-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimagegiver.py
97 lines (71 loc) · 3.16 KB
/
imagegiver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import cv2 as cv
import numpy as np
import random
import os
from osgeo import gdal
import matplotlib.pyplot as plt
from show import twopercentlinearstrech, graytwopercentlinearstrech
class ImageGiver(object):
def __init__(self, pan_path = "./pan", multi_path = "./mul", shuffle = True):
self._pan_path = pan_path
self._multi_path = multi_path
self._multi_imagename_list = []
self._counter = 0
self._if_shuffle = shuffle
self._get_list_names()
def _get_list_names(self):
self._multi_imagename_list = os.listdir(self._multi_path)
if self._if_shuffle:
random.shuffle(self._multi_imagename_list)
def read_image(self, filename):
dataset = gdal.Open(filename, gdal.GA_ReadOnly)
height = dataset.RasterYSize
width = dataset.RasterXSize
channels = dataset.RasterCount
datatype = np.float32
image = np.zeros((height, width, channels), dtype=datatype)
for band in range(channels):
band_data = dataset.GetRasterBand(band + 1)
image[:, :, band] = band_data.ReadAsArray()
return image
@staticmethod
def _get_pan_name(mtl_image_name):
pan_name = mtl_image_name.split("_")[0] + "_p.tif"
return pan_name
def give(self, batchsize = 32):
high_res_pan_images = []
low_res_pan_images = []
high_res_mul_images = []
low_res_mul_images = []
flag = 0
for i in range(batchsize):
i += self._counter
if i == len(self._multi_imagename_list):
flag = 1
break
multi_image_name = self._multi_imagename_list[i]
pan_image_name = self._get_pan_name(multi_image_name)
multi_image_path = os.path.join(self._multi_path, multi_image_name)
pan_image_path = os.path.join(self._pan_path, pan_image_name)
high_res_mul_image = self.read_image(multi_image_path)
high_res_pan_image = self.read_image(pan_image_path)
low_mul_size = (64, 64)
low_pan_size = (128, 128)
low_mul_resize = (64, 64, 7)
low_pan_resize = (128, 128, 1)
low_res_multi_image =\
np.reshape(cv.resize(high_res_mul_image, low_mul_size, interpolation=cv.INTER_LINEAR), low_mul_resize)
low_res_pan_image =\
np.reshape(cv.resize(high_res_pan_image, low_pan_size, interpolation=cv.INTER_LINEAR), low_pan_resize)
high_res_pan_images.append(high_res_pan_image)
high_res_mul_images.append(high_res_mul_image)
low_res_mul_images.append(low_res_multi_image)
low_res_pan_images.append(low_res_pan_image)
high_res_pan_images = np.array(high_res_pan_images)
high_res_mul_images = np.array(high_res_mul_images)
low_res_mul_images = np.array(low_res_mul_images)
low_res_pan_images = np.array(low_res_pan_images)
self._counter += batchsize
return flag, high_res_pan_images, high_res_mul_images, low_res_mul_images, low_res_pan_images
if __name__ == "__main__":
pass