forked from hgrecco/pint-pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCHANGES
93 lines (70 loc) · 3.41 KB
/
CHANGES
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
pint-pandas Changelog
=====================
0.7 (unreleased)
--------------------
- Added `__array_function__` support for numpy fuctions like clip.
- `PintArray` now explictly shows its `subtype`, the data type of its magnitude array, eg `pint[m][Float64]`
0.6.2 (2024-07-29)
--------------------
- Fix PintType._get_common_dtype (added via #137) to check compatibility of all `PintType`s in `dtypes`
0.6.1 (2024-07-13)
--------------------
- Support for pandas version 3.0
- Fix pandas eval function (needs pandas>=3 to work) #137
0.6 (2024-06-16)
----------------
- Fix dequantify duplicate column failure #202
- Fix astype issue #196
- Support for `__array_ufunc__` and unary ops. #160
- Support for NumPy verson 2
- Minimum Pint version is 0.24
- Minimum Pandas version is 2.2
0.5 (2023-09-07)
----------------
- ReadTheDocs Documentation created.
- Support for Pandas version 2.1.0. #196
- Support for dtype-preserving `PintArray.map` for both Pandas 2.0.2 and Pandas 2.1. #196
- Support for <NA> values in columns with integer magnitudes
- Support for magnitudes of any type, such as complex128 or tuples #146
- Support for pandas 2.0, allowing `.cumsum, .cummax, .cummin` methods for `Series` and `DataFrame`. #186
- Support for unit registries with `force_ndarray_like = True`. #165
- A DataFrame/Series.pint.convert_object_dtype() function has been added to create PintArrays from Series of quantities.
- Minimum Pint version is 0.21
- Minimum Pandas version is 2.0
0.4 (2023-05-23)
----------------
- Support for <NA> values in columns with integer magnitudes
- Support for magnitudes of any type, such as complex128 or tuples #146
- Support for Pint 0.21 #168, #179
- Cast to `numpy.ndarray` in `PintArray._reduce` if needed to use `nanops` functions
- Minimum Pint version is 0.21
- Minimum Pandas version is 1.6
0.3 (2022-11-14)
----------------
- Support for pandas 1.5, with a significant uplift in capability. Many operations that gave results with object
dtype now give PintArrays. #133
- Fixed a bug which caused the creation of PintArray (and even more so all binary mathematical operations)
to convert input arrays to lists of Quantity, thereby causing a huge slowdown. #80
- Fixed a bug where listlike operands in binary operations were not correctly converted to Quantity arrays. #86
- Fixed pickling of `PintArray` instances. #71
- Fixed a bug where units of a quantity where ignored when creating a PintArray. #104
- Quantity arrays may be used to initialise PintArrays without specifying the dtype. #104
- Fixed a bug where `.astype("string[pyarrow]")` would not create pyarrow-backed arrays. #101
- Fixed bug preventing adding to empty slices of PintArrays #69
- Notebook updated to show plotting #116 #9 #43
- df.pint.quantify and df.pint.dequantify now allow columns without units. #132
- Tests reorganised #131
- Shortened form of dimensionless unit now in dtype, eg 'pint[]' #151
- Fixed bug preventing PintArrays with offset units being printed. #150
0.2 (2021-03-23)
----------------
- Support for pandas 1.2, which allows DataFrames with PintArrays to be plotted #53 #60 #61
- Fixed bug which prevented creating a PintArray with offset units like temperature. #48
- Fixed bug which caused Series.min() to throw an exception. #47
- pint-pandas now uses pint's application registry by default #67
- Improved testing
- Minimum Pint version is 0.17
- Minimum Pandas vesrion is 1.2
0.1 (2020-07-01)
----------------
- first public release.