6HdS\n4mo2NVvS9aq9q1r8bP98e/39df/Oveq1eNU6WeFor2zmOfo7R2re3jxpa2qK6Nn+3nUvgW5d\n9zvvqtfi9cuGemobLKMJzviuRR/ftNvS0ipXf3913a/vxPljc3x0t+FxxX8/b+tM2jUijck8\nv1V1xch0IEUfXKXCOVyXNJFuz6d2f6fNH31k8e1Hv/m5dWtqdzvefNvL7iXXneBhLLr8KyJ0\n6Srm4CqVaFKSSPfu1+O/j7T5Ex7H9a+51N0TNpy46gkW9+ZZ/RiRql1ANYiTlkqwbzwq5eDm\nFen1bMfnrOtFEg+I7B8P5HpL2HDiquP4ByDSGRTMkgfKWLSNCynqIpg6FqmphBIjklKTJv2z\n4d7d7v7L393t9/O5Wa9wcb9176Y61t36UaT7VBNn9pHFobdpbI1I7hO+n9PM89eiA/6VNXOR\nRX4q066sOEKlHNRZkX4/2jzvz5cf5uVz6tf74/+HSc8XtzGO3J9Vs+f5f3/OH6MokSzCvenC\njYRO9dA6YekxmBl/VcxBnRXp9t1/3x5PPrVevv/913Z5/f8v+vz3ePVrCE7/DVHqcf5PexQ7\n29+sqt3f7haebZKtyYZw0mDbSONCirwq/NAfvKVy4tAedNRnRXrkob8e2QPr5Z/nZz/9y5eP\nx/vxhP/8eGWsn1XBSY9iZ/vdPLF43OJilom0OMpEL4TIkpmZiDRMiz/35LCQNZ1sGKpVjz/e\nS/O/W/l6pt3+BayXcHGiz/6W6YXxh/uWsUikSLsnOOvwX8yjUmoaV0FZf54vncbpUQWyh0jP\n4PRoNc0k3OIdsiaS3Vcl7bZEpKnsncg3BOclIu2Jn7oJnbbJF8XMTGa/14k0TPwjf1YiuPbY\nB7fu9vnohv3+fJOdswvY+Oxv/32o04gAdCih/qNQg8mffhATnUivytnXo5t1fPnhi/Su20iv\nLqBn18/jg9/TiYL42f7RjXz8jc60btWzBCNS5BAxkCEDwZ4E6YTyXvlLPSeVe10bU3VfzsvX\nZ+P/n4+s3f2RrHuObPj78Woj9Y8GztRIuYmz/fv+SKl//F4VjqZXnUi4o2iofy/sViy2fEvA\nOV5ug1VWl1J7bGPvz+OZMeiGIT+/zMve/t/0I73G2r2PH/yr3E1ElDJ/jeKFCt1LFnpCV2DR\n4LrmZrouyRFp6VErKEL9s+Gje/scXt6fwxkCIj2GOHy8gsf9ZubvH5W7ieR1ySLpe8n8Wrjq\n52/k89blTimnjOth8SErZ2DJqlEF6WuPffD5L8S9r8l6z696ESp2xgcGAC1fNcQIH5xtF59z\nL13niPT+yjOsGfU9t+rlRAq1P7toGiZ2YKenzhXG9SLSZ3f70/dft1U9sdOrniWSFpqwaeJz\nWMmSwxkYeF8gp4j0/hoQsW5s0PSq55B9rc5DGqZ6/souxBLZfLz8X39LWWWjxTQz+nvVaNXp\nVc8SjUijS7ZdupdpptoBNkvy2MHXc5nTdZutlTmRNoTDVYvGjvLQhz7kvv3ZnYS46XJvteC2\nM+OR/0xbd3rs0rVls9VSmEj+kH1nejTvbZkkx+M1WnC7Y0WhxXevXO6ony+S30kk31pPZbAn\n+SsKRSTIwsJjeb16wOkizRzywNiGmeFBUAKXK6HTRQqOfLTeBMbNXe56dyXqLNuoSA75Vj2P\nO4QyMEd4MjRApVfJEkVK644IPjgA6qfOkix60KpNLI0kJtRZBlWRfIgvVhaViOT8vGWgK3Dq\nJmPIRvIhvlpZ1CGSkWSik5WItDPL+hQuVhZ1iKT7iF6jhK52tTsZp1N82bG/SkkVL5LfQ+uP\nqrtKYZ2D0ym+7Nbky1zzyhbJ+elSZVpHsppxmcI6iQWXrUDbNffeFErRIg3Bx7rdRZlxdFqy\nqxRWBUwURdulVLRI+vEM4m0v1JpK1LVdbGUTG1V89H4cSdki9TFZxFjw6GJZNg/LWfIAwmYo\nXqSgLHb7N0+xtV3Oh3LFQ1m+SEFkmiFP8CGEwRbqE8nKLljJu+3rBVhJ+SIFbvULDg/PGVKQ\nChZSvEjyiSc6/li3wq7rcZ/bZsM0/eXOoniRxrEMMhC5D2fIsyG5zexrLIjGLxMnUYdIvYlM\nr2m9eBU/LThhgnBYdqB8keZyCfELLJdeOIwKRJqDiATn04BIAOdTlUjWmLvAaFUiEJxFTSK5\no8DDv9gIcAI1iRTtT7JHhwMcTy0i+V1I8jMMgpOpRCRlj/fu7de5RzYALKUSkcRPUGihnEfZ\nEZfgRGoRSdw4Yd0cu/j3RgD2oBaRhuhjniGk3AodEQlOpBaRxmHe1oNPxGc9LSU4k2pEehC5\nv9x5mHH2zQLMUpVIMUKZPIAjaUKkBwgEZ9KKSJd8BNTOcPAW0IpIl3wo4b5w8JZQh0hLSjTw\nXBRYBQdvAVWIFH/UatK8ALtThUgTj1pNmBdgf+oQaUD0I7m39aEPnEp5IoVvfx0fJGT+WM+z\no0IH51KcSOHbX4dHcg1vxmn+RwDnUJxIExHJmW/86T7G2MH5lCfSNO5QVbeeB3AKlYkU/41S\nPIIzqUwkHsAFZVKbSC+sZ+j7kwGOpkqRxK9RhCeHPgXYkSpFcgyJPbWBBAQcRlUihb2Y+DmK\n7HsAEKYmkWLG4AucTk0iYQwUS/kiYQ9UQPEibcsYYCEcQ/EiRX4lNs0Q8nZwEOWLFL5BNtEQ\nPIJjqEGk9REJ4CCqEMnHjUh4BedSqUju2AbaQnAutYrkEPgVMoADqVskBtdBIVQtEsO9oRTq\nESkkCeJAIVQj0twjIXEKzqQSkcLDG4bP9AO8Mm4QYBF1iDSdRTC/zpxviwCLqEOklGBDRIIT\nqUQkgLKpRqT0H3YBOJ5aRPK7jEItIuSCk6hFpKSIJORCKTiUakRKwnhEBg8OpXiR1t3Ah0dw\nLKWLlBZavNuTEAmOpXSR/FgTmmr91hi/OwbHU7xIDsPv8zkPzx8HCfX+ZynrDL4EWEBtIkUi\nkpi2WCSZ66NKCOuoTqR5Fo8VIiLBZuoWafKp+kgBx1GrSNYPyC76EGAH6hRJpQQdPILjqEUk\nN0u34LF2CAX7U4lI0z8WO1mLo4oHB1CBSAmZAyISnEz5IhFRoALKFykpouAanEsFInn4jxQi\nasHJVCiSCjwwCI/gXCoUafIhdwCnUKNIARALzqUekSYfEUkbCc6lGpHmHraKSXAm1YjkDBIi\nbwdFUY9IkvS8HXrBIdQjkheR1jwVBWAfqhEp7VGr/mLrNrZqKbgw1YgkHv44RKP9znbiGCyl\nPpFUaGSDNUe+bQEkUo1Ixp1Y+4g4AudRjUgJUQKP4DTqEckm+Hg7gLOoVKTgA1fxCk6jUpGC\nEYlGEpxG+SKpwKvZWdPmB8hF8SKJbN3CHlgCFBxH8SIlRaSwPXgEh1G+SAlgD5xNEyKRDIez\nqVwk6Q5tIjiPmkTyPbHdQSQ4jSJESvzl8oAo/i9grlkzwFZKECm1TjYXkfwZqO3BQZQg0oa4\nMbckHsExFCFSceAfLASRAlAjhKXUKNL+ZzkewUIqFIl4AeVRoUjECyiPCkXCIyiP+kSiZgcF\nUp9I8gF3AIVQoUgjhCYoh4pFYlgDlEPNIs0wG7EQDbLRsEhzolA1hHy0LNIceATZqE0kTn4o\nko1n++e4/P3W3e5/c646CNUxKJNtZ/t3Nyz/3j14y7jqCHgERbLpbP++DSL96W7fj3d/sq0a\noCq2nO2f3fsg0r37+vf/f93vXKsGqIstZ3t37weRPrqf/lHR+8i16vUE6n5UB2F3tpzt3/0o\nkv0nw6pXE3qSEAkK2J2NZ3tYpO7FtlUvJvq4VTyC3dlFpCyrXspc4EEn2JF2RJp5ADgVPNiT\nFWe7rLcNf2+niqTE37gveAQ7kkekV9bu59isnfsDZM+/r/923jKAS56q3e9nP9JXd8+46jnE\nT/nJv0p8glBwFHlEOmVkw+wP+NEsgsPII1L/9qzuvedcdQbU8x/A/mQS6e9z9HfWVS8gKotS\nRCU4hNruRwoxIQsRCY6hBZFeP9WHMXAijYikyCzAqTQg0tBxhEdwIvWLRCiCAqhfpOlQhGRw\nCA2I5CHkIVzBMTQokiUPg4XgEBoQyb8l1p+FwAT7UrdISgUlUfo/awrAblQtklJBk8JTAXak\napFeQxp6Txk/IgHsS0UiTQ1NzbwpgIXUI1JUl+jAVPSCw6hHpKguUcEIVHAYFYkUY+IeitlZ\nAPLQgEgPZh5pR2yCnWlCpNn7YPEIdqYFkbifHE6nXpH8AXUAp1GtSHYUQiU4lxpF8h/yTd0O\nTqZCkULW4BGcS4Uipdw3EZsIsA81iuQSrNhR24MjaVakxLgFkIUWREpThBAFO9KESGngEexH\nyyIxaBUOo2GRxC+RUauDnWlNpPBwBzyCnalUpFiajtgD51CZSBM/aqn4cRc4j7pEmvyZZRyC\n86hLJGSBQqlMpCUgHRxHuyKRd4ADaVckIhIcSMMiARxHOyIRgOBEKhbJNmdsEqmJ8Qy4BntR\nr0huMmH0KD7CjvQD7Ea1IsUenU9EgjMoXKSFP+WCKXASZYs0URkLehT5FUyAvSlbpAUe6F/p\nU9aEqcF5ANkoXKQo3q9damN09k7+ACZ5BtiXSkXyxVDui1BOD2AnihVp5syf+xkXxIFDKVWk\nTXUxxQ+9wMGUKtJUSJl3JByRppbDO9hEsSLFWfvzfFPLEcFgGxWKFDJF/urYmLZLWS7pM4BZ\nahTJxwooyp/kzL37/sDlaEOkYJBaU8UDWEcjIgWID2rAI8hOuyKN44UIQHAADYvUDxLhEexP\n2yIhERxEQyJRhYPzaEckhgXBidQskvdIhsQZAbJTsUjJEYhQBbtTsUjpgQaPYG9qFikGv5ME\nh9OgSI+aHLU5OJYGRdIRCZfgMFoUaYCoBMfRsEjmCV0Ae9OySA8mn8iKZJCLekVyu2PTZntN\nU/bTIwG2Uq1IjgWTUsTuSIrdkw6wlGpFCkekoBrTkYe4BBmoV6QQLymWBKueiAQ5aEMk53nF\nic0ngGw0IVJK7QybYE+aECkhnU1LCHalWpGCD+CaydzhEuxFrSKFfpzPyTGkLAOQh1pFmnlu\ncdgaPIK9qFakfv43kgAOo2KRvJjDI1XhNCoWaXYAA20iOIyaRXIhIsFptCSSCx7BYbQpEndJ\nwME0KdJ4v9FpOwCXo0mRUAiOpnaRUAaKoHKR0h9bvO9+wNWpXKTUlDeJB9iX2kVyiRmDR7Ar\nDYikJt4BHEP9IlFrgwKoXyRiEBRAAyIBnA8iAWQAkQAycAWRaETB7lxAJNJ6sD8XEImIBPtz\nBZEAdgeRADJwAZGo2cH+tC8SuQY4gPZFIiLBAVxAJID9QSSADCASQAYuJhLtJdiHa4lEBg92\nolWRIsLgEexDoyI9Qw/WwGE0KtJDIupxcBytivQAj+AwWhYJ4DAQ6QXRCzaBSE9oT8E2EOkF\nHsEmEAkgA4gEkAFEAshAOyLRyoETaUak2bwbosGONCNSSBQ5iQQ37Ek7IvnY7uAR7EjLIuEO\nHEbTIgEcBSIBZKBVkajVwaG0I5KlDjk6OJZmRHLUwSM4lGZE8tRBJTiQdkRyoHIHR9KsSEQk\nOJJ2RQI4EEQCyAAiAWTgIiLRYIJ9uYZIpPBgZ64hEhEJdqZdkXAHDqRZkajNwZE0KxIRCY6k\nXZEADgSRADKASAAZQCSADCASQAYQCSADiASQAUQCyAAiAWQAkQAygEgAGUAkgAwgEkAGEAkg\nA4gEkAFEAsgAIgFkAJEAMoBIABlAJIAMIBJABhAJIAOIBJABRALIwCVE8p8VydMjIS9XEMl/\nejHPM4bMXEEkIhLsziVEAtgbRALIACIBZACRADKASAAZQCSADCASQAYQCSADiASQAUQCyAAi\nAWQAkQAygEgAGUAkgAwgEkAGEAkgA4gEkAFEAsgAIgFkAJEAMoBIABlAJIAMIBJABhAJIAOI\nBJABRALIACIBZACRADKASAAZQCSADCASQAYQCSADe4oEkJn9ztatFLxrp9Dq8Wj1exUDB9im\n1ePR6vcqBg6wTavHo9XvVQwcYJtWj0er36sYOMA2rR6PVr9XMXCAATKASAAZQCSADCASQAYQ\nCSADiASQAUQCyAAiCe637nb/e/ZeZOZzLOImv10xIJLh/TnA+O3s3cjL9zhkuslvVw6IpPnT\n3b7771v35+wdycm/7/Mq4ia/XUEgkubeff37/7/u99k7kpHP7n0QqcVvVxKIpPnofvpHVejj\n7B3JSHfvB5Fa/HYlgUia4Ywr+TbMxXy7X6upb1cSHFdNo6caIh0Cx1XT6KmGSIfAcdU0eqoh\n0iFwXDW3Nk+14fs0+u2KgeOqeeW1flrLa1lZu+a+XTEgkub3s6flq7ufvSN5GURq9NsVAyJp\nGu37Z2TDISCS4e05Gu397N3IzNgqavPbFQMiGf4+x0efvRe5GUVq89sVAyIBZACRADKASAAZ\nQCSADCASQAYQCSADiASQAUQCyAAiAWQAkQAygEgAGUCkoxh/4f79c5zyfX/rutuvr9gSvymc\neqCsjqLTDCOwP8b3kXvtvribtSIoq6MYtfhz654x6da9/fe37/9+3sL3NvzziMKpB8rqKLQW\nf57ifGh9fgazbH53N0SqCMrqKIwWj1ff3U1/8hV4tP2/ePWDSBVBWR2FLdJdRqHvwNyfPPGn\nKiiro9BafD0qde9dwJ7YElA+lNVRjFp83R7P80mRBJEqgrI6CpP+vveI1ByU1VEMFt0+vl7v\nUpbYe58gG5TVUdhafNBGagvK6ihsLX6LrN3f26+EJaBoKKujsLX4EX1Hn5HnCCNSRVBWR+Fo\n8aHt+blFqnmIVBGU1VE4Wvy9dW9ff/9p9HmL/UAyIlUEZXUUrhY/b2M6PPZD44hUEZTVUfha\nfH3cuu7tHk3fIVJFUFYAGUAkgAwgEkAGEKkIOouz9waWQ6EVASLVDoUGkAFEAsgAIgFkAJEA\nMoBIABlAJIAMIBJABhAJIAOIBJABRALIACIBZACRADKASAAZQCSADCASQAYQCSADiASQAUQC\nyAAiAWQAkQAy8D8JmXwT7vZUDgAAAABJRU5ErkJggg==", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 420, - "width": 420 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "# PCA降维\n", - "pbmc <- RunPCA(pbmc, features = VariableFeatures(object = pbmc))\n", - "\n", - "# 可视化\n", - "VizDimLoadings(pbmc, dims = 1:2, reduction = \"pca\")\n", - "DimPlot(pbmc, reduction = \"pca\")" - ] - }, - { - "cell_type": "markdown", - "id": "69e4f45d", - "metadata": {}, - "source": [ - "### 6 确定数据集维度\n", - "- 单细胞`RNA-Seq`数据中,每个基因的表达受到大量的“技术“噪音影响。为了克服这种噪音,Seurat使用`PCA`对细胞进行聚类,其中每个主成分实质上表示一组相关特征的综合信息。\n", - "- 选择多少个主成分进行聚类?\n", - " - 1 随机对数据的子集进行置换(默认为1%),重新运行PCA,并构建特征分数的“零分布”,重复此过程,将具有显著富集低p值特征的主成分视为“显著”的,保留这些主成分即可。\n", - " - `JackStrawPlot()`函数用于将每个主成分的p值分布与均匀分布(下图虚线)进行比较。\n", - " - 具有低p值特征富集的主成分将显示出在虚线上方的低p值特征的显著富集(实线曲线)。\n", - " - 在这种情况下,第1到12个主成分之后的显著性显著下降,因此对于这个数据集,可以选用的数据数据维度为10,也就是保留10个主成分。" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "id": "47b11953", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Warning message:\n", - "\"\u001b[1m\u001b[22mRemoved 23496 rows containing missing values (`geom_point()`).\"\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAAXVBMVEUAAAAAsPYAujgAvNgA\nv30AwK9NTU1hnP9oaGhrsQB8fHyMjIyampqjpQCnp6eysrK5g/+9vb3Hx8fJmADQ0NDZ2dnh\n4eHlhwDna/Pp6enw8PD4dm39YdH/Z6T///+NymZ+AAAACXBIWXMAABJ0AAASdAHeZh94AAAg\nAElEQVR4nO2di3bbqhJAlUedHNt14jRxa99E//+Z13oywADDQwhJs9dZrSNLCDfeBxhgVNUM\nw0RTzV0BhlkDLBLDJIBFYpgEsEgMkwAWiWESwCIxTAJYJIZJAIvEMAlgkRgmASwSwyQgtUgs\nJrNJWCSGSQCLxDAJYJEYJgEsEsMkgEVimASwSAyTABaJYRLAIjFMAlgkhkkAi8QwCWCRGCYB\nLBLDJIBFYpgEsEgMkwAWiWESwCIxTAJYJIZJAIvEMAlgkRgmASwSwySARWKYBLBIDJMAFolh\nEsAiMUwCWCSGSQCLxDAJYJEYJgEsEsMkwOeLf9pVu9NN/Hw7VtXxEl4ew6wGjy/+vmp4FQd2\n7QHZJBaJ2ST0L/5XtbvUl131NRw4Vcfmj0NgeQyzIuhf/FP1ef/zo3obDuyqpptXySUYyvvf\n//4nH/j796/1bv/99x+5Zsn4/fu3fvDPnz+RxT4+PkaWwBQPXaRDdb3/eVFaoLraEcr73/8U\nk/7+tZn0Xwe5agloHPr9GzHpz59Ikx5bYkpgFgBdpL7pUVqgU3V2l/e//ykm/f1rMem/EXLd\nwunV+S2Q3//zJ8qkx5G4ajKlEyfSR1WdxPst2KVeIv2XU6Rend8mkf7EifTIIm2FOJHOh50Y\nM5nL8xHpv3wiCXdMIv2JE+mRRdoMsV27+ij37VKKRK5aGL9RkaRTYkR6fGSPNgRdpB0u0k2O\nNiQUiVyzIORGaPRJPinco0f2aFv4Ru2uatROMSuVSORqBaJ25tDId3CogTXaHHSR3tp5pE8R\nXejmka5wrUO8SNm7dahAA0EisUVbJHZlw+2Qcow0x/jIRohI7NEm8VjS89qGt/ftVe1lO3HA\nXh5VpDkCdlZ8RXrUiKwnsxQ8RLq1q7+7q7rL7gde5fnYKJHyRb6JHvmKxBZtlyz7kfxFSlwr\nBapHniKxRhumTJESV0olh0iRVWQWRoEiJa6RDtmjcJHiKsgsjw2KRPcoWKSo+jFLZHsiESPf\nYH2Qp0ixFWSWSDEizbA0yHxSI88fX5G4OdoypYiUK2JH9UiCVDL36zZNISJlm0KazCMWaduU\nJ1LiCkEozZFqkXeoIU1VmYVRnEiJ6wMheBSsEYcaNk5hIiWuDQQu+DaIJBvkuVqVRdo0ZYmU\nuDKA37/dIoW1RAMs0qbZiEjZPGKRNso2RKJ4VMd4xIsats7mRDKfFN4a8So7ZmsiWU4K1ojT\nbjHziPR3JpHsJ0X36tijDTOHSH81kaaOflNECuzYsUdMw5wije9POxtL6teFjpDYIqZlRpHE\n+5OKRAo0+O+Z6GCNmI6iREpclxZ32LslTCT2iOkpSaTEVenwFcmnbPaIGdiSSLbT4jyKqyKz\nAtYs0m/50UfWc9kjJorVijTYQ5pC4gaJiWStIimr62hzsYEixdSTWQkrFQkYNE2DxHEGRmL9\nIhkefSTh6xFPwzIKM4iUY6UdsUs34CkSrwpiVPKLlGOlnadHfiLx6jpGJ7tIfzWR0i8Q8vXI\nSyT2iEGYX6QJEghNKRJrxGDMJ9Lw5oQiUc/3CdqxRQxGbpHMI6T0QyTq6dRZpFYe9ojByCyS\n7tEUS7+DIg1OkTp92CMGoxiRUlZiEpE4yMBYmEkk8GY5ItlPY5EYC/OIBN8sRiTHaYNB7BGD\nwCIRYt8wytD/xDASWxeJMkCSogyp6sisi22L9OePWyR5bMQiMSibFsnLIx4cMRa2LJJfe8SD\nI8bC+kSi7oqVRDKew306hsTqRCJvL/cINLBHjIu1ifSbLpLXeoZE1WPWynZF8loYlKh2zGpZ\nsUiOM1kkJiHrFcl1ptcKu0S1Y1bLSkVyn+i5wo5hrGxVJM8l34lqx6yWjYrkuwcpUe2Y1bJF\nkeCKBhaJScIGRaJ7xD07hsr2RKJ4NLjDHjFEti2S4ZTRHhaJIbJpkQxnCH1YJIbIlkVC35aX\ne7NHDI3NimR491EWifcgMTTWIlIvD2F9kFWkR1UkhiExq0itP0lE6u2hLLSjihRXIWZjzClS\nJ1AKkQZ9EooUVR9mc8wo0n8SUXdVRbKdSxIpqjbMBlmXSDV9gRD+JnvEhDG/SHWqIVIrEHlj\nLP4ui8SEUYBIdZKYHW0Xkmv7BIvEhFGCSPGwSMzMrEEkd6xOiENeHcQwPqxApN9OkYA6jt0T\nLBITxuJF+v3bKRKUh0ViJmHpIhE8YpGY6Vm4SBSPZHmsHrFITCCrEclyktwK2TxikZhAViIS\n+iaxOwdhkZgw1iES+t5oD4vETM6yRTI2SNI2WBaJmZxFi2QcIP1hkZi8rFKkP7JIjkgdhEVi\nwliFSMrhP6pI9kgdhEViwliDSMpR3SMyvK+PCWTJIjkaJHo7NMD7zJlQFiySY4QUUCKLxISy\nXJGMixriRQqtErNd1idS2OiohT1iQlmBSPLhwDBDAzdITDDLF0k+Ghqvq3mExMSwWJGcc0je\nJbJITDhLFcnVseOeHZOVpYskHQyeiG1hj5hwFi6SdCzOIxaJiWAukf4bCbsPIlIaj1gkJoSZ\nRPovUiSsZ5fGIxaJCWEekf6LFAkNNaTxiEViQsgr0t80IuGLGmI8YpGYOHKK9PcvIlLITVCR\n4uN17BETTEaR/mIiBd3E5lHEBBJ7xASTTyTg0RSrgwI9enxkjZgEzCFSqmV28BB7xMxKfpGa\nAwlF+gMTBQVviWWPmDiyi9QeSLdetbMndAqJPWISsUCRYKjhj4pfUawRk4hlixTpEc8eManI\nJtLfNCKJKSToUWieBraISUQukf4isQZ/kX5LHsFQXdRMbMCVDCORSSQY+xYrVn0KbtT5jYsU\nXlsWiUnEMkT6jVCzSEw55Bap+TGVRywSUwyZRWp/jPWoBpOxUSJxyI5JRV6Ruh8jRRJvRIrE\nsW8mGYsSqf6NLrALrSuLxCRjASIhTVFPnEjsEZOOGUTyjDWYPYoTiT1iEpJfJN/gN4vELIDs\nInlvjjV7lEaksKsZRqJ4kSweRYnEHjEpmU8kWnmWjl2USNyxY5Iym0i04rDZI0Hcmm8WiUnH\nXCIRi5tApMdHFolJzlJEQt/1EGlUhj1ipmAhIuHv0kUapWGPmEkoV6TfYAOS4RSySEIbtoiZ\nhNJEGq0xrFOViBDJfQ3DeFCYSKM2pgXfElSRoD3sETMFZYkkvKF4RBVJ7suxRswELEEk482C\nRGKYCShVpL6TZ9PIWyR37RkmkGJFcjjUQhOJPWKmpySR3H05yJ8R+3ncsWMyUJBIhEER4A9R\nJJ42YnJQjEik6ILgD4vElEQpInl6FCASpVQmN1XP/jwcuZxeq2p3/IwsNrpmvnfMUZ5bJD+P\n/vwhesTrgUqnGtl3Bw7Dz4e4YlNUzuuOOcrzEcl9iz8Ej7SFdX6fgsnF8I3/2lVtm7SrXj9u\ndX077wazoorNR2kiue9AaY06d3iBavmM3/ivVpzDqM+1Nyuy2GyUIdIUHj2yRwtAfOObV5dq\nN77zWb1K7zcvm3bqS1x8G0/fVfdm7KPpFh4vQ2HDpd3ft9PuPvK6TvU5ihApbbhOt4g9KhdZ\npBNshS7y+/eXb9Xurgo45VB1Wn01I6p9P7j6qhGRrrvuzbgYhu2D5CjPLlJY3Nv0PtSHJcrM\n8/Oz5xWjKJ9Np25fXWyn7u4NyrlqGp/xomP79/EuyLna39++vbWdQ02ke0fx1ly8u+kFJ2F+\nkcLi3qa35XaIPcrK87O3ScO3/XPXNBbWoU3VWXaq3sSxXWdV08V7ra6iRFWkc9+OfcCLk1KS\nSKQbeInE5OT52d8kEf4+1U6R2r8uMJz3Vn3UQI/L59seFekwFBwVC7RRkEi0G9CHR75VZ+J4\njhBpd/jsfrKduh8uEcdubURi37ZL12EKqtZFEr5OFc4rRyTiDSwisUdz8hwoEvzpYB8jjX8L\nJ5orrq1iTTjh9Xi+bl0k6g3MIrFFc/KcQqQ3EJK77Y7KqaJFEk583ruEpzYWd6xOt7FEXSSv\nWgWwTpF8a83E8fwc6JHyDb+2PbWOcztqgqd2713kYc5u1/wnStJapPbAvvqqp2UtInGvbj6e\nwz1Sm4rDaM+9p3ZRT20PHOXA270R667pSzoCkdrzz83rt37p3tf6gw3UGyAi8dhoTp5jPFJF\nuu2q1897D+163mmB6qrafSjzSM0V9y5eG/feN127292j5v2m2GO1v9S3c9sFvJd7uLZB9qla\npiWL9MjJU+fnOalI9fV1CAq8qe9X1QFbnDAsz/vqL3ttXOnWG3Wn92MpEWSfhAWLJCZdWaTZ\niPQIiQJ8Hprw2+mivX9/eaoqbbnc52DW1/6u2le3XKhbFnRvnvZfYK1d8/ZULFckaR0QezQT\nwKEQj3zIv6Lbh6WJNC61e9RF4hVB+Qlvi7xhkawihawPugNaIG6LZqGTJ5tGLNKdwSNEpJAF\nq1Ck5jBLlJ/BHxapJ4tIf9OI9EcXKVW1GT/gwIhFasgr0n8jw1sJGiQmO89ziFQ2WUX6zygS\nqWx0hMTMAAgxsEcdOUX6L41InPRxdmCojj1qmUmk8S0WaTkIZbhDpzGPSOKtOJGSVJmxMgoD\n3GGRNDKKhGgUNIvEM0c5gV24UR4WSSOfSDaPwkRKUV/GgrSGTpKHPVKZVaTQvCcsUhaezSJx\niEElv0jgeKBI3LPLwrMsErdCVrKLBI+HJRDiUEMWnlWRuBWykU0kpEEKTCDEIuVA94ixkUuk\n6JBdrYkUXVdGRjKGPfIjk0iWKaRQkeLrykjIzrBEfuQWCRz19YhFmg699WGP/MgsEjzq6xGL\nNBlIN45F8iOvSNLRwAaJRUoOOh5ij7xYjki8p28y8MBCQR71mfaHDEKX467SHnt+xr56p121\n/zScd36tdifz45LG8y5HkLsIvUtbRWNBYUwmEm+OnYzyA3RDrrtd+30+dT+8Som5LtgG2j3I\nkKee15VifPDYeN4nPA+9S1dF4kehwiItjvI9GlLT7dv8jm/V7rN9NN8OmHTZIV/xc7Vvk69e\nkPMu1bF9hN9Ru0opb7e71Lc+lTJ6l76Kfp/IydQi8Vak5BRi0f/+9z/je/3Xt3348nUQ6Agk\nuCuDfMW71PlXkF5VnNc/eswghjjvo726e+wzfpe+isbKhzGxSI8sUnKK8chsEnxCy/joy9tB\nPAPm/m2XH2IOX4LE+eA8eEozXDpLh08iKf/FfDW8wlT3QCYU6VEitqLMQDkeGU2CLRL6wOZL\nbROpws7rS2wk63KKw+dUiPNeq/pt13YD9aulKpo+WSDTicQeTcRiRLq2YyTTVxk53j2f+Qtr\ng3rOTeLwz3YotVey848WtprtzHfp3zAcD2UykdijqViESNUYO/MQ6a063OrL3izSddc8NunQ\nPijm1j9CSTnvftNLE7B4M96lf8NwPJQ8IsXWkhGUMURyjZHEPJKHSPWuuexgFOm224vS1cfL\njiI1PcnxUYKrEim2jgygkJgdKWrXIh7Y/HkznTNwb0l2b2h4oWX/2h8ZRII+yQMsZASmVNFY\n+TAyiBRbRQZQ/BRSC/z6vg29rC/wwNna8hW/GM67vu6vypWISIeVihRbP0ZmeSKN80j76mw6\np2fXDn7O8uBHrFgYwnQH9SGA8Ly39s0reKS6oYq2+gfAIi2LRXgkf32P7cqG62GMpCHndJya\nKduv1+oDOe8qwt0fTTxB9U2c99qujvgw3qV/g/RB6NBF8tuOxP26aViER8rXd4+ttcM6X7c2\n2NAJMh4WTz8fO3J7sJBPK+9NmmQqTyS//bE8QJqGZXikfn0/Dvdv9ofhHKkbeNfl8CkfHqMH\nIFR3ftUfTjte8LmvdiftqFZF0gehM41IHGmYhmV07BbB7CJRChUe/UlSSaZjGZGGZTC3SJQy\ngUcsUkLYo4TMJVJgg8QipYM9SslMIvmMkKBHLFI6WKSUzCPSbw+RJI9YpHSwRymZWSRCiVAj\nFikd7FFS5hWJUqLkEYuUCvYoLbOKRCmQG6RpYJHSUrpI0gCJPUoHe5SWwkV6ZJEmYlEeuRNE\nGrM96hkdvypRpLqbD78QlvFl2ldorHwYLNISWFrk25kg0pjtUc/oeNtJIu20S7QLL/I6WEMV\nKZ/Dg7QiKR6xSEl4fl6eSM2f5gSRxmyPSEZHaef5Z5v5DgFcKJVxMDVhRYukesQixfP8XKhH\nf//+Nb7nShBpyvaIZHT8qKT25VCjgAulMj6MfcFliPSHRYpkkKZkj8wmORNEgtPgN13P6HiV\n1OryB1kTREplXM2pVhchEnsUQyPMoE3ZHhlNciaI7N/e17JIekbHfXWFg59un5EtQaRUhnS1\nUkVDpUKZQiT2KAZJnFI9IolkTxDZZ3vELx14qz7Akb5BsiaIhC/lq5X7mGoVCEkk4sIGHiAl\n4Nkg0tz1UnCJ5E4Q2Wd71C8FP1yabeciitAPsqwJIsFL+Wr1PoZahUIRibjSjiMNKVCaoDI1\nqp1jJHeCyD7bo34p+OFVMvFUDbvQLQkiwctXa6JXU90DYZEKQ+3KFWlRAyFq12JKELmXsteh\nlx5bc8Yjw5SQNUGkeKlcrd7HWPkwfERyFDV4VLNIERTbmfPBnSByzPZou7SS2p7L0JezJogU\nLyu85RrOoX4WIh4iOUoaPWKRglmFRbWSGQhLEPlZof262ibSebjemiBSvFyoSI8sUjSFRuj8\ncSWIvBo9Qrpiw5Gxj2hNEKmWUWDXzlqOWNQwPj02cU1XT7Ghbn9cCSJhtkdDzAD237q/X6th\njGVNEFmvRaQ/LJInhc+9BuBKEFmFiAROtCaIXIlINYvkSSfOmjxaAqWLVHPPjsgzupqOPcrE\nDCKRot+jRxxqoDEKwxLNQn6RaNOxLJIf+toF9igr2UX6zSJNAdAGGDVzpbaEGuLACC+vh0Wa\nHNj+sEEz4CPSaackmEAyTtBFsteLRSLzDJZ1z12X7WJc8aof66atwPomLOMEWSRHvVgkKjwi\nKgK6SF/NQorLTmSLQDNOUEVy1YtFIsIhujKgD4C63Rsfw9pbQ8YJFikzLFIZ0EU6VM0aikul\nbkOcWCSej7UjRbvnrsyGwb74n6c2G8ThJK0ur7AGaMg4YS0vQCReIEQCNkUlePTr169JyoU7\nZGss0+rtWFVHNCmKnmkVu8aYqJVeRa34E4jXwcINIo0ZJyyxcm+R9BWrLBJCWX26Xx1TFD1+\nH02ZVnftEcQkPdMqdo0xUatHFZWf70Uez5e2itfL+d4yqQ9GV/OEKRknWKR8lDM4avz59Ws6\nk1yZVk9NxOukjTrQTKvINcZErT5VlH762h2UzYKf+93Y4sC/erSME0lEYo/cFBRk+CUTWIrt\nl+zKtLprtxbpziCZVkfANaZErT7I1x6wxvEw3Bi5m5ZxIoVI7JGbcj0KFMn6a6ZlWu22zJoy\nrWrZVME18l2C8I3aXWH7iWScSCCSvqePXMfNUI5GKT0y/qZJmVZPXQ4GQ6ZVPZsquKYv3bhf\nnQBdpLc2qvApBk1oxokpRCJXcTsUo1HCjp1TJGum1Q8wnNcvxbOpytegiVrJ0EXSVjagGSdS\nisQeGSnFI2hQVJzBJVI1xtUMIp0PO7FWQLq0/QvNpipdgydqJaPV6qubRFJnkeomWcTYOLa1\ngxknzOU1hInEHhkopzmKb4lGHGMkMY9kHskcK30MJGJk+PTMeI0hUSsZpeDPHZxFklW6tau/\nRe3QuqUTiS0yUKRH8UFvQtSuxZRptR9CGS4VX1b5OzteY0jUSkb+4l/uLdFnV8/r171lMjzO\njFxeD4uUkFLCDGnGRjTcmVa105RjeDbV8Q1jolZ6FaWfjtKc1DFghopFmpoNeuTMtNrNCV01\ns2owRlJHKvAac6JWehWRwgduAYF1FmlqNuiRM9Nqu0rhdrCMkfRsquAaS6JWehXNFQ6aoWKR\npqYAjbJK1ODKtNqvm9vr544/6tlUxTVo2My3ispduUUqmOcCNpWr8685PHJmWm3TILyesXPh\nygYlm+p4jSmk51VF6Sd1jOQfWWeRpuF53HI0p0iaRVk0WgTKotW7tDBq5z/VyyJNwbNO7ir8\nggu8WSMN6zwSMnbzLK+DRYoD8Si3SHpbxB5JaF/8T+PKhrDyGrxEemSRFBSDyvAocwWKZ65M\nq8YCHlkkFbUlyu0RN0YEWKTygW3RDLdniSh4LFoNK68hRCResToyb8CbLSLhsWg1pLyOAJHY\nI0E5Is1UhSVQ3KJV7thpzCoSe0SjtEWrPELSKWUKdpYKLIXCFq1yqAEwyFOESLPcfQBu7Kux\nBJENX/p3T88bKT9RBbkE3rBLAqY9hAW/Qrne9iOFOJEeWaQRYU8JIs1y85Fx1G5KEFk3W1z1\n756WN1J+ogp2SctFiHTdaatd8SoqFZ63RWKRetR5o7lEKsMjZ4LIhoP+bdXyRip5R5BLOkCG\n+2N7z5NzlFPWolUl74n33deCNgE7k0g5O3a2CJQrQWTdZgTSvnta3kj5iSrYJR1nkRPFkKlb\nr6L009yLVjnvSYu6pm52jzKIZA1BuRNEXsecqtpXHmwAlJ6oIi7Rkkee4eZbtRBDFeUfZ160\nKnu0VZH0tamzLK7L75HRJHeCyH11NYgEc0BKp4hLtOSRh+rz2Cf6eeu7dliqL6mK6oFZF61u\nXaRnsHOvlEnYbB07p0iWBJFv1Qf+hpwDEookLtGTR3YKdGqdd6Q2pay1dhsW6VnduTefRnOs\nCnKJ1PeRDAki284aKpKcNxKIBC7Rk0dWd8maBxw1+ry1d3Y1SCxSITxrzFeXWVbXOcZIYh4J\n8+XVkoIV5o0EIoFLTDvNb02c/Ny0aDc096RcRfXArItWNxtr0D0qpFeXL/BNiNq1IAkij22v\nzCQSyBspnqgCLxEiKT61wvXNlSt/ZFmLVjcb/JYMKsWjyZ5k6Y0jQWRlalPUq8UTVeAl1uSR\nYeHvqRet/h7Br97qbKzSEs3m0TxtkRtHgkiTSFreSPFEFXiJOXnkYWjE0GzIchWln6ZetOoQ\naavLGgro0bXM1Klz40oQqZ/UouWNVJ+o0l2CJY88tcGGz/blrT9gr6L009SLVu0ibXV9UBkW\nFeyRO0EkOAmeq+WNBE9UAedqySNv3YUn8aYzFWveRaseDdIWRZq5HgUOjnrcCSJrfDSj5o0E\nT1SB52rJI2/iwlq+xFhFpS55WiT82q3G7ArxqJQVqssk76JVj13m2xAJTsDOXZc63qOnp6dk\ntVkYeRet0jfHbkOkEiaORuIbpKen7ZqUd9EqfXPsJkQqYgZ2ID7K8PS0YZPyLlplkSRK8ihe\npCcWaeryvETazkK7ojyK7tk9sUiTl0cRSfVo9SKVpVE6j1ik6cojiKR27Lbk0dxVaUjWsduo\nR6WI9Li1EVJZzRGPkKJhkWaBPVob6soGhcjyehwiPT5qHq1bpMKGR9yxS4D8xX+bQyTMo1WL\nVJhFKbIFTSxSP69pzrRq+Lrqh0XaVOs3HL55OapPcUavkH/8dKeU9CqvwyoSezQvKZZ8T90g\njUsEDJlWL7gV+mGRadVwiX7hZ3dnV85itaBP555av/JaqCJtwqNidk10xHnUuTN5x86VafWC\nrwrVDoP9SIZL9At390tuB8/9SG01AxYGWcprIIq0DY+K2TURn5+htyfNFFKXiQDHlWn1jGf5\n0Q6DTKuGS7QLP1qFfHfINpgSi9PwFAk0R3W9co+epZT483sUqdGTTkxthpweKK5Mq2c9CaR6\nuAVkWpXes2RaPaL5KJEqks6i4yeS5FG9eo+k9I9z1yfYI6U7l9Ajo0muTKsgMyoUCR6G7/WJ\nGsb3bJlWX6v6bVcdPR/rEo9bJHD8cUMN0qBPKSKFtkZad274Ia46FJHMmVZhZlTbYUmk8T1r\nptWqan9w9ezyiwSPSyKteoQk9CnEo9AgA94QxccZXCJVY+wMEwlmRrUdBiKB96yZVqsmPnE7\n+uf+jiRUpHrVIsFAXRkeiUWqCTxKgWOMJOaRzJObhiyO4LCW1qF9zzRr2r/Z9CSvvgkiowkU\nqV51z06eOSpBo9B95Up3LmXAmxC1a0EyrWKnoYd3qkh94zSIpPgUniDygEQoLl6JG0JE6n5Y\nr0eFzRx1BIiUujtHx5FpFTsNPSwyrcL3rJlWD0Eife0Oyr7Yz71f4mIWCaFAjwJESt+dI+PI\ntAozo0K0wyLTKnzPmmm1u+TqTGynfvFPVXU8X9qaXi/nQ+Wc0XWU12IQ6XETIpXYHNUBIlHG\nRS8vLynqpuHKtAoyo0K0w2BlA3jPmmn1Pjq6NcEGLY2eWkX1wO0E1qwSHovuKq8BF+lxEyIV\ntrKu4Rd4Gh/5IkqA4eVlIpNcmVZhZlRwrn5YZFrVk6kaMq2+oZF1vYrIsT7/SVD6k2CR1hhr\neJaZuzotYdOwlEDdS0+yqgqcmVZvakpVw2GQaRUmU7VmWv3c+2dajVsepJfXA0QCR1GP1iTS\nc4Eiha1n8PFoms5d8ejJvgM2IRnL6xEiwaOoR+sRSdVofo9UiYI8Mp3zwiLBn6rLpCJJR1ct\nkqbR7B4hGiX0iEWSfjpWCpHl9XiI5H3DMilMolofG4WNj9T3Rm+27pHyxb8dZhbJ+35lAh2a\n16PBl7AYQ4OtNRrN2bxHyBd/jq7dyjwqZu5IWBNoUW0VSbizeY/KEGltHbsSlngrk0VhEjmW\nM+gixdd7qeRdtCodXaFIz/Im2BlronbkIhsjPMwA7Nm6R2WJlLgu2entKaBfp4+IJvAIijTZ\n6qClgM0jZQ82rMmjMjbBIpEFn2j38DehX7d1gQZYpETIcbqSenbki55EMoa6dk0fveQUCW7s\nq7EEkeYsjmfpGym+1vavOHiPaEJJXbvEVcmKNGk0u0dBuVM7Y4Q5Jo1adV5mEMmcINKcxfEi\nKQASP45FYvcD51kTScIq+n0iJxsVSZl8nTvuHRKjk3pysEmST+vdyeqRM0GkMYvjZaeIpOxY\n+mx2VOiA86yJJGEVSWfRCRFpBbGGUiaOWsJmjHSR9E2wLwipaj3up0FwJU/+SQ8AACAASURB\nVIg0ZXE8V3tJJDUr5G2HWwLOsyaShFXUD13AQiFSGY7yHCKtYJldsYuBfC4bDDLG6DCNklS4\nBexM03EliIRZHOGX9u6XIpKcZ6jLH2RNEKklmTRVUTtyqSoWyYuCPApeCAQ6cvigSPEo9SY+\naY+nhitBJMziCL+0F2V9gZIx8lK5E0RqSSZNVdSOHKs9LUkrsbx67SKtwyNzWqBeGbUlSjs6\noohkThBpyeKoiCQp0zdI1gSRhtyT+n2QO0d4FCNSxF1npRyRYjwyiiQ1QZPFF1wiVWNYDhfJ\nmMVROl3OGHnpB1mOBJFo7kn9PvY7exMuUsxdZ6UYj6Ie0WKcMdJFSlNZBccYScwj4SIZszgi\npw8ZI4esKKaBDMgsacg9Ce+jHdlXvglP7OXVFJEi7jg7RXrkeSk2ZyQPjSZfTkeI2rVgCSIt\nWRwtx3ZjCGMQSfEJf2moonbkyzcDl6O8eiMizV2NJDsleo9gNGGqUZEPrgSRliyO5mPjDJE1\nQaSlGLlM/dBndQ5//CWLNBvxFnUeKVGFKftzVFwJIi1ZHCUDpIyRY2DbmiDSkHtSvw9y5xnC\n3973KYjSRPK7Sp2H1SaKShMJSxBpyeIoP4oZZowc+4jWBJGG3JP6fZA7s0heFCLSJB6NfbtJ\nqkzGlSASZnFUvrRwLldK/Fi/jsEAW4JI6RJbFX0/U0h5LNL0RM3C2jwqYauRM0EkyOJoE0lK\n/AifkWlJEAkvsVXR/Sm8CBMpcSXyMr9IwWFvbXUddGh+f5ZEESIlrkNmZhcpfB7WGmVgfChh\njOR9k7KYTaRfeoKgQI/an9iiGFikOOZY1vBLzsKQ3iMWyR+zKtezM+RHLW+9Is2xzq4XZjQn\nfhr2RVlKxyL5Y2tzzvj2Qf/yVivS8wwiDdKoIhEvF6uAoEdIrI7xwibSzb14nFYeKtIjixTC\nL00kr0xbYB0Qe5QS6yhoyjHS48pEynRH0I0T/nh6pKTbYolSYFPlwiI5mM+jviXyvR4RiaMM\nSbCoctmL7BJx5dlEWvQ0Uj6L1ACdfwlPItcW7Ntxpsc02MPf/qvAqSIBj5YrUrbmSAvQ+Reh\nrAUajtVlrEpdPjaRjgF7zokiPa5ApFz9OtAMBWuEPwX2RdlwVCxwh2yNZFq1zXt+SQfbhzHf\nwDWGOzZ5hU7jxsEv9xhnniVCjysQKVOgQZptTSMSWIxayj4JB4Mnpkyr4/v6pTfpAePdOu9m\nQ6A9g2p3iyFz643wkHL9jBMtIR65vHqdImWKfCvLFkI9qnuBxihdrSVjSFHbh4eHFMVoODOt\ntqBpUw/Qla9m59Fl15xnzaB6aVN7nYcYwYEQdZsn+Ynk0eJFmvAuikdBkbqGUaAx2j2FSA8P\nESbZ/iFdmVa7d7G0qR9So9Ptz/toNqtbM6jKW9c/zD1AUEVTpQPxE2m5+YPm6NiFA6aL1GQm\nL8l27j30hF1t/ad0ZVpt6bPUSd/fq5yz+NCGz9rGSMqgqmZalW6rlGGqonbkNH1euz+SR0sU\nKdf8UQqNuh7di94AjQIl9ShMJPs/pyvTasOQNrWSx0RXKYWxaGlgBlUt02rd326PlGGqon7o\nuJs4+cmfP0tvkHI0RyC4EGHR0KMDc0WiAUoZYniYXiRzptWGA5JG7q36qI0ijfbomVY7ulXb\nahmmKiKVnnobhSyS9y3mZ3qPfskEl6OtpGsOJvRn9CbSI6dI1RhGM3wpL8jqgbYPZxAJZFDV\nM622XNsxl1aGqYrGSucRyfsGBZDdo2CRtCWpKSs52CNeRcYabGMkMY9k+FJieX5eVfG0RJJt\nBlX8237b7dEyTFV0nuGHl0iJ752LxXgERHqazKPWnWiPSFG7FizTai3SpgKOrVvw2p2WSFJ6\n2KuUIHL/ipdhqqLzDD+2JNJU5Sfx6Kl/Qssg0tNkHkGR0t5hxJVpFZ8W0jtWXdTuKqXLxzOt\nXl/3V7wMUxWNFbYdo5bXs06RpipeWcoQVki3EghEvdMjtUKTeuTMtIo/D0yXoMvI+tnELEAG\nVT3TahN/MJVhqqKxwrZj1PJ6WCQfort0ynKg1CINwsit0IQauTOtwg6f7VqwsgFkUNUzrarJ\nj727dhWKsxBjeT0skgcpNXpKH2XQAgzJSrbgzLQK0qaq31cpwPA6xrxhBlUt0+pR+eqzSFMw\n6RApaXMEQnap6qePi1KVbMOdaRWOc9BrRabVfhYWZlBVM62qX30ONqRn0th3eIhB3T8+sUei\nSUpV8tJhkfxIvsYOKhMeqxt3GaEaJfLoATAcSFPyCmCRvHhOLJLkTKRHrUnj1r3U07APD5pH\nDGAWkR6XKFKjzjQeDdZEdexkkVIvZ3hgjxzMIdLjEkV6VkhR5i+DSN4FgR3kOTxikXRYJBIT\nWFTr5gSH62AqBvZoFmYQaYE9uzweBe9/lUSqE+fDVxxij3Dyi7TAUMMkHkXPGNVa0Hs4PF1r\nlKDAlZJdpD9LE0lSaILmKChd6vhCCnoPJ0wUrEtR3mpxrGyILK9nySJN0KVriI3QiVdP9UQi\n9R05FokEi2RnIo/CG6QnTJ/0IqnxBfbIAXft7EzkUfzTwWo96D2eFC9SYR51/1c3Z1rt19Dp\nSRuaRd3qkT5tqvkS7UK9DKSK7lO8WK9ICQuNiDNAkZSHHTV/vaRJQlySRA1DB8mUafW6U9dv\nD+hPVOnTppov0S4kPZXFdsrty5KM0qe8FYiUskz/bp0cXtD0Gen9iRWpNI+cmVaP7RsnPf/J\nZadJ0KdNNV6iXYiUgVVRP/S15zHSyLQekURSm6AnVZ+RQaBIkeaZNrL9a7gyrWpJTXrOem7H\nIW2q6RLtQqQMtIrakYvQ6HWCZ8iOyxqKF6n1J/kUbKhH8pJUnFGgVA1ScBH+WP89XJlWh6Qm\nu1pW497qKBKMaVPhJXqmVXChXgZeRe3I8V7RfXWtr0dbdmR6ebUk0uNSRBITR1PMwVI9egLU\nWnRORbREKUZI4QUEYP8XcWVafev7aW+1LNJFa3LGtKnwEj3TKrhQLwOvIlLp2/0ujZ/H9E81\nf1yKSFMuUQ1ojfDonEqiidhSRbJkWj03oQMsfbdyOkibKi7BM60qObtcYCI1RTfdTy33JIGV\niPScXiR/j540j/TwgkSyidjyROqjdqZkjW/t21gPSjodpk0Vl+CZVpOIdOlShqUPNizEI5AD\nsiyP7CQRaaZYnWOMJOaRsC/luU0JdERScsmng7Sp4BI8tBYtUptEr+nf3R2dUCTvknMCW6Ip\nOnaUC7w1SiPSbEFvQtSuBcu0+tq3Ka+1BrwUpk0FlwiRoE/RIn1U++u9tqdmJKY96SKgvBqI\nNFhUeM7vSSdhiecHeJR4aVBMMYlxZVq1xLLl1N+i7ZHy6csnaBcGziM18cF+3jdtsEE0R2WL\nNOlqBsdpgzX+FtWRIrXqhHv079+/sPtScGVa7WLZN+wZsiaRwCVIptU6hUj1+W769VhVe3+P\nbCKB8VHRHk3aIFlOeepyDKvZgOj3iNqFNM6/+nvUOPTv35QmuTKtnqpm0dypf9SY+VJwBFyi\nZ1pVLoxdIhSCWaSlBOxm6tj5zRghRG2KjVgT9A8QcGcSzkyrezETZIgZaBkkwSVaplWlnGJF\nKrlBmmWVqhygCxIpand58OK6fzL+d6bhzrQqMqhSRQKXaJlWlXJiunZ3dmrRFCgilTlCGmN0\n6UVyePSkMh6k3yKRR57ZU/9lEmkBGIIN7VtV5W+SU6RSH3cprQjK2rFDPXJMvapEeSSNjNij\nMPQv/rnad4H6ftV6bHn1IkRSlzJk80hxyEcfYU2MR6Fjo1oSadqo3QLQv/iv44TXBQsnepdX\nL1KkRMX+gsu9sROwtogI8CarR0IZbosE+BIh/WV4efWSRJp0tTdyRrhG0qRRmjCD69xOGCAO\nayTQv/i78ZFNWxQpYcItyvK6SIuUJimgjhSPelXGLtzoDnskwPcjdZxN+3C9yqs7kR4LFmmS\nHh1pmWp4n05phAI0UpYymE4bZEHiCiySAN0he2xGSZdTZXwup095dSvSY8EiJR4aDeJQlqlG\nexS5n9y590iKJmgBOtWj9/f30PosHeSL/zmuSMKWIPmX14j0KInkX+yUJIwxaP4MRqFnh/Xr\nXpKIRJyB/aeJJMujebRZk7Av/u2tWTOxfzPn/PIrTxUpoNgpSeqRjvHswDDDFB6ZRJKaoMEg\nY2fu/X3DJmVaIlSwR+lGSEhLZAwxaIvryAiHfD0CwjiXMoAI3dgEuYZD04nkTBDZrPfZ6x0o\nfcNek+akzwoJXmKMWSEd5w23cp3giUOk8jp2KVLXdb7oLZEtVBctkm8lpaYHtESYR1qAgXKD\n96lFMieI7JedqlvNL5pIp3HHOnyJMWaFdJw3VtHn8xCwi1RgpCFBxi0ktmDbL6EtCQqKNfhW\nUu7E0Xp0XmG590lFav40J4g8t+lLjmpw7KImHblUx1sfjQYvMcaskI7zRBW1ClcQ92e0ltez\nbpGosYUBsBrIc01Qi59Igy3qaIg0MtLDcgi9Ou+xItn+IVwJIvftFtSruqTtrLZRB7EtFrxE\nEFkh7eeBKmoV3ppIsT07ckvUI5ohb4dafEQS7mhhBUqEoSZsfB3ciRXJ2jS7EkQOy6z3tfSV\nP2PZUORT+kwolgSR2iWGKjre92VpIkVHGgixBUjoUgYBSaRx+ANGQqRlQF4L6KA8KTwy/qO4\nEkTCnA3gK3+oPo/jniPBTeQi6V5aE0Sql5iqaKpU+zLZotVSRYoOfcOmyMujSUWSJluhSO7i\ngzx6jw41UEQyJ4h8bTf8fKlvdYJoDpzFBGn70pkgUrrEVEVDpduKr75rFz+F5NGnq5N4RBBJ\nnSQSfTtC8WSR3t8lkSJnY10iVWPsDPtSvlWHW33Rkt1X1UfzHCSlg3fdHeSXzgSR8BIT8q1f\nKxkkT5hXeT0LECnocq+xUUMCj5wiaRqJQB2l+CCPhnAD7ROgOMZIYh4J/b97m/TqgP+PX0l3\nd9vtlZd4RAD8CC4xIl98kT3aJ9shW7pIQVd7e+R6LAsJh0hQIGp3DhLsUSyEqF0LliCyCX3v\n3kwRASV1yqv6UogEfQJX7QkNinWMFMAyRQq6eFaPTCLJDZG3RtQV3cChHIuCXAkiOy6GHpTU\nSXsdW4fxpSNBJLjEVkXrbf1ZpEgBV/oGvRtSeuQWKfAGFJESt0Vu3Akim8ZJzUzXH76Cw58i\n8iBe2hNEftLyDW86/B3eIHl5NKgTLtKLnp3BcGakRiSRsntESBB5vLdQr5WcoqtL/3g7CU+u\nQgrw0pog8krM221c/X03PiDR6qJECh8h+Xgk3An0SDInk0dmkZKPjSi4EkTeugzbB+Xc/vBp\nPHwUYQXw0pogEp5nraJ+6HPXXVcFJBHahkg+vTpgT5RHcnYGw7mx/Tp3zG4Wj9wJIpsM24dP\n7dzbaVe9nsVhEJ+TQnWWBJHURT76+9eqf6rZ1y5dEv2iRfK9LsSjYJFePESKHCD9AxhOmcej\nJYDlbDj3On6me2JfySL5XUTq1QldpHER3SNkUAT7doarokT6R/CoZo9MYFmE6qFdW+/KhufQ\nJ5aTGiMgjDwu8vBIS1kH3jNdNrlH8Wu8V4sh/L1ykTqBAkSieCS5E9Odg68tS4IesO16XvxT\nMJ9p8+jn58f3xisCa5GGBU3XtS5afZbwuZLUq5tCJOO5yiqg8KUMPh7JRzuDfn42bZL+xT+N\nY6RDutzfRYn0HCgScXSk9eYSBLzR0x7ACu/hgLdIZIlqU3vUGfTzs22T9C/+bXc36S7S16Gq\n/PMILUAkYRDdo1/aXnL0tKcnTSTv7XtqdME4KNIXpvqK5NMY1aYB0o8E+d5rA/ni98+PrdoJ\n5ATlFSYSbIo8PKLEvDGPfHnRRDLwoIsU+XQj0mZYFgkH/eKfmx1RU+S1K00kIqpHlOfuBdXt\nRcJ+LuJRzNONCM9lsfTshr4d+earY3tr7QKCDN4NUlDFXlTsp2MeeeHRFnUYQw2dQpv2CAs2\nqNnBIsu78/d3GSKBmLdXsA46RBkeeVarc8bTo+h13r4amRJAbr1P15NlG8XvEkQKjdXVlP3k\n4b26wRrZIZdHsRZ5efQuJ9xS3s0hEtwhW6OZVkFm1PYhy/qw5HKU19Pdjv3TIqSXCKK8m6Ho\ntopIpU0lUihVpGcVj2tpKxn8PFLnW8PaohQiuU4c7DHNxeYTyZJpFWRG3eNJErpHQ4CEqV1I\n7aK81BHl9VG4HbrND5tH8n+Yi628ugCRNI2IHv2SnnNkOuvJT6Sx/alRj5yVwsJ1nnj06kZ9\nDCJlCde5Mq2CzKhfzeaii77eenc/fAMzo+0WplO7mhS81AHlHdurT3jSVeSLf9yd/XM1WMqb\nX6QIj1zPgK1DPBLOyL25AI9ClgOFePSO9+wSxr1tn8WVaRVkRu228X2oOVY/WgluYq1Ot3u2\nvQi81AHlwex5ehWRSgOMH81EiSLJCtG7dbRYHQzW+Xn0Ii9JpVhUxzZIfjNHUofO6lG0SNZP\n48q0CjKjHtoUd13Wb/D91fKC99ft1Jdq0lVQ3q5Sr4ElIZVemUixQyPyCIlSqNqLo7ZDAuFQ\nAo/oPbsa5NsavEntkfHzuDKtgsyohqSrr1X9tmvz4UNAyrv+pZZ0FZT31nft0LB2lnkkSaTE\nN3QSGKkj5iL2jzEooyE/i2I3wRI9GpUxL2UQr1J17JwimTOtinNM/a82610lNyYfYg/48FJP\nugrLOzfRhp0hn7ih6qE4RUp8PyeBGhFyET/JDzmiFOoXVcBIN3lkWcoA2yBNJOBOwoVBLpGq\nMegWKlITbDhKrcn5sBt+Hl7qSVdheW9tJfB5VmPyk5RLhIoQye8ye5dOcchfJL/KiE5clEfU\nPp2Qx+IRbJJCKqPiGCOJeaRQkZoO4VUNix9F367fGa6OaUB55zYp0RF/xIUx+UnKRau//5tJ\npOhuHeaRapBZJM2YcI8MD2fxgToyetdEAm8qvbmEcW9C1K4FzbQqztmZREIPgzBe+1KINPgE\nynvtmys0DSWS/GRXHZogfMJtFP/NJFL0QgbNI4NERo8UZ4I8AvKEi0QPMUjdOYdHuaBkWpWi\ndld1Vsj0vDCl7dGTroLyPMPfYsLpmGpj3+DR42wehUbrlLcMDlk8kq0JEekBEcmrgIYAj96H\nH+G7M22XcGVaBee8tYGCT/Wr2x0G2R6HLKyv0ks96Soor2ucbtTw925shwyXWEFFehxF8i4v\niF6cII9sIW8fh1KJJE8ZTe6RI73JPB45M62CcwwrG+6atE+ZHbPhte3F7dDICF7qSVdBeaeq\nWWd3wpsX61q7VPNIo0jexQUg1PHz6Jf+aHLlDJJDDealChEN0rgJ1uvyf8MDLD2bo6I8cmZa\nhee8ipkguUeoHN6JA+ClnnT1VX0TT2GctUXK0SABeTw1+qVuJ1dOoQbpXmS0N70+TvgahoZB\nHYpG7zLIGTMNkGrt/+h6plVwTrdEW7/sc68cFllY4Ust6SoorwYvtSpqRyYYI2UcIUmtkE0j\nWZRfGtoFxFA3MCh8tmgkhUdwcZ35XJdHP5CQyqwcJGpXiahdogeNzSWSYV2dvlrBrRF1DYPU\nFEV7lCje7XrExLuOesoPi2QnyzxSBpEGZQjDIsQXccA4B0tbUhe9ckEmwiN5WGTxCLGIPfIn\ny8qG6UWCbRDdI02k2vJoct/BUdDnkEnmUW1eD6Q7xB6FkGWt3eQiaZE6y7loD87YoRuZwaNE\n86/WE51tUQNb5GZTIv2SNryq0QbrHdwduzQWSdaka5CMuC2q5wzXLQdj1y7lE/umFkmJL1g8\nkiLcPrewivQi7dGLEUn2xtcjYQ3VI3kHrOEc1oiAMdhQJ3xi38QiyQEGu0dBFtX2np00/xrv\nkZTukS6S5A3VI1NqIAh7RAENf6d+Yl8mkRynuQNzZpwepWuPtCaJdq1sDs2i2pSrTuA3PPr+\n/qbVdn3oX/wJntiXRyTXaWNTFO6RZW1qkuGR1gT5e+QnkqtB8ovWfX9v1yRsiVA9rKJIvNZu\nIpH8GiRfhxpMc7FSjy52IcMDJhINGFqAfTv7VV5RBrJHk5gEN/bVrgSR0kvBPAkilyISWODt\nECl0cNQgRJJUUZui/B7905ak/pPfMuMZrqN7NJ1ItASR0ktB/gSREzyxbzKRnskiBUcZGqBH\n0sNcE04cBXokZ6mjZvEmeuQV9/6eVKTmT1KCSOklIH+CyAme2DeVSHSPIkR6epI9Qp43nmIC\nNtSjBBoRQg3uIr9jRbL9G3okiIQvATMkiJzgiX05RHKcmtAjVCT/yssU6RE5uck3hFoLGeu/\nokeCSOml+DbOkCBygif2ZRDJdWqYR9IOJE2aMcbgX3OVGI98QnTD3+g0rK4MTaTvVB4Z/yU9\nEkTCl7MniEz9xL7pRXKeGukR3vokcaglIF4HmiFCYKHGstUZ8j6qx3CRRmdSeEQSiZQgUnkp\nDq0hQeREIpEtCuzYGTxKJQ8gJO7tOedqz1Zn2EVuFklYk8Qjp0jkBJHKS3FohgSRMWQUybs5\nChYpl0eJRJId0QdENo8IIjW6AG+SeOQcI5ETRNb4KXMkiIwin0j+4yMvkdDR0cQeBfbsFGRL\n3nWR5DN+bNmH9UNaAzS+jIx8E6J2LY4Ekerp8qGcCSLr63Gni0mlbJHopeNhhik0Cp6KNYik\ntDdSXAHkxh/e71UxxbntHoG+Hb3qAXgkiFRP75khQeS1AmCXWJlBJOeZkR5JCU0S8yBBv84U\n8tbjCHKXTito8CckPgeiDfSaB+GRIFI9vWeGBJHHah/x7Mv8IrnPjNl+BEUKramZUI9MImGT\nQ/a5IopIhvhcxvWpHgkitdM7ZkkQmfwZslOKRDgzTqTg1PduQjUiePQuHTUUA1cAWT3S4nOZ\nN0z4JIgEL+dNEBnQn7OWVy9bpPBnsbiJbo6MHTvbRr2OH4na/GAJLD7nUdkk+CSIrHGR8ieI\n3AcsDLKVV88rUljoe7SoziOSz1UJPPpRMZ+KxecYHf2L/4XHyYPLq+cRqTcnKPQtb4id3CO/\nq9weOYsI8Ej07fxquxmwnRu7c3ibVIpIYjNsTMyu/Wny9sjvMuMaVbJIHh4pmyPCPIobLCwE\n+TNWKpHl9eQXaXAnSKSnqUVq5Qnr1yEzSO/KWlRnCXSNUnTnNqHRYkVyzcYiItELl2ZiJxCp\nsydWpOFneb2C6TES8k9Ei+opt4+vjGUuEXLunxjlGX2iF66saEgu0oOC39WoR8YldC2yMXSJ\nosN022iLOnw+K5L6QUszkUUk54Y+0Ar5rlSdfs334E+yjh26hK5H1yZAozCRNtKn61G7dpZT\nRRaIET3NRBEihS327jF4lEgk2BB5W1TbRUKmXpFOXIhHQSGGgGsWDF0k5OGcSJqJHCKRGyR/\nkbCVqikeGDYQ3KMbGD2SB0aGCAM6GgrwiMdITugigSwQPViaiQwiOT0KT2GHrvhOuBM2fGg0\nADxq7HGEvPGwwuQebawxaqGLBLJADGef9AtyimQ8I6lHiePeaRqkQR+7SD7hOZmYVXXbGhsN\n0EXSd2NckAsyimQ+I1qkSYIMdewjYcFcrCoSenoSj7yZQiO4Q7Z2ZVpt8gAh6VC1UBk4gL8E\nZeJHpSoiFcbnkdBtTdJKQePM0yQimU8ImYHt/9KjDNHVBURo9E/OBDn6Y5s7iraomMHR8HWk\nZFrt3t2pJmmhMnAAfwnKxI/KVUQrHCISVl5PQpEI+2K9Qw39IoZJY96Rw6N/MqAh0jT6kbeO\ne3n0DdIxBHg0WZ/OI9Pqpc25dVbToWqhMnAAfwnKxI8qVUQqbPswM4vkjDPU/g3SsBxoMo/k\ndQxpPZL4GXbohXn0reFVycixkW1xk0emVcOeci1UBg7gL0GZ+FGliliFUXYFiOQO2NW0EdIT\neLAEFGnSmaNAj/4ZNHI8MtlXJF0jT4+8ztawLhP0ybQKrgCHtFAZOIC/BGXiR5UqohXGAFkg\nLBcsQySxIrUGe48mCdZpHoXvmpBHRyoGjXJ5FIl9wa1PptX+zH1dyyN4+Jd8AH8JysSPKlXE\nKowCskBYLphUJJJHBJHg2m74U2qPdIlyeSR6eLTbaA55eZRgbEQRiZxptemAfaLv+oikXYVu\nvB3LM1dGAVnZkFkkmkcRIiVujnSH4jx6N3bqPHaOo4Q7VCeaN3KJVI2xOIpI1536jJbMIlkB\nWSDGouYRyX6ar0iiozehR54ODYvpKB79wLx0/uHu2P5colCdY4wk5pEIIt12WoKSkkQCWSDm\nFclxmrdIdXKPHuSde94BhnFZKqE5UsJ0vlWN0ShpuJsQtWshZFrd67lQtVAZOIC/BH/jR5Uq\nGisfxoQikUZHtVMksQxIeSOpR3LE2/P63h3pFTFU51vV+cLdobdyZlq9vu71h1NqoTJwAH8J\nysSPKlX0/lB2JhOJGq5zifRkEimxR7HtEWySbNv25OiCN7OFu/3uBcc/jkyrn2jiOS1UBg7g\nL0GZ+FGlit4fys40IsEwgy1vENxejp/0ZBApZZwh0CJtXPTe/wTXeWtXjS1RrEf+F+dD+ura\nM61e8QSOISsbxjLxo0oVAz+aiUlEenaLBHIz2ER6QkVKNg3beQPiC34eKeMiaQO5U6QQShgb\nkW4o3dGaafUIVrfBy7RQGTiAvwQF4Efl24d/OpQpRPLyaMzTgEHwKEak3pyxKfL2CI6L/r1L\nLVE5ImUcGxluacu0WhlE0kJl4AD+EhSAH5Vv7/+prEwuEnrGL0kkY56GSTwStkgtUeCMkXj1\nLoukxocHecJFCuzW5ddoESxLJMMJvxSRNPqFC67hkYdHoyjAmSCRWjtElLs5BMLdtZxua7xK\n2BMk0re8ytvvYgZjSSKZ3nd4BBelYvE6X4uk4Q+UBnbprB4BJVpN/ski1dAjdIJFXsHgK5K6\nHogsEjdGZhYkEv4mdAjz6AlBPsOzMZIDclLrA/UyFwAHO5JE/8bcOPk2RwAAHo5JREFUQPYF\nM/LsazaPZhgbLYiFi+To07ktqn0zqT5YRCJFF6SZVdwj+zS/+sBXP480jcgeedxkgxQvknGA\nBCLdjk6d1LfTz4oSySPG/Q7D2b0oBo8chK6pq+NX1jEGShcJjddpDuEiaS0R1qvz6NnB2LbU\nn6N8ECn4hotEKaYhxKPeG+gQN0YpKVwkNPCtO0RokLDS/eJ1UkjON7w96mP0iFxUyLq64A5d\nzWMjGssRaTyGOOQaIeGF+00gPUh4fo53VaT2aIBHQQtUdY3y7trbAosRaTxEaYs67BoFNUjx\nIsGJ1YjWyEMkyR8eG03EQkQSRyhNUY/Do5rmkTxh5LuCrgd26ERELnRwFO6R10P3yunT+SSI\nvB2r6oikdSAmiBTpJUFGOlOZsIqeH8lFUpGwgB3NoRa6SJZC4Bzr+NLnQ7TgE0Phvbpgj+iU\noxHYak5IELlr39S+9cQEkSK95AWIZChTqmLM56OWFygSGvl2dOcgRJGsZUjtUEhbVGsRBoGX\nSCEW1fEPCyuCvl2gJIg8NdnuTpWas4G4jQKklwSpuwxlylWM/pCE8oJEMqxUnVkkUtUh7xBx\nuPXHR6QwjcIeAjtLW2T7h4DpuBwJInfVrUaaU2KCSJBe8izONZQpV9H1+TxJJpJpyXdekaQO\nXcTYSBZpEMghkqRMvuZonj6d9V/CO0Fkt+nPP0EkuN9Z3oA7lGmsou3NAFKJZNw6QReJGrSz\nFKEsBiLWXWD1yBWzk6WJ86j4cLf9n8I3QeSpk8A/QWTd32ff6PV5BJuQhjJNLEEk6Q2ySI5J\nJHeOhohodw/ikSqR4duja+Nh0eDNktYCUUSiJoj8qOQspuBdmkhteslDBbfFYmXKN7C+609y\nkdQ3cokUM2ukLqvrNPonP5ll/BG5HunHkUUS4niLNGOcziWST4LI82EHnispvUsSqUsvWVUf\nzdbYvh3CypRvYHszgNQiqcddk7CCeT2CT9NrrcJbIqdHno9+VaeMfDyaN97tGCN5JYhsAhHq\nAIcukpRe8iYi5lqZ8g0s74WQWCT1MGU1g3g1h0dyM/SvzwFk8MgAHljw8kg0SdQp2LmnjQhR\nuxZCgsh+NAUhJohs2OPp8vQy5Spa3gthWpGcy4KAO8Rldvj7gR6pDo3CeFhUhwUW0A0SCxgc\nkfBKEIn8RE4QqaeX1AMWhio6P4Qf84oE5TGLRFhjF9apUzySu3DEpqiO2SYRuojB6+wZ8EgQ\n2c35XCslazExQSRILzkUdDCWKVcx4GPZyCQSdomy2NskEmnNd0qPoEjWDkxwGm/VouLTa/ni\nkSCyXYVwO6jjGeLKBpBe8tSIdWsnaw1lyrcP/3T08vxFMsQaaB7Bvp12Gm3vRKxIWgtE6NBp\njwqj3jdKo/Kbo1p13Zogsl8Xt1cvoyWIBOklb11BJ6VMYxVjPh+1PF+RDFNI1tg3sokP8eiF\n4lFouE6KdKs9OadGIatSW2miNFoGHgki26Xcr2ftMlqCSJhe8iYKAmUaq+j7mRykEMk0F2tr\nkJ4QkXQ8PQoUKWwDuRga+XgUvH28YQmN0VIoUCTrGjtcpCdvj+rpAnYhEsmROvoKhpi2aAFj\nowVRtEjgYAqPPDYg+XpkDNdR8enSfctLgAJ3vbJGSSlYJHiM7JG1ZLdGAROxcBFDWJ/Ob6+R\nMt/aj5I8bsYOTUG5IvU//YJP4XOKZC3YyyNKTZWFQKZsj048PILduMDgAnfppqB0kXp1bB45\nswX1uPt1ns3Ru0JOj8JFYo0moXCRBnmsSxooFtXpRVI9StCxM5/zjS1DXWu0e4ksSyT0fFJz\nVKfv2dlEIlwuoHkkTxmNh31uxI3RdJQmkhKyGwVye+QSibiYwWuENM4cKbNHlMsFRI/glJHf\nDTp4bDQlZYmk7YsVLVEqjxyr6wIsUtOmUi6XsHoE/YEhO29Yo0kpSqRni0gGvD1KMg2rWaQ+\ndM8LXCRtVOSb35HJSUkiPWsi2TdN1P4BuxQiKSOj9lhwt67GenZjK6QsXvAuumfxjZFPptWG\nL+QTa5lW0eSshJyqhioGXONdXohIzQHrrokWmkiE9d7BHqkpTRxX6+ihhm8D3kV3rGBs5JNp\ntW4XbmtFaJlW8eSshJyqhir6X+JfnqdItdKxo4hkK9dj30S0RwlESu1R4HUl4ZFpteGg/79D\n24+EJ2el5FQ1VNH/Ev/yKCJhK+ycHpFC3wSNyBuQZIdSduzwBskv7cKisX1Gj0yrdZs6S/sa\naplW8eSslJyqhir6X+JfHkEkdMm30yPKXCzJI5JI2OCoIa1HyqxrjENLaoysja5XptXraIgt\n06ohOav6kkwhImnhOkKiE9oAiaQRSSSDRhFxb3xRQ3xwoWNRYyP7J/bKtLqvrrpI+hE8Oavy\nkk55IvVHrKvrGohrvv12TlhOMmjk/5QjALo4KIlFy2qOaCLRMq2+VR/IObpI0k8gkaozp6rh\n9gHXeJfnI1J/wLrcW92BRBHJcgotYmfyyPMpRxCbRzEiLcuhFpdI5Eyrbe/NWySQSNWZU9Vw\ne/9L/MsjiyQOUPdNUEWynEGbQjJYlKZBAsfi+3WL6tKNOMZI5Eyrr7hsDpFqKZGqPaeq4fbe\nVwSUFyeSdjLdI494nZdHwJsUIyRwaLuzr4SoXYs90+qxjc7pImmZVrWfQCJVe05VQxW9rwgo\nL0ok7VzZIZpH0Vsn9Hmj7nhEwG4UCX6DUkUa1gU90+qYBkj5ImqZVtVisdCEVxW9rwgoL1wk\n7Fxin853YRAt9N28hubEiPRjE8m/uOU2Rk7omVZNImmZVkGxIJEqJaeqoYreVwSUl1Ak6tCo\nwerRA3wwLHlBQ/saFclxvUTbm/v+wUSKiNktc2xEwiPTqn5+C7KyYTwNJFKl5FQ1VNH7ioDy\nHCIhc7Gmfh3doto6QnpQMZfyDp911B6R1PH3qLfnBxcpeAZ2vRqpYtgzrYLX1kyr4AVIpErI\nqWqoov8l/uXZRUIWNZgGSF4eGSLfalNEiTJYRKKkUB35BvoYPGIQvDKt1qhIWqZV+MIrp6qh\nigHXeJdnFQlZ1EAQiVIXk0c65jLAsjqDSB5M5dGaG6OlULZI6rleHqEi+UjUkEik7257qySQ\nGvkOZcVjowVRlEjDIcyj1h4vjzCRFIc8ggxgLtZfpDZ+oDZE34k8SlAGE01JIg1HsI7dOGlE\n9wgRyactagFR73d1VzmxFjXqEafSWhnFiCQOYHOx5BVBEE0kX43kadiRIJFkjeok2Re4MSqH\n0kSCa+yESPSldRCLSMQSEq32VkSiX2iFx0YlkVUk9ApJJIdHhqfwGTCLRC3B5pGXSGpzlADW\nqChyioRfAUVytUfoU/hwsNlYX49qm0c+IqXXiCmM2UV6NokkTvHu09XY8iDvfl2NiPTvn7dI\nSpAhAdynK5AZRWrtkUJ2hk1IcR71InmGGWp0B5K3R9r0K/0jmGCNimQ+kTp9oEgGjzxnjxqs\nHtEfIKaKVIJHTJnMJtKzjG1LbFCsztixI4r0bhfJXYAmUbxHm22LfDKtorsopDOmqWKO8twi\nWbeWBywL0gINMR4hIjmuRhfVke5rYcN9Oo9MqxejSJdJ/wHnFql2e+QjkkEj71AD6pE78t1P\nsmoapVgNtF2Nhv+HkDKtXkxpUqVcrBNUMUd5NpG6mIPNIw+RjB5RM6kOjA5hMTvTRcOWPN0j\nXgzkxvb/Go9Mq2dDCiApF+sEzC9Si80jukhGjXxFQlcG2Zc0gGQLmkXRqR7jLl8E1t6vR6bV\nM9jdKm1ROk3bNy5LJORaj0kkk0QNYf066bCtYyc0Si3RRsZG9nGkR6bVQ/V51Hbw1Vpi1eTM\nJdIzUSSPFXY2j3xEso6OcJEMHvHKVDIUkUiZVg+VcbP4GkVSt0444gw5RXLEvTGRcI8I92IG\nXCKRM61W1UezrxxLX7I2keS4d0dSkbA3g0Qa8jE4PJpMpG00Rh2OMRI502rHDUuotTKRnj1E\n8to7QfDI7/GwYyJIskdJV6duYmwkIETtWuyZVvGfzMeSkV0k1CODSH57kAgeuUWCvbrRHKJG\ntSEtfhjb0sgOPdMq/pP5WDLmFWk8wy4S7db47FH/l69Hkkh906R49C09drxzh4dHk0DPtDrm\nSkWmZdcqEjwj4SI7cWCQx2NRg0EkPXnd0AhJfbpUInFjpOCRafXURPZu3ZMubaUkr2KO8hCR\nlDMSiGRcpRokUvMD0psbwtnfCoNAKUTa2NiIgkem1VuXK/WkX7YukbDmqEZF8grXqTE7abF3\noEeaSGIopHqUUiTWSMcn0+pN5EpdsUhov67GRKLHGTp9JJEeJJHqMI9UkUBQAQQYZJHsUVwX\n7NByKVUkesAO2TiheFQTEkG2oA3SINI3JlLd9/ZESxTuEXfplsxMIqln2ESy3xDxKGA7bIc0\nETt4pA+LatjLq0GPjrt022UekdQT9KXf3h71PTw5TOejkToRKzzqNxkBj9qfpIA3h703ThEi\nIXsofMZHfVN0/0OOLhCr/A4fgNSgWCQ3QqMuUnQhziNujJZPoSIFLVR9UHBdDAyqEYuAR0Kk\nUZgfHdf9DPDYaA2UIJLZI5tIUqgO84j0oAl5U7nJo7FvJwUVEnkUeB1TFHlFQmMNlo6dQSTZ\nIT1WVzs9ejdg8AiOi2SRRA+P/E/ErJGsItlWB3mMkF402sOwJfL2qNbCDJpHDaDxiY93c2O0\nInKKZF1mh4mE38LgUdhWicGgfsTk8EhaucBLgRhBQSKBY34idYc9It6SSDBRENgtgWmUdHU3\na7QqMoqEe4Q959Las5MU0jTybpAgcNcR6hFvk2AM5BPJ4JFtmR1SFNIU1eQ8qtqMkZTdRF4U\nJHsEunMJROLGaH3MIJLyJhTpCT5xGRNJt+gB7pOweSSNidTWaNy5Ny6uayN0wCNp9sj5z2CD\nx0ZrJL9I6ptApM4ei0ioR7S5IyTWLd78J9Ee6iLdnUh60DsC1miVZBdJfQ8MkZ4U9IIm8ggT\nSYnPpROJWSVzi/TLLBJSkDY6cngkdFHj3ahHtfDIIFLUfiPu062YWUX6BahF0NsdsRsnXE0W\ngbDCeGD0xxKs6z1S1/3IL+n/GhDWaNXMKZLikZg9cgXshDhGjdSmBw13dyh9OnkZnThE/zdg\nNkgmkbDYt+qRI9fJiypSvxQIt0gbC5k0UpPj/8h4fHQz3BatnzwiPUeKpCxlsIlkDCqYPJJm\nj35UPD8+BvfptkAWkZ5dInUHKLNHikjaOm/JIHMrBBEeaRol8ShBGUzxFCFSf4Awe6R6pK3z\nllsiikdCJNmhFI+rZDZDbpHAUdNuPu1ym0cq6DSRnUEkxaMET6vkxmg7ZBYJHlVEIq1ncE69\nemuEi6StVg2Ax0ZbIqdIylGqSFSP3vs9EWSP/knPbJEtiheJNdoU84mkbp9wemRcwwBnX4ki\niWUMmkfo9gmGsTObSNp+PlfHzuaRlsTEWsd/CEnbI26MtkfxItk90meNnCJhGiUVicdGW2Qu\nkUweqSLZh0eIQXaPdIPq5B6FX8osl3lE0qaQTKEGJM4A3kUNsniEtETd0dSBBmZzzCKStqbB\nuJlPFwm+K3fmnDEGpC3q30nkETdG22UOkbRFdgSR0Kg3NbrQgrRFI0kidjw22jIziIR4ZJxE\nsq9moHkkTxfpFqXyKOgqZiXkFwnzyBVqMEzCklojebrIolF4x44dYrKLhFhUm2LfsGOHlRs0\naSS/rayvC2mMuEvHlCySsk4VK5fWr7NolGKhKmvE1HOKJN7WIg0vytMmtKC3eEWdfa0xjTSP\nOOzNBDKbSOLdJ0WkFxVk8gi8NOVhGP4eWiLEo9iOHTdGzMBcIok3nxSRNI9esElY7bXE2PwY\nenQDSpzB86OyR8xIUSI1P2Ie+YokrVqweKTGveM/KbNVShKp/VF2qA99D+eqE0e2BslDJF4X\nxMRSjkj9j6pDcAZJX8lgHCFJfTtTZb8lkSI/JLNpcovkXBqkrlEFIr3rIuHAdojQsfMMM/DY\niNHJLJIS/DYH7MJFMs4ZjfxIj2jxFYk1YhBmFUkJ2CkRBm0HkqdHmEg/43PIYeibh0dMLDOJ\n1B2XRVJDddoOJE+PEJGAPJJIMR+OYeq5ROqPmz3qYnX4Nj7r/U0eqY3QzzdwivjR2CPGyIwi\nWTp2Usy7x7M50jySG6Gf729fj4jnMZtkPpFMcQZ17qiH0K8zd+t+NJp4N4+OmGTMJpLRI2xP\neU1pkCzDI2lc9C2mYGkecZ+OcZJXpF+ISO0ZSJRBKcPLI5NINXSI6BFrxBDIKtIvRKT2BCRc\np5YR45H0QFivxohhaOQU6RciUvs+wSO7SP/+GT2C4brmZ6/GiHAOwzQUJlIX8zZ75Hh4paFT\nNy5O9fKI+3QMnVlEao5hIj0Mj7PUSrCGGtyDI7GCgS4Sa8R4MIdIashO9gjFJhLeq/v+/v5R\nASLFfk6GkZhBJHWtKuzXmSB71DrSxea0ZQztexSPuDFifJlBJLii4UkZIOm8i4cf2Tt2de+R\nvgSoX8bQ++PWiD1ivMkv0hNdJNEOuRuk5vU31p8b1jFQ+3OsERNAdpFUj4xZIKXdR6pI42gI\nDo7sHiX+oAwDyS2S5pGUlhhc824TaWyDYJThWxbpe4x8E7pzlsozDIHMIikS3XkgePSupDkR\njZBZpO61V9XZIyaY2UTq33p4cHfs3vsD45uISLUiUqKaMwyNmUQa3nkQIklXaB5JgPiCFGoQ\n/bqUH4lh3OQVCfFoEEm6wCJRA5x8bf/uBkI/oSJxY8TEklUkvV83eoSLhN5CW8XwM4YVgkTi\nsRETT06RkAHS6BEqklbQP+mRYf1BLOAdW2OG8aNIkUwN0j+ZLqgd4RE7xKQim0jq9FGDoWdn\nGiDpHvUL6+DEET3ozV06Jh25RMI8qvFQgzHSgHh0N0meOKIvYGCNmIRkEgn1KIlI0jIgXgjE\nzER+kcCDKFCRKB41P6orgqjrgEyVZJgIsosknujygM4ioR5J0br+2I+8VcKjiuwRk5zMIoF8\nxQ92keD1cp8OpMIP8sj7MzGMk7wigcTfkke6SPByaBHikP9KBoZJzbwiIbNIaL8OaBQz/cqN\nETMV+UXqj0ke2URK5hGPjZjpyC5Se+BB7tgBkfQhkk0jny1HrBEzIbOI9KCK1J2GbJ0wN0d+\ns68MMy1ziPSgitRt20P2IOEejY+TiKoUwyQkj0hPUKQHVSR1Y3nnkRzzhh55rmHgsREzPVlE\neoIi9QZBkXw88n6YBGvEZCC7SKNAD2MCIUSjwaO7MJEeMUwOsor0qxVJjIzMHtVgXarWrSNn\n1+LGiMlFTpHaWSQYqtM9Gi9B1nd7hhhYIyYjmUWCGYrr7gd0lWqNevTDXTqmUHKK1Lx8kUSq\nTR7V7bhIFSmqEgwzITlFepGordnr/o1dOV4KxCyAbCK9vFg9Ui8RfTnP1oibI2YOcomkWWTz\nSBoU+YrEMDOQSSS9ObKIJEUXhucpB9+cYTIwi0gP+tMmBn5kvvtjpFuzR8xs5BapWx1E9Ygz\npjILIbNI/WpVU69O9YhnjZiFkFckxCObSNTpV26MmLmZQyTUox8lqwl9aSqPjZj5mUEk4ZDw\nSO3TeWw6Yo2YAsguEtqnUywSC+0S145hJiK3SNjgSG2NBoucInFjxJRCZpEMoyOsV+cUicdG\nTDnkEekFEWl4EzZFcnNkF4k1Ygoii0jjdKy9Ywef1mL1iB1iSiOrSPa5o1oTyXAL9ogpjpwi\nIc0RyGvS/MDNEbNQsomELmYAeU2aH4lRBoYpjlwiuTxqRHI2R9wYMaWSSSR8cd2PsUHCROKx\nEVMuc4qkeOTo2bFGTMHkF6k7pMzBtsd4hMQsluwitQe0tQztUaNF3BgxpZNXpP5nfUlQdxz3\niMdGTPnMIRKytK4/EfUocQ0ZZgJmEOmfphEPipilk18ksZgBLAjKUzmGmYrsIomnHcGFdWhR\n7BGzGHKLBB4b9m3fwMcaMQsis0jwOZbmhQzsELM08og0TCL9M4gkF8EeMYsji0ioRz/dMyx1\njxLXiGEykE2kwSHxvKNGII58M+sgl0hSWyQtDJqwMgyTi0wiIR5pib15bMQsl4wiuTxKXBOG\nyUgekRCPEt+XYWYli0hax27iSjBMbvKLxPNGzArJLpI2ccQaMStgfpEYZgXMKhI3RsxayCbS\ntyYSj42Y9ZBJpLs8qkisEbMifL7Op121O91sB0wifSMiMcyK8BBpXzW8Wg6YyvuWReI+HbM6\n6N/pr2p3qS+76st4wFge8OiHNWLWCP1bfao+739+VG/GA8byhEa8NIhZJ3SRDtX1/uelOhgP\nGMsbPKpYJGal0EXqu2SiZ6YdMJbXa1Rxi8SslXQiVR3YpWNzxB4xKyVji8QeMesli0gVW8Ss\nHLpIO9Ub7YChvOYE1ohZN75Ru6satbu6onY8bcRsAPrX/K2dNvqsTsYDfuUxzIqYdGUDW8Vs\nBY/v+msb3t63V1XKAaw8XgvEbAePL/utXezdXVUpB5DyWCNmQ2TZj8Qwa2cSkdgmZmtMIBKP\njZjtkV4k1ojZIDxGYpgEsEgMkwAWiWESwCIxTAJYJIZJAIvEMAlgkRgmASwSwySARWKYBLBI\nDJMAFolhEsAiMUwCWCSGSQCLxDAJYJEYJgEsEsMkgEVimASwSAyTABaJYRLAIjFMAlgkhkkA\ni8QwCUguEsMgJP6alUeuTzjfv+Rsd97gR95wh4RFWt+NN3nnuWGR1nfjTd55blik9d14k3ee\nGxZpfTfe5J3nZrufnGESwiIxTAJYJIZJAIvEMAlgkRgmASwSwySARWKYBKQX6bSrdqcbfgB/\nmePO59fh5QSrKC03hnfL+pHhctEpFo4iH+Zc6e9N8JnLJLlI+/Z39ooewF/muPOpfbm7/0Yv\n6b9VlhvDu+X9yINHu0k+MvZhLsMdpv01F0pqkb6q3aW+7Kov5AD+MsedL9Xx1vwf89i8PKS7\nJ+HGB+Np096541OpxGR3rpufKvW9CT5zqaQW6VR93v/8qN6QA/jLHHc+dB+z+U2fU97TeeMz\nejTHnVtuu0ah9B8Z+TDnaj/0YCf9NZdKapEO1bWW/h8IDuAvc9y5pxPpnO6ezhuDu83xkQ9V\nMzxJ/5Gxf9tT3Ys07a+5VNLvkIV/yQfwlznu3HGr9s3v9vN4H/+mu6/1xuBuM3zkS9XeOf1H\nRj7MRT040a+5VLYk0rnpaBy6gfc+z43B3Wb4yF2DNMFHxj8Mi5SyvHJFurYDhqr6uLdNp4S9\nHftHHu+W/yNfmuBKPcVHZpE0tiPSbQf+l3xLGJKl9Clf5/jI3VBfqsRkd9YPskhR7NR/OnAA\nf5njzg176XuU8M6uG9dzfeSdfKtJ76zfdqLPXCqpP2IXp7mqgaSriOGoL3Pc+f7X6/4Kz074\nu7XfeLxb9o+sBstSfp3RD9PfYNpfc6mkFumt7U58VifkAP4yx53vfw79ul07AE/5u7XdGNwt\n90cWUe/0Hxn/ML1I0/6aSyW1SGWubLiKkNWp+a3e5OHDdDcGd8u+suFQXbqj6T8y/mF6kXhl\nQxJeRai1+4cFB/CXGe58FCs4b7v2Rcr/R1puDO+W9yM3r/vFohN8ZP3O4MW0v+ZCSS7SrV3v\n25VdKQfwlxnuPHhU9Udfk071uz5yf7e8H1mKGib/yPqdwYtpf82FsoF4CsNMD4vEMAlgkRgm\nASwSwySARWKYBLBIDJMAFolhEsAiMUwCWCSGSQCLxDAJYJG8qADuc00/2E9llgj/Br1gkRgc\n/g16MdE3nkVaPPwb9IJFYnD4N+iFlqTguq9eP+v647V6/eiOnHfV/ms89/7HqRLJEy9HsaHh\no0mTdbzoxTILhH+DXqgifbV75i4f7aDpqznyVjWHzvUoUrOp8K2/8BNkmNv3Q60vrVhmgfBv\n0AtVpGbb6bE6NMmtj40fVbW7NtkSms2pvUg70ebc7krd6su+8excNdlYbm8weSSzXPg36IUc\ntKvaDIx3PQ7dX82RVptTY1Z/yrm/sG5ygbQZGy9NhrnX6ireYJEWD/8GvVBFunYHx0ZnzHG6\nHxUBvuyHdCQ9l8+3PYu0Dvg36IUztehevCMpovtyPUAjp602Mzn8G/SCmKOXINJ1V1Wvx/OV\nRVoH/Bv0Il2LdKyGh8xqxTILhH+DXjhF6hKMwzESOBWOkfo3uEVaCfwb9MLdtWtVOYKoHTj1\nrUvSeGuekNy/cWSR1gH/Br1wi7T7UOaRwKm3Nhh+2TdR8H3Ttbs1s7U3FmkF8G/QC3n1NyZS\nF4v7rDGRhpUNTUj8q3v19totiJjjwzAJ4d+gF26RmqV1x+t4WBapvtyboN2pfftrf7fu6y7U\ngUVaAfwbTAobsVX4F58UFmmr8C8+KSzSVuFffFJYpK3Cv/iksEhbhX/xDJMAFolhEsAiMUwC\nWCSGSQCLxDAJYJEYJgEsEsMkgEVimASwSAyTABaJYRLAIjFMAv4PSqZsy3hUVEYAAAAASUVO\nRK5CYII=", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 420, - "width": 420 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "pbmc <- JackStraw(pbmc, num.replicate = 100)\n", - "pbmc <- ScoreJackStraw(pbmc, dims = 1:20)\n", - "JackStrawPlot(pbmc, dims = 1:15)" - ] - }, - { - "cell_type": "markdown", - "id": "b6abfd8d", - "metadata": {}, - "source": [ - "### 7 细胞聚类和UMAP降维\n", - "- 细胞聚类\n", - " - 目前多数细胞聚类的算法都是基于图聚类的,具体而言,是将细胞嵌入到一个图结构中,例如K最近邻(KNN)图,其中相似的特征表达模式的细胞之间有边连接,然后试图将该图划分为高度相互连接的“拟团”(quasi-clique)或“群集”(‘communities)。\n", - " - `Seurat`使用的聚类算法也是基于图的,首先在`PCA`空间中基于欧氏距离构建一个KNN图,并根据局部邻域中两个细胞的共享重叠(Jaccard相似度)来调整边的权重。\n", - " - 首先,通过调用`FindNeighbors`函数,将细胞嵌入到一个图结构中。这里使用了数据集的前10个主成分(PCs)作为维度来计算细胞之间的相似性。\n", - " - 通过计算细胞间的欧氏距离,构建了一个K最近邻(KNN)图。该函数还根据局部邻域中细胞的重叠程度(Jaccard相似度),进一步优化了细胞之间的边权重。\n", - " - 接下来,调用`FindClusters`函数对细胞进行聚类分析.该函数通过迭代地将细胞分组,以最大化标准模块度函数来优化聚类结果,模块度函数衡量了细胞在群集中的连接紧密程度。\n", - " - 该函数还有一个`resolution`参数,用于设置聚类的“粒度”,增加参数值将产生更多的聚类。通常情况下,对于包含大约3K个细胞的单细胞数据集,将参数值设置在0.4-1.2之间可以得到良好的结果。对于更大的数据集,通常需要增加分辨率参数值\n", - " - 调用`idents()`函数,可以获取到聚类的结果\n", - " - UMAP 降维\n", - " - Seurat 提供了多种非线性降维技术,例如 tSNE 和 UMAP,以可视化和探索这些数据集。这些算法的目标是学习数据的底层流形,以便将相似的单元格放在低维空间中。" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "id": "29dc7d9d", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Computing nearest neighbor graph\n", - "\n", - "Computing SNN\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck\n", - "\n", - "Number of nodes: 2638\n", - "Number of edges: 95965\n", - "\n", - "Running Louvain algorithm...\n", - "Maximum modularity in 10 random starts: 0.8723\n", - "Number of communities: 9\n", - "Elapsed time: 0 seconds\n" - ] - }, - { - "data": { - "text/html": [ - "
AAACATACAACCAC-1
2
AAACATTGAGCTAC-1
3
AAACATTGATCAGC-1
2
AAACCGTGCTTCCG-1
1
AAACCGTGTATGCG-1
6
\n", - "\n", - "
\n", - "\t\n", - "\t\tLevels:\n", - "\t\n", - "\t\n", - "\t
  1. '0'
  2. '1'
  3. '2'
  4. '3'
  5. '4'
  6. '5'
  7. '6'
  8. '7'
  9. '8'
\n", - "
" - ], - "text/latex": [ - "\\begin{description*}\n", - "\\item[AAACATACAACCAC-1] 2\n", - "\\item[AAACATTGAGCTAC-1] 3\n", - "\\item[AAACATTGATCAGC-1] 2\n", - "\\item[AAACCGTGCTTCCG-1] 1\n", - "\\item[AAACCGTGTATGCG-1] 6\n", - "\\end{description*}\n", - "\n", - "\\emph{Levels}: \\begin{enumerate*}\n", - "\\item '0'\n", - "\\item '1'\n", - "\\item '2'\n", - "\\item '3'\n", - "\\item '4'\n", - "\\item '5'\n", - "\\item '6'\n", - "\\item '7'\n", - "\\item '8'\n", - "\\end{enumerate*}\n" - ], - "text/markdown": [ - "AAACATACAACCAC-1\n", - ": 2AAACATTGAGCTAC-1\n", - ": 3AAACATTGATCAGC-1\n", - ": 2AAACCGTGCTTCCG-1\n", - ": 1AAACCGTGTATGCG-1\n", - ": 6\n", - "\n", - "\n", - "**Levels**: 1. '0'\n", - "2. '1'\n", - "3. '2'\n", - "4. '3'\n", - "5. '4'\n", - "6. '5'\n", - "7. '6'\n", - "8. '7'\n", - "9. '8'\n", - "\n", - "\n" - ], - "text/plain": [ - "AAACATACAACCAC-1 AAACATTGAGCTAC-1 AAACATTGATCAGC-1 AAACCGTGCTTCCG-1 \n", - " 2 3 2 1 \n", - "AAACCGTGTATGCG-1 \n", - " 6 \n", - "Levels: 0 1 2 3 4 5 6 7 8" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# 细胞聚类\n", - "pbmc <- FindNeighbors(pbmc, dims = 1:10)\n", - "pbmc <- FindClusters(pbmc, resolution = 0.5)\n", - "\n", - "#查看前5个细胞簇的ID\n", - "head(Idents(pbmc), 5)" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "id": "50dc8f40", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "10:09:51 UMAP embedding parameters a = 0.9922 b = 1.112\n", - "\n", - "10:09:51 Read 2638 rows and found 10 numeric columns\n", - "\n", - "10:09:51 Using Annoy for neighbor search, n_neighbors = 30\n", - "\n", - "10:09:51 Building Annoy index with metric = cosine, n_trees = 50\n", - "\n", - "0% 10 20 30 40 50 60 70 80 90 100%\n", - "\n", - "[----|----|----|----|----|----|----|----|----|----|\n", - "\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "*\n", - "|\n", - "\n", - "10:09:51 Writing NN index file to temp file C:\\Users\\21145\\AppData\\Local\\Temp\\Rtmpc9Ugn1\\file4c80704d79c7\n", - "\n", - "10:09:51 Searching Annoy index using 1 thread, search_k = 3000\n", - "\n", - "10:09:52 Annoy recall = 100%\n", - "\n", - "10:09:52 Commencing smooth kNN distance calibration using 1 thread\n", - " with target n_neighbors = 30\n", - "\n", - "10:09:53 Initializing from normalized Laplacian + noise (using RSpectra)\n", - "\n", - "10:09:53 Commencing optimization for 500 epochs, with 105124 positive edges\n", - "\n", - "10:10:00 Optimization finished\n", - "\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAA7VBMVEUAAAAAOBEAOEUAWm4A\nZn0AcCEAeZUAeiQAiagAiikAni8Ao8gArtYAueMAujgAwZ8dL00nP2gsMwAvTHw6Xpo/ZqdA\nLABCIkxEbbJHUgBLIyFLecdNHTtNTU1VieFYjulZZwBbk/BhnP9lMCxoaGhqN3p4OTV4igB8\nfHx9kACBlgCERZiGmwCKoACMjIyTZgCTqgCWR0KaOnaampqiVLqnP4Cnp6erWcSsdwCyRIiy\nsrK6YdW9SJC9vb3Hx8fIaOXKYFnQ0NDTZFzTkgDZ2dnbaGDbcvvh4eHia2Pp6enqb2bw8PD4\ndm3/YcP///+rGqZqAAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO2dDZ/zPHaXtaV0\nt9BxSpdlaSG0OwzLALvTlLQBBmbYIcMd0uTR9/84xC+SztGLncSKZUv/6/d7JonteDx3cj1H\nOjqShQQAjEakvgAAcgAiARABiARABCASABGASABEACIBEAGIBEAEIBIAEYBIAEQAIgEQAYgE\nQAQgEgARgEgARAAiARABiARABCASABGASABEACIBEAGIBEAEHiIS7ASlAZEAiABEAiACEAmA\nCEAkACIAkQCIAEQCIAIQCYAIQCQAIgCRAIgARAIgAhAJgAhAJAAiAJEAiABEAiACEAmACEAk\nACIAkQCIAEQCIAIQCYAIQCQAIgCRAIgARAIgAhAJgAhAJAAiAJEAiABEAiACEAmACEAkACIA\nkQCIAEQCIAIQCYAIQCQAIgCRJqCqUl8BeDQQ6fFUFUzKHoj0eCBSAUCkxwORCgAiPZyqgkn5\nA5EeTSNRlfoqwIOBSA8GwagMINJjgUeFAJEeTKV/gJyBSI+l7SEhLGUPRHokVedQlfg6wMOB\nSA+kQua7GCDSA4FH5QCRHgc0KgiI9EBgUjlApMcBjwoCIj0MaFQSEOlBVO3wUZX6OsA0QKTH\n0JWqIiiVAkSKT0V+VBiNLQOIFB1TFYT6oHKASLFRjbrmuf4BMgciRafSUahKeh1gSiDSA1Ae\noVFXDhApPpUq+a4SXwiYDoj0AEimIfGVgKmASNFphmEr2leCT/kDkWJSya5hp8JR1W5GZyl7\nIFJEur5RIxLTpwq8AWQDRIpJ1TbsVLahSns1YEIgUlzahl03EguTygEiRaSSZHp5hRZdSUCk\neJhxWJVuAMUAkSJSqcdKIhwVBkSKStX8IOm6KnAgyAyIFBN73gRmmxcDRIoInTzRbam8B4Ls\ngEix6HIMzmaJ7lIJQKRIBHJ1SOAVAkSKQNX88Ofq2o3OZpAZEGk8vvmwle8IkC8QKQJEpEpt\nqeh+RKTsgUijqVRHqCITkGjiAfGoACDSWJRFZPGg7rX2p/K/E2QERBpNZVZp0NPLyTzzKs1V\ngWmBSGOpzNLEViBqd6NdVwQQaSRGnop0jSq6P8l1gWmBSGOpzDINOhpReyrfm0BuQKQImJl8\nuo/UbodGxQCRYlDpJyxZ53SYQLZApKjwutUKY7HFAJHiUHUPlb0VMakMIFIUVLmdSttVdDSp\nSnddYCogUhyq7oGg2nmISSUAkUZSkZ/NMxqRkG8oBog0ClMbRLZJqVt1yICXAkQagwo3zCPd\nMUIsKgiINIqq/WnNPtKldxLxqBQgUgwq+lxFpIpOUJJQKm8g0kgq/UO/qCQZma38YQtkBkQa\nBws7NPNQ8UMkIlLeQKRRqGSDeintJl0lYVARQKRxVO3PSr9WA0e61EEfVUmQLxApAmbQ9bQV\n4vWfddvaB2m1/0CWQKTRVCQirUXNl9rcJR14+w/kCEQaC60C+rnYSvkhXvSO1rEq0aWB6YBI\no6l0SqH6mThdngnRvFaFq1W6SwOTAZFGU1ltuHfx8y4B3m5LeGlgMiDSWFTTrmorv9+E+Dkf\noEXLrgQg0kiURGrOxJ++/Uyb5CkNB5kCkcah5792zbj61T8Vf8qKGarpLwtMDUQaBclsVyq/\nIE/iZ13hqo5Flee9ICcg0jiq5ofSqYtPQnQdp0odhdZd7kCksVTS6LRu0t9H8WLPjK3sd4HM\ngEgjYROOdvWA7OlNfKgNtJ61kiBfINJYKvqiLRF6lXZ5kOo+gVyBSFGo1JPdWrzU8Uh3kSp9\nROW8C+QDRBpBpR5o+07Pn0AIKgmIdD/GGRp3KrWPmFRJkDkQaQSV/UCS3pUkzTrEpuyBSLFQ\ns/dUIMJ4bFFApJFU5llXzmAGaRGJygEijcOfZmgeZTfDAvm6EoBI46Axp2o3sCFannQA2QKR\nRkEzdmqTqflu9yIilQBEGgXNLbDtZp4SKAKINI6KF4CrrTRQ0R0gVyBSJCpW8F2RHeghlQBE\nigTLKrB2XeU9HuQFRBpL1f407lRSZxrMzskvC0wLRBpJKwmtq9NhSeuFBHj+QKSxVNSUSloz\nY5VJE18UmBqINB7TrNN1QVW7Q3pzeiBDINIIKvWoMw2VpCOxekoFEg7ZA5Huh9fZkaydem5e\nTX9xYFog0ggq/dNKKpDsNzINZQCRxlBJ3S+qdMqbHwGNygAijUDl5NpukD8/V2FEtggg0gi6\nnhBJNNB5fuaQynknyA2INAYyGlux7SY2VYhIRQCRxmBsYWGnUpPOQTFApFFU7U9rfQY953z6\nCwKJgEjjUV0kVvst0aQrCog0ikqqLlJFMt0IReUBkcagkg1GJrIZlAREGkUldVlq+7PSm0FR\nQKSx6BR480LCojKBSKOpaGkd2nWFApFGUHUP3J3KPRBkD0S6HydLVyW6EJCeu7/zH+qdu7VY\n705xTrowePGCqqqrvMeCvLn3O38Q3Ttfm7umvkQ56eLg5Qy6hjXZ9YBk3PmdP6w7kb7F+lC/\n+o5w0gVSseekChwUxn3f+Q/x2om0E1+Xn5/iffxJl0jFXrAANe2FgMTc950XO9mJ9CaOsm7o\nvY0/6QJRnaKqe8nWQ0lwPSAZ933nD1KJxB9GnXSJ6Il97SupZybBo8K4+zvvF0m0jL+uhcBm\nHlVmES4EpNKILNLIky6Pij43ZULoIpUGRIoIJsWWy1iR1hCpg66tCopjrEht1u5YaNaOUKkB\nWVAkY0V6b8aRvsQuykkXSaUeusnmVbpLAckYK1LhlQ3SjCWZ9SKrlJcD0jBWJPnS5Ltf45x0\nkagCu4pm7UBhjBbp1FR/RzrpIlEFdohEJYP5SOOp2p/2cqugJCBSJJC0KxuIFAd4VDgQKRLQ\nqGwgUjSq1BcAEgKR4oDyoMKBSFFAyq50IFIc4FHhQKRIoGVXNhApFlXqCwApgUjRqFJfAEgI\nRIoF2nZFA5GiUaW+AJAQiARABCASABGASABEACIBEAGIBEAEIBIAEYBIAEQAIgEQAYgEQAQg\nEgARgEgARAAiARABiARABCASABGASABEACIBEAGIBEAEIBIAEYBIAEQAIgEQAYgEQAQgEgAR\ngEgARAAiARABiARABCASABGASABEACIBEAGIBEAEIBIAEYBIAEQAIgEQAYgEQAQgEgARgEgA\nRAAiARABiARABCASABGASABEACIBEAGIBEAEIBIAEYBIAEQAIgEQAYgEQAQgEgARgEgARAAi\nARABiARABCASABGASABEACIBEAGIBEAEIBIAEYBIAEQAIgEQAYgEQAQgEgARgEgARAAiARAB\niARABCASABGASABEACIBEAGIBEAEIBIAEYBIAEQAIgEQAYgEQAQgEgARgEgARAAiARABiARA\nBCASABGASABEACIBEAGIBEAEIBIAEYBIAEQAIgEQAYgEQAQgEgARgEgARAAiARABiARABCAS\nABGASGA2PKW+gBFAJDAXnp4WbBJEArMBIk1xUpAxjUFPSw5JEAmkpzFo0R5BJDAHVERKfR33\nA5FAemqFnhbdRYJIID1PigUnwCESSAyxaMGNO4gE0tLmGDqBFusRRAJpUQk78yIh5wvBnbu1\nWO9Oob0QCaSk6RY96cx3Uo/OHf69r6LmJfRmiAQS0go0jxGk87nPpG+xPsjDWnwH3g2RQEK6\n/tEsTOoXaSe+Lj8/xXvg3RAJJKRJ1nUyJb6U87nXpDdxvPw8iLfA2yESSInO2CWPSQMiCUEf\nPPsfcU0QCVyFDkcyvUkQCSwVNRDbpcDnkbODSGBxdBLpEqGZmOTbC5HAnHmiCfC5tO18e9cQ\nCcwUE4vmUSLUOyDbZu2OyNqBuWEKVdugJOeRcAjsem/Gkb7ELrAfIoFUdNroxp1M3bjrA5UN\nYLYokyStEpqrSy9Nrd1raDdEAong2QXtUeqB2RCnpvo7uBsigTSQbDfzaaYeDQGRQCLM3Akq\nz0I9gkggHToipR9EGg1EAulJX9YwGogEUmJSdcv2CCKBlDhxaLE6QSSQEFuk5TbwIBJISC2O\naOk2pL2e+4FIIA1tt+jp6WBEWqxFEiKBROgpSP9c/DEpulusSxAJpEHNi/2F+IUpukMf6fEn\nBXmh5PmF+KBDswmvSMr9hZ7dHz1fbIgEEtEtsvrH4msrxPZE5iMlsmnfEdp/CE6PlRAJpKNt\n2721uYY/+rMnPkFpcvb7fpMOa4gEZkmjjhCfsl7I9E+kbtmliUgDIn2IV4gE5oeaztfJI9Yy\n7Xjsft9vktiFVz6REAkkQk8t79Rpv6QJp5sPiXToWUJIQiSQCB18/kicLq9OzQ1TzHKR0zMk\nkoRIYI6ouu8/ubSZni4/f6E2JjIJIoEF8/T0Z+sma/dPjD2JOkqDHj1WJFZyGOukoADUmFG9\nqsjLhyQelSjSASKBu1AlQq41bcZhepuGPHqwSG/xTwpKIFjFwO4qOykDJUKPFOnDdy9AiASG\n8AvUPMzjDn4eHivSR/yTguwxS3FxgZonia5pkEeK9FaXHNoLUEIkMIRe0m7+ixVrHisSWxLZ\nl3oAwIEuaTd7ga5h7He+KTk87XgDDyKBfshyxTypsFip4nzn2wKPyCcFGfPkeSaxipDVeoRI\nYJgn995i5J5jSwMigTToO/WZXhLZsjjGfufXde2ufWtNiASGUf50M2OdO8kuKwsx9ju/q2+q\nedo1N9iMdlKQP3aKwSpleEpV3HAvY7/zp7Z2lw8kQSQwgLvMCcuDs/GlRTD6O9/V7sY9Kcge\nZ5kTtfaJXrZhSRphPhJICrmry5Mni7cgIBJIzRObYZ7So82F4M6PF7HenUJ7IRJIhbmFbLBL\nNKlVmw7/3l2TDFiHTIJIIAU0T9fNmvDc5XzSdt5m02fSQWxP9WSHbeDdEAkkwAlBtHiV7Jgy\nIvWL9NZ+qYMF2RAJTI97G3NrECkBm02/SS0QCcwJW5UZDBpdJdJJTxiygUggAY41bv9oaq4S\n6YOX8BAgEpiecPxJF5muEem4fgvtgkhgctw78wWmJ03KsEendahhB5HA9LhjRul7SPIakV5f\nQnsgEkjA3k02JLkOiwGPji+vx/Cbg9/5zxex3qo33ricCUQCPfSvwpiSvnD0FUzYNYS+821B\nhMpRQCQQETciUWYRnRyO/R6FvvNfzepAXy+dSRAJxKSvTzSL/pLLVvQvNRfY/tatr7VtTYJI\nICp9WbpZeqRWbLxVJH18O4kcIoHHMNP4cztDIrUmQSTwIEK3pFgage98uzhQw5s4QCTwSHII\nS4Hv/JasQfyyPkIk8EiW71HoO39osnYtR7GGSAD00jeOpJ5/3Xp/CYgErmC247L3EPzOH7Zr\n/fy4hUggGp0/A/eZXBiotQMTo/3JyaNbvvPXt+8gEuhhr4NSRkAkMD11UNrnZRNEAgnYNz2k\nPXm9dCASSAONSHNJO1QXQvtOWyG2h+BbIRJIgO3NLDyqOvx729uuBE2CSGBC9u2PuUQgRlX1\nmbSr11jd8RvqUSASmI5GINM78umUrlqoX6S2+jTsAEQCE1Kbo0XyjcjydYwnuy5JPQr3k6RY\nB/dc/5sgEohAm/runrq7rfXAp+MakXbiI7QLIoGJ2bOHPmYWkT7tW7xSIBJIwuzyDcMifbyt\nxXvo7RAJpGB2Hg0lG1q2wbYdRAIJmGPl9zUinYLZBogEpmXf1Qc5m5Mz7BHujwTmQpv8dgrt\n5hGhejRqx5GOIrT8d+93/vT+KoR4fQ/eyvmek4Ky6eq+7UK7OXjUR1PZcHq7q4/0oRfFC91d\n6Y6TgsLZO+Fn7g61tLV2wXWLe77z30Ls6hq9w1aInmX4bzspKBjVhvO34+bu024tXoLjsX3f\n+VcdxsI3Rb/5pKBcVBsu4NEsekl30/OdJwkKrCIEIrC3Hv17l0nPd35tUuYQCYxn4TGnn57v\n/IfuGX321BjdeFJQMItMMlxJ33f+fd3OBzyE7+V8+0lBuRiR5jN0FIvePlKd7hOvL0O3hrnl\npKBciEeLGDq6iSGRGBFOCgqGDsImvIyHgBIhMA0sZZdXs64GIoFJMOs05GnSVd/50/db/JOC\noiArfndLCdGd019PbPq+89+vt3ePBk8KCmXvPDG75hKeVhf69n+Hv9k93/mD0ejl+6brgUgg\nwJyLGlYdwQNO67tE2op3+SqO9d2RgjPVbz4pKBA2ZWJImmRSrVZDJr31tMx6098n+d4Urm4F\nIhK4G9M9spbOJ4e4B0/OoEiffV2cgaLVr6bu+xReqfXWk4ICIbfo89zMxZqglN6jgElH8Xq/\nSId2ai2SDSACjkW6UmgG9x4bFOnSzblPpLe6aLVu310iEkQC8aGVQoNNukevFjkk0rv47Aso\nPd/5T/F6vNi0q+erB2fY3npSAAzEnSGRHr5+8YBIh7p7c59Ism4SHtup6kg2gAj0uTLUtHv4\n+sX9AellfbpbJPlx6SAdt0K83uYRRAI+3Iydt9OUil6Rts0CQPeKdC8QCbh4PLI2JV5/tS8g\nDdb4QCQwEeR2LnoTKxxKv45xeBAJIoGZsKc3GGu38L1qllLqPHgPdzbtULQKIrK3DLKadVLb\nNF+T7k1/3zE5duikIB9+3PyOvZXv9q6kP1+P7hTpRWxvXfR7+KQgE+76XyyLNnuvS0vlugUi\n450U5MEP5VHw7sQEVki3JxmH0KqrC6Q3Ij3gpCATflyQP77E/wwfwtcMcm9p3pXY2VFpmWb1\n9pFunIZ0zUlBFvxo+d/iv/wI9pT4KnZ6+XwSkfYactxCY1Tfd/5TvB2inxRkQOfRj//w6zos\nhY7ypRLMuFF3VwrST+KrOSxMp77v/OENWTvgoWnVXX7+vfj7H80LvcNz8N77VDX0gvuXFph6\nvvNfSH8DH+dzI8yPH7/+dRuYmldSMqca+LCQ7UbXqHOGk+xniwDpb3Aj5/O5ffLfxLtq43UO\n2R5Zc/b4MJH2iE6PXVgcMiD9DW6l8+jyf9qTbNt4P6xYZK3xHRiH7fpMgYi0MHrv2PeAk4Js\nODbTPRuFLJHoYpAswyBNyd2eN/wWPzLb850/rm+7K9JVJwXZ0A6PKJHqLVomPW7kaalpg2hl\nnW91oWWZ1Vu0Kra33YT5mpOCXOgWaTMK2e273v6OHpjtXrrJ8gTdpaeeCe0DWbdrb+ty0/VA\npBJ4ce517+bsXEj3ybc/lCyfgqcO784DRAKP4a5kFLkpBZlS0WfXZD49PfWZ1Cx+0gMm9oEH\nw9MNe76VTUHyejRZC69fpI+BgjmIBB6LqgPSr9uN0gwzWQNN9vsffYEdT0+9Jn00i3eHgUjg\noeztiKQHYfdMouQ5ugGR3sTXVvTksdFHAg+DVQixNp21gMMc5iUNitQQXCkVIoFHYZpukvd1\n7LkTt8yUfZhvAyIJ8SnlaRds4F3xnT9+NIvj3QBEAtLOHViFQE4l+NDJ9DkjXJmX/mRDy6m9\nqYSHq77zH1iyGNwM9ah3SOnKk93+ptu4RqRwzv+6mzFjEX1wOwNF3QOVDwOvH8AVHo0UCfdH\nAuPgEyjoxtAbQt2mhwrVo9G6vr+RPAaHZa/6zh8gEhhNOAI5K6yGE3ksgTElu/r+RqddMF1w\nzXf+8NrcAPN6IBLw4POi+WGvsLp3zJJ0V5JU+am9v1FwIOnK9PdtVeAQCQxhBpG0SWSnM/pE\n3pdo6tJptxYv4eqGq0Ta3riYEEQCnFAJnfFl7z0+afHdTaBECDwep9aOqLN3jmCb7TNBJFAw\nnkw4KREy1XjWfApXr9muFg6RwGTsXY94jLHmU6ScnXQrEAlMBV1clYUgf2WrnLE2LhAJTEbr\nD13opC/RPdllRQEiganxpB7YbvsgHqZmKhhEAvPCWaCLP840aQeRwHQEm3HkAHpvCuumzYhI\nAEgzy7zvALZS5Eyd8QKRwGT4I5JTrJrOoOcLwZ2HrehZMRUigXRYnR67V6S2TnQ1zx3+ve1d\njtahG7RAJJAMZ4l93T0irwNLssbn+bnXpPX6IE9vwfJviASmwdfz8afB9eCSytNN09rrF+mz\nUegUvIs7RAKTYK+maqXi3JskkbI6noJ4EM/PvSZtRf8UCIgEJoFNPXK7Q/u/db40dMmu/XDq\nfCwDIr0I+b7uuYclRALTYBWrWlV1/91dzcBTSfTIsDQgkhDNEpGhlh1EAlPBooplxKdvDVK7\nM/XY9t2gSHWyYRtcSh8igWmwalVZvu5N7HpEounxSUzy7RVNH+k4boHIW4FIwGWvgxGbblT/\nJ/52723asUcpp+ok+fZ21zdyXbsbgUjAg/GiE0jZVP9Hv6HWbKRhe+L41TuM9AaRwDzgaQad\n0u7+099Qe1UG0rDznzZiEqKnROi9WdHuGFxzGCKBqeCBhi5Q14mkIxR9k1qqa9/GLvt0U60Y\neekdnepkw2dgP0QCU2E17diAay2SMwVd7VQrSPJ1+ff2kY/l/e77I90PRAIu5puv51OofLgT\nkfZW6NFtQG990TQ2fb3eece++4FIwAOJQNI07bo4VEckdZR3za2BiUwPuN6bgEhgMmiBgunb\ntA4I4a4l5H23f1/My7wLiAQmg3Vr9vw1FUkfY709uGXa3pIXiASmwi3iJok33bSTZps5JHhC\n/Zh6LWOIBKaCrchAH3xNOpPQ69GDeJR6LWOIBCaDjhy1XSSenXOXzN/3mkSbhvvgiO00QCQw\nJXvyxFoyyG346cFY6W3i0doI+eiS1iEgEpgSKhKbQb5XDTRJtzjL67MzsdpXx8NpmZ1I4eWQ\nwPIh6YG9E5EkGWpqtrACBys0sTNZ/a8UzE2kumoQLmUL+/bTIiHbj+CIrEcgvRd9pI7n5r++\nRfrAojFfe7ddZwQivviS5fwtTu1dIuYkUhuNYFLGEGGYKTSa0MIhSw5jjhuAYoj040Jgl76h\ncmj/6F8e8aRqYhVad9lC+kTtS+fbT+uIPK6oRJ7njWOv7UeHd6fyaBHr2ukZiugpZcu+96U0\nQcvnhR4wcuvDx/PjR69JDV/iO7BnViKZZh3ad5nSNclIVtvyQXd9urjUJxQ96XiuEOm0fgvt\nmpVIz3SuLzzKEivr7Y4VqS6SfggXNnie3c+PH8MmvYn5LhD53OXqZNegQyTKHpayYyZ1G/TP\nUESS5sBoXCHSIbiEfnqRuuyCatBJRKLssRJyRhU2gtQniZUpj3NZV4jUE5CSi9T1hkgcQkTK\nHN5NMnnsYISxbeFviRWYhkU6iG347WlFIi063cjTjTsIlSkmh01eSaskyDQAlS00DtGMRHyT\nAgfsmhW5AiQViabo9Np85BEu5cqeff91utvOQpBSIl3J0MWzPRMwBoMirfu+1+kj0rNkHkk9\nHIsUeNZYgcQqndP1eM1T7ZVUU2H3D6itG0w1vPW8OX0fqW3VyWfVOaL2wKNscRpkTrGqOytd\nrzvk7I1E7yDSh/joeWvapp3+QTYpj5qHVbyLAvPCK4I9yuqrA0pVnfrWe8++lCLRVJ3ZRAPT\nagWTSsKuc/CV4pFy12mFeulJficViaW81bisGVFCRCqQvfVcFdfRmiI9bjtxaAoWfrd7R59/\ntxbrHXf12ohkHvRoksnYgTIIyUBSC071g2z7SGmaeH5Gi/TaFJfz+5jddNJnE4Tks8nYIdNQ\nBuFhWJOo49OV5D5hRynIWJG+61trHta8uvy2k9JC1cuzFXkO8ic4FmQJpLaqwaWHX9htjBWp\nHe395PeoveKkJMXNC+1MfgEelcMVAUaXFEmnmTcHxor0Jo7SGasaPikfLPq+tA//5V8/84gE\nSmJwtgSbODv4nukZK5L3HrVXRqRuKFZ+Nd2sPz89IwqVi52vMy90IZDqGuki1hl5FFuk/gUi\nDLqo7sKp7mb95k38KtApQogqDJ6i49XhqjhoTsGoIU1EMrnuC/9G7C4/fyPWKh3OfVphVLY0\n2KCRSX6T8aPZeZSqaafS27VIb+LfsS6Tna6DSaWiKuuYOP3r6idjrEjrO/tIHbUza/H8q7V4\n+2vVRXI8QuOuHPiaxaog3CoKmp9GsbJ2x1uzdh1N8BHil02y4Tfe9RoQj0pCD8F2L2TSoqBb\nGCvSezOO9MVXheg/KbWljkIXkY7Pz78Sv2r30OLvGnhUEvrWe2Z++d558jB+uhDad/LUwhGm\nr2x4ppUMzdHi1OTu/lyvDSn1NKUVCsALQ887smdUPJ6fOrw7j+t2odVj4M2ja+1emvO/3nBS\ntSyxsuWXojHq0s0yCqmJs7xhh1Gm7OHTys22Cfjppz6Ttk2jaxdc/2S0SG3Eu+2kZmni+tWv\nxOHyeBL/Qu3tDukiEnvb2KsFc2dv5ptrgabpGPWL5E1P0/2PuKRhkWiW+yB++Zvni+v/mmnS\nTkfiDbtn9JiKwESiCXMLP/3Ua5JKT89pEX3dDepe79qZGO4qXCtu0oqZBaOyZ9Ic3YBI713T\n7t2zryZRROKz9z5f6tYh2/qspCEeNS9X9BUAsRgQSX7U2YZ1cP2TpCLRpRqkikWqi+QOIK16\nXgEwjiGR3pt2UyggJVqz4ZkkHPQG1qrrrwRfSZQ7gMgMBKS6aXfaBpfkShORVK6BLR5kFTao\nVx5hVi0xLhWAjn6R2jWETtaiCoYEIhmHAhGpE+i5McUrzAojtSA6vQOy80t/08DjacA926Eo\nmKWDRyAyPSVCbfr7NKf0N8ty24OsocnmaMqBpOxEXWe3C95qLNUCkeZGFHphu26Ht83m9Qhm\ngel49dTCEZKttPr8rO4vpqfLytDyqqtQymHshQJwNZ5aOELCiGRM0mNK/mq6kDEwCcyGdBHJ\nrPitExCBqtRgVdAq+CK4CYCHkP62Lu2zrpHXvGDVdSTwkCfd3pVp9bF6ohU/HoBHk/xGYwoz\np29l19MZWdTWVTeQREdmV+addNPdfwQAN5BYpGffKysiSR5bOo9alyxXnDYgghKYhsT3kL12\nqt7KeR6oHLLfAI/AJKQW6b754149mEeIRGBS0iYb7Apwec0UWE+ZnRukemdgABCb+USk1ihe\nwhAoFjJleCszb7bPlQkD1HmqXwRmxWyydttFejkAABtbSURBVL6I5P/+0/Zbl7Tj0ypSjiid\nzzCpSGYkkodARYN5QjLj7nBTEs4SUalE5i2Sl1DsmYdHl4iEqFQg8xPJrFUcOkKN0gaUuncY\nNs63v41IMKk0ZieSzuL1RBadX2gOWdkH3zd3KWYcQUwqjtmJdE1EMvkFXRdEVuq6dw5g6Lt/\nvRNnfTBEKo35iTQIr6Rbuf7c30c6e56q6DKsxrmh9QkmFcYCRVIGdc91PBqfZCDOEBPObN/A\n+89SyQSTimKBItGib10H7it1vRIehpREZ77zKjGIR2fEpLJYoEjdzTDp+BErDroxNvFvPJVI\ndjGm23yNSVKZCI8KY0EikTkVrLaOW3P74pGOR5JvaE26odtzhkjlsRyRyKy93gmw45aOPEsr\n8th9pcCb5Jkccr7JO5ADsxZpZb/qhmLpw/D7rsaXVbgyxyBVz4hsue8iwDKZs0jubAmVYBgs\nUr0Hb57byd553ylJRDpL0yAExTBnkdxJRV05A/PI7jLdj8nQNU0zvrEnNjnmwaPymLVIHJWe\na6MS2Rp5zaDzWWcLuCLh480R7QtoVBwLEsk/zS+86t3d6Ih0ZWDRHiFbVy5LEqnBl+x2d98u\nlfcdZ+uxFz0S6zkByJ2libTiAWjFkt36xW3NPKd8XIYzDt79bNutOT+QBUsTiUzf6ypW+dJB\nlxdf4rahJDMZo4bnwO2Mg2I4mXdtpSvIg8WJ1KIadCumQfPzKITOSlxnEz2KG3RFpo4dYt6r\nCyLgUhksVCRijt0we7mI1O68qyC8p4VHt1sRiXpHfiL7UAxLFalhZWfsLg9v6yYita/u8Ii4\nR6t+pPXcriMiUYi26lAqVAqLFkm360zH6UN81RGJ9nquO5PzxKr6kb0NPZqwsw6DR0WwbJFU\nu07Pjf0Wu/rG02pBh6td8q7l5YytBlIPqiPkFEOAcli4SA1GmNP6Va46kW4rA/cV7vkjkNPr\ncV7bKfBrrwEsmGWLZBfZvYqjrCOSWsxhTLFDIOHmyR7wvpSVYEC6oQwWLZJeTqh7vROfshWp\n2Ut+3k7w6+/fzNN4ZhLFGSaVwaJFshfQFxpzxEDrLrw3+OX3a+GfxqTSeb3XADJg2SLVkCW5\nPCINRKQ+z0IR6exPKrivzDQlmJQ9yxephtnQaHRti67Ho1D1KZ0G28f52gNBBmQgkp2da5IN\nESYnDVafnu2XbvrOeyDIkOWLRPpIqoEneaTZjJ6qdO3qkH2HwaasWb5I7MZjvn2bzcbZMWSW\nN8M9cFwoIg3Vv4IcyEAkg3eNBx6RrpuWfuX6DP12qKWLuxWF4FHWLFuk3gW5fCOy1y6UckXV\nd+A4Yk1XqofC1RJYtEhWYDGl4HyunnvMvbmI4dXq2o4SWw8F40glsGiRiDqSLcU6GHFu9mho\nPEgXFHnacQhIBbBskTr0dNn255BHgXDU96ahCa9Oyg4zKQojC5HYHWS7NSTDxwX26q1Oxo6G\nGDfFrRtv/eNOkClvchBpxbJyaoqSNDPR9U59TyX/aRo8syTO4Zfu9L9us/UMzbvMyUAka/3i\n7onUwYkdeUWiwXXA2m8n7mg0csrwvCuKg+zIQCQSkayb91kRqTXu2oxdMGvtm9h35s/5hKSr\nfh1YNjmIVA+5NnT5upV1K0yFuU3mFVh3ZgkVsLY/aLrbLBpOGnW4y0vuZCHSZqNM6h68d+0j\nub1hl3w9IX4A2+ybW04adZjclz05iLRabazXJiKtrK2s48R96l3Rzk3lne3NehzJYxciUu7k\nIJJVSkdjkXUbJV45xOsfbqx2cMQwa9t5khPQKHeyEEnjlgaZJN7K3c21W8kNj2y3QWpT7bJv\nNOzyJyeRvBmGdo9ZSNI06tgkpprN5gaTPG09tlCDaeJBpBLISCTvjZK6pzr2uB0lQo9HgT4S\nP4JkGVhOvKe2CGRCRiJ5ihjYU16Qd1vhqlsYNDQZ1lc0BJfyJSeRWliLTbmzCkxPGjqZXbFg\nXl01n8KeQAuTsiUnkfhkCvZCrSRJZbpicNZfocoLF+yd5JV96yR4lC8ZiWTuPSbJqJHap0Zp\nazbqcNsju4/kXeabldbRFVadu/jZOyFSvmQkEqlr0JWsOrewWpmnXXLOjUZu1s6XUbAW9pb0\nldqoSod874ROOZKTSKx71N1ctiuvY4Owq1By7rr0t1NYZ/Z0u+37JJ2t/df8LWBZ5CQSL2mg\nmW7iWG+vyOeR+7W3Sr3tPWY8SR/mhi2QGTmJZBfWrUxCQfWfbl/0JJC21rMl7BQ3fVQvVIsO\nLbt8yUokA+kisfrUnvGjje/FJpC27tpvap/yyW7Ldcfqd5wRkXIlT5HaygXprRoKRCXWP1Iv\nusdQRFL7nCGjwErhZ7udB7IhS5GsLJ29lz1oNvRhwzcOjr5aw0R2VYPeeUaBQ6ZkKZIpT/XM\n8PN3l9QLb+IuFEXObH8gp3DWtXftdjTusiRLkZyCVdsZp6tktKINPP3MW9/g5LfPnmN8S3/D\nowzJUSS2lBDbEHgtuVab9j8anJgG/gnm1gl9CTyzGeRGjiKxEge6wRxg9YEkfVkL1EhEPOK1\nPiaN7dYH0cEjVW4XKoUA+ZClSHY+wYlALCu3sjc3JvE3uA0zO5dtN/fOCjbcBI9yJUuRyHpB\n3Qb7CBKRiGXar76Tb0ilj2+aElFLVbie1XbMlc2WLEWSVl6uv6CBpBmuKLXbbJRCpJ7bikLq\nhdmoTcJ6QpmSp0gt3ogUVGqzMWs29BWBb3hJKkl8U2XISBKpYaWigazIWSQfvuCkO0akk8RU\n4nnus7vLH5iYScYyeJQjuYoUDDzBWUjmh2XSxgkugUEhmrljtQ1dgq816eo/ASyJTEUauHUL\nx9czIh5tNnrAlbbSPG/iN6bw7odImZKpSL4l9KWngCGQXWDDTJtOnO5nvSlQEU5WPAn54qmB\nADmQq0gKa1Euq6TOV1lHahr0brNO3ZmnGtRuSYZg6f5AjR7iUnZkLhJd3o7tsEwhO0xNAxuW\nZWV13lkTrls9bUCQGZmLNLRynadppzf1reBw7nllNiPbXQ65i3QrtHd01Uoo/pe6jMGaWzGQ\njQCLBSIxnN5RLzznQEqG2MCs2knGl+BSdpQpUtiSQFm4Fx5wumHX7oU02Qe9s83rIQmeJUWK\n5I03t9wbiQ28mpy4WwNBx2il1HLBo+woUiRHGjaNb9gontxWcckkwaUJQbyCVZUJjb1+MDvK\nFMmCTeMLVq4SrPpuE4zOxiRJFNPjUL2DtWDBlCNSXyKc1tmRerv6oe9bbyfBT3/3V2K9+0e6\nidR82808kBPFiDS4yKqdsGsfnXaY0s1nw4uoWdO4Yyq/MUs2a4oRiUYk76KqTsKufTzzY5Vm\njg2Xl1/it//3fHgR/8dMniU/jV3wKEPKEcngXVTVuw6K543eiNQ24bbi+7L1D2JHi/LUwWdj\nF8iQEkXyRiQrJe4fkQ3kH7p226s4XZ7/P/HabuT71eoNIE+KFMnLQETqTYq3fgjR2CKcPz+w\nxh3ICIh0Ffbk83aj9VqIRpVaJN7wU8NMpAriIVcJ0gGRhmjKV70ekamzDXVEutA+0B285oGM\n04JsgEg+nGSEZ73Is1qZSzvShKJGJGvE1lkzBR5lB0SSNOHt1n5vNtJJPXSjrJetLPA0yQb5\nj12ygcyrtWrEQYZAJDYE2yW4N/Y+b0RSI00qz70T37JOf/8dn0tBxpBQaJctpYjkTbq5Q7B6\nlUg9uDRYwnrWI0R/EL89yMNvxR/o2pE6542pSFlTiEj+iRPOxo1KK3gWRwkaZUZe/6opEfr3\nJEFHR2FNtR1kyo/cRfLcP8zgeGQqF5xyh2vmzB63a7He1h0lOm1C0io7O4EHMiFzkQZLVTkb\nq3yI72N4XaC3oiAb+HQ/mJQjmYs0tIqQzcbNfPshc/nYRneLdMXBOFJ+5C7SbXB19DCs3kjr\n56SusSMbHT/YDWRZZQNUygqI1KIS4HyjzjwE5054Y4uZIsuqwK2luWBSTkCkho017koeN9ok\nevNY/cTnkcrVmYWF2FoNqhQcZAREqrHbcBuT/u7umyRrGdq552cea9wCILqEAzu+28snnoMs\nKFwkZ2FVMztJvXQy4EQTnZPT6W59sCeBR1J3GJnNjbJF4kV1g4ty2WvqG53osBF5xnThVavw\nKC/KFolFHLYoV++baLBhU8htj7RPDM8msHTyF2lADdMHUoNIvipVumVDKn1UIapOHrDIdGb3\nVFIgGuVI9iINlvborNyGtO7sFRzYlo22RS+2xYZeyQ6pdQu08UAmZC8SKVbwG9XmvUmhnTuT\nz9foI7XctO6n20BTe0Y2vSnG3wVmRf4i9dyqRY0d+XPfZJurIFkK36wR5KbEzzw6YVGubClA\nJE9EImbpGUg+k0LLFpNRoDOPMnbtgopSVCQsy5UhJYjkwMzZkIjFF4tU7blOAuMhT3PT2/Bx\nj1jCWz140g9g+RQpktVUo5GIG9Y1/s7qpdqpw5FVpGAb1jyjv0qvqh/xj5khp91arHen1Jcx\nJWWKRPHMm9BlDda0825nG1OaF3p9kxatjzM0q1+UEJGO6/ZuAsfUFzIhxYvEMgtOb8qX6Oti\nihaF7TNZBnI4Mcl6zJOt2Mmf5E5sU1/IhBQokmq9sfab7B1xUjtMY40EHHakr+WWtzUehJA/\n/fSTdNduzpjyRDJzjLoRpOFb9LH5SPZcPvNEDSqpGUhO+CnFqPXlC/CT3It/lfpCJqQ8kST3\nyF9ft/G93NAR1maLlaSjHSCSbQhFr2x5F7tLRPoH8T9SX8iEFChSgz351bfT3Vo/kLVTtTpd\nzR0ZJmp3Wbqd2auM+aizDf/2f6W+jCkpVCQ2eES3e7eRpt+G6UDvEStNa64vOVdEWHprsnb/\nNfVlTEkRIoXDi7VT1zrwbSSx1y2cbwaJzqYAnJU7NA+8/IFvy5id2F3+Lf5B7FJfyISUIJJn\nvVRPHDLPnA7Shh2qIxKJRSYKKUh9nX1Y9nT34xDr1BcyISWI5Fkvla8D2X/Xy1AyjxUH+dLg\nZCa6GU4qwCOV90b6e5YnHYmV4ja3nXDTdpZHvsSDznQHc9zOIOy5iGDU8CY+TnUD7y31hUxI\nKSI5Oqg7Tzg3cpGkZpU9EkhDzY1EZ0eq7nkxEQklQvecoCXuSR+A3Q8iEWmz2dhNPb7J7Tnp\ndhuZsqdGj9yBI2ceRe6gaPVmDksRSaNGkOgmyzPbI3vyOUttmymwXZkdbcyRR3eiBciI8SK9\nxT/pY/GYxPdKGRKptWDDxGAeMUgQgj65M/Y7/yHe45/0oXiLg3iCm5hkWnUb1Yqzulu8eoHG\nHVL+UESDrmjGi/QR/6SPxeTv7Cnl9CCiW4cOOvaxJK99NvKYTfS9IFPGfuffxNf20q+Me9IH\nQht1pPm2cY7Y6NWE9D5bBbtx57zoNpjtaOJly3iRGl7V6Typh5lgknUbxyQ9JZYcoXbyaMXr\nvekT6gs7jGxHXMqWsd95IT7rbCdv4M1RJG/PiEekjd7LaleZR96FHkmRnSWKPRgLj3Ilznf+\nJF7inzQyZpSVdJLoLjeft7He0SrjpPtIeYOvUKg9BOTNvd95qwnHW3OzFKlDN+08LTwpf79b\ni7/4m9/R401jsP5xNu9T7Tl7TYZgqTdsypjSRGq9aJ+663CdeG3LRlVAMPOUR+ezdDMInlLv\nULgCOTH2O78WdSHIkQ/LzlakDct68xRDrctO/M3v5en18teYvIMbwRr8WbjzmXhEAlYxZXbF\nMvY7v6tnb5124ivmSR8FjSk0p9BuuzxZi/rF74VQnSWanLD6Rm4hgypiODstOgSj7Bn7ne8a\nQ3wgaa4i6ewBzYHzJF7z4tJQ7Sn9DkDqvp2ib4iUPaO/83Wh74tV3TBTkXSDThlju9Q9fF/+\nv2DfosKjFK+hY0061jE6n9Gqy59S5iNJ1rBjfSRnPOl1fdKldr7UXsvZVYdrpTZDohIoSCTV\nsCNqkD2mv/R66fA5N03iJrlV3VwjUuKARl0ZlCRSDZ0fwe4ZqzN4rUcmS07eSzPfBlWUqszB\n/KMSKU0ktiaQnmhk7Prd6/o/2dvalDmNScyjtkqVCkWHaSFSGRQnEqPLbhtD/uNf/OXvSP9I\n3SCp46zM4ultk/Cmw0h0TBZkT1EibZzn1hDRfxZ/aUaPzITzLm7pTpHVtGtMImOudgICKhVA\nSSLRvJs7la/euBVqHsimawSyQSYdekz/56xW+vaFHsydKIeSRGLT93webZRHwizTYL3ZCkWm\nR+QucCct7UDOFCWSwTPVSI/UWms1qL32KeyJsWZz90RCoYIoVCSahSOjSWakyW7aqaI7MjNp\n04Ubq3qVTZsFpVCuSFZyjt65j6HeoEOWOUPzSHtHZ+cnKIQSRdKlq3p+hCm/aw/Y6N2sHK99\nfTavGkwtnZ1cgEvlUKBIVmVd5w1LRGy4RORNXRKcVQuZZB7rL5FycJA9BYo0PDVis3GP0XWu\nbHFvlfg2BtHwhJUhy6FEkQwkN2dHqdA7jDcbNdvcdJF0Nrx9JdG6K4aiRSKjRfb0c984U2uX\n8qatdeBpbpXCw0BscRQtUldJp5+Sx421WZKaVaMaHUVSNavNBtluRkAqhrJFklbsIRMs7Il9\n3mVZdRtPLypEZ/r564ZAlhQvkmRpb6MKj0jWwC0/wWYjSUQidXiISOUAkex1UDaeDpKzRY8h\n1Q5tWBqve4JUQ1lAJLfiTm7sTTSzR1t85yYdbtLf3RtIl+mhFw7mA0SqYdNmpd1xYp2jdnaf\nGq49b840CLVRiLXvQBkULhKZAiutClVWMaSOJnULmy4ZToeRpJ7mBwqjbJGMQSQObayoZHWP\nSN2C9LXeYFGRlCtSN4bkzDmyBXKy3S18yEiyHfEvFsydYkWy5vCxtYXog2f8lVSB+4BHJVKs\nSHpoKDDyurFS3iQiddXhZ7LDAi4VR7kiKUK1QN5qO6mO3ai6oDoBLq2WH1p35VG8SKxLZJUI\nbex2H3OrqwvaND90yw/LnZRJySKZfJ2kfabuFV3XjlfZEbQ2KjOO8rpCKVgkpo5atMEuWzUR\niQ0t+aEF4KAsyhSJ6yHNECyNOdwaz7wK+3wd8KhEihTJKlMNPHrrVL0z/uwMHyiPIkViEycc\nBXTRkLntS+/xpkAClEuZIjWogVbP9KLOHj2gRHpLJjvB3gGPCqdckYKdnq52SO9rJdL5O2NX\nvfPsPQUojnJF8n39tTiBFh+xaqMnmANQtEguelWhwS4PH38FACJpNjoiXdHpaQZgJ7gosBAg\nkrSnT0h7QIkepZ4jSwcYRYvkmXFk7yMb+CTah14YWBxFibTiL0NzYANYsy0AIBQk0uoC2+Cs\nw+XucCdXPPIKwXIpRyTHI16wYJd+6+2SHASNQIByRKINO6c75EYk32gtPAIhChLJYM3a85XK\neepaAQhTnkim0oc04HqS3WjQgSsoTCR+mwk2i6/nPQAMUZZIdPq4tSfJ9YBsKEskSbpGbKv0\nq7TxPgXAoTCRWnREotkGT30dzTigpwT6KFEkPWrEsg3e+yJ5nwLgUKJIZpyIBBz20nmBiAT6\nKVIkd7a4dDbY5sAj0EeZIrU4g668Imjy6wELpmSR3EFXyAPupGiRDDAIjAMi9eCb8AeAD4gU\nZsNy5AD0AJF68BYTAeABIvVx1dJcAECkARCRwHVApF4gEbgOiNQHmnXgSiCSCysUSncZYElA\nJAe6GBfu2AKuAyK58GW50LwDVwCReqArpADQB0TqBWurguuASH0gHoErgUi9wCRwHRBpAHgE\nrgEiARABiARABCASABGASABEACIBEAGIBEAEIBIAEYBIAEQAIgEQAYgEQAQgEgARgEgARAAi\nARABiARABCASABGASABEACIBEAGIBEAEIBIAEYBIAEQAIgEQAYgEQAQgEgARgEgARAAiARAB\niARABCASABGASABEACIBEAGIBEAEIBIAEYBIAETgMSIBMEMe8V3X3/lHnvwm0l0JfnMZv/mh\nzOfPKvGjxW/Ohvn8WSV+tPjN2TCfP6vEjxa/ORvm82eV+NHiN2dDpn8WANMCkQCIAEQCIAIQ\nCYAIQCQAIgCRAIgARAIgAjMR6UNdx24t1rvTtL98gpJGHyn+1IZEf2/aD/nRzEOkg/pYX5uP\n+GXqX57ii5XiT21I9Pem/ZAfzixEOqy7f+NvsT7Ur74n/e3ibcpf15HkT21I8/cm/pAfzhxE\n+hCv3b/xTnxdfn6K92l//aS/riPJn9qQ5u9N/CE/nDmIJHay+zd+E0c5+f8yP8THlL+uI8mf\n2pDm7038IT+cOYh0kOrfmD9MxJv42l46v1P+SpnoT21I8/cm/pAfzkz+mrQiNbxO+TvTipTi\n75UQaQpS/hsL8SnlaTdxgyfd1ynN3ysh0hSk/zc+TZyPTf11mvrvlXP4kB9Iwr+GjmZ0j+sp\n/42t0ZSJP9hJ/1Qf0//mFB/yZMxLpDahc5wmoZNWpEn/VB/JREr+lz+Emfxvofs3fm+GGL7E\npCmltairVab+YJP8qQ1p/l6Z9kN+OPMSKcmg967+SE/tMOF0pBvfT/P3yrQf8sOZl0jyJUFm\n9rRufunU/4NM8ac2JPp7037ID2dmIp2awuCJf3n9S18mTwYn+VP1b57+7038IT+amYgEwLKB\nSABEACIBEAGIBEAEIBIAEYBIAEQAIgEQAYgEQAQgEgARgEgARAAiARABiLR03vERzgF8Cgvn\nK7OZpksFn8Ky+UqxiDdwwaewaN7FGiLNAnwKaaCLVVz+O76Kly8pP1/Ey2ez/bNefW576A75\nWItX34TStXg5QqRZgE8hDVyk72bS6uGzmTpaG/Pa3THiuzmkiTu+dejqbRBpFuBTSAMXqZ73\nvRVv9bry23oO9od4PUp5em/mYwuxPtabhP+OQhBpFuBTSAMXaSvrFRubdX1O9ZaXZsWq7qhL\nqKqf7wK3b4BIswCfQhq4SMf26YHuOXy9v3Yita8Dy4VApFmATyENVrKBbGoejm/mtnpKoIAx\nEGkW4FNIQ79Ix7UQL9uPI41IEGnW4FNIQ79IW9HeqxgRaTHgU0hD9/U/+kWie2V32wj0kWYN\nPoU0dJmFj16RtjRrt0XWbs7gU0jDVrwe5OlD+EV6rZt2p4tH9diREOtPjCPNHXwKaTi0Sbkv\nv0jf7d73l7q0QYg2hRdY9B4izQJ8Cok4XuLN63co/f39etHn+yLUW7NhJ8T2GDgRRJoF+BRm\nD0xZAviQZg9EWgL4kGYPRFoC+JBmjxFJMFJeE7DBxzF7INISwMcBQAQgEgARgEgARAAiARAB\niARABCASABGASABEACIBEAGIBEAEIBIAEYBIAEQAIgEQAYgEQAQgEgARgEgARAAiARABiARA\nBCASABGASABEACIBEIH/D3U1Lq5AxiyiAAAAAElFTkSuQmCC", - "text/plain": [ - "plot without title" - ] - }, - "metadata": { - "image/png": { - "height": 420, - "width": 420 - } - }, - "output_type": "display_data" - } - ], - "source": [ - "# UMAP降维\n", - "pbmc <- RunUMAP(pbmc, dims = 1:10)\n", - "DimPlot(pbmc, reduction = \"umap\", label = TRUE)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "1d50fac5", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "R", - "language": "R", - "name": "ir" - }, - "language_info": { - "codemirror_mode": "r", - "file_extension": ".r", - "mimetype": "text/x-r-source", - "name": "R", - "pygments_lexer": "r", - "version": "4.2.0" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -}