Skip to content

Latest commit

 

History

History
135 lines (114 loc) · 7.74 KB

benchmark.md

File metadata and controls

135 lines (114 loc) · 7.74 KB

benchmark

environment

Hardware environment:

  • GPU: V100 * 8
  • CPU: Intel Xeon

Software environment:

  • Ptyhon 3.7
  • PyTorch 1.2
  • CUDA 10.0
  • Vega 0.9.2

Image Classification on ImageNet

Method Model Name Accuracy Paras(M)
EfficientNet B0 76.83
B4 82.8
B8 672 85.7 88
B8 832 85.8 88
DARTS - 73.30 -
AmeobaNet-A - 83.90 -
ProxylessNAS - 75.10 -
StacNAS - 76.78 -

Image Classification on Cifar-10

Method Model Name #Paras(M) Accuracy
CARS CARS-A 1.402 95.92
CARS-B 1.697 96.58
CARS-C 1.913 96.74
CARS-D 2.225 97.05
CARS-E 2.408 97.25
CARS-F 3.767 97.30
CARS-G 4.377 97.38
CARS-H 4.499 97.42
CARS-I 4.506 97.43
DARTS - 3.30 97.24
NSGANet - 3.30 97.25
SNAS Aggressive 2.30 96.90
Mild 2.90 97.02
AmeobaNet-A - 3.10 96.88
ProxylessNAS - 5.70 97.92
StacNAS - 3.90 97.98

Detection on ECP

Method LAMR (reasonable) LAMR (small) LAMR (occluded) LAMR (all)
SPNet w cascade 0.042 0.095 0.216 0.139
Pedestron 0.051 0.112 0.254 0.162
APD 0.053 0.124 0.268 0.173
Pedestrian2 0.056 0.126 0.266 0.171
Real-time Pedestr... 0.066 0.136 0.313 0.193
Irtiza and LiJinp... 0.086 0.168 0.379 0.230
YOLOv3 0.097 0.186 0.401 0.242
Faster R-CNN 0.101 0.196 0.381 0.251
SSD 0.131 0.235 0.460 0.296
Torchvision Faste... 0.141 0.296 0.439 0.309
R-FCN (with OHEM) 0.163 0.245 0.507 0.330
YOLOv3_640 0.273 0.564 0.623 0.456
YOLOv3-spp 0.425 0.679 0.755 0.586
YOLOv3 0.699 0.916 0.877 0.789

Super-Resolution on Set5

Method Model Name Model Size/M Flops/G PSNR SSIM
ESR-EA ESRN-V-1 1.32 40.616 37.79 0.9566
ESRN-V-2 1.31 40.21 37.84 0.9569
ESRN-V-3 1.31 41.676 37.79 0.9570
ESRN-V-4 1.35 40.17 37.83 0.9567
SR_EA M2Mx2-A 3.20 196.27 38.06 0.9588
M2Mx2-B 0.61 35.03 37.73 0.9562
M2Mx2-C 0.24 13.49 37.56 0.9556
SRCNN - - 52.7 36.66 0.9524
CARN-M - - 91.2 37.53 0.9583
FALSR-B - 0.32 74.70 37.61 0.9585

Super-Resolution on Set14

Method Model Name Model Size/M Flops/G PSNR SSIM
ESR-EA ESRN-V-1 1.32 40.616 33.37 0.8887
ESRN-V-2 1.31 40.21 33.37 0.8911
ESRN-V-3 1.31 41.676 33.35 0.8878
ESRN-V-4 1.35 40.17 33.35 0.8902
SR_EA M2Mx2-A 3.20 196.27 33.65 0.8943
M2Mx2-B 0.61 35.03 33.32 0.8870
M2Mx2-C 0.24 13.49 33.13 0.8829
SRCNN - - 52.7 32.42 0.9063
CARN-M - - 91.2 33.26 0.9141
FALSR-B - 0.32 74.70 33.29 0.9143

Super-Resolution on B100

Method Model Name Model Size/M Flops/G PSNR SSIM
ESR-EA ESRN-V-1 1.32 40.616 32.09 0.8802
ESRN-V-2 1.31 40.21 32.08 0.8810
ESRN-V-3 1.31 41.676 32.05 0.8789
ESRN-V-4 1.35 40.17 32.06 0.8810
SR_EA M2Mx2-A 3.20 196.27 32.20 0.8842
M2Mx2-B 0.61 35.03 32.00 0.8989
M2Mx2-C 0.24 13.49 31.89 0.8783
SRCNN - - 52.7 31.26 0.8879
CARN-M - - 91.2 31.92 0.8960
FALSR-B - 0.32 74.70 31.97 0.8967

Super-Resolution on Urban100

Method Model Name Model Size/M Flops/G PSNR SSIM
ESR-EA ESRN-V-1 1.32 40.616 31.65 0.8814
ESRN-V-2 1.31 40.21 31.69 0.8829
ESRN-V-3 1.31 41.676 31.47 0.8803
ESRN-V-4 1.35 40.17 31.58 0.8814
SR_EA M2Mx2-A 3.20 196.27 32.20 0.8948
M2Mx2-B 0.61 35.03 31.37 0.8796
M2Mx2-C 0.24 13.49 30.92 0.8717
SRCNN - - 52.7 29.50 0.8946
CARN-M - - 91.2 31.23 0.9144
FALSR-B - 0.32 74.70 31.28 0.9191

Segmentation on VOC2012

Method Model Name Model Size/M Flops/G KParams mIOU
Adelaide_EA - 10.6 0.5784 3822.14 0.7602
MV2 + LW RefineNet - - 0.92 4163 0.7313