-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFaceDetectionModule.py
54 lines (48 loc) · 2.16 KB
/
FaceDetectionModule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import cv2
import mediapipe as mp
class FaceDetector:
def __init__(self, minDetectionCon=0.5, model=0):
self.results = None
self.minDetectionCon = minDetectionCon
self.model = model
self.mpFaceDetection = mp.solutions.face_detection
self.myDraw = mp.solutions.drawing_utils
self.faceDetection = self.mpFaceDetection.FaceDetection(self.minDetectionCon)
def findFaces(self, img, draw=True):
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
self.results = self.faceDetection.process(imgRGB)
bboxs = []
if self.results.detections:
for id, detection in enumerate(self.results.detections):
bboxC = detection.location_data.relative_bounding_box
ih, iw, ic = img.shape
bbox = int(bboxC.xmin * iw), int(bboxC.ymin * ih), \
int(bboxC.width * iw), int(bboxC.height * ih)
bboxs.append([id, bbox, detection.score])
if draw:
img = self.fancyDraw(img, bbox)
cv2.putText(img, f'{int(detection.score[0] * 100)}%', (bbox[0], bbox[1] - 20),
cv2.FONT_HERSHEY_PLAIN, 2,
(255, 0, 255), 2)
return img, bboxs
@staticmethod
def fancyDraw(img, bbox, l=30, rt=1, t=5):
"""
:rtype: numpy.ndarray
"""
x, y, w, h = bbox
x1, y1 = x + w, y + h
cv2.rectangle(img, bbox, (255, 0, 255), rt)
# Top left x, y
cv2.line(img, (x, y), (x + l, y), (255, 0, 255), t)
cv2.line(img, (x, y), (x, y + l), (255, 0, 255), t)
# Top right x1, y
cv2.line(img, (x1, y), (x1 - l, y), (255, 0, 255), t)
cv2.line(img, (x1, y), (x1, y + l), (255, 0, 255), t)
# Bottom left x, y1
cv2.line(img, (x, y1), (x + l, y1), (255, 0, 255), t)
cv2.line(img, (x, y1), (x, y1 - l), (255, 0, 255), t)
# Bottom right x1, y1
cv2.line(img, (x1, y1), (x1 - l, y1), (255, 0, 255), t)
cv2.line(img, (x1, y1), (x1, y1 - l), (255, 0, 255), t)
return img