From 0190e2286bab42e9ad978ddccc9b8411983cb067 Mon Sep 17 00:00:00 2001
From: Denys Herasymuk
Date: Tue, 15 Aug 2023 01:17:32 +0300
Subject: [PATCH 001/148] Added extra tests
---
.../test_protected_groups_partitioning.py | 45 +++++++++++++++++++
1 file changed, 45 insertions(+)
diff --git a/tests/utils/test_protected_groups_partitioning.py b/tests/utils/test_protected_groups_partitioning.py
index 2177518c..ed9b6f57 100644
--- a/tests/utils/test_protected_groups_partitioning.py
+++ b/tests/utils/test_protected_groups_partitioning.py
@@ -79,3 +79,48 @@ def test_create_test_protected_groups_true2(compas_without_sensitive_attrs_datas
assert actual_test_protected_groups['sex_dis'].shape[0] == 845
assert actual_test_protected_groups['race_priv'].shape[0] == 414
assert actual_test_protected_groups['race_dis'].shape[0] == 642
+
+
+def test_create_test_protected_groups_folk_true1(folk_emp_config_params):
+ data_loader = ACSEmploymentDataset(state=['NY'], year=2018, with_nulls=False,
+ subsample_size=20_000, subsample_seed=42)
+
+ seed = 100
+ X_train, X_test, y_train, y_test = train_test_split(data_loader.X_data,
+ data_loader.y_data,
+ test_size=folk_emp_config_params.test_set_fraction,
+ random_state=seed)
+ actual_test_protected_groups = create_test_protected_groups(X_test,
+ data_loader.full_df,
+ folk_emp_config_params.sensitive_attributes_dct)
+
+ assert len(actual_test_protected_groups) == len(folk_emp_config_params.sensitive_attributes_dct.keys()) * 2
+
+ assert actual_test_protected_groups['SEX_priv'].shape[0] == X_test[X_test.SEX == '1'].shape[0]
+ assert actual_test_protected_groups['SEX_dis'].shape[0] == X_test[X_test.SEX == '2'].shape[0]
+ assert actual_test_protected_groups['RAC1P_priv'].shape[0] == X_test[X_test.RAC1P != '2'].shape[0]
+ assert actual_test_protected_groups['RAC1P_dis'].shape[0] == X_test[X_test.RAC1P == '2'].shape[0]
+ assert actual_test_protected_groups['SEX&RAC1P_priv'].shape[0] == X_test[(X_test.SEX != '2') | (X_test.RAC1P != '2')].shape[0]
+ assert actual_test_protected_groups['SEX&RAC1P_dis'].shape[0] == X_test[(X_test.SEX == '2') & (X_test.RAC1P == '2')].shape[0]
+
+
+def test_create_test_protected_groups_folk_true2(folk_emp_config_params):
+ data_loader = ACSEmploymentDataset(state=['NY'], year=2018, with_nulls=False,
+ subsample_size=20_000, subsample_seed=42)
+ new_sensitive_attributes_dct = {'SEX': '2', 'RAC1P': ['2', '3', '4', '5', '6', '7', '8', '9']}
+
+ seed = 100
+ X_train, X_test, y_train, y_test = train_test_split(data_loader.X_data,
+ data_loader.y_data,
+ test_size=folk_emp_config_params.test_set_fraction,
+ random_state=seed)
+ actual_test_protected_groups = create_test_protected_groups(X_test,
+ data_loader.full_df,
+ new_sensitive_attributes_dct)
+
+ assert len(actual_test_protected_groups) == len(new_sensitive_attributes_dct.keys()) * 2
+
+ assert actual_test_protected_groups['SEX_priv'].shape[0] == X_test[X_test.SEX == '1'].shape[0]
+ assert actual_test_protected_groups['SEX_dis'].shape[0] == X_test[X_test.SEX == '2'].shape[0]
+ assert actual_test_protected_groups['RAC1P_priv'].shape[0] == X_test[X_test.RAC1P == '1'].shape[0]
+ assert actual_test_protected_groups['RAC1P_dis'].shape[0] == X_test[X_test.RAC1P.isin(['2', '3', '4', '5', '6', '7', '8', '9'])].shape[0]
From e65dcc140877770c04191a54549d7180a0ecf71a Mon Sep 17 00:00:00 2001
From: Denys Herasymuk
Date: Sun, 1 Oct 2023 01:23:51 +0300
Subject: [PATCH 002/148] Added plot 1 to a gradio app
---
.gitignore | 1 +
.../Multiple_Models_Interface_Use_Case.ipynb | 86 ++--
.../Multiple_Models_Interface_Vis.ipynb | 480 ++++++++++++++++++
docs/examples/experiment_config.yaml | 2 +-
requirements.txt | 2 +-
.../metrics_interactive_visualizer.py | 120 +++++
virny/custom_classes/metrics_visualizer.py | 16 +-
virny/utils/data_viz_utils.py | 132 +++--
8 files changed, 701 insertions(+), 138 deletions(-)
create mode 100644 docs/examples/Multiple_Models_Interface_Vis.ipynb
create mode 100644 virny/custom_classes/metrics_interactive_visualizer.py
diff --git a/.gitignore b/.gitignore
index cf2ccb41..375238bf 100644
--- a/.gitignore
+++ b/.gitignore
@@ -1,4 +1,5 @@
*_venv
+virny_env
notebooks
*.env
.DS_Store
diff --git a/docs/examples/Multiple_Models_Interface_Use_Case.ipynb b/docs/examples/Multiple_Models_Interface_Use_Case.ipynb
index 7c056ceb..d0bb62a5 100644
--- a/docs/examples/Multiple_Models_Interface_Use_Case.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Use_Case.ipynb
@@ -152,7 +152,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "8d7b3af66d9484a6"
},
{
"cell_type": "code",
@@ -200,7 +201,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "d8e5cb3ff6e3941a"
},
{
"cell_type": "markdown",
@@ -209,7 +211,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "fc98f09ac0fc8ded"
},
{
"cell_type": "markdown",
@@ -226,7 +229,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "e6c314a1af8c4fe5"
},
{
"cell_type": "code",
@@ -247,7 +251,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "4955f140ad45254e"
},
{
"cell_type": "code",
@@ -259,7 +264,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "b64f9dbcbfa9cdc2"
},
{
"cell_type": "markdown",
@@ -359,7 +365,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "c6719c1b6b5748a9"
},
{
"cell_type": "code",
@@ -370,7 +377,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "de4db3f6b82c8f05"
},
{
"cell_type": "markdown",
@@ -379,7 +387,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "7317a756231dc58a"
},
{
"cell_type": "code",
@@ -403,8 +412,7 @@
"\n",
"2023/08/13, 01:39:23: Tuning XGBClassifier...\n",
"Fitting 3 folds for each of 4 candidates, totalling 12 fits\n",
- "2023/08/13, 01:39:27: Tuning for XGBClassifier is finished [F1 score = 0.6548814644409034, Accuracy = 0.6587752525252525]\n",
- "\n"
+ "2023/08/13, 01:39:27: Tuning for XGBClassifier is finished [F1 score = 0.6548814644409034, Accuracy = 0.6587752525252525]\n"
]
},
{
@@ -423,7 +431,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "d76c04f902e8548a"
},
{
"cell_type": "code",
@@ -437,7 +446,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "dc00b584001630d3"
},
{
"cell_type": "markdown",
@@ -446,7 +456,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "9a3bc8180fc00ea2"
},
{
"cell_type": "code",
@@ -480,7 +491,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "9b04064fae7867f4"
},
{
"cell_type": "markdown",
@@ -520,9 +532,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "############################## [Model 1 / 4] Analyze DecisionTreeClassifier ##############################\n",
- "\n",
- "\n"
+ "############################## [Model 1 / 4] Analyze DecisionTreeClassifier ##############################\n"
]
},
{
@@ -547,10 +557,7 @@
{
"name": "stdout",
"output_type": "stream",
- "text": [
- "\n",
- "\n"
- ]
+ "text": []
},
{
"name": "stderr",
@@ -568,9 +575,7 @@
"\n",
"\n",
"\n",
- "############################## [Model 2 / 4] Analyze LogisticRegression ##############################\n",
- "\n",
- "\n"
+ "############################## [Model 2 / 4] Analyze LogisticRegression ##############################\n"
]
},
{
@@ -595,10 +600,7 @@
{
"name": "stdout",
"output_type": "stream",
- "text": [
- "\n",
- "\n"
- ]
+ "text": []
},
{
"name": "stderr",
@@ -616,9 +618,7 @@
"\n",
"\n",
"\n",
- "############################## [Model 3 / 4] Analyze RandomForestClassifier ##############################\n",
- "\n",
- "\n"
+ "############################## [Model 3 / 4] Analyze RandomForestClassifier ##############################\n"
]
},
{
@@ -643,10 +643,7 @@
{
"name": "stdout",
"output_type": "stream",
- "text": [
- "\n",
- "\n"
- ]
+ "text": []
},
{
"name": "stderr",
@@ -664,9 +661,7 @@
"\n",
"\n",
"\n",
- "############################## [Model 4 / 4] Analyze XGBClassifier ##############################\n",
- "\n",
- "\n"
+ "############################## [Model 4 / 4] Analyze XGBClassifier ##############################\n"
]
},
{
@@ -691,10 +686,7 @@
{
"name": "stdout",
"output_type": "stream",
- "text": [
- "\n",
- "\n"
- ]
+ "text": []
},
{
"name": "stderr",
@@ -708,8 +700,6 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "\n",
- "\n",
"\n",
"\n"
]
@@ -886,7 +876,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "de72ce340642702f"
},
{
"cell_type": "code",
@@ -907,7 +898,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "b08c56d7c4bd0096"
},
{
"cell_type": "code",
diff --git a/docs/examples/Multiple_Models_Interface_Vis.ipynb b/docs/examples/Multiple_Models_Interface_Vis.ipynb
new file mode 100644
index 00000000..e75f0a48
--- /dev/null
+++ b/docs/examples/Multiple_Models_Interface_Vis.ipynb
@@ -0,0 +1,480 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "248cbed8",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-09-29T20:56:16.932083Z",
+ "start_time": "2023-09-29T20:56:16.278169Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "%load_ext autoreload\n",
+ "%autoreload 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "7ec6cd08",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-09-29T20:56:16.940086Z",
+ "start_time": "2023-09-29T20:56:16.931485Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "os.environ[\"PYTHONWARNINGS\"] = \"ignore\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "b8cb69f2",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-09-29T20:56:16.951831Z",
+ "start_time": "2023-09-29T20:56:16.940588Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current location: /Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny\n"
+ ]
+ }
+ ],
+ "source": [
+ "cur_folder_name = os.getcwd().split('/')[-1]\n",
+ "if cur_folder_name != \"Virny\":\n",
+ " os.chdir(\"../..\")\n",
+ "\n",
+ "print('Current location: ', os.getcwd())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a578f2ab",
+ "metadata": {},
+ "source": [
+ "# Multiple Models Interface Usage"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "7a9241de",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-09-29T20:56:30.072450Z",
+ "start_time": "2023-09-29T20:56:22.772584Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "\n",
+ "from virny.utils.custom_initializers import read_model_metric_dfs, create_config_obj\n",
+ "from virny.custom_classes.metrics_interactive_visualizer import MetricsInteractiveVisualizer\n",
+ "from virny.custom_classes.metrics_composer import MetricsComposer"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "outputs": [],
+ "source": [
+ "ROOT_DIR = os.path.join('docs', 'examples')\n",
+ "config_yaml_path = os.path.join(ROOT_DIR, 'experiment_config.yaml')\n",
+ "config_yaml_content = \"\"\"\n",
+ "dataset_name: COMPAS_Without_Sensitive_Attributes\n",
+ "bootstrap_fraction: 0.8\n",
+ "n_estimators: 50 # Better to input the higher number of estimators than 100; this is only for this use case example\n",
+ "sensitive_attributes_dct: {'sex': 1, 'race': 'African-American', 'sex&race': None}\n",
+ "\"\"\"\n",
+ "with open(config_yaml_path, 'w', encoding='utf-8') as f:\n",
+ " f.write(config_yaml_content)\n",
+ "\n",
+ "config = create_config_obj(config_yaml_path=config_yaml_path)\n",
+ "model_names = ['DecisionTreeClassifier', 'LogisticRegression', 'RandomForestClassifier', 'XGBClassifier']\n",
+ "SAVE_RESULTS_DIR_PATH = os.path.join(ROOT_DIR, 'results', 'COMPAS_Without_Sensitive_Attributes_Metrics_20230812__224136')"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-09-29T20:56:30.095448Z",
+ "start_time": "2023-09-29T20:56:30.073873Z"
+ }
+ },
+ "id": "d777610462304f63"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "f94a20dc",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-09-29T20:56:30.121865Z",
+ "start_time": "2023-09-29T20:56:30.094816Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "models_metrics_dct = read_model_metric_dfs(SAVE_RESULTS_DIR_PATH, model_names=model_names)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "b04d06cf",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-09-29T20:56:30.139696Z",
+ "start_time": "2023-09-29T20:56:30.121071Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "metrics_composer = MetricsComposer(models_metrics_dct, config.sensitive_attributes_dct)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e1a23ece",
+ "metadata": {},
+ "source": [
+ "Compute composed metrics"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "be6ace22",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-09-29T20:56:30.169575Z",
+ "start_time": "2023-09-29T20:56:30.138633Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "models_composed_metrics_df = metrics_composer.compose_metrics()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/urllib3/__init__.py:34: NotOpenSSLWarning: urllib3 v2.0 only supports OpenSSL 1.1.1+, currently the 'ssl' module is compiled with 'LibreSSL 2.8.3'. See: https://github.com/urllib3/urllib3/issues/3020\n",
+ " warnings.warn(\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Running on local URL: http://127.0.0.1:7860\n",
+ "\n",
+ "To create a public link, set `share=True` in `launch()`.\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": ""
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import altair as alt\n",
+ "import gradio as gr\n",
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "from vega_datasets import data\n",
+ "\n",
+ "\n",
+ "def make_plot(plot_type):\n",
+ " if plot_type == \"scatter_plot\":\n",
+ " cars = data.cars()\n",
+ " return alt.Chart(cars).mark_point().encode(\n",
+ " x='Horsepower',\n",
+ " y='Miles_per_Gallon',\n",
+ " color='Origin',\n",
+ " )\n",
+ " elif plot_type == \"heatmap\":\n",
+ " # Compute x^2 + y^2 across a 2D grid\n",
+ " x, y = np.meshgrid(range(-5, 5), range(-5, 5))\n",
+ " z = x ** 2 + y ** 2\n",
+ "\n",
+ " # Convert this grid to columnar data expected by Altair\n",
+ " source = pd.DataFrame({'x': x.ravel(),\n",
+ " 'y': y.ravel(),\n",
+ " 'z': z.ravel()})\n",
+ " return alt.Chart(source).mark_rect().encode(\n",
+ " x='x:O',\n",
+ " y='y:O',\n",
+ " color='z:Q'\n",
+ " )\n",
+ "\n",
+ "\n",
+ "with gr.Blocks() as demo:\n",
+ " button = gr.Radio(label=\"Plot type\",\n",
+ " choices=['scatter_plot', 'heatmap'], value='scatter_plot')\n",
+ " plot = gr.Plot(label=\"Plot\")\n",
+ " button.change(make_plot, inputs=button, outputs=[plot])\n",
+ " demo.load(make_plot, inputs=[button], outputs=[plot])\n",
+ "\n",
+ "\n",
+ "demo.launch(inline=False)"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-09-28T22:25:40.759154Z",
+ "start_time": "2023-09-28T22:25:39.629263Z"
+ }
+ },
+ "id": "b9dad21b662edd59"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Closing server running on port: 7860\n"
+ ]
+ }
+ ],
+ "source": [
+ "demo.close()"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-09-28T22:26:12.203639Z",
+ "start_time": "2023-09-28T22:26:12.019693Z"
+ }
+ },
+ "id": "920e2c1a81d4e810"
+ },
+ {
+ "cell_type": "markdown",
+ "id": "deb45226",
+ "metadata": {},
+ "source": [
+ "## Metrics Visualization and Reporting"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 115,
+ "id": "435b9d98",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-09-30T22:20:33.545960Z",
+ "start_time": "2023-09-30T22:20:33.514242Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "visualizer = MetricsInteractiveVisualizer(models_metrics_dct, models_composed_metrics_df, config.dataset_name,\n",
+ " model_names=model_names,\n",
+ " sensitive_attributes_dct=config.sensitive_attributes_dct)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Running on local URL: http://127.0.0.1:7860\n",
+ "\n",
+ "To create a public link, set `share=True` in `launch()`.\n"
+ ]
+ }
+ ],
+ "source": [
+ "visualizer.start_web_app()"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "is_executing": true,
+ "ExecuteTime": {
+ "start_time": "2023-09-30T22:20:33.605579Z"
+ }
+ },
+ "id": "678a9dc8d51243f4"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Closing server running on port: 7860\n"
+ ]
+ }
+ ],
+ "source": [
+ "visualizer.stop_web_app()"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-09-29T21:41:49.927075Z",
+ "start_time": "2023-09-29T21:41:49.639933Z"
+ }
+ },
+ "id": "277b6d1de837dab7"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "outputs": [
+ {
+ "data": {
+ "text/plain": ""
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "text/plain": "",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABLoAAANUCAYAAAC0cUQcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1gTycMH8G+AJPTeO4ggXQQLooIVLKjYO9iwd9SfnifY9exn11Pg7B07igVUxA6KCFgABUGxASLSknn/4M0egQQColjm8zz7PLA7Ozu7O1syO4VFCCGgKIqiKIqiKIqiKIqiqJ+cVH0ngKIoiqIoiqIoiqIoiqLqAi3ooiiKoiiKoiiKoiiKon4JtKCLoiiKoiiKoiiKoiiK+iXQgi6KoiiKoiiKoiiKoijql0ALuiiKoiiKoiiKoiiKoqhfAi3ooiiKoiiKoiiKoiiKon4JtKCLoiiKoiiKoiiKoiiK+iXQgi6KoiiKoiiKoiiKoijql0ALuiiKoiiKoiiKoiiKoqhfAi3ooijqhxcUFAQWiwUWi/XNtmFqagoWiwU/P79vto2fTVpaGnPcQ0JC6js5VB0RnNOgoKD6TgpFfXPf4/lB/bz8/PzAYrFgampa30n5rjw8PMBiseDh4fFV8VT1PImMjGSWR0ZGVlpOr82fR3XnkqJ+RLSgi6J+UeUfSiwWC0pKSigoKKh2vS9fvkBFRUVoXfpQq175QqGKk6ysLPT19dGpUyesX78eeXl59Z3cX0L5l+SKk7S0NFRVVdGkSRNMnz4dycnJ9Z3cX1ZWVhZWrVqFdu3awcjICLKyslBXV4e1tTVGjRqFs2fP1ncSq0QIQXh4OCZPnowmTZpAV1cXHA4HSkpKMDU1RdeuXbFw4UI8fvy4vpP6UxN8TJBk+tof3xT1vRFCcPLkSQwcOBANGzaEoqIiZGRkoKqqCjs7O/Tt2xcrV67EgwcP6jupVC1VfOdo166dROtFR0dXusdRFPXt0YIuivpN5OfnIywsrNpwJ06coAUxdayoqAhZWVmIiIjA1KlTYWdnh/v379d3sn5pfD4fubm5iI2Nxdq1a2Fvb49NmzbVd7J+KYQQLF26FA0bNsTMmTNx5coVZGRkoKioCB8/fkRSUhJ27tyJrl27wtXVFQkJCfWd5Eqio6Ph7OyMzp07Y8OGDYiNjcWbN29QUlKC/Px8vHjxAmfPnkVgYCBsbW3RunVrREdH13eyKYr6gbx58wZt2rRBjx49cODAATx79gyfP38Gj8dDbm4uEhIScOTIEcyaNQuNGzdGUlJSpTho7abK6qrW2bcSFRWFjIyMasPt3r37O6SmzO9aQ5GiRJGp7wRQFPXtycrKorCwELt378agQYOqDCt4IAvWoWquR48eWLx4MfO/4Ef/2rVrkZiYiPT0dHTt2hXJyclQVlaux5T+Onbt2oWmTZsy//N4PGRlZeHcuXPYsmULSkpKMHHiRFhZWaFDhw71mNJfQ0lJCYYNG4YDBw4AAOTk5ODr6wsvLy8YGBjg8+fPiI+PR2hoKO7evYubN2+iVatWOHnyJFq3bl3PqS8TEhICf39/lJSUAACcnZ3Rs2dPODs7Q0tLCyUlJXj9+jViYmJw5swZPH78GNevX8eiRYsQHh5ez6n/eenr6+P8+fNVhlFQUKiz7QUFBdFmutQ3U1xcjI4dOyI+Ph4A4OTkhOHDh6Nx48ZQUlJCXl4eEhMTcfXqVZw5cwa5ubn1nOK6RQip9bo/87UpeEfeu3cvZs+eLTZccXExDh06JLTOz8jDw+OrzjVF1Qda0EVRv4Hu3bvj0KFDiIiIwOvXr6GrqysyXHZ2Ni5cuACgrLDm4MGD3zOZvwxBU4XyWrduDT8/P7Rp0wY3b97E69evsX37dgQEBNRTKn8tZmZmlY65o6MjvLy80LhxY4wYMQIAsHLlSlrQVQf++OMPppDL3t4eYWFhMDc3Fwrj7u6OCRMmYM2aNZg5cyZycnLQs2dPPHjwAIaGhvWRbMbFixcxcuRI8Pl8KCoqIjg4GH369BEZ1sfHB3/99RfOnDmD//3vf985pb8eNptd6VqlqJ/Vjh07mEKu4cOH459//oGUlHCDmTZt2mDMmDEoKirC/v37oaqqWg8ppeqS4L169+7dVRZ0nT59Gh8/foSsrCw8PT1x4sSJ75hKivq90aaLFPUb6NSpE3R1dcHj8bB//36x4fbv34/S0lLo6uqiY8eO3zGFvwc2my1U0+vixYv1mJrfx/Dhw6GpqQkAuHPnTj2n5ud38+ZNrFq1CkBZ7ZyLFy9WKuQSYLFYmDFjBhYtWgQA+PDhA8aMGfPd0irK58+fMXjwYPD5fMjIyOD8+fNiC7nK69q1K+7cuYORI0d+h1RSFPUzEBRcyMjIYM2aNZUKucrjcrnw8/MT+7GR+nkMGzYMAJCQkIDY2Fix4QStJLy9vWkBJ0V9Z7Sgi6J+A9LS0hg4cCCAqvsK+PfffwEAgwYNgrS0tERxFxcXY/PmzWjbti20tLTA4XCgq6uLLl26YM+ePeDz+dXGkZGRgQkTJsDc3JzpuL179+41LgjKzc3FsmXL4ObmxqRFT08P3t7eOHLkyA9R7dre3p75Oz09XWQYPp+Py5cvIyAgAG5ubtDU1ASbzYaqqioaN26MgIAAvHz5ssrtVOzb4tWrV5g+fTosLCwgJycHDQ0NeHp64ty5c1+1P4WFhejRowfTt8iKFSuElvN4PISEhMDT05Pp5FtFRQUNGzZE+/btsXTp0u/Sybegv4qioiKxYW7evIl58+bBw8ODSauysjJsbGwwbtw4idL55MkTTJo0CXZ2dlBSUgKHw4G+vj5Tq+zgwYNVpuH169f4448/4OLiAnV1dXC5XBgZGaFfv34SXw/79u2Dh4cH1NTUoKioCDs7OwQGBiInJ0ei9auzYsUK5lpau3YttLW1q11n9uzZTC2es2fP4uHDh5XCVBz5NDk5GaNHj4apqSm4XC50dHTg4+ODmzdvflX6//nnH2RnZwMApkyZgpYtW0q8rqysLPr27StyWcXRxy5fvoy+ffvCyMgIbDZbZJ8p169fx9ChQ2FqagpZWVmoqqrCyckJ8+bNw9u3b8WmIyQkhNleWlqa2HDVjZxasT8XwX3C0tIS8vLy0NLSQteuXeu1qebXXpfV9X1UMd/du3cPfn5+MDMzA5fLFVqvrvPos2fPMG3aNNjb20NFRQVycnIwNzeHn58f7t69W+W6hYWF+Pvvv+Hh4QEtLS2w2Wyoq6vDysoKnTt3xpo1a8TmjXv37mHkyJGwtLSEgoICZGVlYWRkBGdnZ0yYMAEnT56s9fMyJSUFq1evhre3N0xNTSEnJwc5OTmYmJigf//+1ealinmbz+dj+/btaNmyJdTU1KCgoAAHBwcsWbJEogF2EhMT4efnxwyUYWRkhEGDBtXZRw/Bs1hTU7NWBRmC/V2wYAEzT9QADeXPZV28I1SUnJwMf39/mJmZQVZWFnp6eujXr1+1eflrRvEVd20K7ktRUVEAyvrCqng8BPesv//+m5knyXXXu3dvsFgsqKurf1UzQltbWzg5OQEQ/179/v17ZjCWoUOHShw3j8dDaGgounXrBn19fXC5XGhoaKBVq1ZYs2YNvnz5UmkdwbEMDQ0FALx48UJkPiqvJve+moy6ePbsWQwZMgTm5ubM/cXMzAy9e/dGSEiIyOs2JycHS5YsgaurK9TU1MBms6GlpQUbGxv4+Phgy5YtePPmjcTHkKIAAISiqF/SlStXCAACgAQHB5P79+8z/z969KhS+ISEBGZ5bGwsCQ4OZv6/cuWKyG2kpqaSRo0aMeFETa1atSLv378Xm86rV68SZWVlsesHBQWRwMBA5n9xLl68SDQ0NKpMS5cuXcinT59Erm9iYkIAEF9f3yqPqzipqanMdqqK4+PHj0w4R0dHkWHK76+4SV5enhw7dkzsdtzd3QkA4u7uTq5fv040NTXFxrVy5cpq9yk4OLjS8ry8POLh4UEAECkpKbJ9+3ah5Z8+fSKtW7eudl969+4tdj+qUv44icujAlpaWgQAadSokcjl5fO7uElaWpps2rRJ7DYOHTpEOBxOtfHEx8eLXH/Pnj1EQUGhynVHjhxJSkpKRK5fUlJC+vbtK3Zdc3NzkpKSwvwfGBhY5TET5cOHD0RKSooAIIaGhoTH40m87tatW5ltT5s2rdLy8tfgsWPHiLy8vNjzcODAgRqnXcDJyYkAICwWi6SlpdU6norKH9e5c+dWSreJiQkTlsfjkQkTJlR5rlVUVMiFCxdEbqt8fk1NTRWbpuquYV9fXyZtd+7cIdra2mLTM3369K86PoLzW/44VKcursvqnh/l892WLVuIjIxMpW2ICvu1eXTlypWEzWaL3S8Wi0X+/PNPketmZmYSGxubao/NjBkzKq27Zs0a5hquahL3rKxK+ftLVdOQIUPE3sfKn/OEhATSvn17sfE0a9aM5Ofni03PwYMHCZfLFbmujIwM+eeff4Sugdqwt7dnzldV7zriSJLHK17ndf2OcPbsWbHPHikpKbJ27Vqx8VT1PCn/HirqGS3u2hSck6omwfl6//49c47HjBlT1aEmb9++Za65CRMmVBlWlPLpTU1NJWvWrCEAiK6uLiktLa0UftOmTQQA0dTUJMXFxUL7Jc6LFy+Io6NjlftuYWFBkpOTxaatqqm8mtz7qjuXhBDy7t27Kq9XwVTxWfT48WOir69f7XobNmyo5gxRlDDaRxdF/SacnJxga2uLhIQE7N69G8uXLxdaLvgiZWdnh8aNGyMuLq7K+PLz89G+fXukpKQAAHr27IkRI0ZAX18fqamp2LhxI6KionD9+nV4e3vj6tWrlWqJvXz5Et26dUNeXh6kpKTg7++PPn36QEVFBQ8fPsTy5csRFBQEFxeXKtMSHR2Nzp07o6SkBDo6Opg0aRIcHR2hr6+PzMxMHDx4EHv27MHZs2fh6+uLo0eP1vDo1Z3ExETmb3Gj4pSWlkJPTw8+Pj5wdXVlarqlp6fjxo0b2Lx5M/Lz8zFo0CDcv38f1tbWYreXlZWFnj17QkpKCsuXL0erVq3A4XBw/fp1LFy4EDk5OZgzZw46d+4MW1tbiffj7du36Ny5M+7duwcOh4Pdu3ejX79+QmGCgoJw7do1AEC3bt0wePBgGBsbQ1ZWFtnZ2YiNjcXp06e/+ShToaGhTO2YHj16iAxTWloKNTU19OjRA23atEHDhg2hoKCAzMxM3L9/H3///TfevXuHiRMnolGjRpWGFX/z5g2GDx+O4uJiaGtrY+LEiWjRogU0NTXx5csXPHv2DFFRUWJHPj106BCGDh0KQgjMzc0xceJE2NjYQEtLC2lpadi5cyfOnj2LnTt3QllZGWvWrKkUR0BAAA4fPgwAsLKywqxZs+Dg4IDc3FwcPnwYO3bsQP/+/b/iSJZda4Jaml26dKmymU5F3bt3x9ixYwGAyReixMfH4+DBg9DT08OMGTPg4uICQgjOnz+P5cuXo7CwEP7+/mjXrh20tLRqlP7c3Fw8ePAAAGBtbQ0TE5MarS+JY8eOIT4+Hvb29pg2bRrs7Ozw5csXoXvq//73P2YUUDMzM8yePRtNmjTB58+fcfLkSWzcuBG5ubno1q0bbt++DUdHxzpPZ3kFBQXo27cvcnNz8b///Q9dunQBl8vFrVu3sGzZMmRlZWHNmjUwNjbGlClTvmlayvva67Im7ty5gz179sDIyAgBAQFwcXFBaWmpyLz6tXl05cqVmDVrFgDAwcEB48aNQ8OGDaGqqork5GRs3LgRMTExWLRoETQ1NTF58mSh9SdNmsTUZBsyZAh69eoFfX19SEtLIysrC3fv3hXZF9DDhw8REBAAPp8PMzMzTJw4EY0bN4a6ujo+ffqE5ORkXLlypdb9CPF4PHA4HHh6eqJjx46wsbGBuro6Pnz4gCdPnmDTpk1ISEjAnj17YG5uLlSLSZTRo0fj5s2b8PX1Rb9+/aCrq4uXL1/ir7/+QkxMDG7fvo3Fixdj2bJllda9c+cOBg8ejNLSUnC5XEybNk0oXy9duhTjxo2DjY1NrfZVoEmTJoiPjwchBKNHj0ZoaCgUFRUlXr9nz55wcXHB5s2bsWXLFgBg+vwqz8DAgPm7Lt8RMjMzMWjQIMjIyGDp0qVMLfArV65gxYoVyMvLw7Rp02BqaoqePXtKvF9fY8mSJQgICMDw4cNx9+5duLi4IDg4WCgMh8MBAKirq6NXr17Yv38/Dhw4gLVr10JOTk5kvHv37mUGHxH02/k1Bg0ahJkzZ+L169eIiIiAl5eX0HLBe/WAAQPAZrOrje/9+/do1aoV0tPTweVyMXr0aLi7u8PU1BT5+fm4cOEC1q9fj2fPnqFz5864f/8+VFRUAADjx49Hnz59MG/ePJw4cUKiQT8EanLvE6egoABt27Zl8q6zszP8/f1hZ2cHLpeL9PR0XL16VWTfv0OHDkVmZibYbDZGjx6Nzp07Q1dXF3w+HxkZGbh58yaOHz8ucVooilG/5WwURX0rFWt0EULIihUrCABiZGRE+Hw+E5bP5xMjIyMCgPz111+EEFJtja6AgABm+bx58yot5/P5ZPDgwUyYzZs3VwrTp08fZvm+ffsqLc/Ly6v0Zaui4uJiYmpqSgAQLy8v8vnzZ5HHY/v27UwcompJfK8aXd7e3ky43bt3i42ruLhYbBzp6enEwMCA4P+/jIsi+FqL///ymZGRUSnMtWvXCIvFIgDI5MmTq9yn8l/gXr58SaysrJivxuHh4SLTIMhTffr0EbsvhJBafQUnRPgL5q5du0h8fDwzxcXFkfPnz5OpU6cytaxsbW3J27dvRcaVkZEhNu8QQkhOTg5xcHAgQFktxYp27tzJpEVcjS1CCCkoKCAFBQVC896+fUtUVFQIADJixAixNR0EtYSkpKRIUlKS0LKHDx8ytTSaNGkisjZGaGio0LVUmxpdixcvZtbfunVrjdfX1dUlAAiHw6m0THANAiDOzs4kNze3Upg9e/YwYdasWVPj7V+/fp1ZX9y1U1vlj2379u1JYWGhyHDlz5WdnR35+PFjpTDnzp1jwjRr1qzS8rqu0QWAsNlsEhUVVSnMq1eviKGhIQFAFBQUSHZ2ttjtVUVwfvX19YWu1YpT+ZoKX3tdEiJ5jS4AxN7eXuT5EBW2tnk0ISGBqVUSGBgo9CwW4PF4ZMiQIQQAUVRUJB8+fGCWffnyhVlfVI2t8ireW//880/mPL5+/Vrsejk5OTWqrSmQn59PMjMzxS7n8/nEz8+PSUNOTk6lMBVrOIl6ThYWFhI7OzsCgGhoaIi8Z7q4uFSZrzMyMph8LXhO1satW7eEasipqqqSoUOHku3bt5MHDx6IrOkjiiQ11wXq+h1BRUWFPH78uFKYR48eMTXuDQwMRG6zqudJbWt0VUyju7u72H0lhJBLly4x8ezdu1dsOMH7pLja9NWpWKOLEEI6d+5MAJBBgwYJhX369CkT9vbt24QQUm2NrkGDBjF5MSUlRWSY+/fvM7Xv5s6dW2l5TWoo1uTeV925nDZtGrN8woQJIu9rhBBSVFQkdO95/vw5s15VNbb4fL7QfZCiJEELuijqFyWqoCsjI4N5Ibt8+TIT9vLly8wPaEGBSFUFXYWFhURVVZUpPBD3Ipebm8s0J7SxsRFalpWVRaSlpQkA0q1bN7H7cevWrSoLuv79918CgMjKylb7A6xZs2YiX0gI+bYFXR8/fiQ3btwQKuRydXWt8kW1OuvWrSMAiLKyssgXivIvsSdPnhQbT4sWLQgA4uTkVOU+CfJQUlISMTY2Zl7oo6OjxcYt+DG2fv36mu+gBCStqq+iokKWLFlS5UucJMLCwpg43717J7RsyZIlBABRU1OrcbwLFy5kfkiIKxwhpKxpouDHS8UX3PHjxzNpu3v3rtg4BC/ltS3omjp1KrN+WFhYjdcvX3Cdl5cntKz8S/eDBw9Ers/n85kmDj4+PjXefvlzKKr5ZHmPHz8WWxgjqrmUIF4pKakqC5/GjRvHhL1586bYcKNGjar0Q0ngWxR0TZw4UWw8Bw8eZMKJa+pcnfLnt6qppgUOVV2XhNSsoOvq1asS70Nt8+iIESMIAOLi4iL2xyAhZc8NQZOs8s3CX716xaThxIkTVaa3otGjR4u9338v79+/Z579R44cqbS8fN7u1auX2HjKN4WueC5u375d43xd24IuQgjZsWOH2GaoCgoKpGPHjmT79u1VNrOsSUGXJGryjrBq1Sqx8Qg+kAIghw8frrS8qufJ9yro4vP5pEGDBgQA6dChg8gw9+7dY7ZV23cSUQVd+/btI0DZR7/yH5jmz59PABArKytmXlUFXampqcx1cerUqSrTMWvWLAKUfTSoqLYFXdXd+6o6lx8/fmSacTs7O0tcuEsIIdHR0dXeUymqtmhn9BT1GzEwMEDbtm0BCHeeKfi7Xbt2QtXjxbl37x7TsbWfn5/YjuuVlZWZ5myPHz9GVlYWs+zKlSvg8XgAykbFE6dZs2ZVNqk7efIkAMDd3b3aZkxt2rQBAMTExFQZ7muFhoYKdf6ppqaGli1b4tSpU2Cz2fDz80N4eLhEVdkBIC8vD6mpqUhISMCjR4/w6NEjyMvLCy0TR1VVFV27dhW73NnZGQCYJqhVuX//Plq3bo2XL19CV1cXUVFRVXbkraenBwA4ePCgRJ0Gfyu5ubn4559/RFaZF+fz589IS0sTOublz5eg+ZuAYF8/fvxY42Y/gjzcrVs3cLlcseFkZGTg6uoKoHIeFnRUb29vz5xTUb62ucanT5+Yv2vSPEfUOnl5eSLD2Nvbw8HBQeQyFovFdAAsSZ6tqHz6FRQUqgzr6uoKe3t7kVNVHVm7ubmJbZYM/HeubG1t0bx5c7HhRo8eXWmdb6mq+7CPjw/T0XZ9jhZb0+uyJoyMjNC6dWuJwn5NHj116hSA/zrFFkdVVZUZvKT89a6hocE029q9ezdKS0slSjPw333q8ePHuH37tsTr1VZJSQkyMjKQmJjInK/MzExoaGgAqP58DR48WOyy8ve5ise5fB6VNF9/jVGjRiE+Ph7Dhw+HkpKS0LLPnz8jIiIC/v7+aNiw4TcZ2OFr3hFYLBZ8fX3FLh8+fDiTT3/UkaJZLBbzbLt8+bLIjvgFTR85HE6V+aqmevbsCSUlJRQUFODYsWPM/D179gCQvBP6M2fOgMfjQV5eHp07d64yrOBdNjMzs8aDDohSk3ufKJcvX2be8SZPnizxYFbAf/ckACIHTKGor0ELuijqNyMYEvno0aP48uULvnz5giNHjggtq86jR4+Yv6v6oVZxefn1yvdB0bRp0yrjaNasmdhlgpGpzp8/L3KEmfLTqlWrAJSNbFdfGjZsiGnTpkFZWbnKcC9evMCkSZNgamoKFRUVmJubw87Ojvmh7e/vz4R99+5dldurqh8ldXV1AMIFAKJcu3YNbdu2xdu3b2Fqaorr16+L/aEnIHh5vnHjBtMfzPHjx6scTa62rly5AlJWSxmEEPD5fOTk5CAqKgo+Pj5ITU3F2LFjMX36dLFxvHv3DnPnzoWVlRWUlJRgZmYmdMzLFxhWPObdu3dnfjD5+PigXbt2WLt2Le7du8cU6IrC4/GYvpu2bdtWbR4WXKvl83BRURGePn0K4OuuJUmU/xGXn59f4/XLryPuGmjUqFGVcUiaZ0Upn/7Pnz/XeH1JVHVdlD9X1d07nZycmEKc8vfOb4HD4VTZDxibzWYKb0T1H1QTJiYmQtdqxaniSIFfc13WRHX3s/Jqm0dfvHjB3P/mzJlT7fUueL6Vv965XC7T196RI0dgYWGBWbNm4ezZs9WOrDpw4ECw2WwUFRXBzc0N3t7e2Lp1Kx49elRnoxKXlJRg06ZNaNGiBRQVFWFkZAQbGxuhgmLBqKfVna+qjrPgGAOVj7Mgj9YkX38tKysr7Nq1C+/fv8eNGzewZs0aDB48GIaGhkyYrKwsdOvWrU4KjOrqHcHMzAyamppil2tpaTEF91977X9Lgo+ufD6fGXlQoKioCPv27QNQ1k+noKC1LsjJyaFPnz4A/vtofP36daSkpIDFYmHIkCESxSO41gsKCiAjI1PlfaFbt27MenXxPluTe58osbGxzN81LTAzMzNj1lm7di1sbW0xf/58ocIziqotWtBFUb+ZXr16QV5eHnl5eThx4gTCwsLw6dMnKCgooFevXhLF8eHDB+ZvbW3tKsPq6uqKXK8mcejo6IhdJnhhrglRQzPXpR49eiA+Ph7x8fF48OABzp07hylTpkBWVhaPHz+Gh4cHkpOTxa5/7tw52NjYYOPGjXjx4kW126tqfwRfdcURFIIJOhgXZ9euXUwNnIMHD6JBgwbVpuvPP//EiBEjwGKxkJ2djU2bNqFXr17Q1taGnZ0dAgMDv9lw0SwWCyoqKmjTpg2OHTuGQYMGASh7kRL1I+PevXto1KgRli1bhidPnlT7o6/iMdfQ0MDJkydhYGAAQgiuXLmC6dOnw8XFheks9/Tp05Xi+fDhQ41qZAiUfwH8+PEjk96vuZYkUf4HUW1esAXnm8PhVKr5ICBpnq2qAFGc8j9wqitwzcnJESqACQwMlGgbampqYpd9/PiR+bu6c8Vms5n0lr9ffgvq6urVfoUX5J1vnZbyvva6rImqzltFtc2jtXleAaj0g2/jxo3w9vYGUFbgsXLlSnTt2hUaGhpo2rQpVq5cidzc3ErxNGrUCPv374eamhpKS0tx+vRpjBs3Dvb29tDW1sbQoUNr1AF1RR8+fICrqysmTpyIW7duobi4uMrw1Z2vqo5z+Q84FY+zII/WJF/XFTabDVdXV0ybNg179uxBeno6Ll26xNRM5/F4GD9+/FcVLNblO0J19yGgfq79mtLX10eXLl0AlNUMKn98T5w4waS9Ljqhr0hQa+vy5ct49eoVU+DVpk0biQc8qat7Q23U5N4nSvmC1PI1tCS1f/9+prb648ePsWjRIrRv3x6qqqpo06YNtm7disLCwq9KI/V7ogVdFPWbUVRUhI+PD4Cyr0+CB7KPj0+1TXlEqYsR874mDsELbufOnZnCJUmmb0lVVRV2dnaws7ODg4MDvLy8sG7dOpw+fRoyMjL4+PEjBg0aJPKH+rt37zBo0CAUFBRAUVERQUFBiImJQXZ2NoqKipgf3ZcuXWLWqasv8VXp0aMH84Nh6NChQs1QxWGz2di5cycePXqEefPmoWXLlkyTm4SEBCxcuBAWFha1HuGrJmbOnMn8vWvXLqFlxcXF6NevH96/fw82m43p06cjKioKWVlZKCwsZI758+fPmXVEHfPWrVvj2bNn2LNnDwYNGsR8yc/Ly8Px48fh7e0NLy8voRfT8nlA0PxFkunChQsi9/Nbj2BZ/stv+a+4ksjKymIKx772C3Jt2dnZMT+Qa5p+SUnabONbn6ua+JHSIlBX16WkatLcprbKX+/z58+X+HqvOOKcsrIyTp48iVu3bmHGjBlwdnZmarPcvXsXs2bNgqWlpchm+r1790Zqaiq2bduGXr16MU3+3717hz179qBNmzbw8/Or9uOHKFOmTMG9e/cAlDXpOnnyJNLS0lBQUAA+n8+cMyMjIwDf/tn1o+Trdu3aISIigqmF9vTp02pHthanrt8RfpRjVBdGjRoFoKwp69WrV5n5guvH0NAQnTp1qvPtenh4wMjICHw+H8HBwTh06BAAyZstAv/dGzQ1NWv0LltdLW5JfI97X1UMDAxw48YNXLx4EePHj4etrS1YLBZKSkpw7do1jBs3DnZ2dnjy5Em9ppP6+cjUdwIoivr+hg0bhr179wr9WJa02SIg3GTgzZs3sLS0FBu2fK2P8uuV/4L05s0b5sVXlKpq/WhoaCAzMxPFxcWws7OrNu31qX379pgyZQpWr16N+/fvIyQkBCNHjhQKc+TIEab5yfHjx9GhQweRcX3vL6s9e/bEgAEDMGTIEDx58gTt2rVDZGSkRF/DbWxssGjRIixatAiFhYW4fv069u3bh3///Rf5+fkYOHAgnj9/XqsvgZIq3wSmYkHn5cuXmT5eNm/ezLwsVyTJMZeVlcXgwYOZPkBSU1Nx5swZbNiwAU+ePMH58+fxxx9/YO3atQCErwlCSK3ycPk+ZqqrIfe1NehatWoFKSkp8Pl8nDlzBnw+v8qmseUJ+iID/utj5HtTVVWFo6MjYmNjkZiYiJcvX8LY2Pi7bb/ifa8qpaWleP/+PQDhfAII12apqkBC0uaZ79+/B4/Hq/IHjyC9FdPyrdTldfmjKF+jkM1mf/Uzq1mzZkxz5E+fPiEyMhIhISE4duwYsrOz0bt3bzx//hxycnJC66moqMDf359p3paYmIgTJ05gw4YNyMzMRGhoKJycnDBlyhSJ05KXl8f0gzh48GCmjyJRytds/BYE11lN8vW3pqenh65duzIfF589e1arZpN1/Y4gyf5/72u/trp27Qo9PT1kZWUhODgY7u7uePXqFfOu6+vrK/HzqiYETRSXLVuGJUuWoLCwELKysujbt6/EcQjuDZ8+fYK1tXW9Fz7VRPma3llZWTAzM6tVPO3bt0f79u0BlF27Fy9exPbt23H58mU8f/4c/fv3/2YfqKhfE63RRVG/ofbt20NPTw+lpaUoLS2Fvr4+83CRRPmX81u3blUZtnyHt+XXE3SyC6DKjp2rWy54Ubx79261zSR+BHPnzmX6JlqwYEGlNCckJAAoe6EU9wIL/Nefw/c0YMAAhIaGQkpKCklJSWjXrl2Nq9vLysqiQ4cO2LVrF1auXAmgrFmFqGZ9dal888CKTQUFxxwA0/eNKLU55oK+ye7cucPU8BJ87QXKmvAJmrRER0fXOH6g7Jg2bNgQwNddS5JQU1ND9+7dAQAZGRlCne9WhcfjYfPmzcz/fn5+X5WOryEo1Ofz+di0adN33TaXy2XOVXX3ztjYWJSUlABApQKR8s0+qyo0kPQLeHFxcZUdg5eWljI1UL7XB4VveV3WF3Nzc6ioqACo/fUujpKSEry9vXH06FFMnjwZQNmPzuvXr1e7rrW1Nf73v//h5s2bTM3u8vcpSTx9+pTJr1Wdr6SkpFr171cTgveLmuTr70FfX5/5u2JNKklrVtX1O0JqaipToC7K27dvmX7zvvfHxJrWNpOWlmaeLUeOHEF+fj5CQ0PB5/PBYrGqHJjgawlqbwma2PXo0aPavljLE7zLFhUVfdU9rT5q6DVp0oT5u3xNuq+hoaGB/v3749KlS8w7R1xcHNPHJUVJghZ0UdRvSFpaGkOHDgWXywWXy8XQoUNr9JXL2dmZqUUieIkQ5dOnT8zLso2NjVCNnbZt2zJfrCp2HFrenTt3quyIWfAAzM3NrdS840ekrq6OCRMmAADS09Mr7bugEKawsFDscS0oKBAaNfN7Gjx4MIKDgyElJYXHjx+jffv2te4Aunzh6td0Ii2J8i+OFWsPli/4ElcDhs/nY8eOHbXevrKyMtPEQFRH9kDZD8Dz58/XKn7BD574+Pgqv3hWbLZZGzNnzmRepqdNmybRuVu5ciUePnwIAOjSpYtQQff3Nnr0aKa51tq1a6stcKprgnOVkJBQ5ch3//zzT6V1BMp/Ma/qR9H+/fslTldV9+Hjx48zBWpV/biuS9/juvzepKWlmX6ELly4gMTExG+yndreW42MjJga2jW9J0tyvgBg69atNYq3NsrnUUnzdW3VpPll+WvV3NxcaJmsrCzzd1FRkdg46vodgRCCf//9V+zy8v1dfa9rX0BwTKo6HhWNHDkSLBYLnz9/xsGDB5mR/Nq0aSNR36K1ZW1tjRYtWjDv1TVpJQEA3t7ezHN13bp1tU5HbY7Z12rbti1TQL5hw4Za9Z9Zle/5rkj9WmhBF0X9plasWIHCwkIUFhZi+fLlNVqXy+UyzUgePXqERYsWVQpDCMHEiROZh9LEiROFluvp6aFHjx4Aypo0ifp6nJ+fjzFjxlSZFl9fX6bgIiAgoNqvSdevX0dUVFSVYb61adOmMZ3sLl++XOilQFDbo6CgQOQx4fF4GDVqFDIzM79PYkUYNmwY/vnnH7BYLDx69Ajt27ev9EX4w4cPOHXqVJU/Aso3na1tVXdJFBUV4c8//2T+Lz9KG/DfMQfED289Z84c3L9/X+w2zp8/X2W/Zbm5uUyhRsV9nTJlChQVFQGUDeVeviaLKGfOnGEKjQTGjBnDvCT7+/uL/KG5d+9enD17tsq4JdGyZUtMmzYNQFmtrg4dOlQaKU+AEIJ169Zh7ty5AMoKerdt2/bVafgaCgoK2L17N6SkpFBSUoJOnTohLCys2vXqqrnVuHHjmA8L/v7+zCAP5V24cAE7d+4EUNY8rWI/LHZ2dkwzoo0bN4r8UXPo0CEcPnxY4nRt2bJFZO2f169fIyAgAEBZ5+CC0VS/tbq4Ln9Ec+bMYfrT6tOnDzIyMsSG5fF42Lt3r1CYlJSUap9h4u6tYWFhVY7MmJ6ejqSkpErrScLCwoK5B4WGhoq89586dQobN26sUby10axZM6aWibh8nZWVxeTrr9GrVy9s3ry52mbCISEhTL9ZxsbGlZotlv8QWL7fuYq+xTvCokWLRA6Qk5iYiCVLljDpE7yzfS+CY5KSkiJxgWKDBg3g4eEBAJg3bx5TA+hbdEJfUUxMDPNeLSjQlpSVlRXT1PHAgQNYs2ZNleFTU1NFfsgQHLPs7OxajUxcG6qqqsy7+r179zB16lSx56ukpESoJUBcXFyVtSoJIcwAQiwWixkBlKIkQfvooiiqVubPn49jx44hJSUFQUFBiI+Px/Dhw6Gnp4fU1FRs3LgRkZGRAABXV1ehoa4FVq9ejYiICHz69AmDBg1CVFQU+vTpA2VlZTx8+BDLly/HkydP4OLiIrbWApfLxaFDh+Dh4YH8/Hy0a9cOAwYMQM+ePWFmZgY+n4+srCzcu3cPx48fR3x8PDZs2AB3d/dveXiqpKWlhdGjR2P9+vVISUnBvn37mGrv/fr1w9y5c1FUVIThw4cjLi4OHTt2hIqKChISErBhwwbcu3cPbm5udd70pSaGDx+O0tJSjBkzBg8fPkTHjh1x6dIlpm+UvLw8dO/eHaampujVqxeaN28OExMTyMjIICsrC6dOnWJqrBgYGAgNl10bqamplYZIz8vLQ1xcHDZv3swUHllYWFTKi56entDW1kZ2djbmzZuHtLQ0+Pj4QFNTE8+ePcOOHTtw6dKlKo/5/v374e3tjY4dO6JTp05MQcSnT5/w6NEjbNy4Ea9evQIAjB07VmhdHR0dhIaGok+fPsjKyoKLiwv8/PzQuXNnGBoaoqSkBBkZGbh9+zaOHDmClJQUnDp1SqhDd0dHR0yYMAEbN27E3bt34eLigtmzZ8Pe3h65ubk4fPgwtm/fXuW1VBPLli1Deno6Dh8+jAcPHsDW1ha+vr7w8vKCgYEBCgoK8PDhQ4SGhjLNJVVUVBAWFsY04axPnp6e2LZtG8aPH4+8vDz4+PigadOm8PHxgbOzM9Nfyrt37/DgwQMcO3ZMqOZXxT6PasLe3h4zZszAypUr8eDBAzRp0gSzZ8+Gk5MTPn/+jFOnTuHvv/8Gj8cDh8MRWTAoIyODMWPGYNmyZXj06BHatWuHWbNmwdjYGG/evMHhw4cREhKCli1b4saNG9WmSUtLC/Ly8ujYsSOmTZuGLl26gMvl4vbt21i6dCnzo3nRokUSjdJWF+riuvwR2dvbY9WqVZg2bRoeP34MOzs7+Pv7o127dtDR0UFhYSHS0tIQExODI0eOICsrC/Hx8cx18/LlS7Rt2xY2Njbw8fGBi4sLDAwMAJQVVB08eJApAGncuDGaN2/ObHvdunUYPHgwunbtinbt2sHa2hoqKir4+PEj7t69iw0bNjAj9FW8T1VHQ0MDXbp0wZkzZxAeHo5OnTph3LhxMDExQXZ2No4ePYqQkBCYm5sjJyen2lFPv9bmzZvRqlUrlJSUVMrXt27dwtKlS/Hu3Ts4OjpW2byxOunp6ZgwYQJmz54Nb29vtGnTBlZWVlBTU0NhYSGSkpJw+PBh5iMDi8XC2rVrKzUxa9myJfP3tGnT8Mcff0BPT48JZ2pqChkZmTp/R7CwsMDbt2/RokULzJ49mykkioyMxPLly5nROzds2MAMJvO9tGzZEsHBwcjOzsb06dMxZMgQpukvm80WO6LhqFGjcOXKFaaPWGVlZfTp0+e7pbu2tmzZgrt37yIlJQUzZszAiRMnMGzYMNja2oLL5eL9+/d48OABwsPDcfnyZfj4+GDgwIFCcQjyEZ/Px9ixYzFp0iShdyMLC4tvkvZFixYhIiIC8fHx2LhxI2JiYjBmzBjY29uDw+EgIyMD165dw/79+7F48WKmiWlcXByGDx+Opk2bwtvbG02aNIGuri5KSkqQmpqK4OBgREREACir/f4t+3KlfkGEoqhf0pUrVwgAAoAEBwfXeP3g4GBm/StXrogMk5qaSho1asSEEzW5ubmR9+/fV5lOJSUlsevPnz+fBAYGMv+LExMTQ4yMjKpMi2AKDQ2ttL6JiQkBQHx9fWt6qJhjIYhfkjjS09MJh8MhAIi1tTXh8XjMsl27dhEpKSmx6e/fvz+5ePFilefH3d2dACDu7u5VpqOqY1t+n8TloS1bthAWi0UAEGdnZ/Lx48dK61Y16enpkbt371Z7vKpLuySTo6MjSU1NFRlXeHg4kZWVFbuuh4cHefTokdjj4evrK1Eaxo4dK3Suyzt58iRRV1evNg4pKSly+fLlSusXFxeTXr16iV3PzMyMPH/+nPk/MDCwVsddgMfjkQULFhB5eflq09yiRQsSHx9fZXySXoOCY21iYvJV6SeEkKioKOLo6ChxHnJ1dSXXrl0TGVdNjiuPxyPjx4+vclsqKirk/PnzYuP4/PkzadGiRa3zLCHCx/LOnTtEU1NTbHyTJ0+W9LCKJDi/NTlvX3tdElL1Pa58uiS5b9dlHt2+fbtE1w6HwyFPnz5l1iv/bK9qatSoEUlJSRHapuC5UN39ZdGiRdUeC1FevnxJjI2NxcZtbGxMEhISqjyO5d89xN2vCZHs+bRv3z7mOVtxkpGRIdu3b//q+0mPHj0kvn+oqKiQf//9V2xc/fr1E7tu+WNR1+8Ip0+fFpsXpaSkyKpVq8Smuar7Xvm8KioN1V2bnz59Iubm5iLTVdX5+vLlC1FTU2PCjh49WmzYmiif3qrypjjl3xPEycrKIq1bt5YoPw0fPrzS+jwer8rnQnk1ufdVdy4JIeTt27ekTZs21aa7/PVa/nqvamrZsiV59+5dtemkqPJo00WKomrN1NQUDx48wMaNG+Hu7g4NDQ2w2Wzo6OjAy8sLu3fvxtWrV6scqcfDwwMJCQnMl18OhwMdHR107doV4eHhWLBggURpadGiBZ4+fYqtW7eia9eu0NfXB4fDgaysLIyMjNCpUycsWbIESUlJNe474VswNDRkmgAlJibi6NGjzLLhw4fj2rVr6NmzJ7S0tMBms6GnpwcvLy8cPHgQBw4c+GFG5Bk7diw2bNgAoKzKeqdOnZCbmwsTExPcvn0bQUFB6NSpE6ysrKCqqgoZGRloamqiTZs2WLlyJZKSkuDs7PxN0iYvL8/UKNu3bx/u3r0rttq7p6cn7t69iyFDhkBfXx9sNhtaWlpwd3fH9u3bcenSJaYPClHWrl2LPXv2YMSIEUwNCw6HAzk5OVhaWsLX1xfXrl3Dli1bxPaH5+3tjdTUVKxatYqp3cFmsyEnJwczMzN069YNa9asQVpaGtq2bVtpfTabjaNHj2L37t1o3bo1VFRUIC8vD2tra8ydOxf37t2r1C/M15CSksL8+fPx9OlTrFixAh4eHsx+q6iowMrKCiNGjMDp06cRExPzQ46K2qZNG8TGxuLs2bOYMGECHB0doa2tDTabDUVFRRgbG8PLywvz589HfHw8bty4gVatWn31dqWkpLBp0yZcvXoVgwcPhrGxMbhcLpSVldG4cWPMnTsXT58+RadOncTGIS8vj8uXL2PJkiWwt7eHnJwc0xfcxo0bcfHixSrzbEUuLi64f/8+Jk+ejAYNGkBWVhYaGhrw8vLC2bNnsX79+q/e75r62uvyRzZ69GikpKRgwYIFcHNzg6amJmRkZKCgoABLS0v07t0bW7duxatXr4RqYbRu3RqRkZGYM2cO2rZtCwsLCygpKTHP3k6dOmHr1q2Ii4ur1Pxw//792L59OwYNGoTGjRtDV1cXMjIyUFRUhK2tLcaNG4fY2FjMmzevVvtkZGSE+/fvY+bMmbC0tASXy4WKigocHR0RGBiIuLg42NjYfNVxq4mBAwciNjYWQ4cOZd4JDAwM0K9fP1y/fh2jR4/+6m2EhYUhKSkJ69evR79+/WBrawsVFRVIS0tDQUEBxsbG6NKlC9atW4dnz54xtbdF2bNnD/766y80a9YMKioqYp8Vdf2O0LVrV9y9exfDhw9n3sO0tbXRu3dvXL9+HTNmzKjxcakLioqKuHHjBqZMmQJra2umy4fqVBzx8Hs0W6wrurq6uHr1Kk6fPo3BgwfD3Nwc8vLyzL2vZcuWmDFjBqKiokT2uSklJYULFy5g3rx5cHR0hKKi4nfroF5TUxNRUVE4duwY+vTpA0NDQ3C5XMjKysLc3Bx9+/bF3r17hWqhDRw4EGfPnsW0adPQqlUrmJmZQV5eHhwOB4aGhujevTv27t2La9euCY1aS1GSYBFSg14UKYqiKIqiqF+Cn58fQkNDYWJiIrafNYqiqJ+Nm5sbbty4ARsbm2r7vaQo6tdEa3RRFEVRFEVRFEVRP73k5GSmb8KfqTYXRVF1ixZ0URRFURRFURRFUT+9FStWAChrwijo9JyiqN8PHXWRoiiKoiiKoiiK+ul8+fIFr169QkFBAcLCwhASEgIA8Pf3p/06UdRvjBZ0URRFURRFURRFUT+dW7duVRqgxcjICEFBQfWTIIqifgi06SJFURRFURRFURT102KxWNDX18eQIUNw/fp1qKmp1XeSKIqqR3TURYqiKIqiKIqiKIqiKOqXQGt0URRFURRFURRFURRFUb8EWtBFURRVDRaLhbCwsPpOxk/Hw8MDU6dO/S7bqniOkpKS0KJFC8jKyqJx48ZIS0sDi8VCXFzcd0kP9e2EhIRAVVX1u2zLz88PPXv2ZP4nhMDf3x/q6upMfvqe+Zz6fkxNTbFu3bpar/898+mPLDIyEiwWCzk5OfWdlN9OTfLw1+b3n833eq8Tlf/DwsJgYWEBaWlpTJ06ld4rKOoboQVdFEX9FPz8/MBiscBiscBms2FmZoZZs2ahsLCwvpNWZwT7V35q1apVvadJ1MtgcXEx/vrrLzg6OkJeXh6amppwc3NDcHAwSkpKvns6s7Ky0LlzZ+b/wMBAKCgoIDk5GZcuXYKRkRGysrJgZ2f33dP2M+LxeGjZsiV69eolND83NxdGRkb4448/mHlHjx5Fu3btoKamBjk5OVhZWWHEiBGIjY1lwoSEhAjla0VFRTg7O+PYsWOVtn3lyhV06dIFGhoakJeXh42NDWbMmIFXr159ux0WY/369cwIXgAQHh6OkJAQnD59mslPx44dw6JFi7572n53FQsh69qdO3fg7+8vUVhRhQT9+/fHkydPJN6eh4cHc33IysrC0tISy5Ytw8/ew0jLli2RlZUFFRWV+k7KD6Pi+4yOjg46duyIXbt2gc/n19l2apKHaxJWEqLeZ8pP37Kj+NevX2PSpEkwNzcHl8uFkZERvL29cenSpW+2TXFE5f8xY8agT58+SE9Px6JFi2p8r6AoSjK0oIuiqJ+Gl5cXsrKykJKSgrVr12Lbtm0IDAys72TVqeDgYGRlZTHTyZMnax3XtypwKi4uhqenJ5YvXw5/f3/cuHEDt2/fxoQJE7BhwwYkJCR8k+1WRVdXF1wul/n/+fPnaNWqFUxMTKChoQFpaWno6upCRqb2gw0XFxfXRVJ/CtLS0ggJCUF4eDj27t3LzJ80aRLU1dWZ62727Nno378/GjdujJMnTyI5ORn79u2Dubk55syZIxSnsrIyk69jY2Ph6emJfv36ITk5mQmzbds2dOjQAbq6ujh69CgeP36MrVu3Ijc3F6tXr/4+O1+OioqK0Jf258+fQ09PDy1btmTyk7q6OpSUlGq9DR6PV6c/bqm6oaWlBXl5+VqvLycnB21t7RqtM3r0aGRlZSE5ORlz5szB/PnzsXXr1lqnQRLf+r7G4XCgq6sLFov1TbfzsxG8z6SlpeHcuXNo27YtpkyZgm7duqG0tLROtlGTPPy1+b2i8u8x69atE7r/Z2VlISAggAlLCKmzfU5LS4OzszMuX76MlStXIj4+HuHh4Wjbti0mTJhQJ9uoiYr5Pz8/H9nZ2fD09IS+vj6UlJRqda+oqD4+MFLUD49QFEX9BHx9fUmPHj2E5vXq1Ys4OTkRQgh59+4dGTBgANHX1ydycnLEzs6O7Nu3Tyi8u7s7mTRpEpk5cyZRU1MjOjo6JDAwUCjMkydPSOvWrQmXyyXW1tbkwoULBAA5fvw4E+bhw4ekbdu2RFZWlqirq5PRo0eTT58+VUrrkiVLiLa2NlFRUSELFiwgJSUlJCAggKipqREDAwOya9cuoW1X3E55PB6PLFiwgBgYGBAOh0McHR3JuXPnmOWpqakEADlw4ABp06YN4XK5JDg4mBBCyI4dO0ijRo0Il8slVlZWZNOmTcx6RUVFZMKECURXV5dwuVxibGxMli5dSgghxMTEhABgJhMTE0IIIStWrCBSUlLk/v37ldJZXFxM8vPzmeM9ZcoUZtm///5LnJ2diaKiItHR0SEDBw4kb968YZZ/+PCBDBo0iGhqahJZWVliYWHBHKOq0lnx2JVPMwASGBjIHJ/Y2Fhmnfj4eOLl5UUUFBSItrY2GTJkCHn79i2z3N3dnUyYMIFMmTKFaGhoEA8PD5Hn5le2fv16oqamRjIzM0lYWBhhs9kkLi6OEEJITEwMAUDWr18vcl0+n8/8HRwcTFRUVISW83g8wmazyaFDhwghhKSnpxMOh0OmTp0qMr6PHz+KjOvZs2eke/fuRFtbmygoKBAXFxcSEREhtO6mTZuIhYUF4XK5RFtbm/Tu3ZtZdvjwYWJnZ8dcz+3bt2fycPn7jq+vr8jroWI+LywsJDNmzCD6+vpEXl6eNGvWjFy5cqXSsThx4gSxtrYm0tLSJDU1VeQ+U+KJeiYIREZGkqZNmxIOh0N0dXXJ7NmzSUlJCbM8Ly+PDBo0iMjLyxNdXV2yZs2aSufRxMSErF27lhBSlpcDAwOJkZER4XA4RE9Pj0yaNIkQUnb+K95zCBGd50+ePElcXFwIl8slGhoapGfPnsyyitsnhJAmTZoQHx8f5v/q8hYhhGzfvp0YGhoSOTk50rNnT7J69WqhdAQGBhJHR0eyY8cOYmpqSlgsFiGk7PoaOXIk0dTUJEpKSqRt27bMtU4IIXFxccTDw4MoKioSJSUl0qRJE3Lnzh1CCCFpaWmkW7duRFVVlcjLyxMbGxty5swZQgghV65cIQCY65cQQo4cOUJsbGwIh8MhJiYmZNWqVUL7YGJiQpYsWUKGDx9OFBUViZGREdm2bRv5VYjLu5cuXSIAyI4dOwgh1Z8TQqrOU5Lm4YphCSHkxYsXpHv37kRBQYEoKSmRvn37ktevXzPLBfno33//JSYmJkRZWZn079+f5OXlVdqviteCIE+cPXuWNGnShLDZbHLlyhXC4/HI0qVLiampKZGVlSUODg7k8OHDQnFV99zu3LkzMTAwYO7h5ZXPgxXft2bNmkUaNmxI5OTkiJmZGZk3bx4pLi5mltdF/hf8XX66cuWKyHtFWFgYcXJyIlwul5iZmZGgoCChexgAsnnzZuLt7U3k5eUrvctSFEUIrdFFUdRP6dGjR7hx4wY4HA4AoLCwEM7Ozjhz5gwePXoEf39/DB06FLdv3xZaLzQ0FAoKCrh16xb++usvLFy4EBEREQAAPp+PXr16gcPh4NatW9i6dStmz54ttP7nz5/h6ekJNTU13LlzB4cPH8bFixcxceJEoXCXL19GZmYmrl69ijVr1iAwMBDdunWDmpoabt26hbFjx2LMmDHIyMiQaH/Xr1+P1atXY9WqVXj48CE8PT3RvXt3PH36VCjc//73P0yZMgWJiYnw9PTE3r17MX/+fCxZsgSJiYlYunQp/vzzT4SGhgIA/v77b5w8eRKHDh1CcnIy9u7dC1NTUwBlTRmA/2qZCf7fu3cvOnToACcnp0rpZLPZUFBQELkPJSUlWLRoER48eICwsDCkpaXBz8+PWf7nn3/i8ePHOHfuHBITE7FlyxZoampWm86KsrKyYGtrixkzZlT6ciyQk5ODdu3awcnJCXfv3kV4eDjevHmDfv36CYULDQ0Fh8NBdHT0N69Z8SOaNGkSHB0dMXToUPj7+2P+/PlwdHQEAOzfvx+KiooYP368yHWrqsHB4/GYPNikSRMAwOHDh1FcXIxZs2aJXEdcHyb5+fno0qULLl26hNjYWHh5ecHb2xsvX74EANy9exeTJ0/GwoULkZycjPDwcLRp0wZAWV4ZOHAgRowYgcTERERGRqJXr14im4utX78eCxcuhKGhodD1UNHEiRMRExODAwcO4OHDh+jbty+8vLyErtWCggKsWLEC//zzDxISEr76az71n1evXqFLly5o2rQpHjx4gC1btmDnzp1YvHgxE2b69OmIjo7GyZMnERERgWvXruH+/fti4zx69ChTi/jp06cICwuDvb09AODYsWMwNDTEwoULmdoqopw5cwY+Pj7o0qULYmNjcenSJTRr1kxkWEIIrl27hqSkJOYZB1Sft6KjozF27FhMmTIFcXFx6NixI5YsWVIp/mfPnuHo0aM4duwY029h3759kZ2djXPnzuHevXto0qQJ2rdvjw8fPgAABg8eDENDQ9y5cwf37t3D//73P7DZbADAhAkTUFRUhKtXryI+Ph4rVqyAoqKiyH27d+8e+vXrhwEDBiA+Ph5BQUH4888/hZoIA8Dq1avh4uKC2NhYjB8/HuPGjROq/fkrateuHRwdHZkm3dWdk5rkqarycEV8Ph89evTAhw8fEBUVhYiICKSkpKB///5C4Z4/f46wsDCcPn0ap0+fRlRUFJYvXy7x/v7vf//D8uXLkZiYCAcHByxbtgz//vsvtm7dioSEBEybNg1DhgxBVFQUgOqf2x8+fEB4eDgmTJgg8j2kqn6wlJSUEBISgsePH2P9+vXYsWMH1q5dyyyvi/zfsmVLJg8fPXoUWVlZaNmyZaVw165dw7BhwzBlyhQ8fvwY27ZtQ0hISKVrOSgoCD4+PoiPj8eIESOqOdoU9Ruq75I2iqIoSfj6+hJpaWmioKBAuFwuAUCkpKTIkSNHxK7TtWtXMmPGDOZ/d3d30qpVK6EwTZs2JbNnzyaEEHL+/HkiIyNDXr16xSw/d+6c0Je/7du3EzU1NaGvhWfOnCFSUlLM105fX19iYmJCeDweE8bKyoq0bt2a+b+0tJQoKCiQ/fv3M/MAEFlZWaKgoMBMgu3q6+uTJUuWVEr7+PHjCSH/1ehat26dUJgGDRpUqtm2aNEi4urqSgghZNKkSaRdu3ZCtW/KAyrXMpOTkyOTJ08WGb48UTUUyrtz5w4BwNSG8/b2JsOHDxcZtqbpdHR0FPrCWbFG16JFi0inTp2E4khPTycASHJyMpN+QY3B31liYiIBQOzt7YW+KHt5eREHBwehsKtXrxbKvzk5OYSQsi/6AJj5UlJSQrUOCSFk3LhxRFlZudr0iPr6XZGtrS3ZsGEDIYSQo0ePEmVlZZE1De7du0cAkLS0NJHxVKx5sXbtWqYml0D5fP7ixQsiLS0tdA8hhJD27duTOXPmMOkHUKlmBlUz4mrFzJ07l1hZWQndKzZt2kQUFRUJj8cjeXl5hM1mC9UUycnJIfLy8mJrdK1evZpYWloK1fAor2JtGEIq51NXV1cyePBgsfvj7u5O2Gw2UVBQIGw2m3keREdHE0Iky1v9+/cnXbt2FVo+ePDgSjW62Gw2yc7OZuZdu3aNKCsrk8LCQqF1GzRowNSkUlJSIiEhISLTbm9vT4KCgkQuq1ija9CgQaRjx45CYWbOnElsbGyY/01MTMiQIUOY//l8PtHW1iZbtmwRuY2fTVW1Efv370+sra0lOifV5ana5uELFy4QaWlp8vLlS2Z5QkICAUBu375NCCnLR/Ly8kL31ZkzZ5LmzZtXiltcja6wsDBmXmFhIZGXlyc3btwQWnfkyJFk4MCBhJDqn9u3bt0iAMixY8fEHhMBUe825a1cuZI4Ozsz/9dV/v/48SNTk0ug4vFp3769UI11QgjZvXs30dPTE0q/uNrPFEWVoTW6KIr6abRt2xZxcXG4desWfH19MXz4cPTu3RtAWQ2RRYsWwd7eHurq6lBUVMT58+eZWh0CDg4OQv/r6ekhOzsbAJCYmAgjIyPo6+szy11dXYXCJyYmwtHRUehroZubG/h8vtDXZltbW0hJ/XeL1dHREfp6Ki0tDQ0NDWbbAmvXrkVcXBwzdezYEXl5ecjMzISbm5tQWDc3NyQmJgrNc3FxYf7+/Pkznj9/jpEjR0JRUZGZFi9ejOfPnwMo6xQ3Li4OVlZWmDx5Mi5cuIDqkFp2jnzv3j14e3vD2NgYSkpKcHd3BwDmHI0bNw4HDhxA48aNMWvWLNy4cYNZtzbprMqDBw9w5coVoePSqFEjAGCODQA4Ozt/1XZ+Bbt27YK8vDxSU1OrrYE4YsQIxMXFYdu2bfj8+bNQXlFSUmLydWxsLJYuXYqxY8fi1KlTAMryVW368cnPz0dAQACsra2hqqoKRUVFJCYmMvmqY8eOMDExgbm5OYYOHYq9e/eioKAAAODo6Ij27dvD3t4effv2xY4dO/Dx48cap0EgPj4ePB4PlpaWQnkrKipKKF9xOJxK9yKqbiQmJsLV1VUoL7m5uSE/Px8ZGRlISUlBSUmJUM0XFRUVWFlZiY2zb9+++PLlC8zNzTF69GgcP368xn0KxcXFoX379lWGGTx4MOLi4hAdHY3OnTvjjz/+YGp8SJK3kpOTK9XoEVXDx8TEBFpaWsz/Dx48QH5+PjQ0NITiTk1NZeKePn06Ro0ahQ4dOmD58uVC+Xny5MlYvHgx3NzcEBgYiIcPH4rdx8TERJHPsqdPn4LH4zHzyl8fLBYLurq6lZ6XvyLBfVCScyJJnhKoSR4WvAsZGRkx82xsbKCqqir0zmFqairUP2H59ylJlH9fefbsGQoKCtCxY0eh/f3333+Z/a3uuV3bdxMAOHjwINzc3KCrqwtFRUXMmzdP6P2xrvK/JB48eICFCxcK7aeg/z7BswsQPn4URVVW+155KYqivjMFBQVYWFgAKPvx7ejoiJ07d2LkyJFYuXIl1q9fj3Xr1sHe3h4KCgqYOnVqpY52BVXNBVgs1jfpCFrUdiTZtq6uLrOPAnl5eRJvt3wBXH5+PgBgx44daN68uVA4aWlpAGXNxlJTU3Hu3DlcvHgR/fr1Q4cOHXDkyBGx27C0tERSUpLEaQL+a/IpaE6ppaWFly9fwtPTkzlHnTt3xosXL3D27FlERESgffv2mDBhAlatWlWrdFYlPz8f3t7eWLFiRaVlenp6zN/immH+Lm7cuIG1a9fiwoULWLx4MUaOHImLFy+CxWKhYcOGuH79OkpKSpi8raqqClVVVZEFYlJSUkJ528HBARcuXMCKFSvg7e0NS0tL5ObmIisrS+gcVCcgIAARERFYtWoVLCwsICcnhz59+jD5SklJCffv30dkZCQuXLiA+fPnIygoCHfu3IGqqioiIiJw48YNXLhwARs2bMAff/yBW7duwczMrMbHKz8/H9LS0rh37x5zjQmUb8oiJydHO+f+iRgZGSE5ORkXL15EREQExo8fj5UrVyIqKqrSfV0cOTm5asOoqKgw18ihQ4dgYWGBFi1aoEOHDhLnLUlUvK/l5+dDT08PkZGRlcIKmnsFBQVh0KBBOHPmDM6dO4fAwEAcOHAAPj4+GDVqFDw9PXHmzBlcuHABy5Ytw+rVqzFp0qQapau87/Ws/tEkJibCzMxMonMiSZ4SqIs8XNHXniNR7ytnzpyBgYGBUDjBQDPVPbeLiorAYrFq/H4SExODwYMHY8GCBfD09ISKigoOHDggNADK98z/+fn5WLBgQaVRjwFAVlaW+ft3fz+hqOrQGl0URf2UpKSkMHfuXMybNw9fvnxBdHQ0evTogSFDhsDR0RHm5uY1Hq7Z2toa6enpQn2s3Lx5s1KYBw8e4PPnz8y86OhoSElJVVkj4GsoKytDX18f0dHRQvOjo6NhY2Mjdj0dHR3o6+sjJSUFFhYWQlP5H/HKysro378/duzYgYMHD+Lo0aNMHyBsNlvoKzsADBo0CBcvXkRsbGylbZaUlAgdG4GkpCS8f/8ey5cvR+vWrdGoUSORX361tLTg6+uLPXv2YN26ddi+fbtE6aypJk2aICEhAaamppWODX15LFNQUAA/Pz+MGzcObdu2xc6dO3H79m2mr7KBAwciPz8fmzdvrvU2pKWl8eXLFwBAnz59wOFw8Ndff4kMm5OTI3J+dHQ0/Pz84OPjA3t7e+jq6iItLU0ojIyMDDp06IC//voLDx8+RFpaGi5fvgyg7MeZm5sbFixYgNjYWHA4HBw/frxW++Pk5AQej4fs7OxK+UpXV7dWcVI1Y21tjZiYGKHaHdHR0VBSUoKhoSHMzc3BZrOF+ljLzc2t9nkhJycHb29v/P3334iMjERMTAzi4+MBlNXQq3ifrMjBwQGXLl2SeD8UFRUxZcoUBAQEgBAiUd6ysrKq1HecuL7kymvSpAlev34NGRmZSnEL+kkEyj5yTJs2DRcuXECvXr0QHBzMLDMyMsLYsWNx7NgxzJgxAzt27BC5LWtra5HPMktLy0oFeL+by5cvIz4+Hr1795bonNQ0T1WVh8sTvAulp6cz8x4/foycnJwq3zm+ho2NDbhcLl6+fFlpfwU1y6p7bqurq8PT0xObNm0S+R4i7hly48YNmJiY4I8//oCLiwsaNmyIFy9eVApXF/lfEk2aNEFycnKlfbSwsBBqKUBRVNVojS6Kon5affv2xcyZM7Fp0yY0bNgQR44cwY0bN6CmpoY1a9bgzZs3NXop69ChAywtLeHr64uVK1ciLy8Pf/zxh1CYwYMHIzAwEL6+vggKCsLbt28xadIkDB06FDo6OnW9i4yZM2ciMDAQDRo0QOPGjREcHIy4uDjs3bu3yvUWLFiAyZMnQ0VFBV5eXigqKsLdu3fx8eNHTJ8+HWvWrIGenh6cnJwgJSWFw4cPQ1dXl/libGpqikuXLsHNzQ1cLhdqamqYOnUqzpw5g/bt22PRokVo1aoVlJSUcPfuXaxYsQI7d+5E48aNhdJhbGwMDoeDDRs2YOzYsXj06BEWLVokFGb+/PlwdnaGra0tioqKcPr0aVhbWwNAtemsqQkTJmDHjh0YOHAgZs2aBXV1dTx79gwHDhzAP//889v/4AKAOXPmgBDCdC5samqKVatWISAgAJ07d4arqytmzJiBGTNm4MWLF+jVqxeMjIyQlZWFnTt3gsViCb2UE0Lw+vVrAMCXL18QERGB8+fPY/78+QDKfiisXbsWEydORF5eHoYNGwZTU1NkZGTg33//haKiotAXdoGGDRvi2LFj8Pb2BovFwp9//ilUq+D06dNISUlBmzZtoKamhrNnz4LP58PKygq3bt3CpUuX0KlTJ2hra+PWrVt4+/Ytk+9qytLSEoMHD8awYcOwevVqODk54e3bt7h06RIcHBzQtWvXWsVLiZabm8t0pi7g7++PdevWYdKkSZg4cSKSk5MRGBiI6dOnQ0pKCkpKSvD19cXMmTOhrq4ObW1tBAYGQkpKSmwtu5CQEPB4PDRv3hzy8vLYs2cP5OTkYGJiAqDs2rh69SoGDBgALpcrVDgkEBgYiPbt26NBgwYYMGAASktLcfbs2UoDnpQ3ZswYLFq0CEePHkWfPn2qzVuTJk1CmzZtsGbNGnh7e+Py5cs4d+5ctbUHO3ToAFdXV/Ts2RN//fUXLC0tkZmZyXR2bmtri5kzZ6JPnz4wMzNDRkYG7ty5w3QdMHXqVHTu3BmWlpb4+PEjrly5IvYamjFjBpo2bYpFixahf//+iImJwcaNG7+qwPxnVFRUhNevX4PH4+HNmzcIDw/HsmXL0K1bNwwbNgxSUlJVnhMXF5ca5anq8nB5HTp0gL29PQYPHox169ahtLQU48ePh7u7+zdrLqekpISAgABMmzYNfD4frVq1Qm5uLqKjo6GsrAxfX1+JntubNm2Cm5sbmjVrhoULF8LBwQGlpaWIiIjAli1bKnX3AJQ9Q16+fIkDBw6gadOmOHPmjNDHji9fvtRZ/pfE/Pnz0a1bNxgbG6NPnz6QkpLCgwcP8OjRI6FBNSiKqka99Q5GURRVA+I6b122bBnR0tIiGRkZpEePHkRRUZFoa2uTefPmkWHDhgmtI6pz9B49ehBfX1/m/+TkZNKqVSvC4XCIpaUlCQ8Pr9Rp6cOHD0nbtm2JrKwsUVdXJ6NHj2Y6VBeXVlHbrtiBccXtlMfj8UhQUBAxMDAgbDabODo6knPnzjHLK3a2Xt7evXtJ48aNCYfDIWpqaqRNmzZMZ63bt28njRs3JgoKCkRZWZm0b9+e3L9/n1n35MmTxMLCgsjIyAh1wl1YWEiWLVtG7O3tmePg5uZGQkJCmA7LK+7zvn37iKmpKeFyucTV1ZWcPHmyUgfx1tbWRE5Ojqirq5MePXqQlJQUidJZ8dhV1xk9IYQ8efKE+Pj4EFVVVSInJ0caNWpEpk6dynRiXV1n+r+yyMhIIi0tTa5du1ZpWadOnYQGBjh48CDx8PAgKioqhM1mE0NDQzJo0CBy8+ZNZh1BB+yCicvlEktLS7JkyRJSWloqFH9ERATx9PQkampqRFZWljRq1IgEBASQzMxMJq7yHfempqaStm3bEjk5OWJkZEQ2btwodO6uXbtG3N3diZqaGpGTkyMODg7k4MGDhBBCHj9+TDw9PYmWlhaTJkEn9oTUvDN6QggpLi4m8+fPJ6ampoTNZhM9PT3i4+NDHj58KDL9VO34+voK5SnBNHLkSBIZGUmaNm1KOBwO0dXVJbNnzxYaSCEvL48MGjSIyMvLE11dXbJmzRrSrFkz8r///Y8JU/7+fPz4cdK8eXOirKxMFBQUSIsWLcjFixeZsDExMcTBwYEZKIUQ0ef56NGjzL1YU1OT9OrVi1km7n4zZswYYmtrS3g8XrV5i5Cye6WBgQGRk5MjPXv2JIsXLya6urrM8sDAQOLo6FhpO3l5eWTSpElEX1+fsNlsYmRkRAYPHkxevnxJioqKyIABA4iRkRHhcDhEX1+fTJw4kXz58oUQQsjEiRNJgwYNCJfLJVpaWmTo0KHk3bt3hJDKnXETQsiRI0eIjY0NYbPZxNjYmKxcuVIoLaI69694T/+Zlc+7MjIyREtLi3To0IHs2rVLaBCbqs6JQFV5qiZ5uOIxf/HiBenevTtRUFAgSkpKpG/fvsyAO4SIzkei7o+EiO+MvnyeIKRs0IF169YRKysrwmaziZaWFvH09CRRUVFMmOqe24QQkpmZSSZMmEBMTEwIh8MhBgYGpHv37kIdwFd8Z5g5cybR0NAgioqKpH///mTt2rVMmusy/0vSGT0hhISHh5OWLVsSOTk5oqysTJo1a0a2b98uNv0URVXGIuQreu6jKIqiKIqiqJ/Y58+fYWBggNWrV2PkyJH1nZw6NXr0aCQlJeHatWv1nRSKoiiK+m5o00WKoiiKoijqtxEbG4ukpCQ0a9YMubm5WLhwIQCgR48e9Zyyr7dq1Sp07NgRCgoKOHfuHEJDQ3+7ZoEURVEURQu6KIqiKIqiqN/KqlWrkJycDA6HA2dnZ1y7dk1k31o/m9u3b+Ovv/7Cp0+fYG5ujr///hujRo2q72RRFEVR1HdFmy5SFEVRFEVRFEVRFEVRvwQ6RilFURRFURRFURRFURT1S6AFXRRFURRFURRFURRFUdQvgRZ0URRFURRFURRFURRFUb8EWtBFURRFURRFURRFURRF/RJoQRdFUdQvrqioCEFBQSgqKqrvpFDUN0PzOfU7oPmc+h3QfE5R1Neioy5SFEX94vLy8qCiooLc3FwoKyvXd3Io6pug+Zz6HdB8Tv0OaD6nfnfLly/HnDlzMGXKFKxbt66+k1MjQUFBCAsLQ1xcXL2mg9booiiKoiiKoiiKoiiKqmd37tzBtm3b4ODgUN9JqYTH44HP59d3MiRCC7ooiqIoiqIoiqIoiqLqUX5+PgYPHowdO3ZATU2txuu7uLhg1apVzP89e/YEm81Gfn4+ACAjIwMsFgvPnj0DAHz8+BHDhg2Dmpoa5OXl0blzZzx9+pRZPyQkBKqqqjh58iRsbGzA5XLx8uVLREZGolmzZlBQUICqqirc3Nzw4sULhISEYMGCBXjw4AFYLBZYLBZCQkK+7qDUEi3ooiiKoiiKoiiKoiiKqkNFRUXIy8sTmqrqe27ChAno2rUrOnToUKvtubu7IzIyEgBACMG1a9egqqqK69evAwCioqJgYGAACwsLAICfnx/u3r2LkydPIiYmBoQQdOnSBSUlJUycBQUFWLFiBf755x8kJCRAXV0dPXv2hLu7Ox4+fIiYmBj4+/uDxWKhf//+mDFjBmxtbZGVlYWsrCz079+/VvvytWTqZasURf3WPi4ZV99J+K0UlfIwq60zCtYGgCcjXd/J+W3IePao7yT8VoqLi/G/0YNR/CgSnzic+k7Ob+O+XJv6TsJvpbiYB99xc3HrOQ8cTkF9J+e3EXGH/mT6nkpLWGjdYx6WHmRBhl1c38n5bSz2+3mfnfNCfsx8IpO2DAsWLBCaFxgYiKCgoEphDxw4gPv37+POnTu13p6Hhwd27twJHo+HR48egcPhoH///oiMjISXlxciIyPh7u4OAHj69ClOnjyJ6OhotGzZEgCwd+9eGBkZISwsDH379gUAlJSUYPPmzXB0dAQAfPjwAbm5uejWrRsaNGgAALC2tmbSoKioCBkZGejq6tZ6P+oCrdFFURT1i+PKSON/7ZuCSwu5qF8Yl8PBXP8h4NJCLuoXxuFwMXzCH+BwuPWdFIr6ZmTYXLTp+Sdk2DSfUz+3OXPmIDc3V2iaM2dOpXDp6emYMmUK9u7dC1lZ2Vpvr3Xr1vj06RNiY2MRFRUFd3d3eHh4MLW8oqKi4OHhAQBITEyEjIwMmjdvzqyvoaEBKysrJCYmMvM4HI5Qf2Hq6urw8/ODp6cnvL29sX79emRlZdU6zd8KLeiiKIqiKIqiKIqiKIqqQ1wuF8rKykITl1u5APfevXvIzs5GkyZNICMjAxkZGURFReHvv/+GjIwMeDyeRNtTVVWFo6MjIiMjmUKtNm3aIDY2Fk+ePMHTp0+ZGl2SkpOTA4vFEpoXHByMmJgYtGzZEgcPHoSlpSVu3rxZo3i/NVrQRVEURVEURVEURVEUVQ/at2+P+Ph4xMXFMZOLiwsGDx6MuLg4SEtL3irD3d0dV65cwdWrV+Hh4QF1dXVYW1tjyZIl0NPTg6WlJYCy5oalpaW4desWs+779++RnJwMGxubarfj5OSEOXPm4MaNG7Czs8O+ffsAlNUAk7Rg7luiBV0URVEURVEURVEURVH1QElJCXZ2dkKTgoICNDQ0YGdnV6O4PDw8cP78ecjIyKBRo0bMvL179wrV5mrYsCF69OiB0aNH4/r163jw4AGGDBkCAwMD9Oghvp/Z1NRUzJkzBzExMXjx4gUuXLiAp0+fMv10mZqaIjU1FXFxcXj37l2Vne9/S7Sgi6IoiqIoiqIoiqIo6gfm5+fH9LElTuvWrcHn84UKtTw8PMDj8SqtGxwcDGdnZ3Tr1g2urq4ghODs2bNgs9li45eXl0dSUhJ69+4NS0tL+Pv7Y8KECRgzZgwAoHfv3vDy8kLbtm2hpaWF/fv313p/vwaLEELqZcvUT8XDwwONGzfGunXrAJSV1E6dOhVTp079JttLS0uDmZkZYmNj0bhx42+yDYGQkBBMnToVOTk5YsMEBQUhLCwMcXFx3zQtvws66iL1O6CjLlK/AzrqIvU7oKMuUr8DOupi3avrY+ru7o62bduKHLWREkbv2j84Pz8/hIaGVprv6emJ8PDwekhRmTt37kBBQaHeti9KaGgoNm7ciISEBEhLS6NJkyaYOXMmunXrVt9JA1BWWBgVFSV2ubu7OyIjI2FqaooXL14AKCsxt7Kywpw5c5ghXoOCgphhaqWkpKCvr4/OnTtj+fLlUFdX//Y7Qn13F5Jf4FRCKnILi2CspgS/pjaw0FQVG/5mWhYOPXiKd5+/QFdJHgObWMHJQJtZPnD3OZHrDWpiBW9bcwBA6vtc7ItNRsr7XEixWGhmrIuhzo0gy6aPDerbCL9+G6euRCMnLx8m+roY3qszGpoYigyb/jobh85dQUpGJt5+yIFvTy90dXcVG3fYpWvYd/oiurRpAT+fzsz87YdOIf5JCj7mfQKXw4aVmTEGd+sAAx2tOt8/igKAmKhwXLt4Ap/ycqBnaALvviNhZNpQZNg3Wem4ePoAXr1MwccPb9G1tx9atav8TpOb8x7hYXvw5HEsSoqLoa6liz5DxsPQxIIJk52VgfATe5D69DF4fB509AwxeFQAVNVpXqfq3tMHZ5F87wQKP3+EqpYpnDxGQUPXUmTY5/EX8CIxErnvXwIA1LQbwN5tsFD4jKcxeBZ/HjnZKSgq/IROg1ZDTducWV705RMSbh7A65dxKPj0Dlw5ZRg0aA4714HgcH+s3ysUVVu5ubl4/vw5zpw5U99J+SnQXyw/AS8vLwQHBwvNEzVaw/ekpfVjvRgFBARg48aNWLx4MXr27ImSkhLs2bMHPXr0wPr16zFx4sT6TiKOHTuG4uKyrw3p6elo1qwZLl68CFtbWwBlHfcJLFy4EKNHj0ZeXh5Wr16N/v37w8DAAC1btgQA2Nra4uLFi+DxeEhMTMSIESOQm5uLgwcPfv8do76pmLQs7L6biJHN7WChqYpzSWlYdukO1vZoA2XZyveB5OyP2HD9AQY4WcLJQBs30jKxJvI+lnZxg5GaEgBgS592QuvEvXqL7Tfj0cxYFwDwsaAQSy7egaupLoY3s8GX4lL8ezcRW248xDT3Jt9+p6nfzo3YR/j3RDhG9/FGQxNDnLkagyXbdmP93MlQUaz8I6WouATaGqpo4WiD0BPnq4z72ctXiLhxF8b6OpWWmRnqoVUTe2ipq+JTQQEOh0di8dbd2PTnVEhJ0d4dqLr18F40zhwNQc+B/jA2tcT1K6exa+NizAj8G4pKKpXClxQXQU1DG3ZOrjhzNERknAUF+di2eh7MLG3hN/4PKCgq4/3bLMjJ/3fdvH+bhW1r58HFtR06dO0Prqws3mRlQIb989beoH5cL59cR9zVYLi0GwsNXUskx57C1eML0dl3E2TlK+fztxmPYGzVGhp6VpCW4SDp7jFcPb4QnkPXQ15RAwBQWloELQMbGFu64c7FzZXiKPz8AV8+f4Rjaz8oqxui4NM73Lu0BV/yP8Ct26xvvs8U9T2oqKggIyOjvpPx06BvcT8BLpcLXV1doUlNTQ0A8PTpU7Rp0waysrKwsbFBREQEWCwWwsLCAACRkZFgsVhCzfLi4uLAYrGQlpYGoGx0hYEDB8LAwADy8vKwt7evti2tqakp04wxJCQELBar0lS+SuU///wDa2tryMrKolGjRti8Wfghdfv2bTg5OUFWVhYuLi6IjY2V+PjcvHkTq1evxsqVKxEQEAALCwtmZImpU6di+vTpSE9PZ8KHhITA2NgY8vLy8PHxwfv37yvFuXz5cujo6EBJSQkjR45EYWGh0PLIyEg0a9YMCgoKUFVVhZubG1MLSxx1dXXm/AkKCjU0NJh55WtjKSkpQVdXF5aWlti0aRPk5ORw6tQpZrmMjAx0dXVhYGCADh06oG/fvoiIiJDoeBFCEBQUBGNjY3C5XOjr62Py5MnM8qKiIgQEBMDAwAAKCgpo3rw5IiMjAQCFhYWwtbWFv78/E/758+dQUlLCrl27JNo+VTNnElPRrqERPCwMYaiqiFHNbcGVlsaVZ6IfdOFJaXDU14S3rTkMVRXRr7ElTNVVcD75v/ypKscVmu6mv4GNjjp0lOQBAPcysiEtxcKIZrbQV1ZEA01VjGxui9sv3+D1p8/fZb+p38vpyBi0b+GMts2dYKirBf++3uBy2Lhy677I8BbGBhja3RNuTezBlhE/ElFhUTE27DmKMf26Q1FOrtLyji1dYGNhCi11VZgb6mNAl/Z4n5OL7A85dbVrFMW4fvkUmrp1gItrO2jrGcJn4BhwOBzcjbksMryhiQW69PKFo0sryMiI7i/lakQYVNQ00HfoRBiZNoS6pg4aWjeGhpYeE+bCqf2wsm2Czj7DoG9kBg0tPdg4NBVZuEZRX+vJ/ZMwt+sIM9v2UNYwgkv7cZCW4SI14ZLI8C06T4eFY2eoaZtDWd0QTTtMBCF8ZL98yIQxtfaAbfN+0DF2FBmHiqYJ3LrNgoF5Uyip6kHHyB72LQcjM/UO+Pz6H/2NoqjvjxZ0/cT4fD569eoFDoeDW7duYevWrZg9e3aN4yksLISzszPOnDmDR48ewd/fH0OHDsXt27clWr9///7Iyspipv3790NGRgZubm4AgL1792L+/PlYsmQJEhMTsXTpUvz5559Mk8z8/Hx069YNNjY2uHfvHoKCghAQECBx+vfv3w9FRUWmA7zyZsyYgZKSEhw9ehQAcOvWLYwcORITJ05EXFwc2rZti8WLFwutc+jQIQQFBWHp0qW4e/cu9PT0hArmSktL0bNnT7i7u+Phw4eIiYmBv78/WCyWxGmuCRkZGbDZbKY2WEVpaWk4f/68UI2wqhw9ehRr167Ftm3b8PTpU4SFhcHe3p5ZPnHiRMTExODAgQN4+PAh+vbtCy8vLzx9+hSysrLYu3cvQkNDceLECfB4PAwZMgQdO3bEiBEj6mR/qf+U8vhIfZ8HOz1NZh6LxYKdngaevs0Ruc6Ttzmw09MQmuegp4Gn70SHz/1ShLjMt2hrYfTfdvl8yEhJCeVpzv8XJiRnf6zl3lCUaKWlPKRkZMLe8r9mKCwWC/aWDfAk7eu+XP5z9Aya2FjCwapBtWELi4oReTsW2hpq0FSlBQBU3SotLcWrlymwaOTAzGOxWLBo5ICXqU9qHW/iw7swMLbA3n9WYfHsEdiwLAC3o//78EUIQdKj+9DQ0sOujYuwePYIbF75PyQ8kOwdj6Jqgs8rxYc3z6FbrkCKxWJBx9gB77OSJYqjtLQIfD4PHFmlr0pLSXEB2Bx5SEmJ/xhCUdSvizZd/AmcPn0aioqKQvPmzp0LFxcXJCUl4fz589DX1wcALF26FJ07dxYVjVgGBgZCBUuTJk3C+fPncejQITRr1qza9eXk5CD3/1/Knz9/jgkTJmDp0qXo2LEjACAwMBCrV69Gr169AABmZmZ4/Pgxtm3bBl9fX+zbtw98Ph87d+6ErKwsbG1tkZGRgXHjJOuw/MmTJ2jQoIHIgh59fX0oKyvjyZOyl8j169fDy8sLs2aVVWO2tLTEjRs3hPo7W7duHUaOHImRI0cCABYvXoyLFy8ytbry8vKQm5uLbt26oUGDsh9PguFU61pxcTFWr16N3NxctGv3X3Oz+Ph4KCoqgsfjMelas2aNRHG+fPkSurq66NChA9hsNoyNjZnz/PLlSwQHB+Ply5dMngoICEB4eDiCg4OxdOlSNG7cGIsXL8aoUaMwYMAAvHjxAqdPnxa7vaKiokrDyhaV8sCtohYGVeZTUTH4hEBFVjhvq8hykZknumZVXmERVCs0aVSV4yLni+ihfaNSXkFWRgZNjf5r1mWnq4E995JwKiEFnRuZorCUh/33y15QP4qJh6JqK+9zAfh8PlSVhJ9zqooKyHzzrtbxRt+PR2pGFpZNG11luPPRt7H3VAQKi4qhr62JeWOHQYben6g6VvA5D3w+v1ItKkUlFbx986rW8X549wa3rp1Hq3bd0NazN9JfPMXpw8GQlpaBc4u2yM/LQXFRIaIiwtDJeyC8egzBk8Q47N2xEqOmBMG8oe3X7hpFMYq+5IEQPrgVmijKyqvi00fJ8vnD6/9CTkEdOsYO1QeuIh0Jtw6jgX2nWsdBUdTPjdbo+gm0bdsWcXFxQtPYsWORmJgIIyMjpkACAFxdxXfGKw6Px8OiRYtgb28PdXV1KCoq4vz583j58mWN4hEU/nTt2hUzZ84EAHz+/BnPnz/HyJEjoaioyEyLFy/G8+fPAQCJiYlwcHCArKxsrfdD0sFDExMT0bx5c6F5FbdVXRh1dXX4+fnB09MT3t7eWL9+PbKysmqU3urMnj0bioqKkJeXx4oVK7B8+XJ07dqVWW5lZYW4uDjcuXMHs2fPhqenJyZNmiRR3H379sWXL19gbm6O0aNH4/jx4ygtLQVQVoDG4/FgaWkpdL6ioqKY8wWU1ZSztLTExo0bsWvXLmhoaIjbHJYtWwYVFRWhaW2U6OZI1PcX+SwDrcz0mRpbAGCoqoRxLR1w5nEqfPdfwLgjl6ClKA8VWQ6+Tb1Fiqpb73NyEXz8HCYP6Q1OFUNkA0CrJg5YMWMsgiYMh56WBtaGHkJxScl3SilFfR1CCPSNzODZYzD0jczQvFUnNHXrgFvXLpQtR9n7kY29C1q16wZ9IzN4dPJBIztn3P7/MBT1o0i8cwwvn1yHm/dsSMvUrg+5kqICXDuxGCoaRrBt3r+OU0hR1M+C1uj6CSgoKMDCwqL6gCIIOtMtXxBUUuEFfuXKlVi/fj3WrVsHe3t7KCgoYOrUqWKbyonC4/HQv39/KCsrY/v27cz8/Px8AMCOHTsqFR5JS9fNF3NLS0tcv34dxcXFlWp1ZWZmIi8vD5aWokd6qa3g4GBMnjwZ4eHhOHjwIObNm4eIiAi0aNGiTuKfOXMm/Pz8oKioCB0dnUrNIjkcDpMnBIVgCxYswKJFi6qN28jICMnJybh48SIiIiIwfvx4rFy5ElFRUcjPz4e0tDTu3btX6fyUr1WYnZ2NJ0+eQFpaGk+fPoWXl5fY7c2ZMwfTp08XmlewVvKmqb8zJS4HUiwWcguFr8VcEbW2BJRlucgpFK51lfOlCKpylcMnvvmArLzPmNK6caVlbmb6cDPTR+6XIqb23dnEVOgoytdybyhKNGUFeUhJSSHnU77Q/Jz8z1BVVhSzVtWep2ciL/8zZq/eyszj8/lITHmB8Ou3sW/ln8zzUUFOFgpystDT0oClqRGG/7EMd+KT4NbEXlz0FFVj8grKkJKSQv6nXKH5+Z9yoaisVut4lZRVoa0rPDqplo4+HsXG/LddaWlo6xkJh9E1wIvnSbXeLkWJwpVTBoslhaIC4XxeWJADWfmq83nSvRNIunsM7j6BUNU0rdX2S4q/4GrYQsiw5eDWbTakpOlPXYr6XdEaXT8xa2trpKenC9UmunnzplAYQafn5cPExcUJhYmOjkaPHj0wZMgQODo6wtzcnGnqJ6lp06YhPj4eYWFhQjWzdHR0oK+vj5SUFFhYWAhNZmZmzH48fPhQqMP3ivtRlQEDBiA/Px/btm2rtGzVqlVgs9no3bs3s61bt24Jham4LUnCAICTkxPmzJmDGzduwM7ODvv27ZM4zdXR1NSEhYUFdHV1Jer7a968eVi1ahUyMzMlil9OTg7e3t74+++/ERkZiZiYGMTHx8PJyQk8Hg/Z2dmVzpeuri6z/ogRI2Bvb4/Q0FDMnj0biYmJYrfF5XKhrKwsNNFmi5KRkZaCmYYyErL+GzCBEIKE1+/RUEtV5DqWWqp4lCU8wEL86/doqFk5fOTzDJhpKMNEXVlsGlTkuJBlyyDmRRbY0tKw19cUG5aiakNGRhrmhvp49DSVmUcIwaMnKbA0NaxiTfHsG5pj1azx+CtgLDM1MDZAa2cH/BUwVuyIigQEhAAl/1/LlaLqioyMDAyMzfE8OZ6ZRwjBs+R4GJvV/mOcibkV3mULP/vfZb+GqroWs11D4waVw7zJgqoavZ9TdUtKWgbqOg3wplxH8oQQZKfHQ0PPSux6SXeP4/GtQ2jT80+o6zas1bZLigoQdSwIUlIyaNV9bq1rhFEU9Wugxdw/gaKiIrx+/VponoyMDDp06ABLS0v4+vpi5cqVyMvLwx9//CEUzsLCAkZGRggKCsKSJUvw5MkTrF69WihMw4YNceTIEdy4cQNqampYs2YN3rx5AxsbG4nSFxwcjM2bN+P48eNgsVhMWgXN3hYsWIDJkydDRUUFXl5eKCoqwt27d/Hx40dMnz4dgwYNwh9//IHRo0djzpw5SEtLw6pVqyQ+Pq6urpgyZQpmzpyJ4uJi9OzZEyUlJdizZw9TU83IqOxL5uTJk+Hm5oZVq1ahR48eOH/+vFD/XAAwZcoU+Pn5wcXFBW5ubti7dy8SEhJgbl7WUXJqaiq2b9+O7t27Q19fH8nJyXj69CmGDRsmcZrrmqurKxwcHLB06VJs3LixyrAhISHg8Xho3rw55OXlsWfPHsjJycHExAQaGhoYPHgwhg0bhtWrV8PJyQlv377FpUuX4ODggK5du2LTpk2IiYnBw4cPYWRkhDNnzmDw4MG4efOmxB3iU5Lram2GLTcewkxDGQ00VBGelIbCUh48GpQVAGyKfgB1OVkMbFL2AunVyBSLIm7h9ONUOBloISYtC6nvczG6uZ1QvAXFJbj54jWGODcSud3zSS9gqaUKLlsaj7LeY8+9JAxqYgUFTtXNwCiqNrp5uGLTvuMwN9SDhbEhzl69icLiYng0cwIAbNx7DGoqShjcrazvx9JSHtJfZ5f9zePhQ24eUjOyICfLha6mOuRkuTDW0xHaBpfNhqK8HDP/zbsPuBGXAAerBlBRlMf7nDyEXboODocNJ5u6rQVMUQDQqp03Dv+7EQbG5jAyaYjoyDMoLiqCc4u2AIBDoX9DWVUdXj2GACjrwD47q2zUaB6vFHk575GZngqurCwzqmKr9t7YsvoPXAk/CgfnlkhPe4bb0RHwGfjfAD1tOvTA/l1rYWphjQaWdkhOiEPSo7sYPXXBdz4C1O/Askl33D7/N9R0GkBDpyGexJ1GaUkhzGzL+pq9dX4d5BQ04NBqKICy5oqPbu6Hq9d0yCtr48vnskFv2Bw5yLDLPp4XffmEgk9vmWWfcsoKbmUV1CCnoFZWyHV8AXilRWjuNRUlxQUoKS4oCyOnApaYjxsURf26aEHXTyA8PBx6enpC86ysrJCUlITjx49j5MiRaNasGUxNTfH3338LNSNjs9nYv38/xo0bBwcHBzRt2hSLFy9G3759mTDz5s1DSkoKPD09IS8vD39/f/Ts2RO5ucLVjsWJiooCj8dD9+7dheYHBgYiKCgIo0aNgry8PFauXImZM2dCQUEB9vb2mDp1KoCyArFTp05h7NixcHJygo2NDVasWMHUwpLEunXr4ODggM2bN2PevHmQlpZGkyZNEBYWBm9vbyZcixYtsGPHDgQGBmL+/Pno0KED5s2bJ9Tkr3///nj+/DlmzZqFwsJC9O7dG+PGjcP58+cBAPLy8khKSkJoaCjev38PPT09TJgwQeSoj9/TtGnT4Ofnh9mzZzMFe6Koqqpi+fLlmD59Ong8Huzt7XHq1Cmmn63g4GAsXrwYM2bMwKtXr6CpqYkWLVqgW7duSEpKwsyZM7Fz505mG5s3b4aDgwP+/PNPrFix4rvs6+/E1VQPeYXFOPzgKXK/FMFEXRn/a9cUKv/fFPH950JIlav1Z6Wtholujjj04CkOxiZDV1kB0z2awEhNePSiG2lZIISgpanwvUXg2fscHHn4FIUlpdBXUcToFnZobW7w7XaU+q21dLJDbv5nHAq/gpxP+TDV18Mf/kOZDurffcwVqt36Me+TULPEU1du4NSVG7BpYIqgicMl2iabzUZiyguciYpBQWEhVBQVYW1ujMWTR0JFUaFud5CiADg4uyH/Ux4unj6IT3k50DcyxfAJf0BJWRUAkPPhndAP8k+5H7Bh+Uzm/2uXTuHapVMws7CB/7SFAABDEwsMHT0L4Sf34vK5I1DT0Ea3Pn5wataGWc+2cXP0HDAakReO4/ThYGhq62Pw6JkwbfBtBtKhfm/Glq1QVJCLRzEHUFjwEWpaZmjT80/IyqsCAAry3oHF+i+fP48/Dz6vFNFn/hKKx7Z5f9i5DgAAZKbewe0LG5hlMWdXC4X5mJ2C96/LWqOcDRkvFE+3EdugoKxd5/tJUdSPjUUk7cWb+mmwWCwcP34cPXv2rO+kUJRIH5dINqImRf3MZDx71HcSKOqbuy/XpvpAFPWTi7hD6wZQv77Ffj9vy4x5IZL3Lf09/czH9GdH63FSFEVRFEVRFEVRFEVRvwRa0EX98MaOHcv091VxGjt2bH0nT4itra3YtO7du/e7pGHv3r1i02Bra/td0kBRFEVRFEVRFEVR9YHWw/0F/WqtURcuXIiAgACRy5SVxY8WVx/Onj2LkpISkct0dHREzq9r3bt3R/PmzUUuY7NpR+IURVEURVEURVHUr4sWdFE/PG1tbWhr/xydSJqYmNR3EqCkpAQlJaXqA1IURVEURVEURVHUL4Y2XaQoiqIoiqIoiqIoiqJ+CbSgi6IoiqIoiqIoiqIoivol0IIuiqIoiqIoiqIoiqIo6pdA++iiKIqiKIqiaiXiDn2VpH59HZuW1ncSKOo74NR3AiiqztAaXRRFURRFURRFURRFUdQvgRZ0URRFURRFURRFURRFUb8EWtBFURRFURRFURRFURRF/RJoQRdFURRFURRFURRFURT1S6AFXRRFURRFURRFURRFUdQvgRZ0URRFURRFURRFURRFUb8EWtBFMTw8PDB16lTmf1NTU6xbt+6bbS8tLQ0sFgtxcXHfbBsCISEhUFVVrTJMUFAQGjdu/M3TQlEURVEURVEURVHUtyFT3wmgAD8/P4SGhlaa7+npifDw8HpIUZk7d+5AQUGh3rYvSmhoKDZu3IiEhARIS0ujSZMmmDlzJrp161bfSQNQVlgYFRUldrm7uzsiIyNhamqKFy9eAADk5eVhZWWFOXPmoG/fvgDKCt0WLFgAAJCSkoK+vj46d+6M5cuXQ11d/dvvCPVDuZD8AqcSUpFbWARjNSX4NbWBhaaqyLAZOZ9w+MFTpLzPw7vPXzDUpRG6WJsJhYlIfoGLT9ORnV8AADBUUUJvBws0NtACALzN/4LJxyNFxj+ldWO0MNWrs32jKIHw67dx6ko0cvLyYaKvi+G9OqOhiaHIsOmvs3Ho3BWkZGTi7Ycc+Pb0Qld3V6Ewh8Kv4Mj5SKF5+tqaWDdnEvP/x7xP2HsqAg+Sn6OwqAh6Wpro3bENmjva1Pn+URQAPH1wFsn3TqDw80eoapnCyWMUNHQtRYZ9Hn8BLxIjkfv+JQBATbsB7N0GC4W/feFvpD6+IrSerokT3H3mM//nfXyFh9f+xbvMRPD5pVDRNIGd6yDoGNl/gz2kKCAmKhzXLp7Ap7wc6BmawLvvSBiZNhQZ9k1WOi6ePoBXL1Pw8cNbdO3th1bthN/riwq/IOL0ASTE3cLn/DzoGZrCu+8IGJpYMGEO796I+zcjhdaztG6M4RPn1fn+URT146MFXT8ILy8vBAcHC83jcrn1lJoyWlpa9br9igICArBx40YsXrwYPXv2RElJCfbs2YMePXpg/fr1mDhxYn0nEceOHUNxcTEAID09Hc2aNcPFixdha2sLAOBwOEzYhQsXYvTo0cjLy8Pq1avRv39/GBgYoGXLlgAAW1tbXLx4ETweD4mJiRgxYgRyc3Nx8ODBWqWtpKQEbDb7K/eQ+t5i0rKw+24iRja3g4WmKs4lpWHZpTtY26MNlGUr3yOKSnnQUpRHc2Nd7L6XJDJOdQVZDHCyhK6SAggIrj3PxOrIe1jW1Q2GqkrQkJfFlj7thNa59DQdpxJSmMIwiqpLN2If4d8T4RjdxxsNTQxx5moMlmzbjfVzJ0NFsfIHl6LiEmhrqKKFow1CT5wXG6+hrjb+HDeM+V9aSrgi+8a9x1FQWIhZIwdCWUEe1+/HY03oISyfPgZmhrRAl6pbL59cR9zVYLi0GwsNXUskx57C1eML0dl3E2TlVSqFf5vxCMZWraGhZwVpGQ6S7h7D1eML4Tl0PeQVNZhweqZN0LTjf+9A0tLCz/rrJ5ZAUVUfHn0WQlqagyexp3D95BJ08dsCOQW1b7fD1G/p4b1onDkagp4D/WFsaonrV05j18bFmBH4NxSVKufzkuIiqGlow87JFWeOhoiM8+jezXiTmY6+vpOgoqqO2NtXsfPvhZj651qoqP53LVjaOKHPkPHM/9L0vZeiflu06eIPgsvlQldXV2hSUyt7+Xj69CnatGkDWVlZ2NjYICIiAiwWC2FhYQCAyMhIsFgs5OTkMPHFxcWBxWIhLS0NAPD+/XsMHDgQBgYGkJeXh729Pfbv319lmso3XQwJCQGLxao0BQUFMeH/+ecfWFtbQ1ZWFo0aNcLmzZuF4rt9+zacnJwgKysLFxcXxMbGSnx8bt68idWrV2PlypUICAiAhYUFrK2tsWTJEkydOhXTp09Heno6Ez4kJATGxsaQl5eHj48P3r9/XynO5cuXQ0dHB0pKShg5ciQKCwuFlkdGRqJZs2ZQUFCAqqoq3NzcmFpY4qirqzPnT1BQqKGhwcwrXxtLSUkJurq6sLS0xKZNmyAnJ4dTp04xy2VkZKCrqwsDAwN06NABffv2RUREhMTHjMViYcuWLejevTsUFBSwZMkS8Hg8jBw5EmZmZpCTk4OVlRXWr19fad1du3bB1tYWXC4Xenp6QoWIOTk5GDVqFLS0tKCsrIx27drhwYMHEqeLqpkzialo19AIHhaGMFRVxKjmtuBKS+PKswyR4RtoqmKIcyO0NNOHjJToW7yzoQ6cDLShp6wAfWVF9HeyBFdGBk/f5QAApKRYUJXjCk130l/D1VQPsmz6fYSqe6cjY9C+hTPaNneCoa4W/Pt6g8th48qt+yLDWxgbYGh3T7g1sQdbRlpsvNLSUlBTVmIm5QqFZk9fpKNz6+ZoaGIIHU119O7kDgV5OaRkZNbp/lEUADy5fxLmdh1hZtseyhpGcGk/DtIyXKQmXBIZvkXn6bBw7Aw1bXMoqxuiaYeJIISP7JcPhcJJSclATkGNmTiyisyyoi95+JSTBeumvaCqaQolNX04tBqG0pIipqYYRdWl65dPoalbB7i4toO2niF8Bo4Bh8PB3ZjLIsMbmligSy9fOLq0goxM5YKpkpJiJMTdQueeQ2He0BYaWnro0LU/1LV0cOuq8IcOaRkZKKmoMZO8vGKl+CiK+j3Qgq4fHJ/PR69evcDhcHDr1i1s3boVs2fPrnE8hYWFcHZ2xpkzZ/Do0SP4+/tj6NChuH37tkTr9+/fH1lZWcy0f/9+yMjIwM3NDQCwd+9ezJ8/H0uWLEFiYiKWLl2KP//8k2mSmZ+fj27dusHGxgb37t1DUFAQAgICJE7//v37oaioiDFjxlRaNmPGDJSUlODo0aMAgFu3bmHkyJGYOHEi4uLi0LZtWyxevFhonUOHDiEoKAhLly7F3bt3oaenJ1QwV1paip49e8Ld3R0PHz5ETEwM/P39wWKxJE5zTcjIyIDNZjO1wSpKS0vD+fPnhWqESSIoKAg+Pj6Ij4/HiBEjwOfzYWhoiMOHD+Px48eYP38+5s6di0OHDjHrbNmyBRMmTIC/vz/i4+Nx8uRJWFj8VzW8b9++yM7Oxrlz53Dv3j00adIE7du3x4cPH2q385RYpTw+Ut/nwU5Pk5nHYrFgp6eBp29z6mQbfD7BjdRMFJWWoqGm6C/7Ke9z8eLDJ3g0EN2MjKK+RmkpDykZmbC3NGfmsVgs2Fs2wJM00QW6knr99j3GBK3CxMXr8PfuI3j3MUdoeUMTI9yIfYRPnwtACEH0/XiUlJTA1sJMdIQUVUt8Xik+vHkOXWNHZh6LxYKOsQPeZyVLFEdpaRH4fB44skpC89++SsCJbX44GzoBdy9vRdGXT8wyjqwSlNT0kZZ4BaUlheDzeXgefwGycipQ125QNztHUf+vtLQUr16mwKKRAzOPxWLBopEDXqY+qVWcfB4PfD4fMhVqZ7HZHKQ9F665nvr0MRbPHoHVCyYj7MB2FHz+BIqifk/00/wP4vTp01BUFP7qMHfuXLi4uCApKQnnz5+Hvr4+AGDp0qXo3LlzjeI3MDAQKliaNGkSzp8/j0OHDqFZs2bVri8nJwc5OTkAwPPnzzFhwgQsXboUHTt2BAAEBgZi9erV6NWrFwDAzMwMjx8/xrZt2+Dr64t9+/aBz+dj586dkJWVha2tLTIyMjBu3DiJ0v/kyRM0aNBAZEGPvr4+lJWV8eRJ2QN0/fr18PLywqxZswAAlpaWuHHjhlB/Z+vWrcPIkSMxcuRIAMDixYtx8eJFplZXXl4ecnNz0a1bNzRoUPYiaG1tLVFaa6q4uBirV69Gbm4u2rX7r7lYfHw8FBUVwePxmHStWbOmRnEPGjQIw4cPF5on6PsLKDtPMTExOHToEPr16weg7FjMmDEDU6ZMYcI1bdoUAHD9+nXcvn0b2dnZTNPaVatWISwsDEeOHIG/v3+lNBQVFaGoqEh4XikP3CpqYVBlPhUVg08IVGSF872KLBeZeZ+/Ku6XH/MwP/wmSnh8yLKlMd2jCQxVRX/5jHyWAQMVBVhp0yYuVN3L+1wAPp8PVSXh/KeqqIDMN+9qHW9DE0OMH9gT+tpa+Jj3CUfOR2L+hl1YPWsC5P6/2e90v35YG3oII+etgLS0NLhsNgJGDICuJu0LkapbRV/yQAgf3ApNFGXlVfHp4yuJ4nh4/V/IKahDx/i/QgRdEycYNGgBBRVtfM59g4fRe3A1bCE69F8BlpQUWCwWPHotQPTp5Ti2eRAAFmTlVdHGZ75QzS+KqgsFn/PA5/MrNVFUVFLB2zeS5fOKuLJyMDazxOVzR6CtZwhFJVU8uHsNL1OfQEPrvybmltaNYevYHGoa2vjw7g0unNyH4E2LMS5gGaTE1HCnKOrXRQu6fhBt27bFli1bhOapq6tj9+7dMDIyYgq5AMDV1bXi6tXi8XhYunQpDh06hFevXqG4uBhFRUWQl5evUTyCwp+uXbti5syZAIDPnz/j+fPnGDlyJEaPHs2ELS0thYpK2YMuMTERDg4OkJWVrfV+EEIkCpeYmAgfHx+hea6urkIFXYmJiRg7dmylMFeulHXoqq6uDj8/P3h6eqJjx47o0KED+vXrBz29uuuzZfbs2Zg3bx4KCwuhqKiI5cuXo2vXrsxyKysrnDx5EoWFhdizZw/i4uIwadKkKmKszMXFpdK8TZs2YdeuXXj58iW+fPmC4uJiZrTJ7OxsZGZmon379iLje/DgAfLz86GhoSE0/8uXL3j+/LnIdZYtWyZUuAYAs9o643/tm9ZoX6i6pa+siOXd3FBQXIpbL15jS/RDzO/UolJhV3EpD9FpmfCxtxATE0X9mJys/+v42ERfBw1NDDFh4VrEPEhAu+ZNAAAHz11GwZci/DnOF0oK8rjzKAlrQw9jwcQRMNHXqa+kU1QliXeO4eWT62jbZxGkZf77+GFs1Zr5W1XTFCqaJjgTPA7ZGY+gY+wAQgjuX9kBrpwK2vVdAmkZDlIeXcT1k0vRYcBfkFOkhbrUj6+f7yQc3bMFy+b6lw3SZGQGR5dWePUyhQnj6NKK+VvPwAS6BsZYFTgRKU8eCdUwoyjq90ALun4QCgoKQs3DakLwlaJ8QVBJSYlQmJUrV2L9+vVYt24d7O3toaCggKlTp4ptKicKj8dD//79oaysjO3btzPz8/PzAQA7duxA8+bNhdaRlq6bWjuWlpa4fv06iouLK9XqyszMRF5eHiwtRY9aVFvBwcGYPHkywsPDcfDgQcybNw8RERFo0aJFncQ/c+ZM+Pn5QVFRETo6OpWaRXI4HCZPCArBFixYgEWLFkm8jYqjZh44cAABAQFYvXo1XF1doaSkhJUrV+LWrVsAwNTaEyc/Px96enqIjIystExVVVXkOnPmzMH06dOF5hWslbzZ6u9MicuBFIuF3ELh6zS3sAiqIjqirwkZaSnoKpXlD3MNFaS8z0V4UhpGtbATCnfr5WsUl/LQxlxfVDQU9dWUFeQhJSWFnE/5QvNz8j9DVbnuapwoyMlCT1sDWW/L+mx8/e4Dwq/dwurZE2Ckqw0AMDXQRWLKC5y/fhv+/bzrbNsUxZVTBoslhaKCXKH5hQU5kJWvurZs0r0TSLp7DO4+gVDVNK0yrKKKLrhyysjPzYIOHJCdHo/M1DvwGbsHbG7Zx03ndg3w+mUc0hIjYd2011ftF0WVJ6+gDCkpKeR/Es7n+Z9yoahc+1rhGlp68J+2EEVFhSgqLICyijr27VwNdU3xHyQ0NHWhoKiE9+9ewwK0oIuifje0HucPztraGunp6cjKymLm3bx5UyiMoNPz8mHi4uKEwkRHR6NHjx4YMmQIHB0dYW5uzjT1k9S0adMQHx+PsLAwoZpZOjo60NfXR0pKCiwsLIQmMzMzZj8ePnwo1OF7xf2oyoABA5Cfn49t27ZVWrZq1Sqw2Wz07t2b2Zag4EbctiQJAwBOTk6YM2cObty4ATs7O+zbt0/iNFdHU1MTFhYW0NXVlajvr3nz5mHVqlXIzKx9J8nR0dFo2bIlxo8fDycnJ1hYWAjVxFJSUoKpqSkuXRLdMW6TJk3w+vVryMjIVDrXmpqaItfhcrlQVlYWmmizRcnISEvBTEMZCVn/DaZACEHC6/doqKVap9siICjh8yvNv/IsA00MtUWO8EhRdUFGRhrmhvp49DSVmUcIwaMnKbA0rbt+4QqLivH63QeoK5f1b1RUXPZBiAXh+68UiwUCyWoQU5SkpKRloK7TAG/KdSRPCEF2ejw09KzErpd09zge3zqENj3/hLpuQ7HhBAo+vUNx4Sem8Ky0tKzrAFaFplsslhQIqXzPp6ivISMjAwNjczxPjmfmEULwLDkexmZf/0Gay5WFsoo6Cgry8TTxIawdKrdcEMj5+A4Fn/Oh9BUFbBRF/bxoja4fRFFREV6/fi00T0ZGBh06dIClpSV8fX2xcuVK5OXl4Y8//hAKZ2FhASMjIwQFBWHJkiV48uQJVq9eLRSmYcOGOHLkCG7cuAE1NTWsWbMGb968gY2NjUTpCw4OxubNm3H8+HGwWCwmrYqKilBUVMSCBQswefJkqKio4P/Yu/P4mK7+geOfyb5ONtllI4JEQiKW2CkVagmqqLb0iVqeKqqWaoMooh48xaNapQ3V2FpFLU2KovY9sWUTiTW2yC6ZLJPfH/kZnSZIFWn5vl+veb3Mud977jkz12Tme885Nzg4GJVKxbFjx8jMzGTs2LG8/vrrfPzxx7zzzjtMmjSJtLQ05s6dW+XXJygoiNGjRzN+/HiKiooICQmhuLiY7777TjNSzcXFBYBRo0bRsmVL5s6dS8+ePYmJidGatggwevRoBg8eTGBgIC1btiQqKoqzZ89Sq1b5Ysipqal89dVX9OjRAycnJxITE0lOTuatt96q0LZnJSgoCD8/PyIiIli0aNFj1VGnTh2+/fZbYmJi8PDwYOXKlRw9elSTkITyBeyHDx+OnZ0dXbp0ITc3l/379/Pee+/RsWNHgoKCCAkJ4T//+Q9eXl5cu3aNrVu30qtXr0qnSoq/5pX6Hnxx4BQeNkpq21gSnZBGYUmpZmH4z/fHYW1sxICA8h9KJaVqrmSXj4wpVau5c1dF2p0cjPR1NSO4Vp9IpKGzLbamxhQUF7M/NZ1zN+4w6Q/TSa/n5pNw8w4T2sv7Kp6ubu2C+HzVBmrVdMTTtSbbfjtEYVER7Zr6A7Ao6kesLMwZ2K18XciSklIuX79Z/u/SUu5k55B6JR1jI0PN+lorf4qhsXddbK0tuZOdw7ro3egoFLQI8AXA2a4GDjWsWfr9Zt7o8XL51MXT8ZxOusDEIa9Xw6sgnndeAT04ErMQK/va2NjXISl2CyXFhXj4lK/PeThmPsamNvi1ehMon6545tBqgoLHYqK0oyA/EwB9A2P09I0oKS7kzME1uNQJwsjUirys68TtW4GZhQMObuX/d2o41sXA0IzDMQvxadYXHT0DLpzeTn7OTZw8GlfPCyGea606dOf7bxfh7FoLF7c67N+9lSKVisbN2wOwbsVClJbWBPd8Ayhf6uRmevmd00tLS8jJyuDa5VQMjYw0a3AlnTtJWRnY2juRcfs6P/+4Elt7Jxo3L/+/o1IVsnPrWhr4B2GutCTj1nV+3rgSG1sHvOo3evYvghCi2kmi628iOjq6wvpPdevWJSEhgQ0bNhAaGkrTpk1xd3dn4cKFBAcHa+L09fVZvXo1I0aMwM/PjyZNmjBjxgz69u2riQkLC+PChQt07twZExMThg4dSkhICNnZ2kOLH2TPnj2UlpbSo0cPrfKpU6cSHh7OkCFDMDExYc6cOYwfPx5TU1N8fX0ZM2YMUJ4Q27x5M8OHD8ff3x9vb29mz56tGYVVFfPnz8fPz4/FixcTFhaGrq4uAQEBbNy4ke7d708xad68OUuXLmXq1KlMmTKFjh07EhYWpjXlr1+/fqSkpDBhwgQKCwvp06cPI0aMICam/DbFJiYmJCQksGLFCjIyMnB0dOTdd9+t9K6Pz9L777/P4MGDmThxoiax92cMGzaMkydP0q9fPxQKBQMGDODf//43P//8syZm0KBBFBYW8tlnnzFu3Dhq1KjBq6++CpTfOWfbtm18/PHHvP3229y6dQsHBwfatGmDvb2sZ/M0BLk7klNYxPdxyWQXqHCzVvJhhyZYGJePsMrIL0TndyMCMwtUTNq6X/N867lUtp5Lpb69NVNeLp9anKMq4ov9p8gqKMTEQB9XS3MmvdQEX0ftUXm7z1/BytiIhk6Vj9YT4klp4d+A7Lx81kXvIis3D3cnRz4e+qZmgfrbmdlaI18zc3KZOO9LzfPNuw6wedcBvGu7Ez6y/AYcGVk5LPjuB3Lz76I0NaVeLVdmjnkHC7PyhK+eni6Thr7Bqi07mL1sFaqiIuxrWPPu670I8H6yU+GFAHD1aoXqbjZnDq6h8G4mVrYetAmZjJGJJQB3c26jUNwfeZVyOgZ1aQn7t/5Hqx6fZv1oENQfhUKH7IyLXIzfTVFR/v8vVN8Q3xavo6tXfoc6Q2MlbUImc/rgKnavn4paXYLS2oVW3SdhaSt3FxVPnl/jluTl5rBjy1pyc7JwcnHn7Xc/xlxpCUDWndtaIwxzs+/wv0/Ha57v3bmZvTs34+HpzdD3PwGgsLCAmE1RZGdmYGJqhk+j5rzcfQB6euU/ZXV0dLh+7RInDu+hsOAuSgsrPOs3pFO3/hXu1iiEeDEoyqq6wrf4W1EoFGzYsIGQkJDqbooQf1rmzKrdbVOIfzK9zj2ruwlCPHWzz3R4dJAQ/3CdmpRUdxOEeOra+vy5m5T9nYQtr/q608/SjMEGjw4ST4Ws0SWEEEIIIYQQQgghnguS6BJ/C8OHD9es9/XHx/Dhw6u7eVp8fHwe2NaoqKhn0oaoqKgHtsHHx+eZtEEIIYQQQgghhPi7kTW6/qGetxmnn3zyCePGjat0m1KpfMatebht27ZRXFxc6bZntU5Vjx49aNasWaXb9GUtAiGEEEIIIYQQLyhJdIm/BTs7O+zs7Kq7GVXi5uZW3U3A3Nwcc3Pz6m6GEEIIIYQQQgjxtyJTF4UQQgghhBBCCCHEc0ESXUIIIYQQQgghhBDiuSCJLiGEEEIIIYQQQgjxXJBElxBCCCGEEEIIIYR4LkiiSwghhBBCCCGEEEI8FyTRJYQQQgghhBBCCCGeC5LoEkIIIYQQQgghhBDPBUl0CSGEEEIIIYQQQojngiS6hBBCCCGEEEIIIcRzQRJd1axdu3aMGTNG89zd3Z358+c/teOlpaWhUCiIjY19ase4Z/ny5VhaWj40Jjw8nEaNGj31tgghhBBCCCGEEOL5p1fdDagugwcPZsWKFRXKO3fuTHR0dDW0qNzRo0cxNTWttuNXZsWKFSxatIizZ8+iq6tLQEAA48ePp1u3btXdNKA8Wbhnz54Hbm/bti27d+/G3d2dixcvAmBiYkLdunWZNGkSffv2BcqTbtOmTQNAR0cHJycnunTpwqeffoq1tfXT70gVFBQU8N5777Fp0yYKCgrw9vZm/vz5tGjRorqbJp6iXxIvsvlsKtmFKlytzBncxBvPGpaVxl7JyuX7uGQuZORwO7+ANwPr0bW+h1bM9sSL7Ei+zM28uwDUtDCnj58njZxtNTHXc/OJOp5A4s1MitVqGjnZMriJNxbGhk+tn+LFFr3vCJt37ScrJw83Jwfe7t2FOm41K429fP0m637exYUr17h1J4tBIcG80jZIK2Zd9C5+iNmtVeZkV4P5k97TPP9q3WZOJ10gMycXQwN96nq4MrBbR5ztbRHiaUiO20bi8U0U5mdiaeuOf7sh2Dh4VRqbcvoXLsbvJjvjEgBWdrXxbTlQE68uLeH0wVWkpx4nP+cG+gam2Lv64tfyLYzNtL+3XLtwjHNH1pF1+yK6uvrYOvvQqsekp9tZ8cI6uCeavTs2kZuThWNNN7r3DcXFvU6lsTfSL7NjyxquXrpA5p1bvNJnMK06aP/GUKvV7Ni6ltgjv5GXm425hRUBzdrRocurKBSKCnVuWL2EI/u2V1qXEOLF8MImugCCg4OJjIzUKjM0rN4fcba2f68v1+PGjWPRokXMmDGDkJAQiouL+e677+jZsycLFixg5MiR1d1EfvzxR4qKigC4fPkyTZs2ZceOHfj4+ABgYGCgif3kk0945513yMnJYd68efTr1w9nZ2dNosjHx4cdO3ZQWlpKfHw8//rXv8jOzmbt2rXPvmOVmDNnDj/88ANr167Fy8uLM2fOoKf36P/GRUVFWq+D+Oc4mJbOymPxhDZrgGcNS35OSGPWzqN81rMNSqOKn1eqklJszUxo5urAyuMJldZpbWpEf38vHMxNKaOMvSnXmLf7OLNeaUlNS3MKi0uYteMoblZKwjo1BWBdbDL/2XWcGV2CKv1SKcRfceDkGb7dFM07r3anjltNtv52kJlLVrLgo1FYmFW8+KMqKsbOxpLmDb1ZsSnmgfXWdLBj8oi3NM91dbQHsnvUdKRVgC+21pbk3r3L99G7mfHlSj6fPAYdHRn0Lp6sS0n7iP0tksAOw7Fx8CLx5GZ+2/AJXQZ9jpGJRYX4W1fO4Fq3NTaOddHVMyDh2I/8tuETOr+5ABMzG0pKVGTevIBPs9ewsHWnuDCPk3u+Zt/mCDoNmKup50ryQY7uXIxvi4HYufiCWq1JngnxpJ06vp+t65cTMmAoru5e7Nu1hW8WzeCDqQsxM694nhcXqbCysaOBfxBb1y+vtM49v2zg8N4Y+r75HvZOLly5mMIP332OsYkpLdp11Yo9G3uYy6nJKC2snkb3hBD/EC/0tzhDQ0McHBy0HlZW5R+KycnJtGnTBiMjI7y9vdm+fTsKhYKNGzcCsHv3bhQKBVlZWZr6YmNjUSgUpKWlAZCRkcGAAQNwdnbGxMQEX19fVq9e/dA2/X7q4vLly1EoFBUe4eHhmvhly5ZRv359jIyMqFevHosXL9aq78iRI/j7+2NkZERgYCAnT56s8utz6NAh5s2bx5w5cxg3bhyenp7Ur1+fmTNnMmbMGMaOHcvly5c18cuXL8fV1RUTExN69epFRkZGhTo//fRT7O3tMTc3JzQ0lMLCQq3tu3fvpmnTppiammJpaUnLli01o7AexNraWvP+3UsU2tjYaMp+PxrL3NwcBwcHvLy8+PzzzzE2Nmbz5s2a7Xp6ejg4OODs7EzHjh3p27cv27dvr9LrVVZWRnh4OK6urhgaGuLk5MSoUaM021UqFePGjcPZ2RlTU1OaNWvG7t27ASgsLMTHx4ehQ4dq4lNSUjA3N+ebb77RlOno6ODt7U3nzp3x8PCge/fuNG3atEJbBg8eTEhICDNnzsTJyYm6desCsHLlSgIDAzWvw+uvv87Nmze19j179izdunVDqVRibm5O69atSUlJ0Wx/1Dknnqyt8al0qONCO8+a1LQ0Y0gzHwx1ddl1/kql8bVrWPJG43q08HBC7wE/1BvXtMff2Q5HpSlOSjP6+XthqKdH8u0sAJJuZXErv4DhLXxxtVLiaqVkREs/Uu9kc+Z6xf/XQvxVW3Yf5KXmjWnfzJ+aDrYM7dsdQwN9dh0+UWm8p6szb/boTMsAX/T1dB9Yr66uDlZKc81D+YekWacWgXh7umNrbUmtmk707/oSGVnZ3LyT9SS7JwQASSd+olaDTnj4vITSxoXAl0agq2dI6tmdlcY37zIWz4ZdsLKrhdK6Jk06jqSsTM3NS6cAMDA0pV3vcFy8WqK0csbGsS4B7d7hzo0U8nNuAaBWl3Jyz9c0bD0IT79glFbOKG1ccPFq+ay6LV4w+37dTJOWHQkM6oCdY016DRiGgYEBxw7+Wml8TTdPuvYeRMPAVujp6Vcacyk1CW+/ptTzbYyVjR2+AUF41W/I5bRkrbjsrAx++v5r+r09Gl3dF3o8hxAvvBc60fUgarWa3r17Y2BgwOHDh/nyyy+ZOHHin66nsLCQxo0bs3XrVs6cOcPQoUN58803OXLkSJX279evH+np6ZrH6tWr0dPTo2XL8i8nUVFRTJkyhZkzZxIfH09ERASTJ0/WTMnMy8ujW7dueHt7c/z4ccLDwxk3blyV27969WrMzMwYNmxYhW0ffPABxcXFrF+/HoDDhw8TGhrKyJEjiY2NpX379syYMUNrn3Xr1hEeHk5ERATHjh3D0dFRK0lSUlJCSEgIbdu25dSpUxw8eJChQ4c+tdEjenp66Ovra0aD/VFaWhoxMTFVHgm1fv16PvvsM5YsWUJycjIbN27E19dXs33kyJEcPHiQNWvWcOrUKfr27UtwcDDJyckYGRkRFRXFihUr2LRpE6Wlpbzxxht06tSJf/3rX5o6unfvzuHDh/n6668f2Z6dO3eSmJjI9u3b2bJlCwDFxcVMnz6duLg4Nm7cSFpaGoMHD9bsc/XqVdq0aYOhoSG//vorx48f51//+hclJSXAo8858WSVlKpJzcihgWMNTZlCoaCBow3Jt7KeyDHU6jIOpF5DVVJCnRrlif5idSkKFOjr3v8TYaCrgwIFiTczn8hxhbinpKSUC1eu4etVS1OmUCjw9apNUlrlCd2qun4rg2Hhcxk5Yz4LV/7A7cysB8YWqorYfeQkdjZW1LCsOOpAiL9CXVrCnRspOLg21JQpFArsXf3ISE+sUh0lJSrU6lIMjMwfGFNUdBeFQoGBYXlSN/NmCnfzMlCg4Jeosfy09F/8tnE62bcffhFRiMdRUlLC1UsX8KznpylTKBR41vPjUmrSY9fr6uFFSuJpbt24BkD6lTRSz8fj5e2viSkrK+P7Ff+jTcee2Du6PH4nhBDPhRc61b1lyxbMzMy0yj766CMCAwNJSEggJiYGJycnACIiIujSpcufqt/Z2VkrsfTee+8RExPDunXrKh2F80fGxsYYGxsD5aN73n33XSIiIujUqRMAU6dOZd68efTu3RsADw8Pzp07x5IlSxg0aBCrVq1CrVbz9ddfY2RkhI+PD1euXGHEiBFVan9SUhK1a9euNNHj5OSEUqkkKan8j9aCBQsIDg5mwoQJAHh5eXHgwAGt9c7mz59PaGgooaGhAMyYMYMdO3ZoRnXl5OSQnZ1Nt27dqF27NgD169evUlv/rKKiIubNm0d2djYdOnTQlJ8+fRozMzNKS0s17frvf/9bpTovXbqEg4MDHTt2RF9fH1dXV837fOnSJSIjI7l06ZLmnBo3bhzR0dFERkYSERFBo0aNmDFjBkOGDKF///5cvHhRk6ACuHHjBsHBwUycOJHZs2eTl5fH6NGjgfLRgzVq1ODo0aMEBgYCYGpqyrJly7Tev98nzWrVqsXChQtp0qQJeXl5mJmZ8fnnn2NhYcGaNWvQ1y+/qubldX/tkEedc+LJylUVoS4rw8JI+/+ghZEh13Ly/1LdlzJzmBJ9iOJSNUb6uoxtF0BNy/LPwzo1LDHU02XViUT6+9elrKyMNSeTUJeVkVWg+kvHFeKPcvLvolarsTTX/ntsaWbKtRu3H7veOm41+feAEJzsbMnMyeWHmN1M+d83zJvwLsa/m/Ybs/8IUZu3U6gqwsmuBmHD30LvIaPEhHgcqoIcysrUGP5hiqKRiSW5mVerVMepfd9ibGqNvatfpdtLS4o4te9bXL1aoW9oAkB+9g0Azhxai3+btzFR2pJ4YhO7fphMl0GfY2j84KSZEH/W3fwc1Gp1hSmKZuYW3LpRtfO8Mu0690alKuCz6aNR6OhQplbzcvcB+Ddto4nZ88sGFDo6FaYyCiFeTC90oqt9+/Z88cUXWmXW1tasXLkSFxcXTUICICgo6I+7P1JpaSkRERGsW7eOq1evUlRUhEqlwsTE5E/Vcy/588orrzB+/HgA8vPzSUlJITQ0lHfeeUcTW1JSgoVF+R+X+Ph4/Pz8MDIyeux+lJWVVSkuPj6eXr16aZUFBQVpJbri4+MZPnx4hZhdu3YB5a/94MGD6dy5M506daJjx4689tprODo6/qk2P8zEiRMJCwujsLAQMzMzPv30U1555RXN9rp16/LTTz9RWFjId999R2xsLO+9995Daryvb9++zJ8/n1q1ahEcHEzXrl3p3r07enp6nD59mtLSUq2kEZRPZ7SxsdE8/+CDD9i4cSOLFi3i559/1to2b948XF1diYiIYNiwYbRu3Zpbt24xY8YMTp8+jbm5OQ0b3r9S7OvrWyFJeW9kX1xcHJmZmajVaqA8Eeft7U1sbCytW7fWJLl+ryrnXGVUKhUqlXZyRFVSiqH8kKxWTkozPu3WkrtFJRy+eJ0v9p9iysvNqWlphtLIkDFt/Pn68BliEi+iQEELD0fcrZXI8lzin8K//v2Fj92c7KnjVpN3P/mMg3Fn6dAsQLOtVYAffl61yczOZfPuA3y2Yh3TR4ViUMnnoBDVJf7oj1xK2kf7V6ejq1fxAqS6tIQD2+ZCWRmNO9z/rnXve5x30z7UrFP+HbBpp1Fs/noIV84foLZv52fTASH+glPH9xN7dC/9Bo/GztGF61fT2PJDJOYWVjRu3p4rl1LYv2sr702aI+uICiGAFzzRZWpqiqen52Pte2+R2t8ngoqLi7Vi5syZw4IFC5g/fz6+vr6YmpoyZsyYB06Vq0xpaSn9+vVDqVTy1Vdfacrz8vIAWLp0Kc2aNdPaR1f3ySQQvLy82LdvX6ULmV+7do2cnJwKiZu/KjIyklGjRhEdHc3atWsJCwtj+/btNG/e/InUP378eAYPHoyZmRn29vYV/hgaGBhozol7SbBp06Yxffr0R9bt4uJCYmIiO3bsYPv27fz73/9mzpw57Nmzh7y8PHR1dTl+/HiF9+f3owpv3rxJUlISurq6JCcnExwcrNl26tQpGjVqBICbmxs7duzQJLtycnJ44403tBJUf7x7Z35+Pp07d6Zz585ERUVha2vLpUuX6Ny5s+acvDeCsDKPe87NmjVLczfLeya0b8yHLzV54D6inLmhAToKBdmF2p8Z2YUqLCtZiP7P0NPVwcG8/BypZWPBhYxsohPSGNK8AQB+TjVY0KsdOYVF6OooMDXQZ/j3O7Eze3KJZyEAlKYm6OjokJWbp1WelZePpdLsAXv9eabGRjja2ZB+K6NCuamxEY62Nni5u/D2x7M4ejqBlgG+D6hJiD/P0FiJQqGD6m62Vnnh3SyMTB6+aHbC8U0kHPuRtr2mYlnDvcL2e0muuzk3addnumY0F4CRaXndSmtXTZmunj5mFvbczX38EZNCVMbEVImOjg55udrneV5uNmbKx18c/ueNK2nbqRcNA1sB4OjsRmbGLXbHbKBx8/aknY8nPy+H2WH3k7xqtZptP67gwK6tTJj+xYOqFkI8p2SNrkrUr1+fy5cvk56erik7dOiQVsy9Rc9/HxMbG6sVs3//fnr27Mkbb7xBw4YNqVWrlmaqX1W9//77nD59mo0bN2qNzLK3t8fJyYkLFy7g6emp9fDw8ND049SpU1oLvv+xHw/Tv39/8vLyWLJkSYVtc+fORV9fnz59+miOdfjwYa2YPx6rKjEA/v7+TJo0iQMHDtCgQQNWrVpV5TY/So0aNfD09MTBwaFKV3zCwsKYO3cu165dq1L9xsbGdO/enYULF7J7924OHjzI6dOn8ff3p7S0lJs3b1Z4vxwcHDT7/+tf/8LX15cVK1YwceJE4uPjNducnZ05cOAApaWlQHki8pdffmHdunVs2LCByZMnP7RtCQkJZGRk8Omnn9K6dWvq1atXYSF6Pz8/9u7dWyFpC1U75yozadIksrOztR7vtw14YLy4T09XBw8bJWfT7/8wLysr4+z1DOrYWj7RY5VRRvH/j/D7PaWRAaYG+py9nkGOqojGLnZP9LhC6OnpUqumE2eSUzVlZWVlnEm6gJd7zSd2nEJVEddv38Fa+eCpWmWUUVYGxf+/LqEQT4qOrh7W9rW58f8LyUP5eX7z8mlsHOs+cL+EYxs4d3gdbUImY+1Qp8L2e0muvKxrtO09rcJURGu72ujq6pObdVVrn/zsm5iY1/hjdUL8JXp6eji71iIl8bSmrKysjPOJp3H1ePyL48VFqgojyssHHZQPOAho1pZRH83jvUlzNQ+lhRVtOvXk7ZEP/34shHg+vdAjulQqFdevX9cq09PTo2PHjnh5eTFo0CDmzJlDTk4OH3/8sVacp6cnLi4uhIeHM3PmTJKSkpg3b55WTJ06dfjhhx84cOAAVlZW/Pe//+XGjRt4e3tXqX2RkZEsXryYDRs2oFAoNG01MzPDzMyMadOmMWrUKCwsLAgODkalUnHs2DEyMzMZO3Ysr7/+Oh9//DHvvPMOkyZNIi0tjblz5z7iqPcFBQUxevRoxo8fT1FRESEhIRQXF/Pdd99pRqq5uJQv9jhq1ChatmzJ3Llz6dmzJzExMVrTFgFGjx7N4MGDCQwMpGXLlkRFRXH27Flq1SpfgDg1NZWvvvqKHj164OTkRGJiIsnJybz11lsV2vasBAUF4efnR0REBIsWLXpo7PLlyyktLaVZs2aYmJjw3XffYWxsjJubGzY2NgwcOJC33nqLefPm4e/vz61bt9i5cyd+fn688sorfP755xw8eJBTp07h4uLC1q1bGThwIIcOHcLAwIBRo0bRvHlz+vfvz6RJkzA0NGTHjh2aheJXrlypWSOtMq6urhgYGPC///2P4cOHc+bMmQoj1UaOHMn//vc/zTEsLCw4dOgQTZs2pW7duo885ypjaGiIoaH26KNSmbZYZa/U9+CLA6fwsFFS28aS6IQ0CktKaVe7PAHw+f44rI2NGBBQ/kOppFTNlezykTGlajV37qpIu5ODkb6uZgTX6hOJNHS2xdbUmILiYvanpnPuxh0m/W6U3e7zV3C2MMPcSJ/kW1l8eyyeLvXccXqCI2yEuKdbuyA+X7WBWjUd8XStybbfDlFYVES7puULDS+K+hErC3MGditfo7KkpJTL18sT9SWlpdzJziH1SjrGRoY41Ci/0+7Kn2Jo7F0XW2tL7mTnsC56NzoKBS3+f6TWjdt3OBB7Fr+6tbEwMyEjK4eNO/dhYKCPv/eTHa0sBIBXQA+OxCzEyr42NvZ1SIrdQklxIR4+5WuFHo6Zj7GpDX6t3gTKpyueObSaoOCxmCjtKMgvvxmIvoExevpG5UmurXPIvHWB1j0+oqxMrYkxNDJHR1cPfUMTavt15uzBNZiY1Shfo+vYBgBc6sidF8WT16pDd77/dhHOrrVwcavD/t1bKVKpaNy8PQDrVixEaWlNcM83gPIlMG6ml9/FvbS0hJysDK5dTsXQyAgb2/JR5PV8A9kV8yOWVrbYO7lw7XIq+37dTOOg8v87JqbmmJhqJ3l1dfUwM7fE1t4JIcSL54VOdEVHR1dY/6lu3bokJCSwYcMGQkNDadq0Ke7u7ixcuFBrGpm+vj6rV69mxIgR+Pn50aRJE2bMmEHfvn01MWFhYVy4cIHOnTtjYmLC0KFDCQkJITtbezjvg+zZs4fS0lJ69OihVT516lTCw8MZMmQIJiYmzJkzh/Hjx2Nqaoqvry9jxowByhNimzdvZvjw4fj7++Pt7c3s2bM1o7CqYv78+fj5+bF48WLCwsLQ1dUlICCAjRs30r17d01c8+bNWbp0KVOnTmXKlCl07NiRsLAwrURKv379SElJYcKECRQWFtKnTx9GjBhBTEwMACYmJiQkJLBixQoyMjJwdHTk3XffrfSuj8/S+++/z+DBg5k4caImsVcZS0tLPv30U8aOHUtpaSm+vr5s3rxZs85WZGQkM2bM4IMPPuDq1avUqFGD5s2b061bNxISEhg/fjxff/215hiLFy/Gz8+PyZMnM3v2bBo2bMjBgweZNGkSnTp1oqioiFatWrF9+3bOnz/PoEGDqF279gPfX1tbW5YvX85HH33EwoULCQgIYO7cuVrnl42NDb/++ivjx4+nbdu26Orq0qhRI82dPh91zoknL8jdkZzCIr6PSya7QIWbtZIPOzTBwrg8eZiRX4jO7y5zZhaomLR1v+b51nOpbD2XSn17a6a8XD7lNEdVxBf7T5FVUIiJgT6uluZMeqkJvr+7u2N6Tj5rTiaSX1RMDVNjQhrUpmt992fTafHCaeHfgOy8fNZF7yIrNw93J0c+HvqmZoH625nZWqNwM3NymTjvS83zzbsOsHnXAbxruxM+8m0AMrJyWPDdD+Tm30Vpakq9Wq7MHPMOFmblCV99fX3iL1xk656D3C0sxMLMjPq1XJkxKlQTI8ST5OrVCtXdbM4cXEPh3UysbD1oEzIZIxNLAO7m3EahuD/ZIuV0DOrSEvZv/Y9WPT7N+tEgqD8F+Xe4eqH8Tt4xUdoXm9r3mY6dS/lU9IatBqFQ6HI4ej6lpUVYO3jR7tVPMDCSCxfiyfNr3JK83Bx2bFlLbk4WTi7uvP3ux5grLQHIunMbhc798zw3+w7/+3S85vnenZvZu3MzHp7eDH3/EwB69A1l+5Y1bFq7lPy8HMwtrGjashMdur72TPsmhPjnUJRVdbVxgUKhYMOGDYSEhFR3U4T4R8ucWbU7fwrxT6bXuWd1N0GIp272mQ6PDhLiH65TE5nOLJ5/bX3+3A3T/k7Clld9DexnacbgijcPEc+GrNElhBBCCCGEEEIIIZ4Lkuh6gQ0fPlyz3tcfH8OHD390Bc+Qj4/PA9saFRX1TNoQFRX1wDb4+Pg8kzYIIYQQQgghhBDiwV7oNbr+rOdtlucnn3zCuHHjKt2mVCqfcWsebtu2bZXeCRDK7wb4LPTo0YNmzZpVuk1fX/+ZtEEIIYQQQgghhBAPJomuF5idnR12dnbV3YwqcXNzq+4mYG5ujrn5g29LL4QQQgghhBBCiOolUxeFEEIIIYQQQgghxHNBEl1CCCGEEEIIIYQQ4rkgiS4hhBBCCCGEEEII8VyQRJcQQgghhBBCCCGEeC7IYvRCiGdOr3PP6m6CEE9dScym6m6CEE9dp5A21d0EIZ667UflJ5N4/rX1qe4WCPHkyIguIYQQQgghhBBCCPFckESXEEIIIYQQQgghhHguSKJLCCGEEEIIIYQQQjwXJNElhBBCCCGEEEIIIZ4LkugSQgghhBBCCCGEEM8FSXSJKmnXrh1jxozRPHd3d2f+/PlP7XhpaWkoFApiY2Of2jHuWb58OZaWlg+NCQ8Pp1GjRk+9LUIIIYQQQgghhHh8cq/cv7nBgwezYsWKCuWdO3cmOjq6GlpU7ujRo5iamlbb8SuzYsUKFi1axNmzZ9HV1SUgIIDx48fTrVu36m6axvLly3n77bcrlC9dupQhQ4ZobVcoFDg5OdGpUydmz56NnZ2dpvwec3Nz6tatS1hYGD179nw2nRDPXPS+I2zetZ+snDzcnBx4u3cX6rjVfGD8wdgzrP15F7fuZOFga8PAbh0J8PbSbC9UFRG1ZTtHTyeQd7cAW2tLurRuxsstmwCQm3+X72N2cyoxhduZ2ZibmtDUtx6vdemAqbHRU++veDH9kniRzWdTyS5U4WplzuAm3njWsHxg/KG0dNbFJXM7vwAHcxMGBNTF39lOs33Ayp8r3e/1gLp096nFuesZTN9+pNKYGV2CqP2QYwvxuA7uiWbvjk3k5mThWNON7n1DcXGv88D4UycOsH3zGrLu3MLGzpHgnm9Qr0GAZntuThbRm77jfHwcBXfz8fD0pvtrodSwc9Sq5+KFRLZvXs2ltGR0dHRwrOnOv0ZORl/f4Kn1Vby4kuO2kXh8E4X5mVjauuPfbgg2Dl4PjL+ctJ/TB1dxN+cWZpaO+LV6CyePxprthXezOLXvW65fjKNIlYetsw8B7YZgbuWkiSnIz+TUvhVcvxhHSXEB5pZOeDftS806QU+1r0KIvydJdP0DBAcHExkZqVVmaGhYTa0pZ2trW63H/6Nx48axaNEiZsyYQUhICMXFxXz33Xf07NmTBQsWMHLkyOpuooZSqSQxMVGrzMLCosJ2tVpNXFwcb7/9NteuXSMmJkYTExkZSXBwMDk5OSxevJhXX32VEydO4Ovr+8z6IZ6NAyfP8O2maN55tTt13Gqy9beDzFyykgUfjcLCrGKyOTH1EgtWruf1V8qTW/tOnGZu5Bo+HTsMV0d7AFZsiuZscirvvdEbO2srYhPO8/X6rVhZmNOkQT0yc3LJzM7ljR4vU9PeltuZ2Sz9fjN3snP54O1+z/olEC+Ag2nprDwWT2izBnjWsOTnhDRm7TzKZz3boDSq+Pcu8WYm/9sXR39/L/yd7TiQdo3/7j5BRNeWuFiZA/DFqx209om9eouvDp2mqasDAF62VhVi1sUmceZ6BrVsLBDiSTt1fD9b1y8nZMBQXN292LdrC98smsEHUxdiZl7xnLuYksDayPl07jGQeg0aE3tsL9999R9GfvgfHJxcKSsrY+WS2ejq6fHmsIkYGpmw79fNfL1wGmMmz8fQsPzCxMULiSz/fCZtO/ei+2uh6Ojokn41DQWKCscU4q+6lLSP2N8iCewwHBsHLxJPbua3DZ/QZdDnGJlUPM9vX4vn4M//xa/lmzh5NOZi4l72b/mUlwfMxaKGG2VlZez7aRY6unq06v4heoYmJJ34id0/htPlrYXo6Zef54djFlCsyqdVj0kYGiu5lLCXA9vm0GnAXKzsaj3rl0EIUc1k6uI/gKGhIQ4ODloPKysrAJKTk2nTpg1GRkZ4e3uzfft2FAoFGzduBGD37t0oFAqysrI09cXGxqJQKEhLSwMgIyODAQMG4OzsjImJCb6+vqxevfqhbfr91MXly5ejUCgqPMLDwzXxy5Yto379+hgZGVGvXj0WL16sVd+RI0fw9/fHyMiIwMBATp48WeXX59ChQ8ybN485c+Ywbtw4PD09qV+/PjNnzmTMmDGMHTuWy5cva+KXL1+Oq6srJiYm9OrVi4yMjAp1fvrpp9jb22Nubk5oaCiFhYVa23fv3k3Tpk0xNTXF0tKSli1bcvHixSq1V6FQVHg/jY2NK2x3cnKiS5cujBo1ih07dlBQUKCJsbS0xMHBAS8vL6ZPn05JSQm7du2q0vHj4uJo37495ubmKJVKGjduzLFjxzTb9+3bR+vWrTE2NsbFxYVRo0aRn58PwLfffouZmRnJycma+H//+9/Uq1ePu3fvVun44s/ZsvsgLzVvTPtm/tR0sGVo3+4YGuiz6/CJSuO3/XaIRvU86dGhJTUdbOnftQMezo5E770/ciUx9TJtmjTEx9MDW2tLOrUIxM3JnvOXrgLg6mjPB2/3I9CnLg41rGlQx4P+XTtw/FwipaWlz6Tf4sWyNT6VDnVcaOdZk5qWZgxp5oOhri67zl+pND46IY2GTjXo7lOLmpZmvNbIC3drC2IS738OWxobaj2OXb6Bt7019uYmAOjp6mhtNzPQ5/iVm7StXVNr5KwQT8q+XzfTpGVHAoM6YOdYk14DhmFgYMCxg79WGr9/91a8vP1p06kndo41ebn7AJxcPDi4p3y04u2b6VxOSyak/1Bqunlia+9ESP+hFBcXcerYPk09W9cvJ6hdF9q93At7Rxds7Z3wC2iBnr7+M+m3eLEknfiJWg064eHzEkobFwJfGoGuniGpZ3dWHn9yK47uAdQLDEFp44Jvi9exsq1Fctw2AHKzrpFxPYnGHYZh7VAHpZUzjTsMR11SxKXEvZp6MtITqdPoFWwcvDCzcMC7WV8MDM3IvJnyTPothPh7kUTXP5haraZ3794YGBhw+PBhvvzySyZOnPin6yksLKRx48Zs3bqVM2fOMHToUN58802OHKl8Sscf9evXj/T0dM1j9erV6Onp0bJlSwCioqKYMmUKM2fOJD4+noiICCZPnqyZkpmXl0e3bt3w9vbm+PHjhIeHM27cuCq3f/Xq1ZiZmTFs2LAK2z744AOKi4tZv349AIcPHyY0NJSRI0cSGxtL+/btmTFjhtY+69atIzw8nIiICI4dO4ajo6NWYq6kpISQkBDatm3LqVOnOHjwIEOHDn1qP4yMjY1Rq9WUlJRU2FZSUsLXX38NgIFB1aYfDBw4kJo1a3L06FGOHz/Ohx9+iP7/f9lNSUkhODiYPn36cOrUKdauXcu+ffs0I+LeeustunbtysCBAykpKWHr1q0sW7aMqKgoTExMnlCPxT0lJaVcuHINX6/7VyIVCgW+XrVJSqs8AZCUdkUrHsCvbm2SLt5P9tb1cOH42SQysnIoKyvjTHIq6bcyaOhV+4FtuVuowtjQEF1d3b/YKyG0lZSqSc3IoYFjDU2ZQqGggaMNybeyKt0n6VYWDRxttMr8HG1Ivl15fHaBithrt2jv6fLAdhy/epNcVRHtajv/6T4I8SglJSVcvXQBz3p+mjKFQoFnPT8upSZVus+l1CRq19UeqV2nfkNNfElJMQB6evcnaCgUCvT09Um7kABAXm42l9OSMTO34Iu5HzFj4r/46rMppKXEP9H+CQGgLi3hzo0UHFwbasoUCgX2rn5kpCdWuk/G9UTsXLTPcwe3Rpp4dWn5ea6jez8xq1Ao0NHT5/a1++exjWNdLiftR1WQS1lZGZcS91JaWoRtzQZPrH9CiH8Ombr4D7BlyxbMzMy0yj766CMCAwNJSEggJiYGJ6fyOeoRERF06dLlT9Xv7OyslVh67733iImJYd26dTRt2vSR+xsbG2tGJKWkpPDuu+8SERFBp06dAJg6dSrz5s2jd+/eAHh4eHDu3DmWLFnCoEGDWLVqFWq1mq+//hojIyN8fHy4cuUKI0aMqFL7k5KSqF27dqWJHicnJ5RKJUlJ5V8KFyxYQHBwMBMmTADAy8uLAwcOaK13Nn/+fEJDQwkNDQVgxowZ7NixQzOqKycnh+zsbLp160bt2uWJgfr161eprQDZ2dla76eZmRnXr1+vNDY5OZkvv/ySwMBAzM3NNeUDBgxAV1eXgoIC1Go17u7uvPbaa1U6/qVLlxg/fjz16tUDoE6d+2uDzJo1i4EDB2puPFCnTh0WLlxI27Zt+eKLLzAyMmLJkiX4+fkxatQofvzxR8LDw2ncuHFlhwJApVKhUqm0yoqKijCsYmLuRZaTfxe1Wo2lufb/f0szU67duF3pPtl5eRXjlWZk5eRpnv+rd1eWrNvMiGnz0NXVRaGAYa/1wNvTvfJ25OWz/pc9dGwR+Nc6JEQlclVFqMvKsDDS/kywMDLkWk5+pfvkFKqw/MOURktjQ7IKVJXG77lwFSM9PZq42D+wHbuSL+PnWAMbU+MHxgjxuO7m56BWqytMUTQzt+DWjauV7pOXk4250lKrzFxpSW52JgC29s5YWtUg5qdVhAwYhoGBEft+3Ux2ZoYm5s7tGwDs3LaOLr3ewqmmBycO72HZgmmMCfuswlpeQvwVqoIcysrUGP5hiqKRiSW5mZWf54V3szA2taoQX5ifBYDSqiYm5rac3h9F4EvD0dM3IvHET9zNvU1BfqZmnxavjOfgtrlsXPIWOjq66OoZ0rLbh5hbyjkuxItIEl3/AO3bt+eLL77QKrO2tmblypW4uLhoklwAQUF/fsHF0tJSIiIiWLduHVevXqWoqAiVSvWnR+jcS/688sorjB8/HoD8/HxSUlIIDQ3lnXfe0cSWlJRo1qWKj4/Hz88PI6P7i1z/2X6UlZVVKS4+Pp5evXpplQUFBWkluuLj4xk+fHiFmHtTA62trRk8eDCdO3emU6dOdOzYkddeew1Hx6r9ITU3N+fEifvTznR0tAdW3kuEqdVqCgsLadWqFcuWLdOK+eyzz+jYsSMXLlzg/fffZ+HChVhbW1fp+GPHjmXIkCGsXLmSjh070rdvX03CLi4ujlOnThEVFaWJLysrQ61Wk5qaSv369bGysuLrr7+mc+fOtGjRgg8//PChx5s1axbTpk3TKvvwnYF8NPSNKrVXPHnRew9z/uIVJgx5HVsrS86lpJWv0aU0x6+u9qiuu4WFfLp0FTUd7Oj7crvqabAQf9Hu81do5eGEgV7lIxIz8gs4lX6b0W38n3HLhHh8enp6DBw6nh+/+4Lp4wejo6ODZ10/vLzvn8dlajUATVt2IjCofE06JxcPUpJOc+zgToJ7yt9i8femo6tHy24TOLrjczZ8+SYKhQ72rg1xdA/QijtzYBXFqnza9Z6GobE5V1OOcHDbXNr3nYFlDffqabwQotpIousfwNTUFE9Pz8fa914S5feJoOLiYq2YOXPmsGDBAubPn4+vry+mpqaMGTOGoqKiKh+ntLSUfv36oVQq+eqrrzTleXnlo0iWLl1Ks2bNtPZ5UlOgvLy82LdvH0VFRRVGdV27do2cnBy8vB58p5fHERkZyahRo4iOjmbt2rWEhYWxfft2mjdv/sh9dXR0Hvp+3kuE6ejo4OjoqLV+1z0ODg54enri6elJZGQkXbt25dy5c5o7Mz5MeHg4r7/+Olu3buXnn39m6tSprFmzhl69epGXl8ewYcMYNWpUhf1cXV01//7tt9/Q1dUlPT2d/Px8rdFmfzRp0iTGjh2rVVZ0Zvcj2ylAaWqCjo4OWbl5WuVZeflYKs0q3cfCzKxifE6eJr6ouJjV23byweB+NPapC4Cbkz1pV6+zefcBrURXQaGKiCXfYWRkwLi3+6H3gCSBEH+FuaEBOgoF2YXaf3OyKxm1dY/SyJCsQu3RW1kFKiyNK8bH37hDek4+o1s3emAbdqdcxdzQgMbOj/4MFeJxmJgq0dHRIS83W6s8LzcbM6VVpfuYKS3IzcnSKsvNycLc4n58TdfajPpoLgV38yktLcHM3ILFcz7E2aX8s/xerJ2j9p16be2dyLpT+chgIR6XobEShUIH1V3t87zwbhZGJpWf50YmllojszTxppaa59b2nnQe+BlFqnzUpSUYmViwY80ErOzKz/PcrHSS47YR/OYCLGzKv69a2npw6+o5zsf9TOBLVZslIoR4fsgaXf9g9evX5/Lly6Snp2vKDh06pBVz7+6Iv4+JjY3Vitm/fz89e/bkjTfeoGHDhtSqVUsz1a+q3n//fU6fPs3GjRu1RmbZ29vj5OTEhQsXNImZew8PDw9NP06dOqW14Psf+/Ew/fv3Jy8vjyVLllTYNnfuXPT19enTp4/mWIcPH9aK+eOxqhID4O/vz6RJkzhw4AANGjRg1apVVW7zw9xLhNWqVavSJNcfNW3alMaNGzNz5swqH8PLy4v333+fX375hd69e2vu6hkQEMC5c+cqvFeenp6aJOKBAweYPXs2mzdvxszM7JF3tDQ0NESpVGo9ZNpi1ejp6VKrphNnklM1ZWVlZZxJuoCXe81K9/Fyr8nppAtaZaeTLuDlVr42UUlpKSUlpRVGEurq6KBW30+I3y0sZMaX36Knq8vE0AEYyKLF4inR09XBw0bJ2fT7NwYpKyvj7PUM6thaVrqPl60lZ9K1byRy+noGdWpUjN+dcgUPGyVu1spK6yorK2NPyhVa13JGT1e+FomnQ09PD2fXWqQkntaUlZWVcT7xNK4elV+Mc/Xw0ooHOJ9wqtJ4YxNTzMwtuH0znSsXU/Bu2AQAKxs7lBZW3LpxTSs+42Y6VtZ/rztoi38+HV09rO1rc+PSKU1ZWVkZNy+fxsaxbqX72DjU5eZl7fP8xqW4SuMNDE0xMrEgN/Mad26cx7l2+UX00pLyCx9/vJOoQkenyrM+hBDPF/lG9w+gUqm4fv261uP27dt07NgRLy8vBg0aRFxcHHv37uXjjz/W2tfT0xMXFxfCw8NJTk5m69atzJs3TyumTp06bN++nQMHDhAfH8+wYcO4ceNGldsXGRnJ4sWL+fLLL1EoFJo23hvNNW3aNGbNmsXChQtJSkri9OnTREZG8t///heA119/HYVCwTvvvMO5c+fYtm0bc+fOrfLxg4KCGD16NOPHj2fevHmkpKSQkJBAWFgYCxYsYN68ebi4lP/IvzcKa+7cuSQnJ7No0SKtaYsAo0eP5ptvviEyMpKkpCSmTp3K2bNnNdtTU1OZNGkSBw8e5OLFi/zyyy8kJyf/qXW6nrQxY8awZMkSrl6tfP2DewoKChg5ciS7d+/m4sWL7N+/n6NHj2raPnHiRA4cOKBZrD85OZlNmzZpklm5ubm8+eabjBo1ii5duhAVFcXatWv54YcfnnofX1Td2gWx8+Bxdh85yZXrt1j6/RYKi4po17R8asqiqB+J2rJdE9+1TXPiElPYvGs/V2/cYl30Li5cuUZw6/L19kyMjPCu7c7Kn37h7PlUbmZksvvISX47FkdTv/J12+4WFjLzy5WoiosZ3r8ndwtVZObkkpmTi/r/p8EI8SS9Ut+DX89fZk/KFa5k5fH14bMUlpTSrnZ5Qvfz/XGsPnF/IePgeu6cSr/NlnOpXM3O44e4ZFIzsulc102r3rtFxRy6eP2hi9CfvZ7BrbwC2ntWnjwW4klp1aE7R/fv4PihXdxMv8LGNV9RpFLRuHl7ANatWEj0pu808S3bvUJSfCx7d/zEzetX2bF1LVcvXSCo7f21WE+dOMCFpDNk3L7OuVNH+eZ/n+DTsCl16jcCyhftbt2xJwd3/8zpEwfJuJXOL5tXc+vGNQJbdHim/RcvBq+AHlw4s53Uc7+Sk3GZ479+SUlxIR4+5efb4Zj5nNq38n68/ytcv3iShOObyLlzhTMH13DnZgp1GnbVxFxO2s/Ny2fIy77O1ZQj7NkwDefazXFwawSUr+NlZunAsV+/JON6ErlZ6SQc38SNS3GaZJgQ4sUiUxf/AaKjoyus/1S3bl0SEhLYsGEDoaGhNG3aFHd3dxYuXEhwcLAmTl9fn9WrVzNixAj8/Pxo0qQJM2bMoG/fvpqYsLAwLly4QOfOnTExMWHo0KGEhISQna097PhB9uzZQ2lpKT169NAqnzp1KuHh4QwZMgQTExPmzJnD+PHjMTU1xdfXV7PguZmZGZs3b2b48OH4+/vj7e3N7NmzNaOwqmL+/Pn4+fmxePFiwsLC0NXVJSAggI0bN9K9e3dNXPPmzVm6dClTp05lypQpdOzYkbCwMKZPn66J6devHykpKUyYMIHCwkL69OnDiBEjiImJAcDExISEhARWrFhBRkYGjo6OvPvuu5Xe9fFZCQ4OxsPDg5kzZ2rdIfKPdHV1ycjI4K233uLGjRvUqFGD3r17a9bQ8vPzY8+ePXz88ce0bt2asrIyateuTb9+/YDyJKCpqSkREREA+Pr6EhERwbBhwwgKCsLZWe5W9qS18G9Adl4+66J3kZWbh7uTIx8PfVOz4PztzGytO37W9XBl1Bu9WfvzLlZv24lDDRvGvd0fV8f7i3CPfutVVm3ZwcLv1pN/t5AaVhb079qBl1uUjwBIvZJO8sXyuzqOmrlAqz2fT34fW2vLp9xr8aIJcnckp7CI7+OSyS5Q4Wat5MMOTbD4/6mIGfmF6Pz+PLezYmTLhqyLS2btyUQclKaMbReAi5X2NOoDaemUlZXRwv3Bayj+ev4KXraWOFtUPh1YiCfFr3FL8nJz2LFlLbk5WTi5uPP2ux9rFpzPunMbxe9G27rVrke/waPZvnkNMT+tooadI28MnYCD0/2lBPJystj24wrNwvX+zdrSoUtfreO26tCNkpJitv64nLv5eTg6u/Gv9yZjYyuLdIsnz9WrFaq72Zw5uIbCu5lY2XrQJmQyRiaWANzNuY1Ccf88r+FUn+bB73P64CpOH/gOc0tHWnb7EIsa9y9cFNzNJHbvcs0USPf67fBpdv8mTDq6erTpOZlT+79j36YISkoKMbNwoOnLo3DyePANk4QQzy9FmYznfO4oFAo2bNhASEhIdTdFiErlHot+dJAQ/3AlMZuquwlCPHWnQuY9OkiIf7jtR2VsgHj+zRj8z11aJGx51deWfpb+ya/pP51MXRRCCCGEEEIIIYQQzwVJdIm/veHDh2NmZlbpY/jw4dXdPC0+Pj4PbGtUVNQL0wYhhBBCCCGEEKI6yDjc59DzNhv1k08+Ydy4cZVuUyorv4tWddm2bRvFxcWVbrO3t6+0/HlsgxBCCCGEEEIIUR0k0SX+9uzs7LCzs6vuZlSJm5vbo4NegDYIIYQQQgghhBDVQaYuCiGEEEIIIYQQQojngiS6hBBCCCGEEEIIIcRzQRJdQgghhBBCCCGEEOK5IGt0CSGeuRPGbaq7CUI8dX5squ4mCPHUbT8qXyXF829ig1+ruwlCPAPB1d0AIZ4YGdElhBBCCCGEEEIIIZ4LkugSQgghhBBCCCGEEM8FSXQJIYQQQgghhBBCiOeCJLqEEEIIIYQQQgghxHNBEl1CCCGEEEIIIYQQ4rkgiS4hhBBCCCGEEEII8VyQRJfQaNeuHWPGjNE8d3d3Z/78+U/teGlpaSgUCmJjY5/aMe5Zvnw5lpaWD40JDw+nUaNGT70tQgghhBBCCCGEeDr0qrsBAgYPHsyKFSsqlHfu3Jno6OhqaFG5o0ePYmpqWm3Hr8yKFStYtGgRZ8+eRVdXl4CAAMaPH0+3bt2qu2kay5cv5+23365QvnTpUoYMGaK1XaFQ4OTkRKdOnZg9ezZ2dnaa8nvMzc2pW7cuYWFh9OzZ89l0QvytHNwTzd4dm8jNycKxphvd+4bi4l6n0tgb6ZfZsWUNVy9dIPPOLV7pM5hWHR78/2P3LxuI2RRFy/av0O3ViudtWVkZyxdHkHTuJG8MnYBPw6ZPrF9C/N4viRfZfDaV7EIVrlbmDG7ijWcNy0pjr2Tl8n1cMhcycridX8CbgfXoWt/jT9WZqypifdx5TqXf5nZ+AeaGBjRxtadvwzqYGug/xZ6KF1ly3DYSj2+iMD8TS1t3/NsNwcbBq9LY7IxLnDm4hsybKeTn3KRRm7epG9BDK+bMwTWcPbxWq8zcyomugz4HID/nJlu+GVZp/S26jsPFq+UT6JUQ2qL3HWHzrv1k5eTh5uTA2727UMetZqWxl6/fZN3Pu7hw5Rq37mQxKCSYV9oG/ek6wxdFci4lTWufjkGBDH2t+xPtmxDin0ESXX8TwcHBREZGapUZGhpWU2vK2draVuvx/2jcuHEsWrSIGTNmEBISQnFxMd999x09e/ZkwYIFjBw5srqbqKFUKklMTNQqs7CwqLBdrVYTFxfH22+/zbVr14iJidHEREZGEhwcTE5ODosXL+bVV1/lxIkT+Pr6/un2FBUVYWBg8PgdEtXm1PH9bF2/nJABQ3F192Lfri18s2gGH0xdiJm5RYX44iIVVjZ2NPAPYuv65Q+t+8rF8xzZ+wsOzm4PjNm/a+tf7YIQj3QwLZ2Vx+IJbdYAzxqW/JyQxqydR/msZxuURhX/FqpKSrE1M6GZqwMrjyc8Vp1Zd1VkFhQysHFdnC3MyMgvZNmhM2TeLeT9tgFPu8viBXQpaR+xv0US2GE4Ng5eJJ7czG8bPqHLoM8xMqn4eV5arMJUaYdLnSBif4uspMZyFjYutO09TfNcR0dX828Tsxr0eOcbrfgLZ7aTcGwDjh6Nn0CvhNB24OQZvt0UzTuvdqeOW022/naQmUtWsuCjUViYVbyArioqxs7GkuYNvVmxKaaSGqte50tBjXktuL3muaFctBDihSVTF/8mDA0NcXBw0HpYWVkBkJycTJs2bTAyMsLb25vt27ejUCjYuHEjALt370ahUJCVlaWpLzY2FoVCQVpaGgAZGRkMGDAAZ2dnTExM8PX1ZfXq1Q9t0++nLi5fvhyFQlHhER4erolftmwZ9evXx8jIiHr16rF48WKt+o4cOYK/vz9GRkYEBgZy8uTJKr8+hw4dYt68ecyZM4dx48bh6elJ/fr1mTlzJmPGjGHs2LFcvnxZE798+XJcXV0xMTGhV69eZGRkVKjz008/xd7eHnNzc0JDQyksLNTavnv3bpo2bYqpqSmWlpa0bNmSixcvVqm9CoWiwvtpbGxcYbuTkxNdunRh1KhR7Nixg4KCAk2MpaUlDg4OeHl5MX36dEpKSti1a1eVjn9vGuayZcvw8PDAyMgIgOjoaFq1aoWlpSU2NjZ069aNlJQUrX2vXLnCgAEDsLa2xtTUlMDAQA4fPqzZvmnTJgICAjAyMqJWrVpMmzaNkpKSKrVL/Hn7ft1Mk5YdCQzqgJ1jTXoNGIaBgQHHDv5aaXxNN0+69h5Ew8BW6Ok9+AueSlXI2uUL6DVwOMbGlY/cvHY5lb07f+LVN/79RPoixINsjU+lQx0X2nnWpKalGUOa+WCoq8uu81cqja9dw5I3GtejhYcTejqVf5V5VJ0uVua83zaAxjXtcTA3xcfBhn6NvDhx5SalavVT66t4cSWd+IlaDTrh4fMSShsXAl8aga6eIalnd1Yab+1Qh0ZtBuNatzU6ug/+PFfo6GJsaqV5GBorf7dNR2ubsakVV88fwtWrJXr6Rk+8j0Js2X2Ql5o3pn0zf2o62DK0b3cMDfTZdfhEpfGers682aMzLQN80dfTrTSmqnUa6utjpTTXPEyM5BwX4kUlia6/ObVaTe/evTEwMODw4cN8+eWXTJw48U/XU1hYSOPGjdm6dStnzpxh6NChvPnmmxw5cqRK+/fr14/09HTNY/Xq1ejp6dGyZfmQ96ioKKZMmcLMmTOJj48nIiKCyZMna6Zk5uXl0a1bN7y9vTl+/Djh4eGMGzeuyu1fvXo1ZmZmDBtWcfj9Bx98QHFxMevXrwfg8OHDhIaGMnLkSGJjY2nfvj0zZszQ2mfdunWEh4cTERHBsWPHcHR01ErMlZSUEBISQtu2bTl16hQHDx5k6NChWlMKnyRjY2PUanWlCaOSkhK+/vprgD81Kuv8+fOsX7+eH3/8UbMOWn5+PmPHjuXYsWPs3LkTHR0devXqhfr/f9Tl5eXRtm1brl69yk8//URcXBwTJkzQbN+7dy9vvfUWo0eP5ty5cyxZsoTly5czc+bMv/gKiMqUlJRw9dIFPOv5acoUCgWe9fy4lJr0l+r+ae1S6vo0pk69hpVuLypSsXb5Anr2ewdzC6u/dCwhHqakVE1qRg4NHGtoyhQKBQ0cbUi+lfVM67xbXIKxvh66D0ieCfG41KUl3LmRgoPr/c9chUKBvasfGemJD9nz0fKy0vlpaShbvhnOoZ//S37OrQfG3rlxnsxbqXj4vPSXjilEZUpKSrlw5Rq+XrU0ZQqFAl+v2iSlVX7h4knWuff4Kf4VNpuxsz8nast2VEVFj9cRIcQ/nkxd/JvYsmULZmZmWmUfffQRgYGBJCQkEBMTg5OTEwARERF06dLlT9Xv7OyslVh67733iImJYd26dTRt+ug1d4yNjTUjklJSUnj33XeJiIigU6dOAEydOpV58+bRu3dvADw8PDSJkEGDBrFq1SrUajVff/01RkZG+Pj4cOXKFUaMGFGl9iclJVG7du1KEz1OTk4olUqSksp/+C9YsIDg4GAmTJgAgJeXFwcOHNBa72z+/PmEhoYSGhoKwIwZM9ixY4dmVFdOTg7Z2dl069aN2rVrA1C/fv0qtRUgOztb6/00MzPj+vXrlcYmJyfz5ZdfEhgYiLm5uaZ8wIAB6OrqUlBQgFqtxt3dnddee63KbSgqKuLbb7/VmoLap08frZhvvvkGW1tbzp07R4MGDVi1ahW3bt3i6NGjWFtbA+Dp6amJnzZtGh9++CGDBg0CoFatWkyfPp0JEyYwderUStuhUqlQqVR/aFspBgbVOzX3n+Bufg5qtbrCFEUzcwtu3bj62PXGHdvH1cupvDvh0wfGbF2/HFcPL7z9mjz2cYSoilxVEeqyMiyMtD/fLYwMuZaT/8zqzCks4sfT53mpjutjHVOIh1EV5FBWpsbwD1MUjUwsyc18/M9zG0cvmnZ6D3NrZwryMjl3eC2/fv8xwW8uQN/AuEJ86tmdKK1rUsOp6t9phKiqnPy7qNVqLM21f9NYmply7cbtp1pnywBfbK0tsVKacyn9BlGbt5N+K4Nxb/d/rOMKIf7Z5JLl30T79u2JjY3VegwfPpz4+HhcXFw0SS6AoKCKCzQ+SmlpKdOnT8fX1xdra2vMzMyIiYnh0qVLf6qee8mfV155hfHjxwPlo4RSUlIIDQ3FzMxM85gxY4ZmWlx8fDx+fn6aKXSP04+ysrIqxcXHx9OsWTOtsj8e61Ex1tbWDB48mM6dO9O9e3cWLFhAenp6ldtqbm6u9V4eOHBAa/u9RJiJiQl169bF3t6eqKgorZjPPvuM2NhYfv75Z7y9vVm2bJkm+VQVbm5uFdZZS05OZsCAAdSqVQulUom7uzuA5jyIjY3F39//gceJi4vjk08+0Xqf33nnHdLT07l7926l+8yaNQsLCwutR9TSuVXuh3iysjJvs/n7b+g3eDT6+pWPEDx36igpiafp1vdfz7h1QlSPu0XF/GfXMWpamNHHz/PROwjxN+HoHoCLV0ssa7jj6O5P65DJFKvyuZy8v0JsaUkRlxL34uHTsRpaKsTT1alFII3qeeLmZE/rxn6MHNibI6fiuX77TnU3TQhRDWRE19+Eqamp1siZP0Pn/6dY/D4RVFxcrBUzZ84cFixYwPz58/H19cXU1JQxY8ZQ9CeG9JaWltKvXz+USiVfffWVpjwvLw8ov6vgH5NHurqVz7X/s7y8vNi3b1+li6pfu3aNnJwcvLwqv2vR44qMjGTUqFFER0ezdu1awsLC2L59O82bN3/kvjo6Og99P83NzTlx4gQ6Ojo4Ojpqrd91j4ODA56ennh6ehIZGUnXrl05d+6c5s6Mj1LZHTO7d++Om5sbS5cuxcnJCbVaTYMGDTTnQWXt+L28vDymTZumGbn3e0YPWAdh0qRJjB07VqvscEpplfrwojMxVaKjo0NebrZWeV5uNmbKx5tOePXSBfLzclj06XhNmVqtJi0lnoN7fmb6gjVcSDrDnds3+GTcW1r7Ri2dg3vt+gx9/5PHOrYQlTE3NEBHoSC7UPvvUXahCstKFqJ/0nUWFJfw6a/HMNbTY2zbAPR05RqgePIMjZUoFDqo7mp/nhfezcLI5MlNDzcwNMXcyom8zIoX5y4nH6CkRIV7/XZP7HhC/J7S1AQdHR2ycvO0yrPy8rFUmj1gr6dTp6erMwDXb9/BoUbVLxQLIZ4Pkuj6m6tfvz6XL18mPT0dR0dHoHxh9t+7N2onPT1ds4D9vTWZ7tm/fz89e/bkjTfeAMp/2CYlJeHt7V3ltrz//vucPn2aY8eOaSU17O3tcXJy4sKFCwwcOPCB/Vi5ciWFhYWaff/Yj4fp378/CxcuZMmSJbz33nta2+bOnYu+vr5mWl79+vW1Fk+v7Fj3Yt56660HxgD4+/vj7+/PpEmTCAoKYtWqVVVKdD3KoxJhf9S0aVMaN27MzJkzWbBgwWMdMyMjg8TERJYuXUrr1q0B2Ldvn1aMn58fy5Yt486dO5WO6goICCAxMfFPtd3Q0LDCHUQNDCof/SW06enp4exai5TE0/g0LJ9iXFZWxvnE0wS1/XPTl+/xrOvL6I//q1W2/rvPsbV3pk2nEHR0dGjbKYTAFtrrtyyYOZZur75NvQZyly7xZOnp6uBho+RsegZNXOyB8vP87PUMXq774DuCPok67xYVM2vnMfR1dRjXvjEGD1gIWYi/SkdXD2v72ty4dArn2uUXBcvKyrh5+TSeDbs+seOUFBeSl30dt/ptK2xLPbMDJ48mld7hUYgnQU9Pl1o1nTiTnEpT3/LpsWVlZZxJukBw60cvlfIk67x4rXzJECul+QNjhBDPL0l0/U2oVKoKazjp6enRsWNHvLy8GDRoEHPmzCEnJ4ePP/5YK87T0xMXFxfCw8OZOXMmSUlJzJs3TyumTp06/PDDDxw4cAArKyv++9//cuPGjSonuiIjI1m8eDEbNmxAoVBo2npv+tq0adMYNWoUFhYWBAcHo1KpOHbsGJmZmYwdO5bXX3+djz/+mHfeeYdJkyaRlpbG3LlVn74WFBTE6NGjGT9+PEVFRYSEhFBcXMx3332nGanm4uICwKhRo2jZsiVz586lZ8+exMTEaK3PBTB69GgGDx5MYGAgLVu2JCoqirNnz1KrVvlCl6mpqXz11Vf06NEDJycnEhMTSU5O1kqMPWtjxoyhV69eTJgwAWdn5z+9v5WVFTY2Nnz11Vc4Ojpy6dIlPvzwQ62YAQMGEBERQUhICLNmzcLR0ZGTJ0/i5OREUFAQU6ZMoVu3bri6uvLqq6+io6NDXFwcZ86cqbDgv3gyWnXozvffLsLZtRYubnXYv3srRSoVjZuX3z573YqFKC2tCe5ZnsQuKSnhZnr5HUhLS0vIycrg2uVUDI2MsLF1xNDIGAcn7TWI9PUNMTE115SbW1hVugC9hVUNrGvYP83uihfUK/U9+OLAKTxslNS2sSQ6IY3CklLa1a4JwOf747A2NmJAQF2gfLH5K9nlV/dL1Wru3FWRdicHI31dHMxNq1TnvSRXUWkp77byo6C4hILi8huCKA0N0NF5OjcfES8ur4AeHIlZiJV9bWzs65AUu4WS4kI8fDoAcDhmPsamNvi1ehMoX8A+O+OS5t8FeXfIvHkBPQNjzC3LL37G/rYcp1pNMFXaUpCXwZlDa1EodHD1aq117NysdG5dO0frnmHPsMfiRdStXRCfr9pArZqOeLrWZNtvhygsKqJdU38AFkX9iJWFOQO7la/zW1JSyuXrN8v/XVrKnewcUq+kY2xkqBmJ9ag6r9++w74Tp/Cv74XS1IS0a9f5dmMM3rXdcXOS7y1CvIgk0fU3ER0drRmxdU/dunVJSEhgw4YNhIaG0rRpU9zd3Vm4cCHBwcGaOH19fVavXs2IESPw8/OjSZMmzJgxg759+2piwsLCuHDhAp07d8bExIShQ4cSEhJCdrb2EPoH2bNnD6WlpfTo0UOrfOrUqYSHhzNkyBBMTEyYM2cO48ePx9TUFF9fX8aMGQOUJ8Q2b97M8OHD8ff3x9vbm9mzZ1dYHP1h5s+fj5+fH4sXLyYsLAxdXV0CAgLYuHEj3bt318Q1b96cpUuXMnXqVKZMmULHjh0JCwtj+vTpmph+/fqRkpLChAkTKCwspE+fPowYMYKYmBgATExMSEhIYMWKFWRkZODo6Mi7775b6V0fn5Xg4GA8PDyYOXOm1h0iq0pHR4c1a9YwatQoGjRoQN26dVm4cCHt2rXTxBgYGPDLL7/wwQcf0LVrV0pKSvD29ubzzz8HoHPnzmzZsoVPPvmE2bNno6+vT7169RgyZMiT6qb4A7/GLcnLzWHHlrXk5mTh5OLO2+9+jLnSEoCsO7dR/O4OcbnZd/jf76Yl7t25mb07N+Ph6S1TDsXfVpC7IzmFRXwfl0x2gQo3ayUfdmiChXH5aNCM/EJ0fnfX28wCFZO23l+DaOu5VLaeS6W+vTVTXm5WpTrT7uRw/nYWAO9v/E2rPQt7tcPW7OFTuYX4s1y9WqG6m82Zg2sovJuJla0HbUImY2RiCcDdnNsoFPc/zwvy7/DLqg80zxNPbCLxxCbsnH1o37f84lJB3m0O/fxfVIU5GBlbUMOpHi/1+7TCqK3UszsxNrPBwc3/6XdUvNBa+DcgOy+fddG7yMrNw93JkY+HvqlZTP52ZrbWXcwzc3KZOO9LzfPNuw6wedcBvGu7Ez7y7SrVqa+ny5mkVLb9dhiVqggbSyXN/OrT++U2z7DnQoi/E0VZVVf4Fn8rCoWCDRs2EBISUt1NEeJP23NWpi6K55/fxg8eHSTEP9w858ebTi/EP8nEBr9WdxOEeOrMA4MfHfQ3Fba86utOP0szBld+4yfx9MmKq0IIIYQQQgghhBDiuSCJLvG3MHz4cM16X398DB8+vLqbp8XHx+eBbY2Kinph2iCEEEIIIYQQQvzdyBpd/1DP24zTTz75hHHjxlW6TalUPuPWPNy2bdsoLi6udJu9/bNZ8PLv0AYhhBBCCCGEEOLvRhJd4m/Bzs4OOzu76m5Glbi5Pd7t7p+3NgghhBBCCCGEEH83MnVRCCGEEEIIIYQQQjwXJNElhBBCCCGEEEIIIZ4LkugSQgghhBBCCCGEEM8FSXQJIYQQQgghhBBCiOeCJLqEEEIIIYQQQgghxHNBEl1CCCGEEEIIIYQQ4rkgiS4hhBBCCCGEEEII8VyQRJcQQgghhBBCCCGEeC5IoksIIYQQQgghhBBCPBck0fU30K5dO8aMGaN57u7uzvz585/a8dLS0lAoFMTGxj61Y9yzfPlyLC0tHxoTHh5Oo0aNnnpbhBBCCCGEEEII8XzTq+4GVKfBgwezYsWKCuWdO3cmOjq6GlpU7ujRo5iamlbb8SuzYsUKFi1axNmzZ9HV1SUgIIDx48fTrVu36m6axvLly3n77bcrlC9dupQhQ4ZobVcoFDg5OdGpUydmz56NnZ2dpvwec3Nz6tatS1hYGD179nw2naiC6OhoJk2aREJCAtbW1vTs2ZPFixdXd7PEU3RwTzR7d2wiNycLx5pudO8biot7nUpjb6RfZseWNVy9dIHMO7d4pc9gWnXQ/n+6Y+tadm77Xqushp0TH0xdCEBmxk3+M+XfldY/IHQsfgEtnkCvhND2S+JFNp9NJbtQhauVOYObeONZw7LS2CtZuXwfl8yFjBxu5xfwZmA9utb30IrZeCaFo5ducDU7D0M9XerUsOT1xnVxUpppYpYdOsPp9NtkFqgw0tPFy9aKAQF1cbYw++MhhXgikuO2kXh8E4X5mVjauuPfbgg2Dl6VxmZnXOLMwTVk3kwhP+cmjdq8Td2AHloxZWo1Zw6t4WLCHgrvZmFsao27d3u8m/bV+k6Tk3GZuP0ruXXlLGVlpSitXWjxygRMlbZPtb/ixRS97wibd+0nKycPNycH3u7dhTpuNSuNvXz9Jut+3sWFK9e4dSeLQSHBvNI26IF1b9y5l1VbdtC1TXMG9+qiKd9+4Bj7T5wm9Wo6BYUqIiMmYWps9MT7JoT4Z3ihE10AwcHBREZGapUZGhpWU2vK2dr+vb50jBs3jkWLFjFjxgxCQkIoLi7mu+++o2fPnixYsICRI0dWdxM1lEoliYmJWmUWFhYVtqvVauLi4nj77be5du0aMTExmpjIyEiCg4PJyclh8eLFvPrqq5w4cQJfX99n1o8HKSwspHfv3vTt25fvv/+evLw8jhw5UqV9i4uL0dfXf8otFE/aqeP72bp+OSEDhuLq7sW+XVv4ZtEMPpi6EDNziwrxxUUqrGzsaOAfxNb1yx9Yr72jC6HvTdE819HV1fzbwqoGH0Us1Yo/sn8Hv+3YRF2fgL/eKSH+4GBaOiuPxRParAGeNSz5OSGNWTuP8lnPNiiNKv5NVpWUYmtmQjNXB1YeT6i0zvgbd3i5riu1bSwoVZexJjaJiB1Hmdu9NUb65V9/3K2VtPBwwtbUmDxVET+cOk/EjqP8r1c7dHQUldYrxOO6lLSP2N8iCewwHBsHLxJPbua3DZ/QZdDnGJlU/DwvLVZhqrTDpU4Qsb9FVlIjxB/7kZRT0TR9eRQWNVy5c+M8R375H/qGJng1Kr/IkZuVzq/ff4yHz0s0aN4fPQNjcjIuo6tn8FT7K15MB06e4dtN0bzzanfquNVk628HmblkJQs+GoWFWcUL+aqiYuxsLGne0JsVm2IqqfG+85eusv3AMVyd7CtsKyouplF9TxrV92TVlh1PrD9CiH+mF37qoqGhIQ4ODloPKysrAJKTk2nTpg1GRkZ4e3uzfft2FAoFGzduBGD37t0oFAqysrI09cXGxqJQKEhLSwMgIyODAQMG4OzsjImJCb6+vqxevfqhbfr91MXly5ejUCgqPMLDwzXxy5Yto379+hgZGVGvXr0Ko3uOHDmCv78/RkZGBAYGcvLkySq/PocOHWLevHnMmTOHcePG4enpSf369Zk5cyZjxoxh7NixXL58WRO/fPlyXF1dMTExoVevXmRkZFSo89NPP8Xe3h5zc3NCQ0MpLCzU2r57926aNm2KqakplpaWtGzZkosXL1apvQqFosL7aWxsXGG7k5MTXbp0YdSoUezYsYOCggJNjKWlJQ4ODnh5eTF9+nRKSkrYtWtXlY4fFxdH+/btMTc3R6lU0rhxY44dO6bZvm/fPlq3bo2xsTEuLi6MGjWK/Px8AL799lvMzMxITk7WxP/73/+mXr163L17V1Omq6vLwIED8fT0pFGjRgwdOrRCO+5NT127di1t27bFyMiIqKioKp2ParWa//znP3h6emJoaIirqyszZ87UbL98+TKvvfYalpaWmhFl98538eTt+3UzTVp2JDCoA3aONek1YBgGBgYcO/hrpfE13Tzp2nsQDQNboaf34MSmjo4u5hZWmoepmfJ323S0tplbWHEu7jB+AS0wNJSro+LJ2xqfSoc6LrTzrElNSzOGNPPBUFeXXeevVBpfu4YlbzSuRwsPJ/R0Kv8qM+mlJrStXZOalua4WSsZ0cKXjPxCLtzJ0cR09HLF294aWzNjPGws6NeoDnfuFnIz/26ldQrxVySd+IlaDTrh4fMSShsXAl8aga6eIalnd1Yab+1Qh0ZtBuNatzU6upV/nmekJ+JcuylOtQL/PynWAgc3f+5cv/9d4syBKBw9AmjYehBWdrUwt3TEuXbTSpNrQvxVW3Yf5KXmjWnfzJ+aDrYM7dsdQwN9dh0+UWm8p6szb/boTMsAX/T1dCuNAShUFfG/79Yz7LUemP3uu/09r7QNIuSl1g8cOSaEeLG88ImuB1Gr1fTu3RsDAwMOHz7Ml19+ycSJE/90PYWFhTRu3JitW7dy5swZhg4dyptvvlnlUTj9+vUjPT1d81i9ejV6enq0bNkSgKioKKZMmcLMmTOJj48nIiKCyZMna6Zk5uXl0a1bN7y9vTl+/Djh4eGMGzeuyu1fvXo1ZmZmDBs2rMK2Dz74gOLiYtavXw/A4cOHCQ0NZeTIkcTGxtK+fXtmzJihtc+6desIDw8nIiKCY8eO4ejoqJWYKykpISQkhLZt23Lq1CkOHjzI0KFDtYbfP0nGxsao1WpKSkoqbCspKeHrr78GwMCgalc9Bw4cSM2aNTl69CjHjx/nww8/1IyiSklJITg4mD59+nDq1CnWrl3Lvn37NCPi3nrrLbp27crAgQMpKSlh69atLFu2jKioKExMTAAwMjKic+fOTJgwgTt37jyyPR9++CGjR48mPj6ezp07V+l8nDRpEp9++imTJ0/m3LlzrFq1Cnv78itnxcXFdO7cGXNzc/bu3cv+/fsxMzMjODiYoqKiKr1GoupKSkq4eukCnvX8NGUKhQLPen5cSk36S3XfvpXOrI/e4T9T/s2ayPlk3bn1wNgrl1K4diWNwKAOf+mYQlSmpFRNakYODRxraMoUCgUNHG1IvpX1xI5zt7j8c97coPKEQWFxCbtTrmJrZkwNk4o/ooT4K9SlJdy5kYKDa0NNmUKhwN7Vj4z0xIfs+XA2jnW5cfk0OZlXAci6lcrtq+dwdC8ffVtWVsa11OOYWTqxZ8M0Ni0ZzI41E7iacvivdUiISpSUlHLhyjV8vWppyhQKBb5etUlKq/zCRVUtW7+VAG8v/OrW/qvNFEK8AF74qYtbtmzBzEx7LY6PPvqIwMBAEhISiImJwcnJCYCIiAi6dOlSWTUP5OzsrJVYeu+994iJiWHdunU0bdr0kfsbGxtrRiSlpKTw7rvvEhERQadOnQCYOnUq8+bNo3fv3gB4eHhw7tw5lixZwqBBg1i1ahVqtZqvv/4aIyMjfHx8uHLlCiNGjKhS+5OSkqhdu3aliR4nJyeUSiVJSeU/uBcsWEBwcDATJkwAwMvLiwMHDmitdzZ//nxCQ0MJDQ0FYMaMGezYsUMzqisnJ4fs7Gy6detG7drlf8jq169fpbYCZGdna72fZmZmXL9+vdLY5ORkvvzySwIDAzE3N9eUDxgwAF1dXQoKClCr1bi7u/Paa69V6fiXLl1i/Pjx1KtXD4A6de6vozRr1iwGDhyoufFAnTp1WLhwIW3btuWLL77AyMiIJUuW4Ofnx6hRo/jxxx8JDw+ncePGmjqmTZvGyZMn6d+/P23bttU6P9977z1SU1PZsmWLJn7MmDGac+Oeh52Pubm5LFiwgEWLFjFo0CAAateuTatWrQBYu3YtarWaZcuWaZKPkZGRWFpasnv3bl5++eUqvU6iau7m56BWqytMUTQzt+DWjauPXa+LuxevvvkutvbO5GbfYee271ny38mMCfsMQ6OKP/CPH/gVO4eauNWu99jHFOJBclVFqMvKsDDS/jtjYWTItZz8J3KMsrIyvj0aj5etJS5W5lrbtideJOpEIqqSUhyVpnzUsQl6unIdUDxZqoIcysrUGP5hFJWRiSW5mY//eV6/SR9KigqI/vY9FAodysrU+LYYiFu9tgAU3s2ipLiQhGM/0iDodfxavsn1i7Hs3zKbdn2mY1fT5y/1S4jfy8m/i1qtxtJc+7eVpZkp127cfux69584TeqVdGa9/85fbaIQ4gXxwie62rdvzxdffKFVZm1tzcqVK3FxcdEkEQCCgh68MOKDlJaWEhERwbp167h69SpFRUWoVCrNCJ2qupf8eeWVVxg/fjwA+fn5pKSkEBoayjvv3P/gLykp0axLFR8fj5+fH0ZG96cb/dl+lJWVVSkuPj6eXr16aZUFBQVpJbri4+MZPnx4hZh7UwOtra0ZPHgwnTt3plOnTnTs2JHXXnsNR0fHKrXB3NycEyfuD43W+cOUlnuJMLVaTWFhIa1atWLZsmVaMZ999hkdO3bkwoULvP/++yxcuBBra+sqHX/s2LEMGTKElStX0rFjR/r27atJ2MXFxXHq1CmioqI08WVlZajValJTU6lfvz5WVlZ8/fXXdO7cmRYtWvDhhx9qYjMzM5k1axY//vgjXbt2RVdXl5YtW/LLL79Qp04dTp8+XSERGxgYqPX8UedjfHw8KpWKl156qdL+xcXFcf78ea3EIJSPXExJSal0H5VKhUql0iorKirFwKB618J7kdX18df829HZDRd3L/4zeQSnTxwgsIX2e19cXETssX10CO7zrJspxBPzzZGzXM7KI7xzswrbWng40cCxBpkFKraeS2XBb7FM69wcg4dMoRHi7+Jy0j4uJv5G8+D3Udq4kHUrjdg932BkaoWHdwf4/+9wTrWaaBayt7Krxe30BFJOR0uiS/ztZWRlE7nhZyaPGISBrDUrhKiiFz7RZWpqiqen52Ptey+J8vtEUHFxsVbMnDlzWLBgAfPnz8fX1xdTU1PGjBnzp6Z5lZaW0q9fP5RKJV999ZWmPC8vDyi/q2CzZtpf3nV1n8wXdC8vL/bt20dRUVGFUV3Xrl0jJycHL6/K7xb0uCIjIxk1ahTR0dGsXbuWsLAwtm/fTvPmzR+5r46OzkPfz3uJMB0dHRwdHbXW77rHwcEBT09PPD09iYyMpGvXrpw7d05zZ8aHCQ8P5/XXX2fr1q38/PPPTJ06lTVr1tCrVy/y8vIYNmwYo0aNqrCfq6ur5t+//fYburq6pKenk5+fr0kqJSYmolKp8PcvT1J88skn5OTk0KpVK+bPn8+hQ4e0kmhAhbt3Pup8rOz1+L28vDwaN25c4Tjw4JsozJo1i2nTpmmVDRrxEW+/+/FDjyXAxFSJjo4OebnZWuV5udmYKa2e2HGMTUypYe/I7VvpFbadOXmQ4iIV/s3aPrHjCfF75oYG6CgUZBdq/13MLlRhWclC9H9W5JGznLhyi6mdm2FjWvEzztRAH1MDfRyVpnjVsCR03Q6OXb5BCw+nSmoT4vEYGitRKHRQ3dX+PC+8m4WRyeN/nsft+5Z6gb1wrdsaAMsa7tzNuUX80fV4eHfA0FiJjo4uFtauWvsprWty+1r8Yx9XiMooTU3Q0dEhKzdPqzwrLx9L5ePdzTbl8jVy8vKZOO9LTZlarSb+wkWi9x1h1ZzJFS5sCyGEfCo8QP369bl8+TLp6fd/+B06dEgr5t4P+9/HxMbGasXs37+fnj178sYbb9CwYUNq1aqlmepXVe+//z6nT59m48aNWiOz7O3tcXJy4sKFC5rEzL2Hh4eHph+nTp3SWvD9j/14mP79+5OXl8eSJUsqbJs7dy76+vr06dNHc6zDh7XXfPjjsaoSA+Dv78+kSZM4cOAADRo0YNWqVVVu88PcS4TVqlXrkUkdgKZNm9K4cWOtxdgfxcvLi/fff59ffvmF3r17a+7qGRAQwLlz5yq8V56enpok4oEDB5g9ezabN2/GzMxM646Wzs7OQHki7J7PPvuMbt268frrrzNs2DBNzIM86nysU6cOxsbG7NxZ+cK4AQEBJCcnY2dnV6EPv7+75e9NmjSJ7OxsrcfAd6q+TtyLTE9PD2fXWqQkntaUlZWVcT7xNK4eTy7BrFIVknHrOkqLiiMXj+7fSX3fxpXe4VGIJ0FPVwcPGyVn0+/fvKSsrIyz1zOoY2v52PWWlZUReeQsRy/dIKxTU+zMHj2SuowyysrKKFarH/u4QlRGR1cPa/va3Lh0SlNWVlbGzcunsXGs+9j1lharUKC9jqlCR0czkqv8uJ7kZmlPj8zNvIaJeQ2EeJL09HSpVdOJM8mpmrKysjLOJF3Ay/3xFon3rVOLuRP+zX/GDdc8ars607qxH/8ZN1ySXEKISr3wnwwqlYrr169rPW7fvk3Hjh3x8vJi0KBBxMXFsXfvXj7+WHsEiqenJy4uLoSHh5OcnMzWrVuZN2+eVkydOnXYvn07Bw4cID4+nmHDhnHjxo0qty8yMpLFixfz5ZdfolAoNG28N5pr2rRpzJo1i4ULF5KUlMTp06eJjIzkv//9LwCvv/46CoWCd955h3PnzrFt2zbmzp1b5eMHBQUxevRoxo8fz7x580hJSSEhIYGwsDAWLFjAvHnzcHFxAdCMwpo7dy7JycksWrRIa9oiwOjRo/nmm2+IjIwkKSmJqVOncvbsWc321NRUJk2axMGDB7l48SK//PILycnJf2qdridtzJgxLFmyhKtXH76GRkFBASNHjmT37t1cvHiR/fv3c/ToUU3bJ06cyIEDBzSL9ScnJ7Np0yZNMis3N5c333yTUaNG0aVLF6Kioli7di0//PADAC4uLvTv3593332Xb7/9lpSUFHbu3ElKSgqmpqb89NNP3Lx586FtfNT5aGRkxMSJE5kwYYLmGIcOHdIsyj9w4EBq1KhBz5492bt3L6mpqezevZtRo0Zx5Urli4waGhqiVCq1HjJtsepadejO0f07OH5oFzfTr7BxzVcUqVQ0bt4egHUrFhK96TtNfElJCdcup3LtciqlpSXkZGVw7XIqGb8brbXtxxVcSD5LZsZNLqYk8N1X/0FHRwe/xi21jp1xK520lHgCW3R8Np0VL6xX6nvw6/nL7Em5wpWsPL4+fJbCklLa1S7/YfT5/jhWn7i/YHdJqZq0Ozmk3cmhVK3mzl0VaXdyuJ57f02vyCPn2Jd6jZGtG2Gsr0dWgYqsAhVFJaUA3Mi9y8YzKVzIyOZ2fgGJNzOZ/1sshnq6+DtXPkJViL/CK6AHF85sJ/Xcr+RkXOb4r19SUlyIh0/5jT4Ox8zn1L6Vmnh1aQmZNy+QefMC6tISCvLukHnzArlZ9z/PnWoFEn90PdcuHCM/5yZXzh8i8cRPOHveHwVft3EIl5L2k3L6F3Kz0kmO3cq1C0fx9Ov67DovXhjd2gWx8+Bxdh85yZXrt1j6/RYKi4po17R8RsKiqB+J2rJdE19SUkrqlXRSr6RTUlrKnewcUq+kc/12+U2XjI0McXW013oY6utjZmKMq6O9pp7MnFyt/S5du0HqlXRy5S66QryQXvipi9HR0RXWf6pbty4JCQls2LCB0NBQmjZtiru7OwsXLiQ4OFgTp6+vz+rVqxkxYgR+fn40adKEGTNm0LdvX01MWFgYFy5coHPnzpiYmDB06FBCQkLIztYeuv4ge/bsobS0lB49emiVT506lfDwcIYMGYKJiQlz5sxh/PjxmJqa4uvrq1nw3MzMjM2bNzN8+HD8/f3x9vZm9uzZmlFYVTF//nz8/PxYvHgxYWFh6OrqEhAQwMaNG+nevbsmrnnz5ixdupSpU6cyZcoUOnbsSFhYGNOnT9fE9OvXj5SUFCZMmEBhYSF9+vRhxIgRxMTEAGBiYkJCQgIrVqwgIyMDR0dH3n333Urv+visBAcH4+HhwcyZM7XuEPlHurq6ZGRk8NZbb3Hjxg1q1KhB7969NdP2/Pz82LNnDx9//DGtW7emrKyM2rVr069fP6A8CWhqakpERAQAvr6+REREMGzYMIKCgnB2dmbFihXMnTuXmTNncvHiRZydnXnjjTdYv349L730Ej169NCsd1aZqpyPkydPRk9PjylTpnDt2jUcHR0166qZmJjw22+/MXHiRHr37k1ubi7Ozs689NJLKJXKv/xai4r8GrckLzeHHVvWkpuThZOLO2+/+zHmSksAsu7cLr96//9ys+/wv0/Ha57v3bmZvTs34+HpzdD3PwEgOyuDtZHzyc/LxdRciXvteowYF1Fh1NaxA7+itLTGy7vRU++neLEFuTuSU1jE93HJZBeocLNW8mGHJlgYlyfFM/IL0fnd3XczC1RM2rpf83zruVS2nkulvr01U14un8q/PekSANN/0R5FPLyFL21r18RAV4eEG3f4OT6Nu0XFKI0MqWdvxbTg5iifwJRJIf7I1asVqrvZnDm4hsK7mVjZetAmZDJGJpYA3M25jUJx//O8IP8Ov6z6QPM88cQmEk9sws7Zh/Z9y+9q7d/uHc4cXMXxXV+hKsjG2NSa2r4v49Osn2a/mp7NadxhGPFH13Nyz9eYWznRsttEbJ2r7yKieH618G9Adl4+66J3kZWbh7uTIx8PfVOzQP3tzGytu6ln5uRqTUvcvOsAm3cdwLu2O+Ej367ycbcfOMYPMbs1z6cu+gaAfw8I0STZhBAvDkVZVVcaF0D5LXI3bNhASEhIdTdFiH+sPWfl6pp4/vlt/ODRQUL8w81zXlDdTRDiqZvY4NfqboIQT515YPCjg/6mwpZXff3rZ2nGYINHB4mn4oWfuiiEEEIIIYQQQgghng+S6HrBDR8+HDMzs0of96ar/V34+Pg8sK2V3QXweW2DEEIIIYQQQgghKvfCr9H1Zz1vMz0/+eQTxo2r/A54f7c1l7Zt20ZxcXGl2+zt7Sstfx7bIIQQQgghhBBCiMpJousFZ2dnh52dXXU3o0rc3Nyquwl/izYIIYQQQgghhBCicjJ1UQghhBBCCCGEEEI8FyTRJYQQQgghhBBCCCGeC5LoEkIIIYQQQgghhBDPBUl0CSGEEEIIIYQQQojngixGL4R45vw2flDdTRDiqdPr3LO6myDEU9fJuKS6myDEUzf7aIfqboIQT92MwOpugRBPjozoEkIIIYQQQgghhBDPBUl0CSGEEEIIIYQQQojngiS6hBBCCCGEEEIIIcRzQRJdQgghhBBCCCGEEOK5IIkuIYQQQgghhBBCCPFckESXeCCFQsHGjRuruxlCCCGEEEIIIYQQVaJX3Q0Qz97gwYNZsWIFAHp6elhbW+Pn58eAAQMYPHgwOjrl+c/09HSsrKyqs6lVkpaWhoeHBydPnqRRo0ZPrF6FQsGGDRsICQl5YnU+DeHh4WzcuJHY2Njqbop4Cs7duMOWsxdIu5NDZoGKse0CaOJi//B9rmfw7fF4rmblYWNqTC/f2rStXVOzfXviRXYkX+Zm3l0AalqY08fPk0bOtpqYrAIVUScSOH3tNgUlpTgqTejl60kzV4en01HxQjt3Po2fdu0n9Wo6mdm5jPtXf5r61n/oPmfPp7JiYwxXbtykhqUFvTu1oV1Tf832gkIVa3/+lSOn48nJu4u7swODe3XB09VZE1OoKiJqy3aOnk4g724BttaWdGndjJdbNnlqfRUvrgvJZ9m74yeuXb5ATnYmbwydgE/Dpg+Mz8m+w7b1K7h6+QIZt67Tol1Xur36tlbMV59NIfX8uQr71vUJYPC/P9I8v5l+hehN35GafI5SdSn2jjUZOGQclta2FfYV4q+4eeUsicc3knnzAgX5d2jV/UOcazd7YPyV5IOcPx1D1q1U1KXFKK1d8GneH0f3+5/n5+N+JuV0DPk5NwH+P6Yfju4BFeorKytj76YZpKedeOSxhRDPL0l0vaCCg4OJjIyktLSUGzduEB0dzejRo/nhhx/46aef0NPTw8Ghen/QFhUVYWBgUK1tEKK6FZWU4malpJ1nTT7bc/KR8Tfz7jJ713E61nFhZMtGnL2ewVcHz2BpbEhDp/IfNNamRvT398LB3JQyytibco15u48z65WW1LQ0B+Dz/XHcLSphXPvGmBsasD/tGgt+O0lE15a4Wyufap/Fi0dVXIybswPtmwUwL3LNI+NvZmTy6dIoOrVowqg3+nA6+QJfrv0JS6U5jep5AvDl2k1cSr/JyNd7Y22p5Ldjccz44lvmTXwXG8vyc3jFpmjOJqfy3hu9sbO2IjbhPF+v34qVhTlNGtR7qn0WL57ioiIcnd0IDOrAd0vnPDK+tKQEU3ML2gf3Yf+vWyqNeWPoeEpLSjTP797NY2HEB/gGBGnKMm6ls+SzMAKDOtDxlX4YGhlxI/0KevryHUs8eaUlKixt3fHweYn9W2Y/Mv7WtXM4uDbEr8VA9A1NST33K/s2R9Cx32ys7GoBYGxeA9+Wb2Ju6UgZZVyM382+zbN4+fV5WNi4atWXdHLzU+mXEOKfRaYuvqAMDQ1xcHDA2dmZgIAAPvroIzZt2sTPP//M8uXLAe2pi0VFRYwcORJHR0eMjIxwc3Nj1qxZmvoUCgVffPEFXbp0wdjYmFq1avHDDz9oHXPixIl4eXlhYmJCrVq1mDx5MsXFxZrt4eHhNGrUiGXLluHh4YGRkREA0dHRtGrVCktLS2xsbOjWrRspKSma/Tw8PADw9/dHoVDQrl07zbZly5ZRv359jIyMqFevHosXL36s1ystLQ2FQsG6deto3bo1xsbGNGnShKSkJI4ePUpgYCBmZmZ06dKFW7duafYbPHgwISEhTJs2DVtbW5RKJcOHD6eoqEgT86j+AVy5coUBAwZgbW2NqakpgYGBHD58mOXLlzNt2jTi4uJQKBQoFArN+/cgZWVlhIeH4+rqiqGhIU5OTowaNUqzXaVSDQidUgABAABJREFUMW7cOJydnTE1NaVZs2bs3r0bgMLCQnx8fBg6dKgmPiUlBXNzc7755pvHem3FwzVytqWfvxdNqziSakfSJezMjHkzsD41Lc3oXM+NZm72bItP08Q0rmmPv7MdjkpTnJRm9PP3wlBPj+TbWZqY5FtZBNdzw7OGJfbmJvT29cTUQJ8LGdlPuIdCgH/9Ogzo+hLN/B4+iuue7QeOYWttxVs9O1PTwZYurZvRvKE3W/ccBKCouJjDp+J5o3snvD3dcahhzWvB7bGvYcUvB45q6klMvUybJg3x8fTA1tqSTi0CcXOy5/ylq0+ln+LFVtfHn5d7vI5Po6qNMLGysaN7338R0KwdhkYmlcaYmJpjbmGleSTHx6FvYEgD//uJrl82r6auTwBder2Fk4sHNraOePs1wczc4on0S4jfc3QPwLfFQGp6Nq9SvH/bUOoF9sLaoQ7mVk74tXwDMwsHrqUe08Q412qCk0djzK2cUFo549tiIHr6RmRcT9KqK/PmBZJO/ESTTiOfaJ+EEP88kugSGh06dKBhw4b8+OOPFbYtXLiQn376iXXr1pGYmEhUVBTu7u5aMZMnT6ZPnz7ExcUxcOBA+vfvT3x8vGa7ubk5y5cv59y5cyxYsIClS5fy2WefadVx/vx51q9fz48//qiZipefn8/YsWM5duwYO3fuREdHh169eqFWqwE4cuQIADt27CA9PV3T/qioKKZMmcLMmTOJj48nIiKCyZMna6ZtPo6pU6cSFhbGiRMn0NPT4/XXX2fChAksWLCAvXv3cv78eaZMmaK1z86dO4mPj2f37t2sXr2aH3/8kWnTpmm2P6p/eXl5tG3blqtXr/LTTz8RFxfHhAkTUKvV9OvXjw8++AAfHx/S09NJT0+nX79+D+3D+vXr+eyzz1iyZAnJycls3LgRX19fzfaRI0dy8OBB1qxZw6lTp+jbty/BwcEkJydjZGREVFQUK1asYNOmTZSWlvLGG2/QqVMn/vWvfz326yqenORbWTRwsNEq83O0JflWVqXxanUZB1KvoSopoU6N+1OV69hacjAtnVxVEWVl5TFFpWq8HayfZvOFqJKktMv4edXSKmtY15PktCsAlJaqUavVGOjra8UY6OuTeOGS5nldDxeOn00iIyuHsrIyziSnkn4rg4ZetZ9+J4R4Co4d/BW/xi0xNCy/WFhWVkbCmRPY2DryzaLpzJj4LxbP+ZCzcUequaVCVK6srIyS4kIMDE0r365WcylxLyXFhdRwqKspLylWcSj6MwLaD8XY9O+/9IoQ4umSqYtCS7169Th16lSF8kuXLlGnTh1atWqFQqHAzc2tQkzfvn0ZMmQIANOnT2f79u3873//04yiCgsL08S6u7szbtw41qxZw4QJEzTlRUVFfPvtt9ja3l8zok+fPlrH+eabb7C1teXcuXM0aNBAE2tjY6M13XLq1KnMmzeP3r17A+Ujv86dO8eSJUsYNGjQn35tAMaNG0fnzp0BGD16NAMGDGDnzp20bNkSgNDQ0AojqgwMDPjmm28wMTHBx8eHTz75hPHjxzN9+nR0dHQe2b9Vq1Zx69Ytjh49irV1eZLB09NTE29mZvanpppeunQJBwcHOnbsiL6+Pq6urjRt2lSzLTIykkuXLuHk5KTpc3R0NJGRkURERNCoUSNmzJjBkCFD6N+/PxcvXmTLlsqnVED5CDGVSqVdVlKKoZ5uldor/pysAhUWxoZaZRbGBhQUl1BUUorB/7/ulzJzmBJ9iOJSNUb6uoxtF0BNSzPNPmPa+LPgt1iGrtuJro4CA11dPmgbgIN55V88hXiWsnLzsDA30yqzMDflbmEhRcXFGBsZ4uXuwvpf9uBsb4uluSn7TpwmKe0yjrb3E8H/6t2VJes2M2LaPHR1dVEoYNhrPfD2dH/GPRLir7uclsyNa5foM3CEpiwvJ4siVSF7tm/k5e4DCO75BknxsUQtncOQ0eHUquNTjS0WoqLE4xspKS7ExauVVnnW7TR2rp1EaUkR+gbGtOz2IUobF8322N++oYZjXZxrP3jdOyHEi0NGdAktZWVlKBSKCuWDBw8mNjaWunXrMmrUKH755ZcKMUFBQRWe/35E19q1a2nZsiUODg6YmZkRFhbGpUuXtPZxc3PTSnIBJCcnM2DAAGrVqoVSqdSMJPvjvr+Xn59PSkoKoaGhmJmZaR4zZsyoMC3wz/Dz89P8296+fEHw34+Gsre35+bNm1r7NGzYEBOT+1MOgoKCyMvL4/Lly1XqX2xsLP7+/pok11/Vt29fCgoKqFWrFu+88w4bNmyg5P/X9zh9+jSlpaV4eXlpvW579uzRet0++OADvLy8WLRoEd988w02NjYPOhyzZs3CwsJC6/HZnhNPpC/i8Tkpzfi0W0umdwmiYx1Xvth/iitZeZrt38cmc7e4mI87NmFmlxa8Ut+dBXtPcikzpxpbLUTVjRxYfpFjePhcXh8/nZ/3HqZVgC+//xMXvfcw5y9eYcKQ1/l07DDe7NGZr9dv5VTi4/+dEKK6HDv4Kw7Obri419GUlVEGgLdvIK06dMPJxYN2L/eiXoPGHNlb8bucENXpYsJvnD28lqCu4zAy0Z5aq7SqycsD/0vH/rOp7duZI78sJCej/Lv01ZQj3Lh8Cv92Q6qj2UKIvyEZ0SW0xMfHa9a8+r2AgABSU1P5+eef2bFjB6+99hodO3assA7Xgxw8eJCBAwcybdo0OnfujIWFBWvWrGHevHlacaamFUeLdO/eHTc3N5YuXYqTkxNqtZoGDRporXP1R3l55T/Yly5dSrNm2mth6Oo+/kgi/d9Ng7mXEPxj2b0ph1X1qP4ZGxs/dnsr4+LiQmJiIjt27GD79u38+9//Zs6cOezZs4e8vDx0dXU5fvx4hdfJzOz+6ImbN2+SlJSErq4uycnJBAcHP/B4kyZNYuzYsVpldz8b90T7JO6zNDYku0B7BF12QRHG+nqa0VwAero6mtFZtWwsuJCRTXRCGkOaN+B6bj4xiReZ072VZnF6N2slCTcz+SXxEkOaN3h2HRKiEpbmZmTn5mmVZefmY2JkpJmu6FDDmvCRb1OoKuJuoQprC3M+W7EOO5vyiwZFxcWs3raTDwb3o7FP+fQXNyd70q5eZ/PuA/jVlemL4p9DpSrk1LH9dOymvXyBiakSHV1d7BxdtMptHZy5mJLwLJsoxENdStzL0R2f06LreBxcG1bYrqOrh7mlIwDW9p7cuXGepNgtBL40gptXTpOffYMfFw/U2mf/ltnYOnnTvu+MZ9IHIcTfhyS6hMavv/7K6dOnef/9/2PvvqOiOt4Gjn+XvrBLR3pVsCAg2GLHFrGXWEOKPY0YNWpMUUETNcUkmpj8Eo2ixkjU2GJv0VhjRxRFRRALCtJBOrx/8Lq6ASNRlKjP5xzOcec+Mztz97qwz87MHVPhcVNTUwYMGMCAAQPo27cvQUFBpKamamYaHTx4kFdeeUUTf/DgQfz9y24NvH//flxdXfnwww81xy9dunTfPqWkpBATE8O8efNo1aoVAHv37tWKuX1nxuLiYk2Zra0tDg4OXLx4keBg7V96j1tkZCS5ubmahNXBgwdRqVQ4OztXany+vr7Mnz9f61zfzcDAQGvslaFUKunevTvdu3fnrbfeok6dOkRFReHv709xcTFJSUma/lRk6NCh+Pj4MGzYMEaMGEGHDh2oW7fiTaQNDQ0xNNReSlcsyxYfGU8bc05cTdYqO5l4E08b83+sV0ophf+fpC0oun09ac/uVCgU/z83QIjq5eXmzLEz57XKTp6LxdPNqVyskaEBRoYGZN/KJTImluBuHQEoKi6mqKgYHR3tye26OjqUlMiVLp4sp44foKioEP8mrbXK9fT0cHKpyc2ka1rlN28kYm5h/Ti7KMQ9JcTs4dC2b2nW+V0cPBpVqk4ppZQUl93Uqk6jPnh4d9A6vvnn0TRoMxQH98ZV3l8hxH+fJLqeUfn5+Vy/fp3i4mJu3LjB5s2bmTFjBt26ddNKVt325ZdfYm9vj7+/Pzo6OqxYsQI7OzvMzc01MStWrKBRo0a0bNmSpUuXcujQIX766ScAPD09SUhIICIigsaNG7NhwwZWr159335aWFhgZWXFjz/+iL29PQkJCUycOFErpkaNGiiVSjZv3oyTkxNGRkaYmZkRFhbGqFGjMDMzIygoiPz8fI4cOUJaWlq5GUaPUkFBAcOGDeOjjz4iPj6eKVOmEBISgo6OTqXGN2jQIKZPn06vXr2YMWMG9vb2HD9+HAcHB5o1a4abmxtxcXGcOHECJycn1Gp1ucTS3cLDwykuLqZp06YYGxvz888/o1QqcXV1xcrKiuDgYF555RVmzZqFv78/ycnJ7NixA19fX7p27crcuXM5cOAAJ0+exNnZmQ0bNhAcHMzBgwc1SUdRdfIKi7iedUvzODn7FvGpmagM9bE2UbLsWAypuXm81aLs288OXi5siUlg6dGzBNZyIvp6Cn9dus6Edg01bSw7FoOfow02JkpyCwvZF5dI9I1U3m9f9segg6kKW7UxP/11iuCGdVAZ6nPkchKnrt9kfNuGCFHV8vILSExO0TxOTk0n7koiahMl1hbmLF2/jbSMLM1yxI7NG7F571/8vG4rbZv6c+pCHAdOnGbiiDtfbJw4e4HS0lIca1hz/WYqS37fimMNa9o2KfsCxtjIiHo13ViybisG+nrYWJgTHRvPn0ciebnn84/3BIhnQn5+HilJiZrHaSlJXLsch7GJCnNLGzav/ZnM9FT6v3rnTsjXLscBUFCQR3ZWBtcux6Gnp08Ne+2k7pH9O6jn1xhjE3W5523doSfLFnyFW6261PSqT8zpE5w9dYQRo8PKxQrxsIoK88hKu5NYzc64QVrSRQyM1JiY2nBy7xJyc1Jo2mk0ULZc8dDWOfi3GYalnSe5OWkA6OoZaDakP7l3CXZuAZiY2lBYcIuEs3tIvnKKur2nAKA0sahwA3oTtQ0qM9tHPGIhxH+RJLqeUZs3b8be3h49PT0sLCzw8/Njzpw5vPrqq+W+3YayOyZ+9tlnnD9/Hl1dXRo3bszGjRu1YsPCwoiIiODNN9/E3t6eZcuWUa9ePQB69OjBmDFjCAkJIT8/n65duzJp0iRCQ0P/sZ86OjpEREQwatQo6tevT+3atZkzZw6BgYGaGD09PebMmcPUqVOZPHkyrVq1YteuXQwfPhxjY2M+//xzxo8fj4mJCT4+PowePboqTmGltW/fHk9PT1q3bk1+fj6DBg3SjLsy4zMwMGDr1q28++67dOnShaKiIurVq8fcuXOBss36V61aRdu2bUlPT2fhwoUMHjz4nv0xNzdn5syZjB07luLiYnx8fPj99981+2wtXLiQjz/+mHfffZerV69ibW3Nc889R7du3Th79izjx4/np59+wtm5bBnEd999h6+vL5MmTeLTTz99JOfwWXYxJYNp2+7cHWvJkbKlJq1rOvJGc1/S8/JJycnTHK+hMua9tg1ZfPQMm8/GY2lsxMhm9fFzuLP3XWZ+Ad/vO0l6bh7GBvq4mKt5v31jfOzLvt3X09XhvXaNiDgew+d/HCWvqBg7tTFvNPfF37HGYxq5eJbEXr5K2NxwzeNFazYD0KZxA956sTfpmdncTMvQHK9hZcHEEcEsWrOFjXsOYmVmxusDetCgzp0bdeTm5fHL+h2kZGSgMjamqW9dBnZpj95dM0rfeaUvv6zfzpyffyPnVh7WFmYM7NKO55vLDABR9a5eusC82aGaxxt+Cwcg4LlA+r0cQlZmOumpN7XqfDNz/J36CReJPLIXC0sbJkz7XlOefOMa8bFnGfr2pAqf17tBU3oNHMGuratZv2Ih1jUcCB4xHreaFc/EFuJhpF6/wB+/3bkWT/y5EAD3em1p8vwo8m6lcSvzznV+MWorJSXFHP3jR47+8aOm/HY8QH5uBoe2ziE3JxUDAxPMrF1p3XtKhUschRACQFFaWirz88VDUygUrF69ml69elV3V/5TBg8eTHp6OmvWrKnurvynpH3yxv2DhHjC6XXqWd1dEOKRO6Zsff8gIZ5w2w7L3ADx9Pt48JO7MuOj8Hvv3VydnuRz+qSTuy4KIYQQQgghhBBCiKeCJLrEM2n69OmoVKoKfzp37lzd3XsoS5cuvefYvL29q7t7QgghhBBCCCHEIyPzcEWVeNJWwL7++uv079+/wmO3745YFcLDw6usrcrq0aMHTZs2rfCYvr7+Y+6NEEIIIYQQQgjx+EiiSzyTLC0tsbS0rO5uPBJqtRq1uvxdl4QQQgghhBBCiKedLF0UQgghhBBCCCGEEE8FSXQJIYQQQgghhBBCiKeCJLqEEEIIIYQQQgghxFNB9ugSQjx2ep16VncXhHjkirasre4uCPHIbXNsV91dEOKR69i4qLq7IMRjYFDdHRCiysiMLiGEEEIIIYQQQgjxVJBElxBCCCGEEEIIIYR4KkiiSwghhBBCCCGEEEI8FSTRJYQQQgghhBBCCCGeCpLoEkIIIYQQQgghhBBPBUl0CSGEEEIIIYQQQoingiS6nnEKhYI1a9ZUdzeEEEIIIYQQQgghHppedXdAPBqDBw9m0aJFAOjp6WFpaYmvry+DBg1i8ODB6OiU5TgTExOxsLCozq5WSnx8PO7u7hw/fpwGDRpUWbsKhYLVq1fTq1evKmvzUQgNDWXNmjWcOHGiursiHrPoC/Gs+2MfcVcTScvIYtzQgTTxqXvP+NSMLJas28LFy9e4fjOVzq2aMrh3Z62YvyKjWb1jD9dvplJcXIydjRXdA5vTupGfVtyV68ksXb+NM7GXKC4pxsmuBu8O7o+1hfmjGKp4hkXfSGX96YvEp2aSlpvP2MAAGjvb/nOd6yksPnqGq+nZWJko6e1TkzY1nTTHS0pKWXnyPHsuXiMjLx8LpSGtazrRx6cmCoUCgLzCIpYdj+HI5Rtk5RdSQ6WkUx03Onq5PNLximdT0pXTxBxdQ1rSRXJzUmnZfSKONZveMz756hlO7ltMVupVioryMVZbU9OnE7UDelQYf+bwKk7uW4KXfzf82wzTlMdGbSHh7B7Ski9SWJBL7zd+xsDQpMrHJwTAxfOn2bN9HdcuXyQzI42XRk7A26/JPeMzM1LZ+Nsirl6+SErydZoHdqFb3yFaMaeOH2TX1lWkJN+guLgIaxt7WnXojn+TNlpxSYlX2Lz2Z+LOR1NcUoytvRPBw8dhbmnzSMYqhPjvkkTXUywoKIiFCxdSXFzMjRs32Lx5M++88w4rV65k3bp16OnpYWdnV619LCgowMDAoFr78KwoLCxEX1+/ursh/qX8wkJcHe1o2zSAWQsj7htfXFyMqYkxfTq2ZsPugxXGqEyU9O7QGsca1ujp6XLs9Dm+W7YGU5UJDerUAuD6zVQmf7uAdk386R/UFqWRIZevJ8k1JB6JgqJiXC1MCazlxFe7j983Pin7Fp/+cZQOns6EtGjA6esp/HjgFOZKQ/wcyj7QrD0dy7ZzCbzR3BdnczWxKen8b38UJgZ6BNVxA2DJ0bOcvp7CWy38sFEZE3ktmYWHorFQGtLoPok2If6t4qJ8zG3ccPduz771n943Xk/fEE+/LphZu6Knb0Ty1WiO7vwfevqG1PTppBWbev08sVFbMLd2LddOUWE+dm4B2LkFcHLfkiobjxAVKSwowN7RlUbN2vHzvM/vG19cVISJ2oy2QS+wb+f6CmOMTVS07fQCNraO6OrpcvbUMVYumYuJyhSvev4ApCQn8sNXH9GoWTs6dB2AoZERNxKvoKcvnzOEeBbJ0sWnmKGhIXZ2djg6OhIQEMAHH3zA2rVr2bRpE+Hh4YD20sWCggJCQkKwt7fHyMgIV1dXZsyYoWlPoVDw/fff07lzZ5RKJR4eHqxcuVLrOd977z28vLwwNjbGw8ODSZMmUVhYqDkeGhpKgwYNmD9/Pu7u7hgZGQGwefNmWrZsibm5OVZWVnTr1o3Y2FhNPXd3dwD8/f1RKBQEBgZqjs2fP5+6detiZGREnTp1+O677x7ofMXHx6NQKFi+fDmtWrVCqVTSuHFjzp07x+HDh2nUqBEqlYrOnTuTnJysqTd48GB69epFWFgYNjY2mJqa8vrrr1NQUKCJud/4AK5cucKgQYOwtLTExMSERo0a8ddffxEeHk5YWBiRkZEoFAoUCoXm9fsnt1+vHj16YGJiwieffEJxcTHDhg3D3d0dpVJJ7dq1mT17drm6CxYswNvbG0NDQ+zt7QkJCdEcS09PZ/jw4ZqxtmvXjsjIyAc446Iy/Ot6MqhLe5r63nsW191sLM0Z0qcLbRo3wNjIsMIY71ruNPWti5OdDXbWlnRp8xwu9racvZigiYnYuIOAup681ON53J3ssbO2pHH9OpipZBaAqHoNHG0Y4O9FE5fKffmy/VwCNVRKXm5UFydzFZ3quNLU1ZaNZ+I1MeeT02nkbEuAUw1sVEqec7XHz8GaCzczNDHnktNo5eFIPTsrbFRKOni54GKhJvauGCGqir1bAD7Ng3Gq9Vyl4i1qeOBSuxVmVi6YmNbArW4gdq7+3Lx2RiuuqDCPg5u/olGHNzEwVJVrp3ZAD+o27oOVnVeVjEOIf1Lb25/ne7yId4N7z1a8m4VVDbr3G0pA00AMjYwrjPHwqo93g6bUsHfCysaeFm27YufgQnzsWU3M1t+XUds7gM69X8HB2R0rG3vq+TZGpTarknEJIZ4skuh6xrRr1w4/Pz9WrVpV7ticOXNYt24dy5cvJyYmhqVLl+Lm5qYVM2nSJF544QUiIyMJDg5m4MCBnDlz5w8utVpNeHg40dHRzJ49m3nz5vHVV19ptXHhwgV+++03Vq1apVmKl5OTw9ixYzly5Ag7duxAR0eH3r17U1JSAsChQ4cA2L59O4mJiZr+L126lMmTJ/PJJ59w5swZpk+fzqRJkzTLNh/ElClT+Oijjzh27Bh6enq8+OKLTJgwgdmzZ7Nnzx4uXLjA5MmTters2LGDM2fOsGvXLpYtW8aqVasICwvTHL/f+LKzs2nTpg1Xr15l3bp1REZGMmHCBEpKShgwYADvvvsu3t7eJCYmkpiYyIABAyo1ltDQUHr37k1UVBRDhw6lpKQEJycnVqxYQXR0NJMnT+aDDz5g+fLlmjrff/89b731FiNHjiQqKop169ZRq1YtzfF+/fqRlJTEpk2bOHr0KAEBAbRv357U1NQHPuei+pSWlhJ17iKJyTepV9NVU3Ys+hx2NpZ8/L/FDJ/0GR98NY9DUWfu05oQj8f55HTq21lplfna23A+OV3z2NPGnFOJKVzLzAbgUmomZ5PSaOBgrYnxsrHg2JUkUm/lUVpayunrKSRm5uBzV4wQ/xVpSRe5ee0sNo7eWuVHd/6AvXsj7Fz87lFTiKdHaWkpF86eJDkpEXfPepqys6eOYWVjz4Jvp/Hxe0P57vOJnI48VM29FUJUF1m6+AyqU6cOJ0+eLFeekJCAp6cnLVu2RKFQ4Opafvp7v379GD58OADTpk1j27ZtfPPNN5pZVB999JEm1s3NjXHjxhEREcGECRM05QUFBSxevBgbmzvr5V944QWt51mwYAE2NjZER0dTv359TayVlZXWcsspU6Ywa9Ys+vTpA5TN/IqOjuaHH37g1Vdf/dfnBmDcuHF06lS2JOCdd95h0KBB7NixgxYtWgAwbNiwcjOqDAwMWLBgAcbGxnh7ezN16lTGjx/PtGnT0NHRue/4fvnlF5KTkzl8+DCWlpYAWskllUr1QEtNX3zxRYYM0d7n4O4EnLu7OwcOHGD58uX0798fgI8//ph3332Xd955RxPXuHFjAPbu3cuhQ4dISkrC0LBsttAXX3zBmjVrWLlyJSNHjizXh/z8fPLz87XKCgoKMJQlq9UqJzePN8JmUVhUjI5CwbC+XfGtXROA9Kxs8vILWLtjLwO7tCe4W0ciYy4wa+GvTHlzMPVquVVv58UzLz03HzOl9oxFM6UBuYVFFBQVY6CnS6/6NckrLGbcuj3oKBSUlJbSv4EXLT0cNXUGN67LvIOneOu3P9DVUaAARjznQz1by8c8IiHu7ff5w8nLzaC0pBjv5wbiUb+j5lhCzB7Ski7ScdD9l4gJ8STLvZXDzI9eo6ioEB2FDj0HDMezTllyNzsznYL8PHZvW8Pz3QcR1PMlzp05wdJ5nzP8nVA8PL3v07oQ4mkjia5nUGlpqWYj3rsNHjyYjh07Urt2bYKCgujWrRvPP/+8VkyzZs3KPb57g/Rff/2VOXPmEBsbS3Z2NkVFRZiammrVcXV11UpyAZw/f57Jkyfz119/cfPmTc1Mp4SEBOrXr1/hOHJycoiNjWXYsGGMGDFCU15UVISZ2YNPU/b19dX829a2bI8WHx8frbKkpCStOn5+fhgb35lu3axZM7Kzs7l8+TKurq73Hd+JEyfw9/fXJLmqSqNGjcqVzZ07lwULFpCQkEBubi4FBQWaDf6TkpK4du0a7du3r7C9yMhIsrOzsbLSnkmRm5tbbinmbTNmzNBKrgFMHBHMByNfeoARiapibGTIZ+PeIDcvn1PnL7J47RZsrSzwruVOaWlZTKP6dejapuz/vLuTPTFxl9l24IgkusQT4UB8InvjrhHSwg8ncxWX0rJYfOQMFkpDzab1W2ISuHAzg3FtA7AxUXLmRhoLDp3GwtgQH3uZ1SX+G9r2+4SiwlxSEs8Rte9n1Ob2uNRuxa2smxzf9RNtXghFV0++PBJPNyOlMaPe/5z8vDxiY6LYsGoxlta2eHjVp5SyP1zq+TSiZbtuADg4u5NwMYZDe7ZKousZ0LFxUXV34R7kvbm6SKLrGXTmzBnNnld3CwgIIC4ujk2bNrF9+3b69+9Phw4dyu3DdS8HDhwgODiYsLAwOnXqhJmZGREREcyaNUsrzsSk/B4/3bt3x9XVlXnz5uHg4EBJSQn169fX2ufq77Kzy5ajzJs3j6ZNtfcB0NXVrVSfK3L3Ztu3E4J/L7udqKqs+41PqVQ+cH//yd/PdUREBOPGjWPWrFk0a9YMtVrN559/zl9//VWpfmRnZ2Nvb8+uXbvKHTM3N6+wzvvvv8/YsWO1ygpOla8vHi+FQoGddVli1d3Jnis3brJ6+x68a7ljamKMrq4uTrbaCWknWxvOxiVU1JwQj5W50pCMXO2Zohm5BSj19TDQK3v/X3oshp71PWju7gCAi4UpyTm5rD11kTY1nSgoKubX4zGMaRNAgFMNTUx8Wibro+Mk0SX+M1RmZV+6mVu7kX8rg1MHI3Cp3Yq0pFjycjPYuvRdTWxpaQnJ16I5f2Ij/d5egUJHdikRTweFQoGVjT1QlsRKun6FXVtX4+FVH2MTU3R0dalh76xVx8bOkUt37eMlhHh2SKLrGbNz506ioqIYM2ZMhcdNTU0ZMGAAAwYMoG/fvgQFBZGamqqZaXTw4EFeeeUVTfzBgwfx9y+728n+/ftxdXXlww8/1By/dOnSffuUkpJCTEwM8+bNo1WrVkDZErm73b4zY3FxsabM1tYWBwcHLl68SHBwcGWG/8hERkaSm5urSRQdPHgQlUqFs7Nzpcbn6+vL/Pnztc713QwMDLTG/qD27dtH8+bNefPNNzVld8/EUqvVuLm5sWPHDtq2bVuufkBAANevX0dPT6/c/m33YmhoqFnmeFuWLFv8zyktLaWoqOwa09PTpaazA4nJKVox15JvYm0hm7qK6udpY86Jq8laZScTb+JpY655XFBczN/nLusoFJT+/5TFopISikpK0fnbDGfd/1/mKMR/USmllBSXzVyo4exL0Etfax0/tO1bTC0dqdOwtyS5xFOttLSUov+/4ZWenh5OLjW5mXRNK+bmjUTMLeRLCyGeRZLoeorl5+dz/fp1iouLuXHjBps3b2bGjBl069ZNK1l125dffom9vT3+/v7o6OiwYsUK7OzstGbqrFixgkaNGtGyZUuWLl3KoUOH+OmnnwDw9PQkISGBiIgIGjduzIYNG1i9evV9+2lhYYGVlRU//vgj9vb2JCQkMHHiRK2YGjVqoFQq2bx5M05OThgZGWFmZkZYWBijRo3CzMyMoKAg8vPzOXLkCGlpaeVmET1KBQUFDBs2jI8++oj4+HimTJlCSEgIOjo6lRrfoEGDmD59Or169WLGjBnY29tz/PhxHBwcaNasGW5ubsTFxXHixAmcnJxQq9XlkkeV4enpyeLFi9myZQvu7u4sWbKEw4cPa83wCw0N5fXXX6dGjRp07tyZrKws9u3bx9tvv02HDh1o1qwZvXr14rPPPsPLy4tr166xYcMGevfuXeFSSfFw8vILtBJOyanpxF1JRG2ixNrCnKXrt5GWkUVIcB9NTNyVxLK6BQVkZucQdyURfT09nOzKZmit3r6Hms4O2FpZUFhUzPEz59hz9CTD+3bVtNG9bQtmL1lBHQ9X6nu6c/zMeY6ePkfoW4Mfz8DFMyWvsIjrWbc0j5OzbxGfmonKUB9rEyXLjsWQmpvHWy3K9mPp4OXClpgElh49S2AtJ6Kvp/DXpetMaNdQ00aAUw3WnIrFykSJs7mauNQMNkbHEVirbNmisYE+dW0tWXrsLAa6OlirlJy5kcqfF6/ycsM6j/cEiGdCUWEeWWl3PohnZ9wgLekiBkZqTExtOLl3Cbk5KTTtNBqA85EbMVbbYGpRtq9c8rVoYo6uwbNB2Xu1voESM2vt/VT19AwxMFJrlefmpJGXk0Z2Rtnvhoybl9DTN8JYbYOhUv0ohyyeQfn5eaQkJWoep6Ukce1yHMYmKswtbdi89mcy01Pp/+ooTcy1y3EAFBTkkZ2VwbXLcejp6VPDvuz9eteWVTi61sTS2pbiwiJiTh/j+OE/6TXgztYlrTv0ZNmCr3CrVZeaXvWJOX2Cs6eOMGK09vYZQohngyS6nmKbN2/G3t4ePT09LCws8PPzY86cObz66qvoVPAtn1qt5rPPPuP8+fPo6urSuHFjNm7cqBUbFhZGREQEb775Jvb29ixbtox69crueNKjRw/GjBlDSEgI+fn5dO3alUmTJhEaGvqP/dTR0SEiIoJRo0ZRv359ateuzZw5cwgMDNTE6OnpMWfOHKZOncrkyZNp1aoVu3btYvjw4RgbG/P5558zfvx4TExM8PHxYfTo0VVxCiutffv2eHp60rp1a/Lz8xk0aJBm3JUZn4GBAVu3buXdd9+lS5cuFBUVUa9ePebOnQuUbda/atUq2rZtS3p6OgsXLmTw4MH/up+vvfYax48fZ8CAASgUCgYNGsSbb77Jpk2bNDGvvvoqeXl5fPXVV4wbNw5ra2v69u0LlE0b37hxIx9++CFDhgwhOTkZOzs7WrdurdnPTFSt2MtXCZsbrnm8aM1mANo0bsBbL/YmPTObm2kZWnXem/U/zb8vXr7G3mNR2FiaM3dS2UzOvIIC5q9cT2pGFvr6ejjWsObt4D4097+zH15T37oM79uNNdv3EL56E/Y1rHh3yADqeJS/SYUQD+tiSgbTtt25O9aSI2VLTVrXdOSN5r6k5+WTkpOnOV5DZcx7bRuy+OgZNp+Nx9LYiJHN6uPncGe57eDG9Vh+4hwLDp0mM68AC6Uh7T1deMH3zo0+RrVqwLLjMXy7N5LsgkKsTZQMaOBFBy+XxzBq8axJvX6BP36bpHl84s+FALjXa0uT50eRdyuNW5k3NcdLS0uI2reEnMwkFApdVGa2+LZ4mZq+Qf/qeWNPbuH0X79qHu9cUTbzvsnzb+Ner93DDEmIcq5eusC82aGaxxt+Cwcg4LlA+r0cQlZmOumpN7XqfDNz/J36CReJPLIXC0sbJkz7HoCC/DzWRswjMz0VPX19bGwdGfDqKHwbttDU827QlF4DR7Br62rWr1iIdQ0HgkeMx61m3Uc3WCHEf5aitFTm54vKUSgUrF69ml69elV3V/5TBg8eTHp6OmvWrKnurjwxso5sru4uCPHIFW1ZW91dEOKRm+U4u7q7IMQj99/d6FqIqtPG2/j+Qf9Ru0/fun9QNXiSz+mTThbvCyGEEEIIIYQQQoingiS6xFNr+vTpqFSqCn86d+5c3d17KEuXLr3n2Ly95RbKQgghhBBCCCGeTbJHl6i0J22V6+uvv07//v0rPHb77ohVITw8vMraqqwePXrQtGnTCo/p6+s/5t4IIYQQQgghhBD/DZLoEk8tS0tLLC0tq7sbj4RarUatljslCSGEEEIIIYQQd5Oli0IIIYQQQgghhBDiqSCJLiGEEEIIIYQQQgjxVJBElxBCCCGEEEIIIYR4KkiiSwghhBBCCCGEEEI8FSTRJYQQQgghhBBCCCGeCpLoEkIIIYQQQgghhBBPBUl0CSGEEEIIIYQQQoingiS6hBBCCCGEEEIIIcRTQRJdQgghhBBCCCGEEOKpIImuaqBQKFizZk11d0MIIYQQQgghhBDiqaJX3R14mgwePJhFixYBoKenh6WlJb6+vgwaNIjBgwejo1OWV0xMTMTCwqI6u1op8fHxuLu7c/z4cRo0aFBl7SoUClavXk2vXr2qrM1HITQ0lDVr1nDixInq7opGbm4ub7/9NmvXriU3N5d69erx9ddf07x58+rumnhEoi/Es+6PfcRdTSQtI4txQwfSxKfuPeNTM7JYsm4LFy9f4/rNVDq3asrg3p3LxR04cYpfN/1Bcmo6djZWBHfrQEA9L83xvyKj2br/CHFXE8nOucWn776Ou5P9IxmjENE3Ull/+iLxqZmk5eYzNjCAxs62/1znegqLj57hano2ViZKevvUpE1NJ62Y1Ft5/HIshshryeQXFWOnNua1Zj7UtDYHYNCSTRW2/WJAbbp7e1TJ2IS4LenKaWKOriEt6SK5Oam07D4Rx5pN7xl/5fwBLkRtIT05jpLiQkwtnfF+biD2bv5acbeyUzi5dzHX449TVJSPysyOJh1DsLTzLNfmkR3fExu1lQath1A7oEeVj1GIi+dPs2f7Oq5dvkhmRhovjZyAt1+Te8ZnZqSy8bdFXL18kZTk6zQP7EK3vkO0Yg7t28bxv3Zz/dplABxdPOjU40Wc3e5c4yuWfMuxg7u06nnVbcCQkI+qbnBCiCeGJLqqWFBQEAsXLqS4uJgbN26wefNm3nnnHVauXMm6devQ09PDzs6uWvtYUFCAgYFBtfZBPJjPP/+clStX8uuvv+Ll5cWpU6fQ07v/f2N5zZ9c+YWFuDra0bZpALMWRtw3vri4GFMTY/p0bM2G3QcrjImJS2D2kt94sWtZcmvvsSi+WBjBzLGv4WJvq3neujVdaO7vzQ+/rqvSMQnxdwVFxbhamBJYy4mvdh+/b3xS9i0+/eMoHTydCWnRgNPXU/jxwCnMlYb4OdgAkJ1fyJTNB6lnZ8l77RphamTA9cxbmBjqa9r5vm87rXZPXE3mx4NRNHGp3t/T4ulUXJSPuY0b7t7t2bf+0/vGJ1+Lxs7FD9/mwegbmhAXvZO9v0+nw4BPsahRlogtyMtm5/IPqOHkTateH2GoNCM7PRF9I1W59q5cOEjK9XMoTSyrfGxC3FZYUIC9oyuNmrXj53mf3ze+uKgIE7UZbYNeYN/O9RXGXDx3Gr9GLenuXhs9fQN2b1vNgm8/ZvRHX2JmbqWJ86rnT9+X3tQ81tXXr6g5IcQzQJYuVjFDQ0Ps7OxwdHQkICCADz74gLVr17Jp0ybCw8MB7aWLBQUFhISEYG9vj5GREa6ursyYMUPTnkKh4Pvvv6dz584olUo8PDxYuXKl1nO+9957eHl5YWxsjIeHB5MmTaKwsFBzPDQ0lAYNGjB//nzc3d0xMjICYPPmzbRs2RJzc3OsrKzo1q0bsbGxmnru7u4A+Pv7o1AoCAwM1BybP38+devWxcjIiDp16vDdd9890PmKj49HoVCwfPlyWrVqhVKppHHjxpw7d47Dhw/TqFEjVCoVnTt3Jjk5WVNv8ODB9OrVi7CwMGxsbDA1NeX111+noKBAE3O/8QFcuXKFQYMGYWlpiYmJCY0aNeKvv/4iPDycsLAwIiMjUSgUKBQKzet3L6WlpYSGhuLi4oKhoSEODg6MGjVKczw/P59x48bh6OiIiYkJTZs2ZdeuXQDk5eXh7e3NyJEjNfGxsbGo1WoWLFigKdPR0aFevXp06tQJd3d3unfvTpMm5b8lu31+PvnkExwcHKhduzYAS5YsoVGjRqjVauzs7HjxxRdJSkrSqnv69Gm6deuGqakparWaVq1aaZ23qnrtReX41/VkUJf2NPW99yyuu9lYmjOkTxfaNG6AsZFhhTEb/zxIgzq16NGuBU52Ngzs0g53R3s27zmkiWndyI++zwfi61WzSsYhxD9p4GjDAH+vSieYtp9LoIZKycuN6uJkrqJTHVeautqy8Uy8Jub30xexMjHijea+1LI2p4bKGF8Ha+zUJpoYc6Wh1s+RyzeoZ2uJrdq4qocoBPZuAfg0D8ap1nOVivdvM4w6jXpjaeeJ2sIB3xYvoTKz41rcEU3M2SOrMVZZ0eT5UVjZeaEys8XOtQFqc+0ZuLeyUzi+az7PBY1BR1e+5xaPTm1vf57v8SLeDe49W/FuFlY16N5vKAFNAzE0qvi9d+CQ0TzXOggHZ3dq2DnyQvCblJaWEBsTpRWnq6eH2sxC82NsXD7hK4R4NshvusegXbt2+Pn5sWrVKoYPH651bM6cOaxbt47ly5fj4uLC5cuXuXz5slbMpEmTmDlzJrNnz2bJkiUMHDiQqKgo6tYt++CrVqsJDw/HwcGBqKgoRowYgVqtZsKECZo2Lly4wG+//caqVavQ1dUFICcnh7Fjx+Lr60t2djaTJ0+md+/enDhxAh0dHQ4dOkSTJk3Yvn073t7emhlBS5cuZfLkyXz77bf4+/tz/PhxRowYgYmJCa+++uoDnaMpU6bw9ddf4+LiwtChQ3nxxRdRq9XMnj0bY2Nj+vfvz+TJk/n+++81dXbs2IGRkRG7du0iPj6eIUOGYGVlxSeffFKp8WVnZ9OmTRscHR1Zt24ddnZ2HDt2jJKSEgYMGMCpU6fYvHkz27dvB8DMzOwfx/Dbb7/x1VdfERERgbe3N9evXycyMlJzPCQkhOjoaCIiInBwcGD16tUEBQURFRWFp6cnS5cupWnTpnTt2pVu3brx0ksv0bFjR4YOHappo3v37kyZMoWffvqJYcOG/WN/duzYgampKdu2bdOUFRYWMm3aNGrXrk1SUhJjx45l8ODBbNy4EYCrV6/SunVrAgMD2blzJ6ampuzbt4+ioiLg0bz24vE7F3+FboHNtMp8a9fk8Kmz1dQjIf6d88np1Lez0irztbdh8ZEzmsdHr9zA18GGr3cf50xSKhbGhnT0cqW9p3OFbWbk5nPiWjJvNPd9pH0X4kGVlpZSVJiHgeGdZO3Vi4ewc/Vn/4bPSb5yGqXKkpq+QdT0eV6r3l9bZlO7YU/MrFyqo+tCVKnCgnxKiosxNlZrlcedj+bj94aiNFZRs3Z9nu8+CGMT9T1aEUI8zSTR9ZjUqVOHkydPlitPSEjA09OTli1bolAocHV1LRfTr18/TYJs2rRpbNu2jW+++UYzk+ajj+6sPXdzc2PcuHFERERoJboKCgpYvHgxNjY2mrIXXnhB63kWLFiAjY0N0dHR1K9fXxNrZWWltdxyypQpzJo1iz59+gBlM7+io6P54YcfHjjZMW7cODp16gTAO++8w6BBg9ixYwctWrQAYNiwYeVmVBkYGLBgwQKMjY3x9vZm6tSpjB8/nmnTpqGjo3Pf8f3yyy8kJydz+PBhLC3LpvHXqlVLE69Sqf7VUtOEhATs7Ozo0KED+vr6uLi4aGZbJSQksHDhQhISEnBwcNCMefPmzSxcuJDp06fToEEDPv74Y4YPH87AgQO5dOkS69ffmcJ948YNgoKCeO+99/j000/Jzs7mnXfeASAlJQVra2vNLDgAExMT5s+fr7Vk8e6kmYeHB3PmzKFx48ZkZ2ejUqmYO3cuZmZmREREoP//0729vO7s2/QoXnvx+GVkZ2Ou1v6W09xURXpmdjX1SIh/Jz03HzOl9oxFM6UBuYVFFBQVY6CnS1J2LtvPJdClrhu9fGpy4WY6iw5Ho6ejKLeXF8Dui1cx0tO7795gQlSXmKNrKCrMw9mrpaYsJ+MGsSc34xXQg7qNXyD1xnmO7/4JHV093OuVLc09e2QVCoUOng26VVfXhahSm9f8jNrMgpp1fDRlXnUb4O3XFAurGqTevMHWdb+wcO7HvDFuhmafZCHEs0P+1z8mpaWlKBSKcuWDBw/mxIkT1K5dm1GjRrF169ZyMc2aNSv3+MyZO99a//rrr7Ro0QI7OztUKhUfffQRCQkJWnVcXV21klwA58+fZ9CgQXh4eGBqaoqbmxtAubp3y8nJITY2lmHDhqFSqTQ/H3/8cbllgf+Gr++db9Btbcs+ZPj4+GiV/X2JnZ+fH8bGd6Y4N2vWjOzsbM2MuPuN78SJE/j7+2uSXA+rX79+5Obm4uHhwYgRI1i9erVmJlRUVBTFxcV4eXlpnbfdu3drnbd3330XLy8vvv32WxYsWICV1Z0ZC7NmzcLFxYXp06ezbds2Zs2apUlyRkVFoVar8fPz08T7+PiU25fr6NGjdO/eHRcXF9RqNW3atCl3Tlq1aqVJct3tQV/7/Px8MjMztX7y71piKoQQj0JpaSlulqYM9K+Nm6UpHbxcaOfpzPZzlyuM33XhCi3dHTDQ033MPRXi/i6d/ZPTf/1Ksy7jMDK+M8O8lFIsanjg2+IlLGp4UNOnEx71OxJ7cgsAqTcucO74epo+P6rCv0OFeNLs2rqayKN7eWnkBPT17/yd69eoJfV8G2Pv6Iq3XxNeeWMiVy7FcvHcqWrsrRCiusiMrsfkzJkzmj2v7hYQEEBcXBybNm1i+/bt9O/fnw4dOpTbh+teDhw4QHBwMGFhYXTq1EkzG2fWrFlacSYmJuXqdu/eHVdXV+bNm4eDgwMlJSXUr19fa5+rv8vOLpvxMW/ePJo21V57f3tJ5IO4O7Fy+w+xv5eVlJT8qzbvNz6lUvnA/a2Is7MzMTExbN++nW3btvHmm2/y+eefs3v3brKzs9HV1eXo0aPlzpNKdWdmTVJSEufOnUNXV5fz588TFBSkOXby5EnN3S9dXV3Zvn07rVq1Ijk5mczMTF566SWtc/b31zwnJ4dOnTrRqVMnli5dio2NDQkJCXTq1KlS5+RBX/sZM2YQFhamVTZxRDAfjHzpnnXEo2WmUpGepT17Kz0zG3NT2ctCPBnMlYZk5OZrlWXkFqDU19MkqsyUhjiaaV/TjqYmHLp0vVx7Z26kkpiZwzutGjyyPgvxoBJi9nB4+1yadxmPnYuf1jEjYwtMLbVnKJpaOHLl/AEAkq9Gk5+bwe8/jdAcLy0tIXJPOOdPbKDb0B8e/QCEqCJ7tq9j99Y1DHt7EvaO5VfB3M3K2g4TlZqUm9ephSxJF+JZI4mux2Dnzp1ERUUxZsyYCo+bmpoyYMAABgwYQN++fQkKCiI1NVUz0+jgwYO88sormviDBw/i7192a+n9+/fj6urKhx9+qDl+6dKl+/YpJSWFmJgY5s2bR6tWrQDYu3evVszt2UDFxcWaMltbWxwcHLh48SLBwcGVGf4jExkZSW5uriY5c/DgQVQqFc7OzpUan6+vL/Pnz9c613czMDDQGntlKJVKunfvTvfu3XnrrbeoU6cOUVFR+Pv7U1xcTFJSkqY/FRk6dCg+Pj4MGzaMESNG0KFDB81ebI6Ojuzfv5/i4mJ0dXXx8vJi69atBAYGkpubS1xc3D/27ezZs6SkpDBz5kycncv2qDly5IhWjK+vL4sWLaKwsLDcrK4Hfe3ff/99xo4dq1VWcGpXpeuLqufl5kTUuYt0bXNntmjUuYt4uVa8d5EQ/zWeNuacuJqsVXYy8SaeNuaax142FiRm5mjFJGbdwlpVPqG/K/YK7lamuFqaPpL+CvGgEmL2cGjbtzTr/C4OHo3KHbd2qE1W2jWtsqz0RExMy2bxu9VtWy45tnv1VNzqBuLmrX3XUSH+y3ZvW8OuzasYEvIRTq617hufnnaTWznZqE0tHkPvhBD/NZLoqmL5+flcv36d4uJibty4webNm5kxYwbdunXTSlbd9uWXX2Jvb4+/vz86OjqsWLECOzs7zM3NNTErVqygUaNGtGzZkqVLl3Lo0CF++uknADw9PUlISCAiIoLGjRuzYcMGVq9efd9+WlhYYGVlxY8//oi9vT0JCQlMnDhRK6ZGjRoolUo2b96Mk5MTRkZGmJmZERYWxqhRozAzMyMoKIj8/HyOHDlCWlpauYTGo1RQUMCwYcP46KOPiI+PZ8qUKYSEhKCjo1Op8Q0aNIjp06fTq1cvZsyYgb29PcePH8fBwYFmzZrh5uZGXFwcJ06cwMnJCbVajaFhxXexAwgPD6e4uJimTZtibGzMzz//jFKpxNXVFSsrK4KDg3nllVeYNWsW/v7+JCcns2PHDnx9fenatStz587lwIEDnDx5EmdnZzZs2EBwcDAHDx7EwMCAUaNG8dxzzzFw4EDef/99DA0N2b59u2Z55JIlS7T2Zfs7FxcXDAwM+Oabb3j99dc5deoU06ZN04oJCQnhm2++0TyHmZkZBw8epEmTJtSuXfuBXntDQ8Ny5y3rb0sqxb3l5ReQmJyieZycmk7clUTUJkqsLcxZun4baRlZhAT30cTEXUksq1tQQGZ2DnFXEtHX08PJruyDT5fWzxE6N5zf/9hHQD0v9h0/xcUr1xjZv7umjaycW9xMyyAtMwtA0wdzUxUWprKxq6haeYVFXM+6pXmcnH2L+NRMVIb6WJsoWXYshtTcPN5qUfaBvYOXC1tiElh69CyBtZyIvp7CX5euM6FdQ00bXeu6MWXLQVZHXaCZmz2xNzPYcf4yI5p6az33rYJCDl66zksN6zyewYpnVlFhnlZSKjvjBmlJFzEwUmNiasPJvUvIzUmhaafRQNlyxUNb5+DfZhiWdp7k5qQBoKtnoNmQvrZ/D3Ysf5/oQytx9mpB6vXzXDy1lUbt3wDAUKnGUKn9nq2jq4ehsRmmFo6PYdTiWZOfn0dKUqLmcVpKEtcux2FsosLc0obNa38mMz2V/q/euTP5tctlX9YWFOSRnZXBtctx6OnpU8O+bLbirq2r2b7+VwYOGY2FpQ1ZGWX/FwyMlBgaGpGfn8eODb9S378ZalNzUpKvs2nNEqxs7PCq2+DxDV4I8Z8hia4qtnnzZuzt7dHT08PCwgI/Pz/mzJnDq6++WuFGiGq1ms8++4zz58+jq6tL48aN2bhxo1ZsWFgYERERvPnmm9jb27Ns2TLq1asHQI8ePRgzZgwhISHk5+fTtWtXJk2aRGho6D/2U0dHh4iICEaNGkX9+vWpXbs2c+bMITAwUBOjp6fHnDlzmDp1KpMnT6ZVq1bs2rWL4cOHY2xszOeff8748eMxMTHBx8eH0aNHV8UprLT27dvj6elJ69atyc/PZ9CgQZpxV2Z8BgYGbN26lXfffZcuXbpQVFREvXr1mDt3LlC2Wf+qVato27Yt6enpLFy4kMGDB9+zP+bm5sycOZOxY8dSXFyMj48Pv//+u2afrYULF/Lxxx/z7rvvcvXqVaytrXnuuefo1q0bZ8+eZfz48fz000+a2Vbfffcdvr6+TJo0iU8//RQ/Pz8OHDjA+++/T8eOHSkoKKBly5Zs27aNCxcu8Oqrr1KzZs1ym/DfZmNjQ3h4OB988AFz5swhICCAL774gh49emhirKys2LlzJ+PHj6dNmzbo6urSoEEDzU0B/iuv/bMk9vJVwuaGax4vWrMZgDaNG/DWi71Jz8zmZlqGVp33Zv1P8++Ll6+x91gUNpbmzJ1UNqu0trsLo17qw6+b/mDZxh3YWVsxbshAXOzvbMJ99HQM3y1bo3n89eIVAPTtFEj/oLZVPUzxjLuYksG0bYc0j5ccKbsDaOuajrzR3Jf0vHxScvI0x2uojHmvbUMWHz3D5rPxWBobMbJZffwc7uxFWdPanLFtAog4HsPqqFhsVEpeaVSXlh7aH+73xydSWlpKczf7RzxK8axLvX6BP36bpHl84s+FALjXa0uT50eRdyuNW5k3NccvRm2lpKSYo3/8yNE/ftSU344HsLTzpEW3iZzct4Tov5ZjYlaDBq2H4lqnzWMalRDarl66wLzZoZrHG34LByDguUD6vRxCVmY66ak3tep8M3P8nfoJF4k8shcLSxsmTCu72/qhPVspLi5i6fwvtOq179KPDl0HoKOjw/VrCRz7azd5ubcwNbOgVl0/OnYbiF4F+84KIZ5+itLS0tLq7oS4N4VCwerVq+nVq1d1d+U/ZfDgwaSnp7NmzZrq7op4AFlHNld3F4R45Iq2rK3uLgjxyM1ynF3dXRDikevYuKi6uyDEI9fG2/j+Qf9Ru0/fun9QNXiSz+mTTu66KIQQQgghhBBCCCGeCpLoElVq+vTpqFSqCn86d+5c3d17KEuXLr3n2Ly9ve/fgBBCCCGEEEIIIR4p2aPrP+5JW1n6+uuv079//wqP3b47YlUIDw+vsrYqq0ePHjRt2rTCY3+/Q6EQQgghhBBCCCEeP0l0iSplaWmJpaVldXfjkVCr1ajVcrc5IYQQQgghhBDiv0qWLgohhBBCCCGEEEKIp4IkuoQQQgghhBBCCCHEU0ESXUIIIYQQQgghhBDiqSCJLiGEEEIIIYQQQgjxVJDN6IUQj13RlrXV3QUhHjm9Tj2ruwtCPHIdlUXV3QUhHrlth+Ujk3j6tfGu7h4IUXVkRpcQQgghhBBCCCGEeCpIoksIIYQQQgghhBBCPBUk0SWEEEIIIYQQQgghngqS6BJCCCGEEEIIIYQQTwVJdAkhhBBCCCGEEEKIp4Ikuh5SeHg45ubmD9WGm5sbX3/9dZX0ByAwMJDRo0dXWXtPah9uq+g1+vHHH3F2dkZHR0dz7isqE0IIIYQQQgghxJPjqbxXbnJyMpMnT2bDhg3cuHEDCwsL/Pz8mDx5Mi1atEChULB69Wp69er1r9p1c3Nj9OjRWgmcAQMG0KVLl0rVDw8PZ/To0aSnp2uVHz58GBMTk3/Vl6oSGBjI7t27ATA0NMTDw4OQkBDefPPNh2p31apV6Ovrax5XdO4elkKh0Pzb2NgYBwcHWrRowdtvv03Dhg01x/7+GmVmZhISEsKXX37JCy+8gJmZWYVlQvxXbI25xO+n48jIy8fFQs3gxvWoZW1+z/iD8YksjzzPzZxc7NTGDAqojb9jDc3xlZHn2R+fSMqtPPR0FHhYmtG/gReeNmVtRl9PYdq2QxW2/XHnZtT8h+cWoipt3nuI3//YR3pmNq4Odgzp0xlPV6d7xh84cYpfN/1Bcmo6djZWBHfrQEA9L83x9Kxslv6+jZPnYsm5lUfdmq4M7dMFexurxzEcITiwezN7tq8lKzMdeydXuvcbhrObZ4WxNxIvs319BFcTLpKWmkzXFwbTsl23e7a9a+tqtqxdSou2XenWd4jWsUsXY9j2+zIS4s+jo6ODvZMbQ0Mmoa9vUKXjEwLgfORGYo6uJS8nDXMbN/wDh2Nl51VhbEZKAqcORJCWFEtOZhINWg+hdkAPrZjCglxOHfiFKxf+Ij83Awsbd/zbDMPSruL/O0d2fE9s1NYK2xJCPBueyhldL7zwAsePH2fRokWcO3eOdevWERgYSEpKSpU/l1KppEaNGvcP/Ac2NjYYGxtXUY/+vREjRpCYmEh0dDT9+/fnrbfeYtmyZQ/UVkFBAQCWlpao1eqq7GaFFi5cSGJiIqdPn2bu3LlkZ2fTtGlTFi9erIn5+2uUkJBAYWEhXbt2xd7eHmNj4wrLHkRhYeFDj0mIux2IT2TJkTO84FuL6V1a4Gphyowdh8nMy68wPiYpjW/2RtK2lhPTu7SgkbMtX+46xuW0LE2MvakJQ5rU47NuLQnr9BzWKqVWm142Fnzft53WT9taTtiolHhYSRJYPB77j59i8drN9H0+kE/ffR1XR1s++WEJGdk5FcbHxCUwe8lvtGsawKfvvk7j+nX4YmEECYk3ACgtLeXzn5aRlJLG+KGD+Gzc69hYmDPt+0Xk5Rc8zqGJZ9TJo/vY8Fs47br04+2Jn2Pn6MaCbz8mOyujwvjCgnwsrGrQqWcwalPzf2z7yqULHNqzFTtH13LHLl2MIXzuJ9Sq68dbE2by1oRPadamMwoUFbQkxMNJOLeXE38uxLtpf55/cRZm1m78uXoqebcqvs6LC/MxMa2Bb4uXUJpYVBhzeNtcrl86QdNO79Dppa+xdWnArlWh3Mou/9nuyoWDpFw/h9LEskrHJYR4sjx1ia709HT27NnDp59+Stu2bXF1daVJkya8//779OjRAzc3NwB69+6NQqHQPI6NjaVnz57Y2tqiUqlo3Lgx27dv17QbGBjIpUuXGDNmDAqFQjOb6O/L4iIjI2nbti1qtRpTU1MaNmzIkSNH2LVrF0OGDCEjI0NTPzQ0FCi/dDE9PZ3XXnsNW1tbjIyMqF+/PuvXrwcgJSWFQYMG4ejoiLGxMT4+Pg+clLrN2NgYOzs7PDw8CA0NxdPTk3Xr1gHw3nvv4eXlhbGxMR4eHkyaNEkrmRMaGkqDBg2YP38+7u7uGBkZac7X7dlbFZ27nJwcTE1NWblypVZf1qxZg4mJCVlZWVSGubk5dnZ2uLm58fzzz7Ny5UqCg4MJCQkhLS0N0H6NwsPD8fHxAcDDwwOFQlFhWXx8PABr164lICAAIyMjPDw8CAsLo6ioSPP8CoWC77//nh49emBiYsInn3xS6Xrz58+nd+/eGBsba53z206fPk23bt0wNTVFrVbTqlUrYmNjNcfnz59P3bp1MTIyok6dOnz33XeVOmcFBQWEhIRgb2+PkZERrq6uzJgxQ3M8PT2d4cOHY2Njg6mpKe3atSMyMhIomy1pZ2fH9OnTNfH79+/HwMCAHTt2VOr5xb+z4Uwc7TydCazlhJO5iuFNvTHU1eWPC1cqjN98Nh4/B2u6e3vgZK6ifwMv3CzN2BJzSRPTwt0BH3trbNXGOJmreblhHXILi0j4/2SYnq4O5kpDzY/KQJ+jV5JoU9NJayalEI/S+l0HaP9cQ9o29cfJzoaR/bpjaKDPH38dqzB+458HaVCnFj3atcDJzoaBXdrh7mjP5j1lsxMTk1M4f+kKw/t1o5aLIw41rBnRrxsFhUXsOx71OIcmnlF7d/5O4xYdaNSsHTXsneg96DUMDAw4cmBnhfFOrrXo0udV/Bq1RE9Pv8IYgPz8PH4Nn03v4NdRKsuvENjwWzjNAjsT+HxvbO2dsbF1wDegOXr6925TiAd17tg6POp3xN27PaZWzjRq/wa6eobEna7470RLO08atB6MS+1W6OiWvyaLiwq4cuEAfi1fpYaTN2pze+o3G4jK3I7Yk5u1Ym9lp3B813yeCxqDju5TuXBJCFFJT12iS6VSoVKpWLNmDfn55Wc8HD58GLgzE+j24+zsbLp06cKOHTs4fvw4QUFBdO/enYSEBKBsKZ6TkxNTp04lMTGRxMTECp8/ODgYJycnDh8+zNGjR5k4cSL6+vo0b96cr7/+GlNTU039cePGlatfUlJC586d2bdvHz///DPR0dHMnDkTXV1dAPLy8mjYsCEbNmzg1KlTjBw5kpdffplDhypeZvQglEqlZmaWWq0mPDyc6OhoZs+ezbx58/jqq6+04i9cuMBvv/3GqlWrOHHiRLn2Kjp3JiYmDBw4kIULF2rFLly4kL59+z7UbLAxY8aQlZXFtm3byh0bMGCAJoF56NAhEhMT6devX7kyZ2dn9uzZwyuvvMI777xDdHQ0P/zwA+Hh4Zpk1m2hoaH07t2bqKgohg4dWul6YWFh9O/fn5MnT9KlSxeCg4NJTU0F4OrVq7Ru3RpDQ0N27tzJ0aNHGTp0qCZZtnTpUiZPnswnn3zCmTNnmD59OpMmTWLRokX3PT9z5sxh3bp1LF++nJiYGJYuXapJ+AL069ePpKQkNm3axNGjRwkICKB9+/akpqZiY2PDggULCA0N5ciRI2RlZfHyyy8TEhJC+/btK/8iiUopKi4hLiWT+vbWmjKFQkF9eyvOJ6dXWOdccjr17bWXYfnaW3H+ZsXxRcUl7LxwBWMDPVwsTCuMOXo1iaz8AgJrOj7QOIT4t4qKirl45Ro+Xh6aMoVCgY9XTc7FV5zkPRd/RSsewLd2Tc5dugxAYVExAPp6dz78KBQK9PX0OHsxoaqHIISWoqIiriZcpFYdX02ZQqGgVh1fEuLOPVTb636dR23vhnjW8St3LDsrg8vx51Gpzfj+iw/4+L2h/PjVZOJjzzzUcwpRkZLiIlJvxGLncudaVCgU2Lr4kpIY82BtlhRTWlqCrp72MltdPQNuXr1zHZeWlvLXltnUbtgTMyuXBxuAEOKp8dSluvX09AgPD2fEiBH873//IyAggDZt2jBw4EB8fX2xsbEB7swEus3Pzw8/vztvytOmTWP16tWsW7eOkJAQLC0t0dXVRa1Wa9X7u4SEBMaPH0+dOnUA8PS8s3bczMwMhULxj/W3b9/OoUOHOHPmDF5eZWvZPTzu/OHu6OiolSB7++232bJlC8uXL6dJkyaVPU0VKi4uZtmyZZw8eZKRI0cC8NFHH2mOu7m5MW7cOCIiIpgwYYKmvKCggMWLF2vO7d/d69wNHz6c5s2bk5iYiL29PUlJSWzcuFFrJt2DuH3ub8/KuptSqcTKqiwJYGNjo+lPRWVhYWFMnDiRV199FSh7HaZNm8aECROYMmWKps0XX3yRIUPu7IUxdOjQStUbPHgwgwYNAmD69OnMmTOHQ4cOERQUxNy5czEzMyMiIkKz19nt6wFgypQpzJo1iz59+gDg7u6uSardft57SUhIwNPTk5YtW6JQKHB1vbPMYe/evRw6dIikpCQMDQ0B+OKLL1izZg0rV65k5MiRdOnShREjRhAcHEyjRo0wMTHRmhH2d/n5+eWSzvlFxRjq6f5jPwVk5RdQUlqKmZH2H3dmRoZcy6x4+VZmXj7mRoZaZeZKQ9JztV+DY1eSmLPnBAXFxZgbGfJB+8aYGlW8V8sf5y/ja2+NlYnyIUYjROVl5tyipKQEc7VKq9xcZcK1GzcrrJORnV0+3lRFemY2AI41rLG2MGPZhu2M6NcdIwMD1u/eT0p6BmmZlZtFLMSDupWTSUlJCSq19vJvldqM5BtXH7jdyCN7uXo5jrcmzKzweOrNsqW7OzYup3PvV3BwcufYX7uZPzuM0R99hXUN+wd+biH+Lj83k9LSEgyNta9zI2NzstIe7DrXN1BibV+b6L+WY2rphJGxOZdi/iQlMQaV+Z3r9+yRVSgUOng2uPc+dkKIZ8dTN6MLyvbounbtGuvWrSMoKIhdu3YREBBAeHj4PetkZ2czbtw46tati7m5OSqVijNnzmhmdFXW2LFjGT58OB06dGDmzJlaS80q48SJEzg5OWklNe5WXFzMtGnT8PHxwdLSEpVKxZYtW/51P+/23XffoVKpUCqVjBgxgjFjxvDGG28A8Ouvv9KiRQvs7OxQqVR89NFH5Z7L1dX1nkmuf9KkSRO8vb01s5B+/vlnXF1dad269QOPBcq+0QEeeolVZGQkU6dO1cwSVKlUmv3Mbt26pYlr1KjRA9Xz9b3zra6JiQmmpqYkJSUBZddBq1attDb0vy0nJ4fY2FiGDRum9Rwff/xxpa63wYMHc+LECWrXrs2oUaPYunWrVt+zs7OxsrLSajsuLk6r7S+++IKioiJWrFjB0qVLNUmxisyYMQMzMzOtn692V7z0SDw+9WwtmdmtBWGdmuHnaMPXf56ocN+vlJxcTibepK2nczX0Uoiqo6eny7tDBnItOYWhH87kpfc+5vSFeBrU9URH56n8c0g85dLTbvL7igUMGPzOPTeVLy0pAaBJi440atYOB2d3uvUdjI2dI0cOyJYD4snQpNM7AKybP4wV3/Tj/IkNuNRupflbP/XGBc4dX0/T50fJFgtCCOApnNF1m5GRER07dqRjx45MmjSJ4cOHM2XKFAYPHlxh/Lhx49i2bRtffPEFtWrVQqlU0rdvX80SvsoKDQ3lxRdfZMOGDWzatIkpU6YQERFB7969K1VfqfznGROff/45s2fP5uuvv8bHxwcTExNGjx79r/t5t+DgYD788EOUSiX29vaaP/gPHDhAcHAwYWFhdOrUSTPDaNasWVr1H+aOkcOHD2fu3LlMnDiRhQsXMmTIkIf+BXXmTNk0Znd394dqJzs7m7CwMM2sqbvd3osMyo+/svX+nsRSKBSU/P8fpP90HWRnl81OmDdvHk2bNtU6dnuJ6z8JCAggLi6OTZs2sX37dvr370+HDh1YuXIl2dnZ2Nvbs2vXrnL17t6LLjY2lmvXrlFSUkJ8fLxmj7OKvP/++4wdO1ar7NZX5ZftivLUhgboKBRk5Gn//86oYNbWbaZGhqT/LWGVnpuPuVI73khfDzt9PezU4Gljzug1u9l54Qq96tfUitsVexW1oQENHR/uphtC/BumJsbo6OiQnpWtVZ6enYO5qarCOmYqVfn4zGyt+JrODnw+7g1ycvMoKi7GTGXCB1/Nw8NZZrWIR8vYxBQdHZ1yG89nZ2WgMq14A+77uZpwkZzsTL6dOV5TVlJSQnzsGQ7s3sS02RGozcrarmGvfbdSG1sH0lMrnh0pxIMyVJqiUOiQ/7eN5/NupWNk/GDXOYDa3J62/T6mqDCPwvxbKFWW7N/wBSamZaswkq9Gk5+bwe8/jdDUKS0tIXJPOOdPbKDb0B8e+LmFEE+mpzbR9Xf16tVjzZo1QFmCobi4WOv4vn37GDx4sCYhlZ2dXW7pm4GBQbl6FfHy8sLLy4sxY8YwaNAgFi5cSO/evStV39fXlytXrnDu3LkKZ3Xt27ePnj178tJLLwFlf9CcO3eOevXq3bdf92JmZkatWrXKle/fvx9XV1c+/PBDTdmlS5fKxVXGvcb+0ksvMWHCBObMmUN0dPR9l91Vxu290Dp06PBQ7QQEBBATE1PhuXkU9e7m6+vLokWLKCwsLJcQs7W1xcHBgYsXLxIcHPxA7ZuamjJgwAAGDBhA3759CQoKIjU1lYCAAK5fv46enp7Wvl13Kygo4KWXXmLAgAHUrl2b4cOHExUVdc+7jxoaGpab8VUsyxYrRU9XB3crU04nptDY2RYom7F4+noKz9cuf2ctAC8bc04lptCl7p1Eb9T1FDytzf/xuUpLSykqLilXtjv2Cq08HNHTlRkv4vHR09PFw8mBU+fjaOJTFyi7Hk+du0hQq4qX6Xu5ORF17iJd2zTTlEWdu4iXa/nZiCbKsi8dEpNTiL18lQFd2j6CUQhxh56eHo4uHsTGROHtV3YNl5aWciEmimZtOj9Qm7Vq+/DOh19qlf3281xsbB1p3bEXOjo6WFjVwNTMguQb17TiUpIS8arn/2CDEeIedHT1sLStyY2EkzjWLPsytrS0lKTLUdTy6/LQ7evpG6Gnb0RBXjY3Ek7g2/JlANzqttXaFwxg9+qpuNUNxM273UM/rxDiyfPUJbpSUlLo168fQ4cOxdfXF7VazZEjR/jss8/o2bMnULbX1I4dO2jRogWGhoZYWFjg6enJqlWr6N69OwqFgkmTJmlm19zm5ubGn3/+ycCBAzE0NMTa2lrreG5uLuPHj6dv3764u7tz5coVDh8+zAsvvKCpn52dzY4dO/Dz88PY2BhjY2OtNtq0aUPr1q154YUX+PLLL6lVqxZnz55FoVAQFBSEp6cnK1euZP/+/VhYWPDll19y48aNh0p03YunpycJCQlERETQuHFjNmzYwOrVqx+orXudOwsLC/r06cP48eN5/vnncXJyuk9L2tLT07l+/Tr5+fmcO3eOH374gTVr1rB48WKtGUgPYvLkyXTr1g0XFxf69u2Ljo4OkZGRnDp1io8//rjK690tJCSEb775hoEDB/L+++9jZmbGwYMHadKkCbVr1yYsLIxRo0ZhZmZGUFAQ+fn5HDlyhLS0tHKzp/7uyy+/xN7eHn9/f3R0dFixYgV2dnaYm5vToUMHmjVrRq9evfjss8/w8vLi2rVrbNiwgd69e9OoUSM+/PBDMjIymDNnDiqVio0bNzJ06FDNnUFF1epa153v95/E3cqUmlbmbD4bT15RMYE1y/6vzN0XiaXSiEEBtQEIquPGtG1/sT46Dn9HGw7EJxKXksGIpvUByCssYs2pWBo62WKuNCQrv4CtMZdIy83nOVft/QNPX08hOTuXtrX+3f9LIapCt8BmzP1lNR5O9tRycWLjnwfJKyggsEnZh/Nvl67CwkxNcLeOAHRp/Ryhc8P5/Y99BNTzYt/xU1y8co2R/btr2jxw4hSmKhOszc1IuJ5E+OpNNPGpi1/tB/9iQojKatmuOysWf4ujiwfOrp7s27WBgvx8Gj5XlmhdvmgOpuaWBPUs+zKzqKiIpMSymykUFxeRmZ7CtctxGBoZYWVjj6GREjsH7U239fUNMTZRa8oVCgWtOvRkx4bl2Du64eDsxtGDu0i+cY0Xh7/7GEcvnhVeAT04tGUOFrY1sbL15NyJ9RQV5uH+/wmnv7Z8jdLESpOkKikuIiMlQfPv3OxU0pIuomegRP3/e3Alxh8HSlFbOJKdcZ3IPeGoLRxxr1d2IyRDpRpDpfaNrHR09TA0NsPUQm6kI8Sz6KlLdKlUKpo2bcpXX31FbGwshYWFODs7M2LECD744AMAZs2axdixY5k3bx6Ojo7Ex8fz5ZdfMnToUJo3b461tTXvvfcemZmZWm1PnTqV1157jZo1a5Kfn6/ZC+o2XV1dUlJSeOWVV7hx4wbW1tb06dOHsLAwAJo3b87rr7/OgAEDSElJYcqUKYSGhpYbw2+//ca4ceMYNGgQOTk51KpVi5kzyzYZ/eijj7h48SKdOnXC2NiYkSNH0qtXLzIyMsq187B69OjBmDFjCAkJIT8/n65duzJp0qQK+3w//3Tuhg0bxi+//MLQoUP/dbu3N4E3MjLC0dGRli1bcujQIQICAv51W3/XqVMn1q9fz9SpU/n000/R19enTp06DB8+/JHUu5uVlRU7d+5k/PjxtGnTBl1dXRo0aECLFi2AsiWfxsbGfP7554wfPx4TExN8fHwYPXr0fdtWq9V89tlnnD9/Hl1dXRo3bszGjRs1S1Y3btzIhx9+yJAhQ0hOTsbOzo7WrVtja2vLrl27+Prrr/njjz8wNS27Q9+SJUvw8/Pj+++/1+ztJqpOMzd7MvMKWBF5nozcfFwtTZnYrjFm/78UMSUnD527lvvWrmFBSAs/lkee59fjMdiZmjA2MABni7I/AHUUCq5l5PBn7DGy8gtQGxrgYWXGlOeb4mSu/UfizgtX8LIxx9Gs4qViQjxKzf3rk5Gdw/LNf5CelY2bgz0fjnxZs+H8zbQMraXutd1dGPVSH37d9AfLNu7AztqKcUMG4mJvq4lJz8xm8dqtmo3rWzdqQN/n2zz2sYlnk2/DFmRnZbJ9/a9kZabj4OzGkLc+RG1qDkB66k0Ud+0Xl5WRyjd3LUvcs+N39uz4Hfda9Rg5Zmqln7dlu24UFRWyYVU4t3KysXd0Zejbk7CykSW7ouq5eLUk/1YGpw5EkHcrDQsbd1r3moSRsTkAtzJvolDcuc5zc1LZ+sudpGvMsbXEHFtLDUdv2vYr+4K4qOAWJ/f9zK3smxgaqXGs9Rw+zYPR0X3qPsoKIaqIovTv2RohHrMlS5YwZswYrl27hoFBxZupiqdL2ieSEBNPP71OPau7C0I8cseUD3cDGSGeBNsOS0JFPP0+Hvzkfg7bffrW/YOqQRtv4/sHiUdC3rVFtbl16xaJiYnMnDmT1157TZJcQgghhBBCCCGEeCiyu/BTbM+ePahUqnv+VLfPPvuMOnXqYGdnx/vvv691bPr06ffsd+fOD7Zp67NCzp0QQgghhBBCiGeVLF18iuXm5nL16tV7Hn+YuwI+aqmpqaSmplZ4TKlU4ugoG0vey5Nw7mTpongWyNJF8SyQpYviWSBLF8WzQJYuVj1Zulh95F37KaZUKv/Tyax/YmlpiaWlZXV344kk504IIYQQQgghnhzff/8933//PfHx8QB4e3szefJkWZHzgGTpohBCCCGEEEIIIUQ1cXJyYubMmRw9epQjR47Qrl07evbsyenTp6u7a08kmdElhBBCCCGEEEIIUU26d++u9fiTTz7h+++/5+DBg3h7e1dTr55ckugSQgghhBBCCCGEqEL5+fnk5+drlRkaGmJoaPiP9YqLi1mxYgU5OTk0a9bsUXbxqSWJLiHEY3ey16zq7oIQj5zvmneruwtCPHLbHNtVdxeEeOTeq7+zursgxGMQVN0deOrMmDGDsLAwrbIpU6YQGhpaYXxUVBTNmjUjLy8PlUrF6tWrqVev3mPo6dNHEl1CCCGEEEIIIYQQVej9999n7NixWmX/NJurdu3anDhxgoyMDFauXMmrr77K7t27Jdn1ACTRJYQQQgghhBBCCFGFKrNM8W4GBgbUqlULgIYNG3L48GFmz57NDz/88Ki6+NSSuy4KIYQQQgghhBBC/IeUlJSU2+NLVI7M6BJCCCGEEEIIIYSoJu+//z6dO3fGxcWFrKwsfvnlF3bt2sWWLVuqu2tPJEl0CSGEEEIIIYQQQlSTpKQkXnnlFRITEzEzM8PX15ctW7bQsWPH6u7aE0kSXUIIIYQQQgghhBDV5KeffqruLjxVZI+uSggPD8fc3Pyh2nBzc+Prr7+ukv4ABAYGMnr06Cpr70ntw20VvUY//vgjzs7O6OjoaM59RWVCCCGEEEIIIYR4OjyxM7qSk5OZPHkyGzZs4MaNG1hYWODn58fkyZNp0aIFCoWC1atX06tXr3/VrpubG6NHj9ZK4AwYMIAuXbpUqn54eDijR48mPT1dq/zw4cOYmJj8q75UlcDAQHbv3g2U3fnBw8ODkJAQ3nzzzYdqd9WqVejr62seV3TuHpZCodD829jYGAcHB1q0aMHbb79Nw4YNNcf+/hplZmYSEhLCl19+yQsvvICZmVmFZUI8CQ7s3sye7WvJykzH3smV7v2G4ezmWWHsjcTLbF8fwdWEi6SlJtP1hcG0bNdNK2bXllWcjvyLpOtX0dc3wMWjNp17vYyNrYMm5sevJhN3IVqrXpOWHek96LWqH6AQwNaYS/x+Oo6MvHxcLNQMblyPWtbm94w/GJ/I8sjz3MzJxU5tzKCA2vg71tAczyssYtnxGI5cvkFWfiE1VEo61XGjo5eLJmb+wVNEJd4kLTcfIz1dvGwsGBRQG0cz1aMcqniGnY/cSMzRteTlpGFu44Z/4HCs7LwqjI2N2sqlM7vISEkAwKJGTXxaBJeLz0y5TOS+JSRfOU1paTGmls407zoBE1Mb8nOzOH0wgusJJ7iVdRNDpSmONZtSv9kgDAyr5+9S8fTbvPcQv/+xj/TMbFwd7BjSpzOerk4Vxl6+nsTyTX9w8co1klPTebVXEF3bNNOKWb19D4eiznD1RjIG+vp4uTnzUveOONSw1sT8uPx3os5dJC0zC0MDfWq7uxDcrQOOtjaPdKxCiP+mJzbR9cILL1BQUMCiRYvw8PDgxo0b7Nixg5SUlCp/LqVSiVKpfKg2bGyq9012xIgRTJ06lVu3brF48WLeeustLCwsGDRo0L9uq6CgAAMDAywtLR9BT8tbuHAhQUFB5OXlce7cOX788UeaNm3KggULeOWVV4Dyr1FCQgKFhYV07doVe3t7AE6dOlWu7EEUFhZqJfieFE9qv591J4/uY8Nv4fQaNBIXNy/2/rGeBd9+zLtT5qBSl0/WFhbkY2FVg/r+zdjwW3iFbcadj+a51kE4udaipLiYLet+YcE3Uxk96WsMDY00cY1bdKBj1wGax/oGlb89shD/xoH4RJYcOcOwpvWpZW3OprPxzNhxmK96tsbUqPx1F5OUxjd7Ixno74W/Yw32x1/jy13HmN6lBc4WagCWHD3L6espvNXCDxuVMZHXkll4KBoLpSGNnG0BcLM0pbm7AzYmSrLzC1h58gLTtx/mm96B6Ogoyj2vEA8j4dxeTvy5kEbtXsfKzouY47/z5+qpdH51LkbG5d/Pk6+cwqV2K6zsa6OrZ8DZI6v4c/VUOr08G2OVFQBZ6YnsXPEh7t7tqf/cQPQMlGSmXEZXzwCAvJxUcnPS8Gs1GFNLJ25l3eToju/JzU6lRbcJj3X84tmw//gpFq/dzIi+3fF0dWLDnwf45IclzP5gFGaq8snV/IJCaliZ85xfPRatrXjT7ejYeDq1aExNF0eKi0tYtnEHH/9vMV++F4KRYdm17u5kT8sAH2wszcm6dYsVm3fx8f+WMHfSaHR0ZBGTEM+aJ/J/fXp6Onv27OHTTz+lbdu2uLq60qRJE95//3169OiBm5sbAL1790ahUGgex8bG0rNnT2xtbVGpVDRu3Jjt27dr2g0MDOTSpUuMGTMGhUKhmU3092VxkZGRtG3bFrVajampKQ0bNuTIkSPs2rWLIUOGkJGRoakfGhoKlF+6mJ6ezmuvvYatrS1GRkbUr1+f9evXA5CSksKgQYNwdHTE2NgYHx8fli1b9lDnzNjYGDs7Ozw8PAgNDcXT05N169YB8N577+Hl5YWxsTEeHh5MmjSJwsJCTd3Q0FAaNGjA/PnzcXd3x8jISHO+bs/equjc5eTkYGpqysqVK7X6smbNGkxMTMjKyqpU383NzbGzs8PNzY3nn3+elStXEhwcTEhICGlpaYD2axQeHo6Pjw8AHh4eKBSKCsvi4+MBWLt2LQEBARgZGeHh4UFYWBhFRUWa51coFHz//ff06NEDExMTPvnkk0rXmz9/Pr1798bY2FjrnN92+vRpunXrhqmpKWq1mlatWhEbG6s5Pn/+fOrWrYuRkRF16tThu+++q9Q5i4+PR6FQ8Ouvv9KmTRuMjIxYunRppa6tkpISPvvsM2rVqoWhoSEuLi6aMQNcvnyZ/v37Y25ujqWlJT179tScS1H19u78ncYtOtCoWTtq2DvRe9BrGBgYcOTAzgrjnVxr0aXPq/g1aomeXsWJzSEhH9HwubbY2jtj7+RG35ffIj3tJlcTYrXiDAwMUZtZaH6MlMZVPj4hADaciaOdpzOBtZxwMlcxvKk3hrq6/HHhSoXxm8/G4+dgTXdvD5zMVfRv4IWbpRlbYi5pYs4lp9HKw5F6dlbYqJR08HLBxUJN7M0MTUwHLxfq2Vpio1LibmXGgAaepN7KIynn1iMfs3j2nDu2Do/6HXH3bo+plTON2r+Brp4hcad3VBj/XOex1PLrjEUND0wtnWjcIYTS0hKSEk5qYk7tX4q9ewB+rV7FooYHanN7HGs20STOzKxdadFtAo4ejVGb22Pr7INP82CuxR2mpKT4sYxbPFvW7zpA++ca0rapP052Nozs1x1DA33++OtYhfG1XBx5uUcnWgT4oK+nW2HMh6+9TGATf5ztauDmaMebg3pxMy2Di5evaWI6Nm9EvVpu2Fia4+HkwMAu7UlJzyApNf1RDFMI8R/3RCa6VCoVKpWKNWvWkJ+fX+744cOHgbKZQImJiZrH2dnZdOnShR07dnD8+HGCgoLo3r07CQllU8JXrVqFk5MTU6dOJTExkcTExAqfPzg4GCcnJw4fPszRo0eZOHEi+vr6NG/enK+//hpTU1NN/XHjxpWrX1JSQufOndm3bx8///wz0dHRzJw5E13dsjf3vLw8GjZsyIYNGzh16hQjR47k5Zdf5tChQ1Vy/qBsBlRBQQEAarWa8PBwoqOjmT17NvPmzeOrr77Sir9w4QK//fYbq1at4sSJE+Xaq+jcmZiYMHDgQBYuXKgVu3DhQvr27YtarX7g/o8ZM4asrCy2bdtW7tiAAQM0CcxDhw6RmJhIv379ypU5OzuzZ88eXnnlFd555x2io6P54YcfCA8P10rsQFmyr3fv3kRFRTF06NBK1wsLC6N///6cPHmSLl26EBwcTGpqKgBXr16ldevWGBoasnPnTo4ePcrQoUM1ybKlS5cyefJkPvnkE86cOcP06dOZNGkSixYtqvR5mjhxIu+88w5nzpyhU6dOlbq23n//fWbOnMmkSZOIjo7ml19+wda2bPZDYWEhnTp1Qq1Ws2fPHvbt24dKpSIoKEhzPYmqU1RUxNWEi9Sq46spUygU1KrjS0LcuSp7nvy8sg/1xiba/ydPHP6TaRMG8/XHY9i89mcKCsq/3wrxsIqKS4hLyaS+/Z0lKAqFgvr2VpxPTq+wzrnkdOrbW2mV+dpbcf7mnXgvGwuOXUki9VYepaWlnL6eQmJmDj4O1lQkr7CIXbFXsVEpsTZ+uFncQvxdSXERqTdisXPx05QpFApsXXxJSYypVBtFRfmUlBRjYFT2Xl1aWsq1uKOozB3YvTqMtT8MZnvEBK7G/vWP7RQW3ELfwBgdnYqTCkI8qKKiYi5euYaPl4emTKFQ4ONVk3PxFX9x8SBy88r+HlGZVPxenZdfwK5Dx6lhZYG1uWxVIsSz6Ilcuqinp0d4eDgjRozgf//7HwEBAbRp04aBAwfi6+urWSZ4eybQbX5+fvj53fkDY9q0aaxevZp169YREhKCpaUlurq6qNVqrXp/l5CQwPjx46lTpw4Anp539soxMzNDoVD8Y/3t27dz6NAhzpw5g5dX2T4LHh53fiE4OjpqJcjefvtttmzZwvLly2nSpEllT1OFiouLWbZsGSdPnmTkyJEAfPTRR5rjbm5ujBs3joiICCZMuDOlvaCggMWLF99zCea9zt3w4cNp3rw5iYmJ2Nvbk5SUxMaNG7Vm0j2I2+e+oplESqUSK6uyD0A2Njaa/lRUFhYWxsSJE3n11VeBstdh2rRpTJgwgSlTpmjafPHFFxkyZIjm8dChQytVb/DgwZrlodOnT2fOnDkcOnSIoKAg5s6di5mZGREREZolhbevB4ApU6Ywa9Ys+vTpA4C7u7smqXb7ee9n9OjRmvq3/dO1lZWVxezZs/n22281z1GzZk1atmwJwK+//kpJSQnz58/XzHhcuHAh5ubm7Nq1i+eff75cH/Lz88slpAsKijGQZXD3dSsnk5KSknJLFFVqM5JvXK2S5ygtLWX9ynBcPWpj53Bn7yK/xi2xsLRBbWbJ9auX2Lz2Z27eSOSlkeOr5HmFuC0rv4CS0lLMjAy0ys2MDLmWmVNhncy8fMz/tqTRXGlIeu6d95rBjesy7+Ap3vrtD3R1FCiAEc/5UM9We9n9tphLLD0WQ35RMfamJnzQoTF6uk/k94DiPyw/N5PS0hIM/7ZE0cjYnKy0yr2fn9y7GKWJJbYuZV9+5N1Kp6gwj7NHVlG/2Yv4tniZ65dOsG/9pwS+MI0aTt4V9uP0Xyuo6VP+97UQDysz5xYlJSWYq7X3OTRXmXDtxs0qeY7S0lLCV2+itrsLLva2Wse27DvE0t+3kZdfgEMNaz56/RX07jFLTAjxdHsiE11QtkdX165d2bNnDwcPHmTTpk189tlnzJ8/n8GDB1dYJzs7m9DQUDZs2EBiYiJFRUXk5uZqZnRV1tixYxk+fDhLliyhQ4cO9OvXj5o1a1a6/okTJ3ByctJKatytuLiY6dOns3z5cq5evUpBQQH5+fkYGz/4sqHvvvuO+fPnU1BQgK6uLmPGjOGNN94AypIXc+bMITY2luzsbIqKijA1NdWq7+rq+kD7jDVp0gRvb28WLVrExIkT+fnnn3F1daV169YPPBYo+yUH2pvVP4jIyEj27dunNROruLiYvLw8bt26pTnnjRo1eqB6vr53ZuKYmJhgampKUlISUHYdtGrVqsJ9s3JycoiNjWXYsGGMGDFCU15UVPSvNtH/e7/vd22dOXOG/Px82rdvX2F7kZGRXLhwodxsvLy8PK0ll3ebMWMGYWFhWmWvvvEBQ976sNLjEI/O2l/nceNaAiPHTtMqb9ryzocge0dXTM0smD8njJTkRKxsHnyPOyEely0xCVy4mcG4tgHYmCg5cyONBYdOY2FsiM9ds8eauztQ396atNx8NkTHMfvPE4R1eg4D+XAk/kPOHF5Fwrm9tO07TbP/Fv//t5CDR2NqB/QAwKKGBzcTzxIbtblcoqsw/xZ71n6MmZUz3k0HIMSTaP7KDVy+nsTUt4eWO9YywBdfr5qkZWTx+679fLVoOdNGDcNA9qgV4pnzxCa6AIyMjOjYsSMdO3Zk0qRJDB8+nClTptwz0TVu3Di2bdvGF198Qa1atVAqlfTt2/dfL7kKDQ3lxRdfZMOGDWzatIkpU6YQERFB7969K1X/fhvbf/7558yePZuvv/4aHx8fTExMGD169EMtDQsODubDDz9EqVRib2+v2ZTxwIEDBAcHExYWRqdOnTQzjGbNmqVV/2HuGDl8+HDmzp3LxIkTWbhwIUOGDHnoBNWZM2eAsllODyM7O5uwsLBys54AzV5kUH78la339ySWQqGgpKQE+OfrIDs7G4B58+bRtGlTrWO3l7hWxt/7fb9r637XZnZ2Ng0bNmTp0qXljt0rEfr+++8zduxYrbK/YmVfkMowNjFFR0eH7KwMrfLsrAxUphYP3f7aX+dz9tRRRo6eirlFxcu5bnP6/7s8piRfl0SXqFJqQwN0FAoy8rR/x2VUMGvrNlMjQ9LztGeKpufmY64siy8oKubX4zGMaRNAgFPZnRhdLEyJT8tkfXScVqLLxEAfEwN97E1N8LI2Z9jy7Ry5fIPm7g4IUVUMlaYoFDrk39J+P8+7lY6R8T+/n589upazR1bRpvcUzK3dtNrU0dHFzNJFK97U0omb185olRUW5PLnmqno6Stp0e09dHSf6I8A4j/K1MQYHR0d0rOytcrTs3MwN334u9n+9NsGjkWfIyxkCFYVLEk0URphojTC3sYKLzdnhnw4g8NRZ2kR4PPQzy2EeLI8Vb/l6tWrx5o1a4CyBENxsfaH6X379jF48GBNQio7O7vc0jcDA4Ny9Sri5eWFl5cXY8aMYdCgQSxcuJDevXtXqr6vry9Xrlzh3LlzFc7q2rdvHz179uSll14Cyvb0OnfuHPXq1btvv+7FzMyMWrVqlSvfv38/rq6ufPjhndk1ly5dKhdXGfca+0svvcSECROYM2cO0dHRlV52909u74XWoUOHh2onICCAmJiYCs/No6h3N19fXxYtWlTh3RBtbW1xcHDg4sWLBAcHP/Bz/N39ri1PT0+USiU7duxg+PDh5eoHBATw66+/UqNGjXKz/u7F0NAQQ0PtD6sGBrLRc2Xo6enh6OJBbEwU3n5ly5ZLS0u5EBNFszadH7jd0tJS1i3/iejIvxgxeiqW1rb3rXP9SjwAarPHc7dV8ezQ09XB3cqU04kpNP7/uyHe3lPr+dquFdbxsjHnVGIKXere+bIj6noKntbmABSVlFBUUorO375U0VUoKPn/WTAVKaWU0tJSCv//CwkhqoqOrh6WtjW5kXASx5plX2CVlpaSdDmKWn5d7lnv7JHVRB9aSZvek7G089Q6VtZmLbLStZc+ZqVdw1h9J5lbmH+L3avD0NXVp2WPD+7MCBOiiunp6eLh5MCp83E08akLlF3np85dJKjVg2+/UlpayoJVGzkUdYbQt4ZQw+r+X/aVvZ9D4V03ihJCPDueyE0oUlJSaNeuHT///DMnT54kLi6OFStW8Nlnn9GzZ0+gbK+pHTt2cP36dc2d+Tw9PTWbqUdGRvLiiy9qZtfc5ubmxp9//snVq1e5ebP8WvLc3FxCQkLYtWsXly5dYt++fRw+fJi6detq6mdnZ7Njxw5u3rzJrVvlP9C3adOG1q1b88ILL7Bt2zbi4uLYtGkTmzdv1vRz27Zt7N+/nzNnzvDaa69x48aNKj2Ht3l6epKQkEBERASxsbHMmTOH1atXP1Bb9zp3FhYW9OnTh/Hjx/P888/j5OT0r9pNT0/n+vXrXLp0iW3bttG3b19++eUXvv/+e627YT6IyZMns3jxYsLCwjh9+jRnzpwhIiJCa9+yqqx3t5CQEDIzMxk4cCBHjhzh/PnzLFmyhJiYsk1pw8LCmDFjBnPmzOHcuXNERUWxcOFCvvzyywce7/2uLSMjI9577z0mTJjA4sWLiY2N5eDBg/z0009A2cxAa2trevbsyZ49e4iLi2PXrl2MGjWKK1eqbpNRcUfLdt05vG87Rw/+QVLiFdZE/EhBfj4Nn2sLwPJFc9i89mdNfFFREdcux3HtchzFxUVkpqdw7XIcKcl3bq6x7tf5nDi8hwFDRmNoaERWRhpZGWkUFpbNqElJTmTHxhVcSYglLSWJ6JOHWb74G9xr1cPeseLEgxAPo2tdd3ZeuMzu2CtcSc/mp79Ok1dUTGDNst8Xc/dFsuzYnQ27g+q4cTLxJuuj47iakc3KyPPEpWTQ6f8TY8YG+tS1tWTpsbNEX08hKfsWu2Ov8OfFqzT5/2TajaxbrDkVy8WUDG7m5BKTlMbXf57AUE8Xf8d/v1RfiPvxCujBxVPbiIveSWbKZY7u/B9FhXm4e7cD4K8tX3Ny7xJN/JnDq4g68AtNOoZgbFqD3Jw0cnPSKCrM08TUbtiLhHP7iI3aSlZ6IudPbODaxcPU8i1Lnt1OchUX5dOo41sUFtzStFMqCV3xCHQLbMaOA0fZdeg4V64nM2/FevIKCghs4g/At0tXsXT9nZtJFRUVE3clkbgriRQVF5OakUnclUSu30zVxPz02wb2HD3JOy/1xcjQgLTMLNIysyj4/7vE37iZyurte4i9fI2baenExCXwZfhyDAz08a9X8VYxQoin2xM5o0ulUtG0aVO++uorYmNjKSwsxNnZmREjRvDBBx8AMGvWLMaOHcu8efNwdHQkPj6eL7/8kqFDh9K8eXOsra157733yMzM1Gp76tSpvPbaa9SsWZP8/HzNXlC36erqkpKSwiuvvMKNGzewtramT58+mj2Imjdvzuuvv86AAQNISUlhypQphIaGlhvDb7/9xrhx4xg0aBA5OTnUqlWLmTNnAmWbw1+8eJFOnTphbGzMyJEj6dWrFxkZGeXaeVg9evRgzJgxhISEkJ+fT9euXZk0aVKFfb6ffzp3w4YN45dffmHo0PLr6e/n9ibwRkZGODo60rJlSw4dOkRAQMC/buvvOnXqxPr165k6dSqffvop+vr61KlTp8LZTFVR725WVlbs3LmT8ePH06ZNG3R1dWnQoAEtWrQAypZ8Ghsb8/nnnzN+/HhMTEzw8fFh9OjRDzzeylxbkyZNQk9Pj8mTJ3Pt2jXs7e15/fXXATA2NubPP//kvffeo0+fPmRlZeHo6Ej79u0rPcNL/Du+DVuQnZXJ9vW/kpWZjoOzG0Pe+hC1qTkA6ak3Uejc+c4iKyOVb2be2TB+z47f2bPjd9xr1WPkmKkAHNyzBYB5X9+5cQJA35ffouFzbdHV0yc2Jor9uzZQkJ+PmYUV9Rs0pW1Q30c8WvGsauZmT2ZeASsiz5ORm4+rpSkT2zXG7P+XIqbk5GnNzqpdw4KQFn4sjzzPr8djsDM1YWxgAM4Wd/YPHNWqAcuOx/Dt3kiyCwqxNlEyoIEXHbzKlnkZ6Opw9kYqm87Ec6ugEFMjQ+rYWhAW9Bym91gyKcTDcPFqSf6tDE4diCDvVhoWNu607jUJI2NzAG5l3kShuPN+Hhu1hZLiIvZt+EyrHe+mA6jfbCAATrWeo2G71zhz+DeO7/4JtYUDLbq9h41j2RewaUkXSbledpfejeFvarXTbegPmJjWeFTDFc+o5v71ycjOYfnmP0jPysbNwZ4PR76s2aD+ZlqG1hYmaZlZvDfrf5rHv/+xn9//2E+9mm6EhpR9Bti67zAAoXO17+T+5qBeBDbxR19fnzMXL7Fh9wFu5eVhplJR18OFj0cNw0z14NuvCCGeXIrSv2dyhHgElixZwpgxY7h27RoGBjJl/lm3+7QsXRRPP98171Z3F4R45GY5zq7uLgjxyL1Xf2d1d0GIR07dKKi6u/DA/qufLdp4P/jN5MTDeSJndIknx61bt0hMTGTmzJm89tprkuQSQgghhBBCCCHEI/NE7tEl7tizZw8qleqeP9Xts88+o06dOtjZ2fH+++9rHZs+ffo9+92584NvtP0skHMnhBBCCCGEEEKUJ0sXn3C5ublcvXr1nscf5q6Aj1pqaiqpqakVHlMqlTg6Oj7mHj05nvRz91+dXixEVZKli+JZIEsXxbNAli6KZ4EsXax6snSx+sjSxSecUqn8Tyez/omlpSWWlpbV3Y0nkpw7IYQQQgghhBCiPFm6KIQQQgghhBBCCCGeCpLoEkIIIYQQQgghhBBPBUl0CSGEEEIIIYQQQoinguzRJYR47AJy/6zuLgjxyBVVdweEEEJUiWPK1tXdBSEeuTbV3QEhqpDM6BJCCCGEEEIIIYQQTwVJdAkhhBBCCCGEEEKIp4IkuoQQQgghhBBCCCHEU0ESXUIIIYQQQgghhBDiqSCJLiGEEEIIIYQQQgjxVPhPJ7rCw8MxNzd/qDbc3Nz4+uuvq6Q/AIGBgYwePbrK2ntS+3BbRa/Rjz/+iLOzMzo6OppzX1GZEEIIIYQQQgghRFXS+7cVkpOTmTx5Mhs2bODGjRtYWFjg5+fH5MmTadGiBQqFgtWrV9OrV69/1a6bmxujR4/WSuAMGDCALl26VKp+eHg4o0ePJj09Xav88OHDmJiY/Ku+VJXAwEB2794NgKGhIR4eHoSEhPDmm28+VLurVq1CX19f87iic/ewFAqF5t/GxsY4ODjQokUL3n77bRo2bKg59vfXKDMzk5CQEL788kteeOEFzMzMKiwTDy45OZk33niDHTt2UFxcTEBAAD/88AO1a9eu7q6JR2Tz3kP8/sc+0jOzcXWwY0ifzni6Ot0z/sCJU/y66Q+SU9Oxs7EiuFsHAup5aY6nZ2Wz9PdtnDwXS86tPOrWdGVony7Y21hptXMu/jIRG3dw/tIVdHR0cHOw48PXX8bgrvcfIarK1phL/H46joy8fFws1AxuXI9a1ub3jD8Yn8jyyPPczMnFTm3MoIDa+DvW0Iq5kp7NsuMxnLmRSnFpKU5mKsa08cfaRKkVV1payqc7jxB57SZjAwNo7Gz7KIYoBOcjNxJzdC15OWmY27jhHzgcKzuvCmNjo7Zy6cwuMlISALCoUROfFsFa8VfOH+BC1BbSky6Sn5fF8y/OwqKGR7m2biaeJWr/L6ReP4dCoYO5jTttek9BV8/g0QxUPNMO7N7Mnu1rycpMx97Jle79huHs5llh7I3Ey2xfH8HVhIukpSbT9YXBtGzXTSvm4vnT7Nm+jmuXL5KZkcZLIyfg7ddEK2bFkm85dnCXVplX3QYMCfmoSscmhHgy/OtE1wsvvEBBQQGLFi3Cw8ODGzdusGPHDlJSUqq8c0qlEqVSef/Af2BjY1NFvXkwI0aMYOrUqdy6dYvFixfz1ltvYWFhwaBBg/51WwUFBRgYGGBpafkIelrewoULCQoKIi8vj3PnzvHjjz/StGlTFixYwCuvvAKUf40SEhIoLCyka9eu2NvbA3Dq1KlyZQ+isLBQK8H3rHrvvfc4cuQI69evx87OjmPHjlWq3u3rRzxZ9h8/xeK1mxnRtzuerk5s+PMAn/ywhNkfjMJMVT6JHxOXwOwlv/Fi17Lk1t5jUXyxMIKZY1/Dxd6W0tJSPv9pGXq6uowfOghjI0PW7zrAtO8X8eV7IRgZll0j5+IvM/2Hn+nVoSVD+nRBV0eHS9euayXBhagqB+ITWXLkDMOa1qeWtTmbzsYzY8dhvurZGlMjw3LxMUlpfLM3koH+Xvg71mB//DW+3HWM6V1a4GyhBuB6Vg5hWw8SWNOJfn6eGOnrciU9GwPd8pPZN52Nf9RDFIKEc3s58edCGrV7HSs7L2KO/86fq6fS+dW5GBmX/xIw+copXGq3wsq+Nrp6Bpw9soo/V0+l08uzMVaVfTFRVJSPjWM9XLxacHj7dxU+783Es/y5ehp1G79AQOBwFDq6ZCTHA/J+LqreyaP72PBbOL0GjcTFzYu9f6xnwbcf8+6UOajU5a/zwoJ8LKxqUN+/GRt+C6+wzcKCAuwdXWnUrB0/z/v8ns/tVc+fvi/dmVCgK58bhHhm/auli+np6ezZs4dPP/2Utm3b4urqSpMmTXj//ffp0aMHbm5uAPTu3RuFQqF5HBsbS8+ePbG1tUWlUtG4cWO2b9+uaTcwMJBLly4xZswYFAqF5oPU35fFRUZG0rZtW9RqNaampjRs2JAjR46wa9cuhgwZQkZGhqZ+aGgoUH7pYnp6Oq+99hq2trYYGRlRv3591q9fD0BKSgqDBg3C0dERY2NjfHx8WLZs2b88pdqMjY2xs7PDw8OD0NBQPD09WbduHVCWsPDy8sLY2BgPDw8mTZpEYWGhpm5oaCgNGjRg/vz5uLu7Y2RkpDlft2dvVXTucnJyMDU1ZeXKlVp9WbNmDSYmJmRlZVWq7+bm5tjZ2eHm5sbzzz/PypUrCQ4OJiQkhLS0NED7NQoPD8fHxwcADw8PFApFhWXx8fEArF27loCAAIyMjPDw8CAsLIyioiLN8ysUCr7//nt69OiBiYkJn3zySaXrzZ8/n969e2NsbKx1zm87ffo03bp1w9TUFLVaTatWrYiNjdUcnz9/PnXr1sXIyIg6derw3XcV//H4dwUFBYSEhGBvb4+RkRGurq7MmDFDczw9PZ3hw4djY2ODqakp7dq1IzIyEiibqWVnZ8f06dM18fv378fAwIAdO3ZoynR0dGjevDktWrSgZs2a9OvXr8LZXIGBgYSEhDB69Gisra3p1KkTAF9++SU+Pj6YmJjg7OzMm2++SXZ2tlbdffv2ERgYiLGxMRYWFnTq1EnzmpeUlDBjxgzc3d1RKpX4+fmVu9ZE1Vm/6wDtn2tI26b+ONnZMLJfdwwN9Pnjr4oTnBv/PEiDOrXo0a4FTnY2DOzSDndHezbvOQRAYnIK5y9dYXi/btRyccShhjUj+nWjoLCIfcejNO0sWrOZoFZN6dW+Fc52NXCoYU2zBvXR1/vX348IcV8bzsTRztOZwFpOOJmrGN7UG0NdXf64cKXC+M1n4/FzsKa7twdO5ir6N/DCzdKMLTGXNDHLT5yjgaMNwQ3r4GZpip3ahEbOtuUSZ/GpmWyIjuP15r6PdIxCnDu2Do/6HXH3bo+plTON2r+Brp4hcad3VBj/XOex1PLrjEUND0wtnWjcIYTS0hKSEk5qYtzqBuLdtD+2Ln73fN4Tuxfi2aArdRv3wczKBVMLR5y9WqCrJ0kAUfX27vydxi060KhZO2rYO9F70GsYGBhw5MDOCuOdXGvRpc+r+DVqid49rsna3v483+NFvBs0/cfn1tXTQ21mofkxNlY99HiEEE+mf5XoUqlUqFQq1qxZQ35+frnjhw8fBspmAiUmJmoeZ2dn06VLF3bs2MHx48cJCgqie/fuJCSUTcVetWoVTk5OTJ06lcTERBITEyt8/uDgYJycnDh8+DBHjx5l4sSJ6Ovr07x5c77++mtMTU019ceNG1eufklJCZ07d2bfvn38/PPPREdHM3PmTHR1dQHIy8ujYcOGbNiwgVOnTjFy5EhefvllDh069G9O0z9SKpUUFBQAoFarCQ8PJzo6mtmzZzNv3jy++uorrfgLFy7w22+/sWrVKk6cOFGuvYrOnYmJCQMHDmThwoVasQsXLqRv376o1eoH7v+YMWPIyspi27Zt5Y4NGDBAk8A8dOgQiYmJ9OvXr1yZs7Mze/bs4ZVXXuGdd94hOjqaH374gfDwcE0y67bQ0FB69+5NVFQUQ4cOrXS9sLAw+vfvz8mTJ+nSpQvBwcGkpqYCcPXqVVq3bo2hoSE7d+7k6NGjDB06VJMsW7p0KZMnT+aTTz7hzJkzTJ8+nUmTJrFo0aL7np85c+awbt06li9fTkxMDEuXLtUkfAH69etHUlISmzZt4ujRowQEBNC+fXtSU1OxsbFhwYIFhIaGcuTIEbKysnj55ZcJCQmhffv2mjZ69uzJypUr2bx58337s2jRIgwMDNi3bx//+9//gLJE2Zw5czh9+jSLFi1i586dTJgwQVPnxIkTtG/fnnr16nHgwAH27t1L9+7dKS4uBmDGjBksXryY//3vf5w+fZoxY8bw0ksvaZbpiqpTVFTMxSvX8PG6swxFoVDg41WTc/EVJwDOxV/RigfwrV2Tc5cuA1BYVPY63p2wUigU6OvpcfZi2XtyRnYO5y9dwUxlzEez5zN80meEfruQsxcvIURVKyouIS4lk/r21poyhUJBfXsrzienV1jnXHI69e21l9r62ltx/mZZfGlpKceuJGOnNmH69sO8tmIHH23az+HLN7Tq5BcV8+3eEwxp4o25svzMMSGqSklxEak3YrG7KyGlUCiwdfElJTGmUm0UFeVTUlKMgVHl/47Lu5VByvVzGBqbsuPXiaz9YTB/rPiI5Ktn/vUYhLifoqIiriZcpFadO18cKBQKatXxJSHu3CN//rjz0Xz83lBmhY1iTcSP3Mqp3Jf7Qoinz7/6al5PT4/w8HBGjBjB//73PwICAmjTpg0DBw7E19dXs0zw9kyg2/z8/PDzu/OLfdq0aaxevZp169YREhKCpaUlurq6qNVqrXp/l5CQwPjx46lTpw4Anp531nqbmZmhUCj+sf727ds5dOgQZ86cwcurbH8DD487HwgdHR21EmRvv/02W7ZsYfny5TRp0qRce/9GcXExy5Yt4+TJk4wcORKAjz66s2bczc2NcePGERERoZV0KCgoYPHixfdcgnmvczd8+HCaN29OYmIi9vb2JCUlsXHjRq2ZdA/i9rm/PSvrbkqlEiursg8eNjY2mv5UVBYWFsbEiRN59dVXgbLXYdq0aUyYMIEpU6Zo2nzxxRcZMmSI5vHQoUMrVW/w4MGa5aHTp09nzpw5HDp0iKCgIObOnYuZmRkRERGapZC3rweAKVOmMGvWLPr06QOAu7u7Jql2+3nvJSEhAU9PT/6PvfuOjqp4Gzj+3fS66b1CEggkhBZ6J3RBunQMVVBERar+lKYgCAiI+iogiKIC0gm9V+kJVRIgoYYA6ZuyySb7/hHdsCS00OH5nLPnsPfOzM5cNsnuc2eeqVu3LgqFAh8fH925vXv3cujQIW7evImpacEXqmnTprFq1Sr++usvBg4cSKtWrRgwYAA9evQgNDQUS0tLvRlhZ86coXv37kyYMIH+/fvzzTff0LlzZwCOHj1KaGgot27dwtGx4AtjQEAAU6dO1evjnbncfH19+eKLLxg0aJBu1trUqVMJDQ3Vm8UWFBQEgFqtZtKkSWzdupVatWrp/g/27t3Ljz/+SIMGDe57fcSjScvIJD8/H1tr/TuStlaWXE+4XWydVJWqaHmlFSlpBbP2PJwdcbSz4Y+IrQzo3AYzExPW7dpPYkoqyWkFHwhv3i6Yvbds8y56tWmGr4cru49EMeGHX5g+8r0iubyEeBzp6hzytVpszPSXVtuYmXI9LaPYOmnZamzvmplla25KSlbBTbjU7BzUmjzWnL5Il0oBdK9Slqjrt/hm1zH+17QG5V0KUgD8euQsAU52hEpOLvGUqbPS0GrzMb1riaKZhS3pydceqo0TexdhbmmPi/fDzz7MSL0BwJm/l1Kx3tvYOpUi7uxOdq74nBY9Z2Ft5/7wgxDiATIz0sjPzy+yRNHK2oZbCQ/3Pi+pMuUqEVSxBnYOziTdTmDzmt9Z8N0XDB4+GQODF3r/NSHEU1CiHF1vvPEGe/bs4e+//2bDhg1MnTqVefPmER4eXmwdlUrFuHHjiIiIID4+Ho1GQ1ZWlm5G18MaNmwY/fv359dff6VJkyZ07twZPz+/h64fGRmJp6enXlDjTnl5eUyaNImlS5dy7do1cnJyUKvVWFhYPFI/7/T9998zb948cnJyMDQ05KOPPmLw4MEALFmyhNmzZ3PhwgVUKhUajQalUqlX38fHp0R5xqpXr05QUBC//PILo0eP5rfffsPHx4f69euXeCxQcJcceOw8PVFRUezbt09vJlZeXh7Z2dlkZmbqrnloaGiJ6oWEFH4ItLS0RKlUcvPmTaDgfVCvXr1i831lZGRw4cIF+vXrx4ABA3THNRrNQyXRDw8Pp2nTppQtW5YWLVrQunVrmjVrpuu7SqXSBf7+k5WVpbdsctq0aQQHB7Ns2TKOHj2qC4pBwQy3li1bMnr0aJo1a0bTpk1JTExk0KBBnDx5ksDAQF2QC9DbOOA/W7duZfLkyfzzzz+kpaWh0Wj0rl9kZKQueHa38+fPk5mZSdOmTfWO5+TkULly5WLrqNXqIjNAc3JyMJV8Yc+FkZEhH/fpyv8tWU3fT7/CwMCACmVKU6lc4Y2DfG0+AE1qFSyZBCjl6cbJmItsP3iMHq2bFtu2EC+K//5WVfV0plW5UgD42iuJvpXC1ujLlHex58iVBE7dSOSrN+o8z64K8VDOHl7B5ei9NOo08ZESyGv//X1eukIzSgUVzA63cy7NzSsniD29jZC6vZ5Kf4V41iqG1tX9283DB1cPb6aNHcLF6FN6M8yEEK+HEiVbMTMzo2nTpjRt2pTPPvuM/v37M3bs2HsGuoYPH86WLVuYNm0a/v7+mJub06lTJ90Svoc1btw4unfvTkREBBs2bGDs2LH8+eeftG/f/qHqPyix/ddff82sWbOYOXOmLofRhx9++Mj9vFOPHj349NNPMTc3x83NTXdH4cCBA/To0YPx48fTvHlz3Qyj6dOn69V/nB0j+/fvz3fffcfo0aNZsGABffr0eewA1dmzBVPdS5Uq9VjtqFQqxo8fr5s1daf/cpFB0fE/bL27g1gKhYL8/IIPe/d7H/yXq2ru3LnUqKGfB+C/Ja73U6VKFWJjY9mwYQNbt27lrbfeokmTJvz111+oVCrc3NzYuXNnkXp35qK7cOEC169fJz8/n7i4OF2OM4ATJ07oZpVVqVKFNWvW0Lx5c27fvs3GjRv1Zr9B0esXFxdH69atGTx4MF9++SX29vbs3buXfv36kZOTg4WFxUNdn4iICDw8PPTO3RmQu9PkyZMZP3683rHRA3rwycCe93wdUUBpaYGBgQEp6fo51FJUGdgqi887YWNlVbR8mkqvvJ+XO18PH0xGVjaavDxsrCz55Ju5lPYq2CzCTlmwLMbTRT/I7uHsSGJy6mOPS4g7WZuaYKBQkJqt/7c2tZhZW/9RmpmSkq0fQE/JUuuWH1qbmmBooMDTVv/nxMPGknM3C2Ysnr6RyE1VJv2W6M90/mbXMQKd7fm82f1zwQjxKEzNlSgUBqgz9X+HZmemYGZhd9+6/xxdzT9HVtCg/VhsHX0f6XXNLAtmLyrt9XfqtbbzJDP91iO1JcSDWFgqMTAwQJWu/z5Xpadipbz/+/xJc3B0xdLKmsTbN/BHAl1CvG6eSFbh8uXLs2rVKqAgwPBfLp//7Nu3j/DwcF1ASqVSFVn6ZmJiUqReccqUKUOZMmX46KOP6NatGwsWLKB9+/YPVT8kJISrV68SHR1d7Kyuffv20bZtW3r2LPgCnp+fT3R0NOXLl39gv+7FxsYGf3//Isf379+Pj48Pn376qe7YpUsly39zr7H37NmTkSNHMnv2bM6cOfPAZXcP479caE2aNHmsdqpUqcK5c+eKvTZPo96dQkJC+OWXX4rdxdHFxQV3d3cuXrxIjx49StS+UqmkS5cudOnShU6dOtGiRQuSkpKoUqUKN27cwMjISC9v151ycnLo2bMnXbp0oWzZsvTv35+TJ0/i7OwMFCyv3bNnD2PGjAGgTp06rFy5ktatW2Nvb8+QIUPu27ejR4+Sn5/P9OnTdUHXpUuX6pUJCQlh27ZtRYJTUPCzbmpqyuXLlx96meKYMWMYNmyY/jhP7Xyouq87IyNDSnu6cyomluoVygEFM1VORV+kRb3il1OX8fXkZPRF3mhQS3fsZPRFyvh4FSlraV4QHI6/lciFK9fo0qoRAE72ttjZWHP9pv5uuvG3kqhUruQ/e0IUx8jQgFIOSk7HJ1Lt3yWEWq2W0zcSaVbWp9g6ZZxsORWfqJutBXDyRiIBjra6Nks72BB/19LH+LQMHCwLgvltg/1o7K//czFy3V56h5ajiqfzkxqeEAAYGBph7+JHwuUTePgVBFG1Wi03r5zEv2Kre9b758hKzhz6iwbtP8feNeCe5e7FUumMuaU96cnX9Y6rUq7j6lvlkdsT4n6MjIzw8C7NhXMnCapY8DlFq9Vy/txJajVo+Uz7kpJ8m8wMFdbPOMAmhHgxPFKgKzExkc6dO9O3b19CQkKwtrbmyJEjTJ06lbZt2wIFOX+2bdtGnTp1MDU1xc7OjoCAAFasWEGbNm1QKBR89tlnutk1//H19WX37t107doVU1NTveVXULC8a8SIEXTq1IlSpUpx9epVDh8+TMeOHXX1VSoV27Zto2LFilhYWBRZctigQQPq169Px44dmTFjBv7+/vzzzz8oFApatGhBQEAAf/31F/v378fOzo4ZM2aQkJDwWIGuewkICODy5cv8+eefVKtWjYiICFauXFmitu517ezs7OjQoQMjRoygWbNmeHp6PqAlfSkpKdy4cQO1Wk10dDQ//vgjq1atYtGiRXozkEri888/p3Xr1nh7e9OpUycMDAyIiori1KlTfPHFF0+83p2GDBnCt99+S9euXRkzZgw2Njb8/fffVK9enbJlyzJ+/HiGDh2KjY0NLVq0QK1Wc+TIEZKTk4sEbO42Y8YM3NzcqFy5MgYGBixbtgxXV1dsbW1p0qQJtWrVol27dkydOpUyZcpw/fp1IiIiaN++PaGhoXz66aekpqYye/ZsrKysWL9+PX379tXtDDpixAhatWrFe++9x+DBg8nNzWXXrl2YmJhw69Yt1q5dS5cuXe7ZP39/f3Jzc/n2229p06aNXpL6/4wZM4YKFSrw7rvvMmjQIExMTNixYwedO3fG0dGR4cOH89FHH5Gfn0/dunVJTU1l3759KJXKYoOppqamRWZ7pcuyxYfWumEtvvt9JaU93fD39mT97r/JzsmhYfWCJYVzFq/AzsZat5ywVf2ajPtuIWt37KNK+TLsO36Ki1evM/CtNro2D0SeQmlliaOtDZdv3GThyg1Ur1COimULglgKhYI3G9Vh2cad+Hq44Ovhxs5DkVy/eZth4W89+4sgXnlvlCvFD/tPUMpBiZ+DLRv/iSNbk0dDv4K/W9/ti8Le3IxuVQp2mG0R6MvELQdZdyaWyh5OHIiLJzYxlQE1gnVtti5fim/3RBLobE+Qqz1R125z7OotPmtW8OXL1ty02AT0DpbmOFuVPGWBEPdSpsqbHNo0GzsXPxxcAoiOXIcmN5tSQY0BOLhpJuaWDrrlhGcPr+DU339Qq8UwLJTOZGUUzEY0NjHHyLjgRoU6K53M9Fu6c+kpBQEtM0s7zC3tUCgUlK3altN/L8HWybcgR9eZHaQlX6PWGyOe9SUQr4G6jduwbNEcPLxL4+UTwL6dEeSo1VStWXAzbekvs1Ha2tOibcHEAo1Gw834gg1z8vI0pKUkcv1KLKZmZjg4Fcw0V6uzSbxZuFlZcuJNrl+JxcLSClt7J9TqbLZFLCG4ci2slbYk3rrBhlW/4uDkSplylZ7tBRBCvBAeKdBlZWVFjRo1+Oabb7hw4QK5ubl4eXkxYMAAPvnkEwCmT5/OsGHDmDt3Lh4eHsTFxTFjxgz69u1L7dq1cXR0ZNSoUaSlpem1PWHCBN555x38/PxQq9W6/Br/MTQ0JDExkd69e5OQkICjoyMdOnTQzTqpXbs2gwYNokuXLiQmJjJ27FjGjRtXZAzLly9n+PDhdOvWjYyMDPz9/fnqq6+AguTwFy9epHnz5lhYWDBw4EDatWtHauqTX6rz5ptv8tFHHzFkyBDUajVvvPEGn332WbF9fpD7Xbt+/frx+++/07dv30du979lcGZmZnh4eFC3bl0OHTpElSqPfwewefPmrFu3jgkTJjBlyhSMjY0JDAykf//+T6XenRwcHNi+fTsjRoygQYMGGBoaUqlSJerUKcjT0r9/fywsLPj6668ZMWIElpaWVKhQQS+J+71YW1szdepUYmJiMDQ0pFq1aqxfv143e2r9+vV8+umn9OnTh1u3buHq6kr9+vVxcXFh586dzJw5kx07duhytf36669UrFiRH374gcGDB9OiRQu2bdvG2LFjqVOnDgYGBjRp0oRDhw6xYsUKwsPD8fLyonbt2sX2r2LFisyYMYMpU6YwZswY6tevz+TJk+ndu7euTJkyZdi8eTOffPIJ1atXx9zcnBo1auiS+0+cOBEnJycmT57MxYsXsbW1pUqVKrrfAeLJql05mFRVBks37iAlXYWvuxufDuylSzh/OzlVb0ly2VLeDO3ZgSUbdvDH+m24OjowvE9XvN0Kk22npKlYtHqzLnF9/dBKdGqmP0PvjQa1yNVo+GXVJlSZmfi4u/K/Qb1wdbR/NgMXr5Vavm6kZeewLCqG1Cw1PvZKRjeuhs2/gajEjGwM7nyfO9sxpE5FlkbFsOT4OVyVlgxrWAUvu8Ld6Kp7u9K3RhCrT13kl8NncFda8lGDygQ6y3tYPB/eZeqizkzl1IE/yc5Mxs6pFPXbfYaZhS0AmWm3USgKk2ZfOLmJ/DwN+yL0N5UJqtGF4FpdAbgee5hDm7/VnTuwfnqRMmWrvEl+nobI3QvIyU7H1tGXBu3HYW3r9jSHK15TIVXroEpPY+u6JaSnpeDu5Uuf9z7FWmkLQErSbRR3JIdPT03i268Kg657tq1lz7a1lPIvz8CPJgBw7dJ55s4apysTsXwhAFVqNqRzryEYGBhw4/pljh3cRXZWJkobO/zLVaRp664YFZOTVwjx6lNo744oiVfKr7/+ykcffcT169cxkVk04gWRfmTj8+6CEE+dZtPq590FIZ666R6znncXhHjqmlbTPO8uCPHUNQh6eWcz7zqd+by7UKyX+Zq+7J5Iji7x4snMzCQ+Pp6vvvqKd955R4JcQgghhBBCCCGEeOUZPLiIKM6ePXuwsrK65+N5mzp1KoGBgbi6uuoSl/9n0qRJ9+x3y5bPNlHky0aunRBCCCGEEEII8eKSpYsllJWVxbVr1+55/nF2BXzakpKSSEpKKvacubk5Hh4ez7hHLw+5dk+GLF0UrwNZuiheB7J0UbwOZOmieB28zMvsZOmiuJssXSwhc3PzFzqYdT/29vbY20sy3pKQayeEEEIIIYQQQry4ZOmiEEIIIYQQQgghhHglSKBLCCGEEEIIIYQQQrwSJNAlhBBCCCGEEEIIIV4JEugSQgghhBBCCCGEEK8ESUYvhHjmppxq/Ly7IMRT9zGy66J49Y0K3v68uyDEU3eM+s+7C0IIIR6BzOgSQgghhBBCCCGEEK8ECXQJIYQQQgghhBBCiFeCBLqEEEIIIYQQQgghxCtBAl1CCCGEEEIIIYQQ4pUggS4hhBBCCCGEEEII8UqQQJcQL5C4uDgUCgWRkZHPuytCCCGEEEIIIcRLx+h5d0C8PA4cOEDdunVp0aIFERERz7s7z1VcXBylSpXSPbe3t6dq1apMmTKFypUrl7hdLy8v4uPjcXR0BGDnzp00atSI5ORkbG1tH7fb4iWm1Wo5/fefXDy1hRx1Bo5ugVRt/A7Wdu73rRcTtZ5zR1eTnZGMrZMvlRv2x8G1DADqrHRO//0nNy5Hkpl+G1NzJR5+NQiu1Q0TU0tdG0k3Yoja9yspNy8CYO8aQMW6vbF1KlXsawpRUlqtlr+iYth+/ioZObmUdbKjb40g3JSW9623+dwl1p6OJTVbjbedNeHVyuPvaKs7n6PJ47ej/3DgUjy5eflUdHekb/UgbMxNAbiUlMbq0xc5dzOZdHUOTlbmNAnwpmU536c4WiEKaLValm7cwba/j5GZlU2ZUl4M6NQaNyeH+9bbuPcQa3fsIyVNhY+7K306tCTAx1N3fsv+I+w7dpLYa/FkZatZMGkMluZmT3s4QhTrwK6N7Nm6mvS0FNw8fWjTuR9evgH3LH/i2H62rP2TlKRbODi70aJtTwKDq+jOnzr+Nwf3bub6lYtkZqh4f/TXuHvJ5xIhRAGZ0SUe2vz583n//ffZvXs3169ff279yMnJeW6vfbetW7cSHx/Ppk2bUKlUtGzZkpSUlBK1lZOTg6GhIa6urhgZSQxa6PvnyEpiIiOo2ngQTbpOwcjYjF0rJ5CnuffPw+XovUTuXkBQjbdo1n06No6+7F45gezMVACyM5LIykimYr1wmvecSfVmQ7kRd4zDW77TtaHJzWb3qolYWjsS1nUKjd+ahJGxObtWTiA/T/PUxy1eL2tOX2TjuUv0qxHEFy1rYWpkyORth8nR5N2zzoG4eH49cpaOIf5MalUHHzslk7cdJi1brSvz69GzHL16kw/rV+bzZjVIylQzY9cx3fmLSakozUx4r25Fvm5Tj3bBfvxx/Byb/rn0VMcrBMDq7XvZsOcgAzq35ssPB2BmYsKXP/5KTm7uPevsP36KRas30qlZQ6Z8PAgfDxe+/PFXUlUZujI5ublUKudP+yb1nsUwhLinE0f3EbF8IY1bdeb90V/j6uHLz3O+QJWeWmz5Sxf+YcmCmVSrHcb7o7+mfEg1fvtpKjeuX9aVyc1V4+tXjhZtez6rYQghXiIS6BIPRaVSsWTJEgYPHswbb7zBwoUL9c6vXbuWatWqYWZmhqOjI+3bt9edU6vVjBo1Ci8vL0xNTfH392f+/PkALFy4sMhMpVWrVqFQKHTPx40bR6VKlZg3bx6lSpXCzKzgbuTGjRupW7cutra2ODg40Lp1ay5cuKDX1tWrV+nWrRv29vZYWloSGhrKwYMHiYuLw8DAgCNHjuiVnzlzJj4+PuTn5z/UdXFwcMDV1ZXQ0FCmTZtGQkICBw8e5MKFC7Rt2xYXFxesrKyoVq0aW7du1avr6+vLxIkT6d27N0qlkoEDB+otXYyLi6NRo0YA2NnZoVAoCA8PZ9GiRTg4OKBWq/Xaa9euHb169Xpgn6OiomjUqBHW1tYolUqqVq2qdx327t1LvXr1MDc3x8vLi6FDh5KRUfDBedGiRVhZWRETE6Mr/+677xIYGEhmZuZDXTPx6LRaLTGR6yhXvTMeftWxdfSlevOhZGckce3CwXvWiz62htLBTSkVFIbSwYvQsMEYGpkSe3obADaOPtRpPRKP0tWwtnXDxasCFWr34HrsYfLzCwILaYlXUGenE1yrO0o7D2wcvAmq+RbZmSlkpN96JuMXrwetVsvGfy7RvoI/oV4ueNspGVwnhJQsNUeuJNyzXsTZWBoHeNHQ3xNPWyv61wjC1NCQHeevApCRk8vO81fpFRpIkKsDpR1sGFS7AtG3Uoi5lQJAI38vwquVp7yLPS7WFtQr7UFDP08OX7nxLIYuXmNarZb1uw/SsWl9qgUH4uPuwnvd25Ocms7hk//cs966nQcIq1mVRjUq4+nqxMDObTA1MWbHwcIA7hsNatEurJ7eLC8hnoe929dSrU4TQms1xtnNk/bd3sHExIQjB7YXW37fzgjKlK9M/aZtcXbzpFmbbrh7leLArg26MpWrNyCsVWf8A0Oe1TCEEC8RCXSJh7J06VICAwMpW7YsPXv25Oeff0ar1QIQERFB+/btadWqFcePH2fbtm1Ur15dV7d379788ccfzJ49m7Nnz/Ljjz9iZWX1SK9//vx5li9fzooVK3T5qzIyMhg2bBhHjhxh27ZtGBgY0L59e12QSqVS0aBBA65du8aaNWuIiopi5MiR5Ofn4+vrS5MmTViwYIHe6yxYsIDw8HAMDB79R8Pc3BwomJmlUqlo1aoV27Zt4/jx47Ro0YI2bdpw+fJlvTrTpk2jYsWKHD9+nM8++0zvnJeXF8uXLwfg3LlzxMfHM2vWLDp37kxeXh5r1qzRlb158yYRERH07dv3gf3s0aMHnp6eHD58mKNHjzJ69GiMjY0BuHDhAi1atKBjx46cOHGCJUuWsHfvXoYMGQIU/F+2atWKHj16oNFoiIiIYN68eSxevBgLC4tHvmbi4WSkJZCVkYyLVwXdMRNTSxxcy3A7/lyxdfLzNCQlXMDVu6LumEKhwMU7hMR71AHIzcnE2MQCAwNDAKztPTE1s+biqa3k52nI0+QQe3obSntPLJXOT2iEQsBNVRYpWWqCXQuXa1maGOPvaEv07ZRi62jy8olNTCPYzVF3TKFQEOzmoAtixSWlocnXUuGOMh42VjhYmhFzO/me/cnM1WBpYvx4gxLiAW4mJpOSlk5wQGndMUtzMwJ8PImOu1JsHY0mj4tXr1OhTGEdhUJBhTJ+RMddfep9FuJRaDQarl2+qBeQUigU+AeGcDk2utg6l2Oj8StbQe9YQLmK9ywvhBB3k/VR4qHMnz+fnj0Lpga3aNGC1NRUdu3aRcOGDfnyyy/p2rUr48eP15WvWLHgy3V0dDRLly5ly5YtNGnSBIDSpUsXfYEHyMnJYdGiRTg5OemOdezYUa/Mzz//jJOTE2fOnCE4OJjff/+dW7ducfjwYezt7QHw9/fXle/fvz+DBg1ixowZmJqacuzYMU6ePMnq1asfuX8pKSlMnDgRKysrqlevjouLi+4aAEycOJGVK1eyZs0aXdAIoHHjxnz88ce653Fxcbp/Gxoa6vrt7OysN/Ote/fuLFiwgM6dOwPw22+/4e3tTcOGDR/Y18uXLzNixAgCAwMBCAgozI8wefJkevTowYcffqg7N3v2bBo0aMAPP/yAmZkZP/74IyEhIQwdOpQVK1Ywbtw4qlates/XU6vVRWafaXIVGBmbPrCvokB2RsGXcTMLW73jpha2ZGekFFtHnZWGVpuPqYWN3nEzC1vSk6/ds87pg8vwq9BMd8zYxJxGnSayd91XnDm0FAArWzcatB+rC4YJ8SSkZBX8nrAxM9E7bmNmQmqWurgqpKtzyNdqi6ljyvW0DF27RgaKIkErGzNT3Wve7dzNZP6+FM/IRqElGosQDyslXQWAjbX+DUAba0vdubulZWSSn5+P7V11bK0suZ5w++l0VIgSysxIIz8/Hytr/c8jVtY23Eoo/vOIKi0Va6Wt3jFrpS3pqfe+OSGEEHeSGV3igc6dO8ehQ4fo1q0bAEZGRnTp0kW3/DAyMpKwsLBi60ZGRmJoaEiDBg0eqw8+Pj56QS6AmJgYunXrRunSpVEqlfj6+gLoZk1FRkZSuXJlXbDobu3atcPQ0JCVK1cCBcsoGzVqpGvnYdSuXRsrKyvs7OyIiopiyZIluLi4oFKpGD58OOXKlcPW1hYrKyvOnj1bZEZXaGjJvkQNGDCAzZs3c+3aNV3fw8PD9ZZ83suwYcPo378/TZo04auvvtJb7hkVFcXChQuxsrLSPZo3b05+fj6xsbFAwTLK+fPn88MPP+Dn58fo0aPv+3qTJ0/GxsZG77E/YmqJxv26uPTPLpZ/1033eNiltI8jV53JntVfYOPgRVCNLrrjeZocDm/9Dke3QJp0mULYW5OxcfBhz+ov7psfTIgH2XvxGuF/bNY98v6dJfy8XUlOZ/rOo3QI8SfE3fHBFYR4BHuOnqD36C91j7y8p//7XQghhHjdyIwu8UDz589Ho9Hg7l64u5tWq8XU1JQ5c+boluwV537nAAwMDHRLIP+TW0zyVUvLojtutWnTBh8fH+bOnYu7uzv5+fkEBwfrktU/6LVNTEzo3bs3CxYsoEOHDvz+++/MmjXrvnXutmTJEsqXL4+Dg4PejKvhw4ezZcsWpk2bhr+/P+bm5nTq1KlIIv3ixvUwKleuTMWKFVm0aBHNmjXj9OnTD70T5rhx4+jevTsRERFs2LCBsWPH8ueff9K+fXtUKhXvvPMOQ4cOLVLP29tb9+/du3djaGhIfHw8GRkZWFtb3/P1xowZw7Bhw/SOTVry4IDc68y9dHWa/bszIkB+XsHPRHZmCuZWhYFbdWYKNk6+xbZhaq5EoTBAnamf6DU7MwUzCzu9Y7k5WexeNQEjY3PqtB6FgWHhn4ZL53aTkXqTsC5TdIHUWi2HsfL/enLtwkG8y0qSY1EyVb1c8Hey1T3X/PuFPzU7BzuLwp3hUrNz8LYr/neMtakJBgoFqdn6v1tTs9XYmhXMGrU1N0WTryUjJ1dvVldqthpbc/2ZpVdTVHyx9RBhAd50qOCPEE9aaFBZvZxZuZqCTT1S01XY2xS+z1PTM/Bxdym2DaWlBQYGBkVmfKWoMrBVPlpqCCGeNgtLJQYGBkUSz6vSU7FS2hVbx0ppQ3pait6x9LQUrG2KLy+EEHeTGV3ivjQaDYsWLWL69OlERkbqHlFRUbi7u/PHH38QEhLCtm3biq1foUIF8vPz2bVrV7HnnZycSE9P1yU7B3Q5uO4nMTGRc+fO8b///Y+wsDDKlStHcrL+dOaQkBAiIyNJSkq6Zzv9+/dn69atfP/992g0Gjp06PDA176Tl5cXfn5+RRLq79u3j/DwcNq3b0+FChVwdXXVW5b4sExMCpbj5OUV3XGsf//+LFy4kAULFtCkSRO8vLweut0yZcrw0UcfsXnzZjp06KDLVValShXOnDmDv79/kcd/fdm/fz9Tpkxh7dq1WFlZ6S3FLI6pqSlKpVLvIcsW78/YxBxrWzfdQ2nvhbmlHQlXTurK5KozSbwRjaNb2WLbMDA0wt7Fj4TLJ3THtFotN6+cxOGOOrnqTHatGIeBgRF13/wEQyP9JWCa3GwUd+esUygARZEgtRCPwtzYCFdrS93Dw8YKW3NTTt1I1JXJzMnl/O0UyjjaFtuGkaEBpRyUnI4vrKPVajl9I5GAf4NovvZKjAwUeu1eT1ORmJFNgGPhl6arKelM3HKQ+qU96FK5MNAsxJNkbmaKq6O97uHp4oSt0ppTMRd1ZTKzs4m5dJUyvsX/XTcyMqS0pzunYmJ1x7RaLaeiL1LGVxLPixeLkZERHt6luXCu8DOMVqvl/LmTeJcq/netd6kyeuUBzv9z4p7lhRDibhLoEve1bt06kpOT6devH8HBwXqPjh07Mn/+fMaOHcsff/zB2LFjOXv2LCdPnmTKlClAwc6Cb7/9Nn379mXVqlXExsayc+dOli4tyPVTo0YNLCws+OSTT7hw4QK///57kR0di2NnZ4eDgwM//fQT58+fZ/v27UVmDXXr1g1XV1fatWvHvn37uHjxIsuXL+fAgQO6MuXKlaNmzZqMGjWKbt26PXAW2MMKCAjQJc6Pioqie/fuJVp+5uPjg0KhYN26ddy6dQuVqvDubffu3bl69Spz5859qCT0AFlZWQwZMoSdO3dy6dIl9u3bx+HDhylXrhwAo0aNYv/+/QwZMoTIyEhiYmJYvXq1LpiVnp5Or169GDp0KC1btmTx4sUsWbKEv/7665HHJh6eQqEgoFJrzh5axrULh0i5HcfBTbMws7THw6+GrtyO5Z8TE1k4s69MlTe5eGoLsWe2k5Z4haPb/w9NbjalghoD/wa5Vo4nT6MmtOl75OZkkpWRTFZGMtp/36+u3pXIyVZxbMdPpCVeITXxMoe3fIuBgSHOnsHP9kKIV5pCoaBFoA8rT57nyJUELien8f2+E9iamxLqVTiz5YstB9n0zyXd8zfKlWL7+SvsunCVqykq5h88TbYmj4Z+BV/4LU2Maejvya9HznL6RiIXE1P5v/0nCXCy1QXDriSnM3HLIULcHXmjfClSstSkZKlJyy4+h5cQT4pCoaBV/Ros37Kbw6f+4dL1BOYsXomdjTXVKgTqyk34fiEb9hTustu6YS22HTjKzkPHuXrjFnOXrSM7J4eG1SvryiSnpRN7NZ4btwtu+F2+nkDs1XjSM2SXZPFs1W3chsP7tnL07x3cjL/Kqj9/IketpmrNgt3Fl/4ym42rf9OVr9PwDaLPRrJn6xpu3rjG1oglXLt8kVoNWurKZGakc/1KLAnxBRsw3L55netXYiWPlxACkKWL4gHmz59PkyZNsLGxKXKuY8eOTJ06FXt7e5YtW8bEiRP56quvUCqV1K9fX1fuhx9+4JNPPuHdd98lMTERb29vPvnkEwDs7e357bffGDFiBHPnziUsLIxx48YxcODA+/bLwMCAP//8k6FDhxIcHEzZsmWZPXu2XjJ2ExMTNm/ezMcff0yrVq3QaDSUL1+e7777Tq+tfv36sX///ocOFj2MGTNm0LdvX2rXro2joyOjRo0iLS3tkdvx8PBg/PjxjB49mj59+tC7d29dINDGxoaOHTsSERFBu3btHqo9Q0NDEhMT6d27NwkJCTg6OtKhQwfdRgIhISHs2rWLTz/9lHr16qHVavHz86NLl4KcTR988AGWlpZMmjQJKJixN2nSJN555x1q1aqFh4fHI49RPJzA0PbkadQc2fYDueoMHN3LUb/9Z3ozsDJSE1Bnpeuee5epizozlVMH/iQ7Mxk7p1LUb/eZLql98s2LJN4o2MFo/cJ39V6vdd8fsVQ6o7T3pG7bTzn9959sWzoGFAps/23nzmWUQjwJbwaVJkeTx7y/T5GZq6Gskx2jw0IxMSrc+CAhPYt0deFSxVq+bqRl57AsKobULDU+9kpGN66GzR3LEntVLYcCBd/sOk5ufj4V3RzpWyNId/7g5RukZeew9+J19l68rjvuaGnOtx0aPt1Bi9de28Z1Uefk8tPStWRmZVO2tDefDOyJiXHhUtuExGS9AFXtysGkqjJYunEHKekqfN3d+HRgL70E9Vv2H+GvTTt1z8fO+RmAd7u10wuICfG0hVStgyo9ja3rlpCeloK7ly993vtUl3A+Jem23uxxH79AuoR/wJa1f7Jpze84OrvRc+BIXN0L02icPXmEv34t/Ez/x8/fABDWqjNN3ijMNSqEeD0ptLL2RLzmJk6cyLJlyzhx4sSDC79gwsLCCAoKYvbs2c+7K4/kfwslibl49X187YPn3QUhnjqj5m2fdxeEeOqOmdd/cCEhXnINgiyedxdKbNfpF3Om6st8TV92MqNLvLZUKhVxcXHMmTOHL7744nl355EkJyezc+dOdu7cyffff/+8uyOEEEIIIYQQQrwQJEeXeG0NGTKEqlWr0rBhwyLLFgcNGoSVlVWxj0GDBj2nHheqXLky4eHhTJkyhbJl9ZORBwUF3bPvixcvfk49FkIIIYQQQgghnj5ZuihEMW7evHnPnFpKpRJnZ+dn3KOHd+nSJXJzc4s95+LigrW1dbHnniVZuiheB7J0UbwOZOmieB3I0kXxOniZl9nJ0kVxN1m6KEQxnJ2dX+hg1v34+Pg87y4IIYQQQgghhBDPhSxdFEIIIYQQQgghhBCvBAl0CSGEEEIIIYQQQohXggS6hBBCCCGEEEIIIcQrQXJ0CSGEEE+BJOkWrwPNptXPuwtCPH3tJBm9EEK8TGRGlxBCCCGEEEIIIYR4JUigSwghhBBCCCGEEEK8EiTQJYQQQgghhBBCCCFeCRLoEkIIIYQQQgghhBCvBAl0CSGEEEIIIYQQQohXggS6hBBCCCGEEEIIIcQrQQJdQjxjcXFxKBQKIiMjn3dXhBBCCCGEEEKIV4rR8+6AeLEcOHCAunXr0qJFCyIiIp53d56ruLg4SpUqpXtub29P1apVmTJlCpUrVy5xu15eXsTHx+Po6AjAzp07adSoEcnJydja2j5ut8UrSqvVcvrvP7l4ags56gwc3QKp2vgdrO3c71svJmo9546uJjsjGVsnXyo37I+Daxnd+SPbfiDh8gmyMpIwMjbD0S2QkLq9UNp76rUTe2Y70cfWkJ58HWMTCzwDalG18TtPZazi9aXValm6cQfb/j5GZlY2ZUp5MaBTa9ycHO5bb+PeQ6zdsY+UNBU+7q706dCSAJ/C93BObi6LVm9if+RpNBoNFcv606/TG9haW+nKvPXR2CLtftCrE3WqVHhyAxSCgvf5X1ExbD9/lYycXMo62dG3RhBuSsv71tt87hJrT8eSmq3G286a8Grl8Xe01Z3P0eTx29F/OHApnty8fCq6O9K3ehA25qZF2kpX5zB63V6SMtXM69IESxPjJz1M8Ro7sGsje7auJj0tBTdPH9p07oeXb8A9y584tp8ta/8kJekWDs5utGjbk8DgKrrzWq2WrRFLOLxvK9lZmXiXLku7rgNxdHYD4GL0KebOGlds2++N/ApPH/8nOj4hxItPZnQJPfPnz+f9999n9+7dXL9+/bn1Iycn57m99t22bt1KfHw8mzZtQqVS0bJlS1JSUkrUVk5ODoaGhri6umJk9OzizC/S9RQl88+RlcRERlC18SCadJ2CkbEZu1ZOIE9z7//by9F7idy9gKAab9Gs+3RsHH3ZvXIC2ZmpujJ2zqWp1nQILXt/S4P2n6NFy66V49Hm5+vKnDu2mpP7FhMY2oHmvWbRoOM4XH1KHuwV4l5Wb9/Lhj0HGdC5NV9+OAAzExO+/PFXcnJz71ln//FTLFq9kU7NGjLl40H4eLjw5Y+/kqrK0JX5ZdUmjp6OZtjbbzH2vT4kpaYxfcGSIm29260dP44frntUqxD4VMYpXm9rTl9k47lL9KsRxBcta2FqZMjkbYfJ0eTds86BuHh+PXKWjiH+TGpVBx87JZO3HSYtW60r8+vRsxy9epMP61fm82Y1SMpUM2PXsWLb+3H/SbxsrZ/42IQ4cXQfEcsX0rhVZ94f/TWuHr78POcLVOmpxZa/dOEfliyYSbXaYbw/+mvKh1Tjt5+mcuP6ZV2ZXVtWsX/nBtp1e4fBIyZjYmrGz3Mmkptb8BnIu3Qgn0yaq/eoVjsMOwdnPLz9nsm4hRAlk5WVRWZmpu75pUuXmDlzJps3b36sdiXQJXRUKhVLlixh8ODBvPHGGyxcuFDv/Nq1a6lWrRpmZmY4OjrSvn173Tm1Ws2oUaPw8vLC1NQUf39/5s+fD8DChQuLzFRatWoVCoVC93zcuHFUqlSJefPmUapUKczMzADYuHEjdevWxdbWFgcHB1q3bs2FCxf02rp69SrdunXD3t4eS0tLQkNDOXjwIHFxcRgYGHDkyBG98jNnzsTHx4f8O77I34+DgwOurq6EhoYybdo0EhISOHjwIBcuXKBt27a4uLhgZWVFtWrV2Lp1q15dX19fJk6cSO/evVEqlQwcOFBv6WJcXByNGjUCwM7ODoVCQXh4OIsWLcLBwQG1Wq3XXrt27ejVq9cD+/w0rud/Vq9eTZUqVTAzM6N06dKMHz8ejUbzUNdSlIxWqyUmch3lqnfGw686to6+VG8+lOyMJK5dOHjPetHH1lA6uCmlgsJQOngRGjYYQyNTYk9v05Xxq9AcZ88gLJXO2Dn7UaF2dzLTb6NKSwAgJ1vFyf2/U6P5B/gE1sfa1g1bR188/Ko/9XGL14tWq2X97oN0bFqfasGB+Li78F739iSnpnP45D/3rLdu5wHCalalUY3KeLo6MbBzG0xNjNlxsOALfkZWNjsOHePtds0JDiiFn5c773Zrx7nYy8TEXdVry8LcDDulte5hYiyzXMSTpdVq2fjPJdpX8CfUywVvOyWD64SQkqXmyJWEe9aLOBtL4wAvGvp74mlrRf8aQZgaGrLjfMF7OCMnl53nr9IrNJAgVwdKO9gwqHYFom+lEHMrRa+tLecukZmroU1Q6ac5VPGa2rt9LdXqNCG0VmOc3Txp3+0dTExMOHJge7Hl9+2MoEz5ytRv2hZnN0+atemGu1cpDuzaABT8zOzfEUHjFh0pH1INNw8fOvcaQnpqMmeiDgFgZGSEtY2d7mFuac2ZE4epWrOR3vcNIcSLp23btixatAiAlJQUatSowfTp02nbti0//PBDiduVQJfQWbp0KYGBgZQtW5aePXvy888/o9VqAYiIiKB9+/a0atWK48ePs23bNqpXL/yi27t3b/744w9mz57N2bNn+fHHH7GysrrXSxXr/PnzLF++nBUrVujyV2VkZDBs2DCOHDnCtm3bMDAwoH379roglUqlokGDBly7do01a9YQFRXFyJEjyc/Px9fXlyZNmrBgwQK911mwYAHh4eEYGDz629/c3BwomCGlUqlo1aoV27Zt4/jx47Ro0YI2bdpw+fJlvTrTpk2jYsWKHD9+nM8++0zvnJeXF8uXLwfg3LlzxMfHM2vWLDp37kxeXh5r1qzRlb158yYRERH07dv3ofr6pK8nwJ49e+jduzcffPABZ86c4ccff2ThwoV8+eWXj3wtxcPLSEsgKyMZF6/CJVQmppY4uJbhdvy5Yuvk52lISriAq3dF3TGFQoGLdwiJ96ijyc0m9vR2LJUuWFo7AZBwOQq0WrJUiWxYNIS18/qzP2Iamem3n+AIhYCbicmkpKUTHFD45dvS3IwAH0+i464UW0ejyePi1etUKFNYR6FQUKGMH9H/BrFir8aj0eRRoUzhXX0PFycc7WyIvqTf7vzlEfT93xTGfPMT2w8e0/0NFOJJuanKIiVLTbBr4XJcSxNj/B1tib6dUmwdTV4+sYlpBLs56o4pFAqC3Rx0Qay4pDQ0+Voq3FHGw8YKB0szYm4n645dTVGx4uQF3q0Tgnz9F0+aRqPh2uWL+AeG6I4pFAr8A0O4HBtdbJ3LsdH4ldVfIh5QrqKufFJiAulpKXplzC0s8fINuGeb/5w8QmZGOlVrNXrcIQkhnrJjx45Rr149AP766y9cXFy4dOkSixYtYvbs2SVuV3J0CZ358+fTs2dPAFq0aEFqaiq7du2iYcOGfPnll3Tt2pXx48frylesWPAFOjo6mqVLl7JlyxaaNGkCQOnSj36XMCcnh0WLFuHk5KQ71rFjR70yP//8M05OTpw5c4bg4GB+//13bt26xeHDh7G3twfA379wHX7//v0ZNGgQM2bMwNTUlGPHjnHy5ElWr179yP1LSUlh4sSJWFlZUb16dVxcXHTXAGDixImsXLmSNWvWMGTIEN3xxo0b8/HHH+uex8XF6f5taGio67ezs7PezLfu3buzYMECOnfuDMBvv/2Gt7c3DRs2fKj+Po3rOX78eEaPHs3bb78NFPw/T5w4kZEjRzJ2bNH8NlAw2+/umWmaXAVGxkVzhojiZWcUfEkxs7DVO25qYUt2RkqxddRZaWi1+Zha2OgdN7OwJT35mt6x81EbiNq7CE1uNtZ27jToMBYDw4I/D6rUBLRoOXP4Lyo36I+JqQUn9//OzhVjadFzlq6cEI8rJV0FgI21/k0SG2tL3bm7pWVkkp+fr5drC8DWypLrCQXB2JS0dIyMDLE0N7urXStS0grbfatlIyoElMbE2Jioc+eZ/1cEanUOLevXfOyxCfGflKyCv4c2ZiZ6x23MTEjNUhdXhXR1DvlabTF1TLmelqFr18hAUSTXlo2Zqe41c/Py+HZvJN2rlMXR0pyb6ZkI8SRlZqSRn5+PlbX+Zw8raxtuJVwrto4qLRVrpa3eMWulLempBZ99VKkpBW0o72pTaUN6WjLFObx/GwHlKmFr51jseSHEiyMzMxNr64Kl9Js3b6ZDhw4YGBhQs2ZNLl26VOJ2ZUaXAApmEx06dIhu3boBBVOAu3Tpolt+GBkZSVhYWLF1IyMjMTQ0pEGDBo/VBx8fH72gDEBMTAzdunWjdOnSKJVKfH19AXSzpiIjI6lcubIuKHO3du3aYWhoyMqVK4GCZZSNGjXStfMwateujZWVFXZ2dkRFRbFkyRJcXFxQqVQMHz6ccuXKYWtri5WVFWfPni0yoys0NPShX+tOAwYMYPPmzVy7dk3X9/Dw8Ieegv00rmdUVBQTJkzAyspK9xgwYADx8fF6a6vvNHnyZGxsbPQe+yOmPtQYXleX/tnF8u+66R4Pu8y2pLwD69Os+3QadfoCazsPDqyfpsv9pdXmk5+noUrDAbj5VsbBrSw1Ww5DlRJPwpWTT7Vf4tW25+gJeo/+UvfIy3u67/MH6dSsIWVLeVPK0412YfV4s3Ed1uzY/1z7JF5+ey9eI/yPzbpH3nOcJfjH8Wg8bCypV9rjufVBiKctJfk2MWcjqVa7+O8tQogXi7+/P6tWreLKlSts2rSJZs2aAQWrmZRKZYnblVvxAiiYzaXRaHB3L9zBTavVYmpqypw5c3RL9opzv3MABgYGRZZ/5BaTWNjSsuhuQ23atMHHx4e5c+fi7u5Ofn4+wcHBuuTqD3ptExMTevfuzYIFC+jQoQO///47s2bNum+duy1ZsoTy5cvj4OCgN+Nq+PDhbNmyhWnTpuHv74+5uTmdOnUqkvi9uHE9jMqVK1OxYkUWLVpEs2bNOH369CPthPk0rqdKpWL8+PF06NChyLn/8oDdbcyYMQwbNkzv2KQlsmDiftxLV6fZHTsj5ucV/LxkZ6ZgblUYhFRnpmDj5FtsG6bmShQKA9SZ+slfszNTMLOw0ztmYmqJiakl1nbuOLqVZeX/9eTahYN4l62HuWVB2Tt3YTSzsMHUTElm+q3HGqd4vYUGldXbGTH331x/qekq7G0Kk2Snpmfg4+5SbBtKSwsMDAyKzPhKUWVgqyyY5WWrtEajySMjK1tvVldqukpXpjj+3h4s37yLXI0G42e4eYh4tVT1csHfyVb3XPNvQDc1Owc7izvej9k5eNsVnxze2tQEA4WC1Gz9zxep2WpszQpmR9uam6LJ15KRk6s3qys1W43tv7sunrmRyOWUdA5e2giAloLPZgOXbqNdcGk6VyqDEI/DwlKJgYFBkcTzqvRUrJR2xdYpmJmVoncsPS0Fa5uC8lY2tgVtpKWitCn8DKRKS8XN07dIe0cP7MDC0prACiW70SyEeLY+//xzunfvzkcffURYWBi1atUCCmZ3Va5c8s2v5JObQKPRsGjRIqZPn66LoP6nXbt2/PHHH4SEhLBt2zb69OlTpH6FChXIz89n165duqWLd3JyciI9PZ2MjAxd8OW/nFH3k5iYyLlz55g7d65u3e7evXv1yoSEhDBv3jySkpLuOQupf//+BAcH8/3336PRaIoN0tyPl5cXfn5Fd2zZt28f4eHhuqT8KpVKb1niwzIxKViKkJdXdLel/v37M3PmTK5du0aTJk3w8vJ65Pb/8ySuZ5UqVTh37pzecsYHMTU1xdRUf5mikbHsAnk/xibmGJsUBh21Wi3mlnYkXDmJnXPBsuBcdSaJN6LxC2lebBsGhkbYu/iRcPkEHn41dO3cvHIS/4qt7vnaWq0WrVZL3r/BNQf3gl3n0pOvY2FdsARAnZWOOjsNS6Xz4w9WvLbMzUwxNyv83aDVarFVWnMq5iKlPAu2jM/Mzibm0lWa1i7+C4uRkSGlPd05FRNL9QrldO2cir5Ii3oFeSRLebphZGTIqeiL1KhYHoDrN29zOzmVMj73/p166XoClhbmEuQSj8Xc2Ahz48L3kFarxdbclFM3EvG1L7hTnZmTy/nbKTQJKP79aGRoQCkHJafjE6nm5aJr5/SNRJqV9QHA116JkYGCUzcSqeHtCsD1NBWJGdkEOBYEDD5sUJlcTeHMyQuJqfx44CRjm9fA1driyQ9evHaMjIzw8C7NhXMnCapY8DtYq9Vy/txJajVoWWwd71JluHDuJHUbt9YdO//PCbxLFQRe7R1csFbacuHcSdy9SgGQnZXJlbgYatTT/96i1Wo5+vcOqtRo8Ex3NxdClFynTp2oW7cu8fHxemmBwsLC9Da/e1TyG0Cwbt06kpOT6devHzY2+uvfO3bsyPz58/n6668JCwvDz8+Prl27otFoWL9+PaNGjcLX15e3336bvn37Mnv2bCpWrMilS5e4efMmb731FjVq1MDCwoJPPvmEoUOHcvDgwSI7OhbHzs4OBwcHfvrpJ9zc3Lh8+TKjR4/WK9OtWzcmTZpEu3btmDx5Mm5ubhw/fhx3d3ddNLhcuXLUrFmTUaNG0bdv3wfOWnpYAQEBrFixgjZt2qBQKPjss89KtMTMx8cHhULBunXraNWqFebm5rpE/t27d2f48OHMnTtXtxtFST2J6/n555/TunVrvL296dSpEwYGBkRFRXHq1Cm++OKLx+qfuDeFQkFApdacPbQMa1s3LG2cObX/D8ws7XVBLIAdyz/H068GAZXeAKBMlTc5tGk2di5+OLgEEB25Dk1uNqWCGgOgSr3Bleh9uHhXxNTchizVbc4eWYmRkSluvlUBUNp54FG6Osd3zSM0bDDGJhac2Pcb1nYeOHsGP/uLIV5ZCoWCVvVrsHzLblydHHC2t2PJhu3Y2VhTrUKgrtyE7xdSrUI5WtYreO+3bliL735fSWlPN/y9PVm/+2+yc3JoWL3gLqCluRmNqlfhl9UbsbQwx9zMlAUr1lPG14sA34IZZUdOnyM1XUWAj6cuR9fKrbtp3bD2s78Q4pWmUChoEejDypPncbW2wNnKnKWRMdiamxLqVThz8YstB6nm5UrzwIJA1hvlSvHD/hOUclDi52DLxn/iyNbk0dCv4D1saWJMQ39Pfj1yFisTY8yNjVh4+AwBTrYE/DujzNVaf6Z3urrgppOHjVWR3F5ClFTdxm1YtmgOHt6l8fIJYN/OCHLUaqrWLEgMv/SX2Sht7WnRtiAvcJ2Gb/DTrLHs2bqGssFVOXF0L9cuX6R990FAwc9M7UZvsH3jchyc3bBzcGbLuj+xtrGjfEX9HaAvnDtJcuJNQmsXvfEuhHgx7dixg0aNGuHq6qp3vHr16nz33XcEBgbeo+b9SaBLMH/+fJo0aVIkyAUFga6pU6dib2/PsmXLmDhxIl999RVKpZL69evryv3www988sknvPvuuyQmJuLt7c0nn3wCgL29Pb/99hsjRoxg7ty5hIWFMW7cOAYOHHjffhkYGPDnn38ydOhQgoODKVu2LLNnz9ZLxm5iYsLmzZv5+OOPadWqFRqNhvLly/Pdd9/ptdWvXz/279//0DsWPowZM2bQt29fateujaOjI6NGjSItLe2R2/Hw8NAlee/Tpw+9e/fWBQJtbGzo2LEjERERtGvX7rH6+ySuZ/PmzVm3bh0TJkxgypQpGBsbExgYSP/+/R+rb+LBAkPbk6dRc2TbD+SqM3B0L0f99p9haFSYnDgjNQF1VrruuXeZuqgzUzl14E+yM5OxcypF/Xaf6ZLaGxqacOvaGaKPrSUnJwMzC1uc3MvRuMtkzO5IYl+j+QdE7v6ZPau/RKEwwMkziAbtx0oievHEtW1cF3VOLj8tXUtmVjZlS3vzycCemBgXfglPSEwmPaMwJ2DtysGkqjJYunEHKekqfN3d+HRgL70E9W+3a45CAdMXLkGj0VAx0J9+Hd/QnTc0MGDT3sP8sqpgSZeLoz2927agSa2qz2DU4nXzZlBpcjR5zPv7FJm5Gso62TE6LBQTI0NdmYT0LF0gCqCWrxtp2Tksi4ohNUuNj72S0Y2rYWNeOCuyV9VyKFDwza7j5ObnU9HNkb41gp7p2IQIqVoHVXoaW9ctIT0tBXcvX/q896ku4XxK0m0Ud+x87uMXSJfwD9iy9k82rfkdR2c3eg4ciau7t65Mg6btyM1Rs/L3/yM7KxMfv0D6vPc/jI31N2g4sn8bPqXL4uwqeeiEeFl06NCBrVu3UrWq/meuWbNm8dlnn/Hee++VqF2FVvbOFq+BiRMnsmzZMk6cOPG8u/LIwsLCCAoKeqztVV80/1soSxfFq29U8Pbn3QUhnjrNpkffxViIl82JdtOfdxeEeOoaBL28S5h3nX4xd5F9ma/pszJv3jw++eQTdu/erZu9NX36dCZMmMC6det0KXceldyOF6+0//JmzZkz56VbWpecnMzOnTvZuXMn33///fPujhBCCCGEEEII8cT079+fpKQkmjRpwt69e1myZAmTJk1i/fr11KlTp8TtSqBLvNKGDBnCH3/8Qbt27YosWxw0aBC//fZbsfV69uzJ//3f/z2LLt5T5cqVSU5OZsqUKZQtW1bvXFBQEJcuXSq23o8//kiPHj2eRReFEEIIIYQQQogSGzlyJImJiYSGhpKXl8emTZuoWbPmY7UpSxfFa+vmzZv3zKmlVCpxdn5xd5S7dOkSubm5xZ5zcXHB2rr4LcpfFLJ0UbwOZOmieB3I0kXxOpCli+J18DIvs5Oliy+Xe6XkmTZtGvXr16d69cKNJoYOHVqi15AZXeK15ezs/EIHs+7Hx8fneXdBCCGEEEIIIYR4JN98802xxw0NDdm3bx/79u0DCnZdlUCXEEIIIYQQQgghhHhhxcbGPvXXMHhwESGEEEIIIYQQQgghXnwyo0sIIYQQQgghhBBCPFN5eXksXLiQbdu2cfPmTfLz8/XOb99espy3EugSQgghhBAlIkm6xesgZNXHz7sLQjx9QT887x6I19AHH3zAwoULeeONNwgODkahUDyRdiXQJYQQQgghhBBCCCGeqT///JOlS5fSqlWrJ9qu5OgSQgghhBBCCCGEEM+UiYkJ/v7+T7xdCXQJIYQQQgghhBBCiGfq448/ZtasWWi12ifarixdFEIIIYQQQgghhBDP1N69e9mxYwcbNmwgKCgIY2NjvfMrVqwoUbsS6BJCCCGEEEIIIYQQz5StrS3t27d/4u1KoEu8FuLi4ihVqhTHjx+nUqVKz7s7QgghhBBCCCHEa23BggVPpV0JdL0ADhw4QN26dWnRogURERHPuzvP1X8Bqf/Y29tTtWpVpkyZQuXKlUvcrpeXF/Hx8Tg6OgKwc+dOGjVqRHJyMra2to/b7Wdm48aNjBkzhn/++Qd7e3vatm3L999//7y7JZ4BrVbL6b//5OKpLeSoM3B0C6Rq43ewtnO/b72YqPWcO7qa7IxkbJ18qdywPw6uZXTnj2z7gYTLJ8jKSMLI2AxHt0BC6vZCae+p107sme1EH1tDevJ1jE0s8AyoRdXG7zyVsYrXl1arZenGHWz7+xiZWdmUKeXFgE6tcXNyuG+9jXsPsXbHPlLSVPi4u9KnQ0sCfArfw1v2H2HfsZPEXosnK1vNgkljsDQ302tjyrzfibt2gzRVBpYW5oSUKU331k2xt7F+KmMVry+tVsvWiCUc3reV7KxMvEuXpV3XgTg6u9233oFdG9mzdTXpaSm4efrQpnM/vHwDAMjMSGdrxFJizkaRmnwbCytrgirWoMkbXTC3sCzSVmZGOrMmfUxaShKff/1LsWWEeBxarZa/omLYfv4qGTm5lHWyo2+NINyU93+vbT53ibWnY0nNVuNtZ014tfL4O9rqzm+Nvsz+uHhik1LJzs1jXpcmWJroL3VaefI8x6/dIi4pDWNDA+Z3afo0hiiEeIFJMvoXwPz583n//ffZvXs3169ff279yMnJeW6vfbetW7cSHx/Ppk2bUKlUtGzZkpSUlBK1lZOTg6GhIa6urhgZvbyx3ezsbDp06EBISAgnT54kIiLioWen5ebmPt3OiafunyMriYmMoGrjQTTpOgUjYzN2rZxAnubeP7eXo/cSuXsBQTXeoln36dg4+rJ75QSyM1N1ZeycS1Ot6RBa9v6WBu0/R4uWXSvHo83P15U5d2w1J/ctJjC0A817zaJBx3G4+pQ88CzEvazevpcNew4yoHNrvvxwAGYmJnz546/k3Od32P7jp1i0eiOdmjVkyseD8PFw4csffyVVlaErk5ObS6Vy/rRvUu+e7QQHlGLY228xc8z7fBz+FjduJzFj4ZInOj4hAHZtWcX+nRto1+0dBo+YjImpGT/PmUhu7r1/n584uo+I5Qtp3Koz74/+GlcPX36e8wWq9ILf52mpyaSnJtGqQ28++HQ6nXsNIfrMcVYsLv5m2F+/fY+ru89TGZ8QAGtOX2TjuUv0qxHEFy1rYWpkyORth8nR5N2zzoG4eH49cpaOIf5MalUHHzslk7cdJi1brSuTk5dHRXdH2gX73bMdTV4+NX1caVrG+4mOSQjxdPz111+89dZb1KxZkypVqug9SkoCXc+ZSqViyZIlDB48mDfeeIOFCxfqnV+7di3VqlXDzMwMR0dHvfWrarWaUaNG4eXlhampKf7+/syfPx+AhQsXFpmptGrVKhQKhe75uHHjqFSpEvPmzaNUqVKYmRXc3d64cSN169bF1tYWBwcHWrduzYULF/Taunr1Kt26dcPe3h5LS0tCQ0M5ePAgcXFxGBgYcOTIEb3yM2fOxMfHh/w7vjzfj4ODA66uroSGhjJt2jQSEhI4ePAgFy5coG3btri4uGBlZUW1atXYunWrXl1fX18mTpxI7969USqVDBw4kLi4OBQKBZGRkcTFxdGoUSMA7OzsUCgUhIeHs2jRIhwcHFCr1XrttWvXjl69ej2wz1FRUTRq1Ahra2uUSiVVq1bVuw579+6lXr16mJub4+XlxdChQ8nIKPgitmjRIqysrIiJidGVf/fddwkMDCQzM1N3zNDQkB49euDv70+lSpUYOHBgkX78N9YlS5bQoEEDzMzMWLx4MYmJiXTr1g0PDw8sLCyoUKECf/zxh17d/Px8pk6dir+/P6ampnh7e/Pll1/qzl+5coW33noLW1tb3YyyuLi4B14b8Xi0Wi0xkesoV70zHn7VsXX0pXrzoWRnJHHtwsF71os+tobSwU0pFRSG0sGL0LDBGBqZEnt6m66MX4XmOHsGYal0xs7Zjwq1u5OZfhtVWgIAOdkqTu7/nRrNP8AnsD7Wtm7YOvri4Vf9qY9bvF60Wi3rdx+kY9P6VAsOxMfdhfe6tyc5NZ3DJ/+5Z711Ow8QVrMqjWpUxtPViYGd22BqYsyOg8d0Zd5oUIt2YfX0Znnd7Y0GtQjw9cTJ3paypbxpG1aXmEtX0dznS5kQj0qr1bJ/RwSNW3SkfEg13Dx86NxrCOmpyZyJOnTPenu3r6VanSaE1mqMs5sn7bu9g4mJCUcObAfA1d2bHgNGUK5CKA5ObviVrUDTNt04e/IoeXn67+G/d28kOzOD+k3efKpjFa8vrVbLxn8u0b6CP6FeLnjbKRlcJ4SULDVHriTcs17E2VgaB3jR0N8TT1sr+tcIwtTQkB3nr+rKtCpXirbBfgTcMcvrbp0rlaFVuVJ428mMXCFedLNnz6ZPnz64uLhw/PhxqlevjoODAxcvXqRly5YlblcCXc/Z0qVLCQwMpGzZsvTs2ZOff/5Zt7VmREQE7du3p1WrVhw/fpxt27ZRvXrhl8vevXvzxx9/MHv2bM6ePcuPP/6IlZXVI73++fPnWb58OStWrCAyMhKAjIwMhg0bxpEjR9i2bRsGBga0b99eF6RSqVQ0aNCAa9eusWbNGqKiohg5ciT5+fn4+vrSpEmTImttFyxYQHh4OAYGj/6WMzc3BwpmZqlUKlq1asW2bds4fvw4LVq0oE2bNly+fFmvzrRp06hYsSLHjx/ns88+0zvn5eXF8uXLATh37hzx8fHMmjWLzp07k5eXx5o1a3Rlb968SUREBH379n1gP3v06IGnpyeHDx/m6NGjjB49WrdrxIULF2jRogUdO3bkxIkTLFmyhL179zJkyBCg4P+yVatW9OjRA41GQ0REBPPmzWPx4sVYWFgAYGZmRvPmzRk5ciRJSUkP7M/o0aP54IMPOHv2LM2bNyc7O5uqVasSERHBqVOnGDhwIL169eLQocIP1mPGjOGrr77is88+48yZM/z++++4uLgABbPCmjdvjrW1NXv27GHfvn1YWVnRokWLF2o24KsoIy2BrIxkXLwq6I6ZmFri4FqG2/Hniq2Tn6chKeECrt4VdccUCgUu3iEk3qOOJjeb2NPbsVS6YGntBEDC5SjQaslSJbJh0RDWzuvP/ohpZKbffoIjFAJuJiaTkpZOcEBp3TFLczMCfDyJjrtSbB2NJo+LV69ToUxhHYVCQYUyfkTHXS22zsNIz8hk79ETlPH1wsjIsMTtCHG3pMQE0tNS8Ctb+Pvc3MISL98ALsdGF1tHo9Fw7fJF/ANDdMcUCgX+gSH3rAOgzsrEzNwcQ8PC9/DN+Kts3/AXb739vt7NTyGepJuqLFKy1AS7Fi47tzQxxt/RlujbKcXW0eTlE5uYRrCbo+6YQqEg2M2BmFvF1xFCvPy+//57fvrpJ7799ltMTEwYOXIkW7ZsYejQoaSmpj64gXt4eddxvSLmz59Pz549AWjRogWpqans2rWLhg0b8uWXX9K1a1fGjx+vK1+xYsGX1ujoaJYuXcqWLVto0qQJAKVLly76Ag+Qk5PDokWLcHJy0h3r2LGjXpmff/4ZJycnzpw5Q3BwML///ju3bt3i8OHD2NvbA+Dv768r379/fwYNGsSMGTMwNTXl2LFjnDx5ktWrVz9y/1JSUpg4cSJWVlZUr14dFxcX3TUAmDhxIitXrmTNmjW6oBFA48aN+fjjj3XP75x1ZGhoqOu3s7Oz3sy37t27s2DBAjp37gzAb7/9hre3Nw0bNnxgXy9fvsyIESMIDAwEICAgQHdu8uTJ9OjRgw8//FB3bvbs2TRo0IAffvgBMzMzfvzxR0JCQhg6dCgrVqxg3LhxVK1aVdfG+PHjOX78OF27dqVBgwZs2rQJd/eC/Ezvv/8+sbGxrFu3Tlf+ww8/pEOHDnp9HD58uO7f77//Pps2bWLp0qVUr16d9PR0Zs2axZw5c3j77bcB8PPzo27dugAsWbKE/Px85s2bp/twvGDBAmxtbdm5cyfNmjV74DUSJZOdkQyAmYWt3nFTC1uyM1KKraPOSkOrzcfUwkbvuJmFLenJ1/SOnY/aQNTeRWhys7G2c6dBh7EYGBb8eVClJqBFy5nDf1G5QX9MTC04uf93dq4YS4ues3TlhHhcKekqAGys9W/Y2Fhb6s7dLS0jk/z8fGzvqmNrZcn1hEcPxi5eu4WNew+izsklwMeT0QN6PHIbQtyPKjUFACul/u9mK6UN6WnJxdbJzEgjPz8fK+u76ljbcCvhWrF1MlRpbN/wF9XrFOYm0uTm8seCb2jZvhe29k4k3b73zBohHkdKVsHqCBszE73jNmYmpGapi6tCujqHfK22mDqmXE/LKLaOEOLld/nyZWrXrg0UTHBJT08HoFevXtSsWZM5c+aUqF35hvIcnTt3jkOHDrFy5UoAjIyM6NKlC/Pnz6dhw4ZERkYyYMCAYutGRkZiaGhIgwYNHqsPPj4+ekEugJiYGD7//HMOHjzI7du3dTO5Ll++THBwMJGRkVSuXFkXLLpbu3bteO+991i5ciVdu3Zl4cKFNGrUCF9f34fuV+3atTEwMCAjI4PSpUuzZMkSXFxcUKlUjBs3joiICOLj49FoNGRlZRWZ0RUaGvpoF+JfAwYMoFq1aly7dg0PDw8WLlxIeHj4Q931HDZsGP379+fXX3+lSZMmdO7cGT+/gvwBUVFRnDhxgsWLF+vKa7Va8vPziY2NpVy5ctjZ2TF//nyaN29O7dq1GT16tK5scnIykydPZsWKFbRq1QpDQ0Pq1KnD5s2bCQgI4OTJk0Wmdt59DfLy8pg0aRJLly7l2rVr5OTkoFardTPGzp49i1qtJiwsrNjxRUVFcf78eayt9aeBZ2dnF1naeie1Wl1kOagmV4GRsek967zuLv2ziyPb/k/3vF7b/z3V1/MOrI+Ld0WyMpI5d2w1B9ZPI+ytyRgamaDV5pOfp6FKwwG4+lQCoGbLYayZ24eEKydx85VcXaJk9hw9wdxla3XPR/d//kGlNo1q06hGZW4np7Js007m/L6S0f27y8wXUWLHD+1m1Z8/6Z6/PXjMU3/N7KxMfvlhEs5uXjRu9Zbu+MbVi3F29aBy9cf77CjE3fZevMa8g6d1z0c2LtnncCHE68fV1ZWkpCR8fHzw9vbm77//pmLFisTGxupWupWEBLqeo/nz56PRaHSzcqAg+GFqasqcOXN0S/aKc79zAAYGBkXeGMUlJLe0LLrzSZs2bfDx8WHu3Lm4u7uTn59PcHCwbnnag17bxMSE3r17s2DBAjp06MDvv//OrFmz7lvnbkuWLKF8+fI4ODjozbgaPnw4W7ZsYdq0afj7+2Nubk6nTp2KLJ0rblwPo3LlylSsWJFFixbRrFkzTp8+/dA7YY4bN47u3bsTERHBhg0bGDt2LH/++Sft27dHpVLxzjvvMHTo0CL1vL0LE2Xu3r0bQ0ND4uPjycjI0AWVzp07h1qt1u08OWHCBNLS0qhbty4zZ87k77//1guiFXcNvv76a2bNmsXMmTOpUKEClpaWfPjhhw/9/6pSqahatWqR1wGKBEvvNHnyZL1ZiVAQuKnf7rN71BDupavT7I6dEfPzCn52szNTMLcqDDCrM1OwcfIttg1TcyUKhQHqTP0pv9mZKZhZ2OkdMzG1xMTUEms7dxzdyrLy/3py7cJBvMvWw9yyoOyduzCaWdhgaqYkM/3WY41TvN5Cg8rq5czK1WgASE1X6e10mJqegY+7S7FtKC0tMDAwKDLjK0WVga3y0ZbyAyitLFFaWeLu7IiHiyODx88g5tJVyvh6PXJbQgCUD6mGd6nCGd6af9/nqrRUlDaFv89Vaam4efoW24aFpRIDAwNd4nldnfRUrJT6v8/V2Vks+O4LTEzN6TlwhN4mPBejT3Hj+iVOHS8Ifv33OfGLUX1o2LwDTVt3LflAxWutqpcL/k62uueavIKb5KnZOdhZFO5wm5qdc8+8WdamJhgoFKRm63+mT81WY2smN0eFeFU1btyYNWvWULlyZfr06cNHH33EX3/9xZEjR4qsTnoUEuh6TjQaDYsWLWL69OlFlny1a9eOP/74g5CQELZt20afPn2K1K9QoQL5+fns2rVLt3TxTk5OTqSnp5ORkaELePyXg+t+EhMTOXfuHHPnzqVevYLdqfbu3atXJiQkhHnz5pGUlHTPWV39+/cnODiY77//Ho1G88hvUi8vL91sqDvt27eP8PBwXVJ+lUpVomToJiYF06LvTtD6X99nzpzJtWvXaNKkCV5eD/8Fp0yZMpQpU4aPPvqIbt26sWDBAtq3b0+VKlU4c+aM3hLPu+3fv58pU6awdu1aRo0axZAhQ/jll18A8PDwAAoCYV26dAHgm2++IT09ne7duzN06FBdmXvZt28fbdu21S2Vzc/PJzo6mvLlywMFyynNzc3Ztm0b/fv3L1K/SpUqLFmyBGdnZ5RK5UNfkzFjxjBs2DC9Y5OWyOyI+zE2McfYpDDwqNVqMbe0I+HKSeycC5Yo56ozSbwRjV9I82LbMDA0wt7Fj4TLJ/Dwq6Fr5+aVk/hXbHXP19ZqtWi1WvL+Da45uBcsxU1Pvo6FdUHeDHVWOursNCyVzo8/WPHaMjczxfyOLy9arRZbpTWnYi5SytMNgMzsbGIuXaVp7eJnBxgZGVLa051TMbFUr1BO186p6Iu0qPd4Gyb8FwT4LwAnREmYmpljaqb/+9xaacuFcydx9yoFFMzAuhIXQ416xacAMDIywsO7NBfOnSSoYnVdO+fPnaRWg8LZ3NlZmfw8ZyJGRsb0HjQaY2P9JWA9Bnysd9Pz6qXzLP/tewZ+NBEHJ9cnNmbx+jE3NsLcuPBrpVarxdbclFM3EvG1L/jMmJmTy/nbKTQJKP5ztZGhAaUclJyOT6Sal4uundM3EmlWVnYIFeJV9dNPP+lWkL333ns4ODiwf/9+3nzzTd55550StyuBrudk3bp1JCcn069fP2xs9HMudOzYkfnz5/P1118TFhaGn58fXbt2RaPRsH79ekaNGoWvry9vv/02ffv2Zfbs2VSsWJFLly5x8+ZN3nrrLWrUqIGFhQWffPIJQ4cO5eDBg0V2dCyOnZ0dDg4O/PTTT7i5uXH58mW9JXQA3bp1Y9KkSbRr147Jkyfj5ubG8ePHcXd3p1atWgCUK1eOmjVrMmrUKPr27fvA2UIPKyAggBUrVtCmTRsUCgWfffbZQ+/keCcfHx8UCgXr1q2jVatWmJub6xL5d+/eneHDhzN37lwWLVr0UO1lZWUxYsQIOnXqRKlSpbh69SqHDx/W5TsbNWoUNWvWZMiQIfTv3x9LS0vOnDnDli1bmDNnDunp6fTq1YuhQ4fSsmVLPD09qVatGm3atKFTp054eXnRtWtX3nvvPdRqNXXq1CE2NpYLFy5gaWnJmjVr+PTTT3F2vnfgISAggL/++ov9+/djZ2fHjBkzSEhI0AW6zMzMGDVqFCNHjsTExIQ6depw69YtTp8+Tb9+/ejRowdff/01bdu2ZcKECXh6enLp0iVWrFjByJEj8fQsfjczU1NTTE3178QZGUvy+kehUCgIqNSas4eWYW3rhqWNM6f2/4GZpb0uiAWwY/nnePrVIKDSGwCUqfImhzbNxs7FDweXAKIj16HJzaZUUGMAVKk3uBK9Dxfvipia25Clus3ZIysxMjLFzbcgP5zSzgOP0tU5vmseoWGDMTax4MS+37C288DZM/jZXwzxylIoFLSqX4PlW3bj6uSAs70dSzZsx87GmmoVAnXlJny/kGoVytGyXsF7v3XDWnz3+0pKe7rh7+3J+t1/k52TQ8Pqhctqk9PSSUlTceN2wUYel68nYGZqgqOdDdaWFsTEXeX8lWsElvLGysKchMRklmzYjqujvczmEk+UQqGgdqM32L5xOQ7Obtg5OLNl3Z9Y29hRvmJhcHberHGUr1iD2g0LAll1G7dh2aI5eHiXxssngH07I8hRq6las2AX6f+CXLm5OXQJH4o6KxN1VsGuzZbWNhgYGODg5KbXl0xVGgDOrp6YW5RsJrwQxVEoFLQI9GHlyfO4WlvgbGXO0sgYbM1NCfUqnKH7xZaDVPNypXlgQSDrjXKl+GH/CUo5KPFzsGXjP3Fka/Jo6Ff4GTMlS01Klpob6QXv78vJ6ZgbG+FgaYa1aUFw93ZGFip1LrczssnL1xKXVPBed7W2wMxYvv4K8SIxMDDQ27Cua9eudO1aMMP4v3RCJSE/6c/J/PnzadKkSZEgFxQEuqZOnYq9vT3Lli1j4sSJfPXVVyiVSurXr68r98MPP/DJJ5/w7rvvkpiYiLe3N5988gkA9vb2/Pbbb4wYMYK5c+cSFhbGuHHjGDhw4H37ZWBgwJ9//snQoUMJDg6mbNmyzJ49Wy8Zu4mJCZs3b+bjjz+mVatWaDQaypcvz3fffafXVr9+/di/f/9D7Vj4sGbMmEHfvn2pXbs2jo6OjBo1irS0tEdux8PDg/HjxzN69Gj69OlD7969dYFAGxsbOnbsSEREBO3atXuo9gwNDUlMTKR3794kJCTg6OhIhw4ddEv2QkJC2LVrF59++in16tVDq9Xi5+enm531wQcfYGlpyaRJk4CCGXuTJk3inXfeoVatWnh4ePDLL78wbdo0vvzySy5duoSHhwc9e/Zk+fLlhIWF8eabb7Jjx4579vF///sfFy9epHnz5lhYWDBw4EDatWunt5vFZ599hpGREZ9//jnXr1/Hzc2NQYMGAWBhYcHu3bsZNWoUHTp0ID09HQ8PD8LCwh5phpcomcDQ9uRp1BzZ9gO56gwc3ctRv/1nGBoV3rHPSE1AnZWue+5dpi7qzFROHfiT7Mxk7JxKUb/dZ7qk9oaGJty6doboY2vJycnAzMIWJ/dyNO4yGbM7ktjXaP4Bkbt/Zs/qL1EoDHDyDKJB+7GSiF48cW0b10Wdk8tPS9eSmZVN2dLefDKwJyb/7mALkJCYTHpGpu557crBpKoyWLpxBynpKnzd3fh0YC+9BPVb9h/hr007dc/HzvkZgHe7taNh9cqYmBhz+ORZlm3aiVqdg63SikqBAXTo3RljI3mfiyerQdN25OaoWfn7/5GdlYmPXyB93vuf3gyspNsJZGYUfr4JqVoHVXoaW9ctIT0tBXcvX/q89ynWSlsArl+5yJW4GACmjXtf7/VGTvgeOweZgSuerTeDSpOjyWPe36fIzNVQ1smO0WGhmNyxk21Cehbp6sKbn7V83UjLzmFZVAypWWp87JWMblwNG/PCG6Zboy+z/MR53fMJmw8CMKh2BRr8GxBbFhXD7guFGzWMidgHwGdNq1P+jp0ghRAvphs3bvDll18yf/58MjMzH1yhGArt42T4EuI+Jk6cyLJlyzhx4sTz7sojCwsLIygoiNmzZz/vrryS/rdQZnSJV9+o4O3PuwtCPHXHzOs/uJAQL7mQVR8/uJAQLzm7T3943l0osV2nSxYMedoaBFk87y68sJKTk3n33XfZsmULJiYmjB49miFDhjBu3DimTZtGSEgIH330kW5iyKOS25Tiifsvb9acOXP44osvnnd3HklycjI7d+5k586dfP/998+7O0IIIYQQQgghxCtl9OjR7N+/n/DwcDZt2sRHH33Exo0bMTAwYPv27dSsWfOx2jd4cBEhHs2QIUOoWrUqDRs2LLJscdCgQVhZWRX7+G+J3PNUuXJlwsPDmTJlCmXLltU7FxQUdM++F7cToRBCCCGEEEIIIfRt2LCBBQsWMG3aNNauXYtWq6VSpUqsW7fusYNcIEsXxTN28+bNe+bUUiqV902m/rxdunRJb7eiO7m4uGBtXfx2yaIoWbooXgeydFG8DmTpongdyNJF8TqQpYtPnixdvDcjIyOuXLmCm1vBRikWFhYcOXJEt1HaY7f/RFoR4iE5Ozu/0MGs+/Hxka2NhRBCCCGEEEKIx6HVajG6Y8MfQ0NDzM3Nn1j7EugSQgghhBBCCCGEEM+EVqslLCxMF+zKysqiTZs2mJiY6JU7duxYidqXQJcQQgghhBBCCCGEeCbGjh2r97xt27ZPtH0JdAkhhBBCCCGEEEKIZ+LuQNeTJrsuCiGEEEIIIYQQQohXgszoEkIIIZ4C2Y1OvA5kNzrxOjBq/mSX1AghnqwqWbufdxfuocXz7sBrS2Z0CSGEEEIIIYQQQohXggS6hBBCCCGEEEIIIcQrQQJdQgghhBBCCCGEEOKVIDm6hBBCCCGEEEIIIcRTN3v27IcuO3To0BK9hgS6hBBCCCGEEEIIIcRT98033zxUOYVCUeJAlyxdfEUtXLgQW1vbx25HoVCwatWqx27ncezcuROFQkFKSso9y9w93nHjxlGpUiXd8/DwcNq1a/fU+vi03T0eIYQQQgghhBDiZRMbG/tQj4sXL5b4NWRG1wssPDyclJSU5x5oeli7du1i/PjxREZGkp2djYeHB7Vr12bu3LmYmJiwcOFCPvzww/sGrEqqS5cutGrV6p7nZ82ahVar1T1v2LAhlSpVYubMmU+sD76+vly6dAkAc3Nz/Pz8+OCDD+jfv/8jtaNQKFi5cqVeYG748OG8//77T6yv4uVx8+ppzh1dRfLNi2RlJFG3zWg8/Grcv86VU0Tu/pnUpCtYWDtSvnpnSpVvrFcmU5XIib2LuBF3HI1GjZWNK9WbDsHeNQCA7MyUgvOXoshRq3DyCKJKw/5Y27k/tbEK8Z+LMafZs3UN169cJC01mZ4DRxJUsfr960SfImL5QhLir2Jr70ijFh2pWrORXpnUlEQ2rvqN6DPHyc3Jwd7JlU4938XTx/9pDkcIAM4kJLHu9EXiktJIzlIzrGEVqnm53L/OjUQWHT3LtRQVDpbmtK/gRwM/T935VacucPhyAtdSVZgaGRLgaEv3qmVxV1oBkK7OYXnUeU7E3+Z2RhbWpiZU83ahc8UALE2Mn+p4xevpzPk41uzYR+y1eJJT0xnetyvVK5S7b53T52P5ZdUmribcxNHWhg5N69OwemXd+ZVb93Do5FmuJdzCxNiYMr5e9GzTFHdnR12ZcXMWcOZCnF67TWqFMvCtNk90fEKIpyMnJ4fY2Fj8/PwwMnr8MJUEusQTcebMGVq0aMH777/P7NmzMTc3JyYmhuXLl5OXl/fUX9/c3Bxzc/N7nrexsXnqfQCYMGECAwYMIDMzk2XLljFgwAA8PDxo2bLlY7VrZWWFlZXVE+qleJnkadTYOvlSKiiMfeumPLC8KjWBPWu+wK9Cc2q2+IiEKyc4vOU7zCzscPMt+NCYk61i+9JPcPYMol67/2FqboMqJR5js4L3mFarZe+ayRgYGlG3zWiMTC2IPraGnSvG0bL3bIyMzZ7qmIXIzcnBzcOH0FqN+W3u1w8sn3Q7gYU/TKZG3WZ0Cf+Q8+dOsmLxD1grbSlTvuB9n5mp4sfp/6NUmSDC3/0USyslibfiMbewfNrDEQKAHE0ePnZKGvp78s2u4w8sf1OVyZQdR2kS4MWQOpU4fSORnw6cwtbclIruTgCcTUiiWVlv/BxsyMvX8mdkNJO2HmZam3qYGRuRkqkmOSubHlXL4mFjRWJGNvP+PkVyZjYfNajytIcsXkPq3Fx8PFxpVKMK0xf8+cDyNxOT+WruYprWrsbQnh05GXOR/1uyBlulNZUCC25CnLkQR/M61fDz9iAvL58/1m/ji/9bxIxRQzAzNdG1FVarKm+1KLzBYSrBXCFeeJmZmbz//vv88ssvAERHR1O6dGnef/99PDw8GD16dInalaWLL6kZM2ZQoUIFLC0t8fLy4t1330WlUhUpt2rVKgICAjAzM6N58+ZcuXJF7/zq1aupUqUKZmZmlC5dmvHjx6PRaB65P5s3b8bV1ZWpU6cSHByMn58fLVq0YO7cuZibm7Nz50769OlDamoqCoUChULBuHHjAPj1118JDQ3F2toaV1dXunfvzs2bN4u8xr59+wgJCcHMzIyaNWty6tQp3bkHLdW8c+lieHg4u3btYtasWbq+xMbG4u/vz7Rp0/TqRUZGolAoOH/+/ENdh//GULp0aUaNGoW9vT1btmzRnT98+DBNmzbF0dERGxsbGjRowLFjx3TnfX19AWjfvj0KhUL3/O6li/n5+UyYMAFPT09MTU2pVKkSGzdufKg+5uTkMGTIENzc3DAzM8PHx4fJkyfrzqekpNC/f3+cnJxQKpU0btyYqKgoAG7duoWrqyuTJk3Sld+/fz8mJiZs27btoV5fPBo33ypUqN0DT/+aD1X+wslNWCqdqVS/D0oHLwIqvYFXQC2ij6/VlfnnyEosrByo3mwoDq5lsLJxwdWnEta2bgCkp1wn8UY0VRu/g71rAEo7D6o2HkS+JofL5/Y8lXEKcaeyQZVp9mZ3girdf/bifw7u3Yy9gzNvdHwbZzdPajdsSXDlmuzbHqErs3vLKmzsHOjcawhevgHYO7oQUK4SDk5uT2sYQuip5OFEl8plqO7t+lDlt0ZfxtnKnF6h5fC0taJ5oA81fFxYfzZOV2ZMWDUa+HniaWuNj72SwbUrkJiRzcWkNAC87Kz5qEEVqnq64GptSZCrA10qleHY1Zvk5ec/jWGK11zlcgF0axVGjZD7z+L6z5b9R3Cyt6N32+Z4ujrRsl4NalYsT8SuA7oyn77Ti4bVK+Pl6oyvhyvvdmvH7eRULl65rteWqbExdkpr3cPCTG7MCfGiGzNmDFFRUezcuROzO35mmzRpwpIlS0rcrgS6XlIGBgbMnj2b06dP88svv7B9+3ZGjhypVyYzM5Mvv/ySRYsWsW/fPlJSUujatavu/J49e+jduzcffPABZ86c4ccff2ThwoV8+eWXj9wfV1dX4uPj2b17d7Hna9euzcyZM1EqlcTHxxMfH8/w4cMByM3NZeLEiURFRbFq1Sri4uIIDw8v0saIESOYPn06hw8fxsnJiTZt2pCbm/vIfZ01axa1atViwIABur54e3vTt29fFixYoFd2wYIF1K9fH3//R1vWkp+fz/Lly0lOTsbEpPBOU3p6Om+//TZ79+7l77//JiAggFatWpGeng4UBML+e934+Hjd8+LGMH36dKZNm8aJEydo3rw5b775JjExMQ/s2+zZs1mzZg1Lly7l3LlzLF68WBdQA+jcuTM3b95kw4YNHD16lCpVqhAWFkZSUhJOTk78/PPPjBs3jiNHjpCenk6vXr0YMmQIYWFhj3SNxNORGH8OF++KesdcfSqTGH9O9/zaxUPYufizP+JrVv8YzubFw7hwcrPufH5ewc+VgWHhnVCFQoGBkTG3r599yiMQ4tFdjo3GPzBE71hAuUpcjo3WPT974gge3v4snjeNL0b15dvJwzm0b8vdTQnxwoi5lUKwq4PesRA3J2JupdyzTmZuwc1K6/vMZMnM1WBubIShgXwNEM9fdNwVQsqU1jtWsaw/MXFX71knK1sNgJWl/mqOPUdP0Pd/Uxg25TsWr9uCOifnyXdYCPFErVq1ijlz5lC3bl0UCoXueFBQEBcuXChxu7J08SX14Ycf6v7t6+vLF198waBBg/j+++91x3Nzc5kzZw41ahTcEf/ll18oV64chw4donr16owfP57Ro0fz9ttvA1C6dGkmTpzIyJEjGTt27CP1p3PnzmzatIkGDRrg6upKzZo1CQsLo3fv3iiVSkxMTLCxsUGhUODqqn8ns2/fvrp/ly5dmtmzZ1OtWjVUKpXecr2xY8fStGlT3Vg8PT1ZuXIlb7311iP11cbGBhMTEywsLPT6Eh4ezueff667Prm5ufz+++9FZnndz6hRo/jf//6HWq1Go9Fgb2+vl6OrcWP9PEk//fQTtra27Nq1i9atW+PkVLAUwdbWtsh1utO0adMYNWqULnA5ZcoUduzYwcyZM/nuu+/u28fLly8TEBCg+2Xi4+OjO7d3714OHTrEzZs3MTU11b3WqlWr+Ouvvxg4cCCtWrViwIAB9OjRg9DQUCwtLfVmhN1NrVajVqv1jmlyFRgZm963n6JksjOSMbOw1TtmamFLbk4meZocDI1MyEhN4MKJjZSp8iblqnUkKSGG47vmY2BoRKnyjVHaeWJh7cTJfYsJDRuEkbEZ546tITP9NlkZyc9nYELchyotBStr/SXqVta2ZGdnkpubg7GxCUm3Ezi4ZxN1G7emUfOOXLkUw7plCzA0NCqSy0uIF0FKlhobc/2/lTbmJmTlasjR5GFiZKh3TqvVsujwWco42eJlZ11sm2nZOaw4eZ6wAO+n1m8hHkVKugoba/30HDbWlmRmZ5OTm4uJsX7QVqvVsnDlBsqW8sbbrTDHXZ0qFXCyt8VOac3l+AQWr91C/K1EhvfpihDixXXr1i2cnZ2LHM/IyNALfD0quZXzktq6dSthYWF4eHhgbW1Nr169SExMJDMzU1fGyMiIatWq6Z4HBgZia2vL2bMFMzKioqKYMGGCLv+TlZWVbpbTne08DENDQxYsWMDVq1eZOnUqHh4eTJo0iaCgIOLj4+9b9+jRo7Rp0wZvb2+sra1p0KABUBCQuVOtWrV0/7a3t6ds2bK6sTwJ7u7uvPHGG/z8888ArF27FrVaTefOnR+6jREjRhAZGcn27dupUaMG33zzjd5ssISEBAYMGEBAQAA2NjYolUpUKlWRsd5PWloa169fp06dOnrH69Sp81DXIzw8nMjISMqWLcvQoUPZvLlwJk9UVBQqlQoHBwe990VsbKxeRH3atGloNBqWLVvG4sWLdUGx4kyePBkbGxu9x/6IqQ89XvHkadFi51yakDo9sXMujV+F5pQObsqFE5sAMDA0ok7rkaSnXGPl//XirzlduHn1FG6+VVAo5M+GeDlptVrcvUrRvG0P3L1KUaNuM6rVacLBPZsfXFmIl8DPh05zJUXF0HqVij2fmZPL1B1H8LSxomOIbMAgXk7z/orgyo2bfNi7k97xprVDqRToj4+7C/WqhjCkRwcOnTjLjdtJz6mnQoiHERoaSkREYaqJ/4Jb8+bN0/v+/6hkRtdLKC4ujtatWzN48GC+/PJL7O3t2bt3L/369SMnJwcLC4uHakelUjF+/Hg6dOhQ5JxZCde0e3h40KtXL3r16sXEiRMpU6YM//d//8f48eOLLZ+RkUHz5s1p3rw5ixcvxsnJicuXL9O8eXNynsN04/79+9OrVy+++eYbFixYQJcuXR76egI4Ojri7++Pv78/y5Yto0KFCoSGhlK+fHkA3n77bRITE5k1axY+Pj6YmppSq1atZzrWKlWqEBsby4YNG9i6dStvvfUWTZo04a+//kKlUuHm5sbOnTuL1LszB9qFCxe4fv06+fn5xMXFUaFChXu+3pgxYxg2bJjesUlLSh6dF/dnZmlHdmaK3jF1ZgrGJhYYGhUsozWzsENp76lXRmnnwdWYwnwY9i7+NO/xDTnqDPLzNJhZ2LD1z5HYOfs99TEI8aislLao0lP1jqnSUzAzs8DYuOB9b620xdlV/33v5OLOqeMHEOJFZGtuSmqW/ozo1KwczI2NiszmWnDoNMeu3mJs8xo4WBbdnCcrV8NX249gbmTEsAZVMDKUmxbixWBrbUVqun6e4dT0DCzMzIrM5pq/PIJjZ6IZP6QPDrb332jK39sDgBu3k3B1tH+ynRZCPDGTJk2iZcuWnDlzBo1Gw6xZszhz5gz79+9n165dJW5XAl0voaNHj5Kfn8/06dMx+De/wtKlS4uU02g0HDlyhOrVC7ZkP3fuHCkpKZQrV5AcskqVKpw7d+6R8089LDs7O9zc3MjIyADAxMSkyA6M//zzD4mJiXz11Vd4eXkBcOTIkWLb+/vvv/H2Lphqn5ycTHR0tG4sj6q4vgC0atUKS0tLfvjhBzZu3HjPnGMPw8vLiy5dujBmzBhWr14NFCTU//7772nVqhUAV65c4fbt23r1jI2N77tTpVKpxN3dnX379ulmv/3X9n//1w+iVCrp0qULXbp0oVOnTrRo0YKkpCSqVKnCjRs3MDIy0svbdaecnBx69uxJly5dKFu2LP379+fkyZPFTjkFMDU1LTLjy8hYciY8LQ5uZYmPPap37MblSBzcyuqeO7qXJT1ZP4Freko8lkqnIu2ZmBbsSJeefJ2khPME1+r+FHotxOPxLlWGc6f1d7E7fzYK71JldM99Spfl9k399/3tmzewtS/6vhfiRRDgZEvktVt6x07E3ybAyVb3XKvVsvDwGQ5fTuCzZjVwtip6cy4zJ5fJ245gbGjA8EZViwTJhHieyvh6ceysfo7ZE9EXCPAtvDGh1Wr5ecV6Dp08y7j3+uDsYPfAdi9dvwGAnbL4ZbxCiBdD3bp1iYyM5KuvvqJChQps3ryZKlWqcODAgftOpngQCXS94FJTU4mMjNQ75ujoSG5uLt9++y1t2rRh3759/N///V+RusbGxrz//vvMnj0bIyMjhgwZQs2aNXXBkM8//5zWrVvj7e1Np06dMDAwICoqilOnTvHFF188Uj9//PFHIiMjad++PX5+fmRnZ7No0SJOnz7Nt99+CxTkElOpVGzbto2KFStiYWGBt7c3JiYmfPvttwwaNIhTp04xceLEYl9jwoQJODg44OLiwqeffoqjo6NuJ8VH5evry8GDB4mLi8PKygp7e3sMDAwwNDQkPDycMWPGEBAQ8FjTJQE++OADgoODOXLkCKGhoQQEBOh2mUxLS2PEiBGYm+vfefX19WXbtm3UqVMHU1NT7OyK/jEfMWIEY8eOxc/Pj0qVKrFgwQIiIyNZvHjxA/s0Y8YM3NzcqFy5MgYGBixbtgxXV1dsbW1p0qQJtWrVol27dkydOpUyZcpw/fp1IiIiaN++PaGhoXz66aekpqYye/ZsrKysWL9+PX379mXdunWPda1E8TS52XpBKVVqAsk3L2JiZo2l0okTe38lKyORGs0/BMCvQnPOR60nas8vlAoK4+aVk1yJ3k+9tv/TtVG28ptsWzqGM4f+wqtMHZJuxHDx1GZCwwbrylyJ3oepuQ0WSkdSb1/m+K75ePjVxNWn0rMauniNqdXZJN4sXPaenHiT61disbC0wtbeiY2rfyMtJYm33h4KQI26zTiwayMbVi6iaq0wLkaf5OTxA7w9eIyujbphbfhh+qfs2LickKq1uRJ3nkP7ttC+2zvPfMA1rjwAAQAASURBVHzi9ZSdq+FGemFqiFuqTOKS0rAyNcbR0pw/jp0jKSub9+oUbCjSpIw3m85dZvHRf2jo78mZG4kcvHSDkY2r6tpYcOgM++Ku83HDqpgbG5Hy7wwwi39nff0X5MrJy+O9uiFk5WrI+jdhvdLUBAMDmWEtnqxsdQ7xtxJ1z28lpRB7NR5rS3Mc7WxZvG4LyanpDOlRsKKkae1QNu49yG9rNtOoRmVOnY/lQORpRg/ooWtj/vII9h47yci+3TAzNSE5rWATJ0vzgllfN24nsffYCSqXK4PS0oK46zdYtGoT5f188XF3QQjxYvPz82Pu3LlPtE0JdL3gdu7cSeXKlfWO9evXjxkzZjBlyhTGjBlD/fr1mTx5Mr1799YrZ2FhwahRo+jevTvXrl2jXr16zJ8/X3e+efPmrFu3jgkTJjBlyhSMjY0JDAzUS57+sKpXr87evXsZNGgQ169fx8rKiqCgIFatWqWbdVS7dm0GDRpEly5dSExMZOzYsYwbN46FCxfyySefMHv2bKpUqcK0adN48803i7zGV199xQcffEBMTAyVKlVi7dq1ejsaPorhw4fz9ttvU758ebKysoiNjdXNYOrXrx+TJk2iT58+JWr7TuXLl6dZs2Z8/vnnrF+/nvnz5zNw4ECqVKmCl5cXkyZN0u0++Z/p06czbNgw5s6di4eHB3FxcUXaHTp0KKmpqXz88cfcvHmT8uXLs2bNGgICAh7YJ2tra6ZOnUpMTAyGhoZUq1aN9evX62YHrl+/nk8//ZQ+ffpw69YtXF1dqV+/Pi4uLuzcuZOZM2eyY8cOlEolAL/++isVK1bkhx9+YPDgwfd7aVECSTfOs2P5Z7rnkbsLdgYtVb4R1ZsNJTszmcy0wlmBVjYu1Hvzf0Tu/pnoyHVYWDlSrel7uPkW/h6xdw2gTuvRnNj3K2cOLsXSxplK9fviE1g4QzArM5nIPQvJzkzBzMIO33INCarxaBs/CFFS1y6dZ+6scbrnEcsXAlClZkM69xpCeloKKUmF73t7RxfCB48hYvlC9u1Yj42dAx16DKZM+cL3vaePP70GjGTjmsVs3/AXdg7OtO4UTuXq9Z/VsMRr7mJiKhO3HNI9//XIPwDU9/NgcO0QUrLVJGZk6847W1kwqlFVFh09y8Z/4rC3MGNgrWAquhfOQtwSXZDjc+Lmg3qvNah2BRr4eRKXlMb52ykAfLRKf5b67PYNcbIqusxRiMdx4co1xn+3UPf8l1UbAWhQrRLvdW9PSpqK28mFS82dHewYPaAHv6zaxPo9f+NgY8OgLm9SKbBwxcnmfQW7kI/7Tn939He7taNh9coYGxlyKjqW9bsPolbn4GCrpEZIOTo0k9/vQryI0tLSHrrsf985H5VCq9VqS1RTiFfUnj17CAsL48qVK7i4yF2gp+F/C2Xponj1Na2med5dEOKpC1n18fPughBPnVHzts+7C0I8ddahLZ53F0os/cjG592FYr3M1/RpMjAweOgdFe+X0ud+ZEaXEP9Sq9XcunWLcePG0blzZwlyCSGEEEIIIYQQT9COHTt0/46Li2P06NGEh4fr0gYdOHCAX375hcmTJ5f4NWTLFfFQJk2ahJWVVbGPli1bPu/uPRF//PEHPj4+pKSkMHXqVL1zixcvvuf4g4KCnlOPi/c6/F8JIYQQQgghhHj5NGjQQPdYtGgRM2bMYPLkybz55pu8+eabTJ48mWnTprFgwYIHN3YPsnRRPJSkpCSSkpKKPWdubo6Hh8cz7tGzlZ6eTkJCQrHnjI2N8fHxecY9ureX4f9Kli6K14EsXRSvA1m6KF4HsnRRvA5e5mV2snTx5WVhYUFUVFSRXNPR0dFUqlSJzMzMe9S8P1m6KB6Kvb099vb2z7sbz421tTXW1i/H9sSv+/+VEEIIIYQQQogXn5eXF3Pnzi2yomrevHl4eXmVuF0JdAkhhBBCCCGEEEKIZ+qbb76hY8eObNiwgRo1agBw6NAhYmJiWL58eYnblRxdQgghhBBCCCGEEOKZatWqFTExMbRp00aXgqdNmzZER0fTqlWrErcrM7qEEEIIIYQQQgghxDPn6enJpEmTnmibEugSQjxzo4K3P+8uCPHUTTnc+Hl3QYinr930590DIZ462XRBvBYkcbp4TlJSUpg/fz5nz54FICgoiL59+2JjY1PiNmXpohBCCCGEEEIIIYR4po4cOYKfnx/ffPONbunijBkz8PPz49ixYyVuV2Z0CSGEEEIIIYQQQohn6qOPPuLNN99k7ty5GBkVhKc0Gg39+/fnww8/ZPfu3SVqVwJdQgghhBBCCCGEEOKZOnLkiF6QC8DIyIiRI0cSGhpa4nZl6aIQQgghhBBCCCGEeKaUSiWXL18ucvzKlStYW1uXuF0JdAkhhBBCCCGEEEKIZ6pLly7069ePJUuWcOXKFa5cucKff/5J//796datW4nblaWLQgghhBBCCCGEEOKZmjZtGgqFgt69e6PRaAAwNjZm8ODBfPXVVyVuV2Z0vcQWLlyIra3tY7ejUChYtWrVY7fzOHbu3IlCoSAlJeWeZe4e77hx46hUqZLueXh4OO3atXtqfXza7h6PEEIIIYQQQgjxqjIxMWHWrFkkJycTGRlJZGQkSUlJfPPNN5iampa4XZnR9ZyFh4eTkpLy3ANND2vXrl2MHz+eyMhIsrOz8fDwoHbt2sydOxcTExMWLlzIhx9+eN+AVUl16dKFVq1a3fP8rFmz0Gq1uucNGzakUqVKzJw584n1wdfXl0uXLgFgbm6On58fH3zwAf3793+kdhQKBStXrtQLzA0fPpz333//ifVVvBrOnI9jzY59xF6LJzk1neF9u1K9Qrn71jl9PpZfVm3iasJNHG1t6NC0Pg2rV9Yrs3HvIdbu2EdKmgofd1f6dGhJgI8nALeSUnhv4jfFtv3R252pVSn4yQxOiH/dvHqac0dXkXzzIlkZSdRtMxoPvxr3r3PlFJG7fyY16QoW1o6Ur96ZUuUbP3Sb+XkaTh74nfjYo2SkJWBsYomLdwVC6vTG3Mr+qY1VvN4O7NrInq2rSU9Lwc3Thzad++HlG1BsWY1Gw67NKzl2cCdpKUk4urjTom1PygYV/j7Pz89na8QSIg/tRpWeirWNHVVqNKRxy04oFAoA0tNS2Lj6N86fjSIrM4NS/uVp81Y/HJ3dnsmYxetn87lLrD0dS2q2Gm87a8Krlcff0bbYspq8fFafvsjuC1dJzlLjprSkW+WyVPJw0pXJytWwNDKaw1cSSMvOwddeyduh5fC7o81uv24otv3uVcrSJqj0kxyeEOIpsLCwoEKFCk+sPQl0iYd25swZWrRowfvvv8/s2bMxNzcnJiaG5cuXk5eX99Rf39zcHHNz83uet7Gxeep9AJgwYQIDBgwgMzOTZcuWMWDAADw8/p+9+46ruvofOP667HG57CVTlgMnIq5yK2ruMssVlqs07VeWmuUszTJLK9OWpllpmRPFgeLAnAluQAFFRUTgsjf39wdfL97AHImkvp+Px33oPZ/3OZ/3uV7hc88953xc6N69+79qV6lUolQqH1CWlRUXF2NoaFht7YvqUVhcjIeLEx1aBPDpsl/vGH89LYOPvl1Fl9bNGT/kWU7GxbNk9UasVBY0qesDwIHjp1ixIYyRz/XC18OV0L1/8uHSlSx8dzyWSnNsrVQsnTlRp93wg8fYuCuSpvX8qqWf4slWWlKIlb0ntf07Ebl53h3jczJT2LfxA7wbBtOy2/+RknSCIzu+wsTMGmfPpnfVZklJIRnX4/Fv8TyW9p4UF+RwfM/37N80hy4vzn/gfRTixLFIQtcup++Lo3D39GP/7s388OUHvDV9EUqLytcwOzb/QtThvfQb9Cr2TrWIOxPFqm8/YcxbH1LLrTYAe7av49C+bQwY+jqOtdy4fPECv//0FaZm5rRu3wONRsPKpfPQNzBg6OhJGJuYsX/XJr5fNJM33v8cY2OTh/0yiMfcn4nJrDx6lldaNMDHzoqt5xKZG36Ez/q0RWVSeXbGmuhY9sdfZWSrBtRSKTlxNZUFe/5iVrdWeNqoAPjmz5MkqbN5rU1jbMyM2R9/lQ93HmF+76exMSt/D3/9XEeddqOupPLNwZMEuTtVf6eFEPfs5Zdfvqu4H3744b7al6WL/2ELFiygYcOGmJub4+bmxmuvvUZOTk6luPXr1+Pr64uJiQnBwcEkJSXpHN+wYQMBAQGYmJjg5eXFzJkztetf78X27dtxcnLi448/pkGDBnh7e9OtWze+/fZbTE1NiYiIYPjw4WRmZqJQKFAoFMyYMQOAlStXEhgYiIWFBU5OTgwaNIjr169XOkdkZCSNGjXCxMSEli1bcurUKe2xOy3VvHXpYkhICHv27GHhwoXaXBISEvDx8WH+fN0PMFFRUSgUCs6fP39Xr8PNPnh5eTFp0iRsbGzYsWOH9viRI0fo0qULdnZ2WFpa0q5dO/766y/tcU9PTwD69euHQqHQPv/70sWysjJmzZqFq6srxsbGNGnShLCwsLvKMTExEYVCwerVq2nXrh0mJiasWrWKtLQ0XnzxRVxcXLSj5r/88otO3bKyMj7++GN8fHwwNjbG3d2dDz/8UHs8KSmJ559/HisrK2xsbOjTpw+JiYl3lZe4d03r+fJij060aPTPs7hu2nHgKPY21gzrE4yrkz3dn25By8b1Cd3zpzZmc8SfdGrZjA4tmuLqZM+oAb0wNjJk96Hy96menh7WKgudx+ET52jVpAEmxkbV0k/xZHP2DKBh68G4+rS8q/gLJ7dhrnKgSdvhqGzd8G3yDG6+rYg9vumu2zQyNqd9/xm4+bVBZe2CrXMdAtqPJD3lArlZqQ+iW0Lo2L9rE83bdCawVUccnF3p9+JojIyMOPrnrirjow7vpX3ws9RtEICtnRMt23ajjn9T9oVv1MZcSoilfqMg6jZshrWtAw0DWuFXrzFJiXEA3LieTFJiHH1fGIWrhw/2jrXo+8IoiouLOHF0/0Ppt3iyhJ5NoKOvG+19XHG1UjKihT/G+vrsPn+5yvj98Vfp29Cbpi4OOFqY0aWOB01d7Nl8JgGAopJSDl9KYVBAXeo72uBkYc5zjX1xtDBjR0zFndqsTI11HkeTUqjvaIOjhdlD6bcQ4t4sX76c3bt3o1arycjIuO3jfslA13+Ynp4eixYt4vTp0/z444/s2rWLd955RycmLy+PDz/8kBUrVhAZGYlareaFF17QHt+3bx/Dhg1jwoQJnDlzhqVLl7J8+XKdgYu75eTkRHJyMnv37q3yeOvWrfn8889RqVQkJyeTnJzMxInls0KKi4uZPXs20dHRrF+/nsTEREJCQiq18fbbb/Ppp59y5MgR7O3t6dWrF8XFxfec68KFC2nVqhUjR47U5uLu7s7LL7/MsmXLdGKXLVtG27Zt8fHxuadzlJWVsXbtWjIyMjAyqvjwn52dzUsvvcT+/fs5ePAgvr6+9OjRg+zsbKB8IOzmeZOTk7XPq+rDp59+yvz58zlx4gTBwcH07t2buLi4u85x8uTJTJgwgbNnzxIcHExBQQHNmjUjNDSUU6dOMWrUKIYOHcrhw4e1daZMmcJHH33E+++/z5kzZ/j5559xdHQEyv8dg4ODsbCwYN++fURGRqJUKunWrRtFRUX39PqJ6hGbmEQjP90p+o3r+BCXWH6BWVJSSvzlqzS8JUahUNDQz5vYxKovQi8kXSXxSjIdWzSt8rgQD1tacgyO7o11ypw8mpKWHPOv2i0qykOhUGBkbP6v2hHi70pKSrhyKR6fuo20ZQqFAp+6jbiUEHubOpVnYhsYGnHxwjntc/faflyIOUlqylUAki8nknD+LH71m2rbADAwqFjEoVAoMDA0JDH+HEI8SCWlZSSkZdHA2U5bplAoaOBsS1yquso6xWVlGOrrfiQ11Ncn5nr5B9xSjYYyjQajv8UY6esRk1r1h+DM/EKirqbSwcftX/RGCFGdXn31VTIzM0lISKBDhw58//33rFu3rtLjfsnSxf+wN954Q/t3T09PPvjgA8aMGcPixYu15cXFxXz55Ze0aFG+78iPP/5IvXr1OHz4MEFBQcycOZPJkyfz0ksvAeDl5cXs2bN55513mD59+j3lM2DAALZt20a7du1wcnKiZcuWdOrUiWHDhqFSqTAyMsLS0hKFQoGTk+404VunJnp5ebFo0SKaN29OTk6OznK96dOn06VLF21fXF1dWbduHc8///w95WppaYmRkRFmZmY6uYSEhDBt2jTt61NcXMzPP/9caZbXP5k0aRLvvfcehYWFlJSUYGNjo7NHV8eOulOnv/nmG6ysrNizZw89e/bE3r58zwErK6tKr9Ot5s+fz6RJk7QDl/PmzWP37t18/vnnfPXVV3eV6xtvvEH//v11ym4OPgK8/vrrbNu2jTVr1hAUFER2djYLFy7kyy+/1L5nvL29eeqppwBYvXo1ZWVlfPfdd9q9P5YtW4aVlRURERF07dq1Ug6FhYUUFhbqlBUVFWFsJDODqoM6OwdLC90lsJYW5uQVFFBUXExOXgFlZWVY/S3GSmnO1ZQbVba5+9BfuDjaU6e2e7XlLcS9KMjNwMTMSqfM2MyK4qI8SkuK0De4958vpSVFnNi/Ane/pzA0lhkA4sHKy82irKys0hJFpYUlqSlXqqzjW7cx+8I34elTH1t7J87HnOB01CHKysq0Me2D+1NYmM9nsyeg0NNDU1ZG114v0jSoLQD2ji5YWduxbePP9H1xNEZGJuzftYnMjDSyM+//m3IhqpJdWESZRoOlie7PYEsTY65m5VZZp6GzHaFnEqjrYIOThRmnrqVx+NI17b67poYG+Npb8cfJC7hYKrE0MSYy8SpxN9Q4WVT9pcSe+CuYGBjQ3M3xwXZQCPHAfPXVVyxYsIA//viDH374gSlTpvDMM8/wyiuv0LVrV+1nzfslM7r+w3bu3EmnTp1wcXHBwsKCoUOHkpaWRl5enjbGwMCA5s2ba5/XrVsXKysrzp49C0B0dDSzZs3S7v+kVCq1s5xubedu6Ovrs2zZMi5fvszHH3+Mi4sLc+bMwd/fn+Tk5H+se+zYMXr16oW7uzsWFha0a9cOgEuXLunEtWrVSvt3Gxsb6tSpo+3Lg1CrVi2eeeYZ7VrfTZs2UVhYyIABA+66jbfffpuoqCh27dpFixYt+Oyzz3Rmg6WkpDBy5Eh8fX2xtLREpVKRk5NTqa//JCsri6tXr9KmTRud8jZt2tzT6xEYGKjzvLS0lNmzZ9OwYUNsbGxQKpVs27ZNm9vZs2cpLCykU6dOVbYXHR3N+fPnsbCw0L6fbGxsKCgo4MKFC1XWmTt3LpaWljqPT5evues+iJpVVFzM/r9Oymwu8VgrKy3hwJb5oNHQrOOYmk5HCAB6DngZWwdnFswaz3vjB7Jx9fc0a9kBPb2Ky/cTxyKJOrKPgSETGDfpYwYMG8e+8I0cO7gbKL9OHDzqbW6kJDP77RCm/98gEmJP41e/KQqFfAwQNS+keT2cLMx5a+NehqzaxrLDZ2jv7arzIfe1NuUzIV9bu5uhP28j7NxFWnvW4nafgyPOX+ap2rUwMtB/GF0QQtwnY2NjXnzxRXbs2MGZM2fw9/fntddew9PTs8otm+6FzOj6j0pMTKRnz568+uqrfPjhh9jY2LB//35eeeUVioqKMDO7u2+bc3JymDlzZqVZPQAmJve3AamLiwtDhw5l6NChzJ49Gz8/P5YsWcLMmTOrjM/NzSU4OJjg4GBWrVqFvb09ly5dIjg4uEaWu40YMYKhQ4fy2WefsWzZMgYOHHjXryeAnZ0dPj4++Pj48Ntvv9GwYUMCAwOpX78+AC+99BJpaWksXLgQDw8PjI2NadWqVY301dxc95uuTz75hIULF/L5559r93974403tLn902b/UP5+atasGatWrap07OZMtb+bMmUKb775pk5Z0amIe+iFuBdWFkoys3V/MWRm52JmYoKRoSEqcz309PRQ/y1GnZOLlaryzRAORp+hqLiYts2bVGfaQtwTE3NrCvLUOmWFeWoMjczueTbXzUGuvKzrtH92tszmEtXCzFyFnp4eOdmZOuU52ZkoVdZV1lFaWDJs9CSKi4vIy81GZWlD2IafsLZ10MZsXb+Sdl360TiwfOa1s4sHGWmpRGxbR7OWHQBwdfdm/Lvzyc/LpbS0BKWFJYs/mYyLm3c19VY8qSyMjdBTKMgs0L3mzSwoxKqKjegBVCbGTOzQjKKSUnKKirE2NeaX4zE4KCuuSZ0szJnWtQUFxSXkF5dgbWbCwr3HcVBW/nl9NiWd5KxcJjzd5IH2TQhRvfT09FAoFGg0mgdyozv5Kuc/6tixY5SVlfHpp5/SsmVL/Pz8uHr1aqW4kpISjh49qn0eExODWq2mXr3yjasDAgKIiYnRDszc+rj1G8H7ZW1tjbOzM7m55dORjYyMKr0xz507R1paGh999BFPP/00devWrXIjeoCDBw9q/56RkUFsbKy2L/eqqlwAevTogbm5OV9//TVhYWF3fceHqri5uTFw4ECmTJmiLYuMjGT8+PH06NEDf39/jI2NuXFDd0mYoaHhP/4HVqlU1KpVi8jISJ3yyMhI7YDa/YiMjKRPnz4MGTKExo0b4+XlRWxsxd4gvr6+mJqaEh4eXmX9gIAA4uLicHBwqPR+ut1dL42NjVGpVDoPWbZYffw83TgZl6BTdiL2Ar6ergAYGOjj5VqLU7fEaDQaTsXG4/e/mFvtOvgXzerXwVIpexaJ/w5b5zqkXDqhU3btUhS2znXuqZ2bg1w56qu06z8TY1OLB5mmEFoGBga4uHtxIeaktkyj0XA+5iTutf/5braGhkZYWtlSWlrK6ahD1G9UMZO/uKiw0qyW8us7TaV2TM3MUVpYcuN6MpcvXqB+4+aVYoT4Nwz09ahtq+J0cpq2TKPRcPpaGr72Vv9Y18hAHxszE0rLNBy+lEJgFcsOTQwNsDYzIaewmBPJN2jm6lApJuLCZWrbqvD43x0bhRD/XYWFhfzyyy906dIFPz8/Tp48yZdffsmlS5d0tje6HzKj6z8gMzOTqKgonTI7OzuKi4v54osv6NWrF5GRkSxZsqRSXUNDQ15//XUWLVqEgYEB48aNo2XLlgQFBQEwbdo0evbsibu7O8899xx6enpER0dz6tQpPvjgg3vKc+nSpURFRdGvXz+8vb0pKChgxYoVnD59mi+++AJAO80wPDycxo0bY2Zmhru7O0ZGRnzxxReMGTOGU6dOMXv27CrPMWvWLGxtbXF0dGTq1KnY2dlp76R4rzw9PTl06BCJiYnaJXZ6enro6+sTEhLClClT8PX11VkueT8mTJhAgwYNOHr0KIGBgfj6+mrvMpmVlcXbb79daaaUp6cn4eHhtGnTBmNjY6ytK3+b+/bbbzN9+nS8vb1p0qQJy5YtIyoqqsrZVHfL19eX33//nQMHDmBtbc2CBQtISUnRDp6ZmJgwadIk3nnnHYyMjGjTpg2pqamcPn2aV155hcGDB/PJJ5/Qp08f7R0hL168yB9//ME777yDq2vlgRLx7xQUFpGcWnHBmJquJuFyMhbmpthZW7Fq8w4yMrMZN7h81maX1oGE7T/ETxu306FFU06dT+DPqNNMHjlY20bP9q346ud1eLk64+Puypa9BykoKqJ9kO7yxGs30jkbf1GnrhDVoaS4gOyMii9zcjJTyLgej5GJBeYqe07sX0l+bhotgt8AwLthMOejtxC970dq+3fietJJkmIP8HSf9+66zbLSEg6EfkJGajxP934XjaaM/NzyPYuMTSzQ05dLJPFgPdWxF7+t+BIXdy/cPHyJjAilqLBQO/NqzY+LUFnZ0K3PEKD8jopZ6nSc3TzJUqcTHrqGsrIy2nbpq22zbsNAdm/7AytrexxruXE1KYH9uzbRrFXFfqEn/jqAUqnC0saOlKtJbP7tB/wbB+Fbr8nD7L54QjxTrzZfHzhBbVsV3rZWhJ1LpKCklPbe5deIX0VGY2NqwosB5V9MxKWqSc8vwNNaRXpeAWtPxFGm0dDLv+KmOdFXU9FooJalOSnZeaw6do5aKqW2zZvyioo5ePEaQ5rVfXgdFkLcl9dee41ff/0VNzc3Xn75ZX755Rfs7OzuXPEuyVXcf0BERARNm+p+wHzllVdYsGAB8+bNY8qUKbRt25a5c+cybNgwnTgzMzMmTZrEoEGDuHLlCk8//TTff/+99nhwcDCbN29m1qxZzJs3D0NDQ+rWrauzefrdCgoKYv/+/YwZM4arV6+iVCrx9/dn/fr12j23WrduzZgxYxg4cCBpaWlMnz6dGTNmsHz5ct59910WLVpEQEAA8+fPp3fv3pXO8dFHHzFhwgTi4uJo0qQJmzZt0rmj4b2YOHEiL730EvXr1yc/P5+EhAQ8PT2B8td3zpw5DB8+/L7avlX9+vXp2rUr06ZNY8uWLXz//feMGjWKgIAA3NzcmDNnjs4G8ACffvopb775Jt9++y0uLi4kJiZWanf8+PFkZmby1ltvcf36derXr8/GjRvx9fW971zfe+894uPjCQ4OxszMjFGjRtG3b18yMyuWUrz//vsYGBgwbdo0rl69irOzM2PGlO9ZY2Zmxt69e5k0aRL9+/cnOzsbFxcXOnXqhEol35xVhwtJV5j51XLt8x/XhwHQrnkTxg7qhzorhxsZFf9+DrbWTB45mB/Xb2PLvoPYWloyZmBvmtSt2EeuddMGZObksiZsN+rsHDxrOTN11NBKG9TvOvQXNpYqnbpCVIf0a+fZvfZ97fOoveV3x61dvwNBXcdTkJdBXlbFzFilpSNP936PqL0/EBu1GTOlHc27jMXZs+ldt5mfm86V+PI7zm5bpbu8usOzs3Fwa/DgOyqeaI2atSEnO4udm1eTnaWmlpsnw8dOxUJlBYA6/QaKW2bbl5QUs2Pzr6TfSMHI2Jg6/gE8HzIeU7OKGba9B7zCjs2/smH1t+TmZGFhaU1Qmy507FFxE5+cLDVb/viRnKxMLFRWNG3Rjo7d735vUiHuRStPZ7IKivgtOo7M/EI8bFRM7tgcS9PypYtpuQXo3TINsbisjN+iYrmek4+xgT5NXOwZ26Yx5kYVdxzNLyrhl+MxpOcVoDQ2Isjdkeeb+GHwtzsxHkhMRqPR0NrT+eF0Vghx35YsWYK7uzteXl7s2bOHPXv2VBn3xx9/3Ff7Cs3NW1oI8QTZt28fnTp1IikpCUdHuSPLw5Z9NKymUxCi2s071fHOQUI84ro0L6npFISodo3Wv1XTKQhR7aynfl3TKdy3/+pnC4vAbjWdwn9WSEjIXd1ZcdmyZffVvszoEk+UwsJCUlNTmTFjBgMGDJBBLiGEEEIIIYQQ4iFavnx5tbYvm9ELrTlz5qBUKqt8dO/evabTeyB++eUXPDw8UKvVfPzxxzrHVq1addv++/v711DGVXsS/q2EEEIIIYQQQoh7JUsXhVZ6ejrp6elVHjM1NcXFxeUhZ/RwZWdnk5KSUuUxQ0NDPDw8HnJGt/eo/1v9V6cXC/EgydJF8SSQpYviSSBLF8WTQJYuPniydLHmyNJFoWVjY4ONjU1Np1FjLCwssLB4NG4t/6T/WwkhhBBCCCGEEFWRpYtCCCGEEEIIIYQQ4rEgA11CCCGEEEIIIYQQ4rEgA11CCCGEEEIIIYQQ4rEge3QJIR66v0zb1nQKQgghHgDZpFs8CQyC+9R0CkIIIe6BzOgSQgghhBBCCCGEEI8FGegSQgghhBBCCCGEEI8FGegSQgghhBBCCCGEEI8FGegSQgghhBBCCCGEEI8FGegSQgghhBBCCCGEEI8FGei6R8uXL8fKyupft6NQKFi/fv2/buffiIiIQKFQoFarbxvz9/7OmDGDJk2aaJ+HhITQt2/fasuxuv29P0IIIYQQQgghhHh0GdR0AjUhJCQEtVpd4wNNd2vPnj3MnDmTqKgoCgoKcHFxoXXr1nz77bcYGRmxfPly3njjjX8csLpfAwcOpEePHrc9vnDhQjQajfZ5+/btadKkCZ9//vkDy8HT05OLFy8CYGpqire3NxMmTGDEiBH31I5CoWDdunU6A3MTJ07k9ddff2C5VrfU1FReffVVwsPDKS0tJSAggKVLl1KnTp2aTk08JPFxp9m3cyNXk+LJysxgyKh38G8c9M91Yk8RunY5KcmXsbKxo0O3Z2nWssO/alOIB+n65dPEHFtPxvV48nPTearXZFy8W/xznaRTRO39gcz0JMws7KgfNIDa9Ttqj589spbL5w+SlX4ZAwNjbJ3r0OjpYaisXbQxF05u49K5fWSkxlNclE+/V3/CyNi82vopnmxnUtLZfDqexPQsMvILebN9AM3dHP+5zrU0Vhw7yxV1DrbmpvRr6E07b1edmO0xF9l0OoHMgkLcrS0IaV4fHzsr7fHvDp7iZPINMvILMTHQx8/emhcD6uBiqayObgpB2P7DbNodiTorB49aTgzv3x1fD9cqY0tKSlm/ax97DkeTnpmFs4Mtg3t2oWk9X21MfkEhq7fu4vDJs2Tl5OHp4kRIv+74uLvotHX5WiqrNu/g7IWLlJaV4urkwFshz2NnbVWd3RVC/AfJjK7/uDNnztCtWzcCAwPZu3cvJ0+e5IsvvsDIyIjS0tJqP7+pqSkODg63PW5paflAZrjdyaxZs0hOTubUqVMMGTKEkSNHsnXr1n/drlKpxNbW9gFk+HBMmjSJo0ePsnnzZo4fP87YsWPvql5RUVE1ZyYeluKiIpxdPOj9/N0N9KbfSGH513Px8mvI+Cnzad3+Gf5Y9TWxZ47fd5tCPGilJYVY2XsS0GHkXcXnZKawb+MHOLg1JHjQAvya9OTIjq9ITqx4X1+/fBqfxt3p/MI82vWfTllZKXv+mElJcYE2pqS4ECfPAOo1f+6B90mIvysqKcXDWkVIUP27ir+ek8e83cfwd7Rl7jNP0b2uJ9/8eYroq6namD8Tk1l59CzPNvJhTo82eFirmBt+hKyCQm2Mp42K0a0b8Wnvtkzp1BwNMGfnEcrKNFWcVYh/58DxU6zYEMZzXdsz760xeLg48uHSlWTm5FYZv3rrLnYcOMrw/t1ZMGksXVoH8umy1SRcTtbGLFm9geiYC4wb1J/577xGozrefPD1CtLUWdqYazfSmfblD7g42DF9bAifvP0a/bu0xdDQsNr7LIT475GBrr9ZsGABDRs2xNzcHDc3N1577TVycnIqxa1fvx5fX19MTEwIDg4mKSlJ5/iGDRsICAjAxMQELy8vZs6cSUlJyT3ns337dpycnPj4449p0KAB3t7edOvWjW+//RZTU1MiIiIYPnw4mZmZKBQKFAoFM2bMAGDlypUEBgZiYWGBk5MTgwYN4vr165XOERkZSaNGjTAxMaFly5acOnVKe+xOSzVvXboYEhLCnj17WLhwoTaXhIQEfHx8mD9/vk69qKgoFAoF58+fv6vX4WYfvLy8mDRpEjY2NuzYsUN7/MiRI3Tp0gU7OzssLS1p164df/31l/a4p6cnAP369UOhUGif/33pYllZGbNmzcLV1RVjY2OaNGlCWFjYXeVYVFTEuHHjcHZ2xsTEBA8PD+bOnas9rlarGTFiBPb29qhUKjp27Eh0dDRQPlPLycmJOXPmaOMPHDiAkZER4eHh2jI9PT1at25NmzZt8Pb2ZsCAAVXO5mrfvj3jxo3jjTfewM7OjuDgYODu3t+RkZG0b98eMzMzrK2tCQ4OJiMjQ/v6zJ07l9q1a2Nqakrjxo35/fff7+r1EQ9GHf+mdO09CP8m/zzb5aZD+7djY+vAM8++hIOzK63bd6dB05ZE7gq97zaFeNCcPQNo2Howrj4t7yr+wsltmKscaNJ2OCpbN3ybPIObbytij2/SxrTrN43a9TtiaeuOlX1tgrq+Tl52KukpF7QxdQJ6U695f2yd/B54n4T4uyYu9gxs6keQu9Ndxe+MvYSD0pShgfVwtVISXNeDFh6ObDmbqI0JPZtAR1832vu44mqlZEQLf4z19dl9/rI2prOfO/UdbbBXmlLb1pKBTXxJzyvgem7eg+6iEGyO+JNOLZvRoUVTXJ3sGTWgF8ZGhuw+9FeV8XuPRdOvc1sC6vvhaGdDcJsgmtbzZXPEAQCKios5dOIsQ3p1ob6PJ052NjzfrQOOdtZsP3BE286vW8IJqOfLkN5dqe3qjJOdDc0b1MVSKbN0hXgSyUDX3+jp6bFo0SJOnz7Njz/+yK5du3jnnXd0YvLy8vjwww9ZsWIFkZGRqNVqXnjhBe3xffv2MWzYMCZMmMCZM2dYunQpy5cv58MPP7znfJycnEhOTmbv3r1VHm/dujWff/45KpWK5ORkkpOTmThxIgDFxcXMnj2b6Oho1q9fT2JiIiEhIZXaePvtt/n00085cuQI9vb29OrVi+Li4nvOdeHChbRq1YqRI0dqc3F3d+fll19m2bJlOrHLli2jbdu2+Pj43NM5ysrKWLt2LRkZGRgZGWnLs7Ozeemll9i/fz8HDx7E19eXHj16kJ2dDZQPhN08b3JysvZ5VX349NNPmT9/PidOnCA4OJjevXsTFxd3x9wWLVrExo0bWbNmDTExMaxatUo7oAYwYMAArl+/ztatWzl27BgBAQF06tSJ9PR07O3t+eGHH5gxYwZHjx4lOzuboUOHMm7cODp16qRto0+fPvz+++93Nfj2448/YmRkRGRkJEuWLAHu/P6OioqiU6dO1K9fnz///JP9+/fTq1cv7ezBuXPnsmLFCpYsWcLp06f5v//7P4YMGcKePXvumI+oGZcSYvGp20inzLdeEy4lxNZQRkL8e2nJMTi6N9Ypc/JoSlpyzG3rFBeVf6g3NpHlWuLREJeqpoGT7qzzRs72xKWqASgpLSMhLYsGznba4wqFggbOttqYvysoLiHiwhXslabYmZlWV+riCVVSUkr85as09PPSlikUChr6eRObeLnKOsUlpRgZ6u6mY2RowLmESwCUlpZRVlaG0d9mZhkZGhITXx6j0Wj460wsTvY2fLBkBSPe/5h3P/uWwyfPPsjuCSEeIU/kHl3/5I033tD+3dPTkw8++IAxY8awePFibXlxcTFffvklLVqUz3748ccfqVevHocPHyYoKIiZM2cyefJkXnrpJQC8vLyYPXs277zzDtOnT7+nfAYMGMC2bdto164dTk5OtGzZkk6dOjFs2DBUKhVGRkZYWlqiUChwctL9hvDll1/W/t3Ly4tFixbRvHlzcnJyUCorLvSnT59Oly5dtH1xdXVl3bp1PP/88/eUq6WlJUZGRpiZmenkEhISwrRp07SvT3FxMT///HOlWV7/ZNKkSbz33nsUFhZSUlKCjY2Nzh5dHTt21In/5ptvsLKyYs+ePfTs2RN7e3sArKysKr1Ot5o/fz6TJk3SDlzOmzeP3bt38/nnn/PVV1/9Y46XLl3C19eXp556CoVCgYeHh/bY/v37OXz4MNevX8fY2Fh7rvXr1/P7778zatQoevTowciRIxk8eDCBgYGYm5vrzAg7c+YMgwYNYtasWYwYMYLPPvuMAQMGAHDs2DECAwNJTU3Fzq78gtfX15ePP/5YJ8c7vb8//vhjAgMDdd7v/v7+ABQWFjJnzhx27txJq1atgPL31f79+1m6dCnt2rX7x9dH1IycLDVKC0udMqWFFQUFeRQXF2FoaHSbmkL8dxXkZmBiZqVTZmxmRXFRHqUlRegb6L6vNRoNUXt+wK5WXSztPBDiUaDOL8TS1FinzNLUiPziEopKSsktKqZMo8HSRPf9bmlizNUs3WViO2IusuqvGApLSnFWmfNu5+YY6Mv33eLBysrNo6ysDCsL3S8UrJTmXE25UWWdxnW82bT7APW8PHCys+FkbDyHTpylTFMGgKmJMX6ebqzdvgcXR3usLMzZ/9dJYhOTcLYvHwhWZ+dQUFjEhvD9vNCjE4N7diE65jyfLlvN9NdCqO/jWa39FkL898hvuL/ZuXMnnTp1wsXFBQsLC4YOHUpaWhp5eRXTuw0MDGjevLn2ed26dbGysuLs2fJvDaKjo5k1axZKpVL7uDnL6dZ27oa+vj7Lli3j8uXLfPzxx7i4uDBnzhz8/f1JTk7+x7rHjh2jV69euLu7Y2FhoR2IuHTpkk7czUELABsbG+rUqaPty4NQq1YtnnnmGX744QcANm3aRGFhoXaQ5m68/fbbREVFsWvXLlq0aMFnn32mMxssJSWFkSNH4uvri6WlJSqVipycnEp9/SdZWVlcvXqVNm3a6JS3adPmrl6PkJAQoqKiqFOnDuPHj2f79u3aY9HR0eTk5GBra6vzvkhISODChYplNPPnz6ekpITffvuNVatWaQfFoHyZZffu3Zk8eTIbN25kzJgx2plaJ0+epG7dutpBLoBmzZpVyvFO7++bM7qqcv78efLy8ujSpYtOH1asWKHTh78rLCwkKytL51FUVHjbeCGEeNCO7V5KZtolWnV/q6ZTEaJGtK5di7nPtOH9ri1wVpmzcG8URSXVv9erEHcS0q87zva2vDH3C16cOIsf/thC+6Am6CkqPqaOG9wfgDEz5jPo7dls3XeIpwIaolCUH795X6zABnV5pl0rars607fT0wTU92PHn0cfdpeEEP8BMqPrFomJifTs2ZNXX32VDz/8EBsbG/bv388rr7xCUVERZmZmd9VOTk4OM2fOpH///pWOmZiY3FduLi4uDB06lKFDhzJ79mz8/PxYsmQJM2fOrDI+NzeX4OBggoODWbVqFfb29ly6dIng4OAa2Zh8xIgRDB06lM8++4xly5YxcODAu349Aezs7PDx8cHHx4fffvuNhg0bEhgYSP365Ru6vvTSS6SlpbFw4UI8PDwwNjamVatWD7WvAQEBJCQksHXrVnbu3Mnzzz9P586d+f3338nJycHZ2ZmIiIhK9W7dA+3ChQtcvXqVsrIyEhMTadiwofbYiRMntLMEAwIC2LhxI8HBwdy4cYOwsDCGDx+u0665ue6eBHfz/jY1vf0yhpt7eYWGhuLionuXm1sH5P5u7ty5ld6nL736LsPHTr1tHfHgKFVW5GRn6pTlZKsxMTGT2VzikWVibk1BnlqnrDBPjaGRWaXZXMd2f0NywjE6PPcBZhZ2CPGosDI1JjNf94uhzPwiTA0NMDLQR0+hQE+hILNA91ons6AQKxPd38vmRoaYGxnirDLHz86KV9bs5GhSCq1r16r2fognh8rcDD09PdTZuvu/qnNysVJVvWzcUmnOO6+8SFFxMdm5+dhYWvDz5p3Y21hpY5zsbJgxbjgFhUXkFRRiY2nBZz+uwcHWRntefX19XB3tddp2dbTXLoEUQjxZZKDrFseOHaOsrIxPP/0UPb3ybxHWrFlTKa6kpISjR48SFBQEQExMDGq1mnr16gHlgxAxMTH3vP/U3bK2tsbZ2Znc3PJp6VXdgfHcuXOkpaXx0Ucf4ebmBsDRo1V/o3Hw4EHc3d0ByMjIIDY2VtuXe3W7u0H26NEDc3Nzvv76a8LCwm6759jdcHNzY+DAgUyZMoUNGzYA5RuoL168mB49egCQlJTEjRu6U6QNDQ3/8U6VKpWKWrVqERkZqbMMLzIyUvtvfScqlYqBAwcycOBAnnvuObp160Z6ejoBAQFcu3YNAwMDnX27blVUVMSQIUMYOHAgderUYcSIEZw8eVJ710sXFxf27dvHlClTgPKZZuvWraNnz57Y2Ngwbty4f8ztbt7fjRo1Ijw8vMoB1Pr162NsbMylS5fuaZnilClTePPNN3XKDl2Qb5EfFvfafsScPq5Tdv5sNO61ZfNt8eiyda5DcsIxnbJrl6Kwda64OYdGo+GviG+5cv4QHZ6bjdLS8WGnKcS/4mtvRdSVVJ2yE8k38LW3AsBAX4/atipOJ6fR3K38/a3RaDh9LY2udW6/RFeDBo1GQ3FZWbXlLp5MBgb6eLnW4lRcAkENyz9LaDQaTsXG0+3pf76WNjI0xNbKkJKSUg6dOEPLJv6VYkyMjTAxNiInL5/omAsM7tlFe15vt1okp6bpxF9NvYGdtWWldoQQj78ndqArMzOTqKgonTI7OzuKi4v54osv6NWrl84m3rcyNDTk9ddfZ9GiRRgYGDBu3DhatmypHQyZNm0aPXv2xN3dneeeew49PT2io6M5deoUH3zwwT3luXTpUqKioujXrx/e3t4UFBSwYsUKTp8+zRdffAGU77WUk5NDeHg4jRs3xszMDHd3d4yMjPjiiy8YM2YMp06dYvbs2VWeY9asWdja2uLo6MjUqVOxs7PT3knxXnl6enLo0CESExNRKpXY2Nigp6eHvr4+ISEhTJkyBV9fX53lkvdjwoQJNGjQgKNHjxIYGIivr6/2LpNZWVm8/fbblWYneXp6Eh4eTps2bTA2Nsba2rpSu2+//TbTp0/H29ubJk2asGzZMqKioli1atUdc1qwYAHOzs40bdoUPT09fvvtN5ycnLCysqJz5860atWKvn378vHHH+Pn58fVq1cJDQ2lX79+BAYGMnXqVDIzM1m0aBFKpZItW7bw8ssvs3nzZm1uPXr0YOzYsbz66qsUFxezZ88ejIyMSE1NZdOmTQwcOPC2+fn4+Nzx/T1lyhQaNmzIa6+9xpgxYzAyMmL37t0MGDAAOzs7Jk6cyP/93/9RVlbGU089RWZmJpGRkahUKu1ss78zNjauNOPLyEju9HS/CgsLSLtesWw5I+06V5MSMDNXYmVjT9iGn8hSp/P8S+MBaPFUV/7cE8bWdSto1qoT8bEnOXn8T156dcpdtylEdSspLiA746r2eU5mChnX4zEyscBcZc+J/SvJz02jRfAbAHg3DOZ89Bai9/1Ibf9OXE86SVLsAZ7u8562jb92f8OlmH206TUFAyNT8nPL7x5rZGyunfWVn5tBQW4GOZnl7//MGxcxMDTBzMIeY1OLh9R78aQoKC7hWnbF77/UnDwS07NQGhtiZ27KL3/FkJ5fwNg25Tda6OznzraYS6w6do72Pq6cuZbGoYvXeKdjxdYEz9SrzdcHTlDbVoW3rRVh5xIpKCmlvbcrACnZefx5MZlGznaoTIxIyy1g4+l4jA30aeoiP9/Fg9ezfSu++nkdXq7O+Li7smXvQQqKimgf1BSAL1f9gbWlhXaQKi7xMumZWXi6OJGemc1v23ZTptHQp+NT2jajzp1Ho9Hg4mDHtRvprNy0HRcHOzr8r02AXh3asHDlb9T18qCBb22On43j2OlYZowNeaj9F0L8NzyxA10RERE0bdpUp+yVV15hwYIFzJs3jylTptC2bVvmzp3LsGHDdOLMzMyYNGkSgwYN4sqVKzz99NN8//332uPBwcFs3ryZWbNmMW/ePAwNDalbt67O5ul3KygoiP379zNmzBiuXr2KUqnE39+f9evXa2fVtG7dmjFjxjBw4EDS0tKYPn06M2bMYPny5bz77rssWrSIgIAA5s+fT+/evSud46OPPmLChAnExcXRpEkTNm3apHNHw3sxceJEXnrpJerXr09+fj4JCQnaGUyvvPIKc+bMqbTE7n7Ur1+frl27Mm3aNLZs2cL333/PqFGjCAgIwM3NjTlz5mjvPnnTp59+yptvvsm3336Li4sLiYmJldodP348mZmZvPXWW1y/fp369euzceNGfH1975iThYUFH3/8MXFxcejr69O8eXO2bNminT21ZcsWpk6dyvDhw0lNTcXJyYm2bdvi6OhIREQEn3/+Obt370alUgGwcuVKGjduzNdff82rr75Kt27dCA8PZ/r06bRp0wY9PT06d+7M4cOH+eOPPwgJCcHNzY3WrVtXmV/jxo3v+P728/Nj+/btvPvuuwQFBWFqakqLFi148cUXAZg9ezb29vbMnTuX+Ph4rKysCAgI4N13372rfzfx7125eJ5vF87QPg9duxyAgJbtGTB0HNlZatTpFbMZbewcCXl1CqFrlxO5ewuW1rb0H/wqfvWb3nWbQlS39Gvn2b32fe3zqL3ld+qtXb8DQV3HU5CXQV5WxftaaenI073fI2rvD8RGbcZMaUfzLmNx9qx4X58/UX532t2/Vwx+AQR1fZ3a9ctvYHLhxDZOH1qtPbbrt6mVYoR4UOLTMpm947D2+cqj5wBo6+3Cq60boS4oJC23QHvcQWnGpA7NWHHsLGHnErExM2FUqwY0rlUxQNXK05msgiJ+i44jM78QDxsVkzs2125ib6Svx7mUdLaeTSSvqBiViTF1Ha2Z2a0lKpPbbzsgxP1q3bQBmTm5rAnbjTo7B89azkwdNVS7Qf2NjEwUNzfXAopLSvh16y6up2VgbGxEQD1fxg1+FnPTiu1e8gsK+HlzOGmZmSjNzGjRqB4v9OiEgYG+NqZFo3qMeK4n63fuY/m6rTg72PLW8IHU9ZIbkAjxJFJoNDe37xOieu3bt49OnTqRlJSEo6MsIXmS7TktM7rE42/HkSf2uyTxBHnryoSaTkGIamcQ3KemUxCi2lkEdqvpFO5b9tGwmk6hSo/ya/qok6twUe0KCwtJTU1lxowZDBgwQAa5hBBCCCGEEEIIUS307hwiqtOcOXNQKpVVPrp3717T6T0Qv/zyCx4eHqjVaj7++GOdY6tWrbpt//39K29CWZOehH8rIYQQQgghhBDiUSZLF2tYeno66enpVR4zNTXFxcXlIWf0cGVnZ5OSklLlMUNDQzw8/jvr6p/0f6sHSZYuiieBLF0UTwJZuiieBLJ0UTwJHuVldrJ0UfydXIXXMBsbG2xsbGo6jRpjYWGBhcWjcWerJ/3fSgghhBBCCCGE+K+TpYtCCCGEEEIIIYQQ4rEgA11CCCGEEEIIIYQQ4rEgA11CCCGEEEIIIYQQ4rEgA11CCCGEEEIIIYQQ4rEgm9ELIR46uRudeBLI3ejEk+BE309rOgUhql1A/t6aTkEIIcQ9kBldQgghhBBCCCGEEOKxIANdQgghhBBCCCGEEOKxIANdQgghhBBCCCGEEOKxIANdQgghhBBCCCGEEOKxIANdQgghhBBCCCGEEOKxIANdQvyHJCYmolAoiIqKqulUhBBCCCGEEEKIR45BTScgxL8REhKCWq1m/fr1ACQlJTF9+nTCwsK4ceMGzs7O9O3bl2nTpmFra6ut1759e/bs2QOAsbEx7u7uDB8+nMmTJ6NQKO543sTERGrXrq19bmNjQ7NmzZg3bx5Nmza97/64ubmRnJyMnZ0dABEREXTo0IGMjAysrKzuu13x6NNoNJw++Cvxp3ZQVJiLnXNdmnUcjYV1rX+sFxe9hZhjGyjIzcDK3pOm7Udg6+SnPX7h5DYundtHRmo8xUX59Hv1J4yMzXXaOHP4d5ITjpKRmoC+viH9Xv2pWvoonmzbYy6y6XQCmQWFuFtbENK8Pj52VreNP5iYzJroOG7k5uNkYcaLAXVo6uKgPa7RaPg9Oo5d5y+TW1RMHXtrXm7hj7Oq4v297uR5jl9JJTE9C0N9Pb4f2KU6uygEf+4JY9/ODWRnqXF29aDXgFdw8/S9bfyJvw6wY9OvqNNTsXVwplufIdRtEKA9rtFo2Bm6miOROynIz8Pdqw59XxiFnYMzABlp19m19XcuxJwkJzsTC0trmjR/mg7dnsPAQD4GiOoRtv8wm3ZHos7KwaOWE8P7d8fXw/W28X9GnWL11t2kpqtxsrdlcM/OBNSvuFbRaDSsCdtN+MG/yMsvwK+2GyOf64mzfcW1/R879vLXmVgSr1zDwECf5XOmVGsfhRD/bTKjSzw24uPjCQwMJC4ujl9++YXz58+zZMkSwsPDadWqFenp6TrxI0eOJDk5mZiYGKZMmcK0adNYsmTJPZ1z586dJCcns23bNnJycujevTtqtfq+8i8qKkJfXx8nJye5+BSVnDu6jrioUJp1HEPnF+ZhYGjCnnWzKC0pum2dS7H7idq7DP8Wz9N10KdY2nmyd90sCvIytTElxYU4eQZQr/lzt22nrLQYV9/W+DTq9kD7JMRNfyYms/LoWZ5t5MOcHm3wsFYxN/wIWQWFVcbHXM/gi/3RdPBxZU6PNgS6ObIg4i+SMrK1MRtPxxMWc5FXWvjzQfdWGBvoMzf8CEUlpdqYktIyWno40cXPvdr7KMSJY5GErl1Oxx4DeH3yJzi5ePLDlx+Qk51ZZfzFC+dYvexzmrfuxOuTP6F+o+b89M3HXLt6SRuzZ8d6DkRspe+Lo3n17bkYGZvww5ezKS4u/91w/doVyjRl9Bs0mgnvLeCZZ0M4tG872zeueih9Fk+eA8dPsWJDGM91bc+8t8bg4eLIh0tXkpmTW2V8TMIlFq5cS8cWAcx7awzNG9Rl/rJfuZScoo3ZsGs/W/cdYuSAnnz4xkhMjIz4cOlKioqLtTHFJSW0auJP1zbNq72PQoj/PhnoEo+NsWPHYmRkxPbt22nXrh3u7u50796dnTt3cuXKFaZOnaoTb2ZmhpOTEx4eHgwfPpxGjRqxY8eOezqnra0tTk5OBAYGMn/+fFJSUjh06BAXLlygT58+ODo6olQqad68OTt37tSp6+npyezZsxk2bBgqlYpRo0bpLF1MTEykQ4cOAFhbW6NQKAgJCWHFihXY2tpSWKj7AbBv374MHTr0jjlHR0fToUMHLCwsUKlUNGvWjKNHj2qP79+/n6effhpTU1Pc3NwYP348ubnlFycrVqxAqVQSFxenjX/ttdeoW7cueXl59/Taibun0WiIi9pMvaABuHgHYWXnSVDweApy07ly4dBt68X+tRGvBl2o7d8Jla0bgZ1eRd/AmITT4dqYOgG9qde8v84sr79r0OpF6gT0xtLO44H2S4ibQs8m0NHXjfY+rrhaKRnRwh9jfX12n79cZXzYuUQa17Kjl78XrlZKnm/ih6eNJdtiLgLl/2fCzl2kX0MfAt0ccbdW8WqbRqjzCzmaVPHhaUATP3rUq427tcVD6ad4su3ftYnmbToT2KojDs6u9HtxNEZGRhz9c1eV8ZERofjVb0rbLn1wcHala68XqeVWmz/3bAXK3+cHdofSsduz1G/UHGcXDwYMHUd2ZgZnog8DUMe/KQOGjsO3XhNs7Zyo36g5bTv34VTU7X93CPFvbI74k04tm9GhRVNcnewZNaAXxkaG7D70V5XxW/YepEldH3p3bIOrkz0v9OhIbRdnwvaVv4c1Gg1b9h7i2S5tad6gLh61HBk7qB8ZmdkcOXlO287A7h15pl0r3J0dqjyPEOLJIgNd4rGQnp7Otm3beO211zA1NdU55uTkxODBg1m9ejUajaZSXY1Gw759+zh37hxGRkb3ncPN8xYVFZGTk0OPHj0IDw/n+PHjdOvWjV69enHp0iWdOvPnz6dx48YcP36c999/X+eYm5sba9euBSAmJobk5GQWLlzIgAEDKC0tZePGjdrY69evExoayssvv3zHPAcPHoyrqytHjhzh2LFjTJ48GUNDQwAuXLhAt27dePbZZzlx4gSrV69m//79jBs3DoBhw4bRo0cPBg8eTElJCaGhoXz33XesWrUKMzOz+37txD/LzUohPzcDR7eG2jIjY3Nsnfy4kRxTZZ2y0hLSUy7g5N5YW6ZQKHB0b0TabeoIURNKSstISMuigbOdtkyhUNDA2Za4VHWVdWJT1TRwttUpa+RsS9yN8vjrOfmo8wtp4FQRY25kiI+dFbE3qm5TiOpUUlLClUvx+NRtpC1TKBT41G3EpYTYKutcSojFu05DnTLfeo218elpKWRnqXViTM3McfP0vW2bAAX5uZiZK/9Nd4SoUklJKfGXr9LQz0tbplAoaOjnTWxi1V9cxCZe1okHaFTHm9iLSQBcT8tAnZVNA9+KGHNTE3w9XIlNTKqGXgghHgcy0CUeC3FxcWg0GurVq1fl8Xr16pGRkUFqaqq2bPHixSiVSoyNjWnbti1lZWWMHz/+vs6vVquZPXs2SqWSoKAgGjduzOjRo2nQoAG+vr7Mnj0bb29vncEpgI4dO/LWW2/h7e2Nt7e3zjF9fX1sbGwAcHBwwMnJCUtLS0xNTRk0aBDLli3Txv7000+4u7vTvn37O+Z66dIlOnfuTN26dfH19WXAgAE0blw+GDJ37lwGDx7MG2+8ga+vL61bt2bRokWsWLGCgoICAJYuXUpycjLjx4/nlVdeYcaMGTRr1uy25yssLCQrK0vnUVJc9XIkUbWC3AwATMysdMqNzawoyFVXWacwPwuNpgxjM0udchMzKwryMqojTSHuS3ZhEWUaDZYmul80WJoYo77N0sWsgkKsTIx1yqxMjVHnl8ff/LNym0Zk5svPH/Hw5eVmUVZWhtJC92ey0sKSnKyqfybnZGViobLSKbNQWZGdWR6fk6kub0P1tzZVlmTfps201GT+3BNG0FOyH5148LJy8ygrK8PKQncg1Uppjjorp8o6mTk5leNVSm28Orv8T8u/xVhamGuPCSHE38lAl3isVDVj61a3ztgaPHgwUVFRREZG0r17d6ZOnUrr1q3v6XytW7dGqVRibW1NdHQ0q1evxtHRkZycHCZOnEi9evWwsrJCqVRy9uzZSjO6AgMD7+l8N40cOZLt27dz5coVAJYvX05ISMhdbaT/5ptvMmLECDp37sxHH33EhQsXtMeio6NZvnw5SqVS+wgODqasrIyEhASgfBnl999/z9dff423tzeTJ0/+x/PNnTsXS0tLnceB0I/vq99Piovn9rD2qxe1j7KysppOSQghxCMuU53Gsq8+pEHTlgS1kYEuIYQQjy/Z8Vo8Fnx8fFAoFJw9e5Z+/fpVOn727Fns7e117lxoaWmJj48PAGvWrMHHx4eWLVvSuXPnuz7v6tWrqV+/Pra2tjptT5w4kR07djB//nx8fHwwNTXlueeeo6hId+Nwc3Nz7kfTpk1p3LgxK1asoGvXrpw+fZrQ0NC7qjtjxgwGDRpEaGgoW7duZfr06fz666/069ePnJwcRo8eXeXMNnf3is2a9+7di76+PsnJyeTm5mJhcfv9baZMmcKbb76pUzZn9Z0H5J5ktbyC6HrLnlllpeWbrRbkqTFV2mjLC/PUWNp7VtmGsakKhUKPwjzdTY4L8tSYmFk/+KSFuE8WxkboKRRkFuj+fMysYtbWTaoqZnup8wuxMi2Pv/lnZkER1mYmt7RZJPtxiRphZq5CT0+v0sbzOdmZKFVV/0wun5ml1inLzlJjYVker7S0Km8jKxOVZcXvhpysTJxdPXXqZWWm893CGbjX9qP/4Ff/XWeEuA2VuRl6enqVZlqpc3KxUlW9XNZSqawcn5Wjjb852yszOwcby4qf35nZuXjUcnyQ6QshHiMyo0s8FmxtbenSpQuLFy8mPz9f59i1a9dYtWoVISEht62vVCqZMGECEydOvOOssFu5ubnh7e2tM8gFEBkZSUhICP369aNhw4Y4OTmRmJh4Dz0qd3MGWmlpaaVjI0aMYPny5SxbtozOnTvj5uZ21+36+fnxf//3f2zfvp3+/ftrl0EGBARw5swZfHx8Kj1u5nLgwAHmzZvHpk2bUCqV2v27bsfY2BiVSqXzMDCs+sOrKGdoZIqFlbP2obJxw9TcmpSkk9qY4sI80q7FYudcp8o29PQNsHH0JuXSCW2ZRqPhetJJbG9TR4iaYKCvR21bFaeT07RlGo2G09fS8LW3qrKOn70Vp26JBzh5LQ1fu/J4B6UpVqbGnLpWEZNXVMz5G2r87KpuU4jqZGBggIu7FxdiKn6OazQazsecxL121TcDca/tpxMPcP7cCW28ja0jFiornZiC/DySEuN02sxUp/Ht59NxcfPiuaHj7mr2txD3w8BAHy/XWpyKS9CWaTQaTsXG4+fpWmUdP09XTsbG65SdjI3Hz6P8utbB1horlQWn4ipi8goKiLt4GT/Pu7/2FUI8WWSgSzw2vvzySwoLCwkODmbv3r0kJSURFhZGly5d8PPzY9q0af9Yf/To0cTGxmo3gP83fH19+eOPP4iKiiI6OppBgwbd1/IzDw8PFAoFmzdvJjU1lZycim+8Bg0axOXLl/n222/vahN6gPz8fMaNG0dERAQXL14kMjKSI0eOaPc2mzRpEgcOHGDcuHFERUURFxfHhg0btINZ2dnZDB06lPHjx9O9e3dWrVrF6tWr+f333++5b+LuKRQKfJv05Ozh37hy4TDqG4kc2rYQE3MbXLxbaON2r51GXFTFzD6/gN7En9pBwpldZKUlcWzXEkqKC6jt31Ebk5+bQcb1eHIykwHIvHGRjOvxFOZna2Nys1LJuB5PXvYNyspKybgeT8b1eEqKCx5C78WT4Jl6tdl1Pok9Fy5zWZ3D94dOU1BSSnvv8g9GX0VG88tfFTdR6FbXkxPJN9h8JoErmTn8Hh1HQlomwXXK7wyqUCjoVteDdSfPczQphUsZWSyOPIGVqTGBbhUzAG7k5pOYnsWN3AJKyzQkpmeRmJ5FQXHJw30BxBPhqY69OBK5k2MHd3M9+TLrf/2GosJCmrUsv8Pymh8XEbbhJ218m/bPEHs2in07N3L92hV2hq7myqV4WrXrDpS/z1t3eIZdYWs5c+IIyVcusmbFF1hYWlO/cRBQMchlaW1H9/7DyM3OJDszQ7vPlxAPWs/2rQj/8xgRh49z+Voq3/62mYKiItoHNQXgy1V/sGpzxV3Oe7RtSXTMBTbtjuRKSiprwnYTf/kq3Z4ufw8rFAp6tG3B2h17OXLqHBevpvDlqnVYW1rQvGFdbTs3MtQkXE7mhjqzfMuNy8kkXE6moFB3trAQ4skgSxfFY8PX15cjR44wY8YMnn/+ea5fv45Go6F///6sXLnyjncFtLGxYdiwYcyYMYP+/fujp3f/48ALFizg5ZdfpnXr1tjZ2TFp0iSysrLuuR0XFxdmzpzJ5MmTGT58OMOGDWP58uVA+dLLZ599ltDQUPr27XtX7enr65OWlsawYcNISUnBzs6O/v37M3PmTAAaNWrEnj17mDp1Kk8//TQajQZvb28GDhwIwIQJEzA3N2fOnDkANGzYkDlz5jB69GhatWqFi4vLPfdR3J26gf0oLSnkaPjXFBfmYlerHm37vY++QcW+c7mZKToDVO5+T1GYl8mpP3+lIC8Da/vatO37vs6m9hdObOP0odXa57t+mwpAUNfXqV2/fEDs9MFfSDizWxuz/ee3AOjw7Gwc3BpUS3/Fk6WVpzNZBUX8Fh1HZn4hHjYqJndsjuX/liCm5Ragd8sslDoO1oxr05g10XGsPh6Dk8qcN9sH4HbLssTe/l4UlZTy3cFT5BWXUMfemsmdAjEy0NfG/BYdx94LV7TPp4RGAvB+lyDqO+ne1VGIf6tRszbkZGexc/NqsrPU1HLzZPjYqdoN59XpN1Dccu3h4V2XgSET2LHpV7Zt/Bk7B2eGjHoHp1oVWwm069KX4qJC1v28hIL8PDy86zJ87HsYGpb/bjh/7gRpqddIS73GR1NH6+Qz9yv5kko8eK2bNiAzJ5c1YbtRZ+fgWcuZqaOGapcg3sjI1JlVWKe2O+OH9Gf11t38siUcJztbJg5/AXfnii8l+nR8isKiYr5Zs4m8/ALqeLnz7qghGP3vruEAq7fuZs+RKO3zSZ8uAWD62BD8fWpXc6+FEP81Cs29rNMS4hEzffp0FixYwI4dO2jZsmVNp/PAderUCX9/fxYtWlTTqdyT95bLt2vi8ffWlQk1nYIQ1e5E309rOgUhql1A/t6aTkGIamcR2K2mU7hv2UfDajqFKj3Kr+mjTmZ0icfazJkz8fT05ODBgwQFBf2rWVr/JRkZGURERBAREcHixYtrOh0hhBBCCCGEEOI/QQa6xGNv+PDh91xnzJgx/PTTT1UeGzJkCEuWLPm3af0rTZs2JSMjg3nz5lGnju7G4v7+/ly8eLHKekuXLmXw4MEPI0UhhBBCCCGEEOKhk4EuIaowa9YsJk6cWOUxlUr1kLOp7J/u4LhlyxaKi4urPOboKLdhFkIIIYQQQgjx+JKBLiGq4ODggIODQ02ncV88PDxqOgUhhBBCCCGEEKJGPB4bFgkhhBBCCCGEEEKIJ54MdAkhhBBCCCGEEEKIx4IMdAkhhBBCCCGEEEKIx4Ls0SWEeOi6NC+p6RSEqHYGDfrUdApCVLtG69+q6RSEqHbzXBbWdApCVLsPAms6AyEeHJnRJYQQQgghhBBCCCEeCzLQJYQQQgghhBBCCCEeCzLQJYQQQgghhBBCCCEeCzLQJYQQQgghhBBCCCEeCzLQJYQQQgghhBBCCCEeCzLQJYQQQgghhBBCCCEeCzLQJcRDlpiYiEKhICoqqqZTEUIIIYQQQgghHisGNZ2AEHcSEhKCWq1m/fr1ACQlJTF9+nTCwsK4ceMGzs7O9O3bl2nTpmFra6ut1759e/bs2QOAsbEx7u7uDB8+nMmTJ6NQKO543sTERGrXrq19bmNjQ7NmzZg3bx5Nmza97/64ubmRnJyMnZ0dABEREXTo0IGMjAysrKzuu13xeNNoNOwMXc2RyJ0U5Ofh7lWHvi+Mws7B+R/r/bknjH07N5CdpcbZ1YNeA17BzdNXe7y4uIgta3/kxF+RlJSU4FevMb0HjsRCZVWprbzcbBbOeYssdTrTPvkRUzPzB91N8QQL23+YTbsjUWfl4FHLieH9u+Pr4Xrb+D+jTrF6625S09U42dsyuGdnAur7aY9rNBrWhO0m/OBf5OUX4FfbjZHP9cTZvvz3RGq6mt+37+FUXDyZ2blYqyx4qllDnu3SDgMD/Wrvr3gybY+5yKbTCWQWFOJubUFI8/r42FndNv5gYjJrouO4kZuPk4UZLwbUoamLg/a4RqPh9+g4dp2/TG5RMXXsrXm5hT/Oqoqfz+tOnuf4lVQS07Mw1Nfj+4FdqrOLQgDl783TB38l/tQOigpzsXOuS7OOo7GwrvWP9eKitxBzbAMFuRlY2XvStP0IbJ0qfraXlhQRtXcZSbGRlJYW4+TRlGYdR2FiZqWNWf15v0rttur+Ju51nn5g/RNC/LfJjC7xSImPjycwMJC4uDh++eUXzp8/z5IlSwgPD6dVq1akp6frxI8cOZLk5GRiYmKYMmUK06ZNY8mSJfd0zp07d5KcnMy2bdvIycmhe/fuqNXq+8q/qKgIfX19nJycMDB4eOPMRUVFD+1conrs2bGeAxFb6fviaF59ey5Gxib88OVsiotv/2974lgkoWuX07HHAF6f/AlOLp788OUH5GRnamNC1y7n7KmjDHrlLUa+MZNMdTqrvv2kyvZ+/2kxTrU8HnjfhDhw/BQrNoTxXNf2zHtrDB4ujny4dCWZOblVxsckXGLhyrV0bBHAvLfG0LxBXeYv+5VLySnamA279rN13yFGDujJh2+MxMTIiA+XrqSouBiAyymplJWVMer5Xnz6zmsM6xvMjgNH+WXLzofSZ/Hk+TMxmZVHz/JsIx/m9GiDh7WKueFHyCoorDI+5noGX+yPpoOPK3N6tCHQzZEFEX+RlJGtjdl4Op6wmIu80sKfD7q3wthAn7nhRygqKdXGlJSW0dLDiS5+7tXeRyFuOnd0HXFRoTTrOIbOL8zDwNCEPetmUVpy++uWS7H7idq7DP8Wz9N10KdY2nmyd90sCvIqrluO7/2BqwlHafXM23R4bjb5OWlEbp5Xqa2grq/Te+QP2oeLd4tq6acQ4r9JBrrEI2Xs2LEYGRmxfft22rVrh7u7O927d2fnzp1cuXKFqVOn6sSbmZnh5OSEh4cHw4cPp1GjRuzYseOezmlra4uTkxOBgYHMnz+flJQUDh06xIULF+jTpw+Ojo4olUqaN2/Ozp26H5A8PT2ZPXs2w4YNQ6VSMWrUKJ2li4mJiXTo0AEAa2trFAoFISEhrFixAltbWwoLdS9++/bty9ChQ++Y84wZM2jSpAnfffcdtWvXxsTEBICwsDCeeuoprKyssLW1pWfPnly4cEGn7uXLl3nxxRexsbHB3NycwMBADh06pD2+YcMGAgICMDExwcvLi5kzZ1JSUnJPr6m4NxqNhgO7Q+nY7VnqN2qOs4sHA4aOIzszgzPRh29bb/+uTTRv05nAVh1xcHal34ujMTIy4uifuwDIz8vl6IFdPNM/BO86DXF19+a5oeO4GB/DpYRYnbYO7g2jIC+Xtp17V2tfxZNpc8SfdGrZjA4tmuLqZM+oAb0wNjJk96G/qozfsvcgTer60LtjG1yd7HmhR0dquzgTtq/8/4NGo2HL3kM826UtzRvUxaOWI2MH9SMjM5sjJ88B0LSeL2MH9aNxHR8c7Wxo3qAuvTu04dCJsw+t3+LJEno2gY6+brT3ccXVSsmIFv4Y6+uz+/zlKuPDziXSuJYdvfy9cLVS8nwTPzxtLNkWcxEof5+HnbtIv4Y+BLo54m6t4tU2jVDnF3I0qWLQd0ATP3rUq427tcVD6acQGo2GuKjN1AsagIt3EFZ2ngQFj6cgN50rFw7dtl7sXxvxatCF2v6dUNm6EdjpVfQNjEk4HQ5AUWEuCafDadJ2OI5uDbFx9CGo6+vcuHqOtOQYnbaMjM0xNbfWPvQNjKq1z0KI/xYZ6BKPjPT0dLZt28Zrr72GqampzjEnJycGDx7M6tWr0Wg0lepqNBr27dvHuXPnMDK6/190N89bVFRETk4OPXr0IDw8nOPHj9OtWzd69erFpUuXdOrMnz+fxo0bc/z4cd5//32dY25ubqxduxaAmJgYkpOTWbhwIQMGDKC0tJSNGzdqY69fv05oaCgvv/zyXeV6/vx51q5dyx9//KHdDyw3N5c333yTo0ePEh4ejp6eHv369aOsrAyAnJwc2rVrx5UrV9i4cSPR0dG888472uP79u1j2LBhTJgwgTNnzrB06VKWL1/Ohx9+eO8vprhr6WkpZGep8a7TUFtmamaOm6dvpQGpm0pKSrhyKR6fuo20ZQqFAp+6jbR1ribFU1paohPj4OSClbWdTrvXky+za+vvPP/S63e17FeIe1FSUkr85as09PPSlikUChr6eRObWPUAQGziZZ14gEZ1vIm9mATA9bQM1FnZNPCtiDE3NcHXw5XYxKTb5pJbUIDSzPS2x4W4XyWlZSSkZdHA2U5bplAoaOBsS1yquso6salqGjjb6pQ1crYl7kZ5/PWcfNT5hTRwqogxNzLEx86K2BtVtynEw5CblUJ+bgaObhXXLUbG5tg6+XHjbwNSN5WVlpCecgEn98baMoVCgaN7I+0gVsb1eMpKS3C8JUZl44qZhX2ldo/t+ob1S4ax45e3iT+9s8rPB0KIx5fs0SUeGXFxcWg0GurVq1fl8Xr16pGRkUFqaioODuX7VyxevJjvvvuOoqIiiouLMTExYfz48fd1frVazezZs1EqlQQFBeHo6EjjxhW/aGfPns26devYuHEj48aN05Z37NiRt956S/s8MTFR+3d9fX1sbGwAcHBw0Nmja9CgQSxbtowBAwYA8NNPP+Hu7k779u3vKt+ioiJWrFiBvb29tuzZZ5/Vifnhhx+wt7fnzJkzNGjQgJ9//pnU1FSOHDmizcvHx0cbP3PmTCZPnsxLL70EgJeXF7Nnz+add95h+vTpVeZRWFhYaWZaUVEpRkbGd9UPATmZagCUKkudcqXKkuysjCrr5OVmUVZWhtLib3UsLElNuQJAdpYafX2DSntt3dpuSXExvyz7jO79hmJlY0/6jRSEeJCycvMoKyvDykKpU26lNOdqyo0q62Tm5FSOVylRZ+UAoM4u/9PybzGWFubaY3937UY62/YdZkjvrvfVDyH+SXZhEWUaDZYmul+2WZoYczWr6iW6WQWFWJno/q60MjVGnV/+O/Xmn5XbNCIzv+rlkEI8DAW55dcQt+6bBWBsZkVBrrrKOoX5WWg0ZRib6V63mJhZkZ1xRduunr4BRsbmf4uxpCCvot0GrV7E0a0h+gbGXLsYxV+7vqGkuAC/Jj3/XceEEI8MGegSj5w7fSNz64ytwYMHM3XqVDIyMpg+fTqtW7emdevW93S+1q1bo6enR25uLl5eXqxevRpHR0dycnKYMWMGoaGhJCcnU1JSQn5+fqUZXYGBgfd0vptGjhxJ8+bNuXLlCi4uLixfvpyQkJC7nlHj4eGhM8gF5YOF06ZN49ChQ9y4cUM7U+vSpUs0aNCAqKgomjZtqh3k+rvo6GgiIyN1ZnCVlpZSUFBAXl4eZmZmlerMnTuXmTNn6pS99Oq7DB87tVKsKHf88F7W//qN9vlLr06psVzCNqzCwcmFpkHtaiwHIapbmjqLOUtX0qJxfTq3albT6QghxCPl4rk9HA2v2AP36T7v1WA24N/iee3frR28KC0pJObYBhnoEuIJIgNd4pHh4+ODQqHg7Nmz9OtX+W4qZ8+exd7eXmdWlKWlpXZG0po1a/Dx8aFly5Z07tz5rs+7evVq6tevj62trU7bEydOZMeOHcyfPx8fHx9MTU157rnnKm38bm5+f3ema9q0KY0bN2bFihV07dqV06dPExoaetf1qzpvr1698PDw4Ntvv6VWrVqUlZXRoEEDbc5/XxL6dzk5OcycOZP+/ftXOnZzH7C/mzJlCm+++aZO2aELpVXGinL1GzXHvXbFnRFv7oGWk5WJyrJiEDInKxNnV88q2zAzV6Gnp6ez8TxATnYmSpU1ABYqK0pLS8jPy9WZ1ZWTlYnF/2LiY09x7epFTh0vv2i8OdD8waThtA/uT5eeL/zL3oonncrcDD09vUozrdQ5uViplFXWsVQqK8dn5Wjjb872yszOwcayYl+izOxcPGo56tRLz8xm1uLl+Hm6MWag7EEnqoeFsRF6CgWZBbrXCJlVzNq6SWVijPpvG9Wr8wuxMi2Pv/lnZkER1mYVv4MzC4pkPy7xUNXyCqLrLXdGLCstv+lHQZ4aU2XFdUthnhpLe88q2zA2VaFQ6FGYp3vdUpCnxsSs/JrExNyastISigpzdWZ1FeRlVpo9disbR19OH1pDaUkx+gaG99o9IcQjSPboEo8MW1tbunTpwuLFi8nPz9c5du3aNVatWkVISMht6yuVSiZMmMDEiRPvaZ2+m5sb3t7eOoNcAJGRkYSEhNCvXz8aNmyIk5OTzrLEu3VzBlppaeXBnxEjRrB8+XKWLVtG586dcXNzu+f2b0pLSyMmJob33nuPTp06aZd63qpRo0ZERUVVunvlTQEBAcTExODj41PpoadX9Y8TY2NjVCqVzkOWLf4zYxNTbO2dtQ8HJ1csVFZciDmpjSnIzyMpMQ732n5VtmFgYICLu5dOHY1Gw/mYk9o6tdy80Nc30IlJTbmKOuOGNmbwyLcY/+6nvD5lPq9PmU//wa8CMOr/ZtOqXfcH3nfx5DEw0MfLtRan4hK0ZRqNhlOx8fh5ulZZx8/TlZOx8TplJ2Pj8fMo/xnpYGuNlcqCU3EVMXkFBcRdvIyfZ8XP0TR1FjO/WoaXWy1ee7Gv7EEnqo2Bvh61bVWcTk7Tlmk0Gk5fS8PX3qrKOn72Vpy6JR7g5LU0fO3K4x2UpliZGnPqWkVMXlEx52+o8bOruk0hqoOhkSkWVs7ah8rGDVNza1KSKq4vigvzSLsWi51znSrb0NM3wMbRm5RLJ7RlGo2G60knsf1fHWsHL/T0Dbh+S0xWxhXyslNv2y6A+kYiRiZKGeQS4gkiA13ikfLll19SWFhIcHAwe/fuJSkpibCwMLp06YKfnx/Tpk37x/qjR48mNjZWuwH8v+Hr66vd6D06OppBgwZplwLeCw8PDxQKBZs3byY1NZWcnIpZCoMGDeLy5ct8++23d70J/e1YW1tja2vLN998w/nz59m1a1elmVYvvvgiTk5O9O3bl8jISOLj41m7di1//vknANOmTWPFihXMnDmT06dPc/bsWX799Vfee69mp6g/7hQKBa07PMOusLWcOXGE5CsXWbPiCywsranfOEgb993CGRyI2Kp9/lTHXhyJ3Mmxg7u5nnyZ9b9+Q1FhIc1alt/p09TMnMDWHQldu5wLMSe5fOkCv6/8EvfaftqBLlt7Z5xquWsfNrbl+985OLlW2v9LiPvVs30rwv88RsTh41y+lsq3v22moKiI9kFNAfhy1R+s2lxxx9webVsSHXOBTbsjuZKSypqw3cRfvkq3p8v/PygUCnq0bcHaHXs5cuocF6+m8OWqdVhbWtC8YV2gYpDL1tqSIb26kpmTS0ZWNhlZ2Q//BRBPhGfq1WbX+ST2XLjMZXUO3x86TUFJKe29ywd0v4qM5pe/KjbU7lbXkxPJN9h8JoErmTn8Hh1HQlomwXU8gPL3ebe6Hqw7eZ6jSSlcyshiceQJrEyNCXSrmLl4IzefxPQsbuQWUFqmITE9i8T0LAqK5Y7JonooFAp8m/Tk7OHfuHLhMOobiRzathATcxtcvFto43avnUZcVMVqBb+A3sSf2kHCmV1kpSVxbNcSSooLqO3fESjf0L62fyeO711GStJJ0lPOc2T7F9g519EOhl2JP0L8qR1k3rhItjqZ89FbOXvkd3wb93i4L4IQokbJ0kXxSPH19eXIkSPMmDGD559/nuvXr6PRaOjfvz8rV66sco+oW9nY2DBs2DBmzJhB//79bzsL6W4sWLCAl19+mdatW2NnZ8ekSZPIysq653ZcXFy0m7wPHz6cYcOGsXz5cqB86eWzzz5LaGgoffv2ve9cAfT09Pj1118ZP348DRo0oE6dOixatEhnc3sjIyO2b9/OW2+9RY8ePSgpKaF+/fp89dVXAAQHB7N582ZmzZrFvHnzMDQ0pG7duowYMeJf5SburF2XvhQXFbLu5yUU5Ofh4V2X4WPfw9CwYk+69Bsp5OVWvAcbNWtDTnYWOzevJjtLTS03T4aPnYqFykob88yzIShQsOq7+ZSUlOBXrwl9Bsq/p3i4WjdtQGZOLmvCdqPOzsGzljNTRw3VLkG8kZGpM9uqTm13xg/pz+qtu/llSzhOdrZMHP4C7s4VH+77dHyKwqJivlmzibz8Aup4ufPuqCEYGZZ/o38y9gLXbqRz7UY6r878VCefNZ/p7isoxIPQytOZrIIifouOIzO/EA8bFZM7Nsfyf0sQ03IL0Lv1fe5gzbg2jVkTHcfq4zE4qcx5s30AbrcsS+zt70VRSSnfHTxFXnEJdeytmdwpECMDfW3Mb9Fx7L1wRft8SmgkAO93CaK+k+5dHYV4UOoG9qO0pJCj4V9TXJiLXa16tO33PvoGFdctuZkpFOZXfLng7vcUhXmZnPrzVwryMrC2r03bvu/rLEts2vZlFCg4EPoxZaXFOHk0JaDDKO1xPT19zkdv5fieHwBQWjnRpO1wvBrIjUaEeJIoNHKvVfGImz59OgsWLGDHjh20bNmyptN54Dp16oS/vz+LFi2q6VQemD2n82o6BSGqXUD+3ppOQYhqV7JtQ02nIES1+9RlYU2nIES1+yDE6M5B/1HZR8NqOoUqWQR2q+kUnlgyo0s88mbOnImnpycHDx4kKCjoX83S+i/JyMggIiKCiIgIFi9eXNPpCCGEEEIIIYQQ/3ky0CUeC8OHD7/nOmPGjOGnn36q8tiQIUNYsmRJlccelqZNm5KRkcG8efOoU0d3g01/f38uXrxYZb2lS5cyePDgh5GiEEIIIYQQQgjxnyIDXeKJNWvWLCZOnFjlMZVK9ZCzqeyf7uC4ZcsWiouLqzzm6OhYZbkQQgghhBBCCPG4k4Eu8cRycHDAwcGhptO4Lx4eHjWdghBCCCGEEEKIB2Du3Ln88ccfnDt3DlNTU1q3bl3lyh5xdx6PzYyEEEIIIYQQQgghHkF79uxh7NixHDx4kB07dlBcXEzXrl3Jzc2t6dQeSTKjSwghhBBCCCGEEKKGhIXp3jly+fLlODg4cOzYMdq2bVtDWT26ZKBLCCGEEEIIIYQQ4gEqLCyksLBQp8zY2BhjY+M71s3MzATAxsamWnJ73MnSRSGEEEIIIYQQQogHaO7cuVhaWuo85s6de8d6ZWVlvPHGG7Rp04YGDRo8hEwfPzKjSwghhBBCCCGEEOIBmjJlCm+++aZO2d3M5ho7diynTp1i//791ZXaY08GuoQQQgghhBBCCCEeoLtdpnircePGsXnzZvbu3Yurq2s1Zfb4k4EuIYQQQgghhBBCiBqi0Wh4/fXXWbduHREREdSuXbumU3qkyUCXEEIIIYQQQgghRA0ZO3YsP//8Mxs2bMDCwoJr164BYGlpiampaQ1n9+iRzeiFEEIIIYQQQgghasjXX39NZmYm7du3x9nZWftYvXp1Taf2SJIZXeKJkZiYSO3atTl+/DhNmjSp6XSEEEIIIYQQQgg0Gk1Np/BYkYEucVshISGo1WrWr18PQFJSEtOnTycsLIwbN27g7OxM3759mTZtGra2ttp67du3Z8+ePUD5Bnzu7u4MHz6cyZMno1Ao7njemwNSN9nY2NCsWTPmzZtH06ZN77s/bm5uJCcnY2dnB0BERAQdOnQgIyMDKyur+273YQsLC2PKlCmcO3cOGxsb+vTpw+LFi2s6LVHNNBoNO0NXcyRyJwX5ebh71aHvC6Owc3D+x3p/7glj384NZGepcXb1oNeAV3Dz9NUeLy4uYsvaHznxVyQlJSX41WtM74EjsVBZAZCXm83qZQu5dvUiuTnZKFWW1GvYnODegzAxNavOLosnTNj+w2zaHYk6KwePWk4M798dX4/bb8L6Z9QpVm/dTWq6Gid7Wwb37ExAfT/tcY1Gw5qw3YQf/Iu8/AL8arsx8rmeONuX/75KTVfz+/Y9nIqLJzM7F2uVBU81a8izXdphYKBf7f0VT6btMRfZdDqBzIJC3K0tCGleHx87q9vGH0xMZk10HDdy83GyMOPFgDo0dXHQHtdoNPweHceu85fJLSqmjr01L7fwx1llro1Zd/I8x6+kkpiehaG+Ht8P7FKdXRQCKH9vnj74K/GndlBUmIudc12adRyNhXWtf6wXF72FmGMbKMjNwMrek6btR2DrVPGzvbSkiKi9y0iKjaS0tBgnj6Y06zgKEzMrAArzszkY9hmZNy5SWJCFiZkVtbya06j1EAyN5bpFiCeFLF0UdyU+Pp7AwEDi4uL45ZdfOH/+PEuWLCE8PJxWrVqRnp6uEz9y5EiSk5OJiYlhypQpTJs2jSVLltzTOXfu3ElycjLbtm0jJyeH7t27o1ar7yv/oqIi9PX1cXJywsDg0R3fLSgooH///jRq1IiTJ08SGhp617PTiouLqzc5Ua327FjPgYit9H1xNK++PRcjYxN++HI2xcVFt61z4lgkoWuX07HHAF6f/AlOLp788OUH5GRnamNC1y7n7KmjDHrlLUa+MZNMdTqrvv2kohGFgnqNAhk6ehJvTV/Ec0PGcv7cCdb/srQ6uyueMAeOn2LFhjCe69qeeW+NwcPFkQ+XriQzJ7fK+JiESyxcuZaOLQKY99YYmjeoy/xlv3IpOUUbs2HXfrbuO8TIAT358I2RmBgZ8eHSlRT972fh5ZRUysrKGPV8Lz595zWG9Q1mx4Gj/LJl50Pps3jy/JmYzMqjZ3m2kQ9zerTBw1rF3PAjZBUUVhkfcz2DL/ZH08HHlTk92hDo5siCiL9IysjWxmw8HU9YzEVeaeHPB91bYWygz9zwIxSVlGpjSkrLaOnhRBc/92rvoxA3nTu6jrioUJp1HEPnF+ZhYGjCnnWzKC25/XXLpdj9RO1dhn+L5+k66FMs7TzZu24WBXkV1y3H9/7A1YSjtHrmbTo8N5v8nDQiN8/THlcoFLh4NeepXpPp8dJXBHV5nZRL0Rzd9XW19lcI8d8iA13irowdOxYjIyO2b99Ou3btcHd3p3v37uzcuZMrV64wdepUnXgzMzOcnJzw8PBg+PDhNGrUiB07dtzTOW1tbXFyciIwMJD58+eTkpLCoUOHuHDhAn369MHR0RGlUknz5s3ZuVP3g4mnpyezZ89m2LBhqFQqRo0aRWJiIgqFgqioKBITE+nQoQMA1tbWKBQKQkJCWLFiBba2thQW6l509u3bl6FDh94x5+joaDp06ICFhQUqlYpmzZpx9OhR7fH9+/fz9NNPY2pqipubG+PHjyc3t/yD3IoVK1AqlcTFxWnjX3vtNerWrUteXp62TF9fn8GDB+Pj40OTJk0YNWpUpTxu9nX16tW0a9cOExMTVq1aRVpaGi+++CIuLi6YmZnRsGFDfvnlF526ZWVlfPzxx/j4+Ghn5H344Yfa40lJSTz//PNYWVlpZ5QlJibe8bUR90+j0XBgdygduz1L/UbNcXbxYMDQcWRnZnAm+vBt6+3ftYnmbToT2KojDs6u9HtxNEZGRhz9cxcA+Xm5HD2wi2f6h+BdpyGu7t48N3QcF+NjuJQQC4CZmZKWbbvh6uGDta0DPnUb0apdNxLjzz2Uvosnw+aIP+nUshkdWjTF1cmeUQN6YWxkyO5Df1UZv2XvQZrU9aF3xza4OtnzQo+O1HZxJmxf+f8HjUbDlr2HeLZLW5o3qItHLUfGDupHRmY2R06Wv3eb1vNl7KB+NK7jg6OdDc0b1KV3hzYcOnH2ofVbPFlCzybQ0deN9j6uuFopGdHCH2N9fXafv1xlfNi5RBrXsqOXvxeuVkqeb+KHp40l22IuAuXv87BzF+nX0IdAN0fcrVW82qYR6vxCjiZVDPoOaOJHj3q1cbe2eCj9FEKj0RAXtZl6QQNw8Q7Cys6ToODxFOSmc+XCodvWi/1rI14NulDbvxMqWzcCO72KvoExCafDASgqzCXhdDhN2g7H0a0hNo4+BHV9nRtXz5GWHAOAkYkSn8bdsXHyxVzlgKN7I3wad+fGVbluEeJJIgNd4o7S09PZtm0br732WqU7Pjg5OTF48GBWr15d5bpijUbDvn37OHfuHEZGRvedw83zFhUVkZOTQ48ePQgPD+f48eN069aNXr16cenSJZ068+fPp3Hjxhw/fpz3339f55ibmxtr164FICYmhuTkZBYuXMiAAQMoLS1l48aN2tjr168TGhrKyy+/fMc8Bw8ejKurK0eOHOHYsWNMnjwZQ0NDAC5cuEC3bt149tlnOXHiBKtXr2b//v2MGzcOgGHDhtGjRw8GDx5MSUkJoaGhfPfdd6xatQozs/Kp1iYmJgQHB/POO+9UmkVXlcmTJzNhwgTOnj1LcHAwBQUFNGvWjNDQUE6dOsWoUaMYOnQohw9XDJZMmTKFjz76iPfff58zZ87w888/4+joCJTPCgsODsbCwoJ9+/YRGRmJUqmkW7duFBXd/hs68e+kp6WQnaXGu05DbZmpmTlunr7aAam/Kykp4cqleHzqNtKWKRQKfOo20ta5mhRPaWmJToyDkwtW1na3bTcrM51Txw9S26f+g+iaEJSUlBJ/+SoN/by0ZQqFgoZ+3sQmVj0AEJt4WSceoFEdb2IvJgFwPS0DdVY2DXwrYsxNTfD1cCU2Mem2ueQWFKA0kzsbiQevpLSMhLQsGjjbacsUCgUNnG2JS1VXWSc2VU0DZ1udskbOtsTdKI+/npOPOr+QBk4VMeZGhvjYWRF7o+o2hXgYcrNSyM/NwNGt4rrFyNgcWyc/bvxvQOrvykpLSE+5gJN7Y22ZQqHA0b2RdhAr43o8ZaUlON4So7JxxczC/rbt5uekcyXuIPYuct0ixJPk0V3DJR6auLg4NBoN9erVq/J4vXr1yMjIIDU1FQeH8n0jFi9ezHfffUdRURHFxcWYmJgwfvz4+zq/Wq1m9uzZKJVKgoKCcHR0pHHjil9ws2fPZt26dWzcuFE7aATQsWNH3nrrLe3zW2cd6evrY2NjA4CDg4POHl2DBg1i2bJlDBgwAICffvoJd3d32rdvf8dcL126xNtvv03dunUB8PWt2Atp7ty5DB48mDfeeEN7bNGiRbRr146vv/4aExMTli5dSqNGjRg/fjx//PEHM2bMoFmzZto2Zs6cyfHjx3nhhRdo164d27Zto1at8r0OXn/9dRISEti8ebM2/o033qB///46OU6cOFH799dff51t27axZs0agoKCyM7OZuHChXz55Ze89NJLAHh7e/PUU08BsHr1asrKyvjuu++0+60tW7YMKysrIiIi6Nq16x1fI3HvcjLVAChVljrlSpUl2VkZVdbJy82irKwMpcXf6lhYkppyBYDsLDX6+gaYmpnrxlTR7q8/fMaZE0coLi6iXsNA+g9+9d90SQitrNw8ysrKsLJQ6pRbKc25mnKjyjqZOTmV41VK1Fk5AKizy/+0/FuMpYW59tjfXbuRzrZ9hxnSW36OiQcvu7CIMo0GSxPdL/0sTYy5mlX1Et2sgkKsTIx1yqxMjVHnl886v/ln5TaNyMyvejmkEA9DQW75NcTNfbNuMjazoiBXXWWdwvwsNJoyjM10r1tMzKzIzriibVdP3wAjY/O/xVhSkKfb7p9bP+XKhcOUlhRRy6s5zTuPvf8OCSEeOTLQJe7ane4EceuMrcGDBzN16lQyMjKYPn06rVu3pnXr1vd0vtatW6Onp0dubi5eXl6sXr0aR0dHcnJymDFjBqGhoSQnJ1NSUkJ+fn6lGV2BgYH3dL6bRo4cSfPmzbly5QouLi4sX76ckJCQu9pI/80332TEiBGsXLmSzp07M2DAALy9vYHyZY0nTpxg1apV2niNRkNZWRkJCQnUq1cPa2trvv/+e4KDg2ndujWTJ0/WxmZkZDB37lz++OMPevTogb6+Pm3atGH79u34+vpy8uRJunfv/o+vQWlpKXPmzGHNmjVcuXKFoqIiCgsLtTPGzp49S2FhIZ06daqyf9HR0Zw/fx4LC93lDwUFBVy4cKHKOoWFhZWWghYVlWJkZFxlvIDjh/ey/tdvtM9fenVKDWZT7plnQ+jY43luXL/Ktg2r2LL2R/q8MLKm0xLigUhTZzFn6UpaNK5P51bN7lxBCCGE1sVzezgaXrEX79N93qvBbMo1afsy/i0Gkp1xlRORK4nau4xmHUfXdFpCiIdEBrrEHfn4+KBQKDh79iz9+vWrdPzs2bPY29vrzIqytLTEx8cHgDVr1uDj40PLli3p3LnzXZ939erV1K9fH1tbW522J06cyI4dO5g/fz4+Pj6Ympry3HPPVVo6Z25uzv1o2rQpjRs3ZsWKFXTt2pXTp08TGhp6V3VnzJjBoEGDCA0NZevWrUyfPp1ff/2Vfv36kZOTw+jRo6uc2ebuXrFB7N69e9HX1yc5OZnc3FztoFJMTAyFhYXaO0/OmjWLrKwsnnrqKT7//HMOHjyoM4hW1WvwySefsHDhQj7//HMaNmyIubk5b7zxhva1+/vS1L/LycmhWbNmlc4DYG9vX2WduXPnMnPmTJ2yl159l+Fjp1YZL6B+o+a4166YDVhSUgJATlYmKksbbXlOVibOrp5VtmFmrkJPT09n43mAnOxMlCprACxUVpSWlpCfl6szqysnKxOL/8XcZGFpjYWlNQ5OLpiZK1m64H06dH9WJx8h7ofK3Aw9Pb1KM63UOblYqZRV1rFUKivHZ+Vo42/O9srMzsHGsmJgPjM7F49ajjr10jOzmbV4OX6ebowZ2Ptf90eIqlgYG6GnUJBZoHutklnFrK2bVCbGqP+2Ub06vxAr0/L4m39mFhRhbWZyS5tFsh+XeKhqeQXR9ZY7I5aVlt/0oyBPjamy4jqhME+Npb1nlW0Ym6pQKPQozNO9binIU2NiVn5NYmJuTVlpCUWFuTqzugryMivNHjM1t8bU3BqVjStGJhbs+u1d6gcN0MlHCPH4kj26xB3Z2trSpUsXFi9eTH5+vs6xa9eusWrVKkJCQm5bX6lUMmHCBCZOnHjHWWG3cnNzw9vbW2eQCyAyMpKQkBD69etHw4YNcXJyuq/N0G/OQCstLa10bMSIESxfvpxly5bRuXNn3Nzc7rpdPz8//u///o/t27fTv39/li1bBkBAQABnzpzBx8en0uNmLgcOHGDevHls2rQJpVKpsxTTxcUFKB8Iu+mzzz6jZ8+eDBo0iNGjR2tjbicyMpI+ffowZMgQGjdujJeXF7GxFXsx+fr6YmpqSnh4eJX1AwICiIuLw8HBoVIfLC0tq6wzZcoUMjMzdR6DR06sMlaUMzYxxdbeWftwcHLFQmXFhZiT2piC/DySEuNwr+1XZRsGBga4uHvp1NFoNJyPOamtU8vNC319A52Y1JSrqDNu3LZdKL9hAUDp/wbghPg3DAz08XKtxam4BG2ZRqPhVGw8fp6uVdbx83TlZGy8TtnJ2Hj8PMp/VjvYWmOlsuBUXEVMXkEBcRcv4+dZ8fM8TZ3FzK+W4eVWi9de7HtXM3eFuB8G+nrUtlVxOjlNW6bRaDh9LQ1fe6sq6/jZW3HqlniAk9fS8LUrj3dQmmJlasypaxUxeUXFnL+hxs+u6jaFqA6GRqZYWDlrHyobN0zNrUlJqri+KC7MI+1aLHbOdapsQ0/fABtHb1IundCWaTQariedxPZ/dawdvNDTN+D6LTFZGVfIy069bbvl7ZRft5SVyXWLEE8KGegSd+XLL7+ksLCQ4OBg9u7dS1JSEmFhYXTp0gU/Pz+mTZv2j/VHjx5NbGysdgP4f8PX15c//viDqKgooqOjGTRokPaD973w8PBAoVCwefNmUlNTycmpmB0waNAgLl++zLfffntXm9AD5OfnM27cOCIiIrh48SKRkZEcOXJEu7fZpEmTOHDgAOPGjSMqKoq4uDg2bNigHczKzs5m6NChjB8/nu7du7Nq1SpWr17N77//DpQP/L3wwguMHTuWFStWcOHCBcLDw7lw4QLm5uZs3LiR69ev3/G127FjBwcOHODs2bOMHj2alJSKOzOZmJgwadIk3nnnHe05Dh48yPfffw+UL0m1s7OjT58+7Nu3j4SEBCIiIhg/fjyXL1e9abSxsTEqlUrnIcsW741CoaB1h2fYFbaWMyeOkHzlImtWfIGFpTX1Gwdp475bOIMDEVu1z5/q2IsjkTs5dnA315Mvs/7XbygqLKRZy/I7jpqamRPYuiOha5dzIeYkly9d4PeVX+Je20870HXu1F8c/XMX165eIiPtOudOHmPDr9/i4VUHa1uHh/tCiMdWz/atCP/zGBGHj3P5Wirf/raZgqIi2geVz2D9ctUfrNpccefeHm1bEh1zgU27I7mSksqasN3EX75Kt6fL/z8oFAp6tG3B2h17OXLqHBevpvDlqnVYW1rQvGH5Hoo3B7lsrS0Z0qsrmTm5ZGRlk5GV/fBfAPFEeKZebXadT2LPhctcVufw/aHTFJSU0t67fED3q8hofvmrYkPtbnU9OZF8g81nEriSmcPv0XEkpGUSXMcDKH+fd6vrwbqT5zmalMKljCwWR57AytSYQLeKmYs3cvNJTM/iRm4BpWUaEtOzSEzPoqBYPvSL6qFQKPBt0pOzh3/jyoXDqG8kcmjbQkzMbXDxbqGN2712GnFRFasm/AJ6E39qBwlndpGVlsSxXUsoKS6gtn9HoHxD+9r+nTi+dxkpSSdJTznPke1fYOdcRzsYdjXhGAmnw8m8cZHcrOtcjT/KsV1LsKtVF3OVXLcI8aSQpYvirvj6+nLkyBFmzJjB888/z/Xr19FoNPTv35+VK1dq93i6HRsbG4YNG8aMGTPo378/enr3P8a6YMECXn75ZVq3bo2dnR2TJk0iKyvrnttxcXFh5syZTJ48meHDhzNs2DCWL18OlC+9fPbZZwkNDaVv37531Z6+vj5paWkMGzaMlJQU7Ozs6N+/v3bZXqNGjdizZw9Tp07l6aefRqPR4O3tzcCBAwGYMGEC5ubmzJkzB4CGDRsyZ84cRo8eTatWrXBxceHHH39k/vz5fPjhh1y8eBEXFxeGDBnC2rVr6dSpE71792b37t23zfG9994jPj6e4OBgzMzMGDVqFH379iUzs2Ka+Pvvv4+BgQHTpk3j6tWrODs7M2bMGADMzMzYu3cvkyZNon///mRnZ+Pi4kKnTp1QqVT3+k8g7kG7Ln0pLipk3c9LKMjPw8O7LsPHvoehYcXeeOk3UsjLrfi/0KhZG3Kys9i5eTXZWWpquXkyfOxULFRW2phnng1BgYJV382npKQEv3pN6DNwhPa4oaEhRyJ3Err2R0pLirG0tsW/SQvadam8jFmI+9W6aQMyc3JZE7YbdXYOnrWcmTpqqHYJ4o2MTJ3ZVnVquzN+SH9Wb93NL1vCcbKzZeLwF3B3rvhw36fjUxQWFfPNmk3k5RdQx8udd0cNweh/d8I9GXuBazfSuXYjnVdnfqqTz5rPdJdbC/EgtPJ0JqugiN+i48jML8TDRsXkjs2x/N8SxLTcAvRufZ87WDOuTWPWRMex+ngMTipz3mwfgNstyxJ7+3tRVFLKdwdPkVdcQh17ayZ3CsTIQF8b81t0HHsvXNE+nxIaCcD7XYKo76R7V0chHpS6gf0oLSnkaPjXFBfmYlerHm37vY++QcV1S25mCoX5FV8uuPs9RWFeJqf+/JWCvAys7WvTtu/7OssSm7Z9GQUKDoR+TFlpMU4eTQnoMEp7XN/AiPhTO4jau4zS0mLMlLa4+rSibnPdmzMJIR5vCs29rCUT4hbTp09nwYIF7Nixg5YtW9Z0Og9cp06d8Pf3Z9GiRTWdymNnz+m8mk5BiGoXkL/3zkFCPOJKtm2o6RSEqHafuiys6RSEqHYfhBjdOeg/KvtoWE2nUCWLwG41ncITS2Z0ifs2c+ZMPD09OXjwIEFBQf9qltZ/SUZGBhEREURERLB48eKaTkcIIYQQQgghhBB3SQa6xL8yfPjwe64zZswYfvrppyqPDRkyhCVLllR57GFp2rQpGRkZzJs3jzp1dDe29Pf35+LFi1XWW7p0KYMHD34YKQohhBBCCCGEEKIKMtAlHrpZs2YxcWLVd937L+zz9E93cNyyZQvFxcVVHnN0dKyyXAghhBBCCCGEEA+HDHSJh87BwQEHh0fzriceHh41nYIQQgghhBBCCCFu4/HYVEkIIYQQQgghhBBCPPFkoEsIIYQQQgghhBBCPBZkoEsIIYQQQgghhBBCPBZkoEsIIYQQQgghhBBCPBZkM3ohxEO344j86BGPv0ZXNtR0CkJUO4PgPjWdghDVrotpSU2nIMRDYFTTCQjxwMiMLiGEEEIIIYQQQgjxWJCBLiGEEEIIIYQQQgjxWJCBLiGEEEIIIYQQQgjxWJCBLiGEEEIIIYQQQgjxWJCBLiGEEEIIIYQQQgjxWJCBLiFuMWPGDJo0afLE5yCEEEIIIYQQQjyKDGo6ASEehNTUVKZNm0ZoaCgpKSlYW1vTuHFjpk2bRps2bVAoFKxbt46+ffs+sHPOmDGDmTNnAqCvr4+rqyv9+vVj9uzZKJXK+2534sSJvP7669rnISEhqNVq1q9f/29TFo8wjUbD6YO/En9qB0WFudg516VZx9FYWNf6x3px0VuIObaBgtwMrOw9adp+BLZOftrjpSVFRO1dRlJsJKWlxTh5NKVZx1GYmFkBkHBmF4e3f1Fl231GLcfEzPKB9VE82bbHXGTT6QQyCwpxt7YgpHl9fOysbht/MDGZNdFx3MjNx8nCjBcD6tDUxUF7XKPR8Ht0HLvOXya3qJg69ta83MIfZ5W5NmbdyfMcv5JKYnoWhvp6fD+wS3V2UQjC9h9m0+5I1Fk5eNRyYnj/7vh6uN42/s+oU6zeupvUdDVO9rYM7tmZgPoVP8M1Gg1rwnYTfvAv8vIL8KvtxsjneuJsb6uN+WPHXv46E0vilWsYGOizfM6Uau2jEFD+3twZupojkTspyM/D3asOfV8YhZ2D8z/W+3NPGPt2biA7S42zqwe9BryCm6ev9nhxcRFb1v7Iib8iKSkpwa9eY3oPHImFykobM2Xsc5XafWH4GzQOfOqB9U8I8d8mM7rEY+HZZ5/l+PHj/Pjjj8TGxrJx40bat29PWlpatZ7X39+f5ORkEhMTmTdvHt988w1vvfXWfbWl0WgoKSlBqVRia2t75wriiXLu6DriokJp1nEMnV+Yh4GhCXvWzaK0pOi2dS7F7idq7zL8WzxP10GfYmnnyd51syjIy9TGHN/7A1cTjtLqmbfp8Nxs8nPSiNw8T3vc3e8peo/8Qefh5NEUBxd/GeQSD8yficmsPHqWZxv5MKdHGzysVcwNP0JWQWGV8THXM/hifzQdfFyZ06MNgW6OLIj4i6SMbG3MxtPxhMVc5JUW/nzQvRXGBvrMDT9CUUmpNqaktIyWHk508XOv9j4KceD4KVZsCOO5ru2Z99YYPFwc+XDpSjJzcquMj0m4xMKVa+nYIoB5b42heYO6zF/2K5eSU7QxG3btZ+u+Q4wc0JMP3xiJiZERHy5dSVFxsTamuKSEVk386dqmebX3UYib9uxYz4GIrfR9cTSvvj0XI2MTfvhyNsXFt79uOXEsktC1y+nYYwCvT/4EJxdPfvjyA3KyK65bQtcu5+ypowx65S1GvjGTTHU6q779pFJbzw0dy7tzvtU+6jcOqpZ+CiH+m2SgSzzy1Go1+/btY968eXTo0AEPDw+CgoKYMmUKvXv3xtPTE4B+/fqhUCi0zwE++ugjHB0dsbCw4JVXXqGgoOCezm1gYICTkxOurq4MHDiQwYMHs3HjRgBWrlxJYGAgFhYWODk5MWjQIK5fv66tGxERgUKhYOvWrTRr1gxjY2P279+vs3RxxowZ/Pjjj2zYsAGFQoFCoSAiIoKOHTsybtw4nVxSU1MxMjIiPDz8jnkvXrwYX19fTExMcHR05LnnKr75KisrY+7cudSuXRtTU1MaN27M77//DpQPxnXu3Jng4GA0Gg0A6enpuLq6Mm3atHt67cTd02g0xEVtpl7QAFy8g7Cy8yQoeDwFuelcuXDotvVi/9qIV4Mu1PbvhMrWjcBOr6JvYEzC6fL3SFFhLgmnw2nSdjiObg2xcfQhqOvr3Lh6jrTkGAD0DYwwNbfWPhQKPa5fPkntBp0fSt/FkyH0bAIdfd1o7+OKq5WSES38MdbXZ/f5y1XGh51LpHEtO3r5e+FqpeT5Jn542liyLeYiUP5/5v/Zu++4qqv/geOvyx73spG9lxMUcSDlQEnT3KnZNFHLsqVWas40R2XDlmU5Kv2lfcuRMxcO3ANxICiIOBAR2ePChfv7g7x2BbdI6vv5eHwe3+89n/c5n/e5wfVyPuecz9rjp+nZyJ8wDyc8ba0YGhFMTrGafWeuDhL0aRxI53o+eNqq7ks/xaNtZcxO2rdsSrsWTXB3dmRIn66YmhizefeBauNXb91F47r+dIuMwN3ZkWc6R+Lj5sLabXuAyp/z1Vt30zuqNc0a1sXL1YnXn+1Jdm4+ew8f17XT78lIurQJx9OlTrXXEeJe02q17Ni8ishOvakf3AwXNy/6vDCM/Nxsjh3ac9162zf9RbOIDoSFR1LHxZ2e/V/BxMSEfTs3AVBcVMi+HZvo0msAfkGNcPf04+kXhnE6JZG0U0l6bZmZW6KyttUdxsYmNdpnIcR/iwx0iQeeUqlEqVSybNky1Oqqd//37t0LwLx580hPT9e9XrJkCRMnTmTq1Kns27cPFxcXvv3227vKxdzcnNLSyjtVZWVlTJ48mUOHDrFs2TJSU1MZMGBAlTqjRo1i+vTpJCQkEBwcrHdu5MiR9O3bl06dOpGenk56ejqtWrVi0KBBLFq0SK+/v/76K25ubkRGRt4wx3379vHmm2/y4YcfkpiYyNq1a2ndurXu/LRp0/j555+ZPXs2R48e5Z133uH5559ny5YtKBQKFixYwN69e5k1axYAr776Km5ubjLQVYMK8zIoLszGyaORrszE1BJ750Au/TMgda2Kcg2XM5Jx9gzRlSkUCpw8g3WDWNkXU6go1+D0rxgrO3csVI7XbTc1IQYjI1M8Alrdi64Jgaa8glNZeTR0cdCVKRQKGrrYcyIzp9o6SZk5NHTRn/ka7GLPiUuV8RcLiskpVtPQ+WqMpYkx/g42JF2qvk0hapJGU07K2fM0CvTVlSkUChoF+pGUWv2AblLqWb14gOAgP5JOnwHgYlY2OXn5NAy4GmNpbkaAlztJqWdqoBdC3JrLWRnk5+XgF3T1e4u5hSUe3gFVBqSu0Gg0nEtLwb/u1e/CCoUC/7rBujrnz6RQXq7Ri6nj7IaNrUOVdlcsnsPk9wbwzcfvs2/HRt0NWiHEo0H26BIPPCMjI+bPn8/gwYOZPXs2oaGhtGnThmeeeYbg4GAcHR0BsLGxwdnZWVfviy++IDo6mujoaACmTJnChg0bbntW1xX79+9n0aJFuoGmgQMH6s75+voya9YsmjVrRkFBgd4eXh9++CFRUdXvC6NUKjE3N0etVuvl3qtXL4YNG8by5cvp27cvAPPnz2fAgAEoFIob5pmWloalpSVPPfUUKpUKLy8vmjRpAoBarWbq1Kls2LCB8PBwXe7bt2/n+++/p02bNri5ufH999/z4osvcuHCBVavXs3BgwcxMqr+40StVlcZgNSUKTAyNr1hnuKqksJsAN2+WVeYWthQUphTbR11cR5abQWm1ywvNLOwIT/7nK5dA0MjTEwtr4mxpqSo+nZPHd2AZ9DjGBrJnVFxb+SrS6nQarE20/+ZsjYz5Xxe9Uu68krU2Jjpf4bYmJuSU1z5WXPlf6u2aUJucfXLIYWoSXmFRVRUVGCj0t/D00ZpyfmMS9XWyS0oqBpvpSQnrwCAnPzK/7W+JsZaZak7J0RtKMjNAUBppf8dRGllTX5edrV1igrzqKioQKm6po7KmsyMyu8t+Xk5GBoaYW6h/73l2nY7dOmHf1AjjE1MSUqIY/niHyktVdOqbee77ZoQ4gEhM7rEQ6F3796cP3+eFStW0KlTJ2JiYggNDWX+/PnXrZOQkECLFi30yq4M7tyqw4cP6wajmjdvTnh4OF9//TVQOfDVtWtXPD09UalUtGnTBqgcaPq3sLCw27omgJmZGS+88AJz584F4MCBAxw5cqTaGWPXioqKwsvLC19fX1544QUWLlxIUVERACdPnqSoqIioqCjdTDmlUsnPP/9McnKyro0+ffrQs2dPpk+fzqeffkpAQMD1Lse0adOwtrbWO3as+vi2+/woOX18C3980193VFRU1HZKAFxKP07e5bP4NGhf26kIIYQQ4j/i4J6tTBj+vO4oryi/eaUa1L5zH7z86uLq4UPbJ3rSOqo7Wzcsr9WchBD3l8zoEg8NMzMzoqKiiIqKYty4cQwaNIgJEybc0uDPnQoKCmLFihUYGRnh6uqKiUnl7IHCwkI6duxIx44dWbhwIY6OjqSlpdGxY0fd0sYrLC0tq2v6pgYNGkTjxo05e/Ys8+bNIzIyEi8vr5vWU6lUHDhwgJiYGP7++2/Gjx/PxIkT2bt3LwUFlXeAV61ahZubm149U9OrsyeKiorYv38/hoaGnDhx4obXGz16NMOHD9crm7r4xrPOHnWuvs154l9PRqwor9xUuKQoB3Olna5cXZSDtaN3tW2YmluhUBig/tfG81faMLOwBcDM0paKcg2l6kK9WV0lRblVZo8BnDqyAVtHH+yc/O+0a0JUoTI1wUChILdE/7Mxt5pZW1dYmZmSc81G9TnFamzMK+Ov/G9uSSm2Fmb/arNU9uMStcLK0gIDA4MqM61yCgqxsar+Sc3WSmXV+LwCXfyV2V65+QXYWV/9uc7NL8TL1elepi/EDdUPboanz9WbnhqNBoCCvFysrK9+bynIy8XF3bvaNiwsrTAwMNDbeB6gID8XpVXl9xaVlQ3l5RqKiwr1ZnUV5OWi+iemOh5eAWxa8z80ZWUYGRvfdv+EEA8emdElHlr169ensLBy2YuxsTHl5fp3l+rVq8fu3fobee/ateu2rmFiYoK/vz/e3t66QS6A48ePk5WVxfTp03n88cepW7eu3kb0t3uNa3MHaNSoEWFhYcyZM4dFixbpLZW8GSMjIzp06MDHH39MfHw8qampbNq0ifr162NqakpaWhr+/v56h4eHh67+iBEjMDAwYM2aNcyaNYtNmzZd91qmpqZYWVnpHbJs8caMTcxR2bjoDis7D8wtbck4c1gXU6YuIutCEg4uQdW2YWBohJ2THxlp8boyrVbLxTOHsf+njm0dXwwMjbj4r5i87HMU5WdWaVdTVkJaUqzM5hL3nJGhAT72VhxNv/qUXK1Wy9ELWQQ42lRbJ9DRhiPp+k/VPXwhiwCHyvg6SnNszE05cuFqTFFpGScv5RDoUH2bQtQkIyNDfN1dOXLilK5Mq9VyJCmFQG/3ausEertzOClFr+xwUgqBXpX/Htext8XGSsWRE1djikpKOHH6LIHeHghxv5iamWPv6KI76ji7o7KyITnx6veWkuIizqSewNMnsNo2jIyMcPP01auj1Wo5mXhYV8fVwxdDQyO9mMyM8+RkX7puuwDp51Ixt7CUQS4hHiEyo0s88LKysujTpw8DBw4kODgYlUrFvn37+Pjjj+nevTsA3t7ebNy4kYiICExNTbG1teWtt95iwIABhIWFERERwcKFCzl69Ci+vr43ueLNeXp6YmJiwldffcWrr77KkSNHmDx58h215e3tzbp160hMTMTe3h5ra2uM//mHetCgQQwbNgxLS0t69ux5S+2tXLmSlJQUWrduja2tLatXr6aiooKgoCBUKhUjR47knXfeoaKigscee4zc3FxiY2OxsrLipZdeYtWqVcydO5edO3cSGhrKu+++y0svvUR8fDy2tte/mybunEKhIKDxUyTs+R2VjQuW1nU4suP/MLO0w83v6vLbzX+Mx92vBQGNuwAQGNqNPetmYevkh71TAElxK9GUleDToHIfORNTS3watOfg1nkYmykxNjHnYMyPOLgE6QbDrkhL2o5WW4FXvbb3rd/i0dGlng/f7YjHx94KP3sb1h5PpURTTlu/ygGAb2IPYWduRv/Qyp/LTnW9mbx+NyuPnaKJmyM7U9M5lZXL4BYNgcrfmU51vVh6+CTOKgvqKM1ZEncCG3NTwjyuznS5VFhMgbqMS4UllFdoSb2cB4CzygIzY/mKJO6tp9qG882ipfi6u+Dv6c7qrbsoKS2lbfPKfTK/XvgnttYqnnuqct/Ozq1bMvGb+fy1OZbQ+oHEHjxCytnzDOnbFaj8Oe/cugV/rN+Ks6M9dexsWbxmE7bWKpo1qqu77qXsHPILi7mUk0tFRQWnzqYD4OJoj5mp7Lco7j2FQkGrdl3YtPYP7Ou4YGtfh/Urf0NlbUv9kOa6uB+/nEj9kBa0avskAI9FduX3n7/GzdMXD68AYmNWUapW07RlO6ByQ/uwVpGs+mM+5haWmJpb8NeSn/D0CdQNdCUc3kdBXg4ePoEYGxtzIuEQm9f9yePtu97/N0IIUWvkW5x44CmVSlq0aMHnn39OcnIyZWVleHh4MHjwYMaMGQPAzJkzGT58OHPmzMHNzY3U1FT69etHcnIy7733HiUlJfTu3ZuhQ4eybt26u87J0dGR+fPnM2bMGGbNmkVoaCiffvop3bp1u+22Bg8eTExMDGFhYRQUFLB582batm0LQP/+/Xn77bfp378/ZmZmN27oHzY2Nvz5559MnDiRkpISAgIC+L//+z8aNGgAwOTJk3F0dGTatGmkpKRgY2NDaGgoY8aMITMzk+joaCZOnEhoaCgAkyZN4u+//+bVV19l8eLFt90/cWvqhvWkXKNm38bvKFMX4uBaj9Y9x+ltCl+Ym4G6OF/32jPwMdRFuRzZ+RslRdnYOvrQusc4vWWJTVoPRIGCHas+pqK8DGevJoS2G1Ll+qeObMDdr0WVjeuFuBfCvV3IKynl90MnyC1W42VnxajIZlj/swQxq7AEg389aCOoji3DIkJYcugEiw8m4mxlyfC2oXj8a1litwa+lGrK+XHXEYrKNAQ52jKqfRgmRoa6mN8PnWBr8jnd69GrYgEYF9Wc+s76T3UU4m61atKQ3IJClqzdTE5+Ad6uLnww5AXdEsRL2bl6D5QJ8vHkzed7sXjNZv5v9UacHewZ+fIzeLpcHaztHvkY6tIyfljyF0XFJQT5ejJmyPOY/GvmyuI1m9myN073+v2ZswGY8PoAGvj71HCvxaOqTVQPykrVLF00m5LiIrz86vLy62MxNr76veXypQyKCvN0r4ObRlCQn8eGlYvJz8vB1cObl1//AJWVjS6mS+8BKFCw8MdP0Wg0BNZrTPd+g3TnDQwM2bV1LSv/mA+AvYMzXXq/RPOI6h/8JIR4OCm08qxVIR5Yqamp+Pn5sXfvXt3A04Ng7PzSmwcJ8YAbce6t2k5BiBpn1LF7bacgRI07YN66tlMQosa1aWBR2yncsfx9a2s7hWqpwjrVdgqPLJnRJcQDqKysjKysLMaOHUvLli0fqEEuIYQQQgghhBCipshm9EJch1KpvO6xbdu2Ws0tNjYWFxcX9u7dy+zZs/XObdu27Ya5CyGEEEIIIYQQDyuZ0SXEdcTFxV33nJub2/1LpBpt27blequOw8LCbpi7EEIIIYQQQgjxsJKBLiGuw9/fv7ZTuCPm5uYPbO5CCCGEEEIIIcTdkKWLQgghhBBCCCGEEOKhIANdQgghhBBCCCGEEOKhIANdQgghhBBCCCGEEOKhIHt0CSHuu6hmmtpOQYgaN5MvazsFIWrciHVv1XYKQtS40I61nYEQ90On2k5AiHtGZnQJIYQQQgghhBBCiIeCDHQJIYQQQgghhBBCiIeCDHQJIYQQQgghhBBCiIeCDHQJIYQQQgghhBBCiIeCDHQJIYQQQgghhBBCiIeCDHQJIYQQQgghhBBCiIeCDHSJR87EiRNp3LjxI5+DEEIIIYQQQgjxsDGq7QSEuFWZmZmMHz+eVatWkZGRga2tLSEhIYwfP56IiAgUCgVLly6lR48e9+yaEydOZNKkSQAYGhri7u5Oz549mTx5Mkql8o7bHTlyJG+88Ybu9YABA8jJyWHZsmV3m7J4SGm1WjasWsze2A2UFBfh6RtEj2eG4FDH5Yb1dm5Zy7YNy8nPy8HF3YuufaLx8A7QnS8rK2X1HwuIPxCLRqMhsF4I3foNRmVlA0D62VS2/L2U1JTjFBXkY2PnSIvHnyCiXZea7K54BJ04tJrE/cspKczGxtGbJm0HYe8ceN34M0mxHN65iKK8TJQ2LgQ/9iKuPk1157VaLUd3/UbKkfWUqgtxcKlL08hXUNm6AlCYd5Fju5eQceYwJUU5mFva4VW3NfWb98HAUL4eidrzd+Jp/jp6itwSNZ62KgY0q4+/g81143elprPk0AkuFRbjrLKgf2gQTdzq3L+EhaiGVqtlydrNbNx1gKLiEgJ9PBj89FO4ONrfsN7a7Xv4a3MsOXkFeLk683KvJwnwctedLy0r4+fl69gRdxSNRkNIkD/RT3fBRnX1e/m8P1dz/FQaZy5cxM3JkU9GDq2xfgoh/ptkRpd4YPTu3ZuDBw+yYMECkpKSWLFiBW3btiUrK6tGr9ugQQPS09NJTU1lxowZ/PDDD4wYMeKO2tJqtWg0GpRKJfb2N/6H/l4rLS29r9cT99aW9cvYEbOGHv1fYei70zAxNWPu15MpK7v+f9f4/bGs+mM+kZ378MaoT3B282bu11MoyM/Vxaz6Yz4JR/bxbPQIBr89idycyyyc84nu/Lm0ZCxV1vR96U3eGvsZ7Tr1Yt3yheyIWVOj/RWPlrSk7cRtnUeDFn154tmZWDt4s3Xph5QU5VYbf+l8AjvXfIZvgyieeHYmbn4tiF05ndxLp3Uxx/ct5UTcKppGvkqHZ2ZgZGzGlqUfUq6p/J3Ju3wWrbaCsPZD6fTClzRu/TLJ8euIj/31vvRZiOrsTE3nl30J9A72Z2rnCLxsrZi2cS95Jepq4xMvZvPV9kO083dnaucIwjyc+CzmAGey8+9z5kLoW75pO2u27WZwn6f46O3BmJmY8NH3v1BaVnbdOjsOHuHn5Wt5+om2zBjxKl5uTnz0/S/kFhTqYhYsW8f+o0kMf6kvE15/mcu5ecyct7hKW+1ahNKqccMa6ZsQ4r9PBrrEAyEnJ4dt27YxY8YM2rVrh5eXF82bN2f06NF069YNb29vAHr27IlCodC9Bpg+fTpOTk6oVCqio6MpKSm5rWsbGRnh7OyMu7s7/fr147nnnmPFihUA/PLLL4SFhaFSqXB2dubZZ5/l4sWLuroxMTEoFArWrFlD06ZNMTU1Zfv27XpLFydOnMiCBQtYvnw5CoUChUJBTEwMkZGRDBs2TC+XzMxMTExM2Lhx403z9vb2ZvLkybz44otYWVkxZMgQAN5//30CAwOxsLDA19eXcePGUXbNl46//vqLZs2aYWZmhoODAz179tSdU6vVjBw5Ejc3NywtLWnRogUxMTG39Z6K26PVatmxeRWRnXpTP7gZLm5e9HlhGPm52Rw7tOe69bZv+otmER0IC4+kjos7Pfu/gomJCft2bgKguKiQfTs20aXXAPyCGuHu6cfTLwzjdEoiaaeSAAhr1Z6ufQbiG9AAewdnmjRvQ9OW7Th2aPd96bt4NCQdWIFvwyh8GrTHyt6DsPZDMTQy5dTR6j/rkg6uwsU7lLphPbCy96BRq2exdfTlxKHVQOXvzIm4ldRr3gc3v+bYOHjTvOOblBRe5lxy5c+ui3cozZ94E2evxiitnXHza05Q0x6cPbnrvvVbiGutSjhFZIAHbf3dcbdRMqhFA0wNDdl88my18WuPpxLi6kDXBr642yjp2zgQbztr1iWerjZeiPtBq9Wyeutueke1plnDuni5OvH6sz3Jzs1n7+Hj1623MmYn7Vs2pV2LJrg7OzKkT1dMTYzZvPsAAIXFJWzec4CXenSkYYAPfh6uvNa/B4mn0jiRevV35OVenen0WHPq2NvWeF+FEP9NMtAlHghKpRKlUsmyZctQq6ve1dy7dy8A8+bNIz09Xfd6yZIlTJw4kalTp7Jv3z5cXFz49ttv7yoXc3Nz3eyosrIyJk+ezKFDh1i2bBmpqakMGDCgSp1Ro0Yxffp0EhISCA4O1js3cuRI+vbtS6dOnUhPTyc9PZ1WrVoxaNAgFi1apNffX3/9FTc3NyIjI28p108//ZSQkBAOHjzIuHHjAFCpVMyfP59jx47x5ZdfMmfOHD7//HNdnVWrVtGzZ086d+7MwYMH2bhxI82bN9edHzZsGDt37uS3334jPj6ePn360KlTJ06cOHHL76G4PZezMsjPy8EvqJGuzNzCEg/vAN2A1LU0Gg3n0lLwr3v1502hUOBfN1hX5/yZFMrLNXoxdZzdsLF1uG67ACUlRZhbWN5tt4QAoKJcw+WMZJw9Q3RlCoUCJ89gstITq62TdSGROh6N9MqcvRrr4gvzMiguzMbpXzEmppbYOwdy6TptApSVFmJqfufL0oW4G5ryCk5l5dHQxUFXplAoaOhiz4nMnGrrJGXm0NBFf4Z4sIs9Jy5VHy/E/XAxK5ucvHwaBvjqyizNzQjwcicp9Uy1dTSaclLOnqdR4NU6CoWCRoF+JP0ziHXqbDoaTTmNAv10MW5OjjjYWpN0uvp2hRCPJtmEQjwQjIyMmD9/PoMHD2b27NmEhobSpk0bnnnmGYKDg3F0dATAxsYGZ2dnXb0vvviC6OhooqOjAZgyZQobNmy47VldV+zfv59FixbpBpoGDhyoO+fr68usWbNo1qwZBQUFent4ffjhh0RFRVXbplKpxNzcHLVarZd7r169GDZsGMuXL6dv374AzJ8/nwEDBqBQKG4p38jIyCrLLMeOHav7/97e3owcOZLffvuN9957D4CPPvqIZ555Rrc3GUBISOUfoGlpacybN4+0tDRcXSv3uRk5ciRr165l3rx5TJ06tUoOarW6yuBkaWk5Jiamt9QHAQW5OQAoraz1ypVW1uTnZVdbp6gwj4qKCpSqa+qorMnMOAdAfl4OhoZGVQatbtTu6eTjxB/YwYCho++kK0JUoS7OQ6utwNRC/2fVzMKG/Oxz1dap3FPLtkp8SWFO5fnCbF3Zv5n+K+Za+TnpnIhbTcjjL91+J4S4B/LVpVRotVibmeiVW5uZcj6vsNo6eSVqbMz0/z21MTclp7j6pY5C3A85+QUAWKv0bxxYqyx1566VV1hERUWF3l5bADZKS85nXKpsNy8fIyNDLM3NrmlXSU5e9e0KIR5NMtAlHhi9e/emS5cubNu2jV27drFmzRo+/vhjfvzxx2pnUQEkJCTw6quv6pWFh4ezefPmW77u4cOHUSqVlJeXU1paSpcuXfj666+ByoGviRMncujQIbKzs6moqAAqB4Tq16+vayMsLOw2ewtmZma88MILzJ07l759+3LgwAGOHDmiWzZ5K6q77uLFi5k1axbJyckUFBSg0WiwsrLSnY+Li2Pw4MHVtnf48GHKy8sJDNTfIFqtVl93z7Fp06bpDZoBvDR0DC+//sEt9+NRc3DPVpb99oPu9Uv/kUGlC+fT+OWHGbR/sg8B9RrXdjpC3DNFBVlsXfYhHgHh+DV6orbTEUKIB8q2/fHM+f0v3etRg56rxWzEo0izbnltp1C9sE61ncEjSwa6xAPFzMyMqKgooqKiGDduHIMGDWLChAnXHei6F4KCglixYgVGRka4urpiYlJ5p7WwsJCOHTvSsWNHFi5ciKOjI2lpaXTs2LHKxu+Wlne2zGvQoEE0btyYs2fPMm/ePCIjI/Hy8rrl+tded+fOnTz33HNMmjSJjh07Ym1tzW+//cbMmTN1Mebm5tdtr6CgAENDQ/bv34+hoaHeues9hXL06NEMHz5cr2x3cvkt9+FRVD+4GZ4+V5+MqNFoACjIy8XK2k5XXpCXi4u7d7VtWFhaYWBgoLfxPEBBfi5Kq8qZMCorG8rLNRQXFerN6irIy0VlpT9b5mL6WX78ciLNI6KIfPLpu+qfEP9mam6FQmGA+pqN50uKcjCzqH5/FTMLG4oLs6vGW9pUnv9ntldJUQ7myqu/M+qiHKwdvfXqFRdcJuZ/43BwCSKsw+t32Rsh7pzK1AQDhYLcEv3vELnVzNq6wsrMlJxrNqrPKVZjYy6zpsX9E9YgSO/JiGX/fG/JzS/AzlqlK8/NL8TL1anaNqwsLTAwMKgy4yunoBAbq8rvmDZWKjSacgqLS/RmdeXmF+hihBACZI8u8YCrX78+hYWV0/mNjY0pL9cfQKlXrx67d+tvmr1r1+1tNGxiYoK/vz/e3t66QS6A48ePk5WVxfTp03n88cepW7eu3kb0t3uNa3MHaNSoEWFhYcyZM4dFixbpLZW8Ezt27MDLy4sPPviAsLAwAgICOH1af8Pa4ODg625236RJE8rLy7l48SL+/v56x7+XXf6bqakpVlZWeocsW7wxUzNz7B1ddEcdZ3dUVjYkJx7WxZQUF3Em9QSePoHVtmFkZISbp69eHa1Wy8nEw7o6rh6+GBoa6cVkZpwnJ/uSXrsZ6Wf44YvxNG3Zlie6PXuvuysecQaGRtg5+ZGRFq8r02q1XDxzGHuXoGrr2DsHcfHMYb2yjLRDunhLKyfMLW3J+FdMmbqIrAtJOPyrzaKCLDb/byy2Tn40j3rzlpeFC1ETjAwN8LG34mj61adJa7Vajl7IIsDRpto6gY42HEnXf/r04QtZBDhUHy9ETTA3M8XZwU53uDs5YmOl4siJFF1MUUkJJ06fJdDbo9o2jIwM8XV35ciJU7oyrVbLkaQUAr0rB9F83F0wMjLkSNLVds9fvMSl7FwCvapvVwjxaJIZXeKBkJWVRZ8+fRg4cCDBwcGoVCr27dvHxx9/TPfu3YHK/aY2btxIREQEpqam2Nra8tZbbzFgwADCwsKIiIhg4cKFHD16FF9f35tc8eY8PT0xMTHhq6++4tVXX+XIkSNMnjz5jtry9vZm3bp1JCYmYm9vj7W1NcbGxkDlrK5hw4ZhaWmp9/TDOxEQEEBaWhq//fYbzZo1Y9WqVSxdulQvZsKECbRv3x4/Pz+eeeYZNBoNq1ev1j2t8bnnnuPFF19k5syZNGnShMzMTDZu3EhwcDBdunS5q/xE9RQKBa3adWHT2j+wr+OCrX0d1q/8DZW1LfVDrj4o4McvJ1I/pAWt2j4JwGORXfn9569x8/TFwyuA2JhVlKrVNG3ZDqjc0D6sVSSr/piPuYUlpuYW/LXkJzx9AnUDXRfOp/HjlxMJrN+YxyK7kp9bOYtGYWBQZf8vIe5UYGg39qybha2TH/ZOASTFrURTVoJPg8r9EHev+wJzS3uCH3uhMr5JFzb/bxzH9y/H1acpaYnbuXwxmbD2Q4HK35mAxk+RsOd3VDYuWFrX4ciO/8PM0g43vxbA1UEuS1UdQh4fQEnx1Rll1+7/JcT90qWeD9/tiMfH3go/exvWHk+lRFNOW7/KP/S/iT2EnbkZ/UMrB2w71fVm8vrdrDx2iiZujuxMTedUVi6DWzSszW6IR5xCoaBz6xb8sX4rzo721LGzZfGaTdhaq2jWqK4u7sNv59OsUT2efLzyc/mptuF8s2gpvu4u+Hu6s3rrLkpKS2nbvAlQuaF9u+ahLFi+FksLc8zNTJn352oCvT0I8L46o+zCpcsUl6jJySugrEzDqbPpAHg418HISH9FghDi4SQDXeKBoFQqadGiBZ9//jnJycmUlZXh4eHB4MGDGTNmDAAzZ85k+PDhzJkzBzc3N1JTU+nXrx/Jycm89957lJSU0Lt3b4YOHcq6devuOidHR0fmz5/PmDFjmDVrFqGhoXz66ad069btttsaPHgwMTExhIWFUVBQwObNm2nbti0A/fv35+2336Z///6YmZnduKGb6NatG++88w7Dhg1DrVbTpUsXxo0bx8SJE3Uxbdu25ffff2fy5MlMnz4dKysrWrdurTs/b948pkyZwogRIzh37hwODg60bNmSp5566q5yEzfWJqoHZaVqli6aTUlxEV5+dXn59bEYG1+dZXj5UgZFhXm618FNIyjIz2PDysXk5+Xg6uHNy69/gMrKRhfTpfcAFChY+OOnaDQaAus1pnu/QbrzRw7upLAgj4N7tnJwz1Zdua2dI+9N/q5mOy0eGZ6Bj6EuyuXIzt8oKcrG1tGH1j3G6TaTL8q7hEJxdRK6g2s9WnZ6h8M7F3F4x6+obFyIeGoU1g5Xl3bXDetJuUbNvo3fUaYuxMG1Hq17jsPQqPJ3JiPtEAU5FyjIucBfPw7Sy6ff2/o3AIS4X8K9XcgrKeX3QyfILVbjZWfFqMhmWP+zFDGrsASDf808DKpjy7CIEJYcOsHig4k4W1kyvG0oHraq611CiPuie+RjqEvL+GHJXxQVlxDk68mYIc9j8s+NXICMrGzyC4t0r1s1aUhuQSFL1m4mJ78Ab1cXPhjygt4G9S/16IhCATPnL0aj0RBS15/o3vo3Wmf/tpxjyam61+/PnA3AN+PewdHOpmY6LIT4T1FotVptbSchhLi+1NRU/Pz82Lt3L6GhobWdzj2x5WjRzYOEeMCt3yv3ksTDb8S5t2o7BSFqnFHH7rWdghA1TvUAb5ye/dHQ2k6hWrYfyE3h2iLfwoX4jyorKyMrK4uxY8fSsmXLh2aQSwghhBBCCCGEqCmyGb14pCmVyuse27Ztq9XcYmNjcXFxYe/evcyePVvv3LZt226YuxBCCCGEEEII8SiSGV3ikRYXF3fdc25ubvcvkWq0bduW660sDgsLu2HuQgghhBBCCCHEo0gGusQjzd/fv7ZTuCPm5uYPbO5CCCGEEEIIIURNkaWLQgghhBBCCCGEEOKhIANdQgghhBBCCCGEEOKhIANdQgghhBBCCCGEEOKhIHt0CSHuu9DirbWdghA1r1nr2s5AiJp3rrYTEKLmzTgSWdspCFHjpoTVdgZC3Dsyo0sIIYQQQgghhBBCPBRkoEsIIYQQQgghhBBCPBRkoEsIIYQQQgghhBBCPBRkoEsIIYQQQgghhBBCPBRkoEsIIYQQQgghhBBCPBRkoEvcNxMnTqRx48aPfA5CCCGEEEIIIYSoGUa1nYD478vMzGT8+PGsWrWKjIwMbG1tCQkJYfz48URERKBQKFi6dCk9evS4Z9ecOHEikyZNAsDQ0BB3d3d69uzJ5MmTUSqVd9zuyJEjeeONN3SvBwwYQE5ODsuWLbvblO+biooKRo8ezS+//EJ2djYBAQFMnjyZ7t2713ZqogZptVqWrN3Mxl0HKCouIdDHg8FPP4WLo/0N663dvoe/NseSk1eAl6szL/d6kgAvd9350rIyfl6+jh1xR9FoNIQE+RP9dBdsVJW/Z6nnLrB803aOp6SRX1iEo501UeHN6NymZY32Vzx6dm5Zy7YNy8nPy8HF3YuufaLx8A64bnz8gR2s/+s3ci5nYl/HhU7dn6duw1Ddea1Wy4ZVi9kbu4GS4iI8fYPo8cwQHOq4AJCddZFNa/5HcuJhCvJzUVnb0rjZ47Tr9DRGRvL1SNSevxNP89fRU+SWqPG0VTGgWX38HWyuG78rNZ0lh05wqbAYZ5UF/UODaOJW5/4lLEQ1tFotR3f9RsqR9ZSqC3FwqUvTyFdQ2bresN6JQ6tJ3L+cksJsbBy9adJ2EPbOgbrz5ZpS4rbO40xSLOXlZTh7NaFp5BDMLGwAyMk8RcK+P7l0/jjq4jwsrRzxa9SRwCZda7K7Qoj/GJnRJW6qd+/eHDx4kAULFpCUlMSKFSto27YtWVlZNXrdBg0akJ6eTmpqKjNmzOCHH35gxIgRd9SWVqtFo9GgVCqxt7/xwMB/3a+//srnn3/OZ599RkJCAp999hmWlpY3rVdaWnofshM1Zfmm7azZtpvBfZ7io7cHY2Ziwkff/0JpWdl16+w4eISfl6/l6SfaMmPEq3i5OfHR97+QW1Coi1mwbB37jyYx/KW+THj9ZS7n5jFz3mLd+ZSz57GytOCN53ox873X6NmhNYtWbWDNtt012l/xaInfH8uqP+YT2bkPb4z6BGc3b+Z+PYWC/Nxq408nH2fxvC9o1qo9b4z6hPrBzfj1h4+5cD5NF7Nl/TJ2xKyhR/9XGPruNExMzZj79WTKyio/Cy9eOEeFtoKez77CW2M/o0vvAeze9jd/r1h4X/osRHV2pqbzy74Eegf7M7VzBF62VkzbuJe8EnW18YkXs/lq+yHa+bsztXMEYR5OfBZzgDPZ+fc5cyH0Hd+3lBNxq2ga+SodnpmBkbEZW5Z+SLnm+t9H05K2E7d1Hg1a9OWJZ2di7eDN1qUfUlJ09d+Cg1vncv7UPsK7vEu7pydTXJBF7MoZuvOXLyZjam5Ni45v0+mFL6nX7GniY3/lRNyqGu2vEOK/RQa6xA3l5OSwbds2ZsyYQbt27fDy8qJ58+aMHj2abt264e3tDUDPnj1RKBS61wDTp0/HyckJlUpFdHQ0JSUlt3VtIyMjnJ2dcXd3p1+/fjz33HOsWLECgF9++YWwsDBUKhXOzs48++yzXLx4UVc3JiYGhULBmjVraNq0Kaampmzfvl1v6eLEiRNZsGABy5cvR6FQoFAoiImJITIykmHDhunlkpmZiYmJCRs3brxp3t9++y0BAQGYmZnh5OTE008/rTtXUVHBtGnT8PHxwdzcnJCQEP73v/8BlYNxHTp0oGPHjmi1WgAuX76Mu7s748eP17VhYGCAo6MjzzzzDN7e3nTo0IEOHTpUyeNKX3/88Ud8fHwwMzMDYO3atTz22GPY2Nhgb2/PU089RXJysl7ds2fP0r9/f+zs7LC0tCQsLIzdu68ObCxfvpzQ0FDMzMzw9fVl0qRJaDSam7434s5otVpWb91N76jWNGtYFy9XJ15/tifZufnsPXz8uvVWxuykfcumtGvRBHdnR4b06YqpiTGbdx8AoLC4hM17DvBSj440DPDBz8OV1/r3IPFUGidSzwIQ2SKUl3t1pr6/N04OdrQOC6Ft88bsPZxwX/ouHg3bN/1Fs4gOhIVHUsfFnZ79X8HExIR9OzdVGx8bs4rA+k1oHdWdOi7uPNG1P64ePuzcsgao/J3ZsXkVkZ16Uz+4GS5uXvR5YRj5udkcO7QHgKAGTejzwjAC6jXG3sGZ+sHNaN2hO0fiZBBX1J5VCaeIDPCgrb877jZKBrVogKmhIZtPnq02fu3xVEJcHejawBd3GyV9GwfibWfNusTT9zlzIa7SarWciFtJveZ9cPNrjo2DN807vklJ4WXOJV//MzbpwAp8G0bh06A9VvYehLUfiqGRKaeOVn7/LlUXcuroRhq3fhknj0bYOfnT/Ik3uHT+OFnpiQD4NuhAaNtB1HFvgNLaGe96bfGpH8nZG1xXCPHwkYEucUNKpRKlUsmyZctQq6veTdy7dy8A8+bNIz09Xfd6yZIlTJw4kalTp7Jv3z5cXFz49ttv7yoXc3Nz3ayksrIyJk+ezKFDh1i2bBmpqakMGDCgSp1Ro0Yxffp0EhISCA4O1js3cuRI+vbtS6dOnUhPTyc9PZ1WrVoxaNAgFi1apNffX3/9FTc3NyIjI2+Y4759+3jzzTf58MMPSUxMZO3atbRu3Vp3ftq0afz888/Mnj2bo0eP8s477/D888+zZcsWFAoFCxYsYO/evcyaNQuAV199FTc3N72Brvbt25Obm8u4ceNu+p6dPHmSP/74gz///JO4uDgACgsLGT58OPv27WPjxo0YGBjQs2dPKioqACgoKKBNmzacO3eOFStWcOjQId577z3d+W3btvHiiy/y1ltvcezYMb7//nvmz5/PRx99dNN8xJ25mJVNTl4+DQN8dWWW5mYEeLmTlHqm2joaTTkpZ8/TKPBqHYVCQaNAP5L+GcQ6dTYdjaacRoF+uhg3J0ccbK1JOl19uwDFJWoszc3vtltCAKDRaDiXloJ/3auf0QqFAv+6waSdSqq2TtqpJPyCGumVBdQL0cVfzsogPy9HL8bcwhIP74DrtglQUlyIheWdL48X4m5oyis4lZVHQxcHXZlCoaChiz0nMnOqrZOUmUNDF/2Z6sEu9py4VH28EPdDYV4GxYXZOHlc/Qw2MbXE3jmQS/8MSF2rolzD5YxknD1DdGUKhQInz2DdIFb2xRQqyjU4/SvGys4dC5XjddsFKCstwsRUPtuFeJTIJhTihoyMjJg/fz6DBw9m9uzZhIaG0qZNG5555hmCg4NxdHQEwMbGBmdnZ129L774gujoaKKjowGYMmUKGzZsuO1ZXVfs37+fRYsW6QaaBg4cqDvn6+vLrFmzaNasGQUFBXp7eH344YdERUVV26ZSqcTc3By1Wq2Xe69evRg2bBjLly+nb9++AMyfP58BAwagUChumGdaWhqWlpY89dRTqFQqvLy8aNKkCQBqtZqpU6eyYcMGwsPDdblv376d77//njZt2uDm5sb333/Piy++yIULF1i9ejUHDx7U7RdTVFREVFQUzz77LOvXr6e4uJhPPvlEl5eVlRVz587VzSIrLS3l559/1v13gsqlqP82d+5cHB0dOXbsGA0bNmTRokVkZmayd+9e7OzsAPD399fFT5o0iVGjRvHSSy/p+jB58mTee+89JkyYcMP3R9yZnPwCAKxV+l/SrFWWunPXyissoqKiQrfX1hU2SkvOZ1yqbDcvHyMjQyzNza5pV0lOXvXtJp5KY0fcUUYNfvaO+iLEtYoK86ioqECpstYrV6qsycw4V22dgrxcVFY2emUqKxvyc7Mrz+fmVLZhdU2bVtbk52VX22ZWZjo7t6zlyV4v3EEvhLh7+epSKrRarM1M9MqtzUw5n1dYbZ28EjU2ZqZ6ZTbmpuQUV7/UUYj7oaSw8nP2yr5ZV5ha2FBSmFNtHXVxHlptBaYW+p/bZhY25Gef07VrYGiEianlNTHWlBRV3+6l8wmcSYrl8e5jb78jQogHlszoEjfVu3dvzp8/z4oVK+jUqRMxMTGEhoYyf/7869ZJSEigRYsWemVXBndu1eHDh3WDUc2bNyc8PJyvv/4aqBz46tq1K56enqhUKtq0aQNUDjT9W1hY2G1dE8DMzIwXXniBuXPnAnDgwAGOHDlS7Yyxa0VFReHl5YWvry8vvPACCxcupKioCKicXXVloOrKTDmlUsnPP/+st3SwT58+9OzZk+nTp/Ppp58SEHB1M+b58+eTk5PDN998w5o1a1i/fj0vv/wyGo2G1NRUCgoKiIiI0MV7eXnpDXIBnDhxgv79++Pr64uVlZVuuemV9y4uLo4mTZroBrmudejQIT788EO9PgwePJj09HRdX/9NrVaTl5end6hlv7Ab2rY/nhdHfaQ7yssrajslANLSM/j4p//j6SfaEBLkf/MKQjwgcnOymPfNRzRs0pLmEdXfHBFCCFG908e38Mc3/XXHlVUAtS330mm2/zWdBi364ezVuLbTEULcRzKjS9wSMzMzoqKiiIqKYty4cQwaNIgJEybc0uDPnQoKCmLFihUYGRnh6uqKiUnlHc7CwkI6duxIx44dWbhwIY6OjqSlpdGxY8cqG67fyibt1Rk0aBCNGzfm7NmzzJs3j8jISLy8vG5aT6VSceDAAWJiYvj7778ZP348EydOZO/evRQUVM6QWbVqFW5ubnr1TE2v3o0tKipi//79GBoacuLECb24+Ph4GjRogLGxMba2tqxfv57HH3+cnj17EhAQQKdOnXBxcblh/7t27YqXlxdz5szB1dWViooKGjZsqHvvzG+yJK2goIBJkybRq1evKueu7AP2b9OmTdM9QfOKUYOfY8yQ5294nUdZWIMgvScjlv2z/1lufgF21ipdeW5+IV6uTtW2YWVpgYGBQZUZXzkFhdhYVc7ysrFSodGUU1hcojerKze/QBdzxdkLmXz47QI6tAqj9xNt7q6DQvyLhaUVBgYGVTaeL8jPRWllW22dyplZOXpl+Xk5qKwr45XWNpVt5OViZX110L4gLxcXd2+9enm5l/nxy4l4+gTS67mhd9cZIe6CytQEA4WC3BL97zK51czausLKzJScazaqzylWY2NefbwQNcHVtzlP/OvJiBXllQ/KKSnKwVx59TNYXZSDtaN3tW2YmluhUBigLtL/t6CkKAczi8rPdjNLWyrKNZSqC/VmdZUU5VaZPZaXdYaYPybg1+gJ6rfoczfdE0I8gGRGl7gj9evXp7Cwchq9sbEx5eXleufr1aunt3k5wK5du27rGiYmJvj7++Pt7a0b5AI4fvw4WVlZTJ8+nccff5y6devqbUR/u9e4NneARo0aERYWxpw5c1i0aJHeUsmbMTIyokOHDnz88cfEx8eTmprKpk2bqF+/PqampqSlpeHv7693eHh46OqPGDECAwMD1qxZw6xZs9i06epmzG5ubsTFxZGfX/k0pTp16rBhwwYOHz7M559/zpQpU26YW1ZWFomJiYwdO5b27dtTr149srP1l/EEBwcTFxfH5cuXq20jNDSUxMTEKn3w9/fHwKDqR8ro0aPJzc3VO0YM6HvL7+ejyNzMFGcHO93h7uSIjZWKIydSdDFFJSWcOH2WQG+PatswMjLE192VIydO6cq0Wi1HklII9K4cRPNxd8HIyJAjSVfbPX/xEpeycwn0utrumQsXmfjNPNo2a0z/zu3vdXfFI87IyAg3T1+SEw/ryrRaLScTD+PpE1htHU+fQL14gJPH43XxdvZOqKxs9GJKios4k3pCr83cnCzmfDEBNw9fnn5h2E2XpwtRk4wMDfCxt+Jo+tWnWmu1Wo5eyCLA0abaOoGONhxJ138K9uELWQQ4VB8vRE0wNjFHZeOiO6zsPDC3tCXjzNXP4DJ1EVkXknBwCaq2DQNDI+yc/MhIi9eVabVaLp45jP0/dWzr+GJgaMTFf8XkZZ+jKD9Tr93crDQ2/28c3vXb0ajVc/e6u0KIB4DM6BI3lJWVRZ8+fRg4cCDBwcGoVCr27dvHxx9/TPfu3QHw9vZm48aNREREYGpqiq2tLW+99RYDBgwgLCyMiIgIFi5cyNGjR/H19b3JFW/O09MTExMTvvrqK1599VWOHDnC5MmT76gtb29v1q1bR2JiIvb29lhbW2NsbAxUzuoaNmwYlpaW9OzZ85baW7lyJSkpKbRu3RpbW1tWr15NRUUFQUFBqFQqRo4cyTvvvENFRQWPPfYYubm5xMbGYmVlxUsvvcSqVauYO3cuO3fuJDQ0lHfffZeXXnqJ+Ph4bG1tiY6O5ssvv6Rbt2589NFH2Nvbs23bNgoKCrCwsOCnn34iNDT0uvnZ2tpib2/PDz/8gIuLC2lpaYwaNUovpn///kydOpUePXowbdo0XFxcOHjwIK6uroSHhzN+/HieeuopPD09efrppzEwMODQoUMcOXKk2oE2U1NTvRlrAPkmJlXixPUpFAo6t27BH+u34uxoTx07Wxav2YSttYpmjerq4j78dj7NGtXjyccrlw0/1TacbxYtxdfdBX9Pd1Zv3UVJaSltm1fuG2dpbka75qEsWL4WSwtzzM1MmffnagK9PQj4ZzAsLT2DD79dQOO6/nRpG052XuUgq4GBAdbKO5sxKcS1Hovsyu8/f42bpy8eXgHExqyiVK2mact2ACxZMAsrGzs6da+cCRrRtgs/fDmBbRtWENSwKfH7t3MuLYWez74KVP7OtGrXhU1r/8C+jgu29nVYv/I3VNa21A9pDlwd5LKxc+TJXi9S+K8ZZVdmhglxv3Wp58N3O+LxsbfCz96GtcdTKdGU09av8jP5m9hD2Jmb0T+08o/6TnW9mbx+NyuPnaKJmyM7U9M5lZXL4BYNa7Mb4hGnUCgIaPwUCXt+R2XjgqV1HY7s+D/MLO1w87u6tcnmP8bj7teCgMZdAAgM7caedbOwdfLD3imApLiVaMpK8GlQuUeviaklPg3ac3DrPIzNlBibmHMw5kccXIJ0g2G5l04T88cEnL0bExjajeJ/9gtTKAwwu2b/LyHEw0sGusQNKZVKWrRoweeff05ycjJlZWV4eHgwePBgxowZA8DMmTMZPnw4c+bMwc3NjdTUVPr160dycjLvvfceJSUl9O7dm6FDh7Ju3bq7zsnR0ZH58+czZswYZs2aRWhoKJ9++indunW77bYGDx5MTEwMYWFhFBQUsHnzZtq2bQtUDvi8/fbb9O/fv9oledWxsbHhzz//ZOLEiZSUlBAQEMD//d//0aBBAwAmT56Mo6Mj06ZNIyUlBRsbG0JDQxkzZgyZmZlER0czceJE3WDVpEmT+Pvvv3n11VdZvHgxrq6u7Nmzh/fff59evXqRl5dHWFgYP//8MxYWFkRFReHn58fw4cOrzc/AwIDffvuNN998k4YNGxIUFMSsWbN0fYbKWW5///03I0aMoHPnzmg0GurXr88333wDQMeOHVm5ciUffvghM2bMwNjYmLp16zJo0KDbfv/Frese+Rjq0jJ+WPIXRcUlBPl6MmbI85j8MzALkJGVTX7h1X3SWjVpSG5BIUvWbiYnvwBvVxc+GPKC3gb1L/XoiEIBM+cvRqPREFLXn+jeXXTndx06Rl5BIVv3HWLrvkO6ckc7G74Z904N91o8KoKbRlCQn8eGlYvJz8vB1cObl1//QLfhfM7lSyj+NWPUy68u/Qa8xfq/fmPdikU41HHh+SHv4ezqqYtpE9WDslI1SxfNpqS4CC+/urz8+liMjSsH2k8ejycr8wJZmReY/sErevlM++Z/Nd9pIaoR7u1CXkkpvx86QW6xGi87K0ZFNsP6n6WIWYUlGPxr5mFQHVuGRYSw5NAJFh9MxNnKkuFtQ/GwVV3vEkLcF3XDelKuUbNv43eUqQtxcK1H657jMDS6erOzMDcDdXG+7rVn4GOoi3I5svM3SoqysXX0oXWPcXrLEpu0HogCBTtWfUxFeRnOXk0IbTdEd/7MiZ2UFOeSmrCF1IQtunJLqzo8NfD7mu20EOI/Q6HVarW1nYQQ/0Wpqan4+fmxd+/eG86SErcvf9/a2k5BiBp3wLx1bacgRI0LXjaitlMQosbNdPuytlMQosZNGfDgrrjI/ui/ucem7Qff1XYKjyyZ0SXENcrKysjKymLs2LG0bNlSBrmEEEIIIYQQQogHhGxGL2qFUqm87rFt27ZazS02NhYXFxf27t3L7Nmz9c5t27bthrkLIYQQQgghhBCi9siMLlEr4uLirnvOzc3t/iVSjbZt23K9Fb1hYWE3zF0IIYQQQgghhBC1Rwa6RK3w9/ev7RTuiLm5+QObuxBCCCGEEEII8bCTpYtCCCGEEEIIIYQQ4qEgA11CCCGEEEIIIYQQ4qEgA11CCCGEEEIIIYQQ4qEgA11CCCGEEEIIIYQQ4qEgm9ELIe67GUciazsFIWrciHNv1XYKQtQ4o47dazsFIWpclLmmtlMQ4j4wqe0EhLhnZEaXEEIIIYQQQgghhHgoyECXEEIIIYQQQgghhHgoyECXEEIIIYQQQgghhHgoyECXEEIIIYQQQgghhHgoyECXEEIIIYQQQgghhHgoyECXEDcwceJEGjduXNtpkJqaikKhIC4urrZTEUIIIYQQQggh/rOMajsBIWpCZmYm48ePZ9WqVWRkZGBra0tISAjjx48nIiIChULB0qVL6dGjxz275sSJE5k0aRIABgYGuLq68uSTTzJ9+nTs7OxuuZ0BAwaQk5PDsmXLdGUeHh6kp6fj4OBwz/IVD44Th1aTuH85JYXZ2Dh606TtIOydA6uNrSjXkLDvT1KPbaa4IAuVrSvBj72Ii3foHbWp1WrZtnwK6akHeKzrKNz8WtRIH8Wj7VjGZVYeTSH1ch7ZxWqGtw2lmYfTjetcyOLn/QmcyynA3tKcno38aOPnflttfrcjnq3J5/TKgl0dGN2+2b3rnBD/OHYylRWbYzl1Lp3s3HxGDnyG5o3q3bDO0ZOnWLBsHWczLuJgY02vqNa0bd5Ed35d7B7W79hH5uUcANydHHm6Y1ua1AsAIPNyDq9P/rzatt95qQ/hjRvem84J8S87t6xl24bl5Ofl4OLuRdc+0Xh4B1Qbq9Fo2PL3Ug7sjiEv5zIOTq506v48QQ2u/pzv2rqW3dvXk511EYA6zu6079xXF1NUmM+GVUs4kXCI3OxLWChVNAhpQYcu/TC3sKz5Dgsh/nNkoEs8lHr37k1paSkLFizA19eXjIwMNm7cSFZWVo1et0GDBmzYsIHy8nISEhIYOHAgubm5LF68+K7aNTQ0xNnZ+R5lKR4kaUnbids6j7DIV7F3DiTx4F9sXfohT770DWYW1lXiD+9cxOmELYR1eA0rOzcupB4kduUM2vedhm0d39tuM+ngX/eln+LRVqopx8vWirb+7ny+5eBN4y8WFDFj8346BHgwLKIxRy9k8cPOI9iYmxLi6nhbbYa4OvBqq2DdayMDmewuaoa6rAwvN2fatQhl5rzfbhp/MSub6XMWEtWqGW8+35vDJ1KYvXgFNlYqGtf1B8Dexppnu3TAxdEerVbLln2H+GTu/zFjxKt4ONfB3saK7yeN1Gt34679rNgUS5N61d8wEeJuxO+PZdUf8+nRfwie3oFs37ySuV9PYcSEWShVVb+3rF/5f8Tt2UrPZ4fi6OzKiWNxLJzzCa+O+AhXDx8ArG0d6NjtORzquKDVajm4O4Zfvp/BG6M/wcnFg7zcbPJzL9O514vUcXYj5/Illv32A3k5WTw3+N37/RYIIf4D5NuceOjk5OSwbds2ZsyYQbt27fDy8qJ58+aMHj2abt264e3tDUDPnj1RKBS61wDTp0/HyckJlUpFdHQ0JSUlt3VtIyMjnJ2dcXNzo0OHDvTp04f169frzpeXlxMdHY2Pjw/m5uYEBQXx5Zdf6s5PnDiRBQsWsHz5chQKBQqFgpiYmGqXLm7ZsoXmzZtjamqKi4sLo0aNQqPR3FKe//vf/2jUqBHm5ubY29vToUMHCgsLded//PFH6tWrh5mZGXXr1uXbb7/VnRs4cCDBwcGo1WoASktLadKkCS+++OJtvVfi1iQdWIFvwyh8GrTHyt6DsPZDMTQy5dTRjdXGn07YQr3mvXH1aYrS2hn/kCdx8W5K4oHlt91m9sUUkg6soFnUsBrtoxCN3Rzp1ySQ5p63NqC/ISmNOkpzXgirh7uNko51vWjh5cTqhNTbbtPIwAAbc1PdoTQ1vpuuCHFdTeoF0L9ze1oE33gW1xXrd+zD0c6WF7t3xN3ZkScfb0HLkPqs2rJTFxPWIIjQ+oG4ONrjWseB/p3bY2piwonTZ4HKGea2Viq9Y0/8ccIbN8TM1KRG+ikebds3/UWziA6EhUdSx8Wdnv1fwcTEhH07N1UbH7dnK2079qZuw1DsHZxp2boTQQ2asG3jCl1MvUZh1G0YikMdFxydXHmi27OYmJpy5lQSAM6unjw3+F3qNQrD3tEFv6BGRHXtT8Lh/ZSXl9+Xfgsh/ltkoEs8dJRKJUqlkmXLlukGY/5t7969AMybN4/09HTd6yVLljBx4kSmTp3Kvn37cHFx0RvguV2pqamsW7cOE5OrXyQrKipwd3fn999/59ixY4wfP54xY8awZMkSAEaOHEnfvn3p1KkT6enppKen06pVqyptnzt3js6dO9OsWTMOHTrEd999x08//cSUKVNumld6ejr9+/dn4MCBJCQkEBMTQ69evdBqtQAsXLiQ8ePH89FHH5GQkMDUqVMZN24cCxYsAGDWrFkUFhYyatQoAD744ANycnL4+uuv7/i9EtWrKNdwOSMZZ88QXZlCocDJM5is9MTr1CnD0Ej/jxdDI2MunT9+W21qytTsWvs5oe2GYG5pey+7JcRdO5GZQ0Nne72yYBdHTmTm3HZbCRcv88rvGxm+fCs/7T5Cvrr0HmUpxN1JSj1DcKCvXllIkD8nUs9WG19RUUHsgcOoS0sJ9PKoNib5zHlSz6UT2aJJteeFuBsajYZzaSn41706S1ahUOBfN5i0fwalqtYpw9hY/waDkbEJp5OPVxtfUVHBoX3bKVWr8fQJum4u6uIizMzNMTQ0vIOeCCEedLJ0UTx0jIyMmD9/PoMHD2b27NmEhobSpk0bnnnmGYKDg3F0rFzWYmNjo7cc8IsvviA6Opro6GgApkyZwoYNG25rVtfhw4dRKpWUl5fr6n322We688bGxrp9vAB8fHzYuXMnS5YsoW/fviiVSszNzVGr1Tdcqvjtt9/i4eHB119/jUKhoG7dupw/f57333+f8ePHY3CDpTfp6eloNBp69eqFl5cXAI0aNdKdnzBhAjNnzqRXr166HI8dO8b333/PSy+9hFKp5Ndff6VNmzaoVCq++OILNm/ejJWVVbXXU6vVVQYcNWUKjIxNr5ujqKQuzkOrrcD0muWEZhY25Gefq7aOk1cIifuX4+haH6WNCxln4jl7chdabcVttRm3dS4OLkG4+TW/x70S4u7lFKuxNtf/DLE2N6G4TEOpphwTo1v7wybExYFmHk7UUZqTUVDM4oOJTN+4j8mdwjEwUNRE6kLcspz8AqxVSr0ya5UlRSUllJaVYfLP4MDp8xmMm/UjpWUazExNGPnyM7g7O1bb5ubdB3BzciTIx7PG8xePnqLCPCoqKqosUVSqrMnMqP57S0DdELZt/Atv//rYOzpzMjGeo3G7qaio0ItLP3ea2TM/QFNWiompOc8PeY86Lu7VtllYkMemNf+jeUTUvemYEOKBIzO6xEOpd+/enD9/nhUrVtCpUydiYmIIDQ1l/vz5162TkJBAixb6G22Hh4ff1nWDgoKIi4tj7969vP/++3Ts2JE33nhDL+abb76hadOmODo6olQq+eGHH0hLS7ut6yQkJBAeHo5CcfUPsYiICAoKCjh7tvo7vVeEhITQvn17GjVqRJ8+fZgzZw7Z2dkAFBYWkpycTHR0tG5mnFKpZMqUKSQnJ+vaCA8PZ+TIkUyePJkRI0bw2GOPXfd606ZNw9raWu/Yserj2+qvuHVN2gxCZePKmp+H8fuspzmw+Qd86keiUNz6x/255D1knImnSdtBNZipELWvlY8rYR5OeNpa0czDiXfbhZGSlcuxjJrdz1GIe8mtjgMfjxzKR28PJqpVGN8sWsrZC5lV4krLyth+4LDM5hL/KU/1GYh9HRc++/BNxr7ZjxWLf6Jpy3ZVbto6Ornx5uhPGPruNFo8HsX/fvmKi+lVv/OWFBex4Lup1HHxILJz3/vVDSHEf4zM6BIPLTMzM6KiooiKimLcuHEMGjSICRMmMGDAgBq7pomJCf7+lRvETp8+nS5dujBp0iQmT54MwG+//cbIkSOZOXMm4eHhqFQqPvnkE3bv3l1jOV3L0NCQ9evXs2PHDv7++2+++uorPvjgA3bv3o2FhQUAc+bMqTLo9++p3xUVFcTGxmJoaMjJkydveL3Ro0czfPhwvbKpi2WmxK0wNbdCoTBAXZSrV15SlIOZRfXLCc0srHms22jKNaWoS/Ixt7QjPvYXLK3q3HKbF88epjA3gz+/fU4vJnblDBxd69Ouz82XyApRk2zMTckt1p8pmltcirmx0S3P5qqOk8oClakxF/KLaOhyt1kKcXdsVEpy8wv0ynLzC7EwM9PN5gIwMjLE2aHy6c5+Hq4knznP6q27GNK3q17dXYeOUVpWRutmjWs8d/FosrC0wsDAgIJ8/e8YBfm5KK2q/96iVFnz4ivvU1ZWSlFhPlbWdqxd/iu29nX04oyMjLB3rPxgdvf04+zpZGJjVtGz/yu6GHVJMfO+mfLPjK93MTKSP3WFeFTJjC7xyKhfv75uw3VjY+Mqm1PWq1evyoDTrl277uqaY8eO5dNPP+X8+fMAxMbG0qpVK1577TWaNGmCv7+/3kwpqBwsu9nGmfXq1WPnzp26fbWutK1SqXB3r34a978pFAoiIiKYNGkSBw8exMTEhKVLl+Lk5ISrqyspKSn4+/vrHT4+Prr6n3zyCcePH2fLli2sXbuWefPmXfdapqamWFlZ6R2ybPHWGBgaYefkR0ZavK5Mq9Vy8cxh7F2uvy8FgKGRCRZKe7QV5Zw9uRM3vxa33GbdsF50fO5zOj73me4AaNxmIM2eeKPqxYS4zwIcbTh6QX/WVXz6JQIcbe6q3azCYgpKy7Axl88oUfsCvT04fOKUXll8UjIB3jf5d16rpayah9Ns2nWApvWDsFZa3ss0hdAxMjLCzdOX5MTDujKtVsvJxMN4+tz4KZ/GxiZY29hTXl7O0bjd1A9uduOLabVoNGW6lyXFRfz01YcYGhrx4qujMDaWhy0I8SiTgS7x0MnKyiIyMpJff/2V+Ph4Tp06xe+//87HH39M9+7dAfD29mbjxo1cuHBBt2zvrbfeYu7cucybN4+kpCQmTJjA0aNH7yqX8PBwgoODmTp1KgABAQHs27ePdevWkZSUxLhx43Sb4V/h7e1NfHw8iYmJXLp0ibKysirtvvbaa5w5c4Y33niD48ePs3z5ciZMmMDw4cNvuD8XwO7du3Ub7qelpfHnn3+SmZlJvXqVT4GaNGkS06ZNY9asWSQlJXH48GHmzZun22vs4MGDjB8/nh9//JGIiAg+++wz3nrrLVJSUu7qvRLVCwztRsqR9Zw6tom8rDPs3zQbTVkJPg0iAdi97gvit/+ii89KT+TsiZ0U5F4g89wxtiz7EG2FlrphPW+5TXNLW6wdvPQOAEuVI0prp/vYe/GoKCnTkHo5j9TLeQBkFhSRejmPS4XFAPzfgUS+iT2ki+8Q6ElGQTEL9x/nXG4B6xNPs/v0BTrX877lNkvKNPy6/zgnMnPILCjmSPolPo05gJPSghBXh/vUc/EoKVGXcupsOqfOpgOQeTmHU2fTuZSdA8DClev5euGfuvioVmFczLrMryv+5lxGJuti97Az7ihd2lzdVmHhyvUcO5lK5uUcTp/PYOHK9Rw9mcrjTYP1rn3h0mUSUk4T2TK05jsqHmmPRXZlb+wG9u/azMX0syz77QdK1WqatmwHwJIFs1i7/FddfNqpJI4c3EXWpQucOnmM+d9MoaKigtZRPXQxa5f/SsqJo2RnXST93Gnd68bNHgcqB7nmfj2ZsrJSej8/FHVxEfm52eTnZlfZ60sI8WiQ+ZzioaNUKmnRogWff/45ycnJlJWV4eHhweDBgxkzZgwAM2fOZPjw4cyZMwc3NzdSU1Pp168fycnJvPfee5SUlNC7d2+GDh3KunXr7iqfd955hwEDBvD+++/zyiuvcPDgQfr164dCoaB///689tprrFmzRhc/ePBgYmJiCAsLo6CggM2bN+Pt7a3XppubG6tXr+bdd98lJCQEOzs7oqOjGTt27E3zsbKyYuvWrXzxxRfk5eXh5eXFzJkzefLJJwEYNGgQFhYWfPLJJ7z77rtYWlrSqFEj3n77bUpKSnj++ecZMGAAXbtWLokYMmQIq1at4oUXXmDr1q3ydJt7zDPwMdRFuRzZ+RslRdnYOvrQusc4zCxsACjKu6S3/1Z5uYbDOxdRmJuBkbEZLj6htOz4NiamlrfcphD3W0pWLpPX79G9/mVf5dO2Wvu5MbRVMDklarIKrz4YpI7SgvfbNeXn/QmsPZ6KnYUZQ8IbEuLqeMttGigUpGXnsy3lHEWlZdiYmxHs6kDfkACM5XNM1IDkM+eY9M183esFy9YC0KZZY15/tic5eQVcyr665KuOvS2jBj/HgmXrWL1tF/bW1rzarxuN6/rrYvIKivjm/5aSnZePhZkZnq5OfPDKCwQH+elde9PuA9hZW+nVFaImBDeNoCA/jw0rF5Ofl4Orhzcvv/4BKisbAHIuX0Lxr5uyGk0Z61f+xuVLGZiYmhLUIJS+A97E3OLq95bC/Dz+9/PX5OVmY2ZugbObFy8PG0tA3conSJ8/k8KZ1BMAfDpRf+b5ex9+W2UZpBDi4afQ/nvtkxBC3Adj55fWdgpC1LgR596q7RSEqHFGHbvXdgpC1LgD5q1rOwUhalybBha1ncIdy/5oaG2nUC3bD76r7RQeWbJ0UQghhBBCCCGEEEI8FGSgS4hbpFQqr3ts27atttPTSUtLu2GuaWlptZ2iEEIIIYQQQghRI2SPLiFuUVxc3HXPubm53b9EbsLV1fWGubq6ut6/ZIQQQgghhBBCiPtIBrqEuEX+/g/GBq5GRkYPTK5CCCGEEEIIIcS9JEsXhRBCCCGEEEIIIcRDQQa6hBBCCCGEEEIIIcRDQQa6hBBCCCGEEEIIIcRDQfboEkLcd1HNNLWdghA1biZf1nYKQtS4Eevequ0UhKhxoR1rOwMh7odOtZ2AEPeMzOgSQgghhBBCCCGEEA8FGegSQgghhBBCCCGEEA8FGegSQgghhBBCCCGEEA8FGegSQgghhBBCCCGEEA8FGegSQgghhBBCCCGEEA8FGegSQgghhBBCCCGEEA8FGegSj7yJEyfSuHHj2k6D1NRUFAoFcXFxtZ2KEEIIIYQQQgjxQDKq7QSEuFOZmZmMHz+eVatWkZGRga2tLSEhIYwfP56IiAgUCgVLly6lR48e9+yaEydOZNKkSQAYGBjg6urKk08+yfTp07Gzs7vldgYMGEBOTg7Lli3TlXl4eJCeno6Dg8M9y1c8HHZuWcu2DcvJz8vBxd2Lrn2i8fAOqDZWo9Gw5e+lHNgdQ17OZRycXOnU/XmCGjTRxXw8bijZlzOr1G35eEe6PzMYgN3b/+bQ3u2cP3sKdUkx4z9ZgLmFZc10UDzyLp49SuL+ZWRfTKG48DKPdR2Fm1+LG9c5c4S4rXPJvXwGC5UD9Zv3wad+pO78yUNrSD68jsK8iwBY2XnQoGU/XLxDASjMu8jKua9U23arziPxCIy4R70TotKxjMusPJpC6uU8sovVDG8bSjMPpxvXuZDFz/sTOJdTgL2lOT0b+dHGz/2W29SUV7DkUBJx5zLJKCjG0tiIBi72PNskCFsLsxrrq3i0rd2+h782x5KTV4CXqzMv93qSAC/3amM1mnKWbdrGlj2HuJybh0sde557Koom9a5+z6moqGDJ2hi27T9Ebn4htlYq2jQPoXdUGxQKBQB935lQbfvPd32CbpHyeS7Eo0YGusQDq3fv3pSWlrJgwQJ8fX3JyMhg48aNZGVl1eh1GzRowIYNGygvLychIYGBAweSm5vL4sWL76pdQ0NDnJ2d71GWVZWWlmJiYlJj7YuaEb8/llV/zKdH/yF4egeyffNK5n49hRETZqFUWVeJX7/y/4jbs5Wezw7F0dmVE8fiWDjnE14d8RGuHj4AvPbedLQVFbo6F9LTmPvVZBqFhuvKykpLCWzQhMAGTVi3fGHNd1Q80so1amwcvfFp0J7YlTNuGl+Qm8G2FVPwa9SRlp3eIeNMPHvXf4OZhS0u3pWDuuYqBxpFvIDKxgUtWk4nxLD9r2k88exMrO09sVA60G3wXL12U46s5/i+pbj4NK2RfopHW6mmHC9bK9r6u/P5loM3jb9YUMSMzfvpEODBsIjGHL2QxQ87j2BjbkqIq+MttakuL+fU5Tx6NfLH005FoVrDgn3H+CRmP1M7yx//4t7bcfAIPy9fy+CnuxLg5c6qrTv56Ptf+HLMm1grq94wW7xmE1v3H+KVvt1wq+NAXOJJZs5bzOQ3o/FxdwFg2cbt/L1jL6/374GnixPJZ87x7f8tw9LMjCdbtwTg+0kj9dqNSzjJ7MXLaRFcr+Y7LYT4z5Gli+KBlJOTw7Zt25gxYwbt2rXDy8uL5s2bM3r0aLp164a3tzcAPXv2RKFQ6F4DTJ8+HScnJ1QqFdHR0ZSUlNzWtY2MjHB2dsbNzY0OHTrQp08f1q9frztfXl5OdHQ0Pj4+mJubExQUxJdffqk7P3HiRBYsWMDy5ctRKBQoFApiYmKqXbq4ZcsWmjdvjqmpKS4uLowaNQqNRnNLebZt25Zhw4bx9ttv4+DgQMeOHQH47LPPaNSoEZaWlnh4ePDaa69RUFCgVzc2Npa2bdtiYWGBra0tHTt2JDs7G6i8qzZt2jRd/0JCQvjf//53W++huHXbN/1Fs4gOhIVHUsfFnZ79X8HExIR9OzdVGx+3ZyttO/ambsNQ7B2cadm6E0ENmrBt4wpdjFJljcraVnckHjmAvaMzPgENdDGPRT5F2yd64nmdmWNC3Esu3qE0avUc7v4tbyk++fA6LK3q0Lj1y1jZexDQuAseAeEkHfxLF+Pm2wxXn6aobF2xsnWjUavnMDI2I+tCEgAKAwPMLW31jnMnd+EZGIGRscx0EfdeYzdH+jUJpLnnrd3U2pCURh2lOS+E1cPdRknHul608HJidULqLbdpaWLMBx2a09LbBVcrJQGONrzcrD6nsvK4VFh8L7olhJ6VMTtp37Ip7Vo0wd3ZkSF9umJqYszm3Qeqjd+6/xA9O7QmtH4gTg52dIxoTpN6AayM2aGLSUo9Q7OGdWnaIAhHOxtahjQgJMifk2nndDG2Viq9Y++R4zTw98bJ4dZXXAghHh4y0CUeSEqlEqVSybJly1Cr1VXO7927F4B58+aRnp6ue71kyRImTpzI1KlT2bdvHy4uLnz77bd3nEdqairr1q3TmylVUVGBu7s7v//+O8eOHWP8+PGMGTOGJUuWADBy5Ej69u1Lp06dSE9PJz09nVatWlVp+9y5c3Tu3JlmzZpx6NAhvvvuO3766SemTJlyy/ktWLAAExMTYmNjmT17NlC55HLWrFkcPXqUBQsWsGnTJt577z1dnbi4ONq3b0/9+vXZuXMn27dvp2vXrpSXlwMwbdo0fv75Z2bPns3Ro0d55513eP7559myZcsdvYfi+jQaDefSUvCvG6wrUygU+NcNJu1U0nXqlGFsbKxXZmRswunk49e9xsE9W2jasp1u+r8Q/3VZ6Yk4eYbolTl7NSErPbHaeG1FBWmJ29CUleDgHFRtzOWMk2RnnsKnQft7nq8Qd+JEZg4Nne31yoJdHDmRmXNX7RaVaVAowMJYFnaIe0ujKSfl7HkaBfrqyhQKBY0C/UhKPVttnTJNOSbX/CyaGBtx/FSa7nWgtwdHTqRw/uIlAFLPXSAh5TSN61V/My4nv4CDCSeIbBF6t10SQjyg5F848UAyMjJi/vz5DB48mNmzZxMaGkqbNm145plnCA4OxtGxckq/jY2N3nLAL774gujoaKKjowGYMmUKGzZsuK1ZXYcPH0apVFJeXq6r99lnn+nOGxsb6/bxAvDx8WHnzp0sWbKEvn37olQqMTc3R61W33Cp4rfffouHhwdff/01CoWCunXrcv78ed5//33Gjx+PgcHNx6kDAgL4+OOP9crefvtt3f/39vZmypQpvPrqq7oBv48//piwsDC9AcAGDSpn+qjVaqZOncqGDRsID69c5ubr68v27dv5/vvvadOmTZUc1Gp1lcHI0tJyTExMb5r/o66oMI+KiooqSxSVKmsyM85VWyegbgjbNv6Ft3997B2dOZkYz9G43VT8a6nivx2L30NJcRFNw9vd8/yFqCklhdmYWdjolZla2FBWWkS5phRDo8qbDzmXUtm4eDTlmlKMTcyJeGoUVvYe1bZ56uhGrOzccXCVZS7ivyGnWI21uf6/ldbmJhSXaSjVlGNiZHjbbZZqyll0IJFwbxcsTIxvXkGI25BXWERFRQU2KqVeuY3SkvMZl6qtExLkx1+bd1DP1wtnBzsOJ6WwOz6BCu3V7y09OzxOsVrNO9O/xsDAgIqKCp7p3J7HmwZX2+aWvXGYmZrQXJYtCvHIkhld4oHVu3dvzp8/z4oVK+jUqRMxMTGEhoYyf/7869ZJSEigRQv9DY6vDNjcqqCgIOLi4ti7dy/vv/8+HTt25I033tCL+eabb2jatCmOjo4olUp++OEH0tLSrtPi9XMNDw/Xm2UTERFBQUEBZ89Wf1fsWk2bVt1nZsOGDbRv3x43NzdUKhUvvPACWVlZFBUVAVdndFXn5MmTFBUVERUVpZtVp1Qq+fnnn0lOTq62zrRp07C2ttY7Fs759JbyF7fvqT4Dsa/jwmcfvsnYN/uxYvFPNG3Z7roDo/t2bCSwfhOsrGVqv3j4WNm688Rzn9HhmRn4NerInr9nkZd1pkpcuaaUtMRt+DToUAtZCnF/aMor+HJbHFq0RDdvcPMKQtwHA3o+iYujPW9P+4r+Iz9k7p+radu8MQaKq99bdhw8wvb9h3nz+d5MH/4Krz/bk79idhCzp/q97jbvPsjjTYMxMZbBXCEeVTKjSzzQzMzMiIqKIioqinHjxjFo0CAmTJjAgAEDauyaJiYm+Pv7A5X7fXXp0oVJkyYxefJkAH777TdGjhzJzJkzCQ8PR6VS8cknn7B79+4ay+l6LC31N/1MTU3lqaeeYujQoXz00UfY2dmxfft2oqOjKS0txcLCAnNz8+u2d2Uvr1WrVuHm5qZ3ztS0+hlao0ePZvjw4Xplu5PL76Q7jxwLSysMDAwoyM/VKy/Iz0VpZVttHaXKmhdfeZ+yslKKCvOxsrZj7fJfsbWvUyU2O+siJ4/H8/yQ96ppSYj/LjNLW0qKcvTK1EU5GJtY6GZzARgYGqGyqdzM2M7Jn8sZJ0mKW0lY+6F6dc+c2IFGo8a7XtuaTl2IW2Zjbkpusf6M6NziUsyNjW57NlflINdBLhUWMzaquczmEjXCytICAwMDcvL1937NKSjExkpZbR1rpSXvRfentKyM/MJi7KxVLFq5AUc7G13Mr3+tp3v7x4gIbQSAl6sTmZdzWLZxO22bN9FrLyH5NOcvXuLtF/vc284JIR4oMqNLPFTq169PYWEhULmE8Mq+UlfUq1evyoDTrl277uqaY8eO5dNPP+X8+fNA5UburVq14rXXXqNJkyb4+/tXme1kYmJSJbdr1atXj507d6LVanVlsbGxqFQq3N2rf0Tzzezfv5+KigpmzpxJy5YtCQwM1OV9RXBwMBs3bqy2fv369TE1NSUtLQ1/f3+9w8Oj+uVApqamWFlZ6R2ybPHWGBkZ4ebpS3LiYV2ZVqvlZOJhPH0Cb1jX2NgEaxt7ysvLORq3m/rBzarE7N+1GaXKmqAGsoeFeLDYuwSRkRavV3YhLQ57l+r337pCi5aK8rIq5aeObMDVpxlmFlWfZCpEbQlwtOHoBf0nScenXyLA0ea22rkyyHUhv4gPOjRDZSpPYBY1w8jIEF93V46cOKUr02q1HElKIdD7xt9dTYyNsbexory8gt3xx2jWqK7unLqsjGu3ETUwMND7jnzFpt0H8PVwxdut5p5kLoT475OBLvFAysrKIjIykl9//ZX4+HhOnTrF77//zscff0z37t2Byv2nNm7cyIULF3RPDHzrrbeYO3cu8+bNIykpiQkTJnD06NG7yiU8PJzg4GCmTp0KVO6LtW/fPtatW0dSUhLjxo3TbYZ/hbe3N/Hx8SQmJnLp0iXKyqr+4fXaa69x5swZ3njjDY4fP87y5cuZMGECw4cPv6X9uarj7+9PWVkZX331FSkpKfzyyy+6TeqvGD16NHv37uW1114jPj6e48eP891333Hp0iVUKhUjR47knXfeYcGCBSQnJ3PgwAG++uorFixYcEc5iRt7LLIre2M3sH/XZi6mn2XZbz9QqlbTtGXlnlpLFsxi7fJfdfFpp5I4cnAXWZcucOrkMeZ/M4WKigpaR/XQa1er1bJ/52ZCW7bF0LDqzID83GzOnzlFVuYFAC6cP835M6coKsyvuc6KR5amrITsiylkX0wBoCA3g+yLKRTmZQIQv/0Xdq/7Qhfv16gjhXkZHNq2gLzLZzl5aA1nknYQ2KSrLiZ++y9cPHuUwryL5FxKJX77L2SePYJnXf29BPNz0sk8fwzfhrJsUdSskjINqZfzSL2cB0BmQRGpl68+/fD/DiTyTewhXXyHQE8yCopZuP8453ILWJ94mt2nL9C5nvctt6kpr+CLrQdJycpjWEQIFdrKvb9yitVoyqvfu1GIu/FU23A27txPzJ6DnL2QyZzfV1JSWqqbefX1wj9ZuPLq08pPpJ5l96FjZFy6TELyaab+8AsVWi3dIx/TxTStH8jS9dvYfzSRzMs57I5PYGXMDpo30t+Dq6ikhF2Hjsom9EIIWbooHkxKpZIWLVrw+eefk5ycTFlZGR4eHgwePJgxY8YAMHPmTIYPH86cOXNwc3MjNTWVfv36kZyczHvvvUdJSQm9e/dm6NChrFu37q7yeeeddxgwYADvv/8+r7zyCgcPHqRfv34oFAr69+/Pa6+9xpo1a3TxgwcPJiYmhrCwMAoKCti8eTPe3t56bbq5ubF69WreffddQkJCsLOzIzo6mrFjx95xniEhIXz22WfMmDGD0aNH07p1a6ZNm8aLL76oiwkMDOTvv/9mzJgxNG/eHHNzc1q0aEH//v0BmDx5Mo6OjkybNo2UlBRsbGwIDQ3Vve/i3gpuGkFBfh4bVi4mPy8HVw9vXn79A1RWNgDkXL6E4l8DnxpNGetX/sblSxmYmJoS1CCUvgPexNxCfxnryeOHyMm+RNOWkdVed/f2v9m4+nfd6x8+Hw/A0y+8rhtkE+JeuXzhJJv/GKd7Hbd1HgA+9dvR/Ik3KSnKpijv6kbGSmsnHu82lritc0mKW4mF0oFmUa/j4n11CYu6OJc9f8+iuPAyJiaWWDt40brnBJyveVrjqaMbMVfa4+ylv/xFiHstJSuXyev36F7/sq/yabit/dwY2iqYnBI1WYVXH45TR2nB++2a8vP+BNYeT8XOwowh4Q0JcXW85Tazi9XsP3sRgFGrYvXyGRfVnPrXPNVRiLvVqklDcgsKWbJ2Mzn5BXi7uvDBkBd0G9Rfys7V23+2TKPhtzWbuJiVjampCaH1Ahj2XG8szc10MQN7dWbxmk389Mcq8gqKsLVS0aFVGH2eaKt37dgDR9Bq0S1xFEI8uhTa6uZ8CiFEDdpytKi2UxCixq3fK/eSxMNvxLm3ajsFIWqcUcfutZ2CEDVOFdaptlO4Y9kfDb15UC2w/eC72k7hkSVLF4UQQgghhBBCCCHEQ0EGuoT4F6VSed1j27ZttZ2eTlpa2g1zTUtLq+0UhRBCCCGEEEKI+07WVQjxL3Fxcdc95+bmdv8SuQlXV9cb5urq6nr/khFCCCGEEEIIIf4jZKBLiH/x9/ev7RRuiZGR0QOTqxBCCCGEEEIIcb/I0kUhhBBCCCGEEEII8VCQgS4hhBBCCCGEEEII8VCQgS4hhBBCCCGEEEII8VCQPbqEEPddaPHW2k5BiBq3nsjaTkEIIcQ9cMC8dW2nIESNa1PbCQhxD8mMLiGEEEIIIYQQQgjxUJCBLiGEEEIIIYQQQgjxUJCBLiGEEEIIIYQQQgjxUJCBLiGEEEIIIYQQQgjxUJCBLiGEEEIIIYQQQgjxUJCBLlFrJk6cSOPGjWs7DVJTU1EoFMTFxdV2KkIIIYQQQgghhLgLRrWdgHjwZGZmMn78eFatWkVGRga2traEhIQwfvx4IiIiUCgULF26lB49etyza06cOJFJkyYBYGBggKurK08++STTp0/Hzs7ultsZMGAAOTk5LFu2TFfm4eFBeno6Dg4O9yzfmjZz5ky++uorMjIy8PT0ZMSIEQwZMqS20xI1ZO32Pfy1OZacvAK8XJ15udeTBHi5Vxur0ZSzbNM2tuw5xOXcPFzq2PPcU1E0qRegi3l98udkXs6pUveJiGYMevopALLz8ln413oOJSZTolbj4uhA76jWtAipXyN9FI+2i2ePkrh/GdkXUyguvMxjXUfh5tfixnXOHCFu61xyL5/BQuVA/eZ98KkfWW1swt4/iY/9hcAmT9GkTbSuvLgwm/jtC7hw+hCasmJUNq7Ub94H94Dwe9o/IQCOZVxm5dEUUi/nkV2sZnjbUJp5ON24zoUsft6fwLmcAuwtzenZyI82fvqf/38nnuavo6fILVHjaatiQLP6+DvYAJBZUMybS2OqbfutxxvT0tvlXnRNCD07t6xl24bl5Ofl4OLuRdc+0Xh4B1Qbq9Fo2PL3Ug7sjiEv5zIOTq506v48QQ2a6GI+HjeU7MuZVeq2fLwj3Z8ZTFFhPhtWLeFEwiFysy9hoVTRIKQFHbr0w9zCssb6KYT475KBLnHbevfuTWlpKQsWLMDX15eMjAw2btxIVlZWjV63QYMGbNiwgfLychISEhg4cCC5ubksXrz4rto1NDTE2dn5HmVZ87Zu3crIkSOZNWsWXbt25ezZs2RmVv3H/1rl5eUoFAoMDGQi54Nkx8Ej/Lx8LYOf7kqAlzurtu7ko+9/4csxb2KtrPrlbfGaTWzdf4hX+nbDrY4DcYknmTlvMZPfjMbHvfIPmqnvDKGiokJX50z6RabM/pnwxg10ZV8vXEpRSQnvRffHytKC7QcO89mCJUwf/oquHSHulXKNGhtHb3watCd25YybxhfkZrBtxRT8GnWkZad3yDgTz97132BmYYuLdxO92MsXTpB8eB02Dl5V2tm97kvK1IU81m00puZWpB3fxo7VnxDV/1Ns6/jes/4JAVCqKcfL1oq2/u58vuXgTeMvFhQxY/N+OgR4MCyiMUcvZPHDziPYmJsS4uoIwM7UdH7Zl0B0i4b4O9iw5ngq0zbu5fPurbEyM8XewozvntYfAN544gx/HU2hsZtjjfRTPNri98ey6o/59Og/BE/vQLZvXsncr6cwYsIslCrrKvHrV/4fcXu20vPZoTg6u3LiWBwL53zCqyM+wtXDB4DX3puO9l/fWy6kpzH3q8k0Cq28KZGXm01+7mU693qROs5u5Fy+xLLffiAvJ4vnBr97fzouhPhPkb94xW3Jyclh27ZtzJgxg3bt2uHl5UXz5s0ZPXo03bp1w9vbG4CePXuiUCh0rwGmT5+Ok5MTKpWK6OhoSkpKbuvaRkZGODs74+bmRocOHejTpw/r16/XnS8vLyc6OhofHx/Mzc0JCgriyy+/1J2fOHEiCxYsYPny5SgUChQKBTExMdUuXdyyZQvNmzfH1NQUFxcXRo0ahUajuaU8//e//9GoUSPMzc2xt7enQ4cOFBYW6s7/+OOP1KtXDzMzM+rWrcu3336rOzdw4ECCg4NRq9UAlJaW0qRJE1588UVdjIGBAYaGhkRHR+Pt7c1jjz1Gz549q+Qxf/58bGxsWLFiBfXr18fU1JS0tDT27t1LVFQUDg4OWFtb06ZNGw4cOKBXNycnh1deeQUnJyfMzMxo2LAhK1eu1J3fvn07jz/+OObm5nh4ePDmm2/q9VHcOytjdtK+ZVPatWiCu7MjQ/p0xdTEmM27D1Qbv3X/IXp2aE1o/UCcHOzoGNGcJvUCWBmzQxdjrbTE1kqlOw4cS8LZwY76ft66mBOnz/Dk4y0I8HLHycGO3k+0wdLCnJSz52u6y+IR5OIdSqNWz+Hu3/KW4pMPr8PSqg6NW7+Mlb0HAY274BEQTtLBv/TiNGUl7Fr7OWEdXsPEVFmlnaz0RAIad8HeORCltTP1W/TBxFRJ9sXke9IvIf6tsZsj/ZoE0tzz1m6ubUhKo47SnBfC6uFuo6RjXS9aeDmxOiFVF7Mq4RSRAR609XfH3UbJoBYNMDU0ZPPJswAYGCiwMTfVO/aeuUC4twtmxnK/W9x72zf9RbOIDoSFR1LHxZ2e/V/BxMSEfTs3VRsft2crbTv2pm7DUOwdnGnZuhNBDZqwbeMKXYxSZY3K2lZ3JB45gL2jMz4BlTfonF09eW7wu9RrFIa9owt+QY2I6tqfhMP7KS8vvy/9FkL8t8hAl7gtSqUSpVLJsmXLdIMx/7Z3714A5s2bR3p6uu71kiVLmDhxIlOnTmXfvn24uLjoDfDcrtTUVNatW4eJiYmurKKiAnd3d37//XeOHTvG+PHjGTNmDEuWLAFg5MiR9O3bl06dOpGenk56ejqtWrWq0va5c+fo3LkzzZo149ChQ3z33Xf89NNPTJky5aZ5paen079/fwYOHEhCQgIxMTH06tULrVYLwMKFCxk/fjwfffQRCQkJTJ06lXHjxrFgwQIAZs2aRWFhIaNGjQLggw8+ICcnh6+//lp3jcaNG+Pm5sZrr72mNyunOkVFRcyYMYMff/yRo0ePUqdOHfLz83nppZfYvn07u3btIiAggM6dO5Ofn697H5988kliY2P59ddfOXbsGNOnT8fQ0BCA5ORkOnXqRO/evYmPj2fx4sVs376dYcOG3fT9EbdHoykn5ex5GgVenVmiUChoFOhHUurZauuUacoxueaPFxNjI46fSrvuNbbuj6dt8yYoFApdeYCXBzsOHiG/sAitVkvsgcOUlZXRwN/nHvRMiLuTlZ6Ik2eIXpmzVxOy0hP1yvZv+h4XnzCcr4m9wt4liDNJsaiL89FqtaQlbqO8vBRH94Y1lrsQt+pEZg4Nne31yoJdHDmRmQOApryCU1l5NHS5uvWCQqGgoYu9LuZaKVm5nL6cT1u/6pe/C3E3NBoN59JS8K8brCtTKBT41w0m7VTSdeqUYWxsrFdmZGzC6eTj173GwT1baNqynd73lmupi4swMzfXfX8VQjxa5FaOuC1GRkbMnz+fwYMHM3v2bEJDQ2nTpg3PPPMMwcHBODpWToO3sbHRWw74xRdfEB0dTXR05d4oU6ZMYcOGDbc1q+vw4cMolUrKy8t19T777DPdeWNjY90+XgA+Pj7s3LmTJUuW0LdvX5RKJebm5qjV6hsuVfz222/x8PDg66+/RqFQULduXc6fP8/777/P+PHjb7j0Lz09HY1GQ69evfDyqlwm06hRI935CRMmMHPmTHr16qXL8dixY3z//fe89NJLKJVKfv31V9q0aYNKpeKLL75g8+bNWFlZAZWDUD169CAkJIScnByeffZZfv75Z92AX6NGjXjppZcYOXIkAGVlZXz77beEhFz9Iy8yUn8Jww8//ICNjQ1btmzhqaeeYsOGDezZs4eEhAQCAwMB8PW9OtAybdo0nnvuOd5++20AAgICmDVrFm3atOG7777DzMzsuu+PuD15hUVUVFRgo9KfiWKjtOR8xqVq64QE+fHX5h3U8/XC2cGOw0kp7I5PoEJb/aDo3iMJFBWX0La5/nKv4QP68vmCJUSPnYGhoSGmxsaMHPgMzg63vieeEDWlpDAbMwsbvTJTCxvKSoso15RiaGRCWuI2si+mENX/k+u206rLu+xc/SnLvn8RAwNDDI1MiXhqFCobWZ4ral9OsRprc1O9MmtzE4rLNJRqyiksLaNCq8XazEQ/xsyU83nVz7KOOXkWN2tLgurY1lje4tFVVJhHRUVFlSWKSpU1mRnnqq0TUDeEbRv/wtu/PvaOzpxMjOdo3O7r3sw9Fr+HkuIimoa3u24ehQV5bFrzP5pHRN15Z4QQDzSZ0SVuW+/evTl//jwrVqygU6dOxMTEEBoayvz5869bJyEhgRYt9DcWDg+/vc1+g4KCiIuLY+/evbz//vt07NiRN954Qy/mm2++oWnTpjg6OqJUKvnhhx9IS6t+JsuNcg0PD9e7SxQREUFBQQFnz1Y/i+aKkJAQ2rdvT6NGjejTpw9z5swhOzsbgMLCQpKTk4mOjtbNjFMqlUyZMoXk5KvLZMLDwxk5ciSTJ09mxIgRPPbYY7pza9euJTY2lvnz57N48WKysrLo2rUrhYWFlJSUcPLkSR5//HFdvImJCcHBV++qAWRkZDB48GACAgKwtrbGysqKgoIC3fsUFxeHu7u7bpDrWocOHWL+/Pl6fejYsSMVFRWcOnWqSrxarSYvL0/vUJeW3vB9FHduQM8ncXG05+1pX9F/5IfM/XM1bZs3xkBR/cf9xl0HaFzXHztrlV754jWbKCpWM27oS0x7Zwhd2obz+YLfOX0+4350Q4i7UpR/iYMxP9HyyXcwNDK5btyRHYsoUxfSttckovp/QlBoN3au/pScS6n3L1kh7pNSTTmxqedp6+9R26kIofNUn4HY13Hhsw/fZOyb/Vix+Ceatmx33RvL+3ZsJLB+E6ysq7/xVlJcxILvplLHxYPIzn1rMnUhxH+YzOgSd8TMzIyoqCiioqIYN24cgwYNYsKECQwYMKDGrmliYoK/vz9Qud9Xly5dmDRpEpMnTwbgt99+Y+TIkcycOZPw8HBUKhWffPIJu3fvrrGcrmVoaMj69evZsWMHf//9N1999RUffPABu3fvxsLCAoA5c+ZUGfT797TqiooKYmNjMTQ05OTJk3px8fHxeHp66p40uWzZMp544gnat29Pjx498PX11Wvb3Ny8yrTul156iaysLL788ku8vLwwNTUlPDyc0n8Gn8zNzW/Yx4KCAl555RXefPPNKuc8PT2rlE2bNk1vph3AqMHPMWbI8ze8jgArSwsMDAzIyS/QK88pKMTGqup+Q1C5/9Z70f0pLSsjv7AYO2sVi1ZuwNHOpkps5uUcDielMHLgM3rlFy5dZu223cx8/3U8nOsA4O3mTELKadZt38OQvl3vTQeFuENmlraUFOXolamLcjA2scDQyITsi8mUFOfy98IRuvNabQWZ549xIm41fd74nYK8DE4cWk2nF77E2r7ys8vG0YfMc8c4eWgNYe2H3s8uCVGFjbkpucX620TkFpdibmyEiZEhBgoFBgoFuSX6N49yS9TYmOnPBAPYnXaBUk05rX1dazRv8eiysLTCwMCAgvxcvfKC/FyUVtXPIlSqrHnxlfcpKyulqDAfK2s71i7/FVv7OlVis7MucvJ4PM8Pea/attQlxcz7ZgompuY8P+RdjIzkT10hHlUyo0vcE/Xr19dtRm5sbFxl48d69epVGXDatWvXXV1z7NixfPrpp5w/X7k5dmxsLK1ateK1116jSZMm+Pv7682UgsrBspttSlmvXj127typ21frStsqlQp395vvaaFQKIiIiGDSpEkcPHgQExMTli5dipOTE66urqSkpODv7693+Phc3ffok08+4fjx42zZsoW1a9cyb9483Tk3NzdOnTqlm1lmaWnJ6tWrKS0tZfTo0be0j1hsbCwXQ3y7AABSAElEQVRvvvkmnTt3pkGDBpiamnLp0tVlcMHBwZw9e5akpOr3UggNDeXYsWNV+uDv76+3Z9oVo0ePJjc3V+8YMUDusN0KIyNDfN1dOXLi6kw5rVbLkaQUAr1v/LNoYmyMvY0V5eUV7I4/RrNGdavEbN5zEGuVktB6+o/8VpeWAaBAf5DUQKFAixYhapu9SxAZafF6ZRfS4rB3CQKgjkcwnZ7/go7PfaY77Jz88arbmo7PfYbCwIByTeUAwrU/5woDA73PfyFqS4CjDUcv6D/ROj79EgGONgAYGRrgY2/F0fSrMVqtlqMXsnQx/7b55FlC3etgVc0gmBD3gpGREW6eviQnHtaVabVaTiYextOn+pUCVxgbm2BtY095eTlH43ZTP7hZlZj9uzajVFkT1CC0yrmS4iJ++upDDA2NePHVURgbX382rxDi4ScDXeK2ZGVlERkZya+//kp8fDynTp3i999/5+OPP6Z79+4AeHt7s3HjRi5cuKBbtvfWW28xd+5c5s2bR1JSEhMmTODo0aN3lUt4eDjBwcFMnToVqNwrat++faxbt46kpCTGjRun2wz/Cm9vb+Lj40lMTOTSpUuUlZVVafe1117jzJkzvPHGGxw/fpzly5czYcIEhg8ffsP9uQB2796t23A/LS2NP//8k8zMTOrVqwfApEmTmDZtGrNmzSIpKYnDhw8zb9483V5jBw8eZPz48fz4449ERETw2Wef8dZbb5GSkgJULhv19PSkS5cubNiwgZMnT7JmzRouX76MpaUl8+bNu+kG9QEBAfzyyy8kJCSwe/dunnvuOb1ZXG3atKF169b07t2b9evXc+rUKdasWcPatWsBeP/999mxYwfDhg0jLi6OEydOsHz58utuRm9qaoqVlZXeYVrNgJio3lNtw9m4cz8xew5y9kImc35fSUlpqW5Pra8X/snClVefPnoi9Sy7Dx0j49JlEpJPM/WHX6jQauke+Zheu1qtlpg9B2nTLKTKRq1udRxwdrBjzu9/ceL0WS5cusxfm2M5nJRCs4ZVB8yEuFuashKyL6aQfbHys64gN4PsiykU5mUCEL/9F3av+0IX79eoI4V5GRzatoC8y2c5eWgNZ5J2ENikcrahsYk51g5eeoeRkSkmZiqsHSr3T7SydUdp48y+TbPJupBEfk46x/cvJyPtEG5++rNuhbgXSso0pF7OI/VyHgCZBUWkXs7jUmExAP93IJFvYg/p4jsEepJRUMzC/cc5l1vA+sTT7D59gc71vHUxXer5sOnkGbYkn+VsTgE/7T5Kiaa8ymbzF/ILOX7xMu1k2aKoYY9FdmVv7Ab279rMxfSzLPvtB0rVapq2rNxTa8mCWaxd/qsuPu1UEkcO7iLr0gVOnTzG/G+mUFFRQeuoHnrtarVa9u/cTGjLtlW+t5QUFzH368mUlZXS+/mhqIuLyM/NJj83+6bfi4UQDyeZzylui1KppEWLFnz++eckJydTVlaGh4cHgwcPZsyYMQDMnDmT4cOHM2fOHNzc3EhNTaVfv34kJyfz3nvvUVJSQu/evRk6dCjr1q27q3zeeecdBgwYwPvvv88rr7zCwYMH6devHwqFgv79+/Paa6+xZs0aXfzgwYOJiYkhLCyMgoICNm/ejLe3t16bbm5urF69mnfffZeQkBDs7OyIjo5m7NixN83HysqKrVu38sUXX5CXl4eXlxczZ87kySefBGDQoEFYWFjwySef8O6772JpaUmjRo14++23KSkp4fnnn2fAgAF07Vr5x9qQIUNYtWoVL7zwAlu3bsXCwoIdO3YwZswYXn75ZTIzM2nQoAGTJ08mLCyMFi1a8PbbbzNr1qzr5vjTTz8xZMgQQkND8fDwYOrUqbrN66/4448/GDlyJP3796ewsBB/f3+mT58OVM742rJlCx988AGPP/44Wq0WPz8/+vXrd0v/zcTtadWkIbkFhSxZu5mc/AK8XV34YMgLug3qL2Xn6i1PLdNo+G3NJi5mZWNqakJovQCGPdcbS3P9hwTEJyVzKTuXdtdsQg+VM8lGD3meRSs3MOPHRahLS3FysOP1Z3sSWv/Gd2SFuBOXL5xk8x/jdK/jtlbOZPWp347mT7xJSVE2RXlXZ54qrZ14vNtY4rbOJSluJRZKB5pFvY6Ld9Wf5+sxMDSidfdxxMf+yvblU9FoSlBaO9P8iTdx9Wl67zonxD9SsnKZvH6P7vUv+yqfKtfaz42hrYLJKVGTVXj1IT11lBa8364pP+9PYO3xVOwszBgS3pAQV0ddTLi3C3klpfx+6AS5xWq87KwYFdmsyib2MSfPYmtuRoirA0LUpOCmERTk57Fh5WLy83Jw9fDm5dc/QPX/7d13WJPn/vjxdxgJYYYley8VFQfOOpCq4GrFVls71drWfmt7bKU9doqjjt9pz+mxexy141i7XNWqdeGu4harOBEHDpAAYQQC+f1B+2AUXAdE8fO6rlwXee6Rzx0eQvLJfd+Psw4A/cUcVJd8cWwylbNyyTwu5pxDrdEQFd2WocNfRGvvYNHvkYN70Ofl0K6T5UWVAM6cPMbJzMMAvJtiuX/vq5M+rnEZpBCicVOZZX6+EOIWK9y+vKFDEKLezUi/8s24EI3NuNN/a+gQhKh3ewe919AhCFHvekTbN3QINy3vndtzX03XNz5p6BDuWrJ0UQghhBBCCCGEEEI0CpLoErcFR0fHWm8bNmxo6PAUWVlZV401KyuroUMUQgghhBBCCCHuWrJHl7gt7N69u9YyPz+/WxfINfj6+l41Vl9fuWS3EEIIIYQQQgjRUCTRJW4L4eHhDR3CdbGxsbljYhVCCCGEEEIIIe42snRRCCGEEEIIIYQQQjQKkugSQgghhBBCCCGEEI2CJLqEEEIIIYQQQgghRKMgiS4hhBBCCCGEEEII0SjIZvRCiFtup7Z7Q4cghBCiDtgk3N/QIQhR71otHNfQIQhR/6I/aegIhKgzMqNLCCGEEEIIIYQQQjQKkugSQgghhBBCCCGEEI2CJLqEEEIIIYQQQgghRKMgiS4hhBBCCCGEEEII0ShIoksIIYQQQgghhBBCNAqS6BJ3hLi4OMaOHdvQYdS7lJQUWrdu3dBhCCGEEEIIIYQQdySbhg5AiNoMHz4cvV7PwoULmT9/Pra2tkpZcHAwY8eOtUh+zZkzh7Fjx6LX6+s9tpSUFCZOnAiAtbU1/v7+JCUlMXnyZBwdHW+63+TkZF544QXl/qXPgbi7mc1mVi39nrRNqygtKSYwNIpBDz+DRxOfq7bbsm45G1YtorBAj49/EAOHPEVAcIRSvuC7zzhycC+F+XmoNRoCQ5uSeP9jNPH2U+r88uMsMo8e4NyZkzTx9ufF19+tt3GKu5vZbGb/7/M4lr6SMmMRHj5NaRf/LE6uvldtd3jPr2TsWERpUR46z2DaxI3C3TtSKd+++hPOZe2lpOgiNrZ2ePg0pVXXx3F281fqfP9+0hX9du77MoFR3epugEJQdZ7/sHwtq3/fSXFJKZEhATz94AB8PN2v2m75xm38snYT+gIDQb7ejBjcl4ig6nN45ebtbNq5j+OnsykpNTJ76ms4aO2U8v1HjjPxozk19j31pWcID/SrsUyIm2E2m/lpz2HWHDlFUVk5UZ6ujOwYjY+zw1Xb/ZZxgl/2Hye/1EigqxPD2zcn3EOnlK86lMXmzGyOX8yntLyCLx/qhYPatsa+yisqeGvZFk7kFTKt/z0EuznX5RCFELcxmdEl7ghubm44OTndkseqqKigsrLymvWio6PJzs4mMzOTGTNm8PnnnzNu3Libekyz2YzJZMLR0RF396u/0RV3p3UrF7I5dRmDhj3Lc69MQ62xY9aHkykvL6u1zd4dm1j68xzi+w3hhfH/wNsvmFkfTsFQmK/U8Q0I4YHH/o+X3nqfEc+/BWYzsz6cdMXfQGzne2nVrku9jU8IgIPbF3B491LaxY+m18MzsLG1Y92CSVSYaj/Psw5tZPf62UR3HEqfR97DxSOY9QsmUVpcfZ67Ngmlfe8x9H3iA3okvY0ZM+sWTMR82Xneoc8L3Pf0LOXmF9ax3sYq7l6L1mxk2YatPD1kAO+MfRo7tZp3PvuGsvLyWtts3pXO14uW82CfOGaMG02QnxfvfPYN+YYipU5ZeTmtm4WT1Kvm5GxUcCCfTUy2uMV3aksTd1fCAq6eTBbiRi3ef4zlGSd4qmM0U/p2RmNjzbTVaZSZKmptsyUzm2+2H+CBVuFM7XcPQa7OTFudRkGpUalTVlFBjK8Hg1qEXTOG/+7MQKfV1Ml4hBB3Fkl0iTvCpUsX4+LiOHHiBC+99BIqlQqVSkVqaiojRowgPz9fOZaSkgKA0WgkOTkZPz8/HBwc6NixI6mpqUrfc+bMQafTsXjxYpo3b45GoyErK+uaMdnY2ODt7Y2/vz8PPfQQjz76KIsXLwbgm2++ITY2FicnJ7y9vXnkkUc4f/680jY1NRWVSsWyZcto164dGo2GjRs3WixdTElJ4auvvmLRokUW44yPj2fMmDEWsVy4cAG1Ws3q1auvGffHH39MREQEdnZ2eHl58eCDDypllZWVTJs2jZCQELRaLTExMfz0009AVTKuV69eJCQkYDabAbh48SL+/v68/fbb13xccfPMZjOb1y4lPvEBmrdqj49fEEMeH0Nhfh5/7NlWa7uNa36h/T29iO0cTxMff5KGPYtarWb7ljVKnY5d+xAaEY2rexP8AkPpPXAY+Xm55OWeU+oMHDKSzj0ScfPwqtdxirub2Wzm8O4lNOswBL+wDug8gumQ8CKlRRc5fXRrre0O7VxMaIvehETfi7N7ALH3Poe1jYbj+6tfD8NaJtDEPxoH5ya4NgmjZZdHKC7MwVBwzqIvtcYBrYOrcrO2UdfbeMXdyWw28+v6rTzQuzvtWzQlyNeL5x9JIi+/kLR9B2tttyR1C/d2akfPjm3w9/bkmSED0ahtWbt1p1Knf4/ODLq3m8Usr0vZ2Fjj6uyk3Jzs7dmenkFch9aoVKo6H6u4e5nNZpYfPEFSy3BiA7wIdHXmuXtaoS8xsv3kuVrbLT1wnPiIAOLC/fHXOTKqYzQaa2vWHjml1OnXLIT7W4QRccksr5rsPn2Bfdk5PNauWV0NSwhxB5FEl7jjzJ8/H39/fyZNmkR2djbZ2dl06dKF999/H2dnZ+VYcnIyAGPGjGHLli3MmzePvXv3MmTIEBITEzl8+LDSZ3FxMTNmzODLL79k//79NGnS5Ibj0mq1lJVVzTooLy9n8uTJ7Nmzh4ULF5KZmcnw4cOvaDN+/HimT5/OgQMHaNWqlUVZcnIyQ4cOJTEx0WKco0aNYu7cuRiN1d9uffvtt/j5+REfH3/VGLdv386LL77IpEmTyMjIYPny5XTv3l0pnzZtGl9//TWffvop+/fv56WXXuKxxx5j3bp1qFQqvvrqK9LS0pg5cyYAo0ePxs/PTxJd9exi7jkKC/SERbVUjmntHQgIjiDr+KEa25hMJk5nHSO8afV5pVKpCG/aqtY2RmMpO7asxdW9CS6unnU7CCGuoajgHCVFeXgFVJ/nao0D7t6R5GRn1NimssLExXNH8Q6MUY6pVCq8AluRW0sbU3kpx/evwcHZCwcny/N8x5rPWfjpE6z87hWO7V+lJPWFqCvnc/PQFxTSIiJUOeagtSMiyJ9DmSdrbGMyVXDs1BlaRla3UalUtIwM41DmqRrbXI8d+zMoLCqmZ4c2N92HEDU5byhBX2KkhXf1KgUHtS3hHjoO5ehrbGOqqOR4bgEtfDyUYyqVihY+7hy+UHOb2uSXGPni9338X5dWaGysb2YIQog7nOzRJe44bm5uWFtbK7Ol/uLi4oJKpbI4lpWVxezZs8nKysLXt2pafnJyMsuXL2f27NlMnToVqEpMffzxx8TExHAzduzYwdy5c5VE08iRI5Wy0NBQZs6cSfv27TEYDBZ7eE2aNInevXvX2KejoyNarRaj0WgxpsGDBzNmzBgWLVrE0KFDgapZacOHD7/mN7JZWVk4ODgwYMAAnJycCAoKok2bqje4RqORqVOnsmrVKjp37qzEvnHjRj777DN69OiBn58fn332GU888QRnz57l119/ZdeuXdjY1P5SYjQaLZJyAGVlFajVMpX8ehny9QA4OrtYHHd0dqGwIK/GNsVFBVRWVuLodFkbJxcunDttcez39ctZtvBbyoyleDTx5akX3rrq71SI+lBaVHUu29nrLI5r7HWUFulrbGMsKcBsrkRjb3me29nrKMyzPM+P7FnGno1fYyovxcnVlx6DJ2BlXX2et+g8DK+AlljbaDh7Yjc713yOqbyUyNYD/vfBCfEnfaEBABcny/08XZwclLLLFRQVU1lZie6yNjpHB86cy7npWFZv3UlM03DcdS7XrizEDdCXVL3vc7GznBXrYqcmv8RYUxMKjWVUms01tNFwpqCoxjY1MZvNfLJ5L/dGBhLmoeOCoeQGoxdCNAbySUY0avv27aOiooLIyEiL40aj0WIvLLVafcWMquvp29HRkYqKCsrKyujfvz8ffvghUJX4SklJYc+ePeTl5Sn7HWVlZdG8eXOlj9jY2Bsek52dHY8//jizZs1i6NCh7Ny5k/T0dGXZ5NX07t2boKAgQkNDSUxMJDExkaSkJOzt7Tly5AjFxcVXJN7KysqUZBjAkCFDWLBgAdOnT+eTTz4hIiLi8oexMG3aNGXj/r88+dzrjHj+jRsY9d1l17b1LJz3uXL/yedeq9fHi4ntRnjTGAryL7Jx9S/M/c8/GT3uHWxtZdmWqD8nDq5j++pPlfvd7n+zXh8vsGl3vAJjKCnKI2PnIrb8+i73Dp2mLE+M7jhUqevaJJQKk5GMHYsk0SX+Jxt27OWLH39R7o8f9WgDRlMtV5/PnoNHePnJodeuLMQ1bDx2mi+37lfuvxp/4+9v68qKjBOUlJsYFH3tPbyEEI2XJLpEo2YwGLC2tmbHjh1YW1tOXb50ZpVWq73h/SmioqJYvHgxNjY2+Pr6olZXfVgqKioiISGBhIQE/vvf/+Lp6UlWVhYJCQnK0sa/ODhc/coztRk1ahStW7fm1KlTzJ49m/j4eIKCgq7ZzsnJiZ07d5Kamspvv/3G22+/TUpKCmlpaRgMVd8kL126FD8/yysvaTTVs6+Ki4uV5/PS5Z+1ee2113j55Zctjm09WvtGpAKat2pPYEh1AtFkMgFgKMjH2cVNOW4oyMfHP7jGPuwdnLGysrLYeB7AUJiPo7OrxTGtvQNaewc8mvgQGBLFpFee5I8924iJ7VpHIxLiSr6hHehzyZURKyuqNuIuLdajdaw+z43Felw8g2vsQ6N1RqWywlhseZ6XFuuxs7c8z9UaB9QaB5xcffHwiWLBp49x+ujWWq+q6OYVwf6tP1BhKsfapuYreglxLbHRURZ7ZpX/+XqeX2jAzaX6Ijv5hUUE+da8D6Kzgz1WVlZXzPjSG4rQOd/clZ7XbtuFk4M97aKjbqq9EJdqF+BFuKdOuW+qqPqCN7+0DFf76it/5peWEeha88WlnDRqrFQq8kst3yvnlxrR2V3/KoD07FwO5+h5fO4Ki+Nv/LqZe0J8+L97bm71hhDiziKJLnFHUqvVVFRUXPNYmzZtqKio4Pz583TrVreXiFer1YSHh19x/ODBg+Tm5jJ9+nQCAgKAqr2xbvYxLh8TQMuWLYmNjeWLL75g7ty5ykyy62FjY0OvXr3o1asXEyZMQKfTsWbNGnr37q1sxN+jR49a248bNw4rKyuWLVtGv3796N+//1X3BtNoNBaJsqpxFV93vHcjjZ0WjZ1WuW82m3Fy1nE0Yx++ASEAlJYUczLzMB279amxDxsbG/wCQzmasY/omA5KP0cy9tG5R9/aH9xsBrMZk6n2q38JURds1Vps1ZbnudbBlXMn9+HapGovonJjMblnDxHWKqHGPqysbXDzCuNc1l7lColms5nzJ/cRHtOv1sc2m82YzWYqKmo/z/U5majtHCXJJf4nWjsN2ks+pJvNZnTOTqQfPkaIvw8AxaWlHD5xit5dap4FY2NjTai/L+mHj9OhZTOln/RDx0js1uGGYzKbzaRu202P9jHYyP5Fog5obW3Q2lZ/rDSbzei0GtLP5hLs5gxAcVk5R3L09IoIqLEPG2srQtyd2Z+dS/sAL6Wf/Wdz6RN17S9z/zK8Q3MeKqv+EiWvxMi01Wm82L014e6yTFeIu4UkusQdKTg4mPXr1/Pwww+j0Wjw8PAgODgYg8HA6tWriYmJwd7ensjISB599FGeeOIJ3nvvPdq0acOFCxdYvXo1rVq1on///nUeW2BgIGq1mg8++IDRo0eTnp7O5MmTb6qv4OBgVqxYQUZGBu7u7ri4uGBrW/Wha9SoUYwZMwYHBweSkpKuq78lS5Zw7NgxunfvjqurK7/++iuVlZVERUXh5OREcnIyL730EpWVlXTt2pX8/Hw2bdqEs7MzTz75JEuXLmXWrFls2bKFtm3b8sorr/Dkk0+yd+9eXF1drx2AuCkqlYouPfuzZvnPuDfxwdW9CSuXzMPJxZXmMdUfcr78dwrNYzrSJa4qkdU1fiA/fv0hfoGhBARFsCl1KWVGI+069QQgN+cs+3ZsJrxZDI6OzuTn5bJu5UJs1Wqiotsq/eZeyMZYWkphgZ7y8jLOnDwOQBOfANnLS9QZlUpFROsBHNj2I046HxxcmpC++TvsHNyUJBbA2p/fxj+sIxGtq16/I9vex7YVM3H1CsPdK4JDu5dgKi8lJLoqAW/IP8vJQ5vwCoxBo3WhxJDDge0LsLHR4BPcDoDTx9IwFutx947EykbNuRO7OZD2E1Ft77/1T4Ro1FQqFf26d+Tnlevx9nSniZsr3y9bg6uLE+1bNlXqTfp4Du1bNqNvt6pzf0BcZz6au4BQfx/CA/35df3vlJaVEXfJRvJ5BYXoCwyczbkIQNaZc9hp1Hi4uuDkYK/USz98nPO5ecR3rH6dF6IuqVQqEpsGsWDfEbyd7GniqOWH3YfRaTXEBlTPXJyycivtA7xJaFqVyOrfLIRPNu8lxN2ZMHcdyw9mUmqqIC6selakvsSIvsTI2cKqL02z8grR2trg7mCHk0aNh4MWLlkwYfdnAs7L0R53h+ovV4QQjZt8QhG3rcrKylo/RE+aNIlnn32WsLAwjEYjZrOZLl26MHr0aB566CFyc3OZMGECKSkpzJ49mylTpjBu3DhOnz6Nh4cHnTp1YsCA+tl3xdPTkzlz5vD6668zc+ZM2rZty7vvvst99913w309/fTTpKamEhsbi8FgYO3atcTFxQEwbNgwxo4dy7Bhw7Czs7t6R3/S6XTMnz+flJQUSktLiYiI4LvvviM6OhqAyZMn4+npybRp0zh27Bg6nY62bdvy+uuvc+HCBZ566ilSUlJo27bqzfHEiRP57bffGD16NN9///0Nj09cvx69B1FeZmTB3E8pLSkmKKwpI55/02IfrYs55yguKlDut2p3D4bCAlYt+Z7CAj2+AcGMeP4NnJx1ANjaqjl+5AAb1yyhtKQYR2cXgsOaMXrcVItN7H/+9hOOH/lDuf/B9FcAeHXSx7i63/gVSoWoTdPYJCpMRrav/oRyYxEevs3onvSWso8WQFH+OYwlhcr9wMiuGIvzSd8yj9LiPFw9Q+g+6C1lU3trazUXTv/BoZ2/UFZWhJ29Dk/fZsQ/NA27Pzext7Ky5sieZexaNwsAR503rbuPILRFzTMmhfhf3B/fFWNZOZ//8AvFJaVEhQby+jOPobatnj14LjePwqLq2c9d2rQg31DED8vXoi80EOzrwxvPPG6xQf3Kzdv5aUWqcn/Ch1Xn8/8NG2SREFuzdSdRIYH4ecnVdUX9uS86lDJTBV/+nk5xuYkoT1fG3xuL+pJZhOcKSyg0Vi9V7BzsQ0FpGT/uOUx+iZEgN2fGx7fHRVs9K3LVoSx+3ntEuT/pt60AjO7Skh6XJMSEEHc3lVmunS1uU4mJiYSHh9/Qsry7SWZmJmFhYaSlpSmJpzvFuv2ydFE0fivT5Lsk0fj9vcWahg5BiHpnWrGooUMQot65vvFJQ4dw0/Leea6hQ6jRnfyc3umsGjoAIS6Xl5fHkiVLSE1NpVevXg0dzm2nvLycs2fP8uabb9KpU6c7LsklhBBCCCGEEELUF/m6Wdx2Ro4cSVpaGuPGjeP++xtmf5RLr8h4uWXLltX5xvY3YtOmTfTs2ZPIyEh++ukni7INGzbQt2/tG43/dWVFIYQQQgghhBCiMZJEl7jtLFiwoKFDYPfu3bWW+fn53bpAahAXF0dtK45jY2OvGrsQQgghhBBCCNGYSaJLiBqEh4c3dAg3RavV3rGxCyGEEEIIIYQQ/yvZo0sIIYQQQgghhBBCNAqS6BJCCCGEEEIIIYQQjYIkuoQQQgghhBBCCCFEoyB7dAkhbrlWC8c1dAhC1Lu2CQ1z1VghbqUZ6fENHYIQ9a73oO4NHYIQ9a5HQwcgRB2SGV1CCCGEEEIIIYQQolGQRJcQQgghhBBCCCGEaBQk0SWEEEIIIYQQQgghGgVJdAkhhBBCCCGEEEKIRkESXUIIIYQQQgghhBCiUZBElxBCCCGEEEIIIYRoFCTRJW4bcXFxjB07tqHDqHcpKSm0bt26ocMQQgghhBBCCCEaHZuGDkDc3YYPH45er2fhwoXMnz8fW1tbpSw4OJixY8daJL/mzJnD2LFj0ev19R5bSkoKEydOBMDa2hp/f3+SkpKYPHkyjo6ON91vcnIyL7zwgnL/0udAiNqYzWZ+2nOYNUdOUVRWTpSnKyM7RuPj7HDVdr9lnOCX/cfJLzUS6OrE8PbNCffQKeVlpgq+3XGQLSeyKa+oJMbXg5EdonHRapQ6c9L+ION8Hqf0hfi5ODJ9QNf6Gqa4y5nNZn5YvpbVv++kuKSUyJAAnn5wAD6e7ldtt3zjNn5Zuwl9gYEgX29GDO5LRJC/Ul5WXs7Xi1awefd+TCYTMVHhPPVgf3RO1a/lQ1+acEW/f3v8Qe5p27LuBijueof3/ErGjkWUFuWh8wymTdwo3L0ja61/8tAm9m2ZS3HBBRx1PrTq+gS+Ie2UcrPZzP7f53EsfSVlxiI8fJrSLv5ZnFx9lToFeafZu+Frcs4coLLShItHEC06P4JXgJzbon5sWbecDasWUVigx8c/iIFDniIgOKLW+nt3bmblL/PQX7yAexMfEu9/jKYt2irlZrOZVUu/J23TKkpLigkMjWLQw8/g0cQHgGOH0vni3yk19v38q9PxDwqv0/EJIW5/MqNL3Dbc3NxwcnK6JY9VUVFBZWXlNetFR0eTnZ1NZmYmM2bM4PPPP2fcuHE39ZhmsxmTyYSjoyPu7lf/0FbXysrKbunjibq3eP8xlmec4KmO0Uzp2xmNjTXTVqdRZqqotc2WzGy+2X6AB1qFM7XfPQS5OjNtdRoFpUalzjc7DrDj1HnGdm/D2306crHYyD/X7byir57h/nQK9qmXsQnxl0VrNrJsw1aeHjKAd8Y+jZ1azTuffUNZeXmtbTbvSufrRct5sE8cM8aNJsjPi3c++4Z8Q5FS56uFK9ix/xAvPzmUCc+P4GJ+Ae/N/v6Kvv5v2CA+m5is3Nq3bFov4xR3p6xDG9m9fjbRHYfS55H3cPEIZv2CSZQW59dYP+fMAbYs+yeh0b3p88h7+IV1ZNOS6eTnnFDqHNy+gMO7l9IufjS9Hp6Bja0d6xZMosJU/X9/46J3qKysIO7BSfQe9i46j2A2Ln6HkqK8eh+zuPvs3bGJpT/PIb7fEF4Y/w+8/YKZ9eEUDIU1n+cnjh7k+9nv077Lvbww/h80b9Webz//f5w9k6XUWbdyIZtTlzFo2LM898o01Bo7Zn04mfLyqvM8MLQpr0/9wuLWvsu9uLo3wS8w7JaMWwhxe5FEl7htXLp0MS4ujhMnTvDSSy+hUqlQqVSkpqYyYsQI8vPzlWMpKSkAGI1GkpOT8fPzw8HBgY4dO5Kamqr0PWfOHHQ6HYsXL6Z58+ZoNBqysrKuDOIyNjY2eHt74+/vz0MPPcSjjz7K4sWLAfjmm2+IjY3FyckJb29vHnnkEc6fP6+0TU1NRaVSsWzZMtq1a4dGo2Hjxo0WSxdTUlL46quvWLRokcU44+PjGTNmjEUsFy5cQK1Ws3r16mvGHRwczOTJk3niiSdwdnbmmWeeAeDvf/87kZGR2NvbExoayltvvUX5ZR8gf/nlF9q3b4+dnR0eHh4kJSUpZdd6nkX9MJvNLD94gqSW4cQGeBHo6sxz97RCX2Jk+8lztbZbeuA48REBxIX7469zZFTHaDTW1qw9cgqAorJyUo+c4vHYpkR7uxPq7sLoLi05dEHP4Qt6pZ/h7ZvTJyoIL0f7+h6quIuZzWZ+Xb+VB3p3p32LpgT5evH8I0nk5ReStu9gre2WpG7h3k7t6NmxDf7enjwzZCAatS1rt1YlbItKSlm7bSdPDkqgRUQIYQG+/N+wQWQcz+Jw5imLvuy1drg6Oyk39SWzjIX4Xx3auZjQFr0Jib4XZ/cAYu99DmsbDcf31/x//dCupfgEt6Vp7CCc3QNo2eURXD1DObznV6Dqb+bw7iU06zAEv7AO6DyC6ZDwIqVFFzl9dCsAxpICCvXZNGs/GJ1HME6uvrTq+gSmciP5udd+HyTEjdq45hfa39OL2M7xNPHxJ2nYs6jVarZvWVNj/U2pS4ls3obuve+niY8/fQYOwzcghC3rlgFV5/nmtUuJT3yA5q3a4+MXxJDHx1CYn8cfe7YBVe/XnVxclZvWwYk/9qbRrlNPVCrVLRu7EOL2IYkucVuaP38+/v7+TJo0iezsbLKzs+nSpQvvv/8+zs7OyrHk5GQAxowZw5YtW5g3bx579+5lyJAhJCYmcvjwYaXP4uJiZsyYwZdffsn+/ftp0qTJDcel1WqV2VHl5eVMnjyZPXv2sHDhQjIzMxk+fPgVbcaPH8/06dM5cOAArVq1sihLTk5m6NChJCYmWoxz1KhRzJ07F6OxeubNt99+i5+fH/Hx8dcV67vvvktMTAy7du3irbfeAsDJyYk5c+bwxx9/8O9//5svvviCf/3rX0qbpUuXkpSURL9+/di1axerV6+mQ4cOSvn1PM+i7p03lKAvMdLCu3omoIPalnAPHYdy9DW2MVVUcjy3gBY+HsoxlUpFCx93JYmVebEAU6WZlpfU8XNxxN3BjsM58k2/uLXO5+ahLyikRUSocsxBa0dEkD+HMk/W2MZkquDYqTO0jKxuo1KpaBkZxqE/k1jHT2VjMlXQMrL6W30/L088XF04dMKy3//8vJSRb87gtX99zpqtOzGbzXU5RHEXq6wwcfHcUbwDY5RjKpUKr8BW5GZn1Ngm92wGTS5bXugd1FqpX1RwjpKiPIsliGqNA+7ekeT8WUdt54STqy+ZB9ZiKi+lsrKCo/t+w07rglsTmeki6pbJZOJ01jHCm1a/31WpVIQ3bUXW8UM1tsk6foiwKMvzPKJZjFL/Yu45Cgv0FnW09g4EBEfU2ufBfdspLiqkXeee/+uQhBB3KNmjS9yW3NzcsLa2VmZL/cXFxQWVSmVxLCsri9mzZ5OVlYWvb9WeFMnJySxfvpzZs2czdepUoCox9fHHHxMTE8PN2LFjB3PnzlUSTSNHjlTKQkNDmTlzJu3bt8dgMFjs4TVp0iR69+5dY5+Ojo5otVqMRqPFmAYPHsyYMWNYtGgRQ4cOBapmpQ0fPvy6v5mKj4+/Ypnlm2++qfwcHBxMcnIy8+bN49VXXwXgnXfe4eGHH1b2JgOU5+t6n+fLGY1Gi4QdgNFUgcbG+rrGIUBfUvX8udipLY672KnJLzHW1IRCYxmVZnMNbTScKShS+rWxUuGgtr2ijr6WfoWoL/pCAwAuTpZ7ILo4OShllysoKqaystJiry0AnaMDZ87lVPVbUIiNjTUOWrvL+nVEX1Dd79C+PWkZEYra1pY9GUf4z09LMRrL6Nu90/88NiGMJQWYzZVo7F0sjtvZ6yjMO11jm9JiPVoH1yvqlxbpq8r/XHpoZ6+zqKO5pI5KpSJu8EQ2LZnO/I8fAVTY2evonvQ2arub329UiJoUFxVQWVmJo5Plee7o5MKFczWf54aCfJycdRbHnJx1FOZXnd+GfH1VH86X9ensQmFBzV/KpW1eTUSz1uhcPWosF0I0fpLoEne8ffv2UVFRQWSk5WauRqPRYi8stVp9xYyq6+nb0dGRiooKysrK6N+/Px9++CFQlfhKSUlhz5495OXlKXt+ZWVl0bx5c6WP2NjYGx6TnZ0djz/+OLNmzWLo0KHs3LmT9PR0Zdnk9ajpcb///ntmzpzJ0aNHMRgMmEwmnJ2dlfLdu3fz9NNP19jf9T7Pl5s2bZpF4gzg1Z7tGH9v++sey91m47HTfLl1v3L/1fgbP4eEuN1t2LGXL378Rbk/ftSjDRgNPNgnTvk5xN8HY1k5i9dulkSXuKOZzWZ2rv0CjdaF+CHvYG2j5lj6KjYunkqvh/8fWke3hg5RiDqlz8vh8IHdPPLUze2pK4RoHCTRJe54BoMBa2trduzYgbW15SyhS2dWabXaG16nHxUVxeLFi7GxscHX1xe1ump2TFFREQkJCSQkJPDf//4XT09PsrKySEhIuGLjdweHq18VrzajRo2idevWnDp1itmzZxMfH09QUNB1t7/8cbds2cKjjz7KxIkTSUhIwMXFhXnz5vHee+8pdbRaba39Xe/zfLnXXnuNl19+2eJY8b+Sr3scd6N2AV6Ee+qU+6aKqiRqfmkZrvbVs1LyS8sIdK35Ag5OGjVWKhX5pZbnY36pEZ1d1RUVdVoNpkozRWXlFrO68kuN6C656qIQ9SE2OsriyojlJhMA+YUG3Fyqz+v8wiKCfL1q7MPZwR4rK6srZnzpDUXonKtel3TOTphMFRSVlFrM6sovNCh1ahIe6MfPv62j3GTC1kbeLon/jUbrjEplhfGyjedLi/XY2bvW2MbOXnfFhvGlxXrsHHRV5X/O9iot1lskrIzFelw8gwE4f3IfZ46nkTT6W2w1VfsstosP42zWbjIPpNKs/eC6GJ4QANg7OGNlZXXFxvOGwnwcnWs+z6tmZuktjhUW6HFyqarv6KKr6qMgH2eX6vPcUJCPj3/wFf3t2LIWewcnmraULwmFuJvJHl3itqVWq6moqLjmsTZt2lBRUcH58+cJDw+3uF26HPBmYwgPDyc4OFhJcgEcPHiQ3Nxcpk+fTrdu3WjatKnFRvQ3+hiXjwmgZcuWxMbG8sUXXzB37lyLpZI3Y/PmzQQFBfHGG28QGxtLREQEJ06csKjTqlWrWje7v9nnWaPR4OzsbHGTZYtXp7W1wdvJQbn5uTii02pIP5ur1CkuK+dIjp5ID12NfdhYWxHi7sz+7Oo2ZrOZ/WdzifgziRbs5oyNlcqi3zMFBnKLSonwqPkNqRB1RWunwdvDTbn5e3mic3Yi/fAxpU5xaSmHT5wiMjigxj5sbKwJ9fcl/fBx5ZjZbCb90DEig6uSaCH+PtjYWJN+qLrfM+dzyMnLJzKo5n4BTpw5h4O9VpJcok5YWdvg5hXGuay9yjGz2cz5k/tw94mqsY27dxTnT+6zOHYua49S38HZC62DK+cuqVNuLCb37CE8/qxjMlUtQ1dZWb7lV6msMJuvffVpIW6EjY0NfoGhHM2oPifNZjNHMvYRGBJZY5vAkEiL+gBHDu5V6ru5e+HkrLOoU1pSzMnMw1f0aTab2fH7Wtp27IGNvHYLcVeTRJe4bQUHB7N+/XpOnz5NTk6OcsxgMLB69WpycnIoLi4mMjKSRx99lCeeeIL58+dz/Phxtm3bxrRp01i6dGm9xBYYGIhareaDDz7g2LFjLF68mMmTJ99UX8HBwezdu5eMjAxycnIsroI4atQopk+fjtlstrj64c2IiIggKyuLefPmcfToUWbOnMmCBQss6kyYMIHvvvuOCRMmcODAAfbt28eMGTMAGuR5FlVUKhWJTYNYsO8I20+eIyuvgI837UWn1RAbUD3TZcrKraw4WJ287N8shDVHTrLu6ClO6Q38Z+t+Sk0VxIVVJQAc1LbEhfvzzfYD7D+by7HcfD7dvI8IT52SDAM4W1hE5sUC9CVGyioqybxYULWRfYV8SBJ1R6VS0a97R35euZ609IOcOHOOD/+7AFcXJ9q3bKrUm/TxHJZt2KrcHxDXmdVbdpC6bRenzl7gix+XUFpWRlyHNkDVhvY9O7Tlq0XLST98nKMnz/DxdwuJDA4g4s9k2Pb9Gaz+fQdZ2ec4m3ORFZu2sWDVehK7dkCIuhLZ9j6Opa/k+B9rKMg9yY41n2IqLyUkumrvz60r3mfvxm+q67fpz9kTuzi4YxEFF0+RvmUeF88fJSKmH1D1NxPRegAHtv3I6aPb0OdksnXFv7FzcMMvrCMAHj5RqDWObF0xE/2F4xTknWb3+jkUFZzHN6TdrX8SRKPXNX4gaZtWseP3tZzPPsXCeZ9TZjTSrlPVxvA/fDWT5Yu+VerfE9efQwd2s2HVYs6fPc2qpd9zOusYnXv0BarO8y49+7Nm+c/8sTeN7NMn+OHrD3BycaV5jOVr9NGMfeTlnie2S69bN2AhxG1JUt2iQVVWVtb6jcukSZN49tlnCQsLw2g0Yjab6dKlC6NHj+ahhx4iNzeXCRMmkJKSwuzZs5kyZQrjxo3j9OnTeHh40KlTJwYMGFAvcXt6ejJnzhxef/11Zs6cSdu2bXn33Xe57777brivp59+mtTUVGJjYzEYDKxdu5a4uDgAhg0bxtixYxk2bBh2dnZX7+ga7rvvPl566SXGjBmD0Wikf//+vPXWW6SkpCh14uLi+PHHH5k8eTLTp0/H2dmZ7t27K+W3+nkW1e6LDqXMVMGXv6dTXG4iytOV8ffGor5kdty5whIKjdVLFTsH+1BQWsaPew6TX2IkyM2Z8fHtcblkWeLj7ZqhQsW/1u2ivLKSGB8PRnaMtnjsz7ekc+DcReX+a0s3ATAzKQ5Px9qXuwpxo+6P74qxrJzPf/iF4pJSokIDef2Zx1DbVi+tPZebR2FRsXK/S5sW5BuK+GH5WvSFBoJ9fXjjmcctNqh/clACKhW8N+d7TCYTMU3DeeqB/kq5tZUVKzam8dXC5QB4ebjxxP2J9OosiQBRdwIju2Iszid9yzxKi/Nw9Qyh+6C3lM3kiwtyUKmqv4P28G1Gp8SX2LdlLvs2f4uTzod7BozHxaN6G4OmsUlUmIxsX/0J5cYiPHyb0T3pLaxtqmaha7TOdB/0Fvu2zCX15wlUVppwdgug68DX0HmG3NLxi7tDq3b3YCgsYNWS7yks0OMbEMyI599QNpzXX8yxmGEYFNaUh4b/jZW/zGPF4rl4NPHhsWdexds3UKnTo/cgysuMLJj7KaUlxQSFNWXE829ia2t5wZ3tm1cTFBpFE2+/WzJWIcTtS2WWa2eLBpSYmEh4eLiywbuwlJmZSVhYGGlpabRt27ahw6kzee8819AhCFHvbBLub+gQhKh3M9LjGzoEIepd7/amhg5BiHrXI9q+oUO4abfrZwvXNz5p6BDuWrJ0UTSIvLw8lixZQmpqKr16yfTiy5WXl3P27FnefPNNOnXq1KiSXEIIIYQQQgghRH2RpYuiQYwcOZK0tDTGjRvH/fc3zKyHq10pcNmyZXTr1u0WRmNp06ZN9OzZk8jISH766SeLsg0bNtC3b99a2xoMhlrLhBBCCCGEEEKIxkwSXaJBXL4JekPYvXt3rWV+fg27tj8uLo7aVhXHxsZeNXYhhBBCCCGEEOJuJYkucdcKDw9v6BBuilarvWNjF0IIIYQQQggh6pPs0SWEEEIIIYQQQgghGgVJdAkhhBBCCCGEEEKIRkESXUIIIYQQQgghhBCiUZA9uoQQt5xNQsNcaVOIW2lGenxDhyBEvRt3+m8NHYIQ9W5v+/caOgQhhBA3QGZ0CSGEEEIIIYQQQohGQRJdQgghhBBCCCGEEKJRkESXEEIIIYQQQgghhGgUJNElhBBCCCGEEEIIIRoFSXQJIYQQQgghhBBCiEZBEl2CuLg4xo4d29Bh1LuUlBRat27d0GEIIYQQQgghhBCintg0dACiYQwfPhy9Xs/ChQuZP38+tra2SllwcDBjx461SH7NmTOHsWPHotfr6z22lJQUJk6cCIC1tTX+/v4kJSUxefJkHB0db7rf5ORkXnjhBeX+pc/BnaKyspLXXnuNb775hry8PCIiIpg8eTL3339/Q4cm6pnZbOaH5WtZ/ftOiktKiQwJ4OkHB+Dj6X7Vdss3buOXtZvQFxgI8vVmxOC+RAT5K+Vl5eV8vWgFm3fvx2QyERMVzlMP9kfndOXfWmFRMa/84xMu5hcwe+prOGjt6nycQlzKbDaz//d5HEtfSZmxCA+fprSLfxYnV9+rtju851cydiyitCgPnWcwbeJG4e4dqZQf3beCrIMbyLtwjPKyEpKe+xa1xqG+hyMEUHVe/7TnMGuOnKKorJwoT1dGdozGx/nq5+BvGSf4Zf9x8kuNBLo6Mbx9c8I9dEp5mamCb3ccZMuJbMorKonx9WBkh2hctBoATlwsYNH+Y2Scz6PQWIano5ZeEYH0bRZcj6MVd6Mt65azYdUiCgv0+PgHMXDIUwQER9Raf+/Ozaz8ZR76ixdwb+JD4v2P0bRFW6XcbDazaun3pG1aRWlJMYGhUQx6+Bk8mvgodf7fW8+Rd/GCRb8J9z9KXJ+kuh+gEOK2JzO6BG5ubjg5Od2Sx6qoqKCysvKa9aKjo8nOziYzM5MZM2bw+eefM27cuJt6TLPZjMlkwtHREXf3qycFbnfffvst//rXv/jnP//JgQMH+Oc//4mDw7U/nJWVld2C6ER9WrRmI8s2bOXpIQN4Z+zT2KnVvPPZN5SVl9faZvOudL5etJwH+8QxY9xogvy8eOezb8g3FCl1vlq4gh37D/Hyk0OZ8PwILuYX8N7s72vs75N5iwj09arzsQlRm4PbF3B491LaxY+m18MzsLG1Y92CSVSYan9Nyzq0kd3rZxPdcSh9HnkPF49g1i+YRGlxvlLHVG7EO7gtzdo/eCuGIYSFxfuPsTzjBE91jGZK385obKyZtjqNMlNFrW22ZGbzzfYDPNAqnKn97iHI1Zlpq9MoKDUqdb7ZcYAdp84ztnsb3u7TkYvFRv65bqdSfuxiPs52ap7vGsM/BnZjUIswvtuVwYqDJ+p1vOLusnfHJpb+PIf4fkN4Yfw/8PYLZtaHUzAU5tdY/8TRg3w/+33ad7mXF8b/g+at2vPt5/+Ps2eylDrrVi5kc+oyBg17ludemYZaY8esDydTXm75v6BX/4d4feoXyq1zj771OlYhxO1LEl3CYuliXFwcJ06c4KWXXkKlUqFSqUhNTWXEiBHk5+crx1JSUgAwGo0kJyfj5+eHg4MDHTt2JDU1Vel7zpw56HQ6Fi9eTPPmzdFoNGRlZV0ZxGVsbGzw9vbG39+fhx56iEcffZTFixcD8M033xAbG4uTkxPe3t488sgjnD9/XmmbmpqKSqVi2bJltGvXDo1Gw8aNGy2WLqakpPDVV1+xaNEii3HGx8czZswYi1guXLiAWq1m9erV14z7448/JiIiAjs7O7y8vHjwweoPUZWVlUybNo2QkBC0Wi0xMTH89NNPQFUyrlevXiQkJGA2mwG4ePEi/v7+vP3220ofVlZWeHp68vDDDxMcHEyvXr3o1avXFXH8NdYvv/ySkJAQ7OyqZt4sX76crl27otPpcHd3Z8CAARw9etSi7alTpxg2bBhubm44ODgQGxvL1q1blfJFixbRtm1b7OzsCA0NZeLEiZhMpms+N+Lmmc1mfl2/lQd6d6d9i6YE+Xrx/CNJ5OUXkrbvYK3tlqRu4d5O7ejZsQ3+3p48M2QgGrUta7dWffApKill7badPDkogRYRIYQF+PJ/wwaRcTyLw5mnLPpasWkbxSWl3NfznnodqxB/MZvNHN69hGYdhuAX1gGdRzAdEl6ktOgip49urbXdoZ2LCW3Rm5Doe3F2DyD23uewttFwfH/1a3hU2/to1n6wxSwvIW4Fs9nM8oMnSGoZTmyAF4Guzjx3Tyv0JUa2nzxXa7ulB44THxFAXLg//jpHRnWMRmNtzdojVa/VRWXlpB45xeOxTYn2difU3YXRXVpy6IKewxf0APQMD2B4++Y093LDy8mebqF+xIX5k3by7K0YurhLbFzzC+3v6UVs53ia+PiTNOxZ1Go127esqbH+ptSlRDZvQ/fe99PEx58+A4fhGxDClnXLgKq/mc1rlxKf+ADNW7XHxy+IIY+PoTA/jz/2bLPoS2OnxcnFVblpNDLzXIi7lSS6hIX58+fj7+/PpEmTyM7OJjs7my5duvD+++/j7OysHEtOTgZgzJgxbNmyhXnz5rF3716GDBlCYmIihw8fVvosLi5mxowZfPnll+zfv58mTZrccFxarVaZlVReXs7kyZPZs2cPCxcuJDMzk+HDh1/RZvz48UyfPp0DBw7QqlUri7Lk5GSGDh1KYmKixThHjRrF3LlzMRqrvyH99ttv8fPzIz4+/qoxbt++nRdffJFJkyaRkZHB8uXL6d69u1I+bdo0vv76az799FP279/PSy+9xGOPPca6detQqVR89dVXpKWlMXPmTABGjx6Nn5+fRaLr3nvvJT8/n7feeuuaz9mRI0f4+eefmT9/Prt37wagqKiIl19+me3bt7N69WqsrKxISkpSZtkZDAZ69OjB6dOnWbx4MXv27OHVV19Vyjds2MATTzzB3/72N/744w8+++wz5syZwzvvvHPNeMTNO5+bh76gkBYRocoxB60dEUH+HMo8WWMbk6mCY6fO0DKyuo1KpaJlZBiH/kxiHT+VjclUQcvIMKWOn5cnHq4uHDpR3e+psxf4+bf1jHk0CZWqrkcnRM2KCs5RUpSHV0BL5Zha44C7dyQ52Rk1tqmsMHHx3FG8A2OUYyqVCq/AVuTW0kaIW+m8oQR9iZEW3tUzzB3UtoR76DiUo6+xjamikuO5BbTw8VCOqVQqWvi4K0mszIsFmCrNtLykjp+LI+4OdhzOyas1nuJyEw5q21rLhbgRJpOJ01nHCG9a/b5bpVIR3rQVWccP1dgm6/ghwqJaWhyLaBaj1L+Ye47CAr1FHa29AwHBEVf0ue63BUx+dTgfTEtm/cpFVFTUPktSCNG4yR5dwoKbmxvW1tbKbKm/uLi4oFKpLI5lZWUxe/ZssrKy8PWt2i8lOTmZ5cuXM3v2bKZOnQpUJaY+/vhjYmJiuBk7duxg7ty5SqJp5MiRSlloaCgzZ86kffv2GAwGiz28Jk2aRO/evWvs09HREa1Wi9FotBjT4MGDGTNmDIsWLWLo0KFA1ay04cOHo7rGJ/ysrCwcHBwYMGAATk5OBAUF0aZNG6Bq5tvUqVNZtWoVnTt3VmLfuHEjn332GT169MDPz4/PPvuMJ554grNnz/Lrr7+ya9cubGyq/kyLi4vp3bs3jzzyCCtXrqSkpIR//OMfSlzOzs7MmjVLmUVWVlbG119/jaenpxLjAw88YBHzrFmz8PT05I8//qBFixbMnTuXCxcukJaWhpubGwDh4eFK/YkTJzJ+/HiefPJJZQyTJ0/m1VdfZcKECVd9fsTN0xcaAHC5bN8sFycHpexyBUXFVFZWXrHXls7RgTPncqr6LSjExsb6ir22XJwc0RdU9VtuMvH+Nz/y2MDeeLjqOJdb+wcmIepSaVHVuWZnr7M4rrHXUVqkr7GNsaQAs7kSjb2LxXE7ex2FeafrI0whboi+pOqLNBc7tcVxFzs1+SXGmppQaCyj0myuoY2GMwVFSr82VqorklYudhrlMS+XcT6P309k82rP2JsaixCXKy4qoLKyEkcny9dgRycXLpyr+TXYUJCPk7PO4piTs47C/Kr/AYZ8fVUfzpf16exCYUH1e5LOcf3wCwhB6+BE1rGDLF80l4L8PAY8OPx/G5QQ4o4kiS5x0/bt20dFRQWRkZZLP4xGo8VeWGq1+ooZVdfTt6OjIxUVFZSVldG/f38+/PBDoCrxlZKSwp49e8jLy1NmG2VlZdG8eXOlj9jYG3/jZmdnx+OPP86sWbMYOnQoO3fuJD09XVk2eTW9e/cmKCiI0NBQEhMTSUxMJCkpCXt7e44cOaIkqi5VVlamJMMAhgwZwoIFC5g+fTqffPIJERHVG3fOmTMHvV7PRx99hMFgIC4ujhEjRvDll19y6tQpDAYD99xTvawsKCjIIskFcPjwYd5++222bt1KTk6OxXPXokULdu/eTZs2bZQk1+X27NnDpk2bLGZwVVRUUFpaSnFxMfb29le0MRqNFjPk/hq3Rq2+oq6osmHHXr748Rfl/vhRjzZYLHOXrMLfy5PusTeXqBbiep04uI7tqz9V7ne7/80GjEaIurHx2Gm+3Lpfuf9q/O2RVDqZV8h7qTsY3CqcVr4e124gxG2u270DlZ99/IKwtrZhwbzPSbz/UWxsZdaiEHcbSXSJm2YwGLC2tmbHjh1YW1tblF06s0qr1V5zNtTloqKiWLx4MTY2Nvj6+qL+MylSVFREQkICCQkJ/Pe//8XT05OsrCwSEhKu2HD9ejZpr8moUaNo3bo1p06dYvbs2cTHxxMUFHTNdk5OTuzcuZPU1FR+++033n77bVJSUkhLS8NgqJods3TpUvz8/CzaaTQa5efi4mLl+bx0+SfA3r17iY6OxtbWFldXV1auXEm3bt1ISkoiIiKCxMREfHyqrz5T0/gHDhxIUFAQX3zxBb6+vlRWVtKiRQvludNqtVcdo8FgYOLEiQwePPiKsr/2AbvctGnTlKto/mX804/y+jOPXfWx7max0VEWV0Ys/3MPtPxCA24u1ReOyC8sIqiWzeGdHeyxsrK6YsaX3lCEzrnq71Pn7ITJVEFRSanFrK78QoNSJ/3IcbLOnOP3PX8AKHvIPfXmDJJ6deOhvldf0ivE9fIN7UCfS/bMqqyoutBCabEerWN18t1YrMfFM7jGPjRaZ1QqK4zFlpselxbrsbN3rfughbiGdgFehHvqlPumiqovmPJLy3C1v+R1t7SMQNeaLwzkpFFjpVKRX2r5Pie/1IjOruo9hE6rwVRppqis3GJWV36pEZ1WY9HulN7AlFXbuDcikMEtwxGirtg7OGNlZXXFxvOGwnwcnWt+Da6amaW3OFZYoMfJpaq+o4uuqo+CfJxdqv8XGAry8fEPrjWWgJBIKisqyLt4AU+vq1+pVwjR+EiiS1xBrVZfsaa9pmNt2rShoqKC8+fP061btzqP4dIlc385ePAgubm5TJ8+nYCAAKBqb6ybfYya1u63bNmS2NhYvvjiC+bOnavMJLseNjY2ygbxEyZMQKfTsWbNGnr37q1sxN+jR49a248bNw4rKyuWLVtGv3796N+/v7Jk08/PjwULFlBYWIiTkxNNmjRh1apVdOvWjSVLlrBjx46rxpabm0tGRgZffPGF8vvauHGjRZ1WrVrx5ZdfcvHixRpndbVt25aMjIwafze1ee2113j55ZctjpWlp153+7uR1k6D1q76g4nZbEbn7ET64WOE+FclM4tLSzl84hS9u9Q8O8DGxppQf1/SDx+nQ8tmSj/ph46R2K0DACH+PtjYWJN+6BgdY6pmQ545n0NOXj6RQVV/X+OGP2RxZcejWWf4ZN5CJr0wEi+Pmmf+CXEzbNVabNXVyXaz2YzWwZVzJ/fh2qRqr7lyYzG5Zw8R1iqhxj6srG1w8wrjXNZe/MI6Kv2cP7mP8Jh+9T8IIS6jtbVBa1v9dttsNqPTakg/m0uwmzMAxWXlHMnR0ysioMY+bKytCHF3Zn92Lu0DvJR+9p/NpU9U1RdxwW7O2FipSD+bS8fAqi0ZzhQYyC0qJcKjOsFwSl/I5JXb6B7qx0Nt5GIMom7Z2NjgFxjK0Yx9RMdUvdcwm80cydhX6xUQA0MiOZqxj67xA5RjRw7uJTCk6vx0c/fCyVnH0Yx9+AaEAFBaUszJzMN07Nan1ljOnDyOSqXCwcm5roYnhLiDSKJLXCE4OJj169fz8MMPo9Fo8PDwIDg4GIPBwOrVq4mJicHe3p7IyEgeffRRnnjiCd577z3atGnDhQsXWL16Na1ataJ///51HltgYCBqtZoPPviA0aNHk56ezuTJk2+qr+DgYFasWEFGRgbu7u64uLhg++fU5lGjRjFmzBgcHBxISkq6rv6WLFnCsWPH6N69O66urvz6669UVlYSFRWFk5MTycnJvPTSS1RWVtK1a1fy8/PZtGkTzs7OPPnkkyxdupRZs2axZcsW2rZtyyuvvMKTTz7J3r17cXV15amnnuLf//439913H++88w7u7u5s2LABg8GAvb09//nPf2jbtm2t8bm6uuLu7s7nn3+Oj48PWVlZjB8/3qLOsGHDmDp1KoMGDWLatGn4+Piwa9cufH196dy5M2+//TYDBgwgMDCQBx98ECsrK/bs2UN6ejpTpkyp8XE1Go3FrDWAQlm2eENUKhX9unfk55Xr8fZ0p4mbK98vW4OrixPtWzZV6k36eA7tWzajb7eqD/gD4jrz0dwFhPr7EB7oz6/rf6e0rIy4DlXLZR20dvTs0JavFi3HwV6L1k7D7Pm/EhkcQERw1Ywy78uSWYVFxUDVpvWX7+0lRF1SqVREtB7AgW0/4qTzwcGlCembv8POwU1JYgGs/flt/MM6EtG66n9OZNv72LZiJq5eYbh7RXBo9xJM5aWERFfPPiwpyqO0KA9DfjYA+TknsLG1w97JE4225lk1QtQFlUpFYtMgFuw7greTPU0ctfyw+zA6rYbYgOoZulNWbqV9gDcJTasSWf2bhfDJ5r2EuDsT5q5j+cFMSk0VxIVVvVY7qG2JC/fnm+0HcFTborW1YU7aH0R46oj4c0bZybxCpqzaRitfD/o3D1H27rJSgbOd5f9pIW5W1/iB/Pj1h/gFhhIQFMGm1KWUGY2069QTgB++momzzo3E+6tm9t8T15/P/z2BDasWE9WiHXt3bOR01jGSHhkNVP3NdOnZnzXLf8a9iQ+u7k1YuWQeTi6uNP8zmXbiWAYnMw8TFtkCtZ0dWccOsfTnObTp0B17e8eaAxVCNGqS6LpLVVZWKpucX27SpEk8++yzhIWFYTQaMZvNdOnShdGjR/PQQw+Rm5vLhAkTSElJYfbs2UyZMoVx48Zx+vRpPDw86NSpEwMGDKix7/+Vp6cnc+bM4fXXX2fmzJm0bduWd999l/vuu++G+3r66adJTU0lNjYWg8HA2rVriYuLA6oSPmPHjmXYsGG1Lsm7nE6nY/78+aSkpFBaWkpERATfffcd0dHRAEyePBlPT0+mTZvGsWPH0Ol0tG3bltdff50LFy7w1FNPkZKSoiSrJk6cyG+//cbo0aP5/vvv8fX1Zdu2bfz9739n8ODBFBQUEBsby9dff429vT29e/cmLCzsitlTf7GysmLevHm8+OKLtGjRgqioKGbOnKmMGapmuf3222+MGzeOfv36YTKZaN68OR999BEACQkJLFmyhEmTJjFjxgxsbW1p2rQpo0aNuuHnX9yY++O7Yiwr5/MffqG4pJSo0EBef+Yx1JfsO3EuN09JRAF0adOCfEMRPyxfi77QQLCvD28887jFBvVPDkpApYL35nyPyWQipmk4Tz1Q90lqIW5G09gkKkxGtq/+hHJjER6+zeie9BbWNtXJ8qL8cxhLCpX7gZFdMRbnk75lHqXFebh6htB90FsWm9of3buC/Vu/V+6v+fENADr0eYGQ5rIcV9Sv+6JDKTNV8OXv6RSXm4jydGX8vbGobaq3gThXWEKhsXqpYudgHwpKy/hxz2HyS4wEuTkzPr49LpcsS3y8XTNUqPjXul2UV1YS4+PByI7RSvnWrLMUlJax8dgZNh47oxz3cNDyweC4+h20uGu0ancPhsICVi35nsICPb4BwYx4/g1lw3n9xRxUVlZK/aCwpjw0/G+s/GUeKxbPxaOJD4898yrevoFKnR69B1FeZmTB3E8pLSkmKKwpI55/E1vbqv8FNja27N2xidW//kiFqRxX9yZ0jR9A1/iBCCHuTirzXxuuiLtKYmIi4eHhN7Qs726SmZlJWFgYaWlpV50lJW5O4fblDR2CEPVuRrokTETjN+703xo6BCHq3d5B7zV0CELUux7RV15U6k6R985zDR1CjVzf+KShQ7hrWV27imhM8vLyWLJkCampqfTq1auhw7ntlJeXc/bsWd588006deokSS4hhBBCCCGEEOIOIksX7zIjR44kLS2NcePGcf/99zdIDJdekfFyy5Ytq/ON7W/Epk2b6NmzJ5GRkfz0008WZRs2bKBv35o30gSUKysKIYQQQgghhBCiYUii6y6zYMGChg6B3bt311rm5+d36wKpQVxcHLWt5o2Njb1q7EIIIYQQQgghhGhYkugSt1x4eHhDh3BTtFrtHRu7EEIIIYQQQojGKzMzk5CQEHbt2kXr1q0bOpwGJXt0CSGEEEIIIYQQQjSQ9evXM3DgQHx9fVGpVCxcuLChQ6rR8OHDGTRoUEOHcU2S6BJCCCGEEEIIIYRoIEVFRcTExPDRRx81dCiNgiS6hBBCCCGEEEIIIRpI3759mTJlCklJSf9zXwcPHqRLly7Y2dnRokUL1q1bZ1Genp5O3759cXR0xMvLi8cff5ycnByl/KeffqJly5ZotVrc3d3p1asXRUVFpKSk8NVXX7Fo0SJUKhUqlYrU1NT/Od76IIkuIYQQQgghhBBCiDpkNBopKCiwuBmNxnp/3FdeeYVx48axa9cuOnfuzMCBA8nNzQVAr9cTHx9PmzZt2L59O8uXL+fcuXMMHToUgOzsbIYNG8bIkSM5cOAAqampDB48GLPZTHJyMkOHDiUxMZHs7Gyys7Pp0qVLvY/nZqjMtV1iTgghhBBCCCGEEELcsJSUFCZOnGhxbMKECaSkpFy1nUqlYsGCBTe8F9Zfm9FPnz6dv//97wCYTCZCQkJ44YUXePXVV5kyZQobNmxgxYoVSrtTp04REBBARkYGBoOBdu3akZmZSVBQ0BWPMXz4cPR6/W27h9hf5KqLQgghhBBCCCGEEHXotdde4+WXX7Y4ptFo6v1xO3furPxsY2NDbGwsBw4cAGDPnj2sXbsWR0fHK9odPXqUPn36cO+999KyZUsSEhLo06cPDz74IK6urvUed12SRJcQQgghhBBCCCFEHdJoNLcksXUjDAYDAwcOZMaMGVeU+fj4YG1tzcqVK9m8eTO//fYbH3zwAW+88QZbt24lJCSkASK+ObJHlxBCCCGEEEIIIUQj8Pvvvys/m0wmduzYQbNmzQBo27Yt+/fvJzg4mPDwcIubg4MDULV08p577mHixIns2rULtVrNggULAFCr1VRUVNz6Qd0gSXQJIYQQQgghhBBCNBCDwcDu3bvZvXs3AMePH2f37t1kZWXdcF8fffQRCxYs4ODBgzz//PPk5eUxcuRIAJ5//nkuXrzIsGHDSEtL4+jRo6xYsYIRI0ZQUVHB1q1bmTp1Ktu3bycrK4v58+dz4cIFJVEWHBzM3r17ycjIICcnh/Ly8jp7DuqSJLqEEEIIIYQQQgghGsj27dtp06YNbdq0AeDll1+mTZs2vP3220qdlJQUgoODr9nX9OnTmT59OjExMWzcuJHFixfj4eEBgK+vL5s2baKiooI+ffrQsmVLxo4di06nw8rKCmdnZ9avX0+/fv2IjIzkzTff5L333qNv374APP3000RFRREbG4unpyebNm2q+yejDshVF4UQQgghhBBCCCFuY08++SQqlYo5c+Y0dCi3PUl0CSGEEEIIIYQQQtymzGYzwcHBbNy4kYCAgIYO57YniS4hhBBCCCGEEEII0SjIHl1CCCGEEEIIIYQQolGQRJcQQgghhBBCCCGEaBQk0SWEEEIIIYQQQgghGgVJdAkhhBBCCCGEEEKIRkESXUIIIYQQQgghhBCiUZBElxBCCCGEEEIIIYRoFCTRJYQQQgghhBBCCCEaBUl0CSGEEEIIIYQQQohGQRJdQgghhBBCCCGEEKJR+P+l6akO1+ToyQAAAABJRU5ErkJggg=="
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "visualizer.create_model_rank_heatmap(\n",
+ " metrics_lst=[\n",
+ " # Group fairness metrics\n",
+ " 'Equalized_Odds_TPR',\n",
+ " 'Equalized_Odds_FPR',\n",
+ " 'Disparate_Impact',\n",
+ " 'Statistical_Parity_Difference',\n",
+ " 'Accuracy_Parity',\n",
+ " # Group stability metrics\n",
+ " 'Label_Stability_Ratio',\n",
+ " 'IQR_Parity',\n",
+ " 'Std_Parity',\n",
+ " 'Std_Ratio',\n",
+ " 'Jitter_Parity',\n",
+ " ],\n",
+ " groups_lst=config.sensitive_attributes_dct.keys(),\n",
+ ")"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-09-29T20:57:58.777407Z",
+ "start_time": "2023-09-29T20:57:58.303858Z"
+ }
+ },
+ "id": "43fca999faac66af"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 74,
+ "id": "5efb1bf2",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": "\n\n",
+ "text/plain": "alt.Chart(...)"
+ },
+ "execution_count": 74,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "visualizer.create_overall_metrics_bar_char(\n",
+ " metrics_names=['TPR', 'PPV', 'Accuracy', 'F1', 'Selection-Rate', 'Positive-Rate'],\n",
+ " metrics_title=\"Error Metrics\"\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 75,
+ "id": "0eb8528e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": "\n\n",
+ "text/plain": "alt.Chart(...)"
+ },
+ "execution_count": 75,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "visualizer.create_overall_metrics_bar_char(\n",
+ " metrics_names=['Label_Stability'],\n",
+ " reversed_metrics_names=['Std', 'IQR', 'Jitter'],\n",
+ " metrics_title=\"Variance Metrics\"\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 78,
+ "id": "2326c129",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.10"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/docs/examples/experiment_config.yaml b/docs/examples/experiment_config.yaml
index 555d36db..44efa1b1 100644
--- a/docs/examples/experiment_config.yaml
+++ b/docs/examples/experiment_config.yaml
@@ -1,5 +1,5 @@
+
dataset_name: COMPAS_Without_Sensitive_Attributes
bootstrap_fraction: 0.8
n_estimators: 50 # Better to input the higher number of estimators than 100; this is only for this use case example
-computation_mode: error_analysis
sensitive_attributes_dct: {'sex': 1, 'race': 'African-American', 'sex&race': None}
diff --git a/requirements.txt b/requirements.txt
index 6e55b6af..4b2154bf 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -2,7 +2,7 @@ wheel~=0.38.4
twine~=4.0.2
requests-toolbelt==1.0.0
numpy~=1.24.2
-datapane~=0.15.5
+datapane~=0.16.0
matplotlib~=3.6.2
pandas~=1.5.2
altair~=4.2.0
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
new file mode 100644
index 00000000..574d0a91
--- /dev/null
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -0,0 +1,120 @@
+import pandas as pd
+import gradio as gr
+
+from virny.utils.data_viz_utils import create_model_rank_heatmap_visualization, create_sorted_matrix_by_rank
+
+
+class MetricsInteractiveVisualizer:
+ """
+ Class to create useful visualizations of models metrics.
+
+ Parameters
+ ----------
+ models_metrics_dct
+ Dictionary where keys are model names and values are dataframes of subgroup metrics for each model
+ models_composed_metrics_df
+ Dataframe of all model composed metrics
+ dataset_name
+ Name of a dataset that was included in metric filenames and was used for the metrics computation
+ model_names
+ Metrics for what model names to visualize
+ sensitive_attributes_dct
+ A dictionary where keys are sensitive attributes names (including attributes intersections),
+ and values are privilege values for these attributes
+
+ """
+ def __init__(self, models_metrics_dct: dict, models_composed_metrics_df: pd.DataFrame,
+ dataset_name: str, model_names: list, sensitive_attributes_dct: dict):
+ self.demo = None
+ self.dataset_name = dataset_name
+ self.model_names = model_names
+ self.sensitive_attributes_dct = sensitive_attributes_dct
+
+ # Create one metrics df with all model_dfs
+ all_models_metrics_df = pd.DataFrame()
+ for model_name in models_metrics_dct.keys():
+ model_metrics_df = models_metrics_dct[model_name]
+ all_models_metrics_df = pd.concat([all_models_metrics_df, model_metrics_df])
+
+ all_models_metrics_df = all_models_metrics_df.reset_index(drop=True)
+
+ self.models_metrics_dct = models_metrics_dct
+ self.all_models_metrics_df = all_models_metrics_df
+ self.models_composed_metrics_df = models_composed_metrics_df
+ self.melted_models_composed_metrics_df = self.models_composed_metrics_df.melt(id_vars=["Metric", "Model_Name"],
+ var_name="Subgroup",
+ value_name="Value")
+ self.sorted_models_composed_metrics_df = self.melted_models_composed_metrics_df.sort_values(by=['Value'])
+
+ def start_web_app(self):
+ css = """
+ .plot_output1 {position: right !important}
+ """
+ with gr.Blocks(css=css) as demo:
+ with gr.Row():
+ with gr.Column(scale=1):
+ fairness_metrics = gr.Dropdown(
+ ['Equalized_Odds_TPR', 'Equalized_Odds_FPR', 'Disparate_Impact', 'Statistical_Parity_Difference', 'Accuracy_Parity'],
+ value=['Equalized_Odds_TPR', 'Equalized_Odds_FPR'], multiselect=True, label="Fairness Metrics", info="Select fairness metrics to display on the heatmap:",
+ )
+ group_stability_metrics = gr.Dropdown(
+ ['Label_Stability_Ratio', 'IQR_Parity', 'Std_Parity', 'Std_Ratio', 'Jitter_Parity'],
+ value=['Label_Stability_Ratio', 'Std_Parity'], multiselect=True, label="Group Stability Metrics", info="Select group stability metrics to display on the heatmap:",
+ )
+ btn = gr.Button("Submit")
+ with gr.Column(scale=2):
+ model_ranking_heatmap = gr.Plot(label="Plot")
+
+ btn.click(self._create_model_rank_heatmap,
+ inputs=[fairness_metrics, group_stability_metrics],
+ outputs=[model_ranking_heatmap])
+
+ self.demo = demo
+ self.demo.launch(inline=False, debug=True, show_error=True)
+
+ def stop_web_app(self):
+ self.demo.close()
+
+ def _create_model_rank_heatmap(self, group_fairness_metrics_lst: list, group_stability_metrics_lst: list):
+ """
+ Create a model rank heatmap.
+
+ Parameters
+ ----------
+ group_fairness_metrics_lst
+ A list of group fairness metrics to visualize
+ group_stability_metrics_lst
+ A list of group stability metrics to visualize
+
+ """
+ groups_lst = self.sensitive_attributes_dct.keys()
+ metrics_lst = group_fairness_metrics_lst + group_stability_metrics_lst
+
+ # Find metric values for each model based on metric, group, and model names.
+ # Add the values to a results dict.
+ results = {}
+ num_models = len(self.model_names)
+ for metric in metrics_lst:
+ for group in groups_lst:
+ group_metric = metric + '_' + group
+ results[group_metric] = dict()
+ # Get distinct sorted model names
+ sorted_model_names_arr = self.sorted_models_composed_metrics_df[
+ (self.sorted_models_composed_metrics_df.Metric == metric) &
+ (self.sorted_models_composed_metrics_df.Subgroup == group)
+ ]['Model_Name'].values
+ # Add values to a results dict
+ for idx, model_name in enumerate(sorted_model_names_arr):
+ metric_value = self.sorted_models_composed_metrics_df[
+ (self.sorted_models_composed_metrics_df.Metric == metric) &
+ (self.sorted_models_composed_metrics_df.Subgroup == group) &
+ (self.sorted_models_composed_metrics_df.Model_Name == model_name)
+ ]['Value'].values[0]
+ metric_value = round(metric_value, 3)
+ results[group_metric][model_name] = metric_value
+
+ model_metrics_matrix = pd.DataFrame(results).T
+ sorted_matrix_by_rank = create_sorted_matrix_by_rank(model_metrics_matrix)
+ model_rank_heatmap, _ = create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_by_rank, num_models)
+
+ return model_rank_heatmap
diff --git a/virny/custom_classes/metrics_visualizer.py b/virny/custom_classes/metrics_visualizer.py
index e895b493..377bcdf9 100644
--- a/virny/custom_classes/metrics_visualizer.py
+++ b/virny/custom_classes/metrics_visualizer.py
@@ -8,6 +8,7 @@
from datetime import datetime, timezone
from virny.configs.constants import ReportType
+from virny.utils.data_viz_utils import create_sorted_matrix_by_rank
class MetricsVisualizer:
@@ -252,19 +253,6 @@ def create_fairness_variance_interactive_bar_chart(self):
)
)
- @staticmethod
- def _create_sorted_matrix_by_rank(model_metrics_matrix) -> np.array:
- models_distances_matrix = model_metrics_matrix.copy(deep=True).T
- metric_names = models_distances_matrix.columns
- for metric_name in metric_names:
- if 'impact' in metric_name.lower() or 'ratio' in metric_name.lower():
- models_distances_matrix[metric_name] = models_distances_matrix[metric_name] - 1
- models_distances_matrix[metric_name] = models_distances_matrix[metric_name].abs()
-
- models_distances_matrix = models_distances_matrix.T
- sorted_matrix_by_rank = np.argsort(np.argsort(models_distances_matrix, axis=1), axis=1)
- return sorted_matrix_by_rank
-
def create_model_rank_heatmap(self, model_metrics_matrix, sorted_matrix_by_rank, num_models: int):
"""
This heatmap includes all group fairness and stability metrics and all defined models.
@@ -385,7 +373,7 @@ def create_model_rank_heatmaps(self, metrics_lst: list, groups_lst):
results[group_metric][model_name] = metric_value
model_metrics_matrix = pd.DataFrame(results).T
- sorted_matrix_by_rank = MetricsVisualizer._create_sorted_matrix_by_rank(model_metrics_matrix)
+ sorted_matrix_by_rank = create_sorted_matrix_by_rank(model_metrics_matrix)
model_rank_heatmap = self.create_model_rank_heatmap(model_metrics_matrix, sorted_matrix_by_rank, num_models)
total_model_rank_heatmap = self.create_total_model_rank_heatmap(sorted_matrix_by_rank, num_models)
if self.__create_report:
diff --git a/virny/utils/data_viz_utils.py b/virny/utils/data_viz_utils.py
index ddf397e0..9895d84a 100644
--- a/virny/utils/data_viz_utils.py
+++ b/virny/utils/data_viz_utils.py
@@ -1,6 +1,5 @@
-import os
-import pandas as pd
import seaborn as sns
+import numpy as np
from matplotlib import pyplot as plt
@@ -29,76 +28,59 @@ def plot_generic(x, y, xlabel, ylabel, x_lim, y_lim, plot_title):
plt.show()
-def create_average_metrics_df(dataset_name, model_names, metrics_path):
- results_filenames = [filename for filename in os.listdir(metrics_path)]
- models_average_results_dct = dict()
- for model_name in model_names:
- model_results_filenames = [filename for filename in results_filenames if 'Average_Metrics' not in filename
- and dataset_name in filename
- and model_name in filename]
-
- if len(model_results_filenames) == 0:
- continue
-
- model_results_dfs = []
- for model_results_filename in model_results_filenames:
- model_results_df = pd.read_csv(f'{metrics_path}/{model_results_filename}')
- model_results_df.set_index('index', inplace = True)
- model_results_dfs.append(model_results_df)
-
- model_average_results_df = None
- for model_results_df in model_results_dfs:
- if model_average_results_df is None:
- model_average_results_df = model_results_df
- else:
- model_average_results_df += model_results_df
-
- model_average_results_df = model_average_results_df / len(model_results_dfs)
- models_average_results_dct[model_name] = model_average_results_df
-
- filename = f'Average_Metrics_{dataset_name}_{model_name}.csv'
- model_average_results_df.reset_index().to_csv(f'{metrics_path}/{filename}', index=False)
- print(f'File with average metrics for {model_name} is created')
-
- return models_average_results_dct
-
-
-def visualize_fairness_metrics_for_prediction_metric(models_average_results_dct, x_metric, y_metrics: list):
- sns.set_style("darkgrid")
- x_lim = 0.5
- y_lim = 0.22
- priv_dis_pairs = [('SEX_RAC1P_priv', 'SEX_RAC1P_dis'),
- ('SEX_priv', 'SEX_dis'),
- ('RAC1P_priv', 'RAC1P_dis')]
- for y_metric in y_metrics:
- for fairness_metric_priv, fairness_metric_dis in priv_dis_pairs:
- display_fairness_plot(models_average_results_dct, x_metric, y_metric,
- fairness_metric_priv, fairness_metric_dis, x_lim, y_lim)
-
-
-def display_fairness_plot(models_average_results_dct, x_metric, y_metric,
- fairness_metric_priv, fairness_metric_dis, x_lim, y_lim):
- fig, ax = plt.subplots()
- set_size(15, 8, ax)
-
- # List of all markers -- https://matplotlib.org/stable/api/markers_api.html
- markers = ['o', '*', '|', '<', '>', '^', 'v', '1', 's', 'x', 'D', 'P', 'H']
- model_names = models_average_results_dct.keys()
- shapes = []
- for idx, model_name in enumerate(model_names):
- x_val = abs(models_average_results_dct[model_name][fairness_metric_priv].loc[x_metric] - \
- models_average_results_dct[model_name][fairness_metric_dis].loc[x_metric])
- y_val = abs(models_average_results_dct[model_name][fairness_metric_priv].loc[y_metric] - \
- models_average_results_dct[model_name][fairness_metric_dis].loc[y_metric])
- a = ax.scatter(x_val, y_val, marker=markers[idx], s=100)
- shapes.append(a)
-
- plt.axhline(y=0.0, color='r', linestyle='-')
- plt.xlabel(f'{x_metric} Difference')
- plt.ylabel(f'{y_metric} Difference')
- plt.xlim(-0.01, x_lim)
- plt.ylim(-0.01, y_lim)
- plt.title(f'{fairness_metric_priv}-{fairness_metric_dis} difference for {x_metric} and {y_metric}', fontsize=20)
- ax.legend(shapes, model_names, fontsize=12, title='Markers')
-
- plt.show()
+def create_sorted_matrix_by_rank(model_metrics_matrix) -> np.array:
+ models_distances_matrix = model_metrics_matrix.copy(deep=True).T
+ metric_names = models_distances_matrix.columns
+ for metric_name in metric_names:
+ if 'impact' in metric_name.lower() or 'ratio' in metric_name.lower():
+ models_distances_matrix[metric_name] = models_distances_matrix[metric_name] - 1
+ models_distances_matrix[metric_name] = models_distances_matrix[metric_name].abs()
+
+ models_distances_matrix = models_distances_matrix.T
+ sorted_matrix_by_rank = np.argsort(np.argsort(models_distances_matrix, axis=1), axis=1)
+ return sorted_matrix_by_rank
+
+
+def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_by_rank, num_models: int):
+ """
+ This heatmap includes group fairness and stability metrics and defined models.
+ Using it, you can visually compare the models across defined group metrics. On this plot,
+ colors display ranks where 1 is the best model for the metric. These ranks are conditioned
+ on difference or ratio operations used to create these group metrics:
+
+ 1) if the metric is created based on the difference operation, closer values to zero have ranks that are closer to the first rank
+
+ 2) if the metric is created based on the ratio operation, closer values to one have ranks that are closer to the first rank
+
+ Parameters
+ ----------
+ model_metrics_matrix
+ Matrix of model metrics values where indexes are group metric names and columns are model names
+ sorted_matrix_by_rank
+ Matrix of model ranks per metric where indexes are group metric names and columns are model names
+ num_models
+ Number of models to visualize
+
+ """
+ font_increase = 2
+ matrix_width = num_models * 5
+ matrix_height = model_metrics_matrix.shape[0] // 1.5
+ fig = plt.figure(figsize=(matrix_width, matrix_height))
+ rank_colors = sns.color_palette("coolwarm", n_colors=num_models).as_hex()[::-1]
+ ax = sns.heatmap(sorted_matrix_by_rank, annot=model_metrics_matrix, cmap=rank_colors,
+ fmt='', annot_kws={'color': 'black', 'alpha': 0.7, 'fontsize': 16 + font_increase})
+ ax.set(xlabel="", ylabel="")
+ ax.xaxis.tick_top()
+ ax.tick_params(labelsize=16 + font_increase)
+ fig.subplots_adjust(left=0.25, top=0.9)
+
+ cbar = ax.collections[0].colorbar
+ model_ranks = [idx for idx in range(num_models)]
+ cbar.set_ticks([float(idx) for idx in model_ranks])
+ tick_labels = [str(idx + 1) for idx in model_ranks]
+ tick_labels[0] = tick_labels[0] + ', best'
+ tick_labels[-1] = tick_labels[-1] + ', worst'
+ cbar.set_ticklabels(tick_labels, fontsize=16 + font_increase)
+ cbar.set_label('Model Ranks', fontsize=18 + font_increase)
+
+ return fig, ax
From c84456ef7d80660f696f985dd9b3375122fb94cb Mon Sep 17 00:00:00 2001
From: Denys Herasymuk
Date: Sun, 1 Oct 2023 22:46:45 +0300
Subject: [PATCH 003/148] Created subgroup and group heatmaps
---
.../Multiple_Models_Interface_Vis.ipynb | 63 +++++-
.../metrics_interactive_visualizer.py | 207 ++++++++++++++----
virny/utils/common_helpers.py | 9 +
virny/utils/data_viz_utils.py | 22 +-
4 files changed, 246 insertions(+), 55 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis.ipynb b/docs/examples/Multiple_Models_Interface_Vis.ipynb
index e75f0a48..57d67263 100644
--- a/docs/examples/Multiple_Models_Interface_Vis.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis.ipynb
@@ -276,6 +276,58 @@
},
"id": "920e2c1a81d4e810"
},
+ {
+ "cell_type": "code",
+ "execution_count": 133,
+ "outputs": [
+ {
+ "data": {
+ "text/plain": " Metric overall sex_priv sex_priv_correct \\\n0 Mean 0.524270 0.578645 0.600790 \n1 Std 0.067963 0.073618 0.072201 \n2 IQR 0.090596 0.099782 0.098402 \n3 Aleatoric_Uncertainty 0.834874 0.846689 0.826891 \n4 Overall_Uncertainty 0.859083 0.876581 0.856843 \n5 Statistical_Bias 0.405041 0.395811 0.314809 \n6 Jitter 0.106917 0.132090 0.112864 \n7 Per_Sample_Accuracy 0.691061 0.711090 0.918452 \n8 Label_Stability 0.851667 0.807393 0.836903 \n9 TPR 0.679406 0.613333 1.000000 \n10 TNR 0.738462 0.801471 1.000000 \n11 PPV 0.676533 0.630137 1.000000 \n12 FNR 0.320594 0.386667 0.000000 \n13 FPR 0.261538 0.198529 0.000000 \n14 Accuracy 0.712121 0.734597 1.000000 \n15 F1 0.677966 0.621622 1.000000 \n16 Selection-Rate 0.447917 0.345972 0.296774 \n17 Positive-Rate 1.004246 0.973333 1.000000 \n18 Sample_Size 1056.000000 211.000000 155.000000 \n\n sex_priv_incorrect sex_dis sex_dis_correct sex_dis_incorrect \\\n0 0.517352 0.510692 0.514399 0.501767 \n1 0.077539 0.066551 0.064791 0.070788 \n2 0.103600 0.088303 0.085977 0.093900 \n3 0.901488 0.831924 0.817170 0.867440 \n4 0.931213 0.854713 0.839203 0.892051 \n5 0.620012 0.407346 0.301656 0.661771 \n6 0.185306 0.100631 0.091351 0.122972 \n7 0.137143 0.686059 0.936918 0.082177 \n8 0.725714 0.862722 0.873970 0.835645 \n9 0.000000 0.691919 1.000000 0.000000 \n10 0.000000 0.719376 1.000000 0.000000 \n11 0.000000 0.685000 1.000000 0.000000 \n12 1.000000 0.308081 0.000000 1.000000 \n13 1.000000 0.280624 0.000000 1.000000 \n14 0.000000 0.706509 1.000000 0.000000 \n15 0.000000 0.688442 1.000000 0.000000 \n16 0.482143 0.473373 0.458961 0.508065 \n17 0.931034 1.010101 1.000000 1.032787 \n18 56.000000 845.000000 597.000000 248.000000 \n\n race_priv race_priv_correct ... race_dis_correct race_dis_incorrect \\\n0 0.597526 0.618185 ... 0.473863 0.484344 \n1 0.069162 0.066865 ... 0.065947 0.070060 \n2 0.093184 0.089451 ... 0.087919 0.091258 \n3 0.821672 0.807043 ... 0.827404 0.880296 \n4 0.847778 0.832001 ... 0.850193 0.903737 \n5 0.393484 0.296788 ... 0.309510 0.650314 \n6 0.107225 0.097218 ... 0.094812 0.134214 \n7 0.708261 0.930526 ... 0.934866 0.091340 \n8 0.848213 0.861316 ... 0.869732 0.817320 \n9 0.585034 1.000000 ... 1.000000 0.000000 \n10 0.816479 1.000000 ... 1.000000 0.000000 \n11 0.637037 1.000000 ... 1.000000 0.000000 \n12 0.414966 0.000000 ... 0.000000 1.000000 \n13 0.183521 0.000000 ... 0.000000 1.000000 \n14 0.734300 1.000000 ... 1.000000 0.000000 \n15 0.609929 1.000000 ... 1.000000 0.000000 \n16 0.326087 0.282895 ... 0.522321 0.536082 \n17 0.918367 1.000000 ... 1.000000 1.155556 \n18 414.000000 304.000000 ... 448.000000 194.000000 \n\n sex&race_priv sex&race_priv_correct sex&race_priv_incorrect \\\n0 0.586391 0.607290 0.529874 \n1 0.068718 0.066018 0.076019 \n2 0.092020 0.088338 0.101975 \n3 0.832383 0.817398 0.872906 \n4 0.857995 0.841790 0.901818 \n5 0.396398 0.302520 0.650263 \n6 0.108871 0.095304 0.145559 \n7 0.708783 0.933073 0.102254 \n8 0.847224 0.866354 0.795493 \n9 0.595745 1.000000 0.000000 \n10 0.804734 1.000000 0.000000 \n11 0.629213 1.000000 0.000000 \n12 0.404255 0.000000 1.000000 \n13 0.195266 0.000000 1.000000 \n14 0.730038 1.000000 0.000000 \n15 0.612022 1.000000 0.000000 \n16 0.338403 0.291667 0.464789 \n17 0.946809 1.000000 0.868421 \n18 526.000000 384.000000 142.000000 \n\n sex&race_dis sex&race_dis_correct sex&race_dis_incorrect \\\n0 0.462617 0.453857 0.482517 \n1 0.067213 0.066631 0.068536 \n2 0.089184 0.088747 0.090175 \n3 0.837346 0.821026 0.874418 \n4 0.860162 0.843933 0.897027 \n5 0.413620 0.306294 0.657422 \n6 0.104978 0.096287 0.124722 \n7 0.673472 0.933152 0.083580 \n8 0.856075 0.866304 0.832840 \n9 0.734982 1.000000 0.000000 \n10 0.647773 1.000000 0.000000 \n11 0.705085 1.000000 0.000000 \n12 0.265018 0.000000 1.000000 \n13 0.352227 0.000000 1.000000 \n14 0.694340 1.000000 0.000000 \n15 0.719723 1.000000 0.000000 \n16 0.556604 0.565217 0.537037 \n17 1.042403 1.000000 1.160000 \n18 530.000000 368.000000 162.000000 \n\n Model_Name Model_Params \n0 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n1 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n2 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n3 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n4 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n5 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n6 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n7 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n8 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n9 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n10 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n11 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n12 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n13 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n14 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n15 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n16 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n17 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n18 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n\n[19 rows x 22 columns]",
+ "text/html": "\n\n
\n \n \n | \n Metric | \n overall | \n sex_priv | \n sex_priv_correct | \n sex_priv_incorrect | \n sex_dis | \n sex_dis_correct | \n sex_dis_incorrect | \n race_priv | \n race_priv_correct | \n ... | \n race_dis_correct | \n race_dis_incorrect | \n sex&race_priv | \n sex&race_priv_correct | \n sex&race_priv_incorrect | \n sex&race_dis | \n sex&race_dis_correct | \n sex&race_dis_incorrect | \n Model_Name | \n Model_Params | \n
\n \n \n \n 0 | \n Mean | \n 0.524270 | \n 0.578645 | \n 0.600790 | \n 0.517352 | \n 0.510692 | \n 0.514399 | \n 0.501767 | \n 0.597526 | \n 0.618185 | \n ... | \n 0.473863 | \n 0.484344 | \n 0.586391 | \n 0.607290 | \n 0.529874 | \n 0.462617 | \n 0.453857 | \n 0.482517 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 1 | \n Std | \n 0.067963 | \n 0.073618 | \n 0.072201 | \n 0.077539 | \n 0.066551 | \n 0.064791 | \n 0.070788 | \n 0.069162 | \n 0.066865 | \n ... | \n 0.065947 | \n 0.070060 | \n 0.068718 | \n 0.066018 | \n 0.076019 | \n 0.067213 | \n 0.066631 | \n 0.068536 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 2 | \n IQR | \n 0.090596 | \n 0.099782 | \n 0.098402 | \n 0.103600 | \n 0.088303 | \n 0.085977 | \n 0.093900 | \n 0.093184 | \n 0.089451 | \n ... | \n 0.087919 | \n 0.091258 | \n 0.092020 | \n 0.088338 | \n 0.101975 | \n 0.089184 | \n 0.088747 | \n 0.090175 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 3 | \n Aleatoric_Uncertainty | \n 0.834874 | \n 0.846689 | \n 0.826891 | \n 0.901488 | \n 0.831924 | \n 0.817170 | \n 0.867440 | \n 0.821672 | \n 0.807043 | \n ... | \n 0.827404 | \n 0.880296 | \n 0.832383 | \n 0.817398 | \n 0.872906 | \n 0.837346 | \n 0.821026 | \n 0.874418 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 4 | \n Overall_Uncertainty | \n 0.859083 | \n 0.876581 | \n 0.856843 | \n 0.931213 | \n 0.854713 | \n 0.839203 | \n 0.892051 | \n 0.847778 | \n 0.832001 | \n ... | \n 0.850193 | \n 0.903737 | \n 0.857995 | \n 0.841790 | \n 0.901818 | \n 0.860162 | \n 0.843933 | \n 0.897027 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 5 | \n Statistical_Bias | \n 0.405041 | \n 0.395811 | \n 0.314809 | \n 0.620012 | \n 0.407346 | \n 0.301656 | \n 0.661771 | \n 0.393484 | \n 0.296788 | \n ... | \n 0.309510 | \n 0.650314 | \n 0.396398 | \n 0.302520 | \n 0.650263 | \n 0.413620 | \n 0.306294 | \n 0.657422 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 6 | \n Jitter | \n 0.106917 | \n 0.132090 | \n 0.112864 | \n 0.185306 | \n 0.100631 | \n 0.091351 | \n 0.122972 | \n 0.107225 | \n 0.097218 | \n ... | \n 0.094812 | \n 0.134214 | \n 0.108871 | \n 0.095304 | \n 0.145559 | \n 0.104978 | \n 0.096287 | \n 0.124722 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 7 | \n Per_Sample_Accuracy | \n 0.691061 | \n 0.711090 | \n 0.918452 | \n 0.137143 | \n 0.686059 | \n 0.936918 | \n 0.082177 | \n 0.708261 | \n 0.930526 | \n ... | \n 0.934866 | \n 0.091340 | \n 0.708783 | \n 0.933073 | \n 0.102254 | \n 0.673472 | \n 0.933152 | \n 0.083580 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 8 | \n Label_Stability | \n 0.851667 | \n 0.807393 | \n 0.836903 | \n 0.725714 | \n 0.862722 | \n 0.873970 | \n 0.835645 | \n 0.848213 | \n 0.861316 | \n ... | \n 0.869732 | \n 0.817320 | \n 0.847224 | \n 0.866354 | \n 0.795493 | \n 0.856075 | \n 0.866304 | \n 0.832840 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 9 | \n TPR | \n 0.679406 | \n 0.613333 | \n 1.000000 | \n 0.000000 | \n 0.691919 | \n 1.000000 | \n 0.000000 | \n 0.585034 | \n 1.000000 | \n ... | \n 1.000000 | \n 0.000000 | \n 0.595745 | \n 1.000000 | \n 0.000000 | \n 0.734982 | \n 1.000000 | \n 0.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 10 | \n TNR | \n 0.738462 | \n 0.801471 | \n 1.000000 | \n 0.000000 | \n 0.719376 | \n 1.000000 | \n 0.000000 | \n 0.816479 | \n 1.000000 | \n ... | \n 1.000000 | \n 0.000000 | \n 0.804734 | \n 1.000000 | \n 0.000000 | \n 0.647773 | \n 1.000000 | \n 0.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 11 | \n PPV | \n 0.676533 | \n 0.630137 | \n 1.000000 | \n 0.000000 | \n 0.685000 | \n 1.000000 | \n 0.000000 | \n 0.637037 | \n 1.000000 | \n ... | \n 1.000000 | \n 0.000000 | \n 0.629213 | \n 1.000000 | \n 0.000000 | \n 0.705085 | \n 1.000000 | \n 0.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 12 | \n FNR | \n 0.320594 | \n 0.386667 | \n 0.000000 | \n 1.000000 | \n 0.308081 | \n 0.000000 | \n 1.000000 | \n 0.414966 | \n 0.000000 | \n ... | \n 0.000000 | \n 1.000000 | \n 0.404255 | \n 0.000000 | \n 1.000000 | \n 0.265018 | \n 0.000000 | \n 1.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 13 | \n FPR | \n 0.261538 | \n 0.198529 | \n 0.000000 | \n 1.000000 | \n 0.280624 | \n 0.000000 | \n 1.000000 | \n 0.183521 | \n 0.000000 | \n ... | \n 0.000000 | \n 1.000000 | \n 0.195266 | \n 0.000000 | \n 1.000000 | \n 0.352227 | \n 0.000000 | \n 1.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 14 | \n Accuracy | \n 0.712121 | \n 0.734597 | \n 1.000000 | \n 0.000000 | \n 0.706509 | \n 1.000000 | \n 0.000000 | \n 0.734300 | \n 1.000000 | \n ... | \n 1.000000 | \n 0.000000 | \n 0.730038 | \n 1.000000 | \n 0.000000 | \n 0.694340 | \n 1.000000 | \n 0.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 15 | \n F1 | \n 0.677966 | \n 0.621622 | \n 1.000000 | \n 0.000000 | \n 0.688442 | \n 1.000000 | \n 0.000000 | \n 0.609929 | \n 1.000000 | \n ... | \n 1.000000 | \n 0.000000 | \n 0.612022 | \n 1.000000 | \n 0.000000 | \n 0.719723 | \n 1.000000 | \n 0.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 16 | \n Selection-Rate | \n 0.447917 | \n 0.345972 | \n 0.296774 | \n 0.482143 | \n 0.473373 | \n 0.458961 | \n 0.508065 | \n 0.326087 | \n 0.282895 | \n ... | \n 0.522321 | \n 0.536082 | \n 0.338403 | \n 0.291667 | \n 0.464789 | \n 0.556604 | \n 0.565217 | \n 0.537037 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 17 | \n Positive-Rate | \n 1.004246 | \n 0.973333 | \n 1.000000 | \n 0.931034 | \n 1.010101 | \n 1.000000 | \n 1.032787 | \n 0.918367 | \n 1.000000 | \n ... | \n 1.000000 | \n 1.155556 | \n 0.946809 | \n 1.000000 | \n 0.868421 | \n 1.042403 | \n 1.000000 | \n 1.160000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 18 | \n Sample_Size | \n 1056.000000 | \n 211.000000 | \n 155.000000 | \n 56.000000 | \n 845.000000 | \n 597.000000 | \n 248.000000 | \n 414.000000 | \n 304.000000 | \n ... | \n 448.000000 | \n 194.000000 | \n 526.000000 | \n 384.000000 | \n 142.000000 | \n 530.000000 | \n 368.000000 | \n 162.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n
\n
19 rows × 22 columns
\n
"
+ },
+ "execution_count": 133,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "models_metrics_dct['RandomForestClassifier'].head(20)"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-01T11:25:45.963770Z",
+ "start_time": "2023-10-01T11:25:45.421681Z"
+ }
+ },
+ "id": "54a73b4d053334b4"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 135,
+ "outputs": [
+ {
+ "data": {
+ "text/plain": " Metric sex race sex&race \\\n0 Equalized_Odds_TPR 0.211919 0.195326 0.183576 \n1 Equalized_Odds_FPR 0.098356 0.104728 0.141078 \n2 Equalized_Odds_FNR -0.211919 -0.195326 -0.183576 \n3 Disparate_Impact 1.234115 1.135965 1.125105 \n4 Statistical_Parity_Difference 0.193535 0.123016 0.115123 \n5 Accuracy_Parity 0.009832 0.006840 -0.010984 \n6 Label_Stability_Ratio 1.024740 0.997454 0.995869 \n7 IQR_Parity 0.000768 -0.004804 -0.003282 \n8 Std_Parity -0.005106 -0.000927 -0.001976 \n9 Std_Ratio 0.931699 0.986984 0.972422 \n10 Jitter_Parity -0.013818 0.007192 0.005364 \n11 Equalized_Odds_TPR 0.166465 0.258440 0.226205 \n12 Equalized_Odds_FPR 0.096129 0.156703 0.186079 \n13 Equalized_Odds_FNR -0.166465 -0.258440 -0.226205 \n14 Disparate_Impact 1.176075 1.341036 1.263916 \n15 Statistical_Parity_Difference 0.145556 0.262157 0.216187 \n16 Accuracy_Parity -0.010286 -0.003747 -0.024119 \n17 Label_Stability_Ratio 1.021988 0.988991 1.003152 \n18 IQR_Parity 0.001712 0.001225 0.001058 \n19 Std_Parity 0.000822 0.000278 0.000170 \n\n Model_Name \n0 DecisionTreeClassifier \n1 DecisionTreeClassifier \n2 DecisionTreeClassifier \n3 DecisionTreeClassifier \n4 DecisionTreeClassifier \n5 DecisionTreeClassifier \n6 DecisionTreeClassifier \n7 DecisionTreeClassifier \n8 DecisionTreeClassifier \n9 DecisionTreeClassifier \n10 DecisionTreeClassifier \n11 LogisticRegression \n12 LogisticRegression \n13 LogisticRegression \n14 LogisticRegression \n15 LogisticRegression \n16 LogisticRegression \n17 LogisticRegression \n18 LogisticRegression \n19 LogisticRegression ",
+ "text/html": "\n\n
\n \n \n | \n Metric | \n sex | \n race | \n sex&race | \n Model_Name | \n
\n \n \n \n 0 | \n Equalized_Odds_TPR | \n 0.211919 | \n 0.195326 | \n 0.183576 | \n DecisionTreeClassifier | \n
\n \n 1 | \n Equalized_Odds_FPR | \n 0.098356 | \n 0.104728 | \n 0.141078 | \n DecisionTreeClassifier | \n
\n \n 2 | \n Equalized_Odds_FNR | \n -0.211919 | \n -0.195326 | \n -0.183576 | \n DecisionTreeClassifier | \n
\n \n 3 | \n Disparate_Impact | \n 1.234115 | \n 1.135965 | \n 1.125105 | \n DecisionTreeClassifier | \n
\n \n 4 | \n Statistical_Parity_Difference | \n 0.193535 | \n 0.123016 | \n 0.115123 | \n DecisionTreeClassifier | \n
\n \n 5 | \n Accuracy_Parity | \n 0.009832 | \n 0.006840 | \n -0.010984 | \n DecisionTreeClassifier | \n
\n \n 6 | \n Label_Stability_Ratio | \n 1.024740 | \n 0.997454 | \n 0.995869 | \n DecisionTreeClassifier | \n
\n \n 7 | \n IQR_Parity | \n 0.000768 | \n -0.004804 | \n -0.003282 | \n DecisionTreeClassifier | \n
\n \n 8 | \n Std_Parity | \n -0.005106 | \n -0.000927 | \n -0.001976 | \n DecisionTreeClassifier | \n
\n \n 9 | \n Std_Ratio | \n 0.931699 | \n 0.986984 | \n 0.972422 | \n DecisionTreeClassifier | \n
\n \n 10 | \n Jitter_Parity | \n -0.013818 | \n 0.007192 | \n 0.005364 | \n DecisionTreeClassifier | \n
\n \n 11 | \n Equalized_Odds_TPR | \n 0.166465 | \n 0.258440 | \n 0.226205 | \n LogisticRegression | \n
\n \n 12 | \n Equalized_Odds_FPR | \n 0.096129 | \n 0.156703 | \n 0.186079 | \n LogisticRegression | \n
\n \n 13 | \n Equalized_Odds_FNR | \n -0.166465 | \n -0.258440 | \n -0.226205 | \n LogisticRegression | \n
\n \n 14 | \n Disparate_Impact | \n 1.176075 | \n 1.341036 | \n 1.263916 | \n LogisticRegression | \n
\n \n 15 | \n Statistical_Parity_Difference | \n 0.145556 | \n 0.262157 | \n 0.216187 | \n LogisticRegression | \n
\n \n 16 | \n Accuracy_Parity | \n -0.010286 | \n -0.003747 | \n -0.024119 | \n LogisticRegression | \n
\n \n 17 | \n Label_Stability_Ratio | \n 1.021988 | \n 0.988991 | \n 1.003152 | \n LogisticRegression | \n
\n \n 18 | \n IQR_Parity | \n 0.001712 | \n 0.001225 | \n 0.001058 | \n LogisticRegression | \n
\n \n 19 | \n Std_Parity | \n 0.000822 | \n 0.000278 | \n 0.000170 | \n LogisticRegression | \n
\n \n
\n
"
+ },
+ "execution_count": 135,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "models_composed_metrics_df.head(20)"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-01T11:29:37.410638Z",
+ "start_time": "2023-10-01T11:29:37.382980Z"
+ }
+ },
+ "id": "5798eb95fbeaea54"
+ },
{
"cell_type": "markdown",
"id": "deb45226",
@@ -286,18 +338,17 @@
},
{
"cell_type": "code",
- "execution_count": 115,
+ "execution_count": 169,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-09-30T22:20:33.545960Z",
- "start_time": "2023-09-30T22:20:33.514242Z"
+ "end_time": "2023-10-01T19:42:30.098766Z",
+ "start_time": "2023-10-01T19:42:30.039734Z"
}
},
"outputs": [],
"source": [
- "visualizer = MetricsInteractiveVisualizer(models_metrics_dct, models_composed_metrics_df, config.dataset_name,\n",
- " model_names=model_names,\n",
+ "visualizer = MetricsInteractiveVisualizer(models_metrics_dct, models_composed_metrics_df,\n",
" sensitive_attributes_dct=config.sensitive_attributes_dct)"
]
},
@@ -322,7 +373,7 @@
"collapsed": false,
"is_executing": true,
"ExecuteTime": {
- "start_time": "2023-09-30T22:20:33.605579Z"
+ "start_time": "2023-10-01T19:42:30.126790Z"
}
},
"id": "678a9dc8d51243f4"
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index 574d0a91..40a2beab 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -1,7 +1,8 @@
import pandas as pd
import gradio as gr
-from virny.utils.data_viz_utils import create_model_rank_heatmap_visualization, create_sorted_matrix_by_rank
+from virny.utils.data_viz_utils import (create_model_rank_heatmap_visualization, create_sorted_matrix_by_rank,
+ create_subgroup_sorted_matrix_by_rank)
class MetricsInteractiveVisualizer:
@@ -10,64 +11,118 @@ class MetricsInteractiveVisualizer:
Parameters
----------
- models_metrics_dct
+ model_metrics_dct
Dictionary where keys are model names and values are dataframes of subgroup metrics for each model
- models_composed_metrics_df
+ model_composed_metrics_df
Dataframe of all model composed metrics
- dataset_name
- Name of a dataset that was included in metric filenames and was used for the metrics computation
- model_names
- Metrics for what model names to visualize
sensitive_attributes_dct
A dictionary where keys are sensitive attributes names (including attributes intersections),
and values are privilege values for these attributes
"""
- def __init__(self, models_metrics_dct: dict, models_composed_metrics_df: pd.DataFrame,
- dataset_name: str, model_names: list, sensitive_attributes_dct: dict):
+ def __init__(self, model_metrics_dct: dict, model_composed_metrics_df: pd.DataFrame,
+ sensitive_attributes_dct: dict):
self.demo = None
- self.dataset_name = dataset_name
- self.model_names = model_names
+ self.model_names = list(model_metrics_dct.keys())
self.sensitive_attributes_dct = sensitive_attributes_dct
# Create one metrics df with all model_dfs
- all_models_metrics_df = pd.DataFrame()
- for model_name in models_metrics_dct.keys():
- model_metrics_df = models_metrics_dct[model_name]
- all_models_metrics_df = pd.concat([all_models_metrics_df, model_metrics_df])
-
- all_models_metrics_df = all_models_metrics_df.reset_index(drop=True)
-
- self.models_metrics_dct = models_metrics_dct
- self.all_models_metrics_df = all_models_metrics_df
- self.models_composed_metrics_df = models_composed_metrics_df
- self.melted_models_composed_metrics_df = self.models_composed_metrics_df.melt(id_vars=["Metric", "Model_Name"],
- var_name="Subgroup",
- value_name="Value")
- self.sorted_models_composed_metrics_df = self.melted_models_composed_metrics_df.sort_values(by=['Value'])
-
+ models_metrics_df = pd.DataFrame()
+ for model_name in model_metrics_dct.keys():
+ model_metrics_df = model_metrics_dct[model_name]
+ models_metrics_df = pd.concat([models_metrics_df, model_metrics_df])
+
+ models_metrics_df = models_metrics_df.reset_index(drop=True)
+
+ self.models_metrics_dct = model_metrics_dct
+ self.models_metrics_df = self._align_input_metric_df(models_metrics_df, allowed_cols=["Metric", "Model_Name"],
+ sensitive_attrs=list(self.sensitive_attributes_dct.keys()))
+ self.model_composed_metrics_df = self._align_input_metric_df(model_composed_metrics_df, allowed_cols=["Metric", "Model_Name"],
+ sensitive_attrs=list(self.sensitive_attributes_dct.keys()))
+
+ melted_model_metrics_df = self.models_metrics_df.melt(id_vars=["Metric", "Model_Name"],
+ var_name="Subgroup",
+ value_name="Value")
+ self.sorted_model_metrics_df = melted_model_metrics_df.sort_values(by=['Value'])
+ melted_model_composed_metrics_df = self.model_composed_metrics_df.melt(id_vars=["Metric", "Model_Name"],
+ var_name="Subgroup",
+ value_name="Value")
+ self.sorted_model_composed_metrics_df = melted_model_composed_metrics_df.sort_values(by=['Value'])
+
+ def _align_input_metric_df(self, model_metrics_df: pd.DataFrame, allowed_cols: list, sensitive_attrs: list):
+ # Filter columns in the input dataframe based on allowed_cols and sensitive_attrs
+ filtered_cols = allowed_cols
+ for col in model_metrics_df.columns:
+ for sensitive_attr in sensitive_attrs:
+ if sensitive_attr in col:
+ filtered_cols.append(col)
+ break
+
+ return model_metrics_df[filtered_cols]
+
def start_web_app(self):
- css = """
- .plot_output1 {position: right !important}
- """
- with gr.Blocks(css=css) as demo:
+ # css = """
+ # .plot_output1 {position: right !important}
+ # """
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
+ # ======================================= Subgroup Metrics Heatmap =======================================
+ gr.Markdown(
+ """
+ ## Subgroup Metrics Heatmap
+ Select input arguments to create a subgroup metrics heatmap.
+ """)
+ with gr.Row():
+ with gr.Column(scale=1):
+ model_names = gr.Dropdown(
+ self.model_names, value=self.model_names[:4], max_choices=5, multiselect=True,
+ label="Model Names", info="Select model names to display on the heatmap:",
+ )
+ accuracy_metrics = gr.Dropdown(
+ ['Statistical_Bias', 'TPR', 'TNR', 'PPV', 'FNR', 'FPR', 'Accuracy', 'F1'],
+ value=['Accuracy', 'F1'], multiselect=True, label="Accuracy Metrics", info="Select accuracy metrics to display on the heatmap:",
+ )
+ uncertainty_metrics = gr.Dropdown(
+ ['Aleatoric_Uncertainty', 'Overall_Uncertainty'],
+ value=['Aleatoric_Uncertainty', 'Overall_Uncertainty'], multiselect=True, label="Uncertainty Metrics", info="Select uncertainty metrics to display on the heatmap:",
+ )
+ subgroup_stability_metrics = gr.Dropdown(
+ ['Std', 'IQR', 'Jitter', 'Label_Stability'],
+ value=['Jitter', 'Label_Stability'], multiselect=True, label="Stability Metrics", info="Select stability metrics to display on the heatmap:",
+ )
+ btn = gr.Button("Submit")
+ with gr.Column(scale=2):
+ subgroup_model_ranking_heatmap = gr.Plot(label="Plot")
+
+ btn.click(self._create_subgroup_model_rank_heatmap,
+ inputs=[model_names, accuracy_metrics, uncertainty_metrics, subgroup_stability_metrics],
+ outputs=[subgroup_model_ranking_heatmap])
+ # ======================================== Group Metrics Heatmap ========================================
+ gr.Markdown(
+ """
+ ## Group Metrics Heatmap
+ Select input arguments to create a group metrics heatmap.
+ """)
with gr.Row():
with gr.Column(scale=1):
+ model_names = gr.Dropdown(
+ self.model_names, value=self.model_names[:4], max_choices=5, multiselect=True,
+ label="Model Names", info="Select model names to display on the heatmap:",
+ )
fairness_metrics = gr.Dropdown(
['Equalized_Odds_TPR', 'Equalized_Odds_FPR', 'Disparate_Impact', 'Statistical_Parity_Difference', 'Accuracy_Parity'],
- value=['Equalized_Odds_TPR', 'Equalized_Odds_FPR'], multiselect=True, label="Fairness Metrics", info="Select fairness metrics to display on the heatmap:",
+ value=['Equalized_Odds_TPR', 'Equalized_Odds_FPR'], multiselect=True, label="Error Parity Metrics", info="Select error parity metrics to display on the heatmap:",
)
group_stability_metrics = gr.Dropdown(
['Label_Stability_Ratio', 'IQR_Parity', 'Std_Parity', 'Std_Ratio', 'Jitter_Parity'],
- value=['Label_Stability_Ratio', 'Std_Parity'], multiselect=True, label="Group Stability Metrics", info="Select group stability metrics to display on the heatmap:",
+ value=['Label_Stability_Ratio', 'Std_Parity'], multiselect=True, label="Stability Parity Metrics", info="Select stability parity metrics to display on the heatmap:",
)
btn = gr.Button("Submit")
with gr.Column(scale=2):
- model_ranking_heatmap = gr.Plot(label="Plot")
+ group_model_ranking_heatmap = gr.Plot(label="Plot")
- btn.click(self._create_model_rank_heatmap,
- inputs=[fairness_metrics, group_stability_metrics],
- outputs=[model_ranking_heatmap])
+ btn.click(self._create_group_model_rank_heatmap,
+ inputs=[model_names, fairness_metrics, group_stability_metrics],
+ outputs=[group_model_ranking_heatmap])
self.demo = demo
self.demo.launch(inline=False, debug=True, show_error=True)
@@ -75,12 +130,69 @@ def start_web_app(self):
def stop_web_app(self):
self.demo.close()
- def _create_model_rank_heatmap(self, group_fairness_metrics_lst: list, group_stability_metrics_lst: list):
+ def _create_subgroup_model_rank_heatmap(self, model_names: list, subgroup_accuracy_metrics_lst: list,
+ subgroup_uncertainty_metrics: list, subgroup_stability_metrics_lst: list):
"""
- Create a model rank heatmap.
+ Create a group model rank heatmap.
Parameters
----------
+ model_names
+ A list of selected model names to display on the heatmap
+ subgroup_accuracy_metrics_lst
+ A list of subgroup accuracy metrics to visualize
+ subgroup_uncertainty_metrics
+ A list of subgroup uncertainty metrics to visualize
+ subgroup_stability_metrics_lst
+ A list of subgroup stability metrics to visualize
+
+ """
+ groups_lst = self.sensitive_attributes_dct.keys()
+ metrics_lst = subgroup_accuracy_metrics_lst + subgroup_uncertainty_metrics + subgroup_stability_metrics_lst
+
+ # Find metric values for each model based on metric, subgroup, and model names.
+ # Add the values to a results dict.
+ results = {}
+ num_models = len(model_names)
+ for metric in metrics_lst:
+ for group in groups_lst:
+ for prefix in ['priv', 'dis']:
+ subgroup = group + '_' + prefix
+ subgroup_metric = metric + '_' + subgroup
+ results[subgroup_metric] = dict()
+
+ # Get distinct sorted model names
+ sorted_model_names_arr = self.sorted_model_metrics_df[
+ (self.sorted_model_metrics_df.Metric == metric) &
+ (self.sorted_model_metrics_df.Subgroup == subgroup)
+ ]['Model_Name'].values
+ sorted_model_names_arr = [model for model in sorted_model_names_arr if model in model_names]
+
+ # Add values to a results dict
+ for idx, model_name in enumerate(sorted_model_names_arr):
+ metric_value = self.sorted_model_metrics_df[
+ (self.sorted_model_metrics_df.Metric == metric) &
+ (self.sorted_model_metrics_df.Subgroup == subgroup) &
+ (self.sorted_model_metrics_df.Model_Name == model_name)
+ ]['Value'].values[0]
+ metric_value = round(metric_value, 3)
+ results[subgroup_metric][model_name] = metric_value
+
+ model_metrics_matrix = pd.DataFrame(results).T
+ sorted_matrix_by_rank = create_subgroup_sorted_matrix_by_rank(model_metrics_matrix)
+ model_rank_heatmap, _ = create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_by_rank, num_models)
+
+ return model_rank_heatmap
+
+ def _create_group_model_rank_heatmap(self, model_names: list, group_fairness_metrics_lst: list,
+ group_stability_metrics_lst: list):
+ """
+ Create a group model rank heatmap.
+
+ Parameters
+ ----------
+ model_names
+ A list of selected model names to display on the heatmap
group_fairness_metrics_lst
A list of group fairness metrics to visualize
group_stability_metrics_lst
@@ -93,22 +205,25 @@ def _create_model_rank_heatmap(self, group_fairness_metrics_lst: list, group_sta
# Find metric values for each model based on metric, group, and model names.
# Add the values to a results dict.
results = {}
- num_models = len(self.model_names)
+ num_models = len(model_names)
for metric in metrics_lst:
for group in groups_lst:
group_metric = metric + '_' + group
results[group_metric] = dict()
+
# Get distinct sorted model names
- sorted_model_names_arr = self.sorted_models_composed_metrics_df[
- (self.sorted_models_composed_metrics_df.Metric == metric) &
- (self.sorted_models_composed_metrics_df.Subgroup == group)
+ sorted_model_names_arr = self.sorted_model_composed_metrics_df[
+ (self.sorted_model_composed_metrics_df.Metric == metric) &
+ (self.sorted_model_composed_metrics_df.Subgroup == group)
]['Model_Name'].values
+ sorted_model_names_arr = [model for model in sorted_model_names_arr if model in model_names]
+
# Add values to a results dict
for idx, model_name in enumerate(sorted_model_names_arr):
- metric_value = self.sorted_models_composed_metrics_df[
- (self.sorted_models_composed_metrics_df.Metric == metric) &
- (self.sorted_models_composed_metrics_df.Subgroup == group) &
- (self.sorted_models_composed_metrics_df.Model_Name == model_name)
+ metric_value = self.sorted_model_composed_metrics_df[
+ (self.sorted_model_composed_metrics_df.Metric == metric) &
+ (self.sorted_model_composed_metrics_df.Subgroup == group) &
+ (self.sorted_model_composed_metrics_df.Model_Name == model_name)
]['Value'].values[0]
metric_value = round(metric_value, 3)
results[group_metric][model_name] = metric_value
diff --git a/virny/utils/common_helpers.py b/virny/utils/common_helpers.py
index dbaac29f..f99f227a 100644
--- a/virny/utils/common_helpers.py
+++ b/virny/utils/common_helpers.py
@@ -93,6 +93,15 @@ def save_metrics_to_file(metrics_df, result_filename, save_dir_path):
metrics_df.to_csv(f'{save_dir_path}/{filename}', index=False)
+def check_substring_in_list(val_to_check: str, allowed_lst: list):
+ # Case-insensitive check if a val_to_check substring is in allowed_lst
+ val_to_check = val_to_check.lower()
+ for allowed_val in allowed_lst:
+ if allowed_val.lower() in val_to_check:
+ return True
+ return False
+
+
def confusion_matrix_metrics(y_true, y_preds):
metrics = {}
TN, FP, FN, TP = confusion_matrix(y_true, y_preds).ravel()
diff --git a/virny/utils/data_viz_utils.py b/virny/utils/data_viz_utils.py
index 9895d84a..057f85f4 100644
--- a/virny/utils/data_viz_utils.py
+++ b/virny/utils/data_viz_utils.py
@@ -3,6 +3,8 @@
from matplotlib import pyplot as plt
+from virny.utils.common_helpers import check_substring_in_list
+
def set_size(w,h, ax=None):
""" w, h: width, height in inches """
@@ -41,6 +43,20 @@ def create_sorted_matrix_by_rank(model_metrics_matrix) -> np.array:
return sorted_matrix_by_rank
+def create_subgroup_sorted_matrix_by_rank(model_metrics_matrix) -> np.array:
+ models_distances_matrix = model_metrics_matrix.copy(deep=True).T
+ metric_names = models_distances_matrix.columns
+ for metric_name in metric_names:
+ if check_substring_in_list(metric_name, ['TPR', 'TNR', 'PPV', 'Accuracy', 'F1', 'Label_Stability']):
+ # Cast a metric to a case when the closer value to zero is the better
+ models_distances_matrix[metric_name] = 1 - models_distances_matrix[metric_name]
+ models_distances_matrix[metric_name] = models_distances_matrix[metric_name].abs()
+
+ models_distances_matrix = models_distances_matrix.T
+ sorted_matrix_by_rank = np.argsort(np.argsort(models_distances_matrix, axis=1), axis=1)
+ return sorted_matrix_by_rank
+
+
def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_by_rank, num_models: int):
"""
This heatmap includes group fairness and stability metrics and defined models.
@@ -63,8 +79,8 @@ def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_
"""
font_increase = 2
- matrix_width = num_models * 5
- matrix_height = model_metrics_matrix.shape[0] // 1.5
+ matrix_width = 20
+ matrix_height = model_metrics_matrix.shape[0] // 2
fig = plt.figure(figsize=(matrix_width, matrix_height))
rank_colors = sns.color_palette("coolwarm", n_colors=num_models).as_hex()[::-1]
ax = sns.heatmap(sorted_matrix_by_rank, annot=model_metrics_matrix, cmap=rank_colors,
@@ -72,7 +88,7 @@ def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_
ax.set(xlabel="", ylabel="")
ax.xaxis.tick_top()
ax.tick_params(labelsize=16 + font_increase)
- fig.subplots_adjust(left=0.25, top=0.9)
+ fig.subplots_adjust(left=0.25, right=1., top=0.9)
cbar = ax.collections[0].colorbar
model_ranks = [idx for idx in range(num_models)]
From 21f783fef7197228bff5f145d2598f69bdf95775 Mon Sep 17 00:00:00 2001
From: Denys Herasymuk
Date: Mon, 2 Oct 2023 00:05:56 +0300
Subject: [PATCH 004/148] Added bar charts to a web app
---
.../Multiple_Models_Interface_Vis.ipynb | 18 +--
.../metrics_interactive_visualizer.py | 146 ++++++++++++++++--
2 files changed, 138 insertions(+), 26 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis.ipynb b/docs/examples/Multiple_Models_Interface_Vis.ipynb
index 57d67263..ab7c8ca4 100644
--- a/docs/examples/Multiple_Models_Interface_Vis.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis.ipynb
@@ -278,26 +278,26 @@
},
{
"cell_type": "code",
- "execution_count": 133,
+ "execution_count": 185,
"outputs": [
{
"data": {
"text/plain": " Metric overall sex_priv sex_priv_correct \\\n0 Mean 0.524270 0.578645 0.600790 \n1 Std 0.067963 0.073618 0.072201 \n2 IQR 0.090596 0.099782 0.098402 \n3 Aleatoric_Uncertainty 0.834874 0.846689 0.826891 \n4 Overall_Uncertainty 0.859083 0.876581 0.856843 \n5 Statistical_Bias 0.405041 0.395811 0.314809 \n6 Jitter 0.106917 0.132090 0.112864 \n7 Per_Sample_Accuracy 0.691061 0.711090 0.918452 \n8 Label_Stability 0.851667 0.807393 0.836903 \n9 TPR 0.679406 0.613333 1.000000 \n10 TNR 0.738462 0.801471 1.000000 \n11 PPV 0.676533 0.630137 1.000000 \n12 FNR 0.320594 0.386667 0.000000 \n13 FPR 0.261538 0.198529 0.000000 \n14 Accuracy 0.712121 0.734597 1.000000 \n15 F1 0.677966 0.621622 1.000000 \n16 Selection-Rate 0.447917 0.345972 0.296774 \n17 Positive-Rate 1.004246 0.973333 1.000000 \n18 Sample_Size 1056.000000 211.000000 155.000000 \n\n sex_priv_incorrect sex_dis sex_dis_correct sex_dis_incorrect \\\n0 0.517352 0.510692 0.514399 0.501767 \n1 0.077539 0.066551 0.064791 0.070788 \n2 0.103600 0.088303 0.085977 0.093900 \n3 0.901488 0.831924 0.817170 0.867440 \n4 0.931213 0.854713 0.839203 0.892051 \n5 0.620012 0.407346 0.301656 0.661771 \n6 0.185306 0.100631 0.091351 0.122972 \n7 0.137143 0.686059 0.936918 0.082177 \n8 0.725714 0.862722 0.873970 0.835645 \n9 0.000000 0.691919 1.000000 0.000000 \n10 0.000000 0.719376 1.000000 0.000000 \n11 0.000000 0.685000 1.000000 0.000000 \n12 1.000000 0.308081 0.000000 1.000000 \n13 1.000000 0.280624 0.000000 1.000000 \n14 0.000000 0.706509 1.000000 0.000000 \n15 0.000000 0.688442 1.000000 0.000000 \n16 0.482143 0.473373 0.458961 0.508065 \n17 0.931034 1.010101 1.000000 1.032787 \n18 56.000000 845.000000 597.000000 248.000000 \n\n race_priv race_priv_correct ... race_dis_correct race_dis_incorrect \\\n0 0.597526 0.618185 ... 0.473863 0.484344 \n1 0.069162 0.066865 ... 0.065947 0.070060 \n2 0.093184 0.089451 ... 0.087919 0.091258 \n3 0.821672 0.807043 ... 0.827404 0.880296 \n4 0.847778 0.832001 ... 0.850193 0.903737 \n5 0.393484 0.296788 ... 0.309510 0.650314 \n6 0.107225 0.097218 ... 0.094812 0.134214 \n7 0.708261 0.930526 ... 0.934866 0.091340 \n8 0.848213 0.861316 ... 0.869732 0.817320 \n9 0.585034 1.000000 ... 1.000000 0.000000 \n10 0.816479 1.000000 ... 1.000000 0.000000 \n11 0.637037 1.000000 ... 1.000000 0.000000 \n12 0.414966 0.000000 ... 0.000000 1.000000 \n13 0.183521 0.000000 ... 0.000000 1.000000 \n14 0.734300 1.000000 ... 1.000000 0.000000 \n15 0.609929 1.000000 ... 1.000000 0.000000 \n16 0.326087 0.282895 ... 0.522321 0.536082 \n17 0.918367 1.000000 ... 1.000000 1.155556 \n18 414.000000 304.000000 ... 448.000000 194.000000 \n\n sex&race_priv sex&race_priv_correct sex&race_priv_incorrect \\\n0 0.586391 0.607290 0.529874 \n1 0.068718 0.066018 0.076019 \n2 0.092020 0.088338 0.101975 \n3 0.832383 0.817398 0.872906 \n4 0.857995 0.841790 0.901818 \n5 0.396398 0.302520 0.650263 \n6 0.108871 0.095304 0.145559 \n7 0.708783 0.933073 0.102254 \n8 0.847224 0.866354 0.795493 \n9 0.595745 1.000000 0.000000 \n10 0.804734 1.000000 0.000000 \n11 0.629213 1.000000 0.000000 \n12 0.404255 0.000000 1.000000 \n13 0.195266 0.000000 1.000000 \n14 0.730038 1.000000 0.000000 \n15 0.612022 1.000000 0.000000 \n16 0.338403 0.291667 0.464789 \n17 0.946809 1.000000 0.868421 \n18 526.000000 384.000000 142.000000 \n\n sex&race_dis sex&race_dis_correct sex&race_dis_incorrect \\\n0 0.462617 0.453857 0.482517 \n1 0.067213 0.066631 0.068536 \n2 0.089184 0.088747 0.090175 \n3 0.837346 0.821026 0.874418 \n4 0.860162 0.843933 0.897027 \n5 0.413620 0.306294 0.657422 \n6 0.104978 0.096287 0.124722 \n7 0.673472 0.933152 0.083580 \n8 0.856075 0.866304 0.832840 \n9 0.734982 1.000000 0.000000 \n10 0.647773 1.000000 0.000000 \n11 0.705085 1.000000 0.000000 \n12 0.265018 0.000000 1.000000 \n13 0.352227 0.000000 1.000000 \n14 0.694340 1.000000 0.000000 \n15 0.719723 1.000000 0.000000 \n16 0.556604 0.565217 0.537037 \n17 1.042403 1.000000 1.160000 \n18 530.000000 368.000000 162.000000 \n\n Model_Name Model_Params \n0 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n1 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n2 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n3 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n4 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n5 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n6 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n7 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n8 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n9 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n10 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n11 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n12 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n13 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n14 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n15 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n16 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n17 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n18 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n\n[19 rows x 22 columns]",
"text/html": "\n\n
\n \n \n | \n Metric | \n overall | \n sex_priv | \n sex_priv_correct | \n sex_priv_incorrect | \n sex_dis | \n sex_dis_correct | \n sex_dis_incorrect | \n race_priv | \n race_priv_correct | \n ... | \n race_dis_correct | \n race_dis_incorrect | \n sex&race_priv | \n sex&race_priv_correct | \n sex&race_priv_incorrect | \n sex&race_dis | \n sex&race_dis_correct | \n sex&race_dis_incorrect | \n Model_Name | \n Model_Params | \n
\n \n \n \n 0 | \n Mean | \n 0.524270 | \n 0.578645 | \n 0.600790 | \n 0.517352 | \n 0.510692 | \n 0.514399 | \n 0.501767 | \n 0.597526 | \n 0.618185 | \n ... | \n 0.473863 | \n 0.484344 | \n 0.586391 | \n 0.607290 | \n 0.529874 | \n 0.462617 | \n 0.453857 | \n 0.482517 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 1 | \n Std | \n 0.067963 | \n 0.073618 | \n 0.072201 | \n 0.077539 | \n 0.066551 | \n 0.064791 | \n 0.070788 | \n 0.069162 | \n 0.066865 | \n ... | \n 0.065947 | \n 0.070060 | \n 0.068718 | \n 0.066018 | \n 0.076019 | \n 0.067213 | \n 0.066631 | \n 0.068536 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 2 | \n IQR | \n 0.090596 | \n 0.099782 | \n 0.098402 | \n 0.103600 | \n 0.088303 | \n 0.085977 | \n 0.093900 | \n 0.093184 | \n 0.089451 | \n ... | \n 0.087919 | \n 0.091258 | \n 0.092020 | \n 0.088338 | \n 0.101975 | \n 0.089184 | \n 0.088747 | \n 0.090175 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 3 | \n Aleatoric_Uncertainty | \n 0.834874 | \n 0.846689 | \n 0.826891 | \n 0.901488 | \n 0.831924 | \n 0.817170 | \n 0.867440 | \n 0.821672 | \n 0.807043 | \n ... | \n 0.827404 | \n 0.880296 | \n 0.832383 | \n 0.817398 | \n 0.872906 | \n 0.837346 | \n 0.821026 | \n 0.874418 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 4 | \n Overall_Uncertainty | \n 0.859083 | \n 0.876581 | \n 0.856843 | \n 0.931213 | \n 0.854713 | \n 0.839203 | \n 0.892051 | \n 0.847778 | \n 0.832001 | \n ... | \n 0.850193 | \n 0.903737 | \n 0.857995 | \n 0.841790 | \n 0.901818 | \n 0.860162 | \n 0.843933 | \n 0.897027 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 5 | \n Statistical_Bias | \n 0.405041 | \n 0.395811 | \n 0.314809 | \n 0.620012 | \n 0.407346 | \n 0.301656 | \n 0.661771 | \n 0.393484 | \n 0.296788 | \n ... | \n 0.309510 | \n 0.650314 | \n 0.396398 | \n 0.302520 | \n 0.650263 | \n 0.413620 | \n 0.306294 | \n 0.657422 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 6 | \n Jitter | \n 0.106917 | \n 0.132090 | \n 0.112864 | \n 0.185306 | \n 0.100631 | \n 0.091351 | \n 0.122972 | \n 0.107225 | \n 0.097218 | \n ... | \n 0.094812 | \n 0.134214 | \n 0.108871 | \n 0.095304 | \n 0.145559 | \n 0.104978 | \n 0.096287 | \n 0.124722 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 7 | \n Per_Sample_Accuracy | \n 0.691061 | \n 0.711090 | \n 0.918452 | \n 0.137143 | \n 0.686059 | \n 0.936918 | \n 0.082177 | \n 0.708261 | \n 0.930526 | \n ... | \n 0.934866 | \n 0.091340 | \n 0.708783 | \n 0.933073 | \n 0.102254 | \n 0.673472 | \n 0.933152 | \n 0.083580 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 8 | \n Label_Stability | \n 0.851667 | \n 0.807393 | \n 0.836903 | \n 0.725714 | \n 0.862722 | \n 0.873970 | \n 0.835645 | \n 0.848213 | \n 0.861316 | \n ... | \n 0.869732 | \n 0.817320 | \n 0.847224 | \n 0.866354 | \n 0.795493 | \n 0.856075 | \n 0.866304 | \n 0.832840 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 9 | \n TPR | \n 0.679406 | \n 0.613333 | \n 1.000000 | \n 0.000000 | \n 0.691919 | \n 1.000000 | \n 0.000000 | \n 0.585034 | \n 1.000000 | \n ... | \n 1.000000 | \n 0.000000 | \n 0.595745 | \n 1.000000 | \n 0.000000 | \n 0.734982 | \n 1.000000 | \n 0.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 10 | \n TNR | \n 0.738462 | \n 0.801471 | \n 1.000000 | \n 0.000000 | \n 0.719376 | \n 1.000000 | \n 0.000000 | \n 0.816479 | \n 1.000000 | \n ... | \n 1.000000 | \n 0.000000 | \n 0.804734 | \n 1.000000 | \n 0.000000 | \n 0.647773 | \n 1.000000 | \n 0.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 11 | \n PPV | \n 0.676533 | \n 0.630137 | \n 1.000000 | \n 0.000000 | \n 0.685000 | \n 1.000000 | \n 0.000000 | \n 0.637037 | \n 1.000000 | \n ... | \n 1.000000 | \n 0.000000 | \n 0.629213 | \n 1.000000 | \n 0.000000 | \n 0.705085 | \n 1.000000 | \n 0.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 12 | \n FNR | \n 0.320594 | \n 0.386667 | \n 0.000000 | \n 1.000000 | \n 0.308081 | \n 0.000000 | \n 1.000000 | \n 0.414966 | \n 0.000000 | \n ... | \n 0.000000 | \n 1.000000 | \n 0.404255 | \n 0.000000 | \n 1.000000 | \n 0.265018 | \n 0.000000 | \n 1.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 13 | \n FPR | \n 0.261538 | \n 0.198529 | \n 0.000000 | \n 1.000000 | \n 0.280624 | \n 0.000000 | \n 1.000000 | \n 0.183521 | \n 0.000000 | \n ... | \n 0.000000 | \n 1.000000 | \n 0.195266 | \n 0.000000 | \n 1.000000 | \n 0.352227 | \n 0.000000 | \n 1.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 14 | \n Accuracy | \n 0.712121 | \n 0.734597 | \n 1.000000 | \n 0.000000 | \n 0.706509 | \n 1.000000 | \n 0.000000 | \n 0.734300 | \n 1.000000 | \n ... | \n 1.000000 | \n 0.000000 | \n 0.730038 | \n 1.000000 | \n 0.000000 | \n 0.694340 | \n 1.000000 | \n 0.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 15 | \n F1 | \n 0.677966 | \n 0.621622 | \n 1.000000 | \n 0.000000 | \n 0.688442 | \n 1.000000 | \n 0.000000 | \n 0.609929 | \n 1.000000 | \n ... | \n 1.000000 | \n 0.000000 | \n 0.612022 | \n 1.000000 | \n 0.000000 | \n 0.719723 | \n 1.000000 | \n 0.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 16 | \n Selection-Rate | \n 0.447917 | \n 0.345972 | \n 0.296774 | \n 0.482143 | \n 0.473373 | \n 0.458961 | \n 0.508065 | \n 0.326087 | \n 0.282895 | \n ... | \n 0.522321 | \n 0.536082 | \n 0.338403 | \n 0.291667 | \n 0.464789 | \n 0.556604 | \n 0.565217 | \n 0.537037 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 17 | \n Positive-Rate | \n 1.004246 | \n 0.973333 | \n 1.000000 | \n 0.931034 | \n 1.010101 | \n 1.000000 | \n 1.032787 | \n 0.918367 | \n 1.000000 | \n ... | \n 1.000000 | \n 1.155556 | \n 0.946809 | \n 1.000000 | \n 0.868421 | \n 1.042403 | \n 1.000000 | \n 1.160000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 18 | \n Sample_Size | \n 1056.000000 | \n 211.000000 | \n 155.000000 | \n 56.000000 | \n 845.000000 | \n 597.000000 | \n 248.000000 | \n 414.000000 | \n 304.000000 | \n ... | \n 448.000000 | \n 194.000000 | \n 526.000000 | \n 384.000000 | \n 142.000000 | \n 530.000000 | \n 368.000000 | \n 162.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n
\n
19 rows × 22 columns
\n
"
},
- "execution_count": 133,
+ "execution_count": 185,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "models_metrics_dct['RandomForestClassifier'].head(20)"
+ "models_metrics_dct['RandomForestClassifier'].head(100)"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-01T11:25:45.963770Z",
- "start_time": "2023-10-01T11:25:45.421681Z"
+ "end_time": "2023-10-01T20:57:20.233976Z",
+ "start_time": "2023-10-01T20:57:20.133369Z"
}
},
"id": "54a73b4d053334b4"
@@ -338,12 +338,12 @@
},
{
"cell_type": "code",
- "execution_count": 169,
+ "execution_count": 186,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-01T19:42:30.098766Z",
- "start_time": "2023-10-01T19:42:30.039734Z"
+ "end_time": "2023-10-01T21:02:36.301716Z",
+ "start_time": "2023-10-01T21:02:33.017804Z"
}
},
"outputs": [],
@@ -373,7 +373,7 @@
"collapsed": false,
"is_executing": true,
"ExecuteTime": {
- "start_time": "2023-10-01T19:42:30.126790Z"
+ "start_time": "2023-10-01T21:02:36.296642Z"
}
},
"id": "678a9dc8d51243f4"
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index 40a2beab..fe59f488 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -1,5 +1,6 @@
import pandas as pd
import gradio as gr
+import altair as alt
from virny.utils.data_viz_utils import (create_model_rank_heatmap_visualization, create_sorted_matrix_by_rank,
create_subgroup_sorted_matrix_by_rank)
@@ -35,19 +36,19 @@ def __init__(self, model_metrics_dct: dict, model_composed_metrics_df: pd.DataFr
models_metrics_df = models_metrics_df.reset_index(drop=True)
self.models_metrics_dct = model_metrics_dct
- self.models_metrics_df = self._align_input_metric_df(models_metrics_df, allowed_cols=["Metric", "Model_Name"],
+ self.models_metrics_df = self._align_input_metric_df(models_metrics_df, allowed_cols=["Metric", "Model_Name", "overall"],
sensitive_attrs=list(self.sensitive_attributes_dct.keys()))
self.model_composed_metrics_df = self._align_input_metric_df(model_composed_metrics_df, allowed_cols=["Metric", "Model_Name"],
sensitive_attrs=list(self.sensitive_attributes_dct.keys()))
- melted_model_metrics_df = self.models_metrics_df.melt(id_vars=["Metric", "Model_Name"],
- var_name="Subgroup",
- value_name="Value")
- self.sorted_model_metrics_df = melted_model_metrics_df.sort_values(by=['Value'])
- melted_model_composed_metrics_df = self.model_composed_metrics_df.melt(id_vars=["Metric", "Model_Name"],
- var_name="Subgroup",
- value_name="Value")
- self.sorted_model_composed_metrics_df = melted_model_composed_metrics_df.sort_values(by=['Value'])
+ self.melted_model_metrics_df = self.models_metrics_df.melt(id_vars=["Metric", "Model_Name"],
+ var_name="Subgroup",
+ value_name="Value")
+ self.sorted_model_metrics_df = self.melted_model_metrics_df.sort_values(by=['Value'])
+ self.melted_model_composed_metrics_df = self.model_composed_metrics_df.melt(id_vars=["Metric", "Model_Name"],
+ var_name="Subgroup",
+ value_name="Value")
+ self.sorted_model_composed_metrics_df = self.melted_model_composed_metrics_df.sort_values(by=['Value'])
def _align_input_metric_df(self, model_metrics_df: pd.DataFrame, allowed_cols: list, sensitive_attrs: list):
# Filter columns in the input dataframe based on allowed_cols and sensitive_attrs
@@ -89,13 +90,13 @@ def start_web_app(self):
['Std', 'IQR', 'Jitter', 'Label_Stability'],
value=['Jitter', 'Label_Stability'], multiselect=True, label="Stability Metrics", info="Select stability metrics to display on the heatmap:",
)
- btn = gr.Button("Submit")
+ subgroup_btn_view1 = gr.Button("Submit")
with gr.Column(scale=2):
subgroup_model_ranking_heatmap = gr.Plot(label="Plot")
- btn.click(self._create_subgroup_model_rank_heatmap,
- inputs=[model_names, accuracy_metrics, uncertainty_metrics, subgroup_stability_metrics],
- outputs=[subgroup_model_ranking_heatmap])
+ subgroup_btn_view1.click(self._create_subgroup_model_rank_heatmap,
+ inputs=[model_names, accuracy_metrics, uncertainty_metrics, subgroup_stability_metrics],
+ outputs=[subgroup_model_ranking_heatmap])
# ======================================== Group Metrics Heatmap ========================================
gr.Markdown(
"""
@@ -116,13 +117,67 @@ def start_web_app(self):
['Label_Stability_Ratio', 'IQR_Parity', 'Std_Parity', 'Std_Ratio', 'Jitter_Parity'],
value=['Label_Stability_Ratio', 'Std_Parity'], multiselect=True, label="Stability Parity Metrics", info="Select stability parity metrics to display on the heatmap:",
)
- btn = gr.Button("Submit")
+ group_btn_view1 = gr.Button("Submit")
with gr.Column(scale=2):
group_model_ranking_heatmap = gr.Plot(label="Plot")
- btn.click(self._create_group_model_rank_heatmap,
- inputs=[model_names, fairness_metrics, group_stability_metrics],
- outputs=[group_model_ranking_heatmap])
+ group_btn_view1.click(self._create_group_model_rank_heatmap,
+ inputs=[model_names, fairness_metrics, group_stability_metrics],
+ outputs=[group_model_ranking_heatmap])
+ # =============================== Subgroup and Group Metrics Bar Chart ===============================
+ with gr.Row():
+ with gr.Column():
+ gr.Markdown(
+ """
+ ## Subgroup Metrics Bar Chart
+ """)
+ subgroup_model_names = gr.Dropdown(
+ self.model_names, value=self.model_names[0], multiselect=False,
+ label="Model Names", info="Select one model to display on the bar chart:",
+ )
+ accuracy_metrics = gr.Dropdown(
+ ['Statistical_Bias', 'TPR', 'TNR', 'PPV', 'FNR', 'FPR', 'Accuracy', 'F1'],
+ value=['Accuracy', 'F1'], multiselect=True, label="Accuracy Metrics", info="Select accuracy metrics to display on the heatmap:",
+ )
+ uncertainty_metrics = gr.Dropdown(
+ ['Aleatoric_Uncertainty', 'Overall_Uncertainty'],
+ value=['Aleatoric_Uncertainty', 'Overall_Uncertainty'], multiselect=True, label="Uncertainty Metrics", info="Select uncertainty metrics to display on the heatmap:",
+ )
+ subgroup_stability_metrics = gr.Dropdown(
+ ['Std', 'IQR', 'Jitter', 'Label_Stability'],
+ value=['Jitter', 'Label_Stability'], multiselect=True, label="Stability Metrics", info="Select stability metrics to display on the heatmap:",
+ )
+ subgroup_btn_view2 = gr.Button("Submit")
+ with gr.Column():
+ gr.Markdown(
+ """
+ ## Group Metrics Bar Chart
+ """)
+ group_model_names = gr.Dropdown(
+ self.model_names, value=self.model_names[0], multiselect=False,
+ label="Model Names", info="Select one model to display on the bar chart:",
+ )
+ fairness_metrics = gr.Dropdown(
+ ['Equalized_Odds_TPR', 'Equalized_Odds_FPR', 'Disparate_Impact', 'Statistical_Parity_Difference', 'Accuracy_Parity'],
+ value=['Equalized_Odds_TPR', 'Equalized_Odds_FPR'], multiselect=True, label="Error Parity Metrics", info="Select error parity metrics to display on the heatmap:",
+ )
+ group_stability_metrics = gr.Dropdown(
+ ['Label_Stability_Ratio', 'IQR_Parity', 'Std_Parity', 'Std_Ratio', 'Jitter_Parity'],
+ value=['Label_Stability_Ratio', 'Std_Parity'], multiselect=True, label="Stability Parity Metrics", info="Select stability parity metrics to display on the heatmap:",
+ )
+ group_btn_view2 = gr.Button("Submit")
+ with gr.Row():
+ with gr.Column():
+ subgroup_metrics_bar_chart = gr.Plot(label="Plot")
+ with gr.Column():
+ group_metrics_bar_chart = gr.Plot(label="Plot")
+
+ subgroup_btn_view2.click(self._create_subgroup_metrics_bar_chart_per_one_model,
+ inputs=[subgroup_model_names, accuracy_metrics, uncertainty_metrics, subgroup_stability_metrics],
+ outputs=[subgroup_metrics_bar_chart])
+ group_btn_view2.click(self._create_group_metrics_bar_chart_per_one_model,
+ inputs=[group_model_names, fairness_metrics, group_stability_metrics],
+ outputs=[group_metrics_bar_chart])
self.demo = demo
self.demo.launch(inline=False, debug=True, show_error=True)
@@ -233,3 +288,60 @@ def _create_group_model_rank_heatmap(self, model_names: list, group_fairness_met
model_rank_heatmap, _ = create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_by_rank, num_models)
return model_rank_heatmap
+
+ def _create_subgroup_metrics_bar_chart_per_one_model(self, model_name: str, subgroup_accuracy_metrics_lst: list,
+ subgroup_uncertainty_metrics: list, subgroup_stability_metrics_lst: list):
+ metrics_names = subgroup_accuracy_metrics_lst + subgroup_uncertainty_metrics + subgroup_stability_metrics_lst
+ return self._create_metrics_bar_chart_per_one_model(model_name, metrics_names, metrics_type='subgroup')
+
+ def _create_group_metrics_bar_chart_per_one_model(self, model_name: str, group_fairness_metrics_lst: list,
+ group_stability_metrics_lst: list):
+ metrics_names = group_fairness_metrics_lst + group_stability_metrics_lst
+ return self._create_metrics_bar_chart_per_one_model(model_name, metrics_names, metrics_type='group')
+
+ def _create_metrics_bar_chart_per_one_model(self, model_name: str, metrics_names: list, metrics_type: str):
+ """
+ This bar chart displays metrics for different groups and one specific model.
+
+ Parameters
+ ----------
+ model_name
+ A model name to display metrics
+ metrics_names
+ A list of metric names to visualize
+ metrics_type
+ A metrics type ('subgroup' or 'group') to visualize
+
+ """
+ metrics_title = f'{metrics_type.capitalize()} Metrics'
+ metrics_df = self.melted_model_composed_metrics_df if metrics_type == "group" else self.melted_model_metrics_df
+ filtered_groups = [grp for grp in metrics_df.Subgroup.unique() if '_correct' not in grp and '_incorrect' not in grp]
+ filtered_metrics_df = metrics_df[(metrics_df['Metric'].isin(metrics_names)) &
+ (metrics_df['Model_Name'] == model_name) &
+ (metrics_df['Subgroup'].isin(filtered_groups))]
+
+ models_metrics_chart = (
+ alt.Chart(filtered_metrics_df).mark_bar().encode(
+ alt.Row('Metric:N', title=metrics_title),
+ alt.Y('Subgroup:N', axis=None),
+ alt.X('Value:Q', axis=alt.Axis(grid=True), title=''),
+ alt.Color('Subgroup:N',
+ scale=alt.Scale(scheme="tableau20"),
+ legend=alt.Legend(title=metrics_type.capitalize(),
+ labelFontSize=14,
+ titleFontSize=14)
+ )
+ )
+ ).properties(
+ width=500, height=80
+ ).configure_headerRow(
+ labelAngle=0,
+ labelPadding=10,
+ labelAlign='left',
+ labelFontSize=14,
+ titleFontSize=18
+ ).configure_axis(
+ labelFontSize=14, titleFontSize=18
+ )
+
+ return models_metrics_chart
From e0113e1e460539a7dde6404685449b3fb2e75b00 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Mon, 2 Oct 2023 00:10:27 +0300
Subject: [PATCH 005/148] Added bar charts to a web app
---
README.md | 1 -
1 file changed, 1 deletion(-)
diff --git a/README.md b/README.md
index 7414280a..66119d84 100644
--- a/README.md
+++ b/README.md
@@ -28,7 +28,6 @@
-
## 📜 Description
**Virny** is a Python library for auditing model stability and fairness. The Virny library was
From 8580bbc49e2399f529bcfbbfac0f5c41fbf3d982 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Mon, 2 Oct 2023 02:06:05 +0300
Subject: [PATCH 006/148] Added init for view 1
---
.../Multiple_Models_Interface_Vis.ipynb | 8 +-
.../metrics_interactive_visualizer.py | 103 +++++++++++--
virny/utils/data_viz_utils.py | 143 +++++++++++++++++-
3 files changed, 240 insertions(+), 14 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis.ipynb b/docs/examples/Multiple_Models_Interface_Vis.ipynb
index ab7c8ca4..2382c421 100644
--- a/docs/examples/Multiple_Models_Interface_Vis.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis.ipynb
@@ -338,12 +338,12 @@
},
{
"cell_type": "code",
- "execution_count": 186,
+ "execution_count": 212,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-01T21:02:36.301716Z",
- "start_time": "2023-10-01T21:02:33.017804Z"
+ "end_time": "2023-10-01T23:03:56.089028Z",
+ "start_time": "2023-10-01T23:03:56.019414Z"
}
},
"outputs": [],
@@ -373,7 +373,7 @@
"collapsed": false,
"is_executing": true,
"ExecuteTime": {
- "start_time": "2023-10-01T21:02:36.296642Z"
+ "start_time": "2023-10-01T23:03:56.113686Z"
}
},
"id": "678a9dc8d51243f4"
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index fe59f488..567b0d33 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -3,7 +3,7 @@
import altair as alt
from virny.utils.data_viz_utils import (create_model_rank_heatmap_visualization, create_sorted_matrix_by_rank,
- create_subgroup_sorted_matrix_by_rank)
+ create_subgroup_sorted_matrix_by_rank, create_bar_plot_for_model_selection)
class MetricsInteractiveVisualizer:
@@ -66,6 +66,56 @@ def start_web_app(self):
# .plot_output1 {position: right !important}
# """
with gr.Blocks(theme=gr.themes.Soft()) as demo:
+ # ==================================== Bar Chart for Model Selection ====================================
+ gr.Markdown(
+ """
+ ## Bar Chart for Model Selection
+ Select input arguments to create a bar chart for model selection.
+ """)
+ with gr.Row():
+ with gr.Column(scale=2):
+ with gr.Row():
+ accuracy_metric = gr.Dropdown(
+ ['Statistical_Bias', 'TPR', 'TNR', 'PPV', 'FNR', 'FPR', 'Accuracy', 'F1'],
+ value='Accuracy', multiselect=False, label="Constraint 1 (C1)",
+ scale=2
+ )
+ acc_min_val = gr.Number(value=0.815, label="Min value", scale=1)
+ acc_max_val = gr.Number(value=0.85, label="Max value", scale=1)
+ with gr.Row():
+ fairness_metric = gr.Dropdown(
+ ['Equalized_Odds_TPR', 'Equalized_Odds_FPR', 'Disparate_Impact', 'Statistical_Parity_Difference', 'Accuracy_Parity'],
+ value='Equalized_Odds_FPR', multiselect=False, label="Constraint 2 (C2)",
+ scale=2
+ )
+ fairness_min_val = gr.Number(value=-0.03, label="Min value", scale=1)
+ fairness_max_val = gr.Number(value=0.03, label="Max value", scale=1)
+ with gr.Row():
+ subgroup_stability_metric = gr.Dropdown(
+ ['Std', 'IQR', 'Jitter', 'Label_Stability'],
+ value='Label_Stability', multiselect=False, label="Constraint 3 (C3)",
+ scale=2
+ )
+ subgroup_stab_min_val = gr.Number(value=0.9, label="Min value", scale=1)
+ subgroup_stab_max_val = gr.Number(value=0.94, label="Max value", scale=1)
+ with gr.Row():
+ group_stability_metrics = gr.Dropdown(
+ ['Label_Stability_Ratio', 'IQR_Parity', 'Std_Parity', 'Std_Ratio', 'Jitter_Parity'],
+ value='Label_Stability_Ratio', multiselect=False, label="Constraint 4 (C4)",
+ scale=2
+ )
+ group_stab_min_val = gr.Number(value=1.0, label="Min value", scale=1)
+ group_stab_max_val = gr.Number(value=1.03, label="Max value", scale=1)
+ btn_view1 = gr.Button("Submit")
+ with gr.Column(scale=3):
+ bar_plot_for_model_selection = gr.Plot(label="Plot")
+
+ btn_view1.click(self._create_bar_plot_for_model_selection,
+ inputs=[accuracy_metric, acc_min_val, acc_max_val,
+ fairness_metric, fairness_min_val, fairness_max_val,
+ subgroup_stability_metric, subgroup_stab_min_val, subgroup_stab_max_val,
+ group_stability_metrics, group_stab_min_val, group_stab_max_val],
+ outputs=[bar_plot_for_model_selection])
# ======================================= Subgroup Metrics Heatmap =======================================
gr.Markdown(
"""
@@ -90,11 +140,11 @@ def start_web_app(self):
['Std', 'IQR', 'Jitter', 'Label_Stability'],
value=['Jitter', 'Label_Stability'], multiselect=True, label="Stability Metrics", info="Select stability metrics to display on the heatmap:",
)
- subgroup_btn_view1 = gr.Button("Submit")
+ subgroup_btn_view2 = gr.Button("Submit")
with gr.Column(scale=2):
subgroup_model_ranking_heatmap = gr.Plot(label="Plot")
- subgroup_btn_view1.click(self._create_subgroup_model_rank_heatmap,
+ subgroup_btn_view2.click(self._create_subgroup_model_rank_heatmap,
inputs=[model_names, accuracy_metrics, uncertainty_metrics, subgroup_stability_metrics],
outputs=[subgroup_model_ranking_heatmap])
# ======================================== Group Metrics Heatmap ========================================
@@ -117,11 +167,11 @@ def start_web_app(self):
['Label_Stability_Ratio', 'IQR_Parity', 'Std_Parity', 'Std_Ratio', 'Jitter_Parity'],
value=['Label_Stability_Ratio', 'Std_Parity'], multiselect=True, label="Stability Parity Metrics", info="Select stability parity metrics to display on the heatmap:",
)
- group_btn_view1 = gr.Button("Submit")
+ group_btn_view2 = gr.Button("Submit")
with gr.Column(scale=2):
group_model_ranking_heatmap = gr.Plot(label="Plot")
- group_btn_view1.click(self._create_group_model_rank_heatmap,
+ group_btn_view2.click(self._create_group_model_rank_heatmap,
inputs=[model_names, fairness_metrics, group_stability_metrics],
outputs=[group_model_ranking_heatmap])
# =============================== Subgroup and Group Metrics Bar Chart ===============================
@@ -147,7 +197,7 @@ def start_web_app(self):
['Std', 'IQR', 'Jitter', 'Label_Stability'],
value=['Jitter', 'Label_Stability'], multiselect=True, label="Stability Metrics", info="Select stability metrics to display on the heatmap:",
)
- subgroup_btn_view2 = gr.Button("Submit")
+ subgroup_btn_view3 = gr.Button("Submit")
with gr.Column():
gr.Markdown(
"""
@@ -165,17 +215,17 @@ def start_web_app(self):
['Label_Stability_Ratio', 'IQR_Parity', 'Std_Parity', 'Std_Ratio', 'Jitter_Parity'],
value=['Label_Stability_Ratio', 'Std_Parity'], multiselect=True, label="Stability Parity Metrics", info="Select stability parity metrics to display on the heatmap:",
)
- group_btn_view2 = gr.Button("Submit")
+ group_btn_view3 = gr.Button("Submit")
with gr.Row():
with gr.Column():
subgroup_metrics_bar_chart = gr.Plot(label="Plot")
with gr.Column():
group_metrics_bar_chart = gr.Plot(label="Plot")
- subgroup_btn_view2.click(self._create_subgroup_metrics_bar_chart_per_one_model,
+ subgroup_btn_view3.click(self._create_subgroup_metrics_bar_chart_per_one_model,
inputs=[subgroup_model_names, accuracy_metrics, uncertainty_metrics, subgroup_stability_metrics],
outputs=[subgroup_metrics_bar_chart])
- group_btn_view2.click(self._create_group_metrics_bar_chart_per_one_model,
+ group_btn_view3.click(self._create_group_metrics_bar_chart_per_one_model,
inputs=[group_model_names, fairness_metrics, group_stability_metrics],
outputs=[group_metrics_bar_chart])
@@ -185,6 +235,41 @@ def start_web_app(self):
def stop_web_app(self):
self.demo.close()
+ def _create_bar_plot_for_model_selection(self, accuracy_metric, acc_min_val, acc_max_val,
+ fairness_metric, fairness_min_val, fairness_max_val,
+ subgroup_stability_metric, subgroup_stab_min_val, subgroup_stab_max_val,
+ group_stability_metrics, group_stab_min_val, group_stab_max_val):
+ accuracy_constraint = (accuracy_metric, acc_min_val, acc_max_val)
+ subgroup_stability_constraint = (subgroup_stability_metric, subgroup_stab_min_val, subgroup_stab_max_val)
+ fairness_constraint = (fairness_metric, fairness_min_val, fairness_max_val)
+ group_stability_constraint = (group_stability_metrics, group_stab_min_val, group_stab_max_val)
+
+ # Create individual constraints
+ metrics_value_range_dct = dict()
+ for constraint in [accuracy_constraint, subgroup_stability_constraint, fairness_constraint, group_stability_constraint]:
+ metrics_value_range_dct[constraint[0]] = [constraint[1], constraint[2]]
+ # Create intersectional constraints
+ metrics_value_range_dct[f'{accuracy_constraint[0]}&{subgroup_stability_constraint[0]}'] = None
+ metrics_value_range_dct[f'{accuracy_constraint[0]}&{fairness_constraint[0]}'] = None
+ metrics_value_range_dct[f'{accuracy_constraint[0]}&{group_stability_constraint[0]}'] = None
+ metrics_value_range_dct[(f'{accuracy_constraint[0]}&{subgroup_stability_constraint[0]}'
+ f'&{fairness_constraint[0]}&{group_stability_constraint[0]}')] = None
+
+ melted_all_subgroup_metrics_per_model_dct = dict()
+ for model_name in self.melted_model_metrics_df['Model_Name'].unique():
+ melted_all_subgroup_metrics_per_model_dct[model_name] = (
+ self.melted_model_metrics_df)[self.melted_model_metrics_df.Model_Name == model_name]
+
+ melted_all_group_metrics_per_model_dct = dict()
+ for model_name in self.melted_model_composed_metrics_df['Model_Name'].unique():
+ melted_all_group_metrics_per_model_dct[model_name] = (
+ self.melted_model_composed_metrics_df)[self.melted_model_composed_metrics_df.Model_Name == model_name]
+
+ return create_bar_plot_for_model_selection(melted_all_subgroup_metrics_per_model_dct,
+ melted_all_group_metrics_per_model_dct,
+ metrics_value_range_dct,
+ group='sex&race')
+
def _create_subgroup_model_rank_heatmap(self, model_names: list, subgroup_accuracy_metrics_lst: list,
subgroup_uncertainty_metrics: list, subgroup_stability_metrics_lst: list):
"""
diff --git a/virny/utils/data_viz_utils.py b/virny/utils/data_viz_utils.py
index 057f85f4..877979f9 100644
--- a/virny/utils/data_viz_utils.py
+++ b/virny/utils/data_viz_utils.py
@@ -1,5 +1,7 @@
-import seaborn as sns
import numpy as np
+import pandas as pd
+import altair as alt
+import seaborn as sns
from matplotlib import pyplot as plt
@@ -100,3 +102,142 @@ def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_
cbar.set_label('Model Ranks', fontsize=18 + font_increase)
return fig, ax
+
+
+def create_bar_plot_for_model_selection(all_subgroup_metrics_per_model_dct: dict, all_group_metrics_per_model_dct: dict,
+ metrics_value_range_dct: dict, group: str):
+ # Compute the number of models that satisfy the conditions
+ models_in_range_df = create_models_in_range_dct(all_subgroup_metrics_per_model_dct, all_group_metrics_per_model_dct,
+ metrics_value_range_dct, group)
+ # Replace metric groups on their aliases
+ metric_name_to_alias_dct = {
+ # C1
+ 'TPR': 'C1',
+ 'TNR': 'C1',
+ 'FNR': 'C1',
+ 'FPR': 'C1',
+ 'PPV': 'C1',
+ 'Accuracy': 'C1',
+ 'F1': 'C1',
+ # C2
+ 'Equalized_Odds_TPR': 'C2',
+ 'Equalized_Odds_FPR': 'C2',
+ 'Equalized_Odds_FNR': 'C2',
+ 'Disparate_Impact': 'C2',
+ 'Statistical_Parity_Difference': 'C2',
+ # C3
+ 'Std': 'C3',
+ 'IQR': 'C3',
+ 'Jitter': 'C3',
+ 'Label_Stability': 'C3',
+ # C4
+ 'IQR_Parity': 'C4',
+ 'Label_Stability_Ratio': 'C4',
+ 'Std_Parity': 'C4',
+ 'Std_Ratio': 'C4',
+ 'Jitter_Parity': 'C4',
+ }
+
+ def get_column_alias(metric_group):
+ if '&' not in metric_group:
+ alias = metric_name_to_alias_dct[metric_group]
+ else:
+ metrics = metric_group.split('&')
+ alias = None
+ for idx, metric in enumerate(metrics):
+ if idx == 0:
+ alias = metric_name_to_alias_dct[metric]
+ else:
+ alias += ' & ' + metric_name_to_alias_dct[metric]
+
+ return alias
+
+ models_in_range_df['Alias'] = models_in_range_df['Metric_Group'].apply(get_column_alias)
+ models_in_range_df['Title'] = models_in_range_df['Alias']
+
+ base_font_size = 25
+ bar_plot = alt.Chart(models_in_range_df).mark_bar().encode(
+ x=alt.X("Title", type="nominal", title='Metric Group', axis=alt.Axis(labelAngle=-30),
+ sort=alt.Sort(order='ascending')),
+ y=alt.Y("Number_of_Models", title="Number of Models", type="quantitative"),
+ color=alt.Color('Model_Name', legend=alt.Legend(title='Model Name'))
+ ).configure_axis(
+ labelFontSize=base_font_size + 2,
+ titleFontSize=base_font_size + 4,
+ labelFontWeight='normal',
+ titleFontWeight='normal',
+ labelLimit=300,
+ ).configure_title(
+ fontSize=base_font_size + 2
+ ).configure_legend(
+ titleFontSize=base_font_size + 2,
+ labelFontSize=base_font_size,
+ symbolStrokeWidth=4,
+ labelLimit=300,
+ titleLimit=220,
+ orient='none',
+ legendX=345, legendY=10,
+ ).properties(width=650, height=450)
+
+ return bar_plot
+
+
+def create_models_in_range_dct(all_subgroup_metrics_per_model_dct: dict, all_group_metrics_per_model_dct: dict,
+ metrics_value_range_dct: dict, group: str):
+ # Merge subgroup and group metrics for each model and align their columns
+ all_metrics_for_all_models_df = pd.DataFrame()
+ for model_name in all_subgroup_metrics_per_model_dct.keys():
+ group_metrics_per_model_df = all_group_metrics_per_model_dct[model_name][
+ (all_group_metrics_per_model_dct[model_name]['Subgroup'] == group)
+ ]
+ subgroup_metrics_per_model_df = all_subgroup_metrics_per_model_dct[model_name][
+ (all_subgroup_metrics_per_model_dct[model_name]['Subgroup'] == 'overall')
+ ]
+ subgroup_metrics_per_model_df['Subgroup'] = subgroup_metrics_per_model_df['Subgroup']
+ aligned_subgroup_metrics_per_model_df = subgroup_metrics_per_model_df[group_metrics_per_model_df.columns]
+
+ combined_metrics_per_model_df = pd.concat([group_metrics_per_model_df, aligned_subgroup_metrics_per_model_df]).reset_index(drop=True)
+ all_metrics_for_all_models_df = pd.concat([all_metrics_for_all_models_df, combined_metrics_per_model_df])
+
+ all_metrics_for_all_models_df = all_metrics_for_all_models_df.reset_index(drop=True)
+ all_metrics_for_all_models_df = all_metrics_for_all_models_df.drop(['Subgroup'], axis=1)
+
+ # Create new columns based on values in Metric and Value columns
+ pivoted_model_metrics_df = all_metrics_for_all_models_df.pivot(columns='Metric', values='Value',
+ index=[col for col in all_metrics_for_all_models_df.columns
+ if col not in ('Metric', 'Value')]).reset_index()
+
+ # Create a pandas condition for filtering based on the input value ranges
+ models_in_range_df = pd.DataFrame()
+ for idx, (metric_group, value_range) in enumerate(metrics_value_range_dct.items()):
+ pd_condition = None
+ if '&' not in metric_group:
+ min_range_val, max_range_val = value_range
+ if max_range_val < min_range_val:
+ raise ValueError('The second element in the input range must be greater than the first element, '
+ 'so to be in the following format -- (min_range_val, max_range_val)')
+ metric = metric_group
+ pd_condition = (pivoted_model_metrics_df[metric] >= min_range_val) & (pivoted_model_metrics_df[metric] <= max_range_val)
+ else:
+ metrics = metric_group.split('&')
+ for idx, metric in enumerate(metrics):
+ min_range_val, max_range_val = metrics_value_range_dct[metric]
+ if max_range_val < min_range_val:
+ raise ValueError('The second element in the input range must be greater than the first element, '
+ 'so to be in the following format -- (min_range_val, max_range_val)')
+ if idx == 0:
+ pd_condition = (pivoted_model_metrics_df[metric] >= min_range_val) & (pivoted_model_metrics_df[metric] <= max_range_val)
+ else:
+ pd_condition &= (pivoted_model_metrics_df[metric] >= min_range_val) & (pivoted_model_metrics_df[metric] <= max_range_val)
+
+ num_satisfied_models_df = pivoted_model_metrics_df[pd_condition]['Model_Name'].value_counts().reset_index()
+ num_satisfied_models_df.rename(columns = {'Model_Name': 'Number_of_Models'}, inplace = True)
+ num_satisfied_models_df.rename(columns = {'index': 'Model_Name'}, inplace = True)
+ num_satisfied_models_df['Metric_Group'] = metric_group
+ if idx == 0:
+ models_in_range_df = num_satisfied_models_df
+ else:
+ # Concatenate based on rows
+ models_in_range_df = pd.concat([models_in_range_df, num_satisfied_models_df], ignore_index=True, sort=False)
+
+ return models_in_range_df
From de6b7d7bd02667b568a79c0f8d5ad9e73a959bec Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Mon, 2 Oct 2023 17:27:52 +0300
Subject: [PATCH 007/148] Improved a metrics bar chart
---
.../Multiple_Models_Interface_Vis.ipynb | 218 +-----------------
.../metrics_interactive_visualizer.py | 84 ++++---
virny/utils/data_viz_utils.py | 21 +-
3 files changed, 76 insertions(+), 247 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis.ipynb b/docs/examples/Multiple_Models_Interface_Vis.ipynb
index 2382c421..dad3d0d5 100644
--- a/docs/examples/Multiple_Models_Interface_Vis.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis.ipynb
@@ -148,14 +148,6 @@
"metrics_composer = MetricsComposer(models_metrics_dct, config.sensitive_attributes_dct)"
]
},
- {
- "cell_type": "markdown",
- "id": "e1a23ece",
- "metadata": {},
- "source": [
- "Compute composed metrics"
- ]
- },
{
"cell_type": "code",
"execution_count": 8,
@@ -168,114 +160,10 @@
},
"outputs": [],
"source": [
+ "# Compute composed metrics\n",
"models_composed_metrics_df = metrics_composer.compose_metrics()"
]
},
- {
- "cell_type": "code",
- "execution_count": 1,
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/urllib3/__init__.py:34: NotOpenSSLWarning: urllib3 v2.0 only supports OpenSSL 1.1.1+, currently the 'ssl' module is compiled with 'LibreSSL 2.8.3'. See: https://github.com/urllib3/urllib3/issues/3020\n",
- " warnings.warn(\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Running on local URL: http://127.0.0.1:7860\n",
- "\n",
- "To create a public link, set `share=True` in `launch()`.\n"
- ]
- },
- {
- "data": {
- "text/plain": ""
- },
- "execution_count": 1,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "import altair as alt\n",
- "import gradio as gr\n",
- "import numpy as np\n",
- "import pandas as pd\n",
- "from vega_datasets import data\n",
- "\n",
- "\n",
- "def make_plot(plot_type):\n",
- " if plot_type == \"scatter_plot\":\n",
- " cars = data.cars()\n",
- " return alt.Chart(cars).mark_point().encode(\n",
- " x='Horsepower',\n",
- " y='Miles_per_Gallon',\n",
- " color='Origin',\n",
- " )\n",
- " elif plot_type == \"heatmap\":\n",
- " # Compute x^2 + y^2 across a 2D grid\n",
- " x, y = np.meshgrid(range(-5, 5), range(-5, 5))\n",
- " z = x ** 2 + y ** 2\n",
- "\n",
- " # Convert this grid to columnar data expected by Altair\n",
- " source = pd.DataFrame({'x': x.ravel(),\n",
- " 'y': y.ravel(),\n",
- " 'z': z.ravel()})\n",
- " return alt.Chart(source).mark_rect().encode(\n",
- " x='x:O',\n",
- " y='y:O',\n",
- " color='z:Q'\n",
- " )\n",
- "\n",
- "\n",
- "with gr.Blocks() as demo:\n",
- " button = gr.Radio(label=\"Plot type\",\n",
- " choices=['scatter_plot', 'heatmap'], value='scatter_plot')\n",
- " plot = gr.Plot(label=\"Plot\")\n",
- " button.change(make_plot, inputs=button, outputs=[plot])\n",
- " demo.load(make_plot, inputs=[button], outputs=[plot])\n",
- "\n",
- "\n",
- "demo.launch(inline=False)"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-09-28T22:25:40.759154Z",
- "start_time": "2023-09-28T22:25:39.629263Z"
- }
- },
- "id": "b9dad21b662edd59"
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Closing server running on port: 7860\n"
- ]
- }
- ],
- "source": [
- "demo.close()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-09-28T22:26:12.203639Z",
- "start_time": "2023-09-28T22:26:12.019693Z"
- }
- },
- "id": "920e2c1a81d4e810"
- },
{
"cell_type": "code",
"execution_count": 185,
@@ -338,12 +226,12 @@
},
{
"cell_type": "code",
- "execution_count": 212,
+ "execution_count": 320,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-01T23:03:56.089028Z",
- "start_time": "2023-10-01T23:03:56.019414Z"
+ "end_time": "2023-10-02T14:23:41.153446Z",
+ "start_time": "2023-10-02T14:23:37.215399Z"
}
},
"outputs": [],
@@ -373,7 +261,7 @@
"collapsed": false,
"is_executing": true,
"ExecuteTime": {
- "start_time": "2023-10-01T23:03:56.113686Z"
+ "start_time": "2023-10-02T14:23:41.153322Z"
}
},
"id": "678a9dc8d51243f4"
@@ -402,102 +290,6 @@
},
"id": "277b6d1de837dab7"
},
- {
- "cell_type": "code",
- "execution_count": 11,
- "outputs": [
- {
- "data": {
- "text/plain": ""
- },
- "execution_count": 11,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABLoAAANUCAYAAAC0cUQcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1gTycMH8G+AJPTeO4ggXQQLooIVLKjYO9iwd9SfnifY9exn11Pg7B07igVUxA6KCFgABUGxASLSknn/4M0egQQColjm8zz7PLA7Ozu7O1syO4VFCCGgKIqiKIqiKIqiKIqiqJ+cVH0ngKIoiqIoiqIoiqIoiqLqAi3ooiiKoiiKoiiKoiiKon4JtKCLoiiKoiiKoiiKoiiK+iXQgi6KoiiKoiiKoiiKoijql0ALuiiKoiiKoiiKoiiKoqhfAi3ooiiKoiiKoiiKoiiKon4JtKCLoiiKoiiKoiiKoiiK+iXQgi6KoiiKoiiKoiiKoijql0ALuiiKoiiKoiiKoiiKoqhfAi3ooijqhxcUFAQWiwUWi/XNtmFqagoWiwU/P79vto2fTVpaGnPcQ0JC6js5VB0RnNOgoKD6TgpFfXPf4/lB/bz8/PzAYrFgampa30n5rjw8PMBiseDh4fFV8VT1PImMjGSWR0ZGVlpOr82fR3XnkqJ+RLSgi6J+UeUfSiwWC0pKSigoKKh2vS9fvkBFRUVoXfpQq175QqGKk6ysLPT19dGpUyesX78eeXl59Z3cX0L5l+SKk7S0NFRVVdGkSRNMnz4dycnJ9Z3cX1ZWVhZWrVqFdu3awcjICLKyslBXV4e1tTVGjRqFs2fP1ncSq0QIQXh4OCZPnowmTZpAV1cXHA4HSkpKMDU1RdeuXbFw4UI8fvy4vpP6UxN8TJBk+tof3xT1vRFCcPLkSQwcOBANGzaEoqIiZGRkoKqqCjs7O/Tt2xcrV67EgwcP6jupVC1VfOdo166dROtFR0dXusdRFPXt0YIuivpN5OfnIywsrNpwJ06coAUxdayoqAhZWVmIiIjA1KlTYWdnh/v379d3sn5pfD4fubm5iI2Nxdq1a2Fvb49NmzbVd7J+KYQQLF26FA0bNsTMmTNx5coVZGRkoKioCB8/fkRSUhJ27tyJrl27wtXVFQkJCfWd5Eqio6Ph7OyMzp07Y8OGDYiNjcWbN29QUlKC/Px8vHjxAmfPnkVgYCBsbW3RunVrREdH13eyKYr6gbx58wZt2rRBjx49cODAATx79gyfP38Gj8dDbm4uEhIScOTIEcyaNQuNGzdGUlJSpTho7abK6qrW2bcSFRWFjIyMasPt3r37O6SmzO9aQ5GiRJGp7wRQFPXtycrKorCwELt378agQYOqDCt4IAvWoWquR48eWLx4MfO/4Ef/2rVrkZiYiPT0dHTt2hXJyclQVlaux5T+Onbt2oWmTZsy//N4PGRlZeHcuXPYsmULSkpKMHHiRFhZWaFDhw71mNJfQ0lJCYYNG4YDBw4AAOTk5ODr6wsvLy8YGBjg8+fPiI+PR2hoKO7evYubN2+iVatWOHnyJFq3bl3PqS8TEhICf39/lJSUAACcnZ3Rs2dPODs7Q0tLCyUlJXj9+jViYmJw5swZPH78GNevX8eiRYsQHh5ez6n/eenr6+P8+fNVhlFQUKiz7QUFBdFmutQ3U1xcjI4dOyI+Ph4A4OTkhOHDh6Nx48ZQUlJCXl4eEhMTcfXqVZw5cwa5ubn1nOK6RQip9bo/87UpeEfeu3cvZs+eLTZccXExDh06JLTOz8jDw+OrzjVF1Qda0EVRv4Hu3bvj0KFDiIiIwOvXr6GrqysyXHZ2Ni5cuACgrLDm4MGD3zOZvwxBU4XyWrduDT8/P7Rp0wY3b97E69evsX37dgQEBNRTKn8tZmZmlY65o6MjvLy80LhxY4wYMQIAsHLlSlrQVQf++OMPppDL3t4eYWFhMDc3Fwrj7u6OCRMmYM2aNZg5cyZycnLQs2dPPHjwAIaGhvWRbMbFixcxcuRI8Pl8KCoqIjg4GH369BEZ1sfHB3/99RfOnDmD//3vf985pb8eNptd6VqlqJ/Vjh07mEKu4cOH459//oGUlHCDmTZt2mDMmDEoKirC/v37oaqqWg8ppeqS4L169+7dVRZ0nT59Gh8/foSsrCw8PT1x4sSJ75hKivq90aaLFPUb6NSpE3R1dcHj8bB//36x4fbv34/S0lLo6uqiY8eO3zGFvwc2my1U0+vixYv1mJrfx/Dhw6GpqQkAuHPnTj2n5ud38+ZNrFq1CkBZ7ZyLFy9WKuQSYLFYmDFjBhYtWgQA+PDhA8aMGfPd0irK58+fMXjwYPD5fMjIyOD8+fNiC7nK69q1K+7cuYORI0d+h1RSFPUzEBRcyMjIYM2aNZUKucrjcrnw8/MT+7GR+nkMGzYMAJCQkIDY2Fix4QStJLy9vWkBJ0V9Z7Sgi6J+A9LS0hg4cCCAqvsK+PfffwEAgwYNgrS0tERxFxcXY/PmzWjbti20tLTA4XCgq6uLLl26YM+ePeDz+dXGkZGRgQkTJsDc3JzpuL179+41LgjKzc3FsmXL4ObmxqRFT08P3t7eOHLkyA9R7dre3p75Oz09XWQYPp+Py5cvIyAgAG5ubtDU1ASbzYaqqioaN26MgIAAvHz5ssrtVOzb4tWrV5g+fTosLCwgJycHDQ0NeHp64ty5c1+1P4WFhejRowfTt8iKFSuElvN4PISEhMDT05Pp5FtFRQUNGzZE+/btsXTp0u/Sybegv4qioiKxYW7evIl58+bBw8ODSauysjJsbGwwbtw4idL55MkTTJo0CXZ2dlBSUgKHw4G+vj5Tq+zgwYNVpuH169f4448/4OLiAnV1dXC5XBgZGaFfv34SXw/79u2Dh4cH1NTUoKioCDs7OwQGBiInJ0ei9auzYsUK5lpau3YttLW1q11n9uzZTC2es2fP4uHDh5XCVBz5NDk5GaNHj4apqSm4XC50dHTg4+ODmzdvflX6//nnH2RnZwMApkyZgpYtW0q8rqysLPr27StyWcXRxy5fvoy+ffvCyMgIbDZbZJ8p169fx9ChQ2FqagpZWVmoqqrCyckJ8+bNw9u3b8WmIyQkhNleWlqa2HDVjZxasT8XwX3C0tIS8vLy0NLSQteuXeu1qebXXpfV9X1UMd/du3cPfn5+MDMzA5fLFVqvrvPos2fPMG3aNNjb20NFRQVycnIwNzeHn58f7t69W+W6hYWF+Pvvv+Hh4QEtLS2w2Wyoq6vDysoKnTt3xpo1a8TmjXv37mHkyJGwtLSEgoICZGVlYWRkBGdnZ0yYMAEnT56s9fMyJSUFq1evhre3N0xNTSEnJwc5OTmYmJigf//+1ealinmbz+dj+/btaNmyJdTU1KCgoAAHBwcsWbJEogF2EhMT4efnxwyUYWRkhEGDBtXZRw/Bs1hTU7NWBRmC/V2wYAEzT9QADeXPZV28I1SUnJwMf39/mJmZQVZWFnp6eujXr1+1eflrRvEVd20K7ktRUVEAyvrCqng8BPesv//+m5knyXXXu3dvsFgsqKurf1UzQltbWzg5OQEQ/179/v17ZjCWoUOHShw3j8dDaGgounXrBn19fXC5XGhoaKBVq1ZYs2YNvnz5UmkdwbEMDQ0FALx48UJkPiqvJve+moy6ePbsWQwZMgTm5ubM/cXMzAy9e/dGSEiIyOs2JycHS5YsgaurK9TU1MBms6GlpQUbGxv4+Phgy5YtePPmjcTHkKIAAISiqF/SlStXCAACgAQHB5P79+8z/z969KhS+ISEBGZ5bGwsCQ4OZv6/cuWKyG2kpqaSRo0aMeFETa1atSLv378Xm86rV68SZWVlsesHBQWRwMBA5n9xLl68SDQ0NKpMS5cuXcinT59Erm9iYkIAEF9f3yqPqzipqanMdqqK4+PHj0w4R0dHkWHK76+4SV5enhw7dkzsdtzd3QkA4u7uTq5fv040NTXFxrVy5cpq9yk4OLjS8ry8POLh4UEAECkpKbJ9+3ah5Z8+fSKtW7eudl969+4tdj+qUv44icujAlpaWgQAadSokcjl5fO7uElaWpps2rRJ7DYOHTpEOBxOtfHEx8eLXH/Pnj1EQUGhynVHjhxJSkpKRK5fUlJC+vbtK3Zdc3NzkpKSwvwfGBhY5TET5cOHD0RKSooAIIaGhoTH40m87tatW5ltT5s2rdLy8tfgsWPHiLy8vNjzcODAgRqnXcDJyYkAICwWi6SlpdU6norKH9e5c+dWSreJiQkTlsfjkQkTJlR5rlVUVMiFCxdEbqt8fk1NTRWbpuquYV9fXyZtd+7cIdra2mLTM3369K86PoLzW/44VKcursvqnh/l892WLVuIjIxMpW2ICvu1eXTlypWEzWaL3S8Wi0X+/PNPketmZmYSGxubao/NjBkzKq27Zs0a5hquahL3rKxK+ftLVdOQIUPE3sfKn/OEhATSvn17sfE0a9aM5Ofni03PwYMHCZfLFbmujIwM+eeff4Sugdqwt7dnzldV7zriSJLHK17ndf2OcPbsWbHPHikpKbJ27Vqx8VT1PCn/HirqGS3u2hSck6omwfl6//49c47HjBlT1aEmb9++Za65CRMmVBlWlPLpTU1NJWvWrCEAiK6uLiktLa0UftOmTQQA0dTUJMXFxUL7Jc6LFy+Io6NjlftuYWFBkpOTxaatqqm8mtz7qjuXhBDy7t27Kq9XwVTxWfT48WOir69f7XobNmyo5gxRlDDaRxdF/SacnJxga2uLhIQE7N69G8uXLxdaLvgiZWdnh8aNGyMuLq7K+PLz89G+fXukpKQAAHr27IkRI0ZAX18fqamp2LhxI6KionD9+nV4e3vj6tWrlWqJvXz5Et26dUNeXh6kpKTg7++PPn36QEVFBQ8fPsTy5csRFBQEFxeXKtMSHR2Nzp07o6SkBDo6Opg0aRIcHR2hr6+PzMxMHDx4EHv27MHZs2fh6+uLo0eP1vDo1Z3ExETmb3Gj4pSWlkJPTw8+Pj5wdXVlarqlp6fjxo0b2Lx5M/Lz8zFo0CDcv38f1tbWYreXlZWFnj17QkpKCsuXL0erVq3A4XBw/fp1LFy4EDk5OZgzZw46d+4MW1tbiffj7du36Ny5M+7duwcOh4Pdu3ejX79+QmGCgoJw7do1AEC3bt0wePBgGBsbQ1ZWFtnZ2YiNjcXp06e/+ShToaGhTO2YHj16iAxTWloKNTU19OjRA23atEHDhg2hoKCAzMxM3L9/H3///TfevXuHiRMnolGjRpWGFX/z5g2GDx+O4uJiaGtrY+LEiWjRogU0NTXx5csXPHv2DFFRUWJHPj106BCGDh0KQgjMzc0xceJE2NjYQEtLC2lpadi5cyfOnj2LnTt3QllZGWvWrKkUR0BAAA4fPgwAsLKywqxZs+Dg4IDc3FwcPnwYO3bsQP/+/b/iSJZda4Jaml26dKmymU5F3bt3x9ixYwGAyReixMfH4+DBg9DT08OMGTPg4uICQgjOnz+P5cuXo7CwEP7+/mjXrh20tLRqlP7c3Fw8ePAAAGBtbQ0TE5MarS+JY8eOIT4+Hvb29pg2bRrs7Ozw5csXoXvq//73P2YUUDMzM8yePRtNmjTB58+fcfLkSWzcuBG5ubno1q0bbt++DUdHxzpPZ3kFBQXo27cvcnNz8b///Q9dunQBl8vFrVu3sGzZMmRlZWHNmjUwNjbGlClTvmlayvva67Im7ty5gz179sDIyAgBAQFwcXFBaWmpyLz6tXl05cqVmDVrFgDAwcEB48aNQ8OGDaGqqork5GRs3LgRMTExWLRoETQ1NTF58mSh9SdNmsTUZBsyZAh69eoFfX19SEtLIysrC3fv3hXZF9DDhw8REBAAPp8PMzMzTJw4EY0bN4a6ujo+ffqE5ORkXLlypdb9CPF4PHA4HHh6eqJjx46wsbGBuro6Pnz4gCdPnmDTpk1ISEjAnj17YG5uLlSLSZTRo0fj5s2b8PX1Rb9+/aCrq4uXL1/ir7/+QkxMDG7fvo3Fixdj2bJllda9c+cOBg8ejNLSUnC5XEybNk0oXy9duhTjxo2DjY1NrfZVoEmTJoiPjwchBKNHj0ZoaCgUFRUlXr9nz55wcXHB5s2bsWXLFgBg+vwqz8DAgPm7Lt8RMjMzMWjQIMjIyGDp0qVMLfArV65gxYoVyMvLw7Rp02BqaoqePXtKvF9fY8mSJQgICMDw4cNx9+5duLi4IDg4WCgMh8MBAKirq6NXr17Yv38/Dhw4gLVr10JOTk5kvHv37mUGHxH02/k1Bg0ahJkzZ+L169eIiIiAl5eX0HLBe/WAAQPAZrOrje/9+/do1aoV0tPTweVyMXr0aLi7u8PU1BT5+fm4cOEC1q9fj2fPnqFz5864f/8+VFRUAADjx49Hnz59MG/ePJw4cUKiQT8EanLvE6egoABt27Zl8q6zszP8/f1hZ2cHLpeL9PR0XL16VWTfv0OHDkVmZibYbDZGjx6Nzp07Q1dXF3w+HxkZGbh58yaOHz8ucVooilG/5WwURX0rFWt0EULIihUrCABiZGRE+Hw+E5bP5xMjIyMCgPz111+EEFJtja6AgABm+bx58yot5/P5ZPDgwUyYzZs3VwrTp08fZvm+ffsqLc/Ly6v0Zaui4uJiYmpqSgAQLy8v8vnzZ5HHY/v27UwcompJfK8aXd7e3ky43bt3i42ruLhYbBzp6enEwMCA4P+/jIsi+FqL///ymZGRUSnMtWvXCIvFIgDI5MmTq9yn8l/gXr58SaysrJivxuHh4SLTIMhTffr0EbsvhJBafQUnRPgL5q5du0h8fDwzxcXFkfPnz5OpU6cytaxsbW3J27dvRcaVkZEhNu8QQkhOTg5xcHAgQFktxYp27tzJpEVcjS1CCCkoKCAFBQVC896+fUtUVFQIADJixAixNR0EtYSkpKRIUlKS0LKHDx8ytTSaNGkisjZGaGio0LVUmxpdixcvZtbfunVrjdfX1dUlAAiHw6m0THANAiDOzs4kNze3Upg9e/YwYdasWVPj7V+/fp1ZX9y1U1vlj2379u1JYWGhyHDlz5WdnR35+PFjpTDnzp1jwjRr1qzS8rqu0QWAsNlsEhUVVSnMq1eviKGhIQFAFBQUSHZ2ttjtVUVwfvX19YWu1YpT+ZoKX3tdEiJ5jS4AxN7eXuT5EBW2tnk0ISGBqVUSGBgo9CwW4PF4ZMiQIQQAUVRUJB8+fGCWffnyhVlfVI2t8ireW//880/mPL5+/Vrsejk5OTWqrSmQn59PMjMzxS7n8/nEz8+PSUNOTk6lMBVrOIl6ThYWFhI7OzsCgGhoaIi8Z7q4uFSZrzMyMph8LXhO1satW7eEasipqqqSoUOHku3bt5MHDx6IrOkjiiQ11wXq+h1BRUWFPH78uFKYR48eMTXuDQwMRG6zqudJbWt0VUyju7u72H0lhJBLly4x8ezdu1dsOMH7pLja9NWpWKOLEEI6d+5MAJBBgwYJhX369CkT9vbt24QQUm2NrkGDBjF5MSUlRWSY+/fvM7Xv5s6dW2l5TWoo1uTeV925nDZtGrN8woQJIu9rhBBSVFQkdO95/vw5s15VNbb4fL7QfZCiJEELuijqFyWqoCsjI4N5Ibt8+TIT9vLly8wPaEGBSFUFXYWFhURVVZUpPBD3Ipebm8s0J7SxsRFalpWVRaSlpQkA0q1bN7H7cevWrSoLuv79918CgMjKylb7A6xZs2YiX0gI+bYFXR8/fiQ3btwQKuRydXWt8kW1OuvWrSMAiLKyssgXivIvsSdPnhQbT4sWLQgA4uTkVOU+CfJQUlISMTY2Zl7oo6OjxcYt+DG2fv36mu+gBCStqq+iokKWLFlS5UucJMLCwpg43717J7RsyZIlBABRU1OrcbwLFy5kfkiIKxwhpKxpouDHS8UX3PHjxzNpu3v3rtg4BC/ltS3omjp1KrN+WFhYjdcvX3Cdl5cntKz8S/eDBw9Ers/n85kmDj4+PjXefvlzKKr5ZHmPHz8WWxgjqrmUIF4pKakqC5/GjRvHhL1586bYcKNGjar0Q0ngWxR0TZw4UWw8Bw8eZMKJa+pcnfLnt6qppgUOVV2XhNSsoOvq1asS70Nt8+iIESMIAOLi4iL2xyAhZc8NQZOs8s3CX716xaThxIkTVaa3otGjR4u9338v79+/Z579R44cqbS8fN7u1auX2HjKN4WueC5u375d43xd24IuQgjZsWOH2GaoCgoKpGPHjmT79u1VNrOsSUGXJGryjrBq1Sqx8Qg+kAIghw8frrS8qufJ9yro4vP5pEGDBgQA6dChg8gw9+7dY7ZV23cSUQVd+/btI0DZR7/yH5jmz59PABArKytmXlUFXampqcx1cerUqSrTMWvWLAKUfTSoqLYFXdXd+6o6lx8/fmSacTs7O0tcuEsIIdHR0dXeUymqtmhn9BT1GzEwMEDbtm0BCHeeKfi7Xbt2QtXjxbl37x7TsbWfn5/YjuuVlZWZ5myPHz9GVlYWs+zKlSvg8XgAykbFE6dZs2ZVNqk7efIkAMDd3b3aZkxt2rQBAMTExFQZ7muFhoYKdf6ppqaGli1b4tSpU2Cz2fDz80N4eLhEVdkBIC8vD6mpqUhISMCjR4/w6NEjyMvLCy0TR1VVFV27dhW73NnZGQCYJqhVuX//Plq3bo2XL19CV1cXUVFRVXbkraenBwA4ePCgRJ0Gfyu5ubn4559/RFaZF+fz589IS0sTOublz5eg+ZuAYF8/fvxY42Y/gjzcrVs3cLlcseFkZGTg6uoKoHIeFnRUb29vz5xTUb62ucanT5+Yv2vSPEfUOnl5eSLD2Nvbw8HBQeQyFovFdAAsSZ6tqHz6FRQUqgzr6uoKe3t7kVNVHVm7ubmJbZYM/HeubG1t0bx5c7HhRo8eXWmdb6mq+7CPjw/T0XZ9jhZb0+uyJoyMjNC6dWuJwn5NHj116hSA/zrFFkdVVZUZvKT89a6hocE029q9ezdKS0slSjPw333q8ePHuH37tsTr1VZJSQkyMjKQmJjInK/MzExoaGgAqP58DR48WOyy8ve5ise5fB6VNF9/jVGjRiE+Ph7Dhw+HkpKS0LLPnz8jIiIC/v7+aNiw4TcZ2OFr3hFYLBZ8fX3FLh8+fDiTT3/UkaJZLBbzbLt8+bLIjvgFTR85HE6V+aqmevbsCSUlJRQUFODYsWPM/D179gCQvBP6M2fOgMfjQV5eHp07d64yrOBdNjMzs8aDDohSk3ufKJcvX2be8SZPnizxYFbAf/ckACIHTKGor0ELuijqNyMYEvno0aP48uULvnz5giNHjggtq86jR4+Yv6v6oVZxefn1yvdB0bRp0yrjaNasmdhlgpGpzp8/L3KEmfLTqlWrAJSNbFdfGjZsiGnTpkFZWbnKcC9evMCkSZNgamoKFRUVmJubw87Ojvmh7e/vz4R99+5dldurqh8ldXV1AMIFAKJcu3YNbdu2xdu3b2Fqaorr16+L/aEnIHh5vnHjBtMfzPHjx6scTa62rly5AlJWSxmEEPD5fOTk5CAqKgo+Pj5ITU3F2LFjMX36dLFxvHv3DnPnzoWVlRWUlJRgZmYmdMzLFxhWPObdu3dnfjD5+PigXbt2WLt2Le7du8cU6IrC4/GYvpu2bdtWbR4WXKvl83BRURGePn0K4OuuJUmU/xGXn59f4/XLryPuGmjUqFGVcUiaZ0Upn/7Pnz/XeH1JVHVdlD9X1d07nZycmEKc8vfOb4HD4VTZDxibzWYKb0T1H1QTJiYmQtdqxaniSIFfc13WRHX3s/Jqm0dfvHjB3P/mzJlT7fUueL6Vv965XC7T196RI0dgYWGBWbNm4ezZs9WOrDpw4ECw2WwUFRXBzc0N3t7e2Lp1Kx49elRnoxKXlJRg06ZNaNGiBRQVFWFkZAQbGxuhgmLBqKfVna+qjrPgGAOVj7Mgj9YkX38tKysr7Nq1C+/fv8eNGzewZs0aDB48GIaGhkyYrKwsdOvWrU4KjOrqHcHMzAyamppil2tpaTEF91977X9Lgo+ufD6fGXlQoKioCPv27QNQ1k+noKC1LsjJyaFPnz4A/vtofP36daSkpIDFYmHIkCESxSO41gsKCiAjI1PlfaFbt27MenXxPluTe58osbGxzN81LTAzMzNj1lm7di1sbW0xf/58ocIziqotWtBFUb+ZXr16QV5eHnl5eThx4gTCwsLw6dMnKCgooFevXhLF8eHDB+ZvbW3tKsPq6uqKXK8mcejo6IhdJnhhrglRQzPXpR49eiA+Ph7x8fF48OABzp07hylTpkBWVhaPHz+Gh4cHkpOTxa5/7tw52NjYYOPGjXjx4kW126tqfwRfdcURFIIJOhgXZ9euXUwNnIMHD6JBgwbVpuvPP//EiBEjwGKxkJ2djU2bNqFXr17Q1taGnZ0dAgMDv9lw0SwWCyoqKmjTpg2OHTuGQYMGASh7kRL1I+PevXto1KgRli1bhidPnlT7o6/iMdfQ0MDJkydhYGAAQgiuXLmC6dOnw8XFheks9/Tp05Xi+fDhQ41qZAiUfwH8+PEjk96vuZYkUf4HUW1esAXnm8PhVKr5ICBpnq2qAFGc8j9wqitwzcnJESqACQwMlGgbampqYpd9/PiR+bu6c8Vms5n0lr9ffgvq6urVfoUX5J1vnZbyvva6rImqzltFtc2jtXleAaj0g2/jxo3w9vYGUFbgsXLlSnTt2hUaGhpo2rQpVq5cidzc3ErxNGrUCPv374eamhpKS0tx+vRpjBs3Dvb29tDW1sbQoUNr1AF1RR8+fICrqysmTpyIW7duobi4uMrw1Z2vqo5z+Q84FY+zII/WJF/XFTabDVdXV0ybNg179uxBeno6Ll26xNRM5/F4GD9+/FcVLNblO0J19yGgfq79mtLX10eXLl0AlNUMKn98T5w4waS9Ljqhr0hQa+vy5ct49eoVU+DVpk0biQc8qat7Q23U5N4nSvmC1PI1tCS1f/9+prb648ePsWjRIrRv3x6qqqpo06YNtm7disLCwq9KI/V7ogVdFPWbUVRUhI+PD4Cyr0+CB7KPj0+1TXlEqYsR874mDsELbufOnZnCJUmmb0lVVRV2dnaws7ODg4MDvLy8sG7dOpw+fRoyMjL4+PEjBg0aJPKH+rt37zBo0CAUFBRAUVERQUFBiImJQXZ2NoqKipgf3ZcuXWLWqasv8VXp0aMH84Nh6NChQs1QxWGz2di5cycePXqEefPmoWXLlkyTm4SEBCxcuBAWFha1HuGrJmbOnMn8vWvXLqFlxcXF6NevH96/fw82m43p06cjKioKWVlZKCwsZI758+fPmXVEHfPWrVvj2bNn2LNnDwYNGsR8yc/Ly8Px48fh7e0NLy8voRfT8nlA0PxFkunChQsi9/Nbj2BZ/stv+a+4ksjKymIKx772C3Jt2dnZMT+Qa5p+SUnabONbn6ua+JHSIlBX16WkatLcprbKX+/z58+X+HqvOOKcsrIyTp48iVu3bmHGjBlwdnZmarPcvXsXs2bNgqWlpchm+r1790Zqaiq2bduGXr16MU3+3717hz179qBNmzbw8/Or9uOHKFOmTMG9e/cAlDXpOnnyJNLS0lBQUAA+n8+cMyMjIwDf/tn1o+Trdu3aISIigqmF9vTp02pHthanrt8RfpRjVBdGjRoFoKwp69WrV5n5guvH0NAQnTp1qvPtenh4wMjICHw+H8HBwTh06BAAyZstAv/dGzQ1NWv0LltdLW5JfI97X1UMDAxw48YNXLx4EePHj4etrS1YLBZKSkpw7do1jBs3DnZ2dnjy5Em9ppP6+cjUdwIoivr+hg0bhr179wr9WJa02SIg3GTgzZs3sLS0FBu2fK2P8uuV/4L05s0b5sVXlKpq/WhoaCAzMxPFxcWws7OrNu31qX379pgyZQpWr16N+/fvIyQkBCNHjhQKc+TIEab5yfHjx9GhQweRcX3vL6s9e/bEgAEDMGTIEDx58gTt2rVDZGSkRF/DbWxssGjRIixatAiFhYW4fv069u3bh3///Rf5+fkYOHAgnj9/XqsvgZIq3wSmYkHn5cuXmT5eNm/ezLwsVyTJMZeVlcXgwYOZPkBSU1Nx5swZbNiwAU+ePMH58+fxxx9/YO3atQCErwlCSK3ycPk+ZqqrIfe1NehatWoFKSkp8Pl8nDlzBnw+v8qmseUJ+iID/utj5HtTVVWFo6MjYmNjkZiYiJcvX8LY2Pi7bb/ifa8qpaWleP/+PQDhfAII12apqkBC0uaZ79+/B4/Hq/IHjyC9FdPyrdTldfmjKF+jkM1mf/Uzq1mzZkxz5E+fPiEyMhIhISE4duwYsrOz0bt3bzx//hxycnJC66moqMDf359p3paYmIgTJ05gw4YNyMzMRGhoKJycnDBlyhSJ05KXl8f0gzh48GCmjyJRytds/BYE11lN8vW3pqenh65duzIfF589e1arZpN1/Y4gyf5/72u/trp27Qo9PT1kZWUhODgY7u7uePXqFfOu6+vrK/HzqiYETRSXLVuGJUuWoLCwELKysujbt6/EcQjuDZ8+fYK1tXW9Fz7VRPma3llZWTAzM6tVPO3bt0f79u0BlF27Fy9exPbt23H58mU8f/4c/fv3/2YfqKhfE63RRVG/ofbt20NPTw+lpaUoLS2Fvr4+83CRRPmX81u3blUZtnyHt+XXE3SyC6DKjp2rWy54Ubx79261zSR+BHPnzmX6JlqwYEGlNCckJAAoe6EU9wIL/Nefw/c0YMAAhIaGQkpKCklJSWjXrl2Nq9vLysqiQ4cO2LVrF1auXAmgrFmFqGZ9dal888CKTQUFxxwA0/eNKLU55oK+ye7cucPU8BJ87QXKmvAJmrRER0fXOH6g7Jg2bNgQwNddS5JQU1ND9+7dAQAZGRlCne9WhcfjYfPmzcz/fn5+X5WOryEo1Ofz+di0adN33TaXy2XOVXX3ztjYWJSUlABApQKR8s0+qyo0kPQLeHFxcZUdg5eWljI1UL7XB4VveV3WF3Nzc6ioqACo/fUujpKSEry9vXH06FFMnjwZQNmPzuvXr1e7rrW1Nf73v//h5s2bTM3u8vcpSTx9+pTJr1Wdr6SkpFr171cTgveLmuTr70FfX5/5u2JNKklrVtX1O0JqaipToC7K27dvmX7zvvfHxJrWNpOWlmaeLUeOHEF+fj5CQ0PB5/PBYrGqHJjgawlqbwma2PXo0aPavljLE7zLFhUVfdU9rT5q6DVp0oT5u3xNuq+hoaGB/v3749KlS8w7R1xcHNPHJUVJghZ0UdRvSFpaGkOHDgWXywWXy8XQoUNr9JXL2dmZqUUieIkQ5dOnT8zLso2NjVCNnbZt2zJfrCp2HFrenTt3quyIWfAAzM3NrdS840ekrq6OCRMmAADS09Mr7bugEKawsFDscS0oKBAaNfN7Gjx4MIKDgyElJYXHjx+jffv2te4Aunzh6td0Ii2J8i+OFWsPli/4ElcDhs/nY8eOHbXevrKyMtPEQFRH9kDZD8Dz58/XKn7BD574+Pgqv3hWbLZZGzNnzmRepqdNmybRuVu5ciUePnwIAOjSpYtQQff3Nnr0aKa51tq1a6stcKprgnOVkJBQ5ch3//zzT6V1BMp/Ma/qR9H+/fslTldV9+Hjx48zBWpV/biuS9/juvzepKWlmX6ELly4gMTExG+yndreW42MjJga2jW9J0tyvgBg69atNYq3NsrnUUnzdW3VpPll+WvV3NxcaJmsrCzzd1FRkdg46vodgRCCf//9V+zy8v1dfa9rX0BwTKo6HhWNHDkSLBYLnz9/xsGDB5mR/Nq0aSNR36K1ZW1tjRYtWjDv1TVpJQEA3t7ezHN13bp1tU5HbY7Z12rbti1TQL5hw4Za9Z9Zle/5rkj9WmhBF0X9plasWIHCwkIUFhZi+fLlNVqXy+UyzUgePXqERYsWVQpDCMHEiROZh9LEiROFluvp6aFHjx4Aypo0ifp6nJ+fjzFjxlSZFl9fX6bgIiAgoNqvSdevX0dUVFSVYb61adOmMZ3sLl++XOilQFDbo6CgQOQx4fF4GDVqFDIzM79PYkUYNmwY/vnnH7BYLDx69Ajt27ev9EX4w4cPOHXqVJU/Aso3na1tVXdJFBUV4c8//2T+Lz9KG/DfMQfED289Z84c3L9/X+w2zp8/X2W/Zbm5uUyhRsV9nTJlChQVFQGUDeVeviaLKGfOnGEKjQTGjBnDvCT7+/uL/KG5d+9enD17tsq4JdGyZUtMmzYNQFmtrg4dOlQaKU+AEIJ169Zh7ty5AMoKerdt2/bVafgaCgoK2L17N6SkpFBSUoJOnTohLCys2vXqqrnVuHHjmA8L/v7+zCAP5V24cAE7d+4EUNY8rWI/LHZ2dkwzoo0bN4r8UXPo0CEcPnxY4nRt2bJFZO2f169fIyAgAEBZ5+CC0VS/tbq4Ln9Ec+bMYfrT6tOnDzIyMsSG5fF42Lt3r1CYlJSUap9h4u6tYWFhVY7MmJ6ejqSkpErrScLCwoK5B4WGhoq89586dQobN26sUby10axZM6aWibh8nZWVxeTrr9GrVy9s3ry52mbCISEhTL9ZxsbGlZotlv8QWL7fuYq+xTvCokWLRA6Qk5iYiCVLljDpE7yzfS+CY5KSkiJxgWKDBg3g4eEBAJg3bx5TA+hbdEJfUUxMDPNeLSjQlpSVlRXT1PHAgQNYs2ZNleFTU1NFfsgQHLPs7OxajUxcG6qqqsy7+r179zB16lSx56ukpESoJUBcXFyVtSoJIcwAQiwWixkBlKIkQfvooiiqVubPn49jx44hJSUFQUFBiI+Px/Dhw6Gnp4fU1FRs3LgRkZGRAABXV1ehoa4FVq9ejYiICHz69AmDBg1CVFQU+vTpA2VlZTx8+BDLly/HkydP4OLiIrbWApfLxaFDh+Dh4YH8/Hy0a9cOAwYMQM+ePWFmZgY+n4+srCzcu3cPx48fR3x8PDZs2AB3d/dveXiqpKWlhdGjR2P9+vVISUnBvn37mGrv/fr1w9y5c1FUVIThw4cjLi4OHTt2hIqKChISErBhwwbcu3cPbm5udd70pSaGDx+O0tJSjBkzBg8fPkTHjh1x6dIlpm+UvLw8dO/eHaampujVqxeaN28OExMTyMjIICsrC6dOnWJqrBgYGAgNl10bqamplYZIz8vLQ1xcHDZv3swUHllYWFTKi56entDW1kZ2djbmzZuHtLQ0+Pj4QFNTE8+ePcOOHTtw6dKlKo/5/v374e3tjY4dO6JTp05MQcSnT5/w6NEjbNy4Ea9evQIAjB07VmhdHR0dhIaGok+fPsjKyoKLiwv8/PzQuXNnGBoaoqSkBBkZGbh9+zaOHDmClJQUnDp1SqhDd0dHR0yYMAEbN27E3bt34eLigtmzZ8Pe3h65ubk4fPgwtm/fXuW1VBPLli1Deno6Dh8+jAcPHsDW1ha+vr7w8vKCgYEBCgoK8PDhQ4SGhjLNJVVUVBAWFsY04axPnp6e2LZtG8aPH4+8vDz4+PigadOm8PHxgbOzM9Nfyrt37/DgwQMcO3ZMqOZXxT6PasLe3h4zZszAypUr8eDBAzRp0gSzZ8+Gk5MTPn/+jFOnTuHvv/8Gj8cDh8MRWTAoIyODMWPGYNmyZXj06BHatWuHWbNmwdjYGG/evMHhw4cREhKCli1b4saNG9WmSUtLC/Ly8ujYsSOmTZuGLl26gMvl4vbt21i6dCnzo3nRokUSjdJWF+riuvwR2dvbY9WqVZg2bRoeP34MOzs7+Pv7o127dtDR0UFhYSHS0tIQExODI0eOICsrC/Hx8cx18/LlS7Rt2xY2Njbw8fGBi4sLDAwMAJQVVB08eJApAGncuDGaN2/ObHvdunUYPHgwunbtinbt2sHa2hoqKir4+PEj7t69iw0bNjAj9FW8T1VHQ0MDXbp0wZkzZxAeHo5OnTph3LhxMDExQXZ2No4ePYqQkBCYm5sjJyen2lFPv9bmzZvRqlUrlJSUVMrXt27dwtKlS/Hu3Ts4OjpW2byxOunp6ZgwYQJmz54Nb29vtGnTBlZWVlBTU0NhYSGSkpJw+PBh5iMDi8XC2rVrKzUxa9myJfP3tGnT8Mcff0BPT48JZ2pqChkZmTp/R7CwsMDbt2/RokULzJ49mykkioyMxPLly5nROzds2MAMJvO9tGzZEsHBwcjOzsb06dMxZMgQpukvm80WO6LhqFGjcOXKFaaPWGVlZfTp0+e7pbu2tmzZgrt37yIlJQUzZszAiRMnMGzYMNja2oLL5eL9+/d48OABwsPDcfnyZfj4+GDgwIFCcQjyEZ/Px9ixYzFp0iShdyMLC4tvkvZFixYhIiIC8fHx2LhxI2JiYjBmzBjY29uDw+EgIyMD165dw/79+7F48WKmiWlcXByGDx+Opk2bwtvbG02aNIGuri5KSkqQmpqK4OBgREREACir/f4t+3KlfkGEoqhf0pUrVwgAAoAEBwfXeP3g4GBm/StXrogMk5qaSho1asSEEzW5ubmR9+/fV5lOJSUlsevPnz+fBAYGMv+LExMTQ4yMjKpMi2AKDQ2ttL6JiQkBQHx9fWt6qJhjIYhfkjjS09MJh8MhAIi1tTXh8XjMsl27dhEpKSmx6e/fvz+5ePFilefH3d2dACDu7u5VpqOqY1t+n8TloS1bthAWi0UAEGdnZ/Lx48dK61Y16enpkbt371Z7vKpLuySTo6MjSU1NFRlXeHg4kZWVFbuuh4cHefTokdjj4evrK1Eaxo4dK3Suyzt58iRRV1evNg4pKSly+fLlSusXFxeTXr16iV3PzMyMPH/+nPk/MDCwVsddgMfjkQULFhB5eflq09yiRQsSHx9fZXySXoOCY21iYvJV6SeEkKioKOLo6ChxHnJ1dSXXrl0TGVdNjiuPxyPjx4+vclsqKirk/PnzYuP4/PkzadGiRa3zLCHCx/LOnTtEU1NTbHyTJ0+W9LCKJDi/NTlvX3tdElL1Pa58uiS5b9dlHt2+fbtE1w6HwyFPnz5l1iv/bK9qatSoEUlJSRHapuC5UN39ZdGiRdUeC1FevnxJjI2NxcZtbGxMEhISqjyO5d89xN2vCZHs+bRv3z7mOVtxkpGRIdu3b//q+0mPHj0kvn+oqKiQf//9V2xc/fr1E7tu+WNR1+8Ip0+fFpsXpaSkyKpVq8Smuar7Xvm8KioN1V2bnz59Iubm5iLTVdX5+vLlC1FTU2PCjh49WmzYmiif3qrypjjl3xPEycrKIq1bt5YoPw0fPrzS+jwer8rnQnk1ufdVdy4JIeTt27ekTZs21aa7/PVa/nqvamrZsiV59+5dtemkqPJo00WKomrN1NQUDx48wMaNG+Hu7g4NDQ2w2Wzo6OjAy8sLu3fvxtWrV6scqcfDwwMJCQnMl18OhwMdHR107doV4eHhWLBggURpadGiBZ4+fYqtW7eia9eu0NfXB4fDgaysLIyMjNCpUycsWbIESUlJNe474VswNDRkmgAlJibi6NGjzLLhw4fj2rVr6NmzJ7S0tMBms6GnpwcvLy8cPHgQBw4c+GFG5Bk7diw2bNgAoKzKeqdOnZCbmwsTExPcvn0bQUFB6NSpE6ysrKCqqgoZGRloamqiTZs2WLlyJZKSkuDs7PxN0iYvL8/UKNu3bx/u3r0rttq7p6cn7t69iyFDhkBfXx9sNhtaWlpwd3fH9u3bcenSJaYPClHWrl2LPXv2YMSIEUwNCw6HAzk5OVhaWsLX1xfXrl3Dli1bxPaH5+3tjdTUVKxatYqp3cFmsyEnJwczMzN069YNa9asQVpaGtq2bVtpfTabjaNHj2L37t1o3bo1VFRUIC8vD2tra8ydOxf37t2r1C/M15CSksL8+fPx9OlTrFixAh4eHsx+q6iowMrKCiNGjMDp06cRExPzQ46K2qZNG8TGxuLs2bOYMGECHB0doa2tDTabDUVFRRgbG8PLywvz589HfHw8bty4gVatWn31dqWkpLBp0yZcvXoVgwcPhrGxMbhcLpSVldG4cWPMnTsXT58+RadOncTGIS8vj8uXL2PJkiWwt7eHnJwc0xfcxo0bcfHixSrzbEUuLi64f/8+Jk+ejAYNGkBWVhYaGhrw8vLC2bNnsX79+q/e75r62uvyRzZ69GikpKRgwYIFcHNzg6amJmRkZKCgoABLS0v07t0bW7duxatXr4RqYbRu3RqRkZGYM2cO2rZtCwsLCygpKTHP3k6dOmHr1q2Ii4ur1Pxw//792L59OwYNGoTGjRtDV1cXMjIyUFRUhK2tLcaNG4fY2FjMmzevVvtkZGSE+/fvY+bMmbC0tASXy4WKigocHR0RGBiIuLg42NjYfNVxq4mBAwciNjYWQ4cOZd4JDAwM0K9fP1y/fh2jR4/+6m2EhYUhKSkJ69evR79+/WBrawsVFRVIS0tDQUEBxsbG6NKlC9atW4dnz54xtbdF2bNnD/766y80a9YMKioqYp8Vdf2O0LVrV9y9exfDhw9n3sO0tbXRu3dvXL9+HTNmzKjxcakLioqKuHHjBqZMmQJra2umy4fqVBzx8Hs0W6wrurq6uHr1Kk6fPo3BgwfD3Nwc8vLyzL2vZcuWmDFjBqKiokT2uSklJYULFy5g3rx5cHR0hKKi4nfroF5TUxNRUVE4duwY+vTpA0NDQ3C5XMjKysLc3Bx9+/bF3r17hWqhDRw4EGfPnsW0adPQqlUrmJmZQV5eHhwOB4aGhujevTv27t2La9euCY1aS1GSYBFSg14UKYqiKIqiqF+Cn58fQkNDYWJiIrafNYqiqJ+Nm5sbbty4ARsbm2r7vaQo6tdEa3RRFEVRFEVRFEVRP73k5GSmb8KfqTYXRVF1ixZ0URRFURRFURRFUT+9FStWAChrwijo9JyiqN8PHXWRoiiKoiiKoiiK+ul8+fIFr169QkFBAcLCwhASEgIA8Pf3p/06UdRvjBZ0URRFURRFURRFUT+dW7duVRqgxcjICEFBQfWTIIqifgi06SJFURRFURRFURT102KxWNDX18eQIUNw/fp1qKmp1XeSKIqqR3TURYqiKIqiKIqiKIqiKOqXQGt0URRFURRFURRFURRFUb8EWtBFURRVDRaLhbCwsPpOxk/Hw8MDU6dO/S7bqniOkpKS0KJFC8jKyqJx48ZIS0sDi8VCXFzcd0kP9e2EhIRAVVX1u2zLz88PPXv2ZP4nhMDf3x/q6upMfvqe+Zz6fkxNTbFu3bpar/898+mPLDIyEiwWCzk5OfWdlN9OTfLw1+b3n833eq8Tlf/DwsJgYWEBaWlpTJ06ld4rKOoboQVdFEX9FPz8/MBiscBiscBms2FmZoZZs2ahsLCwvpNWZwT7V35q1apVvadJ1MtgcXEx/vrrLzg6OkJeXh6amppwc3NDcHAwSkpKvns6s7Ky0LlzZ+b/wMBAKCgoIDk5GZcuXYKRkRGysrJgZ2f33dP2M+LxeGjZsiV69eolND83NxdGRkb4448/mHlHjx5Fu3btoKamBjk5OVhZWWHEiBGIjY1lwoSEhAjla0VFRTg7O+PYsWOVtn3lyhV06dIFGhoakJeXh42NDWbMmIFXr159ux0WY/369cwIXgAQHh6OkJAQnD59mslPx44dw6JFi7572n53FQsh69qdO3fg7+8vUVhRhQT9+/fHkydPJN6eh4cHc33IysrC0tISy5Ytw8/ew0jLli2RlZUFFRWV+k7KD6Pi+4yOjg46duyIXbt2gc/n19l2apKHaxJWEqLeZ8pP37Kj+NevX2PSpEkwNzcHl8uFkZERvL29cenSpW+2TXFE5f8xY8agT58+SE9Px6JFi2p8r6AoSjK0oIuiqJ+Gl5cXsrKykJKSgrVr12Lbtm0IDAys72TVqeDgYGRlZTHTyZMnax3XtypwKi4uhqenJ5YvXw5/f3/cuHEDt2/fxoQJE7BhwwYkJCR8k+1WRVdXF1wul/n/+fPnaNWqFUxMTKChoQFpaWno6upCRqb2gw0XFxfXRVJ/CtLS0ggJCUF4eDj27t3LzJ80aRLU1dWZ62727Nno378/GjdujJMnTyI5ORn79u2Dubk55syZIxSnsrIyk69jY2Ph6emJfv36ITk5mQmzbds2dOjQAbq6ujh69CgeP36MrVu3Ijc3F6tXr/4+O1+OioqK0Jf258+fQ09PDy1btmTyk7q6OpSUlGq9DR6PV6c/bqm6oaWlBXl5+VqvLycnB21t7RqtM3r0aGRlZSE5ORlz5szB/PnzsXXr1lqnQRLf+r7G4XCgq6sLFov1TbfzsxG8z6SlpeHcuXNo27YtpkyZgm7duqG0tLROtlGTPPy1+b2i8u8x69atE7r/Z2VlISAggAlLCKmzfU5LS4OzszMuX76MlStXIj4+HuHh4Wjbti0mTJhQJ9uoiYr5Pz8/H9nZ2fD09IS+vj6UlJRqda+oqD4+MFLUD49QFEX9BHx9fUmPHj2E5vXq1Ys4OTkRQgh59+4dGTBgANHX1ydycnLEzs6O7Nu3Tyi8u7s7mTRpEpk5cyZRU1MjOjo6JDAwUCjMkydPSOvWrQmXyyXW1tbkwoULBAA5fvw4E+bhw4ekbdu2RFZWlqirq5PRo0eTT58+VUrrkiVLiLa2NlFRUSELFiwgJSUlJCAggKipqREDAwOya9cuoW1X3E55PB6PLFiwgBgYGBAOh0McHR3JuXPnmOWpqakEADlw4ABp06YN4XK5JDg4mBBCyI4dO0ijRo0Il8slVlZWZNOmTcx6RUVFZMKECURXV5dwuVxibGxMli5dSgghxMTEhABgJhMTE0IIIStWrCBSUlLk/v37ldJZXFxM8vPzmeM9ZcoUZtm///5LnJ2diaKiItHR0SEDBw4kb968YZZ/+PCBDBo0iGhqahJZWVliYWHBHKOq0lnx2JVPMwASGBjIHJ/Y2Fhmnfj4eOLl5UUUFBSItrY2GTJkCHn79i2z3N3dnUyYMIFMmTKFaGhoEA8PD5Hn5le2fv16oqamRjIzM0lYWBhhs9kkLi6OEEJITEwMAUDWr18vcl0+n8/8HRwcTFRUVISW83g8wmazyaFDhwghhKSnpxMOh0OmTp0qMr6PHz+KjOvZs2eke/fuRFtbmygoKBAXFxcSEREhtO6mTZuIhYUF4XK5RFtbm/Tu3ZtZdvjwYWJnZ8dcz+3bt2fycPn7jq+vr8jroWI+LywsJDNmzCD6+vpEXl6eNGvWjFy5cqXSsThx4gSxtrYm0tLSJDU1VeQ+U+KJeiYIREZGkqZNmxIOh0N0dXXJ7NmzSUlJCbM8Ly+PDBo0iMjLyxNdXV2yZs2aSufRxMSErF27lhBSlpcDAwOJkZER4XA4RE9Pj0yaNIkQUnb+K95zCBGd50+ePElcXFwIl8slGhoapGfPnsyyitsnhJAmTZoQHx8f5v/q8hYhhGzfvp0YGhoSOTk50rNnT7J69WqhdAQGBhJHR0eyY8cOYmpqSlgsFiGk7PoaOXIk0dTUJEpKSqRt27bMtU4IIXFxccTDw4MoKioSJSUl0qRJE3Lnzh1CCCFpaWmkW7duRFVVlcjLyxMbGxty5swZQgghV65cIQCY65cQQo4cOUJsbGwIh8MhJiYmZNWqVUL7YGJiQpYsWUKGDx9OFBUViZGREdm2bRv5VYjLu5cuXSIAyI4dOwgh1Z8TQqrOU5Lm4YphCSHkxYsXpHv37kRBQYEoKSmRvn37ktevXzPLBfno33//JSYmJkRZWZn079+f5OXlVdqviteCIE+cPXuWNGnShLDZbHLlyhXC4/HI0qVLiampKZGVlSUODg7k8OHDQnFV99zu3LkzMTAwYO7h5ZXPgxXft2bNmkUaNmxI5OTkiJmZGZk3bx4pLi5mltdF/hf8XX66cuWKyHtFWFgYcXJyIlwul5iZmZGgoCChexgAsnnzZuLt7U3k5eUrvctSFEUIrdFFUdRP6dGjR7hx4wY4HA4AoLCwEM7Ozjhz5gwePXoEf39/DB06FLdv3xZaLzQ0FAoKCrh16xb++usvLFy4EBEREQAAPp+PXr16gcPh4NatW9i6dStmz54ttP7nz5/h6ekJNTU13LlzB4cPH8bFixcxceJEoXCXL19GZmYmrl69ijVr1iAwMBDdunWDmpoabt26hbFjx2LMmDHIyMiQaH/Xr1+P1atXY9WqVXj48CE8PT3RvXt3PH36VCjc//73P0yZMgWJiYnw9PTE3r17MX/+fCxZsgSJiYlYunQp/vzzT4SGhgIA/v77b5w8eRKHDh1CcnIy9u7dC1NTUwBlTRmA/2qZCf7fu3cvOnToACcnp0rpZLPZUFBQELkPJSUlWLRoER48eICwsDCkpaXBz8+PWf7nn3/i8ePHOHfuHBITE7FlyxZoampWm86KsrKyYGtrixkzZlT6ciyQk5ODdu3awcnJCXfv3kV4eDjevHmDfv36CYULDQ0Fh8NBdHT0N69Z8SOaNGkSHB0dMXToUPj7+2P+/PlwdHQEAOzfvx+KiooYP368yHWrqsHB4/GYPNikSRMAwOHDh1FcXIxZs2aJXEdcHyb5+fno0qULLl26hNjYWHh5ecHb2xsvX74EANy9exeTJ0/GwoULkZycjPDwcLRp0wZAWV4ZOHAgRowYgcTERERGRqJXr14im4utX78eCxcuhKGhodD1UNHEiRMRExODAwcO4OHDh+jbty+8vLyErtWCggKsWLEC//zzDxISEr76az71n1evXqFLly5o2rQpHjx4gC1btmDnzp1YvHgxE2b69OmIjo7GyZMnERERgWvXruH+/fti4zx69ChTi/jp06cICwuDvb09AODYsWMwNDTEwoULmdoqopw5cwY+Pj7o0qULYmNjcenSJTRr1kxkWEIIrl27hqSkJOYZB1Sft6KjozF27FhMmTIFcXFx6NixI5YsWVIp/mfPnuHo0aM4duwY029h3759kZ2djXPnzuHevXto0qQJ2rdvjw8fPgAABg8eDENDQ9y5cwf37t3D//73P7DZbADAhAkTUFRUhKtXryI+Ph4rVqyAoqKiyH27d+8e+vXrhwEDBiA+Ph5BQUH4888/hZoIA8Dq1avh4uKC2NhYjB8/HuPGjROq/fkrateuHRwdHZkm3dWdk5rkqarycEV8Ph89evTAhw8fEBUVhYiICKSkpKB///5C4Z4/f46wsDCcPn0ap0+fRlRUFJYvXy7x/v7vf//D8uXLkZiYCAcHByxbtgz//vsvtm7dioSEBEybNg1DhgxBVFQUgOqf2x8+fEB4eDgmTJgg8j2kqn6wlJSUEBISgsePH2P9+vXYsWMH1q5dyyyvi/zfsmVLJg8fPXoUWVlZaNmyZaVw165dw7BhwzBlyhQ8fvwY27ZtQ0hISKVrOSgoCD4+PoiPj8eIESOqOdoU9Ruq75I2iqIoSfj6+hJpaWmioKBAuFwuAUCkpKTIkSNHxK7TtWtXMmPGDOZ/d3d30qpVK6EwTZs2JbNnzyaEEHL+/HkiIyNDXr16xSw/d+6c0Je/7du3EzU1NaGvhWfOnCFSUlLM105fX19iYmJCeDweE8bKyoq0bt2a+b+0tJQoKCiQ/fv3M/MAEFlZWaKgoMBMgu3q6+uTJUuWVEr7+PHjCSH/1ehat26dUJgGDRpUqtm2aNEi4urqSgghZNKkSaRdu3ZCtW/KAyrXMpOTkyOTJ08WGb48UTUUyrtz5w4BwNSG8/b2JsOHDxcZtqbpdHR0FPrCWbFG16JFi0inTp2E4khPTycASHJyMpN+QY3B31liYiIBQOzt7YW+KHt5eREHBwehsKtXrxbKvzk5OYSQsi/6AJj5UlJSQrUOCSFk3LhxRFlZudr0iPr6XZGtrS3ZsGEDIYSQo0ePEmVlZZE1De7du0cAkLS0NJHxVKx5sXbtWqYml0D5fP7ixQsiLS0tdA8hhJD27duTOXPmMOkHUKlmBlUz4mrFzJ07l1hZWQndKzZt2kQUFRUJj8cjeXl5hM1mC9UUycnJIfLy8mJrdK1evZpYWloK1fAor2JtGEIq51NXV1cyePBgsfvj7u5O2Gw2UVBQIGw2m3keREdHE0Iky1v9+/cnXbt2FVo+ePDgSjW62Gw2yc7OZuZdu3aNKCsrk8LCQqF1GzRowNSkUlJSIiEhISLTbm9vT4KCgkQuq1ija9CgQaRjx45CYWbOnElsbGyY/01MTMiQIUOY//l8PtHW1iZbtmwRuY2fTVW1Efv370+sra0lOifV5ana5uELFy4QaWlp8vLlS2Z5QkICAUBu375NCCnLR/Ly8kL31ZkzZ5LmzZtXiltcja6wsDBmXmFhIZGXlyc3btwQWnfkyJFk4MCBhJDqn9u3bt0iAMixY8fEHhMBUe825a1cuZI4Ozsz/9dV/v/48SNTk0ug4vFp3769UI11QgjZvXs30dPTE0q/uNrPFEWVoTW6KIr6abRt2xZxcXG4desWfH19MXz4cPTu3RtAWQ2RRYsWwd7eHurq6lBUVMT58+eZWh0CDg4OQv/r6ekhOzsbAJCYmAgjIyPo6+szy11dXYXCJyYmwtHRUehroZubG/h8vtDXZltbW0hJ/XeL1dHREfp6Ki0tDQ0NDWbbAmvXrkVcXBwzdezYEXl5ecjMzISbm5tQWDc3NyQmJgrNc3FxYf7+/Pkznj9/jpEjR0JRUZGZFi9ejOfPnwMo6xQ3Li4OVlZWmDx5Mi5cuIDqkFp2jnzv3j14e3vD2NgYSkpKcHd3BwDmHI0bNw4HDhxA48aNMWvWLNy4cYNZtzbprMqDBw9w5coVoePSqFEjAGCODQA4Ozt/1XZ+Bbt27YK8vDxSU1OrrYE4YsQIxMXFYdu2bfj8+bNQXlFSUmLydWxsLJYuXYqxY8fi1KlTAMryVW368cnPz0dAQACsra2hqqoKRUVFJCYmMvmqY8eOMDExgbm5OYYOHYq9e/eioKAAAODo6Ij27dvD3t4effv2xY4dO/Dx48cap0EgPj4ePB4PlpaWQnkrKipKKF9xOJxK9yKqbiQmJsLV1VUoL7m5uSE/Px8ZGRlISUlBSUmJUM0XFRUVWFlZiY2zb9+++PLlC8zNzTF69GgcP368xn0KxcXFoX379lWGGTx4MOLi4hAdHY3OnTvjjz/+YGp8SJK3kpOTK9XoEVXDx8TEBFpaWsz/Dx48QH5+PjQ0NITiTk1NZeKePn06Ro0ahQ4dOmD58uVC+Xny5MlYvHgx3NzcEBgYiIcPH4rdx8TERJHPsqdPn4LH4zHzyl8fLBYLurq6lZ6XvyLBfVCScyJJnhKoSR4WvAsZGRkx82xsbKCqqir0zmFqairUP2H59ylJlH9fefbsGQoKCtCxY0eh/f3333+Z/a3uuV3bdxMAOHjwINzc3KCrqwtFRUXMmzdP6P2xrvK/JB48eICFCxcK7aeg/z7BswsQPn4URVVW+155KYqivjMFBQVYWFgAKPvx7ejoiJ07d2LkyJFYuXIl1q9fj3Xr1sHe3h4KCgqYOnVqpY52BVXNBVgs1jfpCFrUdiTZtq6uLrOPAnl5eRJvt3wBXH5+PgBgx44daN68uVA4aWlpAGXNxlJTU3Hu3DlcvHgR/fr1Q4cOHXDkyBGx27C0tERSUpLEaQL+a/IpaE6ppaWFly9fwtPTkzlHnTt3xosXL3D27FlERESgffv2mDBhAlatWlWrdFYlPz8f3t7eWLFiRaVlenp6zN/immH+Lm7cuIG1a9fiwoULWLx4MUaOHImLFy+CxWKhYcOGuH79OkpKSpi8raqqClVVVZEFYlJSUkJ528HBARcuXMCKFSvg7e0NS0tL5ObmIisrS+gcVCcgIAARERFYtWoVLCwsICcnhz59+jD5SklJCffv30dkZCQuXLiA+fPnIygoCHfu3IGqqioiIiJw48YNXLhwARs2bMAff/yBW7duwczMrMbHKz8/H9LS0rh37x5zjQmUb8oiJydHO+f+iRgZGSE5ORkXL15EREQExo8fj5UrVyIqKqrSfV0cOTm5asOoqKgw18ihQ4dgYWGBFi1aoEOHDhLnLUlUvK/l5+dDT08PkZGRlcIKmnsFBQVh0KBBOHPmDM6dO4fAwEAcOHAAPj4+GDVqFDw9PXHmzBlcuHABy5Ytw+rVqzFp0qQapau87/Ws/tEkJibCzMxMonMiSZ4SqIs8XNHXniNR7ytnzpyBgYGBUDjBQDPVPbeLiorAYrFq/H4SExODwYMHY8GCBfD09ISKigoOHDggNADK98z/+fn5WLBgQaVRjwFAVlaW+ft3fz+hqOrQGl0URf2UpKSkMHfuXMybNw9fvnxBdHQ0evTogSFDhsDR0RHm5uY1Hq7Z2toa6enpQn2s3Lx5s1KYBw8e4PPnz8y86OhoSElJVVkj4GsoKytDX18f0dHRQvOjo6NhY2Mjdj0dHR3o6+sjJSUFFhYWQlP5H/HKysro378/duzYgYMHD+Lo0aNMHyBsNlvoKzsADBo0CBcvXkRsbGylbZaUlAgdG4GkpCS8f/8ey5cvR+vWrdGoUSORX361tLTg6+uLPXv2YN26ddi+fbtE6aypJk2aICEhAaamppWODX15LFNQUAA/Pz+MGzcObdu2xc6dO3H79m2mr7KBAwciPz8fmzdvrvU2pKWl8eXLFwBAnz59wOFw8Ndff4kMm5OTI3J+dHQ0/Pz84OPjA3t7e+jq6iItLU0ojIyMDDp06IC//voLDx8+RFpaGi5fvgyg7MeZm5sbFixYgNjYWHA4HBw/frxW++Pk5AQej4fs7OxK+UpXV7dWcVI1Y21tjZiYGKHaHdHR0VBSUoKhoSHMzc3BZrOF+ljLzc2t9nkhJycHb29v/P3334iMjERMTAzi4+MBlNXQq3ifrMjBwQGXLl2SeD8UFRUxZcoUBAQEgBAiUd6ysrKq1HecuL7kymvSpAlev34NGRmZSnEL+kkEyj5yTJs2DRcuXECvXr0QHBzMLDMyMsLYsWNx7NgxzJgxAzt27BC5LWtra5HPMktLy0oFeL+by5cvIz4+Hr1795bonNQ0T1WVh8sTvAulp6cz8x4/foycnJwq3zm+ho2NDbhcLl6+fFlpfwU1y6p7bqurq8PT0xObNm0S+R4i7hly48YNmJiY4I8//oCLiwsaNmyIFy9eVApXF/lfEk2aNEFycnKlfbSwsBBqKUBRVNVojS6Kon5affv2xcyZM7Fp0yY0bNgQR44cwY0bN6CmpoY1a9bgzZs3NXop69ChAywtLeHr64uVK1ciLy8Pf/zxh1CYwYMHIzAwEL6+vggKCsLbt28xadIkDB06FDo6OnW9i4yZM2ciMDAQDRo0QOPGjREcHIy4uDjs3bu3yvUWLFiAyZMnQ0VFBV5eXigqKsLdu3fx8eNHTJ8+HWvWrIGenh6cnJwgJSWFw4cPQ1dXl/libGpqikuXLsHNzQ1cLhdqamqYOnUqzpw5g/bt22PRokVo1aoVlJSUcPfuXaxYsQI7d+5E48aNhdJhbGwMDoeDDRs2YOzYsXj06BEWLVokFGb+/PlwdnaGra0tioqKcPr0aVhbWwNAtemsqQkTJmDHjh0YOHAgZs2aBXV1dTx79gwHDhzAP//889v/4AKAOXPmgBDCdC5samqKVatWISAgAJ07d4arqytmzJiBGTNm4MWLF+jVqxeMjIyQlZWFnTt3gsViCb2UE0Lw+vVrAMCXL18QERGB8+fPY/78+QDKfiisXbsWEydORF5eHoYNGwZTU1NkZGTg33//haKiotAXdoGGDRvi2LFj8Pb2BovFwp9//ilUq+D06dNISUlBmzZtoKamhrNnz4LP58PKygq3bt3CpUuX0KlTJ2hra+PWrVt4+/Ytk+9qytLSEoMHD8awYcOwevVqODk54e3bt7h06RIcHBzQtWvXWsVLiZabm8t0pi7g7++PdevWYdKkSZg4cSKSk5MRGBiI6dOnQ0pKCkpKSvD19cXMmTOhrq4ObW1tBAYGQkpKSmwtu5CQEPB4PDRv3hzy8vLYs2cP5OTkYGJiAqDs2rh69SoGDBgALpcrVDgkEBgYiPbt26NBgwYYMGAASktLcfbs2UoDnpQ3ZswYLFq0CEePHkWfPn2qzVuTJk1CmzZtsGbNGnh7e+Py5cs4d+5ctbUHO3ToAFdXV/Ts2RN//fUXLC0tkZmZyXR2bmtri5kzZ6JPnz4wMzNDRkYG7ty5w3QdMHXqVHTu3BmWlpb4+PEjrly5IvYamjFjBpo2bYpFixahf//+iImJwcaNG7+qwPxnVFRUhNevX4PH4+HNmzcIDw/HsmXL0K1bNwwbNgxSUlJVnhMXF5ca5anq8nB5HTp0gL29PQYPHox169ahtLQU48ePh7u7+zdrLqekpISAgABMmzYNfD4frVq1Qm5uLqKjo6GsrAxfX1+JntubNm2Cm5sbmjVrhoULF8LBwQGlpaWIiIjAli1bKnX3AJQ9Q16+fIkDBw6gadOmOHPmjNDHji9fvtRZ/pfE/Pnz0a1bNxgbG6NPnz6QkpLCgwcP8OjRI6FBNSiKqka99Q5GURRVA+I6b122bBnR0tIiGRkZpEePHkRRUZFoa2uTefPmkWHDhgmtI6pz9B49ehBfX1/m/+TkZNKqVSvC4XCIpaUlCQ8Pr9Rp6cOHD0nbtm2JrKwsUVdXJ6NHj2Y6VBeXVlHbrtiBccXtlMfj8UhQUBAxMDAgbDabODo6knPnzjHLK3a2Xt7evXtJ48aNCYfDIWpqaqRNmzZMZ63bt28njRs3JgoKCkRZWZm0b9+e3L9/n1n35MmTxMLCgsjIyAh1wl1YWEiWLVtG7O3tmePg5uZGQkJCmA7LK+7zvn37iKmpKeFyucTV1ZWcPHmyUgfx1tbWRE5Ojqirq5MePXqQlJQUidJZ8dhV1xk9IYQ8efKE+Pj4EFVVVSInJ0caNWpEpk6dynRiXV1n+r+yyMhIIi0tTa5du1ZpWadOnYQGBjh48CDx8PAgKioqhM1mE0NDQzJo0CBy8+ZNZh1BB+yCicvlEktLS7JkyRJSWloqFH9ERATx9PQkampqRFZWljRq1IgEBASQzMxMJq7yHfempqaStm3bEjk5OWJkZEQ2btwodO6uXbtG3N3diZqaGpGTkyMODg7k4MGDhBBCHj9+TDw9PYmWlhaTJkEn9oTUvDN6QggpLi4m8+fPJ6ampoTNZhM9PT3i4+NDHj58KDL9VO34+voK5SnBNHLkSBIZGUmaNm1KOBwO0dXVJbNnzxYaSCEvL48MGjSIyMvLE11dXbJmzRrSrFkz8r///Y8JU/7+fPz4cdK8eXOirKxMFBQUSIsWLcjFixeZsDExMcTBwYEZKIUQ0ef56NGjzL1YU1OT9OrVi1km7n4zZswYYmtrS3g8XrV5i5Cye6WBgQGRk5MjPXv2JIsXLya6urrM8sDAQOLo6FhpO3l5eWTSpElEX1+fsNlsYmRkRAYPHkxevnxJioqKyIABA4iRkRHhcDhEX1+fTJw4kXz58oUQQsjEiRNJgwYNCJfLJVpaWmTo0KHk3bt3hJDKnXETQsiRI0eIjY0NYbPZxNjYmKxcuVIoLaI69694T/+Zlc+7MjIyREtLi3To0IHs2rVLaBCbqs6JQFV5qiZ5uOIxf/HiBenevTtRUFAgSkpKpG/fvsyAO4SIzkei7o+EiO+MvnyeIKRs0IF169YRKysrwmaziZaWFvH09CRRUVFMmOqe24QQkpmZSSZMmEBMTEwIh8MhBgYGpHv37kIdwFd8Z5g5cybR0NAgioqKpH///mTt2rVMmusy/0vSGT0hhISHh5OWLVsSOTk5oqysTJo1a0a2b98uNv0URVXGIuQreu6jKIqiKIqiqJ/Y58+fYWBggNWrV2PkyJH1nZw6NXr0aCQlJeHatWv1nRSKoiiK+m5o00WKoiiKoijqtxEbG4ukpCQ0a9YMubm5WLhwIQCgR48e9Zyyr7dq1Sp07NgRCgoKOHfuHEJDQ3+7ZoEURVEURQu6KIqiKIqiqN/KqlWrkJycDA6HA2dnZ1y7dk1k31o/m9u3b+Ovv/7Cp0+fYG5ujr///hujRo2q72RRFEVR1HdFmy5SFEVRFEVRFEVRFEVRvwQ6RilFURRFURRFURRFURT1S6AFXRRFURRFURRFURRFUdQvgRZ0URRFURRFURRFURRFUb8EWtBFURRFURRFURRFURRF/RJoQRdFUdQvrqioCEFBQSgqKqrvpFDUN0PzOfU7oPmc+h3QfE5R1Neioy5SFEX94vLy8qCiooLc3FwoKyvXd3Io6pug+Zz6HdB8Tv0OaD6nfnfLly/HnDlzMGXKFKxbt66+k1MjQUFBCAsLQ1xcXL2mg9booiiKoiiKoiiKoiiKqmd37tzBtm3b4ODgUN9JqYTH44HP59d3MiRCC7ooiqIoiqIoiqIoiqLqUX5+PgYPHowdO3ZATU2txuu7uLhg1apVzP89e/YEm81Gfn4+ACAjIwMsFgvPnj0DAHz8+BHDhg2Dmpoa5OXl0blzZzx9+pRZPyQkBKqqqjh58iRsbGzA5XLx8uVLREZGolmzZlBQUICqqirc3Nzw4sULhISEYMGCBXjw4AFYLBZYLBZCQkK+7qDUEi3ooiiKoiiKoiiKoiiKqkNFRUXIy8sTmqrqe27ChAno2rUrOnToUKvtubu7IzIyEgBACMG1a9egqqqK69evAwCioqJgYGAACwsLAICfnx/u3r2LkydPIiYmBoQQdOnSBSUlJUycBQUFWLFiBf755x8kJCRAXV0dPXv2hLu7Ox4+fIiYmBj4+/uDxWKhf//+mDFjBmxtbZGVlYWsrCz079+/VvvytWTqZasURf3WPi4ZV99J+K0UlfIwq60zCtYGgCcjXd/J+W3IePao7yT8VoqLi/G/0YNR/CgSnzic+k7Ob+O+XJv6TsJvpbiYB99xc3HrOQ8cTkF9J+e3EXGH/mT6nkpLWGjdYx6WHmRBhl1c38n5bSz2+3mfnfNCfsx8IpO2DAsWLBCaFxgYiKCgoEphDxw4gPv37+POnTu13p6Hhwd27twJHo+HR48egcPhoH///oiMjISXlxciIyPh7u4OAHj69ClOnjyJ6OhotGzZEgCwd+9eGBkZISwsDH379gUAlJSUYPPmzXB0dAQAfPjwAbm5uejWrRsaNGgAALC2tmbSoKioCBkZGejq6tZ6P+oCrdFFURT1i+PKSON/7ZuCSwu5qF8Yl8PBXP8h4NJCLuoXxuFwMXzCH+BwuPWdFIr6ZmTYXLTp+Sdk2DSfUz+3OXPmIDc3V2iaM2dOpXDp6emYMmUK9u7dC1lZ2Vpvr3Xr1vj06RNiY2MRFRUFd3d3eHh4MLW8oqKi4OHhAQBITEyEjIwMmjdvzqyvoaEBKysrJCYmMvM4HI5Qf2Hq6urw8/ODp6cnvL29sX79emRlZdU6zd8KLeiiKIqiKIqiKIqiKIqqQ1wuF8rKykITl1u5APfevXvIzs5GkyZNICMjAxkZGURFReHvv/+GjIwMeDyeRNtTVVWFo6MjIiMjmUKtNm3aIDY2Fk+ePMHTp0+ZGl2SkpOTA4vFEpoXHByMmJgYtGzZEgcPHoSlpSVu3rxZo3i/NVrQRVEURVEURVEURVEUVQ/at2+P+Ph4xMXFMZOLiwsGDx6MuLg4SEtL3irD3d0dV65cwdWrV+Hh4QF1dXVYW1tjyZIl0NPTg6WlJYCy5oalpaW4desWs+779++RnJwMGxubarfj5OSEOXPm4MaNG7Czs8O+ffsAlNUAk7Rg7luiBV0URVEURVEURVEURVH1QElJCXZ2dkKTgoICNDQ0YGdnV6O4PDw8cP78ecjIyKBRo0bMvL179wrV5mrYsCF69OiB0aNH4/r163jw4AGGDBkCAwMD9Oghvp/Z1NRUzJkzBzExMXjx4gUuXLiAp0+fMv10mZqaIjU1FXFxcXj37l2Vne9/S7Sgi6IoiqIoiqIoiqIo6gfm5+fH9LElTuvWrcHn84UKtTw8PMDj8SqtGxwcDGdnZ3Tr1g2urq4ghODs2bNgs9li45eXl0dSUhJ69+4NS0tL+Pv7Y8KECRgzZgwAoHfv3vDy8kLbtm2hpaWF/fv313p/vwaLEELqZcvUT8XDwwONGzfGunXrAJSV1E6dOhVTp079JttLS0uDmZkZYmNj0bhx42+yDYGQkBBMnToVOTk5YsMEBQUhLCwMcXFx3zQtvws66iL1O6CjLlK/AzrqIvU7oKMuUr8DOupi3avrY+ru7o62bduKHLWREkbv2j84Pz8/hIaGVprv6emJ8PDwekhRmTt37kBBQaHeti9KaGgoNm7ciISEBEhLS6NJkyaYOXMmunXrVt9JA1BWWBgVFSV2ubu7OyIjI2FqaooXL14AKCsxt7Kywpw5c5ghXoOCgphhaqWkpKCvr4/OnTtj+fLlUFdX//Y7Qn13F5Jf4FRCKnILi2CspgS/pjaw0FQVG/5mWhYOPXiKd5+/QFdJHgObWMHJQJtZPnD3OZHrDWpiBW9bcwBA6vtc7ItNRsr7XEixWGhmrIuhzo0gy6aPDerbCL9+G6euRCMnLx8m+roY3qszGpoYigyb/jobh85dQUpGJt5+yIFvTy90dXcVG3fYpWvYd/oiurRpAT+fzsz87YdOIf5JCj7mfQKXw4aVmTEGd+sAAx2tOt8/igKAmKhwXLt4Ap/ycqBnaALvviNhZNpQZNg3Wem4ePoAXr1MwccPb9G1tx9atav8TpOb8x7hYXvw5HEsSoqLoa6liz5DxsPQxIIJk52VgfATe5D69DF4fB509AwxeFQAVNVpXqfq3tMHZ5F87wQKP3+EqpYpnDxGQUPXUmTY5/EX8CIxErnvXwIA1LQbwN5tsFD4jKcxeBZ/HjnZKSgq/IROg1ZDTducWV705RMSbh7A65dxKPj0Dlw5ZRg0aA4714HgcH+s3ysUVVu5ubl4/vw5zpw5U99J+SnQXyw/AS8vLwQHBwvNEzVaw/ekpfVjvRgFBARg48aNWLx4MXr27ImSkhLs2bMHPXr0wPr16zFx4sT6TiKOHTuG4uKyrw3p6elo1qwZLl68CFtbWwBlHfcJLFy4EKNHj0ZeXh5Wr16N/v37w8DAAC1btgQA2Nra4uLFi+DxeEhMTMSIESOQm5uLgwcPfv8do76pmLQs7L6biJHN7WChqYpzSWlYdukO1vZoA2XZyveB5OyP2HD9AQY4WcLJQBs30jKxJvI+lnZxg5GaEgBgS592QuvEvXqL7Tfj0cxYFwDwsaAQSy7egaupLoY3s8GX4lL8ezcRW248xDT3Jt9+p6nfzo3YR/j3RDhG9/FGQxNDnLkagyXbdmP93MlQUaz8I6WouATaGqpo4WiD0BPnq4z72ctXiLhxF8b6OpWWmRnqoVUTe2ipq+JTQQEOh0di8dbd2PTnVEhJ0d4dqLr18F40zhwNQc+B/jA2tcT1K6exa+NizAj8G4pKKpXClxQXQU1DG3ZOrjhzNERknAUF+di2eh7MLG3hN/4PKCgq4/3bLMjJ/3fdvH+bhW1r58HFtR06dO0Prqws3mRlQIb989beoH5cL59cR9zVYLi0GwsNXUskx57C1eML0dl3E2TlK+fztxmPYGzVGhp6VpCW4SDp7jFcPb4QnkPXQ15RAwBQWloELQMbGFu64c7FzZXiKPz8AV8+f4Rjaz8oqxui4NM73Lu0BV/yP8Ct26xvvs8U9T2oqKggIyOjvpPx06BvcT8BLpcLXV1doUlNTQ0A8PTpU7Rp0waysrKwsbFBREQEWCwWwsLCAACRkZFgsVhCzfLi4uLAYrGQlpYGoGx0hYEDB8LAwADy8vKwt7evti2tqakp04wxJCQELBar0lS+SuU///wDa2tryMrKolGjRti8Wfghdfv2bTg5OUFWVhYuLi6IjY2V+PjcvHkTq1evxsqVKxEQEAALCwtmZImpU6di+vTpSE9PZ8KHhITA2NgY8vLy8PHxwfv37yvFuXz5cujo6EBJSQkjR45EYWGh0PLIyEg0a9YMCgoKUFVVhZubG1MLSxx1dXXm/AkKCjU0NJh55WtjKSkpQVdXF5aWlti0aRPk5ORw6tQpZrmMjAx0dXVhYGCADh06oG/fvoiIiJDoeBFCEBQUBGNjY3C5XOjr62Py5MnM8qKiIgQEBMDAwAAKCgpo3rw5IiMjAQCFhYWwtbWFv78/E/758+dQUlLCrl27JNo+VTNnElPRrqERPCwMYaiqiFHNbcGVlsaVZ6IfdOFJaXDU14S3rTkMVRXRr7ElTNVVcD75v/ypKscVmu6mv4GNjjp0lOQBAPcysiEtxcKIZrbQV1ZEA01VjGxui9sv3+D1p8/fZb+p38vpyBi0b+GMts2dYKirBf++3uBy2Lhy677I8BbGBhja3RNuTezBlhE/ElFhUTE27DmKMf26Q1FOrtLyji1dYGNhCi11VZgb6mNAl/Z4n5OL7A85dbVrFMW4fvkUmrp1gItrO2jrGcJn4BhwOBzcjbksMryhiQW69PKFo0sryMiI7i/lakQYVNQ00HfoRBiZNoS6pg4aWjeGhpYeE+bCqf2wsm2Czj7DoG9kBg0tPdg4NBVZuEZRX+vJ/ZMwt+sIM9v2UNYwgkv7cZCW4SI14ZLI8C06T4eFY2eoaZtDWd0QTTtMBCF8ZL98yIQxtfaAbfN+0DF2FBmHiqYJ3LrNgoF5Uyip6kHHyB72LQcjM/UO+Pz6H/2NoqjvjxZ0/cT4fD569eoFDoeDW7duYevWrZg9e3aN4yksLISzszPOnDmDR48ewd/fH0OHDsXt27clWr9///7Iyspipv3790NGRgZubm4AgL1792L+/PlYsmQJEhMTsXTpUvz5559Mk8z8/Hx069YNNjY2uHfvHoKCghAQECBx+vfv3w9FRUWmA7zyZsyYgZKSEhw9ehQAcOvWLYwcORITJ05EXFwc2rZti8WLFwutc+jQIQQFBWHp0qW4e/cu9PT0hArmSktL0bNnT7i7u+Phw4eIiYmBv78/WCyWxGmuCRkZGbDZbKY2WEVpaWk4f/68UI2wqhw9ehRr167Ftm3b8PTpU4SFhcHe3p5ZPnHiRMTExODAgQN4+PAh+vbtCy8vLzx9+hSysrLYu3cvQkNDceLECfB4PAwZMgQdO3bEiBEj6mR/qf+U8vhIfZ8HOz1NZh6LxYKdngaevs0Ruc6Ttzmw09MQmuegp4Gn70SHz/1ShLjMt2hrYfTfdvl8yEhJCeVpzv8XJiRnf6zl3lCUaKWlPKRkZMLe8r9mKCwWC/aWDfAk7eu+XP5z9Aya2FjCwapBtWELi4oReTsW2hpq0FSlBQBU3SotLcWrlymwaOTAzGOxWLBo5ICXqU9qHW/iw7swMLbA3n9WYfHsEdiwLAC3o//78EUIQdKj+9DQ0sOujYuwePYIbF75PyQ8kOwdj6Jqgs8rxYc3z6FbrkCKxWJBx9gB77OSJYqjtLQIfD4PHFmlr0pLSXEB2Bx5SEmJ/xhCUdSvizZd/AmcPn0aioqKQvPmzp0LFxcXJCUl4fz589DX1wcALF26FJ07dxYVjVgGBgZCBUuTJk3C+fPncejQITRr1qza9eXk5CD3/1/Knz9/jgkTJmDp0qXo2LEjACAwMBCrV69Gr169AABmZmZ4/Pgxtm3bBl9fX+zbtw98Ph87d+6ErKwsbG1tkZGRgXHjJOuw/MmTJ2jQoIHIgh59fX0oKyvjyZOyl8j169fDy8sLs2aVVWO2tLTEjRs3hPo7W7duHUaOHImRI0cCABYvXoyLFy8ytbry8vKQm5uLbt26oUGDsh9PguFU61pxcTFWr16N3NxctGv3X3Oz+Ph4KCoqgsfjMelas2aNRHG+fPkSurq66NChA9hsNoyNjZnz/PLlSwQHB+Ply5dMngoICEB4eDiCg4OxdOlSNG7cGIsXL8aoUaMwYMAAvHjxAqdPnxa7vaKiokrDyhaV8sCtohYGVeZTUTH4hEBFVjhvq8hykZknumZVXmERVCs0aVSV4yLni+ihfaNSXkFWRgZNjf5r1mWnq4E995JwKiEFnRuZorCUh/33y15QP4qJh6JqK+9zAfh8PlSVhJ9zqooKyHzzrtbxRt+PR2pGFpZNG11luPPRt7H3VAQKi4qhr62JeWOHQYben6g6VvA5D3w+v1ItKkUlFbx986rW8X549wa3rp1Hq3bd0NazN9JfPMXpw8GQlpaBc4u2yM/LQXFRIaIiwtDJeyC8egzBk8Q47N2xEqOmBMG8oe3X7hpFMYq+5IEQPrgVmijKyqvi00fJ8vnD6/9CTkEdOsYO1QeuIh0Jtw6jgX2nWsdBUdTPjdbo+gm0bdsWcXFxQtPYsWORmJgIIyMjpkACAFxdxXfGKw6Px8OiRYtgb28PdXV1KCoq4vz583j58mWN4hEU/nTt2hUzZ84EAHz+/BnPnz/HyJEjoaioyEyLFy/G8+fPAQCJiYlwcHCArKxsrfdD0sFDExMT0bx5c6F5FbdVXRh1dXX4+fnB09MT3t7eWL9+PbKysmqU3urMnj0bioqKkJeXx4oVK7B8+XJ07dqVWW5lZYW4uDjcuXMHs2fPhqenJyZNmiRR3H379sWXL19gbm6O0aNH4/jx4ygtLQVQVoDG4/FgaWkpdL6ioqKY8wWU1ZSztLTExo0bsWvXLmhoaIjbHJYtWwYVFRWhaW2U6OZI1PcX+SwDrcz0mRpbAGCoqoRxLR1w5nEqfPdfwLgjl6ClKA8VWQ6+Tb1Fiqpb73NyEXz8HCYP6Q1OFUNkA0CrJg5YMWMsgiYMh56WBtaGHkJxScl3SilFfR1CCPSNzODZYzD0jczQvFUnNHXrgFvXLpQtR9n7kY29C1q16wZ9IzN4dPJBIztn3P7/MBT1o0i8cwwvn1yHm/dsSMvUrg+5kqICXDuxGCoaRrBt3r+OU0hR1M+C1uj6CSgoKMDCwqL6gCIIOtMtXxBUUuEFfuXKlVi/fj3WrVsHe3t7KCgoYOrUqWKbyonC4/HQv39/KCsrY/v27cz8/Px8AMCOHTsqFR5JS9fNF3NLS0tcv34dxcXFlWp1ZWZmIi8vD5aWokd6qa3g4GBMnjwZ4eHhOHjwIObNm4eIiAi0aNGiTuKfOXMm/Pz8oKioCB0dnUrNIjkcDpMnBIVgCxYswKJFi6qN28jICMnJybh48SIiIiIwfvx4rFy5ElFRUcjPz4e0tDTu3btX6fyUr1WYnZ2NJ0+eQFpaGk+fPoWXl5fY7c2ZMwfTp08XmlewVvKmqb8zJS4HUiwWcguFr8VcEbW2BJRlucgpFK51lfOlCKpylcMnvvmArLzPmNK6caVlbmb6cDPTR+6XIqb23dnEVOgoytdybyhKNGUFeUhJSSHnU77Q/Jz8z1BVVhSzVtWep2ciL/8zZq/eyszj8/lITHmB8Ou3sW/ln8zzUUFOFgpystDT0oClqRGG/7EMd+KT4NbEXlz0FFVj8grKkJKSQv6nXKH5+Z9yoaisVut4lZRVoa0rPDqplo4+HsXG/LddaWlo6xkJh9E1wIvnSbXeLkWJwpVTBoslhaIC4XxeWJADWfmq83nSvRNIunsM7j6BUNU0rdX2S4q/4GrYQsiw5eDWbTakpOlPXYr6XdEaXT8xa2trpKenC9UmunnzplAYQafn5cPExcUJhYmOjkaPHj0wZMgQODo6wtzcnGnqJ6lp06YhPj4eYWFhQjWzdHR0oK+vj5SUFFhYWAhNZmZmzH48fPhQqMP3ivtRlQEDBiA/Px/btm2rtGzVqlVgs9no3bs3s61bt24Jham4LUnCAICTkxPmzJmDGzduwM7ODvv27ZM4zdXR1NSEhYUFdHV1Jer7a968eVi1ahUyMzMlil9OTg7e3t74+++/ERkZiZiYGMTHx8PJyQk8Hg/Z2dmVzpeuri6z/ogRI2Bvb4/Q0FDMnj0biYmJYrfF5XKhrKwsNNFmi5KRkZaCmYYyErL+GzCBEIKE1+/RUEtV5DqWWqp4lCU8wEL86/doqFk5fOTzDJhpKMNEXVlsGlTkuJBlyyDmRRbY0tKw19cUG5aiakNGRhrmhvp49DSVmUcIwaMnKbA0NaxiTfHsG5pj1azx+CtgLDM1MDZAa2cH/BUwVuyIigQEhAAl/1/LlaLqioyMDAyMzfE8OZ6ZRwjBs+R4GJvV/mOcibkV3mULP/vfZb+GqroWs11D4waVw7zJgqoavZ9TdUtKWgbqOg3wplxH8oQQZKfHQ0PPSux6SXeP4/GtQ2jT80+o6zas1bZLigoQdSwIUlIyaNV9bq1rhFEU9Wugxdw/gaKiIrx+/VponoyMDDp06ABLS0v4+vpi5cqVyMvLwx9//CEUzsLCAkZGRggKCsKSJUvw5MkTrF69WihMw4YNceTIEdy4cQNqampYs2YN3rx5AxsbG4nSFxwcjM2bN+P48eNgsVhMWgXN3hYsWIDJkydDRUUFXl5eKCoqwt27d/Hx40dMnz4dgwYNwh9//IHRo0djzpw5SEtLw6pVqyQ+Pq6urpgyZQpmzpyJ4uJi9OzZEyUlJdizZw9TU83IqOxL5uTJk+Hm5oZVq1ahR48eOH/+vFD/XAAwZcoU+Pn5wcXFBW5ubti7dy8SEhJgbl7WUXJqaiq2b9+O7t27Q19fH8nJyXj69CmGDRsmcZrrmqurKxwcHLB06VJs3LixyrAhISHg8Xho3rw55OXlsWfPHsjJycHExAQaGhoYPHgwhg0bhtWrV8PJyQlv377FpUuX4ODggK5du2LTpk2IiYnBw4cPYWRkhDNnzmDw4MG4efOmxB3iU5Lram2GLTcewkxDGQ00VBGelIbCUh48GpQVAGyKfgB1OVkMbFL2AunVyBSLIm7h9ONUOBloISYtC6nvczG6uZ1QvAXFJbj54jWGODcSud3zSS9gqaUKLlsaj7LeY8+9JAxqYgUFTtXNwCiqNrp5uGLTvuMwN9SDhbEhzl69icLiYng0cwIAbNx7DGoqShjcrazvx9JSHtJfZ5f9zePhQ24eUjOyICfLha6mOuRkuTDW0xHaBpfNhqK8HDP/zbsPuBGXAAerBlBRlMf7nDyEXboODocNJ5u6rQVMUQDQqp03Dv+7EQbG5jAyaYjoyDMoLiqCc4u2AIBDoX9DWVUdXj2GACjrwD47q2zUaB6vFHk575GZngqurCwzqmKr9t7YsvoPXAk/CgfnlkhPe4bb0RHwGfjfAD1tOvTA/l1rYWphjQaWdkhOiEPSo7sYPXXBdz4C1O/Askl33D7/N9R0GkBDpyGexJ1GaUkhzGzL+pq9dX4d5BQ04NBqKICy5oqPbu6Hq9d0yCtr48vnskFv2Bw5yLDLPp4XffmEgk9vmWWfcsoKbmUV1CCnoFZWyHV8AXilRWjuNRUlxQUoKS4oCyOnApaYjxsURf26aEHXTyA8PBx6enpC86ysrJCUlITjx49j5MiRaNasGUxNTfH3338LNSNjs9nYv38/xo0bBwcHBzRt2hSLFy9G3759mTDz5s1DSkoKPD09IS8vD39/f/Ts2RO5ucLVjsWJiooCj8dD9+7dheYHBgYiKCgIo0aNgry8PFauXImZM2dCQUEB9vb2mDp1KoCyArFTp05h7NixcHJygo2NDVasWMHUwpLEunXr4ODggM2bN2PevHmQlpZGkyZNEBYWBm9vbyZcixYtsGPHDgQGBmL+/Pno0KED5s2bJ9Tkr3///nj+/DlmzZqFwsJC9O7dG+PGjcP58+cBAPLy8khKSkJoaCjev38PPT09TJgwQeSoj9/TtGnT4Ofnh9mzZzMFe6Koqqpi+fLlmD59Ong8Huzt7XHq1Cmmn63g4GAsXrwYM2bMwKtXr6CpqYkWLVqgW7duSEpKwsyZM7Fz505mG5s3b4aDgwP+/PNPrFix4rvs6+/E1VQPeYXFOPzgKXK/FMFEXRn/a9cUKv/fFPH950JIlav1Z6Wtholujjj04CkOxiZDV1kB0z2awEhNePSiG2lZIISgpanwvUXg2fscHHn4FIUlpdBXUcToFnZobW7w7XaU+q21dLJDbv5nHAq/gpxP+TDV18Mf/kOZDurffcwVqt36Me+TULPEU1du4NSVG7BpYIqgicMl2iabzUZiyguciYpBQWEhVBQVYW1ujMWTR0JFUaFud5CiADg4uyH/Ux4unj6IT3k50DcyxfAJf0BJWRUAkPPhndAP8k+5H7Bh+Uzm/2uXTuHapVMws7CB/7SFAABDEwsMHT0L4Sf34vK5I1DT0Ea3Pn5wataGWc+2cXP0HDAakReO4/ThYGhq62Pw6JkwbfBtBtKhfm/Glq1QVJCLRzEHUFjwEWpaZmjT80/IyqsCAAry3oHF+i+fP48/Dz6vFNFn/hKKx7Z5f9i5DgAAZKbewe0LG5hlMWdXC4X5mJ2C96/LWqOcDRkvFE+3EdugoKxd5/tJUdSPjUUk7cWb+mmwWCwcP34cPXv2rO+kUJRIH5dINqImRf3MZDx71HcSKOqbuy/XpvpAFPWTi7hD6wZQv77Ffj9vy4x5IZL3Lf09/czH9GdH63FSFEVRFEVRFEVRFEVRvwRa0EX98MaOHcv091VxGjt2bH0nT4itra3YtO7du/e7pGHv3r1i02Bra/td0kBRFEVRFEVRFEVR9YHWw/0F/WqtURcuXIiAgACRy5SVxY8WVx/Onj2LkpISkct0dHREzq9r3bt3R/PmzUUuY7NpR+IURVEURVEURVHUr4sWdFE/PG1tbWhr/xydSJqYmNR3EqCkpAQlJaXqA1IURVEURVEURVHUL4Y2XaQoiqIoiqIoiqIoiqJ+CbSgi6IoiqIoiqIoiqIoivol0IIuiqIoiqIoiqIoiqIo6pdA++iiKIqiKIqiaiXiDn2VpH59HZuW1ncSKOo74NR3AiiqztAaXRRFURRFURRFURRFUdQvgRZ0URRFURRFURRFURRFUb8EWtBFURRFURRFURRFURRF/RJoQRdFURRFURRFURRFURT1S6AFXRRFURRFURRFURRFUdQvgRZ0URRFURRFURRFURRFUb8EWtBFMTw8PDB16lTmf1NTU6xbt+6bbS8tLQ0sFgtxcXHfbBsCISEhUFVVrTJMUFAQGjdu/M3TQlEURVEURVEURVHUtyFT3wmgAD8/P4SGhlaa7+npifDw8HpIUZk7d+5AQUGh3rYvSmhoKDZu3IiEhARIS0ujSZMmmDlzJrp161bfSQNQVlgYFRUldrm7uzsiIyNhamqKFy9eAADk5eVhZWWFOXPmoG/fvgDKCt0WLFgAAJCSkoK+vj46d+6M5cuXQ11d/dvvCPVDuZD8AqcSUpFbWARjNSX4NbWBhaaqyLAZOZ9w+MFTpLzPw7vPXzDUpRG6WJsJhYlIfoGLT9ORnV8AADBUUUJvBws0NtACALzN/4LJxyNFxj+ldWO0MNWrs32jKIHw67dx6ko0cvLyYaKvi+G9OqOhiaHIsOmvs3Ho3BWkZGTi7Ycc+Pb0Qld3V6Ewh8Kv4Mj5SKF5+tqaWDdnEvP/x7xP2HsqAg+Sn6OwqAh6Wpro3bENmjva1Pn+URQAPH1wFsn3TqDw80eoapnCyWMUNHQtRYZ9Hn8BLxIjkfv+JQBATbsB7N0GC4W/feFvpD6+IrSerokT3H3mM//nfXyFh9f+xbvMRPD5pVDRNIGd6yDoGNl/gz2kKCAmKhzXLp7Ap7wc6BmawLvvSBiZNhQZ9k1WOi6ePoBXL1Pw8cNbdO3th1bthN/riwq/IOL0ASTE3cLn/DzoGZrCu+8IGJpYMGEO796I+zcjhdaztG6M4RPn1fn+URT146MFXT8ILy8vBAcHC83jcrn1lJoyWlpa9br9igICArBx40YsXrwYPXv2RElJCfbs2YMePXpg/fr1mDhxYn0nEceOHUNxcTEAID09Hc2aNcPFixdha2sLAOBwOEzYhQsXYvTo0cjLy8Pq1avRv39/GBgYoGXLlgAAW1tbXLx4ETweD4mJiRgxYgRyc3Nx8ODBWqWtpKQEbDb7K/eQ+t5i0rKw+24iRja3g4WmKs4lpWHZpTtY26MNlGUr3yOKSnnQUpRHc2Nd7L6XJDJOdQVZDHCyhK6SAggIrj3PxOrIe1jW1Q2GqkrQkJfFlj7thNa59DQdpxJSmMIwiqpLN2If4d8T4RjdxxsNTQxx5moMlmzbjfVzJ0NFsfIHl6LiEmhrqKKFow1CT5wXG6+hrjb+HDeM+V9aSrgi+8a9x1FQWIhZIwdCWUEe1+/HY03oISyfPgZmhrRAl6pbL59cR9zVYLi0GwsNXUskx57C1eML0dl3E2TlVSqFf5vxCMZWraGhZwVpGQ6S7h7D1eML4Tl0PeQVNZhweqZN0LTjf+9A0tLCz/rrJ5ZAUVUfHn0WQlqagyexp3D95BJ08dsCOQW1b7fD1G/p4b1onDkagp4D/WFsaonrV05j18bFmBH4NxSVKufzkuIiqGlow87JFWeOhoiM8+jezXiTmY6+vpOgoqqO2NtXsfPvhZj651qoqP53LVjaOKHPkPHM/9L0vZeiflu06eIPgsvlQldXV2hSUyt7+Xj69CnatGkDWVlZ2NjYICIiAiwWC2FhYQCAyMhIsFgs5OTkMPHFxcWBxWIhLS0NAPD+/XsMHDgQBgYGkJeXh729Pfbv319lmso3XQwJCQGLxao0BQUFMeH/+ecfWFtbQ1ZWFo0aNcLmzZuF4rt9+zacnJwgKysLFxcXxMbGSnx8bt68idWrV2PlypUICAiAhYUFrK2tsWTJEkydOhXTp09Heno6Ez4kJATGxsaQl5eHj48P3r9/XynO5cuXQ0dHB0pKShg5ciQKCwuFlkdGRqJZs2ZQUFCAqqoq3NzcmFpY4qirqzPnT1BQqKGhwcwrXxtLSUkJurq6sLS0xKZNmyAnJ4dTp04xy2VkZKCrqwsDAwN06NABffv2RUREhMTHjMViYcuWLejevTsUFBSwZMkS8Hg8jBw5EmZmZpCTk4OVlRXWr19fad1du3bB1tYWXC4Xenp6QoWIOTk5GDVqFLS0tKCsrIx27drhwYMHEqeLqpkzialo19AIHhaGMFRVxKjmtuBKS+PKswyR4RtoqmKIcyO0NNOHjJToW7yzoQ6cDLShp6wAfWVF9HeyBFdGBk/f5QAApKRYUJXjCk130l/D1VQPsmz6fYSqe6cjY9C+hTPaNneCoa4W/Pt6g8th48qt+yLDWxgbYGh3T7g1sQdbRlpsvNLSUlBTVmIm5QqFZk9fpKNz6+ZoaGIIHU119O7kDgV5OaRkZNbp/lEUADy5fxLmdh1hZtseyhpGcGk/DtIyXKQmXBIZvkXn6bBw7Aw1bXMoqxuiaYeJIISP7JcPhcJJSclATkGNmTiyisyyoi95+JSTBeumvaCqaQolNX04tBqG0pIipqYYRdWl65dPoalbB7i4toO2niF8Bo4Bh8PB3ZjLIsMbmligSy9fOLq0goxM5YKpkpJiJMTdQueeQ2He0BYaWnro0LU/1LV0cOuq8IcOaRkZKKmoMZO8vGKl+CiK+j3Qgq4fHJ/PR69evcDhcHDr1i1s3boVs2fPrnE8hYWFcHZ2xpkzZ/Do0SP4+/tj6NChuH37tkTr9+/fH1lZWcy0f/9+yMjIwM3NDQCwd+9ezJ8/H0uWLEFiYiKWLl2KP//8k2mSmZ+fj27dusHGxgb37t1DUFAQAgICJE7//v37oaioiDFjxlRaNmPGDJSUlODo0aMAgFu3bmHkyJGYOHEi4uLi0LZtWyxevFhonUOHDiEoKAhLly7F3bt3oaenJ1QwV1paip49e8Ld3R0PHz5ETEwM/P39wWKxJE5zTcjIyIDNZjO1wSpKS0vD+fPnhWqESSIoKAg+Pj6Ij4/HiBEjwOfzYWhoiMOHD+Px48eYP38+5s6di0OHDjHrbNmyBRMmTIC/vz/i4+Nx8uRJWFj8VzW8b9++yM7Oxrlz53Dv3j00adIE7du3x4cPH2q385RYpTw+Ut/nwU5Pk5nHYrFgp6eBp29z6mQbfD7BjdRMFJWWoqGm6C/7Ke9z8eLDJ3g0EN2MjKK+RmkpDykZmbC3NGfmsVgs2Fs2wJM00QW6knr99j3GBK3CxMXr8PfuI3j3MUdoeUMTI9yIfYRPnwtACEH0/XiUlJTA1sJMdIQUVUt8Xik+vHkOXWNHZh6LxYKOsQPeZyVLFEdpaRH4fB44skpC89++SsCJbX44GzoBdy9vRdGXT8wyjqwSlNT0kZZ4BaUlheDzeXgefwGycipQ125QNztHUf+vtLQUr16mwKKRAzOPxWLBopEDXqY+qVWcfB4PfD4fMhVqZ7HZHKQ9F665nvr0MRbPHoHVCyYj7MB2FHz+BIqifk/00/wP4vTp01BUFP7qMHfuXLi4uCApKQnnz5+Hvr4+AGDp0qXo3LlzjeI3MDAQKliaNGkSzp8/j0OHDqFZs2bVri8nJwc5OTkAwPPnzzFhwgQsXboUHTt2BAAEBgZi9erV6NWrFwDAzMwMjx8/xrZt2+Dr64t9+/aBz+dj586dkJWVha2tLTIyMjBu3DiJ0v/kyRM0aNBAZEGPvr4+lJWV8eRJ2QN0/fr18PLywqxZswAAlpaWuHHjhlB/Z+vWrcPIkSMxcuRIAMDixYtx8eJFplZXXl4ecnNz0a1bNzRoUPYiaG1tLVFaa6q4uBirV69Gbm4u2rX7r7lYfHw8FBUVwePxmHStWbOmRnEPGjQIw4cPF5on6PsLKDtPMTExOHToEPr16weg7FjMmDEDU6ZMYcI1bdoUAHD9+nXcvn0b2dnZTNPaVatWISwsDEeOHIG/v3+lNBQVFaGoqEh4XikP3CpqYVBlPhUVg08IVGSF872KLBeZeZ+/Ku6XH/MwP/wmSnh8yLKlMd2jCQxVRX/5jHyWAQMVBVhp0yYuVN3L+1wAPp8PVSXh/KeqqIDMN+9qHW9DE0OMH9gT+tpa+Jj3CUfOR2L+hl1YPWsC5P6/2e90v35YG3oII+etgLS0NLhsNgJGDICuJu0LkapbRV/yQAgf3ApNFGXlVfHp4yuJ4nh4/V/IKahDx/i/QgRdEycYNGgBBRVtfM59g4fRe3A1bCE69F8BlpQUWCwWPHotQPTp5Ti2eRAAFmTlVdHGZ75QzS+KqgsFn/PA5/MrNVFUVFLB2zeS5fOKuLJyMDazxOVzR6CtZwhFJVU8uHsNL1OfQEPrvybmltaNYevYHGoa2vjw7g0unNyH4E2LMS5gGaTE1HCnKOrXRQu6fhBt27bFli1bhOapq6tj9+7dMDIyYgq5AMDV1bXi6tXi8XhYunQpDh06hFevXqG4uBhFRUWQl5evUTyCwp+uXbti5syZAIDPnz/j+fPnGDlyJEaPHs2ELS0thYpK2YMuMTERDg4OkJWVrfV+EEIkCpeYmAgfHx+hea6urkIFXYmJiRg7dmylMFeulHXoqq6uDj8/P3h6eqJjx47o0KED+vXrBz29uuuzZfbs2Zg3bx4KCwuhqKiI5cuXo2vXrsxyKysrnDx5EoWFhdizZw/i4uIwadKkKmKszMXFpdK8TZs2YdeuXXj58iW+fPmC4uJiZrTJ7OxsZGZmon379iLje/DgAfLz86GhoSE0/8uXL3j+/LnIdZYtWyZUuAYAs9o643/tm9ZoX6i6pa+siOXd3FBQXIpbL15jS/RDzO/UolJhV3EpD9FpmfCxtxATE0X9mJys/+v42ERfBw1NDDFh4VrEPEhAu+ZNAAAHz11GwZci/DnOF0oK8rjzKAlrQw9jwcQRMNHXqa+kU1QliXeO4eWT62jbZxGkZf77+GFs1Zr5W1XTFCqaJjgTPA7ZGY+gY+wAQgjuX9kBrpwK2vVdAmkZDlIeXcT1k0vRYcBfkFOkhbrUj6+f7yQc3bMFy+b6lw3SZGQGR5dWePUyhQnj6NKK+VvPwAS6BsZYFTgRKU8eCdUwoyjq90ALun4QCgoKQs3DakLwlaJ8QVBJSYlQmJUrV2L9+vVYt24d7O3toaCggKlTp4ptKicKj8dD//79oaysjO3btzPz8/PzAQA7duxA8+bNhdaRlq6bWjuWlpa4fv06iouLK9XqyszMRF5eHiwtRY9aVFvBwcGYPHkywsPDcfDgQcybNw8RERFo0aJFncQ/c+ZM+Pn5QVFRETo6OpWaRXI4HCZPCArBFixYgEWLFkm8jYqjZh44cAABAQFYvXo1XF1doaSkhJUrV+LWrVsAwNTaEyc/Px96enqIjIystExVVVXkOnPmzMH06dOF5hWslbzZ6u9MicuBFIuF3ELh6zS3sAiqIjqirwkZaSnoKpXlD3MNFaS8z0V4UhpGtbATCnfr5WsUl/LQxlxfVDQU9dWUFeQhJSWFnE/5QvNz8j9DVbnuapwoyMlCT1sDWW/L+mx8/e4Dwq/dwurZE2Ckqw0AMDXQRWLKC5y/fhv+/bzrbNsUxZVTBoslhaKCXKH5hQU5kJWvurZs0r0TSLp7DO4+gVDVNK0yrKKKLrhyysjPzYIOHJCdHo/M1DvwGbsHbG7Zx03ndg3w+mUc0hIjYd2011ftF0WVJ6+gDCkpKeR/Es7n+Z9yoahc+1rhGlp68J+2EEVFhSgqLICyijr27VwNdU3xHyQ0NHWhoKiE9+9ewwK0oIuifje0HucPztraGunp6cjKymLm3bx5UyiMoNPz8mHi4uKEwkRHR6NHjx4YMmQIHB0dYW5uzjT1k9S0adMQHx+PsLAwoZpZOjo60NfXR0pKCiwsLIQmMzMzZj8ePnwo1OF7xf2oyoABA5Cfn49t27ZVWrZq1Sqw2Wz07t2b2Zag4EbctiQJAwBOTk6YM2cObty4ATs7O+zbt0/iNFdHU1MTFhYW0NXVlajvr3nz5mHVqlXIzKx9J8nR0dFo2bIlxo8fDycnJ1hYWAjVxFJSUoKpqSkuXRLdMW6TJk3w+vVryMjIVDrXmpqaItfhcrlQVlYWmmizRcnISEvBTEMZCVn/DaZACEHC6/doqKVap9siICjh8yvNv/IsA00MtUWO8EhRdUFGRhrmhvp49DSVmUcIwaMnKbA0rbt+4QqLivH63QeoK5f1b1RUXPZBiAXh+68UiwUCyWoQU5SkpKRloK7TAG/KdSRPCEF2ejw09KzErpd09zge3zqENj3/hLpuQ7HhBAo+vUNx4Sem8Ky0tKzrAFaFplsslhQIqXzPp6ivISMjAwNjczxPjmfmEULwLDkexmZf/0Gay5WFsoo6Cgry8TTxIawdKrdcEMj5+A4Fn/Oh9BUFbBRF/bxoja4fRFFREV6/fi00T0ZGBh06dIClpSV8fX2xcuVK5OXl4Y8//hAKZ2FhASMjIwQFBWHJkiV48uQJVq9eLRSmYcOGOHLkCG7cuAE1NTWsWbMGb968gY2NjUTpCw4OxubNm3H8+HGwWCwmrYqKilBUVMSCBQswefJkqKio4P/Yu/P4mK7+geOfyb5ONtllI4JEQiKW2CkVagmqqLb0iVqeKqqWaoMooh48xaNapQ3V2FpFLU2KovY9sWUTiTW2yC6ZLJPfH/kZnSZIFWn5vl+veb3Mud977jkz12Tme885Nzg4GJVKxbFjx8jMzGTs2LG8/vrrfPzxx7zzzjtMmjSJtLQ05s6dW+XXJygoiNGjRzN+/HiKiooICQmhuLiY7777TjNSzcXFBYBRo0bRsmVL5s6dS8+ePYmJidGatggwevRoBg8eTGBgIC1btiQqKoqzZ89Sq1b5Ysipqal89dVX9OjRAycnJxITE0lOTuatt96q0LZnJSgoCD8/PyIiIli0aNFj1VGnTh2+/fZbYmJi8PDwYOXKlRw9elSTkITyBeyHDx+OnZ0dXbp0ITc3l/379/Pee+/RsWNHgoKCCAkJ4T//+Q9eXl5cu3aNrVu30qtXr0qnSoq/5pX6Hnxx4BQeNkpq21gSnZBGYUmpZmH4z/fHYW1sxICA8h9KJaVqrmSXj4wpVau5c1dF2p0cjPR1NSO4Vp9IpKGzLbamxhQUF7M/NZ1zN+4w6Q/TSa/n5pNw8w4T2sv7Kp6ubu2C+HzVBmrVdMTTtSbbfjtEYVER7Zr6A7Ao6kesLMwZ2K18XciSklIuX79Z/u/SUu5k55B6JR1jI0PN+lorf4qhsXddbK0tuZOdw7ro3egoFLQI8AXA2a4GDjWsWfr9Zt7o8XL51MXT8ZxOusDEIa9Xw6sgnndeAT04ErMQK/va2NjXISl2CyXFhXj4lK/PeThmPsamNvi1ehMon6545tBqgoLHYqK0oyA/EwB9A2P09I0oKS7kzME1uNQJwsjUirys68TtW4GZhQMObuX/d2o41sXA0IzDMQvxadYXHT0DLpzeTn7OTZw8GlfPCyGea606dOf7bxfh7FoLF7c67N+9lSKVisbN2wOwbsVClJbWBPd8Ayhf6uRmevmd00tLS8jJyuDa5VQMjYw0a3AlnTtJWRnY2juRcfs6P/+4Elt7Jxo3L/+/o1IVsnPrWhr4B2GutCTj1nV+3rgSG1sHvOo3evYvghCi2kmi628iOjq6wvpPdevWJSEhgQ0bNhAaGkrTpk1xd3dn4cKFBAcHa+L09fVZvXo1I0aMwM/PjyZNmjBjxgz69u2riQkLC+PChQt07twZExMThg4dSkhICNnZ2kOLH2TPnj2UlpbSo0cPrfKpU6cSHh7OkCFDMDExYc6cOYwfPx5TU1N8fX0ZM2YMUJ4Q27x5M8OHD8ff3x9vb29mz56tGYVVFfPnz8fPz4/FixcTFhaGrq4uAQEBbNy4ke7d708xad68OUuXLmXq1KlMmTKFjh07EhYWpjXlr1+/fqSkpDBhwgQKCwvp06cPI0aMICam/DbFJiYmJCQksGLFCjIyMnB0dOTdd9+t9K6Pz9L777/P4MGDmThxoiax92cMGzaMkydP0q9fPxQKBQMGDODf//43P//8syZm0KBBFBYW8tlnnzFu3Dhq1KjBq6++CpTfOWfbtm18/PHHvP3229y6dQsHBwfatGmDvb2sZ/M0BLk7klNYxPdxyWQXqHCzVvJhhyZYGJePsMrIL0TndyMCMwtUTNq6X/N867lUtp5Lpb69NVNeLp9anKMq4ov9p8gqKMTEQB9XS3MmvdQEX0ftUXm7z1/BytiIhk6Vj9YT4klp4d+A7Lx81kXvIis3D3cnRz4e+qZmgfrbmdlaI18zc3KZOO9LzfPNuw6wedcBvGu7Ez6y/AYcGVk5LPjuB3Lz76I0NaVeLVdmjnkHC7PyhK+eni6Thr7Bqi07mL1sFaqiIuxrWPPu670I8H6yU+GFAHD1aoXqbjZnDq6h8G4mVrYetAmZjJGJJQB3c26jUNwfeZVyOgZ1aQn7t/5Hqx6fZv1oENQfhUKH7IyLXIzfTVFR/v8vVN8Q3xavo6tXfoc6Q2MlbUImc/rgKnavn4paXYLS2oVW3SdhaSt3FxVPnl/jluTl5rBjy1pyc7JwcnHn7Xc/xlxpCUDWndtaIwxzs+/wv0/Ha57v3bmZvTs34+HpzdD3PwGgsLCAmE1RZGdmYGJqhk+j5rzcfQB6euU/ZXV0dLh+7RInDu+hsOAuSgsrPOs3pFO3/hXu1iiEeDEoyqq6wrf4W1EoFGzYsIGQkJDqbooQf1rmzKrdbVOIfzK9zj2ruwlCPHWzz3R4dJAQ/3CdmpRUdxOEeOra+vy5m5T9nYQtr/q608/SjMEGjw4ST4Ws0SWEEEIIIYQQQgghnguS6BJ/C8OHD9es9/XHx/Dhw6u7eVp8fHwe2NaoqKhn0oaoqKgHtsHHx+eZtEEIIYQQQgghhPi7kTW6/qGetxmnn3zyCePGjat0m1KpfMatebht27ZRXFxc6bZntU5Vjx49aNasWaXb9GUtAiGEEEIIIYQQLyhJdIm/BTs7O+zs7Kq7GVXi5uZW3U3A3Nwcc3Pz6m6GEEIIIYQQQgjxtyJTF4UQQgghhBBCCCHEc0ESXUIIIYQQQgghhBDiuSCJLiGEEEIIIYQQQgjxXJBElxBCCCGEEEIIIYR4LkiiSwghhBBCCCGEEEI8FyTRJYQQQgghhBBCCCGeC5LoEkIIIYQQQgghhBDPBUl0CSGEEEIIIYQQQojngiS6hBBCCCGEEEIIIcRzQRJd1axdu3aMGTNG89zd3Z358+c/teOlpaWhUCiIjY19ase4Z/ny5VhaWj40Jjw8nEaNGj31tgghhBBCCCGEEOL5p1fdDagugwcPZsWKFRXKO3fuTHR0dDW0qNzRo0cxNTWttuNXZsWKFSxatIizZ8+iq6tLQEAA48ePp1u3btXdNKA8Wbhnz54Hbm/bti27d+/G3d2dixcvAmBiYkLdunWZNGkSffv2BcqTbtOmTQNAR0cHJycnunTpwqeffoq1tfXT70gVFBQU8N5777Fp0yYKCgrw9vZm/vz5tGjRorqbJp6iXxIvsvlsKtmFKlytzBncxBvPGpaVxl7JyuX7uGQuZORwO7+ANwPr0bW+h1bM9sSL7Ei+zM28uwDUtDCnj58njZxtNTHXc/OJOp5A4s1MitVqGjnZMriJNxbGhk+tn+LFFr3vCJt37ScrJw83Jwfe7t2FOm41K429fP0m637exYUr17h1J4tBIcG80jZIK2Zd9C5+iNmtVeZkV4P5k97TPP9q3WZOJ10gMycXQwN96nq4MrBbR5ztbRHiaUiO20bi8U0U5mdiaeuOf7sh2Dh4VRqbcvoXLsbvJjvjEgBWdrXxbTlQE68uLeH0wVWkpx4nP+cG+gam2Lv64tfyLYzNtL+3XLtwjHNH1pF1+yK6uvrYOvvQqsekp9tZ8cI6uCeavTs2kZuThWNNN7r3DcXFvU6lsTfSL7NjyxquXrpA5p1bvNJnMK06aP/GUKvV7Ni6ltgjv5GXm425hRUBzdrRocurKBSKCnVuWL2EI/u2V1qXEOLF8MImugCCg4OJjIzUKjM0rN4fcba2f68v1+PGjWPRokXMmDGDkJAQiouL+e677+jZsycLFixg5MiR1d1EfvzxR4qKigC4fPkyTZs2ZceOHfj4+ABgYGCgif3kk0945513yMnJYd68efTr1w9nZ2dNosjHx4cdO3ZQWlpKfHw8//rXv8jOzmbt2rXPvmOVmDNnDj/88ANr167Fy8uLM2fOoKf36P/GRUVFWq+D+Oc4mJbOymPxhDZrgGcNS35OSGPWzqN81rMNSqOKn1eqklJszUxo5urAyuMJldZpbWpEf38vHMxNKaOMvSnXmLf7OLNeaUlNS3MKi0uYteMoblZKwjo1BWBdbDL/2XWcGV2CKv1SKcRfceDkGb7dFM07r3anjltNtv52kJlLVrLgo1FYmFW8+KMqKsbOxpLmDb1ZsSnmgfXWdLBj8oi3NM91dbQHsnvUdKRVgC+21pbk3r3L99G7mfHlSj6fPAYdHRn0Lp6sS0n7iP0tksAOw7Fx8CLx5GZ+2/AJXQZ9jpGJRYX4W1fO4Fq3NTaOddHVMyDh2I/8tuETOr+5ABMzG0pKVGTevIBPs9ewsHWnuDCPk3u+Zt/mCDoNmKup50ryQY7uXIxvi4HYufiCWq1JngnxpJ06vp+t65cTMmAoru5e7Nu1hW8WzeCDqQsxM694nhcXqbCysaOBfxBb1y+vtM49v2zg8N4Y+r75HvZOLly5mMIP332OsYkpLdp11Yo9G3uYy6nJKC2snkb3hBD/EC/0tzhDQ0McHBy0HlZW5R+KycnJtGnTBiMjI7y9vdm+fTsKhYKNGzcCsHv3bhQKBVlZWZr6YmNjUSgUpKWlAZCRkcGAAQNwdnbGxMQEX19fVq9e/dA2/X7q4vLly1EoFBUe4eHhmvhly5ZRv359jIyMqFevHosXL9aq78iRI/j7+2NkZERgYCAnT56s8utz6NAh5s2bx5w5cxg3bhyenp7Ur1+fmTNnMmbMGMaOHcvly5c18cuXL8fV1RUTExN69epFRkZGhTo//fRT7O3tMTc3JzQ0lMLCQq3tu3fvpmnTppiammJpaUnLli01o7AexNraWvP+3UsU2tjYaMp+PxrL3NwcBwcHvLy8+PzzzzE2Nmbz5s2a7Xp6ejg4OODs7EzHjh3p27cv27dvr9LrVVZWRnh4OK6urhgaGuLk5MSoUaM021UqFePGjcPZ2RlTU1OaNWvG7t27ASgsLMTHx4ehQ4dq4lNSUjA3N+ebb77RlOno6ODt7U3nzp3x8PCge/fuNG3atEJbBg8eTEhICDNnzsTJyYm6desCsHLlSgIDAzWvw+uvv87Nmze19j179izdunVDqVRibm5O69atSUlJ0Wx/1Dknnqyt8al0qONCO8+a1LQ0Y0gzHwx1ddl1/kql8bVrWPJG43q08HBC7wE/1BvXtMff2Q5HpSlOSjP6+XthqKdH8u0sAJJuZXErv4DhLXxxtVLiaqVkREs/Uu9kc+Z6xf/XQvxVW3Yf5KXmjWnfzJ+aDrYM7dsdQwN9dh0+UWm8p6szb/boTMsAX/T1dB9Yr66uDlZKc81D+YekWacWgXh7umNrbUmtmk707/oSGVnZ3LyT9SS7JwQASSd+olaDTnj4vITSxoXAl0agq2dI6tmdlcY37zIWz4ZdsLKrhdK6Jk06jqSsTM3NS6cAMDA0pV3vcFy8WqK0csbGsS4B7d7hzo0U8nNuAaBWl3Jyz9c0bD0IT79glFbOKG1ccPFq+ay6LV4w+37dTJOWHQkM6oCdY016DRiGgYEBxw7+Wml8TTdPuvYeRMPAVujp6Vcacyk1CW+/ptTzbYyVjR2+AUF41W/I5bRkrbjsrAx++v5r+r09Gl3dF3o8hxAvvBc60fUgarWa3r17Y2BgwOHDh/nyyy+ZOHHin66nsLCQxo0bs3XrVs6cOcPQoUN58803OXLkSJX279evH+np6ZrH6tWr0dPTo2XL8i8nUVFRTJkyhZkzZxIfH09ERASTJ0/WTMnMy8ujW7dueHt7c/z4ccLDwxk3blyV27969WrMzMwYNmxYhW0ffPABxcXFrF+/HoDDhw8TGhrKyJEjiY2NpX379syYMUNrn3Xr1hEeHk5ERATHjh3D0dFRK0lSUlJCSEgIbdu25dSpUxw8eJChQ4c+tdEjenp66Ovra0aD/VFaWhoxMTFVHgm1fv16PvvsM5YsWUJycjIbN27E19dXs33kyJEcPHiQNWvWcOrUKfr27UtwcDDJyckYGRkRFRXFihUr2LRpE6Wlpbzxxht06tSJf/3rX5o6unfvzuHDh/n6668f2Z6dO3eSmJjI9u3b2bJlCwDFxcVMnz6duLg4Nm7cSFpaGoMHD9bsc/XqVdq0aYOhoSG//vorx48f51//+hclJSXAo8858WSVlKpJzcihgWMNTZlCoaCBow3Jt7KeyDHU6jIOpF5DVVJCnRrlif5idSkKFOjr3v8TYaCrgwIFiTczn8hxhbinpKSUC1eu4etVS1OmUCjw9apNUlrlCd2qun4rg2Hhcxk5Yz4LV/7A7cysB8YWqorYfeQkdjZW1LCsOOpAiL9CXVrCnRspOLg21JQpFArsXf3ISE+sUh0lJSrU6lIMjMwfGFNUdBeFQoGBYXlSN/NmCnfzMlCg4Jeosfy09F/8tnE62bcffhFRiMdRUlLC1UsX8KznpylTKBR41vPjUmrSY9fr6uFFSuJpbt24BkD6lTRSz8fj5e2viSkrK+P7Ff+jTcee2Du6PH4nhBDPhRc61b1lyxbMzMy0yj766CMCAwNJSEggJiYGJycnACIiIujSpcufqt/Z2VkrsfTee+8RExPDunXrKh2F80fGxsYYGxsD5aN73n33XSIiIujUqRMAU6dOZd68efTu3RsADw8Pzp07x5IlSxg0aBCrVq1CrVbz9ddfY2RkhI+PD1euXGHEiBFVan9SUhK1a9euNNHj5OSEUqkkKan8j9aCBQsIDg5mwoQJAHh5eXHgwAGt9c7mz59PaGgooaGhAMyYMYMdO3ZoRnXl5OSQnZ1Nt27dqF27NgD169evUlv/rKKiIubNm0d2djYdOnTQlJ8+fRozMzNKS0s17frvf/9bpTovXbqEg4MDHTt2RF9fH1dXV837fOnSJSIjI7l06ZLmnBo3bhzR0dFERkYSERFBo0aNmDFjBkOGDKF///5cvHhRk6ACuHHjBsHBwUycOJHZs2eTl5fH6NGjgfLRgzVq1ODo0aMEBgYCYGpqyrJly7Tev98nzWrVqsXChQtp0qQJeXl5mJmZ8fnnn2NhYcGaNWvQ1y+/qubldX/tkEedc+LJylUVoS4rw8JI+/+ghZEh13Ly/1LdlzJzmBJ9iOJSNUb6uoxtF0BNy/LPwzo1LDHU02XViUT6+9elrKyMNSeTUJeVkVWg+kvHFeKPcvLvolarsTTX/ntsaWbKtRu3H7veOm41+feAEJzsbMnMyeWHmN1M+d83zJvwLsa/m/Ybs/8IUZu3U6gqwsmuBmHD30LvIaPEhHgcqoIcysrUGP5hiqKRiSW5mVerVMepfd9ibGqNvatfpdtLS4o4te9bXL1aoW9oAkB+9g0Azhxai3+btzFR2pJ4YhO7fphMl0GfY2j84KSZEH/W3fwc1Gp1hSmKZuYW3LpRtfO8Mu0690alKuCz6aNR6OhQplbzcvcB+Ddto4nZ88sGFDo6FaYyCiFeTC90oqt9+/Z88cUXWmXW1tasXLkSFxcXTUICICgo6I+7P1JpaSkRERGsW7eOq1evUlRUhEqlwsTE5E/Vcy/588orrzB+/HgA8vPzSUlJITQ0lHfeeUcTW1JSgoVF+R+X+Ph4/Pz8MDIyeux+lJWVVSkuPj6eXr16aZUFBQVpJbri4+MZPnx4hZhdu3YB5a/94MGD6dy5M506daJjx4689tprODo6/qk2P8zEiRMJCwujsLAQMzMzPv30U1555RXN9rp16/LTTz9RWFjId999R2xsLO+9995Daryvb9++zJ8/n1q1ahEcHEzXrl3p3r07enp6nD59mtLSUq2kEZRPZ7SxsdE8/+CDD9i4cSOLFi3i559/1to2b948XF1diYiIYNiwYbRu3Zpbt24xY8YMTp8+jbm5OQ0b3r9S7OvrWyFJeW9kX1xcHJmZmajVaqA8Eeft7U1sbCytW7fWJLl+ryrnXGVUKhUqlXZyRFVSiqH8kKxWTkozPu3WkrtFJRy+eJ0v9p9iysvNqWlphtLIkDFt/Pn68BliEi+iQEELD0fcrZXI8lzin8K//v2Fj92c7KnjVpN3P/mMg3Fn6dAsQLOtVYAffl61yczOZfPuA3y2Yh3TR4ViUMnnoBDVJf7oj1xK2kf7V6ejq1fxAqS6tIQD2+ZCWRmNO9z/rnXve5x30z7UrFP+HbBpp1Fs/noIV84foLZv52fTASH+glPH9xN7dC/9Bo/GztGF61fT2PJDJOYWVjRu3p4rl1LYv2sr702aI+uICiGAFzzRZWpqiqen52Pte2+R2t8ngoqLi7Vi5syZw4IFC5g/fz6+vr6YmpoyZsyYB06Vq0xpaSn9+vVDqVTy1Vdfacrz8vIAWLp0Kc2aNdPaR1f3ySQQvLy82LdvX6ULmV+7do2cnJwKiZu/KjIyklGjRhEdHc3atWsJCwtj+/btNG/e/InUP378eAYPHoyZmRn29vYV/hgaGBhozol7SbBp06Yxffr0R9bt4uJCYmIiO3bsYPv27fz73/9mzpw57Nmzh7y8PHR1dTl+/HiF9+f3owpv3rxJUlISurq6JCcnExwcrNl26tQpGjVqBICbmxs7duzQJLtycnJ44403tBJUf7x7Z35+Pp07d6Zz585ERUVha2vLpUuX6Ny5s+acvDeCsDKPe87NmjVLczfLeya0b8yHLzV54D6inLmhAToKBdmF2p8Z2YUqLCtZiP7P0NPVwcG8/BypZWPBhYxsohPSGNK8AQB+TjVY0KsdOYVF6OooMDXQZ/j3O7Eze3KJZyEAlKYm6OjokJWbp1WelZePpdLsAXv9eabGRjja2ZB+K6NCuamxEY62Nni5u/D2x7M4ejqBlgG+D6hJiD/P0FiJQqGD6m62Vnnh3SyMTB6+aHbC8U0kHPuRtr2mYlnDvcL2e0muuzk3addnumY0F4CRaXndSmtXTZmunj5mFvbczX38EZNCVMbEVImOjg55udrneV5uNmbKx18c/ueNK2nbqRcNA1sB4OjsRmbGLXbHbKBx8/aknY8nPy+H2WH3k7xqtZptP67gwK6tTJj+xYOqFkI8p2SNrkrUr1+fy5cvk56erik7dOiQVsy9Rc9/HxMbG6sVs3//fnr27Mkbb7xBw4YNqVWrlmaqX1W9//77nD59mo0bN2qNzLK3t8fJyYkLFy7g6emp9fDw8ND049SpU1oLvv+xHw/Tv39/8vLyWLJkSYVtc+fORV9fnz59+miOdfjwYa2YPx6rKjEA/v7+TJo0iQMHDtCgQQNWrVpV5TY/So0aNfD09MTBwaFKV3zCwsKYO3cu165dq1L9xsbGdO/enYULF7J7924OHjzI6dOn8ff3p7S0lJs3b1Z4vxwcHDT7/+tf/8LX15cVK1YwceJE4uPjNducnZ05cOAApaWlQHki8pdffmHdunVs2LCByZMnP7RtCQkJZGRk8Omnn9K6dWvq1atXYSF6Pz8/9u7dWyFpC1U75yozadIksrOztR7vtw14YLy4T09XBw8bJWfT7/8wLysr4+z1DOrYWj7RY5VRRvH/j/D7PaWRAaYG+py9nkGOqojGLnZP9LhC6OnpUqumE2eSUzVlZWVlnEm6gJd7zSd2nEJVEddv38Fa+eCpWmWUUVYGxf+/LqEQT4qOrh7W9rW58f8LyUP5eX7z8mlsHOs+cL+EYxs4d3gdbUImY+1Qp8L2e0muvKxrtO09rcJURGu72ujq6pObdVVrn/zsm5iY1/hjdUL8JXp6eji71iIl8bSmrKysjPOJp3H1ePyL48VFqgojyssHHZQPOAho1pZRH83jvUlzNQ+lhRVtOvXk7ZEP/34shHg+vdAjulQqFdevX9cq09PTo2PHjnh5eTFo0CDmzJlDTk4OH3/8sVacp6cnLi4uhIeHM3PmTJKSkpg3b55WTJ06dfjhhx84cOAAVlZW/Pe//+XGjRt4e3tXqX2RkZEsXryYDRs2oFAoNG01MzPDzMyMadOmMWrUKCwsLAgODkalUnHs2DEyMzMZO3Ysr7/+Oh9//DHvvPMOkyZNIi0tjblz5z7iqPcFBQUxevRoxo8fT1FRESEhIRQXF/Pdd99pRqq5uJQv9jhq1ChatmzJ3Llz6dmzJzExMVrTFgFGjx7N4MGDCQwMpGXLlkRFRXH27Flq1SpfgDg1NZWvvvqKHj164OTkRGJiIsnJybz11lsV2vasBAUF4efnR0REBIsWLXpo7PLlyyktLaVZs2aYmJjw3XffYWxsjJubGzY2NgwcOJC33nqLefPm4e/vz61bt9i5cyd+fn688sorfP755xw8eJBTp07h4uLC1q1bGThwIIcOHcLAwIBRo0bRvHlz+vfvz6RJkzA0NGTHjh2aheJXrlypWSOtMq6urhgYGPC///2P4cOHc+bMmQoj1UaOHMn//vc/zTEsLCw4dOgQTZs2pW7duo885ypjaGiIoaH26KNSmbZYZa/U9+CLA6fwsFFS28aS6IQ0CktKaVe7PAHw+f44rI2NGBBQ/kOppFTNlezykTGlajV37qpIu5ODkb6uZgTX6hOJNHS2xdbUmILiYvanpnPuxh0m/W6U3e7zV3C2MMPcSJ/kW1l8eyyeLvXccXqCI2yEuKdbuyA+X7WBWjUd8XStybbfDlFYVES7puULDS+K+hErC3MGditfo7KkpJTL18sT9SWlpdzJziH1SjrGRoY41Ci/0+7Kn2Jo7F0XW2tL7mTnsC56NzoKBS3+f6TWjdt3OBB7Fr+6tbEwMyEjK4eNO/dhYKCPv/eTHa0sBIBXQA+OxCzEyr42NvZ1SIrdQklxIR4+5WuFHo6Zj7GpDX6t3gTKpyueObSaoOCxmCjtKMgvvxmIvoExevpG5UmurXPIvHWB1j0+oqxMrYkxNDJHR1cPfUMTavt15uzBNZiY1Shfo+vYBgBc6sidF8WT16pDd77/dhHOrrVwcavD/t1bKVKpaNy8PQDrVixEaWlNcM83gPIlMG6ml9/FvbS0hJysDK5dTsXQyAgb2/JR5PV8A9kV8yOWVrbYO7lw7XIq+37dTOOg8v87JqbmmJhqJ3l1dfUwM7fE1t4JIcSL54VOdEVHR1dY/6lu3bokJCSwYcMGQkNDadq0Ke7u7ixcuFBrGpm+vj6rV69mxIgR+Pn50aRJE2bMmEHfvn01MWFhYVy4cIHOnTtjYmLC0KFDCQkJITtbezjvg+zZs4fS0lJ69OihVT516lTCw8MZMmQIJiYmzJkzh/Hjx2Nqaoqvry9jxowByhNimzdvZvjw4fj7++Pt7c3s2bM1o7CqYv78+fj5+bF48WLCwsLQ1dUlICCAjRs30r17d01c8+bNWbp0KVOnTmXKlCl07NiRsLAwrURKv379SElJYcKECRQWFtKnTx9GjBhBTEwMACYmJiQkJLBixQoyMjJwdHTk3XffrfSuj8/S+++/z+DBg5k4caImsVcZS0tLPv30U8aOHUtpaSm+vr5s3rxZs85WZGQkM2bM4IMPPuDq1avUqFGD5s2b061bNxISEhg/fjxff/215hiLFy/Gz8+PyZMnM3v2bBo2bMjBgweZNGkSnTp1oqioiFatWrF9+3bOnz/PoEGDqF279gPfX1tbW5YvX85HH33EwoULCQgIYO7cuVrnl42NDb/++ivjx4+nbdu26Orq0qhRI82dPh91zoknL8jdkZzCIr6PSya7QIWbtZIPOzTBwrg8eZiRX4jO7y5zZhaomLR1v+b51nOpbD2XSn17a6a8XD7lNEdVxBf7T5FVUIiJgT6uluZMeqkJvr+7u2N6Tj5rTiaSX1RMDVNjQhrUpmt992fTafHCaeHfgOy8fNZF7yIrNw93J0c+HvqmZoH625nZWqNwM3NymTjvS83zzbsOsHnXAbxruxM+8m0AMrJyWPDdD+Tm30Vpakq9Wq7MHPMOFmblCV99fX3iL1xk656D3C0sxMLMjPq1XJkxKlQTI8ST5OrVCtXdbM4cXEPh3UysbD1oEzIZIxNLAO7m3EahuD/ZIuV0DOrSEvZv/Y9WPT7N+tEgqD8F+Xe4eqH8Tt4xUdoXm9r3mY6dS/lU9IatBqFQ6HI4ej6lpUVYO3jR7tVPMDCSCxfiyfNr3JK83Bx2bFlLbk4WTi7uvP3ux5grLQHIunMbhc798zw3+w7/+3S85vnenZvZu3MzHp7eDH3/EwB69A1l+5Y1bFq7lPy8HMwtrGjashMdur72TPsmhPjnUJRVdbVxgUKhYMOGDYSEhFR3U4T4R8ucWbU7fwrxT6bXuWd1N0GIp272mQ6PDhLiH65TE5nOLJ5/bX3+3A3T/k7Clld9DexnacbgijcPEc+GrNElhBBCCCGEEEIIIZ4Lkuh6gQ0fPlyz3tcfH8OHD390Bc+Qj4/PA9saFRX1TNoQFRX1wDb4+Pg8kzYIIYQQQgghhBDiwV7oNbr+rOdtlucnn3zCuHHjKt2mVCqfcWsebtu2bZXeCRDK7wb4LPTo0YNmzZpVuk1fX/+ZtEEIIYQQQgghhBAPJomuF5idnR12dnbV3YwqcXNzq+4mYG5ujrn5g29LL4QQQgghhBBCiOolUxeFEEIIIYQQQgghxHNBEl1CCCGEEEIIIYQQ4rkgiS4hhBBCCCGEEEII8VyQRJcQQgghhBBCCCGEeC7IYvRCiGdOr3PP6m6CEE9dScym6m6CEE9dp5A21d0EIZ667UflJ5N4/rX1qe4WCPHkyIguIYQQQgghhBBCCPFckESXEEIIIYQQQgghhHguSKJLCCGEEEIIIYQQQjwXJNElhBBCCCGEEEIIIZ4LkugSQgghhBBCCCGEEM8FSXSJKmnXrh1jxozRPHd3d2f+/PlP7XhpaWkoFApiY2Of2jHuWb58OZaWlg+NCQ8Pp1GjRk+9LUIIIYQQQgghhHh8cq/cv7nBgwezYsWKCuWdO3cmOjq6GlpU7ujRo5iamlbb8SuzYsUKFi1axNmzZ9HV1SUgIIDx48fTrVu36m6axvLly3n77bcrlC9dupQhQ4ZobVcoFDg5OdGpUydmz56NnZ2dpvwec3Nz6tatS1hYGD179nw2nRDPXPS+I2zetZ+snDzcnBx4u3cX6rjVfGD8wdgzrP15F7fuZOFga8PAbh0J8PbSbC9UFRG1ZTtHTyeQd7cAW2tLurRuxsstmwCQm3+X72N2cyoxhduZ2ZibmtDUtx6vdemAqbHRU++veDH9kniRzWdTyS5U4WplzuAm3njWsHxg/KG0dNbFJXM7vwAHcxMGBNTF39lOs33Ayp8r3e/1gLp096nFuesZTN9+pNKYGV2CqP2QYwvxuA7uiWbvjk3k5mThWNON7n1DcXGv88D4UycOsH3zGrLu3MLGzpHgnm9Qr0GAZntuThbRm77jfHwcBXfz8fD0pvtrodSwc9Sq5+KFRLZvXs2ltGR0dHRwrOnOv0ZORl/f4Kn1Vby4kuO2kXh8E4X5mVjauuPfbgg2Dl4PjL+ctJ/TB1dxN+cWZpaO+LV6CyePxprthXezOLXvW65fjKNIlYetsw8B7YZgbuWkiSnIz+TUvhVcvxhHSXEB5pZOeDftS806QU+1r0KIvydJdP0DBAcHExkZqVVmaGhYTa0pZ2trW63H/6Nx48axaNEiZsyYQUhICMXFxXz33Xf07NmTBQsWMHLkyOpuooZSqSQxMVGrzMLCosJ2tVpNXFwcb7/9NteuXSMmJkYTExkZSXBwMDk5OSxevJhXX32VEydO4Ovr+8z6IZ6NAyfP8O2maN55tTt13Gqy9beDzFyykgUfjcLCrGKyOTH1EgtWruf1V8qTW/tOnGZu5Bo+HTsMV0d7AFZsiuZscirvvdEbO2srYhPO8/X6rVhZmNOkQT0yc3LJzM7ljR4vU9PeltuZ2Sz9fjN3snP54O1+z/olEC+Ag2nprDwWT2izBnjWsOTnhDRm7TzKZz3boDSq+Pcu8WYm/9sXR39/L/yd7TiQdo3/7j5BRNeWuFiZA/DFqx209om9eouvDp2mqasDAF62VhVi1sUmceZ6BrVsLBDiSTt1fD9b1y8nZMBQXN292LdrC98smsEHUxdiZl7xnLuYksDayPl07jGQeg0aE3tsL9999R9GfvgfHJxcKSsrY+WS2ejq6fHmsIkYGpmw79fNfL1wGmMmz8fQsPzCxMULiSz/fCZtO/ei+2uh6Ojokn41DQWKCscU4q+6lLSP2N8iCewwHBsHLxJPbua3DZ/QZdDnGJlUPM9vX4vn4M//xa/lmzh5NOZi4l72b/mUlwfMxaKGG2VlZez7aRY6unq06v4heoYmJJ34id0/htPlrYXo6Zef54djFlCsyqdVj0kYGiu5lLCXA9vm0GnAXKzsaj3rl0EIUc1k6uI/gKGhIQ4ODloPKysrAJKTk2nTpg1GRkZ4e3uzfft2FAoFGzduBGD37t0oFAqysrI09cXGxqJQKEhLSwMgIyODAQMG4OzsjImJCb6+vqxevfqhbfr91MXly5ejUCgqPMLDwzXxy5Yto379+hgZGVGvXj0WL16sVd+RI0fw9/fHyMiIwMBATp48WeXX59ChQ8ybN485c+Ywbtw4PD09qV+/PjNnzmTMmDGMHTuWy5cva+KXL1+Oq6srJiYm9OrVi4yMjAp1fvrpp9jb22Nubk5oaCiFhYVa23fv3k3Tpk0xNTXF0tKSli1bcvHixSq1V6FQVHg/jY2NK2x3cnKiS5cujBo1ih07dlBQUKCJsbS0xMHBAS8vL6ZPn05JSQm7du2q0vHj4uJo37495ubmKJVKGjduzLFjxzTb9+3bR+vWrTE2NsbFxYVRo0aRn58PwLfffouZmRnJycma+H//+9/Uq1ePu3fvVun44s/ZsvsgLzVvTPtm/tR0sGVo3+4YGuiz6/CJSuO3/XaIRvU86dGhJTUdbOnftQMezo5E770/ciUx9TJtmjTEx9MDW2tLOrUIxM3JnvOXrgLg6mjPB2/3I9CnLg41rGlQx4P+XTtw/FwipaWlz6Tf4sWyNT6VDnVcaOdZk5qWZgxp5oOhri67zl+pND46IY2GTjXo7lOLmpZmvNbIC3drC2IS738OWxobaj2OXb6Bt7019uYmAOjp6mhtNzPQ5/iVm7StXVNr5KwQT8q+XzfTpGVHAoM6YOdYk14DhmFgYMCxg79WGr9/91a8vP1p06kndo41ebn7AJxcPDi4p3y04u2b6VxOSyak/1Bqunlia+9ESP+hFBcXcerYPk09W9cvJ6hdF9q93At7Rxds7Z3wC2iBnr7+M+m3eLEknfiJWg064eHzEkobFwJfGoGuniGpZ3dWHn9yK47uAdQLDEFp44Jvi9exsq1Fctw2AHKzrpFxPYnGHYZh7VAHpZUzjTsMR11SxKXEvZp6MtITqdPoFWwcvDCzcMC7WV8MDM3IvJnyTPothPh7kUTXP5haraZ3794YGBhw+PBhvvzySyZOnPin6yksLKRx48Zs3bqVM2fOMHToUN58802OHKl8Sscf9evXj/T0dM1j9erV6Onp0bJlSwCioqKYMmUKM2fOJD4+noiICCZPnqyZkpmXl0e3bt3w9vbm+PHjhIeHM27cuCq3f/Xq1ZiZmTFs2LAK2z744AOKi4tZv349AIcPHyY0NJSRI0cSGxtL+/btmTFjhtY+69atIzw8nIiICI4dO4ajo6NWYq6kpISQkBDatm3LqVOnOHjwIEOHDn1qP4yMjY1Rq9WUlJRU2FZSUsLXX38NgIFB1aYfDBw4kJo1a3L06FGOHz/Ohx9+iP7/f9lNSUkhODiYPn36cOrUKdauXcu+ffs0I+LeeustunbtysCBAykpKWHr1q0sW7aMqKgoTExMnlCPxT0lJaVcuHINX6/7VyIVCgW+XrVJSqs8AZCUdkUrHsCvbm2SLt5P9tb1cOH42SQysnIoKyvjTHIq6bcyaOhV+4FtuVuowtjQEF1d3b/YKyG0lZSqSc3IoYFjDU2ZQqGggaMNybeyKt0n6VYWDRxttMr8HG1Ivl15fHaBithrt2jv6fLAdhy/epNcVRHtajv/6T4I8SglJSVcvXQBz3p+mjKFQoFnPT8upSZVus+l1CRq19UeqV2nfkNNfElJMQB6evcnaCgUCvT09Um7kABAXm42l9OSMTO34Iu5HzFj4r/46rMppKXEP9H+CQGgLi3hzo0UHFwbasoUCgX2rn5kpCdWuk/G9UTsXLTPcwe3Rpp4dWn5ea6jez8xq1Ao0NHT5/a1++exjWNdLiftR1WQS1lZGZcS91JaWoRtzQZPrH9CiH8Ombr4D7BlyxbMzMy0yj766CMCAwNJSEggJiYGJ6fyOeoRERF06dLlT9Xv7OyslVh67733iImJYd26dTRt2vSR+xsbG2tGJKWkpPDuu+8SERFBp06dAJg6dSrz5s2jd+/eAHh4eHDu3DmWLFnCoEGDWLVqFWq1mq+//hojIyN8fHy4cuUKI0aMqFL7k5KSqF27dqWJHicnJ5RKJUlJ5V8KFyxYQHBwMBMmTADAy8uLAwcOaK13Nn/+fEJDQwkNDQVgxowZ7NixQzOqKycnh+zsbLp160bt2uWJgfr161eprQDZ2dla76eZmRnXr1+vNDY5OZkvv/ySwMBAzM3NNeUDBgxAV1eXgoIC1Go17u7uvPbaa1U6/qVLlxg/fjz16tUDoE6d+2uDzJo1i4EDB2puPFCnTh0WLlxI27Zt+eKLLzAyMmLJkiX4+fkxatQofvzxR8LDw2ncuHFlhwJApVKhUqm0yoqKijCsYmLuRZaTfxe1Wo2lufb/f0szU67duF3pPtl5eRXjlWZk5eRpnv+rd1eWrNvMiGnz0NXVRaGAYa/1wNvTvfJ25OWz/pc9dGwR+Nc6JEQlclVFqMvKsDDS/kywMDLkWk5+pfvkFKqw/MOURktjQ7IKVJXG77lwFSM9PZq42D+wHbuSL+PnWAMbU+MHxgjxuO7m56BWqytMUTQzt+DWjauV7pOXk4250lKrzFxpSW52JgC29s5YWtUg5qdVhAwYhoGBEft+3Ux2ZoYm5s7tGwDs3LaOLr3ewqmmBycO72HZgmmMCfuswlpeQvwVqoIcysrUGP5hiqKRiSW5mZWf54V3szA2taoQX5ifBYDSqiYm5rac3h9F4EvD0dM3IvHET9zNvU1BfqZmnxavjOfgtrlsXPIWOjq66OoZ0rLbh5hbyjkuxItIEl3/AO3bt+eLL77QKrO2tmblypW4uLhoklwAQUF/fsHF0tJSIiIiWLduHVevXqWoqAiVSvWnR+jcS/688sorjB8/HoD8/HxSUlIIDQ3lnXfe0cSWlJRo1qWKj4/Hz88PI6P7i1z/2X6UlZVVKS4+Pp5evXpplQUFBWkluuLj4xk+fHiFmHtTA62trRk8eDCdO3emU6dOdOzYkddeew1Hx6r9ITU3N+fEifvTznR0tAdW3kuEqdVqCgsLadWqFcuWLdOK+eyzz+jYsSMXLlzg/fffZ+HChVhbW1fp+GPHjmXIkCGsXLmSjh070rdvX03CLi4ujlOnThEVFaWJLysrQ61Wk5qaSv369bGysuLrr7+mc+fOtGjRgg8//PChx5s1axbTpk3TKvvwnYF8NPSNKrVXPHnRew9z/uIVJgx5HVsrS86lpJWv0aU0x6+u9qiuu4WFfLp0FTUd7Oj7crvqabAQf9Hu81do5eGEgV7lIxIz8gs4lX6b0W38n3HLhHh8enp6DBw6nh+/+4Lp4wejo6ODZ10/vLzvn8dlajUATVt2IjCofE06JxcPUpJOc+zgToJ7yt9i8femo6tHy24TOLrjczZ8+SYKhQ72rg1xdA/QijtzYBXFqnza9Z6GobE5V1OOcHDbXNr3nYFlDffqabwQotpIousfwNTUFE9Pz8fa914S5feJoOLiYq2YOXPmsGDBAubPn4+vry+mpqaMGTOGoqKiKh+ntLSUfv36oVQq+eqrrzTleXnlo0iWLl1Ks2bNtPZ5UlOgvLy82LdvH0VFRRVGdV27do2cnBy8vB58p5fHERkZyahRo4iOjmbt2rWEhYWxfft2mjdv/sh9dXR0Hvp+3kuE6ejo4OjoqLV+1z0ODg54enri6elJZGQkXbt25dy5c5o7Mz5MeHg4r7/+Olu3buXnn39m6tSprFmzhl69epGXl8ewYcMYNWpUhf1cXV01//7tt9/Q1dUlPT2d/Px8rdFmfzRp0iTGjh2rVVZ0Zvcj2ylAaWqCjo4OWbl5WuVZeflYKs0q3cfCzKxifE6eJr6ouJjV23byweB+NPapC4Cbkz1pV6+zefcBrURXQaGKiCXfYWRkwLi3+6H3gCSBEH+FuaEBOgoF2YXaf3OyKxm1dY/SyJCsQu3RW1kFKiyNK8bH37hDek4+o1s3emAbdqdcxdzQgMbOj/4MFeJxmJgq0dHRIS83W6s8LzcbM6VVpfuYKS3IzcnSKsvNycLc4n58TdfajPpoLgV38yktLcHM3ILFcz7E2aX8s/xerJ2j9p16be2dyLpT+chgIR6XobEShUIH1V3t87zwbhZGJpWf50YmllojszTxppaa59b2nnQe+BlFqnzUpSUYmViwY80ErOzKz/PcrHSS47YR/OYCLGzKv69a2npw6+o5zsf9TOBLVZslIoR4fsgaXf9g9evX5/Lly6Snp2vKDh06pBVz7+6Iv4+JjY3Vitm/fz89e/bkjTfeoGHDhtSqVUsz1a+q3n//fU6fPs3GjRu1RmbZ29vj5OTEhQsXNImZew8PDw9NP06dOqW14Psf+/Ew/fv3Jy8vjyVLllTYNnfuXPT19enTp4/mWIcPH9aK+eOxqhID4O/vz6RJkzhw4AANGjRg1apVVW7zw9xLhNWqVavSJNcfNW3alMaNGzNz5swqH8PLy4v333+fX375hd69e2vu6hkQEMC5c+cqvFeenp6aJOKBAweYPXs2mzdvxszM7JF3tDQ0NESpVGo9ZNpi1ejp6VKrphNnklM1ZWVlZZxJuoCXe81K9/Fyr8nppAtaZaeTLuDlVr42UUlpKSUlpRVGEurq6KBW30+I3y0sZMaX36Knq8vE0AEYyKLF4inR09XBw0bJ2fT7NwYpKyvj7PUM6thaVrqPl60lZ9K1byRy+noGdWpUjN+dcgUPGyVu1spK6yorK2NPyhVa13JGT1e+FomnQ09PD2fXWqQkntaUlZWVcT7xNK4elV+Mc/Xw0ooHOJ9wqtJ4YxNTzMwtuH0znSsXU/Bu2AQAKxs7lBZW3LpxTSs+42Y6VtZ/rztoi38+HV09rO1rc+PSKU1ZWVkZNy+fxsaxbqX72DjU5eZl7fP8xqW4SuMNDE0xMrEgN/Mad26cx7l2+UX00pLyCx9/vJOoQkenyrM+hBDPF/lG9w+gUqm4fv261uP27dt07NgRLy8vBg0aRFxcHHv37uXjjz/W2tfT0xMXFxfCw8NJTk5m69atzJs3TyumTp06bN++nQMHDhAfH8+wYcO4ceNGldsXGRnJ4sWL+fLLL1EoFJo23hvNNW3aNGbNmsXChQtJSkri9OnTREZG8t///heA119/HYVCwTvvvMO5c+fYtm0bc+fOrfLxg4KCGD16NOPHj2fevHmkpKSQkJBAWFgYCxYsYN68ebi4lP/IvzcKa+7cuSQnJ7No0SKtaYsAo0eP5ptvviEyMpKkpCSmTp3K2bNnNdtTU1OZNGkSBw8e5OLFi/zyyy8kJyf/qXW6nrQxY8awZMkSrl6tfP2DewoKChg5ciS7d+/m4sWL7N+/n6NHj2raPnHiRA4cOKBZrD85OZlNmzZpklm5ubm8+eabjBo1ii5duhAVFcXatWv54YcfnnofX1Td2gWx8+Bxdh85yZXrt1j6/RYKi4po17R8asqiqB+J2rJdE9+1TXPiElPYvGs/V2/cYl30Li5cuUZw6/L19kyMjPCu7c7Kn37h7PlUbmZksvvISX47FkdTv/J12+4WFjLzy5WoiosZ3r8ndwtVZObkkpmTi/r/p8EI8SS9Ut+DX89fZk/KFa5k5fH14bMUlpTSrnZ5Qvfz/XGsPnF/IePgeu6cSr/NlnOpXM3O44e4ZFIzsulc102r3rtFxRy6eP2hi9CfvZ7BrbwC2ntWnjwW4klp1aE7R/fv4PihXdxMv8LGNV9RpFLRuHl7ANatWEj0pu808S3bvUJSfCx7d/zEzetX2bF1LVcvXSCo7f21WE+dOMCFpDNk3L7OuVNH+eZ/n+DTsCl16jcCyhftbt2xJwd3/8zpEwfJuJXOL5tXc+vGNQJbdHim/RcvBq+AHlw4s53Uc7+Sk3GZ479+SUlxIR4+5efb4Zj5nNq38n68/ytcv3iShOObyLlzhTMH13DnZgp1GnbVxFxO2s/Ny2fIy77O1ZQj7NkwDefazXFwawSUr+NlZunAsV+/JON6ErlZ6SQc38SNS3GaZJgQ4sUiUxf/AaKjoyus/1S3bl0SEhLYsGEDoaGhNG3aFHd3dxYuXEhwcLAmTl9fn9WrVzNixAj8/Pxo0qQJM2bMoG/fvpqYsLAwLly4QOfOnTExMWHo0KGEhISQna097PhB9uzZQ2lpKT169NAqnzp1KuHh4QwZMgQTExPmzJnD+PHjMTU1xdfXV7PguZmZGZs3b2b48OH4+/vj7e3N7NmzNaOwqmL+/Pn4+fmxePFiwsLC0NXVJSAggI0bN9K9e3dNXPPmzVm6dClTp05lypQpdOzYkbCwMKZPn66J6devHykpKUyYMIHCwkL69OnDiBEjiImJAcDExISEhARWrFhBRkYGjo6OvPvuu5Xe9fFZCQ4OxsPDg5kzZ2rdIfKPdHV1ycjI4K233uLGjRvUqFGD3r17a9bQ8vPzY8+ePXz88ce0bt2asrIyateuTb9+/YDyJKCpqSkREREA+Pr6EhERwbBhwwgKCsLZWe5W9qS18G9Adl4+66J3kZWbh7uTIx8PfVOz4PztzGytO37W9XBl1Bu9WfvzLlZv24lDDRvGvd0fV8f7i3CPfutVVm3ZwcLv1pN/t5AaVhb079qBl1uUjwBIvZJO8sXyuzqOmrlAqz2fT34fW2vLp9xr8aIJcnckp7CI7+OSyS5Q4Wat5MMOTbD4/6mIGfmF6Pz+PLezYmTLhqyLS2btyUQclKaMbReAi5X2NOoDaemUlZXRwv3Bayj+ev4KXraWOFtUPh1YiCfFr3FL8nJz2LFlLbk5WTi5uPP2ux9rFpzPunMbxe9G27rVrke/waPZvnkNMT+tooadI28MnYCD0/2lBPJystj24wrNwvX+zdrSoUtfreO26tCNkpJitv64nLv5eTg6u/Gv9yZjYyuLdIsnz9WrFaq72Zw5uIbCu5lY2XrQJmQyRiaWANzNuY1Ccf88r+FUn+bB73P64CpOH/gOc0tHWnb7EIsa9y9cFNzNJHbvcs0USPf67fBpdv8mTDq6erTpOZlT+79j36YISkoKMbNwoOnLo3DyePANk4QQzy9FmYznfO4oFAo2bNhASEhIdTdFiErlHot+dJAQ/3AlMZuquwlCPHWnQuY9OkiIf7jtR2VsgHj+zRj8z11aJGx51deWfpb+ya/pP51MXRRCCCGEEEIIIYQQzwVJdIm/veHDh2NmZlbpY/jw4dXdPC0+Pj4PbGtUVNQL0wYhhBBCCCGEEKI6yDjc59DzNhv1k08+Ydy4cZVuUyorv4tWddm2bRvFxcWVbrO3t6+0/HlsgxBCCCGEEEIIUR0k0SX+9uzs7LCzs6vuZlSJm5vbo4NegDYIIYQQQgghhBDVQaYuCiGEEEIIIYQQQojngiS6hBBCCCGEEEIIIcRzQRJdQgghhBBCCCGEEOK5IGt0CSGeuRPGbaq7CUI8dX5squ4mCPHUbT8qXyXF829ig1+ruwlCPAPB1d0AIZ4YGdElhBBCCCGEEEIIIZ4LkugSQgghhBBCCCGEEM8FSXQJIYQQQgghhBBCiOeCJLqEEEIIIYQQQgghxHNBEl1CCCGEEEIIIYQQ4rkgiS4hhBBCCCGEEEII8VyQRJfQaNeuHWPGjNE8d3d3Z/78+U/teGlpaSgUCmJjY5/aMe5Zvnw5lpaWD40JDw+nUaNGT70tQgghhBBCCCGEeDr0qrsBAgYPHsyKFSsqlHfu3Jno6OhqaFG5o0ePYmpqWm3Hr8yKFStYtGgRZ8+eRVdXl4CAAMaPH0+3bt2qu2kay5cv5+23365QvnTpUoYMGaK1XaFQ4OTkRKdOnZg9ezZ2dnaa8nvMzc2pW7cuYWFh9OzZ89l0QvytHNwTzd4dm8jNycKxphvd+4bi4l6n0tgb6ZfZsWUNVy9dIPPOLV7pM5hWHR78/2P3LxuI2RRFy/av0O3ViudtWVkZyxdHkHTuJG8MnYBPw6ZPrF9C/N4viRfZfDaV7EIVrlbmDG7ijWcNy0pjr2Tl8n1cMhcycridX8CbgfXoWt/jT9WZqypifdx5TqXf5nZ+AeaGBjRxtadvwzqYGug/xZ6KF1ly3DYSj2+iMD8TS1t3/NsNwcbBq9LY7IxLnDm4hsybKeTn3KRRm7epG9BDK+bMwTWcPbxWq8zcyomugz4HID/nJlu+GVZp/S26jsPFq+UT6JUQ2qL3HWHzrv1k5eTh5uTA2727UMetZqWxl6/fZN3Pu7hw5Rq37mQxKCSYV9oG/ek6wxdFci4lTWufjkGBDH2t+xPtmxDin0ESXX8TwcHBREZGapUZGhpWU2vK2draVuvx/2jcuHEsWrSIGTNmEBISQnFxMd999x09e/ZkwYIFjBw5srqbqKFUKklMTNQqs7CwqLBdrVYTFxfH22+/zbVr14iJidHEREZGEhwcTE5ODosXL+bVV1/lxIkT+Pr6/un2FBUVYWBg8PgdEtXm1PH9bF2/nJABQ3F192Lfri18s2gGH0xdiJm5RYX44iIVVjZ2NPAPYuv65Q+t+8rF8xzZ+wsOzm4PjNm/a+tf7YIQj3QwLZ2Vx+IJbdYAzxqW/JyQxqydR/msZxuURhX/FqpKSrE1M6GZqwMrjyc8Vp1Zd1VkFhQysHFdnC3MyMgvZNmhM2TeLeT9tgFPu8viBXQpaR+xv0US2GE4Ng5eJJ7czG8bPqHLoM8xMqn4eV5arMJUaYdLnSBif4uspMZyFjYutO09TfNcR0dX828Tsxr0eOcbrfgLZ7aTcGwDjh6Nn0CvhNB24OQZvt0UzTuvdqeOW022/naQmUtWsuCjUViYVbyArioqxs7GkuYNvVmxKaaSGqte50tBjXktuL3muaFctBDihSVTF/8mDA0NcXBw0HpYWVkBkJycTJs2bTAyMsLb25vt27ejUCjYuHEjALt370ahUJCVlaWpLzY2FoVCQVpaGgAZGRkMGDAAZ2dnTExM8PX1ZfXq1Q9t0++nLi5fvhyFQlHhER4erolftmwZ9evXx8jIiHr16rF48WKt+o4cOYK/vz9GRkYEBgZy8uTJKr8+hw4dYt68ecyZM4dx48bh6elJ/fr1mTlzJmPGjGHs2LFcvnxZE798+XJcXV0xMTGhV69eZGRkVKjz008/xd7eHnNzc0JDQyksLNTavnv3bpo2bYqpqSmWlpa0bNmSixcvVqm9CoWiwvtpbGxcYbuTkxNdunRh1KhR7Nixg4KCAk2MpaUlDg4OeHl5MX36dEpKSti1a1eVjn9vGuayZcvw8PDAyMgIgOjoaFq1aoWlpSU2NjZ069aNlJQUrX2vXLnCgAEDsLa2xtTUlMDAQA4fPqzZvmnTJgICAjAyMqJWrVpMmzaNkpKSKrVL/Hn7ft1Mk5YdCQzqgJ1jTXoNGIaBgQHHDv5aaXxNN0+69h5Ew8BW6Ok9+AueSlXI2uUL6DVwOMbGlY/cvHY5lb07f+LVN/79RPoixINsjU+lQx0X2nnWpKalGUOa+WCoq8uu81cqja9dw5I3GtejhYcTejqVf5V5VJ0uVua83zaAxjXtcTA3xcfBhn6NvDhx5SalavVT66t4cSWd+IlaDTrh4fMSShsXAl8aga6eIalnd1Yab+1Qh0ZtBuNatzU6ug/+PFfo6GJsaqV5GBorf7dNR2ubsakVV88fwtWrJXr6Rk+8j0Js2X2Ql5o3pn0zf2o62DK0b3cMDfTZdfhEpfGers682aMzLQN80dfTrTSmqnUa6utjpTTXPEyM5BwX4kUlia6/ObVaTe/evTEwMODw4cN8+eWXTJw48U/XU1hYSOPGjdm6dStnzpxh6NChvPnmmxw5cqRK+/fr14/09HTNY/Xq1ejp6dGyZfmQ96ioKKZMmcLMmTOJj48nIiKCyZMna6Zk5uXl0a1bN7y9vTl+/Djh4eGMGzeuyu1fvXo1ZmZmDBtWcfj9Bx98QHFxMevXrwfg8OHDhIaGMnLkSGJjY2nfvj0zZszQ2mfdunWEh4cTERHBsWPHcHR01ErMlZSUEBISQtu2bTl16hQHDx5k6NChWlMKnyRjY2PUanWlCaOSkhK+/vprgD81Kuv8+fOsX7+eH3/8UbMOWn5+PmPHjuXYsWPs3LkTHR0devXqhfr/f9Tl5eXRtm1brl69yk8//URcXBwTJkzQbN+7dy9vvfUWo0eP5ty5cyxZsoTly5czc+bMv/gKiMqUlJRw9dIFPOv5acoUCgWe9fy4lJr0l+r+ae1S6vo0pk69hpVuLypSsXb5Anr2ewdzC6u/dCwhHqakVE1qRg4NHGtoyhQKBQ0cbUi+lfVM67xbXIKxvh66D0ieCfG41KUl3LmRgoPr/c9chUKBvasfGemJD9nz0fKy0vlpaShbvhnOoZ//S37OrQfG3rlxnsxbqXj4vPSXjilEZUpKSrlw5Rq+XrU0ZQqFAl+v2iSlVX7h4knWuff4Kf4VNpuxsz8nast2VEVFj9cRIcQ/nkxd/JvYsmULZmZmWmUfffQRgYGBJCQkEBMTg5OTEwARERF06dLlT9Xv7OyslVh67733iImJYd26dTRt+ug1d4yNjTUjklJSUnj33XeJiIigU6dOAEydOpV58+bRu3dvADw8PDSJkEGDBrFq1SrUajVff/01RkZG+Pj4cOXKFUaMGFGl9iclJVG7du1KEz1OTk4olUqSksp/+C9YsIDg4GAmTJgAgJeXFwcOHNBa72z+/PmEhoYSGhoKwIwZM9ixY4dmVFdOTg7Z2dl069aN2rVrA1C/fv0qtRUgOztb6/00MzPj+vXrlcYmJyfz5ZdfEhgYiLm5uaZ8wIAB6OrqUlBQgFqtxt3dnddee63KbSgqKuLbb7/VmoLap08frZhvvvkGW1tbzp07R4MGDVi1ahW3bt3i6NGjWFtbA+Dp6amJnzZtGh9++CGDBg0CoFatWkyfPp0JEyYwderUStuhUqlQqVR/aFspBgbVOzX3n+Bufg5qtbrCFEUzcwtu3bj62PXGHdvH1cupvDvh0wfGbF2/HFcPL7z9mjz2cYSoilxVEeqyMiyMtD/fLYwMuZaT/8zqzCks4sfT53mpjutjHVOIh1EV5FBWpsbwD1MUjUwsyc18/M9zG0cvmnZ6D3NrZwryMjl3eC2/fv8xwW8uQN/AuEJ86tmdKK1rUsOp6t9phKiqnPy7qNVqLM21f9NYmply7cbtp1pnywBfbK0tsVKacyn9BlGbt5N+K4Nxb/d/rOMKIf7Z5JLl30T79u2JjY3VegwfPpz4+HhcXFw0SS6AoKCKCzQ+SmlpKdOnT8fX1xdra2vMzMyIiYnh0qVLf6qee8mfV155hfHjxwPlo4RSUlIIDQ3FzMxM85gxY4ZmWlx8fDx+fn6aKXSP04+ysrIqxcXHx9OsWTOtsj8e61Ex1tbWDB48mM6dO9O9e3cWLFhAenp6ldtqbm6u9V4eOHBAa/u9RJiJiQl169bF3t6eqKgorZjPPvuM2NhYfv75Z7y9vVm2bJkm+VQVbm5uFdZZS05OZsCAAdSqVQulUom7uzuA5jyIjY3F39//gceJi4vjk08+0Xqf33nnHdLT07l7926l+8yaNQsLCwutR9TSuVXuh3iysjJvs/n7b+g3eDT6+pWPEDx36igpiafp1vdfz7h1QlSPu0XF/GfXMWpamNHHz/PROwjxN+HoHoCLV0ssa7jj6O5P65DJFKvyuZy8v0JsaUkRlxL34uHTsRpaKsTT1alFII3qeeLmZE/rxn6MHNibI6fiuX77TnU3TQhRDWRE19+Eqamp1siZP0Pn/6dY/D4RVFxcrBUzZ84cFixYwPz58/H19cXU1JQxY8ZQ9CeG9JaWltKvXz+USiVfffWVpjwvLw8ov6vgH5NHurqVz7X/s7y8vNi3b1+li6pfu3aNnJwcvLwqv2vR44qMjGTUqFFER0ezdu1awsLC2L59O82bN3/kvjo6Og99P83NzTlx4gQ6Ojo4Ojpqrd91j4ODA56ennh6ehIZGUnXrl05d+6c5s6Mj1LZHTO7d++Om5sbS5cuxcnJCbVaTYMGDTTnQWXt+L28vDymTZumGbn3e0YPWAdh0qRJjB07VqvscEpplfrwojMxVaKjo0NebrZWeV5uNmbKx5tOePXSBfLzclj06XhNmVqtJi0lnoN7fmb6gjVcSDrDnds3+GTcW1r7Ri2dg3vt+gx9/5PHOrYQlTE3NEBHoSC7UPvvUXahCstKFqJ/0nUWFJfw6a/HMNbTY2zbAPR05RqgePIMjZUoFDqo7mp/nhfezcLI5MlNDzcwNMXcyom8zIoX5y4nH6CkRIV7/XZP7HhC/J7S1AQdHR2ycvO0yrPy8rFUmj1gr6dTp6erMwDXb9/BoUbVLxQLIZ4Pkuj6m6tfvz6XL18mPT0dR0dHoHxh9t+7N2onPT1ds4D9vTWZ7tm/fz89e/bkjTfeAMp/2CYlJeHt7V3ltrz//vucPn2aY8eOaSU17O3tcXJy4sKFCwwcOPCB/Vi5ciWFhYWaff/Yj4fp378/CxcuZMmSJbz33nta2+bOnYu+vr5mWl79+vW1Fk+v7Fj3Yt56660HxgD4+/vj7+/PpEmTCAoKYtWqVVVKdD3KoxJhf9S0aVMaN27MzJkzWbBgwWMdMyMjg8TERJYuXUrr1q0B2Ldvn1aMn58fy5Yt486dO5WO6goICCAxMfFPtd3Q0LDCHUQNDCof/SW06enp4exai5TE0/g0LJ9iXFZWxvnE0wS1/XPTl+/xrOvL6I//q1W2/rvPsbV3pk2nEHR0dGjbKYTAFtrrtyyYOZZur75NvQZyly7xZOnp6uBho+RsegZNXOyB8vP87PUMXq774DuCPok67xYVM2vnMfR1dRjXvjEGD1gIWYi/SkdXD2v72ty4dArn2uUXBcvKyrh5+TSeDbs+seOUFBeSl30dt/ptK2xLPbMDJ48mld7hUYgnQU9Pl1o1nTiTnEpT3/LpsWVlZZxJukBw60cvlfIk67x4rXzJECul+QNjhBDPL0l0/U2oVKoKazjp6enRsWNHvLy8GDRoEHPmzCEnJ4ePP/5YK87T0xMXFxfCw8OZOXMmSUlJzJs3TyumTp06/PDDDxw4cAArKyv++9//cuPGjSonuiIjI1m8eDEbNmxAoVBo2npv+tq0adMYNWoUFhYWBAcHo1KpOHbsGJmZmYwdO5bXX3+djz/+mHfeeYdJkyaRlpbG3LlVn74WFBTE6NGjGT9+PEVFRYSEhFBcXMx3332nGanm4uICwKhRo2jZsiVz586lZ8+exMTEaK3PBTB69GgGDx5MYGAgLVu2JCoqirNnz1KrVvlCl6mpqXz11Vf06NEDJycnEhMTSU5O1kqMPWtjxoyhV69eTJgwAWdn5z+9v5WVFTY2Nnz11Vc4Ojpy6dIlPvzwQ62YAQMGEBERQUhICLNmzcLR0ZGTJ0/i5OREUFAQU6ZMoVu3bri6uvLqq6+io6NDXFwcZ86cqbDgv3gyWnXozvffLsLZtRYubnXYv3srRSoVjZuX3z573YqFKC2tCe5ZnsQuKSnhZnr5HUhLS0vIycrg2uVUDI2MsLF1xNDIGAcn7TWI9PUNMTE115SbW1hVugC9hVUNrGvYP83uihfUK/U9+OLAKTxslNS2sSQ6IY3CklLa1a4JwOf747A2NmJAQF2gfLH5K9nlV/dL1Wru3FWRdicHI31dHMxNq1TnvSRXUWkp77byo6C4hILi8huCKA0N0NF5OjcfES8ur4AeHIlZiJV9bWzs65AUu4WS4kI8fDoAcDhmPsamNvi1ehMoX8A+O+OS5t8FeXfIvHkBPQNjzC3LL37G/rYcp1pNMFXaUpCXwZlDa1EodHD1aq117NysdG5dO0frnmHPsMfiRdStXRCfr9pArZqOeLrWZNtvhygsKqJdU38AFkX9iJWFOQO7la/zW1JSyuXrN8v/XVrKnewcUq+kY2xkqBmJ9ag6r9++w74Tp/Cv74XS1IS0a9f5dmMM3rXdcXOS7y1CvIgk0fU3ER0drRmxdU/dunVJSEhgw4YNhIaG0rRpU9zd3Vm4cCHBwcGaOH19fVavXs2IESPw8/OjSZMmzJgxg759+2piwsLCuHDhAp07d8bExIShQ4cSEhJCdrb2EPoH2bNnD6WlpfTo0UOrfOrUqYSHhzNkyBBMTEyYM2cO48ePx9TUFF9fX8aMGQOUJ8Q2b97M8OHD8ff3x9vbm9mzZ1dYHP1h5s+fj5+fH4sXLyYsLAxdXV0CAgLYuHEj3bt318Q1b96cpUuXMnXqVKZMmULHjh0JCwtj+vTpmph+/fqRkpLChAkTKCwspE+fPowYMYKYmBgATExMSEhIYMWKFWRkZODo6Mi7775b6V0fn5Xg4GA8PDyYOXOm1h0iq0pHR4c1a9YwatQoGjRoQN26dVm4cCHt2rXTxBgYGPDLL7/wwQcf0LVrV0pKSvD29ubzzz8HoHPnzmzZsoVPPvmE2bNno6+vT7169RgyZMiT6qb4A7/GLcnLzWHHlrXk5mTh5OLO2+9+jLnSEoCsO7dR/O4OcbnZd/jf76Yl7t25mb07N+Ph6S1TDsXfVpC7IzmFRXwfl0x2gQo3ayUfdmiChXH5aNCM/EJ0fnfX28wCFZO23l+DaOu5VLaeS6W+vTVTXm5WpTrT7uRw/nYWAO9v/E2rPQt7tcPW7OFTuYX4s1y9WqG6m82Zg2sovJuJla0HbUImY2RiCcDdnNsoFPc/zwvy7/DLqg80zxNPbCLxxCbsnH1o37f84lJB3m0O/fxfVIU5GBlbUMOpHi/1+7TCqK3UszsxNrPBwc3/6XdUvNBa+DcgOy+fddG7yMrNw93JkY+HvqlZTP52ZrbWXcwzc3KZOO9LzfPNuw6wedcBvGu7Ez7y7SrVqa+ny5mkVLb9dhiVqggbSyXN/OrT++U2z7DnQoi/E0VZVVf4Fn8rCoWCDRs2EBISUt1NEeJP23NWpi6K55/fxg8eHSTEP9w858ebTi/EP8nEBr9WdxOEeOrMA4MfHfQ3Fba86utOP0szBld+4yfx9MmKq0IIIYQQQgghhBDiuSCJLvG3MHz4cM16X398DB8+vLqbp8XHx+eBbY2Kinph2iCEEEIIIYQQQvzdyBpd/1DP24zTTz75hHHjxlW6TalUPuPWPNy2bdsoLi6udJu9/bNZ8PLv0AYhhBBCCCGEEOLvRhJd4m/Bzs4OOzu76m5Glbi5Pd7t7p+3NgghhBBCCCGEEH83MnVRCCGEEEIIIYQQQjwXJNElhBBCCCGEEEIIIZ4LkugSQgghhBBCCCGEEM8FSXQJIYQQQgghhBBCiOeCJLqEEEIIIYQQQgghxHNBEl1CCCGEEEIIIYQQ4rkgiS4hhBBCCCGEEEII8VyQRJcQQgghhBBCCCGEeC5IoksIIYQQQgghhBBCPBck0fU30K5dO8aMGaN57u7uzvz585/a8dLS0lAoFMTGxj61Y9yzfPlyLC0tHxoTHh5Oo0aNnnpbhBBCCCGEEEII8XzTq+4GVKfBgwezYsWKCuWdO3cmOjq6GlpU7ujRo5iamlbb8SuzYsUKFi1axNmzZ9HV1SUgIIDx48fTrVu36m6axvLly3n77bcrlC9dupQhQ4ZobVcoFDg5OdGpUydmz56NnZ2dpvwec3Nz6tatS1hYGD179nw2naiC6OhoJk2aREJCAtbW1vTs2ZPFixdXd7PEU3RwTzR7d2wiNycLx5pudO8biot7nUpjb6RfZseWNVy9dIHMO7d4pc9gWnXQ/n+6Y+tadm77Xqushp0TH0xdCEBmxk3+M+XfldY/IHQsfgEtnkCvhND2S+JFNp9NJbtQhauVOYObeONZw7LS2CtZuXwfl8yFjBxu5xfwZmA9utb30IrZeCaFo5ducDU7D0M9XerUsOT1xnVxUpppYpYdOsPp9NtkFqgw0tPFy9aKAQF1cbYw++MhhXgikuO2kXh8E4X5mVjauuPfbgg2Dl6VxmZnXOLMwTVk3kwhP+cmjdq8Td2AHloxZWo1Zw6t4WLCHgrvZmFsao27d3u8m/bV+k6Tk3GZuP0ruXXlLGVlpSitXWjxygRMlbZPtb/ixRS97wibd+0nKycPNycH3u7dhTpuNSuNvXz9Jut+3sWFK9e4dSeLQSHBvNI26IF1b9y5l1VbdtC1TXMG9+qiKd9+4Bj7T5wm9Wo6BYUqIiMmYWps9MT7JoT4Z3ihE10AwcHBREZGapUZGhpWU2vK2dr+vb50jBs3jkWLFjFjxgxCQkIoLi7mu+++o2fPnixYsICRI0dWdxM1lEoliYmJWmUWFhYVtqvVauLi4nj77be5du0aMTExmpjIyEiCg4PJyclh8eLFvPrqq5w4cQJfX99n1o8HKSwspHfv3vTt25fvv/+evLw8jhw5UqV9i4uL0dfXf8otFE/aqeP72bp+OSEDhuLq7sW+XVv4ZtEMPpi6EDNziwrxxUUqrGzsaOAfxNb1yx9Yr72jC6HvTdE819HV1fzbwqoGH0Us1Yo/sn8Hv+3YRF2fgL/eKSH+4GBaOiuPxRParAGeNSz5OSGNWTuP8lnPNiiNKv5NVpWUYmtmQjNXB1YeT6i0zvgbd3i5riu1bSwoVZexJjaJiB1Hmdu9NUb65V9/3K2VtPBwwtbUmDxVET+cOk/EjqP8r1c7dHQUldYrxOO6lLSP2N8iCewwHBsHLxJPbua3DZ/QZdDnGJlU/DwvLVZhqrTDpU4Qsb9FVlIjxB/7kZRT0TR9eRQWNVy5c+M8R375H/qGJng1Kr/IkZuVzq/ff4yHz0s0aN4fPQNjcjIuo6tn8FT7K15MB06e4dtN0bzzanfquNVk628HmblkJQs+GoWFWcUL+aqiYuxsLGne0JsVm2IqqfG+85eusv3AMVyd7CtsKyouplF9TxrV92TVlh1PrD9CiH+mF37qoqGhIQ4ODloPKysrAJKTk2nTpg1GRkZ4e3uzfft2FAoFGzduBGD37t0oFAqysrI09cXGxqJQKEhLSwMgIyODAQMG4OzsjImJCb6+vqxevfqhbfr91MXly5ejUCgqPMLDwzXxy5Yto379+hgZGVGvXr0Ko3uOHDmCv78/RkZGBAYGcvLkySq/PocOHWLevHnMmTOHcePG4enpSf369Zk5cyZjxoxh7NixXL58WRO/fPlyXF1dMTExoVevXmRkZFSo89NPP8Xe3h5zc3NCQ0MpLCzU2r57926aNm2KqakplpaWtGzZkosXL1apvQqFosL7aWxsXGG7k5MTXbp0YdSoUezYsYOCggJNjKWlJQ4ODnh5eTF9+nRKSkrYtWtXlY4fFxdH+/btMTc3R6lU0rhxY44dO6bZvm/fPlq3bo2xsTEuLi6MGjWK/Px8AL799lvMzMxITk7WxP/73/+mXr163L17V1Omq6vLwIED8fT0pFGjRgwdOrRCO+5NT127di1t27bFyMiIqKioKp2ParWa//znP3h6emJoaIirqyszZ87UbL98+TKvvfYalpaWmhFl98538eTt+3UzTVp2JDCoA3aONek1YBgGBgYcO/hrpfE13Tzp2nsQDQNboaf34MSmjo4u5hZWmoepmfJ323S0tplbWHEu7jB+AS0wNJSro+LJ2xqfSoc6LrTzrElNSzOGNPPBUFeXXeevVBpfu4YlbzSuRwsPJ/R0Kv8qM+mlJrStXZOalua4WSsZ0cKXjPxCLtzJ0cR09HLF294aWzNjPGws6NeoDnfuFnIz/26ldQrxVySd+IlaDTrh4fMSShsXAl8aga6eIalnd1Yab+1Qh0ZtBuNatzU6upV/nmekJ+JcuylOtQL/PynWAgc3f+5cv/9d4syBKBw9AmjYehBWdrUwt3TEuXbTSpNrQvxVW3Yf5KXmjWnfzJ+aDrYM7dsdQwN9dh0+UWm8p6szb/boTMsAX/T1dCuNAShUFfG/79Yz7LUemP3uu/09r7QNIuSl1g8cOSaEeLG88ImuB1Gr1fTu3RsDAwMOHz7Ml19+ycSJE/90PYWFhTRu3JitW7dy5swZhg4dyptvvlnlUTj9+vUjPT1d81i9ejV6enq0bNkSgKioKKZMmcLMmTOJj48nIiKCyZMna6Zk5uXl0a1bN7y9vTl+/Djh4eGMGzeuyu1fvXo1ZmZmDBs2rMK2Dz74gOLiYtavXw/A4cOHCQ0NZeTIkcTGxtK+fXtmzJihtc+6desIDw8nIiKCY8eO4ejoqJWYKykpISQkhLZt23Lq1CkOHjzI0KFDtYbfP0nGxsao1WpKSkoqbCspKeHrr78GwMCgalc9Bw4cSM2aNTl69CjHjx/nww8/1IyiSklJITg4mD59+nDq1CnWrl3Lvn37NCPi3nrrLbp27crAgQMpKSlh69atLFu2jKioKExMTAAwMjKic+fOTJgwgTt37jyyPR9++CGjR48mPj6ezp07V+l8nDRpEp9++imTJ0/m3LlzrFq1Cnv78itnxcXFdO7cGXNzc/bu3cv+/fsxMzMjODiYoqKiKr1GoupKSkq4eukCnvX8NGUKhQLPen5cSk36S3XfvpXOrI/e4T9T/s2ayPlk3bn1wNgrl1K4diWNwKAOf+mYQlSmpFRNakYODRxraMoUCgUNHG1IvpX1xI5zt7j8c97coPKEQWFxCbtTrmJrZkwNk4o/ooT4K9SlJdy5kYKDa0NNmUKhwN7Vj4z0xIfs+XA2jnW5cfk0OZlXAci6lcrtq+dwdC8ffVtWVsa11OOYWTqxZ8M0Ni0ZzI41E7iacvivdUiISpSUlHLhyjV8vWppyhQKBb5etUlKq/zCRVUtW7+VAG8v/OrW/qvNFEK8AF74qYtbtmzBzEx7LY6PPvqIwMBAEhISiImJwcnJCYCIiAi6dOlSWTUP5OzsrJVYeu+994iJiWHdunU0bdr0kfsbGxtrRiSlpKTw7rvvEhERQadOnQCYOnUq8+bNo3fv3gB4eHhw7tw5lixZwqBBg1i1ahVqtZqvv/4aIyMjfHx8uHLlCiNGjKhS+5OSkqhdu3aliR4nJyeUSiVJSeU/uBcsWEBwcDATJkwAwMvLiwMHDmitdzZ//nxCQ0MJDQ0FYMaMGezYsUMzqisnJ4fs7Gy6detG7drlf8jq169fpbYCZGdna72fZmZmXL9+vdLY5ORkvvzySwIDAzE3N9eUDxgwAF1dXQoKClCr1bi7u/Paa69V6fiXLl1i/Pjx1KtXD4A6de6vozRr1iwGDhyoufFAnTp1WLhwIW3btuWLL77AyMiIJUuW4Ofnx6hRo/jxxx8JDw+ncePGmjqmTZvGyZMn6d+/P23bttU6P9977z1SU1PZsmWLJn7MmDGac+Oeh52Pubm5LFiwgEWLFjFo0CAAateuTatWrQBYu3YtarWaZcuWaZKPkZGRWFpasnv3bl5++eUqvU6iau7m56BWqytMUTQzt+DWjauPXa+LuxevvvkutvbO5GbfYee271ny38mMCfsMQ6OKP/CPH/gVO4eauNWu99jHFOJBclVFqMvKsDDS/jtjYWTItZz8J3KMsrIyvj0aj5etJS5W5lrbtideJOpEIqqSUhyVpnzUsQl6unIdUDxZqoIcysrUGP5hFJWRiSW5mY//eV6/SR9KigqI/vY9FAodysrU+LYYiFu9tgAU3s2ipLiQhGM/0iDodfxavsn1i7Hs3zKbdn2mY1fT5y/1S4jfy8m/i1qtxtJc+7eVpZkp127cfux69584TeqVdGa9/85fbaIQ4gXxwie62rdvzxdffKFVZm1tzcqVK3FxcdEkEQCCgh68MOKDlJaWEhERwbp167h69SpFRUWoVCrNCJ2qupf8eeWVVxg/fjwA+fn5pKSkEBoayjvv3P/gLykp0axLFR8fj5+fH0ZG96cb/dl+lJWVVSkuPj6eXr16aZUFBQVpJbri4+MZPnx4hZh7UwOtra0ZPHgwnTt3plOnTnTs2JHXXnsNR0fHKrXB3NycEyfuD43W+cOUlnuJMLVaTWFhIa1atWLZsmVaMZ999hkdO3bkwoULvP/++yxcuBBra+sqHX/s2LEMGTKElStX0rFjR/r27atJ2MXFxXHq1CmioqI08WVlZajValJTU6lfvz5WVlZ8/fXXdO7cmRYtWvDhhx9qYjMzM5k1axY//vgjXbt2RVdXl5YtW/LLL79Qp04dTp8+XSERGxgYqPX8UedjfHw8KpWKl156qdL+xcXFcf78ea3EIJSPXExJSal0H5VKhUql0iorKirFwKB618J7kdX18df829HZDRd3L/4zeQSnTxwgsIX2e19cXETssX10CO7zrJspxBPzzZGzXM7KI7xzswrbWng40cCxBpkFKraeS2XBb7FM69wcg4dMoRHi7+Jy0j4uJv5G8+D3Udq4kHUrjdg932BkaoWHdwf4/+9wTrWaaBayt7Krxe30BFJOR0uiS/ztZWRlE7nhZyaPGISBrDUrhKiiFz7RZWpqiqen52Ptey+J8vtEUHFxsVbMnDlzWLBgAfPnz8fX1xdTU1PGjBnzp6Z5lZaW0q9fP5RKJV999ZWmPC8vDyi/q2CzZtpf3nV1n8wXdC8vL/bt20dRUVGFUV3Xrl0jJycHL6/K7xb0uCIjIxk1ahTR0dGsXbuWsLAwtm/fTvPmzR+5r46OzkPfz3uJMB0dHRwdHbXW77rHwcEBT09PPD09iYyMpGvXrpw7d05zZ8aHCQ8P5/XXX2fr1q38/PPPTJ06lTVr1tCrVy/y8vIYNmwYo0aNqrCfq6ur5t+//fYburq6pKenk5+fr0kqJSYmolKp8PcvT1J88skn5OTk0KpVK+bPn8+hQ4e0kmhAhbt3Pup8rOz1+L28vDwaN25c4Tjw4JsozJo1i2nTpmmVDRrxEW+/+/FDjyXAxFSJjo4OebnZWuV5udmYKa2e2HGMTUypYe/I7VvpFbadOXmQ4iIV/s3aPrHjCfF75oYG6CgUZBdq/13MLlRhWclC9H9W5JGznLhyi6mdm2FjWvEzztRAH1MDfRyVpnjVsCR03Q6OXb5BCw+nSmoT4vEYGitRKHRQ3dX+PC+8m4WRyeN/nsft+5Z6gb1wrdsaAMsa7tzNuUX80fV4eHfA0FiJjo4uFtauWvsprWty+1r8Yx9XiMooTU3Q0dEhKzdPqzwrLx9L5ePdzTbl8jVy8vKZOO9LTZlarSb+wkWi9x1h1ZzJFS5sCyGEfCo8QP369bl8+TLp6fd/+B06dEgr5t4P+9/HxMbGasXs37+fnj178sYbb9CwYUNq1aqlmepXVe+//z6nT59m48aNWiOz7O3tcXJy4sKFC5rEzL2Hh4eHph+nTp3SWvD9j/14mP79+5OXl8eSJUsqbJs7dy76+vr06dNHc6zDh7XXfPjjsaoSA+Dv78+kSZM4cOAADRo0YNWqVVVu88PcS4TVqlXrkUkdgKZNm9K4cWOtxdgfxcvLi/fff59ffvmF3r17a+7qGRAQwLlz5yq8V56enpok4oEDB5g9ezabN2/GzMxM646Wzs7OQHki7J7PPvuMbt268frrrzNs2DBNzIM86nysU6cOxsbG7NxZ+cK4AQEBJCcnY2dnV6EPv7+75e9NmjSJ7OxsrcfAd6q+TtyLTE9PD2fXWqQkntaUlZWVcT7xNK4eTy7BrFIVknHrOkqLiiMXj+7fSX3fxpXe4VGIJ0FPVwcPGyVn0+/fvKSsrIyz1zOoY2v52PWWlZUReeQsRy/dIKxTU+zMHj2SuowyysrKKFarH/u4QlRGR1cPa/va3Lh0SlNWVlbGzcunsXGs+9j1lharUKC9jqlCR0czkqv8uJ7kZmlPj8zNvIaJeQ2EeJL09HSpVdOJM8mpmrKysjLOJF3Ay/3xFon3rVOLuRP+zX/GDdc8ars607qxH/8ZN1ySXEKISr3wnwwqlYrr169rPW7fvk3Hjh3x8vJi0KBBxMXFsXfvXj7+WHsEiqenJy4uLoSHh5OcnMzWrVuZN2+eVkydOnXYvn07Bw4cID4+nmHDhnHjxo0qty8yMpLFixfz5ZdfolAoNG28N5pr2rRpzJo1i4ULF5KUlMTp06eJjIzkv//9LwCvv/46CoWCd955h3PnzrFt2zbmzp1b5eMHBQUxevRoxo8fz7x580hJSSEhIYGwsDAWLFjAvHnzcHFxAdCMwpo7dy7JycksWrRIa9oiwOjRo/nmm2+IjIwkKSmJqVOncvbsWc321NRUJk2axMGDB7l48SK//PILycnJf2qdridtzJgxLFmyhKtXH76GRkFBASNHjmT37t1cvHiR/fv3c/ToUU3bJ06cyIEDBzSL9ScnJ7Np0yZNMis3N5c333yTUaNG0aVLF6Kioli7di0//PADAC4uLvTv3593332Xb7/9lpSUFHbu3ElKSgqmpqb89NNP3Lx586FtfNT5aGRkxMSJE5kwYYLmGIcOHdIsyj9w4EBq1KhBz5492bt3L6mpqezevZtRo0Zx5Urli4waGhqiVCq1HjJtsepadejO0f07OH5oFzfTr7BxzVcUqVQ0bt4egHUrFhK96TtNfElJCdcup3LtciqlpSXkZGVw7XIqGb8brbXtxxVcSD5LZsZNLqYk8N1X/0FHRwe/xi21jp1xK520lHgCW3R8Np0VL6xX6nvw6/nL7Em5wpWsPL4+fJbCklLa1S7/YfT5/jhWn7i/YHdJqZq0Ozmk3cmhVK3mzl0VaXdyuJ57f02vyCPn2Jd6jZGtG2Gsr0dWgYqsAhVFJaUA3Mi9y8YzKVzIyOZ2fgGJNzOZ/1sshnq6+DtXPkJViL/CK6AHF85sJ/Xcr+RkXOb4r19SUlyIh0/5jT4Ox8zn1L6Vmnh1aQmZNy+QefMC6tISCvLukHnzArlZ9z/PnWoFEn90PdcuHCM/5yZXzh8i8cRPOHveHwVft3EIl5L2k3L6F3Kz0kmO3cq1C0fx9Ov67DovXhjd2gWx8+Bxdh85yZXrt1j6/RYKi4po17R8RsKiqB+J2rJdE19SUkrqlXRSr6RTUlrKnewcUq+kc/12+U2XjI0McXW013oY6utjZmKMq6O9pp7MnFyt/S5du0HqlXRy5S66QryQXvipi9HR0RXWf6pbty4JCQls2LCB0NBQmjZtiru7OwsXLiQ4OFgTp6+vz+rVqxkxYgR+fn40adKEGTNm0LdvX01MWFgYFy5coHPnzpiYmDB06FBCQkLIztYeuv4ge/bsobS0lB49emiVT506lfDwcIYMGYKJiQlz5sxh/PjxmJqa4uvrq1nw3MzMjM2bNzN8+HD8/f3x9vZm9uzZmlFYVTF//nz8/PxYvHgxYWFh6OrqEhAQwMaNG+nevbsmrnnz5ixdupSpU6cyZcoUOnbsSFhYGNOnT9fE9OvXj5SUFCZMmEBhYSF9+vRhxIgRxMTEAGBiYkJCQgIrVqwgIyMDR0dH3n333Urv+visBAcH4+HhwcyZM7XuEPlHurq6ZGRk8NZbb3Hjxg1q1KhB7969NdP2/Pz82LNnDx9//DGtW7emrKyM2rVr069fP6A8CWhqakpERAQAvr6+REREMGzYMIKCgnB2dmbFihXMnTuXmTNncvHiRZydnXnjjTdYv349L730Ej169NCsd1aZqpyPkydPRk9PjylTpnDt2jUcHR0166qZmJjw22+/MXHiRHr37k1ubi7Ozs689NJLKJXKv/xai4r8GrckLzeHHVvWkpuThZOLO2+/+zHmSksAsu7cLr96//9ys+/wv0/Ha57v3bmZvTs34+HpzdD3PwEgOyuDtZHzyc/LxdRciXvteowYF1Fh1NaxA7+itLTGy7vRU++neLEFuTuSU1jE93HJZBeocLNW8mGHJlgYlyfFM/IL0fnd3XczC1RM2rpf83zruVS2nkulvr01U14un8q/PekSANN/0R5FPLyFL21r18RAV4eEG3f4OT6Nu0XFKI0MqWdvxbTg5iifwJRJIf7I1asVqrvZnDm4hsK7mVjZetAmZDJGJpYA3M25jUJx//O8IP8Ov6z6QPM88cQmEk9sws7Zh/Z9y+9q7d/uHc4cXMXxXV+hKsjG2NSa2r4v49Osn2a/mp7NadxhGPFH13Nyz9eYWznRsttEbJ2r7yKieH618G9Adl4+66J3kZWbh7uTIx8PfVOzQP3tzGytu6ln5uRqTUvcvOsAm3cdwLu2O+Ej367ycbcfOMYPMbs1z6cu+gaAfw8I0STZhBAvDkVZVVcaF0D5LXI3bNhASEhIdTdFiH+sPWfl6pp4/vlt/ODRQUL8w81zXlDdTRDiqZvY4NfqboIQT515YPCjg/6mwpZXff3rZ2nGYINHB4mn4oWfuiiEEEIIIYQQQgghng+S6HrBDR8+HDMzs0of96ar/V34+Pg8sK2V3QXweW2DEEIIIYQQQgghKvfCr9H1Zz1vMz0/+eQTxo2r/A54f7c1l7Zt20ZxcXGl2+zt7Sstfx7bIIQQQgghhBBCiMpJousFZ2dnh52dXXU3o0rc3Nyquwl/izYIIYQQQgghhBCicjJ1UQghhBBCCCGEEEI8FyTRJYQQQgghhBBCCCGeC5LoEkIIIYQQQgghhBDPBUl0CSGEEEIIIYQQQojngixGL4R45vw2flDdTRDiqdPr3LO6myDEU9fJuKS6myDEUzf7aIfqboIQT92MwOpugRBPjozoEkIIIYQQQgghhBDPBUl0CSGEEEIIIYQQQojngiS6hBBCCCGEEEIIIcRzQRJdQgghhBBCCCGEEOK5IIkuIYQQQgghhBBCCPFckESXeCCFQsHGjRuruxlCCCGEEEIIIYQQVaJX3Q0Qz97gwYNZsWIFAHp6elhbW+Pn58eAAQMYPHgwOjrl+c/09HSsrKyqs6lVkpaWhoeHBydPnqRRo0ZPrF6FQsGGDRsICQl5YnU+DeHh4WzcuJHY2Njqbop4Cs7duMOWsxdIu5NDZoGKse0CaOJi//B9rmfw7fF4rmblYWNqTC/f2rStXVOzfXviRXYkX+Zm3l0AalqY08fPk0bOtpqYrAIVUScSOH3tNgUlpTgqTejl60kzV4en01HxQjt3Po2fdu0n9Wo6mdm5jPtXf5r61n/oPmfPp7JiYwxXbtykhqUFvTu1oV1Tf832gkIVa3/+lSOn48nJu4u7swODe3XB09VZE1OoKiJqy3aOnk4g724BttaWdGndjJdbNnlqfRUvrgvJZ9m74yeuXb5ATnYmbwydgE/Dpg+Mz8m+w7b1K7h6+QIZt67Tol1Xur36tlbMV59NIfX8uQr71vUJYPC/P9I8v5l+hehN35GafI5SdSn2jjUZOGQclta2FfYV4q+4eeUsicc3knnzAgX5d2jV/UOcazd7YPyV5IOcPx1D1q1U1KXFKK1d8GneH0f3+5/n5+N+JuV0DPk5NwH+P6Yfju4BFeorKytj76YZpKedeOSxhRDPL0l0vaCCg4OJjIyktLSUGzduEB0dzejRo/nhhx/46aef0NPTw8Ghen/QFhUVYWBgUK1tEKK6FZWU4malpJ1nTT7bc/KR8Tfz7jJ713E61nFhZMtGnL2ewVcHz2BpbEhDp/IfNNamRvT398LB3JQyytibco15u48z65WW1LQ0B+Dz/XHcLSphXPvGmBsasD/tGgt+O0lE15a4Wyufap/Fi0dVXIybswPtmwUwL3LNI+NvZmTy6dIoOrVowqg3+nA6+QJfrv0JS6U5jep5AvDl2k1cSr/JyNd7Y22p5Ldjccz44lvmTXwXG8vyc3jFpmjOJqfy3hu9sbO2IjbhPF+v34qVhTlNGtR7qn0WL57ioiIcnd0IDOrAd0vnPDK+tKQEU3ML2gf3Yf+vWyqNeWPoeEpLSjTP797NY2HEB/gGBGnKMm6ls+SzMAKDOtDxlX4YGhlxI/0KevryHUs8eaUlKixt3fHweYn9W2Y/Mv7WtXM4uDbEr8VA9A1NST33K/s2R9Cx32ys7GoBYGxeA9+Wb2Ju6UgZZVyM382+zbN4+fV5WNi4atWXdHLzU+mXEOKfRaYuvqAMDQ1xcHDA2dmZgIAAPvroIzZt2sTPP//M8uXLAe2pi0VFRYwcORJHR0eMjIxwc3Nj1qxZmvoUCgVffPEFXbp0wdjYmFq1avHDDz9oHXPixIl4eXlhYmJCrVq1mDx5MsXFxZrt4eHhNGrUiGXLluHh4YGRkREA0dHRtGrVCktLS2xsbOjWrRspKSma/Tw8PADw9/dHoVDQrl07zbZly5ZRv359jIyMqFevHosXL36s1ystLQ2FQsG6deto3bo1xsbGNGnShKSkJI4ePUpgYCBmZmZ06dKFW7duafYbPHgwISEhTJs2DVtbW5RKJcOHD6eoqEgT86j+AVy5coUBAwZgbW2NqakpgYGBHD58mOXLlzNt2jTi4uJQKBQoFArN+/cgZWVlhIeH4+rqiqGhIU5OTowaNUqzXaVSDQidUgABAABJREFUMW7cOJydnTE1NaVZs2bs3r0bgMLCQnx8fBg6dKgmPiUlBXNzc7755pvHem3FwzVytqWfvxdNqziSakfSJezMjHkzsD41Lc3oXM+NZm72bItP08Q0rmmPv7MdjkpTnJRm9PP3wlBPj+TbWZqY5FtZBNdzw7OGJfbmJvT29cTUQJ8LGdlPuIdCgH/9Ogzo+hLN/B4+iuue7QeOYWttxVs9O1PTwZYurZvRvKE3W/ccBKCouJjDp+J5o3snvD3dcahhzWvB7bGvYcUvB45q6klMvUybJg3x8fTA1tqSTi0CcXOy5/ylq0+ln+LFVtfHn5d7vI5Po6qNMLGysaN7338R0KwdhkYmlcaYmJpjbmGleSTHx6FvYEgD//uJrl82r6auTwBder2Fk4sHNraOePs1wczc4on0S4jfc3QPwLfFQGp6Nq9SvH/bUOoF9sLaoQ7mVk74tXwDMwsHrqUe08Q412qCk0djzK2cUFo549tiIHr6RmRcT9KqK/PmBZJO/ESTTiOfaJ+EEP88kugSGh06dKBhw4b8+OOPFbYtXLiQn376iXXr1pGYmEhUVBTu7u5aMZMnT6ZPnz7ExcUxcOBA+vfvT3x8vGa7ubk5y5cv59y5cyxYsIClS5fy2WefadVx/vx51q9fz48//qiZipefn8/YsWM5duwYO3fuREdHh169eqFWqwE4cuQIADt27CA9PV3T/qioKKZMmcLMmTOJj48nIiKCyZMna6ZtPo6pU6cSFhbGiRMn0NPT4/XXX2fChAksWLCAvXv3cv78eaZMmaK1z86dO4mPj2f37t2sXr2aH3/8kWnTpmm2P6p/eXl5tG3blqtXr/LTTz8RFxfHhAkTUKvV9OvXjw8++AAfHx/S09NJT0+nX79+D+3D+vXr+eyzz1iyZAnJycls3LgRX19fzfaRI0dy8OBB1qxZw6lTp+jbty/BwcEkJydjZGREVFQUK1asYNOmTZSWlvLGG2/QqVMn/vWvfz326yqenORbWTRwsNEq83O0JflWVqXxanUZB1KvoSopoU6N+1OV69hacjAtnVxVEWVl5TFFpWq8HayfZvOFqJKktMv4edXSKmtY15PktCsAlJaqUavVGOjra8UY6OuTeOGS5nldDxeOn00iIyuHsrIyziSnkn4rg4ZetZ9+J4R4Co4d/BW/xi0xNCy/WFhWVkbCmRPY2DryzaLpzJj4LxbP+ZCzcUequaVCVK6srIyS4kIMDE0r365WcylxLyXFhdRwqKspLylWcSj6MwLaD8XY9O+/9IoQ4umSqYtCS7169Th16lSF8kuXLlGnTh1atWqFQqHAzc2tQkzfvn0ZMmQIANOnT2f79u3873//04yiCgsL08S6u7szbtw41qxZw4QJEzTlRUVFfPvtt9ja3l8zok+fPlrH+eabb7C1teXcuXM0aNBAE2tjY6M13XLq1KnMmzeP3r17A+Ujv86dO8eSJUsYNGjQn35tAMaNG0fnzp0BGD16NAMGDGDnzp20bNkSgNDQ0AojqgwMDPjmm28wMTHBx8eHTz75hPHjxzN9+nR0dHQe2b9Vq1Zx69Ytjh49irV1eZLB09NTE29mZvanpppeunQJBwcHOnbsiL6+Pq6urjRt2lSzLTIykkuXLuHk5KTpc3R0NJGRkURERNCoUSNmzJjBkCFD6N+/PxcvXmTLlsqnVED5CDGVSqVdVlKKoZ5uldor/pysAhUWxoZaZRbGBhQUl1BUUorB/7/ulzJzmBJ9iOJSNUb6uoxtF0BNSzPNPmPa+LPgt1iGrtuJro4CA11dPmgbgIN55V88hXiWsnLzsDA30yqzMDflbmEhRcXFGBsZ4uXuwvpf9uBsb4uluSn7TpwmKe0yjrb3E8H/6t2VJes2M2LaPHR1dVEoYNhrPfD2dH/GPRLir7uclsyNa5foM3CEpiwvJ4siVSF7tm/k5e4DCO75BknxsUQtncOQ0eHUquNTjS0WoqLE4xspKS7ExauVVnnW7TR2rp1EaUkR+gbGtOz2IUobF8322N++oYZjXZxrP3jdOyHEi0NGdAktZWVlKBSKCuWDBw8mNjaWunXrMmrUKH755ZcKMUFBQRWe/35E19q1a2nZsiUODg6YmZkRFhbGpUuXtPZxc3PTSnIBJCcnM2DAAGrVqoVSqdSMJPvjvr+Xn59PSkoKoaGhmJmZaR4zZsyoMC3wz/Dz89P8296+fEHw34+Gsre35+bNm1r7NGzYEBOT+1MOgoKCyMvL4/Lly1XqX2xsLP7+/pok11/Vt29fCgoKqFWrFu+88w4bNmyg5P/X9zh9+jSlpaV4eXlpvW579uzRet0++OADvLy8WLRoEd988w02NjYPOhyzZs3CwsJC6/HZnhNPpC/i8Tkpzfi0W0umdwmiYx1Xvth/iitZeZrt38cmc7e4mI87NmFmlxa8Ut+dBXtPcikzpxpbLUTVjRxYfpFjePhcXh8/nZ/3HqZVgC+//xMXvfcw5y9eYcKQ1/l07DDe7NGZr9dv5VTi4/+dEKK6HDv4Kw7Obri419GUlVEGgLdvIK06dMPJxYN2L/eiXoPGHNlb8bucENXpYsJvnD28lqCu4zAy0Z5aq7SqycsD/0vH/rOp7duZI78sJCej/Lv01ZQj3Lh8Cv92Q6qj2UKIvyEZ0SW0xMfHa9a8+r2AgABSU1P5+eef2bFjB6+99hodO3assA7Xgxw8eJCBAwcybdo0OnfujIWFBWvWrGHevHlacaamFUeLdO/eHTc3N5YuXYqTkxNqtZoGDRporXP1R3l55T/Yly5dSrNm2mth6Oo+/kgi/d9Ng7mXEPxj2b0ph1X1qP4ZGxs/dnsr4+LiQmJiIjt27GD79u38+9//Zs6cOezZs4e8vDx0dXU5fvx4hdfJzOz+6ImbN2+SlJSErq4uycnJBAcHP/B4kyZNYuzYsVpldz8b90T7JO6zNDYku0B7BF12QRHG+nqa0VwAero6mtFZtWwsuJCRTXRCGkOaN+B6bj4xiReZ072VZnF6N2slCTcz+SXxEkOaN3h2HRKiEpbmZmTn5mmVZefmY2JkpJmu6FDDmvCRb1OoKuJuoQprC3M+W7EOO5vyiwZFxcWs3raTDwb3o7FP+fQXNyd70q5eZ/PuA/jVlemL4p9DpSrk1LH9dOymvXyBiakSHV1d7BxdtMptHZy5mJLwLJsoxENdStzL0R2f06LreBxcG1bYrqOrh7mlIwDW9p7cuXGepNgtBL40gptXTpOffYMfFw/U2mf/ltnYOnnTvu+MZ9IHIcTfhyS6hMavv/7K6dOnef/9/2PvvqOiOt4Gjn+XvrBLR3pVsCAg2GLHFrGXWEOKPY0YNWpMUUETNcUkmpj8Eo2ixkjU2GJv0VhjRxRFRRALCtJBOrx/8Lq6ASNRlKjP5xzOcec+Mztz97qwz87MHVPhcVNTUwYMGMCAAQPo27cvQUFBpKamamYaHTx4kFdeeUUTf/DgQfz9y24NvH//flxdXfnwww81xy9dunTfPqWkpBATE8O8efNo1aoVAHv37tWKuX1nxuLiYk2Zra0tDg4OXLx4keBg7V96j1tkZCS5ubmahNXBgwdRqVQ4OztXany+vr7Mnz9f61zfzcDAQGvslaFUKunevTvdu3fnrbfeok6dOkRFReHv709xcTFJSUma/lRk6NCh+Pj4MGzYMEaMGEGHDh2oW7fiTaQNDQ0xNNReSlcsyxYfGU8bc05cTdYqO5l4E08b83+sV0ophf+fpC0oun09ac/uVCgU/z83QIjq5eXmzLEz57XKTp6LxdPNqVyskaEBRoYGZN/KJTImluBuHQEoKi6mqKgYHR3tye26OjqUlMiVLp4sp44foKioEP8mrbXK9fT0cHKpyc2ka1rlN28kYm5h/Ti7KMQ9JcTs4dC2b2nW+V0cPBpVqk4ppZQUl93Uqk6jPnh4d9A6vvnn0TRoMxQH98ZV3l8hxH+fJLqeUfn5+Vy/fp3i4mJu3LjB5s2bmTFjBt26ddNKVt325ZdfYm9vj7+/Pzo6OqxYsQI7OzvMzc01MStWrKBRo0a0bNmSpUuXcujQIX766ScAPD09SUhIICIigsaNG7NhwwZWr159335aWFhgZWXFjz/+iL29PQkJCUycOFErpkaNGiiVSjZv3oyTkxNGRkaYmZkRFhbGqFGjMDMzIygoiPz8fI4cOUJaWlq5GUaPUkFBAcOGDeOjjz4iPj6eKVOmEBISgo6OTqXGN2jQIKZPn06vXr2YMWMG9vb2HD9+HAcHB5o1a4abmxtxcXGcOHECJycn1Gp1ucTS3cLDwykuLqZp06YYGxvz888/o1QqcXV1xcrKiuDgYF555RVmzZqFv78/ycnJ7NixA19fX7p27crcuXM5cOAAJ0+exNnZmQ0bNhAcHMzBgwc1SUdRdfIKi7iedUvzODn7FvGpmagM9bE2UbLsWAypuXm81aLs288OXi5siUlg6dGzBNZyIvp6Cn9dus6Edg01bSw7FoOfow02JkpyCwvZF5dI9I1U3m9f9segg6kKW7UxP/11iuCGdVAZ6nPkchKnrt9kfNuGCFHV8vILSExO0TxOTk0n7koiahMl1hbmLF2/jbSMLM1yxI7NG7F571/8vG4rbZv6c+pCHAdOnGbiiDtfbJw4e4HS0lIca1hz/WYqS37fimMNa9o2KfsCxtjIiHo13ViybisG+nrYWJgTHRvPn0ciebnn84/3BIhnQn5+HilJiZrHaSlJXLsch7GJCnNLGzav/ZnM9FT6v3rnTsjXLscBUFCQR3ZWBtcux6Gnp08Ne+2k7pH9O6jn1xhjE3W5523doSfLFnyFW6261PSqT8zpE5w9dYQRo8PKxQrxsIoK88hKu5NYzc64QVrSRQyM1JiY2nBy7xJyc1Jo2mk0ULZc8dDWOfi3GYalnSe5OWkA6OoZaDakP7l3CXZuAZiY2lBYcIuEs3tIvnKKur2nAKA0sahwA3oTtQ0qM9tHPGIhxH+RJLqeUZs3b8be3h49PT0sLCzw8/Njzpw5vPrqq+W+3YayOyZ+9tlnnD9/Hl1dXRo3bszGjRu1YsPCwoiIiODNN9/E3t6eZcuWUa9ePQB69OjBmDFjCAkJIT8/n65duzJp0iRCQ0P/sZ86OjpEREQwatQo6tevT+3atZkzZw6BgYGaGD09PebMmcPUqVOZPHkyrVq1YteuXQwfPhxjY2M+//xzxo8fj4mJCT4+PowePboqTmGltW/fHk9PT1q3bk1+fj6DBg3SjLsy4zMwMGDr1q28++67dOnShaKiIurVq8fcuXOBss36V61aRdu2bUlPT2fhwoUMHjz4nv0xNzdn5syZjB07luLiYnx8fPj99981+2wtXLiQjz/+mHfffZerV69ibW3Nc889R7du3Th79izjx4/np59+wtm5bBnEd999h6+vL5MmTeLTTz99JOfwWXYxJYNp2+7cHWvJkbKlJq1rOvJGc1/S8/JJycnTHK+hMua9tg1ZfPQMm8/GY2lsxMhm9fFzuLP3XWZ+Ad/vO0l6bh7GBvq4mKt5v31jfOzLvt3X09XhvXaNiDgew+d/HCWvqBg7tTFvNPfF37HGYxq5eJbEXr5K2NxwzeNFazYD0KZxA956sTfpmdncTMvQHK9hZcHEEcEsWrOFjXsOYmVmxusDetCgzp0bdeTm5fHL+h2kZGSgMjamqW9dBnZpj95dM0rfeaUvv6zfzpyffyPnVh7WFmYM7NKO55vLDABR9a5eusC82aGaxxt+Cwcg4LlA+r0cQlZmOumpN7XqfDNz/J36CReJPLIXC0sbJkz7XlOefOMa8bFnGfr2pAqf17tBU3oNHMGuratZv2Ih1jUcCB4xHreaFc/EFuJhpF6/wB+/3bkWT/y5EAD3em1p8vwo8m6lcSvzznV+MWorJSXFHP3jR47+8aOm/HY8QH5uBoe2ziE3JxUDAxPMrF1p3XtKhUschRACQFFaWirz88VDUygUrF69ml69elV3V/5TBg8eTHp6OmvWrKnurvynpH3yxv2DhHjC6XXqWd1dEOKRO6Zsff8gIZ5w2w7L3ADx9Pt48JO7MuOj8Hvv3VydnuRz+qSTuy4KIYQQQgghhBBCiKeCJLrEM2n69OmoVKoKfzp37lzd3XsoS5cuvefYvL29q7t7QgghhBBCCCHEIyPzcEWVeNJWwL7++uv079+/wmO3745YFcLDw6usrcrq0aMHTZs2rfCYvr7+Y+6NEEIIIYQQQgjx+EiiSzyTLC0tsbS0rO5uPBJqtRq1uvxdl4QQQgghhBBCiKedLF0UQgghhBBCCCGEEE8FSXQJIYQQQgghhBBCiKeCJLqEEEIIIYQQQgghxFNB9ugSQjx2ep16VncXhHjkirasre4uCPHIbXNsV91dEOKR69i4qLq7IMRjYFDdHRCiysiMLiGEEEIIIYQQQgjxVJBElxBCCCGEEEIIIYR4KkiiSwghhBBCCCGEEEI8FSTRJYQQQgghhBBCCCGeCpLoEkIIIYQQQgghhBBPBUl0CSGEEEIIIYQQQoingiS6nnEKhYI1a9ZUdzeEEEIIIYQQQgghHppedXdAPBqDBw9m0aJFAOjp6WFpaYmvry+DBg1i8ODB6OiU5TgTExOxsLCozq5WSnx8PO7u7hw/fpwGDRpUWbsKhYLVq1fTq1evKmvzUQgNDWXNmjWcOHGiursiHrPoC/Gs+2MfcVcTScvIYtzQgTTxqXvP+NSMLJas28LFy9e4fjOVzq2aMrh3Z62YvyKjWb1jD9dvplJcXIydjRXdA5vTupGfVtyV68ksXb+NM7GXKC4pxsmuBu8O7o+1hfmjGKp4hkXfSGX96YvEp2aSlpvP2MAAGjvb/nOd6yksPnqGq+nZWJko6e1TkzY1nTTHS0pKWXnyPHsuXiMjLx8LpSGtazrRx6cmCoUCgLzCIpYdj+HI5Rtk5RdSQ6WkUx03Onq5PNLximdT0pXTxBxdQ1rSRXJzUmnZfSKONZveMz756hlO7ltMVupVioryMVZbU9OnE7UDelQYf+bwKk7uW4KXfzf82wzTlMdGbSHh7B7Ski9SWJBL7zd+xsDQpMrHJwTAxfOn2bN9HdcuXyQzI42XRk7A26/JPeMzM1LZ+Nsirl6+SErydZoHdqFb3yFaMaeOH2TX1lWkJN+guLgIaxt7WnXojn+TNlpxSYlX2Lz2Z+LOR1NcUoytvRPBw8dhbmnzSMYqhPjvkkTXUywoKIiFCxdSXFzMjRs32Lx5M++88w4rV65k3bp16OnpYWdnV619LCgowMDAoFr78KwoLCxEX1+/ursh/qX8wkJcHe1o2zSAWQsj7htfXFyMqYkxfTq2ZsPugxXGqEyU9O7QGsca1ujp6XLs9Dm+W7YGU5UJDerUAuD6zVQmf7uAdk386R/UFqWRIZevJ8k1JB6JgqJiXC1MCazlxFe7j983Pin7Fp/+cZQOns6EtGjA6esp/HjgFOZKQ/wcyj7QrD0dy7ZzCbzR3BdnczWxKen8b38UJgZ6BNVxA2DJ0bOcvp7CWy38sFEZE3ktmYWHorFQGtLoPok2If6t4qJ8zG3ccPduz771n943Xk/fEE+/LphZu6Knb0Ty1WiO7vwfevqG1PTppBWbev08sVFbMLd2LddOUWE+dm4B2LkFcHLfkiobjxAVKSwowN7RlUbN2vHzvM/vG19cVISJ2oy2QS+wb+f6CmOMTVS07fQCNraO6OrpcvbUMVYumYuJyhSvev4ApCQn8sNXH9GoWTs6dB2AoZERNxKvoKcvnzOEeBbJ0sWnmKGhIXZ2djg6OhIQEMAHH3zA2rVr2bRpE+Hh4YD20sWCggJCQkKwt7fHyMgIV1dXZsyYoWlPoVDw/fff07lzZ5RKJR4eHqxcuVLrOd977z28vLwwNjbGw8ODSZMmUVhYqDkeGhpKgwYNmD9/Pu7u7hgZGQGwefNmWrZsibm5OVZWVnTr1o3Y2FhNPXd3dwD8/f1RKBQEBgZqjs2fP5+6detiZGREnTp1+O677x7ofMXHx6NQKFi+fDmtWrVCqVTSuHFjzp07x+HDh2nUqBEqlYrOnTuTnJysqTd48GB69epFWFgYNjY2mJqa8vrrr1NQUKCJud/4AK5cucKgQYOwtLTExMSERo0a8ddffxEeHk5YWBiRkZEoFAoUCoXm9fsnt1+vHj16YGJiwieffEJxcTHDhg3D3d0dpVJJ7dq1mT17drm6CxYswNvbG0NDQ+zt7QkJCdEcS09PZ/jw4ZqxtmvXjsjIyAc446Iy/Ot6MqhLe5r63nsW191sLM0Z0qcLbRo3wNjIsMIY71ruNPWti5OdDXbWlnRp8xwu9racvZigiYnYuIOAup681ON53J3ssbO2pHH9OpipZBaAqHoNHG0Y4O9FE5fKffmy/VwCNVRKXm5UFydzFZ3quNLU1ZaNZ+I1MeeT02nkbEuAUw1sVEqec7XHz8GaCzczNDHnktNo5eFIPTsrbFRKOni54GKhJvauGCGqir1bAD7Ng3Gq9Vyl4i1qeOBSuxVmVi6YmNbArW4gdq7+3Lx2RiuuqDCPg5u/olGHNzEwVJVrp3ZAD+o27oOVnVeVjEOIf1Lb25/ne7yId4N7z1a8m4VVDbr3G0pA00AMjYwrjPHwqo93g6bUsHfCysaeFm27YufgQnzsWU3M1t+XUds7gM69X8HB2R0rG3vq+TZGpTarknEJIZ4skuh6xrRr1w4/Pz9WrVpV7ticOXNYt24dy5cvJyYmhqVLl+Lm5qYVM2nSJF544QUiIyMJDg5m4MCBnDlz5w8utVpNeHg40dHRzJ49m3nz5vHVV19ptXHhwgV+++03Vq1apVmKl5OTw9ixYzly5Ag7duxAR0eH3r17U1JSAsChQ4cA2L59O4mJiZr+L126lMmTJ/PJJ59w5swZpk+fzqRJkzTLNh/ElClT+Oijjzh27Bh6enq8+OKLTJgwgdmzZ7Nnzx4uXLjA5MmTters2LGDM2fOsGvXLpYtW8aqVasICwvTHL/f+LKzs2nTpg1Xr15l3bp1REZGMmHCBEpKShgwYADvvvsu3t7eJCYmkpiYyIABAyo1ltDQUHr37k1UVBRDhw6lpKQEJycnVqxYQXR0NJMnT+aDDz5g+fLlmjrff/89b731FiNHjiQqKop169ZRq1YtzfF+/fqRlJTEpk2bOHr0KAEBAbRv357U1NQHPuei+pSWlhJ17iKJyTepV9NVU3Ys+hx2NpZ8/L/FDJ/0GR98NY9DUWfu05oQj8f55HTq21lplfna23A+OV3z2NPGnFOJKVzLzAbgUmomZ5PSaOBgrYnxsrHg2JUkUm/lUVpayunrKSRm5uBzV4wQ/xVpSRe5ee0sNo7eWuVHd/6AvXsj7Fz87lFTiKdHaWkpF86eJDkpEXfPepqys6eOYWVjz4Jvp/Hxe0P57vOJnI48VM29FUJUF1m6+AyqU6cOJ0+eLFeekJCAp6cnLVu2RKFQ4Opafvp7v379GD58OADTpk1j27ZtfPPNN5pZVB999JEm1s3NjXHjxhEREcGECRM05QUFBSxevBgbmzvr5V944QWt51mwYAE2NjZER0dTv359TayVlZXWcsspU6Ywa9Ys+vTpA5TN/IqOjuaHH37g1Vdf/dfnBmDcuHF06lS2JOCdd95h0KBB7NixgxYtWgAwbNiwcjOqDAwMWLBgAcbGxnh7ezN16lTGjx/PtGnT0NHRue/4fvnlF5KTkzl8+DCWlpYAWskllUr1QEtNX3zxRYYM0d7n4O4EnLu7OwcOHGD58uX0798fgI8//ph3332Xd955RxPXuHFjAPbu3cuhQ4dISkrC0LBsttAXX3zBmjVrWLlyJSNHjizXh/z8fPLz87XKCgoKMJQlq9UqJzePN8JmUVhUjI5CwbC+XfGtXROA9Kxs8vILWLtjLwO7tCe4W0ciYy4wa+GvTHlzMPVquVVv58UzLz03HzOl9oxFM6UBuYVFFBQVY6CnS6/6NckrLGbcuj3oKBSUlJbSv4EXLT0cNXUGN67LvIOneOu3P9DVUaAARjznQz1by8c8IiHu7ff5w8nLzaC0pBjv5wbiUb+j5lhCzB7Ski7ScdD9l4gJ8STLvZXDzI9eo6ioEB2FDj0HDMezTllyNzsznYL8PHZvW8Pz3QcR1PMlzp05wdJ5nzP8nVA8PL3v07oQ4mkjia5nUGlpqWYj3rsNHjyYjh07Urt2bYKCgujWrRvPP/+8VkyzZs3KPb57g/Rff/2VOXPmEBsbS3Z2NkVFRZiammrVcXV11UpyAZw/f57Jkyfz119/cfPmTc1Mp4SEBOrXr1/hOHJycoiNjWXYsGGMGDFCU15UVISZ2YNPU/b19dX829a2bI8WHx8frbKkpCStOn5+fhgb35lu3axZM7Kzs7l8+TKurq73Hd+JEyfw9/fXJLmqSqNGjcqVzZ07lwULFpCQkEBubi4FBQWaDf6TkpK4du0a7du3r7C9yMhIsrOzsbLSnkmRm5tbbinmbTNmzNBKrgFMHBHMByNfeoARiapibGTIZ+PeIDcvn1PnL7J47RZsrSzwruVOaWlZTKP6dejapuz/vLuTPTFxl9l24IgkusQT4UB8InvjrhHSwg8ncxWX0rJYfOQMFkpDzab1W2ISuHAzg3FtA7AxUXLmRhoLDp3GwtgQH3uZ1SX+G9r2+4SiwlxSEs8Rte9n1Ob2uNRuxa2smxzf9RNtXghFV0++PBJPNyOlMaPe/5z8vDxiY6LYsGoxlta2eHjVp5SyP1zq+TSiZbtuADg4u5NwMYZDe7ZKousZ0LFxUXV34R7kvbm6SKLrGXTmzBnNnld3CwgIIC4ujk2bNrF9+3b69+9Phw4dyu3DdS8HDhwgODiYsLAwOnXqhJmZGREREcyaNUsrzsSk/B4/3bt3x9XVlXnz5uHg4EBJSQn169fX2ufq77Kzy5ajzJs3j6ZNtfcB0NXVrVSfK3L3Ztu3E4J/L7udqKqs+41PqVQ+cH//yd/PdUREBOPGjWPWrFk0a9YMtVrN559/zl9//VWpfmRnZ2Nvb8+uXbvKHTM3N6+wzvvvv8/YsWO1ygpOla8vHi+FQoGddVli1d3Jnis3brJ6+x68a7ljamKMrq4uTrbaCWknWxvOxiVU1JwQj5W50pCMXO2Zohm5BSj19TDQK3v/X3oshp71PWju7gCAi4UpyTm5rD11kTY1nSgoKubX4zGMaRNAgFMNTUx8Wibro+Mk0SX+M1RmZV+6mVu7kX8rg1MHI3Cp3Yq0pFjycjPYuvRdTWxpaQnJ16I5f2Ij/d5egUJHdikRTweFQoGVjT1QlsRKun6FXVtX4+FVH2MTU3R0dalh76xVx8bOkUt37eMlhHh2SKLrGbNz506ioqIYM2ZMhcdNTU0ZMGAAAwYMoG/fvgQFBZGamqqZaXTw4EFeeeUVTfzBgwfx9y+728n+/ftxdXXlww8/1By/dOnSffuUkpJCTEwM8+bNo1WrVkDZErm73b4zY3FxsabM1tYWBwcHLl68SHBwcGWG/8hERkaSm5urSRQdPHgQlUqFs7Nzpcbn6+vL/Pnztc713QwMDLTG/qD27dtH8+bNefPNNzVld8/EUqvVuLm5sWPHDtq2bVuufkBAANevX0dPT6/c/m33YmhoqFnmeFuWLFv8zyktLaWoqOwa09PTpaazA4nJKVox15JvYm0hm7qK6udpY86Jq8laZScTb+JpY655XFBczN/nLusoFJT+/5TFopISikpK0fnbDGfd/1/mKMR/USmllBSXzVyo4exL0Etfax0/tO1bTC0dqdOwtyS5xFOttLSUov+/4ZWenh5OLjW5mXRNK+bmjUTMLeRLCyGeRZLoeorl5+dz/fp1iouLuXHjBps3b2bGjBl069ZNK1l125dffom9vT3+/v7o6OiwYsUK7OzstGbqrFixgkaNGtGyZUuWLl3KoUOH+OmnnwDw9PQkISGBiIgIGjduzIYNG1i9evV9+2lhYYGVlRU//vgj9vb2JCQkMHHiRK2YGjVqoFQq2bx5M05OThgZGWFmZkZYWBijRo3CzMyMoKAg8vPzOXLkCGlpaeVmET1KBQUFDBs2jI8++oj4+HimTJlCSEgIOjo6lRrfoEGDmD59Or169WLGjBnY29tz/PhxHBwcaNasGW5ubsTFxXHixAmcnJxQq9XlkkeV4enpyeLFi9myZQvu7u4sWbKEw4cPa83wCw0N5fXXX6dGjRp07tyZrKws9u3bx9tvv02HDh1o1qwZvXr14rPPPsPLy4tr166xYcMGevfuXeFSSfFw8vILtBJOyanpxF1JRG2ixNrCnKXrt5GWkUVIcB9NTNyVxLK6BQVkZucQdyURfT09nOzKZmit3r6Hms4O2FpZUFhUzPEz59hz9CTD+3bVtNG9bQtmL1lBHQ9X6nu6c/zMeY6ePkfoW4Mfz8DFMyWvsIjrWbc0j5OzbxGfmonKUB9rEyXLjsWQmpvHWy3K9mPp4OXClpgElh49S2AtJ6Kvp/DXpetMaNdQ00aAUw3WnIrFykSJs7mauNQMNkbHEVirbNmisYE+dW0tWXrsLAa6OlirlJy5kcqfF6/ycsM6j/cEiGdCUWEeWWl3PohnZ9wgLekiBkZqTExtOLl3Cbk5KTTtNBqA85EbMVbbYGpRtq9c8rVoYo6uwbNB2Xu1voESM2vt/VT19AwxMFJrlefmpJGXk0Z2Rtnvhoybl9DTN8JYbYOhUv0ohyyeQfn5eaQkJWoep6Ukce1yHMYmKswtbdi89mcy01Pp/+ooTcy1y3EAFBTkkZ2VwbXLcejp6VPDvuz9eteWVTi61sTS2pbiwiJiTh/j+OE/6TXgztYlrTv0ZNmCr3CrVZeaXvWJOX2Cs6eOMGK09vYZQohngyS6nmKbN2/G3t4ePT09LCws8PPzY86cObz66qvoVPAtn1qt5rPPPuP8+fPo6urSuHFjNm7cqBUbFhZGREQEb775Jvb29ixbtox69crueNKjRw/GjBlDSEgI+fn5dO3alUmTJhEaGvqP/dTR0SEiIoJRo0ZRv359ateuzZw5cwgMDNTE6OnpMWfOHKZOncrkyZNp1aoVu3btYvjw4RgbG/P5558zfvx4TExM8PHxYfTo0VVxCiutffv2eHp60rp1a/Lz8xk0aJBm3JUZn4GBAVu3buXdd9+lS5cuFBUVUa9ePebOnQuUbda/atUq2rZtS3p6OgsXLmTw4MH/up+vvfYax48fZ8CAASgUCgYNGsSbb77Jpk2bNDGvvvoqeXl5fPXVV4wbNw5ra2v69u0LlE0b37hxIx9++CFDhgwhOTkZOzs7WrdurdnPTFSt2MtXCZsbrnm8aM1mANo0bsBbL/YmPTObm2kZWnXem/U/zb8vXr7G3mNR2FiaM3dS2UzOvIIC5q9cT2pGFvr6ejjWsObt4D4097+zH15T37oM79uNNdv3EL56E/Y1rHh3yADqeJS/SYUQD+tiSgbTtt25O9aSI2VLTVrXdOSN5r6k5+WTkpOnOV5DZcx7bRuy+OgZNp+Nx9LYiJHN6uPncGe57eDG9Vh+4hwLDp0mM68AC6Uh7T1deMH3zo0+RrVqwLLjMXy7N5LsgkKsTZQMaOBFBy+XxzBq8axJvX6BP36bpHl84s+FALjXa0uT50eRdyuNW5k3NcdLS0uI2reEnMwkFApdVGa2+LZ4mZq+Qf/qeWNPbuH0X79qHu9cUTbzvsnzb+Ner93DDEmIcq5eusC82aGaxxt+Cwcg4LlA+r0cQlZmOumpN7XqfDNz/J36CReJPLIXC0sbJkz7HoCC/DzWRswjMz0VPX19bGwdGfDqKHwbttDU827QlF4DR7Br62rWr1iIdQ0HgkeMx61m3Uc3WCHEf5aitFTm54vKUSgUrF69ml69elV3V/5TBg8eTHp6OmvWrKnurjwxso5sru4uCPHIFW1ZW91dEOKRm+U4u7q7IMQj99/d6FqIqtPG2/j+Qf9Ru0/fun9QNXiSz+mTThbvCyGEEEIIIYQQQoingiS6xFNr+vTpqFSqCn86d+5c3d17KEuXLr3n2Ly95RbKQgghhBBCCCGeTbJHl6i0J22V6+uvv07//v0rPHb77ohVITw8vMraqqwePXrQtGnTCo/p6+s/5t4IIYQQQgghhBD/DZLoEk8tS0tLLC0tq7sbj4RarUatljslCSGEEEIIIYQQd5Oli0IIIYQQQgghhBDiqSCJLiGEEEIIIYQQQgjxVJBElxBCCCGEEEIIIYR4KkiiSwghhBBCCCGEEEI8FSTRJYQQQgghhBBCCCGeCpLoEkIIIYQQQgghhBBPBUl0CSGEEEIIIYQQQoingiS6hBBCCCGEEEIIIcRTQRJdQgghhBBCCCGEEOKpIImuaqBQKFizZk11d0MIIYQQQgghhBDiqaJX3R14mgwePJhFixYBoKenh6WlJb6+vgwaNIjBgwejo1OWV0xMTMTCwqI6u1op8fHxuLu7c/z4cRo0aFBl7SoUClavXk2vXr2qrM1HITQ0lDVr1nDixInq7opGbm4ub7/9NmvXriU3N5d69erx9ddf07x58+rumnhEoi/Es+6PfcRdTSQtI4txQwfSxKfuPeNTM7JYsm4LFy9f4/rNVDq3asrg3p3LxR04cYpfN/1Bcmo6djZWBHfrQEA9L83xvyKj2br/CHFXE8nOucWn776Ou5P9IxmjENE3Ull/+iLxqZmk5eYzNjCAxs62/1znegqLj57hano2ViZKevvUpE1NJ62Y1Ft5/HIshshryeQXFWOnNua1Zj7UtDYHYNCSTRW2/WJAbbp7e1TJ2IS4LenKaWKOriEt6SK5Oam07D4Rx5pN7xl/5fwBLkRtIT05jpLiQkwtnfF+biD2bv5acbeyUzi5dzHX449TVJSPysyOJh1DsLTzLNfmkR3fExu1lQath1A7oEeVj1GIi+dPs2f7Oq5dvkhmRhovjZyAt1+Te8ZnZqSy8bdFXL18kZTk6zQP7EK3vkO0Yg7t28bxv3Zz/dplABxdPOjU40Wc3e5c4yuWfMuxg7u06nnVbcCQkI+qbnBCiCeGJLqqWFBQEAsXLqS4uJgbN26wefNm3nnnHVauXMm6devQ09PDzs6uWvtYUFCAgYFBtfZBPJjPP/+clStX8uuvv+Ll5cWpU6fQ07v/f2N5zZ9c+YWFuDra0bZpALMWRtw3vri4GFMTY/p0bM2G3QcrjImJS2D2kt94sWtZcmvvsSi+WBjBzLGv4WJvq3neujVdaO7vzQ+/rqvSMQnxdwVFxbhamBJYy4mvdh+/b3xS9i0+/eMoHTydCWnRgNPXU/jxwCnMlYb4OdgAkJ1fyJTNB6lnZ8l77RphamTA9cxbmBjqa9r5vm87rXZPXE3mx4NRNHGp3t/T4ulUXJSPuY0b7t7t2bf+0/vGJ1+Lxs7FD9/mwegbmhAXvZO9v0+nw4BPsahRlogtyMtm5/IPqOHkTateH2GoNCM7PRF9I1W59q5cOEjK9XMoTSyrfGxC3FZYUIC9oyuNmrXj53mf3ze+uKgIE7UZbYNeYN/O9RXGXDx3Gr9GLenuXhs9fQN2b1vNgm8/ZvRHX2JmbqWJ86rnT9+X3tQ81tXXr6g5IcQzQJYuVjFDQ0Ps7OxwdHQkICCADz74gLVr17Jp0ybCw8MB7aWLBQUFhISEYG9vj5GREa6ursyYMUPTnkKh4Pvvv6dz584olUo8PDxYuXKl1nO+9957eHl5YWxsjIeHB5MmTaKwsFBzPDQ0lAYNGjB//nzc3d0xMjICYPPmzbRs2RJzc3OsrKzo1q0bsbGxmnru7u4A+Pv7o1AoCAwM1BybP38+devWxcjIiDp16vDdd9890PmKj49HoVCwfPlyWrVqhVKppHHjxpw7d47Dhw/TqFEjVCoVnTt3Jjk5WVNv8ODB9OrVi7CwMGxsbDA1NeX111+noKBAE3O/8QFcuXKFQYMGYWlpiYmJCY0aNeKvv/4iPDycsLAwIiMjUSgUKBQKzet3L6WlpYSGhuLi4oKhoSEODg6MGjVKczw/P59x48bh6OiIiYkJTZs2ZdeuXQDk5eXh7e3NyJEjNfGxsbGo1WoWLFigKdPR0aFevXp06tQJd3d3unfvTpMm5b8lu31+PvnkExwcHKhduzYAS5YsoVGjRqjVauzs7HjxxRdJSkrSqnv69Gm6deuGqakparWaVq1aaZ23qnrtReX41/VkUJf2NPW99yyuu9lYmjOkTxfaNG6AsZFhhTEb/zxIgzq16NGuBU52Ngzs0g53R3s27zmkiWndyI++zwfi61WzSsYhxD9p4GjDAH+vSieYtp9LoIZKycuN6uJkrqJTHVeautqy8Uy8Jub30xexMjHijea+1LI2p4bKGF8Ha+zUJpoYc6Wh1s+RyzeoZ2uJrdq4qocoBPZuAfg0D8ap1nOVivdvM4w6jXpjaeeJ2sIB3xYvoTKz41rcEU3M2SOrMVZZ0eT5UVjZeaEys8XOtQFqc+0ZuLeyUzi+az7PBY1BR1e+5xaPTm1vf57v8SLeDe49W/FuFlY16N5vKAFNAzE0qvi9d+CQ0TzXOggHZ3dq2DnyQvCblJaWEBsTpRWnq6eH2sxC82NsXD7hK4R4NshvusegXbt2+Pn5sWrVKoYPH651bM6cOaxbt47ly5fj4uLC5cuXuXz5slbMpEmTmDlzJrNnz2bJkiUMHDiQqKgo6tYt++CrVqsJDw/HwcGBqKgoRowYgVqtZsKECZo2Lly4wG+//caqVavQ1dUFICcnh7Fjx+Lr60t2djaTJ0+md+/enDhxAh0dHQ4dOkSTJk3Yvn073t7emhlBS5cuZfLkyXz77bf4+/tz/PhxRowYgYmJCa+++uoDnaMpU6bw9ddf4+LiwtChQ3nxxRdRq9XMnj0bY2Nj+vfvz+TJk/n+++81dXbs2IGRkRG7du0iPj6eIUOGYGVlxSeffFKp8WVnZ9OmTRscHR1Zt24ddnZ2HDt2jJKSEgYMGMCpU6fYvHkz27dvB8DMzOwfx/Dbb7/x1VdfERERgbe3N9evXycyMlJzPCQkhOjoaCIiInBwcGD16tUEBQURFRWFp6cnS5cupWnTpnTt2pVu3brx0ksv0bFjR4YOHappo3v37kyZMoWffvqJYcOG/WN/duzYgampKdu2bdOUFRYWMm3aNGrXrk1SUhJjx45l8ODBbNy4EYCrV6/SunVrAgMD2blzJ6ampuzbt4+ioiLg0bz24vE7F3+FboHNtMp8a9fk8Kmz1dQjIf6d88np1Lez0irztbdh8ZEzmsdHr9zA18GGr3cf50xSKhbGhnT0cqW9p3OFbWbk5nPiWjJvNPd9pH0X4kGVlpZSVJiHgeGdZO3Vi4ewc/Vn/4bPSb5yGqXKkpq+QdT0eV6r3l9bZlO7YU/MrFyqo+tCVKnCgnxKiosxNlZrlcedj+bj94aiNFZRs3Z9nu8+CGMT9T1aEUI8zSTR9ZjUqVOHkydPlitPSEjA09OTli1bolAocHV1LRfTr18/TYJs2rRpbNu2jW+++UYzk+ajj+6sPXdzc2PcuHFERERoJboKCgpYvHgxNjY2mrIXXnhB63kWLFiAjY0N0dHR1K9fXxNrZWWltdxyypQpzJo1iz59+gBlM7+io6P54YcfHjjZMW7cODp16gTAO++8w6BBg9ixYwctWrQAYNiwYeVmVBkYGLBgwQKMjY3x9vZm6tSpjB8/nmnTpqGjo3Pf8f3yyy8kJydz+PBhLC3LpvHXqlVLE69Sqf7VUtOEhATs7Ozo0KED+vr6uLi4aGZbJSQksHDhQhISEnBwcNCMefPmzSxcuJDp06fToEEDPv74Y4YPH87AgQO5dOkS69ffmcJ948YNgoKCeO+99/j000/Jzs7mnXfeASAlJQVra2vNLDgAExMT5s+fr7Vk8e6kmYeHB3PmzKFx48ZkZ2ejUqmYO3cuZmZmREREoP//0729vO7s2/QoXnvx+GVkZ2Ou1v6W09xURXpmdjX1SIh/Jz03HzOl9oxFM6UBuYVFFBQVY6CnS1J2LtvPJdClrhu9fGpy4WY6iw5Ho6ejKLeXF8Dui1cx0tO7795gQlSXmKNrKCrMw9mrpaYsJ+MGsSc34xXQg7qNXyD1xnmO7/4JHV093OuVLc09e2QVCoUOng26VVfXhahSm9f8jNrMgpp1fDRlXnUb4O3XFAurGqTevMHWdb+wcO7HvDFuhmafZCHEs0P+1z8mpaWlKBSKcuWDBw/mxIkT1K5dm1GjRrF169ZyMc2aNSv3+MyZO99a//rrr7Ro0QI7OztUKhUfffQRCQkJWnVcXV21klwA58+fZ9CgQXh4eGBqaoqbmxtAubp3y8nJITY2lmHDhqFSqTQ/H3/8cbllgf+Gr++db9Btbcs+ZPj4+GiV/X2JnZ+fH8bGd6Y4N2vWjOzsbM2MuPuN78SJE/j7+2uSXA+rX79+5Obm4uHhwYgRI1i9erVmJlRUVBTFxcV4eXlpnbfdu3drnbd3330XLy8vvv32WxYsWICV1Z0ZC7NmzcLFxYXp06ezbds2Zs2apUlyRkVFoVar8fPz08T7+PiU25fr6NGjdO/eHRcXF9RqNW3atCl3Tlq1aqVJct3tQV/7/Px8MjMztX7y71piKoQQj0JpaSlulqYM9K+Nm6UpHbxcaOfpzPZzlyuM33XhCi3dHTDQ033MPRXi/i6d/ZPTf/1Ksy7jMDK+M8O8lFIsanjg2+IlLGp4UNOnEx71OxJ7cgsAqTcucO74epo+P6rCv0OFeNLs2rqayKN7eWnkBPT17/yd69eoJfV8G2Pv6Iq3XxNeeWMiVy7FcvHcqWrsrRCiusiMrsfkzJkzmj2v7hYQEEBcXBybNm1i+/bt9O/fnw4dOpTbh+teDhw4QHBwMGFhYXTq1EkzG2fWrFlacSYmJuXqdu/eHVdXV+bNm4eDgwMlJSXUr19fa5+rv8vOLpvxMW/ePJo21V57f3tJ5IO4O7Fy+w+xv5eVlJT8qzbvNz6lUvnA/a2Is7MzMTExbN++nW3btvHmm2/y+eefs3v3brKzs9HV1eXo0aPlzpNKdWdmTVJSEufOnUNXV5fz588TFBSkOXby5EnN3S9dXV3Zvn07rVq1Ijk5mczMTF566SWtc/b31zwnJ4dOnTrRqVMnli5dio2NDQkJCXTq1KlS5+RBX/sZM2YQFhamVTZxRDAfjHzpnnXEo2WmUpGepT17Kz0zG3NT2ctCPBnMlYZk5OZrlWXkFqDU19MkqsyUhjiaaV/TjqYmHLp0vVx7Z26kkpiZwzutGjyyPgvxoBJi9nB4+1yadxmPnYuf1jEjYwtMLbVnKJpaOHLl/AEAkq9Gk5+bwe8/jdAcLy0tIXJPOOdPbKDb0B8e/QCEqCJ7tq9j99Y1DHt7EvaO5VfB3M3K2g4TlZqUm9ephSxJF+JZI4mux2Dnzp1ERUUxZsyYCo+bmpoyYMAABgwYQN++fQkKCiI1NVUz0+jgwYO88sormviDBw/i7192a+n9+/fj6urKhx9+qDl+6dKl+/YpJSWFmJgY5s2bR6tWrQDYu3evVszt2UDFxcWaMltbWxwcHLh48SLBwcGVGf4jExkZSW5uriY5c/DgQVQqFc7OzpUan6+vL/Pnz9c613czMDDQGntlKJVKunfvTvfu3XnrrbeoU6cOUVFR+Pv7U1xcTFJSkqY/FRk6dCg+Pj4MGzaMESNG0KFDB81ebI6Ojuzfv5/i4mJ0dXXx8vJi69atBAYGkpubS1xc3D/27ezZs6SkpDBz5kycncv2qDly5IhWjK+vL4sWLaKwsLDcrK4Hfe3ff/99xo4dq1VWcGpXpeuLqufl5kTUuYt0bXNntmjUuYt4uVa8d5EQ/zWeNuacuJqsVXYy8SaeNuaax142FiRm5mjFJGbdwlpVPqG/K/YK7lamuFqaPpL+CvGgEmL2cGjbtzTr/C4OHo3KHbd2qE1W2jWtsqz0RExMy2bxu9VtWy45tnv1VNzqBuLmrX3XUSH+y3ZvW8OuzasYEvIRTq617hufnnaTWznZqE0tHkPvhBD/NZLoqmL5+flcv36d4uJibty4webNm5kxYwbdunXTSlbd9uWXX2Jvb4+/vz86OjqsWLECOzs7zM3NNTErVqygUaNGtGzZkqVLl3Lo0CF++uknADw9PUlISCAiIoLGjRuzYcMGVq9efd9+WlhYYGVlxY8//oi9vT0JCQlMnDhRK6ZGjRoolUo2b96Mk5MTRkZGmJmZERYWxqhRozAzMyMoKIj8/HyOHDlCWlpauYTGo1RQUMCwYcP46KOPiI+PZ8qUKYSEhKCjo1Op8Q0aNIjp06fTq1cvZsyYgb29PcePH8fBwYFmzZrh5uZGXFwcJ06cwMnJCbVajaFhxXexAwgPD6e4uJimTZtibGzMzz//jFKpxNXVFSsrK4KDg3nllVeYNWsW/v7+JCcns2PHDnx9fenatStz587lwIEDnDx5EmdnZzZs2EBwcDAHDx7EwMCAUaNG8dxzzzFw4EDef/99DA0N2b59u2Z55JIlS7T2Zfs7FxcXDAwM+Oabb3j99dc5deoU06ZN04oJCQnhm2++0TyHmZkZBw8epEmTJtSuXfuBXntDQ8Ny5y3rb0sqxb3l5ReQmJyieZycmk7clUTUJkqsLcxZun4baRlZhAT30cTEXUksq1tQQGZ2DnFXEtHX08PJruyDT5fWzxE6N5zf/9hHQD0v9h0/xcUr1xjZv7umjaycW9xMyyAtMwtA0wdzUxUWprKxq6haeYVFXM+6pXmcnH2L+NRMVIb6WJsoWXYshtTcPN5qUfaBvYOXC1tiElh69CyBtZyIvp7CX5euM6FdQ00bXeu6MWXLQVZHXaCZmz2xNzPYcf4yI5p6az33rYJCDl66zksN6zyewYpnVlFhnlZSKjvjBmlJFzEwUmNiasPJvUvIzUmhaafRQNlyxUNb5+DfZhiWdp7k5qQBoKtnoNmQvrZ/D3Ysf5/oQytx9mpB6vXzXDy1lUbt3wDAUKnGUKn9nq2jq4ehsRmmFo6PYdTiWZOfn0dKUqLmcVpKEtcux2FsosLc0obNa38mMz2V/q/euTP5tctlX9YWFOSRnZXBtctx6OnpU8O+bLbirq2r2b7+VwYOGY2FpQ1ZGWX/FwyMlBgaGpGfn8eODb9S378ZalNzUpKvs2nNEqxs7PCq2+DxDV4I8Z8hia4qtnnzZuzt7dHT08PCwgI/Pz/mzJnDq6++WuFGiGq1ms8++4zz58+jq6tL48aN2bhxo1ZsWFgYERERvPnmm9jb27Ns2TLq1asHQI8ePRgzZgwhISHk5+fTtWtXJk2aRGho6D/2U0dHh4iICEaNGkX9+vWpXbs2c+bMITAwUBOjp6fHnDlzmDp1KpMnT6ZVq1bs2rWL4cOHY2xszOeff8748eMxMTHBx8eH0aNHV8UprLT27dvj6elJ69atyc/PZ9CgQZpxV2Z8BgYGbN26lXfffZcuXbpQVFREvXr1mDt3LlC2Wf+qVato27Yt6enpLFy4kMGDB9+zP+bm5sycOZOxY8dSXFyMj48Pv//+u2afrYULF/Lxxx/z7rvvcvXqVaytrXnuuefo1q0bZ8+eZfz48fz000+a2Vbfffcdvr6+TJo0iU8//RQ/Pz8OHDjA+++/T8eOHSkoKKBly5Zs27aNCxcu8Oqrr1KzZs1ym/DfZmNjQ3h4OB988AFz5swhICCAL774gh49emhirKys2LlzJ+PHj6dNmzbo6urSoEEDzU0B/iuv/bMk9vJVwuaGax4vWrMZgDaNG/DWi71Jz8zmZlqGVp33Zv1P8++Ll6+x91gUNpbmzJ1UNqu0trsLo17qw6+b/mDZxh3YWVsxbshAXOzvbMJ99HQM3y1bo3n89eIVAPTtFEj/oLZVPUzxjLuYksG0bYc0j5ccKbsDaOuajrzR3Jf0vHxScvI0x2uojHmvbUMWHz3D5rPxWBobMbJZffwc7uxFWdPanLFtAog4HsPqqFhsVEpeaVSXlh7aH+73xydSWlpKczf7RzxK8axLvX6BP36bpHl84s+FALjXa0uT50eRdyuNW5k3NccvRm2lpKSYo3/8yNE/ftSU344HsLTzpEW3iZzct4Tov5ZjYlaDBq2H4lqnzWMalRDarl66wLzZoZrHG34LByDguUD6vRxCVmY66ak3tep8M3P8nfoJF4k8shcLSxsmTCu72/qhPVspLi5i6fwvtOq179KPDl0HoKOjw/VrCRz7azd5ubcwNbOgVl0/OnYbiF4F+84KIZ5+itLS0tLq7oS4N4VCwerVq+nVq1d1d+U/ZfDgwaSnp7NmzZrq7op4AFlHNld3F4R45Iq2rK3uLgjxyM1ynF3dXRDikevYuKi6uyDEI9fG2/j+Qf9Ru0/fun9QNXiSz+mTTu66KIQQQgghhBBCCCGeCpLoElVq+vTpqFSqCn86d+5c3d17KEuXLr3n2Ly9ve/fgBBCCCGEEEIIIR4p2aPrP+5JW1n6+uuv079//wqP3b47YlUIDw+vsrYqq0ePHjRt2rTCY3+/Q6EQQgghhBBCCCEeP0l0iSplaWmJpaVldXfjkVCr1ajVcrc5IYQQQgghhBDiv0qWLgohhBBCCCGEEEKIp4IkuoQQQgghhBBCCCHEU0ESXUIIIYQQQgghhBDiqSCJLiGEEEIIIYQQQgjxVJDN6IUQj13RlrXV3QUhHjm9Tj2ruwtCPHIdlUXV3QUhHrlth+Ujk3j6tfGu7h4IUXVkRpcQQgghhBBCCCGEeCpIoksIIYQQQgghhBBCPBUk0SWEEEIIIYQQQgghngqS6BJCCCGEEEIIIYQQTwVJdAkhhBBCCCGEEEKIp4Ikuh5SeHg45ubmD9WGm5sbX3/9dZX0ByAwMJDRo0dXWXtPah9uq+g1+vHHH3F2dkZHR0dz7isqE0IIIYQQQgghxJPjqbxXbnJyMpMnT2bDhg3cuHEDCwsL/Pz8mDx5Mi1atEChULB69Wp69er1r9p1c3Nj9OjRWgmcAQMG0KVLl0rVDw8PZ/To0aSnp2uVHz58GBMTk3/Vl6oSGBjI7t27ATA0NMTDw4OQkBDefPPNh2p31apV6Ovrax5XdO4elkKh0Pzb2NgYBwcHWrRowdtvv03Dhg01x/7+GmVmZhISEsKXX37JCy+8gJmZWYVlQvxXbI25xO+n48jIy8fFQs3gxvWoZW1+z/iD8YksjzzPzZxc7NTGDAqojb9jDc3xlZHn2R+fSMqtPPR0FHhYmtG/gReeNmVtRl9PYdq2QxW2/XHnZtT8h+cWoipt3nuI3//YR3pmNq4Odgzp0xlPV6d7xh84cYpfN/1Bcmo6djZWBHfrQEA9L83x9Kxslv6+jZPnYsm5lUfdmq4M7dMFexurxzEcITiwezN7tq8lKzMdeydXuvcbhrObZ4WxNxIvs319BFcTLpKWmkzXFwbTsl23e7a9a+tqtqxdSou2XenWd4jWsUsXY9j2+zIS4s+jo6ODvZMbQ0Mmoa9vUKXjEwLgfORGYo6uJS8nDXMbN/wDh2Nl51VhbEZKAqcORJCWFEtOZhINWg+hdkAPrZjCglxOHfiFKxf+Ij83Awsbd/zbDMPSruL/O0d2fE9s1NYK2xJCPBueyhldL7zwAsePH2fRokWcO3eOdevWERgYSEpKSpU/l1KppEaNGvcP/Ac2NjYYGxtXUY/+vREjRpCYmEh0dDT9+/fnrbfeYtmyZQ/UVkFBAQCWlpao1eqq7GaFFi5cSGJiIqdPn2bu3LlkZ2fTtGlTFi9erIn5+2uUkJBAYWEhXbt2xd7eHmNj4wrLHkRhYeFDj0mIux2IT2TJkTO84FuL6V1a4Gphyowdh8nMy68wPiYpjW/2RtK2lhPTu7SgkbMtX+46xuW0LE2MvakJQ5rU47NuLQnr9BzWKqVWm142Fnzft53WT9taTtiolHhYSRJYPB77j59i8drN9H0+kE/ffR1XR1s++WEJGdk5FcbHxCUwe8lvtGsawKfvvk7j+nX4YmEECYk3ACgtLeXzn5aRlJLG+KGD+Gzc69hYmDPt+0Xk5Rc8zqGJZ9TJo/vY8Fs47br04+2Jn2Pn6MaCbz8mOyujwvjCgnwsrGrQqWcwalPzf2z7yqULHNqzFTtH13LHLl2MIXzuJ9Sq68dbE2by1oRPadamMwoUFbQkxMNJOLeXE38uxLtpf55/cRZm1m78uXoqebcqvs6LC/MxMa2Bb4uXUJpYVBhzeNtcrl86QdNO79Dppa+xdWnArlWh3Mou/9nuyoWDpFw/h9LEskrHJYR4sjx1ia709HT27NnDp59+Stu2bXF1daVJkya8//779OjRAzc3NwB69+6NQqHQPI6NjaVnz57Y2tqiUqlo3Lgx27dv17QbGBjIpUuXGDNmDAqFQjOb6O/L4iIjI2nbti1qtRpTU1MaNmzIkSNH2LVrF0OGDCEjI0NTPzQ0FCi/dDE9PZ3XXnsNW1tbjIyMqF+/PuvXrwcgJSWFQYMG4ejoiLGxMT4+Pg+clLrN2NgYOzs7PDw8CA0NxdPTk3Xr1gHw3nvv4eXlhbGxMR4eHkyaNEkrmRMaGkqDBg2YP38+7u7uGBkZac7X7dlbFZ27nJwcTE1NWblypVZf1qxZg4mJCVlZWVSGubk5dnZ2uLm58fzzz7Ny5UqCg4MJCQkhLS0N0H6NwsPD8fHxAcDDwwOFQlFhWXx8PABr164lICAAIyMjPDw8CAsLo6ioSPP8CoWC77//nh49emBiYsInn3xS6Xrz58+nd+/eGBsba53z206fPk23bt0wNTVFrVbTqlUrYmNjNcfnz59P3bp1MTIyok6dOnz33XeVOmcFBQWEhIRgb2+PkZERrq6uzJgxQ3M8PT2d4cOHY2Njg6mpKe3atSMyMhIomy1pZ2fH9OnTNfH79+/HwMCAHTt2VOr5xb+z4Uwc7TydCazlhJO5iuFNvTHU1eWPC1cqjN98Nh4/B2u6e3vgZK6ifwMv3CzN2BJzSRPTwt0BH3trbNXGOJmreblhHXILi0j4/2SYnq4O5kpDzY/KQJ+jV5JoU9NJayalEI/S+l0HaP9cQ9o29cfJzoaR/bpjaKDPH38dqzB+458HaVCnFj3atcDJzoaBXdrh7mjP5j1lsxMTk1M4f+kKw/t1o5aLIw41rBnRrxsFhUXsOx71OIcmnlF7d/5O4xYdaNSsHTXsneg96DUMDAw4cmBnhfFOrrXo0udV/Bq1RE9Pv8IYgPz8PH4Nn03v4NdRKsuvENjwWzjNAjsT+HxvbO2dsbF1wDegOXr6925TiAd17tg6POp3xN27PaZWzjRq/wa6eobEna7470RLO08atB6MS+1W6OiWvyaLiwq4cuEAfi1fpYaTN2pze+o3G4jK3I7Yk5u1Ym9lp3B813yeCxqDju5TuXBJCFFJT12iS6VSoVKpWLNmDfn55Wc8HD58GLgzE+j24+zsbLp06cKOHTs4fvw4QUFBdO/enYSEBKBsKZ6TkxNTp04lMTGRxMTECp8/ODgYJycnDh8+zNGjR5k4cSL6+vo0b96cr7/+GlNTU039cePGlatfUlJC586d2bdvHz///DPR0dHMnDkTXV1dAPLy8mjYsCEbNmzg1KlTjBw5kpdffplDhypeZvQglEqlZmaWWq0mPDyc6OhoZs+ezbx58/jqq6+04i9cuMBvv/3GqlWrOHHiRLn2Kjp3JiYmDBw4kIULF2rFLly4kL59+z7UbLAxY8aQlZXFtm3byh0bMGCAJoF56NAhEhMT6devX7kyZ2dn9uzZwyuvvMI777xDdHQ0P/zwA+Hh4Zpk1m2hoaH07t2bqKgohg4dWul6YWFh9O/fn5MnT9KlSxeCg4NJTU0F4OrVq7Ru3RpDQ0N27tzJ0aNHGTp0qCZZtnTpUiZPnswnn3zCmTNnmD59OpMmTWLRokX3PT9z5sxh3bp1LF++nJiYGJYuXapJ+AL069ePpKQkNm3axNGjRwkICKB9+/akpqZiY2PDggULCA0N5ciRI2RlZfHyyy8TEhJC+/btK/8iiUopKi4hLiWT+vbWmjKFQkF9eyvOJ6dXWOdccjr17bWXYfnaW3H+ZsXxRcUl7LxwBWMDPVwsTCuMOXo1iaz8AgJrOj7QOIT4t4qKirl45Ro+Xh6aMoVCgY9XTc7FV5zkPRd/RSsewLd2Tc5dugxAYVExAPp6dz78KBQK9PX0OHsxoaqHIISWoqIiriZcpFYdX02ZQqGgVh1fEuLOPVTb636dR23vhnjW8St3LDsrg8vx51Gpzfj+iw/4+L2h/PjVZOJjzzzUcwpRkZLiIlJvxGLncudaVCgU2Lr4kpIY82BtlhRTWlqCrp72MltdPQNuXr1zHZeWlvLXltnUbtgTMyuXBxuAEOKp8dSluvX09AgPD2fEiBH873//IyAggDZt2jBw4EB8fX2xsbEB7swEus3Pzw8/vztvytOmTWP16tWsW7eOkJAQLC0t0dXVRa1Wa9X7u4SEBMaPH0+dOnUA8PS8s3bczMwMhULxj/W3b9/OoUOHOHPmDF5eZWvZPTzu/OHu6OiolSB7++232bJlC8uXL6dJkyaVPU0VKi4uZtmyZZw8eZKRI0cC8NFHH2mOu7m5MW7cOCIiIpgwYYKmvKCggMWLF2vO7d/d69wNHz6c5s2bk5iYiL29PUlJSWzcuFFrJt2DuH3ub8/KuptSqcTKqiwJYGNjo+lPRWVhYWFMnDiRV199FSh7HaZNm8aECROYMmWKps0XX3yRIUPu7IUxdOjQStUbPHgwgwYNAmD69OnMmTOHQ4cOERQUxNy5czEzMyMiIkKz19nt6wFgypQpzJo1iz59+gDg7u6uSardft57SUhIwNPTk5YtW6JQKHB1vbPMYe/evRw6dIikpCQMDQ0B+OKLL1izZg0rV65k5MiRdOnShREjRhAcHEyjRo0wMTHRmhH2d/n5+eWSzvlFxRjq6f5jPwVk5RdQUlqKmZH2H3dmRoZcy6x4+VZmXj7mRoZaZeZKQ9JztV+DY1eSmLPnBAXFxZgbGfJB+8aYGlW8V8sf5y/ja2+NlYnyIUYjROVl5tyipKQEc7VKq9xcZcK1GzcrrJORnV0+3lRFemY2AI41rLG2MGPZhu2M6NcdIwMD1u/eT0p6BmmZlZtFLMSDupWTSUlJCSq19vJvldqM5BtXH7jdyCN7uXo5jrcmzKzweOrNsqW7OzYup3PvV3BwcufYX7uZPzuM0R99hXUN+wd+biH+Lj83k9LSEgyNta9zI2NzstIe7DrXN1BibV+b6L+WY2rphJGxOZdi/iQlMQaV+Z3r9+yRVSgUOng2uPc+dkKIZ8dTN6MLyvbounbtGuvWrSMoKIhdu3YREBBAeHj4PetkZ2czbtw46tati7m5OSqVijNnzmhmdFXW2LFjGT58OB06dGDmzJlaS80q48SJEzg5OWklNe5WXFzMtGnT8PHxwdLSEpVKxZYtW/51P+/23XffoVKpUCqVjBgxgjFjxvDGG28A8Ouvv9KiRQvs7OxQqVR89NFH5Z7L1dX1nkmuf9KkSRO8vb01s5B+/vlnXF1dad269QOPBcq+0QEeeolVZGQkU6dO1cwSVKlUmv3Mbt26pYlr1KjRA9Xz9b3zra6JiQmmpqYkJSUBZddBq1attDb0vy0nJ4fY2FiGDRum9Rwff/xxpa63wYMHc+LECWrXrs2oUaPYunWrVt+zs7OxsrLSajsuLk6r7S+++IKioiJWrFjB0qVLNUmxisyYMQMzMzOtn692V7z0SDw+9WwtmdmtBWGdmuHnaMPXf56ocN+vlJxcTibepK2nczX0Uoiqo6eny7tDBnItOYWhH87kpfc+5vSFeBrU9URH56n8c0g85dLTbvL7igUMGPzOPTeVLy0pAaBJi440atYOB2d3uvUdjI2dI0cOyJYD4snQpNM7AKybP4wV3/Tj/IkNuNRupflbP/XGBc4dX0/T50fJFgtCCOApnNF1m5GRER07dqRjx45MmjSJ4cOHM2XKFAYPHlxh/Lhx49i2bRtffPEFtWrVQqlU0rdvX80SvsoKDQ3lxRdfZMOGDWzatIkpU6YQERFB7969K1VfqfznGROff/45s2fP5uuvv8bHxwcTExNGjx79r/t5t+DgYD788EOUSiX29vaaP/gPHDhAcHAwYWFhdOrUSTPDaNasWVr1H+aOkcOHD2fu3LlMnDiRhQsXMmTIkIf+BXXmTNk0Znd394dqJzs7m7CwMM2sqbvd3osMyo+/svX+nsRSKBSU/P8fpP90HWRnl81OmDdvHk2bNtU6dnuJ6z8JCAggLi6OTZs2sX37dvr370+HDh1YuXIl2dnZ2Nvbs2vXrnL17t6LLjY2lmvXrlFSUkJ8fLxmj7OKvP/++4wdO1ar7NZX5ZftivLUhgboKBRk5Gn//86oYNbWbaZGhqT/LWGVnpuPuVI73khfDzt9PezU4Gljzug1u9l54Qq96tfUitsVexW1oQENHR/uphtC/BumJsbo6OiQnpWtVZ6enYO5qarCOmYqVfn4zGyt+JrODnw+7g1ycvMoKi7GTGXCB1/Nw8NZZrWIR8vYxBQdHZ1yG89nZ2WgMq14A+77uZpwkZzsTL6dOV5TVlJSQnzsGQ7s3sS02RGozcrarmGvfbdSG1sH0lMrnh0pxIMyVJqiUOiQ/7eN5/NupWNk/GDXOYDa3J62/T6mqDCPwvxbKFWW7N/wBSamZaswkq9Gk5+bwe8/jdDUKS0tIXJPOOdPbKDb0B8e+LmFEE+mpzbR9Xf16tVjzZo1QFmCobi4WOv4vn37GDx4sCYhlZ2dXW7pm4GBQbl6FfHy8sLLy4sxY8YwaNAgFi5cSO/evStV39fXlytXrnDu3LkKZ3Xt27ePnj178tJLLwFlf9CcO3eOevXq3bdf92JmZkatWrXKle/fvx9XV1c+/PBDTdmlS5fKxVXGvcb+0ksvMWHCBObMmUN0dPR9l91Vxu290Dp06PBQ7QQEBBATE1PhuXkU9e7m6+vLokWLKCwsLJcQs7W1xcHBgYsXLxIcHPxA7ZuamjJgwAAGDBhA3759CQoKIjU1lYCAAK5fv46enp7Wvl13Kygo4KWXXmLAgAHUrl2b4cOHExUVdc+7jxoaGpab8VUsyxYrRU9XB3crU04nptDY2RYom7F4+noKz9cuf2ctAC8bc04lptCl7p1Eb9T1FDytzf/xuUpLSykqLilXtjv2Cq08HNHTlRkv4vHR09PFw8mBU+fjaOJTFyi7Hk+du0hQq4qX6Xu5ORF17iJd2zTTlEWdu4iXa/nZiCbKsi8dEpNTiL18lQFd2j6CUQhxh56eHo4uHsTGROHtV3YNl5aWciEmimZtOj9Qm7Vq+/DOh19qlf3281xsbB1p3bEXOjo6WFjVwNTMguQb17TiUpIS8arn/2CDEeIedHT1sLStyY2EkzjWLPsytrS0lKTLUdTy6/LQ7evpG6Gnb0RBXjY3Ek7g2/JlANzqttXaFwxg9+qpuNUNxM273UM/rxDiyfPUJbpSUlLo168fQ4cOxdfXF7VazZEjR/jss8/o2bMnULbX1I4dO2jRogWGhoZYWFjg6enJqlWr6N69OwqFgkmTJmlm19zm5ubGn3/+ycCBAzE0NMTa2lrreG5uLuPHj6dv3764u7tz5coVDh8+zAsvvKCpn52dzY4dO/Dz88PY2BhjY2OtNtq0aUPr1q154YUX+PLLL6lVqxZnz55FoVAQFBSEp6cnK1euZP/+/VhYWPDll19y48aNh0p03YunpycJCQlERETQuHFjNmzYwOrVqx+orXudOwsLC/r06cP48eN5/vnncXJyuk9L2tLT07l+/Tr5+fmcO3eOH374gTVr1rB48WKtGUgPYvLkyXTr1g0XFxf69u2Ljo4OkZGRnDp1io8//rjK690tJCSEb775hoEDB/L+++9jZmbGwYMHadKkCbVr1yYsLIxRo0ZhZmZGUFAQ+fn5HDlyhLS0tHKzp/7uyy+/xN7eHn9/f3R0dFixYgV2dnaYm5vToUMHmjVrRq9evfjss8/w8vLi2rVrbNiwgd69e9OoUSM+/PBDMjIymDNnDiqVio0bNzJ06FDNnUFF1epa153v95/E3cqUmlbmbD4bT15RMYE1y/6vzN0XiaXSiEEBtQEIquPGtG1/sT46Dn9HGw7EJxKXksGIpvUByCssYs2pWBo62WKuNCQrv4CtMZdIy83nOVft/QNPX08hOTuXtrX+3f9LIapCt8BmzP1lNR5O9tRycWLjnwfJKyggsEnZh/Nvl67CwkxNcLeOAHRp/Ryhc8P5/Y99BNTzYt/xU1y8co2R/btr2jxw4hSmKhOszc1IuJ5E+OpNNPGpi1/tB/9iQojKatmuOysWf4ujiwfOrp7s27WBgvx8Gj5XlmhdvmgOpuaWBPUs+zKzqKiIpMSymykUFxeRmZ7CtctxGBoZYWVjj6GREjsH7U239fUNMTZRa8oVCgWtOvRkx4bl2Du64eDsxtGDu0i+cY0Xh7/7GEcvnhVeAT04tGUOFrY1sbL15NyJ9RQV5uH+/wmnv7Z8jdLESpOkKikuIiMlQfPv3OxU0pIuomegRP3/e3Alxh8HSlFbOJKdcZ3IPeGoLRxxr1d2IyRDpRpDpfaNrHR09TA0NsPUQm6kI8Sz6KlLdKlUKpo2bcpXX31FbGwshYWFODs7M2LECD744AMAZs2axdixY5k3bx6Ojo7Ex8fz5ZdfMnToUJo3b461tTXvvfcemZmZWm1PnTqV1157jZo1a5Kfn6/ZC+o2XV1dUlJSeOWVV7hx4wbW1tb06dOHsLAwAJo3b87rr7/OgAEDSElJYcqUKYSGhpYbw2+//ca4ceMYNGgQOTk51KpVi5kzyzYZ/eijj7h48SKdOnXC2NiYkSNH0qtXLzIyMsq187B69OjBmDFjCAkJIT8/n65duzJp0qQK+3w//3Tuhg0bxi+//MLQoUP/dbu3N4E3MjLC0dGRli1bcujQIQICAv51W3/XqVMn1q9fz9SpU/n000/R19enTp06DB8+/JHUu5uVlRU7d+5k/PjxtGnTBl1dXRo0aECLFi2AsiWfxsbGfP7554wfPx4TExN8fHwYPXr0fdtWq9V89tlnnD9/Hl1dXRo3bszGjRs1S1Y3btzIhx9+yJAhQ0hOTsbOzo7WrVtja2vLrl27+Prrr/njjz8wNS27Q9+SJUvw8/Pj+++/1+ztJqpOMzd7MvMKWBF5nozcfFwtTZnYrjFm/78UMSUnD527lvvWrmFBSAs/lkee59fjMdiZmjA2MABni7I/AHUUCq5l5PBn7DGy8gtQGxrgYWXGlOeb4mSu/UfizgtX8LIxx9Gs4qViQjxKzf3rk5Gdw/LNf5CelY2bgz0fjnxZs+H8zbQMraXutd1dGPVSH37d9AfLNu7AztqKcUMG4mJvq4lJz8xm8dqtmo3rWzdqQN/n2zz2sYlnk2/DFmRnZbJ9/a9kZabj4OzGkLc+RG1qDkB66k0Ud+0Xl5WRyjd3LUvcs+N39uz4Hfda9Rg5Zmqln7dlu24UFRWyYVU4t3KysXd0Zejbk7CykSW7ouq5eLUk/1YGpw5EkHcrDQsbd1r3moSRsTkAtzJvolDcuc5zc1LZ+sudpGvMsbXEHFtLDUdv2vYr+4K4qOAWJ/f9zK3smxgaqXGs9Rw+zYPR0X3qPsoKIaqIovTv2RohHrMlS5YwZswYrl27hoFBxZupiqdL2ieSEBNPP71OPau7C0I8cseUD3cDGSGeBNsOS0JFPP0+Hvzkfg7bffrW/YOqQRtv4/sHiUdC3rVFtbl16xaJiYnMnDmT1157TZJcQgghhBBCCCGEeCiyu/BTbM+ePahUqnv+VLfPPvuMOnXqYGdnx/vvv691bPr06ffsd+fOD7Zp67NCzp0QQgghhBBCiGeVLF18iuXm5nL16tV7Hn+YuwI+aqmpqaSmplZ4TKlU4ugoG0vey5Nw7mTpongWyNJF8SyQpYviWSBLF8WzQJYuVj1Zulh95F37KaZUKv/Tyax/YmlpiaWlZXV344kk504IIYQQQgghnhzff/8933//PfHx8QB4e3szefJkWZHzgGTpohBCCCGEEEIIIUQ1cXJyYubMmRw9epQjR47Qrl07evbsyenTp6u7a08kmdElhBBCCCGEEEIIUU26d++u9fiTTz7h+++/5+DBg3h7e1dTr55ckugSQgghhBBCCCGEqEL5+fnk5+drlRkaGmJoaPiP9YqLi1mxYgU5OTk0a9bsUXbxqSWJLiHEY3ey16zq7oIQj5zvmneruwtCPHLbHNtVdxeEeOTeq7+zursgxGMQVN0deOrMmDGDsLAwrbIpU6YQGhpaYXxUVBTNmjUjLy8PlUrF6tWrqVev3mPo6dNHEl1CCCGEEEIIIYQQVej9999n7NixWmX/NJurdu3anDhxgoyMDFauXMmrr77K7t27Jdn1ACTRJYQQQgghhBBCCFGFKrNM8W4GBgbUqlULgIYNG3L48GFmz57NDz/88Ki6+NSSuy4KIYQQQgghhBBC/IeUlJSU2+NLVI7M6BJCCCGEEEIIIYSoJu+//z6dO3fGxcWFrKwsfvnlF3bt2sWWLVuqu2tPJEl0CSGEEEIIIYQQQlSTpKQkXnnlFRITEzEzM8PX15ctW7bQsWPH6u7aE0kSXUIIIYQQQgghhBDV5KeffqruLjxVZI+uSggPD8fc3Pyh2nBzc+Prr7+ukv4ABAYGMnr06Cpr70ntw20VvUY//vgjzs7O6OjoaM59RWVCCCGEEEIIIYR4OjyxM7qSk5OZPHkyGzZs4MaNG1hYWODn58fkyZNp0aIFCoWC1atX06tXr3/VrpubG6NHj9ZK4AwYMIAuXbpUqn54eDijR48mPT1dq/zw4cOYmJj8q75UlcDAQHbv3g2U3fnBw8ODkJAQ3nzzzYdqd9WqVejr62seV3TuHpZCodD829jYGAcHB1q0aMHbb79Nw4YNNcf+/hplZmYSEhLCl19+yQsvvICZmVmFZUI8CQ7s3sye7WvJykzH3smV7v2G4ezmWWHsjcTLbF8fwdWEi6SlJtP1hcG0bNdNK2bXllWcjvyLpOtX0dc3wMWjNp17vYyNrYMm5sevJhN3IVqrXpOWHek96LWqH6AQwNaYS/x+Oo6MvHxcLNQMblyPWtbm94w/GJ/I8sjz3MzJxU5tzKCA2vg71tAczyssYtnxGI5cvkFWfiE1VEo61XGjo5eLJmb+wVNEJd4kLTcfIz1dvGwsGBRQG0cz1aMcqniGnY/cSMzRteTlpGFu44Z/4HCs7LwqjI2N2sqlM7vISEkAwKJGTXxaBJeLz0y5TOS+JSRfOU1paTGmls407zoBE1Mb8nOzOH0wgusJJ7iVdRNDpSmONZtSv9kgDAyr5+9S8fTbvPcQv/+xj/TMbFwd7BjSpzOerk4Vxl6+nsTyTX9w8co1klPTebVXEF3bNNOKWb19D4eiznD1RjIG+vp4uTnzUveOONSw1sT8uPx3os5dJC0zC0MDfWq7uxDcrQOOtjaPdKxCiP+mJzbR9cILL1BQUMCiRYvw8PDgxo0b7Nixg5SUlCp/LqVSiVKpfKg2bGyq9012xIgRTJ06lVu3brF48WLeeustLCwsGDRo0L9uq6CgAAMDAywtLR9BT8tbuHAhQUFB5OXlce7cOX788UeaNm3KggULeOWVV4Dyr1FCQgKFhYV07doVe3t7AE6dOlWu7EEUFhZqJfieFE9qv591J4/uY8Nv4fQaNBIXNy/2/rGeBd9+zLtT5qBSl0/WFhbkY2FVg/r+zdjwW3iFbcadj+a51kE4udaipLiYLet+YcE3Uxk96WsMDY00cY1bdKBj1wGax/oGlb89shD/xoH4RJYcOcOwpvWpZW3OprPxzNhxmK96tsbUqPx1F5OUxjd7Ixno74W/Yw32x1/jy13HmN6lBc4WagCWHD3L6espvNXCDxuVMZHXkll4KBoLpSGNnG0BcLM0pbm7AzYmSrLzC1h58gLTtx/mm96B6Ogoyj2vEA8j4dxeTvy5kEbtXsfKzouY47/z5+qpdH51LkbG5d/Pk6+cwqV2K6zsa6OrZ8DZI6v4c/VUOr08G2OVFQBZ6YnsXPEh7t7tqf/cQPQMlGSmXEZXzwCAvJxUcnPS8Gs1GFNLJ25l3eToju/JzU6lRbcJj3X84tmw//gpFq/dzIi+3fF0dWLDnwf45IclzP5gFGaq8snV/IJCaliZ85xfPRatrXjT7ejYeDq1aExNF0eKi0tYtnEHH/9vMV++F4KRYdm17u5kT8sAH2wszcm6dYsVm3fx8f+WMHfSaHR0ZBGTEM+aJ/J/fXp6Onv27OHTTz+lbdu2uLq60qRJE95//3169OiBm5sbAL1790ahUGgex8bG0rNnT2xtbVGpVDRu3Jjt27dr2g0MDOTSpUuMGTMGhUKhmU3092VxkZGRtG3bFrVajampKQ0bNuTIkSPs2rWLIUOGkJGRoakfGhoKlF+6mJ6ezmuvvYatrS1GRkbUr1+f9evXA5CSksKgQYNwdHTE2NgYHx8fli1b9lDnzNjYGDs7Ozw8PAgNDcXT05N169YB8N577+Hl5YWxsTEeHh5MmjSJwsJCTd3Q0FAaNGjA/PnzcXd3x8jISHO+bs/equjc5eTkYGpqysqVK7X6smbNGkxMTMjKyqpU383NzbGzs8PNzY3nn3+elStXEhwcTEhICGlpaYD2axQeHo6Pjw8AHh4eKBSKCsvi4+MBWLt2LQEBARgZGeHh4UFYWBhFRUWa51coFHz//ff06NEDExMTPvnkk0rXmz9/Pr1798bY2FjrnN92+vRpunXrhqmpKWq1mlatWhEbG6s5Pn/+fOrWrYuRkRF16tThu+++q9Q5i4+PR6FQ8Ouvv9KmTRuMjIxYunRppa6tkpISPvvsM2rVqoWhoSEuLi6aMQNcvnyZ/v37Y25ujqWlJT179tScS1H19u78ncYtOtCoWTtq2DvRe9BrGBgYcOTAzgrjnVxr0aXPq/g1aomeXsWJzSEhH9HwubbY2jtj7+RG35ffIj3tJlcTYrXiDAwMUZtZaH6MlMZVPj4hADaciaOdpzOBtZxwMlcxvKk3hrq6/HHhSoXxm8/G4+dgTXdvD5zMVfRv4IWbpRlbYi5pYs4lp9HKw5F6dlbYqJR08HLBxUJN7M0MTUwHLxfq2Vpio1LibmXGgAaepN7KIynn1iMfs3j2nDu2Do/6HXH3bo+plTON2r+Brp4hcad3VBj/XOex1PLrjEUND0wtnWjcIYTS0hKSEk5qYk7tX4q9ewB+rV7FooYHanN7HGs20STOzKxdadFtAo4ejVGb22Pr7INP82CuxR2mpKT4sYxbPFvW7zpA++ca0rapP052Nozs1x1DA33++OtYhfG1XBx5uUcnWgT4oK+nW2HMh6+9TGATf5ztauDmaMebg3pxMy2Di5evaWI6Nm9EvVpu2Fia4+HkwMAu7UlJzyApNf1RDFMI8R/3RCa6VCoVKpWKNWvWkJ+fX+744cOHgbKZQImJiZrH2dnZdOnShR07dnD8+HGCgoLo3r07CQllU8JXrVqFk5MTU6dOJTExkcTExAqfPzg4GCcnJw4fPszRo0eZOHEi+vr6NG/enK+//hpTU1NN/XHjxpWrX1JSQufOndm3bx8///wz0dHRzJw5E13dsjf3vLw8GjZsyIYNGzh16hQjR47k5Zdf5tChQ1Vy/qBsBlRBQQEAarWa8PBwoqOjmT17NvPmzeOrr77Sir9w4QK//fYbq1at4sSJE+Xaq+jcmZiYMHDgQBYuXKgVu3DhQvr27YtarX7g/o8ZM4asrCy2bdtW7tiAAQM0CcxDhw6RmJhIv379ypU5OzuzZ88eXnnlFd555x2io6P54YcfCA8P10rsQFmyr3fv3kRFRTF06NBK1wsLC6N///6cPHmSLl26EBwcTGpqKgBXr16ldevWGBoasnPnTo4ePcrQoUM1ybKlS5cyefJkPvnkE86cOcP06dOZNGkSixYtqvR5mjhxIu+88w5nzpyhU6dOlbq23n//fWbOnMmkSZOIjo7ml19+wda2bPZDYWEhnTp1Qq1Ws2fPHvbt24dKpSIoKEhzPYmqU1RUxNWEi9Sq46spUygU1KrjS0LcuSp7nvy8sg/1xiba/ydPHP6TaRMG8/XHY9i89mcKCsq/3wrxsIqKS4hLyaS+/Z0lKAqFgvr2VpxPTq+wzrnkdOrbW2mV+dpbcf7mnXgvGwuOXUki9VYepaWlnL6eQmJmDj4O1lQkr7CIXbFXsVEpsTZ+uFncQvxdSXERqTdisXPx05QpFApsXXxJSYypVBtFRfmUlBRjYFT2Xl1aWsq1uKOozB3YvTqMtT8MZnvEBK7G/vWP7RQW3ELfwBgdnYqTCkI8qKKiYi5euYaPl4emTKFQ4ONVk3PxFX9x8SBy88r+HlGZVPxenZdfwK5Dx6lhZYG1uWxVIsSz6Ilcuqinp0d4eDgjRozgf//7HwEBAbRp04aBAwfi6+urWSZ4eybQbX5+fvj53fkDY9q0aaxevZp169YREhKCpaUlurq6qNVqrXp/l5CQwPjx46lTpw4Anp539soxMzNDoVD8Y/3t27dz6NAhzpw5g5dX2T4LHh53fiE4OjpqJcjefvtttmzZwvLly2nSpEllT1OFiouLWbZsGSdPnmTkyJEAfPTRR5rjbm5ujBs3joiICCZMuDOlvaCggMWLF99zCea9zt3w4cNp3rw5iYmJ2Nvbk5SUxMaNG7Vm0j2I2+e+oplESqUSK6uyD0A2Njaa/lRUFhYWxsSJE3n11VeBstdh2rRpTJgwgSlTpmjafPHFFxkyZIjm8dChQytVb/DgwZrlodOnT2fOnDkcOnSIoKAg5s6di5mZGREREZolhbevB4ApU6Ywa9Ys+vTpA4C7u7smqXb7ee9n9OjRmvq3/dO1lZWVxezZs/n22281z1GzZk1atmwJwK+//kpJSQnz58/XzHhcuHAh5ubm7Nq1i+eff75cH/Lz88slpAsKijGQZXD3dSsnk5KSknJLFFVqM5JvXK2S5ygtLWX9ynBcPWpj53Bn7yK/xi2xsLRBbWbJ9auX2Lz2Z27eSOSlkeOr5HmFuC0rv4CS0lLMjAy0ys2MDLmWmVNhncy8fMz/tqTRXGlIeu6d95rBjesy7+Ap3vrtD3R1FCiAEc/5UM9We9n9tphLLD0WQ35RMfamJnzQoTF6uk/k94DiPyw/N5PS0hIM/7ZE0cjYnKy0yr2fn9y7GKWJJbYuZV9+5N1Kp6gwj7NHVlG/2Yv4tniZ65dOsG/9pwS+MI0aTt4V9uP0Xyuo6VP+97UQDysz5xYlJSWYq7X3OTRXmXDtxs0qeY7S0lLCV2+itrsLLva2Wse27DvE0t+3kZdfgEMNaz56/RX07jFLTAjxdHsiE11QtkdX165d2bNnDwcPHmTTpk189tlnzJ8/n8GDB1dYJzs7m9DQUDZs2EBiYiJFRUXk5uZqZnRV1tixYxk+fDhLliyhQ4cO9OvXj5o1a1a6/okTJ3ByctJKatytuLiY6dOns3z5cq5evUpBQQH5+fkYGz/4sqHvvvuO+fPnU1BQgK6uLmPGjOGNN94AypIXc+bMITY2luzsbIqKijA1NdWq7+rq+kD7jDVp0gRvb28WLVrExIkT+fnnn3F1daV169YPPBYo+yUH2pvVP4jIyEj27dunNROruLiYvLw8bt26pTnnjRo1eqB6vr53ZuKYmJhgampKUlISUHYdtGrVqsJ9s3JycoiNjWXYsGGMGDFCU15UVPSvNtH/e7/vd22dOXOG/Px82rdvX2F7kZGRXLhwodxsvLy8PK0ll3ebMWMGYWFhWmWvvvEBQ976sNLjEI/O2l/nceNaAiPHTtMqb9ryzocge0dXTM0smD8njJTkRKxsHnyPOyEely0xCVy4mcG4tgHYmCg5cyONBYdOY2FsiM9ds8eauztQ396atNx8NkTHMfvPE4R1eg4D+XAk/kPOHF5Fwrm9tO07TbP/Fv//t5CDR2NqB/QAwKKGBzcTzxIbtblcoqsw/xZ71n6MmZUz3k0HIMSTaP7KDVy+nsTUt4eWO9YywBdfr5qkZWTx+679fLVoOdNGDcNA9qgV4pnzxCa6AIyMjOjYsSMdO3Zk0qRJDB8+nClTptwz0TVu3Di2bdvGF198Qa1atVAqlfTt2/dfL7kKDQ3lxRdfZMOGDWzatIkpU6YQERFB7969K1X/fhvbf/7558yePZuvv/4aHx8fTExMGD169EMtDQsODubDDz9EqVRib2+v2ZTxwIEDBAcHExYWRqdOnTQzjGbNmqVV/2HuGDl8+HDmzp3LxIkTWbhwIUOGDHnoBNWZM2eAsllODyM7O5uwsLBys54AzV5kUH78la339ySWQqGgpKQE+OfrIDs7G4B58+bRtGlTrWO3l7hWxt/7fb9r637XZnZ2Ng0bNmTp0qXljt0rEfr+++8zduxYrbK/YmVfkMowNjFFR0eH7KwMrfLsrAxUphYP3f7aX+dz9tRRRo6eirlFxcu5bnP6/7s8piRfl0SXqFJqQwN0FAoy8rR/x2VUMGvrNlMjQ9LztGeKpufmY64siy8oKubX4zGMaRNAgFPZnRhdLEyJT8tkfXScVqLLxEAfEwN97E1N8LI2Z9jy7Ry5fIPm7g4IUVUMlaYoFDrk39J+P8+7lY6R8T+/n589upazR1bRpvcUzK3dtNrU0dHFzNJFK97U0omb185olRUW5PLnmqno6Stp0e09dHSf6I8A4j/K1MQYHR0d0rOytcrTs3MwN334u9n+9NsGjkWfIyxkCFYVLEk0URphojTC3sYKLzdnhnw4g8NRZ2kR4PPQzy2EeLI8Vb/l6tWrx5o1a4CyBENxsfaH6X379jF48GBNQio7O7vc0jcDA4Ny9Sri5eWFl5cXY8aMYdCgQSxcuJDevXtXqr6vry9Xrlzh3LlzFc7q2rdvHz179uSll14Cyvb0OnfuHPXq1btvv+7FzMyMWrVqlSvfv38/rq6ufPjhndk1ly5dKhdXGfca+0svvcSECROYM2cO0dHRlV52909u74XWoUOHh2onICCAmJiYCs/No6h3N19fXxYtWlTh3RBtbW1xcHDg4sWLBAcHP/Bz/N39ri1PT0+USiU7duxg+PDh5eoHBATw66+/UqNGjXKz/u7F0NAQQ0PtD6sGBrLRc2Xo6enh6OJBbEwU3n5ly5ZLS0u5EBNFszadH7jd0tJS1i3/iejIvxgxeiqW1rb3rXP9SjwAarPHc7dV8ezQ09XB3cqU04kpNP7/uyHe3lPr+dquFdbxsjHnVGIKXere+bIj6noKntbmABSVlFBUUorO375U0VUoKPn/WTAVKaWU0tJSCv//CwkhqoqOrh6WtjW5kXASx5plX2CVlpaSdDmKWn5d7lnv7JHVRB9aSZvek7G089Q6VtZmLbLStZc+ZqVdw1h9J5lbmH+L3avD0NXVp2WPD+7MCBOiiunp6eLh5MCp83E08akLlF3np85dJKjVg2+/UlpayoJVGzkUdYbQt4ZQw+r+X/aVvZ9D4V03ihJCPDueyE0oUlJSaNeuHT///DMnT54kLi6OFStW8Nlnn9GzZ0+gbK+pHTt2cP36dc2d+Tw9PTWbqUdGRvLiiy9qZtfc5ubmxp9//snVq1e5ebP8WvLc3FxCQkLYtWsXly5dYt++fRw+fJi6detq6mdnZ7Njxw5u3rzJrVvlP9C3adOG1q1b88ILL7Bt2zbi4uLYtGkTmzdv1vRz27Zt7N+/nzNnzvDaa69x48aNKj2Ht3l6epKQkEBERASxsbHMmTOH1atXP1Bb9zp3FhYW9OnTh/Hjx/P888/j5OT0r9pNT0/n+vXrXLp0iW3bttG3b19++eUXvv/+e627YT6IyZMns3jxYsLCwjh9+jRnzpwhIiJCa9+yqqx3t5CQEDIzMxk4cCBHjhzh/PnzLFmyhJiYsk1pw8LCmDFjBnPmzOHcuXNERUWxcOFCvvzyywce7/2uLSMjI9577z0mTJjA4sWLiY2N5eDBg/z0009A2cxAa2trevbsyZ49e4iLi2PXrl2MGjWKK1eqbpNRcUfLdt05vG87Rw/+QVLiFdZE/EhBfj4Nn2sLwPJFc9i89mdNfFFREdcux3HtchzFxUVkpqdw7XIcKcl3bq6x7tf5nDi8hwFDRmNoaERWRhpZGWkUFpbNqElJTmTHxhVcSYglLSWJ6JOHWb74G9xr1cPeseLEgxAPo2tdd3ZeuMzu2CtcSc/mp79Ok1dUTGDNst8Xc/dFsuzYnQ27g+q4cTLxJuuj47iakc3KyPPEpWTQ6f8TY8YG+tS1tWTpsbNEX08hKfsWu2Ov8OfFqzT5/2TajaxbrDkVy8WUDG7m5BKTlMbXf57AUE8Xf8d/v1RfiPvxCujBxVPbiIveSWbKZY7u/B9FhXm4e7cD4K8tX3Ny7xJN/JnDq4g68AtNOoZgbFqD3Jw0cnPSKCrM08TUbtiLhHP7iI3aSlZ6IudPbODaxcPU8i1Lnt1OchUX5dOo41sUFtzStFMqCV3xCHQLbMaOA0fZdeg4V64nM2/FevIKCghs4g/At0tXsXT9nZtJFRUVE3clkbgriRQVF5OakUnclUSu30zVxPz02wb2HD3JOy/1xcjQgLTMLNIysyj4/7vE37iZyurte4i9fI2baenExCXwZfhyDAz08a9X8VYxQoin2xM5o0ulUtG0aVO++uorYmNjKSwsxNnZmREjRvDBBx8AMGvWLMaOHcu8efNwdHQkPj6eL7/8kqFDh9K8eXOsra157733yMzM1Gp76tSpvPbaa9SsWZP8/HzNXlC36erqkpKSwiuvvMKNGzewtramT58+mj2Imjdvzuuvv86AAQNISUlhypQphIaGlhvDb7/9xrhx4xg0aBA5OTnUqlWLmTNnAmWbw1+8eJFOnTphbGzMyJEj6dWrFxkZGeXaeVg9evRgzJgxhISEkJ+fT9euXZk0aVKFfb6ffzp3w4YN45dffmHo0PLr6e/n9ibwRkZGODo60rJlSw4dOkRAQMC/buvvOnXqxPr165k6dSqffvop+vr61KlTp8LZTFVR725WVlbs3LmT8ePH06ZNG3R1dWnQoAEtWrQAypZ8Ghsb8/nnnzN+/HhMTEzw8fFh9OjRDzzeylxbkyZNQk9Pj8mTJ3Pt2jXs7e15/fXXATA2NubPP//kvffeo0+fPmRlZeHo6Ej79u0rPcNL/Du+DVuQnZXJ9vW/kpWZjoOzG0Pe+hC1qTkA6ak3Uejc+c4iKyOVb2be2TB+z47f2bPjd9xr1WPkmKkAHNyzBYB5X9+5cQJA35ffouFzbdHV0yc2Jor9uzZQkJ+PmYUV9Rs0pW1Q30c8WvGsauZmT2ZeASsiz5ORm4+rpSkT2zXG7P+XIqbk5GnNzqpdw4KQFn4sjzzPr8djsDM1YWxgAM4Wd/YPHNWqAcuOx/Dt3kiyCwqxNlEyoIEXHbzKlnkZ6Opw9kYqm87Ec6ugEFMjQ+rYWhAW9Bym91gyKcTDcPFqSf6tDE4diCDvVhoWNu607jUJI2NzAG5l3kShuPN+Hhu1hZLiIvZt+EyrHe+mA6jfbCAATrWeo2G71zhz+DeO7/4JtYUDLbq9h41j2RewaUkXSbledpfejeFvarXTbegPmJjWeFTDFc+o5v71ycjOYfnmP0jPysbNwZ4PR76s2aD+ZlqG1hYmaZlZvDfrf5rHv/+xn9//2E+9mm6EhpR9Bti67zAAoXO17+T+5qBeBDbxR19fnzMXL7Fh9wFu5eVhplJR18OFj0cNw0z14NuvCCGeXIrSv2dyhHgElixZwpgxY7h27RoGBjJl/lm3+7QsXRRPP98171Z3F4R45GY5zq7uLgjxyL1Xf2d1d0GIR07dKKi6u/DA/qufLdp4P/jN5MTDeSJndIknx61bt0hMTGTmzJm89tprkuQSQgghhBBCCCHEI/NE7tEl7tizZw8qleqeP9Xts88+o06dOtjZ2fH+++9rHZs+ffo9+92584NvtP0skHMnhBBCCCGEEEKUJ0sXn3C5ublcvXr1nscf5q6Aj1pqaiqpqakVHlMqlTg6Oj7mHj05nvRz91+dXixEVZKli+JZIEsXxbNAli6KZ4EsXax6snSx+sjSxSecUqn8Tyez/omlpSWWlpbV3Y0nkpw7IYQQQgghhBCiPFm6KIQQQgghhBBCCCGeCpLoEkIIIYQQQgghhBBPBUl0CSGEEEIIIYQQQoinguzRJYR47AJy/6zuLgjxyBVVdweEEEJUiWPK1tXdBSEeuTbV3QEhqpDM6BJCCCGEEEIIIYQQTwVJdAkhhBBCCCGEEEKIp4IkuoQQQgghhBBCCCHEU0ESXUIIIYQQQgghhBDiqSCJLiGEEEIIIYQQQgjxVPhPJ7rCw8MxNzd/qDbc3Nz4+uuvq6Q/AIGBgYwePbrK2ntS+3BbRa/Rjz/+iLOzMzo6OppzX1GZEEIIIYQQQgghRFXS+7cVkpOTmTx5Mhs2bODGjRtYWFjg5+fH5MmTadGiBQqFgtWrV9OrV69/1a6bmxujR4/WSuAMGDCALl26VKp+eHg4o0ePJj09Xav88OHDmJiY/Ku+VJXAwEB2794NgKGhIR4eHoSEhPDmm28+VLurVq1CX19f87iic/ewFAqF5t/GxsY4ODjQokUL3n77bRo2bKg59vfXKDMzk5CQEL788kteeOEFzMzMKiwTDy45OZk33niDHTt2UFxcTEBAAD/88AO1a9eu7q6JR2Tz3kP8/sc+0jOzcXWwY0ifzni6Ot0z/sCJU/y66Q+SU9Oxs7EiuFsHAup5aY6nZ2Wz9PdtnDwXS86tPOrWdGVony7Y21hptXMu/jIRG3dw/tIVdHR0cHOw48PXX8bgrvcfIarK1phL/H46joy8fFws1AxuXI9a1ub3jD8Yn8jyyPPczMnFTm3MoIDa+DvW0Iq5kp7NsuMxnLmRSnFpKU5mKsa08cfaRKkVV1payqc7jxB57SZjAwNo7Gz7KIYoBOcjNxJzdC15OWmY27jhHzgcKzuvCmNjo7Zy6cwuMlISALCoUROfFsFa8VfOH+BC1BbSky6Sn5fF8y/OwqKGR7m2biaeJWr/L6ReP4dCoYO5jTttek9BV8/g0QxUPNMO7N7Mnu1rycpMx97Jle79huHs5llh7I3Ey2xfH8HVhIukpSbT9YXBtGzXTSvm4vnT7Nm+jmuXL5KZkcZLIyfg7ddEK2bFkm85dnCXVplX3QYMCfmoSscmhHgy/OtE1wsvvEBBQQGLFi3Cw8ODGzdusGPHDlJSUqq8c0qlEqVSef/Af2BjY1NFvXkwI0aMYOrUqdy6dYvFixfz1ltvYWFhwaBBg/51WwUFBRgYGGBpafkIelrewoULCQoKIi8vj3PnzvHjjz/StGlTFixYwCuvvAKUf40SEhIoLCyka9eu2NvbA3Dq1KlyZQ+isLBQK8H3rHrvvfc4cuQI69evx87OjmPHjlWq3u3rRzxZ9h8/xeK1mxnRtzuerk5s+PMAn/ywhNkfjMJMVT6JHxOXwOwlv/Fi17Lk1t5jUXyxMIKZY1/Dxd6W0tJSPv9pGXq6uowfOghjI0PW7zrAtO8X8eV7IRgZll0j5+IvM/2Hn+nVoSVD+nRBV0eHS9euayXBhagqB+ITWXLkDMOa1qeWtTmbzsYzY8dhvurZGlMjw3LxMUlpfLM3koH+Xvg71mB//DW+3HWM6V1a4GyhBuB6Vg5hWw8SWNOJfn6eGOnrciU9GwPd8pPZN52Nf9RDFIKEc3s58edCGrV7HSs7L2KO/86fq6fS+dW5GBmX/xIw+copXGq3wsq+Nrp6Bpw9soo/V0+l08uzMVaVfTFRVJSPjWM9XLxacHj7dxU+783Es/y5ehp1G79AQOBwFDq6ZCTHA/J+LqreyaP72PBbOL0GjcTFzYu9f6xnwbcf8+6UOajU5a/zwoJ8LKxqUN+/GRt+C6+wzcKCAuwdXWnUrB0/z/v8ns/tVc+fvi/dmVCgK58bhHhm/auli+np6ezZs4dPP/2Utm3b4urqSpMmTXj//ffp0aMHbm5uAPTu3RuFQqF5HBsbS8+ePbG1tUWlUtG4cWO2b9+uaTcwMJBLly4xZswYFAqF5oPU35fFRUZG0rZtW9RqNaampjRs2JAjR46wa9cuhgwZQkZGhqZ+aGgoUH7pYnp6Oq+99hq2trYYGRlRv3591q9fD0BKSgqDBg3C0dERY2NjfHx8WLZs2b88pdqMjY2xs7PDw8OD0NBQPD09WbduHVCWsPDy8sLY2BgPDw8mTZpEYWGhpm5oaCgNGjRg/vz5uLu7Y2RkpDlft2dvVXTucnJyMDU1ZeXKlVp9WbNmDSYmJmRlZVWq7+bm5tjZ2eHm5sbzzz/PypUrCQ4OJiQkhLS0NED7NQoPD8fHxwcADw8PFApFhWXx8fEArF27loCAAIyMjPDw8CAsLIyioiLN8ysUCr7//nt69OiBiYkJn3zySaXrzZ8/n969e2NsbKx1zm87ffo03bp1w9TUFLVaTatWrYiNjdUcnz9/PnXr1sXIyIg6derw3XcV//H4dwUFBYSEhGBvb4+RkRGurq7MmDFDczw9PZ3hw4djY2ODqakp7dq1IzIyEiibqWVnZ8f06dM18fv378fAwIAdO3ZoynR0dGjevDktWrSgZs2a9OvXr8LZXIGBgYSEhDB69Gisra3p1KkTAF9++SU+Pj6YmJjg7OzMm2++SXZ2tlbdffv2ERgYiLGxMRYWFnTq1EnzmpeUlDBjxgzc3d1RKpX4+fmVu9ZE1Vm/6wDtn2tI26b+ONnZMLJfdwwN9Pnjr4oTnBv/PEiDOrXo0a4FTnY2DOzSDndHezbvOQRAYnIK5y9dYXi/btRyccShhjUj+nWjoLCIfcejNO0sWrOZoFZN6dW+Fc52NXCoYU2zBvXR1/vX348IcV8bzsTRztOZwFpOOJmrGN7UG0NdXf64cKXC+M1n4/FzsKa7twdO5ir6N/DCzdKMLTGXNDHLT5yjgaMNwQ3r4GZpip3ahEbOtuUSZ/GpmWyIjuP15r6PdIxCnDu2Do/6HXH3bo+plTON2r+Brp4hcad3VBj/XOex1PLrjEUND0wtnWjcIYTS0hKSEk5qYtzqBuLdtD+2Ln73fN4Tuxfi2aArdRv3wczKBVMLR5y9WqCrJ0kAUfX27vydxi060KhZO2rYO9F70GsYGBhw5MDOCuOdXGvRpc+r+DVqid49rsna3v483+NFvBs0/cfn1tXTQ21mofkxNlY99HiEEE+mf5XoUqlUqFQq1qxZQ35+frnjhw8fBspmAiUmJmoeZ2dn06VLF3bs2MHx48cJCgqie/fuJCSUTcVetWoVTk5OTJ06lcTERBITEyt8/uDgYJycnDh8+DBHjx5l4sSJ6Ovr07x5c77++mtMTU019ceNG1eufklJCZ07d2bfvn38/PPPREdHM3PmTHR1dQHIy8ujYcOGbNiwgVOnTjFy5EhefvllDh069G9O0z9SKpUUFBQAoFarCQ8PJzo6mtmzZzNv3jy++uorrfgLFy7w22+/sWrVKk6cOFGuvYrOnYmJCQMHDmThwoVasQsXLqRv376o1eoH7v+YMWPIyspi27Zt5Y4NGDBAk8A8dOgQiYmJ9OvXr1yZs7Mze/bs4ZVXXuGdd94hOjqaH374gfDwcE0y67bQ0FB69+5NVFQUQ4cOrXS9sLAw+vfvz8mTJ+nSpQvBwcGkpqYCcPXqVVq3bo2hoSE7d+7k6NGjDB06VJMsW7p0KZMnT+aTTz7hzJkzTJ8+nUmTJrFo0aL7np85c+awbt06li9fTkxMDEuXLtUkfAH69etHUlISmzZt4ujRowQEBNC+fXtSU1OxsbFhwYIFhIaGcuTIEbKysnj55ZcJCQmhffv2mjZ69uzJypUr2bx58337s2jRIgwMDNi3bx//+9//gLJE2Zw5czh9+jSLFi1i586dTJgwQVPnxIkTtG/fnnr16nHgwAH27t1L9+7dKS4uBmDGjBksXryY//3vf5w+fZoxY8bw0ksvaZbpiqpTVFTMxSvX8PG6swxFoVDg41WTc/EVJwDOxV/RigfwrV2Tc5cuA1BYVPY63p2wUigU6OvpcfZi2XtyRnYO5y9dwUxlzEez5zN80meEfruQsxcvIURVKyouIS4lk/r21poyhUJBfXsrzienV1jnXHI69e21l9r62ltx/mZZfGlpKceuJGOnNmH69sO8tmIHH23az+HLN7Tq5BcV8+3eEwxp4o25svzMMSGqSklxEak3YrG7KyGlUCiwdfElJTGmUm0UFeVTUlKMgVHl/47Lu5VByvVzGBqbsuPXiaz9YTB/rPiI5Ktn/vUYhLifoqIiriZcpFadO18cKBQKatXxJSHu3CN//rjz0Xz83lBmhY1iTcSP3Mqp3Jf7Qoinz7/6al5PT4/w8HBGjBjB//73PwICAmjTpg0DBw7E19dXs0zw9kyg2/z8/PDzu/OLfdq0aaxevZp169YREhKCpaUlurq6qNVqrXp/l5CQwPjx46lTpw4Anp531nqbmZmhUCj+sf727ds5dOgQZ86cwcurbH8DD487HwgdHR21EmRvv/02W7ZsYfny5TRp0qRce/9GcXExy5Yt4+TJk4wcORKAjz66s2bczc2NcePGERERoZV0KCgoYPHixfdcgnmvczd8+HCaN29OYmIi9vb2JCUlsXHjRq2ZdA/i9rm/PSvrbkqlEiursg8eNjY2mv5UVBYWFsbEiRN59dVXgbLXYdq0aUyYMIEpU6Zo2nzxxRcZMmSI5vHQoUMrVW/w4MGa5aHTp09nzpw5HDp0iKCgIObOnYuZmRkRERGapZC3rweAKVOmMGvWLPr06QOAu7u7Jql2+3nvJSEhAU9PT/6PvfuOjqp4Gzj+3fS66b1CEggkhBZ6J3RBunQMVVBERar+lKYgCAiI+iogiKIC0gm9V+kJVRIgoYYA6ZuyySb7/hHdsCS00OH5nLPnsPfOzM5cNsnuc2eeqVu3LgqFAh8fH925vXv3cujQIW7evImpacEXqmnTprFq1Sr++usvBg4cSKtWrRgwYAA9evQgNDQUS0tLvRlhZ86coXv37kyYMIH+/fvzzTff0LlzZwCOHj1KaGgot27dwtGx4AtjQEAAU6dO1evjnbncfH19+eKLLxg0aJBu1trUqVMJDQ3Vm8UWFBQEgFqtZtKkSWzdupVatWrp/g/27t3Ljz/+SIMGDe57fcSjScvIJD8/H1tr/TuStlaWXE+4XWydVJWqaHmlFSlpBbP2PJwdcbSz4Y+IrQzo3AYzExPW7dpPYkoqyWkFHwhv3i6Yvbds8y56tWmGr4cru49EMeGHX5g+8r0iubyEeBzp6hzytVpszPSXVtuYmXI9LaPYOmnZamzvmplla25KSlbBTbjU7BzUmjzWnL5Il0oBdK9Slqjrt/hm1zH+17QG5V0KUgD8euQsAU52hEpOLvGUqbPS0GrzMb1riaKZhS3pydceqo0TexdhbmmPi/fDzz7MSL0BwJm/l1Kx3tvYOpUi7uxOdq74nBY9Z2Ft5/7wgxDiATIz0sjPzy+yRNHK2oZbCQ/3Pi+pMuUqEVSxBnYOziTdTmDzmt9Z8N0XDB4+GQODF3r/NSHEU1CiHF1vvPEGe/bs4e+//2bDhg1MnTqVefPmER4eXmwdlUrFuHHjiIiIID4+Ho1GQ1ZWlm5G18MaNmwY/fv359dff6VJkyZ07twZPz+/h64fGRmJp6enXlDjTnl5eUyaNImlS5dy7do1cnJyUKvVWFhYPFI/7/T9998zb948cnJyMDQ05KOPPmLw4MEALFmyhNmzZ3PhwgVUKhUajQalUqlX38fHp0R5xqpXr05QUBC//PILo0eP5rfffsPHx4f69euXeCxQcJcceOw8PVFRUezbt09vJlZeXh7Z2dlkZmbqrnloaGiJ6oWEFH4ItLS0RKlUcvPmTaDgfVCvXr1i831lZGRw4cIF+vXrx4ABA3THNRrNQyXRDw8Pp2nTppQtW5YWLVrQunVrmjVrpuu7SqXSBf7+k5WVpbdsctq0aQQHB7Ns2TKOHj2qC4pBwQy3li1bMnr0aJo1a0bTpk1JTExk0KBBnDx5ksDAQF2QC9DbOOA/W7duZfLkyfzzzz+kpaWh0Wj0rl9kZKQueHa38+fPk5mZSdOmTfWO5+TkULly5WLrqNXqIjNAc3JyMJV8Yc+FkZEhH/fpyv8tWU3fT7/CwMCACmVKU6lc4Y2DfG0+AE1qFSyZBCjl6cbJmItsP3iMHq2bFtu2EC+K//5WVfV0plW5UgD42iuJvpXC1ujLlHex58iVBE7dSOSrN+o8z64K8VDOHl7B5ei9NOo08ZESyGv//X1eukIzSgUVzA63cy7NzSsniD29jZC6vZ5Kf4V41iqG1tX9283DB1cPb6aNHcLF6FN6M8yEEK+HEiVbMTMzo2nTpjRt2pTPPvuM/v37M3bs2HsGuoYPH86WLVuYNm0a/v7+mJub06lTJ90Svoc1btw4unfvTkREBBs2bGDs2LH8+eeftG/f/qHqPyix/ddff82sWbOYOXOmLofRhx9++Mj9vFOPHj349NNPMTc3x83NTXdH4cCBA/To0YPx48fTvHlz3Qyj6dOn69V/nB0j+/fvz3fffcfo0aNZsGABffr0eewA1dmzBVPdS5Uq9VjtqFQqxo8fr5s1daf/cpFB0fE/bL27g1gKhYL8/IIPe/d7H/yXq2ru3LnUqKGfB+C/Ja73U6VKFWJjY9mwYQNbt27lrbfeokmTJvz111+oVCrc3NzYuXNnkXp35qK7cOEC169fJz8/n7i4OF2OM4ATJ07oZpVVqVKFNWvW0Lx5c27fvs3GjRv1Zr9B0esXFxdH69atGTx4MF9++SX29vbs3buXfv36kZOTg4WFxUNdn4iICDw8PPTO3RmQu9PkyZMZP3683rHRA3rwycCe93wdUUBpaYGBgQEp6fo51FJUGdgqi887YWNlVbR8mkqvvJ+XO18PH0xGVjaavDxsrCz55Ju5lPYq2CzCTlmwLMbTRT/I7uHsSGJy6mOPS4g7WZuaYKBQkJqt/7c2tZhZW/9RmpmSkq0fQE/JUuuWH1qbmmBooMDTVv/nxMPGknM3C2Ysnr6RyE1VJv2W6M90/mbXMQKd7fm82f1zwQjxKEzNlSgUBqgz9X+HZmemYGZhd9+6/xxdzT9HVtCg/VhsHX0f6XXNLAtmLyrt9XfqtbbzJDP91iO1JcSDWFgqMTAwQJWu/z5Xpadipbz/+/xJc3B0xdLKmsTbN/BHAl1CvG6eSFbh8uXLs2rVKqAgwPBfLp//7Nu3j/DwcF1ASqVSFVn6ZmJiUqReccqUKUOZMmX46KOP6NatGwsWLKB9+/YPVT8kJISrV68SHR1d7Kyuffv20bZtW3r2LPgCnp+fT3R0NOXLl39gv+7FxsYGf3//Isf379+Pj48Pn376qe7YpUsly39zr7H37NmTkSNHMnv2bM6cOfPAZXcP479caE2aNHmsdqpUqcK5c+eKvTZPo96dQkJC+OWXX4rdxdHFxQV3d3cuXrxIjx49StS+UqmkS5cudOnShU6dOtGiRQuSkpKoUqUKN27cwMjISC9v151ycnLo2bMnXbp0oWzZsvTv35+TJ0/i7OwMFCyv3bNnD2PGjAGgTp06rFy5ktatW2Nvb8+QIUPu27ejR4+Sn5/P9OnTdUHXpUuX6pUJCQlh27ZtRYJTUPCzbmpqyuXLlx96meKYMWMYNmyY/jhP7Xyouq87IyNDSnu6cyomluoVygEFM1VORV+kRb3il1OX8fXkZPRF3mhQS3fsZPRFyvh4FSlraV4QHI6/lciFK9fo0qoRAE72ttjZWHP9pv5uuvG3kqhUruQ/e0IUx8jQgFIOSk7HJ1Lt3yWEWq2W0zcSaVbWp9g6ZZxsORWfqJutBXDyRiIBjra6Nks72BB/19LH+LQMHCwLgvltg/1o7K//czFy3V56h5ajiqfzkxqeEAAYGBph7+JHwuUTePgVBFG1Wi03r5zEv2Kre9b758hKzhz6iwbtP8feNeCe5e7FUumMuaU96cnX9Y6rUq7j6lvlkdsT4n6MjIzw8C7NhXMnCapY8DlFq9Vy/txJajVo+Uz7kpJ8m8wMFdbPOMAmhHgxPFKgKzExkc6dO9O3b19CQkKwtrbmyJEjTJ06lbZt2wIFOX+2bdtGnTp1MDU1xc7OjoCAAFasWEGbNm1QKBR89tlnutk1//H19WX37t107doVU1NTveVXULC8a8SIEXTq1IlSpUpx9epVDh8+TMeOHXX1VSoV27Zto2LFilhYWBRZctigQQPq169Px44dmTFjBv7+/vzzzz8oFApatGhBQEAAf/31F/v378fOzo4ZM2aQkJDwWIGuewkICODy5cv8+eefVKtWjYiICFauXFmitu517ezs7OjQoQMjRoygWbNmeHp6PqAlfSkpKdy4cQO1Wk10dDQ//vgjq1atYtGiRXozkEri888/p3Xr1nh7e9OpUycMDAyIiori1KlTfPHFF0+83p2GDBnCt99+S9euXRkzZgw2Njb8/fffVK9enbJlyzJ+/HiGDh2KjY0NLVq0QK1Wc+TIEZKTk4sEbO42Y8YM3NzcqFy5MgYGBixbtgxXV1dsbW1p0qQJtWrVol27dkydOpUyZcpw/fp1IiIiaN++PaGhoXz66aekpqYye/ZsrKysWL9+PX379tXtDDpixAhatWrFe++9x+DBg8nNzWXXrl2YmJhw69Yt1q5dS5cuXe7ZP39/f3Jzc/n2229p06aNXpL6/4wZM4YKFSrw7rvvMmjQIExMTNixYwedO3fG0dGR4cOH89FHH5Gfn0/dunVJTU1l3759KJXKYoOppqamRWZ7pcuyxYfWumEtvvt9JaU93fD39mT97r/JzsmhYfWCJYVzFq/AzsZat5ywVf2ajPtuIWt37KNK+TLsO36Ki1evM/CtNro2D0SeQmlliaOtDZdv3GThyg1Ur1COimULglgKhYI3G9Vh2cad+Hq44Ovhxs5DkVy/eZth4W89+4sgXnlvlCvFD/tPUMpBiZ+DLRv/iSNbk0dDv4K/W9/ti8Le3IxuVQp2mG0R6MvELQdZdyaWyh5OHIiLJzYxlQE1gnVtti5fim/3RBLobE+Qqz1R125z7OotPmtW8OXL1ty02AT0DpbmOFuVPGWBEPdSpsqbHNo0GzsXPxxcAoiOXIcmN5tSQY0BOLhpJuaWDrrlhGcPr+DU339Qq8UwLJTOZGUUzEY0NjHHyLjgRoU6K53M9Fu6c+kpBQEtM0s7zC3tUCgUlK3altN/L8HWybcgR9eZHaQlX6PWGyOe9SUQr4G6jduwbNEcPLxL4+UTwL6dEeSo1VStWXAzbekvs1Ha2tOibcHEAo1Gw834gg1z8vI0pKUkcv1KLKZmZjg4Fcw0V6uzSbxZuFlZcuJNrl+JxcLSClt7J9TqbLZFLCG4ci2slbYk3rrBhlW/4uDkSplylZ7tBRBCvBAeKdBlZWVFjRo1+Oabb7hw4QK5ubl4eXkxYMAAPvnkEwCmT5/OsGHDmDt3Lh4eHsTFxTFjxgz69u1L7dq1cXR0ZNSoUaSlpem1PWHCBN555x38/PxQq9W6/Br/MTQ0JDExkd69e5OQkICjoyMdOnTQzTqpXbs2gwYNokuXLiQmJjJ27FjGjRtXZAzLly9n+PDhdOvWjYyMDPz9/fnqq6+AguTwFy9epHnz5lhYWDBw4EDatWtHauqTX6rz5ptv8tFHHzFkyBDUajVvvPEGn332WbF9fpD7Xbt+/frx+++/07dv30du979lcGZmZnh4eFC3bl0OHTpElSqPfwewefPmrFu3jgkTJjBlyhSMjY0JDAykf//+T6XenRwcHNi+fTsjRoygQYMGGBoaUqlSJerUKcjT0r9/fywsLPj6668ZMWIElpaWVKhQQS+J+71YW1szdepUYmJiMDQ0pFq1aqxfv143e2r9+vV8+umn9OnTh1u3buHq6kr9+vVxcXFh586dzJw5kx07duhytf36669UrFiRH374gcGDB9OiRQu2bdvG2LFjqVOnDgYGBjRp0oRDhw6xYsUKwsPD8fLyonbt2sX2r2LFisyYMYMpU6YwZswY6tevz+TJk+ndu7euTJkyZdi8eTOffPIJ1atXx9zcnBo1auiS+0+cOBEnJycmT57MxYsXsbW1pUqVKrrfAeLJql05mFRVBks37iAlXYWvuxufDuylSzh/OzlVb0ly2VLeDO3ZgSUbdvDH+m24OjowvE9XvN0Kk22npKlYtHqzLnF9/dBKdGqmP0PvjQa1yNVo+GXVJlSZmfi4u/K/Qb1wdbR/NgMXr5Vavm6kZeewLCqG1Cw1PvZKRjeuhs2/gajEjGwM7nyfO9sxpE5FlkbFsOT4OVyVlgxrWAUvu8Ld6Kp7u9K3RhCrT13kl8NncFda8lGDygQ6y3tYPB/eZeqizkzl1IE/yc5Mxs6pFPXbfYaZhS0AmWm3USgKk2ZfOLmJ/DwN+yL0N5UJqtGF4FpdAbgee5hDm7/VnTuwfnqRMmWrvEl+nobI3QvIyU7H1tGXBu3HYW3r9jSHK15TIVXroEpPY+u6JaSnpeDu5Uuf9z7FWmkLQErSbRR3JIdPT03i268Kg657tq1lz7a1lPIvz8CPJgBw7dJ55s4apysTsXwhAFVqNqRzryEYGBhw4/pljh3cRXZWJkobO/zLVaRp664YFZOTVwjx6lNo744oiVfKr7/+ykcffcT169cxkVk04gWRfmTj8+6CEE+dZtPq590FIZ666R6znncXhHjqmlbTPO8uCPHUNQh6eWcz7zqd+by7UKyX+Zq+7J5Iji7x4snMzCQ+Pp6vvvqKd955R4JcQgghhBBCCCGEeOUZPLiIKM6ePXuwsrK65+N5mzp1KoGBgbi6uuoSl/9n0qRJ9+x3y5bPNlHky0aunRBCCCGEEEII8eKSpYsllJWVxbVr1+55/nF2BXzakpKSSEpKKvacubk5Hh4ez7hHLw+5dk+GLF0UrwNZuiheB7J0UbwOZOmieB28zMvsZOmiuJssXSwhc3PzFzqYdT/29vbY20sy3pKQayeEEEIIIYQQQry4ZOmiEEIIIYQQQgghhHglSKBLCCGEEEIIIYQQQrwSJNAlhBBCCCGEEEIIIV4JEugSQgghhBBCCCGEEK8ESUYvhHjmppxq/Ly7IMRT9zGy66J49Y0K3v68uyDEU3eM+s+7C0IIIR6BzOgSQgghhBBCCCGEEK8ECXQJIYQQQgghhBBCiFeCBLqEEEIIIYQQQgghxCtBAl1CCCGEEEIIIYQQ4pUggS4hhBBCCCGEEEII8UqQQJcQL5C4uDgUCgWRkZHPuytCCCGEEEIIIcRLx+h5d0C8PA4cOEDdunVp0aIFERERz7s7z1VcXBylSpXSPbe3t6dq1apMmTKFypUrl7hdLy8v4uPjcXR0BGDnzp00atSI5ORkbG1tH7fb4iWm1Wo5/fefXDy1hRx1Bo5ugVRt/A7Wdu73rRcTtZ5zR1eTnZGMrZMvlRv2x8G1DADqrHRO//0nNy5Hkpl+G1NzJR5+NQiu1Q0TU0tdG0k3Yoja9yspNy8CYO8aQMW6vbF1KlXsawpRUlqtlr+iYth+/ioZObmUdbKjb40g3JSW9623+dwl1p6OJTVbjbedNeHVyuPvaKs7n6PJ47ej/3DgUjy5eflUdHekb/UgbMxNAbiUlMbq0xc5dzOZdHUOTlbmNAnwpmU536c4WiEKaLValm7cwba/j5GZlU2ZUl4M6NQaNyeH+9bbuPcQa3fsIyVNhY+7K306tCTAx1N3fsv+I+w7dpLYa/FkZatZMGkMluZmT3s4QhTrwK6N7Nm6mvS0FNw8fWjTuR9evgH3LH/i2H62rP2TlKRbODi70aJtTwKDq+jOnzr+Nwf3bub6lYtkZqh4f/TXuHvJ5xIhRAGZ0SUe2vz583n//ffZvXs3169ff279yMnJeW6vfbetW7cSHx/Ppk2bUKlUtGzZkpSUlBK1lZOTg6GhIa6urhgZSQxa6PvnyEpiIiOo2ngQTbpOwcjYjF0rJ5CnuffPw+XovUTuXkBQjbdo1n06No6+7F45gezMVACyM5LIykimYr1wmvecSfVmQ7kRd4zDW77TtaHJzWb3qolYWjsS1nUKjd+ahJGxObtWTiA/T/PUxy1eL2tOX2TjuUv0qxHEFy1rYWpkyORth8nR5N2zzoG4eH49cpaOIf5MalUHHzslk7cdJi1brSvz69GzHL16kw/rV+bzZjVIylQzY9cx3fmLSakozUx4r25Fvm5Tj3bBfvxx/Byb/rn0VMcrBMDq7XvZsOcgAzq35ssPB2BmYsKXP/5KTm7uPevsP36KRas30qlZQ6Z8PAgfDxe+/PFXUlUZujI5ublUKudP+yb1nsUwhLinE0f3EbF8IY1bdeb90V/j6uHLz3O+QJWeWmz5Sxf+YcmCmVSrHcb7o7+mfEg1fvtpKjeuX9aVyc1V4+tXjhZtez6rYQghXiIS6BIPRaVSsWTJEgYPHswbb7zBwoUL9c6vXbuWatWqYWZmhqOjI+3bt9edU6vVjBo1Ci8vL0xNTfH392f+/PkALFy4sMhMpVWrVqFQKHTPx40bR6VKlZg3bx6lSpXCzKzgbuTGjRupW7cutra2ODg40Lp1ay5cuKDX1tWrV+nWrRv29vZYWloSGhrKwYMHiYuLw8DAgCNHjuiVnzlzJj4+PuTn5z/UdXFwcMDV1ZXQ0FCmTZtGQkICBw8e5MKFC7Rt2xYXFxesrKyoVq0aW7du1avr6+vLxIkT6d27N0qlkoEDB+otXYyLi6NRo0YA2NnZoVAoCA8PZ9GiRTg4OKBWq/Xaa9euHb169Xpgn6OiomjUqBHW1tYolUqqVq2qdx327t1LvXr1MDc3x8vLi6FDh5KRUfDBedGiRVhZWRETE6Mr/+677xIYGEhmZuZDXTPx6LRaLTGR6yhXvTMeftWxdfSlevOhZGckce3CwXvWiz62htLBTSkVFIbSwYvQsMEYGpkSe3obADaOPtRpPRKP0tWwtnXDxasCFWr34HrsYfLzCwILaYlXUGenE1yrO0o7D2wcvAmq+RbZmSlkpN96JuMXrwetVsvGfy7RvoI/oV4ueNspGVwnhJQsNUeuJNyzXsTZWBoHeNHQ3xNPWyv61wjC1NCQHeevApCRk8vO81fpFRpIkKsDpR1sGFS7AtG3Uoi5lQJAI38vwquVp7yLPS7WFtQr7UFDP08OX7nxLIYuXmNarZb1uw/SsWl9qgUH4uPuwnvd25Ocms7hk//cs966nQcIq1mVRjUq4+nqxMDObTA1MWbHwcIA7hsNatEurJ7eLC8hnoe929dSrU4TQms1xtnNk/bd3sHExIQjB7YXW37fzgjKlK9M/aZtcXbzpFmbbrh7leLArg26MpWrNyCsVWf8A0Oe1TCEEC8RCXSJh7J06VICAwMpW7YsPXv25Oeff0ar1QIQERFB+/btadWqFcePH2fbtm1Ur15dV7d379788ccfzJ49m7Nnz/Ljjz9iZWX1SK9//vx5li9fzooVK3T5qzIyMhg2bBhHjhxh27ZtGBgY0L59e12QSqVS0aBBA65du8aaNWuIiopi5MiR5Ofn4+vrS5MmTViwYIHe6yxYsIDw8HAMDB79R8Pc3BwomJmlUqlo1aoV27Zt4/jx47Ro0YI2bdpw+fJlvTrTpk2jYsWKHD9+nM8++0zvnJeXF8uXLwfg3LlzxMfHM2vWLDp37kxeXh5r1qzRlb158yYRERH07dv3gf3s0aMHnp6eHD58mKNHjzJ69GiMjY0BuHDhAi1atKBjx46cOHGCJUuWsHfvXoYMGQIU/F+2atWKHj16oNFoiIiIYN68eSxevBgLC4tHvmbi4WSkJZCVkYyLVwXdMRNTSxxcy3A7/lyxdfLzNCQlXMDVu6LumEKhwMU7hMR71AHIzcnE2MQCAwNDAKztPTE1s+biqa3k52nI0+QQe3obSntPLJXOT2iEQsBNVRYpWWqCXQuXa1maGOPvaEv07ZRi62jy8olNTCPYzVF3TKFQEOzmoAtixSWlocnXUuGOMh42VjhYmhFzO/me/cnM1WBpYvx4gxLiAW4mJpOSlk5wQGndMUtzMwJ8PImOu1JsHY0mj4tXr1OhTGEdhUJBhTJ+RMddfep9FuJRaDQarl2+qBeQUigU+AeGcDk2utg6l2Oj8StbQe9YQLmK9ywvhBB3k/VR4qHMnz+fnj0Lpga3aNGC1NRUdu3aRcOGDfnyyy/p2rUr48eP15WvWLHgy3V0dDRLly5ly5YtNGnSBIDSpUsXfYEHyMnJYdGiRTg5OemOdezYUa/Mzz//jJOTE2fOnCE4OJjff/+dW7ducfjwYezt7QHw9/fXle/fvz+DBg1ixowZmJqacuzYMU6ePMnq1asfuX8pKSlMnDgRKysrqlevjouLi+4aAEycOJGVK1eyZs0aXdAIoHHjxnz88ce653Fxcbp/Gxoa6vrt7OysN/Ote/fuLFiwgM6dOwPw22+/4e3tTcOGDR/Y18uXLzNixAgCAwMBCAgozI8wefJkevTowYcffqg7N3v2bBo0aMAPP/yAmZkZP/74IyEhIQwdOpQVK1Ywbtw4qlates/XU6vVRWafaXIVGBmbPrCvokB2RsGXcTMLW73jpha2ZGekFFtHnZWGVpuPqYWN3nEzC1vSk6/ds87pg8vwq9BMd8zYxJxGnSayd91XnDm0FAArWzcatB+rC4YJ8SSkZBX8nrAxM9E7bmNmQmqWurgqpKtzyNdqi6ljyvW0DF27RgaKIkErGzNT3Wve7dzNZP6+FM/IRqElGosQDyslXQWAjbX+DUAba0vdubulZWSSn5+P7V11bK0suZ5w++l0VIgSysxIIz8/Hytr/c8jVtY23Eoo/vOIKi0Va6Wt3jFrpS3pqfe+OSGEEHeSGV3igc6dO8ehQ4fo1q0bAEZGRnTp0kW3/DAyMpKwsLBi60ZGRmJoaEiDBg0eqw8+Pj56QS6AmJgYunXrRunSpVEqlfj6+gLoZk1FRkZSuXJlXbDobu3atcPQ0JCVK1cCBcsoGzVqpGvnYdSuXRsrKyvs7OyIiopiyZIluLi4oFKpGD58OOXKlcPW1hYrKyvOnj1bZEZXaGjJvkQNGDCAzZs3c+3aNV3fw8PD9ZZ83suwYcPo378/TZo04auvvtJb7hkVFcXChQuxsrLSPZo3b05+fj6xsbFAwTLK+fPn88MPP+Dn58fo0aPv+3qTJ0/GxsZG77E/YmqJxv26uPTPLpZ/1033eNiltI8jV53JntVfYOPgRVCNLrrjeZocDm/9Dke3QJp0mULYW5OxcfBhz+ov7psfTIgH2XvxGuF/bNY98v6dJfy8XUlOZ/rOo3QI8SfE3fHBFYR4BHuOnqD36C91j7y8p//7XQghhHjdyIwu8UDz589Ho9Hg7l64u5tWq8XU1JQ5c+boluwV537nAAwMDHRLIP+TW0zyVUvLojtutWnTBh8fH+bOnYu7uzv5+fkEBwfrktU/6LVNTEzo3bs3CxYsoEOHDvz+++/MmjXrvnXutmTJEsqXL4+Dg4PejKvhw4ezZcsWpk2bhr+/P+bm5nTq1KlIIv3ixvUwKleuTMWKFVm0aBHNmjXj9OnTD70T5rhx4+jevTsRERFs2LCBsWPH8ueff9K+fXtUKhXvvPMOQ4cOLVLP29tb9+/du3djaGhIfHw8GRkZWFtb3/P1xowZw7Bhw/SOTVry4IDc68y9dHWa/bszIkB+XsHPRHZmCuZWhYFbdWYKNk6+xbZhaq5EoTBAnamf6DU7MwUzCzu9Y7k5WexeNQEjY3PqtB6FgWHhn4ZL53aTkXqTsC5TdIHUWi2HsfL/enLtwkG8y0qSY1EyVb1c8Hey1T3X/PuFPzU7BzuLwp3hUrNz8LYr/neMtakJBgoFqdn6v1tTs9XYmhXMGrU1N0WTryUjJ1dvVldqthpbc/2ZpVdTVHyx9RBhAd50qOCPEE9aaFBZvZxZuZqCTT1S01XY2xS+z1PTM/Bxdym2DaWlBQYGBkVmfKWoMrBVPlpqCCGeNgtLJQYGBkUSz6vSU7FS2hVbx0ppQ3pait6x9LQUrG2KLy+EEHeTGV3ivjQaDYsWLWL69OlERkbqHlFRUbi7u/PHH38QEhLCtm3biq1foUIF8vPz2bVrV7HnnZycSE9P1yU7B3Q5uO4nMTGRc+fO8b///Y+wsDDKlStHcrL+dOaQkBAiIyNJSkq6Zzv9+/dn69atfP/992g0Gjp06PDA176Tl5cXfn5+RRLq79u3j/DwcNq3b0+FChVwdXXVW5b4sExMCpbj5OUV3XGsf//+LFy4kAULFtCkSRO8vLweut0yZcrw0UcfsXnzZjp06KDLVValShXOnDmDv79/kcd/fdm/fz9Tpkxh7dq1WFlZ6S3FLI6pqSlKpVLvIcsW78/YxBxrWzfdQ2nvhbmlHQlXTurK5KozSbwRjaNb2WLbMDA0wt7Fj4TLJ3THtFotN6+cxOGOOrnqTHatGIeBgRF13/wEQyP9JWCa3GwUd+esUygARZEgtRCPwtzYCFdrS93Dw8YKW3NTTt1I1JXJzMnl/O0UyjjaFtuGkaEBpRyUnI4vrKPVajl9I5GAf4NovvZKjAwUeu1eT1ORmJFNgGPhl6arKelM3HKQ+qU96FK5MNAsxJNkbmaKq6O97uHp4oSt0ppTMRd1ZTKzs4m5dJUyvsX/XTcyMqS0pzunYmJ1x7RaLaeiL1LGVxLPixeLkZERHt6luXCu8DOMVqvl/LmTeJcq/netd6kyeuUBzv9z4p7lhRDibhLoEve1bt06kpOT6devH8HBwXqPjh07Mn/+fMaOHcsff/zB2LFjOXv2LCdPnmTKlClAwc6Cb7/9Nn379mXVqlXExsayc+dOli4tyPVTo0YNLCws+OSTT7hw4QK///57kR0di2NnZ4eDgwM//fQT58+fZ/v27UVmDXXr1g1XV1fatWvHvn37uHjxIsuXL+fAgQO6MuXKlaNmzZqMGjWKbt26PXAW2MMKCAjQJc6Pioqie/fuJVp+5uPjg0KhYN26ddy6dQuVqvDubffu3bl69Spz5859qCT0AFlZWQwZMoSdO3dy6dIl9u3bx+HDhylXrhwAo0aNYv/+/QwZMoTIyEhiYmJYvXq1LpiVnp5Or169GDp0KC1btmTx4sUsWbKEv/7665HHJh6eQqEgoFJrzh5axrULh0i5HcfBTbMws7THw6+GrtyO5Z8TE1k4s69MlTe5eGoLsWe2k5Z4haPb/w9NbjalghoD/wa5Vo4nT6MmtOl75OZkkpWRTFZGMtp/36+u3pXIyVZxbMdPpCVeITXxMoe3fIuBgSHOnsHP9kKIV5pCoaBFoA8rT57nyJUELien8f2+E9iamxLqVTiz5YstB9n0zyXd8zfKlWL7+SvsunCVqykq5h88TbYmj4Z+BV/4LU2Maejvya9HznL6RiIXE1P5v/0nCXCy1QXDriSnM3HLIULcHXmjfClSstSkZKlJyy4+h5cQT4pCoaBV/Ros37Kbw6f+4dL1BOYsXomdjTXVKgTqyk34fiEb9hTustu6YS22HTjKzkPHuXrjFnOXrSM7J4eG1SvryiSnpRN7NZ4btwtu+F2+nkDs1XjSM2SXZPFs1W3chsP7tnL07x3cjL/Kqj9/IketpmrNgt3Fl/4ym42rf9OVr9PwDaLPRrJn6xpu3rjG1oglXLt8kVoNWurKZGakc/1KLAnxBRsw3L55netXYiWPlxACkKWL4gHmz59PkyZNsLGxKXKuY8eOTJ06FXt7e5YtW8bEiRP56quvUCqV1K9fX1fuhx9+4JNPPuHdd98lMTERb29vPvnkEwDs7e357bffGDFiBHPnziUsLIxx48YxcODA+/bLwMCAP//8k6FDhxIcHEzZsmWZPXu2XjJ2ExMTNm/ezMcff0yrVq3QaDSUL1+e7777Tq+tfv36sX///ocOFj2MGTNm0LdvX2rXro2joyOjRo0iLS3tkdvx8PBg/PjxjB49mj59+tC7d29dINDGxoaOHTsSERFBu3btHqo9Q0NDEhMT6d27NwkJCTg6OtKhQwfdRgIhISHs2rWLTz/9lHr16qHVavHz86NLl4KcTR988AGWlpZMmjQJKJixN2nSJN555x1q1aqFh4fHI49RPJzA0PbkadQc2fYDueoMHN3LUb/9Z3ozsDJSE1Bnpeuee5epizozlVMH/iQ7Mxk7p1LUb/eZLql98s2LJN4o2MFo/cJ39V6vdd8fsVQ6o7T3pG7bTzn9959sWzoGFAps/23nzmWUQjwJbwaVJkeTx7y/T5GZq6Gskx2jw0IxMSrc+CAhPYt0deFSxVq+bqRl57AsKobULDU+9kpGN66GzR3LEntVLYcCBd/sOk5ufj4V3RzpWyNId/7g5RukZeew9+J19l68rjvuaGnOtx0aPt1Bi9de28Z1Uefk8tPStWRmZVO2tDefDOyJiXHhUtuExGS9AFXtysGkqjJYunEHKekqfN3d+HRgL70E9Vv2H+GvTTt1z8fO+RmAd7u10wuICfG0hVStgyo9ja3rlpCeloK7ly993vtUl3A+Jem23uxxH79AuoR/wJa1f7Jpze84OrvRc+BIXN0L02icPXmEv34t/Ez/x8/fABDWqjNN3ijMNSqEeD0ptLL2RLzmJk6cyLJlyzhx4sSDC79gwsLCCAoKYvbs2c+7K4/kfwslibl49X187YPn3QUhnjqj5m2fdxeEeOqOmdd/cCEhXnINgiyedxdKbNfpF3Om6st8TV92MqNLvLZUKhVxcXHMmTOHL7744nl355EkJyezc+dOdu7cyffff/+8uyOEEEIIIYQQQrwQJEeXeG0NGTKEqlWr0rBhwyLLFgcNGoSVlVWxj0GDBj2nHheqXLky4eHhTJkyhbJl9ZORBwUF3bPvixcvfk49FkIIIYQQQgghnj5ZuihEMW7evHnPnFpKpRJnZ+dn3KOHd+nSJXJzc4s95+LigrW1dbHnniVZuiheB7J0UbwOZOmieB3I0kXxOniZl9nJ0kVxN1m6KEQxnJ2dX+hg1v34+Pg87y4IIYQQQgghhBDPhSxdFEIIIYQQQgghhBCvBAl0CSGEEEIIIYQQQohXggS6hBBCCCGEEEIIIcQrQXJ0CSGEEE+BJOkWrwPNptXPuwtCPH3tJBm9EEK8TGRGlxBCCCGEEEIIIYR4JUigSwghhBBCCCGEEEK8EiTQJYQQQgghhBBCCCFeCRLoEkIIIYQQQgghhBCvBAl0CSGEEEIIIYQQQohXggS6hBBCCCGEEEIIIcQrQQJdQjxjcXFxKBQKIiMjn3dXhBBCCCGEEEKIV4rR8+6AeLEcOHCAunXr0qJFCyIiIp53d56ruLg4SpUqpXtub29P1apVmTJlCpUrVy5xu15eXsTHx+Po6AjAzp07adSoEcnJydja2j5ut8UrSqvVcvrvP7l4ags56gwc3QKp2vgdrO3c71svJmo9546uJjsjGVsnXyo37I+Daxnd+SPbfiDh8gmyMpIwMjbD0S2QkLq9UNp76rUTe2Y70cfWkJ58HWMTCzwDalG18TtPZazi9aXValm6cQfb/j5GZlY2ZUp5MaBTa9ycHO5bb+PeQ6zdsY+UNBU+7q706dCSAJ/C93BObi6LVm9if+RpNBoNFcv606/TG9haW+nKvPXR2CLtftCrE3WqVHhyAxSCgvf5X1ExbD9/lYycXMo62dG3RhBuSsv71tt87hJrT8eSmq3G286a8Grl8Xe01Z3P0eTx29F/OHApnty8fCq6O9K3ehA25qZF2kpX5zB63V6SMtXM69IESxPjJz1M8Ro7sGsje7auJj0tBTdPH9p07oeXb8A9y584tp8ta/8kJekWDs5utGjbk8DgKrrzWq2WrRFLOLxvK9lZmXiXLku7rgNxdHYD4GL0KebOGlds2++N/ApPH/8nOj4hxItPZnQJPfPnz+f9999n9+7dXL9+/bn1Iycn57m99t22bt1KfHw8mzZtQqVS0bJlS1JSUkrUVk5ODoaGhri6umJk9OzizC/S9RQl88+RlcRERlC18SCadJ2CkbEZu1ZOIE9z7//by9F7idy9gKAab9Gs+3RsHH3ZvXIC2ZmpujJ2zqWp1nQILXt/S4P2n6NFy66V49Hm5+vKnDu2mpP7FhMY2oHmvWbRoOM4XH1KHuwV4l5Wb9/Lhj0HGdC5NV9+OAAzExO+/PFXcnJz71ln//FTLFq9kU7NGjLl40H4eLjw5Y+/kqrK0JX5ZdUmjp6OZtjbbzH2vT4kpaYxfcGSIm29260dP44frntUqxD4VMYpXm9rTl9k47lL9KsRxBcta2FqZMjkbYfJ0eTds86BuHh+PXKWjiH+TGpVBx87JZO3HSYtW60r8+vRsxy9epMP61fm82Y1SMpUM2PXsWLb+3H/SbxsrZ/42IQ4cXQfEcsX0rhVZ94f/TWuHr78POcLVOmpxZa/dOEfliyYSbXaYbw/+mvKh1Tjt5+mcuP6ZV2ZXVtWsX/nBtp1e4fBIyZjYmrGz3Mmkptb8BnIu3Qgn0yaq/eoVjsMOwdnPLz9nsm4hRAlk5WVRWZmpu75pUuXmDlzJps3b36sdiXQJXRUKhVLlixh8ODBvPHGGyxcuFDv/Nq1a6lWrRpmZmY4OjrSvn173Tm1Ws2oUaPw8vLC1NQUf39/5s+fD8DChQuLzFRatWoVCoVC93zcuHFUqlSJefPmUapUKczMzADYuHEjdevWxdbWFgcHB1q3bs2FCxf02rp69SrdunXD3t4eS0tLQkNDOXjwIHFxcRgYGHDkyBG98jNnzsTHx4f8O77I34+DgwOurq6EhoYybdo0EhISOHjwIBcuXKBt27a4uLhgZWVFtWrV2Lp1q15dX19fJk6cSO/evVEqlQwcOFBv6WJcXByNGjUCwM7ODoVCQXh4OIsWLcLBwQG1Wq3XXrt27ejVq9cD+/w0rud/Vq9eTZUqVTAzM6N06dKMHz8ejUbzUNdSlIxWqyUmch3lqnfGw686to6+VG8+lOyMJK5dOHjPetHH1lA6uCmlgsJQOngRGjYYQyNTYk9v05Xxq9AcZ88gLJXO2Dn7UaF2dzLTb6NKSwAgJ1vFyf2/U6P5B/gE1sfa1g1bR188/Ko/9XGL14tWq2X97oN0bFqfasGB+Li78F739iSnpnP45D/3rLdu5wHCalalUY3KeLo6MbBzG0xNjNlxsOALfkZWNjsOHePtds0JDiiFn5c773Zrx7nYy8TEXdVry8LcDDulte5hYiyzXMSTpdVq2fjPJdpX8CfUywVvOyWD64SQkqXmyJWEe9aLOBtL4wAvGvp74mlrRf8aQZgaGrLjfMF7OCMnl53nr9IrNJAgVwdKO9gwqHYFom+lEHMrRa+tLecukZmroU1Q6ac5VPGa2rt9LdXqNCG0VmOc3Txp3+0dTExMOHJge7Hl9+2MoEz5ytRv2hZnN0+atemGu1cpDuzaABT8zOzfEUHjFh0pH1INNw8fOvcaQnpqMmeiDgFgZGSEtY2d7mFuac2ZE4epWrOR3vcNIcSLp23btixatAiAlJQUatSowfTp02nbti0//PBDiduVQJfQWbp0KYGBgZQtW5aePXvy888/o9VqAYiIiKB9+/a0atWK48ePs23bNqpXL/yi27t3b/744w9mz57N2bNn+fHHH7GysrrXSxXr/PnzLF++nBUrVujyV2VkZDBs2DCOHDnCtm3bMDAwoH379roglUqlokGDBly7do01a9YQFRXFyJEjyc/Px9fXlyZNmrBgwQK911mwYAHh4eEYGDz629/c3BwomCGlUqlo1aoV27Zt4/jx47Ro0YI2bdpw+fJlvTrTpk2jYsWKHD9+nM8++0zvnJeXF8uXLwfg3LlzxMfHM2vWLDp37kxeXh5r1qzRlb158yYRERH07dv3ofr6pK8nwJ49e+jduzcffPABZ86c4ccff2ThwoV8+eWXj3wtxcPLSEsgKyMZF6/CJVQmppY4uJbhdvy5Yuvk52lISriAq3dF3TGFQoGLdwiJ96ijyc0m9vR2LJUuWFo7AZBwOQq0WrJUiWxYNIS18/qzP2Iamem3n+AIhYCbicmkpKUTHFD45dvS3IwAH0+i464UW0ejyePi1etUKFNYR6FQUKGMH9H/BrFir8aj0eRRoUzhXX0PFycc7WyIvqTf7vzlEfT93xTGfPMT2w8e0/0NFOJJuanKIiVLTbBr4XJcSxNj/B1tib6dUmwdTV4+sYlpBLs56o4pFAqC3Rx0Qay4pDQ0+Voq3FHGw8YKB0szYm4n645dTVGx4uQF3q0Tgnz9F0+aRqPh2uWL+AeG6I4pFAr8A0O4HBtdbJ3LsdH4ldVfIh5QrqKufFJiAulpKXplzC0s8fINuGeb/5w8QmZGOlVrNXrcIQkhnrJjx45Rr149AP766y9cXFy4dOkSixYtYvbs2SVuV3J0CZ358+fTs2dPAFq0aEFqaiq7du2iYcOGfPnll3Tt2pXx48frylesWPAFOjo6mqVLl7JlyxaaNGkCQOnSj36XMCcnh0WLFuHk5KQ71rFjR70yP//8M05OTpw5c4bg4GB+//13bt26xeHDh7G3twfA379wHX7//v0ZNGgQM2bMwNTUlGPHjnHy5ElWr179yP1LSUlh4sSJWFlZUb16dVxcXHTXAGDixImsXLmSNWvWMGTIEN3xxo0b8/HHH+uex8XF6f5taGio67ezs7PezLfu3buzYMECOnfuDMBvv/2Gt7c3DRs2fKj+Po3rOX78eEaPHs3bb78NFPw/T5w4kZEjRzJ2bNH8NlAw2+/umWmaXAVGxkVzhojiZWcUfEkxs7DVO25qYUt2RkqxddRZaWi1+Zha2OgdN7OwJT35mt6x81EbiNq7CE1uNtZ27jToMBYDw4I/D6rUBLRoOXP4Lyo36I+JqQUn9//OzhVjadFzlq6cEI8rJV0FgI21/k0SG2tL3bm7pWVkkp+fr5drC8DWypLrCQXB2JS0dIyMDLE0N7urXStS0grbfatlIyoElMbE2Jioc+eZ/1cEanUOLevXfOyxCfGflKyCv4c2ZiZ6x23MTEjNUhdXhXR1DvlabTF1TLmelqFr18hAUSTXlo2Zqe41c/Py+HZvJN2rlMXR0pyb6ZkI8SRlZqSRn5+PlbX+Zw8raxtuJVwrto4qLRVrpa3eMWulLempBZ99VKkpBW0o72pTaUN6WjLFObx/GwHlKmFr51jseSHEiyMzMxNr64Kl9Js3b6ZDhw4YGBhQs2ZNLl26VOJ2ZUaXAApmEx06dIhu3boBBVOAu3Tpolt+GBkZSVhYWLF1IyMjMTQ0pEGDBo/VBx8fH72gDEBMTAzdunWjdOnSKJVKfH19AXSzpiIjI6lcubIuKHO3du3aYWhoyMqVK4GCZZSNGjXStfMwateujZWVFXZ2dkRFRbFkyRJcXFxQqVQMHz6ccuXKYWtri5WVFWfPni0yoys0NPShX+tOAwYMYPPmzVy7dk3X9/Dw8Ieegv00rmdUVBQTJkzAyspK9xgwYADx8fF6a6vvNHnyZGxsbPQe+yOmPtQYXleX/tnF8u+66R4Pu8y2pLwD69Os+3QadfoCazsPDqyfpsv9pdXmk5+noUrDAbj5VsbBrSw1Ww5DlRJPwpWTT7Vf4tW25+gJeo/+UvfIy3u67/MH6dSsIWVLeVPK0412YfV4s3Ed1uzY/1z7JF5+ey9eI/yPzbpH3nOcJfjH8Wg8bCypV9rjufVBiKctJfk2MWcjqVa7+O8tQogXi7+/P6tWreLKlSts2rSJZs2aAQWrmZRKZYnblVvxAiiYzaXRaHB3L9zBTavVYmpqypw5c3RL9opzv3MABgYGRZZ/5BaTWNjSsuhuQ23atMHHx4e5c+fi7u5Ofn4+wcHBuuTqD3ptExMTevfuzYIFC+jQoQO///47s2bNum+duy1ZsoTy5cvj4OCgN+Nq+PDhbNmyhWnTpuHv74+5uTmdOnUqkvi9uHE9jMqVK1OxYkUWLVpEs2bNOH369CPthPk0rqdKpWL8+PF06NChyLn/8oDdbcyYMQwbNkzv2KQlsmDiftxLV6fZHTsj5ucV/LxkZ6ZgblUYhFRnpmDj5FtsG6bmShQKA9SZ+slfszNTMLOw0ztmYmqJiakl1nbuOLqVZeX/9eTahYN4l62HuWVB2Tt3YTSzsMHUTElm+q3HGqd4vYUGldXbGTH331x/qekq7G0Kk2Snpmfg4+5SbBtKSwsMDAyKzPhKUWVgqyyY5WWrtEajySMjK1tvVldqukpXpjj+3h4s37yLXI0G42e4eYh4tVT1csHfyVb3XPNvQDc1Owc7izvej9k5eNsVnxze2tQEA4WC1Gz9zxep2WpszQpmR9uam6LJ15KRk6s3qys1W43tv7sunrmRyOWUdA5e2giAloLPZgOXbqNdcGk6VyqDEI/DwlKJgYFBkcTzqvRUrJR2xdYpmJmVoncsPS0Fa5uC8lY2tgVtpKWitCn8DKRKS8XN07dIe0cP7MDC0prACiW70SyEeLY+//xzunfvzkcffURYWBi1atUCCmZ3Va5c8s2v5JObQKPRsGjRIqZPn66LoP6nXbt2/PHHH4SEhLBt2zb69OlTpH6FChXIz89n165duqWLd3JyciI9PZ2MjAxd8OW/nFH3k5iYyLlz55g7d65u3e7evXv1yoSEhDBv3jySkpLuOQupf//+BAcH8/3336PRaIoN0tyPl5cXfn5Fd2zZt28f4eHhuqT8KpVKb1niwzIxKViKkJdXdLel/v37M3PmTK5du0aTJk3w8vJ65Pb/8ySuZ5UqVTh37pzecsYHMTU1xdRUf5mikbHsAnk/xibmGJsUBh21Wi3mlnYkXDmJnXPBsuBcdSaJN6LxC2lebBsGhkbYu/iRcPkEHn41dO3cvHIS/4qt7vnaWq0WrVZL3r/BNQf3gl3n0pOvY2FdsARAnZWOOjsNS6Xz4w9WvLbMzUwxNyv83aDVarFVWnMq5iKlPAu2jM/Mzibm0lWa1i7+C4uRkSGlPd05FRNL9QrldO2cir5Ii3oFeSRLebphZGTIqeiL1KhYHoDrN29zOzmVMj73/p166XoClhbmEuQSj8Xc2Ahz48L3kFarxdbclFM3EvG1L7hTnZmTy/nbKTQJKP79aGRoQCkHJafjE6nm5aJr5/SNRJqV9QHA116JkYGCUzcSqeHtCsD1NBWJGdkEOBYEDD5sUJlcTeHMyQuJqfx44CRjm9fA1driyQ9evHaMjIzw8C7NhXMnCapY8DtYq9Vy/txJajVoWWwd71JluHDuJHUbt9YdO//PCbxLFQRe7R1csFbacuHcSdy9SgGQnZXJlbgYatTT/96i1Wo5+vcOqtRo8Ex3NxdClFynTp2oW7cu8fHxemmBwsLC9Da/e1TyG0Cwbt06kpOT6devHzY2+uvfO3bsyPz58/n6668JCwvDz8+Prl27otFoWL9+PaNGjcLX15e3336bvn37Mnv2bCpWrMilS5e4efMmb731FjVq1MDCwoJPPvmEoUOHcvDgwSI7OhbHzs4OBwcHfvrpJ9zc3Lh8+TKjR4/WK9OtWzcmTZpEu3btmDx5Mm5ubhw/fhx3d3ddNLhcuXLUrFmTUaNG0bdv3wfOWnpYAQEBrFixgjZt2qBQKPjss89KtMTMx8cHhULBunXraNWqFebm5rpE/t27d2f48OHMnTtXtxtFST2J6/n555/TunVrvL296dSpEwYGBkRFRXHq1Cm++OKLx+qfuDeFQkFApdacPbQMa1s3LG2cObX/D8ws7XVBLIAdyz/H068GAZXeAKBMlTc5tGk2di5+OLgEEB25Dk1uNqWCGgOgSr3Bleh9uHhXxNTchizVbc4eWYmRkSluvlUBUNp54FG6Osd3zSM0bDDGJhac2Pcb1nYeOHsGP/uLIV5ZCoWCVvVrsHzLblydHHC2t2PJhu3Y2VhTrUKgrtyE7xdSrUI5WtYreO+3bliL735fSWlPN/y9PVm/+2+yc3JoWL3gLqCluRmNqlfhl9UbsbQwx9zMlAUr1lPG14sA34IZZUdOnyM1XUWAj6cuR9fKrbtp3bD2s78Q4pWmUChoEejDypPncbW2wNnKnKWRMdiamxLqVThz8YstB6nm5UrzwIJA1hvlSvHD/hOUclDi52DLxn/iyNbk0dCv4D1saWJMQ39Pfj1yFisTY8yNjVh4+AwBTrYE/DujzNVaf6Z3urrgppOHjVWR3F5ClFTdxm1YtmgOHt6l8fIJYN/OCHLUaqrWLEgMv/SX2Sht7WnRtiAvcJ2Gb/DTrLHs2bqGssFVOXF0L9cuX6R990FAwc9M7UZvsH3jchyc3bBzcGbLuj+xtrGjfEX9HaAvnDtJcuJNQmsXvfEuhHgx7dixg0aNGuHq6qp3vHr16nz33XcEBgbeo+b9SaBLMH/+fJo0aVIkyAUFga6pU6dib2/PsmXLmDhxIl999RVKpZL69evryv3www988sknvPvuuyQmJuLt7c0nn3wCgL29Pb/99hsjRoxg7ty5hIWFMW7cOAYOHHjffhkYGPDnn38ydOhQgoODKVu2LLNnz9ZLxm5iYsLmzZv5+OOPadWqFRqNhvLly/Pdd9/ptdWvXz/279//0DsWPowZM2bQt29fateujaOjI6NGjSItLe2R2/Hw8NAlee/Tpw+9e/fWBQJtbGzo2LEjERERtGvX7rH6+ySuZ/PmzVm3bh0TJkxgypQpGBsbExgYSP/+/R+rb+LBAkPbk6dRc2TbD+SqM3B0L0f99p9haFSYnDgjNQF1VrruuXeZuqgzUzl14E+yM5OxcypF/Xaf6ZLaGxqacOvaGaKPrSUnJwMzC1uc3MvRuMtkzO5IYl+j+QdE7v6ZPau/RKEwwMkziAbtx0oievHEtW1cF3VOLj8tXUtmVjZlS3vzycCemBgXfglPSEwmPaMwJ2DtysGkqjJYunEHKekqfN3d+HRgL70E9W+3a45CAdMXLkGj0VAx0J9+Hd/QnTc0MGDT3sP8sqpgSZeLoz2927agSa2qz2DU4nXzZlBpcjR5zPv7FJm5Gso62TE6LBQTI0NdmYT0LF0gCqCWrxtp2Tksi4ohNUuNj72S0Y2rYWNeOCuyV9VyKFDwza7j5ObnU9HNkb41gp7p2IQIqVoHVXoaW9ctIT0tBXcvX/q896ku4XxK0m0Ud+x87uMXSJfwD9iy9k82rfkdR2c3eg4ciau7t65Mg6btyM1Rs/L3/yM7KxMfv0D6vPc/jI31N2g4sn8bPqXL4uwqeeiEeFl06NCBrVu3UrWq/meuWbNm8dlnn/Hee++VqF2FVvbOFq+BiRMnsmzZMk6cOPG8u/LIwsLCCAoKeqztVV80/1soSxfFq29U8Pbn3QUhnjrNpkffxViIl82JdtOfdxeEeOoaBL28S5h3nX4xd5F9ma/pszJv3jw++eQTdu/erZu9NX36dCZMmMC6det0KXceldyOF6+0//JmzZkz56VbWpecnMzOnTvZuXMn33///fPujhBCCCGEEEII8cT079+fpKQkmjRpwt69e1myZAmTJk1i/fr11KlTp8TtSqBLvNKGDBnCH3/8Qbt27YosWxw0aBC//fZbsfV69uzJ//3f/z2LLt5T5cqVSU5OZsqUKZQtW1bvXFBQEJcuXSq23o8//kiPHj2eRReFEEIIIYQQQogSGzlyJImJiYSGhpKXl8emTZuoWbPmY7UpSxfFa+vmzZv3zKmlVCpxdn5xd5S7dOkSubm5xZ5zcXHB2rr4LcpfFLJ0UbwOZOmieB3I0kXxOpCli+J18DIvs5Oliy+Xe6XkmTZtGvXr16d69cKNJoYOHVqi15AZXeK15ezs/EIHs+7Hx8fneXdBCCGEEEIIIYR4JN98802xxw0NDdm3bx/79u0DCnZdlUCXEEIIIYQQQgghhHhhxcbGPvXXMHhwESGEEEIIIYQQQgghXnwyo0sIIYQQQgghhBBCPFN5eXksXLiQbdu2cfPmTfLz8/XOb99espy3EugSQgghhBAlIkm6xesgZNXHz7sLQjx9QT887x6I19AHH3zAwoULeeONNwgODkahUDyRdiXQJYQQQgghhBBCCCGeqT///JOlS5fSqlWrJ9qu5OgSQgghhBBCCCGEEM+UiYkJ/v7+T7xdCXQJIYQQQgghhBBCiGfq448/ZtasWWi12ifarixdFEIIIYQQQgghhBDP1N69e9mxYwcbNmwgKCgIY2NjvfMrVqwoUbsS6BJCCCGEEEIIIYQQz5StrS3t27d/4u1KoEu8FuLi4ihVqhTHjx+nUqVKz7s7QgghhBBCCCHEa23BggVPpV0JdL0ADhw4QN26dWnRogURERHPuzvP1X8Bqf/Y29tTtWpVpkyZQuXKlUvcrpeXF/Hx8Tg6OgKwc+dOGjVqRHJyMra2to/b7Wdm48aNjBkzhn/++Qd7e3vatm3L999//7y7JZ4BrVbL6b//5OKpLeSoM3B0C6Rq43ewtnO/b72YqPWcO7qa7IxkbJ18qdywPw6uZXTnj2z7gYTLJ8jKSMLI2AxHt0BC6vZCae+p107sme1EH1tDevJ1jE0s8AyoRdXG7zyVsYrXl1arZenGHWz7+xiZWdmUKeXFgE6tcXNyuG+9jXsPsXbHPlLSVPi4u9KnQ0sCfArfw1v2H2HfsZPEXosnK1vNgkljsDQ302tjyrzfibt2gzRVBpYW5oSUKU331k2xt7F+KmMVry+tVsvWiCUc3reV7KxMvEuXpV3XgTg6u9233oFdG9mzdTXpaSm4efrQpnM/vHwDAMjMSGdrxFJizkaRmnwbCytrgirWoMkbXTC3sCzSVmZGOrMmfUxaShKff/1LsWWEeBxarZa/omLYfv4qGTm5lHWyo2+NINyU93+vbT53ibWnY0nNVuNtZ014tfL4O9rqzm+Nvsz+uHhik1LJzs1jXpcmWJroL3VaefI8x6/dIi4pDWNDA+Z3afo0hiiEeIFJMvoXwPz583n//ffZvXs3169ff279yMnJeW6vfbetW7cSHx/Ppk2bUKlUtGzZkpSUlBK1lZOTg6GhIa6urhgZvbyx3ezsbDp06EBISAgnT54kIiLioWen5ebmPt3OiafunyMriYmMoGrjQTTpOgUjYzN2rZxAnubeP7eXo/cSuXsBQTXeoln36dg4+rJ75QSyM1N1ZeycS1Ot6RBa9v6WBu0/R4uWXSvHo83P15U5d2w1J/ctJjC0A817zaJBx3G4+pQ88CzEvazevpcNew4yoHNrvvxwAGYmJnz546/k3Od32P7jp1i0eiOdmjVkyseD8PFw4csffyVVlaErk5ObS6Vy/rRvUu+e7QQHlGLY228xc8z7fBz+FjduJzFj4ZInOj4hAHZtWcX+nRto1+0dBo+YjImpGT/PmUhu7r1/n584uo+I5Qtp3Koz74/+GlcPX36e8wWq9ILf52mpyaSnJtGqQ28++HQ6nXsNIfrMcVYsLv5m2F+/fY+ru89TGZ8QAGtOX2TjuUv0qxHEFy1rYWpkyORth8nR5N2zzoG4eH49cpaOIf5MalUHHzslk7cdJi1brSuTk5dHRXdH2gX73bMdTV4+NX1caVrG+4mOSQjxdPz111+89dZb1KxZkypVqug9SkoCXc+ZSqViyZIlDB48mDfeeIOFCxfqnV+7di3VqlXDzMwMR0dHvfWrarWaUaNG4eXlhampKf7+/syfPx+AhQsXFpmptGrVKhQKhe75uHHjqFSpEvPmzaNUqVKYmRXc3d64cSN169bF1tYWBwcHWrduzYULF/Taunr1Kt26dcPe3h5LS0tCQ0M5ePAgcXFxGBgYcOTIEb3yM2fOxMfHh/w7vjzfj4ODA66uroSGhjJt2jQSEhI4ePAgFy5coG3btri4uGBlZUW1atXYunWrXl1fX18mTpxI7969USqVDBw4kLi4OBQKBZGRkcTFxdGoUSMA7OzsUCgUhIeHs2jRIhwcHFCr1XrttWvXjl69ej2wz1FRUTRq1Ahra2uUSiVVq1bVuw579+6lXr16mJub4+XlxdChQ8nIKPgitmjRIqysrIiJidGVf/fddwkMDCQzM1N3zNDQkB49euDv70+lSpUYOHBgkX78N9YlS5bQoEEDzMzMWLx4MYmJiXTr1g0PDw8sLCyoUKECf/zxh17d/Px8pk6dir+/P6ampnh7e/Pll1/qzl+5coW33noLW1tb3YyyuLi4B14b8Xi0Wi0xkesoV70zHn7VsXX0pXrzoWRnJHHtwsF71os+tobSwU0pFRSG0sGL0LDBGBqZEnt6m66MX4XmOHsGYal0xs7Zjwq1u5OZfhtVWgIAOdkqTu7/nRrNP8AnsD7Wtm7YOvri4Vf9qY9bvF60Wi3rdx+kY9P6VAsOxMfdhfe6tyc5NZ3DJ/+5Z711Ow8QVrMqjWpUxtPViYGd22BqYsyOg8d0Zd5oUIt2YfX0Znnd7Y0GtQjw9cTJ3paypbxpG1aXmEtX0dznS5kQj0qr1bJ/RwSNW3SkfEg13Dx86NxrCOmpyZyJOnTPenu3r6VanSaE1mqMs5sn7bu9g4mJCUcObAfA1d2bHgNGUK5CKA5ObviVrUDTNt04e/IoeXn67+G/d28kOzOD+k3efKpjFa8vrVbLxn8u0b6CP6FeLnjbKRlcJ4SULDVHriTcs17E2VgaB3jR0N8TT1sr+tcIwtTQkB3nr+rKtCpXirbBfgTcMcvrbp0rlaFVuVJ428mMXCFedLNnz6ZPnz64uLhw/PhxqlevjoODAxcvXqRly5YlblcCXc/Z0qVLCQwMpGzZsvTs2ZOff/5Zt7VmREQE7du3p1WrVhw/fpxt27ZRvXrhl8vevXvzxx9/MHv2bM6ePcuPP/6IlZXVI73++fPnWb58OStWrCAyMhKAjIwMhg0bxpEjR9i2bRsGBga0b99eF6RSqVQ0aNCAa9eusWbNGqKiohg5ciT5+fn4+vrSpEmTImttFyxYQHh4OAYGj/6WMzc3BwpmZqlUKlq1asW2bds4fvw4LVq0oE2bNly+fFmvzrRp06hYsSLHjx/ns88+0zvn5eXF8uXLATh37hzx8fHMmjWLzp07k5eXx5o1a3Rlb968SUREBH379n1gP3v06IGnpyeHDx/m6NGjjB49WrdrxIULF2jRogUdO3bkxIkTLFmyhL179zJkyBCg4P+yVatW9OjRA41GQ0REBPPmzWPx4sVYWFgAYGZmRvPmzRk5ciRJSUkP7M/o0aP54IMPOHv2LM2bNyc7O5uqVasSERHBqVOnGDhwIL169eLQocIP1mPGjOGrr77is88+48yZM/z++++4uLgABbPCmjdvjrW1NXv27GHfvn1YWVnRokWLF2o24KsoIy2BrIxkXLwq6I6ZmFri4FqG2/Hniq2Tn6chKeECrt4VdccUCgUu3iEk3qOOJjeb2NPbsVS6YGntBEDC5SjQaslSJbJh0RDWzuvP/ohpZKbffoIjFAJuJiaTkpZOcEBp3TFLczMCfDyJjrtSbB2NJo+LV69ToUxhHYVCQYUyfkTHXS22zsNIz8hk79ETlPH1wsjIsMTtCHG3pMQE0tNS8Ctb+Pvc3MISL98ALsdGF1tHo9Fw7fJF/ANDdMcUCgX+gSH3rAOgzsrEzNwcQ8PC9/DN+Kts3/AXb739vt7NTyGepJuqLFKy1AS7Fi47tzQxxt/RlujbKcXW0eTlE5uYRrCbo+6YQqEg2M2BmFvF1xFCvPy+//57fvrpJ7799ltMTEwYOXIkW7ZsYejQoaSmpj64gXt4eddxvSLmz59Pz549AWjRogWpqans2rWLhg0b8uWXX9K1a1fGjx+vK1+xYsGX1ujoaJYuXcqWLVto0qQJAKVLly76Ag+Qk5PDokWLcHJy0h3r2LGjXpmff/4ZJycnzpw5Q3BwML///ju3bt3i8OHD2NvbA+Dv768r379/fwYNGsSMGTMwNTXl2LFjnDx5ktWrVz9y/1JSUpg4cSJWVlZUr14dFxcX3TUAmDhxIitXrmTNmjW6oBFA48aN+fjjj3XP75x1ZGhoqOu3s7Oz3sy37t27s2DBAjp37gzAb7/9hre3Nw0bNnxgXy9fvsyIESMIDAwEICAgQHdu8uTJ9OjRgw8//FB3bvbs2TRo0IAffvgBMzMzfvzxR0JCQhg6dCgrVqxg3LhxVK1aVdfG+PHjOX78OF27dqVBgwZs2rQJd/eC/Ezvv/8+sbGxrFu3Tlf+ww8/pEOHDnp9HD58uO7f77//Pps2bWLp0qVUr16d9PR0Zs2axZw5c3j77bcB8PPzo27dugAsWbKE/Px85s2bp/twvGDBAmxtbdm5cyfNmjV74DUSJZOdkQyAmYWt3nFTC1uyM1KKraPOSkOrzcfUwkbvuJmFLenJ1/SOnY/aQNTeRWhys7G2c6dBh7EYGBb8eVClJqBFy5nDf1G5QX9MTC04uf93dq4YS4ues3TlhHhcKekqAGys9W/Y2Fhb6s7dLS0jk/z8fGzvqmNrZcn1hEcPxi5eu4WNew+izsklwMeT0QN6PHIbQtyPKjUFACul/u9mK6UN6WnJxdbJzEgjPz8fK+u76ljbcCvhWrF1MlRpbN/wF9XrFOYm0uTm8seCb2jZvhe29k4k3b73zBohHkdKVsHqCBszE73jNmYmpGapi6tCujqHfK22mDqmXE/LKLaOEOLld/nyZWrXrg0UTHBJT08HoFevXtSsWZM5c+aUqF35hvIcnTt3jkOHDrFy5UoAjIyM6NKlC/Pnz6dhw4ZERkYyYMCAYutGRkZiaGhIgwYNHqsPPj4+ekEugJiYGD7//HMOHjzI7du3dTO5Ll++THBwMJGRkVSuXFkXLLpbu3bteO+991i5ciVdu3Zl4cKFNGrUCF9f34fuV+3atTEwMCAjI4PSpUuzZMkSXFxcUKlUjBs3joiICOLj49FoNGRlZRWZ0RUaGvpoF+JfAwYMoFq1aly7dg0PDw8WLlxIeHj4Q931HDZsGP379+fXX3+lSZMmdO7cGT+/gvwBUVFRnDhxgsWLF+vKa7Va8vPziY2NpVy5ctjZ2TF//nyaN29O7dq1GT16tK5scnIykydPZsWKFbRq1QpDQ0Pq1KnD5s2bCQgI4OTJk0Wmdt59DfLy8pg0aRJLly7l2rVr5OTkoFardTPGzp49i1qtJiwsrNjxRUVFcf78eayt9aeBZ2dnF1naeie1Wl1kOagmV4GRsek967zuLv2ziyPb/k/3vF7b/z3V1/MOrI+Ld0WyMpI5d2w1B9ZPI+ytyRgamaDV5pOfp6FKwwG4+lQCoGbLYayZ24eEKydx85VcXaJk9hw9wdxla3XPR/d//kGlNo1q06hGZW4np7Js007m/L6S0f27y8wXUWLHD+1m1Z8/6Z6/PXjMU3/N7KxMfvlhEs5uXjRu9Zbu+MbVi3F29aBy9cf77CjE3fZevMa8g6d1z0c2LtnncCHE68fV1ZWkpCR8fHzw9vbm77//pmLFisTGxupWupWEBLqeo/nz56PRaHSzcqAg+GFqasqcOXN0S/aKc79zAAYGBkXeGMUlJLe0LLrzSZs2bfDx8WHu3Lm4u7uTn59PcHCwbnnag17bxMSE3r17s2DBAjp06MDvv//OrFmz7lvnbkuWLKF8+fI4ODjozbgaPnw4W7ZsYdq0afj7+2Nubk6nTp2KLJ0rblwPo3LlylSsWJFFixbRrFkzTp8+/dA7YY4bN47u3bsTERHBhg0bGDt2LH/++Sft27dHpVLxzjvvMHTo0CL1vL0LE2Xu3r0bQ0ND4uPjycjI0AWVzp07h1qt1u08OWHCBNLS0qhbty4zZ87k77//1guiFXcNvv76a2bNmsXMmTOpUKEClpaWfPjhhw/9/6pSqahatWqR1wGKBEvvNHnyZL1ZiVAQuKnf7rN71BDupavT7I6dEfPzCn52szNTMLcqDDCrM1OwcfIttg1TcyUKhQHqTP0pv9mZKZhZ2OkdMzG1xMTUEms7dxzdyrLy/3py7cJBvMvWw9yyoOyduzCaWdhgaqYkM/3WY41TvN5Cg8rq5czK1WgASE1X6e10mJqegY+7S7FtKC0tMDAwKDLjK0WVga3y0ZbyAyitLFFaWeLu7IiHiyODx88g5tJVyvh6PXJbQgCUD6mGd6nCGd6af9/nqrRUlDaFv89Vaam4efoW24aFpRIDAwNd4nldnfRUrJT6v8/V2Vks+O4LTEzN6TlwhN4mPBejT3Hj+iVOHS8Ifv33OfGLUX1o2LwDTVt3LflAxWutqpcL/k62uueavIKb5KnZOdhZFO5wm5qdc8+8WdamJhgoFKRm63+mT81WY2smN0eFeFU1btyYNWvWULlyZfr06cNHH33EX3/9xZEjR4qsTnoUEuh6TjQaDYsWLWL69OlFlny1a9eOP/74g5CQELZt20afPn2K1K9QoQL5+fns2rVLt3TxTk5OTqSnp5ORkaELePyXg+t+EhMTOXfuHHPnzqVevYLdqfbu3atXJiQkhHnz5pGUlHTPWV39+/cnODiY77//Ho1G88hvUi8vL91sqDvt27eP8PBwXVJ+lUpVomToJiYF06LvTtD6X99nzpzJtWvXaNKkCV5eD/8Fp0yZMpQpU4aPPvqIbt26sWDBAtq3b0+VKlU4c+aM3hLPu+3fv58pU6awdu1aRo0axZAhQ/jll18A8PDwAAoCYV26dAHgm2++IT09ne7duzN06FBdmXvZt28fbdu21S2Vzc/PJzo6mvLlywMFyynNzc3Ztm0b/fv3L1K/SpUqLFmyBGdnZ5RK5UNfkzFjxjBs2DC9Y5OWyOyI+zE2McfYpDDwqNVqMbe0I+HKSeycC5Yo56ozSbwRjV9I82LbMDA0wt7Fj4TLJ/Dwq6Fr5+aVk/hXbHXP19ZqtWi1WvL+Da45uBcsxU1Pvo6FdUHeDHVWOursNCyVzo8/WPHaMjczxfyOLy9arRZbpTWnYi5SytMNgMzsbGIuXaVp7eJnBxgZGVLa051TMbFUr1BO186p6Iu0qPd4Gyb8FwT4LwAnREmYmpljaqb/+9xaacuFcydx9yoFFMzAuhIXQ416xacAMDIywsO7NBfOnSSoYnVdO+fPnaRWg8LZ3NlZmfw8ZyJGRsb0HjQaY2P9JWA9Bnysd9Pz6qXzLP/tewZ+NBEHJ9cnNmbx+jE3NsLcuPBrpVarxdbclFM3EvG1L/jMmJmTy/nbKTQJKP5ztZGhAaUclJyOT6Sal4uundM3EmlWVnYIFeJV9dNPP+lWkL333ns4ODiwf/9+3nzzTd55550StyuBrudk3bp1JCcn069fP2xs9HMudOzYkfnz5/P1118TFhaGn58fXbt2RaPRsH79ekaNGoWvry9vv/02ffv2Zfbs2VSsWJFLly5x8+ZN3nrrLWrUqIGFhQWffPIJQ4cO5eDBg0V2dCyOnZ0dDg4O/PTTT7i5uXH58mW9JXQA3bp1Y9KkSbRr147Jkyfj5ubG8ePHcXd3p1atWgCUK1eOmjVrMmrUKPr27fvA2UIPKyAggBUrVtCmTRsUCgWfffbZQ+/keCcfHx8UCgXr1q2jVatWmJub6xL5d+/eneHDhzN37lwWLVr0UO1lZWUxYsQIOnXqRKlSpbh69SqHDx/W5TsbNWoUNWvWZMiQIfTv3x9LS0vOnDnDli1bmDNnDunp6fTq1YuhQ4fSsmVLPD09qVatGm3atKFTp054eXnRtWtX3nvvPdRqNXXq1CE2NpYLFy5gaWnJmjVr+PTTT3F2vnfgISAggL/++ov9+/djZ2fHjBkzSEhI0AW6zMzMGDVqFCNHjsTExIQ6depw69YtTp8+Tb9+/ejRowdff/01bdu2ZcKECXh6enLp0iVWrFjByJEj8fQsfjczU1NTTE3178QZGUvy+kehUCgIqNSas4eWYW3rhqWNM6f2/4GZpb0uiAWwY/nnePrVIKDSGwCUqfImhzbNxs7FDweXAKIj16HJzaZUUGMAVKk3uBK9Dxfvipia25Clus3ZIysxMjLFzbcgP5zSzgOP0tU5vmseoWGDMTax4MS+37C288DZM/jZXwzxylIoFLSqX4PlW3bj6uSAs70dSzZsx87GmmoVAnXlJny/kGoVytGyXsF7v3XDWnz3+0pKe7rh7+3J+t1/k52TQ8Pqhctqk9PSSUlTceN2wUYel68nYGZqgqOdDdaWFsTEXeX8lWsElvLGysKchMRklmzYjqujvczmEk+UQqGgdqM32L5xOQ7Obtg5OLNl3Z9Y29hRvmJhcHberHGUr1iD2g0LAll1G7dh2aI5eHiXxssngH07I8hRq6las2AX6f+CXLm5OXQJH4o6KxN1VsGuzZbWNhgYGODg5KbXl0xVGgDOrp6YW5RsJrwQxVEoFLQI9GHlyfO4WlvgbGXO0sgYbM1NCfUqnKH7xZaDVPNypXlgQSDrjXKl+GH/CUo5KPFzsGXjP3Fka/Jo6Ff4GTMlS01Klpob6QXv78vJ6ZgbG+FgaYa1aUFw93ZGFip1LrczssnL1xKXVPBed7W2wMxYvv4K8SIxMDDQ27Cua9eudO1aMMP4v3RCJSE/6c/J/PnzadKkSZEgFxQEuqZOnYq9vT3Lli1j4sSJfPXVVyiVSurXr68r98MPP/DJJ5/w7rvvkpiYiLe3N5988gkA9vb2/Pbbb4wYMYK5c+cSFhbGuHHjGDhw4H37ZWBgwJ9//snQoUMJDg6mbNmyzJ49Wy8Zu4mJCZs3b+bjjz+mVatWaDQaypcvz3fffafXVr9+/di/f/9D7Vj4sGbMmEHfvn2pXbs2jo6OjBo1irS0tEdux8PDg/HjxzN69Gj69OlD7969dYFAGxsbOnbsSEREBO3atXuo9gwNDUlMTKR3794kJCTg6OhIhw4ddEv2QkJC2LVrF59++in16tVDq9Xi5+enm531wQcfYGlpyaRJk4CCGXuTJk3inXfeoVatWnh4ePDLL78wbdo0vvzySy5duoSHhwc9e/Zk+fLlhIWF8eabb7Jjx4579vF///sfFy9epHnz5lhYWDBw4EDatWunt5vFZ599hpGREZ9//jnXr1/Hzc2NQYMGAWBhYcHu3bsZNWoUHTp0ID09HQ8PD8LCwh5phpcomcDQ9uRp1BzZ9gO56gwc3ctRv/1nGBoV3rHPSE1AnZWue+5dpi7qzFROHfiT7Mxk7JxKUb/dZ7qk9oaGJty6doboY2vJycnAzMIWJ/dyNO4yGbM7ktjXaP4Bkbt/Zs/qL1EoDHDyDKJB+7GSiF48cW0b10Wdk8tPS9eSmZVN2dLefDKwJyb/7mALkJCYTHpGpu557crBpKoyWLpxBynpKnzd3fh0YC+9BPVb9h/hr007dc/HzvkZgHe7taNh9cqYmBhz+ORZlm3aiVqdg63SikqBAXTo3RljI3mfiyerQdN25OaoWfn7/5GdlYmPXyB93vuf3gyspNsJZGYUfr4JqVoHVXoaW9ctIT0tBXcvX/q89ynWSlsArl+5yJW4GACmjXtf7/VGTvgeOweZgSuerTeDSpOjyWPe36fIzNVQ1smO0WGhmNyxk21Cehbp6sKbn7V83UjLzmFZVAypWWp87JWMblwNG/PCG6Zboy+z/MR53fMJmw8CMKh2BRr8GxBbFhXD7guFGzWMidgHwGdNq1P+jp0ghRAvphs3bvDll18yf/58MjMzH1yhGArt42T4EuI+Jk6cyLJlyzhx4sTz7sojCwsLIygoiNmzZz/vrryS/rdQZnSJV9+o4O3PuwtCPHXHzOs/uJAQL7mQVR8/uJAQLzm7T3943l0osV2nSxYMedoaBFk87y68sJKTk3n33XfZsmULJiYmjB49miFDhjBu3DimTZtGSEgIH330kW5iyKOS25Tiifsvb9acOXP44osvnnd3HklycjI7d+5k586dfP/998+7O0IIIYQQQgghxCtl9OjR7N+/n/DwcDZt2sRHH33Exo0bMTAwYPv27dSsWfOx2jd4cBEhHs2QIUOoWrUqDRs2LLJscdCgQVhZWRX7+G+J3PNUuXJlwsPDmTJlCmXLltU7FxQUdM++F7cToRBCCCGEEEIIIfRt2LCBBQsWMG3aNNauXYtWq6VSpUqsW7fusYNcIEsXxTN28+bNe+bUUiqV902m/rxdunRJb7eiO7m4uGBtXfx2yaIoWbooXgeydFG8DmTpongdyNJF8TqQpYtPnixdvDcjIyOuXLmCm1vBRikWFhYcOXJEt1HaY7f/RFoR4iE5Ozu/0MGs+/Hxka2NhRBCCCGEEEKIx6HVajG6Y8MfQ0NDzM3Nn1j7EugSQgghhBBCCCGEEM+EVqslLCxMF+zKysqiTZs2mJiY6JU7duxYidqXQJcQQgghhBBCCCGEeCbGjh2r97xt27ZPtH0JdAkhhBBCCCGEEEKIZ+LuQNeTJrsuCiGEEEIIIYQQQohXgszoEkIIIZ4C2Y1OvA5kNzrxOjBq/mSX1AghnqwqWbufdxfuocXz7sBrS2Z0CSGEEEIIIYQQQohXggS6hBBCCCGEEEIIIcQrQQJdQgghhBBCCCGEEOKVIDm6hBBCCCGEEEIIIcRTN3v27IcuO3To0BK9hgS6hBBCCCGEEEIIIcRT98033zxUOYVCUeJAlyxdfEUtXLgQW1vbx25HoVCwatWqx27ncezcuROFQkFKSso9y9w93nHjxlGpUiXd8/DwcNq1a/fU+vi03T0eIYQQQgghhBDiZRMbG/tQj4sXL5b4NWRG1wssPDyclJSU5x5oeli7du1i/PjxREZGkp2djYeHB7Vr12bu3LmYmJiwcOFCPvzww/sGrEqqS5cutGrV6p7nZ82ahVar1T1v2LAhlSpVYubMmU+sD76+vly6dAkAc3Nz/Pz8+OCDD+jfv/8jtaNQKFi5cqVeYG748OG8//77T6yv4uVx8+ppzh1dRfLNi2RlJFG3zWg8/Grcv86VU0Tu/pnUpCtYWDtSvnpnSpVvrFcmU5XIib2LuBF3HI1GjZWNK9WbDsHeNQCA7MyUgvOXoshRq3DyCKJKw/5Y27k/tbEK8Z+LMafZs3UN169cJC01mZ4DRxJUsfr960SfImL5QhLir2Jr70ijFh2pWrORXpnUlEQ2rvqN6DPHyc3Jwd7JlU4938XTx/9pDkcIAM4kJLHu9EXiktJIzlIzrGEVqnm53L/OjUQWHT3LtRQVDpbmtK/gRwM/T935VacucPhyAtdSVZgaGRLgaEv3qmVxV1oBkK7OYXnUeU7E3+Z2RhbWpiZU83ahc8UALE2Mn+p4xevpzPk41uzYR+y1eJJT0xnetyvVK5S7b53T52P5ZdUmribcxNHWhg5N69OwemXd+ZVb93Do5FmuJdzCxNiYMr5e9GzTFHdnR12ZcXMWcOZCnF67TWqFMvCtNk90fEKIpyMnJ4fY2Fj8/PwwMnr8MJUEusQTcebMGVq0aMH777/P7NmzMTc3JyYmhuXLl5OXl/fUX9/c3Bxzc/N7nrexsXnqfQCYMGECAwYMIDMzk2XLljFgwAA8PDxo2bLlY7VrZWWFlZXVE+qleJnkadTYOvlSKiiMfeumPLC8KjWBPWu+wK9Cc2q2+IiEKyc4vOU7zCzscPMt+NCYk61i+9JPcPYMol67/2FqboMqJR5js4L3mFarZe+ayRgYGlG3zWiMTC2IPraGnSvG0bL3bIyMzZ7qmIXIzcnBzcOH0FqN+W3u1w8sn3Q7gYU/TKZG3WZ0Cf+Q8+dOsmLxD1grbSlTvuB9n5mp4sfp/6NUmSDC3/0USyslibfiMbewfNrDEQKAHE0ePnZKGvp78s2u4w8sf1OVyZQdR2kS4MWQOpU4fSORnw6cwtbclIruTgCcTUiiWVlv/BxsyMvX8mdkNJO2HmZam3qYGRuRkqkmOSubHlXL4mFjRWJGNvP+PkVyZjYfNajytIcsXkPq3Fx8PFxpVKMK0xf8+cDyNxOT+WruYprWrsbQnh05GXOR/1uyBlulNZUCC25CnLkQR/M61fDz9iAvL58/1m/ji/9bxIxRQzAzNdG1FVarKm+1KLzBYSrBXCFeeJmZmbz//vv88ssvAERHR1O6dGnef/99PDw8GD16dInalaWLL6kZM2ZQoUIFLC0t8fLy4t1330WlUhUpt2rVKgICAjAzM6N58+ZcuXJF7/zq1aupUqUKZmZmlC5dmvHjx6PRaB65P5s3b8bV1ZWpU6cSHByMn58fLVq0YO7cuZibm7Nz50769OlDamoqCoUChULBuHHjAPj1118JDQ3F2toaV1dXunfvzs2bN4u8xr59+wgJCcHMzIyaNWty6tQp3bkHLdW8c+lieHg4u3btYtasWbq+xMbG4u/vz7Rp0/TqRUZGolAoOH/+/ENdh//GULp0aUaNGoW9vT1btmzRnT98+DBNmzbF0dERGxsbGjRowLFjx3TnfX19AWjfvj0KhUL3/O6li/n5+UyYMAFPT09MTU2pVKkSGzdufKg+5uTkMGTIENzc3DAzM8PHx4fJkyfrzqekpNC/f3+cnJxQKpU0btyYqKgoAG7duoWrqyuTJk3Sld+/fz8mJiZs27btoV5fPBo33ypUqN0DT/+aD1X+wslNWCqdqVS/D0oHLwIqvYFXQC2ij6/VlfnnyEosrByo3mwoDq5lsLJxwdWnEta2bgCkp1wn8UY0VRu/g71rAEo7D6o2HkS+JofL5/Y8lXEKcaeyQZVp9mZ3girdf/bifw7u3Yy9gzNvdHwbZzdPajdsSXDlmuzbHqErs3vLKmzsHOjcawhevgHYO7oQUK4SDk5uT2sYQuip5OFEl8plqO7t+lDlt0ZfxtnKnF6h5fC0taJ5oA81fFxYfzZOV2ZMWDUa+HniaWuNj72SwbUrkJiRzcWkNAC87Kz5qEEVqnq64GptSZCrA10qleHY1Zvk5ec/jWGK11zlcgF0axVGjZD7z+L6z5b9R3Cyt6N32+Z4ujrRsl4NalYsT8SuA7oyn77Ti4bVK+Pl6oyvhyvvdmvH7eRULl65rteWqbExdkpr3cPCTG7MCfGiGzNmDFFRUezcuROzO35mmzRpwpIlS0rcrgS6XlIGBgbMnj2b06dP88svv7B9+3ZGjhypVyYzM5Mvv/ySRYsWsW/fPlJSUujatavu/J49e+jduzcffPABZ86c4ccff2ThwoV8+eWXj9wfV1dX4uPj2b17d7Hna9euzcyZM1EqlcTHxxMfH8/w4cMByM3NZeLEiURFRbFq1Sri4uIIDw8v0saIESOYPn06hw8fxsnJiTZt2pCbm/vIfZ01axa1atViwIABur54e3vTt29fFixYoFd2wYIF1K9fH3//R1vWkp+fz/Lly0lOTsbEpPBOU3p6Om+//TZ79+7l77//JiAggFatWpGeng4UBML+e934+Hjd8+LGMH36dKZNm8aJEydo3rw5b775JjExMQ/s2+zZs1mzZg1Lly7l3LlzLF68WBdQA+jcuTM3b95kw4YNHD16lCpVqhAWFkZSUhJOTk78/PPPjBs3jiNHjpCenk6vXr0YMmQIYWFhj3SNxNORGH8OF++KesdcfSqTGH9O9/zaxUPYufizP+JrVv8YzubFw7hwcrPufH5ewc+VgWHhnVCFQoGBkTG3r599yiMQ4tFdjo3GPzBE71hAuUpcjo3WPT974gge3v4snjeNL0b15dvJwzm0b8vdTQnxwoi5lUKwq4PesRA3J2JupdyzTmZuwc1K6/vMZMnM1WBubIShgXwNEM9fdNwVQsqU1jtWsaw/MXFX71knK1sNgJWl/mqOPUdP0Pd/Uxg25TsWr9uCOifnyXdYCPFErVq1ijlz5lC3bl0UCoXueFBQEBcuXChxu7J08SX14Ycf6v7t6+vLF198waBBg/j+++91x3Nzc5kzZw41ahTcEf/ll18oV64chw4donr16owfP57Ro0fz9ttvA1C6dGkmTpzIyJEjGTt27CP1p3PnzmzatIkGDRrg6upKzZo1CQsLo3fv3iiVSkxMTLCxsUGhUODqqn8ns2/fvrp/ly5dmtmzZ1OtWjVUKpXecr2xY8fStGlT3Vg8PT1ZuXIlb7311iP11cbGBhMTEywsLPT6Eh4ezueff667Prm5ufz+++9FZnndz6hRo/jf//6HWq1Go9Fgb2+vl6OrcWP9PEk//fQTtra27Nq1i9atW+PkVLAUwdbWtsh1utO0adMYNWqULnA5ZcoUduzYwcyZM/nuu+/u28fLly8TEBCg+2Xi4+OjO7d3714OHTrEzZs3MTU11b3WqlWr+Ouvvxg4cCCtWrViwIAB9OjRg9DQUCwtLfVmhN1NrVajVqv1jmlyFRgZm963n6JksjOSMbOw1TtmamFLbk4meZocDI1MyEhN4MKJjZSp8iblqnUkKSGG47vmY2BoRKnyjVHaeWJh7cTJfYsJDRuEkbEZ546tITP9NlkZyc9nYELchyotBStr/SXqVta2ZGdnkpubg7GxCUm3Ezi4ZxN1G7emUfOOXLkUw7plCzA0NCqSy0uIF0FKlhobc/2/lTbmJmTlasjR5GFiZKh3TqvVsujwWco42eJlZ11sm2nZOaw4eZ6wAO+n1m8hHkVKugoba/30HDbWlmRmZ5OTm4uJsX7QVqvVsnDlBsqW8sbbrTDHXZ0qFXCyt8VOac3l+AQWr91C/K1EhvfpihDixXXr1i2cnZ2LHM/IyNALfD0quZXzktq6dSthYWF4eHhgbW1Nr169SExMJDMzU1fGyMiIatWq6Z4HBgZia2vL2bMFMzKioqKYMGGCLv+TlZWVbpbTne08DENDQxYsWMDVq1eZOnUqHh4eTJo0iaCgIOLj4+9b9+jRo7Rp0wZvb2+sra1p0KABUBCQuVOtWrV0/7a3t6ds2bK6sTwJ7u7uvPHGG/z8888ArF27FrVaTefOnR+6jREjRhAZGcn27dupUaMG33zzjd5ssISEBAYMGEBAQAA2NjYolUpUKlWRsd5PWloa169fp06dOnrH69Sp81DXIzw8nMjISMqWLcvQoUPZvLlwJk9UVBQqlQoHBwe990VsbKxeRH3atGloNBqWLVvG4sWLdUGx4kyePBkbGxu9x/6IqQ89XvHkadFi51yakDo9sXMujV+F5pQObsqFE5sAMDA0ok7rkaSnXGPl//XirzlduHn1FG6+VVAo5M+GeDlptVrcvUrRvG0P3L1KUaNuM6rVacLBPZsfXFmIl8DPh05zJUXF0HqVij2fmZPL1B1H8LSxomOIbMAgXk7z/orgyo2bfNi7k97xprVDqRToj4+7C/WqhjCkRwcOnTjLjdtJz6mnQoiHERoaSkREYaqJ/4Jb8+bN0/v+/6hkRtdLKC4ujtatWzN48GC+/PJL7O3t2bt3L/369SMnJwcLC4uHakelUjF+/Hg6dOhQ5JxZCde0e3h40KtXL3r16sXEiRMpU6YM//d//8f48eOLLZ+RkUHz5s1p3rw5ixcvxsnJicuXL9O8eXNynsN04/79+9OrVy+++eYbFixYQJcuXR76egI4Ojri7++Pv78/y5Yto0KFCoSGhlK+fHkA3n77bRITE5k1axY+Pj6YmppSq1atZzrWKlWqEBsby4YNG9i6dStvvfUWTZo04a+//kKlUuHm5sbOnTuL1LszB9qFCxe4fv06+fn5xMXFUaFChXu+3pgxYxg2bJjesUlLSh6dF/dnZmlHdmaK3jF1ZgrGJhYYGhUsozWzsENp76lXRmnnwdWYwnwY9i7+NO/xDTnqDPLzNJhZ2LD1z5HYOfs99TEI8aislLao0lP1jqnSUzAzs8DYuOB9b620xdlV/33v5OLOqeMHEOJFZGtuSmqW/ozo1KwczI2NiszmWnDoNMeu3mJs8xo4WBbdnCcrV8NX249gbmTEsAZVMDKUmxbixWBrbUVqun6e4dT0DCzMzIrM5pq/PIJjZ6IZP6QPDrb332jK39sDgBu3k3B1tH+ynRZCPDGTJk2iZcuWnDlzBo1Gw6xZszhz5gz79+9n165dJW5XAl0voaNHj5Kfn8/06dMx+De/wtKlS4uU02g0HDlyhOrVC7ZkP3fuHCkpKZQrV5AcskqVKpw7d+6R8089LDs7O9zc3MjIyADAxMSkyA6M//zzD4mJiXz11Vd4eXkBcOTIkWLb+/vvv/H2Lphqn5ycTHR0tG4sj6q4vgC0atUKS0tLfvjhBzZu3HjPnGMPw8vLiy5dujBmzBhWr14NFCTU//7772nVqhUAV65c4fbt23r1jI2N77tTpVKpxN3dnX379ulmv/3X9n//1w+iVCrp0qULXbp0oVOnTrRo0YKkpCSqVKnCjRs3MDIy0svbdaecnBx69uxJly5dKFu2LP379+fkyZPFTjkFMDU1LTLjy8hYciY8LQ5uZYmPPap37MblSBzcyuqeO7qXJT1ZP4Freko8lkqnIu2ZmBbsSJeefJ2khPME1+r+FHotxOPxLlWGc6f1d7E7fzYK71JldM99Spfl9k399/3tmzewtS/6vhfiRRDgZEvktVt6x07E3ybAyVb3XKvVsvDwGQ5fTuCzZjVwtip6cy4zJ5fJ245gbGjA8EZViwTJhHieyvh6ceysfo7ZE9EXCPAtvDGh1Wr5ecV6Dp08y7j3+uDsYPfAdi9dvwGAnbL4ZbxCiBdD3bp1iYyM5KuvvqJChQps3ryZKlWqcODAgftOpngQCXS94FJTU4mMjNQ75ujoSG5uLt9++y1t2rRh3759/N///V+RusbGxrz//vvMnj0bIyMjhgwZQs2aNXXBkM8//5zWrVvj7e1Np06dMDAwICoqilOnTvHFF188Uj9//PFHIiMjad++PX5+fmRnZ7No0SJOnz7Nt99+CxTkElOpVGzbto2KFStiYWGBt7c3JiYmfPvttwwaNIhTp04xceLEYl9jwoQJODg44OLiwqeffoqjo6NuJ8VH5evry8GDB4mLi8PKygp7e3sMDAwwNDQkPDycMWPGEBAQ8FjTJQE++OADgoODOXLkCKGhoQQEBOh2mUxLS2PEiBGYm+vfefX19WXbtm3UqVMHU1NT7OyK/jEfMWIEY8eOxc/Pj0qVKrFgwQIiIyNZvHjxA/s0Y8YM3NzcqFy5MgYGBixbtgxXV1dsbW1p0qQJtWrVol27dkydOpUyZcpw/fp1IiIiaN++PaGhoXz66aekpqYye/ZsrKysWL9+PX379mXdunWPda1E8TS52XpBKVVqAsk3L2JiZo2l0okTe38lKyORGs0/BMCvQnPOR60nas8vlAoK4+aVk1yJ3k+9tv/TtVG28ptsWzqGM4f+wqtMHZJuxHDx1GZCwwbrylyJ3oepuQ0WSkdSb1/m+K75ePjVxNWn0rMauniNqdXZJN4sXPaenHiT61disbC0wtbeiY2rfyMtJYm33h4KQI26zTiwayMbVi6iaq0wLkaf5OTxA7w9eIyujbphbfhh+qfs2LickKq1uRJ3nkP7ttC+2zvPfMA1rjwAAQAASURBVHzi9ZSdq+FGemFqiFuqTOKS0rAyNcbR0pw/jp0jKSub9+oUbCjSpIw3m85dZvHRf2jo78mZG4kcvHSDkY2r6tpYcOgM++Ku83HDqpgbG5Hy7wwwi39nff0X5MrJy+O9uiFk5WrI+jdhvdLUBAMDmWEtnqxsdQ7xtxJ1z28lpRB7NR5rS3Mc7WxZvG4LyanpDOlRsKKkae1QNu49yG9rNtOoRmVOnY/lQORpRg/ooWtj/vII9h47yci+3TAzNSE5rWATJ0vzgllfN24nsffYCSqXK4PS0oK46zdYtGoT5f188XF3QQjxYvPz82Pu3LlPtE0JdL3gdu7cSeXKlfWO9evXjxkzZjBlyhTGjBlD/fr1mTx5Mr1799YrZ2FhwahRo+jevTvXrl2jXr16zJ8/X3e+efPmrFu3jgkTJjBlyhSMjY0JDAzUS57+sKpXr87evXsZNGgQ169fx8rKiqCgIFatWqWbdVS7dm0GDRpEly5dSExMZOzYsYwbN46FCxfyySefMHv2bKpUqcK0adN48803i7zGV199xQcffEBMTAyVKlVi7dq1ejsaPorhw4fz9ttvU758ebKysoiNjdXNYOrXrx+TJk2iT58+JWr7TuXLl6dZs2Z8/vnnrF+/nvnz5zNw4ECqVKmCl5cXkyZN0u0++Z/p06czbNgw5s6di4eHB3FxcUXaHTp0KKmpqXz88cfcvHmT8uXLs2bNGgICAh7YJ2tra6ZOnUpMTAyGhoZUq1aN9evX62YHrl+/nk8//ZQ+ffpw69YtXF1dqV+/Pi4uLuzcuZOZM2eyY8cOlEolAL/++isVK1bkhx9+YPDgwfd7aVECSTfOs2P5Z7rnkbsLdgYtVb4R1ZsNJTszmcy0wlmBVjYu1Hvzf0Tu/pnoyHVYWDlSrel7uPkW/h6xdw2gTuvRnNj3K2cOLsXSxplK9fviE1g4QzArM5nIPQvJzkzBzMIO33INCarxaBs/CFFS1y6dZ+6scbrnEcsXAlClZkM69xpCeloKKUmF73t7RxfCB48hYvlC9u1Yj42dAx16DKZM+cL3vaePP70GjGTjmsVs3/AXdg7OtO4UTuXq9Z/VsMRr7mJiKhO3HNI9//XIPwDU9/NgcO0QUrLVJGZk6847W1kwqlFVFh09y8Z/4rC3MGNgrWAquhfOQtwSXZDjc+Lmg3qvNah2BRr4eRKXlMb52ykAfLRKf5b67PYNcbIqusxRiMdx4co1xn+3UPf8l1UbAWhQrRLvdW9PSpqK28mFS82dHewYPaAHv6zaxPo9f+NgY8OgLm9SKbBwxcnmfQW7kI/7Tn939He7taNh9coYGxlyKjqW9bsPolbn4GCrpEZIOTo0k9/vQryI0tLSHrrsf985H5VCq9VqS1RTiFfUnj17CAsL48qVK7i4yF2gp+F/C2Xponj1Na2med5dEOKpC1n18fPughBPnVHzts+7C0I8ddahLZ53F0os/cjG592FYr3M1/RpMjAweOgdFe+X0ud+ZEaXEP9Sq9XcunWLcePG0blzZwlyCSGEEEIIIYQQT9COHTt0/46Li2P06NGEh4fr0gYdOHCAX375hcmTJ5f4NWTLFfFQJk2ahJWVVbGPli1bPu/uPRF//PEHPj4+pKSkMHXqVL1zixcvvuf4g4KCnlOPi/c6/F8JIYQQQgghhHj5NGjQQPdYtGgRM2bMYPLkybz55pu8+eabTJ48mWnTprFgwYIHN3YPsnRRPJSkpCSSkpKKPWdubo6Hh8cz7tGzlZ6eTkJCQrHnjI2N8fHxecY9ureX4f9Kli6K14EsXRSvA1m6KF4HsnRRvA5e5mV2snTx5WVhYUFUVFSRXNPR0dFUqlSJzMzMe9S8P1m6KB6Kvb099vb2z7sbz421tTXW1i/H9sSv+/+VEEIIIYQQQogXn5eXF3Pnzi2yomrevHl4eXmVuF0JdAkhhBBCCCGEEEKIZ+qbb76hY8eObNiwgRo1agBw6NAhYmJiWL58eYnblRxdQgghhBBCCCGEEOKZatWqFTExMbRp00aXgqdNmzZER0fTqlWrErcrM7qEEEIIIYQQQgghxDPn6enJpEmTnmibEugSQjxzo4K3P+8uCPHUTTnc+Hl3QYinr930590DIZ462XRBvBYkcbp4TlJSUpg/fz5nz54FICgoiL59+2JjY1PiNmXpohBCCCGEEEIIIYR4po4cOYKfnx/ffPONbunijBkz8PPz49ixYyVuV2Z0CSGEEEIIIYQQQohn6qOPPuLNN99k7ty5GBkVhKc0Gg39+/fnww8/ZPfu3SVqVwJdQgghhBBCCCGEEOKZOnLkiF6QC8DIyIiRI0cSGhpa4nZl6aIQQgghhBBCCCGEeKaUSiWXL18ucvzKlStYW1uXuF0JdAkhhBBCCCGEEEKIZ6pLly7069ePJUuWcOXKFa5cucKff/5J//796datW4nblaWLQgghhBBCCCGEEOKZmjZtGgqFgt69e6PRaAAwNjZm8ODBfPXVVyVuV2Z0vcQWLlyIra3tY7ejUChYtWrVY7fzOHbu3IlCoSAlJeWeZe4e77hx46hUqZLueXh4OO3atXtqfXza7h6PEEIIIYQQQgjxqjIxMWHWrFkkJycTGRlJZGQkSUlJfPPNN5iampa4XZnR9ZyFh4eTkpLy3ANND2vXrl2MHz+eyMhIsrOz8fDwoHbt2sydOxcTExMWLlzIhx9+eN+AVUl16dKFVq1a3fP8rFmz0Gq1uucNGzakUqVKzJw584n1wdfXl0uXLgFgbm6On58fH3zwAf3793+kdhQKBStXrtQLzA0fPpz333//ifVVvBrOnI9jzY59xF6LJzk1neF9u1K9Qrn71jl9PpZfVm3iasJNHG1t6NC0Pg2rV9Yrs3HvIdbu2EdKmgofd1f6dGhJgI8nALeSUnhv4jfFtv3R252pVSn4yQxOiH/dvHqac0dXkXzzIlkZSdRtMxoPvxr3r3PlFJG7fyY16QoW1o6Ur96ZUuUbP3Sb+XkaTh74nfjYo2SkJWBsYomLdwVC6vTG3Mr+qY1VvN4O7NrInq2rSU9Lwc3Thzad++HlG1BsWY1Gw67NKzl2cCdpKUk4urjTom1PygYV/j7Pz89na8QSIg/tRpWeirWNHVVqNKRxy04oFAoA0tNS2Lj6N86fjSIrM4NS/uVp81Y/HJ3dnsmYxetn87lLrD0dS2q2Gm87a8Krlcff0bbYspq8fFafvsjuC1dJzlLjprSkW+WyVPJw0pXJytWwNDKaw1cSSMvOwddeyduh5fC7o81uv24otv3uVcrSJqj0kxyeEOIpsLCwoEKFCk+sPQl0iYd25swZWrRowfvvv8/s2bMxNzcnJiaG5cuXk5eX99Rf39zcHHNz83uet7Gxeep9AJgwYQIDBgwgMzOTZcuWMWDAADw8/p+9+46ruvofOP667HG57CVTlgMnIq5yK2ruMssVlqs07VeWmuUszTJLK9OWpllpmRPFgeLAnAluQAFFRUTgsjf39wdfL97AHImkvp+Px33oPZ/3OZ/3uV7hc88953xc6N69+79qV6lUolQqH1CWlRUXF2NoaFht7YvqUVhcjIeLEx1aBPDpsl/vGH89LYOPvl1Fl9bNGT/kWU7GxbNk9UasVBY0qesDwIHjp1ixIYyRz/XC18OV0L1/8uHSlSx8dzyWSnNsrVQsnTlRp93wg8fYuCuSpvX8qqWf4slWWlKIlb0ntf07Ebl53h3jczJT2LfxA7wbBtOy2/+RknSCIzu+wsTMGmfPpnfVZklJIRnX4/Fv8TyW9p4UF+RwfM/37N80hy4vzn/gfRTixLFIQtcup++Lo3D39GP/7s388OUHvDV9EUqLytcwOzb/QtThvfQb9Cr2TrWIOxPFqm8/YcxbH1LLrTYAe7av49C+bQwY+jqOtdy4fPECv//0FaZm5rRu3wONRsPKpfPQNzBg6OhJGJuYsX/XJr5fNJM33v8cY2OTh/0yiMfcn4nJrDx6lldaNMDHzoqt5xKZG36Ez/q0RWVSeXbGmuhY9sdfZWSrBtRSKTlxNZUFe/5iVrdWeNqoAPjmz5MkqbN5rU1jbMyM2R9/lQ93HmF+76exMSt/D3/9XEeddqOupPLNwZMEuTtVf6eFEPfs5Zdfvqu4H3744b7al6WL/2ELFiygYcOGmJub4+bmxmuvvUZOTk6luPXr1+Pr64uJiQnBwcEkJSXpHN+wYQMBAQGYmJjg5eXFzJkztetf78X27dtxcnLi448/pkGDBnh7e9OtWze+/fZbTE1NiYiIYPjw4WRmZqJQKFAoFMyYMQOAlStXEhgYiIWFBU5OTgwaNIjr169XOkdkZCSNGjXCxMSEli1bcurUKe2xOy3VvHXpYkhICHv27GHhwoXaXBISEvDx8WH+fN0PMFFRUSgUCs6fP39Xr8PNPnh5eTFp0iRsbGzYsWOH9viRI0fo0qULdnZ2WFpa0q5dO/766y/tcU9PTwD69euHQqHQPv/70sWysjJmzZqFq6srxsbGNGnShLCwsLvKMTExEYVCwerVq2nXrh0mJiasWrWKtLQ0XnzxRVxcXLSj5r/88otO3bKyMj7++GN8fHwwNjbG3d2dDz/8UHs8KSmJ559/HisrK2xsbOjTpw+JiYl3lZe4d03r+fJij060aPTPs7hu2nHgKPY21gzrE4yrkz3dn25By8b1Cd3zpzZmc8SfdGrZjA4tmuLqZM+oAb0wNjJk96Hy96menh7WKgudx+ET52jVpAEmxkbV0k/xZHP2DKBh68G4+rS8q/gLJ7dhrnKgSdvhqGzd8G3yDG6+rYg9vumu2zQyNqd9/xm4+bVBZe2CrXMdAtqPJD3lArlZqQ+iW0Lo2L9rE83bdCawVUccnF3p9+JojIyMOPrnrirjow7vpX3ws9RtEICtnRMt23ajjn9T9oVv1MZcSoilfqMg6jZshrWtAw0DWuFXrzFJiXEA3LieTFJiHH1fGIWrhw/2jrXo+8IoiouLOHF0/0Ppt3iyhJ5NoKOvG+19XHG1UjKihT/G+vrsPn+5yvj98Vfp29Cbpi4OOFqY0aWOB01d7Nl8JgGAopJSDl9KYVBAXeo72uBkYc5zjX1xtDBjR0zFndqsTI11HkeTUqjvaIOjhdlD6bcQ4t4sX76c3bt3o1arycjIuO3jfslA13+Ynp4eixYt4vTp0/z444/s2rWLd955RycmLy+PDz/8kBUrVhAZGYlareaFF17QHt+3bx/Dhg1jwoQJnDlzhqVLl7J8+XKdgYu75eTkRHJyMnv37q3yeOvWrfn8889RqVQkJyeTnJzMxInls0KKi4uZPXs20dHRrF+/nsTEREJCQiq18fbbb/Ppp59y5MgR7O3t6dWrF8XFxfec68KFC2nVqhUjR47U5uLu7s7LL7/MsmXLdGKXLVtG27Zt8fHxuadzlJWVsXbtWjIyMjAyqvjwn52dzUsvvcT+/fs5ePAgvr6+9OjRg+zsbKB8IOzmeZOTk7XPq+rDp59+yvz58zlx4gTBwcH07t2buLi4u85x8uTJTJgwgbNnzxIcHExBQQHNmjUjNDSUU6dOMWrUKIYOHcrhw4e1daZMmcJHH33E+++/z5kzZ/j5559xdHQEyv8dg4ODsbCwYN++fURGRqJUKunWrRtFRUX39PqJ6hGbmEQjP90p+o3r+BCXWH6BWVJSSvzlqzS8JUahUNDQz5vYxKovQi8kXSXxSjIdWzSt8rgQD1tacgyO7o11ypw8mpKWHPOv2i0qykOhUGBkbP6v2hHi70pKSrhyKR6fuo20ZQqFAp+6jbiUEHubOpVnYhsYGnHxwjntc/faflyIOUlqylUAki8nknD+LH71m2rbADAwqFjEoVAoMDA0JDH+HEI8SCWlZSSkZdHA2U5bplAoaOBsS1yquso6xWVlGOrrfiQ11Ncn5nr5B9xSjYYyjQajv8UY6esRk1r1h+DM/EKirqbSwcftX/RGCFGdXn31VTIzM0lISKBDhw58//33rFu3rtLjfsnSxf+wN954Q/t3T09PPvjgA8aMGcPixYu15cXFxXz55Ze0aFG+78iPP/5IvXr1OHz4MEFBQcycOZPJkyfz0ksvAeDl5cXs2bN55513mD59+j3lM2DAALZt20a7du1wcnKiZcuWdOrUiWHDhqFSqTAyMsLS0hKFQoGTk+404VunJnp5ebFo0SKaN29OTk6OznK96dOn06VLF21fXF1dWbduHc8///w95WppaYmRkRFmZmY6uYSEhDBt2jTt61NcXMzPP/9caZbXP5k0aRLvvfcehYWFlJSUYGNjo7NHV8eOulOnv/nmG6ysrNizZw89e/bE3r58zwErK6tKr9Ot5s+fz6RJk7QDl/PmzWP37t18/vnnfPXVV3eV6xtvvEH//v11ym4OPgK8/vrrbNu2jTVr1hAUFER2djYLFy7kyy+/1L5nvL29eeqppwBYvXo1ZWVlfPfdd9q9P5YtW4aVlRURERF07dq1Ug6FhYUUFhbqlBUVFWFsJDODqoM6OwdLC90lsJYW5uQVFFBUXExOXgFlZWVY/S3GSmnO1ZQbVba5+9BfuDjaU6e2e7XlLcS9KMjNwMTMSqfM2MyK4qI8SkuK0De4958vpSVFnNi/Ane/pzA0lhkA4sHKy82irKys0hJFpYUlqSlXqqzjW7cx+8I34elTH1t7J87HnOB01CHKysq0Me2D+1NYmM9nsyeg0NNDU1ZG114v0jSoLQD2ji5YWduxbePP9H1xNEZGJuzftYnMjDSyM+//m3IhqpJdWESZRoOlie7PYEsTY65m5VZZp6GzHaFnEqjrYIOThRmnrqVx+NI17b67poYG+Npb8cfJC7hYKrE0MSYy8SpxN9Q4WVT9pcSe+CuYGBjQ3M3xwXZQCPHAfPXVVyxYsIA//viDH374gSlTpvDMM8/wyiuv0LVrV+1nzfslM7r+w3bu3EmnTp1wcXHBwsKCoUOHkpaWRl5enjbGwMCA5s2ba5/XrVsXKysrzp49C0B0dDSzZs3S7v+kVCq1s5xubedu6Ovrs2zZMi5fvszHH3+Mi4sLc+bMwd/fn+Tk5H+se+zYMXr16oW7uzsWFha0a9cOgEuXLunEtWrVSvt3Gxsb6tSpo+3Lg1CrVi2eeeYZ7VrfTZs2UVhYyIABA+66jbfffpuoqCh27dpFixYt+Oyzz3Rmg6WkpDBy5Eh8fX2xtLREpVKRk5NTqa//JCsri6tXr9KmTRud8jZt2tzT6xEYGKjzvLS0lNmzZ9OwYUNsbGxQKpVs27ZNm9vZs2cpLCykU6dOVbYXHR3N+fPnsbCw0L6fbGxsKCgo4MKFC1XWmTt3LpaWljqPT5evues+iJpVVFzM/r9Oymwu8VgrKy3hwJb5oNHQrOOYmk5HCAB6DngZWwdnFswaz3vjB7Jx9fc0a9kBPb2Ky/cTxyKJOrKPgSETGDfpYwYMG8e+8I0cO7gbKL9OHDzqbW6kJDP77RCm/98gEmJP41e/KQqFfAwQNS+keT2cLMx5a+NehqzaxrLDZ2jv7arzIfe1NuUzIV9bu5uhP28j7NxFWnvW4nafgyPOX+ap2rUwMtB/GF0QQtwnY2NjXnzxRXbs2MGZM2fw9/fntddew9PTs8otm+6FzOj6j0pMTKRnz568+uqrfPjhh9jY2LB//35eeeUVioqKMDO7u2+bc3JymDlzZqVZPQAmJve3AamLiwtDhw5l6NChzJ49Gz8/P5YsWcLMmTOrjM/NzSU4OJjg4GBWrVqFvb09ly5dIjg4uEaWu40YMYKhQ4fy2WefsWzZMgYOHHjXryeAnZ0dPj4++Pj48Ntvv9GwYUMCAwOpX78+AC+99BJpaWksXLgQDw8PjI2NadWqVY301dxc95uuTz75hIULF/L5559r93974403tLn902b/UP5+atasGatWrap07OZMtb+bMmUKb775pk5Z0amIe+iFuBdWFkoys3V/MWRm52JmYoKRoSEqcz309PRQ/y1GnZOLlaryzRAORp+hqLiYts2bVGfaQtwTE3NrCvLUOmWFeWoMjczueTbXzUGuvKzrtH92tszmEtXCzFyFnp4eOdmZOuU52ZkoVdZV1lFaWDJs9CSKi4vIy81GZWlD2IafsLZ10MZsXb+Sdl360TiwfOa1s4sHGWmpRGxbR7OWHQBwdfdm/Lvzyc/LpbS0BKWFJYs/mYyLm3c19VY8qSyMjdBTKMgs0L3mzSwoxKqKjegBVCbGTOzQjKKSUnKKirE2NeaX4zE4KCuuSZ0szJnWtQUFxSXkF5dgbWbCwr3HcVBW/nl9NiWd5KxcJjzd5IH2TQhRvfT09FAoFGg0mgdyozv5Kuc/6tixY5SVlfHpp5/SsmVL/Pz8uHr1aqW4kpISjh49qn0eExODWq2mXr3yjasDAgKIiYnRDszc+rj1G8H7ZW1tjbOzM7m55dORjYyMKr0xz507R1paGh999BFPP/00devWrXIjeoCDBw9q/56RkUFsbKy2L/eqqlwAevTogbm5OV9//TVhYWF3fceHqri5uTFw4ECmTJmiLYuMjGT8+PH06NEDf39/jI2NuXFDd0mYoaHhP/4HVqlU1KpVi8jISJ3yyMhI7YDa/YiMjKRPnz4MGTKExo0b4+XlRWxsxd4gvr6+mJqaEh4eXmX9gIAA4uLicHBwqPR+ut1dL42NjVGpVDoPWbZYffw83TgZl6BTdiL2Ar6ergAYGOjj5VqLU7fEaDQaTsXG4/e/mFvtOvgXzerXwVIpexaJ/w5b5zqkXDqhU3btUhS2znXuqZ2bg1w56qu06z8TY1OLB5mmEFoGBga4uHtxIeaktkyj0XA+5iTutf/5braGhkZYWtlSWlrK6ahD1G9UMZO/uKiw0qyW8us7TaV2TM3MUVpYcuN6MpcvXqB+4+aVYoT4Nwz09ahtq+J0cpq2TKPRcPpaGr72Vv9Y18hAHxszE0rLNBy+lEJgFcsOTQwNsDYzIaewmBPJN2jm6lApJuLCZWrbqvD43x0bhRD/XYWFhfzyyy906dIFPz8/Tp48yZdffsmlS5d0tje6HzKj6z8gMzOTqKgonTI7OzuKi4v54osv6NWrF5GRkSxZsqRSXUNDQ15//XUWLVqEgYEB48aNo2XLlgQFBQEwbdo0evbsibu7O8899xx6enpER0dz6tQpPvjgg3vKc+nSpURFRdGvXz+8vb0pKChgxYoVnD59mi+++AJAO80wPDycxo0bY2Zmhru7O0ZGRnzxxReMGTOGU6dOMXv27CrPMWvWLGxtbXF0dGTq1KnY2dlp76R4rzw9PTl06BCJiYnaJXZ6enro6+sTEhLClClT8PX11VkueT8mTJhAgwYNOHr0KIGBgfj6+mrvMpmVlcXbb79daaaUp6cn4eHhtGnTBmNjY6ytK3+b+/bbbzN9+nS8vb1p0qQJy5YtIyoqqsrZVHfL19eX33//nQMHDmBtbc2CBQtISUnRDp6ZmJgwadIk3nnnHYyMjGjTpg2pqamcPn2aV155hcGDB/PJJ5/Qp08f7R0hL168yB9//ME777yDq2vlgRLx7xQUFpGcWnHBmJquJuFyMhbmpthZW7Fq8w4yMrMZN7h81maX1oGE7T/ETxu306FFU06dT+DPqNNMHjlY20bP9q346ud1eLk64+Puypa9BykoKqJ9kO7yxGs30jkbf1GnrhDVoaS4gOyMii9zcjJTyLgej5GJBeYqe07sX0l+bhotgt8AwLthMOejtxC970dq+3fietJJkmIP8HSf9+66zbLSEg6EfkJGajxP934XjaaM/NzyPYuMTSzQ05dLJPFgPdWxF7+t+BIXdy/cPHyJjAilqLBQO/NqzY+LUFnZ0K3PEKD8jopZ6nSc3TzJUqcTHrqGsrIy2nbpq22zbsNAdm/7AytrexxruXE1KYH9uzbRrFXFfqEn/jqAUqnC0saOlKtJbP7tB/wbB+Fbr8nD7L54QjxTrzZfHzhBbVsV3rZWhJ1LpKCklPbe5deIX0VGY2NqwosB5V9MxKWqSc8vwNNaRXpeAWtPxFGm0dDLv+KmOdFXU9FooJalOSnZeaw6do5aKqW2zZvyioo5ePEaQ5rVfXgdFkLcl9dee41ff/0VNzc3Xn75ZX755Rfs7OzuXPEuyVXcf0BERARNm+p+wHzllVdYsGAB8+bNY8qUKbRt25a5c+cybNgwnTgzMzMmTZrEoEGDuHLlCk8//TTff/+99nhwcDCbN29m1qxZzJs3D0NDQ+rWrauzefrdCgoKYv/+/YwZM4arV6+iVCrx9/dn/fr12j23WrduzZgxYxg4cCBpaWlMnz6dGTNmsHz5ct59910WLVpEQEAA8+fPp3fv3pXO8dFHHzFhwgTi4uJo0qQJmzZt0rmj4b2YOHEiL730EvXr1yc/P5+EhAQ8PT2B8td3zpw5DB8+/L7avlX9+vXp2rUr06ZNY8uWLXz//feMGjWKgIAA3NzcmDNnjs4G8ACffvopb775Jt9++y0uLi4kJiZWanf8+PFkZmby1ltvcf36derXr8/GjRvx9fW971zfe+894uPjCQ4OxszMjFGjRtG3b18yMyuWUrz//vsYGBgwbdo0rl69irOzM2PGlO9ZY2Zmxt69e5k0aRL9+/cnOzsbFxcXOnXqhEol35xVhwtJV5j51XLt8x/XhwHQrnkTxg7qhzorhxsZFf9+DrbWTB45mB/Xb2PLvoPYWloyZmBvmtSt2EeuddMGZObksiZsN+rsHDxrOTN11NBKG9TvOvQXNpYqnbpCVIf0a+fZvfZ97fOoveV3x61dvwNBXcdTkJdBXlbFzFilpSNP936PqL0/EBu1GTOlHc27jMXZs+ldt5mfm86V+PI7zm5bpbu8usOzs3Fwa/DgOyqeaI2atSEnO4udm1eTnaWmlpsnw8dOxUJlBYA6/QaKW2bbl5QUs2Pzr6TfSMHI2Jg6/gE8HzIeU7OKGba9B7zCjs2/smH1t+TmZGFhaU1Qmy507FFxE5+cLDVb/viRnKxMLFRWNG3Rjo7d735vUiHuRStPZ7IKivgtOo7M/EI8bFRM7tgcS9PypYtpuQXo3TINsbisjN+iYrmek4+xgT5NXOwZ26Yx5kYVdxzNLyrhl+MxpOcVoDQ2Isjdkeeb+GHwtzsxHkhMRqPR0NrT+eF0Vghx35YsWYK7uzteXl7s2bOHPXv2VBn3xx9/3Ff7Cs3NW1oI8QTZt28fnTp1IikpCUdHuSPLw5Z9NKymUxCi2s071fHOQUI84ro0L6npFISodo3Wv1XTKQhR7aynfl3TKdy3/+pnC4vAbjWdwn9WSEjIXd1ZcdmyZffVvszoEk+UwsJCUlNTmTFjBgMGDJBBLiGEEEIIIYQQ4iFavnx5tbYvm9ELrTlz5qBUKqt8dO/evabTeyB++eUXPDw8UKvVfPzxxzrHVq1addv++/v711DGVXsS/q2EEEIIIYQQQoh7JUsXhVZ6ejrp6elVHjM1NcXFxeUhZ/RwZWdnk5KSUuUxQ0NDPDw8HnJGt/eo/1v9V6cXC/EgydJF8SSQpYviSSBLF8WTQJYuPniydLHmyNJFoWVjY4ONjU1Np1FjLCwssLB4NG4t/6T/WwkhhBBCCCGEEFWRpYtCCCGEEEIIIYQQ4rEgA11CCCGEEEIIIYQQ4rEgA11CCCGEEEIIIYQQ4rEge3QJIR66v0zb1nQKQgghHgDZpFs8CQyC+9R0CkIIIe6BzOgSQgghhBBCCCGEEI8FGegSQgghhBBCCCGEEI8FGegSQgghhBBCCCGEEI8FGegSQgghhBBCCCGEEI8FGegSQgghhBBCCCGEEI8FGei6R8uXL8fKyupft6NQKFi/fv2/buffiIiIQKFQoFarbxvz9/7OmDGDJk2aaJ+HhITQt2/fasuxuv29P0IIIYQQQgghhHh0GdR0AjUhJCQEtVpd4wNNd2vPnj3MnDmTqKgoCgoKcHFxoXXr1nz77bcYGRmxfPly3njjjX8csLpfAwcOpEePHrc9vnDhQjQajfZ5+/btadKkCZ9//vkDy8HT05OLFy8CYGpqire3NxMmTGDEiBH31I5CoWDdunU6A3MTJ07k9ddff2C5VrfU1FReffVVwsPDKS0tJSAggKVLl1KnTp2aTk08JPFxp9m3cyNXk+LJysxgyKh38G8c9M91Yk8RunY5KcmXsbKxo0O3Z2nWssO/alOIB+n65dPEHFtPxvV48nPTearXZFy8W/xznaRTRO39gcz0JMws7KgfNIDa9Ttqj589spbL5w+SlX4ZAwNjbJ3r0OjpYaisXbQxF05u49K5fWSkxlNclE+/V3/CyNi82vopnmxnUtLZfDqexPQsMvILebN9AM3dHP+5zrU0Vhw7yxV1DrbmpvRr6E07b1edmO0xF9l0OoHMgkLcrS0IaV4fHzsr7fHvDp7iZPINMvILMTHQx8/emhcD6uBiqayObgpB2P7DbNodiTorB49aTgzv3x1fD9cqY0tKSlm/ax97DkeTnpmFs4Mtg3t2oWk9X21MfkEhq7fu4vDJs2Tl5OHp4kRIv+74uLvotHX5WiqrNu/g7IWLlJaV4urkwFshz2NnbVWd3RVC/AfJjK7/uDNnztCtWzcCAwPZu3cvJ0+e5IsvvsDIyIjS0tJqP7+pqSkODg63PW5paflAZrjdyaxZs0hOTubUqVMMGTKEkSNHsnXr1n/drlKpxNbW9gFk+HBMmjSJo0ePsnnzZo4fP87YsWPvql5RUVE1ZyYeluKiIpxdPOj9/N0N9KbfSGH513Px8mvI+Cnzad3+Gf5Y9TWxZ47fd5tCPGilJYVY2XsS0GHkXcXnZKawb+MHOLg1JHjQAvya9OTIjq9ITqx4X1+/fBqfxt3p/MI82vWfTllZKXv+mElJcYE2pqS4ECfPAOo1f+6B90mIvysqKcXDWkVIUP27ir+ek8e83cfwd7Rl7jNP0b2uJ9/8eYroq6namD8Tk1l59CzPNvJhTo82eFirmBt+hKyCQm2Mp42K0a0b8Wnvtkzp1BwNMGfnEcrKNFWcVYh/58DxU6zYEMZzXdsz760xeLg48uHSlWTm5FYZv3rrLnYcOMrw/t1ZMGksXVoH8umy1SRcTtbGLFm9geiYC4wb1J/577xGozrefPD1CtLUWdqYazfSmfblD7g42DF9bAifvP0a/bu0xdDQsNr7LIT475GBrr9ZsGABDRs2xNzcHDc3N1577TVycnIqxa1fvx5fX19MTEwIDg4mKSlJ5/iGDRsICAjAxMQELy8vZs6cSUlJyT3ns337dpycnPj4449p0KAB3t7edOvWjW+//RZTU1MiIiIYPnw4mZmZKBQKFAoFM2bMAGDlypUEBgZiYWGBk5MTgwYN4vr165XOERkZSaNGjTAxMaFly5acOnVKe+xOSzVvXboYEhLCnj17WLhwoTaXhIQEfHx8mD9/vk69qKgoFAoF58+fv6vX4WYfvLy8mDRpEjY2NuzYsUN7/MiRI3Tp0gU7OzssLS1p164df/31l/a4p6cnAP369UOhUGif/33pYllZGbNmzcLV1RVjY2OaNGlCWFjYXeVYVFTEuHHjcHZ2xsTEBA8PD+bOnas9rlarGTFiBPb29qhUKjp27Eh0dDRQPlPLycmJOXPmaOMPHDiAkZER4eHh2jI9PT1at25NmzZt8Pb2ZsCAAVXO5mrfvj3jxo3jjTfewM7OjuDgYODu3t+RkZG0b98eMzMzrK2tCQ4OJiMjQ/v6zJ07l9q1a2Nqakrjxo35/fff7+r1EQ9GHf+mdO09CP8m/zzb5aZD+7djY+vAM8++hIOzK63bd6dB05ZE7gq97zaFeNCcPQNo2Howrj4t7yr+wsltmKscaNJ2OCpbN3ybPIObbytij2/SxrTrN43a9TtiaeuOlX1tgrq+Tl52KukpF7QxdQJ6U695f2yd/B54n4T4uyYu9gxs6keQu9Ndxe+MvYSD0pShgfVwtVISXNeDFh6ObDmbqI0JPZtAR1832vu44mqlZEQLf4z19dl9/rI2prOfO/UdbbBXmlLb1pKBTXxJzyvgem7eg+6iEGyO+JNOLZvRoUVTXJ3sGTWgF8ZGhuw+9FeV8XuPRdOvc1sC6vvhaGdDcJsgmtbzZXPEAQCKios5dOIsQ3p1ob6PJ052NjzfrQOOdtZsP3BE286vW8IJqOfLkN5dqe3qjJOdDc0b1MVSKbN0hXgSyUDX3+jp6bFo0SJOnz7Njz/+yK5du3jnnXd0YvLy8vjwww9ZsWIFkZGRqNVqXnjhBe3xffv2MWzYMCZMmMCZM2dYunQpy5cv58MPP7znfJycnEhOTmbv3r1VHm/dujWff/45KpWK5ORkkpOTmThxIgDFxcXMnj2b6Oho1q9fT2JiIiEhIZXaePvtt/n00085cuQI9vb29OrVi+Li4nvOdeHChbRq1YqRI0dqc3F3d+fll19m2bJlOrHLli2jbdu2+Pj43NM5ysrKWLt2LRkZGRgZGWnLs7Ozeemll9i/fz8HDx7E19eXHj16kJ2dDZQPhN08b3JysvZ5VX349NNPmT9/PidOnCA4OJjevXsTFxd3x9wWLVrExo0bWbNmDTExMaxatUo7oAYwYMAArl+/ztatWzl27BgBAQF06tSJ9PR07O3t+eGHH5gxYwZHjx4lOzuboUOHMm7cODp16qRto0+fPvz+++93Nfj2448/YmRkRGRkJEuWLAHu/P6OioqiU6dO1K9fnz///JP9+/fTq1cv7ezBuXPnsmLFCpYsWcLp06f5v//7P4YMGcKePXvumI+oGZcSYvGp20inzLdeEy4lxNZQRkL8e2nJMTi6N9Ypc/JoSlpyzG3rFBeVf6g3NpHlWuLREJeqpoGT7qzzRs72xKWqASgpLSMhLYsGznba4wqFggbOttqYvysoLiHiwhXslabYmZlWV+riCVVSUkr85as09PPSlikUChr6eRObeLnKOsUlpRgZ6u6mY2RowLmESwCUlpZRVlaG0d9mZhkZGhITXx6j0Wj460wsTvY2fLBkBSPe/5h3P/uWwyfPPsjuCSEeIU/kHl3/5I033tD+3dPTkw8++IAxY8awePFibXlxcTFffvklLVqUz3748ccfqVevHocPHyYoKIiZM2cyefJkXnrpJQC8vLyYPXs277zzDtOnT7+nfAYMGMC2bdto164dTk5OtGzZkk6dOjFs2DBUKhVGRkZYWlqiUChwctL9hvDll1/W/t3Ly4tFixbRvHlzcnJyUCorLvSnT59Oly5dtH1xdXVl3bp1PP/88/eUq6WlJUZGRpiZmenkEhISwrRp07SvT3FxMT///HOlWV7/ZNKkSbz33nsUFhZSUlKCjY2Nzh5dHTt21In/5ptvsLKyYs+ePfTs2RN7e3sArKysKr1Ot5o/fz6TJk3SDlzOmzeP3bt38/nnn/PVV1/9Y46XLl3C19eXp556CoVCgYeHh/bY/v37OXz4MNevX8fY2Fh7rvXr1/P7778zatQoevTowciRIxk8eDCBgYGYm5vrzAg7c+YMgwYNYtasWYwYMYLPPvuMAQMGAHDs2DECAwNJTU3Fzq78gtfX15ePP/5YJ8c7vb8//vhjAgMDdd7v/v7+ABQWFjJnzhx27txJq1atgPL31f79+1m6dCnt2rX7x9dH1IycLDVKC0udMqWFFQUFeRQXF2FoaHSbmkL8dxXkZmBiZqVTZmxmRXFRHqUlRegb6L6vNRoNUXt+wK5WXSztPBDiUaDOL8TS1FinzNLUiPziEopKSsktKqZMo8HSRPf9bmlizNUs3WViO2IusuqvGApLSnFWmfNu5+YY6Mv33eLBysrNo6ysDCsL3S8UrJTmXE25UWWdxnW82bT7APW8PHCys+FkbDyHTpylTFMGgKmJMX6ebqzdvgcXR3usLMzZ/9dJYhOTcLYvHwhWZ+dQUFjEhvD9vNCjE4N7diE65jyfLlvN9NdCqO/jWa39FkL898hvuL/ZuXMnnTp1wsXFBQsLC4YOHUpaWhp5eRXTuw0MDGjevLn2ed26dbGysuLs2fJvDaKjo5k1axZKpVL7uDnL6dZ27oa+vj7Lli3j8uXLfPzxx7i4uDBnzhz8/f1JTk7+x7rHjh2jV69euLu7Y2FhoR2IuHTpkk7czUELABsbG+rUqaPty4NQq1YtnnnmGX744QcANm3aRGFhoXaQ5m68/fbbREVFsWvXLlq0aMFnn32mMxssJSWFkSNH4uvri6WlJSqVipycnEp9/SdZWVlcvXqVNm3a6JS3adPmrl6PkJAQoqKiqFOnDuPHj2f79u3aY9HR0eTk5GBra6vzvkhISODChYplNPPnz6ekpITffvuNVatWaQfFoHyZZffu3Zk8eTIbN25kzJgx2plaJ0+epG7dutpBLoBmzZpVyvFO7++bM7qqcv78efLy8ujSpYtOH1asWKHTh78rLCwkKytL51FUVHjbeCGEeNCO7V5KZtolWnV/q6ZTEaJGtK5di7nPtOH9ri1wVpmzcG8URSXVv9erEHcS0q87zva2vDH3C16cOIsf/thC+6Am6CkqPqaOG9wfgDEz5jPo7dls3XeIpwIaolCUH795X6zABnV5pl0rars607fT0wTU92PHn0cfdpeEEP8BMqPrFomJifTs2ZNXX32VDz/8EBsbG/bv388rr7xCUVERZmZmd9VOTk4OM2fOpH///pWOmZiY3FduLi4uDB06lKFDhzJ79mz8/PxYsmQJM2fOrDI+NzeX4OBggoODWbVqFfb29ly6dIng4OAa2Zh8xIgRDB06lM8++4xly5YxcODAu349Aezs7PDx8cHHx4fffvuNhg0bEhgYSP365Ru6vvTSS6SlpbFw4UI8PDwwNjamVatWD7WvAQEBJCQksHXrVnbu3Mnzzz9P586d+f3338nJycHZ2ZmIiIhK9W7dA+3ChQtcvXqVsrIyEhMTadiwofbYiRMntLMEAwIC2LhxI8HBwdy4cYOwsDCGDx+u0665ue6eBHfz/jY1vf0yhpt7eYWGhuLionuXm1sH5P5u7ty5ld6nL736LsPHTr1tHfHgKFVW5GRn6pTlZKsxMTGT2VzikWVibk1BnlqnrDBPjaGRWaXZXMd2f0NywjE6PPcBZhZ2CPGosDI1JjNf94uhzPwiTA0NMDLQR0+hQE+hILNA91ons6AQKxPd38vmRoaYGxnirDLHz86KV9bs5GhSCq1r16r2fognh8rcDD09PdTZuvu/qnNysVJVvWzcUmnOO6+8SFFxMdm5+dhYWvDz5p3Y21hpY5zsbJgxbjgFhUXkFRRiY2nBZz+uwcHWRntefX19XB3tddp2dbTXLoEUQjxZZKDrFseOHaOsrIxPP/0UPb3ybxHWrFlTKa6kpISjR48SFBQEQExMDGq1mnr16gHlgxAxMTH3vP/U3bK2tsbZ2Znc3PJp6VXdgfHcuXOkpaXx0Ucf4ebmBsDRo1V/o3Hw4EHc3d0ByMjIIDY2VtuXe3W7u0H26NEDc3Nzvv76a8LCwm6759jdcHNzY+DAgUyZMoUNGzYA5RuoL168mB49egCQlJTEjRu6U6QNDQ3/8U6VKpWKWrVqERkZqbMMLzIyUvtvfScqlYqBAwcycOBAnnvuObp160Z6ejoBAQFcu3YNAwMDnX27blVUVMSQIUMYOHAgderUYcSIEZw8eVJ710sXFxf27dvHlClTgPKZZuvWraNnz57Y2Ngwbty4f8ztbt7fjRo1Ijw8vMoB1Pr162NsbMylS5fuaZnilClTePPNN3XKDl2Qb5EfFvfafsScPq5Tdv5sNO61ZfNt8eiyda5DcsIxnbJrl6Kwda64OYdGo+GviG+5cv4QHZ6bjdLS8WGnKcS/4mtvRdSVVJ2yE8k38LW3AsBAX4/atipOJ6fR3K38/a3RaDh9LY2udW6/RFeDBo1GQ3FZWbXlLp5MBgb6eLnW4lRcAkENyz9LaDQaTsXG0+3pf76WNjI0xNbKkJKSUg6dOEPLJv6VYkyMjTAxNiInL5/omAsM7tlFe15vt1okp6bpxF9NvYGdtWWldoQQj78ndqArMzOTqKgonTI7OzuKi4v54osv6NWrl84m3rcyNDTk9ddfZ9GiRRgYGDBu3DhatmypHQyZNm0aPXv2xN3dneeeew49PT2io6M5deoUH3zwwT3luXTpUqKioujXrx/e3t4UFBSwYsUKTp8+zRdffAGU77WUk5NDeHg4jRs3xszMDHd3d4yMjPjiiy8YM2YMp06dYvbs2VWeY9asWdja2uLo6MjUqVOxs7PT3knxXnl6enLo0CESExNRKpXY2Nigp6eHvr4+ISEhTJkyBV9fX53lkvdjwoQJNGjQgKNHjxIYGIivr6/2LpNZWVm8/fbblWYneXp6Eh4eTps2bTA2Nsba2rpSu2+//TbTp0/H29ubJk2asGzZMqKioli1atUdc1qwYAHOzs40bdoUPT09fvvtN5ycnLCysqJz5860atWKvn378vHHH+Pn58fVq1cJDQ2lX79+BAYGMnXqVDIzM1m0aBFKpZItW7bw8ssvs3nzZm1uPXr0YOzYsbz66qsUFxezZ88ejIyMSE1NZdOmTQwcOPC2+fn4+Nzx/T1lyhQaNmzIa6+9xpgxYzAyMmL37t0MGDAAOzs7Jk6cyP/93/9RVlbGU089RWZmJpGRkahUKu1ss78zNjauNOPLyEju9HS/CgsLSLtesWw5I+06V5MSMDNXYmVjT9iGn8hSp/P8S+MBaPFUV/7cE8bWdSto1qoT8bEnOXn8T156dcpdtylEdSspLiA746r2eU5mChnX4zEyscBcZc+J/SvJz02jRfAbAHg3DOZ89Bai9/1Ibf9OXE86SVLsAZ7u8562jb92f8OlmH206TUFAyNT8nPL7x5rZGyunfWVn5tBQW4GOZnl7//MGxcxMDTBzMIeY1OLh9R78aQoKC7hWnbF77/UnDwS07NQGhtiZ27KL3/FkJ5fwNg25Tda6OznzraYS6w6do72Pq6cuZbGoYvXeKdjxdYEz9SrzdcHTlDbVoW3rRVh5xIpKCmlvbcrACnZefx5MZlGznaoTIxIyy1g4+l4jA30aeoiP9/Fg9ezfSu++nkdXq7O+Li7smXvQQqKimgf1BSAL1f9gbWlhXaQKi7xMumZWXi6OJGemc1v23ZTptHQp+NT2jajzp1Ho9Hg4mDHtRvprNy0HRcHOzr8r02AXh3asHDlb9T18qCBb22On43j2OlYZowNeaj9F0L8NzyxA10RERE0bdpUp+yVV15hwYIFzJs3jylTptC2bVvmzp3LsGHDdOLMzMyYNGkSgwYN4sqVKzz99NN8//332uPBwcFs3ryZWbNmMW/ePAwNDalbt67O5ul3KygoiP379zNmzBiuXr2KUqnE39+f9evXa2fVtG7dmjFjxjBw4EDS0tKYPn06M2bMYPny5bz77rssWrSIgIAA5s+fT+/evSud46OPPmLChAnExcXRpEkTNm3apHNHw3sxceJEXnrpJerXr09+fj4JCQnaGUyvvPIKc+bMqbTE7n7Ur1+frl27Mm3aNLZs2cL333/PqFGjCAgIwM3NjTlz5mjvPnnTp59+yptvvsm3336Li4sLiYmJldodP348mZmZvPXWW1y/fp369euzceNGfH1975iThYUFH3/8MXFxcejr69O8eXO2bNminT21ZcsWpk6dyvDhw0lNTcXJyYm2bdvi6OhIREQEn3/+Obt370alUgGwcuVKGjduzNdff82rr75Kt27dCA8PZ/r06bRp0wY9PT06d+7M4cOH+eOPPwgJCcHNzY3WrVtXmV/jxo3v+P728/Nj+/btvPvuuwQFBWFqakqLFi148cUXAZg9ezb29vbMnTuX+Ph4rKysCAgI4N13372rfzfx7125eJ5vF87QPg9duxyAgJbtGTB0HNlZatTpFbMZbewcCXl1CqFrlxO5ewuW1rb0H/wqfvWb3nWbQlS39Gvn2b32fe3zqL3ld+qtXb8DQV3HU5CXQV5WxftaaenI073fI2rvD8RGbcZMaUfzLmNx9qx4X58/UX532t2/Vwx+AQR1fZ3a9ctvYHLhxDZOH1qtPbbrt6mVYoR4UOLTMpm947D2+cqj5wBo6+3Cq60boS4oJC23QHvcQWnGpA7NWHHsLGHnErExM2FUqwY0rlUxQNXK05msgiJ+i44jM78QDxsVkzs2125ib6Svx7mUdLaeTSSvqBiViTF1Ha2Z2a0lKpPbbzsgxP1q3bQBmTm5rAnbjTo7B89azkwdNVS7Qf2NjEwUNzfXAopLSvh16y6up2VgbGxEQD1fxg1+FnPTiu1e8gsK+HlzOGmZmSjNzGjRqB4v9OiEgYG+NqZFo3qMeK4n63fuY/m6rTg72PLW8IHU9ZIbkAjxJFJoNDe37xOieu3bt49OnTqRlJSEo6MsIXmS7TktM7rE42/HkSf2uyTxBHnryoSaTkGIamcQ3KemUxCi2lkEdqvpFO5b9tGwmk6hSo/ya/qok6twUe0KCwtJTU1lxowZDBgwQAa5hBBCCCGEEEIIUS307hwiqtOcOXNQKpVVPrp3717T6T0Qv/zyCx4eHqjVaj7++GOdY6tWrbpt//39K29CWZOehH8rIYQQQgghhBDiUSZLF2tYeno66enpVR4zNTXFxcXlIWf0cGVnZ5OSklLlMUNDQzw8/jvr6p/0f6sHSZYuiieBLF0UTwJZuiieBLJ0UTwJHuVldrJ0UfydXIXXMBsbG2xsbGo6jRpjYWGBhcWjcWerJ/3fSgghhBBCCCGE+K+TpYtCCCGEEEIIIYQQ4rEgA11CCCGEEEIIIYQQ4rEgA11CCCGEEEIIIYQQ4rEgA11CCCGEEEIIIYQQ4rEgm9ELIR46uRudeBLI3ejEk+BE309rOgUhql1A/t6aTkEIIcQ9kBldQgghhBBCCCGEEOKxIANdQgghhBBCCCGEEOKxIANdQgghhBBCCCGEEOKxIANdQgghhBBCCCGEEOKxIANdQgghhBBCCCGEEOKxIANdQvyHJCYmolAoiIqKqulUhBBCCCGEEEKIR45BTScgxL8REhKCWq1m/fr1ACQlJTF9+nTCwsK4ceMGzs7O9O3bl2nTpmFra6ut1759e/bs2QOAsbEx7u7uDB8+nMmTJ6NQKO543sTERGrXrq19bmNjQ7NmzZg3bx5Nmza97/64ubmRnJyMnZ0dABEREXTo0IGMjAysrKzuu13x6NNoNJw++Cvxp3ZQVJiLnXNdmnUcjYV1rX+sFxe9hZhjGyjIzcDK3pOm7Udg6+SnPX7h5DYundtHRmo8xUX59Hv1J4yMzXXaOHP4d5ITjpKRmoC+viH9Xv2pWvoonmzbYy6y6XQCmQWFuFtbENK8Pj52VreNP5iYzJroOG7k5uNkYcaLAXVo6uKgPa7RaPg9Oo5d5y+TW1RMHXtrXm7hj7Oq4v297uR5jl9JJTE9C0N9Pb4f2KU6uygEf+4JY9/ODWRnqXF29aDXgFdw8/S9bfyJvw6wY9OvqNNTsXVwplufIdRtEKA9rtFo2Bm6miOROynIz8Pdqw59XxiFnYMzABlp19m19XcuxJwkJzsTC0trmjR/mg7dnsPAQD4GiOoRtv8wm3ZHos7KwaOWE8P7d8fXw/W28X9GnWL11t2kpqtxsrdlcM/OBNSvuFbRaDSsCdtN+MG/yMsvwK+2GyOf64mzfcW1/R879vLXmVgSr1zDwECf5XOmVGsfhRD/bTKjSzw24uPjCQwMJC4ujl9++YXz58+zZMkSwsPDadWqFenp6TrxI0eOJDk5mZiYGKZMmcK0adNYsmTJPZ1z586dJCcns23bNnJycujevTtqtfq+8i8qKkJfXx8nJye5+BSVnDu6jrioUJp1HEPnF+ZhYGjCnnWzKC0pum2dS7H7idq7DP8Wz9N10KdY2nmyd90sCvIytTElxYU4eQZQr/lzt22nrLQYV9/W+DTq9kD7JMRNfyYms/LoWZ5t5MOcHm3wsFYxN/wIWQWFVcbHXM/gi/3RdPBxZU6PNgS6ObIg4i+SMrK1MRtPxxMWc5FXWvjzQfdWGBvoMzf8CEUlpdqYktIyWno40cXPvdr7KMSJY5GErl1Oxx4DeH3yJzi5ePLDlx+Qk51ZZfzFC+dYvexzmrfuxOuTP6F+o+b89M3HXLt6SRuzZ8d6DkRspe+Lo3n17bkYGZvww5ezKS4u/91w/doVyjRl9Bs0mgnvLeCZZ0M4tG872zeueih9Fk+eA8dPsWJDGM91bc+8t8bg4eLIh0tXkpmTW2V8TMIlFq5cS8cWAcx7awzNG9Rl/rJfuZScoo3ZsGs/W/cdYuSAnnz4xkhMjIz4cOlKioqLtTHFJSW0auJP1zbNq72PQoj/PhnoEo+NsWPHYmRkxPbt22nXrh3u7u50796dnTt3cuXKFaZOnaoTb2ZmhpOTEx4eHgwfPpxGjRqxY8eOezqnra0tTk5OBAYGMn/+fFJSUjh06BAXLlygT58+ODo6olQqad68OTt37tSp6+npyezZsxk2bBgqlYpRo0bpLF1MTEykQ4cOAFhbW6NQKAgJCWHFihXY2tpSWKj7AbBv374MHTr0jjlHR0fToUMHLCwsUKlUNGvWjKNHj2qP79+/n6effhpTU1Pc3NwYP348ubnlFycrVqxAqVQSFxenjX/ttdeoW7cueXl59/Taibun0WiIi9pMvaABuHgHYWXnSVDweApy07ly4dBt68X+tRGvBl2o7d8Jla0bgZ1eRd/AmITT4dqYOgG9qde8v84sr79r0OpF6gT0xtLO44H2S4ibQs8m0NHXjfY+rrhaKRnRwh9jfX12n79cZXzYuUQa17Kjl78XrlZKnm/ih6eNJdtiLgLl/2fCzl2kX0MfAt0ccbdW8WqbRqjzCzmaVPHhaUATP3rUq427tcVD6ad4su3ftYnmbToT2KojDs6u9HtxNEZGRhz9c1eV8ZERofjVb0rbLn1wcHala68XqeVWmz/3bAXK3+cHdofSsduz1G/UHGcXDwYMHUd2ZgZnog8DUMe/KQOGjsO3XhNs7Zyo36g5bTv34VTU7X93CPFvbI74k04tm9GhRVNcnewZNaAXxkaG7D70V5XxW/YepEldH3p3bIOrkz0v9OhIbRdnwvaVv4c1Gg1b9h7i2S5tad6gLh61HBk7qB8ZmdkcOXlO287A7h15pl0r3J0dqjyPEOLJIgNd4rGQnp7Otm3beO211zA1NdU55uTkxODBg1m9ejUajaZSXY1Gw759+zh37hxGRkb3ncPN8xYVFZGTk0OPHj0IDw/n+PHjdOvWjV69enHp0iWdOvPnz6dx48YcP36c999/X+eYm5sba9euBSAmJobk5GQWLlzIgAEDKC0tZePGjdrY69evExoayssvv3zHPAcPHoyrqytHjhzh2LFjTJ48GUNDQwAuXLhAt27dePbZZzlx4gSrV69m//79jBs3DoBhw4bRo0cPBg8eTElJCaGhoXz33XesWrUKMzOz+37txD/LzUohPzcDR7eG2jIjY3Nsnfy4kRxTZZ2y0hLSUy7g5N5YW6ZQKHB0b0TabeoIURNKSstISMuigbOdtkyhUNDA2Za4VHWVdWJT1TRwttUpa+RsS9yN8vjrOfmo8wtp4FQRY25kiI+dFbE3qm5TiOpUUlLClUvx+NRtpC1TKBT41G3EpYTYKutcSojFu05DnTLfeo218elpKWRnqXViTM3McfP0vW2bAAX5uZiZK/9Nd4SoUklJKfGXr9LQz0tbplAoaOjnTWxi1V9cxCZe1okHaFTHm9iLSQBcT8tAnZVNA9+KGHNTE3w9XIlNTKqGXgghHgcy0CUeC3FxcWg0GurVq1fl8Xr16pGRkUFqaqq2bPHixSiVSoyNjWnbti1lZWWMHz/+vs6vVquZPXs2SqWSoKAgGjduzOjRo2nQoAG+vr7Mnj0bb29vncEpgI4dO/LWW2/h7e2Nt7e3zjF9fX1sbGwAcHBwwMnJCUtLS0xNTRk0aBDLli3Txv7000+4u7vTvn37O+Z66dIlOnfuTN26dfH19WXAgAE0blw+GDJ37lwGDx7MG2+8ga+vL61bt2bRokWsWLGCgoICAJYuXUpycjLjx4/nlVdeYcaMGTRr1uy25yssLCQrK0vnUVJc9XIkUbWC3AwATMysdMqNzawoyFVXWacwPwuNpgxjM0udchMzKwryMqojTSHuS3ZhEWUaDZYmul80WJoYo77N0sWsgkKsTIx1yqxMjVHnl8ff/LNym0Zk5svPH/Hw5eVmUVZWhtJC92ey0sKSnKyqfybnZGViobLSKbNQWZGdWR6fk6kub0P1tzZVlmTfps201GT+3BNG0FOyH5148LJy8ygrK8PKQncg1Uppjjorp8o6mTk5leNVSm28Orv8T8u/xVhamGuPCSHE38lAl3isVDVj61a3ztgaPHgwUVFRREZG0r17d6ZOnUrr1q3v6XytW7dGqVRibW1NdHQ0q1evxtHRkZycHCZOnEi9evWwsrJCqVRy9uzZSjO6AgMD7+l8N40cOZLt27dz5coVAJYvX05ISMhdbaT/5ptvMmLECDp37sxHH33EhQsXtMeio6NZvnw5SqVS+wgODqasrIyEhASgfBnl999/z9dff423tzeTJ0/+x/PNnTsXS0tLnceB0I/vq99Piovn9rD2qxe1j7KysppOSQghxCMuU53Gsq8+pEHTlgS1kYEuIYQQjy/Z8Vo8Fnx8fFAoFJw9e5Z+/fpVOn727Fns7e117lxoaWmJj48PAGvWrMHHx4eWLVvSuXPnuz7v6tWrqV+/Pra2tjptT5w4kR07djB//nx8fHwwNTXlueeeo6hId+Nwc3Nz7kfTpk1p3LgxK1asoGvXrpw+fZrQ0NC7qjtjxgwGDRpEaGgoW7duZfr06fz666/069ePnJwcRo8eXeXMNnf3is2a9+7di76+PsnJyeTm5mJhcfv9baZMmcKbb76pUzZn9Z0H5J5ktbyC6HrLnlllpeWbrRbkqTFV2mjLC/PUWNp7VtmGsakKhUKPwjzdTY4L8tSYmFk/+KSFuE8WxkboKRRkFuj+fMysYtbWTaoqZnup8wuxMi2Pv/lnZkER1mYmt7RZJPtxiRphZq5CT0+v0sbzOdmZKFVV/0wun5ml1inLzlJjYVker7S0Km8jKxOVZcXvhpysTJxdPXXqZWWm893CGbjX9qP/4Ff/XWeEuA2VuRl6enqVZlqpc3KxUlW9XNZSqawcn5Wjjb852yszOwcby4qf35nZuXjUcnyQ6QshHiMyo0s8FmxtbenSpQuLFy8mPz9f59i1a9dYtWoVISEht62vVCqZMGECEydOvOOssFu5ubnh7e2tM8gFEBkZSUhICP369aNhw4Y4OTmRmJh4Dz0qd3MGWmlpaaVjI0aMYPny5SxbtozOnTvj5uZ21+36+fnxf//3f2zfvp3+/ftrl0EGBARw5swZfHx8Kj1u5nLgwAHmzZvHpk2bUCqV2v27bsfY2BiVSqXzMDCs+sOrKGdoZIqFlbP2obJxw9TcmpSkk9qY4sI80q7FYudcp8o29PQNsHH0JuXSCW2ZRqPhetJJbG9TR4iaYKCvR21bFaeT07RlGo2G09fS8LW3qrKOn70Vp26JBzh5LQ1fu/J4B6UpVqbGnLpWEZNXVMz5G2r87KpuU4jqZGBggIu7FxdiKn6OazQazsecxL121TcDca/tpxMPcP7cCW28ja0jFiornZiC/DySEuN02sxUp/Ht59NxcfPiuaHj7mr2txD3w8BAHy/XWpyKS9CWaTQaTsXG4+fpWmUdP09XTsbG65SdjI3Hz6P8utbB1horlQWn4ipi8goKiLt4GT/Pu7/2FUI8WWSgSzw2vvzySwoLCwkODmbv3r0kJSURFhZGly5d8PPzY9q0af9Yf/To0cTGxmo3gP83fH19+eOPP4iKiiI6OppBgwbd1/IzDw8PFAoFmzdvJjU1lZycim+8Bg0axOXLl/n222/vahN6gPz8fMaNG0dERAQXL14kMjKSI0eOaPc2mzRpEgcOHGDcuHFERUURFxfHhg0btINZ2dnZDB06lPHjx9O9e3dWrVrF6tWr+f333++5b+LuKRQKfJv05Ozh37hy4TDqG4kc2rYQE3MbXLxbaON2r51GXFTFzD6/gN7En9pBwpldZKUlcWzXEkqKC6jt31Ebk5+bQcb1eHIykwHIvHGRjOvxFOZna2Nys1LJuB5PXvYNyspKybgeT8b1eEqKCx5C78WT4Jl6tdl1Pok9Fy5zWZ3D94dOU1BSSnvv8g9GX0VG88tfFTdR6FbXkxPJN9h8JoErmTn8Hh1HQlomwXXK7wyqUCjoVteDdSfPczQphUsZWSyOPIGVqTGBbhUzAG7k5pOYnsWN3AJKyzQkpmeRmJ5FQXHJw30BxBPhqY69OBK5k2MHd3M9+TLrf/2GosJCmrUsv8Pymh8XEbbhJ218m/bPEHs2in07N3L92hV2hq7myqV4WrXrDpS/z1t3eIZdYWs5c+IIyVcusmbFF1hYWlO/cRBQMchlaW1H9/7DyM3OJDszQ7vPlxAPWs/2rQj/8xgRh49z+Voq3/62mYKiItoHNQXgy1V/sGpzxV3Oe7RtSXTMBTbtjuRKSiprwnYTf/kq3Z4ufw8rFAp6tG3B2h17OXLqHBevpvDlqnVYW1rQvGFdbTs3MtQkXE7mhjqzfMuNy8kkXE6moFB3trAQ4skgSxfFY8PX15cjR44wY8YMnn/+ea5fv45Go6F///6sXLnyjncFtLGxYdiwYcyYMYP+/fujp3f/48ALFizg5ZdfpnXr1tjZ2TFp0iSysrLuuR0XFxdmzpzJ5MmTGT58OMOGDWP58uVA+dLLZ599ltDQUPr27XtX7enr65OWlsawYcNISUnBzs6O/v37M3PmTAAaNWrEnj17mDp1Kk8//TQajQZvb28GDhwIwIQJEzA3N2fOnDkANGzYkDlz5jB69GhatWqFi4vLPfdR3J26gf0oLSnkaPjXFBfmYlerHm37vY++QcW+c7mZKToDVO5+T1GYl8mpP3+lIC8Da/vatO37vs6m9hdObOP0odXa57t+mwpAUNfXqV2/fEDs9MFfSDizWxuz/ee3AOjw7Gwc3BpUS3/Fk6WVpzNZBUX8Fh1HZn4hHjYqJndsjuX/liCm5Ragd8sslDoO1oxr05g10XGsPh6Dk8qcN9sH4HbLssTe/l4UlZTy3cFT5BWXUMfemsmdAjEy0NfG/BYdx94LV7TPp4RGAvB+lyDqO+ne1VGIf6tRszbkZGexc/NqsrPU1HLzZPjYqdoN59XpN1Dccu3h4V2XgSET2LHpV7Zt/Bk7B2eGjHoHp1oVWwm069KX4qJC1v28hIL8PDy86zJ87HsYGpb/bjh/7gRpqddIS73GR1NH6+Qz9yv5kko8eK2bNiAzJ5c1YbtRZ+fgWcuZqaOGapcg3sjI1JlVWKe2O+OH9Gf11t38siUcJztbJg5/AXfnii8l+nR8isKiYr5Zs4m8/ALqeLnz7qghGP3vruEAq7fuZs+RKO3zSZ8uAWD62BD8fWpXc6+FEP81Cs29rNMS4hEzffp0FixYwI4dO2jZsmVNp/PAderUCX9/fxYtWlTTqdyT95bLt2vi8ffWlQk1nYIQ1e5E309rOgUhql1A/t6aTkGIamcR2K2mU7hv2UfDajqFKj3Kr+mjTmZ0icfazJkz8fT05ODBgwQFBf2rWVr/JRkZGURERBAREcHixYtrOh0hhBBCCCGEEOI/QQa6xGNv+PDh91xnzJgx/PTTT1UeGzJkCEuWLPm3af0rTZs2JSMjg3nz5lGnju7G4v7+/ly8eLHKekuXLmXw4MEPI0UhhBBCCCGEEOKhk4EuIaowa9YsJk6cWOUxlUr1kLOp7J/u4LhlyxaKi4urPOboKLdhFkIIIYQQQgjx+JKBLiGq4ODggIODQ02ncV88PDxqOgUhhBBCCCGEEKJGPB4bFgkhhBBCCCGEEEKIJ54MdAkhhBBCCCGEEEKIx4IMdAkhhBBCCCGEEEKIx4Ls0SWEeOi6NC+p6RSEqHYGDfrUdApCVLtG69+q6RSEqHbzXBbWdApCVLsPAms6AyEeHJnRJYQQQgghhBBCCCEeCzLQJYQQQgghhBBCCCEeCzLQJYQQQgghhBBCCCEeCzLQJYQQQgghhBBCCCEeCzLQJYQQQgghhBBCCCEeCzLQJYQQQgghhBBCCCEeCzLQJcRDlpiYiEKhICoqqqZTEUIIIYQQQgghHisGNZ2AEHcSEhKCWq1m/fr1ACQlJTF9+nTCwsK4ceMGzs7O9O3bl2nTpmFra6ut1759e/bs2QOAsbEx7u7uDB8+nMmTJ6NQKO543sTERGrXrq19bmNjQ7NmzZg3bx5Nmza97/64ubmRnJyMnZ0dABEREXTo0IGMjAysrKzuu13xeNNoNOwMXc2RyJ0U5Ofh7lWHvi+Mws7B+R/r/bknjH07N5CdpcbZ1YNeA17BzdNXe7y4uIgta3/kxF+RlJSU4FevMb0HjsRCZVWprbzcbBbOeYssdTrTPvkRUzPzB91N8QQL23+YTbsjUWfl4FHLieH9u+Pr4Xrb+D+jTrF6625S09U42dsyuGdnAur7aY9rNBrWhO0m/OBf5OUX4FfbjZHP9cTZvvz3RGq6mt+37+FUXDyZ2blYqyx4qllDnu3SDgMD/Wrvr3gybY+5yKbTCWQWFOJubUFI8/r42FndNv5gYjJrouO4kZuPk4UZLwbUoamLg/a4RqPh9+g4dp2/TG5RMXXsrXm5hT/Oqoqfz+tOnuf4lVQS07Mw1Nfj+4FdqrOLQgDl783TB38l/tQOigpzsXOuS7OOo7GwrvWP9eKitxBzbAMFuRlY2XvStP0IbJ0qfraXlhQRtXcZSbGRlJYW4+TRlGYdR2FiZqWNWf15v0rttur+Ju51nn5g/RNC/LfJjC7xSImPjycwMJC4uDh++eUXzp8/z5IlSwgPD6dVq1akp6frxI8cOZLk5GRiYmKYMmUK06ZNY8mSJfd0zp07d5KcnMy2bdvIycmhe/fuqNXq+8q/qKgIfX19nJycMDB4eOPMRUVFD+1conrs2bGeAxFb6fviaF59ey5Gxib88OVsiotv/2974lgkoWuX07HHAF6f/AlOLp788OUH5GRnamNC1y7n7KmjDHrlLUa+MZNMdTqrvv2kyvZ+/2kxTrU8HnjfhDhw/BQrNoTxXNf2zHtrDB4ujny4dCWZOblVxsckXGLhyrV0bBHAvLfG0LxBXeYv+5VLySnamA279rN13yFGDujJh2+MxMTIiA+XrqSouBiAyymplJWVMer5Xnz6zmsM6xvMjgNH+WXLzofSZ/Hk+TMxmZVHz/JsIx/m9GiDh7WKueFHyCoorDI+5noGX+yPpoOPK3N6tCHQzZEFEX+RlJGtjdl4Op6wmIu80sKfD7q3wthAn7nhRygqKdXGlJSW0dLDiS5+7tXeRyFuOnd0HXFRoTTrOIbOL8zDwNCEPetmUVpy++uWS7H7idq7DP8Wz9N10KdY2nmyd90sCvIqrluO7/2BqwlHafXM23R4bjb5OWlEbp5Xqa2grq/Te+QP2oeLd4tq6acQ4r9JBrrEI2Xs2LEYGRmxfft22rVrh7u7O927d2fnzp1cuXKFqVOn6sSbmZnh5OSEh4cHw4cPp1GjRuzYseOezmlra4uTkxOBgYHMnz+flJQUDh06xIULF+jTpw+Ojo4olUqaN2/Ozp26H5A8PT2ZPXs2w4YNQ6VSMWrUKJ2li4mJiXTo0AEAa2trFAoFISEhrFixAltbWwoLdS9++/bty9ChQ++Y84wZM2jSpAnfffcdtWvXxsTEBICwsDCeeuoprKyssLW1pWfPnly4cEGn7uXLl3nxxRexsbHB3NycwMBADh06pD2+YcMGAgICMDExwcvLi5kzZ1JSUnJPr6m4NxqNhgO7Q+nY7VnqN2qOs4sHA4aOIzszgzPRh29bb/+uTTRv05nAVh1xcHal34ujMTIy4uifuwDIz8vl6IFdPNM/BO86DXF19+a5oeO4GB/DpYRYnbYO7g2jIC+Xtp17V2tfxZNpc8SfdGrZjA4tmuLqZM+oAb0wNjJk96G/qozfsvcgTer60LtjG1yd7HmhR0dquzgTtq/8/4NGo2HL3kM826UtzRvUxaOWI2MH9SMjM5sjJ88B0LSeL2MH9aNxHR8c7Wxo3qAuvTu04dCJsw+t3+LJEno2gY6+brT3ccXVSsmIFv4Y6+uz+/zlKuPDziXSuJYdvfy9cLVS8nwTPzxtLNkWcxEof5+HnbtIv4Y+BLo54m6t4tU2jVDnF3I0qWLQd0ATP3rUq427tcVD6acQGo2GuKjN1AsagIt3EFZ2ngQFj6cgN50rFw7dtl7sXxvxatCF2v6dUNm6EdjpVfQNjEk4HQ5AUWEuCafDadJ2OI5uDbFx9CGo6+vcuHqOtOQYnbaMjM0xNbfWPvQNjKq1z0KI/xYZ6BKPjPT0dLZt28Zrr72GqampzjEnJycGDx7M6tWr0Wg0lepqNBr27dvHuXPnMDK6/190N89bVFRETk4OPXr0IDw8nOPHj9OtWzd69erFpUuXdOrMnz+fxo0bc/z4cd5//32dY25ubqxduxaAmJgYkpOTWbhwIQMGDKC0tJSNGzdqY69fv05oaCgvv/zyXeV6/vx51q5dyx9//KHdDyw3N5c333yTo0ePEh4ejp6eHv369aOsrAyAnJwc2rVrx5UrV9i4cSPR0dG888472uP79u1j2LBhTJgwgTNnzrB06VKWL1/Ohx9+eO8vprhr6WkpZGep8a7TUFtmamaOm6dvpQGpm0pKSrhyKR6fuo20ZQqFAp+6jbR1ribFU1paohPj4OSClbWdTrvXky+za+vvPP/S63e17FeIe1FSUkr85as09PPSlikUChr6eRObWPUAQGziZZ14gEZ1vIm9mATA9bQM1FnZNPCtiDE3NcHXw5XYxKTb5pJbUIDSzPS2x4W4XyWlZSSkZdHA2U5bplAoaOBsS1yquso6salqGjjb6pQ1crYl7kZ5/PWcfNT5hTRwqogxNzLEx86K2BtVtynEw5CblUJ+bgaObhXXLUbG5tg6+XHjbwNSN5WVlpCecgEn98baMoVCgaN7I+0gVsb1eMpKS3C8JUZl44qZhX2ldo/t+ob1S4ax45e3iT+9s8rPB0KIx5fs0SUeGXFxcWg0GurVq1fl8Xr16pGRkUFqaioODuX7VyxevJjvvvuOoqIiiouLMTExYfz48fd1frVazezZs1EqlQQFBeHo6EjjxhW/aGfPns26devYuHEj48aN05Z37NiRt956S/s8MTFR+3d9fX1sbGwAcHBw0Nmja9CgQSxbtowBAwYA8NNPP+Hu7k779u3vKt+ioiJWrFiBvb29tuzZZ5/Vifnhhx+wt7fnzJkzNGjQgJ9//pnU1FSOHDmizcvHx0cbP3PmTCZPnsxLL70EgJeXF7Nnz+add95h+vTpVeZRWFhYaWZaUVEpRkbGd9UPATmZagCUKkudcqXKkuysjCrr5OVmUVZWhtLib3UsLElNuQJAdpYafX2DSntt3dpuSXExvyz7jO79hmJlY0/6jRSEeJCycvMoKyvDykKpU26lNOdqyo0q62Tm5FSOVylRZ+UAoM4u/9PybzGWFubaY3937UY62/YdZkjvrvfVDyH+SXZhEWUaDZYmul+2WZoYczWr6iW6WQWFWJno/q60MjVGnV/+O/Xmn5XbNCIzv+rlkEI8DAW55dcQt+6bBWBsZkVBrrrKOoX5WWg0ZRib6V63mJhZkZ1xRduunr4BRsbmf4uxpCCvot0GrV7E0a0h+gbGXLsYxV+7vqGkuAC/Jj3/XceEEI8MGegSj5w7fSNz64ytwYMHM3XqVDIyMpg+fTqtW7emdevW93S+1q1bo6enR25uLl5eXqxevRpHR0dycnKYMWMGoaGhJCcnU1JSQn5+fqUZXYGBgfd0vptGjhxJ8+bNuXLlCi4uLixfvpyQkJC7nlHj4eGhM8gF5YOF06ZN49ChQ9y4cUM7U+vSpUs0aNCAqKgomjZtqh3k+rvo6GgiIyN1ZnCVlpZSUFBAXl4eZmZmlerMnTuXmTNn6pS99Oq7DB87tVKsKHf88F7W//qN9vlLr06psVzCNqzCwcmFpkHtaiwHIapbmjqLOUtX0qJxfTq3albT6QghxCPl4rk9HA2v2AP36T7v1WA24N/iee3frR28KC0pJObYBhnoEuIJIgNd4pHh4+ODQqHg7Nmz9OtX+W4qZ8+exd7eXmdWlKWlpXZG0po1a/Dx8aFly5Z07tz5rs+7evVq6tevj62trU7bEydOZMeOHcyfPx8fHx9MTU157rnnKm38bm5+f3ema9q0KY0bN2bFihV07dqV06dPExoaetf1qzpvr1698PDw4Ntvv6VWrVqUlZXRoEEDbc5/XxL6dzk5OcycOZP+/ftXOnZzH7C/mzJlCm+++aZO2aELpVXGinL1GzXHvXbFnRFv7oGWk5WJyrJiEDInKxNnV88q2zAzV6Gnp6ez8TxATnYmSpU1ABYqK0pLS8jPy9WZ1ZWTlYnF/2LiY09x7epFTh0vv2i8OdD8waThtA/uT5eeL/zL3oonncrcDD09vUozrdQ5uViplFXWsVQqK8dn5Wjjb872yszOwcayYl+izOxcPGo56tRLz8xm1uLl+Hm6MWag7EEnqoeFsRF6CgWZBbrXCJlVzNq6SWVijPpvG9Wr8wuxMi2Pv/lnZkER1mYVv4MzC4pkPy7xUNXyCqLrLXdGLCstv+lHQZ4aU2XFdUthnhpLe88q2zA2VaFQ6FGYp3vdUpCnxsSs/JrExNyastISigpzdWZ1FeRlVpo9disbR19OH1pDaUkx+gaG99o9IcQjSPboEo8MW1tbunTpwuLFi8nPz9c5du3aNVatWkVISMht6yuVSiZMmMDEiRPvaZ2+m5sb3t7eOoNcAJGRkYSEhNCvXz8aNmyIk5OTzrLEu3VzBlppaeXBnxEjRrB8+XKWLVtG586dcXNzu+f2b0pLSyMmJob33nuPTp06aZd63qpRo0ZERUVVunvlTQEBAcTExODj41PpoadX9Y8TY2NjVCqVzkOWLf4zYxNTbO2dtQ8HJ1csVFZciDmpjSnIzyMpMQ732n5VtmFgYICLu5dOHY1Gw/mYk9o6tdy80Nc30IlJTbmKOuOGNmbwyLcY/+6nvD5lPq9PmU//wa8CMOr/ZtOqXfcH3nfx5DEw0MfLtRan4hK0ZRqNhlOx8fh5ulZZx8/TlZOx8TplJ2Pj8fMo/xnpYGuNlcqCU3EVMXkFBcRdvIyfZ8XP0TR1FjO/WoaXWy1ee7Gv7EEnqo2Bvh61bVWcTk7Tlmk0Gk5fS8PX3qrKOn72Vpy6JR7g5LU0fO3K4x2UpliZGnPqWkVMXlEx52+o8bOruk0hqoOhkSkWVs7ah8rGDVNza1KSKq4vigvzSLsWi51znSrb0NM3wMbRm5RLJ7RlGo2G60knsf1fHWsHL/T0Dbh+S0xWxhXyslNv2y6A+kYiRiZKGeQS4gkiA13ikfLll19SWFhIcHAwe/fuJSkpibCwMLp06YKfnx/Tpk37x/qjR48mNjZWuwH8v+Hr66vd6D06OppBgwZplwLeCw8PDxQKBZs3byY1NZWcnIpZCoMGDeLy5ct8++23d70J/e1YW1tja2vLN998w/nz59m1a1elmVYvvvgiTk5O9O3bl8jISOLj41m7di1//vknANOmTWPFihXMnDmT06dPc/bsWX799Vfee69mp6g/7hQKBa07PMOusLWcOXGE5CsXWbPiCywsranfOEgb993CGRyI2Kp9/lTHXhyJ3Mmxg7u5nnyZ9b9+Q1FhIc1alt/p09TMnMDWHQldu5wLMSe5fOkCv6/8EvfaftqBLlt7Z5xquWsfNrbl+985OLlW2v9LiPvVs30rwv88RsTh41y+lsq3v22moKiI9kFNAfhy1R+s2lxxx9webVsSHXOBTbsjuZKSypqw3cRfvkq3p8v/PygUCnq0bcHaHXs5cuocF6+m8OWqdVhbWtC8YV2gYpDL1tqSIb26kpmTS0ZWNhlZ2Q//BRBPhGfq1WbX+ST2XLjMZXUO3x86TUFJKe29ywd0v4qM5pe/KjbU7lbXkxPJN9h8JoErmTn8Hh1HQlomwXU8gPL3ebe6Hqw7eZ6jSSlcyshiceQJrEyNCXSrmLl4IzefxPQsbuQWUFqmITE9i8T0LAqK5Y7JonooFAp8m/Tk7OHfuHLhMOobiRzathATcxtcvFto43avnUZcVMVqBb+A3sSf2kHCmV1kpSVxbNcSSooLqO3fESjf0L62fyeO711GStJJ0lPOc2T7F9g519EOhl2JP0L8qR1k3rhItjqZ89FbOXvkd3wb93i4L4IQokbJ0kXxSPH19eXIkSPMmDGD559/nuvXr6PRaOjfvz8rV66sco+oW9nY2DBs2DBmzJhB//79bzsL6W4sWLCAl19+mdatW2NnZ8ekSZPIysq653ZcXFy0m7wPHz6cYcOGsXz5cqB86eWzzz5LaGgoffv2ve9cAfT09Pj1118ZP348DRo0oE6dOixatEhnc3sjIyO2b9/OW2+9RY8ePSgpKaF+/fp89dVXAAQHB7N582ZmzZrFvHnzMDQ0pG7duowYMeJf5SburF2XvhQXFbLu5yUU5Ofh4V2X4WPfw9CwYk+69Bsp5OVWvAcbNWtDTnYWOzevJjtLTS03T4aPnYqFykob88yzIShQsOq7+ZSUlOBXrwl9Bsq/p3i4WjdtQGZOLmvCdqPOzsGzljNTRw3VLkG8kZGpM9uqTm13xg/pz+qtu/llSzhOdrZMHP4C7s4VH+77dHyKwqJivlmzibz8Aup4ufPuqCEYGZZ/o38y9gLXbqRz7UY6r878VCefNZ/p7isoxIPQytOZrIIifouOIzO/EA8bFZM7Nsfyf0sQ03IL0Lv1fe5gzbg2jVkTHcfq4zE4qcx5s30AbrcsS+zt70VRSSnfHTxFXnEJdeytmdwpECMDfW3Mb9Fx7L1wRft8SmgkAO93CaK+k+5dHYV4UOoG9qO0pJCj4V9TXJiLXa16tO33PvoGFdctuZkpFOZXfLng7vcUhXmZnPrzVwryMrC2r03bvu/rLEts2vZlFCg4EPoxZaXFOHk0JaDDKO1xPT19zkdv5fieHwBQWjnRpO1wvBrIjUaEeJIoNHKvVfGImz59OgsWLGDHjh20bNmyptN54Dp16oS/vz+LFi2q6VQemD2n82o6BSGqXUD+3ppOQYhqV7JtQ02nIES1+9RlYU2nIES1+yDE6M5B/1HZR8NqOoUqWQR2q+kUnlgyo0s88mbOnImnpycHDx4kKCjoX83S+i/JyMggIiKCiIgIFi9eXNPpCCGEEEIIIYQQ/3ky0CUeC8OHD7/nOmPGjOGnn36q8tiQIUNYsmRJlccelqZNm5KRkcG8efOoU0d3g01/f38uXrxYZb2lS5cyePDgh5GiEEIIIYQQQgjxnyIDXeKJNWvWLCZOnFjlMZVK9ZCzqeyf7uC4ZcsWiouLqzzm6OhYZbkQQgghhBBCCPG4k4Eu8cRycHDAwcGhptO4Lx4eHjWdghBCCCGEEEKIB2Du3Ln88ccfnDt3DlNTU1q3bl3lyh5xdx6PzYyEEEIIIYQQQgghHkF79uxh7NixHDx4kB07dlBcXEzXrl3Jzc2t6dQeSTKjSwghhBBCCCGEEKKGhIXp3jly+fLlODg4cOzYMdq2bVtDWT26ZKBLCCGEEEIIIYQQ4gEqLCyksLBQp8zY2BhjY+M71s3MzATAxsamWnJ73MnSRSGEEEIIIYQQQogHaO7cuVhaWuo85s6de8d6ZWVlvPHGG7Rp04YGDRo8hEwfPzKjSwghhBBCCCGEEOIBmjJlCm+++aZO2d3M5ho7diynTp1i//791ZXaY08GuoQQQgghhBBCCCEeoLtdpnircePGsXnzZvbu3Yurq2s1Zfb4k4EuIYQQQgghhBBCiBqi0Wh4/fXXWbduHREREdSuXbumU3qkyUCXEEIIIYQQQgghRA0ZO3YsP//8Mxs2bMDCwoJr164BYGlpiampaQ1n9+iRzeiFEEIIIYQQQgghasjXX39NZmYm7du3x9nZWftYvXp1Taf2SJIZXeKJkZiYSO3atTl+/DhNmjSp6XSEEEIIIYQQQgg0Gk1Np/BYkYEucVshISGo1WrWr18PQFJSEtOnTycsLIwbN27g7OxM3759mTZtGra2ttp67du3Z8+ePUD5Bnzu7u4MHz6cyZMno1Ao7njemwNSN9nY2NCsWTPmzZtH06ZN77s/bm5uJCcnY2dnB0BERAQdOnQgIyMDKyur+273YQsLC2PKlCmcO3cOGxsb+vTpw+LFi2s6LVHNNBoNO0NXcyRyJwX5ebh71aHvC6Owc3D+x3p/7glj384NZGepcXb1oNeAV3Dz9NUeLy4uYsvaHznxVyQlJSX41WtM74EjsVBZAZCXm83qZQu5dvUiuTnZKFWW1GvYnODegzAxNavOLosnTNj+w2zaHYk6KwePWk4M798dX4/bb8L6Z9QpVm/dTWq6Gid7Wwb37ExAfT/tcY1Gw5qw3YQf/Iu8/AL8arsx8rmeONuX/75KTVfz+/Y9nIqLJzM7F2uVBU81a8izXdphYKBf7f0VT6btMRfZdDqBzIJC3K0tCGleHx87q9vGH0xMZk10HDdy83GyMOPFgDo0dXHQHtdoNPweHceu85fJLSqmjr01L7fwx1llro1Zd/I8x6+kkpiehaG+Ht8P7FKdXRQCKH9vnj74K/GndlBUmIudc12adRyNhXWtf6wXF72FmGMbKMjNwMrek6btR2DrVPGzvbSkiKi9y0iKjaS0tBgnj6Y06zgKEzMrAArzszkY9hmZNy5SWJCFiZkVtbya06j1EAyN5bpFiCeFLF0UdyU+Pp7AwEDi4uL45ZdfOH/+PEuWLCE8PJxWrVqRnp6uEz9y5EiSk5OJiYlhypQpTJs2jSVLltzTOXfu3ElycjLbtm0jJyeH7t27o1ar7yv/oqIi9PX1cXJywsDg0R3fLSgooH///jRq1IiTJ08SGhp617PTiouLqzc5Ua327FjPgYit9H1xNK++PRcjYxN++HI2xcVFt61z4lgkoWuX07HHAF6f/AlOLp788OUH5GRnamNC1y7n7KmjDHrlLUa+MZNMdTqrvv2kohGFgnqNAhk6ehJvTV/Ec0PGcv7cCdb/srQ6uyueMAeOn2LFhjCe69qeeW+NwcPFkQ+XriQzJ7fK+JiESyxcuZaOLQKY99YYmjeoy/xlv3IpOUUbs2HXfrbuO8TIAT358I2RmBgZ8eHSlRT972fh5ZRUysrKGPV8Lz595zWG9Q1mx4Gj/LJl50Pps3jy/JmYzMqjZ3m2kQ9zerTBw1rF3PAjZBUUVhkfcz2DL/ZH08HHlTk92hDo5siCiL9IysjWxmw8HU9YzEVeaeHPB91bYWygz9zwIxSVlGpjSkrLaOnhRBc/92rvoxA3nTu6jrioUJp1HEPnF+ZhYGjCnnWzKC25/XXLpdj9RO1dhn+L5+k66FMs7TzZu24WBXkV1y3H9/7A1YSjtHrmbTo8N5v8nDQiN8/THlcoFLh4NeepXpPp8dJXBHV5nZRL0Rzd9XW19lcI8d8iA13irowdOxYjIyO2b99Ou3btcHd3p3v37uzcuZMrV64wdepUnXgzMzOcnJzw8PBg+PDhNGrUiB07dtzTOW1tbXFyciIwMJD58+eTkpLCoUOHuHDhAn369MHR0RGlUknz5s3ZuVP3g4mnpyezZ89m2LBhqFQqRo0aRWJiIgqFgqioKBITE+nQoQMA1tbWKBQKQkJCWLFiBba2thQW6l509u3bl6FDh94x5+joaDp06ICFhQUqlYpmzZpx9OhR7fH9+/fz9NNPY2pqipubG+PHjyc3t/yD3IoVK1AqlcTFxWnjX3vtNerWrUteXp62TF9fn8GDB+Pj40OTJk0YNWpUpTxu9nX16tW0a9cOExMTVq1aRVpaGi+++CIuLi6YmZnRsGFDfvnlF526ZWVlfPzxx/j4+Ghn5H344Yfa40lJSTz//PNYWVlpZ5QlJibe8bUR90+j0XBgdygduz1L/UbNcXbxYMDQcWRnZnAm+vBt6+3ftYnmbToT2KojDs6u9HtxNEZGRhz9cxcA+Xm5HD2wi2f6h+BdpyGu7t48N3QcF+NjuJQQC4CZmZKWbbvh6uGDta0DPnUb0apdNxLjzz2Uvosnw+aIP+nUshkdWjTF1cmeUQN6YWxkyO5Df1UZv2XvQZrU9aF3xza4OtnzQo+O1HZxJmxf+f8HjUbDlr2HeLZLW5o3qItHLUfGDupHRmY2R06Wv3eb1vNl7KB+NK7jg6OdDc0b1KV3hzYcOnH2ofVbPFlCzybQ0deN9j6uuFopGdHCH2N9fXafv1xlfNi5RBrXsqOXvxeuVkqeb+KHp40l22IuAuXv87BzF+nX0IdAN0fcrVW82qYR6vxCjiZVDPoOaOJHj3q1cbe2eCj9FEKj0RAXtZl6QQNw8Q7Cys6ToODxFOSmc+XCodvWi/1rI14NulDbvxMqWzcCO72KvoExCafDASgqzCXhdDhN2g7H0a0hNo4+BHV9nRtXz5GWHAOAkYkSn8bdsXHyxVzlgKN7I3wad+fGVbluEeJJIgNd4o7S09PZtm0br732WqU7Pjg5OTF48GBWr15d5bpijUbDvn37OHfuHEZGRvedw83zFhUVkZOTQ48ePQgPD+f48eN069aNXr16cenSJZ068+fPp3Hjxhw/fpz3339f55ibmxtr164FICYmhuTkZBYuXMiAAQMoLS1l48aN2tjr168TGhrKyy+/fMc8Bw8ejKurK0eOHOHYsWNMnjwZQ0NDAC5cuEC3bt149tlnOXHiBKtXr2b//v2MGzcOgGHDhtGjRw8GDx5MSUkJoaGhfPfdd6xatQozs/Kp1iYmJgQHB/POO+9UmkVXlcmTJzNhwgTOnj1LcHAwBQUFNGvWjNDQUE6dOsWoUaMYOnQohw9XDJZMmTKFjz76iPfff58zZ87w888/4+joCJTPCgsODsbCwoJ9+/YRGRmJUqmkW7duFBXd/hs68e+kp6WQnaXGu05DbZmpmTlunr7aAam/Kykp4cqleHzqNtKWKRQKfOo20ta5mhRPaWmJToyDkwtW1na3bTcrM51Txw9S26f+g+iaEJSUlBJ/+SoN/by0ZQqFgoZ+3sQmVj0AEJt4WSceoFEdb2IvJgFwPS0DdVY2DXwrYsxNTfD1cCU2Mem2ueQWFKA0kzsbiQevpLSMhLQsGjjbacsUCgUNnG2JS1VXWSc2VU0DZ1udskbOtsTdKI+/npOPOr+QBk4VMeZGhvjYWRF7o+o2hXgYcrNSyM/NwNGt4rrFyNgcWyc/bvxvQOrvykpLSE+5gJN7Y22ZQqHA0b2RdhAr43o8ZaUlON4So7JxxczC/rbt5uekcyXuIPYuct0ixJPk0V3DJR6auLg4NBoN9erVq/J4vXr1yMjIIDU1FQeH8n0jFi9ezHfffUdRURHFxcWYmJgwfvz4+zq/Wq1m9uzZKJVKgoKCcHR0pHHjil9ws2fPZt26dWzcuFE7aATQsWNH3nrrLe3zW2cd6evrY2NjA4CDg4POHl2DBg1i2bJlDBgwAICffvoJd3d32rdvf8dcL126xNtvv03dunUB8PWt2Atp7ty5DB48mDfeeEN7bNGiRbRr146vv/4aExMTli5dSqNGjRg/fjx//PEHM2bMoFmzZto2Zs6cyfHjx3nhhRdo164d27Zto1at8r0OXn/9dRISEti8ebM2/o033qB///46OU6cOFH799dff51t27axZs0agoKCyM7OZuHChXz55Ze89NJLAHh7e/PUU08BsHr1asrKyvjuu++0+60tW7YMKysrIiIi6Nq16x1fI3HvcjLVAChVljrlSpUl2VkZVdbJy82irKwMpcXf6lhYkppyBYDsLDX6+gaYmpnrxlTR7q8/fMaZE0coLi6iXsNA+g9+9d90SQitrNw8ysrKsLJQ6pRbKc25mnKjyjqZOTmV41VK1Fk5AKizy/+0/FuMpYW59tjfXbuRzrZ9hxnSW36OiQcvu7CIMo0GSxPdL/0sTYy5mlX1Et2sgkKsTIx1yqxMjVHnl886v/ln5TaNyMyvejmkEA9DQW75NcTNfbNuMjazoiBXXWWdwvwsNJoyjM10r1tMzKzIzriibVdP3wAjY/O/xVhSkKfb7p9bP+XKhcOUlhRRy6s5zTuPvf8OCSEeOTLQJe7ane4EceuMrcGDBzN16lQyMjKYPn06rVu3pnXr1vd0vtatW6Onp0dubi5eXl6sXr0aR0dHcnJymDFjBqGhoSQnJ1NSUkJ+fn6lGV2BgYH3dL6bRo4cSfPmzbly5QouLi4sX76ckJCQu9pI/80332TEiBGsXLmSzp07M2DAALy9vYHyZY0nTpxg1apV2niNRkNZWRkJCQnUq1cPa2trvv/+e4KDg2ndujWTJ0/WxmZkZDB37lz++OMPevTogb6+Pm3atGH79u34+vpy8uRJunfv/o+vQWlpKXPmzGHNmjVcuXKFoqIiCgsLtTPGzp49S2FhIZ06daqyf9HR0Zw/fx4LC93lDwUFBVy4cKHKOoWFhZWWghYVlWJkZFxlvIDjh/ey/tdvtM9fenVKDWZT7plnQ+jY43luXL/Ktg2r2LL2R/q8MLKm0xLigUhTZzFn6UpaNK5P51bN7lxBCCGE1sVzezgaXrEX79N93qvBbMo1afsy/i0Gkp1xlRORK4nau4xmHUfXdFpCiIdEBrrEHfn4+KBQKDh79iz9+vWrdPzs2bPY29vrzIqytLTEx8cHgDVr1uDj40PLli3p3LnzXZ939erV1K9fH1tbW522J06cyI4dO5g/fz4+Pj6Ympry3HPPVVo6Z25uzv1o2rQpjRs3ZsWKFXTt2pXTp08TGhp6V3VnzJjBoEGDCA0NZevWrUyfPp1ff/2Vfv36kZOTw+jRo6uc2ebuXrFB7N69e9HX1yc5OZnc3FztoFJMTAyFhYXaO0/OmjWLrKwsnnrqKT7//HMOHjyoM4hW1WvwySefsHDhQj7//HMaNmyIubk5b7zxhva1+/vS1L/LycmhWbNmlc4DYG9vX2WduXPnMnPmTJ2yl159l+Fjp1YZL6B+o+a4166YDVhSUgJATlYmKksbbXlOVibOrp5VtmFmrkJPT09n43mAnOxMlCprACxUVpSWlpCfl6szqysnKxOL/8XcZGFpjYWlNQ5OLpiZK1m64H06dH9WJx8h7ofK3Aw9Pb1KM63UOblYqZRV1rFUKivHZ+Vo42/O9srMzsHGsmJgPjM7F49ajjr10jOzmbV4OX6ebowZ2Ptf90eIqlgYG6GnUJBZoHutklnFrK2bVCbGqP+2Ub06vxAr0/L4m39mFhRhbWZyS5tFsh+XeKhqeQXR9ZY7I5aVlt/0oyBPjamy4jqhME+Npb1nlW0Ym6pQKPQozNO9binIU2NiVn5NYmJuTVlpCUWFuTqzugryMivNHjM1t8bU3BqVjStGJhbs+u1d6gcN0MlHCPH4kj26xB3Z2trSpUsXFi9eTH5+vs6xa9eusWrVKkJCQm5bX6lUMmHCBCZOnHjHWWG3cnNzw9vbW2eQCyAyMpKQkBD69etHw4YNcXJyuq/N0G/OQCstLa10bMSIESxfvpxly5bRuXNn3Nzc7rpdPz8//u///o/t27fTv39/li1bBkBAQABnzpzBx8en0uNmLgcOHGDevHls2rQJpVKpsxTTxcUFKB8Iu+mzzz6jZ8+eDBo0iNGjR2tjbicyMpI+ffowZMgQGjdujJeXF7GxFXsx+fr6YmpqSnh4eJX1AwICiIuLw8HBoVIfLC0tq6wzZcoUMjMzdR6DR06sMlaUMzYxxdbeWftwcHLFQmXFhZiT2piC/DySEuNwr+1XZRsGBga4uHvp1NFoNJyPOamtU8vNC319A52Y1JSrqDNu3LZdKL9hAUDp/wbghPg3DAz08XKtxam4BG2ZRqPhVGw8fp6uVdbx83TlZGy8TtnJ2Hj8PMp/VjvYWmOlsuBUXEVMXkEBcRcv4+dZ8fM8TZ3FzK+W4eVWi9de7HtXM3eFuB8G+nrUtlVxOjlNW6bRaDh9LQ1fe6sq6/jZW3HqlniAk9fS8LUrj3dQmmJlasypaxUxeUXFnL+hxs+u6jaFqA6GRqZYWDlrHyobN0zNrUlJqri+KC7MI+1aLHbOdapsQ0/fABtHb1IundCWaTQariedxPZ/dawdvNDTN+D6LTFZGVfIy069bbvl7ZRft5SVyXWLEE8KGegSd+XLL7+ksLCQ4OBg9u7dS1JSEmFhYXTp0gU/Pz+mTZv2j/VHjx5NbGysdgP4f8PX15c//viDqKgooqOjGTRokPaD973w8PBAoVCwefNmUlNTycmpmB0waNAgLl++zLfffntXm9AD5OfnM27cOCIiIrh48SKRkZEcOXJEu7fZpEmTOHDgAOPGjSMqKoq4uDg2bNigHczKzs5m6NChjB8/nu7du7Nq1SpWr17N77//DpQP/L3wwguMHTuWFStWcOHCBcLDw7lw4QLm5uZs3LiR69ev3/G127FjBwcOHODs2bOMHj2alJSKOzOZmJgwadIk3nnnHe05Dh48yPfffw+UL0m1s7OjT58+7Nu3j4SEBCIiIhg/fjyXL1e9abSxsTEqlUrnIcsW741CoaB1h2fYFbaWMyeOkHzlImtWfIGFpTX1Gwdp475bOIMDEVu1z5/q2IsjkTs5dnA315Mvs/7XbygqLKRZy/I7jpqamRPYuiOha5dzIeYkly9d4PeVX+Je20870HXu1F8c/XMX165eIiPtOudOHmPDr9/i4VUHa1uHh/tCiMdWz/atCP/zGBGHj3P5Wirf/raZgqIi2geVz2D9ctUfrNpccefeHm1bEh1zgU27I7mSksqasN3EX75Kt6fL/z8oFAp6tG3B2h17OXLqHBevpvDlqnVYW1rQvGH5Hoo3B7lsrS0Z0qsrmTm5ZGRlk5GV/fBfAPFEeKZebXadT2LPhctcVufw/aHTFJSU0t67fED3q8hofvmrYkPtbnU9OZF8g81nEriSmcPv0XEkpGUSXMcDKH+fd6vrwbqT5zmalMKljCwWR57AytSYQLeKmYs3cvNJTM/iRm4BpWUaEtOzSEzPoqBYPvSL6qFQKPBt0pOzh3/jyoXDqG8kcmjbQkzMbXDxbqGN2712GnFRFasm/AJ6E39qBwlndpGVlsSxXUsoKS6gtn9HoHxD+9r+nTi+dxkpSSdJTznPke1fYOdcRzsYdjXhGAmnw8m8cZHcrOtcjT/KsV1LsKtVF3OVXLcI8aSQpYvirvj6+nLkyBFmzJjB888/z/Xr19FoNPTv35+VK1dq93i6HRsbG4YNG8aMGTPo378/enr3P8a6YMECXn75ZVq3bo2dnR2TJk0iKyvrnttxcXFh5syZTJ48meHDhzNs2DCWL18OlC+9fPbZZwkNDaVv37531Z6+vj5paWkMGzaMlJQU7Ozs6N+/v3bZXqNGjdizZw9Tp07l6aefRqPR4O3tzcCBAwGYMGEC5ubmzJkzB4CGDRsyZ84cRo8eTatWrXBxceHHH39k/vz5fPjhh1y8eBEXFxeGDBnC2rVr6dSpE71792b37t23zfG9994jPj6e4OBgzMzMGDVqFH379iUzs2Ka+Pvvv4+BgQHTpk3j6tWrODs7M2bMGADMzMzYu3cvkyZNon///mRnZ+Pi4kKnTp1QqVT3+k8g7kG7Ln0pLipk3c9LKMjPw8O7LsPHvoehYcXeeOk3UsjLrfi/0KhZG3Kys9i5eTXZWWpquXkyfOxULFRW2phnng1BgYJV382npKQEv3pN6DNwhPa4oaEhRyJ3Err2R0pLirG0tsW/SQvadam8jFmI+9W6aQMyc3JZE7YbdXYOnrWcmTpqqHYJ4o2MTJ3ZVnVquzN+SH9Wb93NL1vCcbKzZeLwF3B3rvhw36fjUxQWFfPNmk3k5RdQx8udd0cNweh/d8I9GXuBazfSuXYjnVdnfqqTz5rPdJdbC/EgtPJ0JqugiN+i48jML8TDRsXkjs2x/N8SxLTcAvRufZ87WDOuTWPWRMex+ngMTipz3mwfgNstyxJ7+3tRVFLKdwdPkVdcQh17ayZ3CsTIQF8b81t0HHsvXNE+nxIaCcD7XYKo76R7V0chHpS6gf0oLSnkaPjXFBfmYlerHm37vY++QcV1S25mCoX5FV8uuPs9RWFeJqf+/JWCvAys7WvTtu/7OssSm7Z9GQUKDoR+TFlpMU4eTQnoMEp7XN/AiPhTO4jau4zS0mLMlLa4+rSibnPdmzMJIR5vCs29rCUT4hbTp09nwYIF7Nixg5YtW9Z0Og9cp06d8Pf3Z9GiRTWdymNnz+m8mk5BiGoXkL/3zkFCPOJKtm2o6RSEqHafuiys6RSEqHYfhBjdOeg/KvtoWE2nUCWLwG41ncITS2Z0ifs2c+ZMPD09OXjwIEFBQf9qltZ/SUZGBhEREURERLB48eKaTkcIIYQQQgghhBB3SQa6xL8yfPjwe64zZswYfvrppyqPDRkyhCVLllR57GFp2rQpGRkZzJs3jzp1dDe29Pf35+LFi1XWW7p0KYMHD34YKQohhBBCCCGEEKIKMtAlHrpZs2YxcWLVd937L+zz9E93cNyyZQvFxcVVHnN0dKyyXAghhBBCCCGEEA+HDHSJh87BwQEHh0fzriceHh41nYIQQgghhBBCCCFu4/HYVEkIIYQQQgghhBBCPPFkoEsIIYQQQgghhBBCPBZkoEsIIYQQQgghhBBCPBZkoEsIIYQQQgghhBBCPBZkM3ohxEO344j86BGPv0ZXNtR0CkJUO4PgPjWdghDVrotpSU2nIMRDYFTTCQjxwMiMLiGEEEIIIYQQQgjxWJCBLiGEEEIIIYQQQgjxWJCBLiGEEEIIIYQQQgjxWJCBLiGEEEIIIYQQQgjxWJCBLiGEEEIIIYQQQgjxWJCBLiFuMWPGDJo0afLE5yCEEEIIIYQQQjyKDGo6ASEehNTUVKZNm0ZoaCgpKSlYW1vTuHFjpk2bRps2bVAoFKxbt46+ffs+sHPOmDGDmTNnAqCvr4+rqyv9+vVj9uzZKJXK+2534sSJvP7669rnISEhqNVq1q9f/29TFo8wjUbD6YO/En9qB0WFudg516VZx9FYWNf6x3px0VuIObaBgtwMrOw9adp+BLZOftrjpSVFRO1dRlJsJKWlxTh5NKVZx1GYmFkBkHBmF4e3f1Fl231GLcfEzPKB9VE82bbHXGTT6QQyCwpxt7YgpHl9fOysbht/MDGZNdFx3MjNx8nCjBcD6tDUxUF7XKPR8Ht0HLvOXya3qJg69ta83MIfZ5W5NmbdyfMcv5JKYnoWhvp6fD+wS3V2UQjC9h9m0+5I1Fk5eNRyYnj/7vh6uN42/s+oU6zeupvUdDVO9rYM7tmZgPoVP8M1Gg1rwnYTfvAv8vIL8KvtxsjneuJsb6uN+WPHXv46E0vilWsYGOizfM6Uau2jEFD+3twZupojkTspyM/D3asOfV8YhZ2D8z/W+3NPGPt2biA7S42zqwe9BryCm6ev9nhxcRFb1v7Iib8iKSkpwa9eY3oPHImFykobM2Xsc5XafWH4GzQOfOqB9U8I8d8mM7rEY+HZZ5/l+PHj/Pjjj8TGxrJx40bat29PWlpatZ7X39+f5ORkEhMTmTdvHt988w1vvfXWfbWl0WgoKSlBqVRia2t75wriiXLu6DriokJp1nEMnV+Yh4GhCXvWzaK0pOi2dS7F7idq7zL8WzxP10GfYmnnyd51syjIy9TGHN/7A1cTjtLqmbfp8Nxs8nPSiNw8T3vc3e8peo/8Qefh5NEUBxd/GeQSD8yficmsPHqWZxv5MKdHGzysVcwNP0JWQWGV8THXM/hifzQdfFyZ06MNgW6OLIj4i6SMbG3MxtPxhMVc5JUW/nzQvRXGBvrMDT9CUUmpNqaktIyWHk508XOv9j4KceD4KVZsCOO5ru2Z99YYPFwc+XDpSjJzcquMj0m4xMKVa+nYIoB5b42heYO6zF/2K5eSU7QxG3btZ+u+Q4wc0JMP3xiJiZERHy5dSVFxsTamuKSEVk386dqmebX3UYib9uxYz4GIrfR9cTSvvj0XI2MTfvhyNsXFt79uOXEsktC1y+nYYwCvT/4EJxdPfvjyA3KyK65bQtcu5+ypowx65S1GvjGTTHU6q779pFJbzw0dy7tzvtU+6jcOqpZ+CiH+m2SgSzzy1Go1+/btY968eXTo0AEPDw+CgoKYMmUKvXv3xtPTE4B+/fqhUCi0zwE++ugjHB0dsbCw4JVXXqGgoOCezm1gYICTkxOurq4MHDiQwYMHs3HjRgBWrlxJYGAgFhYWODk5MWjQIK5fv66tGxERgUKhYOvWrTRr1gxjY2P279+vs3RxxowZ/Pjjj2zYsAGFQoFCoSAiIoKOHTsybtw4nVxSU1MxMjIiPDz8jnkvXrwYX19fTExMcHR05LnnKr75KisrY+7cudSuXRtTU1MaN27M77//DpQPxnXu3Jng4GA0Gg0A6enpuLq6Mm3atHt67cTd02g0xEVtpl7QAFy8g7Cy8yQoeDwFuelcuXDotvVi/9qIV4Mu1PbvhMrWjcBOr6JvYEzC6fL3SFFhLgmnw2nSdjiObg2xcfQhqOvr3Lh6jrTkGAD0DYwwNbfWPhQKPa5fPkntBp0fSt/FkyH0bAIdfd1o7+OKq5WSES38MdbXZ/f5y1XGh51LpHEtO3r5e+FqpeT5Jn542liyLeYiUP5/5v/Zu++4qqv/geOvyx73spG9lxMUcSDlQEnT3KnZNFHLsqVWas40R2XDlmU5Kv2lfcuRMxcO3ANxICiIOBAR2ePChfv7g7x2BbdI6vv5eHwe3+89n/c5n/e5wfVyPuecz9rjp+nZyJ8wDyc8ba0YGhFMTrGafWeuDhL0aRxI53o+eNqq7ks/xaNtZcxO2rdsSrsWTXB3dmRIn66YmhizefeBauNXb91F47r+dIuMwN3ZkWc6R+Lj5sLabXuAyp/z1Vt30zuqNc0a1sXL1YnXn+1Jdm4+ew8f17XT78lIurQJx9OlTrXXEeJe02q17Ni8ishOvakf3AwXNy/6vDCM/Nxsjh3ac9162zf9RbOIDoSFR1LHxZ2e/V/BxMSEfTs3AVBcVMi+HZvo0msAfkGNcPf04+kXhnE6JZG0U0l6bZmZW6KyttUdxsYmNdpnIcR/iwx0iQeeUqlEqVSybNky1Oqqd//37t0LwLx580hPT9e9XrJkCRMnTmTq1Kns27cPFxcXvv3227vKxdzcnNLSyjtVZWVlTJ48mUOHDrFs2TJSU1MZMGBAlTqjRo1i+vTpJCQkEBwcrHdu5MiR9O3bl06dOpGenk56ejqtWrVi0KBBLFq0SK+/v/76K25ubkRGRt4wx3379vHmm2/y4YcfkpiYyNq1a2ndurXu/LRp0/j555+ZPXs2R48e5Z133uH5559ny5YtKBQKFixYwN69e5k1axYAr776Km5ubjLQVYMK8zIoLszGyaORrszE1BJ750Au/TMgda2Kcg2XM5Jx9gzRlSkUCpw8g3WDWNkXU6go1+D0rxgrO3csVI7XbTc1IQYjI1M8Alrdi64Jgaa8glNZeTR0cdCVKRQKGrrYcyIzp9o6SZk5NHTRn/ka7GLPiUuV8RcLiskpVtPQ+WqMpYkx/g42JF2qvk0hapJGU07K2fM0CvTVlSkUChoF+pGUWv2AblLqWb14gOAgP5JOnwHgYlY2OXn5NAy4GmNpbkaAlztJqWdqoBdC3JrLWRnk5+XgF3T1e4u5hSUe3gFVBqSu0Gg0nEtLwb/u1e/CCoUC/7rBujrnz6RQXq7Ri6nj7IaNrUOVdlcsnsPk9wbwzcfvs2/HRt0NWiHEo0H26BIPPCMjI+bPn8/gwYOZPXs2oaGhtGnThmeeeYbg4GAcHR0BsLGxwdnZWVfviy++IDo6mujoaACmTJnChg0bbntW1xX79+9n0aJFuoGmgQMH6s75+voya9YsmjVrRkFBgd4eXh9++CFRUdXvC6NUKjE3N0etVuvl3qtXL4YNG8by5cvp27cvAPPnz2fAgAEoFIob5pmWloalpSVPPfUUKpUKLy8vmjRpAoBarWbq1Kls2LCB8PBwXe7bt2/n+++/p02bNri5ufH999/z4osvcuHCBVavXs3BgwcxMqr+40StVlcZgNSUKTAyNr1hnuKqksJsAN2+WVeYWthQUphTbR11cR5abQWm1ywvNLOwIT/7nK5dA0MjTEwtr4mxpqSo+nZPHd2AZ9DjGBrJnVFxb+SrS6nQarE20/+ZsjYz5Xxe9Uu68krU2Jjpf4bYmJuSU1z5WXPlf6u2aUJucfXLIYWoSXmFRVRUVGCj0t/D00ZpyfmMS9XWyS0oqBpvpSQnrwCAnPzK/7W+JsZaZak7J0RtKMjNAUBppf8dRGllTX5edrV1igrzqKioQKm6po7KmsyMyu8t+Xk5GBoaYW6h/73l2nY7dOmHf1AjjE1MSUqIY/niHyktVdOqbee77ZoQ4gEhM7rEQ6F3796cP3+eFStW0KlTJ2JiYggNDWX+/PnXrZOQkECLFi30yq4M7tyqw4cP6wajmjdvTnh4OF9//TVQOfDVtWtXPD09UalUtGnTBqgcaPq3sLCw27omgJmZGS+88AJz584F4MCBAxw5cqTaGWPXioqKwsvLC19fX1544QUWLlxIUVERACdPnqSoqIioqCjdTDmlUsnPP/9McnKyro0+ffrQs2dPpk+fzqeffkpAQMD1Lse0adOwtrbWO3as+vi2+/woOX18C3980193VFRU1HZKAFxKP07e5bP4NGhf26kIIYQQ4j/i4J6tTBj+vO4oryi/eaUa1L5zH7z86uLq4UPbJ3rSOqo7Wzcsr9WchBD3l8zoEg8NMzMzoqKiiIqKYty4cQwaNIgJEybc0uDPnQoKCmLFihUYGRnh6uqKiUnl7IHCwkI6duxIx44dWbhwIY6OjqSlpdGxY0fd0sYrLC0tq2v6pgYNGkTjxo05e/Ys8+bNIzIyEi8vr5vWU6lUHDhwgJiYGP7++2/Gjx/PxIkT2bt3LwUFlXeAV61ahZubm149U9OrsyeKiorYv38/hoaGnDhx4obXGz16NMOHD9crm7r4xrPOHnWuvs154l9PRqwor9xUuKQoB3Olna5cXZSDtaN3tW2YmluhUBig/tfG81faMLOwBcDM0paKcg2l6kK9WV0lRblVZo8BnDqyAVtHH+yc/O+0a0JUoTI1wUChILdE/7Mxt5pZW1dYmZmSc81G9TnFamzMK+Ov/G9uSSm2Fmb/arNU9uMStcLK0gIDA4MqM61yCgqxsar+Sc3WSmXV+LwCXfyV2V65+QXYWV/9uc7NL8TL1elepi/EDdUPboanz9WbnhqNBoCCvFysrK9+bynIy8XF3bvaNiwsrTAwMNDbeB6gID8XpVXl9xaVlQ3l5RqKiwr1ZnUV5OWi+iemOh5eAWxa8z80ZWUYGRvfdv+EEA8emdElHlr169ensLBy2YuxsTHl5fp3l+rVq8fu3fobee/ateu2rmFiYoK/vz/e3t66QS6A48ePk5WVxfTp03n88cepW7eu3kb0t3uNa3MHaNSoEWFhYcyZM4dFixbpLZW8GSMjIzp06MDHH39MfHw8qampbNq0ifr162NqakpaWhr+/v56h4eHh67+iBEjMDAwYM2aNcyaNYtNmzZd91qmpqZYWVnpHbJs8caMTcxR2bjoDis7D8wtbck4c1gXU6YuIutCEg4uQdW2YWBohJ2THxlp8boyrVbLxTOHsf+njm0dXwwMjbj4r5i87HMU5WdWaVdTVkJaUqzM5hL3nJGhAT72VhxNv/qUXK1Wy9ELWQQ42lRbJ9DRhiPp+k/VPXwhiwCHyvg6SnNszE05cuFqTFFpGScv5RDoUH2bQtQkIyNDfN1dOXLilK5Mq9VyJCmFQG/3ausEertzOClFr+xwUgqBXpX/Htext8XGSsWRE1djikpKOHH6LIHeHghxv5iamWPv6KI76ji7o7KyITnx6veWkuIizqSewNMnsNo2jIyMcPP01auj1Wo5mXhYV8fVwxdDQyO9mMyM8+RkX7puuwDp51Ixt7CUQS4hHiEyo0s88LKysujTpw8DBw4kODgYlUrFvn37+Pjjj+nevTsA3t7ebNy4kYiICExNTbG1teWtt95iwIABhIWFERERwcKFCzl69Ci+vr43ueLNeXp6YmJiwldffcWrr77KkSNHmDx58h215e3tzbp160hMTMTe3h5ra2uM//mHetCgQQwbNgxLS0t69ux5S+2tXLmSlJQUWrduja2tLatXr6aiooKgoCBUKhUjR47knXfeoaKigscee4zc3FxiY2OxsrLipZdeYtWqVcydO5edO3cSGhrKu+++y0svvUR8fDy2tte/mybunEKhIKDxUyTs+R2VjQuW1nU4suP/MLO0w83v6vLbzX+Mx92vBQGNuwAQGNqNPetmYevkh71TAElxK9GUleDToHIfORNTS3watOfg1nkYmykxNjHnYMyPOLgE6QbDrkhL2o5WW4FXvbb3rd/i0dGlng/f7YjHx94KP3sb1h5PpURTTlu/ygGAb2IPYWduRv/Qyp/LTnW9mbx+NyuPnaKJmyM7U9M5lZXL4BYNgcrfmU51vVh6+CTOKgvqKM1ZEncCG3NTwjyuznS5VFhMgbqMS4UllFdoSb2cB4CzygIzY/mKJO6tp9qG882ipfi6u+Dv6c7qrbsoKS2lbfPKfTK/XvgnttYqnnuqct/Ozq1bMvGb+fy1OZbQ+oHEHjxCytnzDOnbFaj8Oe/cugV/rN+Ks6M9dexsWbxmE7bWKpo1qqu77qXsHPILi7mUk0tFRQWnzqYD4OJoj5mp7Lco7j2FQkGrdl3YtPYP7Ou4YGtfh/Urf0NlbUv9kOa6uB+/nEj9kBa0avskAI9FduX3n7/GzdMXD68AYmNWUapW07RlO6ByQ/uwVpGs+mM+5haWmJpb8NeSn/D0CdQNdCUc3kdBXg4ePoEYGxtzIuEQm9f9yePtu97/N0IIUWvkW5x44CmVSlq0aMHnn39OcnIyZWVleHh4MHjwYMaMGQPAzJkzGT58OHPmzMHNzY3U1FT69etHcnIy7733HiUlJfTu3ZuhQ4eybt26u87J0dGR+fPnM2bMGGbNmkVoaCiffvop3bp1u+22Bg8eTExMDGFhYRQUFLB582batm0LQP/+/Xn77bfp378/ZmZmN27oHzY2Nvz5559MnDiRkpISAgIC+L//+z8aNGgAwOTJk3F0dGTatGmkpKRgY2NDaGgoY8aMITMzk+joaCZOnEhoaCgAkyZN4u+//+bVV19l8eLFt90/cWvqhvWkXKNm38bvKFMX4uBaj9Y9x+ltCl+Ym4G6OF/32jPwMdRFuRzZ+RslRdnYOvrQusc4vWWJTVoPRIGCHas+pqK8DGevJoS2G1Ll+qeObMDdr0WVjeuFuBfCvV3IKynl90MnyC1W42VnxajIZlj/swQxq7AEg389aCOoji3DIkJYcugEiw8m4mxlyfC2oXj8a1litwa+lGrK+XHXEYrKNAQ52jKqfRgmRoa6mN8PnWBr8jnd69GrYgEYF9Wc+s76T3UU4m61atKQ3IJClqzdTE5+Ad6uLnww5AXdEsRL2bl6D5QJ8vHkzed7sXjNZv5v9UacHewZ+fIzeLpcHaztHvkY6tIyfljyF0XFJQT5ejJmyPOY/GvmyuI1m9myN073+v2ZswGY8PoAGvj71HCvxaOqTVQPykrVLF00m5LiIrz86vLy62MxNr76veXypQyKCvN0r4ObRlCQn8eGlYvJz8vB1cObl1//AJWVjS6mS+8BKFCw8MdP0Wg0BNZrTPd+g3TnDQwM2bV1LSv/mA+AvYMzXXq/RPOI6h/8JIR4OCm08qxVIR5Yqamp+Pn5sXfvXt3A04Ng7PzSmwcJ8YAbce6t2k5BiBpn1LF7bacgRI07YN66tlMQosa1aWBR2yncsfx9a2s7hWqpwjrVdgqPLJnRJcQDqKysjKysLMaOHUvLli0fqEEuIYQQQgghhBCipshm9EJch1KpvO6xbdu2Ws0tNjYWFxcX9u7dy+zZs/XObdu27Ya5CyGEEEIIIYQQDyuZ0SXEdcTFxV33nJub2/1LpBpt27blequOw8LCbpi7EEIIIYQQQgjxsJKBLiGuw9/fv7ZTuCPm5uYPbO5CCCGEEEIIIcTdkKWLQgghhBBCCCGEEOKhIANdQgghhBBCCCGEEOKhIANdQgghhBBCCCGEEOKhIHt0CSHuu6hmmtpOQYgaN5MvazsFIWrciHVv1XYKQtS40I61nYEQ90On2k5AiHtGZnQJIYQQQgghhBBCiIeCDHQJIYQQQgghhBBCiIeCDHQJIYQQQgghhBBCiIeCDHQJIYQQQgghhBBCiIeCDHQJIYQQQgghhBBCiIeCDHQJIYQQQgghhBBCiIeCDHSJR87EiRNp3LjxI5+DEEIIIYQQQgjxsDGq7QSEuFWZmZmMHz+eVatWkZGRga2tLSEhIYwfP56IiAgUCgVLly6lR48e9+yaEydOZNKkSQAYGhri7u5Oz549mTx5Mkql8o7bHTlyJG+88Ybu9YABA8jJyWHZsmV3m7J4SGm1WjasWsze2A2UFBfh6RtEj2eG4FDH5Yb1dm5Zy7YNy8nPy8HF3YuufaLx8A7QnS8rK2X1HwuIPxCLRqMhsF4I3foNRmVlA0D62VS2/L2U1JTjFBXkY2PnSIvHnyCiXZea7K54BJ04tJrE/cspKczGxtGbJm0HYe8ceN34M0mxHN65iKK8TJQ2LgQ/9iKuPk1157VaLUd3/UbKkfWUqgtxcKlL08hXUNm6AlCYd5Fju5eQceYwJUU5mFva4VW3NfWb98HAUL4eidrzd+Jp/jp6itwSNZ62KgY0q4+/g81143elprPk0AkuFRbjrLKgf2gQTdzq3L+EhaiGVqtlydrNbNx1gKLiEgJ9PBj89FO4ONrfsN7a7Xv4a3MsOXkFeLk683KvJwnwctedLy0r4+fl69gRdxSNRkNIkD/RT3fBRnX1e/m8P1dz/FQaZy5cxM3JkU9GDq2xfgoh/ptkRpd4YPTu3ZuDBw+yYMECkpKSWLFiBW3btiUrK6tGr9ugQQPS09NJTU1lxowZ/PDDD4wYMeKO2tJqtWg0GpRKJfb2N/6H/l4rLS29r9cT99aW9cvYEbOGHv1fYei70zAxNWPu15MpK7v+f9f4/bGs+mM+kZ378MaoT3B282bu11MoyM/Vxaz6Yz4JR/bxbPQIBr89idycyyyc84nu/Lm0ZCxV1vR96U3eGvsZ7Tr1Yt3yheyIWVOj/RWPlrSk7cRtnUeDFn154tmZWDt4s3Xph5QU5VYbf+l8AjvXfIZvgyieeHYmbn4tiF05ndxLp3Uxx/ct5UTcKppGvkqHZ2ZgZGzGlqUfUq6p/J3Ju3wWrbaCsPZD6fTClzRu/TLJ8euIj/31vvRZiOrsTE3nl30J9A72Z2rnCLxsrZi2cS95Jepq4xMvZvPV9kO083dnaucIwjyc+CzmAGey8+9z5kLoW75pO2u27WZwn6f46O3BmJmY8NH3v1BaVnbdOjsOHuHn5Wt5+om2zBjxKl5uTnz0/S/kFhTqYhYsW8f+o0kMf6kvE15/mcu5ecyct7hKW+1ahNKqccMa6ZsQ4r9PBrrEAyEnJ4dt27YxY8YM2rVrh5eXF82bN2f06NF069YNb29vAHr27IlCodC9Bpg+fTpOTk6oVCqio6MpKSm5rWsbGRnh7OyMu7s7/fr147nnnmPFihUA/PLLL4SFhaFSqXB2dubZZ5/l4sWLuroxMTEoFArWrFlD06ZNMTU1Zfv27XpLFydOnMiCBQtYvnw5CoUChUJBTEwMkZGRDBs2TC+XzMxMTExM2Lhx403z9vb2ZvLkybz44otYWVkxZMgQAN5//30CAwOxsLDA19eXcePGUXbNl46//vqLZs2aYWZmhoODAz179tSdU6vVjBw5Ejc3NywtLWnRogUxMTG39Z6K26PVatmxeRWRnXpTP7gZLm5e9HlhGPm52Rw7tOe69bZv+otmER0IC4+kjos7Pfu/gomJCft2bgKguKiQfTs20aXXAPyCGuHu6cfTLwzjdEoiaaeSAAhr1Z6ufQbiG9AAewdnmjRvQ9OW7Th2aPd96bt4NCQdWIFvwyh8GrTHyt6DsPZDMTQy5dTR6j/rkg6uwsU7lLphPbCy96BRq2exdfTlxKHVQOXvzIm4ldRr3gc3v+bYOHjTvOOblBRe5lxy5c+ui3cozZ94E2evxiitnXHza05Q0x6cPbnrvvVbiGutSjhFZIAHbf3dcbdRMqhFA0wNDdl88my18WuPpxLi6kDXBr642yjp2zgQbztr1iWerjZeiPtBq9Wyeutueke1plnDuni5OvH6sz3Jzs1n7+Hj1623MmYn7Vs2pV2LJrg7OzKkT1dMTYzZvPsAAIXFJWzec4CXenSkYYAPfh6uvNa/B4mn0jiRevV35OVenen0WHPq2NvWeF+FEP9NMtAlHghKpRKlUsmyZctQq6ve1dy7dy8A8+bNIz09Xfd6yZIlTJw4kalTp7Jv3z5cXFz49ttv7yoXc3Nz3eyosrIyJk+ezKFDh1i2bBmpqakMGDCgSp1Ro0Yxffp0EhISCA4O1js3cuRI+vbtS6dOnUhPTyc9PZ1WrVoxaNAgFi1apNffX3/9FTc3NyIjI28p108//ZSQkBAOHjzIuHHjAFCpVMyfP59jx47x5ZdfMmfOHD7//HNdnVWrVtGzZ086d+7MwYMH2bhxI82bN9edHzZsGDt37uS3334jPj6ePn360KlTJ06cOHHL76G4PZezMsjPy8EvqJGuzNzCEg/vAN2A1LU0Gg3n0lLwr3v1502hUOBfN1hX5/yZFMrLNXoxdZzdsLF1uG67ACUlRZhbWN5tt4QAoKJcw+WMZJw9Q3RlCoUCJ89gstITq62TdSGROh6N9MqcvRrr4gvzMiguzMbpXzEmppbYOwdy6TptApSVFmJqfufL0oW4G5ryCk5l5dHQxUFXplAoaOhiz4nMnGrrJGXm0NBFf4Z4sIs9Jy5VHy/E/XAxK5ucvHwaBvjqyizNzQjwcicp9Uy1dTSaclLOnqdR4NU6CoWCRoF+JP0ziHXqbDoaTTmNAv10MW5OjjjYWpN0uvp2hRCPJtmEQjwQjIyMmD9/PoMHD2b27NmEhobSpk0bnnnmGYKDg3F0dATAxsYGZ2dnXb0vvviC6OhooqOjAZgyZQobNmy47VldV+zfv59FixbpBpoGDhyoO+fr68usWbNo1qwZBQUFent4ffjhh0RFRVXbplKpxNzcHLVarZd7r169GDZsGMuXL6dv374AzJ8/nwEDBqBQKG4p38jIyCrLLMeOHav7/97e3owcOZLffvuN9957D4CPPvqIZ555Rrc3GUBISOUfoGlpacybN4+0tDRcXSv3uRk5ciRr165l3rx5TJ06tUoOarW6yuBkaWk5Jiamt9QHAQW5OQAoraz1ypVW1uTnZVdbp6gwj4qKCpSqa+qorMnMOAdAfl4OhoZGVQatbtTu6eTjxB/YwYCho++kK0JUoS7OQ6utwNRC/2fVzMKG/Oxz1dap3FPLtkp8SWFO5fnCbF3Zv5n+K+Za+TnpnIhbTcjjL91+J4S4B/LVpVRotVibmeiVW5uZcj6vsNo6eSVqbMz0/z21MTclp7j6pY5C3A85+QUAWKv0bxxYqyx1566VV1hERUWF3l5bADZKS85nXKpsNy8fIyNDLM3NrmlXSU5e9e0KIR5NMtAlHhi9e/emS5cubNu2jV27drFmzRo+/vhjfvzxx2pnUQEkJCTw6quv6pWFh4ezefPmW77u4cOHUSqVlJeXU1paSpcuXfj666+ByoGviRMncujQIbKzs6moqAAqB4Tq16+vayMsLOw2ewtmZma88MILzJ07l759+3LgwAGOHDmiWzZ5K6q77uLFi5k1axbJyckUFBSg0WiwsrLSnY+Li2Pw4MHVtnf48GHKy8sJDNTfIFqtVl93z7Fp06bpDZoBvDR0DC+//sEt9+NRc3DPVpb99oPu9Uv/kUGlC+fT+OWHGbR/sg8B9RrXdjpC3DNFBVlsXfYhHgHh+DV6orbTEUKIB8q2/fHM+f0v3etRg56rxWzEo0izbnltp1C9sE61ncEjSwa6xAPFzMyMqKgooqKiGDduHIMGDWLChAnXHei6F4KCglixYgVGRka4urpiYlJ5p7WwsJCOHTvSsWNHFi5ciKOjI2lpaXTs2LHKxu+Wlne2zGvQoEE0btyYs2fPMm/ePCIjI/Hy8rrl+tded+fOnTz33HNMmjSJjh07Ym1tzW+//cbMmTN1Mebm5tdtr6CgAENDQ/bv34+hoaHeues9hXL06NEMHz5cr2x3cvkt9+FRVD+4GZ4+V5+MqNFoACjIy8XK2k5XXpCXi4u7d7VtWFhaYWBgoLfxPEBBfi5Kq8qZMCorG8rLNRQXFerN6irIy0VlpT9b5mL6WX78ciLNI6KIfPLpu+qfEP9mam6FQmGA+pqN50uKcjCzqH5/FTMLG4oLs6vGW9pUnv9ntldJUQ7myqu/M+qiHKwdvfXqFRdcJuZ/43BwCSKsw+t32Rsh7pzK1AQDhYLcEv3vELnVzNq6wsrMlJxrNqrPKVZjYy6zpsX9E9YgSO/JiGX/fG/JzS/AzlqlK8/NL8TL1anaNqwsLTAwMKgy4yunoBAbq8rvmDZWKjSacgqLS/RmdeXmF+hihBACZI8u8YCrX78+hYWV0/mNjY0pL9cfQKlXrx67d+tvmr1r1+1tNGxiYoK/vz/e3t66QS6A48ePk5WVxfTp03n88cepW7eu3kb0t3uNa3MHaNSoEWFhYcyZM4dFixbpLZW8Ezt27MDLy4sPPviAsLAwAgICOH1af8Pa4ODg625236RJE8rLy7l48SL+/v56x7+XXf6bqakpVlZWeocsW7wxUzNz7B1ddEcdZ3dUVjYkJx7WxZQUF3Em9QSePoHVtmFkZISbp69eHa1Wy8nEw7o6rh6+GBoa6cVkZpwnJ/uSXrsZ6Wf44YvxNG3Zlie6PXuvuysecQaGRtg5+ZGRFq8r02q1XDxzGHuXoGrr2DsHcfHMYb2yjLRDunhLKyfMLW3J+FdMmbqIrAtJOPyrzaKCLDb/byy2Tn40j3rzlpeFC1ETjAwN8LG34mj61adJa7Vajl7IIsDRpto6gY42HEnXf/r04QtZBDhUHy9ETTA3M8XZwU53uDs5YmOl4siJFF1MUUkJJ06fJdDbo9o2jIwM8XV35ciJU7oyrVbLkaQUAr0rB9F83F0wMjLkSNLVds9fvMSl7FwCvapvVwjxaJIZXeKBkJWVRZ8+fRg4cCDBwcGoVCr27dvHxx9/TPfu3YHK/aY2btxIREQEpqam2Nra8tZbbzFgwADCwsKIiIhg4cKFHD16FF9f35tc8eY8PT0xMTHhq6++4tVXX+XIkSNMnjz5jtry9vZm3bp1JCYmYm9vj7W1NcbGxkDlrK5hw4ZhaWmp9/TDOxEQEEBaWhq//fYbzZo1Y9WqVSxdulQvZsKECbRv3x4/Pz+eeeYZNBoNq1ev1j2t8bnnnuPFF19k5syZNGnShMzMTDZu3EhwcDBdunS5q/xE9RQKBa3adWHT2j+wr+OCrX0d1q/8DZW1LfVDrj4o4McvJ1I/pAWt2j4JwGORXfn9569x8/TFwyuA2JhVlKrVNG3ZDqjc0D6sVSSr/piPuYUlpuYW/LXkJzx9AnUDXRfOp/HjlxMJrN+YxyK7kp9bOYtGYWBQZf8vIe5UYGg39qybha2TH/ZOASTFrURTVoJPg8r9EHev+wJzS3uCH3uhMr5JFzb/bxzH9y/H1acpaYnbuXwxmbD2Q4HK35mAxk+RsOd3VDYuWFrX4ciO/8PM0g43vxbA1UEuS1UdQh4fQEnx1Rll1+7/JcT90qWeD9/tiMfH3go/exvWHk+lRFNOW7/KP/S/iT2EnbkZ/UMrB2w71fVm8vrdrDx2iiZujuxMTedUVi6DWzSszW6IR5xCoaBz6xb8sX4rzo721LGzZfGaTdhaq2jWqK4u7sNv59OsUT2efLzyc/mptuF8s2gpvu4u+Hu6s3rrLkpKS2nbvAlQuaF9u+ahLFi+FksLc8zNTJn352oCvT0I8L46o+zCpcsUl6jJySugrEzDqbPpAHg418HISH9FghDi4SQDXeKBoFQqadGiBZ9//jnJycmUlZXh4eHB4MGDGTNmDAAzZ85k+PDhzJkzBzc3N1JTU+nXrx/Jycm89957lJSU0Lt3b4YOHcq6devuOidHR0fmz5/PmDFjmDVrFqGhoXz66ad069btttsaPHgwMTExhIWFUVBQwObNm2nbti0A/fv35+2336Z///6YmZnduKGb6NatG++88w7Dhg1DrVbTpUsXxo0bx8SJE3Uxbdu25ffff2fy5MlMnz4dKysrWrdurTs/b948pkyZwogRIzh37hwODg60bNmSp5566q5yEzfWJqoHZaVqli6aTUlxEV5+dXn59bEYG1+dZXj5UgZFhXm618FNIyjIz2PDysXk5+Xg6uHNy69/gMrKRhfTpfcAFChY+OOnaDQaAus1pnu/QbrzRw7upLAgj4N7tnJwz1Zdua2dI+9N/q5mOy0eGZ6Bj6EuyuXIzt8oKcrG1tGH1j3G6TaTL8q7hEJxdRK6g2s9WnZ6h8M7F3F4x6+obFyIeGoU1g5Xl3bXDetJuUbNvo3fUaYuxMG1Hq17jsPQqPJ3JiPtEAU5FyjIucBfPw7Sy6ff2/o3AIS4X8K9XcgrKeX3QyfILVbjZWfFqMhmWP+zFDGrsASDf808DKpjy7CIEJYcOsHig4k4W1kyvG0oHraq611CiPuie+RjqEvL+GHJXxQVlxDk68mYIc9j8s+NXICMrGzyC4t0r1s1aUhuQSFL1m4mJ78Ab1cXPhjygt4G9S/16IhCATPnL0aj0RBS15/o3vo3Wmf/tpxjyam61+/PnA3AN+PewdHOpmY6LIT4T1FotVptbSchhLi+1NRU/Pz82Lt3L6GhobWdzj2x5WjRzYOEeMCt3yv3ksTDb8S5t2o7BSFqnFHH7rWdghA1TvUAb5ye/dHQ2k6hWrYfyE3h2iLfwoX4jyorKyMrK4uxY8fSsmXLh2aQSwghhBBCCCGEqCmyGb14pCmVyuse27Ztq9XcYmNjcXFxYe/evcyePVvv3LZt226YuxBCCCGEEEII8SiSGV3ikRYXF3fdc25ubvcvkWq0bduW660sDgsLu2HuQgghhBBCCCHEo0gGusQjzd/fv7ZTuCPm5uYPbO5CCCGEEEIIIURNkaWLQgghhBBCCCGEEOKhIANdQgghhBBCCCGEEOKhIANdQgghhBBCCCGEEOKhIHt0CSHuu9DirbWdghA1r1nr2s5AiJp3rrYTEKLmzTgSWdspCFHjpoTVdgZC3Dsyo0sIIYQQQgghhBBCPBRkoEsIIYQQQgghhBBCPBRkoEsIIYQQQgghhBBCPBRkoEsIIYQQQgghhBBCPBRkoEsIIYQQQgghhBBCPBRkoEvcNxMnTqRx48aPfA5CCCGEEEIIIYSoGUa1nYD478vMzGT8+PGsWrWKjIwMbG1tCQkJYfz48URERKBQKFi6dCk9evS4Z9ecOHEikyZNAsDQ0BB3d3d69uzJ5MmTUSqVd9zuyJEjeeONN3SvBwwYQE5ODsuWLbvblO+biooKRo8ezS+//EJ2djYBAQFMnjyZ7t2713ZqogZptVqWrN3Mxl0HKCouIdDHg8FPP4WLo/0N663dvoe/NseSk1eAl6szL/d6kgAvd9350rIyfl6+jh1xR9FoNIQE+RP9dBdsVJW/Z6nnLrB803aOp6SRX1iEo501UeHN6NymZY32Vzx6dm5Zy7YNy8nPy8HF3YuufaLx8A64bnz8gR2s/+s3ci5nYl/HhU7dn6duw1Ddea1Wy4ZVi9kbu4GS4iI8fYPo8cwQHOq4AJCddZFNa/5HcuJhCvJzUVnb0rjZ47Tr9DRGRvL1SNSevxNP89fRU+SWqPG0VTGgWX38HWyuG78rNZ0lh05wqbAYZ5UF/UODaOJW5/4lLEQ1tFotR3f9RsqR9ZSqC3FwqUvTyFdQ2bresN6JQ6tJ3L+cksJsbBy9adJ2EPbOgbrz5ZpS4rbO40xSLOXlZTh7NaFp5BDMLGwAyMk8RcK+P7l0/jjq4jwsrRzxa9SRwCZda7K7Qoj/GJnRJW6qd+/eHDx4kAULFpCUlMSKFSto27YtWVlZNXrdBg0akJ6eTmpqKjNmzOCHH35gxIgRd9SWVqtFo9GgVCqxt7/xwMB/3a+//srnn3/OZ599RkJCAp999hmWlpY3rVdaWnofshM1Zfmm7azZtpvBfZ7io7cHY2Ziwkff/0JpWdl16+w4eISfl6/l6SfaMmPEq3i5OfHR97+QW1Coi1mwbB37jyYx/KW+THj9ZS7n5jFz3mLd+ZSz57GytOCN53ox873X6NmhNYtWbWDNtt012l/xaInfH8uqP+YT2bkPb4z6BGc3b+Z+PYWC/Nxq408nH2fxvC9o1qo9b4z6hPrBzfj1h4+5cD5NF7Nl/TJ2xKyhR/9XGPruNExMzZj79WTKyio/Cy9eOEeFtoKez77CW2M/o0vvAeze9jd/r1h4X/osRHV2pqbzy74Eegf7M7VzBF62VkzbuJe8EnW18YkXs/lq+yHa+bsztXMEYR5OfBZzgDPZ+fc5cyH0Hd+3lBNxq2ga+SodnpmBkbEZW5Z+SLnm+t9H05K2E7d1Hg1a9OWJZ2di7eDN1qUfUlJ09d+Cg1vncv7UPsK7vEu7pydTXJBF7MoZuvOXLyZjam5Ni45v0+mFL6nX7GniY3/lRNyqGu2vEOK/RQa6xA3l5OSwbds2ZsyYQbt27fDy8qJ58+aMHj2abt264e3tDUDPnj1RKBS61wDTp0/HyckJlUpFdHQ0JSUlt3VtIyMjnJ2dcXd3p1+/fjz33HOsWLECgF9++YWwsDBUKhXOzs48++yzXLx4UVc3JiYGhULBmjVraNq0Kaampmzfvl1v6eLEiRNZsGABy5cvR6FQoFAoiImJITIykmHDhunlkpmZiYmJCRs3brxp3t9++y0BAQGYmZnh5OTE008/rTtXUVHBtGnT8PHxwdzcnJCQEP73v/8BlYNxHTp0oGPHjmi1WgAuX76Mu7s748eP17VhYGCAo6MjzzzzDN7e3nTo0IEOHTpUyeNKX3/88Ud8fHwwMzMDYO3atTz22GPY2Nhgb2/PU089RXJysl7ds2fP0r9/f+zs7LC0tCQsLIzdu68ObCxfvpzQ0FDMzMzw9fVl0qRJaDSam7434s5otVpWb91N76jWNGtYFy9XJ15/tifZufnsPXz8uvVWxuykfcumtGvRBHdnR4b06YqpiTGbdx8AoLC4hM17DvBSj440DPDBz8OV1/r3IPFUGidSzwIQ2SKUl3t1pr6/N04OdrQOC6Ft88bsPZxwX/ouHg3bN/1Fs4gOhIVHUsfFnZ79X8HExIR9OzdVGx8bs4rA+k1oHdWdOi7uPNG1P64ePuzcsgao/J3ZsXkVkZ16Uz+4GS5uXvR5YRj5udkcO7QHgKAGTejzwjAC6jXG3sGZ+sHNaN2hO0fiZBBX1J5VCaeIDPCgrb877jZKBrVogKmhIZtPnq02fu3xVEJcHejawBd3GyV9GwfibWfNusTT9zlzIa7SarWciFtJveZ9cPNrjo2DN807vklJ4WXOJV//MzbpwAp8G0bh06A9VvYehLUfiqGRKaeOVn7/LlUXcuroRhq3fhknj0bYOfnT/Ik3uHT+OFnpiQD4NuhAaNtB1HFvgNLaGe96bfGpH8nZG1xXCPHwkYEucUNKpRKlUsmyZctQq6veTdy7dy8A8+bNIz09Xfd6yZIlTJw4kalTp7Jv3z5cXFz49ttv7yoXc3Nz3ayksrIyJk+ezKFDh1i2bBmpqakMGDCgSp1Ro0Yxffp0EhISCA4O1js3cuRI+vbtS6dOnUhPTyc9PZ1WrVoxaNAgFi1apNffX3/9FTc3NyIjI2+Y4759+3jzzTf58MMPSUxMZO3atbRu3Vp3ftq0afz888/Mnj2bo0eP8s477/D888+zZcsWFAoFCxYsYO/evcyaNQuAV199FTc3N72Brvbt25Obm8u4ceNu+p6dPHmSP/74gz///JO4uDgACgsLGT58OPv27WPjxo0YGBjQs2dPKioqACgoKKBNmzacO3eOFStWcOjQId577z3d+W3btvHiiy/y1ltvcezYMb7//nvmz5/PRx99dNN8xJ25mJVNTl4+DQN8dWWW5mYEeLmTlHqm2joaTTkpZ8/TKPBqHYVCQaNAP5L+GcQ6dTYdjaacRoF+uhg3J0ccbK1JOl19uwDFJWoszc3vtltCAKDRaDiXloJ/3auf0QqFAv+6waSdSqq2TtqpJPyCGumVBdQL0cVfzsogPy9HL8bcwhIP74DrtglQUlyIheWdL48X4m5oyis4lZVHQxcHXZlCoaChiz0nMnOqrZOUmUNDF/2Z6sEu9py4VH28EPdDYV4GxYXZOHlc/Qw2MbXE3jmQS/8MSF2rolzD5YxknD1DdGUKhQInz2DdIFb2xRQqyjU4/SvGys4dC5XjddsFKCstwsRUPtuFeJTIJhTihoyMjJg/fz6DBw9m9uzZhIaG0qZNG5555hmCg4NxdHQEwMbGBmdnZ129L774gujoaKKjowGYMmUKGzZsuO1ZXVfs37+fRYsW6QaaBg4cqDvn6+vLrFmzaNasGQUFBXp7eH344YdERUVV26ZSqcTc3By1Wq2Xe69evRg2bBjLly+nb9++AMyfP58BAwagUChumGdaWhqWlpY89dRTqFQqvLy8aNKkCQBqtZqpU6eyYcMGwsPDdblv376d77//njZt2uDm5sb333/Piy++yIULF1i9ejUHDx7U7RdTVFREVFQUzz77LOvXr6e4uJhPPvlEl5eVlRVz587VzSIrLS3l559/1v13gsqlqP82d+5cHB0dOXbsGA0bNmTRokVkZmayd+9e7OzsAPD399fFT5o0iVGjRvHSSy/p+jB58mTee+89JkyYcMP3R9yZnPwCAKxV+l/SrFWWunPXyissoqKiQrfX1hU2SkvOZ1yqbDcvHyMjQyzNza5pV0lOXvXtJp5KY0fcUUYNfvaO+iLEtYoK86ioqECpstYrV6qsycw4V22dgrxcVFY2emUqKxvyc7Mrz+fmVLZhdU2bVtbk52VX22ZWZjo7t6zlyV4v3EEvhLh7+epSKrRarM1M9MqtzUw5n1dYbZ28EjU2ZqZ6ZTbmpuQUV7/UUYj7oaSw8nP2yr5ZV5ha2FBSmFNtHXVxHlptBaYW+p/bZhY25Gef07VrYGiEianlNTHWlBRV3+6l8wmcSYrl8e5jb78jQogHlszoEjfVu3dvzp8/z4oVK+jUqRMxMTGEhoYyf/7869ZJSEigRYsWemVXBndu1eHDh3WDUc2bNyc8PJyvv/4aqBz46tq1K56enqhUKtq0aQNUDjT9W1hY2G1dE8DMzIwXXniBuXPnAnDgwAGOHDlS7Yyxa0VFReHl5YWvry8vvPACCxcupKioCKicXXVloOrKTDmlUsnPP/+st3SwT58+9OzZk+nTp/Ppp58SEHB1M+b58+eTk5PDN998w5o1a1i/fj0vv/wyGo2G1NRUCgoKiIiI0MV7eXnpDXIBnDhxgv79++Pr64uVlZVuuemV9y4uLo4mTZroBrmudejQIT788EO9PgwePJj09HRdX/9NrVaTl5end6hlv7Ab2rY/nhdHfaQ7yssrajslANLSM/j4p//j6SfaEBLkf/MKQjwgcnOymPfNRzRs0pLmEdXfHBFCCFG908e38Mc3/XXHlVUAtS330mm2/zWdBi364ezVuLbTEULcRzKjS9wSMzMzoqKiiIqKYty4cQwaNIgJEybc0uDPnQoKCmLFihUYGRnh6uqKiUnlHc7CwkI6duxIx44dWbhwIY6OjqSlpdGxY8cqG67fyibt1Rk0aBCNGzfm7NmzzJs3j8jISLy8vG5aT6VSceDAAWJiYvj7778ZP348EydOZO/evRQUVM6QWbVqFW5ubnr1TE2v3o0tKipi//79GBoacuLECb24+Ph4GjRogLGxMba2tqxfv57HH3+cnj17EhAQQKdOnXBxcblh/7t27YqXlxdz5szB1dWViooKGjZsqHvvzG+yJK2goIBJkybRq1evKueu7AP2b9OmTdM9QfOKUYOfY8yQ5294nUdZWIMgvScjlv2z/1lufgF21ipdeW5+IV6uTtW2YWVpgYGBQZUZXzkFhdhYVc7ysrFSodGUU1hcojerKze/QBdzxdkLmXz47QI6tAqj9xNt7q6DQvyLhaUVBgYGVTaeL8jPRWllW22dyplZOXpl+Xk5qKwr45XWNpVt5OViZX110L4gLxcXd2+9enm5l/nxy4l4+gTS67mhd9cZIe6CytQEA4WC3BL97zK51czausLKzJScazaqzylWY2NefbwQNcHVtzlP/OvJiBXllQ/KKSnKwVx59TNYXZSDtaN3tW2YmluhUBigLtL/t6CkKAczi8rPdjNLWyrKNZSqC/VmdZUU5VaZPZaXdYaYPybg1+gJ6rfoczfdE0I8gGRGl7gj9evXp7Cwchq9sbEx5eXleufr1aunt3k5wK5du27rGiYmJvj7++Pt7a0b5AI4fvw4WVlZTJ8+nccff5y6devqbUR/u9e4NneARo0aERYWxpw5c1i0aJHeUsmbMTIyokOHDnz88cfEx8eTmprKpk2bqF+/PqampqSlpeHv7693eHh46OqPGDECAwMD1qxZw6xZs9i06epmzG5ubsTFxZGfX/k0pTp16rBhwwYOHz7M559/zpQpU26YW1ZWFomJiYwdO5b27dtTr149srP1l/EEBwcTFxfH5cuXq20jNDSUxMTEKn3w9/fHwKDqR8ro0aPJzc3VO0YM6HvL7+ejyNzMFGcHO93h7uSIjZWKIydSdDFFJSWcOH2WQG+PatswMjLE192VIydO6cq0Wi1HklII9K4cRPNxd8HIyJAjSVfbPX/xEpeycwn0utrumQsXmfjNPNo2a0z/zu3vdXfFI87IyAg3T1+SEw/ryrRaLScTD+PpE1htHU+fQL14gJPH43XxdvZOqKxs9GJKios4k3pCr83cnCzmfDEBNw9fnn5h2E2XpwtRk4wMDfCxt+Jo+tWnWmu1Wo5eyCLA0abaOoGONhxJ138K9uELWQQ4VB8vRE0wNjFHZeOiO6zsPDC3tCXjzNXP4DJ1EVkXknBwCaq2DQNDI+yc/MhIi9eVabVaLp45jP0/dWzr+GJgaMTFf8XkZZ+jKD9Tr93crDQ2/28c3vXb0ajVc/e6u0KIB4DM6BI3lJWVRZ8+fRg4cCDBwcGoVCr27dvHxx9/TPfu3QHw9vZm48aNREREYGpqiq2tLW+99RYDBgwgLCyMiIgIFi5cyNGjR/H19b3JFW/O09MTExMTvvrqK1599VWOHDnC5MmT76gtb29v1q1bR2JiIvb29lhbW2NsbAxUzuoaNmwYlpaW9OzZ85baW7lyJSkpKbRu3RpbW1tWr15NRUUFQUFBqFQqRo4cyTvvvENFRQWPPfYYubm5xMbGYmVlxUsvvcSqVauYO3cuO3fuJDQ0lHfffZeXXnqJ+Ph4bG1tiY6O5ssvv6Rbt2589NFH2Nvbs23bNgoKCrCwsOCnn34iNDT0uvnZ2tpib2/PDz/8gIuLC2lpaYwaNUovpn///kydOpUePXowbdo0XFxcOHjwIK6uroSHhzN+/HieeuopPD09efrppzEwMODQoUMcOXKk2oE2U1NTvRlrAPkmJlXixPUpFAo6t27BH+u34uxoTx07Wxav2YSttYpmjerq4j78dj7NGtXjyccrlw0/1TacbxYtxdfdBX9Pd1Zv3UVJaSltm1fuG2dpbka75qEsWL4WSwtzzM1MmffnagK9PQj4ZzAsLT2DD79dQOO6/nRpG052XuUgq4GBAdbKO5sxKcS1Hovsyu8/f42bpy8eXgHExqyiVK2mact2ACxZMAsrGzs6da+cCRrRtgs/fDmBbRtWENSwKfH7t3MuLYWez74KVP7OtGrXhU1r/8C+jgu29nVYv/I3VNa21A9pDlwd5LKxc+TJXi9S+K8ZZVdmhglxv3Wp58N3O+LxsbfCz96GtcdTKdGU09av8jP5m9hD2Jmb0T+08o/6TnW9mbx+NyuPnaKJmyM7U9M5lZXL4BYNa7Mb4hGnUCgIaPwUCXt+R2XjgqV1HY7s+D/MLO1w87u6tcnmP8bj7teCgMZdAAgM7caedbOwdfLD3imApLiVaMpK8GlQuUeviaklPg3ac3DrPIzNlBibmHMw5kccXIJ0g2G5l04T88cEnL0bExjajeJ/9gtTKAwwu2b/LyHEw0sGusQNKZVKWrRoweeff05ycjJlZWV4eHgwePBgxowZA8DMmTMZPnw4c+bMwc3NjdTUVPr160dycjLvvfceJSUl9O7dm6FDh7Ju3bq7zsnR0ZH58+czZswYZs2aRWhoKJ9++indunW77bYGDx5MTEwMYWFhFBQUsHnzZtq2bQtUDvi8/fbb9O/fv9oledWxsbHhzz//ZOLEiZSUlBAQEMD//d//0aBBAwAmT56Mo6Mj06ZNIyUlBRsbG0JDQxkzZgyZmZlER0czceJE3WDVpEmT+Pvvv3n11VdZvHgxrq6u7Nmzh/fff59evXqRl5dHWFgYP//8MxYWFkRFReHn58fw4cOrzc/AwIDffvuNN998k4YNGxIUFMSsWbN0fYbKWW5///03I0aMoHPnzmg0GurXr88333wDQMeOHVm5ciUffvghM2bMwNjYmLp16zJo0KDbfv/Frese+Rjq0jJ+WPIXRcUlBPl6MmbI85j8MzALkJGVTX7h1X3SWjVpSG5BIUvWbiYnvwBvVxc+GPKC3gb1L/XoiEIBM+cvRqPREFLXn+jeXXTndx06Rl5BIVv3HWLrvkO6ckc7G74Z904N91o8KoKbRlCQn8eGlYvJz8vB1cObl1//QLfhfM7lSyj+NWPUy68u/Qa8xfq/fmPdikU41HHh+SHv4ezqqYtpE9WDslI1SxfNpqS4CC+/urz8+liMjSsH2k8ejycr8wJZmReY/sErevlM++Z/Nd9pIaoR7u1CXkkpvx86QW6xGi87K0ZFNsP6n6WIWYUlGPxr5mFQHVuGRYSw5NAJFh9MxNnKkuFtQ/GwVV3vEkLcF3XDelKuUbNv43eUqQtxcK1H657jMDS6erOzMDcDdXG+7rVn4GOoi3I5svM3SoqysXX0oXWPcXrLEpu0HogCBTtWfUxFeRnOXk0IbTdEd/7MiZ2UFOeSmrCF1IQtunJLqzo8NfD7mu20EOI/Q6HVarW1nYQQ/0Wpqan4+fmxd+/eG86SErcvf9/a2k5BiBp3wLx1bacgRI0LXjaitlMQosbNdPuytlMQosZNGfDgrrjI/ui/ucem7Qff1XYKjyyZ0SXENcrKysjKymLs2LG0bNlSBrmEEEIIIYQQQogHhGxGL2qFUqm87rFt27ZazS02NhYXFxf27t3L7Nmz9c5t27bthrkLIYQQQgghhBCi9siMLlEr4uLirnvOzc3t/iVSjbZt23K9Fb1hYWE3zF0IIYQQQgghhBC1Rwa6RK3w9/ev7RTuiLm5+QObuxBCCCGEEEII8bCTpYtCCCGEEEIIIYQQ4qEgA11CCCGEEEIIIYQQ4qEgA11CCCGEEEIIIYQQ4qEgA11CCCGEEEIIIYQQ4qEgm9ELIe67GUciazsFIWrciHNv1XYKQtQ4o47dazsFIWpclLmmtlMQ4j4wqe0EhLhnZEaXEEIIIYQQQgghhHgoyECXEEIIIYQQQgghhHgoyECXEEIIIYQQQgghhHgoyECXEEIIIYQQQgghhHgoyECXEEIIIYQQQgghhHgoyECXEDcwceJEGjduXNtpkJqaikKhIC4urrZTEUIIIYQQQggh/rOMajsBIWpCZmYm48ePZ9WqVWRkZGBra0tISAjjx48nIiIChULB0qVL6dGjxz275sSJE5k0aRIABgYGuLq68uSTTzJ9+nTs7OxuuZ0BAwaQk5PDsmXLdGUeHh6kp6fj4OBwz/IVD44Th1aTuH85JYXZ2Dh606TtIOydA6uNrSjXkLDvT1KPbaa4IAuVrSvBj72Ii3foHbWp1WrZtnwK6akHeKzrKNz8WtRIH8Wj7VjGZVYeTSH1ch7ZxWqGtw2lmYfTjetcyOLn/QmcyynA3tKcno38aOPnflttfrcjnq3J5/TKgl0dGN2+2b3rnBD/OHYylRWbYzl1Lp3s3HxGDnyG5o3q3bDO0ZOnWLBsHWczLuJgY02vqNa0bd5Ed35d7B7W79hH5uUcANydHHm6Y1ua1AsAIPNyDq9P/rzatt95qQ/hjRvem84J8S87t6xl24bl5Ofl4OLuRdc+0Xh4B1Qbq9Fo2PL3Ug7sjiEv5zIOTq506v48QQ2u/pzv2rqW3dvXk511EYA6zu6079xXF1NUmM+GVUs4kXCI3OxLWChVNAhpQYcu/TC3sKz5Dgsh/nNkoEs8lHr37k1paSkLFizA19eXjIwMNm7cSFZWVo1et0GDBmzYsIHy8nISEhIYOHAgubm5LF68+K7aNTQ0xNnZ+R5lKR4kaUnbids6j7DIV7F3DiTx4F9sXfohT770DWYW1lXiD+9cxOmELYR1eA0rOzcupB4kduUM2vedhm0d39tuM+ngX/eln+LRVqopx8vWirb+7ny+5eBN4y8WFDFj8346BHgwLKIxRy9k8cPOI9iYmxLi6nhbbYa4OvBqq2DdayMDmewuaoa6rAwvN2fatQhl5rzfbhp/MSub6XMWEtWqGW8+35vDJ1KYvXgFNlYqGtf1B8Dexppnu3TAxdEerVbLln2H+GTu/zFjxKt4ONfB3saK7yeN1Gt34679rNgUS5N61d8wEeJuxO+PZdUf8+nRfwie3oFs37ySuV9PYcSEWShVVb+3rF/5f8Tt2UrPZ4fi6OzKiWNxLJzzCa+O+AhXDx8ArG0d6NjtORzquKDVajm4O4Zfvp/BG6M/wcnFg7zcbPJzL9O514vUcXYj5/Illv32A3k5WTw3+N37/RYIIf4D5NuceOjk5OSwbds2ZsyYQbt27fDy8qJ58+aMHj2abt264e3tDUDPnj1RKBS61wDTp0/HyckJlUpFdHQ0JSUlt3VtIyMjnJ2dcXNzo0OHDvTp04f169frzpeXlxMdHY2Pjw/m5uYEBQXx5Zdf6s5PnDiRBQsWsHz5chQKBQqFgpiYmGqXLm7ZsoXmzZtjamqKi4sLo0aNQqPR3FKe//vf/2jUqBHm5ubY29vToUMHCgsLded//PFH6tWrh5mZGXXr1uXbb7/VnRs4cCDBwcGo1WoASktLadKkCS+++OJtvVfi1iQdWIFvwyh8GrTHyt6DsPZDMTQy5dTRjdXGn07YQr3mvXH1aYrS2hn/kCdx8W5K4oHlt91m9sUUkg6soFnUsBrtoxCN3Rzp1ySQ5p63NqC/ISmNOkpzXgirh7uNko51vWjh5cTqhNTbbtPIwAAbc1PdoTQ1vpuuCHFdTeoF0L9ze1oE33gW1xXrd+zD0c6WF7t3xN3ZkScfb0HLkPqs2rJTFxPWIIjQ+oG4ONrjWseB/p3bY2piwonTZ4HKGea2Viq9Y0/8ccIbN8TM1KRG+ikebds3/UWziA6EhUdSx8Wdnv1fwcTEhH07N1UbH7dnK2079qZuw1DsHZxp2boTQQ2asG3jCl1MvUZh1G0YikMdFxydXHmi27OYmJpy5lQSAM6unjw3+F3qNQrD3tEFv6BGRHXtT8Lh/ZSXl9+Xfgsh/ltkoEs8dJRKJUqlkmXLlukGY/5t7969AMybN4/09HTd6yVLljBx4kSmTp3Kvn37cHFx0RvguV2pqamsW7cOE5OrXyQrKipwd3fn999/59ixY4wfP54xY8awZMkSAEaOHEnfvn3p1KkT6enppKen06pVqyptnzt3js6dO9OsWTMOHTrEd999x08//cSUKVNumld6ejr9+/dn4MCBJCQkEBMTQ69evdBqtQAsXLiQ8ePH89FHH5GQkMDUqVMZN24cCxYsAGDWrFkUFhYyatQoAD744ANycnL4+uuv7/i9EtWrKNdwOSMZZ88QXZlCocDJM5is9MTr1CnD0Ej/jxdDI2MunT9+W21qytTsWvs5oe2GYG5pey+7JcRdO5GZQ0Nne72yYBdHTmTm3HZbCRcv88rvGxm+fCs/7T5Cvrr0HmUpxN1JSj1DcKCvXllIkD8nUs9WG19RUUHsgcOoS0sJ9PKoNib5zHlSz6UT2aJJteeFuBsajYZzaSn41706S1ahUOBfN5i0fwalqtYpw9hY/waDkbEJp5OPVxtfUVHBoX3bKVWr8fQJum4u6uIizMzNMTQ0vIOeCCEedLJ0UTx0jIyMmD9/PoMHD2b27NmEhobSpk0bnnnmGYKDg3F0rFzWYmNjo7cc8IsvviA6Opro6GgApkyZwoYNG25rVtfhw4dRKpWUl5fr6n322We688bGxrp9vAB8fHzYuXMnS5YsoW/fviiVSszNzVGr1Tdcqvjtt9/i4eHB119/jUKhoG7dupw/f57333+f8ePHY3CDpTfp6eloNBp69eqFl5cXAI0aNdKdnzBhAjNnzqRXr166HI8dO8b333/PSy+9hFKp5Ndff6VNmzaoVCq++OILNm/ejJWVVbXXU6vVVQYcNWUKjIxNr5ujqKQuzkOrrcD0muWEZhY25Gefq7aOk1cIifuX4+haH6WNCxln4jl7chdabcVttRm3dS4OLkG4+TW/x70S4u7lFKuxNtf/DLE2N6G4TEOpphwTo1v7wybExYFmHk7UUZqTUVDM4oOJTN+4j8mdwjEwUNRE6kLcspz8AqxVSr0ya5UlRSUllJaVYfLP4MDp8xmMm/UjpWUazExNGPnyM7g7O1bb5ubdB3BzciTIx7PG8xePnqLCPCoqKqosUVSqrMnMqP57S0DdELZt/Atv//rYOzpzMjGeo3G7qaio0ItLP3ea2TM/QFNWiompOc8PeY86Lu7VtllYkMemNf+jeUTUvemYEOKBIzO6xEOpd+/enD9/nhUrVtCpUydiYmIIDQ1l/vz5162TkJBAixb6G22Hh4ff1nWDgoKIi4tj7969vP/++3Ts2JE33nhDL+abb76hadOmODo6olQq+eGHH0hLS7ut6yQkJBAeHo5CcfUPsYiICAoKCjh7tvo7vVeEhITQvn17GjVqRJ8+fZgzZw7Z2dkAFBYWkpycTHR0tG5mnFKpZMqUKSQnJ+vaCA8PZ+TIkUyePJkRI0bw2GOPXfd606ZNw9raWu/Yserj2+qvuHVN2gxCZePKmp+H8fuspzmw+Qd86keiUNz6x/255D1knImnSdtBNZipELWvlY8rYR5OeNpa0czDiXfbhZGSlcuxjJrdz1GIe8mtjgMfjxzKR28PJqpVGN8sWsrZC5lV4krLyth+4LDM5hL/KU/1GYh9HRc++/BNxr7ZjxWLf6Jpy3ZVbto6Ornx5uhPGPruNFo8HsX/fvmKi+lVv/OWFBex4Lup1HHxILJz3/vVDSHEf4zM6BIPLTMzM6KiooiKimLcuHEMGjSICRMmMGDAgBq7pomJCf7+lRvETp8+nS5dujBp0iQmT54MwG+//cbIkSOZOXMm4eHhqFQqPvnkE3bv3l1jOV3L0NCQ9evXs2PHDv7++2+++uorPvjgA3bv3o2FhQUAc+bMqTLo9++p3xUVFcTGxmJoaMjJkydveL3Ro0czfPhwvbKpi2WmxK0wNbdCoTBAXZSrV15SlIOZRfXLCc0srHms22jKNaWoS/Ixt7QjPvYXLK3q3HKbF88epjA3gz+/fU4vJnblDBxd69Ouz82XyApRk2zMTckt1p8pmltcirmx0S3P5qqOk8oClakxF/KLaOhyt1kKcXdsVEpy8wv0ynLzC7EwM9PN5gIwMjLE2aHy6c5+Hq4knznP6q27GNK3q17dXYeOUVpWRutmjWs8d/FosrC0wsDAgIJ8/e8YBfm5KK2q/96iVFnz4ivvU1ZWSlFhPlbWdqxd/iu29nX04oyMjLB3rPxgdvf04+zpZGJjVtGz/yu6GHVJMfO+mfLPjK93MTKSP3WFeFTJjC7xyKhfv75uw3VjY+Mqm1PWq1evyoDTrl277uqaY8eO5dNPP+X8+fMAxMbG0qpVK1577TWaNGmCv7+/3kwpqBwsu9nGmfXq1WPnzp26fbWutK1SqXB3r34a978pFAoiIiKYNGkSBw8exMTEhKVLl+Lk5ISrqyspKSn4+/vrHT4+Prr6n3zyCcePH2fLli2sXbuWefPmXfdapqamWFlZ6R2ybPHWGBgaYefkR0ZavK5Mq9Vy8cxh7F2uvy8FgKGRCRZKe7QV5Zw9uRM3vxa33GbdsF50fO5zOj73me4AaNxmIM2eeKPqxYS4zwIcbTh6QX/WVXz6JQIcbe6q3azCYgpKy7Axl88oUfsCvT04fOKUXll8UjIB3jf5d16rpayah9Ns2nWApvWDsFZa3ss0hdAxMjLCzdOX5MTDujKtVsvJxMN4+tz4KZ/GxiZY29hTXl7O0bjd1A9uduOLabVoNGW6lyXFRfz01YcYGhrx4qujMDaWhy0I8SiTgS7x0MnKyiIyMpJff/2V+Ph4Tp06xe+//87HH39M9+7dAfD29mbjxo1cuHBBt2zvrbfeYu7cucybN4+kpCQmTJjA0aNH7yqX8PBwgoODmTp1KgABAQHs27ePdevWkZSUxLhx43Sb4V/h7e1NfHw8iYmJXLp0ibKysirtvvbaa5w5c4Y33niD48ePs3z5ciZMmMDw4cNvuD8XwO7du3Ub7qelpfHnn3+SmZlJvXqVT4GaNGkS06ZNY9asWSQlJXH48GHmzZun22vs4MGDjB8/nh9//JGIiAg+++wz3nrrLVJSUu7qvRLVCwztRsqR9Zw6tom8rDPs3zQbTVkJPg0iAdi97gvit/+ii89KT+TsiZ0U5F4g89wxtiz7EG2FlrphPW+5TXNLW6wdvPQOAEuVI0prp/vYe/GoKCnTkHo5j9TLeQBkFhSRejmPS4XFAPzfgUS+iT2ki+8Q6ElGQTEL9x/nXG4B6xNPs/v0BTrX877lNkvKNPy6/zgnMnPILCjmSPolPo05gJPSghBXh/vUc/EoKVGXcupsOqfOpgOQeTmHU2fTuZSdA8DClev5euGfuvioVmFczLrMryv+5lxGJuti97Az7ihd2lzdVmHhyvUcO5lK5uUcTp/PYOHK9Rw9mcrjTYP1rn3h0mUSUk4T2TK05jsqHmmPRXZlb+wG9u/azMX0syz77QdK1WqatmwHwJIFs1i7/FddfNqpJI4c3EXWpQucOnmM+d9MoaKigtZRPXQxa5f/SsqJo2RnXST93Gnd68bNHgcqB7nmfj2ZsrJSej8/FHVxEfm52eTnZlfZ60sI8WiQ+ZzioaNUKmnRogWff/45ycnJlJWV4eHhweDBgxkzZgwAM2fOZPjw4cyZMwc3NzdSU1Pp168fycnJvPfee5SUlNC7d2+GDh3KunXr7iqfd955hwEDBvD+++/zyiuvcPDgQfr164dCoaB///689tprrFmzRhc/ePBgYmJiCAsLo6CggM2bN+Pt7a3XppubG6tXr+bdd98lJCQEOzs7oqOjGTt27E3zsbKyYuvWrXzxxRfk5eXh5eXFzJkzefLJJwEYNGgQFhYWfPLJJ7z77rtYWlrSqFEj3n77bUpKSnj++ecZMGAAXbtWLokYMmQIq1at4oUXXmDr1q3ydJt7zDPwMdRFuRzZ+RslRdnYOvrQusc4zCxsACjKu6S3/1Z5uYbDOxdRmJuBkbEZLj6htOz4NiamlrfcphD3W0pWLpPX79G9/mVf5dO2Wvu5MbRVMDklarIKrz4YpI7SgvfbNeXn/QmsPZ6KnYUZQ8IbEuLqeMttGigUpGXnsy3lHEWlZdiYmxHs6kDfkACM5XNM1IDkM+eY9M183esFy9YC0KZZY15/tic5eQVcyr665KuOvS2jBj/HgmXrWL1tF/bW1rzarxuN6/rrYvIKivjm/5aSnZePhZkZnq5OfPDKCwQH+elde9PuA9hZW+nVFaImBDeNoCA/jw0rF5Ofl4Orhzcvv/4BKisbAHIuX0Lxr5uyGk0Z61f+xuVLGZiYmhLUIJS+A97E3OLq95bC/Dz+9/PX5OVmY2ZugbObFy8PG0tA3conSJ8/k8KZ1BMAfDpRf+b5ex9+W2UZpBDi4afQ/nvtkxBC3Adj55fWdgpC1LgR596q7RSEqHFGHbvXdgpC1LgD5q1rOwUhalybBha1ncIdy/5oaG2nUC3bD76r7RQeWbJ0UQghhBBCCCGEEEI8FGSgS4hbpFQqr3ts27atttPTSUtLu2GuaWlptZ2iEEIIIYQQQghRI2SPLiFuUVxc3HXPubm53b9EbsLV1fWGubq6ut6/ZIQQQgghhBBCiPtIBrqEuEX+/g/GBq5GRkYPTK5CCCGEEEIIIcS9JEsXhRBCCCGEEEIIIcRDQQa6hBBCCCGEEEIIIcRDQQa6hBBCCCGEEEIIIcRDQfboEkLcd1HNNLWdghA1biZf1nYKQtS4Eevequ0UhKhxoR1rOwMh7odOtZ2AEPeMzOgSQgghhBBCCCGEEA8FGegSQgghhBBCCCGEEA8FGegSQgghhBBCCCGEEA8FGegSQgghhBBCCCGEEA8FGegSQgghhBBCCCGEEA8FGegSQgghhBBCCCGEEA8FGegSj7yJEyfSuHHj2k6D1NRUFAoFcXFxtZ2KEEIIIYQQQgjxQDKq7QSEuFOZmZmMHz+eVatWkZGRga2tLSEhIYwfP56IiAgUCgVLly6lR48e9+yaEydOZNKkSQAYGBjg6urKk08+yfTp07Gzs7vldgYMGEBOTg7Lli3TlXl4eJCeno6Dg8M9y1c8HHZuWcu2DcvJz8vBxd2Lrn2i8fAOqDZWo9Gw5e+lHNgdQ17OZRycXOnU/XmCGjTRxXw8bijZlzOr1G35eEe6PzMYgN3b/+bQ3u2cP3sKdUkx4z9ZgLmFZc10UDzyLp49SuL+ZWRfTKG48DKPdR2Fm1+LG9c5c4S4rXPJvXwGC5UD9Zv3wad+pO78yUNrSD68jsK8iwBY2XnQoGU/XLxDASjMu8jKua9U23arziPxCIy4R70TotKxjMusPJpC6uU8sovVDG8bSjMPpxvXuZDFz/sTOJdTgL2lOT0b+dHGz/2W29SUV7DkUBJx5zLJKCjG0tiIBi72PNskCFsLsxrrq3i0rd2+h782x5KTV4CXqzMv93qSAC/3amM1mnKWbdrGlj2HuJybh0sde557Koom9a5+z6moqGDJ2hi27T9Ebn4htlYq2jQPoXdUGxQKBQB935lQbfvPd32CbpHyeS7Eo0YGusQDq3fv3pSWlrJgwQJ8fX3JyMhg48aNZGVl1eh1GzRowIYNGygvLychIYGBAweSm5vL4sWL76pdQ0NDnJ2d71GWVZWWlmJiYlJj7YuaEb8/llV/zKdH/yF4egeyffNK5n49hRETZqFUWVeJX7/y/4jbs5Wezw7F0dmVE8fiWDjnE14d8RGuHj4AvPbedLQVFbo6F9LTmPvVZBqFhuvKykpLCWzQhMAGTVi3fGHNd1Q80so1amwcvfFp0J7YlTNuGl+Qm8G2FVPwa9SRlp3eIeNMPHvXf4OZhS0u3pWDuuYqBxpFvIDKxgUtWk4nxLD9r2k88exMrO09sVA60G3wXL12U46s5/i+pbj4NK2RfopHW6mmHC9bK9r6u/P5loM3jb9YUMSMzfvpEODBsIjGHL2QxQ87j2BjbkqIq+MttakuL+fU5Tx6NfLH005FoVrDgn3H+CRmP1M7yx//4t7bcfAIPy9fy+CnuxLg5c6qrTv56Ptf+HLMm1grq94wW7xmE1v3H+KVvt1wq+NAXOJJZs5bzOQ3o/FxdwFg2cbt/L1jL6/374GnixPJZ87x7f8tw9LMjCdbtwTg+0kj9dqNSzjJ7MXLaRFcr+Y7LYT4z5Gli+KBlJOTw7Zt25gxYwbt2rXDy8uL5s2bM3r0aLp164a3tzcAPXv2RKFQ6F4DTJ8+HScnJ1QqFdHR0ZSUlNzWtY2MjHB2dsbNzY0OHTrQp08f1q9frztfXl5OdHQ0Pj4+mJubExQUxJdffqk7P3HiRBYsWMDy5ctRKBQoFApiYmKqXbq4ZcsWmjdvjqmpKS4uLowaNQqNRnNLebZt25Zhw4bx9ttv4+DgQMeOHQH47LPPaNSoEZaWlnh4ePDaa69RUFCgVzc2Npa2bdtiYWGBra0tHTt2JDs7G6i8qzZt2jRd/0JCQvjf//53W++huHXbN/1Fs4gOhIVHUsfFnZ79X8HExIR9OzdVGx+3ZyttO/ambsNQ7B2cadm6E0ENmrBt4wpdjFJljcraVnckHjmAvaMzPgENdDGPRT5F2yd64nmdmWNC3Esu3qE0avUc7v4tbyk++fA6LK3q0Lj1y1jZexDQuAseAeEkHfxLF+Pm2wxXn6aobF2xsnWjUavnMDI2I+tCEgAKAwPMLW31jnMnd+EZGIGRscx0EfdeYzdH+jUJpLnnrd3U2pCURh2lOS+E1cPdRknHul608HJidULqLbdpaWLMBx2a09LbBVcrJQGONrzcrD6nsvK4VFh8L7olhJ6VMTtp37Ip7Vo0wd3ZkSF9umJqYszm3Qeqjd+6/xA9O7QmtH4gTg52dIxoTpN6AayM2aGLSUo9Q7OGdWnaIAhHOxtahjQgJMifk2nndDG2Viq9Y++R4zTw98bJ4dZXXAghHh4y0CUeSEqlEqVSybJly1Cr1VXO7927F4B58+aRnp6ue71kyRImTpzI1KlT2bdvHy4uLnz77bd3nEdqairr1q3TmylVUVGBu7s7v//+O8eOHWP8+PGMGTOGJUuWADBy5Ej69u1Lp06dSE9PJz09nVatWlVp+9y5c3Tu3JlmzZpx6NAhvvvuO3766SemTJlyy/ktWLAAExMTYmNjmT17NlC55HLWrFkcPXqUBQsWsGnTJt577z1dnbi4ONq3b0/9+vXZuXMn27dvp2vXrpSXlwMwbdo0fv75Z2bPns3Ro0d55513eP7559myZcsdvYfi+jQaDefSUvCvG6wrUygU+NcNJu1U0nXqlGFsbKxXZmRswunk49e9xsE9W2jasp1u+r8Q/3VZ6Yk4eYbolTl7NSErPbHaeG1FBWmJ29CUleDgHFRtzOWMk2RnnsKnQft7nq8Qd+JEZg4Nne31yoJdHDmRmXNX7RaVaVAowMJYFnaIe0ujKSfl7HkaBfrqyhQKBY0C/UhKPVttnTJNOSbX/CyaGBtx/FSa7nWgtwdHTqRw/uIlAFLPXSAh5TSN61V/My4nv4CDCSeIbBF6t10SQjyg5F848UAyMjJi/vz5DB48mNmzZxMaGkqbNm145plnCA4OxtGxckq/jY2N3nLAL774gujoaKKjowGYMmUKGzZsuK1ZXYcPH0apVFJeXq6r99lnn+nOGxsb6/bxAvDx8WHnzp0sWbKEvn37olQqMTc3R61W33Cp4rfffouHhwdff/01CoWCunXrcv78ed5//33Gjx+PgcHNx6kDAgL4+OOP9crefvtt3f/39vZmypQpvPrqq7oBv48//piwsDC9AcAGDSpn+qjVaqZOncqGDRsID69c5ubr68v27dv5/vvvadOmTZUc1Gp1lcHI0tJyTExMb5r/o66oMI+KiooqSxSVKmsyM85VWyegbgjbNv6Ft3997B2dOZkYz9G43VT8a6nivx2L30NJcRFNw9vd8/yFqCklhdmYWdjolZla2FBWWkS5phRDo8qbDzmXUtm4eDTlmlKMTcyJeGoUVvYe1bZ56uhGrOzccXCVZS7ivyGnWI21uf6/ldbmJhSXaSjVlGNiZHjbbZZqyll0IJFwbxcsTIxvXkGI25BXWERFRQU2KqVeuY3SkvMZl6qtExLkx1+bd1DP1wtnBzsOJ6WwOz6BCu3V7y09OzxOsVrNO9O/xsDAgIqKCp7p3J7HmwZX2+aWvXGYmZrQXJYtCvHIkhld4oHVu3dvzp8/z4oVK+jUqRMxMTGEhoYyf/7869ZJSEigRQv9DY6vDNjcqqCgIOLi4ti7dy/vv/8+HTt25I033tCL+eabb2jatCmOjo4olUp++OEH0tLSrtPi9XMNDw/Xm2UTERFBQUEBZ89Wf1fsWk2bVt1nZsOGDbRv3x43NzdUKhUvvPACWVlZFBUVAVdndFXn5MmTFBUVERUVpZtVp1Qq+fnnn0lOTq62zrRp07C2ttY7Fs759JbyF7fvqT4Dsa/jwmcfvsnYN/uxYvFPNG3Z7roDo/t2bCSwfhOsrGVqv3j4WNm688Rzn9HhmRn4NerInr9nkZd1pkpcuaaUtMRt+DToUAtZCnF/aMor+HJbHFq0RDdvcPMKQtwHA3o+iYujPW9P+4r+Iz9k7p+radu8MQaKq99bdhw8wvb9h3nz+d5MH/4Krz/bk79idhCzp/q97jbvPsjjTYMxMZbBXCEeVTKjSzzQzMzMiIqKIioqinHjxjFo0CAmTJjAgAEDauyaJiYm+Pv7A5X7fXXp0oVJkyYxefJkAH777TdGjhzJzJkzCQ8PR6VS8cknn7B79+4ay+l6LC31N/1MTU3lqaeeYujQoXz00UfY2dmxfft2oqOjKS0txcLCAnNz8+u2d2Uvr1WrVuHm5qZ3ztS0+hlao0ePZvjw4Xplu5PL76Q7jxwLSysMDAwoyM/VKy/Iz0VpZVttHaXKmhdfeZ+yslKKCvOxsrZj7fJfsbWvUyU2O+siJ4/H8/yQ96ppSYj/LjNLW0qKcvTK1EU5GJtY6GZzARgYGqGyqdzM2M7Jn8sZJ0mKW0lY+6F6dc+c2IFGo8a7XtuaTl2IW2Zjbkpusf6M6NziUsyNjW57NlflINdBLhUWMzaquczmEjXCytICAwMDcvL1937NKSjExkpZbR1rpSXvRfentKyM/MJi7KxVLFq5AUc7G13Mr3+tp3v7x4gIbQSAl6sTmZdzWLZxO22bN9FrLyH5NOcvXuLtF/vc284JIR4oMqNLPFTq169PYWEhULmE8Mq+UlfUq1evyoDTrl277uqaY8eO5dNPP+X8+fNA5UburVq14rXXXqNJkyb4+/tXme1kYmJSJbdr1atXj507d6LVanVlsbGxqFQq3N2rf0Tzzezfv5+KigpmzpxJy5YtCQwM1OV9RXBwMBs3bqy2fv369TE1NSUtLQ1/f3+9w8Oj+uVApqamWFlZ6R2ybPHWGBkZ4ebpS3LiYV2ZVqvlZOJhPH0Cb1jX2NgEaxt7ysvLORq3m/rBzarE7N+1GaXKmqAGsoeFeLDYuwSRkRavV3YhLQ57l+r337pCi5aK8rIq5aeObMDVpxlmFlWfZCpEbQlwtOHoBf0nScenXyLA0ea22rkyyHUhv4gPOjRDZSpPYBY1w8jIEF93V46cOKUr02q1HElKIdD7xt9dTYyNsbexory8gt3xx2jWqK7unLqsjGu3ETUwMND7jnzFpt0H8PVwxdut5p5kLoT475OBLvFAysrKIjIykl9//ZX4+HhOnTrF77//zscff0z37t2Byv2nNm7cyIULF3RPDHzrrbeYO3cu8+bNIykpiQkTJnD06NG7yiU8PJzg4GCmTp0KVO6LtW/fPtatW0dSUhLjxo3TbYZ/hbe3N/Hx8SQmJnLp0iXKyqr+4fXaa69x5swZ3njjDY4fP87y5cuZMGECw4cPv6X9uarj7+9PWVkZX331FSkpKfzyyy+6TeqvGD16NHv37uW1114jPj6e48eP891333Hp0iVUKhUjR47knXfeYcGCBSQnJ3PgwAG++uorFixYcEc5iRt7LLIre2M3sH/XZi6mn2XZbz9QqlbTtGXlnlpLFsxi7fJfdfFpp5I4cnAXWZcucOrkMeZ/M4WKigpaR/XQa1er1bJ/52ZCW7bF0LDqzID83GzOnzlFVuYFAC6cP835M6coKsyvuc6KR5amrITsiylkX0wBoCA3g+yLKRTmZQIQv/0Xdq/7Qhfv16gjhXkZHNq2gLzLZzl5aA1nknYQ2KSrLiZ++y9cPHuUwryL5FxKJX77L2SePYJnXf29BPNz0sk8fwzfhrJsUdSskjINqZfzSL2cB0BmQRGpl68+/fD/DiTyTewhXXyHQE8yCopZuP8453ILWJ94mt2nL9C5nvctt6kpr+CLrQdJycpjWEQIFdrKvb9yitVoyqvfu1GIu/FU23A27txPzJ6DnL2QyZzfV1JSWqqbefX1wj9ZuPLq08pPpJ5l96FjZFy6TELyaab+8AsVWi3dIx/TxTStH8jS9dvYfzSRzMs57I5PYGXMDpo30t+Dq6ikhF2Hjsom9EIIWbooHkxKpZIWLVrw+eefk5ycTFlZGR4eHgwePJgxY8YAMHPmTIYPH86cOXNwc3MjNTWVfv36kZyczHvvvUdJSQm9e/dm6NChrFu37q7yeeeddxgwYADvv/8+r7zyCgcPHqRfv34oFAr69+/Pa6+9xpo1a3TxgwcPJiYmhrCwMAoKCti8eTPe3t56bbq5ubF69WreffddQkJCsLOzIzo6mrFjx95xniEhIXz22WfMmDGD0aNH07p1a6ZNm8aLL76oiwkMDOTvv/9mzJgxNG/eHHNzc1q0aEH//v0BmDx5Mo6OjkybNo2UlBRsbGwIDQ3Vve/i3gpuGkFBfh4bVi4mPy8HVw9vXn79A1RWNgDkXL6E4l8DnxpNGetX/sblSxmYmJoS1CCUvgPexNxCfxnryeOHyMm+RNOWkdVed/f2v9m4+nfd6x8+Hw/A0y+8rhtkE+JeuXzhJJv/GKd7Hbd1HgA+9dvR/Ik3KSnKpijv6kbGSmsnHu82lritc0mKW4mF0oFmUa/j4n11CYu6OJc9f8+iuPAyJiaWWDt40brnBJyveVrjqaMbMVfa4+ylv/xFiHstJSuXyev36F7/sq/yabit/dwY2iqYnBI1WYVXH45TR2nB++2a8vP+BNYeT8XOwowh4Q0JcXW85Tazi9XsP3sRgFGrYvXyGRfVnPrXPNVRiLvVqklDcgsKWbJ2Mzn5BXi7uvDBkBd0G9Rfys7V23+2TKPhtzWbuJiVjampCaH1Ahj2XG8szc10MQN7dWbxmk389Mcq8gqKsLVS0aFVGH2eaKt37dgDR9Bq0S1xFEI8uhTa6uZ8CiFEDdpytKi2UxCixq3fK/eSxMNvxLm3ajsFIWqcUcfutZ2CEDVOFdaptlO4Y9kfDb15UC2w/eC72k7hkSVLF4UQQgghhBBCCCHEQ0EGuoT4F6VSed1j27ZttZ2eTlpa2g1zTUtLq+0UhRBCCCGEEEKI+07WVQjxL3Fxcdc95+bmdv8SuQlXV9cb5urq6nr/khFCCCGEEEIIIf4jZKBLiH/x9/ev7RRuiZGR0QOTqxBCCCGEEEIIcb/I0kUhhBBCCCGEEEII8VCQgS4hhBBCCCGEEEII8VCQgS4hhBBCCCGEEEII8VCQPbqEEPddaPHW2k5BiBq3nsjaTkEIIcQ9cMC8dW2nIESNa1PbCQhxD8mMLiGEEEIIIYQQQgjxUJCBLiGEEEIIIYQQQgjxUJCBLiGEEEIIIYQQQgjxUJCBLiGEEEIIIYQQQgjxUJCBLiGEEEIIIYQQQgjxUJCBLlFrJk6cSOPGjWs7DVJTU1EoFMTFxdV2KkIIIYQQQgghhLgLRrWdgHjwZGZmMn78eFatWkVGRga2traEhIQwfvx4IiIiUCgULF26lB49etyza06cOJFJkyYBYGBggKurK08++STTp0/Hzs7ultsZMGAAOTk5LFu2TFfm4eFBeno6Dg4O9yzfmjZz5ky++uorMjIy8PT0ZMSIEQwZMqS20xI1ZO32Pfy1OZacvAK8XJ15udeTBHi5Vxur0ZSzbNM2tuw5xOXcPFzq2PPcU1E0qRegi3l98udkXs6pUveJiGYMevopALLz8ln413oOJSZTolbj4uhA76jWtAipXyN9FI+2i2ePkrh/GdkXUyguvMxjXUfh5tfixnXOHCFu61xyL5/BQuVA/eZ98KkfWW1swt4/iY/9hcAmT9GkTbSuvLgwm/jtC7hw+hCasmJUNq7Ub94H94Dwe9o/IQCOZVxm5dEUUi/nkV2sZnjbUJp5ON24zoUsft6fwLmcAuwtzenZyI82fvqf/38nnuavo6fILVHjaatiQLP6+DvYAJBZUMybS2OqbfutxxvT0tvlXnRNCD07t6xl24bl5Ofl4OLuRdc+0Xh4B1Qbq9Fo2PL3Ug7sjiEv5zIOTq506v48QQ2a6GI+HjeU7MuZVeq2fLwj3Z8ZTFFhPhtWLeFEwiFysy9hoVTRIKQFHbr0w9zCssb6KYT475KBLnHbevfuTWlpKQsWLMDX15eMjAw2btxIVlZWjV63QYMGbNiwgfLychISEhg4cCC5ubksXrz4rto1NDTE2dn5HmVZ87Zu3crIkSOZNWsWXbt25ezZs2RmVv3H/1rl5eUoFAoMDGQi54Nkx8Ej/Lx8LYOf7kqAlzurtu7ko+9/4csxb2KtrPrlbfGaTWzdf4hX+nbDrY4DcYknmTlvMZPfjMbHvfIPmqnvDKGiokJX50z6RabM/pnwxg10ZV8vXEpRSQnvRffHytKC7QcO89mCJUwf/oquHSHulXKNGhtHb3watCd25YybxhfkZrBtxRT8GnWkZad3yDgTz97132BmYYuLdxO92MsXTpB8eB02Dl5V2tm97kvK1IU81m00puZWpB3fxo7VnxDV/1Ns6/jes/4JAVCqKcfL1oq2/u58vuXgTeMvFhQxY/N+OgR4MCyiMUcvZPHDziPYmJsS4uoIwM7UdH7Zl0B0i4b4O9iw5ngq0zbu5fPurbEyM8XewozvntYfAN544gx/HU2hsZtjjfRTPNri98ey6o/59Og/BE/vQLZvXsncr6cwYsIslCrrKvHrV/4fcXu20vPZoTg6u3LiWBwL53zCqyM+wtXDB4DX3puO9l/fWy6kpzH3q8k0Cq28KZGXm01+7mU693qROs5u5Fy+xLLffiAvJ4vnBr97fzouhPhPkb94xW3Jyclh27ZtzJgxg3bt2uHl5UXz5s0ZPXo03bp1w9vbG4CePXuiUCh0rwGmT5+Ok5MTKpWK6OhoSkpKbuvaRkZGODs74+bmRocOHejTpw/r16/XnS8vLyc6OhofHx/Mzc0JCgriyy+/1J2fOHEiCxYsYPny5SgUChQKBTExMdUuXdyyZQvNmzfH1NQUFxcXRo0ahUajuaU8//e//9GoUSPMzc2xt7enQ4cOFBYW6s7/+OOP1KtXDzMzM+rWrcu3336rOzdw4ECCg4NRq9UAlJaW0qRJE1588UVdjIGBAYaGhkRHR+Pt7c1jjz1Gz549q+Qxf/58bGxsWLFiBfXr18fU1JS0tDT27t1LVFQUDg4OWFtb06ZNGw4cOKBXNycnh1deeQUnJyfMzMxo2LAhK1eu1J3fvn07jz/+OObm5nh4ePDmm2/q9VHcOytjdtK+ZVPatWiCu7MjQ/p0xdTEmM27D1Qbv3X/IXp2aE1o/UCcHOzoGNGcJvUCWBmzQxdjrbTE1kqlOw4cS8LZwY76ft66mBOnz/Dk4y0I8HLHycGO3k+0wdLCnJSz52u6y+IR5OIdSqNWz+Hu3/KW4pMPr8PSqg6NW7+Mlb0HAY274BEQTtLBv/TiNGUl7Fr7OWEdXsPEVFmlnaz0RAIad8HeORCltTP1W/TBxFRJ9sXke9IvIf6tsZsj/ZoE0tzz1m6ubUhKo47SnBfC6uFuo6RjXS9aeDmxOiFVF7Mq4RSRAR609XfH3UbJoBYNMDU0ZPPJswAYGCiwMTfVO/aeuUC4twtmxnK/W9x72zf9RbOIDoSFR1LHxZ2e/V/BxMSEfTs3VRsft2crbTv2pm7DUOwdnGnZuhNBDZqwbeMKXYxSZY3K2lZ3JB45gL2jMz4BlTfonF09eW7wu9RrFIa9owt+QY2I6tqfhMP7KS8vvy/9FkL8t8hAl7gtSqUSpVLJsmXLdIMx/7Z3714A5s2bR3p6uu71kiVLmDhxIlOnTmXfvn24uLjoDfDcrtTUVNatW4eJiYmurKKiAnd3d37//XeOHTvG+PHjGTNmDEuWLAFg5MiR9O3bl06dOpGenk56ejqtWrWq0va5c+fo3LkzzZo149ChQ3z33Xf89NNPTJky5aZ5paen079/fwYOHEhCQgIxMTH06tULrVYLwMKFCxk/fjwfffQRCQkJTJ06lXHjxrFgwQIAZs2aRWFhIaNGjQLggw8+ICcnh6+//lp3jcaNG+Pm5sZrr72mNyunOkVFRcyYMYMff/yRo0ePUqdOHfLz83nppZfYvn07u3btIiAggM6dO5Ofn697H5988kliY2P59ddfOXbsGNOnT8fQ0BCA5ORkOnXqRO/evYmPj2fx4sVs376dYcOG3fT9EbdHoykn5ex5GgVenVmiUChoFOhHUurZauuUacoxueaPFxNjI46fSrvuNbbuj6dt8yYoFApdeYCXBzsOHiG/sAitVkvsgcOUlZXRwN/nHvRMiLuTlZ6Ik2eIXpmzVxOy0hP1yvZv+h4XnzCcr4m9wt4liDNJsaiL89FqtaQlbqO8vBRH94Y1lrsQt+pEZg4Nne31yoJdHDmRmQOApryCU1l5NHS5uvWCQqGgoYu9LuZaKVm5nL6cT1u/6pe/C3E3NBoN59JS8K8brCtTKBT41w0m7VTSdeqUYWxsrFdmZGzC6eTj173GwT1baNqynd73lmupi4swMzfXfX8VQjxa5FaOuC1GRkbMnz+fwYMHM3v2bEJDQ2nTpg3PPPMMwcHBODpWToO3sbHRWw74xRdfEB0dTXR05d4oU6ZMYcOGDbc1q+vw4cMolUrKy8t19T777DPdeWNjY90+XgA+Pj7s3LmTJUuW0LdvX5RKJebm5qjV6hsuVfz222/x8PDg66+/RqFQULduXc6fP8/777/P+PHjb7j0Lz09HY1GQ69evfDyqlwm06hRI935CRMmMHPmTHr16qXL8dixY3z//fe89NJLKJVKfv31V9q0aYNKpeKLL75g8+bNWFlZAZWDUD169CAkJIScnByeffZZfv75Z92AX6NGjXjppZcYOXIkAGVlZXz77beEhFz9Iy8yUn8Jww8//ICNjQ1btmzhqaeeYsOGDezZs4eEhAQCAwMB8PW9OtAybdo0nnvuOd5++20AAgICmDVrFm3atOG7777DzMzsuu+PuD15hUVUVFRgo9KfiWKjtOR8xqVq64QE+fHX5h3U8/XC2cGOw0kp7I5PoEJb/aDo3iMJFBWX0La5/nKv4QP68vmCJUSPnYGhoSGmxsaMHPgMzg63vieeEDWlpDAbMwsbvTJTCxvKSoso15RiaGRCWuI2si+mENX/k+u206rLu+xc/SnLvn8RAwNDDI1MiXhqFCobWZ4ral9OsRprc1O9MmtzE4rLNJRqyiksLaNCq8XazEQ/xsyU83nVz7KOOXkWN2tLgurY1lje4tFVVJhHRUVFlSWKSpU1mRnnqq0TUDeEbRv/wtu/PvaOzpxMjOdo3O7r3sw9Fr+HkuIimoa3u24ehQV5bFrzP5pHRN15Z4QQDzSZ0SVuW+/evTl//jwrVqygU6dOxMTEEBoayvz5869bJyEhgRYt9DcWDg+/vc1+g4KCiIuLY+/evbz//vt07NiRN954Qy/mm2++oWnTpjg6OqJUKvnhhx9IS6t+JsuNcg0PD9e7SxQREUFBQQFnz1Y/i+aKkJAQ2rdvT6NGjejTpw9z5swhOzsbgMLCQpKTk4mOjtbNjFMqlUyZMoXk5KvLZMLDwxk5ciSTJ09mxIgRPPbYY7pza9euJTY2lvnz57N48WKysrLo2rUrhYWFlJSUcPLkSR5//HFdvImJCcHBV++qAWRkZDB48GACAgKwtrbGysqKgoIC3fsUFxeHu7u7bpDrWocOHWL+/Pl6fejYsSMVFRWcOnWqSrxarSYvL0/vUJeW3vB9FHduQM8ncXG05+1pX9F/5IfM/XM1bZs3xkBR/cf9xl0HaFzXHztrlV754jWbKCpWM27oS0x7Zwhd2obz+YLfOX0+4350Q4i7UpR/iYMxP9HyyXcwNDK5btyRHYsoUxfSttckovp/QlBoN3au/pScS6n3L1kh7pNSTTmxqedp6+9R26kIofNUn4HY13Hhsw/fZOyb/Vix+Ceatmx33RvL+3ZsJLB+E6ysq7/xVlJcxILvplLHxYPIzn1rMnUhxH+YzOgSd8TMzIyoqCiioqIYN24cgwYNYsKECQwYMKDGrmliYoK/vz9Qud9Xly5dmDRpEpMnTwbgt99+Y+TIkcycOZPw8HBUKhWffPIJu3fvrrGcrmVoaMj69evZsWMHf//9N1999RUffPABu3fvxsLCAoA5c+ZUGfT797TqiooKYmNjMTQ05OTJk3px8fHxeHp66p40uWzZMp544gnat29Pjx498PX11Wvb3Ny8yrTul156iaysLL788ku8vLwwNTUlPDyc0n8Gn8zNzW/Yx4KCAl555RXefPPNKuc8PT2rlE2bNk1vph3AqMHPMWbI8ze8jgArSwsMDAzIyS/QK88pKMTGqup+Q1C5/9Z70f0pLSsjv7AYO2sVi1ZuwNHOpkps5uUcDielMHLgM3rlFy5dZu223cx8/3U8nOsA4O3mTELKadZt38OQvl3vTQeFuENmlraUFOXolamLcjA2scDQyITsi8mUFOfy98IRuvNabQWZ549xIm41fd74nYK8DE4cWk2nF77E2r7ys8vG0YfMc8c4eWgNYe2H3s8uCVGFjbkpucX620TkFpdibmyEiZEhBgoFBgoFuSX6N49yS9TYmOnPBAPYnXaBUk05rX1dazRv8eiysLTCwMCAgvxcvfKC/FyUVtXPIlSqrHnxlfcpKyulqDAfK2s71i7/FVv7OlVis7MucvJ4PM8Pea/attQlxcz7ZgompuY8P+RdjIzkT10hHlUyo0vcE/Xr19dtRm5sbFxl48d69epVGXDatWvXXV1z7NixfPrpp5w/X7k5dmxsLK1ateK1116jSZMm+Pv7682UgsrBspttSlmvXj127typ21frStsqlQp395vvaaFQKIiIiGDSpEkcPHgQExMTli5dipOTE66urqSkpODv7693+Phc3ffok08+4fjx42zZsoW1a9cyb9483Tk3NzdOnTqlm1lmaWnJ6tWrKS0tZfTo0be0j1hsbCwXQ3y7AABSAElEQVRvvvkmnTt3pkGDBpiamnLp0tVlcMHBwZw9e5akpOr3UggNDeXYsWNV+uDv76+3Z9oVo0ePJjc3V+8YMUDusN0KIyNDfN1dOXLi6kw5rVbLkaQUAr1v/LNoYmyMvY0V5eUV7I4/RrNGdavEbN5zEGuVktB6+o/8VpeWAaBAf5DUQKFAixYhapu9SxAZafF6ZRfS4rB3CQKgjkcwnZ7/go7PfaY77Jz88arbmo7PfYbCwIByTeUAwrU/5woDA73PfyFqS4CjDUcv6D/ROj79EgGONgAYGRrgY2/F0fSrMVqtlqMXsnQx/7b55FlC3etgVc0gmBD3gpGREW6eviQnHtaVabVaTiYextOn+pUCVxgbm2BtY095eTlH43ZTP7hZlZj9uzajVFkT1CC0yrmS4iJ++upDDA2NePHVURgbX382rxDi4ScDXeK2ZGVlERkZya+//kp8fDynTp3i999/5+OPP6Z79+4AeHt7s3HjRi5cuKBbtvfWW28xd+5c5s2bR1JSEhMmTODo0aN3lUt4eDjBwcFMnToVqNwrat++faxbt46kpCTGjRun2wz/Cm9vb+Lj40lMTOTSpUuUlZVVafe1117jzJkzvPHGGxw/fpzly5czYcIEhg8ffsP9uQB2796t23A/LS2NP//8k8zMTOrVqwfApEmTmDZtGrNmzSIpKYnDhw8zb9483V5jBw8eZPz48fz4449ERETw2Wef8dZbb5GSkgJULhv19PSkS5cubNiwgZMnT7JmzRouX76MpaUl8+bNu+kG9QEBAfzyyy8kJCSwe/dunnvuOb1ZXG3atKF169b07t2b9evXc+rUKdasWcPatWsBeP/999mxYwfDhg0jLi6OEydOsHz58utuRm9qaoqVlZXeYVrNgJio3lNtw9m4cz8xew5y9kImc35fSUlpqW5Pra8X/snClVefPnoi9Sy7Dx0j49JlEpJPM/WHX6jQauke+Zheu1qtlpg9B2nTLKTKRq1udRxwdrBjzu9/ceL0WS5cusxfm2M5nJRCs4ZVB8yEuFuashKyL6aQfbHys64gN4PsiykU5mUCEL/9F3av+0IX79eoI4V5GRzatoC8y2c5eWgNZ5J2ENikcrahsYk51g5eeoeRkSkmZiqsHSr3T7SydUdp48y+TbPJupBEfk46x/cvJyPtEG5++rNuhbgXSso0pF7OI/VyHgCZBUWkXs7jUmExAP93IJFvYg/p4jsEepJRUMzC/cc5l1vA+sTT7D59gc71vHUxXer5sOnkGbYkn+VsTgE/7T5Kiaa8ymbzF/ILOX7xMu1k2aKoYY9FdmVv7Ab279rMxfSzLPvtB0rVapq2rNxTa8mCWaxd/qsuPu1UEkcO7iLr0gVOnTzG/G+mUFFRQeuoHnrtarVa9u/cTGjLtlW+t5QUFzH368mUlZXS+/mhqIuLyM/NJj83+6bfi4UQDyeZzylui1KppEWLFnz++eckJydTVlaGh4cHgwcPZsyYMQDMnDmT4cOHM2fOHNzc3EhNTaVfv34kJyfz3nvvUVJSQu/evRk6dCjr1q27q3zeeecdBgwYwPvvv88rr7zCwYMH6devHwqFgv79+/Paa6+xZs0aXfzgwYOJiYkhLCyMgoICNm/ejLe3t16bbm5urF69mnfffZeQkBDs7OyIjo5m7NixN83HysqKrVu38sUXX5CXl4eXlxczZ87kySefBGDQoEFYWFjwySef8O6772JpaUmjRo14++23KSkp4fnnn2fAgAF07Vr5x9qQIUNYtWoVL7zwAlu3bsXCwoIdO3YwZswYXn75ZTIzM2nQoAGTJ08mLCyMFi1a8PbbbzNr1qzr5vjTTz8xZMgQQkND8fDwYOrUqbrN66/4448/GDlyJP3796ewsBB/f3+mT58OVM742rJlCx988AGPP/44Wq0WPz8/+vXrd0v/zcTtadWkIbkFhSxZu5mc/AK8XV34YMgLug3qL2Xn6i1PLdNo+G3NJi5mZWNqakJovQCGPdcbS3P9hwTEJyVzKTuXdtdsQg+VM8lGD3meRSs3MOPHRahLS3FysOP1Z3sSWv/Gd2SFuBOXL5xk8x/jdK/jtlbOZPWp347mT7xJSVE2RXlXZ54qrZ14vNtY4rbOJSluJRZKB5pFvY6Ld9Wf5+sxMDSidfdxxMf+yvblU9FoSlBaO9P8iTdx9Wl67zonxD9SsnKZvH6P7vUv+yqfKtfaz42hrYLJKVGTVXj1IT11lBa8364pP+9PYO3xVOwszBgS3pAQV0ddTLi3C3klpfx+6AS5xWq87KwYFdmsyib2MSfPYmtuRoirA0LUpOCmERTk57Fh5WLy83Jw9fDm5dc/QPX/7d13WJPn/vjxdxgJYYYley8VFQfOOpCq4GrFVls71drWfmt7bKU9doqjjt9pz+mxexy141i7XNWqdeGu4harOBEHDpAAYQQC+f1B+2AUXAdE8fO6rlwXee6Rzx0eQvLJfd+Psw4A/cUcVJd8cWwylbNyyTwu5pxDrdEQFd2WocNfRGvvYNHvkYN70Ofl0K6T5UWVAM6cPMbJzMMAvJtiuX/vq5M+rnEZpBCicVOZZX6+EOIWK9y+vKFDEKLezUi/8s24EI3NuNN/a+gQhKh3ewe919AhCFHvekTbN3QINy3vndtzX03XNz5p6BDuWrJ0UQghhBBCCCGEEEI0CpLoErcFR0fHWm8bNmxo6PAUWVlZV401KyuroUMUQgghhBBCCCHuWrJHl7gt7N69u9YyPz+/WxfINfj6+l41Vl9fuWS3EEIIIYQQQgjRUCTRJW4L4eHhDR3CdbGxsbljYhVCCCGEEEIIIe42snRRCCGEEEIIIYQQQjQKkugSQgghhBBCCCGEEI2CJLqEEEIIIYQQQgghRKMgiS4hhBBCCCGEEEII0SjIZvRCiFtup7Z7Q4cghBCiDtgk3N/QIQhR71otHNfQIQhR/6I/aegIhKgzMqNLCCGEEEIIIYQQQjQKkugSQgghhBBCCCGEEI2CJLqEEEIIIYQQQgghRKMgiS4hhBBCCCGEEEII0ShIoksIIYQQQgghhBBCNAqS6BJ3hLi4OMaOHdvQYdS7lJQUWrdu3dBhCCGEEEIIIYQQdySbhg5AiNoMHz4cvV7PwoULmT9/Pra2tkpZcHAwY8eOtUh+zZkzh7Fjx6LX6+s9tpSUFCZOnAiAtbU1/v7+JCUlMXnyZBwdHW+63+TkZF544QXl/qXPgbi7mc1mVi39nrRNqygtKSYwNIpBDz+DRxOfq7bbsm45G1YtorBAj49/EAOHPEVAcIRSvuC7zzhycC+F+XmoNRoCQ5uSeP9jNPH2U+r88uMsMo8e4NyZkzTx9ufF19+tt3GKu5vZbGb/7/M4lr6SMmMRHj5NaRf/LE6uvldtd3jPr2TsWERpUR46z2DaxI3C3TtSKd+++hPOZe2lpOgiNrZ2ePg0pVXXx3F281fqfP9+0hX9du77MoFR3epugEJQdZ7/sHwtq3/fSXFJKZEhATz94AB8PN2v2m75xm38snYT+gIDQb7ejBjcl4ig6nN45ebtbNq5j+OnsykpNTJ76ms4aO2U8v1HjjPxozk19j31pWcID/SrsUyIm2E2m/lpz2HWHDlFUVk5UZ6ujOwYjY+zw1Xb/ZZxgl/2Hye/1EigqxPD2zcn3EOnlK86lMXmzGyOX8yntLyCLx/qhYPatsa+yisqeGvZFk7kFTKt/z0EuznX5RCFELcxmdEl7ghubm44OTndkseqqKigsrLymvWio6PJzs4mMzOTGTNm8PnnnzNu3Libekyz2YzJZMLR0RF396u/0RV3p3UrF7I5dRmDhj3Lc69MQ62xY9aHkykvL6u1zd4dm1j68xzi+w3hhfH/wNsvmFkfTsFQmK/U8Q0I4YHH/o+X3nqfEc+/BWYzsz6cdMXfQGzne2nVrku9jU8IgIPbF3B491LaxY+m18MzsLG1Y92CSVSYaj/Psw5tZPf62UR3HEqfR97DxSOY9QsmUVpcfZ67Ngmlfe8x9H3iA3okvY0ZM+sWTMR82Xneoc8L3Pf0LOXmF9ax3sYq7l6L1mxk2YatPD1kAO+MfRo7tZp3PvuGsvLyWtts3pXO14uW82CfOGaMG02QnxfvfPYN+YYipU5ZeTmtm4WT1Kvm5GxUcCCfTUy2uMV3aksTd1fCAq6eTBbiRi3ef4zlGSd4qmM0U/p2RmNjzbTVaZSZKmptsyUzm2+2H+CBVuFM7XcPQa7OTFudRkGpUalTVlFBjK8Hg1qEXTOG/+7MQKfV1Ml4hBB3Fkl0iTvCpUsX4+LiOHHiBC+99BIqlQqVSkVqaiojRowgPz9fOZaSkgKA0WgkOTkZPz8/HBwc6NixI6mpqUrfc+bMQafTsXjxYpo3b45GoyErK+uaMdnY2ODt7Y2/vz8PPfQQjz76KIsXLwbgm2++ITY2FicnJ7y9vXnkkUc4f/680jY1NRWVSsWyZcto164dGo2GjRs3WixdTElJ4auvvmLRokUW44yPj2fMmDEWsVy4cAG1Ws3q1auvGffHH39MREQEdnZ2eHl58eCDDypllZWVTJs2jZCQELRaLTExMfz0009AVTKuV69eJCQkYDabAbh48SL+/v68/fbb13xccfPMZjOb1y4lPvEBmrdqj49fEEMeH0Nhfh5/7NlWa7uNa36h/T29iO0cTxMff5KGPYtarWb7ljVKnY5d+xAaEY2rexP8AkPpPXAY+Xm55OWeU+oMHDKSzj0ScfPwqtdxirub2Wzm8O4lNOswBL+wDug8gumQ8CKlRRc5fXRrre0O7VxMaIvehETfi7N7ALH3Poe1jYbj+6tfD8NaJtDEPxoH5ya4NgmjZZdHKC7MwVBwzqIvtcYBrYOrcrO2UdfbeMXdyWw28+v6rTzQuzvtWzQlyNeL5x9JIi+/kLR9B2tttyR1C/d2akfPjm3w9/bkmSED0ahtWbt1p1Knf4/ODLq3m8Usr0vZ2Fjj6uyk3Jzs7dmenkFch9aoVKo6H6u4e5nNZpYfPEFSy3BiA7wIdHXmuXtaoS8xsv3kuVrbLT1wnPiIAOLC/fHXOTKqYzQaa2vWHjml1OnXLIT7W4QRccksr5rsPn2Bfdk5PNauWV0NSwhxB5FEl7jjzJ8/H39/fyZNmkR2djbZ2dl06dKF999/H2dnZ+VYcnIyAGPGjGHLli3MmzePvXv3MmTIEBITEzl8+LDSZ3FxMTNmzODLL79k//79NGnS5Ibj0mq1lJVVzTooLy9n8uTJ7Nmzh4ULF5KZmcnw4cOvaDN+/HimT5/OgQMHaNWqlUVZcnIyQ4cOJTEx0WKco0aNYu7cuRiN1d9uffvtt/j5+REfH3/VGLdv386LL77IpEmTyMjIYPny5XTv3l0pnzZtGl9//TWffvop+/fv56WXXuKxxx5j3bp1qFQqvvrqK9LS0pg5cyYAo0ePxs/PTxJd9exi7jkKC/SERbVUjmntHQgIjiDr+KEa25hMJk5nHSO8afV5pVKpCG/aqtY2RmMpO7asxdW9CS6unnU7CCGuoajgHCVFeXgFVJ/nao0D7t6R5GRn1NimssLExXNH8Q6MUY6pVCq8AluRW0sbU3kpx/evwcHZCwcny/N8x5rPWfjpE6z87hWO7V+lJPWFqCvnc/PQFxTSIiJUOeagtSMiyJ9DmSdrbGMyVXDs1BlaRla3UalUtIwM41DmqRrbXI8d+zMoLCqmZ4c2N92HEDU5byhBX2KkhXf1KgUHtS3hHjoO5ehrbGOqqOR4bgEtfDyUYyqVihY+7hy+UHOb2uSXGPni9338X5dWaGysb2YIQog7nOzRJe44bm5uWFtbK7Ol/uLi4oJKpbI4lpWVxezZs8nKysLXt2pafnJyMsuXL2f27NlMnToVqEpMffzxx8TExHAzduzYwdy5c5VE08iRI5Wy0NBQZs6cSfv27TEYDBZ7eE2aNInevXvX2KejoyNarRaj0WgxpsGDBzNmzBgWLVrE0KFDgapZacOHD7/mN7JZWVk4ODgwYMAAnJycCAoKok2bqje4RqORqVOnsmrVKjp37qzEvnHjRj777DN69OiBn58fn332GU888QRnz57l119/ZdeuXdjY1P5SYjQaLZJyAGVlFajVMpX8ehny9QA4OrtYHHd0dqGwIK/GNsVFBVRWVuLodFkbJxcunDttcez39ctZtvBbyoyleDTx5akX3rrq71SI+lBaVHUu29nrLI5r7HWUFulrbGMsKcBsrkRjb3me29nrKMyzPM+P7FnGno1fYyovxcnVlx6DJ2BlXX2et+g8DK+AlljbaDh7Yjc713yOqbyUyNYD/vfBCfEnfaEBABcny/08XZwclLLLFRQVU1lZie6yNjpHB86cy7npWFZv3UlM03DcdS7XrizEDdCXVL3vc7GznBXrYqcmv8RYUxMKjWVUms01tNFwpqCoxjY1MZvNfLJ5L/dGBhLmoeOCoeQGoxdCNAbySUY0avv27aOiooLIyEiL40aj0WIvLLVafcWMquvp29HRkYqKCsrKyujfvz8ffvghUJX4SklJYc+ePeTl5Sn7HWVlZdG8eXOlj9jY2Bsek52dHY8//jizZs1i6NCh7Ny5k/T0dGXZ5NX07t2boKAgQkNDSUxMJDExkaSkJOzt7Tly5AjFxcVXJN7KysqUZBjAkCFDWLBgAdOnT+eTTz4hIiLi8oexMG3aNGXj/r88+dzrjHj+jRsY9d1l17b1LJz3uXL/yedeq9fHi4ntRnjTGAryL7Jx9S/M/c8/GT3uHWxtZdmWqD8nDq5j++pPlfvd7n+zXh8vsGl3vAJjKCnKI2PnIrb8+i73Dp2mLE+M7jhUqevaJJQKk5GMHYsk0SX+Jxt27OWLH39R7o8f9WgDRlMtV5/PnoNHePnJodeuLMQ1bDx2mi+37lfuvxp/4+9v68qKjBOUlJsYFH3tPbyEEI2XJLpEo2YwGLC2tmbHjh1YW1tOXb50ZpVWq73h/SmioqJYvHgxNjY2+Pr6olZXfVgqKioiISGBhIQE/vvf/+Lp6UlWVhYJCQnK0sa/ODhc/coztRk1ahStW7fm1KlTzJ49m/j4eIKCgq7ZzsnJiZ07d5Kamspvv/3G22+/TUpKCmlpaRgMVd8kL126FD8/yysvaTTVs6+Ki4uV5/PS5Z+1ee2113j55Zctjm09WvtGpAKat2pPYEh1AtFkMgFgKMjH2cVNOW4oyMfHP7jGPuwdnLGysrLYeB7AUJiPo7OrxTGtvQNaewc8mvgQGBLFpFee5I8924iJ7VpHIxLiSr6hHehzyZURKyuqNuIuLdajdaw+z43Felw8g2vsQ6N1RqWywlhseZ6XFuuxs7c8z9UaB9QaB5xcffHwiWLBp49x+ujWWq+q6OYVwf6tP1BhKsfapuYreglxLbHRURZ7ZpX/+XqeX2jAzaX6Ijv5hUUE+da8D6Kzgz1WVlZXzPjSG4rQOd/clZ7XbtuFk4M97aKjbqq9EJdqF+BFuKdOuW+qqPqCN7+0DFf76it/5peWEeha88WlnDRqrFQq8kst3yvnlxrR2V3/KoD07FwO5+h5fO4Ki+Nv/LqZe0J8+L97bm71hhDiziKJLnFHUqvVVFRUXPNYmzZtqKio4Pz583TrVreXiFer1YSHh19x/ODBg+Tm5jJ9+nQCAgKAqr2xbvYxLh8TQMuWLYmNjeWLL75g7ty5ykyy62FjY0OvXr3o1asXEyZMQKfTsWbNGnr37q1sxN+jR49a248bNw4rKyuWLVtGv3796N+//1X3BtNoNBaJsqpxFV93vHcjjZ0WjZ1WuW82m3Fy1nE0Yx++ASEAlJYUczLzMB279amxDxsbG/wCQzmasY/omA5KP0cy9tG5R9/aH9xsBrMZk6n2q38JURds1Vps1ZbnudbBlXMn9+HapGovonJjMblnDxHWKqHGPqysbXDzCuNc1l7lColms5nzJ/cRHtOv1sc2m82YzWYqKmo/z/U5majtHCXJJf4nWjsN2ks+pJvNZnTOTqQfPkaIvw8AxaWlHD5xit5dap4FY2NjTai/L+mHj9OhZTOln/RDx0js1uGGYzKbzaRu202P9jHYyP5Fog5obW3Q2lZ/rDSbzei0GtLP5hLs5gxAcVk5R3L09IoIqLEPG2srQtyd2Z+dS/sAL6Wf/Wdz6RN17S9z/zK8Q3MeKqv+EiWvxMi01Wm82L014e6yTFeIu4UkusQdKTg4mPXr1/Pwww+j0Wjw8PAgODgYg8HA6tWriYmJwd7ensjISB599FGeeOIJ3nvvPdq0acOFCxdYvXo1rVq1on///nUeW2BgIGq1mg8++IDRo0eTnp7O5MmTb6qv4OBgVqxYQUZGBu7u7ri4uGBrW/Wha9SoUYwZMwYHBweSkpKuq78lS5Zw7NgxunfvjqurK7/++iuVlZVERUXh5OREcnIyL730EpWVlXTt2pX8/Hw2bdqEs7MzTz75JEuXLmXWrFls2bKFtm3b8sorr/Dkk0+yd+9eXF1drx2AuCkqlYouPfuzZvnPuDfxwdW9CSuXzMPJxZXmMdUfcr78dwrNYzrSJa4qkdU1fiA/fv0hfoGhBARFsCl1KWVGI+069QQgN+cs+3ZsJrxZDI6OzuTn5bJu5UJs1Wqiotsq/eZeyMZYWkphgZ7y8jLOnDwOQBOfANnLS9QZlUpFROsBHNj2I046HxxcmpC++TvsHNyUJBbA2p/fxj+sIxGtq16/I9vex7YVM3H1CsPdK4JDu5dgKi8lJLoqAW/IP8vJQ5vwCoxBo3WhxJDDge0LsLHR4BPcDoDTx9IwFutx947EykbNuRO7OZD2E1Ft77/1T4Ro1FQqFf26d+Tnlevx9nSniZsr3y9bg6uLE+1bNlXqTfp4Du1bNqNvt6pzf0BcZz6au4BQfx/CA/35df3vlJaVEXfJRvJ5BYXoCwyczbkIQNaZc9hp1Hi4uuDkYK/USz98nPO5ecR3rH6dF6IuqVQqEpsGsWDfEbyd7GniqOWH3YfRaTXEBlTPXJyycivtA7xJaFqVyOrfLIRPNu8lxN2ZMHcdyw9mUmqqIC6selakvsSIvsTI2cKqL02z8grR2trg7mCHk0aNh4MWLlkwYfdnAs7L0R53h+ovV4QQjZt8QhG3rcrKylo/RE+aNIlnn32WsLAwjEYjZrOZLl26MHr0aB566CFyc3OZMGECKSkpzJ49mylTpjBu3DhOnz6Nh4cHnTp1YsCA+tl3xdPTkzlz5vD6668zc+ZM2rZty7vvvst99913w309/fTTpKamEhsbi8FgYO3atcTFxQEwbNgwxo4dy7Bhw7Czs7t6R3/S6XTMnz+flJQUSktLiYiI4LvvviM6OhqAyZMn4+npybRp0zh27Bg6nY62bdvy+uuvc+HCBZ566ilSUlJo27bqzfHEiRP57bffGD16NN9///0Nj09cvx69B1FeZmTB3E8pLSkmKKwpI55/02IfrYs55yguKlDut2p3D4bCAlYt+Z7CAj2+AcGMeP4NnJx1ANjaqjl+5AAb1yyhtKQYR2cXgsOaMXrcVItN7H/+9hOOH/lDuf/B9FcAeHXSx7i63/gVSoWoTdPYJCpMRrav/oRyYxEevs3onvSWso8WQFH+OYwlhcr9wMiuGIvzSd8yj9LiPFw9Q+g+6C1lU3trazUXTv/BoZ2/UFZWhJ29Dk/fZsQ/NA27Pzext7Ky5sieZexaNwsAR503rbuPILRFzTMmhfhf3B/fFWNZOZ//8AvFJaVEhQby+jOPobatnj14LjePwqLq2c9d2rQg31DED8vXoi80EOzrwxvPPG6xQf3Kzdv5aUWqcn/Ch1Xn8/8NG2SREFuzdSdRIYH4ecnVdUX9uS86lDJTBV/+nk5xuYkoT1fG3xuL+pJZhOcKSyg0Vi9V7BzsQ0FpGT/uOUx+iZEgN2fGx7fHRVs9K3LVoSx+3ntEuT/pt60AjO7Skh6XJMSEEHc3lVmunS1uU4mJiYSHh9/Qsry7SWZmJmFhYaSlpSmJpzvFuv2ydFE0fivT5Lsk0fj9vcWahg5BiHpnWrGooUMQot65vvFJQ4dw0/Leea6hQ6jRnfyc3umsGjoAIS6Xl5fHkiVLSE1NpVevXg0dzm2nvLycs2fP8uabb9KpU6c7LsklhBBCCCGEEELUF/m6Wdx2Ro4cSVpaGuPGjeP++xtmf5RLr8h4uWXLltX5xvY3YtOmTfTs2ZPIyEh++ukni7INGzbQt2/tG43/dWVFIYQQQgghhBCiMZJEl7jtLFiwoKFDYPfu3bWW+fn53bpAahAXF0dtK45jY2OvGrsQQgghhBBCCNGYSaJLiBqEh4c3dAg3RavV3rGxCyGEEEIIIYQQ/yvZo0sIIYQQQgghhBBCNAqS6BJCCCGEEEIIIYQQjYIkuoQQQgghhBBCCCFEoyB7dAkhbrlWC8c1dAhC1Lu2CQ1z1VghbqUZ6fENHYIQ9a73oO4NHYIQ9a5HQwcgRB2SGV1CCCGEEEIIIYQQolGQRJcQQgghhBBCCCGEaBQk0SWEEEIIIYQQQgghGgVJdAkhhBBCCCGEEEKIRkESXUIIIYQQQgghhBCiUZBElxBCCCGEEEIIIYRoFCTRJW4bcXFxjB07tqHDqHcpKSm0bt26ocMQQgghhBBCCCEaHZuGDkDc3YYPH45er2fhwoXMnz8fW1tbpSw4OJixY8daJL/mzJnD2LFj0ev19R5bSkoKEydOBMDa2hp/f3+SkpKYPHkyjo6ON91vcnIyL7zwgnL/0udAiNqYzWZ+2nOYNUdOUVRWTpSnKyM7RuPj7HDVdr9lnOCX/cfJLzUS6OrE8PbNCffQKeVlpgq+3XGQLSeyKa+oJMbXg5EdonHRapQ6c9L+ION8Hqf0hfi5ODJ9QNf6Gqa4y5nNZn5YvpbVv++kuKSUyJAAnn5wAD6e7ldtt3zjNn5Zuwl9gYEgX29GDO5LRJC/Ul5WXs7Xi1awefd+TCYTMVHhPPVgf3RO1a/lQ1+acEW/f3v8Qe5p27LuBijueof3/ErGjkWUFuWh8wymTdwo3L0ja61/8tAm9m2ZS3HBBRx1PrTq+gS+Ie2UcrPZzP7f53EsfSVlxiI8fJrSLv5ZnFx9lToFeafZu+Frcs4coLLShItHEC06P4JXgJzbon5sWbecDasWUVigx8c/iIFDniIgOKLW+nt3bmblL/PQX7yAexMfEu9/jKYt2irlZrOZVUu/J23TKkpLigkMjWLQw8/g0cQHgGOH0vni3yk19v38q9PxDwqv0/EJIW5/MqNL3Dbc3NxwcnK6JY9VUVFBZWXlNetFR0eTnZ1NZmYmM2bM4PPPP2fcuHE39ZhmsxmTyYSjoyPu7lf/0FbXysrKbunjibq3eP8xlmec4KmO0Uzp2xmNjTXTVqdRZqqotc2WzGy+2X6AB1qFM7XfPQS5OjNtdRoFpUalzjc7DrDj1HnGdm/D2306crHYyD/X7byir57h/nQK9qmXsQnxl0VrNrJsw1aeHjKAd8Y+jZ1azTuffUNZeXmtbTbvSufrRct5sE8cM8aNJsjPi3c++4Z8Q5FS56uFK9ix/xAvPzmUCc+P4GJ+Ae/N/v6Kvv5v2CA+m5is3Nq3bFov4xR3p6xDG9m9fjbRHYfS55H3cPEIZv2CSZQW59dYP+fMAbYs+yeh0b3p88h7+IV1ZNOS6eTnnFDqHNy+gMO7l9IufjS9Hp6Bja0d6xZMosJU/X9/46J3qKysIO7BSfQe9i46j2A2Ln6HkqK8eh+zuPvs3bGJpT/PIb7fEF4Y/w+8/YKZ9eEUDIU1n+cnjh7k+9nv077Lvbww/h80b9Webz//f5w9k6XUWbdyIZtTlzFo2LM898o01Bo7Zn04mfLyqvM8MLQpr0/9wuLWvsu9uLo3wS8w7JaMWwhxe5FEl7htXLp0MS4ujhMnTvDSSy+hUqlQqVSkpqYyYsQI8vPzlWMpKSkAGI1GkpOT8fPzw8HBgY4dO5Kamqr0PWfOHHQ6HYsXL6Z58+ZoNBqysrKuDOIyNjY2eHt74+/vz0MPPcSjjz7K4sWLAfjmm2+IjY3FyckJb29vHnnkEc6fP6+0TU1NRaVSsWzZMtq1a4dGo2Hjxo0WSxdTUlL46quvWLRokcU44+PjGTNmjEUsFy5cQK1Ws3r16mvGHRwczOTJk3niiSdwdnbmmWeeAeDvf/87kZGR2NvbExoayltvvUX5ZR8gf/nlF9q3b4+dnR0eHh4kJSUpZdd6nkX9MJvNLD94gqSW4cQGeBHo6sxz97RCX2Jk+8lztbZbeuA48REBxIX7469zZFTHaDTW1qw9cgqAorJyUo+c4vHYpkR7uxPq7sLoLi05dEHP4Qt6pZ/h7ZvTJyoIL0f7+h6quIuZzWZ+Xb+VB3p3p32LpgT5evH8I0nk5ReStu9gre2WpG7h3k7t6NmxDf7enjwzZCAatS1rt1YlbItKSlm7bSdPDkqgRUQIYQG+/N+wQWQcz+Jw5imLvuy1drg6Oyk39SWzjIX4Xx3auZjQFr0Jib4XZ/cAYu99DmsbDcf31/x//dCupfgEt6Vp7CCc3QNo2eURXD1DObznV6Dqb+bw7iU06zAEv7AO6DyC6ZDwIqVFFzl9dCsAxpICCvXZNGs/GJ1HME6uvrTq+gSmciP5udd+HyTEjdq45hfa39OL2M7xNPHxJ2nYs6jVarZvWVNj/U2pS4ls3obuve+niY8/fQYOwzcghC3rlgFV5/nmtUuJT3yA5q3a4+MXxJDHx1CYn8cfe7YBVe/XnVxclZvWwYk/9qbRrlNPVCrVLRu7EOL2IYkucVuaP38+/v7+TJo0iezsbLKzs+nSpQvvv/8+zs7OyrHk5GQAxowZw5YtW5g3bx579+5lyJAhJCYmcvjwYaXP4uJiZsyYwZdffsn+/ftp0qTJDcel1WqV2VHl5eVMnjyZPXv2sHDhQjIzMxk+fPgVbcaPH8/06dM5cOAArVq1sihLTk5m6NChJCYmWoxz1KhRzJ07F6OxeubNt99+i5+fH/Hx8dcV67vvvktMTAy7du3irbfeAsDJyYk5c+bwxx9/8O9//5svvviCf/3rX0qbpUuXkpSURL9+/di1axerV6+mQ4cOSvn1PM+i7p03lKAvMdLCu3omoIPalnAPHYdy9DW2MVVUcjy3gBY+HsoxlUpFCx93JYmVebEAU6WZlpfU8XNxxN3BjsM58k2/uLXO5+ahLyikRUSocsxBa0dEkD+HMk/W2MZkquDYqTO0jKxuo1KpaBkZxqE/k1jHT2VjMlXQMrL6W30/L088XF04dMKy3//8vJSRb87gtX99zpqtOzGbzXU5RHEXq6wwcfHcUbwDY5RjKpUKr8BW5GZn1Ngm92wGTS5bXugd1FqpX1RwjpKiPIsliGqNA+7ekeT8WUdt54STqy+ZB9ZiKi+lsrKCo/t+w07rglsTmeki6pbJZOJ01jHCm1a/31WpVIQ3bUXW8UM1tsk6foiwKMvzPKJZjFL/Yu45Cgv0FnW09g4EBEfU2ufBfdspLiqkXeee/+uQhBB3KNmjS9yW3NzcsLa2VmZL/cXFxQWVSmVxLCsri9mzZ5OVlYWvb9WeFMnJySxfvpzZs2czdepUoCox9fHHHxMTE8PN2LFjB3PnzlUSTSNHjlTKQkNDmTlzJu3bt8dgMFjs4TVp0iR69+5dY5+Ojo5otVqMRqPFmAYPHsyYMWNYtGgRQ4cOBapmpQ0fPvy6v5mKj4+/Ypnlm2++qfwcHBxMcnIy8+bN49VXXwXgnXfe4eGHH1b2JgOU5+t6n+fLGY1Gi4QdgNFUgcbG+rrGIUBfUvX8udipLY672KnJLzHW1IRCYxmVZnMNbTScKShS+rWxUuGgtr2ijr6WfoWoL/pCAwAuTpZ7ILo4OShllysoKqaystJiry0AnaMDZ87lVPVbUIiNjTUOWrvL+nVEX1Dd79C+PWkZEYra1pY9GUf4z09LMRrL6Nu90/88NiGMJQWYzZVo7F0sjtvZ6yjMO11jm9JiPVoH1yvqlxbpq8r/XHpoZ6+zqKO5pI5KpSJu8EQ2LZnO/I8fAVTY2evonvQ2arub329UiJoUFxVQWVmJo5Plee7o5MKFczWf54aCfJycdRbHnJx1FOZXnd+GfH1VH86X9ensQmFBzV/KpW1eTUSz1uhcPWosF0I0fpLoEne8ffv2UVFRQWSk5WauRqPRYi8stVp9xYyq6+nb0dGRiooKysrK6N+/Px9++CFQlfhKSUlhz5495OXlKXt+ZWVl0bx5c6WP2NjYGx6TnZ0djz/+OLNmzWLo0KHs3LmT9PR0Zdnk9ajpcb///ntmzpzJ0aNHMRgMmEwmnJ2dlfLdu3fz9NNP19jf9T7Pl5s2bZpF4gzg1Z7tGH9v++sey91m47HTfLl1v3L/1fgbP4eEuN1t2LGXL378Rbk/ftSjDRgNPNgnTvk5xN8HY1k5i9dulkSXuKOZzWZ2rv0CjdaF+CHvYG2j5lj6KjYunkqvh/8fWke3hg5RiDqlz8vh8IHdPPLUze2pK4RoHCTRJe54BoMBa2trduzYgbW15SyhS2dWabXaG16nHxUVxeLFi7GxscHX1xe1ump2TFFREQkJCSQkJPDf//4XT09PsrKySEhIuGLjdweHq18VrzajRo2idevWnDp1itmzZxMfH09QUNB1t7/8cbds2cKjjz7KxIkTSUhIwMXFhXnz5vHee+8pdbRaba39Xe/zfLnXXnuNl19+2eJY8b+Sr3scd6N2AV6Ee+qU+6aKqiRqfmkZrvbVs1LyS8sIdK35Ag5OGjVWKhX5pZbnY36pEZ1d1RUVdVoNpkozRWXlFrO68kuN6C656qIQ9SE2OsriyojlJhMA+YUG3Fyqz+v8wiKCfL1q7MPZwR4rK6srZnzpDUXonKtel3TOTphMFRSVlFrM6sovNCh1ahIe6MfPv62j3GTC1kbeLon/jUbrjEplhfGyjedLi/XY2bvW2MbOXnfFhvGlxXrsHHRV5X/O9iot1lskrIzFelw8gwE4f3IfZ46nkTT6W2w1VfsstosP42zWbjIPpNKs/eC6GJ4QANg7OGNlZXXFxvOGwnwcnWs+z6tmZuktjhUW6HFyqarv6KKr6qMgH2eX6vPcUJCPj3/wFf3t2LIWewcnmraULwmFuJvJHl3itqVWq6moqLjmsTZt2lBRUcH58+cJDw+3uF26HPBmYwgPDyc4OFhJcgEcPHiQ3Nxcpk+fTrdu3WjatKnFRvQ3+hiXjwmgZcuWxMbG8sUXXzB37lyLpZI3Y/PmzQQFBfHGG28QGxtLREQEJ06csKjTqlWrWje7v9nnWaPR4OzsbHGTZYtXp7W1wdvJQbn5uTii02pIP5ur1CkuK+dIjp5ID12NfdhYWxHi7sz+7Oo2ZrOZ/WdzifgziRbs5oyNlcqi3zMFBnKLSonwqPkNqRB1RWunwdvDTbn5e3mic3Yi/fAxpU5xaSmHT5wiMjigxj5sbKwJ9fcl/fBx5ZjZbCb90DEig6uSaCH+PtjYWJN+qLrfM+dzyMnLJzKo5n4BTpw5h4O9VpJcok5YWdvg5hXGuay9yjGz2cz5k/tw94mqsY27dxTnT+6zOHYua49S38HZC62DK+cuqVNuLCb37CE8/qxjMlUtQ1dZWb7lV6msMJuvffVpIW6EjY0NfoGhHM2oPifNZjNHMvYRGBJZY5vAkEiL+gBHDu5V6ru5e+HkrLOoU1pSzMnMw1f0aTab2fH7Wtp27IGNvHYLcVeTRJe4bQUHB7N+/XpOnz5NTk6OcsxgMLB69WpycnIoLi4mMjKSRx99lCeeeIL58+dz/Phxtm3bxrRp01i6dGm9xBYYGIhareaDDz7g2LFjLF68mMmTJ99UX8HBwezdu5eMjAxycnIsroI4atQopk+fjtlstrj64c2IiIggKyuLefPmcfToUWbOnMmCBQss6kyYMIHvvvuOCRMmcODAAfbt28eMGTMAGuR5FlVUKhWJTYNYsO8I20+eIyuvgI837UWn1RAbUD3TZcrKraw4WJ287N8shDVHTrLu6ClO6Q38Z+t+Sk0VxIVVJQAc1LbEhfvzzfYD7D+by7HcfD7dvI8IT52SDAM4W1hE5sUC9CVGyioqybxYULWRfYV8SBJ1R6VS0a97R35euZ609IOcOHOOD/+7AFcXJ9q3bKrUm/TxHJZt2KrcHxDXmdVbdpC6bRenzl7gix+XUFpWRlyHNkDVhvY9O7Tlq0XLST98nKMnz/DxdwuJDA4g4s9k2Pb9Gaz+fQdZ2ec4m3ORFZu2sWDVehK7dkCIuhLZ9j6Opa/k+B9rKMg9yY41n2IqLyUkumrvz60r3mfvxm+q67fpz9kTuzi4YxEFF0+RvmUeF88fJSKmH1D1NxPRegAHtv3I6aPb0OdksnXFv7FzcMMvrCMAHj5RqDWObF0xE/2F4xTknWb3+jkUFZzHN6TdrX8SRKPXNX4gaZtWseP3tZzPPsXCeZ9TZjTSrlPVxvA/fDWT5Yu+VerfE9efQwd2s2HVYs6fPc2qpd9zOusYnXv0BarO8y49+7Nm+c/8sTeN7NMn+OHrD3BycaV5jOVr9NGMfeTlnie2S69bN2AhxG1JUt2iQVVWVtb6jcukSZN49tlnCQsLw2g0Yjab6dKlC6NHj+ahhx4iNzeXCRMmkJKSwuzZs5kyZQrjxo3j9OnTeHh40KlTJwYMGFAvcXt6ejJnzhxef/11Zs6cSdu2bXn33Xe57777brivp59+mtTUVGJjYzEYDKxdu5a4uDgAhg0bxtixYxk2bBh2dnZX7+ga7rvvPl566SXGjBmD0Wikf//+vPXWW6SkpCh14uLi+PHHH5k8eTLTp0/H2dmZ7t27K+W3+nkW1e6LDqXMVMGXv6dTXG4iytOV8ffGor5kdty5whIKjdVLFTsH+1BQWsaPew6TX2IkyM2Z8fHtcblkWeLj7ZqhQsW/1u2ivLKSGB8PRnaMtnjsz7ekc+DcReX+a0s3ATAzKQ5Px9qXuwpxo+6P74qxrJzPf/iF4pJSokIDef2Zx1DbVi+tPZebR2FRsXK/S5sW5BuK+GH5WvSFBoJ9fXjjmcctNqh/clACKhW8N+d7TCYTMU3DeeqB/kq5tZUVKzam8dXC5QB4ebjxxP2J9OosiQBRdwIju2Iszid9yzxKi/Nw9Qyh+6C3lM3kiwtyUKmqv4P28G1Gp8SX2LdlLvs2f4uTzod7BozHxaN6G4OmsUlUmIxsX/0J5cYiPHyb0T3pLaxtqmaha7TOdB/0Fvu2zCX15wlUVppwdgug68DX0HmG3NLxi7tDq3b3YCgsYNWS7yks0OMbEMyI599QNpzXX8yxmGEYFNaUh4b/jZW/zGPF4rl4NPHhsWdexds3UKnTo/cgysuMLJj7KaUlxQSFNWXE829ia2t5wZ3tm1cTFBpFE2+/WzJWIcTtS2WWa2eLBpSYmEh4eLiywbuwlJmZSVhYGGlpabRt27ahw6kzee8819AhCFHvbBLub+gQhKh3M9LjGzoEIepd7/amhg5BiHrXI9q+oUO4abfrZwvXNz5p6BDuWrJ0UTSIvLw8lixZQmpqKr16yfTiy5WXl3P27FnefPNNOnXq1KiSXEIIIYQQQgghRH2RpYuiQYwcOZK0tDTGjRvH/fc3zKyHq10pcNmyZXTr1u0WRmNp06ZN9OzZk8jISH766SeLsg0bNtC3b99a2xoMhlrLhBBCCCGEEEKIxkwSXaJBXL4JekPYvXt3rWV+fg27tj8uLo7aVhXHxsZeNXYhhBBCCCGEEOJuJYkucdcKDw9v6BBuilarvWNjF0IIIYQQQggh6pPs0SWEEEIIIYQQQgghGgVJdAkhhBBCCCGEEEKIRkESXUIIIYQQQgghhBCiUZA9uoQQt5xNQsNcaVOIW2lGenxDhyBEvRt3+m8NHYIQ9W5v+/caOgQhhBA3QGZ0CSGEEEIIIYQQQohGQRJdQgghhBBCCCGEEKJRkESXEEIIIYQQQgghhGgUJNElhBBCCCGEEEIIIRoFSXQJIYQQQgghhBBCiEZBEl2CuLg4xo4d29Bh1LuUlBRat27d0GEIIYQQQgghhBCintg0dACiYQwfPhy9Xs/ChQuZP38+tra2SllwcDBjx461SH7NmTOHsWPHotfr6z22lJQUJk6cCIC1tTX+/v4kJSUxefJkHB0db7rf5ORkXnjhBeX+pc/BnaKyspLXXnuNb775hry8PCIiIpg8eTL3339/Q4cm6pnZbOaH5WtZ/ftOiktKiQwJ4OkHB+Dj6X7Vdss3buOXtZvQFxgI8vVmxOC+RAT5K+Vl5eV8vWgFm3fvx2QyERMVzlMP9kfndOXfWmFRMa/84xMu5hcwe+prOGjt6nycQlzKbDaz//d5HEtfSZmxCA+fprSLfxYnV9+rtju851cydiyitCgPnWcwbeJG4e4dqZQf3beCrIMbyLtwjPKyEpKe+xa1xqG+hyMEUHVe/7TnMGuOnKKorJwoT1dGdozGx/nq5+BvGSf4Zf9x8kuNBLo6Mbx9c8I9dEp5mamCb3ccZMuJbMorKonx9WBkh2hctBoATlwsYNH+Y2Scz6PQWIano5ZeEYH0bRZcj6MVd6Mt65azYdUiCgv0+PgHMXDIUwQER9Raf+/Ozaz8ZR76ixdwb+JD4v2P0bRFW6XcbDazaun3pG1aRWlJMYGhUQx6+Bk8mvgodf7fW8+Rd/GCRb8J9z9KXJ+kuh+gEOK2JzO6BG5ubjg5Od2Sx6qoqKCysvKa9aKjo8nOziYzM5MZM2bw+eefM27cuJt6TLPZjMlkwtHREXf3qycFbnfffvst//rXv/jnP//JgQMH+Oc//4mDw7U/nJWVld2C6ER9WrRmI8s2bOXpIQN4Z+zT2KnVvPPZN5SVl9faZvOudL5etJwH+8QxY9xogvy8eOezb8g3FCl1vlq4gh37D/Hyk0OZ8PwILuYX8N7s72vs75N5iwj09arzsQlRm4PbF3B491LaxY+m18MzsLG1Y92CSVSYan9Nyzq0kd3rZxPdcSh9HnkPF49g1i+YRGlxvlLHVG7EO7gtzdo/eCuGIYSFxfuPsTzjBE91jGZK385obKyZtjqNMlNFrW22ZGbzzfYDPNAqnKn97iHI1Zlpq9MoKDUqdb7ZcYAdp84ztnsb3u7TkYvFRv65bqdSfuxiPs52ap7vGsM/BnZjUIswvtuVwYqDJ+p1vOLusnfHJpb+PIf4fkN4Yfw/8PYLZtaHUzAU5tdY/8TRg3w/+33ad7mXF8b/g+at2vPt5/+Ps2eylDrrVi5kc+oyBg17ludemYZaY8esDydTXm75v6BX/4d4feoXyq1zj771OlYhxO1LEl3CYuliXFwcJ06c4KWXXkKlUqFSqUhNTWXEiBHk5+crx1JSUgAwGo0kJyfj5+eHg4MDHTt2JDU1Vel7zpw56HQ6Fi9eTPPmzdFoNGRlZV0ZxGVsbGzw9vbG39+fhx56iEcffZTFixcD8M033xAbG4uTkxPe3t488sgjnD9/XmmbmpqKSqVi2bJltGvXDo1Gw8aNGy2WLqakpPDVV1+xaNEii3HGx8czZswYi1guXLiAWq1m9erV14z7448/JiIiAjs7O7y8vHjwweoPUZWVlUybNo2QkBC0Wi0xMTH89NNPQFUyrlevXiQkJGA2mwG4ePEi/v7+vP3220ofVlZWeHp68vDDDxMcHEyvXr3o1avXFXH8NdYvv/ySkJAQ7OyqZt4sX76crl27otPpcHd3Z8CAARw9etSi7alTpxg2bBhubm44ODgQGxvL1q1blfJFixbRtm1b7OzsCA0NZeLEiZhMpms+N+Lmmc1mfl2/lQd6d6d9i6YE+Xrx/CNJ5OUXkrbvYK3tlqRu4d5O7ejZsQ3+3p48M2QgGrUta7dWffApKill7badPDkogRYRIYQF+PJ/wwaRcTyLw5mnLPpasWkbxSWl3NfznnodqxB/MZvNHN69hGYdhuAX1gGdRzAdEl6ktOgip49urbXdoZ2LCW3Rm5Doe3F2DyD23uewttFwfH/1a3hU2/to1n6wxSwvIW4Fs9nM8oMnSGoZTmyAF4Guzjx3Tyv0JUa2nzxXa7ulB44THxFAXLg//jpHRnWMRmNtzdojVa/VRWXlpB45xeOxTYn2difU3YXRXVpy6IKewxf0APQMD2B4++Y093LDy8mebqF+xIX5k3by7K0YurhLbFzzC+3v6UVs53ia+PiTNOxZ1Go127esqbH+ptSlRDZvQ/fe99PEx58+A4fhGxDClnXLgKq/mc1rlxKf+ADNW7XHxy+IIY+PoTA/jz/2bLPoS2OnxcnFVblpNDLzXIi7lSS6hIX58+fj7+/PpEmTyM7OJjs7my5duvD+++/j7OysHEtOTgZgzJgxbNmyhXnz5rF3716GDBlCYmIihw8fVvosLi5mxowZfPnll+zfv58mTZrccFxarVaZlVReXs7kyZPZs2cPCxcuJDMzk+HDh1/RZvz48UyfPp0DBw7QqlUri7Lk5GSGDh1KYmKixThHjRrF3LlzMRqrvyH99ttv8fPzIz4+/qoxbt++nRdffJFJkyaRkZHB8uXL6d69u1I+bdo0vv76az799FP279/PSy+9xGOPPca6detQqVR89dVXpKWlMXPmTABGjx6Nn5+fRaLr3nvvJT8/n7feeuuaz9mRI0f4+eefmT9/Prt37wagqKiIl19+me3bt7N69WqsrKxISkpSZtkZDAZ69OjB6dOnWbx4MXv27OHVV19Vyjds2MATTzzB3/72N/744w8+++wz5syZwzvvvHPNeMTNO5+bh76gkBYRocoxB60dEUH+HMo8WWMbk6mCY6fO0DKyuo1KpaJlZBiH/kxiHT+VjclUQcvIMKWOn5cnHq4uHDpR3e+psxf4+bf1jHk0CZWqrkcnRM2KCs5RUpSHV0BL5Zha44C7dyQ52Rk1tqmsMHHx3FG8A2OUYyqVCq/AVuTW0kaIW+m8oQR9iZEW3tUzzB3UtoR76DiUo6+xjamikuO5BbTw8VCOqVQqWvi4K0mszIsFmCrNtLykjp+LI+4OdhzOyas1nuJyEw5q21rLhbgRJpOJ01nHCG9a/b5bpVIR3rQVWccP1dgm6/ghwqJaWhyLaBaj1L+Ye47CAr1FHa29AwHBEVf0ue63BUx+dTgfTEtm/cpFVFTUPktSCNG4yR5dwoKbmxvW1tbKbKm/uLi4oFKpLI5lZWUxe/ZssrKy8PWt2i8lOTmZ5cuXM3v2bKZOnQpUJaY+/vhjYmJiuBk7duxg7ty5SqJp5MiRSlloaCgzZ86kffv2GAwGiz28Jk2aRO/evWvs09HREa1Wi9FotBjT4MGDGTNmDIsWLWLo0KFA1ay04cOHo7rGJ/ysrCwcHBwYMGAATk5OBAUF0aZNG6Bq5tvUqVNZtWoVnTt3VmLfuHEjn332GT169MDPz4/PPvuMJ554grNnz/Lrr7+ya9cubGyq/kyLi4vp3bs3jzzyCCtXrqSkpIR//OMfSlzOzs7MmjVLmUVWVlbG119/jaenpxLjAw88YBHzrFmz8PT05I8//qBFixbMnTuXCxcukJaWhpubGwDh4eFK/YkTJzJ+/HiefPJJZQyTJ0/m1VdfZcKECVd9fsTN0xcaAHC5bN8sFycHpexyBUXFVFZWXrHXls7RgTPncqr6LSjExsb6ir22XJwc0RdU9VtuMvH+Nz/y2MDeeLjqOJdb+wcmIepSaVHVuWZnr7M4rrHXUVqkr7GNsaQAs7kSjb2LxXE7ex2FeafrI0whboi+pOqLNBc7tcVxFzs1+SXGmppQaCyj0myuoY2GMwVFSr82VqorklYudhrlMS+XcT6P309k82rP2JsaixCXKy4qoLKyEkcny9dgRycXLpyr+TXYUJCPk7PO4piTs47C/Kr/AYZ8fVUfzpf16exCYUH1e5LOcf3wCwhB6+BE1rGDLF80l4L8PAY8OPx/G5QQ4o4kiS5x0/bt20dFRQWRkZZLP4xGo8VeWGq1+ooZVdfTt6OjIxUVFZSVldG/f38+/PBDoCrxlZKSwp49e8jLy1NmG2VlZdG8eXOlj9jYG3/jZmdnx+OPP86sWbMYOnQoO3fuJD09XVk2eTW9e/cmKCiI0NBQEhMTSUxMJCkpCXt7e44cOaIkqi5VVlamJMMAhgwZwoIFC5g+fTqffPIJERHVG3fOmTMHvV7PRx99hMFgIC4ujhEjRvDll19y6tQpDAYD99xTvawsKCjIIskFcPjwYd5++222bt1KTk6OxXPXokULdu/eTZs2bZQk1+X27NnDpk2bLGZwVVRUUFpaSnFxMfb29le0MRqNFjPk/hq3Rq2+oq6osmHHXr748Rfl/vhRjzZYLHOXrMLfy5PusTeXqBbiep04uI7tqz9V7ne7/80GjEaIurHx2Gm+3Lpfuf9q/O2RVDqZV8h7qTsY3CqcVr4e124gxG2u270DlZ99/IKwtrZhwbzPSbz/UWxsZdaiEHcbSXSJm2YwGLC2tmbHjh1YW1tblF06s0qr1V5zNtTloqKiWLx4MTY2Nvj6+qL+MylSVFREQkICCQkJ/Pe//8XT05OsrCwSEhKu2HD9ejZpr8moUaNo3bo1p06dYvbs2cTHxxMUFHTNdk5OTuzcuZPU1FR+++033n77bVJSUkhLS8NgqJods3TpUvz8/CzaaTQa5efi4mLl+bx0+SfA3r17iY6OxtbWFldXV1auXEm3bt1ISkoiIiKCxMREfHyqrz5T0/gHDhxIUFAQX3zxBb6+vlRWVtKiRQvludNqtVcdo8FgYOLEiQwePPiKsr/2AbvctGnTlKto/mX804/y+jOPXfWx7max0VEWV0Ys/3MPtPxCA24u1ReOyC8sIqiWzeGdHeyxsrK6YsaX3lCEzrnq71Pn7ITJVEFRSanFrK78QoNSJ/3IcbLOnOP3PX8AKHvIPfXmDJJ6deOhvldf0ivE9fIN7UCfS/bMqqyoutBCabEerWN18t1YrMfFM7jGPjRaZ1QqK4zFlpselxbrsbN3rfughbiGdgFehHvqlPumiqovmPJLy3C1v+R1t7SMQNeaLwzkpFFjpVKRX2r5Pie/1IjOruo9hE6rwVRppqis3GJWV36pEZ1WY9HulN7AlFXbuDcikMEtwxGirtg7OGNlZXXFxvOGwnwcnWt+Da6amaW3OFZYoMfJpaq+o4uuqo+CfJxdqv8XGAry8fEPrjWWgJBIKisqyLt4AU+vq1+pVwjR+EiiS1xBrVZfsaa9pmNt2rShoqKC8+fP061btzqP4dIlc385ePAgubm5TJ8+nYCAAKBqb6ybfYya1u63bNmS2NhYvvjiC+bOnavMJLseNjY2ygbxEyZMQKfTsWbNGnr37q1sxN+jR49a248bNw4rKyuWLVtGv3796N+/v7Jk08/PjwULFlBYWIiTkxNNmjRh1apVdOvWjSVLlrBjx46rxpabm0tGRgZffPGF8vvauHGjRZ1WrVrx5ZdfcvHixRpndbVt25aMjIwafze1ee2113j55ZctjpWlp153+7uR1k6D1q76g4nZbEbn7ET64WOE+FclM4tLSzl84hS9u9Q8O8DGxppQf1/SDx+nQ8tmSj/ph46R2K0DACH+PtjYWJN+6BgdY6pmQ545n0NOXj6RQVV/X+OGP2RxZcejWWf4ZN5CJr0wEi+Pmmf+CXEzbNVabNXVyXaz2YzWwZVzJ/fh2qRqr7lyYzG5Zw8R1iqhxj6srG1w8wrjXNZe/MI6Kv2cP7mP8Jh+9T8IIS6jtbVBa1v9dttsNqPTakg/m0uwmzMAxWXlHMnR0ysioMY+bKytCHF3Zn92Lu0DvJR+9p/NpU9U1RdxwW7O2FipSD+bS8fAqi0ZzhQYyC0qJcKjOsFwSl/I5JXb6B7qx0Nt5GIMom7Z2NjgFxjK0Yx9RMdUvdcwm80cydhX6xUQA0MiOZqxj67xA5RjRw7uJTCk6vx0c/fCyVnH0Yx9+AaEAFBaUszJzMN07Nan1ljOnDyOSqXCwcm5roYnhLiDSKJLXCE4OJj169fz8MMPo9Fo8PDwIDg4GIPBwOrVq4mJicHe3p7IyEgeffRRnnjiCd577z3atGnDhQsXWL16Na1ataJ///51HltgYCBqtZoPPviA0aNHk56ezuTJk2+qr+DgYFasWEFGRgbu7u64uLhg++fU5lGjRjFmzBgcHBxISkq6rv6WLFnCsWPH6N69O66urvz6669UVlYSFRWFk5MTycnJvPTSS1RWVtK1a1fy8/PZtGkTzs7OPPnkkyxdupRZs2axZcsW2rZtyyuvvMKTTz7J3r17cXV15amnnuLf//439913H++88w7u7u5s2LABg8GAvb09//nPf2jbtm2t8bm6uuLu7s7nn3+Oj48PWVlZjB8/3qLOsGHDmDp1KoMGDWLatGn4+Piwa9cufH196dy5M2+//TYDBgwgMDCQBx98ECsrK/bs2UN6ejpTpkyp8XE1Go3FrDWAQlm2eENUKhX9unfk55Xr8fZ0p4mbK98vW4OrixPtWzZV6k36eA7tWzajb7eqD/gD4jrz0dwFhPr7EB7oz6/rf6e0rIy4DlXLZR20dvTs0JavFi3HwV6L1k7D7Pm/EhkcQERw1Ywy78uSWYVFxUDVpvWX7+0lRF1SqVREtB7AgW0/4qTzwcGlCembv8POwU1JYgGs/flt/MM6EtG66n9OZNv72LZiJq5eYbh7RXBo9xJM5aWERFfPPiwpyqO0KA9DfjYA+TknsLG1w97JE4225lk1QtQFlUpFYtMgFuw7greTPU0ctfyw+zA6rYbYgOoZulNWbqV9gDcJTasSWf2bhfDJ5r2EuDsT5q5j+cFMSk0VxIVVvVY7qG2JC/fnm+0HcFTborW1YU7aH0R46oj4c0bZybxCpqzaRitfD/o3D1H27rJSgbOd5f9pIW5W1/iB/Pj1h/gFhhIQFMGm1KWUGY2069QTgB++momzzo3E+6tm9t8T15/P/z2BDasWE9WiHXt3bOR01jGSHhkNVP3NdOnZnzXLf8a9iQ+u7k1YuWQeTi6uNP8zmXbiWAYnMw8TFtkCtZ0dWccOsfTnObTp0B17e8eaAxVCNGqS6LpLVVZWKpucX27SpEk8++yzhIWFYTQaMZvNdOnShdGjR/PQQw+Rm5vLhAkTSElJYfbs2UyZMoVx48Zx+vRpPDw86NSpEwMGDKix7/+Vp6cnc+bM4fXXX2fmzJm0bduWd999l/vuu++G+3r66adJTU0lNjYWg8HA2rVriYuLA6oSPmPHjmXYsGG1Lsm7nE6nY/78+aSkpFBaWkpERATfffcd0dHRAEyePBlPT0+mTZvGsWPH0Ol0tG3bltdff50LFy7w1FNPkZKSoiSrJk6cyG+//cbo0aP5/vvv8fX1Zdu2bfz9739n8ODBFBQUEBsby9dff429vT29e/cmLCzsitlTf7GysmLevHm8+OKLtGjRgqioKGbOnKmMGapmuf3222+MGzeOfv36YTKZaN68OR999BEACQkJLFmyhEmTJjFjxgxsbW1p2rQpo0aNuuHnX9yY++O7Yiwr5/MffqG4pJSo0EBef+Yx1JfsO3EuN09JRAF0adOCfEMRPyxfi77QQLCvD28887jFBvVPDkpApYL35nyPyWQipmk4Tz1Q90lqIW5G09gkKkxGtq/+hHJjER6+zeie9BbWNtXJ8qL8cxhLCpX7gZFdMRbnk75lHqXFebh6htB90FsWm9of3buC/Vu/V+6v+fENADr0eYGQ5rIcV9Sv+6JDKTNV8OXv6RSXm4jydGX8vbGobaq3gThXWEKhsXqpYudgHwpKy/hxz2HyS4wEuTkzPr49LpcsS3y8XTNUqPjXul2UV1YS4+PByI7RSvnWrLMUlJax8dgZNh47oxz3cNDyweC4+h20uGu0ancPhsICVi35nsICPb4BwYx4/g1lw3n9xRxUVlZK/aCwpjw0/G+s/GUeKxbPxaOJD4898yrevoFKnR69B1FeZmTB3E8pLSkmKKwpI55/E1vbqv8FNja27N2xidW//kiFqRxX9yZ0jR9A1/iBCCHuTirzXxuuiLtKYmIi4eHhN7Qs726SmZlJWFgYaWlpV50lJW5O4fblDR2CEPVuRrokTETjN+703xo6BCHq3d5B7zV0CELUux7RV15U6k6R985zDR1CjVzf+KShQ7hrWV27imhM8vLyWLJkCampqfTq1auhw7ntlJeXc/bsWd588006deokSS4hhBBCCCGEEOIOIksX7zIjR44kLS2NcePGcf/99zdIDJdekfFyy5Ytq/ON7W/Epk2b6NmzJ5GRkfz0008WZRs2bKBv35o30gSUKysKIYQQQgghhBCiYUii6y6zYMGChg6B3bt311rm5+d36wKpQVxcHLWt5o2Njb1q7EIIIYQQQgghhGhYkugSt1x4eHhDh3BTtFrtHRu7EEIIIYQQQojGKzMzk5CQEHbt2kXr1q0bOpwGJXt0CSGEEEIIIYQQQjSQ9evXM3DgQHx9fVGpVCxcuLChQ6rR8OHDGTRoUEOHcU2S6BJCCCGEEEIIIYRoIEVFRcTExPDRRx81dCiNgiS6hBBCCCGEEEIIIRpI3759mTJlCklJSf9zXwcPHqRLly7Y2dnRokUL1q1bZ1Genp5O3759cXR0xMvLi8cff5ycnByl/KeffqJly5ZotVrc3d3p1asXRUVFpKSk8NVXX7Fo0SJUKhUqlYrU1NT/Od76IIkuIYQQQgghhBBCiDpkNBopKCiwuBmNxnp/3FdeeYVx48axa9cuOnfuzMCBA8nNzQVAr9cTHx9PmzZt2L59O8uXL+fcuXMMHToUgOzsbIYNG8bIkSM5cOAAqampDB48GLPZTHJyMkOHDiUxMZHs7Gyys7Pp0qVLvY/nZqjMtV1iTgghhBBCCCGEEELcsJSUFCZOnGhxbMKECaSkpFy1nUqlYsGCBTe8F9Zfm9FPnz6dv//97wCYTCZCQkJ44YUXePXVV5kyZQobNmxgxYoVSrtTp04REBBARkYGBoOBdu3akZmZSVBQ0BWPMXz4cPR6/W27h9hf5KqLQgghhBBCCCGEEHXotdde4+WXX7Y4ptFo6v1xO3furPxsY2NDbGwsBw4cAGDPnj2sXbsWR0fHK9odPXqUPn36cO+999KyZUsSEhLo06cPDz74IK6urvUed12SRJcQQgghhBBCCCFEHdJoNLcksXUjDAYDAwcOZMaMGVeU+fj4YG1tzcqVK9m8eTO//fYbH3zwAW+88QZbt24lJCSkASK+ObJHlxBCCCGEEEIIIUQj8Pvvvys/m0wmduzYQbNmzQBo27Yt+/fvJzg4mPDwcIubg4MDULV08p577mHixIns2rULtVrNggULAFCr1VRUVNz6Qd0gSXQJIYQQQgghhBBCNBCDwcDu3bvZvXs3AMePH2f37t1kZWXdcF8fffQRCxYs4ODBgzz//PPk5eUxcuRIAJ5//nkuXrzIsGHDSEtL4+jRo6xYsYIRI0ZQUVHB1q1bmTp1Ktu3bycrK4v58+dz4cIFJVEWHBzM3r17ycjIICcnh/Ly8jp7DuqSJLqEEEIIIYQQQgghGsj27dtp06YNbdq0AeDll1+mTZs2vP3220qdlJQUgoODr9nX9OnTmT59OjExMWzcuJHFixfj4eEBgK+vL5s2baKiooI+ffrQsmVLxo4di06nw8rKCmdnZ9avX0+/fv2IjIzkzTff5L333qNv374APP3000RFRREbG4unpyebNm2q+yejDshVF4UQQgghhBBCCCFuY08++SQqlYo5c+Y0dCi3PUl0CSGEEEIIIYQQQtymzGYzwcHBbNy4kYCAgIYO57YniS4hhBBCCCGEEEII0SjIHl1CCCGEEEIIIYQQolGQRJcQQgghhBBCCCGEaBQk0SWEEEIIIYQQQgghGgVJdAkhhBBCCCGEEEKIRkESXUIIIYQQQgghhBCiUZBElxBCCCGEEEIIIYRoFCTRJYQQQgghhBBCCCEaBUl0CSGEEEIIIYQQQohGQRJdQgghhBBCCCGEEKJR+P+l6akO1+ToyQAAAABJRU5ErkJggg=="
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "visualizer.create_model_rank_heatmap(\n",
- " metrics_lst=[\n",
- " # Group fairness metrics\n",
- " 'Equalized_Odds_TPR',\n",
- " 'Equalized_Odds_FPR',\n",
- " 'Disparate_Impact',\n",
- " 'Statistical_Parity_Difference',\n",
- " 'Accuracy_Parity',\n",
- " # Group stability metrics\n",
- " 'Label_Stability_Ratio',\n",
- " 'IQR_Parity',\n",
- " 'Std_Parity',\n",
- " 'Std_Ratio',\n",
- " 'Jitter_Parity',\n",
- " ],\n",
- " groups_lst=config.sensitive_attributes_dct.keys(),\n",
- ")"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-09-29T20:57:58.777407Z",
- "start_time": "2023-09-29T20:57:58.303858Z"
- }
- },
- "id": "43fca999faac66af"
- },
- {
- "cell_type": "code",
- "execution_count": 74,
- "id": "5efb1bf2",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": "\n\n",
- "text/plain": "alt.Chart(...)"
- },
- "execution_count": 74,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "visualizer.create_overall_metrics_bar_char(\n",
- " metrics_names=['TPR', 'PPV', 'Accuracy', 'F1', 'Selection-Rate', 'Positive-Rate'],\n",
- " metrics_title=\"Error Metrics\"\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 75,
- "id": "0eb8528e",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": "\n\n",
- "text/plain": "alt.Chart(...)"
- },
- "execution_count": 75,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "visualizer.create_overall_metrics_bar_char(\n",
- " metrics_names=['Label_Stability'],\n",
- " reversed_metrics_names=['Std', 'IQR', 'Jitter'],\n",
- " metrics_title=\"Variance Metrics\"\n",
- ")"
- ]
- },
{
"cell_type": "code",
"execution_count": 78,
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index 567b0d33..007ff0c3 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -26,6 +26,7 @@ def __init__(self, model_metrics_dct: dict, model_composed_metrics_df: pd.DataFr
self.demo = None
self.model_names = list(model_metrics_dct.keys())
self.sensitive_attributes_dct = sensitive_attributes_dct
+ self.group_names = list(self.sensitive_attributes_dct.keys())
# Create one metrics df with all model_dfs
models_metrics_df = pd.DataFrame()
@@ -74,13 +75,17 @@ def start_web_app(self):
""")
with gr.Row():
with gr.Column(scale=2):
+ group_name = gr.Dropdown(
+ self.group_names,
+ value=self.group_names[0], multiselect=False, label="Group Name for Parity Metrics",
+ )
with gr.Row():
accuracy_metric = gr.Dropdown(
['Statistical_Bias', 'TPR', 'TNR', 'PPV', 'FNR', 'FPR', 'Accuracy', 'F1'],
value='Accuracy', multiselect=False, label="Constraint 1 (C1)",
scale=2
)
- acc_min_val = gr.Number(value=0.815, label="Min value", scale=1)
+ acc_min_val = gr.Number(value=0.7, label="Min value", scale=1)
acc_max_val = gr.Number(value=0.85, label="Max value", scale=1)
with gr.Row():
fairness_metric = gr.Dropdown(
@@ -88,8 +93,8 @@ def start_web_app(self):
value='Equalized_Odds_FPR', multiselect=False, label="Constraint 2 (C2)",
scale=2
)
- fairness_min_val = gr.Number(value=-0.03, label="Min value", scale=1)
- fairness_max_val = gr.Number(value=0.03, label="Max value", scale=1)
+ fairness_min_val = gr.Number(value=-0.15, label="Min value", scale=1)
+ fairness_max_val = gr.Number(value=0.15, label="Max value", scale=1)
with gr.Row():
subgroup_stability_metric = gr.Dropdown(
['Std', 'IQR', 'Jitter', 'Label_Stability'],
@@ -111,7 +116,8 @@ def start_web_app(self):
bar_plot_for_model_selection = gr.Plot(label="Plot")
btn_view1.click(self._create_bar_plot_for_model_selection,
- inputs=[accuracy_metric, acc_min_val, acc_max_val,
+ inputs=[group_name,
+ accuracy_metric, acc_min_val, acc_max_val,
fairness_metric, fairness_min_val, fairness_max_val,
subgroup_stability_metric, subgroup_stab_min_val, subgroup_stab_max_val,
group_stability_metrics, group_stab_min_val, group_stab_max_val],
@@ -235,25 +241,25 @@ def start_web_app(self):
def stop_web_app(self):
self.demo.close()
- def _create_bar_plot_for_model_selection(self, accuracy_metric, acc_min_val, acc_max_val,
+ def _create_bar_plot_for_model_selection(self, group_name, accuracy_metric, acc_min_val, acc_max_val,
fairness_metric, fairness_min_val, fairness_max_val,
subgroup_stability_metric, subgroup_stab_min_val, subgroup_stab_max_val,
group_stability_metrics, group_stab_min_val, group_stab_max_val):
accuracy_constraint = (accuracy_metric, acc_min_val, acc_max_val)
- subgroup_stability_constraint = (subgroup_stability_metric, subgroup_stab_min_val, subgroup_stab_max_val)
fairness_constraint = (fairness_metric, fairness_min_val, fairness_max_val)
+ subgroup_stability_constraint = (subgroup_stability_metric, subgroup_stab_min_val, subgroup_stab_max_val)
group_stability_constraint = (group_stability_metrics, group_stab_min_val, group_stab_max_val)
# Create individual constraints
metrics_value_range_dct = dict()
- for constraint in [accuracy_constraint, subgroup_stability_constraint, fairness_constraint, group_stability_constraint]:
+ for constraint in [accuracy_constraint, fairness_constraint, subgroup_stability_constraint, group_stability_constraint]:
metrics_value_range_dct[constraint[0]] = [constraint[1], constraint[2]]
# Create intersectional constraints
- metrics_value_range_dct[f'{accuracy_constraint[0]}&{subgroup_stability_constraint[0]}'] = None
metrics_value_range_dct[f'{accuracy_constraint[0]}&{fairness_constraint[0]}'] = None
+ metrics_value_range_dct[f'{accuracy_constraint[0]}&{subgroup_stability_constraint[0]}'] = None
metrics_value_range_dct[f'{accuracy_constraint[0]}&{group_stability_constraint[0]}'] = None
- metrics_value_range_dct[(f'{accuracy_constraint[0]}&{subgroup_stability_constraint[0]}'
- f'&{fairness_constraint[0]}&{group_stability_constraint[0]}')] = None
+ metrics_value_range_dct[(f'{accuracy_constraint[0]}&{fairness_constraint[0]}'
+ f'&{subgroup_stability_constraint[0]}&{group_stability_constraint[0]}')] = None
melted_all_subgroup_metrics_per_model_dct = dict()
for model_name in self.melted_model_metrics_df['Model_Name'].unique():
@@ -268,7 +274,7 @@ def _create_bar_plot_for_model_selection(self, accuracy_metric, acc_min_val, acc
return create_bar_plot_for_model_selection(melted_all_subgroup_metrics_per_model_dct,
melted_all_group_metrics_per_model_dct,
metrics_value_range_dct,
- group='sex&race')
+ group=group_name)
def _create_subgroup_model_rank_heatmap(self, model_names: list, subgroup_accuracy_metrics_lst: list,
subgroup_uncertainty_metrics: list, subgroup_stability_metrics_lst: list):
@@ -405,28 +411,52 @@ def _create_metrics_bar_chart_per_one_model(self, model_name: str, metrics_names
(metrics_df['Model_Name'] == model_name) &
(metrics_df['Subgroup'].isin(filtered_groups))]
+ base_font_size = 16
models_metrics_chart = (
- alt.Chart(filtered_metrics_df).mark_bar().encode(
- alt.Row('Metric:N', title=metrics_title),
- alt.Y('Subgroup:N', axis=None),
+ alt.Chart().mark_bar().encode(
+ alt.Y('Subgroup:N', axis=None, sort='descending'),
alt.X('Value:Q', axis=alt.Axis(grid=True), title=''),
alt.Color('Subgroup:N',
+ sort='descending',
scale=alt.Scale(scheme="tableau20"),
legend=alt.Legend(title=metrics_type.capitalize(),
- labelFontSize=14,
- titleFontSize=14)
+ labelFontSize=base_font_size,
+ titleFontSize=base_font_size + 2)
)
)
- ).properties(
- width=500, height=80
- ).configure_headerRow(
- labelAngle=0,
- labelPadding=10,
- labelAlign='left',
- labelFontSize=14,
- titleFontSize=18
- ).configure_axis(
- labelFontSize=14, titleFontSize=18
)
- return models_metrics_chart
+ text = (
+ models_metrics_chart.mark_text(
+ align='left',
+ baseline='middle',
+ fontSize=base_font_size,
+ dx=10
+ ).encode(
+ text=alt.Text('Value:Q', format=",.3f"),
+ color=alt.value("black")
+ )
+ )
+
+ final_chart = (
+ alt.layer(
+ models_metrics_chart, text, data=filtered_metrics_df
+ ).properties(
+ width=500,
+ height=100
+ ).facet(
+ row=alt.Row('Metric:N', title=metrics_title)
+ ).configure(
+ padding={'top': 33},
+ ).configure_headerRow(
+ labelAngle=0,
+ labelPadding=10,
+ labelAlign='left',
+ labelFontSize=base_font_size,
+ titleFontSize=base_font_size + 2
+ ).configure_axis(
+ labelFontSize=base_font_size, titleFontSize=base_font_size + 2
+ )
+ )
+
+ return final_chart
diff --git a/virny/utils/data_viz_utils.py b/virny/utils/data_viz_utils.py
index 877979f9..c6fbe759 100644
--- a/virny/utils/data_viz_utils.py
+++ b/virny/utils/data_viz_utils.py
@@ -4,6 +4,7 @@
import seaborn as sns
from matplotlib import pyplot as plt
+from IPython.display import display
from virny.utils.common_helpers import check_substring_in_list
@@ -80,7 +81,7 @@ def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_
Number of models to visualize
"""
- font_increase = 2
+ font_increase = 4
matrix_width = 20
matrix_height = model_metrics_matrix.shape[0] // 2
fig = plt.figure(figsize=(matrix_width, matrix_height))
@@ -90,7 +91,7 @@ def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_
ax.set(xlabel="", ylabel="")
ax.xaxis.tick_top()
ax.tick_params(labelsize=16 + font_increase)
- fig.subplots_adjust(left=0.25, right=1., top=0.9)
+ fig.subplots_adjust(left=0.27, right=0.99, top=0.92)
cbar = ax.collections[0].colorbar
model_ranks = [idx for idx in range(num_models)]
@@ -155,28 +156,28 @@ def get_column_alias(metric_group):
models_in_range_df['Alias'] = models_in_range_df['Metric_Group'].apply(get_column_alias)
models_in_range_df['Title'] = models_in_range_df['Alias']
- base_font_size = 25
+ base_font_size = 14
bar_plot = alt.Chart(models_in_range_df).mark_bar().encode(
x=alt.X("Title", type="nominal", title='Metric Group', axis=alt.Axis(labelAngle=-30),
sort=alt.Sort(order='ascending')),
y=alt.Y("Number_of_Models", title="Number of Models", type="quantitative"),
color=alt.Color('Model_Name', legend=alt.Legend(title='Model Name'))
+ ).configure(padding={'top': 33}
).configure_axis(
labelFontSize=base_font_size + 2,
titleFontSize=base_font_size + 4,
labelFontWeight='normal',
titleFontWeight='normal',
labelLimit=300,
+ tickMinStep=1,
).configure_title(
fontSize=base_font_size + 2
).configure_legend(
- titleFontSize=base_font_size + 2,
- labelFontSize=base_font_size,
+ titleFontSize=base_font_size + 4,
+ labelFontSize=base_font_size + 2,
symbolStrokeWidth=4,
labelLimit=300,
titleLimit=220,
- orient='none',
- legendX=345, legendY=10,
).properties(width=650, height=450)
return bar_plot
@@ -209,6 +210,7 @@ def create_models_in_range_dct(all_subgroup_metrics_per_model_dct: dict, all_gro
# Create a pandas condition for filtering based on the input value ranges
models_in_range_df = pd.DataFrame()
+ model_names = pivoted_model_metrics_df['Model_Name'].unique()
for idx, (metric_group, value_range) in enumerate(metrics_value_range_dct.items()):
pd_condition = None
if '&' not in metric_group:
@@ -233,6 +235,11 @@ def create_models_in_range_dct(all_subgroup_metrics_per_model_dct: dict, all_gro
num_satisfied_models_df = pivoted_model_metrics_df[pd_condition]['Model_Name'].value_counts().reset_index()
num_satisfied_models_df.rename(columns = {'Model_Name': 'Number_of_Models'}, inplace = True)
num_satisfied_models_df.rename(columns = {'index': 'Model_Name'}, inplace = True)
+ # If a constraint for a metric group is not satisfied, add zeros for all model names
+ if num_satisfied_models_df.shape[0] == 0:
+ num_satisfied_models_df = pd.DataFrame({'Model_Name': model_names,
+ 'Number_of_Models': [0] * len(model_names)})
+
num_satisfied_models_df['Metric_Group'] = metric_group
if idx == 0:
models_in_range_df = num_satisfied_models_df
From 3afea56eece3c7c01743e255ec589cf77324beb0 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Mon, 2 Oct 2023 20:56:12 +0300
Subject: [PATCH 008/148] Tested a gradio app on a big metrics df
---
.../Multiple_Models_Interface_Vis.ipynb | 15 +-
...ple_Models_Interface_Vis_Big_Example.ipynb | 292 ++++++++++++++++++
docs/examples/group_metrics_sample.csv | 133 ++++++++
docs/examples/subgroup_metrics_sample.csv | 221 +++++++++++++
.../metrics_interactive_visualizer.py | 9 +-
virny/utils/data_viz_utils.py | 24 +-
6 files changed, 674 insertions(+), 20 deletions(-)
create mode 100644 docs/examples/Multiple_Models_Interface_Vis_Big_Example.ipynb
create mode 100644 docs/examples/group_metrics_sample.csv
create mode 100644 docs/examples/subgroup_metrics_sample.csv
diff --git a/docs/examples/Multiple_Models_Interface_Vis.ipynb b/docs/examples/Multiple_Models_Interface_Vis.ipynb
index dad3d0d5..14fb79b7 100644
--- a/docs/examples/Multiple_Models_Interface_Vis.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis.ipynb
@@ -226,12 +226,12 @@
},
{
"cell_type": "code",
- "execution_count": 320,
+ "execution_count": 322,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-02T14:23:41.153446Z",
- "start_time": "2023-10-02T14:23:37.215399Z"
+ "end_time": "2023-10-02T17:55:10.703782Z",
+ "start_time": "2023-10-02T17:55:06.041613Z"
}
},
"outputs": [],
@@ -242,7 +242,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 323,
"outputs": [
{
"name": "stdout",
@@ -250,7 +250,8 @@
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
- "To create a public link, set `share=True` in `launch()`.\n"
+ "To create a public link, set `share=True` in `launch()`.\n",
+ "Keyboard interruption in main thread... closing server.\n"
]
}
],
@@ -259,9 +260,9 @@
],
"metadata": {
"collapsed": false,
- "is_executing": true,
"ExecuteTime": {
- "start_time": "2023-10-02T14:23:41.153322Z"
+ "end_time": "2023-10-02T17:55:47.535767Z",
+ "start_time": "2023-10-02T17:55:10.703964Z"
}
},
"id": "678a9dc8d51243f4"
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Big_Example.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Big_Example.ipynb
new file mode 100644
index 00000000..abc20ff4
--- /dev/null
+++ b/docs/examples/Multiple_Models_Interface_Vis_Big_Example.ipynb
@@ -0,0 +1,292 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "248cbed8",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-02T17:17:48.735994Z",
+ "start_time": "2023-10-02T17:17:48.334219Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "%load_ext autoreload\n",
+ "%autoreload 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "7ec6cd08",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-02T17:17:48.745045Z",
+ "start_time": "2023-10-02T17:17:48.736330Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "os.environ[\"PYTHONWARNINGS\"] = \"ignore\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "b8cb69f2",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-02T17:17:48.756222Z",
+ "start_time": "2023-10-02T17:17:48.745173Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current location: /Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny\n"
+ ]
+ }
+ ],
+ "source": [
+ "cur_folder_name = os.getcwd().split('/')[-1]\n",
+ "if cur_folder_name != \"Virny\":\n",
+ " os.chdir(\"../..\")\n",
+ "\n",
+ "print('Current location: ', os.getcwd())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a578f2ab",
+ "metadata": {},
+ "source": [
+ "# Multiple Models Interface Usage"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "7a9241de",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-02T17:17:53.361336Z",
+ "start_time": "2023-10-02T17:17:48.754954Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import pandas as pd\n",
+ "\n",
+ "from virny.custom_classes.metrics_interactive_visualizer import MetricsInteractiveVisualizer"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "outputs": [],
+ "source": [
+ "sensitive_attributes_dct = {'SEX': '2', 'RAC1P': ['2', '3', '4', '5', '6', '7', '8', '9'], 'SEX&RAC1P': None}"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-02T17:17:53.387585Z",
+ "start_time": "2023-10-02T17:17:53.364121Z"
+ }
+ },
+ "id": "d3c53c7b72ecbcd0"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "outputs": [],
+ "source": [
+ "ROOT_DIR = os.path.join('docs', 'examples')\n",
+ "subgroup_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'subgroup_metrics_sample.csv'), header=0)\n",
+ "models_composed_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'group_metrics_sample.csv'), header=0)"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-02T17:19:48.959080Z",
+ "start_time": "2023-10-02T17:19:48.892728Z"
+ }
+ },
+ "id": "2aab7c79ecdee914"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "outputs": [],
+ "source": [
+ "subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
+ " subgroup_metrics_df['Intervention_Param'].astype(str))\n",
+ "models_composed_metrics_df['Model_Name'] = (models_composed_metrics_df['Model_Name'] + '__alpha=' \n",
+ " + models_composed_metrics_df['Intervention_Param'].astype(str))"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-02T17:20:12.234612Z",
+ "start_time": "2023-10-02T17:20:12.185239Z"
+ }
+ },
+ "id": "2d922003e752a4b4"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "outputs": [],
+ "source": [
+ "models_metrics_dct = dict()\n",
+ "for model_name in subgroup_metrics_df['Model_Name'].unique():\n",
+ " models_metrics_dct[model_name] = subgroup_metrics_df[subgroup_metrics_df['Model_Name'] == model_name]"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-02T17:20:13.514668Z",
+ "start_time": "2023-10-02T17:20:13.478758Z"
+ }
+ },
+ "id": "833484748ed512e8"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "outputs": [
+ {
+ "data": {
+ "text/plain": "dict_keys(['LGBMClassifier__alpha=0.7', 'LGBMClassifier__alpha=0.0', 'LGBMClassifier__alpha=0.4', 'LogisticRegression__alpha=0.0', 'LogisticRegression__alpha=0.7', 'LogisticRegression__alpha=0.4', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.7', 'MLPClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.7', 'RandomForestClassifier__alpha=0.0'])"
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "models_metrics_dct.keys()"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-02T17:20:14.063914Z",
+ "start_time": "2023-10-02T17:20:14.031614Z"
+ }
+ },
+ "id": "15ed7d1ba1f22317"
+ },
+ {
+ "cell_type": "markdown",
+ "id": "deb45226",
+ "metadata": {},
+ "source": [
+ "## Metrics Visualization and Reporting"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "id": "435b9d98",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-02T17:53:01.433697Z",
+ "start_time": "2023-10-02T17:53:01.373046Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "visualizer = MetricsInteractiveVisualizer(models_metrics_dct, models_composed_metrics_df,\n",
+ " sensitive_attributes_dct=sensitive_attributes_dct)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Running on local URL: http://127.0.0.1:7860\n",
+ "\n",
+ "To create a public link, set `share=True` in `launch()`.\n",
+ "Keyboard interruption in main thread... closing server.\n"
+ ]
+ }
+ ],
+ "source": [
+ "visualizer.start_web_app()"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-02T17:54:57.507776Z",
+ "start_time": "2023-10-02T17:53:01.479901Z"
+ }
+ },
+ "id": "678a9dc8d51243f4"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Closing server running on port: 7860\n"
+ ]
+ }
+ ],
+ "source": [
+ "visualizer.stop_web_app()"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-09-29T21:41:49.927075Z",
+ "start_time": "2023-09-29T21:41:49.639933Z"
+ }
+ },
+ "id": "277b6d1de837dab7"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 78,
+ "id": "2326c129",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.10"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/docs/examples/group_metrics_sample.csv b/docs/examples/group_metrics_sample.csv
new file mode 100644
index 00000000..25b06763
--- /dev/null
+++ b/docs/examples/group_metrics_sample.csv
@@ -0,0 +1,133 @@
+Metric,SEX,RAC1P,SEX&RAC1P,Model_Name,Intervention_Param
+Equalized_Odds_TPR,-0.03079268292682924,0.11074514666563329,0.05249773566501781,LGBMClassifier,0.7
+Equalized_Odds_FPR,-0.02131701139721401,0.0009518370454978109,-0.00700793796337533,LGBMClassifier,0.7
+Equalized_Odds_FNR,0.030792682926829296,-0.11074514666563334,-0.05249773566501781,LGBMClassifier,0.7
+Disparate_Impact,1.0451749734888653,1.3342133960856337,1.248406706539857,LGBMClassifier,0.7
+Statistical_Parity_Difference,0.03246951219512195,0.22563645522532638,0.17651362084581623,LGBMClassifier,0.7
+Accuracy_Parity,0.04775641025641031,0.07497732132443469,0.0652173913043479,LGBMClassifier,0.7
+Label_Stability_Ratio,1.0095819811577007,1.0301209785116932,1.012842085178694,LGBMClassifier,0.7
+IQR_Parity,-0.0026551143311698278,-0.00967660527132716,-0.005313076583927184,LGBMClassifier,0.7
+Std_Parity,-0.002214117425894342,-0.00706110127509476,-0.004207550960833459,LGBMClassifier,0.7
+Std_Ratio,0.9581473862978338,0.8695701641666075,0.9199532195084829,LGBMClassifier,0.7
+Jitter_Parity,-0.007536566378903806,-0.019030010009223178,-0.009410112766584558,LGBMClassifier,0.7
+Equalized_Odds_TPR,-0.01097560975609757,-0.00598674778160968,-0.05549362502612687,LGBMClassifier,0.0
+Equalized_Odds_FPR,-0.025116082735331363,-0.014481520763645256,-0.019877655812003875,LGBMClassifier,0.0
+Equalized_Odds_FNR,0.01097560975609757,0.005986747781609625,0.055493625026126925,LGBMClassifier,0.0
+Disparate_Impact,1.0739042728773152,1.1095233662260287,1.0641057210867602,LGBMClassifier,0.0
+Statistical_Parity_Difference,0.061432926829268264,0.09117681249273446,0.05441371141921547,LGBMClassifier,0.0
+Accuracy_Parity,0.04294871794871791,0.037355018466921575,0.032355915065722995,LGBMClassifier,0.0
+Label_Stability_Ratio,1.013086132198451,1.0203793128013074,1.0132200761605896,LGBMClassifier,0.0
+IQR_Parity,-0.0030377716953829265,-0.007959024854970922,-0.005539567672418727,LGBMClassifier,0.0
+Std_Parity,-0.0021021596178428525,-0.005701112525753914,-0.0038189830524456084,LGBMClassifier,0.0
+Std_Ratio,0.9643024235570372,0.9045579272645509,0.9347582189106831,LGBMClassifier,0.0
+Jitter_Parity,-0.008137675557275542,-0.013465396867056778,-0.009009568683773159,LGBMClassifier,0.0
+Equalized_Odds_TPR,-0.039253048780487854,-0.031483705971248166,-0.11670034139204344,LGBMClassifier,0.4
+Equalized_Odds_FPR,-0.00873786407766991,-0.013488890701911838,-0.010826281732205081,LGBMClassifier,0.4
+Equalized_Odds_FNR,0.039253048780487854,0.03148370597124811,0.1167003413920435,LGBMClassifier,0.4
+Disparate_Impact,1.0594573415613675,1.0609451814521111,0.9916513681265844,LGBMClassifier,0.4
+Statistical_Parity_Difference,0.046265243902439024,0.04779710931142722,-0.00665366125548672,LGBMClassifier,0.4
+Accuracy_Parity,0.02841880341880343,0.034390591589451236,0.015897090214582632,LGBMClassifier,0.4
+Label_Stability_Ratio,1.0214945785801577,1.021203066210909,1.0204956799007319,LGBMClassifier,0.4
+IQR_Parity,-0.004103223054099589,-0.008620361682032895,-0.006324316490461224,LGBMClassifier,0.4
+Std_Parity,-0.0030876402128535846,-0.006194968170589871,-0.004796370058731313,LGBMClassifier,0.4
+Std_Ratio,0.9493557726215703,0.8992698436233884,0.9204716301184785,LGBMClassifier,0.4
+Jitter_Parity,-0.01200876712622645,-0.015122226339372366,-0.012784745357312319,LGBMClassifier,0.4
+Equalized_Odds_TPR,-0.06996951219512193,-0.01604215910411899,-0.10732947815787641,LogisticRegression,0.0
+Equalized_Odds_FPR,-0.023723089911355008,-0.04367572271627097,-0.042787718424982316,LogisticRegression,0.0
+Equalized_Odds_FNR,0.06996951219512193,0.01604215910411899,0.10732947815787636,LogisticRegression,0.0
+Disparate_Impact,0.9908320359799343,0.9996470017208666,0.9084844203751667,LogisticRegression,0.0
+Statistical_Parity_Difference,-0.008079268292682906,-0.00030999341263993063,-0.08123737197798375,LogisticRegression,0.0
+Accuracy_Parity,0.01816239316239321,0.05037905786302077,0.031457139647230625,LogisticRegression,0.0
+Label_Stability_Ratio,1.009100642398287,1.023801267627326,1.0076597165218943,LogisticRegression,0.0
+IQR_Parity,-0.006097632012806539,-0.006310527017404574,-0.0065692439650302525,LogisticRegression,0.0
+Std_Parity,-0.004906109963734577,-0.004854434742104861,-0.005207661750716387,LogisticRegression,0.0
+Std_Ratio,0.9086406912235572,0.9082781978742059,0.9003166552931693,LogisticRegression,0.0
+Jitter_Parity,-0.0055498432332622555,-0.01576926661754173,-0.006298770939673112,LogisticRegression,0.0
+Equalized_Odds_TPR,-0.04298780487804876,0.08555818188863484,0.017661812861422654,LogisticRegression,0.7
+Equalized_Odds_FPR,-0.003925707049387925,-0.030295613390987464,-0.022281313038694295,LogisticRegression,0.7
+Equalized_Odds_FNR,0.04298780487804876,-0.0855581818886349,-0.01766181286142271,LogisticRegression,0.7
+Disparate_Impact,1.0570386018820819,1.15227520571032,1.1070776454221372,LogisticRegression,0.7
+Statistical_Parity_Difference,0.04527439024390245,0.11903747045375279,0.08580087786525459,LogisticRegression,0.7
+Accuracy_Parity,0.02147435897435901,0.07841152076718727,0.05596749428903114,LogisticRegression,0.7
+Label_Stability_Ratio,0.9984503821387735,1.0050781309776278,0.9984788609152078,LogisticRegression,0.7
+IQR_Parity,-0.0030463198184801366,-0.0007317941412861503,-0.0023944641804607703,LogisticRegression,0.7
+Std_Parity,-0.002576978265789877,-0.00016051358574650093,-0.0019729774914916606,LogisticRegression,0.7
+Std_Ratio,0.9398193735885796,0.9961448364837571,0.9529382123765405,LogisticRegression,0.7
+Jitter_Parity,0.0017610005153971056,-0.0049119190685485425,0.0009849212357710413,LogisticRegression,0.7
+Equalized_Odds_TPR,-0.062347560975609784,-0.0033518037741697704,-0.09653034208876188,LogisticRegression,0.4
+Equalized_Odds_FPR,-0.019607429295061207,-0.030417992439694327,-0.030016242697335674,LogisticRegression,0.4
+Equalized_Odds_FNR,0.06234756097560973,0.0033518037741697704,0.09653034208876193,LogisticRegression,0.4
+Disparate_Impact,1.0087170907810161,1.050002258457925,0.961194506547429,LogisticRegression,0.4
+Statistical_Parity_Difference,0.007545731707317094,0.042895338474057354,-0.0338605169650944,LogisticRegression,0.4
+Accuracy_Parity,0.019230769230769273,0.046207801464394516,0.026120660599932566,LogisticRegression,0.4
+Label_Stability_Ratio,1.0072028640298956,1.0153655245856517,1.000428717824364,LogisticRegression,0.4
+IQR_Parity,-0.0068586087713478905,-0.005069227313861113,-0.005323993156258602,LogisticRegression,0.4
+Std_Parity,-0.005429382866877996,-0.004096338358900525,-0.004725493931369902,LogisticRegression,0.4
+Std_Ratio,0.8999072809699203,0.9226669785897548,0.909905157452225,LogisticRegression,0.4
+Jitter_Parity,-0.004078888029894576,-0.01278422827543911,-0.003752072160978573,LogisticRegression,0.4
+Equalized_Odds_TPR,-0.019435975609756184,-0.03632735304374779,-0.07838082630808896,MLPClassifier,0.0
+Equalized_Odds_FPR,-0.0587378640776699,-0.05070571918087624,-0.06589426527992455,MLPClassifier,0.0
+Equalized_Odds_FNR,0.019435975609756073,0.036327353043747845,0.0783808263080889,MLPClassifier,0.0
+Disparate_Impact,0.9938211382113822,0.9835774706003713,0.9036308734717926,MLPClassifier,0.0
+Statistical_Parity_Difference,-0.005792682926829218,-0.01542217227883913,-0.09116560997700829,MLPClassifier,0.0
+Accuracy_Parity,0.05256410256410249,0.04415862113652558,0.05033142343556907,MLPClassifier,0.0
+Label_Stability_Ratio,1.0400222540384076,1.052024430659532,1.0377142721189696,MLPClassifier,0.0
+IQR_Parity,-0.023103483282492315,-0.02199865172956933,-0.021084662231184464,MLPClassifier,0.0
+Std_Parity,-0.017047311682108574,-0.014482498155605067,-0.015528142059770114,MLPClassifier,0.0
+Std_Ratio,0.8378767214807724,0.8575668018548829,0.8441550952374669,MLPClassifier,0.0
+Jitter_Parity,-0.024276623502126712,-0.02999195460552799,-0.02431443345626763,MLPClassifier,0.0
+Equalized_Odds_TPR,-0.018978658536585313,0.05504320533188678,-0.03720476555423957,MLPClassifier,0.7
+Equalized_Odds_FPR,-0.04624314056563952,-0.015542139185771395,-0.04150402137748552,MLPClassifier,0.7
+Equalized_Odds_FNR,0.01897865853658537,-0.05504320533188667,0.037204765554239516,MLPClassifier,0.7
+Disparate_Impact,0.9976159911975059,1.1685710118150436,0.9892333472978635,MLPClassifier,0.7
+Statistical_Parity_Difference,-0.0019817073170732558,0.134343395202852,-0.008952832160523894,MLPClassifier,0.7
+Accuracy_Parity,0.05566239316239319,0.05791971748849867,0.05465678013706321,MLPClassifier,0.7
+Label_Stability_Ratio,1.0116825655056816,1.0147414387548623,1.0142450823394442,MLPClassifier,0.7
+IQR_Parity,-0.015967185873185546,-0.007739632168905608,-0.010375957070957897,MLPClassifier,0.7
+Std_Parity,-0.011280373369031718,-0.0052215839220306065,-0.00846586522301801,MLPClassifier,0.7
+Std_Ratio,0.8633086261228244,0.9337434540716136,0.8922451079710022,MLPClassifier,0.7
+Jitter_Parity,-0.011206411330150795,-0.010024072689631416,-0.009159063489553684,MLPClassifier,0.7
+Equalized_Odds_TPR,-0.018064024390243905,-0.018541480993528814,-0.07190134466662024,MLPClassifier,0.4
+Equalized_Odds_FPR,-0.0478682988602786,-0.03377661744309374,-0.04670430431479396,MLPClassifier,0.4
+Equalized_Odds_FNR,0.018064024390243905,0.01854148099352887,0.07190134466662024,MLPClassifier,0.4
+Disparate_Impact,1.0122367435278448,1.0388483701545854,0.9596397347000302,MLPClassifier,0.4
+Statistical_Parity_Difference,0.01120426829268295,0.03539737280582789,-0.03730927332265033,MLPClassifier,0.4
+Accuracy_Parity,0.04732905982905977,0.03914501393118641,0.039358873534808825,MLPClassifier,0.4
+Label_Stability_Ratio,1.0380533656761675,1.050281055097938,1.039143933855558,MLPClassifier,0.4
+IQR_Parity,-0.021800317105360498,-0.01979599811428892,-0.019109923987836203,MLPClassifier,0.4
+Std_Parity,-0.016632398891789663,-0.013618988897571183,-0.014615438426665558,MLPClassifier,0.4
+Std_Ratio,0.8411837472975571,0.8653910518588449,0.8527524702482466,MLPClassifier,0.4
+Jitter_Parity,-0.023205391272604736,-0.028007441470945263,-0.022731439845363424,MLPClassifier,0.4
+Equalized_Odds_TPR,-0.013109756097560932,0.03212306738481807,-0.022085975057479224,RandomForestClassifier,0.4
+Equalized_Odds_FPR,-0.01192486281131279,-0.004963150308667147,-0.006942443216054084,RandomForestClassifier,0.4
+Equalized_Odds_FNR,0.013109756097560987,-0.03212306738481807,0.02208597505747928,RandomForestClassifier,0.4
+Disparate_Impact,1.0743556828280834,1.1590880271867312,1.1109037589976007,RandomForestClassifier,0.4
+Statistical_Parity_Difference,0.05739329268292681,0.12153679234316273,0.08695046331777334,RandomForestClassifier,0.4
+Accuracy_Parity,0.03856837606837615,0.04690436078533011,0.036587649327790794,RandomForestClassifier,0.4
+Label_Stability_Ratio,1.0010830866898295,1.0245213649857032,1.0016860934867435,RandomForestClassifier,0.4
+IQR_Parity,-0.0024315475130579356,-0.007422421027040563,-0.006348073239051066,RandomForestClassifier,0.4
+Std_Parity,-0.001890817887290966,-0.006005398383778858,-0.005054462180121233,RandomForestClassifier,0.4
+Std_Ratio,0.9693944783088382,0.9044128961451383,0.9181358364959677,RandomForestClassifier,0.4
+Jitter_Parity,-0.0029367081132166684,-0.015830939834926464,-0.004035590076358689,RandomForestClassifier,0.4
+Equalized_Odds_TPR,-0.013262195121951259,0.09049870190258458,0.0275900508604473,RandomForestClassifier,0.7
+Equalized_Odds_FPR,-0.004706627268889818,0.005180713061923803,0.004610830211417033,RandomForestClassifier,0.7
+Equalized_Odds_FNR,0.013262195121951204,-0.09049870190258458,-0.0275900508604473,RandomForestClassifier,0.7
+Disparate_Impact,1.086494036746535,1.2810291207237774,1.2183023097164019,RandomForestClassifier,0.7
+Statistical_Parity_Difference,0.06135670731707321,0.19258340760258852,0.15606493416010592,RandomForestClassifier,0.7
+Accuracy_Parity,0.04049145299145296,0.06377567550055074,0.04785979103471516,RandomForestClassifier,0.7
+Label_Stability_Ratio,1.0042931659613945,1.0158033089241028,0.997701913713356,RandomForestClassifier,0.7
+IQR_Parity,-0.0021576183268891685,-0.0011512403501528212,-0.00012869147334378106,RandomForestClassifier,0.7
+Std_Parity,-0.002107574597948185,-0.0019021823908419097,-0.001451921355860343,RandomForestClassifier,0.7
+Std_Ratio,0.962673667602888,0.9660752793094682,0.9739339258916726,RandomForestClassifier,0.7
+Jitter_Parity,-0.004579489326979741,-0.010039410100458009,-0.0014495632866055874,RandomForestClassifier,0.7
+Equalized_Odds_TPR,-0.006478658536585358,0.034680513039097915,-0.010276597227060535,RandomForestClassifier,0.0
+Equalized_Odds_FPR,-0.018446601941747576,-0.00981751924070598,-0.010793534358544452,RandomForestClassifier,0.0
+Equalized_Odds_FNR,0.006478658536585358,-0.034680513039097915,0.010276597227060535,RandomForestClassifier,0.0
+Disparate_Impact,1.0696725293946165,1.149977548271217,1.1161027349228612,RandomForestClassifier,0.0
+Statistical_Parity_Difference,0.05464939024390236,0.11648002479947306,0.09228035950672331,RandomForestClassifier,0.0
+Accuracy_Parity,0.043910256410256476,0.04994168340568905,0.04126877129910489,RandomForestClassifier,0.0
+Label_Stability_Ratio,1.0018200544605445,1.031331519636685,1.0152022947420831,RandomForestClassifier,0.0
+IQR_Parity,-0.0014266839924084312,-0.005259735864872772,-0.003978617177466615,RandomForestClassifier,0.0
+Std_Parity,-0.0014799865759114808,-0.0045115073360025085,-0.003718279422753004,RandomForestClassifier,0.0
+Std_Ratio,0.9712188827286748,0.913538681205104,0.9275913116942456,RandomForestClassifier,0.0
+Jitter_Parity,-0.0018609822617384336,-0.017820314313740024,-0.008520772043575799,RandomForestClassifier,0.0
diff --git a/docs/examples/subgroup_metrics_sample.csv b/docs/examples/subgroup_metrics_sample.csv
new file mode 100644
index 00000000..f9e45d09
--- /dev/null
+++ b/docs/examples/subgroup_metrics_sample.csv
@@ -0,0 +1,221 @@
+Metric,Model_Name,Model_Params,Dataset_Name,Intervention_Param,RAC1P_dis,RAC1P_priv,SEX&RAC1P_dis,SEX&RAC1P_priv,SEX_dis,SEX_priv,overall
+Accuracy,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.8299180327868853,0.7549407114624506,0.8333333333333334,0.7681159420289855,0.8041666666666667,0.7564102564102564,0.7793333333333333
+Aleatoric_Uncertainty,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.574768407248688,0.5867152963701037,0.5751925521025802,0.5844148021106594,0.5625457885372674,0.6015511473295796,0.5828285751092698
+F1,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.6666666666666666,0.6242424242424243,0.6324786324786325,0.6363636363636364,0.6072423398328691,0.6545454545454545,0.6358635863586358
+FNR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.366412213740458,0.47715736040609136,0.4032258064516129,0.4557235421166307,0.4682926829268293,0.4375,0.44952380952380955
+FPR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.09803921568627451,0.0970873786407767,0.09183673469387756,0.09884467265725289,0.08737864077669903,0.10869565217391304,0.09743589743589744
+IQR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.06280707944938806,0.07248368472071522,0.06493633506095174,0.07024941164487893,0.06795490302023513,0.07061001735140496,0.06933556247244345
+Jitter,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.05725214185682598,0.07628215186604916,0.062299481905650766,0.07170959467223532,0.0661720407593532,0.07370860713825701,0.07009105527638122
+Label_Stability,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.9190368852459017,0.8921640316205534,0.9104651162790697,0.8989210950080515,0.905375,0.8967820512820512,0.9009066666666667
+Mean,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.7085616306769631,0.6862178585472839,0.7245281799737864,0.6870388713260648,0.7252005764269102,0.6642129917856846,0.6934870324134728
+Overall_Uncertainty,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.5874845827200873,0.6027417432630668,0.5884432399246448,0.5997172018108436,0.5773910073017967,0.616596917041452,0.5977780803664176
+PPV,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.7033898305084746,0.7744360902255639,0.6727272727272727,0.7659574468085106,0.7077922077922078,0.782608695652174,0.7526041666666666
+Per_Sample_Accuracy,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.828125,0.7573962450592885,0.8262015503875969,0.7708937198067634,0.8038958333333333,0.7587243589743589,0.7804066666666668
+Positive-Rate,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.9007633587786259,0.6751269035532995,0.8870967741935484,0.7105831533477321,0.751219512195122,0.71875,0.7314285714285714
+Sample_Size,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,488.0,1012.0,258.0,1242.0,720.0,780.0,1500.0
+Selection-Rate,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.24180327868852458,0.2628458498023715,0.2131782945736434,0.2648953301127214,0.21388888888888888,0.2948717948717949,0.256
+Std,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.04707606166754985,0.05413716294264461,0.04835609913224369,0.05256365009307715,0.05068861026634873,0.05290272769224307,0.051839951327813785
+TNR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.9019607843137255,0.9029126213592233,0.9081632653061225,0.9011553273427471,0.912621359223301,0.8913043478260869,0.9025641025641026
+TPR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.6335877862595419,0.5228426395939086,0.5967741935483871,0.5442764578833693,0.5317073170731708,0.5625,0.5504761904761905
+Accuracy,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.8278688524590164,0.7905138339920948,0.8294573643410853,0.7971014492753623,0.825,0.782051282051282,0.8026666666666666
+Aleatoric_Uncertainty,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.5633808779503379,0.6053039361523177,0.5635466006397141,0.5975059813694559,0.5732441010754783,0.6086688449379051,0.5916649678839402
+F1,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.6666666666666666,0.7063711911357341,0.6271186440677966,0.705607476635514,0.6752577319587629,0.7098976109215017,0.6960985626283368
+FNR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.35877862595419846,0.35279187817258884,0.4032258064516129,0.34773218142548595,0.36097560975609755,0.35,0.35428571428571426
+FPR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.10364145658263306,0.11812297734627832,0.09693877551020408,0.11681643132220795,0.10097087378640776,0.12608695652173912,0.11282051282051282
+IQR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.0717782678051346,0.07973729266010553,0.0725611945411923,0.07810076221361102,0.07556831529235587,0.0786060869877388,0.077147956573955
+Jitter,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.06448780789191826,0.07795320475897503,0.06611253944139346,0.07512210812516662,0.06934087102177533,0.07747854657905087,0.07357246231155734
+Label_Stability,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.9095491803278689,0.8913833992094861,0.907093023255814,0.895257648953301,0.9033611111111111,0.8916923076923077,0.8972933333333334
+Mean,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.6957755997986098,0.6346221249287431,0.7150553202294089,0.6419418764174092,0.689198775103901,0.6225038013523088,0.6545173887530731
+Overall_Uncertainty,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.5802610784913662,0.6241481189584432,0.5806878176395618,0.6159322429458329,0.5913806977913604,0.6269374362563485,0.6098702017931542
+PPV,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.6942148760330579,0.7774390243902439,0.6607142857142857,0.7684478371501272,0.7158469945355191,0.7819548872180451,0.755011135857461
+Per_Sample_Accuracy,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.82547131147541,0.7838833992094861,0.8217635658914728,0.7923550724637681,0.8145833333333333,0.7815641025641025,0.7974133333333333
+Positive-Rate,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.9236641221374046,0.8324873096446701,0.9032258064516129,0.8488120950323974,0.8926829268292683,0.83125,0.8552380952380952
+Sample_Size,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,488.0,1012.0,258.0,1242.0,720.0,780.0,1500.0
+Selection-Rate,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.24795081967213115,0.3241106719367589,0.21705426356589147,0.3164251207729469,0.25416666666666665,0.34102564102564104,0.29933333333333334
+Std,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.05403263342459364,0.059733745950347555,0.05471686604121065,0.05853584909365626,0.05678586100735733,0.05888802062520018,0.057878984008635614
+TNR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.896358543417367,0.8818770226537217,0.9030612244897959,0.883183568677792,0.8990291262135922,0.8739130434782608,0.8871794871794871
+TPR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.6412213740458015,0.6472081218274112,0.5967741935483871,0.652267818574514,0.6390243902439025,0.65,0.6457142857142857
+Accuracy,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.8278688524590164,0.7934782608695652,0.8178294573643411,0.8019323671497585,0.8194444444444444,0.791025641025641,0.8046666666666666
+Aleatoric_Uncertainty,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.5551920500099683,0.6160978769562332,0.5546274648036941,0.6049363010992105,0.5746912318145948,0.6162142115103388,0.5962831812563817
+F1,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.65,0.7027027027027027,0.5765765765765766,0.7043269230769231,0.6524064171122995,0.7135325131810193,0.689289501590668
+FNR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.40458015267175573,0.3730964467005076,0.4838709677419355,0.367170626349892,0.40487804878048783,0.365625,0.38095238095238093
+FPR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.08683473389355742,0.10032362459546926,0.08673469387755102,0.0975609756097561,0.0912621359223301,0.1,0.09538461538461539
+IQR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.07359398945751415,0.08221435113954705,0.07417332608489044,0.08049764257535166,0.07727618415086056,0.08137940720496015,0.07940986013899233
+Jitter,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.06965174231814622,0.08477396865751859,0.06926843519925442,0.08205318055656674,0.07360964544947027,0.08561841257569672,0.07985420435511108
+Label_Stability,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.8993852459016393,0.8807114624505928,0.9017829457364341,0.883671497584541,0.8965972222222222,0.8777307692307692,0.8867866666666667
+Mean,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.7141488205426961,0.6441152206909166,0.7326595827361654,0.6532391750548413,0.6999423689094346,0.6363983617298083,0.6668994851760289
+Overall_Uncertainty,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.5729327590451901,0.6355678274191867,0.5723997447559693,0.624079463458317,0.5933199449151484,0.6353788043889269,0.6151905518415132
+PPV,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.7155963302752294,0.7993527508090615,0.6530612244897959,0.7940379403794038,0.7218934911242604,0.8152610441767069,0.777511961722488
+Per_Sample_Accuracy,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.8241188524590164,0.7855237154150199,0.8176744186046511,0.7940096618357488,0.8138402777777777,0.7835320512820513,0.7980799999999999
+Positive-Rate,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.8320610687022901,0.7842639593908629,0.7903225806451613,0.796976241900648,0.824390243902439,0.778125,0.7961904761904762
+Sample_Size,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,488.0,1012.0,258.0,1242.0,720.0,780.0,1500.0
+Selection-Rate,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.22336065573770492,0.30533596837944665,0.18992248062015504,0.2971014492753623,0.23472222222222222,0.3192307692307692,0.2786666666666667
+Statistical_Bias,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.2485877124816216,0.2850127848791134,0.2544548274710566,0.2770486284228354,0.25981461969725383,0.28548361000855305,0.2731624946591294
+Std,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.05530566275693515,0.06150063092752502,0.055513806874063584,0.0603101769327949,0.05787962837200925,0.06096726858486284,0.05948520128269312
+TNR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.9131652661064426,0.8996763754045307,0.9132653061224489,0.9024390243902439,0.9087378640776699,0.9,0.9046153846153846
+TPR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.5954198473282443,0.6269035532994924,0.5161290322580645,0.6328293736501079,0.5951219512195122,0.634375,0.6190476190476191
+Accuracy,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.860655737704918,0.8102766798418972,0.8527131782945736,0.821256038647343,0.8361111111111111,0.8179487179487179,0.8266666666666667
+Aleatoric_Uncertainty,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.518266140432632,0.5917375980647225,0.5207079123887619,0.5776245445864114,0.5540758647380297,0.5805355168733874,0.5678348838484157
+F1,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.7235772357723578,0.7405405405405405,0.6607142857142857,0.7459954233409611,0.6927083333333334,0.7641196013289037,0.7363083164300203
+FNR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.32061068702290074,0.30456852791878175,0.4032258064516129,0.2958963282937365,0.35121951219512193,0.28125,0.30857142857142855
+FPR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.07282913165266107,0.11650485436893204,0.0663265306122449,0.10911424903722722,0.08932038834951456,0.11304347826086956,0.10051282051282051
+IQR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.06428228921309113,0.07059281623049571,0.06310045743778836,0.06966970140281861,0.06536902279417402,0.07146665480698056,0.06853979144083341
+Jitter,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.05826478705000547,0.0740340536675472,0.06368840325659207,0.06998717419626518,0.06601786711334494,0.0715677103466072,0.06890378559463906
+Label_Stability,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.9163729508196721,0.8950691699604743,0.9077131782945737,0.9008132045088566,0.90625,0.8980769230769231,0.902
+Mean,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.7140798765562879,0.6258004703369449,0.7406686084265409,0.6366252453835822,0.6994177145075693,0.6130773093525728,0.654520703826971
+Overall_Uncertainty,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.5333777792973274,0.607740896173706,0.5350959529476597,0.5936130333046618,0.5686451777300188,0.5973046349477854,0.5835480954832574
+PPV,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.7739130434782608,0.791907514450867,0.74,0.7931873479318735,0.7430167597765364,0.8156028368794326,0.7874186550976139
+Per_Sample_Accuracy,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.8478176229508196,0.804540513833992,0.8466472868217054,0.8127979066022545,0.8295694444444444,0.8085128205128205,0.81862
+Positive-Rate,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.8778625954198473,0.8781725888324873,0.8064516129032258,0.8876889848812095,0.8731707317073171,0.88125,0.878095238095238
+Sample_Size,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,488.0,1012.0,258.0,1242.0,720.0,780.0,1500.0
+Selection-Rate,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.23565573770491804,0.34189723320158105,0.1937984496124031,0.3309178743961353,0.24861111111111112,0.36153846153846153,0.30733333333333335
+Std,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.04807120157985848,0.05292563632196334,0.047034382956272054,0.05224204470698844,0.04879514970472325,0.053701259668457825,0.051346326885865226
+TNR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.927170868347339,0.883495145631068,0.9336734693877551,0.8908857509627728,0.9106796116504854,0.8869565217391304,0.8994871794871795
+TPR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.6793893129770993,0.6954314720812182,0.5967741935483871,0.7041036717062635,0.6487804878048781,0.71875,0.6914285714285714
+Accuracy,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.8709016393442623,0.7924901185770751,0.8643410852713178,0.8083735909822867,0.8291666666666667,0.8076923076923077,0.818
+Aleatoric_Uncertainty,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.5415753343739413,0.6007282744387772,0.5437012248461627,0.5893324161805281,0.5656097473407158,0.5961368702836032,0.5814838512710172
+F1,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.7469879518072289,0.7008547008547008,0.7008547008547008,0.7146282973621103,0.6737400530503979,0.7386759581881533,0.7129337539432177
+FNR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.2900763358778626,0.3756345177664975,0.3387096774193548,0.3563714902807775,0.3804878048780488,0.3375,0.35428571428571426
+FPR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.0700280112044818,0.10032362459546926,0.07142857142857142,0.09370988446726572,0.08737864077669903,0.09130434782608696,0.08923076923076922
+IQR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.05486730610239798,0.05559910024368413,0.05337840687496418,0.05577287105542495,0.05377693691077603,0.056823256729256165,0.055361023216385696
+Jitter,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.05049252409589009,0.055404443164438634,0.05462194694401552,0.05363702570824448,0.05472215242881082,0.05296115191341372,0.05380643216080322
+Label_Stability,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.9256352459016393,0.9209584980237154,0.9213178294573643,0.9227214170692432,0.9217361111111111,0.9231666666666667,0.9224799999999999
+Mean,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.7008671012376522,0.6500786578096867,0.7283286228997712,0.6537793578093689,0.7076286288499484,0.6287309414556592,0.666601831404918
+Overall_Uncertainty,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.5529470303791272,0.6110197586776697,0.5542760168748085,0.5999894800749719,0.5757934710934558,0.6072036505378559,0.5921267644045438
+PPV,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.788135593220339,0.7987012987012987,0.7454545454545455,0.8032345013477089,0.7383720930232558,0.8346456692913385,0.795774647887324
+Per_Sample_Accuracy,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.8547438524590164,0.7916353754940711,0.8563953488372092,0.8029790660225442,0.8271319444444443,0.7983525641025639,0.8121666666666667
+Positive-Rate,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.9007633587786259,0.7817258883248731,0.8870967741935484,0.8012958963282938,0.8390243902439024,0.79375,0.8114285714285714
+Sample_Size,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,488.0,1012.0,258.0,1242.0,720.0,780.0,1500.0
+Selection-Rate,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.24180327868852458,0.30434782608695654,0.2131782945736434,0.29871175523349436,0.2388888888888889,0.32564102564102565,0.284
+Std,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.04147548578761579,0.04163599937336229,0.03995015359051101,0.04192313108200267,0.04024375025525536,0.04282072852104524,0.0415837789534661
+TNR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.9299719887955182,0.8996763754045307,0.9285714285714286,0.9062901155327343,0.912621359223301,0.908695652173913,0.9107692307692308
+TPR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.7099236641221374,0.6243654822335025,0.6612903225806451,0.6436285097192225,0.6195121951219512,0.6625,0.6457142857142857
+Accuracy,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.8545081967213115,0.808300395256917,0.8449612403100775,0.8188405797101449,0.8333333333333334,0.8141025641025641,0.8233333333333334
+Aleatoric_Uncertainty,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.5211199002202518,0.591006808034145,0.5246724201167261,0.577326824998327,0.5541771891449122,0.5812792626329496,0.5682702673586917
+F1,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.714859437751004,0.7349726775956285,0.6491228070175439,0.740484429065744,0.6875,0.7571189279731994,0.7298674821610601
+FNR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.32061068702290074,0.31725888324873097,0.4032258064516129,0.30669546436285094,0.35609756097560974,0.29375,0.3180952380952381
+FPR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.08123249299719888,0.11165048543689321,0.07653061224489796,0.10654685494223363,0.0912621359223301,0.1108695652173913,0.10051282051282051
+IQR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.0656607376158629,0.07072996492972401,0.06467250997689906,0.06999650313315767,0.06551429974918029,0.07237290852052818,0.06908077631028119
+Jitter,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.060156314358679144,0.07294054263411826,0.06567469128588728,0.06942676344686585,0.06666038525963189,0.07073927328952646,0.06878140703517488
+Label_Stability,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.9112704918032787,0.8974802371541502,0.9022868217054263,0.9019001610305957,0.9053333333333333,0.8988589743589742,0.9019666666666666
+Mean,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.7086695659799582,0.6312971446946812,0.7346452859100321,0.6402294483610698,0.7007860045694052,0.6155609427426478,0.6564689724194913
+Overall_Uncertainty,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.5366496138386901,0.6070662579052819,0.5393764919119384,0.5934596857006005,0.568778825833585,0.598352961478519,0.5841573763689507
+PPV,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.7542372881355932,0.7958579881656804,0.7115384615384616,0.7945544554455446,0.7374301675977654,0.8158844765342961,0.7850877192982456
+Per_Sample_Accuracy,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.8464549180327868,0.8029891304347826,0.8463372093023257,0.8110628019323671,0.8285833333333332,0.8065576923076924,0.8171299999999999
+Positive-Rate,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.9007633587786259,0.8578680203045685,0.8387096774193549,0.8725701943844493,0.8731707317073171,0.865625,0.8685714285714285
+Sample_Size,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,488.0,1012.0,258.0,1242.0,720.0,780.0,1500.0
+Selection-Rate,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.24180327868852458,0.3339920948616601,0.20155038759689922,0.3252818035426731,0.24861111111111112,0.35512820512820514,0.304
+Statistical_Bias,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.2274504031385729,0.266491924606308,0.2318676501443367,0.25834442085021614,0.24554145806397867,0.26140483926556757,0.2537904162888049
+Std,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.048873767867387855,0.05297010622628838,0.0477247218383518,0.052450215769721704,0.04881415172274951,0.05424353458962751,0.051637430813526085
+TNR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.9187675070028011,0.8883495145631068,0.923469387755102,0.8934531450577664,0.9087378640776699,0.8891304347826087,0.8994871794871795
+TPR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.6793893129770993,0.682741116751269,0.5967741935483871,0.693304535637149,0.6439024390243903,0.70625,0.6819047619047619
+Accuracy,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.8524590163934426,0.808300395256917,0.8643410852713178,0.8140096618357487,0.85,0.7974358974358975,0.8226666666666667
+Aleatoric_Uncertainty,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.3816002128122633,0.4663978258721248,0.38038775507957207,0.4509464273948834,0.4122843567010865,0.4632958548848621,0.43881033575664985
+F1,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.7142857142857143,0.7460732984293194,0.6956521739130435,0.7436182019977803,0.7272727272727273,0.7451612903225806,0.7381889763779528
+FNR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.31297709923664124,0.2766497461928934,0.3548387096774194,0.27645788336933047,0.2975609756097561,0.278125,0.2857142857142857
+FPR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.08683473389355742,0.13754045307443366,0.0663265306122449,0.13222079589216945,0.0912621359223301,0.15,0.11897435897435897
+IQR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.11256027555478235,0.13455892728435168,0.10994393226091104,0.1310285944920955,0.11538822128143578,0.1384917045639281,0.12740203258833177
+Jitter,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.09333336765796346,0.12332532226349145,0.09343558879670463,0.11775002225297226,0.10094409547738649,0.1252207189795132,0.11356793969848812
+Label_Stability,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.8686270491803278,0.8256719367588932,0.8656976744186047,0.8342351046698874,0.8567916666666666,0.8238205128205128,0.8396466666666665
+Mean,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.7252847058872565,0.6240034562362897,0.7607214461032801,0.6353979879947343,0.7097566779513825,0.6082123411014243,0.6569536227894043
+Overall_Uncertainty,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.4414172929888588,0.533748861417282,0.4365092913234669,0.5176699593972609,0.4698661654226279,0.5349510867032824,0.5037103244885683
+PPV,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.743801652892562,0.7702702702702703,0.7547169811320755,0.7648401826484018,0.7539267015706806,0.77,0.7637474541751528
+Per_Sample_Accuracy,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.8301741803278688,0.7933498023715414,0.8309496124031007,0.8000080515297907,0.8233958333333333,0.7886538461538463,0.8053299999999999
+Positive-Rate,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.9236641221374046,0.9390862944162437,0.8548387096774194,0.9460043196544277,0.9317073170731708,0.9375,0.9352380952380952
+Sample_Size,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,488.0,1012.0,258.0,1242.0,720.0,780.0,1500.0
+Selection-Rate,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.24795081967213115,0.36561264822134387,0.2054263565891473,0.3526570048309179,0.2652777777777778,0.38461538461538464,0.3273333333333333
+Std,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.08719673354183723,0.1016792316974423,0.08411029067199578,0.0996384327317659,0.08810299022278899,0.10515030190489756,0.09696759229748543
+TNR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.9131652661064426,0.8624595469255664,0.9336734693877551,0.8677792041078306,0.9087378640776699,0.85,0.8810256410256411
+TPR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.6870229007633588,0.7233502538071066,0.6451612903225806,0.7235421166306696,0.7024390243902439,0.721875,0.7142857142857143
+Accuracy,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.8504098360655737,0.7924901185770751,0.8565891472868217,0.8019323671497585,0.8402777777777778,0.7846153846153846,0.8113333333333334
+Aleatoric_Uncertainty,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.43531743350320395,0.5012712154730118,0.43338857927395535,0.4894582320093163,0.4473101514451836,0.509818036625281,0.47981425173883424
+F1,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.7114624505928854,0.7033898305084746,0.672566371681416,0.7099056603773585,0.6933333333333334,0.7133105802047781,0.7055150884495317
+FNR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.31297709923664124,0.3680203045685279,0.3870967741935484,0.34989200863930886,0.36585365853658536,0.346875,0.35428571428571426
+FPR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.0896358543417367,0.10517799352750809,0.0663265306122449,0.10783055198973042,0.07766990291262135,0.12391304347826088,0.09948717948717949
+IQR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.0956195011615199,0.10335913333042551,0.09224988054338842,0.10262583761434632,0.09253823634408508,0.10850542221727062,0.10084117299814155
+Jitter,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.08606114589339989,0.0960852185830313,0.08524034903198867,0.09439941252154235,0.08699671970966057,0.09820313103981136,0.0928240536013427
+Label_Stability,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.8803483606557377,0.8675592885375495,0.8819767441860465,0.8695893719806763,0.8769861111111112,0.8668589743589745,0.8717199999999999
+Mean,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.7102203181759992,0.6607804033163299,0.7506239522883105,0.6615429176615372,0.7249338287368677,0.6324934958147033,0.6768648556173422
+Overall_Uncertainty,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.47514726487681236,0.5407137095576833,0.46988110140488026,0.5296657126971022,0.4835119894611495,0.5524942396413235,0.51938275955484
+PPV,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.7377049180327869,0.7929936305732485,0.7450980392156863,0.7818181818181819,0.7647058823529411,0.7857142857142857,0.7775229357798165
+Per_Sample_Accuracy,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.8392110655737706,0.7809337944664032,0.8399806201550388,0.7915660225442834,0.8214791666666665,0.7799679487179487,0.7998933333333332
+Positive-Rate,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.9312977099236641,0.7969543147208121,0.8225806451612904,0.8315334773218143,0.8292682926829268,0.83125,0.8304761904761905
+Sample_Size,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,488.0,1012.0,258.0,1242.0,720.0,780.0,1500.0
+Selection-Rate,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.25,0.3102766798418972,0.19767441860465115,0.30998389694041867,0.2361111111111111,0.34102564102564104,0.2906666666666667
+Std,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.07358699036849117,0.07880857429052178,0.07010008258322892,0.07856594780624693,0.07124402483599133,0.08252439820502305,0.07710981898788782
+TNR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.9103641456582633,0.8948220064724919,0.9336734693877551,0.8921694480102695,0.9223300970873787,0.8760869565217392,0.9005128205128206
+TPR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.6870229007633588,0.631979695431472,0.6129032258064516,0.6501079913606912,0.6341463414634146,0.653125,0.6457142857142857
+Accuracy,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.8504098360655737,0.8112648221343873,0.8565891472868217,0.8172302737520128,0.8486111111111111,0.8012820512820513,0.824
+Aleatoric_Uncertainty,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.38774782756218923,0.4664257591545982,0.3884650538497881,0.45170678278708243,0.4137217228511366,0.46585149700254275,0.4408292054098678
+F1,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.7137254901960784,0.7463479415670651,0.6837606837606838,0.745230078563412,0.7240506329113924,0.7471451876019576,0.7380952380952381
+FNR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.3053435114503817,0.2868020304568528,0.3548387096774194,0.28293736501079914,0.3024390243902439,0.284375,0.2914285714285714
+FPR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.09243697478991597,0.1262135922330097,0.07653061224489796,0.12323491655969192,0.0912621359223301,0.1391304347826087,0.11384615384615385
+IQR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.1132850208605515,0.13308101897484043,0.11081770385973005,0.12992762784756626,0.11530455602687097,0.13710487313223146,0.12664072092165843
+Jitter,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.0948879644122274,0.12289540588317266,0.09496201939933013,0.11769345924469356,0.10171684812953474,0.12492223940213948,0.11378365159128628
+Label_Stability,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.8675819672131148,0.8260474308300394,0.8665891472868218,0.8339452495974236,0.855875,0.8244999999999999,0.8395600000000001
+Mean,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.7195732758438664,0.6309284279798154,0.7540229300478088,0.6401879321860268,0.7110902530342773,0.6123927506957696,0.6597675518182533
+Overall_Uncertainty,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.44726996535917407,0.5332731746116136,0.44436157850128466,0.5179508120361502,0.4712478646062651,0.5367201708791272,0.5052934638681533
+PPV,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.7338709677419355,0.7827298050139275,0.7272727272727273,0.7757009345794392,0.7526315789473684,0.7815699658703071,0.7701863354037267
+Per_Sample_Accuracy,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.8290163934426229,0.7911758893280633,0.8308527131782947,0.7978019323671498,0.8213263888888889,0.7870192307692307,0.8034866666666667
+Positive-Rate,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.9465648854961832,0.9111675126903553,0.8870967741935484,0.9244060475161987,0.926829268292683,0.915625,0.92
+Sample_Size,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,488.0,1012.0,258.0,1242.0,720.0,780.0,1500.0
+Selection-Rate,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.2540983606557377,0.3547430830039526,0.2131782945736434,0.3446054750402576,0.2638888888888889,0.37564102564102564,0.322
+Statistical_Bias,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.21005937889821227,0.24850722840440323,0.21231194725259486,0.24091933144638822,0.2216758094116745,0.24922014009125384,0.23599886136505574
+Std,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.08755548044966635,0.10117446934723753,0.08464217527528196,0.09925761370194752,0.08809491086883042,0.10472730976062009,0.09674375829256104
+TNR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.907563025210084,0.8737864077669902,0.923469387755102,0.8767650834403081,0.9087378640776699,0.8608695652173913,0.8861538461538462
+TPR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.6946564885496184,0.7131979695431472,0.6451612903225806,0.7170626349892009,0.697560975609756,0.715625,0.7085714285714285
+Accuracy,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.8463114754098361,0.799407114624506,0.8449612403100775,0.8083735909822867,0.8347222222222223,0.7961538461538461,0.8146666666666667
+Aleatoric_Uncertainty,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.578901881115347,0.6427220196011102,0.5776986374569397,0.631153424602836,0.6096726402021011,0.633300642147564,0.6219592012137418
+F1,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.6963562753036437,0.7079136690647482,0.6551724137931034,0.711864406779661,0.6826666666666666,0.7195767195767195,0.7048832271762208
+FNR,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.3435114503816794,0.3756345177664975,0.3870967741935484,0.3650107991360691,0.375609756097561,0.3625,0.3676190476190476
+FPR,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.08403361344537816,0.0889967637540453,0.08163265306122448,0.08857509627727857,0.08155339805825243,0.09347826086956522,0.08717948717948718
+IQR,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.07993080357142858,0.08735322459846914,0.07968225898240433,0.0860303322214554,0.08367405891754848,0.08610560643060641,0.0849384636243386
+Jitter,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.0632354394925448,0.07906637932747126,0.07057457831794871,0.0746101683943074,0.07238895868230105,0.07532566679551772,0.07391604690117412
+Label_Stability,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.911844262295082,0.8900197628458498,0.8983720930232557,0.8968599033816426,0.8976249999999999,0.8966538461538462,0.8971199999999999
+Mean,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.707915635896435,0.645445064778217,0.7366042713332103,0.6510542140652557,0.7011054430941357,0.6331504062118437,0.6657688239153439
+Overall_Uncertainty,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.5980926620208493,0.6629771995525174,0.5967855512878455,0.6512330698720273,0.6293954388029462,0.6533813193271806,0.6418680966755481
+PPV,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.7413793103448276,0.8172757475083057,0.7037037037037037,0.8099173553719008,0.7529411764705882,0.8259109311740891,0.7961630695443646
+Per_Sample_Accuracy,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.8352459016393443,0.7941007905138341,0.8271317829457364,0.8034057971014492,0.8267013888888889,0.78975,0.8074866666666667
+Positive-Rate,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.8854961832061069,0.7639593908629442,0.8709677419354839,0.7840172786177105,0.8292682926829268,0.771875,0.7942857142857143
+Sample_Size,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,488.0,1012.0,258.0,1242.0,720.0,780.0,1500.0
+Selection-Rate,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.23770491803278687,0.2974308300395257,0.20930232558139536,0.2922705314009662,0.2361111111111111,0.31666666666666665,0.278
+Statistical_Bias,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.24958265027322407,0.2865677506822887,0.2556659200043067,0.2784549836253611,0.26328724655533514,0.28491805064611314,0.2745352646825397
+Std,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.056821051436244836,0.0628264498200237,0.05668759886069393,0.061742061040815165,0.059889468244443,0.06178028613173397,0.06087269354583431
+TNR,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.9159663865546218,0.9110032362459547,0.9183673469387755,0.9114249037227214,0.9184466019417475,0.9065217391304348,0.9128205128205128
+TPR,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.6564885496183206,0.6243654822335025,0.6129032258064516,0.6349892008639308,0.624390243902439,0.6375,0.6323809523809524
+Accuracy,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.8483606557377049,0.7845849802371542,0.8449612403100775,0.7971014492753623,0.8263888888888888,0.7858974358974359,0.8053333333333333
+Aleatoric_Uncertainty,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.5809271419254739,0.632326188134487,0.5804399996415808,0.6229090400516942,0.6027107443059488,0.627506168912114,0.6156043651011547
+F1,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.6991869918699187,0.6716867469879518,0.6551724137931034,0.6826196473551638,0.6556473829201102,0.6946983546617916,0.6791208791208792
+FNR,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.3435114503816794,0.434010152284264,0.3870967741935484,0.4146868250539957,0.4195121951219512,0.40625,0.4114285714285714
+FPR,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.08123249299719888,0.07605177993527508,0.08163265306122448,0.07702182284980745,0.07572815533980583,0.08043478260869565,0.07794871794871795
+IQR,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.07655375947339318,0.077704999823546,0.07722390642303431,0.07735259789637809,0.0762085014329806,0.07836611975986976,0.07733046296296296
+Jitter,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.06152195403245778,0.07156136413291579,0.06709497097892671,0.0685445342655323,0.06591387493020666,0.0704933642571864,0.06829520938023337
+Label_Stability,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.9143032786885246,0.9000790513833993,0.902984496124031,0.9050644122383253,0.9067222222222221,0.9028461538461539,0.9047066666666667
+Mean,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.7055323232175382,0.6729498837168265,0.7335200550633689,0.6731697921459243,0.715874007895172,0.6537125261116199,0.6835500373677248
+Overall_Uncertainty,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.5984611689436439,0.6487402421227054,0.5980162595875916,0.6395217234292089,0.6192559619409344,0.6444998498400043,0.6323827836484507
+PPV,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.7478260869565218,0.825925925925926,0.7037037037037037,0.8187311178247734,0.7531645569620253,0.8370044052863436,0.8025974025974026
+Per_Sample_Accuracy,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.8360450819672132,0.7759980237154149,0.8300193798449612,0.7883695652173913,0.8178750000000001,0.7749102564102565,0.7955333333333334
+Positive-Rate,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.8778625954198473,0.6852791878172588,0.8709677419354839,0.714902807775378,0.7707317073170732,0.709375,0.7333333333333333
+Sample_Size,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,488.0,1012.0,258.0,1242.0,720.0,780.0,1500.0
+Selection-Rate,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.23565573770491804,0.26679841897233203,0.20930232558139536,0.2665056360708535,0.21944444444444444,0.29102564102564105,0.25666666666666665
+Std,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.05416850447476281,0.05607068686560472,0.05424965264513179,0.055701574000992134,0.054355904736851104,0.05646347933479929,0.05545184352778415
+TNR,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.9187675070028011,0.9239482200647249,0.9183673469387755,0.9229781771501926,0.9242718446601942,0.9195652173913044,0.9220512820512821
+TPR,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.6564885496183206,0.565989847715736,0.6129032258064516,0.5853131749460043,0.5804878048780487,0.59375,0.5885714285714285
+Accuracy,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.8483606557377049,0.7984189723320159,0.8488372093023255,0.8075684380032206,0.8375,0.7935897435897435,0.8146666666666667
+Aleatoric_Uncertainty,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.6034386214355544,0.667663044490748,0.6022916533054496,0.6560078918940269,0.6353339918546749,0.6573238130125916,0.6467686988567917
+F1,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.7016129032258065,0.7085714285714285,0.6666666666666666,0.7123947051744886,0.6896551724137931,0.7180385288966725,0.7067510548523207
+FNR,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.33587786259541985,0.37055837563451777,0.3709677419354839,0.36069114470842334,0.36585365853658536,0.359375,0.3619047619047619
+FPR,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.08403361344537816,0.09385113268608414,0.08163265306122448,0.09242618741976893,0.08155339805825243,0.1,0.09025641025641026
+IQR,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.06625906669162206,0.07151880255649483,0.06651334013218053,0.07049195730964715,0.06906575947907051,0.07049244347147894,0.0698076351551229
+Jitter,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.05250175055605957,0.0703220648697996,0.05746932336098636,0.06599009540456216,0.0635568118369625,0.06541779409870094,0.06452452261306409
+Label_Stability,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.9285040983606557,0.900296442687747,0.9208914728682169,0.9071014492753622,0.9103333333333334,0.9086794871794872,0.9094733333333334
+Mean,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.7044707097166929,0.6383597499240815,0.7315249192761425,0.6449825636808952,0.6940397580188165,0.6283245480658572,0.6598678488432778
+Overall_Uncertainty,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.6163162753250673,0.6810105385909122,0.6151568145209929,0.6692709736442993,0.6484095577353082,0.670628366465659,0.6599633382750907
+PPV,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.7435897435897436,0.8104575163398693,0.7090909090909091,0.8043478260869565,0.7558139534883721,0.8167330677290837,0.7919621749408984
+Per_Sample_Accuracy,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.8393954918032787,0.7940316205533596,0.8337403100775194,0.8036070853462158,0.8301944444444445,0.7890320512820512,0.80879
+Positive-Rate,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.8931297709923665,0.7766497461928934,0.8870967741935484,0.7948164146868251,0.8390243902439024,0.784375,0.8057142857142857
+Sample_Size,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,488.0,1012.0,258.0,1242.0,720.0,780.0,1500.0
+Selection-Rate,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.23975409836065573,0.30237154150197626,0.2131782945736434,0.2962962962962963,0.2388888888888889,0.3217948717948718,0.282
+Std,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.047667980542325225,0.052179487878327734,0.04763300879630876,0.051351288219061764,0.04994215113887428,0.05142213771478576,0.05071174415834825
+TNR,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.9159663865546218,0.9061488673139159,0.9183673469387755,0.9075738125802311,0.9184466019417475,0.9,0.9097435897435897
+TPR,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.6641221374045801,0.6294416243654822,0.6290322580645161,0.6393088552915767,0.6341463414634146,0.640625,0.638095238095238
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index 007ff0c3..9ca3cc71 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -326,7 +326,8 @@ def _create_subgroup_model_rank_heatmap(self, model_names: list, subgroup_accura
model_metrics_matrix = pd.DataFrame(results).T
sorted_matrix_by_rank = create_subgroup_sorted_matrix_by_rank(model_metrics_matrix)
- model_rank_heatmap, _ = create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_by_rank, num_models)
+ model_rank_heatmap, _ = create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_by_rank,
+ num_models, top_adjust=1.)
return model_rank_heatmap
@@ -376,7 +377,8 @@ def _create_group_model_rank_heatmap(self, model_names: list, group_fairness_met
model_metrics_matrix = pd.DataFrame(results).T
sorted_matrix_by_rank = create_sorted_matrix_by_rank(model_metrics_matrix)
- model_rank_heatmap, _ = create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_by_rank, num_models)
+ model_rank_heatmap, _ = create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_by_rank,
+ num_models, top_adjust=0.78)
return model_rank_heatmap
@@ -414,10 +416,9 @@ def _create_metrics_bar_chart_per_one_model(self, model_name: str, metrics_names
base_font_size = 16
models_metrics_chart = (
alt.Chart().mark_bar().encode(
- alt.Y('Subgroup:N', axis=None, sort='descending'),
+ alt.Y('Subgroup:N', axis=None),
alt.X('Value:Q', axis=alt.Axis(grid=True), title=''),
alt.Color('Subgroup:N',
- sort='descending',
scale=alt.Scale(scheme="tableau20"),
legend=alt.Legend(title=metrics_type.capitalize(),
labelFontSize=base_font_size,
diff --git a/virny/utils/data_viz_utils.py b/virny/utils/data_viz_utils.py
index c6fbe759..e90a3e71 100644
--- a/virny/utils/data_viz_utils.py
+++ b/virny/utils/data_viz_utils.py
@@ -60,7 +60,8 @@ def create_subgroup_sorted_matrix_by_rank(model_metrics_matrix) -> np.array:
return sorted_matrix_by_rank
-def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_by_rank, num_models: int):
+def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_by_rank, num_models: int,
+ top_adjust: float = 0.92):
"""
This heatmap includes group fairness and stability metrics and defined models.
Using it, you can visually compare the models across defined group metrics. On this plot,
@@ -79,6 +80,8 @@ def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_
Matrix of model ranks per metric where indexes are group metric names and columns are model names
num_models
Number of models to visualize
+ top_adjust
+ Percentage of a top padding for the heatmap
"""
font_increase = 4
@@ -90,8 +93,9 @@ def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_
fmt='', annot_kws={'color': 'black', 'alpha': 0.7, 'fontsize': 16 + font_increase})
ax.set(xlabel="", ylabel="")
ax.xaxis.tick_top()
+ ax.tick_params(axis='x', rotation=10)
ax.tick_params(labelsize=16 + font_increase)
- fig.subplots_adjust(left=0.27, right=0.99, top=0.92)
+ fig.subplots_adjust(left=0.3, right=0.99, top=0.8)
cbar = ax.collections[0].colorbar
model_ranks = [idx for idx in range(num_models)]
@@ -161,7 +165,7 @@ def get_column_alias(metric_group):
x=alt.X("Title", type="nominal", title='Metric Group', axis=alt.Axis(labelAngle=-30),
sort=alt.Sort(order='ascending')),
y=alt.Y("Number_of_Models", title="Number of Models", type="quantitative"),
- color=alt.Color('Model_Name', legend=alt.Legend(title='Model Name'))
+ color=alt.Color('Model_Type', legend=alt.Legend(title='Model Type'))
).configure(padding={'top': 33}
).configure_axis(
labelFontSize=base_font_size + 2,
@@ -207,10 +211,12 @@ def create_models_in_range_dct(all_subgroup_metrics_per_model_dct: dict, all_gro
pivoted_model_metrics_df = all_metrics_for_all_models_df.pivot(columns='Metric', values='Value',
index=[col for col in all_metrics_for_all_models_df.columns
if col not in ('Metric', 'Value')]).reset_index()
+ # Create a Model_Type column to count the number of models that satisfied the constraints based on their model types
+ pivoted_model_metrics_df['Model_Type'] = pivoted_model_metrics_df['Model_Name'].str.split('__', expand=True)[0]
+ model_types = pivoted_model_metrics_df['Model_Type'].unique()
# Create a pandas condition for filtering based on the input value ranges
models_in_range_df = pd.DataFrame()
- model_names = pivoted_model_metrics_df['Model_Name'].unique()
for idx, (metric_group, value_range) in enumerate(metrics_value_range_dct.items()):
pd_condition = None
if '&' not in metric_group:
@@ -232,13 +238,13 @@ def create_models_in_range_dct(all_subgroup_metrics_per_model_dct: dict, all_gro
else:
pd_condition &= (pivoted_model_metrics_df[metric] >= min_range_val) & (pivoted_model_metrics_df[metric] <= max_range_val)
- num_satisfied_models_df = pivoted_model_metrics_df[pd_condition]['Model_Name'].value_counts().reset_index()
- num_satisfied_models_df.rename(columns = {'Model_Name': 'Number_of_Models'}, inplace = True)
- num_satisfied_models_df.rename(columns = {'index': 'Model_Name'}, inplace = True)
+ num_satisfied_models_df = pivoted_model_metrics_df[pd_condition]['Model_Type'].value_counts().reset_index()
+ num_satisfied_models_df.rename(columns = {'Model_Type': 'Number_of_Models'}, inplace = True)
+ num_satisfied_models_df.rename(columns = {'index': 'Model_Type'}, inplace = True)
# If a constraint for a metric group is not satisfied, add zeros for all model names
if num_satisfied_models_df.shape[0] == 0:
- num_satisfied_models_df = pd.DataFrame({'Model_Name': model_names,
- 'Number_of_Models': [0] * len(model_names)})
+ num_satisfied_models_df = pd.DataFrame({'Model_Type': model_types,
+ 'Number_of_Models': [0] * len(model_types)})
num_satisfied_models_df['Metric_Group'] = metric_group
if idx == 0:
From 6da26a2bfc7d9611bbb180a7be0113818a1bb9dd Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Thu, 5 Oct 2023 00:19:15 +0300
Subject: [PATCH 009/148] Added a gradio app for Law_School
---
...ultiple_Models_Interface_Vis_Income.ipynb} | 77 ++---
...iple_Models_Interface_Vis_Law_School.ipynb | 297 ++++++++++++++++++
...cs_sample.csv => income_group_metrics.csv} | 0
...sample.csv => income_subgroup_metrics.csv} | 0
docs/examples/law_school_group_metrics.csv | 89 ++++++
docs/examples/law_school_subgroup_metrics.csv | 153 +++++++++
.../metrics_interactive_visualizer.py | 4 +-
7 files changed, 582 insertions(+), 38 deletions(-)
rename docs/examples/{Multiple_Models_Interface_Vis_Big_Example.ipynb => Multiple_Models_Interface_Vis_Income.ipynb} (78%)
create mode 100644 docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
rename docs/examples/{group_metrics_sample.csv => income_group_metrics.csv} (100%)
rename docs/examples/{subgroup_metrics_sample.csv => income_subgroup_metrics.csv} (100%)
create mode 100644 docs/examples/law_school_group_metrics.csv
create mode 100644 docs/examples/law_school_subgroup_metrics.csv
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Big_Example.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
similarity index 78%
rename from docs/examples/Multiple_Models_Interface_Vis_Big_Example.ipynb
rename to docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
index abc20ff4..7b653984 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Big_Example.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
@@ -6,8 +6,8 @@
"id": "248cbed8",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-02T17:17:48.735994Z",
- "start_time": "2023-10-02T17:17:48.334219Z"
+ "end_time": "2023-10-04T21:08:30.999391Z",
+ "start_time": "2023-10-04T21:08:30.521174Z"
}
},
"outputs": [],
@@ -23,8 +23,8 @@
"id": "7ec6cd08",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-02T17:17:48.745045Z",
- "start_time": "2023-10-02T17:17:48.736330Z"
+ "end_time": "2023-10-04T21:08:31.008054Z",
+ "start_time": "2023-10-04T21:08:31.000071Z"
}
},
"outputs": [],
@@ -41,8 +41,8 @@
"id": "b8cb69f2",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-02T17:17:48.756222Z",
- "start_time": "2023-10-02T17:17:48.745173Z"
+ "end_time": "2023-10-04T21:08:31.018864Z",
+ "start_time": "2023-10-04T21:08:31.008657Z"
}
},
"outputs": [
@@ -76,8 +76,8 @@
"id": "7a9241de",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-02T17:17:53.361336Z",
- "start_time": "2023-10-02T17:17:48.754954Z"
+ "end_time": "2023-10-04T21:08:33.567112Z",
+ "start_time": "2023-10-04T21:08:31.017655Z"
}
},
"outputs": [],
@@ -98,33 +98,33 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-02T17:17:53.387585Z",
- "start_time": "2023-10-02T17:17:53.364121Z"
+ "end_time": "2023-10-04T21:08:33.593962Z",
+ "start_time": "2023-10-04T21:08:33.567969Z"
}
},
"id": "d3c53c7b72ecbcd0"
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 6,
"outputs": [],
"source": [
"ROOT_DIR = os.path.join('docs', 'examples')\n",
- "subgroup_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'subgroup_metrics_sample.csv'), header=0)\n",
- "models_composed_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'group_metrics_sample.csv'), header=0)"
+ "subgroup_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'income_subgroup_metrics.csv'), header=0)\n",
+ "models_composed_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'income_group_metrics.csv'), header=0)"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-02T17:19:48.959080Z",
- "start_time": "2023-10-02T17:19:48.892728Z"
+ "end_time": "2023-10-04T21:08:33.619601Z",
+ "start_time": "2023-10-04T21:08:33.593364Z"
}
},
"id": "2aab7c79ecdee914"
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 7,
"outputs": [],
"source": [
"subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
@@ -135,15 +135,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-02T17:20:12.234612Z",
- "start_time": "2023-10-02T17:20:12.185239Z"
+ "end_time": "2023-10-04T21:08:33.644681Z",
+ "start_time": "2023-10-04T21:08:33.620136Z"
}
},
"id": "2d922003e752a4b4"
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 8,
"outputs": [],
"source": [
"models_metrics_dct = dict()\n",
@@ -153,21 +153,21 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-02T17:20:13.514668Z",
- "start_time": "2023-10-02T17:20:13.478758Z"
+ "end_time": "2023-10-04T21:08:33.669581Z",
+ "start_time": "2023-10-04T21:08:33.643533Z"
}
},
"id": "833484748ed512e8"
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 9,
"outputs": [
{
"data": {
"text/plain": "dict_keys(['LGBMClassifier__alpha=0.7', 'LGBMClassifier__alpha=0.0', 'LGBMClassifier__alpha=0.4', 'LogisticRegression__alpha=0.0', 'LogisticRegression__alpha=0.7', 'LogisticRegression__alpha=0.4', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.7', 'MLPClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.7', 'RandomForestClassifier__alpha=0.0'])"
},
- "execution_count": 11,
+ "execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
@@ -178,8 +178,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-02T17:20:14.063914Z",
- "start_time": "2023-10-02T17:20:14.031614Z"
+ "end_time": "2023-10-04T21:08:33.691780Z",
+ "start_time": "2023-10-04T21:08:33.667179Z"
}
},
"id": "15ed7d1ba1f22317"
@@ -194,12 +194,12 @@
},
{
"cell_type": "code",
- "execution_count": 32,
+ "execution_count": 10,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-02T17:53:01.433697Z",
- "start_time": "2023-10-02T17:53:01.373046Z"
+ "end_time": "2023-10-04T21:08:33.716112Z",
+ "start_time": "2023-10-04T21:08:33.690511Z"
}
},
"outputs": [],
@@ -210,7 +210,7 @@
},
{
"cell_type": "code",
- "execution_count": 33,
+ "execution_count": 11,
"outputs": [
{
"name": "stdout",
@@ -229,15 +229,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-02T17:54:57.507776Z",
- "start_time": "2023-10-02T17:53:01.479901Z"
+ "end_time": "2023-10-04T21:11:38.266786Z",
+ "start_time": "2023-10-04T21:08:33.716571Z"
}
},
"id": "678a9dc8d51243f4"
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 12,
"outputs": [
{
"name": "stdout",
@@ -253,17 +253,22 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-09-29T21:41:49.927075Z",
- "start_time": "2023-09-29T21:41:49.639933Z"
+ "end_time": "2023-10-04T21:11:38.361088Z",
+ "start_time": "2023-10-04T21:11:38.269315Z"
}
},
"id": "277b6d1de837dab7"
},
{
"cell_type": "code",
- "execution_count": 78,
+ "execution_count": 12,
"id": "2326c129",
- "metadata": {},
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-04T21:11:38.363712Z",
+ "start_time": "2023-10-04T21:11:38.360139Z"
+ }
+ },
"outputs": [],
"source": []
}
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
new file mode 100644
index 00000000..c88e03d5
--- /dev/null
+++ b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
@@ -0,0 +1,297 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "248cbed8",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-04T21:15:46.248933Z",
+ "start_time": "2023-10-04T21:15:45.908524Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "%load_ext autoreload\n",
+ "%autoreload 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "7ec6cd08",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-04T21:15:46.257749Z",
+ "start_time": "2023-10-04T21:15:46.249557Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "os.environ[\"PYTHONWARNINGS\"] = \"ignore\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "b8cb69f2",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-04T21:15:46.268273Z",
+ "start_time": "2023-10-04T21:15:46.257867Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current location: /Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny\n"
+ ]
+ }
+ ],
+ "source": [
+ "cur_folder_name = os.getcwd().split('/')[-1]\n",
+ "if cur_folder_name != \"Virny\":\n",
+ " os.chdir(\"../..\")\n",
+ "\n",
+ "print('Current location: ', os.getcwd())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a578f2ab",
+ "metadata": {},
+ "source": [
+ "# Multiple Models Interface Usage"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "7a9241de",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-04T21:15:47.510506Z",
+ "start_time": "2023-10-04T21:15:46.267180Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import pandas as pd\n",
+ "\n",
+ "from virny.custom_classes.metrics_interactive_visualizer import MetricsInteractiveVisualizer"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "outputs": [],
+ "source": [
+ "sensitive_attributes_dct = {'male': '0.0', 'race': 'Non-White', 'male&race': None}"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-04T21:15:47.534494Z",
+ "start_time": "2023-10-04T21:15:47.511483Z"
+ }
+ },
+ "id": "d3c53c7b72ecbcd0"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "outputs": [],
+ "source": [
+ "ROOT_DIR = os.path.join('docs', 'examples')\n",
+ "subgroup_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'law_school_subgroup_metrics.csv'), header=0)\n",
+ "models_composed_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'law_school_group_metrics.csv'), header=0)"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-04T21:15:47.559988Z",
+ "start_time": "2023-10-04T21:15:47.534609Z"
+ }
+ },
+ "id": "2aab7c79ecdee914"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "outputs": [],
+ "source": [
+ "subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
+ " subgroup_metrics_df['Intervention_Param'].astype(str))\n",
+ "models_composed_metrics_df['Model_Name'] = (models_composed_metrics_df['Model_Name'] + '__alpha=' \n",
+ " + models_composed_metrics_df['Intervention_Param'].astype(str))"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-04T21:15:47.581842Z",
+ "start_time": "2023-10-04T21:15:47.560554Z"
+ }
+ },
+ "id": "2d922003e752a4b4"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "outputs": [],
+ "source": [
+ "models_metrics_dct = dict()\n",
+ "for model_name in subgroup_metrics_df['Model_Name'].unique():\n",
+ " models_metrics_dct[model_name] = subgroup_metrics_df[subgroup_metrics_df['Model_Name'] == model_name]"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-04T21:15:47.603973Z",
+ "start_time": "2023-10-04T21:15:47.582304Z"
+ }
+ },
+ "id": "833484748ed512e8"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "outputs": [
+ {
+ "data": {
+ "text/plain": "dict_keys(['LGBMClassifier__alpha=0.6', 'LGBMClassifier__alpha=0.0', 'LogisticRegression__alpha=0.6', 'LogisticRegression__alpha=0.0', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.6', 'RandomForestClassifier__alpha=0.6', 'RandomForestClassifier__alpha=0.0'])"
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "models_metrics_dct.keys()"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-04T21:15:47.625522Z",
+ "start_time": "2023-10-04T21:15:47.604575Z"
+ }
+ },
+ "id": "15ed7d1ba1f22317"
+ },
+ {
+ "cell_type": "markdown",
+ "id": "deb45226",
+ "metadata": {},
+ "source": [
+ "## Metrics Visualization and Reporting"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "435b9d98",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-04T21:15:47.653413Z",
+ "start_time": "2023-10-04T21:15:47.624966Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "visualizer = MetricsInteractiveVisualizer(models_metrics_dct, models_composed_metrics_df,\n",
+ " sensitive_attributes_dct=sensitive_attributes_dct)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Running on local URL: http://127.0.0.1:7860\n",
+ "\n",
+ "To create a public link, set `share=True` in `launch()`.\n",
+ "Keyboard interruption in main thread... closing server.\n"
+ ]
+ }
+ ],
+ "source": [
+ "visualizer.start_web_app()"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-04T21:17:37.487583Z",
+ "start_time": "2023-10-04T21:15:47.653522Z"
+ }
+ },
+ "id": "678a9dc8d51243f4"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Closing server running on port: 7860\n"
+ ]
+ }
+ ],
+ "source": [
+ "visualizer.stop_web_app()"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-04T21:17:37.530553Z",
+ "start_time": "2023-10-04T21:17:37.492738Z"
+ }
+ },
+ "id": "277b6d1de837dab7"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "2326c129",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-04T21:17:37.533378Z",
+ "start_time": "2023-10-04T21:17:37.530182Z"
+ }
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.10"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/docs/examples/group_metrics_sample.csv b/docs/examples/income_group_metrics.csv
similarity index 100%
rename from docs/examples/group_metrics_sample.csv
rename to docs/examples/income_group_metrics.csv
diff --git a/docs/examples/subgroup_metrics_sample.csv b/docs/examples/income_subgroup_metrics.csv
similarity index 100%
rename from docs/examples/subgroup_metrics_sample.csv
rename to docs/examples/income_subgroup_metrics.csv
diff --git a/docs/examples/law_school_group_metrics.csv b/docs/examples/law_school_group_metrics.csv
new file mode 100644
index 00000000..f39a023c
--- /dev/null
+++ b/docs/examples/law_school_group_metrics.csv
@@ -0,0 +1,89 @@
+Metric,male,race,male&race,Model_Name,Experiment_Iteration,Intervention_Param,Test_Set_Index
+Equalized_Odds_TPR,-0.006852677560728049,-0.08926010463166822,-0.09233449477351918,LGBMClassifier,Exp_iter_1,0.6,0
+Equalized_Odds_FPR,0.027310924369747913,-0.2892592592592593,-0.15657230634189157,LGBMClassifier,Exp_iter_1,0.6,0
+Equalized_Odds_FNR,0.006852677560727997,0.08926010463166825,0.09233449477351917,LGBMClassifier,Exp_iter_1,0.6,0
+Disparate_Impact,1.0155706946616037,1.0637883787525366,1.064060803474484,LGBMClassifier,Exp_iter_1,0.6,0
+Statistical_Parity_Difference,0.01661276831014935,0.06794241218413566,0.06852497096399524,LGBMClassifier,Exp_iter_1,0.6,0
+Accuracy_Parity,-0.02441327723235165,-0.15885561838018636,-0.16299790356394128,LGBMClassifier,Exp_iter_1,0.6,0
+Label_Stability_Ratio,1.0022336520605963,0.9215110409144575,0.9448800911879143,LGBMClassifier,Exp_iter_1,0.6,0
+IQR_Parity,-0.0019234170135528535,0.030752485425003136,0.026171410156253943,LGBMClassifier,Exp_iter_1,0.6,0
+Std_Parity,-0.0014947483480208142,0.022654697553924172,0.019420397675297765,LGBMClassifier,Exp_iter_1,0.6,0
+Std_Ratio,0.9362288387603354,2.1935697988767453,1.91757091989168,LGBMClassifier,Exp_iter_1,0.6,0
+Jitter_Parity,-0.0009008483276642908,0.05605017735541579,0.04049042442969653,LGBMClassifier,Exp_iter_1,0.6,0
+Equalized_Odds_TPR,-0.005171382474971176,-0.11004756903064217,-0.0987224157955865,LGBMClassifier,Exp_iter_1,0.0,0
+Equalized_Odds_FPR,-0.025282526803824923,-0.4292592592592593,-0.3133640552995392,LGBMClassifier,Exp_iter_1,0.0,0
+Equalized_Odds_FNR,0.005171382474971221,0.11004756903064213,0.09872241579558652,LGBMClassifier,Exp_iter_1,0.0,0
+Disparate_Impact,1.0093278423562047,0.9912768659262348,0.9923664122137406,LGBMClassifier,Exp_iter_1,0.0,0
+Statistical_Parity_Difference,0.009888779529904745,-0.009296665118064151,-0.008130081300812941,LGBMClassifier,Exp_iter_1,0.0,0
+Accuracy_Parity,-0.015605423094904092,-0.1335709166202118,-0.11753449368631463,LGBMClassifier,Exp_iter_1,0.0,0
+Label_Stability_Ratio,0.998577907316844,0.911696818570683,0.920586307756427,LGBMClassifier,Exp_iter_1,0.0,0
+IQR_Parity,-0.0018418992707291484,0.03070162807008311,0.02640029144412168,LGBMClassifier,Exp_iter_1,0.0,0
+Std_Parity,-0.001380608364266945,0.022270950149824872,0.01912573180911198,LGBMClassifier,Exp_iter_1,0.0,0
+Std_Ratio,0.9474740574271133,2.0150416987665265,1.7940775240850562,LGBMClassifier,Exp_iter_1,0.0,0
+Jitter_Parity,0.0009153720918688296,0.06001277824710762,0.05223850775990582,LGBMClassifier,Exp_iter_1,0.0,0
+Equalized_Odds_TPR,-0.005365607208478229,-0.07716333043811985,-0.08536585365853655,LogisticRegression,Exp_iter_1,0.6,0
+Equalized_Odds_FPR,0.0021008403361344463,-0.2592592592592593,-0.14691683124862842,LogisticRegression,Exp_iter_1,0.6,0
+Equalized_Odds_FNR,0.005365607208478207,0.07716333043811986,0.08536585365853659,LogisticRegression,Exp_iter_1,0.6,0
+Disparate_Impact,1.014185628316063,1.0865027213593523,1.0769230769230769,LogisticRegression,Exp_iter_1,0.6,0
+Statistical_Parity_Difference,0.015190042348141253,0.09213596057123241,0.0824622531939605,LogisticRegression,Exp_iter_1,0.6,0
+Accuracy_Parity,-0.020523609163160317,-0.15885561838018636,-0.16299790356394128,LogisticRegression,Exp_iter_1,0.6,0
+Label_Stability_Ratio,1.004335707649427,0.9552448804260418,0.9689971045213348,LogisticRegression,Exp_iter_1,0.6,0
+IQR_Parity,-0.0004394323534326547,0.015022317395668628,0.013321803169827343,LogisticRegression,Exp_iter_1,0.6,0
+Std_Parity,-0.00037752191542240673,0.011290698242018816,0.010010789402424683,LogisticRegression,Exp_iter_1,0.6,0
+Std_Ratio,0.9574177968749634,2.658469055430207,2.2721629361081668,LogisticRegression,Exp_iter_1,0.6,0
+Jitter_Parity,-0.002206018404318751,0.03092054469475277,0.022461201723108764,LogisticRegression,Exp_iter_1,0.6,0
+Equalized_Odds_TPR,-0.000257377560966332,-0.098576968913487,-0.07491289198606277,LogisticRegression,Exp_iter_1,0.0,0
+Equalized_Odds_FPR,0.001014198782961384,-0.3766666666666667,-0.2736449418477068,LogisticRegression,Exp_iter_1,0.0,0
+Equalized_Odds_FNR,0.00025737756096630773,0.09857696891348698,0.07491289198606271,LogisticRegression,Exp_iter_1,0.0,0
+Disparate_Impact,1.0178946069357029,1.024124924276844,1.0353452963567156,LogisticRegression,Exp_iter_1,0.0,0
+Statistical_Parity_Difference,0.019005426376910384,0.02574130930979468,0.03774680603948899,LogisticRegression,Exp_iter_1,0.0,0
+Accuracy_Parity,-0.014941561477325838,-0.1421916062753843,-0.11596216664228953,LogisticRegression,Exp_iter_1,0.0,0
+Label_Stability_Ratio,1.000802025127658,0.9591320645489642,0.9674653511862815,LogisticRegression,Exp_iter_1,0.0,0
+IQR_Parity,-0.0004508970638314215,0.01656430213503716,0.014545259937867398,LogisticRegression,Exp_iter_1,0.0,0
+Std_Parity,-0.000250712698052144,0.012597874744057873,0.011208249522494669,LogisticRegression,Exp_iter_1,0.0,0
+Std_Ratio,0.971192962518509,2.943109990424136,2.4624081283525006,LogisticRegression,Exp_iter_1,0.0,0
+Jitter_Parity,-0.0005955631359242288,0.029270523731717988,0.02275483751946553,LogisticRegression,Exp_iter_1,0.0,0
+Equalized_Odds_TPR,-0.00542995159871984,-0.10879522087785565,-0.08885017421602792,MLPClassifier,Exp_iter_1,0.0,0
+Equalized_Odds_FPR,0.05143436685018832,-0.3496296296296296,-0.21560236998025017,MLPClassifier,Exp_iter_1,0.0,0
+Equalized_Odds_FNR,0.005429951598719784,0.10879522087785565,0.08885017421602788,MLPClassifier,Exp_iter_1,0.0,0
+Disparate_Impact,1.0186228591559474,1.0137681641813756,1.0339168490153174,MLPClassifier,Exp_iter_1,0.0,0
+Statistical_Parity_Difference,0.019652444967672933,0.014621669662876036,0.03600464576074347,MLPClassifier,Exp_iter_1,0.0,0
+Accuracy_Parity,-0.024665731650303835,-0.14909346712325133,-0.13497635415143083,MLPClassifier,Exp_iter_1,0.0,0
+Label_Stability_Ratio,1.001836062082041,0.8553840569742932,0.8648947072020089,MLPClassifier,Exp_iter_1,0.0,0
+IQR_Parity,-0.0020205977060946817,0.09889952827181274,0.08378658970964548,MLPClassifier,Exp_iter_1,0.0,0
+Std_Parity,-0.0033869150678196153,0.10496476391153896,0.09394292815043398,MLPClassifier,Exp_iter_1,0.0,0
+Std_Ratio,0.9706692880546564,2.088873447566327,1.884663033993635,MLPClassifier,Exp_iter_1,0.0,0
+Jitter_Parity,-0.0014995576292047702,0.10470271374925606,0.09636066589101067,MLPClassifier,Exp_iter_1,0.0,0
+Equalized_Odds_TPR,0.004399249792072291,-0.12046528773708765,-0.10859465737514518,MLPClassifier,Exp_iter_1,0.6,0
+Equalized_Odds_FPR,0.03441031585047816,-0.24518518518518517,-0.18981786262892253,MLPClassifier,Exp_iter_1,0.6,0
+Equalized_Odds_FNR,-0.0043992497920722975,0.1204652877370877,0.10859465737514518,MLPClassifier,Exp_iter_1,0.6,0
+Disparate_Impact,1.0262887781579368,1.0295513811087504,1.0238227146814405,MLPClassifier,Exp_iter_1,0.6,0
+Statistical_Parity_Difference,0.027283213025210973,0.03090219564910024,0.024970963995354367,MLPClassifier,Exp_iter_1,0.6,0
+Accuracy_Parity,-0.01372604020570356,-0.17549308486634285,-0.1530398322851153,MLPClassifier,Exp_iter_1,0.6,0
+Label_Stability_Ratio,1.0106622176454783,0.7347549972966689,0.7588685481341745,MLPClassifier,Exp_iter_1,0.6,0
+IQR_Parity,-0.014337453917789456,0.239717291325784,0.20712778100148252,MLPClassifier,Exp_iter_1,0.6,0
+Std_Parity,-0.0043530382426541225,0.14139945806041038,0.12248067260767251,MLPClassifier,Exp_iter_1,0.6,0
+Std_Ratio,0.9757227989415077,1.9199580092412873,1.7324037388625755,MLPClassifier,Exp_iter_1,0.6,0
+Jitter_Parity,-0.005143773566298637,0.14638050323022922,0.12861240469325352,MLPClassifier,Exp_iter_1,0.6,0
+Equalized_Odds_TPR,-0.001291654055960545,-0.09822600844325047,-0.07026713124274109,RandomForestClassifier,Exp_iter_1,0.6,0
+Equalized_Odds_FPR,0.05252100840336138,-0.23222222222222222,-0.11465876673249942,RandomForestClassifier,Exp_iter_1,0.6,0
+Equalized_Odds_FNR,0.0012916540559605519,0.09822600844325045,0.070267131242741,RandomForestClassifier,Exp_iter_1,0.6,0
+Disparate_Impact,1.023725852624935,1.0662711508746496,1.0951859956236325,RandomForestClassifier,Exp_iter_1,0.6,0
+Statistical_Parity_Difference,0.025083588129174883,0.07017189488355191,0.10104529616724744,RandomForestClassifier,Exp_iter_1,0.6,0
+Accuracy_Parity,-0.022010285179990707,-0.1732234344721404,-0.15403929598751886,RandomForestClassifier,Exp_iter_1,0.6,0
+Label_Stability_Ratio,1.001176387259295,0.8802415712253702,0.8891938218753054,RandomForestClassifier,Exp_iter_1,0.6,0
+IQR_Parity,-0.0035096712918958883,0.04988279067634181,0.0462411893925246,RandomForestClassifier,Exp_iter_1,0.6,0
+Std_Parity,-0.0023313579149804586,0.03429320329971825,0.031556199509573314,RandomForestClassifier,Exp_iter_1,0.6,0
+Std_Ratio,0.9518148424379955,1.8242881288324113,1.7054584360968619,RandomForestClassifier,Exp_iter_1,0.6,0
+Jitter_Parity,-4.495690233047994e-05,0.07727229028260862,0.07378751418836879,RandomForestClassifier,Exp_iter_1,0.6,0
+Equalized_Odds_TPR,-0.0020673614272062046,-0.11776112468943789,-0.10162601626016254,RandomForestClassifier,Exp_iter_1,0.0,0
+Equalized_Odds_FPR,0.04303100550565053,-0.39185185185185184,-0.2725477287689269,RandomForestClassifier,Exp_iter_1,0.0,0
+Equalized_Odds_FNR,0.0020673614272062393,0.11776112468943785,0.1016260162601626,RandomForestClassifier,Exp_iter_1,0.0,0
+Disparate_Impact,1.0209866123993547,0.9959582206649654,1.004931506849315,RandomForestClassifier,Exp_iter_1,0.0,0
+Statistical_Parity_Difference,0.022045103034433744,-0.004287272506918294,0.00522648083623678,RandomForestClassifier,Exp_iter_1,0.0,0
+Accuracy_Parity,-0.020729312762973406,-0.14734809269730031,-0.13025937301935542,RandomForestClassifier,Exp_iter_1,0.0,0
+Label_Stability_Ratio,0.9930186851041846,0.8737383149825507,0.8708797513120977,RandomForestClassifier,Exp_iter_1,0.0,0
+IQR_Parity,-0.001739345488546054,0.055151728119773834,0.04682910389547073,RandomForestClassifier,Exp_iter_1,0.0,0
+Std_Parity,-0.0009731829505101527,0.03857636987638614,0.03338260860983806,RandomForestClassifier,Exp_iter_1,0.0,0
+Std_Ratio,0.9772979817363154,2.072208090053585,1.8414636557441237,RandomForestClassifier,Exp_iter_1,0.0,0
+Jitter_Parity,0.0032763339840793312,0.0841594483260172,0.08485739726863116,RandomForestClassifier,Exp_iter_1,0.0,0
diff --git a/docs/examples/law_school_subgroup_metrics.csv b/docs/examples/law_school_subgroup_metrics.csv
new file mode 100644
index 00000000..3648b11d
--- /dev/null
+++ b/docs/examples/law_school_subgroup_metrics.csv
@@ -0,0 +1,153 @@
+Metric,Bootstrap_Model_Seed,Model_Name,Model_Params,Run_Number,Dataset_Name,Num_Estimators,Tag,Record_Create_Date_Time,Session_Uuid,Experiment_Iteration,Dataset_Split_Seed,Model_Init_Seed,Fair_Intervention_Params_Lst,Intervention_Param,male&race_dis,male&race_dis_correct,male&race_dis_incorrect,male&race_priv,male&race_priv_correct,male&race_priv_incorrect,male_dis,male_dis_correct,male_dis_incorrect,male_priv,male_priv_correct,male_priv_incorrect,overall,race_dis,race_dis_correct,race_dis_incorrect,race_priv,race_priv_correct,race_priv_incorrect,Test_Set_Index
+Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.75,1.0,0.0,0.9129979035639413,1.0,0.0,0.886021505376344,1.0,0.0,0.9104347826086957,1.0,0.0,0.8995192307692308,0.7672413793103449,1.0,0.0,0.9260969976905312,1.0,0.0,0
+Aleatoric_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.5868292198900119,0.4895028089709125,0.8788084526473101,0.31213451114412527,0.2746251249709554,0.7057571058047387,0.32557852040339047,0.27641138563249196,0.7077834171130161,0.34234717313819124,0.29969421995747725,0.7759165127518567,0.334849650521189,0.5991994902774432,0.5141883196970904,0.8794214970052727,0.28173547948471295,0.25202902038499314,0.6539945450780771,0
+F1,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.8365019011406845,1.0,0.0,0.9534231200897868,1.0,0.0,0.9375,1.0,0.0,0.9516658845612389,1.0,0.0,0.9453880324013587,0.8468809073724007,1.0,0.0,0.9611885991510006,1.0,0.0,0
+FNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.10569105691056911,0.0,1.0,0.013356562137049941,0.0,1.0,0.02334152334152334,0.0,1.0,0.016488845780795344,0.0,1.0,0.01951219512195122,0.0967741935483871,0.0,1.0,0.007514088916718848,0.0,1.0,0
+FPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.6122448979591837,0.0,1.0,0.7688172043010753,0.0,1.0,0.75,0.0,1.0,0.7226890756302521,0.0,1.0,0.7361702127659574,0.57,0.0,1.0,0.8592592592592593,0.0,1.0,0
+IQR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.053677237009712865,0.04423043496352387,0.08201764314827989,0.027505826853458922,0.023814295627974335,0.06624466658113452,0.028606573479079064,0.023741376201889028,0.0664265975961035,0.030529990492631918,0.02638713954524289,0.07264227148211065,0.02967000115484146,0.055277359210661375,0.04736805932154612,0.0813487551414487,0.02452487378565824,0.02153550951083108,0.06198534485458611,0
+Jitter,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.05720170620545171,0.028317556776123513,0.1438541544934052,0.016711281775755177,0.008955396961846785,0.09810135012414363,0.019561463230124726,0.008734144021076752,0.10372854840239312,0.020462311557789017,0.011515120972579035,0.1114109381860803,0.02005952841128785,0.06673207993993159,0.03564809064047434,0.16919411874184762,0.010681902584515802,0.006069342974223462,0.06848304020100503,0
+Label_Stability,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.922674418604651,0.9623255813953489,0.8037209302325582,0.9764989517819705,0.9878645235361653,0.8572289156626507,0.973247311827957,0.9883373786407766,0.8559433962264151,0.9710782608695653,0.9843457497612227,0.8362135922330096,0.9720480769230768,0.9076724137931035,0.9531460674157304,0.7577777777777778,0.9849826789838337,0.9915897755610973,0.9021875,0
+Mean,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.25366066560450123,0.19218317287414302,0.43809314379557607,0.09430034646818729,0.07687616230366145,0.27714931523086195,0.10592175970495323,0.08043902837613173,0.30401393531767884,0.10873692088666873,0.08827903023095526,0.3166923725034843,0.10747821901215171,0.2623223387707427,0.2132171520025776,0.4241875840435831,0.07636635199368194,0.0634544416764679,0.2381687281562705,0
+Overall_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.59599798281351,0.4973836190946347,0.8918410739701361,0.3172760636629066,0.2792196178051038,0.716639489471898,0.3308123858516533,0.2809034869135636,0.7187834492949164,0.3480164031919235,0.3047742004421416,0.7875754932795126,0.34032422236189885,0.6086383785857439,0.5226537972216503,0.892069035674793,0.2864135258457914,0.256243452133116,0.6644822620577554,0
+PPV,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.7857142857142857,1.0,0.0,0.9223669923995657,1.0,0.0,0.9013605442176871,1.0,0.0,0.9218181818181819,1.0,0.0,0.9127144298688193,0.797153024911032,1.0,0.0,0.9318048206937096,1.0,0.0,0
+Per_Sample_Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.760406976744186,0.9811627906976744,0.09813953488372094,0.9136582809224318,0.9939207807118255,0.0713855421686747,0.8890645161290323,0.9941686893203884,0.07202830188679245,0.9106260869565218,0.9921537726838585,0.08189320388349515,0.9009855769230769,0.777456896551724,0.9765730337078652,0.12111111111111111,0.9258054272517321,0.9957824189526184,0.048906250000000005,0
+Positive-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,1.1382113821138211,1.0,2.3076923076923075,1.0696864111498259,1.0,6.217391304347826,1.0835380835380835,1.0,4.578947368421052,1.066925315227934,1.0,5.0588235294117645,1.0742547425474254,1.1330645161290323,1.0,2.375,1.0651221039448966,1.0,9.666666666666666,0
+Sample_Size,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,172.0,129.0,43.0,1908.0,1742.0,166.0,930.0,824.0,106.0,1150.0,1047.0,103.0,2080.0,348.0,267.0,81.0,1732.0,1604.0,128.0,0
+Selection-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.813953488372093,0.8527131782945736,0.6976744186046512,0.9654088050314465,0.9753157290470723,0.8614457831325302,0.9483870967741935,0.9648058252427184,0.8207547169811321,0.9565217391304348,0.9684813753581661,0.8349514563106796,0.9528846153846153,0.8074712643678161,0.8389513108614233,0.7037037037037037,0.9821016166281755,0.9881546134663342,0.90625,0
+Statistical_Bias,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.27685883580701437,0.15177998477621654,0.6520953888994078,0.12810491537979324,0.06947590409695573,0.7433563470346304,0.14717405086035498,0.07096334887945019,0.7396044134288979,0.13493220087245378,0.07844588681600942,0.7091183253102911,0.1404057203381981,0.2752245486786175,0.1630144388115851,0.6451023182403169,0.11331741071783666,0.06052480536803965,0.7748747465074804,0
+Std,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.040585407653589534,0.03364597649472218,0.061403701130191564,0.02116500997829177,0.018455696617986055,0.04959647909668067,0.02194450411287219,0.01834402689967414,0.049933119430562715,0.023439252460893005,0.020415163620839904,0.05417926232046194,0.02277092747836447,0.04163531986461287,0.03584538374530121,0.06072066485049203,0.0189806223106887,0.01678269140670539,0.04652344395122948,0
+TNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.3877551020408163,1.0,0.0,0.23118279569892472,1.0,0.0,0.25,1.0,0.0,0.2773109243697479,1.0,0.0,0.26382978723404255,0.43,1.0,0.0,0.14074074074074075,1.0,0.0,0
+TPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.8943089430894309,1.0,0.0,0.9866434378629501,1.0,0.0,0.9766584766584766,1.0,0.0,0.9835111542192047,1.0,0.0,0.9804878048780488,0.9032258064516129,1.0,0.0,0.9924859110832811,1.0,0.0,0
+Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.7965116279069767,1.0,0.0,0.9140461215932913,1.0,0.0,0.8956989247311828,1.0,0.0,0.9113043478260869,1.0,0.0,0.9043269230769231,0.7931034482758621,1.0,0.0,0.9266743648960739,1.0,0.0,0
+Aleatoric_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.592922294584175,0.5276964598004423,0.8482348478805002,0.3098682100253761,0.2728221999884231,0.7038209021256567,0.3250495496308344,0.28328770350714166,0.6836847848992476,0.3399261723827997,0.29782220873189075,0.7725237596980217,0.3332746054792768,0.6057061382348319,0.5378938497098285,0.8656532442473446,0.2785366300757357,0.24899540763399236,0.6518725514851685,0
+F1,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.8616600790513834,1.0,0.0,0.953880764904387,1.0,0.0,0.942433234421365,1.0,0.0,0.9519774011299436,1.0,0.0,0.947755316355999,0.8588235294117647,1.0,0.0,0.9615034859048196,1.0,0.0,0
+FNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.11382113821138211,0.0,1.0,0.015098722415795587,0.0,1.0,0.02457002457002457,0.0,1.0,0.019398642095053348,0.0,1.0,0.02168021680216802,0.11693548387096774,0.0,1.0,0.0068879148403256105,0.0,1.0,0
+FPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.42857142857142855,0.0,1.0,0.7419354838709677,0.0,1.0,0.6637931034482759,0.0,1.0,0.6890756302521008,0.0,1.0,0.676595744680851,0.43,0.0,1.0,0.8592592592592593,0.0,1.0,0
+IQR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.05740452837709349,0.051346443480558994,0.08111760354352847,0.031004236932971812,0.027189497507483208,0.07157073423816773,0.03216898018636143,0.027970534528632626,0.06822367330891912,0.03401087945709058,0.029726613690397245,0.07802961007958674,0.03318733795623572,0.05875234748382416,0.05243974897608184,0.08295064176350304,0.028050719413741047,0.02490939295482162,0.06775016009536051,0
+Jitter,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.07016127147365255,0.05538752154935482,0.12798994974874758,0.017922763713746726,0.010617421972246736,0.09560883686723742,0.0227485816177594,0.01584127118183958,0.08206600010360975,0.02183320952589057,0.012317839195979677,0.11959897526848352,0.022242486470816773,0.07221466528042612,0.04855800742845045,0.16289852037967506,0.012201887033318502,0.00791455720972512,0.0663842836228268,0
+Label_Stability,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.8973255813953487,0.9191970802919709,0.8117142857142857,0.9747327044025157,0.9849770642201836,0.8657926829268292,0.9675698924731184,0.9772629051620647,0.8843298969072166,0.9689478260869565,0.982509541984733,0.8296078431372548,0.9683317307692308,0.8960632183908046,0.931086956521739,0.7618055555555556,0.982852193995381,0.9886292834890966,0.9098425196850394,0
+Mean,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.2739440845404644,0.22641911612137364,0.45997038949519153,0.09660964567395051,0.07937119259295998,0.2799258784376546,0.1103025082631652,0.08837411961679525,0.2986153715871464,0.11205935113227285,0.09143810796751904,0.32393251619758684,0.111273839657143,0.28224317965873474,0.2386743578529879,0.4492569965807643,0.07692203231271234,0.06452875764693192,0.23354570033300814,0
+Overall_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.6031762387252277,0.5373269440801166,0.8609291920503771,0.31654586441614585,0.27891570509178676,0.7167104855239652,0.3317985958463931,0.2893980625214335,0.6959186397607364,0.3470809810692174,0.30436468982700193,0.7859699342245303,0.3402479915224738,0.6161858681467297,0.547773037264914,0.87843505319369,0.2848055082284548,0.25473982724855815,0.6647694292736047,0
+PPV,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.8384615384615385,1.0,0.0,0.9247546346782988,1.0,0.0,0.9115958668197475,1.0,0.0,0.9249771271729186,1.0,0.0,0.9190427698574338,0.8358778625954199,1.0,0.0,0.9318448883666275,1.0,0.0,0
+Per_Sample_Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.7834883720930234,0.9595985401459854,0.09414285714285714,0.9129481132075472,0.9924885321100918,0.06710365853658537,0.8915483870967743,0.9886314525810325,0.05783505154639175,0.9108913043478262,0.9912547709923665,0.08519607843137256,0.9022427884615385,0.7904166666666665,0.9655434782608696,0.11909722222222222,0.9247113163972287,0.9943146417445483,0.04507874015748031,0
+Positive-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,1.056910569105691,1.0,1.5,1.065040650406504,1.0,5.3076923076923075,1.07002457002457,1.0,3.85,1.0601357904946653,1.0,4.1,1.06449864498645,1.0564516129032258,1.0,1.4827586206896552,1.06574827802129,1.0,10.545454545454545,0
+Sample_Size,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,172.0,137.0,35.0,1908.0,1744.0,164.0,930.0,833.0,97.0,1150.0,1048.0,102.0,2080.0,348.0,276.0,72.0,1732.0,1605.0,127.0,0
+Selection-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.7558139534883721,0.7956204379562044,0.6,0.9612159329140462,0.9724770642201835,0.8414634146341463,0.9365591397849462,0.9531812725090036,0.7938144329896907,0.9504347826086956,0.9646946564885496,0.803921568627451,0.9442307692307692,0.7528735632183908,0.7934782608695652,0.5972222222222222,0.9826789838337182,0.9881619937694704,0.9133858267716536,0
+Statistical_Bias,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.276128644034887,0.17380209140127534,0.6766640072007386,0.1289059558239749,0.07090503005124324,0.7456962884315602,0.14780473189310347,0.07679580415445281,0.7576030494837839,0.13564199115265949,0.07967400197584328,0.7106856446556344,0.1410801396568003,0.27502703770599213,0.1756101522346261,0.6561250986795618,0.1141670215730135,0.061682776893823135,0.7774521610226242,0
+Std,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.043211203603756757,0.039001217929493896,0.05969029038587135,0.024085471794644778,0.021311889128880726,0.053580155752525914,0.02490370556976991,0.021819603134675115,0.051388832667027276,0.026284313934036855,0.023220774891149123,0.057760675864883336,0.02566702269424442,0.04421187156900244,0.03990185592553161,0.060733598202307316,0.02194092141917757,0.019625040038418647,0.05120855619176078,0
+TNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.5714285714285714,1.0,0.0,0.25806451612903225,1.0,0.0,0.33620689655172414,1.0,0.0,0.31092436974789917,1.0,0.0,0.32340425531914896,0.57,1.0,0.0,0.14074074074074075,1.0,0.0,0
+TPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.8861788617886179,1.0,0.0,0.9849012775842044,1.0,0.0,0.9754299754299754,1.0,0.0,0.9806013579049466,1.0,0.0,0.978319783197832,0.8830645161290323,1.0,0.0,0.9931120851596744,1.0,0.0,0
+Accuracy,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.75,1.0,0.0,0.9129979035639413,1.0,0.0,0.8881720430107527,1.0,0.0,0.908695652173913,1.0,0.0,0.8995192307692308,0.7672413793103449,1.0,0.0,0.9260969976905312,1.0,0.0,0
+Aleatoric_Uncertainty,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.5891215644365289,0.48927546327099836,0.8886598679331205,0.32188174290524896,0.28410771416827957,0.718281490253446,0.33816043498710907,0.28987378572144484,0.7216678608855572,0.34868701739851005,0.30487696252362523,0.7847013730580786,0.343980420454951,0.5894883168279874,0.5015844215216906,0.8792456013561508,0.29465204404743556,0.26440718971122845,0.6736578749480313,0
+F1,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.8377358490566038,1.0,0.0,0.95347533632287,1.0,0.0,0.9387514723203769,1.0,0.0,0.9508196721311475,1.0,0.0,0.9454735194364727,0.8485981308411215,1.0,0.0,0.9611885991510006,1.0,0.0,0
+FNR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.0975609756097561,0.0,1.0,0.012195121951219513,0.0,1.0,0.020884520884520884,0.0,1.0,0.015518913676042677,0.0,1.0,0.01788617886178862,0.0846774193548387,0.0,1.0,0.007514088916718848,0.0,1.0,0
+FPR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.6326530612244898,0.0,1.0,0.7795698924731183,0.0,1.0,0.75,0.0,1.0,0.7478991596638656,0.0,1.0,0.7489361702127659,0.6,0.0,1.0,0.8592592592592593,0.0,1.0,0
+IQR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.023912502324325242,0.019156958789008097,0.0381791329302767,0.0105906991544979,0.00899457929829072,0.027340342464816637,0.011449354413518452,0.009318891051395165,0.028370149962689946,0.011888786766951107,0.009992728050671836,0.030759085419444807,0.011692309801233623,0.024201277940319232,0.019911003053478166,0.03834329515990644,0.009178960544650604,0.007994742522522323,0.02401869263444561,0
+Jitter,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.031174184877876737,0.013566281017488057,0.0839978964590242,0.008712983154767973,0.004615990399760046,0.05170672640311374,0.009350678121789593,0.005163894533198856,0.04260340162350032,0.011556696526108344,0.00528777860594856,0.07394735582675098,0.01057035175879348,0.036317651475770714,0.01897653059303909,0.0934791240151367,0.005397106781017945,0.002945368989586808,0.036120445979899496,0
+Label_Stability,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.9565697674418605,0.9824806201550388,0.8788372093023257,0.9871750524109015,0.9929793340987371,0.9262650602409638,0.987,0.9929176755447942,0.94,0.9827391304347827,0.9917320574162678,0.8932380952380953,0.9846442307692307,0.9476724137931033,0.9722846441947567,0.8665432098765432,0.9920727482678984,0.995579800498753,0.948125,0
+Mean,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.247355085785541,0.1906855690445673,0.41736363600846205,0.0969206653426322,0.07952414752913668,0.2794793040842538,0.10726019236204597,0.08341812655626832,0.29662121501177996,0.11105889159317614,0.09016854628423701,0.3189675663345226,0.1093604347254112,0.25966118353256934,0.21385445860289146,0.41065372126372957,0.07916143900665194,0.06610371755332499,0.2427910109686555,0
+Overall_Uncertainty,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.5909635668938957,0.49076897425279215,0.8915473448172062,0.32261979024028553,0.2847299722958807,0.7202346267412091,0.33896081277435763,0.2905226309331388,0.7236717570132695,0.3495397716557064,0.3055857571935519,0.7869868679695292,0.3448097563866418,0.5913754408802875,0.503139152384341,0.8822283918484076,0.2952688451835305,0.26494429908442346,0.6752733134879653,0
+PPV,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.7816901408450704,1.0,0.0,0.9214517876489707,1.0,0.0,0.9015837104072398,1.0,0.0,0.9193840579710145,1.0,0.0,0.9114688128772636,0.7909407665505227,1.0,0.0,0.9318048206937096,1.0,0.0,0
+Per_Sample_Accuracy,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.7585755813953488,0.9912403100775193,0.06058139534883721,0.9130110062893082,0.9964896670493686,0.036987951807228914,0.8883817204301075,0.9964588377723972,0.030000000000000002,0.9098304347826087,0.9958660287081338,0.05357142857142857,0.9002403846153846,0.7721982758620689,0.9861423220973783,0.06697530864197532,0.9259670900692841,0.9977899002493766,0.025937500000000002,0
+Positive-Rate,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,1.1544715447154472,1.0,2.5833333333333335,1.0720092915214867,1.0,6.904761904761905,1.085995085995086,1.0,5.117647058823529,1.0708050436469447,1.0,5.5625,1.0775067750677507,1.157258064516129,1.0,2.857142857142857,1.0651221039448966,1.0,9.666666666666666,0
+Sample_Size,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,172.0,129.0,43.0,1908.0,1742.0,166.0,930.0,826.0,104.0,1150.0,1045.0,105.0,2080.0,348.0,267.0,81.0,1732.0,1604.0,128.0,0
+Selection-Rate,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.8255813953488372,0.8604651162790697,0.7209302325581395,0.9675052410901468,0.9764638346727899,0.8734939759036144,0.9505376344086022,0.9648910411622276,0.8365384615384616,0.96,0.9712918660287081,0.8476190476190476,0.9557692307692308,0.8247126436781609,0.850187265917603,0.7407407407407407,0.9821016166281755,0.9881546134663342,0.90625,0
+Statistical_Bias,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.27504711670850107,0.1506133016514677,0.6483485618796012,0.1289834655119916,0.07031450212142086,0.7446541536226798,0.14859124342882396,0.07421384124811968,0.7393194569024943,0.1349727825060312,0.07714482845704078,0.7104986108983646,0.14106180589939527,0.27006616933129063,0.1543447765772945,0.6515181676685371,0.11514176059090822,0.06278486487681847,0.7712391100080953,0
+Std,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.01787989886811148,0.014373745163374837,0.028398359982321417,0.007869109465686797,0.006678257158356828,0.020365884883571175,0.008488198684187412,0.006924835756316542,0.020904908092084895,0.008865720599609819,0.007433323216474148,0.02312148503176959,0.008696924743194993,0.018098602317799122,0.014907720127373635,0.02861669546401646,0.006807904075780305,0.005927291659553734,0.01784307841661955,0
+TNR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.3673469387755102,1.0,0.0,0.22043010752688172,1.0,0.0,0.25,1.0,0.0,0.25210084033613445,1.0,0.0,0.251063829787234,0.4,1.0,0.0,0.14074074074074075,1.0,0.0,0
+TPR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.9024390243902439,1.0,0.0,0.9878048780487805,1.0,0.0,0.9791154791154791,1.0,0.0,0.9844810863239574,1.0,0.0,0.9821138211382113,0.9153225806451613,1.0,0.0,0.9924859110832811,1.0,0.0,0
+Accuracy,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.7965116279069767,1.0,0.0,0.9124737945492662,1.0,0.0,0.8946236559139785,1.0,0.0,0.9095652173913044,1.0,0.0,0.9028846153846154,0.7844827586206896,1.0,0.0,0.9266743648960739,1.0,0.0,0
+Aleatoric_Uncertainty,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.6115836953497042,0.5445957245167313,0.8737937526101981,0.31998663134588556,0.2817476539461111,0.7186336951363496,0.3395684737082231,0.2964984178968526,0.7052244577394499,0.3477636588343056,0.3044412964519983,0.7834866497178965,0.3440994654846629,0.611982495927394,0.5377857770264783,0.882058552726727,0.2902753923933983,0.2606334969786561,0.6648835982253761,0
+F1,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.8648648648648649,1.0,0.0,0.9531030609379387,1.0,0.0,0.9421487603305785,1.0,0.0,0.9510818438381938,1.0,0.0,0.9471204188481676,0.8554913294797688,1.0,0.0,0.9615268100575584,1.0,0.0,0
+FNR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.08943089430894309,0.0,1.0,0.014518002322880372,0.0,1.0,0.019656019656019656,0.0,1.0,0.019398642095053348,0.0,1.0,0.01951219512195122,0.10483870967741936,0.0,1.0,0.006261740763932373,0.0,1.0,0
+FPR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.4897959183673469,0.0,1.0,0.7634408602150538,0.0,1.0,0.7068965517241379,0.0,1.0,0.7058823529411765,0.0,1.0,0.7063829787234043,0.49,0.0,1.0,0.8666666666666667,0.0,1.0,0
+IQR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.024815218199418322,0.021806889229005432,0.03659067731217739,0.010269958261550924,0.008581377613600439,0.027873664297968836,0.011223445322083164,0.009369705301001008,0.02696131978678064,0.011674342385914586,0.00968654630900504,0.03166698369790868,0.011472739371797653,0.025265706341934365,0.02147089571666985,0.03907881701789719,0.008701404206897204,0.007517861507165882,0.02365877454602139,0
+Jitter,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.030009349070934097,0.025189817701649676,0.04887437185929909,0.007254511551468568,0.002381984592693784,0.05805133451689412,0.0088068838817726,0.005149425009663387,0.03985796328580953,0.00940244701769683,0.0031679910066586894,0.07210668728256929,0.009136161577115758,0.03350950153064315,0.016894177848956526,0.09398927973197556,0.0042389777989251635,0.0018603923042000519,0.034299054326745924,0
+Label_Stability,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.9577906976744187,0.9631386861313868,0.9368571428571428,0.99,0.9969902354968408,0.9171257485029938,0.9877741935483872,0.9928365384615384,0.944795918367347,0.9869826086956519,0.9958604206500957,0.8976923076923077,0.9873365384615383,0.9535057471264368,0.9763003663003662,0.8705333333333334,0.994133949191686,0.9976199376947041,0.9500787401574803,0
+Mean,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.27990861449265425,0.23687207410087685,0.4483659297404686,0.09764045847136385,0.07943268391798641,0.28745923390507744,0.1115736628080759,0.0894819945281686,0.2991274180007584,0.1136337130822506,0.09205999751969234,0.3306155061441347,0.11271263291158595,0.2910565701228048,0.24731175503180208,0.45028769705405447,0.07687909356429717,0.0643163038812165,0.23564505766937208,0
+Overall_Uncertainty,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.6136094522005411,0.5463904551386578,0.8767238121284847,0.32069789872723925,0.2823317997970399,0.7206702235025518,0.34037042780630966,0.2971631788415554,0.7071911537111623,0.3485981901653893,0.3051198766773121,0.7858896892858577,0.3449194310336854,0.6140499172446062,0.5395372672119887,0.8852759633633344,0.29084471440470133,0.2611224185992334,0.6664690039147482,0
+PPV,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.8235294117647058,1.0,0.0,0.922784121805329,1.0,0.0,0.9068181818181819,1.0,0.0,0.9232876712328767,1.0,0.0,0.9159493670886076,0.8191881918819188,1.0,0.0,0.9313380281690141,1.0,0.0,0
+Per_Sample_Accuracy,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.7882558139534883,0.9815693430656934,0.03157142857142858,0.914727463312369,0.9984951177484205,0.041437125748502994,0.8943279569892472,0.9964182692307693,0.027602040816326532,0.9123086956521739,0.9979302103250478,0.051153846153846154,0.9042692307692308,0.7891379310344828,0.9881501831501831,0.06473333333333334,0.9274018475750577,0.9988099688473521,0.024960629921259844,0
+Positive-Rate,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,1.1056910569105691,1.0,2.1818181818181817,1.0679442508710801,1.0,5.68,1.0810810810810811,1.0,5.125,1.0620756547041708,1.0,4.2,1.070460704607046,1.092741935483871,1.0,1.8846153846153846,1.0670006261740763,1.0,11.7,0
+Sample_Size,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,172.0,137.0,35.0,1908.0,1741.0,167.0,930.0,832.0,98.0,1150.0,1046.0,104.0,2080.0,348.0,273.0,75.0,1732.0,1605.0,127.0,0
+Selection-Rate,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.7906976744186046,0.8175182481751825,0.6857142857142857,0.9638364779874213,0.9747271682940839,0.8502994011976048,0.946236559139785,0.9591346153846154,0.8367346938775511,0.9521739130434783,0.9665391969407265,0.8076923076923077,0.9495192307692307,0.7787356321839081,0.8131868131868132,0.6533333333333333,0.9838337182448037,0.9887850467289719,0.9212598425196851,0
+Statistical_Bias,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.2758597442084151,0.17583238687974592,0.6673954000377772,0.12760814856082148,0.06867265133679296,0.7420195298005438,0.14761280273512567,0.07672551110543081,0.7494314418770248,0.13360375383845904,0.07630257910149453,0.7099213382121593,0.13986741512398787,0.2715719704816224,0.16753202078607243,0.6502773873734242,0.1134048370267264,0.06100428741762241,0.7756322553150093,0
+Std,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.01887249133378814,0.016512447630630023,0.028110376686149914,0.007664241811293473,0.006403741772299821,0.02080514341541292,0.008452462635865162,0.007046440163211389,0.020389306485333932,0.008703175333917306,0.007216521544147636,0.02365548171948537,0.008591077829499763,0.019081231222147953,0.01617745777272049,0.02965096657806392,0.00648335647809008,0.005604158117767979,0.01759448536247567,0
+TNR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.5102040816326531,1.0,0.0,0.23655913978494625,1.0,0.0,0.29310344827586204,1.0,0.0,0.29411764705882354,1.0,0.0,0.2936170212765957,0.51,1.0,0.0,0.13333333333333333,1.0,0.0,0
+TPR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.9105691056910569,1.0,0.0,0.9854819976771196,1.0,0.0,0.9803439803439803,1.0,0.0,0.9806013579049466,1.0,0.0,0.9804878048780488,0.8951612903225806,1.0,0.0,0.9937382592360676,1.0,0.0,0
+Accuracy,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.7790697674418605,1.0,0.0,0.9140461215932913,1.0,0.0,0.889247311827957,1.0,0.0,0.9139130434782609,1.0,0.0,0.9028846153846154,0.7787356321839081,1.0,0.0,0.9278290993071594,1.0,0.0,0
+Aleatoric_Uncertainty,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.39592839083088177,0.345805679425671,0.5726768994703095,0.2021904318614913,0.17798363293063837,0.45960907415056135,0.21502472358467864,0.18395882725444804,0.46445672615847194,0.22078785589642255,0.19467884560860582,0.49796532874991134,0.2182110707762678,0.39722758461153446,0.3478601176522983,0.5709754228706647,0.18224239478627194,0.16333000932812722,0.4253800222361812,0
+F1,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.8527131782945736,1.0,0.0,0.9538028169014084,1.0,0.0,0.9390171699230314,1.0,0.0,0.9532798489853704,1.0,0.0,0.946953781512605,0.8504854368932039,1.0,0.0,0.962040692377771,1.0,0.0,0
+FNR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.10569105691056911,0.0,1.0,0.01684088269454123,0.0,1.0,0.025798525798525797,0.0,1.0,0.020368574199806012,0.0,1.0,0.022764227642276424,0.11693548387096774,0.0,1.0,0.008140262993112084,0.0,1.0,0
+FPR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.5102040816326531,0.0,1.0,0.7258064516129032,0.0,1.0,0.7068965517241379,0.0,1.0,0.6554621848739496,0.0,1.0,0.6808510638297872,0.48,0.0,1.0,0.8296296296296296,0.0,1.0,0
+IQR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.15908351589457667,0.13563815722483819,0.2417592543615492,0.0752969261849312,0.0616189297021114,0.2207507424412589,0.08110827525610916,0.0655472027261666,0.20605009061788096,0.08312887296220384,0.0679651663311806,0.24410923325720804,0.08222543264169034,0.16457830906802673,0.1342343043150902,0.27137344267901103,0.06567878079621399,0.05554538270019985,0.19595374671857185,0
+Jitter,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.1598913170503697,0.1342638565964109,0.25026183549325454,0.06353065115935905,0.05185160319948576,0.1877273562936732,0.07066985464958188,0.054346581760067667,0.20173147289846627,0.07216941227878665,0.060395746573017474,0.19716055022586562,0.07149893699265836,0.15868408132617043,0.1312162287452149,0.25535665339685243,0.053981367576914366,0.04533973539133085,0.16507819095476403,0
+Label_Stability,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.7993023255813955,0.837910447761194,0.6631578947368421,0.92416142557652,0.9394667431192661,0.7614024390243903,0.9147634408602151,0.937049576783555,0.7358252427184465,0.9130869565217393,0.9284205518553759,0.7503030303030301,0.9138365384615386,0.8010632183908045,0.841180811808118,0.6598701298701299,0.9364953810623557,0.9475731176104543,0.79408,0
+Mean,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.27959745200299124,0.23440985530667052,0.43894318772159613,0.09741696798948628,0.07959864389316311,0.2868996339894108,0.11061309223206439,0.08615939047496757,0.3069549500293369,0.11399318338489951,0.09417425274783266,0.3243941540874982,0.11248189262906458,0.2900997099779303,0.24581031439858966,0.4459753749389861,0.07679424803471975,0.06447813339063628,0.2351302178990567,0
+Overall_Uncertainty,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.6177290090183984,0.5434985783687246,0.8794889486777746,0.3111113491891901,0.2735805366044171,0.7102195025297032,0.331049351633622,0.28209369702908565,0.7241204813224725,0.34084691024771374,0.3012956973325011,0.7607289786708292,0.33646627105968235,0.6202617329292858,0.5466346669149742,0.8793907574731609,0.2794450119773371,0.25004061643158343,0.6574679211135468,0
+PPV,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.8148148148148148,1.0,0.0,0.9261487964989059,1.0,0.0,0.9062857142857143,1.0,0.0,0.9283088235294118,1.0,0.0,0.9184921039225675,0.8202247191011236,1.0,0.0,0.9339622641509434,1.0,0.0,0
+Per_Sample_Accuracy,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.7522674418604652,0.9130597014925372,0.18526315789473685,0.8967767295597484,0.967858371559633,0.14088414634146343,0.8762311827956989,0.9662756952841596,0.15325242718446602,0.8917782608695651,0.9621170313986679,0.14505050505050507,0.8848269230769231,0.7546120689655172,0.9138007380073802,0.19435064935064936,0.9109901847575058,0.9724051026757934,0.12143999999999999,0
+Positive-Rate,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,1.0975609756097562,1.0,1.9230769230769231,1.0615563298490127,1.0,4.655172413793103,1.074938574938575,1.0,3.9047619047619047,1.055286129970902,1.0,3.7142857142857144,1.0639566395663957,1.0766129032258065,1.0,1.6551724137931034,1.0619912335629305,1.0,8.615384615384615,0
+Sample_Size,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,172.0,134.0,38.0,1908.0,1744.0,164.0,930.0,827.0,103.0,1150.0,1051.0,99.0,2080.0,348.0,271.0,77.0,1732.0,1607.0,125.0,0
+Selection-Rate,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.7848837209302325,0.8208955223880597,0.6578947368421053,0.9580712788259959,0.970756880733945,0.823170731707317,0.9408602150537635,0.9588875453446191,0.7961165048543689,0.9460869565217391,0.9609895337773549,0.7878787878787878,0.94375,0.7672413793103449,0.8081180811808119,0.6233766233766234,0.9792147806004619,0.985687616677038,0.896,0
+Statistical_Bias,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.2845342482087718,0.17736885006743314,0.6624332837598085,0.12869735666532595,0.07001678768213461,0.7527151146329215,0.14820267026425304,0.07440029968425345,0.740771218513376,0.13623127292486545,0.08025466773339789,0.7304879603615568,0.14158386885064936,0.28265475158042863,0.1746623813286797,0.6627317949339865,0.11323937278254127,0.0613212185977639,0.7806991629820391,0
+Std,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.20013356180486322,0.1809615358266966,0.2677401797278716,0.10619063365442924,0.09506844753352973,0.2244655885010679,0.11208641793994946,0.09733071059836869,0.23056185455633124,0.11547333300776907,0.10423950583672913,0.234733457823557,0.11395899117456128,0.2013623426624389,0.18221828729093412,0.2687394726063065,0.09639757875089995,0.08753395298283138,0.21034835162518925,0
+TNR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.4897959183673469,1.0,0.0,0.27419354838709675,1.0,0.0,0.29310344827586204,1.0,0.0,0.3445378151260504,1.0,0.0,0.3191489361702128,0.52,1.0,0.0,0.17037037037037037,1.0,0.0,0
+TPR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.8943089430894309,1.0,0.0,0.9831591173054588,1.0,0.0,0.9742014742014742,1.0,0.0,0.979631425800194,1.0,0.0,0.9772357723577236,0.8830645161290323,1.0,0.0,0.9918597370068879,1.0,0.0,0
+Accuracy,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.75,1.0,0.0,0.9030398322851153,1.0,0.0,0.8827956989247312,1.0,0.0,0.8965217391304348,1.0,0.0,0.8903846153846153,0.7442528735632183,1.0,0.0,0.9197459584295612,1.0,0.0,0
+Aleatoric_Uncertainty,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.0902220830630179,0.0777709581699652,0.12757545774217605,0.05008348843835426,0.04246982495090536,0.12099344621605407,0.0537261105967286,0.045174973756671045,0.11813421468560242,0.05314105336718383,0.044732598002045106,0.12599078010212525,0.05340264145539376,0.08700416833707765,0.07218328173309448,0.13013461362282647,0.04665129540757274,0.04049748400845197,0.11717663036296411,0
+F1,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.8313725490196079,1.0,0.0,0.94754749078537,1.0,0.0,0.9351576442593694,1.0,0.0,0.9433603046168492,1.0,0.0,0.9397144368059228,0.8271844660194175,1.0,0.0,0.9574533210896847,1.0,0.0,0
+FNR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.13821138211382114,0.0,1.0,0.029616724738675958,0.0,1.0,0.0343980343980344,0.0,1.0,0.038797284190106696,0.0,1.0,0.03685636856368564,0.14112903225806453,0.0,1.0,0.020663744520976832,0.0,1.0,0
+FPR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.5306122448979592,0.0,1.0,0.7204301075268817,0.0,1.0,0.6982758620689655,0.0,1.0,0.6638655462184874,0.0,1.0,0.6808510638297872,0.54,0.0,1.0,0.7851851851851852,0.0,1.0,0
+IQR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.34062075328581615,0.2789005545988675,0.5257813493466622,0.13349297228433363,0.09549155619061678,0.48741967460581553,0.14269388878760147,0.10675316355847014,0.4134033879905081,0.15703134270539093,0.10947213926108885,0.5690778868320754,0.15062084648253313,0.35023159099034945,0.26444547604213864,0.5998788243789629,0.11051429966456544,0.08287429037336642,0.4272807370809687,0
+Jitter,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.25363415916793314,0.2160305402984102,0.36644501577656896,0.12502175447467961,0.10389352450003994,0.3217998098601097,0.13281309774678782,0.10903071998237104,0.311944585311888,0.13795687131308645,0.11383342512758028,0.34695916557577816,0.13565701101661398,0.2575469300525594,0.21568169030481296,0.37937948167805524,0.11116642682233019,0.09479907383748722,0.2987433570731236,0
+Label_Stability,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.6287790697674419,0.6868217054263567,0.45465116279069767,0.8285744234800839,0.8627045850261172,0.5107027027027027,0.8168172043010754,0.853020706455542,0.5441284403669724,0.8081999999999999,0.8484093113482056,0.45983193277310924,0.8120528846153847,0.624367816091954,0.6946332046332047,0.41988764044943816,0.8497632794457275,0.8757878217200252,0.5515107913669065,0
+Mean,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.2757055884327329,0.2224482133830747,0.4354777135817077,0.1070713278231359,0.08393719946367835,0.32253134492229985,0.11785572340173939,0.09016463193295457,0.3264280729051552,0.12357185385509192,0.09630887622248181,0.35977462645358804,0.12101608398892949,0.2865110924704483,0.23561680084289205,0.4346191995663705,0.08776420006770055,0.07049269477967696,0.2857031059944743,0
+Overall_Uncertainty,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.5609886482288307,0.485641189258622,0.7870310251394568,0.29782837866809003,0.2550663626549219,0.6960929926718127,0.3142107017181388,0.26519856058900737,0.6833755445348073,0.3239396881706136,0.27584775754143315,0.7406017089998991,0.3195897086509974,0.5692849608539868,0.488061902284981,0.8056531874761502,0.2694199928503968,0.2358562608769508,0.6540748492079469,0
+PPV,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.803030303030303,1.0,0.0,0.9257617728531856,1.0,0.0,0.9065743944636678,1.0,0.0,0.9261682242990654,1.0,0.0,0.9173980382034074,0.797752808988764,1.0,0.0,0.9365269461077844,1.0,0.0,0
+Per_Sample_Accuracy,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.7007267441860465,0.8434108527131783,0.27267441860465114,0.864769392033543,0.9313464886825303,0.24470270270270267,0.8446236559139785,0.9264981729598051,0.22793577981651378,0.8565260869565217,0.9242046556741028,0.27016806722689074,0.851204326923077,0.7048275862068965,0.8473166023166022,0.29016853932584274,0.880614896073903,0.9378876333961079,0.22424460431654675,0
+Positive-Rate,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,1.0731707317073171,1.0,1.5294117647058822,1.0481997677119628,1.0,2.627450980392157,1.065110565110565,1.0,2.892857142857143,1.037827352085354,1.0,1.975,1.0498644986449865,1.0766129032258065,1.0,1.542857142857143,1.0457107075767063,1.0,3.212121212121212,0
+Sample_Size,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,172.0,129.0,43.0,1908.0,1723.0,185.0,930.0,821.0,109.0,1150.0,1031.0,119.0,2080.0,348.0,259.0,89.0,1732.0,1593.0,139.0,0
+Selection-Rate,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.7674418604651163,0.8217054263565892,0.6046511627906976,0.9460167714884696,0.9698200812536274,0.7243243243243244,0.932258064516129,0.9573690621193667,0.7431192660550459,0.9304347826086956,0.9612027158098934,0.6638655462184874,0.93125,0.7672413793103449,0.8223938223938224,0.6067415730337079,0.964203233256351,0.9817953546767106,0.762589928057554,0
+Statistical_Bias,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.30023287755938216,0.15850182916013472,0.7254260227571246,0.13624653180061283,0.07006346390199378,0.7526434290401838,0.15643967626815544,0.07503362310404371,0.7695990308345385,0.14444307711860732,0.07717117332334895,0.7272778066388711,0.14980694116143414,0.29583679367405696,0.15426341447734093,0.7078312342577586,0.12046607010231593,0.06353537973330908,0.7729163561298551,0
+Std,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.2897117585629207,0.25628674703868176,0.3899867931356377,0.1672310859552482,0.14799797156173605,0.3463589567661744,0.17495256754633828,0.1526346346354529,0.34305369525126406,0.1793056057889924,0.1578549566761924,0.3651511455814026,0.1773592954208826,0.29510153645964743,0.2605411335951489,0.39567619198667137,0.15370207839923705,0.13846914109712344,0.3282781152500787,0
+TNR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.46938775510204084,1.0,0.0,0.27956989247311825,1.0,0.0,0.3017241379310345,1.0,0.0,0.33613445378151263,1.0,0.0,0.3191489361702128,0.46,1.0,0.0,0.21481481481481482,1.0,0.0,0
+TPR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.8617886178861789,1.0,0.0,0.9703832752613241,1.0,0.0,0.9656019656019657,1.0,0.0,0.9612027158098934,1.0,0.0,0.9631436314363143,0.8588709677419355,1.0,0.0,0.9793362554790231,1.0,0.0,0
+Accuracy,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.7558139534883721,1.0,0.0,0.909853249475891,1.0,0.0,0.8849462365591397,1.0,0.0,0.9069565217391304,1.0,0.0,0.8971153846153846,0.7528735632183908,1.0,0.0,0.9260969976905312,1.0,0.0,0
+Aleatoric_Uncertainty,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.6022044189316094,0.521108979184154,0.8532141133880186,0.3484698387738183,0.3113603451578628,0.7230168208511367,0.3593688390726835,0.3118207994808255,0.7250888071483762,0.3776057322600752,0.3371401807433082,0.7720503138674396,0.36945173674840487,0.6077561988772564,0.5270982962140403,0.8534814372233336,0.3215707016324462,0.2931209307231367,0.6780818933397313,0
+F1,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.8421052631578947,1.0,0.0,0.9515492957746479,1.0,0.0,0.9368731563421829,1.0,0.0,0.9495520980669495,1.0,0.0,0.9439203354297694,0.8371212121212122,1.0,0.0,0.9610705596107056,1.0,0.0,0
+FNR,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.08943089430894309,0.0,1.0,0.01916376306620209,0.0,1.0,0.02457002457002457,0.0,1.0,0.023278370514064017,0.0,1.0,0.023848238482384824,0.10887096774193548,0.0,1.0,0.010644959298685034,0.0,1.0,0
+FPR,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.6326530612244898,0.0,1.0,0.7473118279569892,0.0,1.0,0.75,0.0,1.0,0.6974789915966386,0.0,1.0,0.723404255319149,0.59,0.0,1.0,0.8222222222222222,0.0,1.0,0
+IQR,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.10810431150236569,0.09817118814664716,0.13884969331768487,0.06186312210984109,0.05491215880115068,0.1320193564347627,0.06374646950879972,0.055144941252334996,0.1299058877804863,0.06725614080069561,0.06012030248052735,0.13681389190289645,0.065686912771146,0.1072239288535614,0.0967748695253259,0.13905710959772075,0.057341138177219586,0.051580265786924165,0.12953207031810915,0
+Jitter,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.10813719761598818,0.07441824507150736,0.21250538406317626,0.0343496834276194,0.0218388312530406,0.1606220053757105,0.040426487275076285,0.025153043467641915,0.15790353637345347,0.040471444177406765,0.025777208188593134,0.18370591274127906,0.0404513432547338,0.10479538497082974,0.06564808776707973,0.22405808110319125,0.02752309468822112,0.018944379002243484,0.1350251256281407,0
+Label_Stability,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.8451162790697675,0.8938461538461538,0.6942857142857143,0.9504297693920336,0.9690725806451612,0.7622674418604652,0.9423333333333334,0.964872417982989,0.7689719626168224,0.9412260869565218,0.9630105465004795,0.7288785046728972,0.941721153846154,0.8458908045977012,0.9035877862595421,0.6701162790697673,0.9609757505773673,0.9736720698254364,0.801875,0
+Mean,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.2639932810395895,0.2156748853161827,0.4135502201834677,0.11544993393956768,0.09579796323675911,0.31379773126558924,0.12353172826168819,0.09803073880801871,0.31967485275112717,0.1311311400105518,0.10897766177480168,0.34707579234594743,0.12773332610360796,0.2764247232556483,0.2277661833560042,0.42466353085688957,0.09785768741486083,0.0839577676002771,0.2720410575913631,0
+Overall_Uncertainty,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.6342606919828047,0.5519313100613914,0.8890897312633693,0.3691633946573703,0.3303803236436642,0.7606018323305902,0.3805203914808457,0.3308344787712595,0.7626840004527105,0.39962837560879855,0.3576361803687779,0.808954166593299,0.39108490193620427,0.6390378279056512,0.5570925808174096,0.8886849760116896,0.34126526092155784,0.3113048977426562,0.7167060620071696,0
+PPV,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.7832167832167832,1.0,0.0,0.9239606126914661,1.0,0.0,0.9012485811577753,1.0,0.0,0.9238532110091743,1.0,0.0,0.9137493658041603,0.7892857142857143,1.0,0.0,0.9343583678296866,1.0,0.0,0
+Per_Sample_Accuracy,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.7526744186046512,0.9460000000000001,0.15428571428571428,0.9065041928721174,0.9844902073732718,0.11938953488372094,0.8826612903225807,0.9822904009720534,0.11635514018691591,0.9027782608695654,0.9814285714285715,0.13612149532710283,0.8937836538461538,0.7573132183908047,0.9512977099236641,0.16633720930232557,0.9212038106235566,0.9867923940149624,0.09929687499999999,0
+Positive-Rate,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,1.1626016260162602,1.0,2.8181818181818183,1.0615563298490127,1.0,4.212121212121212,1.0823095823095823,1.0,4.35,1.0572259941804074,1.0,3.4583333333333335,1.0682926829268293,1.1290322580645162,1.0,2.185185185185185,1.0588603631809643,1.0,6.529411764705882,0
+Sample_Size,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,172.0,130.0,42.0,1908.0,1736.0,172.0,930.0,823.0,107.0,1150.0,1043.0,107.0,2080.0,348.0,262.0,86.0,1732.0,1604.0,128.0,0
+Selection-Rate,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.8313953488372093,0.8615384615384616,0.7380952380952381,0.9580712788259959,0.972926267281106,0.8081395348837209,0.9473118279569892,0.9647630619684082,0.8130841121495327,0.9478260869565217,0.965484180249281,0.7757009345794392,0.9475961538461538,0.8045977011494253,0.8435114503816794,0.686046511627907,0.9763279445727483,0.9850374064837906,0.8671875,0
+Statistical_Bias,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.293494907787834,0.17606795947696244,0.656959271607198,0.14457423380311982,0.08718443511365298,0.7238108066223895,0.16163778851367724,0.08867080060776031,0.7228698543694679,0.15304836427664367,0.09709007208928086,0.6985109694300957,0.15688882799800963,0.2929014432168847,0.17455731305732203,0.6534382118425291,0.12956065819652662,0.0801165823368381,0.7491567338132484,0
+Std,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.07628767892055953,0.06843666044048978,0.10058845040648969,0.044731479410986215,0.0400094305644904,0.09239122823375792,0.046051962446283845,0.04008535734770087,0.09194463530734737,0.048383320361264304,0.043492702032656934,0.09605542238684825,0.0473409343704317,0.07589662096423555,0.06797453264662726,0.10003135514113522,0.0416034176645173,0.0377455173091039,0.08994773149329141,0
+TNR,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.3673469387755102,1.0,0.0,0.25268817204301075,1.0,0.0,0.25,1.0,0.0,0.3025210084033613,1.0,0.0,0.2765957446808511,0.41,1.0,0.0,0.17777777777777778,1.0,0.0,0
+TPR,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.9105691056910569,1.0,0.0,0.980836236933798,1.0,0.0,0.9754299754299754,1.0,0.0,0.976721629485936,1.0,0.0,0.9761517615176152,0.8911290322580645,1.0,0.0,0.989355040701315,1.0,0.0,0
+Accuracy,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.7790697674418605,1.0,0.0,0.9093291404612159,1.0,0.0,0.8870967741935484,1.0,0.0,0.9078260869565218,1.0,0.0,0.8985576923076923,0.7758620689655172,1.0,0.0,0.9232101616628176,1.0,0.0,0
+Aleatoric_Uncertainty,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.5977444702201369,0.52641213059897,0.8492848257263567,0.29759453661457524,0.25859598606787126,0.6887071678199601,0.31924208301884716,0.27054726006554647,0.70184426336621,0.32498025002690895,0.28352660131603713,0.7332595826132319,0.32241462727811215,0.5992651412379819,0.5297867342600268,0.8397673192385964,0.2667887734339812,0.2352475566465362,0.6459948309010837,0
+F1,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.8503937007874016,1.0,0.0,0.9512263884973217,1.0,0.0,0.9377593360995851,1.0,0.0,0.9498580889309366,1.0,0.0,0.9444882925545909,0.8470588235294118,1.0,0.0,0.9595867517471893,1.0,0.0,0
+FNR,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.12195121951219512,0.0,1.0,0.02032520325203252,0.0,1.0,0.028255528255528257,0.0,1.0,0.026188166828322017,0.0,1.0,0.02710027100271003,0.12903225806451613,0.0,1.0,0.011271133375078271,0.0,1.0,0
+FPR,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.46938775510204084,0.0,1.0,0.7419354838709677,0.0,1.0,0.7068965517241379,0.0,1.0,0.6638655462184874,0.0,1.0,0.6851063829787234,0.46,0.0,1.0,0.8518518518518519,0.0,1.0,0
+IQR,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.10380813953488373,0.09394402985074626,0.13859210526315788,0.056979035639413,0.04992334293948126,0.1277398843930636,0.05988978494623656,0.05135878787878788,0.12691904761904763,0.06162913043478262,0.05443917624521073,0.1324433962264151,0.060851442307692315,0.10677586206896553,0.09695555555555556,0.14076923076923079,0.05162413394919169,0.04567073170731707,0.12319924812030075,0
+Jitter,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.1159217599626041,0.08694292357309338,0.21811028828352702,0.031064362693972943,0.01954261219642836,0.14661486623870681,0.03989285135353373,0.02438769605603032,0.16171907154821602,0.0366165173694544,0.024364879955332142,0.15728358775007056,0.03808141669887758,0.10816034193958138,0.07854624976735551,0.21067066099729817,0.024000893613564184,0.015227827693816219,0.12947557335550425,0
+Label_Stability,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.8321511627906977,0.874179104477612,0.6839473684210527,0.9555293501048219,0.9727723342939483,0.7826011560693641,0.9416666666666667,0.9650545454545454,0.7579047619047617,0.9482869565217393,0.9662164750957855,0.7716981132075471,0.9453269230769231,0.8437931034482758,0.8851481481481481,0.7006410256410256,0.9657274826789839,0.9793058161350844,0.8024812030075189,0
+Mean,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.2773600581395349,0.23318694029850748,0.4331284210526316,0.10159428197064989,0.08175657060518729,0.30054473988439306,0.11440239784946236,0.08902919999999998,0.31376323809523804,0.1175248608695652,0.0954459865900383,0.33498094339622636,0.1161287596153846,0.2894466379310345,0.24440133333333333,0.4453726923076924,0.08130507505773671,0.06698332707942463,0.2534890977443609,0
+Overall_Uncertainty,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.6271478237767765,0.554350830750133,0.8838530097128348,0.31693254608433247,0.27626780032206755,0.7247552853764114,0.33925436466949827,0.2886223410419027,0.7370774074577492,0.34527840389206826,0.3021975225284821,0.7695844429824833,0.34258496327813076,0.6299433518283812,0.5589486724792085,0.8756941649601331,0.2848478274724222,0.2518395893120192,0.6816912321226806,0
+PPV,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.8244274809160306,1.0,0.0,0.9243835616438356,1.0,0.0,0.9060710194730813,1.0,0.0,0.9270544783010157,1.0,0.0,0.9176891615541922,0.8244274809160306,1.0,0.0,0.9321133412042503,1.0,0.0,0
+Per_Sample_Accuracy,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.7649709302325582,0.9370149253731344,0.15828947368421054,0.9068684486373165,0.986328530259366,0.10997109826589595,0.8853172043010753,0.9824909090909092,0.1218095238095238,0.9030739130434783,0.9830316091954021,0.11556603773584906,0.8951346153846155,0.7650574712643678,0.9422407407407407,0.15173076923076925,0.921270207852194,0.9896404002501563,0.09928571428571428,0
+Positive-Rate,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,1.065040650406504,1.0,1.5333333333333334,1.0598141695702672,1.0,3.942857142857143,1.0724815724815724,1.0,3.5652173913043477,1.0504364694471386,1.0,2.925925925925926,1.0601626016260162,1.0564516129032258,1.0,1.4375,1.060738885410144,1.0,6.388888888888889,0
+Sample_Size,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,172.0,134.0,38.0,1908.0,1735.0,173.0,930.0,825.0,105.0,1150.0,1044.0,106.0,2080.0,348.0,270.0,78.0,1732.0,1599.0,133.0,0
+Selection-Rate,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.7616279069767442,0.8059701492537313,0.6052631578947368,0.9564989517819706,0.9723342939481268,0.7976878612716763,0.9387096774193548,0.9587878787878787,0.780952380952381,0.9417391304347826,0.9616858237547893,0.7452830188679245,0.9403846153846154,0.7528735632183908,0.8,0.5897435897435898,0.9780600461893765,0.9874921826141339,0.8646616541353384,0
+Statistical_Bias,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.2877847093023256,0.18303380597014923,0.6571694736842105,0.13291773060796644,0.07233455331412102,0.7405004624277457,0.15161317204301075,0.07806539393939393,0.7294885714285714,0.14096152173913043,0.08201439655172413,0.7215350943396226,0.14572403846153845,0.2892299712643678,0.18118155555555554,0.6632437179487178,0.1168902829099307,0.06323199499687303,0.7620000751879699,0
+Std,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.07305468283664128,0.06585784196897422,0.09843301642262514,0.03967207422680322,0.03487349564038114,0.08779654733340607,0.041894501288248155,0.03603838511536694,0.08790684264660058,0.04286768423875831,0.03792988317981428,0.09150036636647116,0.04243255916953982,0.07455480562429982,0.06745286046536986,0.09913846194367282,0.03597843574791368,0.031968851428551576,0.08418388933182348,0
+TNR,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.5306122448979592,1.0,0.0,0.25806451612903225,1.0,0.0,0.29310344827586204,1.0,0.0,0.33613445378151263,1.0,0.0,0.3148936170212766,0.54,1.0,0.0,0.14814814814814814,1.0,0.0,0
+TPR,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.8780487804878049,1.0,0.0,0.9796747967479674,1.0,0.0,0.9717444717444718,1.0,0.0,0.973811833171678,1.0,0.0,0.9728997289972899,0.8709677419354839,1.0,0.0,0.9887288666249218,1.0,0.0,0
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index 9ca3cc71..21e86f3d 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -86,7 +86,7 @@ def start_web_app(self):
scale=2
)
acc_min_val = gr.Number(value=0.7, label="Min value", scale=1)
- acc_max_val = gr.Number(value=0.85, label="Max value", scale=1)
+ acc_max_val = gr.Number(value=1.0, label="Max value", scale=1)
with gr.Row():
fairness_metric = gr.Dropdown(
['Equalized_Odds_TPR', 'Equalized_Odds_FPR', 'Disparate_Impact', 'Statistical_Parity_Difference', 'Accuracy_Parity'],
@@ -102,7 +102,7 @@ def start_web_app(self):
scale=2
)
subgroup_stab_min_val = gr.Number(value=0.9, label="Min value", scale=1)
- subgroup_stab_max_val = gr.Number(value=0.94, label="Max value", scale=1)
+ subgroup_stab_max_val = gr.Number(value=1.0, label="Max value", scale=1)
with gr.Row():
group_stability_metrics = gr.Dropdown(
['Label_Stability_Ratio', 'IQR_Parity', 'Std_Parity', 'Std_Ratio', 'Jitter_Parity'],
From cb207bb64bdc75ef6dc5dfa779261b80dbb098e8 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Thu, 5 Oct 2023 01:41:06 +0300
Subject: [PATCH 010/148] Added an overall subgrop to heatmaps
---
...Multiple_Models_Interface_Vis_Income.ipynb | 91 ++++++++++---------
.../metrics_interactive_visualizer.py | 51 +++++++----
2 files changed, 81 insertions(+), 61 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
index 7b653984..086dfd4a 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
@@ -2,15 +2,24 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 13,
"id": "248cbed8",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-04T21:08:30.999391Z",
- "start_time": "2023-10-04T21:08:30.521174Z"
+ "end_time": "2023-10-04T21:22:16.448256Z",
+ "start_time": "2023-10-04T21:22:16.399916Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The autoreload extension is already loaded. To reload it, use:\n",
+ " %reload_ext autoreload\n"
+ ]
+ }
+ ],
"source": [
"%matplotlib inline\n",
"%load_ext autoreload\n",
@@ -19,12 +28,12 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 14,
"id": "7ec6cd08",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-04T21:08:31.008054Z",
- "start_time": "2023-10-04T21:08:31.000071Z"
+ "end_time": "2023-10-04T21:22:16.489117Z",
+ "start_time": "2023-10-04T21:22:16.447387Z"
}
},
"outputs": [],
@@ -37,12 +46,12 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 15,
"id": "b8cb69f2",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-04T21:08:31.018864Z",
- "start_time": "2023-10-04T21:08:31.008657Z"
+ "end_time": "2023-10-04T21:22:16.493213Z",
+ "start_time": "2023-10-04T21:22:16.472246Z"
}
},
"outputs": [
@@ -72,12 +81,12 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 16,
"id": "7a9241de",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-04T21:08:33.567112Z",
- "start_time": "2023-10-04T21:08:31.017655Z"
+ "end_time": "2023-10-04T21:22:16.529742Z",
+ "start_time": "2023-10-04T21:22:16.494483Z"
}
},
"outputs": [],
@@ -90,7 +99,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 17,
"outputs": [],
"source": [
"sensitive_attributes_dct = {'SEX': '2', 'RAC1P': ['2', '3', '4', '5', '6', '7', '8', '9'], 'SEX&RAC1P': None}"
@@ -98,15 +107,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T21:08:33.593962Z",
- "start_time": "2023-10-04T21:08:33.567969Z"
+ "end_time": "2023-10-04T21:22:16.537318Z",
+ "start_time": "2023-10-04T21:22:16.516511Z"
}
},
"id": "d3c53c7b72ecbcd0"
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 18,
"outputs": [],
"source": [
"ROOT_DIR = os.path.join('docs', 'examples')\n",
@@ -116,15 +125,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T21:08:33.619601Z",
- "start_time": "2023-10-04T21:08:33.593364Z"
+ "end_time": "2023-10-04T21:22:16.563352Z",
+ "start_time": "2023-10-04T21:22:16.537733Z"
}
},
"id": "2aab7c79ecdee914"
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 19,
"outputs": [],
"source": [
"subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
@@ -135,15 +144,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T21:08:33.644681Z",
- "start_time": "2023-10-04T21:08:33.620136Z"
+ "end_time": "2023-10-04T21:22:16.584758Z",
+ "start_time": "2023-10-04T21:22:16.563460Z"
}
},
"id": "2d922003e752a4b4"
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 20,
"outputs": [],
"source": [
"models_metrics_dct = dict()\n",
@@ -153,21 +162,21 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T21:08:33.669581Z",
- "start_time": "2023-10-04T21:08:33.643533Z"
+ "end_time": "2023-10-04T21:22:16.607231Z",
+ "start_time": "2023-10-04T21:22:16.584939Z"
}
},
"id": "833484748ed512e8"
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 21,
"outputs": [
{
"data": {
"text/plain": "dict_keys(['LGBMClassifier__alpha=0.7', 'LGBMClassifier__alpha=0.0', 'LGBMClassifier__alpha=0.4', 'LogisticRegression__alpha=0.0', 'LogisticRegression__alpha=0.7', 'LogisticRegression__alpha=0.4', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.7', 'MLPClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.7', 'RandomForestClassifier__alpha=0.0'])"
},
- "execution_count": 9,
+ "execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
@@ -178,8 +187,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T21:08:33.691780Z",
- "start_time": "2023-10-04T21:08:33.667179Z"
+ "end_time": "2023-10-04T21:22:16.630707Z",
+ "start_time": "2023-10-04T21:22:16.608538Z"
}
},
"id": "15ed7d1ba1f22317"
@@ -194,12 +203,12 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 25,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-04T21:08:33.716112Z",
- "start_time": "2023-10-04T21:08:33.690511Z"
+ "end_time": "2023-10-04T22:04:26.837638Z",
+ "start_time": "2023-10-04T22:04:26.735350Z"
}
},
"outputs": [],
@@ -210,7 +219,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 26,
"outputs": [
{
"name": "stdout",
@@ -229,15 +238,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T21:11:38.266786Z",
- "start_time": "2023-10-04T21:08:33.716571Z"
+ "end_time": "2023-10-04T22:40:36.211694Z",
+ "start_time": "2023-10-04T22:04:27.009071Z"
}
},
"id": "678a9dc8d51243f4"
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 24,
"outputs": [
{
"name": "stdout",
@@ -253,20 +262,20 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T21:11:38.361088Z",
- "start_time": "2023-10-04T21:11:38.269315Z"
+ "end_time": "2023-10-04T22:04:25.890691Z",
+ "start_time": "2023-10-04T22:04:25.777458Z"
}
},
"id": "277b6d1de837dab7"
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 24,
"id": "2326c129",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-04T21:11:38.363712Z",
- "start_time": "2023-10-04T21:11:38.360139Z"
+ "end_time": "2023-10-04T22:04:25.893162Z",
+ "start_time": "2023-10-04T22:04:25.889647Z"
}
},
"outputs": [],
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index 21e86f3d..24edc520 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -109,8 +109,8 @@ def start_web_app(self):
value='Label_Stability_Ratio', multiselect=False, label="Constraint 4 (C4)",
scale=2
)
- group_stab_min_val = gr.Number(value=1.0, label="Min value", scale=1)
- group_stab_max_val = gr.Number(value=1.03, label="Max value", scale=1)
+ group_stab_min_val = gr.Number(value=0.98, label="Min value", scale=1)
+ group_stab_max_val = gr.Number(value=1.02, label="Max value", scale=1)
btn_view1 = gr.Button("Submit")
with gr.Column(scale=3):
bar_plot_for_model_selection = gr.Plot(label="Plot")
@@ -241,6 +241,29 @@ def start_web_app(self):
def stop_web_app(self):
self.demo.close()
+ def __filter_subgroup_metrics_df(self, results: dict, subgroup_metric: str,
+ selected_metric: str, selected_subgroup: str, defined_model_names: list):
+ results[subgroup_metric] = dict()
+
+ # Get distinct sorted model names
+ sorted_model_names_arr = self.sorted_model_metrics_df[
+ (self.sorted_model_metrics_df.Metric == selected_metric) &
+ (self.sorted_model_metrics_df.Subgroup == selected_subgroup)
+ ]['Model_Name'].values
+ sorted_model_names_arr = [model for model in sorted_model_names_arr if model in defined_model_names]
+
+ # Add values to a results dict
+ for idx, model_name in enumerate(sorted_model_names_arr):
+ metric_value = self.sorted_model_metrics_df[
+ (self.sorted_model_metrics_df.Metric == selected_metric) &
+ (self.sorted_model_metrics_df.Subgroup == selected_subgroup) &
+ (self.sorted_model_metrics_df.Model_Name == model_name)
+ ]['Value'].values[0]
+ metric_value = round(metric_value, 3)
+ results[subgroup_metric][model_name] = metric_value
+
+ return results
+
def _create_bar_plot_for_model_selection(self, group_name, accuracy_metric, acc_min_val, acc_max_val,
fairness_metric, fairness_min_val, fairness_max_val,
subgroup_stability_metric, subgroup_stab_min_val, subgroup_stab_max_val,
@@ -301,28 +324,16 @@ def _create_subgroup_model_rank_heatmap(self, model_names: list, subgroup_accura
results = {}
num_models = len(model_names)
for metric in metrics_lst:
+ # Add an overall metric
+ subgroup_metric = metric + '_overall'
+ results = self.__filter_subgroup_metrics_df(results, subgroup_metric, metric,
+ selected_subgroup='overall', defined_model_names=model_names)
+ # Add a subgroup metric
for group in groups_lst:
for prefix in ['priv', 'dis']:
subgroup = group + '_' + prefix
subgroup_metric = metric + '_' + subgroup
- results[subgroup_metric] = dict()
-
- # Get distinct sorted model names
- sorted_model_names_arr = self.sorted_model_metrics_df[
- (self.sorted_model_metrics_df.Metric == metric) &
- (self.sorted_model_metrics_df.Subgroup == subgroup)
- ]['Model_Name'].values
- sorted_model_names_arr = [model for model in sorted_model_names_arr if model in model_names]
-
- # Add values to a results dict
- for idx, model_name in enumerate(sorted_model_names_arr):
- metric_value = self.sorted_model_metrics_df[
- (self.sorted_model_metrics_df.Metric == metric) &
- (self.sorted_model_metrics_df.Subgroup == subgroup) &
- (self.sorted_model_metrics_df.Model_Name == model_name)
- ]['Value'].values[0]
- metric_value = round(metric_value, 3)
- results[subgroup_metric][model_name] = metric_value
+ results = self.__filter_subgroup_metrics_df(results, subgroup_metric, metric, subgroup, model_names)
model_metrics_matrix = pd.DataFrame(results).T
sorted_matrix_by_rank = create_subgroup_sorted_matrix_by_rank(model_metrics_matrix)
From 498b0efa82636a53035ff1176aa13d2dd787d577 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Thu, 5 Oct 2023 16:20:49 +0300
Subject: [PATCH 011/148] Added a gradio app for Ricci
---
...iple_Models_Interface_Vis_Law_School.ipynb | 91 +++---
.../Multiple_Models_Interface_Vis_Ricci.ipynb | 297 ++++++++++++++++++
docs/examples/ricci_group_metrics.csv | 133 ++++++++
docs/examples/ricci_subgroup_metrics.csv | 229 ++++++++++++++
4 files changed, 709 insertions(+), 41 deletions(-)
create mode 100644 docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb
create mode 100644 docs/examples/ricci_group_metrics.csv
create mode 100644 docs/examples/ricci_subgroup_metrics.csv
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
index c88e03d5..51f3eda9 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
@@ -2,15 +2,24 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 13,
"id": "248cbed8",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-04T21:15:46.248933Z",
- "start_time": "2023-10-04T21:15:45.908524Z"
+ "end_time": "2023-10-04T22:41:38.880532Z",
+ "start_time": "2023-10-04T22:41:38.744525Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The autoreload extension is already loaded. To reload it, use:\n",
+ " %reload_ext autoreload\n"
+ ]
+ }
+ ],
"source": [
"%matplotlib inline\n",
"%load_ext autoreload\n",
@@ -19,12 +28,12 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 14,
"id": "7ec6cd08",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-04T21:15:46.257749Z",
- "start_time": "2023-10-04T21:15:46.249557Z"
+ "end_time": "2023-10-04T22:41:38.897390Z",
+ "start_time": "2023-10-04T22:41:38.879544Z"
}
},
"outputs": [],
@@ -37,12 +46,12 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 15,
"id": "b8cb69f2",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-04T21:15:46.268273Z",
- "start_time": "2023-10-04T21:15:46.257867Z"
+ "end_time": "2023-10-04T22:41:38.905091Z",
+ "start_time": "2023-10-04T22:41:38.881727Z"
}
},
"outputs": [
@@ -72,12 +81,12 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 16,
"id": "7a9241de",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-04T21:15:47.510506Z",
- "start_time": "2023-10-04T21:15:46.267180Z"
+ "end_time": "2023-10-04T22:41:38.938535Z",
+ "start_time": "2023-10-04T22:41:38.904769Z"
}
},
"outputs": [],
@@ -90,7 +99,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 17,
"outputs": [],
"source": [
"sensitive_attributes_dct = {'male': '0.0', 'race': 'Non-White', 'male&race': None}"
@@ -98,15 +107,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T21:15:47.534494Z",
- "start_time": "2023-10-04T21:15:47.511483Z"
+ "end_time": "2023-10-04T22:41:38.946897Z",
+ "start_time": "2023-10-04T22:41:38.927198Z"
}
},
"id": "d3c53c7b72ecbcd0"
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 18,
"outputs": [],
"source": [
"ROOT_DIR = os.path.join('docs', 'examples')\n",
@@ -116,15 +125,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T21:15:47.559988Z",
- "start_time": "2023-10-04T21:15:47.534609Z"
+ "end_time": "2023-10-04T22:41:38.973205Z",
+ "start_time": "2023-10-04T22:41:38.947863Z"
}
},
"id": "2aab7c79ecdee914"
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 19,
"outputs": [],
"source": [
"subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
@@ -135,15 +144,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T21:15:47.581842Z",
- "start_time": "2023-10-04T21:15:47.560554Z"
+ "end_time": "2023-10-04T22:41:38.994980Z",
+ "start_time": "2023-10-04T22:41:38.973852Z"
}
},
"id": "2d922003e752a4b4"
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 20,
"outputs": [],
"source": [
"models_metrics_dct = dict()\n",
@@ -153,21 +162,21 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T21:15:47.603973Z",
- "start_time": "2023-10-04T21:15:47.582304Z"
+ "end_time": "2023-10-04T22:41:39.019414Z",
+ "start_time": "2023-10-04T22:41:38.994888Z"
}
},
"id": "833484748ed512e8"
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 21,
"outputs": [
{
"data": {
"text/plain": "dict_keys(['LGBMClassifier__alpha=0.6', 'LGBMClassifier__alpha=0.0', 'LogisticRegression__alpha=0.6', 'LogisticRegression__alpha=0.0', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.6', 'RandomForestClassifier__alpha=0.6', 'RandomForestClassifier__alpha=0.0'])"
},
- "execution_count": 9,
+ "execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
@@ -178,8 +187,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T21:15:47.625522Z",
- "start_time": "2023-10-04T21:15:47.604575Z"
+ "end_time": "2023-10-04T22:41:39.040053Z",
+ "start_time": "2023-10-04T22:41:39.018488Z"
}
},
"id": "15ed7d1ba1f22317"
@@ -194,12 +203,12 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 22,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-04T21:15:47.653413Z",
- "start_time": "2023-10-04T21:15:47.624966Z"
+ "end_time": "2023-10-04T22:41:39.066833Z",
+ "start_time": "2023-10-04T22:41:39.039759Z"
}
},
"outputs": [],
@@ -210,7 +219,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 23,
"outputs": [
{
"name": "stdout",
@@ -229,15 +238,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T21:17:37.487583Z",
- "start_time": "2023-10-04T21:15:47.653522Z"
+ "end_time": "2023-10-04T23:04:24.847056Z",
+ "start_time": "2023-10-04T22:41:39.066921Z"
}
},
"id": "678a9dc8d51243f4"
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 24,
"outputs": [
{
"name": "stdout",
@@ -253,20 +262,20 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T21:17:37.530553Z",
- "start_time": "2023-10-04T21:17:37.492738Z"
+ "end_time": "2023-10-04T23:04:24.902597Z",
+ "start_time": "2023-10-04T23:04:24.849984Z"
}
},
"id": "277b6d1de837dab7"
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 24,
"id": "2326c129",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-04T21:17:37.533378Z",
- "start_time": "2023-10-04T21:17:37.530182Z"
+ "end_time": "2023-10-04T23:04:24.904745Z",
+ "start_time": "2023-10-04T23:04:24.902886Z"
}
},
"outputs": [],
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb
new file mode 100644
index 00000000..b4d780d9
--- /dev/null
+++ b/docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb
@@ -0,0 +1,297 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "248cbed8",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-05T10:39:55.272406Z",
+ "start_time": "2023-10-05T10:39:54.897985Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "%load_ext autoreload\n",
+ "%autoreload 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "7ec6cd08",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-05T10:39:55.281893Z",
+ "start_time": "2023-10-05T10:39:55.273119Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "os.environ[\"PYTHONWARNINGS\"] = \"ignore\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "b8cb69f2",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-05T10:39:55.292533Z",
+ "start_time": "2023-10-05T10:39:55.282026Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current location: /Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny\n"
+ ]
+ }
+ ],
+ "source": [
+ "cur_folder_name = os.getcwd().split('/')[-1]\n",
+ "if cur_folder_name != \"Virny\":\n",
+ " os.chdir(\"../..\")\n",
+ "\n",
+ "print('Current location: ', os.getcwd())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a578f2ab",
+ "metadata": {},
+ "source": [
+ "# Multiple Models Interface Usage"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "7a9241de",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-05T10:39:56.844327Z",
+ "start_time": "2023-10-05T10:39:55.291377Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import pandas as pd\n",
+ "\n",
+ "from virny.custom_classes.metrics_interactive_visualizer import MetricsInteractiveVisualizer"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "outputs": [],
+ "source": [
+ "sensitive_attributes_dct = {'Race': 'Non-White'}"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-05T10:39:56.870851Z",
+ "start_time": "2023-10-05T10:39:56.847550Z"
+ }
+ },
+ "id": "d3c53c7b72ecbcd0"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "outputs": [],
+ "source": [
+ "ROOT_DIR = os.path.join('docs', 'examples')\n",
+ "subgroup_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'ricci_subgroup_metrics.csv'), header=0)\n",
+ "models_composed_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'ricci_group_metrics.csv'), header=0)"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-05T10:39:56.896386Z",
+ "start_time": "2023-10-05T10:39:56.868941Z"
+ }
+ },
+ "id": "2aab7c79ecdee914"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "outputs": [],
+ "source": [
+ "subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
+ " subgroup_metrics_df['Intervention_Param'].astype(str))\n",
+ "models_composed_metrics_df['Model_Name'] = (models_composed_metrics_df['Model_Name'] + '__alpha=' \n",
+ " + models_composed_metrics_df['Intervention_Param'].astype(str))"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-05T10:39:56.916837Z",
+ "start_time": "2023-10-05T10:39:56.894764Z"
+ }
+ },
+ "id": "2d922003e752a4b4"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "outputs": [],
+ "source": [
+ "models_metrics_dct = dict()\n",
+ "for model_name in subgroup_metrics_df['Model_Name'].unique():\n",
+ " models_metrics_dct[model_name] = subgroup_metrics_df[subgroup_metrics_df['Model_Name'] == model_name]"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-05T10:39:56.940693Z",
+ "start_time": "2023-10-05T10:39:56.916977Z"
+ }
+ },
+ "id": "833484748ed512e8"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "outputs": [
+ {
+ "data": {
+ "text/plain": "dict_keys(['LGBMClassifier__alpha=0.0', 'LGBMClassifier__alpha=0.4', 'LGBMClassifier__alpha=0.7', 'LogisticRegression__alpha=0.0', 'LogisticRegression__alpha=0.4', 'LogisticRegression__alpha=0.7', 'MLPClassifier__alpha=0.7', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.0', 'RandomForestClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.7'])"
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "models_metrics_dct.keys()"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-05T10:39:56.964580Z",
+ "start_time": "2023-10-05T10:39:56.941618Z"
+ }
+ },
+ "id": "15ed7d1ba1f22317"
+ },
+ {
+ "cell_type": "markdown",
+ "id": "deb45226",
+ "metadata": {},
+ "source": [
+ "## Metrics Visualization and Reporting"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "435b9d98",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-05T10:39:56.991119Z",
+ "start_time": "2023-10-05T10:39:56.962485Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "visualizer = MetricsInteractiveVisualizer(models_metrics_dct, models_composed_metrics_df,\n",
+ " sensitive_attributes_dct=sensitive_attributes_dct)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Running on local URL: http://127.0.0.1:7860\n",
+ "\n",
+ "To create a public link, set `share=True` in `launch()`.\n",
+ "Keyboard interruption in main thread... closing server.\n"
+ ]
+ }
+ ],
+ "source": [
+ "visualizer.start_web_app()"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-05T13:20:31.060413Z",
+ "start_time": "2023-10-05T10:39:56.991233Z"
+ }
+ },
+ "id": "678a9dc8d51243f4"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Closing server running on port: 7860\n"
+ ]
+ }
+ ],
+ "source": [
+ "visualizer.stop_web_app()"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-05T13:20:31.101325Z",
+ "start_time": "2023-10-05T13:20:31.064318Z"
+ }
+ },
+ "id": "277b6d1de837dab7"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "2326c129",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-05T13:20:31.104256Z",
+ "start_time": "2023-10-05T13:20:31.102380Z"
+ }
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.10"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/docs/examples/ricci_group_metrics.csv b/docs/examples/ricci_group_metrics.csv
new file mode 100644
index 00000000..31cfbb3f
--- /dev/null
+++ b/docs/examples/ricci_group_metrics.csv
@@ -0,0 +1,133 @@
+Metric,Race,Model_Name,Experiment_Iteration,Intervention_Param,Test_Set_Index
+Accuracy_Parity,-0.2299465240641711,LGBMClassifier,Exp_iter_1,0.0,0
+Disparate_Impact,2.2647058823529416,LGBMClassifier,Exp_iter_1,0.0,0
+Equalized_Odds_FNR,0.0,LGBMClassifier,Exp_iter_1,0.0,0
+Equalized_Odds_FPR,0.0,LGBMClassifier,Exp_iter_1,0.0,0
+Equalized_Odds_TPR,0.0,LGBMClassifier,Exp_iter_1,0.0,0
+IQR_Parity,2.7755575615628914e-17,LGBMClassifier,Exp_iter_1,0.0,0
+Jitter_Parity,0.0,LGBMClassifier,Exp_iter_1,0.0,0
+Label_Stability_Ratio,1.0,LGBMClassifier,Exp_iter_1,0.0,0
+Statistical_Parity_Difference,3.0714285714285716,LGBMClassifier,Exp_iter_1,0.0,0
+Std_Parity,-1.3877787807814457e-17,LGBMClassifier,Exp_iter_1,0.0,0
+Std_Ratio,0.9999999999999998,LGBMClassifier,Exp_iter_1,0.0,0
+Accuracy_Parity,-0.2299465240641711,LGBMClassifier,Exp_iter_1,0.4,0
+Disparate_Impact,2.2647058823529416,LGBMClassifier,Exp_iter_1,0.4,0
+Equalized_Odds_FNR,0.0,LGBMClassifier,Exp_iter_1,0.4,0
+Equalized_Odds_FPR,0.0,LGBMClassifier,Exp_iter_1,0.4,0
+Equalized_Odds_TPR,0.0,LGBMClassifier,Exp_iter_1,0.4,0
+IQR_Parity,2.7755575615628914e-17,LGBMClassifier,Exp_iter_1,0.4,0
+Jitter_Parity,0.0,LGBMClassifier,Exp_iter_1,0.4,0
+Label_Stability_Ratio,1.0,LGBMClassifier,Exp_iter_1,0.4,0
+Statistical_Parity_Difference,3.0714285714285716,LGBMClassifier,Exp_iter_1,0.4,0
+Std_Parity,0.0,LGBMClassifier,Exp_iter_1,0.4,0
+Std_Ratio,1.0,LGBMClassifier,Exp_iter_1,0.4,0
+Accuracy_Parity,-0.2299465240641711,LGBMClassifier,Exp_iter_1,0.7,0
+Disparate_Impact,2.2647058823529416,LGBMClassifier,Exp_iter_1,0.7,0
+Equalized_Odds_FNR,0.0,LGBMClassifier,Exp_iter_1,0.7,0
+Equalized_Odds_FPR,0.0,LGBMClassifier,Exp_iter_1,0.7,0
+Equalized_Odds_TPR,0.0,LGBMClassifier,Exp_iter_1,0.7,0
+IQR_Parity,0.0,LGBMClassifier,Exp_iter_1,0.7,0
+Jitter_Parity,0.0,LGBMClassifier,Exp_iter_1,0.7,0
+Label_Stability_Ratio,1.0000000000000002,LGBMClassifier,Exp_iter_1,0.7,0
+Statistical_Parity_Difference,3.0714285714285716,LGBMClassifier,Exp_iter_1,0.7,0
+Std_Parity,-1.3877787807814457e-17,LGBMClassifier,Exp_iter_1,0.7,0
+Std_Ratio,0.9999999999999998,LGBMClassifier,Exp_iter_1,0.7,0
+Accuracy_Parity,0.3529411764705882,LogisticRegression,Exp_iter_1,0.0,0
+Disparate_Impact,0.5384615384615384,LogisticRegression,Exp_iter_1,0.0,0
+Equalized_Odds_FNR,0.0,LogisticRegression,Exp_iter_1,0.0,0
+Equalized_Odds_FPR,-0.6,LogisticRegression,Exp_iter_1,0.0,0
+Equalized_Odds_TPR,0.0,LogisticRegression,Exp_iter_1,0.0,0
+IQR_Parity,-0.004259721871489895,LogisticRegression,Exp_iter_1,0.0,0
+Jitter_Parity,-0.0640968210033926,LogisticRegression,Exp_iter_1,0.0,0
+Label_Stability_Ratio,1.0935446085768203,LogisticRegression,Exp_iter_1,0.0,0
+Statistical_Parity_Difference,-0.8571428571428572,LogisticRegression,Exp_iter_1,0.0,0
+Std_Parity,-0.0011073640847593519,LogisticRegression,Exp_iter_1,0.0,0
+Std_Ratio,0.9758617440249395,LogisticRegression,Exp_iter_1,0.0,0
+Accuracy_Parity,0.0267379679144385,LogisticRegression,Exp_iter_1,0.4,0
+Disparate_Impact,1.1666666666666665,LogisticRegression,Exp_iter_1,0.4,0
+Equalized_Odds_FNR,0.0,LogisticRegression,Exp_iter_1,0.4,0
+Equalized_Odds_FPR,-0.0888888888888889,LogisticRegression,Exp_iter_1,0.4,0
+Equalized_Odds_TPR,0.0,LogisticRegression,Exp_iter_1,0.4,0
+IQR_Parity,-0.02897288592163355,LogisticRegression,Exp_iter_1,0.4,0
+Jitter_Parity,-0.057898718189863724,LogisticRegression,Exp_iter_1,0.4,0
+Label_Stability_Ratio,1.1116523646686882,LogisticRegression,Exp_iter_1,0.4,0
+Statistical_Parity_Difference,0.2142857142857142,LogisticRegression,Exp_iter_1,0.4,0
+Std_Parity,-0.02372510499403515,LogisticRegression,Exp_iter_1,0.4,0
+Std_Ratio,0.6205686094932984,LogisticRegression,Exp_iter_1,0.4,0
+Accuracy_Parity,-0.06417112299465233,LogisticRegression,Exp_iter_1,0.7,0
+Disparate_Impact,1.5555555555555554,LogisticRegression,Exp_iter_1,0.7,0
+Equalized_Odds_FNR,0.0,LogisticRegression,Exp_iter_1,0.7,0
+Equalized_Odds_FPR,0.0222222222222222,LogisticRegression,Exp_iter_1,0.7,0
+Equalized_Odds_TPR,0.0,LogisticRegression,Exp_iter_1,0.7,0
+IQR_Parity,-0.026239708082403335,LogisticRegression,Exp_iter_1,0.7,0
+Jitter_Parity,-0.005885577620717217,LogisticRegression,Exp_iter_1,0.7,0
+Label_Stability_Ratio,0.9885615043717811,LogisticRegression,Exp_iter_1,0.7,0
+Statistical_Parity_Difference,0.7142857142857142,LogisticRegression,Exp_iter_1,0.7,0
+Std_Parity,-0.01916160626108921,LogisticRegression,Exp_iter_1,0.7,0
+Std_Ratio,0.749870952094999,LogisticRegression,Exp_iter_1,0.7,0
+Accuracy_Parity,-0.06417112299465233,MLPClassifier,Exp_iter_1,0.7,0
+Disparate_Impact,2.0,MLPClassifier,Exp_iter_1,0.7,0
+Equalized_Odds_FNR,-0.14285714285714285,MLPClassifier,Exp_iter_1,0.7,0
+Equalized_Odds_FPR,0.1222222222222222,MLPClassifier,Exp_iter_1,0.7,0
+Equalized_Odds_TPR,0.1428571428571429,MLPClassifier,Exp_iter_1,0.7,0
+IQR_Parity,-0.05854261516211538,MLPClassifier,Exp_iter_1,0.7,0
+Jitter_Parity,-0.006295515008201247,MLPClassifier,Exp_iter_1,0.7,0
+Label_Stability_Ratio,1.0171217205613179,MLPClassifier,Exp_iter_1,0.7,0
+Statistical_Parity_Difference,1.0,MLPClassifier,Exp_iter_1,0.7,0
+Std_Parity,0.004367751375921741,MLPClassifier,Exp_iter_1,0.7,0
+Std_Ratio,1.021641746544735,MLPClassifier,Exp_iter_1,0.7,0
+Accuracy_Parity,0.0,MLPClassifier,Exp_iter_1,0.0,0
+Disparate_Impact,1.0,MLPClassifier,Exp_iter_1,0.0,0
+Equalized_Odds_FNR,0.0,MLPClassifier,Exp_iter_1,0.0,0
+Equalized_Odds_FPR,0.0,MLPClassifier,Exp_iter_1,0.0,0
+Equalized_Odds_TPR,0.0,MLPClassifier,Exp_iter_1,0.0,0
+IQR_Parity,-0.14246344136147643,MLPClassifier,Exp_iter_1,0.0,0
+Jitter_Parity,-0.11034584688143848,MLPClassifier,Exp_iter_1,0.0,0
+Label_Stability_Ratio,1.1957288401253918,MLPClassifier,Exp_iter_1,0.0,0
+Statistical_Parity_Difference,0.0,MLPClassifier,Exp_iter_1,0.0,0
+Std_Parity,-0.12317270176886641,MLPClassifier,Exp_iter_1,0.0,0
+Std_Ratio,0.11675594996318969,MLPClassifier,Exp_iter_1,0.0,0
+Accuracy_Parity,0.07219251336898402,MLPClassifier,Exp_iter_1,0.4,0
+Disparate_Impact,1.25,MLPClassifier,Exp_iter_1,0.4,0
+Equalized_Odds_FNR,-0.14285714285714285,MLPClassifier,Exp_iter_1,0.4,0
+Equalized_Odds_FPR,-0.04444444444444445,MLPClassifier,Exp_iter_1,0.4,0
+Equalized_Odds_TPR,0.1428571428571429,MLPClassifier,Exp_iter_1,0.4,0
+IQR_Parity,-0.1782305060524368,MLPClassifier,Exp_iter_1,0.4,0
+Jitter_Parity,-0.09088436836585866,MLPClassifier,Exp_iter_1,0.4,0
+Label_Stability_Ratio,1.1823216340621405,MLPClassifier,Exp_iter_1,0.4,0
+Statistical_Parity_Difference,0.25,MLPClassifier,Exp_iter_1,0.4,0
+Std_Parity,-0.08577780370352184,MLPClassifier,Exp_iter_1,0.4,0
+Std_Ratio,0.6190997914544973,MLPClassifier,Exp_iter_1,0.4,0
+Accuracy_Parity,0.11764705882352944,RandomForestClassifier,Exp_iter_1,0.0,0
+Disparate_Impact,0.7777777777777777,RandomForestClassifier,Exp_iter_1,0.0,0
+Equalized_Odds_FNR,0.0,RandomForestClassifier,Exp_iter_1,0.0,0
+Equalized_Odds_FPR,-0.2,RandomForestClassifier,Exp_iter_1,0.0,0
+Equalized_Odds_TPR,0.0,RandomForestClassifier,Exp_iter_1,0.0,0
+IQR_Parity,-0.07018048128342244,RandomForestClassifier,Exp_iter_1,0.0,0
+Jitter_Parity,-0.08421653723159321,RandomForestClassifier,Exp_iter_1,0.0,0
+Label_Stability_Ratio,1.1554112554112557,RandomForestClassifier,Exp_iter_1,0.0,0
+Statistical_Parity_Difference,-0.2857142857142858,RandomForestClassifier,Exp_iter_1,0.0,0
+Std_Parity,-0.04209583589618668,RandomForestClassifier,Exp_iter_1,0.0,0
+Std_Ratio,0.4548023847532704,RandomForestClassifier,Exp_iter_1,0.0,0
+Accuracy_Parity,0.14438502673796794,RandomForestClassifier,Exp_iter_1,0.4,0
+Disparate_Impact,0.9545454545454546,RandomForestClassifier,Exp_iter_1,0.4,0
+Equalized_Odds_FNR,0.0,RandomForestClassifier,Exp_iter_1,0.4,0
+Equalized_Odds_FPR,-0.2888888888888889,RandomForestClassifier,Exp_iter_1,0.4,0
+Equalized_Odds_TPR,0.0,RandomForestClassifier,Exp_iter_1,0.4,0
+IQR_Parity,-0.07059491978609625,RandomForestClassifier,Exp_iter_1,0.4,0
+Jitter_Parity,-0.10266600381584051,RandomForestClassifier,Exp_iter_1,0.4,0
+Label_Stability_Ratio,1.229393468118196,RandomForestClassifier,Exp_iter_1,0.4,0
+Statistical_Parity_Difference,-0.0714285714285714,RandomForestClassifier,Exp_iter_1,0.4,0
+Std_Parity,-0.04122312272769589,RandomForestClassifier,Exp_iter_1,0.4,0
+Std_Ratio,0.607473282709729,RandomForestClassifier,Exp_iter_1,0.4,0
+Accuracy_Parity,-0.06417112299465233,RandomForestClassifier,Exp_iter_1,0.7,0
+Disparate_Impact,1.5555555555555554,RandomForestClassifier,Exp_iter_1,0.7,0
+Equalized_Odds_FNR,0.0,RandomForestClassifier,Exp_iter_1,0.7,0
+Equalized_Odds_FPR,0.0222222222222222,RandomForestClassifier,Exp_iter_1,0.7,0
+Equalized_Odds_TPR,0.0,RandomForestClassifier,Exp_iter_1,0.7,0
+IQR_Parity,-0.03575165472525095,RandomForestClassifier,Exp_iter_1,0.7,0
+Jitter_Parity,-0.04552387606479004,RandomForestClassifier,Exp_iter_1,0.7,0
+Label_Stability_Ratio,1.071062271062271,RandomForestClassifier,Exp_iter_1,0.7,0
+Statistical_Parity_Difference,0.7142857142857142,RandomForestClassifier,Exp_iter_1,0.7,0
+Std_Parity,-0.016581787315341434,RandomForestClassifier,Exp_iter_1,0.7,0
+Std_Ratio,0.8265703729361945,RandomForestClassifier,Exp_iter_1,0.7,0
diff --git a/docs/examples/ricci_subgroup_metrics.csv b/docs/examples/ricci_subgroup_metrics.csv
new file mode 100644
index 00000000..42f9fdfd
--- /dev/null
+++ b/docs/examples/ricci_subgroup_metrics.csv
@@ -0,0 +1,229 @@
+Metric,Bootstrap_Model_Seed,Model_Name,Model_Params,Run_Number,Dataset_Name,Num_Estimators,Tag,Record_Create_Date_Time,Session_Uuid,Experiment_Iteration,Dataset_Split_Seed,Model_Init_Seed,Fair_Intervention_Params_Lst,Intervention_Param,Race_dis,Race_priv,overall,Test_Set_Index
+Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.18181818181818182,0.4117647058823529,0.28205128205128205,0
+Aleatoric_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.9735094905965549,0.9735094905965547,0.9735094905965548,0
+F1,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.3076923076923077,0.5833333333333334,0.44,0
+FNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.0,0.0,0.0,0
+FPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,1.0,1.0,0
+IQR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.07936507936507944,0.07936507936507942,0.07936507936507943,0
+Jitter,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.19678391959798994,0.19678391959798994,0.19678391959798994,0
+Label_Stability,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.78,0.78,0.7800000000000002,0
+Mean,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.42777777777777765,0.42777777777777765,0.4277777777777776,0
+Overall_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.984896885588681,0.9848968855886807,0.9848968855886809,0
+PPV,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.18181818181818182,0.4117647058823529,0.28205128205128205,0
+Per_Sample_Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.2518181818181819,0.43117647058823527,0.32999999999999996,0
+Positive-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,5.5,2.4285714285714284,3.5454545454545454,0
+Sample_Size,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,,,39.0,0
+Selection-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,1.0,1.0,0
+Statistical_Bias,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.5459595959595962,0.5127450980392156,0.5314814814814816,0
+Std,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.06205500611410902,0.06205500611410903,0.06205500611410905,0
+TNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.0,0.0,0.0,0
+TPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,1.0,1.0,0
+Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.18181818181818182,0.4117647058823529,0.28205128205128205,0
+Aleatoric_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.9729961395248143,0.9729961395248147,0.972996139524815,0
+F1,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.3076923076923077,0.5833333333333334,0.44,0
+FNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.0,0.0,0.0,0
+FPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,1.0,1.0,1.0,0
+IQR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.0833333333333334,0.08333333333333337,0.08333333333333338,0
+Jitter,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.2198492462311558,0.2198492462311558,0.2198492462311558,0
+Label_Stability,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.75,0.75,0.75,0
+Mean,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.42634920634920626,0.42634920634920626,0.4263492063492062,0
+Overall_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.984291278451344,0.9842912784513438,0.9842912784513439,0
+PPV,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.18181818181818182,0.4117647058823529,0.28205128205128205,0
+Per_Sample_Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.26136363636363635,0.4338235294117647,0.33653846153846156,0
+Positive-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,5.5,2.4285714285714284,3.5454545454545454,0
+Sample_Size,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,,,39.0,0
+Selection-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,1.0,1.0,1.0,0
+Statistical_Bias,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.546868686868687,0.5129971988795519,0.5321041921041921,0
+Std,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.061795142880967324,0.061795142880967324,0.061795142880967366,0
+TNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.0,0.0,0.0,0
+TPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,1.0,1.0,1.0,0
+Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.18181818181818182,0.4117647058823529,0.28205128205128205,0
+Aleatoric_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.9778290634912143,0.9778290634912146,0.9778290634912145,0
+F1,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.3076923076923077,0.5833333333333334,0.44,0
+FNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.0,0.0,0.0,0
+FPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,1.0,1.0,1.0,0
+IQR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.0793650793650793,0.0793650793650793,0.07936507936507926,0
+Jitter,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.24201005025125627,0.24201005025125627,0.24201005025125627,0
+Label_Stability,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.7200000000000002,0.72,0.7199999999999998,0
+Mean,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.43650793650793657,0.43650793650793657,0.43650793650793657,0
+Overall_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.9883368304150857,0.9883368304150855,0.9883368304150856,0
+PPV,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.18181818181818182,0.4117647058823529,0.28205128205128205,0
+Per_Sample_Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.2709090909090909,0.43647058823529417,0.34307692307692317,0
+Positive-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,5.5,2.4285714285714284,3.5454545454545454,0
+Sample_Size,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,,,39.0,0
+Selection-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,1.0,1.0,1.0,0
+Statistical_Bias,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.5404040404040404,0.511204481792717,0.5276760276760276,0
+Std,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.05981622360177657,0.05981622360177658,0.0598162236017766,0
+TNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.0,0.0,0.0,0
+TPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,1.0,1.0,1.0,0
+Accuracy,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,0.6470588235294118,0.8461538461538461,0
+Aleatoric_Uncertainty,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.7472529086918805,0.7597234964713788,0.7526888059290976,0
+F1,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,0.7,0.7857142857142857,0
+FNR,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.0,0.0,0.0,0
+FPR,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.0,0.6,0.21428571428571427,0
+IQR,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.05725677658190709,0.06151649845339698,0.059113578423325756,0
+Jitter,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.06359753312013754,0.12769435412353014,0.09153717304471629,0
+Label_Stability,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.8986363636363636,0.821764705882353,0.8651282051282052,0
+Mean,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.6503900112904303,0.40269780293629553,0.5424216127770896,0
+Overall_Uncertainty,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.7555819673244829,0.7681733503787629,0.7610705189122459,0
+PPV,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,0.5384615384615384,0.6470588235294118,0
+Per_Sample_Accuracy,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.9493181818181817,0.6932352941176471,0.8376923076923077,0
+Positive-Rate,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,1.8571428571428572,1.5454545454545454,0
+Sample_Size,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,,,39.0,0
+Selection-Rate,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.18181818181818182,0.7647058823529411,0.4358974358974359,0
+Statistical_Bias,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.25104388666709493,0.3344348371334379,0.2873937881524239,0
+Std,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.044768530424913335,0.045875894509672686,0.04525122759006484,0
+TNR,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,0.4,0.7857142857142857,0
+TPR,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,1.0,1.0,0
+Accuracy,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.9090909090909091,0.8823529411764706,0.8974358974358975,0
+Aleatoric_Uncertainty,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.33699756729590336,0.5035116995466515,0.40958065058469106,0
+F1,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.8,0.875,0.8461538461538461,0
+FNR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.0,0.0,0.0,0
+FPR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.1111111111111111,0.2,0.14285714285714285,0
+IQR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.049224329992308594,0.07819721591394214,0.06185353667609759,0
+Jitter,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.05599132023754254,0.11389003842740626,0.08122922303827448,0
+Label_Stability,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.9213636363636364,0.8288235294117647,0.881025641025641,0
+Mean,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.7137223908000645,0.48094828601103157,0.612256755379204,0
+Overall_Uncertainty,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.351337129636055,0.5273659328929439,0.428067633619827,0
+PPV,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.6666666666666666,0.7777777777777778,0.7333333333333333,0
+Per_Sample_Accuracy,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.9161363636363635,0.8497058823529411,0.887179487179487,0
+Positive-Rate,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,1.5,1.2857142857142858,1.3636363636363635,0
+Sample_Size,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,,,39.0,0
+Selection-Rate,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.2727272727272727,0.5294117647058824,0.38461538461538464,0
+Statistical_Bias,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.12525504730734802,0.2086898556253517,0.16162406631775988,0
+Std,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.03880294510311703,0.06252805009715218,0.04914465753641441,0
+TNR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.8888888888888888,0.8,0.8571428571428571,0
+TPR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,1.0,1.0,1.0,0
+Accuracy,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.8181818181818182,0.8823529411764706,0.8461538461538461,0
+Aleatoric_Uncertainty,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.45960170285488827,0.515835456487896,0.4841138518744044,0
+F1,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.6666666666666666,0.875,0.7857142857142857,0
+FNR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.0,0.0,0.0,0
+FPR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.2222222222222222,0.2,0.21428571428571427,0
+IQR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.07245045517540533,0.09869016325780866,0.08388827664722218,0
+Jitter,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.08059387848331959,0.0864794561040368,0.08315938667697897,0
+Label_Stability,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.8827272727272728,0.8929411764705882,0.8871794871794872,0
+Mean,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.6309915748840796,0.5065300807166099,0.5767391287085157,0
+Overall_Uncertainty,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.48335706694628494,0.5525283470435187,0.5135086505784126,0
+PPV,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.5,0.7777777777777778,0.6470588235294118,0
+Per_Sample_Accuracy,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.829090909090909,0.8741176470588236,0.8487179487179486,0
+Positive-Rate,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,2.0,1.2857142857142858,1.5454545454545454,0
+Sample_Size,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,,,39.0,0
+Selection-Rate,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.36363636363636365,0.5294117647058824,0.4358974358974359,0
+Statistical_Bias,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.20254440955805553,0.19969393286530776,0.20130189407660135,0
+Std,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.05744527495315021,0.07660688121423942,0.06579776999003524,0
+TNR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.7777777777777778,0.8,0.7857142857142857,0
+TPR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,1.0,1.0,1.0,0
+Accuracy,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.8181818181818182,0.8823529411764706,0.8461538461538461,0
+Aleatoric_Uncertainty,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.33204203980971764,0.3854737955308596,0.35533280512406157,0
+F1,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.6666666666666666,0.8571428571428571,0.7692307692307693,0
+FNR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.0,0.14285714285714285,0.09090909090909091,0
+FPR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.2222222222222222,0.1,0.17857142857142858,0
+IQR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.12271396231956185,0.18125657748167723,0.14823253815945828,0
+Jitter,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.21190726359063833,0.21820277859883958,0.21465146244040528,0
+Label_Stability,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.7131818181818181,0.7011764705882353,0.7079487179487179,0
+Mean,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.6064185916157215,0.4971536915233828,0.5587903018318816,0
+Overall_Uncertainty,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.5584392043601321,0.5998500696890698,0.5764900943753102,0
+PPV,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.5,0.8571428571428571,0.6666666666666666,0
+Per_Sample_Accuracy,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.7584090909090908,0.7999999999999999,0.7765384615384614,0
+Positive-Rate,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,2.0,1.0,1.3636363636363635,0
+Sample_Size,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,,,39.0,0
+Selection-Rate,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.36363636363636365,0.4117647058823529,0.38461538461538464,0
+Statistical_Bias,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.23337856339350196,0.22727548039448447,0.23071824516316097,0
+Std,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.20618840235218705,0.2018206509762653,0.20428451072678522,0
+TNR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.7777777777777778,0.9,0.8214285714285714,0
+TPR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,1.0,0.8571428571428571,0.9090909090909091,0
+Accuracy,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,1.0,1.0,0
+Aleatoric_Uncertainty,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.017886152509533817,0.08715135409347269,0.048078676276891795,0
+F1,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,1.0,1.0,0
+FNR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.0,0.0,0.0,0
+FPR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.0,0.0,0.0,0
+IQR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.020699537461522158,0.1631629788229986,0.08279898626011443,0
+Jitter,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.016180904522612526,0.126526751404051,0.06428037624018045,0
+Label_Stability,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.979090909090909,0.8188235294117647,0.9092307692307693,0
+Mean,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.8296441174696434,0.4997150126395015,0.6858288666462482,0
+Overall_Uncertainty,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.03891369064632084,0.2909148674422839,0.14876035745481758,0
+PPV,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,1.0,1.0,0
+Per_Sample_Accuracy,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.9895454545454545,0.9094117647058824,0.9546153846153845,0
+Positive-Rate,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,1.0,1.0,0
+Sample_Size,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,,,39.0,0
+Selection-Rate,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.18181818181818182,0.4117647058823529,0.28205128205128205,0
+Statistical_Bias,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.011749377822083714,0.0985938602586932,0.04960466503804169,0
+Std,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.016282188149421783,0.1394548899182882,0.0699728530230302,0
+TNR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,1.0,1.0,0
+TPR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,1.0,1.0,0
+Accuracy,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.9545454545454546,0.8823529411764706,0.9230769230769231,0
+Aleatoric_Uncertainty,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.019742903314295127,0.049345639638436564,0.03264666017353627,0
+F1,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.8888888888888888,0.8571428571428571,0.8695652173913043,0
+FNR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.0,0.14285714285714285,0.09090909090909091,0
+FPR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.05555555555555555,0.1,0.07142857142857142,0
+IQR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.06900940802527812,0.24723991407771492,0.14669962861223776,0
+Jitter,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.08922795797166976,0.1801123263375284,0.1288442211055247,0
+Label_Stability,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.879090909090909,0.7435294117647058,0.8199999999999998,0
+Mean,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.7366099368767967,0.5436120808232203,0.6524826662893403,0
+Overall_Uncertainty,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.22473388159472832,0.40615594842748426,0.30381529534233986,0
+PPV,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.8,0.8571428571428571,0.8333333333333334,0
+Per_Sample_Accuracy,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.9018181818181819,0.8264705882352942,0.8689743589743592,0
+Positive-Rate,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,1.25,1.0,1.0909090909090908,0
+Sample_Size,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,,,39.0,0
+Selection-Rate,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.22727272727272727,0.4117647058823529,0.3076923076923077,0
+Statistical_Bias,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.09774551706522229,0.17565716092191075,0.131707002848907,0
+Std,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.13941977240459089,0.22519757610811272,0.17681009709586964,0
+TNR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.9444444444444444,0.9,0.9285714285714286,0
+TPR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,1.0,0.8571428571428571,0.9090909090909091,0
+Accuracy,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,0.8823529411764706,0.9487179487179487,0
+Aleatoric_Uncertainty,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.18366910158974167,0.37661590275368123,0.2677741174817153,0
+F1,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,0.875,0.9166666666666666,0
+FNR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.0,0.0,0.0,0
+FPR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.0,0.2,0.07142857142857142,0
+IQR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.037613636363636356,0.1077941176470588,0.0682051282051282,0
+Jitter,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.0009090909090909094,0.08512562814068413,0.03761886354851622,0
+Label_Stability,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.9990909090909091,0.8647058823529411,0.9405128205128205,0
+Mean,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.8012977272727272,0.48387352941176465,0.6629333333333332,0
+Overall_Uncertainty,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.2068019969806863,0.4254470843134134,0.302108829920593,0
+PPV,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,0.7777777777777778,0.8461538461538461,0
+Per_Sample_Accuracy,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.9995454545454546,0.91,0.9605128205128205,0
+Positive-Rate,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,1.2857142857142858,1.1818181818181819,0
+Sample_Size,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,,,39.0,0
+Selection-Rate,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.18181818181818182,0.5294117647058824,0.3333333333333333,0
+Statistical_Bias,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.04173863636363639,0.1522617647058824,0.08991538461538467,0
+Std,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.03511623312054256,0.07721206901672924,0.05346570004964957,0
+TNR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,0.8,0.9285714285714286,0
+TPR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,1.0,1.0,0
+Accuracy,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.9090909090909091,0.7647058823529411,0.8461538461538461,0
+Aleatoric_Uncertainty,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.272845164645452,0.42735904351605347,0.34019736825571417,0
+F1,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.8,0.7777777777777778,0.7857142857142857,0
+FNR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.0,0.0,0.0,0
+FPR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.1111111111111111,0.4,0.21428571428571427,0
+IQR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.08102272727272727,0.15161764705882352,0.1117948717948718,0
+Jitter,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.05041114664229504,0.15307715045813555,0.09516299445948184,0
+Label_Stability,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.93,0.7564705882352941,0.8543589743589743,0
+Mean,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.7103931818181818,0.46307647058823526,0.6025884615384615,0
+Overall_Uncertainty,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.3189058421131603,0.5022520487183918,0.3988259834539022,0
+PPV,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.6666666666666666,0.6363636363636364,0.6470588235294118,0
+Per_Sample_Accuracy,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.9136363636363637,0.7999999999999999,0.864102564102564,0
+Positive-Rate,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,1.5,1.5714285714285714,1.5454545454545454,0
+Sample_Size,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,,,39.0,0
+Selection-Rate,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.2727272727272727,0.6470588235294118,0.4358974358974359,0
+Statistical_Bias,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.12228409090909098,0.22866470588235302,0.1686551282051283,0
+Std,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.06379679289045975,0.10501991561815564,0.08176584638714769,0
+TNR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.8888888888888888,0.6,0.7857142857142857,0
+TPR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,1.0,1.0,1.0,0
+Accuracy,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.8181818181818182,0.8823529411764706,0.8461538461538461,0
+Aleatoric_Uncertainty,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.3736138589403957,0.49733889404460735,0.4275452844986417,0
+F1,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.6666666666666666,0.875,0.7857142857142857,0
+FNR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.0,0.0,0.0,0
+FPR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.2222222222222222,0.2,0.21428571428571427,0
+IQR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.10521006329529055,0.1409617180205415,0.12079411791911789,0
+Jitter,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.08761534947463821,0.13313922553942825,0.10745909032341451,0
+Label_Stability,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.8600000000000001,0.8029411764705883,0.8351282051282052,0
+Mean,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.6203538533057853,0.5106819312876667,0.5725481437081439,0
+Overall_Uncertainty,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.42535702360304817,0.5548910385593142,0.4818205685839844,0
+PPV,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.5,0.7777777777777778,0.6470588235294118,0
+Per_Sample_Accuracy,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.7995454545454543,0.8585294117647058,0.8252564102564103,0
+Positive-Rate,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,2.0,1.2857142857142858,1.5454545454545454,0
+Sample_Size,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,,,39.0,0
+Selection-Rate,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.36363636363636365,0.5294117647058824,0.4358974358974359,0
+Statistical_Bias,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.21751490702479329,0.21198756429844656,0.21510555250305238,0
+Std,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.07902925444305965,0.09561104175840109,0.08625721301641362,0
+TNR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.7777777777777778,0.8,0.7857142857142857,0
+TPR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,1.0,1.0,1.0,0
From e49c7c82f287685dded72a78b0697c04a9ad6151 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Sat, 7 Oct 2023 00:36:01 +0300
Subject: [PATCH 012/148] Added minor fixes to a model selection ap
---
...Multiple_Models_Interface_Vis_Income.ipynb | 83 +++++++++--------
...iple_Models_Interface_Vis_Law_School.ipynb | 80 ++++++++--------
.../Multiple_Models_Interface_Vis_Ricci.ipynb | 91 ++++++++++---------
.../metrics_interactive_visualizer.py | 81 ++++++++---------
virny/utils/data_viz_utils.py | 10 +-
5 files changed, 171 insertions(+), 174 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
index 086dfd4a..8a24cd07 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
@@ -2,12 +2,12 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 91,
"id": "248cbed8",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-04T21:22:16.448256Z",
- "start_time": "2023-10-04T21:22:16.399916Z"
+ "end_time": "2023-10-06T21:10:36.749502Z",
+ "start_time": "2023-10-06T21:10:36.493538Z"
}
},
"outputs": [
@@ -28,12 +28,12 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 92,
"id": "7ec6cd08",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-04T21:22:16.489117Z",
- "start_time": "2023-10-04T21:22:16.447387Z"
+ "end_time": "2023-10-06T21:10:36.782386Z",
+ "start_time": "2023-10-06T21:10:36.747786Z"
}
},
"outputs": [],
@@ -46,12 +46,12 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 93,
"id": "b8cb69f2",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-04T21:22:16.493213Z",
- "start_time": "2023-10-04T21:22:16.472246Z"
+ "end_time": "2023-10-06T21:10:36.793383Z",
+ "start_time": "2023-10-06T21:10:36.770963Z"
}
},
"outputs": [
@@ -81,12 +81,12 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 94,
"id": "7a9241de",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-04T21:22:16.529742Z",
- "start_time": "2023-10-04T21:22:16.494483Z"
+ "end_time": "2023-10-06T21:10:36.813210Z",
+ "start_time": "2023-10-06T21:10:36.791765Z"
}
},
"outputs": [],
@@ -99,7 +99,7 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 95,
"outputs": [],
"source": [
"sensitive_attributes_dct = {'SEX': '2', 'RAC1P': ['2', '3', '4', '5', '6', '7', '8', '9'], 'SEX&RAC1P': None}"
@@ -107,15 +107,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T21:22:16.537318Z",
- "start_time": "2023-10-04T21:22:16.516511Z"
+ "end_time": "2023-10-06T21:10:36.834736Z",
+ "start_time": "2023-10-06T21:10:36.814444Z"
}
},
"id": "d3c53c7b72ecbcd0"
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 96,
"outputs": [],
"source": [
"ROOT_DIR = os.path.join('docs', 'examples')\n",
@@ -125,15 +125,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T21:22:16.563352Z",
- "start_time": "2023-10-04T21:22:16.537733Z"
+ "end_time": "2023-10-06T21:10:36.872573Z",
+ "start_time": "2023-10-06T21:10:36.835382Z"
}
},
"id": "2aab7c79ecdee914"
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": 97,
"outputs": [],
"source": [
"subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
@@ -144,15 +144,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T21:22:16.584758Z",
- "start_time": "2023-10-04T21:22:16.563460Z"
+ "end_time": "2023-10-06T21:10:36.884390Z",
+ "start_time": "2023-10-06T21:10:36.860961Z"
}
},
"id": "2d922003e752a4b4"
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": 98,
"outputs": [],
"source": [
"models_metrics_dct = dict()\n",
@@ -162,21 +162,21 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T21:22:16.607231Z",
- "start_time": "2023-10-04T21:22:16.584939Z"
+ "end_time": "2023-10-06T21:10:36.909891Z",
+ "start_time": "2023-10-06T21:10:36.885939Z"
}
},
"id": "833484748ed512e8"
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": 99,
"outputs": [
{
"data": {
"text/plain": "dict_keys(['LGBMClassifier__alpha=0.7', 'LGBMClassifier__alpha=0.0', 'LGBMClassifier__alpha=0.4', 'LogisticRegression__alpha=0.0', 'LogisticRegression__alpha=0.7', 'LogisticRegression__alpha=0.4', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.7', 'MLPClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.7', 'RandomForestClassifier__alpha=0.0'])"
},
- "execution_count": 21,
+ "execution_count": 99,
"metadata": {},
"output_type": "execute_result"
}
@@ -187,8 +187,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T21:22:16.630707Z",
- "start_time": "2023-10-04T21:22:16.608538Z"
+ "end_time": "2023-10-06T21:10:36.945035Z",
+ "start_time": "2023-10-06T21:10:36.910469Z"
}
},
"id": "15ed7d1ba1f22317"
@@ -203,12 +203,12 @@
},
{
"cell_type": "code",
- "execution_count": 25,
+ "execution_count": 119,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-04T22:04:26.837638Z",
- "start_time": "2023-10-04T22:04:26.735350Z"
+ "end_time": "2023-10-06T21:29:47.511Z",
+ "start_time": "2023-10-06T21:29:47.468822Z"
}
},
"outputs": [],
@@ -219,7 +219,7 @@
},
{
"cell_type": "code",
- "execution_count": 26,
+ "execution_count": null,
"outputs": [
{
"name": "stdout",
@@ -227,8 +227,7 @@
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
- "To create a public link, set `share=True` in `launch()`.\n",
- "Keyboard interruption in main thread... closing server.\n"
+ "To create a public link, set `share=True` in `launch()`.\n"
]
}
],
@@ -237,16 +236,16 @@
],
"metadata": {
"collapsed": false,
+ "is_executing": true,
"ExecuteTime": {
- "end_time": "2023-10-04T22:40:36.211694Z",
- "start_time": "2023-10-04T22:04:27.009071Z"
+ "start_time": "2023-10-06T21:29:47.543336Z"
}
},
"id": "678a9dc8d51243f4"
},
{
"cell_type": "code",
- "execution_count": 24,
+ "execution_count": 102,
"outputs": [
{
"name": "stdout",
@@ -262,20 +261,20 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T22:04:25.890691Z",
- "start_time": "2023-10-04T22:04:25.777458Z"
+ "end_time": "2023-10-06T21:14:23.138059Z",
+ "start_time": "2023-10-06T21:14:23.094188Z"
}
},
"id": "277b6d1de837dab7"
},
{
"cell_type": "code",
- "execution_count": 24,
+ "execution_count": 102,
"id": "2326c129",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-04T22:04:25.893162Z",
- "start_time": "2023-10-04T22:04:25.889647Z"
+ "end_time": "2023-10-06T21:14:23.140632Z",
+ "start_time": "2023-10-06T21:14:23.137188Z"
}
},
"outputs": [],
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
index 51f3eda9..04753176 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
@@ -2,12 +2,12 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 37,
"id": "248cbed8",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-04T22:41:38.880532Z",
- "start_time": "2023-10-04T22:41:38.744525Z"
+ "end_time": "2023-10-06T20:57:23.539739Z",
+ "start_time": "2023-10-06T20:57:23.403057Z"
}
},
"outputs": [
@@ -28,12 +28,12 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 38,
"id": "7ec6cd08",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-04T22:41:38.897390Z",
- "start_time": "2023-10-04T22:41:38.879544Z"
+ "end_time": "2023-10-06T20:57:23.574022Z",
+ "start_time": "2023-10-06T20:57:23.538351Z"
}
},
"outputs": [],
@@ -46,12 +46,12 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 39,
"id": "b8cb69f2",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-04T22:41:38.905091Z",
- "start_time": "2023-10-04T22:41:38.881727Z"
+ "end_time": "2023-10-06T20:57:23.581730Z",
+ "start_time": "2023-10-06T20:57:23.560533Z"
}
},
"outputs": [
@@ -81,12 +81,12 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 40,
"id": "7a9241de",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-04T22:41:38.938535Z",
- "start_time": "2023-10-04T22:41:38.904769Z"
+ "end_time": "2023-10-06T20:57:23.606204Z",
+ "start_time": "2023-10-06T20:57:23.581940Z"
}
},
"outputs": [],
@@ -99,7 +99,7 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 41,
"outputs": [],
"source": [
"sensitive_attributes_dct = {'male': '0.0', 'race': 'Non-White', 'male&race': None}"
@@ -107,15 +107,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T22:41:38.946897Z",
- "start_time": "2023-10-04T22:41:38.927198Z"
+ "end_time": "2023-10-06T20:57:23.625570Z",
+ "start_time": "2023-10-06T20:57:23.604454Z"
}
},
"id": "d3c53c7b72ecbcd0"
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 42,
"outputs": [],
"source": [
"ROOT_DIR = os.path.join('docs', 'examples')\n",
@@ -125,15 +125,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T22:41:38.973205Z",
- "start_time": "2023-10-04T22:41:38.947863Z"
+ "end_time": "2023-10-06T20:57:23.653982Z",
+ "start_time": "2023-10-06T20:57:23.626330Z"
}
},
"id": "2aab7c79ecdee914"
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": 43,
"outputs": [],
"source": [
"subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
@@ -144,15 +144,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T22:41:38.994980Z",
- "start_time": "2023-10-04T22:41:38.973852Z"
+ "end_time": "2023-10-06T20:57:23.679479Z",
+ "start_time": "2023-10-06T20:57:23.654567Z"
}
},
"id": "2d922003e752a4b4"
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": 44,
"outputs": [],
"source": [
"models_metrics_dct = dict()\n",
@@ -162,21 +162,21 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T22:41:39.019414Z",
- "start_time": "2023-10-04T22:41:38.994888Z"
+ "end_time": "2023-10-06T20:57:23.700549Z",
+ "start_time": "2023-10-06T20:57:23.677916Z"
}
},
"id": "833484748ed512e8"
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": 45,
"outputs": [
{
"data": {
"text/plain": "dict_keys(['LGBMClassifier__alpha=0.6', 'LGBMClassifier__alpha=0.0', 'LogisticRegression__alpha=0.6', 'LogisticRegression__alpha=0.0', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.6', 'RandomForestClassifier__alpha=0.6', 'RandomForestClassifier__alpha=0.0'])"
},
- "execution_count": 21,
+ "execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
@@ -187,8 +187,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T22:41:39.040053Z",
- "start_time": "2023-10-04T22:41:39.018488Z"
+ "end_time": "2023-10-06T20:57:23.724011Z",
+ "start_time": "2023-10-06T20:57:23.701125Z"
}
},
"id": "15ed7d1ba1f22317"
@@ -203,12 +203,12 @@
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": 53,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-04T22:41:39.066833Z",
- "start_time": "2023-10-04T22:41:39.039759Z"
+ "end_time": "2023-10-06T21:03:32.115564Z",
+ "start_time": "2023-10-06T21:03:31.937977Z"
}
},
"outputs": [],
@@ -219,7 +219,7 @@
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": 54,
"outputs": [
{
"name": "stdout",
@@ -238,15 +238,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T23:04:24.847056Z",
- "start_time": "2023-10-04T22:41:39.066921Z"
+ "end_time": "2023-10-06T21:09:25.295447Z",
+ "start_time": "2023-10-06T21:03:32.116976Z"
}
},
"id": "678a9dc8d51243f4"
},
{
"cell_type": "code",
- "execution_count": 24,
+ "execution_count": 48,
"outputs": [
{
"name": "stdout",
@@ -262,20 +262,20 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-04T23:04:24.902597Z",
- "start_time": "2023-10-04T23:04:24.849984Z"
+ "end_time": "2023-10-06T21:00:49.188809Z",
+ "start_time": "2023-10-06T21:00:49.151061Z"
}
},
"id": "277b6d1de837dab7"
},
{
"cell_type": "code",
- "execution_count": 24,
+ "execution_count": 48,
"id": "2326c129",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-04T23:04:24.904745Z",
- "start_time": "2023-10-04T23:04:24.902886Z"
+ "end_time": "2023-10-06T21:00:49.189515Z",
+ "start_time": "2023-10-06T21:00:49.186479Z"
}
},
"outputs": [],
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb
index b4d780d9..176a30ed 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb
@@ -2,15 +2,24 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 25,
"id": "248cbed8",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-05T10:39:55.272406Z",
- "start_time": "2023-10-05T10:39:54.897985Z"
+ "end_time": "2023-10-06T21:09:29.050528Z",
+ "start_time": "2023-10-06T21:09:28.908204Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The autoreload extension is already loaded. To reload it, use:\n",
+ " %reload_ext autoreload\n"
+ ]
+ }
+ ],
"source": [
"%matplotlib inline\n",
"%load_ext autoreload\n",
@@ -19,12 +28,12 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 26,
"id": "7ec6cd08",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-05T10:39:55.281893Z",
- "start_time": "2023-10-05T10:39:55.273119Z"
+ "end_time": "2023-10-06T21:09:29.086370Z",
+ "start_time": "2023-10-06T21:09:29.050228Z"
}
},
"outputs": [],
@@ -37,12 +46,12 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 27,
"id": "b8cb69f2",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-05T10:39:55.292533Z",
- "start_time": "2023-10-05T10:39:55.282026Z"
+ "end_time": "2023-10-06T21:09:29.094601Z",
+ "start_time": "2023-10-06T21:09:29.073102Z"
}
},
"outputs": [
@@ -72,12 +81,12 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 28,
"id": "7a9241de",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-05T10:39:56.844327Z",
- "start_time": "2023-10-05T10:39:55.291377Z"
+ "end_time": "2023-10-06T21:09:29.128343Z",
+ "start_time": "2023-10-06T21:09:29.094781Z"
}
},
"outputs": [],
@@ -90,7 +99,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 29,
"outputs": [],
"source": [
"sensitive_attributes_dct = {'Race': 'Non-White'}"
@@ -98,15 +107,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-05T10:39:56.870851Z",
- "start_time": "2023-10-05T10:39:56.847550Z"
+ "end_time": "2023-10-06T21:09:29.135958Z",
+ "start_time": "2023-10-06T21:09:29.115755Z"
}
},
"id": "d3c53c7b72ecbcd0"
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 30,
"outputs": [],
"source": [
"ROOT_DIR = os.path.join('docs', 'examples')\n",
@@ -116,15 +125,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-05T10:39:56.896386Z",
- "start_time": "2023-10-05T10:39:56.868941Z"
+ "end_time": "2023-10-06T21:09:29.163189Z",
+ "start_time": "2023-10-06T21:09:29.136609Z"
}
},
"id": "2aab7c79ecdee914"
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 31,
"outputs": [],
"source": [
"subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
@@ -135,15 +144,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-05T10:39:56.916837Z",
- "start_time": "2023-10-05T10:39:56.894764Z"
+ "end_time": "2023-10-06T21:09:29.187069Z",
+ "start_time": "2023-10-06T21:09:29.163967Z"
}
},
"id": "2d922003e752a4b4"
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 32,
"outputs": [],
"source": [
"models_metrics_dct = dict()\n",
@@ -153,21 +162,21 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-05T10:39:56.940693Z",
- "start_time": "2023-10-05T10:39:56.916977Z"
+ "end_time": "2023-10-06T21:09:29.210023Z",
+ "start_time": "2023-10-06T21:09:29.185859Z"
}
},
"id": "833484748ed512e8"
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 33,
"outputs": [
{
"data": {
"text/plain": "dict_keys(['LGBMClassifier__alpha=0.0', 'LGBMClassifier__alpha=0.4', 'LGBMClassifier__alpha=0.7', 'LogisticRegression__alpha=0.0', 'LogisticRegression__alpha=0.4', 'LogisticRegression__alpha=0.7', 'MLPClassifier__alpha=0.7', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.0', 'RandomForestClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.7'])"
},
- "execution_count": 9,
+ "execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
@@ -178,8 +187,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-05T10:39:56.964580Z",
- "start_time": "2023-10-05T10:39:56.941618Z"
+ "end_time": "2023-10-06T21:09:29.231487Z",
+ "start_time": "2023-10-06T21:09:29.210107Z"
}
},
"id": "15ed7d1ba1f22317"
@@ -194,12 +203,12 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 34,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-05T10:39:56.991119Z",
- "start_time": "2023-10-05T10:39:56.962485Z"
+ "end_time": "2023-10-06T21:09:29.260102Z",
+ "start_time": "2023-10-06T21:09:29.231557Z"
}
},
"outputs": [],
@@ -210,7 +219,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 35,
"outputs": [
{
"name": "stdout",
@@ -229,15 +238,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-05T13:20:31.060413Z",
- "start_time": "2023-10-05T10:39:56.991233Z"
+ "end_time": "2023-10-06T21:10:28.861090Z",
+ "start_time": "2023-10-06T21:09:29.258554Z"
}
},
"id": "678a9dc8d51243f4"
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 36,
"outputs": [
{
"name": "stdout",
@@ -253,20 +262,20 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-05T13:20:31.101325Z",
- "start_time": "2023-10-05T13:20:31.064318Z"
+ "end_time": "2023-10-06T21:10:28.893637Z",
+ "start_time": "2023-10-06T21:10:28.857995Z"
}
},
"id": "277b6d1de837dab7"
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 36,
"id": "2326c129",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-05T13:20:31.104256Z",
- "start_time": "2023-10-05T13:20:31.102380Z"
+ "end_time": "2023-10-06T21:10:28.896502Z",
+ "start_time": "2023-10-06T21:10:28.892359Z"
}
},
"outputs": [],
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index 24edc520..0a151995 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -63,9 +63,6 @@ def _align_input_metric_df(self, model_metrics_df: pd.DataFrame, allowed_cols: l
return model_metrics_df[filtered_cols]
def start_web_app(self):
- # css = """
- # .plot_output1 {position: right !important}
- # """
with gr.Blocks(theme=gr.themes.Soft()) as demo:
# ==================================== Bar Chart for Model Selection ====================================
gr.Markdown(
@@ -81,7 +78,7 @@ def start_web_app(self):
)
with gr.Row():
accuracy_metric = gr.Dropdown(
- ['Statistical_Bias', 'TPR', 'TNR', 'PPV', 'FNR', 'FPR', 'Accuracy', 'F1'],
+ sorted(['Statistical_Bias', 'TPR', 'TNR', 'PPV', 'FNR', 'FPR', 'Accuracy', 'F1']),
value='Accuracy', multiselect=False, label="Constraint 1 (C1)",
scale=2
)
@@ -89,7 +86,7 @@ def start_web_app(self):
acc_max_val = gr.Number(value=1.0, label="Max value", scale=1)
with gr.Row():
fairness_metric = gr.Dropdown(
- ['Equalized_Odds_TPR', 'Equalized_Odds_FPR', 'Disparate_Impact', 'Statistical_Parity_Difference', 'Accuracy_Parity'],
+ sorted(['Equalized_Odds_TPR', 'Equalized_Odds_FPR', 'Disparate_Impact', 'Statistical_Parity_Difference', 'Accuracy_Parity']),
value='Equalized_Odds_FPR', multiselect=False, label="Constraint 2 (C2)",
scale=2
)
@@ -97,7 +94,7 @@ def start_web_app(self):
fairness_max_val = gr.Number(value=0.15, label="Max value", scale=1)
with gr.Row():
subgroup_stability_metric = gr.Dropdown(
- ['Std', 'IQR', 'Jitter', 'Label_Stability'],
+ sorted(['Std', 'IQR', 'Jitter', 'Label_Stability']),
value='Label_Stability', multiselect=False, label="Constraint 3 (C3)",
scale=2
)
@@ -105,7 +102,7 @@ def start_web_app(self):
subgroup_stab_max_val = gr.Number(value=1.0, label="Max value", scale=1)
with gr.Row():
group_stability_metrics = gr.Dropdown(
- ['Label_Stability_Ratio', 'IQR_Parity', 'Std_Parity', 'Std_Ratio', 'Jitter_Parity'],
+ sorted(['Label_Stability_Ratio', 'IQR_Parity', 'Std_Parity', 'Std_Ratio', 'Jitter_Parity']),
value='Label_Stability_Ratio', multiselect=False, label="Constraint 4 (C4)",
scale=2
)
@@ -122,28 +119,28 @@ def start_web_app(self):
subgroup_stability_metric, subgroup_stab_min_val, subgroup_stab_max_val,
group_stability_metrics, group_stab_min_val, group_stab_max_val],
outputs=[bar_plot_for_model_selection])
- # ======================================= Subgroup Metrics Heatmap =======================================
+ # ======================================= Overall Metrics Heatmap =======================================
gr.Markdown(
"""
- ## Subgroup Metrics Heatmap
- Select input arguments to create a subgroup metrics heatmap.
+ ## Overall Metrics Heatmap
+ Select input arguments to create an overall metrics heatmap.
""")
with gr.Row():
with gr.Column(scale=1):
model_names = gr.Dropdown(
- self.model_names, value=self.model_names[:4], max_choices=5, multiselect=True,
+ sorted(self.model_names), value=sorted(self.model_names)[:4], max_choices=5, multiselect=True,
label="Model Names", info="Select model names to display on the heatmap:",
)
accuracy_metrics = gr.Dropdown(
- ['Statistical_Bias', 'TPR', 'TNR', 'PPV', 'FNR', 'FPR', 'Accuracy', 'F1'],
+ sorted(['Statistical_Bias', 'TPR', 'TNR', 'PPV', 'FNR', 'FPR', 'Accuracy', 'F1']),
value=['Accuracy', 'F1'], multiselect=True, label="Accuracy Metrics", info="Select accuracy metrics to display on the heatmap:",
)
uncertainty_metrics = gr.Dropdown(
- ['Aleatoric_Uncertainty', 'Overall_Uncertainty'],
+ sorted(['Aleatoric_Uncertainty', 'Overall_Uncertainty']),
value=['Aleatoric_Uncertainty', 'Overall_Uncertainty'], multiselect=True, label="Uncertainty Metrics", info="Select uncertainty metrics to display on the heatmap:",
)
subgroup_stability_metrics = gr.Dropdown(
- ['Std', 'IQR', 'Jitter', 'Label_Stability'],
+ sorted(['Std', 'IQR', 'Jitter', 'Label_Stability']),
value=['Jitter', 'Label_Stability'], multiselect=True, label="Stability Metrics", info="Select stability metrics to display on the heatmap:",
)
subgroup_btn_view2 = gr.Button("Submit")
@@ -153,24 +150,24 @@ def start_web_app(self):
subgroup_btn_view2.click(self._create_subgroup_model_rank_heatmap,
inputs=[model_names, accuracy_metrics, uncertainty_metrics, subgroup_stability_metrics],
outputs=[subgroup_model_ranking_heatmap])
- # ======================================== Group Metrics Heatmap ========================================
+ # ======================================== Parity Metrics Heatmap ========================================
gr.Markdown(
"""
- ## Group Metrics Heatmap
- Select input arguments to create a group metrics heatmap.
+ ## Parity Metrics Heatmap
+ Select input arguments to create a parity metrics heatmap.
""")
with gr.Row():
with gr.Column(scale=1):
model_names = gr.Dropdown(
- self.model_names, value=self.model_names[:4], max_choices=5, multiselect=True,
+ sorted(self.model_names), value=sorted(self.model_names)[:4], max_choices=5, multiselect=True,
label="Model Names", info="Select model names to display on the heatmap:",
)
fairness_metrics = gr.Dropdown(
- ['Equalized_Odds_TPR', 'Equalized_Odds_FPR', 'Disparate_Impact', 'Statistical_Parity_Difference', 'Accuracy_Parity'],
- value=['Equalized_Odds_TPR', 'Equalized_Odds_FPR'], multiselect=True, label="Error Parity Metrics", info="Select error parity metrics to display on the heatmap:",
+ sorted(['Equalized_Odds_TPR', 'Equalized_Odds_FPR', 'Disparate_Impact', 'Statistical_Parity_Difference', 'Accuracy_Parity']),
+ value=['Equalized_Odds_FPR', 'Equalized_Odds_TPR'], multiselect=True, label="Error Parity Metrics", info="Select error parity metrics to display on the heatmap:",
)
group_stability_metrics = gr.Dropdown(
- ['Label_Stability_Ratio', 'IQR_Parity', 'Std_Parity', 'Std_Ratio', 'Jitter_Parity'],
+ sorted(['Label_Stability_Ratio', 'IQR_Parity', 'Std_Parity', 'Std_Ratio', 'Jitter_Parity']),
value=['Label_Stability_Ratio', 'Std_Parity'], multiselect=True, label="Stability Parity Metrics", info="Select stability parity metrics to display on the heatmap:",
)
group_btn_view2 = gr.Button("Submit")
@@ -188,19 +185,19 @@ def start_web_app(self):
## Subgroup Metrics Bar Chart
""")
subgroup_model_names = gr.Dropdown(
- self.model_names, value=self.model_names[0], multiselect=False,
+ sorted(self.model_names), value=sorted(self.model_names)[0], multiselect=False,
label="Model Names", info="Select one model to display on the bar chart:",
)
accuracy_metrics = gr.Dropdown(
- ['Statistical_Bias', 'TPR', 'TNR', 'PPV', 'FNR', 'FPR', 'Accuracy', 'F1'],
+ sorted(['Statistical_Bias', 'TPR', 'TNR', 'PPV', 'FNR', 'FPR', 'Accuracy', 'F1']),
value=['Accuracy', 'F1'], multiselect=True, label="Accuracy Metrics", info="Select accuracy metrics to display on the heatmap:",
)
uncertainty_metrics = gr.Dropdown(
- ['Aleatoric_Uncertainty', 'Overall_Uncertainty'],
+ sorted(['Aleatoric_Uncertainty', 'Overall_Uncertainty']),
value=['Aleatoric_Uncertainty', 'Overall_Uncertainty'], multiselect=True, label="Uncertainty Metrics", info="Select uncertainty metrics to display on the heatmap:",
)
subgroup_stability_metrics = gr.Dropdown(
- ['Std', 'IQR', 'Jitter', 'Label_Stability'],
+ sorted(['Std', 'IQR', 'Jitter', 'Label_Stability']),
value=['Jitter', 'Label_Stability'], multiselect=True, label="Stability Metrics", info="Select stability metrics to display on the heatmap:",
)
subgroup_btn_view3 = gr.Button("Submit")
@@ -210,15 +207,15 @@ def start_web_app(self):
## Group Metrics Bar Chart
""")
group_model_names = gr.Dropdown(
- self.model_names, value=self.model_names[0], multiselect=False,
+ sorted(self.model_names), value=sorted(self.model_names)[0], multiselect=False,
label="Model Names", info="Select one model to display on the bar chart:",
)
fairness_metrics = gr.Dropdown(
- ['Equalized_Odds_TPR', 'Equalized_Odds_FPR', 'Disparate_Impact', 'Statistical_Parity_Difference', 'Accuracy_Parity'],
- value=['Equalized_Odds_TPR', 'Equalized_Odds_FPR'], multiselect=True, label="Error Parity Metrics", info="Select error parity metrics to display on the heatmap:",
+ sorted(['Equalized_Odds_TPR', 'Equalized_Odds_FPR', 'Disparate_Impact', 'Statistical_Parity_Difference', 'Accuracy_Parity']),
+ value=['Equalized_Odds_FPR', 'Equalized_Odds_TPR'], multiselect=True, label="Error Parity Metrics", info="Select error parity metrics to display on the heatmap:",
)
group_stability_metrics = gr.Dropdown(
- ['Label_Stability_Ratio', 'IQR_Parity', 'Std_Parity', 'Std_Ratio', 'Jitter_Parity'],
+ sorted(['Label_Stability_Ratio', 'IQR_Parity', 'Std_Parity', 'Std_Ratio', 'Jitter_Parity']),
value=['Label_Stability_Ratio', 'Std_Parity'], multiselect=True, label="Stability Parity Metrics", info="Select stability parity metrics to display on the heatmap:",
)
group_btn_view3 = gr.Button("Submit")
@@ -316,7 +313,6 @@ def _create_subgroup_model_rank_heatmap(self, model_names: list, subgroup_accura
A list of subgroup stability metrics to visualize
"""
- groups_lst = self.sensitive_attributes_dct.keys()
metrics_lst = subgroup_accuracy_metrics_lst + subgroup_uncertainty_metrics + subgroup_stability_metrics_lst
# Find metric values for each model based on metric, subgroup, and model names.
@@ -325,20 +321,14 @@ def _create_subgroup_model_rank_heatmap(self, model_names: list, subgroup_accura
num_models = len(model_names)
for metric in metrics_lst:
# Add an overall metric
- subgroup_metric = metric + '_overall'
+ subgroup_metric = metric
results = self.__filter_subgroup_metrics_df(results, subgroup_metric, metric,
selected_subgroup='overall', defined_model_names=model_names)
- # Add a subgroup metric
- for group in groups_lst:
- for prefix in ['priv', 'dis']:
- subgroup = group + '_' + prefix
- subgroup_metric = metric + '_' + subgroup
- results = self.__filter_subgroup_metrics_df(results, subgroup_metric, metric, subgroup, model_names)
model_metrics_matrix = pd.DataFrame(results).T
sorted_matrix_by_rank = create_subgroup_sorted_matrix_by_rank(model_metrics_matrix)
- model_rank_heatmap, _ = create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_by_rank,
- num_models, top_adjust=1.)
+ model_rank_heatmap, _ = create_model_rank_heatmap_visualization(model_metrics_matrix,
+ sorted_matrix_by_rank, num_models)
return model_rank_heatmap
@@ -388,8 +378,8 @@ def _create_group_model_rank_heatmap(self, model_names: list, group_fairness_met
model_metrics_matrix = pd.DataFrame(results).T
sorted_matrix_by_rank = create_sorted_matrix_by_rank(model_metrics_matrix)
- model_rank_heatmap, _ = create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_by_rank,
- num_models, top_adjust=0.78)
+ model_rank_heatmap, _ = create_model_rank_heatmap_visualization(model_metrics_matrix,
+ sorted_matrix_by_rank, num_models)
return model_rank_heatmap
@@ -420,6 +410,7 @@ def _create_metrics_bar_chart_per_one_model(self, model_name: str, metrics_names
metrics_title = f'{metrics_type.capitalize()} Metrics'
metrics_df = self.melted_model_composed_metrics_df if metrics_type == "group" else self.melted_model_metrics_df
filtered_groups = [grp for grp in metrics_df.Subgroup.unique() if '_correct' not in grp and '_incorrect' not in grp]
+ filtered_groups = [grp for grp in filtered_groups if grp.lower() != 'overall'] + ['overall']
filtered_metrics_df = metrics_df[(metrics_df['Metric'].isin(metrics_names)) &
(metrics_df['Model_Name'] == model_name) &
(metrics_df['Subgroup'].isin(filtered_groups))]
@@ -427,14 +418,14 @@ def _create_metrics_bar_chart_per_one_model(self, model_name: str, metrics_names
base_font_size = 16
models_metrics_chart = (
alt.Chart().mark_bar().encode(
- alt.Y('Subgroup:N', axis=None),
+ alt.Y('Subgroup:N', axis=None, sort=filtered_groups),
alt.X('Value:Q', axis=alt.Axis(grid=True), title=''),
alt.Color('Subgroup:N',
scale=alt.Scale(scheme="tableau20"),
+ sort=filtered_groups,
legend=alt.Legend(title=metrics_type.capitalize(),
labelFontSize=base_font_size,
- titleFontSize=base_font_size + 2)
- )
+ titleFontSize=base_font_size + 2))
)
)
@@ -457,7 +448,7 @@ def _create_metrics_bar_chart_per_one_model(self, model_name: str, metrics_names
width=500,
height=100
).facet(
- row=alt.Row('Metric:N', title=metrics_title)
+ row=alt.Row('Metric:N', title=metrics_title, sort=metrics_names)
).configure(
padding={'top': 33},
).configure_headerRow(
diff --git a/virny/utils/data_viz_utils.py b/virny/utils/data_viz_utils.py
index e90a3e71..8039a757 100644
--- a/virny/utils/data_viz_utils.py
+++ b/virny/utils/data_viz_utils.py
@@ -60,8 +60,7 @@ def create_subgroup_sorted_matrix_by_rank(model_metrics_matrix) -> np.array:
return sorted_matrix_by_rank
-def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_by_rank, num_models: int,
- top_adjust: float = 0.92):
+def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_by_rank, num_models: int):
"""
This heatmap includes group fairness and stability metrics and defined models.
Using it, you can visually compare the models across defined group metrics. On this plot,
@@ -80,13 +79,12 @@ def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_
Matrix of model ranks per metric where indexes are group metric names and columns are model names
num_models
Number of models to visualize
- top_adjust
- Percentage of a top padding for the heatmap
"""
font_increase = 4
matrix_width = 20
- matrix_height = model_metrics_matrix.shape[0] // 2
+ matrix_height = model_metrics_matrix.shape[0] if model_metrics_matrix.shape[0] >= 3 \
+ else model_metrics_matrix.shape[0] * 2.5
fig = plt.figure(figsize=(matrix_width, matrix_height))
rank_colors = sns.color_palette("coolwarm", n_colors=num_models).as_hex()[::-1]
ax = sns.heatmap(sorted_matrix_by_rank, annot=model_metrics_matrix, cmap=rank_colors,
@@ -95,7 +93,7 @@ def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_
ax.xaxis.tick_top()
ax.tick_params(axis='x', rotation=10)
ax.tick_params(labelsize=16 + font_increase)
- fig.subplots_adjust(left=0.3, right=0.99, top=0.8)
+ fig.tight_layout()
cbar = ax.collections[0].colorbar
model_ranks = [idx for idx in range(num_models)]
From 69306c5cdd7b640ec84a33f21ba2b1fb4bff0d4f Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Sat, 7 Oct 2023 12:17:00 +0300
Subject: [PATCH 013/148] Reveresed a color bar for heatmaps
---
.../Multiple_Models_Interface_Vis_Income.ipynb | 8 ++++----
.../metrics_interactive_visualizer.py | 14 +++++++-------
virny/utils/data_viz_utils.py | 8 +++++---
3 files changed, 16 insertions(+), 14 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
index 8a24cd07..df14ea69 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
@@ -203,12 +203,12 @@
},
{
"cell_type": "code",
- "execution_count": 119,
+ "execution_count": 136,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-06T21:29:47.511Z",
- "start_time": "2023-10-06T21:29:47.468822Z"
+ "end_time": "2023-10-07T09:06:44.773742Z",
+ "start_time": "2023-10-07T09:06:44.711157Z"
}
},
"outputs": [],
@@ -238,7 +238,7 @@
"collapsed": false,
"is_executing": true,
"ExecuteTime": {
- "start_time": "2023-10-06T21:29:47.543336Z"
+ "start_time": "2023-10-07T09:06:45.327146Z"
}
},
"id": "678a9dc8d51243f4"
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index 0a151995..68dd4e7a 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -68,7 +68,7 @@ def start_web_app(self):
gr.Markdown(
"""
## Bar Chart for Model Selection
- Select input arguments to create a bar chart for model selection.
+ Select input arguments to create a bar chart for model selection. Default values display the lowest and greatest limits of constraints.
""")
with gr.Row():
with gr.Column(scale=2):
@@ -82,7 +82,7 @@ def start_web_app(self):
value='Accuracy', multiselect=False, label="Constraint 1 (C1)",
scale=2
)
- acc_min_val = gr.Number(value=0.7, label="Min value", scale=1)
+ acc_min_val = gr.Number(value=0.0, label="Min value", scale=1)
acc_max_val = gr.Number(value=1.0, label="Max value", scale=1)
with gr.Row():
fairness_metric = gr.Dropdown(
@@ -90,15 +90,15 @@ def start_web_app(self):
value='Equalized_Odds_FPR', multiselect=False, label="Constraint 2 (C2)",
scale=2
)
- fairness_min_val = gr.Number(value=-0.15, label="Min value", scale=1)
- fairness_max_val = gr.Number(value=0.15, label="Max value", scale=1)
+ fairness_min_val = gr.Number(value=-1.0, label="Min value", scale=1)
+ fairness_max_val = gr.Number(value=1.0, label="Max value", scale=1)
with gr.Row():
subgroup_stability_metric = gr.Dropdown(
sorted(['Std', 'IQR', 'Jitter', 'Label_Stability']),
value='Label_Stability', multiselect=False, label="Constraint 3 (C3)",
scale=2
)
- subgroup_stab_min_val = gr.Number(value=0.9, label="Min value", scale=1)
+ subgroup_stab_min_val = gr.Number(value=0.0, label="Min value", scale=1)
subgroup_stab_max_val = gr.Number(value=1.0, label="Max value", scale=1)
with gr.Row():
group_stability_metrics = gr.Dropdown(
@@ -106,8 +106,8 @@ def start_web_app(self):
value='Label_Stability_Ratio', multiselect=False, label="Constraint 4 (C4)",
scale=2
)
- group_stab_min_val = gr.Number(value=0.98, label="Min value", scale=1)
- group_stab_max_val = gr.Number(value=1.02, label="Max value", scale=1)
+ group_stab_min_val = gr.Number(value=0.1, label="Min value", scale=1)
+ group_stab_max_val = gr.Number(value=10.0, label="Max value", scale=1)
btn_view1 = gr.Button("Submit")
with gr.Column(scale=3):
bar_plot_for_model_selection = gr.Plot(label="Plot")
diff --git a/virny/utils/data_viz_utils.py b/virny/utils/data_viz_utils.py
index 8039a757..439739b4 100644
--- a/virny/utils/data_viz_utils.py
+++ b/virny/utils/data_viz_utils.py
@@ -86,8 +86,10 @@ def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_
matrix_height = model_metrics_matrix.shape[0] if model_metrics_matrix.shape[0] >= 3 \
else model_metrics_matrix.shape[0] * 2.5
fig = plt.figure(figsize=(matrix_width, matrix_height))
- rank_colors = sns.color_palette("coolwarm", n_colors=num_models).as_hex()[::-1]
- ax = sns.heatmap(sorted_matrix_by_rank, annot=model_metrics_matrix, cmap=rank_colors,
+ rank_colors = sns.color_palette("coolwarm", n_colors=num_models).as_hex()
+ # Convert ranks to minus ranks (1 --> -1; 4 --> -4) to align rank positions with a coolwarm color scheme
+ reversed_sorted_matrix_by_rank = sorted_matrix_by_rank * -1
+ ax = sns.heatmap(reversed_sorted_matrix_by_rank, annot=model_metrics_matrix, cmap=rank_colors,
fmt='', annot_kws={'color': 'black', 'alpha': 0.7, 'fontsize': 16 + font_increase})
ax.set(xlabel="", ylabel="")
ax.xaxis.tick_top()
@@ -97,7 +99,7 @@ def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_
cbar = ax.collections[0].colorbar
model_ranks = [idx for idx in range(num_models)]
- cbar.set_ticks([float(idx) for idx in model_ranks])
+ cbar.set_ticks([float(idx) * -1 for idx in model_ranks])
tick_labels = [str(idx + 1) for idx in model_ranks]
tick_labels[0] = tick_labels[0] + ', best'
tick_labels[-1] = tick_labels[-1] + ', worst'
From 6262752731cb70a8b9d73ec13f78b81670a7c812 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Sat, 7 Oct 2023 16:30:21 +0300
Subject: [PATCH 014/148] Added a table with model names that satisfy all 4
constraints
---
.../Multiple_Models_Interface_Vis_Income.ipynb | 8 ++++----
.../metrics_interactive_visualizer.py | 15 +++++++++------
virny/utils/data_viz_utils.py | 13 +++++++++----
3 files changed, 22 insertions(+), 14 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
index df14ea69..7466ede7 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
@@ -203,12 +203,12 @@
},
{
"cell_type": "code",
- "execution_count": 136,
+ "execution_count": 148,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-07T09:06:44.773742Z",
- "start_time": "2023-10-07T09:06:44.711157Z"
+ "end_time": "2023-10-07T13:23:24.513519Z",
+ "start_time": "2023-10-07T13:23:24.200188Z"
}
},
"outputs": [],
@@ -238,7 +238,7 @@
"collapsed": false,
"is_executing": true,
"ExecuteTime": {
- "start_time": "2023-10-07T09:06:45.327146Z"
+ "start_time": "2023-10-07T13:23:24.514061Z"
}
},
"id": "678a9dc8d51243f4"
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index 68dd4e7a..43a1173c 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -110,7 +110,8 @@ def start_web_app(self):
group_stab_max_val = gr.Number(value=10.0, label="Max value", scale=1)
btn_view1 = gr.Button("Submit")
with gr.Column(scale=3):
- bar_plot_for_model_selection = gr.Plot(label="Plot")
+ bar_plot_for_model_selection = gr.Plot(label="Bar Chart")
+ df_with_models_satisfied_all_constraints = gr.DataFrame(label='Models that satisfy all 4 constraints')
btn_view1.click(self._create_bar_plot_for_model_selection,
inputs=[group_name,
@@ -118,7 +119,7 @@ def start_web_app(self):
fairness_metric, fairness_min_val, fairness_max_val,
subgroup_stability_metric, subgroup_stab_min_val, subgroup_stab_max_val,
group_stability_metrics, group_stab_min_val, group_stab_max_val],
- outputs=[bar_plot_for_model_selection])
+ outputs=[bar_plot_for_model_selection, df_with_models_satisfied_all_constraints])
# ======================================= Overall Metrics Heatmap =======================================
gr.Markdown(
"""
@@ -145,7 +146,7 @@ def start_web_app(self):
)
subgroup_btn_view2 = gr.Button("Submit")
with gr.Column(scale=2):
- subgroup_model_ranking_heatmap = gr.Plot(label="Plot")
+ subgroup_model_ranking_heatmap = gr.Plot(label="Heatmap")
subgroup_btn_view2.click(self._create_subgroup_model_rank_heatmap,
inputs=[model_names, accuracy_metrics, uncertainty_metrics, subgroup_stability_metrics],
@@ -172,7 +173,7 @@ def start_web_app(self):
)
group_btn_view2 = gr.Button("Submit")
with gr.Column(scale=2):
- group_model_ranking_heatmap = gr.Plot(label="Plot")
+ group_model_ranking_heatmap = gr.Plot(label="Heatmap")
group_btn_view2.click(self._create_group_model_rank_heatmap,
inputs=[model_names, fairness_metrics, group_stability_metrics],
@@ -221,9 +222,9 @@ def start_web_app(self):
group_btn_view3 = gr.Button("Submit")
with gr.Row():
with gr.Column():
- subgroup_metrics_bar_chart = gr.Plot(label="Plot")
+ subgroup_metrics_bar_chart = gr.Plot(label="Subgroup Bar Chart")
with gr.Column():
- group_metrics_bar_chart = gr.Plot(label="Plot")
+ group_metrics_bar_chart = gr.Plot(label="Group Bar Chart")
subgroup_btn_view3.click(self._create_subgroup_metrics_bar_chart_per_one_model,
inputs=[subgroup_model_names, accuracy_metrics, uncertainty_metrics, subgroup_stability_metrics],
@@ -326,6 +327,7 @@ def _create_subgroup_model_rank_heatmap(self, model_names: list, subgroup_accura
selected_subgroup='overall', defined_model_names=model_names)
model_metrics_matrix = pd.DataFrame(results).T
+ model_metrics_matrix = model_metrics_matrix[sorted(model_metrics_matrix.columns)]
sorted_matrix_by_rank = create_subgroup_sorted_matrix_by_rank(model_metrics_matrix)
model_rank_heatmap, _ = create_model_rank_heatmap_visualization(model_metrics_matrix,
sorted_matrix_by_rank, num_models)
@@ -377,6 +379,7 @@ def _create_group_model_rank_heatmap(self, model_names: list, group_fairness_met
results[group_metric][model_name] = metric_value
model_metrics_matrix = pd.DataFrame(results).T
+ model_metrics_matrix = model_metrics_matrix[sorted(model_metrics_matrix.columns)]
sorted_matrix_by_rank = create_sorted_matrix_by_rank(model_metrics_matrix)
model_rank_heatmap, _ = create_model_rank_heatmap_visualization(model_metrics_matrix,
sorted_matrix_by_rank, num_models)
diff --git a/virny/utils/data_viz_utils.py b/virny/utils/data_viz_utils.py
index 439739b4..1ee8096c 100644
--- a/virny/utils/data_viz_utils.py
+++ b/virny/utils/data_viz_utils.py
@@ -112,8 +112,9 @@ def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_
def create_bar_plot_for_model_selection(all_subgroup_metrics_per_model_dct: dict, all_group_metrics_per_model_dct: dict,
metrics_value_range_dct: dict, group: str):
# Compute the number of models that satisfy the conditions
- models_in_range_df = create_models_in_range_dct(all_subgroup_metrics_per_model_dct, all_group_metrics_per_model_dct,
- metrics_value_range_dct, group)
+ models_in_range_df, df_with_models_satisfied_all_constraints = (
+ create_models_in_range_dct(all_subgroup_metrics_per_model_dct, all_group_metrics_per_model_dct,
+ metrics_value_range_dct, group))
# Replace metric groups on their aliases
metric_name_to_alias_dct = {
# C1
@@ -184,7 +185,7 @@ def get_column_alias(metric_group):
titleLimit=220,
).properties(width=650, height=450)
- return bar_plot
+ return bar_plot, df_with_models_satisfied_all_constraints
def create_models_in_range_dct(all_subgroup_metrics_per_model_dct: dict, all_group_metrics_per_model_dct: dict,
@@ -217,6 +218,7 @@ def create_models_in_range_dct(all_subgroup_metrics_per_model_dct: dict, all_gro
# Create a pandas condition for filtering based on the input value ranges
models_in_range_df = pd.DataFrame()
+ df_with_models_satisfied_all_constraints = pd.DataFrame()
for idx, (metric_group, value_range) in enumerate(metrics_value_range_dct.items()):
pd_condition = None
if '&' not in metric_group:
@@ -253,4 +255,7 @@ def create_models_in_range_dct(all_subgroup_metrics_per_model_dct: dict, all_gro
# Concatenate based on rows
models_in_range_df = pd.concat([models_in_range_df, num_satisfied_models_df], ignore_index=True, sort=False)
- return models_in_range_df
+ if metric_group.count('&') == 3:
+ df_with_models_satisfied_all_constraints = pivoted_model_metrics_df[pd_condition][['Model_Type', 'Model_Name']]
+
+ return models_in_range_df, df_with_models_satisfied_all_constraints
From 6146aae1bcfec042cb4219ddcb8af79cbcee8829 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Mon, 9 Oct 2023 01:08:05 +0300
Subject: [PATCH 015/148] Added tolerance to heatmaps
---
...Multiple_Models_Interface_Vis_Income.ipynb | 94 ++++++++-----------
...iple_Models_Interface_Vis_Law_School.ipynb | 80 ++++++++--------
.../Multiple_Models_Interface_Vis_Ricci.ipynb | 80 ++++++++--------
.../metrics_interactive_visualizer.py | 57 ++++++-----
virny/utils/common_helpers.py | 15 +++
virny/utils/data_viz_utils.py | 56 ++++++++---
6 files changed, 214 insertions(+), 168 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
index 7466ede7..2155fbb9 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
@@ -2,24 +2,15 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 91,
+ "execution_count": 1,
"id": "248cbed8",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-06T21:10:36.749502Z",
- "start_time": "2023-10-06T21:10:36.493538Z"
+ "end_time": "2023-10-08T19:53:45.170627Z",
+ "start_time": "2023-10-08T19:53:44.682414Z"
}
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The autoreload extension is already loaded. To reload it, use:\n",
- " %reload_ext autoreload\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"%matplotlib inline\n",
"%load_ext autoreload\n",
@@ -28,12 +19,12 @@
},
{
"cell_type": "code",
- "execution_count": 92,
+ "execution_count": 2,
"id": "7ec6cd08",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-06T21:10:36.782386Z",
- "start_time": "2023-10-06T21:10:36.747786Z"
+ "end_time": "2023-10-08T19:53:45.179971Z",
+ "start_time": "2023-10-08T19:53:45.170956Z"
}
},
"outputs": [],
@@ -46,12 +37,12 @@
},
{
"cell_type": "code",
- "execution_count": 93,
+ "execution_count": 3,
"id": "b8cb69f2",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-06T21:10:36.793383Z",
- "start_time": "2023-10-06T21:10:36.770963Z"
+ "end_time": "2023-10-08T19:53:45.190533Z",
+ "start_time": "2023-10-08T19:53:45.180261Z"
}
},
"outputs": [
@@ -81,12 +72,12 @@
},
{
"cell_type": "code",
- "execution_count": 94,
+ "execution_count": 4,
"id": "7a9241de",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-06T21:10:36.813210Z",
- "start_time": "2023-10-06T21:10:36.791765Z"
+ "end_time": "2023-10-08T19:53:47.366728Z",
+ "start_time": "2023-10-08T19:53:45.190219Z"
}
},
"outputs": [],
@@ -99,7 +90,7 @@
},
{
"cell_type": "code",
- "execution_count": 95,
+ "execution_count": 5,
"outputs": [],
"source": [
"sensitive_attributes_dct = {'SEX': '2', 'RAC1P': ['2', '3', '4', '5', '6', '7', '8', '9'], 'SEX&RAC1P': None}"
@@ -107,15 +98,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-06T21:10:36.834736Z",
- "start_time": "2023-10-06T21:10:36.814444Z"
+ "end_time": "2023-10-08T19:53:47.391686Z",
+ "start_time": "2023-10-08T19:53:47.369626Z"
}
},
"id": "d3c53c7b72ecbcd0"
},
{
"cell_type": "code",
- "execution_count": 96,
+ "execution_count": 6,
"outputs": [],
"source": [
"ROOT_DIR = os.path.join('docs', 'examples')\n",
@@ -125,15 +116,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-06T21:10:36.872573Z",
- "start_time": "2023-10-06T21:10:36.835382Z"
+ "end_time": "2023-10-08T19:53:47.419075Z",
+ "start_time": "2023-10-08T19:53:47.391397Z"
}
},
"id": "2aab7c79ecdee914"
},
{
"cell_type": "code",
- "execution_count": 97,
+ "execution_count": 7,
"outputs": [],
"source": [
"subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
@@ -144,15 +135,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-06T21:10:36.884390Z",
- "start_time": "2023-10-06T21:10:36.860961Z"
+ "end_time": "2023-10-08T19:53:47.443543Z",
+ "start_time": "2023-10-08T19:53:47.419472Z"
}
},
"id": "2d922003e752a4b4"
},
{
"cell_type": "code",
- "execution_count": 98,
+ "execution_count": 8,
"outputs": [],
"source": [
"models_metrics_dct = dict()\n",
@@ -162,21 +153,21 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-06T21:10:36.909891Z",
- "start_time": "2023-10-06T21:10:36.885939Z"
+ "end_time": "2023-10-08T19:53:47.469996Z",
+ "start_time": "2023-10-08T19:53:47.443240Z"
}
},
"id": "833484748ed512e8"
},
{
"cell_type": "code",
- "execution_count": 99,
+ "execution_count": 9,
"outputs": [
{
"data": {
"text/plain": "dict_keys(['LGBMClassifier__alpha=0.7', 'LGBMClassifier__alpha=0.0', 'LGBMClassifier__alpha=0.4', 'LogisticRegression__alpha=0.0', 'LogisticRegression__alpha=0.7', 'LogisticRegression__alpha=0.4', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.7', 'MLPClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.7', 'RandomForestClassifier__alpha=0.0'])"
},
- "execution_count": 99,
+ "execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
@@ -187,8 +178,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-06T21:10:36.945035Z",
- "start_time": "2023-10-06T21:10:36.910469Z"
+ "end_time": "2023-10-08T19:53:47.513710Z",
+ "start_time": "2023-10-08T19:53:47.469016Z"
}
},
"id": "15ed7d1ba1f22317"
@@ -203,12 +194,12 @@
},
{
"cell_type": "code",
- "execution_count": 148,
+ "execution_count": 66,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-07T13:23:24.513519Z",
- "start_time": "2023-10-07T13:23:24.200188Z"
+ "end_time": "2023-10-08T22:06:28.762250Z",
+ "start_time": "2023-10-08T22:06:28.618558Z"
}
},
"outputs": [],
@@ -238,14 +229,14 @@
"collapsed": false,
"is_executing": true,
"ExecuteTime": {
- "start_time": "2023-10-07T13:23:24.514061Z"
+ "start_time": "2023-10-08T22:06:28.762615Z"
}
},
"id": "678a9dc8d51243f4"
},
{
"cell_type": "code",
- "execution_count": 102,
+ "execution_count": 12,
"outputs": [
{
"name": "stdout",
@@ -261,24 +252,21 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-06T21:14:23.138059Z",
- "start_time": "2023-10-06T21:14:23.094188Z"
+ "end_time": "2023-10-08T20:42:21.447796Z",
+ "start_time": "2023-10-08T20:42:21.325905Z"
}
},
"id": "277b6d1de837dab7"
},
{
"cell_type": "code",
- "execution_count": 102,
- "id": "2326c129",
+ "execution_count": null,
+ "outputs": [],
+ "source": [],
"metadata": {
- "ExecuteTime": {
- "end_time": "2023-10-06T21:14:23.140632Z",
- "start_time": "2023-10-06T21:14:23.137188Z"
- }
+ "collapsed": false
},
- "outputs": [],
- "source": []
+ "id": "c207d4345ddca1db"
}
],
"metadata": {
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
index 04753176..a2a5a603 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
@@ -2,12 +2,12 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 37,
+ "execution_count": 55,
"id": "248cbed8",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-06T20:57:23.539739Z",
- "start_time": "2023-10-06T20:57:23.403057Z"
+ "end_time": "2023-10-07T13:37:09.385430Z",
+ "start_time": "2023-10-07T13:37:09.127608Z"
}
},
"outputs": [
@@ -28,12 +28,12 @@
},
{
"cell_type": "code",
- "execution_count": 38,
+ "execution_count": 56,
"id": "7ec6cd08",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-06T20:57:23.574022Z",
- "start_time": "2023-10-06T20:57:23.538351Z"
+ "end_time": "2023-10-07T13:37:09.409539Z",
+ "start_time": "2023-10-07T13:37:09.385249Z"
}
},
"outputs": [],
@@ -46,12 +46,12 @@
},
{
"cell_type": "code",
- "execution_count": 39,
+ "execution_count": 57,
"id": "b8cb69f2",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-06T20:57:23.581730Z",
- "start_time": "2023-10-06T20:57:23.560533Z"
+ "end_time": "2023-10-07T13:37:09.430322Z",
+ "start_time": "2023-10-07T13:37:09.408329Z"
}
},
"outputs": [
@@ -81,12 +81,12 @@
},
{
"cell_type": "code",
- "execution_count": 40,
+ "execution_count": 58,
"id": "7a9241de",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-06T20:57:23.606204Z",
- "start_time": "2023-10-06T20:57:23.581940Z"
+ "end_time": "2023-10-07T13:37:09.451279Z",
+ "start_time": "2023-10-07T13:37:09.431063Z"
}
},
"outputs": [],
@@ -99,7 +99,7 @@
},
{
"cell_type": "code",
- "execution_count": 41,
+ "execution_count": 59,
"outputs": [],
"source": [
"sensitive_attributes_dct = {'male': '0.0', 'race': 'Non-White', 'male&race': None}"
@@ -107,15 +107,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-06T20:57:23.625570Z",
- "start_time": "2023-10-06T20:57:23.604454Z"
+ "end_time": "2023-10-07T13:37:09.475696Z",
+ "start_time": "2023-10-07T13:37:09.453496Z"
}
},
"id": "d3c53c7b72ecbcd0"
},
{
"cell_type": "code",
- "execution_count": 42,
+ "execution_count": 60,
"outputs": [],
"source": [
"ROOT_DIR = os.path.join('docs', 'examples')\n",
@@ -125,15 +125,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-06T20:57:23.653982Z",
- "start_time": "2023-10-06T20:57:23.626330Z"
+ "end_time": "2023-10-07T13:37:09.500877Z",
+ "start_time": "2023-10-07T13:37:09.474723Z"
}
},
"id": "2aab7c79ecdee914"
},
{
"cell_type": "code",
- "execution_count": 43,
+ "execution_count": 61,
"outputs": [],
"source": [
"subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
@@ -144,15 +144,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-06T20:57:23.679479Z",
- "start_time": "2023-10-06T20:57:23.654567Z"
+ "end_time": "2023-10-07T13:37:09.520270Z",
+ "start_time": "2023-10-07T13:37:09.500217Z"
}
},
"id": "2d922003e752a4b4"
},
{
"cell_type": "code",
- "execution_count": 44,
+ "execution_count": 62,
"outputs": [],
"source": [
"models_metrics_dct = dict()\n",
@@ -162,21 +162,21 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-06T20:57:23.700549Z",
- "start_time": "2023-10-06T20:57:23.677916Z"
+ "end_time": "2023-10-07T13:37:09.543689Z",
+ "start_time": "2023-10-07T13:37:09.521274Z"
}
},
"id": "833484748ed512e8"
},
{
"cell_type": "code",
- "execution_count": 45,
+ "execution_count": 63,
"outputs": [
{
"data": {
"text/plain": "dict_keys(['LGBMClassifier__alpha=0.6', 'LGBMClassifier__alpha=0.0', 'LogisticRegression__alpha=0.6', 'LogisticRegression__alpha=0.0', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.6', 'RandomForestClassifier__alpha=0.6', 'RandomForestClassifier__alpha=0.0'])"
},
- "execution_count": 45,
+ "execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
@@ -187,8 +187,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-06T20:57:23.724011Z",
- "start_time": "2023-10-06T20:57:23.701125Z"
+ "end_time": "2023-10-07T13:37:09.565841Z",
+ "start_time": "2023-10-07T13:37:09.543823Z"
}
},
"id": "15ed7d1ba1f22317"
@@ -203,12 +203,12 @@
},
{
"cell_type": "code",
- "execution_count": 53,
+ "execution_count": 64,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-06T21:03:32.115564Z",
- "start_time": "2023-10-06T21:03:31.937977Z"
+ "end_time": "2023-10-07T13:37:09.593512Z",
+ "start_time": "2023-10-07T13:37:09.565293Z"
}
},
"outputs": [],
@@ -219,7 +219,7 @@
},
{
"cell_type": "code",
- "execution_count": 54,
+ "execution_count": 65,
"outputs": [
{
"name": "stdout",
@@ -238,15 +238,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-06T21:09:25.295447Z",
- "start_time": "2023-10-06T21:03:32.116976Z"
+ "end_time": "2023-10-07T13:42:17.431036Z",
+ "start_time": "2023-10-07T13:37:09.593677Z"
}
},
"id": "678a9dc8d51243f4"
},
{
"cell_type": "code",
- "execution_count": 48,
+ "execution_count": 66,
"outputs": [
{
"name": "stdout",
@@ -262,20 +262,20 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-06T21:00:49.188809Z",
- "start_time": "2023-10-06T21:00:49.151061Z"
+ "end_time": "2023-10-07T13:42:17.479914Z",
+ "start_time": "2023-10-07T13:42:17.432456Z"
}
},
"id": "277b6d1de837dab7"
},
{
"cell_type": "code",
- "execution_count": 48,
+ "execution_count": 66,
"id": "2326c129",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-06T21:00:49.189515Z",
- "start_time": "2023-10-06T21:00:49.186479Z"
+ "end_time": "2023-10-07T13:42:17.482254Z",
+ "start_time": "2023-10-07T13:42:17.478725Z"
}
},
"outputs": [],
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb
index 176a30ed..8e21b6bc 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb
@@ -2,12 +2,12 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 25,
+ "execution_count": 37,
"id": "248cbed8",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-06T21:09:29.050528Z",
- "start_time": "2023-10-06T21:09:28.908204Z"
+ "end_time": "2023-10-07T13:42:22.642940Z",
+ "start_time": "2023-10-07T13:42:22.508015Z"
}
},
"outputs": [
@@ -28,12 +28,12 @@
},
{
"cell_type": "code",
- "execution_count": 26,
+ "execution_count": 38,
"id": "7ec6cd08",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-06T21:09:29.086370Z",
- "start_time": "2023-10-06T21:09:29.050228Z"
+ "end_time": "2023-10-07T13:42:22.677119Z",
+ "start_time": "2023-10-07T13:42:22.641937Z"
}
},
"outputs": [],
@@ -46,12 +46,12 @@
},
{
"cell_type": "code",
- "execution_count": 27,
+ "execution_count": 39,
"id": "b8cb69f2",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-06T21:09:29.094601Z",
- "start_time": "2023-10-06T21:09:29.073102Z"
+ "end_time": "2023-10-07T13:42:22.689334Z",
+ "start_time": "2023-10-07T13:42:22.664188Z"
}
},
"outputs": [
@@ -81,12 +81,12 @@
},
{
"cell_type": "code",
- "execution_count": 28,
+ "execution_count": 40,
"id": "7a9241de",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-06T21:09:29.128343Z",
- "start_time": "2023-10-06T21:09:29.094781Z"
+ "end_time": "2023-10-07T13:42:22.711038Z",
+ "start_time": "2023-10-07T13:42:22.687552Z"
}
},
"outputs": [],
@@ -99,7 +99,7 @@
},
{
"cell_type": "code",
- "execution_count": 29,
+ "execution_count": 41,
"outputs": [],
"source": [
"sensitive_attributes_dct = {'Race': 'Non-White'}"
@@ -107,15 +107,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-06T21:09:29.135958Z",
- "start_time": "2023-10-06T21:09:29.115755Z"
+ "end_time": "2023-10-07T13:42:22.732136Z",
+ "start_time": "2023-10-07T13:42:22.711244Z"
}
},
"id": "d3c53c7b72ecbcd0"
},
{
"cell_type": "code",
- "execution_count": 30,
+ "execution_count": 42,
"outputs": [],
"source": [
"ROOT_DIR = os.path.join('docs', 'examples')\n",
@@ -125,15 +125,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-06T21:09:29.163189Z",
- "start_time": "2023-10-06T21:09:29.136609Z"
+ "end_time": "2023-10-07T13:42:22.759203Z",
+ "start_time": "2023-10-07T13:42:22.732607Z"
}
},
"id": "2aab7c79ecdee914"
},
{
"cell_type": "code",
- "execution_count": 31,
+ "execution_count": 43,
"outputs": [],
"source": [
"subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
@@ -144,15 +144,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-06T21:09:29.187069Z",
- "start_time": "2023-10-06T21:09:29.163967Z"
+ "end_time": "2023-10-07T13:42:22.784062Z",
+ "start_time": "2023-10-07T13:42:22.759791Z"
}
},
"id": "2d922003e752a4b4"
},
{
"cell_type": "code",
- "execution_count": 32,
+ "execution_count": 44,
"outputs": [],
"source": [
"models_metrics_dct = dict()\n",
@@ -162,21 +162,21 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-06T21:09:29.210023Z",
- "start_time": "2023-10-06T21:09:29.185859Z"
+ "end_time": "2023-10-07T13:42:22.809161Z",
+ "start_time": "2023-10-07T13:42:22.782462Z"
}
},
"id": "833484748ed512e8"
},
{
"cell_type": "code",
- "execution_count": 33,
+ "execution_count": 45,
"outputs": [
{
"data": {
"text/plain": "dict_keys(['LGBMClassifier__alpha=0.0', 'LGBMClassifier__alpha=0.4', 'LGBMClassifier__alpha=0.7', 'LogisticRegression__alpha=0.0', 'LogisticRegression__alpha=0.4', 'LogisticRegression__alpha=0.7', 'MLPClassifier__alpha=0.7', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.0', 'RandomForestClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.7'])"
},
- "execution_count": 33,
+ "execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
@@ -187,8 +187,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-06T21:09:29.231487Z",
- "start_time": "2023-10-06T21:09:29.210107Z"
+ "end_time": "2023-10-07T13:42:22.831140Z",
+ "start_time": "2023-10-07T13:42:22.806994Z"
}
},
"id": "15ed7d1ba1f22317"
@@ -203,12 +203,12 @@
},
{
"cell_type": "code",
- "execution_count": 34,
+ "execution_count": 46,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-06T21:09:29.260102Z",
- "start_time": "2023-10-06T21:09:29.231557Z"
+ "end_time": "2023-10-07T13:42:22.859150Z",
+ "start_time": "2023-10-07T13:42:22.830292Z"
}
},
"outputs": [],
@@ -219,7 +219,7 @@
},
{
"cell_type": "code",
- "execution_count": 35,
+ "execution_count": 47,
"outputs": [
{
"name": "stdout",
@@ -238,15 +238,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-06T21:10:28.861090Z",
- "start_time": "2023-10-06T21:09:29.258554Z"
+ "end_time": "2023-10-07T13:45:45.222662Z",
+ "start_time": "2023-10-07T13:42:22.859325Z"
}
},
"id": "678a9dc8d51243f4"
},
{
"cell_type": "code",
- "execution_count": 36,
+ "execution_count": 48,
"outputs": [
{
"name": "stdout",
@@ -262,20 +262,20 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-06T21:10:28.893637Z",
- "start_time": "2023-10-06T21:10:28.857995Z"
+ "end_time": "2023-10-07T13:45:45.264959Z",
+ "start_time": "2023-10-07T13:45:45.221841Z"
}
},
"id": "277b6d1de837dab7"
},
{
"cell_type": "code",
- "execution_count": 36,
+ "execution_count": 48,
"id": "2326c129",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-06T21:10:28.896502Z",
- "start_time": "2023-10-06T21:10:28.892359Z"
+ "end_time": "2023-10-07T13:45:45.265758Z",
+ "start_time": "2023-10-07T13:45:45.264074Z"
}
},
"outputs": [],
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index 43a1173c..e7b7efc9 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -2,6 +2,7 @@
import gradio as gr
import altair as alt
+from virny.utils.common_helpers import isfloat_regex, str_to_float
from virny.utils.data_viz_utils import (create_model_rank_heatmap_visualization, create_sorted_matrix_by_rank,
create_subgroup_sorted_matrix_by_rank, create_bar_plot_for_model_selection)
@@ -82,32 +83,32 @@ def start_web_app(self):
value='Accuracy', multiselect=False, label="Constraint 1 (C1)",
scale=2
)
- acc_min_val = gr.Number(value=0.0, label="Min value", scale=1)
- acc_max_val = gr.Number(value=1.0, label="Max value", scale=1)
+ acc_min_val = gr.Text(value="0.0", label="Min value", scale=1)
+ acc_max_val = gr.Text(value="1.0", label="Max value", scale=1)
with gr.Row():
fairness_metric = gr.Dropdown(
sorted(['Equalized_Odds_TPR', 'Equalized_Odds_FPR', 'Disparate_Impact', 'Statistical_Parity_Difference', 'Accuracy_Parity']),
value='Equalized_Odds_FPR', multiselect=False, label="Constraint 2 (C2)",
scale=2
)
- fairness_min_val = gr.Number(value=-1.0, label="Min value", scale=1)
- fairness_max_val = gr.Number(value=1.0, label="Max value", scale=1)
+ fairness_min_val = gr.Text(value="-1.0", label="Min value", scale=1)
+ fairness_max_val = gr.Text(value="1.0", label="Max value", scale=1)
with gr.Row():
subgroup_stability_metric = gr.Dropdown(
sorted(['Std', 'IQR', 'Jitter', 'Label_Stability']),
value='Label_Stability', multiselect=False, label="Constraint 3 (C3)",
scale=2
)
- subgroup_stab_min_val = gr.Number(value=0.0, label="Min value", scale=1)
- subgroup_stab_max_val = gr.Number(value=1.0, label="Max value", scale=1)
+ subgroup_stab_min_val = gr.Text(value="0.0", label="Min value", scale=1)
+ subgroup_stab_max_val = gr.Text(value="1.0", label="Max value", scale=1)
with gr.Row():
group_stability_metrics = gr.Dropdown(
sorted(['Label_Stability_Ratio', 'IQR_Parity', 'Std_Parity', 'Std_Ratio', 'Jitter_Parity']),
value='Label_Stability_Ratio', multiselect=False, label="Constraint 4 (C4)",
scale=2
)
- group_stab_min_val = gr.Number(value=0.1, label="Min value", scale=1)
- group_stab_max_val = gr.Number(value=10.0, label="Max value", scale=1)
+ group_stab_min_val = gr.Text(value="0.1", label="Min value", scale=1)
+ group_stab_max_val = gr.Text(value="10.0", label="Max value", scale=1)
btn_view1 = gr.Button("Submit")
with gr.Column(scale=3):
bar_plot_for_model_selection = gr.Plot(label="Bar Chart")
@@ -132,6 +133,7 @@ def start_web_app(self):
sorted(self.model_names), value=sorted(self.model_names)[:4], max_choices=5, multiselect=True,
label="Model Names", info="Select model names to display on the heatmap:",
)
+ subgroup_tolerance = gr.Text(value="0.005", label="Tolerance", info="Define an acceptable tolerance for metric dense ranking.")
accuracy_metrics = gr.Dropdown(
sorted(['Statistical_Bias', 'TPR', 'TNR', 'PPV', 'FNR', 'FPR', 'Accuracy', 'F1']),
value=['Accuracy', 'F1'], multiselect=True, label="Accuracy Metrics", info="Select accuracy metrics to display on the heatmap:",
@@ -149,7 +151,7 @@ def start_web_app(self):
subgroup_model_ranking_heatmap = gr.Plot(label="Heatmap")
subgroup_btn_view2.click(self._create_subgroup_model_rank_heatmap,
- inputs=[model_names, accuracy_metrics, uncertainty_metrics, subgroup_stability_metrics],
+ inputs=[model_names, accuracy_metrics, uncertainty_metrics, subgroup_stability_metrics, subgroup_tolerance],
outputs=[subgroup_model_ranking_heatmap])
# ======================================== Parity Metrics Heatmap ========================================
gr.Markdown(
@@ -163,6 +165,7 @@ def start_web_app(self):
sorted(self.model_names), value=sorted(self.model_names)[:4], max_choices=5, multiselect=True,
label="Model Names", info="Select model names to display on the heatmap:",
)
+ group_tolerance = gr.Text(value="0.005", label="Tolerance", info="Define an acceptable tolerance for metric dense ranking.")
fairness_metrics = gr.Dropdown(
sorted(['Equalized_Odds_TPR', 'Equalized_Odds_FPR', 'Disparate_Impact', 'Statistical_Parity_Difference', 'Accuracy_Parity']),
value=['Equalized_Odds_FPR', 'Equalized_Odds_TPR'], multiselect=True, label="Error Parity Metrics", info="Select error parity metrics to display on the heatmap:",
@@ -176,7 +179,7 @@ def start_web_app(self):
group_model_ranking_heatmap = gr.Plot(label="Heatmap")
group_btn_view2.click(self._create_group_model_rank_heatmap,
- inputs=[model_names, fairness_metrics, group_stability_metrics],
+ inputs=[model_names, fairness_metrics, group_stability_metrics, group_tolerance],
outputs=[group_model_ranking_heatmap])
# =============================== Subgroup and Group Metrics Bar Chart ===============================
with gr.Row():
@@ -187,7 +190,7 @@ def start_web_app(self):
""")
subgroup_model_names = gr.Dropdown(
sorted(self.model_names), value=sorted(self.model_names)[0], multiselect=False,
- label="Model Names", info="Select one model to display on the bar chart:",
+ label="Model Name", info="Select one model to display on the bar chart:",
)
accuracy_metrics = gr.Dropdown(
sorted(['Statistical_Bias', 'TPR', 'TNR', 'PPV', 'FNR', 'FPR', 'Accuracy', 'F1']),
@@ -209,7 +212,7 @@ def start_web_app(self):
""")
group_model_names = gr.Dropdown(
sorted(self.model_names), value=sorted(self.model_names)[0], multiselect=False,
- label="Model Names", info="Select one model to display on the bar chart:",
+ label="Model Name", info="Select one model to display on the bar chart:",
)
fairness_metrics = gr.Dropdown(
sorted(['Equalized_Odds_TPR', 'Equalized_Odds_FPR', 'Disparate_Impact', 'Statistical_Parity_Difference', 'Accuracy_Parity']),
@@ -266,10 +269,10 @@ def _create_bar_plot_for_model_selection(self, group_name, accuracy_metric, acc_
fairness_metric, fairness_min_val, fairness_max_val,
subgroup_stability_metric, subgroup_stab_min_val, subgroup_stab_max_val,
group_stability_metrics, group_stab_min_val, group_stab_max_val):
- accuracy_constraint = (accuracy_metric, acc_min_val, acc_max_val)
- fairness_constraint = (fairness_metric, fairness_min_val, fairness_max_val)
- subgroup_stability_constraint = (subgroup_stability_metric, subgroup_stab_min_val, subgroup_stab_max_val)
- group_stability_constraint = (group_stability_metrics, group_stab_min_val, group_stab_max_val)
+ accuracy_constraint = (accuracy_metric, str_to_float(acc_min_val, 'C1 min value'), str_to_float(acc_max_val, 'C2 max value'))
+ fairness_constraint = (fairness_metric, str_to_float(fairness_min_val, 'C2 min value'), str_to_float(fairness_max_val, 'C2 max value'))
+ subgroup_stability_constraint = (subgroup_stability_metric, str_to_float(subgroup_stab_min_val, 'C3 min value'), str_to_float(subgroup_stab_max_val, 'C3 max value'))
+ group_stability_constraint = (group_stability_metrics, str_to_float(group_stab_min_val, 'C4 min value'), str_to_float(group_stab_max_val, 'C4 max value'))
# Create individual constraints
metrics_value_range_dct = dict()
@@ -298,7 +301,8 @@ def _create_bar_plot_for_model_selection(self, group_name, accuracy_metric, acc_
group=group_name)
def _create_subgroup_model_rank_heatmap(self, model_names: list, subgroup_accuracy_metrics_lst: list,
- subgroup_uncertainty_metrics: list, subgroup_stability_metrics_lst: list):
+ subgroup_uncertainty_metrics: list, subgroup_stability_metrics_lst: list,
+ tolerance: str):
"""
Create a group model rank heatmap.
@@ -312,8 +316,11 @@ def _create_subgroup_model_rank_heatmap(self, model_names: list, subgroup_accura
A list of subgroup uncertainty metrics to visualize
subgroup_stability_metrics_lst
A list of subgroup stability metrics to visualize
+ tolerance
+ An acceptable value difference for metrics dense ranking
"""
+ tolerance = str_to_float(tolerance, 'Tolerance')
metrics_lst = subgroup_accuracy_metrics_lst + subgroup_uncertainty_metrics + subgroup_stability_metrics_lst
# Find metric values for each model based on metric, subgroup, and model names.
@@ -328,14 +335,13 @@ def _create_subgroup_model_rank_heatmap(self, model_names: list, subgroup_accura
model_metrics_matrix = pd.DataFrame(results).T
model_metrics_matrix = model_metrics_matrix[sorted(model_metrics_matrix.columns)]
- sorted_matrix_by_rank = create_subgroup_sorted_matrix_by_rank(model_metrics_matrix)
- model_rank_heatmap, _ = create_model_rank_heatmap_visualization(model_metrics_matrix,
- sorted_matrix_by_rank, num_models)
+ sorted_matrix_by_rank = create_subgroup_sorted_matrix_by_rank(model_metrics_matrix, tolerance)
+ model_rank_heatmap, _ = create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_by_rank)
return model_rank_heatmap
def _create_group_model_rank_heatmap(self, model_names: list, group_fairness_metrics_lst: list,
- group_stability_metrics_lst: list):
+ group_stability_metrics_lst: list, tolerance: str):
"""
Create a group model rank heatmap.
@@ -347,8 +353,12 @@ def _create_group_model_rank_heatmap(self, model_names: list, group_fairness_met
A list of group fairness metrics to visualize
group_stability_metrics_lst
A list of group stability metrics to visualize
+ tolerance
+ An acceptable value difference for metrics dense ranking
"""
+ tolerance = str_to_float(tolerance, 'Tolerance')
+
groups_lst = self.sensitive_attributes_dct.keys()
metrics_lst = group_fairness_metrics_lst + group_stability_metrics_lst
@@ -380,9 +390,8 @@ def _create_group_model_rank_heatmap(self, model_names: list, group_fairness_met
model_metrics_matrix = pd.DataFrame(results).T
model_metrics_matrix = model_metrics_matrix[sorted(model_metrics_matrix.columns)]
- sorted_matrix_by_rank = create_sorted_matrix_by_rank(model_metrics_matrix)
- model_rank_heatmap, _ = create_model_rank_heatmap_visualization(model_metrics_matrix,
- sorted_matrix_by_rank, num_models)
+ sorted_matrix_by_rank = create_sorted_matrix_by_rank(model_metrics_matrix, tolerance)
+ model_rank_heatmap, _ = create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_by_rank)
return model_rank_heatmap
diff --git a/virny/utils/common_helpers.py b/virny/utils/common_helpers.py
index f99f227a..eaadcd75 100644
--- a/virny/utils/common_helpers.py
+++ b/virny/utils/common_helpers.py
@@ -1,4 +1,5 @@
import os
+import re
from datetime import datetime, timezone
from sklearn.metrics import confusion_matrix
@@ -71,6 +72,20 @@ def validate_config(config_obj):
return True
+def isfloat_regex(string):
+ # We have defined a pattern for float value
+ pattern = r'^[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?$'
+ # Find the match and convert to boolean
+ return bool(re.match(pattern, string))
+
+
+def str_to_float(str_var: str, var_name: str):
+ if isfloat_regex(str_var):
+ return float(str_var)
+ else:
+ raise ValueError(f"{var_name} must be a float number with a '.' separator.")
+
+
def reset_model_seed(model, new_seed, verbose):
if isinstance(model, base.Classifier): # For incremental models
model.seed = new_seed
diff --git a/virny/utils/data_viz_utils.py b/virny/utils/data_viz_utils.py
index 1ee8096c..a4a6068e 100644
--- a/virny/utils/data_viz_utils.py
+++ b/virny/utils/data_viz_utils.py
@@ -4,7 +4,6 @@
import seaborn as sns
from matplotlib import pyplot as plt
-from IPython.display import display
from virny.utils.common_helpers import check_substring_in_list
@@ -33,7 +32,34 @@ def plot_generic(x, y, xlabel, ylabel, x_lim, y_lim, plot_title):
plt.show()
-def create_sorted_matrix_by_rank(model_metrics_matrix) -> np.array:
+def rank_with_tolerance(pd_series: pd.Series, tolerance: float = 0.01, method: str = 'dense'):
+ """
+ Rank a pandas series with defined tolerance.
+ Ref: https://stackoverflow.com/questions/72956450/pandas-ranking-with-tolerance
+
+ Parameters
+ ----------
+ pd_series
+ A pandas series to rank
+ tolerance
+ A float value for ranking
+ method
+ Ranking methods for numpy.rank()
+
+ Returns
+ -------
+ A pandas series with dense ranks for the input pd series.
+
+ """
+ tolerance += 1e-10 # Add 0.0000000001 for correct comparison of float numbers
+ vals = pd.Series(pd_series.unique()).sort_values()
+ vals.index = vals
+ vals = vals.mask(vals - vals.shift(1) <= tolerance, vals.shift(1))
+
+ return pd_series.map(vals).fillna(pd_series).rank(method=method)
+
+
+def create_sorted_matrix_by_rank(model_metrics_matrix, tolerance) -> np.array:
models_distances_matrix = model_metrics_matrix.copy(deep=True).T
metric_names = models_distances_matrix.columns
for metric_name in metric_names:
@@ -42,11 +68,15 @@ def create_sorted_matrix_by_rank(model_metrics_matrix) -> np.array:
models_distances_matrix[metric_name] = models_distances_matrix[metric_name].abs()
models_distances_matrix = models_distances_matrix.T
- sorted_matrix_by_rank = np.argsort(np.argsort(models_distances_matrix, axis=1), axis=1)
+ models_distances_df = pd.DataFrame(models_distances_matrix)
+ sorted_matrix_by_rank = models_distances_df.apply(
+ lambda row : rank_with_tolerance(row, tolerance, method='dense'), axis = 1
+ )
+
return sorted_matrix_by_rank
-def create_subgroup_sorted_matrix_by_rank(model_metrics_matrix) -> np.array:
+def create_subgroup_sorted_matrix_by_rank(model_metrics_matrix, tolerance) -> np.array:
models_distances_matrix = model_metrics_matrix.copy(deep=True).T
metric_names = models_distances_matrix.columns
for metric_name in metric_names:
@@ -56,11 +86,15 @@ def create_subgroup_sorted_matrix_by_rank(model_metrics_matrix) -> np.array:
models_distances_matrix[metric_name] = models_distances_matrix[metric_name].abs()
models_distances_matrix = models_distances_matrix.T
- sorted_matrix_by_rank = np.argsort(np.argsort(models_distances_matrix, axis=1), axis=1)
+ models_distances_df = pd.DataFrame(models_distances_matrix)
+ sorted_matrix_by_rank = models_distances_df.apply(
+ lambda row : rank_with_tolerance(row, tolerance, method='dense'), axis = 1
+ )
+
return sorted_matrix_by_rank
-def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_by_rank, num_models: int):
+def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_by_rank):
"""
This heatmap includes group fairness and stability metrics and defined models.
Using it, you can visually compare the models across defined group metrics. On this plot,
@@ -77,16 +111,16 @@ def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_
Matrix of model metrics values where indexes are group metric names and columns are model names
sorted_matrix_by_rank
Matrix of model ranks per metric where indexes are group metric names and columns are model names
- num_models
- Number of models to visualize
"""
font_increase = 4
matrix_width = 20
matrix_height = model_metrics_matrix.shape[0] if model_metrics_matrix.shape[0] >= 3 \
else model_metrics_matrix.shape[0] * 2.5
+ num_ranks = int(sorted_matrix_by_rank.values.max())
+
fig = plt.figure(figsize=(matrix_width, matrix_height))
- rank_colors = sns.color_palette("coolwarm", n_colors=num_models).as_hex()
+ rank_colors = sns.color_palette("coolwarm", n_colors=num_ranks).as_hex()
# Convert ranks to minus ranks (1 --> -1; 4 --> -4) to align rank positions with a coolwarm color scheme
reversed_sorted_matrix_by_rank = sorted_matrix_by_rank * -1
ax = sns.heatmap(reversed_sorted_matrix_by_rank, annot=model_metrics_matrix, cmap=rank_colors,
@@ -98,9 +132,9 @@ def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_
fig.tight_layout()
cbar = ax.collections[0].colorbar
- model_ranks = [idx for idx in range(num_models)]
+ model_ranks = [idx + 1 for idx in range(num_ranks)]
cbar.set_ticks([float(idx) * -1 for idx in model_ranks])
- tick_labels = [str(idx + 1) for idx in model_ranks]
+ tick_labels = [str(idx) for idx in model_ranks]
tick_labels[0] = tick_labels[0] + ', best'
tick_labels[-1] = tick_labels[-1] + ', worst'
cbar.set_ticklabels(tick_labels, fontsize=16 + font_increase)
From b8ea3414ad0d9dc9b59c69526cf8a0d91a53c1ee Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Mon, 9 Oct 2023 01:40:50 +0300
Subject: [PATCH 016/148] Added tolerance to heatmaps
---
docs/examples/Multiple_Models_Interface_Vis_Income.ipynb | 8 ++++----
virny/custom_classes/metrics_interactive_visualizer.py | 4 ++--
virny/utils/data_viz_utils.py | 2 +-
3 files changed, 7 insertions(+), 7 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
index 2155fbb9..96262a8a 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
@@ -194,12 +194,12 @@
},
{
"cell_type": "code",
- "execution_count": 66,
+ "execution_count": 70,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-08T22:06:28.762250Z",
- "start_time": "2023-10-08T22:06:28.618558Z"
+ "end_time": "2023-10-08T22:12:56.138844Z",
+ "start_time": "2023-10-08T22:12:56.085891Z"
}
},
"outputs": [],
@@ -229,7 +229,7 @@
"collapsed": false,
"is_executing": true,
"ExecuteTime": {
- "start_time": "2023-10-08T22:06:28.762615Z"
+ "start_time": "2023-10-08T22:12:56.178820Z"
}
},
"id": "678a9dc8d51243f4"
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index e7b7efc9..aa2ef476 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -260,7 +260,7 @@ def __filter_subgroup_metrics_df(self, results: dict, subgroup_metric: str,
(self.sorted_model_metrics_df.Subgroup == selected_subgroup) &
(self.sorted_model_metrics_df.Model_Name == model_name)
]['Value'].values[0]
- metric_value = round(metric_value, 3)
+ metric_value = metric_value
results[subgroup_metric][model_name] = metric_value
return results
@@ -385,7 +385,7 @@ def _create_group_model_rank_heatmap(self, model_names: list, group_fairness_met
(self.sorted_model_composed_metrics_df.Subgroup == group) &
(self.sorted_model_composed_metrics_df.Model_Name == model_name)
]['Value'].values[0]
- metric_value = round(metric_value, 3)
+ metric_value = metric_value
results[group_metric][model_name] = metric_value
model_metrics_matrix = pd.DataFrame(results).T
diff --git a/virny/utils/data_viz_utils.py b/virny/utils/data_viz_utils.py
index a4a6068e..d251cd1a 100644
--- a/virny/utils/data_viz_utils.py
+++ b/virny/utils/data_viz_utils.py
@@ -123,7 +123,7 @@ def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_
rank_colors = sns.color_palette("coolwarm", n_colors=num_ranks).as_hex()
# Convert ranks to minus ranks (1 --> -1; 4 --> -4) to align rank positions with a coolwarm color scheme
reversed_sorted_matrix_by_rank = sorted_matrix_by_rank * -1
- ax = sns.heatmap(reversed_sorted_matrix_by_rank, annot=model_metrics_matrix, cmap=rank_colors,
+ ax = sns.heatmap(reversed_sorted_matrix_by_rank, annot=model_metrics_matrix.round(3), cmap=rank_colors,
fmt='', annot_kws={'color': 'black', 'alpha': 0.7, 'fontsize': 16 + font_increase})
ax.set(xlabel="", ylabel="")
ax.xaxis.tick_top()
From b9812181f4dacecdb7ed35c166b948fc86090c32 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Tue, 10 Oct 2023 00:38:19 +0300
Subject: [PATCH 017/148] Added a test sample for data stats panel
---
...Multiple_Models_Interface_Vis_Income.ipynb | 89 +++++++++++--------
.../metrics_interactive_visualizer.py | 46 ++++++++++
virny/utils/data_viz_utils.py | 2 +-
3 files changed, 98 insertions(+), 39 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
index 96262a8a..4285f1df 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
@@ -2,15 +2,24 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 72,
"id": "248cbed8",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-08T19:53:45.170627Z",
- "start_time": "2023-10-08T19:53:44.682414Z"
+ "end_time": "2023-10-09T18:41:13.001910Z",
+ "start_time": "2023-10-09T18:41:12.938067Z"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The autoreload extension is already loaded. To reload it, use:\n",
+ " %reload_ext autoreload\n"
+ ]
+ }
+ ],
"source": [
"%matplotlib inline\n",
"%load_ext autoreload\n",
@@ -19,12 +28,12 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 73,
"id": "7ec6cd08",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-08T19:53:45.179971Z",
- "start_time": "2023-10-08T19:53:45.170956Z"
+ "end_time": "2023-10-09T18:41:13.042184Z",
+ "start_time": "2023-10-09T18:41:13.000213Z"
}
},
"outputs": [],
@@ -37,12 +46,12 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 74,
"id": "b8cb69f2",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-08T19:53:45.190533Z",
- "start_time": "2023-10-08T19:53:45.180261Z"
+ "end_time": "2023-10-09T18:41:13.046945Z",
+ "start_time": "2023-10-09T18:41:13.024368Z"
}
},
"outputs": [
@@ -72,12 +81,12 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 75,
"id": "7a9241de",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-08T19:53:47.366728Z",
- "start_time": "2023-10-08T19:53:45.190219Z"
+ "end_time": "2023-10-09T18:41:13.071700Z",
+ "start_time": "2023-10-09T18:41:13.047422Z"
}
},
"outputs": [],
@@ -90,7 +99,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 76,
"outputs": [],
"source": [
"sensitive_attributes_dct = {'SEX': '2', 'RAC1P': ['2', '3', '4', '5', '6', '7', '8', '9'], 'SEX&RAC1P': None}"
@@ -98,15 +107,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-08T19:53:47.391686Z",
- "start_time": "2023-10-08T19:53:47.369626Z"
+ "end_time": "2023-10-09T18:41:13.095787Z",
+ "start_time": "2023-10-09T18:41:13.071607Z"
}
},
"id": "d3c53c7b72ecbcd0"
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 77,
"outputs": [],
"source": [
"ROOT_DIR = os.path.join('docs', 'examples')\n",
@@ -116,15 +125,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-08T19:53:47.419075Z",
- "start_time": "2023-10-08T19:53:47.391397Z"
+ "end_time": "2023-10-09T18:41:13.134622Z",
+ "start_time": "2023-10-09T18:41:13.094182Z"
}
},
"id": "2aab7c79ecdee914"
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 78,
"outputs": [],
"source": [
"subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
@@ -135,15 +144,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-08T19:53:47.443543Z",
- "start_time": "2023-10-08T19:53:47.419472Z"
+ "end_time": "2023-10-09T18:41:13.161705Z",
+ "start_time": "2023-10-09T18:41:13.134978Z"
}
},
"id": "2d922003e752a4b4"
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 79,
"outputs": [],
"source": [
"models_metrics_dct = dict()\n",
@@ -153,21 +162,21 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-08T19:53:47.469996Z",
- "start_time": "2023-10-08T19:53:47.443240Z"
+ "end_time": "2023-10-09T18:41:13.190514Z",
+ "start_time": "2023-10-09T18:41:13.160460Z"
}
},
"id": "833484748ed512e8"
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 80,
"outputs": [
{
"data": {
"text/plain": "dict_keys(['LGBMClassifier__alpha=0.7', 'LGBMClassifier__alpha=0.0', 'LGBMClassifier__alpha=0.4', 'LogisticRegression__alpha=0.0', 'LogisticRegression__alpha=0.7', 'LogisticRegression__alpha=0.4', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.7', 'MLPClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.7', 'RandomForestClassifier__alpha=0.0'])"
},
- "execution_count": 9,
+ "execution_count": 80,
"metadata": {},
"output_type": "execute_result"
}
@@ -178,8 +187,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-08T19:53:47.513710Z",
- "start_time": "2023-10-08T19:53:47.469016Z"
+ "end_time": "2023-10-09T18:41:13.212492Z",
+ "start_time": "2023-10-09T18:41:13.189317Z"
}
},
"id": "15ed7d1ba1f22317"
@@ -194,12 +203,12 @@
},
{
"cell_type": "code",
- "execution_count": 70,
+ "execution_count": 110,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-08T22:12:56.138844Z",
- "start_time": "2023-10-08T22:12:56.085891Z"
+ "end_time": "2023-10-09T21:33:22.941196Z",
+ "start_time": "2023-10-09T21:33:22.653493Z"
}
},
"outputs": [],
@@ -229,14 +238,14 @@
"collapsed": false,
"is_executing": true,
"ExecuteTime": {
- "start_time": "2023-10-08T22:12:56.178820Z"
+ "start_time": "2023-10-09T21:33:23.302903Z"
}
},
"id": "678a9dc8d51243f4"
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 83,
"outputs": [
{
"name": "stdout",
@@ -252,19 +261,23 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-08T20:42:21.447796Z",
- "start_time": "2023-10-08T20:42:21.325905Z"
+ "end_time": "2023-10-09T18:43:18.507269Z",
+ "start_time": "2023-10-09T18:43:18.460630Z"
}
},
"id": "277b6d1de837dab7"
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 83,
"outputs": [],
"source": [],
"metadata": {
- "collapsed": false
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-09T18:43:18.509920Z",
+ "start_time": "2023-10-09T18:43:18.506670Z"
+ }
},
"id": "c207d4345ddca1db"
}
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index aa2ef476..65cbde38 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -25,6 +25,7 @@ class MetricsInteractiveVisualizer:
def __init__(self, model_metrics_dct: dict, model_composed_metrics_df: pd.DataFrame,
sensitive_attributes_dct: dict):
self.demo = None
+ self.max_groups = 8
self.model_names = list(model_metrics_dct.keys())
self.sensitive_attributes_dct = sensitive_attributes_dct
self.group_names = list(self.sensitive_attributes_dct.keys())
@@ -63,8 +64,53 @@ def _align_input_metric_df(self, model_metrics_df: pd.DataFrame, allowed_cols: l
return model_metrics_df[filtered_cols]
+ def __variable_inputs(self, k):
+ k = int(k)
+ return [gr.Textbox(value='', visible=True)] * k + [gr.Textbox(value='', visible=False)] * (self.max_groups - k)
+
+ def _test(self, grp_name1, grp_name2, grp_name3, grp_name4, grp_name5, grp_name6, grp_name7, grp_name8,
+ grp_dis_val1, grp_dis_val2, grp_dis_val3, grp_dis_val4, grp_dis_val5, grp_dis_val6, grp_dis_val7, grp_dis_val8):
+ grp_names = [grp_name1, grp_name2, grp_name3, grp_name4, grp_name5, grp_name6, grp_name7, grp_name8]
+ grp_names = [grp for grp in grp_names if grp != '' and grp is not None]
+ grp_dis_values = [grp_dis_val1, grp_dis_val2, grp_dis_val3, grp_dis_val4, grp_dis_val5, grp_dis_val6, grp_dis_val7, grp_dis_val8]
+ grp_dis_values = [grp for grp in grp_dis_values if grp != '' and grp is not None]
+
+ inp_str1 = ' '.join(grp_names) + '.'
+ inp_str2 = ' '.join(grp_dis_values) + '.'
+
+ return inp_str1 + ' | ' + inp_str2
+
def start_web_app(self):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
+ # ==================================== Dataset Statistics ====================================
+ gr.Markdown(
+ """
+ ## Dataset Statistics
+ """)
+ with gr.Row():
+ with gr.Column(scale=2):
+ default_val = 5
+ s = gr.Slider(1, self.max_groups, value=default_val, step=1, label="How many groups to show:")
+ grp_names = []
+ grp_dis_values = []
+ for i in range(self.max_groups):
+ visibility = True if i + 1 <= default_val else False
+ with gr.Row():
+ grp_name = gr.Text(label=f"Group {i + 1}", interactive=True, visible=visibility)
+ grp_dis_value = gr.Text(label="Disadvantage value", interactive=True, visible=visibility)
+ grp_names.append(grp_name)
+ grp_dis_values.append(grp_dis_value)
+
+ s.change(self.__variable_inputs, s, grp_names)
+ s.change(self.__variable_inputs, s, grp_dis_values)
+ btn_view0 = gr.Button("Submit")
+ with gr.Column(scale=3):
+ test_output = gr.Text(label="Test")
+
+ btn_view0.click(self._test,
+ inputs=[grp_names[0], grp_names[1], grp_names[2], grp_names[3], grp_names[4], grp_names[5], grp_names[6], grp_names[7],
+ grp_dis_values[0], grp_dis_values[1], grp_dis_values[2], grp_dis_values[3], grp_dis_values[4], grp_dis_values[5], grp_dis_values[6], grp_dis_values[7]],
+ outputs=[test_output])
# ==================================== Bar Chart for Model Selection ====================================
gr.Markdown(
"""
diff --git a/virny/utils/data_viz_utils.py b/virny/utils/data_viz_utils.py
index d251cd1a..bed7deda 100644
--- a/virny/utils/data_viz_utils.py
+++ b/virny/utils/data_viz_utils.py
@@ -54,7 +54,7 @@ def rank_with_tolerance(pd_series: pd.Series, tolerance: float = 0.01, method: s
tolerance += 1e-10 # Add 0.0000000001 for correct comparison of float numbers
vals = pd.Series(pd_series.unique()).sort_values()
vals.index = vals
- vals = vals.mask(vals - vals.shift(1) <= tolerance, vals.shift(1))
+ vals = vals.mask(vals - vals.shift(1) < tolerance, vals.shift(1))
return pd_series.map(vals).fillna(pd_series).rank(method=method)
From 97ccb6fe20e4924813fc8124528f44223dd5ac40 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Tue, 10 Oct 2023 02:23:31 +0300
Subject: [PATCH 018/148] Added subgroup proportions and base rates
---
...Multiple_Models_Interface_Vis_Income.ipynb | 38 +++++----
.../metrics_interactive_visualizer.py | 84 ++++++++++++++-----
virny/utils/data_viz_utils.py | 70 ++++++++++++++++
3 files changed, 154 insertions(+), 38 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
index 4285f1df..88159598 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
@@ -81,12 +81,12 @@
},
{
"cell_type": "code",
- "execution_count": 75,
+ "execution_count": 113,
"id": "7a9241de",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-09T18:41:13.071700Z",
- "start_time": "2023-10-09T18:41:13.047422Z"
+ "end_time": "2023-10-09T22:39:14.946035Z",
+ "start_time": "2023-10-09T22:39:14.899470Z"
}
},
"outputs": [],
@@ -94,21 +94,23 @@
"import os\n",
"import pandas as pd\n",
"\n",
+ "from virny.datasets import ACSIncomeDataset\n",
"from virny.custom_classes.metrics_interactive_visualizer import MetricsInteractiveVisualizer"
]
},
{
"cell_type": "code",
- "execution_count": 76,
+ "execution_count": 114,
"outputs": [],
"source": [
+ "data_loader = ACSIncomeDataset(state=['GA'], year=2018, with_nulls=False, subsample_size=15_000, subsample_seed=42)\n",
"sensitive_attributes_dct = {'SEX': '2', 'RAC1P': ['2', '3', '4', '5', '6', '7', '8', '9'], 'SEX&RAC1P': None}"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-09T18:41:13.095787Z",
- "start_time": "2023-10-09T18:41:13.071607Z"
+ "end_time": "2023-10-09T22:39:18.249850Z",
+ "start_time": "2023-10-09T22:39:16.778059Z"
}
},
"id": "d3c53c7b72ecbcd0"
@@ -203,23 +205,24 @@
},
{
"cell_type": "code",
- "execution_count": 110,
+ "execution_count": 175,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-09T21:33:22.941196Z",
- "start_time": "2023-10-09T21:33:22.653493Z"
+ "end_time": "2023-10-09T23:21:39.540076Z",
+ "start_time": "2023-10-09T23:21:39.222249Z"
}
},
"outputs": [],
"source": [
- "visualizer = MetricsInteractiveVisualizer(models_metrics_dct, models_composed_metrics_df,\n",
+ "visualizer = MetricsInteractiveVisualizer(data_loader.X_data, data_loader.y_data,\n",
+ " models_metrics_dct, models_composed_metrics_df,\n",
" sensitive_attributes_dct=sensitive_attributes_dct)"
]
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 176,
"outputs": [
{
"name": "stdout",
@@ -227,7 +230,8 @@
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
- "To create a public link, set `share=True` in `launch()`.\n"
+ "To create a public link, set `share=True` in `launch()`.\n",
+ "Keyboard interruption in main thread... closing server.\n"
]
}
],
@@ -236,16 +240,16 @@
],
"metadata": {
"collapsed": false,
- "is_executing": true,
"ExecuteTime": {
- "start_time": "2023-10-09T21:33:23.302903Z"
+ "end_time": "2023-10-09T23:23:14.184149Z",
+ "start_time": "2023-10-09T23:21:39.540354Z"
}
},
"id": "678a9dc8d51243f4"
},
{
"cell_type": "code",
- "execution_count": 83,
+ "execution_count": 130,
"outputs": [
{
"name": "stdout",
@@ -261,8 +265,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-09T18:43:18.507269Z",
- "start_time": "2023-10-09T18:43:18.460630Z"
+ "end_time": "2023-10-09T22:55:30.303832Z",
+ "start_time": "2023-10-09T22:55:29.989601Z"
}
},
"id": "277b6d1de837dab7"
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index 65cbde38..7fee74e1 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -2,9 +2,11 @@
import gradio as gr
import altair as alt
-from virny.utils.common_helpers import isfloat_regex, str_to_float
+from virny.utils.common_helpers import str_to_float
+from virny.utils.protected_groups_partitioning import create_test_protected_groups
from virny.utils.data_viz_utils import (create_model_rank_heatmap_visualization, create_sorted_matrix_by_rank,
- create_subgroup_sorted_matrix_by_rank, create_bar_plot_for_model_selection)
+ create_subgroup_sorted_matrix_by_rank, create_bar_plot_for_model_selection,
+ compute_proportions, compute_base_rates, create_col_facet_bar_chart)
class MetricsInteractiveVisualizer:
@@ -13,6 +15,10 @@ class MetricsInteractiveVisualizer:
Parameters
----------
+ X_data
+ An original features dataframe
+ y_data
+ An original target column pandas series
model_metrics_dct
Dictionary where keys are model names and values are dataframes of subgroup metrics for each model
model_composed_metrics_df
@@ -22,14 +28,18 @@ class MetricsInteractiveVisualizer:
and values are privilege values for these attributes
"""
- def __init__(self, model_metrics_dct: dict, model_composed_metrics_df: pd.DataFrame,
- sensitive_attributes_dct: dict):
- self.demo = None
- self.max_groups = 8
+ def __init__(self, X_data: pd.DataFrame, y_data: pd.DataFrame, model_metrics_dct: dict,
+ model_composed_metrics_df: pd.DataFrame, sensitive_attributes_dct: dict):
+ self.X_data = X_data
+ self.y_data = y_data
self.model_names = list(model_metrics_dct.keys())
self.sensitive_attributes_dct = sensitive_attributes_dct
self.group_names = list(self.sensitive_attributes_dct.keys())
+ # Technical attributes
+ self.demo = None
+ self.max_groups = 8
+
# Create one metrics df with all model_dfs
models_metrics_df = pd.DataFrame()
for model_name in model_metrics_dct.keys():
@@ -68,18 +78,6 @@ def __variable_inputs(self, k):
k = int(k)
return [gr.Textbox(value='', visible=True)] * k + [gr.Textbox(value='', visible=False)] * (self.max_groups - k)
- def _test(self, grp_name1, grp_name2, grp_name3, grp_name4, grp_name5, grp_name6, grp_name7, grp_name8,
- grp_dis_val1, grp_dis_val2, grp_dis_val3, grp_dis_val4, grp_dis_val5, grp_dis_val6, grp_dis_val7, grp_dis_val8):
- grp_names = [grp_name1, grp_name2, grp_name3, grp_name4, grp_name5, grp_name6, grp_name7, grp_name8]
- grp_names = [grp for grp in grp_names if grp != '' and grp is not None]
- grp_dis_values = [grp_dis_val1, grp_dis_val2, grp_dis_val3, grp_dis_val4, grp_dis_val5, grp_dis_val6, grp_dis_val7, grp_dis_val8]
- grp_dis_values = [grp for grp in grp_dis_values if grp != '' and grp is not None]
-
- inp_str1 = ' '.join(grp_names) + '.'
- inp_str2 = ' '.join(grp_dis_values) + '.'
-
- return inp_str1 + ' | ' + inp_str2
-
def start_web_app(self):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
# ==================================== Dataset Statistics ====================================
@@ -105,12 +103,12 @@ def start_web_app(self):
s.change(self.__variable_inputs, s, grp_dis_values)
btn_view0 = gr.Button("Submit")
with gr.Column(scale=3):
- test_output = gr.Text(label="Test")
+ dataset_proportions_bar_chart = gr.Plot(label="Subgroup Proportions and Base Rates")
- btn_view0.click(self._test,
+ btn_view0.click(self._create_dataset_proportions_bar_chart,
inputs=[grp_names[0], grp_names[1], grp_names[2], grp_names[3], grp_names[4], grp_names[5], grp_names[6], grp_names[7],
grp_dis_values[0], grp_dis_values[1], grp_dis_values[2], grp_dis_values[3], grp_dis_values[4], grp_dis_values[5], grp_dis_values[6], grp_dis_values[7]],
- outputs=[test_output])
+ outputs=[dataset_proportions_bar_chart])
# ==================================== Bar Chart for Model Selection ====================================
gr.Markdown(
"""
@@ -311,6 +309,50 @@ def __filter_subgroup_metrics_df(self, results: dict, subgroup_metric: str,
return results
+ def _create_dataset_proportions_bar_chart(self, grp_name1, grp_name2, grp_name3, grp_name4, grp_name5, grp_name6, grp_name7, grp_name8,
+ grp_dis_val1, grp_dis_val2, grp_dis_val3, grp_dis_val4, grp_dis_val5, grp_dis_val6, grp_dis_val7, grp_dis_val8):
+ grp_names = [grp_name1, grp_name2, grp_name3, grp_name4, grp_name5, grp_name6, grp_name7, grp_name8]
+ grp_names = [grp for grp in grp_names if grp != '' and grp is not None]
+ grp_dis_values = [grp_dis_val1, grp_dis_val2, grp_dis_val3, grp_dis_val4, grp_dis_val5, grp_dis_val6, grp_dis_val7, grp_dis_val8]
+ grp_dis_values = [grp for grp in grp_dis_values if grp != '' and grp is not None]
+
+ # Create a sensitive attrs dict
+ input_sensitive_attrs_dct = dict()
+ for grp_name, grp_dis_val in zip(grp_names, grp_dis_values):
+ if '&' in grp_name:
+ input_sensitive_attrs_dct[grp_name] = None
+ else:
+ converted_grp_dis_val = eval(grp_dis_val) if '[' in grp_dis_val else grp_dis_val
+ input_sensitive_attrs_dct[grp_name] = converted_grp_dis_val
+
+ # Partition on protected groups
+ protected_groups = create_test_protected_groups(self.X_data, self.X_data, input_sensitive_attrs_dct)
+
+ # Create a df with group proportions and group base rates
+ subgroup_proportions_dct = compute_proportions(protected_groups, self.X_data)
+ subgroup_base_rates_dct = compute_base_rates(protected_groups, self.y_data)
+ subgroup_relative_base_rates_dct = dict()
+ for subgroup in subgroup_proportions_dct.keys():
+ subgroup_relative_base_rates_dct[subgroup] = subgroup_base_rates_dct[subgroup] * subgroup_proportions_dct[subgroup]
+
+ stats_df = pd.DataFrame(columns=['Subgroup', 'Value', 'Statistics_Type'])
+ for subgroup in subgroup_proportions_dct.keys():
+ stats_df.loc[len(stats_df.index)] = [subgroup, subgroup_proportions_dct[subgroup], 'Proportion']
+ stats_df.loc[len(stats_df.index)] = [subgroup, subgroup_relative_base_rates_dct[subgroup], 'Base_Rate']
+
+ # Create a row facet bar chart
+ col_facet_sort_by_lst = ['overall'] + [grp for grp in stats_df.Subgroup.unique() if grp.lower() != 'overall']
+ col_facet_bar_chart = create_col_facet_bar_chart(stats_df,
+ x_col='Statistics_Type',
+ y_col='Value',
+ col_facet_by='Subgroup',
+ x_sort_by_lst=['Proportion', 'Base_Rate'],
+ col_facet_sort_by_lst=col_facet_sort_by_lst,
+ color_legend_title='Statistics Type',
+ facet_title='')
+
+ return col_facet_bar_chart
+
def _create_bar_plot_for_model_selection(self, group_name, accuracy_metric, acc_min_val, acc_max_val,
fairness_metric, fairness_min_val, fairness_max_val,
subgroup_stability_metric, subgroup_stab_min_val, subgroup_stab_max_val,
diff --git a/virny/utils/data_viz_utils.py b/virny/utils/data_viz_utils.py
index bed7deda..6de8921c 100644
--- a/virny/utils/data_viz_utils.py
+++ b/virny/utils/data_viz_utils.py
@@ -4,6 +4,7 @@
import seaborn as sns
from matplotlib import pyplot as plt
+from altair.utils.schemapi import Undefined
from virny.utils.common_helpers import check_substring_in_list
@@ -59,6 +60,26 @@ def rank_with_tolerance(pd_series: pd.Series, tolerance: float = 0.01, method: s
return pd_series.map(vals).fillna(pd_series).rank(method=method)
+def compute_proportions(protected_groups, X_data):
+ subgroup_proportions_dct = {'overall': 1.0}
+ for col_name in protected_groups.keys():
+ proportion = protected_groups[col_name].shape[0] / X_data.shape[0]
+ subgroup_proportions_dct[col_name] = proportion
+
+ return subgroup_proportions_dct
+
+
+def compute_base_rates(protected_groups, y_data):
+ overall_base_rate = y_data[y_data == 1].shape[0] / y_data.shape[0]
+ subgroup_base_rates_dct = {'overall': overall_base_rate}
+ for col_name in protected_groups.keys():
+ filtered_df = y_data.iloc[protected_groups[col_name].index].copy(deep=True)
+ base_rate = filtered_df[filtered_df == 1].shape[0] / filtered_df.shape[0]
+ subgroup_base_rates_dct[col_name] = base_rate
+
+ return subgroup_base_rates_dct
+
+
def create_sorted_matrix_by_rank(model_metrics_matrix, tolerance) -> np.array:
models_distances_matrix = model_metrics_matrix.copy(deep=True).T
metric_names = models_distances_matrix.columns
@@ -94,6 +115,55 @@ def create_subgroup_sorted_matrix_by_rank(model_metrics_matrix, tolerance) -> np
return sorted_matrix_by_rank
+def create_col_facet_bar_chart(df, x_col, y_col, col_facet_by, x_sort_by_lst=Undefined,
+ col_facet_sort_by_lst=Undefined, color_legend_title=Undefined, facet_title=Undefined):
+ base_font_size = 16
+ bar_chart = (
+ alt.Chart().mark_bar().encode(
+ alt.X(f'{x_col}:N', axis=None, sort=x_sort_by_lst),
+ alt.Y(f'{y_col}:Q', axis=alt.Axis(grid=True), title=''),
+ alt.Color(f'{x_col}:N',
+ scale=alt.Scale(scheme="tableau20"),
+ sort=x_sort_by_lst,
+ legend=alt.Legend(title=color_legend_title,
+ labelFontSize=base_font_size,
+ titleFontSize=base_font_size + 2,
+ orient='top'))
+ )
+ )
+
+ text_labels = (
+ bar_chart.mark_text(
+ baseline='middle',
+ fontSize=base_font_size,
+ dy=-10
+ ).encode(
+ text=alt.Text('Value:Q', format=",.3f"),
+ color=alt.value("black")
+ )
+ )
+
+ final_chart = (
+ alt.layer(
+ bar_chart, text_labels, data=df
+ ).properties(
+ width=100,
+ height=500
+ ).facet(
+ column=alt.Column(f'{col_facet_by}:N', title=facet_title, sort=col_facet_sort_by_lst)
+ ).configure(
+ padding={'top': 33},
+ ).configure_headerColumn(
+ labelFontSize=base_font_size,
+ titleFontSize=base_font_size + 2
+ ).configure_axis(
+ labelFontSize=base_font_size, titleFontSize=base_font_size + 2
+ )
+ )
+
+ return final_chart
+
+
def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_by_rank):
"""
This heatmap includes group fairness and stability metrics and defined models.
From ab3410437de3dafa8469ba7ffaa35662b2ce544e Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Tue, 10 Oct 2023 22:27:53 +0300
Subject: [PATCH 019/148] Changed a default range for Label_Stability_Ratio
---
...Multiple_Models_Interface_Vis_Income.ipynb | 137 +++++++++++++++++-
.../metrics_interactive_visualizer.py | 6 +-
2 files changed, 132 insertions(+), 11 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
index 88159598..08e31492 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
@@ -205,12 +205,12 @@
},
{
"cell_type": "code",
- "execution_count": 175,
+ "execution_count": 179,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-09T23:21:39.540076Z",
- "start_time": "2023-10-09T23:21:39.222249Z"
+ "end_time": "2023-10-10T14:50:17.837898Z",
+ "start_time": "2023-10-10T14:50:17.676305Z"
}
},
"outputs": [],
@@ -222,7 +222,7 @@
},
{
"cell_type": "code",
- "execution_count": 176,
+ "execution_count": null,
"outputs": [
{
"name": "stdout",
@@ -230,8 +230,129 @@
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
- "To create a public link, set `share=True` in `launch()`.\n",
- "Keyboard interruption in main thread... closing server.\n"
+ "To create a public link, set `share=True` in `launch()`.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Traceback (most recent call last):\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
+ " output = await route_utils.call_process_api(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
+ " output = await app.get_blocks().process_api(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
+ " result = await self.call_function(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
+ " prediction = await anyio.to_thread.run_sync(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
+ " return await get_asynclib().run_sync_in_worker_thread(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
+ " return await future\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
+ " result = context.run(func, *args)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
+ " response = f(*args, **kwargs)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 329, in _create_dataset_proportions_bar_chart\n",
+ " protected_groups = create_test_protected_groups(self.X_data, self.X_data, input_sensitive_attrs_dct)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/utils/protected_groups_partitioning.py\", line 73, in create_test_protected_groups\n",
+ " X_test_with_sensitive_attrs = init_features_df[plain_sensitive_attributes].loc[X_test.index]\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/pandas/core/frame.py\", line 3813, in __getitem__\n",
+ " indexer = self.columns._get_indexer_strict(key, \"columns\")[1]\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/pandas/core/indexes/base.py\", line 6070, in _get_indexer_strict\n",
+ " self._raise_if_missing(keyarr, indexer, axis_name)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/pandas/core/indexes/base.py\", line 6133, in _raise_if_missing\n",
+ " raise KeyError(f\"{not_found} not in index\")\n",
+ "KeyError: \"['DIS', 'AGE'] not in index\"\n",
+ "Traceback (most recent call last):\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
+ " output = await route_utils.call_process_api(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
+ " output = await app.get_blocks().process_api(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
+ " result = await self.call_function(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
+ " prediction = await anyio.to_thread.run_sync(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
+ " return await get_asynclib().run_sync_in_worker_thread(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
+ " return await future\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
+ " result = context.run(func, *args)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
+ " response = f(*args, **kwargs)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 329, in _create_dataset_proportions_bar_chart\n",
+ " protected_groups = create_test_protected_groups(self.X_data, self.X_data, input_sensitive_attrs_dct)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/utils/protected_groups_partitioning.py\", line 96, in create_test_protected_groups\n",
+ " raise ValueError(f\"Protected group ({dis_grp_name}) from X_test is empty. \"\n",
+ "ValueError: Protected group (AGEP_dis) from X_test is empty. Please check types of sensitive attributes in config or replace the sensitive attribute\n",
+ "Traceback (most recent call last):\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
+ " output = await route_utils.call_process_api(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
+ " output = await app.get_blocks().process_api(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
+ " result = await self.call_function(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
+ " prediction = await anyio.to_thread.run_sync(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
+ " return await get_asynclib().run_sync_in_worker_thread(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
+ " return await future\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
+ " result = context.run(func, *args)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
+ " response = f(*args, **kwargs)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 329, in _create_dataset_proportions_bar_chart\n",
+ " protected_groups = create_test_protected_groups(self.X_data, self.X_data, input_sensitive_attrs_dct)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/utils/protected_groups_partitioning.py\", line 96, in create_test_protected_groups\n",
+ " raise ValueError(f\"Protected group ({dis_grp_name}) from X_test is empty. \"\n",
+ "ValueError: Protected group (AGEP_dis) from X_test is empty. Please check types of sensitive attributes in config or replace the sensitive attribute\n",
+ "Traceback (most recent call last):\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
+ " output = await route_utils.call_process_api(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
+ " output = await app.get_blocks().process_api(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
+ " result = await self.call_function(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
+ " prediction = await anyio.to_thread.run_sync(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
+ " return await get_asynclib().run_sync_in_worker_thread(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
+ " return await future\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
+ " result = context.run(func, *args)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
+ " response = f(*args, **kwargs)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 329, in _create_dataset_proportions_bar_chart\n",
+ " protected_groups = create_test_protected_groups(self.X_data, self.X_data, input_sensitive_attrs_dct)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/utils/protected_groups_partitioning.py\", line 96, in create_test_protected_groups\n",
+ " raise ValueError(f\"Protected group ({dis_grp_name}) from X_test is empty. \"\n",
+ "ValueError: Protected group (AGEP_dis) from X_test is empty. Please check types of sensitive attributes in config or replace the sensitive attribute\n",
+ "Traceback (most recent call last):\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
+ " output = await route_utils.call_process_api(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
+ " output = await app.get_blocks().process_api(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
+ " result = await self.call_function(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
+ " prediction = await anyio.to_thread.run_sync(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
+ " return await get_asynclib().run_sync_in_worker_thread(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
+ " return await future\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
+ " result = context.run(func, *args)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
+ " response = f(*args, **kwargs)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 329, in _create_dataset_proportions_bar_chart\n",
+ " protected_groups = create_test_protected_groups(self.X_data, self.X_data, input_sensitive_attrs_dct)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/utils/protected_groups_partitioning.py\", line 96, in create_test_protected_groups\n",
+ " raise ValueError(f\"Protected group ({dis_grp_name}) from X_test is empty. \"\n",
+ "ValueError: Protected group (AGEP_dis) from X_test is empty. Please check types of sensitive attributes in config or replace the sensitive attribute\n"
]
}
],
@@ -240,9 +361,9 @@
],
"metadata": {
"collapsed": false,
+ "is_executing": true,
"ExecuteTime": {
- "end_time": "2023-10-09T23:23:14.184149Z",
- "start_time": "2023-10-09T23:21:39.540354Z"
+ "start_time": "2023-10-10T14:50:17.852688Z"
}
},
"id": "678a9dc8d51243f4"
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index 7fee74e1..50c2fadc 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -76,7 +76,7 @@ def _align_input_metric_df(self, model_metrics_df: pd.DataFrame, allowed_cols: l
def __variable_inputs(self, k):
k = int(k)
- return [gr.Textbox(value='', visible=True)] * k + [gr.Textbox(value='', visible=False)] * (self.max_groups - k)
+ return [gr.Textbox(visible=True)] * k + [gr.Textbox(value='', visible=False)] * (self.max_groups - k)
def start_web_app(self):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
@@ -151,8 +151,8 @@ def start_web_app(self):
value='Label_Stability_Ratio', multiselect=False, label="Constraint 4 (C4)",
scale=2
)
- group_stab_min_val = gr.Text(value="0.1", label="Min value", scale=1)
- group_stab_max_val = gr.Text(value="10.0", label="Max value", scale=1)
+ group_stab_min_val = gr.Text(value="0.7", label="Min value", scale=1)
+ group_stab_max_val = gr.Text(value="1.5", label="Max value", scale=1)
btn_view1 = gr.Button("Submit")
with gr.Column(scale=3):
bar_plot_for_model_selection = gr.Plot(label="Bar Chart")
From 84cf426e8c90b7dc601d10a39835ab11889febd6 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Wed, 11 Oct 2023 23:02:18 +0300
Subject: [PATCH 020/148] Restructured section 3 in the gradio app
---
...Multiple_Models_Interface_Vis_Income.ipynb | 209 ++++--------------
.../metrics_interactive_visualizer.py | 64 +++---
2 files changed, 73 insertions(+), 200 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
index 08e31492..cd39444c 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
@@ -2,24 +2,15 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 72,
+ "execution_count": 1,
"id": "248cbed8",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-09T18:41:13.001910Z",
- "start_time": "2023-10-09T18:41:12.938067Z"
+ "end_time": "2023-10-11T19:05:26.386191Z",
+ "start_time": "2023-10-11T19:05:25.944121Z"
}
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The autoreload extension is already loaded. To reload it, use:\n",
- " %reload_ext autoreload\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"%matplotlib inline\n",
"%load_ext autoreload\n",
@@ -28,12 +19,12 @@
},
{
"cell_type": "code",
- "execution_count": 73,
+ "execution_count": 2,
"id": "7ec6cd08",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-09T18:41:13.042184Z",
- "start_time": "2023-10-09T18:41:13.000213Z"
+ "end_time": "2023-10-11T19:05:26.394513Z",
+ "start_time": "2023-10-11T19:05:26.385903Z"
}
},
"outputs": [],
@@ -46,12 +37,12 @@
},
{
"cell_type": "code",
- "execution_count": 74,
+ "execution_count": 3,
"id": "b8cb69f2",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-09T18:41:13.046945Z",
- "start_time": "2023-10-09T18:41:13.024368Z"
+ "end_time": "2023-10-11T19:05:26.404007Z",
+ "start_time": "2023-10-11T19:05:26.395039Z"
}
},
"outputs": [
@@ -81,12 +72,12 @@
},
{
"cell_type": "code",
- "execution_count": 113,
+ "execution_count": 4,
"id": "7a9241de",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-09T22:39:14.946035Z",
- "start_time": "2023-10-09T22:39:14.899470Z"
+ "end_time": "2023-10-11T19:05:28.926284Z",
+ "start_time": "2023-10-11T19:05:26.405380Z"
}
},
"outputs": [],
@@ -100,7 +91,7 @@
},
{
"cell_type": "code",
- "execution_count": 114,
+ "execution_count": 5,
"outputs": [],
"source": [
"data_loader = ACSIncomeDataset(state=['GA'], year=2018, with_nulls=False, subsample_size=15_000, subsample_seed=42)\n",
@@ -109,15 +100,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-09T22:39:18.249850Z",
- "start_time": "2023-10-09T22:39:16.778059Z"
+ "end_time": "2023-10-11T19:05:30.217781Z",
+ "start_time": "2023-10-11T19:05:28.929275Z"
}
},
"id": "d3c53c7b72ecbcd0"
},
{
"cell_type": "code",
- "execution_count": 77,
+ "execution_count": 6,
"outputs": [],
"source": [
"ROOT_DIR = os.path.join('docs', 'examples')\n",
@@ -127,15 +118,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-09T18:41:13.134622Z",
- "start_time": "2023-10-09T18:41:13.094182Z"
+ "end_time": "2023-10-11T19:05:30.244888Z",
+ "start_time": "2023-10-11T19:05:30.218209Z"
}
},
"id": "2aab7c79ecdee914"
},
{
"cell_type": "code",
- "execution_count": 78,
+ "execution_count": 7,
"outputs": [],
"source": [
"subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
@@ -146,15 +137,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-09T18:41:13.161705Z",
- "start_time": "2023-10-09T18:41:13.134978Z"
+ "end_time": "2023-10-11T19:05:30.270595Z",
+ "start_time": "2023-10-11T19:05:30.245746Z"
}
},
"id": "2d922003e752a4b4"
},
{
"cell_type": "code",
- "execution_count": 79,
+ "execution_count": 8,
"outputs": [],
"source": [
"models_metrics_dct = dict()\n",
@@ -164,21 +155,21 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-09T18:41:13.190514Z",
- "start_time": "2023-10-09T18:41:13.160460Z"
+ "end_time": "2023-10-11T19:05:30.292095Z",
+ "start_time": "2023-10-11T19:05:30.268258Z"
}
},
"id": "833484748ed512e8"
},
{
"cell_type": "code",
- "execution_count": 80,
+ "execution_count": 9,
"outputs": [
{
"data": {
"text/plain": "dict_keys(['LGBMClassifier__alpha=0.7', 'LGBMClassifier__alpha=0.0', 'LGBMClassifier__alpha=0.4', 'LogisticRegression__alpha=0.0', 'LogisticRegression__alpha=0.7', 'LogisticRegression__alpha=0.4', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.7', 'MLPClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.7', 'RandomForestClassifier__alpha=0.0'])"
},
- "execution_count": 80,
+ "execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
@@ -189,8 +180,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-09T18:41:13.212492Z",
- "start_time": "2023-10-09T18:41:13.189317Z"
+ "end_time": "2023-10-11T19:05:30.316436Z",
+ "start_time": "2023-10-11T19:05:30.292589Z"
}
},
"id": "15ed7d1ba1f22317"
@@ -205,12 +196,12 @@
},
{
"cell_type": "code",
- "execution_count": 179,
+ "execution_count": 49,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-10T14:50:17.837898Z",
- "start_time": "2023-10-10T14:50:17.676305Z"
+ "end_time": "2023-10-11T19:56:39.234085Z",
+ "start_time": "2023-10-11T19:56:39.056500Z"
}
},
"outputs": [],
@@ -232,128 +223,6 @@
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Traceback (most recent call last):\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
- " output = await route_utils.call_process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
- " output = await app.get_blocks().process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
- " result = await self.call_function(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
- " prediction = await anyio.to_thread.run_sync(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
- " return await get_asynclib().run_sync_in_worker_thread(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
- " return await future\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
- " result = context.run(func, *args)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
- " response = f(*args, **kwargs)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 329, in _create_dataset_proportions_bar_chart\n",
- " protected_groups = create_test_protected_groups(self.X_data, self.X_data, input_sensitive_attrs_dct)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/utils/protected_groups_partitioning.py\", line 73, in create_test_protected_groups\n",
- " X_test_with_sensitive_attrs = init_features_df[plain_sensitive_attributes].loc[X_test.index]\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/pandas/core/frame.py\", line 3813, in __getitem__\n",
- " indexer = self.columns._get_indexer_strict(key, \"columns\")[1]\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/pandas/core/indexes/base.py\", line 6070, in _get_indexer_strict\n",
- " self._raise_if_missing(keyarr, indexer, axis_name)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/pandas/core/indexes/base.py\", line 6133, in _raise_if_missing\n",
- " raise KeyError(f\"{not_found} not in index\")\n",
- "KeyError: \"['DIS', 'AGE'] not in index\"\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
- " output = await route_utils.call_process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
- " output = await app.get_blocks().process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
- " result = await self.call_function(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
- " prediction = await anyio.to_thread.run_sync(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
- " return await get_asynclib().run_sync_in_worker_thread(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
- " return await future\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
- " result = context.run(func, *args)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
- " response = f(*args, **kwargs)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 329, in _create_dataset_proportions_bar_chart\n",
- " protected_groups = create_test_protected_groups(self.X_data, self.X_data, input_sensitive_attrs_dct)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/utils/protected_groups_partitioning.py\", line 96, in create_test_protected_groups\n",
- " raise ValueError(f\"Protected group ({dis_grp_name}) from X_test is empty. \"\n",
- "ValueError: Protected group (AGEP_dis) from X_test is empty. Please check types of sensitive attributes in config or replace the sensitive attribute\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
- " output = await route_utils.call_process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
- " output = await app.get_blocks().process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
- " result = await self.call_function(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
- " prediction = await anyio.to_thread.run_sync(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
- " return await get_asynclib().run_sync_in_worker_thread(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
- " return await future\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
- " result = context.run(func, *args)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
- " response = f(*args, **kwargs)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 329, in _create_dataset_proportions_bar_chart\n",
- " protected_groups = create_test_protected_groups(self.X_data, self.X_data, input_sensitive_attrs_dct)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/utils/protected_groups_partitioning.py\", line 96, in create_test_protected_groups\n",
- " raise ValueError(f\"Protected group ({dis_grp_name}) from X_test is empty. \"\n",
- "ValueError: Protected group (AGEP_dis) from X_test is empty. Please check types of sensitive attributes in config or replace the sensitive attribute\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
- " output = await route_utils.call_process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
- " output = await app.get_blocks().process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
- " result = await self.call_function(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
- " prediction = await anyio.to_thread.run_sync(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
- " return await get_asynclib().run_sync_in_worker_thread(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
- " return await future\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
- " result = context.run(func, *args)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
- " response = f(*args, **kwargs)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 329, in _create_dataset_proportions_bar_chart\n",
- " protected_groups = create_test_protected_groups(self.X_data, self.X_data, input_sensitive_attrs_dct)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/utils/protected_groups_partitioning.py\", line 96, in create_test_protected_groups\n",
- " raise ValueError(f\"Protected group ({dis_grp_name}) from X_test is empty. \"\n",
- "ValueError: Protected group (AGEP_dis) from X_test is empty. Please check types of sensitive attributes in config or replace the sensitive attribute\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
- " output = await route_utils.call_process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
- " output = await app.get_blocks().process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
- " result = await self.call_function(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
- " prediction = await anyio.to_thread.run_sync(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
- " return await get_asynclib().run_sync_in_worker_thread(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
- " return await future\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
- " result = context.run(func, *args)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
- " response = f(*args, **kwargs)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 329, in _create_dataset_proportions_bar_chart\n",
- " protected_groups = create_test_protected_groups(self.X_data, self.X_data, input_sensitive_attrs_dct)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/utils/protected_groups_partitioning.py\", line 96, in create_test_protected_groups\n",
- " raise ValueError(f\"Protected group ({dis_grp_name}) from X_test is empty. \"\n",
- "ValueError: Protected group (AGEP_dis) from X_test is empty. Please check types of sensitive attributes in config or replace the sensitive attribute\n"
- ]
}
],
"source": [
@@ -363,14 +232,14 @@
"collapsed": false,
"is_executing": true,
"ExecuteTime": {
- "start_time": "2023-10-10T14:50:17.852688Z"
+ "start_time": "2023-10-11T19:56:39.234618Z"
}
},
"id": "678a9dc8d51243f4"
},
{
"cell_type": "code",
- "execution_count": 130,
+ "execution_count": 12,
"outputs": [
{
"name": "stdout",
@@ -386,22 +255,22 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-09T22:55:30.303832Z",
- "start_time": "2023-10-09T22:55:29.989601Z"
+ "end_time": "2023-10-11T19:21:09.901993Z",
+ "start_time": "2023-10-11T19:21:09.806669Z"
}
},
"id": "277b6d1de837dab7"
},
{
"cell_type": "code",
- "execution_count": 83,
+ "execution_count": 12,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-09T18:43:18.509920Z",
- "start_time": "2023-10-09T18:43:18.506670Z"
+ "end_time": "2023-10-11T19:21:09.902311Z",
+ "start_time": "2023-10-11T19:21:09.899330Z"
}
},
"id": "c207d4345ddca1db"
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index 50c2fadc..20d39276 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -119,7 +119,7 @@ def start_web_app(self):
with gr.Column(scale=2):
group_name = gr.Dropdown(
self.group_names,
- value=self.group_names[0], multiselect=False, label="Group Name for Parity Metrics",
+ value=self.group_names[0], multiselect=False, label="Group Name for Disparity Metrics",
)
with gr.Row():
accuracy_metric = gr.Dropdown(
@@ -197,11 +197,11 @@ def start_web_app(self):
subgroup_btn_view2.click(self._create_subgroup_model_rank_heatmap,
inputs=[model_names, accuracy_metrics, uncertainty_metrics, subgroup_stability_metrics, subgroup_tolerance],
outputs=[subgroup_model_ranking_heatmap])
- # ======================================== Parity Metrics Heatmap ========================================
+ # ======================================== Disparity Metrics Heatmap ========================================
gr.Markdown(
"""
- ## Parity Metrics Heatmap
- Select input arguments to create a parity metrics heatmap.
+ ## Disparity Metrics Heatmap
+ Select input arguments to create a disparity metrics heatmap.
""")
with gr.Row():
with gr.Column(scale=1):
@@ -212,11 +212,11 @@ def start_web_app(self):
group_tolerance = gr.Text(value="0.005", label="Tolerance", info="Define an acceptable tolerance for metric dense ranking.")
fairness_metrics = gr.Dropdown(
sorted(['Equalized_Odds_TPR', 'Equalized_Odds_FPR', 'Disparate_Impact', 'Statistical_Parity_Difference', 'Accuracy_Parity']),
- value=['Equalized_Odds_FPR', 'Equalized_Odds_TPR'], multiselect=True, label="Error Parity Metrics", info="Select error parity metrics to display on the heatmap:",
+ value=['Equalized_Odds_FPR', 'Equalized_Odds_TPR'], multiselect=True, label="Error Disparity Metrics", info="Select error disparity metrics to display on the heatmap:",
)
group_stability_metrics = gr.Dropdown(
sorted(['Label_Stability_Ratio', 'IQR_Parity', 'Std_Parity', 'Std_Ratio', 'Jitter_Parity']),
- value=['Label_Stability_Ratio', 'Std_Parity'], multiselect=True, label="Stability Parity Metrics", info="Select stability parity metrics to display on the heatmap:",
+ value=['Label_Stability_Ratio', 'Std_Parity'], multiselect=True, label="Stability Disparity Metrics", info="Select stability disparity metrics to display on the heatmap:",
)
group_btn_view2 = gr.Button("Submit")
with gr.Column(scale=2):
@@ -225,17 +225,26 @@ def start_web_app(self):
group_btn_view2.click(self._create_group_model_rank_heatmap,
inputs=[model_names, fairness_metrics, group_stability_metrics, group_tolerance],
outputs=[group_model_ranking_heatmap])
- # =============================== Subgroup and Group Metrics Bar Chart ===============================
+ # ============================ Group Specific and Disparity Metrics Bar Charts ============================
with gr.Row():
+ # Scale column 1 to a half of a screen
with gr.Column():
gr.Markdown(
"""
- ## Subgroup Metrics Bar Chart
+ ## Group Specific and Disparity Metrics Bar Charts
""")
- subgroup_model_names = gr.Dropdown(
- sorted(self.model_names), value=sorted(self.model_names)[0], multiselect=False,
- label="Model Name", info="Select one model to display on the bar chart:",
+ model_name_vw3 = gr.Dropdown(
+ sorted(self.model_names), value=sorted(self.model_names)[0], multiselect=False, scale=1,
+ label="Model Name", info="Select one model to display on the bar charts:",
)
+ with gr.Column():
+ pass
+ with gr.Row():
+ with gr.Column():
+ gr.Markdown(
+ """
+ ### Group Specific Metrics
+ """)
accuracy_metrics = gr.Dropdown(
sorted(['Statistical_Bias', 'TPR', 'TNR', 'PPV', 'FNR', 'FPR', 'Accuracy', 'F1']),
value=['Accuracy', 'F1'], multiselect=True, label="Accuracy Metrics", info="Select accuracy metrics to display on the heatmap:",
@@ -248,37 +257,32 @@ def start_web_app(self):
sorted(['Std', 'IQR', 'Jitter', 'Label_Stability']),
value=['Jitter', 'Label_Stability'], multiselect=True, label="Stability Metrics", info="Select stability metrics to display on the heatmap:",
)
- subgroup_btn_view3 = gr.Button("Submit")
+ btn_view3 = gr.Button("Submit")
with gr.Column():
gr.Markdown(
"""
- ## Group Metrics Bar Chart
+ ### Disparity Metrics
""")
- group_model_names = gr.Dropdown(
- sorted(self.model_names), value=sorted(self.model_names)[0], multiselect=False,
- label="Model Name", info="Select one model to display on the bar chart:",
- )
fairness_metrics = gr.Dropdown(
sorted(['Equalized_Odds_TPR', 'Equalized_Odds_FPR', 'Disparate_Impact', 'Statistical_Parity_Difference', 'Accuracy_Parity']),
- value=['Equalized_Odds_FPR', 'Equalized_Odds_TPR'], multiselect=True, label="Error Parity Metrics", info="Select error parity metrics to display on the heatmap:",
+ value=['Equalized_Odds_FPR', 'Equalized_Odds_TPR'], multiselect=True, label="Error Disparity Metrics", info="Select error disparity metrics to display on the heatmap:",
)
group_stability_metrics = gr.Dropdown(
sorted(['Label_Stability_Ratio', 'IQR_Parity', 'Std_Parity', 'Std_Ratio', 'Jitter_Parity']),
- value=['Label_Stability_Ratio', 'Std_Parity'], multiselect=True, label="Stability Parity Metrics", info="Select stability parity metrics to display on the heatmap:",
+ value=['Label_Stability_Ratio', 'Std_Parity'], multiselect=True, label="Stability Disparity Metrics", info="Select stability disparity metrics to display on the heatmap:",
)
- group_btn_view3 = gr.Button("Submit")
with gr.Row():
with gr.Column():
- subgroup_metrics_bar_chart = gr.Plot(label="Subgroup Bar Chart")
+ subgroup_metrics_bar_chart = gr.Plot(label="Group Specific Bar Chart")
with gr.Column():
- group_metrics_bar_chart = gr.Plot(label="Group Bar Chart")
+ group_metrics_bar_chart = gr.Plot(label="Disparity Bar Chart")
- subgroup_btn_view3.click(self._create_subgroup_metrics_bar_chart_per_one_model,
- inputs=[subgroup_model_names, accuracy_metrics, uncertainty_metrics, subgroup_stability_metrics],
- outputs=[subgroup_metrics_bar_chart])
- group_btn_view3.click(self._create_group_metrics_bar_chart_per_one_model,
- inputs=[group_model_names, fairness_metrics, group_stability_metrics],
- outputs=[group_metrics_bar_chart])
+ btn_view3.click(self._create_subgroup_metrics_bar_chart_per_one_model,
+ inputs=[model_name_vw3, accuracy_metrics, uncertainty_metrics, subgroup_stability_metrics],
+ outputs=[subgroup_metrics_bar_chart])
+ btn_view3.click(self._create_group_metrics_bar_chart_per_one_model,
+ inputs=[model_name_vw3, fairness_metrics, group_stability_metrics],
+ outputs=[group_metrics_bar_chart])
self.demo = demo
self.demo.launch(inline=False, debug=True, show_error=True)
@@ -507,7 +511,7 @@ def _create_metrics_bar_chart_per_one_model(self, model_name: str, metrics_names
A metrics type ('subgroup' or 'group') to visualize
"""
- metrics_title = f'{metrics_type.capitalize()} Metrics'
+ metrics_title = 'Disparity Metrics' if metrics_type == "group" else 'Group Specific Metrics'
metrics_df = self.melted_model_composed_metrics_df if metrics_type == "group" else self.melted_model_metrics_df
filtered_groups = [grp for grp in metrics_df.Subgroup.unique() if '_correct' not in grp and '_incorrect' not in grp]
filtered_groups = [grp for grp in filtered_groups if grp.lower() != 'overall'] + ['overall']
@@ -523,7 +527,7 @@ def _create_metrics_bar_chart_per_one_model(self, model_name: str, metrics_names
alt.Color('Subgroup:N',
scale=alt.Scale(scheme="tableau20"),
sort=filtered_groups,
- legend=alt.Legend(title=metrics_type.capitalize(),
+ legend=alt.Legend(title='Disparity' if metrics_type == 'group' else 'Group',
labelFontSize=base_font_size,
titleFontSize=base_font_size + 2))
)
From df44d29e1f9eefd73f1e7b2fa3b622a167216fa7 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Thu, 12 Oct 2023 11:46:46 +0300
Subject: [PATCH 021/148] Added dynamic variables for the stats bar chart
---
...Multiple_Models_Interface_Vis_Income.ipynb | 15 +--
.../metrics_interactive_visualizer.py | 27 +++--
virny/utils/data_viz_utils.py | 101 +++++++++++++++---
3 files changed, 113 insertions(+), 30 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
index cd39444c..14f4a7e9 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
@@ -196,12 +196,12 @@
},
{
"cell_type": "code",
- "execution_count": 49,
+ "execution_count": 205,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-11T19:56:39.234085Z",
- "start_time": "2023-10-11T19:56:39.056500Z"
+ "end_time": "2023-10-11T22:43:14.195509Z",
+ "start_time": "2023-10-11T22:43:14.152189Z"
}
},
"outputs": [],
@@ -213,7 +213,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 206,
"outputs": [
{
"name": "stdout",
@@ -221,7 +221,8 @@
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
- "To create a public link, set `share=True` in `launch()`.\n"
+ "To create a public link, set `share=True` in `launch()`.\n",
+ "Keyboard interruption in main thread... closing server.\n"
]
}
],
@@ -230,9 +231,9 @@
],
"metadata": {
"collapsed": false,
- "is_executing": true,
"ExecuteTime": {
- "start_time": "2023-10-11T19:56:39.234618Z"
+ "end_time": "2023-10-11T23:08:56.632448Z",
+ "start_time": "2023-10-11T22:43:14.261225Z"
}
},
"id": "678a9dc8d51243f4"
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index 20d39276..bdd13609 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -6,7 +6,8 @@
from virny.utils.protected_groups_partitioning import create_test_protected_groups
from virny.utils.data_viz_utils import (create_model_rank_heatmap_visualization, create_sorted_matrix_by_rank,
create_subgroup_sorted_matrix_by_rank, create_bar_plot_for_model_selection,
- compute_proportions, compute_base_rates, create_col_facet_bar_chart)
+ compute_proportions, compute_base_rates, create_col_facet_bar_chart,
+ create_row_facet_bar_chart)
class MetricsInteractiveVisualizer:
@@ -102,8 +103,8 @@ def start_web_app(self):
s.change(self.__variable_inputs, s, grp_names)
s.change(self.__variable_inputs, s, grp_dis_values)
btn_view0 = gr.Button("Submit")
- with gr.Column(scale=3):
- dataset_proportions_bar_chart = gr.Plot(label="Subgroup Proportions and Base Rates")
+ with gr.Column(scale=4):
+ dataset_proportions_bar_chart = gr.Plot(label="Group Proportions and Base Rates")
btn_view0.click(self._create_dataset_proportions_bar_chart,
inputs=[grp_names[0], grp_names[1], grp_names[2], grp_names[3], grp_names[4], grp_names[5], grp_names[6], grp_names[7],
@@ -337,21 +338,25 @@ def _create_dataset_proportions_bar_chart(self, grp_name1, grp_name2, grp_name3,
subgroup_base_rates_dct = compute_base_rates(protected_groups, self.y_data)
subgroup_relative_base_rates_dct = dict()
for subgroup in subgroup_proportions_dct.keys():
- subgroup_relative_base_rates_dct[subgroup] = subgroup_base_rates_dct[subgroup] * subgroup_proportions_dct[subgroup]
+ pct = subgroup_base_rates_dct[subgroup]['percentage'] * subgroup_proportions_dct[subgroup]['percentage']
+ subgroup_relative_base_rates_dct[subgroup] = {'percentage': pct, 'num_rows': subgroup_base_rates_dct[subgroup]['num_rows']}
- stats_df = pd.DataFrame(columns=['Subgroup', 'Value', 'Statistics_Type'])
+ stats_df = pd.DataFrame(columns=['Subgroup', 'Percentage', 'Num_Rows', 'Statistics_Type'])
for subgroup in subgroup_proportions_dct.keys():
- stats_df.loc[len(stats_df.index)] = [subgroup, subgroup_proportions_dct[subgroup], 'Proportion']
- stats_df.loc[len(stats_df.index)] = [subgroup, subgroup_relative_base_rates_dct[subgroup], 'Base_Rate']
+ stats_df.loc[len(stats_df.index)] = [subgroup, subgroup_proportions_dct[subgroup]['percentage'],
+ subgroup_proportions_dct[subgroup]['num_rows'], 'Proportion']
+ stats_df.loc[len(stats_df.index)] = [subgroup, subgroup_relative_base_rates_dct[subgroup]['percentage'],
+ subgroup_relative_base_rates_dct[subgroup]['num_rows'], 'Base_Rate']
# Create a row facet bar chart
- col_facet_sort_by_lst = ['overall'] + [grp for grp in stats_df.Subgroup.unique() if grp.lower() != 'overall']
+ facet_sort_by_lst = ['overall'] + [grp for grp in stats_df.Subgroup.unique() if grp.lower() != 'overall']
col_facet_bar_chart = create_col_facet_bar_chart(stats_df,
x_col='Statistics_Type',
- y_col='Value',
- col_facet_by='Subgroup',
+ y_col='Num_Rows',
+ facet_column_name='Subgroup',
+ text_labels_column='Percentage',
x_sort_by_lst=['Proportion', 'Base_Rate'],
- col_facet_sort_by_lst=col_facet_sort_by_lst,
+ facet_sort_by_lst=facet_sort_by_lst,
color_legend_title='Statistics Type',
facet_title='')
diff --git a/virny/utils/data_viz_utils.py b/virny/utils/data_viz_utils.py
index 6de8921c..f8b51640 100644
--- a/virny/utils/data_viz_utils.py
+++ b/virny/utils/data_viz_utils.py
@@ -61,21 +61,21 @@ def rank_with_tolerance(pd_series: pd.Series, tolerance: float = 0.01, method: s
def compute_proportions(protected_groups, X_data):
- subgroup_proportions_dct = {'overall': 1.0}
+ subgroup_proportions_dct = {'overall': {'percentage': 1.0, 'num_rows': X_data.shape[0]}}
for col_name in protected_groups.keys():
proportion = protected_groups[col_name].shape[0] / X_data.shape[0]
- subgroup_proportions_dct[col_name] = proportion
+ subgroup_proportions_dct[col_name] = {'percentage': proportion, 'num_rows': protected_groups[col_name].shape[0]}
return subgroup_proportions_dct
def compute_base_rates(protected_groups, y_data):
overall_base_rate = y_data[y_data == 1].shape[0] / y_data.shape[0]
- subgroup_base_rates_dct = {'overall': overall_base_rate}
+ subgroup_base_rates_dct = {'overall': {'percentage': overall_base_rate, 'num_rows': y_data[y_data == 1].shape[0]}}
for col_name in protected_groups.keys():
filtered_df = y_data.iloc[protected_groups[col_name].index].copy(deep=True)
base_rate = filtered_df[filtered_df == 1].shape[0] / filtered_df.shape[0]
- subgroup_base_rates_dct[col_name] = base_rate
+ subgroup_base_rates_dct[col_name] = {'percentage': base_rate, 'num_rows': filtered_df[filtered_df == 1].shape[0]}
return subgroup_base_rates_dct
@@ -115,16 +115,93 @@ def create_subgroup_sorted_matrix_by_rank(model_metrics_matrix, tolerance) -> np
return sorted_matrix_by_rank
-def create_col_facet_bar_chart(df, x_col, y_col, col_facet_by, x_sort_by_lst=Undefined,
- col_facet_sort_by_lst=Undefined, color_legend_title=Undefined, facet_title=Undefined):
+def create_col_facet_bar_chart(df, x_col, y_col, facet_column_name, text_labels_column, x_sort_by_lst=Undefined,
+ facet_sort_by_lst=Undefined, color_legend_title=Undefined, facet_title=Undefined):
+ num_facets = len(df[facet_column_name].unique())
+ max_y_axis_limit = df[y_col].max()
base_font_size = 16
+
+ # Set dynamic variables that adapt to the number of defined groups
+ dynamic_facet_width = 100
+ dynamic_label_angle = -20
+ dynamic_font_size = base_font_size
+ dynamic_top_padding = 40
+ dynamic_legend_y_padding = -140
+ if num_facets > 4 * 2 + 1 and num_facets <= 6 * 2 + 1:
+ dynamic_facet_width = 75
+ dynamic_label_angle = -25
+ dynamic_font_size -= 2
+ dynamic_top_padding = 40
+ dynamic_legend_y_padding = -160
+ elif num_facets > 6 * 2 + 1:
+ dynamic_facet_width = 50
+ dynamic_label_angle = -45
+ dynamic_font_size -= 4
+ dynamic_top_padding = 50
+ dynamic_legend_y_padding = -200
+
bar_chart = (
alt.Chart().mark_bar().encode(
alt.X(f'{x_col}:N', axis=None, sort=x_sort_by_lst),
- alt.Y(f'{y_col}:Q', axis=alt.Axis(grid=True), title=''),
+ alt.Y(f'{y_col}:Q', axis=alt.Axis(grid=True), title='', scale=alt.Scale(domain=[0, max_y_axis_limit])),
alt.Color(f'{x_col}:N',
scale=alt.Scale(scheme="tableau20"),
sort=x_sort_by_lst,
+ legend=alt.Legend(title=color_legend_title,
+ labelFontSize=base_font_size,
+ titleFontSize=base_font_size + 2,
+ orient='none',
+ legendX=0, legendY=dynamic_legend_y_padding,
+ direction='horizontal'))
+ )
+ )
+
+ text_labels = (
+ bar_chart.mark_text(
+ baseline='middle',
+ fontSize=dynamic_font_size,
+ dy=-10
+ ).encode(
+ text=alt.Text(f'{text_labels_column}:Q', format=",.2f"),
+ color=alt.value("black")
+ )
+ )
+
+ final_chart = (
+ alt.layer(
+ bar_chart, text_labels, data=df
+ ).properties(
+ width=dynamic_facet_width,
+ height=500
+ ).facet(
+ column=alt.Column(f'{facet_column_name}:N', title=facet_title,
+ sort=facet_sort_by_lst, header=alt.Header(labelAngle=dynamic_label_angle,
+ labelAnchor='middle',
+ labelAlign='center',
+ labelPadding=-15))
+ ).configure(
+ padding={'top': dynamic_top_padding},
+ ).configure_headerColumn(
+ labelFontSize=base_font_size,
+ titleFontSize=base_font_size + 2,
+ ).configure_axis(
+ labelFontSize=base_font_size, titleFontSize=base_font_size + 2
+ )
+ )
+
+ return final_chart
+
+
+def create_row_facet_bar_chart(df, x_col, y_col, facet_column_name, y_sort_by_lst=Undefined,
+ facet_sort_by_lst=Undefined, color_legend_title=Undefined, facet_title=Undefined):
+ base_font_size = 16
+ bar_chart = (
+ alt.Chart().mark_bar().encode(
+ alt.Y(f'{y_col}:N', axis=None, sort=y_sort_by_lst),
+ alt.X(f'{x_col}:Q', axis=alt.Axis(grid=True), title=''),
+ alt.Color(f'{y_col}:N',
+ scale=alt.Scale(scheme="tableau20"),
+ sort=y_sort_by_lst,
legend=alt.Legend(title=color_legend_title,
labelFontSize=base_font_size,
titleFontSize=base_font_size + 2,
@@ -136,7 +213,7 @@ def create_col_facet_bar_chart(df, x_col, y_col, col_facet_by, x_sort_by_lst=Und
bar_chart.mark_text(
baseline='middle',
fontSize=base_font_size,
- dy=-10
+ dx=10
).encode(
text=alt.Text('Value:Q', format=",.3f"),
color=alt.value("black")
@@ -147,13 +224,13 @@ def create_col_facet_bar_chart(df, x_col, y_col, col_facet_by, x_sort_by_lst=Und
alt.layer(
bar_chart, text_labels, data=df
).properties(
- width=100,
- height=500
+ width=500,
+ height=100
).facet(
- column=alt.Column(f'{col_facet_by}:N', title=facet_title, sort=col_facet_sort_by_lst)
+ row=alt.Row(f'{facet_column_name}:N', title=facet_title, sort=facet_sort_by_lst)
).configure(
padding={'top': 33},
- ).configure_headerColumn(
+ ).configure_headerRow(
labelFontSize=base_font_size,
titleFontSize=base_font_size + 2
).configure_axis(
From 03f4c194055c23e6fd77f2366e1d8a07cc547197 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Thu, 12 Oct 2023 11:59:46 +0300
Subject: [PATCH 022/148] Added new uncertainty disparity metrics
---
.gitignore | 1 +
requirements.txt | 6 +++---
virny/custom_classes/metrics_composer.py | 9 +++++++--
3 files changed, 11 insertions(+), 5 deletions(-)
diff --git a/.gitignore b/.gitignore
index cf2ccb41..375238bf 100644
--- a/.gitignore
+++ b/.gitignore
@@ -1,4 +1,5 @@
*_venv
+virny_env
notebooks
*.env
.DS_Store
diff --git a/requirements.txt b/requirements.txt
index 6e55b6af..12b6aa38 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,8 +1,6 @@
wheel~=0.38.4
twine~=4.0.2
-requests-toolbelt==1.0.0
numpy~=1.24.2
-datapane~=0.15.5
matplotlib~=3.6.2
pandas~=1.5.2
altair~=4.2.0
@@ -17,4 +15,6 @@ PyYAML~=6.0
river==0.15.0
python-dotenv~=1.0.0
pytest~=7.2.2
-pymongo==4.3.3
\ No newline at end of file
+pymongo==4.3.3
+datapane~=0.16.0
+requests-toolbelt==1.0.0
\ No newline at end of file
diff --git a/virny/custom_classes/metrics_composer.py b/virny/custom_classes/metrics_composer.py
index 4d9cdc10..b18f3866 100644
--- a/virny/custom_classes/metrics_composer.py
+++ b/virny/custom_classes/metrics_composer.py
@@ -46,19 +46,24 @@ def compose_metrics(self):
priv_group = sensitive_attr + '_priv'
groups_metrics_dct[sensitive_attr] = {
- # Group fairness metrics
+ # Error disparity metrics
'Equalized_Odds_TPR': cfm[dis_group]['TPR'] - cfm[priv_group]['TPR'],
'Equalized_Odds_FPR': cfm[dis_group]['FPR'] - cfm[priv_group]['FPR'],
'Equalized_Odds_FNR': cfm[dis_group]['FNR'] - cfm[priv_group]['FNR'],
'Disparate_Impact': cfm[dis_group]['Positive-Rate'] / cfm[priv_group]['Positive-Rate'],
'Statistical_Parity_Difference': cfm[dis_group]['Positive-Rate'] - cfm[priv_group]['Positive-Rate'],
'Accuracy_Parity': cfm[dis_group]['Accuracy'] - cfm[priv_group]['Accuracy'],
- # Group stability metrics
+ # Stability disparity metrics
'Label_Stability_Ratio': cfm[dis_group]['Label_Stability'] / cfm[priv_group]['Label_Stability'],
'IQR_Parity': cfm[dis_group]['IQR'] - cfm[priv_group]['IQR'],
'Std_Parity': cfm[dis_group]['Std'] - cfm[priv_group]['Std'],
'Std_Ratio': cfm[dis_group]['Std'] / cfm[priv_group]['Std'],
'Jitter_Parity': cfm[dis_group]['Jitter'] - cfm[priv_group]['Jitter'],
+ # Uncertainty disparity metrics
+ 'Overall_Uncertainty_Parity': cfm[dis_group]['Overall_Uncertainty'] - cfm[priv_group]['Overall_Uncertainty'],
+ 'Overall_Uncertainty_Ratio': cfm[dis_group]['Overall_Uncertainty'] / cfm[priv_group]['Overall_Uncertainty'],
+ 'Aleatoric_Uncertainty_Parity': cfm[dis_group]['Aleatoric_Uncertainty'] - cfm[priv_group]['Aleatoric_Uncertainty'],
+ 'Aleatoric_Uncertainty_Ratio': cfm[dis_group]['Aleatoric_Uncertainty'] / cfm[priv_group]['Aleatoric_Uncertainty'],
}
model_composed_metrics_df = pd.DataFrame(groups_metrics_dct).reset_index()
From d26f528115ea75e78ec75293040d19b3b38753bd Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Thu, 12 Oct 2023 12:07:27 +0300
Subject: [PATCH 023/148] Added new dependencies
---
lib_base_packages.txt | 5 +++--
1 file changed, 3 insertions(+), 2 deletions(-)
diff --git a/lib_base_packages.txt b/lib_base_packages.txt
index db5475f2..830ceeb0 100644
--- a/lib_base_packages.txt
+++ b/lib_base_packages.txt
@@ -1,5 +1,4 @@
numpy~=1.24.2
-datapane~=0.15.5
matplotlib~=3.6.2
pandas~=1.5.2
altair~=4.2.0
@@ -10,4 +9,6 @@ seaborn~=0.12.1
folktables~=0.0.11
munch~=2.5.0
PyYAML~=6.0
-river==0.15.0
\ No newline at end of file
+river==0.15.0
+datapane~=0.16.0
+requests-toolbelt==1.0.0
\ No newline at end of file
From 866f30f50c9b0706411ef42a0170657ff58b2474 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Fri, 13 Oct 2023 23:50:30 +0300
Subject: [PATCH 024/148] Added minor fixes to a visualization component
---
...Multiple_Models_Interface_Vis_Income.ipynb | 56 +++++++++----------
.../metrics_interactive_visualizer.py | 4 +-
virny/utils/data_viz_utils.py | 10 ++--
3 files changed, 34 insertions(+), 36 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
index 14f4a7e9..e19f415f 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
@@ -6,8 +6,8 @@
"id": "248cbed8",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-11T19:05:26.386191Z",
- "start_time": "2023-10-11T19:05:25.944121Z"
+ "end_time": "2023-10-13T20:20:09.765631Z",
+ "start_time": "2023-10-13T20:20:09.381209Z"
}
},
"outputs": [],
@@ -23,8 +23,8 @@
"id": "7ec6cd08",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-11T19:05:26.394513Z",
- "start_time": "2023-10-11T19:05:26.385903Z"
+ "end_time": "2023-10-13T20:20:09.774183Z",
+ "start_time": "2023-10-13T20:20:09.765873Z"
}
},
"outputs": [],
@@ -41,8 +41,8 @@
"id": "b8cb69f2",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-11T19:05:26.404007Z",
- "start_time": "2023-10-11T19:05:26.395039Z"
+ "end_time": "2023-10-13T20:20:09.783681Z",
+ "start_time": "2023-10-13T20:20:09.774750Z"
}
},
"outputs": [
@@ -76,8 +76,8 @@
"id": "7a9241de",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-11T19:05:28.926284Z",
- "start_time": "2023-10-11T19:05:26.405380Z"
+ "end_time": "2023-10-13T20:20:11.549308Z",
+ "start_time": "2023-10-13T20:20:09.784822Z"
}
},
"outputs": [],
@@ -100,8 +100,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-11T19:05:30.217781Z",
- "start_time": "2023-10-11T19:05:28.929275Z"
+ "end_time": "2023-10-13T20:20:12.860282Z",
+ "start_time": "2023-10-13T20:20:11.551544Z"
}
},
"id": "d3c53c7b72ecbcd0"
@@ -118,8 +118,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-11T19:05:30.244888Z",
- "start_time": "2023-10-11T19:05:30.218209Z"
+ "end_time": "2023-10-13T20:20:12.888990Z",
+ "start_time": "2023-10-13T20:20:12.860786Z"
}
},
"id": "2aab7c79ecdee914"
@@ -137,8 +137,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-11T19:05:30.270595Z",
- "start_time": "2023-10-11T19:05:30.245746Z"
+ "end_time": "2023-10-13T20:20:12.911932Z",
+ "start_time": "2023-10-13T20:20:12.888583Z"
}
},
"id": "2d922003e752a4b4"
@@ -155,8 +155,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-11T19:05:30.292095Z",
- "start_time": "2023-10-11T19:05:30.268258Z"
+ "end_time": "2023-10-13T20:20:12.937376Z",
+ "start_time": "2023-10-13T20:20:12.912368Z"
}
},
"id": "833484748ed512e8"
@@ -180,8 +180,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-11T19:05:30.316436Z",
- "start_time": "2023-10-11T19:05:30.292589Z"
+ "end_time": "2023-10-13T20:20:12.963217Z",
+ "start_time": "2023-10-13T20:20:12.935698Z"
}
},
"id": "15ed7d1ba1f22317"
@@ -196,12 +196,12 @@
},
{
"cell_type": "code",
- "execution_count": 205,
+ "execution_count": 23,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-11T22:43:14.195509Z",
- "start_time": "2023-10-11T22:43:14.152189Z"
+ "end_time": "2023-10-13T20:49:19.030436Z",
+ "start_time": "2023-10-13T20:49:18.977199Z"
}
},
"outputs": [],
@@ -213,7 +213,7 @@
},
{
"cell_type": "code",
- "execution_count": 206,
+ "execution_count": 24,
"outputs": [
{
"name": "stdout",
@@ -232,8 +232,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-11T23:08:56.632448Z",
- "start_time": "2023-10-11T22:43:14.261225Z"
+ "end_time": "2023-10-13T20:50:05.536644Z",
+ "start_time": "2023-10-13T20:49:19.061199Z"
}
},
"id": "678a9dc8d51243f4"
@@ -256,8 +256,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-11T19:21:09.901993Z",
- "start_time": "2023-10-11T19:21:09.806669Z"
+ "end_time": "2023-10-13T20:23:04.989037Z",
+ "start_time": "2023-10-13T20:23:04.937593Z"
}
},
"id": "277b6d1de837dab7"
@@ -270,8 +270,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-11T19:21:09.902311Z",
- "start_time": "2023-10-11T19:21:09.899330Z"
+ "end_time": "2023-10-13T20:23:04.991061Z",
+ "start_time": "2023-10-13T20:23:04.988926Z"
}
},
"id": "c207d4345ddca1db"
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index bdd13609..54588226 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -6,8 +6,7 @@
from virny.utils.protected_groups_partitioning import create_test_protected_groups
from virny.utils.data_viz_utils import (create_model_rank_heatmap_visualization, create_sorted_matrix_by_rank,
create_subgroup_sorted_matrix_by_rank, create_bar_plot_for_model_selection,
- compute_proportions, compute_base_rates, create_col_facet_bar_chart,
- create_row_facet_bar_chart)
+ compute_proportions, compute_base_rates, create_col_facet_bar_chart)
class MetricsInteractiveVisualizer:
@@ -423,7 +422,6 @@ def _create_subgroup_model_rank_heatmap(self, model_names: list, subgroup_accura
# Find metric values for each model based on metric, subgroup, and model names.
# Add the values to a results dict.
results = {}
- num_models = len(model_names)
for metric in metrics_lst:
# Add an overall metric
subgroup_metric = metric
diff --git a/virny/utils/data_viz_utils.py b/virny/utils/data_viz_utils.py
index f8b51640..32a3a9b2 100644
--- a/virny/utils/data_viz_utils.py
+++ b/virny/utils/data_viz_utils.py
@@ -267,7 +267,7 @@ def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_
num_ranks = int(sorted_matrix_by_rank.values.max())
fig = plt.figure(figsize=(matrix_width, matrix_height))
- rank_colors = sns.color_palette("coolwarm", n_colors=num_ranks).as_hex()
+ rank_colors = sns.color_palette("coolwarm_r", n_colors=num_ranks).as_hex()
# Convert ranks to minus ranks (1 --> -1; 4 --> -4) to align rank positions with a coolwarm color scheme
reversed_sorted_matrix_by_rank = sorted_matrix_by_rank * -1
ax = sns.heatmap(reversed_sorted_matrix_by_rank, annot=model_metrics_matrix.round(3), cmap=rank_colors,
@@ -281,11 +281,11 @@ def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_
cbar = ax.collections[0].colorbar
model_ranks = [idx + 1 for idx in range(num_ranks)]
cbar.set_ticks([float(idx) * -1 for idx in model_ranks])
- tick_labels = [str(idx) for idx in model_ranks]
- tick_labels[0] = tick_labels[0] + ', best'
- tick_labels[-1] = tick_labels[-1] + ', worst'
+ tick_labels = ['' for _ in model_ranks]
+ if len(tick_labels) > 1:
+ tick_labels[0] = 'Best'
+ tick_labels[-1] = 'Worst'
cbar.set_ticklabels(tick_labels, fontsize=16 + font_increase)
- cbar.set_label('Model Ranks', fontsize=18 + font_increase)
return fig, ax
From 7e5714e4d5c622ac3d16943f1db43faeb4f2a1c5 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Sat, 14 Oct 2023 18:23:17 +0300
Subject: [PATCH 025/148] Added gc collect and fixed metrics computation issue
for a correct/incorrect groups
---
lib_base_packages.txt | 3 ++-
requirements.txt | 3 ++-
.../abstract_overall_variance_analyzer.py | 4 ++++
virny/analyzers/abstract_subgroup_analyzer.py | 17 ++++++++++++++++-
.../analyzers/subgroup_variance_calculator.py | 19 +++++++++++++++++--
5 files changed, 41 insertions(+), 5 deletions(-)
diff --git a/lib_base_packages.txt b/lib_base_packages.txt
index 830ceeb0..10cbab0f 100644
--- a/lib_base_packages.txt
+++ b/lib_base_packages.txt
@@ -11,4 +11,5 @@ munch~=2.5.0
PyYAML~=6.0
river==0.15.0
datapane~=0.16.0
-requests-toolbelt==1.0.0
\ No newline at end of file
+requests-toolbelt==1.0.0
+colorama~=0.4.6
\ No newline at end of file
diff --git a/requirements.txt b/requirements.txt
index 12b6aa38..0b5c8ab7 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -17,4 +17,5 @@ python-dotenv~=1.0.0
pytest~=7.2.2
pymongo==4.3.3
datapane~=0.16.0
-requests-toolbelt==1.0.0
\ No newline at end of file
+requests-toolbelt==1.0.0
+colorama~=0.4.6
\ No newline at end of file
diff --git a/virny/analyzers/abstract_overall_variance_analyzer.py b/virny/analyzers/abstract_overall_variance_analyzer.py
index 93434d8b..af154605 100644
--- a/virny/analyzers/abstract_overall_variance_analyzer.py
+++ b/virny/analyzers/abstract_overall_variance_analyzer.py
@@ -1,4 +1,5 @@
import os
+import gc
import numpy as np
import pandas as pd
@@ -178,6 +179,9 @@ def UQ_by_boostrap(self, boostrap_size: int, with_replacement: bool, with_fit: b
classifier = self._fit_model(classifier, X_sample, y_sample)
models_predictions[idx] = self._batch_predict_proba(classifier, self.X_test)
self.models_lst[idx] = classifier
+ # Force garbage collection to avoid out of memory error
+ if with_fit and ((idx + 1) % 10 == 0 or (idx + 1) == self.n_estimators):
+ gc.collect()
if self._verbose >= 1:
print('\n', flush=True)
diff --git a/virny/analyzers/abstract_subgroup_analyzer.py b/virny/analyzers/abstract_subgroup_analyzer.py
index a47f19fa..65eefc21 100644
--- a/virny/analyzers/abstract_subgroup_analyzer.py
+++ b/virny/analyzers/abstract_subgroup_analyzer.py
@@ -1,6 +1,7 @@
import os
import pandas as pd
+from colorama import Fore
from datetime import datetime, timezone
from abc import ABCMeta, abstractmethod
@@ -70,7 +71,21 @@ def _partition_and_compute_metrics_for_error_analysis(self, y_preds, results: di
# Compute metrics for each group partition
for group_partition_name, partition_indexes in partition_indexes_dct.items():
- metrics_dct = self._compute_metrics(self.y_test[partition_indexes], y_preds[partition_indexes])
+ if partition_indexes.shape[0] == 0:
+ print(Fore.YELLOW + f'WARNING: "{group_partition_name}" group is empty. Error metrics are set to None.' + Fore.RESET)
+ metrics_dct = {
+ 'TPR': None,
+ 'TNR': None,
+ 'PPV': None,
+ 'FNR': None,
+ 'FPR': None,
+ 'Accuracy': None,
+ 'F1': None,
+ 'Selection-Rate': None,
+ 'Positive-Rate': None,
+ }
+ else:
+ metrics_dct = self._compute_metrics(self.y_test[partition_indexes], y_preds[partition_indexes])
metrics_dct['Sample_Size'] = len(partition_indexes)
results[group_partition_name] = metrics_dct
diff --git a/virny/analyzers/subgroup_variance_calculator.py b/virny/analyzers/subgroup_variance_calculator.py
index 2294a845..0d90e757 100644
--- a/virny/analyzers/subgroup_variance_calculator.py
+++ b/virny/analyzers/subgroup_variance_calculator.py
@@ -1,5 +1,6 @@
import numpy as np
import pandas as pd
+from colorama import Fore
from virny.configs.constants import ComputationMode
from virny.utils.stability_utils import count_prediction_stats, combine_bootstrap_predictions
@@ -80,8 +81,22 @@ def _partition_and_compute_metrics_for_error_analysis(self, models_predictions,
model_idx: models_predictions[model_idx][partition_indexes].reset_index(drop=True)
for model_idx in models_predictions.keys()
}
- metrics_dct = self._compute_metrics(self.y_test[partition_indexes].reset_index(drop=True),
- group_models_predictions)
+ if partition_indexes.shape[0] == 0:
+ print(Fore.YELLOW + f'WARNING: "{group_partition_name}" group is empty. Stability metrics are set to None.' + Fore.RESET)
+ metrics_dct = {
+ 'Jitter': None,
+ 'Mean': None,
+ 'Std': None,
+ 'IQR': None,
+ 'Aleatoric_Uncertainty': None,
+ 'Overall_Uncertainty': None,
+ 'Statistical_Bias': None,
+ 'Per_Sample_Accuracy': None,
+ 'Label_Stability': None,
+ }
+ else:
+ metrics_dct = self._compute_metrics(self.y_test[partition_indexes].reset_index(drop=True),
+ group_models_predictions)
results[group_partition_name] = metrics_dct
return results
From 0ee929a0dd2b7a69e34331a20da95111f85d083e Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Sat, 14 Oct 2023 23:49:20 +0300
Subject: [PATCH 026/148] Added flushing for warning prints
---
virny/analyzers/abstract_subgroup_analyzer.py | 2 +-
virny/analyzers/subgroup_variance_calculator.py | 2 +-
2 files changed, 2 insertions(+), 2 deletions(-)
diff --git a/virny/analyzers/abstract_subgroup_analyzer.py b/virny/analyzers/abstract_subgroup_analyzer.py
index 65eefc21..1a753074 100644
--- a/virny/analyzers/abstract_subgroup_analyzer.py
+++ b/virny/analyzers/abstract_subgroup_analyzer.py
@@ -72,7 +72,7 @@ def _partition_and_compute_metrics_for_error_analysis(self, y_preds, results: di
# Compute metrics for each group partition
for group_partition_name, partition_indexes in partition_indexes_dct.items():
if partition_indexes.shape[0] == 0:
- print(Fore.YELLOW + f'WARNING: "{group_partition_name}" group is empty. Error metrics are set to None.' + Fore.RESET)
+ print(Fore.YELLOW + f'WARNING: "{group_partition_name}" group is empty. Error metrics are set to None.' + Fore.RESET, flush=True)
metrics_dct = {
'TPR': None,
'TNR': None,
diff --git a/virny/analyzers/subgroup_variance_calculator.py b/virny/analyzers/subgroup_variance_calculator.py
index 0d90e757..ac37cc59 100644
--- a/virny/analyzers/subgroup_variance_calculator.py
+++ b/virny/analyzers/subgroup_variance_calculator.py
@@ -82,7 +82,7 @@ def _partition_and_compute_metrics_for_error_analysis(self, models_predictions,
for model_idx in models_predictions.keys()
}
if partition_indexes.shape[0] == 0:
- print(Fore.YELLOW + f'WARNING: "{group_partition_name}" group is empty. Stability metrics are set to None.' + Fore.RESET)
+ print(Fore.YELLOW + f'WARNING: "{group_partition_name}" group is empty. Stability metrics are set to None.' + Fore.RESET, flush=True)
metrics_dct = {
'Jitter': None,
'Mean': None,
From 5130cceb99ca0ef39bada8ae528c3b8d24f9bf57 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Wed, 18 Oct 2023 14:00:19 +0300
Subject: [PATCH 027/148] Fixed a bug with group partitioning for extra test
sets
---
virny/user_interfaces/metrics_computation_interfaces.py | 9 +++++----
1 file changed, 5 insertions(+), 4 deletions(-)
diff --git a/virny/user_interfaces/metrics_computation_interfaces.py b/virny/user_interfaces/metrics_computation_interfaces.py
index 21631e66..f1de523d 100644
--- a/virny/user_interfaces/metrics_computation_interfaces.py
+++ b/virny/user_interfaces/metrics_computation_interfaces.py
@@ -502,7 +502,8 @@ def compute_model_metrics_with_multiple_test_sets(base_model, n_estimators: int,
dataset
BaseFlowDataset object that contains all needed attributes like target, features, numerical_columns etc.
extra_test_sets_lst
- List of extra test sets like [(X_test1, y_test1), (X_test2, y_test2), ...] to compute metrics
+ List of extra test sets like [(X_test1, y_test1, init_features_df1), (X_test2, y_test2, init_features_df2), ...]
+ to compute metrics.
bootstrap_fraction
Fraction of a train set in range [0.0 - 1.0] to fit models in bootstrap
sensitive_attributes_dct
@@ -534,10 +535,10 @@ def compute_model_metrics_with_multiple_test_sets(base_model, n_estimators: int,
computation_mode=computation_mode,
verbose=verbose)
- test_sets_lst = [(dataset.X_test, dataset.y_test)] + extra_test_sets_lst
+ test_sets_lst = [(dataset.X_test, dataset.y_test, dataset.init_features_df)] + extra_test_sets_lst
all_test_sets_metrics_lst = []
- for set_idx, (new_X_test, new_y_test) in enumerate(test_sets_lst):
- new_test_protected_groups = create_test_protected_groups(new_X_test, dataset.init_features_df, sensitive_attributes_dct)
+ for set_idx, (new_X_test, new_y_test, cur_init_features_df) in enumerate(test_sets_lst):
+ new_test_protected_groups = create_test_protected_groups(new_X_test, cur_init_features_df, sensitive_attributes_dct)
if verbose >= 2:
print(f'\nProtected groups splits for test set index #{set_idx}:')
for g in new_test_protected_groups.keys():
From a32cba9dc9b96e6605900348369fd58f1b694c38 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Sat, 21 Oct 2023 01:02:31 +0300
Subject: [PATCH 028/148] Created functions for each separate metric
---
.../abstract_overall_variance_analyzer.py | 106 +---------------
virny/analyzers/subgroup_variance_analyzer.py | 10 +-
.../analyzers/subgroup_variance_calculator.py | 32 ++---
virny/configs/constants.py | 16 ---
virny/metrics/__init__.py | 102 +++++++++++++---
virny/metrics/accuracy_metrics.py | 33 +++++
virny/metrics/stability_metrics.py | 113 ++++--------------
virny/metrics/uncertainty_metrics.py | 38 ++++++
.../metrics_computation_interfaces.py | 5 +-
virny/utils/__init__.py | 4 +-
virny/utils/common_helpers.py | 2 +-
virny/utils/data_viz_utils.py | 68 -----------
virny/utils/stability_utils.py | 95 ++++-----------
13 files changed, 226 insertions(+), 398 deletions(-)
create mode 100644 virny/metrics/accuracy_metrics.py
create mode 100644 virny/metrics/uncertainty_metrics.py
diff --git a/virny/analyzers/abstract_overall_variance_analyzer.py b/virny/analyzers/abstract_overall_variance_analyzer.py
index af154605..67edffb5 100644
--- a/virny/analyzers/abstract_overall_variance_analyzer.py
+++ b/virny/analyzers/abstract_overall_variance_analyzer.py
@@ -1,6 +1,5 @@
import os
import gc
-import numpy as np
import pandas as pd
from copy import deepcopy
@@ -8,9 +7,8 @@
from abc import ABCMeta, abstractmethod
from virny.custom_classes.custom_logger import get_logger
-from virny.utils.data_viz_utils import plot_generic
from virny.utils.stability_utils import generate_bootstrap
-from virny.utils.stability_utils import count_prediction_stats, compute_std_mean_iqr_metrics
+from virny.utils.stability_utils import count_prediction_metrics
class AbstractOverallVarianceAnalyzer(metaclass=ABCMeta):
@@ -53,6 +51,7 @@ def __init__(self, base_model, base_model_name: str, bootstrap_fraction: float,
self.n_estimators = n_estimators
self.models_lst = [deepcopy(base_model) for _ in range(n_estimators)]
self.models_predictions = None
+ self.prediction_metrics = None
self._verbose = verbose
self.__logger = get_logger(verbose)
@@ -62,17 +61,6 @@ def __init__(self, base_model, base_model_name: str, bootstrap_fraction: float,
self.X_test = X_test
self.y_test = y_test
- # Metrics
- self.mean = None
- self.std = None
- self.iqr = None
- self.aleatoric_uncertainty = None
- self.overall_uncertainty = None
- self.statistical_bias = None
- self.jitter = None
- self.per_sample_accuracy = None
- self.label_stability = None
-
@abstractmethod
def _fit_model(self, classifier, X_train, y_train):
pass
@@ -85,14 +73,12 @@ def _batch_predict(self, classifier, X_test):
def _batch_predict_proba(self, classifier, X_test):
pass
- def compute_metrics(self, make_plots: bool = False, save_results: bool = True, with_fit: bool = True):
+ def compute_metrics(self, save_results: bool = True, with_fit: bool = True):
"""
Measure metrics for the base model. Display plots for analysis if needed. Save results to a .pkl file
Parameters
----------
- make_plots
- bool, if to display plots for analysis
save_results
If to save result metrics in a file
with_fit
@@ -104,41 +90,9 @@ def compute_metrics(self, make_plots: bool = False, save_results: bool = True, w
self.models_predictions = self.UQ_by_boostrap(boostrap_size, with_replacement=True, with_fit=with_fit)
# Count metrics based on prediction proba results
- y_preds, uq_labels, prediction_stats = count_prediction_stats(self.y_test.values, self.models_predictions)
+ y_preds, self.prediction_metrics = count_prediction_metrics(self.y_test.values, self.models_predictions)
self.__logger.info(f'Successfully computed predict proba metrics')
- self.__update_metrics(means_lst=prediction_stats.means_lst,
- stds_lst=prediction_stats.stds_lst,
- iqr_lst=prediction_stats.iqr_lst,
- mean_ensemble_entropy_lst=prediction_stats.mean_ensemble_entropy_lst,
- overall_entropy_lst=prediction_stats.overall_entropy_lst,
- statistical_bias_lst=prediction_stats.statistical_bias_lst,
- jitter=prediction_stats.jitter,
- per_sample_accuracy_lst=prediction_stats.per_sample_accuracy_lst,
- label_stability_lst=prediction_stats.label_stability_lst)
-
- # Display plots if needed
- if make_plots:
- self.print_metrics()
-
- # Count metrics based on label predictions to visualize plots
- labels_means_lst, labels_stds_lst, labels_iqr_lst = compute_std_mean_iqr_metrics(uq_labels)
-
- self.__logger.info(f'Successfully computed predict labels metrics')
- per_sample_accuracy_lst = prediction_stats.per_sample_accuracy_lst
- label_stability_lst = prediction_stats.label_stability_lst
-
- plot_generic(labels_means_lst, labels_stds_lst, "Mean of probability", "Standard deviation", x_lim=1.01,
- y_lim=0.5, plot_title="Probability mean vs Standard deviation")
- plot_generic(labels_stds_lst, label_stability_lst, "Standard deviation", "Label stability", x_lim=0.5,
- y_lim=1.01, plot_title="Standard deviation vs Label stability")
- plot_generic(labels_means_lst, label_stability_lst, "Mean", "Label stability", x_lim=1.01, y_lim=1.01,
- plot_title="Mean vs Label stability")
- plot_generic(per_sample_accuracy_lst, labels_stds_lst, "Accuracy", "Standard deviation", x_lim=1.01,
- y_lim=0.5, plot_title="Accuracy vs Standard deviation")
- plot_generic(per_sample_accuracy_lst, labels_iqr_lst, "Accuracy", "Inter quantile range", x_lim=1.01,
- y_lim=1.01, plot_title="Accuracy vs Inter quantile range")
-
if save_results:
self.save_metrics_to_file()
else:
@@ -189,65 +143,17 @@ def UQ_by_boostrap(self, boostrap_size: int, with_replacement: bool, with_fit: b
return models_predictions
- def __update_metrics(self, means_lst, stds_lst, iqr_lst, mean_ensemble_entropy_lst, overall_entropy_lst,
- statistical_bias_lst, jitter, per_sample_accuracy_lst, label_stability_lst):
- self.mean = np.mean(means_lst)
- self.std = np.mean(stds_lst)
- self.iqr = np.mean(iqr_lst)
- self.aleatoric_uncertainty = np.mean(mean_ensemble_entropy_lst)
- self.overall_uncertainty = np.mean(overall_entropy_lst)
- self.statistical_bias = np.mean(statistical_bias_lst)
- self.jitter = jitter
- self.per_sample_accuracy = np.mean(per_sample_accuracy_lst)
- self.label_stability = np.mean(label_stability_lst)
-
- def print_metrics(self):
- precision = 4
- print('\n')
- print("#" * 30, " Stability metrics ", "#" * 30)
- print(f'Mean: {np.round(self.mean, precision)}\n'
- f'Std: {np.round(self.std, precision)}\n'
- f'IQR: {np.round(self.iqr, precision)}\n'
- f'Aleatoric uncertainty: {np.round(self.aleatoric_uncertainty, precision)}\n'
- f'Overall uncertainty: {np.round(self.overall_uncertainty, precision)}\n'
- f'Statistical bias: {np.round(self.statistical_bias, precision)}\n'
- f'Jitter: {np.round(self.jitter, precision)}\n'
- f'Per sample accuracy: {np.round(self.per_sample_accuracy, precision)}\n'
- f'Label stability: {np.round(self.label_stability, precision)}\n\n')
-
- def get_metrics_dict(self):
- return {
- 'Mean': self.mean,
- 'Std': self.std,
- 'IQR': self.iqr,
- 'Aleatoric_Uncertainty': self.aleatoric_uncertainty,
- 'Overall_Uncertainty': self.overall_uncertainty,
- 'Statistical_Bias': self.statistical_bias,
- 'Jitter': self.jitter,
- 'Per_Sample_Accuracy': self.per_sample_accuracy,
- 'Label_Stability': self.label_stability,
- }
-
def save_metrics_to_file(self):
metrics_to_report = dict()
metrics_to_report['Dataset_Name'] = [self.dataset_name]
metrics_to_report['Base_Model_Name'] = [self.base_model_name]
metrics_to_report['N_Estimators'] = [self.n_estimators]
- metrics_to_report['Mean'] = [self.mean]
- metrics_to_report['Std'] = [self.std]
- metrics_to_report['IQR'] = [self.iqr]
- metrics_to_report['Aleatoric_Uncertainty'] = [self.aleatoric_uncertainty]
- metrics_to_report['Overall_Uncertainty'] = [self.overall_uncertainty]
- metrics_to_report['Statistical_Bias'] = [self.statistical_bias]
- metrics_to_report['Jitter'] = [self.jitter]
- metrics_to_report['Per_Sample_Accuracy'] = [self.per_sample_accuracy]
- metrics_to_report['Label_Stability'] = [self.label_stability]
+ for metric in self.prediction_metrics:
+ metrics_to_report[metric] = self.prediction_metrics[metric]
metrics_df = pd.DataFrame(metrics_to_report)
-
dir_path = os.path.join('..', '..', 'results', 'models_stability_metrics')
os.makedirs(dir_path, exist_ok=True)
-
filename = f"{self.dataset_name}_{self.n_estimators}_estimators_{self.base_model_name}_base_model_stability_metrics.csv"
metrics_df.to_csv(f'{dir_path}/{filename}', index=False)
diff --git a/virny/analyzers/subgroup_variance_analyzer.py b/virny/analyzers/subgroup_variance_analyzer.py
index 84ecd846..9d7b9269 100644
--- a/virny/analyzers/subgroup_variance_analyzer.py
+++ b/virny/analyzers/subgroup_variance_analyzer.py
@@ -92,8 +92,8 @@ def set_test_sets(self, new_X_test, new_y_test):
def set_test_protected_groups(self, new_test_protected_groups):
self.__subgroup_variance_calculator.test_protected_groups = new_test_protected_groups
- def compute_metrics(self, save_results: bool, result_filename: str = None, save_dir_path: str = None,
- make_plots: bool = True, with_fit: bool = True):
+ def compute_metrics(self, save_results: bool, result_filename: str = None,
+ save_dir_path: str = None, with_fit: bool = True):
"""
Measure variance metrics for subgroups for the base model. Display variance plots for analysis if needed.
Save results to a .csv file if needed.
@@ -108,14 +108,12 @@ def compute_metrics(self, save_results: bool, result_filename: str = None, save_
[Optional] Filename for results to save
save_dir_path
[Optional] Location where to save the results file
- make_plots
- If to display plots for analysis
with_fit
If to fit estimators in bootstrap
"""
- y_preds, y_test_true = self.__overall_variance_analyzer.compute_metrics(make_plots, save_results=False, with_fit=with_fit)
- self.overall_variance_metrics_dct = self.__overall_variance_analyzer.get_metrics_dict()
+ y_preds, y_test_true = self.__overall_variance_analyzer.compute_metrics(save_results=False, with_fit=with_fit)
+ self.overall_variance_metrics_dct = self.__overall_variance_analyzer.prediction_metrics
# Count and display fairness metrics
self.__subgroup_variance_calculator.set_overall_variance_metrics(self.overall_variance_metrics_dct)
diff --git a/virny/analyzers/subgroup_variance_calculator.py b/virny/analyzers/subgroup_variance_calculator.py
index ac37cc59..59a831bd 100644
--- a/virny/analyzers/subgroup_variance_calculator.py
+++ b/virny/analyzers/subgroup_variance_calculator.py
@@ -1,9 +1,9 @@
-import numpy as np
import pandas as pd
from colorama import Fore
+from virny.metrics import METRIC_TO_FUNCTION
from virny.configs.constants import ComputationMode
-from virny.utils.stability_utils import count_prediction_stats, combine_bootstrap_predictions
+from virny.utils.stability_utils import count_prediction_metrics, combine_bootstrap_predictions
from virny.analyzers.abstract_subgroup_analyzer import AbstractSubgroupAnalyzer
@@ -83,17 +83,9 @@ def _partition_and_compute_metrics_for_error_analysis(self, models_predictions,
}
if partition_indexes.shape[0] == 0:
print(Fore.YELLOW + f'WARNING: "{group_partition_name}" group is empty. Stability metrics are set to None.' + Fore.RESET, flush=True)
- metrics_dct = {
- 'Jitter': None,
- 'Mean': None,
- 'Std': None,
- 'IQR': None,
- 'Aleatoric_Uncertainty': None,
- 'Overall_Uncertainty': None,
- 'Statistical_Bias': None,
- 'Per_Sample_Accuracy': None,
- 'Label_Stability': None,
- }
+ metrics_dct = dict()
+ for metric in METRIC_TO_FUNCTION.keys():
+ metrics_dct[metric] = None
else:
metrics_dct = self._compute_metrics(self.y_test[partition_indexes].reset_index(drop=True),
group_models_predictions)
@@ -102,18 +94,8 @@ def _partition_and_compute_metrics_for_error_analysis(self, models_predictions,
return results
def _compute_metrics(self, y_test: pd.DataFrame, group_models_predictions):
- _, _, prediction_stats = count_prediction_stats(y_test, group_models_predictions)
- return {
- 'Jitter': prediction_stats.jitter,
- 'Mean': np.mean(prediction_stats.means_lst),
- 'Std': np.mean(prediction_stats.stds_lst),
- 'IQR': np.mean(prediction_stats.iqr_lst),
- 'Aleatoric_Uncertainty': np.mean(prediction_stats.mean_ensemble_entropy_lst),
- 'Overall_Uncertainty': np.mean(prediction_stats.overall_entropy_lst),
- 'Statistical_Bias': np.mean(prediction_stats.statistical_bias_lst),
- 'Per_Sample_Accuracy': np.mean(prediction_stats.per_sample_accuracy_lst),
- 'Label_Stability': np.mean(prediction_stats.label_stability_lst),
- }
+ _, prediction_metrics = count_prediction_metrics(y_test, group_models_predictions)
+ return prediction_metrics
def compute_subgroup_metrics(self, models_predictions: dict, save_results: bool,
result_filename: str = None, save_dir_path: str = None):
diff --git a/virny/configs/constants.py b/virny/configs/constants.py
index 76b2c8c5..e6228b36 100644
--- a/virny/configs/constants.py
+++ b/virny/configs/constants.py
@@ -1,20 +1,4 @@
-import numpy as np
-
from enum import Enum
-from dataclasses import dataclass
-
-
-@dataclass
-class CountPredictionStatsResponse:
- jitter: float
- means_lst: list
- stds_lst: list
- iqr_lst: list
- mean_ensemble_entropy_lst: list
- overall_entropy_lst: np.ndarray
- statistical_bias_lst: np.ndarray
- per_sample_accuracy_lst: list
- label_stability_lst: list
class ModelSetting(Enum):
diff --git a/virny/metrics/__init__.py b/virny/metrics/__init__.py
index 6f165bd1..e08a4ced 100644
--- a/virny/metrics/__init__.py
+++ b/virny/metrics/__init__.py
@@ -1,23 +1,97 @@
"""
This module contains functions for computing subgroup variance and error metrics.
"""
+from .accuracy_metrics import (
+ mean_prediction,
+ statistical_bias_from_predict_proba,
+ statistical_bias
+)
from .stability_metrics import (
- compute_std_mean_iqr_metrics,
- compute_churn,
- compute_jitter,
- compute_entropy_from_predicted_probability,
- compute_conf_interval,
- compute_std_mean_iqr_metrics,
- compute_per_sample_accuracy,
+ std,
+ iqr,
+ churn,
+ jitter,
+ per_sample_label_stability,
+ label_stability
+)
+from .uncertainty_metrics import (
+ entropy_from_predicted_probability,
+ conf_interval,
+ aleatoric_uncertainty,
+ overall_uncertainty,
)
+# Accuracy metrics
+MEAN_PREDICTION = 'Mean_Prediction'
+STATISTICAL_BIAS = 'Statistical_Bias'
+
+# Stability metrics
+STD = 'Std'
+IQR = 'IQR'
+JITTER = 'Jitter'
+LABEL_STABILITY = 'Label_Stability'
+
+# Uncertainty metrics
+ALEATORIC_UNCERTAINTY = 'Aleatoric_Uncertainty'
+OVERALL_UNCERTAINTY = 'Overall_Uncertainty'
+
+# Error disparity metrics
+EQUALIZED_ODDS_TPR = 'Equalized_Odds_TPR'
+EQUALIZED_ODDS_TNR = 'Equalized_Odds_TNR'
+EQUALIZED_ODDS_FPR = 'Equalized_Odds_FPR'
+EQUALIZED_ODDS_FNR = 'Equalized_Odds_FNR'
+DISPARATE_IMPACT = 'Disparate_Impact'
+STATISTICAL_PARITY_DIFFERENCE = 'Statistical_Parity_Difference'
+ACCURACY_PARITY = 'Accuracy_Parity'
+
+# Stability disparity metrics
+LABEL_STABILITY_RATIO = 'Label_Stability_Ratio'
+IQR_PARITY = 'IQR_Parity'
+STD_PARITY = 'Std_Parity'
+STD_RATIO = 'Std_Ratio'
+JITTER_PARITY = 'Jitter_Parity'
+
+# Uncertainty disparity metrics
+OVERALL_UNCERTAINTY_PARITY = 'Overall_Uncertainty_Parity'
+OVERALL_UNCERTAINTY_RATIO = 'Overall_Uncertainty_Ratio'
+ALEATORIC_UNCERTAINTY_PARITY = 'Aleatoric_Uncertainty_Parity'
+ALEATORIC_UNCERTAINTY_RATIO = 'Aleatoric_Uncertainty_Ratio'
+
+METRIC_TO_FUNCTION = {
+ # Accuracy metrics
+ MEAN_PREDICTION: mean_prediction,
+ STATISTICAL_BIAS: statistical_bias,
+ # Stability metrics
+ STD: std,
+ IQR: iqr,
+ JITTER: jitter,
+ LABEL_STABILITY: label_stability,
+ # Uncertainty metrics
+ ALEATORIC_UNCERTAINTY: aleatoric_uncertainty,
+ OVERALL_UNCERTAINTY: overall_uncertainty,
+}
+
+METRICS_FOR_PREDICT_PROBA = {MEAN_PREDICTION, STATISTICAL_BIAS,
+ STD, IQR,
+ ALEATORIC_UNCERTAINTY, OVERALL_UNCERTAINTY}
+METRICS_FOR_LABELS = set([metric for metric in METRIC_TO_FUNCTION.keys() if metric not in METRICS_FOR_PREDICT_PROBA])
+
__all__ = [
- "compute_std_mean_iqr_metrics",
- "compute_churn",
- "compute_jitter",
- "compute_entropy_from_predicted_probability",
- "compute_conf_interval",
- "compute_std_mean_iqr_metrics",
- "compute_per_sample_accuracy",
+ "mean_prediction",
+ "statistical_bias_from_predict_proba",
+ "statistical_bias",
+ "std",
+ "iqr",
+ "churn",
+ "jitter",
+ "per_sample_label_stability",
+ "label_stability",
+ "entropy_from_predicted_probability",
+ "conf_interval",
+ "aleatoric_uncertainty",
+ "overall_uncertainty",
+ "METRIC_TO_FUNCTION",
+ "METRICS_FOR_PREDICT_PROBA",
+ "METRICS_FOR_LABELS"
]
diff --git a/virny/metrics/accuracy_metrics.py b/virny/metrics/accuracy_metrics.py
new file mode 100644
index 00000000..3cbeec6e
--- /dev/null
+++ b/virny/metrics/accuracy_metrics.py
@@ -0,0 +1,33 @@
+import numpy as np
+import pandas as pd
+
+
+def mean_prediction(y_true: pd.DataFrame, uq_predict_probas: pd.DataFrame) -> float:
+ return np.mean(uq_predict_probas.mean().values)
+
+
+def statistical_bias_from_predict_proba(x, y_true):
+ """
+ Compute statistical bias from predicted probability
+
+ Parameters
+ ----------
+ x
+ Probability of 0 class
+ y_true
+ True label
+
+ """
+ # If x (main prediction) = 0.4, then expected value = 0 * 0.4 + 1 * (1 - 0.4) = 0.6.
+ # For true label = 0, we get bias = abs(0 - 0.6) = 0.6.
+ # For true label = 1, we get bias = abs(1 - 0.6) = 0.4.
+ expected_val = 0 * x + 1 * (1 - x)
+ return abs(y_true - expected_val)
+
+
+def statistical_bias(y_true: pd.DataFrame, uq_predict_probas: pd.DataFrame) -> float:
+ main_predictions = uq_predict_probas.mean().values
+ statistical_bias_lst = np.array(
+ [statistical_bias_from_predict_proba(x, y_true) for x, y_true in np.column_stack((main_predictions, y_true))]
+ )
+ return np.mean(statistical_bias_lst)
diff --git a/virny/metrics/stability_metrics.py b/virny/metrics/stability_metrics.py
index b9c255a6..fcc28da6 100644
--- a/virny/metrics/stability_metrics.py
+++ b/virny/metrics/stability_metrics.py
@@ -4,24 +4,15 @@
import scipy as sp
-def compute_label_stability(predicted_labels: list):
- """
- Label stability is defined as the absolute difference between the number of times the sample is classified as 0 and 1.
- If the absolute difference is large, the label is more stable.
- If the difference is exactly zero, then it's extremely unstable --- equally likely to be classified as 0 or 1.
-
- Parameters
- ----------
- predicted_labels
+def std(y_true: pd.DataFrame, uq_predict_probas: pd.DataFrame) -> float:
+ return np.mean(uq_predict_probas.std().values)
- """
- count_pos = sum(predicted_labels)
- count_neg = len(predicted_labels) - count_pos
- return np.abs(count_pos - count_neg) / len(predicted_labels)
+def iqr(y_true: pd.DataFrame, uq_predict_probas: pd.DataFrame) -> float:
+ return np.mean(sp.stats.iqr(uq_predict_probas, axis=0))
-def compute_churn(predicted_labels_1: list, predicted_labels_2: list):
+def churn(predicted_labels_1: list, predicted_labels_2: list):
"""
Pairwise stability metric for two model predictions.
@@ -36,7 +27,7 @@ def compute_churn(predicted_labels_1: list, predicted_labels_2: list):
for i in range(len(predicted_labels_1))]) / len(predicted_labels_1)
-def compute_jitter(models_prediction_labels):
+def jitter(y_true: pd.DataFrame, uq_labels: pd.DataFrame) -> float:
"""
Jitter is a stability metric that shows how the base model predictions fluctuate.
Values closer to 0 -- perfect stability, values closer to 1 -- extremely bad stability.
@@ -46,76 +37,34 @@ def compute_jitter(models_prediction_labels):
models_prediction_labels
"""
+ models_prediction_labels = uq_labels.values
n_models = len(models_prediction_labels)
models_idx_lst = [i for i in range(n_models)]
churns_sum = 0
for i, j in itertools.combinations(models_idx_lst, 2):
- churns_sum += compute_churn(models_prediction_labels[i], models_prediction_labels[j])
+ churns_sum += churn(models_prediction_labels[i], models_prediction_labels[j])
return churns_sum / (n_models * (n_models - 1) * 0.5)
-def compute_entropy_from_predicted_probability(x):
- """
- Compute entropy from predicted probability
-
- Parameters
- ----------
- x
- Probability of 0 class
-
- """
- return sp.stats.entropy([x, 1-x], base=2)
-
-
-def compute_statistical_bias_from_predict_proba(x, y_true):
- """
- Compute statistical bias from predicted probability
-
- Parameters
- ----------
- x
- Probability of 0 class
- y_true
- True label
-
- """
- # If x (main prediction) = 0.4, then expected value = 0 * 0.4 + 1 * (1 - 0.4) = 0.6.
- # For true label = 0, we get bias = abs(0 - 0.6) = 0.6.
- # For true label = 1, we get bias = abs(1 - 0.6) = 0.4.
- expected_val = 0 * x + 1 * (1 - x)
- return abs(y_true - expected_val)
-
-
-def compute_conf_interval(labels):
+def per_sample_label_stability(predicted_labels: list) -> float:
"""
- Create 95% confidence interval for population mean weight.
-
- Parameters
- ----------
- labels
-
- """
- return sp.stats.norm.interval(alpha=0.95, loc=np.mean(labels), scale=sp.stats.sem(labels))
-
-
-def compute_std_mean_iqr_metrics(results: pd.DataFrame):
- """
- Compute mean, standard deviation, and interquartile range metrics.
+ Label stability is defined as the absolute difference between the number of times the sample is classified as 0 and 1.
+ If the absolute difference is large, the label is more stable.
+ If the difference is exactly zero, then it's extremely unstable --- equally likely to be classified as 0 or 1.
Parameters
----------
- results
+ predicted_labels
"""
- means_lst = results.mean().values
- stds_lst = results.std().values
- iqr_lst = sp.stats.iqr(results, axis=0)
+ count_pos = sum(predicted_labels)
+ count_neg = len(predicted_labels) - count_pos
- return means_lst, stds_lst, iqr_lst
+ return np.abs(count_pos - count_neg) / len(predicted_labels)
-def compute_per_sample_accuracy(y_test, results):
+def label_stability(y_true: pd.DataFrame, uq_labels: pd.DataFrame) -> float:
"""
Compute per-sample accuracy for each model predictions.
@@ -123,25 +72,15 @@ def compute_per_sample_accuracy(y_test, results):
Parameters
----------
- y_test
+ y_true
y test dataset
- results
- `results` variable from count_prediction_stats()
+ uq_labels
+ `uq_labels` variable from count_prediction_metrics()
"""
- per_sample_predictions = {}
- label_stability = []
- per_sample_accuracy = []
- acc = None
- for sample in range(len(y_test)):
- per_sample_predictions[sample] = [int(x<0.5) for x in results[sample].values]
- label_stability.append(compute_label_stability(per_sample_predictions[sample]))
-
- if y_test[sample] == 1:
- acc = np.mean(per_sample_predictions[sample])
- elif y_test[sample] == 0:
- acc = 1 - np.mean(per_sample_predictions[sample])
- if acc is not None:
- per_sample_accuracy.append(acc)
-
- return per_sample_accuracy, label_stability
+ label_stability_lst = []
+ for sample in range(len(y_true)):
+ per_sample_predictions = list(uq_labels[sample].values)
+ label_stability_lst.append(per_sample_label_stability(per_sample_predictions))
+
+ return np.mean(label_stability_lst)
diff --git a/virny/metrics/uncertainty_metrics.py b/virny/metrics/uncertainty_metrics.py
new file mode 100644
index 00000000..6ebfac45
--- /dev/null
+++ b/virny/metrics/uncertainty_metrics.py
@@ -0,0 +1,38 @@
+import numpy as np
+import pandas as pd
+import scipy as sp
+
+
+def entropy_from_predicted_probability(x):
+ """
+ Compute entropy from predicted probability
+
+ Parameters
+ ----------
+ x
+ Probability of 0 class
+
+ """
+ return sp.stats.entropy([x, 1-x], base=2)
+
+
+def conf_interval(labels):
+ """
+ Create 95% confidence interval for population mean weight.
+
+ Parameters
+ ----------
+ labels
+
+ """
+ return sp.stats.norm.interval(alpha=0.95, loc=np.mean(labels), scale=sp.stats.sem(labels))
+
+
+def aleatoric_uncertainty(y_true: pd.DataFrame, uq_predict_probas: pd.DataFrame) -> float:
+ return np.mean(uq_predict_probas.apply(entropy_from_predicted_probability).mean().values)
+
+
+def overall_uncertainty(y_true: pd.DataFrame, uq_predict_probas: pd.DataFrame) -> float:
+ main_predictions = uq_predict_probas.mean().values
+ overall_entropy_lst = np.array([entropy_from_predicted_probability(x) for x in main_predictions])
+ return np.mean(overall_entropy_lst)
diff --git a/virny/user_interfaces/metrics_computation_interfaces.py b/virny/user_interfaces/metrics_computation_interfaces.py
index f1de523d..cf3c3e48 100644
--- a/virny/user_interfaces/metrics_computation_interfaces.py
+++ b/virny/user_interfaces/metrics_computation_interfaces.py
@@ -1,5 +1,4 @@
import os
-import random
import traceback
import pandas as pd
from river import base
@@ -116,8 +115,7 @@ def compute_model_metrics(base_model, n_estimators: int, dataset: BaseFlowDatase
verbose=verbose)
y_preds, variance_metrics_df = subgroup_variance_analyzer.compute_metrics(save_results=False,
result_filename=None,
- save_dir_path=None,
- make_plots=False)
+ save_dir_path=None)
# Compute error metrics for subgroups
error_analyzer = SubgroupErrorAnalyzer(X_test=dataset.X_test,
@@ -552,7 +550,6 @@ def compute_model_metrics_with_multiple_test_sets(base_model, n_estimators: int,
y_preds, variance_metrics_df = subgroup_variance_analyzer.compute_metrics(save_results=False,
result_filename=None,
save_dir_path=None,
- make_plots=False,
with_fit=True if set_idx == 0 else False)
# Compute accuracy metrics for subgroups
diff --git a/virny/utils/__init__.py b/virny/utils/__init__.py
index 90f5d8a3..d27eeb46 100644
--- a/virny/utils/__init__.py
+++ b/virny/utils/__init__.py
@@ -2,12 +2,12 @@
Common helpers and utils.
"""
from .common_helpers import validate_config
-from .stability_utils import count_prediction_stats
+from .stability_utils import count_prediction_metrics
from .protected_groups_partitioning import create_test_protected_groups
__all__ = [
"validate_config",
"create_test_protected_groups",
- "count_prediction_stats",
+ "count_prediction_metrics",
]
diff --git a/virny/utils/common_helpers.py b/virny/utils/common_helpers.py
index dbaac29f..5706fe99 100644
--- a/virny/utils/common_helpers.py
+++ b/virny/utils/common_helpers.py
@@ -94,7 +94,7 @@ def save_metrics_to_file(metrics_df, result_filename, save_dir_path):
def confusion_matrix_metrics(y_true, y_preds):
- metrics = {}
+ metrics = dict()
TN, FP, FN, TP = confusion_matrix(y_true, y_preds).ravel()
metrics['TPR'] = TP/(TP+FN)
diff --git a/virny/utils/data_viz_utils.py b/virny/utils/data_viz_utils.py
index ddf397e0..bb262b3a 100644
--- a/virny/utils/data_viz_utils.py
+++ b/virny/utils/data_viz_utils.py
@@ -1,32 +1,5 @@
import os
import pandas as pd
-import seaborn as sns
-
-from matplotlib import pyplot as plt
-
-
-def set_size(w,h, ax=None):
- """ w, h: width, height in inches """
- if not ax: ax=plt.gca()
- l = ax.figure.subplotpars.left
- r = ax.figure.subplotpars.right
- t = ax.figure.subplotpars.top
- b = ax.figure.subplotpars.bottom
- figw = float(w)/(r-l)
- figh = float(h)/(t-b)
- ax.figure.set_size_inches(figw, figh)
-
-
-def plot_generic(x, y, xlabel, ylabel, x_lim, y_lim, plot_title):
- sns.set_style("darkgrid")
- plt.figure(figsize=(20,10))
- plt.scatter(x, y)
- plt.xlim(0, x_lim)
- plt.ylim(0, y_lim)
- plt.xlabel(xlabel, fontsize=14)
- plt.ylabel(ylabel, fontsize=14)
- plt.title(plot_title, fontsize=20)
- plt.show()
def create_average_metrics_df(dataset_name, model_names, metrics_path):
@@ -61,44 +34,3 @@ def create_average_metrics_df(dataset_name, model_names, metrics_path):
print(f'File with average metrics for {model_name} is created')
return models_average_results_dct
-
-
-def visualize_fairness_metrics_for_prediction_metric(models_average_results_dct, x_metric, y_metrics: list):
- sns.set_style("darkgrid")
- x_lim = 0.5
- y_lim = 0.22
- priv_dis_pairs = [('SEX_RAC1P_priv', 'SEX_RAC1P_dis'),
- ('SEX_priv', 'SEX_dis'),
- ('RAC1P_priv', 'RAC1P_dis')]
- for y_metric in y_metrics:
- for fairness_metric_priv, fairness_metric_dis in priv_dis_pairs:
- display_fairness_plot(models_average_results_dct, x_metric, y_metric,
- fairness_metric_priv, fairness_metric_dis, x_lim, y_lim)
-
-
-def display_fairness_plot(models_average_results_dct, x_metric, y_metric,
- fairness_metric_priv, fairness_metric_dis, x_lim, y_lim):
- fig, ax = plt.subplots()
- set_size(15, 8, ax)
-
- # List of all markers -- https://matplotlib.org/stable/api/markers_api.html
- markers = ['o', '*', '|', '<', '>', '^', 'v', '1', 's', 'x', 'D', 'P', 'H']
- model_names = models_average_results_dct.keys()
- shapes = []
- for idx, model_name in enumerate(model_names):
- x_val = abs(models_average_results_dct[model_name][fairness_metric_priv].loc[x_metric] - \
- models_average_results_dct[model_name][fairness_metric_dis].loc[x_metric])
- y_val = abs(models_average_results_dct[model_name][fairness_metric_priv].loc[y_metric] - \
- models_average_results_dct[model_name][fairness_metric_dis].loc[y_metric])
- a = ax.scatter(x_val, y_val, marker=markers[idx], s=100)
- shapes.append(a)
-
- plt.axhline(y=0.0, color='r', linestyle='-')
- plt.xlabel(f'{x_metric} Difference')
- plt.ylabel(f'{y_metric} Difference')
- plt.xlim(-0.01, x_lim)
- plt.ylim(-0.01, y_lim)
- plt.title(f'{fairness_metric_priv}-{fairness_metric_dis} difference for {x_metric} and {y_metric}', fontsize=20)
- ax.legend(shapes, model_names, fontsize=12, title='Markers')
-
- plt.show()
diff --git a/virny/utils/stability_utils.py b/virny/utils/stability_utils.py
index 24d8db8d..45986087 100644
--- a/virny/utils/stability_utils.py
+++ b/virny/utils/stability_utils.py
@@ -1,15 +1,7 @@
import numpy as np
import pandas as pd
-import seaborn as sns
-from os import listdir
-from os.path import isfile, join
-from matplotlib import pyplot as plt
-
-from virny.configs.constants import CountPredictionStatsResponse
-from virny.utils.data_viz_utils import set_size
-from virny.metrics.stability_metrics import compute_std_mean_iqr_metrics, compute_entropy_from_predicted_probability,\
- compute_jitter, compute_per_sample_accuracy, compute_statistical_bias_from_predict_proba
+from virny.metrics import METRIC_TO_FUNCTION, METRICS_FOR_PREDICT_PROBA, METRICS_FOR_LABELS
def combine_bootstrap_predictions(bootstrap_predictions: dict, y_test_indexes: np.ndarray):
@@ -37,7 +29,7 @@ def combine_bootstrap_predictions(bootstrap_predictions: dict, y_test_indexes: n
return pd.Series(y_preds, index=y_test_indexes)
-def count_prediction_stats(y_test, uq_results):
+def count_prediction_metrics(y_true, uq_results, with_predict_proba: bool = True):
"""
Compute means, stds, iqr, entropy, jitter, label stability, and transform predictions to pd.Dataframe.
@@ -45,7 +37,7 @@ def count_prediction_stats(y_test, uq_results):
Parameters
----------
- y_test
+ y_true
True labels
uq_results
2D array of prediction proba for the zero value label by each model
@@ -56,35 +48,27 @@ def count_prediction_stats(y_test, uq_results):
else:
results = pd.DataFrame(uq_results).transpose()
- means_lst, stds_lst, iqr_lst = compute_std_mean_iqr_metrics(results)
- mean_ensemble_entropy_lst = results.apply(compute_entropy_from_predicted_probability).mean().values
+ metrics_dct = dict()
+ # Compute metrics for prediction probabilities
+ if not with_predict_proba:
+ uq_labels = results
+ else:
+ uq_predict_probas = results
+ for metric in METRICS_FOR_PREDICT_PROBA:
+ metrics_dct[metric] = METRIC_TO_FUNCTION[metric](y_true, uq_predict_probas)
- # Convert predict proba results of each model to correspondent labels.
- # Here we use int(x<0.5) since we use predict_prob()[:, 0] to make predictions.
- # Hence, if a value is, for example, 0.3 --> label == 1, 0.6 -- > label == 0
- uq_labels = results.applymap(lambda x: int(x<0.5))
- jitter = compute_jitter(uq_labels.values)
+ # Convert predict proba results of each model to correspondent labels.
+ # Here we use int(x<0.5) since we use predict_prob()[:, 0] to make predictions.
+ # Hence, if a value is, for example, 0.3 --> label == 1, 0.6 -- > label == 0
+ uq_labels = results.applymap(lambda x: int(x<0.5))
- main_prediction = results.mean().values
- statistical_bias_lst = np.array(
- [compute_statistical_bias_from_predict_proba(x, y_true) for x, y_true in np.column_stack((main_prediction, y_test))]
- )
- overall_entropy_lst = np.array([compute_entropy_from_predicted_probability(x) for x in main_prediction])
+ # Compute metrics for prediction labels
+ for metric in METRICS_FOR_LABELS:
+ metrics_dct[metric] = METRIC_TO_FUNCTION[metric](y_true, uq_labels)
- y_preds = np.array([int(x<0.5) for x in main_prediction])
+ y_preds = np.array([int(x<0.5) for x in results.mean().values])
- per_sample_accuracy_lst, label_stability_lst = compute_per_sample_accuracy(y_test, results)
- prediction_stats = CountPredictionStatsResponse(jitter=jitter,
- means_lst=means_lst,
- stds_lst=stds_lst,
- iqr_lst=iqr_lst,
- mean_ensemble_entropy_lst=mean_ensemble_entropy_lst,
- overall_entropy_lst=overall_entropy_lst,
- statistical_bias_lst=statistical_bias_lst,
- per_sample_accuracy_lst=per_sample_accuracy_lst,
- label_stability_lst=label_stability_lst)
-
- return y_preds, uq_labels, prediction_stats
+ return y_preds, metrics_dct
def generate_bootstrap(features, labels, boostrap_size, with_replacement=True):
@@ -95,42 +79,3 @@ def generate_bootstrap(features, labels, boostrap_size, with_replacement=True):
return bootstrap_features, bootstrap_labels
else:
raise ValueError('Bootstrap samples are not of the size requested')
-
-
-def display_result_plots(results_dir):
- sns.set_style("darkgrid")
- results = dict()
- filenames = [f for f in listdir(results_dir) if isfile(join(results_dir, f))]
-
- for filename in filenames:
- results_df = pd.read_csv(results_dir + filename)
- results[f'{results_df.iloc[0]["Base_Model_Name"]}_{results_df.iloc[0]["N_Estimators"]}_estimators'] = results_df
-
- y_metrics = ['SPD_Race', 'SPD_Sex', 'SPD_Race_Sex', 'EO_Race', 'EO_Sex', 'EO_Race_Sex']
- x_metrics = ['Label_Stability', 'Std']
- for x_metric in x_metrics:
- for y_metric in y_metrics:
- x_lim = 0.3 if x_metric == 'SD' else 1.0
- display_uncertainty_plot(results, x_metric, y_metric, x_lim)
-
-
-def display_uncertainty_plot(results, x_metric, y_metric, x_lim):
- fig, ax = plt.subplots()
- set_size(15, 8, ax)
-
- # List of all markers -- https://matplotlib.org/stable/api/markers_api.html
- markers = ['.', 'o', '+', '*', '|', '<', '>', '^', 'v', '1', 's', 'x', 'D', 'P', 'H']
- techniques = results.keys()
- shapes = []
- for idx, technique in enumerate(techniques):
- a = ax.scatter(results[technique][x_metric], results[technique][y_metric], marker=markers[idx], s=100)
- shapes.append(a)
-
- plt.axhline(y=0.0, color='r', linestyle='-')
- plt.xlabel(x_metric)
- plt.ylabel(y_metric)
- plt.xlim(0, x_lim)
- plt.title(f'{x_metric} [{y_metric}]', fontsize=20)
- ax.legend(shapes, techniques, fontsize=12, title='Markers')
-
- plt.show()
From 985a483f97b37e39109580f6236c8d3d664f26aa Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Sat, 21 Oct 2023 01:36:35 +0300
Subject: [PATCH 029/148] Improved MetricsComposer
---
virny/configs/constants.py | 45 +++++++++++++++++++
virny/custom_classes/metrics_composer.py | 57 +++++++++++++++---------
virny/metrics/__init__.py | 38 +---------------
virny/utils/common_helpers.py | 20 ++++-----
4 files changed, 93 insertions(+), 67 deletions(-)
diff --git a/virny/configs/constants.py b/virny/configs/constants.py
index e6228b36..81d145b2 100644
--- a/virny/configs/constants.py
+++ b/virny/configs/constants.py
@@ -19,3 +19,48 @@ class ReportType(Enum):
INTERSECTION_SIGN = '&'
MODELS_TUNING_SEED = 42
MODELS_TUNING_TEST_SET_FRACTION = 0.2
+
+# Accuracy metrics
+MEAN_PREDICTION = 'Mean_Prediction'
+STATISTICAL_BIAS = 'Statistical_Bias'
+TPR = 'TPR'
+TNR = 'TNR'
+PPV = 'PPV'
+FNR = 'FNR'
+FPR = 'FPR'
+F1 = 'F1'
+ACCURACY = 'Accuracy'
+SELECTION_RATE = 'Selection-Rate'
+POSITIVE_RATE = 'Positive-Rate'
+
+# Stability metrics
+STD = 'Std'
+IQR = 'IQR'
+JITTER = 'Jitter'
+LABEL_STABILITY = 'Label_Stability'
+
+# Uncertainty metrics
+ALEATORIC_UNCERTAINTY = 'Aleatoric_Uncertainty'
+OVERALL_UNCERTAINTY = 'Overall_Uncertainty'
+
+# Error disparity metrics
+EQUALIZED_ODDS_TPR = 'Equalized_Odds_TPR'
+EQUALIZED_ODDS_TNR = 'Equalized_Odds_TNR'
+EQUALIZED_ODDS_FPR = 'Equalized_Odds_FPR'
+EQUALIZED_ODDS_FNR = 'Equalized_Odds_FNR'
+DISPARATE_IMPACT = 'Disparate_Impact'
+STATISTICAL_PARITY_DIFFERENCE = 'Statistical_Parity_Difference'
+ACCURACY_PARITY = 'Accuracy_Parity'
+
+# Stability disparity metrics
+LABEL_STABILITY_RATIO = 'Label_Stability_Ratio'
+IQR_PARITY = 'IQR_Parity'
+STD_PARITY = 'Std_Parity'
+STD_RATIO = 'Std_Ratio'
+JITTER_PARITY = 'Jitter_Parity'
+
+# Uncertainty disparity metrics
+OVERALL_UNCERTAINTY_PARITY = 'Overall_Uncertainty_Parity'
+OVERALL_UNCERTAINTY_RATIO = 'Overall_Uncertainty_Ratio'
+ALEATORIC_UNCERTAINTY_PARITY = 'Aleatoric_Uncertainty_Parity'
+ALEATORIC_UNCERTAINTY_RATIO = 'Aleatoric_Uncertainty_Ratio'
diff --git a/virny/custom_classes/metrics_composer.py b/virny/custom_classes/metrics_composer.py
index b18f3866..1b72f1b0 100644
--- a/virny/custom_classes/metrics_composer.py
+++ b/virny/custom_classes/metrics_composer.py
@@ -1,5 +1,7 @@
import pandas as pd
+from virny.configs.constants import *
+
class MetricsComposer:
"""
@@ -20,6 +22,34 @@ def __init__(self, models_metrics_dct: dict, sensitive_attributes_dct: dict):
self.sensitive_attributes_dct = sensitive_attributes_dct
self.models_average_metrics_dct = None # will be created in self.compose_metrics()
+ self.disparity_metric_functions = {
+ # Error disparity metrics
+ TPR: [(EQUALIZED_ODDS_TPR, self._difference_operation)],
+ TNR: [(EQUALIZED_ODDS_TNR, self._difference_operation)],
+ FPR: [(EQUALIZED_ODDS_FPR, self._difference_operation)],
+ FNR: [(EQUALIZED_ODDS_FNR, self._difference_operation)],
+ ACCURACY: [(ACCURACY_PARITY, self._difference_operation)],
+ POSITIVE_RATE: [(STATISTICAL_PARITY_DIFFERENCE, self._difference_operation),
+ (DISPARATE_IMPACT, self._ratio_operation)],
+ # Stability disparity metrics
+ LABEL_STABILITY: [(LABEL_STABILITY_RATIO, self._ratio_operation)],
+ JITTER: [(JITTER_PARITY, self._difference_operation)],
+ IQR: [(IQR_PARITY, self._difference_operation)],
+ STD: [(STD_PARITY, self._difference_operation),
+ (STD_RATIO, self._ratio_operation)],
+ # Uncertainty disparity metrics
+ OVERALL_UNCERTAINTY: [(OVERALL_UNCERTAINTY_PARITY, self._difference_operation,
+ OVERALL_UNCERTAINTY_RATIO, self._ratio_operation)],
+ ALEATORIC_UNCERTAINTY: [(ALEATORIC_UNCERTAINTY_PARITY, self._difference_operation),
+ (ALEATORIC_UNCERTAINTY_RATIO, self._ratio_operation)]
+ }
+
+ def _difference_operation(self, cfm, metric_name, dis_group, priv_group):
+ return cfm[dis_group][metric_name] - cfm[priv_group][metric_name]
+
+ def _ratio_operation(self, cfm, metric_name, dis_group, priv_group):
+ return cfm[dis_group][metric_name] / cfm[priv_group][metric_name]
+
def compose_metrics(self):
"""
Compose subgroup metrics from self.model_metrics_df.
@@ -39,32 +69,19 @@ def compose_metrics(self):
models_composed_metrics_df = pd.DataFrame()
for model_name in self.models_average_metrics_dct.keys():
cfm = self.models_average_metrics_dct[model_name]
+ metric_names = list(cfm['Metric'].unique())
cfm = cfm.set_index('Metric')
for sensitive_attr in self.sensitive_attributes_dct.keys():
dis_group = sensitive_attr + '_dis'
priv_group = sensitive_attr + '_priv'
- groups_metrics_dct[sensitive_attr] = {
- # Error disparity metrics
- 'Equalized_Odds_TPR': cfm[dis_group]['TPR'] - cfm[priv_group]['TPR'],
- 'Equalized_Odds_FPR': cfm[dis_group]['FPR'] - cfm[priv_group]['FPR'],
- 'Equalized_Odds_FNR': cfm[dis_group]['FNR'] - cfm[priv_group]['FNR'],
- 'Disparate_Impact': cfm[dis_group]['Positive-Rate'] / cfm[priv_group]['Positive-Rate'],
- 'Statistical_Parity_Difference': cfm[dis_group]['Positive-Rate'] - cfm[priv_group]['Positive-Rate'],
- 'Accuracy_Parity': cfm[dis_group]['Accuracy'] - cfm[priv_group]['Accuracy'],
- # Stability disparity metrics
- 'Label_Stability_Ratio': cfm[dis_group]['Label_Stability'] / cfm[priv_group]['Label_Stability'],
- 'IQR_Parity': cfm[dis_group]['IQR'] - cfm[priv_group]['IQR'],
- 'Std_Parity': cfm[dis_group]['Std'] - cfm[priv_group]['Std'],
- 'Std_Ratio': cfm[dis_group]['Std'] / cfm[priv_group]['Std'],
- 'Jitter_Parity': cfm[dis_group]['Jitter'] - cfm[priv_group]['Jitter'],
- # Uncertainty disparity metrics
- 'Overall_Uncertainty_Parity': cfm[dis_group]['Overall_Uncertainty'] - cfm[priv_group]['Overall_Uncertainty'],
- 'Overall_Uncertainty_Ratio': cfm[dis_group]['Overall_Uncertainty'] / cfm[priv_group]['Overall_Uncertainty'],
- 'Aleatoric_Uncertainty_Parity': cfm[dis_group]['Aleatoric_Uncertainty'] - cfm[priv_group]['Aleatoric_Uncertainty'],
- 'Aleatoric_Uncertainty_Ratio': cfm[dis_group]['Aleatoric_Uncertainty'] / cfm[priv_group]['Aleatoric_Uncertainty'],
- }
+ groups_metrics_dct[sensitive_attr] = dict()
+ for metric_name in metric_names:
+ disparity_metrics = self.disparity_metric_functions[metric_name]
+ for disparity_metric_name, disparity_metric_func in disparity_metrics:
+ groups_metrics_dct[sensitive_attr][disparity_metric_name] = (
+ disparity_metric_func(cfm, metric_name, dis_group, priv_group))
model_composed_metrics_df = pd.DataFrame(groups_metrics_dct).reset_index()
model_composed_metrics_df = model_composed_metrics_df.rename(columns={"index": "Metric"})
diff --git a/virny/metrics/__init__.py b/virny/metrics/__init__.py
index e08a4ced..4c8b5044 100644
--- a/virny/metrics/__init__.py
+++ b/virny/metrics/__init__.py
@@ -1,6 +1,7 @@
"""
This module contains functions for computing subgroup variance and error metrics.
"""
+from virny.configs.constants import *
from .accuracy_metrics import (
mean_prediction,
statistical_bias_from_predict_proba,
@@ -21,43 +22,6 @@
overall_uncertainty,
)
-
-# Accuracy metrics
-MEAN_PREDICTION = 'Mean_Prediction'
-STATISTICAL_BIAS = 'Statistical_Bias'
-
-# Stability metrics
-STD = 'Std'
-IQR = 'IQR'
-JITTER = 'Jitter'
-LABEL_STABILITY = 'Label_Stability'
-
-# Uncertainty metrics
-ALEATORIC_UNCERTAINTY = 'Aleatoric_Uncertainty'
-OVERALL_UNCERTAINTY = 'Overall_Uncertainty'
-
-# Error disparity metrics
-EQUALIZED_ODDS_TPR = 'Equalized_Odds_TPR'
-EQUALIZED_ODDS_TNR = 'Equalized_Odds_TNR'
-EQUALIZED_ODDS_FPR = 'Equalized_Odds_FPR'
-EQUALIZED_ODDS_FNR = 'Equalized_Odds_FNR'
-DISPARATE_IMPACT = 'Disparate_Impact'
-STATISTICAL_PARITY_DIFFERENCE = 'Statistical_Parity_Difference'
-ACCURACY_PARITY = 'Accuracy_Parity'
-
-# Stability disparity metrics
-LABEL_STABILITY_RATIO = 'Label_Stability_Ratio'
-IQR_PARITY = 'IQR_Parity'
-STD_PARITY = 'Std_Parity'
-STD_RATIO = 'Std_Ratio'
-JITTER_PARITY = 'Jitter_Parity'
-
-# Uncertainty disparity metrics
-OVERALL_UNCERTAINTY_PARITY = 'Overall_Uncertainty_Parity'
-OVERALL_UNCERTAINTY_RATIO = 'Overall_Uncertainty_Ratio'
-ALEATORIC_UNCERTAINTY_PARITY = 'Aleatoric_Uncertainty_Parity'
-ALEATORIC_UNCERTAINTY_RATIO = 'Aleatoric_Uncertainty_Ratio'
-
METRIC_TO_FUNCTION = {
# Accuracy metrics
MEAN_PREDICTION: mean_prediction,
diff --git a/virny/utils/common_helpers.py b/virny/utils/common_helpers.py
index 5706fe99..dc9e81ab 100644
--- a/virny/utils/common_helpers.py
+++ b/virny/utils/common_helpers.py
@@ -4,7 +4,7 @@
from sklearn.metrics import confusion_matrix
from river import base
-from virny.configs.constants import INTERSECTION_SIGN, ModelSetting, ComputationMode
+from virny.configs.constants import *
def validate_config(config_obj):
@@ -97,14 +97,14 @@ def confusion_matrix_metrics(y_true, y_preds):
metrics = dict()
TN, FP, FN, TP = confusion_matrix(y_true, y_preds).ravel()
- metrics['TPR'] = TP/(TP+FN)
- metrics['TNR'] = TN/(TN+FP)
- metrics['PPV'] = TP/(TP+FP)
- metrics['FNR'] = FN/(FN+TP)
- metrics['FPR'] = FP/(FP+TN)
- metrics['Accuracy'] = (TP+TN)/(TP+TN+FP+FN)
- metrics['F1'] = (2*TP)/(2*TP+FP+FN)
- metrics['Selection-Rate'] = (TP+FP)/(TP+FP+TN+FN)
- metrics['Positive-Rate'] = (TP+FP)/(TP+FN)
+ metrics[TPR] = TP/(TP+FN)
+ metrics[TNR] = TN/(TN+FP)
+ metrics[PPV] = TP/(TP+FP)
+ metrics[FNR] = FN/(FN+TP)
+ metrics[FPR] = FP/(FP+TN)
+ metrics[ACCURACY] = (TP+TN)/(TP+TN+FP+FN)
+ metrics[F1] = (2*TP)/(2*TP+FP+FN)
+ metrics[SELECTION_RATE] = (TP+FP)/(TP+FP+TN+FN)
+ metrics[POSITIVE_RATE] = (TP+FP)/(TP+FN)
return metrics
From 8bb2b29e9d367693d736e396918ae363e7a44f29 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Sat, 21 Oct 2023 01:58:19 +0300
Subject: [PATCH 030/148] Fixed tests for metrics
---
tests/custom_classes/test_metrics_composer.py | 23 ++++++-----
tests/utils/test_stability_utils.py | 40 +++++++------------
virny/custom_classes/metrics_composer.py | 4 ++
3 files changed, 32 insertions(+), 35 deletions(-)
diff --git a/tests/custom_classes/test_metrics_composer.py b/tests/custom_classes/test_metrics_composer.py
index 6bcdf4d7..c37d21be 100644
--- a/tests/custom_classes/test_metrics_composer.py
+++ b/tests/custom_classes/test_metrics_composer.py
@@ -4,6 +4,7 @@
from tests import config_params, models_config, ROOT_DIR
from virny.utils.custom_initializers import read_model_metric_dfs
from virny.custom_classes.metrics_composer import MetricsComposer
+from virny.configs.constants import *
@pytest.fixture(scope='module')
@@ -20,7 +21,7 @@ def test_compose_metrics_true1(models_metrics_dct, config_params):
models_composed_metrics_df = metrics_composer.compose_metrics()
# Check shape
- assert models_composed_metrics_df.shape == (22, 5)
+ assert models_composed_metrics_df.shape == (24, 5)
# Check column names
assert sorted(models_composed_metrics_df.columns.tolist()) == sorted(['Metric', 'Model_Name', 'sex', 'race', 'sex&race'])
@@ -29,10 +30,11 @@ def test_compose_metrics_true1(models_metrics_dct, config_params):
assert sorted(models_composed_metrics_df['Model_Name'].unique().tolist()) == sorted(['DecisionTreeClassifier', 'LogisticRegression'])
# Check all metrics presence
- assert sorted(models_composed_metrics_df['Metric'].unique().tolist()) == sorted(['Equalized_Odds_TPR', 'Equalized_Odds_FPR', 'Equalized_Odds_FNR',
- 'Disparate_Impact', 'Statistical_Parity_Difference', 'Accuracy_Parity',
- 'Label_Stability_Ratio', 'IQR_Parity', 'Std_Parity',
- 'Std_Ratio', 'Jitter_Parity'])
+ assert sorted(models_composed_metrics_df['Metric'].unique().tolist()) == (
+ sorted([EQUALIZED_ODDS_TPR, EQUALIZED_ODDS_TNR, EQUALIZED_ODDS_FPR, EQUALIZED_ODDS_FNR,
+ DISPARATE_IMPACT, STATISTICAL_PARITY_DIFFERENCE, ACCURACY_PARITY,
+ LABEL_STABILITY_RATIO, IQR_PARITY, STD_PARITY, STD_RATIO, JITTER_PARITY])
+ )
def test_compose_metrics_true2(models_metrics_dct, config_params):
@@ -40,7 +42,7 @@ def test_compose_metrics_true2(models_metrics_dct, config_params):
models_composed_metrics_df = metrics_composer.compose_metrics()
# Check shape
- assert models_composed_metrics_df.shape == (22, 4)
+ assert models_composed_metrics_df.shape == (24, 4)
# Check column names
assert sorted(models_composed_metrics_df.columns.tolist()) == sorted(['Metric', 'Model_Name', 'sex', 'race'])
@@ -49,7 +51,8 @@ def test_compose_metrics_true2(models_metrics_dct, config_params):
assert sorted(models_composed_metrics_df['Model_Name'].unique().tolist()) == sorted(['DecisionTreeClassifier', 'LogisticRegression'])
# Check all metrics presence
- assert sorted(models_composed_metrics_df['Metric'].unique().tolist()) == sorted(['Equalized_Odds_TPR', 'Equalized_Odds_FPR', 'Equalized_Odds_FNR',
- 'Disparate_Impact', 'Statistical_Parity_Difference', 'Accuracy_Parity',
- 'Label_Stability_Ratio', 'IQR_Parity', 'Std_Parity', 'Std_Ratio',
- 'Jitter_Parity'])
+ assert sorted(models_composed_metrics_df['Metric'].unique().tolist()) == (
+ sorted([EQUALIZED_ODDS_TPR, EQUALIZED_ODDS_TNR, EQUALIZED_ODDS_FPR, EQUALIZED_ODDS_FNR,
+ DISPARATE_IMPACT, STATISTICAL_PARITY_DIFFERENCE, ACCURACY_PARITY,
+ LABEL_STABILITY_RATIO, IQR_PARITY, STD_PARITY, STD_RATIO, JITTER_PARITY])
+ )
diff --git a/tests/utils/test_stability_utils.py b/tests/utils/test_stability_utils.py
index 3296b39d..f0fa66aa 100644
--- a/tests/utils/test_stability_utils.py
+++ b/tests/utils/test_stability_utils.py
@@ -5,47 +5,37 @@
from sklearn.preprocessing import StandardScaler
from tests import config_params, compas_dataset_class, compas_without_sensitive_attrs_dataset_class
-from virny.utils.stability_utils import count_prediction_stats, generate_bootstrap
+from virny.utils.stability_utils import count_prediction_metrics, generate_bootstrap
from virny.preprocessing.basic_preprocessing import preprocess_dataset
+from virny.configs.constants import *
-# ========================== Test count_prediction_stats ==========================
-def test_count_prediction_stats_true1():
+# ========================== Test count_prediction_metrics ==========================
+def test_count_prediction_metrics_true1():
y_test = np.array([0, 0, 1, 1, 0, 1, 0, 1, 1, 1])
uq_results = np.array([[0.6, 0.7, 0.3, 0.4, 0.5, 0.3, 0.7, 0.6, 0.4, 0.4],
[0.7, 0.6, 0.4, 0.4, 0.5, 0.3, 0.2, 0.6, 0.4, 0.4]])
- y_preds, uq_labels, prediction_stats = count_prediction_stats(y_test, uq_results)
-
- mean = np.mean(prediction_stats.means_lst)
- std = np.mean(prediction_stats.stds_lst)
- iqr = np.mean(prediction_stats.iqr_lst)
- aleatoric_uncertainty = np.mean(prediction_stats.mean_ensemble_entropy_lst)
- overall_uncertainty = np.mean(prediction_stats.overall_entropy_lst)
- statistical_bias = np.mean(prediction_stats.statistical_bias_lst)
- per_sample_accuracy = np.mean(prediction_stats.per_sample_accuracy_lst)
- label_stability = np.mean(prediction_stats.label_stability_lst)
+ y_preds, prediction_metrics = count_prediction_metrics(y_test, uq_results)
assert np.array_equal(y_preds, np.array([0, 0, 1, 1, 0, 1, 1, 0, 1, 1]))
- assert np.array_equal( uq_labels, np.array([[0, 0, 1, 1, 0, 1, 0, 0, 1, 1], [0, 0, 1, 1, 0, 1, 1, 0, 1, 1]]) )
alpha = 0.000_001
- assert abs(prediction_stats.jitter - 0.1) < alpha
- assert abs(mean - 0.47000000000000003) < alpha
- assert abs(std - 0.0565685424949238) < alpha
- assert abs(iqr - 0.03999999999999998) < alpha
- assert abs(aleatoric_uncertainty - 0.9345065014636438) < alpha
- assert abs(overall_uncertainty - 0.9560071897163649) < alpha
- assert abs(statistical_bias - 0.42000000000000004) < alpha
- assert abs(per_sample_accuracy - 0.85) < alpha
- assert abs(label_stability - 0.9) < alpha
+ assert abs(prediction_metrics[MEAN_PREDICTION] - 0.47000000000000003) < alpha
+ assert abs(prediction_metrics[STATISTICAL_BIAS] - 0.42000000000000004) < alpha
+ assert abs(prediction_metrics[JITTER] - 0.1) < alpha
+ assert abs(prediction_metrics[LABEL_STABILITY] - 0.9) < alpha
+ assert abs(prediction_metrics[STD] - 0.0565685424949238) < alpha
+ assert abs(prediction_metrics[IQR] - 0.03999999999999998) < alpha
+ assert abs(prediction_metrics[ALEATORIC_UNCERTAINTY] - 0.9345065014636438) < alpha
+ assert abs(prediction_metrics[OVERALL_UNCERTAINTY] - 0.9560071897163649) < alpha
-def test_count_prediction_stats_true2():
+def test_count_prediction_metrics_true2():
y_test = np.array([0, 0, 1, 1, 0, 1, 0, 1, 1, 1])
uq_results = np.array([[0.6, 0.7, 0.3, 0.4, 0.5, 0.3, 0.7, 0.6, 0.4, 0.4]])
try:
- y_preds, uq_labels, prediction_stats = count_prediction_stats(y_test, uq_results)
+ y_preds, prediction_stats = count_prediction_metrics(y_test, uq_results)
actual = True
except ZeroDivisionError:
actual = False
diff --git a/virny/custom_classes/metrics_composer.py b/virny/custom_classes/metrics_composer.py
index 1b72f1b0..f78b64ed 100644
--- a/virny/custom_classes/metrics_composer.py
+++ b/virny/custom_classes/metrics_composer.py
@@ -76,8 +76,12 @@ def compose_metrics(self):
dis_group = sensitive_attr + '_dis'
priv_group = sensitive_attr + '_priv'
+ # Compute disparity metrics for each metric in cfm
groups_metrics_dct[sensitive_attr] = dict()
for metric_name in metric_names:
+ # Skip a metric that does not have correspondent disparity metrics
+ if metric_name not in self.disparity_metric_functions.keys():
+ continue
disparity_metrics = self.disparity_metric_functions[metric_name]
for disparity_metric_name, disparity_metric_func in disparity_metrics:
groups_metrics_dct[sensitive_attr][disparity_metric_name] = (
From f01ac76d1fa593fe417c9303d69d0becafe2dad5 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Sat, 21 Oct 2023 02:07:10 +0300
Subject: [PATCH 031/148] Fixed tests for metrics
---
docs/examples/experiment_config.yaml | 2 +-
...ssifier_50_Estimators_20231020__225918.csv | 19 +++++++++++++++++++
...ression_50_Estimators_20231020__225918.csv | 19 +++++++++++++++++++
...ssifier_50_Estimators_20231020__225918.csv | 19 +++++++++++++++++++
...ssifier_50_Estimators_20231020__225918.csv | 19 +++++++++++++++++++
..._Sensitive_Attributes_20231020__225918.csv | 5 +++++
virny/custom_classes/metrics_composer.py | 8 ++++----
7 files changed, 86 insertions(+), 5 deletions(-)
create mode 100644 docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_DecisionTreeClassifier_50_Estimators_20231020__225918.csv
create mode 100644 docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20231020__225918.csv
create mode 100644 docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_RandomForestClassifier_50_Estimators_20231020__225918.csv
create mode 100644 docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20231020__225918.csv
create mode 100644 docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231020__225918.csv
diff --git a/docs/examples/experiment_config.yaml b/docs/examples/experiment_config.yaml
index 555d36db..44efa1b1 100644
--- a/docs/examples/experiment_config.yaml
+++ b/docs/examples/experiment_config.yaml
@@ -1,5 +1,5 @@
+
dataset_name: COMPAS_Without_Sensitive_Attributes
bootstrap_fraction: 0.8
n_estimators: 50 # Better to input the higher number of estimators than 100; this is only for this use case example
-computation_mode: error_analysis
sensitive_attributes_dct: {'sex': 1, 'race': 'African-American', 'sex&race': None}
diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_DecisionTreeClassifier_50_Estimators_20231020__225918.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_DecisionTreeClassifier_50_Estimators_20231020__225918.csv
new file mode 100644
index 00000000..e60e46ef
--- /dev/null
+++ b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_DecisionTreeClassifier_50_Estimators_20231020__225918.csv
@@ -0,0 +1,19 @@
+Metric,overall,sex_priv,sex_dis,race_priv,race_dis,sex&race_priv,sex&race_dis,Model_Name,Model_Params
+Statistical_Bias,0.41857336172765697,0.41544095906084866,0.41935553564800787,0.4141321622564169,0.42143731278854996,0.4134826288938934,0.42362567393625994,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
+IQR,0.0809157217235176,0.07855149605017232,0.08150607866680262,0.0835558343140641,0.07921321921185677,0.08187169522458478,0.0799669631167981,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
+Overall_Uncertainty,0.8932088655544336,0.899252491044528,0.8916997472367887,0.8852710730922949,0.898327628917869,0.891206327050453,0.8951962905602708,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
+Std,0.06895833645771993,0.07035364839135345,0.06860992128849308,0.06964657979043051,0.06851451599083176,0.06961900305621098,0.06830265602223631,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
+Aleatoric_Uncertainty,0.8698426596552785,0.8745972457143654,0.8686554198227732,0.8601037952604418,0.8761228619285847,0.8661276469720228,0.8735296345069627,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
+Mean_Prediction,0.5219352219525485,0.578035221741857,0.5079268196382951,0.5863255907514473,0.48041246076447364,0.5771212289323356,0.4671657131386466,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
+Label_Stability,0.8362878787878788,0.8138388625592415,0.8418934911242604,0.8329468599033817,0.838442367601246,0.8321673003802282,0.8403773584905659,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
+Jitter,0.12457173778602351,0.13906180481671365,0.12095350803043126,0.12282559400571841,0.12569775573780906,0.12488709552261976,0.12425876010781686,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
+TPR,0.6539278131634819,0.4666666666666667,0.6893939393939394,0.5170068027210885,0.7160493827160493,0.5425531914893617,0.7279151943462897,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
+TNR,0.7282051282051282,0.8014705882352942,0.7060133630289532,0.7827715355805244,0.6823899371069182,0.7840236686390533,0.6518218623481782,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
+PPV,0.6595289079229122,0.5645161290322581,0.674074074074074,0.5671641791044776,0.6966966966966966,0.5828571428571429,0.7054794520547946,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
+FNR,0.346072186836518,0.5333333333333333,0.3106060606060606,0.48299319727891155,0.2839506172839506,0.4574468085106383,0.27208480565371024,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
+FPR,0.2717948717948718,0.19852941176470587,0.29398663697104677,0.21722846441947566,0.31761006289308175,0.21597633136094674,0.3481781376518219,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
+Accuracy,0.6950757575757576,0.6824644549763034,0.6982248520710059,0.6884057971014492,0.6993769470404985,0.6977186311787072,0.6924528301886792,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
+F1,0.6567164179104478,0.5109489051094891,0.6816479400749064,0.5409252669039146,0.7062404870624048,0.5619834710743802,0.7165217391304348,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
+Selection-Rate,0.4422348484848485,0.2938388625592417,0.47928994082840237,0.32367149758454106,0.5186915887850467,0.33269961977186313,0.5509433962264151,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
+Positive-Rate,0.9915074309978769,0.8266666666666667,1.0227272727272727,0.9115646258503401,1.0277777777777777,0.9308510638297872,1.0318021201413428,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
+Sample_Size,1056.0,,,,,,,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20231020__225918.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20231020__225918.csv
new file mode 100644
index 00000000..deffd07d
--- /dev/null
+++ b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20231020__225918.csv
@@ -0,0 +1,19 @@
+Metric,overall,sex_priv,sex_dis,race_priv,race_dis,sex&race_priv,sex&race_dis,Model_Name,Model_Params
+Statistical_Bias,0.4337924538236714,0.4334044278876343,0.43388934550710784,0.4332653534138835,0.43413235969540376,0.4321642605515456,0.4354083588446866,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+IQR,0.029339925841114185,0.030179801866657946,0.02913020531875947,0.029591627125389396,0.029177613797983448,0.029793187368398956,0.028890085155544767,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+Overall_Uncertainty,0.9086195955884198,0.9172087513975933,0.9064748478064842,0.9136998763207738,0.9053435267049392,0.9161672806782127,0.9011288741596818,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+Std,0.02098879327073452,0.0211390182011289,0.020951281483381604,0.0208418614479099,0.021083543698537315,0.020991752212652995,0.02098585666045317,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+Aleatoric_Uncertainty,0.9062620824072268,0.9151648943470244,0.9040390133903071,0.9116550369785078,0.9027843827304198,0.9140803395738709,0.8985028309550482,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+Mean_Prediction,0.5205499814176662,0.5688705122602331,0.5084841447220666,0.5864075588940767,0.4780810763160556,0.5746925557113814,0.46681603032616764,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+Label_Stability,0.9392424242424243,0.9107109004739338,0.9463668639053254,0.9438647342995169,0.9362616822429906,0.9340684410646389,0.944377358490566,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+Jitter,0.04616419294990723,0.0661533997485251,0.04117280521676134,0.041646455683722695,0.049077500158942126,0.04895941646620646,0.04339006546014642,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+TPR,0.6263269639065817,0.48,0.6540404040404041,0.4421768707482993,0.7098765432098766,0.48404255319148937,0.7208480565371025,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+TNR,0.7316239316239316,0.8088235294117647,0.7082405345211581,0.8164794007490637,0.660377358490566,0.8106508875739645,0.6234817813765182,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+PPV,0.6526548672566371,0.5806451612903226,0.6641025641025641,0.5701754385964912,0.6804733727810651,0.5870967741935483,0.6868686868686869,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+FNR,0.37367303609341823,0.52,0.34595959595959597,0.5578231292517006,0.29012345679012347,0.5159574468085106,0.2791519434628975,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+FPR,0.26837606837606837,0.19117647058823528,0.29175946547884185,0.18352059925093633,0.33962264150943394,0.1893491124260355,0.3765182186234818,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+Accuracy,0.6846590909090909,0.6919431279620853,0.6828402366863905,0.6835748792270532,0.6853582554517134,0.6939163498098859,0.6754716981132075,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+F1,0.6392199349945829,0.5255474452554745,0.6590330788804071,0.49808429118773945,0.6948640483383686,0.5306122448979592,0.7034482758620689,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+Selection-Rate,0.42803030303030304,0.2938388625592417,0.46153846153846156,0.2753623188405797,0.5264797507788161,0.2946768060836502,0.560377358490566,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+Positive-Rate,0.9596602972399151,0.8266666666666667,0.9848484848484849,0.7755102040816326,1.0432098765432098,0.824468085106383,1.0494699646643109,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+Sample_Size,1056.0,,,,,,,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_RandomForestClassifier_50_Estimators_20231020__225918.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_RandomForestClassifier_50_Estimators_20231020__225918.csv
new file mode 100644
index 00000000..ecdb31df
--- /dev/null
+++ b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_RandomForestClassifier_50_Estimators_20231020__225918.csv
@@ -0,0 +1,19 @@
+Metric,overall,sex_priv,sex_dis,race_priv,race_dis,sex&race_priv,sex&race_dis,Model_Name,Model_Params
+Statistical_Bias,0.4045419853002584,0.3968153482379772,0.40647135857853217,0.39516480373937674,0.4105889528488644,0.39746748802251475,0.41156309014571724,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
+IQR,0.0909045004339339,0.10506143348256215,0.08736945561350722,0.09382085893269923,0.08902385803753385,0.09377805447614175,0.08805263359204463,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
+Overall_Uncertainty,0.8585954641369864,0.8776478578326691,0.8538380025159342,0.8493126327662205,0.86458158903963,0.8589413874089237,0.858252151606724,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
+Std,0.06813377974355897,0.07491127500458802,0.06644141110441444,0.07034178982046609,0.0667099227780768,0.06980083623796854,0.06647930480759777,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
+Aleatoric_Uncertainty,0.8341600028048252,0.8464502802805608,0.8310910696126592,0.8223464618313945,0.8417780806288131,0.8325086424925195,0.8357989000204338,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
+Mean_Prediction,0.5216518784554963,0.5761649548269147,0.5080397374917457,0.5945323244703573,0.47465420766086625,0.58373426466956,0.4600380385524821,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
+Label_Stability,0.8373484848484849,0.7948815165876778,0.8479526627218935,0.8305314009661836,0.8417445482866042,0.8317110266159696,0.8429433962264151,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
+Jitter,0.11274737167594309,0.1403772124963732,0.10584808597995415,0.11637188208616779,0.1104100705702843,0.1168945448901996,0.10863149788217191,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
+TPR,0.6751592356687898,0.6,0.6893939393939394,0.5714285714285714,0.7222222222222222,0.5851063829787234,0.734982332155477,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
+TNR,0.7350427350427351,0.7941176470588235,0.7171492204899778,0.8052434456928839,0.6761006289308176,0.7988165680473372,0.6477732793522267,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
+PPV,0.6723044397463002,0.6164383561643836,0.6825,0.6176470588235294,0.6943620178041543,0.6179775280898876,0.7050847457627119,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
+FNR,0.3248407643312102,0.4,0.3106060606060606,0.42857142857142855,0.2777777777777778,0.4148936170212766,0.26501766784452296,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
+FPR,0.26495726495726496,0.20588235294117646,0.2828507795100223,0.1947565543071161,0.3238993710691824,0.20118343195266272,0.3522267206477733,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
+Accuracy,0.7083333333333334,0.7251184834123223,0.7041420118343196,0.7222222222222222,0.6993769470404985,0.7224334600760456,0.6943396226415094,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
+F1,0.673728813559322,0.6081081081081081,0.6859296482412061,0.5936395759717314,0.708018154311649,0.6010928961748634,0.7197231833910035,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
+Selection-Rate,0.4479166666666667,0.3459715639810427,0.47337278106508873,0.3285024154589372,0.5249221183800623,0.33840304182509506,0.5566037735849056,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
+Positive-Rate,1.0042462845010616,0.9733333333333334,1.0101010101010102,0.9251700680272109,1.0401234567901234,0.9468085106382979,1.0424028268551238,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
+Sample_Size,1056.0,,,,,,,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20231020__225918.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20231020__225918.csv
new file mode 100644
index 00000000..1c14778c
--- /dev/null
+++ b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20231020__225918.csv
@@ -0,0 +1,19 @@
+Metric,overall,sex_priv,sex_dis,race_priv,race_dis,sex&race_priv,sex&race_dis,Model_Name,Model_Params
+Statistical_Bias,0.4125518393914469,0.409526539286731,0.4133072693584233,0.407824721529288,0.41560016773246533,0.4080967658656178,0.4169732897208547,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+IQR,0.06044034878582214,0.06001621880237525,0.060546255799440236,0.0592545154661948,0.06120504503866594,0.059346936133197956,0.06152550926748312,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+Overall_Uncertainty,0.8780392912187517,0.891988796508956,0.8745560419687717,0.8720906743628122,0.8818753151725819,0.8793201543546371,0.876768094974458,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+Std,0.04514831304550171,0.045087143778800964,0.0451635867357254,0.04397762566804886,0.045903243124485016,0.044100865721702576,0.046187859028577805,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+Aleatoric_Uncertainty,0.8697774410247803,0.8838504552841187,0.8662634491920471,0.8641999363899231,0.8733742833137512,0.8714115619659424,0.8681557774543762,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+Mean_Prediction,0.5249552726745605,0.5797544121742249,0.5112717151641846,0.5921647548675537,0.48161453008651733,0.5824686288833618,0.4678759276866913,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+Label_Stability,0.9060227272727273,0.8619905213270144,0.9170177514792901,0.8941062801932368,0.9137071651090342,0.892471482889734,0.9194716981132075,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+Jitter,0.0727697897340754,0.10082212979978747,0.06576500422654263,0.07954648526077096,0.06839977112340251,0.08051835182742317,0.06507970735464015,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+TPR,0.6624203821656051,0.5333333333333333,0.6868686868686869,0.5578231292517006,0.7098765432098766,0.5691489361702128,0.7243816254416962,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+TNR,0.7333333333333333,0.7867647058823529,0.7171492204899778,0.7865168539325843,0.6886792452830188,0.7840236686390533,0.6639676113360324,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+PPV,0.6666666666666666,0.5797101449275363,0.681704260651629,0.5899280575539568,0.6990881458966566,0.5944444444444444,0.7118055555555556,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+FNR,0.3375796178343949,0.4666666666666667,0.31313131313131315,0.4421768707482993,0.29012345679012347,0.4308510638297872,0.2756183745583039,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+FPR,0.26666666666666666,0.21323529411764705,0.2828507795100223,0.21348314606741572,0.3113207547169811,0.21597633136094674,0.3360323886639676,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+Accuracy,0.7017045454545454,0.6966824644549763,0.7029585798816568,0.7053140096618358,0.6993769470404985,0.7072243346007605,0.6962264150943396,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+F1,0.6645367412140575,0.5555555555555556,0.6842767295597484,0.5734265734265734,0.7044410413476263,0.5815217391304348,0.7180385288966725,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+Selection-Rate,0.4431818181818182,0.32701421800947866,0.47218934911242605,0.3357487922705314,0.5124610591900312,0.34220532319391633,0.5433962264150943,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+Positive-Rate,0.9936305732484076,0.92,1.0075757575757576,0.9455782312925171,1.0154320987654322,0.9574468085106383,1.017667844522968,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+Sample_Size,1056.0,,,,,,,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
diff --git a/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231020__225918.csv b/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231020__225918.csv
new file mode 100644
index 00000000..9deda582
--- /dev/null
+++ b/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231020__225918.csv
@@ -0,0 +1,5 @@
+Dataset_Name,Model_Name,F1_Score,Accuracy_Score,Model_Best_Params
+COMPAS_Without_Sensitive_Attributes,DecisionTreeClassifier,0.6429,0.6443,"{'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'min_samples_split': 0.1}"
+COMPAS_Without_Sensitive_Attributes,LogisticRegression,0.6461,0.6506,"{'C': 1, 'max_iter': 250, 'penalty': 'l2', 'solver': 'newton-cg'}"
+COMPAS_Without_Sensitive_Attributes,RandomForestClassifier,0.6481,0.6518,"{'max_depth': 10, 'max_features': 0.6, 'min_samples_leaf': 1, 'n_estimators': 100}"
+COMPAS_Without_Sensitive_Attributes,XGBClassifier,0.6549,0.6588,"{'lambda': 100, 'learning_rate': 0.1, 'max_depth': 5, 'n_estimators': 200}"
diff --git a/virny/custom_classes/metrics_composer.py b/virny/custom_classes/metrics_composer.py
index f78b64ed..cbd58c4c 100644
--- a/virny/custom_classes/metrics_composer.py
+++ b/virny/custom_classes/metrics_composer.py
@@ -38,8 +38,8 @@ def __init__(self, models_metrics_dct: dict, sensitive_attributes_dct: dict):
STD: [(STD_PARITY, self._difference_operation),
(STD_RATIO, self._ratio_operation)],
# Uncertainty disparity metrics
- OVERALL_UNCERTAINTY: [(OVERALL_UNCERTAINTY_PARITY, self._difference_operation,
- OVERALL_UNCERTAINTY_RATIO, self._ratio_operation)],
+ OVERALL_UNCERTAINTY: [(OVERALL_UNCERTAINTY_PARITY, self._difference_operation),
+ (OVERALL_UNCERTAINTY_RATIO, self._ratio_operation)],
ALEATORIC_UNCERTAINTY: [(ALEATORIC_UNCERTAINTY_PARITY, self._difference_operation),
(ALEATORIC_UNCERTAINTY_RATIO, self._ratio_operation)]
}
@@ -82,8 +82,8 @@ def compose_metrics(self):
# Skip a metric that does not have correspondent disparity metrics
if metric_name not in self.disparity_metric_functions.keys():
continue
- disparity_metrics = self.disparity_metric_functions[metric_name]
- for disparity_metric_name, disparity_metric_func in disparity_metrics:
+
+ for disparity_metric_name, disparity_metric_func in self.disparity_metric_functions[metric_name]:
groups_metrics_dct[sensitive_attr][disparity_metric_name] = (
disparity_metric_func(cfm, metric_name, dis_group, priv_group))
From 7a531ed437c1fba8daf06950838e84c299bd5577 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Sat, 21 Oct 2023 02:07:49 +0300
Subject: [PATCH 032/148] Fixed tests for metrics
---
...ssifier_50_Estimators_20231020__225918.csv | 19 -------------------
...ression_50_Estimators_20231020__225918.csv | 19 -------------------
...ssifier_50_Estimators_20231020__225918.csv | 19 -------------------
...ssifier_50_Estimators_20231020__225918.csv | 19 -------------------
4 files changed, 76 deletions(-)
delete mode 100644 docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_DecisionTreeClassifier_50_Estimators_20231020__225918.csv
delete mode 100644 docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20231020__225918.csv
delete mode 100644 docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_RandomForestClassifier_50_Estimators_20231020__225918.csv
delete mode 100644 docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20231020__225918.csv
diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_DecisionTreeClassifier_50_Estimators_20231020__225918.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_DecisionTreeClassifier_50_Estimators_20231020__225918.csv
deleted file mode 100644
index e60e46ef..00000000
--- a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_DecisionTreeClassifier_50_Estimators_20231020__225918.csv
+++ /dev/null
@@ -1,19 +0,0 @@
-Metric,overall,sex_priv,sex_dis,race_priv,race_dis,sex&race_priv,sex&race_dis,Model_Name,Model_Params
-Statistical_Bias,0.41857336172765697,0.41544095906084866,0.41935553564800787,0.4141321622564169,0.42143731278854996,0.4134826288938934,0.42362567393625994,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
-IQR,0.0809157217235176,0.07855149605017232,0.08150607866680262,0.0835558343140641,0.07921321921185677,0.08187169522458478,0.0799669631167981,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
-Overall_Uncertainty,0.8932088655544336,0.899252491044528,0.8916997472367887,0.8852710730922949,0.898327628917869,0.891206327050453,0.8951962905602708,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
-Std,0.06895833645771993,0.07035364839135345,0.06860992128849308,0.06964657979043051,0.06851451599083176,0.06961900305621098,0.06830265602223631,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
-Aleatoric_Uncertainty,0.8698426596552785,0.8745972457143654,0.8686554198227732,0.8601037952604418,0.8761228619285847,0.8661276469720228,0.8735296345069627,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
-Mean_Prediction,0.5219352219525485,0.578035221741857,0.5079268196382951,0.5863255907514473,0.48041246076447364,0.5771212289323356,0.4671657131386466,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
-Label_Stability,0.8362878787878788,0.8138388625592415,0.8418934911242604,0.8329468599033817,0.838442367601246,0.8321673003802282,0.8403773584905659,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
-Jitter,0.12457173778602351,0.13906180481671365,0.12095350803043126,0.12282559400571841,0.12569775573780906,0.12488709552261976,0.12425876010781686,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
-TPR,0.6539278131634819,0.4666666666666667,0.6893939393939394,0.5170068027210885,0.7160493827160493,0.5425531914893617,0.7279151943462897,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
-TNR,0.7282051282051282,0.8014705882352942,0.7060133630289532,0.7827715355805244,0.6823899371069182,0.7840236686390533,0.6518218623481782,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
-PPV,0.6595289079229122,0.5645161290322581,0.674074074074074,0.5671641791044776,0.6966966966966966,0.5828571428571429,0.7054794520547946,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
-FNR,0.346072186836518,0.5333333333333333,0.3106060606060606,0.48299319727891155,0.2839506172839506,0.4574468085106383,0.27208480565371024,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
-FPR,0.2717948717948718,0.19852941176470587,0.29398663697104677,0.21722846441947566,0.31761006289308175,0.21597633136094674,0.3481781376518219,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
-Accuracy,0.6950757575757576,0.6824644549763034,0.6982248520710059,0.6884057971014492,0.6993769470404985,0.6977186311787072,0.6924528301886792,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
-F1,0.6567164179104478,0.5109489051094891,0.6816479400749064,0.5409252669039146,0.7062404870624048,0.5619834710743802,0.7165217391304348,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
-Selection-Rate,0.4422348484848485,0.2938388625592417,0.47928994082840237,0.32367149758454106,0.5186915887850467,0.33269961977186313,0.5509433962264151,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
-Positive-Rate,0.9915074309978769,0.8266666666666667,1.0227272727272727,0.9115646258503401,1.0277777777777777,0.9308510638297872,1.0318021201413428,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
-Sample_Size,1056.0,,,,,,,DecisionTreeClassifier,"{'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 0.1, 'min_weight_fraction_leaf': 0.0, 'random_state': 42, 'splitter': 'best'}"
diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20231020__225918.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20231020__225918.csv
deleted file mode 100644
index deffd07d..00000000
--- a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20231020__225918.csv
+++ /dev/null
@@ -1,19 +0,0 @@
-Metric,overall,sex_priv,sex_dis,race_priv,race_dis,sex&race_priv,sex&race_dis,Model_Name,Model_Params
-Statistical_Bias,0.4337924538236714,0.4334044278876343,0.43388934550710784,0.4332653534138835,0.43413235969540376,0.4321642605515456,0.4354083588446866,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
-IQR,0.029339925841114185,0.030179801866657946,0.02913020531875947,0.029591627125389396,0.029177613797983448,0.029793187368398956,0.028890085155544767,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
-Overall_Uncertainty,0.9086195955884198,0.9172087513975933,0.9064748478064842,0.9136998763207738,0.9053435267049392,0.9161672806782127,0.9011288741596818,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
-Std,0.02098879327073452,0.0211390182011289,0.020951281483381604,0.0208418614479099,0.021083543698537315,0.020991752212652995,0.02098585666045317,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
-Aleatoric_Uncertainty,0.9062620824072268,0.9151648943470244,0.9040390133903071,0.9116550369785078,0.9027843827304198,0.9140803395738709,0.8985028309550482,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
-Mean_Prediction,0.5205499814176662,0.5688705122602331,0.5084841447220666,0.5864075588940767,0.4780810763160556,0.5746925557113814,0.46681603032616764,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
-Label_Stability,0.9392424242424243,0.9107109004739338,0.9463668639053254,0.9438647342995169,0.9362616822429906,0.9340684410646389,0.944377358490566,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
-Jitter,0.04616419294990723,0.0661533997485251,0.04117280521676134,0.041646455683722695,0.049077500158942126,0.04895941646620646,0.04339006546014642,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
-TPR,0.6263269639065817,0.48,0.6540404040404041,0.4421768707482993,0.7098765432098766,0.48404255319148937,0.7208480565371025,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
-TNR,0.7316239316239316,0.8088235294117647,0.7082405345211581,0.8164794007490637,0.660377358490566,0.8106508875739645,0.6234817813765182,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
-PPV,0.6526548672566371,0.5806451612903226,0.6641025641025641,0.5701754385964912,0.6804733727810651,0.5870967741935483,0.6868686868686869,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
-FNR,0.37367303609341823,0.52,0.34595959595959597,0.5578231292517006,0.29012345679012347,0.5159574468085106,0.2791519434628975,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
-FPR,0.26837606837606837,0.19117647058823528,0.29175946547884185,0.18352059925093633,0.33962264150943394,0.1893491124260355,0.3765182186234818,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
-Accuracy,0.6846590909090909,0.6919431279620853,0.6828402366863905,0.6835748792270532,0.6853582554517134,0.6939163498098859,0.6754716981132075,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
-F1,0.6392199349945829,0.5255474452554745,0.6590330788804071,0.49808429118773945,0.6948640483383686,0.5306122448979592,0.7034482758620689,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
-Selection-Rate,0.42803030303030304,0.2938388625592417,0.46153846153846156,0.2753623188405797,0.5264797507788161,0.2946768060836502,0.560377358490566,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
-Positive-Rate,0.9596602972399151,0.8266666666666667,0.9848484848484849,0.7755102040816326,1.0432098765432098,0.824468085106383,1.0494699646643109,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
-Sample_Size,1056.0,,,,,,,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_RandomForestClassifier_50_Estimators_20231020__225918.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_RandomForestClassifier_50_Estimators_20231020__225918.csv
deleted file mode 100644
index ecdb31df..00000000
--- a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_RandomForestClassifier_50_Estimators_20231020__225918.csv
+++ /dev/null
@@ -1,19 +0,0 @@
-Metric,overall,sex_priv,sex_dis,race_priv,race_dis,sex&race_priv,sex&race_dis,Model_Name,Model_Params
-Statistical_Bias,0.4045419853002584,0.3968153482379772,0.40647135857853217,0.39516480373937674,0.4105889528488644,0.39746748802251475,0.41156309014571724,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
-IQR,0.0909045004339339,0.10506143348256215,0.08736945561350722,0.09382085893269923,0.08902385803753385,0.09377805447614175,0.08805263359204463,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
-Overall_Uncertainty,0.8585954641369864,0.8776478578326691,0.8538380025159342,0.8493126327662205,0.86458158903963,0.8589413874089237,0.858252151606724,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
-Std,0.06813377974355897,0.07491127500458802,0.06644141110441444,0.07034178982046609,0.0667099227780768,0.06980083623796854,0.06647930480759777,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
-Aleatoric_Uncertainty,0.8341600028048252,0.8464502802805608,0.8310910696126592,0.8223464618313945,0.8417780806288131,0.8325086424925195,0.8357989000204338,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
-Mean_Prediction,0.5216518784554963,0.5761649548269147,0.5080397374917457,0.5945323244703573,0.47465420766086625,0.58373426466956,0.4600380385524821,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
-Label_Stability,0.8373484848484849,0.7948815165876778,0.8479526627218935,0.8305314009661836,0.8417445482866042,0.8317110266159696,0.8429433962264151,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
-Jitter,0.11274737167594309,0.1403772124963732,0.10584808597995415,0.11637188208616779,0.1104100705702843,0.1168945448901996,0.10863149788217191,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
-TPR,0.6751592356687898,0.6,0.6893939393939394,0.5714285714285714,0.7222222222222222,0.5851063829787234,0.734982332155477,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
-TNR,0.7350427350427351,0.7941176470588235,0.7171492204899778,0.8052434456928839,0.6761006289308176,0.7988165680473372,0.6477732793522267,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
-PPV,0.6723044397463002,0.6164383561643836,0.6825,0.6176470588235294,0.6943620178041543,0.6179775280898876,0.7050847457627119,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
-FNR,0.3248407643312102,0.4,0.3106060606060606,0.42857142857142855,0.2777777777777778,0.4148936170212766,0.26501766784452296,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
-FPR,0.26495726495726496,0.20588235294117646,0.2828507795100223,0.1947565543071161,0.3238993710691824,0.20118343195266272,0.3522267206477733,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
-Accuracy,0.7083333333333334,0.7251184834123223,0.7041420118343196,0.7222222222222222,0.6993769470404985,0.7224334600760456,0.6943396226415094,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
-F1,0.673728813559322,0.6081081081081081,0.6859296482412061,0.5936395759717314,0.708018154311649,0.6010928961748634,0.7197231833910035,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
-Selection-Rate,0.4479166666666667,0.3459715639810427,0.47337278106508873,0.3285024154589372,0.5249221183800623,0.33840304182509506,0.5566037735849056,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
-Positive-Rate,1.0042462845010616,0.9733333333333334,1.0101010101010102,0.9251700680272109,1.0401234567901234,0.9468085106382979,1.0424028268551238,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
-Sample_Size,1056.0,,,,,,,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 42, 'verbose': 0, 'warm_start': False}"
diff --git a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20231020__225918.csv b/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20231020__225918.csv
deleted file mode 100644
index 1c14778c..00000000
--- a/docs/examples/results/COMPAS_Without_Sensitive_Attributes_Metrics_20231020__225915/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20231020__225918.csv
+++ /dev/null
@@ -1,19 +0,0 @@
-Metric,overall,sex_priv,sex_dis,race_priv,race_dis,sex&race_priv,sex&race_dis,Model_Name,Model_Params
-Statistical_Bias,0.4125518393914469,0.409526539286731,0.4133072693584233,0.407824721529288,0.41560016773246533,0.4080967658656178,0.4169732897208547,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
-IQR,0.06044034878582214,0.06001621880237525,0.060546255799440236,0.0592545154661948,0.06120504503866594,0.059346936133197956,0.06152550926748312,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
-Overall_Uncertainty,0.8780392912187517,0.891988796508956,0.8745560419687717,0.8720906743628122,0.8818753151725819,0.8793201543546371,0.876768094974458,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
-Std,0.04514831304550171,0.045087143778800964,0.0451635867357254,0.04397762566804886,0.045903243124485016,0.044100865721702576,0.046187859028577805,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
-Aleatoric_Uncertainty,0.8697774410247803,0.8838504552841187,0.8662634491920471,0.8641999363899231,0.8733742833137512,0.8714115619659424,0.8681557774543762,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
-Mean_Prediction,0.5249552726745605,0.5797544121742249,0.5112717151641846,0.5921647548675537,0.48161453008651733,0.5824686288833618,0.4678759276866913,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
-Label_Stability,0.9060227272727273,0.8619905213270144,0.9170177514792901,0.8941062801932368,0.9137071651090342,0.892471482889734,0.9194716981132075,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
-Jitter,0.0727697897340754,0.10082212979978747,0.06576500422654263,0.07954648526077096,0.06839977112340251,0.08051835182742317,0.06507970735464015,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
-TPR,0.6624203821656051,0.5333333333333333,0.6868686868686869,0.5578231292517006,0.7098765432098766,0.5691489361702128,0.7243816254416962,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
-TNR,0.7333333333333333,0.7867647058823529,0.7171492204899778,0.7865168539325843,0.6886792452830188,0.7840236686390533,0.6639676113360324,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
-PPV,0.6666666666666666,0.5797101449275363,0.681704260651629,0.5899280575539568,0.6990881458966566,0.5944444444444444,0.7118055555555556,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
-FNR,0.3375796178343949,0.4666666666666667,0.31313131313131315,0.4421768707482993,0.29012345679012347,0.4308510638297872,0.2756183745583039,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
-FPR,0.26666666666666666,0.21323529411764705,0.2828507795100223,0.21348314606741572,0.3113207547169811,0.21597633136094674,0.3360323886639676,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
-Accuracy,0.7017045454545454,0.6966824644549763,0.7029585798816568,0.7053140096618358,0.6993769470404985,0.7072243346007605,0.6962264150943396,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
-F1,0.6645367412140575,0.5555555555555556,0.6842767295597484,0.5734265734265734,0.7044410413476263,0.5815217391304348,0.7180385288966725,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
-Selection-Rate,0.4431818181818182,0.32701421800947866,0.47218934911242605,0.3357487922705314,0.5124610591900312,0.34220532319391633,0.5433962264150943,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
-Positive-Rate,0.9936305732484076,0.92,1.0075757575757576,0.9455782312925171,1.0154320987654322,0.9574468085106383,1.017667844522968,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
-Sample_Size,1056.0,,,,,,,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
From 6d44b1e8e8bc0c93283d34be9b555286859ef417 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Sat, 21 Oct 2023 13:22:50 +0300
Subject: [PATCH 033/148] Aligned API based on with_predict_proba
---
virny/analyzers/abstract_subgroup_analyzer.py | 32 +++++++++++--------
virny/analyzers/subgroup_variance_analyzer.py | 3 +-
.../analyzers/subgroup_variance_calculator.py | 19 +++++------
.../metrics_computation_interfaces.py | 3 +-
virny/utils/stability_utils.py | 5 ++-
5 files changed, 36 insertions(+), 26 deletions(-)
diff --git a/virny/analyzers/abstract_subgroup_analyzer.py b/virny/analyzers/abstract_subgroup_analyzer.py
index 9f28f656..7e114285 100644
--- a/virny/analyzers/abstract_subgroup_analyzer.py
+++ b/virny/analyzers/abstract_subgroup_analyzer.py
@@ -5,7 +5,8 @@
from datetime import datetime, timezone
from abc import ABCMeta, abstractmethod
-from virny.configs.constants import ComputationMode
+from virny.configs.constants import (ComputationMode, TPR, TNR, PPV, FPR, FNR, ACCURACY, F1,
+ SELECTION_RATE, POSITIVE_RATE)
class AbstractSubgroupAnalyzer(metaclass=ABCMeta):
@@ -48,7 +49,7 @@ def _partition_and_compute_metrics(self, y_pred_all, results: dict):
return results
- def _partition_and_compute_metrics_for_error_analysis(self, y_preds, results: dict):
+ def _partition_and_compute_metrics_for_error_analysis(self, y_preds, models_predictions: dict, results: dict):
"""
Partition predictions on correct and incorrect and compute subgroup metrics for each of the partitions.
Used for the 'error_analysis' mode.
@@ -76,15 +77,15 @@ def _partition_and_compute_metrics_for_error_analysis(self, y_preds, results: di
if partition_indexes.shape[0] == 0:
print(Fore.YELLOW + f'WARNING: "{group_partition_name}" group is empty. Error metrics are set to None.' + Fore.RESET, flush=True)
metrics_dct = {
- 'TPR': None,
- 'TNR': None,
- 'PPV': None,
- 'FNR': None,
- 'FPR': None,
- 'Accuracy': None,
- 'F1': None,
- 'Selection-Rate': None,
- 'Positive-Rate': None,
+ TPR: None,
+ TNR: None,
+ PPV: None,
+ FNR: None,
+ FPR: None,
+ ACCURACY: None,
+ F1: None,
+ SELECTION_RATE: None,
+ POSITIVE_RATE: None,
}
else:
metrics_dct = self._compute_metrics(self.y_test[partition_indexes], y_preds[partition_indexes])
@@ -93,7 +94,7 @@ def _partition_and_compute_metrics_for_error_analysis(self, y_preds, results: di
return results
- def compute_subgroup_metrics(self, y_preds, save_results: bool,
+ def compute_subgroup_metrics(self, y_preds, models_predictions: dict, save_results: bool,
result_filename: str = None, save_dir_path: str = None):
"""
Compute metrics for each subgroup in self.test_protected_groups using _compute_metrics method.
@@ -103,7 +104,10 @@ def compute_subgroup_metrics(self, y_preds, save_results: bool,
Parameters
----------
y_preds
- Models predictions
+ Averaged predictions of the bootstrap
+ models_predictions
+ A dictionary of models predictions. Is not used in this function,
+ but needed for function argument consistency.
save_results
If to save results in a file
result_filename
@@ -122,7 +126,7 @@ def compute_subgroup_metrics(self, y_preds, save_results: bool,
# Compute metrics for subgroups
if self.computation_mode == ComputationMode.ERROR_ANALYSIS.value:
- results = self._partition_and_compute_metrics_for_error_analysis(y_pred_all, results)
+ results = self._partition_and_compute_metrics_for_error_analysis(y_pred_all, models_predictions, results)
else:
results = self._partition_and_compute_metrics(y_pred_all, results)
diff --git a/virny/analyzers/subgroup_variance_analyzer.py b/virny/analyzers/subgroup_variance_analyzer.py
index 9d7b9269..5094172c 100644
--- a/virny/analyzers/subgroup_variance_analyzer.py
+++ b/virny/analyzers/subgroup_variance_analyzer.py
@@ -118,7 +118,8 @@ def compute_metrics(self, save_results: bool, result_filename: str = None,
# Count and display fairness metrics
self.__subgroup_variance_calculator.set_overall_variance_metrics(self.overall_variance_metrics_dct)
self.subgroup_variance_metrics_dct = self.__subgroup_variance_calculator.compute_subgroup_metrics(
- self.__overall_variance_analyzer.models_predictions, save_results, result_filename, save_dir_path
+ y_preds, self.__overall_variance_analyzer.models_predictions,
+ save_results, result_filename, save_dir_path
)
return y_preds, pd.DataFrame(self.subgroup_variance_metrics_dct)
diff --git a/virny/analyzers/subgroup_variance_calculator.py b/virny/analyzers/subgroup_variance_calculator.py
index 59a831bd..8b43b6f8 100644
--- a/virny/analyzers/subgroup_variance_calculator.py
+++ b/virny/analyzers/subgroup_variance_calculator.py
@@ -1,7 +1,7 @@
import pandas as pd
from colorama import Fore
-from virny.metrics import METRIC_TO_FUNCTION
+from virny.metrics import METRIC_TO_FUNCTION, METRICS_FOR_LABELS
from virny.configs.constants import ComputationMode
from virny.utils.stability_utils import count_prediction_metrics, combine_bootstrap_predictions
from virny.analyzers.abstract_subgroup_analyzer import AbstractSubgroupAnalyzer
@@ -28,8 +28,9 @@ class SubgroupVarianceCalculator(AbstractSubgroupAnalyzer):
"""
def __init__(self, X_test: pd.DataFrame, y_test: pd.DataFrame, sensitive_attributes_dct: dict,
- test_protected_groups=None, computation_mode: str = None):
+ test_protected_groups=None, computation_mode: str = None, with_predict_proba: bool = True):
super().__init__(X_test, y_test, sensitive_attributes_dct, test_protected_groups, computation_mode)
+ self.with_predict_proba = with_predict_proba
self.overall_variance_metrics = None
self.subgroup_variance_metrics_dict = None
@@ -48,7 +49,7 @@ def _partition_and_compute_metrics(self, models_predictions, results: dict):
return results
- def _partition_and_compute_metrics_for_error_analysis(self, models_predictions, results: dict):
+ def _partition_and_compute_metrics_for_error_analysis(self, y_preds, models_predictions: dict, results: dict):
"""
Partition predictions on correct and incorrect and compute subgroup metrics for each of the partitions.
Used for the 'error_analysis' mode.
@@ -56,8 +57,6 @@ def _partition_and_compute_metrics_for_error_analysis(self, models_predictions,
:param models_predictions: a list of predictions
:param results: a dict to add subgroup metrics for each partition
"""
- # Create a 1D pandas series of predictions for the test set based on bootstrap predictions
- y_preds = combine_bootstrap_predictions(models_predictions, self.y_test.index)
# Partition and compute subgroup metrics
for group_name in self.test_protected_groups.keys():
@@ -84,7 +83,8 @@ def _partition_and_compute_metrics_for_error_analysis(self, models_predictions,
if partition_indexes.shape[0] == 0:
print(Fore.YELLOW + f'WARNING: "{group_partition_name}" group is empty. Stability metrics are set to None.' + Fore.RESET, flush=True)
metrics_dct = dict()
- for metric in METRIC_TO_FUNCTION.keys():
+ metric_names = list(METRIC_TO_FUNCTION.keys()) if self.with_predict_proba else METRICS_FOR_LABELS
+ for metric in metric_names:
metrics_dct[metric] = None
else:
metrics_dct = self._compute_metrics(self.y_test[partition_indexes].reset_index(drop=True),
@@ -94,10 +94,11 @@ def _partition_and_compute_metrics_for_error_analysis(self, models_predictions,
return results
def _compute_metrics(self, y_test: pd.DataFrame, group_models_predictions):
- _, prediction_metrics = count_prediction_metrics(y_test, group_models_predictions)
+ _, prediction_metrics = count_prediction_metrics(y_test, group_models_predictions,
+ with_predict_proba=self.with_predict_proba)
return prediction_metrics
- def compute_subgroup_metrics(self, models_predictions: dict, save_results: bool,
+ def compute_subgroup_metrics(self, y_preds, models_predictions: dict, save_results: bool,
result_filename: str = None, save_dir_path: str = None):
"""
Compute variance metrics for subgroups.
@@ -127,7 +128,7 @@ def compute_subgroup_metrics(self, models_predictions: dict, save_results: bool,
# Compute stability metrics for subgroups
if self.computation_mode == ComputationMode.ERROR_ANALYSIS.value:
- results = self._partition_and_compute_metrics_for_error_analysis(models_predictions, results)
+ results = self._partition_and_compute_metrics_for_error_analysis(y_preds, models_predictions, results)
else:
results = self._partition_and_compute_metrics(models_predictions, results)
diff --git a/virny/user_interfaces/metrics_computation_interfaces.py b/virny/user_interfaces/metrics_computation_interfaces.py
index cf3c3e48..929a9882 100644
--- a/virny/user_interfaces/metrics_computation_interfaces.py
+++ b/virny/user_interfaces/metrics_computation_interfaces.py
@@ -123,7 +123,8 @@ def compute_model_metrics(base_model, n_estimators: int, dataset: BaseFlowDatase
sensitive_attributes_dct=sensitive_attributes_dct,
test_protected_groups=test_protected_groups,
computation_mode=computation_mode)
- dtc_res = error_analyzer.compute_subgroup_metrics(y_preds,
+ dtc_res = error_analyzer.compute_subgroup_metrics(y_preds=y_preds,
+ models_predictions=dict(),
save_results=False,
result_filename=None,
save_dir_path=None)
diff --git a/virny/utils/stability_utils.py b/virny/utils/stability_utils.py
index 45986087..1e4780a3 100644
--- a/virny/utils/stability_utils.py
+++ b/virny/utils/stability_utils.py
@@ -66,7 +66,10 @@ def count_prediction_metrics(y_true, uq_results, with_predict_proba: bool = True
for metric in METRICS_FOR_LABELS:
metrics_dct[metric] = METRIC_TO_FUNCTION[metric](y_true, uq_labels)
- y_preds = np.array([int(x<0.5) for x in results.mean().values])
+ if with_predict_proba:
+ y_preds = np.array([int(x<0.5) for x in results.mean().values])
+ else:
+ y_preds = np.array([int(x>0.5) for x in results.mean().values])
return y_preds, metrics_dct
From a61cfa00bcd4e14e4c78205d86b2257d4b712164 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Sat, 21 Oct 2023 13:27:01 +0300
Subject: [PATCH 034/148] Removed test files
---
..._COMPAS_Without_Sensitive_Attributes_20231020__225918.csv | 5 -----
1 file changed, 5 deletions(-)
delete mode 100644 docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231020__225918.csv
diff --git a/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231020__225918.csv b/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231020__225918.csv
deleted file mode 100644
index 9deda582..00000000
--- a/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231020__225918.csv
+++ /dev/null
@@ -1,5 +0,0 @@
-Dataset_Name,Model_Name,F1_Score,Accuracy_Score,Model_Best_Params
-COMPAS_Without_Sensitive_Attributes,DecisionTreeClassifier,0.6429,0.6443,"{'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'min_samples_split': 0.1}"
-COMPAS_Without_Sensitive_Attributes,LogisticRegression,0.6461,0.6506,"{'C': 1, 'max_iter': 250, 'penalty': 'l2', 'solver': 'newton-cg'}"
-COMPAS_Without_Sensitive_Attributes,RandomForestClassifier,0.6481,0.6518,"{'max_depth': 10, 'max_features': 0.6, 'min_samples_leaf': 1, 'n_estimators': 100}"
-COMPAS_Without_Sensitive_Attributes,XGBClassifier,0.6549,0.6588,"{'lambda': 100, 'learning_rate': 0.1, 'max_depth': 5, 'n_estimators': 200}"
From 79512a6c03b091ad39cbb769414cdd7204bacd6f Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Sat, 21 Oct 2023 21:51:48 +0300
Subject: [PATCH 035/148] Checked error_analysis mode
---
virny/analyzers/abstract_subgroup_analyzer.py | 10 ++++------
virny/analyzers/subgroup_variance_analyzer.py | 1 +
2 files changed, 5 insertions(+), 6 deletions(-)
diff --git a/virny/analyzers/abstract_subgroup_analyzer.py b/virny/analyzers/abstract_subgroup_analyzer.py
index 7e114285..0d813190 100644
--- a/virny/analyzers/abstract_subgroup_analyzer.py
+++ b/virny/analyzers/abstract_subgroup_analyzer.py
@@ -104,7 +104,7 @@ def compute_subgroup_metrics(self, y_preds, models_predictions: dict, save_resul
Parameters
----------
y_preds
- Averaged predictions of the bootstrap
+ Averaged predictions of the bootstrap with y_true indexes
models_predictions
A dictionary of models predictions. Is not used in this function,
but needed for function argument consistency.
@@ -116,19 +116,17 @@ def compute_subgroup_metrics(self, y_preds, models_predictions: dict, save_resul
[Optional] Location where to save the results file
"""
- y_pred_all = pd.Series(y_preds, index=self.y_test.index)
-
# Compute overall metrics
results = dict()
- metrics_dct = self._compute_metrics(self.y_test, y_pred_all)
+ metrics_dct = self._compute_metrics(self.y_test, y_preds)
metrics_dct['Sample_Size'] = self.y_test.shape[0]
results['overall'] = metrics_dct
# Compute metrics for subgroups
if self.computation_mode == ComputationMode.ERROR_ANALYSIS.value:
- results = self._partition_and_compute_metrics_for_error_analysis(y_pred_all, models_predictions, results)
+ results = self._partition_and_compute_metrics_for_error_analysis(y_preds, models_predictions, results)
else:
- results = self._partition_and_compute_metrics(y_pred_all, results)
+ results = self._partition_and_compute_metrics(y_preds, results)
self.subgroup_metrics_dict = results
if save_results:
diff --git a/virny/analyzers/subgroup_variance_analyzer.py b/virny/analyzers/subgroup_variance_analyzer.py
index 5094172c..19139089 100644
--- a/virny/analyzers/subgroup_variance_analyzer.py
+++ b/virny/analyzers/subgroup_variance_analyzer.py
@@ -113,6 +113,7 @@ def compute_metrics(self, save_results: bool, result_filename: str = None,
"""
y_preds, y_test_true = self.__overall_variance_analyzer.compute_metrics(save_results=False, with_fit=with_fit)
+ y_preds = pd.Series(y_preds, index=y_test_true.index)
self.overall_variance_metrics_dct = self.__overall_variance_analyzer.prediction_metrics
# Count and display fairness metrics
From 3427782aca072b7dd6c3db07f67ccec64730ced6 Mon Sep 17 00:00:00 2001
From: proc1v
Date: Sat, 21 Oct 2023 22:33:27 +0300
Subject: [PATCH 036/148] Added functions for postprocessing
---
...verall_variance_analyzer_postprocessing.py | 79 +++++++++++++++++++
virny/analyzers/subgroup_variance_analyzer.py | 48 +++++++----
virny/configs/constants.py | 1 +
.../postprocessing_intervention_utils.py | 33 ++++++++
4 files changed, 147 insertions(+), 14 deletions(-)
create mode 100644 virny/analyzers/batch_overall_variance_analyzer_postprocessing.py
create mode 100644 virny/utils/postprocessing_intervention_utils.py
diff --git a/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py b/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py
new file mode 100644
index 00000000..40019417
--- /dev/null
+++ b/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py
@@ -0,0 +1,79 @@
+import numpy as np
+import pandas as pd
+
+from tqdm.notebook import tqdm
+
+from virny.analyzers.batch_overall_variance_analyzer import BatchOverallVarianceAnalyzer
+from virny.utils.postprocessing_intervention_utils import contruct_binary_label_dataset, predict_on_binary_label_dataset
+from virny.utils.stability_utils import generate_bootstrap
+
+
+class BatchOverallVarianceAnalyzerPostProcessing(BatchOverallVarianceAnalyzer):
+ def __init__(self, postprocessor, sensitive_attribute: str,
+ base_model, base_model_name: str, bootstrap_fraction: float,
+ X_train: pd.DataFrame, y_train: pd.DataFrame, X_test: pd.DataFrame, y_test: pd.DataFrame,
+ target_column: str, dataset_name: str, n_estimators: int, verbose: int = 0):
+ super().__init__(base_model=base_model,
+ base_model_name=base_model_name,
+ bootstrap_fraction=bootstrap_fraction,
+ X_train=X_train,
+ y_train=y_train,
+ X_test=X_test,
+ y_test=y_test,
+ target_column=target_column,
+ dataset_name=dataset_name,
+ n_estimators=n_estimators,
+ verbose=verbose)
+
+ self.postprocessor = postprocessor
+ self.sensitive_attribute = sensitive_attribute
+ self.test_binary_label_dataset = contruct_binary_label_dataset(X_test, y_test, target_column, sensitive_attribute)
+
+ def UQ_by_boostrap(self, boostrap_size: int, with_replacement: bool, with_fit: bool = True) -> dict:
+ """
+ Quantifying uncertainty of the base model by constructing an ensemble from bootstrapped samples
+ and applying postprocessing intervention.
+
+ Return a dictionary where keys are models indexes, and values are lists of
+ correspondent model predictions for X_test set.
+
+ Parameters
+ ----------
+ boostrap_size
+ Number of records in bootstrap splits
+ with_replacement
+ Enable replacement or not
+ with_fit
+ Whether to fit estimators in bootstrap
+
+ """
+ models_predictions = {idx: [] for idx in range(self.n_estimators)}
+ if self._verbose >= 1:
+ print('\n', flush=True)
+ self.__logger.info('Start classifiers testing by bootstrap')
+ # Remove a progress bar for UQ without estimators fitting
+ cycle_range = range(self.n_estimators) if with_fit is False else \
+ tqdm(range(self.n_estimators),
+ desc="Classifiers testing by bootstrap",
+ colour="blue",
+ mininterval=10)
+ # Train and test each estimator in models_predictions
+ for idx in cycle_range:
+ classifier = self.models_lst[idx]
+ if with_fit:
+ X_sample, y_sample = generate_bootstrap(self.X_train, self.y_train, boostrap_size, with_replacement)
+ classifier = self._fit_model(classifier, X_sample, y_sample)
+
+ train_binary_label_dataset_sample = contruct_binary_label_dataset(X_sample, y_sample, self.target_column, self.sensitive_attribute)
+ train_binary_label_dataset_sample_pred = predict_on_binary_label_dataset(classifier, train_binary_label_dataset_sample)
+ test_binary_label_dataset_pred = predict_on_binary_label_dataset(classifier, self.test_binary_label_dataset)
+ postprocessor_fitted = self.postprocessor.fit(train_binary_label_dataset_sample, train_binary_label_dataset_sample_pred)
+ models_predictions[idx] = postprocessor_fitted.predict(test_binary_label_dataset_pred).labels.ravel()
+ self.models_lst[idx] = classifier
+
+ if self._verbose >= 1:
+ print('\n', flush=True)
+ self.__logger.info('Successfully tested classifiers by bootstrap')
+
+ return models_predictions
+
\ No newline at end of file
diff --git a/virny/analyzers/subgroup_variance_analyzer.py b/virny/analyzers/subgroup_variance_analyzer.py
index 5094172c..935b66c0 100644
--- a/virny/analyzers/subgroup_variance_analyzer.py
+++ b/virny/analyzers/subgroup_variance_analyzer.py
@@ -1,9 +1,10 @@
import pandas as pd
-from virny.configs.constants import ModelSetting
+from virny.configs.constants import ModelSetting, ComputationMode
from virny.custom_classes.base_dataset import BaseFlowDataset
from virny.analyzers.subgroup_variance_calculator import SubgroupVarianceCalculator
from virny.analyzers.batch_overall_variance_analyzer import BatchOverallVarianceAnalyzer
+from virny.analyzers.batch_overall_variance_analyzer_postprocessing import BatchOverallVarianceAnalyzerPostProcessing
from virny.analyzers.incremental_overall_variance_analyzer import IncrementalOverallVarianceAnalyzer
@@ -42,19 +43,35 @@ class SubgroupVarianceAnalyzer:
"""
def __init__(self, model_setting: ModelSetting, n_estimators: int, base_model, base_model_name: str,
bootstrap_fraction: float, dataset: BaseFlowDataset, dataset_name: str,
- sensitive_attributes_dct: dict, test_protected_groups: dict, computation_mode: str = None, verbose: int = 0):
+ sensitive_attributes_dct: dict, test_protected_groups: dict, postprocessor=None,
+ postprocessing_sensitive_attribute : str = None, computation_mode: str = None, verbose: int = 0):
if model_setting == ModelSetting.BATCH:
- overall_variance_analyzer = BatchOverallVarianceAnalyzer(base_model=base_model,
- base_model_name=base_model_name,
- bootstrap_fraction=bootstrap_fraction,
- X_train=dataset.X_train_val,
- y_train=dataset.y_train_val,
- X_test=dataset.X_test,
- y_test=dataset.y_test,
- dataset_name=dataset_name,
- target_column=dataset.target,
- n_estimators=n_estimators,
- verbose=verbose)
+ if computation_mode == ComputationMode.POSTPROCESSING_INTERVENTION.value:
+ overall_variance_analyzer = BatchOverallVarianceAnalyzerPostProcessing(postprocessor=postprocessor,
+ sensitive_attribute=postprocessing_sensitive_attribute,
+ base_model=base_model,
+ base_model_name=base_model_name,
+ bootstrap_fraction=bootstrap_fraction,
+ X_train=dataset.X_train_val,
+ y_train=dataset.y_train_val,
+ X_test=dataset.X_test,
+ y_test=dataset.y_test,
+ dataset_name=dataset_name,
+ target_column=dataset.target,
+ n_estimators=n_estimators,
+ verbose=verbose)
+ else:
+ overall_variance_analyzer = BatchOverallVarianceAnalyzer(base_model=base_model,
+ base_model_name=base_model_name,
+ bootstrap_fraction=bootstrap_fraction,
+ X_train=dataset.X_train_val,
+ y_train=dataset.y_train_val,
+ X_test=dataset.X_test,
+ y_test=dataset.y_test,
+ dataset_name=dataset_name,
+ target_column=dataset.target,
+ n_estimators=n_estimators,
+ verbose=verbose)
elif model_setting == ModelSetting.INCREMENTAL:
overall_variance_analyzer = IncrementalOverallVarianceAnalyzer(base_model=base_model,
base_model_name=base_model_name,
@@ -75,11 +92,14 @@ def __init__(self, model_setting: ModelSetting, n_estimators: int, base_model, b
self.base_model_name = overall_variance_analyzer.base_model_name
self.__overall_variance_analyzer = overall_variance_analyzer
+
+ with_predict_proba = False if computation_mode == ComputationMode.POSTPROCESSING_INTERVENTION.value else True
self.__subgroup_variance_calculator = SubgroupVarianceCalculator(X_test=dataset.X_test,
y_test=dataset.y_test,
sensitive_attributes_dct=sensitive_attributes_dct,
test_protected_groups=test_protected_groups,
- computation_mode=computation_mode)
+ computation_mode=computation_mode,
+ with_predict_proba=with_predict_proba)
self.overall_variance_metrics_dct = dict()
self.subgroup_variance_metrics_dct = dict()
diff --git a/virny/configs/constants.py b/virny/configs/constants.py
index 81d145b2..b6af0d32 100644
--- a/virny/configs/constants.py
+++ b/virny/configs/constants.py
@@ -8,6 +8,7 @@ class ModelSetting(Enum):
class ComputationMode(Enum):
ERROR_ANALYSIS = "error_analysis"
+ POSTPROCESSING_INTERVENTION = "postprocessing_intervention"
class ReportType(Enum):
diff --git a/virny/utils/postprocessing_intervention_utils.py b/virny/utils/postprocessing_intervention_utils.py
new file mode 100644
index 00000000..85628023
--- /dev/null
+++ b/virny/utils/postprocessing_intervention_utils.py
@@ -0,0 +1,33 @@
+import copy
+
+import numpy as np
+from aif360.datasets import BinaryLabelDataset
+
+
+def contruct_binary_label_dataset(X_sample, y_sample, target_column, sensitive_attribute):
+ df = X_sample
+ df[target_column] = y_sample
+
+ binary_label_dataset = BinaryLabelDataset(
+ df=df,
+ label_names=[target_column],
+ protected_attribute_names=[sensitive_attribute],
+ favorable_label=1,
+ unfavorable_label=0)
+
+ return binary_label_dataset
+
+
+def predict_on_binary_label_dataset(model, orig_dataset, threshold=0.5):
+ orig_dataset_pred = copy.deepcopy(orig_dataset)
+
+ fav_idx = np.where(model.classes_ == orig_dataset.favorable_label)[0][0]
+ y_pred_prob = model.predict_proba(orig_dataset.features)[:, fav_idx]
+ orig_dataset.scores = y_pred_prob.reshape(-1, 1)
+
+ y_pred = np.zeros_like(orig_dataset.labels)
+ y_pred[y_pred_prob >= threshold] = orig_dataset.favorable_label
+ y_pred[~(y_pred_prob >= threshold)] = orig_dataset.unfavorable_label
+ orig_dataset_pred.labels = y_pred
+
+ return orig_dataset_pred
From 06edd35a40ceb0b5da33977fbca3b22e77647d72 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Sun, 22 Oct 2023 00:16:08 +0300
Subject: [PATCH 037/148] Added tests for MetricsComposer
---
.../Multiple_Models_Interface_Use_Case.ipynb | 427 ++++++++++++------
..._Sensitive_Attributes_20231021__202919.csv | 5 +
..._Sensitive_Attributes_20231021__205710.csv | 5 +
..._Sensitive_Attributes_20231021__205809.csv | 5 +
tests/__init__.py | 6 +-
tests/custom_classes/test_metrics_composer.py | 93 +++-
...ression_50_Estimators_20231021__205809.csv | 19 +
...ssifier_50_Estimators_20231021__205809.csv | 19 +
.../Multiple_Models_Interface_Use_Case.csv | 65 +++
9 files changed, 504 insertions(+), 140 deletions(-)
create mode 100644 docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231021__202919.csv
create mode 100644 docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231021__205710.csv
create mode 100644 docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231021__205809.csv
create mode 100644 tests/files_for_tests/COMPAS_Without_Sensitive_Attributes_Metrics_20231021__205806/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20231021__205809.csv
create mode 100644 tests/files_for_tests/COMPAS_Without_Sensitive_Attributes_Metrics_20231021__205806/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20231021__205809.csv
create mode 100644 tests/files_for_tests/composed_metrics/Multiple_Models_Interface_Use_Case.csv
diff --git a/docs/examples/Multiple_Models_Interface_Use_Case.ipynb b/docs/examples/Multiple_Models_Interface_Use_Case.ipynb
index 7c056ceb..a8bc35c9 100644
--- a/docs/examples/Multiple_Models_Interface_Use_Case.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Use_Case.ipynb
@@ -2,19 +2,15 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 53,
+ "execution_count": 1,
"id": "248cbed8",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The autoreload extension is already loaded. To reload it, use:\n",
- " %reload_ext autoreload\n"
- ]
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:05.208285Z",
+ "start_time": "2023-10-21T20:58:04.841119Z"
}
- ],
+ },
+ "outputs": [],
"source": [
"%matplotlib inline\n",
"%load_ext autoreload\n",
@@ -23,9 +19,14 @@
},
{
"cell_type": "code",
- "execution_count": 54,
+ "execution_count": 2,
"id": "7ec6cd08",
- "metadata": {},
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:05.216534Z",
+ "start_time": "2023-10-21T20:58:05.208182Z"
+ }
+ },
"outputs": [],
"source": [
"import os\n",
@@ -36,15 +37,20 @@
},
{
"cell_type": "code",
- "execution_count": 55,
+ "execution_count": 3,
"id": "b8cb69f2",
- "metadata": {},
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:05.226610Z",
+ "start_time": "2023-10-21T20:58:05.216923Z"
+ }
+ },
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Current location: /home/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny\n"
+ "Current location: /Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny\n"
]
}
],
@@ -90,9 +96,14 @@
},
{
"cell_type": "code",
- "execution_count": 56,
+ "execution_count": 4,
"id": "7a9241de",
- "metadata": {},
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:06.737014Z",
+ "start_time": "2023-10-21T20:58:05.228621Z"
+ }
+ },
"outputs": [],
"source": [
"import os\n",
@@ -143,7 +154,7 @@
},
{
"cell_type": "code",
- "execution_count": 57,
+ "execution_count": 5,
"outputs": [],
"source": [
"DATASET_SPLIT_SEED = 42\n",
@@ -151,12 +162,17 @@
"TEST_SET_FRACTION = 0.2"
],
"metadata": {
- "collapsed": false
- }
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:06.760654Z",
+ "start_time": "2023-10-21T20:58:06.738834Z"
+ }
+ },
+ "id": "ce359a052925eb3a"
},
{
"cell_type": "code",
- "execution_count": 58,
+ "execution_count": 6,
"outputs": [],
"source": [
"models_params_for_tuning = {\n",
@@ -199,8 +215,13 @@
"}"
],
"metadata": {
- "collapsed": false
- }
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:06.779658Z",
+ "start_time": "2023-10-21T20:58:06.759908Z"
+ }
+ },
+ "id": "2ece07ab7e3a9acc"
},
{
"cell_type": "markdown",
@@ -209,7 +230,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "1090a686532d96f5"
},
{
"cell_type": "markdown",
@@ -226,11 +248,12 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "d0a03b8f5c5d0ea7"
},
{
"cell_type": "code",
- "execution_count": 59,
+ "execution_count": 7,
"outputs": [],
"source": [
"ROOT_DIR = os.path.join('docs', 'examples')\n",
@@ -246,20 +269,30 @@
" f.write(config_yaml_content)"
],
"metadata": {
- "collapsed": false
- }
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:06.800438Z",
+ "start_time": "2023-10-21T20:58:06.780670Z"
+ }
+ },
+ "id": "af22ee06f1e3eb1a"
},
{
"cell_type": "code",
- "execution_count": 60,
+ "execution_count": 8,
"outputs": [],
"source": [
"config = create_config_obj(config_yaml_path=config_yaml_path)\n",
"SAVE_RESULTS_DIR_PATH = os.path.join(ROOT_DIR, 'results', f'{config.dataset_name}_Metrics_{datetime.now(timezone.utc).strftime(\"%Y%m%d__%H%M%S\")}')"
],
"metadata": {
- "collapsed": false
- }
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:06.820854Z",
+ "start_time": "2023-10-21T20:58:06.800568Z"
+ }
+ },
+ "id": "65181f72484bb92b"
},
{
"cell_type": "markdown",
@@ -285,9 +318,14 @@
},
{
"cell_type": "code",
- "execution_count": 61,
+ "execution_count": 9,
"id": "9e3d7bf3",
- "metadata": {},
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:06.839915Z",
+ "start_time": "2023-10-21T20:58:06.822383Z"
+ }
+ },
"outputs": [],
"source": [
"class CompasWithoutSensitiveAttrsDataset(BaseDataLoader):\n",
@@ -328,16 +366,21 @@
},
{
"cell_type": "code",
- "execution_count": 62,
+ "execution_count": 10,
"id": "6c55c6a0",
- "metadata": {},
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:06.881602Z",
+ "start_time": "2023-10-21T20:58:06.842269Z"
+ }
+ },
"outputs": [
{
"data": {
"text/plain": " juv_fel_count juv_misd_count juv_other_count priors_count \\\n0 0.0 -2.340451 1.0 -15.010999 \n1 0.0 0.000000 0.0 0.000000 \n2 0.0 0.000000 0.0 0.000000 \n3 0.0 0.000000 0.0 6.000000 \n4 0.0 0.000000 0.0 7.513697 \n\n age_cat_25 - 45 \n0 1 \n1 1 \n2 0 \n3 1 \n4 1 ",
"text/html": "\n\n
\n \n \n | \n juv_fel_count | \n juv_misd_count | \n juv_other_count | \n priors_count | \n age_cat_25 - 45 | \n
\n \n \n \n 0 | \n 0.0 | \n -2.340451 | \n 1.0 | \n -15.010999 | \n 1 | \n
\n \n 1 | \n 0.0 | \n 0.000000 | \n 0.0 | \n 0.000000 | \n 1 | \n
\n \n 2 | \n 0.0 | \n 0.000000 | \n 0.0 | \n 0.000000 | \n 0 | \n
\n \n 3 | \n 0.0 | \n 0.000000 | \n 0.0 | \n 6.000000 | \n 1 | \n
\n \n 4 | \n 0.0 | \n 0.000000 | \n 0.0 | \n 7.513697 | \n 1 | \n
\n \n
\n
"
},
- "execution_count": 62,
+ "execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
@@ -349,7 +392,7 @@
},
{
"cell_type": "code",
- "execution_count": 63,
+ "execution_count": 11,
"outputs": [],
"source": [
"column_transformer = ColumnTransformer(transformers=[\n",
@@ -358,19 +401,29 @@
"])"
],
"metadata": {
- "collapsed": false
- }
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:06.897824Z",
+ "start_time": "2023-10-21T20:58:06.878077Z"
+ }
+ },
+ "id": "ebbef5eaf9dc0943"
},
{
"cell_type": "code",
- "execution_count": 64,
+ "execution_count": 12,
"outputs": [],
"source": [
"base_flow_dataset = preprocess_dataset(data_loader, column_transformer, TEST_SET_FRACTION, DATASET_SPLIT_SEED)"
],
"metadata": {
- "collapsed": false
- }
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:06.965760Z",
+ "start_time": "2023-10-21T20:58:06.898526Z"
+ }
+ },
+ "id": "97ed4609effbf53f"
},
{
"cell_type": "markdown",
@@ -379,32 +432,32 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "d538119a04cb3d80"
},
{
"cell_type": "code",
- "execution_count": 65,
+ "execution_count": 13,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "2023/08/13, 01:39:20: Tuning DecisionTreeClassifier...\n",
+ "2023/10/21, 23:58:06: Tuning DecisionTreeClassifier...\n",
"Fitting 3 folds for each of 4 candidates, totalling 12 fits\n",
- "2023/08/13, 01:39:22: Tuning for DecisionTreeClassifier is finished [F1 score = 0.6429262328840039, Accuracy = 0.6442550505050505]\n",
+ "2023/10/21, 23:58:08: Tuning for DecisionTreeClassifier is finished [F1 score = 0.6429262328840039, Accuracy = 0.6442550505050505]\n",
"\n",
- "2023/08/13, 01:39:22: Tuning LogisticRegression...\n",
+ "2023/10/21, 23:58:08: Tuning LogisticRegression...\n",
"Fitting 3 folds for each of 8 candidates, totalling 24 fits\n",
- "2023/08/13, 01:39:22: Tuning for LogisticRegression is finished [F1 score = 0.6461022173486363, Accuracy = 0.6505681818181818]\n",
+ "2023/10/21, 23:58:08: Tuning for LogisticRegression is finished [F1 score = 0.6461022173486363, Accuracy = 0.6505681818181818]\n",
"\n",
- "2023/08/13, 01:39:22: Tuning RandomForestClassifier...\n",
+ "2023/10/21, 23:58:08: Tuning RandomForestClassifier...\n",
"Fitting 3 folds for each of 4 candidates, totalling 12 fits\n",
- "2023/08/13, 01:39:23: Tuning for RandomForestClassifier is finished [F1 score = 0.6480756802972086, Accuracy = 0.6518308080808081]\n",
+ "2023/10/21, 23:58:08: Tuning for RandomForestClassifier is finished [F1 score = 0.6480756802972086, Accuracy = 0.6518308080808081]\n",
"\n",
- "2023/08/13, 01:39:23: Tuning XGBClassifier...\n",
+ "2023/10/21, 23:58:08: Tuning XGBClassifier...\n",
"Fitting 3 folds for each of 4 candidates, totalling 12 fits\n",
- "2023/08/13, 01:39:27: Tuning for XGBClassifier is finished [F1 score = 0.6548814644409034, Accuracy = 0.6587752525252525]\n",
- "\n"
+ "2023/10/21, 23:58:09: Tuning for XGBClassifier is finished [F1 score = 0.6548814644409034, Accuracy = 0.6587752525252525]\n"
]
},
{
@@ -412,7 +465,7 @@
"text/plain": " Dataset_Name Model_Name F1_Score \\\n0 COMPAS_Without_Sensitive_Attributes DecisionTreeClassifier 0.642926 \n1 COMPAS_Without_Sensitive_Attributes LogisticRegression 0.646102 \n2 COMPAS_Without_Sensitive_Attributes RandomForestClassifier 0.648076 \n3 COMPAS_Without_Sensitive_Attributes XGBClassifier 0.654881 \n\n Accuracy_Score Model_Best_Params \n0 0.644255 {'criterion': 'gini', 'max_depth': 20, 'max_fe... \n1 0.650568 {'C': 1, 'max_iter': 250, 'penalty': 'l2', 'so... \n2 0.651831 {'max_depth': 10, 'max_features': 0.6, 'min_sa... \n3 0.658775 {'lambda': 100, 'learning_rate': 0.1, 'max_dep... ",
"text/html": "\n\n
\n \n \n | \n Dataset_Name | \n Model_Name | \n F1_Score | \n Accuracy_Score | \n Model_Best_Params | \n
\n \n \n \n 0 | \n COMPAS_Without_Sensitive_Attributes | \n DecisionTreeClassifier | \n 0.642926 | \n 0.644255 | \n {'criterion': 'gini', 'max_depth': 20, 'max_fe... | \n
\n \n 1 | \n COMPAS_Without_Sensitive_Attributes | \n LogisticRegression | \n 0.646102 | \n 0.650568 | \n {'C': 1, 'max_iter': 250, 'penalty': 'l2', 'so... | \n
\n \n 2 | \n COMPAS_Without_Sensitive_Attributes | \n RandomForestClassifier | \n 0.648076 | \n 0.651831 | \n {'max_depth': 10, 'max_features': 0.6, 'min_sa... | \n
\n \n 3 | \n COMPAS_Without_Sensitive_Attributes | \n XGBClassifier | \n 0.654881 | \n 0.658775 | \n {'lambda': 100, 'learning_rate': 0.1, 'max_dep... | \n
\n \n
\n
"
},
- "execution_count": 65,
+ "execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
@@ -422,12 +475,17 @@
"tuned_params_df"
],
"metadata": {
- "collapsed": false
- }
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:09.469344Z",
+ "start_time": "2023-10-21T20:58:06.928166Z"
+ }
+ },
+ "id": "782741c190a4690b"
},
{
"cell_type": "code",
- "execution_count": 66,
+ "execution_count": 14,
"outputs": [],
"source": [
"now = datetime.now(timezone.utc)\n",
@@ -436,8 +494,13 @@
"tuned_params_df.to_csv(tuned_df_path, sep=\",\", columns=tuned_params_df.columns, float_format=\"%.4f\", index=False)"
],
"metadata": {
- "collapsed": false
- }
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:09.516018Z",
+ "start_time": "2023-10-21T20:58:09.469540Z"
+ }
+ },
+ "id": "21ccc879c5c3e215"
},
{
"cell_type": "markdown",
@@ -446,11 +509,12 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "2da2057228e94ae5"
},
{
"cell_type": "code",
- "execution_count": 67,
+ "execution_count": 15,
"outputs": [
{
"name": "stdout",
@@ -479,8 +543,13 @@
"pprint(models_config)"
],
"metadata": {
- "collapsed": false
- }
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:09.549780Z",
+ "start_time": "2023-10-21T20:58:09.496334Z"
+ }
+ },
+ "id": "3b15f202741fa2ae"
},
{
"cell_type": "markdown",
@@ -500,9 +569,14 @@
},
{
"cell_type": "code",
- "execution_count": 68,
+ "execution_count": 16,
"id": "197eadaa",
- "metadata": {},
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:34.356124Z",
+ "start_time": "2023-10-21T20:58:09.523683Z"
+ }
+ },
"outputs": [
{
"data": {
@@ -510,7 +584,7 @@
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
- "model_id": "f7e5d56f4d94455e926f7c682a03dfb3"
+ "model_id": "5ec38df0bd8a4d8e8915ff3e0adade22"
}
},
"metadata": {},
@@ -520,16 +594,14 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "############################## [Model 1 / 4] Analyze DecisionTreeClassifier ##############################\n",
- "\n",
- "\n"
+ "############################## [Model 1 / 4] Analyze DecisionTreeClassifier ##############################\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
- "2023-08-13 01:39:28 abstract_overall_variance_analyzer.py INFO : Start classifiers testing by bootstrap\n"
+ "2023-10-21 23:58:09 abstract_overall_variance_analyzer.py INFO : Start classifiers testing by bootstrap\n"
]
},
{
@@ -538,7 +610,7 @@
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
- "model_id": "c6fea5228c944caca6de5cb97ae230dd"
+ "model_id": "13887a0c3c7d479f88076e51bac0ede4"
}
},
"metadata": {},
@@ -547,17 +619,14 @@
{
"name": "stdout",
"output_type": "stream",
- "text": [
- "\n",
- "\n"
- ]
+ "text": []
},
{
"name": "stderr",
"output_type": "stream",
"text": [
- "2023-08-13 01:39:28 abstract_overall_variance_analyzer.py INFO : Successfully tested classifiers by bootstrap\n",
- "2023-08-13 01:39:30 abstract_overall_variance_analyzer.py INFO : Successfully computed predict proba metrics\n"
+ "2023-10-21 23:58:09 abstract_overall_variance_analyzer.py INFO : Successfully tested classifiers by bootstrap\n",
+ "2023-10-21 23:58:10 abstract_overall_variance_analyzer.py INFO : Successfully computed predict proba metrics\n"
]
},
{
@@ -577,7 +646,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "2023-08-13 01:39:33 abstract_overall_variance_analyzer.py INFO : Start classifiers testing by bootstrap\n"
+ "2023-10-21 23:58:11 abstract_overall_variance_analyzer.py INFO : Start classifiers testing by bootstrap\n"
]
},
{
@@ -586,7 +655,7 @@
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
- "model_id": "1bbb9cf8fb4247e1bafec141c22ed384"
+ "model_id": "dafb848c3f6c4b56ab74c111acc06b55"
}
},
"metadata": {},
@@ -604,8 +673,8 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "2023-08-13 01:39:35 abstract_overall_variance_analyzer.py INFO : Successfully tested classifiers by bootstrap\n",
- "2023-08-13 01:39:37 abstract_overall_variance_analyzer.py INFO : Successfully computed predict proba metrics\n"
+ "2023-10-21 23:58:13 abstract_overall_variance_analyzer.py INFO : Successfully tested classifiers by bootstrap\n",
+ "2023-10-21 23:58:13 abstract_overall_variance_analyzer.py INFO : Successfully computed predict proba metrics\n"
]
},
{
@@ -625,7 +694,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "2023-08-13 01:39:39 abstract_overall_variance_analyzer.py INFO : Start classifiers testing by bootstrap\n"
+ "2023-10-21 23:58:15 abstract_overall_variance_analyzer.py INFO : Start classifiers testing by bootstrap\n"
]
},
{
@@ -634,7 +703,7 @@
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
- "model_id": "8609a285df254c0bb1cafb0a49bd301a"
+ "model_id": "cfffd8c5135e4c07838300acae4f167c"
}
},
"metadata": {},
@@ -652,8 +721,8 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "2023-08-13 01:39:53 abstract_overall_variance_analyzer.py INFO : Successfully tested classifiers by bootstrap\n",
- "2023-08-13 01:39:54 abstract_overall_variance_analyzer.py INFO : Successfully computed predict proba metrics\n"
+ "2023-10-21 23:58:22 abstract_overall_variance_analyzer.py INFO : Successfully tested classifiers by bootstrap\n",
+ "2023-10-21 23:58:23 abstract_overall_variance_analyzer.py INFO : Successfully computed predict proba metrics\n"
]
},
{
@@ -673,7 +742,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "2023-08-13 01:39:57 abstract_overall_variance_analyzer.py INFO : Start classifiers testing by bootstrap\n"
+ "2023-10-21 23:58:24 abstract_overall_variance_analyzer.py INFO : Start classifiers testing by bootstrap\n"
]
},
{
@@ -682,7 +751,7 @@
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
- "model_id": "18ab96649a2c4d87a111adb502ebb2c7"
+ "model_id": "f7bfb688c4344f0ea41d252af82b3073"
}
},
"metadata": {},
@@ -700,8 +769,8 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "2023-08-13 01:40:16 abstract_overall_variance_analyzer.py INFO : Successfully tested classifiers by bootstrap\n",
- "2023-08-13 01:40:17 abstract_overall_variance_analyzer.py INFO : Successfully computed predict proba metrics\n"
+ "2023-10-21 23:58:32 abstract_overall_variance_analyzer.py INFO : Successfully tested classifiers by bootstrap\n",
+ "2023-10-21 23:58:32 abstract_overall_variance_analyzer.py INFO : Successfully computed predict proba metrics\n"
]
},
{
@@ -729,16 +798,21 @@
},
{
"cell_type": "code",
- "execution_count": 69,
+ "execution_count": 17,
"id": "bea94683",
- "metadata": {},
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:34.381407Z",
+ "start_time": "2023-10-21T20:58:34.356989Z"
+ }
+ },
"outputs": [
{
"data": {
- "text/plain": " Metric overall sex_priv sex_dis race_priv \\\n0 Mean 0.521754 0.577841 0.507749 0.588128 \n1 Std 0.070126 0.070049 0.070145 0.070509 \n2 IQR 0.088289 0.085124 0.089079 0.091726 \n3 Aleatoric_Uncertainty 0.867014 0.871857 0.865805 0.859131 \n4 Overall_Uncertainty 0.892403 0.898704 0.890829 0.886515 \n5 Statistical_Bias 0.419045 0.414878 0.420086 0.414936 \n6 Jitter 0.122460 0.126825 0.121370 0.122124 \n7 Per_Sample_Accuracy 0.679205 0.690711 0.676331 0.684203 \n8 Label_Stability 0.833258 0.823886 0.835598 0.827536 \n9 TPR 0.656051 0.493333 0.686869 0.523810 \n10 TNR 0.726496 0.801471 0.703786 0.779026 \n11 PPV 0.658849 0.578125 0.671605 0.566176 \n12 FNR 0.343949 0.506667 0.313131 0.476190 \n13 FPR 0.273504 0.198529 0.296214 0.220974 \n14 Accuracy 0.695076 0.691943 0.695858 0.688406 \n15 F1 0.657447 0.532374 0.679151 0.544170 \n16 Selection-Rate 0.444129 0.303318 0.479290 0.328502 \n17 Positive-Rate 0.995754 0.853333 1.022727 0.925170 \n18 Sample_Size 1056.000000 NaN NaN NaN \n\n race_dis \n0 0.478952 \n1 0.069879 \n2 0.086072 \n3 0.872098 \n4 0.896200 \n5 0.421695 \n6 0.122677 \n7 0.675981 \n8 0.836947 \n9 0.716049 \n10 0.682390 \n11 0.696697 \n12 0.283951 \n13 0.317610 \n14 0.699377 \n15 0.706240 \n16 0.518692 \n17 1.027778 \n18 NaN ",
- "text/html": "\n\n
\n \n \n | \n Metric | \n overall | \n sex_priv | \n sex_dis | \n race_priv | \n race_dis | \n
\n \n \n \n 0 | \n Mean | \n 0.521754 | \n 0.577841 | \n 0.507749 | \n 0.588128 | \n 0.478952 | \n
\n \n 1 | \n Std | \n 0.070126 | \n 0.070049 | \n 0.070145 | \n 0.070509 | \n 0.069879 | \n
\n \n 2 | \n IQR | \n 0.088289 | \n 0.085124 | \n 0.089079 | \n 0.091726 | \n 0.086072 | \n
\n \n 3 | \n Aleatoric_Uncertainty | \n 0.867014 | \n 0.871857 | \n 0.865805 | \n 0.859131 | \n 0.872098 | \n
\n \n 4 | \n Overall_Uncertainty | \n 0.892403 | \n 0.898704 | \n 0.890829 | \n 0.886515 | \n 0.896200 | \n
\n \n 5 | \n Statistical_Bias | \n 0.419045 | \n 0.414878 | \n 0.420086 | \n 0.414936 | \n 0.421695 | \n
\n \n 6 | \n Jitter | \n 0.122460 | \n 0.126825 | \n 0.121370 | \n 0.122124 | \n 0.122677 | \n
\n \n 7 | \n Per_Sample_Accuracy | \n 0.679205 | \n 0.690711 | \n 0.676331 | \n 0.684203 | \n 0.675981 | \n
\n \n 8 | \n Label_Stability | \n 0.833258 | \n 0.823886 | \n 0.835598 | \n 0.827536 | \n 0.836947 | \n
\n \n 9 | \n TPR | \n 0.656051 | \n 0.493333 | \n 0.686869 | \n 0.523810 | \n 0.716049 | \n
\n \n 10 | \n TNR | \n 0.726496 | \n 0.801471 | \n 0.703786 | \n 0.779026 | \n 0.682390 | \n
\n \n 11 | \n PPV | \n 0.658849 | \n 0.578125 | \n 0.671605 | \n 0.566176 | \n 0.696697 | \n
\n \n 12 | \n FNR | \n 0.343949 | \n 0.506667 | \n 0.313131 | \n 0.476190 | \n 0.283951 | \n
\n \n 13 | \n FPR | \n 0.273504 | \n 0.198529 | \n 0.296214 | \n 0.220974 | \n 0.317610 | \n
\n \n 14 | \n Accuracy | \n 0.695076 | \n 0.691943 | \n 0.695858 | \n 0.688406 | \n 0.699377 | \n
\n \n 15 | \n F1 | \n 0.657447 | \n 0.532374 | \n 0.679151 | \n 0.544170 | \n 0.706240 | \n
\n \n 16 | \n Selection-Rate | \n 0.444129 | \n 0.303318 | \n 0.479290 | \n 0.328502 | \n 0.518692 | \n
\n \n 17 | \n Positive-Rate | \n 0.995754 | \n 0.853333 | \n 1.022727 | \n 0.925170 | \n 1.027778 | \n
\n \n 18 | \n Sample_Size | \n 1056.000000 | \n NaN | \n NaN | \n NaN | \n NaN | \n
\n \n
\n
"
+ "text/plain": " Metric overall sex_priv sex_dis race_priv \\\n0 Std 0.069731 0.071849 0.069202 0.069349 \n1 IQR 0.087109 0.084506 0.087760 0.087332 \n2 Overall_Uncertainty 0.892622 0.898820 0.891074 0.884985 \n3 Mean_Prediction 0.519650 0.576085 0.505558 0.584973 \n4 Aleatoric_Uncertainty 0.868202 0.871461 0.867388 0.859540 \n5 Statistical_Bias 0.419017 0.415723 0.419840 0.414650 \n6 Label_Stability 0.822727 0.809668 0.825988 0.824444 \n7 Jitter 0.128776 0.137677 0.126553 0.124616 \n8 TPR 0.653928 0.466667 0.689394 0.517007 \n9 TNR 0.728205 0.801471 0.706013 0.782772 \n10 PPV 0.659529 0.564516 0.674074 0.567164 \n11 FNR 0.346072 0.533333 0.310606 0.482993 \n12 FPR 0.271795 0.198529 0.293987 0.217228 \n13 Accuracy 0.695076 0.682464 0.698225 0.688406 \n14 F1 0.656716 0.510949 0.681648 0.540925 \n15 Selection-Rate 0.442235 0.293839 0.479290 0.323671 \n16 Positive-Rate 0.991507 0.826667 1.022727 0.911565 \n17 Sample_Size 1056.000000 NaN NaN NaN \n\n race_dis \n0 0.069977 \n1 0.086966 \n2 0.897547 \n3 0.477526 \n4 0.873788 \n5 0.421833 \n6 0.821620 \n7 0.131458 \n8 0.716049 \n9 0.682390 \n10 0.696697 \n11 0.283951 \n12 0.317610 \n13 0.699377 \n14 0.706240 \n15 0.518692 \n16 1.027778 \n17 NaN ",
+ "text/html": "\n\n
\n \n \n | \n Metric | \n overall | \n sex_priv | \n sex_dis | \n race_priv | \n race_dis | \n
\n \n \n \n 0 | \n Std | \n 0.069731 | \n 0.071849 | \n 0.069202 | \n 0.069349 | \n 0.069977 | \n
\n \n 1 | \n IQR | \n 0.087109 | \n 0.084506 | \n 0.087760 | \n 0.087332 | \n 0.086966 | \n
\n \n 2 | \n Overall_Uncertainty | \n 0.892622 | \n 0.898820 | \n 0.891074 | \n 0.884985 | \n 0.897547 | \n
\n \n 3 | \n Mean_Prediction | \n 0.519650 | \n 0.576085 | \n 0.505558 | \n 0.584973 | \n 0.477526 | \n
\n \n 4 | \n Aleatoric_Uncertainty | \n 0.868202 | \n 0.871461 | \n 0.867388 | \n 0.859540 | \n 0.873788 | \n
\n \n 5 | \n Statistical_Bias | \n 0.419017 | \n 0.415723 | \n 0.419840 | \n 0.414650 | \n 0.421833 | \n
\n \n 6 | \n Label_Stability | \n 0.822727 | \n 0.809668 | \n 0.825988 | \n 0.824444 | \n 0.821620 | \n
\n \n 7 | \n Jitter | \n 0.128776 | \n 0.137677 | \n 0.126553 | \n 0.124616 | \n 0.131458 | \n
\n \n 8 | \n TPR | \n 0.653928 | \n 0.466667 | \n 0.689394 | \n 0.517007 | \n 0.716049 | \n
\n \n 9 | \n TNR | \n 0.728205 | \n 0.801471 | \n 0.706013 | \n 0.782772 | \n 0.682390 | \n
\n \n 10 | \n PPV | \n 0.659529 | \n 0.564516 | \n 0.674074 | \n 0.567164 | \n 0.696697 | \n
\n \n 11 | \n FNR | \n 0.346072 | \n 0.533333 | \n 0.310606 | \n 0.482993 | \n 0.283951 | \n
\n \n 12 | \n FPR | \n 0.271795 | \n 0.198529 | \n 0.293987 | \n 0.217228 | \n 0.317610 | \n
\n \n 13 | \n Accuracy | \n 0.695076 | \n 0.682464 | \n 0.698225 | \n 0.688406 | \n 0.699377 | \n
\n \n 14 | \n F1 | \n 0.656716 | \n 0.510949 | \n 0.681648 | \n 0.540925 | \n 0.706240 | \n
\n \n 15 | \n Selection-Rate | \n 0.442235 | \n 0.293839 | \n 0.479290 | \n 0.323671 | \n 0.518692 | \n
\n \n 16 | \n Positive-Rate | \n 0.991507 | \n 0.826667 | \n 1.022727 | \n 0.911565 | \n 1.027778 | \n
\n \n 17 | \n Sample_Size | \n 1056.000000 | \n NaN | \n NaN | \n NaN | \n NaN | \n
\n \n
\n
"
},
- "execution_count": 69,
+ "execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
@@ -766,9 +840,14 @@
},
{
"cell_type": "code",
- "execution_count": 70,
+ "execution_count": 18,
"id": "f94a20dc",
- "metadata": {},
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:34.403007Z",
+ "start_time": "2023-10-21T20:58:34.380470Z"
+ }
+ },
"outputs": [],
"source": [
"models_metrics_dct = read_model_metric_dfs(SAVE_RESULTS_DIR_PATH, model_names=list(models_config.keys()))"
@@ -776,9 +855,14 @@
},
{
"cell_type": "code",
- "execution_count": 71,
+ "execution_count": 19,
"id": "b04d06cf",
- "metadata": {},
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:34.440589Z",
+ "start_time": "2023-10-21T20:58:34.403653Z"
+ }
+ },
"outputs": [],
"source": [
"metrics_composer = MetricsComposer(models_metrics_dct, config.sensitive_attributes_dct)"
@@ -794,18 +878,51 @@
},
{
"cell_type": "code",
- "execution_count": 72,
+ "execution_count": 20,
"id": "be6ace22",
- "metadata": {},
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:34.476652Z",
+ "start_time": "2023-10-21T20:58:34.423407Z"
+ }
+ },
"outputs": [],
"source": [
"models_composed_metrics_df = metrics_composer.compose_metrics()"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "outputs": [
+ {
+ "data": {
+ "text/plain": " Metric sex race sex&race \\\n0 Accuracy_Parity 0.015760 0.010971 -0.005266 \n1 Aleatoric_Uncertainty_Parity -0.004072 0.014248 0.007256 \n2 Aleatoric_Uncertainty_Ratio 0.995327 1.016576 1.008393 \n3 Equalized_Odds_FNR -0.222727 -0.199043 -0.185362 \n4 Equalized_Odds_FPR 0.095457 0.100382 0.132202 \n.. ... ... ... ... \n59 Disparate_Impact 1.159674 1.102332 1.093266 \n60 Std_Parity 0.000692 0.002415 0.002737 \n61 Std_Ratio 1.015140 1.053930 1.060978 \n62 Equalized_Odds_TNR -0.082094 -0.102184 -0.128932 \n63 Equalized_Odds_TPR 0.180202 0.165659 0.165871 \n\n Model_Name \n0 DecisionTreeClassifier \n1 DecisionTreeClassifier \n2 DecisionTreeClassifier \n3 DecisionTreeClassifier \n4 DecisionTreeClassifier \n.. ... \n59 XGBClassifier \n60 XGBClassifier \n61 XGBClassifier \n62 XGBClassifier \n63 XGBClassifier \n\n[64 rows x 5 columns]",
+ "text/html": "\n\n
\n \n \n | \n Metric | \n sex | \n race | \n sex&race | \n Model_Name | \n
\n \n \n \n 0 | \n Accuracy_Parity | \n 0.015760 | \n 0.010971 | \n -0.005266 | \n DecisionTreeClassifier | \n
\n \n 1 | \n Aleatoric_Uncertainty_Parity | \n -0.004072 | \n 0.014248 | \n 0.007256 | \n DecisionTreeClassifier | \n
\n \n 2 | \n Aleatoric_Uncertainty_Ratio | \n 0.995327 | \n 1.016576 | \n 1.008393 | \n DecisionTreeClassifier | \n
\n \n 3 | \n Equalized_Odds_FNR | \n -0.222727 | \n -0.199043 | \n -0.185362 | \n DecisionTreeClassifier | \n
\n \n 4 | \n Equalized_Odds_FPR | \n 0.095457 | \n 0.100382 | \n 0.132202 | \n DecisionTreeClassifier | \n
\n \n ... | \n ... | \n ... | \n ... | \n ... | \n ... | \n
\n \n 59 | \n Disparate_Impact | \n 1.159674 | \n 1.102332 | \n 1.093266 | \n XGBClassifier | \n
\n \n 60 | \n Std_Parity | \n 0.000692 | \n 0.002415 | \n 0.002737 | \n XGBClassifier | \n
\n \n 61 | \n Std_Ratio | \n 1.015140 | \n 1.053930 | \n 1.060978 | \n XGBClassifier | \n
\n \n 62 | \n Equalized_Odds_TNR | \n -0.082094 | \n -0.102184 | \n -0.128932 | \n XGBClassifier | \n
\n \n 63 | \n Equalized_Odds_TPR | \n 0.180202 | \n 0.165659 | \n 0.165871 | \n XGBClassifier | \n
\n \n
\n
64 rows × 5 columns
\n
"
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "models_composed_metrics_df"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:34.488516Z",
+ "start_time": "2023-10-21T20:58:34.454122Z"
+ }
+ },
+ "id": "a286da0406c6401d"
+ },
{
"cell_type": "markdown",
"id": "deb45226",
- "metadata": {},
+ "metadata": {
+ "is_executing": true
+ },
"source": [
"## Metrics Visualization and Reporting"
]
@@ -820,9 +937,14 @@
},
{
"cell_type": "code",
- "execution_count": 73,
+ "execution_count": 22,
"id": "435b9d98",
- "metadata": {},
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:34.516611Z",
+ "start_time": "2023-10-21T20:58:34.478385Z"
+ }
+ },
"outputs": [],
"source": [
"visualizer = MetricsVisualizer(models_metrics_dct, models_composed_metrics_df, config.dataset_name,\n",
@@ -832,16 +954,21 @@
},
{
"cell_type": "code",
- "execution_count": 74,
+ "execution_count": 23,
"id": "5efb1bf2",
- "metadata": {},
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:34.601140Z",
+ "start_time": "2023-10-21T20:58:34.506904Z"
+ }
+ },
"outputs": [
{
"data": {
- "text/html": "\n\n",
+ "text/html": "\n\n",
"text/plain": "alt.Chart(...)"
},
- "execution_count": 74,
+ "execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
@@ -855,16 +982,21 @@
},
{
"cell_type": "code",
- "execution_count": 75,
+ "execution_count": 24,
"id": "0eb8528e",
- "metadata": {},
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:34.607261Z",
+ "start_time": "2023-10-21T20:58:34.557943Z"
+ }
+ },
"outputs": [
{
"data": {
- "text/html": "\n\n",
+ "text/html": "\n\n",
"text/plain": "alt.Chart(...)"
},
- "execution_count": 75,
+ "execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
@@ -885,19 +1017,21 @@
"You can use this plot to compare any pair of group fairness and stability metrics for all models."
],
"metadata": {
- "collapsed": false
- }
+ "collapsed": false,
+ "is_executing": true
+ },
+ "id": "1f4906acb27ce7dd"
},
{
"cell_type": "code",
- "execution_count": 76,
+ "execution_count": 25,
"outputs": [
{
"data": {
- "text/html": "\n\n",
+ "text/html": "\n\n",
"text/plain": "alt.HConcatChart(...)"
},
- "execution_count": 76,
+ "execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
@@ -906,19 +1040,29 @@
"visualizer.create_fairness_variance_interactive_bar_chart()"
],
"metadata": {
- "collapsed": false
- }
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:34.774635Z",
+ "start_time": "2023-10-21T20:58:34.606702Z"
+ }
+ },
+ "id": "b1249b3994b75555"
},
{
"cell_type": "code",
- "execution_count": 77,
+ "execution_count": 26,
"id": "df024aed",
- "metadata": {},
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:35.469528Z",
+ "start_time": "2023-10-21T20:58:34.775075Z"
+ }
+ },
"outputs": [
{
"data": {
"text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABOYAAANZCAYAAACrxzEEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1QU19vA8S8gVRAEQRS7AgqCCNgLdo01auw19hI19hJbjCXBWCJqLLFX1EjsPYodG/YCYgMFQYp0WGDfP3h3fiy7dJQk3s85HN2ZOzN3Zu/Mzjxzi4ZcLpcjCIIgCIIgCIIgCIIgCMJnpVnUGRAEQRAEQRAEQRAEQRCEL5EIzAmCIAiCIAiCIAiCIAhCERCBOUEQBEEQBEEQBEEQBEEoAiIwJwiCIAiCIAiCIAiCIAhFQATmBEEQBEEQBEEQBEEQBKEIiMCcIAiCIAiCIAiCIAiCIBQBEZgTBEEQBEEQBEEQBEEQhCIgAnOCIAiCIAiCIAiCIAiCUAREYE4QBEEQBEEQBEEQBEEQioAIzAmCIGTDw8MDW1tbbG1tP9k2WrRoga2tLTNmzPhk2/i3CQoKko77wYMHizo7QiFRfKceHh5FnRVB+OQ+x++H8O81Y8YMbG1tadGiRVFn5bMaMGAAtra2DBgwoEDrye73xMfHR5rv4+OjMl+cm/8eOX2XgvBfUayoMyAIwn+Pj48PAwcOlD4bGBhw9epV9PX1s10uMTGRRo0aERsbK03bvn079erV+2R5/S8ICgqiZcuWaufp6OhgbGyMjY0Nbm5udO/eHUNDw8+cw/8eDw8PVq9erXaepqYmxYsXp3z58tStW5devXpRpUqVz5zDL0NoaChHjhzB29ub169fExERgb6+PmZmZjg7O9OmTRvc3NyKOptZksvlXLp0iYsXL3L79m1CQ0P5+PEj2tralCxZkmrVquHo6Ei7du2oVq1aUWf3X6tFixa8ffs2V2nr1q3Ljh07PnGOBKHwyOVy/v77b44dO8bDhw8JCwsjKSkJAwMDLC0tqVKlCo6OjjRu3Jjq1asXdXaFfMh8z1GvXj22b9+e43K3b9+mb9++StOePXtW6PkTBKHgRGBOEIRPLj4+nrNnz9KpU6ds0507d04pKCcUXHJyMmFhYYSFhXHlyhW2bNnCmjVrsLe3L+qs/WelpaURExPD48ePefz4Mbt27WLmzJn069evqLP2nyGXy1m/fj3r168nPj5eaV5ycjIfP37kxYsXHDhwACcnJxYuXIi1tXUR5Va927dvs3DhQh4/fqwyTyaTER8fz9u3b/H29sbDwwMXFxcmT56Mi4tLEeRWEIR/og8fPjB+/Hhu376tMi8mJoaYmBj8/f05deoUS5cu5fjx41StWlUpXcagjwjapBswYAA3btz4xwbqb968SUhICJaWltmmO3To0GfKUXoNUC8vL6ysrPj7778/23YF4b9CBOYEQfikdHV1SUpK4tChQzkG5hQ3EIplhLxr2bIl33//vfQ5OjqaFy9esHXrVgICAggODmbkyJGcPHlS1JwrJIsXL8bBwUH6nJaWRmhoKBcvXmTv3r3IZDIWLFhA5cqVadiwYRHm9L9BJpMxffp0jh07BoCenh5ff/01TZo0oXTp0iQkJODn54eXlxcPHz7k7t279O3bl99//x1XV9cizn26gwcPMnfuXGQyGQD29va0atUKe3t7TE1NSUlJ4cOHD/j6+uLt7c3z58+5ffs2a9euZdOmTUWc+38vCwuLHI9fTjW782LcuHGMGzeu0NYnCBklJyfz7bff4ufnB4CdnR3dunWjRo0aFC9enNjYWAICArh58ybe3t7ExMQUcY4LV0GCiP/mc1Nxj3z48GFGjBiRZbrk5GROnjyptMy/Ub169UTAWPgiiMCcIAifVIsWLThx4gRXr14lLCwMc3NztenCw8O5cuUKkB5cOn78+OfM5n9GiRIlsLGxUZrm6upK165d6d+/P3fv3iUsLAxPT0+GDh1aRLn8bylXrpzKMa9evTpNmzalRo0azJo1C4BNmzaJwFwhWLFihRSUs7GxYe3atZQvX14pTd26denXrx9btmzB3d2d6Ohoxo4dy6FDh3KsYfCpXb16lR9++IG0tDQMDAxYsmQJ7dq1U5u2devWTJs2jQsXLrBs2bLPnNP/Hm1tbZVzVRD+rfbv3y8F5bp168aiRYvQ1FTuPrxOnTr07t2b5ORkjh49SokSJYoiq0IhUtxX5xSYu3DhAh8/fkRXV5fGjRtz7ty5z5hLQRDySgz+IAjCJ9WoUSPMzc1JTU2VHqbVOXr0KCkpKZibm4vgxSegra2tVJPu6tWrRZeZL0j37t0pWbIkAA8ePCji3Pz73b17l82bNwPptZ+2bt2qEpRT0NDQYMiQIUyYMAGAqKgo5s6d+9nyqk58fDxTpkwhLS2NYsWKsWnTpiyDchk1a9aMAwcO8M0333yGXAqC8G+gCLQUK1aMmTNnqgTlMtLR0aFbt25ZvhwV/j2+/vprAPz9/dV2haCgaIXSvHlzEZAVhH8BUWNOEIRPSktLiw4dOrB161YOHTrE4MGD1aZT3EB07NgRLS2tXK07OTmZ/fv3c/LkSfz9/YmNjcXY2Bg7Ozs6duxIp06dsr1RBQgJCWH9+vVcvHiR0NBQjI2NqVmzJgMHDsxTgDAmJobdu3dz/vx5Xr16RWxsLCYmJtSsWZOvv/6atm3boqGhkev1fQoZa4qEhISoTZOWloaPjw8XL17E19eXly9fEhsbi76+PlZWVjRs2JABAwZQtmzZLLeTuW+W9+/fs3nzZv7++2/ev3+Pvr6+dIwL0jF/UlIS33//vdSXyeTJk5XeHqempnLo0CGOHTvG06dPpTfHZmZmlClThgYNGtCqVatP3qm+lZUVkZGRJCcnZ5nm7t27nD9/njt37vDixQs+fvyIjo4OlpaW1KlThwEDBuSYz5cvX7Jz5058fHx4+/YtMpkMExMTzMzMsLOzo0mTJrRq1QodHR21y4eFhbFz504uXbpEUFAQ8fHxmJmZ4eTkRK9evXJ1Phw5coR9+/bx9OlTUlJSsLKyok2bNgwePLhQHgw2btyIXC4HYObMmZiZmeW4zPDhwzl+/Dh+fn54e3vz9OlTlQ7QFYMDdO3alZ9//pkXL16wefNmrl69SmhoKCVKlKB27doMHz4cJyenfOd///79hIeHAzBw4ECcnZ1zvayuri5fffWV2nmKkQW/++47xo0bx7Vr19izZw/37t3jw4cPlC5dWqXPn1u3buHp6cnt27cJCwtDV1eXcuXK4ebmxqBBgzA1NVW7rYMHDzJz5kwgPTBQrlw5tekyDkqzZMkSunXrpjQ/c39EiuvEhQsXCAkJQV9fH0dHR/r370/Tpk1zfZwKU0HPy5z67spc7h4+fMjOnTu5ceMGoaGhyGQyabnCLqOvX79m165dXLt2jXfv3iGTyTA3N6dOnTr069dPqXl+ZklJSXh6enLmzBn8/f2JiYmhePHilCxZkvLly9OoUSNat26ttmw8fPiQ3bt3c/v2bd6/f09qaiqmpqaYmZlRq1YtGjduTIsWLfL1exkYGMiZM2e4ceMGfn5+fPjwAUBad7du3bItS5nLdtmyZdm/fz9eXl4EBAQgk8koX7487du3Z/DgwTk2ew4ICGDjxo1cu3aNiIgITE1NcXV1ZdCgQTg6OuZ5/zJ79+4dACVLlszX9TXj/iqoG6U043leGPcImb148YItW7Zw5coVwsLCMDY2xsXFhW+//Tbbspz5upcXWZ2biuuSwo0bN1SOieKatX37dhYtWgSAp6dnjufduHHjOH36NMbGxly6dAldXd085VmhWrVq2NnZ8fjxYw4dOoSdnZ1KmsjISLy9vQHo0qULp0+fztW6U1NTOXz4MCdPnuTRo0dERUVRvHhxqlSpQps2bejTpw96enpKy2QemOLt27dqy1HG45yXa1/GAeVyGhDO29ubI0eO4OvrS3h4OKmpqZibm2Nvb0/z5s356quvVM7b6Ohodu3axYULF3jx4gXx8fEYGRlhampK5cqVadSoEW3atKFUqVK5OoaCkF8iMCcIwifXpUsXtm7dyuPHj/H391fphP358+c8evRISvvkyZMc1xkUFMTw4cN58eKF0vQPHz5w8eJFLl68iKenJ2vXrsXExETtOm7dusXIkSOVBpwICwvj/PnznD9/Ptc3eteuXeP7778nKipKaXrGdbm5ubFixQqKFy+eq3V+Ctra2tL/ixVTf/lfs2aN2tFGY2JiePr0KU+fPmXPnj0sXbqU1q1b57jN27dvM3bsWCIjI6VpSUlJXL58mcuXLzNt2rR8NamNjY1l9OjR3LhxA01NTX788Ud69uwpzY+Li2PEiBHcunVLaTmZTEZsbCyvX7/m+vXrPH78mFWrVuV5+3mheHgqU6aM2vnqHo4UeQ0ICCAgIID9+/fzww8/ZDmAxIkTJ5g6darUZ5mCYuCPp0+fcvDgQY4cOaK2Kd/hw4eZN2+eykAKISEhnDx5kpMnT/LNN9/w448/qi07KSkpTJ48WerPRsHf3x9/f38OHz7Mli1b1OY9tz5+/CgFlywtLXNV0wzSy3q/fv2YN28eAF5eXmqPt8KZM2eYOnUqCQkJ0rTw8HDOnj3L+fPn+fXXX2nfvn2+9uGvv/4C0mvz9e/fP1/ryMmKFStYt25dlvPT0tJYuHAhu3btUpqenJzMkydPePLkCbt27eK3336jUaNGnySPmT148ICRI0dKQUtIH6Xb29sbb29vvv32W2bMmPFZ8qJQGOdlXuzZs4eFCxeSkpKSY9qCltFNmzaxYsUKletFUFAQQUFB/PXXX4wePVqqbZpRaGgo3377Lc+fP1ea/vHjRz5+/MirV6+4dOkSoaGhTJ8+XSnN1q1b+eWXX0hLS1OaHhISQkhICI8ePWL37t3cuXMnz7+VgYGBtGrVSu28d+/e8e7dO06cOEHnzp1ZsmRJlr+BComJiQwZMoRr164pTffz88PPz4+///6bbdu2YWBgoHb548ePM336dKUXMiEhIRw9epSTJ08yf/78PO2fOorf9A8fPhAVFZXlvU5hKux7BG9vb77//nul356wsDBOnjzJ6dOnmT59epYvdIta586dWbp0KcnJyRw8eDDbwFxERATnz58H0l9A5zcop9ClSxceP37MsWPHmDZtmsoL7ePHjyOTyShZsiRNmjTJVWDu3bt3jB49mqdPnypNj4qK4s6dO9y5c4c9e/awfv16KleuXKD8Z5SXa19WIiMjmThxosr5CumBwrdv30rHIONLooCAAAYPHkxoaKjK+iIjIwkICODs2bOkpaV9st9sQVAQgTlBED45Ozs7rK2t8ff359ChQ0yZMkVpvqK2nI2NDTVq1MgxMBcXF8fgwYMJDAwEoFWrVnTv3h0LCwuCgoLYtWsXN27c4Pbt24waNYpdu3ap3LS8e/dOCsppamrSs2dP2rVrh6GhIc+ePWPjxo14eHhQs2bNbPNy+/Zthg8fjkwmo1SpUvTv35/q1atjYWFBaGgox48f5/Dhw3h7ezNjxgw8PDzyevgKTUBAgPR/KysrtWkUzYlbt26Nk5MT5cuXR1dXl+DgYHx9fdm9ezfx8fFMnjwZLy8vldHdMgoNDWXs2LFoampKo0lqa2tz584d1qxZQ3R0NMuXL6dp06Z5GjEzIiKCYcOG8ejRI7S1tXF3d1d5CF29erUUlGvevDmdOnWiTJky6OrqEh4ezpMnT6Sb5E/Jy8uLiIgIAKn2UGapqakYGxvTsmVLXF1dqVixIgYGBoSGhvLo0SN27NhBZGQkP/30E1WqVKFBgwZKy3/48IFZs2Yhk8kwMzOjX79+ODk5UbJkSRITE3nz5g03btzIsn+Z48ePM23aNORyOeXLl6d///5UrVoVU1NT3r59y4EDB/D29ubAgQMYGhqqDVb88ssvUlCucuXKDBs2DFtbW2JjYzlx4gT79+9n4sSJBTmU3LlzR3qgd3Nzy7E2bEYtWrSQAnOZg7UZ+fn5cfz4cczNzRkyZAg1a9ZELpdz+fJlNmzYQFJSEnPmzKF+/fpZ1ijLiuLBFaBq1apZnoMFcfr0afz8/LCxsWHw4MFYW1uTlJSkdE399ddfpaBcuXLlGD58OHZ2diQkJPD333+za9cuYmJiGDlyJAcOHFCpXVjYEhISmDBhAjExMYwYMQI3Nzd0dHS4d+8e69evJywsjC1btlCmTBkGDRr0SfOSUUHPy7x48OABhw8fxtLSkqFDh1KzZk1SUlLUjrRZ0DL6xx9/sHTpUiC9xlGfPn2oVKkSRkZGvHz5kl27duHr68vatWspWbKkVFNFYeHChVJQrnPnzrRp0wYLCws0NTUJCwvj4cOHaq81T58+lYJy5cqVk34rTUxMiIuL4+XLl1y/fj3fozmmpaWhra1N48aNadSoEdWqVcPY2JiPHz/y8uVLdu/eLb0kKF++POPHj892fbNnz+bevXt07dqVr776ilKlShEcHMwff/yBr68v9+/f5/fff2fy5Mkqy96/f5+pU6eSkpKCjo4OgwcPVinXP/74Y7a/n7lhb2+Pn58fcrmcOXPm8PPPP+cpoNmqVStq1qzJ7t272bNnD5Be6zmz0qVLS/8v7HuEKVOmoKWlxaRJk6hbty6QXkNq48aNxMbGsmTJEsqVK5dl0LWwTZw4kSFDhjBz5kwePnxIzZo1WbJkiVIaRUDUxMSENm3acPToUY4fP86sWbNUapMpHDlyRAqEd+/evcD57NixI+7u7oSFhXHlyhWVmqCHDx8GoEOHDkovZbMSGRlJ3759CQ4ORkdHh549e1KnTh2srKyIj4/nypUrbN++ndevXzN8+HC8vLwwMjICoG/fvrRt25aVK1dy7ty5XA2yo5CXa19WEhISGDhwoNTfor29Pb169cLa2hodHR1CQkK4efOm2r6rp06dSmhoKNra2vTo0YOmTZtSqlQp5HI5ISEh3L17l7Nnz+Y6L4JQIHJBEIRCdv36dbmNjY3cxsZG/ueff8rlcrl8w4YNchsbG7mbm5s8LS1NSpuWliZ3c3OT29jYyDdu3CiXy+XyP//8U1r++vXrKuv/+eefpfkrVqxQmZ+WliafPHmylGbXrl0qacaNGyfNP3LkiMr8mJgYeefOnaU0NjY2KmmSk5PlzZs3l9vY2MiHDh0qj4+PV3s8PD09pXVcvnxZZb5iHdOnT1e7fE4CAwOl9We3jpEjR0rp/vrrryzXlZycnOU6goOD5U2aNJHb2NjIp0yZojZN//79pe00b95cHhISopLm5s2bcltbW7mNjY38p59+ynafFGVILpfL3717J2/btq3cxsZGXqtWLfnFixfV5kFRpsaNG5flvsjlcnlkZGS287OyatUqKX8HDhyQP3v2TPp78uSJ/NKlS/JFixbJ7e3t5TY2NvIOHTrIw8PD1a4rJCQky7Ijl8vl0dHR8k6dOsltbGzkffr0UZm/f/9+KS/Pnj3Lcj0JCQnyhIQEpWnh4eFyFxcXuY2NjXzmzJlymUymdtnly5fLbWxs5NWrV5cHBAQozXv69Km8evXqchsbG3nXrl3lsbGxKst7eXkpnUurVq3KMp9ZWbt2rbT8nj178rx8o0aN5DY2NnJ7e3uVeYpzULEPMTExKmkOHTokpdmyZUuet3/r1i1p+azOnfzKeGwHDRokT0pKUpsu43fVsWNH+cePH1XSeHt7S2m++eYblfkZr8+BgYFZ5imrc1hh+vTp0nx7e3v5jRs3VNKEhITImzZtKrexsZE7OTlleQ7lRPH9Nm7cWOlczfz34sULpW0X5LyUy5WvE9nlK7vvQ13a/JZRf39/6Zq0atUqpd9ihdTUVPmUKVOkYx4VFSXNS0xMlJb/+eefs8yrXK56bV25cqW0zrCwsCyXi46Olqempma7bnXi4uLk79+/z3J+WlqafMaMGVIeoqOjVdJkLNtZ/U4mJSXJO3bsKLexsZHXrVtX7TWzW7duuS7Xit/J/Lh37550rtrY2MhdXV3lU6dOlXt6esqfPHkiT0lJydV6ciqnGRX2PYKLi4v8+fPnKmn8/Pzkzs7OchsbG3mTJk3UbjO735OM96Hq7iNz2mdFHvv375/lvsrlcvnVq1el9Rw+fDjLdIr7yc6dO2e7vqxkzK/iujts2DC5jY2NfNKkSUppX716JaW9d++eXC5Xvt6qM2nSJKksvnnzRm2aR48eyZ2cnOQ2Njby5cuXq8xXbCM35Tkv176cvsvFixdL83/88Ue11zW5PP3czXjtefPmjbTcjh07stx+Wlqa0nVQED4VMfiDIAifRefOndHU1CQ4OBgfHx9puo+PD8HBwWhqatKpU6cc15OcnMyBAwcAsLa2VtvcVENDg/nz50vNOjI32QoLC5PegDVv3pyOHTuqrMPQ0JCffvop27wcO3aMt2/foquri7u7e5b9zfTs2VPqT+bgwYPZ72Ahi46OxtfXl1GjRkk1xGrXrp1lM6dy5cpl+3ZV8VYT4O+//5b6+8rK7Nmzld62K7i6ulKrVi2AXL8ZffHiBX379uXly5eUKFGCzZs306RJE7VpFX0Lubq6ZrvOwmj6M2vWLDp16iT9denShaFDh7Jt2zb09PSYOHEiu3fvzrKGVenSpbPtq8jIyEiq3XH79m2lZsHwv301NjbOdsRJPT09lbf5e/bsISYmhtKlSzN//vwsm3eNGzeO0qVLk5aWJtVwVdi7d69Uk23BggVqa2x8/fXXBe4nLON+56evF0V/dIrmzFlZvHgxhoaGKtM7deqEhYUFkH2tu6xkzH9Ote0CAgKkJnOZ/zI3N85IU1OThQsXZtmP4J49e6TvauHChWr7pWratKlUo+P+/fvcv38/x30rqF69elGnTh2V6aVLl5aaQ8bHxyv1/ZQfoaGhSudq5r+MzeoLel7m1bx583LdT1h+y+jmzZuRyWTUrFmT7777Tm0/bpqamsyZMwcdHR3i4+M5deqUNC8qKkqq9ZPXa6viOlWpUqVsz18jI6M81YZVMDAwkPZdHQ0NDaZPn46Wlhbx8fE5DoDUpk0bunTpojJdR0dHarocFRWl0qT3/v37PHz4EMhduS4IR0dHFixYIP1mR0dHc+jQIebMmUOXLl1wdXVlyJAh7Nu3L9vrRl4U9j3CmDFj1Naqs7a2ZtSoUQC8f//+HzuiaP369alQoQKQ9f3do0ePpNrShVFbTkFRPs+dO0dcXJw0XfEbXbly5Vz1ZRgUFMSJEycAmDNnTpYDKtnZ2dG3b1+gcO9l83Ltyyw6OhpPT08gvabcDz/8kGX/lDo6OkrXnrCwMOn/2V3PNDQ0MDY2zlf+BCEvRGBOEITPonTp0lKHrRkf7BX/r1+/vtoATmYPHz4kOjoagK5du2Y5UIShoaHUUfrz58+V+o/w8fEhNTUVQKVD8owcHR2zbWKpaHJTp06dHB+0FT/6d+/ezTZdQXl5eWFrayv91alTh969e3P+/Hm0tbXp1q0bf/zxR66aNkB6X26BgYH4+/tLgQHFw2psbCxBQUFZLluiRAmaNWuW5Xx7e3sAqUlydh49ekS/fv149+4d5ubm7NixI9uO8xUjzx0/flypH6bPLSYmhv3796ttQpGV+Ph4goKClI55xu8rc/8vin39+PFjnptcKMpws2bNsgzmQHo/bYr+c3x9fZXmKR5wbWxssm36XdAHkowPHvnpqzFjX1AZ15WRjY1Nlk03NTQ0pE62c1NmM8u4zZw6je/Vq1eWwaPsRvd1dnbOcjAGQOp/x9raWgqMq5Oxv0Z1ffYUtuyuw61bt5Ye2opyNOm8npd5UaZMmRwDXQoFKaOKlzM5DUZUokQJKcif8XwvWbKktM+HDh3KU59QiuvU8+fPP0uwVyaTERISohTkDg0NlQKGOX1f2b0oVPx2ASq/gRnPl9yW64Lo0aMHhw8fplu3birXRUUTxDlz5tCmTRsuXrxY4O1lVpB7BA0NDWmEUXW6d+8uldN/6kjyGhoa0m/b9evXpT5lM1IEsbS1tXP1Ajq3WrVqRfHixUlISODMmTPSdEUzVnWBZXW8vb1JTU1FX18/xxdoikBzaGio2n3Nq7xc+9S5fv26dI83cODAXA8eByiNUFzQlz6CUBhEH3OCIHw2X3/9NdeuXeP06dNSf0+Kt/G5vYHw9/eX/p/dg6VivqLfFH9/f+ltuqIfCiDbkecU8zNuMyPFW/HLly+rHYFKHUWtgaJQsWJFBg0apLamRUZv375l8+bNnD9/nrdv32abNjIyMsu3qxUrVsy25oPiDWRWQRKFW7dusWjRImJjY7GysmLr1q3SG+qsfP3116xduxZfX19atmxJu3btaNCgAS4uLnnuGywnmUcJk8vlxMbG8vTpU7Zt28aZM2eYN28eL1++zHLQgYiICLZu3cqpU6d4/fp1trUMMtfMadGiBSVKlCA6OprvvvuOunXr0qJFC1xdXalRo0aWN6qpqanSw6mnp6f01jknGctwcnIyr1+/BnI+lwo6CmHGh86cyow6GWuMZBXYq1KlSrbryG2ZVSfjNj9VsDi761BycjKvXr0Ccv4uatSogba2NjKZTOl6+Sloa2tn24+dtrY2NWrUwMfHp8B5UYymmFsFOS/zIre/H5D/Mvr27Vupv8tly5axbNmyXG0v4/muo6ND+/btOXToEKdOnaJNmza0a9eOevXqUbt27WwDTR06dGDDhg0kJyfTp08fmjRpgpubGy4uLlhbWxfKqOUymYx9+/Zx6NAhHj9+rDK4RUY5fV/ZHeeMtQEz175VlNG8lOuCqlKlCkuWLGHBggU8fPiQe/fu8fDhQ27evCmNwB4WFsaoUaP4448/8jTivDqFdY9Qrly5bH+PTU1NsbKyIigo6JNfhwqia9eurFq1itTUVLy8vBg7dqw0Lzk5maNHjwLp/cyWLFmy0Larp6dH27ZtOXjwIIcOHeLrr7/m1q1bBAYGoqGhQefOnXO1HsW9bEJCgtoRXrPy4cOHPI2+q05ern3qPH78WPq/i4tLnpYtX748rq6u3Lp1i61bt3L58mXatGlD3bp1cXJyyvEFmiAUNhGYEwThs2ndujXz588nNjaWc+fOIZfLiYuLw8DAgDZt2uRqHR8/fpT+n1OAJWOV9YzLZRw9VdG8LTfryEzxkJMXiYmJeV4mL1q2bMn3338PpHeGHRoayqVLl/D09OT58+cMHDiQvXv3ZvnQ4e3tzYQJE3IdOMhuf3K6qVEE7TKP0JfZn3/+Kf1/5cqVOQblIL15zPv37zl48CDh4eHs2rVLatJsbW1NmzZt6Nu3b76aROZEQ0MDIyMj6tSpQ506dZg8eTJHjx5l69atuLm5qTwUPXz4kKFDh6qM6puVpKQkpc8lS5bk999/Z9KkSbx//x4fHx/pYc/Q0JAGDRrQvXt3mjdvrrTcx48f8zUKWsbv/OPHj1KwoiDnUm5kfKDJT4BbMeKntrZ2lsHpwiqz6mR8mM/p2pG5GaKHh4fakRAzyy4wkvEamNN3pa2tjYmJCWFhYUrLfQomJiY51nJQlJ1PnZeMCnpe5kVeak7lt4xmHPE2LzJf4+fOnUt0dLQUlNm0aRObNm1CU1MTOzs7vvrqK3r16iV1DK9QtWpVli1bxpw5c/j48aM0YjkgjRzZq1evfNeeiYqKYsiQIdII7znJ6fvKqhN/QCmImPk4K8pLXsp1YdHW1qZ27drUrl1bmnbt2jUWLVqEv78/qamp/Pjjj5w8eTLfgdDCvEfI6ToE6ccoKCjos577eVW6dGmaNm3K+fPn8fLyYsyYMdLxPXv2rFQmCrMZq0KXLl04ePAg169f5/3791JtOcXADbmR32tDYbxgKmit0YwB9uyasmdl+fLlTJgwAV9fX54/f87z589Zu3Yt2tra1KpVi44dO9KtW7cCj6IrCLkhAnOCIHw2xYsXp1WrVhw5coRDhw5JD/StWrVSamaWW4Xxhr0gFM1hmzZtytSpU4s0LwoZmyABVK9enaZNm9KiRQuGDRvGx48fmTJlCvv371d5aIiIiGDKlCkkJCRgYGDA0KFDady4MRUqVMDQ0FBq6njt2jUGDx4MkGP/MYWhZcuWXLhwgdTUVKZOncqOHTtyvAHT1tZm8eLFDBkyhKNHj3L9+nUePnyITCbD398ff39/tmzZwtKlSz/5aG/Dhg2T3pj/+eefSoG55ORkvv/+e6KiotDW1qZ///60bNmSSpUqYWxsLB3zwMBAKZ/qjrmrqytnzpzh1KlTeHt7c+vWLUJCQoiNjeXMmTOcOXOGxo0bs3r1aunBXlF+Ib05VObRF7OSVTPoT30+ZnyznvEteW6EhoZK/ckU9A19ftnY2KCpqUlaWlqOI0/nV26b8RT1tfOfrrDOy9zKS/Or/MoYQBo7dizt2rXL1XKZA4GGhoasW7eO+/fvc+LECXx8fHj69Cmpqak8fPiQhw8fsnnzZtasWaMUIIL0JrQNGzbk+PHjXL58mVu3bhEREUFkZCSHDx/m8OHDdO3alcWLF+e5n7lFixZJQTnFSO22traYmZmhq6srlflmzZoRHBz8WX67/gkaNGjA5s2b6dSpE1FRUbx69YonT57kqWaUQmHfI/yXrkM9evTg/PnzBAYGcvPmTWmEWUUzVktLSxo3blzo261Xrx5lypQhODiYP//8U+orLre15eB/9wIlS5Zk+/btuV4uu24TcutzXPuyU7p0afbu3Su15rl58ybPnz9HJpNx69Ytbt26xebNm9mwYQOVK1cu0rwK/30iMCcIwmf19ddfc+TIEa5cuaI0LbcydsAaHh6e7Q9lxlo1GZfLvI4yZcrkah2ZmZiYEBoaikwmy7bT/X+CBg0aMHDgQDZv3syjR484ePAgPXr0UEpz6tQpqf++NWvWZNnc5XO/uW7VqhUdOnRg6tSpvHr1ikGDBrFjx45c1TaoVq2aVIMwKSmJ27dvS4Hh+Ph4Jk+ezJkzZ/L1pjW3MtZOzNwc5/r161JfUPPmzVP5ThRyU2tHV1eXzp07SzfkgYGBeHt7s2PHDl69esXly5dZsWIFs2bNApTPA7lcnq8ynPFtd0612ArajNvFxUUKbHl7e5OWlpbrh/eMzRfVdcb+OZQoUYLq1avz+PFjAgICePfuXYGbAeVFxu87p+8iJSVFKnOZO73OeMyze+jObW2KqKgoUlNTs31AyzjAyedQmOflP0XGGpvFihUr8G+Wo6Oj1CQ6NjaWGzdu4OXlxenTpwkPD2fcuHGcPXtWpeaZkZERvXr1olevXkD6QCfnzp1jx44dhIaG4uXlRY0aNRg0aFCu8xIbGysFJDp16sSvv/6aZdpP/fulKKN5KdefmoWFBW5ublKfvq9fv85XYK6w7xFys/+f+9zPr2bNmmFubk5YWBgHDx6kbt26vH//XrrX/frrr/M1qElOFE1W169fz7p160hKSkJXV1fqYzk3FNeGuLg4qlatWuTBsrzIWJM+NDQ0y2bTOWnQoAENGjQA0mvhXbt2DU9PT65fv86bN2+YOHEif/31V2FkWRCyJAZ/EAThs2rQoAHm5uakpKSQkpKChYWF9GOYGxkHY7h37162aTN2MJ1xuYwPJNl1pA7/63tDHcWN7cOHD0lOTs52Pf8EI0eOlJrwrVmzRiXPitHlTExMsu2DJrtj8ql06NCBn3/+GU1NTV68eMGgQYPy3PxCV1eXhg0bsmTJEqZNmwakN7O5cOHCJ8jx/2RsLpq56WjGEf2yu5HOzzEvX748/fv3588//8TS0hJAeniF9P6iFOfFnTt38rx+SD+mlSpVAnI+l3KanxNjY2NatGgBQEhICKdPn87VcqmpqezevVv63LVr1wLloyAUfWmmpaWpjBb9qeno6EjfVU6d72fsnytzACdjX3nZPYAr+rPLiUwmy7Yj/pSUFGn+53oB8inPy6JSvnx5qXlpfs/3rBgaGtKiRQs8PDwYMGAAkN6nWW5G3K5atSojRoxg3759Us35jNep3Hj16pVUXrMacRzSg4CFNTppVhRlNC/l+nPI+PIpc0213NZcK+x7hKCgoGz7+ouIiJD6sPunv/zU0tKSBvs4deoUcXFxeHl5kZaWpjRAxKeg+F1RNM9u2bJljn0JZ6S4l01OTi7QNa0oakBmHIglP6Olq1OyZEnat2/Ptm3bpHuOJ0+e5Po3TRDySwTmBEH4rLS0tOjSpQs6Ojro6OjQpUuXPL1FrFmzplRL56+//sqyr6eMb9CrVaumdFNar1496Y1gdiMx3b9/P9sOhxU/2DExMYU6dPynYmJiQr9+/QAIDg5WefunCBolJSVleVwTEhKURtX9nDp37sySJUvQ1NTk+fPnDB48OF/9/EH6KMAKBem0PTcy3uhmrp2ZMVCXVQ2jtLQ09u/fn+/tGxoaSgMzqBs4AuDFixdcunQpX+tXBNb9/PyybWKasa/A/Bo6dKh0879kyZJcff+bNm3i2bNnALi5uRVZU1ZIH+1U0Tfmtm3bcny5UNgU35W/v3+2wbkDBw6oLKOQsflSdg9xiubbuZHddfjMmTNSADAvL3EK4nOcl5+blpYWbm5uAFy5coWAgIBPsp2M31Ferq1lypSRAsd5vSZnbJafXU3NvXv35mm9+ZExYJXbcp1feWmOm/FczVyrKOOI3Nm9ZCzsewS5XJ5t2oMHD0r7+LnOfQVFn2J5een6zTffoKGhQXx8PMePH5e+/zp16uSqb9z8qlq1Kk5OTtJ9dV5aoQA0b95c+l3dtm1bvvOhKEef80V1vXr1pID+jh07lK4FhSG/1zNByA8RmBME4bObOnUqDx484MGDB0yZMiVPy+ro6PDNN98A6YGAtWvXqqSRy+X89NNP0o+oIhilYGFhQcuWLYH0Jm7Hjx9XWUdcXJw0cmxWunbtKgVafvnlF27evJlt+lu3bnHjxo1s03xqgwcPlvoM2rBhg9JNjOKhKCEhQW2NhdTUVGbPnk1oaOhnyas6X3/9NQsXLkRDQwM/Pz8GDx6scrMUFRXF33//ne1DS8am1IXRT0pWkpOT+e2336TPigdjBcUxh6wf4pYtW5Zth+aXLl3K9juJiYmRgjCZ93XgwIHSTe3MmTOzHIFY4cKFCyq1PHr37i3d1M+ZM0dtjZTDhw/j7e2d7bpzw9nZWeq7KCQkhG+//ZagoCC1aeVyOVu3bmX58uVAemB6wYIFBc5DQRgYGODu7o6mpiYymYwhQ4Zw9uzZHJcrrOZ3ffr0kV6EzJkzR2VESUgfZVoRmMvYXFHB2tpaavq0a9cutQ9hx48f5+TJk7nO1969e9XWdggLC8Pd3R1I7+vsc9V2LIzz8p9oxIgRaGlpkZaWxvjx46URO9VJTU3l8OHDSmkCAwNz/A3L6tp69uxZqRmkOsHBwbx48UJludyoUKGCdA3y8vJSe+3/+++/P0stVUdHR6kWT1blOjQ0VCrXBfHdd9+xa9euHGsBHjx4kGvXrgFQtmxZlWasGV9cvnnzJsv1fIp7hLVr10rfe0YBAQGsW7cOAHNzc+me7XMxNzcH0st8bgOgFSpUkPqW++2336QaVp+ytpyCp6endF+d+T4jJ1WqVJH6nDx27BhbtmzJNn1gYKDaFy+KYxYeHq72t+VTKFGihNQs/tGjRyxevDjL70smkym1tHjy5Em2/b3K5XKuXr0KpNcGzO1gGoKQX6KPOUEQ/nXGjh3LmTNnCAwMxMPDAz8/P7p164a5uTlBQUHs3LlTenioXbu29KOd0fTp07ly5QpxcXFMmTKFmzdv0rZtWwwNDXn27BkbNmzg1atX1KxZM8taITo6OqxcuZIBAwYQHx/PoEGDaN++Pa1ataJcuXKkpaURFhbGo0ePOHPmDH5+fsyZM0e6cSsKpqam9OjRg+3btxMYGMiRI0ekt6tfffUVy5cvJzk5mZkzZ/LkyRMaNWqEoaEhz58/Z8eOHTx69AhnZ+dCbwqVF927dyc1NZW5c+fy7NkzhgwZwtatW6U+aGJjYxk9ejRWVla0adMGR0dHrKys0NLSIiwsjPPnz0s1XUqXLk2zZs0KlJ+goCClfk4UeXjy5Al79uyRgl0VK1ZUKYuNGzfGzMyM8PBwVq5cSVBQEK1bt6ZkyZK8efOGffv2ce3atWyP+bFjxxg9ejQNGzakUaNG2NjYYGxsTFxcHH5+fuzatYv3798D6UG0jEqVKsUvv/zC+PHjCQsLo3v37nTt2pWmTZtiaWlJSkoKISEh3L9/n1OnThEYGMi6deuoXr26tI7q1avTr18/du7cycOHD+nevTvDhw/HxsaGmJgYTp48yb59+7I9l/Ji0qRJBAcHc/LkSZ4+fUrHjh35+uuvadKkCaVLlyYxMZFnz57h5eUlNZ81MjJizZo1UpPeotSkSRMWLFjAjz/+SGxsLGPHjsXBwYHWrVtjb28vBb0iIyN5+vQpZ86cUapZl91okTmxtbXl22+/ZdOmTTx9+pSuXbsyfPhwatSoQUJCAufPn5dqHWhra6sNZBYrVoxevXqxfv16/Pz8GDhwIMOGDaNs2bJ8+PCBkydP4uXlRe3atfH19c0xT6ampujr6zNkyBAGDx5M06ZN0dHR4cGDB6xbt056yJ8wYUKuRnEsDIVxXv4T2draMm3aNJYsWcLz58/p2LEjPXv2pH79+pQqVYqkpCTevn3L3bt3OXnyJGFhYRw5ckQ6b969e8fAgQOpVq0arVq1wsHBQQrqhISEcPz4cSlgU6NGDWrVqiVte9u2bUyZMgU3Nzfq169P1apVMTIy4uPHjzx8+JCdO3dKI3j26dMnT/tVsmRJ3NzcuHDhApcuXWLIkCH06dOHsmXLEh4ezunTp/Hy8qJ8+fJER0fnu6Z1bs2bN4++fftKwfeM5fr+/fusW7eOqKgoqlevXqDmrMHBwSxYsIBff/2VFi1a4OrqSuXKlTE2NiYpKYkXL15w8uRJ6aWIhoYGM2fOVGlymHGQjiVLljBq1CjMzc2ldFZWVhQrVqzQ7xEqVqxIREQEvXr1Yvjw4dK90Y0bN9iwYQMxMTFA+kuEjLX6PgdnZ2dpVPclS5bQuXNnqSl4sWLFsgzS9OjRAx8fH2mwIUNDQ9q2bfvZ8p1f8+fP5+HDhwQGBvLzzz9z7tw5unTpgrW1NTo6OkRFRfH06VMuXbrE9evXad26NR07dlRah7OzM5Bem3jevHkMGDBA6d6oYsWKnyTvEyZM4MqVK/j5+bFz5058fX3p3bs3NjY2aGtrExISwq1btzh27Bjff/+91OT4yZMnzJw5EwcHB5o3b469vT2lSpUiJSWFoKAgDh48KL1oaNGixSfti1gQQATmBEH4FzI0NGTr1q0MHz6cFy9ecOrUKU6dOqWSztnZmd9//11tR7blypXj999/Z/To0cTFxbF7926lfqggPQCooaGRbTDBycmJHTt28P333xMcHMyRI0c4cuRItnkvakOHDmXPnj3IZDI2bNhA586d0dTUxNLSkvnz5zN79mySkpLYuHEjGzduVFq2ffv29OzZU6q1VFR69uxJamoqP/74I48fP+bbb79l69atSoMRvH37Nts3v+bm5qxdu1apz6z8UAymkJ3q1auzZs0alaCKgYEBv/zyC2PHjiUpKQlPT088PT2V0tStW5e5c+eq3ARnJJPJ8Pb2zrZWWu/evdWOvNqmTRvWrl3LzJkziYqKYu/evVk2+dLU1FQZpRFgxowZhIaGcvr0aV68eMHMmTOV5pcrV46VK1cWygi4Ojo6rFixAmtra/744w8SEhLYs2cPe/bsUZveycmJn3766R/VR1GPHj2oVKkSCxcu5OnTp1JNh+zUrl2bKVOmKAU78kMxquLu3bt58+YNc+bMUUljZGTEypUrqVGjhtp1jB49Gh8fH+7evYuvry9jx45Vmp+bMqugr6/Pb7/9xvDhw1m/fj3r169XSTNgwAC+/fbbXO5hwRXWeflPNHjwYAwMDFi8eDExMTFs2rSJTZs2qU2rra0tNenL6Pnz50r98GVWpUoVPDw8VAJACQkJnDx5MsvalJqamowbNy5f14n58+fTt29f3r17x9WrV6WaLgply5ZlzZo1jBgxIs/rzqtatWrxyy+/MGPGDJKSklTKdbFixZg3bx537twpUGDO0tKSR48eER8fz9GjR7NtPm5kZMTs2bNp06aNyryKFSvy1VdfceLECS5fvszly5eV5p87d45y5coV+j1C6dKlmTVrFt9//z3Lli1Tma+pqcnUqVOLJLDVvn171q9fT2BgINu2bVNq4mllZaU0oFBGbdq0wdjYWKrl3L59e7W/mf80JiYm7Nmzh++//55bt25x8+bNbFuBqLtvql+/Pk5OTty9e1dteVR0KVHY9PX12bZtG+PHj+fmzZs8evRI7e9aVnL6/a1duzaLFi0qjKwKQrZEYE4QhH+lcuXKcejQIfbv38/Jkyfx8/MjLi4OY2NjatSoQadOnejUqVO2/dfVq1ePY8eOsX79ei5evEhoaCjGxsbUrFmT/v3706RJEzw8PHLMi5OTE6dPn+bgwYOcP3+ex48fExkZiaamJqamplStWpU6derQpk0bpRE6i4qlpSVdu3Zl3759BAQEcOrUKamD8+7du1O5cmU2bdrEnTt3iImJwcTEhOrVq9OtWzfat2+Pj49PEe9Buj59+pCWlsaCBQt49OgRQ4YMYcuWLVhZWbF//34uXryIr68vb9++JTw8nPj4eIyMjKhWrRrNmzenV69enyxQqq+vj6mpKfb29rRt25Z27dpRrJj6n9wmTZrw559/smHDBq5fv05kZKSUz06dOvHNN9/w7t27LLc1c+ZMGjZsyPXr13n27BlhYWFERESgpaWFpaUltWvX5ptvvsHV1TXLdbRo0YJz586xb98+vL29ef78OR8/fkRLS4tSpUphbW1N/fr1adu2rdpRjLW1tfHw8ODQoUPs27ePZ8+ekZKSQtmyZWndujVDhgwp1FH1NDU1+e677+jRoweHDx/m4sWLvH79moiICPT09ChVqhTOzs60adOmwDUiP5U6derw119/cfHiRby9vbl9+zZhYWFER0ejra2NiYkJVatWxdHRkXbt2hVaYFFTU5N58+bRoUMH9u7dy+3bt/nw4QM6OjqUL18eNzc3Bg0aJPWFp47iQWjr1q0cO3aMN2/eUKxYMSpXrkzXrl3p3bs3wcHBuc6Tg4MDXl5ebNq0CW9vb96/f4++vj4ODg4MGDAgz02zCkNBz8t/sp49e9KiRQv27t3LlStXePnyJTExMejo6GBhYYGtrS0NGzakTZs2SuXA1dWVHTt2cPnyZe7evUtISAgfPnwgOTkZY2NjqlevTuvWrenWrZtKDadly5Zx4cIFfHx8CAgI4MOHD0RGRqKjo4OVlRWurq707t1bqTZuXpQpU4aDBw+yceNGzp07x7t379DV1cXKyopWrVoxcODAzzqyZ8eOHalevTobNmzg2rVrREZGYmpqirOzM99++y21atUqcG1LRTPQy5cvc+fOHZ4/f05ISAjx8fHo6upiYmKCtbU1jRo1olOnTtme00uXLqVmzZqcOnWKly9fEhcXp7YfucK+R2jWrBl//vknf/zxBz4+PoSGhlKiRAlcXV359ttvlWrzfU7Fixdn7969rF+/nitXrvDu3btcjTStq6tLu3btpED+52jGWljMzc3ZtWsXFy5c4OjRo9y9e5cPHz6QkpKCkZERFStWpHbt2rRo0ULt6Oaampps2rSJP/74g/Pnz/PmzRsSEhLy1BdifpmamrJz507OnDnDkSNHuHfvHhEREWhoaGBhYYG9vT2tWrVSCvJ27NgRMzMzrl69yoMHD3j//j3h4eGkpKRgZmaGnZ0d7du3p0OHDp9kRF1ByExD/jnOFkEQBEEQBEH4fzNmzMDLyyvb2ieCIAj/Nr1798bX15dq1apx7Nixos6OIAj/EiL8KwiCIAiCIAiCIAgF8OLFC6lvzX9TbTlBEIqeCMwJgiAIgiAIgiAIQgEo+tzT1dX9bKNIC4Lw3yD6mBMEQRAEQRAEQRCEPEhMTOT9+/ckJCRw9uxZvLy8gPR+HDOP1i4IgpAdEZgTBEEQBEEQBEEQhDy4d++eymjnZcqUYdy4cUWUI0EQ/q1EU1ZBEARBEARBEARByAfF6J+dO3dm9+7dn3UEYEEQ/hvEqKyCIAiCIAiCIAiCIAiCUAREjTlBEARBEARBEARBEARBKAIiMCcIwhfNw8MDW1tb6a9evXr06dMHb2/vz5qPLl26MGPGjM+2PR8fH6X9zvgXERHx2fKRnaCgIDw8PHj//n2W8+fMmUPz5s2pWbMmdevWZejQoZw8eVJKM2PGDDp27Pi5siyxtbVl06ZNStPc3d1p3Lgx1atXZ9GiRRw8ePAfdbyLytChQ2nTpg3JyclK0x8+fIidnR07d+6UpkVGRvLrr7/Svn17atWqRa1atejYsSM///wzQUFBUrqgoCClMl29enWaNGnC5MmTefv2rUoe4uLiWL16NR07dqRWrVo4OTnxzTffsGXLFpKSkgCK7PsaMGAAI0eOVJp25MgR2rRpg729PV26dJH2N2PZFwrGw8OD2rVrf/LtKK7FDx48yPUyHh4e3LlzR2W6uutOdjKfJw4ODrRr145Vq1aRmJiY6/X8m3yu77WoZLynqV69Oi4uLnTq1IkFCxYQEBDwSbbZokULFixYkOv0n+p3ecCAAVne1yj+Ptd9lrg/EQQhr8TgD4IgfPH09PTYtm0bAKGhoaxbt45Ro0axa9cunJ2dizh3n9aSJUuoUqWK0rQSJUoUUW6UvX37ltWrV9OsWTNKly6tNO/u3bsMGzYMU1NThg8fTrVq1YiNjcXb25spU6ZQqVIlqlevXkQ5B09PT8qWLSt9vnr1Kps2bWLmzJnUqlULCwsL9PX18fT0/Mcc76Iyb948OnbsyLp16xg/fjwAqampzJ07Fzs7O/r27QvA69evGTRoECkpKQwYMAAHBwc0NDR49OgRe/fuxdfXF09PT6V1T5o0iXr16pGWlsabN29YtWoVI0aM4PDhw2hpaQEQERHBoEGDCA4OZtCgQbi4uADg6+vLhg0b0NTUZNCgQZ/xiCibN28empr/e48aFxfHrFmz6NixI0uWLMHQ0BALCws8PT2pVKlSkeVTyB97e3s8PT2pWrVqrpdZvXo1BgYGKr9Pma87uaU4TxISEjh37hxr1qzhw4cPeQq2/Fv06NEDNze3os7GJ5XxniYuLg4/Pz88PT3Zt28fixYtokuXLoW6vdWrV+fpd2zMmDHEx8cXah4g/VoZGxsrff7xxx/R09Nj+vTp0jRTU9NC325m4v5EEIT8EIE5QRC+eJqamjg5OUmfa9WqhZubG3/99dd/PjBnbW2Ng4NDoa0vNTWVtLQ0tLW1C22dmSUlJfH9999jaWnJ3r17MTQ0lOa1aNGCPn36FPnNZMbyBPDixQsABg4cqBRkKYyHBLlcjkwmQ0dHp8DrKgoVKlRg5MiR/P7773Ts2JEqVaqwY8cOnj59yoEDB6TjNXnyZFJSUvjzzz+VArUNGjRg4MCBHD58WGXdFStWlL4LZ2dnDA0NGTt2LC9fvqRatWpA+sNbYGAg+/btw8bGRlq2YcOG9OvXT/ruiooinwpv374lOTmZzp07S0FEUC1z+ZWYmIienl6hrEvImaGhYaF9d/ldT8bzpEGDBrx48YJDhw4xf/58pevVp/I5y5ylpSWWlpafZVtFJfM9TaNGjejbty8jRozghx9+wNnZmfLlyxfa9uzs7PKUvkKFCoW27YwyXysNDQ0xMDDI9rwo7LIn7k+U/dvvTwThcxJNWQVBEDIpXbo0pqamvHv3DkivRTdz5kxatmyJo6Mjbdq0Yfny5SpN72xtbdm4cSMeHh40bNiQevXqMXPmTJU3w3fu3KFbt244ODjQsWPHLJvNnj59mi5duuDg4EDjxo1ZsmSJ1KwO/tcE6tKlS0yYMIHatWvTrFkzjhw5AsD27dtp1qwZdevW5YcfflDJb06ioqKYOXMm9erVw9HRkd69e3Pz5k2lNIpmdl5eXrRt2xYHBweePn0KwIULF+jRoweOjo7Ur1+fefPmKR0LmUzGL7/8QrNmzahZsyaNGzdm1KhRxMTE4OPjw8CBAwH45ptvpGYoACdOnCA4OJhJkyYp3fQqVK9ePctaI7n9Lg8cOECHDh1wdHSUmjffv38/1/MzNhUZMGAAP/30EwA1atTA1tYWHx8ftU1FkpOTWb58udT85auvvpK+TwVF8xdvb286d+6Mg4MDf//9t9r9/bcYPnw45cqVY/78+QQHB/Pbb7/Rv39/6YHv1q1bPHjwgNGjR6vUngTQ0dHhm2++yXE7xYsXByAlJQVID3KdOnWK3r17KwXlFExMTLINzv/666906tSJ2rVr06RJEyZNmkRoaKhSmtu3b9OvXz9cXFyoXbs2nTp1wsvLK9fzMzZl9fDwoFOnTgAMHjwYW1tbPDw8smzKevDgQTp16oSDgwNNmjRhxYoVpKamKs23tbXF19eXb7/9FicnJ9zd3XM8jgI8e/aMoUOH4uTkhIuLC+PHj5d+MxRiYmKYMmUKtWvXpkGDBixfvpzNmzdL1zJQ35Q1u+uLYll3d3fpuujj4yPNy9xE7cKFC/Tu3ZtatWpRp04dBgwYwOPHj7Pdtxo1apCYmKh0bYqOjmb+/Pk0btyYmjVr0q1bNy5fvqy0nFwuZ/Xq1TRq1IjatWszfvx4rl69qpRHRT43bNjA0qVLadSoEQ0aNJCW37RpE23btqVmzZq0bNmSrVu3Km0jJCSECRMm0LBhQxwcHGjRogWLFy/O9Xx1TVnfvn3L+PHjcXFxwcnJiaFDh/Ls2TOlNIrmmrt27aJ58+a4uLgwZsyYf01TP11dXebMmYNMJmP//v3S9JyuEQDv379n2rRpNGzYEEdHR9q1ayfVyAPVpqz+/v4MHz6cevXqUatWLdq2bcvGjRul+eqacObmfMrtPVZWFOfahQsXGD9+PM7OzkyYMAHIXfmGnO9rxP3Jf+/+RBA+F1FjThAEIZO4uDg+fvxIuXLlgPR+rUxMTJg5cyYlSpTg1atXeHh4EBYWxpIlS5SW3bVrFy4uLvz888+8evUKd3d3zMzMmDJlCgBhYWEMHToUW1tbVq5cSXR0ND/++CPx8fHUqFFDWs+5c+cYP348HTp0YPLkybx48YIVK1YQHBzMqlWrlLY5f/58unbtSs+ePdm3bx/Tpk3j6dOn+Pv7S7WBfv75Z8qXL8+oUaOUlk1LS5OCFJD+pl1TU5PU1FSGDx9OYGAgU6ZMoVSpUuzYsYNvv/2WvXv3UrNmTWmZhw8f8vbtWyZMmECJEiUoU6YMJ0+eZOLEiXTr1o1x48YRFhbGsmXLiI6OZsWKFQCsX7+evXv3MmXKFKytrYmMjOTKlSskJydjb2/P3LlzWbBggUpz25s3b6KlpUXDhg3z/N3m5ru8efMmP/zwA0OGDMHNzY3ExETu379PTExMruZnNm/ePPbt28e2bdukppbVqlVT29fZhAkTuHPnDmPHjqVq1ap4e3szdepUSpQoodT8KjQ0lIULFzJ69GjKlCmTr+Zr/yQ6OjrMnz+fQYMG0a9fP0qUKCE1awWkh/rGjRvnab2K8p2WlkZgYCCrV6+mSpUqWFtbA+kBP7lcTpMmTfKV7/DwcEaOHImFhQURERFs2bKFAQMGcOzYMYoVK0ZsbCwjR47ExcWF5cuXo6Ojw/Pnz4mOjgbIcX5mPXr0oHz58kyfPp25c+dib2+PpaWl0jmssGXLFpYuXcqgQYOYMWMGAQEB0kO34nqkMHnyZHr16sXIkSPR19fP17H4kgQHB9O/f3/Kly/P0qVLSUpKYsWKFfTv35/Dhw9LD+QzZ87k+vXrTJ06FSsrK/bt28ejR4+yXXdO1xdPT0969erFgAEDpOBG5ppCCsePH2fSpEm0bNmSZcuWoa2tzZ07d3j//n22tZzevXtH8eLFKVmyJJD+QP7tt98SHh7O999/T+nSpTl8+DAjR46UHuABduzYwerVqxk2bBj169fn+vXrzJ49W+02tm/fTq1atVi0aJFUfhctWsT+/fsZNWoUtWrV4s6dO/z666/o6urSp08fAKZNm0ZoaCizZ8/GzMyM4OBgHj58KK03p/mZxcbGMmDAADQ1Nfnxxx/R1dXl999/l77LMmXKSGn//vtvXr9+zdy5c4mMjGTJkiX89NNP0m/aP121atUoXbo0vr6+QO6uEZGRkfTq1QuAiRMnUq5cOV6/fs2bN2+y3M6oUaMoVaoUixYtwtDQkDdv3hASEpJl+tyeT5DzPVZuzJkzh86dO7NmzRo0NTVzXb5zc18j7k/+e/cngvDZyAVBEL5gq1atkjs5OcllMplcJpPJ3759K//+++/lderUkQcEBKhdRiaTyQ8fPiy3s7OTx8fHS9NtbGzk33zzjVLa6dOny1u1aiV9Xrp0qbx27dry6OhoadrVq1flNjY28unTp0vTvv76a3mvXr2U1rV37165jY2N/OnTp3K5XC6/fv263MbGRu7u7i6liY6OlteoUUPu5uYmT05OlqaPGzdO3qVLF+mzYtnMf7NmzZLL5XL52bNn5TY2NvKLFy9KyyQnJ8ubNWsm/+6776Rp/fv3l9vb28vfvXsnTUtLS5M3b95cPmnSJKX8e3t7y21tbeV+fn5yuVwuHzFihNK6MlPk8f79+0rThw4dKm/UqFGWy2U0ffp0eYcOHbKcr+67/OOPP+R169bNcpmc5svl6WXhjz/+kD5v2bJFbmNjo5Tmzz//lNvY2MjDw8Plcrlcfu3aNbmNjY380qVLSum+//57effu3ZX2ycbGRn737t1s8/BvNHDgQLmNjY388OHDStPnzp0rt7GxkSclJSlNT0lJkc5dmUwmTQ8MDFRbvps1ayb39/eX0q1fv15uY2OT5bmeUebvK7OUlBR5SEiI0nd4//59pXM2s5zmy+Xp59iIESOkz48fP5bb2NjIr1+/rrK/J06ckMvlcnlMTIzcyclJvmzZMqV17d69W+7o6CiPiIhQ2qf169fnuP9fGsVvgzqLFy+WOzk5ySMjI6Vpz58/l9va2sq3b98ul8vlcn9/f7mNjY3cy8tLSpOamipv06aN0rUg83UuP9cXddPT0tLkTZs2lQ8ZMiTL9SjKzbFjx+QymUweHR0t9/LyktvZ2ck3bNggpTtw4IDczs5O6dyRy+XyHj16yMePHy+Xy9PLf6NGjeQzZ85USjNr1iyV8mpjYyNv3769PC0tTZr2+vVrua2trXzv3r1Kyy9dulTeqFEjeWpqqlwul8udnJykY6xOTvMzf6/btm2T29rayp8/fy5Ni4yMlDs5OcmXLFkiTWvevLm8adOmStegVatWye3t7aW8/RNkV27lcrm8Z8+e8nbt2uX6GrF8+XJ5zZo15YGBgVmus3nz5vIff/xRLpfL5eHh4XIbGxv5uXPnskyf+Xc5N+eTXJ67e6yMMl87Fefa3LlzldLlpnzn9r5G3J/8d+9PBOFTE01ZBUH44sXHx2Nvb4+9vT3Nmzfn1KlTuLu7S7W05HI5W7dupX379jg6OmJvb8+UKVNISUkhMDBQaV2Z35JWrVpV6U3xvXv3qFevHkZGRtK0Bg0aYGJiIn2Oi4vjyZMntG3bVmld7du3B9KbvmXUqFEj6f9GRkaYmpri6uqq1M9bpUqVCA4OVtn3X375hQMHDkh/Y8aMAdJrEhkaGirVJNLW1qZ169Yq27exsVGqVfDy5Uvevn3LV199RUpKivRXt25dNDU1pdoLdnZ2eHt74+Hhwf3790lLS1PJX2HLzXdpZ2dHVFQUM2bM4MqVKyQkJCitI6f5+XXlyhVMTEyoX7++0nFr2LAhT548UWpeZGJiQq1atQplu/8Uz58/5/bt22hoaHDjxo1cLdOlSxfp3LW3t1dpVjZlyhQOHDjA/v37WbNmDRYWFgwbNkxlpF8NDY185dnb25vevXvj4uKCnZ0dTZs2BeDVq1dAel9KhoaGzJ8/n+PHj6vkL6f5+eXr60t8fDzt2rVTKUuJiYn4+/srpW/WrFmhbPdLcevWLerVq6d03a5atSrVq1eXro+KpqktW7aU0mhqatK8efNs111Y15cXL14QEhJC9+7dc0w7ceJE7O3tcXV1Zfr06bRt25bhw4dL869cuYKNjQ2VKlVSKU+K/QwJCSEsLIwWLVoorTvj/mfUtGlTpfPu6tWrALRp00ZlG2FhYdLvl52dHZs3b2b37t28fv1aZb05zc/s1q1bWFtbKw2+YWJiQsOGDVV+6+rUqaPUV1bVqlWRyWSEh4fnuJ1/CrlcjoaGRq6vEdeuXaN+/fpSC4KclCxZEisrK5YvX46Xl1e2NeUUcnM+KeR0j5Ubma93uSnfub2vKQhxfyIIXzbRlFUQhC+enp4eO3fuRC6X8+rVK5YtW8b06dM5cuQIFhYWbNu2jV9++YVhw4ZRr149SpQowYMHD1iwYIFSn2+gOqKptra2Uv8gYWFhVKxYUSUPGTvZjYmJQS6XY2ZmppTGyMgIHR0dPn78qDI9Ix0dnRzzoVC1alW1gz9ER0erbB+gVKlSKtsvVaqU0ufIyEgAxo4dq7I8ID1gjR49Gk1NTby8vFi9ejWmpqb069ePsWPHZhsoKV26NNeuXSMpKQldXd0s06mTm++yQYMGuLu7s337doYOHYquri5t27Zl1qxZmJiY5Dg/vyIjI4mKisLe3l7t/LCwMKnT8szH/N9OLpczf/58KlasSN++ffnpp5/o3r271Em1hYUFkN7XUcZOy1esWEFiYiIXLlxg9erVKustX768Uvl2dnamUaNGbN26lenTp0v91QUHB1O5cuU85fn+/fuMGTOGli1bMnz4cMzMzNDQ0KBnz55SWTI2NmbLli2sWrWKadOmkZqaiqurK7Nnz8bW1jbH+fmlOAe7du2qdn7mIP1/rTx9atHR0UpdDyiYmZlJ18ewsDC0tbVVrs85daheWNeXqKgo4H/nTnamTJlC/fr1iYmJYefOnRw7doy6devSu3dvIL08PX78WO21STG6cVhYmNr9U/c7om56ZGQkcrmc+vXrq00fHByMlZUVK1asYMWKFaxcuZIff/yRypUrM2nSJNq0aQOQ4/zMoqOj1ZZ/MzMzlQB25t9VRZAu833AP1lISAiVKlXK9TUiKipKavqfGxoaGmzatIkVK1awYMEC6cXnzJkzqVOnjtplcnM+KeT23iY76speTuU7t/c14v5E/J4IQn6JwJwgCF88TU1N6eHd0dGRypUr07NnT9asWcOPP/7IyZMnadGiBZMnT5aWCQgIyNe2zM3N1b5dz1hTxsjICA0NDZXaMzExMSQnJ2NsbJyvbeeFsbGx2nx++PBBZfuZg2iKm7+5c+fi6Oiosg7Fg6KOjg7jxo1j3LhxvH79mj///BMPDw/KlSvH119/nWXe6taty4EDB7h27Vqea/rk9rvs0qULXbp0ISIignPnzrFkyRKKFSsmdSKe0/z8MDY2xtTUlA0bNqidn/GBN781vP6pDh48yK1bt9ixYweurq4cOXKE+fPn8+eff6KlpUW9evUAuHz5stTXFCA9MGZ+gM6KqakpJUuWlNLXqVMHDQ0NLl26lOc+gc6ePYuhoSErV66URrJT1y+Po6Mjf/zxB4mJifj4+PDLL78wduxYzp49m6v5+aE4R1evXq12BMrc1n4R1Mvq+hgeHk6lSpWA9Gu9TCYjJiZGKTiXm1qRhXF9UVyHMw9Gok7GAHa9evX45ptvWLlyJZ07d8bAwABjY2NsbW1ZtGhRluswNzcHVPcvq9pkma9hxsbGaGhosHv3brWjeisC5xYWFixZsoS0tDQePnzI77//zsSJEzl58iTly5fPcX5mxsbGvHz5UmV6eHj4Z/mt/Zz8/f15//49Xbt2zfU1wsTEJFdlKKPKlSuzatUqZDIZvr6+LF++nFGjRnHx4kVpAJ6McnM+FSZ1ZS+n8p3b+xpxf/Lfuz8RhM9FNGUVBEHIxMHBgQ4dOnDw4EHCwsJITExUeVDIPBJVbjk6OuLj46PUEe+1a9ek2g2QPnJkjRo1VEZYPHHiBAAuLi752nZeuLi4EBsbqzQqWUpKCmfPns1x+1WqVMHS0pLAwEAcHBxU/tSNqlmxYkUmTZqEiYkJL168AJCOeebaCO3ataNMmTIsX76c2NhYlXU9e/ZMbbNdIM/fpampKT169KBRo0ZSvvIyPy8aNmxIREQE2traao9bxiZU/yWRkZG4u7vTtWtXKVA2f/58/Pz82LFjBwCurq44ODjw+++/5/khMaMPHz4QGRkpdWpftmxZ2rZty969e3n+/LlK+ujoaKmj9MwUZSnjQ0h2ZUlPTw83Nzf69OlDUFCQSrnOaX5e1K5dG319fUJCQtSWJcX+C/nj4uLC9evXlWrzvHjxgmfPnknXR8UAOefOnZPSpKWlcf78+VxvJ6vri7a2do7lQ3EdPnjwYK63B+k1hKZOnUpkZCT79u0D0q9NgYGBWFhYqC1PAJaWlpibmyvtL5DrALNiZNaoqCi128g8wqWmpiaOjo58//33pKSkqDRbzWm+gouLC35+fkrH9+PHj1y9evWz/NZ+LklJSfz000/o6OjQo0ePXF8jGjRowPXr11VGSM0NbW1t6taty4gRI4iNjc3y2p2b8+lTyk35zu19jbg/EQQhv0SNOUEQBDXGjBnD8ePH2bZtGw0bNmT79u3s3LmTSpUqcfjw4Vz1XaPOoEGD2L17N8OHD2f48OFER0fj4eGh0sTgu+++Y+zYsUyZMoXOnTvz8uVLVqxYQdu2bQvUxC23mjVrhqOjI1OnTmXy5MnSqKyhoaEqo8JmpqGhwYwZM5gyZQrx8fE0a9YMfX193r17h7e3NxMnTqRy5cqMGTMGe3t77Ozs0NfX5/z583z8+FFqylSpUiW0tLT4888/KVasGFpaWjg4OKCrq8vKlSsZNmwY3bt3Z/DgwVSrVk0KJO7bt4/9+/cr9XunkJvvctWqVURFRVG3bl3MzMzw8/Pj0qVLDB48OFfz86tRo0Y0b96cYcOGMWzYMGxtbUlISOD58+e8fv0627f5/2bu7u4ATJ06VZpWvXp1+vfvz6pVq/jqq68oXbo0y5YtY9CgQXTr1o2BAwfi4OCAhoYGb9++Ze/evejo6Kg81Lx+/Zq7d+8il8t5//49mzZtkpqbKsybN4+BAwfSp08fBg0aJD0I3rt3j507dzJ8+HBq166tku9GjRqxbds2fvrpJ1q3bo2vry+HDh1SSnPhwgUOHDhAq1atKFu2LB8+fGDnzp04Ozujq6ub4/z8Uoxqu3TpUkJCQqhbty5aWloEBgZy7tw5PDw8xOiruZCamqryggRg4MCBHDx4kCFDhjB69GiSkpJYuXIlZcqUkZoGWltb07p1axYuXEhCQgJly5Zl3759JCYmZlujJDfXlypVqnDu3DlcXV3R19encuXKKoErDQ0Npk+fzqRJkxg3bhxdunRBR0eHu3fv4uDgkG1fdw0bNsTFxYWtW7fSr18/vv76a/bu3cvAgQMZMmQIlSpVIiYmhsePHyOTyZg8eTJaWlqMGDGCxYsXU6pUKerVq4ePjw/Xrl0DkGqVZqVy5cr069ePadOmMXToUGrVqoVMJuPVq1f4+Piwdu1aYmJiGDp0KF26dKFy5crIZDJ27NhBiRIlsLOzy3G+Ot26dWPr1q2MHDmS77//XhqVtVixYgwaNCjbPP9TpaWlcffuXSC9D10/Pz88PT2lEdoVteFyc40YPHgwhw4don///owePZry5csTGBjIq1evlK7ZCk+fPuWXX36hffv2lC9fntjYWNavX4+VlRUVKlRQm9/BgwfneD59Srkp37m9rxH3J4Ig5JcIzAmCIKhRpUoV2rdvz549e7hw4QKRkZFSQKpt27bMnj2bUaNG5Xm9FhYWbNy4kYULFzJhwgQqVKjA3LlzWbFihVK6li1b8ttvv7FmzRrGjBmDiYkJPXv2VGri8ClpaWmxYcMG3N3dWbp0qdRPzObNm6WaINn56quvKFGiBOvWrZPe+FpZWdGkSROp/xFnZ2dOnDjBli1bSE1NpXLlyvz6669Sk0JTU1Pmzp3LH3/8weHDh0lJSeHZs2cAODk54eXlxYYNG1i/fj0fPnzAwMAABwcHli9fTvXq1dXma+zYsTl+lw4ODmzbto0TJ04QGxuLpaUlQ4cOZfTo0bmaXxCrVq1iw4YN7Nmzh7dv32JkZIS1tTXdunUr8Lr/iW7duoWXlxc//fSTSt9U48eP58SJEyxZsoSVK1dSsWJFDh48yKZNm6R+CTU0NChfvjyNGzdm+fLlKv15LV++XPp/yZIlqV69Otu2bVPq68jU1JS9e/eydetWTpw4wYYNG9DU1KRatWoMGzZM6mcrMzc3N6ZMmcLOnTs5ePAgzs7OrF+/XmnQlgoVKqCpqcnKlSsJDw/HxMSExo0bM2nSpFzNL4ghQ4ZQunRptmzZws6dOylWrBgVKlSgWbNmapsKCqqSkpKYMGGCynR3d3d27NiBu7s7U6ZMQVNTk0aNGjFjxgylANnixYtZsGAB7u7u6Ojo0LVrV6ytrdm1a1eW28zN9WXu3LksXryY4cOHk5iYyPbt26Xm3hm1b98ePT091q1bx6RJk9DV1cXOzo7WrVvnuO/fffcd3377LUeOHKFbt25s374dDw8P1q1bR1hYGCYmJtjZ2dG3b19pmQEDBhAdHc3u3bvZsWMHDRo0YOrUqUycOFHl3FRn9uzZVK5cGU9PT9asWUPx4sWpXLky7dq1A0BXVxcbGxt27NhBcHAwenp61KxZk02bNmFqakpycnK289UxNDRkx44d/Pzzz8yZM4e0tDScnZ3ZuXOn2uDJv0FiYiK9evUCwMDAgHLlytGgQQNWr16tNMhFbq4RJUuWZM+ePSxbtoxff/2VhIQErKyslL73jMzNzSlVqhTr16/n/fv3GBkZ4erqytKlS6X+2jIrU6ZMrs6nT0VHRydX5Ts39zUg7k8EQcgfDblcLi/qTAiCIAiCIAjCf12/fv3Q1NSUmmn/161cuZItW7bg4+ODnp5eUWdHEARBEP6RRI05QRAEQRAEQShkp06dIjg4GBsbGxISEjh69Ci3bt1izZo1RZ21TyIgIIDDhw9Tu3ZttLW1uXHjBps2baJPnz4iKCcIgiAI2RCBOUEQBEEQBEEoZAYGBhw6dIhXr14hk8moUqUKS5cupVWrVkWdtU9CT08PX19f9uzZQ1xcHKVLl2bo0KGMGzeuqLMmCIIgCP9ooimrIAiCIAiCIAiCIAiCIBSB7IdIEgRBEARBEARBEARBEAThkxCBOUEQBEEQBEEQBEEQBEEoAiIwJwiCIAiCIAiCIAiCIAhFQATmBEEQBEEQBEEQBEEQBKEIiMCcIAiC8Mm0bNmSli1bFnU2BOGTEuVc+BKIci58CUQ5FwShKIjAnCAIgiAIgiAIgiAIgiAUARGYEwRBEARBEARBEARBEIQiIAJzgiAIgiAIgiAIgiAIgiQuLo6mTZtia2vLgwcPijo7hcLDw4M7d+4UdTZUiMCcIAiCIAiCIAiCIAiCIFm7di2pqalFnY1CtXr1anx9fYs6GypEYE4QBEEQBEEQBEEQBEEAICAggN27dzNu3LiizkquJCYmFnUWCkQE5gRBEARBEARBEARBEAQAFi5cSO/evalcuXK+19GqVStWrlwpfT516hS2trb88ssv0rRLly5ha2tLRESENG3v3r20bduWmjVr0qJFC9auXUtaWpo0/+DBg9ja2uLr68u3336Lk5MT7u7uABw4cIAOHTrg6OhIvXr16NOnD/fv3wfA1tYWAHd3d2xtbbG1tcXHxyff+1eYihV1BgRBEARBEARBEARBEITC0bJly2znnzt3Lst5J0+exM/PDw8PDx49epTvPNSpU4dbt25Jn2/evImurq7KtCpVqmBqagrAjh07WLhwIQMGDKBZs2b4+vqyevVqYmJimD59utL6J0+eTK9evRg5ciT6+vrcvHmTH374gSFDhuDm5kZiYiL3798nJiYGAE9PT3r16sWAAQPo2LEjANWqVcv3/hUmEZgTBOGLErlodFFn4YtyoIUNII7751asbZeizsIX5a9fpgIQc+tkEefky3JHv2lRZ+GLMnfVEQC8H8UXcU6+LGduise1z6nBgBMAzN6aXMQ5+bIsHKxT1FnIl/9iOUlISODnn39m4sSJGBoaFmhdrq6uHDt2jOTkZHR0dLh58yY9evRg7969xMXFUbx4cW7evEmdOnUASE1NZc2aNXTo0IHZs2cD0LhxY2QyGZs3b2bEiBGULFlSWn/v3r0ZMWKE9HnTpk2YmJgoBfCaNWsm/d/JyQmAMmXKSP//pxBXekEQBEEQBEEQBEEQhP+I7GrEZef333/HzMyM7t27FzgPderUISkpifv372NjY4Ofnx/Lly/n6NGj3Llzh7p16/LgwQP69OkDwIsXL4iMjKRdu3ZK62nfvj3r16/n/v37uLm5SdMzBt0A7OzsiIqKYsaMGXTq1AlnZ2f09fULvB+fgwjMCYIgCIIgCIIgCIIgfMHevn3L5s2bWbNmjdT8Mz4+XvpXUcsttypUqEDp0qW5efMmMTExmJmZUbVqVZydnbl16xY6OjrIZDKpxtzHjx8BMDMzU1qP4rNivkKpUqWUPjdo0AB3d3e2b9/O0KFD0dXVpW3btsyaNQsTE5PcH4giIAJzgiAIgiAIgiAIgiAIX7CgoCBkMplS81CFgQMHUqtWLfbt25endSr6mYuJicHFxUWadubMGbS1tbGysqJMmTIAUvAs40AQAOHh4QAYGxvnuL0uXbrQpUsXIiIiOHfuHEuWLKFYsWIsXrw4T/n+3ERgThAEQRAEQRAEQRAE4QtWo0YNtm/frjTtyZMnLFmyhB9//BEHB4c8r9PV1RV3d3ciIyOl5rF16tRh+fLlyOVyXF1dpbSVK1fG1NSUkydP0rp1a2n6iRMn0NbWxtHRMdfbNTU1pUePHly8eJEXL15I07W1tUlKSsrzfnxqIjD3H+Dh4cHq1avVzps8ebLaiPen5uPjw8CBAzlw4IB0Atva2jJt2jSGDh36ybc/ZswYYmJi2LFjR66XSUxMZPPmzRw9epTAwED09fVxdnZm1KhRueoc8uzZs4wdO5Zz585Rrly5LNMtWrSIc+fO8ffff+c6b+oEBQXlONoOIF1cBw4cKE0zMDCgYsWK9O/fn+7du6OhoQH8bwhpSL9olSlTBjc3N7777rt/fPVfoeBkqansv+fP5RfviE2WUaGkEb2cbHAoUyrb5d5Fx3LWL5DnH6J4FRGNLDWNVV2bYW6o2qfDtVfB3A4K5fmHKN7HxFOjtClz29TLct0vwz9y4P5znoVGkpyaSmkjA1pal6dd9UoF3FvhSyVLSWHfifNcvH2PuPhEKpQpTe/2LXC0rZrtcu9CP3Dm6i38XwfxMigYWUoKa+ZMxNzURG36hMQk/jztzbV7j4iMjsGouAE2FcvzXb+u6Oqkd3I9f/UWHge8Uru8lpYWe36dW5BdFQQVKTIZZ47t5e6NiyTEx2FpVYHWnfpgXb1WtsuFvX+Hz6XTBL7y413gS1JSZExbsJaSZhYqaZOSEjlzZA8PfK8RFxONaanSNGz2FfWbtlOzZkHIv9QUGQ+v7+H1E2+Sk2IxKVWRmg37YVkh+/IcHfmWgPuniAjxIzL0BampMjoOWU/xEqrlOUWWyIOruwjyv0ZiwkcMjUtjXasD1Wp9le02bp5dw4uHZylb2ZUmXX4o0H4KwudSokQJ6tVTf19ub2+Pvb299HnGjBl4eXnx7NmzbNdZp04d4uPjefToEUuWLAHS+4LT0dHB19dXqS87LS0txowZw8KFCzE1NcXNzY27d++yceNGBg0apDTwgzqrVq0iKiqKunXrYmZmhp+fH5cuXWLw4MFSmipVqnDu3DlcXV3R19encuXKBR7kojCIwNx/hJ6eHtu2bVOZrqgW+k/g6elJ2bJlizobasXHxzN48GD8/f0ZNmwYrq6uREVFsXPnTvr27cuvv/5K+/btizqbSiwsLPD09JQ+h4WF8d133zFp0iSlC2q1atWkYa6XLFlClSpViI6O5sCBA/zwww+kpKTQu3dvKb1i+OikpCRu3LjBunXrePXqFX/88cfn2zmhSPx+9QE33oTQrnolLI0MuPjiLb/8fYvZretS3cI0y+X8w6I4+fQV5YwNKWtcnNcRMVmmPeP3hhfhH6lWypjYJFm2+bn/7gNLz9+ikqkx3RyrolusGKEx8YTHJeZ7HwVh7Z6/uH7vMe2b1sOylBneN++yZOMu5o0ZRPUqFbNczu9VIMcvXqecpQVWpc159TY4y7RxCYnMX7OF8KhoWjVwwbKUKdGxcTx98QZZSiq6/z/4XLfWTWlR31lp2aRkGRv3H8kxUCgI+XFgx2oe3L1Oo2btMbMow53rF9i6djHDJ8ynUtUaWS735uUzrl44hkWZ8lhYWvEu6JXadGlpaWxZ/RNBrwOo37QdpSws8Xtyj0Oef5AQH0fzdgXvTFwQFG6cWUWQ/zWsnTpiVLIMrx6f59JfP9Gs+0+YW2VdnsODn+F/9yglTMtTwrQckWEv1aaTp6Xh7fUjEe+fU83xK4xMyhDy+i63z28gOSkOu7rfqF0uIsSfV4/Po1Xs3znSqCDkRnx8vEofb+pUq1YNU1NT0tLSsLGxAdIDcM7Ozly6dEmpxhykP4sWK1aMrVu3smfPHszNzfnuu+8YNWpUjttycHBg27ZtnDhxgtjYWCwtLRk6dCijR4+W0sydO5fFixczfPhwEhMT2b59e5bByM9JBOb+IzQ1Nf9xQ/5m9k/O32+//ca9e/fYtm0b9evXl6a3atWKIUOG8MMPP+Dq6oqFheqbtKKio6OjdEyDgoIAqFixYpbH2traWqrB2KhRI9q3b8/OnTuVAnMZh4+uV68eoaGh7Nu3j9DQ0H/U/guF6/mHKK69CqafS3U62lUGoGkVK6YdvczuO89Y0K5Blss6l7NgU6/W6GsX4+jjl7yOeJpl2rGNHDE10ENDQ4OpRy5lmS4+WcbaK/eobWXBRLfaUq1OQSgI/9dBXLnzgAGd29CpeSMA3OrUYor7WnYeOcPCCcOyXNbF3pati2eir6fLkfNXsg3M7Tl2lrCIKNwnj8LCLMPb3UyVnNUF3y7eugdAE+e8NxcRhOwEvvLn3u0rtO86kCatOgPgXK8Zvy2axAmvHYyeknX/OzUcXJn363Z09fS5dPZwloG5h3ev8/rFM7r3G41rw/QCX79pO3ZtXMr5k39Sp1ErDI1y7iNIEHISHuLHm2eXqdVkMNVdugBQqUZzTu6cwP3L22jZ6+csly1buQ5dR+9CW0efp7cPZRmYC3p+jQ/vnlKn9Viq2LcCoFqtr7hy1J3HN/ZTpWZr9AyUy7NcLsfXexOVajTjfeCDQtpbQSg69erVU1sr7v79+0o10bJz7do1lWnZVfro06ePNFKrOt26daNbt24q05s3b07z5s2zzYurqysHDx7MNk1R0CzqDAifR2xsLNOmTaN27drUr18fd3d3Nm3apNR08eDBg9ja2qp0ttilSxdmzJghffb19WXUqFE0btwYJycnunTpwl9//ZVjHmxtbdm0aROQ3tTV1tZW7Z+Pj4+0zIULF+jRoweOjo7Ur1+fefPmSSPDKAQEBNC/f38cHBxo1aoVXl5eeTo2iYmJ7Nu3j0aNGikF5SA9mj9+/Hji4+PZv3+/NF0mk7Fo0SLq1q2Li4sLs2bNIi4uTmXd79+/Z9SoUdSqVYsmTZqwceNGlTTR0dHMnj2bJk2a4ODggJubGxMnTszTPuSHlpYWNWrUkAJ6WalRI/2NY3Bw1g+hmZ07d45u3bpRu3ZtXF1d6datG97e3kppDh48SKdOnXBwcKBJkyasWLGC1NRUIL28Nm/enPHjxystM3fuXOrVq8f79+9znRchd3xeh6CpoUGLav9rhq1TTItm1crhHxZFeFxClssa6eqgr5279zxmxfVzFWS78iqYj4nJ9HSyQUNDg0RZCnK5PFfbEISs+Nx7jKamJi0buEjTdLS1aV7PGb9XgYRHfcxyWaPiBujr6ea4jbiERC7cuEvrBq5YmJUkJSUVWUpKrvN4+c4D9HR1cK1ZPdfLCEJuPPS9hqamJnUatZKmaWvr4NqgBW9e+hEV+SHLZQ2KG6Grp9o9QWavA9JfzDi6Nlaa7ujSGJksmcf3b+Qz94KgLMj/GhoamlSt+b9+qLSK6VDFvhUfgp8RH5N1edbVN0JbJ+fyHPbuCQAVbJooTa9g25jUlGTeBvioLPP6yQU+hr+hZsN+ud0VQfjXeffuHQkJCfTt27eos/KfIWrM/YekqLnxL1Ys/SueNWsWly5dYsqUKZQrV47du3dz9OjRfG3n3bt3ODs706dPH3R0dLhz5w6zZ89GLpfTtWvXXK3D3t5eqRkmwIYNG7hy5YrU/PbkyZNMnDiRbt26MW7cOMLCwli2bBnR0dGsWLECgKSkJIYMGYK+vj7u7u5Aetvy2NhYKlWqlKu8PHz4kPj4+Cyj6y4uLpiYmHDr1i1p2vLly9mzZw/jxo3Dzs6OY8eOsWzZMpVlx4wZw/v375k/fz5GRkZs3LiR4OBg6XuB9Oally5dYvLkyVhZWREWFsbFixdzlfeCCgoKyrEW3Lt379DU1Mx1M+Q3b94wYcIEOnTowOTJk0lLS+Pp06dKw1tv2bKFpUuXMmjQIGbMmEFAQIAUmJsyZQqGhoYsXryYb7/9lr/++ouvv/4ab29vPD09WbFiBaVLly7QfguqXkVGU6aEAQY62krTq5kZS/PNiud8E1tYHgZ/QF+7GJEJiSz3vkNwdBy6xbRoUqUsA1xqoFNM67PlRfjvePk2hDLmZhjo6SlNr1bBSppvZlKw2jxPX7wmWSajdClTlm3x5ObDp8jlcmwqlWdIt/ZULpd1FxMfY+N44PeChk726OmKJlBC4XoX9IpSFmXR0zdQml6uYjUAgoNeYVIy52ZJ2UlJkaGpqYmWlvIjhrZOelD77ZsX0KhAmxAEACLDXmJUsizausrl2bS0tTTfwKhg5TktVYaGhiaamcqzVrH08hwZGqA0XZacwP0rO6hR5xv0i2ffF5Yg/JuVLVtWqTKNUHAiMPcfER8fr9QZo8KuXbswMTHh9OnTLFy4kG++Se8LoXHjxrRp0yZf2+rQoYP0f7lcTp06dXj//j2enp65DswZGhoqNbc8ceIEf//9N+7u7lSoUAG5XI67uzvt27dn0aJFUjpzc3NGjBjBmDFjsLa25uDBg4SGhnLixAkpEGdnZ0e7du1yHZhT1L7Krj++MmXKEBISAkBUVBS7d+9m+PDhjBw5EoAmTZrQv39/pZpcFy9e5OHDh2zdupUGDdKbAdarVw83NzelgRQePHhAx44dlY5dxmNcmNLS0khJSSEmJgZPT08ePHgg7UPmNMnJyfj4+LBnzx569eqFubl5rrbx+PFjZDIZc+bMkTrSbNLkf28aY2NjWbVqFcOGDWPSpElAerNabW1tfv75Z4YOHUrJkiVp0KAB/fv3Z+HChdja2vLDDz/QsWPHf1xff/8VUQlJmOir1gYy0U8PYETGf97Ri0Ji4kmVy/n1wh2aVytHr9o2PHkfwamnr4lLTmF8E6fPmh/hvyEyOoaSJVQ7+C1Zwih9/ses+0fMrZAP6bXOdx87i6WZKd/17UpcYiIHTnmz4PdtLJs2FlNjI7XLXvV9SGpqKo1dcj/qmCDkVszHSIxKmKhML2Gc3odo9McIlXl5VcqiLGlpaQS+8lPqs+5VwOP0bUQVfBuCAJAYF4GemuCXIiCWGFfwsmZUsixyeRrhwX5KfdZ9eJtenhNilbfx6Lonmlo62NTuVOBtC4LwZRGBuf8IPT09du7cqTK9SpUqnD59GrlcrjTksJaWFq1atWLr1q153tbHjx/x8PDg3LlzvH//Xmp+mN9RO58+fcrMmTMZPHgwnTun93ny8uVL3r59y6xZs5RqAtatWxdNTU0ePnyItbU19+/fx9raWikIV7FiRapX/3RNgPz8/EhMTFQ6ngBt2rTh5s2b0uf79+9jZGQkBeUAjIyMaNiwIY8fP5am2dnZ4eXlhbm5OU2aNJE6xfwUevbsKf2/WLFi9O7dm7Fjxyql+fXXX/n111+lzy4uLsyePTvX27C1tUVLS4spU6bQs2dP6tSpg5HR/x5CfX19iY+Pp127dkrfbcOGDUlMTMTf35+6desCMGXKFK5cuULPnj0pWbIkc+eKEQo/leSUVIppqvZuoK2VPi35/8/zzyVRlkJySiqtbMozuI4dAPUqWJKSmsY5/0B61LKmTIninzVPwr+fTJaiVGNZQfv/a2Amy7IfkCQ3EpLSg9gawNwxg6Sab1WsyvLDbxs5deUGfdqrH1H7yp0HlDAsjqNNlQLnQxAyk8mS0SqmrTJd6/+7IpAlJxd4G06ujfn7xAH+3LmWzr2GUcq8DH5P7uJz8bSUB0EoDKkpMrS0VMuz5v+X8RRZwV8oVrBtymOf/dw844Fzi5H/P/iDL8/vn/z/PPyvPEdHvsX/3jEatJuk9jwTBEHIjgjM/UdoampKnfpnFhYWhra2NsbGys1zzMzM8rWtGTNm4Ovry9ixY6lWrRqGhobs2bOHEydO5HldERERjBkzhtq1azN16lRpemRkJIBK0EhB0d9ZaGio2v0wMzMjKSl3P8iKZpHZ9aEWHByMnV16cCAsLEzaRkaZR6UJDQ3F1FR1JMvMy82ZMwdjY2O2bNmCu7s7ZcqUYcSIEZ+kzf4vv/xC1apVMTQ0xMrKCh0d1aZSAwcOpHPnziQkJHD48GH279/Pb7/9xuTJk3O1jcqVK7Nu3TrWr1/Pd999h6amJo0bN2bu3LmULVtW+m6zql2Z8XvQ09OjVatWbNiwgY4dO6qUYaHw6BTTIiUtTWW6LDV9mo7W5206qmiq2qCSchPqhpXLcs4/EP+wKBGYE/JMW7uY2m4fZCnpgWcd7YI/TOn+/zpc7G2VmqNaVyqHhVlJ/F8Fql3u/YcI/F4F0q5JPbQ+8/kmfBm0tXVITVENPqfK0s8JbTX3BHllZFySASOnsX+bB5s9fgJAT8+ATj2HsH/7anR09XJYgyDkjlYxbVJTVctz2v+X8WLaOfcJmhP94iVp1GkmPqd+w/vgfAC0dQxwbjYMn9OrKKb9v/J813szpSxtKWed9WBZgiAIWRGBuS+Aubk5MpmMjx8/KgU2wsPDldLp6qb/gMky1RiIjo6W/p+UlMSFCxeYMWMGAwYMkKbv3r07z/mSyWSMHz8eDQ0NVqxYofQgoqh9N3fuXBwdVZv0KPpFs7Cw4NGjRyrzw8PDpWaUOalZsyYGBgZcuHBBaZ8UfH19iYqKkoZyVjTpDA8PV+rr7MMH5U5mLSwsVAbSUCyXkZGRET/88AM//PADz549Y/v27fz444/Y2NioDB9dUFWrVs0ygKtgaWkppalbty4fPnxgy5Yt9O3bN9vmvhk1bdqUpk2bEhsby8WLF1myZAkzZ85k27ZtUhlcvXo1lpaWKsuWK/e/wQeePn3Kli1bsLOzY+fOnXTv3p2qVVVHMRQKzkRfl8j4RJXpUQnp00oaFPwGN6/5CYqKxURf+UHRWC/9c1xywWs2CV+ekiWMiPgYrTI9Mjq9CWvJLJqY5nUbAMZGqoFjY8PixKo5zyB90AeAJs6iGavwaRgZl1TblFTRhFXRpLWgqljbM3XBWkLevkaWnIRluUrSds0tcncfIQg50StuSkJsuMr0hLhIaX5hsChnT8dv1xH14RWpKUmYmFcm/v+3a1Qy/eXh+8AHBL+6Q6OO04mLDpWWlaelkpKSRFx0KDq6hir94QmCICiIUVm/AIogy5kzZ6RpqampnD17VimdIsj04sULaVpAQIBSDabk5GTS0tLQzlCrIDY2lr///jvP+frpp5949OgRa9asUWkGW6VKFSwtLQkMDMTBwUHlT5FXBwcH/P39ef36tbTs69evefr0aa7zoaenR8+ePbl8+bJSU1RI729t1apVGBgY0KNHDwBsbGzQ09NTOp4Ap0+fVvrs4OBATEyM0vDQMTExXL16Ncu82NraMnPmTCD92P8TTJs2jbS0NGlE3bwwNDSkffv2dOjQQdqf2rVro6+vT0hIiNrvtmTJ9L5BkpOTmTZtGo6Ojnh6emJtbc20adPU1nYRCq5iyRIER8cTnyng5f8hCoBKJUt81vxUMU0P4Gbu2y4qIf1zCT3RMb6Qd5WsShMcFk58onJwzP91+ujUla1UXxbkVZXy6Q9q6vqri/gYg1Fx9Q9ml+88wLKUKdaVyqmdLwgFVcaqIh9C35GYoDy6feAr//T55SoV2rY0NTUpW74yFatWR1dXj4Bn9wGoVl0EnoXCYVKqEjGR75AlKZfn8BA/AEqaVy60bWloalLSogqlytagmLYeoW/Sy3PpCrUAiI9Jb01z5egvHN08UvqLjw0nNPABRzeP5MWjs1muXxAEQdSY+49IS0vj7t27KtPNzMyoVq0arVu3ZvHixSQlJUmjsmauGVerVi3KlCnD4sWLmTx5MrGxsWzYsEEpaGZkZISDgwMbN27E1NSUYsWKsWHDBgwNDdXWDsvK0aNH8fT0ZMiQISQmJirlXdE8dsaMGUyZMoX4+HiaNWuGvr4+7969w9vbm4kTJ1K5cmW6devG77//zsiRI5kwYQKQPipr5malOZkwYQK+vr6MGDGC4cOH4+rqSlRUFLt27eLmzZv8+uuvUi09ExMTevfuzcaNG9HT05NGZX3z5o3SOps2bYq9vT1Tp05lypQpGBkZSccqo969e9O6dWusra3R0tLir7/+Qltbu9Bry+VXlSpVaN++PQcOHGDs2LFS4Cwre/fu5e7duzRp0gRzc3OCgoI4fPgwjRqlD8NWokQJxo8fz9KlSwkJCaFu3bpoaWkRGBjIuXPn8PDwQF9fn1WrVhEYGMihQ4fQ0dHB3d2drl278vvvvzNu3LjPsetflHoVLDn2+CV/Pw+io136zawsNRXvgLdUK2Uijcj6IS6BpJRUrIxzVyM1vxpUKsPhRy/4+3kg9pb/a/59zj8QLU0N7EoXzptw4ctS39GeI+evcu7abTo1T78myVJSuHDDF+uK5aQRWT9ERpGULMOqdO4GvcmorEUpKlpZcuvhM6Jj4yhhmF5z7t6z54RHfeSrJvVUlnkZFMzb92F0b+NWgL0ThOzVrN2AS+eOcPPKWZq0Su/TN0Um4/b185SvZC2NyBoVEUZycjIWllaFst3YmI94n/4LS6uKVKteq1DWKQjlrRvw7M4hAh6eobpLFyC937mXj89hZmkjjcgaFx1GakoSJUwL56VHYvxHntzywqRURSkwZ1HOgcadZqikvXX2dwxKmGNX9xtKmFUolO0LgvDfJAJz/xGJiYn06tVLZfo333zDokWLWLx4MQsWLODXX39FR0eHrl27UrduXdzd3aW02trarF69mvnz5zNhwgQqVKjArFmz+Pnnn5XWuWzZMubOncuMGTMwMTFhwIABxMfHs3nz5lzn9+XLlwBs3rxZZbnt27dTr149vvrqK0qUKMG6des4cuQIAFZWVjRp0kQKvOnp6bF582bmz5/P1KlTKV26NGPGjOHcuXPExOR+dD0DAwO2b9/O5s2bOXr0KL///jv6+vo4Ozuza9cuateurZR+8uTJpKam8scff5CWlkbr1q2ZPHky06ZNk9JoaGiwdu1a5s2bx9y5cylRogQDBgzgw4cPnDt3Tkrn7OzMX3/9RVBQEJqamtjY2LBu3bp/VJPNMWPGcPz4cXbu3JljUMzW1pbz58+zZMkSoqKiMDc3p0OHDlLgFGDIkCGULl2aLVu2sHPnTooVK0aFChVo1qwZ2tra3Llzh02bNjFv3jwqVEi/kalatSqTJk1i6dKlNGvWLMcmuULeWJubUL+iJXt9n/ExIYnSRgZcevGWD3EJjGjwv2O99sp9nryPYM+Ar6RpcckyTj1Lr7XqF5rehOTUs9cY6BSjuLY2batXlNI+fh/B09D0IH50YjKJslQOPngOQHULUyngVsm0BM2qlePC8yDS0uTYlTbl8fsIrr8OoUvNKpQ0EP0UCXlnXakcDZzs2X3sHB9j4ihdypSLt+4RFvmRUb26SOlW7/LiccAr9q34UZoWl5DIyUs+ADz7/37iTl72wUBPDwN9PaWA26Au7Vi4bjtzPTbTuqErcQmJHPO+RlmLUrRpVEclX5fvpNe+aCJGYxU+oQqVbXBwbsDJw7uIjYnC1NwSXx9vIiPC6NZvtJRu3zYPXj5/zJI1B6RpCfFxXPNO70v49YtnAFzzPoGefnH09IvTsNn/fhM2rJhLhSo2mJWyJCY6ihtXzpCclMjA0TPR0ND4THsr/NeZlbGlvHUjHlzZQVJ8FIYmlrx6coH46DDqtPpOSnfj1G+Evn1Er++9pGnJSXE8v3scgA/B6a1s/O8eR0e3ONq6Blg7dZDSnt8/G7MythiaWJIYF0XAw9OkyBJp0mWWVJ6LlzCneAnVFzm+3pvRMzDBqqrqCxlBEISMNORyubyoMyEUja1bt7JkyRKePXtW1FkRhM8mctHonBN9oZJTUtl3z58rL98RlyyjvIkRPZ2sqVX2fzebC077qATmwmITGO91Qe06SxXXx6NbM+nzgXv+/Hn/udq03R2r8U0ta+lzSmoahx4GcCHgLVEJiZgV16eNbQXa1yi85in/VcXadsk50RcqWSbD88TfXLr9gLj4BCqULU2vr1rgVL2alGb+6i0qgbmwiCjG/rRC7TrNTU1YM2ei0rT7zwLwPPE3r9+9R0dHG+ca1vTr1Frqg05BLpcz+sflGBsV55fJowpxT//77ug3Leos/OvIZMmcObKHuzcvkRAfh6VVBVp37I2N3f9eQG5YMVclMBcZHor73DFq11nS1JxpP/0ufT56YCtPHtwkOioCXT19qlV3pHWn3piVKnhT8S/RmZuiHkVWUlOSeXB1N2+eXSQ5MRbjUhWp2aAvZSr9rzyf3z9bJTAXFx3K0c0j1a6zeAkLOg5ZL3329d7Muxc3SYgNR1vHgNIVHKnZsC+GxjmX56ObR2JsVoEmXX4owF5+GRYO/nd2UTJ76z93pOl/6zH9UonA3BdMBOaEL5EIzAlfAhGYE74EIjAnfAlEYE74Evxbg0giMCcUFnGlF/7zshssQENDQ2k02H+a1NRUsoudFyv2+U/hf/PxFARBEARBEARBEIR/EhGY+4INHjyYwYMHF3U2Pjl7e/ss51lZWeVrRNnPpXXr1rx9+zbL+UVR2/HffDwFQRAEQRAEQRAE4Z9EBOaE/7wDBw5kOU9H559dxff3338nOfmfVUX633w8BUEQBEEQBEEQBOGfRATmhP+8f/Ponba2tkWdBRX/5uMpCIIgCIIgCIIgCP8kmkWdAUEQBEEQBEEQBEEQBEH4EonAnCAIgiAIgiAIgiAIgiAUARGYEwRBEARBEARBEARBEIQiIPqYEwRBEARBEP51ztwUt7HCf1/rOilFnQVB+AzEAHLCl03UmBMEQRAEQRAEQRAEQRCEIiACc4IgCIIgCIIgCIIgCIJQBERgThAEQRAEQRAEQRAEQRCKgAjMCYIgCIIgCIIgCIIgCEIREL3m/kt4eHiwevVqtfMmT57MiBEjPnOOwMfHh4EDB3LgwAEcHBwAsLW1Zdq0aQwdOvSTb3/MmDHExMSwY8eOXC+TmJjI5s2bOXr0KIGBgejr6+Ps7MyoUaNwcnLKcfmzZ88yduxYzp07R7ly5bJMt2jRIs6dO8fff/+d67ypExQURMuWLXNMt337dgAGDhwoTTMwMKBixYr079+f7t27o6GhAaR/Rwra2tqUKVMGNzc3vvvuO0xMTAqUX+HfTZaayv57/lx+8Y7YZBkVShrRy8kGhzKlsl3uXXQsZ/0Cef4hilcR0chS01jVtRnmhvrZLhcSE8e0I5eRpaax8KsGVC1lIs3zDghi3dUHapf7/ZsWmOjr5nX3BAEAWUoK+06c5+Lte8TFJ1KhTGl6t2+Bo23VbJd7F/qBM1dv4f86iJdBwchSUlgzZyLmpiYqacf+tIKwiCiV6a0auDKiZyelafefBbD/1AVeBgVTrJgWDtZVGNilrdr1CkJupabIeHh9D6+feJOcFItJqYrUbNgPywq1sl0uyP8ab/yuEPH+OYnxkRgYlaJsZVfs6vVER7e4Utqjm0cSFx2qso6qDm1wbTlaaVrE++c8uu5JxPvnpMgSMTQuTeWarbB2bI+GpqgnIORPikzGmWN7uXvjIgnxcVhaVaB1pz5YV8++nIe9f4fPpdMEvvLjXeBLUlJkTFuwlpJmFippk5ISOXNkDw98rxEXE41pqdI0bPYV9Zu2U0r3/Ol97t68xOsXT/kYGY5hCROq2tSkdafelDA2LdT9FgThv0cE5v5F9PT02LZtm8r0MmXKFEFu1PP09KRs2bJFnQ214uPjGTx4MP7+/gwbNgxXV1eioqLYuXMnffv25ddff6V9+/ZFnU0lFhYWeHp6Sp/DwsL47rvvmDRpEvXq1ZOmV6tWjUePHgGwZMkSqlSpQnR0NAcOHOCHH34gJSWF3r17S+kHDBhAx44dSUpK4saNG6xbt45Xr17xxx9/fL6dE/5xfr/6gBtvQmhXvRKWRgZcfPGWX/6+xezWdalukfVNpX9YFCefvqKcsSFljYvzOiImV9vbcespmv8fMM7KN7WsscgU4DPQFj9dQv6t3fMX1+89pn3TeliWMsP75l2WbNzFvDGDqF6lYpbL+b0K5PjF65SztMCqtDmv3gZnu51KVmXo2KyB0rQy5mZKn28/eob7pj1UKV+Wfh1bEZ+YxPGL15mzahO/TBmFsaFyIEQQcuvGmVUE+V/D2qkjRiXL8OrxeS799RPNuv+EuVWNLJe7de539A1NqVTDDQOjUkR9eI3/veMEv7pNm77L0SqmPHJiSfPK2Dh3VppmVFL5PjDi/XPO7ZuJkUkZqrt2pZi2LsEv7+B7YROxUSE4NxtWeDsufFEO7FjNg7vXadSsPWYWZbhz/QJb1y5m+IT5VKqadTl/8/IZVy8cw6JMeSwsrXgX9EpturS0NLas/omg1wHUb9qOUhaW+D25xyHPP0iIj6N5u+5S2pOHdhIfF4uDcwNKmZch4sN7rl08ydOHtxk/81eMjEsW9u4LgvAfIp5u/kU0NTVzVaurKP2T8/fbb79x7949tm3bRv369aXprVq1YsiQIfzwww+4urpiYaH6tqyo6OjoKB3ToKAgACpWrJjlsba2tpZqMDZq1Ij27duzc+dOpcBcmTJlpOXr1atHaGgo+/btIzQ0NN/7n5ycTLFixdAUb77/lZ5/iOLaq2D6uVSno11lAJpWsWLa0cvsvvOMBe0aZLmsczkLNvVqjb52MY4+fsnriKc5bu/euzDuvwujk30VvB4EZJnOqWwppZp0glAQ/q+DuHLnAQM6t6FT80YAuNWpxRT3tew8coaFE7IOELjY27J18Uz09XQ5cv5KjoE5U2MjmrpmX2tj55EzlDYryU/jhlKsmJa0nenL1nHo3GUGdmmbxz0UBAgP8ePNs8vUajKY6i5dAKhUozknd07g/uVttOz1c5bLNuwwDYvyNZWmmVpUxef0Kl4/9aZKzdZK8/QNzahUo1m2+Ql4cBqA5t8sQlffCICqDm05v382rx6fF4E5IV8CX/lz7/YV2ncdSJNW6cFh53rN+G3RJE547WD0lMVZLlvDwZV5v25HV0+fS2cPZxmYe3j3Oq9fPKN7v9G4NkxvwVK/aTt2bVzK+ZN/UqdRKwyNjAFo320QlavZSS1UAKztnNi4ch7XvE/QpnPfQtpzQRD+i8QT9H9IbGws06ZNo3bt2tSvXx93d3c2bdqk1HTx4MGD2NraEhERobRsly5dmDFjhvTZ19eXUaNG0bhxY5ycnOjSpQt//fVXjnmwtbVl06ZNQHpTV1tbW7V/Pj4+0jIXLlygR48eODo6Ur9+febNm0d8fLzSegMCAujfvz8ODg60atUKLy+vPB2bxMRE9u3bR6NGjZSCcgBaWlqMHz+e+Ph49u/fL02XyWQsWrSIunXr4uLiwqxZs4iLi1NZ9/v37xk1ahS1atWiSZMmbNy4USVNdHQ0s2fPpkmTJjg4OODm5sbEiRPztA/5oaWlRY0aNaSAXlZq1Eh/qxgcnP2DZkYtWrRgwYIFbNy4kebNm+Po6EhUVBQBAQFMnDgRNzc3atWqRfv27dm8eTNpaWlKyycnJ7NixQpatmxJzZo1adq0qVIZhPRyOHDgQJycnHBxcWHy5MmEh4fnOo9C7vm8DkFTQ4MW1f7XRFunmBbNqpXDPyyK8LiELJc10tVBPw+12FJS09h28wntqleitJFBjukTZCmkpclzvX5ByIrPvcdoamrSsoGLNE1HW5vm9ZzxexVIeNTHLJc1Km6Avl7emlCnpKSSmJSsdl5MXDxv34dR16GGFJQDqGRliVVpc674qm/KLQg5CfK/hoaGJlUzBNG0iulQxb4VH4KfER/zIctlMwflAKyqpd83RUeov5dIS00hRZaY5TpTkuPR0tJBR89QabpecROVGniCkFsPfa+hqalJnUatpGna2jq4NmjBm5d+REVmXc4Nihuhq5d9dxsArwPSXzQ6ujZWmu7o0hiZLJnH929I06pY2ysF5RTTDIobEvb+ba72SRCEL5eoMfcvk5KSojKtWLH0r3HWrFlcunSJKVOmUK5cOXbv3s3Ro0fztZ13797h7OxMnz590NHR4c6dO8yePRu5XE7Xrl1ztQ57e3ulZpgAGzZs4MqVK1Lz25MnTzJx4kS6devGuHHjCAsLY9myZURHR7NixQoAkpKSGDJkCPr6+ri7uwOwatUqYmNjqVSpUq7y8vDhQ+Lj42nevLna+S4uLpiYmHDr1i1p2vLly9mzZw/jxo3Dzs6OY8eOsWzZMpVlx4wZw/v375k/fz5GRkZs3LiR4OBg6XuB9Oally5dYvLkyVhZWREWFsbFixdzlfeCCgoKyrEW3Lt379DU1MxzM+TTp09TsWJFfvjhBzQ1NTEwMODZs2dUrlyZTp06Ubx4cZ48eYKHhwfx8fF899130rLjxo3j+vXrjBw5EicnJyIiIjh9+rQ039fXlwEDBuDm5saKFStISEhg5cqVjBkzRqVcCQX3KjKaMiUMMNDRVppezcxYmm9WPOeb2Nw48fQVcckyujpU5Wbg+2zT/nTmBkkpqRTT1MCxrDn9XapTpoRo3ifkz8u3IZQxN8NAT09perUKVtJ8MxPjQtnWQ/+X9J++kLS0NMxNTejQtAHt3f73YkiWkgqAtpqgtq6ONkEhoURGx1CyhFGh5Ef4ckSGvcSoZFm0dZVffJiWtpbmGxhl33doRolxkQDo6pdQmfc+8D4HVvdCLk+jeAkLbGp3xKa2cj+K5uVq8sbvCrfOrcW2dme0tHUJfnWHoAAfajUe+H/s3Xl8TFf/wPFPlkkmy2RfZUU2iSARYkstRWtpPbRFW1rVUqV4lPopilbRJ6VaFK1SuypFi1JE7fu+E5GQfd8nk8wk8/tjZBgzidialvN+vfKSOfece869c3PNfO9Z9PYpCDWRkpSAk0sdpBa617mnjx8AqUkJ2NnX/Do3RKVSYmxsjImJ7n1aYqZ5SJN86wa0rrp8aamCUoUCS2v9vx1BEIS7icDcv4hcLickJEQvfdWqVdjZ2bFjxw6++OILXn31VQDatGlD586dH6qubt26aX9Xq9U0a9aM9PR01q5dW+PAnLW1tc5wy23btrF7926io6Px9vZGrVYTHR1N165dmTZtmjafs7MzgwcPZujQofj7+7NhwwYyMjLYtm2bNhAXHBzMiy++WOPAXHq65st/dfPxubu7k5aWBkBeXh6rV69m0KBBvP/++wBERUXRr18/7b4A9u3bx4ULF1i6dCktW2qG+kVGRtK2bVudhRTOnz9P9+7ddc7d3ef4caqoqEClUlFYWMjatWs5f/689hjuzVNWVsbRo0dZs2YNffr0wdnZ+YHqUiqVLFq0CEvLOx+KWrZsqT0XarWapk2bolAoWLlypTYwd/DgQfbs2cOsWbPo3r27tuzdv8+aNYuGDRsyb9487RPIgIAAunfvzt69e2nbtu2DnRihWnklpQYXVLCz0AQwcuWlj62eDeev82Z4kF4Q8G7mJiY8V9+DEFdHLMxMic/OZ+vlBCZvP8yMbq0fW5BQeLZoAl3WeumVwa/c/JrNj3g/3u6uBLX2po6LE4XFcvYeO8PSTdvILSjkzZc63a7TGksLKVcTEnXKVvakA8jJF4E54cEpinOQWunPZ2VxO01RnKO3rTpXTmzAyMgYTz/dKQ1snXzwq/MiMnsPShUFJFz6i9N7l1BSnKsTcKvfsDMF2YnEXdjBjQu7ADAyMia8/SD8GulOoC8INVWYn4vMxk4vvXKhhYL8B7vODXFyqUNFRQWJCdd05qxLiLukqSOv+joO7t5CebmKRuGtHrktgiA83URg7l9EKpWycuVKvfR69eqxY8cO1Go1nTrdNWzBxISOHTuydOnSB64rPz+fuXPnEhMTQ3p6OuXlmif7D7tq55UrV/jkk08YMGAAL7+smQciPj6e5ORkxo8fr9MTsHnz5hgbG3PhwgX8/f05d+4c/v7+OkE4Hx8fgoKCHqotNXHt2jUUCoXO+QTo3Lkzx48f174+d+4cMplMG4gCkMlktGrVikuXLmnTgoOD2bhxI87OzkRFRREQEPDE2t67d2/t76ampvTt25dhw4bp5Jk5cyYzZ87Uvm7atCkTJ0584LoiIyN1gnKg6eH4/fffs3nzZlJTU1EqldptxcXFWFlZcfjwYSwsLKoMTpaUlHDq1CnGjh2rvfYAfH19cXd35/z58yIw95iVqcoxNTA/oMREk1Z21/vwKFafuoKrtSXP+3tVm6+FrzstfO8E0pt5udKojhOf7zjKxvNxvNdCf7iVINyPUqnS6c1cSXJ7KGnZXferR/F/7+nOJdS+eRjTf1jJlr2HeTGqOY52thgZGdGpVQS/xRxg1ZaddIgMR64oZdXmHahu/70pH1N7hGdLuUqJiYn+gw9jU02aSlnzBy03r+zjxsUYgiJ66i3qEPXyeJ3XdYOfZ9+mqVw79Tv+jbtqe+UZGRtjZeuKm3cTvPxbYWJqxs2r+zm950csrOzxqB+JIDwopbIME1P969zkdi9kZZnhaQQeRJOINuzetp5fV87n5T7v4eTszrXLZzi6b4e2DVW5EXuRmG3rCA1vSf3A0EduiyAITzcRmPsXMTY21k7qf6/MzEwkEgm2trpDcBwdHQ3mv59x48Zx+vRphg0bhp+fH9bW1qxZs4Zt27Y98L5ycnIYOnQoYWFhfPzxx9r03FzN0Ih7g0aVKuc7y8jIMHgcjo6OlJbW7MOlq6urzj6rqi84OBjQnM/KOu7m5KTbJT4jIwMHB/3VKu8t9+mnn2Jra8tPP/1EdHQ07u7uDB48mDfeePwTwf7vf/+jfv36WFtb4+HhgZmZ/vwtb731Fi+//DIlJSX8/vvvrFu3jm+//ZbRo0c/UF2G3pevvvqKdevWMWzYMBo2bIhMJiMmJoYFCxZQWlqKlZUVeXl5ODs7683FUamgoIDy8nJmzJjBjBkz9LY/yFx4Qs2YmZqgumceQABluSbNzMREb9uDis3M40B8ChM6Nq/yva9OkIsD9R3tuJAm5hkUHo5EYmpwSojKYaVmkqp7cT4KIyMjurVtydkr17l4PUG7KESfFztQUCTn990H+S3mAACNAuvTvnk4Ow8dx9zA/VsQ7sfEVEJ5uX5Qt0KlSTOV1GyuxMzkSxzf9R1uPmGEtnrzvvmNjIwICHuJtJunyUi6oF0U4vLxDcSe2ULXAfMxlWh6YXsFtOav9Z9ycvcPuNeNwNj40f+PEZ4tEokZ5Sr967xcqbnHSx7D/VNma0//98eybtlclsydCoBUaslLvQeybvk8zMylBstlpCWzatFXuLl78cqbQx+5HYIgPP1EYO4p4ezsjFKpJD8/Xyc4d+9E+ebmmg9j9z6FLygo0P5eWlrKnj17GDduHP3799emr169+oHbpVQqGTFiBEZGRsyePRuTu77cV/a+mzRpEo0aNdIrWzkvmouLCxcvXtTbnp2djbW1/pAkQxo2bIilpSV79uzROaZKp0+fJi8vj4iICADtkM7s7GxtUA8gK0t3IlkXFxe9hTQqy91NJpMxYcIEJkyYwNWrV1m+fDmfffYZAQEB2jofl/r161cZwK3k5uamzdO8eXOysrL46aefeOONN6od7nsvQ8GV7du306dPHwYPHqxN27t3r04eOzs7MjMzUavVBvchk8kwMjLi/fffp2PHjnrb7e3FkvOPm52FObly/cm780o0afaWDzbpvSGrT10hyMUBF2tLMos0i0kUlmruRXmKUrKKS3C6zxBVJyspqQX6i7AIQk3Y28jIyS/QS88t0Axhtbd9csNGnW7PXVcsv7OQiqmpCR/07cHr3Z4nNSMbW5kVdVyc+HbFeoyMjHB3friHa8KzTWrlQEmR/gOMkttzxUmt9B8o3isvM54Dv0/H1tGb1t3H1jhwZnW7l1xZaZE27fq5bbh4NtQG5SrVqdeMM/t+orggA5ldzT97CAJogmaGhpJWDmGtHNL6qOr5h/Dx5/NJS76JsqwUN09fbb3OLvrXbV5uFkvmfY651JK3h46v0SITgiAIYlXWp0RlkGXnzp3atPLycnbt2qWTrzLIdOPGDW1aXFycTg+ksrIyKioqkNzVc6CoqIjdu3c/cLumTp3KxYsX+e677/SGwdarVw83NzcSExMJDQ3V+6lsa2hoKLGxsdy8eVNb9ubNm1y5cqXG7ZBKpfTu3ZsDBw7oDEUFzXxrc+bMwdLSktdeew3QzGUmlUp1ziegszhBZdsKCws5fPiwNq2wsJBDhw5V2ZbAwEA++eQTQHPu/wnGjh1LRUWFdkXdR1FaWqpz7ZSXl7N161adPK1ataKkpKTKHpiWlpY0adKEGzduGLw2PD09DZYTHp6PvQ2pBXLkZbpB+9isPAB87R994uKsYgWX03MYsXGP9mfVSc3f8cy/TvF/Ww7cdx/pRXJspKIXkfBwfD1cSc3MRq7QDULH3tSsNlnXw+2J1Z2effvLorX+4iV2Mmsa1PehjosTFRUVXIpLwN/HE6m5uNaFB2fn5EthbgrKUt0V7rPTrgFg71y32vKFeans2zQVc0tbonpM1AuoVacoXzMPr9TizkNihTwPtVq/R7a6olznX0F4EO4ePmRlpKAo0b3OExNiNds9fR9bXcbGxtTxqotP/SDMzaXEXT0HgF+QbscCeXEhS+ZORaVUMvDDTx9bcFAQhKef6DH3L1JRUcGZM2f00h0dHfHz86NTp05Mnz6d0tJS7aqs9/aMa9y4Me7u7kyfPp3Ro0dTVFTEDz/8oBM0k8lkhIaGsmjRIhwcHDA1NeWHH37A2traYO+wqmzZsoW1a9cycOBAFAqFTtsrh8eOGzeOMWPGIJfLadeuHRYWFqSkpLB3715GjRpF3bp16dWrFwsWLOD9999n5MiRgGZV1nuHld7PyJEjOX36NIMHD2bQoEFERESQl5fHqlWrOH78ODNnztT20rOzs6Nv374sWrQIqVSqXZX11q1bOvt87rnnCAkJ4eOPP2bMmDHIZDLtubpb37596dSpE/7+/piYmLBp0yYkEslj7y33sOrVq0fXrl1Zv349w4YNe6Qeaa1atWLdunX4+flhb2/P6tWrKbtnno9WrVrRtm1bxo8fz61bt2jcuDF5eXn8+eeffPPNN4AmWPj222/z3//+l27dumFjY0NaWhqHDh2iV69eREaKOWkep0hvN7Zeimf39SS6B2u+tCnLy9kbl4yfk512sYWs4hJKVeV42Nast+rdBrVoSOk9c9VdTMvmzys3ebNpEHXuWm21QFGKjVS3l97p5Aziswt4IcjngesWBIAWjULY/NchYg6f5KX2mqX0lCoVe46dxt/HU7sia1ZuHqVlSjxcH2xBHNAs3mBlIcX4rjkbVapyNsUcwNTUhGA/32rL//7XQXLzCxnYs+sD1y0IAF7+Lbl66jfiLuwkqGkPQDPvXPylGBzdArRzvxUXZFKuKsXG4c7DrpLiXPZt/Bwwom3PyUgtDa9SXFpSiJm5FUZ3XecV5Soun/gVYxNTnD3vzAMqs6tD+q1zlJYUYm6h6ZWqrqggMfYgEjMLrG2fXEBceHo1DGvJ/pjNHD+4i6iOmvmrVUolJ4/8hZevv3ZF1rycTMrKynBx83gs9RYV5rN3xybcPHzwC2qsTS8tVbB0/jQK8nN4b+QUnAz0phMEQaiKCMz9iygUCvr06aOX/uqrrzJt2jSmT5/O559/zsyZMzEzM6Nnz540b96c6OhobV6JRMK8efOYMmUKI0eOxNvbm/Hjx/Pll1/q7HPWrFlMmjSJcePGYWdnR//+/ZHL5SxZsqTG7Y2PjwdgyZIleuWWL19OZGQkXbp0wcbGhoULF7J582YAPDw8iIqK0gbepFIpS5YsYcqUKXz88ce4uroydOhQYmJiKCys+Qp6lpaWLF++nCVLlrBlyxYWLFiAhYUF4eHhrFq1irCwMJ38o0ePpry8nB9//JGKigo6derE6NGjGTt2rDaPkZER8+fPZ/LkyUyaNAkbGxv69+9PVlYWMTEx2nzh4eFs2rSJpKQkjI2NCQgIYOHChdSvX7/G7X/Shg4dyh9//MHKlSsZPnz4Q+/n008/ZfLkyUydOhULCwt69uxJp06d9BaXmDt3LvPmzWPt2rXMmzcPR0dHWre+s+Z8eHg4q1evZu7cuXzyyScolUrc3Nxo0aIFPj4iMPO4+Tvb0cLHjZ9PXyW/pBRXmSX7bySTVVzC4JZ3hkbPP3iOy+k5rOnfRZtWXKbkz6uaHq3XMjRDpf68ehNLM1OsJBJtIK1RHf1gemUPvQYu9tR3stOmT9p+hLoONtR1tMVSYkpCTgF74pJwsJTSs+E/5+9G+Hfx9/WkZZMQVm+NIb+wGFcnB/adOEtmbj5D+vTQ5pu3aiOX4hL4ZfZn2rTiEgXb9x8F0K6kuv3AUSylUiwtpHSJ0jwsOHnxKht27iOycTAuDvYUyUs4cOo8ianpvN6to84qq/tOnOXouUsE1/fF3MyM89fiOHzmIh1ahBPZOPjvOCXCU8jRPRAv/9acP7iCUnke1nZuJFzeg7wgk2YdP9TmO/bnt2QkX6TPfzdq0/Zt+pyi/DSCInqSmXyJzOQ7C1lJrexx89YEIlLij3Pp2Dq8/FphZetCmaKIm1f2kZ99i0at+2lXgAVo0KwXR7Z/w661Y6nfsDPGphISrx4gJz2O0FZvYmwivo4ID867bgCh4S3Z/vsqigrzcHB24/TRveTmZNLrzQ+0+X5ZNpf465eY8d16bVqJvJjDezWjNm7euArA4b3bkFpYIbWwolW7O59xfpg9Ce96ATg6uVFYkMexgzspK1Xw1gef6EzHsnbptyQmXCeiZQcy05LITEvSbjMztyCkcfMndi4EQfj3M1Kr1eraboTw5CxdupQZM2Zw9erV2m6KIPwj5E774P6ZnlFlqnJ+ORvLwfgUisuUeNnJ6N3En8Z17vQa+nzHUb3AXGZRCSM27jG4TycrC+b2aldlnXvjklh46DxfdGmpE5hbe/oap1MyyCwqoUxVjq2FOeEeLrzSyA9bi0ef7+5pZ/pCj/tnekaVKZWs3bab/SfPUywvwbuOK326dKBJkJ82z5R5P+kF5jJz8hg2dbbBfTo72PHdp6MAiEtMYf2fe4hPSqWguBhTExN8PdzoEhVJyya6qwnH3kxi1ead3ExNR6lU4e7iSOdWzejYsulDLZDyrPnfhQ613YR/rHJVGecPrebW1X2UKYqwdfKhYcs3cPe98xDyr3UT9QJza7/pWeU+XTxCaP/aFwDkpF/n4tFfyMu4gaIkH2NjU+yd6+LfpBteAa31yqYmnObK8V/Jz0lEWSbHxt4Dv8ZdqB/6wmM86qdTp2b6C9YIGkplGTs3r+HM8f2UyItx8/CmU/e+BATfuc5/mD1JLzCXm51B9CTDizLYOzgzduoC7est65dy+fxxCvJyMJda4BfUiE4v9cXRSbenZ/SnH5Cbk1mjfQr62oZY1nYTHsrEpY+++u+T8sUAMR3Gv4kIzD3lRGBOEHSJwJzwLBCBOeFZIAJzwrNABOaEZ4EIzD1+IjD37yL6jgtPBZWq6g8tRkZGOqvB/tOUl5dTXXzc1PTv/zP9N59PQRAEQRAEQRAEQfi3EIG5p9yAAQMYMGBAbTfjiQsJCalym4eHx0OtKPt36dSpE8nJyVVur43ejv/m8ykIgiAIgiAIgiAI/xYiMCc8FdavX1/lNjOzf3Y33gULFuitWlrb/s3nUxAEQRAEQRAEQRD+LURgTngqhIaG3j/TP1RgYGBtN0HPv/l8CoIgCIIgCIIgCMK/hXFtN0AQBEEQBEEQBEEQBEEQnkUiMCcIgiAIgiAIgiAIgiAItUAE5gRBEARBEARBEARBEAShFojAnCAIgiAIgiAIgiAIgiDUAhGYEwRBEARBEARBEARBEIRaIAJzgiAIgiAIgiAIgiAIglALRGBOEARBEARBEARBEARBEGqBCMwJgiAIgiAIgiAIgiAIQi0wre0G/JPMnTuXefPmGdw2evRoBg8e/De3CI4ePcpbb73F+vXrCQ0NBSAwMJCxY8fy7rvvPvH6hw4dSmFhIStWrKhxGYVCwZIlS9iyZQuJiYlYWFgQHh7OkCFDaNKkyX3L79q1i2HDhhETE4Onp2eV+aZNm0ZMTAy7d++ucdsMSUpK4vnnn79vvuXLlwPw1ltvadMsLS3x8fGhX79+vPLKKxgZGQGa96iSRCLB3d2dtm3b8uGHH2JnZ/dI7X2Sli5dyooVK8jKysLLy4u+ffvSr1+/2m6W8DdRlpez7mwsB26kUFSmxNteRp8mAYS6O1VbLqWgiF3XErmelUdCTgHK8grm9GyHs7WFXt7hG/aQVVyil/68vxfvtWiofX0hNYsD8SlczcglW67AzsKcEDdHejf2x95S+sjHKjy7lCoVv2z7i30nz1IsV+Dt7krfrh1oFFi/2nIpGVnsPHSC2JtJxCelolSp+O7TUTg72BnMX6Io5dcdezl89iK5BYXIrCwJ8PHiwzd7Ym5mBkBOfiHb9h/h+s1k4hKTUZSWMXnYAEL86j7uwxaeMeUqJReOrOHm5b2UlRZh5+RDw1Zv4ubduNpySbGHuXXtIDnp11HIc7GUOVGnbgTBkb0xM7fSyXt67xIyky5QXJhJuaoMKxtnvPzbEBTxH0wld+7Tx3bMIf7SX1XW+dJ7P2Jp7fhoBywId1Eplezc+jNnju2jRF6Mm4c3nV56Hf+g6q//zPQUju7fQWLCNVIS41GplIz9fD72ji56eZXKMg7u3sLpY/vIzc7AwtIK73qBdOzWB1d3ryd1aIIgPKVEYO4eUqmUZcuW6aW7u7vXQmsMW7t2LXXq1KntZhgkl8sZMGAAsbGxvPfee0RERJCXl8fKlSt54403mDlzJl27dq3tZupwcXFh7dq12teZmZl8+OGHfPTRR0RGRmrT/fz8uHjxIgAzZsygXr16FBQUsH79eiZMmIBKpaJv377a/P3796d79+6UlpZy7NgxFi5cSEJCAj/++OPfd3APYMuWLcyYMYOhQ4fSrFkzLly4wNmzZ0Vg7hmy4NB5jt1K48UgX9xkluy7kcz/dp9gYqfmBLk4VFkuNjOP7VcS8LS1po6tFTdzCqutx8dBRrcGuoEHdxvdL3yrT1+lqFRJCx833GRWZBTJ+fPqTU4nZfBl9zbYWZg//IEKz7T5azZx5Owluj4XiZuTI3uPn2HGolVMHvo2QfV8qix3LSGRP/YdwdPNBQ9XZxKSU6vMW1yiYMp3P5GdV0DHlk1xc3KgoKiYKzduoVSVY66Jy5GamcVvMQdwd3bE292VawmJj/twhWfUsZ1zSIo9jH+T7sjs3Um49Bf7N02l3StTcfZoUGW5EzELsLB2wLdBWyxlTuRl3ST27B+kJpyk8xtfY2Jqps2bkx6Lk0cwvnZumJiYkZcZz5UTG0hPPEuH16ZrH1bWC+2Mi1cjvbpO7l6IpcxZBOWEx279inmcP3OE1u264ujizqkje1g6fzqDRk7Bt37V1/+t+Ksc2rMVF3cvXNw8SElKqDLvL0u/5dL5EzRv1ZE6HbpTkJ/L4b3bWDBzPCPHzzIYzBMEQaiKCMzdw9jYuEa9umrTP7l93377LWfPnmXZsmW0aNFCm96xY0cGDhzIhAkTiIiIwMXln/OflZmZmc45TUpKAsDHx6fKc+3v76/twdi6dWu6du3KypUrdQJz7u7u2vKRkZFkZGTwyy+/kJGR8Y86/ko7d+6kSZMmjBw5EoBWrVrVuKxarUapVGJmZnb/zMI/0vWsPA4npPJm0yC6B2uCZs/V82DslgOsPnWVz19sWWXZcE8XFvfphIXElC2X4rmZc6XauhwspETV86g2T7+mDWjgYq/9YgfQqI4zU3cc5c8rN+kTFvAARycIGrE3kzh46jz9X+7MS+1bA9C2WWPGRM9n5eadfDHyvSrLNg0JZOn0T7CQmrP5r4PVBubWbN1FZk4e0aOH4OJof2fDPZ2z63nWYfEX/4fMypIjZy/y9VIRmBMeXXbaNW5dPUDjqAEENe0BgG+D9mxfOZJzB5bxfJ8vqyzbqttYXLwa6qQ5uNTn6I453Lyyl3oNO2nTn+89Q6+8la0bZ/cvJSftGo7umtEDTu5BOLkH6eTLTL6MSlmKT1Dbhz5OQTAkMSGWsycP0rXnW0R1fBmA8Mh2fDvtI7ZtXMEHY6ZXWbZBaASTZy7HXGrB/l2/VxmYy8/L5sKZo0Q9/xJde72tTfetH8SPcz7j4tljtOnQ/bEelyAITzcxx9wDKioqYuzYsYSFhdGiRQuio6NZvHixztDFDRs2EBgYSE5Ojk7ZHj16MG7cOO3r06dPM2TIENq0aUOTJk3o0aMHmzZtum8bAgMDWbx4MaAZ6hoYGGjw5+jRo9oye/bs4bXXXqNRo0a0aNGCyZMnI5fLdfYbFxdHv379CA0NpWPHjmzcuPGBzo1CoeCXX36hdevWOkE5ABMTE0aMGIFcLmfdunXadKVSybRp02jevDlNmzZl/PjxFBcX6+07PT2dIUOG0LhxY6Kioli0aJFenoKCAiZOnEhUVBShoaG0bduWUaNGPdAxPAwTExMaNGigDehVpUEDzRO61NSqv8zdKyYmhl69ehEWFkZERAS9evVi7969Onk2bNjASy+9RGhoKFFRUcyePZvy8nJAc722b9+eESNG6JSZNGkSkZGRpKena9OMjY1JTU1FqVTet13jxo2je/fu7N27l5dffpnQ0FB2796NXC7n888/54UXXqBx48Z06NCBSZMmUVio34Nq06ZN/Oc//yE0NJTIyEgGDRpEcnKydntaWhpjxowhMjKSRo0a8eabb3LhwoUanzvhwRy9mYaxkREd/O4MHzczNaGdnyexmXlkGxh+WklmboaF5MGe86jKK1AoVVVuD3Z10AnKVaZZm0tIKSh6oLoEodLRs5cwNjbm+ZZNtWlmEgntI8O5lpBIdl5+lWVlVpZYSO/fU7O4RMGeY2fo1DICF0d7VKpylCrD17qF1ByZleWDH4ggVCMp9jBGRsbUvyuIZmJqRr2QjmSlXkVemFVl2XuDcgAefprPdAU51X/OAbC20Tx4LCvV/yx3t1tX92FkZIRP0HP33acgPIgLpw9jbGxMs9YdtWkSiRkRLTtwK/4aeblVX/+WVjLMpfrTcNyrVKEAQGZjr5Mus3W4XZ/kYZouCMIzTPSYM0Bl4AO0qanmVI0fP579+/czZswYPD09Wb16NVu2bHmoelJSUggPD+f111/HzMyMU6dOMXHiRNRqNT179qzRPkJCQnSGYQL88MMPHDx4UDv8dvv27YwaNYpevXoxfPhwMjMzmTVrFgUFBcyePRuA0tJSBg4ciIWFBdHR0QDMmTOHoqIifH19a9SWCxcuIJfLad++vcHtTZs2xc7OjhMnTmjTvv76a9asWcPw4cMJDg5m69atzJo1S6/s0KFDSU9PZ8qUKchkMhYtWkRqaqr2fQHN8NL9+/czevRoPDw8yMzMZN++fTVq+6NKSkq6by+4lJQUjI2NazwM+datW4wcOZJu3boxevRoKioquHLlCvn5d744/vTTT3z11Ve8/fbbjBs3jri4OG1gbsyYMVhbWzN9+nTeeecdbSBs7969rF27ltmzZ+Pq6qrdV48ePfjjjz+YMWMGkyZNum/7MjIy+OKLL/jggw9wd3enTp06KBQKysvLGTVqFA4ODqSmprJw4UKGDh2qM0/hjz/+yFdffcWrr77KqFGjUCqVHDlyhJycHDw8PMjPz+eNN97A0tKSTz/9FJlMxooVK3j77bfZsWMHjo5i2MvjlpBbgLuNJZZmuh8m/Rxttdsdre7/YbUmLqRl8/aaHVSo1ThZWdC1gS9dGvjet5xCqUKhVCEzFz0zhYcTn5yGu7MjllLdeQr9vD202x3tbB+pjis3blKmVOLq5MCsn9Zy/MIV1Go1Ab5eDOzVlbqe/5ypMYSnU25mPDL7OkjMdYO+Dq7+2u2WsurnDr2bojgXAHMLG71tFRXlKEuLqShXkZ99i/OHVyExs9DWZUhFuYrEawdxdA/EyuafN4JA+HdLSUrAyaUOUgvd69/Txw+A1KQE7Oxrfv0b4uDkiq29I/tjfsfJtQ7unr4U5ueybeMK7B1daNS0zSPtXxCEZ48IzN1DLpcTEhKil75q1Srs7OzYsWMHX3zxBa+++ioAbdq0oXPnzg9VV7du3bS/q9VqmjVrRnp6OmvXrq1xYM7a2lpnuOW2bdvYvXs30dHReHt7o1ariY6OpmvXrkybNk2bz9nZmcGDBzN06FD8/f3ZsGEDGRkZbNu2TRuICw4O5sUXX6xxYK6y91V18/G5u7uTlpYGQF5eHqtXr2bQoEG8//77AERFRdGvXz+dnlz79u3jwoULLF26lJYtNcPpIiMjadu2rc5CCufPn6d79+465+7uc/w4VVRUoFKpKCwsZO3atZw/f157DPfmKSsr4+jRo6xZs4Y+ffrg7OxcozouXbqEUqnk008/xdraGtCcn0pFRUXMmTOH9957j48++gjQDKuVSCR8+eWXvPvuu9jb29OyZUv69evHF198QWBgIBMmTKB79+56c/2dOnUKLy8vVq9ejZub230XO8nPz2fRokU0bqw7ke5nn32m/V2lUuHp6ckbb7xBfHw8devWpbCwkHnz5tGnTx8+//xzbd6OHe882Vy2bBkFBQWsW7dOG4Rr2bIlL7zwAosXL2bs2LE1OodCzeWVlBqct83OQhPAyJWXPpZ6vO1lBLp4U8fGisLSMvbFJbP8xGVySxS8ER5Ubdk/riSgqlDT0lcENoSHk1tQiL2NtV66vY1Msz2/+vkRayItS9NbfvXWXbg5OvDhGz0pVihY/+dePl+wjFljh+FgK3vkegShKoriHKRW9nrpFrfTFMU5etuqc+XEBoyMjPH005/SIDf9OrvW3hkNIrOvQ5uXxmNuUfU1nnbzDKWKQhoGit5ywuNXmJ+LzMZOL93mdm+2gvwHu/4NMTU15c33xrB26bcsX3hnaLiHdz0+GD0NC0urakoLgiDoE4G5e0ilUlauXKmXXq9ePXbs2IFaraZTp7uGBpiY0LFjR5YuXfrAdeXn5zN37lxiYmJIT0/XDj982FU7r1y5wieffMKAAQN4+WXNnArx8fEkJyczfvx4nZ6AzZs3x9jYmAsXLuDv78+5c+fw9/fXCcL5+PgQFFT9F+VHce3aNRQKhc75BOjcuTPHjx/Xvj537hwymUwblAOQyWS0atWKS5cuadOCg4PZuHEjzs7OREVFERDw5Oag6t27t/Z3U1NT+vbty7Bhw3TyzJw5k5kzZ2pfN23alIkTJ9a4jsDAQExMTBgzZgy9e/emWbNmyGR3PuiePn0auVzOiy++qPPetmrVCoVCQWxsLM2bNwdgzJgxHDx4kN69e2Nvb6/XI27t2rWsXbuWrVu3snXrVqZPn46joyOvvPIKAAsWLGDdunU6K+Da2dnpBeVAM0R16dKl3Lx5U2e4dEJCAnXr1uX06dOUlJRog9uGHDx4kMjISGxtbbXHZmxsTLNmzTh//nyNz6FQc2WqckyN9Wc3kJho0spu358e1cftm+q8blffky93n+CPywm8EOhTZa+8S+k5bDh3nRY+boS4iR6TwsNRKlU6Pa0rSUxNACirwVD++ykp1QSxjYBJQ99GeruHZz2POkz4dhF/HjzG613vvxK4IDyscpUSExP9oXTGppo0lbLmD1puXtnHjYsxBEX0RGav3+PfxsGLtr2mUK4sJSv1Cum3zqJSKqrf59W9GJuY4hUgehUJj59SWYaJqf71b3J7yg1lWdljqcfC0hp3Dx8ahrXAu24g2Rmp7NmxgdWLZzFw+CQkEtG7XxCEmhOBuXsYGxtrJ/W/V2ZmJhKJBFtb3WEuDzusbty4cZw+fZphw4bh5+eHtbU1a9asYdu2bQ+8r5ycHIYOHUpYWBgff/yxNj03VzP84N6gUaXK+c4yMjIMHoejoyOlpTX7AFc5LLK6OdRSU1MJDg4GNOezso67OTnpdi/PyMjAwUF/Rch7y3366afY2try008/ER0djbu7O4MHD+aNN96oUfsfxP/+9z/q16+PtbU1Hh4eBhc9eOutt3j55ZcpKSnh999/Z926dXz77beMHj26RnXUrVuXhQsX8v333/Phhx9ibGxMmzZtmDRpEnXq1NG+t1X1rrz7fZBKpXTs2JEffviB7t27613DS5Ys4eWXX8bJyYm3336b3NxcPv30U+zs7Hj++ec5ceKE3mIQ975PoFlA4v/+7//o06cPo0aNws7OjszMTIYNG6a9jvLy8gCqHfqbm5vLmTNnDPZe9fb2rrKc8PDMTE1QVVTopSvLNWlmJiZPpF4jIyO6NvDlXEoWl9JzDC4KkZxfxOy9p/C0s2ZwS8P3Z0GoCYnE1OB0FUqVJvBs9hjmBTK/vY+mIYHaoByAv68nLo72xIqVV4UnzMRUQnm5fpC5QqVJM5XUbFXrzORLHN/1HW4+YYS2etNgHom5JW7emod0HvWbc/PKPg5snk7nN2Zh51xXL79KqSDlxnHcvJtU26tOEB6WRGJGuUr/+i+/Pa+t5DEsVFYiL+b7ryfyXMce2gUmADx86rPom8mcPLybFs+9+Mj1CILw7BCBuQfg7OyMUqkkPz9fJ7CRnZ2tk8/cXPOB595J9AsKCrS/l5aWsmfPHsaNG0f//v216atXr37gdimVSkaMGIGRkRGzZ8/G5K4v0JW97yZNmkSjRvpL1VcGR1xcXLh48aLe9uzsbO0wyvtp2LAhlpaW7NmzR+eYKp0+fZq8vDwiIiIAtEM6s7OzdeY6y8rSnZTVxcVFbyGNynJ3k8lkTJgwgQkTJnD16lWWL1/OZ599RkBAgLbOx6V+/fpVBnArubm5afM0b96crKwsfvrpJ954441qh/ve7bnnnuO5556jqKiIffv2MWPGDD755BOWLVumvQbnzZuHm5ubXllPzzuT+F+5coWffvqJ4OBgVq5cySuvvEL9+vW125OTk7GyutPt/r///S+5ubmMGjWKjz76iMOHD+stBnLvxPygmc+wQYMGOkNUjx07ppOn8prMyMgw2G4AW1tboqKitCvE3k2s/Ppk2FmYkyvX7+WQV6JJs7es2Re5h+FoqeklV1ym/0E6u7iE6buOYyEx5f/aRzzwIhOCcDd7Gxk5+QV66bkFmiGs9o9hiGnlsFhbmf5QJltrK4oM/J0JwuMktXKgpChbL73k9lxxUiv9h533ysuM58Dv07F19KZ197EYG9fs4YynXwuO/gm3rh4wGJhLun7k9mqsYhir8GTIbO0pyNP/3lA5hLVySOujuHjmCEWF+TRo1EwnvZ5/CFKpJTdvXBWBOUEQHohYlfUBVAZZdu7cqU0rLy9n165dOvkqg0w3btzQpsXFxen0YCorK6OiokJn1Z6ioiKdoYI1NXXqVC5evMh3332nNwy2Xr16uLm5kZiYSGhoqN5PZVtDQ0OJjY3l5s2b2rI3b97kypUrNW6HVCqld+/eHDhwQGcoKmjmW5szZw6Wlpa89tprAAQEBCCVSnXOJ8COHTt0XoeGhlJYWMjhw4e1aYWFhRw6dKjKtgQGBvLJJ58AmnP/TzB27FgqKiq0K+o+CGtra7p27Uq3bt20xxMWFoaFhQVpaWkG31t7e81cMmVlZYwdO5ZGjRqxdu1a/P39GTt2rE6vET8/P2JiYii7q3v/5MmTiYqKYsaMGfTs2VNn5eGqKBQKvZWoNm/erPO6st2//vprlftp1aoVcXFx2gDo3T81aYfw4HzsbUgtkCO/JzgWm5UHgK+9/qTfj0tGkWbIs809izoUlpYxPeY4qooKPnm+GfaWUkPFBaHGfD1cSc3MRq7QDY7F3tSsNlnXw/DDggdRz0sz3M/QfHU5+YViFVbhibNz8qUwNwVlqVwnPTvtGgD2BgJmdyvMS2XfpqmYW9oS1WMippKa33vLy5Wo1WqUZXKD229d3Y+pREqdes1rvE9BeBDuHj5kZaSgKNG9BhMTYjXbPX0fuY6iQs1CbBX3jDRQq9VUqCuoqHg8038IgvDsEF0P7lFRUcGZM2f00h0dHfHz86NTp05Mnz6d0tJS7aqs9/aMa9y4Me7u7kyfPp3Ro0dTVFTEDz/8oBM0k8lkhIaGsmjRIhwcHDA1NeWHH37A2traYO+wqmzZsoW1a9cycOBAFAqFTtsrh8eOGzeOMWPGIJfLadeuHRYWFqSkpLB3715GjRpF3bp16dWrFwsWLOD999/X9lKaM2eOweGK1Rk5ciSnT59m8ODBDBo0iIiICPLy8li1ahXHjx9n5syZ2l56dnZ29O3bl0WLFiGVSrWrst66dUtnn8899xwhISF8/PHHjBkzBplMpj1Xd+vbty+dOnXC398fExMTNm3ahEQieey95R5WvXr16Nq1K+vXr2fYsGHawFlVfv75Z86cOUNUVBTOzs4kJSXx+++/07p1awBsbGwYMWIEX331FWlpaTRv3hwTExMSExOJiYlh7ty5WFhYMGfOHBITE/ntt98wMzMjOjqanj17smDBAoYPHw7AqFGj+OCDD3jrrbd46623sLGx4dy5cxw7dgxXV1e2b99Ov379aNCgQbVtbtWqFZ9//jnfffcdYWFh7N27VyegCpprf9iwYcycORO1Ws3zzz9PRUUFR48epVu3boSGhjJgwAA2b95Mv379eOutt6hTpw45OTmcPXsWV1dXBgwY8PBvhGBQpLcbWy/Fs/t6Et2DNV/alOXl7I1Lxs/JTjv3W1ZxCaWqcjxsa9aT9m6FpWVYSSQYG9/pbakqr+C3C3GYGhsRfNfccQqliv/tPkGOXMGnnSJxtxETKQuPrkWjEDb/dYiYwyd5qb3mXqpUqdhz7DT+Pp7aFVmzcvMoLVPi4VqzxXruVsfFCR8PN05cuEpBUTE21ppr9+zV62Tn5dMlKvLxHZAgGODl35Krp34j7sJOgpr2ADTzzsVfisHRLUC7ImtxQSblqlJsHO70sC8pzmXfxs8BI9r2nIzU0vAqxWWlxZiammNsovtV4sYFzcNqe9f6emUU8nzSb53FO7BNjYfTCsKDahjWkv0xmzl+cJd2mKlKqeTkkb/w8vXXrsial5NJWVkZLm76U2jcj5OL5gHMuZMH6Nitjzb98vkTlJUqcPesPvgtCIJwLxGYu4dCoaBPnz566a+++irTpk1j+vTpfP7558ycORMzMzN69uxJ8+bNiY6O1uaVSCTMmzePKVOmMHLkSLy9vRk/fjxffvmlzj5nzZrFpEmTGDduHHZ2dvTv3x+5XM6SJUtq3N74+HhAM0fYveWWL19OZGQkXbp0wcbGhoULF2p7L3l4eBAVFaUNvEmlUpYsWcKUKVP4+OOPcXV1ZejQocTExFBYWPNV6iwtLVm+fDlLlixhy5YtLFiwAAsLC8LDw1m1ahVhYWE6+UePHk15eTk//vgjFRUVdOrUidGjR+usumlkZMT8+fOZPHkykyZNwsbGhv79+5OVlUVMTIw2X3h4OJs2bSIpKQljY2MCAgJYuHChzpDN2jZ06FD++OMPVq5cqQ2KVSUwMJC//vqLGTNmkJeXh7OzM926ddMZ3jlw4EBcXV356aefWLlyJaampnh7e9OuXTskEgmnTp1i8eLFTJ48WTs3W/369fnoo4/46quvaNeuHaGhobRt25alS5fy3XffMWHCBCoqKggKCmLChAl06dKFt956i0GDBrFmzRq8vLyqbHPfvn1JSkpi5cqVLF68mDZt2jBr1iydxTIABg0ahIODA0uXLmXDhg1YWVkRFhamnTfQ3t6etWvX8s033zBz5kzy8vJwdHSkcePGeouFCI+Hv7MdLXzc+Pn0VfJLSnGVWbL/RjJZxSU687rNP3iOy+k5rOnfRZtWXKbkz6ua3rbXMjRDpf68ehNLM1OsJBJeCPIB4FRSBhvPxxHp7YaztQVFZUoOxaeQmFdEn7AAnVVh5x04S1xWPu38PEnOLyI5v0i7TSoxpZnXneHvglBT/r6etGwSwuqtMeQXFuPq5MC+E2fJzM1nSJ8e2nzzVm3kUlwCv8y+s8p0cYmC7fuPAnD19jxx2w8cxVIqxdJCqhNwe7vHi3yxcDmT5i6hU6sIiksUbN17mDouTnRurTv06dcdewFIStfMu7rvxDmu3NA8oHqlc9sncBaEp52jeyBe/q05f3AFpfI8rO3cSLi8B3lBJs06fqjNd+zPb8lIvkif/96ZqmLfps8pyk8jKKInmcmXyEy+s8iW1MpeO59cZtIFTu35EU+/lsjs3KmoUJGZfJnkuCM4uPrhG9ROr12J1w5QUVGOd6C4roUnx7tuAKHhLdn++yqKCvNwcHbj9NG95OZk0uvND7T5flk2l/jrl5jx3XptWom8mMN7NXN937xxFYDDe7chtbBCamFFq3aazz5BoRG4unuxe9t6cnMy8a4bQHZGKkf2/YmNrT3NWokFfgRBeDBGarVaXduN+LdbunQpM2bM4OrVq7XdFEEQ7iN32gf3z/SMKlOV88vZWA7Gp1BcpsTLTkbvJv40rnOn19DnO47qBeYyi0oYsXGPwX06WVkwt1c7AG5k5/Pruesk5ORToCjDxNgYXwcbXgz0oYWv7ryLwzfsIau45L77FAwzfaHH/TM9o8qUStZu283+k+cplpfgXceVPl060CTIT5tnyryf9AJzmTl5DJs62+A+nR3s+O7TUTpp567GsXbbbm6mpGNmJiG8gT9vvtRJOwddpd6jJlfZ1rvrF/T970KH2m7CP1a5qozzh1Zz6+o+yhRF2Dr50LDlG7j73nlA+te6iXqBubXfGF5QCsDFI4T2r30BaIa7Xjr6C1kpVygp1oz0sLZ1xdOvFUER/zE4/HXXz/9HcX46Lw9agpGBVcAFwzo101+wRqieUlnGzs1rOHN8PyXyYtw8vOnUvS8BwXeu/x9mT9ILzOVmZxA9aajBfdo7ODN26gLta7m8iN1/rOfqxVPk5WRiLpXiF9iIzi+/gYOTeHj4oNqG/DuneZi49PGs8vskfDFAzMv9byICc4+BCMwJwr+HCMwJzwIRmBOeBSIwJzwLRGBOeBaIwNzjJwJz/y5iKKtQY3cvFnAvIyMjndVg/2nKy8upLgZtavr3/yn8m8+nIAiCIAiCIAiCIAiPTgTmHoMBAwY8E5PRh4SEVLnNw8PjoVaU/bt06tSJ5OTkKrfXRm/Hf/P5FARBEARBEARBEATh0YnAnFBj69evr3Kbmdk/u6vsggULKCv7Z3U1/jefT0EQBEEQBEEQBEEQHp0IzAk1Fhoaev9M/1CBgYG13QQ9/+bzKQiCIAiCIAiCIAjCoxNLIgmCIAiCIAiCIAiCIAhCLRCBOUEQBEEQBEEQBEEQBEGoBWIoqyAIzxTTF3rUdhME4YlT/flbbTdBEJ48jw613QJBEARBEIRHJnrMCYIgCIIgCIIgCIIgCEItEIE5QRAEQRAEQRAEQRAEQagFIjAnCIIgCIIgCIIgCIIgCLVABOYEQRAEQRAEQRAEQRAEoRaIxR+eEnPnzmXevHkGt40ePZrBgwf/zS2Co0eP8tZbb7F+/XpCQ0MBCAwMZOzYsbz77rtPvP6hQ4dSWFjIihUralxGoVCwZMkStmzZQmJiIhYWFoSHhzNkyBCaNGly3/K7du1i2LBhxMTE4OnpWWW+adOmERMTw+7du2vctuqMGzeOjRs36qW3a9eO77//HoAOHTqQnJwMgImJCe7u7rRp04aRI0fi4OBgcD+Ojo4EBQUxfPhwwsLCHktbhX8upUrFL9v+Yt/JsxTLFXi7u9K3awcaBda/b9nsvAKW/7ads1fjUKvVhPjV5e0eL+Dq5KDNs+fYaeav2VTlPob3e4Wopo0AGDZ1Npk5eQbzuTk5MGfCyAc6NkG4H2V5OevOxnLgRgpFZUq87WX0aRJAqLvTfcvmyBWsOHGZc6lZVKjVhLg60j+iAa4yS22evXFJLDx0vsp9DGvdiDb1PB7LsQhCuUrJhSNruHl5L2WlRdg5+dCw1Zu4eTeutlxBbjJx5/4kJ+0auRk3KC9X0n3g91jZuBjMnxx3jItHfqYgJwlzS1vqBncgOLI3xsYm2jwlRTnEntlKdto1ctKvo1IqaP/KVFy8Gj7WYxaePSqlkp1bf+bMsX2UyItx8/Cm00uv4x9U/XUOkJ+XzdZflxJ7+RxqdQX1AhrS7ZW3cXRy08lXWJDH9t9WcvXCKcpKFTi71qHtC71oFN5Kb5+xV86yZ/sG0lJuUlGhxsnFjVbtuhLWvO1jO2ZBEJ5OIjD3FJFKpSxbtkwv3d3dvRZaY9jatWupU6dObTfDILlczoABA4iNjeW9994jIiKCvLw8Vq5cyRtvvMHMmTPp2rVrbTezSl5eXsycOVMnzcbGRuf1Cy+8wMCBA1GpVJw5c4Z58+Zx7do1Vq1ahbGxsc5+1Go1iYmJzJ07l3feeYfNmzfj5eX1tx2P8Pebv2YTR85eoutzkbg5ObL3+BlmLFrF5KFvE1TPp8pyitIyPp+/lOISBT07RmFqYsKWPYeZ8t1SoscMQWalCU40qOfDh2/20iu/de9hbqak09C/rjbt7f+8iKK0TCdfVm4+P/8RU6NAoSA8qAWHznPsVhovBvniJrNk341k/rf7BBM7NSfIxaHKcgqliqk7jiJXqujRsD6mxkZsvZTA5zuO8mX31sjMzQAIcnFgaOtGeuX/uJzArdxCGtYgACgINXVs5xySYg/j36Q7Mnt3Ei79xf5NU2n3ylScPRpUWS479SqxZ7Zg4+CFjYMnuZnxVeZNTTjFwS1f4uzZkLB275GffYtLx9ahKMknosMQbb7C3BQun9iAzM4dOycfslKvPtZjFZ5d61fM4/yZI7Ru1xVHF3dOHdnD0vnTGTRyCr71q77OS0sV/PjtFErkxbR7oScmJqYc2L2ZRd9MZsQnM7G0kgGgKJHz/dcTKSrMp1W7rshs7Dl/6hBrFn9NRXk5TZpFafd56dxxVv4QjXfdAJ7v2gcjIyPOnzrEL8vmUlxUSJsO3Z/4+RAE4d9LBOaeIsbGxjXq1VWb/snt+/bbbzl79izLli2jRYsW2vSOHTsycOBAJkyYQEREBC4uhp8a1zapVHrf8+vk5KTNExERQWlpKXPmzOHixYvaXo137ycsLAxPT09ef/11/vjjD95///0neARCbYq9mcTBU+fp/3JnXmrfGoC2zRozJno+Kzfv5IuR71VZ9s+Dx0jNzGb6qMH4eWt6/DQJ8mN09Hw27znEG906AuDq5KDTgw6gTKlk8a9bCfGri72NTJvePFT/A/WvO/YCaHvVCcLjcj0rj8MJqbzZNIjuwZoA8XP1PBi75QCrT13l8xdbVll2x7VbpBXK+aJLS+o72QHQuI4zYzcfYOulePqGBQLgKrPU6UEHUKYqZ8mxiwS7OWBnYf5kDk545mSnXePW1QM0jhpAUNMeAPg2aM/2lSM5d2AZz/f5ssqydeo2o+cHq5CYWXDl5G/VBubO7PsJWycf2vacrO0hJzGz4PLxXwlo0h0bB83IAXvX+vzn/eWYW8hIjD1E1tavHuPRCs+qxIRYzp48SNeebxHV8WUAwiPb8e20j9i2cQUfjJleZdkj+7aTlZHKsLFf4unjB0BAcBjfThvF/l2/80KPNwE4dmAn2ZlpvDdiMvUDNZ+TWzz3AvO/GscfG5bRMKwlpqaar9OH925DZmPHeyOmYCqRANC8TSdmTx3JySN/icCcIAjVEnPMPUOKiooYO3YsYWFhtGjRgujoaBYvXkxgYKA2z4YNGwgMDCQnJ0enbI8ePRg3bpz29enTpxkyZAht2rShSZMm9OjRg02bNt23DYGBgSxevBjQDHUNDAw0+HP06FFtmT179vDaa6/RqFEjWrRoweTJk5HL5Tr7jYuLo1+/foSGhtKxY0eDwzqro1Ao+OWXX2jdurVOUA40wz5HjBiBXC5n3bp12nSlUsm0adNo3rw5TZs2Zfz48RQXF+vtOz09nSFDhtC4cWOioqJYtGiRXp6CggImTpxIVFQUoaGhtG3bllGjRj3QMTyMhg01w0iSkpKqzBMcHAxASkpKjfeblpbGyJEjadWqFaGhoXTo0IHp03U/IMXFxfHBBx/QtGlTmjRpwuDBg7l165Z2+7Rp02jWrBlpaWnatJMnT9KgQQN+/vnnGrdFqJmjZy9hbGzM8y2batPMJBLaR4ZzLSGR7Lz8KsseOXuJ+t4e2qAcgIerMw3963LkzMVq6z158SolilKimobet40HTp3HxdGewLreNTgiQai5ozfTMDYyooPfnSkIzExNaOfnSWxmHtnFJdWWredoqw3KAXjYWhPi5siRm2lVlgM4lZSBQllOm7r/zJ7kwr9TUuxhjIyMqd+wkzbNxNSMeiEdyUq9irwwq8qy5hYyJGYW962jIDuRgpwk6jfsrDNs1a9RF9RqNUmxh7VpEjMLzC1khnYjCA/twunDGBsb06x1R22aRGJGRMsO3Iq/Rl5u1df5hdOH8fSprw3KAbi4eVA/MJTzp+9cuwlxl7GyttEG5QCMjIxoFN6awoI84q/f+YxTqijBwtJaG5QDzXcISysZEonZIx+vIAhPN9Fj7imjUqn00iqf5IwfP579+/czZswYPD09Wb16NVu2bHmoelJSUggPD+f111/HzMyMU6dOMXHiRNRqNT179qzRPkJCQli7dq1O2g8//MDBgwe1w2+3b9/OqFGj6NWrF8OHDyczM5NZs2ZRUFDA7NmzASgtLWXgwIFYWFgQHR0NwJw5cygqKsLX17dGbblw4QJyuZz27dsb3N60aVPs7Ow4ceKENu3rr79mzZo1DB8+nODgYLZu3cqsWbP0yg4dOpT09HSmTJmCTCZj0aJFpKamat8XgBkzZrB//35Gjx6Nh4cHmZmZ7Nu3r0Ztv9u97//ddRhSGZCrrhdg5bx01c2Zd6+xY8eSkZHBxIkTcXR0JDU1lQsXLmi3JyYm0rdvX/z9/fnyyy8xMjJi4cKFDBgwgO3bt2NmZsbo0aM5cOAAn3zyCUuWLKGkpIRx48bRpk0b+vbtW+O2CDUTn5yGu7MjllKpTnplsC0+OQ1HO1u9cmq1mlsp6bSP1J+D0M/bk3NX4yhRlGIhNdwbaP/J85hJJEQ2Cq6+fUmpJKdn0rPTczU9JEGosYTcAtxtLLE0k+ik+znaarc7WukHK9RqNYl5hbSrr39/9HOy5XxqFiVKFRYSw/fiA/EpSEyMae7tZnC7IDyM3Mx4ZPZ1kJjr9tB0cPXXbreUPdrQ6dzMG4CmN9zdLKwdsJQ5VdvTThAeh5SkBJxc6iC10L3OK4NtqUkJ2NnrX+dqtZq05FtEtOygt83Tx4/Yy2cpVZRgLrVApVIaDKpJzDRpybduaOezqxcQwt4dm9ixeQ1NW7QD4MzxAyTfiuP1gR890rEKgvD0E4G5p4hcLickJEQvfdWqVdjZ2bFjxw6++OILXn31VQDatGlD586dH6qubt26aX9Xq9U0a9aM9PR01q5dW+PAnLW1tc7Qy23btrF7926io6Px9vZGrVYTHR1N165dmTZtmjafs7MzgwcPZujQofj7+7NhwwYyMjLYtm2bNhAXHBzMiy++WOPAXHp6OlD9fHzu7u7a3lt5eXmsXr2aQYMGaYd3RkVF0a9fP+2+APbt28eFCxdYunQpLVtqhkJFRkbStm1b7OzstPnOnz9P9+7ddc7d3ee4JmJjY/Xe/1WrVhEREaF9rVarUalUqFQqzp49y8KFC/Hy8tIrp1KpNE+8k5L47LPP8PDw4JVXXqlxW86fP89HH32kMyfff/7zH+3v8+bNw9bWlp9++glzc03AJjw8nOeff55169bx5ptvIpVK+d///sfrr7/OihUruH79OgUFBTrXgvD45BYUYm9jrZdeObw0N7/QYLnCYjlKlQo7Q2VtrbX7NhSYKyyWc+ZKLM0aBlUZuKt04NQ5AKLCxTBW4fHLKyk1OJTUzkITqM6VlxosV1iqRFlega2Bsva303JLFFhI9P8+CkvLOJuSSYSXa5WBO0F4GIriHKRW9nrpFrfTFMU5etseVElx3u196s+/KLW0o6Qo+5HrEITqFObnIrOx00u3sdVckwX5hq9zeXEhKpUSa4Nl7W+XzcVZaoGzqwfXr5wjNzsDe8c7D7ETrl/W5Mu7U0f7F18lJyudPX9u4K/tvwIgMTPnzUEfE9yo2UMdoyAIzw7xSfApIpVKWblypV56vXr12LFjB2q1mk6d7hrWYGJCx44dWbp06QPXlZ+fz9y5c4mJiSE9PZ3y8nIAnWDTg7hy5QqffPIJAwYM4OWXNfNExMfHk5yczPjx43V6gjVv3hxjY2MuXLiAv78/586dw9/fXycI5+PjQ1BQ0EO1pSauXbuGQqHQOZ8AnTt35vjx49rX586dQyaTaYNyADKZjFatWnHp0iVtWnBwMBs3bsTZ2ZmoqCgCAgIeuE3e3t58/fXXOmn16tXTeb169WpWr16tfR0aGsrUqVOR3tVL6t4An4WFBatWrdKu3FoTwcHBLFmyBBMTE1q3bo2Pj+7CAQcPHqRr166YmJho31sbGxuCg4N1etY1atSI999/n+joaJRKJbNnz/7HzvH3b6dUqgz2sJSYaoYolSmVhsvdfv8kBstq0krLDJc9cvYSKlU5be4zZ5xarebgqQv4erjj6eZcbV5BeBhlqnJMjfVn95CYaNLKbv8fdy/l7fTKfHczrSyrqjBY9ujNNFQValqLYazCY1auUmJiItFLNzbVpKmUhgPND1aHZh/GBuoxMTVDWSbXSxeEx0mpLMPE1MD1d/tBh7KsTG9bZTlAZ8hpJdPb+1OWaa7viFbPc3T/DtYs+ZpuvQZgbWPL+VOHuXj2mE6+yrJOLnVoGNaCkMaRVFRUcPzgLtYu/ZZ3h0/Cu+6Df7YXBOHZIQJzTxFjY2PtBP73yszMRCKRYGurOxTN0dHxoeoaN24cp0+fZtiwYfj5+WFtbc2aNWvYtm3bA+8rJyeHoUOHEhYWxscff6xNz83NBWDYsGEGy6WmpgKQkZFh8DgcHR0pLa3Zh09XV1edfVZVX+V8a5mZmdo67ubkpNtlPiMjw2BA695yn376qbYHWXR0NO7u7gwePJg33nijRu0HMDc3r/L9r9SlSxfeffddJBIJbm5uBgOplQG+iooKrly5wldffcV///tffv/9dyws7j/vDMDs2bOZPXs233zzDZ999hl169blo48+0vbQzM3NZdmyZQZXEZbc80GpW7dufPfdd7i4uDx0D0/h/iQSU4ND4ZUqTeDBzMAHWLgTfFMaLKtJMzczXPbgqfNYW1kSFuRfbdsuXk8gJ7+Abm1bVJtPEB6WmakJqgr9AJqyXJNmZmKitw1Acju9Mt/dVJVlTQ1P53soIRVrcwlN6ohgs/B4mZhKKC/XfyBSodKkmUoefaERE1PNPioM1FOuKsPERMypJTxZEokZ5SoD15/y9gNDM8PXYOXQVJWBB46q2/uTmGmub3cPH/oMGMmmn79n4dcTAZDZ2NH91QFs+nkR5tI7n4t//+VHEuNjGf7JVxgZGQEQGt6Kb6eNYsv6JQz9uOpFVwRBEERg7hnh7OyMUqkkPz9fJziXna071KByWKHynv+sCgoKtL+XlpayZ88exo0bR//+/bXpd/fEqimlUsmIESMwMjJi9uzZmNz15acyaDRp0iQaNdLvUVPZc8rFxYWLF/UnmM/OzsbaWn/4kCENGzbE0tKSPXv26BxTpdOnT5OXl6cdFurs7KytozKoB5CVpTvRrIuLi95CGpXl7iaTyZgwYQITJkzg6tWrLF++nM8++4yAgACdoaiPysHB4b7Bu7sDfI0bN8be3p7hw4ezYsUKBg8eXKN6XFxcmDFjBhUVFVy4cIEFCxYwatQotm/fjpeXF7a2trRt29Zg4NHKykr7e0VFBRMnTqRevXqkpKQwf/58RowY8QBHLNSUvY2MnPwCvfTcAs0QVntbwxN3y6wskZiakldQpF82v0i773tl5eZx+cZNnm/RFFNTw0GPSvtPnsPIyIjWYhir8ITYWZiTK1fopeeVaNLsLQ0HMmTmEiQmxuSX6D8Eyr2dZm8h1duWVVzClYwcOvh5aXvWCcLjIrVyMDiUtKQ4V7v9UVlY2d3eZ47efHUKeZ52PjtBeFJktvY6Q0krVQ5hrRzSei9LKxmmphKKCvIMlM29XfbOUPDQ8JY0aNSMtOQEKioqqONVj/hYzegOJxfNFDgqlYoTh3fTtmMPbVAONHM9BwSHcXjvNlQqwyMTBEEQQKzK+syoDLTs3LlTm1ZeXs6uXbt08lUGmW7cuKFNi4uL0+lJVlZWRkVFhU7PpqKiInbv3v3A7Zo6dSoXL17ku+++0+u9Va9ePdzc3EhMTCQ0NFTvp7KtoaGhxMbGcvPmTW3ZmzdvcuXKlRq3QyqV0rt3bw4cOKAzFBU0waE5c+ZgaWnJa6+9BkBAQABSqVTnfALs2LFD53VoaCiFhYUcPnxnhafCwkIOHTpUZVsCAwP55JNPAM25r22dO3cmPDycZcuW1bgHYiVjY2MaNWrEf//7X1QqlfY9atmyJbGxsQQHB+u9r3cPv/3xxx85f/4833zzDR999BHff/8958+ff6zHJ2j4eriSmpmNXKEbnIi9qVkgpK6H4cnpjYyM8K7jSlyi/qq9sTeTcHV0MDh/3IFT51Gr1UTdZxirUqXi6LlLhPj54lBFcFAQHpWPvQ2pBXLk9wy7js3KA8DX3sZgOSMjI7zsZMRl669aHJuVh4u1hcH54w7Gp6BWI4axCk+EnZMvhbkpKEt1h5Nmp10DwN657qPXcXsfuem6n1NKinKQF2Zh5+z7yHUIQnXcPXzIykhBUaJ7nScmxGq2e/oaLGdkZISbhzdJt67rbUtMiMXByVWnJxxoAmyePn541w3A1NSU61c0897WD9R8hpEXF1BRXk6FWr/3dEV5OWq1GrWBbYIgCJVE2P4pUlFRwZkzZ/TSHR0d8fPzo1OnTkyfPp3S0lLtqqz39oxr3Lgx7u7uTJ8+ndGjR1NUVMQPP/ygEzSTyWSEhoayaNEiHBwcMDU15YcffsDa2tpg77CqbNmyhbVr1zJw4EAUCoVO2yuHx44bN44xY8Ygl8tp164dFhYWpKSksHfvXkaNGkXdunXp1asXCxYs4P3332fkyJGAZlXWe4eV3s/IkSM5ffo0gwcPZtCgQURERJCXl8eqVas4fvw4M2fO1PbSs7Ozo2/fvixatAipVKpdlfXWrVs6+3zuuecICQnh448/ZsyYMchkMu25ulvfvn3p1KkT/v7+mJiYsGnTJiQSyWPtLfcohg8fzjvvvMOGDRt4/fXXq81bWFjIu+++S48ePahbty5KpZIVK1Zo55ADGDFiBK+++irvvvsuvXv3xsnJiaysLI4dO0ZERATdu3fnypUrzJkzhxEjRhAYGEhAQAAxMTH83//9Hxs3btT27hQejxaNQtj81yFiDp/kpfatAU1QbM+x0/j7eGpXZM3KzaO0TImH653hd5GNGrB6yy6u30rWruKakpHFxevxvNS+lcH6Dpw6j5O9LUH1vKtt16lLschLFPedh04QHkWktxtbL8Wz+3oS3YM1AQdleTl745Lxc7LTrsiaVVxCqaocD9s79/Dm3q78fPoacVl51HeyAyCloIhLaTnafd3rUEIqjlZSglz0J+gXhEfl5d+Sq6d+I+7CToKa9gA0887FX4rB0S1A28OtuCCTclUpNg41X3W9kq2jNzYOHsRd2EH90Bcwuj1H4/Vz2zUBa7+W99mDIDyahmEt2R+zmeMHdxHVUTM/tUqp5OSRv/Dy9deuyJqXk0lZWRkubh7asiFNWvDnb6tIunldu4prZnoKN65d0O6rKlkZqRw9sJOghk1xdtU8XLGW2SG1sOLimWN07NZX2zOutFTB5QsncHb1MLi6qyAIQiURmHuKKBQK+vTpo5f+6quvMm3aNKZPn87nn3/OzJkzMTMzo2fPnjRv3pzo6GhtXolEwrx585gyZQojR47E29ub8ePH8+WXuvMizJo1i0mTJjFu3Djs7Ozo378/crmcJUuW1Li98fHxACxZskSv3PLly4mMjKRLly7Y2NiwcOFCNm/eDICHhwdRUVHawJtUKmXJkiVMmTKFjz/+GFdXV4YOHUpMTAyFhYZXkjTE0tKS5cuXs2TJErZs2cKCBQuwsLAgPDycVatWERYWppN/9OjRlJeX8+OPP1JRUUGnTp0YPXo0Y8eO1eYxMjJi/vz5TJ48mUmTJmFjY0P//v3JysoiJiZGmy88PJxNmzaRlJSEsbExAQEBLFy4kPr169e4/U9Sq1ataNq0KUuWLKF37946Q47vZW5uTkBAACtWrCA1NRWpVErDhg1ZvHixdr49Hx8f1q1bp52DTi6X4+zsTLNmzQgMDKSsrIyxY8cSGhrKe++9B2jO5ZdffslLL73EzJkzmTBhwt9y7M8Kf19PWjYJYfXWGPILi3F1cmDfibNk5uYzpE8Pbb55qzZyKS6BX2Z/pk17oXVzdh85xZeLVvFy+9aYmBizZc9hbGVWdG+nH5i7lZrOrZR0ejzfRmfIhyEHTp5DYmpKZKPgx3ewgnAPf2c7Wvi48fPpq+SXlOIqs2T/jWSyiksY3PLO8P/5B89xOT2HNf27aNM6B/rw1/Ukov86SffgupgYG7H1UgK2UjO6Bfvq1ZWYW8it3EJeDql33+tfEB6Go3sgXv6tOX9wBaXyPKzt3Ei4vAd5QSbNOn6ozXfsz2/JSL5In/9u1KaVlRZz/cwfAGSlakYexJ75AzNzKyTmlvg3ubNifOM2AziweTp7Nk7BO6AN+dm3uH72D+qGdMTG0UunTZeOrgMgP0fzAPPmlT1kpWhWtgyOfO0JnAXhaeddN4DQ8JZs/30VRYV5ODi7cfroXnJzMun15gfafL8sm0v89UvM+G69Nq3lcy9y4lAMS+dP57mOPTA2MeHA7s1Yy2xp0+ElnXpmT/0vDcNaYO/gTE5WOkcP7MDS0pr/vH5nehdjY2Oe6/gyOzavYcFX4wiLbIe6ooITh3eTn5tN77fFNCyCIFTPSK1Wq2u7EULtWbp0KTNmzODq1au13RRB+FsUnthe2034xypTKlm7bTf7T56nWF6Cdx1X+nTpQJMgP22eKfN+0gvMAWTn5bNs05+cuxpHhbqC4Pq+DOjZBTcn/TleVm3ZyW8xB/jq46H41HHV215JrlAweNJMwhr4M/od/YcOQtVUf/5W20341ylTlfPL2VgOxqdQXKbEy05G7yb+NL5rcYbPdxzVC8wBZBeXsOLEFc6lZlGhVhPs6sBbzRrgJrO6txrWnLrK7xdv8L/urfGuYoisUDOzPL6t7Sb8Y5Wryjh/aDW3ru6jTFGErZMPDVu+gbvvnYeMf62bqBeYKy7IYMuS9w3u08rGhe4Dv9dJS447ysUjaynIScLc0hbfBu0JieyNsYnus/+13/Sssq131y/o69RMf3ElQUOpLGPn5jWcOb6fEnkxbh7edOrel4DgO9f5D7Mn6QXmAPJys9j661KuXz5HhbqCev4hdH91AI7O7jr5fl4ym4QbVygqyMfKWkaDRs3o2K0P1jLdBfUAzhzfz6E9W8lMT6VcpcTNw4fnOvagYZhYvOp+2oZY1nYTHsrEpYZX//0n+GKA6KX5byICc884EZgTnjUiMCc8C0RgTngWiMCc8CwQgTnhWSACc4+fCMz9u4ihrMIzQaWq+kONkZFRtUMza1v57Uljq/J3r/BUUVFBRUXVE9iamJiI4VmCIAiCIAiCIAiCUAMiMPeMGzBgAAMGDKjtZjxxISEhVW7z8PB4qBVl/y6dOnUiOTm5yu1/d2/H8ePHs3Fj1cNOKucHFARBEARBEARBEASheiIwJzwT1q9fX+U2M7N/djffBQsWUFb2z+km/eGHH/Lmm29Wub1uXcOrEAqCIAiCIAiCIAiCoEsE5oRnQmho6P0z/UMFBgbWdhN0eHp64unpWdvNEARBEARBEARBEIR/PePaboAgCIIgCIIgCIIgCIIgPItEYE4QBEEQBEEQBEEQBEEQaoEIzAmCIAiCIAiCIAiCIAhCLRBzzAmC8Ew5ZfFcbTdBEJ648BdquwWC8De4UNsNEIQnr9Gm0bXdBEF48kIW1HYLBKFWiR5zgiAIgiAIgiAIgiAIglALRGBOEARBEARBEARBEARBEGqBCMwJgiAIgiAIgiAIgiAIQi0QgTlBEARBEARBEARBEARBqAVi8Yd/iblz5zJv3jyD20aPHs3gwYP/5hbB0aNHeeutt1i/fj2hoaEABAYGMnbsWN59990nXv/QoUMpLCxkxYoVNS6jUChYsmQJW7ZsITExEQsLC8LDwxkyZAhNmjS5b/ldu3YxbNgwYmJi8PT0rDLftGnTiImJYffu3TVuW3XGjRvHxo0b9dLbtWvH999/D0CHDh1ITk4GwMTEBHd3d9q0acPIkSNxcHAwuB9HR0eCgoIYPnw4YWFhj6Wtwr+XSqlk59afOXNsHyXyYtw8vOn00uv4BzWutlxmegpH9+8gMeEaKYnxqFRKxn4+H3tHF728W9YvJT72Ark5maiUSuwcnGnUtBVRHXtgbi7Vy5986wYxf/xCQtxlVEolDk6uNG/TiVbtuj624xaeLUqVil+2/cW+k2cplivwdnelb9cONAqsf9+y2XkFLP9tO2evxqFWqwnxq8vbPV7A1clBJ19eYRGrNu/k9OVYFKVl1HFxomfHNrRs0lBvn+euxrFx135upqZTUVGBu7MjXaIieS6i+r87QahOuUrJhSNruHl5L2WlRdg5+dCw1Zu4eVd/XRXkJhN37k9y0q6Rm3GD8nIl3Qd+j5WNgfv5kvcpLsjQS68f2pmI5z/QS0+7dZbLx38lNz0OtboCmX0dgiJ64h3Q5uEPVHimKcvLWXc2lgM3UigqU+JtL6NPkwBC3Z3uWzZHrmDFicucS82iQq0mxNWR/hENcJVZ6uTLLyll9emrnEnOpESpoo6tFf8JqU8LX3edfMM37CGruMRgXa4yS775T9uHP1BBEJ56IjD3LyKVSlm2bJleuru7u4HctWPt2rXUqVOntpthkFwuZ8CAAcTGxvLee+8RERFBXl4eK1eu5I033mDmzJl07frP/bLv5eXFzJkzddJsbGx0Xr/wwgsMHDgQlUrFmTNnmDdvHteuXWPVqlUYGxvr7EetVpOYmMjcuXN555132Lx5M15eXn/b8Qj/POtXzOP8mSO0btcVRxd3Th3Zw9L50xk0cgq+9RtUWe5W/FUO7dmKi7sXLm4epCQlVJk36WYsvn7BNHV2w1QiITUxgb07NnH9yjne/+gLjIyMtHljL59h2YIvqeNVlw5dXsPM3JycrHTyc7Me52ELz5j5azZx5Owluj4XiZuTI3uPn2HGolVMHvo2QfV8qiynKC3j8/lLKS5R0LNjFKYmJmzZc5gp3y0leswQZFaaL3NyhYJJcxaTX1RMl6gW2NlYc+TMRWYvW0d5eQVtmjbS7vP4hSvMXPIzAb5evPZCO4yMjDhy5iLzVm2gsFhOt7Ytn/j5EJ5Ox3bOISn2MP5NuiOzdyfh0l/s3zSVdq9Mxdmj6vt5dupVYs9swcbBCxsHT3Iz46utx965LgHhL+ukyez1PwfGX4zh+K7vcPVuTGjrNzEyMqYwNwV5YfbDHaAgAAsOnefYrTReDPLFTWbJvhvJ/G/3CSZ2ak6Qi0OV5RRKFVN3HEWuVNGjYX1MjY3YeimBz3cc5cvurZGZmwEgL1My+c8j5CtK6RLki52FOUdupvHt/jOUq9W0rnvnWn+rWQMUSpVOPVnFJfxyJpZGNQgUCoLwbBOBuX8RY2PjGvXqqk3/5PZ9++23nD17lmXLltGiRQtteseOHRk4cCATJkwgIiICFxf9p8L/BFKp9L7n18nJSZsnIiKC0tJS5syZw8WLF7W9Gu/eT1hYGJ6enrz++uv88ccfvP/++w/dPoVCgVSq3+NJ+HdITIjl7MmDdO35FlEdNV+ywiPb8e20j9i2cQUfjJleZdkGoRFMnrkcc6kF+3f9Xm1gbsjoaXppDk6u/LFxOYkJsXjXDQBAUSLnl2VzCWrYlDcHjdEJ2AnCw4q9mcTBU+fp/3JnXmrfGoC2zRozJno+Kzfv5IuR71VZ9s+Dx0jNzGb6qMH4eXsA0CTIj9HR89m85xBvdOsIwK5DJ0nLymHS0AE09K8LwAutmzH+m0Us/30HLRqHYGpqAsD2/cews7Fm0tC3kZhqPpJ1atmUUV/O469jp0VgTngo2WnXuHX1AI2jBhDUtAcAvg3as33lSM4dWMbzfb6ssmydus3o+cEqJGYWXDn5230DcxbWjvg2aFdtnuKCDE7+9QN+jbsS3q7qvzFBeBDXs/I4nJDKm02D6B6sudc+V8+DsVsOsPrUVT5/ser7545rt0grlPNFl5bUd7IDoHEdZ8ZuPsDWS/H0DQsEICY2kfRCORM7NSfEzRGATgHeTNx2mJUnrxDp7YapiebBdzMvV716Npy/DqATwBMEQTBEzDH3FCkqKmLs2LGEhYXRokULoqOjWbx4MYGBgdo8GzZsIDAwkJycHJ2yPXr0YNy4cdrXp0+fZsiQIbRp04YmTZrQo0cPNm3adN82BAYGsnjxYkAz1DUwMNDgz9GjR7Vl9uzZw2uvvUajRo1o0aIFkydPRi6X6+w3Li6Ofv36ERoaSseOHQ0O66yOQqHgl19+oXXr1jpBOdAM+xwxYgRyuZx169Zp05VKJdOmTaN58+Y0bdqU8ePHU1xcrLfv9PR0hgwZQuPGjYmKimLRokV6eQoKCpg4cSJRUVGEhobStm1bRo0a9UDH8DAaNtQMm0pKSqoyT3BwMAApKSk13u/cuXMJCwvj3Llz9OnTh9DQUFatWgXAzJkzeemllwgLCyMqKoqPPvqIjAz9oS579uyhb9++NG7cmGbNmtG/f38uXbqk3V5QUMCUKVNo06YNDRs2pFevXhw4cKDGbRQezIXThzE2NqZZ647aNInEjIiWHbgVf428anqpWVrJMJdaPHTdlUNeS+R3/r7OnthPUWE+nV96HSMjI0pLFajV6oeuQxAAjp69hLGxMc+3bKpNM5NIaB8ZzrWERLLz8qsse+TsJep7e2iDcgAers409K/LkTMXtWmXb9zExtpKG5QDMDIyolWTEPIKCrkUl6BNV5SWYmVhoQ3Kgeb/JJmVJeYSyaMervCMSoo9jJGRMfUbdtKmmZiaUS+kI1mpV5EXVn0/N7eQITF7sPt5RbkKlVJR5fa4c3+iVlfQsOXrAKiU4n4uPLqjN9MwNjKig9+dqWXMTE1o5+dJbGYe2VUMK60sW8/RVhuUA/CwtSbEzZEjN9O0aVcycrGRmmmDcqC5n7f0dSevpJTLGbrfp+51KD4FZ2sLAl3sH+IIBUF4logec/8yKpVKL8309gf68ePHs3//fsaMGYOnpyerV69my5YtD1VPSkoK4eHhvP7665iZmXHq1CkmTpyIWq2mZ8+eNdpHSEgIa9eu1Un74YcfOHjwoHb47fbt2xk1ahS9evVi+PDhZGZmMmvWLAoKCpg9ezYApaWlDBw4EAsLC6KjowGYM2cORUVF+Pr61qgtFy5cQC6X0759e4PbmzZtip2dHSdOnNCmff3116xZs4bhw4cTHBzM1q1bmTVrll7ZoUOHkp6ezpQpU5DJZCxatIjU1FTt+wIwY8YM9u/fz+jRo/Hw8CAzM5N9+/bVqO13u/f9v7sOQyoDctX1Aqycl666OfMMUSqVjB49mgEDBjBq1Cjs7OwAyM7O5v3338fFxYWcnBx++ukn+vfvz9atW7Xt/eOPP/joo494/vnnmTVrFhKJhFOnTpGenk5wcDBlZWW88847ZGdn89///hdXV1d+//133n//fW1wWXi8UpIScHKpg9RCd24VTx8/AFKTErCzfzxDMcrLy1GUFFNeriI95RY7Nq/BXGqBl6+fNs/1K+eQSi3Jz89mxQ/RZGWkYGYuJaz5c3R7ZQASidljaYvwbIlPTsPd2RHLe3r3Vgbb4pPTcLSz1SunVqu5lZJO+0j9uTj9vD05dzWOEkUpFlJzlCoVZhL9e7OZmSbQdiMpRTufXbCfL7/FHODnP3bTrnkTAA6cOkdcYgqj3nrtkY5VeHblZsYjs6+DxFz3fu7g6q/dbil7PPfz9MRzrJ/XB7W6AisbFwLCuhMQ9tI9ec5iY+9BWsIpzu5fhrwoGzOpNX6NutCw5euiR7TwUBJyC3C3scTSTPchhp+jrXa7o5V+kFmtVpOYV0i7+vqfe/2cbDmfmkWJUoWFxBRleQUSE/1+LOa3025k51c5n11CTgHJ+cX8p+H95y8VBEEQgbl/EblcTkhIiF76qlWrsLOzY8eOHXzxxRe8+uqrALRp04bOnTs/VF3dunXT/q5Wq2nWrBnp6emsXbu2xoE5a2trnaGX27ZtY/fu3URHR+Pt7Y1arSY6OpquXbsybdqd4W3Ozs4MHjyYoUOH4u/vz4YNG8jIyGDbtm3aQFxwcDAvvvhijQNz6enpQPXz8bm7u5OWpnlKlpeXx+rVqxk0aJB2eGdUVBT9+vXT7gtg3759XLhwgaVLl9KypabLfGRkJG3bttUGqgDOnz9P9+7ddc7d3ee4JmJjY/Xe/1WrVhEREaF9rVarUalUqFQqzp49y8KFC/Hy8tIrp1KpUKvVJCUl8dlnn+Hh4cErr7zyQO1RKpWMGjVKb16+GTNmaH8vLy8nLCyM5557jiNHjtCmTRvUajX/+9//aN26Nd999502b9u2dybF3bx5M1euXOG3337Dz08TrImKiuLmzZvMnz+fb7/99oHaKtxfYX4uMhs7vXQbW80cLQX51T8VfhDJt+JYMHO89rWTSx3eev//sLSSadOyMtMoryhnxffRNGv1PC+8/Abx1y9xaM8fKOTF9B345HucCk+f3IJC7G2s9dLtbTTXXm5+ocFyhcVylCoVdobK2lpr920hNcfDxYnz126QmZOHs4OdNt+VG7cAyLmrjlc6tSUjO5eNu/axYedeAMzNJIx+pw/NGgY93EEKzzxFcQ5SK/0eOha30xTFj+d+buvkg1+dF5HZe1CqKCDh0l+c3ruEkuJcGrd5S5uvMDcVI2Njju2YS1BET+ycfEm6fphLx9ahriinUZv+j6U9wrMlr6QUOwtzvXQ7C82Dl1x5qcFyhaVKlOUV2Booa387LbdEgYXEmjq2VlxIyyKzqARn6ztBvssZudXWAXAgXjMSRQxjFQShJkRg7l9EKpWycuVKvfR69eqxY8cO1Go1nTrdNWzBxISOHTuydOnSB64rPz+fuXPnEhMTQ3p6OuXl5QA6waYHceXKFT755BMGDBjAyy9r5q+Kj48nOTmZ8ePH6/QEa968OcbGxly4cAF/f3/OnTuHv7+/ThDOx8eHoKAn96Xl2rVrKBQKnfMJ0LlzZ44fP659fe7cOWQymTYoByCTyWjVqpXOsMzg4GA2btyIs7MzUVFRBAQEPHCbvL29+frrr3XS6tWrp/N69erVrF69Wvs6NDSUqVOn6sz9dm+Az8LCglWrVmlXbn0QdwfTKu3du5cFCxYQGxtLUVGRNj0hIYE2bdpw48YN0tLS+L//+78q93vw4EECAgLw9fXVuTZatWrF77///sDtFO5PqSzDxFR/6JzJ7Z4/yrKyx1aXi5snA4d/irKsjJs3rnD9yjnKSnU/3JaVKlCWlRIZ1ZmXXhsIQMOwFqhUSo4d2EnH7n1xcvnnLHwj/DsolSqDPY0lt+d8K1MqDZe7fR+SGCyrSSst05Tt0KIpOw+fYPaydbz9nxewlVlz+MxFjp27rJOvsl53ZydaNA6meWgDKtRqYg6fZO7KX/l0yNv4+z5YT2ZBAM2KrCYm+vdz49v3eJWy6mDCg4h6ebzO67rBz7Nv01Sunfod/8Zdtb3yVMoS1Go1jVr3p0GzXgB4+rekrLSYa2e20KD5qw88fFYQylTlmBrr92ar7OFWdvu7y72Ut9MN9YSrnC+uTFUBQAc/T2Ku3eLb/afp37QBthZmHLmZxolEzUP60irqUKvVHE5IwcdBhqed/gMdQRCEe4nA3L+IsbGxdgL/e2VmZiKRSLC11R2C4+joaDD//YwbN47Tp08zbNgw/Pz8sLa2Zs2aNWzbtu2B95WTk8PQoUMJCwvj448/1qbn5mqeNg0bNsxgudTUVAAyMjIMHoejoyOlpTX7cOnq6qqzz6rqq5xvLTMzU1vH3ZycdLurZ2RkGAxo3Vvu008/xdbWlp9++ono6Gjc3d0ZPHgwb7zxRo3aD2Bubl7l+1+pS5cuvPvuu0gkEtzc3AwGUisDfBUVFVy5coWvvvqK//73v/z+++9YWNT8g7GFhQVWVlY6aefOnWPo0KE8//zzDBo0CEdHR4yMjOjdu7f2vcrLywOqH16bm5vLpUuXDPYQNTExqXEbhZqTSMwoV+kHJcpvrzAmMXt8Q0elFpb4BzUGILhRM84c38/y779k+LivcPf01bYHoFHT1jplG0e04diBndyKvyoCc8IDk0hMDU4JoVRpvlyZVTGvW2XwTWmwrCbN/PZwKp86rozo9wo/rNvCp3M0c67a2ch4+z8v8uP6LViY3/lbWvzrH8TeSiJ69BDtcL6WjUMYHf0dP23cxvRRgx72UIVnmImphPJy/ft5xe17vKlEv6fQ42BkZERA2Euk3TxNRtIF7aIQJqbmqJQKvAOjdPJ7B7QhNeEUuRk3cPHU//9eEKpjZmqCqqJCL11Zrkkzq+LzouR2emW+u6kqy5pqAnTe9jYMa9OYxUcvMuXPIwDYWZjTP6IBS45eRGpquI5L6TnkyEvp0qCuwe2CIAj3EoG5p4SzszNKpZL8/Hyd4Fx2tu4y9Obmmg9jynt6BRQUFGh/Ly0tZc+ePYwbN47+/e8ML7i7J1ZNKZVKRowYgZGREbNnz9YJqlQGjSZNmkSjRo30ylYGblxcXLh48aLe9uzsbKyta/YUqmHDhlhaWrJnzx6dY6p0+vRp8vLytMNCnZ2dtXVUBvUAsrJ0J0yunEfNUNvuJpPJmDBhAhMmTODq1assX76czz77jICAAJ2hqI/KwcHhvsG7uwN8jRs3xt7enuHDh7NixQoGDx5c47oMzQmza9curK2t+eabbzC+/RSzcg67SpXvu6EFISrZ2toSGBioM8RZeLJktvYU5Olfy5VDWCuHtD4JIU0iYRmcPXlAG5iT2dqTnpqIzEZ3OJa1zA7QXShCEGrK3kZGTn6BXnpugWZ4qb2tTG8bgMzKEompKXkFRXrbcvOLtPuu1KJxCBEhQSSkpKGuUFPX052LcZrVLd1dNA9uVKpy/jp2mpc7tNa5n5qamtAkyI/tB46hUpVrV3AVhJqSWjlQUpStl15SnKvd/qRY3e4lV1Z652/FwsqewrxUpJZ2OnnNLTWfV5Wl4n4uPDg7C3Ny5fqLjuSVaNLsLQ0HoGXmEiQmxuSX6D/cz72dZm9xZ6RJCx93IjxduZlbQIUa6jrYcCld89mojo2V3j5AM4zVyAha+4oHiIIg1IxYlfUpURlo2blzpzatvLycXbt26eSrDDLduHFDmxYXF6fTk6ysrIyKigokd/UcKCoqYvfu3Q/crqlTp3Lx4kW+++47vd5b9erVw83NjcTEREJDQ/V+KtsaGhpKbGwsN2/e1Ja9efMmV65cqXE7pFIpvXv35sCBAzpDUQEqKiqYM2cOlpaWvPaaZrLtgIAApFKpzvkE2LFjh87r0NBQCgsLOXz4sDatsLCQQ4cOVdmWwMBAPvnkE0Bz7mtb586dCQ8PZ9myZTXugVgVhUKBRCLR+ZK5efNmnTyV7/uGDRuq3E+rVq1ITEzExcXF4LUhPH7uHj5kZaSgKNFdETkxIVaz/XbA7ElQKZWo1WpKS+6soObhrRmmXZCn++Wy8Hag0Mra5om1R3h6+Xq4kpqZjVyh+2Uu9qZmoZy6Hm4GyxkZGeFdx5W4RP3Vq2NvJuHq6ICFVPdLoKmpCX7eHvj7emJqasL5q5r/d0P9b1/bxXLKy8upMNDjo7yiArVaTYVaf5sg3I+dky+FuSkoS3Xv59lp1wCwd35yvXiK8jVD/KQWdx4S27tqJr8vKda9n5fcnuvO3MJwQFwQquNjb0NqgRx5mW5ng9isPAB87Q1/TjAyMsLLTkZctv4q3LFZebhYW2BxzwI+pibG1Heyw9/ZDlMTY86nah7Uh7jrj+hRlpdz7FYawa4O2FtK9bYLgiAYIgJz/yIVFRWcOXNG7ycxMRE/Pz86derE9OnTWbVqFXv37mXo0KF6PeMaN26Mu7s706dPZ8+ePWzZskVnRU3Q9O4KDQ1l0aJFbN++nV27djFw4MAa906rtGXLFtauXUvfvn1RKBQ6bS4qKsLIyIhx48axYsUKJk2axO7duzl8+DC//vorI0aMID5e07ugV69eODk58f7777Nt2za2bdvGkCFD9IaV3s/IkSNp3LgxgwcPZv78+Rw7dowdO3bwzjvvcPToUaZNm6btpWdnZ0ffvn1ZtGgR33//Pfv372fcuHHcunVLZ5/PPfccISEhfPzxx2zatImYmBjee+89vXPVt29fFi9ezL59+zh48CCfffYZEonksfaWexTDhw8nKyur2mBZTbRu3ZrMzEymTp3K4cOHmT9/Phs3btTJY2RkxP/93/9x4MABhg8fzq5du9i3bx9z5szhr7/+AuA///kPdevW5a233mLt2rUcPXqUXbt2MWfOHIMr4wqPrmFYSyoqKjh+8E4wX6VUcvLIX3j5+mtXZM3LySQjLbmq3VSrRF5scBjhiUMxwJ1gHECjcM0Q1uO3t1U6fnAXxiYm1AsQw56EB9eiUQgVFRXEHD6pTVOqVOw5dhp/H0/tiqxZuXkkp2fqlI1s1IC4W8lcv3Xn+k/JyOLi9XhaNAmutt7UzGx2Hj5BeHAAdVw0f0t2MissLaQcP38FlerOPEWK0jJOXryGh6tTlUNrBaE6Xv4tUasriLtw18NalZL4SzE4ugVo534rLsikICfpoeooLSlEfU9QuaJcxeUTv2JsYoqzZ0NtundAGwDiL965n6vVahIu7sZcKsPexQ9BeFCR3m5UqNXsvn7nGlaWl7M3Lhk/JzvtiqxZxSUk5+v2dm7u7cqN7HzibgfxAFIKiriUlkMLn+p7uaUWFLMr9hZhHs7UMbAg0OnkTORlKrHogyAID0QMZf0XUSgU9OnTRy/91VdfZdq0aUyfPp3PP/+cmTNnYmZmRs+ePWnevDnR0dHavBKJhHnz5jFlyhRGjhyJt7c348eP58svv9TZ56xZs5g0aRLjxo3Dzs6O/v37I5fLWbJkSY3bWxlYW7JkiV655cuXExkZSZcuXbCxsWHhwoXanlUeHh5ERUVpA29SqZQlS5YwZcoUPv74Y1xdXRk6dCgxMTEUFhpeQc8QS0tLli9fzpIlS9iyZQsLFizAwsKC8PBwVq1aRVhYmE7+0aNHU15ezo8//khFRQWdOnVi9OjRjB07VpvHyMiI+fPnM3nyZCZNmoSNjQ39+/cnKyuLmJg7H0DDw8PZtGkTSUlJGBsbExAQwMKFC6lf/5+xhHqrVq1o2rQpS5YsoXfv3g89j1vbtm0ZM2YMK1euZMOGDYSHh/P999/zwgsv6OTr2rUrUqmUhQsX8tFHH2Fubk5wcLB2sQ0zMzOWL1/O3LlzWbhwIZmZmdjZ2REcHPxA8/IJNeddN4DQ8JZs/30VRYV5ODi7cfroXnJzMun15gfafL8sm0v89UvM+G69Nq1EXszhvZr5J2/euArA4b3bkFpYIbWwolW7LgDciL3I5nWLadikJU4ubpSXl5Nw/RIXzx7D06c+TZrfWUykjlddIlp24MTh3VRUlFPPP4QbsRc5f+ow7Tr3fKJDa4Wnl7+vJy2bhLB6awz5hcW4Ojmw78RZMnPzGdKnhzbfvFUbuRSXwC+zP9OmvdC6ObuPnOLLRat4uX1rTEyM2bLnMLYyK7q3a6VTz6gv59GicTDODnakZ+ey89AJrC0tGPTaS9o8xsbGvNy+NT//EcP4bxbRtlljKioq2H30NNl5+Qzv92ArZQtCJUf3QLz8W3P+4ApK5XlY27mRcHkP8oJMmnX8UJvv2J/fkpF8kT7/vfMAray0mOtn/gAgK1UzMiH2zB+YmVshMbfEv4lmRfmU+ONcOrYOL79WWNm6UKYo4uaVfeRn36JR637aFWAB6tRrjqtXIy4f/5XSkgLNqqxxR8lMuUzE80MMLjwkCPfj72xHCx83fj59lfySUlxlluy/kUxWcQmDW94ZXTH/4Dkup+ewpn8XbVrnQB/+up5E9F8n6R5cFxNjI7ZeSsBWaka3YF+desb8vo9IbzecrC3IKCxhV+wtrM3MeK9FQww5GJ+CxMSY5t6Ge2ALgiAYYqRWq9W13QjhyVm6dCkzZszg6tWrtd0UQfhH2HtRfv9Mzyilsoydm9dw5vh+SuTFuHl406l7XwKC7wStf5g9SS8wl5udQfSkoQb3ae/gzNipCwDIzkxl97b1JMRdoTBfM9eRg5MrDcNaENWxB+bmukM+VCoVe3ds4OThvyjIz8XOwYkWz71Imw7dH/ehP3XCS/bVdhP+scqUStZu283+k+cplpfgXceVPl060CToTq+dKfN+0gvMAWTn5bNs05+cuxpHhbqC4Pq+DOjZBTcn3UDxtyvWc+XGLfKLipBZWRIREkTvLu2xtdafj+jAyXP8se8oKZlZqFTl+NRx5eX2rYlsXH0vPAH+d6FDbTfhH6tcVcb5Q6u5dXUfZYoibJ18aNjyDdx979zP/1o3US8wV1yQwZYl7xvcp5WNC90Hfg9ATvp1Lh79hbyMGyhK8jE2NsXeuS7+TbrhFdBar6xKqeD8oVUkXjtIqaIQG3sPgiJ64hOkv7q7oGt08sja3CTnGgABAABJREFUbsI/VpmqnF/OxnIwPoXiMiVedjJ6N/GncR1nbZ7PdxzVC8wBZBeXsOLEFc6lZlGhVhPs6sBbzRrgJtO9T8/Zf4arGbkUKEqRmZvR1MuF1xr7YyPVn8NOXqZkyPrdhHk4M6pt+JM56KeU/YQFtd2EhzJxaVltN6FKXwx4fAu3CU+eCMw95URgThB0icCc8CwQgTnhWSACc8KzQATmhGeBCMw9fiIw9+8ihrIKTwVD81ZVMjIyeuihmX+H8vJyqouPm5r+vX+mFRUVBicjr2RiYmJwRVZBEARBEARBEARBEB6MCMw95QYMGMCAAQNquxlPXEhI1RPBe3h4PNSKsn+XTp06kZxc9WT6f3dvx/Hjx+st2HC3yvkBBUEQBEEQBEEQBEF4NCIwJzwV1q9fX+U2M7N/djfeBQsWUFb2z+kG/eGHH/Lmm29Wub1u3bp/Y2sEQRAEQRAEQRAE4eklAnPCUyE0NPT+mf6hAgMDa7sJOjw9PfH09KztZgiCIAiCIAiCIAjCU8+4thsgCIIgCIIgCIIgCIIgCM8iEZgTBEEQBEEQBEEQBEEQhFoghrIKgiAIwlNG9edvtd0EQXjyPDrUdgsE4YkzfaFHbTdBEARBeMJEjzlBEARBEARBEARBEARBqAUiMCcIgiAIgiAIgiAIgiAItUAE5gRBEARBEARBEARBEAShFojAnCAIgiAIgiAIgiAIgiDUAhGYEwRBEARBEARBEARBEIRaIFZlvcfcuXOZN2+ewW2jR49m8ODBf3OL4OjRo7z11lusX7+e0NBQAAIDAxk7dizvvvvuE69/6NChFBYWsmLFihqXUSgULFmyhC1btpCYmIiFhQXh4eEMGTKEJk2a3Lf8rl27GDZsGDExMXh6elaZb9q0acTExLB79+4at60648aNY+PGjXrp7dq14/vvvwegQ4cOJCcnA2BiYoK7uztt2rRh5MiRODg4GNyPo6MjQUFBDB8+nLCwsMfS1ifhwoULTJs2jcuXL2NtbU1kZCSfffYZ1tbWtd004W+gUirZufVnzhzbR4m8GDcPbzq99Dr+QY2rLZeZnsLR/TtITLhGSmI8KpWSsZ/Px97RRS9v9KcfkJuTqZfevE0ner7+vvZ1QX4Oh/b8QWJ8LEm34igrVTBo5BTqBTR89AMVhHsoy8tZdzaWAzdSKCpT4m0vo0+TAELdnaotl1JQxK5riVzPyiMhpwBleQVzerbD2dpCJ19haRl7ridxKimD5PwiytVq6thY07WBLy193Z/gkQnPqnKVkgtH1nDz8l7KSouwc/KhYas3cfOu/n5ekJtM3Lk/yUm7Rm7GDcrLlXQf+D1WNvr383JVGddObybh8h6KCzIwM7fGqU4QIS36YOvorc3317qJZCRfNFifsbEJr41Y/2gHKzyzlCoVv2z7i30nz1IsV+Dt7krfrh1oFFi/2nIpGVnsPHSC2JtJxCelolSp+O7TUTg72OnkKyyW89fR05y8eJWk9EzKKyrwcHGiW9uWtArT/zwSl5jCz3/EcC0hEbVajb+PF/1e6kRdT3GfFwSheiIwZ4BUKmXZsmV66e7u/5yb6tq1a6lTp05tN8MguVzOgAEDiI2N5b333iMiIoK8vDxWrlzJG2+8wcyZM+natWttN7NKXl5ezJw5UyfNxsZG5/ULL7zAwIEDUalUnDlzhnnz5nHt2jVWrVqFsbGxzn7UajWJiYnMnTuXd955h82bN+Pl5fW3HU9NFRQUMHjwYOrWrcvcuXPJyclh06ZN5Ofni8DcM2L9inmcP3OE1u264ujizqkje1g6fzqDRk7Bt36DKsvdir/KoT1bcXH3wsXNg5SkhGrrqePpS5vnX9JJc3LRvZ9lpaewd8cmnFzccavjza34aw99XIJwPwsOnefYrTReDPLFTWbJvhvJ/G/3CSZ2ak6Qi0OV5WIz89h+JQFPW2vq2FpxM6ewyny/nLlG4zrO9Az1w8TYiGO30piz/wxJeYW81iTgSR2a8Iw6tnMOSbGH8W/SHZm9OwmX/mL/pqm0e2Uqzh5V38+zU68Se2YLNg5e2Dh4kpsZX2XeI9u/IeXGMeo17IS9Sz1KinO5fuYPYtaO44V+32iDeQ0iX6NucUedsuWqUk7ELMTVu8ljOV7h2TR/zSaOnL1E1+cicXNyZO/xM8xYtIrJQ98mqJ5PleWuJSTyx74jeLq54OHqTEJyapX5ft4WQ5Mgf17p1BZjE2OOnbvEN8vXkZiWQZ8uHbR5bySlMHnuEhztbHi1c1vUavjz4DE++24p00cNoo5L9Q96BEF4tonAnAHGxsY16tVVm/7J7fv22285e/Ysy5Yto0WLFtr0jh07MnDgQCZMmEBERAQuLvpPX/8JpFLpfc+vk5OTNk9ERASlpaXMmTOHixcvans13r2fsLAwPD09ef311/njjz94//33q9hz7Tl9+jTZ2dmsXLmSevXqAdCjR48al1coFEil0ifVPOEJS0yI5ezJg3Tt+RZRHV8GIDyyHd9O+4htG1fwwZjpVZZtEBrB5JnLMZdasH/X7/cNzNnYORLWvG21eTy86/Np9E9YWsk4f+owqxfPeuBjEoSauJ6Vx+GEVN5sGkT34LoAPFfPg7FbDrD61FU+f7FllWXDPV1Y3KcTFhJTtlyK52bOFYP5PO2s+bpHW52edJ0CvJm26xibL8XzUkg9pBLxkUx4PLLTrnHr6gEaRw0gqKnm/3HfBu3ZvnIk5w4s4/k+X1ZZtk7dZvT8YBUSMwuunPytysCcvCibpOuHCQzvQZPnBmjTneo0YM+vk0i6foTAcM3/JYZ66SVc3gOAT9BzD3mUwrMu9mYSB0+dp//LnXmpfWsA2jZrzJjo+azcvJMvRr5XZdmmIYEsnf4JFlJzNv91sMrAnJebC99+MkKnJ90LrZsxdcEyft99kB4d2iA1NwNg7ba/kEhM+WLke8isLAFo07QR/50xhzVbYxj9Tp/HdOSCIDyNxBxzD6GoqIixY8cSFhZGixYtiI6OZvHixQQGBmrzbNiwgcDAQHJycnTK9ujRg3Hjxmlfnz59miFDhtCmTRuaNGlCjx492LRp033bEBgYyOLFiwHNUNfAwECDP0ePHtWW2bNnD6+99hqNGjWiRYsWTJ48GblcrrPfuLg4+vXrR2hoKB07djQ4rLM6CoWCX375hdatW+sE5UAz7HPEiBHI5XLWrVunTVcqlUybNo3mzZvTtGlTxo8fT3Fxsd6+09PTGTJkCI0bNyYqKopFixbp5SkoKGDixIlERUURGhpK27ZtGTVq1AMdw8No2FDTnT0pKanKPMHBwQCkpKTUeL9paWmMHDmSVq1aERoaSocOHZg+XTdAEhcXxwcffEDTpk1p0qQJgwcP5tatW9rt06ZNo1mzZqSlpWnTTp48SYMGDfj555+1aUZGRgAkJibet12V19yePXsYMWIE4eHhjBw5EoBNmzbx+uuv07x5c5o1a0b//v05d+6c3j7i4uL48MMPad68OY0bN+bll19my5Yt2u1qtZrFixfzwgsv0LBhQ55//nmWLl1asxMnPLALpw9jbGxMs9Z3ejVIJGZEtOzArfhr5OVmVVnW0kqGudSiyu2GqFQqSksVVW43l1pgaSV7oH0KwsM4ejMNYyMjOvjdmTbBzNSEdn6exGbmkV1cUmVZmbkZFjUIqLlYW+oNbzUyMiLCyxVleQUZRfIqSgrCg0uKPYyRkTH1G3bSppmYmlEvpCNZqVeRF1Z9Pze3kCExu//9XFWm+buQWtnrpFvcfm1ialZt+VtX92MqkeJRv/l96xIEQ46evYSxsTHPt2yqTTOTSGgfGc61hESy8/KrLCuzssRCan7fOlwc7fWGtxoZGdGsYRBKlYr07Fxt+pUbN2kUUE8blANwsJURXN+Xk5euoigte4CjEwThWSMez1ZBpVLppZmaak7X+PHj2b9/P2PGjMHT05PVq1frBBQeREpKCuHh4bz++uuYmZlx6tQpJk6ciFqtpmfPnjXaR0hICGvXrtVJ++GHHzh48KB2+O327dsZNWoUvXr1Yvjw4WRmZjJr1iwKCgqYPXs2AKWlpQwcOBALCwuio6MBmDNnDkVFRfj6+taoLRcuXEAul9O+fXuD25s2bYqdnR0nTpzQpn399desWbOG4cOHExwczNatW5k1S793zNChQ0lPT2fKlCnIZDIWLVpEamqq9n0BmDFjBvv372f06NF4eHiQmZnJvn37atT2u937/t9dhyGVAbnqegFWzktX3Zx59xo7diwZGRlMnDgRR0dHUlNTuXDhgnZ7YmIiffv2xd/fny+//BIjIyMWLlzIgAED2L59O2ZmZowePZoDBw7wySefsGTJEkpKShg3bhxt2rShb9++2n1FRkbi5ubG559/zrp167Tz5VXn008/5eWXX+a7777TDuFNSkriP//5D97e3pSVlbF161befPNNfv/9d+rW1fRGSUhIoE+fPri7uzNhwgScnZ25du2aTtBy2rRprFu3ThuMPXXqFDNnzsTc3JzXX3+9xudQqJmUpAScXOogtbDUSff08QMgNSkBO/vHMwwj7up5Jo96g4qKCuwdnGndoTut23d7LPsWhAeVkFuAu40llmYSnXQ/R1vtdkerBws811R+ieaLmsy8+iCGIDyI3Mx4ZPZ1kJjr3s8dXP212y1lj3Y/t7Z1w1LmxLVTvyGzr4O9c11KinM4t385VjaueAdGVVlWIc8n/dZZvAJaYyoRPe2FhxOfnIa7syOW94zW8PP20G53tLN9InXnFWk6ENwdhFOqVEgkEr285mYSVKpyElMz8Pet+XcAQRCeLSIwZ4BcLickJEQvfdWqVdjZ2bFjxw6++OILXn31VQDatGlD586dH6qubt3ufBlVq9U0a9aM9PR01q5dW+PAnLW1tc7Qy23btrF7926io6Px9vZGrVYTHR1N165dmTZtmjafs7MzgwcPZujQofj7+7NhwwYyMjLYtm2bNhAXHBzMiy++WOPAXHp6OlD9fHzu7u7a3lt5eXmsXr2aQYMGaYd3RkVF0a9fP+2+APbt28eFCxdYunQpLVtqhhVFRkbStm1b7OzstPnOnz9P9+7ddc7d3ee4JmJjY/Xe/1WrVhEREaF9rVarUalUqFQqzp49y8KFC/+fvfuOq6r+Hzj+Ys/L3iBDURRBcKGAiiMlV6Y5Mn9+86s5ctRXsyJnapY50gQzMzVzZZorzW1guU0UF4qIIBvZcLlwgfv748rV2wUniuXn+Xj0CD7rfM6518u57/MZ1KtXT6NeeXk5CoWC5ORkZs2ahbOzM2+88cYj9+XixYtMmjRJbU2+119/XfVzREQE5ubmrFmzBgMD5ZO/Fi1a0KVLF7Zs2cKQIUMwNDTkyy+/ZPDgwaxbt44bN25QUFCg9l4AuHz5suq8Ro0axdq1azExMXlg/zp37syHH36oljZ+/HjVz5WVlQQHBxMTE8P27duZNGkSoNxkRU9Pj02bNqnWrwsKClLVS0pKYv369cyaNYtBgwap8mUyGcuWLWPQoEGqQKBQOwrzc5GYWWikm5krA7QF+TkaeU/CwdkNtwaNsbV3RlpUwF+nItm9dQ0F+Tl0f31orRxDEB5HXkkpFkaaIycsjJRf9nKlpc/kuIWlZRy5cZvGdpZYGovghFB7ZMU5GiPZ4N5oNlnx03+ea+voEtTzQ07uW8yfu+6N5Leyb0CXQV+gb1Dz/cPt639SWVmBW+MHL2kgCA+SW1CIpZnmGsiWZsrR9rn51a/5+bQKi6UcPvEXTeq7YWV+b2S/k50NNxKTqaysVN2jlpdXEJeofHifk1/wTPojCMK/gwjMVcPQ0JD169drpNevX58DBw6gUCjo2vW+6QE6OrzyyitPNM0uPz+f8PBwDh8+TEZGBhUVFQBqwabHERsbyyeffMKwYcN47TXl2h4JCQmkpKQwZcoUtZFgAQEBaGtrc+nSJRo2bEhMTAwNGzZUC8K5ubnRuHHjJ+rLo7h+/ToymUztegJ069aNM2fOqH6PiYlBIpGognIAEomEoKAgrly5okrz9vZm+/bt2Nra0r59exo1evwFtV1dXfnqq6/U0qrWXKuyceNGNm7cqPrd19eXOXPmqK2x9vcAn5GRERs2bHikkWhVvL29Wb16NTo6OgQHB+Pmpr6Q7bFjx+jRowc6Ojqq19bMzAxvb2+1kXXNmjVj9OjRzJ8/H7lczuLFi9VG92VlZfHuu+8yefJkWrduzVtvvcWECRP49ttv0dfXJyMjgw4dOvDjjz/Spk0bVb2OHTtq9Dk+Pp6vvvpKtWZdlVu3bql+PnnyJKGhoTVuKnH8+HFA+T64/z0bFBSkGinp7Oz8CFdQeFRyeRk6uppPenXuTtOTl9XOFIz/jAlT+71lYGd+WDaXP4/sJjCke62NyhOER1VWXoFuNYF+PR1lWtndv8u1SaFQsOzPC0jL5Axr7V3r7Qsvt4pyOTo6mp/n2nc/48vltRNs1jcwxcLGg3qeQVg7elGYl0bsmV84sWcBIf0+rXE6a9K1PzA0Msf+ITvECsKDyOXl1c5o0dPVAaBMLq/1YyoUCsI3bEMqk/Hffuob2XULas33W3ez/Ked9OncjkpFJdsOHiWvsAiA0mfQH0EQ/j1EYK4a2traqgX8/y4rKws9PT3MzdWHRltbWz/RscLCwoiOjmbcuHF4enpiamrKpk2b2Lt372O3lZOTw9ixY2nevLnaKKbcXOX6B+PGjau2XlqacsHTzMzMas/D2tqa0tJHu4mzt7dXa7Om41Wtt5aVlaU6xv1sbNS/nGdmZlYb0Pp7venTp6tGkM2fPx9HR0dGjRrFW2+99Uj9BzAwMKjx9a/SvXt3RowYgZ6eHg4ODtUGUqsCfJWVlcTGxrJgwQL+97//sWvXLoyMHm1a1OLFi1m8eDFLlixh1qxZeHh4MGnSJNUIzdzcXNauXVvtLsJ/H07fs2dPli1bhp2dncYIz23btgHQr18/dHR0+P777xk6dCgff/wxixYt4uzZs5iYmGhsivH3619UVMTw4cOxsrIiLCwMJycnDAwMmDZtmtp7KC8v74HTfnNzc1EoFBrrFFYRgbnap6enT0W55k1jhVwZGNXTfzZT7bS0tAju3JPrV8+TEHf5oZtCCEJt09fVobyyUiNdXqFM09fRqfVjrjl9hQupdxgb3Aw3K7OHVxCEx6Cjq0dFhebneeXdz3hdvYevrfUwZaXFHNkyFa+Wr6s2mACwsvfk963TSLh8GE+/7hr1ivLTuZN2jYZ+PdDWrv1/W8LLQ09Pt9qlh+Tlyocp+tVMK31aq37Zw/mrcYwf0g93Zwe1vG7BrcnOL+DX348RdeY8AA1cnendKZjtB4+qNokQBEGojgjMPSZbW1vkcjn5+flqwbn7RwYBqmmF8r89HSkouDeMubS0lMjISMLCwhg69N4UrvtHYj0quVzOe++9h5aWFosXL0bnvi8SVUGjGTNm0KxZM426VQESOzs7Ll++rJGfnZ1d48imv/Px8cHY2JjIyEi1c6oSHR1NXl6ealqora2t6hhVQT2AO3fUFya2s7PT2Eijqt79JBIJU6dOZerUqVy7do0ff/yRWbNm0ahRI7WpqE/LysrqocG7+wN8fn5+WFpaMmHCBNatW8eoUaMe6Th2dnZ88cUXVFZWcunSJZYvX87EiRPZt28f9erVw9zcnJCQkGoDj/dPQ62srGTatGnUr1+f1NRUvvnmG9577z1VfkpKCoaGhqr3jbe3N9988w0jR45kzpw5nD17ljfffFP1vq5StWFElfPnz5Oens6KFSvURloWFhbi4HDvBsbCwoLMzMwaz9vc3BwtLS02btxY7XodVWvVCbVHYm5JQZ7mv7GqKaxVU1qfBQtL5edAiVRz0xdBeNYsjAzIlWpuRJJXokyzNH76IMb9frkQx8HrSbzZvBHt64sHDELtMzSxoqQoWyO9pDhXlf+0km+cQCbNw7l+a7V0O5em6OkbcyctttrAXFLsH4DYjVV4epZmkmqnh+YWKKewWprX7gZSW/ZHcuDYGd7q9QodWlU/2nNwjy707hhEcnomRoaGuDnZs3HPIQCcbMWMAEEQaiYWaXpMVYGWgwcPqtIqKio4dOiQWrmqINPNmzdVafHx8WojycrKyqisrFQLPBQVFXHkyJHH7tecOXO4fPkyy5Yt0xi9Vb9+fRwcHLh9+za+vr4a/1X11dfXl7i4OBITE1V1ExMTiY2NfeR+GBoaMnDgQP7880+1qaigDA4tXboUY2NjBgwYAECjRo0wNDRUu54ABw4cUPvd19eXwsJCTpw4oUorLCxUTXmsjpeXF5988gmgvPZ1rVu3brRo0YK1a9c+8gjEKtra2jRr1oz//e9/lJeXq16jwMBA4uLi8Pb21nhd759++/3333Px4kWWLFnCpEmTWLFiBRcvXlTlN2jQgPT0dKKjo1Vpbdq0YdGiRWzcuJG0tLQaR1zeTyZTfpG9/z197tw51cYXVQIDA9m/fz9FRUXVtlM1ZTkvL6/a9+yjBoqFR+fo7MadzFRkJeq7Q96+FafMd3F/ZsfOuaNcT9LEVIwcEp4/N0sz0gqkSMvUH6TF3ckDwN2y9t6XB64lsjXmBt2buNPHp0GttSsI97OwcacwNxV5qfrneXb6dQAsbZ/+4VapVLnjpUKhPtpUoVCgUFSiqKx+CnjitaOYWjhg7ej11H0QXm7uzvakZWUjlak/WKla083jbyPansa+P0+zZd/v9AwJ5PUuNW9sAmBqbETj+m64OSm/X128fhNrC3Oc7UVgThCEmokRc9WorKzk/PnzGunW1tZ4enrStWtXPv/8c0pLS1W7sv59ZJyfnx+Ojo58/vnnfPDBBxQVFfHdd9+pBc0kEgm+vr6sXLkSKysrdHV1+e677zA1Na12dFhNdu/ezebNmxk+fDgymUyt71XTY8PCwpg8eTJSqZSOHTtiZGREamoqUVFRTJw4EQ8PD/r168fy5csZPXo077//PqDclfXv00of5v333yc6OppRo0YxcuRIWrVqRV5eHhs2bODMmTMsXLhQNUrPwsKCN998k5UrV2JoaKjalTUpKUmtzQ4dOtC0aVM+/PBDJk+ejEQiUV2r+7355pt07dqVhg0boqOjw44dO9DT06vV0XJPY8KECfz3v/9l27ZtD91ZtLCwkBEjRtCnTx88PDyQy+WsW7dOtYYcwHvvvUf//v0ZMWIEAwcOxMbGhjt37nD69GlatWpFr169iI2NZenSpbz33nt4eXnRqFEjDh8+zMcff8z27dsxMDCgf//+bNq0iTFjxjB69GiaNGlCeno6GzZswNbWlpycHL7//nvV+6Im/v7+GBsbM2vWLEaNGkVGRgbh4eFqoyFBuUFEZGQkb731Fu+88w62trbEx8dTUlLCyJEj8fDwYMiQIXz00UeMGDECPz8/5HI5t27d4tSpU3zzzTdP90IIGnyaB/LH4V85c+wQ7V9Rrk9ZLpfz18nfqefeULX2W15OFmVlZdg5PP5IH2lxIYZGJmobd5SXlxN5YBs6OrrUb6i56Y4gPGttXB3YcyWBIzeS6eWtDFjIKyqIik/B08ZCtSPrneISSssrcDZ/sgcDJ26l8cOZKwR7ODG05bNbu1UQ6jUM5Nq5ncRfOqiaZlpRLifhymGsHRqpdmQtLsiiorwUM6vH3ylSYuEEQNK1P/EJvLfDe+rNM5TLZVjY1teok5t5k4KcZJq2GfgkpyUIato2a8qvvx/n8Im/6N0pGFDujBp5OpqGbi6qHVnv5OZRWibH2d72iY5zPPoSa7b9RvuWzfhPn9DHrhuflMLQ17ppzDIRBEG4nwjMVUMmk6l2grxf//79mTt3Lp9//jmzZ89m4cKF6Ovr07dvXwICApg/f76qrJ6eHhEREXz66ae8//77uLq6MmXKFObNm6fW5qJFi5gxYwZhYWFYWFgwdOhQpFIpq1evfuT+JiQkALB69WqNelWL9Xfv3h0zMzO+/fZbfv31VwCcnZ1p3769KvBmaGjI6tWr+fTTT/nwww+xt7dn7NixHD58mMLCR9/ZyNjYmB9//JHVq1eze/duli9fjpGRES1atGDDhg00b95crfwHH3xARUUF33//PZWVlXTt2pUPPviAjz76SFVGS0uLb775hpkzZzJjxgzMzMwYOnQod+7c4fDhw6pyLVq0YMeOHSQnJ6OtrU2jRo349ttvadDgxRiZEBQURMuWLVm9ejUDBw5Um3L8dwYGBjRq1Ih169aRlpaGoaEhPj4+rFq1SrXenpubG1u2bFGtQSeVSrG1taV169Z4eXlRVlbGRx99hK+vL++88w6gvJbz5s2jd+/eLFy4kKlTp2JiYsLGjRtZsmQJq1evVq0BFxoayqhRo9i1axeff/45dnZ2Dwwo2tjY8PXXXzN//nzGjh2Lu7s7s2bN4vvvv1cr5+7uzk8//cSiRYuYNWsWFRUVuLu7q03xnTZtGh4eHmzevJlly5ZhYmKCh4cHr7766tO8BEINXD0a4dsikH27NlBUmIeVrQPRp6LIzcmi35B3VeV+XhtOwo0rfLFsqyqtRFrMiSjlupiJN68BcCJqL4ZGJhgamRDUUTmd6erFs/y+7xd8mrfF0tqOkuIizp/9k4zUJEJfewuJufougkf2Ko+RmXYbgOjTR7kVrxzB27l7/2d0JYSXTUNbC9q6OfBT9DXyS0qxlxjzx80U7hSXMCrw3pIF3xyL4WpGDpuG3pueV1wmZ/815Qjm65nKaYL7ryVirK+LiZ4eoY2VG/bcuJPHN8cuIDHQx8fBmj8TUtX60MjWEnuJ8bM+VeElYe3oRb2GwVw8to5SaR6mFg7cuhqJtCCL1q/c2zn99P6vyUy5zKD/bVellZUWc+P8bwDcSVN+3sad/w19AxP0DIxp6K/c6d6pfmvMretx5fTPSAszlZs/5KZxI2YvRiZW1Pd5RaNfibFHAXAV01iFWtDQ3YVA/6Zs3HOY/MJi7G2sOHr2Alm5+YwZdG/dw4gN27kSf4ufF89SpRWXyNj3xykArt1S3mPs+/MUxoaGGBsZ0r29cqOzuMRkIjZuQ2JijE/D+vzxV4xaH7zc62Fvo7wnv3LjFlsPRuHn1QCJiTHXb90m8vR5/Js0pEeH6tdMFgRBqKKlUCgUdd2Jf4MffviBL774gmvXrtV1VwRBeICoy9KHF3pJyeVlHPx1E+fP/EGJtBgHZ1e69nqTRt73gunfLZ6hEZjLzc5k/oyx1bZpaWXLR3OWA5CcFM+R37aQcvsmxYUF6Ojq4uTiTmDHHjRrEaRR95NxNQff7j++oKnZjg/qugv/KGXlFfx8IY5jCakUl8mpZyFhoH9D/JzujbCYfeCURmAuq6iE97ZHVtumjYkR4f06AhAVn8y3xy9WWw5gTJAvIQ0ef9TSy26R89d13YUXVkV5GRePbyTp2lHKZEWY27jhE/gWju73Ps9/3zJNIzBXXJDJ7tWjq23TxMyOXsNXqH4vkxVx+dTPpN36C2lBFrr6Rti7NsM36P8wNVcfKa9QKNi9aiQGxuZ0e2tRLZ/tv9vHPo+/xM3LokwuZ/PeI/zx10WKpSW4OtkzqHtn/Bt7qsp8GrFGIzCXlZPHuDmLq23T1sqCZdMnAhB5OppvNu2o8fhjB79OxwDlv6n0Ozl8v3U3CclpyErLsLO2IKS1P71CgtDVFRudPIyk1T/zwfu0H8rqugs1+myY2HDkn0QE5mqJCMwJwj+DCMwJLwMRmBNeBiIwJ7wMRGBOeBmIwFztE4G5fxYxlVV4LNVtS15FS0vrgVMz61pFRQUPikPr6j7ffw6VlZVUVlbWmK+joyPWoxAEQRAEQRAEQRCEfzERmKslw4YNY9iwYXXdjWeuadOaF2d3dnZ+oh1ln5euXbtq7A56v+c92nHKlCls3769xvyq9QEFQRAEQRAEQRAEQfh3EoE54bFs3Vrzuk76+i/2cNnly5dTVvbiDDceP348Q4YMqTHfw8PjOfZGEARBEARBEARBEITnTQTmhMfi6+v78EIvKC8vr7rughoXFxdcXMRi34IgCIIgCIIgCILwstKu6w4IgiAIgiAIgiAIgiAIwstIBOYEQRAEQRAEQRAEQRAEoQ6IqayCILxUmu34oK67IAjPnG5on7rugiA8e5fqugOC8OydM+pQ110QhGcupK47IAh1TIyYEwRBEARBEARBEARBEIQ6IAJzgiAIgiAIgiAIgiAIglAHRGBOEARBEARBEARBEARBEOqACMwJgiAIgiAIgiAIgiAIQh0Qmz8IDxQeHk5ERAQAWlpamJiY4OTkROvWrRkyZAgNGjRQle3cuTMdO3ZkxowZddXdJ7Zt2zb09PTo3bt3rbcdHh7O6tWriY6OrvW2n7VDhw6RkZHBkCFD6rorwnMgk5fz6+Wb3MjOJ/5OPsVlcsYE+RLSwOWR6heXydl47hpnktIprajE09qc/2vZGA9rc42yJfJytsXc4GRiOnklMiQG+jS0tWBssB8GujoAzD5wiqsZOdUeS0dbi/VDXn3ykxVeWrLSMnYe+ZMbSSncSEqhWFrC2MGv0zGg+UPr5uQXsvePk9xITCH+dgqy0jJmjhtGU08PjbIXrt3gePRl4hKTScnIwsbSnGXTJ1bb7raDR4lLTCYuMZmComL6h3Zk4KudnvpchZdXuVxG7NntZKfHkZMRR5msiIBuE/Dw7vzQuhlJMSTGRnEn9SrSomwMjS2xr+eDT+BbGJlaqZVNTzzP7et/kp1+nYKcZIwltvQavuKhx0iMjeLkviXo6hnyxrhNT3yewsuttFTG0YM7SL51g9uJcZRIi+k/dBwt2z7887MgP4fjkb9xOyGO5KR4ykpljHz/U+o38tEoW15eTtSBbfx1MpKCvBzMLKxoFdiZkG590dHRUSubnBTPwV2bSEy4hkKhwNWjEd1fH4pTPc2/E4IgCFVEYE54KENDQ9auXQtAcXEx169fZ/Pmzfz888/MnTuXPn2Uu/9FRERgZmZWl119Ytu3b8fY2PiZBOb+yQ4dOsSlS5dEYO4lUVgqZ9vFeKxNDHGzlHClhqBYdRQKBfOPnCUxt5De3h5IDPU5cC2R2QdP8XmPYBzNTFRli8vkzDlwimypjC4N62EvMaZAVsa1zFzkFZWqwFxf3wZ08lQPCpaWV7Dq1GV8HW1q56SFl05hsZRfDkRhY2mOu5MDl28kPHLdtKw77Dz8J4621rg62nP91u0ay/7510VOnL+Mh4sjVuYP/tv402+HsTCT4OHiyIXYG4/cH0GoSWlJAZdP/YyxxBYLG3cykx99C9uYYz9SWlJEvUZBSCwcKcrP4MaF30hN+ItuQ77CyMRSVTbp2lGSrh/D0q4+RqbWj9R+uVzGhT9+RFfP8LHPSxDuJy0q4MjerVhY2uDo7M7NuMuPXPdORipRB3ZgY+eIg5MrSQnXayz789qvuRR9kpZtO+Hi1oCkW3Ec3P0Tebl36PfWGFW5lKSbfPfVdMwtrenSfQAKhYKTR/excslMxn40D1t7p6c6X0EQ/r1EYE54KG1tbfz9/VW/BwcH89ZbbzFq1CimTp1KixYtqFevHt7e3nXXyWrIZDIMDcVNnyA8KgsjfZb374yFkQHxd/KYtvfEI9c9lZjO9aw83u/gT1s3RwDaujkwcedRtlyI4732/qqym6Ovk1Vcwhc9g7EzNa6xzeqCb3/cTAGgnYe4uRWejIWZKStmTcbSTMKNpBSmLP7ukevWd3Fi1WcfIzEx5uSFy3z1Q82BucE9X2H0wNfQ1dVh3soN3E7PrLHssukTsbWyoKComHemz3+s8xGE6hgaW/LayNUYmViSkx7HwZ8+euS6fu3/i62zN1paWqo0B7fm/L51Gjcu/IZv0L2Hdb5B/0erLmPR1tHlj51zyc9Oemj7V05tQVffELt6PqTEn368ExOE+0jMLJny+Uok5pYkJ95g2fywR67r7NqA6fPXYGwi4eK5E2xctajacsmJN7h47gSdu/ena683AWjTPhQTEwl/HtlNYEh3HJ3dADi4+yd09fR4d/LnGJtIAPAPaM+iWe9xYNcGhoz88CnPWBCEfyuxxpzwRAwMDJg+fTpyuZwtW7YAyqmss2fPVpWJi4tj5MiRtGnTBj8/P0JDQ1m5cqUqPywsjF69ehEVFUWvXr3w9fWlX79+nD9/Xu1YO3bsYPDgwQQEBNC6dWuGDh1KTEyMWpnw8HCaN29OTEwMgwYNwtfXlw0bNgCwcOFCevfuTfPmzWnfvj2TJk0iM/PeF6ShQ4dy+vRpIiMj8fLywsvLi/DwcFV+ZGQkAwYMoFmzZrRt25aZM2cilUqf+NolJyfj5eXFjh07mDFjBq1atSIwMJA1a9YAsGfPHkJDQ2nRogXjx4+noKBAVffUqVN4eXkRFRXF+PHj8ff3p127dnz77bdqx4iPj2fixImEhITg5+dHjx49WL16NZWVlWrlysrKWLx4MV26dMHHx4cOHToQFqa8qQkLC2P79u3ExcWprktV3sNs3bqVnj170qxZM9q0acPgwYPVXjOFQsGqVasIDQ3Fx8eHLl268MMPP6jyU1JSaNmyJV9++aVau++88w5du3Z9qusv1ExPRwcLI4MnqnsqKR1zQ33auDqo0swMDQh0c+Sv5EzkFRWAcrRcZHwyXRrWw87UmPKKSlXeoziWkIqBrg4tXeyeqJ+CoKeri6WZ5InqGhkaIDGpOZh8PytzCbq6Og8vCNhaWTxRfwShJjq6emoj2x6HnUtTtaBcVZqBoYSCnBS1dCNTK7R1Hv05f2FuKteid+HfYTja2o/270MQaqKrp4fE/Mne5waGRqrg2YMk3LgKgF/LdmrpzVoGo1AouPjXMVXarfireDZuptaumbkV9Rs25erFvygtlT1RXwVB+PcTI+aEJ+bp6Ym9vX2Na6eNGTMGGxsb5s6di6mpKUlJSaSnp6uVycrKYtasWUyYMAEzMzNWrlzJiBEjOHDgANbWyikRycnJvP7667i6ulJWVsaePXsYMmQIu3btwsPj3noNcrmcDz74gGHDhjFx4kQsLCwAyM7OZvTo0djZ2ZGTk8OaNWsYOnQoe/bsQVdXl5kzZ/Lhhx9iaGjIxx9/DICDgzK4sG/fPiZOnEi/fv2YMGECWVlZLFq0iIKCAhYvXvxU12/JkiV069aNr7/+mkOHDjFv3jxycnI4ffo0H374IUVFRXz22WcsWLCAOXPmqNWdPn06PXv2JDw8nOPHj7N48WLMzc0ZPHgwAJmZmXh4eNC7d29MTEy4evUq4eHhSKVSxo8fr2pnwoQJnDx5ktGjR+Pv709OTg4HDhwAYOzYseTk5HDz5k0WLlwIgJWV+toy1Tlz5gxTp05l+PDhhISEIJPJiImJobCwUFVm7ty5bNmyhTFjxuDn58e5c+dYuHAhBgYGDB48GGdnZ6ZMmcK0adPo1KkTAQEBbNy4kePHj7N+/XqMjR/ti7Hw/CTkFOBuZabxZa6BjTmH426TVlCMq6WZarqqvcSExVHnOHs7EwUKGtpY8N+Aprhb1Tzlr0BWyqX0bNq6OWKoJ/58CYIgPC/lchlyeQkGRk8W1K4SHbUaOxdfnDxakhx37OEVBKGOVZTLAWUQ8H76+spZOSlJN1Vp5XI5enr6Gm3o6etTUVFORmoSrh6NnmFvBUH4pxLfbISn4ujoyJ07dzTSc3JySE5OZurUqXTurFxouG3bthrl8vLyWLJkCYGBgQAEBAQQEhLCDz/8wAcffACgFkiqrKwkODiYmJgYtm/fzqRJk1R5crmciRMn0qNHD7VjfPHFF6qfKyoqaN68OR06dODkyZO0a9cOT09PTE1NMTY2Vpuyq1AomD9/Pj169GDu3LmqdFtbW0aNGsXYsWNp2LDh41wuNf7+/kyZMkV1bQ4cOMD69es5cuQIlpbKp3/Xrl1j69atGoG5tm3bqoKI7du3Jzs7m+XLlzNo0CC0tbUJDAxUXVOFQkHLli2RyWSsX79edT2PHTtGZGQkixYtolevXqq2q352dXXFysqK1NRUtevyMDExMVhYWKj6B9CxY0fVz0lJSaxfv55Zs2YxaNAgAIKCgpDJZCxbtkx1Dm+88QaHDh0iLCyM8PBwFixYwDvvvEOLFi0euS/C85NXUkoTe83AbdUIvNySUlwtIb2wGICfoq9hLzFmbHAzpGVyfom5wWcHT7Ogdzssjaufgn7iVjoVlQoxjVUQBOE5u37uVyoryqnXqN3DC9cg9eZZMpLOEzrk6R5sCsLzZGOnvOdIvBmLlY29Kj0h/goA+fn31uO1dXAmKSGOyspKtLWVE9PKy8u5nRAHQEHeo6/dKwjCy0VMZRWeikKh0BghA2BpaYmzszNfffUV27dv1xgpV0UikagCSFW/BwUFceHCBVVafHw848aNIygoiCZNmtC0aVMSEhK4deuWRnshISEaaVFRUbz55pu0bNkSb29vOnToAFBt/fslJCSQkpJC9+7dKS8vV/0XEBCAtrY2ly49+kLK1QkODlb9rKOjQ7169WjcuLEqKAfg7u5OQUEBxcXFanW7du2q9ntoaCgZGRmq61xaWsrSpUvp2rUrvr6+NG3alMWLF5OVlaVq68SJExgZGdGzZ8+nOo+/8/b2Ji8vj7CwMI4dO0ZJSYla/vHjxwHo1q2b2nUNCgoiKyuLtLQ0VdnPPvuMkpIS3nzzTVxdXdWCtMKLpayiAj1tzT8p+nd3KyurUE6jLpErp61qAdNeCSDYw4muXm580LElxWVyDlyreX2iY7dSMTPUx9fx0RYYFwRBEJ5eZvJlLp/aTL2GwdjX832iNioryjl/dDUNfEMxs65Xyz0UhGfHy6cFlla2/LbtRy5FnyQ3O5OYc8c5sGsj2jo6lMvLVGXbtu/GncxUftnwDZlpyaSnJrHlx6UUFuQBIJeX1tFZCILwohMj5oSnkp6ejru7u0a6lpYWq1atYvHixcyePRupVErTpk355JNPaN26tapcdVMjra2tiY+PB6CoqIjhw4djZWVFWFgYTk5OGBgYMG3aNEpL1f+4GRkZYWJiopYWExPD2LFj6dKlCyNHjsTa2hotLS0GDhyoUf/vcnNzARg3bly1+fcHkJ6ERKI+HURPT09jiqbe3WHzpaWlauf29+tmY6NcJD8rKwsnJycWLFjAli1bGDduHD4+PkgkEg4fPszy5ctVbeXl5WFra1ttYPVpBAYGMn/+fH788UdGjBiBgYEBoaGhTJkyBQsLC3Jzc1EoFNWOoATldXV2dgaU74XAwED27NnDwIED0dfXnB4gvBj0dXSQ/20NQ1AG7JT5yqBd1Y6rLVzs1KajNrS1wNbUiLg7udW2n1EoJS4rj1AvN3SqCQAKgiAIta8gJ5nju7/E3NqV1l2rvx96FNfO7aJUVkjTtm/WYu8E4dnT09Pn7bFT2Pj9IjZ8r1zaRVdXj+59h3Jk71bVlFZQbgqRn5vN0UO7OHcyEgAXtwZ0eOU1ft+/DX0Do7o4BUEQ/gFEYE54YnFxcWRkZNC3b99q8z08PFi6dClyuZzo6Gi++uorxowZw9GjR1VBppwczSHd2dnZ2NraAnD+/HnS09NZsWIFjRs3VpUpLCxUrQNXpboA06FDhzA1NWXJkiWqIeUpKSka5apTtUbdjBkzaNasmUa+nV3dLT7/9+tWNZ246rrt27ePQYMGMWrUKFWZqKgotToWFhZkZWXVOOrxafTp04c+ffqQk5PD4cOH+eKLL9DV1eXzzz/H3NwcLS0tNm7cqAo83u/+dQOPHj3Knj178Pb2JiIigldffVW19qDwYrEwMiBXqrmocV6JMgBueXdKa9X/zQ01N5kwNzSgqExebfvHbqUCECymsQqCIDwX0sI7RG2fha6+Me37TENP/8mCCmWlxVw5vQVPv+6Uy0solytH0svLZICC4oJMdHQNMDQ2r8XeC0LtsXesx/+mLSYzPZkSaRF2Di7o6Ruwe+sa6jdqqla222tv0e6V18hMu42BoTGOzm7s36nckM7WTtzDCIJQPTHsQHgipaWlzJkzB319fQYMGPDAsnp6egQEBDBq1CiKiorUdkQtLCzkxIkTar8fP34cPz8/AGQymaqNKufOnXvk4JpMJkNPT08t8PTrr79W28e/j6CrX78+Dg4O3L59G19fX43/7O3tNdp5Xg4ePKj2+/79+7Gzs1MFK0tLS9WuWUVFBXv27FGrExQURElJCXv37q3xONVdl8dhZWXFgAEDCA4O5uZN5eK4VVOX8/Lyqr2upqamqvypU6fSq1cv1q1bh6GhIdOnT3/ivgjPlrulGbdyClAoFGrpN+7ko6+rg6OZMhjvYa3c3CGnRDOIlyOVITGoflTk8YRU7CXGNLS1qN2OC4IgCBpKSwqJ2v4pleVyQvrOwMj04Zs/1UReWky5XEbs2e3sXj1a9V/yjROUy0vZvXo0Zw99U4u9F4Tap6Wlhb1jPdwbNMHYREL8tUsoFAoaeGlO7zY2NsW9QRMcnd0AuHEtBnNLa2wdnJ93twVB+IcQI+aEh6qsrOT8+fMASKVSrl+/zubNm7l9+zbz5s3DxcVFo05sbCxffvklPXr0oF69ehQVFbFixQqcnZ1xdXVVlbOwsGDq1Km89957SCQSVq5ciUKh4O233waUGyQYGxsza9YsRo0aRUZGBuHh4Y8cFAsODmbt2rXMmTOHrl27Eh0dzc6dOzXK1a9fnx07dnDkyBFsbW2xs7PD3t6esLAwJk+ejFQqpWPHjhgZGZGamkpUVBQTJ05UG931PJ08eZIvv/yS4OBgjh07xs6dO5kxY4ZqVGBQUBBbtmzB09MTS0tLNm7cSFlZmVobQUFBhISEMGXKFJKSkvDz8yMvL4/9+/ezZMkSABo0aMAvv/zC7t27cXNzw9LSstrX+35Lly4lLy+PgIAArK2tuX79On/88QfDhg0DlCPihgwZwkcffcSIESPw8/NDLpdz69YtTp06xTffKG/OZ82aBShHLJqamvLFF18wbNgwtm3bRr9+/WrxagqPK1cqQyovx97UGN27U1TbuDlwKimdU0nptHVzBKBAVsbJxDRautiid3etOSczU9wsJfx1O5MCWRlmhspAXEzqHXKkMl5t7KZxvFs5BaTkF9PPt8FzOkNBgJz8QkpkMuytrdC9OwVbEP5tSopykJdJMTV3QFtH+bWgXC7jj51zKCnKoeMbs5FYPt0oHwMjc9r1DtNIv35+D9lp1wjsPglDY4unOoYgPEhBfg6ykhKsbOzR1X36r79yeRkHd2/CzNwS/1btH1g25q9jJCfG06Pvf2p9hoogCP8eIjAnPJRMJlPtnmlsbIyLiwuBgYFERETQoEH1X5RtbW2xsbFhxYoVZGRkIJFIaNWqFQsWLEBHR0et3OTJk5k/fz5JSUk0bNiQVatWqdZMs7Gx4euvv2b+/PmMHTsWd3d3Zs2axffff/9IfQ8JCWHy5MmsX7+ebdu20aJFC1asWEFoaKhauZEjR5KUlMTHH39MQUEB48ePZ8KECXTv3h0zMzO+/fZb1Ug7Z2dn2rdvr+pjXZg9ezabN29m06ZNmJiY8P777zNkyBBV/vTp05k5cyZz5szByMiIvn370rVrV6ZNm6bWTnh4OBEREWzevJmIiAisra3VNqXo378/MTExzJkzh7y8PPr27cu8efMe2DdfX1/Wrl3L3r17KSoqwsHBgREjRvDuu++qykybNg0PDw82b97MsmXLMDExwcPDg1dffRWAPXv28Ntvv7Fy5UrMzZVTW9q2bcvQoUOZO3cubdu2xclJTAd4FvbHJlIsl5MnVY6UPJecSfbdKaqhXm6Y6Ovx0/nrHI1PYWnfjtiaKqc2tXF1wNPGgm+PXyQlvxgzAz0OXE+iUqGgv5/67sVDWzXh80Nn+HT/SV5pVA9pWTl7ribgaGZC10au/N2fCXensdYXr7lQO/b+cQppiYzcgkIA/rp8ney8AgBebd8GEyNDNu05RNSZ8yybPhFbKwtV3V8OKJcFSM7IAuDo2Rhibyo3LXmj270NiBJTMzh7KRaA9Ds5FJfIVHXdnB1o1dRLVfbo2Qtk5eRRKldO5Y69magq26GVn9rxBeFRxZ3fg7xUSkmxcvmL1JtnKSnMBsDTvwf6BiZcPL6ehCu/02v4CkzMlEt0nNy7mOz0OOo37UJBTjIFOcmqNvX0jXBu0Eb1e96dW6TGnwGgMC8VeWkxV05tAcDc1h3n+q3R1TNQq1MlJf4UOelx1eYJwqM6HrkXWUkxhfnKNWpjL54lP1f5Pg8M6Y6RsQn7d23k3MlIPpr9DZbW95aiObJ3KwCZabcBiD59lFvxys/tzt37q8ptXLUIM3MrbB2cKZPJOHviCDl3Mnj73U8wMLw3xftm3GWO7N1KwyZ+mJhISEq4zl8nf6eRd3OCOtXuZmuCIPy7aCn+Pu9IEJ6TsLAwLl26xO7du+u6K/8Yp06d4j//+Q9bt27F1/fJdkZ72eXOfffhhV5iE7ZFcqe4pNq8qkDc8uMxGoE5gKJSORvOxXL2dgZlFZU0sDZnSAsvGthYaLR1Me0OP5+PIzG3AANdHfydbRnSojEWRuprzykUCsZv+x0zQwO+6Bms0Y5QPd3QPnXdhRfauDmLycrJqzavKhC3bOP2agNzAyfOrLHdnxfPUv0ceTqabzbtqLZcSGt/xr11b33WTyPWcCX+VrVlZ44bRlPPuhmd/aL78lLnuu7CC2336tEUF2RWm1cViDt9YKlGYO5B9UzM7Og1fIXq94QrRzh9ILzash7enQjo9l6N/Tt9YCm3407wxrhNj3pKL6WurcvrugsvtPnT3yU3J6vavKpA3JZ1EdUG5j4Z17/aegBfLNuq+jnq4A7+OvE7eTlZ6Orp4e7pzSs9BuJUT/2zOTsrjZ2bvyf19k1KZTIsre1o0bYj7Tr3rpWRev9mIU2NH17oBTTth7KHF6ojnw0Tm+b9k4jAnFBnRGDu8YnA3NMTgTnhZSACc8LLQATmhJeBCMwJLwMRmKt9IjD3zyJC94LwFCoqKjQWu7/fv/HpWHl5zTeIWlpaalOVBUEQBEEQBEEQBEGo2b8vaiD8YzxsrbJ/gmHDhnH69Oka8w8fPvzQzRIeR5s2bbh27Vqttfe4kpOT6dKlS435AQEBrFu37jn2SBAEQRAEQRAEQRD+uURgThCewqxZsyguLq4x387Orsa8fyI7Ozu2bt1aY76Jiclz7I0gCIIgCIIgCIIg/LOJwJwgPIX69evXdReeK319fbG2nSAIgiAIgiAIgiDUEu267oAgCIIgCIIgCIIgCIIgvIxEYE4QBEEQBEEQBEEQBEEQ6oAIzAmCIAiCIAiCIAiCIAhCHRBrzAmC8FKJeX1RXXdBEJ65Zjs+qOsuCMKz59y5rnsgCM9ci5Kjdd0FQXgOXq3rDghCnRIj5gRBEARBEARBEARBEAShDojAnCAIgiAIgiAIgiAIgiDUARGYEwRBEARBEARBEARBEIQ6IAJzgiAIgiAIgiAIgiAIglAHxOYPAuHh4URERACgpaWFiYkJTk5OtG7dmiFDhtCgQQNV2c6dO9OxY0dmzJhRV919Ytu2bUNPT4/evXvXetvh4eGsXr2a6OjoWm/7WTt06BAZGRkMGTKkrrsi1LHSUhlHD+4g+dYNbifGUSItpv/QcbRs2+mhdQvyczge+Ru3E+JIToqnrFTGyPc/pX4jH7VyZWWl/HXid67EnCYjNYnSUhk2tg60Dn6FgHbd0NZWf16UnZXGvh3ruXHtEhXlcpzqedC115s08PKt1XMXXh4yeTm/Xr7Jjex84u/kU1wmZ0yQLyENXB6pfnGZnI3nrnEmKZ3Siko8rc35v5aN8bA2VytXVl7Bb7G3+PNmCplFJZjq69HI1pL+fp64WEhU5S6l3eHPhFSuZeaSLZVhYWRAUwdrBvo1xNLYsFbPXXi5lctlxJ7dTnZ6HDkZcZTJigjoNgEP74dvopGZfJlr53aSl5VAqTQfPQMTLGw9aNpmADZOTdTKXjm9ldSbZyjKT6e8rAQjiTVOHq1o0ro/hsbmNRxBEB6frLSMnUf+5EZSCjeSUiiWljB28Ot0DGj+0Lo5+YXs/eMkNxJTiL+dgqy0jJnjhtHU00Oj7IVrNzgefZm4xGRSMrKwsTRn2fSJ1ba77eBR4hKTiUtMpqComP6hHRn46sPvowRBeLmJEXMCAIaGhmzevJmffvqJpUuX0q9fP44fP06fPn3YuXOnqlxERATDhw+vw54+ue3bt7N79+667sYL59ChQ2zatKmuuyG8AKRFBRzZu5XM9GQcnd0fq+6djFSiDuygID8HByfXGsvl3Mng1y2rAGjXuTc9+v0HS2t7dm7+nl/WL1Mrm5d7h+ULp3ArPpYOr7xGaJ8hlJWWsnrZZ9yMu/zY5ycIAIWlcrZdjCclvwg3S8nDK9xHoVAw/8hZjiWkEurlxpAWXuTLSpl98BRpBcVqZZcdu8DWC3F421szrLU3XRq5cjUzh+n7TpBVVKIqtzH6Glcycmjtas+w1t4EuTtyMjGNT/YcI6+ktFbOWRAASksKuHzqZwpykrGwcX+sukV5qWihRQPfUFp0HoVXy9eRSXM5smUqabfOqZXNzbyJha07TVq/QYvOo3Cu34aEy0c4/HMY5XJZLZ6R8LIrLJbyy4EoUjKycHdyeKy6aVl32Hn4T3LyC3B1tH9g2T//usixcxcxMTLEytzsgWV/+u0w8bdT8XBxfKz+CILwchMj5gQAtLW18ff3V/0eHBzMW2+9xahRo5g6dSotWrSgXr16eHt7110nqyGTyTA0FCMKXgTitfjnk5hZMuXzlUjMLUlOvMGy+WGPXNfZtQHT56/B2ETCxXMn2LhqUQ3HsOD9qV9h71hPldamXTe2rlvGXyd/p3P3/ljbKm9mo/Zvp6REyv+mLsbW3gmA1sGv8NXs99jzyw9MCFvwFGcrvKwsjPRZ3r8zFkYGxN/JY9reE49c91RiOtez8ni/gz9t3ZTv07ZuDkzceZQtF+J4r70/ADlSGaeTMujp7cH/tWysqt/YzpLPDp7mzO10ejRRjsr4v5ZNaGJniZaWlqpcMydb5hw4xf7YRAY1b1QLZy0IYGhsyWsjV2NkYklOehwHf/rokevW9+lKfZ+uammezV5lz5oxXI/ejaN7C1V6cC/Ndm0cvTi2Zz6pN8/g6tX+yU9CEO5jYWbKilmTsTSTcCMphSmLv3vkuvVdnFj12cdITIw5eeEyX/1wu8ayg3u+wuiBr6Grq8O8lRu4nZ5ZY9ll0ydia2VBQVEx70yf/1jnIwjCy0uMmBNqZGBgwPTp05HL5WzZsgVQTmWdPXu2qkxcXBwjR46kTZs2+Pn5ERoaysqVK1X5YWFh9OrVi6ioKHr16oWvry/9+vXj/PnzasfasWMHgwcPJiAggNatWzN06FBiYmLUyoSHh9O8eXNiYmIYNGgQvr6+bNiwAYCFCxfSu3dvmjdvTvv27Zk0aRKZmff+aA4dOpTTp08TGRmJl5cXXl5ehIeHq/IjIyMZMGAAzZo1o23btsycOROpVPrE1y45ORkvLy927NjBjBkzaNWqFYGBgaxZswaAPXv2EBoaSosWLRg/fjwFBQWquqdOncLLy4uoqCjGjx+Pv78/7dq149tvv1U7Rnx8PBMnTiQkJAQ/Pz969OjB6tWrqaysVCtXVlbG4sWL6dKlCz4+PnTo0IGwMGXAJSwsjO3btxMXF6e6LlV5D+Pl5cV3333HggULCA4OJjAwEIDo6GjGjBlDu3bt8Pf3p0+fPuzYsUOjfkFBAXPmzKFDhw74+PjQuXNnFi1SD+bU9usiPJiunh4Sc8snqmtgaISxycNHH5mYmqkF5ao09W8DQGZ6iirt1s1YnFzcVUE5AH19A5r4tib1dgJ3MtOeqK/Cy01PRwcLI4MnqnsqKR1zQ33auN4bmWFmaECgmyN/JWcir6gAoEReDqBxnKrf9XR0VGne9lZqQbmqNFMDPVILip6on4JQHR1dPYxMnuwzvjq6egYYGJkhLy1+aFljM1sAyh6hrCA8Kj1dXSzNHm/kcxUjQwMkJsaPVNbKXIKurs7DCwK2VhZP1B9BEF5uYsSc8ECenp7Y29vXuHbamDFjsLGxYe7cuZiampKUlER6erpamaysLGbNmsWECRMwMzNj5cqVjBgxggMHDmBtbQ0oA1mvv/46rq6ulJWVsWfPHoYMGcKuXbvw8Li31oNcLueDDz5g2LBhTJw4EQsLCwCys7MZPXo0dnZ25OTksGbNGoYOHcqePXvQ1dVl5syZfPjhhxgaGvLxxx8D4OCg/GK1b98+Jk6cSL9+/ZgwYQJZWVksWrSIgoICFi9e/FTXb8mSJXTr1o2vv/6aQ4cOMW/ePHJycjh9+jQffvghRUVFfPbZZyxYsIA5c+ao1Z0+fTo9e/YkPDyc48ePs3jxYszNzRk8eDAAmZmZeHh40Lt3b0xMTLh69Srh4eFIpVLGjx+vamfChAmcPHmS0aNH4+/vT05ODgcOHABg7Nix5OTkcPPmTRYuXAiAlZXVI5/fjz/+iJ+fH3PnzqW8XPlFNDU1lRYtWjB48GD09fU5d+4c06ZNQ6FQ0LdvX0AZLHz77bdJSUlh3LhxNGrUiPT0dP766y9V28/ydRFePIUFuQBqwb1yuRwjIxONsvr6+gCkJMVjYyemigjPT0JOAe5WZhqBtAY25hyOu01aQTGulmbYmxpjZWzInisJOJoZ425pRm5JKRvPXcPW1Igg9we/b2XycmTyciQG+s/ydAThsclLpVRWllNaUsCtq5HkZyfhHdBfo5xCoaBMVkhlZQVFeWnEHFuHlpY2di4+1bQqCIIgCC83EZgTHsrR0ZE7d+5opOfk5JCcnMzUqVPp3Fm5cHDbtm01yuXl5bFkyRLViKqAgABCQkL44Ycf+OCDDwDUAkmVlZUEBwcTExPD9u3bmTRpkipPLpczceJEevTooXaML774QvVzRUUFzZs3p0OHDpw8eZJ27drh6emJqakpxsbGalN2FQoF8+fPp0ePHsydO1eVbmtry6hRoxg7diwNGzZ8nMulxt/fnylTpqiuzYEDB1i/fj1HjhzB0lL51PratWts3bpVIzDXtm1bVRCxffv2ZGdns3z5cgYNGoS2tjaBgYGqa6pQKGjZsiUymYz169erruexY8eIjIxk0aJF9OrVS9V21c+urq5YWVmRmpqqdl0elbm5OREREWpfUnv27Kn6WaFQ0Lp1azIyMti8ebMqMLdjxw6uXLnCTz/9RPPm9xborcp/1q+L8GIpLy/n2JE9WFrb4eLmqUq3tXci4cZVSmUlGBgaqdJvxccCUJCX89z7Krzc8kpKaWKv+fCiaiRcbkkprpagq6PNxJDmRPx5gYW/31t/y8PajNmvBmKir/fA4/wWe4vySgWBDwngCcLzdvy3haQnKh/Wauvo0sC3G94BAzTKyaR57Fp5b01iY4kNgd0nYWb1aJusCIIgCMLLRATmhIdSKBQaowMALC0tcXZ25quvviI/P5/AwEDVKLT7SSQSVQCp6vegoCAuXLigSouPj+err74iOjqa7OxsVfqtW7c02gsJCdFIi4qKYvny5cTFxVFUdG/qz61bt2jXrl2N55aQkEBKSgpTpkxRjfgCZfBQW1ubS5cuPVUAKDg4WPWzjo4O9erVQ0tLSxWUA3B3d6egoIDi4mJMTO6NDuraVX0tl9DQUHbu3El6ejpOTk6UlpayYsUKfv31V9LS0pDL5aqyVW2dOHECIyMjtWBZberQoYPGeyM/P5/w8HAOHz5MRkYGFXendlWNbgQ4ceIEDRo0UAvK3e9Zvy7Ci2XXz9+TmZ7M2+9OQee+KX5t2ody9eJZNq76itDX3kJP34BTf+wnJekmAHJ5WV11WXhJlVVUoKetuQqI/t33bVnFvaUETPT1cLOU0MbVgYa2FqQXStl5KZ4lR6OZ0qU1+jVMi7qSkcO2mBu0dXOgqYP1szkRQXhCzYL/D6+WfZAWZpF4JZLKinIUikqNcgaGEkL6fUpluZzcrJuk3DiJXF6i2aAgCIIgCCIwJzxceno67u7uGulaWlqsWrWKxYsXM3v2bKRSKU2bNuWTTz6hdevWqnLVTY20trYmPj4egKKiIoYPH46VlRVhYWE4OTlhYGDAtGnTKC1V35HOyMhILXgFEBMTw9ixY+nSpQsjR47E2toaLS0tBg4cqFH/73JzldPnxo0bV21+WtrTrWElkaive6Gnp4exsbFGGkBpaanauf39utnY2ADKqcFOTk4sWLCALVu2MG7cOHx8fJBIJBw+fJjly5er2srLy8PW1rbawGptqJqKfL+wsDCio6MZN26caqTipk2b2Lt3r6pMXl4ednZ2Nbb7rF8X4cVx9OBOzhw7RNdeb9LYp4VanlfT5vQeMIL9uzYQPu9DAKxtHejWezB7d6xD30BsNiI8X/o6OsgrNYMQZXcfQOjrKIN2xWVyZu0/Sa+m9enlfW85hvrW5sw5cIqo+GS6erlptJOSX8TiqHO4WJgyKtD3GZ2FIDw5S7v6qp/dG3fkwMZJnNq/VGPDB20dXRxc/QBwqt8K+3q+HP55CoZGFjjVb/Vc+ywIgiAILzoRmBMeKC4ujoyMDNUUw7/z8PBg6dKlyOVyoqOj+eqrrxgzZgxHjx5VBZlycjSnm2VnZ2Nrq1wI+Pz586Snp7NixQoaN763e11hYaHGCLzqAkyHDh3C1NSUJUuWoH13JENKSopGuepUjeKaMWMGzZo108h/UPDoWfv7dauaTlx13fbt28egQYMYNWqUqkxUVJRaHQsLC7Kysmoc9fi0/t5maWkpkZGRhIWFMXToUFX6xo0bNfp17dq1Gtt9kV8Xofb8dfJ39u1cT5v23ejcXXONIoCgjt1pGdiJ9JREdHR1cXLx4MzxQwDY2DlVW0cQnhULIwNypTKN9LwS5UMgy7tTWk8npZMvK6Oli/pnlbe9FUZ6ulzLytMIzGUXl/D5oTMY6enycadWGOmJWzThxaato4tT/QBiz26jorwMHd2a10S0cWqCkYkVideiRGBOEIR/ja6tyx9eqM6IdWr/ScSurEKNSktLmTNnDvr6+gwYoLl+yP309PQICAhg1KhRFBUVqe2IWlhYyIkTJ9R+P378OH5+yiepMplM1UaVc+fOPXJwTSaToaenpxYk+vXXX6vt499H0NWvXx8HBwdu376Nr6+vxn/29vaP1Idn4eDBg2q/79+/Hzs7O1WwsrS0VO2aVVRUsGfPHrU6QUFBlJSUqI1W+7vqrsuTKisro7KyUq1fRUVFHDlyRKNf8fHxatOZ7/civy5C7bgSc4ZtG5bT1C+APoNGPrCsgYEhbvW9cHFtgLa2NvHXLqKnp49bfa/n1FtBUHK3NONWTgEKhUIt/cadfPR1dXA0Uz6Qypcpp1lX/q2cQqGgUqGg8m9T/wpLy/j88BnKKyv5pEtrLI3FaFDhn6GivAyFQoG87OHTVCsqypCXip3VBUEQBOHvxONYAVBuuHD+/HkApFIp169fZ/Pmzdy+fZt58+bh4qK5WG9sbCxffvklPXr0oF69ehQVFbFixQqcnZ1xdXVVlbOwsGDq1Km89957SCQSVq5ciUKh4O233waUGyQYGxsza9YsRo0aRUZGBuHh4Y8cfAkODmbt2rXMmTOHrl27Eh0dzc6dOzXK1a9fnx07dnDkyBFsbW2xs7PD3t6esLAwJk+ejFQqpWPHjhgZGZGamkpUVBQTJ05U2xX2eTp58iRffvklwcHBHDt2jJ07dzJjxgzVqMCgoCC2bNmCp6cnlpaWbNy4kbIy9TW3goKCCAkJYcqUKSQlJeHn50deXh779+9nyZIlADRo0IBffvmF3bt34+bmhqWlZbWv96OQSCT4+vqycuVKrKys0NXV5bvvvsPU1FRtBGCfPn3YuHEjo0aNYvz48TRs2JCMjAzOnj3LnDlz0NLSemFfFwEK8nOQlZRgZWOPru7j/xm5GXeZn1YvxsPTm0HD/vdYozkT42O5fP4UbdqHYmSsuWOrINSWXKkMqbwce1NjdO9OUW3j5sCppHROJaXT1k25MUOBrIyTiWm0dLFF7+5ac1UBuhO30ujvd289zL+SMyktr8DN0kyVJpOX8+WRs+RIZUzv2kZVVxDqSklRDvIyKabmDmjrKD/jZdJ8DI3N1cqVlRaTfOMExhIbVV65XAZooatnoFY2Oe4EZbIirOw9EYTnLSe/kBKZDHtrK3RrWN9TEAShLonAnAAoR50NGjQIAGNjY1xcXAgMDCQiIoIGDRpUW8fW1hYbGxtWrFhBRkYGEomEVq1asWDBArUF3G1tbZk8eTLz588nKSmJhg0bsmrVKtWaaTY2Nnz99dfMnz+fsWPH4u7uzqxZs/j+++8fqe8hISFMnjyZ9evXs23bNlq0aMGKFSsIDQ1VKzdy5EiSkpL4+OOPKSgoYPz48UyYMIHu3btjZmbGt99+qxpp5+zsTPv27VV9rAuzZ89m8+bNbNq0CRMTE95//32GDBmiyp8+fTozZ85kzpw5GBkZ0bdvX7p27cq0adPU2gkPDyciIoLNmzcTERGBtbW12qYU/fv3JyYmhjlz5pCXl0ffvn2ZN2/eE/d70aJFzJgxg7CwMCwsLBg6dChSqZTVq1eryujr6/PDDz+wePFiVqxYQV5eHg4ODmqbVLyor8u/3fHIvchKiinMV67zF3vxLPm5yg1ZAkO6Y2Rswv5dGzl3MpKPZn+DpfW9qXpH9m4FIDPtNgDRp4+qdlCtmqqam53JuhXzAfBp3paL0cfVju/g7I6js5uq7KbVX9HEtzUSMwvSU29z+s8DODi5EvraW8/qEggvgf2xiRTL5eRJlaOFzyVnkn13imqolxsm+nr8dP46R+NTWNq3I7amyl2B27g64GljwbfHL5KSX4yZgR4HridRqVCoBeBaOtvhYmHKtos3yCouoaGNcvOHA9cSsTQyoJNnPVXZiD8vEH8nn46eLqTkF5GSf28DI0M9XVrXEyOEhdoTd34P8lIpJcXKh2WpN89SUqj8jPf074G+gQkXj68n4crv9Bq+AhMz5Wf80R2zMTa1wcqhIYbG5kgL75Bw5QglRdkE9pisar8wN5WobZ9Sr1EwEitntLS0yc24QWLsUUzM7Gjo30uzU4LwFPb+cQppiYzcgkIA/rp8ney8AgBebd8GEyNDNu05RNSZ8yybPhFbKwtV3V8OKJeASc7IAuDo2RhibyYB8Ea3e5vNJaZmcPaS8n4m/U4OxSUyVV03ZwdaNb03gv/o2Qtk5eRRendTttibiaqyHVr5qR1fEAShipbi7/MxBKEWhYWFcenSJXbv3l3XXfnHOHXqFP/5z3/YunUrvr5i8e/aFnVZTKN5kPnT3yU3J6vavKpA3JZ1EdUG5j4ZV/06cQBfLFMG7W5ev8TKrz+tsVyXHgN4pafyIYFUWsTWdctIvhWHtLgIMwsrmrUMolPoGxgYGj3B2b08mu34oK678EKbsC2SO8XVT72rCsQtPx6jEZgDKCqVs+FcLGdvZ1BWUUkDa3OGtPCigY2FWjtFpXK2XbzB+ZQs7hSXYKirg4+jDW82b4Sd6b1NgB7UFxsTI8L7dXzKs/33WuT8dV134R9n9+rRFBdkVptXFYg7fWCpRmAu7sJv3L72JwW5KchLi9E3MMXKsRGNW76OrbO3qo3SkgIuHt9AVsplpIXZVFaWYyKxxdGjFd4B/TEwMqv22ELNPvY58vBCL7FxcxaTlZNXbV5VIG7Zxu3VBuYGTpxZY7s/L56l+jnydDTfbNpRbbmQ1v6Me+veWtyfRqzhSvytasvOHDeMpp5ixkd1JK1eresuPJEX+XtFSFPjhxcSXhgiMCc8UyIw9/hEYO7ZepH/gApCbRGBOeFlIAJzwstABOaEl4EIzNU+EZj7ZxFTWQXhISoqKjQW+r7fk6yx9aIrL695hyEtLS21qcqCIAiCIAiCIAiCIDyZf19EQXihPM1aZS+KYcOGcfr06RrzDx8+/MSbJVSnTZs2XLt2rdbae1zJycl06dKlxvyAgADWrVv3HHskCIIgCIIgCIIgCP9OIjAnCA8xa9YsiouLa8y3s7OrMe+fyM7Ojq1bt9aYb2IidgwUBEEQBEEQBEEQhNogAnOC8BD169ev6y48V/r6+mJtO0EQBEEQBEEQBEF4DrTrugOCIAiCIAiCIAiCIAiC8DISgTlBEARBEARBEARBEARBqAMiMCcIgiAIgiAIgiAIgiAIdUAE5gRBEARBEARBEARBEAShDojAnCAIgiAIgiAIgiAIgiDUARGYEwRBEARBEARBEARBEIQ6IAJzgiAIgiAIgiAIgiAIglAHRGBOEARBEARBEARBEARBEOqAbl134GURHh5OREQEAFpaWpiYmODk5ETr1q0ZMmQIDRo0UJXt3LkzHTt2ZMaMGXXV3Se2bds29PT06N27d623HR4ezurVq4mOjq71tp+1Q4cOkZGRwZAhQ+q6KzUqLy8nPDycHTt2UFBQgIeHB++88w49evSo664Jz0lpqYyjB3eQfOsGtxPjKJEW03/oOFq27fTQugX5ORyP/I3bCXEkJ8VTVipj5PufUr+RT7XlE+Nj2btjHam3EzAwNKJZy2C6vfYWBgaGqjIZabc5tGczKUk3KSrIQ09fHzvHenR4pQ9NfFvV2nkLLxeZvJxfL9/kRnY+8XfyKS6TMybIl5AGLo9Uv7hMzsZz1ziTlE5pRSWe1ub8X8vGeFiba5QtkZezLeYGJxPTySuRITHQp6GtBWOD/TDQ1VGVu5h2h60X4kjIKUBPRxsfB2v+r2UTbE2Nau28hZdLuVxG7NntZKfHkZMRR5msiIBuE/Dw7vzQuhlJMSTGRnEn9SrSomwMjS2xr+eDT+BbGJlaqcoVF2Sye/XoGtup7/MKrV8ZB0B+dhKXT24mJyMemTQXXV0DzKzr4dXydZzrt376ExZeSrLSMnYe+ZMbSSncSEqhWFrC2MGv0zGg+SPVLy6Rsf7XA5yOuUqZXI6nqwtD+3SjvouTxnF++u0wJy9coaC4GHtrS15t34bQ4IBq2425Fs+Ow39w83YalYpKHG2t6dO5HUHNq78nEgRBEIG558jQ0JC1a9cCUFxczPXr19m8eTM///wzc+fOpU+fPgBERERgZmZWl119Ytu3b8fY2PiZBOb+yQ4dOsSlS5de6MDcqlWrWLVqFZMnT8bT05OzZ88SExMjAnMvEWlRAUf2bsXC0gZHZ3duxl1+5Lp3MlKJOrADGztHHJxcSUq4XmPZ1NsJrAqfja29Ez3feJv83Gz+OPwrdzLT+O+4qapyudlZlMlktGzbEYm5JfKyMi6dP8mP387j9cGjaNOu21Odr/ByKiyVs+1iPNYmhrhZSriSkfPIdRUKBfOPnCUxt5De3h5IDPU5cC2R2QdP8XmPYBzNTFRli8vkzDlwimypjC4N62EvMaZAVsa1zFzkFZWqwNy55EwWRv6Fh5U5b7XwQiovZ9/VW3y6/wRf9AzGzNCg1q+B8O9XWlLA5VM/YyyxxcLGnczkS49cN+bYj5SWFFGvURASC0eK8jO4ceE3UhP+otuQrzAysQTAwMiMNqHva9RPT4wmMfYoDq7+qrTigizkZSV4eHfC0MSSivJSkm+c5M9dn9Oqyxga+IY+9TkLL5/CYim/HIjCxtIcdycHLt9IeOS6CoWCeSs3kJiaTu9OwUhMjNn/52lmLfuBeZNG42hrDUBlZSVzV6wj/nYKocEBONhacSE2nlVb91AsldGvawe1dn8/Fc23m3fi26g+b/bsgraWFmlZ2WTn5dfquQuC8O8iAnPPkba2Nv7+/qrfg4ODeeuttxg1ahRTp06lRYsW1KtXD29v77rrZDVkMhmGhoYPLyj8ox08eJBu3boxbNgwANq1a/fIdSsqKqisrERPT+8Z9U54HiRmlkz5fCUSc0uSE2+wbH7YI9d1dm3A9PlrMDaRcPHcCTauWlRj2f27NmJkbMLI/83G0MgYAEtrO7Zt/Ja4q+dp2MQfgMY+LWjs00KtbmBIdyLmfcSfh3eLwJzwRCyM9FnevzMWRgbE38lj2t4Tj1z3VGI617PyeL+DP23dHAFo6+bAxJ1H2XIhjvfa+6vKbo6+TlZxCV/0DMbO1LjGNjeei8XO1JhZoW3R1VGuMNLS2Y5PfjvGzks3GdqqyZOdqPBSMzS25LWRqzEysSQnPY6DP330yHX92v8XW2dvtLS0VGkObs35fes0blz4Dd8g5UNGXT1D3Jt01Kh/68rv6Okb43TfSDgnj5Y4ebRUK9fQrycHNn3AtXO7RGBOeCIWZqasmDUZSzMJN5JSmLL4u0eue/LCZa4lJDFp2EDa+jUFINC/Ke9/vpSf9/3O+0P7A3Aq5grXEpIY82YfOrdR3pOEBgewaM1mth08SpfAlpibKh/KZOXkseqXPbzaLoD/9hMPtgVBeHRijbk6ZmBgwPTp05HL5WzZsgVQTmWdPXu2qkxcXBwjR46kTZs2+Pn5ERoaysqVK1X5YWFh9OrVi6ioKHr16oWvry/9+vXj/PnzasfasWMHgwcPJiAggNatWzN06FBiYmLUyoSHh9O8eXNiYmIYNGgQvr6+bNiwAYCFCxfSu3dvmjdvTvv27Zk0aRKZmZmqukOHDuX06dNERkbi5eWFl5cX4eHhqvzIyEgGDBhAs2bNaNu2LTNnzkQqlT7xtUtOTsbLy4sdO3YwY8YMWrVqRWBgIGvWrAFgz549hIaG0qJFC8aPH09BQYGq7qlTp/Dy8iIqKorx48fj7+9Pu3bt+Pbbb9WOER8fz8SJEwkJCcHPz48ePXqwevVqKisr1cqVlZWxePFiunTpgo+PDx06dCAsTBnUCAsLY/v27cTFxamuS1Xew2zdupWePXvSrFkz2rRpw+DBg9VeM4VCwapVqwgNDcXHx4cuXbrwww8/qPJTUlJo2bIlX375pVq777zzDl27dlW7/tra2iQlJT1Sv4YOHcro0aPZvn07oaGh+Pr6EhsbS2ZmJp988gldunShWbNmdOvWja+++oqysjK1+pWVlaxZs4bu3bvj4+NDcHAw7733HoWFhaoy8fHxvPvuu7Rs2RJ/f39GjRr1yP0Tnoyunh4Sc8snqmtgaISxieSh5WQlUm5ci8G/dXtVUA6geZuO6BsYEvPX8QfW19bWxtzSGllJ8RP1UxD0dHSwMHqyUWinktIxN9SnjauDKs3M0IBAN0f+Ss5EXlEBKEfLRcYn06VhPexMjSmvqFTl3a+wtIyU/GJa17NXBeUA3KzMcDY35cSttCfqpyDo6OqpRrY9LjuXpmpBuao0A0MJBTkpD6xbUpRDZvJFXDzboKOr/8CyWtraGJvaIC998ntB4eWmp6uLpdnD7z2qc/LCFcwlprRpdm9AhLmpCUH+Ppy9FIu8vByA2JvKe8/gv01DDW7hQ5lczpmLsaq0A8fPUKmoZGB35ZRxWWkZCoXiifonCMLLRYyYewF4enpib29f49ppY8aMwcbGhrlz52JqakpSUhLp6elqZbKyspg1axYTJkzAzMyMlStXMmLECA4cOIC1tXIodnJyMq+//jqurq6UlZWxZ88ehgwZwq5du/Dw8FC1JZfL+eCDDxg2bBgTJ07EwsICgOzsbEaPHo2dnR05OTmsWbOGoUOHsmfPHnR1dZk5cyYffvghhoaGfPzxxwA4OCi/vOzbt4+JEyfSr18/JkyYQFZWFosWLaKgoIDFixc/1fVbsmQJ3bp14+uvv+bQoUPMmzePnJwcTp8+zYcffkhRURGfffYZCxYsYM6cOWp1p0+fTs+ePQkPD+f48eMsXrwYc3NzBg8eDEBmZiYeHh707t0bExMTrl69Snh4OFKplPHjx6vamTBhAidPnmT06NH4+/uTk5PDgQMHABg7diw5OTncvHmThQsXAmBlZcXDnDlzhqlTpzJ8+HBCQkKQyWTExMSoBa/mzp3Lli1bGDNmDH5+fpw7d46FCxdiYGDA4MGDcXZ2ZsqUKUybNo1OnToREBDAxo0bOX78OOvXr8fY+F5gpE+fPsyePZtVq1YxYsSIh/bv0qVLpKSk8P7772NmZoajoyPZ2dlYWFjwySefYGZmxq1btwgPDycrK4svvvhCVXfOnDls3ryZt99+m+DgYIqLi4mMjEQqlSKRSLh9+zZvvvkmDRs2ZN68eWhpafHtt98ybNgw9u3bh77+g2/2hRdXRmoSlRUVOLt5qqXr6uri5OJOarLmNJTSUhnl8jJkJcVcvfgX169E49si6Hl1WRBUEnIKcLcy0whaNLAx53DcbdIKinG1NFNNV7WXmLA46hxnb2eiQEFDGwv+G9AUdyvlchXlFcqHPPo6ms9J9XV0SC4pIq+k9IkDiYJQW8rlMuTyEgyMHhwESbr+JwqFAtfGITW2U1FeRllpMak3z5B26xyujYKfRZcF4YESktPwcHHU+Dz3dHPm0ImzpGZm4+Zkj7y8Am1tbXR1dNTK6d+dJXLzdioEKkeDXrx+Eyc7G85fjWPdrgPk5BdgYmxEaHAAg7p30jiWIAhCFRGYe0E4Ojpy584djfScnBySk5OZOnUqnTsrn760bdtWo1xeXh5LliwhMDAQgICAAEJCQvjhhx/44IMPANQCSZWVlQQHBxMTE8P27duZNGmSKk8ulzNx4kSNtcXuD6xUVFTQvHlzOnTowMmTJ2nXrh2enp6YmppibGysNmVXoVAwf/58evTowdy5c1Xptra2jBo1irFjx9KwYcPHuVxq/P39mTJliuraHDhwgPXr13PkyBEsLZVPi69du8bWrVs1AnNt27ZVBRHbt29PdnY2y5cvZ9CgQWhraxMYGKi6pgqFgpYtWyKTyVi/fr3qeh47dozIyEgWLVpEr169VG1X/ezq6oqVlRWpqalq1+VhYmJisLCwUPUPoGPHjqqfk5KSWL9+PbNmzWLQoEEABAUFIZPJWLZsmeoc3njjDQ4dOkRYWBjh4eEsWLCAd955hxYt7k0RLC8v58KFC7i6urJgwQLs7e3VzqU6+fn5bN26FUdHR1WajY2NWn9btGiBkZERYWFhzJgxAyMjIxISEti0aRMTJ05k9Oh7i0aHht6bxhIREYG5uTlr1qzBwMBA1VaXLl3YsmXLC71Wn/BgBfm5AEjMLDTyJOaW3LpxVSP9t21rOf3nQUC5eU5T/za8NuidZ9pPQahOXkkpTew1H6xUBc5yS0pxtYT0QuWIzp+ir2EvMWZscDOkZXJ+ibnBZwdPs6B3OyyNDbEwMsBYX5frWXlq7SlH0hUBkCOVicCcUOeun/uVyopy6jV68DIXSdeOYmRihX29ZtXmnz+6hviLygeXWlpauHgG0qLTqFrvryA8TF5hEU0auGukW0hMAcgtKMTNyR4nO2sqKyuJS0ymcX03VbmrNxMByMm/NyMnPSsHLW0tvtm0g9c6B+Pu5MCpmCtsOxhFRWUFQ3p1fbYnJQjCP5YIzL0gFApFtU9RLC0tcXZ25quvviI/P5/AwEDVKLT7SSQSVQCp6vegoCAuXLigSouPj+err74iOjqa7OxsVfqtW7c02gsJ0XzSGRUVxfLly4mLi6OoqEit/oPWI0tISCAlJYUpU6ZQfndYOCiDh9ra2ly6dOmpAnPBwfeetOro6FCvXj20tLRUQTkAd3d3CgoKKC4uxsTk3uLcXbuq/4EMDQ1l586dpKen4+TkRGlpKStWrODXX38lLS0NuVyuKlvV1okTJzAyMqJnz55PfA7V8fb2Ji8vj7CwMHr37q0KclU5flw55a9bt25q1zUoKIiVK1eSlpaGs7MzAJ999hm9evXizTffpH79+mpBWoClS5dy4cIFdu3axeLFiwkLC8PCwkL1uk6bNo3ExETWrVunqtOoUSO1oBwo38dr167l559/Jjk5mdLSUlXe7du3adSoESdPnkShUNC/f/8az/3YsWP06NEDHR0d1bmZmZnh7e3NpUuPvoC18OIpL1dOa9bV1VyPUFdXT+3fWJXgTr3wad6WwvxcLp47gaJSQcV973lBeF7KKirQ065+dJsyXzkCrkSunLaqBUx7JQBDPeXtlruVOTP2neDAtSQGNW+ElpYWrzR0Zdflm2w6d42Oni6UyMvZeC6WirtLJpRVMwVWEJ6nzOTLXD61mXoNg7Gv51tjuYLcFHIy4mnUvHeNI4MaNe+NS8MgZEU53I47jkJRSWWl+DwXnr/SMjl6ujoa6VUj4cru3o8Et/Bl64Eolv+0kxFv9MTR1przsTc4eOysstx99yMlpaUoFAre6vUKr3dpD0AbP2+KSmTsPXqKfq90wEhs6CMIQjVEYO4FkZ6ejru7u0a6lpYWq1atYvHixcyePRupVErTpk355JNPaN363qK61U2NtLa2Jj4+HoCioiKGDx+OlZUVYWFhODk5YWBgwLRp09SCJwBGRkZqwStQjt4aO3YsXbp0YeTIkVhbW6OlpcXAgQM16v9dbq5yhMy4ceOqzU9Le7o1dCQS9WkVenp6alM0q9IASktL1c7t79fNxsYGUE4NdnJyYsGCBWzZsoVx48bh4+ODRCLh8OHDLF++XNVWXl4etra2tT48PTAwkPnz5/Pjjz8yYsQIDAwMCA0NZcqUKVhYWJCbm4tCoah2BCWgFpiztrYmMDCQPXv2MHDgQLWpoHK5nHXr1vH+++9jZGTEJ598Ql5eHhMmTGDt2rX4+vpy7tw5jZ12q67V/dauXcuXX37JO++8Q5s2bTAzM+PixYvMnj1b9T7Jy8tDV1dXNcW6Orm5uaxdu1a1i/H9xAYT/2y6d9ccKi/XDMCVl8urfX3tHJyxc1C+l1u06ciq8Nn8+O0XjP1wnpgWIjxX+jo6yP+2xijcC55VTUmt2nG1hYudKigH0NDWAltTI+Lu5KrSBvg1pKC0jF+v3GTX5ZsA+Dra0NHThUPXb2OoK27VhLpTkJPM8d1fYm7tSuuu1d/HVUmKPQqAW+MONZYxs3LBzMoFAHfvTkRu+5Q/ds7llTfni89z4bky0NdDXq754KMqIFcVoLM0k/DR8MFEbNzGZ9/+CICxoSH/7dedZRu3Y3jfPbWBvh6y0jLatVAPYAc39+H81TgSktPw9nR/RmckCMI/mbjbewHExcWRkZFB3759q8338PBg6dKlyOVyoqOj+eqrrxgzZgxHjx5VBZlycnI06mVnZ2NrawvA+fPnSU9PZ8WKFTRu3FhVprCwUGMEXnU3RocOHcLU1JQlS5agfXe0QErKgxcArlK1Rt2MGTNo1kxzaoOdnd0jtfMs/P26VU0nrrpu+/btY9CgQYwadW+aRVRUlFodCwsLsrKyahz1+DT69OlDnz59yMnJ4fDhw3zxxRfo6ury+eefY25ujpaWFhs3bqw2mHH/uoFHjx5lz549eHt7ExERwauvvqoKjOXm5iKVSlXvJS0tLT7//HMKCgoYOXIkb7/9NmlpaQwcOFCt/erOdd++fXTu3Fk1fRpQBYerWFhYUF5eTnZ2do3BOXNzc0JCQnjrrbc08v4eNBb+Wczubi5RWJCnkVeYn/tIm0/4NG/Ljk3fcSczDVt7p9ruoiDUyMLIgFypTCM9r0T54MHy7pTTqv+bVzMywtzQgKKye4FpXR1tRgf68qZ/I1ILijE30sfJzJSlf5xHSwscJDXv6CoIz5K08A5R22ehq29M+z7T0NM3emD5xGtHkVg6YWXv+cBy96vXMJCzh7+lMC8VM0vnp+2yIDwyC4kpuQWFGul5hcpZQfdvKuHt6U7EtP+RmJpBmVyOm5ODagqrk+29e1lLMwlpWdmY350OW8Xs7q6txTLNvx+CIAggdmWtc6WlpcyZMwd9fX0GDBjwwLJ6enoEBAQwatQoioqK1HZELSws5MSJE2q/Hz9+HD8/PwBkd/8Q3B/AOXfu3CMH12QyGXp6emrBmF9//bXaPv59BF39+vVxcHDg9u3b+Pr6avxnb2//SH14Fg4ePKj2+/79+7Gzs1MFK0tLS9WuWUVFBXv27FGrExQURElJCXv37q3xONVdl8dhZWXFgAEDCA4O5uZN5YiKqqnLeXl51V5XU1NTVf7UqVPp1asX69atw9DQkOnTp6vatra2xsLCgn379qnSdHV1WbJkCW5ubnz99deqUZIPU/U+ud/f3ydt27ZFS0uLX375pcZ2AgMDiYuLw9vbW+O86tev/9B+CC8uO8d6aOvokJJ4Qy29vLyc1ORbOLl41FDzvrJ3n2aLnVmF583d0oxbOQUau+zduJOPvq4OjmbKL18e1srNHXJKNL+E5UhlSAw0N7AxNzKgib0VTmamVFYqiM3IwdPGQm3EnSA8L6UlhURt/5TKcjkhfWdgZPrgTauy065RlJeOWw2bPtSk4u7yBvJS8XkuPF/uzo4kJKdpfJ7HJSZjoK+Hk536fa+2tjYeLo54ebhiaKDPxbi7I5y97t2X1q+nfFiYk1egVrcqAGhmIh60CIJQPXG39xxVVlZy/vx5AKRSKdevX2fz5s3cvn2befPm4eLiolEnNjaWL7/8kh49elCvXj2KiopYsWIFzs7OuLq6qspZWFgwdepU3nvvPSQSCStXrkShUPD2228Dyg0SjI2NmTVrFqNGjSIjI4Pw8PBHDooFBwezdu1a5syZQ9euXYmOjmbnzp0a5erXr8+OHTs4cuQItra22NnZYW9vT1hYGJMnT0YqldKxY0eMjIxITU0lKiqKiRMnqo3uep5OnjzJl19+SXBwMMeOHWPnzp3MmDFDNSowKCiILVu24OnpiaWlJRs3bqSsrEytjaCgIEJCQpgyZQpJSUn4+fmRl5fH/v37WbJkCQANGjTgl19+Yffu3bi5uWFpaVnt632/pUuXkpeXR0BAANbW1ly/fp0//viDYcOGAcoRcUOGDOGjjz5ixIgR+Pn5IZfLuXXrFqdOneKbb74BYNasWYByxKKpqSlffPEFw4YNY9u2bfTr1w8dHR0++OADpk+fzpgxY+jfvz96enqcOXOG2NhY7O3t+emnn+jbt6/GmnJ/FxQUxI8//sj69etxd3dn165dJCYmqpXx8PDgzTff5Ouvv1atmyiTyYiMjGTChAnY29vz3nvv0b9/f0aMGMHAgQOxsbHhzp07nD59mlatWj10Ywrh2SrIz0FWUoKVjT26jznNzsjYBE+vZpw/8weduw/AwFA5AuP86SjKSmX4NL+3VmZRYT6mEnO1+uXl5Zw7FYmenj52jvWe/mQEoQa5UhlSeTn2psbo3p2i2sbNgVNJ6ZxKSqetm/LzsEBWxsnENFq62KJ3d605JzNT3Cwl/HU7kwJZGWaGykBcTOodcqQyXm3sVv1B7/r1yk1yS0p5O8D7GZ6hIEBJUQ7yMimm5g5o6yg/z8vlMv7YOYeSohw6vjEbieXDRyYnXvsDAFev9tXmy6T5GBqrf55XVpRz62okOrr6mFu7VltPEGpDTn4hJTIZ9tZW6N5daqCtnzcnL1zmVMwV2vo1BaCgqJgT5y/TsqkXeg+4v8kvKmbn4T9xdbKnWaMGqvRA/6YcO3eRI6ejGdyjC6BcfznydDSmJsaqwJ0gCMLficDccySTyVS7ZxobG+Pi4kJgYCARERE0aNCg2jq2trbY2NiwYsUKMjIykEgktGrVigULFqBz37bdtra2TJ48mfnz55OUlETDhg1ZtWqVah0wGxsbvv76a+bPn8/YsWNxd3dn1qxZfP/994/U95CQECZPnsz69evZtm0bLVq0YMWKFWo7aQKMHDmSpKQkPv74YwoKChg/fjwTJkyge/fumJmZ8e2336pGUDk7O9O+fftq1yp7XmbPns3mzZvZtGkTJiYmvP/++2o7fk6fPp2ZM2cyZ84cjIyM6Nu3L127dmXatGlq7YSHhxMREcHmzZuJiIjA2tpabVOK/v37ExMTw5w5c8jLy6Nv377MmzfvgX3z9fVl7dq17N27l6KiIhwcHBgxYgTvvvuuqsy0adPw8PBg8+bNLFu2DBMTEzw8PHj11VcB2LNnD7/99hsrV67E3Fx5Q9y2bVuGDh3K3Llzadu2LU5OTgwcOBBLS0tWrlzJpEmT0NHRwdfXl6VLl+Lv78+AAQN455132LBhg2pqcnXGjRtHbm4uS5cuBZSbaUybNo0xY8aolZsxYwYuLi5s2bKFtWvXYmFhQevWrVXTVN3c3NiyZQtLlixh1qxZSKVSbG1tad26NV5eXg+8bsLTOR65F1lJMYV3d0+NvXiW/FzlZjGBId0xMjZh/66NnDsZyUezv8HS+t5U9CN7twKQmXYbgOjTR7kVHwtA5+73Nvvo1nsw3y6ayneLpxPQriv5udn8eWQ3DZv44dW0uarc9o0rKJVJ8WjojZm5FYUFeZw/8wdZGSn06Pc2BgaGz/ZiCP9a+2MTKZbLyZMqRzKfS84k++4U1VAvN0z09fjp/HWOxqewtG9HbE2VAeQ2rg542ljw7fGLpOQXY2agx4HrSVQqFPT3U9/EaGirJnx+6Ayf7j/JK43qIS0rZ8/VBBzNTOja6F4Q4o+bKZxOSqeJvRUGurpcSrvDycR0Onm60MZVc7MnQXhUcef3IC+VUlKsXLYj9eZZSgqVn+ee/j3QNzDh4vH1JFz5nV7DV2Bipvw8P7l3MdnpcdRv2oWCnGQKcpJVberpG+HcoI3acRSVldy+fgxrh0ZILKp/gHf28HLkZVLsnJtiZGqFrDiPxGtRFOSk4N9hGLp64vNceDJ7/ziFtESmGpX21+XrZN8dsfZq+zaYGBmyac8hos6cZ9n0idhaWQDKwFxDNxe+2bSD5IwsJCbG7P/zDAqFgoGvdlI7xqcRa2jo7oKDjRV5BUUcOvEXsrIyPn5niNpsotY+jfFpVJ8dh/6gsEiKm7M9p2Niib2ZxMgBvR8Y7BME4eWmpfj7+F3hHycsLIxLly6xe/fuuu7KP8apU6f4z3/+w9atW/H1rXmHMeHfJ+qytK678EKbP/1dcnOyqs2rCsRtWRdRbWDuk3E177T7xbKtar/fir/Kvh3rSb2dgL6BIb4tgni1zxDVCDqAC2f/5OyJI6SnJCKVFmFgYIizawMCQ7rj3az13w8h3KfZjg8eXuglNmFbJHeKS6rNqwrELT8eoxGYAygqlbPhXCxnb2dQVlFJA2tzhrTwooGNhUZbF9Pu8PP5OBJzCzDQ1cHf2ZYhLRpjYXRv7bkbd/LYeO4aSbmFlFVU4GRmwiuNXOnSsJ5YDP8hFjl/XdddeKHtXj2a4oLMavOqAnGnDyzVCMw9qJ6JmR29hq9QS0u7Fc3RHbNp3nEEjfyrH9GedO0Pbl4+TP6dRMpkhejqG2Fp14CGfj1wbhDwFGf57/exz5G67sILbdycxWTl5FWbVxWIW7Zxu0ZgDqBIWsK6XQc4cykWuVxOg3rO/N9r3fB0VV/vcO2OfZy9dI2c/AKMDA1o1qg+g7p3xt5Gc4q3rLSMn347zPHzlymSSnGys6FP53a0b6m5zrZwj6TVq3XdhSfyIn+vCGkqpk7/k4jA3L+ACMw9PhGYe3m9yH9ABaG2iMCc8DIQgTnhZSACc8LLQATmap8IzP2ziPG0wguhoqJCY/HV+z3uOlb/BOXl5TXmaWlpqU1VFgRBEARBEARBEATh3+ffF+14CT1srbJ/gmHDhnH69Oka8w8fPvzQzRIeR5s2bbh27Vqttfe4kpOT6dKlS435AQEBrFu37jn2SBAEQRAEQRAEQRCE500E5oQXwqxZsyguLq4x387Orsa8fyI7Ozu2bt1aY37VJgiCIAiCIAiCIAiCIPx7icCc8EKoX79+XXfhudLX1xdr2wmCIAiCIAiCIAjCS067rjsgCIIgCIIgCIIgCIIgCC8jEZgTBEEQBEEQBEEQBEEQhDogprIKgvBSabbjg7rugiA8c7qhfeq6C4Lw7F2q6w4IwrN3zqhDXXdBEJ65kLrugCDUMTFiThAEQRAEQRAEQRAEQRDqgAjMCYIgCIIgCIIgCIIgCEIdEIE5QRAEQRAEQRAEQRAEQagDIjAnCIIgCIIgCIIgCIIgCHXgpdn8YdeuXfz4448kJCSgUCiwt7enRYsWTJo0CWtrawB++OEHPDw8CAl5/OUnT506RXR0NGPGjFFLDw8PZ/Xq1URHRz9SO8nJyWzfvp2BAwdib2+v1v5//vMftm7diq+v72P370HH69KlC19//TWvvvrqI5evYmBgQL169ejbty9vv/02enp6T92nzp0707FjR2bMmAHAoUOHyMjIYMiQIU/ddnXHSklJAUBXVxczMzM8PT3p0qULAwcOxNjYWFW2utcgLy+PqVOncvr0aQoKCli2bBmvvPIKP/zwAz/88AMZGRl06tSJb775ptb7Lgi1TV5RwZYLcfx5M5WiMjmulhIG+TfC19HmoXVzpDLWnb1KTNodKhUKmtpbM7RVE+wlxhpl80tK2XIhjnPJmRSVyTE3NMDH0ZrRgfc+204npXPo+m2S8wopLC3DzFAfTxsL+jdrSD1LSa2et/BykZeX8/Pe3zn61wWKpTJcHe15s0dnmnk1eGC91Mw7HDx+lrjEZBKS05CXl7Ns+kRsrSyqLX/mUixb9kWSkpGFmakJHQP86d8tBB0dHVWZnPxC9v5xkhuJKcTfTkFWWsbMccNo6ulRm6csvIQqyuVcOrmJxKtRlJUWYWHjhk/QEBxc/R5YryA3hfiY/eSkXyc38yYVFXJ6DV+BiZmdWrnM25f4/ZfpNbbjGzQE74D+1eadObSMm5cO4eTRivZ9pj7+yQnCXeVyOQf3/MT500cpkRbj4OxK196Dadj4we/zrIxUTv1xgNu3rpN6O4Hycjkfzf4GS2u7asuXyko4sncLF8+doCA/FxNTCa4ejRjw9nvo6xuoysXFXuDwnp9JvZ2Ajq4enl4+9Oj3do3tCoIgVHkpAnMrV65k0aJFDBs2jPfeew+FQkFcXBy//vormZmZqsDcjz/+SMeOHZ8oMHf69GlWr16tEZgbMGDAY7WXkpJCREQEHTt2VAvMNW3alM2bN9OgwYO/ODwvkyZNok2bNkilUg4cOMCCBQvIz8/ngw+efsfLiIgIzMzMVL8fOnSIS5cuPZPAHEBoaCjDhw+noqKCnJwcTp06xZIlS9i0aRNr167FwcEBqP41WLNmDadOneLLL7/E2toaDw8Pbt26xbx58xg5ciSdOnXC0tLymfRbEGrb8uMXOZ2UzquN3XGQGHP0ZgpfHjnLtK4BNLazqrGeTF7OnAOnkMrL6ePTAF1tLfZcucXsA6eY1ysYiYG+qmx2cQkz9p0EoEsjV6yMDcgtKSX+Tr5am7fzijA10CW0sRtmhvrklZQSeSOZqXuPM+fVQNyszBCEJ/HNph2cvHCFHh3a4GBjTdSZ83yxcgMzx75N4/puNda7fus2vx09iYuDHc72ttxKSauxbPTVOBau/ommnu78t18PbqdlsO3gUQqKpIwc0EtVLi3rDjsP/4mjrTWujvZcv3W7Vs9VeHmdPriU5LgTNPTvhcTSkVtXfuePHXPo+MYcbJ2b1FgvO+0aced3Y2ZVDzMrF3KzEqotZ2btQpvQ9zXSE2OjSE88X2MAMCc9jltXfkdHV7/afEF4HFvXRXDx/EmCO/bA2s6Rcycj+eGbzxn5/qe4N6j5fZ6UcI3jkXuwc6yHnYMzqcm3aixbIi1m5ZKZ5OfdISC4K9a2DhQVFZAYH0t5uVwVmIu9+Bc/rpiHs2t9Xn39/5CVSDkeuYdvv5rGhLAFmErMa/v0BUH4F3kpAnPr1q2jb9++hIWFqdJCQkJ45513qKysfKbHdnBwUAV2noapqSn+/v5P36Fa4ubmpupPUFAQCQkJrF+//qkCczKZDENDQ7y9vWupl4/GxsZG7dp27dqVfv368dZbb/HJJ5+wZs0aoPrXICEhAS8vL7VRhOfOnUOhUDBw4EDq1av3VH2rqKigsrKyVkYiCsKD3LiTx4lbaQxp2Zhe3srROh3qO/PR7j/ZeO4as18NrLHugetJpBdK+ax7IA1sLADwc7Llo1//ZM+VBN5s7qUqu/LkJXS0tZjbI0gtYPd3bzTz1Ejr7FmPcdt+5+D1JN5p6/OEZyq8zOISkzl27iJDX+tG707BAIS09mPy/G9Y/+tBPnv/nRrrtmzqxQ+ff4KRoQG//n7sgYG5H3fux9XJnqmjh6pGyBkaGrDj0B/06NAGZ3tbAOq7OLHqs4+RmBhz8sJlvvpBBOaEp5edfp2ka3/i134YjVv2AcC9SSf2rX+fmD/X0mXQvBrrOnm0pu+7G9DTNyL2r501BuYMjS1wb9JRI/3yqc1ILByxcmiokadQKIiOWoV7k45k3L74ZCcnCHfdvhXHhb+O0aPvf2j/ymsAtGjTka/nTmLv9nW8O/nzGus28W3FzIU/YmBoxB+Hdj0wMHdg10Zyc7KYEDYfKxv7Gsvt3bEOKxt7Rk+ai66uruo44fM+JOrADnq+8faTnaggCC+Fl2KNuYKCAuzsqh9CrK2tvARVUxo3bNiAl5cXXl5ebNu2DYAdO3YwePBgAgICaN26NUOHDiUmJkbVRnh4OBEREUilUlXdoUOHqvKaN2+uKiuXy/nyyy/p2LEjPj4+tGvXjjFjxlBYWKiaKgnQv39/VVugnEbp5eXFxYv3bmQqKytZs2YN3bt3x8fHh+DgYN577z0KCwsBiI+PZ+LEiYSEhODn50ePHj1YvXr1MwlG+vj4IJVKycnJUU3pbdeuHf7+/vTp04cdO3aola86n8jISN577z1atGjB++8rn7x27tyZ2bNnAxAWFsb27duJi4tTXY+wsDCOHDmCl5cXt27dUms3Pz+fZs2asWHDhqc6H29vb9566y2OHz/OzZs31fpc9Rp4eXmxf/9+zp49q9a3qlGTr7zyitr7qKCggE8//ZR27drh4+NDv379+PPPP9WOO3ToUEaPHs327dsJDQ3F19eX2NhYACIjIxkwYADNmjWjbdu2zJw5E6lUqnFNjx07xgcffEDz5s3p1KkTK1eu1Di/6Ohohg8fTosWLWjevDkDBgzg2LFjqvyysjK++uorOnXqhI+PD927d+fXX399rGu4detWevbsSbNmzWjTpg2DBw9W+3ejUChYtWoVoaGh+Pj40KVLF3744QdVfkpKCi1btuTLL79Ua/edd96ha9euaucuPL1Tieloa2nR2dNFlaavq0NHTxfisvLILi55YN361uaqoByAs7kpTR2sOZmYrkpLyS/iQuodent7IDHQp6y8gvKKR/88MjPUR19HB6lc/ngnJwh3nbpwBW1tbboEtlSl6evp0alNC67fuk12Xn6NdSUmxhgZGtSYXyU5PYuUjCxeCWypNm01NDgAhULByQtXVGlGhgZITDSnewvC00iOO4GWljYNfLqq0nR09anf9BXupF1DWninxroGRhL09I2e6LjZ6dcpykvHrXH1M0USr0aSn52ET9CzmQEhvFwuRZ9AW1ub1sGvqNL09PRpFdiZpITr5OXW/D43NpFgYPjw93mJtJi/Tv5OQLtXsLKxp7y8nPJq7kGkxYVkpifT1C9AFZQDcHRxx87BhZi//tSoIwiCcL+XYsRc06ZN+emnn3BxcaFjx47Y2tpqlImIiGDUqFG0aNGC4cOHA+Dq6goo11V7/fXXcXV1paysjD179jBkyBB27dqFh4cHAwYMID09nd27d7N27VpAObqqOitWrOCnn35i8uTJNGzYkNzcXI4dO0ZZWRlNmzZlxowZzJ49my+++IL69es/8LzmzJnD5s2befvttwkODqa4uJjIyEikUikSiYTMzEw8PDzo3bs3JiYmXL16lfDwcKRSKePHj3+aS6ohOTkZfX19LCwsOHHiBC1atGDw4MHo6+tz7tw5pk2bhkKhoG/fvmr1pk+fzmuvvcayZctUQdL7jR07lpycHG7evMnChQsBsLKywtnZGXt7e3755Re1UXq7d+8GoHfv3k99Tu3atWPVqlVcuHCh2tdi8+bNLFy4kOLiYmbOnKnqW4MGDVi4cCERERHY2tqq3jf//e9/yc7O5n//+x/29vbs2rWL0aNHs23bNlUAFuDSpUukpKTw/vvvY2ZmhqOjI/v27WPixIn069ePCRMmkJWVxaJFiygoKGDx4sVq/Zo5cyZ9+vRh2bJlHDp0iIULF+Ll5UWHDh0A+Ouvv3j77bfx9/fns88+w8zMjEuXLpGamqpq4/333+fcuXOMGzeOBg0aEBUVxYcffoiZmdkjTc0+c+YMU6dOZfjw4YSEhCCTyYiJiVEFjQHmzp3Lli1bGDNmDH5+fpw7d46FCxdiYGDA4MGDcXZ2ZsqUKUybNo1OnToREBDAxo0bOX78OOvXr1db/094erdyC3A0M8ZYX310pqe1uSrf2kTzJlahUHA7r5CODVw08jxtzLmYdocSeTlGerpcSssGwMzIgM8OnuJyeg7aWlr4Olozoo0Ptqaa7ReXyamorCSvpJS9sYmUyMtp6vDwNe8EoToJKek42lpjbGiolu7p6qzKt7Z4uulGCXdH0tV3cVJLtzKXYG1hzq2U9OqqCUKtyc1KQGLphJ6B+t9JK/uGqnxjSe1/jibGHgXAtXEHjTx5WQkxx9bRpHV/jEzEEh/C00tNvoWNnROGRurvcxc35Yj7tORbWFg+3fs8MT4WubwMa1sHNqxcwJWYMygUClw9GvHawHdwqqecYVBergzW6eppzgTQ09cnIy2XwvxcJObivS8IQvVeisDczJkzGT9+PNOmTQPAxcWFTp06MWzYMFxclF8mvb290dfX15jWCKgFsSorKwkODiYmJobt27czadIk1XRVbW3th043vXjxIu3atVNbLy00NFT1s6en8o9Jw4YNH7jJQ0JCAps2bWLixImMHj262rYCAwMJDFROP1MoFLRs2RKZTMb69eufOjBXWVlJeXk5JSUl7N+/n4MHD9K9e3e0tbXp2bOnqpxCoaB169ZkZGSwefNmjcBc586d+fDDD2s8jqurK1ZWVqSmpmpc2379+vHLL7/wv//9TzUq4ZdffqFr165qa9Q9qaopyFlZWdXm+/v7Y2ZmhpaWllrfPDyUf6SbNGmien/98ssvxMbGsnPnTtVr3L59exITE/nmm2/4+uuvVfXz8/PZunUrjo6OgPIazp8/nx49ejB37lxVOVtbW0aNGsXYsWNp2PDelJFu3boxYcIEQPkeiIyMZP/+/arA3IIFC3Bzc2Pt2rWq69auXTtV/ZMnT3LkyBFWrVqlSg8ODiYrK4vw8PBHCszFxMRgYWHBxx9/rErr2LGj6uekpCTWr1/PrFmzGDRoEKCcEi2TyVi2bBmDBg1CW1ubN954g0OHDhEWFkZ4eDgLFizgnXfeoUWLFg/tg/B48kpKsTDSHA1kYaQMYORKS6utV1gqR15RiXk1dS3vpuWWyDDSMyWtsBiA709eooG1Oe+39+eOVMbWC3HMPXSaL3u1w0BXR62N6XtPkFagrGegq0Nf3wZqo/oE4XHkFhRiaab54MzSTLmhSG5+oUbe48orULZhZa65SYmFmSk5+QVPfQxBeBBZcQ6G1QS/qgJisuKcWj+morKS29ePYe3QEImFo0b+5ZOb0dbRp1Hzp39wKgiAMtBlZqGRbmauXBO3IP/p3+d3spQPWvbv3IC1rQMD/jMBWUkxh3/bwvdLP+V/0xZjZm6FxMwSQyMTEm9eU6uvHEmn3GQuPz9HBOYEQajRSzGVtVGjRuzevZvvvvuO//znP0gkEtatW8drr73G1atXH1o/Pj6ecePGERQURJMmTWjatCkJCQka0ygfhbe3N1FRUYSHhxMTE/PE00pPnjyJQqGgf//qd7wCKC0tZenSpXTt2hVfX1+aNm3K4sWLycrKori4+ImOW2XixIk0bdqUVq1aMW3aNLp166YKfObn5/PZZ5/RqVMnmjZtqto0ISFBc52S+4M1j6t///5kZWXxxx9/ABAbG8vly5cfeE0eh0KhAEBLS+up2zp27BiNGjXC3d1dOQz+7n9BQUFq05NB+X6tCsqBMgibkpJC9+7d1eoGBASgra3NpUuX1OrfH2TT0tKiQYMGpKcrR2iUlJRw4cIFXn/9dbUpVn/vq4WFBW3bttXo69WrV6moqHjo+Xp7e5OXl0dYWBjHjh2jpER9GuTx48cBZRDx78fIysoiLe3e2k2fffYZJSUlvPnmm7i6utb6aE9Bqay8At1qRq3q6SjTymp43eV306vK3U+3qm658nOutFxZ1sLIgI87t6KtuyO9vD0Y1daHjEIpxxJSNdoYE+RLWJdWDA/wxtnclLKKSioqFU9whoIAcnm52jSjKnp3A8JltTBNuvRuG9UdR19Xl7Ly8qc+hiA8SEW5HB0dzbVptXWVaeXy6h+0PI2M2zHIpHnVjpYryE0h7sIe/Nu/jY6uWDNXqB1yeVm17ycdPeVnr7ys7KmPUSpT3r9qaWkx4r1P8W/dnrYdXmXo6I8pkRZzMmqfKr9N+67EX7vIvp3ruZOZRnJSPBu/X0TF3c/8cvnT90cQhH+vl2LEHIC+vj4hISGq0T5//PEHo0ePZtmyZURERNRYr6ioiOHDh2NlZUVYWBhOTk4YGBgwbdo0Sksf/8bm3XffRVtbm+3btxMREYGVlRVDhgxh3LhxjxUAysvLQ1dXV7WjbHUWLFjAli1bGDduHD4+PkgkEg4fPszy5cspLS3FxMTksftfZfLkybRt2xYjIyOcnZ0xMro3BS0sLIzo6GjGjRuHp6cnpqambNq0ib1792q086D+P4yLiwvBwcFs3bqVjh078ssvv+Di4kLbtm2fuM37ZWRkAFQ79flx5ebmcuXKFZo2baqR9/cAmY2N+rD73NxcAMaNG1dt2/cHsQAkEvVRGnp6eqoppAUFBVRWVta45mLV8fLy8qrtKyhHED5sQ5PAwEDmz5/Pjz/+yIgRIzAwMCA0NJQpU6ZgYWFBbm4uCoWixtcqLS0NZ2fl1DJra2sCAwPZs2cPAwcORF9f7OT2LOjr6lBezYMC+d014PRrCOTq3U2XV7NWXNX6cfq62nfbUP6/rZuj2uddWzdHvjkew/WsXDo3VN8wpZHtvafLge5OTN6lnCr1fy0bP9qJCcJ99PR0Ka8mMCa/GzTWr4WNdgzutlHdccrKy9GvJmAnCLVJR1ePigrNIHOlarrdw9dKfFyJsVFoaWnj2qidRt75qNXYOHjh0rDmTYQE4XHp6elTUa75Pq+QKz979WrhfrFqx9XGPq0wMLi3BIKrRyMsre1ISriuSnul55sUFxZw9OBOog7sAKBhEz9aBXXm1B8H0NdXX0JBEAThfi/t3WH79u1p3Lgx8fHxDyx3/vx50tPTWbFiBY0b3/siWFhY+ES7rerr6zNhwgQmTJhAYmIiv/zyC+Hh4bi4uPD6668/cjsWFhaUl5eTnZ1dY3Br3759DBo0iFGjRqnSoqKiHrvP1alXr161U21LS0uJjIwkLCxMtQEGwMaNG6tt52lHow0YMIDJkyeTkZHBr7/+ytChQ2tlhBugGolXG7vhmpub4+XlpTYVtSZ/77+FhQUAM2bMoFmzZhrlHxRk+zuJRIK2tjaZmZkP7KuVlRXfffddtflWVlaPdKw+ffrQp08fcnJyOHz4MF988QW6urp8/vnnmJubo6WlxcaNG6vdcbZqOjDA0aNH2bNnD97e3kRERPDqq68+VUBXqJ6FkQG5UplGel6JMs3SuPovchIDPfR0tMkv0XxQkXs3zfLudNiqqbLmhuo3y9raWpjq61Fc9uDRSqYGeng7WHMsIVUE5oQnYmkmqXYq6f+zd99hUR3rA8e/9A5LB0GKgChNxEYzgjUajSWWRH9GY4wmlhjLzcUbS6LpMUVRk2vvJYrGFrtiL7F3RQQVEKQtvezC/v5YWV2Xaom5Op/nuc+Nc2bmzDkclt13Z97JfrD81LKS5ad1JXmwLDYrJ08jX500N1+Vz04QnhdDEyuK8jM1yosKslXHn6UyeSnJ8Sewd2mCobFE7Vja3YvcSzxDWNd/U5D78L2HorwMubyEgtz76BuYauTDE4SamFlYkivVXK5asYS1Yknr054DwNRcM/eoqZkFRYX5qn/r6ury1v+NoOOb/cm4n4KpmQRb+3qsWfQzWlpaWNtpLvEWBEGo8EoE5jIyMjRmIRUXF3Pv3j1Vvi9Qzix6fBZccXGx6liFM2fOkJycrJbXS09Pj9I6Tpl2dXVl3LhxrF27VrXzZ8V5apqNFxwcjJaWFjExMWqBt0eVlJSojbusrIxt27bVaYx1VVpaSnl5udp58/Pz2bdv3xP3WdnPpUK7du0wNzdn/Pjx5OTk0KtXryc+z6OuXr3K6tWrCQ8Px83N7an7Cw0N5cCBA9jZ2WFvX/VW65Vp0KABDg4O3L17Vy034ZMwNjYmMDCQTZs2MWTIkEqXs4aGhrJgwQL09PTUgtFPysrKij59+nDw4EHVc16R+1AqldK2bdsq20qlUj777DO6du3KF198Qbdu3Zg8eTJz58596nEJ6lwtzbmSmkVhqUxtA4i4DCkAbpaV523U0tKivsSM+EzN3SzjMqTYmRph9GBZSYMHG0k8HgCUl5WTVyLDvBY7XsrKymoM4AlCVdyc7Ll8M4HC4mK1DSDibicB4O5U9y/cNM+h7ONWUgperg/zIWbl5JEpzaFdiMiRKTxfEhs37t+9iKykUC3glZmqnN1jaeteVdMnknzrJLLSIlwrWcZamKfM03tk63eax/Iz2bpoOIGvvYd30JvPdEzCy8/RyZVbNy5RXFSotgHE3cQ45XFnt6c+h5OLB0CVAUBbe80vWszMJarcd+Xl5STcvEJ9Ny+1GXeCIAiPeyUCc926dSMyMpLw8HDs7OxIS0tjxYoVZGdnM2jQIFW9Bg0acPz4cY4cOYK5uTnOzs4EBgZibGzMF198wbBhw0hLSyM6OlojuOLh4YFcLmfp0qU0bdoUU1PTSnfyHDFiBL6+vvj4+GBkZMT+/fvJyclRLelzc3NDR0eHmJgYdHV10dHRqXRmmru7O2+//TYzZ84kJyeHkJAQiouLiY2NZfTo0djb2xMaGsq6devw9PTE0tKSVatW1Tl4WFdmZmb4+/szf/58rKys0NXVZd68eZiampKV9WRJWD08PIiJiWHr1q24urpiaWmp2lRBT0+PHj16qDYqeDQ3W21lZGRw7tw5ysvLycrK4vjx46xfvx4HBwe+/vrrJxrz43r06MGaNWt49913GTJkCG5ubuTl5XHlyhVkMpnazrKP09LSIioqigkTJlBYWEhERARGRkakpKRw4MABxo4dqzbDrCbjx49n8ODBDB48mP79+2NhYcHly5extLSkd+/ehIWFERkZydChQxk6dCje3t4UFRVx8+ZNbt++XatZf7NmzUIqldKyZUusra25ceMGhw4dYvDgwYDy+R0wYACffvop77//Pk2aNEEmk5GYmMiJEydUgbcvvvgCUM4WNDU15ZtvvmHw4MFs2LDhmQVhBaVWLg5su5LAvptJdPVRPk+ysjIOxCfjaSNR7ciaUVBEibwMJ4uHCfRbutiz5uwN4jOkeNhIAEjJzedKapaqLwAfeyvMDfU5nJBCdz8P9B/k9YqNT6JcocDf4eFMyNziEo1AXXp+EZdSM/GwfrpdM4VXV3CAL1v2H2XvsdN0iwwDQCaXE3vyLF6uzqoZbhnZUkpKZTjZ1z2VQX0HO5zsbdhz7DQdQpqrdhzfdeQvtLS0CA6oPE2AIDwr9b1CuH5mE/GXdtOoWXdAmXcu4cperB0aqnZkLchNp0xegrnV022oc+faIXT1DHD21ExPYefsT3i3KI3yU3t+xdjcFp+WvTG3dnmq8wuvJr+mIRzau4W/juyhdXtlYFcuk3H6+H7qu3mpdmSVZqVTWlqKnUPdZyvb2tfD0cmNqxdOUZCfi4mp8kvKuKvnyMnOJLRNl2rbH9yzidycbLr1eb/O5xYE4dXySgTmRo0axf79+/n222/JysrC0tISb29vlixZopbjaty4cXz++eeMHj2agoICvvnmG3r16sXMmTP5/vvvGTFiBG5ubnzxxRcsWLBA7RyRkZH079+fefPmkZmZSYsWLVi+fLnGWIKCgti+fTuLFy+mrKwMd3d3ZsyYQWhoKKCcXTRlyhQWLFjA5s2bkcvlXL9+XaMfUAYrnJ2dWbduHUuXLkUikdCiRQtV7rjJkyczdepUpk+fjpGRET179qRDhw6qTRqelx9//JEpU6YQFRWFRCJh4MCBFBYWsmjRoifqr3fv3ly4cIHp06cjlUrp2bMn3377rep4hw4dWLhwIW+99dYT9b9z50527tyJrq4uZmZmeHl5MXbsWPr06YOx8bNZWqGvr8+yZcuIjo7mt99+Iz09HYlEgo+PD/3796+xfefOnTE3N+e3335jy5YtADg5OdG6dWuN2aA1ad68OcuWLeOXX35h4sSJaGtr4+XlxSeffKKqM2vWLObNm8fq1atJTk5W3ZfaBsP8/f1ZunQp27dvJz8/HwcHB95//30++ugjVZ1Jkybh7u7O2rVrmTNnDiYmJri7u/P6668DsG3bNv7880/mz5+PhYXyw3JwcDADBw7kq6++Ijg4mHr16tXp2oWqedlKCHZ1YM3Z6+QUlWBvZsyhW8lkFBQxLOThlwNzj1zgaloWqwd2VpV19HZl/80kvt9/mq4+7uhoa7HtSiIWhvq84eOmqqeno8OAoEb8evQCX+w6QesG9cgoKGbntUQa2VnS0uXhbKV/bTmMr4M1blbmmOjrkZpbQGx8EmXlCt5u6v233BPh5ePl5kxIoC+rtu0lJ68AexsrDp46T3p2Dh/2666qN3vlRq7EJ/L7z1+oygqKitlx6AQA1xPvArDj8AmMDQ0xNjKkc+tWqrr/160j3y9czZe/LSO0qT9376Wx4/BJ2gYH4eygHuyL2aVMMZGUppxZdPDUBa7dugPAWx1r3gVbEB5n7ehNfa8wLh5ZTkmhFFOJA4lXYynMTadF+4cbKJ3cOZP7yZfp98lGVVlpSQE3z/0JQMa9awDEnfsTfQMT9AyM8Qp8Q+1cJUV53Lt9BmfPYHT1NGcEmZjbYmKuGeA+e2ARhsYSnDxaaRwThNpwcW+If1AIOzavJD9PipWtA2dPHCA7K51eAx6+3/x9aTQJN6/wzZz1qrKiwgKOHVDmvq7YSfXYge0YGplgaGRCaMTD9zhvvDWIRbOn89uPk2jVuiPFRQUc3rcVG7t6tHqtk6re2ZMHuHT2BO5ePugbGHDz2gUunjlGi9B2+DV9NvmvBUF4eWkpKraeFIT/UTNnzmTVqlUcOnRIbAwg1Cj7q49qrvSKKpWX8fv5OI4kpFBQKqO+xIy+gV40qffwQ9W0XSc0AnMAmQVFLD91jQv3MihXKPCxt+LdFo1xMNPcZOZoQgqbL98iJbcAYz1dgl0d6de0oWrJK8D683GcTU4nLa+QYrkccwN9Gtlb0cOvAS5VLKsVHtLt1L3mSq+oUpmMtdv3cej0RQoKi3CpZ0+/zm0JbPQwtcXnsxdrBObSs6SMnP5zpX3aWkmYM3msWtnJi1dZv/MAyWnpmJua0KZFIL07tkFXVz2FQN+xU6sc66PnFzR9d6nqVAivujJ5KRePruLO9YOUFudjYeOKX0h/HN2aqursXzdJIzBXkHufrYuGV9qnibkdXYf8V60s/uJOTu39jfA3/4NTgxa1Ht/WRcOxsHahdffP6nhlr54OLcROzlWRyUrZvWU15/46RFFhAQ5OLnTo+jYNfR4+5/N+nqIRmMvOvM/3U0ZU2qellS2fTv9VrSzu2nl2b1lDavJt9PT18fYNonOPgaocdKBcQrt943JSU24jl8keBO460jKswzPLf/0ya+P7v5ln8sDlwhc9hCr9r97TV5UIzAn/s27dukVCQgJRUVH079+fsWPH1txIeOWJwJzwKhCBOeFVIAJzwqtABOaEV8H/ahBJBOaEZ+WVWMoq1I5CoaCsrKzK49ra2qpcOf8EU6dO5dy5c7Ru3ZrhwzW/3ZXLq34jo6WlVenGB0LtiHsrCIIgCIIgCIIgCE9PBOYElY0bNzJx4sQqj48aNYrRo0f/jSOqXmU5/CokJSXRrl27Ko+3bNmy2vZC1cS9FQRBEARBEARBePkcOHCA+fPnc/PmTfLz87G3t6d9+/aMGjUKMzOzFz28l5YIzAkqkZGRrF+/vsrjdnZ2f+Nono6dnV2111KxQYZQd+LeCoIgCIIgCIIgvHykUikBAQEMHDgQiURCXFwc0dHRxMXFPfFmjkLNRGBOULG0tMTS0rLmiv8D9PX18ff3r7miUGfi3gqCIAiCIAiCILx8undXz1PcqlUr9PX1mTx5Mmlpadjb27+gkb3c/jkJwwRBEARBEARBEARBEIR/DIlEAoBMJnuxA3mJiRlzgiAIgiAIgiAIgiAIAgBlZWXI5XJu3rzJnDlzaNu2Lc7Ozi96WC8tEZgTBEEQBEEQBEEQBEF4SVS3WR/A3r17qz0eGRlJWloaAK1bt+bHH398ZmMTNInAnCAIr5QLPcQfFeHlF/DH+Bc9BEF4/pzavugRCMJzF1R08EUPQRD+Bq+/6AEIj5k3bx5FRUXcvHmTX3/9lQ8//JDFixejo6Pzoof2UhKBOUEQBEEQBEEQBEEQhJdETTPiatKoUSMAmjZtir+/P927d2f37t28/roIoj4PYvMHQRAEQRAEQRAEQRAEQYO3tzd6enrcuXPnRQ/lpSUCc4IgCIIgCIIgCIIgCIKG8+fPI5PJxOYPz5FYyioIgiAIgiAIgiAIgvCKGzVqFH5+fnh7e2NoaMi1a9dYuHAh3t7etG/f/kUP76X10gTmNm/ezLJly0hISEChUGBvb09QUBDjxo3D2toagCVLluDu7k6bNm3q3P+JEyc4e/YsH374oVp5dHQ0ixYt4uzZs7XqJykpiY0bN9K3b1/s7e3V+n/33XdZv349/v7+dR5fdedr164dM2fOrNV68Ir6FQwMDKhfvz49e/Zk0KBB6OnpPfWY2rZtS0REBFOmTAFgz549pKWlMWDAgKfuu7JzJScnA6Crq4u5uTmenp60a9eOvn37YmxsrKpb2c9AKpXy2WefcfLkSXJzc5kzZw7t27dnyZIlLFmyhLS0NCIjI5k7d+4zH7sg/N3kMhm7t63h3MmDFBUW4ODkQodu7+DVqEm17dLTUjhxaBd3E2+QcjcBuVzGp9PmYmltp1H3wukjXL14iruJcWSmp+Lu6cOwsdMq7TfpTjy7N6/mdsJ1FAoFLu4N6dxjIPXquz+T6xVeTbKyMtadj+PwrRTyS2W4WJrRL7Ah/o42NbbNKixm+amrXLiXQblCga+9NQObN8be7OHfkgPxSfx29GKVfYwMCyC8gRMAozfEklFQVGk9ezNjfulR9/crggBQJpdx6fhqbl89QGlJPhIbV/xCB+DgUv3reVLcMe7cOEJW2k2KC7MxNrOhnntzfFr1Rd/ARK3u1kXDKci9r9GHh39Hmrf7SK0sK+0ml4+vJSvtJnJZMaYW9rj7tccroAta2mIBj/BkZHI5v2/fz8HT5ykoLMbF0Z63u7QlwNuj2nYp9zPYffQUcbeTSEi6h0wuZ87ksdhaSSqt/9ela6zbEUtyWjrmpiZEtAykd8c2aknwr9xMZEvsURKTU8nNL8DYyBA3Jwd6d2yDt7vLs7xsQXiuAgIC+PPPP5k3bx4KhQInJyf69OnD+++/j76+/ose3kvrpQjMzZ8/nx9//JHBgwfz8ccfo1AoiIuLY8uWLdy/f18VmFu2bBkRERFPFJg7efIkixYt0gjM9enTp079JScnM3v2bCIiItQCc76+vqxduxYPj+r/kPxdxo0bR6tWrSgsLGTXrl388MMP5OTkMH780+/0N3v2bMzNzVX/3rNnD5cuXXougTmATp06MWTIEMrKysjKyuLEiRP88ssvrF69mqVLl+Lg4ABU/jNYvHgxJ06c4LvvvsPa2hp3d3cSExP59ttv+eCDD4iMjMTS0vK5jFsQ/m7rl8/m4rnjhEV0wdrOkTPHY1ky92s+GPM5bh6Nq2x3J+E6R2O3YedYHzsHJ1KSEquse/zgTpLv3qK+qyeFBXlV1ku+c4t5P03GwtKadp37oFAoOH5wB/N/mcqIT7/F1r7e01yq8Ar79ehFTt5J5fVGbjiYGXPwVjLf7TvFpA4taWRnVWW7Ypmc6btOUCiT093PA11tLbZdSWTarhN82zUMMwPlm9VGdlaMCAvQaP/n1UTuZOfh90gA8N0WjSmWydXqZRQU8fu5OAJqESgUhKqc3D2LpLhjeAV2xczSkcQr+zn0x3Qi3pqOrVPVr+en9v6KkakVbo3bYGxmgzTjNnHn/+Re4mk69v8JHV31D2WWtu40DHpTrczMUv31OSvtJnt/n4iZxJFGzXuiq2fAvYQznI1dSL40laCIoc/uwoVXytzVf3D8/BW6vNYKBxtrDvx1jm/mr2TqiEE0auBaZbsbiXf58+BxnB3scLK3JTH5XpV1z16NY8aiNfh6uvFery7cvZfGht0Hyc0v5IM+XVX17mVkoqWlRYfQ5kjMTSkoLOLg6QtMiV5E1AcDaNrY65leuyA8L8OGDWPYsGEvehivnJciMLd8+XJ69uxJVFSUqqxNmzYMHTqU8vLy53puBwcHVWDnaZiamhIYGPj0A3pGXF1dVeMJDQ0lISGBFStWPFVgrri4GENDQ3x8fJ7RKGvHxsZG7d526NCBXr160b9/fyZOnMjixYuByn8GCQkJeHt7q80iPHPmDAqFgr59+1K/fv2nGltZWRnl5eXPZCbii1bx8xX+N91NjOP86SN06fkurdsrP2QFtYpg5lfj2L5xOR9N+LrKto39mzN1xjIMDI04tGdztYG5voM/xkJijZaWFr98ObbKeru3rkFXT4+PJnyNsYkZAIEtW/PjFx+za/NKBnzwrye7UOGVdjNDyrHEewxo1oiuPsqZl681cOLTrYdZdeY6014PqbLtrht3SM0r5MvOIXjYSABoUs+WT7ccZtuVBN5u6g0oZ7o9OoMOoFRexqKTl/FxsEJiZKAqb1HfnsdtuHgTgDB3EXwWnkxm6g3uXD9Mk9aDadSsOwBujSPZsWIMFw4vpV2/b6tsG/rGp9jV91Mrs7Lz4MSuWdy+doAGfh3UjhmZWuPWOKLa8cRf3AVAZO+vMDBSvp57+Hdi/7pJJF7ZLwJzwhOJu53EkTMXGfhmR7pFhgHQpkUTJnw/lxVbdvPlmKqfq2a+3iz5eiJGhgZs2X+k2sDcsk07calnz2fDB6pmyBkaGvDHnkN0ea0VTva2ALQLbka74GZqbTuGtWDUlzP58+BxEZgTBKFaL8Xc8dzcXOzsNJdMAWg/mB5fsaRx5cqVeHt74+3tzYYNGwD4448/eOedd2jZsiUtWrRg4MCBXLhwQdVHdHQ0s2fPprCwUNV24MCBqmNNmzZV1ZXJZHz33XdERETg5+dHeHg4H374IXl5eaqlkgC9e/dW9QXKZZTe3t5cvPhw+Ut5eTmLFy+mc+fO+Pn5ERYWxscff0xennKWSXx8PGPHjqVNmzY0adKELl26sGjRoucSjPTz86OwsJCsrCzVkt7w8HACAwPp3r07f/zxh1r9iuuJjY3l448/JigoiDFjxgDKn8W0acqla1FRUWzcuJG4uDjV/YiKimLfvn14e3uTmJio1m9OTg4BAQGsXLnyqa7Hx8eH/v37c/ToUW7duqU25oqfgbe3Nzt37uTUqVNqY6uYNdm+fXu15yg3N5fPP/+c8PBw/Pz86NWrF4cPH1Y778CBAxk+fDgbN26kU6dO+Pv7c+3aNQBiY2Pp06cPAQEBBAcHM3XqVAoLCzXu6ZEjRxg/fjxNmzYlMjKS+fPna1zf2bNnGTJkCEFBQTRt2pQ+ffpw5MgR1fHS0lJ++uknIiMj8fPzo3PnzmzZsqVO99Db25t58+bxww8/EBYWRkhIiOrcNT0fFfdr+vTpvPbaa/j5+dG2bVt+/PFHtTo13RPh2bl09hja2tq0CHuYO0JPT5/mIW25k3ADaXZGlW2NTcwwMDSq1XkkljZoaWnVWC8x/iqejQJUQTkAcwsrGnj5cvXiaUpKimt1PkF41InbqWhradHW82HyYn1dHSI8nYlLl5JZxbLSirYNrC1UQTkAJwtTfB2sOX47tdrznkm6T7GsjPBaBNuOJqRga2qEt52YjS08maS4Y2hpaePxSBBNR1efBr7tybh3ncK8ql/PHw/KATh5BgOQm5VUaZvyMjlyWdWvyfLSQnR09NE3NFUrNzSRaMzAE4TaOnH+Ctra2rQLeRgM09fTI7JVEDcS75IpzamyrZmJMUaGBlUer5CUmk5yWjrtQ5qpLVvtFNZSOZP//JVq2xvo62NuakJhkXjPIghC9V6KGXO+vr6sWbMGZ2dnIiIisLW11agze/Zshg0bRlBQEEOGDAHAxUW53j8pKYkePXrg4uJCaWkp27ZtY8CAAWzevBl3d3f69OlDamoqW7duZenSpYBydlVl/vvf/7JmzRomTJiAl5cX2dnZHDlyhNLSUnx9fZkyZQrTpk3jm2++oUGDBtVe1/Tp01m7di2DBg0iLCyMgoICYmNjKSwsxMzMjPv37+Pu7k63bt0wMTHh6tWrREdHU1hYyKhRo57mlmpISkpCX18fiUTCsWPHCAoK4p133kFfX58zZ84wadIkFAoFPXv2VGs3efJk3nzzTebMmaMKkj5qxIgRZGVlcevWLWbMmAGAlZUVTk5O2NvbExMTozZLb+vWrQB069btqa8pPDychQsXcv78+Up/FmvXrmXGjBkUFBQwdepU1dg8PDyYMWMGs2fPxtbWVvXcvPfee2RmZvLJJ59gb2/P5s2bGT58OBs2bFAFYAEuXbpEcnIyY8aMwdzcHEdHR3bs2MHYsWPp1asXo0ePJj09nR9//JHc3Fx+/vlntXFNnTqV7t27M2fOHPbs2cOMGTPw9vbmtddeA+D06dMMGjSIwMBAvvzyS8zNzbl06RIpKSmqPsaMGcOZM2cYOXIkHh4eHDhwgH/961+Ym5vXaWn2smXLaNKkCV999RVyuXI5VkpKSo3PR2lpKYMGDSI5OZmRI0fSsGFDUlNTOX36tKrvutwT4emlJCViY1cPQyP1mT7Orp4A3EtKRGL59y2tk8tk6OlpfmDT09enrExOWsodXNwb/m3jEV4Oidm5OJobY6yvPkvZ09pCddzaRDPIrFAouCvNI8JDczcyTxsLLt7LoEgmx0iv8rdVhxNS0NPRpqVL9TPsE7NySc4poIffPyOthfC/KTs9ATPLeugZqL+eW9l7qY4bm9X+9by4IBsAAyNzjWNpdy+wfnY/FIpyTMztaNi0Kw2bqr9Hs3X2486NI5zaOxfvpm+io2fAvcQzJMWfoEn4u3W9PEEAICE5FUdba4wfW63h6eKkOm4tsXjKcyhn0jVwVv9SxcrCDGuJBYnJml/KFBYXI5eXkVdQyIFT57l7L42eHV57qnEIgvDyeykCc1OnTmXUqFFMmjQJAGdnZyIjIxk8eLBqS18fHx/09fU1ljUCakGs8vJywsLCuHDhAhs3bmTcuHGq5ara2to1Lje9ePEi4eHhavnSOnXqpPpvT0/lh1wvL69qN3lISEhg9erVjB07luHDh1faV0hIiGqWkkKhoFmzZhQXF7NixYqnDsyVl5cjl8spKipi586d7N69m86dO6Otrc0bb7yhqqdQKGjRogVpaWmsXbtWIzDXtm1b/vWvqpecubi4YGVlRUpKisa97dWrFzExMXzyySeqb6liYmLo0KGDWo66J1WxBDk9Pb3S44GBgZibm6OlpaU2Nnd35fKnxo0bq56vmJgYrl27xqZNm1Q/49atW3P79m3mzp3LzJkzVe1zcnJYv349jo6OgPIefv/993Tp0oWvvvpKVc/W1pZhw4YxYsQIvLweTn/v2LEjo0ePBpTPQGxsLDt37lQF5n744QdcXV1ZunSp6r6Fh4er2h8/fpx9+/axcOFCVXlYWBjp6elER0fXKTBnYWHB7Nmz1WZA1eb5+OOPP7hy5Qpr1qxRm3Facbyu90R4enk52ZiZSzTKzS2UObdyc7L+1vHYOjhxJyGO8vJyVVBfLpdzNyFOOR7p3zse4eUgLSpRW0paQWKk/GCXXVhSabu8EhmysnIsKmlr+aAsu6gYIz3NL+3ySko5n5JO8/r2VQbuKhxOUH6BIpaxCk+juCALQxPNGZdGD8qKC+r2+nnt1Aa0tLRx9lRf6m1h44pnvdcxs3SipDiXxCv7OXtgEUUF2WoBNw+/juRm3iX+0i5uXdoDgJaWNkGRH+AZUPPGZIJQmezcPCzNNV9zLc2VM+2zc6rOY1tb0lxlH1YWZhrHJOamZOXkapT/vHQd568pUxLo6urQPqQ5b4nAnCAINXgpAnMNGzZk69atHDt2jMOHD/PXX3+xfPlyNmzYwMqVK2ncuOokt6BcEvrTTz9x9uxZMjMzVeWPL6OsDR8fHxYuXKgKcPj5+VU6U6wmx48fR6FQ0Lt37yrrlJSU8N///pctW7Zw7949ZDKZ6lhBQQEmJiZVtq3J2LEPcz9paWnx+uuvqwKfOTk5REdHs3fvXtLS0igrKwNAIpFo9BMREfHEY+jduze//fYbhw4dIiIigmvXrnH58uVqA311oVAoAGq1rK4mR44coWHDhri5ualmjoEyP9/mzZvV6jZs2FAVlANlEDY5OZn//Oc/am1btmyJtrY2ly5dUgtCPRpk09LSwsPDg9RU5Td2RUVFnD9/nnHjxqlNuX98rBKJhODgYI2xfv7555SVlVXZ9nGvvfaaxv2rzfNx7NgxPDw81IJyj6rrPRGenkxWio6uZq5DnQeBBFlp6d86nuDWHfljzXxiVs6lTfselCvK2b9jPXm5UuV4ZJUHUAShOqXyMnQr+Zusp6MsK33wevU42YPyinqP0q1oK688jcSJ26nIyxU1BtsUCgXHElNwtTLDWVL5rHxBqI0yuQwdHc3Xc+0Hr/HyOrx+3r52kFuX99KoeU+NTR1av/kftX+7+7Tj4B/TuXFmM15Nuqhm5Wlpa2NiYY+DSyD1vULR0dXn9vVDnI1dgJGJJU4erep6iYKATCZHV1fzo6yervI9bOkjn4ueVMmDPio7j76uLoUlmr9L/d9oT7eIUDKkORz86zzysjLKyxVPPRZBEF5uL0VgDkBfX582bdqoZvscOnSI4cOHM2fOHGbPnl1lu/z8fIYMGYKVlRVRUVHUq1cPAwMDJk2aREklL7Y1+eijj9DW1mbjxo3Mnj0bKysrBgwYwMiRI+sUAJJKpejq6qp2lK3MDz/8wLp16xg5ciR+fn6YmZmxd+9efv31V0pKSp4qMDdhwgSCg4MxMjLCyckJI6OHS3uioqI4e/YsI0eOxNPTE1NTU1avXs327ds1+qlu/DVxdnYmLCyM9evXExERQUxMDM7OzgQHBz9xn49KS0sDqHTpc11lZ2dz5coVfH19NY49HuSysVFfPpKdrVwiMnLkyEr7vndPPSGtmZn6t3Z6enqqvIO5ubmUl5dXmXOx4nxSqbTSsYJyBmFtNzSp7Odbm+dDKpXWOEao/T0Rnp6enj5lcs03sWUPdozU+5u3R2/VuhM52Zkc3LOZM8djAXB29eC19m+yf+cG9A1ql9NOEB6lr6uDvJI8rLIyZZl+FV9K6D0or6j3KHlFW93Kv4Q7mngPUwM9AutV/7fmSloWWYUldG7sXm09QaiJjq4eZWWar+flD17jdfVqzq0FkJ58hb/2zMHBtSn+oQNqrK+lpUXDpt1IvX2W+0mXVJtCXP1rA3HnttJl8Fx09ZSzU+s3DGP/+smc3jcPR/fmaGvX7gtBQaigp6er9uVtBZlc+UWK/jPYWM3gQR+VnadULke/koCdu/PDL99fa9aET3/8jTmrNjL+vX5PPR5BEF5eL01g7nGtW7emUaNGxMfHV1vv3LlzpKam8t///pdGjRqpyvPy8p5ot1V9fX1Gjx7N6NGjuX37NjExMURHR+Ps7EyPHj1q3Y9EIkEul5OZmVllcGvHjh3069dPbTvjAwcO1HnMlalfv36lS21LSkqIjY0lKipKtQEGwKpVqyrt52lno/Xp04cJEyaQlpbGli1bGDhw4DOZ4QbK4C3wTHbDtbCwwNvbW23ZZVUeH3/FTLIpU6YQEBCgUb+6ANbjzMzM0NbW5v79+9WO1crKinnz5lV63MrKqtbne/xaavt8SCQSrl+/XmW/z/KeCLVjZmFZ6fLQiiWsFUta/04d3+xPePs3uX/vLgaGxjg6ubJzk3LjF1s7sdRPqDuJkQHZhZpJuKUPEnNbGlcesDAz0ENPR5ucIs0v7LIflFkaae5KnVFQxLX7WbT1rK+aWVeVwwkpaGlBmJtjtfUEoSaGJlYU5WdqlBc9yBVnaFLz67k0PYHDm7/GwtqFsK6f1jpwZvJgllxpSb6q7OaF7dg5+6mCchXqNWjBuYOLKci9j5lEPPdC3Viam1W6lDT7wfJTy0qWn9aV5MGy2KycPI18ddLcfFU+u6ro6urQ3M+bTXsPUyqTPZNgoSAIL6eXIjCXkZGhMQupuLiYe/fuqfJ9gXJm0eOz4IqLi1XHKpw5c4bk5GS1pXJ6enqU1nEpl6urK+PGjWPt2rWqnT8rzlPTbLzg4GC0tLSIiYlRC7w9qqSkRG3cZWVlbNu2rU5jrKvS0lLKy8vVzpufn8++ffueuM/Kfi4V2rVrh7m5OePHjycnJ4devXo98XkedfXqVVavXk14eDhubm5P3V9oaCgHDhzAzs4Oe3v7OrVt0KABDg4O3L17Vy034ZMwNjYmMDCQTZs2MWTIkEqXpIaGhrJgwQL09PTUgtHPQm2fj9DQUP7880/Onz9PkyZNNPp5lvdEqB1HJ1du3bhEcVGh2gYQdxOVOd0cnd1eyLiMjU1x83iYjuDm9QtYWFpj61D9m2FBqIyrpTlXUrMoLJWpbQARlyEFwM2y8vylWlpa1JeYEZ+puctfXIYUO1OjSvPHHUlIQaGoOWecrKyMk3dS8bG3wtJYM8AnCHUhsXHj/t2LyEoK1TaAyEy9AYClbfWzMvOk9zj4x3QMjC1o3X2SRkCtOvk5ytUIhkYPgxjFhVIUCs3ZporyMrX/F4S6cHOy5/LNBAqLi9U2gIi7rdw92N2p7hMsNM+h7ONWUgperg83/8nKySNTmkO7kKAa+5DJ5CgUCopKSkVgThCEKr0Ugblu3boRGRlJeHg4dnZ2pKWlsWLFCrKzsxk0aJCqXoMGDTh+/DhHjhzB3NwcZ2dnAgMDMTY25osvvmDYsGGkpaURHR2tEVzx8PBALpezdOlSmjZtiqmpaaU7eY4YMQJfX198fHwwMjJi//795OTkqJZfurm5oaOjQ0xMDLq6uujo6FQ6M83d3Z23336bmTNnkpOTQ0hICMXFxcTGxjJ69Gjs7e0JDQ1l3bp1eHp6YmlpyapVq+ocPKwrMzMz/P39mT9/PlZWVujq6jJv3jxMTU3JynqyZOweHh7ExMSwdetWXF1dsbS0VG2qoKenR48ePVQbFTyam622MjIyOHfuHOXl5WRlZXH8+HHWr1+Pg4MDX3/99RON+XE9evRgzZo1vPvuuwwZMgQ3Nzfy8vK4cuUKMplMbWfZx2lpaREVFcWECRMoLCwkIiICIyMjUlJSOHDgAGPHjlVtOFEb48ePZ/DgwQwePJj+/ftjYWHB5cuXsbS0pHfv3oSFhREZGcnQoUMZOnQo3t7eFBUVcfPmTW7fvl2rWX9Vqe3z0b17d1atWsWwYcMYNWoUXl5epKWlcerUKaZPn/7M74lQM7+mIRzau4W/juyhdfs3AeXOqKeP76e+m5dqR1ZpVjqlpaXYvYDA2IXTR0i6HU+Xnu8+s5mzwqullYsD264ksO9mEl19lK8hsrIyDsQn42kjUe3ImlFQRIm8DCeLh7neWrrYs+bsDeIzpHjYSABIyc3nSmqWqq/HHU28h7WJIY3sNBPxP+pscjqFpXKx6YPwTNT3CuH6mU3EX9pNo2bdAWXeuYQre7F2aKjK/VaQm06ZvARzq4cBh6KCbA5unAZo0abnVAyNK9/VsqQoD30DE7QeydlYXibn6qkYtHV0sXX2U5WbSeqRducCJUV5GBgpZyApysu5G3cEPX0jTC2ePoAivHqCA3zZsv8oe4+dpltkGAAyuZzYk2fxcnVWzXDLyJZSUirDyb7uqWvqO9jhZG/DnmOn6RDSXJU3fNeRv9DS0iI44GFamJz8AixM1dMIFRQVc/z8FawlFhrHBEEQHvVSBOZGjRrF/v37+fbbb8nKysLS0hJvb2+WLFmilo9s3LhxfP7554wePZqCggK++eYbevXqxcyZM/n+++8ZMWIEbm5ufPHFFyxYsEDtHJGRkfTv35958+aRmZlJixYtWL58ucZYgoKC2L59O4sXL6asrAx3d3dmzJhBaGgooFwmOGXKFBYsWMDmzZuRy+VVLumbMmUKzs7OrFu3jqVLlyKRSGjRooUqd9zkyZOZOnUq06dPx8jIiJ49e9KhQwfVJg3Py48//siUKVOIiopCIpEwcOBACgsLWbRo0RP117t3by5cuMD06dORSqX07NmTb7/9VnW8Q4cOLFy4kLfeeuuJ+t+5cyc7d+5EV1cXMzMzvLy8GDt2LH369MHY2LjmDmpBX1+fZcuWER0dzW+//UZ6ejoSiQQfHx/69+9fY/vOnTtjbm7Ob7/9xpYtWwBwcnKidevWGrNBa9K8eXOWLVvGL7/8wsSJE9HW1sbLy4tPPvlEVWfWrFnMmzeP1atXk5ycrLovz2JGYm2eD319fZYsWcLPP//Mf//7X6RSKQ4ODmo7uj7LeyLUzMW9If5BIezYvJL8PClWtg6cPXGA7Kx0eg34SFXv96XRJNy8wjdz1qvKigoLOHZAmUPw9i3l69mxA9sxNDLB0MiE0IjOqrq34i6TePMqAPl5OZSWFLNvu7IvN8/GNPDyVdXbt309Xo2bYGJixp2EG5w+vp+GPk0JjXz4nAhCXXjZSgh2dWDN2evkFJVgb2bMoVvJZBQUMSzk4Zdkc49c4GpaFqsHPnx2O3q7sv9mEt/vP01XH3d0tLXYdiURC0N93vBx0zjX3ew87mTn8aZvgxoDyUcSUtDT0aaliwhQCE/P2tGb+l5hXDyynJJCKaYSBxKvxlKYm06L9qNU9U7unMn95Mv0+2SjquzgH9PIz0mlUfOepCdfIT35iuqYoYklDi7KWe4pCX9x5eQ66nuGYmJhR2lxPrevHSQn8w4BYf+n2gEWoHGLXhzf8Qt71n6Kh19HtHX1uHv9MFlp8fiHDkBb56X4OCL8zbzcnAkJ9GXVtr3k5BVgb2PFwVPnSc/O4cN+3VX1Zq/cyJX4RH7/+QtVWUFRMTsOnQDgeuJdAHYcPoGxoSHGRoZ0bv1wQ5L/69aR7xeu5svflhHa1J+799LYcfgkbYODcHZ4GOz7+r/LsZZY4OnihIWZCRnZOcSePEdWTi5jB/V53rdDEIT/cVqKiq0pBeEfaubMmaxatYpDhw6h/zcnoBdePgcuF77oIfxjyWSl7N6ymnN/HaKosAAHJxc6dH2bhj4Pd8+d9/MUjcBcduZ9vp8yotI+La1s+XT6r6p/79m2lr1/rqu0brsufWj/hjI5cmb6PTatXUDK3VuUFBdjaW1HUHAE4W27Vbo7mqAu4I+qZ+m+6krlZfx+Po4jCSkUlMqoLzGjb6AXTR7ZnGHarhMagTmAzIIilp+6xoV7GZQrFPjYW/Fui8Y4mGnOhFh95jqbL9/iu65huFSxRBagsFTGh+v30dTJlrFtal4WJTz0o9PMFz2Ef6wyeSkXj67izvWDlBbnY2Hjil9IfxzdHr6e7183SSMwt/aXnlX2aefkS2SfLwHISrvJ5RO/I71/i+KiHLS1dbG0dccr8A3qNwzTaHsv8SzX/oohJ+sustJCzC2d8GzSGQ//Ts/wql9O//Z78nQxL7tSmYy12/dx6PRFCgqLcKlnT7/ObQls9DCV0eezF2sE5tKzpIyc/nOlfdpaSZgzeaxa2cmLV1m/8wDJaemYm5rQpkUgvTu2QVf3YcqYHYdPcvTsRZLTMigsLsHEyBAvV2fejAyjsYfrM77yl49Z89df9BCeyD/5c0Ub32czAUX4e4jAnPCPdevWLRISEoiKiqJ///6MHTu25kaCUIN/8h9QQXhWRGBOeBWIwJzwKhCBOeFVIAJzz54IzP1vEdMOXiEKhYKysqoT7Gpra6tyJ/wTTJ06lXPnztG6dWuGDx+ucbyyrcsraGlpVbrxgVA74t4KgiAIgiAIgiAIwvMnAnOvkI0bNzJx4sQqj48aNYrRo0f/jSOqXmU5/CokJSXRrl27Ko+3bNmy2vZC1cS9FQRBEARBEARBEIS/hwjMvUIiIyNZv359lcft7Oz+xtE8HTs7u2qvpWKDDKHuxL0VBEEQBEEQBEEQhL+HCMy9QiwtLbG0tKy54v8AfX19/P39a64o1Jm4t4IgCIIgCIIgCILw9/jnJBQTBEEQBEEQBEEQBEEQhFeICMwJgiAIgiAIgiAIgiAIwgsgAnOCIAiCIAiCIAiCIAiC8AKIwJwgCIIgCIIgCIIgCIIgvAAiMCcIgiAIgiAIgiAIgiAIL4AIzAmCIAiCIAiCIAiCIAjCCyACc4IgCIIgCIIgCIIgCILwAojAnCAIgiAIgiAIgiAIgiC8ALp1bbB582aWLVtGQkICCoUCe3t7goKCGDduHNbW1gAsWbIEd3d32rRpU+cBnThxgrNnz/Lhhx+qlUdHR7No0SLOnj1bq36SkpLYuHEjffv2xd7eXq3/d999l/Xr1+Pv71/n8VV3vnbt2jFz5kxef/31WtevYGBgQP369enZsyeDBg1CT0/vqcfUtm1bIiIimDJlCgB79uwhLS2NAQMGPHXflZ0rOTkZAF1dXczNzfH09KRdu3b07dsXY2NjVd3KfgZSqZTPPvuMkydPkpuby5w5c2jfvj1LlixhyZIlpKWlERkZydy5c5/52IWH5HI50dHR/PHHH+Tm5uLu7s7QoUPp0qXLix6a8DeQy2Ts3raGcycPUlRYgIOTCx26vYNXoyY1ts2RZrItZglxVy+gUJTToKEfb7w1CGsbB7V6eblSdmxawfVLZygtKcbWvh5tOvUiIChUrd73kz8iOyu90nNZ2zow4fPZT36hwitNVlbGuvNxHL6VQn6pDBdLM/oFNsTf0abGtlmFxSw/dZUL9zIoVyjwtbdmYPPG2JsZa9TNKSph3fk4ziTdJ79UhoWhAX6O1gwP0XzvcSzxHn9eTeSONA9dbS2cLEzpF9gQXwfrZ3LNwqunTC7j0vHV3L56gNKSfCQ2rviFDsDBpfrX86S4Y9y5cYSstJsUF2ZjbGZDPffm+LTqi76BiapeSVEeCZf3kpLwF7lZSSjKyzCzdKJhUDdcGoar9Xn/7iX2x0yu9Hzt+32LtaP301+wIDxCJpfz+/b9HDx9noLCYlwc7Xm7S1sCvD1qbJspzWXZph2cvx6PQqHA19OdQd07YW9jpVZPmpfPyi27OXs1juKSUurZ2dCzfTghgX7P67IEQXiJ1SkwN3/+fH788UcGDx7Mxx9/jEKhIC4uji1btnD//n1VYG7ZsmVEREQ8UWDu5MmTLFq0SCMw16dPnzr1l5yczOzZs4mIiFALzPn6+rJ27Vo8PGp+Yf47jBs3jlatWlFYWMiuXbv44YcfyMnJYfz48U/d9+zZszE3N1f9e8+ePVy6dOm5BOYAOnXqxJAhQygrKyMrK4sTJ07wyy+/sHr1apYuXYqDg/IDemU/g8WLF3PixAm+++47rK2tcXd3JzExkW+//ZYPPviAyMhILC0tn8u4hYcWLlzIwoULmTBhAp6enpw6dYoLFy6IwNwrYv3y2Vw8d5ywiC5Y2zly5ngsS+Z+zQdjPsfNo3GV7UpKilkw83OKCguI6NQTHR1dDu/bwvxfpvLxxBkYm5gBUFxUyH9/mkR+Xg6hEV0wM7fk4pmjrF74E+VlZQS2aK3q843e71FaUqR2HmlWBru2rK5VoFAQqvLr0YucvJPK643ccDAz5uCtZL7bd4pJHVrSyM6qynbFMjnTd52gUCanu58HutpabLuSyLRdJ/i2axhmBvqqupkFRUzZcRyAdg1dsDI2ILuohPiMHI1+15+PY8PFm7RycaCNhxNl5QruSvPIKix+9hcvvDJO7p5FUtwxvAK7YmbpSOKV/Rz6YzoRb03H1qnq1/NTe3/FyNQKt8ZtMDazQZpxm7jzf3Iv8TQd+/+Ejq7yOc+8d52Lx1bi6BqET8veaGnrkHTzOMf+/JHczLv4hbyj0bdX4BtY2XuqlZlKHJ/thQsCMHf1Hxw/f4Uur7XCwcaaA3+d45v5K5k6YhCNGrhW2a64pJRpc5dQUFRMz/at0dXRYWvsMT6fs4TvJ3yImYnyS5jC4mKmzFpITn4BnVsHIzE35fi5y/y8dB1lZeWENwv4uy5VEISXRJ0Cc8uXL6dnz55ERUWpytq0acPQoUMpLy9/5oN7lIODgyqw8zRMTU0JDAx8+gE9I66urqrxhIaGkpCQwIoVK54qMFdcXIyhoSE+Pj7PaJS1Y2Njo3ZvO3ToQK9evejfvz8TJ05k8eLFQOU/g4SEBLy9vdVmEZ45cwaFQkHfvn2pX7/+U42trKyM8vLyZzIT8WW2e/duOnbsyODBgwEIDw+vvsEjxD3+33Y3MY7zp4/Qpee7tG7/JgBBrSKY+dU4tm9czkcTvq6y7fGDO8i4f4+Rn36Ls6vyQ1dDn6bM/Gosh/ZsplN35ZcBJw/vJjM9laEfT8XDWzlrKPi1Tsz9IYo/NyzFr2kIurrKP0u+TVpqnGff9vUAagE8QaiLmxlSjiXeY0CzRnT1cQfgtQZOfLr1MKvOXGfa6yFVtt114w6peYV82TkEDxsJAE3q2fLplsNsu5LA200fzvqZf/wSOtpafNUlVC1g97i4dCkbLt7k/5o1oktj92dzkcIrLzP1BneuH6ZJ68E0atYdALfGkexYMYYLh5fSrt+3VbYNfeNT7Oqrz/ixsvPgxK5Z3L52gAZ+HQAwt65Pl0FzMDG3U9XzDOhM7IapXDu1kUbNe6KrZ6jWj62TD/W91GdHC8KzFnc7iSNnLjLwzY50iwwDoE2LJkz4fi4rtuzmyzFDq2y788hJ7qVn8vXYYXi6OAEQ2MiT8d/PZUvsUfq/0R6APUdPk5qRxZQRg/HzUr52dwprwX9+mc+yzbsIbuKLrq7Oc75SQRBeJnXKMZebm4udnV2lx7S1lV1VLGlcuXIl3t7eeHt7s2HDBgD++OMP3nnnHVq2bEmLFi0YOHAgFy5cUPURHR3N7NmzKSwsVLUdOHCg6ljTpk1VdWUyGd999x0RERH4+fkRHh7Ohx9+SF5enmqpJEDv3r1VfYFyGaW3tzcXL15U9VVeXs7ixYvp3Lkzfn5+hIWF8fHHH5OXlwdAfHw8Y8eOpU2bNjRp0oQuXbqwaNGi5xKM9PPzo7CwkKysLNWS3vDwcAIDA+nevTt//PGHWv2K64mNjeXjjz8mKCiIMWPGAMqfxbRp0wCIiopi48aNxMXFqe5HVFQU+/btw9vbm8TERLV+c3JyCAgIYOXKlU91PT4+PvTv35+jR49y69YttTFX/Ay8vb3ZuXMnp06dUhtbxazJ9u3bqz1Hubm5fP7554SHh+Pn50evXr04fPiw2nkHDhzI8OHD2bhxI506dcLf359r164BEBsbS58+fQgICCA4OJipU6dSWFiocU+PHDnC+PHjadq0KZGRkcyfP1/j+s6ePcuQIUMICgqiadOm9OnThyNHjqiOl5aW8tNPPxEZGYmfnx+dO3dmy5YtdbqH69ev54033iAgIIBWrVrxzjvvqP3eKBQKFi5cSKdOnfDz86Ndu3YsWbJEdTw5OZlmzZrx3XffqfU7dOhQOnTooHbt2tra3Llzp1bjquoe379/n4kTJ9KuXTsCAgLo2LEjP/30E6WlpWrta/q9A+Xv3kcffUSzZs0IDAxk2LBhtR6fUDeXzh5DW1ubFmHtVWV6evo0D2nLnYQbSLMzqm3r7OqhCsoB2Dk44eHtz8Wzx1RlifFXMTE1VwXlALS0tAgICiMvV0rCzcvVjvH8qcNYWtvh6tHoSS5REDhxOxVtLS3aejqryvR1dYjwdCYuXUpmQVG1bRtYW6iCcgBOFqb4Olhz/Haqqiw5J5/zKRl083HHzECfUnkZ8rLK3y9sv5aAxNCAzo3cUCgUFMvkT3+RwisvKe4YWlraeDwIogHo6OrTwLc9GfeuU5hX9ev540E5ACfPYABys5JUZaYW9mpBOVC+njt5tKSsTEZ+TiqVkZUWUV5eVqfrEYS6OHH+Ctra2rQLaaYq09fTI7JVEDcS75Ip1Zy5XOH4+St4uDipgnIATva2+Hm5c/zcw/coV2/dxtzURBWUA+XzHxroizQ3jyvxic/2ogRBeOnVacacr68va9aswdnZmYiICGxtbTXqzJ49m2HDhhEUFMSQIUMAcHFxAZR51Xr06IGLiwulpaVs27aNAQMGsHnzZtzd3enTpw+pqals3bqVpUuXAsrZVZX573//y5o1a5gwYQJeXl5kZ2dz5MgRSktL8fX1ZcqUKUybNo1vvvmGBg0aVHtd06dPZ+3atQwaNIiwsDAKCgqIjY2lsLAQMzMz7t+/j7u7O926dcPExISrV68SHR1NYWEho0aNqsstrFFSUhL6+vpIJBKOHTtGUFAQ77zzDvr6+pw5c4ZJkyahUCjo2bOnWrvJkyfz5ptvMmfOHFWQ9FEjRowgKyuLW7duMWPGDACsrKxwcnLC3t6emJgYtVl6W7duBaBbt25PfU3h4eEsXLiQ8+fPV/qzWLt2LTNmzKCgoICpU6eqxubh4cGMGTOYPXs2tra2qufmvffeIzMzk08++QR7e3s2b97M8OHD2bBhgyoAC3Dp0iWSk5MZM2YM5ubmODo6smPHDsaOHUuvXr0YPXo06enp/Pjjj+Tm5vLzzz+rjWvq1Kl0796dOXPmsGfPHmbMmIG3tzevvfYaAKdPn2bQoEEEBgby5ZdfYm5uzqVLl0hJSVH1MWbMGM6cOcPIkSPx8PDgwIED/Otf/8Lc3LxWS7P/+usvPvvsM4YMGUKbNm0oLi7mwoULasGrr776inXr1vHhhx/SpEkTzpw5w4wZMzAwMOCdd97BycmJ//znP0yaNInIyEhatmzJqlWrOHr0KCtWrFDL/9e9e3emTZvGwoULef/992scX2X3ODMzE4lEwsSJEzE3NycxMZHo6GjS09P55ptvVG1r+r27e/cub7/9Nl5eXnz77bdoaWnx22+/MXjwYHbs2IG+ftWzUIS6S0lKxMauHoZG6rmyKoJt95ISkVhq5uBSKBSkJt+heUhbjWPOrp7EXT1PSXERBoZGyOUy9PQ0f256D36WyXduVblMNeVuAvdTk4js1KvO1yYIFRKzc3E0N8ZYX31mr6e1heq4tYmRRjuFQrm8NMLDWeOYp40FF+9lUCSTY6Sny6V7mQCYGxnw5e4TXE7NQltLC39Ha95v5Yet6cP+L93LpKGtJduvJbLxYjz5JTIkRgb08POgU6Oql1sJQnWy0xMws6yHnoH667mVvZfquLFZzTkVKxQXZANgYGReQ00oKVQGPQwMNeue3BWNXFaMlpY2tk4+NAl/FysHr1qPQxBqIyE5FUdba4wN1WdsVgTbEpJTsZZYaLRTKBTcSUkjslVTjWOeLs5cuB5PUXEJRoYGyORy9PU0P0brP/jbcisppVb57ARBECrUKTA3depURo0axaRJkwBwdnYmMjKSwYMH4+ysfLPq4+ODvr6+xrJGQC2IVV5eTlhYGBcuXGDjxo2MGzdOtVxVW1u7xuWmFy9eJDw8XC1fWqdOnVT/7emp/DDp5eVV7SYPCQkJrF69mrFjxzJ8+PBK+woJCSEkRLm8RaFQ0KxZM4qLi1mxYsVTB+bKy8uRy+UUFRWxc+dOdu/eTefOndHW1uaNN95Q1VMoFLRo0YK0tDTWrl2rEZhr27Yt//rXv6o8j4uLC1ZWVqSkpGjc2169ehETE8Mnn3yCjo5y2nVMTAwdOnRQy1H3pCqWIKenV57IPTAwEHNzc7S0tNTG5u6u/BaqcePGqucrJiaGa9eusWnTJtXPuHXr1ty+fZu5c+cyc+ZMVfucnBzWr1+Po6Myf4lCoeD777+nS5cufPXVV6p6tra2DBs2jBEjRuDl9fANYseOHRk9ejSgfAZiY2PZuXOnKjD3ww8/4OrqytKlS1X37dGln8ePH2ffvn0sXLhQVR4WFkZ6ejrR0dG1CsxduHABiUTCv//9b1VZRESE6r/v3LnDihUr+OKLL+jXrx+gXBJdXFzMnDlz6NevH9ra2rz11lvs2bOHqKgooqOj+eGHHxg6dChBQUGqvuRyOefPn8fFxYUffvgBe3t7unbtWu34Hr/HoFzS/Oh4g4KCMDIyIioqiilTpmBkZFSr37vZs2djYWHB4sWLMTAwUPXVrl071q1b99xyJb6q8nKyMTOXaJSbWyhzbuXmZFXarrAgD7lchmmlbS0ftM3G1tAIW3snbl67QHbmfSytH860SLx5VVlPWvk5AM79dRCAwBav1ep6BKEy0qISJEYGGuUSI+UHuOzCkkrb5ZXIkJWVY1FJW8sHZdlFxRjpmXIvrwCABccv4WFtwZjWgWQUFrP+fBxf7TnJd13DMdDVIb9ERl6JjOvp2VxKzaR3Ey9sjA2JjU9iyV9X0NHWon1Dl2d16cIrpLggC0MTzby8Rg/Kiguqfq2tzLVTG9DS0sbZs+ql3qDcEOLWxd3YOvlgZPowX6O2jg7OniE4ugdhYGhOblYS10//wb71k2jX9xss7ar/Al0Q6iI7Nw9Lc82JHZbmyny32Tl5GscA8goKkcnlSCpra2Gq6tvI0AAnOxsu3rhFepYUWyuJqt61W8pVHVlVnEMQBKEqdVrK2rBhQ7Zu3cq8efN49913MTMzY/ny5bz55ptcvXq1xvbx8fGMHDmS0NBQGjdujK+vLwkJCRrLKGvDx8eHAwcOEB0dzYULF554Wenx48dRKBT07t27yjolJSXMmjWLDh064O/vj6+vLz///DPp6ekUFBQ80XkrjB07Fl9fX5o3b86kSZPo2LGjKvCZk5PDl19+SWRkJL6+vqpNExISEjT6eTRYU1e9e/cmPT2dQ4cOAXDt2jUuX75c7T2pC4VCASineD+tI0eO0LBhQ9zc3JDL5ar/hYaGqi1PBuXz+mjAKCEhgeTkZDp37qzWtmXLlmhra3Pp0iW19o8G2bS0tPDw8CA1Vbk0o6ioiPPnz9OjRw9VUK6ysUokEoKDgzXGevXqVcrKal7K4ePjg1QqJSoqiiNHjlBUpL7M6ujRo4AyiPj4OdLT07l3756q7pdffklRURFvv/02Li4uGkHlWbNmcf78eTZv3sy7775LVFSU2hLhSZMmqZaWV3WPQfnzXrJkCV26dCEgIABfX18mTJiAXC7n7t27QO1+744cOULbtm3R0dFRXZe5uTk+Pj4aPyvh6clkpejoauYH1HnwjbDssaXIj7YD0K0kt6Dug/5kpcpgR/PQdmhr67B60U/cjr9GZvo9Yndu4PL5k2r1HqdQKDh/+gj1nN2wc9ScsSQItVUqL0O3klnlejrKstIqXpdlD8or6j1Kt6KtXPk+pESurCsxMuDfbZsT7OZIVx93hgX7kZZXyJGElAf1lMtW80tkDA/xp6uPO8Fujvy7bXOcLEzYeDH+aS5VeIWVyWXo6Gi+Jms/eE2Wyyp/ra3M7WsHuXV5L97NumNmWa/KegqFghM7f6G0tICgCPUcXjb1GhPW9VMa+LbHyaMljVv0ot3byvQaF46sqPVYBKE2ZDK5Kl/to/Qe5Hwrlckqb/fgNVmv0rbKspJSZdu2wc3Q0dHm56XruJ5wh9SMLDbuOcTJC1fV6gmCINRWnWbMAejr69OmTRvVbJ9Dhw4xfPhw5syZw+zZs6tsl5+fz5AhQ7CysiIqKop69ephYGDApEmTKCmp/RuECh999BHa2tps3LiR2bNnY2VlxYABAxg5cmSdAkBSqRRdXV3VjrKV+eGHH1i3bh0jR47Ez88PMzMz9u7dy6+//kpJSQkmJiZVtq3JhAkTCA4OxsjICCcnJ4yMHi5xiYqK4uzZs4wcORJPT09MTU1ZvXo127dv1+inuvHXxNnZmbCwMNavX09ERAQxMTE4OzsTHBz8xH0+Ki0tDaDSpc91lZ2dzZUrV/D19dU49niAzMZGfZlGdrZyKcbIkSMr7fvRIBaAmZmZ2r/19PRUS0hzc3MpLy+vMudixfmkUmmlYwXlDMKaNjQJCQnh+++/Z9myZbz//vsYGBjQqVMn/vOf/yCRSMjOzkahUFT5s7p37x5OTsqp+9bW1oSEhLBt2zb69u2rthRUJpOxfPlyxowZg5GRERMnTkQqlTJ69GiWLl2Kv78/Z86c0Vja/Pg9Bli6dCnfffcdQ4cOpVWrVpibm3Px4kWmTZum+l2vze9ddnY2S5cuVS1rf5TYYOLZ09PTp0yu+Uay7EHOK70qlg5XLE2VV/JGV/6gPz195YwiRydX+g0ewx9r/stvPym/gDAzl9C192D+WDMfA0PNJYQAt25cIleaRXhk9TM4BaEm+ro6yCv5Ik/2IAecfhVftOg9KJdVkiuuIn+cvq72gz6U/x/s6qj2fiTY1ZG5Ry9wIz2btl71VX3qamvRyuXh3wItLS1C3Oqx/nwcGQVF2FSytFYQqqOjq0dZmeZrcvmD12RdPc2Zn5VJT77CX3vm4ODaFP/Q6mepn9k/j3uJZ2jVaQwS25o3MjGTOOLk0ZKkm8dRlJejVUnAXBCehJ6eLnK5Zr5O2YMvTfSreA9ZEXyTVdpWWWbwYKmqaz17Pv6/t5i3biuTZy0EQGJuxqAer7Ng/VaMqtn0RxAEoTJ1Dsw9rnXr1jRq1Ij4+Oq/2T137hypqan897//pVGjh4m78/Lynmi3VX19fUaPHs3o0aO5ffs2MTExREdH4+zsTI8ePWrdj0QiQS6Xk5mZWWWQYMeOHfTr149hw4apyg4cOFDnMVemfv36lS61LSkpITY2lqioKLVZSqtWraq0n6edjdanTx8mTJhAWloaW7ZsYeDAgc9khhugmon3LHbDtbCwwNvbW20palUeH79EIgFgypQpBARobmNeXZDtcWZmZmhra3P//v1qx2plZcW8efMqPW5lZVVp+eO6d+9O9+7dycrKYu/evXzzzTfo6ury9ddfY2FhgZaWFqtWrao0WFWxHBjg4MGDbNu2DR8fH2bPns3rr7+ueuazs7MpLCxUBZm1tLT4+uuvyc3N5YMPPmDQoEHcu3ePvn37qvVf2TOyY8cO2rZtq5az8PHXh9r83llYWNCmTRv69++vcexpguFC5cwsLCtdSlqxhLViSevjjE3M0NXVIz9XWknb7AdtHy6p8g8KoXFAC1KTEykvL6de/QYkxClnQNrYOWr0AXDur0NoaWnRpEXtdwkWhMpIjAzILizWKJcWKcssjSsPWJgZ6KGno01OkeYXidkPyiwfLIetWCprYaj+wUxbWwtTfT0KHsykqOjTRF8PbW3111LzB20LSmQiMCfUmaGJFUX5mRrlRQ9yxRma1Pz+Q5qewOHNX2Nh7UJY10/R1q56h8nLx9dy88IOAsIG4tY4otbjNDa1obxMjlxWrJEPTxCelKW5GVk5uRrl2bnKL9ctLcw0jgGYmRijp6uLNDdfs21OvqrvCsFNfGnu24jElFQU5QrcnR25HK9c1eRo9+QTJgRBeDXV6eupjAzNXZyKi4u5d++e2swZPT09jVlwxcXFqmMVzpw5Q3Jyslo9PT09jd0ba+Lq6sq4ceOQSCSqnT8rzlPTbLzg4GC0tLSIiYmpsk5JSYnauMvKyti2bVudxlhXpaWllJeXq503Pz+fffv2PXGflf1cKrRr1w5zc3PGjx9PTk4OvXo9mwTrV69eZfXq1YSHh+Pm5vbU/YWGhnL37l3s7Ozw9/fX+F91GjRogIODA3fv3q20rb29fa3HYWxsTGBgIJs2bapySWpoaChZWVno6elVer66bl5gZWVFnz59CAsLUz3nFbkPpVJppeeo2DxFKpXy2Wef0bVrV5YvX46hoSGTJ09W9W1tbY1EImHHjh2qMl1dXX755RdcXV2ZOXMmH3zwQa1mZhYXF2sECR/fibY2v3chISHExcXh4+OjcV01begi1J2jkysZ91MoLipUK7+bGKc87uxWaTstLS0cnFxIunNT49jdxDisbOw1ZsLp6uri7OqJi3tDdHV1uXlNucuwh7dmwFwuk3Hp3AkaePlWGRwUhNpytTTnXm4hhY8tM4rLkALgZll5XlUtLS3qS8yIz9TczS8uQ4qdqRFGD5Z9N3iwkcTjAUB5WTl5JTLMDQ1UfbpampNbXKqxa6v0QVtzQzHrQqg7iY0bedkpyErUX88zU28AYFnDjLY86T0O/jEdA2MLWnefhK6eYZV1487/yaXja2jYtBuNW9TtvWN+Tho6uvro6ovgs/DsuDnZcy89k8Ji9dfguNvKXYXdnSqfEKKlpYVLPXvi76ZoHIu7nYS9tRVGhupf3ujq6uDp4oSXmzO6ujpcvK58f+7vJd6nCoJQN3WaMdetWzciIyMJDw/Hzs6OtLQ0VqxYQXZ2NoMGDVLVa9CgAcePH+fIkSOYm5vj7OxMYGAgxsbGfPHFFwwbNoy0tDSio6M1giEeHh7I5XKWLl1K06ZNMTU1rfRD+IgRI/D19cXHxwcjIyP2799PTk6Oakmfm5sbOjo6xMTEoKuri46OTqWBG3d3d95++21mzpxJTk4OISEhFBcXExsby+jRo7G3tyc0NJR169bh6emJpaUlq1atqnPwsK7MzMzw9/dn/vz5WFlZoaury7x58zA1NSUrq25Jeyt4eHgQExPD1q1bcXV1xdLSUrWpgp6eHj169FBtVPB43rDayMjI4Ny5c5SXl5OVlcXx48dZv349Dg4OfP3110805sf16NGDNWvW8O677zJkyBDc3NzIy8vjypUryGQytVlaj9PS0iIqKooJEyZQWFhIREQERkZGpKSkcODAAcaOHas2w6wm48ePZ/DgwQwePJj+/ftjYWHB5cuXsbS0pHfv3oSFhREZGcnQoUMZOnQo3t7eFBUVcfPmTW7fvl2rWX+zZs1CKpXSsmVLrK2tuXHjBocOHWLw4MGA8vkdMGAAn376Ke+//z5NmjRBJpORmJjIiRMnmDt3LgBffPEFoJwtaGpqyjfffMPgwYPZsGEDvXr1QkdHh/HjxzN58mQ+/PBDevfujZ6eHn/99RfXrl3D3t6eNWvW0LNnzxqfjdDQUJYtW8aKFStwc3Nj8+bN3L59W61ObX7vPv74Y3r37s37779P3759sbGxISMjg5MnT9K8efMaN6YQ6savaQiH9m7hryN7aN3+TUAZFDt9fD/13bxUO7JKs9IpLS3FzsFJ1dY3MJidm1aSdPumahfX9LQUbt24pOqrKhn373Hi8G4a+TXD1l4zf9H1y2coLiogsEXrZ3WpwiuslYsD264ksO9mEl19lK/3srIyDsQn42kjUe3ImlFQRIm8DCeLh0nAW7rYs+bsDeIzpHjYSABIyc3nSmqWqi8AH3srzA31OZyQQnc/D/Qf5DWKjU+iXKHA3+HhFxwhbg7czJBy4FYy7bzqA8o8eIcTUnCyMMHSuOqAiCBUpb5XCNfPbCL+0m4aNesOKPPOJVzZi7VDQ9WOrAW56ZTJSzC3epi7s6ggm4MbpwFatOk5FUNjzd0rK9y5cZizsQtwbfQaga+9V2W94sIcjX6k6QmkJPyFo2vQM1uhIQgAwQG+bNl/lL3HTtMtMgxQLkWNPXkWL1dn1Y6sGdlSSkplONk/TLXTKqAxq7bu4eadZNUurin3M7h8M4FukaHVnvdeeia7j50iyKch9exqv+uxIAgC1DEwN2rUKPbv38+3335LVlYWlpaWeHt7s2TJErUcV+PGjePzzz9n9OjRFBQU8M0339CrVy9mzpzJ999/z4gRI3Bzc+OLL75gwYIFaueIjIykf//+zJs3j8zMTFq0aMHy5cs1xhIUFMT27dtZvHgxZWVluLu7M2PGDEJDlS+aVlZWTJkyhQULFrB582bkcjnXr1+v9LqmTJmCs7Mz69atY+nSpUgkElq0aKFaLjd58mSmTp3K9OnTMTIyomfPnnTo0EG1ScPz8uOPPzJlyhSioqKQSCQMHDiQwsJCFi1a9ET99e7dmwsXLjB9+nSkUik9e/bk22+/VR3v0KEDCxcu5K233nqi/nfu3MnOnTvR1dXFzMwMLy8vxo4dS58+fTA2fjZLFPT19Vm2bBnR0dH89ttvpKenI5FI8PHxqXTJ4+M6d+6Mubk5v/32m2oWl5OTE61bt640X1p1mjdvzrJly/jll1+YOHEi2traeHl58cknn6jqzJo1i3nz5rF69WqSk5NV96W2MxL9/f1ZunQp27dvJz8/HwcHB95//30++ugjVZ1Jkybh7u7O2rVrmTNnDiYmJri7u/P6668DsG3bNv7880/mz5+PhYXyzUhwcDADBw7kq6++Ijg4mHr16tG3b18sLS2ZP38+48aNUwWzZ82aRWBgIH369GHo0KGsXLlStSy4MiNHjiQ7O5tZs2YByp1WJ02axIcffqhWr6bfO1dXV9atW8cvv/zCF198QWFhIba2trRo0QJvb+9a3T+h9lzcG+IfFMKOzSvJz5NiZevA2RMHyM5Kp9eAh8/b70ujSbh5hW/mrFeVhbz2OqeO7mXJ3K95rX13tHV0OLxvC6ZmFoS3Vc9L+PP0T/BrGoyllS1ZGWmcOLwLY2NTerwzjMqc++sgurp6+AY+m5yXwqvNy1ZCsKsDa85eJ6eoBHszYw7dSiajoIhhIQ+/vJt75AJX07JYPbCzqqyjtyv7bybx/f7TdPVxR0dbi21XErEw1OcNHzdVPT0dHQYENeLXoxf4YtcJWjeoR0ZBMTuvJdLIzpKWj+STa+/lwv6bSSw5eZl7uQXYmBhy6FYKGQXF/Cuy2d9yT4SXj7WjN/W9wrh4ZDklhVJMJQ4kXo2lMDedFu0fbvx0cudM7idfpt8nG1VlB/+YRn5OKo2a9yQ9+QrpyVdUxwxNLHFwaQIoZ9+d2DkTA0Nz7OsHcPuaeooXm3qNMLVQPuvHtv+Ijo4+NvUaYWCk3JX11qVd6OoaEBD2f8/zVgivIC83Z0ICfVm1bS85eQXY21hx8NR50rNz+LBfd1W92Ss3ciU+kd9//kJV1imsJfuOn+Hb+St5MzIMHR1ttsYew8LMhK4R6oG5sd/OJriJD7ZWEtIys9l99BSmxkZ80Ef9fY8gCEJtaCkqtswUXnkzZ85k1apVHDp0qM7LLAXhf8WBy4U1V3pFyWSl7N6ymnN/HaKosAAHJxc6dH2bhj5NVXXm/TxFIzAHIM3OYFvMEm5evUC5opwGXr507T0Ya1v1GZZrFv1M4q1r5OfmYGJqRuOAFrR/ox+mZpqzMoqLCvl64lC8fZsy4IN/PZ+LfkkF/FH17OFXXam8jN/Px3EkIYWCUhn1JWb0DfSiSb2Hsyam7TqhEZgDyCwoYvmpa1y4l0G5QoGPvRXvtmiMg5lm3sujCSlsvnyLlNwCjPV0CXZ1pF/ThqolrxVyi0tYeeY6Z5LuUyIvw9XSnN5NPNXGI1TuR6eZL3oI/1hl8lIuHl3FnesHKS3Ox8LGFb+Q/ji6PXw9379ukkZgbu0vPavs087Jl8g+XwKQcGUfJ3dFV1m3ZcfRuPu0BeDGua3cuXaQfGkqstJCDIwssHfxx6dVP8wkdV+h8ar5t9+Tp7F5VZXKZKzdvo9Dpy9SUFiESz17+nVuS2AjT1Wdz2cv1gjMAWRKc1j6x04uXI+nXFGOj4cbg3t2xsFGPZ3GzOXruXbrDjn5+ZiZGNPctxF9O0diYSryID8Js+avv+ghPJF/8ueKNr4id+f/EhGYE7h16xYJCQlERUXRv39/xo4d+6KHJAjPzT/5D6ggPCsiMCe8CkRgTngViMCc8CoQgblnTwTm/rc89a6sgiaFQlHlhgAA2traaP+DtoWfOnUq586do3Xr1gwfPlzjeGVbjlfQ0tJCR6fqnbqE6ol7KwiCIAiCIAiCIAivLhGYew42btzIxIkTqzw+atQoRo8e/TeOqHqV5fCrkJSURLt27ao83rJly2rbC1UT91YQBEEQBEEQBEEQXm0iMPccREZGsn79+iqP29nZ/Y2jeTp2dnbVXktFon6h7sS9FQRBEARBEARBEIRXmwjMPQeWlpZYWlq+6GE8E/r6+vj7+9dcUagzcW8FQRAEQRAEQRAE4dX2z0l0JgiCIAiCIAiCIAiCIAivEBGYEwRBEARBEARBEARBEIQXQCxlFQRBEISXzI9OM1/0EAThuRufPOZFD0EQnj+/7i96BIIgCMJzJmbMCYIgCIIgCIIgCIIgCMILIAJzgiAIgiAIgiAIgiAIgvACiMCcIAiCIAiCIAiCIAiCILwAIjAnCIIgCIIgCIIgCIIgCC+A2PxBeO7efPNNrl+/zsqVK2nevPmLHs4/Vtu2bUlOTgZAR0cHR0dHwsPDGTNmDFZWVk/df1RUFJcuXWLr1q0AXL16lT179jB06FCMjIyeun/h5VJUWMD2P5Zz5fwJSktLqe/qSZdeg3ByaVCr9vfvJbEtZgmJt66ho6NDI79mdOk1CFMzC7V6+3fEcDcxjjsJNyjIz6Vdlz60f6OfRn/paSmcOLSLu4k3SLmbgFwu49Npc7G0tnsm1yu8OsrkMi4dX83tqwcoLclHYuOKX+gAHFya1Ni2MD+TcwcWk3bnHApFOXbO/gS2eQ9TCwe1ejfPb+d+0iUyU29QmJeBu08kLTt+rNFfUX4Wcee2kZl6g6y0m8hlxUS+NR27+n7P7HoFoaBUxqoz1/nrTiolZeV4Wlvwf80a4W5tUXNjIEmaz/LTV7l+PxtdbW2aOtsysFkjzA0N1OopFAq2XElg9/U75BSX4GhuQnffBoS611OrtzfuLkcSUkjOyaewVIbEyBAfByt6B3hhayrejwi1J5PL+X37fg6ePk9BYTEujva83aUtAd4eNbbNlOaybNMOzl+PR6FQ4OvpzqDunbC30XzPve/EGbbsP8L9TCnWEnM6t25F59eCq+1/+q/LuHgjnk7hLXn/rTee+BoFQXg1iBlzwnMVFxfH9evXAdiyZcsLHs0/X6dOnVi7di3Lli3jnXfeYdOmTYwcOZLy8vKn7nvEiBHMmDFD9e+rV68ye/ZsioqKnrpv4eWiUChY+uvXnD91mJA2nencYyD5eTnMnzmVjPv3amwvzc5g3i+TycxIpdOb/Wnd7k2uXTrNoujpyOVytbq7tqwm6fZNnOpXH/C7k3Cdo7HbKCkpxs7B6amuT3i1ndw9ixtnNuPi3ZqmbYagpaXNoT+mk558tdp2clkxsesnk550icYt3sI3+G2y02+xf/1kSory1OpeO/0H9+9exMLaBW1tnSr7zMtO4eqpDRTlZyKxcX0m1ycIj1IoFHy/7xRHElLo5O3KgCBvcopLmLb7BPdyC2psn1lQxLRdx0nLK+Ttpg15w8eNs0npfL3nL+Rl6u9N1py9weoz1wmoZ8OgFj5YGxsSffg8RxNS1OrdzsrF1tSIbr4NGNLKl9YN6nE+OZ3P/jxCdmHxM71+4eU2d/UfbD1wjPAgfwb1eB1tbS2+mb+Sa7duV9uuuKSUaXOXcPlmIj3bt6bv65EkJN3j8zlLyCsoVKu7++gpfluzCWd7O97r1YWGbvVZvHE7f+w9VGX/J85fIe723WdyjYIgvBrEjDnhudqyZQva2tq0aNGCHTt2MGnSJPT09F70sCgtLUVXVxdt7X9WbNrGxobAwEAAmjdvTklJCbNmzeLy5cv4+/s/UZ/FxcUYGhri4uLyDEcqvMwunj3G7VvX6f/+ePyDQgDwDwrhxy8+Zs/WNbw9ZGy17Q/s3EhpSQmj/v09EitbAJzdPFkUPZ3Tx/fRKryjqm7FrLeC/Fy+/PeQKvts7N+cqTOWYWBoxKE9m0lJSnz6CxVeOZmpN7hz/TBNWg+mUbPuALg1jmTHijFcOLyUdv2+rbLtzfPbyZPeo8Pb32Pl4AWAo1sQO5aP4fqZTQSE/Z+qbmTv6Rib2aKlpUXMnHeq7NPS3oMew5dhYGTG3bijZGz74RldqSAonbidyo10KWNeCyTY1RGAYFcHxm46yLrzcXzcOrDa9psu3aJYXsbXb4RhY6KczeZpI+HrPX8RG59E+4bK9xZZhcX8eTWBjt4uvNfSF4C2ns5M23WClWeuE+zqiLa2FgBDWvlqnKd5fXs++/MoB28l092v5tlOghB3O4kjZy4y8M2OdIsMA6BNiyZM+H4uK7bs5ssxQ6tsu/PISe6lZ/L12GF4uii/7Ats5Mn47+eyJfYo/d9oD0CpTMbqP/cS5NOQ8e8pZ/O3D2mGQqFgw+6DtA9pjqmx+izPUpmMZZt38mbbMH7fvv95XLogCC+hf1ZUQnipKBQKtm7dSnBwMO+99x5SqZRDh9S/XYqPj2fUqFG0bNmSJk2a8Oabb6qWWgKUl5ezePFiOnfujJ+fH2FhYXz88cfk5SlnJ0RFRdG1a1e1PnNzc/H29mbDhg2qsrZt2zJt2jTmz59PZGQkAQEBSKVS4uPjGTt2LG3atKFJkyZ06dKFRYsWacxQKy0t5eeff6Zdu3b4+fnx2muvERUVBcC+ffvw9vYmMTFRrU1OTg4BAQGsXLnyie+hn59yOVNSUhL3799n4sSJtGvXjoCAADp27MhPP/1EaWmpWhtvb2/mzZvHDz/8QFhYGCEhIRr3asOGDUycOBGAkJAQvL29adu2LVlZWfj5+fH7779rjKVPnz6MGTOmVuM+ffo0AwYMoFmzZjRt2pRu3bqxceNGtTqxsbH06dOHgIAAgoODmTp1KoWFym8p5XI5vXr1om/fvpSVlanazJs3Dz8/P65du1arcQhP5tLZY5iaWeDX9OEyDVMzCwKahXLl4inkMlm17S+ePUYj/2aqoByAV6Mm2NjV4+KZY2p1a7sU1djEDANDscRJeDpJccfQ0tLGw6+DqkxHV58Gvu3JuHedwryMKtvejTuKlb2nKigHYG7ljL1LAHfjjqjVNTG3Q0tLq8bx6OkbYWBk9gRXIgi1c+JOKhaG+rRyebjc2tzQgBBXR04n3Uf2yN/Yqto3c7ZTBeUA/B1tcDQ34cTtVFXZ6btpyMsVdGj4cOanlpYWHRq6kFVYzI2M7GrPU7GEtbBUXm09Qahw4vwVtLW1aRfSTFWmr6dHZKsgbiTeJVOaU2Xb4+ev4OHipArKATjZ2+Ln5c7xc5dVZZfiEsgvKKRjWAu19p3CW1JcUsqZKzc0+t68/wgKhYI3HwQLBUEQakPMmBOemzNnzpCcnMzIkSMJDw9HIpGwdetW2rZtC0BiYiL9+vXD0dGRzz77DFtbW27cuEFKysMlD9OnT2ft2rUMGjSIsLAwCgoKiI2NpbCwEDOzun2Y2bVrF66urnz22Wdoa2tjbGzM9evXcXd3p1u3bpiYmHD16lWio6MpLCxk1KhRqrajR4/m+PHjDB8+nMDAQLKysti1axcAbdq0wd7enpiYGMaPH69qUxFg7Nat2xPfw6SkJADs7OzIzs5GIpEwceJEzM3NSUxMJDo6mvT0dL755hu1dsuWLaNJkyZ89dVXGksHASIiIvjoo4/49ddfWbBgAWZmZujr62NlZUWHDh2IiYmhb9++qvpxcXFcuHCBjz/WzJH0uPz8fIYPH06zZs346aef0NfX5+bNm+Tm5qrq7Nixg7Fjx9KrVy9Gjx5Neno6P/74I7m5ufz888/o6uryww8/0LNnT3777TdGjhzJtWvXmDVrFh9//DGNGjV60lsq1ELK3QTq1W+gEVio7+rJycO7Sb+fgqNT5cvucqSZFOTn4uSiOeOhvpsn1y+feS5jFoTayE5PwMyyHnoGxmrlVvZequPGZjYa7RQKBTkZt3H3badxzMrei9Tb55CVFqGnL4LHwj9LQlYublbmGq/nHjYW7I27y73cAlwszSttm1VYTG5xaaW56DxsLDiXnK52HgNdHZwsTNTqNbBRtk3MyqWRnXrurrySUhQKBen5RWy4GA+An6N13S9SeCUlJKfiaGuNsaGhWnlFsC0hORVrieazq1AouJOSRmSrphrHPF2cuXA9nqLiEowMDUhMVgafPVzUU2g0cK6HlpYWicmpvNb8YX7SjGwpf+w5zEdvd0f/H7BCSBCE/x0iMCc8N1u3bsXAwICOHTuip6dHp06d2Lx5MwUFBZiYmBAdHY2enh6rV6/G1NQUgNDQUFX7hIQEVq9ezdixYxk+fLiqvFOnTk80HplMxvz58zE2fviBLCQkRDWjTKFQ0KxZM4qLi1mxYoUqMHfkyBFiY2P58ccf1WbnVfy3jo4OvXr1IiYmhk8++QQdHWU+oZiYGDp06IC5eeVveCujUCiQy+XI5XLOnz/Pb7/9Rv369fH19cXQ0JB///vfqrpBQUEYGRkRFRXFlClT1DZwsLCwYPbs2VXO2LCyslItbfX19VXbXKJv374MHjyY+Ph4PDw8VNfi6OhIWFjN3/4lJCSQl5fHuHHj8Pb2BlDd44pr/P777+nSpQtfffWVqtzW1pZhw4YxYsQIvLy88PDwYNy4ccyYMYOQkBCmTp1KQEAAQ4dWvTRBeDbycqW4e/polJuaWyqP52RVGZjLy1HOijC3sNQ4ZmYuobAgH7lMhq54wyq8AMUFWRiaaD6bRg/KiguyKm1XWpxHWZms2rZFBVno6Yv8h8I/i7SohMb2msnsJUbKjRuyi0pw0Xyslcce5HuzNDLQOCYxNCC/RIasrAw9HR2kRSVYGOprvO+wNDJ80FeJRh8jY/Yje5CnztRAj0EtGuPvqBkYF4TKZOfmYWluqlFuaa784j47J0/jGEBeQSEyuRxJZW0tTFV9GxkakJ2bh7a2Nham6gFnXV0dzEyMyc5VP8eyTbtwd3YkLOjJ0s8IgvDqEktZhedCLpezY8cO2rRpo5rZ1q1bN4qKiti9ezcAx48fp1OnTqqg3OOOHz+OQqGgd+/ez2RMrVq1UgvKAaocbh06dMDf3x9fX19+/vln0tPTKShQJkU+duwYRkZGvPFG1Tsq9e7dm/T0dNVS3WvXrnH58uU6j33VqlX4+vrSpEkT3n33Xezt7YmOjsbQ0BCFQsGSJUvo0qULAQEB+Pr6MmHCBORyOXfvqieYfe2112q1jKoywcHB1K9fn/Xr1wPKn+XmzZvp2bNnrXLyubi4YGpqyueff86ff/5JVpb6B92EhASSk5Pp3LmzKggpl8tp2bIl2traXLp0SVV30KBBNG3alEGDBpGUlMR33333j8sL+DKSlZagq6sZOKvIDymrZimrTKZcWq1TSXtdPX21OoLwdyuTy9DR0Xw2tR88r3KZZvBA2e7Bc11N27Iq2grCi1RaVoZeJX839R98iVhaVvXmUhXHKm+vrVantKwMPZ3q6mkumf132+b8u21z/q9ZI6xNDCmRV7+sVhAeJZPJ0dXVnGOip/vg2a7ivYrswUoSvUrbKstKSmUP+pCjq1P5Bj56urqqeqBc9nriwhUG9Xi9DlchCIKgJGbMCc/FkSNHyMrKIjIyUrWEsWHDhtja2rJ161Z69OiBVCrFzq7q/FJSqRRdXV2srZ/NsobK+vnhhx9Yt24dI0eOxM/PDzMzM/bu3cuvv/5KSUkJJiYmSKVSbG1tqw10OTs7ExYWxvr164mIiCAmJgZnZ2eCg6vfSv1xnTt35v3330dPTw8HBwckEonq2NKlS/nuu+8YOnQorVq1wtzcnIsXLzJt2jRKStQ/ED7NPdPS0qJPnz4sW7aM8ePHExsbS1ZWFr169apVewsLCxYvXsysWbP49NNPKSsro3nz5kyaNAlvb2+ys5UzqkaOHFlp+3v3Hu76qaWlxRtvvMHJkydp27Yt9evXf+LrEjTJ5XKKCtS/7TUxs0BP3wC5XPMNbUVArroNXPQeBN/KKmkvfxCQq6gjCH83HV09yso0n83yB8+rrp7mzCBluwfPdTVtdapoKwh/B3lZOfml6s+nuYE++jo6yCrZ2b0iUKZfSTCtQsWxytuXq9XR19FRzX6rvJ5mcMPXQfleJdDJlmb17fh0y2EMdXXp1EjsUCzUTE9Pt9J0LbIHAd6qlpJWBN9klbZVlhno6z3oQxd5FXkYZXK5ql5ZWRmLN26ndfMmannrBEEQaksE5oTnYsuWLQBMnDhRtclAhezsbDIzM5FIJNy/f7/KPiQSCXK5nMzMzCoDTfr6+hqzd3JyKk/2WllgbceOHfTr149hw4apyg4cOKAxjvT0dBQKRbXBuT59+jBhwgTS0tLYsmULAwcOrPOsNSsrqyp3X92xYwdt27ZVy2MXHx9fad0nnS1XoVevXsyaNYvY2FjWr19Pq1at6hQUCwgIYMGCBRQXF3PixAm+++47Ro4cyZ49e1TBxilTphAQEKDR9tFgbVpaGj///DM+Pj7s3LmTY8eOqS2LFZ7OnVvXmD/zc7WyT6fNxcxcQm6OZqLu/FxlmZmF5rKoCmYPlrBW1j4vV4qxialYxiq8MIYmVhTlZ2qUFxVkq45XRt/QDB0dPYoLNJ/rirZGVbQVhL/DjfRspu8+qVY2q2cEEiMD1ZLUR0mLlF/oVbZMtYKl8YNlqEWas0GlxSWYGuih9yDgJjEy4HJalsZ7peyiB8thjasPXDuYmeBmZc7hhBQRmBNqxdLcjKycXI3yiuWllhaV56I2MzFGT1cXaW6+ZtucfFXfFf9fXl5OTn6B2nJWubyMvIJCVb0Dp85zLz2DYX26kp4lVeuzqKSU9Cwp5qbGGOiLLyYFQaicCMwJz1xRURF79+6lffv2vPvuu2rHMjIyGDduHH/++SchISHs3LmTCRMmVLqcNTg4GC0tLWJiYtQCZ49ycHAgNTVVlbcOlLP1aqukpERt9k9ZWRnbtm1TqxMaGsr8+fPZvn07Xbp0qbKvdu3aYW5uzvjx48nJyan1DLPaKi4u1pipVBEAfRIVfT2+qyso871FRESwYMECLl68qLG5RG0ZGhrSpk0b7ty5w1dffUVJSQkNGjTAwcGBu3fvMmDAgGrbf/bZZ1hYWLBy5Ur+9a9/8Z///IctW7ZUufxZqBsHZzeGjJ6sVmZqLsHR2Y3Em1c1PmDdSYxDT98AW7t6VfZpIbHGxNSc5DuaQeO7iTdxdHJ7ZuMXhLqS2Lhx/+5FZCWFahtAZKYqd9aztHWvtJ2WlhYWNq5kpd3UOJaZegNTCwex8YPwQrlYmvOf9uo7R1oY6uNmac61+5oBs5sZOejr6uBobvJ4VypWxoaYG+qTkKn5hWd8Rg6ulg8DH25W5uy/mURyTgHOElO1egCuVWww8ajSsjLk1SytFYRHuTnZc/lmAoXFxWobQMTdVm6c5u7kUGk7Lf69TIYAAQAASURBVC0tXOrZE383ReNY3O0k7K2tMDJUBpJd69kDEH8nmSCfhqp68XeTUSgUuD04R0Z2DnJ5GZNnLdTo8+Bf5zj41zkmDHmblv6Nn/BqBUF42YnAnPDM7d27l8LCQgYOHEirVq00ji9YsICtW7fy3XffERsbS//+/Rk6dCi2trbEx8dTVFTEBx98gLu7O2+//TYzZ84kJyeHkJAQiouLiY2NZfTo0djb29OxY0dmzZrFf/7zH/r27UtcXJwqN1pthIaGsm7dOjw9PbG0tGTVqlUagarQ0FDatGnDf/7zH+7cuUOTJk2QSqXs3LmTX375RVVPT0+PHj16sHDhQsLDw3F0dHzie1jVWJctW8aKFStwc3Nj8+bN3L59+4n7q9jYYeXKlbRv3x5DQ0PVZg2g3ARi2LBhmJub12nDjYpZdu3bt6devXpkZGSwYsUKgoKCMDBQvtGJiopiwoQJFBYWEhERgZGRESkpKRw4cICxY8fi7u7O6tWrOXr0KCtWrMDY2Jhp06bRtWtXvvzyS7799tsnvm7hIWNjU7waNdEo928awqWzx7l09jj+QcoZigX5uVw8c4zG/s3UZrxlpiuXHlvbPnze/ZoGc+Z4LNLsDCSWykTeN69dION+CuFtq87VKAjPW32vEK6f2UT8pd00atYdUC67TriyF2uHhqodWQty0ymTl2Bu5axq6+wZwoUjy8lKjcPKQbmLa252MvfvXqRRsx5/+7UIwqNMDfQq3TihlasDJ+6kcuJOKsGuytfp3OJSjt++RzNnW9WMN4DUPGVuXQezh8G6li72HIhPJrOgCGsTZfD50r0M7uUW0Lmxm6peM2c7lp+6yu4bt3mvpS+g3Oxpz407WBkb4G2rnE1dVl5OkawMUwP1LxpvZki5m51PqPuzfe8kvLyCA3zZsv8oe4+dplukcnMymVxO7MmzeLk6q3ZkzciWUlIqw8neVtW2VUBjVm3dw807yaqlpyn3M7h8M4FukQ83ovNv2ABTE2N2HflLLTC3++gpDPT1aNpY+bcgrKmfKkj3qBmL1tDUpyHtgoPwdHHWOC4IglBBBOaEZ27r1q3Uq1ev0qAcQI8ePfj666/R1tZmzZo1/Pjjj3zxxReUlZXh5uamNjtuypQpODs7s27dOpYuXYpEIqFFixaq2XGenp58++23zJ07lxEjRtCsWTNmzJhB9+7dazXWyZMnM3XqVKZPn46RkRE9e/akQ4cOTJo0Sa1edHQ0s2fPZu3atcyePRtra+tKdyjt0KEDCxcu5K233qrt7aq1kSNHkp2dzaxZswDl7rSTJk3iww8/fKL+fHx8GD16NOvWrWPBggU4Ojqyb98+1fHw8HDVphcVAbXacHFxQVtbm19++UW1ZDk8PJxx48ap6nTu3Blzc3N+++031aw/JycnWrdujY2NDXfu3OH777/n/fffJygoCFDmzZs+fTojR46kffv2tG/f/omuW6iZX9MQ6rttZf2KOdxPTcLE1IzjB3eiUJTT/o231eounDUNgE+n/6oqi+jUi4tnjrJg5ueERnShtKSYg3s24eDkSrPgtmrtz548QHZmOrJS5VKpxJtX2bddGVxv2vI1LK2VS5uLCgs4dmA7ALdvXQfg2IHtGBqZYGhkQmhE5+dwJ4SXjbWjN/W9wrh4ZDklhVJMJQ4kXo2lMDedFu1Hqeqd3DmT+8mX6ffJRlWZZ5PO3Lq8m0ObvsK7WQ+0tLW5cXYLhsYSGga9qXae5Ft/kZOeCEB5uRxpeiJXTqwDoJ5HCyQ2bqq6FeU5WXcAuH0tloyUqwD4tOrzzO+B8Gpp5eKAp42E345eJDmnAHMDPXbduEO5QkHvJl5qdb/a/RcA0b0iVGU9/Dw4fjuV6btP8nojV4rlZWy9nICLpRkRHg9zaVmbGPF6Ize2XkmgrFxBA2sLTt1N49r9bEaFN0FbWzlbr1hexqgN+wlxc8TZwhQDXR3uSvOIjU/GWF+XXv6ez/+mCC8FLzdnQgJ9WbVtLzl5BdjbWHHw1HnSs3P4sN/DzwGzV27kSnwiv//8haqsU1hL9h0/w7fzV/JmZBg6OtpsjT2GhZkJXSMeBub09fTo1zmSheu38dOS32nSyIOrt+5w8NR53u7SDjMT5cxrJ3tbtcDfo+ysJGKmnCAINdJSKBSKFz0IQXhZzJw5k1WrVnHo0CH0/8fzSBw7dozBgwcTExODn5/fix7OM3PgcuGLHsL/hMLCfLZvWMaVCyeRyWQ4u3jQpde7OLuqf2j6fvJHgHpgDiDt3l22xSwhMf4aOjq6NPILokuvQZiZS9Tqzft5Cgk3r1Q6hg/GfE6DhspnLzvzPt9PGVFpPUsrW43zv+p2/yW+d6tKmbyUi0dXcef6QUqL87GwccUvpD+Obk1Vdfavm6QRmAMozMvg3MHFpN4+h0JRjp2zH4FthmAmUZ/lc3LXLBKu7K/0/C07jsbd52GAeu0vPasc6+PnF9SNTx7zoofwPyG/RMbKM9c4dTeN0rJyPKwtGBDkjYeNRK3e6A2xgHpgDiBJmseyU9e4np6NrrYWTZ3sGNisERaP5adTKBRsunyLvTfuIi0qxsHchO6+DQhv8DCAJy8rZ+WZa1xJyyI9vwhZWRkSI0P8HK3p5e+JralYEv443U61+7L5VVQqk7F2+z4Onb5IQWERLvXs6de5LYGNHr5X+Xz2Yo3AHECmNIelf+zkwvV4yhXl+Hi4MbhnZxxsNPOF7jl2mq2xR7mflY2NxIJO4S3p8lpwjTmd+46dSqfwlrz/llgtUBOz5v+bu9n+kz9XtPE1rrmS8I8hAnOC8AzcunWLhIQEoqKi6N+/P2PHjn3RQ3piaWlp3Llzh2+++QYDAwNWr179oof0TP2T/4AKwrMiAnPCq0AE5oRXgQjMCa8CEZh79kRg7n+LeOcuCM/A1KlTOXfuHK1bt2b48OEaxyvbzr2ClpYWOo/keHnRfv/9d+bOnUvjxo358ssvNY6XlZVRXTxfV1e8rAiCIAiCIAiCIAhCbYhP0ILwDCxfvrzKY0lJSbRr167K4y1btqy2/d9t9OjRjB49usrjHTp0IDk5ucrj169ffx7DEgRBEARBEARBEISXjgjMCcJzZmdnV+1OsRUbWfyv+PXXXzV2rhUEQRAEQRAEQRAEoe5EYE4QnjN9fX38/f1f9DCeGW9v7xc9BEEQBEEQBEEQBEF4KWi/6AEIgiAIgiAIgiAIgiAIwqtIBOYEQRAEQRAEQRAEQRAE4QUQgTlBEARBEARBEARBEARBeAFEjjlBEF4pu/8SL3vCy+/ffvte9BAE4bmTV71BuCC8NM4YvfaihyAIz12bFz0AQahGfn4+eXl5ODo6qsrS0tJYs2YNpaWldOrUiYCAgKc6h/iEKgiCIAiCIAiCIAiCIAiPmTJlCklJSfz++++AMlDXr18/UlNT0dbWZtmyZSxYsIBWrVo98TnEUlZBEARBEARBEARBEARBeMzp06eJiIhQ/XvTpk3cv3+fNWvWcPLkSby9vfn111+f6hwiMCcIgiAIgiAIgiAIgiAIj8nOzsbe3l7173379tGsWTMCAwMxNTWlR48eXLt27anOIQJzgiAIgiAIgiAIgiAIgvAYc3NzMjIyACguLub06dOEhYWpjuvo6FBcXPxU5xA55oSn9uabb3L9+nVWrlxJ8+bNX/Rw/rHatm1LcrIyU7WOjg6Ojo6Eh4czZswYrKysnrr/qKgoLl26xNatWwG4evUqe/bsYejQoRgZGT11/4JQWlLA+UNLSY4/QZm8BCt7LwJfG4ylnUet2udm3uXswcVkpFxFW0eXeu7NaNL6PQyNLVR1ivKzOH94KVlpNynKz0JbWwdTiSOeTTrj1jgSLS2t53V5wiuooKiYFVt2cfLCVUplMjxdnBnYvSMNnOvVqn1SajpLN+3gesIddHR0aObTkIHdO2FhaqJWT6FQsHn/EXYd+Qtpbj6Odtb0bNeasCD/KvuWy8v414xfSU5LZ+CbHekWGVZlXUGoTkGpjFVnrvPXnVRKysrxtLbg/5o1wt3aoubGQJI0n+Wnr3L9fja62to0dbZlYLNGmBsaqNVTKBRsuZLA7ut3yCkuwdHchO6+DQh1r6dW5+CtZE7eSSMxK5f8Uhl2pkaEuDnStbE7+ro6z/TahZebXCZj97Y1nDt5kKLCAhycXOjQ7R28GjWpsW2ONJNtMUuIu3oBhaKcBg39eOOtQVjbOKjVO35wB/E3LnE3MY6c7EyCgiPoM3CURn+5OVkcjf2TuwlxJN2Jp7SkmA/GfE6Dhn7P7HoFQXgxmjZtyqpVq2jQoAGHDh2ipKSEdu3aqY4nJiaqzah7EmLGnPBU4uLiuH79OgBbtmx5waP55+vUqRNr165l2bJlvPPOO2zatImRI0dSXl7+1H2PGDGCGTNmqP599epVZs+eTVFR0VP3LQgKhYJDm77kzvVDeDXpQkD4uxQXStm/fjJ52Sk1ti/My2Df+knk59zDP2wA3kHdSUk4zYGNn1NeJlfVKynOpSgvk/peoQS+Nhi/kHcwMrHi5K5oLh5d+TwvUXjFKBQKvp2/kiNnLvJ661YM6NYRaV4+X8xZwr30zBrbZ0pzmDp7EWkZWbzTpR3dIkI5feUGX/62DLm8TK3uqm17WLllNwHeHrzXqws2EgtmLl/PkTMXq+x/x+ETZEpznvo6hVebQqHg+32nOJKQQidvVwYEeZNTXMK03Se4l1tQY/vMgiKm7TpOWl4hbzdtyBs+bpxNSufrPX8hL1N/77Lm7A1Wn7lOQD0bBrXwwdrYkOjD5zma8PBvRIm8jN+OXiS3uJT2DevzbvPGeFhbsP58HN/tO4VCoXjm90B4ea1fPpvD+7bSpHk4b/QejJaWNkvmfk1i/NVq25WUFLNg5ufcunGZiE49af9GP1Lu3mL+L1MpLMhTq3tw9yZu3biEvaML2jpVB44z0lI4sOsPcnOycKjn8kyuTxCEf4YJEyagq6vL6NGj+f333xk8eDBeXl4AlJWVsWPHDlq0aPFU5xAz5oSnsmXLFrS1tWnRogU7duxg0qRJ6OnpvehhUVpaiq6uLtra/6zYs42NDYGBgQA0b96ckpISZs2axeXLl/H3r3rmRHWKi4sxNDTExeXFvQkoKyujvLz8H/GzF56PpLijZKRcI/SNf1HfKxSA+l5hbF86kkvHVxPSeXy17a/+FYNcVkyHd2ZgYm4LgJWDFwc2fE7Clb14+HcCQGLjRmSfL9XaegW+waFNXxF3bhv+If3R+of9Xgv/m46fv8z1hDuMG9yX4Ca+AIQE+jLm61n8vmM/Ywb2rrb9xj2HKCmV8d344dhYSgDwdHHiy9+Wsf/kWTqEKmeQZ0pz2XbgGJ3CW/L+W28A0C44iM9nL2bFlt2EBPpq/K3KyS9g/a4DvNk2jN+373/GVy68Sk7cTuVGupQxrwUS7OoIQLCrA2M3HWTd+Tg+bh1YbftNl25RLC/j6zfCsDFRzr73tJHw9Z6/iI1Pon1D5XuPrMJi/ryaQEdvF95rqfx9auvpzLRdJ1h55jrBro5oa2uhq63N552C8bazVJ2jnVd9bE2NWX8+jkupmfg72jyHOyG8bO4mxnH+9BG69HyX1u3fBCCoVQQzvxrH9o3L+WjC11W2PX5wBxn37zHy029xdvUEoKFPU2Z+NZZDezbTqfsAVd0PPvkCiZUtWlpaTB33f1X26eTiweTvF2NsYsbFM8dYtfDHZ3SlgiC8aK6uruzYsYP4+HhMTU1xdnZWHSsqKmLy5Mk0atToqc4hPt0IT0yhULB161aCg4N57733kEqlHDp0SK1OfHw8o0aNomXLljRp0oQ333xTtdQSoLy8nMWLF9O5c2f8/PwICwvj448/Ji9P+W1VVFQUXbt2VeszNzcXb29vNmzYoCpr27Yt06ZNY/78+URGRhIQEIBUKiU+Pp6xY8fSpk0bmjRpQpcuXVi0aJHGDLXS0lJ+/vln2rVrh5+fH6+99hpRUVGAMrmjt7c3iYmJam1ycnIICAhg5conn8Xj56ec3p6UlMT9+/eZOHEi7dq1IyAggI4dO/LTTz9RWlqq1sbb25t58+bxww8/EBYWRkhIiMa92rBhAxMnTgQgJCQEb29v2rZtS1ZWFn5+fqqtnh/Vp08fxowZU6txDxw4kOHDh7Nx40Y6deqEv78/165dq/U11PRzB+Wz89FHH6kSaw4bNow7d+7U8s4Kz9rduGMYGktw9gxRlRkaW1C/YRgpt/6iTC6rtn1S3DHqubdQBeUAHFyaYGZZj7s3jtZ4fhNzO8rkJZSXy2usKwi1cfz8FSzMTGkV4KMqszA1ITTQj1OXriGTV/+sHT9/hWa+DVVBOYAAbw/q2dlw7PxlVdmpy9eQy8voFNZSVaalpUXHsBZkSnO4kXhXo++VW3ZTz9aG15rVvBxLEKpz4k4qFob6tHJ5uDzP3NCAEFdHTifdR1ZWVk1rZftmznaqoByAv6MNjuYmnLidqio7fTcNebmCDg1dVWVaWlp0aOhCVmExNzKyAdDV0VYLylVoUd8OgOSc/Ce7UOGVc+nsMeXkgLD2qjI9PX2ah7TlTsINpNkZ1bZ1dvVQBeUA7Byc8PD25+LZY2p1La3tapVGw8DQCGMTsye4EkEQ/umysrLQ09OjUaNGakE5AFNTU9q3b09WVtZTnUPMmBOe2JkzZ0hOTmbkyJGEh4cjkUjYunUrbdu2BZRrrfv164ejoyOfffYZtra23Lhxg5SUh0sapk+fztq1axk0aBBhYWEUFBQQGxtLYWEhZmZ1++O2a9cuXF1d+eyzz9DW1sbY2Jjr16/j7u5Ot27dMDEx4erVq0RHR1NYWMioUQ/zQ4wePZrjx48zfPhwAgMDycrKYteuXQC0adMGe3t7YmJiGD/+4aygigBjt27dnvgeJiUlAWBnZ0d2djYSiYSJEydibm5OYmIi0dHRpKen880336i1W7ZsGU2aNOGrr75CXsmHx4iICD766CN+/fVXFixYgJmZGfr6+lhZWdGhQwdiYmLo27evqn5cXBwXLlzg448/rvXYL126RHJyMmPGjMHc3BxHR0cyMzNrdQ01/dzv3r3L22+//f/s3Xd4U1UfwPFvR7r3Li1dtBQ62XSw91RAlqOKIuOVoSAKKoqIgqCobBBENih7KBuK7A1lFUqBlpYuulfaJM37R2ggpC1tmcr5PM/7vHLWPTe5vUl+9wx8fHz4/vvv0dHRYf78+QwYMIAdO3ZgYGBQ1ZdaeEyZabFYO3hpfTm1cfIh9sIucrMSsbLzKLNuQV460sJsbBy116KzdfIh6eYZrXSFvBi5TIpcJiU14SI3L+/D1tkXPX3x3gtPxs2EJDxdnbWuaW93F/YcPcWd1HTca5S9Xkh6Vg45efl41dRei87bzYUzV2I0jmNkaICLo+YooFpuLur8Ol73gxkxcQkcOHmOSSMHijUVhcd2MyMHDxsLrWuplp0le2Nuk5STj5u1RZl1Mwqk5EiLy1yLrpadJecS0zSOY6ivh4ul5vqKXnaqurcycqjjUP56utlS1QM8C0Nxjxcq507CLewcamBkbKKRXhpsS0q4hZW19uhLpVJJcmI8jULbaOW5unsTc+U8RdJCDI3E+syCIKi88847rFixAkvLstdmPXbsGMOGDeP06dPVPoYIzAnVtm3bNgwNDenQoQMSiYSOHTuyZcsW8vPzMTU1ZdasWUgkElavXo2ZmRkAYWFh6vo3b95k9erVjBo1iiFDhqjTO3bsWK3+yGQyFi5ciInJ/Q/o0NBQ9YgypVJJw4YNkUqlrFixQh2YO3z4MJGRkUyfPl1jdF7pf+vp6dGrVy/Wr1/PRx99hN699SXWr19P+/btsbAo+wttWZRKJXK5HLlczvnz55k/fz41a9bE398fIyMjxo4dqy7boEEDjI2NGTduHF999ZXGBg6WlpbMnj273B9tNjY26qmt/v7+GptL9O3blwEDBhAbG0utWrXU5+Ls7Kyxu8yjZGdns27dOpydndVpdnZ2jzyHyrzvs2fPxtLSkt9//x1DQ0N1W23btmXt2rW8+eb9KQbCsyHNz8LBxV8r3chENfKhMC+z3MCcNE/1BMnIVHuUhJGJNUXSXBRyGXr696dCXzu7jajDy9X/dqwZRJMOIx7nFARBQ1ZuHnVreWilW5mrPq8yc3LLDcxl5qhG91pbaD9AsjI3Iy+/AJlcjkRfn6ycPCzNzLTu19YWquNk5NwfKaxUKvl9w3bC6gdQ26MmaRlZ1Tk1QVDLKiyirqN2QMzKWPXZmllYhJv2rVmVV6DaYc7a2FArz8rIkLwiGTKFAomeHlmFRVgaGWhf58ZG99oqqrCfWy7dwFiiT7CLfYXlBKFUbnYm5hZWWukWlqrrPSe77NErBfm5yOUyzMqsa32vbib2IjAnCMI9UqmUd999l6VLl2oNHtq/fz8ffvihermq6hJTWYVqkcvl7Nixg5YtW6ovzu7du1NYWMju3bsBVeS4Y8eO6qDcw44dO4ZSqaR374rX8amspk2bagTlAPUabu3btycwMBB/f39+/vln0tLSyM9XLXp89OhRjI2N6dq1a7lt9+7dm7S0NPVU3ejoaC5dulTlvq9atQp/f3+Cg4N5++23cXR0ZNasWRgZGaFUKlmyZAldunQhKCgIf39/xowZg1wu5/ZtzalOLVq0qPZIipCQEGrWrMm6desA1Xu5ZcsWevbsWaU1+WrXrq0RlAMqdQ6Ved8PHz5MmzZt0NPTUwcyLSws8PPz4+LFi9U4a+FxKeRF6OppryFYOoKtRFGslaeuq1BNc9WroL7iofpuvs1o2etrQjuPxt23OQByecU/7AShKoqKZUjK2AHS4N5amcWy8qdny2Sqkcpl1ZdI9O/Vl6vb0a/gOKVtAUSeOEd8UgpvdW9f2dMQhAoVKxRIyvhsN7j3kLFYUf7mU6V5ZdfX1ShTrFAg0auoXPlTZjdeuM7FpHRer18bUwOxVq1QOTJZscYDvVJ69+7BsuKyv5fIZKp0/TLWRda/156sWHzfEAThviVLlpCZmcn777+vjiEA/PXXX4wYMYLQ0FAWLlz4WMcQI+aEajl8+DAZGRm0bt2anJwcQBWosbe3Z9u2bfTo0YOsrCwcHBzKbSMrKwt9fX1sbW2fSJ/KaueHH35g7dq1DBs2jICAAMzNzdm7dy/z5s2jqKgIU1NTsrKysLe3rzDQ5erqSnh4OOvWraNVq1asX78eV1dXQkJCqtTHzp07M3DgQCQSCU5OTlhZWanzli5dytSpU3n//fdp2rQpFhYWXLhwgW+++YaiIs0vCI/zmuno6NCnTx+WLVvGxx9/TGRkJBkZGfTq1atK7djZaU8PqMw5VOZ9z8zMZOnSpSxdulQrT2ww8XSVKOQUSTV3JDMytkRP35AShXagQiFXfcHV1St/+lFpQE5RQX29h+qbWjhgaqG6f7j5Nufknrkc2PA1Xd6ZI6azClUilyvILSjQSLM0M8XQQIJMrh0sKA3IGVRwrykNvpVVvzTQZnCvjIFEorVL64PHKW2rQCpl1V976N46DFursqdKCEJ55IoS8oo177EWhgYY6OkhK2Pn99JAmUEZwbRSpXll1y/RKGOgp4esjCDf/XJl72Z59FYSa8/H0Mrblfa+7mWWEYSySCQGZa5vqyh9cFLOsicSiSpdXsbDF/m99iQG2qNEBUF4ebm4uLB06VLeeustBg8ezKJFi9iyZQsTJ06kY8eO/PDDD+jrP15oTQTmhGrZunUrAJ999pl6k4FSmZmZ6rXGUlNTy23DysoKuVxOenp6uUEaAwMDZA99cGZnZ5dZtqzA2o4dO+jXrx+DBw9Wpx04cECrH2lpaSiVygqDc3369GHMmDGkpKSwdetWIiIiqjxqzcbGptzdV3fs2EGbNm001rGLjY0ts+zjrjvUq1cvZs6cSWRkJOvWraNp06bUrFmzSm2U93o/6hwq875bWlrSsmVL3njjDa08U1PTMmoIT8rdO9HsX/+lRlq39xZgZGpFYX6mVnlpgSrN2KycuVCAkZlqWom0nPqGRuZlPvV+UE2fMG5c3E1qwiWcPeo/8jwEodTVW/FMnLNEI23Ol6OwMjdTT0l9UFauavH5sqaplirNK6++makJkntf0KwszLh0/abWZ0xmjuo4Nvfa2rr/CHKFgvD6geoprOlZqs+7vEIpaRlZWFuYlzn6ThCupWUyafcJjbSZPVthZWyonpL6oKxC1cOysqaplrI2uTcNtVB79FCWtAgzQwmSewE3K2NDLqVkaF/nhfemw5poH+dC0l3mHj5PvRr2vN9Ue6kEQaiIuaU1OVna01VLp7CWTml9mImpOfr6EvJyssqom3mvbvnfaQRBeDm5ubnx+++/8/bbb9OjRw/i4+N57bXXmDRp0hNZE1gE5oQqKywsZO/evbRr1463335bI+/u3buMHj2av//+m9DQUHbu3MmYMWPKnM4aEhKCjo4O69ev1wicPcjJyYnk5GT1unWgGq1XWUVFRRojrBQKBX/99ZdGmbCwMBYuXMj27dvp0qVLuW21bdsWCwsLPv74Y7Kzs6s8wuxRpFKp1miw0gBodZS29fCOqAD29va0atWKRYsWceHCBa3NJaqrMudQmfc9NDSUmJgY/Pz81Gv6Cc+Glb0HLXt9rZFmZGKFtb0XaYmXtX50pSddQ19iiLmVS7ltmpjZYmRsSUaKdqA5PTkGS3uPR/ardGSdvLjgESUFQZN7DSfGD9X8rLI0N8XDxZkrN+K0rumYuAQMDSTUcCh/VK+tlQUWZqbcuH1HK+96fCIeD6xN5+HizL5jZ0hMuYur0/31s67HJajzAe5mZpNfUMjoqbO12ty4+x827v6HqR8PxdPVWStfENysLfi8XWONNEsjAzysLYhO1Q6YXb+bjYG+Hs4W5T/ssjExwsLIgJvp2g9EY+9m4259P3jtYWPB/usJJGbn42plplEOwP2hDSZi0rKYHnkGL1tLPmpRH70qLKUhCADOLu7cuHYRaWGBxgYQt2+pNt9xdvUos56Ojg5OLm4kxF/Xyrt9KwYbO0ex8YMgvOSysrLKTLe1teXnn39m6NCh9OjRQx0XKPXgbLiqEoE5ocr27t1LQUEBERERNG3aVCt/0aJFbNu2jalTpxIZGckbb7zB+++/j729PbGxsRQWFjJo0CA8PT3p378/M2bMIDs7m9DQUKRSKZGRkYwYMQJHR0c6dOjAzJkz+fzzz+nbty8xMTHqtdEqIywsjLVr1+Lt7Y21tTWrVq3SClSFhYXRsmVLPv/8c+Lj4wkODiYrK4udO3fyyy+/qMtJJBJ69OjBb7/9RrNmzbTWV3tcYWFhLFu2jBUrVuDh4cGWLVuIi4urdnulGzusXLmSdu3aYWRkhK+vrzq/b9++DB48GAsLi2pvuPGwypxDZd73kSNH0rt3bwYOHEjfvn2xs7Pj7t27nDhxgkaNGmls0iE8WQZGZji5BWulu/qEcjvmCAnXj1LTR7WJS1FhDgkxR6jh2UhjxFtuVhIA5lb3/0ZcfEK4dXk/Bbl3MTFXTYNOiY8iN/MOtevf39lYWpCNkYn2NL4bl/ago6ODlYPXkzlR4aVhZmJMkK/2jsAhwX4cO3+J41GXCQlWjdbJycvn6LlLNPT3VY94A0i+qxqB4WR3fwRG0yA/Dpw8R3pWtnrq6YVrN7iTepcuLe4vc9A4wJdlm3ew8/AJBr6mWstUqVSy+8gpbCwt8PVUjVbu3KIpjQPraPQxOzefhWu30rJxPRoH1sHBVoziEMpmZigh0Fl7iYmm7k4cj0/meHwyIe6qe3KOtJhjcUk0dLVXj3gDSM5VrZvjZH4/WNfEzZEDsYmk5xdia6oKVlxMuktSTj6d63qoyzV0dWD5qSvsvhbHu01Uf09KpZI91+KxMTHE1/7+tZuQlce0/aewNzPmk9aNMBCjQIVqCKgfysG9Wzl5eA/N270CqKannj62n5oePuodWbMy0iguLsbB6f4DRP96IezcvJKEuOvqXVzTUu5w49pFdVuCILy8SgeSlEepVLJp0yY2bdqkkX7lypVqH1ME5oQq27ZtGzVq1CgzKAfQo0cPJk+ejK6uLmvWrGH69OlMnDgRhUKBh4eHxiipr776CldXV9auXcvSpUuxsrKicePG6tFx3t7efP/998ydO5cPPviAhg0b8uOPP/Lqq69Wqq9ffvklEyZMYNKkSRgbG9OzZ0/at2/P+PHjNcrNmjWL2bNn88cffzB79mxsbW3L3KG0ffv2/Pbbb7z22muVfbkqbdiwYWRmZjJz5kxAtUvp+PHjGTp0aLXa8/PzY8SIEaxdu5ZFixbh7OzMvn371PnNmjVTb3pRuvPpszqHR73v7u7urF27ll9++YWJEydSUFCAvb09jRs31gguCs9OTe8wrjlt5cSuWeRkJGBoZM71qO0olSX4h76uUfbAhq8B1RTYUn6Ne5Nw7Qj713+JT72uKGRFRJ/ehJWdO55+bdXlrpxcx9070Ti518fE3I5iaR4J14+SkXIdn3pdNYJ9gvA4QoL98HF3Ze7qTSSkpGFuasLOQydRKpX07dRao+ykear1Lud8OUqd1qt9c46ev8TEOUvo3Lwp0mIZW/Yfxq2GI62b3p9ubWtlSZfmIWzZfxiFooRabjU4eSGaKzfiGPnWa+pNd7xca+DlWkPjuKVTWt2cHWgSWPdpvAzCf1xTNye87ayYf+QCidn5WBhK2HUtnhKlkt7BPhplv9t9EoBZvVqp03oE1OJYXDKTdp+gUx13pHIF2y7dxM3anFa17gc6bE2N6VTHg22Xb6IoUeJla8mp2ylEp2YyvFkwurqqHziFMjlT9p4kv1hGNz9PziZqLnniaG5CbXsRgBYezc2zNoENQtmxZSV5uVnY2Dtx9vgBMjPS6PXm/9Tl/lw6i5vXLzNlzv0H+6EtOnHqyF6WzJ1Mi3avoqunx6F9WzEzt6RZm+4ax7ly4RRJCbcAUMjlJCfcYt92VVt1gxrj7HJ/bcTS9NQk1YZnZ0/8w63YaADadH4ym90JgvD0DRs27IlMT60KHaVSqXymRxSEf7EZM2awatUqDh48iEE5i8r+Wxw9epQBAwawfv16AgICnnd3npnxS8rfPVSoWLE0j/MHl5AYewKFohgbB2+Cm7+DjZPmj7tti4cAmoE5gOz0eM798zt371xBV1cfZ8+G1GvxLkYmVuoyyfHniTm7jczUGxRJc9DTk2Bp545XQHs86rZ+5h+S/1ZjA/Y9upBAXkEhy7fs4uTFaGQyGbVquvDWKx3wdtOcmj1s0s+AZmAO4HZyKks37eDqzXj09PRo6FebiFc7YmWuuXyDUqlk095D7Dl6isycXJzsbOnZrjnNGwZV2L+0jCyGTfqZiFc60L219sOil5185+bn3YV/hbwiGSvPRHPqdgrFihJq2VryZgNfatlZaZQbsSES0AzMASRk5bLsVDRX0zLR19WhvosDEQ3rYPnQ+nRKpZLNl26w99ptsgqlOFmY8qq/F8287v89peUVMnJjZLl9bVHLhf+FVfx38bKJ6jH9eXfhhSWTFbN762rOnTxIYUE+Ti5utO/Wn9p+9x+O/PrzV1qBOYCszLv8tX4J169EUaIswcvHn269B2Brr/kAcO3y2Zw5Flnm8XtHDKNhyP0HOZ8NKz/49vDxBU0t/U0eXegFdODSi7vEyr/1NX1ZicCcIFTCjRs3uHnzJuPGjeONN95g1KhRj670gkpJSSE+Pp4pU6ZgaGjI6tWrn3eXnikRmBNeBiIwJ7wMRGBOeBmIwJzwMvi3BpFEYE54UsRUVkGohAkTJnDu3DmaN2/OkCFDtPLlcnm5dXV0dF6oDQz+/PNP5s6dS926dfn222+18hUKBRXF6x93K2hBEARBEARBEARB+LfIzs5m27ZtJCQkkJ2drfV7WUdHh8mTJ1e7ffELWxAqYfny5eXmJSQk0LZt23LzmzRpUmH9Z23EiBGMGDGi3Pz27duTmJhYbv7Vq1efRrcEQRAEQRAEQRAE4YVy8OBBRo4cSWFhIWZmZlhYWGiVedzldkRgThAek4ODQ4U7xZZuaPBvMW/ePK2dawVBEARBEARBEAThZTN16lTs7e2ZNWvWU9uIUATmBOExGRgYEBgY+Ly78cSIXU8FQRAEQRAEQRAEAeLi4vj000+f6u9k3afWsiAIgiAIgiAIgiAIgiD8S3l4eJCfn/9UjyECc4IgCIIgCIIgCIIgCILwkA8//JBVq1aRkJDw1I4hprIKgiAIgiAI/zpRPaY/7y4IwlMXtOnj590FQXj6/Oc97x4IQrmOHTuGjY0NXbp0ISwsDGdnZ/T09LTKjR8/vtrHEIE5QRAEQRAEQRAEQRAEQXjIihUr1P8dGRlZZhkdHR0RmBMEQRAEQRAEQRAEQRCEJyk6OvqpH0OsMScIgiAIgiAIgiAIgiAIz4EIzAmCIAiCIAiCIAiCIAjCcyCmsgqCIAiCIAiCIAiCIAhCGQ4cOMCSJUu4fPkyubm5KJVKrTJXrlypdvsiMPcv8sorr3D16lVWrlxJo0aNnnd3Xlht2rQhMTERAD09PZydnWnWrBkffvghNjY2j93+uHHjuHjxItu2bQNUf4B79uzh/fffx9jY+LHbf562bdvGnDlzSExMxMnJia5du/Lhhx8+724Jz0FxUT7nDy4lMfY4CnkRNo4+1GsxAGuHWpWqn5N+m7P//M7dO1fQ1dOnhmdDgpu/i5GJ5f0yGQncvLSX5Phz5GUlIzEwxsrei4CQftg4+Wi1mRx/nisn1pF9Nw6lsgQzK2d86nXFo26rJ3Xawksmv1DKiq27OBF1hWKZDG83VyJe7YCXa41K1U9ITmPp5h1cvRmPnp4eDf1qE/FqRyzNTDXKKZVKtuw/zK7DJ8nKycPZwZaebZsT3iBQq83tB4+z6/AJUtIzMTc1IaxeAP06t8HI0OCJnLPw8iksyGf7puVcPn+c4uJiarp706XXO7i4eVWqfmpSAn+tX8KtG9Ho6elRJ6AhXXq9g5m5pUa5/TvWc/tWDPE3r5Gfl0PbLn1o17VfmW3GRJ8ncscGku/EUVKixM7BibBWXajfpOVjn6/wcsovlrHqzFVOxidTpCjB29aStxrWwdPW8tGVgYSsPJafvsLV1Ez0dXWp72pPRMM6WBgZapRTKpVsvXyT3VfjyZYW4Wxhyqv+XoR5an5uzDsSxT+xiVrHcbYw5adXW1T/RAVBeOZ27tzJRx99hLe3N126dGH16tV069YNpVLJvn37cHd3p127do91DBGY+5eIiYnh6tWrAGzdulUE5h6hY8eOvPfee8jlcs6dO8fs2bO5du0aK1euRFf38WZwf/DBBxQUFKj/feXKFWbPns2bb775rw7MnT59mjFjxtC3b1+++uorrl+/zoEDB553t4TnQKlUcnDzt2Sl3aJOwx4YGJtz/fx29q/7kvav/4i5dcVBi4Lcu+xbNx6JoQmB4W8iL5Zy9cxmsu7G0b7/D+jqqT56blzcw81Le3D1DsE7qBOyokJiL+5kzx/jaNHzK5zcgtVtJsae4PC277F19sU/pB/o6JBw7QjHd86gqDAH3wavPNXXRPjvUSqVfL9wJXF3kuneOhxzUxN2HjrBxDlL+H70EJztbSusn56VzYTZizE1NuL1Lm0pLCpma+QR4pJSmPLRYPT19dRlV/21h817D9E2tCG1arpw6mI0M5avA9AIzq3cupvN+w4REuxP5+YhJKaksePQCW4npzJ+6NtP54UQ/tOUSiVL500mKTGOFu1ewcTUgmP/7GDhjAkMHzsNOwfnCutnZd7l11++xMjYlI6vvEGRtJCDe7eQnBjPB59+j77+/Z8Su7auxtzCCpeaXly7cq7cNi9HnWTFr9Nw86xN2y790NHR4cKZI/y5dBb5ebk0a9PtSZ2+8JJQKpVM23eKuMxcuvt5Ym5kwK6rcXyz+ziTu4TjbGFaYf30/EK+2XUMEwMJ/evXplAm56/Lt7idmcu3ncPQ17v/22HN2WtsuXSDNj418bK15PTtFGYdOg+gFZyT6OkyKCRAI83EQPz8FoR/mwULFhAUFMSqVavIzs5m9erVvPbaa4SGhpKQkEC/fv1wdXV9rGOIO8O/xNatW9HV1aVx48bs2LGD8ePHI5FInne3KC4uRl9f/7GDXU+anZ0d9erVA6BRo0YUFRUxc+ZMLl26RGCg9giFypBKpRgZGeHm5vYEe/ri2Lt3L3Z2dnzzzTcAhIaGEhERUen6pa+P8O+XEHOEu3eiCev6CTV9wgCo6RPO9qXDuHhsNaGdP66w/pWT65HLpLR//UdMLewBsHHy4cCGr7l5eS+1AjsC4ObbjIDQ/uhL7l83nv5t2bFsBJeOrdEIzMWc/xsjE2ta9foGPX3Vva9WYEe2LxvOrcv7RGBOqLJj5y9x9WY8owf0JSTYH4DQev58OHkmf+7Yz4cRvSusv3HPQYqKZUz9eAh21lYAeLu58O38Zew/cZb2YaoHaOlZOfx14CgdmzVh4GtdAWgb0oCvZ//Oiq27Ca3nj66uLhnZuWw7cJQWjYIZ/mYv9XGc7G35fcPfnLp0lUb+vk/hlRD+yy6cPUrcjau8MfBjAhuEAhDYIJTpE0eyZ9sa+r83qsL6B3ZupLioiOFjp2Flo7qfu3p4s3jWJE4f20fTZh3UZT/9Zi7Wtg7k5+Xw7dj3ym3z6IHtmFtY8f7Ir9G/9122SbP2/DzpQ04f2y8Cc0KVHY9L5lpaFh+2qEeIuyrYHOLuxKjN/7D2fAwjm9ersP7mizeQyhVM7hqOnanqIbu3nRWT95wkMjaBdrVV3/0zCqT8feUmHXzdeLeJ6nOjjbcr3+w6zsozVwlxd0ZXV0fdrq6ODs29XJ7CGQuC8CzFxsYyevRo9PT01A+k5HI5AK6urrz++ussXLiQHj16VPsYL1Y0RSiTUqlk27ZthISE8O6775KVlcXBgwc1ysTGxjJ8+HCaNGlCcHAwr7zyinqqJUBJSQm///47nTt3JiAggPDwcEaOHElubi6gmp7ZrZvmF6GcnBx8fX3ZsGGDOq1NmzZ88803LFy4kNatWxMUFERWVhaxsbGMGjWKli1bEhwcTJcuXVi8eDElJSUabRYXF/Pzzz/Ttm1bAgICaNGiBePGjQNg3759+Pr6cuvWLY062dnZBAUFsXLlymq/hgEBqqdVCQkJpKam8tlnn9G2bVuCgoLo0KEDP/30E8XFxRp1fH19+fXXX/nhhx8IDw8nNDRU67XasGEDn332GaAKZPn6+tKmTRsyMjIICAjgzz//1OpLnz59Kj099PTp07z55ps0bNiQ+vXr0717dzZu3KhRJjIykj59+hAUFERISAgTJkxQj+iTy+X06tWLvn37olAo1HV+/fVXAgICNLZ+1tXVJTs7m+zs7Ef2a9asWdSvX5+oqCj69etHYGCg+v358ccf6d69O/Xr16d58+aMHj2a1NRUrTYiIyPp378/wcHBNG7cmIiICC5fvqzOz8nJ4euvv6ZZs2YEBATQq1cvDh06VKnXTXg8t2OOYmRihat3qDrNyMSSmrXDuXPjJAq5rML6CTFHqeHZWB2UA3ByC8bcuga3rx1Rp9k4emsE5QAMjc2xc/EjN0Nz+oe8uBADI1N1UA5AV1cPQyML9PQ1p5kIQmUcO38ZS3Mzmgb5qdMszUwJqxfAqYvRyO594aqofkP/2uqgHECQby1qONhx9PwlddqpS9HI5Qo6hjdRp+no6NAhvDHpWdlcu3UbgJhbt1EoFITV1xxdEX7v30fOXKj2uQovr4tnj2JmbklA/RB1mpm5JUENw7h84RRyWcX38wtnj1InsKE6KAfgUycYO4caXDhzVKOsta1DpfpUJC3E2MRMHZQD1dIjJqbmSCRiyrZQdcfjk7E0MqCpm5M6zcLIkFB3Z04npCJ74DtwefUbujqog3IAgc52OFuYcjwuWZ12+nYK8hIl7Wu7q9N0dHRoX9uNjAIp1+5marVdUqKkoLjivzNBEF5sRkZG6kFRFhYWGBgYkJaWps63s7MjISHhsY4hAnP/AmfOnCExMZFu3brRrFkzrKysNIJut27dol+/fsTFxfHFF18wb948evXqxZ07d9RlJk2axA8//ECrVq2YP38+X331FaamphpTMitr165dREZG8sUXXzB37lxMTExITU3F09OTCRMm8Ouvv9K3b1/mzJnD3LlzNeqOGDGCJUuW8Nprr/Hrr7/y6aefqvvQsmVLHB0dWb9+vUad0nPt3r17lftaqvQPxcHBgczMTKysrPjss89YtGgR77//Phs3bmTChAla9ZYtW8atW7f47rvv+OGHH7TyW7Vqxf/+9z8AFi1axB9//MHs2bOxsbGhffv2WucSExNDVFQUvXtXPBIDIC8vjyFDhmBmZsZPP/3E3Llz6du3Lzk5OeoyO3bs4H//+x+1a9dm9uzZfPLJJ+zevZsvvvgCAH19fX744Qeio6OZP38+ANHR0cycOZORI0dSp04ddVvdu3dHLpczbtw4rYBqWWQyGR9//DGvvPIKCxcuJDw8HID09HSGDBnCggUL+OKLL0hMTCQiIkL9VAHg77//ZujQodja2jJ9+nR+/PFHGjRoQEpKCqAK4L777rtERkby0UcfMW/ePGrVqsWQIUPUU7qFpyczLRZrBy90dHQ00m2cfJDLisjN0l4zpVRBXjrSwmxsHLXXorN18iEr7eYjjy8tyMTA2FwjzcE1gOz021w4sorcrCRys5K4dPxPMlKuU6dhj8qdmCA84GZCEp6uzlrXube7C0XFMu6kppdbNz0rh5y8fLxqak/r9nZz4Vbi/R9yNxOSMDI0wMXRTqNcLTcXdT6A/N4PR4OHRsMbGqj+feNeOUGoiju3b1Kjpvb9vKa7N7LiItJS75RTE7Kz0snPy8HFTft+XtPDm6SER9/Py+JV25+UpNvs2rqa9LQk0tOS2Pv3WhLjY2nR7tVqtSm83G5m5OBhY6F1ndeys6RYriApJ7/cuhkFUnKkxWWuRVfLzpJbmfe/d9/MyMFQXw8XS82psV52qrq3MnI00osVCt79YzcD/9jD+3/sYfHxS0hlFT/0EQThxePp6UlsbKz633Xr1mXz5s3I5XKKiorYtm0bzs4VLw3xKGIq67/Atm3bMDQ0pEOHDkgkEjp27MiWLVvIz8/H1NSUWbNmIZFIWL16NWZmZgCEhYWp69+8eZPVq1czatQohgwZok7v2LFjtfojk8lYuHAhJiYm6rTQ0FD1iDKlUknDhg2RSqWsWLGC4cOHA3D48GEiIyOZPn26xui80v/W09OjV69erF+/no8++gg9PdX6POvXr6d9+/ZYWFhUuo9KpRK5XI5cLuf8+fPMnz+fmjVr4u/vj5GREWPHjlWXbdCgAcbGxowbN46vvvpKY504S0tLZs+erfVBX8rGxkY9tdXf319jc4m+ffsyYMAAYmNjqVWrlvpcnJ2d1UGsity8eZPc3FxGjx6Nr69q+lLpa1x6jtOmTaNLly5899136nR7e3sGDx7MBx98gI+PD7Vq1WL06NH8+OOPhIaGMmHCBIKCgnj//fc1jnf69GmcnZ05dOgQEydOZOLEiRX2TyaTMWrUKLp06aKRPmXKFPV/KxQK6tevT4sWLTh27BjNmjVDqVQydepUwsPDmTNnjrpsy5b3F3zeunUr0dHRbN68GW9vbwCaN29OXFwcc+fOZcaMGY98/YTqk+Zn4eDir5VuZGINQGFeJlZ2HmXXzctQlTW1LrN+kTQXhVymMfLtQWmJl0lPuopfkz4a6X5N+5CXncKVk+u4fGItAPoSQ8K7jcWlVpOymhKECmXl5lG3lodWupW56nM0MycX9xqOZdbNzFGNNre2MNfKszI3Iy+/AJlcjkRfn6ycPCzNzLQ+R6wtVMfJuNeWs4NqTburN+MJ8PFUl7tyI15VLlvzB58gVEZuThae3n5a6WYWqnt0bnYGzi7uWvmqPNXoHwtL7fu5uYUVBfl5yGUyjZFvldG6U28y7qYQuXMD+3eoHmBKDAx5c9An+AU1rlJbggCQVVhEXUftDd6sjFUj6jMLi3DTvoxVeQVSAKyNtUffWxkZklckQ6ZQINHTI6uwCEsjA+37ubHRvbaKNOp29/PC08aCEqWS80l32X0tnrjMHL7q0BS9F2wZIEEQyte+fXuWL1/O2LFjMTAwYOjQoXzwwQc0bqz6zCosLGTy5MmPdQxxR3jByeVyduzYQcuWLTE3V/0A6N69O4WFhezevRuAY8eO0bFjR3VQ7mHHjh1DqVRWapRWZTRt2lQjKAeo13Br3749gYGB+Pv78/PPP5OWlkZ+vuop1dGjRzE2NqZr167ltt27d2/S0tLUU3Wjo6O5dOlSlfu+atUq/P39CQ4O5u2338bR0ZFZs2ZhZGSEUqlkyZIldOnShaCgIPz9/RkzZgxyuZzbt29rtNOiRYtyg3KPEhISQs2aNVm3TrXAt1wuZ8uWLfTs2bNSa/K5ublhZmbG119/zd9//01GRoZG/s2bN0lMTKRz587qIKRcLqdJkybo6upy8eJFddl33nmH+vXr884775CQkMDUqVM1+nDw4EGmTJnCr7/+yvTp01m7di0zZ85U52/ZsoWAgACt6b4PBtNKHThwgP79+9OwYUP8/Pxo0UK181TpFOUbN26QnJzMa6+9Vu65Hz58mNq1a+Ph4aFxbmFhYVy4IKZzPW0KeRG6eto/tPT0VVOMShTFWnnqugrVdA29CuoryqkvLcjm2I6fMbVwpE6jnhp5unoSzK1r4OodRmjn0YR0+ggbB2+O7fiZ9CQxilKouqJiGZIHNmgoVTpirbiCKX6yeyMeyqovkejfqy9Xt6NfwXFK2/JyrYGPuyub9x1i//GzpGVkcfZKDAvXbkVfX0/dniBUhay4CP0yHoRI1NdfRde56l5d1oMU/XtTTkvLVIW+vgQ7hxoE1A+h/7sf0fedkbi61eKPJTOIv3mtyu0JQrFCgaSM79YG9x7yFyvKnwlSmld2fV2NMsUKBRK9isrdnzL7egNfXm/gS4iHM2GeNfhfWBB96/lwLS1LY3qsIAgvvoEDBxIZGYmBgeqzr3Xr1ixfvpw+ffrQv39/lixZQq9evR7RSsXEiLkX3OHDh8nIyKB169bqKYy1a9fG3t6ebdu20aNHD7KysnBwKH9dj6ysLPT19bG1rXiHucoqq50ffviBtWvXMmzYMAICAjA3N2fv3r3MmzePoqIiTE1NycrKwt7evsJAl6urK+Hh4axbt45WrVqxfv16XF1dCQkJKbdOWTp37szAgQORSCQ4OTlhZWWlzlu6dClTp07l/fffp2nTplhYWHDhwgW++eYbioqKNNp5nNdMR0eHPn36sGzZMj7++GMiIyPJyMio9B+tpaUlv//+OzNnzuTTTz9FoVDQqFEjxo8fj6+vL5mZqifZw4YNK7N+UtL9aU86Ojp07dqVEydO0KZNG2rWrKlRdsmSJTRv3hxvb2+8vb2ZOHEi48ePx9bWljfffJNTp07RuHFj9c0IwNjYGFNTzaH8UVFRfPDBB7Rt25ZBgwZha2uLjo4Offv2Vb+2WVlZABVes5mZmVy+fBl/f+1RW6UjKYXHV6KQUyTN1UgzMrZET9+QEoX2jzWFXPUDTFev/DWASgNyigrq65VRXy6TcnDzt8iLC2nT5zuttefO7P+V9ORrdHjjJ/U9pKZPODuWj+Tsgd9o139aRacqvMTkcgW5Dy3bYGlmiqGBBJlce92h0oDcw1NKH1QafCurfmmgzeBeGQOJBHkFxyltC2D0gH78smwt89ZsAlRrf3ZrGcrl2DjupN0ttz+CIJfLKczXvJ+bmlsiMTBEXsa6oDL19VfRdX7vYUoZ9eX3AnLVWRNuy5+LuH0zhhGf/aC+nwc2CGPGd6PYtm4xH3zyfZXbFF4OckUJeQ+t12ZhaICBnh6yMpZhKQ2UGZQRTCtVmld2/RKNMgZ6esjKCPLdL1fxd9SudT1Zez6GC8npWju4CoLw79KoUSMaNWqk/ndeXl65A6UqQwTmXnBbt24F4LPPPlNvMlAqMzOT9PR0rKysylxcv5SVlRVyuZz09PRyA00GBgZaT03L2wSgrMDajh076NevH4MHD1anHThwQKsfaWlpKJXKCoNzffr0YcyYMaSkpLB161YiIiKqPGrNxsam3N1Xd+zYQZs2bfj44/s7Sz44Z/xB1R0tV6pXr17MnDmTyMhI1q1bR9OmTbWCYhUJCgpi0aJFSKVSjh8/ztSpUxk2bBh79uxRBxu/+uorgoKCtOo+GPhKSUnh559/xs/Pj507d3L06FGNabEJCQkabfTp04fMzEy+/fZbiouL2bhxI7Nnz9Zov6zXZs+ePZiZmfHLL7+oR+QlJmquR1ba74quWUtLS3x9fTWm6ApP3t070exf/6VGWrf3FmBkakVhvvYCxtICVZqxWTnzQQAjM9VUEmk59Q2NzLVGX5Qo5BzeNpXsu3G06DkBSzt3rfybl/ZSp1FPjetOV08fJ48GXD//NyUKObp64iNN0Hb1VjwT5yzRSJvz5SiszM3UU1IflJWbB5Q9TbVUaV559c1MTZDc27XLysKMS9dvan32ZeaojmPzwHFsrSyYNHIgSWnpZOXk4WRvg7WFOUO+/hFn+yfzcE34b4q/Ec3CGV9rpH36zVzMLazIyda+H+flqNLMLbWn/5UyvzeFtaz6uTlZmJiaVXkaq1wu59TRfbRs96rG34O+vj61/epz9MB25HK5etc7QXjQtbRMJu0+oZE2s2crrIwN1VNSH5RVqHooXNY01VLWJvemoRYWaeVlSYswM5QguRdwszI25FJKhvb9vPDedFiTijejMtDXw9zQgPwisRmEIPxXpKens3TpUlavXs3Jkyer3Y741HuBFRYWsnfvXtq1a8fbb7+tkXf37l1Gjx7N33//TWhoKDt37mTMmDFlRmlDQkLQ0dFh/fr1GoGzBzk5OZGcnKxetw5Uo/Uqq6ioSOOpq0Kh4K+//tIoExYWxsKFC9m+fbvWumQPatu2LRYWFnz88cdkZ2c/9rDQh0mlUq0nxKUB0OoobevhaZ6gWu+tVatWLFq0iAsXLmisv1YVRkZGtGzZkvj4eL777juKiorw8vLCycmJ27dv8+abb1ZY/4svvsDS0pKVK1fyySef8Pnnn7N161b19eLt7c3Ro0fJzs7G0lK1gO3gwYNJTU3l+++/JzQ0tMxpqw8rfW0f/LLy8Gtb2u8NGzaUex2EhYVx4MABHBwccHQse40n4fFZ2XvQstfXGmlGJlZY23uRlnhZ64tnetI19CWGmFu5lNumiZktRsaWZKRoB7vTk2OwtPfQSFMqlRzf+Qsp8VGEdRmDg6v2KMmiwhxKShQoy3iarSxRoFQqUSofvWGJ8HJyr+HE+KGan6GW5qZ4uDhz5Uac1nUeE5eAoYGEGg7lB8JsrSywMDPlxm3thfOvxyfi8cDadB4uzuw7dobElLu4Ot3f2fJ6XII6/2HO9rbqQFxCchqZ2bm0bFyvcicsvJScXD14b4TmgxYzCyucXT24df2K1nUefysGiYEh9g7lj9qxtLLF1MyCxHjt+/ntW9dxdvGocj8L8nMoUSgoKeOeXaIQ93OhYm7WFnzeTnMdQksjAzysLYhO1Q6YXb+bjYG+Hs4Wpg83pWZjYoSFkQE307UHJMTezcbd+v7DEw8bC/ZfTyAxOx9XKzONcgDu1hWvh10ok5NbVIyFkdh9WBD+DdLT09m0aRPx8fFYWlrSoUMHAgICANXAl3nz5rFx40aKiopo0uTx1rwWgbkX2N69eykoKCAiIoKmTZtq5S9atIht27YxdepUIiMjeeONN3j//fext7cnNjaWwsJCBg0ahKenJ/3792fGjBlkZ2cTGhqKVColMjKSESNG4OjoSIcOHZg5cyaff/45ffv2JSYmRr02WmWEhYWxdu1avL29sba2ZtWqVVqBqrCwMFq2bMnnn39OfHw8wcHBZGVlsXPnTn755Rd1OYlEQo8ePfjtt99o1qzZY+9wUlZfly1bxooVK/Dw8GDLli3ExcVVu73SjR1WrlxJu3btMDIyUm/WAKpNIAYPHoyFhUWVNtwoHWXXrl07atSowd27d1mxYgUNGjTA0FD1RG7cuHGMGTOGgoICWrVqhbGxMXfu3OHAgQOMGjUKT09PVq9ezZEjR1ixYgUmJiZ88803dOvWjW+//Zbvv1dNFxk+fDivv/46b7zxBoMGDcLR0ZGrV6+yc+dOHB0dOXXqFAcPHqR58+YV9jk8PJylS5cyadIk2rdvz9mzZ9m8ebNGGR0dHcaOHcvo0aMZMWIEr776KgYGBpw7d47AwEBat25Njx49WLNmDW+//TbvvfceHh4e5ObmcvnyZfVusMLjMzAyw8ktWCvd1SeU2zFHSLh+lJo+qo1kigpzSIg5Qg3PRhoj3nKzVFOmza3u/526+IRw6/J+CnLvYmKu2okyJT6K3Mw71K6vubvymf2/En/tMI3aDsXVJ5SyGJlYYWBoSkLsMQJCX1ePjJPLpNy5eQoLGxf1+nWC8DAzE2OCfLV3lQwJ9uPY+Uscj7pMSLAqIJyTl8/Rc5do6O+rHvEGkHxXtcank9390UVNg/w4cPIc6VnZ2FqpHmhcuHaDO6l36dLi/vILjQN8WbZ5BzsPn2Dga6o1VpVKJbuPnMLG0gJfz/JHUSuVSlZs3YWhgYQOYY3KLScIJiZm+NTRvp8H1g/l4tljXDx7jMAGqntsfl4OF84cpW5gQ40Rb+lpqvu5rf39+3lA/RDOHIskK/MuVtaq+/n16Cjupt6hWZvy1wwuj5m5FUbGplw6d4J2XfurR8YVFUm5cvEU9o4u1ZoeK7wczAwlBDrbaaU3dXfieHwyx+OTCXFXXb850mKOxSXR0NVePeINIDlXtfa1k/n9YF0TN0cOxCaSnl+IralqE7iLSXdJysmnc10PdbmGrg4sP3WF3dfieLeJ6nNDqVSy51o8NiaG+NqrRpkWyxUolEqMJZo/tTdEXUephKAa2ucgCMKLJTY2lrfeeousrCyUSiWgir/88INqGYYvvviC4uJiOnTowMCBA9UBu+oSgbkX2LZt26hRo0aZQTmAHj16MHnyZHR1dVmzZg3Tp09n4sSJKBQKPDw8NEbHffXVV7i6urJ27VqWLl2KlZUVjRs3Vo+O8/b25vvvv2fu3Ll88MEHNGzYkB9//JFXX63ctvVffvklEyZMYNKkSRgbG9OzZ0/at2/P+PHjNcrNmjWL2bNn88cffzB79mxsbW3L3KG0ffv2/PbbbxVuEFBdw4YNIzMzU725QceOHRk/fjxDhw6tVnt+fn6MGDGCtWvXsmjRIpydndm3b586v1mzZupNL0oDapXh5uaGrq4uv/zyi3rKcrNmzRg9erS6TOfOnbGwsGD+/PnqkWkuLi40b94cOzs74uPjmTZtGgMHDqRBgwaAat28SZMmMWzYMNq1a0e7du2oW7cua9as4ZdffuHbb7+lqKgIT09PBg0axOuvv87o0aMZOXIky5YtK3eKMKg2gxgzZgwrVqxgw4YNNGjQgAULFmgFJLt06YKRkRHz589n9OjRGBoa4ufnR/v27QHV1Oply5Yxa9Ys5s+fT1paGlZWVvj5+fHGG29U+jUUqqemdxjXnLZyYtcscjISMDQy53rUdpTKEvxDX9coe2DD14BqCmwpv8a9Sbh2hP3rv8SnXlcUsiKiT2/Cys4dT7+26nJXz2zhetQO7Jx90dM35NaVSI22Xb1D0JcYoaOri2/DHlw4spI9az7FvW4rlEolNy/toSD3LiGdPnpaL4XwHxYS7IePuytzV28iISUNc1MTdh46iVKppG+n1hplJ81bCqimwJbq1b45R89fYuKcJXRu3hRpsYwt+w/jVsOR1k3rq8vZWlnSpXkIW/YfRqEooZZbDU5eiObKjThGvvWaxkY8v2/4G5lcgbuLIyWKEg6ducD1+ESGvdETO2urp/uCCP9JAfVDqemxjXUr5pCanICpmTnH/tmJUllCu679Ncr+NvMbAD6dNE+d1qpjLy6cOcKiGV8T1qoLxUVS/tmzGScXdxqGtNGof/bEATLT05AVq6YE3rp+hX3bVQ956zdpgbWtA7q6urRo9wq7tq5m3g/jqN+0FcqSEk4d3Ud2Zjp93xn5NF8O4T+qqZsT3nZWzD9ygcTsfCwMJey6Fk+JUknvYB+Nst/tVk01m9WrlTqtR0AtjsUlM2n3CTrVcUcqV7Dt0k3crM1pVev+LAFbU2M61fFg2+WbKEqUeNlacup2CtGpmQxvFoyurmq0Xra0mHF/HSLcowY1LFW/tc7fucu5xDSCa9jRuKaYDSIIL7oZM2ZQUFDAhAkTaNSoEQkJCUyZMoXJkyeTm5tL69atGTNmTJWWqaqIjrI0/CcIL5AZM2awatUqDh48qLHhwL/R0aNHGTBgAOvXr3/sSLrw+MYvqfoOci+jYmke5w8uITH2BApFMTYO3gQ3fwcbJ80vuNsWDwE0A3MA2enxnPvnd+7euYKurj7Ong2p1+JdjEys1GVO7JrJzcv7y+1Dt/cWYGpxf63EuOh/iDm3jdzMOygUMqzsPKjTsEe5I+1eZmMD9j26kEBeQSHLt+zi5MVoZDIZtWq68NYrHfB205yuPWzSz4BmYA7gdnIqSzft4OrNePT09GjoV5uIVztiZa65rIRSqWTT3kPsOXqKzJxcnOxs6dmuOc0baq4PGnniLH/9c4yUuxno6OhQy82FXu1aEODj+RTO/t/vjHGL592Ff4WCgjy2b1jG5agTyGQyXN1q0aXX27i6e2uUm/bl/wDNwBxAStJt/lq/hFux0ejp6VMnoAFder2DuYWVRrlff/6Km9cvl9mHQR9+jVft+9+Bzp08yJHIv0hLSUIhl+Hk4k6Ldq8SUL9qm329DII2iVkClZFXJGPlmWhO3U6hWFFCLVtL3mzgSy07K41yIzZEApqBOYCErFyWnYrmalom+ro61HdxIKJhHSwfWp9OqVSy+dIN9l67TVahFCcLU17196KZ1/3PjfxiGUtOXiYmLYvMwiKUSiWO5iaEe9agW11P9CvYjOJlZf3FvEcXegEduFTw6ELPSUt/k+fdhX+1sLAwXnnlFcaNG6dOO3jwIIMGDaJnz57VXqKqPCIwJ7xQbty4wc2bNxk3bhxvvPEGo0aNenSlF1RKSgrx8fFMmTIFQ0NDVq9e/by7JCACc8LLQQTmhJeBCMwJLwMRmBNeBiIw9+SJwNzj8fPz47vvvqNnz57qtLS0NJo3b86cOXNo27ZtBbWrTkxlFV4oEyZM4Ny5czRv3pwhQ4Zo5cvl8nLr6ujooPeIbcqfpT///JO5c+dSt25dvv32W618xb1FjssjdiQTBEEQBEEQBEEQhGerpKRE6/d46b9NTJ580FP88hdeKMuXLy83LyEhocLIdJMmTSqs/6yNGDGCESNGlJvfvn17EhMTy82/evXq0+iWIAiCIAiCIAiCIAgVuHjxosYa8fn5+ejo6HD69Glyc3O1ynfo0KHaxxKBOeFfw8HBocKdYks3svi3mDdvntbOtYIgCIIgCIIgCIIgPF9Lly5l6dKlWumzZ8/WStPR0eHKlSvVPpYIzAn/GgYGBhXuCPpv4+vr+7y7IAiCIAiCIAiCIAjCA5YtW/ZMjycCc4IgCIIgCIIgCIIgCIKAapmsZ0ns1SwIgiAIgiAIgiAIgiAIz4EYMScIwkulfePyd/YVhP+KqSfbPO8uCMJTNzZg3/PugiA8deJbiyC8uBoU/vO8u1CBTs+7A0IViBFzgiAIgiAIgiAIgiAIgvAciMCcIAiCIAiCIAiCIAiCIDwHIjAnCIIgCIIgCIIgCIIgCM+BCMwJgiAIgiAIgiAIgiAIwnMgNn/4D5g1axaLFy/m7Nmz1W4jIiICExMTFixY8Fz6s2XLFpYtW8bNmzdRKpU4OjrSoEEDRo8eja2tLQBLlizB09OTli1bPrU+Pfw6PFzv+PHjvP3226xbt47AwEB1mfDwcBo0aFDlflWk9FiljI2NqVmzJr179+att95CT0+vSu1t2LABiURC9+7dNdKf5Hsv/LsVFUn5Z/cmEm5d53ZcDIUF+fSOGEbDkNaVql9YkM/2Tcu5fP44xcXF1HT3pkuvd3Bx89IoN+3L/5GZkaZVv0mz9vR8fYhGWkz0efb+9Sd3bt9ET1+Ct28AXXq9g7WtQ/VPVHipyWVSok9tJD05hoyUGIqleTTpMAJPv8ptmFFclM/5g0tJjD2OQl6EjaMP9VoMwNqhlka5bYuHkJ+TqlW/VmAHGrX9n0Zacvx5Lh1bQ2bqDfT0JDjUDKJeiwGYWojrXKgeaVExm/cd4np8ItfjE8kvKOSD13vQqkn9StXPL5SyYusuTkRdoVgmw9vNlYhXO+DlWkOj3NJNO7h0/RZpmVnIZHLsbSwJrRfAK63DMTI0UJe7nZzK2h2R3Ei4Q1ZOHgYGEmo62tO9TTiN/H2f6LkLLw+pTM7WSze4np5N7N1s8otlDA0LpGUt10rVzy+WserMVU7GJ1OkKMHb1pK3GtbB09ZSo9zRW0mcTkjl+t0sUnILqOtow1cdmj6y/Y0XrvPnuRhcrcz4oXvzap2jIAjP3qZNm6pVr0ePHtU+pgjMCc/dwoULmT59OgMGDGDkyJEolUpiYmLYunUrqamp6sDcsmXLaNWqVbUCc5U1YcIEdHXLH0jq7+/PH3/8Qa1a93+AzZ49GxMTkycemCs1ZcoUvLy8yM3NZdOmTUyePJmioiIGDx5cpXY2btyIiYmJVmDuUecsvDwK8nLYt30dVtZ2OLt4cCPmUqXrKpVKls6bTFJiHC3avYKJqQXH/tnBwhkTGD52GnYOzhrla7h60Kyt5rVo56D5gy/6wmmWLfgeFzcvOvV4C2lhAUci/2L+T+MZMe4HzMw1vzgLQmUUFeZw6fifmJjbY2XnQWrCxUrXVSqVHNz8LVlpt6jTsAcGxuZcP7+d/eu+pP3rP2JurXkNW9t7UrvBKxppD5e5c+MUh7ZOxtqhFkHNIpAXFXLt3Db2/fk57d+YjpGJuM6FqsvNL2D9rgPYWVviUcOJS9dvVrquUqnk+4UribuTTPfW4ZibmrDz0AkmzlnC96OH4Gxvqy57PT6Rul5utLarh0Qi4VZiEpv3HuLCtRt8M+I9dHR0AEjLyKKwqIiWjethbWFOcbGM41GXmbZoFYP6dKd9WKMn/hoI/325RTI2XIjF1tQId2tzLqdkVLquUqlk2r5TxGXm0t3PE3MjA3ZdjeOb3ceZ3CUcZwtTddnd1+K5kZ6Nt50leUWySrWfnl/Ipos3MNSv2oN0QRCev3HjxlW5jo6OjgjMCf9uy5cvp2fPnhp/AC1btuT999+npKTkmfbF29u7wnwzMzPq1av3bDpzj4+Pj3p0Xnh4OJcvX2b9+vVVDsyV51HnLLw8zC2s+XzyQswtrUmIu86caZX/ULpw9ihxN67yxsCPCWwQCkBgg1CmTxzJnm1r6P/eKI3yFla21G9ScZB9+6bl2Ng5MmT0d+jrqz6u6gY2Ytb3n3Bg1ya6vvZOFc9QEMDIxJpXBi3G2NSajOQYdq/5tNJ1E2KOcPdONGFdP6GmTxgANX3C2b50GBePrSa088ca5Y3NbPGo26rCNs8fWoqppSNt+05BV091ndfwasSuVR8TfWoD9Vq8W7UTFATAysKMBRPHYG1hzvX4RD7/+ddK1z12/hJXb8YzekBfQoL9AQit58+Hk2fy5479fBjRW1120siBWvUdba1ZvmUX1+MS8fFQjVxq4FebBn61Ncp1at6EsT8t4K8DR0VgTqgWK2MD5vVug5WxIbF3sxi//Wil6x6PS+ZaWhYftqhHiLvq4WGIuxOjNv/D2vMxjGxeT112WHgQNiZG6Ojo8MnWg5Vqf+WZaHzsLClRQm5RcZXOSxCE52vv3r3P/JhimMxL4Mcff6R79+7Ur1+f5s2bM3r0aFJTtafXgGrYZrt27QgKCiIiIoIbN25o5CuVSn777Tc6duxIQEAAbdu2ZcmSJY/Vv5ycHBwcyp6uUzqSq02bNiQmJrJy5Up8fX3x9fVlw4YN6j6//vrrNGnShMaNGxMREUFUVFSZ7UVFRdG7d28CAwPp3Lkz+/fv18iPiIhgyJAhZdYF1fRSX19fLly4AICvr2r6xbRp09T9On78OCNGjKB///5a9VetWkVgYCBZWVkVvyjl0NXVxdfXl6SkJI30R73HERERnDhxgsjISHU/Z82aVe45nzx5kv79+xMUFETTpk357LPPqtTn5ORkPvzwQ8LCwggMDKRNmzZMnjxZo0xsbCz/+9//aNiwIfXq1WPw4MHEx8er87/77jsaN25McnKyOu306dPUrVuXNWvWVLovQuXpSySYW1pXq+7Fs0cxM7ckoH6IOs3M3JKghmFcvnAKuUz7CbNcLqeoSFpmewX5uaQmJ+Af3EQdlANwdvXAwcmVqNOHqtVPQdDTl2BsWr3r/HbMUYxMrHD1DlWnGZlYUrN2OHdunEQh177OSxRy5LKyr/OiwlxyMhJwrRWiDsoBWNl7YmHjSvxVcZ0L1SPR18fawrxadY+dv4yluRlNg/zUaZZmpoTVC+DUxWhkcnmF9R1sVH9feYWFFZbT1dXF1tKC/MKy/z4E4VEkenpYGRtWq+7x+GQsjQxo6uakTrMwMiTU3ZnTCanIFAp1uq2psXr0Z2VcTsngeFwKbzeqW62+CYLwfLm4uFTrf49DjJh7CaSnpzNkyBAcHBzIyMjg999/JyIigr/++kvjB++lS5eIj4/n449VT/x/+eUX3n//fXbs2IGBgWqdkO+++461a9cydOhQgoODOXPmDD/++COGhoa8/vrr1eqfv78/a9aswdXVlVatWmFvb69VZvbs2QwePJgGDRrw3nvvAeDm5gZAQkICPXr0wM3NjeLiYv766y/efPNNtmzZgqenp7oNmUzGqFGjeO+993B1dWX16tUMHz6cDRs2qANsVfXHH3/Qr18/IiIi6NatG6AagdanTx8GDRrEjRs38PK6v77W+vXrad++PVZWVtU6HsCdO3dwddVcO+NR7/GECRP45JNPMDIyYuzYsQA4OTmV1TwXL17k3XffpWnTpsyYMYO7d+8yffp0rl+/zpo1ayq1tt2nn35Kamoq48ePx9bWlqSkJC5evD9d7Pbt2/Tv3x8fHx++//57dHR0mD9/PgMGDFBfbx9//DGHDh3is88+Y/HixRQWFjJu3DiaNWtWZtBTeL7u3L5JjZpeWl9ca7p7c+LQbtJS7+Ds4q5Oj716gQmj3qCkpARrG3vC23QjvHVXdb78XoBDX2LAwyQGBqQkZZKbnVntQKIgVEdmWizWDtrXuY2TD7EXdpGblYiVnYc6PeV2FOtm90OpLMHUwoHa9btRu/79KdwlCtV1rqevfZ3r6RtSmH+bwvzMagcSBaE6biYk4enqrHWde7u7sOfoKe6kpuNew1GdrlAoyC+UIleUcDs5hTXb92JsZIi3m/aPFGlRMcUyGQXSIk5fusq56OuE1fN/6uckCA+7mZGDh42F1nVey86SvTG3ScrJx83aosrtlpQoWXryMq29XatVXxCEF1dxcTGXLl0iPT2dBg0aYGNj88TaFoG5l8CUKVPU/61QKKhfvz4tWrTg2LFjNGvWTJ2Xnp7OihUr8PDwAMDPz49OnTqxYcMG+vfvT3x8PCtWrGDixIn069cPgLCwMKRSKXPmzKFfv37VWqtswoQJDB8+nPHjxwPg6upK69atGTBggDoA5efnh4GBAXZ2dlpTSYcPH67+75KSEsLDw4mKimLjxo2MHj1anSeTyfjf//5H796qKRjNmjWjQ4cOLFiwgJ9++qnK/QbUfXF2dtboV7NmzahRowbr16/nk08+AeDatWtcvHhRo0+VUVJSglwuJzc3lw0bNhAVFaXV30e9x97e3piZmWFiYvLIqbjz58/H3t6e+fPnI5FI1Oc3cOBADhw4QJs2j14g/cKFC4wePZouXbqo0x6ccz979mwsLS35/fffMTRUPels0KABbdu2Ze3atbz55psYGRkxdepUXn/9dZYvX87169fJycnhu+++e+TxhWcvNycLT28/rXQzC1VAITc7Qx2Yc3Jxx71WHewdXSjIy+H08Ui2rfudnOwMOveIAFTTao2MTYm7cVWjPdVIukQAsrMzRGBOeKak+Vk4uGgHEYxMVNdhYV6mOjBnaeeOd41OmFu7UCTN4dbl/Zw9sJjC/EyCm6k29jEytcbA0JS7d6I12isdSadqM10E5oRnKis3j7q1PLTSrczNAMjMydUIzN24ncQXMxaq/13DwY5PB76OuamJVhvLNu9kz9FTgGo9nqZBfrz3WletcoLwtGUVFlHXUftHdekIvMzCItyqcevdExPP3fxCvmjX+HG7KAjCC2TZsmXMnj2b3NxcABYvXkxoaCgZGRl07tyZTz75RB1nqA4RmHsJHDhwgHnz5hETE0NeXp46/datWxqBOR8fH3VQDsDd3Z06depw/vx5+vfvz5EjRwDo0KED8gemMYSFhbFw4UKSkpKqNYSzdu3abNu2jaNHj3Lo0CFOnjzJ8uXL2bBhAytXrqRu3YqHgcfGxvLTTz9x9uxZ0tPTNc7vYe3bt1f/t56eHu3atWPPnj1V7vOj6Orq8tprr7FmzRpGjRqFvr4+69evx8XFhdDQ0Ec38IC+fftq/Hvw4MEaAS+o/HtcGadOnaJbt27qoByoAo0WFhacPn26UoE5Pz8/Fi9ejJ6eHuHh4bi7u2vkHz58mC5duqCnp6e+liwsLPDz89MYWRcUFMSQIUOYNm0aMpmMn3/+udxpz8LzJSsuQl9fopVeeh3JHpjK+vZQzbXrGoa2Ycmc7zi0bxuhLTtjZW2n+sHWvD0Hdm1ix+YVNApti1RawI6Ny1Hcu2bkMrFmi/BsKeRF6OppX+elI95KFPevyeavfK5RxtOvLf9smsS1M1vwCe6CibnqOq8V2JErpzYQdWg5nv5tkRUXcP7QMkpK5PeOWbmFxgXhSSkqliEpY8F6g3v38+KHliZwcbJj/NC3KZLJuHbzNlHXYpGWs6ZW15YhhAT7kZmTy9FzlyhRliB/YMqgIDwrxQoFkjIGFBjcmxlSrKj6Ote5RcWsPR9Dz0BvLIyqN8VWEIQXz/r165k8eTJdu3YlPDyczz+//x3PxsaGkJAQ/v7778cKzIk15v7joqKi+OCDD3BwcGDatGn88ccf/PnnnwAUFRVplC3d/fThtLS0NAAyMzNRKpWEhITg7++v/t+776oWpn543bOqMDAwoGXLlnzxxRds2rSJRYsWqUfiVSQvL4/33nuPO3fuMG7cOFauXMm6deuoU6eO1vlJJBIsLTV3t3vw/J603r17k5GRwYEDB5DJZGzZsoWePXtWeVTh1KlTWbduHb/++isNGzZk4cKF/PPPP+r8qrzHlZGTk1PutZCdnV2pNn7++WdCQkL45Zdf6NChA506dWLXrl3q/MzMTJYuXapxHfn7+3Pq1Cmt66hr167IZDIcHBzo0KFDlc9HeDYkBobq6acPKg3IPRjofZiOjg7hbbpSolBw84GdYNt17U+j0Db8s3sz0yeOYM7Usejq6dEoTBUcNjAwesJnIQgV09M3VE8/fZBCrgpC6OppT0ktpaOjQ+363SkpUWjsBBsQ+jpe/m2JPr2Rv5cOY/fqT9DV1cPTvy0A+hLx4054tgwNJMjk2sGy0oCcwUP3cxMjI4J8a9E4oA5vdm9P91ZhTPttNbcSk7XacHG0J8i3Fi0b12PcoDcplBYzddEqlErl0zkZQSiHgZ4esjI2mSu+Fyg20Kv6z+Q/z13D1EBCJ1/3RxcWBOFf4/fff6dt27ZMnz6d1q1ba+X7+/sTExPzWMcQI+b+4/bs2YOZmRm//PKLOiCUmJhYZtkHR5s9mFanTh0ALC0t0dHRYdWqVWX+yH5wPbfH1bx5c+rUqUNsbGyF5c6dO0dycjILFixQ9xMgNzdXaw01mUxGdna2RnAuPT29zDXtngQnJyeaN2/O+vXrUSgUZGZm0qtXryq3U6tWLfWurI0aNaJTp05MnTqV5s2bo6OjU6X3uDIsLS3LvRYeDmyWx8HBgSlTplBSUsLFixeZN28eo0aNYseOHdSsWRNLS0tatmzJG2+8oVXX1PT+9vQlJSWMHz8eLy8v7ty5w9y5cxk5cmS1z014eswtrMjJztRKz8tRpZlbVrwGg5W16u+wsCBfnaavr89rb31Ah1fe4G7qHczMrbB3rMGaxT+jo6ODrYPzEzwDQXg0I1MrCvO1r3NpgSrN2KzieU+m5nYAFBfdH9msq6dP4/bDCQx/i9zMOxiaWGJh7cLR7dPR0dHB3LrGEzwDQXg0K3MzMnNytdKzclXX7aM2lWgSVBdWwuGzF/BwKXs921IhwX4sXLuVpLR0ajjYVb/TglBFVsaGZBZobzySVah6qG1dxU0lknLy2Rtzm7cb1SWz8P6DcZmiBEWJkrS8Qowkepgblv8ARxCEF1NcXBwRERHl5ltZWVV7c8dSIjD3HyeVSpFIJBoLm27durXMsjExMcTFxamnHcbFxREdHa1eT650CmZWVlalpjNW1t27d7Gz0/wyJpVKSUpKwtvbW50mkUi0RoBJpVJ1XqkzZ86QmJiIj4+P1rF2796tHmKqUCjYs2cPwcHBj9X/svpVqk+fPnz44YdkZGQQGhr62Lu1mJqaMnLkSMaPH8+ePXto3759pd/jivr5oIYNG7J3717GjRun3hzk8OHD5OTk0LBhwyr1V1dXl6CgID766CP27dtHXFwcNWvWJDQ0lJiYGPz8/CrcTGLRokVcuHCB9evXc+zYMaZNm0br1q3VgUrhxeHs6sGt61dQKpUa12L8rRgkBobYO1QcXMi4mwKAqZn2QsnmFlaYW1gBqmDtzeuXqenhg6GhGDEnPFvW9l6kJV7Wus7Tk66hLzHE3Krie3xetuo6NzLWfshhZGKFkYkVAMqSEtISLmPrVBt9ibjOhWfLw8WZKzfitK7zmLgEDA0k1HDQHlX/IJlcgVKppFD66O8cMplqyrbYmVV41jysLYhOzdC6zq/fzcZAXw9nC9MKamvLLJCiVMLSk1dYevKKVv7IjZF0quPOO4211+MVBOHFZmFhQWam9oPZUtevX3/swT4iMPcfoVAo2LFjh1a6n58fS5cuZdKkSbRv356zZ8+yefPmMtuwtbVl6NCh6hFJM2bMwNHRUT3Ky9PTkzfffJNPP/2UgQMHEhwcjEwm49atWxw/fpy5c+dWq+/du3endevWNGvWDAcHB1JSUlixYgWZmZm888476nJeXl4cO3aMw4cPY2FhgaurK/Xq1cPExISJEycyePBgUlJSmDVrFo6OjlrHkUgkzJs3j6KiIvWurMnJyY+cLvsoXl5e7N27l0aNGmFsbIynpydmZqoFklu1aoW1tTVnz56t9gYTD+vRowfz589n4cKFtG/fnvDw8Eq9x15eXmzatIl9+/Zhb2+Pg4NDma/T0KFD6d+/P0OGDCEiIkK9K2tQUBAtW7Z8ZP9yc3MZOHAgr776Kp6enshkMpYvX65eQw5g5MiR9O7dm4EDB9K3b1/s7Oy4e/cuJ06coFGjRnTr1o3o6GhmzpzJyJEj8fX1pXbt2uzdu5exY8eyceNG9aYRwrOXk52BtLAQGztHdfA2sH4oF88e4+LZYwQ2UAXx8/NyuHDmKHUDG6J/L3hekJ+LkbGpxpRuuVxO5K4N6Onp4+VT8e58/+zZTE52Jt37DHxKZycIKoV5GciKCzCzdEJXT3Wdu/qEcjvmCAnXj1LTJwyAosIcEmKOUMOzEXr31lksKszFwNAUnQeu8xKFnCun1qOrp4+9a0CFx44+vYnC/AwatHr/KZ2dIKhkZOdSKJXiaGuD/r115UKC/Th2/hLHoy4TEqy6J+fk5XP03CUa+vsiuXffzy+UYiiRqOuV2nfsNABeNe8/kMnOy8fSTDPQIZcrOHDqHAYSCTWdxPqxwtOTWSClQCbH0cwE/XtTVJu6O3E8Ppnj8cmEuKtG4OdIizkWl0RDV3skFTw4LourlTmjWzXQSv/z3DUKZXLeaeyHo5nx45+MIAjPXIsWLfjzzz/LnO0VExPD2rVree211x7rGCIw9x9RVFTEhx9+qJU+bdo0xowZw4oVK9iwYQMNGjRgwYIFdOzYUausv78/HTp04IcffiAtLY3g4GAmTpyIgcH9Idfjx4/H09OTP/74gzlz5mBqaoqnpyedOnWqdt+HDx/O/v37+f7778nIyMDa2hpfX1+WLFlCSEiIutzo0aP5+uuvGTFiBPn5+UyZMoVevXoxY8YMpk2bxgcffICHhwcTJ05k0aJFWseRSCT89NNPTJw4kWvXruHq6srMmTM1psBWx1dffcXkyZMZNGgQUqmUZcuW0bRpU0A1Fa9Nmzbs2LFDY+OJxyGRSBg6dCjjx4/n+PHjtGzZslLv8aBBg4iPj2fs2LHk5OQwfPhwRowYodV+QEAAixcv5qeffmLEiBGYmJjQpk0bxo4dW+HotlKGhobUrl2b5cuXk5SUhJGREQEBAfz222/qLaXd3d1Zu3Ytv/zyCxMnTqSgoAB7e3saN26Mr68vxcXFfPrppwQGBvL++6ofpjo6Onz//fd0796dH3/8kS+++OIJvJrCw45EbkdamE/uvWmp0RdOkZ2pmtoc2rIzxiam7NyyijPHIvn0m7lY26p+TAXUD6WmxzbWrZhDanICpmbmHPtnJ0plCe269le3f+XCKfbvWE9A/RCsbR0ozM/j3KlDpNyJp+Mrb2jssnr2xAEunj2Op48fBoaGXI+O4sKZozQOa0tA/RAEobpizv2FrKiAwvwMAO7cOEVhruo6967XBQNDUy4cWcHNy/vp9t4CTC1U13lN7zCuOW3lxK5Z5GQkYGhkzvWo7SiVJfiHvq5u/87Nk1w+sZaa3mGYWjpQLM0jLvofstPjCQp/S2OX1VtXIkm4fgx7Fz/0JUakxEdxO+YwXgHtcPWp2mZBgvCg7QePU1AoVU9LPX3pGulZOQB0at4UU2MjVv+1hwMnzzHny1HY21gBqsCcj7src1dvIiElDXNTE3YeOolSqaRvp/tr61y6fpPfN2wnJNgPJ3sbFPISrtyI48SFK9Ryc6FFw/szEn79cwuF0iLq1vLAxtKcrJw8Dp2JIjHlLm+/2hEjMb1PqKad0XHky2RkFahGaJ5JSCX93hTVjr7umBpIWHPuGv/EJjKzZyvs7wXHmro54W1nxfwjF0jMzsfCUMKua/GUKJX0DtacdXM5JYPoVNXnRY60GKlMwYYL1wGo42CDn6MNFkYGNK6p/cB7+5VbAGXmCYLw7/DRRx/Rt29funXrRuvWrdHR0WHTpk2sX7+eXbt2YW9vzwcffPBYx9BRitVWBeGpKSkpoV27drRu3Zovv/zyeXdHAA5cKnjeXXihTfvyf2RmlL0hSmkgbu3y2VqBOYCCgjy2b1jG5agTyGQyXN1q0aXX27i635+SnhAfy76/15J4+wb5uTno6etTw9WD0FZdCGoQpnG827di2L5xOcl34pDLZNg51KBpiw40CW+vMe1E0Lb7pHjuVpFti4eQn5NaZl5pIO7ErplagTmAYmke5w8uITH2BApFMTYO3gQ3fwcbp/s/5DJSrnPp+J9kpd5AWpiNrq4+1vae+NTrSs3a4RrHS0++RtTBZWSlx6GQF2NuXQPvoE54BXQQ1/kjjA3Y97y78EIbNuln0jKyyswrDcTNWbVRKzAHkFdQyPItuzh5MRqZTEatmi689UoHvN3uT9dOvpvBul0HuHojXh38c7C1JiTYj1dah2sE2w6fucC+42eJT0ohr6AQI0MDvFxr0Kl5ExoHPN4D0v86+c6yZ7oIKiM2RHI3v7DMvNJA3LwjUVqBOYC8Ihkrz0Rz6nYKxYoSatla8mYDX2rZWWm0s+58DOujrpd5jNeCvLUCeQ/6ZtdxcouK+aF786qe2kvF+ot5z7sL1ZJ7SnvG2ovCvFH1B84I2tLT0/npp5/YvXs3OTmqh1ympqZ06NCBMWPGlLl5YlWIwJwgPAXFxcVER0ezc+dOfv/9d7Zt24aXl9fz7paACMwJLwcRmBNeBiIwJ7wMRGBOeBmIwNyTJwJzT09GRgYlJSXY2NhoLM/zOMQ3d+GpUihUCwCXp3R9qv+a1NRU+vTpg42NDV9++aVWUK6kpISSMrZoL6Wnp/fCjpT4N/ddEARBEARBEARBEKqrdHmmJ+m/GRURXhgDBgzgxIkT5ebv3bsXV1fXZ9ijZ8PV1ZWrV6+Wmz9nzhxmz55dbn7p+nkvos8//5yNGzeWm//gGnuCIAiCIAiCIAiC8G9R0e/08ujo6DBs2LBqH1NMZRWeqhs3bpCfn19uvq+vr8bmEi+LlJQUUlPLXt8IVIE9a2vrcvOfp4SEhAq3i35wV9oXkZjKKrwMxFRW4WUgprIKLwMxlVV4GYiprE+emMpafWVtDlk6I+zh8JmOjg5KpRIdHR2uXLlS7WOKb+7CUyXWVSubo6Mjjo7/zt2ZXF1d/5OjHAVBEARBEARBEISXW3R0tMa/U1JSGDx4MD4+Przzzjt4enoCqkFIS5cuJTY2lgULFjzWMZ/MSnWCIAiCIAiCIAiCIAiC8B8yceJE3N3d+fHHHwkMDMTMzAwzMzOCgoKYPn06bm5ufPPNN491DBGYEwRBEARBEARBEARBEISHHDt2jJCQkHLzQ0JCOHr06GMdQwTmBEEQBEEQBEEQBEEQBOEhhoaGnDt3rtz8s2fPYmho+FjHEGvMCYLwUgna9PHz7oIgPHW7XWY87y4IgiAIT0BUj+nPuwuC8NS1fN4dEIQKdO/eneXLl2NhYcFbb72Fm5sbAPHx8Sxfvpxt27YRERHxWMcQgTlBEARBEARBEARBEARBeMiYMWPIzMxkxYoVrFy5El1d1cTTkpISlEolXbt2ZcyYMY91DBGYEwRBEARBEARBEARBEISHGBgY8MMPPzBw4EAOHDjAnTt3AHBxcaFFixbUqVPnsY8hAnOCIAiCIAiCIAiCIAiCUI46deo8kSBcWURgThAEQRAEQRAEQRAEQRDKcfv2bf755x+NEXPNmzenZs2aj922CMz9C8yaNYvFixdz9uzZarcRERGBiYkJCxYseC792bJlC8uWLePmzZsolUocHR1p0KABo0ePxtbWFoAlS5bg6elJy5ZVX/6zsn16+HV4uN7x48d5++23WbduHYGBgeoy4eHhNGjQoMr9qkjpsUoZGxtTs2ZNevfuzVtvvYWenl6V2tuwYQMSiYTu3btrpD/J9174b5PK5Gy9dIPr6dnE3s0mv1jG0LBAWtZyrVT9/GIZq85c5WR8MkWKErxtLXmrYR08bS21yp66ncK6qBjuZOdjbmhAq1ou9AryRk/3/mbhB2ITmH/kQpnHmte7DVbGj7f7kfByksukRJ/aSHpyDBkpMRRL82jSYQSefm0qVb+4KJ/zB5eSGHschbwIG0cf6rUYgLVDLY1y8dcOcefGSdKTr5GXlYyDiz+t+3xbZpu5mXe4eHQVd+9EUyTNxcTcDvc6LfFt8Cr6EnGdC1Unk8v5c/t+/jl9nvwCKW7OjvTv0oYg31qPrHv4zAU27ztMYkoaRoYGNAqow5vd2mFhZqpRLis3j5Vbd3P2SgzSomJqONjRs10zQusFaJS7k3qX3UdOEROXwM2EJGRyOXO+HIW9jdWTPGXhJVRUJOWf3ZtIuHWd23ExFBbk0ztiGA1DWleqfmFBPts3Lefy+eMUFxdT092bLr3ewcXNS6Nc1OnDXLlwitu3YkhPS8bT24/Bo7554v0RBOHF9f3337Ns2TJKSko00nV1dXnnnXcYO3bsY7UvAnPCU7dw4UKmT5/OgAEDGDlyJEqlkpiYGLZu3Upqaqo6MLds2TJatWpVrcBcZU2YMEG9WGNZ/P39+eOPP6hV6/4X19mzZ2NiYvLEA3OlpkyZgpeXF7m5uWzatInJkydTVFTE4MGDq9TOxo0bMTEx0QrMPeqcBaFUbpGMDRdisTU1wt3anMspGZWuq1QqmbbvFHGZuXT388TcyIBdV+P4ZvdxJncJx9ni/g+6c4lp/HTgDH6ONrzT2I/bWblsvBhLTlExA5sGaLXdO9gHBzNjjTQTifj4EqqnqDCHS8f/xMTcHis7D1ITLla6rlKp5ODmb8lKu0Wdhj0wMDbn+vnt7F/3Je1f/xFz6xrqsrHnd5CRGouNkw/F0rxy2yzIvcueNZ8iMTTFO7gLBkampCdd5eLR1WSmxNLslc8e63yFl9Pc1Zs4dv4yXVo0xcnOlgMnzzFl4UomfPAOdbzcy6238/AJflv3FwG1vXi7R0fSs3LY/s8xYm8nMvmjQRhIJAAUSKV8NfM3svPy6dw8BCsLM46du8TPS9eiUJTQrGGQus1rt27z9z/HcHVywMXRnluJSU/9/IWXQ0FeDvu2r8PK2g5nFw9uxFyqdF2lUsnSeZNJSoyjRbtXMDG14Ng/O1g4YwLDx07DzsFZXfbYPztJvH2Dmu7eFOTnPpX+CILw4lq8eDFLliyhY8eOvPfee+pYQWxsLEuWLGHJkiU4OjoyYMCAah9D/LIRnrrly5fTs2dPxo0bp05r2bIl77//vlbE+Wnz9vauMN/MzIx69eo9m87c4+Pjox6dFx4ezuXLl1m/fn2VA3PledQ5PylSqRQjI6Nncizh6bAyNlCPRIu9m8X47UcrXfd4XDLX0rL4sEU9QtxVX2ZD3J0Ytfkf1p6PYWTzeuqyK05fwc3KnM/aNlaPkDPW12fzpVg61fHAxdJMo+16NeyoZWf12OcnCABGJta8MmgxxqbWZCTHsHvNp5WumxBzhLt3ognr+gk1fcIAqOkTzvalw7h4bDWhnT9Wl23a6SOMzWzR0dFhx/KR5bZ560okxUX5tOk7GUtbNwBqBXZEqVSq8qR5GBiZlVtfEB4WE5fA4TMXiHilA91bhwPQsnEwY6bNZcXW3Xz74ftl1pPLFaz+ay9+tTz4cujb6OjoAODrUZOpi1ax9+hpOrcIAWDPkdMk383gqw8GEODjCUDH8MZ8/stClm3ZRUiwP/r6qpH/Df19WTL5M4yNDNm6/7AIzAlPjLmFNZ9PXoi5pTUJcdeZM23coyvdc+HsUeJuXOWNgR8T2CAUgMAGoUyfOJI929bQ/71R6rJ9B4zE0kp1P//l21HlNflY/REE4cX1559/0qZNG2bMmKGRHhwczM8//0xRURFr1qx5rMCcGEbzH/Djjz/SvXt36tevT/PmzRk9ejSpqalllt20aRPt2rUjKCiIiIgIbty4oZGvVCr57bff6NixIwEBAbRt25YlS5Y8Vv9ycnJwcHAoM690JFebNm1ITExk5cqV+Pr64uvry4YNG9R9fv3112nSpAmNGzcmIiKCqKioMtuLioqid+/eBAYG0rlzZ/bv36+RHxERwZAhQ8rt6/Hjx/H19eXCBdX0OV9fXwCmTZum7tfx48cZMWIE/fv316q/atUqAgMDycrKqvhFKYeuri6+vr4kJWl+aX3UexwREcGJEyeIjIxU93PWrFnlnvPJkyfp378/QUFBNG3alM8++6xKfZ41axb169cnKiqKfv36ERgYyMqVKyvV11KRkZH079+f4OBg9ft6+fJldX5OTg5ff/01zZo1IyAggF69enHo0KFK91GoOomeXrWnhx6PT8bSyICmbk7qNAsjQ0LdnTmdkIpMoQAgISuPxOx82vrU1Ji22sHXDaVS1U5ZCmVySkqU1eqbIDxIT1+Csal1terejjmKkYkVrt6h6jQjE0tq1g7nzo2TKOQydbqJuZ06sFEReXHhvXasNNKNTW3Q0dFBV088QxWq5vj5y+jq6tI2tKE6zUAioXXTBly7dZv0rOwy68Unp1BQKCW0vr/GtdvQ3xcjQwOOnLs/+ufKjTgszEzVQTkAHR0dwur5k5WTy+XYW+p0c1MTjI3ElGzhydOXSDC3rN79/OLZo5iZWxJQP0SdZmZuSVDDMC5fOIVcdv9+bmVdufv54/RHEIQXV2JiIs2aNSs3v1mzZiQmJj7WMcS3vf+A9PR0hgwZgoODAxkZGfz+++9ERETw119/oa9//y2+dOkS8fHxfPyx6on+L7/8wvvvv8+OHTswMDAA4LvvvmPt2rUMHTqU4OBgzpw5w48//oihoSGvv/56tfrn7+/PmjVrcHV1pVWrVtjb22uVmT17NoMHD6ZBgwa89957ALi5qUYOJCQk0KNHD9zc3CguLuavv/7izTffZMuWLXh63v9CKJPJGDVqFO+99x6urq6sXr2a4cOHs2HDBnWArar++OMP+vXrR0REBN26dQNUI9D69OnDoEGDuHHjBl5e99ehWL9+Pe3bt8fKyqpaxwO4c+cOrq6aa3o96j2eMGECn3zyCUZGRur57U5OTmU1z8WLF3n33Xdp2rQpM2bM4O7du0yfPp3r16+zZs2aSq9tJ5PJ+PjjjxkwYACjRo1Sn3Nlrse///6b0aNH07ZtW6ZPn45EIuHMmTOkpKTg5+dHcXEx7777Lunp6Xz00Uc4OjqyZcsWhgwZ8ljvp/D03MzIwcPGQuuLay07S/bG3CYpJx83awtuZah+ED687py1iRE2JkbEZeRotT1p9wmK5Ar0dXUIqmHPWw3raEyNFYRnJTMtFmsHL63r3MbJh9gLu8jNSsTKzqNKbdq7+nPl1AZO7p6Df0g/DI0tuJsUzfWoHfjU64a+RIxEFqrmZmIyzva2mDw0it3bzUWdb2ulvfanXK56gGKgL9HKM5BIuJmQhFKpREdHB5lcjkEZSwoYGKjq3ki4U6n17ATheblz+yY1amrfz2u6e3Pi0G7SUu/g7FL+tG9BEF4etra2REdHl5sfHR2NjY3NYx1DBOb+A6ZMmaL+b4VCQf369WnRogXHjh3TiOymp6ezYsUKPDw8APDz86NTp05s2LCB/v37Ex8fz4oVK5g4cSL9+vUDICwsDKlUypw5c+jXr1+11iqbMGECw4cPZ/z48QC4urrSunVrBgwYoA5A+fn5YWBggJ2dndZU0uHDh6v/u6SkhPDwcKKioti4cSOjR49W58lkMv73v//Ru3dvQBW57tChAwsWLOCnn36qcr8BdV+cnZ01+tWsWTNq1KjB+vXr+eSTTwC4du0aFy9e1OhTZZSUlCCXy8nNzWXDhg1ERUVp9fdR77G3tzdmZmaYmJg8ciru/Pnzsbe3Z/78+UjurRXj7OzMwIEDOXDgAG3aVG4B9NJAaJcuXarUV6VSydSpUwkPD2fOnDnqsg+uLbh161aio6PZvHmzeipu8+bNiYuLY+7cuVrDiIXnL6uwiLqO2h9IpSPwMguLcLOGLGkxANZljMyzMjYko6BI/W9DPT1a1HLB39EWYwN9bqZn89eVW0zYcZQpXcOxNTXWakMQniZpfhYOLv5a6UYmqhEShXmZVQ7MOXs0IDD0DS6fXEfijRPqdL8mvQkMe/Ox+iu8nDJzcrG20J7+bG1hrsrPLnuNLCc71SjN6JvxtG5aX51+J/UuOXn5AOQVFGJuaoKLgx0Xrt0gLSNLYxOH6BvxAGSUcwxBeFHk5mTh6e2nlW5mobqf52ZniMCcIAgAdOrUiWXLluHq6spbb72FiYkJAAUFBaxYsYJ169bxzjvvPNYxRGDuP+DAgQPMmzePmJgY8vLuLzB969YtjcCcj4+POigH4O7uTp06dTh//jz9+/fnyJEjAHTo0AG5XK4uFxYWxsKFC0lKSsLFxaXK/atduzbbtm3j6NGjHDp0iJMnT7J8+XI2bNjAypUrqVu3boX1Y2Nj+emnnzh79izp6eka5/ew9u3bq/9bT0+Pdu3asWfPnir3+VF0dXV57bXXWLNmDaNGjUJfX5/169fj4uJCaGjooxt4QN++fTX+PXjwYK1gV2Xf48o4deoU3bp1UwflQBVotLCw4PTp05UOzAFlbtTxqL7euHGD5OTkCneuOXz4MLVr18bDw0PrWtyyZUul+yc8O8UKBZIyAvcG90ZgFitU60kW3RuRIdErq6wuhbL773eIhzMhHvcXX25c05GgGnZ8s+s4Gy/E8n6I9kYRgvA0KeRF6OppjybS01eNOi9RFFerXRMLe+xd/HH1DsHQyJykW6e5cnI9RiZW+NTr+lh9Fl4+MplcY8ZEKcm9Nd+KH5ii9yALM1NC6/nzz6nzuDra0SSwLhnZuSze+Df6+nrI5Qp13TYhDdl99BQ/L13LOz06YmluxtFzlzgRdQWAouKyjyEILwpZcRH6ZYwOLf1+LCvn70QQhJfPhx9+yJUrV/jpp5+YOXOmepmu1NRU5HI5TZs2ZeTI8tcTrgwRmPuXi4qK4oMPPqBt27YMGjQIW1vVwqR9+/alqKhIo2zp7qcPp6WlpQGQmZmJUqkkJCREqxxQ7cAcgIGBAS1btlQHcg4ePMiQIUOYM2cOs2fPLrdeXl4e7733HjY2NowbN44aNWpgaGjI+PHjtc5PIpFgaak5NePB83vSevfuzdy5czlw4AAtWrRgy5YtvPHGG1UeVTh16lRq1apFRkYGCxYsYOHChTRu3JgWLVoAVXuPKyMnJ6fcayE7u+x1Z8pibGyMqanmdMLK9LV0Lbvy1h0E1bV4+fJl/P21R6ZUdqqt8GwZ6OkhK2Mzl+J7a8sZ3AvEGd77YShTlFW2BMkj3t86DjbUsrXiYnJ6heUE4WnQ0zekRKH9Y00hVwXkdPUMqtxm/NWDnNo7jy7vzMHE3A4AV59QlMoSog4vx823BYbG5o/XceGlIpHoazzUKiUrnaoq0Q5GlBrUpzvFMjnLt+xi+ZZdALRoFIyTrQ3Hoy5jZKga7exew5GRb73Gr2u38eXM3wCwsjDnnR6dWLRuG8aGVf9bEIRnSWJgiFyufT8vDchJKvg7EQTh5WJsbMzSpUvZs2cP//zzD3fu3AFUg1tatmxJmzZtKrUOZUVEYO5fbs+ePZiZmfHLL7+oA0LlLTz44GizB9Pq1KkDgKWlJTo6OqxatarMD6MH13N7XM2bN6dOnTrExsZWWO7cuXMkJyezYMECdT8BcnNztdZQk8lkZGdnawTn0tPTy1zT7klwcnKiefPmrF+/HoVCQWZmJr169apyO7Vq1VLvytqoUSM6derE1KlTad68OTo6OlV6jyvD0tKy3Gvh4cBmRcq6+VSmr6Vr0ZW3QUlpH319ffnuu+8q3R/h+bIyNiSzQKqVnlWoCsiWTl21MlL9WMssLNKaippVWIS33aOvQTtTI5Jy8h+3y4JQZUamVhTmZ2qlSwtUacZmVV/0+3rUDqwdvNRBuVI1vJpw8/J+MtNu4OQWXL0OCy8lawtzMrK11+vMzFFNL7W2LD/Qa2psxKcDX+duZhap6appqvY2VoyfsQgLM1NMje+vWxcS7E8j/zrcupOMskSJp6szl2JvAuDsoP0AUBBeJOYWVuRka9/P83JUaeaWj7delCAI/z3t2rWjXbt2T6VtsSvrv5xUKkUikWgESbZu3Vpm2ZiYGOLi4tT/jouLIzo6muBg1Rf+0imYWVlZBAYGav3PzEx7vZLKuHv3bpn9TkpKws7u/g8RiUSiNQJMKpWq80qdOXOm3MDU7t271f+tUCjYs2eP+vyqq6x+lerTpw8HDhxg8eLFhIaGVntEYSlTU1NGjhzJ9evX1VNwK/seV9TPBzVs2JC9e/dqPE0/fPgwOTk5NGzYsIKaj1aZvnp5eeHk5KTedbcsYWFh3L59GwcHhzKvReHF42Ftwa2MHJRKzZ1Tr9/NxkBfT71Zg4eNBQA30zVHZ2YWSMkokOJmbfHIY6XkFWBhJEZjCM+etb0Xmak3tK7z9KRr6EsMMbeq+meAtCALZRmjTZUlCo3/F4TK8nBxJCktnQKp5sOSmLgEADxdyt4c6kF21lb4eXtgb2NFfqGUGwl3CKztpVVOX18PbzcXfDxc0dfX48LVGwAE+miXFYQXibOrB3dua9/P42/FIDEwxN6hxnPqmSAILyMxYu5fQqFQsGPHDq10Pz8/li5dyqRJk2jfvj1nz55l8+bNZbZha2vL0KFD1fOfZ8yYgaOjo3qUl6enJ2+++SaffvopAwcOJDg4GJlMxq1btzh+/Dhz586tVt+7d+9O69atadasGQ4ODqSkpLBixQoyMzM1Fkn08vLi2LFjHD58GAsLC1xdXalXrx4mJiZMnDiRwYMHk5KSwqxZs3B0dNQ6jkQiYd68eRQVFal3ZU1OTtbYYKA6vLy82Lt3L40aNcLY2BhPT091kLJVq1ZYW1tz9uzZam8w8bAePXowf/58Fi5cSPv27QkPD6/Ue+zl5cWmTZvYt28f9vb2ODg4lPk6DR06lP79+zNkyBAiIiLUu7IGBQWVuWZcVVSmrzo6OowdO5bRo0czYsQIXn31VQwMDDh37hyBgYG0bt2aHj16sGbNGt5++23ee+89PDw8yM3N5fLly+rdYIXnJ7NASoFMjqOZCfr3pqg2dXfieHwyx+OTCXFXrQuXIy3mWFwSDV3t1VNUXa3MqWFpyt6Y27T1cUNXVxXE3X0tHh0daOp2/wdjjrQICyPNTSLOJqZyMz2HjnXEgszC01WYl4GsuAAzSyd09VRfl1x9Qrkdc4SE60ep6RMGQFFhDgkxR6jh2Qi9MtYrehRzqxokx58jJzMRC+v7gb24qwfR0dGp8mYSghAS5M/W/UfYe/Q03VuHAyCTy4k8cRYfd1f1jqx3M7MoKpbh4ljxzIJV2/agUJTQtWXFa+gmpaWz++gpGvjVpoaDXYVlBeFZysnOQFpYiI2do3r9xcD6oVw8e4yLZ48R2EB1befn5XDhzFHqBjZEX0xlFYSX2tChQ6tUXkdHh3nz5lX7eCIw9y9RVFTEhx9+qJU+bdo0xowZw4oVK9iwYQMNGjRgwYIFdOzYUausv78/HTp04IcffiAtLY3g4GAmTpyIgcH9kSfjx4/H09OTP/74gzlz5mBqaoqnpyedOnWqdt+HDx/O/v37+f7778nIyMDa2hpfX1+WLFmisZ7d6NGj+frrrxkxYgT5+flMmTKFXr16MWPGDKZNm8YHH3yAh4cHEydOZNGiRVrHkUgk/PTTT0ycOJFr167h6urKzJkzNabAVsdXX33F5MmTGTRoEFKplGXLltG0aVMA9PX1adOmDTt27NDYeOJxSCQShg4dyvjx4zl+/DgtW7as1Hs8aNAg4uPjGTt2LDk5OQwfPpwRI0ZotR8QEMDixYv56aefGDFiBCYmJrRp04axY8c+9vptle1rly5dMDIyYv78+YwePRpDQ0P8/PzUr6GBgQHLli1j1qxZzJ8/n7S0NKysrPDz8+ONN954rD4KFdsZHUe+TEbWvd1RzySkkn5vimpHX3dMDSSsOXeNf2ITmdmzFfZmqumoTd2c8LazYv6RCyRm52NhKGHXtXhKlEp6B/toHOPNBnX4MfI0k/eeINSjBrezctl1NY7W3jVxtbo/MverHcfwtLHA09YSE4k+tzJyiIxNwMbEiJ4BtZ7NCyL8J8Wc+wtZUQGF+RkA3LlxisJc1RR/73pdMDA05cKRFdy8vJ9u7y3A1EK1JmZN7zCuOW3lxK5Z5GQkYGhkzvWo7SiVJfiHvq5xjNSES9xNvAxAUUEOclkRl4+vBcDOxQ8HV9Uamr4Ne5B06wz7//wC73pdMDQy587NUyTdOoNXQDuMzcR0KqFqfDxcCa3nz6q/9pKdm4+jnQ3/nDpPWmY2Q/u9qi43e+VGLsfe4s+fJ6rTNu09yO2kVLzdXNDV0+XkhWiirsbSv0tbvN00R4SO+n42IcF+2NtYkZKeye4jpzAzMWZQn+4a5fILpew4eByAq7duA7Dj0HFMjIwwMTaic/OmT+ulEF4CRyK3Iy3MJ/fetNToC6fIzlTdz0NbdsbYxJSdW1Zx5lgkn34zF2tb1f08oH4oNT22sW7FHFKTEzA1M+fYPztRKkto17W/xjFuxFzi1nXVxiZ5udkUF0nZt30dAB7edfHyub8mcmX6IwjCiy8yMhJDQ0Ps7Oy0RtaW5XHXmNNRVuYogiCUqaSkhHbt2tG6dWu+/PLL590doRIyv/vf8+7CC23Ehkju5heWmVcaiJt3JEorMAeQVyRj5ZloTt1OoVhRQi1bS95s4EstOyuttk7eTmF9VAx3svMxNzSgZS0XegV6q0fgAfxx9hpn76SSlldIsVyBpbEhDVwceC3IG0tjQ602hfumu8x43l14oW1bPIT8nLLXuSwNxJ3YNVMrMAdQLM3j/MElJMaeQKEoxsbBm+Dm72DjpBmAvnh0DZeO/1HmMfyb9iMg9P4Pv/Tka1w69gdZaTcpkuZiauGAR93W1GnUE11dseFNecYG7HveXXhhFctk/LF9HwdPXyC/oBC3Go7069yGenW81WW+nv27VmDu9KWrrN/1D4mpaZSUlODm7Ei3VqGE1tPeBXvG8nVE34gnOy8Pc1MTGvnXoW/n1liaaQYe0jKyGDbp5zL7aW9jxZwvRz2hs/5vOmPc4nl34YU27cv/kZlR9kZvpYG4tctnawXmAAoK8ti+YRmXo04gk8lwdatFl15v4+rurdHOnr/+YO/fa8s8RtsufWjXtV+V+iNoa+lv8ry7UC25p7RntL0ozBtVf2CNoBpwkpKSQkBAAN26daNr165Pbe16EIE5QaiW4uJioqOj2blzJ7///jvbtm3Dy0usp/JvIAJzwstABOaEl4EIzAkvAxGYE14GIjD35InA3OM7ceIE27ZtY+fOneTl5dG4cWO6d+9Ox44dq73+fnnEVFbhsSgUigqHdpau4/Bfk5qaSp8+fbCxseHLL7/UCsqVlJRQUsZi3qX09PQee7jr0/Jv7rsgCIIgCIIgCIIgPK4mTZrQpEkTvvzySw4cOMC2bduYNGkSEydOpEWLFnTr1o02bdpoLA1WXf/NqInwzAwYMIATJ06Um793715cXV2fYY+eDVdXV65evVpu/pw5c5g9e3a5+aXr572IPv/8czZu3Fhu/oNr7AmCIAiCIAiCIAjCf5VEIqFdu3a0a9eO/Px8du/ezZo1axg1ahTDhw9n2LBhj30MEZgTHsvEiRPJz88vN9/B4eVcR6Fv3760atWq3PwXOVg5fPhw3nzzzXLzPT09n2FvBEEQBEEQBEEQBOH5Ki4u5tChQ+zdu5fLly9jaGiIi4vLoytWggjMCY9FrKtWNkdHRxwdHZ93N6rF1dX1hQ4cCoIgCIIgCIIgCMLTVlJSwuHDh/nrr7/Ys2cPUqmU0NBQJk2aRPv27TExeTLrI4rAnCAIgiAIgiAIgiAIgiAAZ86cYdu2bezYsYOsrCyCg4MZNWoUnTt3xsbG5okfTwTmBEEQBEEQBEEQBEEQBAF44403MDIyUm/yUDplNSkpiaSkpDLr+Pv7V/t4IjAnCMJLRb/jq8+7C4Lw9F183h0QhKfvjHGL590FQXjqgjZ9/Ly7IAhPn/+8590DQdAilUrZtWsXu3fvrrCcUqlER0eHK1euVPtYIjAnCIIgCIIgCIIgCIIgCMCUKVOe6fFEYE4QBEEQBEEQBEEQBEEQgJ49ez7T4+k+06MJgiAIgiAIgiAIgiAIggCIwJwgCIIgCIIgCIIgCIIgPBciMCcIgiAIgiAIgiAIgiAIz4FYY+4Bs2bNYvHixZw9e7babURERGBiYsKCBQueS3+2bNnCsmXLuHnzJkqlEkdHRxo0aMDo0aOxtbUFYMmSJXh6etKyZcun1qeHX4eH6x0/fpy3336bdevWERgYqC4THh5OgwYNqtyvipQeq5SxsTE1a9akd+/evPXWW+jp6VWpvQ0bNiCRSOjevbtG+pN875+Xixcv8t1333HlyhXMzMxo2rQpEydOxMzM7Hl3TXgGpEXFbN53iOvxiVyPTyS/oJAPXu9Bqyb1K1U/v1DKiq27OBF1hWKZDG83VyJe7YCXaw2tsicvRrN2RySJKWlYmJnSqkk9endoqfX3GHU1lrU7I7mZkIS+vh6BPl68/WpH7G2snsQpCy8huUxK9KmNpCfHkJESQ7E0jyYdRuDp16ZS9YuL8jl/cCmJscdRyIuwcfShXosBWDvUUpcpKszl5qW93Ll5kpyMBJQlCsytXajdoDtutZtptJd6+yL7139Z5rHa9fseW2ff6p+s8NIqKpLyz+5NJNy6zu24GAoL8ukdMYyGIa0rVb+wIJ/tm5Zz+fxxiouLqenuTZde7+Di5qVV9nLUSfb+9QepyYmYmlvQMKQ1bTr30bqfx0SfZ+9ff3Ln9k309CV4+wbQpdc7WNs6PJFzFl4+UpmcrZducD09m9i72eQXyxgaFkjLWq6Vqp9fLGPVmaucjE+mSFGCt60lbzWsg6etpVbZU7dTWBcVw53sfMwNDWhVy4VeQd7o6ZY/zuXXoxfYfz2B+i72fNqmUbXPUxCE/z4xYu4/ZOHChXz66ac0atSIn3/+mZ9//pnXXnuNixcvkpqaqi63bNkyDhw48FT7MmHCBMaOHVtuvr+/P3/88Qe1at3/ITN79uzHCoo+ypQpU/jjjz+YNWsWtWvXZvLkyfz2229Vbmfjxo1s27ZNK/1R5/yiy8nJYfDgwejq6jJr1iw++eQTMjIyyM7Oft5dE56R3PwC1u86QGJKGh41nKpUV6lU8v3ClRw+c4FOzZvyZvcOZOXmMXHOEpLS0jXKnr0Sw4+L12BmYsS7vbrQJLAOG3b/w+IN2zXKnb50le8WLEeuUPBmt3Z0bxXG5dhbfDnzN7Lz8h/7fIWXU1FhDpeO/0lORgJWdh5VqqtUKjm4+Vvirx7EJ7gLQc3eRlqQxf51X5KbeUddLj3pKheOrsTA0Ay/Jr0JCHsDPYkhR/+ezsWjq8ts26deV5p2/FDjf2ZWzo9zqsJLrCAvh33b15GanICzi0eV6iqVSpbOm8z5U4cIbdmZzj0iyMvNZuGMCdxNTdIoe/XSWVb8Og1jEzO6930P/+Cm7N+xnq1rNb9fRV84ze+zv0WhkNOpx1s0b9udm9cvM/+n8eTliu8ZQvXkFsnYcCGWxOw83K3Nq1RXqVQybd8pDt+8Q0dfd95s4Eu2tIhvdh8nKUfzO8a5xDR+OnAGMwMJ7zT2o7GbIxsvxrLk5OVy24+9m8U/NxKR6Imf24IgPJoYMfcfsnz5cnr27Mm4cePUaS1btuT999+npKTkmfbF29u7wnwzMzPq1av3bDpzj4+Pj3p0Xnh4OJcvX2b9+vUMHjz4ibT/qHN+0Z09e5b09HRWrFiBl5fqifirr75a6fpSqRQjI6On1T3hGbCyMGPBxDFYW5hzPT6Rz3/+tdJ1j52/xNWb8Ywe0JeQYH8AQuv58+Hkmfy5Yz8fRvRWl122eSduNRz5YkiEekSFkZEhm/YcpEuLprg42gOwYutuHG2tmTRiIPr6qnIN/X0ZO30+m/ce4u1XOz6pUxdeIkYm1rwyaDHGptZkJMewe82nla6bEHOEu3eiCev6CTV9wgCo6RPO9qXDuHhsNaGdPwbAwrYmXd6Zg6nF/ZFA3kGdidwwgehTG6nTqCf6Es37pb2Ln7pNQXhc5hbWfD55IeaW1iTEXWfOtHGPrnTPhbNHibtxlTcGfkxgg1AAAhuEMn3iSPZsW0P/90apy/69YSlONdx5d/iX6vu5oaERkbs2EtaqKw5OLgBs37QcGztHhoz+Dn191c+PuoGNmPX9JxzYtYmur73zpE5deIlYGRswr3cbrIwNib2bxfjtRytd93hcMtfSsviwRT1C3FUPQULcnRi1+R/Wno9hZPN66rIrTl/Bzcqcz9o2Vo+QM9bXZ/OlWDrV8cDFUnNmiVKpZOmpKzT3cuFikubDSUEQhLKIEH4V/Pjjj3Tv3p369evTvHlzRo8erTES7UGbNm2iXbt2BAUFERERwY0bNzTylUolv/32Gx07diQgIIC2bduyZMmSx+pfTk4ODg5lTwfQvfch0qZNGxITE1m5ciW+vr74+vqyYcMGdZ9ff/11mjRpQuPGjYmIiCAqKqrM9qKioujduzeBgYF07tyZ/fv3a+RHREQwZMiQcvt6/PhxfH19uXDhAgC+vqqpOtOmTVP36/jx44wYMYL+/ftr1V+1ahWBgYFkZWVV/KKUQ1dXF19fX5KSNJ/8Puo9joiI4MSJE0RGRqr7OWvWrHLP+eTJk/Tv35+goCCaNm3KZ599VqU+Jycn8+GHHxIWFkZgYCBt2rRh8uTJGmViY2P53//+R8OGDalXrx6DBw8mPj5enf/dd9/RuHFjkpOT1WmnT5+mbt26rFmzRp2mo6MDwO3btx/Zr9L3LzIykpEjR9KgQQM+/PBDoPLXUWxsLMOHD6dJkyYEBwfzyiuvaIxEfBp/I0LFJPr6WFtU7YlzqWPnL2NpbkbTID91mqWZKWH1Ajh1MRqZXA5AQnIaiSlptAttqDHNqWN4E5RKJcfOq54+5+YXkJiSRpPAuuqgHICHixMujvYcPnuhWv0UBD19Ccam1tWqezvmKP9n777jqq7+B46/gHvZFy57yhAQFRUVF7i3mVmZqdlXs2GW2resX1rfbKiVZVkZapkjLc3IPco9cOMWnCCCyJJ52eOu3x8XLl4vIK4sPc/Hg4d4Pud8PudcPlzOfX/OsLSW4x0Yrk+ztLanUZPOpF85hlqlBMDW3s0gKAe691ivgA6o1UqKCzKpjbKyDI1GfUd1E4QbSaRSZPZ3dp+fPXUYW5k9Ldp00qfZyuxpFRbB+bjjqJS6+zwrI5WszFQ6dOlj8H7eqfsAtFotZ0/pgiSlJUVkZaYSEtpBH5QD8PD2w9Xdm9gTB+6onoIgNTNDbmVxR2VjUjKxtzSno0/NDAE7SwvCfT04kZqFUq17L05VFJNWUELvoEYG01b7Bfug1erOc7P9V9K5pihieOsmd1Q3QRAePWLE3G3Izc1l3LhxuLq6kpeXx88//8yoUaP4888/DToa586dIyUlhXfe0T05/+6773jllVfYunUr5ubmgC5YsmrVKl577TVCQ0M5efIkX3/9NRYWFjz33HN3VL+QkBB+//13vL296dGjBy4uLkZ55s6dy6uvvkrbtm156aWXAPDx8QEgNTWVp556Ch8fHyorK/nzzz95/vnn2bhxI/7+/vpzKJVKJk2axEsvvYS3tzcrV65k4sSJrF27Vh9gu11RUVEMHz6cUaNGMWjQIEA3Au3ZZ59l7NixXLlyRT+KC2DNmjX07dsXuVx+R9cDSE9Px9vbcA2KW/2MP/74Y959910sLS3101bd3Wuf8nf27FlefPFFOnbsyJw5c8jJyWH27NlcvnyZ33//vUFr202ePJmsrCymTp2Kk5MTGRkZnD17Vn/82rVrjBgxgqCgIL744gtMTEz48ccfGTNmjP5+e+eddzhw4ADvv/8+S5YsoaysjPfee48uXboYBD07duyIu7s706dPZ9WqVTg6Ot6yfh9++CGDBw9m3rx5+uBvQ+6j5ORkhg8fjoeHBx988AEuLi7Ex8eTnl4zFex+/I4I909Sagb+3h76AG+1QF8vdh4+TnpWLr6ebiSl6YLhN68752gvw0luT3KaroOrVOk6xFKp8Z8pC3MpqZlZ5BcW3XEgURDuRH52Ig6ujY3uc0f3IBLjtlOkSKt3emxFqW7KnoWlndGxo9sjUSnLMTExxcWrOaFdRuPoHnRP6y8IDZF+LQnPRsb3eSPfQI4e2EF2VjoeXr6kXdM9dPbyCTDIZ2fviL2DExmpSQCoqgLWEqm50bWk5uZcz8inqCD/jgOJgnAnkvIK8XO0M7rPA5zt2ZVwjYzCEnwc7EjO071v37zunIO1JY7WllzNKzRIL1OqWHnqEk+1CLjjoKEgCI8eEZi7DTNnztR/r1aradOmDd26dePIkSN06VKzmHP1dEA/Pz8AmjdvzoABA1i7di0jRowgJSWF5cuXM23aNIYPHw5AREQE5eXlzJs3j+HDh+uDHLfj448/ZuLEiUydOhUAb29vevbsyZgxY/QBqObNm2Nubo6zs7PRVNKJEyfqv9doNHTu3JnY2FjWrVvH22+/rT+mVCp5/fXXGTpUNzWtS5cu9OvXjwULFvDNN9/cdr0BfV08PDwM6tWlSxc8PT1Zs2YN7777LgDx8fGcPXvWoE4NodFoUKlUFBUVsXbtWmJjY43qe6ufcWBgILa2tlhbW99yKu6PP/6Ii4sLP/74I1KpVN++l19+mejoaHr1uvVC43Fxcbz99tsMHDhQn/bUU0/pv587dy729vb8/PPPWFjo/vi3bduW3r17s2rVKp5//nksLS358ssvee655/j111+5fPkyhYWFfPbZZwbXOnfuHFqtFpVKxauvvsqyZcuwsbGpt369evXS/1yqNeQ+ioyMRCqVsnLlSv3GEhERNVO47tfviHD/KIqKaRbgZ5Qul+l+vvmFRfh6uqEoLAJ0gTijvHa25BXoOrgOdrZYW1lyKdlwBGf1SDqAvAIRmBP+XuUlCly9QozSLa11AYWy4vw6A3MVZUVciduBi1dzrGxrHnyYmpnhHRiOh39bLCztKMxL5dKJ9exePZXew2bi4Gq82L4g3E9FhQr8A5sbpdva6e7zooI8PLx8KS5UANQaUJPZySlQ5FV974CllQ1Xr1wyyKMbSZcGQEFBngjMCX8rRVkFzdyMH0JXB9PyyyrwcQBFeSUADrUE2eRWFuSVVhikrYm9jNTMlIHN/O59pQVBeGiJT7a3ITo6mhEjRhAWFkbz5s3p1q0boBv9c6OgoCB9UA7A19eXpk2bcubMGQAOHToEQL9+/VCpVPqviIgIsrOzjaZXNlSTJk3YvHkzP/30E6NHj0Ymk/Hrr78yePBgLly4cMvyiYmJTJgwgYiICJo1a0ZISAhJSUlG7QPo27ev/nszMzP69Omjb9+9ZGpqyjPPPMOGDRtQVU2FW7NmDV5eXoSHh9+itKFhw4YREhJCp06dmDVrFmPHjjUIeEHDf8YNcfz4cXr37q0PyoEu0GhnZ8eJEycadI7mzZuzZMkSfvvtN65evWp0/ODBg/Tq1QszMzP9fWRnZ0fz5s0NRta1atWKcePGMWvWLKKiovj4448Npj1nZ2fz+uuv88Ybb7Bs2TLS09N54403qKzUdUauX7+un158ox49ehjVqSH30ZEjR+jfv3+du73er98R4f6pqFQilRiPAjWvuv8rq6Y+VVT9e+MoY31eiYTKqt9zExMT+ka042z8FVZs3kFGdi6J19L5dtkfqKqmlyirziUIfxe1qgJTM6lRuplENxJIo66stZxWqyVm23dUVpbQtscrBsecPZvRedBkGof0wSugA83aD6H3iC8BiD24/B63QBBuTVlZgURifJ9X92eq33srK3UBidrySqTm+imvJiYmdOzal8RLcWzdsJycrAxSUxL5bdFs1FXv+Spl7b87gnC/VKrVSGt5yGteNaOlUq1bn7uiegR/LZs4mJuZ6qe8AqQXFrPtYjLPhzVF2oCZMYIgCNXEiLkGio2NZfz48fTu3ZuxY8fi5OSEiYkJw4YNo6LC8EmJk5OTUXknJyeys3WjPPLz89FqtXTq1MkoH0BGRgZeXl53VE9zc3O6d+9O9+7dAdi/fz/jxo1j3rx5zJ07t85yxcXFvPTSSzg6OvLee+/h6emJhYUFU6dONWqfVCrF3t5wOPeN7bvXhg4dyvz584mOjqZbt25s3LiRkSNH3vaIqS+//JKAgADy8vJYsGABCxcupH379vrg2+38jBuisLCwznuhoTudVu+u+9133zFt2jT8/f15++236devH6C7l5YtW8ayZcuMyt4YEAR4/PHHmTdvHq6urvry1arXGRwyZAhmZmYsWrSIUaNGMWXKFGbPns3x48exsbExGiV4c/saeh8pFIo610Osbtf9+h0R7g8Lc6l++umNqgNy1QE6i6p/qwPtBnlVKsxvCNgNH9CLwuJSNu4+yIZdujWIWgUH0LNDW3YcOoaFufG0KEG4n8wkFmjUxgFhtUoXVDA1q/2ePLnnJzKST9Kx/5vIXfxrzXMjmdwDr4AOpF4+glajwUSMEBb+RlJzC/300xtVB+Sq+xfm5roRRLXlVSkrkdzQD+nz+AhKigrZt2MD0dvXAxDULJR2Eb2I2b8dc3OxeZTw9zI3M0NZy+Z4lVWBNvOqQJxF1UNHpbq2vBqDANwvxy4Q5OJgsG6dIAhCQ4jAXAPt3LkTW1tbvvvuO31AKC0trda8ubnGu+/k5ubStGlTAOzt7TExMeG3334zCp4ABuu53a2uXbvStGlTEhMT6813+vRpMjMzWbBggb6eAEVFRUZrqCmVSgoKCgyCc7m5ubWuaXcvuLu707VrV9asWYNarSY/P58hQ4bc9nkCAgL0u7K2a9eOAQMG8OWXX9K1a1dMTExu62fcEPb29nXeCzcHNuvi6urKzJkz0Wg0nD17lh9++IFJkyaxdetWGjVqhL29Pd27d2fkyJFGZW+chqrRaJg6dSqNGzcmPT2d+fPn89///ld/PC0tDUtLS/26d82bN2f+/PmMHTuWGTNmcPz4cUaMGKGfLlvt5nU5GnofyeXyOjdOgb/3d0S4N+QyW/KrpqneSFFUDKCfciqv+jevoAgnueHvgaKwmECfmoCrRGLG6yOe5LnHe5ORlYu9zAZPV2fm/LoaExMTPFyMA9+CcD9Z2sgpK8k3Si8v1aVZ2RpPxTt3JIrLsVtp1XkUfs16NPha1rbOaNQqVMpypBbWd1xnQbhdMjs5hQXG93lxoS5NZq+b/mdrJwegqCAfuYOzQd6iQgWNfGt2q5dIJDzzn/H0GzySnKx0bGVyXNw8+X3Jt5iYmODk6nGfWiMItZNbWZBfWm6UrijTPUiunroqt9Q9cMkvq8DJxsoob6Czri9zLjOXM+k5TOrehuziMn0ejVZDpVpNdnEZNuYSrM2N+7WCIAjiEWwDlZeXI5VKDQIRmzZtqjVvQkKCwbTDq1evcvHiRUJDQwH0UzAVCgUtW7Y0+qpret+t5OTk1FrvjIwMnJ1rOkxSqdRoBFh5ebn+WLWTJ0/WGZjasWOH/nu1Ws3OnTv17btTtdWr2rPPPkt0dDRLliwhPDz8rkdL2djY8N///pfLly+zc+dOoOE/4/rqeaOwsDB27dplMDLo4MGDFBYWEhYWdlv1NTU1pVWrVrz11luoVCr9/RUeHk5CQgLNmzc3uo9u3Cxj0aJFxMXF8d133/H222+zYMEC/Y64oAtaZmZmcurUKX1ax44dmT17Nr/99hsZGRlMmDDhlvVs6H0UHh7Otm3bKC4urvU89+t3RLh//Lw8SErNQKvVGqQnXE3FwlyKp6tTVT5dgPZKarpBvryCInIVBfh6uRmdWy6zpVmAL56uzmg0Gs4nJhPk642lhRgxJ/y9HFwak591xeg+z82IRyK1QCY3/NuUcOYvzh75nSZtnqBZ+9t7oFRccB0ziTkSc6tbZxaEe8jD24/0a8b3eUpyAlJzC1xcdZv3eDbSPSRLSzF8+FtYkEdBfi7uXn5G55bZyfEPbI6LmycajYaky+dp5BeEhYUYMSf8vfwc7EjOKzS6zy/nFGAuMcPDTveA289Rt1lPUq7hbJf80nLySsvxcdAdzynRBeO+jT7Ff9ft1X/llVZwLjOP/67by97E1PvdLEEQ/qXEiLmbqNVqtm7dapTevHlzli1bxowZM+jbty+nTp1iw4YNtZ7DycmJ1157TT8iac6cObi5uelHefn7+/P8888zefJkXn75ZUJDQ1EqlSQnJxMTE8P8+fPvqO5PPPEEPXv2pEuXLri6unL9+nWWL19Ofn4+L7zwgj5f48aNOXLkCAcPHsTOzg5vb29at26NtbU106ZN49VXX+X69etERkbi5mb8IVkqlfLDDz9QUVGh35U1MzOTefPm3VG9b6zXrl27aNeuHVZWVvj7++sDMD169MDBwYFTp07d8QYTN3vqqaf48ccfWbhwIX379qVz584N+hk3btyY9evXs3v3blxcXHB1da31dXrttdcYMWIE48aNY9SoUfpdWVu1aqWfalyfoqIiXn75ZZ588kn8/f1RKpX8+uuv+jXkAP773/8ydOhQXn75ZYYNG4azszM5OTkcPXqUdu3aMWjQIC5evMj333/Pf//7X4KDg2nSpAm7du1iypQprFu3DgsLC4YOHcrKlSt57bXXGDduHM2aNSMzM5MVK1bg4uJCXl4eixYt4s0336y3zg29jyZOnMjevXsZOXIkr7zyCi4uLiQmJlJWVsbYsWPv2++IcG/kFRRRVl6Om5MjkqopHp1Cm3PkzDliYs/TKVS3OH5hcQmHT58jLCQYadUU1Uburni5ObPz8An6hrfTj07dfvAYJiYmdGplvLD+jTbuOUh+QREvPT2w3nyCcLfKivNQVpZia++OqZnu/vUOCudawiFSLx+mUZBuw5qKskJSEw7h6d8OsxvW2kqJP8CpvYvwbdqN1t1erPM65aUFWFrfNHo0O4n0pGN4+LY1GpksCPdSYUEe5WVlODq76df+bNkmnLOnjnD21BFattU9KCspLiTu5GGatQzTT1F182iEi5sXRw/spEOXfvr38yP7tmFiYkLLNvWvBbxv5wYKC/J54tmX72MLBUEXRCtVqnCztUZSNUW1o687MSmZxKRk0slXN2KzsLySI1czCPN20U9R9ZbL8LS3YVfCNXoH+WBqqntP3hGfgokJ+mmrIe5OvN2jrdG1Fx05i7ONFU+1DKCRXDxYFgShdiIwd5OKiopagw+zZs3i//7v/1i+fDlr166lbdu2LFiwgP79+xvlDQkJoV+/fnz11VdkZ2cTGhrKtGnTML9hPaSpU6fi7+9PVFQU8+bNw8bGBn9/fwYMGHDHdZ84cSJ79uzhiy++IC8vDwcHB4KDg1m6dKnBWl1vv/02n3zyCW+88QYlJSXMnDmTIUOGMGfOHGbNmsX48ePx8/Nj2rRpLFq0yOg6UqmUb775hmnTphEfH4+3tzfff/+9wdTFO/HRRx/x+eefM3bsWMrLy/nll1/o2LEjoJsC0atXL7Zu3Wqw8cTdkEqlvPbaa0ydOpWYmBi6d+/eoJ/x2LFjSUlJYcqUKRQWFjJx4kTeeOMNo/O3aNGCJUuW8M033/DGG29gbW1Nr169mDJlin7KaH0sLCxo0qQJv/76KxkZGVhaWtKiRQsWL16Mo6NuGomvry+rVq3Sr0FXWlqKi4sL7du3Jzg4mMrKSiZPnkzLli155RXdguMmJiZ88cUXPPHEE3z99dd88MEH2NjY8Ntvv/Hdd9+xZMkS/Rpw/fv359VXX2Xjxo18/vnnuLq68txzz9VZZ2dn5wbdR35+fvz+++/Mnj2badOmoVar8fPz49VXX9XnuR+/I8KtbdkfQ2lZuX5a6olz8eQqdDulDujaERsrS1b+uZPoY6eZ9+EkXBzlgC4wF+TrzfyV60m9no3MxpptB46h1WoZNqCnwTX+80Q/Zi1eyac//kJEm5Zcy7jO1gNH6dWpLd7uNVPi9x0/Q0zseZoH+GFhbk5cfCKHT5+jV6e2dAw13jFQEBoq4fSfKCtKKSvR7RqZfuU4ZUW6pQcCWw/E3MKGuEPLSTq/h0EvLcDGTrcmZqPACOLdN3F0eySFealYWMq4HLsFrVZDSHjNe2NuZjwx2+ZgYWmHW6NWXL0YbXB9Z8+m2NrrPswd3jIbMzNznD2bYmGl25X1ytntSCQWtOr8n7/j5RAeUof2bqG8rISiqmmpF+OOU5Cvu8/Duz+GlbUN2zb+xskje5k8fT4OTrr7vEWbcBr5bWb18nlkZaZiYyvjyL5taLUa+jw+wuAaA58ezS8LvmBJ5HRatevM9fRrHI7eQruI3rh6eOvznToazdlTMfgHNcfcwoLLF2OJO3mY9hG9adGm9vVkBaEhtl28SolSiaJqd9STqVnkVk1R7R/si425lN9Px7MvMY3vn+6Bi61uFHJHH3cCneX8eCiOtIIS7CykbI9PQaPVMjQ0yOAaz7dtytd7T/D5rqOE+3lyTVHE9ktX6RnYCO+qYJuzjRXONsYjnH85dgF7S3PaNzJ+iC8IglDNRHvz+F1B+AfSaDT06dOHnj178uGHHz7o6gj/YkXHjUfECjUmzPiW7DxFrceqA3HzfltnFJgDKC4t49eN2zl29iJKpZKARl78Z3A/g3Xjqh2Nu8DqbdGkXc/GztaG7u1bM7Rfd/0IPNBNg12xaQdXM66jVKrwcHWiX0R7+oSHiVFEt/Dl2V4Pugr/aJuXjKOksPZ1LqsDcUe3f28UmAOoLC/mzP6lpCUeRa2uxNE1kNCuL+DoXvNBLun8bo5uj6zz+h36vYF/c93PKP70ZlIu7qNYkYmyshQLK3vcfFrSvONwZHKx7lZ9+rY33kRGqDHrw9fJz6t9Y67qQNyqX+caBeYASkuL2bL2F87HHkWpVOLtE8DAIaPxvmHduGrnzhxl919/kJWZho3MjrYde9DrsWcNdt++lpzAlnW/kpl+FZVSibOrJx279aND577i/fwWWq1/50FX4R/tjbV79dNIb1YdiPvhUKxRYA6guELJipMXOX7tOpVqDQFO9jzfNpgAZ7nRuY5du86a2ATSC0qQWZjTPcCLIS0D9SPw6qtfI7ktk3u1u4tWPvwcPvjhQVfhjvyTP1fI2onBDP8mIjAn/KNVVlZy8eJFtm3bxs8//8zmzZsN1k4ThNv1T/4DKgj3igjMCY8CEZgTHgUiMCc8CkRg7t4Tgbl/FzGV9V9CrVYbLU56oxufSj5MsrKyePbZZ3F0dOTDDz80CsppNBo0tWx1Xs3MzOwf+yT231x3QRAEQRAEQRAEQRDu3sMZzXkIjRkzhqNHj9Z5fNeuXXh7e9d5/N/K29ubS5cu1Xl83rx5zJ07t87j1evn/RP973//Y926dXUev3GNPUEQBEEQBEEQBEEQHj4iMPcvMW3aNEpKSuo87urqWuexh9mwYcPo0aNHncf/ycHKiRMn8vzzz9d53N/f/2+sjSAIgiAIgiAIgiAIfzcRmPuXEOuq1c7NzQ03t3/nLkfe3t7/6MChIAiCIAiCIAiCIAj3V/3byAiCIAiCIAiCIAiCIAiCcF+IwJwgCIIgCIIgCIIgCIIgPABiKqsgCI+UL8/2etBVEIT7bkqL3Q+6CoJw36nWb3jQVRCE+y72qdkPugqCcN91f9AVEIQHTIyYEwRBEARBEARBEARBEIQHQATmBEEQBEEQBEEQBEEQBOEBEIE5QRAEQRAEQRAEQRAEQXgARGBOEARBEARBEARBEARBEB4AsfmD8MiLjIxkyZIlnDp1Sp92/fp15s2bR3R0NLm5uTg5OdG9e3cmTJiAm5ubQfng4GD991KpFA8PD7p3787EiRORy+UNrseoUaM4evQoACYmJri7uxMWFsbbb7+Nl5fX3TUS43ampqaybt06hg0bZtQmQaisKOHM/mWkJcagVlXg6BZE625jcHANaFD5wtxrnNr3MznpFzA1k+DpH0Zo1xextLY3yKfVarl0Yj2XY7dSXpKPzMGTZu2fwSe4q9E5r8Uf5NLJjRTlp2FiYoq9kw/BYU/h2bjdPWmz8OgpKStn+abtHI29QKVSSaCPN6Oe7Edjb88GlU/NzGbZhq1cSkrBzMyMsOZNGPVkf+xtbQzyabVaNu45yPaDx1AUFuPh6sTTvbvSuW1LgzzRx04TE3uB5LRMiktLcXF0oHObFjzRMwJzqfSetl0QalNSqeS3k5c4lpJJhVpDoJM9/wlrir+T/a0LA6mKYn49cYFLWflITE1p4+3CqLCm2Fla3OeaC48ilVLJjj9/5/TRfZSVluDu5UPfJ54jqGnoLcsWKHL5c81SEi7EotVqaNykBY8/8wJOzu5GeY8f2sW+nRvJz83C3sGJiB4DiegxsN7zL46czuWLsXTqNoAnh79yx20UBOHRIEbMCcJNEhMTefrppzlw4AATJkxgyZIlTJw4kYMHD/LMM8+QnJxsVGbUqFFERUWxePFiBg8ezMqVK/m///u/275227ZtiYqKYsWKFYwbN44DBw4wZswYysrK7rpdzz77LMuWLdP/Py0tjblz55KVlXXX5xYeLlqtlv0bPiXl0n6CQgfSqstoyksV7Fn9IUX56bcsX1qUw+7VUykuyKBl5+cJbvsk6UkniF73CRq1yiBv3MHlnDnwC24+obTp8QrWMhcOb/mGlEv7DfLFn97Mob++xsLKjpad/0OzDkOprCxh/8bPSE04fE/bLzwatFotXyxcwcGTcQzo2pHnn+iHoqiYafOWkpGde8vyuYoCPp67hOs5eTw3sDdP9IjgxPl4Pv3xF1QqtUHe3/7cyYpNO2gVHMCLQwbiLLdnzq+rOXgyTp+nolLJ/JXrKSwuoW9EO1546jECfbz4Y+seZv60Aq1We89fA0G4kVarZdbu4xxMSqd/sC/Ptw2moLyC6TtiyCgsuWX53JIypm8/wvWiUka0acLjzf04lZrN5zuPoVJr/oYWCI+a1b/O5cDuzYS268LjQ8dgYmLK0vmfk5x4od5yFRXlLJrzCVfiz9Gj/9P0eXw46deusPC7jyktKTLIG3NgO2tW/ICbhzdPDHsJH/8mbFq1hL3b19V5/rOnjpCSFH9P2igIwqNBjJgThJu8++67APzxxx84OzsD0KFDB3r27MngwYOZMmUKUVFRBmU8PDxo3bo1AB07diQrK4s//viDrKwsXF1dG3xtOzs7/XnCwsKwsrJiypQpREdHM2DAgDtqT2VlJRKJBHd3d9zdjZ8CCsLNUhMOkZN+kYjH36VRUAQAjYI6s2XZBM4eWUn4Y+/UW/7CsTWolOX0fe5rbOxcAHB0DyJ67Scknd9FQMv+AJQW53Lp1EYCQx8jrOerADRu0Zc9q6dy5sAvNArqjImp7vnR5dN/4egWSJfB/8PExESXN6QPGxe9TPKFvXgHhd+X10J4eB05c45LSSm8PWYYnUJDAAhvHcKbn3/PH1v38OaoofWWX7dzPxWVSr58ZxzODnIAAn28+PTHX9hz9BR9I3QjOXMVhfwZfZj+XTrw8jOPA9C7U1s+mfszyzftILx1CKampkjMzJjx35cJ9vfRX6NPeBiuTnL+2LKHuPgrtApu2IhVQbgTMVczic9W8Ga31nTy9QCgk687kzbsY9WZBP7btXW95TecvUK5Ss3nj3fG2cYKgEBnOZ/vPMbexFT6NPGpt7wg3I5ryQmcOXGQgU+PpmufwQC07diDOZ+9zZZ1v/L6/31eZ9kj+7aSk5XBhMlf4O0bCECT5m2Y89kk9u/cSP8nnwdAqaxk+8bfaNoijOfH6j4fdOjcF61Wy56ta+jQpS/W1rYG51YqK/lr7TK69XmSnX8afl4QBEGoixgxJwg3OHbsGOfOnWP06NH6oFw1Z2dnRo0axenTpw2mvdamWbNmAGRkZNxVfVq21E1zSk1NpbS0lOnTp9O/f39CQ0Pp1asXH330EUVFhk/2evXqxfTp01m4cCE9e/akVatWKBQKIiMjadOmDQAxMTGMHj0agKFDhxIcHExwcDBKpZLOnTvz7bffGtXlrbfeYujQ+j+oVktISGDs2LF07NiR0NBQ+vfvz8KFCw3ynDp1itGjR9O6dWvCwsJ45513yM2tGaUyfvx4evfuTXFxsT7tzz//JDg4mH379jWoHsKduZZwGEtrOd6BNcEuS2t7GjXpTPqVY6hVynrLpyYcxtO/vT4oB+DuE4rMwZNr8Yf0aemJR9GoVQS1ekyfZmJiQmCrAZQW5ZCTcUmfrqwsw9Jarg/KAUgtrJGaW2EmEVP8hNt35Mx57GW2dGzVXJ9mb2tDROsWHD97EaVKVU9pXfmwkCb6oBxAq+AAPF2dOXzmnD7t+LmLqFRq+nfuoE8zMTGhX+f25CoKiE++BoBEYmYQlKvWvoXu70na9ew7aqcgNFRMSib2luZ09Kl5iGdnaUG4rwcnUrNQqtX1lNaVD/N21QflAFp6OONhZ0PM1cz7Vm/h0XT21GFMTU1p37mPPk0qNaddeC9SkuJR5OfUW9bbN0AflANwdfciILglcadqRuEnXjpLaUkxHbv2NyjfqdsAKivKuXT2hNG59+3YgFarpVvfJ++meYIgPGJEYE4QblC9xlvPnj1rPd6rVy+DfHVJT0/H1NQUT8+GrVNUl9TUVABcXV0pLy9HrVYzadIkFi5cyJtvvsmxY8cYP368Ubnt27ezd+9ePvjgA+bPn4+1tbXB8ZCQED766CMAZs6cSVRUFFFRUUilUp5++mnWr1+PRlMz7UShULBr164GB+Zee+01CgsL+eyzz1iwYAEvv/yywXTcU6dOMWrUKGQyGd9++y0zZswgLi7OoC0zZsygtLSUzz/XPfG8fv0606ZNY8SIEXTr1q2Br6BwJ/KzE3FwbWwQBAPdqDeVsoIiRVqdZUuLcykvK8DRzXhkj5N7EIrspBuucwWJ1BKZo7dBPge3QH09qrl6h5CRfJL405spKcyiMC+VE7sXUFlRQlCbQXfUTuHRlpSagb+3h9F9HujrRUWlkvSsuqez5ioKKSwuoXEj4/f4QB8vktNqghBJqRlYWpjj5Wb4sCfAx0t/vD4FRbqHE3Y3rVsnCPdaUl4hfo52Rr8TAc72VKrU9U5nzSstp7C8sta16AKc7UnOL7zn9RUebempyTi7emJpZdjHrQ62ZaQm11pOq9WSmZaCt0+g0TFv30ByszOpKC+rOkdSVbphn8bLJwATExPSrxleQ5GXTfT2dQx46j9IpeZ30ixBEB5RYiqrINzg+vXrAHUG1KrTMzMNn/xqNBpUKhWVlZXExMSwcuVKhg8fjouLS22nqZNWq0WlUqHRaIiPj2fWrFnY2dkRERGBo6Mj06ZN0+dVqVR4e3szcuRIkpKS8Pf31x9TKpUsXLjQKCBXzdbWlsBAXYckKChIPzIPdGvRLVq0iP3799O9e3cANm3ahKmpKYMG3ToAkpeXR2pqKh988IE+kNmpUyeDPLNnz6ZFixbMnTtX/wGgSZMmDBo0iOjoaLp3746TkxPTp09n4sSJ9OrVi99//x25XM6UKVMa8lIKd6G8RIGrV4hRuqW1AwBlxfnInf1qL1ucp8tr41Br+YryItQqJWYSKeUlCqNRcABWNo5V58rXp7XpMZaKsiJO7V3Mqb2LAbCwsqPHM9Nw9mh6+40UHnmKomKaBfgZpctlumlJ+YVF+HrWvjFOfqFupLKDnazW8sUlpShVKqQSCYrCYuxtbY3ucwc73XXyCouMznGjDbsPYm1pSetmQbdskyDcDUVZBc3cHI3S5Va6jRvyyyrwMX5r1x0rLQfAwcp4kwe5pQXFFUqUajVSM7N7V2HhkVZUkI/MTm6Ubmevu4cLC/JqLVdaUoRKpcS21rIOVWXzcbG0orAgH1NTU2xlhgFniUSCtY2Mopuu8efaZXg28ie0XZc7aJEgCI8yEZgThDtw8wesr7/+mq+//lr//7CwMKZOnXrb542OjiYkpCYg4ufnR2RkpH5a7fr161m6dClXr16ltLRUny85OdkgMNexY8c6g3K34uvrS4cOHVizZo0+MLd27Vr69++Pra3tLUqDg4MDXl5efPPNNxQUFBAeHm6wtl1ZWRknT55k8uTJqG+YFuPn54eHhwdxcXH66/bt25ennnqKSZMmoVarWbFixR23S2g4taoCUzPj6aFmEt3TX426su6yat00V7N6yqvVlZhJpKhUFZiaGf8ZujFfNYnUApmDJ9YyJzz826GqLCP+1CYObZ5Fz2c/Qyb3uI0WCoJuswWpxDhIUL37aaWy7inbSqVummtt5aVSSVV5XWCuUqlEUs91qs9Vm7U79hEXn8jLQx/HxsqyntYIwt2rVKuRmhpPpjGvCqZV1rOBQ/Wx2sub6vOIwJxwryiVlbUuZWFW9R6srKy9r6JU6tIltex0Lak6n7KyAgCVshKzWvop1eUrlTXXSLwUx7nTMYx/d+ZttEIQBEFHTGUVhBtUB5DS02vfebI63c3NcBTF6NGjWb16Nb/++ivPPvssJ06cYM6cObd9/bCwMFavXs26des4dOgQ27Zt048227FjB1OmTKFVq1Z89913/PHHH8ybNw+AiooKg/M4OTnd9rVvNGzYMHbv3k1eXh4XL17k/PnzPPPMMw0qa2JiwuLFi2ncuDHTp0+ne/fuDBkyhGPHjgFQWFiIWq1m5syZhISEGHylp6cbrcs3aNAgKisrad68uX6NPOHe0KhVlJXkG3xpNRrMJBZo1MZBCbVK1wE1Nat7ekZ1QE5dT3mzqvISiYXRLq215QM49OdXlBbl0KHff2kUFIF/SG96PDMDjVpF3MEVDW2y8AhSqdTkFxYZfGk0GizMpShVxmtmVQfkzGv50FatOvhWW/nqQJt5VR5zqdRol9Ybr1N9rpsdOnWWqC276dmxrcH6dIJwt1RqDYqyCoMvjUaLuZkZSo1x8K2y6iFadYCtNtXHai+vuWV5QbhdUql5rWveqqsfnJjX3lepnmKqquXhi6rqfFJz3chPidQcdS39lOry5tLqB4lqNq3+mTYduhmsWycIgtBQYsScINygQwfdh5/o6GiCg4ONju/duxeAdu3aGaS7u7vrp4N26NCBnJwcfv75Z0aOHImHR8NH8shkMoNppTfaunUrzZo1Y/r06fq0uta6u3lE3+3q168fM2bMYOPGjaSmpuLj46N/bRrC39+f77//HqVSyalTp/jmm2947bXX2LdvHzKZDBMTE8aNG0efPn2Myjo41MyTqd7womnTppw9e5Y1a9Y0OEAo3FpO+kX2rPnQIG3QSwuwtJFTVpJvlL+8VJdmZVvHXCbA0rZqGmod5S0sZfon3JY2crJS49BqtQb3bFlJ1XTYqusUF2SSkXySdr1fNzifhZUMZ89m5GZcvGVbhUfXpeQUps1bapA278NJyGW2+impN1JUrelW2zTVatXH6ipva2ONVKLrYsntbDl3OcnoPs8v1F3HsZbrxF5KZO5va2nTLIhXnxVrKAr3Vnx2PjN2GPYfvn+6B3IrC/2U1BspynQP/2qbplrNwVo3ojO/rMLomKK8AlsLqRgtJ9xTMnsHChXG01Wrp7BWT2m9mbWNDIlESnGhopay+VVlHfT/ajQaiosKDKazqlQqSkuKkFVd41TMXnKup/P0iFfJz80yOGdlRRn5uVnYyOwxN6/7d0gQhEebCMwJwg3atWtHSEgIy5YtY+jQoTg61vxRz8vL45dffqFJkyaEhYXVe57Jkyezb98+Fi9efEdTWmtTXl6O9KYRHJs2bbrj81Wf6+bRdgDm5uY8+eSTrFq1ipycHMaMGXNHwT6pVEqHDh149dVXef3118nKysLf35/WrVtz5cqVOoOQ1b744gsKCwtZsWIFixYt4vPPPyc8PPyuN9UQdOQufnQf8olBmqW1HAeXxmSnnTcKJORmxOumlMq96jynta0Tllb25F1PNDqWm5mAvYvfDdf358rZnRTlpWLn1EifnpeZAICDS2MAyksVAGi1xiMxNBoVGk39OwUKjzZfT3emvjbaIM1eZoOflwcXrlw1us8TrqZiYS7F07XukcdOcjvsbG24cs14dPXllDT8blibzs/Lg91HTpJ2PQdv95p1Ry9fTdUfv1FCcipf//w7AY28eHvMMMxEMEO4x3wc7Phfn/YGafaW5vg52HExK8/od+JyTgHmEjM87OregMTR2hI7S3OScguMjiXmFODrUHegWxDuhIeXL1fiz1JeVmqwAcS1ZF0fwsPbr9ZyJiYmuHv5kJpy2ejYteQEHJ3dsLC0qrqG7hypVxNp2qKtPl/a1ctotVo8G+mOK/JzUKtV/PiNcZ//ZEw0J2Oi+c+rkwkJFaOfBUGonRhTLgg3+eqrr9BqtQwbNoxVq1Zx7NgxVq9ezfDhwyktLWX27Nm3PEfjxo0ZOHAgq1evJj/feOTQnYiIiCA2NpZ58+Zx6NAhZs6cyeHDh29dsA5+fn6YmZmxZs0aTp8+TVxcnMHxYcOGcfnyZYqKihgyZEiDz3vx4kVefPFFVq1axZEjR9i5cyc//PADXl5e+Pj4ALrA5d69e3nrrbfYsWMHMTExbNiwgSlTphATEwPAvn37iIqK4uOPP8bV1ZV33nkHV1dX3nvvPbRa7R23W6hhbmmLu0+owZeZxBzvoHDKSxWkXq65vyrKCklNOISnfzuDNV2KFBkUKQynH3sFdSI96RilRTn6tOspsRTlp9MoKKImX+MOmJpJSIjdok/TarUkxm3D2tZJv6mDrb1u58xr8QcNfvalRTlkp53HwbXxvXtRhIeOrbUVrYIDDL7MpVI6hTanoKiYmNjz+ryFxSUcPn2OsJBg/Yg3gMycPDJzDEdmdGzVnBPn4slV1AQi4uKvkJ6VQ6fQmrVC27cIRiIxY9vBmhFKWq2WHYeO42hvR7B/TVA6NTObmYtW4OwgZ8orI+udTisId8rWQkpLD2eDL3OJGR193SkoryQmpWaDq8LySo5czSDM28VgxFtmUQmZRYa7tHbwceNEaha5JTW7sJ/NyCGjsISOvmIdUOHeatEmHI1Gw7GDO/VpKqWSE0f20MgvCLmDbn1mRV42WZmGu8mHtO5E6tVEUq/WBOeyr6dzJf4sLduG69MCmrbE2saWmP3bDMrHHNiO1NyC4BBdsK5VWBf+8+pkoy+A4JC2/OfVyTTyE1NcBUGomxgxJwg3CQgIYO3atcybN4/IyEiys7PRaDT4+fmxYcMGfXDpVsaPH89ff/3F8uXLeeONN+66XiNGjCA1NZXly5ezePFiunTpwuzZsxk2bNgdnc/R0ZGPPvqIRYsWsXHjRlQqFZcuXdIfDwwMxM/PDx8fH6M19erj4uKCs7MzCxYs4Pr168hkMtq1a8dXX32lH/nRtm1bfvvtNyIjI3n//fdRKpW4u7vTqVMnfH19USgUfPDBBzz++OMMHDgQAAsLC2bNmsWIESNYtmwZY8aMuaN2C7fWKDCCePdNHN0eSWFeKhaWMi7HbkGr1RAS/pxB3ui1nwC6KbDVmrcfSmr8Ifas+ZCg1o+jVlZw8cR65M6++Dfvrc9nLXOmSetBXDyxHq1GjaNbIGmJR8lOO0+nAZMwqVpE3NLaHv+Q3lw5u5O9az/GO6AjKmU5l2O3olZV0rRdwwPHglCtU2hzgny9mb9yPanXs5HZWLPtwDHdg5kBPQ3yzvhhGaCbAlttSN+uHD5zjmnzlvJY146UVyrZuOcgPp5u9OxYsx6mk9yegV07sXHPQdRqDQE+nhyLu8iFK1f573+ewbTqPi8rr+CzBb9SUlrG4J4RnDwfb1AHd2dHmvg1QhDul44+7gQ6y/nxUBxpBSXYWUjZHp+CRqtlaKjhrsCf7dCtGxs5pIc+7akWARy5msmMHUcZ0NSXcpWazeeS8HGQ0SOg7pHWgnAnfPyb0LJtOFs3rqC4SIGjizunYqLJz8tmyPM1S1/8sSySpMvnmTlvtT4tvNsAjh/axdL5n9Otz5OYmplxYPcmbGX2dOn1hD6fVGpO30Ej2BC1iBWLvqZJs9YkJ17g1NF99HviOaxtdCNBXd29cHWv/R53cHIVI+UEQbglE60YeiIIt7RgwQIiIyNZuHAh4eHhty7wEEhJSaFfv37MmTOH/v37P+jq3DNTl9a9o6hQo7K8mDP7l5KWeBS1uhJH10BCu76Ao7vhh7PNS8YBhoE5gILcFE7v+5mc9AuYmkrw8A+jdbcXsbSWG+TTarVcPL6WxLjtlJXkIZN70Kz9M/g27W6QT6NRkxi7laRzu/Qj9Bzdg2je4VncGtU/JfpRNKXF7gddhX+F4tIyft24nWNnL6JUKglo5MV/Bvcj0MfwA9aEGd8ChoE5gGuZWSxbv5VLSSmYmZkR1rwJo57sj1xmuIO1Vqtl/a4D7Dx8nPzCItydnXi6T1e6hrXS58nOU+ivU5vu7VszYeTTd9vkh4pq24YHXYWHTnGFkhUnL3L82nUq1RoCnOx5vm0wAc5yg3xvrN0LGAbmAFIVRfxy/CKXsvORmJrQxsuVUWFNsa9nfTqhfrFP3XqmxqNKqaxkx6aVnD62n7LSEty9fOg7aARNmtc8HPnp24+MAnOgm37655qlXL4Qi0aroXFQCIOGjsHJxXh059GDO9i/cxP5uVnIHZ3p1G0AnXs+fstlXt6fMJRO3Qbw5PBX7k2DH2LdQ6xvnekfqOj41gddhTrJ2g140FUQboMIzAlCA7355pscPHiQlStXEhQUdOsC/1L5+fkkJSUxb948kpKS2L59OxLJwzO4VgTmhEeBCMwJjwIRmBMeBSIwJzwKRGDu3hOBuX+Xh+fTtiDcZ3PmzLnjsipV7Vutg24R2n/S4t579uzhf//7H76+vnz11VdGQTm1Wl3vGm8PUxBPEARBEARBEARBEO4n8QlaEP4GISEhdR7z8vJi9+5/zuiWIUOG1LvZw5gxYzh69Gidx3ft2oW3t/f9qJogCIIgCIIgCIIgPFREYE4Q/garV6+u85i5ufnfWJO7N23aNEpKSuo87urq+jfWRhAEQRAEQRAEQRD+vURgThD+Bi1bPjyL0zdu3PhBV0EQBEEQBEEQBEEQHgqmD7oCgiAIgiAIgiAIgiAIgvAoEoE5QRAEQRAEQRAEQRAEQXgARGBOEARBEARBEARBEARBEB4AscacIAiPlL7tVQ+6CoJw36nWb3jQVRCE+07S/8kHXQVBuO92HBMf14SHX/eQB10DQXiwxIg5QRAEQRAEQRAEQRAEQXgARGBOEARBEARBEARBEARBEB4AEZgTBEEQBEEQBEEQBEEQhAdABOYEQRAEQRAEQRAEQRAE4QEQq4kKD73IyEiWLFnCqVOn9GnXr19n3rx5REdHk5ubi5OTE927d2fChAm4ubkZlA8ODtZ/L5VK8fDwoHv37kycOBG5XN7geowaNYqjR48CYGJigru7O2FhYbz99tt4eXndXSMxbmdqairr1q1j2LBhRm0ShFspKy1hy/pfOX8mhsrKShr5BjJwyAt4+TRuUPmsjFT+XLOU5CsXMTMzo2mLMAYOeQFbmb1BPq1Wy76dG4jZt42iQgXObp706Pc0oe26GOQ5GbOXc6djSE9NorSkGEcnV1qFdaZrn8FIpeb3tO3Cw02pVrPqTAIHrqRTXKnEx0HG8NZNaOnhfMuyeaXl/Hr8ArEZOWi0WkLcnBjVrhluMmujvHsuX2Pz+SSyi8twtLZkQFNfBjT1M8iTXljMzvhrXM5RkJxXiFKt4fune+Bia3WPWis8qpQqFX9s2cO+E2coKS3Hx8ONEQN70So44JZlcxWF/LJhK2cuJaLVagkJ9OeFJ/vj5uxolHd3zEk27TlIVq4CJ7kdj3XtyGPdOhnkSc/KYceh4yRcTSUpNQOlSsW8Dyfh4ii/V80VBCorSjizfxlpiTGoVRU4ugXRutsYHFxvfc8DFOZe49S+n8lJv4CpmQRP/zBCu76IpbVxv+XSifVcjt1KeUk+MgdPmrV/Bp/grkbn1Gq1JMZuJfHsdory05FILLB38aNNtxeRu/jfk3YLgvBwECPmhEdOYmIiTz/9NAcOHGDChAksWbKEiRMncvDgQZ555hmSk5ONyowaNYqoqCgWL17M4MGDWblyJf/3f/9329du27YtUVFRrFixgnHjxnHgwAHGjBlDWVnZXbfr2WefZdmyZfr/p6WlMXfuXLKysu763MKjRavVsuyHzzlz/ADh3R/jsadGUVxUwMI5H5OTlXHL8or8HH767kNyczLpP3gkXXsP5uLZEyyJnIFKZbgr7raNK9i6fjmBzUJ5YthLyB2c+f3n7zhz/IA+T2VlBat/nUdxUQEdu/Rj0NAxePsGsvPPKJbO+wytVnvPXwPh4fXDoTj+upBMhL8no9s1w9TEhC93H+diVl695cqVKmZsj+H89TyebBHAs6FBJOUVMn17DEUVlQZ5d8an8NPhs3jb2/JC++YEuchZduwCG84mGuRLyFaw9WIy5UoVnvY297ytwqNr/sr1bI4+TJe2LXnhqQGYmpowc+EKLl65Wm+58opKps9fyrnLyTzdpyvDBvQkKTWDT+Ytpaik1CDvjkPH+fH3DXi7ufLikIE08WvEz+u2sH7XfoN88cnX+GvfEcoqKvFyc7nnbRUErVbL/g2fknJpP0GhA2nVZTTlpQr2rP6Qovz0W5YvLcph9+qpFBdk0LLz8wS3fZL0pBNEr/sEjdqw3xJ3cDlnDvyCm08obXq8grXMhcNbviHl0n6j8x7bEcmp6MU4ugbQtscrNO/4LDYyZ8rLCu9Z2wVBeDiIEXPCI+fdd98F4I8//sDZWTdCokOHDvTs2ZPBgwczZcoUoqKiDMp4eHjQunVrADp27EhWVhZ//PEHWVlZuLq6NvjadnZ2+vOEhYVhZWXFlClTiI6OZsCAAXfUnsrKSiQSCe7u7ri7u9/ROe6WVqtFqVRibi5GLj0M4k4d5uqVS4x8+R1atg0HoGXbcGZP+y87N//OiJcm1Vs+ets6KisqmDhlFnJH3Ycwb79AlkTO4MSR3XTs0g+AAkUuB3ZtplO3ATw5/BUA2kf04afvPmLL+l9p2TYCU1NTzMwkvPb2p/gGNNVfo0Pnvjg4ubLzzyguX4olqGno/XgphIfM5RwFh5MzeD6sKYOa60YrdGvsxeTNB/jt5CWmDwivs+z2+BQyi0r59LFwApzlAIR6ujB50wH+PJ/EiDa60dWVKjVRp+Np4+XCpO5tAegd1AitFtbFJdI7yAdbCykAbb1dWTy8L1ZSCZvPJ3E17+J9bL3wqEi4msrBk3GMGtyPJ3p2BqB7+1D+b9Z8lm/awadvvlJn2W0Hj5KRncvnk14l0Ec3mr9100DemTWfTXsPMfLxPgBUKpWs/GsXbZs34Z0XhwPQJzwMrVbL2h376BPeDltr3cjPsJBgln7+PlaWFmzac5DktFs/4BGE25GacIic9ItEPP4ujYIiAGgU1JktyyZw9shKwh97p97yF46tQaUsp+9zX2Njp+u3OLoHEb32E5LO7yKgZX8ASotzuXRqI4GhjxHW81UAGrfoy57VUzlz4BcaBXXGxFQ37uVa/EGSzu+h86ApeAd2qv3CgiAIVcSIOeGRcuzYMc6dO8fo0aP1Qblqzs7OjBo1itOnTxtMe61Ns2bNAMjIuLvOZcuWLQHdtNPS0lKmT59O//79CQ0NpVevXnz00UcUFRUZlOnVqxfTp09n4cKF9OzZk1atWqFQKIiMjKRNmzYAxMTEMHr0aACGDh1KcHAwwcHBKJVKOnfuzLfffmtUl7feeouhQ4c2qN7vvfcegwYNIjo6msGDB9OyZUt2797d4DYArF+/nqeeeoqWLVvSsWNHxo4dS1pamv54ZmYm//d//0fHjh1p1aoVzz//PGfPnm3YCyvclbOnDmMrs6dFm5qOpK3MnlZhEZyPO45Kqay3fNypwzRtGaYPygEENQ3F2dWTuJOH9WkXYo+hVqsI71YTlDYxMaFT1/4U5OeSknQJAIlEYhCUq9Y8tAMA2ZlpRscEoTYxVzMxNTGhV6C3Ps1cYkaPQG8SshXkltQ9ejnmaiaNnez1QTkAL3tbQtydOHI1U5927nouxRVK+gb7GJTvF+xDhUrNqbSaUcwyC3OspOIZqXBvxZw5j6mpKb3Dw/Rp5lIpPTu2JT75GrmKgjrLHjlzngAfL31QDsDLzYUWQf4cOX1On3Y2IYniklL6dW5vUL5/lw6UV1Ry8ny8Pk1mY42VpcW9aJog1OpawmEsreV4B9Y8XLG0tqdRk86kXzmGWlV/vyU14TCe/u31QTkAd59QZA6eXIs/pE9LTzyKRq0iqNVj+jQTExMCWw2gtCiHnIxL+vRLJzfi5B6Ed2AntFotKmX5vWiqIAgPKRGYEx4p1Wu89ezZs9bjvXr1MshXl/T0dExNTfH09Lyr+qSmpgLg6upKeXk5arWaSZMmsXDhQt58802OHTvG+PHjjcpt376dvXv38sEHHzB//nysrQ3XNwoJCeGjjz4CYObMmURFRREVFYVUKuXpp59m/fr1aDQafX6FQsGuXbsaHJgDyMrK4tNPP2XMmDEsXLiQZs2aNbgNixYtYsqUKYSEhDB37lw+++wzfH19ycvTTSUrKChg5MiRXLx4kQ8//JDIyEisrKx44YUXyM3NbXAdhTuTfi0Jz0aNMTExMUhv5BuIsrKC7Ky6p4UUKHIpKS7Ey8d4TZdGfoFkpCYZXMfcwhIXd8M1Fr19A/TH61NcpADAxtau3nyCUC05vxAPO2uszaUG6YFO9vrjtdFqtVxTFBHgZG90LNDZnutFpZQpddOdkvN057g5b2NHe0xMao4Lwv2SlJaJh4sT1paWBunVwbaktMzaiqHVaklJv05AI+O+TaCPN5k5eZSVVwCQXHWOAB/D9+/G3p6YmJjojwvC3yE/OxEHV+N+i6N7ECplBUWKuh/glRbnUl5WgKObcb/FyT0IRXZNXyQ/+woSqSUyR2+DfA5ugfp6ACgrSsm7noCDWyCxB5ezdv5I1sx7js1LXuNa/ME7bqcgCA8v8ZhWeKRcv34doM6AWnV6ZqZhh1Kj0aBSqaisrCQmJoaVK1cyfPhwXFxub60UrVaLSqVCo9EQHx/PrFmzsLOzIyIiAkdHR6ZNm6bPq1Kp8Pb2ZuTIkSQlJeHvX7NIrFKpZOHChUYBuWq2trYEBuo6CUFBQfqReaBbi27RokXs37+f7t27A7Bp0yZMTU0ZNGhQg9tSUFDAwoULCQ01nEJ4qzYUFRUxd+5chg8fzvTp0/V5+/Tpo/9+2bJlFBYWsmrVKpycnAAIDw+nf//+LF68mMmTJze4nsLtKypU4B/Y3Cjd1s5Bd7wgDw8v39rLFuQDYGfvYHRMZientKQYlVKJRCqlqFCBrczeqCMts9ctMF5YUP+aX/t2bMDS0pomzdvculGCACjKKpBbGY/ckVvpAhj5pRW1liuqUKJUa7CvpaxDVVp+WTlWUlsUZRWYmphgd9MIIYmZKTILc/LLar+GINwr+YVFONjZGqU72Ml0xwuMR7EDFJWUolSpkNdW1t5Wf24rSwvyC4swNTXF3tZwbUSJxAyZjTX5hbVfQxDuh/ISBa5eIUbplta6vkhZcT5yZ7/ayxbr+hqWNsb9FktrByrKi1CrlJhJpJSXKLC0lhv1W6xsHKvOpesDFRdk6h7oXDqAiakZoV1GI7WwIeH0Zg5vmY3E3AoPv7Z33F5BEB4+IjAnCLW4+Q/u119/zddff63/f1hYGFOnTr3t80ZHRxMSUtNx8PPzIzIyUj+tdv369SxdupSrV69SWlqzyHJycrJBYK5jx451BuVuxdfXlw4dOrBmzRp9YG7t2rX0798fW1vjznhd5HK5UVCuIW04deoUZWVl9Y7OO3jwIB07dsTe3l6/WYCpqSnt27cnLi6uwXUU7oyysgKJRGqULpXq0pT1TGVVKnWL4JvVUl5StXuqUlmJRCqt5zq6fPVNmd2zdQ2XL8by5PBXsLIWi+YLDVOpUiMxNZ4sIDXTpVWq1bWWU1alV+e7kaS6rEpTdQ4NZqYmRvkAJKamVKpqv4Yg3CtKpQqJxLiLL5WYAbr14WotV/X3VlprWV1aRaWy6hwqJGZmtZ5HKpHo8wnC30GtqsDUzLg/YSbR9Sc06kqjY/qyat29alZPebW6EjOJFJWqAlMz49+PG/MB+mmrFeVF9Bn+BU4eujVIvQI6sHnJOM4fXSUCc4IgGBCBOeGRUr05Qnp6OsHBwUbH09N1U/Tc3NwM0kePHs3gwYMpKytj48aNrFq1ijlz5vDOO/UvJnuzsLAw3n//fczMzHBzc9OPBgPYsWMHU6ZMYfjw4UyaNAm5XE52djYTJkygosJwhMWN5e7EsGHDeO+998jLyyMrK4vz58/z3nvv3dY5bl6jr6FtUCgUAPVumpGfn8/p06cNgpjVfHx8aikh3AmVSkVZieGoBhuZPVJzC1S1rMdSHZCrDtDVpjqoVtt6LqqqoF11nrqvo8snqeM6sScOsmPz77QL70Wnbne2aYrwaDKXmKG6YRp/NaVal2ZeV6ChKr06341U1WUlplXnMEWtqX2nYJVGg7mk9msIwr0ilUqMdsAGUFYFhc3reG+tDr4pay2rS7OomgZuLpWgqiuQrVLp8wnCvaRRq6goN+y3WFrZYyaxQKM27k+oVbr+hKlZ3ZuTVQfk1PWUN6sqL5FYGO3SWlu+6nPa2Lnpg3IAEqklnv7tuHppHxqNGlNT8fdAEAQdEZgTHikdOugWi4+Ojq41MLd3714A2rVrZ5Du7u6unw7aoUMHcnJy+Pnnnxk5ciQeHh4Nvr5MJjOYVnqjrVu30qxZM4PpnXWtdXfziL7b1a9fP2bMmMHGjRtJTU3Fx8dH/9o0VG11aEgb5HI5oFujrq5dZO3t7enatStvvvmm0TGx8+u9k3LlIgvnfGKQNnn6fGR2cgqrpqTeqLhQl1Y91bQ2sqoprLWVLypUYG1jqw+4yezkJMafRavVGtxPRVVTWO1quU7CxTP8sSyS4JC2PPXcuFu0UBAMya0syC81XoBbUaZLc7CufYF6mYUUqZkpBbVMQ62emupQNR1WbmWBRqulsLzCYDqrSq2hqKJSP/VVEO4XBzsZeQXGaxlWTy91sJfVWk5mY41UIkFRWGxctqBYf+7qfzUaDQXFJQbTWVUqNUUlpfp8gnAv5aRfZM+aDw3SBr20AEsbOWUlxv2O8lJdmpWt8TTVapa2VdNQ6yhvYSnTzwKwtJGTlRpn1G8pK6maDlt1HStb3QN0S2vjdUktreVo1CpUynLMLcSIf0EQdERgTniktGvXjpCQEJYtW8bQoUNxdKz54J+Xl8cvv/xCkyZNCAsLq+csMHnyZPbt28fixYvvaEprbcrLy41GIm3atOmOz1d9rptH24EuuPXkk0+yatUqcnJyGDNmzF0H+6BhbWjTpg1WVlasWbOGVq1a1XqeiIgINm7cSEBAwB1P2RVuzd3bj5feMOzg2trJ8fD2I/nyBaOOZ0pyAlJzC1xc6970xF7uhI2tHWkpiUbHriVfxsPLT/9/D29/jh3aRXZmGq4e3gb5dMf9DMqnJMWz/Kev8PYNYOQr72BWx+gmQaiLr4Md5zPzKK1UGmwAkZCjAMDPofaNRExMTGgkl5GYa7ybZUKOAldbK/3uqr5V50jMLaCNV83I4MTcArRa8HMUm5UI95eflxvnLidRWl5usAFEwlXdhlP+XrU/FDMxMcHH043Ea8Yb/CRcTcXNyVG/u6qvp25mQWJKGm2bN9HnS7yWhlarxa+OawjC3ZC7+NF9yCcGaZbWchxcGpOddt6o35KbEY9EaoFMbrhJyY2sbZ2wtLIn77pxvyU3MwF7F78bru/PlbM7KcpLxc6pkT49LzMBAAeXxgBY2TpiZeOgD9jdqKwkFzOJOVJz0b8VBKGG2JVVeOR89dVXaLVahg0bxqpVqzh27BirV69m+PDhlJaWMnv27Fueo3HjxgwcOJDVq1eTn2/8hO1OREREEBsby7x58zh06BAzZ87k8OHDd3w+Pz8/zMzMWLNmDadPnzZam23YsGFcvnyZoqIihgwZcrfVBxrWBplMxoQJE/j999/56KOPiI6OZs+ePXzxxRf6OlYHCv/zn/+wfv16jh49ytatW/nyyy9ZunTpPamrANbWtgQ1DTX4kkrNadkmnOKiAs6eOqLPW1JcSNzJwzRrGWYwxTQ3O4Pc7AyD87Zo04mLcSdQ5Ofo0y5fjCUnK52WbcP1ac1atcPMTMLhfVv1aVqtlpgD27GTO+LbuKk+PSsjlWU/fI6DowujX39fPx1WEG5HRx93NFotuy+n6tOUajXRiWkEOstxsrECIKekjLQCw1FDHXzcuJJbQGJVEA8gvbCY85l5dPKtGTndwt0JWwspOy6lGJTfmZCCucSM1l63t2mQINyuTq1C0Gg07Dp8Qp+mVKnYe/QUQb7eOMl1o3hy8hWkXc82KNuxVTMSU9K4nFKzi2V6Vg7nLifRqXXNpkAtmzTG1saa7QePGZTfceg4FuZS2jQLuh9NEx5x5pa2uPuEGnyZSczxDgqnvFRB6uWaPmdFWSGpCYfw9G9nsO5tkSKDIoVhv8UrqBPpSccoLarpt1xPiaUoP51GQRE1+Rp3wNRMQkLsFn2aVqslMW4b1rZOOHvU9FsaNelMaVEOmSlnDOqUlngMV++W9+SBuCAIDw8xYk545AQEBLB27VrmzZtHZGQk2dnZaDQa/Pz82LBhQ4PXMBs/fjx//fUXy5cv54033rjreo0YMYLU1FSWL1/O4sWL6dKlC7Nnz2bYsGF3dD5HR0c++ugjFi1axMaNG1GpVFy6dEl/PDAwED8/P3x8fIzW1LvfbRg7diyOjo4sXbqUtWvXYmNjQ5s2bfRr5zk4OBAVFcV3333H119/jUKhwMnJidDQUPr27XtP6irUrUWbcBr5bWb18nlkZaZiYyvjyL5taLUa+jw+wiDv4u9105Ynz/hBn9aj/xDiTh5i0ZxPiOgxkMqKcvbt3IC7ly9hnXrp88kdnOnccyD7dm5Eo1Hj7RPA+dhjJF++wPAxb2JatUh/RXkZS+bNoKy0hK59nuTS2RMGdXB0dse3sfHUdEG4WZCLnE6+7vx+6hIFZRW4yazZfyWNnJIyXg2vWWZg/sFYLlzPY+Wox/Rp/YJ92XM5lVl7TjCouT9mpib8eT4Ze0tzHm/up89nLjFjWGgQS46e57voU7TydOZiVh4HrqQzrHUQMouaoHJJpZJtl64CEJ+le8iz7dJVrM0l2Eil9G9a++7HglCfID9vwluH8NufuygoKsHN2ZF9x8+QnV/Aa8Of1Oebu2Id5xOT+ePbmt3U+3fuwO4jJ/li4QoG9+yMmZkpm/cexl5mw6AeNQEKc6mU4Y/1ZPHqP/lm6R+ENg3gwpUU9h0/w4iBvZHZ1IwGKikrZ+v+GAAuJV8DYOuBGKwtLbG2suSxrh3v90siPOQaBUYQ776Jo9sjKcxLxcJSxuXYLWi1GkLCnzPIG732E0A3BbZa8/ZDSY0/xJ41HxLU+nHUygounliP3NkX/+a99fmsZc40aT2IiyfWo9WocXQLJC3xKNlp5+k0YBImN2wu1Kz9M1yLP8ShzV/SpM1gpBbWJMZtQ6NR0arz8/f3BREE4V/HRKvV1r5CsSA8QhYsWEBkZCQLFy4kPDz81gUeAikpKfTr1485c+bQv3//B12dv030udJbZxIoLS1my9pfOB97FKVSibdPAAOHjMbbN9Ag36wPXwcMA3MA1zOu8eeapSQnXsTMTELTFm0ZOOQFZHZyg3xarZbo7es4emAHhQX5OLt60L3f07Tp0E2fJz83i1kfja+zrm079eDZURPvssUPl1brb29jmkdJpUrNH2cSOJiUTkmlkkZyGcNaBxHqWTOSbfr2GKPAHEBuSRm/Hr9IbEYOGq2W5m6OjG7fDHeZ8TpBuxKu8ef5JLKLS3GysaJfsA+PNfUzGCWRXVzGf9ftrbWezjZWRA7pcU/a/LCS9H/y1pkeUZVKJVFbdrP/RBwlpWX4eLox/LFetG5a8x7+ydyfjQJzALmKApat30bspUQ0Wg3NA/wY8/RjuDsbr/u58/AJNu89RFZePs5ye/p36cDAbp0M7/M8BRNmfFtrPV0c5cz7cNI9avXD6cuzvW6dSaCyvJgz+5eSlngUtboSR9dAQru+gKO74ejNzUt069PeGJgDKMhN4fS+n8lJv4CpqQQP/zBad3sRS2u5QT6tVsvF42tJjNtOWUkeMrkHzdo/g2/T7kZ1Ki7I5Mz+ZVxPiUWjUeHkEUxo51FGdRLg0zH/zpkQRce33jrTAyJrJzZI+zcRgTlBqPLmm29y8OBBVq5cSVDQw/sHMz8/n6SkJObNm0dSUhLbt29HInl0Bs+KwJzwKBCBOeFRIAJzwqNABOaER4EIzN17IjD37/LofBoXhFuYM2fOHZdVqYy3Tq9mYmLyj1qkfs+ePfzvf//D19eXr776yigop1arqS9e/ygF8QRBEARBEARBEAThfhKfsAXhHggJCanzmJeXF7t37/4ba1O/IUOG1LvZw5gxYzh69Gidx3ft2oW3t3edxwVBEARBEARBEIR/ny1btrBx40bOnTtHYWEhvr6+jBo1imeeeUZsWnIficCcINwDq1evrvOYufm/a2j2tGnTKCkpqfO4q6vr31gbQRAEQRAEQRAE4e+wdOlSvLy8eO+993BwcODQoUN8+OGHZGZmMnGiWNP5fhGBOUG4B1q2bHnrTP8SjRs3ftBVEARBEARBEARBEP5mP/zwA46ONZv9hIeHo1Ao+Pnnnxk/fjymN+w+LNw74lUVBEEQBEEQBEEQBEF4xN0YlKvWrFkziouLKS0Vm+jdL2LEnCAIgiAIgiAIgiAIwkOid+/e9R7ftWtXg8914sQJ3NzcsLW1vdtqCXUQgTlBEARBeMhI+j/5oKsgCPedatuGB10FQbj/vHo96BoIgvAIO378OH/99RdTpkx50FV5qInAnCAIgiAIgiAIgiAIwkPidkbE1SUzM5NJkybRsWNHRo8efQ9qJdRFrDEnCIIgCIIgCIIgCIIgAFBYWMjYsWORy+VERkaKTR/uMzFiThAEQRAEQRAEQRAEQaC8vJxx48ZRVFREVFQUMpnsQVfpoScCc4IgCIIgCIIgCIIgCI84lUrFW2+9xZUrV1ixYgVubm4PukqPBBGYEwRBEARBEARBEARBeMRNmzaNPXv28N5771FcXMzp06f1x5o3b465ufmDq9xDTATmhHsmMjKSJUuWcOrUKX3a9evXmTdvHtHR0eTm5uLk5ET37t2ZMGGCUfQ9ODhY/71UKsXDw4Pu3bszceJE5HJ5g+sxatQojh49CoCJiQnu7u6EhYXx9ttv4+XldXeNxLidqamprFu3jmHDhv3rnygcPHiQr7/+mitXruDo6Ejnzp359NNPH3S1hAegrLSELet/5fyZGCorK2nkG8jAIS/g5dO4QeWzMlL5c81Skq9cxMzMjKYtwhg45AVsZfYG+bRaLft2biBm3zaKChU4u3nSo9/ThLbrYpDnZMxezp2OIT01idKSYhydXGkV1pmufQYjlYoOgtBwSpWKP7bsYd+JM5SUluPj4caIgb1oFRxwy7K5ikJ+2bCVM5cS0Wq1hAT688KT/XFzdjTKuzvmJJv2HCQrV4GT3I7HunbksW6dDPKkZ+Ww49BxEq6mkpSagVKlYt6Hk3BxlN+r5grCLSnValadSeDAlXSKK5X4OMgY3roJLT2cb1k2r7ScX49fIDYjB41WS4ibE6PaNcNNZv031FwQalRWlHBm/zLSEmNQqypwdAuidbcxOLje+r0doDD3Gqf2/UxO+gVMzSR4+ocR2vVFLK2N+y2XTqzncuxWykvykTl40qz9M/gEdzXIlxi3nZSL+yjMS6WysgQrG0dcvUMI6TQCGzvXe9ZuQbjXDh48CMAXX3xhdGzXrl14e3v/3VV6JIjAnHDfJCYmMmrUKCwtLZkwYQJ+fn5cvXqVH3/8kd27d7N8+XL8/PwMyowaNYpBgwZRUVHB0aNH+fHHH0lOTmbRokW3de22bdsyZcoU1Go18fHxfPfdd8TGxrJx40asrKzuql3PPvss3bt31/8/LS2NuXPn0qNHj391YO7atWuMHz+ebt268e6775KWlkZUVNSDrpbwAGi1Wpb98DkZaVfp1mcw1jZ2HNm3lYVzPmbilFk4u3rUW16Rn8NP332IpZUN/QePpKK8jP27NpKZlsL4yV8gkdT86dm2cQXR29fTvnMfvH0DuBB7nN9//g5AH5yrrKxg9a/zaOQXRMcu/bCR2ZFyJZ6df0aReCmOV978BBMTk/v2eggPl/kr13PkzHkGduuIu7MT0cdOM3PhCj4e/wJNG/vWWa68opLp85dSUlbO0326IjEzY/Pew3wybymz/u81ZDY1gYgdh46zcNUmOrZqzuPdI7h45So/r9tChVLJU71rPrzFJ1/jr31H8HZ3xcvNheS0jPvadkGozQ+H4jiaksmApn64y6zZdyWNL3cfZ2rfDjR1NQ46VytXqpixPYZSpYonWwQgMTXhz/PJTN8ewxeDOiOzEA9NhL+HVqtl/4ZPUWQn0zTsKcytZFw+s4U9qz+k73NfI3PwrLd8aVEOu1dPRWphTcvOz6OqLOfSyQ0ocq7Sd8RXmJrV9FviDi7nwvG1NG7RF0e3QNKvHOPwlm8ADIJziuwkbOxd8WjcHnNLG0oKsrhydgfpSSfo//y3WNnW/bslCA/S7t27H3QVHkkiMCfcN++++y4Af/zxB87OuqeuHTp0oGfPngwePJgpU6YYBX48PDxo3bo1AB07diQrK4s//viDrKwsXF0b/nTJzs5Of56wsDCsrKyYMmUK0dHRDBgw4I7aU1lZiUQiwd3dHXd39zs6xz/Zvn37qKys5KuvvsLS0hLQBSEbqry8XF9O+HeLO3WYq1cuMfLld2jZNhyAlm3DmT3tv+zc/DsjXppUb/nobeuorKhg4pRZyB1dAPD2C2RJ5AxOHNlNxy79AChQ5HJg12Y6dRvAk8NfAaB9RB9++u4jtqz/lZZtIzA1NcXMTMJrb3+Kb0BT/TU6dO6Lg5MrO/+M4vKlWIKaht6Pl0J4yCRcTeXgyThGDe7HEz07A9C9fSj/N2s+yzft4NM3X6mz7LaDR8nIzuXzSa8S6KMbfd26aSDvzJrPpr2HGPl4HwAqlUpW/rWLts2b8M6LwwHoEx6GVqtl7Y599Alvh6217gFRWEgwSz9/HytLCzbtOSgCc8Lf7nKOgsPJGTwf1pRBzf0B6NbYi8mbD/DbyUtMHxBeZ9nt8SlkFpXy6WPhBDjLAQj1dGHypgP8eT6JEW2C6ywrCPdSasIhctIvEvH4uzQKigCgUVBntiybwNkjKwl/7J16y184tgaVspy+z32NjZ2u3+LoHkT02k9IOr+LgJb9ASgtzuXSqY0Ehj5GWM9XAWjcoi97Vk/lzIFfaBTUGZOqnSvDeo0zuo5XQAd2rHyX5At7adZ+yD1rvyAI/35iz1vhvjh27Bjnzp1j9OjR+qBcNWdnZ0aNGsXp06cNpr3WplmzZgBkZNzdh5WWLVsCummnpaWlTJ8+nf79+xMaGkqvXr346KOPKCoqMijTq1cvpk+fzsKFC+nZsyetWrVCoVAQGRlJmzZtAIiJiWH06NEADB06lODgYIKDg1EqlXTu3Jlvv/3WqC5vvfUWQ4cObVC9ExISGDt2LB07diQ0NJT+/fuzcOFCgzynTp1i9OjRtG7dmrCwMN555x1yc3P1x8ePH0/v3r0pLi7Wp/35558EBwezb98+fZqpqSkajYbU1NRb1mvt2rUEBwdz6tQpXnzxRVq3bs2sWbMAWLJkCc888wxhYWGEh4czbtw4kpKSjM5x6tQpXnrpJdq2bUubNm149tln9UOnQRcI/eabb+jZsyctWrTgscceY9OmTQ163YS7c/bUYWxl9rRoUzPtzlZmT6uwCM7HHUelVNZbPu7UYZq2DNMH5QCCmobi7OpJ3MnD+rQLscdQq1WEd6sJlpuYmNCpa38K8nNJSboEgEQiMQjKVWse2gGA7My0O2uo8MiJOXMeU1NTeoeH6dPMpVJ6dmxLfPI1chUFdZY9cuY8AT5e+qAcgJebCy2C/Dly+pw+7WxCEsUlpfTr3N6gfP8uHSivqOTk+Xh9mszGGitLi3vRNEG4IzFXMzE1MaFXYM3UJHOJGT0CvUnIVpBbUlZv2cZO9vqgHICXvS0h7k4cuZp5P6stCAauJRzG0lqOd2BNINnS2p5GTTqTfuUYalX9/ZbUhMN4+rfXB+UA3H1CkTl4ci3+kD4tPfEoGrWKoFaP6dNMTEwIbDWA0qIccjIu1XsdGzvdzBplRclttU8QhIefCMwJ90X1Gm89e/as9XivXr0M8tUlPT0dU1NTPD3rH4J+K9XBJldXV8rLy1Gr1UyaNImFCxfy5ptvcuzYMcaPH29Ubvv27ezdu5cPPviA+fPnY21tuGZKSEgIH330EQAzZ84kKiqKqKgopFIpTz/9NOvXr0ej0ejzKxQKdu3a1eDA3GuvvUZhYSGfffYZCxYs4OWXX6asrKaTfOrUKUaNGoVMJuPbb79lxowZxMXFGbRlxowZlJaW8vnnnwO6df+mTZvGiBEj6Natmz5f3759sba25r333qO8vLxB9XvnnXfo1KkTP/74I08++SQAmZmZ/Oc//2H+/Pl8+umnaDQaRowYgUKh0Jc7ceIEo0aNorKykk8//ZTIyEh69+5Nenq6Ps+bb75JVFQUL774IgsWLKBr1668++67REdHN6huwp1Lv5aEZ6PGRtNDG/kGoqysIDsrvY6SulFwJcWFePkYr+nSyC+QjNSaIG36tSTMLSxxcTdc+9HbN0B/vD7FRQoAbGzt6s0nCNWS0jLxcHHC+qbRvdXBtqS02oMJWq2WlPTrBDQy/lsU6ONNZk4eZeUVACRXnSPAx/C+buztiYmJif64IPwTJOcX4mFnjbW51CA90Mlef7w2Wq2Wa4oiApzsjY4FOttzvaiUMqXq3ldYEGqRn52Ig6txv8XRPQiVsoIiRd0P8EqLcykvK8DRzbjf4uQehCK7pi+Sn30FidQSmaPhGlsOboH6etysoqyI8tIC8jITOLojEgBXn1YNb5wgCI8EMZVVuC+uX78OUGdArTo9M9PwA4pGo0GlUlFZWUlMTAwrV65k+PDhuLi41HaaOmm1WlQqFRqNhvj4eGbNmoWdnR0RERE4Ojoybdo0fV6VSoW3tzcjR44kKSkJf39//TGlUsnChQuNAnLVbG1tCQzU/TEOCgrSj8wD3TTQRYsWsX//fv2adJs2bcLU1JRBgwbdsg15eXmkpqbywQcf6AOZnToZLhw+e/ZsWrRowdy5c/WdkSZNmjBo0CCio6Pp3r07Tk5OTJ8+nYkTJ9KrVy9+//135HI5U6ZMMTjX6dOnkclkpKSk8NZbbzF37lyDtcBqM2LECF599VWDtP/973/679VqNZ07dyY8PJxt27YxfLhuWtdXX32Fr68vy5Ytw8zMDIAuXWoW+z9y5Ai7d+9m8eLF+vTOnTuTnZ1NZGSkwRp/wr1XVKjAP7C5UbqtnYPueEEeHl61r8VVVJAPgJ29g9ExmZ2c0pJiVEolEqmUokIFtjJ7o460zF637kphQV699dy3YwOWltY0ad7m1o0SBCC/sAgHO1ujdAc7me54QZHRMYCiklKUKhXy2sra2+rPbWVpQX5hEaamptjb2hjkk0jMkNlYk19Y+zUE4UFQlFUgtzIetSm30gWv80srai1XVKFEqdZgX0tZh6q0/LJyrKTGvzOCcK+Vlyhw9QoxSre01vVFyorzkTv71V62WNfXsLQx7rdYWjtQUV6EWqXETCKlvESBpbXcqN9iZeNYda58o3NsWvQyarVuxJ6FpYw2PV7G3UcsvyEIgiERmBMeqJv/sH399dd8/fXX+v+HhYUxderU2z5vdHQ0ISE1f6D9/PyIjIzUT6tdv349S5cu5erVq5SWlurzJScnGwTmOnbsWGdQ7lZ8fX3p0KEDa9as0QeS1q5dS//+/bG1vXVH1cHBAS8vL7755hsKCgoIDw83WNuurKyMkydPMnnyZNRqtUFbPTw8iIuL01+3b9++PPXUU0yaNAm1Ws2KFSsM2nXp0iUmTZrEggULsLKy4sUXX+TDDz/k888/x8TEhBMnTjBy5EijnXh69OhhVO/Tp08zZ84czp8/bzBKLjk5WV/vM2fO8Pbbb+uDcjc7ePAgcrmcTp06oVLVPHGPiIjgk08+Qa1W11lWuHvKygokEqlRulSqS1PWM5VVqawEwKyW8pKq3VOVykokUmk919Hlq2/K7J6ta7h8MZYnh7+ClbVNnfkE4UZKparWBw5Sie79pLKOe05Z9T4krbWsLq2iUll1DhWSOt6fpBKJPp8g/BNUqtRITI0n0EjNdGmVN/QvbqSsSq/OdyNJdVmVxuiYINwPalUFpmbG/Qkzia4/oVFX1l22KmhmVk95tboSM4kUlarCYCOI2vLdrOtTH6JRKynMu8bVC9GolXXXRRCER5cIzAn3RXUAKT09neBg48V/q6cs3ryL6ejRoxk8eDBlZWVs3LiRVatWMWfOHN55p/5FW28WFhbG+++/j5mZGW5ubjg5OemP7dixgylTpjB8+HAmTZqEXC4nOzubCRMmUFFh+GT4xnJ3YtiwYbz33nvk5eWRlZXF+fPnee+99xpU1sTEhMWLF/Ptt98yffp0SktLCQkJ4f3336d9+/YUFhaiVquZOXMmM2fONCp/87p8gwYNYv369bRs2VK/Rl61FStW0LhxYyIidAvmfv/994wfP14/su7EiRP4+voabY998/qB6enpvPTSS7Ro0YJp06bh6uqKVCpl3Lhx+te2sLAQjUZT72Ye+fn5KBQKg+DqjbKzsx/KDTj+biqVirISw9E7NjJ7pOYWqGpZj6U6IFcdoKtNdVCttvVcVFWd0eo8dV9Hl09Sx3ViTxxkx+bfaRfei07d7mwzF+HRJJVKDIL91ZQqXZDBvI57rjr4pqy1rC7NomoqoLlUgqquYIZKpc8nCP8E5hIzVBrjAJpSrUszryvIXJVene9GquqyErFijnBvadQqKsoN+y2WVvaYSSzQqI37E2qVrj9halb3DsHVATl1PeXNqspLJBZo1MZ/B27OdyO3RrrZNB5+bfFs3IFty99CIrUgqPXjddZJEIRHjwjMCfdFhw66Rdmjo6NrDczt3bsXgHbt2hmku7u766eDdujQgZycHH7++WdGjhyJh4dHg68vk8kMppXeaOvWrTRr1ozp06fr0+pa6+7mEX23q1+/fsyYMYONGzeSmpqKj4+P/rVpCH9/f77//nuUSiWnTp3im2++4bXXXmPfvn3IZDJMTEwYN24cffr0MSrr4FAzJL96w4umTZty9uxZ1qxZwzPPPKM/npaWho1Nzaijbt26MXPmTN59911sbGz47bffmDBhwi3ru3//fkpLS5k7dy52drp1v1QqFQUFNQuqy2QyTE1NycrKqvM89vb2ODo68tNPP9V63NFRbDF/L6RcucjCOZ8YpE2ePh+ZnZzCAuPpGMWFurTqqaa1kVVNYa2tfFGhAmsbW33ATWYnJzH+LFqt1uB3rahqCqtdLddJuHiGP5ZFEhzSlqeeM97xTBDq42AnI6/AeM2s6umlDvayWsvJbKyRSiQoCouNjuUXFOvPXf2vRqOhoLjEYDqrSqWmqKRUn08Q/gnkVhbklxqvK6so06U5WNe+OYnMQorUzJSCMuOprvlVaQ5WYqd24d7KSb/InjUfGqQNemkBljZyykqM+x3lpbo0K1vjaarVLG2rpqHWUd7CUqafBWBpIycrNc6o31JWUjUdtp7rAMjkHji4+HP14j4RmBMEwYAIzAn3Rbt27QgJCWHZsmUMHTrUIJCSl5fHL7/8QpMmTQgLC6vnLDB58mT27dvH4sWL72hKa23Ky8uNRvzczW6f1ee6ebQdgLm5OU+cD5qHAAEAAElEQVQ++SSrVq0iJyeHMWPG3FGwTyqV0qFDB1599VVef/11srKy8Pf3p3Xr1ly5cqXOIGS1L774gsLCQlasWMGiRYv4/PPPCQ8P16/1FxAQQFRUFNeuXaNRo0YAPPHEE+Tm5jJz5kz8/PwYMWLELetZXl6OiYmJwVSxLVu2GIxQsba2pnXr1mzYsIGXXnqp1impERERLFq0CKlUStOmxrtxCveGu7cfL71h2MG1tZPj4e1H8uULRh3PlOQEpOYWuLjWvRmLvdwJG1s70lKMF0C+lnwZDy8//f89vP05dmgX2ZlpuHp4G+TTHfczKJ+SFM/yn77C2zeAka+8I6YzC7fNz8uNc5eTKC0vN9gAIuGqboMgf6/aR+KamJjg4+lG4jXjjU8Srqbi5uSo313V11M3EjwxJY22zZvo8yVeS0Or1eJXxzUE4UHwdbDjfGYepZVKgw0gEnIUAPg51L65jomJCY3kMhJzjXcyTshR4GprhZVUfMwQ7i25ix/dh3xikGZpLcfBpTHZaeeN+i25GfFIpBbI5Iab8dzI2tYJSyt78q4b91tyMxOwd/G74fr+XDm7k6K8VOycGunT8zITAHBwaXzLNqhVlbWOzhME4dEmxpgL981XX32FVqtl2LBhrFq1imPHjrF69WqGDx9OaWkps2fPvuU5GjduzMCBA1m9ejX5+cZPsu5EREQEsbGxzJs3j0OHDjFz5kwOHz58x+fz8/PDzMyMNWvWcPr0aeLi4gyODxs2jMuXL1NUVMSQIUMafN6LFy/y4osvsmrVKo4cOcLOnTv54Ycf8PLywsfHB9AFLvfu3ctbb73Fjh07iImJYcOGDUyZMoWYmBgA9u3bR1RUFB9//DGurq688847uLq68t5776HVagF46aWXsLGxYdSoUfz+++8cPnyY33//nZUrV+Lm5kZycjLr1q27ZZ2rN6d4//33OXz4ML/88gvffPONfvRctXfeeYfk5GTGjBnDli1bOHToEAsXLmT16tWAbqOHnj178sorr7B06VIOHz7M7t27+emnn/jggw8a/BoK9bO2tiWoaajBl1RqTss24RQXFXD21BF93pLiQuJOHqZZyzCDKaa52RnkZhtOm27RphMX406gyM/Rp12+GEtOVjot24br05q1aoeZmYTD+7bq07RaLTEHtmMnd8S3cU1QNisjlWU/fI6DowujX39fPx1WEG5Hp1YhaDQadh0+oU9TqlTsPXqKIF9vnOS6HSZz8hWkXc82KNuxVTMSU9K4nFKzu196Vg7nLifRqXXNZiktmzTG1saa7QePGZTfceg4FuZS2jQLuh9NE4Q70tHHHY1Wy+7Lqfo0pVpNdGIagc5ynGysAMgpKSOtwHDEaAcfN67kFpBYFcQDSC8s5nxmHp18Gz7LQRAaytzSFnefUIMvM4k53kHhlJcqSL1c05+vKCskNeEQnv7tDNa9LVJkUKQw7Ld4BXUiPekYpUU1/ZbrKbEU5afTKCiiJl/jDpiaSUiI3aJP02q1JMZtw9rWCWcPXb9Fo1FTWW48wjo3Mx5FztVad4AVBOHRJh5lCfdNQEAAa9euZd68eURGRpKdnY1Go8HPz48NGzbog0u3Mn78eP766y+WL1/OG2+8cdf1GjFiBKmpqSxfvly/6+fs2bMZNmzYHZ3P0dGRjz76iEWLFrFx40ZUKhWXLl3SHw8MDMTPzw8fHx+jNfXq4+LigrOzMwsWLOD69evIZDLatWvHV199pR8p1LZtW3777TciIyN5//33USqVuLu706lTJ3x9fVEoFHzwwQc8/vjjDBw4EAALCwtmzZrFiBEjWLZsGWPGjMHd3Z0//viDb7/9lu+++47i4mK8vb154oknePnll/n222/5+OOPcXJyomfPnnXWOTg4mJkzZzJ37lzGjRtHs2bNmDNnDm+99ZZBvnbt2vHLL7/w3Xff8f7772NqakpQUJBBvu+//56ffvqJlStXkpaWhkwmIygo6LaCm8KdadEmnEZ+m1m9fB5ZmanY2Mo4sm8bWq2GPo8bjpxc/L1uSvjkGT/o03r0H0LcyUMsmvMJET0GUllRzr6dG3D38iWsUy99PrmDM517DmTfzo1oNGq8fQI4H3uM5MsXGD7mTUyrFiSvKC9jybwZlJWW0LXPk1w6e8KgDo7O7vg2Np4yLwg3C/LzJrx1CL/9uYuCohLcnB3Zd/wM2fkFvDb8SX2+uSvWcT4xmT++rdnBu3/nDuw+cpIvFq5gcM/OmJmZsnnvYexlNgzqUfPBzVwqZfhjPVm8+k++WfoHoU0DuHAlhX3HzzBiYG9kNjUb75SUlbN1v+4hyqXkawBsPRCDtaUl1laWPNa14/1+SYRHXJCLnE6+7vx+6hIFZRW4yazZfyWNnJIyXg2vGY0//2AsF67nsXLUY/q0fsG+7Lmcyqw9JxjU3B8zUxP+PJ+MvaU5jzf3ewCtER5VjQIjiHffxNHtkRTmpWJhKeNy7Ba0Wg0h4c8Z5I1e+wmgmwJbrXn7oaTGH2LPmg8Jav04amUFF0+sR+7si3/z3vp81jJnmrQexMUT69Fq1Di6BZKWeJTstPN0GjAJk6p+i0pZzqbFY/Fp0hk7p0ZIpJYocq6SfH435hY2NO9wZ585BEF4eJloq4fMCMLfYMGCBURGRrJw4ULCw8NvXeAhkJKSQr9+/ZgzZw79+/d/0NV55EWfK711JoHS0mK2rP2F87FHUSqVePsEMHDIaLx9Aw3yzfrwdcAwMAdwPeMaf65ZSnLiRczMJDRt0ZaBQ15AZic3yKfVaonevo6jB3ZQWJCPs6sH3fs9TZsO3fR58nOzmPXR+Drr2rZTD54dNfEuW/xwaVu270FX4R+rUqkkastu9p+Io6S0DB9PN4Y/1ovWTWvu7U/m/mwUmAPIVRSwbP02Yi8lotFqaB7gx5inH8Pd2Xg9xJ2HT7B57yGy8vJxltvTv0sHBnbrZDDNKjtPwYQZ39ZaTxdHOfM+nHSPWv1wUm3b8KCr8FCoVKn540wCB5PSKalU0kguY1jrIEI9XfR5pm+PMQrMAeSWlPHr8YvEZuSg0Wpp7ubI6PbNcJeJ3bLvldlecx50Ff4VKsuLObN/KWmJR1GrK3F0DSS06ws4uhuOUt68RLc+7Y2BOYCC3BRO7/uZnPQLmJpK8PAPo3W3F7G0lhvk02q1XDy+lsS47ZSV5CGTe9Cs/TP4Nu2uz6NRqzhzYBlZ1+IoKcxGra7EysYRt0Ytad5xGDZ2dW+A9qj6dMy/cyZE0fGtt870gMjaiQ3S/k1EYE7427355pscPHiQlStXEhT08E7pyc/PJykpiXnz5pGUlMT27dsN1l4THgwRmBMeBSIwJzwKRGBOeBSIwJzwKBCBuXtPBOb+XUSUQPjbzZlz5x2MGzcRuJmJick/ajH4PXv28L///Q9fX1+++uoro6CcWq2mvri4COIJgiAIgiAIgiAIwsNNfPIX/lVCQkLqPObl5cXu3bv/xtrUb8iQIfWuhzZmzBiOHj1a5/Fdu3bh7e1d53FBEARBEARBEARBEP7dRGBO+Fep3rWzNubm/64h0NOmTaOkpKTO466uYv0JQRAEQRAEQRAEQXiYicCc8K/SsmXLW2f6l2jcuPGDroIgCIIgCIIgCIIgCA+Q6YOugCAIgiAIgiAIgiAIgiA8ikRgThAEQRAEQRAEQRAEQRAeADGVVRCER8qOY+JtT3gEtO/2oGsgCPddKzY86CoIwn03pcU/Z2MzQbh/BjzoCgjCAyVGzAmCIAiCIAiCIAiCIAjCAyACc4IgCIIgCIIgCIIgCILwAIjAnCAIgiAIgiAIgiAIgiA8ACIwJwiCIAiCIAiCIAiCIAgPgFgFXRCqbNy4kV9++YWkpCS0Wi1ubm60bduWt99+GycnJwCWLl2Kv78/3bt3v+X5du7cyYQJE9i1axfe3t63zL927Vref/99/f9lMhkBAQGMHTuWPn363HnDqqSmptK7d2/mzJnDgAG6BVZvpz3Co6WyooQz+5eRlhiDWlWBo1sQrbuNwcE1oEHlC3OvcWrfz+SkX8DUTIKnfxihXV/E0treIJ9Wq+XSifVcjt1KeUk+MgdPmrV/Bp/grkbn1Gq1JMZuJfHsdory05FILLB38aNNtxeRu/jfk3YLj5ay0hK2rP+V82diqKyspJFvIAOHvICXT+MGlc/KSOXPNUtJvnIRMzMzmrYIY+CQF7CVGd/n+3ZuIGbfNooKFTi7edKj39OEtutikO9acgInj+wlJTmezPQUNGo1M+etvmftFYTaKNVqVp1J4MCVdIorlfg4yBjeugktPZxvWTavtJxfj18gNiMHjVZLiJsTo9o1w01m/TfUXBAaTqlS8ceWPew7cYaS0nJ8PNwYMbAXrYJv3a/JVRTyy4atnLmUiFarJSTQnxee7I+bs+PfUHNBEB4FYsScIAALFy5k8uTJtGvXjm+//ZZvv/2WZ555hrNnz5KVlaXP98svvxAdHX1f67Jo0SKioqKYNWsW5ubmTJgwgf3799/1eV1dXYmKiqJTp076tL+jPcK/j1arZf+GT0m5tJ+g0IG06jKa8lIFe1Z/SFF++i3LlxblsHv1VIoLMmjZ+XmC2z5JetIJotd9gkatMsgbd3A5Zw78gptPKG16vIK1zIXDW74h5ZLxPX9sRySnohfj6BpA2x6v0Lzjs9jInCkvK7xnbRceHVqtlmU/fM6Z4wcI7/4Yjz01iuKiAhbO+ZicrIxbllfk5/DTdx+Sm5NJ/8Ej6dp7MBfPnmBJ5AxUKsP7fNvGFWxdv5zAZqE8Mewl5A7O/P7zd5w5fsAg36VzJzl2aBcmJiY4Ornd0/YKQl1+OBTHXxeSifD3ZHS7ZpiamPDl7uNczMqrt1y5UsWM7TGcv57Hky0CeDY0iKS8QqZvj6GoovJvqr0gNMz8levZHH2YLm1b8sJTAzA1NWHmwhVcvHK13nLlFZVMn7+Uc5eTebpPV4YN6ElSagafzFtKUUnp31R7QRAedmLEnCAAv/76K08//TTvvfeePq179+688soraDSav7UuISEhODrqnsB16NCBHj16sHz5crp2NR5B1FDl5eVYWlrSunXre1RL4WGWmnCInPSLRDz+Lo2CIgBoFNSZLcsmcPbISsIfe6fe8heOrUGlLKfvc19jY+cCgKN7ENFrPyHp/C4CWvYHoLQ4l0unNhIY+hhhPV8FoHGLvuxZPZUzB36hUVBnTEx1z4+uxR8k6fweOg+agndgp9ovLAi3Ie7UYa5eucTIl9+hZdtwAFq2DWf2tP+yc/PvjHhpUr3lo7eto7KigolTZiF31N3n3n6BLImcwYkju+nYpR8ABYpcDuzaTKduA3hy+CsAtI/ow0/ffcSW9b/Ssm0EplX3eceu/ene72mkUnM2RC0iJ+vWgXBBuBuXcxQcTs7g+bCmDGquG3ncrbEXkzcf4LeTl5g+ILzOstvjU8gsKuXTx8IJcJYDEOrpwuRNB/jzfBIj2gT/HU0QhFtKuJrKwZNxjBrcjyd6dgage/tQ/m/WfJZv2sGnb75SZ9ltB4+SkZ3L55NeJdDHC4DWTQN5Z9Z8Nu09xMjH735WiyAIghgxJwhAYWEhrq6utR6r/sDUq1cv0tLSWLFiBcHBwQQHB7N27VoAlEoln332GR06dCAsLIz//e9/lJSU3HW9bG1t8ff3JzU1FYD169fz3HPP0aFDB9q3b8+oUaOIjY01KBMZGUmbNm2IjY1l+PDhtGzZkhUrVpCamkpwcDBbt26ttz1ffPEFPXr0MApIRkdHExwczOXLl29Zb6VSyZdffkmPHj1o0aIFXbp04bXXXqOoqEifp7CwkE8++YQuXbrQokULhgwZwoEDNaNHdu7cSXBwMHv27NGnKRQKunbtyttvv337L6bQYNcSDmNpLcc7sOYDmaW1PY2adCb9yjHUKmW95VMTDuPp314flANw9wlF5uDJtfhD+rT0xKNo1CqCWj2mTzMxMSGw1QBKi3LIybikT790ciNO7kF4B3ZCq9WiUpbfi6YKj7Czpw5jK7OnRZuaQK+tzJ5WYRGcjzuOSln/fR536jBNW4bpg3IAQU1DcXb1JO7kYX3ahdhjqNUqwrsN0KeZmJjQqWt/CvJzSUmquc9ldnKkUvN70TxBaJCYq5mYmpjQK7BmyQ1ziRk9Ar1JyFaQW1JWb9nGTvb6oByAl70tIe5OHLmaeT+rLQi3JebMeUxNTekdHqZPM5dK6dmxLfHJ18hVFNRZ9siZ8wT4eOmDcgBebi60CPLnyOlz97XegiA8OkRgThDQjVL7/fffWbVqFdnZ2bXmmTt3Li4uLvTv35+oqCiioqLo0aMHAN988w0rV67k5Zdf5rvvvkOj0TB79uy7rpdarSYjI0MfNExNTeWpp55izpw5fP3113h4ePD888+TlJRkUE6pVPLOO+8wePBgFi5cSOfOnRvcnmeffZaMjAwOHjxokH/NmjW0bt2awMDAW9Z7wYIF/P7774wdO5YlS5bw4Ycf4urqSmWlbmpLZWUlL774Inv37uWtt97ihx9+ICAggHHjxnHpku5Dap8+fXjqqaeYOnUqeXm66TTTpk0D4OOPP77NV1K4HfnZiTi4NsbExMQg3dE9CJWygiJFWp1lS4tzKS8rwNHNeM0WJ/cgFNk192p+9hUkUktkjoZrMDq4BerrAaCsKCXvegIOboHEHlzO2vkjWTPvOTYveY1r8Yb3qSA0VPq1JDwbGd/njXwDUVZWkF3PaLUCRS4lxYV4+Rjf5438AslIrbnP068lYW5hiYu7l0E+b98A/XFBeFCS8wvxsLPG2lxqkB7oZK8/XhutVss1RREBTvZGxwKd7bleVEqZUlVLSUH4+yWlZeLh4oS1paVBenWwLSmt9kCyVqslJf06AY08jY4F+niTmZNHWXnFva+wIAiPHDGVVRDQBXomTpzI1KlTAfD29qZnz56MGTNGv3FD8+bNMTc3x9nZ2WBKqEKh4LfffmPs2LGMGzcOgK5du/Kf//yH69ev33ZdNBoNKpWKvLw8fvjhB7Kzs3njjTcAmDhxokG+zp07Exsby7p16wxGkSmVSiZNmsTAgQP1adWj7qrV1R5HR0fCwsJYs2aNfvpsfn4+u3fv5qOPPmpQG+Li4ujSpQvPP/+8Pq1///767zdt2sTFixfZsGGDPtDXtWtXrl69yvz585kzZw4AU6dO5YknnuCjjz5iwIAB/PXXXyxatAh7e+MPAsK9U16iwNUrxCjd0toBgLLifOTOfrWXLdYFUS1tHGotX1FehFqlxEwipbxEgaW13CgwYmXjWHWufACKCzJ1HwIvHcDE1IzQLqORWtiQcHozh7fMRmJuhYdf2ztur/BoKipU4B/Y3Cjd1k537xYV5OHh5Vt72QLdvWlnb3yfy+zklJYUo1IqkUilFBUqsJXZG93nMnvdfV5YUP86XoJwPynKKpBbWRily610AYz80tqDDkUVSpRqDfa1lHWoSssvK8dKansPaysIdya/sAgHO+N70cFOpjteUGR0DKCopBSlSoW8trL2tvpzW1ka/x4IgiDcDjFiThCAJk2asHnzZn766SdGjx6NTCbj119/ZfDgwVy4cKHesvHx8ZSXl9O3b1+D9H79+t1RXTp37kxISAhdu3Zl7dq1vP766wwbNgyAxMREJkyYQEREBM2aNSMkJISkpCSSk5ONznM3O60OGzaMXbt2oVAoAF0gTSqVGgT66tO8eXOio6OJjIwkNjbWaFrswYMHadKkCX5+fqhUKv1XREQEcXFx+nwymYyZM2eyc+dO3n//fZ577rm7WmtPaBi1qgJTM6lRuplEN8VOo657UW+1Wjf9z6ye8uqq8ipVBaZmxs+HjPJVTVutKC+iyxPvERj6GL5Nu9HjmemYW8o4f3RVg9smCNWUlRVIJMb3qVSqS1PWM5VVqdTdm2a1lJdUTUWtzlP3dXT5bjVlVhDup0qVGomp8ccBqZkurVKtrrWcsiq9Ot+NJNVlVX/vGr2CUBelUoVEYtzfkErMAKis431YWbWRj7TWsrq0ikrxHi4Iwt0TI+YEoYq5uTndu3fXB7T279/PuHHjmDdvHnPnzq2zXPXUVycnJ4N0Z2fnO6rH0qVLsbW1xd7eHk9PT31Hori4mJdeeglHR0fee+89PD09sbCwYOrUqVRUGD7RtrKywsbG5o6uDzBgwAA+++wzNm7cyOjRo1m7di39+/fH1rZhT75ff/11TE1NWbduHXPnzsXR0ZHnn3+eCRMmYGJiQn5+PufPnyckxHhUlpmZmcH/w8LC8PT0JC0tjf/85z933CbBmEatoqLc8CmxpZU9ZhILNGrjjqZapQs0mJrVvQZWdUBOXU95s6ryEomF0S6tteWrPqeNnRtOHjWLiUuklnj6t+PqpX1oNGpMTc2MziUIKpWKshLD+9xGZo/U3AJVLeslVgfkqgN0takOqtW23qKqKiBXnafu6+jySeq5jiDcb+YSM1S1bHKlVOvSzM1qf1+VVqVX57uRqrqsRDz/F/4ZpFKJ0W7ZAEqVLsBsXsf7cHXwTVlrWV2ahbl4DxcE4e6JwJwg1KFr1640bdqUxMTEevO5uOgW/s7NzcXNzU2fnpOTc0fXDQ4O1u/KeqPTp0+TmZnJggULaNq0qT69qKgId3d3g7w3T5m6XZaWljzxxBOsXbuWsLAwLly4oJ/m2xDm5ua88cYbvPHGG1y9epU1a9YQGRmJt7c3Tz31FPb29gQHB/PZZ5/d8lzff/89+fn5+Pn5MW3aNH755Ze7bp+gk5N+kT1rPjRIG/TSAixt5JSV5BvlLy/VpVnZGk/fq2ZpWzUNtY7yFpYy/SgjSxs5WalxaLVag59pWUnVdNiq61jZ6oLeltbGU5gtreVo1CpUynLMLe48GC08vFKuXGThnE8M0iZPn4/MTk5hgfF9WlyoS6uealobWdUU1trKFxUqsLax1QfcZHZyEuPPGt3nRVVTWO3quY4g3G9yKwvyS40301GU6dIcrGufoiezkCI1M6WgzHiqa35VmoOVpdExQXgQHOxk5BUYr5eYX6h7aONgL6u1nMzGGqlEgqKw2LhsQbH+3IIgCHdLBOYEAV0Q7eYRbuXl5WRkZBhsdiCVSo1GpzVp0gRLS0t27NhB8+Y16xVt3779ntaxvLxcX4dqJ0+eJC0tjaCgoDs6Z23tqTZs2DBWrFjBzJkz8fPzo127dnd0DV9fX95++22ioqK4cuUKABEREURHR+Pq6moQzLzZyZMnWbx4MZ988gnNmzdnxIgRLFu2jDFjxtxRXQRDchc/ug/5xCDN0lqOg0tjstPOGwUScjPikUgtkMkNF7G/kbWtE5ZW9uRdNw5o52YmYO/id8P1/blydidFeanYOTXSp+dlJgDg4NIYACtbR6xsHPQBuxuVleRiJjFHam7dkCYLjyB3bz9eesMwAG1rJ8fD24/kyxeM7vOU5ASk5ha4uBov9l3NXu6Eja0daSnG9/m15Mt4ePnp/+/h7c+xQ7vIzkzD1cPbIJ/uuB+C8KD4OthxPjOP0kqlwQYQCTkKAPwc7GotZ2JiQiO5jMRc490sE3IUuNpaYSUVHzOEfwY/LzfOXU6itLzcYAOIhKu69Zf9vdxrLWdiYoKPpxuJ14w3A0q4moqbk6NYX04QhHtCjDEXBOCJJ57gf//7H3/99RfHjx/nzz//5MUXXyQ/P58XXnhBn69x48YcOXKEgwcPEhcXR35+PnK5nBEjRrBw4UIWLFjA/v37ee+990hJSbmndWzdujXW1tZMmzaNAwcOsGbNGt5+++16A1u3Ult7qjVt2pSWLVty7Ngxnnnmmds67/jx45k3bx579uzhyJEjzJw5k4KCAjp16gTAU089hb+/P6NHjyYqKoqYmBh27tzJ999/r9/NtrS0lClTptClSxeGDx9Oy5Ytee211/jmm29uOYpRaBhzS1vcfUINvswk5ngHhVNeqiD18mF93oqyQlITDuHp385gXa0iRQZFigyD83oFdSI96RilRTWjRq+nxFKUn06joIiafI07YGomISF2iz5Nq9WSGLcNa1snnD1qRoY2atKZ0qIcMlPOGNQpLfEYrt4txShKoU7W1rb8P3v3HR5VlT5w/JteJ5n0QkiBhISEQCC0UANItSG6gCKIrmWl6A9QRBcRUMR1RUTABiqCNJUiRXrvvQQCIUAgpPfepv3+CEwcJ4EAgbjwfp6HR3PuOfe+J1ySO+89JSikhcEfCwtLwltGUVSYz5kTB/V1i4sKiDl+gKbhkQZTTLMzU8nONLzPm7Vsz/mYY+TlVt3nF8+fJisjhfBWUfqyps1bY2ZmzoHdG/VlOp2OQ3s346B0xq9RCELUl3a+nmh1OrZfrNogSqXRsOtSMoGuSlzsbADIKi4lOd9w1FBbXw8uZ+dz6XoSDyCloIjYtBza+3ndl/iFqI32zcPQarVsO3BMX6ZSq9l5+ARBfj64KCtH5Gfl5pGcnmnQtl3zplxKTOZiYtWO9CkZWZy9mED7COMNhIQQ4k7IqywhqNztdMeOHXzyySfk5OTg5OREcHAwCxYs0CeTAMaOHcvkyZMZPXo0xcXFTJ8+nQEDBjBu3Dg0Gg3z589Hq9XSs2dPxo0bx/jx4+ssRldXV2bNmsWnn37KiBEj9FM758+ff8fnrKk/N/Ts2ZPY2Fj69+9/W+dt1aoVGzZs4Mcff0Sj0RAQEMBnn31Ghw6VSRlLS0sWLlzI7Nmz+eabb8jMzESpVBIaGspzzz0HwCeffEJBQYHBdNfXX3+dnTt3Mn78eJYvX17tQr7i7jUM7MAFz7Uc3jybgpwkrKwVXDy9AZ1OS1jUswZ1d62cDFROgb0htM0zJF3Yz44V7xMU8SgaVTnnj61G6epHQGgPfT1bhStNIh7j/LHV6LQanD0CSb50mMzkWNr3GYPJnxYkb9rmaa5d2M/+df+hScsnsLCy5VLMJrRaNc07Vu3+K0RtNWsZRUP/dfz281wy0pKws1dwcPcmdDotjzw62KDu919OBWD8h1/ry6J7DyDm+H7mz5pMh+h+VJSXsXvr73g28COyfXd9PaWTKx279WP31jVotRp8fBsTe/oIVy6eY9DwNzH9032em53BicO7AfSj8bZv+A0AJxc3Wra98019hKhOkJuS9n6eLDsRR35pOR4KW/ZcTiaruJRXo8L19b7ad5pz6TksHdpXX9Yr2I8dF5P4dMcxHgsNwMzUhPWxV3C0tuTRUP966I0Q1Qvy9yEqIowl67eRX1iMh6szu4+eIjM3n38NelJfb87iVcReusIvM6foy3p3bMv2g8f5ZN5inujWETMzU9btPICjwo7HojtUdzkhhLhtJjqdTlffQQgh/p6GDBmCQqHgm2++qe9Q6szEBTXvKCqqVJQVcWrPApIvHUajqcDZPZAWnV/A2dNw2vS6H14DDBNzAPnZiZzc/SNZKecwNTXHKyCSiC4vYm2rNKin0+k4f3Qll2I2U1qcg0LpRdM2T+MXYpyAKMpP49Sen0hPPI1Wq8bFK5gWHYcaxSSgZxvjhaqFsZKSIjasXEjs6cOoVCp8fBvTb8AwfPwCDep9+v7rgGFiDiA99RrrVyzgyqXzmJmZE9KsFf0GvIDCQWlQT6fTsWvzKg7v3UJBfi6u7l507fUULdt2Mah3+cIZo/XwbggIDOXVMVPvrsMPmOarx9V3CA+ECrWGX07Fsy8hheIKFQ2VCgZGBNHC201fZ+rmQ0aJOYDs4lIWHT3P6dQstDodoR7ODGvTFE+FrPlZV8x7P3nrSuKWKlQqlm/Yzp5jMRSXlOLr7cGgvt2JCKn6eT95zo9GiTmA7Lx8flq9idNxl9DqtIQ29mf4U33xdJU1QuuKonWf+g7hjhQe3XjrSvXkf/V7+rCSxJwQwkhMTAzHjh1j+vTp/Pjjj/qRbg8CScyJh4Ek5sTDQBJz4mEgiTnxMPhfTSJJYk7UFZkHJsR9oNVq0Wq1NR43MzP7W62R9cwzz6BQKBgxYoRRUk6n06HRaGpsa2pqajA1SwghhBBCCCGEENWTxJwQ98F7773HqlWrajy+cOFC2rVrdx8jurm4uLgaj61atYp33323xuOjRo1i9OjR9yIsIYQQQgghhBDigSKJOSHug1GjRjFkSM0L1AcEBNzHaO5Ot27d+O2332o87u7ufh+jEUIIIYQQQggh/ndJYk6I+8DHxwcfH5/6DqNOODk54eTkVN9hCCGEEEIIIYQQ//NkISghhBBCCCGEEEIIIeqBJOaEEEIIIYQQQgghhKgHkpgTQgghhBBCCCGEEKIeyBpzQgghxAOm+epx9R2CEPecee8n6zsEIe654zZd6jsEIe65rvUdgBD1TEbMCSGEEEIIIYQQQghRDyQxJ4QQQgghhBBCCCFEPZDEnBBCCCGEEEIIIYQQ9UASc0IIIYQQQgghhBBC1APZ/EE8NNasWcPChQtJSEhAp9Ph4eFBq1atGDt2LC4uLgAsWLCAgIAAuna99RKkW7duZeTIkWzbtg0fH59b1l+5ciXvvvuu/muFQkHjxo155ZVXeOSRR+68Y9clJSXRo0cPZs2aRZ8+fYDb648Qf1ZRXsypPT+RfOkQGnU5zh5BRHQZjpN741q1L8i+xondP5KVcg5TM3O8AyJp0flFrG0dDerpdDrijq3m4umNlBXnonDypmmbp/EN7mxQ58q5HSRdPEheZgIVZYXYObjj26QzwZFPYmZuWad9Fw82lUbDr6fi2Xs5haIKFb5OCgZFNCHcy/WWbXNKylh09BynU7PQ6nSEebgwtHVTPBS2RnV3XLzGutgEMotKcba1pk+IH31C/A3qpBQUsfXCNS5m5XElpwCVRsuXT0XjZm9TR70VDyuVWs0vG3aw+9gpikvK8PXyYHC/7jQPvvXP8Oy8Ahb+vpFTcZfQ6XSEBQbwwpO98XB1Nqq7/dBx1u7YR0Z2Hi5KB/p2bkffLu0N6qRkZLFl/1HiryaRkJSKSq1m7vtjcHNW1lV3haC0pJgNqxcRe+oQFRUVNPQLpN+AF2jg26hW7TNSk1i/YgFXLp/HzMyMkGaR9BvwAvYK4+eW3Vt/59DuTRQW5OHq4U10r6do0bqTQb1rV+I5fnAniVcukJaSiFajYfrc3+qsv0KIB4uMmBMPhXnz5jF+/Hhat27NzJkzmTlzJk8//TRnzpwhIyNDX2/hwoXs2rXrnsYyf/58li9fzqeffoqlpSUjR45kz549d31ed3d3li9fTvv2VQ/E96M/4sGj0+nY8/tHJMbtIahFP5p3GkZZSR47fnufwtyUW7YvKcxi+28TKcpPJbzjEIJbPUlKwjF2rZqMVqM2qBuz72dO7V2Ih28LWka/jK3CjQMbPicxrurfhEZdzuHNsykvyadxeG8iuryEs0cQZw4uZffqD9HpdHX+PRAPrq/3x/DHuSt0CPBmWOummJqY8J/tRzmfkXPTdmUqNR9uPkRseg5PNmvMP1oEkZBTwNTNhygsrzCou/VCIt8dOIOPoz0vtAklyE3JT0fO8fuZSwb14jPz2Hj+CmUqNd6OdnXeV/Hw+mrpatbtOkCnVuG80L8PpqYmTJ+3mPOXr960XVl5BVO/WsDZi1d46pHODOzTjYSkVCbPXUBhcYlB3S37j/LNst/x8XDnxQH9aOLfkB9XbWD1NsNnmgtXrvHH7oOUllfQwMOtzvsqhE6n46evP+bU0b1Ede1L3/5DKSrMZ96sD8jKSL1l+7zcLL774n2ys9Lo/cRzdO7xBOfPHOOH2R+iVhs+t2xas5iNq38msGkLHh/4EkonV5b9+AWnju41qBd39jhH9m/DxMQEZxePOu2vEOLBIyPmxENh0aJFPPXUU0yYMEFf1rVrV15++WW0Wu19jSUsLAxn58q3zm3btiU6Opqff/6Zzp0736JlzcrKyrC2tiYiIqKOorzzGMT/vqT4/WSlnKfDo2/TMKgDAA2DOrLhp5GcObiUqL7jbtr+3JEVqFVl9Hz2M+wcKj+EOXsGsWvlZBJit9E4vDcAJUXZxJ1YQ2CLvkR2exWARs16suO3iZzau5CGQR0xMTXF1NScHgM/xtW7qf4ajcN7YefowZkDS0m/dhpP3xb34lshHjAXs/I4cCWVIZEhPBYaAECXRg0Yv24vS47HMbVPVI1tN19IJK2whI/6RtHYVQlAC283xq/dy/rYBAa3DAagQq1h+ckLtGzgxpiurQDoEdQQnQ5WxVyiR5Av9lYWALTycef7QT2xsTBnXWwCV3PO38Pei4dF/NUk9h2PYegTvXi8W0cAurZpwVuffsXPa7fw0Zsv19h2077DpGZm8/GYVwn0bQBAREgg4z79irU79/Pco5Uj/CtUKpb+sY1WoU0Y9+IgAB6JikSn07Fyy24eiWqNvW3lyM/IsGAWfPwuNtZWrN2xjyvJt06UCHE7Yk4c4OrlOJ775zjCW1X+HA9vFcWMKW+wdd0yBr805qbtd21aRUV5OaPe+RSlc+Vzi49/ID/M/pBjB7fTrlMvAPLzstm7bR3tu/ThyUGV/47adHiE776YxIbViwhv1QFT08pxL+0696Zrr6ewsLDk9+Xzycq49YtNIcTDS0bMiYdCQUEB7u7u1R678Qu0e/fuJCcns3jxYoKDgwkODmblypUAqFQqpk2bRtu2bYmMjOS9996juLj4ruOyt7cnICCApKQkAFavXs2zzz5L27ZtadOmDUOHDuX06dMGbWbPnk3Lli05ffo0gwYNIjw8nMWLF5OUlERwcDAbN268aX8++eQToqOjjRKSu3btIjg4mIsXL94y7kOHDhEcHMzOnTt54403aNWqFW+++Wat+wBw6dIlRo0aRdu2bWnRogVPPPEE69at0x/X6XR8//339O7dm2bNmtGjRw8WLFhwW99fcWeuxR/A2laJT2BVksLa1pGGTTqScvkIGrXqpu2T4g/gHdBGn5QD8PRtgcLJm2sX9uvLUi4dRqtRE9S8r77MxMSEwOZ9KCnMIis1DgBTM3ODpNwNDRq3BaAg59qddVQ8dA5dTcPUxITugVXLD1iamxEd6EN8Zh7ZxaU3bdvIxVGflANo4GhPmKcLB6+m6cvOpmdTVK6iZ7CvQftewb6UqzWcSK4apa2wssTGQt6Rirp16FQspqam9IiK1JdZWljQrV0rLly5RnZefo1tD56KpbFvA31SDqCBhxvNggI4ePKsvuxMfAJFxSX06tjGoH3vTm0pK6/geOwFfZnCzhYba6u66JoQ1Tpz4gD2CkeatayaNWKvcKR5ZAdiY46iVt38uSXmxAFCwiP1STmAoJAWuLp7E3P8gL7s3OkjaDRqorr00ZeZmJjQvnNv8nOzSUyI05crHJRYWMhSG0KI2pHEnHgohIWFsWzZMn799VcyMzOrrTNnzhzc3Nzo3bs3y5cvZ/ny5URHRwPw+eefs3TpUv75z3/yxRdfoNVqmTFjxl3HpdFoSE1N1ScNk5KS6N+/P7NmzeKzzz7Dy8uLIUOGkJCQYNBOpVIxbtw4nnjiCebNm0fHjh1r3Z9//OMfpKamsm/fPoP6K1asICIigsDAwFrH//7779OwYUPmzp3LSy+9VOs+XLlyhUGDBnH16lX+/e9/8/XXXzNgwABSUqreJk6bNo0vv/yS/v3789133/HUU0/x2WefsXTp0lrHJ+5MbuYlnNwbYWJiYlDu7BmEWlVOYV5yjW1LirIpK83H2cN4HSMXzyDyMqvug9zMy5hbWKNwNlyj0ckjUB/HzZSVVH64tLZxvGk9IW64kluAl4MttpYWBuWBLo7649XR6XRcyyuksYvxvRbo6kh6YQmlqsrpTldyKs/x17qNnB0xMak6LsS9kpCchpebC7Z/GcV+I9mWkJxWXTN0Oh2JKek0buhtdCzQ14e0rBxKy8oBuHL9HI3/lMADaOTjjYmJif64EPdDyrUEvBsaP7c09AtEVVFO5k1Gq+XnZVNcVEADX+Pnlob+gaQmVT23pFxLwNLKGjdPw/vex6+x/rgQQtwJeU0rHgoffPABo0aNYuLEiQD4+PjQrVs3hg8frt+4ITQ0FEtLS1xdXQ2mhObl5bFkyRJeeeUVXnvtNQA6d+7M888/T3p6+m3HotVqUavV5OTk8PXXX5OZmcno0aMBGDVqlEG9jh07cvr0aVatWsXYsWP1x1QqFWPGjKFfv376shuj7m6oqT/Ozs5ERkayYsUK/fTZ3Nxctm/fzqRJk26rL927d+ftt982KKtNH2bPno2FhQVLly7F3t4egA4dOujbJSYm8vPPPzNlyhQGDRqkP15WVsbcuXMZNGiQfqSjqHtlxXm4NwgzKre2dQKgtCgXpat/9W2LKtfpsrZzqrZ9eVkhGrUKM3MLyorzsLZVGj1I29g5Xz9X7k3jPH90FRaWtnj6t7pln4QAyCstR2ljPHJHaVOZwMgtKa+2XWG5CpVGi2M1bZ2ul+WWlmFjYU9eaTmmJiY4/GWEkLmZKQorS3JLq7+GEHUlt6AQJwd7o3InB0Xl8fzCatsVFpegUqtRVtfW0V5/bhtrK3ILCjE1NcXR3nBtRHNzMxR2tuQWVH8NIe6FwoI8AgJDjcrtHSqfRQrzc/Bq4Fd92/zKZw0HR+PnFoWDkpLiItQqFeYWFhQW5GGvcDR6blE4Vj63FOTffK1SIYSoiSTmxEOhSZMmrFu3jgMHDrB3716OHDnCokWLWLlyJYsXL6ZpU+NpcjdcuHCBsrIyevbsaVDeq1cvjhw5ctux/Hl0m7W1Na+//joDBw4EKqd3fv7555w4cYLs7Gx9vStXrhid5252Wh04cCDvv/8+eXl5KJVK1q5di4WFhUGirzZujCj8s9r04eDBg/Tu3VuflPur/fsrpzv26tXLYNHdDh06MG/ePFJTU2nQoEG1bcXd06jLMTWzMCq/sfupVlNhdEzfVlM5XcTsJu01mgrMzC1Qq8sxNTP+NfTnejWJPfwb6YmniOz2KpZWsmi+qJ0KtQbzapL6FmaVZRUaTbXtVNfLb9T7M/MbbdXa6+fQYmZqYlQPwNzUlAp19dcQoq6oVGrMzY1/tlqYmwGV68NV2+7671uLattWlpVXqK6fQ425mVm157EwN9fXE+J+UFWUY25u/NxhYVFZprrJVFaVqvJZw6ya9ubXp6KqVBWYW1jc5DqV9W41ZVYIIWoiiTnx0LC0tKRr1676hNaePXt47bXXmDt3LnPmzKmx3Y2pry4uLgblrq6udxTHggULsLe3x9HREW9vb/3Dc1FRES+99BLOzs5MmDABb29vrKysmDhxIuXlhiMsbGxssLO782REnz59mDZtGmvWrGHYsGGsXLnypomymvz1e1LbPuTl5dW45h9UjuDT6XQGO8z+mSTm6oZWo6a8zHBUg7WNI2bmVmg1xg+XGnXlw6upWc1rptxIyGlu0t7sentzcyujXVqrq/dXiRf2cubAEhqF9SCwRd9q6whRHUtzM9TVbPij0lSWWdaUaLhefqPen6lvtDU3vX4OUzTa6ncKVmu1WJpXfw0h6oqFhbnRTpIAqutJYUsL48QCVCXfVNW2rSyzuj4N3NLCHHVNiWy1Wl9PiLqkVqspLTZ8brFTOGJhaYW6mvVvbyTkLGq45yuPXX8ZWE179fWk3Y06NV+nsp75Ta4jhBA3I4k58dDq3LkzISEhXLp083Ws3NwqF4LNzs7Gw6Nqu/OsrKw7um5wcLB+V9Y/O3nyJGlpaXz77beEhIToywsLC/H09DSo+9ch9LfL2tqaxx9/nJUrVxIZGcm5c+f003xvx1/jqG0flEolGRkZ1MTRsXKawJIlS6p9mAoICLjtWIWxrJTz7FjxvkHZYy99i7WdktJi42mkZSWVZTb2xtM9brC2vz4NtYb2VtYK/VtpazslGUkx6HQ6g3uptPj6dNhqrpOWeIpDm2bh5R9JZI/Xb9VFIQwobazILSkzKs8rrSxzsq1+gXqFlQUWZqbkVzMN9cbUVKfr02GVNlZodToKysoNprOqNVoKyyv0U1+FuFecHBTk5BuvZXhjeqmTo6Ladgo7WyzMzckrKDJum1+kP/eN/2q1WvKLig2ms6rVGgqLS/T1hKhLiZfPM2/WZIOy8VO/QuGgpCDf+LmjqKCy7MZU0+oork9hra59YUEetnb2+oSbwkHJpQtnjJ5bCq9PYXW4yXXEg0m96ff6DqFmrfvcuo7425DEnHgoZGVlGY1wKysrIzU11WCzAwsLC6PRaU2aNMHa2potW7YQGlq1fsXmzZvrNMaysjJ9DDccP36c5ORkgoKC7uic1fXnhoEDB7J48WKmT5+Ov78/rVu3vqNr/Flt+xAVFcWmTZt46623qh2lFxVVuRtoXl4e3bt3v+u4RPWUbv50HTDZoMzaVomTWyMyk2ONHjyzUy9gbmGFQlnzaEVbexesbRzJSTdOeGenxePo5v+n6wdw+cxWCnOScHBpqC/PSYsHwMmtkWH71Dj2rf0EZ49AOjz6NqamMvJI3B4/Jwdi03IoqVAZbAARn5UHgL+TQ7XtTExMaKhUcCnbeDfL+Kw83O1t9Lur+l0/x6XsfFo2qBoZfCk7H50O/J2rv4YQdcW/gQdnLyZQUlZmsAFE/NXKtWgDGnhW287ExARfbw8uXTNeKD/+ahIeLs763VX9vCtfVF5KTKZVaBN9vUvXktHpdPjXcA0h7oanjz8vjTZ8oWjvoMTLx58rF88ZPbckXonHwtIKN3fjDU1ucFS6YGfvQHKi8XPLtSsX8Wrgr//ayyeAI/u3kZmWjLuXj0G9yuP+CCHEnZDV08VD4fHHH+e9997jjz/+4OjRo6xfv54XX3yR3NxcXnjhBX29Ro0acfDgQfbt20dMTAy5ubkolUoGDx7MvHnz+Pbbb9mzZw8TJkwgMTGxTmOMiIjA1taWKVOmsHfvXlasWMHYsWMNRundrur6c0NISAjh4eEcOXKEp59+ui66UOs+jBo1CpVKxXPPPceaNWs4cOAAP//8M/PmzQMqR8QNGTKE8ePH8/XXX7N//3527drFTz/9xIgRI+okVgGW1vZ4+rYw+GNmbolPUBRlJXkkXTygr1teWkBS/H68A1obrMNSmJdKYV6qwXkbBLUnJeEIJYVVo0rTE09TmJtCw6CqTT4aNGqLqZk58ac36Mt0Oh2XYjZha++Cq1fVqMuC7Gvs+X0adg5udH7i3/p16IS4He18PdHqdGy/WLVZjkqjYdelZAJdlbjY2QCQVVxKcr7hqKG2vh5czs7n0vUkHkBKQRGxaTm09/PSlzXzdMHeyoItcYa/I7bGJ2JpbkZEA7d70DMhqrRvHoZWq2XbgWP6MpVazc7DJwjy88FFWbljcFZuHsnphjvVt2velEuJyVxMrNp9OyUji7MXE2gfUfVyMrxJI+ztbNm8z3Ct3S37j2JlaUHLpnf2QlGIm7G1tScopIXBHwsLS8JbRlFUmM+ZEwf1dYuLCog5foCm4ZEGU0yzM1PJzjR8bmnWsj3nY46Rl1v13HLx/GmyMlIIbxWlL2vavDVmZuYc2L1RX6bT6Ti0dzMOSmf8GoUghBB3QkbMiYfCqFGj2LFjB5988gk5OTk4OTkRHBzMggULDNYxGzt2LJMnT2b06NEUFxczffp0BgwYwLhx49BoNMyfPx+tVkvPnj0ZN24c48ePr7MYXV1dmTVrFp9++ikjRozA39+fKVOmMH/+/Ds+Z039uaFnz57ExsbSv3//OuhB7fvg7+/PsmXLmDFjBlOmTEGj0eDv78+rr76qrzNx4kQCAgJYvnw5c+fOxc7OjoCAAPr0kWHZ91rDwA5c8FzL4c2zKchJwspawcXTG9DptIRFPWtQd9fKyUDlFNgbQts8Q9KF/exY8T5BEY+iUZVz/thqlK5+BIT20NezVbjSJOIxzh9bjU6rwdkjkORLh8lMjqV9nzGYXF+kX1VRyq7VU6koLyI4sj8pCUcNYrBXehok8YSoSZCbkvZ+niw7EUd+aTkeClv2XE4mq7iUV6PC9fW+2neac+k5LB1atYZhr2A/dlxM4tMdx3gsNAAzUxPWx17B0dqSR0P99fUszc0Y2CKIHw7H8sWuEzT3duV8Rg57L6cwMCIIhVVVUrm4QsWmuKsAXMiofHGyKe4qtpbm2FlY0Duk+l0EhbiZIH8foiLCWLJ+G/mFxXi4OrP76Ckyc/P516An9fXmLF5F7KUr/DJzir6sd8e2bD94nE/mLeaJbh0xMzNl3c4DOCrseCy66sWKpYUFg/p24/vf1vP5gl9oEdKYc5cT2X30FIP79UBhZ6uvW1xaxsY9hwCIu3INgI17D2FrbY2tjTV9O7e7198S8YBr1jKKhv7r+O3nuWSkJWFnr+Dg7k3odFoeeXSwQd3vv5wKwPgPv9aXRfceQMzx/cyfNZkO0f2oKC9j99bf8WzgR2T7qpkbSidXOnbrx+6ta9BqNfj4Nib29BGuXDzHoOFvYvqnzYVyszM4cXg3gH403vYNvwHg5OJGy7Z3vombEOLBY6LT6apfoVgI8cAbMmQICoWCb775pr5DuW8mLqh5p09RpaKsiFN7FpB86TAaTQXO7oG06PwCzp6GoyDW/fAaYJiYA8jPTuTk7h/JSjmHqak5XgGRRHR5EWtbpUE9nU7H+aMruRSzmdLiHBRKL5q2eRq/kKoH1uKCDP11qhMQ2o22vd64yx4/WMYlv1nfIfxtVag1/HIqnn0JKRRXqGioVDAwIogW3lUj2aZuPmSUmAPILi5l0dHznE7NQqvTEerhzLA2TfFUGG/Gsy3+GutjE8gsKsHFzoZewb70DfE3mGaVWVTKG6t2Vhunq50NswdE10mfH1TmvZ+8daWHVIVKxfIN29lzLIbiklJ8vT0Y1Lc7ESFVy3dMnvOjUWIOIDsvn59Wb+J03CW0Oi2hjf0Z/lRfPF2N18/aeuAY63buJyMnF1elI707taVfl/aG93lOHiM/nFltnG7OSua+P6aOev1gOm7Tpb5D+J9QUlLEhpULiT19GJVKhY9vY/oNGIaPX6BBvU/fr1yf9s+JOYD01GusX7GAK5fOY2ZmTkizVvQb8AIKB6VBPZ1Ox67Nqzi8dwsF+bm4unvRtddTtGxr+Pd0+cIZo/XwbggIDOXVMVPvrsMPmK5htreu9DeUO+3vu96x07+/vnUl8bchiTkhHkIxMTEcO3aM6dOn8+OPP9KhQ4dbN3pASGJOPAwkMSceBpKYEw8DScyJh4Ek5uqeJOb+t8hUViHqgFarRavV1njczMzsrndSrUvPPPMMCoWCESNGGCXldDodGo2mxrampqYGQ/WFEEIIIYQQQghxZyQxJ0QdeO+991i1alWNxxcuXEi7dn+fNVTi4uJqPLZq1SrefffdGo+PGjWK0aNH34uwhBBCCCGEEEKIh4ok5oSoA6NGjWLIkCE1Hg8ICLiP0dydbt268dtvv9V43N3d/T5GI4QQQgghhBBCPLgkMSdEHfDx8cHHx6e+w6gTTk5OODk51XcYQgghhBBCCCHEA08WihJCCCGEEEIIIYQQoh5IYk4IIYQQQgghhBBCiHogU1mFEA+Vnm3U9R2CEPfcDGbVdwhC3HPjNr1Z3yEIcc+16l3fEQhxP/Sp7wCEqFcyYk4IIYQQQgghhBBCiHogiTkhhBBCCCGEEEIIIeqBJOaEEEIIIYQQQgghhKgHkpgTQgghhBBCCCGEEKIeSGJOCCGEEEIIIYQQQoh6ILuyijq3Zs0aFi5cSEJCAjqdDg8PD1q1asXYsWNxcXEBYMGCBQQEBNC1a9dbnm/r1q2MHDmSbdu24ePjc8v6K1eu5N1339V/rVAoaNy4Ma+88gqPPPLInXfsuqSkJHr06MGsWbPo06dyB6Hb6c/fWXZ2Nh999BH79u3DxMSEsLAw3n77bZo2bVrfoYn7rLSkmA2rFxF76hAVFRU09Auk34AXaODbqFbtM1KTWL9iAVcun8fMzIyQZpH0G/AC9gpHg3o6nY7dW3/n0O5NFBbk4erhTXSvp2jRupNBvWtX4jl+cCeJVy6QlpKIVqNh+tzf6qy/4uGhUas4c3ApV8/toqK8CKWrH806DMHTt8Ut25YUZXNy14+kJ55Ep9Pi7hNORNcXsXf0NKp7+exW4o6tpjg/AxuFC0ERj9Ik4jGDOgW5yVw6vYmctAvkZlxGo1Hx2EvfYufgXmf9FeJWVBoNv56KZ+/lFIoqVPg6KRgU0YRwL9dbts0pKWPR0XOcTs1Cq9MR5uHC0NZN8VDY3ofIhbgzxaVl/Lx2M4dPn6NCpSLQ14ehT/aikY93rdonpWXy0+8biUtIxMzMjMjQJgx9sjeO9nb3OHIhxINKRsyJOjVv3jzGjx9P69atmTlzJjNnzuTpp5/mzJkzZGRk6OstXLiQXbt23dNY5s+fz/Lly/n000+xtLRk5MiR7Nmz567P6+7uzvLly2nfvr2+7H70534YP348x48fZ/LkyUybNg1PT08uXrxY32GJ+0yn0/HT1x9z6uheorr2pW//oRQV5jNv1gdkZaTesn1ebhbfffE+2Vlp9H7iOTr3eILzZ47xw+wPUavVBnU3rVnMxtU/E9i0BY8PfAmlkyvLfvyCU0f3GtSLO3ucI/u3YWJigrOLR532VzxcDm/5kgvH1+Ab3JmWXV/CxMSUPas/JDP53E3bqVVl7PztfTKTztC0zdOEtR9MbuZldvz2PuWlhQZ1L8Vs4siWuTg4+9Iy+mVcvYI5sfN7zh1ZaVAvOzWO+JPrUFWU4uB86xdPQtwLX++P4Y9zV+gQ4M2w1k0xNTHhP9uPcj4j56btylRqPtx8iNj0HJ5s1ph/tAgiIaeAqZsPUVhecZ+iF+L26HQ6Ppm3mH3HY+jTuR1DHu9FXmERU+YuIDUz+5bts/Py+WDOD6Rn5fBsvx48Ht2BY7EX+OibhajVmvvQAyHEg0hGzIk6tWjRIp566ikmTJigL+vatSsvv/wyWq32vsYSFhaGs7MzAG3btiU6Opqff/6Zzp073/E5y8rKsLa2JiIioo6i/PsoLi5m3759TJ48mX79+gHc1gjDG98b8b8v5sQBrl6O47l/jiO8VRQA4a2imDHlDbauW8bgl8bctP2uTauoKC9n1DufonR2A8DHP5AfZn/IsYPbadepFwD5edns3baO9l368OSglwFo0+ERvvtiEhtWLyK8VQdMTSvfH7Xr3JuuvZ7CwsKS35fPJysj5V51XzzAstMukBi3lxadhxMS+SQA/k27sfHnNzm99yd6DPqkxrYXT22gMC+VnoM/xdkzCAAv/1ZsXPQmccd/p3nH5wHQqCuI2bcY74DWdHxsPACNw3uh0+mIPfwrjcN7YWltD4B3QBueen0xFpY2nD/2O7mZCfey+0IYuZiVx4ErqQyJDOGx0AAAujRqwPh1e1lyPI6pfaJqbLv5QiJphSV81DeKxq5KAFp4uzF+7V7WxyYwuGXw/eiCELfl4KmzxCUkMnb4QNq3CAMgKiKMNz/+kl827uDNoc/ctP2qrXsor1Dxn3Gv4eqkBCDQtwEffbOQHYdP0LND63vdBSHEA0hGzIk6VVBQgLt79VNwbnzA7t69O8nJySxevJjg4GCCg4NZubJyFIFKpWLatGm0bduWyMhI3nvvPYqLi+86Lnt7ewICAkhKSgJg9erVPPvss7Rt25Y2bdowdOhQTp8+bdBm9uzZtGzZktOnTzNo0CDCw8NZvHgxSUlJBAcHs3Hjxpv255NPPiE6OtooIblr1y6Cg4NrNRJNpVLxn//8h+joaJo1a0anTp3417/+RWFh1eiMgoICJk+eTKdOnWjWrBkDBgxg796q0UZbt24lODiYHTt26Mvy8vLo3LkzY8eO1ZeZmppiYmJCYmJirb6nwcHBfPfdd/z3v/+lY8eOREVVPryfOHGCf/3rX3Tq1ImIiAiefPJJVq9ebdS+oKCADz/8kC5dutCsWTO6d+/OjBkzDOrs3LmTf/zjHzRv3pz27dvzwQcfUFJSUqv4xJ07c+IA9gpHmrWsGhVqr3CkeWQHYmOOolapbto+5sQBQsIj9Uk5gKCQFri6exNz/IC+7NzpI2g0aqK69NGXmZiY0L5zb/Jzs0lMiNOXKxyUWFhY1kX3xEMsKf4AJiamNG7WU19mZm5Jo7BHyEqNo6Qwq8a21+L34+wRqE/KATg4++Dh25xr8fv0ZenXYigvK6Rx8z4G7QNb9EWtKiMl4ai+zMpGgYWlTV10TYg7cuhqGqYmJnQPrBqxaWluRnSgD/GZeWQXl960bSMXR31SDqCBoz1hni4cvJp2L8MW4o4dPBWLo8Keds1D9WWO9nZ0iGjG0TPnUf1lZH917SPDmuiTcgDNgxvj7e7KgVNn71XYQogHnIyYE3UqLCyMZcuW4ePjQ3R0NG5ubkZ15syZw6uvvkqrVq146aWXAPD19QXg888/Z+nSpYwePZrQ0FDWr19vlKy5ExqNhtTUVIKCKj9QJSUl0b9/f3x9famoqGD9+vUMGTKENWvWEBAQoG+nUqkYN24cw4cPZ8yYMSiVylr3p0WLFvz444/s27fPYJTeihUriIiIIDAw8JZxf/vttyxbtoy33nqLoKAgcnNz2bdvHxUVlVNEKioqePHFF8nOzub//u//8PDwYM2aNbz22musXLmS4OBgHnnkEfr378/EiRNZu3Ytzs7OTJkyBYAPPvhAfy0bGxt69uzJokWL6NGjB5GRkbeMb+HChbRo0YJp06bppyimpKTQqlUrnn32WSwtLTl+/DgTJ05Ep9Px1FNP6eN+4YUXSE5OZuTIkTRp0oS0tDSOHTumP/fGjRsZM2YMAwYMYPTo0WRmZjJjxgwKCgqYOXPmLWMTdy7lWgLeDRthYmJiUN7QL5DDe7eQmZGCVwO/atvm52VTXFRAA9/GRsca+gcSd/a4wXUsraxx82xgUM/Hr7H+uH9jWd9Q1J3czAQUTt5YWBmuf+XsEaQ/bqswXldLp9ORn3WVgLAeRsecPYJIu3oSVUUpFpY25F0f9ebsYfgz3tk9EBMTk8rjTaPrqEdC3J0ruQV4Odhia2lhUB7o4qg/7mJnnDzW6XRcyyskurHxFOxAV0diUrMoVamxsZCPGuLvJSEplQAfL6NnnEC/Bmw9cJSUjGz8vKtfMiM7r4CComIaNTReiy7QtwHHz8Xfk5iFEA8++W0p6tQHH3zAqFGjmDhxIgA+Pj5069aN4cOH6zduCA0NxdLSEldXV4MpoXl5eSxZsoRXXnmF1157DYDOnTvz/PPPk56eftuxaLVa1Go1OTk5fP3112RmZjJ69GgARo0aZVCvY8eOnD59mlWrVhmMIlOpVIwZM0Y/tRPQj7q7oab+ODs7ExkZyYoVK/SJudzcXLZv386kSZNq1YeYmBg6derEkCFD9GW9e/fW///atWs5f/48v//+uz7R17lzZ65evcpXX33FrFmzAJg4cSKPP/44kyZNok+fPvzxxx/Mnz8fR8eqhfgzMzNJSkrC09OTESNGsGTJEho3Nk6u/JmjoyNz5swxeLh59NFH9f+v0+lo06YN6enpLF++XJ+YW716NbGxsSxbtoyWLVvq6984rtPp+PTTT+nXrx/Tpk3TH3dzc+PVV19lxIgR+iSrqHuFBXkEBIYalds7OFUez8+pMTFXmJ8LgIOjk9ExhYOSkuIi1CoV5hYWFBbkYa9wNHo4VjhWTkEvyL/5+kZC3K6y4hys7YzvTZvrZWXF1d9zFWWFaDSqm7YtLc7BwrIBpcU5mJiYYm1ruNGJqZk5VtYOlNZwDSHqQ15pOUobK6NypU3l0hS5JeXVtissV6HSaHGspq3T9bLc0jJsLOzrMFoh7l5eYRFNG/sblSsVlfdqbkFhjYm53ILKGStODopq2xcVl6BSq7Ewl4/YQojbI1NZRZ1q0qQJ69at47vvvmPYsGEoFAoWLVrEE088wblzN19Y+8KFC5SVldGzZ0+D8l69et1RLB07diQsLIzOnTuzcuVKXn/9dQYOHAjApUuXGDlyJB06dKBp06aEhYWRkJDAlStXjM5zNzutDhw4kG3btpGXlwdUJtIsLCwMEn03Exoayq5du5g9ezanT582mha7b98+mjRpgr+/P2q1Wv+nQ4cOxMTE6OspFAqmT5/O1q1beffdd3n22WeN1tobPXo0jRo1Ys2aNTRq1IiXXnqJ1NSqhf579erF7NmzDdp06dLFKKmSn5/PRx99RLdu3QgLCyMsLIzly5eTkFC1dtKBAwdo3LixQVLuzxISEkhOTqZv374G/Wrbti2mpqacOXOmVt8/cWdUFeWYm1sYlVtYVJapbjKVVaWqHM1pVk178+tTUW/Uqfk6lfVuNWVWiNulUaswMzO+50yv34dqVfVJCI36+n19k7aa62216gpMzar/UGZqboFGJYvii7+PCrUGc1PjjwMWZpVlFZrqF7NXXS+/Ue/PzG+0Vd/ftYWFqI3yChUW5mZG5ZbXn3EqbvqMUzk7pLr2FtdHh1aobj4VVgghqiPpfFHnLC0t6dq1qz6htWfPHl577TXmzp3LnDlzamyXmZkJgIuLi0G5q6vxtKLaWLBgAfb29jg6OuLt7Y359bdXRUVFvPTSSzg7OzNhwgS8vb2xsrJi4sSJlJcbfiizsbHBzu7Otz7v06cP06ZNY82aNQwbNoyVK1fSu3dv7O1r9wb59ddfx9TUlFWrVjFnzhycnZ0ZMmQII0eOxMTEhNzcXGJjYwkLCzNqa2Zm+NAQGRmJt7c3ycnJPP/88wbHTpw4wYkTJ/jggw+wsbHh22+/ZciQIbz00kssWbKEiooKEhMT6dChg0G7v/5dAUyYMIETJ04wcuRIAgMDsbe3Z+nSpWzYsEFfJy8vr8a1CKFyZCHAyJEjqz3+54ShuHNqtZrSYsPdJO0UjlhYWqFWGz+Y3kjI3UjQVedGUk1TTXv19YTEjTo1X6eynvlNriPEnTAzt0CjMb7ntNfvQ3ML49E/le2u39c3aWt2va2puSVaTfUfzLRqFWayVqL4G7E0N0NdzeZcKk1lmaWZcQICwOJ6+Y16f6a+0dZc3v+L+qNWayj8y7rEjvZ2WFlaoKpm99QbCTnLmz7jVH6WqK79jaSdpUzfFkLcAfnJIe65zp07ExISwqVLl25a78Z6dNnZ2Xh4VA0hz8qqeTHumwkODtbvyvpnJ0+eJC0tjW+//ZaQkBB9eWFhIZ6engZ1/zoa7HZZW1vz+OOPs3LlSiIjIzl37px+mm9tWFpaMnr0aEaPHs3Vq1dZsWIFs2fPxsfHh/79++Po6EhwcLDBdM+afPnll+Tm5uLv78+UKVNYuHChvn/JyckA+iSkg4MD33//Pc8++yyvvvoqgYGBNGvWzGjdub9+f8rLy9m5cycTJkxg6NCh+vIlS5YY1FMqlcTFxVGTG2v5TZo0iebNmxsdv1lST9Re4uXzzJs12aBs/NSvUDgoKbg+JfXPigoqy25MNa2O4voU1uraFxbkYWtnr0+4KRyUXLpwBp1OZ3AvFV6fwupwk+sIcSes7ZwpLco2Ki8tztUfr46ltQIzMwvKio3v6xttba63tbFzRqfTUlaSbzCdVatRU15WoK8nxN+B0saK3JIyo/K80soyJ9vqk9UKKwsszEzJLzUeZZp7vczJRnZqF/Un7koiU+YuMCib+/4YlAp7/ZTUP8srLAKqn6Z6w41jNbW3t7OVaaxCiDsiPzlEncrKyjIa4VZWVkZqaqrBZgcWFhZGo9OaNGmCtbU1W7ZsITS0an2rzZs312mMZWVl+hhuOH78OMnJyXe8bll1/blh4MCBLF68mOnTp+Pv70/r1ne2jbqfnx9jx45l+fLlXL58GYAOHTqwa9cu3N3dDZKZf3X8+HG+//57Jk+eTGhoKIMHD+ann35i+PDhAPq/mw0bNujX93N3d+eHH35g4MCBnD59msWLF98yxoqKCrRarcH3tqioiO3btxvU69ChA3/88QenTp2iRYsWRudp1KgRnp6eXLt2zWB9PVG3PH38eWn0+wZl9g5KvHz8uXLxnFHCLPFKPBaWVri5Gy96fIOj0gU7eweSE40T8deuXMSrgb/+ay+fAI7s30ZmWjLuXj4G9SqP+yNEXVK6+pNxLQZVeYnBBhDZaRcAcHILqLadiYkJjq5+5KQb76adnXYBe0dP/e6qSld/AHLSL+IdUPUyIyc9Hp1Oh7KGawhRH/ycHIhNy6GkQmWwAUR8Vh4A/k4O1bYzMTGhoVLBpex8o2PxWXm429vIxg+iXvl5ezLxX8MMyhwVdvg38OLc5atGzzjxV5OwsrTA2914NsgNLkoHHOztuHwtxejYxcRk/GtYm04IIW5FfmOKOvX444/TrVs3OnXqhLu7O+np6fz888/k5ubywgsv6Os1atSIgwcPsm/fPhwcHPDx8cHJyYnBgwczb948rK2t9buyJiYm1mmMERER2NraMmXKFF599VXS09OZPXv2TRNbt1JTfwBCQkIIDw/nyJEjjBs37rbOO2LECMLCwggNDcXGxoYdO3aQn59P+/btAejfvz/Lli1j2LBhvPTSS/j7+1NYWEhsbKx+R9mSkhLeeecdOnXqxKBBgwD417/+xeeff07nzp1p3LgxISEhPPbYY3z55ZdkZ2fTuXNniouL2bx5M6WlpSiVSubOncu3336LpWXN07AUCgXh4eHMmzcPZ2dnzM3N+e6777C3tycnp2rB8yeffJIlS5bw6quvMmrUKIKCgkhPT+fo0aN8+OGHmJiYMGHCBN566y1KSkqIjo7GxsaGlJQUdu3axZgxYwx2zxV3xtbWnqAQ48RoeMsozpw4yJkTBwlvFQVAcVEBMccP0DQ80mCKaXZm5bRiFzcvfVmzlu05fnAneblZKJ0qE/UXz58mKyOFTt2rNgdp2rw161cs4MDujTw56GWgcuOPQ3s346B0xq9R1YhWIepCw6Ao4o7/zqUzWwiJfBKonHadELsNF88m+h1Ziwsy0ajLcXCuShj7BEZxet8ictLicfasfIlTkJtMxrUYQiL76+t5+DbHylrBpdMbDRJzl2I2YW5hhZf/rXe8FuJ+aefryfrYBLZfTOKx0MrfqyqNhl2Xkgl0Vep3ZM0qLqVcraGBY9VSHG19PVh24gKXsvJo7KoEIKWgiNi0HP25hKgv9rY2NA823sSsfYtQDp46y6HTsbRvUbkUTEFRMQdOniUyLNhgxFtaVuWzq6dr1Ujnds1D2XXkJNl5+bgoK0dFx1y4TEpGFv26tL+XXRJCPMAkMSfq1KhRo9ixYweffPIJOTk5ODk5ERwczIIFC/TJJICxY8cyefJkRo8eTXFxMdOnT2fAgAGMGzcOjUbD/Pnz0Wq19OzZk3HjxjF+/Pg6i9HV1ZVZs2bx6aefMmLECP3Uzvnz59/xOWvqzw09e/YkNjaW/v3739Z5W7VqxYYNG/jxxx/RaDQEBATw2Wef6dd6s7S0ZOHChcyePZtvvvmGzMxMlEoloaGhPPfccwB88sknFBQUGEx3ff3119m5cyfjx49n+fLlmJub85///Ifg4GBWrFjBkiVLsLe3p0OHDqxYsYKSkhKGDh3Ku+++y2effXbTKb4zZsxg0qRJTJgwAaVSydChQykpKeGHH37Q17G0tGTBggXMnDmTb7/9lry8PDw9PQ12dO3bty8ODg588803rF27FoAGDRrQuXPnO153UNROs5ZRNPRfx28/zyUjLQk7ewUHd29Cp9PyyKODDep+/+VUAMZ/+LW+LLr3AGKO72f+rMl0iO5HRXkZu7f+jmcDPyLbd9fXUzq50rFbP3ZvXYNWq8HHtzGxp49w5eI5Bg1/E9M/LUiem53BicO7AfSj8bZv+A0AJxc3Wra9801axMPDxSuYhkEdidm3iPKSPOyVnlw5t5OSgkzaPFK1W/fhTbPISD7LoP9bpS8LbNGXy2e3sOf3aQRH9sfE1JQLJ9ZibaukSasn9PXMzC1pFvUsx3Z8x/71/8XTL4LM5FiunNtFeIchWNlUTZOqKC/m4sk/AMhKPQ9A/Mk/sLSyw8LKlqCIqp+JQtwLQW5K2vt5suxEHPml5XgobNlzOZms4lJejQrX1/tq32nOpeewdGhffVmvYD92XEzi0x3HeCw0ADNTE9bHXsHR2pJHQ/3roTdC3Fr7FqEE+fnw1dLVJKVnorCzZdPeI+h0Ogb26WZQ98OvfwIqp8DeMKBnZw6cOsuUuQvo27kdZRUq1uzYh6+3B93aVb+pmRBC3IqJTqfT1XcQQjzohgwZgkKh4JtvvqnvUB56u86W3LqSoKSkiA0rFxJ7+jAqlQof38b0GzAMH79Ag3qfvv86YJiYA0hPvcb6FQu4cuk8ZmbmhDRrRb8BL6BwUBrU0+l07Nq8isN7t1CQn4uruxddez1Fy7ZdDOpdvnDGaD28GwICQ3l1zNS76/ADZssRee9WE426gpj9S0iM201FWRGOrn40i3oOL/+qD1Q7fp1olJgDKCnM4uTuH0m7ehKdTou7TzMiur6EQun118twKWYzccd/p7ggA1uFK4HN+9Kk5eMGLzaKCzJY98Nr1cZp5+DOYy99W0e9fjCNS36zvkN4IFSoNfxyKp59CSkUV6hoqFQwMCKIFt5u+jpTNx8ySswBZBeXsujoeU6nZqHV6Qj1cGZYm6Z4Ku584yxhyLz3k/UdwgOnqKSURWs2c+TMeVQqFY0bNuD5J3oR6NvAoN7ID2cChok5gGtpGfy0eiNxCYmYmZkRGdqEoU/2Rqmo3eZuwpiidZ/6DuGO5E57vb5DqJHTv7++dSXxtyGJOSHuoZiYGI4dO8b06dP58ccfjXY1FfefJObEw0ASc+JhIIk58TCQxJx4GEhiru5JYu5/izy5i/8pWq0WrVZb43EzM7O73km1Lj3zzDMoFApGjBhhlJTT6XRoNMbbrd9gampqMJVPCCGEEEIIIYQQDxZJzIn/Ke+99x6rVq2q8fjChQtp167dfYzo5uLi4mo8tmrVKt59990aj48aNYrRo0ffi7CEEEIIIYQQQgjxNyCJOfE/ZdSoUQwZMqTG4/9LO3V269aN3377rcbj7u7u9zEaIYQQQgghhBBC3G+SmBP/U3x8fPDx8anvMOqEk5MTTk5O9R2GEEIIIYQQQggh6oksYCWEEEIIIYQQQgghRD2QxJwQQgghhBBCCCGEEPVAprIKIR4qW47Ijz3x4OvZRl3fIQhxz5k3e7K+QxDinlNv+r2+QxDi3mvdp74jEKJeyYg5IYQQQgghhBBCCCHqgSTmhBBCCCGEEEIIIYSoB5KYE0IIIYQQQgghhBCiHkhiTgghhBBCCCGEEEKIeiCroAtRgzVr1rBw4UISEhLQ6XR4eHjQqlUrxo4di4uLCwALFiwgICCArl273vJ8W7duZeTIkWzbtg0fH59b1l+5ciXvvvuu/mt7e3v8/PwYNmwY/fv3v+3+1BRr9+7diY6OZtKkSbd9TvFg0ahVnDm4lKvndlFRXoTS1Y9mHYbg6dvilm0T4/Zw/ugqCnKSMLe0oUGjNjTvNAwrGwd9nZLCLBLObiMl4ShFeamYmJji6OJL03b/MLpGQux2Dm+eXe21nnjlB2zsnO6us+KhpVap2LJ+GScP76a0pBjPBr70fPxZgkJufZ+fOrqX3VtWk5GWjJW1NU3D29Cn//PY2TsY1CstKWbnphWcPXWYgrwc7OwdCAxpTo9+/0Dp7Kavd/bkIQ7t3Ux6SiLFRYXYKRzw9Q+ix6OD8PT2rfO+i4dHWXkFv2/fy8XEZC4mJlNcUsqIZ/sT3bZlrdoXl5bx89rNHD59jgqVikBfH4Y+2YtGPt4G9fafOMOxs3HEX00iLSuH0Mb+TB71otH55i5Zxa4jJ2u83tcfjMNF6VDjcSGqU6ZSs/bsZS5m53MpK5/iChX/6hBO18a3fs4GKK5QseR4HEcS0yjXaAl0ceT5yBACXByN6h69ls5vp+NJyS9GYWVJdOMGDGgeiJlp1TiX3JIyNp6/ysWsPC5l51Ou1vB+z7aEerrUWZ+FEA8mScwJUY158+YxY8YMhg8fzhtvvIFOpyM+Pp61a9eSkZGhT8wtXLiQ6OjoWiXm7tT8+fNRKBTk5uayaNEi3nnnHSwsLHj00Udv6zw1xTpnzhwcHORhWMDhLV+SFH+AoIjHUDh5cSV2B3tWf0j00x/i1qBpje0untrAsR3f4dGwORFdXqSkKJv4k+vISb/II4M/xczcEoDkS4c4d3QlDRq3xT+0GzqthivndrJr5WTa9hxFQFgPo3M3i3oWOwd3gzJLK7u67bh4qPy2aA4xJw/SMbofLu5eHD+4kwVffcwrb07Gv3HN9/nB3Rv5ffl8GgeH8+jTL5Cfm82+nX+QlHiJEW9Px8Ki8j7X6XT8MGcqGWnJtO/cC1d3b7Kz0ji4exMXzp1k7PuzsLK2ASAtJREbWzuiovthb+9AYUEeRw9s56tPJ/D6Wx/j5eN/P74l4gFUWFzCis27cHVyxN/bk7MXE2rdVqfT8cm8xVxNSePxbh1R2Nmyae9hpsxdwCdjX8PLrSrJsHnfES4npRDo24DCktIaz9mzQ2vCmzQyKp/361pcnZSSlBN3pLBcxcqYS7jYWePnpCA2PafWbXU6HZ9uP8rV3EIeDw1AYW3J5rirTN1yiI/7dcTLoepZ42RyJp/vOk6ohzMvtAnlWl4hq85coqC8gn+2a6avl1pQzJqzl/FU2OLrpCA+M68uuyuEeIBJYk6IaixatIinnnqKCRMm6Mu6du3Kyy+/jFarva+xhIWF4ezsDEC7du2Ijo5m5cqVt52Yq0loaGidnEf8b8tOu0Bi3F5adB5OSOSTAPg37cbGn9/k9N6f6DHok2rbaTVqYvYvxr1BGF0HTMbExAQAV68Q9qyZxqUzm2kS8RgA7g3Defyf8wxG0TUO78PmJWM4c3BZtYk5L7+WOHsG1XFvxcPq2pV4Th3bR7+nhtH5kScAaNUumlnTxrJh1SJef+vjatup1Wo2rVlKQGAo/xw9SX+f+zUK4advpnNk31Y6RPcDIPFyHElXL/HEwJeJ6tpHfw5Xd29W/PwVF8+fJiyiHQA9+v3D6FqtO/Tgk4mvcXDPJp569rU67b94eCgd7Pl2yls4OSi4mJjMezO/q3Xbg6fOEpeQyNjhA2nfIgyAqIgw3vz4S37ZuIM3hz6jrzv6+QE4OzpgYmLC2P/MrfGcTfwb0sS/oUHZ+ctXKa9Q0Tmy+W32TohKShtLvn6mO0obKy5l5TFxw4Fatz10NY0LmXm82SWC9n5eALT382TM77v59VQ8b3SO0Nf9+dg5fJUK3u3RRj9CzsbcnN/PXqJPiD8NHO0BCHBx5LuBPVBYWXLwaiqzMk/WWV+FEA82WWNOiGoUFBTg7u5e7THT67+Qu3fvTnJyMosXLyY4OJjg4GBWrlwJgEqlYtq0abRt25bIyEjee+89iouL7zouW1tb/Pz8SElJ0ZeVlJQwdepUevfuTYsWLejevTuTJk2isLBQX+dmsXbv3p2pU6caXGfz5s08+eSThIeH06lTJ6ZPn055eXmt44yPj+eVV16hXbt2tGjRgt69ezNv3jyDOidOnGDYsGFEREQQGRnJuHHjyM7O1h8fMWIEPXr0oKioSF+2fv16goOD2b17d61jEbWTFH8AExNTGjfrqS8zM7ekUdgjZKXGUVKYVW27/OyrVJQX07BJR32yAsC7UWvMLay5dmGfvszRxdcgKVd5DQu8/CMpKcxCVVH9aAtVRSm6+5wQFw+mMycOYGpqSpuOj+jLLCwsaR3VncSEC+TlVn+fp6ckUlZaTPPIDgb3eUh4JJZW1pw+VnWfl5VV3sf2CsOpUAqHyunX5tdH1tXEXuGIpYUVZaV3/ztDPLwszM1xclDcUduDp2JxVNjTrnnViztHezs6RDTj6JnzqNRqfbmL0tHg38Tt2Hs8BhMTE0nMiTtmYWaG0sbqjtoeSkzD0dqSdr6e+jIHayui/Lw4lpSBSqMBICmviOT8YnoENTSYttor2BedrvI8N9hYmKOwuvnPeCGEqI6MmBOiGmFhYSxbtgwfHx+io6Nxc3MzqjNnzhxeffVVWrVqxUsvvQSAr2/lmkCff/45S5cuZfTo0YSGhrJ+/XpmzJhx13FptVrS0tIICQnRl5WVlaHRaBgzZgzOzs6kpqbyzTffMGLECBYtWnTLWP9q27ZtvPHGGzz66KOMGzeOy5cvM3PmTFJTU/nyyy9rFee//vUvXF1dmTZtGvb29iQmJpKWVvXgcuLECYYOHUrXrl2ZOXMmpaWlfPHFF4wYMYLly5cD8OGHH/LYY4/x8ccf8/HHH5Oens6UKVMYPHgwXbp0uaPvn6hZbmYCCidvLKxsDcqdPYL0x20VrkbtNBoVgH666p+Zm1uRm3EZnU530w9uZcW5mFtYYW5u/HC9Y8Uk1KoyTM3M8fRrSUTn4SicvKs5ixC3lpJ0BVd3b6xtDO9zH79AAFKTrqB0Mr7P1erK+7y6pJqFhSUp1xL097mPX2MsrazZsm4Ztnb2uHp4k52Zxsbff8bHrzGBIcZJiNKSYjQaNYUFeezfsZ6yshIaB4fXRZeFuG0JSakE+HgZ/dwO9GvA1gNHScnIxs/b466uoVZr2H/yLE38G+LmrLyrcwlxJxJyCvB3djC6zxu7OrIt/hqpBcX4OjlwJScfwGjdOSdba5xtrbmaU3DfYhZCPLgkMSdENT744ANGjRrFxIkTAfDx8aFbt24MHz5cv3FDaGgolpaWuLq6EhERoW+bl5fHkiVLeOWVV3jttcppSJ07d+b5558nPT39tmPRarWo1Wpyc3OZN28eeXl5+vMCODs7M2XKFP3XarUaHx8fnnvuORISEggICKgx1urMmTOHiIgIfSKxS5cu2NjYMGnSJOLi4ggODr5p+5ycHJKSkvj3v/9N9+7dAWjfvr1BnRkzZtCsWTPmzJmjfyBq0qQJjz32GLt27aJr1664uLgwdepURo0aRffu3Vm2bBlKpZJ33nmn1t87UXtlxTlYV7Ohwo1NFsqKq1+3RaH0xsTEhKyUcwZTUQtykykrrXyYrSgrwsqm+pEbhXmpJF06RMOgKEz+9Cba3NyKgNBuuPuEY2FlS076JS6cWMO2X96l13Mzqk0SCnErhfm5KByURuUOjpXLBRTkV3+fu7pXJimuXjpP66ju+vLM9BSKiyo/lJWWFGFrp8DO3oFnXxzDqqXfMP/Lqp/NTZpG8Nwrb2FmZmZ0/q/++y5ZGZUjoS2trOnW52nadHjEqJ4Q90NeYRFNG/sblSsVldP1cgsK7zoxdyruIkXFJXSKlAS0qB95peU09XA2Kr8xAi+3tBxfJ8grqwDAqZqReUobK3JKaj+jRAghaiKJOSGq0aRJE9atW8eBAwfYu3cvR44cYdGiRaxcuZLFixfTtGnNC4RfuHCBsrIyevbsaVDeq1cvjhw5ctuxdOzY0eDryZMn07p1a4Oy1atXs2DBAq5evUpJSYm+/MqVKwQEBNT6WsXFxZw7d84o+dWvXz8mTZrEsWPHbpmYc3JyokGDBnz++efk5+cTFRWFp2fVNIHS0lKOHz/O+PHj0VyfJgDg7++Pl5cXMTEx+g0qevbsSf/+/RkzZgwajYbFixdja2trdE1x9zRqFWZmFkblpuaVZWpV9Q+eVjYONAzqwJVzO1E4N8QnsB2lRTkc3zkPUzNztBo1GnU5YJyYU6vKObD+v5iZW9K84zCDYw2bdKRhk6p7v0Hjdnj6tWTHb/8m9vCvtO7x+l30VjysVKoKzMyN73Mzi8rHIVVFRbXt7OwdCG8VxfHDu3D39CE0oi0FeTms/eUHzMzM0WjUVFSUY2tXeZ/bKRzw8gmgfZc+eHj7kpqUwK4tv/PbojkMefkto/M/M3Qk5WUl5GSlc+zgDtSqCjQaDebm8pgm7r/yChUW5sYJZEuLyn87FSrVXV9j7/EYzM3N6BDR7NaVhbgHKjQaLEyNV3WyvP7ypEJTuYRGubryWdXCrLq6ppSq1EblQghxu+SJT4gaWFpa0rVrV32SaM+ePbz22mvMnTuXOXPm1NguMzMTQL9z6w2urnc2wmfBggXY2dmRlpbGl19+ybRp02jZsqV+OuuWLVt45513GDRoEGPGjEGpVJKZmcnIkSNva104gMLCQnQ6nVHsCoUCS0tL8vPzb3kOExMTvv/+e2bOnMnUqVMpKSkhLCyMd999lzZt2lBQUIBGo2H69OlMnz7dqH1qaqrB14899hirV68mPDycli1b3lZ/RO2ZmVvop6X+mVY/ha/mNVwie7yORq3i1J4FnNqzAAD/pl2xd/Qi6eIBzC1tjNrotFoObJhBfs41uvSfhI298Vvrv3Jr0BRnjyDSr52uZa+EMGRhYYlGbXyfa65/sLKwrHltoP6DX0OlUvHHqoX8sWohAC3bdsHFzYMzJw9hZVV5n2dnpTFv1mQGDhtNs5aVo4VDm7dB6ezGb4vmEnf2BMFhhj/L/BpVvfBo3roTM6e+CUC/AS/cRW+FuDNWlhao1Bqj8hsJuRsJujtVVl7B0TPnad6kMQo7edkm6oelmRmqatavrbj+0tjyeiLO6nqSWqWprq4Wi2pGQQshxO2SxJwQtdS5c2dCQkK4dOnSTevdWI8uOzsbD4+qqR5ZWdUvKn4rwcHBODs707x5c8LDw+nbty+fffYZ8+fPB2Djxo00bdrUYAOHw4cP39G1FAoFJiYm5OQYTucqLCykoqICR0fHGloaCggI4Msvv0SlUnHixAk+//xz/vWvf7F79279NV577TUeecR4qpaTU9V0yhsbW4SEhHDmzBlWrFjB008/fUd9EzdnbedMaVG2UXlpca7+eE0srezo9MS7FBdkUlyQgZ2DG3YO7mxbPgFrG0csreyM2hzZOpfUhKO07zMGj4a1n8pkq3CjMC/l1hWFqIbC0YmCPOPpqjemsN6Y0lodG1s7hr32Dnk5meRkZ+Dk7IaTiztff/YedvYO2NhW3ufHD+5EraogpFmkQfumzdsAcPXSOaPE3J/Z2trTuEkzTh7ZI4k5US+UCntyCwqNyvMKKzdjutNNJW44HHNOdmMV9U5pY0VuSZlReV5p5UvtG1NXldaVL2xyS8txsbMxqhvoWrtnYyGEuBnZlVWIalSXRCsrKyM1NdVg5JuFhYXRqLQmTZpgbW3Nli1bDMo3b95813F5eXnxwgsvsGfPHmJjY/VxWfzl7fXatWuN2lYX61/Z2dnRtGlTNm7caFC+YcMGACIjI6trViMLCwvatm3Lq6++SlFRERkZGdja2hIREcHly5cJDw83+nNjDT+ATz75hIKCAubNm8ewYcP4+OOPDXakFXVH6epPYW4KqvISg/LstAsAOLndekq0nYMb7j5h2Dm4U1FeTE7GJdx9jZNuJ3cvICF2OxFdXsQ3uPNtxVlckGa0s6sQteXVwI+sjBTKSg3v82tX4iuP+/jf8hxKZzcaBYXh5OJOaUkxyYmXCfzTRg1FhZUji7U6w9EV2uujMP5aXh2VSmUUoxD3i38DLxKSUtHpdAbl8VeTsLK0wNvdpYaWtbP3eAzWVpa0bnbzpTGEuJf8nRy4klNgdJ9fzMrH0twML4fKly3+zpXPHAnZhrNGckvKyCkpw9dJnkmEEHdPEnNCVOPxxx/nvffe448//uDo0aOsX7+eF198kdzcXF54oWoEQ6NGjTh48CD79u0jJiaG3NxclEolgwcPZt68eXz77bfs2bOHCRMmkJiYWCexvfjii9jb2zNv3jwAOnTowOnTp5k7dy779+9n+vTpHDhwwKhddbFWZ9SoUZw8eZK33nqL3bt389NPP/Hxxx/Tu3fvW64vB3D+/HlefPFFfv31Vw4ePMjWrVv5+uuvadCggX4n2PHjx7Nz507+7//+jy1btnDo0CF+//133nnnHQ4dOgTA7t27Wb58OR988AHu7u6MGzcOd3d3JkyYYPQQJe5ew6AodDotl85UJZQ1ahUJsdtw8Wyi32yhuCCTgpykW57v9L5F6LQagls+YVB+/uhq4o7/TmjbZ2jS8vEa25eVGE+bTkk4Rk76JTz9ZEqzuDPNWkah1Wo5sm+rvkytUnHs4A4a+gfpd2TNy8kkIy35lufbtGYxWq2GTj2q7mVXNy90Oh0xx/cb1D11dC8A3j5VSe4bSbw/y83O4NKFGBr4Nb69zglxB3LyC0lOz0T9p6mr7VuEkl9YxKHTsfqygqJiDpw8S2RYMBZ3sfZhflExMRcu0za8KVY3mTouRF3KLSkjOb8I9Z+mo7bz8yS/rIJDiWn6soKyCg5eTSXSx00/RdVHqcDb0Y5t8dfQaqueP7dcSMTEBNr5Vq2jLIQQd0qmsgpRjVGjRrFjxw4++eQTcnJycHJyIjg4mAULFhjsMDp27FgmT57M6NGjKS4uZvr06QwYMIBx48ah0WiYP38+Wq2Wnj17Mm7cOMaPH3/XsSmVSp5//nnmzZtHYmIigwcPJikpiZ9//pnvv/+eTp06MWPGDAYOHGjQrqZY/6pHjx7MmjWLuXPnMmLECJRKJQMHDmTcuHG1is/NzQ1XV1e+/fZb0tPTUSgUtG7dmv/+97/63QhbtWrFkiVLmD17Nu+++y4qlQpPT0/at2+Pn58feXl5/Pvf/+bRRx+lX79+AFhZWfHpp58yePBgfvrpJ4YPH35330hhwMUrmIZBHYnZt4jykjzslZ5cObeTkoJM2jwySl/v8KZZZCSfZdD/rdKXnTuykvzsqzh7BmFqYkby5cOkXT1JeIchOHsG6eslXTzIqb0/oVB6oXBqwJVzOw1i8PSLwNpWCcC2Xybg5NYYZ4/GWFjZkptxmYSz27BVuBLa9pl7+r0QDy7fgCaEt4pi45rFFBXm4ezmyYlDu8jNyWTAkKoNRX75aTYJF2OZPvc3fdnOzatIT0mkoX8QpqamxJ4+Qvy5U/R6/Fl8/AL19SKjurFn2xpWLfmWlGsJuHv5kHItgaP7t+Hh1ZDQFu30db/4aAyBweF4NQzAxtaO7IxUjh7Yjlajoc8TQ+7PN0U8sDbsOURJaZl+WuqxsxfIzqvcRbhP53bY2VizdP1Wdh05ydz3x+DmrAQqE3NBfj58tXQ1SemZKOxs2bT3CDqdjoF9uhlcI/biFc5dvgpUJu/KKypYsXkXAE0b+REa6G9Qf/+JM2g0GjrJNFZRRzadv0qxSkXe9d1RjydlkH19imrvYD/sLC1YdvICuy8l8+VT0bjZV05HbefrSaCrkm/2x5CcX4yDlQWbLySi1el4pkWQwTWGtArhs53H+HjbYaL8vbmWV8jmuKt0C2yIj9LeoO7KmIsAJOVVTv3ek5DC+czKl+EDwgMRQojqmOhk6IkQ4iEycUH1uy4K0KgriNm/hMS43VSUFeHo6kezqOfw8q8aobbj14lGibmUy0eJPfwLBTlJ6HRaHF38CG71hMGuqgBnDizj7KHlNV6/29Mf4t6wcoe+mP2LSU04RnFBBmp1Oda2TngHRBLWfpA+eSdq1rON7BJXE5Wqgi1rl3LyyB5KS4rxbOBLz8cG0yS06j7/buYko8Tc+ZhjbN/4KxlpyWi1Wjy9fenU43Gat+pgdI38vGy2rlvOpQtnKMjLwc5eQXCzSHo/8Rx29lXTnrauX07c2eNkZ6ZRXl6Gvb0DAYGhdO09AK8Gfvf2G/EAaFW6u75D+Fsb+eFMMnPyqj12IxE3d8kqo8QcQFFJKYvWbObImfOoVCoaN2zA80/0ItC3gcF5ftm4g9827az2Gs/0jjZK5P37i3mkZ+fy3ZS3MK1mR0xhTL3p9/oO4W9t9MqdZBWXVnvsRiLu6/2njRJzAEXlKhYfP8/Ra+lUaLQ0dnFkSKtgGrsqjc515Fo6K07Hk5JfjMLKkq6NGzAgPBDzv+zW+uyiDTXGunRo3zvp4kPB6d9f13cIdyR32uu3rlRP/le/pw8rScwJIR4qkpgTDwNJzImHgSTmxMNAEnPiYfC/mkSSxJyoKzKVVYh6oNVq0VazRfsNZmZmmJiY3MeIak+j0dx0jTfzu1h7RgghhBBCCCGEeJjIJ2gh6sF7773HqlWrajy+cOFC2rVrV+Px+jR8+HAOHz5c4/Ft27YZ7KwqhBBCCCGEEEKI6kliToh6MGrUKIYMqXlh74CAgBqP1bcpU6ZQXFxc43F3d/f7GI0QQgghhBBCCPG/SxJzQtQDHx+f/9lRZY0aNarvEIQQQgghhBBCiAeCbIckhBBCCCGEEEIIIUQ9kMScEEIIIYQQQgghhBD1QBJzQgghhBBCCCGEEELUA1ljTgjxUHmn2fb6DkGIe+4/R7rXdwhC3HttutR3BELcc835vb5DEEIIcY/JiDkhhBBCCCGEEEIIIeqBJOaEEEIIIYQQQgghhKgHkpgTQgghhBBCCCGEEKIeSGJOCCGEEEIIIYQQQoh6IJs/iIfamjVrWLhwIQkJCeh0Ojw8PGjVqhVjx47FxcUFgAULFhAQEEDXrl1veb6tW7cycuRItm3bho+Pzy3rr1y5knfffVf/tb29PX5+fgwbNoz+/fvfdn9qirV79+5ER0czadKk2z6neHio1Gp+2bCD3cdOUVxShq+XB4P7dad5cONbtt13PIbft+8jOT0TaytLWjcLYchjj+Bgb6evs/PwCb5aurrGc4x+/mk6Rza/rXMKcbvUqjLOH11Fdlo8OenxVJQV0bbXaAJCa7dhRkV5Maf2/ETypUNo1OU4ewQR0WU4Tu5V/07KSwtJOLuNlIQjFOQkodNqUDg1oEmrx/Ft0snonIW5KZw5sISslPOUlxViq3DFL6Qrwa2exNzCqs76Lh4e5eVl7N6ymqQrF7l2NZ7SkmKeGTqSyPbdatW+tKSYDasXEXvqEBUVFTT0C6TfgBdo4NtIX6ekuJCj+7dz7sxRMtOS0Gi0uHl406n7YzSP7HjT8+/YuILNa5fi4dWQ/5s48676Kh5eKo2GX0/Fs/dyCkUVKnydFAyKaEK4l+st2+5PSGFN7GVS8ouxNjcjsqEHz7YMxsHa0qBefmk5S07EcTI5k1KVGm9HO/qHNaa9v5dBvZSCIrZeuMbFrDyu5BSg0mj58qlo3Oxt6rLLQogHlCTmxENr3rx5zJgxg+HDh/PGG2+g0+mIj49n7dq1ZGRk6BNzCxcuJDo6ulaJuTs1f/58FAoFubm5LFq0iHfeeQcLCwseffTR2zpPTbHOmTMHBweHugxZPIC+Wrqag6di6delHZ6uLuw6cpLp8xbzwYgXCGnkV2O7TfsO8/1v62nWpBHD+vcmO6+ADbsPculaMh//3ytYWlgA0LSRH6OGDDBqv37XAa6mpNMsKOC2zynE7SovLeDsoV+wVbihdPUnI+lMrdvqdDr2/P4ReZlXCInsj6WNgounNrDjt/fp+exnKJy8AchOjSPmwGK8/FoR2vYZTEzNSLp4kAN/zKAg+xrNop7Vn7OkMIuty8ZjYWVHYIt+WFrbkZ0ax5kDS8lNv0SnJ96tKRwhalRSVMD2Db+hdHLFq4E/l+PP1rqtTqfjp68/JjX5Kl0eeQJbOwcO7t7IvFkfMOqdT3F1r0xIJF6+wOa1S2kS1pJufZ7B1NSMsycPsvSHmaSnXqPnY4OrPX9ebhY7Nq3E0sq6TvoqHl5f74/hcGIafUL88VTYsvtyMv/ZfpSJPdsS4u5cY7stcVf54XAszTxdGBrZkOySMjacv8rl7Hw+7BOFpbkZACUVKj7YdJD8snL6hvijtLHi4NU0Zu05iUano2OAt/6c8Zl5bDx/BR9He7wd7biaU3jP+y+EeHBIYk48tBYtWsRTTz3FhAkT9GVdu3bl5ZdfRqvV3tdYwsLCcHaufIBo164d0dHRrFy58rYTczUJDQ2tk/PcjE6nQ6VSYWlpeevK4m8n/moS+47HMPSJXjzerXKkQ9c2LXjr06/4ee0WPnrz5WrbqdUalq7fRmhjf97/1zBMTEwACPZvyH/mL2HbgWP07dIeAA9XZzxcDR+UK1Qqvl+xnrDAAJwcFLd9TiFul7WtE0+88gM2dk7kpMWzZdn4WrdNit9PVsp5Ojz6Ng2DOgDQMKgjG34ayZmDS4nqOw4AB5eG9HthLnYO7vq2gc37snPlB5w/uoqQ1k9hblGZlLhybicV5cV0H/gxji6+ADQO741Op6s8VlaEpbV9XXVfPCQUDk689/E8FI5OJF29yNxPJ9y60XUxJw5w9XIcz/1zHOGtogAIbxXFjClvsHXdMga/NAYAdy8fxn3wJU4uVfd5+y69+f7LKeze8jtdevbHqprk24ZVC/H1D0Kr1VJSLMkLcWcuZuVx4EoqQyJDeCy08sVel0YNGL9uL0uOxzG1T1S17dQaLctOXqCphzPvPdJG/4zRxM2J/+44xvaL1+gT4g/AtvhrpBeWMLFnW8I8K1/Y92ziy8QNB/j52Hna+Xpibla5MlQrH3e+H9QTGwtz1sUmcDXn/D3+DgghHiSyxpx4aBUUFODu7l7tMVPTyn8a3bt3Jzk5mcWLFxMcHExwcDArV64EQKVSMW3aNNq2bUtkZCTvvfcexcXFdx2Xra0tfn5+pKSk6MtKSkqYOnUqvXv3pkWLFnTv3p1JkyZRWFj1QHuzWLt3787UqVMNrrN582aefPJJwsPD6dSpE9OnT6e8vLzWcU6YMIHHHnuMXbt28cQTTxAeHs727dtrFesNq1evpn///oSHh9OuXTteeeUVkpOT9cfT0tJ46623aNeuHc2bN2fIkCGcOVP70S2i9g6disXU1JQeUZH6MksLC7q1a8WFK9fIzsuvtl1iWjolpWVEtQzTP9wCRIYFY21lyf6TNx+lcexsHKVl5XSODK+zcwpxM2bmFtjYOd1R22vxB7C2VeITWPWBz9rWkYZNOpJy+QgatQoAe0cPg6QcgImJCQ0at0WjUVGUn6YvV1eUXj+P0qC+jZ0zJiYmmJrJO1Rx+8wtLFA43tl9fubEAewVjjRrWfUCxF7hSPPIDsTGHEWtqrzPnV09DJJyUHmfh7Zoi1qtIicr3ejcl+PPcubEQR595sU7ik2IGw5dTcPUxITugVVLx1iamxEd6EN8Zh7ZxaXVtruWV0hJhZooP0+DZ4xWPu5YmZtx4Eqqvux8Ri4O1pb6pBxU3uNR/l7klZZzLiNHX66wssTGQn5eCyHujCTmxEMrLCyMZcuW8euvv5KZmVltnTlz5uDm5kbv3r1Zvnw5y5cvJzo6GoDPP/+cpUuX8s9//pMvvvgCrVbLjBkz7jourVZLWlqawRp1ZWVlaDQaxowZw7x583jzzTc5cuQII0aMqFWsf7Vt2zbeeOMNAgMDmTt3Li+//DLLli3j7bffvq1YMzIy+Oijjxg+fDjz5s2jadOmtYoVKqfvvvPOO4SFhTFnzhymTZuGn58fOTmVDzn5+fk899xznD9/nvfff5/Zs2djY2PDCy+8QHZ29m3FKW4tITkNLzcXbK0NRzcE+jbQH6+OWq0BwNLceGqppYUFCUmp6HS6Gq+751gMlhYWtGteNarzbs8pxL2Sm3kJJ/dGBh/mAJw9g1CryinMS66hZaXyksoEt5V11dICbj5hABzZMpfcjMuUFGaReGEvF09vJCjiMf3IOiHul5RrCXg3NL7PG/oFoqooJzMjpYaWlYoK8gCws1cYlGu1Wtb++gOtO/TAq0HNyyMIURtXcgvwcrDF1tLwWSHQxVF/vDqq67NiLMzMjI5ZmZuRkFOgf8ZQabRYmBl/XLa6XnY5u/qXlkIIcbskrS8eWh988AGjRo1i4sSJAPj4+NCtWzeGDx+uT4qFhoZiaWmJq6srERER+rZ5eXksWbKEV155hddeew2Azp078/zzz5OebvyG+Fa0Wi1qtZrc3FzmzZtHXl6e/rwAzs7OTJkyRf+1Wq3Gx8eH5557joSEBAICAmqMtTpz5swhIiJCn0js0qULNjY2TJo0ibi4OIKDg2sVd35+PvPmzaNFixYG5beKtbCwkDlz5jBo0CCDkXyPPPKI/v9/+uknCgoK+PXXX/Xr/UVFRdG7d2++//57xo+v/fQzcWu5BYU4ORhPl7sxvTQ3v/rpRp6ulaN6zick0q1dS315SkYWBUWVI0iLSkpR2NkatS0sLuHk+XjaNAvBxtqqTs4pxL1UVpyHe4Mwo3Jr28qRSaVFuShd/attW15ayOWYLbg1CMXGvmpKt5d/K8KjniP2yG8kXz6sLw9t+wzhHYbUbQeEqIXCgjwCAo2XwLB3qLzPC/NzakyslRQXcnjfVvwDm+LgaLh0waE9m8nLyeKfo2UjKnH38krLUdoYb46jtKl8mZFbUv0sEE+FHSYmEJeZS/SfRtulFBRRUFYBQFGFCoWVJd6OdpxJyyKzqNRgE4dzGbk3vYYQQtwuScyJh1aTJk1Yt24dBw4cYO/evRw5coRFixaxcuVKFi9eTNOmTWtse+HCBcrKyujZs6dBea9evThy5Mhtx9Kxo+HuZZMnT6Z169YGZatXr2bBggVcvXqVkpISffmVK1cICAigtoqLizl37hzvvPOOQXm/fv2YNGkSx44dq3ViTqlUGiXlahPriRMnKC0t5Zlnnqnx3Pv27aNdu3Y4OjqiVquByinGbdq0ISYmplbxidpTqdSYmxv/SrC4vgByxfWpS3/lYG9HVEQYu4+ewsfDlbbhTcnJL+SHVX9gbm6GWq2pse3BU7Go1Ro6/Wkn1rs9pxD3kkZdjqmZ8UhOM/PKtTW1mopq2+l0Og5t+oKKimJaRRuv12jr4IZbgzB8AttjZa0g9coxzh1ZgbWtkqCIullrVIjaUlWUY17NiGWL65vuqGr4+avT6Vi+4EvKSkt44h//NDhWUlzI1vXL6N7naewVjnUftHjoVKg1mJsaj2a7McKtQqOptp2DtSXt/TzZczmZBo72tGnoQU5JGT8dicXc1AS1VkeFWgNW0D3Qh20XEpm15wRDI5viaGPJwatpHL1W+RK+vIZrCCHE7ZLEnHioWVpa0rVrV/0upnv27OG1115j7ty5zJkzp8Z2N6a+3hjJdYOr6623Z6/OggULsLOzIy0tjS+//JJp06bRsmVLQkJCANiyZQvvvPMOgwYNYsyYMSiVSjIzMxk5cuRtrQsHUFhYiE6nM4pdoVBgaWlJfn7th+VX19/axJqXlwdQ4xp/ALm5uZw8eZKwMOPRKb6+vrWOUdSOhYW5PgH6Z6ob00pvsgvqK/94nAqVmkVrNrNozWYAurRugaeLM4dOx2JtZfxGG2Df8Rjs7WxpGRJUZ+cU4l4yM7dCqzFOSmjUlQk5U7PqN785vuM7Uq8cp13vN1G6Gb5ISYzbw9FtX9PvhbnYKip/pvoERaHTaTm9bxG+wV2wslFUd1oh7gkLSyvUauP7/EZCzqKG3wdrls/nQuwJBr4wGi8ff4Njm9cuxcbWnqjofnUer3g4WZqboa5mszaVprLMspqpqjf8s10zKtRaFh87z+JjlZs0dGrkjYfClsOJ6VhfXyvO18mBkZ1a8P2hs0zedBAApY0VQ1s35YdDZ7E2r/kaQghxOyQxJ8SfdO7cmZCQEC5dunTTem5ubgBkZ2fj4eGhL8/Kyrqj6wYHB+Ps7Ezz5s0JDw+nb9++fPbZZ8yfPx+AjRs30rRpU4Npn4cPH67pdDelUCgwMTHRr+V2Q2FhIRUVFTg61v5N9l/Xn6ltrEqlEqhco87T07Paczs6OtK5c2fefPNNo2Oy82vdc3JQkJNvvB5LbkHlFFYnx5oTA3Y21oz/57Nk5eaRkZ2Hm7MSN2clE2fNx8HeDjsb4zWysnLzOHf5Kj3aR2JezYPtnZxTiHvN2k5JaXGuUXlZSWWZjb3xYvtnDy7n4umNNO84FP+m0UbHL57eiJN7I31S7gbvRm1JiN1BbuZlPH2NRyYLca8oHJQU5Bvf50UFlWWKv0xRBdj2xy8c3LOJ3k8OoWXbrgbHsjJSObx3C4898yKF+VXPHmq1Co1GQ252BlbWNtjaSQJa1J7SxorckjKj8rzSyjIn25pf4NlZWvBWt0iyikvJKCrFzc4GN3sbJm08gIO1JXZ/WreuvZ8XrX08uJpbgFYHAc4OxKZX3sfeDnZ13CshxMNKEnPioZWVlWU04qusrIzU1FQCAwP1ZRYWFkaj0po0aYK1tTVbtmwhNLRqHZbNmzffdVxeXl688MILfPPNN8TGxhIaGkpZWZnRG+q1a9cata0u1r+ys7OjadOmbNy4keHDh+vLN2zYAEBkZGQNLWunNrG2bNkSGxsbVqxYQfPmhtMYb+jQoQNr1qyhcePG2NrKWmL3mn8DD85eTKCkrMxgA4j4q0kABDSoPoH6Z65OSlydlAAUl5ZxOSnFYFOHP9t7PAadTkfnyOr//u/knELca05ujchMjkWn0xm8mMhOvYC5hRUKZQOD+vGn/uDMwWU0afk4TdsMqPacZSV5WFoZr++o02oM/ivE/eLl48+Vi+eM7vPEK/FYWFrh5u5tUP/Aro1sXf8LHbs9RnSvp4zOV5CXjU6nY+2vP7D21x+Mjn86aQQduz3KY7JTq7gNfk4OxKblUFKhMtgAIj4rDwB/J4caWlZxtbPB1a5y7bjiChUJ2fm08TV+3jE3M6Wxq1L/dUxq5Yv4MC8Xo7pCCHEnJDEnHlqPP/443bp1o1OnTri7u5Oens7PP/9Mbm4uL7zwgr5eo0aNOHjwIPv27cPBwQEfHx+cnJwYPHgw8+bNw9ramtDQUNavX09iYmKdxPbiiy/y888/M2/ePGbOnEmHDh2YOnUqc+fOpWXLluzatYsDBw4Ytasp1r8aNWoUI0eO5K233uKJJ54gISGBmTNn0rt371qvL1eT2sSqUCgYOXIkn332GTqdjh49eqDVajl06BCPPvoo4eHhDB8+nLVr1/L8888zbNgwvL29ycnJ4dSpU3h4eBgkFcXda988jLU79rPtwDEe71a55qFKrWbn4RME+fngoqwcSZmVm0d5hYoGHm43Pd+SdVvRaLQ82jWq2uN7j8fg6uRISKPaT0u+1TmFqEulRTmoKkqwd/TE1KzyccknKIpr8ftJuniAhkEdACgvLSApfj/eAa0x+9O6XIkX9nJi53z8QroQ0aXmhINC6U1a4kkKcpNxcKpK7F2N24OJiUmNm0kIURcK8nMoKy3F2dVDv85oeMsozpw4yJkTBwlvVfnztriogJjjB2gaHon5n16+nT62j7W/fk9Em848+vQL1V7Dw9uX51813rBpy9qllJeV8tg/XsLZ1aOalkLUrJ2vJ+tjE9h+MYnHQiuXCFBpNOy6lEygqxKX6wm3rOJSytUaGjgavwD5s2Un4tDodDza1P+m9VILitkan0jLBm54V7NplhBC3AlJzImH1qhRo9ixYweffPIJOTk5ODk5ERwczIIFC2jfvr2+3tixY5k8eTKjR4+muLiY6dOnM2DAAMaNG4dGo2H+/PlotVp69uzJuHHj6mS3UKVSyfPPP8+8efNITExk8ODBJCUl8fPPP/P999/TqVMnZsyYwcCBAw3a1RTrX/Xo0YNZs2Yxd+5cRowYgVKpZODAgYwbN+6uY69trK+88grOzs4sWLCAlStXYmdnR8uWLfVr3zk5ObF8+XK++OILPvvsM/Ly8nBxcaFFixZGm26Iuxfk70NURBhL1m8jv7AYD1dndh89RWZuPv8a9KS+3pzFq4i9dIVfZlbtvLt62x6upWYQ6NsAUzNTjsSc53TcJQb360GgbwOjayWmppOYks6TPTpVOx36Ts4pxO2IP7keVXkJpcWV05FSLh+ltDAbgMCIflha2RGz/2cSYnfw2EvfYudQuR5mw8AOXPBcy+HNsynIScLKWsHF0xvQ6bSERT2rP3922gUObZqFlbUDHg2bc/X8LoPru3qHYO9YOSojOLI/qVeOs+OXfxMY0Q8rawUpCUdJvXKcRs0eMdjBVYjbsX/nBspKiym8Pi31fMxR8nMr7/Oorn2xsbVj05olHD+4k/FTv8LJpfI+b9Yyiob+6/jt57lkpCVhZ6/g4O5N6HRaHnl0sP78167E88tPs7G1U9A4OJyTR3YbXN+3UTAurp7Y2TsQ1qKtUXz7tq8DqPaYELcS5KakvZ8ny07EkV9ajofClj2Xk8kqLuXVqHB9va/2neZceg5Lh/bVl/1+5hLX8ooIdHXEzMSEI9cyiEnNYmBEkMHIOIC31uymna8nrvY2ZBSWsjU+EXtLS15u38ygXnGFik1xVwG4cH3X1k1xV7G1NMfOwoLeIdXvZCyEEAAmOp1OV99BCCHE/VJ4dGN9h/C3VaFSsXzDdvYci6G4pBRfbw8G9e1OREjV1O7Jc340SswdOxvHis27Sc7IRKvV4uvlwWPRUURFNKvuMixet4Xft+3lv2+PwM+7+lESt3tOYeg/Z7rXdwh/a+t+eI3igoxqj91IxB3e/KVRYg6goqyIU3sWkHzpMBpNBc7ugbTo/ALOnlWbmCTEbufw5tk1Xr9tr9EEhFb9HWWnXeDsweXkZSZQXlaInYM7/k27EdL6KUxNZXHxmvRsY7xhjajy6fuvk5uTWe2xG4m4XxfNMUrMAZSUFLFh5UJiTx9GpVLh49uYfgOG4eNX9fvg2MEd/LZobo3Xf2boSCLbd6vx+HczJ1FSXMj/TZx5B717eDRfffcvTR9UFWoNv5yKZ19CCsUVKhoqFQyMCKKFd9Wo/qmbDxkl5o4nZbAy5iLJ+UVodeCrVPBoU3/a+3sZXePLPSeJy8iloKwchZUlkQ3d+UeLIBysDdewyywq5Y1VO6uN09XOhtkDouukzw8qp39/Xd8h3JHcaa/Xdwg1+l/9nj6sJDEnhHioSGJOPAwkMSceBpKYEw8DScyJh8H/ahJJEnOirshUViHuEa1Wi7aabdxvMDMzq3EaX33TaDTcLGd/Yx0aIYQQQgghhBBC3Dn5dC3EPfLee++xatWqGo8vXLiQdu3a3ceIam/48OEcPny4xuPbtm3Dx8fnPkYkhBBCCCGEEEI8eCQxJ8Q9MmrUKIYMGVLj8YCAgPsYze2ZMmUKxcXFNR53d3ev8ZgQQgghhBBCCCFqRxJzQtwjPj4+/7Ojyho1alTfIQghhBBCCCGEEA880/oOQAghhBBCCCGEEEKIh5Ek5oQQQgghhBBCCCGEqAcylVUI8VA5btOlvkMQQghRB1qV7q7vEIS459T1HYAQQoh7TkbMCSGEEEIIIYQQQghRDyQxJ4QQQgghhBBCCCFEPZDEnBBCCCGEEEIIIYQQ9UASc0IIIYQQQgghhBBC1ANJzAkhhBBCCCGEEEIIUQ9kV1ZxX6xZs4aFCxeSkJCATqfDw8ODVq1aMXbsWFxcXABYsGABAQEBdO3a9Zbn27p1KyNHjmTbtm34+Pjcsv7KlSt599139V/b29vj5+fHsGHD6N+//233p6ZYu3fvTnR0NJMmTbrtc/5d7Nu3j88++4zLly/j7OxMx44d+eijj+o7LHEfqFUqtqxfxsnDuyktKcazgS89H3+WoJAWt2x76uhedm9ZTUZaMlbW1jQNb0Of/s9jZ+9gUK+0pJidm1Zw9tRhCvJysLN3IDCkOT36/QOls5u+3tmThzi0dzPpKYkUFxVip3DA1z+IHo8OwtPbt877Lh5ualUZ54+uIjstnpz0eCrKimjbazQBod1r1b6ivJhTe34i+dIhNOpynD2CiOgyHCf3xgb1Tuz6gcykMxQXZqJRV2Dn4EbDoE6EtO6PuYX1veiaeEiVlVfw+/a9XExM5mJiMsUlpYx4tj/RbVvWqn1xaRk/r93M4dPnqFCpCPT1YeiTvWjk421Qb/+JMxw7G0f81STSsnIIbezP5FEvGp3vWloGv27cyeWkFPIKirC0tKChhxuPd+9I67DgOumzePioNBp+PRXP3sspFFWo8HVSMCiiCeFerrdsuz8hhTWxl0nJL8ba3IzIhh482zIYB2tLg3r5peUsORHHyeRMSlVqvB3t6B/WmPb+Xgb1Rq/cSVZxabXX8lDY8kX/W3++EUI8vCQxJ+65efPmMWPGDIYPH84bb7yBTqcjPj6etWvXkpGRoU/MLVy4kOjo6Fol5u7U/PnzUSgU5ObmsmjRIt555x0sLCx49NFHb+s8NcU6Z84cHBwcamj193ft2jVGjBhBly5dePvtt0lOTmb58uX1HZa4T35bNIeYkwfpGN0PF3cvjh/cyYKvPuaVNyfj37hpje0O7t7I78vn0zg4nEeffoH83Gz27fyDpMRLjHh7OhYWlQ+5Op2OH+ZMJSMtmfade+Hq7k12VhoHd2/iwrmTjH1/FlbWNgCkpSRiY2tHVHQ/7O0dKCzI4+iB7Xz16QRef+tjvHz878e3RDwkyksLOHvoF2wVbihd/clIOlPrtjqdjj2/f0Re5hVCIvtjaaPg4qkN7PjtfXo++xkKp6pERk56PK4NQvFXemJmZkleZgLnj64k/dopuv/jY0xMTO5F98RDqLC4hBWbd+Hq5Ii/tydnLybUuq1Op+OTeYu5mpLG4906orCzZdPew0yZu4BPxr6Gl5uLvu7mfUe4nJRCoG8DCkuqT0oAZObkUVpeTtc2ETg5KKioUHHodCyfzl/CK/94nJ4dWt9Vf8XD6ev9MRxOTKNPiD+eClt2X07mP9uPMrFnW0LcnWtstyXuKj8cjqWZpwtDIxuSXVLGhvNXuZydz4d9orA0NwOgpELFB5sOkl9WTt8Qf5Q2Vhy8msasPSfR6HR0DKj6+T6sTVPKVGqD62QVl/LLyXia1yJRKIR4uEliTtxzixYt4qmnnmLChAn6sq5du/Lyyy+j1WrvayxhYWE4O1f+om7Xrh3R0dGsXLnythNzNQkNDa2T89SX3bt3U1FRwX//+1+srStHb/zjH/+odfuysjJ9O/G/5dqVeE4d20e/p4bR+ZEnAGjVLppZ08ayYdUiXn/r42rbqdVqNq1ZSkBgKP8cPUmfWPBrFMJP30znyL6tdIjuB0Di5TiSrl7iiYEvE9W1j/4cru7erPj5Ky6eP01YRDsAevQzvu9ad+jBJxNf4+CeTTz17Gt12n/xcLO2deKJV37Axs6JnLR4tiwbX+u2SfH7yUo5T4dH36ZhUAcAGgZ1ZMNPIzlzcClRfcfp6/YYON2ovZ2jJ6f2LCAn7QIuXjJySNQNpYM93055CycHBRcTk3lv5ne1bnvw1FniEhIZO3wg7VuEARAVEcabH3/JLxt38ObQZ/R1Rz8/AGdHB0xMTBj7n7k1nrNVaBNahTYxKOvTuS3vfP4t63cdkMScuG0Xs/I4cCWVIZEhPBYaAECXRg0Yv24vS47HMbVPVLXt1Boty05eoKmHM+890kb/3NLEzYn/7jjG9ovX6BPiD8C2+GukF5YwsWdbwjwrE9I9m/gyccMBfj52nna+npibVa4M1aahh9G1VsZcBDBI4AkhRHVkjTlxzxUUFODu7l7tMVPTyluwe/fuJCcns3jxYoKDgwkODmblypUAqFQqpk2bRtu2bYmMjOS9996juLj4ruOytbXFz8+PlJQUfVlJSQlTp06ld+/etGjRgu7duzNp0iQKCwv1dW4Wa/fu3Zk6darBdTZv3syTTz5JeHg4nTp1Yvr06ZSXl9c6zvj4eF555RXatWtHixYt6N27N/PmzTOoc+LECYYNG0ZERASRkZGMGzeO7Oxs/fERI0bQo0cPioqK9GXr168nODiY3bt368tMTU3RarUkJSXdMq6VK1cSHBzMiRMnePHFF4mIiODTTz8F4IcffuDpp58mMjKSqKgoXnvtNRISjN/WnzhxgpdeeolWrVrRsmVL/vGPf7Bv3z798YqKCj7//HO6detGs2bN6Nu3L2vXrq31907U3pkTBzA1NaVNx0f0ZRYWlrSO6k5iwgXycrOqbZeekkhZaTHNIzsYjPYJCY/E0sqa08eq/j7LyipHU9grHA3OoXBwAsDcwnD6yF/ZKxyxtLCirPTu//0L8Wdm5hbY2DndUdtr8QewtlXiE1j1IdDa1pGGTTqScvkIGrXqpu3tHSp/P1aUy30t6o6FuTlODoo7anvwVCyOCnvaNa962ehob0eHiGYcPXMelbpqVJCL0vGOR3qampri4uhAcWnZHbUXD7dDV9MwNTGhe2DVkjaW5mZEB/oQn5lHdg3TSq/lFVJSoSbKz9Pg3m3l446VuRkHrqTqy85n5OJgbalPygGYmJgQ5e9FXmk55zJybhrj/oQU3OxtCHa/s98vQoiHhyTmxD0XFhbGsmXL+PXXX8nMzKy2zpw5c3Bzc6N3794sX76c5cuXEx0dDcDnn3/O0qVL+ec//8kXX3yBVqtlxowZdx2XVqslLS3NYI26srIyNBoNY8aMYd68ebz55pscOXKEESNG1CrWv9q2bRtvvPEGgYGBzJ07l5dffplly5bx9ttv1zrOf/3rXxQUFDBt2jS+/fZb/vnPf1JaWvWwceLECYYOHYpCoWDmzJl8+OGHxMTEGMT84YcfUlJSwscfV456Sk9PZ8qUKQwePJguXbro6/Xs2RNbW1smTJhAWVntHpTHjRtH+/bt+eabb3jyyScBSEtL4/nnn+err77io48+QqvVMnjwYPLy8vTtjh07xtChQ6moqOCjjz5i9uzZ9OjRwyBR+uabb7J8+XJefPFFvv32Wzp37szbb7/Nrl27av39E7WTknQFV3dvrG1sDcp9/AIBSE26Um079fWkQ3VJNQsLS1KuVa4rWXmuxlhaWbNl3TIuxcWQn5fN5fizbPz9Z3z8GhMY0tzoHKUlxRQV5pOafJWVi7+mrKyExsHhd9NVIepUbuYlnNwbGSUnnD2DUKvKKcxLNijXajWUlxZQWpRD2tWTxBxYjIWlDc4eQfczbCFqlJCUSoCPl9E9HejXgPIKFSkZ2TW0vLWy8goKiopJy8ph/a4DnDx/kfCggLsNWTyEruQW4OVgi62lhUF5oIuj/nh1VNdn61iYmRkdszI3IyGnQP/cotJosTAz/rhsdb3scnZ+zfHlFJCcX0xHfxktJ4S4NZnKKu65Dz74gFGjRjFx4kQAfHx86NatG8OHD9cnxUJDQ7G0tMTV1ZWIiAh927y8PJYsWcIrr7zCa69VTl3r3Lkzzz//POnp6bcdi1arRa1Wk5uby7x588jLy9OfF8DZ2ZkpU6bov1ar1fj4+PDcc8+RkJBAQEBAjbFWZ86cOUREROgTiV26dMHGxoZJkyYRFxdHcPDNpy3l5OSQlJTEv//9b7p3r1yEvH379gZ1ZsyYQbNmzZgzZ07VcPwmTXjsscfYtWsXXbt2xcXFhalTpzJq1Ci6d+/OsmXLUCqVvPPOOwbnOnnyJAqFgsTERP7v//6POXPmYG5+8x8TgwcP5tVXXzUoe++99/T/r9Fo6NixI1FRUWzatIlBgwYB8N///hc/Pz9++uknzK4/HHXq1Enf7uDBg2zfvp3vv/9eX96xY0cyMzOZPXv2PV2L8GFUmJ+LwkFpVO7gWDn1uyC/+rfCru6VH96uXjpP66iqhfIz01MoLqp8KC4tKcLWToGdvQPPvjiGVUu/Yf6XVf/OmjSN4LlX3tLfB3/21X/fJSujMllraWVNtz5P06bDI0b1hKgvZcV5uDcIMyq3tq0cIVFalIvS1V9fnpt+ka3Lq5Z2UDh50+nx97CyubPRTULUtbzCIpo29jcqVyrsAcgtKMTP23jaXm0s/H0TWw8cBSpHHrVrHspLT9fNciLi4ZJXWo7SxsqoXGlTuaRKbkn1s1M8FXaYmEBcZi7Rfxptl1JQREFZBQBFFSoUVpZ4O9pxJi2LzKJS3Oxt9HXPZeTe9BoAexMqn11kGqsQojYkMSfuuSZNmrBu3ToOHDjA3r17OXLkCIsWLWLlypUsXryYpk1rXlT+woULlJWV0bNnT4PyXr16ceTIkduOpWPHjgZfT548mdatDdc1Wb16NQsWLODq1auUlJToy69cuUJAQO3f6hYXF3Pu3Dmj5Fe/fv2YNGkSx44du2VizsnJiQYNGvD555+Tn59PVFQUnp6e+uOlpaUcP36c8ePHo9Fo9OX+/v54eXkRExOjT2D17NmT/v37M2bMGDQaDYsXL8bWtmp0VFxcHGPGjOHbb7/FxsaGF198kffff5+PP65ckPzYsWM899xzRjvhVjda8OTJk8yaNYvY2FiDUXJXrlzRx33q1CnGjh1bbTIGKneHVSqVtG/fHvWfps106NCByZMno9Foamwrbp9KVYGZuYVRuZlF5a8JVUVFte3s7B0IbxXF8cO7cPf0ITSiLQV5Oaz95QfMzMzRaNRUVJRja1eZdLBTOODlE0D7Ln3w8PYlNSmBXVt+57dFcxjy8ltG539m6EjKy0rIyUrn2MEdqFUVaDSaWyaMhbhfNOpyTM2q+bdjXjmKVKsx/Lfj4NyQrgMmo1GVk5V6nvTEU6hVMpVP/H2UV6iwMDf+/WppUXmfV6huPj37Zh7t2p72LULJLSjkwMmzaHVa1H96fhGitirUGsxNjUez3RjhVlHDfeVgbUn7/2/vvsOjrNIGDv9SJn3SKwnpIbRAqAlNujSxoBRXBCnCh4KuoqCiK+uugrCItHVXUEFRBCkisCC9E2qEAAFCKGkE0vsk074/hkwYJgndKDz3dXkZzntq8mYy87ynBPmy50I6/i5OtKnvQ26piiWHT2NtaYFGp6dCowVb6BYewLZzKczZE8+LrRrhYm9D3OVMjqQaJgeU19CGXq/nwKUMgtyVBLg63acRCyEeZvLJRvwubGxs6Ny5szFItGfPHsaOHcuCBQuYP39+jeUql75WntxaydPz7k43Wrx4MY6OjmRmZjJ37lw+/vhjWrRoQcOGDQHYsmULkydPZvDgwbzxxhu4urqSlZXFq6++ekf7wgEUFRWh1+vN+q5UKrGxsaGgoObp75UsLCz46quvmD17Nh999BGlpaU0adKEd999lzZt2lBYWIhWq2XatGlMm2a+qfiVK1dM/v3EE0/w888/ExUVRYsWLUyuff/994SGhtK+vWHz8rlz5/LKK68YZ9YdPXqUoKAgk6AcmP8sMjIyGDlyJE2bNuXvf/873t7eKBQKxo4da/weFhYWotPpatx7ECAvL4/8/HyaNDGfiQKGe+PGIKW4NwqFTbV7YWmvnzCmsKl5/7enh4xFrVbzvzXf8r813wLQou1jeHj5cPK3g9jaGp4y52RnsnDOVAYNm0DTFoaZn42btcHV3YuV3y3g7Kl4IpuY3pdBoVXB62atOzL7o9cB6Dtg+D2MVoj7x8raFp22mt8djSEgZ2ll+rujsHXAN7A5AP5hbbl8Zjd7133C43+ZhauXLOkTdc/WRoFaYx5wqAzIVQbo7oa/jxf+Pl4AdG4TzT+++JZPF/3AJ399WU4lFnfExtoKTTWHyKm1hjSbWh7ejoppSoVGx/dHz/D90TMAdAyth4/SgUMpV7G7/lAy0M2ZVzs256uDp5j6axwArva2vNi6EV8fPIVdNQFsgNNXc8ktLadPI3lNF0LcHgnMiTrRqVMnGjZsSHJycq35vLwMb95ycnLw8alaNpGdXf1G9LcSGRmJu7s7zZo1Iyoqij59+vCvf/2LRYsWAbBp0yYaNWpkcoDDoUOH7qotpVKJhYUFubmmSwCLioqoqKjAxcWlhpKmQkJCmDt3Lmq1mvj4eD777DP+7//+j927dxvbGDt2LD16mC/vc3Or2my28mCLhg0bcvLkSVatWsWzzz5rvJ6eno6jo6Px34899hjTpk3j7bffxtHRkR9++IFXX331lv3ds2cPpaWlzJ8/H2dnZ8CwJPjGQKRSqcTS0pJr167VWI+Liwvu7u58+WX1J8lVnq4r7g+lixuF+ebLVSuXsFYuaa2OvYMjw8ZOJj83i9yca7i5e+Hm4c0X/3oPRydn7B0M99WxuJ1o1BU0bNrKpHyjZm0AuJycaBaYu5GDgxNhDZry2+E9EpgTfxh2jq6UleSZpatKDWn2TrVv+h0QHsvBXyHl7F4JzIk/BFelE3mFRWbp+UWGA6Tu9lCJ6sQ2b8zCn9ZxJSuHet5399BVPJpc7W3JKzWfbZx//TARNwfzZa6VHG0UvNW1FdklZVwrLsPL0R4vJ3v+tukAznY2ON6wb11skB+tA3y4nFeITg8h7s6cvmp4b1TP2bHa+vdezMDCAjoE+93LEIUQjxA5/EE8cNUF0VQqFVeuXDGZbaVQKMxmpTVo0AA7Ozu2bNlikr558+Z77pefnx/Dhw9nz549nD592tgvxU1Pgqs7BbS6vt7M0dGRRo0asWnTJpP0jRs3AtCqVavqitVIoVDQtm1bxowZQ3FxMdeuXcPBwYHo6GguXLhAVFSU2X83zm6bPn06hYWFLFy4kGHDhvHJJ5+YHLQQFhbGqVOnSE1NNab179+fd955h3nz5qFUKhkyZMgt+6lSqbCwsDBZarhx40aT5aiV/V67dq3JEtwbtW/fntzcXBQKRbVjs6llBpe4c37+QWRfy0BVVmqSnnopyXA9IPiWdbi6exEa0QQ3D2/KSktIT7lA+A0HNRQXGYKzOr3pE27d9Xvg5vTqqNVqsz4KUZfcvELJu3bBuFl4pZwr57BW2KJ09a+1vFarRq/Xo66Q+1r8MQT7+3Ex7YrZPZ10OQ1bGwX1vD1qKHnn1NdnZcvJrOJOBbk5c6WwlNIK0xnLSdn5AAS7Od+yDk9Hexr7uOPlZE9JhZqLOQUmJ7BWsrayJMzTlQgvV6ytLEm4Yvhs08TPPK9aq+VQSiaNfdxxc7C7i5EJIR5FEpgTD1z//v157733+N///seRI0fYsGEDI0aMIC8vj+HDq2a9hIaGEhcXx759+0hISCAvLw9XV1eGDBnCwoUL+e9//8uePXt45513SElJuS99GzFiBE5OTixcuBAwBINOnDjBggUL2L9/P9OmTePAgQNm5arra3XGjx/Pb7/9xltvvcXu3btZsmQJn3zyCb169brl/nIAZ86cYcSIEfz000/ExcWxdetWvvjiC/z9/QkMDARg0qRJ7Ny5k7/+9a9s2bKFgwcPsnbtWiZPnszBgwcB2L17N8uXL+fDDz/E29ubiRMn4u3tzTvvvGN84z1y5EgcHR158cUX+fHHHzlw4AA//vgjy5Ytw8fHh0uXLrFmzZpb9rnycIp3332XAwcO8O233/LZZ58ZZ89VmjhxIpcuXeKll15i48aN7N+/n4ULF7Jy5UrAsB9g165dGT16NIsXL+bAgQNs376dL7/8kilTptyyH+LONG3RDp1Ox+F9W41pGrWao3E7qB8cgaubIYien5vFtcz0mqox+vWX79HptHTs3t+Y5unlh16vJ+HYfpO8x4/sBaBeQNVsocog3o3ycq6RfC4B/6CwOxucEPdJWXEuhblp6LRVDxoCItqhKs0n7XzV34ryskLSkvZTL6S1ce/GivISk3KVLpw0/M65+ch9LX5/uQVFpF/NQnPD0tXY5o0pKCrm4InTxrTC4hIO/HaKVk0iUdzFHp8FxSVmaRqNll1HfsNGoaC+b81bWwhRnZhAX3R6PdvPpxnT1Fotu5LTCfd0xcPRsI1GdkkZ6QXFt6zvx/izaPV6+jUKrjXflcIStial0MLfi3rO5vvHxadnUVqhkUMfhBB3RJayigdu/Pjx7Nixg+nTp5Obm4ubmxuRkZEsXrzY5ITRN998k6lTpzJhwgRKSkqYNm0aAwYMYOLEiWi1WhYtWoROp6Nnz55MnDiRSZMm3XPfXF1dGTp0KAsXLiQlJYUhQ4aQlpbG0qVLjaeBzpo1i0GDBpmUq6mvN+vevTtz5sxhwYIFxv3aBg0axMSJE2+rf15eXnh6evLf//6Xq1evolQqad26NTNnzjQefNCyZUt++OEH5s2bx7vvvotarcbX15fY2FiCgoLIz89nypQp9OvXj759+wJga2vLjBkzGDJkCEuWLOGll17C19eXFStWMHv2bD7//HOKi4sJCAigf//+jBo1itmzZ/Phhx/i4eFB165da+xzZGQk06ZNY/78+YwdO5ZGjRoxZ84c/vrXv5rka926Nd9++y2ff/457777LpaWlkRERJjkmzt3Ll9++SXLli0jPT0dpVJJREREtd9rcW8CQxoQ1bIdm375nuKifNy9fIk/uIu83CwGvDDOmG/FknlcPH+aaQtWGtN2bl7D1YwU6gdHYGlpyekTh0lKPM7j/Z8nICjcmK9Vu67s2fYLa374LxmpF/H2CyAj9SJH9m/Dx68+jZvHGPN+/s83CI+Mwq9+CPYOjuRcu8KRA9vRabX0fvKF3+ebIh4pSb9tQF1eSlmJYYlSxoUjlBXlABAe3RcbW0cS9i/l4ukdPDHyvzg6GwIJ9cPbc853HYc2z6MwNw1bOyXnT2xEr9fRpN3zxvqz0k5ybOciAsLboXT1Q6fTkJWeSHpyHO4+4QQ37PK7j1k83DbuOUhpmcq4LPXoqXPk5BtOy+7dKQZHezuWbdjKrsO/seCDN/BydwUMgbmIoAD+vexn0q5moXR04Ne9h9Hr9Qzqbfr3//T5SyReuAwYgnflFRWs2rwLgEahQTQODwbgyxW/UKYqp1FYMO4uSvILi9l77ATpV7MZ9lQv7GxlFry4MxFersQG+fJj/FkKysrxUTqw50I62SVljGlXNVv/3/tOkHg1l2Uv9jGmrT2ZTGp+MeGeLlhZWHA49RoJV7IZFB1BmKerSTtv/bKbmEBfPJ3suVZUxtakFJxsbBgd27Tafu27mIHCypK2gbIPshDi9lnob56nLoQQD7Fdp2S5WE3U6gq2rFvGb4f3UFZagq9/ID2fGEKDxlX7vn05+29mgbkzCUfZvuknrmWmo9Pp8K0XSMfu/WnWsr1ZGwX5OWxdv5zkcycpzM/F0UlJZNNW9HryLzg6Vc2q3LphOWdPHSMnK5PychVOTs6EhDemc68B+PkHPdhvxENgy2F57nan1n89lpLC6ve9rAzEHdo81ywwB1ChKub4nsWkJx9Cq63A3Tuc5p2G4+4bYcxTlH+F0wdXkJ1xxhj8c3LxISC8PQ1bP421QpY83anJTbfXdRf+0F79x2yycvOrvVYZiFvwwxqzwBxAcWkZ3/2ymcMnz6BWqwmr78/QJx8nPNB0afaKTTtY+evOatt4rlcXYyBv37EEth+MJ+XKVYpLy7CztSE0oB69O7WlTdOG92O4Dy3Nr2vrugt/WBUaLSuOJ7HvYgYlFWrquyoZFB1B83pexjwfbT5oFpg7lnaN1QnnSS8oRqeHQFcl/RoFE1vNnnBz9/zG2Wt5FKrKUdra0Kq+NwObR+BsZ76HXWmFmv9buZ0W/l680bnlgxn0Q8ptyhd13YW7kvfxuFtnqiN/1u/po0oCc0KIR4oE5sSjQAJz4lEggTnxKJDAnHgU/FmDSBKYE/eLvHMXf3o6nQ5dNcelV7KyssLCwuJ37NHt02q1Zpsr38j6LvZxEUIIIYQQQgghxJ+DfOoXf3rvvfderYcSfPvtt8TExNR4vS699NJLHDp0qMbr27ZtMzlZVQghhBBCCCGEEA8PCcyJP73x48fzwgs1bwYfEhJS47W69ve//52SEvOTyip5e8spZUIIIYQQQgghxMNKAnPiTy8gIOBPO6ssNDS0rrsghBBCCCGEEEKIOmJZ1x0QQgghhBBCCCGEEOJRJIE5IYQQQgghhBBCCCHqgATmhBBCCCGEEEIIIYSoAxKYE0IIIYQQQgghhBCiDkhgTgghhBBCCCGEEEKIOiCBOSGEEEIIIYQQQggh6oAE5oQQQgghhBBCCCGEqAPWdd0BIR6UefPm8fXXXxMfH09aWhrdu3dnzpw59O7dG4DFixcTEhJC586dTcrVlP4gHTx4kGHDhhn/7eDgQFBQEEOHDuXZZ5/FwsLintuIjIxk0qRJjBo1CoDVq1ejUCjo37//PdctHj5lpSVs/Pk7Th8/SEVFBfWDwuk7YDj+gaG3Vf7alTQ2rFrMpQtnsLKyomHTVvQdMBwnpUtVnsx0jh7YRlLiCXKyM7G1taNe/VB69BtEQFC4SX0zPhhHXm5WtW15ePny1tT5dz9Y8ciqKC/h+J4lpCcfRKspx90ngujHXsLNO+y2yhfmpBK/+xuyMxKxtLKmXkgrmncagZ1D1X1eVpzL8b1LyL16nrLiXCwtrXBy9SO8eR+CG3Wt9fV95+qpXE05TnjzPrTqOuaexyseTSVlKpau28yhE4lUqNWEBwbw4lOPExpQ77bKp2VmsWTtJs5eTMHKyopWjRvw4lO9cHFyNOZJv5rFjoPxHD+XzNXsXOxsbQkJ8GNgry6EB/qb1Hfw+Gn2/3aS5NQM8guL8XRzoWXjBjz7eGcc7e3u69jFo6OkQs0Px85yOCWTcq2OcA8XhrZqSIiHy60LA2n5xXx3NJGz1/KwtrSkRYAXL7ZqiLOdrUk+vV7PutMX2XI2hQJVOX7OjjzVJJT2Iaa/T1/sP8Hu5HSzdvycHfnsqcfufqBCiIeSBObEI8Hb25vly5cTHBxsTPv222/p0qWLWQCupvTfw7Rp0wgNDaWwsJCVK1cyZcoUNBoNQ4YMuee6ly9fTr16VW8a1qxZg4ODgwTmhBm9Xs+SLz7hSvplHuvxJA6OzsTt3sTCOR8yfvIMPL39ai2fn5fNl59/gJ29I72e/AvlqjL2bPuFzPQUXpk0HWtrw5+eI/u3cnj/dppGxxDz2OOUl5VxaN8WvvjXe7z06hQiGjY31tnvuRFUlJeZtpObzeZ1y0zyCXG79Ho9e9b+k/ysSzRs9TQ29krOH9/IjpUf0PP5f6F0qz1oUVqUzfaV76OwdSCqwwtoKlScPbaW/OzL9BwyE0srw31eriqkrCiH+hHtcVB6otNquJpygkOb51GUl0GzDkOrrT8t6QA5V87e93GLR4ter2f6wu+5nJFJ/64dUDo68OveQ/x9wWKmvzkWPy+PWsvn5Bfw4fyvcbS34/m+3Skrr2Ddzv1cvnKVaX8dg7W1FQDbDx5jW9wxYpo15vH2bShTlbP1wBHen7OI98YMpVlkVbD7vz+tw91FSadWzfB0cyEl4yqb9h4kPvEcn078P2wUigf6PREPH71ez4ztR7icV0T/xiEo7WzYfPYyH205yCd9O+Dn7Fhr+ZySMj7aHIeDjYIhLRpQptaw4fQlUvOK+Gef9lhbVS0y+zH+HL+cukC3iPqEerhwNPUq8/YeBzALzimsLHk5tqlJmoONfPwWQpiTVwbxSLCxsSE6OrpO2lapVNjZ3d4T4IiICKKiogDo0KEDffv2ZenSpfcUmKtsv67GL/58EuIPcPnCWf4yaiJRLdsBENWyHbP+/hpb1//IkJFv1Fp+169rqCgvZ/zkGbi6ewEQEBzO1/P+wdG47cR0fByAZq070r3fYGxtq34/Wrfvxmcfvc62DStMAm5Nmrc1a2f7xpUARLfpdG8DFo+ktKT9ZGecoX2/t6kf0R6A+hEd2LjkVU7GLaNdn4m1lk88vAqNWkXP5/+Fo7PhPnf3jWDX6qlcPL2NsKheALh6BtN14D9NykZE92PP2o9J+m0DUe3+goWl6c4iWk0Fv+1ZTMPWz3DywLL7NWTxCIo7foqzF1N486VBxDZvAkC76Ca8/slcVmzawesvPldr+TVb91BeoebTiWPxdHMFIDzQn3/+51t2HIqnZ/vWALRvEcXAXl2xs7Uxlu0a04I3ps/np193mgTmJr40iCbhISbthNavx4If1rDn6Am6x7a6H0MXj5CDlzM5l5XP649FExtkeHgYG+TLG2t389PxJF7rFF1r+bUnL6DSaPmkXwc8He0BCPd05ZOth9mZnEaPBoEA5Jaq+F/iRR6PDGREW8PvU7fwAD7afJDvj50lNsgPS8uqWdCWFhZ0CvU3b1AIIW4ie8yJR0JaWhqRkZFs2rQJgG7dupGens73339PZGQkkZGRrF69usb0SqtXr6Z///5ERUXRqVMnZs+ejVarNbkeGRlJfHw8I0aMIDo6mhkzZtxVn62srGjUqBFpaWkA7Ny5kxEjRtCuXTtatmzJwIED2b17t0mZ2tqPjIzkq6++AuDFF1/k0KFD7Ny50zjOefPm8d1339G8eXOKi4tN6k1OTiYyMpJdu3bdVt+//PJLevbsSVRUFLGxsbz00kukpqYar1dUVPDZZ5/RtWtXmjZtSp8+fVi3bp3xekJCAk2aNGHp0qUmZZ588kmef/55dDrdHXwnxZ06GX8AJ6ULTVvEGtOclC40a9We0wlH0KjVtZZPiD9Aw6hWxqAcQETD5nh61yPh2AFjWkBgmElQDsDBUUlIeCOyrpov/7jZ8SN7cfPwJiis4e0OTQij1KQD2Dm4EhDezphm5+BC/QYdyLhwGK2m9vs8LekA9ULaGINyAL6BzVG61SP13P5btu/o7I1WU45OpzG7duboz+j1ehq2evr2ByRENeKOn8ZF6URMs8bGNBcnR9pHN+XIyTOoNeb3383lWzVpYAzKATSLDKOetycHjp8ypoXVr2cSlANQOjrQKDSI9GvZJuk3B+UA2kY1AiD9arbZNSFu5WBKJi52NsQE+hrTnO1saRfkx9G0a6hveK9eU/lWAd7GoBxAlJ8nfs6OHLycaUw7mnoVjU5PzwZBxjQLCwt6Nggkt1TFuew8s7p1Oj2lFbX/PRFCCJkxJx5J8+fPZ8yYMbRs2ZKRI0cCEBgYSMOGDatNB/jmm2+YOXMmw4cP55133iE5OdkYmHvrrbdM6p84cSKDBw9m7Nix2Nvbc7fS0tLw9vY2ft21a1dGjhyJpaUlu3fvZsyYMSxZsoSYmJg7av/DDz/k7bffxs7OjsmTJwPg6+uLvb09M2fOZP369Saz9FauXImPjw8dO3a8ZZ9//vln5syZw2uvvUZ0dDRFRUUcPXqUkpISY57XX3+dY8eO8eqrrxIWFsauXbt4++23cXZ2pnPnzkRFRTF27FhmzpxJ+/btCQ0NZc6cOaSmprJ27VosLeWZwoOUkXqRevVDzfa+qh8UzqG9W8i6loGff1C1ZQvycygpLsQ/0HyPrvrB4Zw9deyW7RcV5uPg6HzLPl7LTKNrrwG3rE+I6uRlJePmbX6fu/tGkJywmaL8dFw9g6stW1qcg6qsAHcf8/vcwzeCKxfN73OtpgKNWoVGreJa2kkunt6Oh18kVtamwYySwiwSD6+ibc/xZteEuFMX064QEuBndp+HB/mz9cARMq7lEFTPp9qyOfmFFBaXEFrffFl3eKA/xxKTbtl+flExzo4Ot5UPDME8Ie7UxdxCgt2dze7zME8XtiWlcqWwhEC36t9X5JaqKFRVVLsXXZinC7+lV+1vezG3EFtrK/xdTJfGhnoayl7KLaSht7sxvUKrZcTyLVRotDjaKGgf7MdfWkZip5CP4EIIU/KqIB5JjRs3xsbGBk9PT5Mlnu7u7tWmFxcXM3fuXEaPHs2bb74JGJaaKhQKpk+fzqhRo3BzczPmHzJkCGPG3PlG3TqdDo1GQ1FREcuXLychIYGxY8cCMHToUJN8MTExnD9/nhUrVpgF5m7Vfnh4OE5OTjg4OJgtce3VqxerVq0yBuY0Gg2//PILzz33HFZWVrccw4kTJ4iMjDT2G6BHjx7Gr+Pi4ti+fTtfffWVMdDXoUMHsrKymDdvnnFvv1deeYWdO3cyadIkJk2axNdff83UqVONgVLx4BQV5hMS3tgs3cnZcI8XFeTWGJgrKjA8LXZ2cTO7pnR2pbSkGI1ajXUNewhdPH+alIvn6Nr72Vr7+Nthw2zR6DaygbK4O6qSfLz9m5il2zkY7t2y4rwaA3Oq4lxDXkfz+9zOwY1yVRFajRor66r7/Fz8ek7s+874b5/6zWj7+ASz8sf3LMbNO5TASFmiLe5dflExjcKCzdJdlU4A5BUW1RiYyyssAsDNWVlt+eKSUtQaDQrr6j9OJCZf5tylVAb0vPXr9M/b9mJpaUlsc/O/PULcSn5ZOY183M3SXe0NBzfklZUTaP5ybbhWqgLAzd7W7JqrnS3F5WrUWi0KKyvyy8pxsbMxCwC6XT+0JK+03KRs/8ahhLg7o9PrOX4lmy3nUricV8jfHo/BSh4yCyFuIIE5IW5DfHw8paWl9O7dG80Nyz7at2+PSqUiKSmJtm2r9sDq0qXLXbUzaNAg49fW1tYMGTKEV199FYDMzExmz57N/v37ycrKQq/XA9CkifkHy7ttv7IPQ4cOJSkpiYiICHbt2kVOTg7PPlt7oKRS48aN+eGHH5g2bRo9e/akefPmKG4Iwuzbtw9XV1diY2PNvpdTp05Fq9ViZWWFtbU1M2fO5JlnnmHUqFF06tSJwYMH3/W4xO1TV5RjbW0eOKv8OaprWcqqVlcAmAQkKlkrbIx5qgvMFRcVsHzxHNw8vHms59M1tqHX6zl+dB/1AoLx9guodSxC1ESrKcfSyvw+rJylptNW1FxWa/gdsKqlvFZbYfJ7EBjZETefMCrKCsm4cBhVaQEaTblJ2aupCaSdP0CPwZ/e+YCEqEZ5hRqFtflDtcoDFipqfT03/I2urrzi+oyfCnX1gbmC4hLmLl2Ft7sbT3Wrfbb93qMn2HHwGE9163jLwyiEqE6FVouimkCXzfUHyhXamrdAqbxWfXlLYx6FlZWhHava8lUtmX2+ZaRJnvYh9fBVOrDityQOXs40OyhCCPFok8CcELchL88wC+iZZ56p9vqVK1dM/u3p6XlX7Xz66aeEhYXh5OSEv78/NjbXPyDqdIwbN46ioiJee+01goKCsLe3Z+7cuWZt30v7AG3atCEkJISVK1fy7rvvsmrVKtq0aXPbM9UGDBhASUkJK1asYPHixSiVSp5++mneeust7OzsyMvLIz8/v9qAIkBWVha+voY9QsLCwmjcuDHx8fG88MILdz0mUT2NRkNZSZFJmqPSBYWNLZpq9teqDMgpajkxT3E9+Fbd/lya60G7yjw3Ki9XseSLTyhXqRj75j/M9p670YVzJynMz6Vj1ydqzCNEJZ1WQ7nK9D63s3fBytoWndb8PtVqDPeppVXNy0grA3LaWspb3VTe0dkbR2fD1gSBkZ04vPXf7Fo9lb7DF2BlbYNOpyV+5yKCGnbG3TfiDkYoBGg0WopKS03SXJwcsbVRoNaY769VGZCr7QTUyuBbdeUrg3Y21SzJU5VXMH3h95SVl/PRhJFme8/dKDH5Mv9Z/gvNG4YzpG+3GvMJAaDR6ii+ab82Z1sbbKysUFez/3BloMymmmBapcpr1ZfXmeSxsbJCXU2Qrypf7StL+jUK4afjSSRk5khgTghhQgJzQtwGFxfD3hHz5883Bo1uFBBwf2bthIWFGU9lvdHly5c5ffo0CxYsMFkWqlKp7ku7Nxs4cCCLFi1ixIgR7Nq1i48//vi2y1paWjJ8+HCGDx/O1atX2bBhA7NmzcLNzY1XX30VFxcX3N3d+fLLL6st7+5etRRh2bJlxqWx06dPJyYm5rZPuBW3lnLhDAvnTDVJm/TRv1E6u1JYYL6BcXGhIU3pYr5cpJLy+hLW6sob9o5zMpstp9Fo+H7hTDLTUxgx/n1869UeBP7t8B4sLCxo3ubWex4KkZ1xhh2rPjBJe2Lkf7FzdKWsxPw+VZUa0uydalj3BNg5GX4HVDWUt7VTVjtr9Eb1I9pz4eQWrqWdwi+4BZcSd1CUn0Hr7v9HSeE1k7yaijJKCq9ha++CtcJ8uZUQZy+l8PcFi03SFnzwBq5KJ+OS1BtV7ulW3TLVSpXXairv5OhgNltOo9Hyr29+JCXjKlPGvkigX/XLZAEupWfy6Vc/UN/Pm4kvDb6t7TLEo+1cVh7/2HLIJG3uM11wtbc1Lkm9UX6ZYVZydctUK7k5XF+GWlZudi1fVY6TrQLF9XvT1d6WU1dz0ev1JstZ88quL4d1qP312cbaCqWtDSXlchiEEMKUBObEI0uhUFBebv5HuLr0Fi1aYG9vT2ZmJj179vy9umhU2Z8bZyqlp6cTHx9PcHDwXdVZ0/jBMDNw9uzZxlluvXv3vqs2fHx8GDlyJOvXr+fChQuAYcnqokWLUCgUNGxY82maKSkpzJgxg9GjRzNkyBD69+/PrFmzmDJlyl31RZjzDQhm5ATTgIWTsyt+AcFcOp9o9sYz5VISChtbvLxrfsrr4uqBo5Mz6SnJZtdSL53Hzz/YJE2v1/PTt3NJPpvA8yPfJDSi+pmUlTRqNSd/O0hoRBOcawkQClHJ1SuYzgOmmqTZObji5hVKVvpps/s858o5rBW2KF39a6zTwckDO3sXcq+a3+c5mUm4eAXfsl+VM+s0FYZZTqWF2ei0GrateM8s76XEnVxK3EnH/u/gHxZjdl2IoHq+vP9/w0zSXJSOBPv7kXjhstl9nnQ5DVsbBfW8a1466uHqjLOTIxdSM8yunU9JJ/imven0ej3zf1jNyaSLvDFsII3Dg2usOzM7l0++XIqr0ol3Xn6h1ll1QlQKdHPmvR5tTNJc7GwIdnPmzDXzgNn57AJsrK3wc3a8uSojdwc7nO1suJhTYHYtObuAILeq4HWwuzM7zqeRXlBCgKuTST6AoBoOmKhUptZQVF6Bs53c70IIUxKYE4+s0NBQ4uLi2LdvH87OzgQEBODm5lZj+muvvcbMmTPJzMykbdu2WFlZkZqayrZt25g3b949nb56O3319fVl1qxZ6HQ6SktLmTt3rvHE1rut8+eff2b79u14eXnh7e2Nj4/hTba7uzvdu3dn06ZNDB48+I5mqf3tb3/D2dmZ6OhonJ2dOXbsGGfOnOH5558HDAc9dO3aldGjRzN69GgiIyMpKyvj/PnzXL58mY8//hidTsfkyZMJDAxk/Pjx2NjYMGXKFN577z26d+9ObGzsXY9bVHFwcCKiYXOz9KgW7TgZH8fJ+DiiWrYDoKS4kIRjB2gU1cpkxltOlmEptYeXnzGtaYtYjsXtJD8vG1c3w7Lq82dOkH0tg47d+pm09cvyRZw4up+nnx9D0xa3/rmePXUMVVkJ0W1kY3xxe2zsnPANNL/PAyLakZq0n7TzB6gf0R6A8rJC0pL2Uy+ktcmMt6J8w32udK26z/0jYrl0egelRdk4KA33+dWUExTlZdCgRX9jPlVpAXYO5qf9XTi1FQsLC1y9Q4Hre9B5h5jl27tuOn7BrQiL6om7jyxxFdVzcrCnWaT5KcGxzRsTd/wUB0+cJra54cFHYXEJB347RasmkSYz3jKzDYea+HpWPfSIadaYXYd/Iye/AA9Xw32ccO4CGdey6fuY6Wv2V6s2sD/+JC8P7E9MLYc45BUW8fF/vsPCAqaMfREXp5qDJkLcyMlWQZSf+XYtMUG+HEzJ5GBKJrFBhtfpQlUFcZev0CrAyzjjDSCzqAQAX2XVfdc20IddyenklJTh4Wh4P3/ySjZXCkvo0yjYmK9VgDffHUlky7nLjGhr+H3S6/VsPZeCu4MtkV6GmdYVGi1avR77m5Z6rz5xHr0emtW7+y1nhBAPJwnMiYeWSqUy7tFWnTfffJOpU6cyYcIESkpKmDZtGgMGDKgxfeTIkfj4+PDNN9+wdOlSrK2tCQwMpEuXLrXuuXU/2NjYMG/ePD766CNef/11/Pz8GDduHHFxcZw8efKu6nz55ZdJSUlh8uTJFBYWMn78eCZMqDohsGfPnmzatInnnnvujupt0aIFK1as4KeffqKsrIz69evz7rvvMnDgQGOeuXPn8uWXX7Js2TLS09NRKpVEREQwYMAAABYtWkRCQgIrV640/gwHDBjAtm3bePfdd1m3bh1OTk7Vti/uXdMW7agfvJ6VSxdwLTMNRyclcbt/Ra/X0aPfEJO8X839CIBJ//jCmNal1wASju1n0ZyptO/Sl4pyFbu3rsXXP4hWsVV7CO3dvp64Pb8SGNIAGxtb4g/tMqm7cfMYs73mfju8G2trBU2iJTgr7k398Pac813Hoc3zKMxNw9ZOyfkTG9HrdTRp97xJ3l2rpwKGJbCVGrd5jrRz+9mx6gMiovuhVZdz5ujPuHoGEdK4uzFf4uGVZGecwTeoBQ5KTypUxaSdP0Du1fNERPczBvuc3QNwdq9+WwRHF2+ZKSfuSmzzxkQEBfDvZT+TdjULpaMDv+49jF6vZ1DvriZ5//HFEsCwBLbSgJ6dOHD8FH9fsJg+nWJQVaj5Zcc+Auv50DWmhTHfhl0H2LzvMA2C62Nro2D3keMmdbeNamScFffJl0u5mpPLU906knjhMokXLhvzuSqdqg0wClGbmEBfwj1d+c/+BNILSnC2VbD5XAo6vZ7nmps+0Ph4y2EA5g3oYkx7umkYcZcz+ceWQ/RuGIRKo2X9qYsEuinpElY1e9rD0Z7eDYNZf/oiWp2eUA8XjqRe5cy1PMZ3bI6lpWG2XoGqgnc27KVDcD3quRgCgMczsvktPYvm9TxpU7/mJd5CiEeThb7yaEchHjLjx48nIyOD1atX13VX/pQmTZpEYmIi69atq+uu3Fe7TpXeOpOgtLSYjau/5fSJQ6jVagICw+g7YBgBQeEm+WZ8MA4wDcwBXL2SyoZVi7mUfAYrK2saNm1J3wHDUTq7GvP89N18jsXtrLEPkz76N24eVbNCVWWlfPLuaCKbtOCFl9++90E+xLYcludut6NCVczxPYtJTz6EVluBu3c4zTsNNzt8Yf3XYwHTwBxAQU4Kv+3+huyMRCwtrfELaUX0YyOwc3A15slMOU5S/Hryrl2gXFWIlZUCF88gQpv2JLhRV5NlV9VZ/vkzhDfvQ6uuY+7PoB8ik5tur+su/CkUl5bx3S+bOXzyDGq1mrD6/gx98nHCA02Xa7/6j9mAaWAOIDXzGkt+3sTZiylYWVnRqnEDXnyqF67KqgdkC35Yw67Dv9XYhwUfvIGXuysAg974sMZ8jcOCmTp+xB2O8OGm+XVtXXfhT6G4XM33x85wJPUqFVodYR4uvNAykjBPV5N8E1bvBEwDcwBp+UV8e+QMZ7PysLa0oIW/Ny+2aojLTfvT6fV61p66wLZzqeSXqfB1duSpJqF0DK36fSqpULP48GmSsvLJKytHr9fjo3SgQ0g9nmgUgnUth1E8qtymfHHrTH9AeR+Pq+su1OjP+j19VElgTjx0EhMTOXToEDNnzmTChAmMHTu2rrv0p3L27FkSExN5//33+fDDD01muj0MJDAnHgUSmBOPAgnMiUeBBObEo+DPGkSSwJy4X+Sdu3jovPfeexQUFDBixAhGjRpV191Bp9Ohq+YI9kpWVla3nDHxexo3bhy5ubk8/fTTPPvssybX9Ho92utHz1fH0tISS0t5CiiEEEIIIYQQQtwOCcyJh86aNWvqugsmFixYwPz582u8XrmH3R/F9u01z0A4dOgQw4YNq/H6M888w/Tp0x9Et4QQQgghhBBCiIeOBOaEeMAGDRpEly5darweEFD9Zt9/RE2aNGHlypU1Xndzc/sdeyOEEEIIIYQQQvy5SWBOiAfMx8cHH5+H4/QlJycnoqKi6robQgghhBBCCCHEQ0E2gxJCCCGEEEIIIYQQog5IYE4IIYQQQgghhBBCiDoggTkhhBBCCCGEEEIIIeqA7DEnhHikNPt5Yl13QYgHbov/nLrughAP3DH7x+q6C0I8cC171XUPhBBCPGgyY04IIYQQQgghhBBCiDoggTkhhBBCCCGEEEIIIeqABOaEEEIIIYQQQgghhKgDEpgTQgghhBBCCCGEEKIOyOEP4k9t3rx5fP3118THx5OWlkb37t2ZM2cOvXv3BmDx4sWEhITQuXNnk3I1pT9IBw8eZNiwYcZ/Ozg4EBQUxNChQ3n22WexsLC45zYiIyOZNGkSo0aNAmD16tUoFAr69+9/z3WLh59aq+Wn40nsvZBBcYWaQDclg6MbEOXnecuyuaUqvjuSyIkr2ej0epr4ePBi60b4KB3M8u44n8r60xfJKi7D3cGO3g2D6N0w2CRPRmExW8+lcj47n0u5hai1OuY+0wUvJ/v7NFohoKK8hON7lpCefBCtphx3nwiiH3sJN++w2ypfmJNK/O5vyM5IxNLKmnohrWjeaQR2Di4m+fR6PWeP/sz5E5tQleShdKtHozbPEhjZyazO1HP7OHvsF4ry0rGwsMTFI5DIVk9TL7T1fRmzeDRo1Gq2bPiR3w7tpqy0BF//QHr2f56Ihs1vWbYgP4cNqxaTlHgCvV5HaIOm9Ht2OB6evmZ5j+zfxu6tv5CXcw0XNw/ad+lL+y59q633xNF97N2+nsyMFKysrPH29efx/s8TFhl1z+MVjya1RsOKjTvYffQ4JaUqAv18GNK3G80ib/0anpNfyLdrN3H8bDJ6vZ4m4SEMf6oXPp7uZnm3HzzGuh37uJaTj4erM306xdDnsViTPBnXstmy/whJl9O4mHYFtUbDgg/ewMvd9X4NVwjxEJMZc+Kh4e3tzfLly4mNrfpD+e2337Jr1y6zvDWl/x6mTZvG8uXLmTNnDoGBgUyZMoXly5ffl7qXL19uEoRbs2YN69evvy91i4ffF/sT+F/iJdqH1GNY60ZYWljw6fYjnLmWW2s5lVrDPzYf5PTVXJ5qGsbA5hFczC3ko80HKSqvMMm79VwKXx44SYCLE8PbNCbCy5UlhxNZezLZJF9SVj6bzlxCpdZQz8Xxvo9VCL1ez561/yTl7B4imvelWcdhqErz2bHyA4ryMm5ZvrQom+0r36e44ApRHV4gsuVTZFw8yq41U9FpNSZ5E/Yt5fjeb/EJbE6LLqNxUHpxYONnpJzdY5Lv3G/r2f+/f2Fr70xUh6E0avscFRUl7PnlY9KSDtzX8YuH28rv5rN3+3qat+5Iv+dewsLCksX//oRLyYm1lisvV7FozlQunDtFl17P0KPfYDJSL7Dw8w8pLSkyyXtw72ZWff8FPn4B9B80ksCQBqz76Wt2bl5jVu/WDcv58ZvPcXX3pN+zw+n5xBB8/YMoLKj974sQtfn3sp9Zv+sAHVtGMfzp3lhaWjBt4fecuXC51nKq8go++vdiTp2/xDM9OjGod1cupl1h6oLFFJWUmuTdsv8I//lxLQE+3owY0JcGwfX5Zs1Gft520+v3pVT+tzuOsvIK/H287vtYhRAPN5kxJx4aNjY2REdH10nbKpUKOzu728obERFBVJTh6XCHDh3o27cvS5cuZciQIffcfl2N/8Y+iD+n89n5HLh0hRdaNeSJxiEAPBbqz6T1e/nh2Fk+6t2uxrKbz6WQWVTKP/u0I8zTFYDm9byYtG4vG05fZEiLSAAqNFqW/3aOFv5evNG5JQDdI+qj18OahGS6RwTiZKsAoGWAN18N7om9wpr1py9yOffMAxy9eBSlJe0nO+MM7fu9Tf2I9gDUj+jAxiWvcjJuGe36TKy1fOLhVWjUKno+/y8cnQ0fwtx9I9i1eioXT28jLKoXAKXFOZyN/4Xw5n1o1XUMAKFNe7Jj5fsc3/st9SM6YGFpeE56/rf/4e4TTscn3zPOog5t0oNfFo3iUuJOAiJq/j0UolLqpSSOH91H32eG0anHkwC0jOnCnI/fZOOa7xj31ic1lo3bvYnsa1d4ddJ0AoLCAWjQuAVzPn6DPVt/oddTLwCgVlew+ZcfaNi0FS+8/DYAbTv0RK/Xs2PTKtp27ImDgxMAKRfPsX3jSvoOGE7Hbk88yKGLR0jS5TT2HUvgxScfp3/XDgB0btOct2b8m6XrtvDP10fXWPbXfYe4kpXDJ2+MITzQH4DohuFMnPFv1u3cz1/69QCgQq1m2f+20bJxAyaOGAxAj3at0Ov1rN6ymx7tWuPkYJjJ36pJJIs/eRd7O1vW7djHpfQrD3L4QoiHjMyYEw+NtLQ0IiMj2bRpEwDdunUjPT2d77//nsjISCIjI1m9enWN6ZVWr15N//79iYqKolOnTsyePRutVmtyPTIykvj4eEaMGEF0dDQzZsy4qz5bWVnRqFEj0tLSANi5cycjRoygXbt2tGzZkoEDB7J7926TMrW1HxkZyVdffQXAiy++yKFDh9i5c6dxnPPmzeO7776jefPmFBcXm9SbnJxMZGTkbc0krPxer169mvfff5+YmBgGDhx422MAuHr1KpMmTaJ9+/Y0a9aM3r17s2TJErOx1vazEPfPwcuZWFpY0C08wJhmY21Fl/AAkrLyySkpq7VsqIeLMSgH4O/iRBNfD+IuZxrTTl3NobhcTc/IQJPyj0cGUq7REp9+zZimtLXBXiHPjsSDk5p0ADsHVwLCq4Jddg4u1G/QgYwLh9Fq1LWWT0s6QL2QNsagHIBvYHOUbvVIPbffmJaRfAidVkNEsz7GNAsLC8Kb9aa0KJvsK2eN6eqKMuwcXE22NlDYOqCwscfKWnFP4xWPjpPxB7C0tKRNhx7GNIXChtbtupFy8Rz5edm1lg0ICjMG5QC8ff0Ji4wiIb5q1mby2ZOUlhQT06mXSfnYx3pTUa7i7MmjxrR9O9ajdHalQ9d+6PV6ystV92OY4hF38PhpLC0t6d6ulTHNRqGga0xLzl1KJSe/oMayccdPExbobwzKAfj7eNE0IoS4304Z004mXaS4pJTHO7QxKd+rY1tU5RUcO33OmKZ0dMDezvZ+DE0I8QiSTz3ioTV//nzGjBlDy5YtGTlyJACBgYE0bNiw2nSAb775hpkzZzJ8+HDeeecdkpOTjcGgt956y6T+iRMnMnjwYMaOHYu9/d3ve5WWloa3t7fx665duzJy5EgsLS3ZvXs3Y8aMYcmSJcTExNxR+x9++CFvv/02dnZ2TJ48GQBfX1/s7e2ZOXMm69evN5mlt3LlSnx8fOjYseNt9/2zzz6jc+fOzJo1C51Od9tjyMvLY/Bgw5PHN954g4CAAC5fvkxKSoqx7jv5WYh7dymvED9nBxxsTD/8h3u4GK97OJrfZ3q9ntT8IrqEBZhdC/d0IeFKNmVqDfYKay7lFgIQ5mG6/1aouwsWFnApt5BOof5m9QjxIORlJePmHWq2v6e7bwTJCZspyk/H1TO42rKlxTmoygpw9zHfx8jDN4IrF4/d0M4FrBV2KN1Nf0fcfMKN/fDybwSAd0ATUpMOcO639fiHtkWrqSDptw1UlJcQ0UJmGonbk5F2CU/vetjZm+7xWRlsu5J2CVc3871D9Xo9mekptG7XzexaQFA4SYnHKVeVYWtnz5W0i9fTTX8H/APDsLCwICP1Ei3aGvbxTT6bQGBoQ/bt2MCOTSspLSlG6exKl17P0r5LH7O2hLgdF9Mz8fPywOGm1RqVwbaL6Zl4uLqYldPr9aRkXKVrTAuza+GBAZw4m0yZqhx7O1supRseLoYFmr43CQ2oh4WFBZfSM3ms9a33bRRCiFuRwJx4aDVu3BgbGxs8PT1Nlni6u7tXm15cXMzcuXMZPXo0b775JmBYaqpQKJg+fTqjRo3Czc3NmH/IkCGMGTPmjvul0+nQaDQUFRWxfPlyEhISGDt2LABDhw41yRcTE8P58+dZsWKFWWDuVu2Hh4fj5OSEg4OD2RLXXr16sWrVKmNgTqPR8Msvv/Dcc89hZWV122Np2LAhH3/8sUna7Yxh8eLF5OTksHHjRgICDB9W27WrmrVypz8Lce/yy8pxtTd/0utqb3jDm1daXm25onI1aq0Ol2rKul1PyytTYa9wIr+sHEsLC5xveqJsbWWJ0taGvLLq2xDiQVCV5OPt38Qs3c7B8NpSVpxXY2BOVWzYF8vO0fx1yM7BjXJVEVqNGitrBaqSfLNZcAD2ju7X68ozprXo8jLlZUXE7/yK+J2G2c+29s50efbvePo1vPNBikdSUUEeSmdXs3RnF8M9V9O+bqUlRWg0apyqLet2vWweXnb2FBbkYWlpiZPSNPBhbW2Ng6OSouttlJYWU1JcxOXkRJLPJtCj7yBc3D05emAH6376CitrK2I6Pn4PoxWPqrzCItycnczS3ZyVhusFRWbXAIpKSlFrNLhWV9bFyVi3vZ0teYVFWFpa4uJkutettbUVSkcH8gqrb0MIIe6UBOaEuC4+Pp7S0lJ69+6NRlO1cXf79u1RqVQkJSXRtm1bY3qXLl3uqp1BgwYZv7a2tmbIkCG8+uqrAGRmZjJ79mz2799PVlYWer0egCZNzD883m37lX0YOnQoSUlJREREsGvXLnJycnj22WfvqJ7q+nA7Yzhw4ACxsbHGoNzN7vRnIe5dhUaLtaX57gYKK0NaRQ1LiNXX0yvz3ci6sqxGd70OHVaW1Z8+bG1pSYVGlimL349WU46llfnyUCtrGwB02gqza8ayWsMyV6taymu1FVhZK9BoyrG0Mn+7dWO+StYKW5Ru9XBQeuAX0hpNRRnn4texf/0Mug78GKWr3x2MUDyq1OqKapc+W13fHkBdUf29rVYb0q0V5mWtr9enrjA8QNGoK7Cq5r6uLF9xva6K68tWS0uKeX7kGzRrZdgLLKpFOz7/5xvs2LRKAnPirqjVGqytze9BhbXhAXOFuvrtCNTX31cqqi1rSCuvUF+vQ4N1DQ+sFdbWxnxCCHGvJDAnxHV5eYZZC88880y1169cMd3E1dPTfBnI7fj0008JCwvDyckJf39/bGyufwjU6Rg3bhxFRUW89tprBAUFYW9vz9y5c83avpf2Adq0aUNISAgrV67k3XffZdWqVbRp08a4pPd2eXh4mPz7dseQn59PREREjfXe6c9C3Dsbays015cj30itNaTZ1PTG9Hp6Zb4baSrLWlter8MSrU5fbT0anQ4b69ufrSnE7dJpNZSrTGc12Nm7YGVti05r/qFKqzEEFCytbGqsszIgp62lvNX18tbWtmantFaXD2D/hplYWFjS6akpxrR6oW3ZuORVEvZ9T/t+soxf3JpCYVPtHola9fWAhE3197ZCYUjXVBPQ0FyvT2FjmPFsrbBBW819XVne5npdlXVaWVnTtEXVzHgLCwuaterA1g3Lyc/NwtVdTrEUd0ahsDZ5eFtJff0hn001AWaoCr6pqy1rSLO9vq2HjcIaTU0PJjUaYz4hhLhXEpgT4joXF8NyjPnz5+Pr62t2vabZXXcqLCzMeCrrjS5fvszp06dZsGABPXpUbdisUj2YTZIHDhzIokWLGDFiBLt27TJbkno7bl6adbtjcHV15dq1a9Tk9/pZiCqu9rbklZrfa/llhjQ3h+o3NFbaKlBYWVJQzTLUyqWpbteXw7ra26LT6ylUlZssZ9VodRSVVxiXvgpxP2VnnGHHqg9M0p4Y+V/sHF0pK8kzy68qNaTZO9W8XN7O6foy1BrK29opjTOW7BxduZaWgF6vN3nNLCu5vhz2ejvFBZlcuXSM1t3HmdRna6/Es14jcq7IycTi9ihd3CjMN1+uWrmEtXJJ680cHJVYWysoLsyvpmze9bJuxv/rdDqKiwpMlrNqNBpKS4pQXm/DwVGJQmGDnb0DljfNynZSOgNQVloigTlxx9ycleQWFJqlVy4vdXNRVltO6eiAwtqa/MJis2t5BcXGuiv/r9PpKCguMVnOqtFoKSopNeYTQoh7JYE58VBTKBSUl5sHDKpLb9GiBfb29mRmZtKzZ8/fq4tGlf1R3PCELz09nfj4eIKDg++qzprGD4bZaLNnz+att97Czs6O3r1731UbN7rdMbRr146vv/6ajIwM6tWrZ1ZPXf8sHkVBbs6czsyltEJtcgBEUnY+AMFuztWWs7CwoL6rkuQc89PPkrLz8XayN56uGnS9juScAlr4exvzJecUoNdDsHv1bQhxL1y9guk8YKpJmp2DK25eoWSlnzYLmOVcOWdYUupa80EkDk4e2Nm7kHs12exaTmYSLl7BN7QfwoWTWynKTcPZo74xPTczCQA3r1AAVKX5AOj15rNPdToNOp0s9Ra3x88/iAvnTqIqKzU5ACL1kuGe8wsIrrachYUFvv6BpKWcN7uWeikJd08fbO3sr7dhqCPtcjINm7Y05ku/fB69Xk+9+sE31BlEekoyGo3p0sPKYJ+jUl77xZ0L9vfh1PmLlKpUJgdAJF1OAyDE3/zBLhjuycB6PiSnZphdS7qcho+Hu/F01aB6PgAkp6TTsnEDY77k1HT0ej3BNbQhhBB3ynxTICEeIqGhocTFxbFv3z4SEhKMSySrS3d2dua1115j5syZzJw5k127drF3716WLVvG6NGjKSsre+B99fX1ZdasWezYsYMNGzYwcuRI44mtd1vnyZMn2b59OwkJCVy9etV4zd3dne7du3P48GH69euH3U2nWj3IMbz00kt4eHgwdOhQfvrpJ+Li4vjpp5+YOXMmQJ3/LB5FMYG+6PR6tp9PM6aptVp2JacT7ulqPJE1u6SM9ALTp8xtA324kFNA8vUgHkBGYTGnM3OJDaraE6uprwdOtgq2nE0xKb81KQUbayui/WXGhLj/bOyc8A1sbvKflbUNARHtUJXmk3b+gDFveVkhaUn7qRfS2mSPrqL8KxTlmy6h94+IJePiYUqLso1pV1NOUJSXQf2I9lX5QttiaWVN0omNxjS9Xk9ywq84OHkYD3VwcvHDwsKC1HP7jHtzApQWZZOVfho379D7900RD7WmLdqh0+k4vG+rMU2jVnM0bgf1gyOMJ7Lm52ZxLTPdpGyT6FjSLieTdrkqOJd1NYML504S1bJqKWpYwygcHJ04uOdXk/IH925GYWNLZJOqYF2zVh3Q6XQcO7jDmKZWV/Db4T14+wbUOINPiNrENmuCTqdj24GjxjS1RsPOQ/FEBAUYT2TNzssn/WqWSdmYZo1ITknnfErV/Z9xLZtT5y8SG93YmBbVIBQnRwc27ztsUn7L/iPY2iho0ajmbVmEEOJOyIw58aemUqmMe7RV580332Tq1KlMmDCBkpISpk2bxoABA2pMHzlyJD4+PnzzzTcsXboUa2trAgMD6dKli8kssAfBxsaGefPm8dFHH/H666/j5+fHuHHjiIuL4+TJk3dV58svv0xKSgqTJ0+msLCQ8ePHM2HCBOP1nj17smnTJp577rnfdQxubm4sW7aMWbNm8a9//YuysjL8/f35y1/+YsxTlz+LR1GElyuxQb78GH+WgrJyfJQO7LmQTnZJGWPaVS29/ve+EyRezWXZi32MaY9HBrHjfBozdhzlicYhWFlasOH0JVzsbOjXONiYz8baikHNI/j60Gk+3xVPs3qenLmWy94LGQyKjkBpW/W7XFKh5tezlwE4d80QUP/17GUcbKxxVCjo1TDoAX9HxMOufnh7zvmu49DmeRTmpmFrp+T8iY3o9TqatHveJO+u1VMBwxLYSo3bPEfauf3sWPUBEdH90KrLOXP0Z1w9gwhp3N2Yz0HpSYPoJzhz9Gf0Oi3uPuGkJx8iK/00sb3fwOL68j47BxdCmnTnwsmt7Fz9IQFhMWjUKs6f2IRWU0HD1gMe/DdFPBQCQxoQ1bIdm375nuKifNy9fIk/uIu83CwGvFC1VHrFknlcPH+aaQtWGtPaPdabI/u3sfjfn/BYj6ewtLJi7/Z1OCld6NitvzGfQmFDzyeGsHb5Ir5f9C8aNIrmUnIi8Yd283j/53FwrFriF9PpcY7s38Yvy78i+2oGru5exB/aRX5uFsP+793f55siHjoRwQG0i27CDxu2UVBUgo+nO7uPHCcrr4D/G/yUMd/879dwOvkSK2b/3ZjWq0NbtscdY/rC73myawesrCxZv/MALkpHnuhS9WDFRqFgcJ+ufLVyA58tXkHzhmEkXkhh95HjDOnbHaVj1YzUkjIVm/YcBODspVQANu09iIOdHQ72dvTpFPOgvyVCiD8xC/2Nj2WF+JMZP348GRkZrF69uq678qc0adIkEhMTWbduXV135XeT9/G4W2d6RFVotKw4nsS+ixmUVKip76pkUHQEzetVzWT7aPNBs8AcQE5JGd8dOcOJK9no9Hoa+7gzrE0jfJWONzfDtqRUNpy+SFZxKR6O9jweGUifhsEmywmzist4bc3Oavvp6WjPvAFd7suYH1az/OfUdRf+FCpUxRzfs5j05ENotRW4e4fTvNNw3H1NZ0Gs/3osYBqYAyjISeG33d+QnZGIpaU1fiGtiH5sBHYOrib59Ho9Z46sJjlhM2UluShd/WjU5lmCGnY2yafTaUk+sYmLp7YZZ+i5+0bQuO1AfOqb7036qOvZpvrDB4RhRtqWdcv47fAeykpL8PUPpOcTQ2jQuIUxz5ez/2YWmAPIz8tmw6rFnE88gU6vIzSiCU889xIeXuanAh/at4U9W9eRl3MNV3dPYh/rTYeu/cz2oC0uKmDjz99xJuEIFeXl+AUE06PfIJP+iOq1LNtd1134w6pQq1m+cTt7jiZQUlpGYD0fBvfpRnTDcGOeqfO/MQvMAeTkF7Dk5185cTYZnV5H47BgXnqmD76e5jM4tx44yvqd+7mWm4enqwu9Oral72Oxpu9bcvN59R+zq+2nl7srCz544z6N+uGkbH3vW+rUhT/y5wq3KV/UdRfEHZDAnPhTSkxM5NChQ8ycOZMJEyYwduzYuu7Sn8rZs2dJTEzk/fff58MPP2TgwIF13aXfzR/5D6gQ94sE5sSjQAJz4lEggTnxKJDA3P0ngbk/F1nKKv6U3nvvPQoKChgxYgSjRo2q6+6g0+nQ6cw37K5kZWVl9vS4Lo0bN47c3Fyefvppnn32WZNrer0ebQ1HwwNYWlqanawmhBBCCCGEEEKIOyeBOfGntGbNmrrugokFCxYwf/78Gq9X7mH3R7F9+/Yarx06dIhhw4bVeP2ZZ55h+vTpD6JbQgghhBBCCCHEI0UCc0LcB4MGDaJLly41Xg8ICPj9OnOPmjRpwsqVK2u87ubm9jv2RgghhBBCCCGEeHhJYE6I+8DHxwcfH5+67sZ94eTkRFSUbDIuhBBCCCGEEEI8aLJRlBBCCCGEEEIIIYQQdUACc0IIIYQQQgghhBBC1AEJzAkhhBBCCCGEEEIIUQckMCeEEEIIIYQQQgghRB2QwJwQQgghhBBCCCGEEHVAAnNCCCGEEEIIIYQQQtQBCcwJIYQQQgghhBBCCFEHJDAnhBBCCCGEEEIIIUQdsK7rDog/vnnz5vH1118THx9PWloa3bt3Z86cOfTu3RuAxYsXExISQufOnU3K1ZT+IB08eJBhw4YZ/+3g4EBQUBBDhw7l2WefxcLC4p7biIyMZNKkSYwaNQqA1atXo1Ao6N+//z3XXZdKSkr49NNP2bp1K+Xl5TRo0IDXXnuNdu3a1XXXRB0oqVDzw7GzHE7JpFyrI9zDhaGtGhLi4XJb5dPyi/nuaCJnr+VhbWlJiwAvXmzVEGc7W5N8er2edacvsuVsCgWqcvycHXmqSSjtQ+qZ5Nl9IZ1DKVe5lFtIcYUabyd72gX78USjEGysre7r2MWjo6K8hON7lpCefBCtphx3nwiiH3sJN++w2ypfmJNK/O5vyM5IxNLKmnohrWjeaQR2Dqa/J6cPrSQn8xy5V86hKiugScxgmrYbYlZf2vk4khN+pSA7hXJVIXb2Lrj7NqBp7GBcPIPuy5jFo6estISNP3/H6eMHqaiooH5QOH0HDMc/MPS2yl+7ksaGVYu5dOEMVlZWNGzair4DhuOkNL3P9Xo9u7eu5eDuXykqzMfTpx5dHn+G5q07mtWp1+s5uOdXDu3dSva1DBQ2Nvj5B9Pv2ZfwCwi+H8MWjwC1RsOKjTvYffQ4JaUqAv18GNK3G80ib/0anpNfyLdrN3H8bDJ6vZ4m4SEMf6oXPp7uZnm3HzzGuh37uJaTj4erM306xdDnsViTPAdPJLJl/2FSM69RVFKKs6MjEUEBDOzdhUA/n/s2ZiHEw0lmzIk74u3tzfLly4mNrfpj9O2337Jr1y6zvDWl/x6mTZvG8uXLmTNnDoGBgUyZMoXly5ffl7qXL19uEoRbs2YN69evvy9116VPP/2U//3vf7z55pt89tlnREVFcfr06brulqgDer2eGduPsO9iBr0ig3ihZSQFqnI+2nKQK4UltyyfU1LGR5vjuFpUypAWDejXOJj4tCw+2XoYjVZnkvfH+HMsO3aWZvU8Gd6mMR4Odszbe5z9FzOMeco1Wv6zP4FCVQU9GtRnWOtGhHm4sPJ4Ep9uP4Jer7/v3wPx8NPr9exZ+09Szu4honlfmnUchqo0nx0rP6AoL+OW5UuLstm+8n2KC64Q1eEFIls+RcbFo+xaMxWdVmOSN2H/9+RdPY+rd+2BkIKcFGxsHYmI7kerbmMJa9ab/KyLbPlxEvlZF+9pvOLRpNfrWfLFJxw/spd2nfvQ5+kXKS4qYOGcD8m+duWW5fPzsvny8w/Iyc6k15N/oVP3Jzlz8ihfz/sHGo3pff7rL9+z6eelhDdqTv9BI3F18+THbz7n+JG9ZvWuXLqAdSu/wT8wlP4DR9Ktz0Bc3D0pLi64b2MXD79/L/uZ9bsO0LFlFMOf7o2lpQXTFn7PmQuXay2nKq/go38v5tT5SzzToxODenflYtoVpi5YTFFJqUneLfuP8J8f1xLg482IAX1pEFyfb9Zs5Odte0zypWZexcnBnj6dYhj93BM83qENl9IzeW/2Qi6lZ973sQshHi4yY07cERsbG6Kjo+ukbZVKhZ2d3W3ljYiIICoqCoAOHTrQt29fli5dypAh5jMU7rT9uhr/g7Zlyxaef/55nnvuOYA7mulYUVGBtbU1lpYS638YHLycybmsfF5/LJrYID8AYoN8eWPtbn46nsRrnaJrLb/25AVUGi2f9OuAp6M9AOGernyy9TA7k9Po0SAQgNxSFf9LvMjjkYGMaNsEgG7hAXy0+SDfHztLbJAflpYWWFtaMrVXLJHebsY2ukfUx8vJgZXHkziZmUOUn+cD+E6Ih1la0n6yM87Qvt/b1I9oD0D9iA5sXPIqJ+OW0a7PxFrLJx5ehUatoufz/8LR2QsAd98Idq2eysXT2wiL6mXM+8TI/+Lo7E15WSE//3d4jXU2iRlklhbatAfrFo3m/IlNtO4+7m6GKh5hCfEHuHzhLH8ZNZGoloYZ8FEt2zHr76+xdf2PDBn5Rq3ld/26horycsZPnoGru+E+DwgO5+t5/+Bo3HZiOj4OQEF+Dnu3rSf2sd48NXg0AG3a9+DLz//Gxp+/I6ple+N7hBPH9nMsbidDX36bJtExD2ro4iGXdDmNfccSePHJx+nftQMAnds0560Z/2bpui388/XRNZb9dd8hrmTl8MkbYwgP9AcgumE4E2f8m3U79/OXfj0AqFCrWfa/bbRs3ICJIwYD0KNdK/R6Pau37KZHu9Y4ORje5zz3eBezdrrFtmTc3z9j877DjBn0515ZI4R4sORTtLgjaWlpREZGsmnTJgC6detGeno633//PZGRkURGRrJ69eoa0yutXr2a/v37ExUVRadOnZg9ezZardbkemRkJPHx8YwYMYLo6GhmzJhxV322srKiUaNGpKWlAbBz505GjBhBu3btaNmyJQMHDmT37t0mZWprPzIykq+++gqAF198kUOHDrFz507jOOfNm8d3331H8+bNKS4uNqk3OTmZyMjI255J+OWXX9KzZ0+ioqKIjY3lpZdeIjU11Xi9oqKCzz77jK5du9K0aVP69OnDunXrjNcTEhJo0qQJS5cuNSnz5JNP8vzzz6PTVc1esrS0JCUl5bb61a1bNz766CMWLlxI165dadasGfn5+SQnJ/PGG2/QuXNnmjdvTt++ffn6669N2qnsw+zZs+nevTtNmzblscce45133jHJEx8fz7Bhw4iOjqZVq1ZMnDiRnJyc2+qfuDcHUzJxsbMhJtDXmOZsZ0u7ID+Opl1DfcPvak3lWwV4G4NyAFF+nvg5O3LwctVT46OpV9Ho9PRsULVEz8LCgp4NAsktVXEuOw8AaytLk6BcpTb1vQFILyg2uybEraQmHcDOwZWA8Krl+nYOLtRv0IGMC4fRatS1lk9LOkC9kDbGoByAb2BzlG71SD233ySvo7P3XffT1t4FK2tb1OW3nq0qxM1Oxh/ASelC0xZVKx2clC40a9We0wlH0Khrv88T4g/QMKqVMSgHENGwOZ7e9Ug4dsCYlnjiMFqthnaP9TamWVhYENupFwV5OaRcPGtM37ttHfWDw2kSHYNer6e8XHU/hioeMQePn8bS0pLu7VoZ02wUCrrGtOTcpVRy8muefRl3/DRhgf7GoByAv48XTSNCiPvtlDHtZNJFiktKebxDG5PyvTq2RVVewbHT52rto4uTI7YKBaUquceFELWTGXPinsyfP58xY8bQsmVLRo4cCUBgYCANGzasNh3gm2++YebMmQwfPpx33nmH5ORkY2DurbfeMql/4sSJDB48mLFjx2Jvb8/dSktLw9vb2/h1165dGTlyJJaWluzevZsxY8awZMkSYmJMn9zeqv0PP/yQt99+Gzs7OyZPngyAr68v9vb2zJw5k/Xr15vM0lu5ciU+Pj507Gi+38rNfv75Z+bMmcNrr71GdHQ0RUVFHD16lJKSqg9nr7/+OseOHePVV18lLCyMXbt28fbbb+Ps7Eznzp2Jiopi7NixzJw5k/bt2xMaGsqcOXNITU1l7dq1JjPcnnzySb755hs2btxInz59btm/zZs3ExQUxJQpU7C0tMTBwYGzZ88SEhJC//79cXR0JDExkXnz5lFaWsr48eONZSdMmEBcXBxjx44lOjqa3NxcNm/ebLweHx/Piy++SOfOnZk9ezZlZWV8/vnnvPLKK/dtSbKo2cXcQoLdnc32ZAzzdGFbUipXCksIdHOutmxuqYpCVUW1e9GFebrwW3qWSTu21lb4uzia5Av1NJS9lFtIQ2/zvV4qFagqAHC2tbm9gQlxg7ysZNy8Q83uc3ffCJITNlOUn46rZ3C1ZUuLc1CVFeDuY76PkYdvBFcuHrunvlWUl6DTalCV5pEUvx51RSne9ZvdU53i0ZSRepF69c3v8/pB4Rzau4Wsaxn4+Ve/f2FBfg4lxYX4B5rf5/WDwzl7quo+z0i9iI2tHV6+/ib5AoLCjNeDwxqhKisl7fJ5Yjr14te137N/10YqylW4eXjT++mhNGvZ/l6HLB4RF9Mz8fPywOGm1TSVwbaL6Zl4uJq/F9Hr9aRkXKVrTAuza+GBAZw4m0yZqhx7O1vjEtSwQNP7OjSgHhYWFlxKz+Sx1s1NrpWUqdBoteQXFvO/3XGUqlQ0jbi9/RyFEI8uCcyJe9K4cWNsbGzw9PQ0WeLp7u5ebXpxcTFz585l9OjRvPnmm4BhqalCoWD69OmMGjUKN7eqmTFDhgxhzJgxd9wvnU6HRqOhqKiI5cuXk5CQwNixYwEYOnSoSb6YmBjOnz/PihUrzAJzt2o/PDwcJycnHBwczJa49urVi1WrVhkDcxqNhl9++YXnnnsOK6tbb1Z/4sQJIiMjjf0G6NGjh/HruLg4tm/fzldffWUM9HXo0IGsrCzmzZtnXIr6yiuvsHPnTiZNmsSkSZP4+uuvmTp1qjFQCoaDH86dO0f9+vWZPHkyHh4etG3bttb+qdVqFi5ciIODgzGtXbt2xsMi9Ho9rVq1QqVSsXTpUmNgbt++fezcuZNZs2bxxBNPGMve+PWsWbNo2rQp8+fPN36YaNCgAU888QS7du36XQ8UeRTll5XTyMc8IOZqbzi4Ia+snEDzCWyGa6WGp8Ju9rZm11ztbCkuV6PWalFYWZFfVo6LnY3ZB0Y3e7vrdZXX2s9fTl3AXmFNc3+vWvMJUR1VST7e/k3M0u0cDDd3WXFejYE5VXGuIa+j+S+CnYMb5aoitBo1VtaKu+rb1h8nGfe5s1bY0bjtQEKb9ryrusSjragwn5DwxmbpTs6Ge7eoILfGwFxRgWHWsrOL+X2udHaltKQYjVqNtUJBUWE+TkoXs9dzpYvhb0lhgeF3Jjf7Knq9nhNH92JpaUWfp4diZ+/I/p0b+PHr2dja2hPZxDxgIsTN8gqLcHN2Mkt3c1YarhcUVVuuqKQUtUaDa3VlXZyMddvb2ZJXWISlpSUuTqYPEK2trVA6OpBXaN7GlM8XknEtGwA7WxsG9OxM99iWdzY4IcQjRwJz4ncVHx9PaWkpvXv3Ntk0uH379qhUKpKSkkwCQl26dLmrdgYNqtqnx9ramiFDhvDqq68CkJmZyezZs9m/fz9ZWVnGjeObNDH/gHa37Vf2YejQoSQlJREREcGuXbvIycnh2Wefva3yjRs35ocffmDatGn07NmT5s2bo1BUfcjbt28frq6uxMbGmn0vp06dilarxcrKCmtra2bOnMkzzzzDqFGj6NSpE4MHDzZp629/+xvl5eX873//Y+LEibzyyit89913NGrUCIARI0bg4+PD9OnTjWViYmJMgnIA5eXl/Pe//2XdunVcuXIF9Q1LZEpKSnB0dOTAgQPY29vTr1+/asddVlbGsWPHmDRpksny5uDgYPz8/EhISJDA3ANWodWiqGa/QJvrAeWKmw5wMC1ruFZ9eUtjHoWVlaEdq9ry1bxkdk3CeU5eyWFk28Y42txd8EM82rSaciytzO8dK2vDDEydtqLmslrDa5tVLeW12oq7Dsy1fXwC6vIySgoyuXh6O1pNBXqdFgsredsm7oy6ohzrau7DyvcT6lqWsqrVht+B6u5ja4WNMY+1QlFLO4Z8lUtmy8vLACgtKWbcW58QGNIAgEbN2jDzb+PYsWmlBObEbVGrNVhbm78mKq6f1F5Rw72tvv6eWVFtWUNaeYX6eh0arGt4mK6wtjbmu9Erzz9Nqaqcqzm57Dz0G2qNGq1Wh7WcIC+EqIW8wxO/q7w8w9PXZ555ptrrV66YnhDm6Xl3G7p/+umnhIWF4eTkhL+/PzY21z9o6XSMGzeOoqIiXnvtNYKCgrC3t2fu3Llmbd9L+wBt2rQhJCSElStX8u6777Jq1SratGljMlOtNgMGDKCkpIQVK1awePFilEolTz/9NG+99RZ2dnbk5eWRn59fbUARICsrC19fwx5hYWFhNG7cmPj4eF544QWTfFevXmXDhg3Mnz8fhULBv/71L8aMGcPLL7/MDz/8gLe3NydPnjT7mXl4eJi1OXPmTH766SdeffVVmjZtilKpZNu2bXzxxReUl5fj6OhIfn4+Xl5eZk/VKxUWFqLVapk2bRrTpk0zu17dz0ncHY1WR/FNbyqdbW2wsbJCrTMPvlUGymyqCaZVqrxWfXmdSR4bKyvU1QT5qvJV/yb2wKUr/HQ8iS7hAfSMrH6mhxCVdFoN5SrTWQ121/dt02nNP1RpNYZghKVVzUukKwNy2lrKW9VS/lY8/Roavw6M7MTGbycAEP3YS3ddp3i4aTQaykpM73NHpQsKG1s01eyXWBmQu/GB380qg2rV7beouR60q8xTczuGfNbX26nM7+bhbQzKAdja2tGwaWt+O7zH+GBRiNooFNZmJwMDqDXX36vUcG9XBt/U1ZY1pNlef+Bno7BGU8NDQrVGY8x3owbB9Y1fd2gRxRvT5wPw4pO9zPIKIUQlCcyJ35WLi2Gvh/nz5xuDRjcKCAi4L+2EhYUZT2W90eXLlzl9+jQLFiwwWRaqekCbsg4cOJBFixYxYsQIdu3axccff3zbZS0tLRk+fDjDhw83Bs9mzZqFm5sbr776Ki4uLri7u/Pll19WW97dvWop4rJly4xLY6dPn05MTIzxhNuMjAz0ej2OjoZp+jY2NixYsIBhw4YxatQoevTogYODA7179zapv7rA2qZNmxg8eLDJ8t+bD7pwdXU1zlSsrg6lUomFhQVjx441+RlVunGps7g357Ly+MeWQyZpc5/pgqu9rXFJ6o3yywxLS6tbplrJzeH6MtQy82Wo+apynGwVKK5/4HK1t+XU1VyzeyGv7PpyWAfzdhKuZPPvfceJrufF6Jjqg9JC3Cg74ww7Vn1gkvbEyP9i5+hKWUmeWX5VqSHN3qnm1xo7J8Prq6qG8rZ2yrueLXczGzsnvOs3JeXsbgnMiRqlXDjDwjlTTdImffRvlM6uFBaY36fFhYa0yqWm1VFeX8JaXfmiwnwcHJ2MATelsyvJ506avZ4XXV/C6ny9HWdXw/+dlOZ7fzk5u6DVaqgoV2Hv4Gh2XYgbuTkryS0oNEuvXF7q5qKstpzS0QGFtTX5heYHR+VdP0yqcjmsm7MSnU5HQXGJyXJWjUZLUUmpMV9NnBzsaRoRwp6jCRKYE0LUSgJz4p4pFArKy80/hFeX3qJFC+zt7cnMzKRnz99/v5zK/tz4hDg9PZ34+HiCg4Pvqs6axg+GmYGzZ882znK7Obh1u3x8fBg5ciTr16/nwoULgGHJ6qJFi1AoFDRs2LDGsikpKcyYMYPRo0czZMgQ+vfvz6xZs5gyZQoAQUFBWFtbs3HjRuP+cI6OjixcuJBBgwbx9ddfM2PGDOOsw9qUl5ebfG+1Wi0bNmwwydO+fXsWLlzIxo0b6du3r1kdlfv1Xbhwodrgqrh/At2cea+H6UljLnY2BLs5c+aaecDsfHYBNtZW+DnX/IHJ3cEOZzsbLuaYn4aWnF1AkFvVm9hgd2d2nE8jvaCEAFcnk3wAQTcdMJGUlc+snccI9XDhr4+1wKqa5bJC3MzVK5jOA6aapNk5uOLmFUpW+mmz+zznyjmsFbYoXU03+76Rg5MHdvYu5F5NNruWk5mEi1fwfeq9gVajpkJOZRW18A0IZuQE0wC0k7MrfgHBXDqfaHafp1xKQmFji5d3vRrrdHH1wNHJmfQU8/s89dJ5/PyDjf/2Cwjh8P5tZGWm4+0XYJLPcN2Q19nF/XqwMNeszsL8XBQKG+zsHcyuCXGzYH8fTp2/SKlKZXIARNLlNABC/M0nAIDhwXJgPR+SUzPMriVdTsPHwx17O8ODwaB6PgAkp6TTsnHVDM/k1HT0ej3BNbRxowq1mtIyOZVVCFE7CcyJexYaGkpcXBz79u3D2dmZgIAA3Nzcakx/7bXXmDlzJpmZmbRt2xYrKytSU1PZtm0b8+bNu6fTV2+nr76+vsyaNQudTkdpaSlz5841nth6t3X+/PPPbN++HS8vL7y9vfHxMfwhd3d3p3v37saZZHY3nRxVm7/97W84OzsTHR2Ns7Mzx44d48yZMzz//POA4aCHrl27Mnr0aEaPHk1kZCRlZWWcP3+ey5cv8/HHH6PT6Zg8eTKBgYGMHz8eGxsbpkyZwnvvvUf37t2JjY3F3d2d0aNH85///IeKigrj/n979uwhMzMTLy8vFi1aRLdu3VAqa38y2L59e3766SfCw8Nxc3Pjhx9+oKKiwixP586dee+990hJSaF58+bk5+fz66+/8vnnnwMwadIkhg8fzl//+lf69euHs7MzmZmZ7N+/nwEDBpgd0iHujpOtgig/8+XaMUG+HEzJ5GBKJrFBfgAUqiqIu3yFVgFexhlvAJlFhmCBr7IqWNc20IddyenklJTh4Wj4fT55JZsrhSX0aRRszNcqwJvvjiSy5dxlRrQ1zH7T6/VsPZeCu4MtkV5VM5bS8ouZseMIXk72vN21NTayV4u4TTZ2TvgGNjdLD4hoR2rSftLOH6B+hOEkyPKyQtKS9lMvpLXJjLeifMMSeqWrnzHNPyKWS6d3UFqUjYPS8Ht0NeUERXkZNGjR/676qiotwM7BdCZRSeE1rqWewN0n/K7qFI8GBwcnIhqa3+dRLdpxMj6Ok/FxRLU0PHwrKS4k4dgBGkW1Ms54A8jJMtznHl5V93nTFrEci9tJfl42rm6G+/z8mRNkX8ugY7eqvWIbNWvNhlWLObB7E08NHg0YXs8P7t2Ms6s7QaFVDxCbterAvh0bSDpz3NjnkuJCYpO2CwAADEhJREFUEk8cIbRB0xq3uhDiRrHNmrBux362HThK/64dAMPy0p2H4okICjCeyJqdl095hRp/n6qDomKaNeKH9Vs5n5JuPMU141o2p85fpH/XqpOBoxqE4uTowOZ9h00Cc1v2H8HWRkGLRhHGtJtn1QFk5eZzMukiYfVrDoALIQRIYE7cBpVKVetsqTfffJOpU6cyYcIESkpKmDZtGgMGDKgxfeTIkfj4+PDNN9+wdOlSrK2tCQwMpEuXLrXudXI/2NjYMG/ePD766CNef/11/Pz8GDduHHFxcZw8efKu6nz55ZdJSUlh8uTJFBYWMn78eCZMmGC83rNnTzZt2sRzzz13R/W2aNGCFStW8NNPP1FWVkb9+vV59913GThwoDHP3Llz+fLLL1m2bBnp6ekolUoiIiIYMGAAAIsWLSIhIYGVK1caf4YDBgxg27ZtvPvuu6xbtw4nJyfeeOMN/P39Wbp0KevXr8fOzo7WrVvz7bff4uXlxXPPPccrr7zCV199Veu98MEHH/Dhhx/yj3/8A3t7e5555hl69uzJ+++/b5Jv3rx5zJ8/n+XLlzN//nw8PDzo0KGD8XrLli354YcfmDdvHu+++y5qtRpfX19iY2MJCpI9xR60mEBfwj1d+c/+BNILSnC2VbD5XAo6vZ7nmkeY5P14y2EA5g3oYkx7umkYcZcz+ceWQ/RuGIRKo2X9qYsEuinpElY1C8nD0Z7eDYNZf/oiWp2eUA8XjqRe5cy1PMZ3bI6lpeHDWZlaw7RthympUPNE4xDi06+Z9MFH6UADL1niLO5M/fD2nPNdx6HN8yjMTcPWTsn5ExvR63U0afe8Sd5dq6cChiWwlRq3eY60c/vZseoDIqL7oVWXc+boz7h6BhHSuLtJ+UuJOyktzEKjMcyuzso4zemDPwEQ1Kgzjs6Gh0O/fvc63oFRuHmForB1pDj/ChdPbUOn09Ksw1CEuFNNW7SjfvB6Vi5dwLXMNBydlMTt/hW9XkePfkNM8n419yMAJv3jC2Nal14DSDi2n0VzptK+S18qylXs3roWX/8gWsV2M+ZzdfOkQ9e+7N76CzqdloDAME6fOMyl84kMful1LG+Y4dz58WdIOLaf7xf+i47dnsDO3pGDezaj1Wro9eRfHvB3RDwsIoIDaBfdhB82bKOgqAQfT3d2HzlOVl4B/zf4KWO++d+v4XTyJVbM/rsxrVeHtmyPO8b0hd/zZNcOWFlZsn7nAVyUjjzRpSowZ6NQMLhPV75auYHPFq+gecMwEi+ksPvIcYb07Y7SsWp258RPFxDVIJRgf18c7e3JzMph+6F4tFodf3nCfGsWIYS4kYW+8khKIWowfvx4MjIyWL16dV135U9p0qRJJCYmsm7durruigDyPh5X1134UyguV/P9sTMcSb1KhVZHmIcLL7SMJMzT1STfhNU7AdPAHEBafhHfHjnD2aw8rC0taOHvzYutGuJy0/50er2etacusO1cKvllKnydHXmqSSgdQ6sCeFnFZby2ZmeNfX0szJ9x7Zvdy3AfOrP859R1F/4UKlTFHN+zmPTkQ2i1Fbh7h9O803DcfU0D0Ou/HguYBuYACnJS+G33N2RnJGJpaY1fSCuiHxuBnYOrSb4dP73PtfRT1fah67P/wLt+UwBOHviRK5eOUlyQiaaiDFt7F7wCGtOozbO4egbfn0E/RHq2Md+8XZgrLS1m4+pvOX3iEGq1moDAMPoOGEZAkOkszBkfGP4+3hiYA7h6JZUNqxZzKfkMVlbWNGzakr4DhqN0djXJp9fr2bV5DYf2bqGwIA9Pbz86P/4MLdo+ZtannOxMNq7+juSzCWi1GgJDGtD76aFmfRLQsmx3XXfhD6tCrWb5xu3sOZpASWkZgfV8GNynG9ENq+6jqfO/MQvMAeTkF7Dk5185cTYZnV5H47BgXnqmD76e5vsubj1wlPU793MtNw9PVxd6dWxL38diTWZ3rti0g/jEJDKzc1GVV+Ds5EDjsGCe7t7JuCRW1EzZ+u62+6lrf+TPFW5Tvrh1JvGHIYE5UaPExEQOHTrEzJkzmTBhAmPHjq3rLv2pnD17lsTERN5//30+/PBDk5luou78kf+ACnG/SGBOPAokMCceBRKYE48CCczdfxKY+3ORpayiRu+99x4FBQWMGDGCUaNG1XV30Ol06HS6Gq9bWVn9ofYlGTduHLm5uTz99NM8++yzJtf0ej3aGo5fB8OJrJaysb0QQgghhBBCCPFQk8CcqNGaNWvqugsmFixYwPz582u8XrmH3R/F9u3ba7x26NAhhg0bVuP1Z555hunTpz+IbgkhhBBCCCGEEGYuX77MV199xfHjx0lKSiI0NJT169ffVV0HDx5k2LBhrFy5kqioqPvcU3Pz5s2jQ4cOtGzZ8oG3db9JYE78aQwaNIguXbrUeD0gIOD368w9atKkCStXrqzxupubbGQvhBBCCCGEEOL3k5SUxK5du2jevDk6nY4/085n8+fPx8HBQQJzQjxIPj4++Pg8HJunOjk5/S5PDYQQQgghhBBCiNvRrVs3evQwnCT8zjvvcPLkyTru0aNBNrESQgghhBBCCCGEeMQ9iH3Oc3NzGT9+PNHR0XTs2JH//Oc/ZnmSk5MZN24crVq1Ijo6mjFjxpCSkmKSZ+XKlfTr149mzZoRExPD888/z4kTJwCIjIwEYMaMGURGRhIZGcnBgwfv+1geFJkxJ4QQQgghhBBCCPGQ6N69e63Xt23b9jv1BD744AP69evHvHnz2L9/P7Nnz8bFxYXnn38egNTUVIYMGUJERATTp0/HwsKC//znP7z00kts2rQJGxsbDh8+zJQpUxg5ciSdO3dGpVJx4sQJioqKAFi+fDmDBw/mxRdf5IknngAgPDz8dxvjvZLAnBDikSJHh4tHwT/rugNC/C5s6roDQvwOetd1B4QQNfhDf67YXntg7vcUGxvL5MmTAejUqRM5OTl88cUXDB48GEtLS+bPn4+LiwvffPMNtra2ALRs2ZLu3bvz008/8cILL3DixAlcXV2N9QAm+89HR0cD4OfnZ/z6z0QCc0IIIYQQQgghhBAPid9zRtyt9OzZ0+TfvXr1Yu3atWRmZlKvXj327dtH3759sbKyQqPRAODs7Ezjxo2Ne9w1btyY/Px83nnnHfr370/Lli2xt7f/3cfyoEhgTgghhBBCCCGEEELcd+7u7ib/9vT0BCArK4t69eqRl5fHkiVLWLJkiVlZhUIBQLt27ZgxYwbffvsto0aNwtbWll69evHee+/h6ur6wMfwoElgTgghhBBCCCGEEELcd7m5uSb/zs7OBsDLywsAFxcXOnfuzF/+8hezso6Ojsavn3rqKZ566ilyc3PZtm0b06ZNw9ramk8++eQB9v73IYE5IYQQQgghhBBCCHHfbdmyxWQ566+//oq3tze+vr6AYTZcUlISjRs3xsrK6pb1ubu7M3DgQHbv3s2FCxeM6QqFgvLy8vs/gN+BBOaEEEIIIYQQQgghHnFlZWXs2rULgPT0dIqLi9m0aRMAbdu2NS5Lfeedd1izZg1nz569ZZ1xcXF8+umndOjQgX379rF27Vr+9re/YWlpCcBrr73Gc889x6hRoxg0aBCenp5kZ2dz6NAhWrduzRNPPMHcuXPJz8+nbdu2eHh4cO7cOfbs2cNLL71kbCc0NJRt27bRunVr7O3tCQkJwcnJ6T5/hx4MC71er6/rTgghhBBCCCGEEEKIupOWlkb37tWf6Prtt98SExMDGIJpR48eZd++fTXWdfDgQYYNG8Z///tfli9fzoEDB3B0dOSFF17glVdeMcl76dIlPv/8cw4cOEBpaSleXl60adOG0aNHExERwY4dO1iyZAlnz56luLgYX19fnnzyScaNG4e1tWG+2ZEjR/jkk09ITk5GpVKZ9PePTgJzQgghhBBCCCGEEOK2dOnShRdeeIGXX365rrvyULCs6w4IIYQQQgghhBBCiD++jIwMysrKqj2sQdwdmTEnhBBCCCGEEEIIIUQdkBlzQgghhBBCCCGEEELUAQnMCSGEEEIIIYQQQghRByQwJ4QQQgghhBBCCCFEHZDAnBBCCCGEEEIIIYQQdUACc0IIIYQQQgghhBBC1AEJzAkhhBBCCCGEEEIIUQckMCeEEEIIIYQQQgghRB2QwJwQQgghhBBCCCGEEHVAAnNCCCGEEEIIIYQQQtSB/wdJo/zuNOsUsQAAAABJRU5ErkJggg==\n"
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABLwAAANWCAYAAAD0p5VQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVgV2f/A8TfdqYiKgWtgotjYYmDn6loYqGvXV9duXQsbC7sVA7sTxUBRFBtFGkVQQBCQ/P3B785y5VKKsrrn9Tw+u0yeuXfm3JnPnPM5SqmpqakIgiAIgiAIgiAIgiAIwi9COb8LIAiCIAiCIAiCIAiCIAh5SQS8BEEQBEEQBEEQBEEQhF+KCHgJgiAIgiAIgiAIgiAIvxQR8BIEQRAEQRAEQRAEQRB+KSLgJQiCIAiCIAiCIAiCIPxSRMBLEARBEARBEARBEARB+KWIgJcgCIIgCIIgCIIgCILwSxEBL0EQBEEQBEEQBEEQBOGXIgJegiAIgiAIgiAI31FKSkp+F+G7S05Ozu8i/KuIz0MQ8p9qfhdAEIT/FgsLC+n/lZSUcHV1xdTUNEfrDh8+nEuXLkl/v3jxIs/LlxUXFxemTJmS5/u2sbEhODiYzp07s2jRohyv5+joyJo1a7JcRllZGQ0NDQoUKICFhQXt2rWjTZs231rkPGdnZ8edO3eoXbs2u3btyu/iyJ2nX1JRUUFPT49ChQpRu3ZtunXrRvny5X9g6fLf5MmTOXLkSJ58X7du3eLChQvcvXuXd+/eERMTg66uLqVKlaJu3bp07tyZkiVL5lHJ84aXlxdnzpzh/v37+Pn5ERMTg6amJgUKFKBy5co0btyY1q1bo66unt9F/VdKX5fmRl7Vu+n3f+nSJYoVK5Yn2xX+Xdzd3enbty/w9d9zfHw8R48e5erVq7x48YL379+jqqqKsbExFStWpGHDhnTs2DHLa93f35/Zs2czb968PD3XZPWwmZkZly9fztW6QUFBNGvWDICFCxfSpUsXaZ7s92/kyJGMGjUqR/tLSEjAyckJDQ0N/vzzz689pFz5N99PhoWFsWDBAnr27Ent2rVzvf6/7Z5IEH5mIuAlCEK+SU1N5cyZM/Tv3z/bZaOjo7l27dr3L9QvJiUlhbi4OIKCgggKCuLSpUscPXqUtWvXoqamlt/F+yklJycTGRlJZGQk3t7e7Nu3jwkTJmBvb5/fRfupvH79mpkzZ3L37t0M8yIjI/H09MTT05ONGzfStWtXJk2ahK6ubj6U9B+vX79m9uzZuLu7Z5gXExNDTEwM/v7+nDp1ipUrVzJjxgxsbGzyoaSCIHwrd3d3Jk2axJs3b+Smf/78mU+fPhEYGMi5c+dYv349ixYtUhjYeP78Od27d+fz588/qtj5om/fvnh6ejJy5Mh82f+/6X7yw4cPtGnTho8fP9KjR4/vth9BEHJGBLwEQchXZ8+ezdENyvnz50lMTPz+BfpJnTp1iiJFimSYnpKSQkREBHfv3mXdunUEBQXh6urK8uXLmTRpUj6U9OfSvn175syZIzctMTGRjx8/8vjxY9asWYOPjw9LliyhXLlyNGjQIJ9K+nO5ffs2o0aN4uPHj0BaK8eOHTtSqVIldHR0ePPmDQ8fPmTXrl28fv2aAwcO4OHhwbZt2yhcuHC+lPnWrVuMGDGCT58+AVCrVi06dOhA9erVMTY2JjExkYCAAC5evIizszMhISGMHDmSJUuW0K5du3wp889g48aN1KxZ84fuU1dXlxIlSgCIwL+g0PPnzxk6dCixsbGUKFGCwYMHU6NGDQoWLEhycjIhISFcvnyZbdu2ERwczJAhQ9i1axeVK1eW205UVNS/MtilpqYmXQM5fZFQoEABSpQoobAOfvfuXZ6W72v8W+4nY2Njpd+2r1WoUCFKlChBoUKF8qhUgvDfJQJegiDki3LlyuHt7c2DBw94+/Zttg+xp0+fBsDExISwsLAfUcSfiqamJjo6Ogrn6enpUaJECZo0aUKHDh0IDw9n//79DB8+HD09vR9c0p+Lqqqqws/V0NCQEiVKUKtWLVq0aEFcXBwbN24UAa8c8Pf3Z+TIkURHR2NoaMiyZcsyfG7GxsZUqlSJnj17snz5cjZu3Mjr168ZMmQIzs7OaGpq/tAy+/n5MWrUKD59+oSWlhYLFixQ2DXY1NSUWrVq0a9fPwYMGICfnx+zZ8+mTp06mJiY/NAy/yyyqru+l5YtW9KyZcsfuk/h57Jq1SpiY2MxNzfn4MGD6Ovry803NjamcuXK1K9fn379+hEbG4uDgwM7duzIpxLnjqmpKRcuXMjVOn/99Rd//fXXdyrR1/sV7yeXLVuW30UQhF+GSFovCEK+aNy4MTo6OqSmpnL27Nksl/3w4QO3b99GVVWVFi1a/KAS/noKFChAt27dgLQ3kE+ePMnnEv38TExMqFu3LoD4PHNoypQpREdHo6amhpOTU5ZBQiUlJcaPHy/lhHn+/DlOTk4/qqiSefPmER0djZKSEitWrMg2D17RokVZvXo1KioqREdHs3v37h9UUkEQvlVycjLXr18HoEePHhmCXenVqFFD+l29ffs2Hz58+CFlFP4h7icFQciKaOElCEK+0NDQwMbGhhMnTmTbDP3MmTMkJSXRoEEDjI2Ns922h4cH+/bt4/79+4SFhaGtrU2pUqVo3rw5vXv3RltbO9N1g4OD2bZtGzdu3CAkJAQ9PT0aNmzI8OHDc3Rcnp6e7NmzBw8PD96/f4+WlhblypWjbdu2/P777/nefSZ9Qtfw8HCFy3h6euLi4sK9e/d49+4d8fHx6OrqUrp0aZo1a0aPHj0yfIbpkwO/ePECHx8fNm/ezK1btwgPD8fAwICaNWtib29P1apVc1Xm8PBwevfujZ+fH9ra2mzatEmuC5SPjw87d+7k9u3bhISEoKqqSqFChahVqxa9e/emQoUKudpfbqmqpv2UamlpZbrMy5cvcXZ25u7du7x584ZPnz5J3aoaNWqEnZ0dhoaGGdaT5SU5evQojx8/JioqSkro3rRpU3r16pVlKz1XV1cOHTqEp6cnkZGR6OrqUqlSJTp37kzbtm1RUlLKdF1PT0+2b9/Oo0ePCA8Pp0iRIrRu3fqbEhLfvXuXe/fuAdCrVy+qVauWo/VGjhzJuXPn8Pf3Z8eOHQwcOFCuG44sefHOnTupWLEimzdv5vz584SEhKCurk6FChX4448/aNu2ba7L/OjRI9zc3ABo06YNTZs2zdF6FhYWNGvWjPPnz/P48WO5eemvl0ePHrFmzRoOHTpETEwMRYoUYeTIkbRv315a/vnz5+zevRt3d3dCQ0Ol7kiNGzemX79+GBkZZdh/ThJaZ5W8XfaZbtq0iQoVKuDo6MjVq1eJjIykSJEi1KlTh0GDBkndovLLtWvXOHnyJA8ePCA8PJyEhAT09fUpX748rVu3plOnThnq3cyOO6ffi2ygkYULF9KuXTu2b9/O6dOn8ff3R0lJibJly9KpUye6desm1Q9fSk1N5dSpUxw7downT57w8eNHDA0NqVq1Kt27d6dx48aZHvP169c5ePAgnp6eREREoKWlRfHixWnQoAF2dnYKWxN+a12SleDgYPbv38+tW7cICgoiOjoabW1tihYtSr169ejXr5/CVjd5cd1++PCBnTt3cunSJYKCgtDU1KRWrVo5/s1WJCIiQuryFh8fn+3yzZo1w9PTEyMjI2JiYjA2NpZLCp9+OciYDD4hIYFjx45x6dIlnj59SmRkJMrKyhgZGWFpaUm3bt2ybT2cmprKoUOH2LdvHz4+PmhqalK5cmV69OihMLCTVdL6zCiqU2TJ1WXWrFnDmjVrMDMz49SpU9SrV4/Y2NhsB+WZOnUqhw8fxsLCguPHj2dblvS+5/3kq1ev2LFjB7du3eLdu3eoq6tjbm6Ora0tffr0yfC7/+WAN7L6RHb86T/38+fPc+XKFbZv38779+8xMTHBzs6OAQMGZJu0PiEhgVOnTnH06FF8fHyIjIzEyMiImjVr0q9fP4W/rW/evGHnzp1cv36dwMBAIO1FaPXq1enevftXJdcXhJ+BCHgJgpBv2rZty4kTJ7Jthi5rft6uXTuCgoIy3V5KSgqzZ8/G2dlZbnpUVBQPHjzgwYMH7N27l/Xr1yscVe/atWuMGTOG2NhYaVp8fDwuLi6cO3dO7gFU0b6XLFnCtm3b5KYnJCRw9+5d7t69y4EDB9iwYUOORxH6Hl69eiX9/5e5IZKTk5k9ezYHDhzIsF5ERAQeHh54eHhw5MgR9u3bl2nej8uXLzNu3Di5B4Xw8HDOnj3LuXPnWLx4MR07dsxReaOioqSuYVpaWhny/Vy9epVRo0aRkJAgTUtISMDPzw8/Pz8OHTrE9OnT6dOnT472l1sfP36UbvabN2+ucBnZA0BqaqrcdFniey8vLw4fPsy+ffsy5GH766+/OHHiRIb1ZAnd9+zZw86dOzE3N5dbJiEhgcmTJ3Pq1Cm56REREbi5ueHm5oaLiwurV69W+D2uW7eOVatWyU3z8/Nj/fr1XLhwgeLFi2f+oWQh/bH07Nkzx+tpaGjQtWtXli9fzqdPn7h06ZLCcygoKChDkun4+Hjc3d1xd3fn9u3bzJs3L1dlPnbs2FeVGWD8+PGMHz8+w/eT3t9//83+/fulv/38/OQCT2vWrGHt2rWkpKRI0z5//szTp095+vQpe/fuZdWqVVhbW+eqbDkVHBzMtGnT5HL0yK6vY8eOsXLlyhwHAfNSXFwc48aN48qVKxnmvX//nhs3bnDjxg1OnjzJ1q1bUVFRydX2s/teIK1++v333zOM8Cb7vbl06RJOTk4Z9v3x40dGjhyZYfCDsLAwLl68yMWLF+nQoQN///13htH/VqxYwYYNG+SmJSYm8uTJE548ecKePXvYvHkzVlZWcst8bV2SnYMHDzJnzpwMOZE+fvzIx48fef78OYcOHWLHjh1UrFhR4Ta+9rp9/Pgxf/75J+/fv5emxcbGcu7cOS5fvkyvXr1ydSwyxsbGaGtrExsby549e+jQoQNmZmaZLt+gQYOv7s4eGBjIoEGD8PPzyzAvLi6OkJAQzp49myFIll5KSgoTJkzg5MmT0rT4+Hiprm/dujVLly7NNPj6vWhpaWFra8uRI0e4ePEiCQkJCkezTEhIkLpXdujQ4av2ldf3kwDbtm3DwcGB5ORkadrnz5959OgRjx49Yt++fWzcuJEyZcp8VZm3bt0qV8cEBwfnqOv7mzdvGDlyZIYXKe/eveP06dOcOXOGCRMmMGjQIGneo0ePsLe3z5BbLDg4mODgYE6cOMHAgQOZOHHiVx2LIPybiS6NgiDkm/r166Ovr59lM/TQ0FDu3buHurp6ts3PFyxYIAW7rK2tpbdyFy5cYPz48WhraxMSEkL//v15+/at3Lq+vr4MHz6c2NhYihYtyooVK7h58yYXL15k7NixJCYmyt2YfGn16tVSsKtly5bs3bsXd3d3Ll68yOTJk9HV1eXp06cMGTIk3xLY+vn5cfToUSDtrd6XbwC3b98uBbvatm2Ls7MzN27c4PLly2zcuFF6gPL29mb79u2Z7ud///sfhoaGLF68mGvXrnHt2jVmzpyJlpYWqampzJs3j5iYmGzL++nTJwYPHoy3tzdaWlps2LCBWrVqSfNjY2OZNGkSCQkJWFpasnXrVq5du8b169dZt24d5ubmpKamSm9V80pCQgLv37/n0qVL2NnZERUVhbm5OaNHj86w7NmzZ3F0dCQ1NZX69euzY8cO6TPZsWMHTZo0AdJuYFevXi237smTJ6UH1H79+nH8+HFu377NuXPnGDduHKqqqoSGhjJ37twM+502bZoU7OrevTsuLi7cuXOH06dPM3z4cNTU1Lhx4wbjxo3LEIhzcXGRgl01a9Zk9+7d3L59m6NHj9K5c2devXqlMMiQE7IRGQsWLEipUqVytW761hKKRkmEtK6HHz58YMyYMZw/f55bt26xfv16KVBx4MABhaNCZuXGjRsAGBgYUL169Vyta25unm0AYf/+/dja2koP6bNnz5autW3btuHo6EhKSgqVKlViw4YN3Lx5k6tXrzJ79myMjY2JiopiyJAhPHv2LFdly6klS5bw7t07evXqxenTp7l58ybLli3DxMSE+Ph4Ro0axevXr7/LvrPi4OAgnYd9+vThyJEjUn2/cuVK6SH09u3bGQI9OZHV9yKzatUqXr58yYABAzh58iS3b9+WC+xcv349w76Tk5MZMWIE7u7uqKqqMnjwYE6ePIm7uzvHjh2jT58+KCkpcfz4cebPny+3rqenpxTsat++PYcOHeLWrVtcvHiRWbNmoa2tTUxMDFOmTJELkH5LXZIVLy8vZsyYQWJiIpUrV8bJyYkrV65w48YN9u/fT6dOnYC04FdWrXu+5rqNiIhg4MCBvH//HkNDQ+bNm8e1a9dwdXVl5syZaGpqfnU+LWVlZSmgHhYWRtu2bZk6dSpXrlzJ0W8XgJmZGffv32fjxo3StFOnTnH//n2GDBkCpJ0LI0eOlFovT5kyhTNnznD79m1OnjzJlClTpJa/69atk1rlfOnNmzecPHmSatWqSa2dDx06JNWZZ86cYfny5V/1WWRn06ZN3L9/n6JFiwIwZMgQ7t+/L/3+yD7H6OhoXF1dFW7D1dWVjx8/oqysnOWLxazk9f3kwYMHWbRoEcnJydSuXZutW7dy69Ytrl69yvz58zExMSE4OJiBAwfKdWNNf+yQNijH/fv3FV5b+/fvp3bt2hw7doxr164xd+7cbMuVmJjIn3/+yePHj1FVVWXo0KGcPn2aW7dusW3bNipVqkRqaioODg7cvHkTSGv9N3HiRD5+/Ii5uTlr167lypUr3Lx5k+3bt2NpaQnAli1buH//fpb7F4SfkWjhJQhCvlFXV6d58+a4uLhk2gz99OnTpKam0rhx4yxHEnrx4oWUJ6d169YsX74cZeW0mL6xsTF//vkntWrVws7OjoiICBYuXCjXgmXJkiUkJiZiaGjIvn37pLeDBQoUYNiwYZQtW5YRI0Yo3Lefn5+UV8jOzo7p06dL8wwNDRkwYAA1atSgR48ePHv2jL179zJgwIDcfVjZiI+Pl0aPSy8uLo6wsDBu3brFpk2bpJv1SZMmyb1pTUlJYevWrUDajeOyZcvkuruZmZlRu3ZtbG1tCQ0Nxc3NLdPhx9XU1Ni/f79ca6XevXujpKTEnDlziI6O5saNG9ja2mZ6PJ8/f2bo0KE8fPgQTU1N1q9fL+XKkrlz5w6RkZEAODo6yr3RbdasGeXKlaNly5YkJiZy4cKFr/rMjxw5wpEjR7JcplmzZsyfP19h94jNmzcDULZsWTZs2CD3mZuamlK7dm1+//13njx5IuWMkTl//jyQFrydOnWqNN3IyIihQ4eSlJSEo6MjN2/eJCIiQurWduvWLalLyOTJk+WO28DAgDFjxlChQgVGjRrFtWvXuHDhgpTAOz4+XkqWW6NGDbZt2yaV2cjIiEWLFqGvr/9VD5IpKSlSK4ayZcvmen1zc3OUlJRITU3NNMASFxfHhg0b5Foc2djYUKJECalb1NmzZ+UCp1lJSEjA398fgDJlyuS6lVBOmJmZsXz5cqn1hawVWXh4uFRHyb4LDQ0Nab2ePXtSr149unXrRlRUFDNnzuTgwYN5Xr7Y2FhGjRold723a9cOS0tLOnfuTExMDEuXLmXdunVftf3M6q701NTU5K6d6OhoKTjfrVs3ZsyYIc0zNjamRIkS1KxZk+bNmxMfH8/169el4EtOZfa9pBcXF8eMGTPkWpDWrVuXLVu20KxZM2JjYzl79qzcvo8cOSK1Cl2xYoVc8nxDQ0NmzJhBsWLFWLRoEc7Ozvzxxx9UqlQJ+KdOKFmyJA4ODlIdbWxsTK9evdDS0mLy5Mn4+vry7NmzDOvlti7JzpYtW0hNTcXY2JitW7diYGAgzStYsCBWVlbExMRw8eJF7t69S3x8vMIBJ77mul27di2RkZGoqamxfft2ua7rvXv3pkqVKvTq1eurR+ObMGECXl5ePHnyhLi4OA4fPszhw4dRUVGhfPny1KxZE2tra+rWrauwO7uSkhI6Ojpyx/vlAA1ubm48f/4cgDlz5si1bjIyMqJs2bIUK1aMESNGkJKSws2bN/njjz8UltfKyoodO3ZIdYSRkRFr165lzJgxnDt3jh07dtCvX788b2EuOz7ZuaimpiZ3jHXq1MHU1JTQ0FBOnTqlMKAjC8bWrl37q8uXl/eT0dHRLFy4EEhrue3o6CjdT0JanWNtbU3Hjh15+/Yt69atk+77svvO09PW1mbNmjXSdZPZd5venj178Pb2BtKC/unzSdarV4/t27fTqVMngoODcXJyol69erx69Ur6zfz777/lWslbW1uzZcsWmjdvTlRUFKdPn871ix1B+LcTLbwEQchXsh/rBw8eyHVnkJG9Kcsu987BgwdJTU1FXV2dmTNnyt2cyFhZWUldHM6fPy91g4iOjubatWsADBgwQGFT+ObNm2faZcHZ2ZmUlBS0tLQYN26cwmUsLS2lY1XUZfBbtW3blurVq2f4V79+fTp16sTixYv58OEDurq6/P333xm6g3369Ilu3brRrl07hgwZojC3k5aWFlWqVAHIMjFvx44dM3TNA+QeZrJqcZWYmMioUaO4c+cOGhoarFu3TmF3rfTdGBWNtFS8eHE2btzIwYMH+f333zPd37e6desWGzdulCsPpAV4mjRpQqdOnRg+fLjCrhzKysrSzWdERITcPNn2IiMjSUpKyrBur1692LhxI6dOnZLLvbNv3z4g7YG9X79+CsvcsmVL6aY2/fl4+/ZtKbfbhAkTFJb5f//7X5ZJnDPz8eNHqdXJ16yvqqoqPRjIAp1fsrCwUNi9rkyZMlI3zNy09ouKipK6sxQsWDDT5VJTU/n06VOW/9J3i0mvRYsWCrsanTx5kri4OABmz54tF+ySKVmypBSI9/LyytDFJS+UKFGCYcOGKZwue6i8du0a0dHRX7X9P//8U2Hdlf6fg4OD3DrR0dH079+f1q1bZxrINjExkVoRfk0i8cy+l/QMDQ3p0aNHhunGxsZSq4kvzzfZ9VmrVq1MR4rs27ev1IUu/fUpC97ExsYqDBK2atWKdevWceLECbmg8tfWJdmpXr06v//+OyNGjJALdqUnywuUkpJCVFSUwmVye92mpqZKXdM6d+6sME+jpaVljvJSZUZXV5e9e/cyaNAguQBGcnIyT548YceOHQwdOpS6desyderUrxrtT0dHh759+9K2bdtMB8KoU6eO9P9ZncfTp0/PUEcoKSkxadIklJSUSEpKkuvy+KOkb7V19epVuZQRADExMVLLr6/tziiTV/eTx48fl66vyZMnK7yfLFasmBTodnFxUXhdZad+/fqZXjeZSR8cVHTO6Ovr07dvXypVqkSRIkVITU2VuzdRlLtVX1+ftWvXSqN3C8KvRgS8BEHIV9bW1hgaGpKamsq5c+fk5gUEBPDo0SO0tbWzzREj6+5Qu3btLBORym4QUlJSpOTZd+/elW5WGjVqlOm6meVokr2t/+233wAyfeCVJWt//fp1huDG96SmpoatrS2zZs3i0qVLCoM/enp6jB07lmXLlsndYMskJSXx6NEjKUiY1c1dZknpCxQoIP2/7EH+SykpKfz111/SDfDUqVOpX7++wmWrVasmJaMeMGAAS5cu5d69e3KBhYYNG2JpafnVyZjbt2/P/fv35f7dvXuXy5cv4+TkhK2tLbGxsWzbto2hQ4fKtSZQVlZm5MiRLF68WOGNaUpKCt7e3tKD3Jefqaw1w7Nnz+jevTt79+6Ve+gzNjamcePGlC5dWu7BXHYtVKxYkbi4uEzPR1mXVk9PT6lb4+3bt4G08yGzt7yamppfla8mfVdeRYG0nJAd55fdMGWyGhBBdv5ldu4pkr5bWFZCQ0OzDdp4eHgoXDezQRVk9UqpUqUoV65cpvtu3bq19P+57a6ZE7a2tpm2bJPVy4mJiXKJq7+3okWLMmHCBFauXEnp0qUzzE9ISMDDw0P6rr/mYTQng11UqlQp06CYovMtJiaGp0+fAmnXZ2bXZnx8vPRyIX0XI1lwPCwsjK5du7J161Z8fHyk+VpaWlLr1vTX2NfWJdnp168ff//9d6Y5Ev38/OTKl9n3kNvr1tvbW/ot+prf7JzS1NTkr7/+ws3NjSVLltCuXbsMOZbi4+M5fPgwrVq14tatW7nafs2aNZk2bZpcS8L0oqKi5K6rzILmZmZmVK5cOdN5suDn96gfckL2gi0uLo5Lly7Jzbt48aLU8i+rVt85kVf3k7Iu80ZGRhgbG2d6ncqC2p8+fZJa6uVGbgfUiY6OlkaDzuoY+vfvj4uLC4sWLUJJSYkyZcpIXWMnTpzI3LlzuXnzplwgrFatWlhZWeUokb8g/GxEl0ZBEPKVqqoqtra2ODs7c+bMGblm6LK3cc2bN1fYDSI9WU4uRQ8/6aWfHxISAiD3JjCrEccy27bsweHJkyc5bgr+9u3bHHcbyYn0I42lpKQQFhbGkSNHWLNmDYmJibx//56mTZsqHAnwS8HBwbi7u/P69WsCAgLw9/fH19c3x7nHMrthSv8AllnA4t69e3Lzjhw5Qvfu3RW+YS1UqBDjx49n0aJFREdHs2nTJjZt2oS+vj7W1tY0btyYZs2a5eiYM6OqqqqwO4K+vj5mZmY0adKE+fPns2vXLm7cuIGLi4vCbgnh4eHcunWLV69eERgYiL+/P69fv87wtju93r17c+7cOR4+fCglpIa0AEiDBg1o1qwZderUkftsYmJipFYAFy5ckBIBZyUmJobo6Gj09fWlayG7kfeyu84USR90/DJxbk7JWohk9p1mdbMuO/8yO/cUMTAwkLpRZjaq6bfKrMw5rdMKFSqEvr4+Hz9+lOq0vJRVsC19frIv8yLm1M6dOxUG2XPKx8cHDw8PfH19pfrKz8/vq4Jc6eXkwS+rOlzR+RYcHCwFUXfs2JGjrsHpf59atmxJ8+bNuXjxIn5+fixevJjFixdTtGhRGjRoQNOmTWnQoEGGgPLX1CW5ER0dzc2bN/H29iYgIIDAwEB8fHwyXOeZXXu5vW7Tn2tf85udW3p6enTs2FEK3Pj5+XHnzh2uXbvG1atXSUxMJCYmhuHDh3Py5MksE9wrkpKSgqenJ48ePcLPz4/AwEB8fX0JCQmRO+7MPr/s8iGWLFkSb2/v71I/5ES5cuWoUKECz54949SpU3J5umQtlmxsbLLsZpgTeXU/Kbuni4iIyNU9XWZBx8zkNrj07t076RzIzeASGhoazJo1iwkTJvD582f27NnDnj170NbWplatWjRu3JgWLVpkGMhIEH4VIuAlCEK+a926Nc7Ozjx8+JA3b95I3eHSj6aTHVluKm1t7SyXS59rQxZsSN8VR1EuDpnMWgnlNIntt66TU8rKypiamjJ06FDKly/P8OHD8fDwoE+fPuzbty/Tm5rIyEhmzpzJ+fPnM9xY6+joULduXcLCwqQWCpn5lpGgUlNTUVVVpVWrVpw8eZIHDx6we/duaWjvLw0YMIAKFSqwZcsWbt26RWJiIh8/fuTcuXOcO3cONTU17OzsmDBhwnfJvwQwatQoDh48SHx8PAcPHpQLeH3+/JkFCxZw8ODBDG/nNTQ0qFOnDikpKQrfvGtqarJ792527drFoUOHpBwcvr6++Pr6smvXLszMzJg9e7bUyiG7XEiZiYmJQV9fX7oWsnsg+JoHE21tbczMzAgODv6qJOevX7+WWtDJWlN+Ka9HIdPU1KRo0aIEBwdn2RWycOHCGUbqg7SWApmduzKKuipCzus0SKu3Pn78mGUA9Wtl1f00/XnyPes0RYKDg5k6darUKjE9Q0ND6tSpw9OnTzNN9J2dzL6X9GQtTHPqW38rlJWVcXR0lEZ1lQWuQkJCOHDgAAcOHMDY2JhJkybJ5Q37mrokJ1JSUnB0dGTLli0ZXoioqalhZWWFvr5+psnKZXJ73aYPpH3Nb/a3kg1G0b17d96+fcuMGTO4du2a1No3fR7P7Ny+fZuZM2dKuQLTK1asGA0aNMhywBzI+jNIPz+/BsyBtFZez549w83NjaioKAwMDHj//r10/X5rd0aZvLyfzI2vWScndUx66bvyZ/edf6lNmzaULFmSjRs3cvXqVeLj44mNjcXV1RVXV1cp1cWMGTNy9JsjCD8TEfASBCHf1alTBxMTE8LCwjh79iwDBgzg1atXeHt7Y2hoSL169bLdhra2do4e+NIHBGQ/6ulzKMTFxWX6MP9ljiYZTU1NYmJiaNOmDStWrMi2rD9SkyZNGDlyJKtWrSIoKIgRI0awb9++DA8YiYmJDBw4UMoBVLt2baytrSlXrhy//fYb5ubmKCsrM2HChGwDXt9CTU2N5cuX07x5cwICAvDy8mLFihU0b95cGgXqS3Xr1qVu3brExMRw8+ZNbt26hZubGwEBASQmJrJ161ZSU1OZPHnydymzgYEBpUqV4tmzZxmGlh83bpzUhaNSpUo0btyYsmXLUqZMGX777TdUVVVZsWJFpl1N1NXVGThwIAMHDsTPz48bN25Ix/jp0yeCg4MZPnw4zs7OVKpUSS4AMXjwYCZMmJDrY4Hsu/1ldi1kx9ramkOHDhEYGEhAQEC2LcnSS99d6FtaBOWWrMyhoaF4eXlJ3Vi+N1n9lJMglqxey+1DUHx8fLbLZPWQnL5sedliNTsfP37Ezs6O4OBglJWVadSoETVr1qRs2bKULl1ayvvUs2fPrw54fQ/pv5/Zs2crTISfHWVlZbp160a3bt14+/Yt169f59atW9y4cYPIyEg+fPjApEmT0NfXx8bGRlovt3VJTixcuJCdO3cCaUFoGxsbLCwsKF26NGXLlkVdXZ2DBw9mG/DKrfS/2VldH19bTzk7O+Pr60vx4sXp3bt3lssWLlyYtWvX0qJFC96+fYuXl1eO9+Pl5cWgQYNITExER0eHFi1aUKVKFcqUKUO5cuUwNjYmKSkp24BXdtexrH74XgHAnGjXrh0ODg4kJiZy/vx5unXrxtmzZ0lKSsLIyIiGDRvmyX7y4n5S9jtatWrV75Jz9WulD0Tlpmu+TKVKlVi1ahXx8fG4u7tL9Ya3tzfJycm4uLgQExODo6NjXhZbEPKdyOElCEK+U1ZWlnI3yIaTlr2Ns7W1zdFbdFkwJH2+EEVevXqVYZ30gZSsWp5k9uAkWz84ODjLfeemK1VeGjp0qJSvycvLS+HNzNmzZ6Vg1+TJk9m1axfDhw+nefPm/Pbbb1JXl++de8zKyoqWLVuirKzM3LlzUVFRITY2llmzZmW7rq6uLi1btmTWrFlcuHCBgwcPSl1L9u7d+81dnLIi+3zSJ/u/f/++FOyys7PDxcWFMWPG0KZNG8qVKycFHXP6mZqbm9O7d2/Wrl3L7du3mTp1KkpKSiQmJkqJsPX19aWA7decj7Jz2c/PL8v8VblJ/J5e586dpf/PzUiPycnJ7NmzB0hrbdisWbOv2v/XSN9SxtnZ+YftN6d1WmhoqNS6IH1XKtk5mdVDf2bJ/9PLKmDk6+sr/X9uu3F9i71790rn96pVq3BycmLw4ME0adJECnbB96+vciv9gCh58XtRuHBhunXrxvLly7l58ybLli2TugDu2rUr0/VyUpdk582bN9LIyC1atODkyZP89ddfdOjQgUqVKknl+B7fQfpz7Wt+s7Nz4MABtm3bJgXzsqOuri7lIctJEFlm5cqVJCYmoqenx7Fjx1i8eDF9+vShbt26Une3nHx+2Z1Lss+oZMmSOS5bXjMxMZEGn5H9Ll68eBFIa32UV61z8/J+8t92T5d+BMuAgIBMlwsJCWHZsmUcOHBA4fmjqalJ48aNmTx5MidOnOD06dNyI7qGhobmfeEFIR+JgJcgCP8KssTLDx8+5O3bt5w5cwbIWfNz+CeZ7507d7IcyUh2A6SkpCQFgWrXri29eZfdgCkiG8kxs30/efIkyzw2M2fOpE6dOnTt2vWHdv9RVlbm77//lm70Nm/enKH7laenp/T/mQ2NHRcXx4MHD4CcJ/P+FhUqVMDOzg5I++yPHz8uN9/JyYl27dpl2krC0tJS6k72+fPnTEcI+1ZxcXHSA0X6XCo5+UxTUlKkBLmyv2XbHDhwII0aNZICPempq6vTr18/Kb+S7AZVSUmJGjVqAHDz5s0s3wIPGjSIevXq0b9/f+nGXdadKTY2lps3b2ZaZjc3t0y3m5WaNWtKDz379u2TO/asrF+/Xgr82NnZ/dCWCrVq1ZJalB06dIjLly/neN1vCbLK6hVfX19pGHpFZHUlpAWMZWStAdKPNPml9OdoZjKr9+CfB1cdHR0pMfqPICu3kZFRpiMdvn37Vmpx+SPqq5wwNjamTJkyAFy+fDnTB+aUlBTatm1Lw4YN+euvv6TpY8aMoVmzZhlGrQRQUVGhXbt20oASsjrha+uS7Dx8+FD6XH///fdMu4ynb5mZVwGC0qVLS0GvL5Ogp5fVuZsVWR3q5+fH9evXc7SOLACRfnRMQOGIxzKy87hevXpygdr00n9+mZ3Hsnxfirx8+VIKTMuOK7/IcqDdvn2b9+/fSy2b86o7o0xe3U+Gh4fz8OHDTJdzcnKiZs2adOjQQS4AldV3/i2MjY2le4yszssrV66wceNGZsyYQVJSEocOHaJTp07Y2NgovAZLly4tNxKvCHgJvxoR8BIE4V+hRo0aFC5cmNTUVNatW8fr168xNTWVbjyy061bNyCtNcPcuXMV3hh6eXlJb68bN24s5bLS0tKSbpB27drFy5cvM6z74MEDKenpl7p37w6kPdzOmTNH4cPlw4cPOXLkCJGRkRgaGn5zctbcKlOmDIMHD5bKOXPmTLnPKP3DSvpWcDIpKSnMnTtXCtSlH43wexo9erTUKmLBggVywUxVVVVevnyJp6en3Ehm6T179gxIa/31vUYf2rx5sxRYSj8aY3afKcCaNWvkukHKPlctLS1CQ0MJDQ3F2dlZYbeyqKgo6SEnfddA2fkYGRmp8MEY0hLau7m58f79e0qUKCHdoNeqVUtqBbB48WKFgdnt27dn++Y7K3PnzkVfX5/k5GSGDRuW5UNpSkoKGzZsYM2aNUDaw2T6G/MfZd68eVI3qv/973/ZdjGSjRI2adKkr95np06dpBwvs2fPVngOBAYGsn79eiAtMXT60e5k32NCQoLCIN29e/dyFLh0d3dX+CLAx8dHakXUtm3brx5582vIrq2oqCjCwsIyzP/8+TPTpk2THu5+VH2VE7LfKh8fH7Zs2aJwmZ07d+Lj48O7d++kABmktR4KCgri+PHjCl/sJCQkSIFhWZ3wLXVJVtK3yMmsfjt8+LBc4Pxruxgq0qVLFyCt9Y6i0REDAwNz3ELrSz179pReEE2cOFHKlZaZffv2Sb81PXr0kJuX/nfgy/NQNs/X11fhPcubN29YunRppuvLpKamsmDBggzBDNn9EKQFwNMni89rsvMhq2utRYsWaGtrExcXx9KlS0lMTKRkyZLSy8e88q33k506dZLqs3nz5il8cRQQEMC2bduIjo4mISFBLmCZ/trI67pHdt67ubkp/O2MiYmR6pXatWtjYmKCrq4uz549Izg4ONP7WNn5q6ysLA2AJAi/ChHwEgThX0FJSYlWrVoBSDkT2rRpk+NRo8qXLy+1Bjpz5gwDBw7E3d2diIgIAgMD2bJlC/379ycxMREDAwNmz54tt/5ff/2FoaEhsbGx9OnThwMHDvDu3TtCQ0PZvXs3AwcOzPTtdIUKFejVqxeQ9ta+b9++uLm58eHDBwICAti1axeDBw8mMTERDQ0NuTf2P9KwYcOkkX0ePHjA3r17pXmyVgEA48eP59KlS7x79443b95w4cIF+vTpg4uLi7TM1yZHzy0dHR0pAXBERAQLFiyQ5nXt2lUagnz48OHs3r2b169f8+HDB54/f868efM4evQokPYA8zVvXZOSkhQORx4REYGXlxezZs2SgjHFihWTe9ipX7++tM958+Zx/Phx3r59S2hoKNevX2fo0KGsXbtWbn/pP9eBAwcC8OLFCwYMGMD169elB1dXV1fs7e2Jjo5GRUVFrgVZs2bNaNKkCQB79uyRBi2IiIjg9evXrF27lvHjxwNpLWRGjBghrausrMycOXNQUlLC29ubnj174urqSkREBD4+PixcuJAlS5Z80wAAJUqUYMOGDejp6fHp0ycGDx7MiBEjuHjxIsHBwURFRfH69WsOHDhA165dWbFiBampqZibm+Pk5JRtQv3voWTJkmzatAljY2Pi4uKYNWsWnTt3Zvv27Tx69IiwsDBCQ0N5+PAh69evp127dowePVoKxtja2mJhYZGrfRobGzNu3DggLTjVs2dPrl69yocPH3j79i0HDhygR48eREZGoqamxuLFi+XO8aZNm0oPXtOmTeP48eOEhYUREBDApk2bGDRoUI5byo0bN46NGzcSEhJCeHg4Li4u2NnZERsbi6GhoVTOH0VWX6WkpDBkyBBu3brF+/fvCQwM5NixY/z+++9ywbwfVV/lRK9evahYsSIADg4OTJ06lcePHxMZGcmLFy9YuHAhixYtAtK6Hsp+1+CfOuHdu3f069eP8+fPExwcTHh4OHfu3GHo0KFS8vP0LV+/ti7JSo0aNaRrcc2aNezZs4egoCDCw8O5e/cukyZNYurUqXLr5OX3MHjwYMzNzUlJSWHYsGFs3rxZOj+PHj1Kz549vyrPEaS11JXVgx8+fKBbt25MnDiRS5cuERgYSFRUFEFBQZw7d45hw4ZJ9xM9e/bM0NIx/Yiyp06d4uPHj9KLBNl57O3tzYQJE3j27JlU127evJlOnTrJtbbJ7PNTUVHhwoULDBs2DC8vLyIiIvDw8GDAgAHcuXMHgEmTJn3XlrGy45SdW4oCslpaWlKLzCNHjgB537oLvv1+smDBgowZMwaAR48e0b17d86fP094eDghISEcOXIEOzs7IiMjUVJSYtq0aXJ1b/occ2fPniUyMjLPWpjb2dlJo4+OGjUKJycnAgMDCQsLw9XVld69exMcHIyKioqUw7NZs2bSvd/06dNZt24dL1++JCIiglevXuHo6IiTkxMArVq1+m4vBwUhv4ik9YIg/Gu0adOG7du3S4Gltm3b5mr9yZMnk5CQgLOzMzdv3lTYJat48eKsWrVKGrlHxtjYmO3btzN48GDCwsKYMWOG3HwNDQ3Gjh3LsmXLFO576tSpJCQkcOjQITw8PKQHjPR0dHRYvnw55cuXz9Vx5RV1dXVmzZrFgAEDAFixYgUtWrTA1NSUxo0b07ZtW06dOkVAQADDhw/PsH6hQoWwsbFh//79xMXFERoaKpdT4ntp0aIFTZs25cqVK5w4cYIOHTrQqFEjDA0NWblyJcOHDyciIoJ58+YpXL9p06aMHj36q/Z94sQJadj0rJQsWTJDMKZs2bIMHjyYjRs38v79e4WBTj09Pbp168bWrVuBtC40spvNzp078/DhQ/bt28e9e/cYNGhQhvXV1NSYN2+e1B0J0m72ly1bxvjx47l69SqXLl1S2O2nYMGCrF+/PsN3aG1tzaJFi5g+fTre3t78+eefcvPNzMxo0aIF27dvz/ZzyUyNGjVwcXFh+vTpUguizLoTKysr06lTJyZPniz3IPGjVa1alaNHj7J48WLOnDnD06dPsx3AoWbNmgwdOvSrEzIPGDCAT58+sWbNGp48ecKQIUMyLGNsbMyyZcukIIpMsWLFGDNmDMuWLSMqKirD+WdiYsLChQsVnlfpNW3aFA8PD5YtW5ah/itcuDBOTk4//AHp999/5/Tp09y9e5cnT57Qv3//DMv89ttvVKxYkZMnTxIcHExiYmKuR1X8HtTV1dm4cSPDhw/Hy8uLw4cPc/jw4QzLmZubs2nTJrlE1bVr12b8+PEsX74cb29vRo0alWE9ZWVlxowZQ+PGjaVpX1uXZMXIyIjJkyczZ84c4uLipJZEXx6rvb09GzZsAMDf3z/PBn3Q0NBgy5YtDB48mNevX+Pg4CDXolVZWZlJkyaxcOHCr9p+165d0dLSYsGCBYSFhXHs2DGOHTumcFk1NTXs7e0ZO3ZshnklS5akSJEivHnzBkdHRxwdHencuTOLFi1iwoQJeHh4EBYWxqlTpxS2vmnatCnh4eE8evRI4UiOgJSI/cqVK1y5ciXD/JEjR2ZoeZbX6tSpw8OHD3n69CmNGjVCTU0NT0/PDNdcx44dOXr0qHSf9z0CXvDt95MDBw7k06dPrF+/PtNrTU1NjVmzZmWo3zU1NalWrRoPHjzg4MGDHDx4kNq1a2eZVy+ntLS02LhxI3/++Sc+Pj4sX76c5cuXyy2joaHB33//LbX4VVNTY/Xq1djb2xMeHs6qVatYtWpVhm1XrVpV4XUsCD87EfASBOFfo2rVqpiZmREcHEzJkiWpUqVKrtZXVVVl7ty5tG/fnv3793Pv3j3Cw8PR19fH3Nyctm3b0qlTJ3R0dBSuX6FCBY4fP87u3bu5cOECgYGBaGlpUatWLUaMGJHl22I1NTX+/vtvOnXqxP79+/H09CQsLAxlZWWKFy9Ow4YN6devn1zS4vxQr1492rdvz4kTJ4iJiWHu3LlSK6Nly5ZRp04djhw5gre3N58/f0ZXV5dSpUphY2PDH3/8wadPnzhw4AApKSlSy68fYebMmbi7u0sJ7E+ePImOjg7W1tacOnWKHTt2cPPmTYKCgkhMTMTIyIjKlSvTqVMnKYFtXlFSUkJTUxNjY2PKlStHs2bN6NChg8IhxsePH0+lSpXYt28fT58+5dOnT2hra1OiRAkaNmxIr1690NfXx9nZmU+fPnHhwgWqV68urT979myaNm3KoUOH8PLy4v3796ipqWFqakr9+vWxs7OT3tymp6uri5OTExcvXuTo0aM8fPiQiIgI1NTUpO/Tzs4u0wBSp06dqFKlClu2bOHOnTuEhoZSsGBBmjVrxsiRI/Nk5KoSJUqwc+dOPDw8OHHiBPfv3yc4OJj4+Hj09PQoVaoUdevWpXPnzvmabDk9U1NTli9fztixYzl58iTu7u74+PgQGRmJiooKxsbGlCxZklq1atGsWbM8CW6PHDmS5s2bs3PnTu7cucO7d+/Q0tKiePHitGzZkt9//z3TgNOff/5JpUqV2LVrFw8ePODTp08UKVKEZs2aMXjw4Bx1MatUqRLTp0/H0dGR69evExsbS4kSJWjVqhW9e/fOlyCkuro6W7duZceOHZw+fRpfX18SExPR19enTJkytGrViq5du/L48WNOnjxJXFwcbm5uNG3a9IeXVRETExP279/PiRMnOHnyJE+fPiUqKgpNTU3Kli2Lra0tPXv2VNia8c8//6RWrVrs3buX+/fv8+7dO5SUlChUqBC1a9emV69eVK5cOcN6X1uXZKVnz56Ym5uzfft2Hj58yMePH9HU1MTMzIw6derQp08fzM3NOXPmDP7+/ly4cCFPu9UVK1aMQ4cOceDAAU6cOIGfnx8qKipUrVqVoUOHUrJkya8OeEFa0KRx48acOXMGNzc3nj9/TkREBJ8+fUJfX5+iRYvSsGFDOnToIJe/MT1VVVU2bNjAggULePToEfBPS61ixYpx5MgRnJyccHV15c2bNygpKVGgQAEqVqxIly5daN68OevWrePRo0d4eHjw4cOHDNe7iooKa9euZfv27bi4uBAYGIiuri7Vq1fH3t7+h+TuGjlyJHFxcVKLJmNjY96+fZshN1ndunUxNTUlNDSUatWq5Wqk3tz41vtJJSUlxowZg62tLbt375Z+B1NSUihatCh169alb9++UmurL61YsYJ58+Zx9+5dEhIScjTabk4VK1aMo0ePsn//fk6fPo2Pjw9xcXGYmJhQr1497O3tM5TLwsKCkydPsnPnTlxdXfHz8+Pz588YGBhQvnx52rRpQ+fOnb+p9bYg/FsppebXsGGCIAiCIAjCv5KsC+bIkSMVtm4QBEHIrdTUVJo0acLbt2+ZOXMmvXv3zu8iCYLwixM5vARBEARBEARBEITv6s6dO7x9+xY1NTW5QV4EQRC+FxHwEgRBEARBEARBEL6b5ORkNm3aBEDLli0xMjLK5xIJgvBfIHJ4CYIgCIIgCIIgCHnqw4cPbN26FSMjI65evcqdO3dQVlbG3t4+v4smCMJ/hAh4CYIgCIIgCIIgCHlKU1NTatUl07dvX4UDKwiCIHwPIuAlCIIgCIIgCIIg5CltbW2srKx48uQJBQsW5I8//mDIkCH5XSxBEP5DxCiNgiAIgiAIgiAIgiAIwi9FJK0XBEEQBEEQBEEQBEEQfiki4CUIwr+enZ0dFhYWcv8qV65MkyZNmDt3LnFxcd91/zY2Njg6On7XfXx5fOn/Xbly5bvuOzsvX77k6tWrctOSkpLYsWMHXbp0wcrKirp162Jvb8/t27fllrOwsMDFxeWHlNPR0REbGxvpb1dXV2xsbKhSpQo7d+78Id9jfvvexzh58mTs7OxytGxqaipHjhzh/fv3ALi4uGBhYZGjdYOCghReC1ZWVnTq1IlTp0599TH8W8iO0d3dPb+L8p8TGBhI9erVmThxYoZ5jx8/pkqVKuzdu1eadvHiRQYPHkz9+vWl356pU6fi7+8vt66NjU2G3ylbW1s2b96ssByXLl3C3t6eOnXqYGVlRZcuXThw4ADpO1/Y2dkxefLkPDryrLm7u2NhYUFQUBCQ9jl17dqVypUrM2bMmFxd/4Jiis6RJk2aMGvWLD58+JCn+8npb0Fen2NZ3c9YWFj8kPPZw8ODESNGUL9+fapVq0a7du3YvHkzCQkJ0jI/8nz+sr6PjIykf//+VKlShd9//z3D/YsgCHlH5PASBOGn0Lp1a6ZNmyb9HRsbi5ubGwsXLiQlJYXZs2fnX+HyyNSpU2nTpk2G6QYGBvlQmn8MGTKEzp0706RJEwA+f/7MgAEDePPmDaNHj8bKyor4+HgOHz7MgAEDWLJkCe3bt//h5bS3t6d3797S3ytXrqRUqVLs3LkTQ0ND2rVrh4aGxg8v169k2rRpJCcn52jZu3fvMnnyZC5dugRAmzZtaNiwYa725+joiJWVFZAWQAsLC8PJyYkJEyZgZmZGtWrVcrW9f5MiRYrg5uaW79f3f1Hx4sWZPn06U6ZMoUmTJlK9Gx0dzdixY7GxsaFXr14AzJ8/nwMHDjBo0CDGjRuHoaEhgYGBbNu2ja5du+Ls7Ezp0qWlbdvb20sj0MXHx+Pl5cX06dPR0tKSq58WL17M3r17GTZsGBMnTkRTU5MbN26wYMECnjx5wpw5c37gJ5LGysoKNzc3jI2NAdi9ezdv377l2LFjGBoaoq6unuPrX8jcl+eIt7c3Dg4O9OnTB2dnZ/T09L55H4cOHcrx752joyMqKirfvE8ZNzc36f9Pnz7NggUL5KZpamrm2b4U2bVrF4sWLaJv374MHz4cfX197t+/z+LFi7l79y7r169HWfnHtvn4sr4/fvw4Hh4e7N27F1NTU3R1deXqB0EQ8o4IeAmC8FPQ1NTExMREblrJkiV5/Pgxp0+f/iUCXnp6ehmO8d9o1apVvHjxgpMnT1KkSBFp+rRp04iJiWH+/PnY2Nigo6PzQ8ulo6Mjt8+oqCiaNm1KsWLFfmg5fmW5eRD7MkWopqZmrh90DAwM5K6JQoUKsXTpUmrVqsWZM2d+6oCXiorKT3G9/6q6dOmCq6srs2fPpnr16hQuXJipU6cCaUEugPPnz7Nr1y7WrVtHs2bNpHWLFi1K7dq16dmzJ6tXr2bVqlXSPG1tbbnvtXjx4ri7u3P48GHpgdbV1ZWtW7eydu1amjdvLi1rbm6Ojo4OkyZNolOnTlKw90dRV1eXK/vHjx8pVaqUXEBP+HaKzpEKFSrQtm1bNm/ezLhx4755H7KgZU4YGhp+8/7SS39sst+MH1XXPX/+nEWLFjFx4kT69esnTS9evDhFixalT58+nD59mnbt2v2Q8sh8Wd9//PgRExMTLC0tpWk/+p5JEP4rRJdGQRB+ahoaGqiqpsXuQ0JCGDduHNbW1lSqVIlGjRrh4OBASkoKkNalqkWLFtJ/K1euTJcuXbh37560vejoaCZNmkTNmjWpW7cu27Zty7BPT09P+vbtS40aNahTpw5TpkwhIiJCmm9jY8PGjRv5888/qVq1KjY2Nly8eJGLFy9ia2tLtWrVGDhwoNTVK6ciIyOZM2cOjRs3xtLSkh49esh1h3J0dKRPnz6MGzeO6tWrM2/ePADu379P7969sbS0pEmTJsyZM4eYmBhpPS8vL3r16oWVlRW1atVi1KhRhISESMcSHBzMmjVrsLOzIzExkcOHD9OlSxe5YJfM2LFj2bRpk8LARkpKCk5OTtja2lK5cmWqV6/OoEGDCAgIkJZxdXWlS5cuVK1aFWtrayZPnkxUVJQ0f8uWLTRv3pzKlStjY2PD2rVrpcBK+i4BFhYWBAcHs3btWqkb3ZddPK5cuUKXLl2wtLSkRYsWrFy5Uq67g4WFBatXr6Zp06Y0aNAAPz+/nH9Z/1JHjx6lQ4cOWFpaYmNjw7p16+RabAQEBDB48GCsrKxo2LAh27Ztk64ZyNgFJLPvw93dnb59+wLQrFkzXFxcMnRp/PTpE/PmzaNBgwZYWVnRp08fHj9+nO0xKCsro6qqKl33AD4+PlK5GzRowPjx4wkLC5PmJycns2LFCho0aEC1atUYPXo0f//9t3Qs7u7uVKxYkY0bN1KnTh26dOlCSkoKoaGhjBs3jpo1a1KnTh2GDh0qdx68f/+e0aNHU6dOHemavHPnjjQ/q2vryy4uycnJbN++HVtbW6pUqYKtrS379u2TtiUro6urK+3ataNy5cq0atWKixcvZvuZCYrNnTsXLS0tpk2bxoEDB7hy5QrLly+XHtJ37NhBnTp15IJdMkpKSqxatYoFCxZku58v68N9+/ZRvnx5uWCXTLt27di+fXum3X8vXrxIt27dqFatGlWqVKFLly5cv35dmu/n58fAgQOpUaMGVlZWDBw4kBcvXkjzs6pj03dptLOzw8XFhbt370rn6ZfXf3bXnZ2dHTNmzKBbt27UrFmT48ePZ/tZ/VcVLVqUFi1aSN21o6OjmTFjBnXr1qVGjRr07duXR48eya1z/fp1/vjjD6pWrUqjRo1YsWKFVJ+n/72Li4tj2rRp1K9fnypVqtCpUyfOnz8vbefLLo05ucfZsmULo0aNwsrKijp16jB//nySkpJyfLyZnRuHDx+mdevWWFpa0rp1a3bs2CHdwwHZ1skHDx5ET09PYWupWrVqsX37dho1aqSwTB4eHvTt25fq1atTuXJlWrduzbFjx6T5eVXfT548GUdHR0JCQqS0D192aczuOCdPnszo0aOxt7enevXqbNq0KcefvSD814iAlyAIP6WkpCSuXr3KsWPH6NixIwDDhg0jOjqabdu2cfbsWezt7dm8eTOXL1+W1nvz5g379+/HwcGBI0eOoKWlxeTJk6WgydixY/Hy8mLDhg1s27aNq1evEhwcLK3v5eWFnZ0dZcuW5cCBA6xatYqHDx8ycOBAucDBunXraNOmDSdOnKB8+fJMnDiRDRs24ODgwIYNG3j06FGublCSk5Oxt7fHw8MDBwcHXFxcKFeuHAMHDsTLy0ta7u7duxQsWJBjx45hZ2fH8+fPGTBgAA0bNuT48eMsXbqUJ0+eYG9vT2pqKsnJyQwZMoRatWpx/Phxtm/fTkhIiNTS4dChQxQuXBh7e3scHR0JDAwkMjKS6tWrKyynqakplpaWCrtH7Ny5ky1btjB58mTOnTvH2rVr8fPzY9GiRQB8+PCBkSNH0rVrV06fPs2aNWu4e/cuS5YsAeDy5cs4OTkxZ84czp8/z4QJE1i/fr3Chyg3Nzep3Om7Ushcu3aNsWPH0r17d06ePMmsWbM4c+YMf/31l9xye/fuZfXq1axZswZzc/OcfVn/Utu3b2fGjBn88ccfHD9+nDFjxrBlyxbp84+Li6N///6kpKSwb98+VqxYgYuLC4GBgQq3l9X3YWVlJT1sHTx4UGFX3bFjx3Lt2jUWLlzI0aNHKV68OPb29nIBzi9FRUWxaNEi4uLipDf0oaGh9OrVi5IlS3Lo0CE2bNhATEwMf/zxB7GxsQAsXboUZ2dnZs2axeHDhzExMWHXrl1y205OTsbV1RVnZ2f+/vtv4uPjpYf73bt3s2vXLoyMjOjevTuhoaEAzJ49m8+fP7N7925OnDhBqVKlGD58OLGxsdleW19atGgR69atY+TIkZw4cYLevXvz999/s337drkyOjg4MG3aNE6ePEm5cuWYNGkSnz59yvQzEzJnYGDA4sWLuXnzJnPmzGH8+PFSi4ukpCTu379PvXr1Ml3f1NQ021YZXl5enDx5km7duknTHj9+nGkdqqqqirW1Ndra2hnmPX78mFGjRtG2bVtOnDjBgQMHMDY2ZuLEiVKw/n//+x+mpqYcPnyYgwcPoqyszMiRI4Hs69j0HB0dad26tdTN8cvWZjm57iDt+u/bty979+7NdZfm/5py5coRGBhITEwMgwcPJjAwECcnJw4cOEC1atXo2bMnT58+BdKCUn/++Sc1atTAxcWF+fPns3//ftatW5dhu7JW2Rs3buT06dM0atSIcePGSbna0svpPc6qVaukum3ixIns3r2bkydP5up4vzw3nJ2dWbJkCSNHjuTUqVPSC7SlS5cCaakssquTHz9+jKWlpdwLkfSsra3R19fPMD00NJSBAwdSpUoVjhw5wtGjR7G0tGTatGmEh4cDeVffT5s2DXt7ewoXLoybm1uG38ecHCfAuXPnqFevHocPH/7hLdYE4WciujQKgvBTOHHiBOfOnZP+jo+Pp2jRogwcOJChQ4cSHx9Px44dad26tdTyqH///mzatIkXL15Ib9ITExOZM2cOFSpUAGDAgAGMGDGCsLAwYmJicHNzY/v27dSsWROAZcuW0bRpU2m/W7duxcLCghkzZgBQunRpli9fTseOHXFzc6Nx48YANGnShE6dOgHQvXt3Ll26xLhx46SHqXr16vHy5Uu5Y5w1a5bUKktmyJAhDB06FDc3N548ecKJEycoV64cAHPmzOHRo0ds2bJFrkvN6NGjpRYKf/31F/Xr12fo0KFAWpeZZcuW0bx5c+7cuUP58uWJiIigUKFCmJmZUbx4cVauXCm1PjM2NkZFRQVtbW0MDQ3x9fUFvi6vWIkSJVi8eLH0eZqZmdGqVSvOnj0LpN1wJiQkULRoUczMzDAzM2PDhg3STXZAQADq6uqYmZlRtGhRihYtSqFChShatGiGfZmYmEjlVtSVYsOGDXTv3p0ePXpIZZszZw79+vUjKChI6gbZsWNHqlSpkutj/bdJTU1l06ZN9OnTR3rzbW5uTmRkJA4ODowePZrz58/z4cMHXFxcpC4uDg4OUkD5S1l9H+rq6tI5YmxsnKGFy+vXr7l27RpbtmyhQYMGQNrDhL6+PhEREdLDyuDBg6XgaUpKCklJSVhaWrJ161bpGt63bx+FCxdm+vTp0vZXrlxJ3bp1OXv2LK1bt2bv3r1MmTKFFi1aADB9+nQ8PT0zHJO9vb0U2Dx48CAfP37EwcFBKs/ff/+Nu7s7Bw4cYNSoUQQEBFCuXDmKFy+OpqYm06ZNo3379qioqBATE5PltZVeTEwM+/btY/LkyVL+O3Nzc4KCgti4caNc15yxY8dibW0NwPDhwzl37hze3t4/vPvbr6Jq1aoUKlSI0NBQ6tatK03/8OEDKSkpGbqGzZ07lyNHjshNS38uOTk5sXXrViDt9yYxMZGqVavK5TWMjIxU+NCdHRUVFWbMmCHlFwPo27cvgwcP5v379xQpUoSAgADq1auHmZkZampqLFiwgNevX0stFrOqY9MzNDREU1MTNTU1hXVodtddly5dAKhQoUK+5HT8GcnOicuXL/PgwQNu374t1cX/+9//uH//Pjt37mTRokXs2rWLqlWrSgMvlC5dmrlz5yqsXwICAtDR0aF48eLo6+szZswYatWqpfB3PKf3OA0aNJBa8RYvXpxdu3Zx//596b4nJ748N9atW8ewYcNo27attN2YmBjmzJnDmDFjOHXqVLZ1cmRkJMWLF89xGWQ+f/7MqFGjGDhwIEpKSgD8+eefHD16FD8/PwoWLJhn9b2enh7a2tqZdmvPyXFC2n3YoEGDcn2sgvBfIwJegiD8FGxsbJgwYQKpqal4eXnx999/U69ePYYOHSp1b+rTpw9nz57Fy8sLf39/Xrx4QXh4uFxzeEAuH4ksMJSYmIi3tzeAXICjYMGCcjdP3t7e1K9fX2575cuXR09PjxcvXkg3gyVLlpTma2lpAWlBFRlNTc0MN0KjR4+mZcuWctNkN6Te3t7o6elJwS5I61JTs2ZNuRZMBQoUkMuz9PTpU/z9/RU+DPv4+FCnTh0GDRrEvHnzWL16NXXr1qVx48a0bt06w/LwT16QyMhIhfOzYmNjw8OHD1m1ahW+vr74+vry6tUrTE1NgbSb33bt2jF06FBMTEyoX78+TZo0kYIUHTp04PDhw9ja2lKmTBnq1auHra2twoBXdp4+fYqXlxeHDh2Spsla+fn4+EgBr/Tf48/sw4cPhIeHU6NGDbnptWvXJjExkdevX/P06VNKlSoll89Fdm4r8i3fh+xaS5+DS0NDgylTpgBILQ/mz59P1apViY+Px9nZmVOnTjFw4EC5wMTTp095+fJlhnP88+fP+Pj44OPjQ3x8vNy+lJSUqFGjBs+fP5dbJ30rvqdPnxIVFUWtWrUUbhdg5MiR/PXXX5w7d44aNWrQoEEDaXAEDQ2NHF9br1+/JjExUeH3s2PHDrm64rfffpP+X1dXF0irv4SvM2/ePJKSkihbtiwTJkzg8OHDaGpqYmhoiJKSUoa6buTIkVIA8vz581LrE5kePXpIrTOSkpLw9/dnxYoV9O7dm4MHD6Kuro6xsfFX1aEVKlTAwMCAjRs38vr1a/z9/aVzWBa0GjduHAsWLGDv3r3Url2bhg0b0q5dO5SVlbOtY3Mju+tO5lepQ3+E6OhoIG10zNTUVLmXbQAJCQl8/vwZUHwvYmtrq3C7gwcPZujQoVhbW2NpaUn9+vVp3769wro9p/c4X+Z109PTy3U9lP7c+PDhA2/fvmX58uVyL/BSUlL4/PkzQUFBOaqTv/baKlGiBF26dGHnzp14e3sTEBCQ4drKq/o+Ozk5ThDXliDklAh4CYLwU9DR0ZF+3M3NzSlUqBADBgxARUWF2bNnExsbS58+fYiPj6dVq1Z07twZS0tLhXkc1NXVM0xLTU2V3up9GSBL3zT+y0Tc6aerqakpXEdGtv3MFChQINMbmKz2m35fX7akSUlJoX379lILr/RkwasJEybQq1cvXF1duXXrFvPmzWPz5s0cPXo0w2dVvHhxChYsyP379xV2U/Px8eHvv/9mypQplC1bVm7exo0bWbt2LZ07d8ba2pr+/ftz6dIlKWcJpLWoGzFiBNeuXePmzZv89ddf1KhRgx07dmBsbMyxY8fw9PTkxo0buLm5sXPnTkaNGiV12cmplJQUBg0aROfOnTPMS//G9XuPJvWjZHb+yM51VVVVVFRUMpz7WfmW7yOz7iZfMjU1la6JmTNnEhcXx9ixY9mxY4cUHEpJSaFu3brMmjUrw/p6enq8e/cOyPwzSC/9qGYpKSmUKlWK9evXZ1hO1t2sRYsWXL9+nevXr3Pz5k22bdvGmjVrOHDggBRAyezaSi8n349MZvWXkHsnTpzg8OHDrF27lmLFivH777+zePFiZs2ahbq6OlWqVOHOnTv8+eef0jrGxsZS3VmgQIEM2zQwMJCrx0uXLo2BgQG9evXi5s2bNGnSBCsrK+7fv6+wTLKuUb///jutWrWSm3fnzh0GDhxIkyZNqFGjBu3btycuLo4RI0ZIy/Tu3ZtWrVpJ59zq1atZv349R48epWDBglnWsbmR3XUn86vUoT/CkydPMDc3R01NDV1dXSl3Ynqy6z+ndSikjb7p6urKjRs3uHXrFkePHmX9+vVs3rxZai0qk9N7nLyoh9KfG7K6bsqUKQq7ERcpUiRHdbKVlRWHDh0iOTlZYWqFCRMmUL16dblWkgCvXr2iV69eVKpUiXr16tGyZUuMjIzkuiLnVX2fnZwcJ4hrSxBySuTwEgThp1S3bl0GDBjAvn37uHbtmtTlb+fOnYwePZo2bdqgq6vL+/fvc3wTJusilf5B5OPHj3JJ1S0sLOSS3EPaqEAxMTHfdSQrCwsLoqOjpZYxkHZzee/ePcqUKZPpemXLluXVq1eULFlS+peUlMTChQt58+YNr1+/ZtasWRQoUEAacWzz5s34+PhkaP0CaQnDf//9d1xcXHjz5k2G+Zs3b+bRo0eYmZllmLdhwwZGjBjB7Nmz+eOPP6hWrRp+fn7S9/Pw4UMWLFjAb7/9Rv/+/dm4cSMLFizg9u3bvH//nuPHj7Nv3z5q1KjB6NGjOXDgAN26deP06dO5/jzLli2Lr6+v3Ofy9u1blixZ8kvmQypYsCAFCxbMcO56eHigpqZGiRIlKF++PP7+/nJvx318fKRWB1/K7vvIKsAru1bSJ2FOSkrCxsZG6uKqyPTp0zE1NWXixInExcUBad+lj48PRYoUkb5LAwMDFixYgLe3NyVLlkRTU5MHDx7Ibevhw4eZ7gfS8umEhISgp6cnbbdo0aIsW7aMu3fvkpCQwMKFCwkMDKRNmzbMnz+fixcvoqyszNWrV3N1bZUuXRo1NTWF34+JiclXdSEWsubv78+sWbPo0aMHzZs3p3z58owZM4a9e/dy9epVIK1bvJubm1xS+PQU1YGKyOo42UN99+7d8fb2VjjgwPHjx7l+/brCrk5bt26lTp06ODo60r9/f+rXry+VITU1lffv3zN37lwSExPp0qULDg4OHD9+nLCwMO7cuZNtHZsb2V13Qu68ffuWS5cu0b59e8qVK0dMTAyJiYlyv1GbNm3i0qVLQFqd8WUS+x07dsgFaGRWr17NvXv3aNasGdOnT+fcuXMUL15cLk2ETH7d4xQoUABjY2MCAwPljvnJkyesXLkSyL5OBujatSufPn1i9+7dGfbh7u7OiRMnpJax6e3fv58CBQqwbds2Bg8eTOPGjaXcXampqXla32cnJ8cpCELOiYCXIAg/rTFjxmBubs7s2bMxMjIC0h4WgoOD8fDwYPjw4SQmJsqNvJeVEiVK0KpVK+bOncvNmzfx9vaWSwYMaTm/Xrx4wbx58/Dx8cHd3Z0JEyZQsWLFDG9K81KDBg2oUKEC48eP586dO/j4+DB37ly8vb3l8vt8yd7enqdPnzJnzhx8fHzw9PRk/Pjx+Pn5YW5ujpGREadOnWLmzJn4+Pjg6+vLkSNHMDAwkLpO6ejo4OfnJ938DR06FHNzc3r16sXRo0cJCAjAy8uLKVOmcPToUebNm6cw4XKRIkW4ceMGr1694vXr16xYsYLz589Ln6+uri579+7FwcEBf39/vL29OX36tFTOz58/s3jxYo4ePUpQUBAeHh7cvXv3q3IXDR48mHPnzrFmzRp8fX25desWU6ZMITo6+ocNn/69+Pv7c+3aNbl/spYhu3fvZu/evfj7+3PixAnWrFnDH3/8gZ6eHu3atcPIyIgJEybw/PlzHjx4ICXxVxS8yu77kJ0Dz58/zxBELFWqFC1btmTOnDncvn0bX19fZsyYwefPn6ldu3amx6ajo8O8efMICgqSur306tWL6OhoqdzPnz9n3LhxPHr0iHLlyqGlpYWdnR2rV6/m4sWL+Pr6snjx4mwDXh06dMDAwIDRo0fz8OFDfHx8mDx5MteuXcPCwgJ1dXUePXrEjBkzePDgAUFBQbi4uBAbG4uVlVWOri0ZXV1d/vjjD1avXs3Jkyfx9/dnz5497N27F3t7+2xbhwq5k5CQwLhx4yhSpIjUjRZg4MCB1KpViylTphAeHk7btm0ZMGAAw4YNw8HBAS8vL4KDg7l58yZjx46Vui6lFxsbS1hYGGFhYbx79w4PDw8WLFhAoUKFpN+I+vXr06NHD/73v//h5OTEq1evePXqFU5OTsyaNQs7O7sM3VshrQ598eIFHh4eBAUFcfjwYek6SEhIwMDAgKtXrzJ9+nSePXtGYGAg+/fvR01NjcqVK2dbx+ZGdtedkLn050hgYCAXL15k0KBBFCtWTBpkpkKFCowbN47bt2/j7+/PwoULcXFxkYJOgwYN4sGDB6xatQo/Pz9cXV1Zt24dTZo0ybC/wMBAZs2axa1btwgODubcuXOEhIQo/O3Mr3scJSUlBg8ezK5du9i9ezcBAQFcuHCB2bNno6mpibq6erZ1MqQFAseMGcOiRYtYsmQJz58/x9fXl7179zJq1ChatGgh5QhLr3Dhwrx9+xZXV1eCg4M5f/48s2fPBtKurbys77OTk+MUBCHnRJdGQRB+WhoaGsybN4++ffty7tw5pkyZwvbt21m5ciWmpqa0adOGIkWKZHgLmpXFixezePFixo0bR0pKCn/88QcfPnyQ5letWpXNmzezcuVKOnXqhK6uLs2bN2f8+PFyzf3zmoqKClu3bmXx4sWMHDmShIQEKleuzPbt2+VyE32pWrVqbN68mVWrVtG5c2e0tbWxtrZm0qRJqKuro66uzqZNm1i2bBndu3cnOTmZatWqsW3bNuktqJ2dHYsXL+bly5ccP34cLS0tdu/ezdatW9m0aRMhISFoampSsWJFdu3aJSX8/9KSJUuYO3cuXbt2RUdHh6pVqzJnzhxmz55NSEgIpUuXxtHRkTVr1rB3716UlZWpW7cumzZtQllZmW7duhEZGcm6det48+YNBgYG2NraMmHChFx/nq1atWLFihU4OTmxYcMGDA0NpTxxP7sTJ05w4sQJuWlmZmZcvnwZdXV1duzYwYIFCyhcuDCDBw9m4MCBQFoXlc2bNzN37ly6d++OgYEBQ4cO5cmTJwrP7ey+j3LlytG4cWPGjh3L//73P7ncYAALFixgyZIljBkzhoSEBKpWrcqWLVswNjaWG+XtS/Xq1ZNyrbRt25YqVaqwe/duli1bRs+ePVFRUaF69ers3LlT6no2ZswYEhMTmT59OnFxcTRt2pRmzZpJ+XAU0dPTY/fu3SxZskQaoaxSpUps3bpVeuhcsWIFCxculEaI/e2331i6dKl0DWR1bX2ZZ2bKlCkYGRmxdOlSwsPDMTc3Z+bMmXTv3j3TMgpfZ8mSJbx8+ZKDBw/KdQtSVlZm0aJFdOzYkcmTJ7Np0yYmTZpEgwYN2L9/PyNGjCAiIgJDQ0OqVavG+vXrsbGxkdv21q1bpaT1ysrKGBoaUrNmTZYuXSrlc4S0QUeqVq3KgQMH2LJlC0lJSfz222/Mnj1bYVdrSMvzGB4eLnVRL1OmDAsWLOCvv/7i0aNHlC5dmk2bNrF48WL69+9PXFwcFSpUYOPGjVIOyazq2NwoXrx4ttedoFj6c0RNTY0iRYrQpk0b7O3tpVE/t27dioODA2PHjiUuLo7SpUuzZs0aKehUoUIF1q5dy+rVq9m0aROFChWib9++DBs2LMP+Zs2axeLFi/nrr7+IjIzEzMyMCRMmKByQJL/ucSDtBZ2Ghga7du1i0aJFFCxYkO7duzN69GggZ3UypCWb/+2339i1axcuLi7Ex8dTvHhxhg8fTq9evRR2dezbty+vX7+WXnKam5vzv//9j9WrV/Po0SMaNWqUp/V9VnJ6nIIg5IxSqkj8IAiCIAj/eUFBQfj5+UmjJkLayJmNGjViz549mQYyfwYXLlygRo0acg/ismHhFyxYkI8lEwRBEARBEL4X0aVREARBEAQ+f/7Mn3/+yZYtWwgMDOTp06fMmDEDc3Nzqlatmt/F+yZbtmxh/PjxUjev7du3c/v2bTp06JDfRRMEQRAEQRC+E9HCSxAEQRAEAM6ePcuGDRvw9fVFU1MTa2trJk6cSNGiRfO7aN8kKCiIRYsWcffuXeLj4ylTpgxDhw6lRYsW+V00QRAEQRAE4TsRAS9BEARBEARBEARBEAThlyK6NAqCIAiCIAiCIAiCIAi/FBHwEgRBEARBEARBEARBEH4pIuAlCIIgCIIgCIIgCIIg/FJEwEsQBEEQBEEQBEEQBEH4pYiAlyAIgiAIgiAIgiAIgvBLEQEvQRCEX1yzZs1o1qxZfhdDEL4rcZ4L/wXiPBf+C8R5LghCXhEBL0EQBEEQBEEQBEEQBOGXIgJegiAIgiAIgiAIgiAI/zK+vr5YWVnh4uKS30XJlcTERLZv357fxRABL0EQBEEQBEEQBEEQhH+TxMREJkyYQGxsbH4XJddOnjzJwoUL87sYIuAlCIIgCIIgCIIgCILwb+Lo6Iiurm5+F+OrpKam5ncRABHwEgRBEARBEARBEARB+Ne4e/cuzs7OLFq0KNfrdunShfnz50t/X7x4EQsLC86ePStNW7RoEf379wcgMjKSOXPm0LhxYywtLenRowfu7u7Sso6OjvTp04dx48ZRvXp15s2bR3JyMg4ODjRu3JjKlSvTqlUr9u3bB4CLiwtTpkwBwMLCQm5bP5oIeAmCIAiCIAiCIAiCIPwLfPz4kYkTJzJ9+nSKFCmS6/WbNm3KjRs3pL9v3ryJkpKSXODp6tWrNGvWjOTkZOzt7fHw8MDBwQEXFxfKlSvHwIED8fLykpa/e/cuBQsW5NixY9jZ2bF3717Onj3LihUrOHfuHH369GH27Nl4eHjQpk0bpk6dCoCbmxtWVlbf8Gl8G9V827MgCIIgCIIgCIIgCMIvqFmzZlnOv3TpksLps2fPxsrKivbt23/Vfm1sbFizZg1v3ryhSJEi3Lhxg2bNmkkBr4CAAHx9fbGxscHNzY0nT55w4sQJypUrB8CcOXN49OgRW7ZsYdWqVdJ2R48ejZ6eHgB79uxBW1ubYsWKUahQIfr06cNvv/1GqVKl0NTUlJYzMTH5qmPIKyLgJQjCDxfx97D8LsJ/yiGbtB8v8bn/WKq2HfO7CP8pRxf/BUC0x9lslhTy0n2tRvldhP+UmatPAOD65OdLYPwzu3BXPDL9SNZ2ZwCYvj0hn0vy3zK/v3p+F+Gr/GrnydGjR/Hw8ODEiRNfvY1KlSphamrKjRs3qFevHkFBQTg4ONCtWzfCwsK4evUqFSpUwMzMjNOnT6OnpycFuwCUlJSoWbMmbm5u0rQCBQpIQSyA3r17c/HiRRo3bkyFChWoX78+bdu2pUCBAl9d7u9B1N6CIAiCIAiCIAiCIAh5KLMWXFk5fPgw79+/p0mTJnLTZ82axenTp9m8eXOOtpO+W2OVKlWwtLTE1NQUd3d3XF1dpdZnmSWXT01NRVX1n3CRpqam3Hxzc3POnz/PnTt3uHHjBlevXmXTpk0sXLiQzp075/RwvzsR8BIEQRAEQRAEQRAEQchnS5cuJT4+Xm5ay5YtGT16NB06dMjxdmxsbJg0aRLKyspYW1sDYG1tzeXLl3F3d2f8+PFAWlL56OhovL29pVZeqamp3Lt3jzJlymS6/Z07d1KgQAHatm1L/fr1mThxIgMGDOD06dN07twZJSWl3B76dyGS1guCIAiCIAiCIAiCIOQzU1NTSpYsKfcP0roUmpqaApCcnExYWFiGwFh61tbWfP78mfPnz8sFvM6cOYOJiQkVK1YEoEGDBlSoUIHx48dz584dfHx8mDt3Lt7e3vTr1y/T7X/48IG5c+dy6dIlgoODuX79Os+ePZMS1GtrawPw+PHjLMv5vYmAlyAIgiAIgiAIgiAIwk/gzZs3NGjQgNOnT2e6jLq6OvXq1UNZWZlq1aoBaQGvlJQUbGxspOVUVFTYunUrFStWZOTIkXTt2pWXL1+yfft2aT1FRo4cye+//878+fOxtbVl5syZ9OzZkyFDhgBQt25dqlatSo8ePbhy5UqeHPfXUErNrNOmIAjCdyKSp+ecV0g4zg+8CYyMxkBTA9vyJWlbwTxHzYT9Pnxk+pmbrOjYGBNdLbl5PuGR7Ln/gtfvo9BWU6VRaTN+tyyLqso/70HWuD3khm9Ihu2OaVSNuiVzP0Tyf41IWp9zD1+8Yv/pywS+eYeBng6tGtSmXZN6OTrPfYPeMHXlJlZPHY2JsaHcvODQMHafuMBTHz+UlZWpWLokfTvYYlrQWFrG2y+Qfacu8dI/CE0NdapXLEevds0x1NPN68P8JYmk9V/v5bMHnD+xj9CQQHT1DLBu3JoGzdrn6LwPCfRlrcNkJsxyxKhAIbl5Tx7e4fKZg4S/e4OeviFWtRvRuGUXuVwsQu6IpPU599b/AY9u7iHqfQCa2oaUqdoGi+odMj2vk5MSeXH/GH7PrhAX8x4t3QKULN+YCjW7oKzyz+ce6H2D5/eO8vFDEOqaupgWr4Jlg75oahtKy4S/ec4jt918eOeDmroWxcrWo0q93qipaynYs/AlkbQ+733Pz3Tz5s0ULVqUNm3afLd9/ApE7f2D2NnZcefOnUzn37p1C2Nj40zn5xUXFxemTJnCixcvgLS+vZ07d2bUqFE/ZH85FRoayoYNG3B1deXdu3cYGxtTs2ZNBg4cSKVKlbJc19HRkSNHjnD58uVMl7GwsGDhwoV06dIlV+VSxMbGhuDg4Ezn165dm127dmVYTklJCW1tbSpWrMiYMWOoVasWAJMnT+bIkSNy21BVVcXIyAhra2umTJnyQ84VIf+9DIvE4YoHdc2L0K1qWV68i2Dv/eckp6TQsXLpLNcNjIhmyWUPklMyvtMIjY5lwaW7lC1oyJhG1QiO+sSBB97EfE5kUN3K0nL+ER+xNi9C6/LmcusX1tfOk+MTBICXfkEs3ryXetUq071VU577BrD7xAWSU1Lo1KxhlusGvAll0eY9JCcnZ5j3PjKKGY5bKWpSgNF9upKQmIjzmSv87bSLpROHo66mxkv/IGav3YaZqQkjenVCXU2NE1duMn3VZhaPH4qOlqaCvQrCtwvw9WbH+kVY1qhH87Y98Pd5xpmju0hOSaZJy6yT/b4NCWDH+gWkKDjvXz5/yJ5NDlhWr0erTn0IDQnk/PG9fIqJpkP3gd/rcAQBgPdvXnD9+N+UKFefytY9CQ95hpfbDlJTkqlQS/E9t6frZvyfu1KxdneMTcvwIfQVT9ydif34jlotRgIQ8OI6t84sp3SVllSp15v4TxE8urWPK4dm0LLXMlRU1YkM9+Pq4VmYFrekfrtJxH36gJfbLqIjgmncedaP/BgE4buLiYnh9OnTbNmyJb+L8q8nAl4/UOvWrZk2bZrCeUZGRj+4NGkOHTqEhoZGvuw7M8+ePWPAgAGULl2aOXPm8NtvvxEaGsqePXv4448/WLhwIe3bt8/vYkoOHTokPWx5enoyatQoDh48SJEiaS1g1NTUpGXt7e2xt7cH0pIBRkZGsnz5cgYNGsSZM2coWrQoAFZWVjg6OkrrxcfH4+npydy5c4mMjGTTpk0/6vCEfHTw4UtKGuszon5VAKqZmZCcmsLRxz60Lm+OuqpKhnWSklM4+8Kfgw9foq6iuNf6iSev0VRVZUKTGqiqKGNlBhoqymy7+5ROVUpTUEeLhKRk3nz8RJsK5pQ1Mfyehyn8xzmfvYx50SKM7J32MGRVoSwpySkcuXidNo3qop6uDpVJSkrmzPXbHDh7Ra6OTe/A2atoa2owY1hfNNTT3rCaGBvhsHUfPgEhVChdkiMXr6Otqcms4f3R1U5rAVC5bCnGLlzD8Ss36Nmm2Xc6auG/7uIpZ4oWN6d7v9EAWFSyIjklmavnXKjftC1qahlbBSQlJXHr6mkunHLO9Ly/d/MyhkYF6d5/DMrKypQtX5WY6EjcLp2kTZd+opWX8F09vr0fI5NS1LEdC0AR8+qkpCTz7O4hylm1Q0VV/rz+HBfN68cXsKzfl/I1OwFgWsISAK8bu6hS3w5NbQOe3T1MEfMa1Gz2Tw8BPaOiXHSeTIivB8XL1sP7/nE0NPWo326SXMuwO+cd+RgRjL6R2fc9eEH4gXR1ddm/fz/q6j9nq7wfSeTw+oE0NTUxMTFR+C+/RjEwNjZGR0cnX/atSFJSEmPGjKFKlSrs3LmThg0bYmZmRvXq1Vm2bBl2dnbMmDGDwMDA/C6qxNjYWPoeDQwMMkwzNDSUltXW1pamFypUiHLlyjFnzhzi4+O5cOGCtJyamprc+VG8eHE6dOhA//79uXbtGtHR0T/6MIUfLDE5mWeh76lV3FRuep0ShYlPTOZFWITC9TxDwjjs9ZJOlX+jp5WFwmUehoRjZWYi132xTsnCpKamzQMIjIwmOSWVkkb6eXREgpBRYlIST338qG1ZXm56naoViYv/zPPXAQrXu//Mm0PnXencvBG92zXPMD81NRV3r6c0rW0lBbsAypQww2n2BCqUTksAGxwaRvnfSkjBLgANdXXKlizG/afeeXGIgpBBUmIir72fULFqHbnpVays+Rwfh5/PM4XrvXhyn0tnDtLUtgutOvZRvO2kJNTUNVBW/qd+19HRJzk5iYTPcXl3EILwheSkRN4FPcasdF256cXLWJOYEEdYSMbzOjEhltJVbClaupbcdH3jYgB8inpLamoqpiWqUrpKS7ll9P5/mZjItwBUrtebhp2mywW7lJXT/j8l6d/b5U0QvpYIduWMCHj9i0RHRzNlyhRq1qyJtbU169evx87OTmrp4+LigoWF/APsl9NCQkIYN24c1tbWVKpUiUaNGuHg4EBKSorCfdrY2Ejbt7CwUPhvzZo1ACQkJODg4EDDhg2xsrKie/fuuLm5yW3vwoULtG/fnipVqtCrVy9CQjLm/8mKq6sr/v7+jB07FhWVjK1XxowZg5KSEs7OztI0Z2dnWrRogaWlJUOHDiUqKkpunbdv3zJs2DCsrKxo1KgRJ06ckJsfFxfHtGnTqF+/PlWqVKFTp06cP38+V+X+FrK3rTmptDQ0NFBSUlL42WRmy5YtNG/enMqVK2NjY8PatWtJn7rvypUrdOnSBUtLS1q0aMHKlStJSEi7MTh37hwWFhacO3dOWn78+PE0bdo0w+cs5K3Q6DiSUlIprC8fkDbVS/s7JOqTwvVKFzBgdecmdK5SBhXljIH0hKRkwj/FUeSL7epraqClpsqbj2nb9Y9IC6peeRXIsEOXsdtzltnnbvMyLPIbj0wQ/hEaHkFSUjJFChaQm174/3NsBb8LV7he6eJmrJk+li4tGqGinPFWJuxDJLFx8ZgYG7L50EkGTFtE77/msWTLPt5H/lN36eloE/YhMsP6b8M/8O694qCyIHyrD+GhJCcnUdBEPheisUlhAMLeKr53KlayNBPnrqNpq64oZ3IfULeRLe/D3nL94nHiYj8R4OuN25WTWFSqjraOXt4eiCCk8ynqLSnJSegZyp/Xuv//d/SHoAzr6BqYUsNmSIbWV8E+t1FWUUXPyAwlJSWqNRqAWenaXyzjDoBBgRIAaOsWwLCgOQBJifG8DXjIo5t7KFi0PIYmpfLkGAVB+PmIds3/IqNHjyYkJIT169ejra3N/Pnzefz4MbVr185+5f83bNgwTExM2LZtGzo6Oly6dImFCxdiZWVF8+YZ34Kn92XwasGCBXh4eNCtWzcApkyZgo+PD0uXLsXU1JQrV64wdOhQ1qxZQ5MmTbh//z6jRo1i5MiRtG3bFg8PD+bNm5erz8DT01PKa6WIpqYm1atX5969ewCcPHmSuXPnMnXqVOrVq8eFCxdYsWKF1J0wKSmJQYMGoaury+7du0lISGDOnDly21y1ahUvXrxg48aN6Ovrc/DgQcaNG8e5c+coVqxYrsqfW6GhoSxYsABtbW0aN26c6XKpqal4enqyY8cOWrZsKQ3zmp3Lly/j5OTEihUrKFWqFA8ePGDixIkUK1aMjh07cu3aNcaOHcuUKVOoV68eAQEBzJs3D19fX1atWoWtrS0dO3Zk3rx51K1bl+vXr3PmzBl27twptWYTvo+4xCQAtNXkq2kttbSHnNjERIXrGWtnnXMo9v+3q6WWsfrXUlOR9usf8RGA+KRkRjWoSnRCIscfv2beBXfmt7amhGj5JeSBuPjPAGhpynet19JQl5v/pQKGWZ9/UTFpgds9Jy9QurgZY/v+TlT0J/adusSctdtZMmEYmhrqNK1jhZPzcbYfOUMHmwYoKcFp19sEh4aRpCA/kiDkhfj4WAA0tOQTaWtopP39+f/nf8nAsIDC6emVtqhCo+YdOH1kJ6eP7ASgaDFz/ug/5luKLAjZSkxIO29VNeTvUVX/P2F8YkLOWhgGvbqN37OrlKnaBnVNxYOHREe+4eH1HRiZlKJIqRpy81JTUznq1I/kpAQ0NPWo3mRwbg9FEIRfiAh4/UAnTpyQaykj07x5c4YMGcLNmzfZtm2blLx85cqVNGuW8/wh8fHxdOzYkdatW0sBn/79+7Np0yZevHiRbcDLxMRE+v/t27dz5coV9uzZg6mpKf7+/pw8eZKjR49SoUIFAAYMGMDz58/ZsmULTZo0Yffu3VSvXp2RI9MSTJYqVQpvb2927tyZ42OIiopCX18/yy6ehoaGBAWlvSXatWsXbdq0oXfv3gD8+eefPHjwgOfPnwNpgwG8fPmSCxcuUKJE2hughQsX0qlTJ2l7AQEB6OjoULx4cfT19aUE8t8joOPk5MTWrVuBtGBcQkICpUuXZuXKlVL+LgAPDw+srKykvz9//oyxsTFt2rRh7NixOd5fQEAA6urqmJmZUbRoUYoWLUqhQoWkfW3YsIHu3bvTo0cPAEqUKMGcOXPo168fQUFBFCtWjJkzZ9K+fXumT5/O7du3GT58ODVr1syDT0PISko2A+gqf2U36OwG5pVt1bZ8SaoXK0TVov/UC5ULF2DcUVeOPPJhTCMrxRsQhFxISVXc+lhGWUErxZyQ5VU00NXlL/se0m9KkYIFmLZqE9fvedGiXk2a1a1BXPxnDpy9wulrt1FSUqJu1Yo0t67BlTueX7VvQchOaiat7mWUFLRazKmj+zdy79YVmrbqShmLKkR8COPSqQNsWzufQWNmo67+78rbKvw6UrOpz5WUsj+vg17e4vbZFRQsWoGqDfoqXObjhyBcj8xBWVkF67Z/ZXhmSE1JpkGHqSQnJfD87mEuH5xGs+4LRCsvQfiPEgGvH8jGxoYJEyZkmK6trY2HhwcAlpaW0nRTU1PMzc1zvH1NTU369OnD2bNn8fLywt/fnxcvXhAeHp5pl0ZFLl++jIODAytWrJBGRHz69CkAvXr1kls2MTERff20N+3e3t7Ur19fbr6VlVWuAl5GRkbExMRkuczHjx+lUQq9vb1p27Zthn3KAl7e3t4YGBhIwS6AChUqoKn5TyuYwYMHM3ToUKytrbG0tKR+/fq0b98ePb28b/rfo0cP7OzsAFBWVsbQ0FDhfipXrszSpUsB8PHxYd68eZQvX54xY8bkuHUXQIcOHTh8+DC2traUKVOGevXqYWtrKwW8nj59ipeXF4cOHZLWkQVEfHx8KFasGLq6uixcuJB+/fpRqVIlhg0bpnBfQt7SUU+rnmUtrmRiM2n5lVOyll3xSUkZ5sUmJqH9//stqq9LUX35N6s66mqUMzGSujsKwrfS/v9REOM+y+dXic2k5VdOaf7/YCzVKpSRexgqa14MbS1N/ILfStPaNalHqwZ1CH3/AV0dbQx0dVizx0Uur5cg5CVN7bQu5Qnx8XLTZS27NDW/7tyLinzP3RsXadKyMy3b95SmFy9ZlhXzx+Jx8zL1mrT+ylILQtbUNNLO66QvWnIlfk47r9XUsz6vX9w/zsPr2zEpVpkG7adkSHAP8C7wMTdOLUZVTZMmXedm6D4JoKyiSuESaYP9mJhV5NTWIXh7nqR2y+8zIr0gCP9uIuD1A+no6FCyZMksl/kyMJVdXqf0Q7HHxsbSp08f4uPjadWqFZ07d8bS0lJq/ZQTz549Y/z48YwePZqWLf9JDikLguzZsydDkntZYlQlJaUM5c9sFKHM1KhRAycnJ549eya1JEvv8+fPPHz4UOpmCRk/s/T7VFQmQG6UIisrK1xdXblx4wa3bt3i6NGjrF+/ns2bN2NtbZ2r8mfHwMAg23MA0oKXsuVKlixJiRIl6NatG//73//YsGFDjgc5MDY25tixY3h6enLjxg3c3NzYuXOn1PU0JSWFQYMG0blzxiHQ07f4e/z4Maqqqvj6+hISEkLx4sVzeMTC1yqkq42ykhKh0fJdW2R/mxkobuafHU01VYy1NXj7UX67H+M/E5+YLG33lt8bdNTVsCxaUG65hOQU9DVFkkwhb5gWMEJZWZnQ8A9y09/+/9/FTE0UrZatwgWNUVJSIikpY7fElJQU1P8/8PsqIJj3EVHUqVoRs3T7eh30hlLFMj5ICUJeMC5oirKyMu/D3spNl/1dqPDXpVOI/BBOamoqJUvL3z8VKlIMbR1d3r399wz4I/x6dA0Ko6SkLCWRl4mJegOAvrHie8fU1FQ8Xbfw8sEpSlg0oE7LMXKJ52UCXlzH/fxq9I3MaNhpBtq68l18g1/fRU1dm0LFKknT1DV00DUsTNwnkZNREP6rRNL6fwlZzqr79+9L02JiYvD19ZX+lgVy0reA8vPzk/7fzc2NJ0+esHPnTkaPHk2bNm3Q1dXl/fv32XZjgrR8UkOGDKFly5YMGTJEbl7ZsmUBCAsLo2TJktI/FxcXXFxcAChfvjyenvJdQB4/fpyTw5c0aNCAcuXKsXTpUrlgnoyTkxOfP3+me/fuQFprrfSfGcCjR4+k/69QoQLR0dG8fPlSmubn5yf3Ga5evZp79+7RrFkzpk+fzrlz5yhevLjC7qf5pUyZMkyYMIGrV6+yf//+HK93/Phx9u3bR40aNRg9ejQHDhygW7dunD59Gkj7Xn19feW+07dv37JkyRI+fUrLgfP8+XNWrVrFnDlzqFSpEhMnTsxVi0Hh66irqlDB1Ig7AaFy1++dgLdoq6tSuqDhV2+7SpGC3A9+R2K6a8zd/y3KSkpUKpx2A3npZQCb3R+TlPzPd/0hNh7vsAgqmRp/9b4FIT11NTUqli6Ju9dT+fPc6xnaWpqUKfF1w8hraqhT4be07Sama834yPs18Z8TKP9b2guFZz5+OO5x4VPcPy1tvF74EPT2HbUql8+wXUHIC2pq6pQqU5HHD27LnfePH9xGU0uHYuZlv2q7BUwKo6ysjN+rp3LTw0JDiP0Ug3EB00zWFIRvp6KqjkmxSgS9uiV3Xge9uo26hg7GhRWf149u7Oblg1NYVO9A3Vb/UxjsCvG9x+2zKylY2AKbbgsyBLsAvD1PcO/yBrkuw7HR4US9D8SwYPYvmwVB+DWJgNcPFB8fT1hYmMJ/RYoUoU2bNsydO5cbN27w8uVLJk6cSGzsP60wqlWrhpKSEo6OjgQFBXHmzBmOHDkizS9cOG10n+PHjxMcHIyHhwfDhw8nMTFRGnUvM7GxsQwdOpSiRYsyfvx4wsPDpbJFRkZStmxZmjZtyqxZs7h8+TKBgYFs2rQJJycnqbugvb09z58/Z/Hixfj6+nL8+HF2796dq89IRUWFlStX8urVK/r164ebmxtv3rzBy8uL6dOns3HjRubOnSu1fvrzzz+5cOECmzdvxs/Pj127dskFqurUqUPVqlWZOHEiDx484NGjR0ycOFFuuO7AwEBmzZrFrVu3CA4O5ty5c4SEhMjl0Po36NWrFzVr1mTp0qWEhobmaJ3Pnz+zePFijh49SlBQEB4eHty9e1c6tsGDB3Pu3DnWrFmDr68vt27dYsqUKURHR2NiYkJCQgITJ06kdu3a/P7778yfP5+nT5+yadOm73mowv/rXKUMPu8jWXXtAQ+CwzjwwJuTT33pWLk0GqoqxCYk8jIsko+ZJPbOTPtKv/ExPoHFlz24H/SOU0992XXvOc3KFqegjpa07/BPcSy9eo8HwWHc8A1h/oU76Gqo0aaiyIMh5J0uLRrzKiCYFTsO4vnsJftPX+b4lRt0bt4QDXV1YuPjeekXJCWiz6le7ZoT8TGahRt34/nsJVfveLJq1yHKlixGrcppoxs3qGGJuroay7cfwOuFD5fd77N8+wEsSpWgUc2q3+NwBQGApq26EuT/ir1blvHiiSfnT+zj+sXjNLHtjLq6BvFxsQT4ehMTnfMRkXX1DKjftC3XLh3n3LE9+Lx4xL3bV9i2Zh5GxibUqp91LldB+FYVa3fjQ+hLbp1eyhu/+zy6uZcX945SoVZXVNU0SPwcy/s3L4iPTTuvI9695vm9IxiblqF42Xp8eOvN+zcvpH+Jn2NJTkrA4+I61NS1qFCnGx8/BMotExsdLu07OiKEm6eX8tb/Af7PXbnqMgt1DV0sanTMz49FEIR8pJSak6Y/wjezs7Pjzp07mc5ftWoVTZs2xcHBgePHj5Oamsoff/zBqVOn6NKlC6NGpfU7d3Z2xsnJibCwMGrUqEGnTp2YNGkSL168ANKSzW/fvp0PHz5gampKmzZtCAoKIjw8nB07duDi4sKUKVOk5W1sbOjcuTO1a9emb1/FySFr167Nrl27iIuLY8WKFZw+fZqoqChKlCiBvb09Xbt2lZa9desWDg4OvHz5krJly9K6dWuWLl0q7S+nPnz4wObNm7l06RJv3rxBX1+fOnXqYG9vL+UVkzl9+rQUBKxWrRpWVlacPHmSy5cvAxAREcH8+fO5cuUKmpqaDBkyhI0bNzJ+/Hi6dOlCTEwMixcv5sqVK0RGRmJmZkbv3r0z/Tyy4u7uTt++fbl06VKGER5ln7Xsu8zM5MmTCQ4OZteuXRnm+fr60rFjR+rXr8/69etzVKZNmzZx8OBB3rx5g4GBAba2tkyYMAGt/x8d6syZMzg5OfHq1SsMDQ2lXHP6+vosXrwYZ2dnTp06JQ2EsGXLFlasWMHBgwcVdjvNiYi/RR6wnLoT8JbDXq8IiYrBSFuTlhYlaff/Aaenb98z78IdhtarQuPSGbvAuPoEseHmI1Z3boKJrnzujGehH9h7/wX+ER/R01CjQSkzulUti6rKP8Hgx2/COeT1ioCIaJSUoGpRE3pVt5CCYkLWVG3FDXZOuXs94+C5K4S8C8fYQB/b+rVo3zQtJ+STV77MWbud4T070aR2xhcRV+94sm7fUdbOGIeJsaHcvBe+Aew/fZmX/kGoq6tRq3J5+na0RUfrnzyOPoEh7Dp2jtdBIehoaVHHsgJ/tLb56vxh/zX3tRrldxF+Wk8euHPx9AHC3gajb2iMdaNWNGzeAYDX3o/ZtGo2v9uNoEbdphnWvXf7Cod2rWXi3HUYFSgkTU9NTeXGlVO4Xz9PxPt36BsYUaZCVVq274munhhd+WtduCuywORU0KvbPLm9n48RwWjpFKBM1daU//+A07vAx1w5PIPaLUdRqqINj2/t44n7gUy31bTrPFJJ5erhmZkuU6nOH1S2Tht8KTTwEU9u7SMy3A8lZRUKl6xG1Qb90NYrmOn6wj/m9/85U1ZM3551w4789LN+pr8SEfD6l8tpkEQQfiYi4CX8F4iAl/BfIAJewn+BCHgJ/wU/a3BGBLyErIgujYIgCIIgCIIgCIIgCMIvRbyuEH6I0NBQWrVqleUyVapUYefOnT+oRDlTs2ZNhcnzZQoUKMDFixd/YIn+8W8umyAIgiAIgiAIgiDkJxHw+peT5aH62RUsWJCjR49muYyGxr8vX4qLi0uWI1yqqKj8wNLI+zeXTRAEQRAEQRAEQRDykwh4CT+EioqKNLLiz0Q2AuW/0b+5bIIgCIIgCIIgCIKQn0QOL0EQBEEQBEEQBEEQBOGXIgJegiAIgiAIgiAIgiAIwi9FBLwEQRAEQRAEQRAEQRCEX4rI4SUIwg+natsxv4sgCN/d4sc2+V0EQfjuxgePye8iCML312lZfpdAEH4A9fwugCDkOdHCSxAEQRAEQRAEQRAEQfiliICXIAiCIAiCIAiCIAiC8EsRAS9BEARBEARBEARBEAThlyICXoIgCIIgCIIgCIIgCMIvRQS8BEEQBEEQBEEQBEEQhF+KGKUxj9nZ2XHnzp1M59+6dQtjY+PvXg4XFxemTJnCixcvALCxsaFz586MGjXqh+wvp0JDQ9mwYQOurq68e/cOY2NjatasycCBA6lUqVKW6zo6OnLkyBEuX76c6TIWFhYsXLiQLl265KpcitjY2BAcHJzp/Nq1a7Nr164MyykpKaGtrU3FihUZM2YMtWrVAmDy5MkcOXJEbhuqqqoYGRlhbW3NlClTfsi5IvxcHr54xf7Tlwl88w4DPR1aNahNuyb1UFJSynZd36A3TF25idVTR2NibCg3786jZxw+78qbsPcY6unSsGZVOjdriKqqync6EkH4x1v/Bzy6uYeo9wFoahtSpmobLKp3yPS8Tk5K5MX9Y/g9u0JczHu0dAtQsnxjKtTsgrLKP7c2JzYPIjbmfYb1Ow3ZgYaWPgChgY94etuZyHA/lFXUKFi0ApYN7NAzLPJ9Dlb4z/IKCcf5gTeBkdEYaGpgW74kbSuY56j+9vvwkelnbrKiY2NMdLXk5gVHxbD3/guehr5HRUmZCqZG9KlRAVM9bWmZTwmJOHt6cyfgLfFJyRQ31KOHVTkqFS6Q58cp/Le9fPaA8yf2ERoSiK6eAdaNW9OgWfscnechgb6sdZjMhFmOGBUoJDfv3u0rXL94nPdhb9EzMKJG3aY0se2Ciso/9ynv3gRx5uguXr98goqKCqXLVca2Yx8KFhL1uSD8V4mA13fQunVrpk2bpnCekZHRDy5NmkOHDqGhoZEv+87Ms2fPGDBgAKVLl2bOnDn89ttvhIaGsmfPHv744w8WLlxI+/bt87uYkkOHDpGcnAyAp6cno0aN4uDBgxQpkvYjqqamJi1rb2+Pvb09AKmpqURGRrJ8+XIGDRrEmTNnKFq0KABWVlY4OjpK68XHx+Pp6cncuXOJjIxk06ZNP+rwhJ/AS78gFm/eS71qleneqinPfQPYfeICySkpdGrWMMt1A96EsmjzHukcTs/rhQ/LtjlTz6oyvdu1IPDtO/adukT0p1jsu7T5XocjCAC8f/OC68f/pkS5+lS27kl4yDO83HaQmpJMhVqKX1Z4um7G/7krFWt3x9i0DB9CX/HE3ZnYj++o1WIkAJ/jPhIb856qDftjUrS83PpqGjoAhIc8w9VlNmal61Cn1TiSE+N5eucglw9MpZXdKikoJgjf6mVYJA5XPKhrXoRuVcvy4l0Ee+8/JzklhY6VS2e5bmBENEsue5Cckpph3vtPccw+d5si+jqMalCNhKRkDjx8ycJLd1nSrgHqqiqkpKSy6JIH7z/F0at6eQy01DnzzI/Flz2Y39qaEkbiPBfyRoCvNzvWL8KyRj2at+2Bv88zzhzdRXJKMk1ads5y3bchAexYv4AUBfcpN66c4uShbVS2qkvrzn35FBPFxZPOvA32o/fgvwD4EB7KhuXT0NTSoUP3gejqGeJx8yLrl05h5KQlGQJogiD8N4iA13egqamJiYlJfhdDzr+tpVBSUhJjxoyhSpUqbNiwQXo7Y2ZmRvXq1SlUqBAzZsygWrVqFC9ePJ9Lmyb9Z2hgYCBNU/Rda2try00vVKgQc+bMoVGjRly4cIF+/foBaUGyL9cvXrw4AQEBODo6Eh0djZ6e3vc4HOEn5Hz2MuZFizCyd1oQwKpCWVKSUzhy8TptGtVFPV3QVSYpKZkz129z4OwVuaBselfueFLQyIBRvbugrKyMpUVpIqNjOOV6i74dbEUrL+G7enx7P0YmpahjOxaAIubVSUlJ5tndQ5SzaoeKqrrc8p/jonn9+AKW9ftSvmYnAExLWALgdWMXVerboaltQESYLwBmpWtn2lrrmccRDAoUp17bv6TWBwWLVuDElkH4Pr1C+Rodv8MRC/9FBx++pKSxPiPqVwWgmpkJyakpHH3sQ+vy5qgrqGeTklM4+8Kfgw9foq6iOAvJIa9XaKmpMq15bTT+fxsmulosu3ofn/dRVDA15oZfCL4foljQpp4U3KpQyJhJJ93wevNeBLyEPHPxlDNFi5vTvd9oACwqWZGckszVcy7Ub9oWNTX1DOskJSVx6+ppLpxyVnifkpKSwuUzBylT3pLegyZI04sW/41Vf/+Pl88fUrZ8VW5cOUViQgIjJi2mQMHCAJSrWI11DpM5d3wvPQaM/T4HLQjCv5rI4ZUPoqOjmTJlCjVr1sTa2pr169djZ2cntfRxcXHBwsJCbp0vp4WEhDBu3Disra2pVKkSjRo1wsHBgZSUFIX7tLGxkbZvYWGh8N+aNWsASEhIwMHBgYYNG2JlZUX37t1xc3OT296FCxdo3749VapUoVevXoSEhOTqM3B1dcXf35+xY8fKNUWWGTNmDEpKSjg7O0vTnJ2dadGiBZaWlgwdOpSoqCi5dd6+fcuwYcOwsrKiUaNGnDhxQm5+XFwc06ZNo379+lSpUoVOnTpx/vz5XJX7W6iqpsWX1dUz/th/SUNDAyUlJYWfjSLu7u5UrFiRjRs3UqdOHbp06UJKSgoeHh707duX6tWrU7lyZVq3bs2xY8fk1j1+/DgdOnTA0tKSZs2asWPHDmledHQ0M2bMoG7dutSoUYO+ffvy6NGjXBy1kFcSk5J46uNHbUv5lip1qlYkLv4zz18HKFzv/jNvDp13pXPzRvRu1zzTbaurqaGs/M9Pgr6ONklJycR9/px3ByEIX0hOSuRd0GPMSteVm168jDWJCXGEhTzLsE5iQiylq9hStHQtuen6xsUA+BT1FoDIMD/U1P+PvTsPj+n6Hzj+zj7Zd4lsaEKEJMQesSX2qLWlaim167d2X61Wq5Y21egPpV8iWntLaaTWEhJqSWhIELIhi6ySkMi+zu+PkWFMQqitnNfzeB5z7jn3nju5uZn53HM+Rxs9Q8taj29q2YTGbm8rTLXR1jNBQ0uXgrz0pz4vQXhQeWUl0Zk5tLW1UChvb2dJSXklsVl3amwXkZbF75fiGeT8Fu+7OSptl0qlnEvOoJuDjTzYBWBvZsT/3vXCyUL2oO5sUgZO9UwUAlua6mqsGNSVt5s1ehanKAhUlJdzI+4KzVq0Vyh3cXOntKSYxOvK93OA2CsXOHZoF569h9Bn4Cil7QX5uRQVFuDk0kah3NLKDl09fWKjLgBwKyOFepbW8mAXyNKKNHJoRuyViH96eoIg/EuJEV4vwfTp00lLS2Pt2rXo6OiwdOlSoqKiaNeuXZ33MXXqVMzNzdm4cSO6urocO3YMHx8f3Nzc6NGj5i+11R4OXn3zzTeEh4czdOhQAObPn8/169dZvnw5FhYWhISEMGXKFNasWUO3bt24cOEC06ZN4+OPP6Zfv36Eh4ezZMmSJ3oPIiIi5HmtaiKRSGjVqhXnz58HYP/+/SxevJjPPvuMjh07EhQUxIoVK+TTCSsqKpgwYQJ6enps27aNsrIyFi1apLDPVatWERsby/r16zEwMGDXrl3MmjWLw4cPY2Nj80T9f1KZmZl888036Ojo0LVr11rrSaVSIiIi2Lx5M7169UJHR6fWug+rrKzkxIkT7Ny5k+LiYrKyshg/fjyjRo1iyZIllJeX4+/vLw/6mZmZcfDgQT755BPmzp1L9+7duXLlCp9++in6+voMHjyYiRMnIpFI8PPzQ09Pjz/++IP333+f3377rdafnfB8ZGbfoaKikvpmivlWLM1kX2hSb2Xj6qg8Lcbe1po1C2air6vD8XM1f+Dr7dEOH/9t7As5jVeH1qRlZnPgRBhuzZqgr1v3a1AQnlRhXgZVlRVKI7D07r3Ov52CpV0LxW2GFrT2mqy0r9TrYaiqqaNvbA1AbtYNNCX6nDngS2byRaTSKuo3bI1b13Fo68l+b5q1e1dpP7dSrlBWUoChyasxulj498vML6aiSoqlga5CuYW+7HVaXiEu9c2U2tmbGvLD4G7oa2ly4nqK0vaswmKKyiow19Xm57NXOJOYTlllJa71zfiwXTNMdWW5vhLv3KWNrQUHoxM4FJ3EneIS7Iz1Gd3aSR4UE4R/6nZ2JpWVFZiZK97PTcxlAaisjDQaN22h1M6mgT3zFv8PHV19zoeFKG2XaOuiqqbGnZwshfKiogKKiwq5nZ0JgK6uPplpyVRUVMgfMsv6dYuS4kKKCvPR0RWzJgThTSMCXs/Bvn37OHz4sFJ5jx49mDx5MmfOnGHjxo3y5OUrV66ke/fudd5/SUkJAwcOpG/fvvKAz9ixY/H39yc2NvaxAa8Hp9Bt2rSJkJAQtm/fjoWFBUlJSezfv5/AwECcnJwA+PDDD4mJieGnn36iW7dubNu2jVatWvHxx7I8KY0aNSIuLo4tW7bU+Rzy8vIwMDB4ZAJLIyMjUlJkH/C2bt2Kt7c3I0eOBGDSpElERkYSExMDyBYDiI+PJygoCDs7OwB8fHwYNGiQfH/Jycno6upia2uLgYGBPIF89fTEZ8nPz4+ff/4ZkAXjysrKsLe3Z+XKlfL8XQDh4eG4ubnJX5eWlmJiYoK3tzczZ8584uOOGzeOhg0bArLznTZtGuPHj5e/z5MmTSIwMJDExETMzMzYvHkz3t7ejB8/HoCGDRtSWFiIRCIhLCyMyMhIwsLCMDIyAmD27NlcuHCBLVu28O233z7FOyM8reIS2UgrbYliLj5tLU2F7Q8zNXr8VBXnxo3o7+nB1r1H2LpXNuqxoXV9po965590WRAeq7ysCAB1LcXAqrqm9r3txXXaT8q1MBKjj+PQwhtNiR4AuVkJFBfk8JZzT5q4vc3d2zeJCt1ByO4F9Br5f6hrSJT2U1p8l/CjP6Kta0LDZl7/5NQEQa64vAIAHQ3Fj93aGrJRWUXl5TW2M9FRvkYfdLekDIBfL8Tylqkh0zu3JK+klB0RcSwJOse3/TyQaKhzt6SMc0kZ6GiqM7K1I1rqauyNuoHPsb9FDi/hmSkpkd3PtbQVF1XQ0pK9Lr23/WGGRo9eOEFTUwvXVh0JPXEIi/o2NGvZnsL8u+zf9TOqqmqUlZYA0LqjFxfPn2b3ltX0HPA+2tq6XDh7grirsod9ZWWlIuAlCG8gEfB6Dry8vJg7d65SuY6ODuHh4QC4urrKyy0sLORBirqQSCSMGjWKP//8k0uXLpGUlERsbCzZ2dm1TmmsSXBwML6+vqxYsUK+IuLVq1cBGDFihELd8vJyDAxkH4ji4uLw8PBQ2O7m5vZEAS9jY2MKCgoeWefu3bvyvFlxcXH069dP6ZjVAa+4uDgMDQ3lwS4AJycnJJL7HxYnTpzIlClTcHd3x9XVFQ8PD/r37/9ccmQNHz6c0aNHA6CqqoqRkVGNx3F2dmb58uUAXL9+nSVLltC0aVNmzJjxRKO7qj14HdnZ2TFkyBC2bNlCXFwcycnJ8verOnF5Te/rsGHDANiwYQNSqRRPT0+F7WVlZZSKaW4vXJX00b/bqqqPX/2oNv679nP87wiG9OyKS5NGZN3OZdfh43zjt5UvPxqDVh2m4QrC05A+5rpWUXl85oWU+FDC/lyBmZUTLTp9IC9v0+MjVFXUMLFsDIC5dTMMTe049ttnJF4NwaFFX4X9FBfc5q/AxRQX3qHbkK/Q0FT80iYIT6tKqpxs/kGqdVi9riYV9z7zGWhrMqdbK/nDLUt9Xb78M5RTCWn0aGJHZZWUgrJylvR1l4/6alrPhJmBJwiMusH0zi2f6viC8CDpY76DqKg+fSadQe9PRl1dg4Bf1vH79rVoaGjStddgSkuL0dCUPQhs3LQFw8ZM58DvG7m48DQADk1d6dprMEcP7ERT89VavEsQhBdDBLyeA11dXRo0aPDIOg8Hph6X1+nBldWKiooYNWoUJSUl9OnTh8GDB+Pq6iof/VQX0dHRzJkzh+nTp9OrVy95ufTeh7Lt27ejq6s49L46v4+KiopS/2tLhl2b1q1b4+fnR3R0tHwk2YNKS0u5ePGifJolKL9nDx6zpj4BCkOa3dzcOHHiBKdPnyY0NJTAwEDWrl3Lhg0bcHd3f6L+P46hoeFjrwGQBS+r6zVo0AA7OzuGDh3K7NmzWbduXZ2WcH7QgytxXrt2jREjRtC8eXM6duxIr169MDY2VnhPH3x/HlZVVYWenh4BAQFK2+qSh0x4tnS0ZcHb4tIyhfKiWkZ+1VVO7l2OhZ1nUI/ODPe+P6LFwc6G2cvWEHw2gr6d2z9iD4Lw9KpXS6x4aCRXealsJMDjgk6xF/Zy8eQmzG2c6dR/vkKCe7P6TZXqm1k5oamlS252okJ5bnYiJ//4horyYroO/hLT+sr5kgThaelqyv7WVo/0qlZUy8ivutK+9ze8pZW5wueFxuZG6Giqk3TnLgASDTWsDfXkwS4AbQ11GpsZyesIwj8l0ZHdz8tKShTKq0d2SSRP/xBBS0vCO6M+4u2h48i9nYWRiTlaWhL+PnMUU/P7Obvc2nWhRZtO3M7ORENTE0MjU4L270BFRQWJtu4jjiAIwutKJK1/warzHl24cEFeVlBQQEJCgvx1dSDnwRFQiYmJ8v+fOnWKK1eusGXLFqZPn463tzd6enrk5OTIA1aPkpmZyeTJk+nVqxeTJyvmQWncWPYkPCsriwYNGsj/BQQEyAMfTZs2JSJCMRdQVFRUXU5frlOnTjRp0oTly5crBPOq+fn5UVpaKh9t5OTkpPCeAQrJ052cnMjPzyc+Pl5elpiYqPAe/vDDD5w/f57u3buzYMECDh8+jK2tbY3TT18WBwcH5s6dy/Hjx9mxY8c/2teOHTswNTVl48aNTJw4ka5du5KdnQ3cD2za29srJaH38fFh+vTpNGnShIKCAsrLyxWuBX9/f44dO/aP+iY8OQtTY1RVVcnMvq1QnnHvtY3F060Mm5Obh1QqpWkjO4VyG0tz9HR1SMnIqqWlIPxzeoaWqKioUpCboVBenTDeoJY8WlKplAvHNxD510Zsm3jQddCXCsGxstJCblw5Sl52klK7yspytLTvT2XPvHmZ4N8+B6R4Df0aMyvlhzCC8E/U09NBVUWFzHzFKV3Vr60N9Z5qvxb6OqioQHml8gO/yiopGvcWvrHU1625jlSKRi2rPwrCkzIxs0BVVZWcLMX7efXrepZPny835vJ5kq7HoKUlwaK+LVpaEgry87ibexsr27cAuJWewoWzx1FVVcWsXn35VMm0mwnUt26gsDCPIAhvDvGb/xyUlJSQlZVV47/69evj7e3N4sWLOX36NPHx8cybN4+iovsfglq2bImKigqrV68mJSWFQ4cOsWfPHvl2S0vZk4y9e/eSmppKeHg4H330EeXl5ZSVlSn150FFRUVMmTIFKysr5syZQ3Z2trxvubm5NG7cGE9PTxYuXEhwcDA3b97E398fPz8/+XTBcePGERMTw7Jly0hISGDv3r1s27btid4jNTU1Vq5cybVr1xgzZgynTp0iPT2dS5cusWDBAtavX8/ixYvlo58mTZpEUFAQGzZsIDExka1btyoEqtq3b0+LFi2YN28ekZGRXL58mXnz5in8cbt58yYLFy4kNDSU1NRUDh8+TFpamkIOrVfBiBEjaNOmDcuXLyczM/Op92NpaUlGRgYnTpwgNTWVI0eO8NVXXwHIr5NJkyZx8OBBtm7dSnJyMvv27ePXX3/Fy8uLzp074+TkxKxZswgLCyMpKQkfHx8CAgKwt1dOji48X5oaGjSzb8DZS1cVAtvnLkWjoy3Bwc76qfZrYWaCqqoq0TcUAwNpt7IpKCzCwtT4H/VbEB5FTV0Tc5vmpFwLVbiuU66FoamlK5+O+LDLp7cRH3kAx1YD6NBnNqpqiiNk1NQ0uBDiT/TfvyuUp904R2VFGfVsXQC4c+sGp/Z+jY6+KT3eW4ahqWLgVxCeBU11NZwsjDmXnKl4/06W5dWyNzN6qv1KNNRpWs+Ec8mZlD/w8DAqPZvSikqa1pPdv92szUm6c5eU3PsPAfNLy4jLukPTeiJpvfBsaGho0sihGVGRYQrXeVRkGBJtXWwa1nw/r4uzp45wIGCzQtnp4P2oqKrS1LkVAJnpN9m1ZQ1ZmfdXjr+VnkJcdCTNWtR9YTBBEF4vYkrjc3Do0CEOHTpU47ZVq1bx7bff4uvry6xZs5BKpbz33ntER99fqtfW1pZFixbh5+fHL7/8QuvWrZk3bx6ffPIJIMv/NX/+fDZt2sTKlSuxsLDA29ub+vXrK43Wedjly5flebo6d+6ssK1du3Zs3bqVFStWsGLFCr788kvy8vKws7Pj66+/ZvDgwYBsNJW/vz++vr5s27aNxo0bM2XKFHkuqrqyt7dnz549bNiwgSVLlpCeno6BgQHt27dn586d8rxiAN26deP7779n9erVrFq1ipYtWzJu3Dj2798PyKZb+vn5sXTpUsaNG4dEImHy5MmkpqbK97Fw4UKWLVvGf//7X3Jzc7G2tmbu3LkMHDjwifr9vKmoqLB06VIGDhzIV199xdq1a59qPx988AE3btxg3rx5lJWV0bBhQ2bPns0PP/zA5cuX6dKlC15eXixevBh/f3+WLVuGtbU18+fPlyf7//nnn/H19WXmzJkUFxdjb2/PmjVrnvkUUKFuhvTsypK1m1mxeRee7d2ITbjJ3pDTjHi7B1qamhSVlJCakU09M2MM9eo2dN9QT5d+XTuwL+QMAK5N7Mm+I8vhZW5iRHf31s/zlASBZu2GciJgIaEHl9OoeXey02KIPR+Iq8do1DW0KC8t4u7tm+gaWiLRMeTOrRvEnN+DiYUDto07cjsjTmF/Bia2aGjp4NT2HaJCf0VLx4j6jVqTl53ElbCdWL/VDot7Aa+/g9ZQVVWJc4f3KcrPoij//ohGTW0DpdUjBeFpDXZx4Ouj51j1VyTdHGyIy7rD/qsJDHeTJZEvKisnNa8QC31tDJ5givpwtyYsOXKWZcHhvN3sLfJKSvnlQiwOZka0sbEAoE/Thhy/nsJ3IeEMb9kETXU19ly+DkD/Zo2ey/kKbybPPu/w0+rF/PLT97Rx707SjRhOHt1L74Ej0dTUoqS4iFsZKZiYWaCnX/dFozp268vPa5ayf/cmnFxacz32MseP7KFrr0GY3lsV0tG5FabmluzYuIKeb79PaUkRhwK3YmJqgYfn28/rlAVBeMWpSOsyB0547ry8vBg8eDDTpk172V0RhOcuP/zPl92Ff62zl6LZdTiEtFvZmBga0NujLf09ZYtIXLmWwKIfN/HR+4Po1k555OLxcxH879dAfvxiFuYmRvJyqVTKwb/CCDoTzq3bdzA20MfV0Z7h3t3rHDgTlC2LEqv81VXKtTCuhO3g7p1UtHVNcWjRl6atZQ8jbt2MIuT3L2jXaxqNmnkRFforV87+Vuu+PN9ZQj1bZ6RSKdcv/cm1S4coyMtES6KPXdMuOHcYjpq6JgV5GRzYOLXW/TRq5km7XtOf+bm+buakznjZXfjXOJecwe+XrpGWV4CxjoRejg14+17A6WpGDkuCzjGlowtd7ZWnfp24nsK6M5f5YXA3zPUUcyHF3rrDb5FxxGfnoqWuRhtbC0a1boqu5v1cpzmFxfwSEcvF1GwqqqpwrGfM6NZNsTESq9bVxaVB37/sLvxrXIk8y9GDv5GVkYqBkQnuXfrQuccAAG7EReG/6iveHf0fWnfwVGp7PiyE3Vt/ZN7i/2FsWk9h28XwUwQf2s2dnFsYmZjToUtvOnbzVqiTk5XO/t2bSLweg7q6Ok2au9F7wAgMDMVIxrro2vzJF8x6FSzY9OgZTi/T0rEi7/HLJgJerwgR8BLeJCLgJbwJRMBLeBOIgJfwJhABL+FNIAJez54IeL18Ykqj8ExlZmbSp0+fR9ZxcXFhy5YtL6hHddOmTZsak+dXMzU15ejRoy+wR/e9yn0TBEEQBEEQBEEQhFeRCHi9IoKDg192F54JMzMzAgMDH1lHS6vuuSlelICAgEeucKl2b6Wjl+FV7psgCIIgCIIgCIIgvIpEwEt4ptTU1OQrK/6bVK9A+Sp6lfsmCIIgCIIgCIIgCK8i1ZfdAUEQBEEQBEEQBEEQBEF4lkTASxAEQRAEQRAEQRAEQXitiICXIAiCIAiCIAiCIAiC8FoRAS9BEARBEARBEARBEAThtSKS1guC8MJVHP7jZXdBEJ4/a6+X3QNBeO7Uew982V0QBEEQBEGokRjhJQiCIAiCIAiCIAiCILxWRMBLEARBEARBEARBEARBeK2IgJcgCIIgCIIgCIIgCILwWhEBL0EQBEEQBEEQBEEQBOG1IpLWC4IgvMIupWWzMzKOm7n5GEq06N20Af2cGqKiovLYtom377Lg0BlWDOyKuZ62wrb//B7M7aJSpTZ+Q7tjINEE4ELKLX6/dI2bufnoa2nQvkF9hrVojERD/OkQnq2MpEgun9lOXk4yEh0jHFp449hqQK3XeWVFObEX/iAxOoTighy09Uxp0LQrTm2GoKp2//q8GXeamPOB3L2dgqZEDwtbF1w7fYBEx6jG/Z7e/x0amhLa9Zr+PE5TeMNdjL3GjoPB3Ey/haG+Ln06tePtbh3rdD9PSEnns5X+/PDZdMxNjBS2pWZmsW1fEFevJ6Kqqkoz+wZ8MKA3FmYm8jqFxSX8euAoZy9FU1pWhq1lPd7v1wPnxo2e9WkKb7j46EiO7PuVzLSb6Okb4t61L52696/TdZ52M4EffT9l7sLVGJvWU9h25eI5gg/tIvtWOvoGRri160LXXkNQV79/z9+5aRWRf59U2u+I8XNwaeX+z09OEIR/ndfmW8vo0aM5d+5crdtDQ0MxMTGpdfuzEhAQwPz584mNjQXAy8uLwYMHM23atBdyvLrKzMxk3bp1nDhxglu3bmFiYkKbNm0YP348zZs3f2Tb1atXs2fPHoKDg2ut4+joiI+PD0OGDHmiftXEy8uL1NTUWre3a9eOrVu3KtVTUVFBR0eHZs2aMWPGDNq2bQvAp59+yp49exT2oa6ujrGxMe7u7syfP/+FXCtP4ujRo3z//fdkZGTQtm1bli5dSr169R7fUPhXi8/KxTcknA4N6zO0RWNib93hlwsxVFZVMdDZ/pFtb97J57vgcCqrpErb7paUcbuolJGtm+JobqywTVdT9mfhXHIGK/+KoJmFCdM7t6Siqoo9l6+zNOsOi3p3QE1VDBAWno2c9FhO7v0auyYeOLu/T3ZaNJdObUZaVYlT25r/hkSc2EBSzAmatRuGiYUDtzOvceXsToru3qJtz48BSI49Seih/8PepRcuHUdSUniHy6G/ErL7C3qN+B41dU35/qRSKZF//UzKtVAaNfN8IectvFniE1NYtuEXOrZ0ZlgfT2ISktm2L4jKqioGde/8yLbJ6Zl8u2E7lZWVSttycvP4YvXPWJmbMn3UO5SVl7PzUAhf+21l+byP0NTQoKqqim/8tpKdm8eo/j0x1Nfj4F9h+KzfxjezJtHAyuJ5nbbwhklOiGPz2m9xbd2RHv2Gk3Q9mkOBW6msqqRbr8GPbJuRlszmtd9QVcN1Hh9zke3+vri26kifQaPITLvJkb2/UFiQz4Bh4+X10lMSadHag46e/RTam9Wr/2xOUBCEf53XJuAF0LdvXz7//PMatxkbG9dY/rzt3r0bLS2tl3Ls2kRHR/Phhx9ib2/PokWLeOutt8jMzGT79u289957+Pj40L9//5fdTbndu3fLP+RFREQwbdo0du3aRf36sj9eGhoa8rrjxo1j3LhxgOwLTG5uLv/3f//HhAkTOHToEFZWVgC4ubmxevVqebuSkhIiIiJYvHgxubm5+Pv7v6jTe6ykpCRmzpzJ/Pnzad++PbNnz+brr79m1apVL7trwnO262I8DUwM+I9HCwBaWptTKa0iMOo6fZs2RFNdTalNRWUVf8YmsetiPJpqNQelku7cBaCNbT0s9XVrrPP7pWtYGejyqVdb1O/tx6meCTMCT3D8eirdG9s+i1MUBKLCdmBs3oj2vWcCUL9hK6qqKon+ezdN3N5WCEwBlBbncyMqCFePD2jaZhAAFnauAFw6vRUXj9FIdAyJ/vt36jdsTZvuU+Vt9Y2tOLrzU9ISwrFt3BGA3OxEIkI2kJMZr3QsQXhWdv4ZTEOr+nw8UhbEdXNqTFVlFXuOnsS7Swc0H/gsU62iopJDJ8P47c8Qhc86D/rtz+PoSLT4YuoHaGnKrl9zE2N8f/6V68lpONk34NSFy9xISefb2ZPlwa1m9g34r+9aLsVeEwEv4Zk5emAnVrYNGTZGNkrWsbkblVWVHD8cgIdnPzQ0lO+xFRUVhB4/SNCBnbVe5+fPBGNkbMawsTNQVVWlcdMWFOTncurYfryHjEFdXZ3y8jKybqXRyett7Bo1ea7nKQjCv8dr9YheIpFgbm5e47+6DKN9HkxMTNDVrfkL5ctQUVHBjBkzcHFxYcuWLXTu3Blra2tatWrF999/z+jRo/niiy+4efPmy+6qnImJifznaGhoqFRmZGQkr6ujoyMvr1evHk2aNGHRokWUlJQQFBQkr6ehoaFwfdja2jJgwADGjh3LX3/9RX5+/os+zVrFx8dTXl6Ot7c3Dg4OeHh4cOPGjZfdLeE5K6+sJDozh7a2il9E2ttZUlJeSWzWnRrbRaRl8fuleAY5v8X7bo411km6k49EQw0LPZ1aj5+WV4Crlbk82AVgqK2FtaEeESm3nuKMBEFZZUU5t1KisLbvoFBu6+BOeVkxWWnRSm3Ky4qwd+mNlX1bhXIDExsACvMykEqlWNi1wN6ll0Id/Xt1CnIz5GVnD6+iSlpJj+HLap3qKAj/RHlFBVevJ9LOtalCefsWzSguKSXmRnKN7S5Ex7H7yAkG9+jCyLd7KG2XSqWcvXQVz3Zu8mAXgIOdNX5fzcXJvgEAYRev4mTfQCGwpamhwarPptPf0+NZnKIgUFFezo24KzRr0V6h3MXNndKSYhKvK9/PAWKvXODYoV149h5Cn4Gjat53RQUamlqoPjC6XFfXgMrKCspKiwHITEumqrISS5uGz+aEBEF4LbxWAa/Hyc/PZ/78+bRp0wZ3d3fWrl3L6NGj5SN9AgICcHRU/IL4cFlaWhqzZs3C3d2d5s2b06VLF3x9famqqqrxmF5eXvL9Ozo61vhvzZo1AJSVleHr60vnzp1xc3Nj2LBhnDp1SmF/QUFB9O/fHxcXF0aMGEFaWtoTvQcnTpyQjxhSU1MeHTJjxgxUVFTYuXOnvGznzp307NkTV1dXpkyZQl5enkKbjIwMpk6dipubG126dGHfvn0K24uLi/n888/x8PDAxcWFQYMGceTIkSfq9z9RPbdfU/PxT+61tLRQUVGp8b2pzU8//USPHj1wdnbGy8uLH3/8Ean0/jSykJAQhgwZgqurKz179mTlypWUlZUBcPjwYRwdHTl8+LC8/pw5c/D09JS/z25ubujo6PDdd98RFRVFYGAgAwcOVOjD2bNnadasGevXr6d9+/YMGTKEqqoqwsPD+eCDD2jVqhXOzs707duXP/74Q6Ht3r17GTBgAK6urnTv3p3NmzfLt+Xn5/PFF1/QoUMHWrduzQcffMDly5fr/N4ITy8zv5iKKimWBooBc4t7I7LS8gprbGdvasgPg7sx2MUBNdWaA/2Jt++ip6nJyr8iGLcjiLG/HmHVXxHcKSqR19HX0iSnsFihXUVlFdmFxWQ9VC4IT6swL4Oqygr0jRSnm+jde51/O0WpjZ6hBa29JmNgbK1Qnno9DFU1dfSNrVFRUaFllw+xtm/3UJ2zABia2snL2veeQfdhPhiZNXwWpyQISjKz71BRUUl9M1OFcst7ObZSb2XX2M7e1po1C2YypGeXGqeRZ93Opai4BHMTIzbs3s+Hn3/LyP8u4buffiUn9/5ntcTUdGwtzDlwIpT/LFnB+3MX8+n/+RF9PekZnqXwprudnUllZQVm5or3cxNzSwCyMmr+zmLTwJ55i/+HZ593UK3l83eHLr3Jycrg5NG9FBcVkpwQx6mQ/Tg2b4WOrj4gm84IEH7mGN/Mn8CC6cPx+78FJCfEPaMzFATh3+iNCnhNnz6dCxcusHbtWjZs2MBff/1FZGTkE+1j6tSp5Ofns3HjRv7880/GjRvHhg0bHpnPqtqpU6cU/nl7e1OvXj2GDh0KwPz58zl9+jTLly9nz5499O3blylTpnD8+HEALly4wLRp0+jduzd79+5l8ODBrF+//on6HxERIc9rVROJREKrVq04f/48APv372fx4sWMHTuWP/74g1atWrF9+3Z5/YqKCiZMmMCdO3fYtm0bq1at4qefflLY56pVq4iNjWX9+vUcPHiQLl26MGvWLFJSlL/IPGuZmZksXrwYHR0dunbtWms9qVTKhQsX2Lx5M7169UJHp/aRLw8KDg7Gz8+PRYsWceTIEebOncvatWvZu3cvAH/99RczZ85k2LBh7N+/n4ULF3Lo0CH++9//AtC7d28GDhzIkiVLyMvLY//+/Rw6dAhfX1/5aDZTU1NmzJhBQEAAI0aMYPz48UyYMEGpL5WVlZw4cYKdO3fy9ddfk5WVxfjx43FxcWHPnj0EBgbi6urK559/Tna27MP1wYMH+eSTTxg4cCB79+5l9uzZLF++nICAAKRSKRMnTuTmzZv4+fnx22+/0bJlS95//32uXr36RD8H4ckVl1cAoPNQgnhtDdmHwaLy8hrbmehI0Nd6dHA36c5d7hSX0NDEgP96tmZU66ZEZ95m8ZGzlNw7bld7G84lZ/JH1HXulpSSXViMX9hlissr5HUE4Z8qLysCQF1L8Z6rrql9b3vdgqsp18JIjD6OvUtvNCV6NdbJz03n4snNGJs3on6j1vJyEegSnrfiEtkCIdoSxRQX2vfu1dXbH2ZqZIC+bu2fR/IKZA8+tu8P4nZePjM/eJfJ7w0gISWdRT9uoqRU9nDtbkERYZeucjT0PKMH9OK/44ajpaHB135bSUrL/MfnJwgAJSWy+7mWtuIiOVpastel97Y/zNDIVB60qo29owtdegzg4J4tLP7vGNYu/ww9PQPeGztDXiftXsCrrLSE4R/OZPiHM6moKGfDqq9ITxXBXUF4U71WObz27dunMFKmWo8ePZg8eTJnzpxh48aN8uTlK1eupHv37nXef0lJCQMHDqRv377y/FFjx47F39+f2NhYevRQHm7+IHNzc/n/N23aREhICNu3b8fCwoKkpCT2799PYGAgTk5OAHz44YfExMTw008/0a1bN7Zt20arVq34+GNZQt5GjRoRFxfHli1b6nwOeXl5GBgYPHKKp5GRkTwYtXXrVry9vRk5ciQAkyZNIjIykpiYGEC2GEB8fDxBQUHY2cmemPv4+DBo0CD5/pKTk9HV1cXW1hYDAwN5AvnqgM6z5Ofnx88//wzIgnFlZWXY29uzcuVKef4ugPDwcNzc3OSvS0tLMTExwdvbm5kzZ9b5eMnJyWhqamJtbY2VlRVWVlbUq1dPfqx169YxbNgwhg8fDoCdnR2LFi1izJgxpKSkYGNjw5dffkn//v1ZsGABYWFhfPTRR7Rp00Z+jB07drBq1SqaNGnCtWvXcHBwAKCgoAA9PcUvduPGjaNhw4byvk2bNo3x48fLf96TJk0iMDCQxMREzMzM2Lx5M97e3owfL0v42bBhQwoLC5FIJISFhREZGUlYWJh82ujs2bO5cOECW7Zs4dtvv63z+yQ8uSqpcrL5B6n+g2naEzs4o6aigr2ZEQBOFibYGunz1eEwTt5IpadjA95t4UCVVMrui/HsiIhDXVUFTwdbWtvUIzWv4KmPLQgPkkprHh1dTUXl8c/lUuJDCftzBWZWTrTo9EGNde7eTuHEnkWoqqrh3u+/Ly3NgfBmqnrMda5ay2jcx6nOb2qop8d/xw2XX9f1zUz5fJU/J89fomfHNlRUVlJYVMI3MydiaiT77OX0VgOmfb2KwGMnmTH63ac6viA8SFrLbJdqKv9gsZvAHes5HxqCZ593cHB04c7tLI4d+I2NPy5lwoyv0NTUomM3b5xcWtOk2f3P9/aOLny/6GNC/tzNiPFznvr4giD8e71WAS8vLy/mzp2rVK6jo0N4eDgArq6u8nILCwt5cKAuJBIJo0aN4s8//+TSpUskJSURGxtLdnZ2rVMaaxIcHIyvry8rVqyQr4hYPWJmxIgRCnXLy8sxMDAAIC4uDg8PxVwLbm5uTxTwMjY2pqDg0V9W7969K1+lMC4ujn79FFc6cXNzkwe84uLiMDQ0lAe7AJycnJBIJPLXEydOZMqUKbi7u+Pq6oqHhwf9+/dHX//RT3OexvDhwxk9ejQAqqqqGBkZ1XgcZ2dnli9fDsD169dZsmQJTZs2ZcaMGXUe3QUwYMAAfv/9d3r37o2DgwMdO3akd+/e8oDX1atXuXTpErt375a3qZ7ueP36dWxsbNDT08PHx4cxY8bQvHlzpk69n2D56NGjLFq0CF9fX7y9vZkyZQpz585lx44djB49mvfee08hQPfg9WxnZ8eQIUPYsmULcXFxJCcny39u1R+Sa/r5Dhs2DIANGzYglUrx9FRcsaysrIzS0pqfRgvPTvVqicUPjaYqqmXk15NoYq68iIdjPWN0NNVJuiPLX6emqsr7rRx5x9WBWwXFGOtooaupwaLDYeg9ZgSZINSVhpZsim7FQyO5yktlIwE0NLWV2jwo9sJeLp7chLmNM536z68x6fytm1GcPrAMdQ0J3d5ZrDR9UhCeNx1t2Wei4nsjrqoV1TLyq64k9xZFaunkoBDEbdzQBh1tCYmpGffqaWJjYS4PdlUfs0lDWxJT05/q2ILwMImO7H5eVlKiUF49sksiefT9vDZ5uTn8ffoo3XoNplf/9+Xltg0as2LpTMLPBNOxW1/MLawwt7BSaKuto4vdW01JTxEjvAThTfVaBbx0dXVp0KDBI+s8HJh6XF6nB5eALioqYtSoUZSUlNCnTx8GDx6Mq6urfPRTXURHRzNnzhymT59Or173k+lWB0G2b9+ulOS+OkGjioqKUv9rW82kNq1bt8bPz4/o6Gj5SLIHlZaWcvHiRfk0S1B+zx48Zk19gvt5s0AWIDtx4gSnT58mNDSUwMBA+bRSd3f3J+r/4xgaGj72GgBZ8LK6XoMGDbCzs2Po0KHMnj2bdevW1fnpv4mJCX/88QcRERGcPn2aU6dOsWXLFqZNm8bHH39MVVUVEyZMYPBg5aWYHxzxFxUVhbq6OgkJCaSlpWFrK1sBLzAwkE6dOvH2228D8H//938MGzaMESNGkJeXpzRC8cEVQa9du8aIESNo3rw5HTt2pFevXhgbGyv8bB/8OT2sqqoKPT09AgIClLbVJR+a8M/U09NBVUWFzHzFKQDVr60Na5629TiFZeWcS87AwdQIW+P7wWCpVEp5ZRUGEtnP9mpGDuVVVbSwMsfGSHasyqoqknPz6Wpv81THFoSH6RlaoqKiqpBEHqAgT/Yl3MCk5tVApVIpESd+Ij7yAHaOnWjfawaqasr3s+TYk5w98gMGxtZ0HvQFOnqmNexNEJ4vC1NjVFVVycy+rVCece+1jYV5Tc0ey9LMBBUVFSoqKpW2VVVVoXnvwUh9c1PKK5SnoldWVaGh/mSfIwWhNiZmFqiqqpKTpXg/r35dz/LpPjvk3s5GKpXSwF7xe0u9+jbo6OpxK0O20Nal86fR1tGlsVNLhXoV5WXo6Rs81bEFQfj3e2NyeFXnrLpw4YK8rKCggISEBPnr6kDOgyOgEhMT5f8/deoUV65cYcuWLUyfPh1vb2/09PTIyclRSFJem8zMTCZPnkyvXr2YPHmywrbGjRsDkJWVRYMGDeT/AgIC5AGHpk2bEhERodAuKiqqLqcv16lTJ5o0acLy5csVgnnV/Pz8KC0tlY/ycXJyUnjPAIWk5U5OTuTn5xMfHy8vS0xMVHgPf/jhB86fP0/37t1ZsGABhw8fxtbWtsbppy+Lg4MDc+fO5fjx4+zYsaPO7fbu3cuvv/5K69atmT59Or/99htDhw7l4MGDgOznmpCQoPAzzcjI4LvvvqOwUJZ7IyYmhlWrVrFo0SKaN2/OvHnz5EFEbW1tcnJy5MfT09Pj22+/JS8vDysrK6VFFh60Y8cOTE1N2bhxIxMnTqRr167y3F3V16u9vb1SEnofHx+mT59OkyZNKCgooLy8XKH//v7+HDt2rM7vkfB0NNXVcLIw5lxypsL95VxyBjqa6vLpiE9KQ1WVjeeuEnjlukJ5eMotyiuraG4pCwicTc5gfWgUFZX3A9oh11IoKqugja1Ywl54NtTUNTG3aU7KtVCF6zzlWhiaWrqYWDausd3l09uIjzyAY6sBdOgzu8ZgV1rCecL+XImZpSNeQ78RwS7hpdHU0KCZfQPOXrqqeD+/FI2OtgQHO+tHtK6dREsTp7dk+30woHU57gYlpWU0fUv2YM/NqTGJqRmkZGTJ6+QXFhGbkIzTW3ZK+xWEp6GhoUkjh2ZERYYpXOdRkWFItHWxaVjz/fxxTM0tUVVVJfGaYv7YrMw0igoLMDGVfSY5dyqIPb+up+KB34W83BySbsTyVhPnpzq2IAj/fq9VwKukpISsrKwa/9WvXx9vb28WL17M6dOniY+PZ968eRQV3R890bJlS1RUVFi9ejUpKSkcOnSIPXv2yLdbWspWGdm7dy+pqamEh4fz0UcfUV5eLl91rzZFRUVMmTIFKysr5syZQ3Z2trxvubm5NG7cGE9PTxYuXEhwcDA3b97E398fPz8/+XTBcePGERMTw7Jly0hISGDv3r1s27btid4jNTU1Vq5cybVr1xgzZgynTp0iPT2dS5cusWDBAtavX8/ixYvlo58mTZpEUFAQGzZsIDExka1btyoEqtq3b0+LFi2YN28ekZGRXL58mXnz5iksG3zz5k0WLlxIaGgoqampHD58mLS0NIUcWq+CESNG0KZNG5YvX05mZt2SuJaWlrJs2TICAwNJSUkhPDycv//+W35uEydO5PDhw6xZs4aEhARCQ0OZP38++fn5mJubU1ZWxrx582jXrh3vvvsuS5cu5erVq/j7+wMwcuRIoqOj+fbbb0lISODMmTMsWLCAJk2akJuby6xZsygurjmps6WlJRkZGZw4cYLU1FSOHDnCV199BSC/XidNmsTBgwfZunUrycnJ7Nu3j19//RUvLy86d+6Mk5MTs2bNIiwsjKSkJHx8fAgICMDe3v4fvttCXQx2ceB6Ti6r/ookMjWL3yLj2H81gYHO9mipq1FUVk58Vi53a0l4XBNNdTUGOttzJiGdLeHRXE7P5mB0AmtPX6K1TT15wKtHYzvulpSyNvQSUenZHLiawOa/r+Le0JJmFibP65SFN1CzdkO5nRlP6MHlpCde4PKZX4g9H4hT23dQ19CivLSInPRYSopkq87duXWDmPN7MLFwwLZxR25nxJGTHiv/V15aRGVFGeFH/4eGpjZO7Ydy9/ZNhTpF+TWviicIz8uQnl25lpzKis27iIiOZ8fBYPaGnGZwj85oaWpSVFJCfGKKPBF9XY14uwd37ubjs34bEdHxHD8Xwaqtu2ncwIa2zrKHYt5dOmBqZMC3G7Zz+sJl/o6K4Zv1ss+PA7w8HrV7QXginn3eISXpGr/89D2xVyI4su9XTh7dS7feg9HU1KKkuIjkhDgK8vMev7N79PQN8fDsx1/H9nL4j+1cj73M+bAQNq5ZgrGJOW09esiPnXs7i61+y4i9EkHk3yfZsGoROjp6dPLq/7xOWRCEV5yKtC5Dk/4FRo8ezblz52rdvmrVKjw9PfH19WXv3r1IpVLee+89Dhw4wJAhQ5g2bRoAO3fuxM/Pj6ysLFq3bs2gQYP45JNPiI2NBWTJ5jdt2sTt27exsLDA29ublJQUsrOz2bx5MwEBAcyfP19e38vLi8GDB9OuXTs++KDmZLrt2rVj69atFBcXs2LFCg4ePEheXh52dnaMGzeOd955R143NDQUX19f4uPjady4MX379mX58uXy49XV7du32bBhA8eOHSM9PR0DAwPat2/PuHHj5HnFqh08eFAeBGzZsiVubm7s379fvjLlnTt3WLp0KSEhIUgkEiZPnsz69euZM2cOQ4YMoaCggGXLlhESEkJubi7W1taMHDmy1vfjUc6ePcsHH3zAsWPHsLFRHBpd/V5X/yxr8+mnn5KamsrWrVuVtiUkJDBw4EA8PDxYu3Ztnfrk7+/Prl27SE9Px9DQkN69ezN37ly0761Sc+jQIfz8/Lh27RpGRkbyXHMGBgYsW7aMnTt3cuDAAflCCD/99BMrVqxg165dODk5cfz4cVatWkV8fDxGRkZ4e3szffp0rly5wtKlS1m7di2pqalK70tZWRlfffUVx44do6ysjIYNGzJmzBh++OEH3nnnHf7zn/8A8Pvvv+Pv709KSgrW1taMHTuW99+X5Ui4ffs2vr6+hISEUFxcjL29PR9//DFeXl51em9qc+frqY+vJACyEV2/X7pGWl4BxjoSejk24O1mjQDZtMMlQeeY0tGlxmmGJ66nsO7MZX4Y3A1zvfu5M6RSKUfjkjkSl0xmfhH6Whp4NLLiXdfGaKrfXxL8cno2v0bEkpJbgJG2Fl3fsmagsz3qaq/Vs5Ln5nvrVS+7C/8aKdfCuBK2g7t3UtHWNcWhRV+ath4IyHJwhfz+Be16TaNRMy+iQn/lytnfat2X5ztLkCLl+O9f1lqnefv3cHYfrlS+/+fJ1LNpTrte0//5Sb0hPnF+/CrVgszZS9HsOhxC2q1sTAwN6O3Rlv6esoDTlWsJLPpxEx+9P4hu7ZQfCB4/F8H/fg3kxy9mYW5ipLAtNiGZHQeDiU9KQVNTg7bOTflgYG90te/nU83JzWP7viAiYq5RWVmJYyM7PhjYG1vLes/1nF8XF7S7vOwu/GtciTzL0YO/kZWRioGRCe5d+tC5xwAAbsRF4b/qK94d/R9ad/BUans+LITdW39k3uL/YWx6/9qUSqWcDjnA2ZNHuJNzCwNDYxycWtCr//vo6d/PTXct5hLHDv5GRmoyqKjg2KwlfQaNwsjk6aYNv2m6Nq97HuNXyYJNjx548jItHSvSwLxsr03A62nVNUgiCK8iqVT6r1xtTAS8hDeBCHgJbwIR8BLeBCLgJbwJRMDr2RMBr5dPPKYXhH+xf2OwSxAEQRAEQRAEQRCet9dqlcY3WWZmJn369HlkHRcXF7Zs2fKCelQ3bdq0qTF5fjVTU1OOHj36Ant036vcN0EQBEEQBEEQBEEQavfGB7yq81D925mZmREYGPjIOlpaWi+mM08gICDgkStcqqmp1brteXuV+yYIgiAIgiAIgiAIQu3e+IDX60JNTU2+suK/SfUKlK+iV7lvgiAIgiAIgiAIgiDUTuTwEgRBEARBEARBEARBEF4rIuAlCIIgCIIgCIIgCIIgvFZEwEsQBEEQBEEQBEEQBEF4rYiAlyAIgiAIgiAIgiAIgvBaEQEvQRAEQRAEQRAEQRAE4bUiAl6CIAiCIAiCIAiCIAjCa0UEvARBEARBEARBEARBEITXigh4CYIgCIIgCIIgCIIgCK8VEfASBEEQBEEQBEEQBEEQXivqL7sDgiAIQt1dSstmZ2QcN3PzMZRo0btpA/o5NURFRaXWNmcS0gi4fI1bBcWY62kzoPlbdLW3Uajz981MAi5dI/1uIUbaWnRuZMVAZ3vU1cRzEeH5y0iK5PKZ7eTlJCPRMcKhhTeOrQY88rpOjj3JlbO/UXj3FroG5jRtM4RGzbwU6iRcDSb2fCAFuRlIdE1o1NwLp7bvoKqqJq9TePcWF09uISslCqm0CjMrJ1p0GYu+Uf3ndr7Cm+li7DV2HAzmZvotDPV16dOpHW936/jI6/z0hcvsPnKCrNu5mJsYMtCrE93auSnUOXc5mt+PnCA9KwcjfT06t2nB4O6dUVe/f53fSEljx8FgrienIgUaWddnZP8evGVj9bxOV3hDxUdHcmTfr2Sm3URP3xD3rn3p1L3/I6/zi+GnCD60mzs5tzAyMadrr0G07uCpUOd8WAgnj+4lJysDfUNjWnfwpFvvIaip3b/Oj+z9hZDDAUr79x78AZ17DHh2JykIwr+GCHi9IKNHj+bcuXO1bg8NDcXExOS59yMgIID58+cTGxsLgJeXF4MHD2batGkv5Hh1lZmZybp16zhx4gS3bt3CxMSENm3aMH78eJo3b/7ItqtXr2bPnj0EBwfXWsfR0REfHx+GDBnyRP161P5qs27dOjw9PfHy8iI1NVVerqKigo6ODs2aNWPGjBm0bdsWgE8//ZQ9e/Yo7ENdXR1jY2Pc3d2ZP3/+C7lWhFdPfFYuviHhdGhYn6EtGhN76w6/XIihsqqKgc72NbY5m5zBmtMX6dO0IS2szAi/mcm6M5fRUFWlYyPZF53L6dmsOHGBDg3qM6KVIzdz89kREUd+aTlj2zV7kacovIFy0mM5ufdr7Jp44Oz+Ptlp0Vw6tRlpVSVObWu+R6fEhxL25woat3wbywZupN44y7kjq1FT08DOsTMAcRH7iDjxM7aNO9Ki81hKi/KICttBblYiHm/PA6CyoowTAV9RVVWFm+cE1NQ0iQr7leO/f0nvUSvR1NJ9Ye+D8HqLT0xh2YZf6NjSmWF9PIlJSGbbviAqq6oY1L1zjW3OXrzKD9t+x7tLB1o0deDvyzH879dANNTV8WjlAsCl2Ot8v3EnHd2cGfl2T25m3OLXA8fILyxi3BBvADKyb/PVmo28ZWPFlOEDUVFRYX/IGb784We+mzsFq3pmL+x9EF5vyQlxbF77La6tO9Kj33CSrkdzKHArlVWVdOs1uMY2URFh7Ny0io7d+tGkWQuuXvqb3Vt/RF1dgxZtOgFwOuQA+3dvxNmtA30Hf0BhQR5H9+8kIzWRkRP/K99XemoSbzVuTu+BIxWOYWQirnFBeFOJgNcL1LdvXz7//PMatxkbG7/g3sjs3r0bLS2tl3Ls2kRHR/Phhx9ib2/PokWLeOutt8jMzGT79u289957+Pj40L9//5fdTSWfffYZ3t7eSuWGhoby/48bN45x48YBIJVKyc3N5f/+7/+YMGEChw4dwspKFoBwc3Nj9erV8nYlJSVERESwePFicnNz8ff3f85nI7yKdl2Mp4GJAf/xaAFAS2tzKqVVBEZdp2/Thmg+8DS/2s6IONrbWfJBGycAWliZU1Bazm8X4+UBr5BrKZjqaPOxRwtUVVVwqW9GXnEZB6MTGNW6qRjlJTxXUWE7MDZvRPveMwGo37AVVVWVRP+9myZub6OmrqnU5tKZbdg4dMSt67h7bdwoKy7gcugv2Dl2RlpVxdWzu7Cwa0HHfve/DBnXe4s/t80kI/kilnYtyEq9Sn5uOt2GLMLCzhUAfRNrDm3+mNTrZ5VGjAnC09r5ZzANrerz8UhZENfNqTFVlVXsOXoS7y4d0NTQUGrz68FjdGjRjDGD+gDQsqkDBUVF7DwULA94hZyLwMzYkGkjh6Cqqoqroz25+QUcOBHKBwN6o66uxqG/wtDU0ODTiSORaMl+n5wdGvGfJSs4dPIs49/p94LeBeF1d/TATqxsGzJszHQAHJu7UVlVyfHDAXh49kNDQ/l+fnjvLzi7deDtd8cC0KSZG0WF+QTt30GLNp2oqqoi+NAuHJq6MnLCXHk7K9u3WPX1bOJjLtK4qexzUVpKAq07eGLXqMnzP1lBEP4VxLeYF0gikWBubl7jv0cN832eTExM0NV9dZ5gV1RUMGPGDFxcXNiyZQudO3fG2tqaVq1a8f333zN69Gi++OILbt68+bK7qkRfX7/Gn62m5v0/7jo6OvLyevXq0aRJExYtWkRJSQlBQUHyehoaGgr7sLW1ZcCAAYwdO5a//vqL/Pz8l3GKwktUXllJdGYObW0tFMrb21lSUl5JbNYdpTZZBcWk3y2ssU1mfhHpdwsBqKisQktdFVXV+/chfYkmFVVSiisqnsPZCIJMZUU5t1KisLbvoFBu6+BOeVkxWWnRSm0K794i/04aNg7tFds0dqcgN4P8O2mUFOVSWpKP1VttFOoYmjVAS9uA9ITwe8cvA0BDU1teR0uiD0BZibjPCs9GeUUFV68n0s61qUJ5+xbNKC4pJeZGslKbrNu5pN3Kpp2Lk0J5hxbNyMi+TXpWjnzfmhoaqKre/0hvoKtDRUUlxaWlAFhZmDHA00Me7AKQaGliamRIZo7y3w5BeBoV5eXciLtCsxaK92YXN3dKS4pJvK58P7+Tc4vsW2k0f6iNs5s7OVkZZN9KpyA/l6LCApxcFO/nllZ26OrpExt1AYDCgrvczb2NlU2jZ3xmgiD8m4mA1yskPz+f+fPn06ZNG9zd3Vm7di2jR4+Wj/QJCAhQmjr3cFlaWhqzZs3C3d2d5s2b06VLF3x9famqqqrxmF5eXvL9Ozo61vhvzZo1AJSVleHr60vnzp1xc3Nj2LBhnDp1SmF/QUFB9O/fHxcXF0aMGEFaWtoTvQcnTpwgKSmJmTNnKszJrzZjxgxUVFTYuXOnvGznzp307NkTV1dXpkyZQl5enkKbjIwMpk6dipubG126dGHfvn0K24uLi/n888/x8PDAxcWFQYMGceTIkSfq9z+hri4baPlgYKw2WlpaqKio1Pje1Oann36iR48eODs74+XlxY8//ohUKpVvDwkJYciQIbi6utKzZ09WrlxJWZnsS+Dhw4dxdHTk8OHD8vpz5szB09NT6X0Wnq/M/GIqqqRYGigGqC30Za/T8gqV2qTmFQBQ/6E21fuoDnj1crQjM7+I/VcTKCwrJz4rl0PRCbS0Nkdf6/HXpSA8rcK8DKoqK5TyZende51/O0Wpzd17ZfrGVjW3uZOGhpYuqqpqFN3NUqhTVlJAWUkBBXmZAFg2aImBiQ0XT22hIC+D4sI7XAhZj7qGBGt7xS9ggvC0MrPvUFFRSX0zU4VySzNZeoLUW9lKbVIyZddu/XoPt5G9TrvXprdHOzJzbrMv5DSFxSXEJ6Zw4EQYbs2aoK+rI68zwMtDYT8Z2be5mXELW0vzZ3CGggC3szOprKzAzFzxfm5ibglAVobyd4JbGbJUH2b1FO/n1fvIzkxDoq2Lqpoad3IU7+dFRQUUFxVyO1t2P09LSQAgOiqcZQum8Pn091jtM5fYKxHP4OwEQfi3ElMaXyHTp08nLS2NtWvXoqOjw9KlS4mKiqJdu3Z13sfUqVMxNzdn48aN6OrqcuzYMXx8fHBzc6NHjx6PbPtw8Oqbb74hPDycoUOHAjB//nyuX7/O8uXLsbCwICQkhClTprBmzRq6devGhQsXmDZtGh9//DH9+vUjPDycJUuWPNF7EBERIc9rVROJREKrVq04f/48APv372fx4sV89tlndOzYkaCgIFasWEH9+rI/lBUVFUyYMAE9PT22bdtGWVkZixYtUtjnqlWriI2NZf369RgYGLBr1y5mzZrF4cOHsbGxUerDs5SZmck333yDjo4OXbt2rbWeVColIiKCzZs306tXL3R0dOq0/+DgYPz8/FixYgWNGjUiMjKSefPmYWNjw8CBA/nrr7+YOXMm8+fPp2PHjiQnJ7NkyRISEhJYtWoVvXv3ZuDAgSxZsoQOHTpw8uRJDh06xJYtWxSmagrPX3G5bKSVjobibVtbQxb8LCovV2pTVCYr09ZUbCO516Z6n80tTXm72VtsPx/D9vMxADQw0efjTi2e4RkIgrLysiIA1LUU72nq90ZclZcVK7cpLbxXp7Y2RahraGHbxIP4iwcxMLXFxr4DJcV5RBz/CVVVNSrKSwBQU9ekbc//cOqPbziwcaqsTE2DTgM/R8/Q8hmeqfAmKy6RjbTSliimkNC+90ChevuDiopl16iORKLY5t4+qts4N25Ef08Ptu49wta9sod1Da3rM33UO7X2p6y8nB9/2YOGuhp9OonArvBslJTI7uda2toK5Vpastel97YrtCmW3c8lD7e5d92XlBShqamFa6uOhJ44hEV9G5q1bE9h/l327/oZVVU1ykplvysZKUkAFNzNY8ioqVSWV3DmxEE2r/2GsR99RpNmios9CILwZhABrxdo3759CiNlqvXo0YPJkydz5swZNm7cKE9evnLlSrp3717n/ZeUlDBw4ED69u0rD/iMHTsWf39/YmNjHxvwMje//5Rv06ZNhISEsH37diwsLEhKSmL//v0EBgbi5CQbXv/hhx8SExPDTz/9RLdu3di2bRutWrXi448/BqBRo0bExcWxZcuWOp9DXl4eBgYGj5ziaWRkREqK7An/1q1b8fb2ZuRIWXLKSZMmERkZSUyM7Et7aGgo8fHxBAUFYWdnB4CPjw+DBg2S7y85ORldXV1sbW0xMDCQJ5B/0oDOwoULlQJ8kydPZsqUKfLXfn5+/Pzzz4AsGFdWVoa9vT0rV66U5+8CCA8Px83t/h/m0tJSTExM8Pb2ZubMmXXuU3JyMpqamlhbW2NlZYWVlRX16tWTH2vdunUMGzaM4cOHA2BnZ8eiRYsYM2YMKSkp2NjY8OWXX9K/f38WLFhAWFgYH330EW3atHnUYYXnoOqBUXk1Ua3hd+bRLaC6xU9nr3DiegqDXexxtjQlq7CY3Rev8e2xcBb0bIdWDbnBBOFZkEprHn1cTUVFeSC69DG/C9V/P9p0n4qamgbhR//H30E/oqauiVPbd6goL0ZdXRY0uJVyhb/2LMLUqimObgNQUVXl+uUjnN73LV0GfYG5tVi0Qfjnqh5znT84nbxaXa9z/137Of53BEN6dsWlSSOybuey6/BxvvHbypcfjUHrodHjxSWl+P78K9eSU5k9dhjmJkZPdjKCUAtpLbNJqqmoPv39fND7k1FX1yDgl3X8vn0tGhqadO01mNLSYjQ0Zfdzl1bumFtY06S5m3yKr4NTC1b7zOXogZ0i4CUIbygR8HqBvLy8mDt3rlK5jo4O4eGyfCKurq7ycgsLCxo2bFjn/UskEkaNGsWff/7JpUuXSEpKIjY2luzs7FqnNNYkODgYX19fVqxYIV8R8erVqwCMGDFCoW55eTkGBgYAxMXF4eGhOGTezc3tiQJexsbGFBQUPLLO3bt35asUxsXF0a+fYrJVNzc3ecArLi4OQ0NDebALwMnJCckDT0wnTpzIlClTcHd3x9XVFQ8PD/r374++vn6d+w2yEXq9evVSKHs4aDZ8+HBGjx4NgKqqKkZGRjUex9nZmeXLlwNw/fp1lixZQtOmTZkxY0adR3cBDBgwgN9//53evXvj4OBAx44d6d27tzzgdfXqVS5dusTu3bvlbao/fFy/fh0bGxv09PTw8fFhzJgxNG/enKlTp9b5+MKzo3tvlFb1qKxqRbWM/ALQvldWUl6pUF5cdq+Npga3i0oIvnaTgc3tGdbyfpJXe1Mj/rvvJMevpdC7aYNndyKC8ACNe6sgVjw0kqu8VDYS4MHcWvI290Z2Pdym4t5osep9qmtIaNvzY9y6TaDw7i10DeqhriHhRlSQfPTW1XO70NYzpcvAL1BTlyUNt2zgxrGdnxL518/0fH/5szpV4Q2moy37zFFcWqZQXlTLyK8Hyx4e/VVUUiLfZ07uXY6FnWdQj84M976/wIKDnQ2zl60h+GwEfTvfH8GVk5uHj/920m/lMHP0u7R1VswpJgj/hERHdu8tu3eNVqse2SWRKN/PJRKde3UU25QUy+7vEm3ZPrW0JLwz6iPeHjqO3NtZGJmYo6Ul4e8zRzG9N2XSyMQcIxPFKbrq6uo0dmrB2ZMvLlWJIAivFhHweoF0dXVp0ODRXxwfDkw9Lq9TZeX9L7JFRUWMGjWKkpIS+vTpw+DBg3F1dZWPfqqL6Oho5syZoxS8qQ6CbN++XSnJffVTFBUVFaX+a9Sw6tCjtG7dGj8/P6Kjo+UjyR5UWlrKxYsX5dMsQfk9e/CYNfUJ7ufNAlmA7MSJE5w+fZrQ0FACAwNZu3YtGzZswN3dvc59NzU1fezP19DQ8LF1QBa8rK7XoEED7OzsGDp0KLNnz2bdunV1XuTAxMSEP/74g4iICE6fPs2pU6fYsmWLfOppVVUVEyZMYPBg5aWiHxzxFxUVhbq6OgkJCaSlpWFra1un4wvPTj09HVRVVMjMV5wSUP3a2lBPqY2Voex3NeNuIQ1NDGpsk11YjFQKjvUUV4q1MdJDT0uDlDyRuFt4fvQMLVFRUaUgN0OhvCAvHQADE+V7jb6JtaxObjrG9d663+bePgxMZFPR026EoynRxczKCUNT2UOPkqI8igty5O2K8rMwrmcvD3aB7O+GmZUT1y4delanKbzhLEyNUVVVJTP7tkJ5xr3XNhbKebSs75VlZOfQyOZ+TqTMB9rk5OYhlUpp2shOoa2NpTl6ujqkZNzPeZSUlsk367dSWlbO55NH08yh4TM5N0GoZmJmgaqqKjlZivfz6tf1LJXThJhbyh7AZmelY2V7P9l8TnZ1G9n9PubyebR1dGlg3xSL+rK/CwX5ebIk9bay+3lM1AUqystwdlNcBKW8vAxdfQMEQXgziaT1r4jqnFUXLlyQlxUUFJCQkCB/XR3IeXAEVGJiovz/p06d4sqVK2zZsoXp06fj7e2Nnp4eOTk5jx0yDLJ8UpMnT6ZXr15MnjxZYVvjxo0ByMrKokGDBvJ/AQEBBAQEANC0aVMiIhQTQ0ZFRdXl9OU6depEkyZNWL58uUIwr5qfnx+lpaUMGzYMkI3WevA9A7h8+bL8/05OTuTn5xMfHy8vS0xMVHgPf/jhB86fP0/37t1ZsGABhw8fxtbWtsbppy+Lg4MDc+fO5fjx4+zYsaPO7fbu3cuvv/5K69atmT59Or/99htDhw7l4MGDgOznmpCQoPAzzcjI4LvvvqOwUJZXISYmhlWrVrFo0SKaN2/OvHnznmjEoPBsaKqr4WRhzLnkTIXf53PJGehoqmNvZqTUxlJfF3M9bc4mK374PJucgaW+DuZ62ljqywJpMbcUv4il3S2goLScenp1H1EoCE9KTV0Tc5vmpFwLVbiuU66Foamli4llY6U2+kb10TWw4GZ8qEL5zfjQe9vqAXD98mEi/9qkUCcuYh8qKqrUbySblm1gbMPtzHgqK+7nwJNKpeRkxMr3Iwj/lKaGBs3sG3D20lXF+/elaHS0JTjYWSu1sTQzoZ6pMWEXryqUh128Sn1zU8xNjLAwM0FVVZXoG0kKddJuZVNQWISFqexBRk5uHkvWbgZg6fQJItglPBcaGpo0cmhGVGSYwnUeFRmGRFsXm4bK93NT8/oYm9YjKkLxfh4VEYpZPdk2gLOnjnAgYLNCndPB+1FRVaWpcyt5m93bfqSo8P6DutLSEmKizvNW4+bP7DwFQfh3EQGvF6ikpISsrKwa/9WvXx9vb28WL17M6dOniY+PZ968eRQV3R/N0bJlS1RUVFi9ejUpKSkcOnSIPXv2yLdbWsqG9O7du5fU1FTCw8P56KOPKC8vl6+6V5uioiKmTJmClZUVc+bMITs7W9633NxcGjdujKenJwsXLiQ4OJibN2/i7++Pn5+ffLrguHHjiImJYdmyZSQkJLB37162bdv2RO+RmpoaK1eu5Nq1a4wZM4ZTp06Rnp7OpUuXWLBgAevXr2fx4sXy0U+TJk0iKCiIDRs2kJiYyNatWxUCVe3bt6dFixbMmzePyMhILl++zLx58xSW77558yYLFy4kNDSU1NRUDh8+TFpamkIOrVfBiBEjaNOmDcuXLyczM7NObUpLS1m2bBmBgYGkpKQQHh7O33//LT+3iRMncvjwYdasWUNCQgKhoaHMnz+f/Px8zM3NKSsrY968ebRr1453332XpUuXcvXqVfz9/Z/nqQq1GOziwPWcXFb9FUlkaha/Rcax/2oCA53t0VJXo+jeCot3H5gC846rA2FJGfx89gqRqVn8dDaKsKQM+fRFA4kWfZ0asv9qAjsiYrmSkcOJ6yn4HA3HTFcbr8ZiNJ/wfDVrN5TbmfGEHlxOeuIFLp/5hdjzgTi1fQd1DS3KS4vISY+lpOj+yrDNOwzjZvxpzgf7kZ54gfDgddyMP41zx/vT7hu37EdORhwRJ34m8+ZlLp/ZTvTfv+PYaqB8Vchm7d6lpPAOf/2xhNTr50hLOM+ZA77kpMfi4j5Cqa+C8LSG9OzKteRUVmzeRUR0PDsOBrM35DSDe3RGS1OTohLZCot5BfdX3H23V1dCI6+wYfd+IqLj8d+1n9DIK7zXVzZ90VBPl35dO7Av5Ay/HDhKVHwCx89F8LXfVsxNjOju3hqAnwMOcregkHd7daO4pJT4xBT5vwdHgQnCP+XZ5x1Skq7xy0/fE3slgiP7fuXk0b106z0YTU0tSoqLSE6IoyD//v28u/dQLl8I5Y8d/sReiSBwx3ouXwil59vD5XU6duvLzcR49u/exPXYyxzZ+wvHj+yhc/f+mN5b0bFLj4FIpVI2/e9rrl76m6iIMH764SvKSkvp0e+9F/1WCILwilCR1mXoj/CPjR49mnPnztW6fdWqVXh6euLr68vevXuRSqW89957HDhwgCFDhjBt2jQAdu7ciZ+fH1lZWbRu3ZpBgwbxySefEBsbC8iSzW/atInbt29jYWGBt7c3KSkpZGdns3nzZgICApg/f768vpeXF4MHD6Zdu3Z88MEHNfatXbt2bN26leLiYlasWMHBgwfJy8vDzs6OcePG8c4791cCCg0NxdfXl/j4eBo3bkzfvn1Zvny5/Hh1dfv2bTZs2MCxY8dIT0/HwMCA9u3bM27cOHlesWoHDx6UBwFbtmyJm5sb+/fvJzg4GIA7d+6wdOlSQkJCkEgkTJ48mfXr1zNnzhyGDBlCQUEBy5YtIyQkhNzcXKytrRk5cmSt70dNHB0d8fHxYciQIbXWqX6vq3+Wtfn0009JTU1l69atStsSEhIYOHAgHh4erF27tk598/f3Z9euXaSnp2NoaEjv3r2ZO3cu2vdWxDl06BB+fn5cu3YNIyMjea45AwMDli1bxs6dOzlw4IB8IYSffvqJFStWsGvXrhqnndbFna9FHrCndS45g98vXSMtrwBjHQm9HBvwdjPZNICrGTksCTrHlI4udLW/P3XgaFwy+68mcLuohHp62gx0tqfzW/dHFEilUg7FJHI07iZZBUUYaUtwtTLjvZaNMaght4xQN99br3rZXfjXSLkWxpWwHdy9k4q2rikOLfrStPVAAG7djCLk9y9o12sajZrdz1N0/fJhYs4HUpyfg66hBU5t36GhUzeF/SbHnuTK2d/u5fAyx961D01avq1QJyc9lsuhv5KTHouqmjpGZg1p3mE49WzEiIC6+MQ5+GV34V/j7KVodh0OIe1WNiaGBvT2aEt/T1nu0yvXElj04yY+en8Q3drdf+AWdCacfSGnycm9Sz1TYwb36EyXNvdX0JVKpRz8K4ygM+Hcun0HYwN9XB3tGe7dHUM9XSoqKhn96dc1jpoHaGbfkK8+/vD5nvhr4IJ2l5fdhX+NK5FnOXrwN7IyUjEwMsG9Sx869xgAwI24KPxXfcW7o/9D6w6e8jZnTx3h5NG95N3JwcTMgm69B+PWTnH18ovhpwg+tJs7ObcwMjGnQ5fedOzmrVAnNfkGR/b+QkryNSoqKmjk0Iw+g0ZhaaU47VeoWdfm/85R/Qs2PXpgx8u0dOyj0xMJz58IeL3i6hokEYR/ExHwEt4EIuAlvAlEwEt4E4iAl/AmEAGvZ08EvF4+MaVREARBEARBEARBEARBeK2IVRqFFyIzM5M+ffo8so6Liwtbtmx5QT2qmzZt2tQ6DQBkKzMePXr0Bfbovle5b4IgCIIgCIIgCILwMomA1yuuOg/Vv52ZmRmBgYGPrKOl9erlCgoICHjkCpdqamovsDeKXuW+CYIgCIIgCIIgCMLLJAJewguhpqYmX1nx36R6BcpX0avcN0EQBEEQBEEQBEF4mUQOL0EQBEEQBEEQBEEQBOG1IgJegiAIgiAIgiAIgiAIwmtFBLwEQRAEQRAEQRAEQRCE14rI4SUIwgt3adD3L7sLgvD8/f2yOyAIgiA8C66Bc152FwTh+Wu+9mX3QBCeOTHCSxAEQRAEQRAEQRAEQXitiICXIAiCIAiCIAiCIAiC8FoRAS9BEARBEARBEARBEAThtSICXoIgCIIgCIIgCIIgCMJrRQS8BEEQBEEQBEEQBEEQhNeKWKXxGRs9ejTnzp2rdXtoaCgmJibPvR8BAQHMnz+f2NhYALy8vBg8eDDTpk17Icerq8zMTNatW8eJEye4desWJiYmtGnThvHjx9O8efNHtl29ejV79uwhODi41jqOjo74+PgwZMiQJ+rXo/ZXm3Xr1uHp6YmXlxepqanychUVFXR0dGjWrBkzZsygbdu2AHz66afs2bNHYR/q6uoYGxvj7u7O/PnzX8i1Irza4qMjObLvVzLTbqKnb4h717506t4fFRWVx7ZNu5nAj76fMnfhaoxN6ylsu3ThDCeP/sGtjFS0dXSxd3Shz8BR6BsYAfDdF1O5czurxv0am5gzb4lYyUd4djKSIrl8Zjt5OclIdIxwaOGNY6sBdbrO79y6wdEd8/Ae+z90DRSv830bJlBUkKPUZtDkzWhpGwCQdiOcK2d3cvf2TTQlBjRq5kmzdkNRVRMfkYRn62LsNXYcDOZm+i0M9XXp06kdb3frWKfrPCElnc9W+vPDZ9MxNzFS2HYtOZVte49wIyUNbYkWXdu2ZFhvT9TV1eR1bqSkseNgMNeTU5ECjazrM7J/D96ysXrGZykIj3cpLZudkXHczM3HUKJF76YN6OfUsE6/C4m377Lg0BlWDOyKuZ72C+itIAj/ZuLT3HPQt29fPv/88xq3GRsbv+DeyOzevRstLa2XcuzaREdH8+GHH2Jvb8+iRYt46623yMzMZPv27bz33nv4+PjQv3//l91NJZ999hne3t5K5YaGhvL/jxs3jnHjxgEglUrJzc3l//7v/5gwYQKHDh3Cykr2AdPNzY3Vq1fL25WUlBAREcHixYvJzc3F39//OZ+N8CpLTohj89pvcW3dkR79hpN0PZpDgVuprKqkW6/Bj2ybkZbM5rXfUFVZqbTtYvgpdmxcSbtOPenV/33y7+YStG8HG1Z9xceffoeGhiajJs2joqJcqT8Hft9Eu869nul5Cm+2nPRYTu79GrsmHji7v092WjSXTm1GWlWJU9tHP6zIy07i5B9fU1WlfJ2XFt+lqCCHFp3HYm7VVGGbhpYuIAu0ndr3DQ2dPHHxGEX+7RQund5GceEd2vb46NmdpPDGi09MYdmGX+jY0plhfTyJSUhm274gKquqGNS98yPbJqdn8u2G7VTWcD/PzL7N0nVbaNLQlpkfDCU1M4sdB4MpKCxm0jDZZ6iM7Nt8tWYjb9lYMWX4QFRUVNgfcoYvf/iZ7+ZOwaqe2XM5Z0GoSXxWLr4h4XRoWJ+hLRoTe+sOv1yIobKqioHO9o9se/NOPt8Fh1NZJX1BvRUE4d9OBLyeA4lEgrm5+cvuhoJXbaRQRUUFM2bMwMXFhXXr1qGmJnsKaW1tTatWrahXrx5ffPEFLVu2xNbW9iX3VpG+vv5jf746OjoKderVq8eiRYvo0qULQUFBjBkzBgANDQ2lfdna2pKcnMzq1avJz89HX1//2Z+E8K9w9MBOrGwbMmzMdAAcm7tRWVXJ8cMBeHj2Q0NDU6lNRUUFoccPEnRgJxoaGjXu9/iRPTg2b8Xg9yfLy8zqWbF2+WfEXD6PSyt3rGwbKbQpKS5ix88raOrc+rHBNkF4ElFhOzA2b0T73jMBqN+wFVVVlUT/vZsmbm+jpq58nVdVVhAXeYArYb+ipqa8HeBOVgIA1vbt0DeqX2Od6L9/x7iePe16yUY/W9q1oLQ4n6vnduHWdRzqGpJncIaCADv/DKahVX0+HikL4ro5Naaqsoo9R0/i3aUDmjXcrysqKjl0Mozf/gyp9X7+R/BptLW0mDfufdTV1WjVrAmamhr8/PtBhvTsjJmxEYf+CkNTQ4NPJ45EoiX7fXF2aMR/lqzg0MmzjH+n3/M7cUF4yK6L8TQwMeA/Hi0AaGltTqW0isCo6/Rt2hDNB0YmVquorOLP2CR2XYxHU01k5BEEoe7EHeMlyM/PZ/78+bRp0wZ3d3fWrl3L6NGj5SN9AgIClKbOPVyWlpbGrFmzcHd3p3nz5nTp0gVfX1+qqqpqPKaXl5d8/46OjjX+W7NmDQBlZWX4+vrSuXNn3NzcGDZsGKdOnVLYX1BQEP3798fFxYURI0aQlpb2RO/BiRMnSEpKYubMmfJg14NmzJiBiooKO3fulJft3LmTnj174urqypQpU8jLy1Nok5GRwdSpU3Fzc6NLly7s27dPYXtxcTGff/45Hh4euLi4MGjQII4cOfJE/f4n1NVl8WVNzZq/nD1IS0sLFRWVGt+bmpw9e5ZmzZqxfv162rdvz5AhQ6iqqiI8PJwPPviAVq1a4ezsTN++ffnjjz8U2u7du5cBAwbg6upK9+7d2bx5s3xbfn4+X3zxBR06dKB169Z88MEHXL58+QnOWnhaFeXl3Ii7QrMW7RXKXdzcKS0pJvF6dI3tYq9c4NihXXj2HkKfgaOUtkulUhwcXWnXqadCubmFNQA52Rk17jfkz90UFNxlwLDxT3M6glCjyopybqVEYW3fQaHc1sGd8rJistJqvs7TE89z9exOnNq+i2un0TXWyc1KRENTGz1Dy1qP37bnf2jfZ6ZCmWwqo7TGUWOC8DTKKyq4ej2Rdq6KIw3bt2hGcUkpMTeSa2x3ITqO3UdOMLhHF0a+3aPGOhdjr+Hm1Fhh+mKHFs2RSqVExlwHwMrCjAGeHvJgF4BESxNTI0Myc+7809MThDorr6wkOjOHtrYWCuXt7SwpKa8kNqvm6zEiLYvfL8UzyPkt3nerPb2IIAjCw8QIr5dg+vTppKWlsXbtWnR0dFi6dClRUVG0a9euzvuYOnUq5ubmbNy4EV1dXY4dO4aPjw9ubm706FHzh6JqDwevvvnmG8LDwxk6dCgA8+fP5/r16yxfvhwLCwtCQkKYMmUKa9asoVu3bly4cIFp06bx8ccf069fP8LDw1myZMkTvQcRERHyvFY1kUgktGrVivPnzwOwf/9+Fi9ezGeffUbHjh0JCgpixYoV1K8ve2pfUVHBhAkT0NPTY9u2bZSVlbFo0SKFfa5atYrY2FjWr1+PgYEBu3btYtasWRw+fBgbG5sn6v+TyszM5JtvvkFHR4euXbvWWk8qlRIREcHmzZvp1asXOjo6dT5GZWUlJ06cYOfOnRQXF5OVlcX48eMZNWoUS5Ysoby8HH9/f3nQz8zMjIMHD/LJJ58wd+5cunfvzpUrV/j000/R19dn8ODBTJw4EYlEgp+fH3p6evzxxx+8//77/Pbbb7X+7IRn43Z2JpWVFZiZK45MMTGXfXnPykijcdMWSu1sGtgzb/H/0NHV53xYiNJ2FRUV+r0zRqn86iVZ7kHL+nZK23JvZ3E65CDdeg9WygUmCP9EYV4GVZUVSiOw9O69zr+dgqWd8nVubOFAvw/90NLWJ+FqzXkcc7NuoCnR58wBXzKTLyKVVlG/YWvcuo5DW0826vnBYFh5aRGZyReJvfAHdk06oXlv2qMg/FOZ2XeoqKikvpmpQrmlmew6TL2Vjauj8lQue1tr1iyYib6uDsfPRShtLysvJ+t2Llb1FPdrqKeLjkRCelY2AL09lD9fZmTf5mbGLVyaNFLaJgjPS2Z+MRVVUiwNFO+vFvqy12l5hbjUV55ia29qyA+Du6GvpcmJ6ykvoquCILwmRMDrOdi3bx+HDx9WKu/RoweTJ0/mzJkzbNy4UZ68fOXKlXTv3r3O+y8pKWHgwIH07dtXHvAZO3Ys/v7+xMbGPjbg9eAUuk2bNhESEsL27duxsLAgKSmJ/fv3ExgYiJOTEwAffvghMTEx/PTTT3Tr1o1t27bRqlUrPv74YwAaNWpEXFwcW7ZsqfM55OXlYWBg8MjklEZGRqSkyP6obd26FW9vb0aOHAnApEmTiIyMJCYmBpAtBhAfH09QUBB2drIv7D4+PgwaNEi+v+TkZHR1dbG1tcXAwECeQP7B3Ft1sXDhQqUA3+TJk5kyZYr8tZ+fHz///DMgC8aVlZVhb2/PypUr5fm7AMLDw3Fzc5O/Li0txcTEBG9vb2bOnPlE/QJZ7rCGDRsCsvOdNm0a48ePl7/PkyZNIjAwkMTERMzMzNi8eTPe3t6MHy8btdOwYUMKCwuRSCSEhYURGRlJWFgYRkZGAMyePZsLFy6wZcsWvv322yfun1B3JSVFAGhpKyZk1dKSvS69t/1hhkamNZY/Sk5WOof2bMHKpiGOzq2Utp8KPoC6hgYdPcW0F+HZKi+TXcfqWorBfXVN7Xvbi2tsp6P3+Os8NyuB4oIc3nLuSRO3t7l7+yZRoTsI2b2AXiP/T2G6YnHBbfZukN0H9QwtcfFQHh0pCE+ruKQUAG2JYi5V7Xsjrqq3P8zUyOCR+y0sLqlxvyAbwVVUy37Lysv58Zc9aKir0adT+xrrCMLzUFxeAYCOhuJXUG0N2QjFovJypTYAJjpierkgCE9HBLyeAy8vL+bOnatUrqOjQ3h4OACurq7ycgsLC3mQoi4kEgmjRo3izz//5NKlSyQlJREbG0t2dnatUxprEhwcjK+vLytWrJCviHj16lUARowYoVC3vLwcAwPZB6+4uDg8PDwUtru5uT1RwMvY2JiCgoJH1rl7964891hcXBz9+il+2XZzc5MHvOLi4jA0NJQHuwCcnJyQSO7/gZw4cSJTpkzB3d0dV1dXPDw86N+//xPnyJo+fTq9eikm7X44aDZ8+HBGj5ZNs1FVVcXIyKjG4zg7O7N8+XIArl+/zpIlS2jatCkzZsx4otFd1R68juzs7BgyZAhbtmwhLi6O5ORk+ftVnfi2pvd12LBhAGzYsAGpVIqnp6fC9rKyMkpLa/4QLTw70sf8LquoPpsZ6bcyUvl5zWJUVdUYMWGOUhC6vLyM86HBtHHvjo6O3jM5piBUk0ofc52rPP113qbHR6iqqGFi2RgAc+tmGJracey3z0i8GoJDi77yumoaWnR7ZzFlxXeJCtvB0R2f0HPE8joF1gThcaoec52rqj5+ZbqaSB+Tt1sF5f0Wl5Ti+/OvXEtOZfbYYUorPgrC81T1mItWtQ6rNAqCIDwJEfB6DnR1dWnQoMEj6zwcmHpcXqcHV+YpKipi1KhRlJSU0KdPHwYPHoyrq6t89FNdREdHM2fOHKXgjfTeH6Lt27ejq6s43Fj13hdsFRUVpf7Xlky1Nq1bt8bPz4/o6Gj5SLIHlZaWcvHiRfk0S1B+zx48Zk19gvt5s0AWIDtx4gSnT58mNDSUwMBA1q5dy4YNG3B3d69z301NTR/78zU0NHxsHZAFL6vrNWjQADs7O4YOHcrs2bNZt25dnZZnftCDK3Feu3aNESNG0Lx5czp27EivXr0wNjZWeE8ffH8eVlVVhZ6eHgEBAUrb6pKHTPhnJDqy37+ykhKF8uqRXRLJP1+K+0ZcFNv8fdHUkjBhxiJMzZUTe8dHX6SkpIiWbTv94+MJwsOqV0useGgkV3mp7DrX0Hz669ysflPlMisnNLV0yc1OVCjX1NLFwtYFABPLxhzYOIWEK8do3n7YUx9fEKrpaMsevhWXlimUF9Uy8qvO+73XruSh/cqOVYqutuKomJzcPHz8t5N+K4eZo9+lrbPy74ggPE+6mrLPndUjvaoV1TLySxAE4Z8SSetfsOq8RxcuXJCXFRQUkJCQIH9dHch5cARUYmKi/P+nTp3iypUrbNmyhenTp+Pt7Y2enh45OTnygNWjZGZmMnnyZHr16sXkyZMVtjVuLHsSnpWVRYMGDeT/AgIC5IGPpk2bEhGhmEsiKiqqLqcv16lTJ5o0acLy5ctrXGbbz8+P0tJS+WgjJycnhfcMUEie7uTkRH5+PvHx8fKyxMREhffwhx9+4Pz583Tv3p0FCxZw+PBhbG1ta5x++rI4ODgwd+5cjh8/zo4dO/7Rvnbs2IGpqSkbN25k4sSJdO3alexsWT6P6uvE3t5eKQm9j48P06dPp0mTJhQUFFBeXq5wLfj7+3Ps2LF/1Dfh8UzMLFBVVSUnSzGJfPXrepb/LO/cxfBT/LxmKYbGZkyd+w31LK1rrBcTdR5j03rYNHD4R8cThJroGVqioqJKQa7idV6Qlw6AgcnTrdJbVlrIjStHyctOUiiXSqVUVpajpW2ItKqKm3GnuXPrhkIdXYN6aGrpUVyQ81THFoSHWZgao6qqSmb2bYXyjHuvbSyebmVviZYmJoYGpGcpXqt5BYUUl5RibXE/F1JSWiafrfQn+04en08eTfsWIg+n8OLV09NBVUWFzHzFtAzVr60NxUhyQRCeLRHweg5KSkrIysqq8V/9+vXx9vZm8eLFnD59mvj4eObNm0dR0f0bf8uWLVFRUWH16tWkpKRw6NAh9uzZI99uaSlLsrt3715SU1MJDw/no48+ory8nLIy5ad8DyoqKmLKlClYWVkxZ84csrOz5X3Lzc2lcePGeHp6snDhQoKDg7l58yb+/v74+fnJpwuOGzeOmJgYli1bRkJCAnv37mXbtm1P9B6pqamxcuVKrl27xpgxYzh16hTp6elcunSJBQsWsH79ehYvXiwf/TRp0iSCgoLYsGEDiYmJbN26VSFQ1b59e1q0aMG8efOIjIzk8uXLzJs3Tz4qDeDmzZssXLiQ0NBQUlNTOXz4MGlpaQo5tF4FI0aMoE2bNixfvpzMzMyn3o+lpSUZGRmcOHGC1NRUjhw5wldffQUgv04mTZrEwYMH2bp1K8nJyezbt49ff/0VLy8vOnfujJOTE7NmzSIsLIykpCR8fHwICAjA3l45ua7wbGloaNLIoRlRkWEKgeyoyDAk2rrYNGz81PuOibrAb5t/wK5REybPWvLIvF83E+NpaC9GAQjPh5q6JuY2zUm5FqpwnadcC0NTS1c+HfGJ96umwYUQf6L//l2hPO3GOSoryqhn64KKqioXT23l0umtCnXu3LpOaUk+RmYNn+rYgvAwTQ0Nmtk34OylqwrX+blL0ehoS3Cwq/mBQ124Otpz4Woc5RX3R8yEXbyCqqoqzo1lCelzcvNYsla2AvPS6RNo5tDwqY8nCP+EproaThbGnEvOVPxdSM5AR1MdezOjl9c5QRBeS2Lc6HNw6NAhDh06VOO2VatW8e233+Lr68usWbOQSqW89957REffX3rd1taWRYsW4efnxy+//ELr1q2ZN28en3zyCSDL/zV//nw2bdrEypUrsbCwwNvbm/r16yuN1nnY5cuX5Xm6OnfurLCtXbt2bN26lRUrVrBixQq+/PJL8vLysLOz4+uvv2bw4MGAbDSVv78/vr6+bNu2jcaNGzNlyhR5Lqq6sre3Z8+ePWzYsIElS5aQnp6OgYEB7du3Z+fOnfK8YgDdunXj+++/Z/Xq1axatYqWLVsybtw49u/fD8imW/r5+bF06VLGjRuHRCJh8uTJpKamyvexcOFCli1bxn//+19yc3OxtrZm7ty5DBw48In6/bypqKiwdOlSBg4cyFdffcXatWufaj8ffPABN27cYN68eZSVldGwYUNmz57NDz/8wOXLl+nSpQteXl4sXrwYf39/li1bhrW1NfPnz5cn+//555/x9fVl5syZFBcXY29vz5o1a55oCqjw9Dz7vMNPqxfzy0/f08a9O0k3Yjh5dC+9B45EU1OLkuIibmWkYGJmgZ5+3RZfKC8vY88va9HU0saz7zvcylBc7cjAyAQjY9mogKqqKm5lpNCitUdNuxKEZ6JZu6GcCFhI6MHlNGreney0GGLPB+LqMRp1DS3KS4u4e/smuoaWSHTqdp2rqWvi1PYdokJ/RUvHiPqNWpOXncSVsJ1Yv9VOPn3RucN7nD3yA+HB67B16EhBXgZXwnZiaGpHo+Z1X0xGEB5nSM+uLFm7mRWbd+HZ3o3YhJvsDTnNiLd7oKWpSVFJCakZ2dQzM8ZQr+4rhA708uBMRBQ+67fRr6s76Vk5/HrgGD3cW2NmbATAzwEHuVtQyMSh/SkuKSU+8f59X1uihY3l040wE4SnMdjFga+PnmPVX5F0c7AhLusO+68mMNzNES11NYrKyknNK8RCXxuDp5zuKwiCUE1FWpc5cMJz5+XlxeDBg5k2bdrL7oogPHcnrtS8wqCg7ErkWY4e/I2sjFQMjExw79KHzj0GALIcXP6rvuLd0f+hdQdPpbbnw0LYvfVH5i3+H8am9QC4HnuZDT8sqvV43b2H0qPfewAU5Ofx9afjGTR8Iu07934OZ/d6C/pbPFOqq5RrYVwJ28HdO6lo65ri0KIvTVvLHkbcuhlFyO9f0K7XNBo181Jqm3A1mHNHVvP2OD90DerJy6VSKdcv/cm1S4coyMtES6KPXdMuOHcYjpr6/TyEN+PPEBMewN3bKairS7B2aI+rx2g0JWJqTV184hz8srvwr3H2UjS7DoeQdisbE0MDenu0pb+n7IHClWsJLPpxEx+9P4hu7ZRHnh8/F8H/fg3kxy9mKSWaj76exLZ9R0hMzUBfV4fObVx5r48X6upqVFRUMvrTr2tMHwHQzL4hX3384TM/19dNxeE/XnYXXivnkjP4/dI10vIKMNaR0MuxAW83k41IvJqRw5Kgc0zp6EJXe+X0DSeup7DuzGV+GNwNc71/ns9UuM/486d7yP6yLdj06BlOL9PSsSLv8csmAl6vCBHwEt4kIuAlvAlEwEt4E4iAl/AmEAEv4U0gAl7Pngh4vXzi07jwTGVmZtKnT59H1nFxcWHLli0vqEd106ZNm1qffoJsZcajR4++wB7d9yr3TRAEQRAEQRAEQRBeRSLg9YoIDn49npCamZkRGBj4yDpaWq/efPyAgIBHrnCppqb2Anuj6FXumyAIgiAIgiAIgiC8ikTAS3im1NTU5Csr/ptUr0D5KnqV+yYIgiAIgiAIgiAIryLVl90BQRAEQRAEQRAEQRAEQXiWRMBLEARBEARBEARBEARBeK2IgJcgCIIgCIIgCIIgCILwWhEBL0EQBEEQBEEQBEEQBOG1IpLWC4IgCIIgCE+l4vAfL7sLgvDcqfce+LK7IAiCIDwFMcJLEARBEARBEARBEARBeK2IgJcgCIIgCIIgCIIgCILwWhEBL0EQBEEQBEEQBEEQBOG1IgJegiAIgiAIgiAIgiAIwmtFJK0XBEF4hcVHR3Jk369kpt1ET98Q96596dS9PyoqKo9tm3YzgR99P2XuwtUYm9artd7+3Zs4HbIfnx93K5QXFxVyZO8vREWGUVZWikV9W3oPGIG9o8s/Pi9BeFBGUiSXz2wnLycZiY4RDi28cWw1oE7X+Z1bNzi6Yx7eY/+HroHidZ56/SxXzv5G/p00JLpGNGzaDae276Cqdv/jT3Z6DJdPbeP2retoaGpj07gjLh1HoqGp/czPU3izXUrLZmdkHDdz8zGUaNG7aQP6OTWs03WeePsuCw6dYcXArpjrKV6bYYnp7LuaQGpeAbqaGjjXN2WEmyOG2lryOnFZd9gZEUd8di7aGuq4WZvz/kN1BOFZuBh7jR0Hg7mZfgtDfV36dGrH29061uk6T0hJ57OV/vzw2XTMTYwUth0/F8HekDPcyrmDmbEhvT3a0qdze4X9RsUnsPvwcRLTMtBQV6dpIztG9u+JpZnJsz5NQRD+JV6bEV6jR4/G0dGx1n+3b99+If0ICAjA0dFR/trLy4vVq1e/sOPVVWZmJosWLcLLywtnZ2e6dOnC7NmzuXLlymPbrl69Gi8vr0fWcXR0JCAg4In79aj91fYvJCQEkL3XD5Y3bdqUVq1aMWrUKP7++2/5vj799FOlfTRv3pxOnTrx3//+94VdK0/i6NGj9O3bFzc3NyZNmsStW7dedpeEFyA5IY7Na7/F3MKakRP/S8u2nTkUuJUTQYGPbZuRlszmtd9QVVn5yHo34q9w5vgBpfKqqio2/riUq5fO0XfwaEZOmIO2jh6b/vcN6alJT3tKgqAkJz2Wk3u/xsDEGo+3P6FB0y5cOrWZmPA9j22bl53EyT++pqpK+TrPSL7I6f3L0De2wqP/pzi49iU6PIDIvzbK6+RmJ3L894Woa2rj8fYnuHiM4mbcac4c+O6ZnqMgxGfl4hsSjpWhLrO7tqJTIyt+uRDD3is3Htv25p18vgsOp7JKqrTtTEIaq05G0sjEgNldW/FeyyZcychhSdBZyipkvxfXsnNZcuQshWXlfNTRlcnuLtwqKOaLP0MpLCt/5ucqvLniE1NYtuEXrOuZMefD9+jU2pVt+4L4I/jUY9smp2fy7YbtVNbwueVY2Hn+92sgrZs14ZMJI+jSpgWb/zjMnqMn5XViE5JZum4L+ro6TB/1DuOG9CU9O4cvfviJuwWFz/Q8BUH493itRnj17duXzz//vMZtxsbGL7g3Mrt370ZL69V6ehYdHc2HH36Ivb09ixYt4q233iIzM5Pt27fz3nvv4ePjQ//+/V92N5V89tlneHt7K5UbGhrK/z9u3DjGjRsHgFQqJTc3l//7v/9jwoQJHDp0CCsrKwDc3NwUApElJSVERESwePFicnNz8ff3f85nU3dJSUnMnDmT+fPn0759e2bPns3XX3/NqlWrXnbXhOfs6IGdWNk2ZNiY6QA4NnejsqqS44cD8PDsh4aGplKbiooKQo8fJOjATjQ0NB65/9LSEn7f9j8MjEzIu5OjsO1i+ElSb97g40++o751AwAaNW7OD9/M4Vr0RXmZIPxTUWE7MDZvRPveMwGo37AVVVWVRP+9myZub6OmrnydV1VWEBd5gCthv6KmprwdIOHKUXT0zenQexYqqqpY2rWgtCiP2Ii9tOzyIapq6sRd2IuWRB+Ptz9RGPV17shq7t5JxcDY+rmcs/Dm2XUxngYmBvzHowUALa3NqZRWERh1nb5NG6KprqbUpqKyij9jk9h1MR5NtZqfUf9x5QYtrc2Z0MFZXlbfQJcv/wzlQuotOjSoT+Dl6+hoarCgZ3v0tGR/F5pbmjL7j7/YfyWB99yaPIczFt5EO/8MpqFVfT4eOQQAN6fGVFVWsefoSby7dECzhs8lFRWVHDoZxm9/htT6uWXP0ZN0aNGckf17AuDS5C3Ss3L489Q5hvTsAkDgsVPYWJoze+ww+agvx0YNmLroe078HUl/T4/nccqCILziXpsRXgASiQRzc/Ma/9VlGO3zYGJigq6u7ks5dk0qKiqYMWMGLi4ubNmyhc6dO2NtbU2rVq34/vvvGT16NF988QU3b9582V1Voq+vX+PPVlPz/pcdHR0deXm9evVo0qQJixYtoqSkhKCgIHk9DQ0NhX3Y2toyYMAAxo4dy19//UV+fv7LOMUaxcfHU15ejre3Nw4ODnh4eHDjxuOfCAv/bhXl5dyIu0KzFu0Vyl3c3CktKSbxenSN7WKvXODYoV149h5Cn4GjHnmMQ3u2oG9gROsOnkrbLkeE0cihmUJgS0NDkzkLV9O5x4CnOCNBUFZZUc6tlCis7TsolNs6uFNeVkxWWs3XeXriea6e3YlT23dx7TS6xjpVlRWoqWuionr/o46mtgFVlRWUlxUD4NxxJJ0HLVAIdqmqyv5fVVH2j85NEKqVV1YSnZlDW1sLhfL2dpaUlFcSm3WnxnYRaVn8fimeQc5v8b6b8mh+qVSKs6Up3RvbKpRbGco+d2bmFwGQmleAo7mxPNgFoKWuRmMzIyJSxYhx4dkor6jg6vVE2rk2VShv36IZxSWlxNxIrrHdheg4dh85weAeXRj5do8a63w6YSSjB/RSKFNXV6Os/P4IxcYNbPDu0kHhO5+JoT462hIysmv+HRME6Up3ygABAABJREFU4fX3WgW8Hic/P5/58+fTpk0b3N3dWbt2LaNHj5aP9KlpeuDDZWlpacyaNQt3d3eaN29Oly5d8PX1paqqqsZjPjilsbYpeWvWrAGgrKwMX19fOnfujJubG8OGDePUKcUhwEFBQfTv3x8XFxdGjBhBWlraE70HJ06ckI8YUlNTfpo4Y8YMVFRU2Llzp7xs586d9OzZE1dXV6ZMmUJeXp5Cm4yMDKZOnYqbmxtdunRh3759CtuLi4v5/PPP8fDwwMXFhUGDBnHkyJEn6vc/oa4u+/LyYGCsNlpaWqioqNT43tTmp59+okePHjg7O+Pl5cWPP/6IVHp/2kFISAhDhgzB1dWVnj17snLlSsrKZF+kDh8+jKOjI4cPH5bXnzNnDp6envL32c3NDR0dHb777juioqIIDAxk4MCBCn04e/YszZo1Y/369bRv354hQ4ZQVVVFeHg4H3zwAa1atcLZ2Zm+ffvyxx9/KLTdu3cvAwYMwNXVle7du7N582b5tvz8fL744gs6dOhA69at+eCDD7h8+XKd3xvh6d3OzqSysgIz8/oK5SbmlgBkZdT8u2/TwJ55i/+HZ593UH3EdRwfc5ELZ0/wzqj/1PhAIP1mAhb1bTkVvJ/vvpjK59PfY82yeSRcu/oPzkoQFBXmZVBVWYG+keJ1rnfvdf7tlBrbGVs40O9DP5q1excV1ZqvcwfXvhTkZRBz/g/KSgvJSY8lPmIf9Ru2RktbHwAdPVOMzBoCUFFeQkbyRS6f2Y6ZVVOMzBs9o7MU3nSZ+cVUVEmxNFB8AGqhL3udllfzdCt7U0N+GNyNwS4OqKkq36dVVFQY3caJNg8F0sJvZgJgayS7zvUlmmQVFiu1zygoJLOg6InPRxBqkpl9h4qKSuqbmSqUV+fPSr2VXWM7e1tr1iyYyZCeXVBTrfmrqY2lOeYmRkilUvILizgWdp6//r5I707t5HWG9OyCV/tWCu2uXkuksKgYG0vzf3JqgiD8i71WUxofZ/r06aSlpbF27Vp0dHRYunQpUVFRtGvX7vGN75k6dSrm5uZs3LgRXV1djh07ho+PD25ubvToUfNTiWoPB6+++eYbwsPDGTp0KADz58/n+vXrLF++HAsLC0JCQpgyZQpr1qyhW7duXLhwgWnTpvHxxx/Tr18/wsPDWbJkyRO9BxEREejo6NCsWbMat0skElq1asX58+cB2L9/P4sXL+azzz6jY8eOBAUFsWLFCurXl30ZqaioYMKECejp6bFt2zbKyspYtGiRwj5XrVpFbGws69evx8DAgF27djFr1iwOHz6MjY3NE/X/SWVmZvLNN9+go6ND165da60nlUqJiIhg8+bN9OrVCx0dnTrtPzg4GD8/P1asWEGjRo2IjIxk3rx52NjYMHDgQP766y/5dMSOHTuSnJzMkiVLSEhIYNWqVfTu3ZuBAweyZMkSOnTowMmTJzl06BBbtmyRT9U0NTVlxowZ+Pj4cODAAaZPn86ECROU+lJZWcmJEyfYuXMnxcXFZGVlMX78eEaNGsWSJUsoLy/H399fHnw0MzPj4MGDfPLJJ8ydO5fu3btz5coVPv30U/T19Rk8eDATJ05EIpHg5+eHnp4ef/zxB++//z6//fZbrdeQ8GyUlMi+hGhpKyYn1tKSvS4tqflLiqGRaY3lDyouKuT3bf+jZ7/3MLewqrFOYcFdoiJCkWjr0nfwB2hoanEiaA8b1yxl6n99xJRG4ZkoL5Ndx+paivdc9XsJ46tHYj1MR+/x13k9Wxeath7ExZObuHhyEwDG5o3o0HeWUl2pVEqg3xgqK8rQkujTqtvEJzkNQXik4vIKAHQ0FD92a2vIgrVF5TXn0TLRkTzxsTLyC9l+PoYGJvq4Wcu+5Hezt8E/LIrNf19lQPO3UFFR4WB0Aml5hVTU8sBWEJ5UcUkpANoSxVQu2lqaCtsfZmpkUOdjxCelsGDVBgDs7ax5u6t7rXXvFhTi99tejA316da2ZZ2PIQjC6+W1Cnjt27dPYaRMtR49ejB58mTOnDnDxo0badu2LQArV66ke/fudd5/SUkJAwcOpG/fvvKAz9ixY/H39yc2NvaxAS9z8/tPFzZt2kRISAjbt2/HwsKCpKQk9u/fT2BgIE5OTgB8+OGHxMTE8NNPP9GtWze2bdtGq1at+PjjjwFo1KgRcXFxbNmypc7nkJeXh4GBwSOneBoZGZGSInuqvnXrVry9vRk5ciQAkyZNIjIykpiYGABCQ0OJj48nKCgIOzs7AHx8fBg0aJB8f8nJyejq6mJra4uBgQEzZsygbdu2Crm36mLhwoVKAb7JkyczZcoU+Ws/Pz9+/vlnQBaMKysrw97enpUrV8rzdwGEh4fj5uYmf11aWoqJiQne3t7MnDmzzn1KTk5GU1MTa2trrKyssLKyol69evJjrVu3jmHDhjF8+HAA7OzsWLRoEWPGjCElJQUbGxu+/PJL+vfvz4IFCwgLC+Ojjz6iTZs28mPs2LGDVatW0aRJE65du4aDgwMABQUF6OnpKfRn3LhxNGzYUN63adOmMX78ePnPe9KkSQQGBpKYmIiZmRmbN2/G29ub8ePHA9CwYUMKCwuRSCSEhYURGRlJWFgYRkZGAMyePZsLFy6wZcsWvv322zq/T8KTkz7mS4hKLU9B62L/7xsxMjajU/fac/VVVlZQXFTI1P/6YGRsBkAjByd8F/6HE4cDGD5OOWggCE9KKn3Mda7y9Nf5+eB1JFwNplm7oVjYulKYf4srYTv5a89iur2zGHWN+1/KpFWVdBrwGZUVZcT8/TvBuz6n+7BvxCgv4Zmokionm3+Q6jNKu5GaV8A3R/9GTVWVmV3c5H/7vRrbUlxewa6L8fwZk4SKimw6pVdjW45fq3kUpSA8qarH3M9Vaxil+KTMjI346j8fcuv2HXYcDOaLH35i2ZzJaD00i+N2Xj7frN/Knbv5fDFljFIQThCEN8drFfDy8vJi7ty5SuU6OjqEh4cD4OrqKi+3sLCQBwfqQiKRMGrUKP78808uXbpEUlISsbGxZGdn1zqlsSbBwcH4+vqyYsUKmjdvDsDVq7JpQiNGjFCoW15ejoGB7MlHXFwcHh6KCRfd3NyeKOBlbGxMQUHBI+vcvXsXExMT+TH79eundMzqgFdcXByGhobyYBeAk5MTEsn9p5ITJ05kypQpuLu74+rqioeHB/3790dfX7/O/QbZCL1evRTn7z8cNBs+fDijR8vyuaiqqmJkZFTjcZydnVm+fDkA169fZ8mSJTRt2pQZM2bUeXQXwIABA/j999/p3bs3Dg4OdOzYkd69e8sDXlevXuXSpUvs3r1b3qZ6uuP169exsbFBT08PHx8fxowZQ/PmzZk6daq87tGjR1m0aBG+vr54e3szZcoU5s6dy44dOxg9ejTvvfeeQoDuwevZzs6OIUOGsGXLFuLi4khOTpb/3KpXwKnp5zts2DAANmzYgFQqxdNTMb9TWVkZpaU1P6UTnh2JjmyqS1lJiUJ59cguiURbqU1dxFw+z+XzZ/jPJ8vk963qa7KyshJVVVVUVFTQ1NKmnqW1PNgFoCXRxu4tR9JSEp/q2ILwMA0t2XVe8dBIrvJS2XWuofl013lRQQ43ooJwavsOLh3v/101tWjMoa3TSbhylMYt/5+9+46v+fofOP7K3hKRyDJCCEkIsWIngiK1R4dVTRVVVapVKig/OxQ1aqZGtA392rNGjdhbJCQRIjuSkMjevz9uXW4TBFHr/Xw8PB7u53PO557zySc3n/v+nPM+Dz/71DU0sayiSCZubuPILt+hhF7cSZP3vnqu9xfiUQbaitvtByO9Hsh8zMiv5xEcn8xPRy6io6mBd/smWBqpTp9837EaHWpVJSE9EyMdLcrp6rDk+GWVvF5CvAh9PcW9f1aOav7DzMeM/HoepsZGmBob4YgtFU3L8+OSXzl1ORi3R0Zw3Y5NYPaqDWTl5DJh6ABq2r7c2SRCiNfbWxXwMjAwoGrVJ0+z+Xdg6ml5nR5dGjczM5P+/fuTnZ1Nx44d6dGjB87OzsrRT6Vx7do1xowZUyx48+AL54YNG4oluVf/ZySHmppasfY/bRW2f2vYsCHLly/n2rVrypFkj8rJyeHy5cvKaZZQ/Jw9+p4ltQke5s0CRYDsyJEjHD9+nJMnT7J161Z++eUXVq1aRbNmjx+K/G8VKlR46s/X2Nj4qWVAEbx8UK5q1apUqVKFPn368M0337Bs2bJSL3JgamrKtm3buHjxIsePHycgIIB169Ypp54WFhYyePBgevToUazuoyP+rl69iqamJrdu3SI2NpbKlRUJaLdu3UrLli3p3LkzAD/99BMffPABffv2JTU1tdgIxUdXBL1x4wZ9+/bFycmJ5s2b895771G+fHmVn+2jP6d/KywsxNDQkM2bNxfbV5p8aOLFmJpZoK6uTnJivMr2B68rWj7fDVzgpZPk5eWyYFrxEVreIz+kQVN3+gwYgVlFS/Lzi0+zKSwoeObPHSEex9DYEjU1ddJTVK/z9NQ4AMqZVi6p2lNlpiVSVFSEmbXq37lyFSqjo2tE6l3FwiwxN8+ipa1PxUpOyjLaOgYYmliSlSFJjkXZqGioj7qamjKJ/AMPXtsYG5ZUrdRO3IrllxNXsDY25HuPRsWmQoYnpZCUmY1rFUuV94q4e59qpqWfTibEk1hUKI+6ujoJSXdVtsf/87qSxfPl0crOyeXc1evUqFpJmQ8MoHplxcPle/cfLjR1NewWc33/QE9Xh6lfeVHZsuJzvacQ4u3xziStf5Bv6MKFC8pt6enp3Lp1S/n6wZe4R0dARUREKP8fEBBAUFAQ69atY+TIkXh6emJoaEhycrJKkvLHSUhIYOjQobz33nsMHTpUZV/NmjUBSExMpGrVqsp/mzdvVgYcateuzcWLF1XqXb16tTTdV2rZsiX29vbMnTtXJZj3wPLly8nJyVGO8nFwcFA5Z4BK0nIHBwfS0tIICwtTbouIiFA5hz///DPnz5+nbdu2eHt7s2/fPipXrlzi9NNXpUaNGnz77bccPnyYP/74o9T1tm/fzu+//07Dhg0ZOXIkGzdupE+fPuzevRtQ/Fxv3bql8jONj49nzpw5ZGQoktRev36dhQsXMmXKFJycnBg7dqwyiKinp0dycrLy/QwNDZk1axapqalYW1sXW2ThUX/88QcVKlTg119/5fPPP8fNzY2kJEXC0AfXq52dXbEk9DNnzmTkyJHY29uTnp5OXl6eSvtXrlzJwYMHS32OxPPR0tKmWg1Hrl46pfL5cvXSKXT1DKhkW/O5jtvO8wO+HDtL5V/jForp2F+OnUU7T8Xvfi2nBsRFR3An7uF0l8yMNG7fDMG2huRvE2VDQ1Mb80pORN84qXKdR984hbaOAaaWz3edGxpboaamTmKM6iIL9+/FkJOdhmE5xeIPoRd3cP7QMpUpxJlpSaQmR2FiJnnqRNnQ1tTAwaI8ZyITVK7zM5Hx6GtrYmdm8tzHvhhzhyXHr1DTvDyT33MtMe/XtTv3WBJwmYzchw8xAuOSiE5JL5bwXojnpa2lhaNdVU5fCVa9zq9cQ19PlxpVbJ7ruOrqaizz3872Q8dVtl++fgOAKlaKa/hWdByzV23A1KQc00d9LsEuIQTwlgW8srOzSUxMLPGflZUVnp6eTJ06lePHjxMWFsbYsWPJzHz4tK1+/fqoqamxaNEioqOj2bNnD1u2bFHut7RU3CBv376dmJgYzp07x/Dhw8nLy1Ouuvc4mZmZDBs2DGtra8aMGUNSUpKybSkpKdSsWZM2bdowefJkDh06RFRUFCtXrmT58uXK6YJeXl5cv36d2bNnc+vWLbZv346fn98znSMNDQ0WLFjAjRs3+OSTTwgICCAuLo4rV67g7e3NihUrmDp1qnL005AhQ9i/fz+rVq0iIiKC9evXqwSqXF1dqVevHmPHjuXSpUsEBgYyduxY5ag0gKioKCZPnszJkyeJiYlh3759xMbGquTQeh307duXRo0aMXfuXBISEkpVJycnh9mzZ7N161aio6M5d+4cZ8+eVfbt888/Z9++fSxevJhbt25x8uRJxo8fT1paGubm5uTm5jJ27FiaNGlC7969mTZtGsHBwaxcuRKAfv36ce3aNWbNmsWtW7c4ceIE3t7e2Nvbk5KSwujRo8nKKjmps6WlJfHx8Rw5coSYmBj++usvfvzxRwDl9TpkyBB2797N+vXriYyMZMeOHfz+++94eHjQqlUrHBwcGD16NKdOneL27dvMnDmTzZs3Y2dn94JnW5RGm469iL59g99WzyMk6CJ/7fidYwe2496hB9raOmRnZRJ5K5T0tNSnH+wf5StUpFLVGir/yhmXB6BS1RqUr6C4QWze5n2MTSqw5pcZXD4XQPCVs/y6ZBoArdp1LfvOineWY5M+3E0I4+TuucRFXCDwxG+EnN+KQ+NeaGrpkJeTSXJcCNmZpb/OdfWNsXfpQsj5rVw57kdCVCC3gg9xdMtUDMpVpHrd9sr3TrsXy4ndc4m/fYnb149wePNktHUMqdWw21PeRYjS61G3BuHJKSw8eolLMYlsvBTKzuBbdKtjh46mBpm5eYQlpnD/MYm9S5KbX8DKk1fR1dKgR107YlIzCEtMUf5L/mdlxpbVrNHR1GDB0YsExiXx940o5h+5iL25Ca2qPV8QQoiS9Gzvxo3IGOav3cTFa2H8sfsQ2/8+To92rdDR1iYzO5uwiGhS00tembQk2lpadG/XkoOnzvPH7kNcDbvFriMn+cV/G3Xt7XBxUDwY+eWPbRQUFvJhxzYk30slLCJa+S/+X6POhBDvjrdqSuOePXvYs2dPifsWLlzIrFmz8PHxYfTo0RQVFfHhhx9y7do1ZZnKlSszZcoUli9fzm+//UbDhg0ZO3Ys33//PaDI/zV+/HjWrFnDggULsLCwwNPTEysrq2KjZP4tMDBQmaerVatWKvuaNGnC+vXrmT9/PvPnz2fSpEmkpqZSpUoVpk+frpwO5+DgwMqVK/Hx8cHPz4+aNWsybNgwZS6q0rKzs2PLli2sWrWK//u//yMuLo5y5crh6uqKv7+/Mq8YgLu7O/PmzWPRokUsXLiQ+vXr4+Xlxc6dOwHFdMvly5czbdo0vLy80NXVZejQocTExCiPMXnyZGbPns13331HSkoKNjY2fPvtt3Tr9np9mVBTU2PatGl069aNH3/8kV9++eWpdfr06UNKSgpLly4lLi4OY2NjOnTooMwl17FjR+bPn8/y5ctZtmwZJiYmKrnm5s+fT3R0NMuXLwcUObhGjhzJ/Pnzad26NfXr1+eXX35h4cKF+Pn5YWJigqenJyNHjiQoKIhp06apjAB71MCBA7l58yZjx44lNzcXW1tbvvnmG37++WcCAwNp3bo1Hh4eTJ06lZUrVzJ79mxsbGwYP368ctEBX19ffHx8GDVqFFlZWdjZ2bF48eJnmooqnp9drbr0G/wtB3ZvZP3y2ZQzMaVT9wHKgFNs1E1WLvyR3gO+pGHTNk852rPR1zdk6Jhp7N3qxzb/lRQUFGBbvTbDxoxQyeslxIuyqFyX5u+PJejUHwTsmImeQQWcW35C7X8CTvfu3OTv/02kyXtfUc3Ro9THrdfqE/QMTQkP3EfIhW3oGZhiUaUedZv3Q/uf3GEWlevi1vNHgk7+zoldc1BT18Cyan3qtfwEXX2Tl9Bb8a5ysqzAqNYu/O/KDeYdPk95fV36NqhNZ0fFwggRd+/zf/vPMKx5XdzsSjdlPSwphXtZigDZjANni+3v5VyD3vVqYqKnw/i2jfE7f515hy9goK2Fm50NH9S3L5NE4kI8UKdmNb4Z9CGb9v2Nj+/vmBqXo3+X9nRpo8hBfCs6jilL1jD84+64Nyn9g+9e7d0oZ2DA3oAz7Dx8AiMDfdo3b0SfDu6oqamRkHSXiBjFVPh5a/yL1XdrXJ8v+xZPLyKEePupFZVmLt5bzMPDgx49evDVV5KYVrx5ioqKSp1v7HVyJCjz6YWEeMPtP/tWPVMSokRjYr5+1U0Q4qXT7PB6PaQV4mUwatTxVTfhuXivefJMq1dp2iDJe/yqvVVTGoV417yJwS4hhBBCCCGEEOJlk8fPb4mEhAQ6dnxyVL5u3bqsW7fuP2pR6TRq1KjE5PkPVKhQgQMHDvyHLXrodW6bEEIIIYQQQgghHu+dD3gdOnToVTehTJiZmbF169YnltHR0flvGvMMNm/e/MQVLjU0NP7D1qh6ndsmhBBCCCGEEEKIx3vnA15vCw0NDeXKim+SBytQvo5e57YJIYQQQgghhBDi8SSHlxBCCCGEEEIIIYR4q0jASwghhBBCCCGEEEK8VSTgJYQQQgghhBBCCCHeKhLwEkIIIYQQQgghhBBvFUlaL4T4zzlvHfOqmyDEy9d93qtugRAvnWadbq+6CUK8dLOverzqJgjx0k1r9KpbIETZkxFeQgghhBBCCCGEEOKtIgEvIYQQQgghhBBCCPFWkYCXEEIIIYQQQgghhHirSMBLCCGEEEIIIYQQQrxVJGm9EEK8AZIzshi7M4Axbg1wtKzwxLInbsWyOfAGd9KzMDfUo6tTddzsKqmUiUlN57cLIQQnJKOhpo6DRXn6N3TAwki/xGOei0pg3uELTGzf5KnvL8TzSrmXxMLpYxgw5Duq29cpVZ3YqFss8RnHt5MXUb5CRZV9QZfPcGjPJpLuxGFUzgSXJq1xe68nmpoPb39iIm/y147fiYm8QVFREdaVq9OxW39sqlQv074J8TjJKamMmbOU77w+wqlGtVLVuRUdxw8LVvLzDyMxNzVR2ReTkIjfjv0Eh0egrq6Oo11VBnbtgIWZ6UtovRAly0xLYp/fKFp0HkfFyo//PC/IzyPkwjYirv1NVnoyeoYVqFrbDYdGPVHXePhZfSv4ECHnt5KemoC+kRk16nWiZr33UVNTA8B/QY/HvkfFSnVo0/v/yq5zQog3hgS83hEeHh7ExMQoX2tpaWFmZoabmxtff/01pqaKm6BatWoxc+ZMevbs+aqaWirnz5+nqKiIRo3KbjmRAQMGYGNjw6xZs8rsmGUtMzOTLVu20K9fv1fdFPEfSs7IYubBs2Tm5j+17OnIeBYfv0zH2rbUszbjXFQCy04EoqWuTvNq1srj/bjvFFblDPiqZX1y8wvYeDmMmQfPMqdzS7Q1NVSOmZaTy6pTV19K34R4IOVeEr8unkZ2Vkap68THRrL2lxkUFhQU2xd2/TIbVvrg3KA5Hbv3JyE2ir+2/0ZGehpdP/gMgOTEOFYsmIRN5er07DccNTU1jh3YzvKfvPlq/FzMLazLrH9ClCQ5JZVpy9aTmZVd6jqRcQnMWrWBghKu++SUVCYu8sXavAIj+/ciNy8P/z1/M335euaOHY62llZZNl+IEmWmJXFkyxRyc57+eX7xyCpuXz+CY5MPMLWowd2EGwSd9ifz/h0atx8BwM2r+zl7YCm1G/XAskp9kuNDuXTkV/Jzs3Fs0huAdh8Wv3+PvnGK6+e3YufcoWw7KIR4Y0jA6x3i5eWFl5cXANnZ2YSGhuLj40P//v3x9/fHyMiIgIAAjIyMXnFLn65v377MnDmzTANebwJfX182b94sAa93RFFREUdvxuB3/nqp6/hfDMW1iiUDGzkAUM/anPScPDZeDlMGvP68cgM9LU0mtGuCzj/BLXNDPeYdvkB4cioOFqqjAHxPB6GhLjPgxctRVFTEhdOH2b15banr5Ofnc/Lwbvbv8kfrMV/gz584hEl5Mz4Y9DXq6urUrF2P9LQUAg7uxLPnJ2hqanLi8B60tLT5ZPgP6OjoAlDdvg4+k77gxOHddPtwcJn0UYh/Kyoq4sjZS6zb/lep6+TnF7Dn2Ck27v37sdf9xr2H0dfVYeIXA9HR1gbA3LQ8Pr6/Ex4Zi4Nd1TJpvxAlKSoqIuLa31w+uqZU5XOy0rh5dT/OLQZSu1F3ACyqOANw5fh66rYYgK6+McFn/kflms2p13Kgskx6Siw3Lu9WBrwqWNVSOXZmWhI3r+6nRr1OVLFvWTYdFEK8ceQbzDtEX18fc3NzzM3NqVy5Mm3btsXX15e4uDhWrVoFgLm5Obq6uq+4peJxioqKXnUTxH/o9r00Vp8OolV1G4a3cH5q+cT0LOLuZ9C4soXKdtcqliSkZRJ3P4OioiLORMbjXqOSMtgFYGdmwtLeHsWCXScj4giMS6ZfA9UbSSHKSlx0BFt/X4FLE3f6DBxZqjohQRc4uGcTbTr0pGO3/iWWyc/PR0tbB/VHgrUGBuUoKMgnNycLAHMLa1q366YMdgHo6OhibFKBu0kJL9ArIZ4sIiaelZt24taoHiP6Pn4q1qMuXAvlz7+O0KNda/p1bldsf1FREaevBNOmiYsy2AVQo4oNy3/8VoJd4qVLSbzF+YPLqOrgTpMOXz+1fF5uJnZ1O2Bt11hlezlTRRqGjNR4AFp3m0C9Vp+olFFT16QgP/exx750dA0amjo4Ny/5b4QQ4t0gAa93nLW1Ne3bt2fXrl2AYkrj5s2bAUhOTmbkyJG4urri7OzMRx99xJkzZ5R1PTw8WLp0KZ999hnOzs60b9+eTZs2qRx/06ZNdOnSBWdnZ+rXr0/fvn0JDAxUOcbs2bPx9PTE1dWVM2fOkJqaire3N61atcLJyYlmzZrh7e1NVlaWso0A48ePZ9y4cQAkJCQwevRoGjVqhKurK8OGDSMiIuKFzk2tWrXw9/enb9++1K1bl06dOnHhwgX8/f1xd3enQYMGjBo1iuxsxTSEzZs307p1azZu3EjLli1xcXHhyy+/JCHh4Zem2NhYRo8eTbNmzXBycqJ169b4+PhQWFioLHPlyhUGDRqEi4sLzZs3Z/LkyWRlZbFo0SIWL15MTEwMtWrVIjo6ulT92Lp1K++//z5169alVatWTJ8+ndzchzcIFy5coF+/fjg7O+Pu7s6UKVNIT08H4PLlyzg6OuLr66ss/9NPP9GwYUOioqJe6PyKp6tgoMv8bq0Z2MgBHQ2Np5aPSVX83KzKGahst/znddz9DBIzssjMzcfcQA/f00EM9j/AwN/2Mffv8yRnZKnUS83KwfdMEJ80dsBET6eMeiWEKhNTM8b8uIjOvQeh/ciX9CepVNWOsVOX0qZjL9Qf87vRtHUHkhPjOXZgO1mZGUTeCiXg753UcmqAvoHRP2U60rp9N5V6yYlxxMdFYWFVqaTDClEmzMob8/OEkXzSvSM62qWbZmhX2YbF3qPo2b51iaNuE++mkJmVjbmpCav+3MmnE2bR77v/Y87q30lOSS3rLghRjL6ROZ6DluLi5oWm5tPvGwyNLWjoMZRy5W1UtseEn0JdQxOjf7aXq1AZg3IVKSoqUo4Ku33tMDXqdSrxuMlxIUSFHadui35o6ZScm1QI8W6QgJfA3t6eqKgoMjJU59n/+OOP5OTk4Ofnx44dO6hWrRrDhw8nMzNTWWbp0qW4uLiwdetW+vXrx6RJk9i9ezcA+/fvZ+rUqQwePJg9e/awZs0acnJy8Pb2VnkfPz8/vL29WbVqFfXr12fcuHEEBwezePFi9u3bx/jx49m6dSv+/v4ABAQEAPDDDz8wYcIEMjMzGTBggPJY69evp3z58nzwwQcqwabnMX/+fAYPHsy2bdswMjJi2LBh7Nu3jxUrVjBz5kwOHDigEuS7e/cua9euZcGCBaxdu5a4uDgGDx5Mfr4i99IXX3xBWloav/76K3v37sXLy4tVq1Zx6NAhAKKiovjkk0+oWLEi/v7+LFq0iOPHjzNlyhTllFRLS0sCAgKwsrJ6avuvX7+Ot7c3X331Ffv27WPGjBls27ZNOaLv+vXrfPrpp7Rq1Yrt27czd+5cgoKC8PLyoqioiHr16jF06FB+/vlnIiMjOXfuHCtXrmTKlClUrlz5hc6teDojHW0qGOiVunxmbh4Aetqqs9V1tRQBgay8fO5nK4Kdv18I4W5mNiNb1efzpnW4dfc+/7f/DNl5D/OErTx1lZpmJrSqrnojKkRZ0jcwwqS82TPVMTapoAxaPY5drbq0bteV3VvWMfW7T/hl7g8YGpbjw0GPH3WQl5fLpnWL0dTUoplbyV+khCgLRgb6VDAxfqY6FUzKYWTw+C/vqemK+7gNO/dzNzWNUQN7M/TDrtyKjmPKkjVk5zx+NIwQZUFHzwh9o2f7PP+36BuniLh2GLu6HdDWNVTZlxwfwtblAzl7YCnGZlWxd+la4jGun9+KQbmKVK3t9kJtEUK8+SSHl6BcuXIAylE9D0RGRmJvb0/lypXR1dVlwoQJdOnSBY1Hnqa3bNmSESMUCSWrV6/O5cuXWbt2LZ6enpiYmDB9+nS6dlX8MbKxsaF3795MnTpV5X3c3Nxo3ry58nWLFi1o3LixciRXpUqV8PPzIzQ0FFBMuwQwMjLCyMiITZs2cf/+fXx8fJQrb02fPp3Tp0+zceNGvvrqq+c+N7169cLDwwOAbt26MXXqVCZNmoStrS329vasWrWKsLAwZfm8vDxmz55NnTqK1Wh8fHzw9PTk5MmTNG7cmG7dutGpUydlsGrQoEGsXLmSkJAQ2rVrx8aNGzExMWHGjBnKvkybNo2LFy9iYGCAvr4+GhoaynPwNNHR0aipqWFjY4O1tTXW1tasXr0aQ0PFDcTq1atp0aIFw4YNA8DW1pZ58+bRrl07zpw5g6urK19++SVHjx7F29ub6OhounfvTufOnZ/7nIqX52kTXtWA/H9GE5bT02aMewPl6kaWRgZM2nuSgFuxtLOvwpHwaK7fuYdPF8l7Id5MW/9YwfmTf9OmYy9q1KrLvbuJHNy1kV+XTGPw1z+ira06+iAnO4v1y2cTdfsG/QZ/W2zFRyFedw+S2BsbGvKd10fKz3crswpMWLiSY+ev0L75u5X7VLxZosNOcmrvfMysHZT5uh5lYFSRNr2nkXE/gasnfuPgxnG81/cnNLUefp5npiURE36a+q0/RV396aPjhRBvNwl4CdLS0gCUQZAHRowYwXfffce+ffto2LAhLVu2pHPnzujoPPyj4urqqlLHxcWFw4cPA9C4cWPCw8NZsmQJN2/e5Pbt24SEhKhM3wOoWlU1p0Tfvn05dOgQW7ZsISIighs3bhAdHU316iUvER8cHExqaiqNG6vO/8/JySE8PLz0J6IEj7ZNT08x0qZKlSrKbbq6uirTAw0MDJTBLgA7OzuMjY0JDQ2lVatW9O/fn71793LlyhXl+UhKSlKek9DQUJycnJTBLoCmTZvStGnT52p/q1atcHFxoXfv3lSqVIkWLVrQtm1bZRuDg4O5ffs2Li4uxeqGh4fj6uqKpqYmPj4+dO3alQoVKjBx4sTnaot4+fS0FNdNdp7qyl1Z/6zuqK+thd4/11Z9a3PllyGAmuYm6GtrcvvefZIzslh37hr9G9amnK42BYWFFP6TP66wqIjCwiLU1dUQ4nWVmpLM2eMHcH+vB+91+Vi5vXLVmsyfNopzJw7R3P3hCK6Ue0ms/WUmSQmxfPzpaBydG5d0WCFea7r/3J/Vd6ih+vluWwl9PV0iYuJfVdOEeKqQC9u5fGwN5pXq0LLLeDQ0i09x1zM0Rc/QFHDCoJwFf//pTXTYCWwd2yjLRIefAtSoUqvVf9d4IcRrSwJegqCgIGxtbTEwUM370759e44dO8axY8c4ceIEv/76K4sXL2bjxo3UrFkTQCUwA1BYWKhMELxjxw7GjRtHly5daNCgAR999BGhoaHFRng9miS/sLCQoUOHEhYWRufOnfH09MTJyemJQZbCwkKqVavGL7/8Umyfvv6Lzdv/d/8AlQTI/1bSqkkFBQVoaGiQmZlJ//79yc7OpmPHjvTo0QNnZ2eVFRdLer8XoaOjw7p16wgODiYgIICAgACGDRtG9+7dmTlzJoWFhXTp0kU5wutRpqYPk5eHhoZSWFhIYmIiISEhJQbIxKtnbaz4HY6/n4GtaTnl9oQ0xTRkG2NDjHS0UFODvILCYvULCovQ0tDganwymbn5rDh5lRUnr6qUmX7gLGYGeizq6f7yOiLEC0q5m0RRURFV7RxUtle0qoS+gSF34h/mIIyLuc2aJdPIzc3l0xHeVK/p9F83V4gyYWlmipqaGvn5BcX2FRYWoq0lt/3i9VNUVMTFI6sJu7SLKrVa4vre16hrPLxW8/OyiQk/g6llTYxMHqbzMLWwAyAr457K8WJvnsO8khO6+ib/SfuFEK83yeH1jouPj+fgwYN06dJFZXtubi4zZ84kKioKT09Ppk2bxoEDB1BXV1eO4AJUEtCDIgG6o6MjACtWrKB3797MmjWLfv360bhxY2Wi88etNnjt2jWOHj3KwoUL+fbbb+natStVqlQhMjLysXXs7e2JjY3FyMiIqlWrUrVqVaytrZk3bx5nz5593lPzXFJSUlSSuYeFhZGeno6joyMBAQEEBQWxbt06Ro4ciaenJ4aGhiQnJyv7VqNGDYKDg5XTEkCRC83Dw4OcnByVJ7alceTIERYvXoyjoyNDhgxRvveDPGs1a9bkxo0byvNWtWpV8vPzmTlzJnFxcQDcuXOHyZMnM2zYMDp37sz333+vksdNvD4sjQwwN9TjdKTqU/zTkfFYGuljbqiHrpYmtSuaciYygbxHrrOrcUnk5BdQu2J5GlSqyLROzVT+feaqCAJ85urEd20a/Kf9EuJZVTC3RF1dnYgbwSrbExNiycxIx7SCYiXTlHtJrP55CgBfjJkuwS7xRtPV0cahelVOXwkmL/9hPsbA0Jtk5+RSu7qs0iheP4HH/Qi7tItaDbrStOM3KsEuADU1dc4eWELI+a0q2+MjLgJgbPbwui4qKuJewg3MrGq/9HYLId4M8qjnHZKZmUliYiIA2dnZhISEsGDBAipVqsSnn36qUlZbW5vAwEDOnTvHxIkTMTMz4+jRo2RmZqqM7tm1axf16tWjRYsWHDhwgP3797Ns2TIArKysuHDhAkFBQRgZGXHo0CH8/PwARUDt0amRD5iZmaGpqcmePXswNTUlJSWFZcuWkZiYqDJ1UF9fn/DwcO7du0fXrl1ZsWIFI0eO5LvvvsPQ0JClS5dy9OhRvv766Usil7XvvvsOb29v8vPzmTJlCi4uLjRu3FgZHNy+fTsdOnQgLi6On376iby8PGXf+vbty7p165g8eTKffvopd+/eZc6cOTRt2hQdHR309fVJTU3l1q1bVKpUqcQRZY/S0tJiyZIlGBoa0rZtW1JTUzl8+LDyZ+jl5UW/fv2YMmUK/fv35/79+0yZMoXs7GxsbW0BxeIAFStWZNiwYWRmZvL+++8za9asYiP1xH8vMzePmNQMLIz0KKer+H3q5VyDZScCMTodRINKFTkfncCp2/GMbFVfWe8jF3v+76/TzD50js6O1UnNzuG3CyHUMDOhUSUL1NXVMNJRnUqQ88+IAetyBlQpXw4h/ivZWZnciY/G1MwCQ6PSJfk2NDKmRZv3OXpwOwA1ajuTci+Jg7s2Ut7UnMYt2gGwY6MvGen36f7xELKzM4m8Fao8hq6uPhVlpUbximRmZxMTn0RFs/IYGxo8vcI/+nZux49LfmXmCj+6tGlBalo6fjv2U7NqJRrXqfUSWyzE0+XlZHL/bhQGxpbo6htz785Nrp/fgqlFDSrXbM7d+FCV8uVMK6Olo49D414EnfoDHT1jKlauS0riLYJPb8SiSj2sbB8+hMtMSyQ3JwPjCrKwkhBCQQJe7xBfX198fX0BRSDEysoKT09PvLy8ik1nBMUKhTNnzlSuLFi9enXmzp1Lo0YPE5726NGD/fv3M2vWLGxtbVmwYAFubooVUSZOnMikSZPo378/2tra1K5dmzlz5jB69GgCAwNVjvOAhYUFs2bNYtGiRWzYsAFzc3Pc3d0ZNGiQciVDQLm6YXh4OMuWLcPPz485c+bw2WefUVBQgJOTE76+vtjZ2ZX1aXyqLl26MGTIEHJzc/Hw8GDChAmoqanh7OzM+PHjWbNmDQsWLMDCwgJPT0+srKyUwTALCwt8fX3x8fGhe/fuGBsb4+npyTfffAPAe++9x8aNG+natSt+fn7Uq1fviW1p3rw506dPx9fXl/nz56Orq4ubmxvjxo0DoH79+qxatYqFCxfSo0cP9PX1adasGd9//z3a2tps2LCBEydO4O/vj7a2Ntra2kycOJGvv/4aDw8P3N3dX+q5FE8W8c/KisOa18XNTvHF3M2uEnkFhewMvsXh8GgqGuoxvIUzzWwfTgOwNy+Pd3tXNl4K5acjF9DR1KBRZQv6N6wtubnEayc26iYrF/5I7wFf0rBpm6dX+EenHgMpZ1KB08f+4tjBHZQzLk8Nh3q81+Vj9PQNyM/P53rQeQC2/r6iWP1qNRwZMloC++LVeLCy4vCPu+PepPRpBOxtKzN5+CD+2H2Ieb/6o62tReM6tRnYrcMTUzII8V+4d+cmf/9vIk3e+4pqjh7EhJ+mqKiIuwk3OOA/rlj5Nr3+j4qV6+DYpA86euW4cXk3IRe2oaNXDru6HXBq+qHK7IfszBQAtHRKHyQWQrzd1IoeN09MiKfw8PCgR48eL7QK4ttk8+bNjB8/npCQkFfdlNfevelfvOomCPHSXek+71U3QYiXrkHW0VfdBCFeutlXPV51E4R46aYNKr5QwJvAe03u0wu9Im/qOX2byKMeIYQQQgghhBBCCPFWkSmN4q3XtWtXlUTyJTl9+jTa2m9WBP5t7ZcQQgghhBBCCPGiJOAlntujObVeZ8uWLSMvL++JZZ6W/L00evbsSc+ePV/4OKX1X/VLCCGEEEIIIYR400jAS7z1rK2tX3UTXoq3tV9CCCGEEEIIIcSLkhxeQgghhBBCCCGEEOKtIgEvIYQQQgghhBBCCPFWkYCXEEIIIYQQQgghhHirSA4vIcR/7kr3ea+6CUK8dPvPyp9Y8fZzjtn2qpsgxEv3fYdX3QIh/gsdX3UDhChzMsJLCCGEEEIIIYQQQrxVJOAlhBBCCCGEEEIIId4qEvASQgghhBBCCCGEEG8VCXgJIYQQQgghhBBCiLeKBLyEEEIIIYQQQgghxFtFlpB6y3h4eBATE6N8raWlhZmZGW5ubnz99deYmpoCUKtWLWbOnEnPnj1fVVNL5fz58xQVFdGoUaMyO+aAAQOwsbFh1qxZZXbMspaZmcmWLVvo16/fq26KeE2k3Eti4fQxDBjyHdXt65SqTmzULZb4jOPbyYsoX6Giyr478THs3bqem2FBqKurU62GE569BlLBzFJZJibyJn/t+J2YyBsUFRVhXbk6Hbv1x6ZK9TLtmxAPZKYlsc9vFC06j6Ni5cdf5wX5uQSd3sjt60fJyUrFxMwWp6YfYWXr8szHTYwJJvC4HylJEWjpGGBj50rd5v3Q0tYr074J8UByRhZjdwYwxq0BjpYVSlUn4u59vPecYH43N8wNVa/N8KQUNlwI4WZyKvpamrS2s6G3c000NR4+176VnIr/pVBuJqdSBNialqOvSy2qVTAuy64JoZScksqYOUv5zusjnGpUK1WdW9Fx/LBgJT//MBJzUxOVfScvXWX73yeISUjEQE+POjWr0a9Le0yMDAH48v/mk3g3pcTjmpuasGTi6BfpjhDiDSUjvN5CXl5eBAQEEBAQwJ49e5g4cSKnT5+mf//+pKWlARAQEICnp+crbunT9e3bl8jIyFfdjP+cr68vq1evftXNEK+JlHtJ/Lp4GtlZGaWuEx8bydpfZlBYUFDi8Zb/NIGM9Pt8NGgU3T8eyp34aH5dPI28vFwAkhPjWLFgEnm5OfTsN5zeA0ZQkJ/P8p+8SUyILbO+CfFAZloSR7ZMITfn6df52QNLuHF5Dw6NetCy6w8Ylbfi2LZpJMYEP9NxU5MjObL5R9Q1tGjm+S1OTT8k8vpRTu35qUz6JMS/JWdkMfPgWTJz80tdJ+peGnMOnaOgsKjYvoS0TGYcPIu2hjpft66Pp2M1dl+LYM3Zh78L8WkZTPnrNLkFhQxpVpdhzetSUFjE5H2niL2fXib9EuJRySmpTFu2nsys7FLXiYxLYNaqDRSUcN9y/EIg89duopqNFWM+/ZCPPD0IunGLKUvWkJuXB8C3n37E9K8/V/n3SfeOALRvXnYPzoUQbxYZ4fUW0tfXx9zcXPm6cuXKODg48P7777Nq1SpGjx6tsl+8foqKit/UindPUVERF04fZvfmtaWuk5+fz8nDu9m/yx8tLa0SyxzctREdXX0+GzkZbW0dAEwrVGT98tlE375BtRqOnDi8By0tbT4Z/gM6OroAVLevg8+kLzhxeDfdPhz84h0UAsV1HnHtby4fXVOq8hn373D7+lEatPmcGvU6AWBR2ZnEmOvcuLIHcxvHUh/39vWjoKZGy67j0dRSXOdFhQWcO7iMjPt3MChX8bF1hXgWRUVFHL0Zg9/566Wuk19QyN6Q22y6HIa2RsnPqHcE3URXU5Nv3RuiqaGOiw3oaKjz69lgute1w8xAj73Xb6OjqcHYNg3R1VLc+jtZVGDklsPsu36bT5s4lUkfhSgqKuLI2Uus2/5Xqevk5xew59gpNu79+7H3LVsOHsPF0Z4hH3RRbrM2N2PCwpVcCA6laT0nqlWyUqmTmZ3NgvWbaOBoT/e2rZ6vQ0KIN56M8HpHWFtb0759e3bt2gUopjRu3rwZgOTkZEaOHImrqyvOzs589NFHnDlzRlnXw8ODpUuX8tlnn+Hs7Ez79u3ZtGmTyvE3bdpEly5dcHZ2pn79+vTt25fAwECVY8yePRtPT09cXV05c+YMqampeHt706pVK5ycnGjWrBne3t5kZWUp2wgwfvx4xo0bB0BCQgKjR4+mUaNGuLq6MmzYMCIiIl7o3NSqVQt/f3/69u1L3bp16dSpExcuXMDf3x93d3caNGjAqFGjyM5WPKXavHkzrVu3ZuPGjbRs2RIXFxe+/PJLEhISlMeMjY1l9OjRNGvWDCcnJ1q3bo2Pjw+FhYXKMleuXGHQoEG4uLjQvHlzJk+eTFZWFosWLWLx4sXExMRQq1YtoqOjn9qH6OhoatWqxfLly2nRogVt27YlPT2d0NBQhg4dSuPGjalTpw5t27bF19dXpe6xY8f48MMPqVevHq1bt2b+/PnKp2u5ubn4+PjQqlUrXFxc+OCDDwgICHih8y1KLy46gq2/r8CliTt9Bo4sVZ2QoAsc3LOJNh160rFb/2L7i4qKuHrpNI2aeSiDXQCVqtZg/IyVVKuhCBaYW1jTul03ZbALQEdHF2OTCtxNSih2XCGeV0riLc4fXEZVB3eadPj6qeV19cvT/qM5VK3tptympqaGuro6Bfl5z3Tcgvxc1NU10NB8+LugrWsEQG522vN2SYhibt9LY/XpIFpVt2F4C+dS1bkYm8j/roTRvU51PnapVWKZy7FJuNiYq0xfdK1qSVGRYh+ATTkDOjtWUwa7AHS1NDE10CUhLfMFeiWEqoiYeFZu2olbo3qM6NujVHUuXAvlz7+O0KNda/p1bldsf1FREc72drRr1lBlu7WFGQDxSXdLPO7mv45yPz2Dz3q9/4y9EEK8TSTg9Q6xt7cnKiqKjAzVaR0//vgjOTk5+Pn5sWPHDqpVq8bw4cPJzHx4E7R06VJcXFzYunUr/fr1Y9KkSezevRuA/fv3M3XqVAYPHsyePXtYs2YNOTk5eHt7q7yPn58f3t7erFq1ivr16zNu3DiCg4NZvHgx+/btY/z48WzduhV/f38AZWDlhx9+YMKECWRmZjJgwADlsdavX0/58uX54IMPVIJNz2P+/PkMHjyYbdu2YWRkxLBhw9i3bx8rVqxg5syZHDhwQCXId/fuXdauXcuCBQtYu3YtcXFxDB48mPx8xRSFL774grS0NH799Vf27t2Ll5cXq1at4tChQwBERUXxySefULFiRfz9/Vm0aBHHjx9nypQpeHl54eXlhaWlJQEBAVhZWZXY5pJs2bJF2S4NDQ28vLwwMTHhjz/+YOfOnXTs2JHZs2dz7do1AC5evMiQIUNo2LAhmzdvZtq0afzxxx8sXboUUAQbjx8/zty5c9myZQudOnVi2LBhHD58+IXOtygdE1Mzxvy4iM69B6GtrV2qOpWq2jF26lLadOyFuoZGsf33ku+QnZVB+QrmbPtjJVO/+4SJX3/MuuWzSbmXpCzXtHVHWrfvplI3OTGO+LgoLKwqvVjHhHiEvpE5noOW4uLmheYjgafH0dDUwtSyJto6BhQVFZGZlsTFI6tJT43Hrm6HZzpudae2AFw66ktOVhqpyZEEnfLHxKwqJmalyzkjRGlUMNBlfrfWDGzkgE4Jn80lsatgzM893OlRtwYa6mrF9ufmF5CUkYVVOQOV7eV0ddDT0iTuvuJ+r32tqnRxUs29GJ+WQXRKOpVMjJ6vQ0KUwKy8MT9PGMkn3Tuio13yaK1/s6tsw2LvUfRs3xoN9eJfTdXU1BjYrQON69RW2X42UHEvW9my+EjcpHsp7D52ii5tWhTLBSaEeLfIlMZ3SLly5QBIT1fN1xAZGYm9vT2VK1dGV1eXCRMm0KVLFzQeuSFr2bIlI0aMAKB69epcvnyZtWvX4unpiYmJCdOnT6dr164A2NjY0Lt3b6ZOnaryPm5ubjRv3lz5ukWLFjRu3Fg5kqtSpUr4+fkRGhoKoJx2aWRkhJGREZs2beL+/fv4+Pigqam4dKdPn87p06fZuHEjX3311XOfm169euHh4QFAt27dmDp1KpMmTcLW1hZ7e3tWrVpFWFiYsnxeXh6zZ8+mTh1F8mMfHx88PT05efIkjRs3plu3bnTq1EkZrBo0aBArV64kJCSEdu3asXHjRkxMTJgxY4ayL9OmTePixYsYGBigr6+PhobGM0897du3LzVq1AAUQbmBAwfSr18/DAwUN8MjR45k1apVhISE4ODgwPr166lXrx5jx44FwM7OjqlTp5KcnMzt27fZuXMnW7duxcHBAYBPP/2U69evs3r1atzd3Z/zbIvS0jcwQt/g2b6MGJs8OQFyRvp9APZu9cOmag0+9hpNeloq+7b/xqqFP/LV+Lkqo7oeyMvLZdO6xWhqatHMrdMztUmIJ9HRMwKe70v39XObuXLcD4DqddpjWaXeMx3X2Kwqzi0HcuHvFYRe3AmAQbmKePSZjloJX7yEeF5GOtrw9HiuClP94p/Fj8rMUzxk09Mqfjuvp6VBVl7JecJy8wv45fgVNNXV6VCr6rM1SognMDLQf+Y6FUzKPXOd+KS7rN/+F7Y2VjRwtC+2f9eRU2hpauLZuukzH1sI8XaRgNc75EHCekNDQ5XtI0aM4LvvvmPfvn00bNiQli1b0rlzZ3R0Ht6Zubq6qtRxcXFRjvJp3Lgx4eHhLFmyhJs3b3L79m1CQkJUpu8BVK2qelPVt29fDh06xJYtW4iIiODGjRtER0dTvXrJK8AFBweTmppK48aNVbbn5OQQHh5e+hNRgkfbpqenWP2oSpUqym26urrk5uYqXxsYGCiDXaAIFBkbGxMaGkqrVq3o378/e/fu5cqVK8rzkZSUpDwnoaGhODk5KYNdAE2bNqVp0xf7w/xoP0xNTenbty87d+4kODiYyMhIrl9X5A55tB0tWrRQOUaHDooREnv27AEUP6dH5eXlKYOn4s1TUKD4AmRoZMyAIWNRU1OMGqhgbsUvc3/g0tmjuLZ8T6VOTnYW65fPJur2DfoN/rbYio9CvCrW1RpRwao2SbHXCD69kcKCXFw7jCp1/WtnN3Pl+Hpq1OtEpRrNyM26T9DpjRz+3yQ8PpiBrr7JS2u7EC/qafk+i48Jg6y8fOYdPk94ciqjWrsUW/FRiNddTEIi05atR0NDg28GfaC8j3kgNy+Pv09fxMO1AYb6cn0L8a6TgNc7JCgoCFtbW+Vonwfat2/PsWPHOHbsGCdOnODXX39l8eLFbNy4kZo1awKoBGZAETBR/+fp944dOxg3bhxdunShQYMGfPTRR4SGhhYb4aWrq6tSf+jQoYSFhdG5c2c8PT1xcnJi4sSJj21/YWEh1apV45dffim2T1//2Z8oPerf/QOU/StJSUk1CwoK0NDQIDMzk/79+5OdnU3Hjh3p0aMHzs7O9OvX74nvVxYePceJiYl8+OGHmJqa4uHhQcuWLalbty5ubg/z3jypHQ9upDds2FDsmnnSuRGvNx0dxc2fvaOLyk1ilWr26OoZEBcdoVI+5V4Sa3+ZSVJCLB9/OhpHZ9WAsxCvkrGZIshfsZITRUWFXD35O3Wa9cOg3NNHxxYWFhB8ZiNVa7emYZshyu3mleqw69dhXD+3lfqtB72spgvxwh6M7MrOLz6SKzMvH31t1b/xyRlZzPn7PHH3M/iqVX0aVbb4T9opRFkJunGLub/6o6utzeThn2BpZlqszOWQcDKzs2nRoO4raKF4Fdo3Lv2qt/+90qUkES+PBLzeEfHx8Rw8eJDPP/9cZXtubi7z5s2jW7dueHp64unpSXZ2Ni1atODw4cPKgNejCegBLly4gKOjIrn1ihUr6N27N1OmTFHuP3jwIKAImvz7yQvAtWvXOHr0KBs3bqRePcUUlLy8PCIjI6lcuXKJfbC3t1fm2DI1NVXWGTNmDB07dsTT0/N5Ts1zSUlJISoqStnWsLAw0tPTcXR0JCAggKCgII4fP46ZmZmyfHJysjKIVKNGDXbs2KEMkoEiF9rMmTPZs2dPiefsWe3cuZOUlBT27dunDNCFhIQAD4NZdnZ2xX62a9euZefOncyYMQNQBM4e/KxBke9MXV2dr79+enJp8foxNbdETU1NmW/uUYWFBWhqPvzDHBdzmzVLppGbm8unI7ypXlNW8hKvXsb9OyREXaFqrdZoPHK9ljdXjA7OzrhbqoBXTmYq+Xk5mFmp5oXR1TemnKkN9+9GlW3DhShjulqamOrrEH9fNfH8/ewcsvMKsDF+OKI/8t59Zh08R05BAePaNsbRonigQIjX2fELgSz5fQvWFc0Y/3n/x06FvBAcSsUK5alRxeY/bqEQ4nUkwzTeQpmZmSQmJpKYmEhUVBQHDhxg8ODBVKpUiU8//VSlrLa2NoGBgUycOJFLly4RHR3N5s2byczMxMXFRVlu165dbNiwgYiICFatWsX+/fsZPHgwAFZWVly4cIGgoCAiIyNZs2YNfn6KnCqPTgN8lJmZGZqamuzZs4eoqCgCAwMZNWoUiYmJKnX09fUJDw/n3r17dO3aFWNjY0aOHMnly5cJDw9n3LhxHD16VJkH7L/03XffcfXqVS5dusTYsWNxcXGhcePGWFpaArB9+3ZiYmI4d+4cw4cPJy8vT9m3vn37cu/ePSZPnkx4eDhnz55lzpw5NG3aFB0dHfT19UlNTeXWrVvk5eU9qRmPZWlpSVZWFnv37iU2NpaAgAC++eYb4OHPZfDgwVy6dImFCxcSERHBkSNHWLp0Ke7u7tSsWZM2bdowefJkDh06RFRUFCtXrmT58uUq0z3Fm0VHRxdbOweCLp0i/5Fr68b1K+TmZFOthiJfW8q9JFb/rAhifzFmugS7xGsj434iZ/cvISb8tMr2+MhLqGtoYlS+dF9ydPVN0NE1IjE2WGV7TtZ90u7FYlBOpu6K119dKzMuxNwh75/VlQFO345HXU0NJ0tFTsfkjCymHzgLwJQOzSTYJd44F4JDWbRhM/ZVKzP1K68n5v0Kux1N7WpynyqEUJARXm8hX19ffH19AcXUOysrKzw9PfHy8io2NQ0UI3ZmzpypXFmwevXqzJ07l0aNGinL9OjRg/379zNr1ixsbW1ZsGCBcmrcxIkTmTRpEv3790dbW5vatWszZ84cRo8eTWBgoMpxHrCwsGDWrFksWrSIDRs2YG5ujru7O4MGDVKuZAgoVzcMDw9n2bJl+Pn5MWfOHD777DMKCgpwcnLC19cXOzu7sj6NT9WlSxeGDBlCbm4uHh4eTJgwATU1NZydnRk/fjxr1qxhwYIFWFhY4OnpiZWVlXI0lYWFBb6+vvj4+NC9e3eMjY3x9PRUBqTee+89Nm7cSNeuXfHz81OOgnsWHTt2JCgoiFmzZpGeno6NjQ19+vTh4MGDBAYG8vHHH+Pg4MCSJUv4+eefWblyJRUrVmTgwIF88cUXgOLamD9/PpMmTSI1NZUqVaowffp0evQo3VLT4uXKzsrkTnw0pmYWGBoZl7peh279WLlgMmuWTqdVu26kp6WwZ8t6KtvWxOGfKYs7NvqSkX6f7h8PITs7k8hbocr6urr6VJSVGsV/JC8nk/t3ozAwtkRX3xhzG0csqtTjwt8rycvNxMDYkrhb57hxeTd1mn6Mtq7h0w8KqKmr49T0Qy4cXoWWtj6Va7YgJ/s+187+DzU1dWo17Pb0gwhRRjJz84hJzcDCSI9yuqXPbt/FqTonIuKYfegcng7ViLufgf+lUNrWrIyZgWIK+5qzwdzPzuUzVyey8vIJS0xR1tfT0qSSSel+Z4R4UZnZ2cTEJ1HRrDzGhsW/k5QkNy+P5Ru3o6ujTc/2rYmJT1LZb2piRAUTxT1QYWEhMQlJtHCR6YxCCAW1oqdlvBTvPA8PD3r06PFCqyC+TTZv3sz48eOV0wPFszsSlPn0QkLFzdCrrFz4I59//SPV7euobOs94EsaNm1TrM75U3/z5/oljJ26tFii+dvh1/lrx+9ERYShpa2No3MTPHt+gp6+Afn5+Uz+ph+Fj4wYeFS1Go4MGT21xH3iof1n5ZnSs7oTdZW//zeRNr3+j4qV66hsa/LeV1RzVKymm5ebRdApf6JvnCQr4y5GJlbYN+hKdad2pT7uAxHXDhN6YTupd6PQ0S2HuY0DdVsMwNBY8huVxpgYmd7+rILjk/m//WeY2L4Jjv+MwnqwbVjzurjZFX+gcCQ8mmUnAvm5h3uxRPPXEu7y24UQbt+7j5GOFi2r2dCnXk00NdTJLyhk0B9/UVBY8u2+g4Upk95zLXGfeEizgwTAn1XQjVtMWbKGyV8OwqlGNZVtwz/ujnsTl2J1Dp+5yNLft7Jk4mjMTU0AuBp2i6lL1zz2fXp3cOeDjop7oNT0DD6fOIfBvTvzXgvJOfqsjBp1fNVNeC6v8/cKN6cXyzMtXpwEvMRTScBLlQS8Xtzr/IdJiLIiAS/xLpCAl3gXSMBLvAsk4FX2JOD16snduHhrdO3alaioJycZPn36NNrab9ZqGW9rv4QQQgghhBBCiJdFAl7iqR7NqfU6W7Zs2VMTvD9YrfBF9OzZk549e77wcUrrv+qXEEIIIYQQQgjxtpCAl3hrWFtbv+omvBRva7+EEEIIIYQQQoiXRf1VN0AIIYQQQgghhBBCiLIkAS8hhBBCCCGEEEII8VaRgJcQQgghhBBCCCGEeKtIwEsIIYQQQgghhBBCvFUk4CWEEEIIIYQQQggh3ioS8BJCCCGEEEIIIYQQbxUJeAkhhBBCCCGEEEKIt4oEvIQQQgghhBBCCCHEW0UCXkIIIYQQQgghhBDiraL5qhsghBDi+aTcS2Lh9DEMGPId1e3rlKpObNQtlviM49vJiyhfoeIz7xfiZcpMS2Kf3yhadB5HxcqPv6YL8vMIubCNiGt/k5WejJ5hBarWdsOhUU/UNUq+tbl4xJfQizv4cNQWle0pSRFcCVhPcnwoGhpaWFSpR71Wn6Crb1KWXRNCKTkji7E7Axjj1gBHywpPLHviViybA29wJz0Lc0M9ujpVx82ukkqZI+HR7Ay+RUJaJiZ6OrjZVaJ7nepoqD98rh2dks5vF64TkngPdTU1XGzM6dugNiZ6Oi+lj0Ikp6QyZs5SvvP6CKca1UpV51Z0HD8sWMnPP4zE3NREZd+NyBj8tv/FzehY9HR1cGtcnw86tEFTU0NZ5nZsAht27ifsdjRampo417Kjf5f2mBgZlmXXhBBvEBnhVUY8PDyoVauW8l+dOnVwd3dn8uTJ3L17V1muVq1abN68+RW2tHTOnz/PuXPnyvSYAwYMYNy4cWV6zLKWmZnJhg0bXnUzijl37hw9e/bExcWFvn37cvPmzVfdJPGKpdxL4tfF08jOyih1nfjYSNb+MoPCgoLn2i/Ey5SZlsSRLVPIzXn6NX3xyCqunf2Tao5tadnlB6o5tuXa2f9x/tCyEsvfiQ4i7NLOYtuzM1M4/L/JZGfco0n7r6jv5kViTDBHt0ylsCD/hfskxL8lZ2Qx8+BZMnOffn2djoxn8fHLOFubM8a9AY4Wpiw7EciJW7HKMnuuRbDsRCA25Qz5xq0BvZ1rcvhGND8fu6Qscy8zm//bf5r03Dy+bFGPz5o4EZqYwvQDZ8gvKHwZ3RTvuOSUVKYtW09mVnap60TGJTBr1QYKSrgHSUi6y7Rl69DW1mLUwD50dmvGrsMn8d28W1kmJS2dqUvXkHI/neEfd2dQ945cC49gxnI/8vPlvkaId5WM8CpDXl5eeHl5AZCdnU1oaCg+Pj70798ff39/jIyMCAgIwMjI6BW39On69u3LzJkzadSo0atuyn/K19eXzZs3069fv1fdFKW0tDSGDRtG3759+emnn/jxxx8ZO3Ysf/7556tumngFioqKuHD6MLs3ry11nfz8fE4e3s3+Xf5oaWk9834hXqaioiIirv3N5aNrSlU+JyuNm1f349xiILUbdQfAooozAFeOr6duiwHo6hsry+fnZXN2/2L0DCuQmZakcqyY8NPkZN2n7YezMDKxAkBL24CjW6eSFBdCxUpOL95BIVBc50dvxuB3/nqp6/hfDMW1iiUDGzkAUM/anPScPDZeDqN5NWsKC4vYHHiDOlYVGOXmoqxXzbQcY3cGEBiXRF0rMw6FRZGVl893bRpipKMNQDldbf5v/xmCEpKpZ21etp0V76yioiKOnL3Euu1/lbpOfn4Be46dYuPevx97D7Lt0HH0dHQY6/UxmpoaNHC0R1tbC9//7aZn+1aYlTfhbOB10jIymT7qcyzNTAHQ19NlxvL1hEZE4VjDtiy6KIR4w8gIrzKkr6+Pubk55ubmVK5cmbZt2+Lr60tcXByrVq0CwNzcHF1d3VfcUvE4RUVFr7oJxURHR5OWlsZ7772Hra0t7dq1kxFe77C46Ai2/r4Clybu9Bk4slR1QoIucHDPJtp06EnHbv2feb8QL1NK4i3OH1xGVQd3mnT4+qnl83IzsavbAWu7xirby5kqpnllpMarbL90bA26BiZUc/QodqyCgjwAtLT1ldt0dBVTX3Kz7j9bR4R4gtv30lh9OohW1W0Y3sL5qeUT07OIu59B48oWKttdq1iSkJZJ3P0MUrNzSM/Jo2El1ennlcsbYaSjxYXoOwC0r1WFye+5KoNdgHK6Y56M8BJlKCImnpWbduLWqB4j+vYoVZ0L10L5868j9GjXmn6d25VY5nLIDVwcaqpMX2xaz4mioiIuXQ8HFA/vAPR0H07TNdTXAyAtI/O5+iOEePNJwOsls7a2pn379uzatQtQndKYnJzMyJEjcXV1xdnZmY8++ogzZ84o63p4eLB06VI+++wznJ2dad++PZs2bVI5/qZNm+jSpQvOzs7Ur1+fvn37EhgYqHKM2bNn4+npiaurK2fOnCE1NRVvb29atWqFk5MTzZo1w9vbm6ysLGUbAcaPH6+cgpiQkMDo0aNp1KgRrq6uDBs2jIiIiBc6N7Vq1cLf35++fftSt25dOnXqxIULF/D398fd3Z0GDRowatQosrMVw6E3b95M69at2bhxIy1btsTFxYUvv/yShIQE5TFjY2MZPXo0zZo1w8nJidatW+Pj40Nh4cMbuitXrjBo0CBcXFxo3rw5kydPJisri0WLFrF48WJiYmKoVasW0dHRperH1q1bef/996lbty6tWrVi+vTp5ObmKvdfuHCBfv364ezsjLu7O1OmTCE9PR2Ay5cv4+joiK+vr7L8Tz/9RMOGDYmKigLAzs4OCwsL5s2bx61bt1i/fj3dunVTaUN0dDS1atVi+fLltGjRgrZt25Kenk5oaChDhw6lcePG1KlTRxmEfdSxY8f48MMPqVevHq1bt2b+/PnK4eS5ubn4+PjQqlUrXFxc+OCDDwgICCjVeREvh4mpGWN+XETn3oPQ1tZ+egWgUlU7xk5dSpuOvVDX0Hjm/UK8TPpG5ngOWoqLmxeamk/PJ2RobEFDj6GUK2+jsj0m/BTqGpoYPbI9PvIyt68dpnH7EYBasWNVrtkCPQNTLvy9kqz0u6SnJnA5YB16BqZYVKn3wn0T4oEKBrrM79aagY0c0CnF52xMquI+waqcgcp2y39ex93PQF9bCw11NRLTs1TKpOfkkZGbz51/tpfT1cHOzASA3PwCwhJT+PVsEBZG+jhbmb1o14RQMitvzM8TRvJJ947oaJduxLhdZRsWe4+iZ/vWKnnnHsjNyyPxbgrWFVXz3RkbGqCvq0tcomLkbtP6TpQ3NsL3f7u4m5rGneR7bNixn/LGRtStVf3FOyeEeCNJwOs/YG9vT1RUFBkZqnlJfvzxR3JycvDz82PHjh1Uq1aN4cOHk5n58CnE0qVLcXFxYevWrfTr149Jkyaxe7divvr+/fuZOnUqgwcPZs+ePaxZs4acnBy8vb1V3sfPzw9vb29WrVpF/fr1GTduHMHBwSxevJh9+/Yxfvx4tm7dir+/P4AyoPHDDz8wYcIEMjMzGTBggPJY69evp3z58nzwwQcqwabnMX/+fAYPHsy2bdswMjJi2LBh7Nu3jxUrVjBz5kwOHDigEuS7e/cua9euZcGCBaxdu5a4uDgGDx6sfKrzxRdfkJaWxq+//srevXvx8vJi1apVHDp0CICoqCg++eQTKlasiL+/P4sWLeL48eNMmTJFOSXV0tKSgIAArKysntr+69ev4+3tzVdffcW+ffuYMWMG27ZtU47ou379Op9++imtWrVi+/btzJ07l6CgILy8vCgqKqJevXoMHTqUn3/+mcjISM6dO8fKlSuZMmUKlStXBkBbW5tJkyZx4sQJPD098fDwYMKECSW2Z8uWLcrzo6GhgZeXFyYmJvzxxx/s3LmTjh07Mnv2bK5duwbAxYsXGTJkCA0bNmTz5s1MmzaNP/74g6VLlwKKoOfx48eZO3cuW7ZsoVOnTgwbNozDhw8/3w9cvDB9AyNMyj/bFxRjkwroGzx+KvXT9gvxMunoGaFv9GJfuqNvnCLi2mHs6nZA+8EIrZwMzu5fjFPTj4sFxx7QMyhPQ4+hxN46y/ZVn7Hr12GkJEXQurs3Wjr6JdYR4nkY6WhTwUCv1OUzcxWjD/W0VbOP6GopgmVZefnoaGrQtKoVf4Xc5u8bUaTn5BF7P51FAZfQUFcjJ794nrBxu44zae9JYlMz+LSJI9qa8pBDlB0jA30qmBg/veAjKpiUw8jg8Z+3Gf/kAXt05NYDujraZGbnAFC+nBGDe3fmfFAow36cy4hpC4iIjWf85/3Rl9k1QryzJIfXf6BcuXIAylE9D0RGRmJvb0/lypXR1dVlwoQJdOnSBY1Hnvy1bNmSESNGAFC9enUuX77M2rVr8fT0xMTEhOnTp9O1a1cAbGxs6N27N1OnTlV5Hzc3N5o3b6583aJFCxo3bqwcyVWpUiX8/PwIDQ0FFNMuAYyMjDAyMmLTpk3cv38fHx8fNDUVl8z06dM5ffo0Gzdu5Kuvvnruc9OrVy88PBTTTLp168bUqVOZNGkStra22Nvbs2rVKsLCwpTl8/LymD17NnXqKFbv8vHxwdPTk5MnT9K4cWO6detGp06dlMGqQYMGsXLlSkJCQmjXrh0bN27ExMSEGTNmKPsybdo0Ll68iIGBAfr6+mhoaCjPwdNER0ejpqaGjY0N1tbWWFtbs3r1agwNFV+4Vq9eTYsWLRg2bBgAtra2zJs3j3bt2nHmzBlcXV358ssvOXr0KN7e3kRHR9O9e3c6d+6sfI8DBw7g7e1NrVq1CAkJoXLlymhqapKenq58nwf69u1LjRo1AEVwcODAgfTr1w8DA8UT4ZEjR7Jq1SpCQkJwcHBg/fr11KtXj7FjxwKK0WRTp04lOTmZ27dvs3PnTrZu3YqDgyJ/yKeffsr169dZvXo17u7upfwpCyHEyxMddpJTe+djZu1AvZYDldsvHVmNvpEZtRp0fWzd29ePcnrfAirXbE41p3YU5OcScmEbRzZPoU2facppkkL8156WYOHBeMXBrk5oaaiz8tRVVpy8ipaGOt3q2JGdl492CSPJPm3iSFER7L0egc/f5/muTUPJ4SVea0/LNqL2z29DwPkrLNqwmWb1nWjj6kJuXj47/z7BtGXrmDLiU2ws5DoX4l0kAa//QFpaGkCx4MSIESP47rvv2LdvHw0bNqRly5Z07twZHZ2HTzBcXV1V6ri4uChH1zRu3Jjw8HCWLFnCzZs3uX37NiEhISrT9wCqVq2q8rpv374cOnSILVu2EBERwY0bN4iOjqZ69ZKH+wYHB5Oamkrjxqr5UnJycggPDy/9iSjBo23T01M8+axSpYpym66ursr0QAMDA2WwCxQBGmNjY0JDQ2nVqhX9+/dn7969XLlyRXk+kpKSlOckNDQUJycnZbALoGnTpjRt2vS52v9gql/v3r2pVKmScjrhgzYGBwdz+/ZtXFxcitUNDw/H1dUVTU1NfHx86Nq1KxUqVGDixInKMlevXmXkyJGMGjWKIUOGMGnSJGbMmIG9vT3Tpk2jRo0azJ07t8TzaWpqSt++fdm5cyfBwcFERkZy/boiWe6j56NFixYq7erQoQMAe/bsARTXy6Py8vKUQVwhhHiVQi5s5/KxNZhXqkPLLuPR0FRM8429eY7I0OO0/9iHoqLCf74wKb41FRYWoKamjpqaGkGn/sDMqjbNPL9VHtOyan32rPuKwBO/0aLz2FfQKyFAT0txn5Kdp7q6XNY/qzvq/zNdTFdLk6HN6vJJIweSMrIwM9BDV0uTQ2FRWBgVHzVT958pjE6Wpny3I4AdQTcl4CVea/r/jOzKzsktti8rJwcDPcXorU37DlOrWmVGDeyj3F+vlh2jZy3mj92HGPPph/9Ng4UQrxUJeP0HgoKCsLW1VY6yeaB9+/YcO3aMY8eOceLECX799VcWL17Mxo0bqVmzJoBKYAYUgQr1f+a379ixg3HjxtGlSxcaNGjARx99RGhoaLERXo8myS8sLGTo0KGEhYXRuXNnPD09cXJyUgmy/FthYSHVqlXjl19+KbZPX//Fpnz8u3+Asn8lKWn1loKCAjQ0NMjMzKR///5kZ2fTsWNHevTogbOzs8qKiyW934vQ0dFh3bp1BAcHExAQQEBAAMOGDaN79+7MnDmTwsJCunTpohzh9ShTU1Pl/0NDQyksLCQxMZGQkBBlgGzHjh3Y2toyZMgQACZOnMitW7cYPnw4qampxY776M86MTGRDz/8EFNTUzw8PGjZsiV169bFzc2tVOfjQQL/DRs2FLt2n/QzEkKIl62oqIiLR1YTdmkXVWq1xPW9r1HXePh5Fn3jBAX5uexdXzwJ/qafe1PNsQ1N3htJRloiNjVUH3hoaGpTvqId9+9GvvR+CPE41saKv7vx9zOwNX34kCkhTZH2wsZY8RD1QvQdDLS1qFWxPJVMFFPT72fncC8rm2qmiqllQfHJ5BYU4GLzMLm9hro6lU0MiUpRnX0gxOtGV0cbU+NyxCUmq2xPTc8gKzsHGwtFEDfxXgpN6jqolNHW0qJ6JWuiE+78Z+0VQrxeJOD1ksXHx3Pw4EE+//xzle25ubnMmzePbt264enpiaenJ9nZ2bRo0YLDhw8rA16PJqAHRQJ0R0dHAFasWEHv3r2ZMmWKcv/BgwcBxZcBNbXiCXqvXbvG0aNH2bhxI/XqKRLy5uXlERkZqcwZ9W/29vbKHFsPgjR5eXmMGTOGjh074unp+Tyn5rmkpKQQFRWlbGtYWBjp6ek4OjoSEBBAUFAQx48fx8zMTFk+OTlZGbypUaMGO3bsUAbJQJELbebMmezZs6fEc/YkR44cITAwkBEjRuDo6MiQIUP45ZdfWLZsGTNnzqRmzZrcuHFDZeRVeHg4Pj4+fPPNNxgZGXHnzh0mT57MsGHDiI6O5vvvv2fr1q3o6+ujp6fH/fv3yc3NRVtbGy0tLebOnYuHhwe6uro0a9bssW3buXMnKSkp7Nu3TxkoDAkJAR4Gs+zs7IpdY2vXrmXnzp3MmDEDUATOHlxzoMi7pq6uztdfP301NSGEeBkCj/sRdmkXtRp0pV6rQcU+u52afkQN504q28Kv7ufm1f20/2gOOvqKQEC58jYkxV5T+ZtZkJ/LvTs3ZTqjeKUsjQwwN9TjdGQ8TW0f5hQ9HRmPpZE+5oaKUfEHQiNJy8nj/zo9vB/YfS0CdTU1XCopRm4duxnD+eg7/NzDXTlyLCsvn7DEFGpVLP/fdUqI5+Rcy44LwaHk5eej9c/D2lOXg1BXV6dOzWoAWFc04/qtSJXP89y8PG7FxMl0RiHeYTJMowxlZmaSmJhIYmIiUVFRHDhwgMGDB1OpUiU+/fRTlbLa2toEBgYyceJELl26RHR0NJs3byYzM1Nl+tuuXbvYsGEDERERrFq1iv379zN48GAArKysuHDhAkFBQURGRrJmzRr8/PwAVKYBPsrMzAxNTU327NlDVFQUgYGBjBo1isTERJU6+vr6hIeHc+/ePbp27YqxsTEjR47k8uXLhIeHM27cOI4eParMA/Zf+u6777h69SqXLl1i7NixuLi40LhxYywtLQHYvn07MTExnDt3juHDh5OXl6fsW9++fbl37x6TJ08mPDycs2fPMmfOHJo2bYqOjg76+vqkpqZy69Yt8vLyntoWLS0tlixZwpo1a4iKiuLq1ascPnxY+TP08vIiODiYKVOmEB4ezsWLFxkzZgwRERHY2toCisUBKlasyLBhw/jhhx/IyMhg1qxZAPTu3ZuMjAzGjx/PjRs3uHDhAt9++y2WlpYYGBgwdOhQ7t69W2LbLC0tycrKYu/evcTGxhIQEMA333wDPLw+Bg8ezKVLl1i4cCEREREcOXKEpUuX4u7uTs2aNWnTpg2TJ0/m0KFDREVFsXLlSpYvX64y7VS8XrKzMom8FUp6WuqrbooQZSIvJ5PkuBCyMxXX9L07N7l+fgumFjWoXLM5d+NDSY4LUf7Ly8nEoFxFTC1rqvzTM1A8sDG1rIlBOcVIlzrN+pIcF8LJ3XOJi7hATPgZjm6ZSlZGMk6ufR7bJiHKWmZuHmGJKdz/JwE3QC/nGpy6HY/v6SAuxSSy+vRVTt2O54P69soyHWvbciMphXXnrhEUn4z/xVC2Xb3J+w7VsDRSjBLr7FidvIJCfP4+z4XoO5yOjGf6gTNk5efTy7nmf95X8e7KzM4mLCKa1PSMpxd+RDePFtxPz2TmCj/OB4Ww8/AJ1m3dR7tmDTErbwLAh508CI2IYv7aTVy8FsbZq9eZsdyPu6n36d3e7clvIIR4a8kIrzLk6+uLr68voAiEWFlZ4enpiZeXV7EpYaAYKTNz5kzlyoLVq1dn7ty5NGrUSFmmR48e7N+/n1mzZmFra8uCBQuUU9ImTpzIpEmT6N+/P9ra2tSuXZs5c+YwevRoAgMDVY7zgIWFBbNmzWLRokVs2LABc3Nz3N3dGTRokHIlQ0C5umF4eDjLli3Dz8+POXPm8Nlnn1FQUICTkxO+vr7Y2dmV9Wl8qi5dujBkyBByc3OVKxaqqanh7OzM+PHjWbNmDQsWLMDCwgJPT0+srKyUo5gsLCzw9fXFx8eH7t27Y2xsjKenpzIQ9N5777Fx40a6du2Kn5+fchTc4zRv3pzp06fj6+vL/Pnz0dXVxc3NjXHjxgFQv359Vq1axcKFC+nRowf6+vo0a9aM77//Hm1tbTZs2MCJEyfw9/dHW1sbbW1tJk6cyNdff42Hhwfu7u78+uuvzJkzR1nfw8OD+fPnc/fuXb755htiY2MxMTEp1raOHTsSFBTErFmzSE9Px8bGhj59+nDw4EECAwP5+OOPcXBwYMmSJfz888+sXLmSihUrMnDgQL744gtAcY3Onz+fSZMmkZqaSpUqVZg+fTo9evQow5+oKEuxUTdZufBHeg/4koZN27zq5gjxwu7ducnf/5tIk/e+opqjBzHhpykqKuJuwg0O+I8rVr5Nr/+jYuU6JRypOBu7JrTq5k3wmU0c3zkbLS09TC1r0v5jH0zMbMu4J0I8XsTd+/zf/jMMa14XNzvF6EI3u0rkFRSyM/gWh8OjqWiox/AWzjR7ZMSXs7UZX7Wsx+bAGxwIjcTcUI9PGjvQsbatskwlE0N+7NCU3y+GsPT4FQqKCnGoaMrQDs2oZGL476YI8dLcio5jypI1DP+4O+5Niue3fRwbC3MmDB2A346/+GnNRowM9PF0a8qHHT2UZRrXqc24z/uxef9R5v3qj66ONjWq2DBz9FCqWlu8jO4IId4AakVFT1v7QrwqHh4e9OjR44VWQXybbN68mfHjxyun5YnHT1193R0JynzVTRDipdt/Vp4pibffmBiZ3i7efpodur3qJgjx0hk16viqm/BcXufvFW5OL5bvWrw4mdIoxBvsTQx2CSGEEEIIIYQQL5s8fhYvrGvXrkRFRT2xzOnTp9HW1v6PWlQ23tZ+CSGEEEIIIYQQbzsJeL3GHs2p9TpbtmzZUxO8P1gl8EX07NmTnj17vvBxSuu/6pcQQgghhBBCCCHKlgS8xAuztrZ+1U14Kd7WfgkhhBBCCCGEEG87yeElhBBCCCGEEEIIId4qEvASQgghhBBCCCGEEG8VCXgJIYQQQgghhBBCiLeKBLyEEEIIIYQQQgghxFtFktYLIf5zzlvHvOomCPHydZ/3qlsgxEunWafbq26CEC/d7Kser7oJQrx00xq96hYIUfZkhJcQQgghhBBCCCGEeKtIwEsIIYQQQgghhBBCvFUk4CWEEEIIIYQQQggh3ioS8BJCCCGEEEIIIYQQbxVJWi+EEK+xK7FJ+F8KJSolDWNdHTrUrsr7Draoqak9ts6JW7FsDrzBnfQszA316OpUHTe7SiplYlLT+e1CCMEJyWioqeNgUZ7+DR2wMNIv8Zjzj1xAV0uTL5o7l2n/hAAIu3aJv3b8TkJsFIZGxjRz60TLtl2eeJ0/EBt1iyU+4/h28iLKV6iosm/mhCHcT7lbrI73bF8MDMupbCsoKGD5T97YO9an3fsfvliHhCjB5ZAb/LH7EFFxdzA2MqBjyyZ0dm9equv8VnQcPyxYyc8/jMTc1ERl3+EzF9n+9wnuJN/DrLwxHVo0pmMrV5XjXgu/ze+7D3A7NgF9XV2a1K3NR55t0dPVKetuindc/O1LBJ7YQGpyJLr6JtSo50mtBl1LdZ3fu3OTA3+MxXPQUgzKqX6e3wo+RMj5raSnxKNrYEo1Jw8cGvdCXV1DWaYgP4+g0/7cvn6EnKz7GJlY4dikD5XtW5R5P4UQb4a3coTX9u3b+eCDD6hfvz4uLi706tWLP/74Q7n/3r17bNq06ZmOef78ec6dOwdAdHQ0tWrV4vTp06WqGxsby65du5SvPTw8WLRo0TO9/+Ns3ryZWrVqlbr86dOnqVWrlso/JycnWrVqxYQJE0hNTX2h9owbN44BAwYoXz963sqCh4eHStvr1KmDu7s7kydP5u5d1S81tWrVYvPmzQDk5uYycuRInJ2dadmyZbHXhYWFZdZGIcpKWGIKPn+fw9rYgG/cGtCymjW/XbjO9qCbj61zOjKexccv42xtzhj3BjhamLLsRCAnbsUqyyRnZPHjvlOk5eTyVcv6DHZ1IiY1g5kHz5KbX6ByvKKiItaeDeZMZMJL66d4t0XeCmXtL7Mwt7Ch3+ffUb9xK/ZsXc+R/VufWjc+NpK1v8ygsKCg2L6M9PvcT7mLZ4+BfPHtDJV/unoGKmXz8nLxX7OAqIiwsuqWECrCIqKZveo3bCqaMebTD2nZ0Bm/HfvZdijgqXUj4xKYtWoDBSVc5wdPnWfp71tp6GjP94P70rpRPdZu28eWA8eUZaLi7zBt2To0NTUZNbAPfTq6c+xCIAvX/1mmfRQiOS6EY9unU87Uhhadv6dq7dZcCVjL9XNbnlo3Nek2x7ZNp7Cw+HUeenEHZ/5aRDnTyrToMo46TT/kVtBBTu5WXQ359L4F3Li8B4dGPWnZ9QdMzKtxcs884iIulFkfhRBvlrduhNeff/7J9OnTmTBhAg0bNqSoqIjjx48zbdo0kpKSGDFiBHPmzCE6Opo+ffqU+rh9+/Zl5syZNGrUCCsrKwICAjA2Ni5V3e+//x4bGxvef/99ZRt1dF7tE7VNmzZhZWUFKJ5qh4SEMG7cOJKSkli+fPlzH3fChAkqN2SPnrey4uXlhZeXFwDZ2dmEhobi4+ND//798ff3x8jICICAgADl/48dO8a+fftYvnw5tWrVKvZaXf2tjP2KN9ymy2FUNS3Hly3qAVDfxpyCokK2Xg2nU21btDU1itXxvxiKaxVLBjZyAKCetTnpOXlsvBxG82rWAPx55QZ6WppMaNcEnX+OYW6ox7zDFwhPTsXBwhSAyHv3WXP2GjeSUtDSkN8R8XIc2OWPdWVbPvhkJAC1nFwoKCzg8L7NtGjzPlpa2sXq5Ofnc/Lwbvbv8kdLS6vE48ZG3wLAsV5jKphbPfb9b90IZvvG1dxPSS6D3ghRMv+9h7C1tmJEv54AuDjUpLCgkC0HjuHZuinaJVzH+fkF7Dl2io17/37sdb7lwDGa1nOiX5f2ANS1r05cYjJ7A87Qs31rAI6dv4KamhpjvT5GV0fx+1RQUMjKTTtIvJtSbMSYEM/r6qk/KG9eDdcOowCwsm1AYWEB187+ib1LZzQ0i3+eFxbkE3ppF0GnfkdDo/j+osJCgk9vwqJKPZq//51ye/mK1dnrN4r4yMtYVqlHYkwwUWEnaN19Ila2DQCwqOxMemo8cREXlNuEEO+Wt+4bzG+//UavXr3o3bs31apVo3r16gwYMIBBgwaxbt06QDFi4UVoaGhgbm6OtnbxD+XSMDU1xcDA4OkFXyJTU1PMzc0xNzfH0tISNzc3PvnkE44cOcL9+/ef+7hGRkaYmJiUXUNLoK+vr2x75cqVadu2Lb6+vsTFxbFq1SplOXNzc3R1dQGUfXJzc8PKyqrYayFeN3kFBVxLSKZxZQuV7a5VLMnOKyAk8V6xOonpWcTdzyixTkJaJnH3MygqKuJMZDzuNSopg10AdmYmLO3toQx2ASw9foWCwkKmdWqGsUx7ES9Bfl4eN0ODcKznqrK9rkszcrKziAi/VmK9kKALHNyziTYdetKxW/8Sy8RH30ZHVw9TM8sntmHdstmYlDdjxPdznq8TQjxFXn4+weERNHGurbLdtZ4jWdk5XL8ZWWK9C9dC+fOvI/Ro15p+nduVWGbc4H4M6PqeyjZNTQ1y8/Ievn9ePhoa6uhoPwyaGRnoAZCWmflcfRLi3wry87gTfRUbu6Yq2yvXaEZebhaJsSV/nsdFnCf4tD8OjXvj3HJAsf3ZmSnkZKdhXV314bmxWVV09MoRd0sxkyQq7ASGJpYqgS01NTXafjCTBu6DX7R7Qog31FsX8FJXV+fixYvFpuYNGTIEf39/xo0bx5YtWzhz5oxyKmBqaire3t60atUKJycnmjVrhre3N1lZWQDKcuPHj2fcuHHFpjRGRETw2Wef0bBhQ1xcXPjss88ICQkBYMCAAZw5c4YtW7bg4eEBFJ/SeOzYMT788EPq1atH69atmT9/vnKUVGxsLKNHj6ZZs2Y4OTnRunVrfHx8XsoUPA0NDdTU1JRPEQ8cOECfPn2oX78+devWpWfPnhw79nCI/IABA5g4cSJ9+vShUaNGbN++XWVK47/P25dffsnAgQNV3vPmzZvUqlWLsLAXm0ZibW1N+/btVaaOPpjSuGjRIsaNGwdA7dq1S3wNcOHCBfr164ezszPu7u5MmTKF9PR05fE8PDyYPXs2np6euLq6cubMGYqKili5ciVt27alXr16dOvWje3btyvrnD59GkdHR44cOULnzp2pU6cOHTt25MCBA8oyRUVFrF27lg4dOuDs7Mz777/Pzp07lfsTEhIYPXo0jRo1wtXVlWHDhhEREfFM52fr1q28//771K1bl1atWjF9+nRyc3OV+5/U98uXL+Po6Iivr6+y/E8//UTDhg2Jiop6pnaI0ktIyyK/sAjLcqrBcQsjxevY1IxidWJSFT8zq3/VeXCMuPsZJGZkkZmbj7mBHr6ngxjsf4CBv+1j7t/nSc7IUqk3vIUzUzo2o0p51VxHQpSVu0kJFBTkY/avEVim5oogVWJ8bEnVqFTVjrFTl9KmYy/UNYqPdATFCC99fUN+WzWXKWMGMvmb/vy2eh73U1Wnvw8ZPZVPvhhfLP+XEGUlIeke+fkFWJlVUNluaaZ4wBBzJ6nEenaVbVjsPYqe7Vuj8ZiR6JUszTE3NaGoqIi0jEwOnjrP0bOX6dCyibJMG1cXANZu3UtaRiZR8XfYtO8IVawtsLV+ckBYiNLKSI2nsCAfIxPVz3PDf16n3Y0usV55ixq8/+lyHJv0Rk29+Oe5lo4B6uoaZN5PVNmem51ObnY66amKlAupiREYm1bh9vWj7Fk3go0Le7Fn3QhiwkuXgkYI8XZ66wJegwcPJjg4mNatWzNkyBBWrFjBlStXMDIyolq1akyYMIFOnTrh4uJCQIAib8K4ceMIDg5m8eLF7Nu3j/Hjx7N161b8/f0BlOV++OEHJkyYUOw9v/nmGywsLPjf//7Hpk2bUFdXZ8SIEQAsWrQIFxcXOnXqxJ9/Fs+VcPHiRYYMGULDhg3ZvHkz06ZN448//mDp0qUAfPHFF6SlpfHrr7+yd+9evLy8WLVqFYcOHSqzc5afn8+5c+dYt24dbm5u6OnpcfXqVb766ivef/99duzYwcaNGzE1NWXs2LEqgZJNmzYxcOBAfvvtN1q1aqVy3H+ft549e3LmzBni4uKUZbZu3UrdunWpWbPmC/fD3t6eqKgoMjJUAwFeXl788MMPyjaV9Pr69et8+umntGrViu3btzN37lyCgoLw8vJSGRHo5+eHt7c3q1aton79+syfP5/ff/+diRMnsmPHDgYOHMiPP/7Ihg0blHUKCgrw8fFhwoQJ7Ny5E3t7e77//ntlO1etWsX8+fMZPHgwO3fu5KOPPmLs2LGcOnWKzMxMZQDRz8+P9evXU758eT744AMSEkqXU+n69et4e3vz1VdfsW/fPmbMmMG2bduUo+Ge1vd69eoxdOhQfv75ZyIjIzl37hwrV65kypQpVK5c+Tl/WuJpsvLyAdDXUp15rqeluBnMfOTp/QOZuYptetqqdXT/qZOVl8/9bMXv7+8XQribmc3IVvX5vGkdbt29z//tP0P2P+8LSKBLvHTZ2YrRJTp6eirbdXQUr3OySx59YmxSAX0DoyceOy46gtTUu1hXrs7AL8bh2XMgt8KCWblgMjk52cpyVjZVX6QLQjxVVnYOQLEE8Xr/TC98sP/fKpiUw8ig5IVE/i3sdjSfec9muf92qlhb0NmtmXJfFSsL+nVuz55jp/nMezZjZi8hOyeH8Z/3k5QOoszk5So+rzV1VK9ZTW29f/ZnFasDoG9YAR29x3+ea2rpUNm+BWGXd3Mz6AC52encvxfDyT0/oa6uQX6e4vM8OyuVuwk3uHJ8PQ6NetG6xySMylfi+M7ZksNLiHfYW5fDq2PHjlhaWrJu3TqOHz/OkSNHALC1tWXGjBk0bNgQXV1dtLS0MDc3B6BFixY0btxYOSKpUqVK+Pn5ERoaCqAsZ2RkhJGRUbHRY5GRkTRv3hwbGxu0tLSYMWMGN2/epLCwEBMTE7S0tNDV1cXU1JR/W79+PfXq1WPs2LEA2NnZMXXqVJKTk8nOzqZbt2506tRJOe1u0KBBrFy5kpCQENq1K3l4e2l07txZuVpKdnY2GhoauLm5MXXqVEAx2mvixIn07dtXWWfgwIF8/vnnJCcnK9vj4OBAly5dSnyPf583Nzc3zMzM2L59O0OHDqWwsJBt27YxZMiQ5+7Ho8qVU3w5T09PV5kyamBgoMzl9WibHn29evVqWrRowbBhwwDF9TJv3jzatWvHmTNncHVVTLdxc3OjefPmAGRmZrJmzRp++ukn3N3dAahSpQoxMTGsXr2afv36KdswatQomjVT3HwOHz6cffv2ERoaSv369Vm7di0DBw5U5pQbMGAA2dnZ5Ofns2vXLu7fv4+Pjw+amopf1+nTp3P69Gk2btzIV1999dTzEh0djZqaGjY2NlhbW2Ntbc3q1asxNDQsdd+//PJLjh49ire3N9HR0XTv3p3OnTuX/ocjnlnhU6Zeq5ew2tHTJmurAfn/jA4tp6fNGPcGys8BSyMDJu09ScCtWNrZV3meJgvxzIqeMlpZ7QW+jPfoOwwNDQ0qVa0BQLUajlhaVWHZT95cPH2Ypq07PvexhXgWhUVPvs7V1Z++et3TmJU34ccvP+XO3Xv8sfsQE39ezewxQ9HR1mbrwWP8tvMAHVo2wdXZkbSMDP786yhTl65lyldemBgZvvD7C1H0lOtcTe35P88btf0CDQ0tzh1Yytn9S9DQ1MahcS/y87LQ1FQEkgsL88nKuMt7fedSvqIdABaV6rJvwyiCT2+UHF5CvKPeuoAXQP369alfvz6FhYVcv36dI0eO4Ofnx+eff87+/fuLle/bty+HDh1iy5YtREREcOPGDaKjo6levXqp3m/06NHMmDGD3377jSZNmtCqVSs6d+5cqqdmoaGhtGihulRuhw4dlP/v378/e/fu5cqVK9y+fZuQkBCSkpJeeErjihUrsLBQ5PnR1tamQoUKKjnJHBwcMDY2ZsWKFdy8eZPbt29z/fp1AJWk9FWrlv7JuKamJl27dmXbtm0MHTqUU6dOcffu3TILnKSlpQEoAznPIjg4mNu3b+Pi4lJsX3h4uDLg9Wh/b9y4QU5ODmPGjFH5Wefn55Obm0t29sMRBI9eSw/al5eXx71790hMTKRevXoq7/n5558DMGXKFFJTU2ncuLHK/pycHMLDw0vVt1atWuHi4kLv3r2pVKkSLVq0oG3bttSpU6fUfdfU1MTHx4euXbtSoUIFJk6cWKr3Fs/P4J9RWlmPjLgCyHzMyC8AvX+2ZeeprnCUlftPHW0t9P4JnNa3NldZIrymuQn62prcvvf8OfyEeFa6+oqHE7mPfF7Cw5Fdurp6xeqUVtXqxVcwrmpXG109A+Jibj/3cYV4Vvp6inyiWTm5KtszHzPy63mYGhthamyEI7ZUNC3Pj0t+5dTlYFo2qMv//jpCq4bOfNbrfWV5xxrV+GraAnb8fZwBXTs84chClI6WjuLzPP9fI7nychSf51raz/95rqmlS+P2I3BxH0zG/TsYlKuIppYuN6/ux9BYMS1XS0sPPQNTZbALFA9NLKrUIzzwr+d+byHEm+2tCnjFx8ezfPlyhg4diqWlJerq6jg6OuLo6Ei7du3o3LkzZ8+eValTWFjI0KFDCQsLo3Pnznh6euLk5PRMX+j79etHx44dOXLkCCdPnuTnn3/ml19+YevWrZiZmT2x7oNROyXJzMykf//+ZGdn07FjR3r06IGzs7PKyKHnZW1tTaVKlR67/8yZM3z22We4u7vTsGFDunTpQlZWFl9++aVKuQdJ4UurV69erF69mqtXr7J9+3batm1b6tUunyYoKAhbW9vnWhCgsLCQLl26KEc5PerRkXmP9vfBVMcFCxaUGBx9NIBY0gIHRUVFj1116dF2VatWjV9++aXYPn390k1z0NHRYd26dQQHBxMQEEBAQADDhg2je/fuzJw5s9R9Dw0NpbCwkMTEREJCQkoMkImyU9FQH3U1NRLSVKd0PXhtY1w8sGttrLj24+9nYGtarsQ6RjpaqKlBXkHxoHlBYRFaj8mHJMTLYGpmgbq6OsmJ8SrbH7yuaPn4v1NPkpWZQdClU1SyrYml9cMRi0VFRRTk52FgKNN1xX/HokJ51NXVSUhSzR8X/8/rShbmz3Xc7Jxczl29To2qlZT5wACqV1asyHvvfhqp6Znk5OZhX001BYGxoQHWFc2IilfNiyTE8zI0tkRNTZ30FNXP8/RURSqTcqbPnwYj9uY5tHUNMLN2wLiC4jM9OzOVrPRkyldU3IMbmliTmZZEUVGRygO9woL8EleHFEK8G96qifva2tps2rRJJWn4Aw+mu5mZmal8CF67do2jR4+ycOFCvv32W7p27UqVKlWIjIws1WqOycnJTJ06lby8PHr27ImPjw/bt28nMTGRM2fOPLW+nZ0dgYGBKtvWrl1Lnz59CAgIICgoiHXr1jFy5Eg8PT0xNDQkOTn5hVeafBpfX19cXV1ZtGgRgwYNokWLFsrcWy/y3nZ2dri4uLBnzx4OHjxIz549y6S98fHxHDx48LHTK5+mZs2a3Lhxg6pVqyr/5efnM3PmTJWcY4+qXr06mpqaxMbGqtQ7cuQIq1evLtUIPyMjIypWrFjsGhg5ciQzZ87E3t6e2NhYjIyMlMe3trZm3rx5xYK3j3PkyBEWL16Mo6MjQ4YMUV5Pu3fvLnXf79y5w+TJkxk2bBidO3fm+++/J1NWdnqptDU1cLAoz5nIBJXfuTOR8ehra2JnZlKsjqWRAeaGepyOVL3ZPB0Zj6WRPuaGeuhqaVK7oilnIhPIe2S05tW4JHLyC6hdsfxL65MQ/6alpU21Go5cvXRK5Tq/eukUunoGVLJ9vvyOmlpabN+4msP7NqtsD75ylry8XOzs67xQu4V4FtpaWjjaVeX0lWDVz/Mr19DX06VGFZvnOq66uhrL/Lez/dBxle2Xr98AFLm7TIwMMDTQL7YS5P30DOISk6loavJc7y3Ev2loamNeyYnoGydVrvPoG6fQ1jHA1PL58/WGB+7j0tE1KttCL+5ATU0dq2qK1RutqjUgJzuNhMjLyjKFBfnE376EubXjc7+3EOLN9lYFvExNTRk8eDALFy5k/vz5XLt2jaioKP7++29GjBiBq6srjRo1Ql9fnzt37hAVFYWZmRmamprs2bOHqKgoAgMDGTVqFImJiSrJ2fX19QkPD+fevXsq72lsbMzhw4fx9vZWvt8ff/yBlpaWcsqYgYEBMTExxMerfgkFRZL9S5cusXDhQiIiIjhy5AhLly7F3d0dS0vFEN3t27cTExPDuXPnGD58OHl5eSptexmsrKwICQnh3LlzREdH87///Y+FCxcCPNN7l3TeevXqhZ+fH7q6usWmc5ZGZmYmiYmJJCYmEhUVxYEDBxg8eDCVKlXi008/febjgSKxfXBwMFOmTCE8PJyLFy8yZswYIiIisLW1LbGOkZERH330EQsXLmTbtm1ERUXx559/4uPjQ8WKpV/ta8iQIaxdu5Zt27YRGRnJunXrOHjwIG3btqVr164YGxszcuRILl++THh4OOPGjePo0aPKnHNPo6WlxZIlS1izZg1RUVFcvXqVw4cPK0dolabvP/zwAxUrVmTYsGH88MMPZGRkMGvWrFL3UTyfHnVrEJ6cwsKjl7gUk8jGS6HsDL5Ftzp26GhqkJmbR1hiCvcfSXjcy7kGp27H43s6iEsxiaw+fZVTt+P5oL69ssxHLvakZGUz+9A5LsUkciQ8mkUBl6lhZkKjShavoqviHdamYy+ib9/gt9XzCAm6yF87fufYge24d+iBtrYO2VmZRN4KJT0t9ekH+4eWljZu7/Xg8rkAdv65hrDrlwk4tJM/1y3GwbkxdrXqvsQeCVFcz/Zu3IiMYf7aTVy8FsYfuw+x/e/j9GjXCh1tbTKzswmLiCY1vfgKvI+jraVF93YtOXjqPH/sPsTVsFvsOnKSX/y3UdfeDheHmqirq9OngzvHLwSyYuMOAkNvcuLiVf5v2TrU1NTo4t78JfZavGscm/ThbkIYJ3fPJS7iAoEnfiPk/FYcGvdCU0uHvJxMkuNCyM4s/ec5QM3675McH8rFI74kRAUSeGID187+j1oNuilXhaxaqzXlK1bn1N753Ly6n7iICwTsmElmehJOTT94Gd0VQrwB3qopjaBIDm5ra8vGjRvZsGED2dnZWFtb06lTJ4YOHQpA9+7d2b9/P507d+avv/5i1qxZLFq0iA0bNmBubo67uzuDBg1SWQnxweqI4eHheHt7K7dramqycuVKZs+ezaBBg8jKysLBwYEVK1ZQpYpiyO1HH33E999/T9euXTl58qRKex0cHFiyZAk///wzK1eupGLFigwcOJAvvvgCdXV1xo8fz5o1a1iwYAEWFhZ4enpiZWVVbERQWRs5ciRJSUnKaW41atRgxowZfPfddwQGBmJnZ/eUIyg8et6WLVsGQKdOnfi///s/unfvjsZzTJ/y9fXF19cXUARzrKys8PT0xMvL67mmM4Ii79uqVatYuHAhPXr0QF9fn2bNmvH999+XOB3xgfHjx1O+fHkWLlzInTt3sLKyYuTIkQwePLjU7/1g2urChQtJTEzE1taW+fPn06SJYklxPz8/5syZw2effUZBQQFOTk74+vqW+mfQvHlzpk+fjq+vL/Pnz0dXVxc3NzfGjRtXqr5v2LCBEydO4O/vj7a2Ntra2kycOJGvv/4aDw8PZcJ+UfacLCswqrUL/7tyg3mHz1NeX5e+DWrT2bEaABH/rKw4rHld3OwUU7/c7CqRV1DIzuBbHA6PpqKhHsNbONPM9uEy4fbm5fFu78rGS6H8dOQCOpoaNKpsQf+GtcskebIQz8KuVl36Df6WA7s3sn75bMqZmNKp+wBatesKQGzUTVYu/JHeA76kYdM2pT6uR6feGBgaceroPs4E/IWegSFNWrWn3fsfvqyuCPFYdWpW45tBH7Jp39/4+P6OqXE5+ndpT5c2igd/t6LjmLJkDcM/7o57k9KnDOjV3o1yBgbsDTjDzsMnMDLQp33zRvTp4K6c0dCplSsGerrsPHySw2cvYmSgj0P1qnz36UdUrCCjekXZsahcl+bvjyXo1B8E7JiJnkEFnFt+Qu2G3QC4d+cmf/9vIk3e+4pqjh6lPq5l1fo06/QNQac3Eh64D4Ny5ri4f4Z9/Yd5gNU1NHHvOYUrJ/wIPL6BvLwsylesjnvPKSp5vYQQ7xa1opc9N06If4mKiuK9995jz549jx09Jd5u96Z/8aqbIMRLd6X7vFfdBCFeugZZR191E4R46WZfLX1wRog31bRBb2ausyNBr2+aFTen0uVcFi/PWzfCS7y+4uLiuHLlCr/99hutWrWSYJcQQgghhBBCCCFeCgl4vSUSEhLo2LHjE8vUrVuXdevW/UctKu7evXuMGzcOW1tbFi9erLJv2LBhnD59+on1N2/eTLVq1V5mE984Xbt2JSoq6ollTp8+/cRpmUIIIYQQQgghxNtGAl5vCTMzM7Zu3frEMjo6Ov9NYx7D0dGRixcvlrhvypQpZGdnP7G+tbX1y2jWG23ZsmXk5eU9sYyWltZ/1BohhBBCCCGEEC8qOTmZWbNmcezYMXJycmjcuDHff/99qfM4CwUJeL0lNDQ0qFq16qtuxnOzsJCV4Z6HBAGFEEIIIYQQ4u3y5ZdfUlhYyIoVKzAwMGDhwoUMGjSIv/76Cz09vVfdvDeG+qtugBBCCCGEEEIIIYSA1NRUbGxsmDZtGs7OztjZ2TF8+HDu3LlDWFjYq27eG0VGeAkhhBBCCCGEEEK8BoyNjZk37+Fq33fv3mXNmjVYWlpSo0aNV9iyN48EvIQQQgghhBBCCCHKUNu2bZ+4/+DBg089xsSJE9m4cSPa2tr88ssv6Ovrl1Xz3gkS8BJC/OeudJ/39EJCvOH2n5U/seLt5xyz7VU3QYiX7vsOr7oFQvwXOr7qBogSfPLJJ3z44Yds2LCBL7/8kt9++w0nJ6dX3aw3htyNCyGEEEIIIYQQQpSh0ozgepoHUxinT5/O5cuX8fPzY+bMmS983HeFJK0XQgghhBBCCCGEeA3cvXuXXbt2kZ+fr9ymrq5OjRo1uHPnzits2ZtHAl5CCCGEEEIIIYQQr4GkpCS++eYbTp48qdyWl5dHcHAwdnZ2r7Blbx4JeAkhhBBCCCGEEEK8Buzt7WndujXTpk3j7NmzhIaGMm7cOO7fv8+gQYNedfPeKBLwEkIIIYQQQgghhHhN/PTTTzRr1ozRo0fTp08fUlJS2LBhA9bW1q+6aW+UNzpp/fbt2/Hz8yM0NBQ1NTWqV69Onz59+OijjwC4d+8eBw4coE+fPqU+5vnz5ykqKqJRo0ZER0fTtm1b1q1bh6ur61PrxsbGcvHiRd5//30APDw86NGjB1999dXzdfARmzdvZvz48YSEhJSq/OnTpxk4cKDKNk1NTUxNTWndujVjx47F2Nj4udszbtw4YmJiWL9+PaB63sqCh4cHMTExytdaWlqYmZnh5ubG119/jampqXJfrVq1mDlzJj179iQ3N5dvv/2Ww4cPU65cOQ4dOqTy+ujRo6irS5xXvDnCrl3irx2/kxAbhaGRMc3cOtGybRfU1NSeWjc26hZLfMbx7eRFlK9Q8bHldv65huN/72Tmkj9VtvuvWcils8eKle/72RjqNmj27J0R4jHib18i8MQGUpMj0dU3oUY9T2o16PrY67wgP4+QC9uIuPY3WenJ6BlWoGptNxwa9URdo+Rbm4tHfAm9uIMPR21R2Z4Ud53A4xtIjg9FS0sPq2oNcW45AF19k7LupnjHXYlNwv9SKFEpaRjr6tChdlXed7B94uf5iVuxbA68wZ30LMwN9ejqVB03u0oqZY6ER7Mz+BYJaZmY6OngZleJ7nWqo/GY+52byalM2nuSz5vWKXYsIV7U5ZAb/LH7EFFxdzA2MqBjyyZ0dm9eqvuWW9Fx/LBgJT//MBJzU5Nn2h+TkIjfjv0Eh0egrq6Oo11VBnbtgIWZabHjCPEmMDIy4scff+THH3981U15o72xAa8///yT6dOnM2HCBBo2bEhRURHHjx9n2rRpJCUlMWLECObMmUN0dPQzBbz69u3LzJkzadSoEVZWVgQEBJQ6MPT9999jY2OjDHj9+eef6OjoPFf/ysqmTZuwsrICoKCggJCQEMaNG0dSUhLLly9/7uNOmDCBgoIC5etHz1tZ8fLywsvLC4Ds7GxCQ0Px8fGhf//++Pv7Y2RkBEBAQIDy/8eOHWPfvn0sX76cWrVqFXstwS7xJom8FcraX2bh3LA57d7/iNvh19izdT0FhQW4v9fjiXXjYyNZ+8sMCh/5PS3JzbAgThzeVeK+uOgI6jVsQfM276tsN6to9WwdEeIJkuNCOLZ9OlXsW1Cn2cckxV7jSsBaigoLcGjcs8Q6F4+s4vb1Izg2+QBTixrcTbhB0Gl/Mu/foXH7EcXK34kOIuzSzuLvHR/K339OpJxpJVzfG4mGpg4h57dy4I9xvNdvHto6BmXeX/FuCktMwefvczS1taJPvZqE3LnHbxeuU1BYSLc6JedjOR0Zz+Ljl+lY25Z61maci0pg2YlAtNTVaV5N8YR/z7UI1p27hmsVS/o1qM397Fw2XQ4j8t59Rrs1KHbMvIICfjlxhYLCopfaX/FuCouIZvaq32hevw4fdGzD9VuR+O3YT0FhId3btnpi3ci4BGat2qDy/aK0+5NTUpm4yBdr8wqM7N+L3Lw8/Pf8zfTl65k7djjaWlpl0j8hxJvnjQ14/fbbb/Tq1YvevXsrt1WvXp2EhATWrVvHiBEjKCp6sT/mGhoamJubP3f9R0chvSqmpqYqfbC0tOSTTz5hwYIF3P9/9u47Pub7D+D4K/uyI3shBJEIEbGDIEZsolStqqrRoeivRktbrdVqaaq0ZhurZkREbRVbbEIGCRkim+xxucvvj+M4l0QQ1dbn+Xjk0d7n+/l8vp/P+eRy977PyMnBxMTkuep9GGB6mQwMDFTaXrNmTVxdXenVqxerVq1i8uTJACp5cnJyAPDx8UFDQ4PTp0+rPBaEf5ODuzdjX9OJwW9PBMClkScyuYwj+4Lw7tQLHR1dtTKlpaWcOvInB3ZvRucpb/CKi4vYvn4ZJmbmZN/LVLkmlZaQnpZMu869qVWnQfV1ShCeEHF6EzWs6tCq+yQA7JyaIZfLiDy7jQaevdHSVh3nxYW5xEUcoIn3SBo27w+ATa0mAFw5sY7G3iOQGDz6oqpUWsTZAz+jb2RBQW6GSl2R4dvR1TWk08Bv0JUYAWBdszF71n5I9PlgGrcd9pJ6Lbxutl6+QW1zEz7w9gCgqYMVsjI5wRGx9GjohK62llqZzRdjaFXLlpHNXQHwsLcir1jKlss3aFvHHrm8jKCrN3G3s2CSj6eyXB1zE6aGHufq3Qwa21mq1Lnl0g0KSkoRhJdh897DONnb8eEwxZcVnq71kcvk7Dh4jJ4dWpcbeCotlbHn2Gm27P2r3PctT7sOsGXvEQwkesyaMBI9XcXfDCvzGixc8wexCcm4Oteuxl4KgvBv8q+d7qKpqcnFixfJzs5WSR87diybN29m+vTp7Nixg/DwcFxcXADIzs5m5syZtG/fnkaNGtGmTRtmzpxJYWEhgDLfjBkzmD59OklJSbi4uHDmzBkAbt++zbvvvouXlxeenp68++67yiWGI0aMIDw8nB07dtC5c2dAsSxvyZIlyrYdO3aMN998Ew8PDzp06MDixYuV31IkJyczefJk2rRpQ6NGjejQoQMLFy5ELpdX+3OnpaWFhoaG8o/Gw2WfTZs2pXHjxvj7+3Ps2KNlTCNGjGDWrFkMGjSI5s2bExISwvTp0xkxYkS5z9sHH3ygtpwyLi4OFxcXbty48UJtt7e3p2vXruze/WhGiouLC0FBQSxZsoTp06cD0LBhw3IfA1y4cIFhw4bRpEkTOnbsyOzZs8nLy1PW17lzZ7799lt69uxJq1atCA8Pp6ysjJUrV+Lr64uHhwf9+vUjJCREWebMmTO4ubkRFhZG7969cXd3x8/Pj4MHDyrzlJWVERgYSPfu3WnSpAm9evUiNPTRjIPU1FQmT55M8+bNadWqFePHj+f27dtVfm4ejtfly5fj7e2Nr68veXl5xMTEMG7cOFq0aIG7uzu+vr6sWbNGpWxlY7OkpISFCxfSvn17PD09GTx4MMePH69yu4TnUyqVEhdzDTcP1eXUjT3bUFxUyO3YyHLLRV+7wKE9W+nU3R+/fsMrvceeHWsxNjHDq3UntWupyQnIZTJsHZ2euw+C8DSyUilpSRE4OLdWSa9Zrw3SkkLSk9XHubSkAOfG3bF3bqGSbmKuWJqVn52ikn7p2O9IDM2o49ZZra6crEQsHVyVwS4AbR09LGwbkHzr3HP3SxAeJ5XJiEzNpEVNG5X0VrVsKZLKiE6/p1YmPa+Quzn55ZZJzS3gbk4+2UXF5BVL8XJUXbJes4Yxxno6XEhSPbo+Ou0e+6LjeaelWzX1TBAekZaWcj32Ni2bNFRJb+XhRmFRMVFxCeWWuxAZw7b9YQzo0oFhvbs88/WysjLOXLlOp5aeymAXQL1aDiz/6n8i2CUIr7l/bcBrzJgxXL9+nQ4dOjB27FhWrFjBlStXMDY2pk6dOnz++ef06NEDT09P5Yfz6dOnc/36dX7++Wf27dvHjBkzCA4OZvPmzQDKfJ999hmff/652j2nTJmCjY0N27dvZ+vWrWhqavLhh4qlE0uWLMHT05MePXqwbds2tbIXL15k7NixeHl5ERQUxJw5c9i0aRPLli0DYMKECeTm5vLbb7+xd+9eRo8ezapVqzh8+HC1PWelpaWcO3eOtWvX4uPjg76+PhEREXz00Uf06tWLXbt2sWXLFszNzZk6dSolJSXKslu3bmXkyJFs3LiR9u1VpyQ/+bz5+/sTHh7O3bt3lXmCg4Np3Lgx9evXf+F+NGjQgMTERPLz81XSR48ezWeffaZsU3mPo6KieOedd2jfvj0hISF8//33XLt2jdGjR6vMCFy/fj0zZ85k1apVNG3alMWLF/PHH38wa9Ysdu3axciRI/nqq6/YsGGDsoxMJmPhwoV8/vnnhIaG0qBBA6ZNm6Zs56pVq1i8eDFjxowhNDSUIUOGMHXqVE6fPk1BQYEygLh+/XrWrVtHjRo1GDx4MKmpqc/0/OzYsYPAwEB+/PFHtLS0GD16NGZmZmzatInQ0FD8/Pz49ttviYxUfJB82ticMWMGJ06c4Pvvv2fHjh306NGD8ePHc+TIkWdql/BssjJSkclKsbRSXT5obmULQHpKcrnlHGs7M/XrZXTyG4imlvqMgYduRF3mwpkwBg7/oNzZj3eTbgNw7uQh5s0Yw8yJQ1i+aCYJt2Kes0eCoC4/OwW5rBRjM9VxbvTgcW5WkloZI1MbvDqPw6SGg0r6ndjTaGppY/xYekrCZeIjjzxY5qg+zvX0TcjPSVNLz7t/l/zsZ3vtFYSKpOYWUiovw9ZEdYmsjbHicXJ2vlqZO9mKL+LsnijzsI67OfkY6OqgpalBel6hSp68Yin5JaWkPZZeXCrj15NX6OfuTO0azze7XxAqk5pxj9JSGXaWFirptg/20LqTllFeMZxrOvDzzEn4d+1Q7r5zT7uennWfgsIirMzNWLUtlHc+X8CwT7/hu9V/kHk/Wy2/IAivl3/tkkY/Pz9sbW1Zu3YtJ06cICwsDAAnJyfmzZuHl5cXEokEHR0d5ZI3b29vWrRooZyR5OjoqNz0Hh4tjTM2NsbY2Fht9lhCQgJt27bFwcEBHR0d5s2bR1xcHHK5HDMzM3R0dJBIJOUuZVy3bh0eHh5MnToVAGdnZ77++msyMzMpKiqiX79+9OjRQ7nf1qhRo1i5ciXR0dF06aL+bUZV9e7dW/lhtqioCC0tLXx8fPj6668BxWyvWbNmMXToUGWZkSNH8t5775GZmalsj6urK3369Cn3Hk8+bz4+PlhaWhISEsK4ceOQy+Xs3LmTsWPHPnc/HvdwGWZeXh6Gho/eCBoaGiqXWj7epscfr169Gm9vb8aPHw8oxssPP/xAly5dCA8PVx5O4OPjQ9u2bQEoKCjg999/Z9GiRXTs2BGAWrVqcefOHVavXs2wYY+WvEyaNIk2bRSbeb///vvs27ePmJgYmjZtSmBgICNHjlTuKTdixAiKioooLS1l9+7d5OTksHDhQrS1Fb+Wc+fO5cyZM2zZsuWZDj4YOnQo9erVAyArK4uRI0cybNgw5XM1ceJEVq1aRXR0NK6urpWOzfj4eEJDQwkODsbVVbGk4p133iEqKorVq1crnw+h+hUVFQCgp6+vkq6np3hc/OD6k0zNLMpNf1xhQT7b1y+ja683sbIp/6SX5AcBr5LiIoa8M4mC/DzCDuxgVcBXTPh0PnYO4htT4cVJSxTjWFvPQCVdW1f/wfVCtTLlSbp5mtuRR6jn0VM5W6ukOJ+zB36mUeu31IJjD9Vp5MvZg8u4GLaahl4DQEODmIu7yMlKQi4Xy76E6lEoVYwlAx3Vt936OoovJQqkUrUyBSWKNH1d1TKSB2UKpaXoaWvRurYd+6PjcTQzokVNW3KKiwk8G4mWpgbFpY/G8B8Xo9HT0aK/e12yCoqrr3OC8EBhkWJc6UtU9y/W19NVuf4kC7PKA7BPu56dpwgYbwg9gHNNByaNfIPs3Hz+2H2I2Ut/57v/TUCip74FhCAIr4d/bcALoGnTpjRt2hS5XE5UVBRhYWGsX7+e9957jwMHDqjlHzp0KIcPH2bHjh3cvn2bmzdvkpSURN26dat0v8mTJzNv3jw2btxIy5Ytad++Pb17967SRugxMTF4e3urpHXv3l35/8OHD2fv3r1cuXKF+Ph4oqOjycjIeOEljStWrMDGRjEdXldXFwsLC3Qfm+7r6uqKqakpK1asIC4ujvj4eKKiogBUNoWsXbvqH261tbXp27cvO3fuZNy4cZw+fZqsrCx69+79Qn15KDc3FwAjI6On5FR3/fp14uPj8fT0VLsWGxurDHg93t+bN29SXFzMJ598ovJvXVpaSklJCUVFRcq0x8fSw/ZJpVLu3btHeno6Hh4eKvd87733AJg9ezbZ2dm0aKG6RKe4uJjY2Nhn6uPjbTc3N2fo0KGEhoZy/fp1EhISlP++D8dWZWNzz549ACoB0Yd9et7934SqKXvK777GCxzAELr9N8xqWNLOt/wgNkDbjj1xbexFA7dHvyvOLo35YfaH/LV3G0Pf/eS57y8ID5WVPWWcazx9nCfdOMXpvYuxtHfFo92j5fSXwlZjYGyJS7O+FZat694VaUkBEac2EXMxFA0NDRzrtaVu427cunao6h0RhErIn7KnrGY5s2yftgvtwxJjWjVCR0uTlacjWHEqAh0tTfq5O1MkLUX3wSzf6ymZHL6RyJwebSo8uVEQXpT8Ka/nmpovZy/dh59XTI2M+HT0EOUX/XaWFnwesJJj56/QtW31HaolCMK/y78y4JWSksLy5csZN24ctra2iqNn3dxwc3OjS5cu9O7dm7Nnz6qUkcvljBs3jhs3btC7d2969uxJo0aNmDVrVpXvO2zYMPz8/AgLC+PUqVP89NNP/PLLLwQHB2NpaVlp2YezdspTUFDA8OHDKSoqws/PjwEDBtCkSROVmUPPy97eHkfHio+cDg8P591336Vjx454eXnRp08fCgsL+eCDD1TySSSSZ7rvwIEDWb16NREREYSEhODr61vl0y6f5tq1azg5OanM7qoquVxOnz59lDO8Hvf4zLzH+/twqeOPP/5YbnD08QDi4///ePmnbR4ul8upU6cOv/zyi9o1AwODckpU7PG2p6en8+abb2Jubk7nzp1p164djRs3xsfHR5mnsrH5sO8bNmxQe77FiZcvl8RA8XyXPBZQhUczuyQSfbUyVRF19TxXz5/kg2nfKoOeD/+dZTIZmpqaaGhoYGVjrzb7S9/AkFp1G3I3Kf657i0IT9J5cApi6RMzuaTFinGuo1v5OI++EMLlY79j5ehOuz4zlBvcJ8edIyHmBF3fWkhZmRzFEFeMc7lchoaGpvJDkUuzftT36EVedgq6EmMkBqac2fcjupKXfziL8HowfDBL6+FMr4cKKpj5BaD/IK1IqnoiXeGDDecNdBXvKyQ62oxr05i3m7uSkV+IpaE+Eh1tDt9IxMbYgCJpKb+cvEoftzo4mBohk8uRPQhMyMvKkMnlIggmVAsDfcX7z8LiEpX0ggpmflUXiZ6i3qau9VS2aKjv5IiBvoTbd1IqKioIwmvgXxnw0tXVZevWrdjZ2aktk3s468TS0lLlRS8yMpKjR4+yZcsW5SwbqVRKQkICNWvWfOo9MzMzWbp0KWPHjsXf3x9/f39SU1Pp0KED4eHh9OzZs9Lyzs7OXL16VSUtMDCQ0NBQ3nvvPa5du8aJEyeUgbP79++TmZn5widNPs2aNWto1aqVyub669atA3ihezs7O+Pp6cmePXs4dOgQP/zwwwu3FRTBzkOHDilnRj2r+vXrc/PmTZVZULGxsSxcuJApU6aUe/pk3bp10dbWJjk5mU6dHm3uvXbtWm7evKlcHloZY2NjrK2tuXr1Kr6+vsr0iRMnYmdnR4MGDdi5cyfGxsbKwJtUKuWTTz7Bz8/vqeOrIqGhody/f599+/Ypg24PD1p4+O9b2dicN28eoAicubk92uR28eLFaGpq8vHHHz9Xu4SnM7e0QVNTk8x01TdqDx9b21YcyK7M1UunkEpL+HHOZLVrMye+SbPWHRk04kOunD+BvoEh9V2bquQplZZgZCxm9wnVw8jUFg0NTfLuq47zvGzFHpAm5uX/fS4rK+Ni2GpuXNpNLZd2tOr2MZpaj97SJN08iay0hL3r1F+jtv70BnXcOtGy20SyUm5QkJuBY/02yk3vAe6lxVHDumqzvwXhaayNDNDU0CA1V3Up+sPHDqbqM9btTRXB4JScfJzMTSoscyEpDUNdHVysa+BopngPk1NUzL3CIuqYmxKXmU1GfiFBV2MJuqo6Y3zFKcWssD9G9KimngqvMxuLGmhqapKakaWSnvLgsaONVXnFXpitpTkaGhqUlsrUrsnlcnTLCSgLgvD6+Fe+ApibmzNmzBgCAgLIz8/Hz88PIyMjbt68ybJly2jVqhXNmzdnz549pKWlkZiYiKWlJdra2uzZswdzc3Pu37/Pr7/+Snp6usrm7AYGBsTGxnLvnuqJOaamphw5coSEhAQ++eQTjIyMCAoKQkdHB3d3d0Cxh9SdO3dISUnB1tZWpfyYMWMYOHAgAQEB9OvXj/j4eJYtW8bIkSOVeUNCQujevTt3795l0aJFSKVSlba9DHZ2dhw8eJBz585ha2vLmTNnCAgIAHimez/+vNWoUQNQzPKaM2cOJiYmakvmqqKgoID09HRAsf9YdHQ0P/74I46OjrzzzjvPXB8oNrYfNmwYs2fPZvjw4eTk5DB79myKiopwcnIqt4yxsTFDhgwhICAAIyMjmjVrxpkzZ1i4cCHjxo2r8r3Hjh3LokWLqFOnDp6enhw5coRDhw7x22+/4erqyooVK5g4cSKffvopRkZGLFu2jKNHj75QUMnW1pbCwkL27t2Ll5cXcXFxzJ8/H3j071vZ2Kxfvz6dOnXiyy+/5IsvvqB+/frs3buX5cuXK+sRXg4dHV3q1HMj4tJp2nfpqwzgR1w6jUTfEEen5zsAokvPwbTp4KeSFn7iIGdPHOSDqQswNFJ8sAo/foCszDSmfPGTchZg9v1M4uOiade5epYnC4KWti5Wjo1IunkKF69+ynGedPM0unqGmNuWP86vnljPjUu7cWnWF4/2o9QOXmjUegj1mqh+iI+NOEBcxAG6DvkOPQPFjOO0O9eJOLWRvrWaoPtgtllKwmWyMxNx8epfzb0VXle62lq42tQgPCGV3m51lOM1PCEFA11tnC3N1MrYGhtiZaTPmYQUWjs9OtThTEIKtsYGWBkpZj8ejEkgt1jKNz3aKPP8GXkbTQ0NPB2tMJXoMeexawD3i4r5/q8LDGxSD0+HlxOEEF4/ujo6uDnX5syV6/Tp1PbROL8SiYG+hHq1yt9L8UVJ9HRxrau471u9fNF58J7lakwcRcUlNKwr9hwVhNfZvzLgBYrNwZ2cnNiyZQsbNmygqKgIe3t7evTooQxC9O/fnwMHDtC7d2/279/PggULWLJkCRs2bMDKyoqOHTsyatQolZMQH56OGBsby8yZM5Xp2trarFy5km+//ZZRo0ZRWFioDFLUqlULgCFDhjBt2jT69u3LqVOnVNrr6urK0qVL+emnn1i5ciXW1taMHDmSCRMmoKmpyYwZM/j999/58ccfsbGxoWfPntjZ2anNvKluEydOJCMjQ7nEr169esybN49PP/2Uq1ev4uzsXKV6Hn/efv31VwB69OjBN998Q//+/dGq5LS4iqxZs4Y1a9YAoKOjg52dHT179mT06NHPtZwRFPu+rVq1ioCAAAYMGICBgQFt2rRh2rRp5S5HfGjGjBnUqFGDgIAA0tLSsLOzY+LEiYwZM6bK9364bDUgIID09HScnJxYvHgxLVu2BBSnM3733Xe8++67yGQyGjVqxJo1a6r8b1AePz8/rl27xoIFC8jLy8PBwYFBgwZx6NAhrl69yltvvVXp2ATFbK7FixfzxRdfkJ2dTa1atZg7dy4DBgx47nYJVdPJbyCrl3zNxtU/0LyNL/FxURw7GEL3fsPQ1dWjqLCAtJQkzC1tMDKu2pLhGhbW1LBQPcI+KuI8AI6166nde93yb2nbsSeFBXkc+nMrBgZGtOtc8d5fgvCs3FoOIizoS079+T11GvmSkRxF9PlgmniPQFtHD2lxATlZiRia2iIxMOVeWhxR53dgblOPmvXbkpWienKoiXlNDE2sMTRRHefJtxTj/PEgWu2GHYg6u52TuxfSsPkACnLTuRT2G5b2DXFq2PGl9114fQxoXI+5B8MJOHqJjvUciUm/R+j1WwzxdEFPW4uCEil3svOxMdbH5MHSr4FN6vHryasYn7lGM0drzielcjo+hYntmyrr9WvoxPxDZ1l7LhIvR2si7mayMyKOvo3qYvvgFMgnA2oPT3W0MtIvN9gmCM/Lv6sP3/wSyOLArXRq5Un0rURC/jrB0N5d0NPVpaCoiDspGVhb1sDU6Pney5dnaO8ufLX0N+avWE+fTt5k5+axftcB6td2pIW7S7XdRxCEfx+Nspe9Zk54bSUmJtKtWzf27NlT4ewp4fUUdq38EwYFddcuneHgn1tIT7mDiZk5bTr40b6LYhPuuJgIVgZ8xRsjPsCrdSe1sudP/8W2dUuZ+vUytSDX4w7u3syhP7cyf+k2lfSbUVc49OcWUu4kgIYGLm5N8es/HDNzMSOgKg6c/dd+p/S3S7p5mmunN5Fz7w76hhbU8+hBQ69+AKQlRvDX9lm07PYRddw6E3HqD66d2VJhXZ0GfoN1TXe19IhTm7h2ZjNvTtqhkp6VepPLR38nKy0WXYkRjvVa495m6FP3DxMUPrkjlrZXVXhCCtuv3CQ5O48aBhK6udSmt1sdQLGx/DcHwhnftjE+zo+W1x6MSSD0+i2yCoqwNtKnn7sz7euqzpQ5eSuZoKs3ScsrxMpIn64NauHX0KnCdqTnFTJxxxG1ewkV0+7e71U34V/jzJVItu77i+S0DMxNTeju3YI+nRQrPa7dvMXspb/z/lv96dhS/QCpI+EXWfZHMEtnTcbK3OyZrkffSmDTn4e5EZ+Erq4OLdwbMrJfdwz1n20f4teZcXO/p2f6B/onf67wafRsezEL1U8EvIRqd/fuXa5cucLGjRvR09NjxYoVr7pJwj/MP/kPkyBUFxHwEl4HIuAlvA5EwEt4HYiAV/UTAa9XT7wb/5dJTU3Fz6/yF6PGjRuzdu3av6lF6u7du8f06dNxcnLi559/Vrk2fvx4zpw5U2n5oKAg6tSp8zKb+K/Tt29fEhMTK81z5syZSpdlCoIgCIIgCIIgCMLrQgS8/mUsLS0JDg6uNI+e3ss59req3NzcuHjxYrnXHm4QXxl7e/uX0ax/tV9//RWpVFppnoenMAqCIAiCIAiCIAjC604EvP5ltLS0qF3733vaiI2Nzatuwr+SCAIKgiAIgiAIgiAIQtVpvuoGCIIgCIIgCIIgCIIgCEJ1EgEvQRAEQRAEQRAEQRAE4T9FBLwEQRAEQRAEQRAEQRCE/xQR8BIEQRAEQRAEQRAEQRD+U0TASxAEQRAEQRAEQRAEQfhPEQEvQRAEQRAEQRAEQRAE4T9FBLwEQRAEQRAEQRAEQRCE/xQR8BIEQRAEQRAEQRAEQRD+U0TASxAEQRAEQRAEQRAEQfhP0X7VDRAEQRAqdiPyEvt3/UFqciJGxqa08elBO98+aGhoPLVscuItli6czv++XEINC2uVa0nxN/kzaC13EuOQSPRp1qojvr3eRFv70Z+F+Lho9u3cwJ3EOPT0JDRu1pZufd5CT6Jf7f0UXm8p8Ze4enID2ZkJSAzMqOfRE5dmfSsc57JSKdEXdnI78i8K8zLRN7KgdkMfXJv7o6n1aAxnpdzg8rFAstJi0dE1wMmtE+6th6jkKSnO5+qJ9STdPE2ptAhTi1o09h6OTc3GL73fwuvlSnIGmy/FkHg/F1OJHt0b1qaXq1Olr+cnbyUTdPUmaXmFWBnp07dRXXycHVXynE1MJejKTe7m5GOmr0f7Ovb0c3dGW0vxvfZHQUfIyC8st35LQ32W+Hestj4KwuXom2z68zCJd9MwNTbEr11LendsW6X3LbeS7vLZjyv56bOJWJmbqVy7mXCH9SH7iUtKRl+ih0+Lpgzu3gltba1y6/rht81I9HT5YOiA6uiWIAj/Us81wyskJITBgwfTtGlTPD09GThwIJs2bVJev3fvHlu3bn2mOs+fP8+5c+cASEpKwsXFhTNnzlSpbHJyMrt371Y+7ty5M0uWLHmm+1ckKCgIFxeXKuc/c+YMLi4uKj+NGjWiffv2fP7552RnZ79Qe6ZPn86IESOUjx9/3qpD586dVdru7u5Ox44d+fLLL8nKylLJ6+LiQlBQEAAlJSVMnDiRJk2a0K5dO7XHcrm82tr4ujp37hz+/v54enoydOhQ4uLiXnWThJcs4VYMgb8swMrGgWHvfUrTFu3ZE7yOsAPBTy2bkpxA4C/zkMtkatcyM1JYveQbdHT1eGv0FNp17sPxw6Hs2rpamefunXhW/zQbPYk+w9/7H937DePK+RNsWPV9dXZREMi8G82xkLmYmDvg3XsatRt24MrxQKLO7aiwzMWwVUSe3UYdN1/a9fmMOm6+RJ7dzvnDvyrz5GWnELZjNlo6erTp+T8aNOtLzIUQLhxZqcxTJpdzdMfX3IkNx6PdSNr2moquxIhjwd9wP+P2y+y28Jq5kX6fhX+dw97UkCk+zWhXx56NF6IIuVbx3/IzCSn8fOIyTeyt+KRjM9xszPn15FVO3kpW5rl6N4PFYRewMzHkk47N6OZSi53X4lh/PkqZ55OOzfjar43Kz4jmDQHo0qDmy+u08Nq5cTuJb1dtxMHakk/eeZN2Xk1Yv+sAOw8ff2rZhLupLFi1AVk571tSM7KY8+tadHV1mDRyEL192rD7yCnWBP2plresrIzfd+zhzJXr1dInQRD+3Z55hte2bduYO3cun3/+OV5eXpSVlXHixAnmzJlDRkYGH374Id999x1JSUkMGjSoyvUOHTqU+fPn07x5c+zs7Dh+/DimpqZVKjtt2jQcHBzo1auXso16enrP2rVqtXXrVuzs7ACQyWRER0czffp0MjIyWL58+XPX+/nnn6v8IXj8easuo0ePZvTo0QAUFRURExPDwoULGT58OJs3b8bY2BiA48ePK///2LFj7Nu3j+XLl+Pi4qL2WFNTrJ59Ebm5uYwfP56hQ4eyaNEivvrqK6ZOncq2bdteddOEl+jg7s3Y13Ri8NsTAXBp5IlMLuPIviC8O/VCR0dXrUxpaSmnjvzJgd2b0dHRKbfeowd2oieRMGLcNLS1tWno3gwdXV1CtqymU3d/zMytOH54F/qGRgx771OVWV/b1i0lPTUZKxv7l9Np4bUTcXoTNazq0Kr7JADsnJohl8uIPLuNBp690dJWHefFhbnERRygifdIGjbvD4BNrSYAXDmxjsbeI5AYmBJ1bgfauvq06zMDTS1t7Ot4oa2ty4UjK3Ft8QaGJlbERx/lXlosXYd+j5mlEwDWjo3Yt34SKfGXlWmC8KK2Xr5BbXMTPvD2AKCpgxWyMjnBEbH0aOiEbjmzVDZfjKFVLVtGNncFwMPeirxiKVsu36BtHcVr8F83k7Aw0OdDbw80NTVobGdJdmEJf0beYrhXQ7S1NHEyN1Gpt6BEyk/HLuHpYEU/d+eX3HPhdbJ572Gc7O34cJg/AJ6u9ZHL5Ow4eIyeHVqjW877ktJSGXuOnWbL3r8qfN+y8/AJ9PX0mDr6LbS1tWjm1gBdXR3WbP8T/67tsaxhBkB8ciq/Bf3JzYQ75d5LEITXzzNHITZu3MjAgQN54403qFOnDnXr1mXEiBGMGjWKtWvXAorI+ovQ0tLCysoKXV31D3NVYW5ujqGh4Qu14UWZm5tjZWWFlZUVtra2+Pj48PbbbxMWFkZOTs5z12tsbIyZmVn1NbQcBgYGyrbXrFkTX19f1qxZw927d1m1apUyn5WVFRKJBEDZJx8fH+zs7NQeCy8mKSmJ3NxcunXrhpOTE126dBEzvP7jSqVS4mKu4ebRSiW9sWcbiosKuR0bWW656GsXOLRnK526++PXb3i5eW5cv4RLo2YqgSx3zzaUlZURE3kJgG593mLU+5+r5NF6sAysVFryIl0TBCVZqZS0pAgcnFurpNes1wZpSSHpyerjXFpSgHPj7tg7t1BJNzFXLPPKz04BFMsk7ZyaqSxfdKzflrKyMlLiLwKQdOMUVg6NVAJbWtq69By1jIZe/aqlj4IglcmITM2kRU0blfRWtWwpksqITr+nViY9r5C7OfnllknNLeBuTj4ApTI5etqaaGo+Wi5mLNGlVF5GYWlpue3ZcTWWnOIS3mnZ6EW7JghK0tJSrsfepmWThirprTzcKCwqJiouodxyFyJj2LY/jAFdOjCsd5dy81yOvomna32V5YutPRpRVlbGpahYZdrPG4OQyeXMnfQepsav9rOgIAj/DM8c8NLU1OTixYtqS/PGjh3L5s2bmT59Ojt27CA8PFy5FDA7O5uZM2fSvn17GjVqRJs2bZg5cyaFhYr9BB7mmzFjBtOnT1db0nj79m3effddvLy88PT05N133yU6OhqAESNGEB4ezo4dO+jcuTOgvqTx2LFjvPnmm3h4eNChQwcWL16snCWVnJzM5MmTadOmDY0aNaJDhw4sXLjwpSzB09LSQkNDQ/ntxcGDBxk0aBBNmzalcePG+Pv7c+zYMWX+ESNGMGvWLAYNGkTz5s0JCQlRWdL45PP2wQcfMHLkSJV7xsXF4eLiwo0bN16o7fb29nTt2lVl6ejDJY1Llixh+vTpADRs2LDcxwAXLlxg2LBhNGnShI4dOzJ79mzy8vKU9XXu3Jlvv/2Wnj170qpVK8LDwykrK2PlypX4+vri4eFBv379CAkJUZY5c+YMbm5uhIWF0bt3b9zd3fHz8+PgwYPKPGVlZQQGBtK9e3eaNGlCr169CA0NVV5PTU1l8uTJNG/enFatWjF+/Hhu3779TM9PcHAwvXr1onHjxrRv3565c+dSUvIoKFBZ3y9fvoybmxtr1qxR5l+0aBFeXl4kJiYC4OzsjI2NDT/88AO3bt1i3bp19Oun+mHs4e/N8uXL8fb2xtfXl7y8PGJiYhg3bhwtWrTA3d1dGcB8XGW/IyUlJSxcuJD27dvj6enJ4MGDOX786VPThReTlZGKTFaKpZVqwNjcyhaA9JTk8orhWNuZqV8vo5PfQDS11GcMSKUl3MtKx9JadYaWkbEpEokBGamKek3NLLBzqA1AcXERN6Iusz9kI7XrumDn6PSi3RMEQBGckstKMTZTHedGDx7nZiWplTEytcGr8zhMajiopN+JPY2mljbGNRyQlZaQn5OGcQ3VcS4xMEVH14Dce4pxfi/9FiYWNYm+EELomnFs/ekNDvzxP9LviKUwQvVJzS2kVF6GrYnqB3CbBx/Ik7Pz1crcyVa8R7B7oszDOh4GvLq51CI1t4DQ67fIL5FyI/0+eyJv0dTBCmM99S+OM/IL2Rt1mz5udbAyEvsxCtUnNeMepaUy7CwtVNJtLc0BuJOWUW4555oO/DxzEv5dO6BVzoqQEqmU9Kz72Fur1mtqZIiBRMLd9Ef1fjjUn28mvktte5snqxEE4TX1zAGvMWPGcP36dTp06MDYsWNZsWIFV65cwdjYmDp16vD555/To0cPPD09lR+Kp0+fzvXr1/n555/Zt28fM2bMIDg4mM2bNwMo83322Wd8/vnnavecMmUKNjY2bN++na1bt6KpqcmHH34IwJIlS/D09KRHjx7lLu+6ePEiY8eOxcvLi6CgIObMmcOmTZtYtmwZABMmTCA3N5fffvuNvXv3Mnr0aFatWsXhw4ef9ampUGlpKefOnWPt2rX4+Pigr69PREQEH330Eb169WLXrl1s2bIFc3Nzpk6dqhIo2bp1KyNHjmTjxo20b99epd4nnzd/f3/Cw8O5e/euMk9wcDCNGzemfv36L9yPBg0akJiYSH6+6huz0aNH89lnnynbVN7jqKgo3nnnHdq3b09ISAjff/89165dY/To0SozAtevX8/MmTNZtWoVTZs2ZfHixfzxxx/MmjWLXbt2MXLkSL766is2bNigLCOTyVi4cCGff/45oaGhNGjQgGnTpinbuWrVKhYvXsyYMWMIDQ1lyJAhTJ06ldOnT1NQUKAMIK5fv55169ZRo0YNBg8eTGpqapWel6ioKGbOnMlHH33Evn37mDdvHjt37lTOhnta3z08PBg3bhw//fQTCQkJnDt3jpUrVzJ79mxq1lTsraGrq8sXX3zByZMn6dmzJ507dy73dwVgx44dBAYG8uOPP6KlpcXo0aMxMzNj06ZNhIaG4ufnx7fffktkpGLmxNN+R2bMmMGJEyf4/vvv2bFjBz169GD8+PEcOXKkSs+P8HyKigoA0NNX/UCip6d4XPzg+pNMzSwwMDSuuN4Cxe+FpJyN53UlEoqKVDc2LisrY+600axZ8g3FxYX0HTym6p0QhKeQlijGsbaegUq6tq7+g+vlb7T9pKSbp7kdeQTnxt3RlRhRUqwY5zq6Bmp5dXT1lfctLswm6cYp4iIO4NH+bbz7zEBLW4+wHbPFHl5CtSmUKmZaGeio7iSir6P4UqJAKlUrU1CiSNPXVS0jeVDmYZ2NbC3o7VaXDeejGLP5IF/sPYWxRJcP23mU25Y/I2+jraWJX0On5++QIJSjsKgYAH2J6rYy+g8Crw+vP8nCzARjQ/XX6ofyC4vKrRdAoqdLwWP1ikCXIAhPeuY9vPz8/LC1tWXt2rWcOHGCsLAwAJycnJg3bx5eXl5IJBJ0dHSwsrICwNvbmxYtWihnJDk6OrJ+/XpiYmIAlPmMjY0xNjZWmz2WkJBA27ZtcXBwQEdHh3nz5hEXF4dcLsfMzAwdHR0kEgnm5uZq7V23bh0eHh5MnToVUMyU+frrr8nMzKSoqIh+/frRo0cP5bK7UaNGsXLlSqKjo+nSpfxptVXRu3dv5WkkRUVFaGlp4ePjw9dffw0oZnvNmjWLoUOHKsuMHDmS9957j8zMTGV7XF1d6dOnT7n3ePJ58/HxwdLSkpCQEMaNG4dcLmfnzp2MHTv2ufvxOBMTxR4QeXl5KktGDQ0NlXt5Pd6mxx+vXr0ab29vxo8fDyjGyw8//ECXLl0IDw+nVSvFsi0fHx/atm0LQEFBAb///juLFi2iY8eOANSqVYs7d+6wevVqhg0bpmzDpEmTaNOmDQDvv/8++/btIyYmhqZNmxIYGMjIkSOVe8qNGDGCoqIiSktL2b17Nzk5OSxcuFC5dGvu3LmcOXOGLVu28NFHHz31eUlKSkJDQwMHBwfs7e2xt7dn9erVGBkZVbnvH3zwAUePHmXmzJkkJSXRv39/evfurbzHwYMHmTlzJi4uLkRHR1OzZk20tbXJy8tT3uehoUOHUq9ePQCysrIYOXIkw4YNU/6bTZw4kVWrVhEdHY2rq2ulvyPx8fGEhoYSHByMq6tiD5F33nmHqKgoVq9erfx3Eapf2VNmmWo85754ZVS+5PzJU5RkMhkjxk+jVCrlyL4gli+exfgpc8QsL6FalJU9ZZxrPH2cJ904xem9i7G0d8Wj3ciHFT+lXsU4l8tKKSnOo8uQbzEwtgTAysGNP3+bQOTZ7bTp8UkVeiEIlZM/ZTxqlnN63dM2B3lYYvWZa4TFJjGgsTPuthak5xey7fJNFhw6x8yuLdF7bAlYSamMIzeT6FSvJkZ6Yn8joXrJn/J6/viy22fxtJ1yNHi+egVBeD08c8ALoGnTpjRt2hS5XE5UVBRhYWGsX7+e9957jwMHDqjlHzp0KIcPH2bHjh3cvn2bmzdvkpSURN26dat0v8mTJzNv3jw2btxIy5Ytad++Pb17967SRugxMTF4e3urpHXv3l35/8OHD2fv3r1cuXKF+Ph4oqOjycjIeOEljStWrMDGRvEtg66uLhYWFip7krm6umJqasqKFSuIi4sjPj6eqCjFiTqPb0pfu3btKt9TW1ubvn37snPnTsaNG8fp06fJyspSCZy8iNzcXAC1AEtVXL9+nfj4eDw9PdWuxcbGKgNej/f35s2bFBcX88knn6j8W5eWllJSUkJRUZEy7fGx9LB9UqmUe/fukZ6ejoeH6jed7733HgCzZ88mOzubFi1U94IpLi4mNjaWqni41O+NN97A0dFRuZzQ3d29yn3X1tZm4cKF9O3bFwsLC2bNmqXMExERwcSJE5k0aRJjx47liy++YN68eTRo0IA5c+ZQr149vv/+0cl5jz+H5ubmDB06lNDQUK5fv05CQoJynD0c45X9juzZswdAJTALiuf2YQBUeDkkBooAZclj4xwezewqb4ZWVehJFN+iFhcXqV0rLipEov/ETBttbeo3VPz+ODm78t0X73Pir928MeKD57q/IDxOR08xzkufmMklLVaMcx3dysd59IUQLh/7HStHd9r1maHc4F7nwYyx8maISUsKlPfV0dXHxNxRGex6mGZh58L99FvP2StBUGX4YJbWw1lZDxVUMPMLQP9BWpFU9cS6wpIHZXR1yCoo4vDNRPo1cmZw0wbKPM4WZny66xhHbibRveGj9wRX7mZQKC3F20nsrSpUPwN9xb6+hcWq+3wWVDDzq8r1PihXVKy+f2hhcTGGD+4rCIJQnmcKeKWkpLB8+XLGjRuHra0tmpqauLm54ebmRpcuXejduzdnz55VKSOXyxk3bhw3btygd+/e9OzZk0aNGql8oH+aYcOG4efnR1hYGKdOneKnn37il19+ITg4GEtLy0rLPr7h8pMKCgoYPnw4RUVF+Pn5MWDAAJo0aaIyc+h52dvb4+joWOH18PBw3n33XTp27IiXlxd9+vShsLCQDz5Q/RD5cFP4qho4cCCrV68mIiKCkJAQfH19q3za5dNcu3YNJyen5zoQQC6X06dPH+Usp8c9PjPv8f4+XOr4448/lhscfTyAWN4BB2VlZRWe9vJ4u+rUqcMvv/yids3AoOLp1Y/T09Nj7dq1XL9+nePHj3P8+HHGjx9P//79mT9/fpX7HhMTg1wuJz09nejoaGWAbNeuXTg5OSln6s2aNYtbt27x/vvvk52drVbv489heno6b775Jubm5nTu3Jl27drRuHFjfHx8lHkq+x15+G+wYcMGtX93cfLmy2VuaYOmpiaZ6Skq6Q8fW9tW/PpSGT09CSZm5mSm3VVJz8vNprioUFlv5NVz6En0qVv/0abG+gaGWFjZkJutvsGyIDwPI1NbNDQ0ybuvOs7zshXj08S8ZrnlysrKuBi2mhuXdlPLpR2tun2ssjm9to4EAyML8u6rjvOigmykJYXKDe6NzOyQydSXk8nlMrS0nu/gHEF4krWRAZoaGqTmqi5Ff/jYwVT9i0R7U8Xf3JScfJVTFh8vk5FfSFkZuFjXUCnraGaEkZ4OSdm5KukX76RjZaSPs6XZC/dJEJ5kY1EDTU1NUjOyVNJTHjx2tLF6rnolerqYm5pwNz1TJT07L5/ComIcbCr/LCgIwuvtmT6x6urqsnXrVpVNwx96ONvD0tJSZUlMZGQkR48eJSAggP/973/07duXWrVqkZCQUKXTHDMzM/n666+RSqX4+/uzcOFCQkJCSE9PJzw8/KnlnZ2duXr1qkpaYGAggwYN4vjx41y7do21a9cyceJEevbsiZGREZmZmS980uTTrFmzhlatWrFkyRJGjRqFt7e3cu+tF7m3s7Mznp6e7Nmzh0OHDuHv718t7U1JSeHQoUMVLq98mvr163Pz5k1q166t/CktLWX+/Pkqe449rm7dumhra5OcnKxSLiwsjNWrV1cp4GJsbIy1tbXaGJg4cSLz58+nQYMGJCcnY2xsrKzf3t6eH374QS14W5GwsDB+/vln3NzcGDt2rHI8/fnnn1Xue1paGl9++SXjx4+nd+/eTJs2jYICxZtafX19cnJylHu76ejo8P3335Ofn49EIlEu5SxPaGgo9+/f548//uD999+na9euyiXDD8dZZb8jD/d+S09PV2l/UFAQQUFBVXp+hOejo6NLnXpuRFw6rfKaEHHpNBJ9Qxydnn9fvvoNPYiKOE/pY/vGRFw8haamJs4NFDMTTxwOZeemlSqzXe/fyyDtbhK2DrWe+96C8DgtbV2sHBuRdPOUyjhPunkaXT1DzG3LH+dXT6znxqXduDTrS2u/KSrBrodsanmQfOs8stJH4zzpxkk0NDSxdmwMgJ2TF/fTb5GTmajMU1yYS+bdKCwd3Kqrm8JrTldbC1ebGoQnpKqM8/CEFAx0tcsNQNkaG2JlpM+ZBNVg8JmEFGyNDbAy0sfWWBFIi0pTDTAk5+SRVyzF2kj1i7ubGffVgmOCUF10dXRwc67NmSvXVcf5lUgM9CXUq+VQSenKNXFx5sL1GKSPnTx6+vI1NDU1ca9f54XaLQjCf9szBbzMzc0ZM2YMAQEBLF68mMjISBITE/nrr7/48MMPadWqFc2bN8fAwIC0tDQSExOxtLREW1ubPXv2kJiYyNWrV5k0aRLp6ekqm7MbGBgQGxvLvXuqMwdMTU05cuQIM2fOVN5v06ZN6OjoKJeMGRoacufOHVJSVN8UgGKT/UuXLhEQEMDt27cJCwtj2bJldOzYEVtbxWlnISEh3Llzh3PnzvH+++8jlUpV2vYy2NnZER0dzblz50hKSmL79u0EBAQAPNO9y3veBg4cyPr165FIJGpL1aqioKCA9PR00tPTSUxM5ODBg4wZMwZHR0feeeedZ64PFBvbX79+ndmzZxMbG8vFixf55JNPuH37Nk5OTuWWMTY2ZsiQIQQEBLBz504SExPZtm0bCxcuxNrausr3Hjt2LIGBgezcuZOEhATWrl3LoUOH8PX1pW/fvpiamjJx4kQuX75MbGws06dP5+jRo8o9555GR0eHpUuX8vvvv5OYmEhERARHjhxRztCqSt8/++wzrK2tGT9+PJ999hn5+fksWLAAgDfeeIP8/HxmzJjBzZs3uXDhAv/73/+wtbXF0NCQcePGkZWVVW7bbG1tKSwsZO/evSQnJ3P8+HGmTJkCPBpnlf2O1K9fn06dOvHll19y+PBhEhMTWblyJcuXL6dWLRH0eNk6+Q0kKf4mG1f/QPS1i+zf9QfHDobQsfsAdHX1KCosIOFWDHm52U+v7DEduvYnPy+H35fNJerqeY4d2sXu7YG09O6KmbmV8t4Zacn8sfoHbkRe4mL4UVb/9DX6Boa08+37MrorvKbcWg4iK/UGp/78nru3L3D15Eaizwfj2mIg2jp6SIsLyLwbTVGBYpzfS4sj6vwOzG3qUbN+W7JSYsi8G638ebgcsmHzARQXZnN05zckx50j+sJOLh39DefG3TA0UYzzBp690Tey5OjOuSREH+NObDhHgxV7bTb06v9Kng/hv2lA43rEZt4n4OglLt1JZ8ulGEKv36KfuzN62loUPDhhMeexDbgHNqnH6fgU1py5xqU76aw+E8Hp+BTl8kUTiR49XJ0IvX6LTRejuZaSSVhsEvMPnsPSUJ/O9R/NkJTLy7iTnVfubDJBqC7+XX24mXCHxYFbuRh5g01/HibkrxMM6NIePV1dCoqKuHE7iew89ZNJK9Ovszc5eQXMX7Ge89eiCT1ykrXB++jSxgvLGmYvpzOCIPwnPPMeXpMmTcLJyYktW7awYcMGioqKsLe3p0ePHowbNw6A/v37c+DAAXr37s3+/ftZsGABS5YsYcOGDVhZWdGxY0dGjRqlchLiw9MRY2NjmTlz5qMGamuzcuVKvv32W0aNGkVhYSGurq6sWLFC+YF7yJAhTJs2jb59+3Lq1CmV9rq6urJ06VJ++uknVq5cibW1NSNHjmTChAloamoyY8YMfv/9d3788UdsbGzo2bMndnZ2ajNeqtvEiRPJyMhQLkerV68e8+bN49NPP+Xq1as4OztXqZ7Hn7dff/0VgB49evDNN9/Qv39/tLS0nlKDujVr1rBmzRpAEcyxs7OjZ8+ejB49+rmWM4Ji37dVq1YREBDAgAEDMDAwoE2bNkybNq3c5YgPzZgxgxo1ahAQEEBaWhp2dnZMnDiRMWOqflLcw2WrAQEBpKen4+TkxOLFi2nZsiWgOJ3xu+++491330Umk9GoUSPWrFlT5X+Dtm3bMnfuXNasWcPixYuRSCT4+Pgwffr0KvV9w4YNnDx5ks2bN6Orq4uuri6zZs3i448/pnPnznTs2JHffvuN7777Tlm+c+fOLF68mKysLKZMmUJycjJmZmZqbfPz8+PatWssWLCAvLw8HBwcGDRoEIcOHeLq1au89dZblf6OACxevJjFixfzxRdfkJ2dTa1atZg7dy4DBgyo8r+B8HycXRozbMz/OPjnFtYt/xYTM3N69B9B+y6KgFNyYhwrA77ijREf4NW6U5XrtbZ14J0PZ7Jnxzo2rPoeAyNjvDv3okuvISr3Hv3hLA7u3syGVT+gqalJA9em+A0YgbGJWXV3VXiN2dRsTNteU7l2ehPHd81H39CCJu3epqFXP0AR4Ppr+yxadvuIOm6duRN7hrKyMrJSb3Jw83S1+joN/Abrmu6YmDviM+BLLh8L5OTu79DTN6GBZx/c27ylzKsrMcJ38DyuHF/L+b9WIJeVYmnvSufBH6ns6yUIL6qRrQWTOniy/cpNfjhynhoGEoY2a0hvN8XslNtZOXxzIJzxbRvj46xYcuvj7IhUJif0+i2OxCZhbaTP+95NaPPYHlzDmrlgbqDHwZhEdl+/hZm+hCb2lrzZtD6Guo+2dcgrKUEmL1NJE4Tq5l6/DlNGvcnWfX+xcM0fmJuaMLxPV/p0UnwBfyvpLrOX/s77b/WnY0v1vW0r4mBjxefjRrB+134W/b4FY0MDevq05k2/zi+rK4Ig/EdolL3stXvC3y4xMZFu3bqxZ8+eCmdPCf8dZWVlaifr/dOFXSt4eiZB+Jc7cPa5zoURhH+VT+58/KqbIAgvnXb3fq+6CYLw0hk393vVTXgu/+TPFT6NqrYntPDyiHfj/yF3797lypUrbNy4kfbt24tg12vi3xbsEgRBEARBEARBEISXTQS8qig1NRU/v8qj3o0bN2bt2rV/U4vU3bt3j+nTp+Pk5MTPP/+scm38+PGcOXOm0vJBQUHUqSM2fnxc3759SUxMrDTPmTNnKl2WKQiCIAiCIAiCIAjC30sEvKrI0tKS4ODgSvPo6en9PY2pgJubGxcvXiz32uzZsykqKqq0vL29/cto1r/ar7/+ilSqfmT943R0xH4YgiAIgiAIgiAIgvBPIgJeVaSlpUXt2rVfdTOem42Nzatuwr+SCAIKgiAIgiAIgiAIwr+P5qtugCAIgiAIgiAIgiAIgiBUJxHwEgRBEARBEARBEARBEP5TRMBLEARBEARBEARBEARB+E8RAS9BEARBEARBEARBEAThP0VsWi8Iwt/uwFnx0iP8901zP/yqmyAIL13pnVfdAkF4+S7od3jVTRCEl87nVTdAEF4CMcNLEARBEARBEARBEARB+E8RAS9BEARBEARBEARBEAThP0UEvARBEARBEARBEARBEIT/FBHwEgRBEARBEARBEARBEP5TxM7RgiAI/3Cl0iIuHwsk6eZpSqVFWDm40dRnNCY1HCotV1Rwn0tha0iJv4RcLsOuTjOatn8HfSPzcvPHXAol5sIueo9erky7df0w4fuXVHiPlt0+oo5b5+frmCBUoqi4hPW79nPmSiTFJSU0rFubUf39sLe2rLTc/dw81gbv5VJ0LHKZHE+3+ozo2x1zU+Ny8+85eprQsFMsnTX5ZXRDEJSuJGew+VIMifdzMZXo0b1hbXq5OqGhoVFhmZO3kgm6epO0vEKsjPTp26guPs6OKnliM+6z4UI0cZnZGOho08HZgTea1EdbS/G99kdBR8jILyy3fktDfZb4d6y2PgrCjchL7N/1B6nJiRgZm9LGpwftfPtUOs4vnzvO4T3buJeZhpm5FT7d+uPVulO5eYuLCgmYOwXfXoPV8hQW5LM/ZCMRl05TUlKMjV1NuvcdirNL42rtoyAI/x4i4CWUKy8vD29vbwwNDQkLC0NHR+dVN+mVmj59Ojt27FBJk0gk1KpVixEjRjB48OAXqt/FxYX58+fj7++PVCplw4YNjBo16oXqFP47Tu1ZRNbdGJq0H4mOjj7XzmzmyLYv8BsRgK7EqNwycrmMozu+RiotxKvzOORyGVdOrCNsx2y6Df0BTS3Vl/+E6GNcPvo7+kYWKul2Tl50eXOBWv1nDy5FWlKInZNX9XVUEB4TsG4bN+KTGN6nK/p6emzdf4TZy37nh6kfYGSgX24ZmUzGvOXrKSou5r03eiGTydkQepC5y9fx7ZRxaGtrqeQ/ceEqa0P2VxgME4TqciP9Pgv/OkdrJzsGedQnOu0eGy9EIZPL6efuXG6ZMwkp/HziMn4NnfCwt+RcYiq/nryKjqYmbevYA5CaW8C8Q2epb2nGxx2acic7ny2XYsgrljKmtTsAn3RshlQmV21Pxj3WnYuiS4OaL7fjwmsl4VYMgb8soIlXW7r0GkJ8bCR7gtchk8vo2G1AuWUiLp5m8+8BtO3YiwZuHly/cpZt65aira2DR/N2KnkLCvJYt/xb7mWlq9Ujl8v5bekcsu9l0GPACIyMTTnx15/8vmwe709dgJ1D7ZfSZ0EQ/tlEwEso1+7du7GwsCA9PZ0DBw7Qs2fPV92kV87T05MlSx7NdCkqKmL79u3MmjULExMT/Pz8nrvu48ePY2ys+MAVGhrK/PnzRcBLACDjbhTJcWfp0H8Wdk7NALB0cGP3b+O5eWUvbi3fKLdc0o2T3Eu/RY8RP2FiofhAU8OqDnvXf0zijRPUbqg4fLqoIJuIUxuJvbofPYn6h36JgSkSA1OVtJhLoeRkJeE7eL7aNUGoDjG3Ezl/LZoZY4fj6VofgIbOtflozo/sP3EW/64dyi13+vJ1bt+5y6JpH+JoawWAk4Mdn3y3lFOXr9HeqwkA2Xn5bP7zMAdPncPI0ODv6ZTwWtt6+Qa1zU34wNsDgKYOVsjK5ARHxNKjoRO6TwRjATZfjKFVLVtGNncFwMPeirxiKVsu31AGvHZdi0Oirc3/OnqhraWJpwPoaWny29nr9G/sjKWhPk7mJir1FpRI+enYJTwdrCoMtgnC8zi4ezP2NZ0Y/PZEAFwaeSKTyziyLwjvTr3Q0dFVK7MvZCPunq3p/cYoABq4eVKQn8uB0E0qAa/rV84SunUNxcXlz1a8fO4YdxLj+HDad8rgVp36jfhp3ifcjLwsAl6C8JoSe3gJ5dq+fTvt27endevWbNq06VU35x9BR0cHKysr5U/NmjWZNGkSTk5O7Nq164XqtrKyQiKRAFBWVlYdzRX+I1JuX0JbR4JtrabKNImBKVYOjbh7+3zF5eIvYlzDXhnsAjCxqIlxDQfu3npULvLsNlLiL+Hdayr2dZs/tT1FBfeJOLkR5yZ+WNi5PF+nBOEpLkXdRKKni4fLow/jpkaGuDo7cTHyRqXl7K0tlcEuAEdbK+ytLbl4PUaZtuPAUS5H3+STUW/i5dbg5XRCEB6QymREpmbSoqaNSnqrWrYUSWVEp99TK5OeV8jdnPxyy6TmFnA3Jx+Ay8kZeDpYKZcvArSqbUtZmeJaeXZcjSWnuIR3WjZ60a4JglKpVEpczDXcPFqppDf2bENxUSG3YyPVytzLTCMjLZlGT5Rx92xDZnoKGWl3AcVSxfUrvqNOfTfe+WBmufe/evE0deq5qQS2dHR0+eTLJbTv0vdFuycIwr+UCHgJamJjY7l8+TLe3t5069aNM2fOcOvWLeV1qVRKQEAAnTp1wsPDA39/f06cOKG8Hh8fz4QJE/Dy8qJVq1ZMmTKFzMxMQLE0cMSIESr3ezwtKSkJFxcXli9fjre3N76+vuTl5RETE8O4ceNo0aIF7u7u+Pr6smbNGpV6jh07xptvvomHhwcdOnRg8eLFyGQyAgMD8fT0pLDw0TdCcrmcDh06sGHDhhd+vrS0tNDVVXxjVVJSwrfffkvnzp1xd3enZcuWfPzxx2RlZVXaPxcXF4KCgggKCmLGjBmAYpnjnj17cHd3Jzg4WOWeP/zwAwMHDqxS+2QyGQsXLsTHxwd3d3f8/Pz4448/VPJs376dHj160KRJE3r06EFgYCByuWL5w5o1a3Bzc+PKlSuA4rkbOnQo/v7+lJSUPPfzJlRNTlYSRqY2aGiqvlwbmdmSm3Wn0nLG5ezxZWxmT+79ZOVj58bd6fn2Uhzrt6lSeyJO/YGGhiaN2w6rYg8E4dndSU3H2qIGmk+Me1uLGtxJK/9DvKJcBnZWFmrpdlYWJKdnKh93bducgBkTaeXhVn2NFoQKpOYWUiovw9bEUCXdxljxODk7X63Mnew8AOyeKPOwjrs5+ZSUysjIL1TLYyLRQ19HWxkUe1xGfiF7o27Tx60OVkblLw0WhOeRlZGKTFaKpZWdSrq5lS0A6SnJamXSUhTvYyyt7VXSH9aRkaooo6Orx+RZAQwa+RGGRqozFh+6m3gLG7uaHD8cynezJvD5xDf5+dup3Lp5/cU6JgjCv5oIeAlqtm3bhoGBAR06dKBr167o6OiozPKaO3cumzZtYtq0aezatYv27dszfvx44uLiyMnJYdiwYZSUlBAYGMhvv/1GQkICkyZNeqY27Nixg8DAQH788Ue0tLQYPXo0ZmZmbNq0idDQUPz8/Pj222+JjFR8W3Tx4kXGjh2Ll5cXQUFBzJkzh02bNrFs2TL69OmDVCpl//79yvpPnjzJvXv36N2793M/T3l5eaxYsYLY2Fh69OgBwHfffcf+/ftZsGAB+/btY8GCBZw+fZpffvmlwv4ZGT3ag6lnz5589tlngGKZo6+vLx07dlQJeMnlckJCQvD3969SOzdu3MjevXtZvHgx+/btY/jw4Xz11VecO3cOgM2bN/Pdd9/x4Ycfsnv3biZNmsTKlSv5/vvvARg1ahReXl58/vnnSKVSVq5cSWRkJIsWLVIG+oSXR1pSgLau+ocSHV19pNLyp/UDlBTno1NOOW1dCdLiAuVjE3NHtf28KlJUkM3tyCPU8+iBrp7h0wsIwnMqKCpGX09PLV0i0aOouLiSckUYSNTL6evpUlj0qJyDjZXafl6C8LIUSksBMNBRfa3V11GMwQKpVK1MQYkiTV9XtYzkQZlCaSkFD+rV11F/DdfX0VLe93F/Rt5GW0sTv4ZOz9gLQahcUZHivYWevup7Dz09xePiogL1MoWKoKzkyTIPVj08rFNbWxsrG9Wg2JPy83KIuHiKsycO0mPASEaMnYaOrh6//TyHu3fin6NHgiD8F4g9vAQVpaWlhISE0LlzZyQSCRKJhHbt2hEcHMyUKVOQSqVs27aNWbNmKfesmjx5MmVlZeTl5REeHk5+fj6LFi3C1FSxt8+cOXPYvXv3M80GGjp0KPXq1QMgKyuLkSNHMmzYMAwNFR+yJ06cyKpVq4iOjsbV1ZV169bh4eHB1KlTAXB2dubrr78mMzMTc3NzOnfuTEhICP369QMUAafOnTsr21gV586dw9PTE1AsOywsLMTCwoL//e9/dOvWDYDGjRvj5+dH8+aKpWEODg60bduWmJgYlboe79/jJBKJci8vKyvFkpyBAwfy/vvvk5qaio2NDadOnSIrK6vKwbqEhAQMDAxwdHTE2tqa4cOHU7duXerUqQPAsmXLmDBhAr169QKgZs2a5OXlMXv2bD7++GP09PRYsGABffv25fPPP+fPP//km2++wcnJqcrPnVA1ZWVllJXJn0iTV5AbNKj4xCMqWxpbyUlJlYmLOEBZmZz6TZ8/UCwITyorK1POKH1ILq94/FY27itbEl7ZCWGC8DLJn7JVgWY5Y/Npmxto8PQtEJ6staRUxpGbSXSqVxMjvdf7MCKh+pXJK36/AqjNVIcqjOFneN2WyUopLMhnwqfzMauhOM23Tj1XFn75AWH7ghgyWpzEKwivIxHwElSEhYWRkZGhDH4A9OrVi7/++os9e/bg7OyMVCrFw8NDpdyUKVMACA4OxsnJSSWQ1LBhQxo2bPhM7ahd+9H6e3Nzc4YOHUpoaCjXr18nISGBqKgoAOWHpJiYGLy9vVXq6N69u/L/Bw4cyIQJE0hLS8PAwICDBw/y008/PVOb3N3dlbOeNDU1MTAwwMJCdelMv379OHnyJN9//z23b98mLi6OW7duKQNg5fXvaTp06ICFhQU7d+5k7Nix7NixA19f3yoH64YNG8bBgwfx8fHB1dUVb29vevXqhYWFBVlZWaSkpLBo0SICAgKUZeRyOcXFxSQlJeHs7IyDgwOfffYZn332GV26dGHAgPJP2hFezLXTm7l2ZrNKWs36bcktuK+WV1pSiI5uxZtt6+gZUlpSVG65552dlXTjJLa1moqN6oVqtXXfEbbtO6KS1tqjEdl5eWp5i4qK0S9nBtdDBvoSCovVv1wpKCrG4MGMAUH4uxk+mKX15IyrggpmfsGjWVtFUplKemHJgzK6Oo/ylKrP5CqQlmLwxOywK3czKJSW4u1kp5ZfEF6UxEDx3qKkSPW9x8OZXRKJ+qxzicTgQR7VMkUPtiGR6Ff9/Yqunj7Wtg7KYBeAnkSfWnVdSE66XeV6BEH4bxEBL0FFUFAQAB9++KHatU2bNvHVV19VWl5b+9mHVGk5b9Qkj30wSU9P580331TO1GrXrh2NGzfGx8enyvdt164dlpaWhIaGYmZmhomJCe3atau0THltelqg6osvvmDfvn3079+fzp0788EHH7B69WpSU1Mr7N/TaGlp0b9/f3bt2sXw4cM5ePCgSnDqaZycnNi/fz/h4eGcOHGCI0eOsHLlSubPn0/79u0BmDFjBm3btlUra2f36E1xREQE2traXL16lezs7GeaHSdUjXPjbtjX8VJJuxMXTkr8RcrKylS+6cy7fxcTc8cK6zKuYc+9tDi19Lz7d7Gwrf/MbSvIy+Re+i0aePZ55rKCUJkubZrT7ImN489GRHE5+qbauL+bkYWjjdWTVSjZW1kQl3RXLT0lI4t6tdT3tBOEv4O1kQGaGhqk5qou6Xr42MHUSK2Mvanig35KTr7KKYuPl5HoaGNuoEdKjmq9OUXFFEllavVevJOOlZE+zpZmL9wnQXiSuaUNmpqaZKanqKQ/fGxtq/6excpWsUwxI/0u9jXrPCqT8bBM1V+3La1tKS1VXx4sl8nQ0REzGgXhdSX28BKUMjMzCQsLw9/fn+DgYJWfgQMHcvHiRUBxWuHVq1dVyg4ePJjff/+devXqcfv2bXJzc5XXrl27Rps2bUhJSUFHR4e8J761j4+vfF19aGgo9+/f548//uD999+na9euZGdnA4+mQjs7O6u1KTAwkEGDBgGPgkYHDhxg37599OvXDy2t6t2/5d69e2zevJkvv/ySGTNm4O/vj6urK3Fxcc908mJ507cHDhxITEwM69atw9jY+JmCdWvXrmX//v14e3szdepUdu3aRZs2bfjzzz+xsLDA3NycxMREateurfy5du0aP/74o7KOY8eO8ccff7B06VL09fWZPXt2le8vVJ2+kTnmtvVVfmxqNUVaUkhK/EVlvqKCbNLvXMemdtMK67Kt1ZTce3fIyUxUpuVkJpKTlYRNrYrLVSTrrmJZroX9s83WFISnMTc1pl4tB5UfjwbOFBYVcynqpjJfdl4+UXHxNHns5MYnNXFxJjktg6SUdGVaUko6d1LTVU58FIS/k662Fq42NQhPSFV5PxCekIKBrna5AShbY0OsjPQ5k6AaPDiTkIKtsYFyw/nGdpZcuJOGVPZoJtiZ+BQ0NTRoZKs6C/1mxn1crGtUY88E4REdHV3q1HMj4tJplXEecek0En1DHJ3Uv2yzsLKjhoU1ERdPqaRHXDyFpbXiWlW5NGrG3aTbpN1NUqYV5OcSHxeNUz1xQIkgvK5EwEtQCgkJobS0lPfee48GDRqo/IwfPx5NTU22bNnC8OHDCQgI4NChQyQkJLBo0SJiYmLo0KEDffr0wdTUlE8//ZSoqCgiIiL48ssvadCgAba2tjRt2pSoqChCQkJITExk6dKlavtbPcnW1pbCwkL27t1LcnIyx48fVy6hfLgv2JgxY7h06RIBAQHcvn2bsLAwli1bRseOHZX1+Pv7c/nyZU6ePPlSluQZGRlhbGzMoUOHiI+PJzo6mlmzZnHt2rVn2r/MwEAxvTsiIoKiB1O869SpQ7NmzVi2bNkzB+uysrL4+uuvOXToEHfu3OHYsWNERkbi6emJhoYG7733HuvWrWP9+vUkJCRw4MABvvrqKyQSCbq6uty/f5/PPvuMwYMH07FjR+bOncuff/5JaGjosz1BwnOxdmyEtaM7p/cuJi7iAEk3TxMW9CW6eobUa+KnzJeTmagyo6tmg3YYmdkRFvwNCdHHSIg+RljwN5hZ1qZmA+/yblWp7MwEtLR0MDYTS2GEl8+tnhON6tXhp/XbOXT6PGeuRPLNL4EYSCR0826hzJeUks6tx2Z0tfV0x87Kgnkr1nHiwlVOXLjKvBXrqGVvQ5umjV5FVwQBgAGN6xGbeZ+Ao5e4dCedLZdiCL1+i37uzuhpa1FQIuVG+n1yHjtcYWCTepyOT2HNmWtcupPO6jMRnI5PYXDTRzMi+zSqS05RCd8ePseFpDR2X7/FuvNR+NaviaXhoyVkcnkZd7Lzyp1NJgjVpZPfQJLib7Jx9Q9EX7vI/l1/cOxgCB27D0BXV4+iwgISbsWQl5utLOPbcxBXL5xi56aVRF+7SPCmFVy9cIquvYc8073bduqFqZkFv/8yj8vnjnP9yll+WzoHgPZd+lZrPwVB+PcQSxoFpaCgINq2bUvdunXVrtWqVYsuXboQEhLCX3/9hZaWFl9++SW5ubk0bNiQFStWKMutXr2a+fPnM2TIECQSCR07dmTatGkA9O3bl8jISObMmUNpaSk9evTg7bffVs4eK4+fnx/Xrl1jwYIF5OXl4eDgwKBBgzh06BBXr17lrbfewtXVlaVLl/LTTz+xcuVKrK2tGTlyJBMmTFDW4+TkhIeHB3K5HGfn6v+mX0dHh4CAABYsWKAM/LVq1YopU6awfPlyCgsrPlHvca1bt8bDw4MhQ4awcOFC5QmQ/v7+XLhw4ZmDdR9++CFSqZQ5c+aQnp6OlZUVb731FuPGjQNg9OjR6OnpsW7dOhYsWIClpSWDBw9m4sSJAHz55ZdoaWkpDwRo3rw5Q4cO5euvv6ZFixbY2Ng8U3uEZ+fdexqXjq7h8rFAysrKsLRvSJten6IrefTB5fzh5eTnptN79HIAtLR16Og/m4thqzl7cBmaWtrY1vKgaYfRaGo+++zGooL76IiTGYW/0SfvvElg8F7WheyHMmhQpyZT3h6MkcGjD/GrtoWSfu8+S2cpNiPW0dZm1oSR/LZjD8u3hKClpYWHizMj+/lV+6xeQXgWjWwtmNTBk+1XbvLDkfPUMJAwtFlDersplnHdzsrhmwPhjG/bGB9nxdIvH2dHpDI5oddvcSQ2CWsjfd73bkKbx/bgcjA1YoZvCzZeiObHoxcx1tOhR0MnBnmozqbJKylBJi/DUFcs7RJeHmeXxgwb8z8O/rmFdcu/xcTMnB79RygDTsmJcawM+Io3RnyAV+tOAHi17kRpqZRjB0M4d+ow5pY2DH77I5p4PduXcwYGRoz7ZA57g9ezc/NKZDIZTnUbMv6TD1X29RIE4fWiUfYsa60E4V+srKyMLl26MH78eOVSx3+TJUuWcPLkSf74449X3ZQXNvP3qs94E4R/q2nuh191EwThpSvdt/NVN0EQXror/X941U0QhJfOp1HFhyH9k4VdK3h6plfk3/qc/peIGV7Cf55UKuXw4cOcPn2agoIClRMo/w3Onz/PrVu3WLt2LV9//fWrbo4gCIIgCIIgCIIg/OOJgJfwn6ejo8OcOYo1/AsXLlTukQWwcuVKli1bVmn5zz777JXOCPvrr79Yv349AwcOVC5vBEhNTcXPz6+SktC4cWPWrl37spsoCIIgCIIgCIIgCP8oYkmj8FrLzs7m/v37leaxsLDAyOift8mrTCYjKSmp0jx6enrY2tr+TS2qOrGkUXgdiCWNwutALGkUXgdiSaPwOvi3Lr8TSxqFyogZXsJrzdTUFFNT01fdjOeipaVF7dq1X3UzBEEQBEEQBEEQBOEfR/NVN0AQBEEQBEEQBEEQBEEQqpMIeAmCIAiCIAiCIAiCIAj/KSLgJQiCIAiCIAiCIAiCIPyniD28BEH423VtUfqqmyAIL11psNjMW/jv0+7e71U3QRBeugNnxUcm4b/Pp9GrboEgVD8xw0sQBEEQBEEQBEEQBEH4TxEBL0EQBEEQBEEQBEEQBOE/RQS8BEEQBEEQBEEQBEEQhP8UEfASBEEQBEEQBEEQBEEQ/hEiIiLYv38/OTk5L1SPCHgJgiAIgiAIgiAIgiAIf7u0tDRGjBjBsmXLAFi/fj2DBg1i4sSJdOvWjRs3bjx33eLIkddcXl4e3t7eGBoaEhYWho6Ozqtu0is1ffp0duzYoZImkUioVasWI0aMYPDgwS9Uv4uLC/Pnz8ff3x+pVMqGDRsYNWrUC9UpvH6Ki4vYu2MdEZdOU1JSjJOzK73feAcrG/tKy+Xm3Gf39t+5EXkJuUyOSyNPeg58GxNT83LznzzyJ8cP7WLqN7+8jG4IgooiaSkbL0QTnpBCUamMhtY1GNnCFXsTo0rLZRcWs/Z8JFeSM5DJy2jqYMUIr4bUMJAo88jkcrZfuUlY7B1yi0uoa2HKsGYNqW9lVm6dMrmcL/aeRk9biy+6tarObgqvuaLiEtbv2s+ZK5EUl5TQsG5tRvX3w97astJy93PzWBu8l0vRschlcjzd6jOib3fMTY2VeWQyGVv3hRF29hK5+QXUrWnHiD7dqe/kWG6dMpmMmT+tRk9Hh68+fKda+ym8vlLiL3H15AayMxOQGJhRz6MnLs36oqGhUWGZhOhjXDuzhfycNAxNrGjY3J86bp3LzSstKWTf+kk0av1muXmedl0QhH+ehQsXcuvWLcaOHYtcLufXX3+lbdu2fPrpp8yZM4cffviBX3/99bnqFjO8XnO7d+/GwsKC3NxcDhw48Kqb84/g6enJ8ePHlT+hoaH4+voya9Ys9u7d+0J1Hz9+nJ49ewIQGhrK/Pnzq6PJwmtm828/cvXiKfz6D2fQiA/Jyc5iVcCXFBTkVVhGJpPx+9I5JMXfpN+QsfQb8h6346JY8/McSktL1fJfPnec3UGBL7MbgqBiyfHLnElI4a1mLkzwbsK9wmLm7A8nr1haYRmZXM78w2eJzcjm3ZaNeLdVI6LT7jH/0FlKZXJlvnXno9gdeZs+jerwcYemaGloMPdgOCm5+eXWu/NaHHGZ2dXeR0EIWLeN05evM6x3Fz54awBZ2TnMXvY7eQWFFZaRyWTMW76emwl3eO+NXox5oxdRcQnMXb6O0lKZMt/anfvYHXaSvp3aMuntQWhpavHNr4GkZGSVW2/woePEJtyp9j4Kr6/Mu9EcC5mLibkD3r2nUbthB64cDyTq3I4KyyTdOMXpvYuxre2Jd+/pWDm6E75/CQnRx9TylhTlcWznHPJz0sqt62nXBUH4Zzp+/DjTpk2jffv2XLhwgYyMDEaOHEnDhg0ZM2YM586de+66RcDrNbd9+3bat29P69at2bRp06tuzj+Cjo4OVlZWyp+aNWsyadIknJyc2LVr1wvVbWVlhUSimHVQVlZWHc0VXjPxcdFEXj3HoJEf4dW6E+6erXn3oy8oKirkzNF9FZaLuHiK5KTbjBw3nSbN2tK0RXtGfzCLtLuJXL1wUpkvLzebHX8sZ9NvPyKR6P8dXRIEYtLvcSEpjQltm+Dj7EirWrZ83qUFBdJSDsTEV1juTHwK8Vm5/K+jF62d7PCuY88M3xYkZedxOv4uAJn5hRyMSWB4Mxf8Gjrh5WjDdN/mGOnpEBIRp1ZnfFYOwVdjMdPXe2n9FV5PMbcTOX8tmg+GDqBjS09aebgxa8LbFBYVs//E2QrLnb58ndt37jL13aG0aepOO68mfD5uBEkpaZy6fA2AzPvZ7D95juF9u9GjQ2uaN3Lhs3HDMTLQJ/iQeuDg9p0Udhw8hpmJsdo1QXheEac3UcOqDq26T8LOqRmN2w7Dxas/kWe3ISstKbfMlZPrcazXFk+f0dg5edK883hq1vfm6qmNKvnuxIazf+Mn5GQmllvP064LgvDPVVBQgK2tLQBHjx5FV1eX1q1bA6Crq/tCn5tFwOs1Fhsby+XLl/H29qZbt26cOXOGW7duKa9LpVICAgLo1KkTHh4e+Pv7c+LECeX1+Ph4JkyYgJeXF61atWLKlClkZmYCiqWBI0aMULnf42lJSUm4uLiwfPlyvL298fX1JS8vj5iYGMaNG0eLFi1wd3fH19eXNWvWqNRz7Ngx3nzzTTw8POjQoQOLFy9GJpMRGBiIp6cnhYWPviWVy+V06NCBDRs2vPDzpaWlha6uLgAlJSV8++23dO7cGXd3d1q2bMnHH39MVlZWpf1zcXEhKCiIoKAgZsyYASiWOe7Zswd3d3eCg4NV7vnDDz8wcODAKrUvKCiIrl27MmfOHLy8vHj//fcBOHjwIIMGDaJp06Y0btwYf39/jh179Oa3rKyMwMBAunfvTpMmTejVqxehoaHK66mpqUyePJnmzZvTqlUrxo8fz+3bt5/3aRRe0I3IS+jqSajv6qFMMzI2pU49N6KvXaiwXEzkJSyt7bG2e7S0xdrOESsbB5VyR/YFceP6JYaN+R8NGzd/OZ0QhCdcSc5AT1uLJnaPlnWZSPRwtTHn0p30CstdvpuBnYkhjmaPlj06mhlhb2LIxWRFuYiUTGTyMlrUslXm0dHSopmDtVrdpTI5y05eoUdDJ+xMDKure4IAwKWom0j0dPFwcVammRoZ4ursxMXIivcnuRR1E3trSxxtrZRpjrZW2FtbcvF6DABXY+KQyWS0bOyqzKOjrU0ztwZqdZeWyvh5YxA9OrTC3sqiuronvOZkpVLSkiJwcG6tkl6zXhukJYWkJ0eqlcnPSSP3XjKO9VSXjtes34a8+ynk3ksGoKQ4nxOhC7BycKND/1lq9TztuiAI/2xOTk6cO3cOqVTKvn37aNmyJXp6ii8eQ0JCcHJyeu66RcDrNbZt2zYMDAzo0KEDXbt2RUdHR2WW19y5c9m0aRPTpk1j165dtG/fnvHjxxMXF0dOTg7Dhg2jpKSEwMBAfvvtNxISEpg0adIztWHHjh0EBgby448/oqWlxejRozEzM2PTpk2Ehobi5+fHt99+S2Sk4o/kxYsXGTt2LF5eXgQFBTFnzhw2bdrEsmXL6NOnD1KplP379yvrP3nyJPfu3aN3797P/Tzl5eWxYsUKYmNj6dGjBwDfffcd+/fvZ8GCBezbt48FCxZw+vRpfvlFda+jx/tnZPToA1nPnj357LPPAMUUTl9fXzp27KgS8JLL5YSEhODv71/ltiYkJJCWlkZwcDCTJ08mIiKCjz76iF69erFr1y62bNmCubk5U6dOpaRE8U3bqlWrWLx4MWPGjCE0NJQhQ4YwdepUTp8+TUFBgTJIuX79etatW0eNGjUYPHgwqampz/V8Ci8mLSUJc0sbNDVVX74trGxJT614aUp6SlK5e3xZWNuRkZasfNyyXTemfLkEd8/WankF4WW5k52HjbEBmpqqe7zYGBuQnFP+ssOH5coLTNkaG3L3Qbk72XlIdLTUZmzZmhhwr7CYIumjJb3br9xEJpfzhke9F+mOIJTrTmo61hY11F6/bS1qcCcto5JyGdiVE5iys7IgOT1TmUdfokeNJ2Zs2VlZcC87l6LiR7Nrtu4/gkwmZ7BfpxfpjiCoyM9OQS4rxdjMTiXd6MHj3KwktTI5D9KMa9iXX+ZBwEtbWw+/kUto1f1j9AxM1ep52nVBEP7Z3nvvPX7++WfatGlDYmIi77yj2FfyjTfeICQkhHffffe56xab1r+mSktLCQkJoXPnzkgkEiQSCe3atSM4OJgpU6YglUrZtm0bs2bNws/PD4DJkydTVlZGXl4e4eHh5Ofns2jRIkxNFX9Y5syZw+7du5WBlKoYOnQo9eopPlhkZWUxcuRIhg0bhqGh4gPMxIkTWbVqFdHR0bi6urJu3To8PDyYOnUqAM7Oznz99ddkZmZibm5O586dCQkJoV+/foAi4NS5c2dlG6vi3LlzeHp6AorZT4WFhVhYWPC///2Pbt26AdC4cWP8/Pxo3lwxA8bBwYG2bdsSExNTYf8eJ5FIMDZWvCm1slJ8Yztw4EDef/99UlNTsbGx4dSpU2RlZT1zsO7999+nZs2aAERGRjJr1iyGDh2qvD5y5Ejee+89MjMzsbW1JTAwkJEjRzJo0CAARowYQVFREaWlpezevZucnBwWLlyItrbi5WLu3LmcOXOGLVu28NFHHz1T24QXV1xYiJ6eRC1dT09CcVFRheUKCwqwsLJTS1eUezQr0trWoXoaKgjPoEBaikRbSy1dX1tbJSClVq6kFFtj9YCXREebwuxSZR4DHfW3O5IHr2mF0lIkOtrEZtxnd+QtvujWCh0t9bYIwosqKCpGX099qaxEokdRcXEl5Yqws1I/XERfT5fCIkW5/MKi8uvW01XeW6Kny82EO4T+dZKvPnwHHW3xMUCoPtKSAgC09QxU0rV19R9cV9+nTlqc/yBPRWUUdWpqaWNSo+L3J0+7LgjCP1vv3r2xs7Pj/PnztGzZkqZNmwLQokULJk6cSIcOHZ67bvGX7jUVFhZGRkYGvXr1Uqb16tWLv/76iz179uDs7IxUKsXDw0Ol3JQpUwAIDg7GyclJJZDUsGFDGjZs+EztqF27tvL/zc3NGTp0KKGhoVy/fp2EhASioqIAxWwngJiYGLy9vVXq6N69u/L/Bw4cyIQJE0hLS8PAwICDBw/y008/PVOb3N3d+f777wHQ1NTEwMAACwvVb1b79evHyZMn+f7777l9+zZxcXHcunVLGQArr39P06FDBywsLNi5cydjx45lx44d+Pr6PlOwDlCZ8unq6oqpqSkrVqwgLi6O+Ph45XMqk8m4d+8e6enpav/O7733HgCzZ88mOzubFi1aqFwvLi4mNjb2mdolPLuysjLl2H9IXiavIDeVnoAEla19r6ycIFSvsrIy5E/sxfDk48dVNq4r29PhYbmn7fqgoaFBSamMXx4sZaxnafaUEoLwdOW+fssrGa+VvA5XbZxXPtI1NKBEKmXpxh309GlN/drln9woCM+rrJL3JwAaGuoLi562L0/l72sEQfivyMvLw8vLCy8vL5X0adOmAYpljX379n2uukXA6zUVFBQEwIcffqh2bdOmTXz11VeVltd+jm8FyzsJ7uEG7gDp6em8+eabypla7dq1o3Hjxvj4+FT5vu3atcPS0pLQ0FDMzMwwMTGhXbt2z9ROiUTy1EDVF198wb59++jfvz+dO3fmgw8+YPXq1WrL/B7v39NoaWnRv39/du3axfDhwzl48CABAQHP1PYn7xkeHs67775Lx44d8fLyok+fPhQWFvLBBx8Aig36KyOXy6lTp47aUk0AAwODckoI1enQn1s49OdWlTR3z9bk5aqfHldcXIReJZvMS/QNKC5WnwFWXFSIvvi3FP5G26/cZPuVmypprWrZklOkPju4sLQU/XJmZz1koKtT7gywQmkpBrqKcvo62hRKZeXmATDQ0WbL5RvIy2BAY2dkTwQpZHI5mhoa4oOX8Ey27jvCtn1HVNJaezQiO0/9NN2iomL0JRUfkmCgL6GwWP33o6CoGIMHf/MNJHoqyxYfejgDzFBfwuY9hykrK2NgVx9kMtXfCZlMhqamphjnwnPT0VPMti19YiaXtFgxS0tHV/09is6DmV1Plil9MLPrYZ2CIPy3vf322wQGBqpsAQSQnJzMl19+yfHjx0XAS6i6zMxMwsLC8Pf3V66Pfej3339n+/btgCIYcvXqVZVZW4MHD6Znz57Uq1ePrVu3kpubq1yad+3aNcaMGcOOHTvQ0dEh74k3dfHx8ZUGgEJDQ7l//z779u1TBmKio6OBR98AOTs7c/XqVZVygYGBhIaGsnXrVmXQ6MCBA5iYmNCvXz+0qnlpyr1799i8eTOLFy+mZ8+eyvS4uLhnCgKV96Zy4MCBrFy5knXr1mFsbPzMwbonrVmzhlatWrFkyRJl2rp16wDFc2psbIy1tTVXr17F19dXmWfixInY2dnRoEEDdu7cibGxMebmiuUUUqmUTz75BD8/P5X+C9WvZbuuNHRX/abj+uVwbkRepqysTGUMZaTdxdq24m/sLa3tSU68pZaemZ6Co5PYr0j4+/jWr4mng5VK2rnENC7fTVcb1yk5+TiYGj1ZhZKdiSG3s9QDwKm5+Tg/mKllb2JIobSUnKJiTB4LKqTmFmBpqI+uthZn4lPIyC/knU0H1OoavmEf49s2xsdZzIgRqq5Lm+Y0c2ugknY2IorL0TfVxvndjCwcbayerELJ3sqCuKS7aukpGVnUq6VYxmVvbUlBURHZefmYGhmq5LEyN0NXR4fTl6+TnnWfkdPnqtX11v++5v23+tOxpecz91UQAIxMbdHQ0CTvfopKel62YuyamNdUK2Nsrhi/effvUsO67qMyD+owMRevu4LwOsjMzGTkyJH89ttvytVNgYGBBAQEoKmpycyZM5+7brFp/WsoJCSE0tJS3nvvPRo0aKDyM378eDQ1NdmyZQvDhw8nICCAQ4cOkZCQwKJFi4iJiaFDhw706dMHU1NTPv30U6KiooiIiODLL7+kQYMG2Nra0rRpU6KioggJCSExMZGlS5eq7W/1JFtbWwoLC9m7dy/JyckcP35cuYTy4b5gY8aM4dKlSwQEBHD79m3CwsJYtmwZHTt2VNbj7+/P5cuXOXnyJAMGDKj258/IyAhjY2MOHTpEfHw80dHRzJo1i2vXrj3T/mUPg2MREREUPdh7qU6dOjRr1oxly5ZVS7DOzs6O6Ohozp07R1JSEtu3b1fOGnvY1rFjxxIYGMjOnTtJSEhg7dq1HDp0CF9fX/r27YupqSkTJ07k8uXLxMbGMn36dI4ePYqLi8sLtU14OhNTcxxr11P5qefqQXFRITHXLynz5eVmczs2UuXkxifVd/UgPfUOaXcfbRqbdjeJtJQk6jesuJwgVLcaBhKcLc1UfhrbW1IklXE5+dHG3TlFxUSl3aOxXcWnyDWxsyQ5J5+k+4++YEm6n8ed7HzliY+NH/z3TPyjD2FSmYzzSWk0sVdc+7RTM+b0aKPy42RugpO5CXN6tKGZo3W1PgfCf5+5qTH1ajmo/Hg0cKawqJhLUY9mOGbn5RMVF0+Tx05ufFITF2eS0zJISnl0qmhSSjp3UtOVJz42aaD47+nL15R5pKWlnL8Wo6x76rtDmTd5rMpPHUc76jjaMW/yWLwaib/rwvPT0tbFyrERSTdPqSxVTLp5Gl09Q8xt66uVMTazw9DEhsQbp1TSE2+cenBNvPYKwutg48aN5OXlMWrUKMLDwxk8eDDz58/Hx8eHPXv2MGzYsOeuW8zweg0FBQXRtm1b6tatq3atVq1adOnShZCQEP766y+0tLT48ssvyc3NpWHDhqxYsUJZbvXq1cyfP58hQ4YgkUjo2LGjcp1t3759iYyMZM6cOZSWltKjRw/efvttLl68WGG7/Pz8uHbtGgsWLCAvLw8HBwcGDRrEoUOHuHr1Km+99Raurq4sXbqUn376iZUrV2Jtbc3IkSOZMGGCsh4nJyc8PDyQy+U4O1f8BvJ56ejoEBAQwIIFC5SBv1atWjFlyhSWL19OYaH6ppzlad26NR4eHgwZMoSFCxcqT4D09/fnwoUL1RKsmzhxIhkZGYwfPx6AevXqMW/ePD799FOuXr2Ks7Mzw4cPp6ioiICAANLT03FycmLx4sW0bNkSUJzO+N133/Huu+8ik8lo1KgRa9aseSnPrfB0des3om79Rmz+/Ud69B+BgaExB//cgkTfgFYdHu1nl3Y3idJSKfY16wDQpJk3f+0N4relc/DrPxyAvcHrsXWoTeNmbV9JXwThITcbc9xszPn5+GWGNnPBSE+H7VduYqirTdcGj5aYJ93Po1Qux8ncBIA2TrYER8Sy4PBZhnoqPqxvvBhNrRrGtK5tC4CVkT4dnB1Ydz6KEpkcOxND/oy8RYFUSp9Git+PWjVM1Nr0cCmls9jTS6gmbvWcaFSvDj+t387wPl0xMjBg676/MJBI6Ob9aK/MpJR0pKWl1HFUHDTS1tOdHQePMW/FOob17grAhtAD1LK3oU3TRgBYmZvh06Ipa4P3IZWWYmdlwe6wUxQUFdGvs2K2eG17G7U2Pdzo/uFMMUF4EW4tBxEW9CWn/vyeOo18yUiOIvp8ME28R6Cto4e0uICcrEQMTW2RPDhNsVHrwYTvX8L5w8bY123BnbhwEm+coE3PT15xbwRB+LvY29uzYcMG3nnnHd5++20cHR1ZuXIl7du3f+G6NcqetlugIPzLlJWV0aVLF8aPH688efDfZMmSJZw8eZI//vjjVTflpQm7VvCqm/CvVlCQx+7tv3P98lkoK6NWXRd6v/EOVjaPjvVesfgL7melM/WbR/uv3b+XQejW37gRdRktLS3qu3rQa+AoTEzVT/8C2LruZ27FXFOpQ6i6JsHizfqzyCuWsu58JOcSUykrgwZWZoxs4Yq9yaMljV/vP0N6XiFL/Dsq0zLzCwk8G8mVuxloa2rSxN6CEV6u1DB4tIReKpPxx8UYTtxKpqhURl1zE4Y2a0h9K7MK2/P1/jMAfNGtVbX39b9Eu3u/V92Ef5W8gkICg/dyNiIKyqBBnZqM6u+HvbWlMs9XP/9G+r37LJ01WZmWeT+b33bs4Up0LFpaWni4ODOynx/mpsbKPNLSUjaGHuTY+SsUl5RQ19Ge4X26Ud+p4mVhX/38m+K/H75TYR4Bvo3o/Kqb8K+RdPM0105vIufeHfQNLajn0YOGXorXibTECP7aPouW3T6ijtuj5zT26j6izgdTmJuJoakNri0G4uTasdz683PSCF0zTq2Oql4XKjZnlO6rbsJz+Sd/rvBpJPbJfRb3799nzJgxFBUVsXbtWuWWOi9CBLyE/wypVMrhw4c5ffo0e/fu5dChQ/+qjdXPnz/PrVu3+Pbbb/n666+VM77+i/7Jf5gEobqIgJfwOhABL+F1IAJewutABLyqnwh4Vaxhw4bl7mn9MDz1+DUNDQ2uX7/+XPcRSxqF/wwdHR3mzJkDwMKFC1WCXStXrmTZsmWVlv/ss89e6Yywv/76i/Xr1zNw4ECVYFdqaip+fn6Vlm3cuDFr16592U0UBEEQBEEQBEEQhBfywQcf/C0nA4sZXsJrITs7m/v371eax8LCQu0o1H8CmUxGUlJSpXn09PSwtbX9m1r04v7J38QIQnURM7yE14GY4SW8DsQML+F1IGZ4VT8xw+vVEzO8hNeCqamp8ojTfxstLS1q16799IyCIAiCIAiCIAiC8C9TVlZGZGQkBQUFlDcnq0WLFuWUejoR8BIEQRAEQRAEQRAEQRD+dleuXOHjjz8mJSUFUN3Hq6ysDA0NDSIjI5+rbhHwEgRBEARBEARBEARBEP528+fPR1tbm/nz52Nra4umpma11S0CXoIgCIIgCIIgCIIgCMLf7tq1ayxatIguXbpUe93VFzoTBEEQBEEQBEEQBEEQhCqysLBAS0vrpdQtZngJgiAIwkvwg0PAq26CILx00zj8qpsgCC/dJ3c+ftVNEIS/wS+vugHCa2ro0KEsX76cVq1aYWBQvSdbioCXIAiCIAiCIAiCIAiC8LeLj48nNjYWb29v6tevj0QiUbmuoaFBYGDgc9UtAl6CIAiCIAiCIAiCIAjC3y4+Pp6GDRsqHz88pbGix89CBLwEQRAEQRAEQRAEQRCEv926deteWt1i03pBEARBEARBEARBEAThH6WgoICjR48+d3kxw0sQBOEfrri4iL071hFx6TQlJcU4ObvS+413sLKxr7Rcbs59dm//nRuRl5DL5Lg08qTnwFkuU0IAAQAASURBVLcxMTV/lCf7HgdCN3Ej8jIFBXlYWtvh07U/Tby8lXlKpVKOHQrhwpkwsu9nYmpmQdMW7fHpNgBtbfFnRKgepdIiLh8LJOnmaUqlRVg5uNHUZzQmNRwqLVdUcJ9LYWtIib+EXC7Drk4zmrZ/B32jR+O8MP8eEac2khJ/mZKiXIxr2NOw+QBqNWhXbp1yuYxDm6ejra1Hp0FzqrWfwuutqLiE9bv2c+ZKJMUlJTSsW5tR/f2wt7astNz93DzWBu/lUnQscpkcT7f6jOjbHXNT43Lz7zl6mtCwUyydNVklvUQqZdv+MI6fv0JOXgG17W0Y5NeJpg3rVVsfBaFIWsrGC9GEJ6RQVCqjoXUNRrZwxd7EqNJy2YXFrD0fyZXkDGTyMpo6WDHCqyE1DB7t5yOTy9l+5SZhsXfILS6hroUpw5o1pL6VmTJPSm4+k4PVPyA7mhmxsE/7auunIAjV486dO3z11VeEh4dTUlJSbp7IyMjnqlvM8HpF8vLy8PDwoG3btkil0lfdnFdu+vTpuLi4qPx4eHjQp08ftmzZ8sL1u7i4EBQUBIBUKuX3339/4Tr/bps3b6Zz5854eXnxySefkJ+f/6qbJPxNNv/2I1cvnsKv/3AGjfiQnOwsVgV8SUFBXoVlZDIZvy+dQ1L8TfoNGUu/Ie9xOy6KNT/PobS0FFAEsn5bOpebUVfo0vtNho/9FMfa9fhjzWIuhocp69q1bQ1/7QvCq00nRo6bhlebToTt38HOTSteet+F18epPYtIunGKJu1G0KrbRArzMjmy7QtKiioe53K5jKM7viYz9QZencfh1XkcGclRhO2YjVymGOeyUilHg78mNeEK7m2G4N1nOuY29Tj15w/cjjxSbr1RZ4PISr35MropvOYC1m3j9OXrDOvdhQ/eGkBWdg6zl/1OXkFhhWVkMhnzlq/nZsId3nujF2Pe6EVUXAJzl6+jtFSmlv/EhausDdlfbl3LN4ew//hZ+vm2Y+q7b2FnZcGClRuIjI2vtj4KwpLjlzmTkMJbzVyY4N2Ee4XFzNkfTl5xxZ95ZHI58w+fJTYjm3dbNuLdVo2ITrvH/ENnKZXJlfnWnY9id+Rt+jSqw8cdmqKlocHcg+Gk5D56X3w7KweAmV1b8rVfG+XPR+08Xl6nBUF4bvPnz+fChQsMGjQIV1dXmjVrxujRo3FxcUFDQ4Off/75uesWAa9XZPfu3VhYWJCbm8uBAwdedXP+ETw9PTl+/LjyJzQ0FF9fX2bNmsXevXtfqO7jx4/Ts2dPAEJDQ5k/f351NPlvEx4ezuzZs5k+fTqBgYGEh4ezdOnSV90s4W8QHxdN5NVzDBr5EV6tO+Hu2Zp3P/qCoqJCzhzdV2G5iIunSE66zchx02nSrC1NW7Rn9AezSLubyNULJwGIijjP3Tu3GTrmE7xad6J+Qw8GvDWOBm6ehO0PBqAgP5ezJw7SpedgOnYbQL2GTejYbQCdew7i3KnD5OVm/x1Pg/Afl3E3iuS4s7TsPpE6bp1xrN8GH//ZSEsKuHml4tf/pBsnuZd+i/Z9PqNmA29qN+yAT/8vyMlKJPHGCQDu3jrH/fTbtO35P+q4dca2lgfNfSdg59SMqHNBanXeT7/F9bPb0Des8dL6K7yeYm4ncv5aNB8MHUDHlp608nBj1oS3KSwqZv+JsxWWO335Orfv3GXqu0Np09Sddl5N+HzcCJJS0jh1+ZoyX3ZePiu27CJg3Tb0JXpq9aRn3efY+SsM6eVLd++WNHFx5oOhA7CsYcr+kxXfXxCeRUz6PS4kpTGhbRN8nB1pVcuWz7u0oEBayoGYigOrZ+JTiM/K5X8dvWjtZId3HXtm+LYgKTuP0/F3AcjML+RgTALDm7ng19AJL0cbpvs2x0hPh5CIOGVd8Vm5mBtIaGRrQX0rM+VPrRomL73/giA8u7NnzzJ58mRmzpyJv78/enp6fPrpp2zfvp0WLVpw6NCh565bBLxeke3bt9O+fXtat27Npk2bXnVz/hF0dHSwsrJS/tSsWZNJkybh5OTErl27XqhuKysr5fGmL3LKw6ty/fp1DAwM8PX1xd3dHU9PT+Li4p5eUPjXuxF5CV09CfVdH30raWRsSp16bkRfu1BhuZjIS1ha22Nt56hMs7ZzxMrGQVlOT1+flu264lDLWaWslY0DWRmpABQVFtCqXTdcm7RQyWNtq6j3YT5BeBEpty+hrSPBtlZTZZrEwBQrh0bcvX2+4nLxFzGuYY+JRU1lmolFTYxrOHD3lqKctp4Bzo27UcNGdcmWcQ0H8rJVx69cVsqZfQE0aNobY7PKlwwLwrO6FHUTiZ4uHi6PXnNNjQxxdXbiYuSNSsvZW1viaGulTHO0tcLe2pKL12OUaTsOHOVy9E0+GfUmXm4N1OoxMzFi3uSxtPdqokzT0NBAS1OTErHaQKgmV5Iz0NPWoondo2W6JhI9XG3MuXQnvcJyl+9mYGdiiKPZo2WPjmZG2JsYcjFZUS4iJROZvIwWtWyVeXS0tGjmYK1Sd/y9HGrXKH+5ryAI/zz5+fm4uLgAULduXa5fvw6AlpYWQ4cO5fTp089dtwh4vQKxsbFcvnwZb29vunXrxpkzZ7h165byulQqJSAggE6dOuHh4YG/vz8nTpxQXo+Pj2fChAl4eXnRqlUrpkyZQmZmJqBYGjhixAiV+z2elpSUhIuLC8uXL8fb2xtfX1/y8vKIiYlh3LhxtGjRAnd3d3x9fVmzZo1KPceOHePNN9/Ew8ODDh06sHjxYmQyGYGBgXh6elJY+Gg6vlwup0OHDmzYsOGFny8tLS10dXUBKCkp4dtvv6Vz5864u7vTsmVLPv74Y7Kysirt38MljUFBQcyYMQNQLHPcs2cP7u7uBAcHq9zzhx9+YODAgVVqn0wmY+HChfj4+ODu7o6fnx9//PGHSp7t27fTo0cPmjRpQo8ePQgMDEQuV0zPXrNmDW5ubly5cgVQPHdDhw7F399fuYa5TZs25Ofn88svv3Ds2DGOHj1Kv379VO4RFBRE165dmTNnDl5eXrz//vsAHDx4kEGDBtG0aVMaN26Mv78/x44dU5YrKysjMDCQ7t2706RJE3r16kVoaKjyempqKpMnT6Z58+a0atWK8ePHc/v27So9N8KLS0tJwtzSBk1N1ZdrCytb0lPvVFguPSWp3D2+LKztyEhLBlDO6NLQ0FBeLy0tJfraeWWgzNzShn5D3lOr69rlM2hpaWP5lH3EBKEqcrKSMDK1QeOJcW5kZktuVsXjPCcrCeNy9vgyNrMn975inD+c0fX4OJfLSrl76xymjwXKAK6d2YxcLqNR6yEv0h1BKNed1HSsLWqovZ7bWtTgTlpGJeUysLOyUEu3s7IgOT1T+bhr2+YEzJhIKw+3cuvR0damXi0HDPUllJWVkXk/m9937CElI4uubVuUW0YQntWd7DxsjA3Q1NRQSbcxNiA5p+LtOO5k52FnYqiWbmtsyN0H5e5k5yHR0cJMX3UGo62JAfcKiymSKpayx9/LoahUxhd7TzFy4z7Gbz3EHxeiVZZGCoLwz2FtbU1GhuLvYO3atcnOziY9XRHENjMzU8Y6nocIeL0C27Ztw8DAgA4dOtC1a1d0dHRUZnnNnTuXTZs2MW3aNHbt2kX79u0ZP348cXFx5OTkMGzYMEpKSggMDOS3334jISGBSZMmPVMbduzYQWBgID/++CNaWlqMHj0aMzMzNm3aRGhoKH5+fnz77bfKzeEuXrzI2LFj8fLyIigoiDlz5rBp0yaWLVtGnz59kEql7N//aL+IkydPcu/ePXr37v3cz1NeXh4rVqwgNjaWHj16APDdd9+xf/9+FixYwL59+1iwYAGnT5/ml19+qbB/RkaPvinq2bMnn332GaBY5ujr60vHjh1VAl5yuZyQkBD8/f2r1M6NGzeyd+9eFi9ezL59+xg+fDhfffUV586dAxR7b3333Xd8+OGH7N69m0mTJrFy5Uq+//57AEaNGoWXlxeff/45UqmUlStXEhkZyaJFi5SBPhcXF4YPH86SJUuYPHkyX331lfI5eVxCQgJpaWkEBwczefJkIiIi+Oijj+jVqxe7du1iy5YtmJubM3XqVGUwbdWqVSxevJgxY8YQGhrKkCFDmDp1KqdPn6agoEAZLF2/fj3r1q2jRo0aDB48mNRUMbPn71BcWIienkQtXU9PQnFRUYXlCgsK0JPoV1Cu4r1i9gavJyPtLh27VTz+r106w8UzYbRq3w0Dg8o3oBWEqpCWFKCtqz5edXT1kUorHq8lxfnolFNOW1eCtLigwnKXj68l9/5dXJs/+mIjK+UG0ed30rLbR2hp6zxjDwTh6QqKitHXU19qKJHoUVRcXEm5IgzKWaKor6dLYdGjcg42Vmhra1WpLcGHjjNh9iL+PHqazq2b0aRB3SqVE4SnKZCWIilnHOpraysDUuWWKylFX0f9IByJjjaFJaXKPAbl5XlwgE6htJScohKyCopJzs6jS/1aTPdtgW/9mvwZeYtfTl153m4JgvAS+fj48OOPP3Lx4kUcHBywtbVlzZo15OXlsX37dmxsbJ67bnG81t+stLSUkJAQOnfujEQiQSKR0K5dO4KDg5kyZQpSqZRt27Yxa9Ys/Pz8AJg8eTJlZWXk5eURHh5Ofn4+ixYtwtTUFIA5c+awe/fuCk80KM/QoUOpV0+xvCMrK4uRI0cybNgwDA0V36xMnDiRVatWEf1/9u47LIrjDeD4l3406R0FBESQImLvolHBjiXGFqMxtmjUqLEmmuQXMZoYS6yxYjQaC6Kxl1ii2AtYQAVBekd6vd8fJ6cnKIgtZT7PwxPYnZmbPTd7e+/OvBMWhrOzMwEBAXh4eDB16lQA7O3t+frrr0lNTcXQ0BBvb2+CgoLko452796Nt7e3vI9VcenSJTw9PQHZqKO8vDyMjIyYPHkyHTt2BMDNzY3OnTvTsGFDAKysrGjevDnh4eEKbT19fE+TSCTo6sqGOJuYyKYG9O7dmzFjxpCYmIiZmRnnzp0jLS2tysG66OhotLS0sLa2xtTUlEGDBlG7dm3s7OwAWL58OaNHj6ZLly4A1KxZk+zsbObOnctnn32GhoYG/v7+dO/enZkzZ7J//36++eYbbG1t5a+xbNkytm3bhqOjIw8fPsTR0RGQBQWfDugBjBkzhpo1ZaMWbt++zezZsxkwYIB8/5AhQxgxYgSpqamYm5uzceNGhgwZQt++fQEYPHgw+fn5FBcX88cff/Do0SMWLFggX43vf//7H+fPn2f79u2MGzeuSu+RUDVSqVQ+8q9MqfT5TyOfHrFSQWsv2Fe+nlQq5WBgAH+d2EfrDt1x9WxaYc3Qq8Fs27AYG/u6dO456AWvIQgVk0qlSJ85r5/9+2lKFZyvT1V8/r4K/v+QSqXcOLOJ8Kt7qevVE2vHZgCUFBdy/vAS6nh2w8i8/FQwQXhZFV7PS59/vr7oPH9RKoYXfw48n1e9OjjZ1uROZDQ7D5+kqKiYTwdW7UGfIJSRSqWUPnN+Pvv30150vlblPK8sKYmSkhISVRVmdGiEua42JjqyByIuZoaoqiiz/dpderk6KEybFATh3Rs/fjyhoaEsXryYDRs2MHHiRKZNmyZfaO7LL7+sdtsi4PWWnTx5kpSUFHnwA6BLly6cOHGCAwcOYG9vT1FRER4eiquITJo0CYDAwEBsbW0VAkl169albt26L9UPGxsb+e+GhoYMGDCAffv2cevWLaKjo7lz5w6A/GYtPDycFi1aKLTRqVMn+e+9e/dm9OjRJCUloaWlxdGjR1myZMlL9cnV1VU+6klZWRktLS2MjBSH8Pfo0YOzZ8+ycOFCHjx4QEREBJGRkfIAWEXHV5nWrVtjZGTEnj17+OSTT9i9ezft27evcrBu4MCBHD16lDZt2uDs7EyLFi3o0qULRkZGpKWlkZCQwI8//sjixYvldUpLSykoKCAmJgZ7e3usrKyYMWMGM2bMoEOHDvTq1UteduPGjfzyyy+sXr0aDw8PBg4cyKeffsovv/xCjx49+Oqrr+TBKkAhUObs7Iyenh6rV68mIiKCqKgo+b9tSUkJ6enpJCcnlzvfRowYAcDcuXPJzMykUSPFqQ4FBQXcv3+/am+wUGXH9m/n2P7fFba5ejatMDF8QUF+hSO4ykg0tSgoKD8CrCA/D00tLYVtxUVF7AhYxvXLf9G6Q3d8eg2psM0zx/exf9dGajvWY/DIL1BTU6/KYQmCgpvB27h5fpvCtpqOzcnKzShXtqgwDzV1rXLby6hpaFNcWP48LyrMQ11DcWpMSXERF44sITrsDHW9euLR6kP5vpCzW5BKS3Fp0pfSUsVV70pLS1BSUq52YEH4b/r90J/sOPSnwramHvXIzC6/6mh+fkGFSebLaGlKyCso/1AzN78ALUn5EcBVUctC9rTcxcGWUmkp2w+coL+vN8YG+tVqT/hv2nnjHjtvKK5o26SWOY/yy5+vecUVj+Aqo6WuVuEIsLyiYrTUZfU01VTJKyq/Mmne43paaqqoq6rg9lT+sDKeVqZsv3aX6PRHIuAlCH8zBgYG/P777yQlJQHQvXt3LC0tuXbtGu7u7jRu3LjabYuA11u2a5dsRahPP/203L7ffvuNOXPmvLB+2Sibl1FcXP7DQ/LUDVJycjLvv/++fKRWy5YtcXNzo02bNlV+3ZYtW2JsbMy+ffvQ19enRo0atGzZ8qX6KZFIKg1Uffnllxw6dIiePXvi7e3N2LFjWbt2bbnpdZKXuAFUUVGhZ8+e7N27l0GDBnH06FGF4FRlbG1tOXz4MBcuXOCvv/7izz//ZM2aNcybN49WrVoBMH36dJo3b16uroWFhfz30NBQVFVVCQkJITMzUx5wCwwMpGfPnjRtKhtxs3z5cvr06cMHH3wAyAJ2zzv2CxcuMHz4cNq2bYuXlxfdunUjLy+PsWPHArKFAl6ktLQUOzu7clNGAbS0nv8lVKiexi3fo66rl8K2W9cvcPf2daRSqcIX7pSkeHni+IoYm1oS9zCy3PbU5ASsbZ+MfszLzWHjiu+Ijgyna5+PaNGuS7k6UqmUfTvWc/bP/Xh4taDPkHHVuhYJAoC9W0cs7RTP89iICyREXS13nmdnxFPD8Pnnua6BJelJ5RfwyM6Ix8jcUf53YUEOp/d8S2p8GJ5thlHHs5tC+Zh758h5lMTOnz8o19bvS/rQuOM47Fy8q3yMgtChWUMaPJM4/mLoHa6H3St3nsenpGFtZvJsE3KWJkZExMSX256QkoZDrfI57J4nOS2DkLsRtGzghvpTn/92VrJ7kfTMbBHwEl5Ke8eaeFopnruXHiZxPT653Hme8CgHK73nB5osamjzIK38A77ErBzsjfUBsKyh/XjaYgE1ngoSJ2blYqytibqqCvGPcriZkEozWwu01Z+c54UlskBZDYl4WCcIf1empqby3xs2bEjDhg2RSqX8+uuvDBw4sFptihxeb1FqaionT57Ez8+PwMBAhZ/evXtz9epVQBaECAkJUajbr18/NmzYgIODAw8ePCArK0u+7+bNmzRr1oyEhATU1NTIfubpYVTU85cABti3bx8ZGRls3bqVMWPG8N5775GZKfvAKRtebG9vX65PGzdulI8sKgsaHTlyhEOHDtGjRw9UVKqWR6Kq0tPT2bZtG1999RXTp0/Hz88PZ2dnIiIiXmrlxYqe0vfu3Zvw8HACAgLQ1dV9qWDdpk2bOHz4MC1atGDq1Kns3buXZs2asX//foyMjDA0NOThw4fY2NjIf27evMlPP/0kb+P06dNs3bqVn3/+GU1NTebOnSvfp6mpKU/iB2Bubs6MGTPIzMzE1dX1hXOa161bR5MmTVi6dClDhw6lRYsWxMfLbpqlUim6urqYmpqW+7cdP3488+bNo06dOsTFxaGrqyvvu6WlJT/88AMXL4olzF+3GnqGWNs4KPw4OHtQkJ9H+K1r8nLZWZk8uH9bYeXGZzk6e5CcGEtSfIx8W1J8DEkJMTjWldUrKSlh0yp/YqLu88GwSRUGuwAOBf3K2T/309K7G+9/NEEEu4RXoqljiKG5o8KPWa36FBXmkRB1VV4uPzeT5NhbmNnUf25b5rXqk5Uey6PUh/Jtj1If8igtBrPHKz6WlpZwJug70hLv0cx3crlgF0DL7tN5r//3Cj8GprUxMK3Ne/2/x9JOJPQWXo6hni4OtawUfjzq2JOXX8C1O09GxGRm53AnIgp3J/vntuXuZE9cUgoxCU9WoYtJSCY2MVlhxcfKJKdlsPK3PVwMuaOw/UbYfVRVVbAwLZ8YXxBexEBLgr2xvsKPm6Ux+UUlXI97cu/6KL+AO0npuFk8/xxztzAm7lEOMRlPvsfEZGQTm5kjX/GxbOTW+agEeZmikhIuxyThbinbl55XwNrzNwl+qgzAuQfxaKqpYmdU9XQrgiC8WadOnWLixIlMmjSJkydPltt/6dIlevXqxbffflvt1xDfWt6ioKAgiouLGTFiBLVrKyYHHTVqFLt372b79u0MGjSIxYsXY2hoiKOjIzt27CA8PBx/f38sLCxYvnw5U6ZMYcKECRQXFzNnzhzq1KmDubk59evXZ8eOHQQFBeHp6UlQUBDh4eG4u7s/p1eyAEpeXh4HDx7Ey8uLiIgI5s2bByDPC/bxxx/Tu3dvFi9eTI8ePYiKimL58uUMGfJk6pOfnx+//PILKioq8lxfr5OOjg66urocO3aMevXqkZ+fz+bNm7l582a5KXkvUjYyKTQ0FAcHByQSCXZ2djRo0IDly5czePDglwrWpaWl8fPPPyORSKhbty4RERHcvn2bIUOGoKSkxIgRI1i0aBGWlpa0bt2asLAw5syZQ/v27VFXVycjI4MZM2bQr18/2rZti46ODoMGDcLb25uuXbsyePBgJk6cyJo1a+jUqRNhYWEsXLgQNzc3bty4wZw5c5g1a1aFfbOwsODo0aNcunQJc3Nzzp8/Lx+9VvZv+8knn/Djjz9iZ2eHp6cnf/75J8eOHWP9+vU4OzuzevVqxo8fz5QpU9DR0WH58uWcOnWKzz77rMrvkVB9tR3rUduxHts2/IRPz8FoaetydP92JJpaNGn9ZFpxUnwMxcVFWNaU5Y5zb9CCEwd3sf7nb+W5tg4Gbsbcyga3BrLRhsGnDvLg3m0at3wPPQMjoiMVc+HVsqtD3MNITh3Zg7WNPW4NmvHwwV2FMqbm1kg0xWg/4dWYWtfD1NqV4IOL8Gg5BHWJLjeDf0NdQxsH987yco9SH1JSUoSBqewztGadlty6uIOTgd/g0VK2wMb1MwHoG9tQs45sGv696/tJjr2FvVtHtHSMSI0PU3htIwsn9I1ty/VJTU02ZdjwqZFigvAqXBxsqedgx5LNOxnU7T10tLT4/dAJtCQSOrZ4ElSNSUimqLgYO2vZyKvmnq7sPnqa71YHMLDrewD8uu8ItSzNaFa/XpVf39neBrc69qzdtZ/c/ALMjAy4ciucg2cu0K9zO3S0nj9NXhCqysXMEBczQ5aduc6ABk7oaKix88Y9tNVVea/Ok5kcMRnZFJeWYmtYA4BmtuYEht7H//hFBng6AbDlahi1DHRpamMOgImOJq3trQi4fIfCklIsamiz/3YkuUVFdKsnu/9xNjXA1dyIzZdvU1RSgpWeDldjkzkUFsUgr7oKo74EQXh3goKCmDp1Kmpqaqirq3PgwAGWLFnCe++9R0ZGhjxPuYqKCh999FG1X0cEvN6iXbt20bx583LBLoBatWrRoUMHgoKCOHHiBCoqKnz11VdkZWVRt25dVq9eLa+3du1a5s2bR//+/ZFIJLRt25YvvvgCkM13vX37Nt9++y3FxcX4+Pjw4YcfykePVaRz587cvHkTf39/srOzsbKyom/fvhw7doyQkBA++OADnJ2d+fnnn1myZAlr1qzB1NSUIUOGMHr0aHk7tra2eHh4UFpair191Z84VpWamhqLFy/G39+fbt26oaenR5MmTZg0aRKrVq0iL+/5K3k9rWnTpnh4eNC/f38WLFggX+3Qz8+PK1euKOTPqopPP/2UoqIivv32W5KTkzExMeGDDz5g5MiRAAwbNgwNDQ0CAgLw9/fH2NiYfv36MX78eAC++uorhSBhw4YNGTBgAF9//TWNGjXCx8eHvLw8Vq9ezeLFizE1NcXPz4+RI0dy5MgRfvnlF3JyKl7mefz48aSkpDBq1CgAHBwc+O6775gyZQohISHY29szaNAg8vPzWbx4McnJydja2rJo0SL5XOnNmzfz/fffM3z4cEpKSqhXrx7r1q17I//GQsUGfjKFP3ZuYP/uAJBKqVXbiQHDP1dYITHwt9VkpCUz9RvZ9FNVNTWGj/+Sfb+vZ9eWlaioqODo7EGX3kPlAd3Qa8EAXDhzhAtnjpR73Xk/7+Dm9fNIpVJiou6zYuGMcmVGfDaH2nVc38RhC/8xLbp+wbVT67h+eiNSqRRjy7o06zIFdcmT8/zy8VXkZCXTddgqAFRU1WjrN5erJ9dy8ehylFVUMa/lQf3Ww1BWlp3nMfdk5/n9kMPcDzlc7nXfn7D7LRydIMh8/tH7bAw8SEDQYZBCHbuaTPqwn0Kw6Zcd+0hOz+Dn2RMBUFNVZfboIazffYBV24NQUVHBw8meIT06v9QDOiUlJSZ/9D47Dv9J4LHTpD/KwtzYiJHvd8e7SYPXfqzCf9fENg0IuHybX6/cQSqFOib6fNa6PjoaT4JN6y7cJDk7j6V+bQFQU1FhZodGbLx4m9XBoagqK+NuacRgL2dUlJ9MSvq4ST201dUIuhlBfnEJtQ1rMKN9Y8x1ZXkblZSUmNjGk5037vHHrQdk5hdgqqPJx01c8Xas+VbfB0EQnm/jxo14eHiwdu1a1NXVmT59Oj///DOOjo589NFHxMfH06pVK2bMmCFfDK46lKQvMxdMEF5AKpXSoUMHRo0apZBE/Z9i6dKlnD17lq1bt77rrryUZ3Mk/BOcvJn7rrsgCG/ckYvimZLw7/eF6/F33QVBeOOKD+15110QhDfOYGb5nL3/BH/n7xVt6olZEM/j5eXFN998g6+vLwCRkZH4+vpiZ2dHZmYmX375pcIiedUl7saFV1ZUVMTx48cJDg4mNzdXYQXKf4LLly8TGRnJpk2b+Prrr991d17aPy3YJQiCIAiCIAiCIPx35ebmKizgZmVlhVQqRVVVlaCgIIyMXk9eSRHwEl6ZmpqaPJHcggULFFbvW7NmDcuXL39h/RkzZrzTEWEnTpxg8+bN9O7dWz69ESAxMZHOnTu/oCa4ubmxadOmN91FQRAEQRAEQRAEQfhXkEqlCtPyy36fOHHiawt2gQh4Ca/J6dOnK9zer18/Onbs+MK6r/OEro7JkyczefLkctuNjY0JDAx8YV0NDY0X7hcEQRAEQRAEQRAEoXKmpqavtT0R8BLeKD09PfT0/pnL/6qoqGBjY1N5QUEQBEEQBEEQBEEQXsnrTtcjAl6CIAiCIAiCIAiCIAjCWzNnzhx0dGSrcZetpTh79my0tbUVyikpKbFx48ZqvYYIeAmCIAiCIAiCIAiCIAhvRaNGjYAnga7nbavo75chAl6CIAiCIAiCIAiCIAjCWxEQEPBWXkf5rbyKIAiCIAiCIAiCIAiCILwlYoSXIAhv3ZGL4tIj/Pt94Xr8XXdBEN64K5qt33UXBOGNc2fPu+6CIAjP0SDv1Lvuwgt0ftcd+M8TI7wEQRAEQRAEQRAEQRCEfxUR8BIEQRAEQRAEQRAEQRD+VUTASxAEQRAEQRAEQRAEQfhXEYl0BEEQBEEQBEEQBEEQhLfi4sWLL1W+UaNG1XodEfASBEH4B8jNSuHQ5gm06DoN05quLywbHXaam+e3k/MoCe0aJtRt6Iedi7dCmdj757l5fjtZ6XFItPWxrdsW50a9UVZ58rGQEn+HkL9+JTUhHDU1TSzsvHBvORiJlv6bOERBIDUjk8+/X86UYf2p52D3wrJ/XQlhx+GTJKdlYGKoRw/vlrRt7KlQ5ty1UIJOnCU2MRltTU1cHe0Y2O099HV1ABj7zSKS0zIqbN/EUJ+fZ098LcclCE/LSE9h8f8+Z/AnU6hd58XX8+uXznD8wA7SU5PQNzShTceeeDVtB0B6ahLffznmuXUbNG1L38Gfltv+65oFqEs0K9wnCG9Kak4eU/ed4fM2DXAxN3ph2bORcewKuUdSdh4mOpp0r1ebNvbWCmWCH8Sz91YksZnZaKur4WphxABPJ/Q0Nd7kYQiC8JoMHjwYJSWlSstJpVKUlJS4fft2tV5HBLz+Jry9venVqxfjxo176boxMTG0b9+eTZs20aRJk2q9fnXakEqlBAQEsHPnTiIjI1FTU6Nu3boMHjyYzp2frEgRFxfH1atX6dKlS5Xa3bVrF9OnTycsLOy5ZZ5+v5YuXcru3bs5fly2IpqTkxPz5s3Dz8+PoqIifv31V4YOHVql165M2fv0LC0tLWxsbBgxYkSVjxMgNzeX3bt3M3DgQACmTZtGbGwsAQEBr6W/wr9DblYKJ3fPpbAgp9KyMXfPEXxwEY71u2Ju40lsxHkuHF6KiooatZxaAZAQfZ2/9s2nZp0WuLccQmZKFCFnf6Ug7xEN2o0AIDUhnBM7ZlPD0JomHcejoqpB2OVAjv42jY4Df0BdQ/uNHrPw35Oakcm3KwPIzcuvtOz567dYsnknvq2b4lHXgYshd1i+NRA1VVVaNHADZAGxxQE76NCsIf19vcl4lM22A8eZ+/MG5n8+EnU1NSZ/1J/i4hKFtsOjHrIx8CDvNW/4Ro5T+G/LSE9h/bJvyc+r/HoeejWYbRsW07xtF+q4eHDrxkV2BPyMqqoaHg1bolvDgNGTvytXL/jUQW5cPkuj5or3K1KplD92biD02nkaNG37ug5JECqVmpPHvGMXyS0srrTs+egElv11nc51bfGwNObSw0RWng1BTVmZ5naWgCwgtvTMddo71uT9+nXIyCtg+/Vwvjlynu98W6CuqvKmD0kQhFe0adOmt/I6IuAlVNuSJUv4/fffmTFjBm5ubuTn53PgwAEmTJiAv78/PXv2BOCLL77AysrqpQJBldmxYwcaGhU/wTlz5gy6uroA7Nu3j3nz5r22gFeZpUuX4ukpG0kglUpJTk5m1apVTJ48GSsrK+rXr1+ldtatW8euXbvkAa+ZM2dSUlJSSS3hv0IqlfLg9gmun9pQ5To3zm7G2qE5nm2GAWBh60lhXjYh57bIA16RN4+ipWtC004TUVJWxryWBwW5mYRdDaJ+649QVlHl9oWdqKtr0673N6hLZKNhTGu6cWDTp4RdDsSt+cDXfrzCf5NUKuXkxWtsCjpc5Tpb9x+jqYcLH/aUPVypX9eB7Nxcth04Lg947T52Gk+XOnzSr5u8nqWJMTMXr+HKrXCaetTDztpCod3c/Hx+CvidBi516Nm+1Ws4OkGQkUqlXDn/J/t3baxynUNBW3D1bErXPkMBqOPiSW5OFkf2/YZHw5aoqqlRy66OQp2Y6PvcuHyWTt0HYGvvLN8eHxvF3u1riYm6h5qa+ms5JkGojFQq5VRELJsv36lynW1Xw2lSy5whDWXnr4elCdkFRWy/flce8NpzM4L6ViZ83PTJCEmLGtp8efAcV2KTaGpjUWHbgiD8fTRu3Pi5+woKClBXV6/SCLDKiKT1QrVt2bKFjz/+GF9fX2rWrImjoyPjx4/Hx8eHjRurfkNXHYaGhmhrVzzCxMTEBIlEAsg+aN8EPT09TExMMDExwdTUlHr16rFw4ULU1dU5cOBAldt5tn+6urro6+u/5t4K/1QZyZFcPrYSG+e2NO70WaXlcx4lkZUeh7WD4ijNmo7NyM5IICs9DoDSkmJUVNVRUn7yEaCuWYPSkmKKCvMAeJT2EGMrZ3mwC0BVTQMj8zrERV56HYcnCAA8iE1gze/7aNPQg08H9Kq0fHJaBnFJKTR2c1bY3tTDhYSUNOKTU5FKpbjXsadDMy+FMpZmxgAkpKRV2Pauw6d4lJ3D8N6v7wGNIADExzwgcOtqPBu3pe+Q8ZWWT09NIiUpjnoeitdzV89mpCYnkJIUX66OVColaNsvmJpb08K7q8K+3zcupbS0hNFT5qGjq/dqByMIVRSVnsXa8zdpVduKMS3cKy2fnJ1H/KMcGtU0U9jepJY5iVm5xD/KQSqV4mpuRHvHmgplLPVk3wsSs3Jf3wEIgvDWREREMGHCBBo3boynpye3bt1i7ty5rzzzSQS8/gEKCwuZP38+3t7euLq60rhxYz777DPS0hRv2K9evUq3bt1wdXXFz8+P4OBghf07d+7Ex8cHd3d3eVCqtLS02v1SVlYmODiY/HzF6SezZs1i6dKlgGxu7oULF9i9ezfe3rIcQnFxcUycOJFmzZpRr149WrduzYIFC8r1Zfv27bRq1QoPDw9GjRpFbGysfJ+3t7f8NZ7l5OTErl275FMjy7YdOHAAV1dXAgMDFcr/8MMP9O7du9rvQxllZWVUVVVRVX0ycPLo0aP07duX+vXr4+bmhp+fH6dPnwZko8SWLVtGbGwsTk5OxMTEMG3aNAYPHiyvf//+fUaNGkWTJk3w8vJi/PjxCu9DVaxdu5YOHTrg6uqKt7c3P//8s0Kg7cSJE/j5+eHu7s57773HTz/9RGFhIQCHDh3CycmJQ4cOyct//vnntGvXjszMzGq9T0LVaema4Dt0OZ5thqGqWnlOikdpMQDoGlgqbNfRlz3pLAt4Obj7kJ2ZwJ3LeygsyCE1Poy7V/diYeuFhqZsdKSGZg1yHiWVe43sjHhyMhNf6bgE4WnGBnosmTmeD3t2RkNdrdLyMYnJAFiYKuaAMTeW/R2XlIKSkhJDenSikWtdhTIXQ2T5H2qam5ZrNyU9g/2ng+nWrgUmhvrVORRBeC59Q2M+n7OUrn2Goq5e+QirpATZZ72xqeL13NhEdj1PSYwrV+fG5b94+OAuXfsMRVlZ8Ra/74fjGPX5/7CwsqnuIQjCSzPSlrCoR2uGNHRGQ6XyaYaxmdmAbLTW08wf/x3/KAclJSUGN3Sm4TNBsUsPZfcmNfV1X0fXBUF4i27fvk2fPn24efMm3bp1k39XVVFR4bvvvmP37t3VblsEvP4Bvv/+ew4fPoy/vz+HDh3C39+f4OBgVqxYoVBu7dq1jB49mj179uDi4sLIkSNJTJRd/Ldt28b333/Pp59+yh9//MGECRNYs2YNCxcurHa/Ro4cyYkTJ2jRogXjxo1j48aNhIWFYWRkhLW1LLFk2dQ/Hx8fduzYAcDo0aPJyspi/fr1HDx4kGHDhvHLL7/Ic3CVCQgIYPHixfz666+kp6czduzYlxqx5evry4wZMwDZNMf27dvTtm1bhYBXaWkpQUFB+Pn5Vft9AMjMzMTf35+8vDy6dpU9VQ0NDWXcuHF06dKFvXv3sn37dgwNDZk6dSqFhYUMGzaMYcOGYW5uzpkzZ7CwUBx+HRsby/vvv4+6ujobN25k3bp1JCcnM2jQILKzs6vUr+PHj7Nq1Srmzp3L4cOHmTx5MitWrCAoKAiAU6dOMWHCBPr168e+ffv46quvOHDgAFOmTAGgU6dO9OjRg2+++YbMzEz27dvHgQMHWLBgAXp64gnxm6ahqYuWrnGVyxc9zvGlqq6lsF1VXVO2v1D21NO0pht1vXpy/fQGdq8YxNFt09DQrEFTnycJuu3qtSc9KYKrJ9eSl51GXk46189s4lFaDMVFledYEoSq0tXWwki/6teTshxfWo9H8pbRlMiCwnn5BRXWS0hJIyDoMLZWFjRwqVNu/x8ng1FTVcW3ddMq90UQqkpLWxd9g6pfz8tyfEk0NRW2azw+7/Pzy49iOXV0Dza1nSpMhC8CXcK7oKuhjpG2ZuUFH8stLAJAU10x645ETRYsyyuqOAdYQlYOv16+g42hLp5WJtXsrSAI78r8+fNxdXXlwIEDTJ8+Xf6df9asWfTp0+eV8n2JHF7/AG5ubnTu3JmGDWUJdK2srGjevDnh4eEK5caNG4evry8Ac+bM4ezZs2zZsoWJEyeyfPlyRo8eLc+jVbNmTbKzs5k7dy6ffVb5VKmKDB06lNq1a7N161bOnDnD4cOH5f319/fHwcEBfX191NTUkEgkGBoakp+fT48ePfDx8ZEHeIYOHcqaNWsICwujQ4cO8vYXLFhA3bqyp/Pz58+nU6dOnDt3jubNm1epfxKJRJ7Ly8RE9uHXu3dvxowZQ2JiImZmZpw7d460tDR5kKqqRowYgcrjJ1WlpaUUFxfj7u7OunXrcHaWTbNRUVFh9uzZDBgwQF5vyJAhjBgxgtTUVCwsLNDS0kJFRUXev6dt2bIFLS0t+VRJkOVNa9++PXv27JHn/XqR6Oho1NXVsbKywtLSEktLS0xNTbG0lD0xXrlyJf369aN///4A1KpVi7lz5/Lhhx8SExODtbU1X375Jd26dWPWrFkEBwczZswY+bko/L1UFhAumwd/+fhKIm8dx6VxX8xqupOTlcTN4G2c2v01bXt/jaqaBrVd36OoMJfQc78RfnUfSkpKWDs0p7ZbRyJvHnsbhyMIFarqef602MRkvl0ZgIqKCpOG9itXprCoiBPnr+LdpAE6WlX/ciYIb8rLnudR9+8Q9zCSwSO/eJPdEoQ3qrLH2hVl84nNzOa7oxdRUVZmQmvP15LzRxCEt+vatWv8+OOPqKqqlstn7evry759+6rdtgh4/QP06NGDs2fPsnDhQh48eEBERASRkZHlgg5eXk9ylaiqquLi4sLdu3dJS0sjISGBH3/8kcWLF8vLlJaWUlBQQExMzHMTwFemdevWtG7dmqKiIkJCQjhx4gS//vorH3/8MYcPHy43bF8ikTBo0CAOHjzIjRs3iIqKIiwsjJSUFIUpjdra2vJgF4CtrS16enqEh4dXOeD1vP4aGRmxZ88ePvnkE3bv3k379u1ferTSt99+i4eHB/n5+Wzbto0//viD4cOH07Tpk5EBzs7O6OnpsXr1aiIiIoiKiuLOHVnSzqokpg8PD8fV1VXhPTQxMcHOzq5csPN5unfvzs6dO+nUqRMODg40b96cTp06yQNet27d4saNG/LRd/DkJvv+/ftYW1ujo6PDvHnz+PDDD6lXrx6jR4+u0msLb5/a45FdxY/zcJUpfjyyS01Dm9zsVCJCj+DcqDduzZ8EY43MHDkQMJ7Im0dxrC8LjDs16IGjRxeyMxNQl+gi0dLj/KGfUJeI6QLCu/O8kVy5j6fXa2kqjvy6eS+Sheu3IVFX56sxH2JubFiuzeth98nNz5cnvBeEd00ikV3PC55JG5GfJ7u+SzQVp3yFXA1GU0ubOi6eb6eDgvAGaKrJvprmFyneJ+c9Xt1R65lp77cSUvnx5FU0VFWY9V5jzHXFCtKC8E+koaFRLk1SmYyMjCqlAngeEfD6B/jyyy85dOgQPXv2xNvbm7Fjx7J27Vr5dMUyKs/MjS8pKUFDQ0MeSJo+fXqFwSILCwuSksrn6nmRO3fusGXLFmbOnImGhgZqamo0aNCABg0a4OXlxciRIwkLC8PNTfHLQ25uLoMGDSI/P5/OnTvTq1cv3N3dy41WevZYQBage5WTvazdnj17snfvXgYNGsTRo0cVgoBVZWZmho2NbHrAl19+SV5eHhMmTGDjxo3ywOOFCxcYPnw4bdu2xcvLi27dupGXl8fYsWOr9BrPe7pbWlqKmlrleW5Altx/z549XL16lb/++oszZ86wadMmxo0bx6effkppaSkff/wxvXqVTxT99Kiz0NBQVFVViYyMJC4ujpo1a5YrL7x7uoZWgCzPloFpbfn27IwEAGoYWpOblYxUKsXYUjHhdw2jmmhIdMlMewhAWsJdcrNSsHZsRg1Da3m59KQIhbYF4W2zMpNdmxJSUhVWWUx8nIje2uzJteuvKyH8vHU3lqbGTB8xCCP9GhW2eeVWOKZGBjjUsnqDPReEqjMxlz2YSkmOx7KmnXx7aorsem5qrniuht28jIt7Y4U8ooLwT1OWeD7hUQ62hk+u12WJ6K30niykczYyjhVnb2Cpp8MX3g0x1FJ82CEIwj9HixYtWLJkCQ0aNJB/B1VSUiInJ4d169a90oAXkcPrby49PZ1t27bx1VdfMX36dPz8/HB2diYiIqJcQCQ0NFT+e2FhIaGhoTg6OmJkZIShoSEPHz7ExsZG/nPz5k1++umnavdt27ZtHDtWfmqTrq4uSkpKGBkZldt35swZbt68yaZNmxg/fjy+vr7o6OiQmpqqcDyPHj0iOjpa/ndYWBhZWVnUqVM+78qLVDSsuXfv3oSHhxMQEICuri4tW7Z8qTYrMmvWLMzMzJg6dSp5j5++rlu3jiZNmrB06VKGDh1KixYtiI+XrapUdqwvGnbt5ORESEiIPIE8QEpKClFRUdjb21epX0FBQWzdulWe8H779u307duX/fv3A+Do6EhkZKTCeZGQkMD3339PTo4sf8idO3dYvHgxc+fOpV69ekydOvWVFjsQ3hxdfQu0a5jx8O45he0P7557vM8UHT0LlJSUSY69pVDmUXosBflZ6NQwByAp9hbBh36i8HFeMICE6Otkpj7Eyv75ywgLwptmbmyIqZEBwdcVz+Hg67ewMDGSJ5y/ciucpb/uoo5NTb4eN+y5wS6Au1Ex1LWr9Sa7LQgvxcjEAgMjU0KvKl7PQ6+ew9hUtq9Mbk4WKUnx2NrXfbYZQfhHMdfVxkRHk/PRCQrbz0cnYK6rhYmObMr51dgkfv7rBo4mBnzVsYkIdgnCP9yUKVPIzc2lc+fODBw4ECUlJfz9/encuTPx8fFMmjSp2m2Lx0B/I1FRUZw6dUphW1keqmPHjlGvXj3y8/PZvHkzN2/exMPDQ6HsDz/8gL6+Pra2tixfvpzCwkL5CTNixAgWLVqEpaUlrVu3JiwsjDlz5tC+fftqjZqqW7cu3bt3Z+bMmcTGxtKuXTtUVVW5c+cOixYtolevXvJpc9ra2sTGxpKQkIC5uezLdFBQEJ06dSI+Pp4ff/yRoqIihcCOsrIyEyZM4MsvvwTgq6++onHjxi+dO0pLSzYlIDQ0FAcHByQSCXZ2djRo0IDly5czePDgCkeTvSxtbW2++eYbPvroIxYvXsy0adOwsLDg6NGjXLp0CXNzc86fPy8fTVZ2rFpaWmRmZhIZGSlP9F/mgw8+YOvWrUyZMoXRo0fLV+s0MDCQ52KrTEFBAfPnz0dbW5uGDRuSkJDAxYsX5e/jiBEjmDBhAsuWLaNLly4kJCQwc+ZMrK2tMTExobCwkKlTp9K4cWP69OlDw4YN6dGjB2vWrGHkyJGv/L4Jr6aoIJdHaQ/R1jNHoiWblluvaT8uHF7K5eO6WNZuRGzEBR7e/Ytmvp8DINHSo45nN8IuBwJgVsuD3KxkbgZvQ7uGKbXd3gPApm5r7lzcydk/FlC3YS9ys5K5dnI9xpZ1sa3b9l0crvAflZufT2xCCqbGBujpyJ7+9+nYhuVbA9HV3odXPScuhYZx7tpNJgzpC8hycq3aHoREQx2/91oTm5Ci0Kahvq48UX5paSmxiSm08BTTGYV3Jz8vl6SEGAyNzdDRlZ2b7X37siPgZ/Zor6GuW0Nuh1wk5Mo5Phg2UaFuQpzsAaGJuXW5dgXh7yy3sIjYzBzMdDWp8Xi6em93B1aeDUH3/E0aWJtyOSaR4KgExreqD0BhcQlrzoUiUVOhl5s9sZk5Cm0aamm8VKJ8QRDePQsLC/bs2cOGDRsIDg6mVq1a5Obm0rVrVz766CNMTcuvrl1VIuD1N7J371727t2rsM3KyorFixfj7+9Pt27d0NPTo0mTJkyaNIlVq1bJRxOBLGn9woULiYmJwd3dnfXr16Ovrw/AsGHD0NDQICAgAH9/f4yNjenXrx/jx4+vdn/nzZuHq6sre/bsYcWKFRQVFWFjY0Pfvn358MMP5eX69+/PF198Qffu3Tl37hzTp09nw4YN/PTTT5iZmeHr64uFhQUhISHyOoaGhvTo0YMxY8aQl5dHu3btmDVr1kv3sWnTpnh4eNC/f38WLFiAj48PAH5+fly5cqXCqXzV1bx5c/z8/Ni0aRNdunRh/PjxpKSkMGrUKAAcHBz47rvvmDJlCiEhIdjb29OxY0e2b99O9+7d2bx5s0J71tbWbN68mQULFshXa2zRogULFiygRo3nj1R4Wt++fcnIyGD58uXEx8ejp6dHp06dmDx5MgCdO3dm0aJFrFq1ipUrV6Kvr4+3t7d8/6JFi4iJiWHVqlWALJfa+PHjWbRoEa1bt5Yn6BfejfSkCE7snE3jjuOwc/EGwM7Fm9KSIu5cDiTy5jG09cxo0ukzatV5MpLRo9WHaOoYcj/kEGFX9qCpbYhZLQ/cmg9EXUMWUNDUNqB1ry+5fmoDf+31R12ig109b1ybDUBJWQwOFt6eyJh45v68gTEf9KRtY1l+oraNPSkqLmHvib84cf4qpkYGfDrQj+aestXpwh/EkJ6ZBcC3K8uv7NOnU1v6dW4HQFZuHiUlJWhrihECwrsT9zCCNYvn0GfwWLyays5Nr6btKC4u4vTRIC6dO46hsRn9PhyHu1cLhbrZWZkAaGrplGtXEP7OHqQ94psjFxjV3I029rKAbRt7a4pKStl3K5I/78dgqqPJmBbuNLOVTWG/m5JBep4sh+N3Ry+Wa7O3uwN9PBzf3kEIgvBaGBgYMHHixMoLviQlaWXLwAjCv9DSpUs5e/YsW7dufddd+U+ataGw8kKC8A/3hevxd90FQXjjrmi2ftddEIQ3zj3w83fdBUF44wxmrnjXXaiWrEsH33UXnku3Yed33YW/rYsXywesX6RRo0bVeh0xwkv4T7l8+TKRkZFs2rSJr7/++l13RxAEQRAEQRAEQRD+UwYPHlxhPuunx2M9vf/27dvVeh0R8BLK6d69Ow8fPnxhmfPnz7/yionvwokTJ9i8eTO9e/eWT28ESExMpHPnF0fg3dzc2LSp/NSYd6Vhw4aUlJQ8d7+RkRFHjx59iz0SBEEQBEEQBEEQhBd7+nt1XFwcs2fPln9HNzExISMjg+PHj/Pbb7+90kAVEfASylm5ciVFRUUvLKOmpvaWevN6TZ48WZ6f6mnGxsYEBga+sK6GhsYb6lX17Nq1q9xKnU97Hcn4BUEQBEEQBEEQBOF1atz4yarvgwcPZujQoXz+ueL08QYNGiCRSFi/fj2+vr7Veh0R8BLKKVtd8b9ERUUFGxubd92Nl1KrVq133QVBEARBEARBEARBqLYbN24wevToCvd5enqyZs2aarctltoSBEEQBEEQBEEQBEEQ3jpzc3NOnz5d4b6DBw++0kAPMcJLEARBEARBEARBEARBeOs++ugj5syZQ1JSEu3atcPAwICUlBQOHjzIn3/+yY8//ljttkXASxAEQRAEQRAEQRAEQXjr+vfvT3FxMStWrOCPP/6Qb7ewsGDhwoUKi829LBHwEgRBEARBEARBEARBEN6JQYMGMWjQICIiIsjMzMTAwABbW9tXblcEvARBEARBEARBEARBEIR35v79+1y4cIGsrCwMDAwoLS2ldu3ar9SmCHgJgiAIgiAIgiAIgiAIb51UKuWrr77i999/RyqVyrcrKSnRq1cvvvvuu2q3LQJegiAIgiAIgiAIgiAIwlv3yy+/sHPnTsaPH0/37t0xMTEhKSmJPXv2sGLFCurUqcPQoUOr1bYIeAmCIAiCIAiCIAiCIAhv3Y4dO/j4448ZPXq0fJu1tTVjx46lqKiI7du3Vzvgpfya+igIgiAIgiAIgiAIgiAIVRYfH0/Tpk0r3NekSRNiYmKq3bYY4fWWeXt706tXL8aNG/fSdWNiYmjfvj2bNm2iSZMm1Xr96rQhlUoJCAhg586dREZGoqamRt26dRk8eDCdO3eWl4uLi+Pq1at06dKlSu3u2rWL6dOnExYW9twyT79fS5cuZffu3Rw/fhwAJycn5s2bh5+fH0VFRfz666/Vjvw+q+x9epaWlhY2NjaMGDGiyscJkJuby+7duxk4cCAA06ZNIzY2loCAgNfSX+HfLzcrhUObJ9Ci6zRMa7q+sGx02Glunt9OzqMktGuYULehH3Yu3hWWLSrM49DmCdRr+r5CmX3rRpLzKKnCOto1TOk6bFX1D0YQnnE97B6/7T/Ow/gk9HS16dyyMV3bNkdJSanC8kXFxWw/eIIzl0PIysnF0tSYHt4taNHATaHc7ftRbN1/lKi4RLQkEhq71aW/b3s0JRryMjEJyWzee5hb9x+goqKCq4MdA7p2wMLE6I0es/DflZGewuL/fc7gT6ZQu86Lr+fXL53h+IEdpKcmoW9oQpuOPfFq2q7CsgX5eSz+3yTad+lXrsy2DYu5dvF0uToDhn+OW4Nm1T8YQXjGjbgUtl0L52FGFnoSDTrVtaGLs+3zr+clJey4fo8zkXFkFRRiqadNd5faNLezVCh3JSaJnTfu8TAjC10NNZrYWNDPwxGJmuzr7IqzNzh1P/a5/VrSqy0mOpqv7TgFQXh9rKysCAsLo1mz8p9Hd+7cwdDQsNpti4CXUKklS5bw+++/M2PGDNzc3MjPz+fAgQNMmDABf39/evbsCcAXX3yBlZXVSwWCKrNjxw40NDQq3HfmzBl0dXUB2LdvH/PmzXttAa8yS5cuxdPTE5AF/pKTk1m1ahWTJ0/GysqK+vXrV6mddevWsWvXLnnAa+bMmZSUlLzWvgr/XrlZKZzcPZfCgpxKy8bcPUfwwUU41u+KuY0nsRHnuXB4KSoqatRyaqVQtjA/mzN751UY2GrR9QtKS4oUtqXEh3Ht1Hrs3Tq92gEJwlPuPohh/i9baF7flX6d23EnMprNe49QUlpKz/atKqzz06bfuXLrLl3bNsPNsTYRMXGs3LaHR9k5+LSWPSF8mJDEtys34VS7FhOG9CX9URab9x4hMTWdaSNk1+Kk1HRmL12LtqaEYX6+6OnqcDz4CjMX/8L8SSMxMdR/W2+D8B+RkZ7C+mXfkp9X+fU89Gow2zYspnnbLtRx8eDWjYvsCPgZVVU1PBq2VCibm5tNwKr5pKclV9hWfMwDPLxa0Lyd4j2asalF9Q9GEJ5xNzmDBScu0dTWgr4ejoQlpbPlyh1KSkvp4WpfYZ0lp69xNTaZLs52uFoYEZGayargUB4VFNK5ri0AF6IT+OnUVVzMDBnfqj7FpaXsDrnPt8npzO3UFBVlZXq52dPBsZZC29mFhfx06houZoYYa0ve9OELglBNXbt2ZenSpZiZmdG5c2eUlJSQSqUcOHCAZcuW8f7771e7bRHwEiq1ZcsWRo8eja+vr3ybo6MjkZGRbNy4UR7wehNeFM01MTGR//70ag6vk56ensLrmJqasnDhQho1asSBAweqHPB6tn9lgTpBeBGpVMqD2ye4fmpDlevcOLsZa4fmeLYZBoCFrSeFedmEnNuiEPCKvX+BqyfXUlyYV2E7BqaKSwAXFeRy7sCPWNo1xLmR38sfjCA8x7aDx7G1tODTgbLzytPZkdKSUnYfPY1v66aoq6kplI+MiediyB36+7bH773WALg72aOhrs7WP47SulF9tDUlnL58AyUlJaYO+wCJhjoAJSWlrPl9L8lpGZgY6vPHyXMUFhbhP/ETzIxlnzf16zow46c1bP3jKOMH93mL74TwbyaVSrly/k/279pY5TqHgrbg6tmUrn2GAlDHxZPcnCyO7PtNIeB168ZF9v2+joKCiq/nRUWFJCfF0dK7K7Xs6rzScQjCi/x+/S42hjUY28IDgPpWJpRISwkMvY9PXVvUVVUUyj9Ie8Slh0n0q+9ILzcHANwsjJGoqrL1ahitaluhra7Gzhv3sKyhzTTvRqiqyDLyOJsa8lngSf68H0t7x5qY62pj/szt9aKTV9BRV+PTlh7PHWEmCMK7N2LECC5dusTEiROZMmUKBgYGpKenU1JSQuPGjfnss8+q3bbI4fU3UlhYyPz58/H29sbV1VX+j5uWlqZQ7urVq3Tr1g1XV1f8/PwIDg5W2L9z5058fHxwd3fHx8eHjRs3UlpaWu1+KSsrExwcTH5+vsL2WbNmsXTpUgAGDx7MhQsX2L17N97esmlRcXFxTJw4kWbNmlGvXj1at27NggULyvVl+/bttGrVCg8PD0aNGkVs7JPhyN7e3vLXeJaTkxO7du2ST40s23bgwAFcXV0JDAxUKP/DDz/Qu3fvar8PZZSVlVFVVUVV9Um8+OjRo/Tt25f69evj5uaGn58fp0/Lpg4sXbqUZcuWERsbi5OTEzExMUybNo3BgwfL69+/f59Ro0bRpEkTvLy8GD9+vML7UJnz58/j4uLC6tWradKkCX5+fpSWlnLp0iWGDBlCgwYNcHV1xcfHhz179ijUDQoKonv37ri7u9O+fXs2bnxyM56VlcXs2bNp2rQpXl5eDBkyhJCQkOq+dcJLykiO5PKxldg4t6Vxp8ov9DmPkshKj8PaQXG6ck3HZmRnJJCVHgdAYUEOf+3zx8TKhdY9Z1epL7cu/E5BXiYN2o14+QMRhOcoKi7m1v0HNHavq7C9iYcLefkF3ImILlcnNlE2gsWrnpPCdldHO/ILCrl5L1LWdlExKirKaKg/CZjpasums2Tl5gIQk5iClZmJPNgFsiWwXextuHL77ms4QkGQiY95QODW1Xg2bkvfIeMrLZ+emkRKUhz1PBSv566ezUhNTiAlKR6AvNwcNq/+HjtHFz4aO6vCthLjoiktKcHc2vaVj0MQnqeopITbiak0qmmmsL1JLXPyi0oIS04vVyc2MxsAL2tThe31zA0pKC7hVqLsO1BcZjbulibyYBeAnqYGVno6XI2pOP3C1dgkLkQnMrhhXbTV1SosIwjC34O6ujrr169n1apVfPjhh7Rt25ahQ4eycuVKNm7c+NwZX1UhAl5/I99//z2HDx/G39+fQ4cO4e/vT3BwMCtWrFAot3btWkaPHs2ePXtwcXFh5MiRJCYmArBt2za+//57Pv30U/744w8mTJjAmjVrWLhwYbX7NXLkSE6cOEGLFi0YN24cGzduJCwsDCMjI6ytrYEnU/98fHzYsWMHAKNHjyYrK4v169dz8OBBhg0bxi+//CLPwVUmICCAxYsX8+uvv5Kens7YsWNfasSWr68vM2bMAGTTHNu3b0/btm0VAl6lpaUEBQXh5/dqI1MyMzPx9/cnLy+Prl27AhAaGsq4cePo0qULe/fuZfv27RgaGjJ16lQKCwsZNmwYw4YNw9zcnDNnzmBhoTh9IDY2lvfffx91dXU2btzIunXrSE5OZtCgQWRnZ1e5byUlJZw8eZJt27bxv//9j+TkZIYPH46bmxu7d+8mMDAQd3d3Zs6cSUpKCgD79+/niy++oEePHgQFBTFp0iQWLlzIrl27kEqljBgxgocPH7Jq1Sq2b99O/fr1+eCDD7h169YrvY9C1WjpmuA7dDmebYahqlr5hf5Rmiyho66BYt4LHX3ZOVcW8FJV1aDzkKU06fQZGlp6lbab8yiZ8Gv7cGrQE+0appWWF4SqSkxJp7i4BAtjxXxZ5o8DULFJKeXq6OpoAZCcnqGwPSFF9sUoKVX2papdE9l09I2BB8nKyeVhQhK/HzpJLUszbC3NAaiho0VGVjbFxYpTzBNT08nNyycrJ/cVj1AQZPQNjfl8zlK69hmKurp6peWTEmQPvYxNFa/nxiay63lKoux6rqauwcTZi+k7ZBzaOjUqbCs+5gEAl84e47vpHzNrfH9W/TiL6Mjw6h6OIJSTmJVHcakU8xraCtvNdGV/x2WWn8ar+3j0bXKO4ujEhCzZtTfp8X91NdRJfaZMcUkpKTl55eqCbETlr5fv4GxmSFMbMW1XEP4p2rRpw5QpU/jmm2+YPHkybdq0eeU2xZTGvxE3Nzc6d+5Mw4YNAVnytubNmxMernhDMm7cOPn0wjlz5nD27Fm2bNnCxIkTWb58OaNHj5bn0apZsybZ2dnMnTu32kMBhw4dSu3atdm6dStnzpzh8OHD8v76+/vj4OCAvr4+ampqSCQSDA0Nyc/Pp0ePHvj4+MgDPEOHDmXNmjWEhYXRoUMHefsLFiygbl3Z0/358+fTqVMnzp07R/PmzavUP4lEIp8iWDb9sHfv3owZM4bExETMzMw4d+4caWlp8iBVVY0YMQIVFdnw69LSUoqLi3F3d2fdunU4OzsDoKKiwuzZsxkwYIC83pAhQxgxYgSpqalYWFigpaWFioqKwvTIMlu2bEFLS4uFCxfKb4KXLFlC+/bt2bNnjzzvV1UMGzYMW1tbAKKjoxk3bhzDhw+XD+P+5JNPCAwM5MGDBxgbG7Nx40Z8fX0ZPnw4ALa2tuTk5CCRSAgODubatWsEBwejr68PwKRJk7hy5QqbNm3C39//pd5L4eVpaOoCVZ/+WvQ4x5equpbCdlV12aiWokLZjaOyiio1DKyq3G741b2oqKhRx/Pl/v8RhMrk5RcAKCSRB9B8/CWobP/T6tnbYWZkyPpd+9FQU8O+liVRsYls2XcEJSUl8gsLAahlYcbAru+xducf7D8lGwltYqjP1+OGoawse97XrrEnf10J4eetu+nv442WpoRTl65z7fY9AAqLisq9viBUh5a2LlraVb+el+X4kmgqJtnWkMjyEOXny67nqqqqmJgpBsWeFfc44FVYkE//jyaQm5PNySO7+WXxHEZPmYeFlU2V+yUIz5NXVAyAlpri10tNNdl9dG4F11MXM0NMdTTZcOE2Gioq1DbSIyo9i61Xw1BSgvzHDyPa2FsTGHqfPaH3aedgTWFJKduuhZNXVIzkmWmSAJdjkojNzOHDRi6v+zAFQXhNymZoVYWSkhLfffddtV5HBLz+Rnr06MHZs2dZuHAhDx48ICIigsjISHkArIyXl5f8d1VVVVxcXLh79y5paWkkJCTw448/snjxYnmZ0tJSCgoKiImJqfZwwNatW9O6dWuKiooICQnhxIkT/Prrr3z88cccPny43NNKiUTCoEGDOHjwIDdu3CAqKoqwsDBSUlIUpjRqa2vLg10gC7jo6ekRHh5e5YDX8/prZGTEnj17+OSTT9i9ezft27dHT6/y0SxP+/bbb/Hw8CA/P59t27bxxx9/MHz4cIVlU52dndHT02P16tVEREQQFRXFnTt3AKqUmD48PBxXV1eF99DExAQ7O7tywc7KlAW7AGrVqoWfnx+bNm0iPDyc6Ojocv0KDw8vt8hAv379APjll1+QSqW0a6e40lNhYSEFBeW/hArvXmUjI6uTv6KkuJDIm8ewq9cBdYlOdbsmCBUqlb54ur2ycvlzVlVVhZmjBrNiayDfrJBNwTbQ0+WjXj4s2vg7Go9zfgUeO82WfUfp1LIxTdxdyMrJYcfhU3y9fCNzxw1DX1cHdyd7xg3qzYbdB/jrimy6tlsde3p2aMn2AyfK5Q8ThLfldV7Pm7f1xdnNizounvJt9k5u/DD3U04c3MGA4Z9Xu5+CUKa0knNWuYJzVlVFmekdGrHqbAj/O3oRAANNDYY0cmbJ6WtoPA5m9fFwoFQqZcf1u/x2NRxVZSXaOdTEy9pUPi3yaYfCorAx1MXNwvg1HJkgCG/C7t27UVJSwszMTP4g8nleJQefCHj9jXz55ZccOnSInj174u3tzdixY1m7dq18umKZshFHZUpKStDQ0JAHkqZPn15hsMjCwoKkpIrnuT/PnTt32LJlCzNnzkRDQwM1NTUaNGhAgwYN8PLyYuTIkYSFheHmprgUfG5uLoMGDSI/P5/OnTvTq1cv3N3dy41WevZYQBagq8pw/xdRUVGhZ8+e7N27l0GDBnH06FGFIGBVmZmZYWMje/L55ZdfkpeXx4QJE9i4caM88HjhwgWGDx9O27Zt8fLyolu3buTl5TF27NgqvcbzbmpLS0tRe8kvW08HNO/du8eAAQOoV68ezZs3p2PHjhgYGNC3b195mafzkFX0+jo6Ouzatavcvlf99xHeDLXHI7ueTURf/Hhkl5qGdrk6lUmIukZRYS42ThWvlicIr0JLUzZaJa+gUGF77nNGfpUxNzZk7rhhZGbnkJWdi4WJISnpmUilUnS0tCgpKWHn4ZO08nJneO8nQX0XBzvGffsTe0/8xeDustVGW3m508LTlcTUdNTV1DDSr8G2A8dRUlJCW1Os6iW8GxKJ7Hpe8Ez+1Pw82fVdoln167mJmWW5UWCaWtrUql2X+JioV+ypIMhoq8vuKctGepXJfc7IrzLmutp81akpj/ILeJRfhEUNLVJy8pFKQedx7i0VZWU+aOBEb3cHkrLzMNDSQFtdjbmHgtHRULwnzSoo5HZiGv09nSp6OUEQ/iZ8fHz4888/KSwspHPnznTp0kVhYM/rIgJefxPp6els27aNRYsWKayGGBERgZaW4vSk0NBQ+aiowsJCQkND6d+/P0ZGRhgaGvLw4UN5kAZkeZqOHDnC/Pnzq9W3bdu20bRpU4V+gWylQSUlJYyMjMrVOXPmDDdv3uSvv/7C2Fj2dCUjI4PU1FSFAM+jR4+Ijo6mVi3ZMsJhYWFkZWVRp87LrSJUUdS3d+/erFmzhoCAAHR1dWnZsmUFNV/OrFmzuHDhAlOnTmXfvn1oamqybt06mjRpopBcPyAgAHgSzHpRVNrJyYmgoCAKCwvlgaSUlBSioqIUpkm+rN9++w0jIyPWr18v31aWP62sX/b29uWS0M+bN4/4+Hj8/PzIzs6mqKgIBwcHhfegbt26DBo0qNp9E94MXUPZNMXsjHiFVRazMxIAqGFo/dJtxkVeQruGGYbmjq+nk4LwFDMjA5SVlUlMUVycpSwfl7VZ+WnghUVFBF+/RV27WpgaGaCnI/viHxkrS+JtZ21BZnYuBYVF1LGrqVBXT0cbS1NjHibIEt/HJCRz/2EsbRrVx8LkyWdZZEw8NpbmlT5xFIQ3xcRcFqBKSY7HsqadfHtqiux6bmpe9WnpNy7/haaWNo7O9RW2FxcVoqNbcd4vQXhZpjpaKCspkZilmPuw7G8rvfKjxAuLSzgfnYCTqQGmOlrUePyQIzItEwA7Q9n5eSshlaLSUjwsTbDWl7VTUlpKdEYWbewV721uxKVQUiqlSS3z13uAgiC8VosWLSIvL48TJ06wf/9+PvroI4yNjfH19aVLly7y9EGvStzJvQNRUVGcOnVK4efu3bvo6upy7Ngx+fS/2bNnc/PmTQoLFZ98//DDDxw9epR79+4xbdo0CgsLGThwIEpKSowYMYKAgAA2b95MdHQ0R44cYc6cOUgkkmqNyqlbty7du3dn5syZrFmzhnv37vHgwQMOHjzIjBkz6NWrF5aWspsybW1tYmNjSUhIwNxc9iETFBREbGwsly5dYsyYMRQVFSkcj7KyMhMmTODatWtcu3aNqVOn0rhx43LTOCtTFhQMDQ2VryZpZ2dHgwYNWL58OT169KhwNNnL0tbW5ptvviEmJkY+YszCwoKwsDAuXbpETEwMO3fulO8rO1YtLS0yMzOJjIyk6JkcBh988AE5OTlMmTKFO3fucOPGDT777DMMDAzKTTd8Gebm5iQkJHDy5EliY2M5fPgwc+bMUejXJ598wv79+wkICCA6Opq9e/eydetWvL29adWqFc7OzkycOJHg4GCioqKYN28eu3btwt7evtr9Et4cXX0LtGuY8fDuOYXtD++ee7zv5RPOpyWEY2JVt/KCglAN6mpquNjbcP7GLYWHIRdu3EZLU4JDrfJf6lVVVFi3az9Hzl2SbyspKeHg6QuYGxtiY2mGvq42Otpa5VZ5fJSdQ3xyKqaG+gDEJCbx85bdxD2VHD8mIZnrYfdp5CbOe+HdMTKxwMDIlNCritfz0KvnMDaV7auqC2eOsHvraoqLn4y8ycxIJSoijNp1XF9bn4X/NnVVFZzNDLgQnah4PY9OQEtdFXtj/XJ1VJWV2XDxFsfCH8q3lZSWcjgsGjNdLWoZyPLenY9OYPW5UIpLnkyDP3EvhtzCYho+syrk3ZQMDLUkmOgo5r8TBOHvR1NTE19fX5YtW8bZs2cZN24cYWFh9O3bl86dO7Ns2TIiIyNf6TXECK93YO/evezdu1dhm5WVFYsXL8bf359u3bqhp6dHkyZNmDRpEqtWrSIv78kUpXHjxrFw4UJiYmJwd3dn/fr18qTiw4YNQ0NDg4CAAPz9/TE2NqZfv36MH1/5EtjPM2/ePFxdXdmzZw8rVqygqKgIGxsb+vbty4cffigv179/f7744gu6d+/OuXPnmD59Ohs2bOCnn37CzMwMX19fLCwsFEYUGRoa0qNHD8aMGUNeXh7t2rVj1qyKl9V+kaZNm+Lh4UH//v1ZsGABPj4+APj5+XHlyhV69epV7eN/VvPmzeW5sbp06cL48eNJSUlh1KhRADg4OPDdd98xZcoUQkJCsLe3p2PHjmzfvp3u3buzefNmhfasra3ZvHkzCxYskK/W2KJFCxYsWECNGtV/8jpkyBAiIiLkq0Xa2toyadIklixZQkhICK1bt8bb25uvv/6aNWvWMH/+fKysrJg+fTo9e/YEYN26dSxYsIAJEyaQl5eHvb09y5Yto1mzZtXul/D6FBXk8ijtIdp65kger7ZYr2k/LhxeyuXjuljWbkRsxAUe3v2LZr4vn6NFWlrKo7QYaonpjMIb5PdeG75ZsZFFG3+nXRNPwiIfEnTiLwZ07YCGujq5+fnEJqRgaiwbzaWsrEzHFo3YfzIYI309LE2MOPTXBe5ERjNlWH+UlJRQUlKib6e2rN+1H00NDZrVr0dWTi67j51GSUmJbm1l0/49nR0xNzZkccAO3vfxJi+/gM17j2BmZECXNk0r6bkgvD75ebkkJcRgaGyGjq7set7ety87An5mj/Ya6ro15HbIRUKunOODYRNfqu12nXuzdunXBKyaT/O2vuTlZnNs/+9oaenQ0rvbmzgc4T+ql5sD/zt6gcWnrtHWwZrw5HT23Yqkv6cTGqoq5BYWEZuZg5muJjUkGigrK/FenVrsv/0AI20JFjW0ORwWRVhSOp+3bSCfIdHBsRbH7z5kxbkbtLO3Jio9i9+uhtHM1hwXM0OFPjxMz6pwNJkgCH9vOjo69OrVi169epGRkcGRI0c4cOAAK1eupE6dOhWm2akKJWllWTEF4R9s6dKlnD17lq1bt77rrghPmbWhsPJCgoKkh6Gc2Dmbdr2/wbSmq8K2xh3HYefiLS97P+QQdy4HkpeViraeGc6NemPr3LbCdnMeJbFv3chybQDk52ayZ/VQvLxH4uDe+Y0d27/VF67H33UX/jHO37jN74dOEJeUgqFeDTq1aES3di0AuHkvkrk/b2DMBz1p21iWdLu4uITfD//JqYvXycnLw8bSnD6d2uDh5KDQ7qlL19n35zliEpPQ1dbCubYNA7p0wNTIQF4mISWNDbsPcCcyGjVVVerXdeCDLh0w1Kv6inr/ZVc0W7/rLvzjRISHsmbxHEZ8Nkc+wqpsW5/BY/Fq+mSxmPNnDnP6aBCZ6akYGpvRtlMvPBtXvEx7emoS3385plwbAPfu3ODY/u0kxEaDkhJOLvXp3HMQ+oblpw0L5bkHisT+VXUhOoGdN+4Rl5mNgZaEjk42dHWRTcu9lZDKN0cuMKq5m3wqYnFJKTtv3ONURCw5hUXYGOjS290Rd0vFhPMh8SlsvRpGTEY2+poatKltRQ9Xe1RVFCcsTQ46RS0DXca38kR4OQYzV7zrLlRL1qWD77oLz6XbUNw/V0diYiKHDh3i4MGDXL16lRo1anD+/PlqtSUCXsK/0uXLl4mMjGT+/Pl8/fXX8hFfwt+DCHgJ/wUi4CX8F4iAl/BfIAJewn+BCHi9fiLgVXWJiYkcPHiQgwcPcv36dbS0tOjQoQM+Pj60aNHihYutvYiY0vgf1r17dx4+fPjCMufPn/9Hrsh34sQJNm/eTO/evRWCXYmJiXTu/OILj5ubG5s2bXrTXayyhg0bUlJS8tz9RkZGHD169C32SBAEQRAEQRAEQRCq7+kg17Vr19DU1KRdu3Z8/PHHtGrV6rXEIUTA6z9s5cqV5RKoP0tNTe0t9eb1mjx5MpMnTy633djYmMDAwBfW1dDQeEO9qp5du3bxooGYryMZvyAIgiAIgiAIgiC8DR988AHXr19HQ0ODNm3asHjxYtq0afPav4uLgNd/WNnqiv8lKioq2NjYvOtuvJRatWq96y4IgiAIgiAIgiAIwmtx9epVVFRUcHBwIC0tjc2bN5db3K2MkpISGzdurNbriICXIAiCIAiCIAiCIAiC8FY0atRI/ntlaeVfJe28CHgJgiAIgiAIgiAIgiAIb0VAQMBbeR3lyosIgiAIgiAIgiAIgiAIwj+HCHgJgiAIgiAIgiAIgiAI/ypiSqMgCG/de42K33UXBOHNy3vXHRCEN+/IRXErKfz7ub/rDgiCIAjVIkZ4CYIgCIIgCIIgCIIgCP8qIuAlCIIgCIIgCIIgCIIg/KuIgJcgCIIgCIIgCIIgCILwryICXoIgCIIgCIIgCIIgCMK/isg0KgiC8A+QkZ7C4v99zuBPplC7jusLy16/dIbjB3aQnpqEvqEJbTr2xKtpO4UyN66c5fTRPSQlxKKppY29kxudewxCt4a+vExebg6Hg7YQei2YwsICzCxq0qn7AOyd3N7EIQoCqRmZfP79cqYM6089B7sXlv3rSgg7Dp8kOS0DE0M9eni3pG1jT4Uy96Jj2Rx0mIiYODQlGrRpVJ9+ndqhqqpSYZsXQ++wYO1Wvho7tNLXF4TXKTcrhUObJ9Ci6zRMa774Gh8ddpqb57eT8ygJ7Rom1G3oh52Lt0KZyFvHCbscSHZmIlq6xjh4+ODo0QUlJaU3eRiCwI24FLZdC+dhRhZ6Eg061bWhi7Ptc8+9opISdly/x5nIOLIKCrHU06a7S22a21kqlLsSk8TOG/d4mJGFroYaTWws6OfhiETtydfZR/mF/HY1jGuxyRSUlFDbUI+BXnWxNazxRo9ZEIS/r//MCC9vb2+WLl1arboxMTE4OTlx/vz5ar9+ddqQSqVs2rSJHj164O7ujpeXFwMHDuTgwYMK5eLi4vjjjz+q3O6uXbtwcnJ6YZmn36+lS5fi7f3kRsrJyYldu3YBUFRUxIYNG6r82pUpe5+e/fH09KRnz54vdZwAubm5/Prrr/K/p02bxuDBg19bf9+Wo0eP4uPjg6enJ5988glJSUnvukvCW5SRnsL6Zd+Sn5dTadnQq8Fs27AYR+f6DPpkCrXr1GNHwM9cv3RGXub6pTNsXfsjljVrM2jEZDp2+4CIsFB+WTyHoqJCAEpLS1n/87fcunEBn16DGfjx52hq6bBh+XfEx0a9sWMV/rtSMzL5dmUAuXn5lZY9f/0WSzbvpH5dByYP64+LvR3Ltwby15UQeZnElDS+XbkJdXU1JgzpS9c2zfjjz3Os27W/wjazcnJZvX3vazseQaiq3KwUTu6eS2FB5df4mLvnCD64CHMbT1p0nYaJtSsXDi8lOuy0vExE6BEuHF6KhV1DWnWfia1zO66dXM/tizvf5GEIAneTM1hw4hKWetpMatOAlnaWbLlyh6CbEc+ts+T0Nf64HUlLO0umtPOimY0Fq4JDOXjngbzMhegEFv55GU01Fca3qs/ghs7cTEjl26MXKCktBWTfmxadvMKlh4n0re/IuJb1kSJl7uFgkrJz3/ShC4LwNyVGeP2NLVmyhN9//50ZM2bg5uZGfn4+Bw4cYMKECfj7+9OzZ08AvvjiC6ysrOjSpctre+0dO3agoaFR4b4zZ86gq6sLwL59+5g3bx5Dhw59ba8NsiCbp6fsSb1UKiU5OZlVq1YxefJkrKysqF+/fpXaWbduHbt27WLgwIEAzJw5k5KSktfa1zctKiqKCRMmMH36dJo0acKkSZP43//+x+LFi99114Q3TCqVcuX8n+zftbHKdQ4FbcHVsyld+wwFoI6LJ7k5WRzZ9xseDVsC8Ofh3TjVa0CvD0bK6xmbWrJi4QzuhFzGrUEzrl86TezDCD794nssrGwAsHOsx5LvPufe7evybYLwqqRSKScvXmNT0OEq19m6/xhNPVz4sGdnAOrXdSA7N5dtB47TooFsBOKe43+hqaHB1GEfoKqqQgOXOqirq7Fu53783muFsYG+Qpu/7NiHqkrFI78E4U2QSqU8uH2C66c2VLnOjbObsXZojmebYQBY2HpSmJdNyLkt1HJqBcCtCzup6dgcj5ZDADCr5U52Rhz3ru/HpXGf134cglDm9+t3sTGswdgWHgDUtzKhRFpKYOh9fOraov7M6NoHaY+49DCJfvUd6eXmAICbhTESVVW2Xg2jVW0rtNXV2HnjHpY1tJnm3QhVFdl4DWdTQz4LPMmf92Np71iT+Kwc7iSl80kzV9o51ASgjok+I38/xun7sfT2cHyL74QgCH8X/5kRXv9EW7Zs4eOPP8bX15eaNWvi6OjI+PHj8fHxYePGqn8Brg5DQ0O0tbUr3GdiYoJEIgFkN2tvgp6eHiYmJpiYmGBqakq9evVYuHAh6urqHDhwoMrtPNs/XV1d9PX1X3Nv36y7d+9SVFSEr68vDg4OtGjRgoiI5z8pE/494mMeELh1NZ6N29J3yPhKy6enJpGSFEc9jyYK2109m5GanEBKUjxSqRQHJ3cat3xPoYyJmRUAqSkJAIRcDcbOwUUhsKWmps7nXy2lVYfur3pogiD3IDaBNb/vo01DDz4d0KvS8slpGcQlpdDYzVlhe1MPFxJS0ohPTgXgetg9PJ0dFaYvNvWoh1Qq5dqd+wp1z14N5UZ4BIO6Kf5/IQhvUkZyJJePrcTGuS2NO31WafmcR0lkpcdh7aB4ja/p2IzsjASy0uMAaN1jJh6tPlQoo6SsSklx4evrvCA8o6ikhNuJqTSqaaawvUktc/KLSghLTi9XJzYzGwAva1OF7fXMDSkoLuFWYhoAcZnZuFuayINdAHqaGljp6XA1RjbrobhENtJLU/XJeA5NNVXUVFTIKix6DUcoCMI/kQh4AYWFhcyfPx9vb29cXV1p3Lgxn332GWlpaQrlrl69Srdu3XB1dcXPz4/g4GCF/Tt37sTHxwd3d3d5UKr08TDb6lBWViY4OJj8fMXpHbNmzZJPNxw8eDAXLlxg9+7d8mmHcXFxTJw4kWbNmlGvXj1at27NggULyvVl+/bttGrVCg8PD0aNGkVsbKx834umgJZNady1axfTp0+Xbztw4ACurq4EBgYqlP/hhx/o3bt3td+HMsrKyqiqqqL61AfZ0aNH6du3L/Xr18fNzQ0/Pz9On5YN61+6dCnLli0jNjYWJycnYmJiyk1pvH//PqNGjaJJkyZ4eXkxfvx4hfehKtauXUuHDh1wdXXF29ubn3/+WSHQduLECfz8/HB3d+e9997jp59+orBQdtN56NAhnJycOHTokLz8559/Trt27cjMzATA09MTLS0tvv/+e0JDQwkMDKRHjx4KfTh//jwuLi6sXr2aJk2a4OfnR2lpKZcuXWLIkCE0aNAAV1dXfHx82LNnj0LdoKAgunfvjru7O+3bt1cIpmZlZTF79myaNm2Kl5cXQ4YMISQkBOHt0Dc05vM5S+naZyjq6uqVlk9KkJ27xqaKeS+MTSwASEmMQ0lJiS69P8TFvZFCmVs3LgBgblELgPiHkZhZ1OTM8X18P3s0M8e/z7L5U4m8d+uVj0sQnmZsoMeSmeP5sGdnNNTVKi0fk5gMgIWpkcJ2c2PZ33FJKRQWFZGcloHlM2X0dLTRkkiIT06Rb8vIyuaXnX/wUS8f9GvovOrhCEKVaema4Dt0OZ5thqGqWvGo+qc9SosBQNdA8Rqvoy+7xpcFvGoY1US7hilSqZSCvCwiQo8QdftPHDx8XvMRCMITiVl5FJdKMa+h+MDcTFf2d1xm+Sm7uhqye5vknDyF7QlZsimISY//q6uhTuozZYpLSknJyZPXrWVQg3rmhuwKucfD9CyyCgoJuHyHwpISmtlYvIYjFAThn0gEvIDvv/+ew4cP4+/vz6FDh/D39yc4OJgVK1YolFu7di2jR49mz549uLi4MHLkSBITEwHYtm0b33//PZ9++il//PEHEyZMYM2aNSxcuLDa/Ro5ciQnTpygRYsWjBs3jo0bNxIWFoaRkRHW1tbAk6l/Pj4+7NixA4DRo0eTlZXF+vXrOXjwIMOGDeOXX37h+PHjCu0HBASwePFifv31V9LT0xk7duxLjdjy9fVlxowZgGyaY/v27Wnbtq1CwKu0tJSgoCD8/Pyq/T4AZGZm4u/vT15eHl27dgUgNDSUcePG0aVLF/bu3cv27dsxNDRk6tSpFBYWMmzYMIYNG4a5uTlnzpzBwkLxwy42Npb3338fdXV1Nm7cyLp160hOTmbQoEFkZ2dXqV/Hjx9n1apVzJ07l8OHDzN58mRWrFhBUFAQAKdOnWLChAn069ePffv28dVXX3HgwAGmTJkCQKdOnejRowfffPMNmZmZ7Nu3jwMHDrBgwQL09PQAMDIy4rPPPmPXrl0MGDCA4cOH8/HHH5frS0lJCSdPnmTbtm3873//Izk5meHDh+Pm5sbu3bsJDAzE3d2dmTNnkpIi+7K3f/9+vvjiC3r06EFQUBCTJk1i4cKF7Nq1C6lUyogRI3j48CGrVq1i+/bt1K9fnw8++IBbt0TQ423Q0tZF38C4yuXLcnxJNDUVtms8HpGZn19xDovU5HgO7N6EpbUtTq4NAMjJfkTo1XNc/OsoPr2GMPiTL1BT12D9sm9FDi/htdLV1sJIX6/K5ctyfGk9Pq/LaEpkAYO8/AJyHpcp2/Y0iYY6ufkF8r9Xb99LHRtrWjf0eOm+C8Kr0NDURUu36tf4osc5vlTVtRS2q6rLrvlFhYrX+NSEMAJXDeHi0eXoGdtQx1OMzhXenLyiYgC01BQz5miqyUbZ5haVH2XlYmaIqY4mGy7cJjQ+hdzCIm4nprH1ahhKSpBfLEtD0sbemgvRiewJvc+j/AJScvJYFRxCXlEx+Y9fF2BYk3rkF5cwdd8ZPtl+jIN3HjCiqStOpgZv6rAFQfibEzm8ADc3Nzp37kzDhg0BsLKyonnz5oSHhyuUGzduHL6+vgDMmTOHs2fPsmXLFiZOnMjy5csZPXq0PI9WzZo1yc7OZu7cuXz2WeXD1CsydOhQateuzdatWzlz5gyHDx+W99ff3x8HBwf09fVRU1NDIpFgaGhIfn4+PXr0wMfHRx7gGTp0KGvWrCEsLIwOHTrI21+wYAF169YFYP78+XTq1Ilz587RvHnzKvVPIpHIc3mZmJgA0Lt3b8aMGUNiYiJmZmacO3eOtLQ0eZCqqkaMGIHK41wqpaWlFBcX4+7uzrp163B2lk1jUVFRYfbs2QwYMEBeb8iQIYwYMYLU1FQsLCzQ0tJCRUVF3r+nbdmyBS0tLflUSZDlTWvfvj179uyR5/16kejoaNTV1bGyssLS0hJLS0tMTU2xtJQ9fV25ciX9+vWjf//+ANSqVYu5c+fy4YcfEhMTg7W1NV9++SXdunVj1qxZBAcHM2bMGPm5CPDbb7+xePFi6tSpw71793BwkOU4yM7ORkdHcTTCsGHDsLW1lfdt3LhxDB8+XL4yzieffEJgYCAPHjzA2NiYjRs34uvry/DhwwGwtbUlJycHiURCcHAw165dIzg4WD4NdNKkSVy5coVNmzbh7+9f6fsjvF2VBawrWiEpKSGWdcu+RllZhQEffy4vU1JSTF5uDqOnzJMH3ewcnFnw1VhOHtpF/2ETX/8BCEIVVOU8r+zZjRKy8/zPC1e5HRHFD1PHvq7uCcIb87LXeG1dU9r1+ZacR4mEnt3Cse3T6DjgR1TVKh9NJggvq7SS81O5gnsQVRVlpndoxKqzIfzv6EUADDQ1GNLImSWnr6HxeEp6Hw8HSqVSdly/y29Xw1FVVqKdQ028rE3l0yJjMrKZcygYYx0JE9p4oqWmSnBUAmuCQ9FQUaGprRjlJQj/RSLgBfTo0YOzZ8+ycOFCHjx4QEREBJGRkQpBBwAvLy/576qqqri4uHD37l3S0tJISEjgxx9/VEgkXlpaSkFBATExMc9NAF+Z1q1b07p1a4qKiggJCeHEiRP8+uuvfPzxxxw+fLjcNCeJRMKgQYM4ePAgN27cICoqirCwMFJSUhSmNGpra8uDXSALdOjp6REeHl7lgNfz+mtkZMSePXv45JNP2L17N+3bt5ePVqqqb7/9Fg8PD/Lz89m2bRt//PEHw4cPp2nTpvIyzs7O6OnpsXr1aiIiIoiKiuLOnTsAVUpMHx4ejqurq8J7aGJigp2dXblg5/N0796dnTt30qlTJxwcHGjevDmdOnWSB7xu3brFjRs35KPv4MkN6/3797G2tkZHR4d58+bx4YcfUq9ePUaPHi0ve/ToUebOncuCBQvw9fVl1KhRTJ48md9++43Bgwfz/vvvM2HCBHn5smAXyIJrfn5+bNq0ifDwcKKjo8u9P+Hh4eUWO+jXrx8Av/zyC1KplHbt2insLywspKCgAOHvRyKRPfUveGYadH6ebLi/RFNxmkFEeCib1yxAXUPCx5/Nxcjkyc2guoYmpuZWCiPMNCSa1KrtRFzMgzd0BIJQuadHcj0t9/F5r6UpQetxmfyC8jmL8goK0NaUkJqRyYbAgwzp0Qk9HS1KSkooLZVdn0tLpZSWlqKsLAbCC38fao9HdhUXPjO16/HILjUNxWu8po4hmjqGQD20a5hxYscsYu6exdZF8XNdEF4HbXXZ18q8p0ZcAeQ+Z+RXGXNdbb7q1JRH+QU8yi/CooYWKTn5SKWg83iau4qyMh80cKK3uwNJ2XkYaGmgra7G3EPB6DyeFnngzgNKpVJmdmgsnyrpZmFMbmER6y/eoomNeYUP/gRB+HcTAS/gyy+/5NChQ/Ts2RNvb2/Gjh3L2rVr5dMVy6g8s3pTSUkJGhoa8kDS9OnTKwwWWVhYkJSU9FJ9unPnDlu2bGHmzJloaGigpqZGgwYNaNCgAV5eXowcOZKwsDDc3NwU6uXm5jJo0CDy8/Pp3LkzvXr1wt3dvdxopWePBWQBuqrkCXoRFRUVevbsyd69exk0aBBHjx6t1mqCZmZm2NjIkmV/+eWX5OXlMWHCBDZu3CgPPF64cIHhw4fTtm1bvLy86NatG3l5eYwdW7Un9c97UlpaWoqaWuV5ZECW3H/Pnj1cvXqVv/76izNnzrBp0ybGjRvHp59+SmlpKR9//DG9epVPxPz0qLPQ0FBUVVWJjIwkLi6OmjVlq8sEBgbSsmVL+Qi5H3/8kX79+jFgwAAyMzNp3769QptPB1bv3bvHgAEDqFevHs2bN6djx44YGBjQt29feZmn86FV9D7o6Oiwa9eucvte9TwR3gwTc1mgNSU5HsuadvLtZYnoTc2t5NuuXzrD75uWYWJuxdAxM9DTV8x1ZGxqTnFx+ekHpSUlVf7/QxDeBCsz2bUzISUVO+snQdrEFFneTWszEyQa6hjq1ZAnsC+TmZ1DXn4BVmbGhIRHkJuXz8rf9rDyN8Xcht+s2IiJoT4/zxYjGYW/D11D2TU8OyMeA9Pa8u3ZGbJrfA1Da4qL8om9fwFDc0d09Z/8/2FoZg9AXk75xOGC8DqY6mihrKREYpbi1Nqyv630yudILCwu4Xx0Ak6mBpjqaFHj8cOKyDRZHls7wxoA3EpIpai0FA9LE6z1Ze2UlJYSnZFFG3tZmpfk7Dws9bTlwa4ydU0NCY5K4FF+IXqaYnSjIPzX/OcfXaanp7Nt2za++uorpk+fjp+fH87OzkRERJQLiISGhsp/LywsJDQ0FEdHR4yMjDA0NOThw4fY2NjIf27evMlPP/1U7b5t27aNY8eOlduuq6uLkpISRkZG5fadOXOGmzdvsmnTJsaPH4+vry86OjqkpqYqHM+jR4+Ijo6W/x0WFkZWVhZ16tR5qT5W9KSkd+/ehIeHExAQgK6uLi1btnypNisya9YszMzMmDp1KnmPR6usW7eOJk2asHTpUoYOHUqLFi2Ij48HngSzXvQkx8nJiZCQEHkCeYCUlBSioqKwt7evUr+CgoLYunWrPOH99u3b6du3L/v37wfA0dGRyMhIhfMiISGB77//npwcWS6OO3fusHjxYubOnUu9evWYOnWqPIiqqalJauqTL2w6Ojr4+/uTmZmJpaUlTk5Oz+3bb7/9hpGREevXr2fEiBG0adNGnrur7P2xt7cvl4R+3rx5jB8/njp16pCdnU1RUZFC/9esWVPheSm8e0YmFhgYmRJ69ZzC9tCr5zA2le0DuBN6he0bl1DLrg4jJ35TLtgF4FSvAfExD0iKj5Fvy83JIioiDFsHlzd7IILwAubGhpgaGRB8XTGXYPD1W1iYGGFiqA+Au5M9V26FU1Rc/FSZmygrK+PqaIdXPSe+m/iJws+Ivt0AGNG3G1OHD0AQ/k509S3QrmHGw7uK1/iHd8893meKkpIyF4/+TNjlQIUyCQ+uAqBnbIMgvAnqqio4mxlwITpR4TvHhegEtNRVsTfWL1dHVVmZDRdvcSz8oXxbSWkph8OiMdPVopaBLHXK+egEVp8Lla/ECHDiXgy5hcU0fLwqpKWeNjEZ2WQ9M7I3LDkdLXVVdDTEwzpB+C/6TwW8oqKiOHXqlMLP3bt30dXV5dixY/Lpf7Nnz+bmzZsKgRCQrTZ49OhR7t27x7Rp0ygsLGTgwIEoKSkxYsQIAgIC2Lx5M9HR0Rw5coQ5c+YgkUiqNRqmbt26dO/enZkzZ7JmzRru3bvHgwcPOHjwIDNmzKBXr17yaXPa2trExsaSkJCAubk5IAvExMbGcunSJcaMGUNRUZHC8SgrKzNhwgSuXbvGtWvXmDp1Ko0bNy43jbMyWlqy4fWhoaHy1STt7Oxo0KABy5cvp0ePHhWOJntZ2trafPPNN8TExMhHjFlYWBAWFsalS5eIiYlh586d8n1lx6qlpUVmZiaRkZEUPZMs84MPPiAnJ4cpU6Zw584dbty4wWeffYaBgUG5aX7PU1BQwPz58wkMDCQmJoZLly5x8eJFPD09AVkuskOHDrFs2TIiIyM5d+4c06dPJysrCxMTEwoLC+XvfZ8+ffj222+5desWa9asAWDgwIHcvn0bf39/IiMjOXv2LLNmzaJOnTpkZGQwceJEeQDwWebm5iQkJHDy5EliY2M5fPgwc+bMUXh/PvnkE/bv309AQADR0dHs3buXrVu34u3tTatWrXB2dmbixIkEBwcTFRXFvHnz2LVrV5UDgsKblZ+XS3RkONlZmfJt7X37EnLlHHt+W0PYzasE/raakCvneK+rLI9cUVEhu7esQF1Dk3Y+vUlKiCE6Mlz+k5EuC4o2b9cFPX0jNqz4juuXznDrxkXW//wtAK06iMTHwtuTm5/P3QcxZGY/WeGrT8c2nLt2k1927OPq7bus+X0f567d5H0fb3mZHt4teJSdy7zVm7l8M4x9f55lU+AhOjTzwthAH11tLRxqWSn8lK3qaGlqhI2l2Vs/VkF4WlFBLqnxYeTnPrnG12vaj4d3/+Ly8VXEP7jCpeMreXj3L1ybywK0KqrqODfqTUToEULObiHxYQhhV4K4ePRnzGp5YGHb4F0djvAf0MvNgfupGSw+dY1rsclsvxbOvluR9HC1R0NVhdzCIu4mZ/Do8ZR0ZWUl3qtTiwN3HnA4LIqQ+BR+OnWVsKR0hjR0lj+47uBYi0f5Baw4d4PQ+BT+uBXJxou3aGZrjouZIQBdnO1QU1Hmf0cvEPwgnhtxKfwSHMq5B/H0dndARUxRF4T/pP/UlMa9e/eyd+9ehW1WVlYsXrwYf39/unXrhp6eHk2aNGHSpEmsWrVKIZgwbtw4Fi5cSExMDO7u7qxfv16ezHvYsGFoaGgQEBCAv78/xsbG9OvXj/Hjx1e7v/PmzcPV1ZU9e/awYsUK+Uibvn378uGHH8rL9e/fny+++ILu3bvLAyobNmzgp59+wszMDF9fXywsLBRG8hgaGtKjRw/GjBlDXl4e7dq1Y9asWS/dx6ZNm+Lh4UH//v1ZsGABPj6yJa/9/Py4cuVKhVP5qqt58+bynFRdunRh/PjxpKSkMGrUKAAcHBz47rvvmDJlCiEhIdjb29OxY0e2b99O9+7d2bx5s0J71tbWbN68mQULFshXa2zRogULFiygRo0aVepT3759ycjIYPny5cTHx6Onp0enTp2YPHkyAJ07d2bRokWsWrWKlStXoq+vj7e3t3z/okWLiImJYdWqVYAsB9f48eNZtGgRrVu3pn79+qxYsYLFixezefNm9PX18fX1Zfz48dy8eZNvv/1WYQTY04YMGUJERIR81UpbW1smTZrEkiVLCAkJoXXr1nh7e/P111+zZs0a5s+fj5WVFdOnT6dnz56AbBTdggULmDBhAnl5edjb27Ns2TKaNWv20v9+wusX9zCCNYvn0GfwWLyaynKyeDVtR3FxEaePBnHp3HEMjc3o9+E43L1aABAdEcajTNmUlnVLvynXZnvfvnTo8j5aWjqM/PxbDgZuZs+2NZSUlGBbuy6jPv/0pVaOFIRXFRkTz9yfNzDmg560bSx7mNC2sSdFxSXsPfEXJ85fxdTIgE8H+tHc01Vez8rMhJkjB7N572F+3LAdXW0tfNs05f3O3s97KUH4W0lPiuDEztk07jgOOxfZeWvn4k1pSRF3LgcSefMY2npmNOn0GbXqPBlN79K4LxqaNbh3fT9hV/agoVkDe7dO1Gv6vshhJLxR9cyNmNDak5037vHDn5cx0JIwoEFdurrI0iw8SHvEN0cuMKq5m3wqYh93R5RQYk9oBDmFRdgY6PKFd0PcLZ/ca9Q00GWqd0O2Xg3j+xOX0dfUoKerPT1cnzyANdHRZG7npvx2JZw150MplUqx1tNlQhtPmtQyf7tvhCAIfxtK0sqWfBGEali6dClnz55l69at77or/2pSqfQfefN68mZu5YUE4R+uQd6pd90FQXjj5oeKAKLw7/d5bPVWXBeEfxKDmSvedReqJevSwXfdhefSbdj5XXfhP+8/NcJLePMuX75MZGQkmzZt4uuvv37X3fnX+ycGuwRBEARBEARBEAThTRMBr3ege/fuPHz48IVlzp8//49cCe/EiRNs3ryZ3r17y6c3AiQmJtK584sj3G5ubmzatOlNd7HKGjZsSElJyXP3GxkZcfTo0bfYI0EQBEEQBEEQBEEQqkIEvN6BlStXlkug/iw1tX/mSiKTJ0+W56d6mrGxMYGBgS+sq6Hx91oqeNeuXeVW6nza60jGLwiCIAiCIAiCIAjC6ycCXu9A2eqK/yUqKirY2PyzlsKuVavWu+6CIAiCIAiCIAiCIAjVINZnFQRBEARBEARBEARBEP5VRMBLEARBEARBEARBEARB+FcRAS9BEARBEARBEARBEAThX0UEvARBEARBEARBEARBEIR/FZG0XhCEt+7IRXHpEf793GP3vOsuCMIb90Wnd90DQXjzrjT64V13QRDeuDbvugOC8AaIEV6CIAiCIAiCIAiCIAjCv4oIeAmCIAiCIAiCIAiCIAj/KiLgJQiCIAiCIAiCIAiCIPyriICXIAiCIAiCIAiCIAiC8K8iMkcLgiD8zRUX5XP99EZi7gVTXJSPiZUL9dsMo4aB1Qvr5edmcO3kOhKirlFaWoKFXQPqt/oITR3DCsuHX9tH+JW9dB22SmF7SXERYVf28OD2CfKyU9HUMcKmbhucG/qhrCI+RoRXdyMuhW3XwnmYkYWeRINOdW3o4myLkpLSc+ucjYxjV8g9krLzMNHRpHu92rSxt1Yocz8lg1+vhBGRmomWmiqt7a3o4+6IqkrFz/sWnbyCRE2V0c3dX+vxCQLA9bB7/Lb/OA/jk9DT1aZzy8Z0bdv8hef5X1dC2HH4JMlpGZgY6tHDuyVtG3sqlLkXHcvmoMNExMShKdGgTaP69OvUDlVVlQrb/GH9NiQa6owd0Ou1Hp8gANy9fY3De7eSGPcQHV09mrXxoWX7bi88z69fOsPxAztIT01C39CENh174tW0nUKZmKh77N+1idiHEUgkmjRo0pb2Xd5HVfXJfUhURBiH9vxK7MMINDQkuDVoTsduH6Ah0XxjxysIwt+b+KYi/G1NmzaN2NhYAgICACgtLWXHjh3s2rWLe/fuAeDg4ECfPn3o3bu3wgfp4MGDuXDhgkJ7ampqGBsb4+3tzZQpU9DUrNqH3/nz5xkyZIjCNlVVVQwNDWndujVTp05FT0/vtR3n5cuXkUqlNGzYsNptCv8u5w78SFp8OO6thqCmpsnN89v4c8eXdB68GHWJToV1SktLOLX7a4qK8vDyHklpaQk3/grg5O65dBzwQ7lAVXTYaa6f2oCmjlG5tq6e/IWoOydxadwPQzMH0hLvcfP8NnIfJdHovU/fyDEL/x13kzNYcOISTW0t6OvhSFhSOluu3KGktJQervYV1jkfncCyv67Tua4tHpbGXHqYyMqzIagpK9PczhKAxKxcvjt2EUdjfT5rXZ/YzBy2Xwsnu6CIj5u6KrQnlUrZdOk2F6ITaW3/4kCyIFTH3QcxzP9lC83ru9KvczvuREazee8RSkpL6dm+VYV1zl+/xZLNO/Ft3RSPug5cDLnD8q2BqKmq0qKBGwCJKWl8u3ITdWxrMmFIX2ITk/lt/3Gyc/L4pF83hfakUikbAw9y/sYt2jSq/6YPWfgPio4MZ+MKf9y9mtOhS3+i7t/mQGAAJaUltO1YcYA19Gow2zYspnnbLtRx8eDWjYvsCPgZVVU1PBq2BCA1JYG1S7+hll0dPhg2ieSEGA7v3Upubja9PhgJQHxsFGuXzMXeyY1BIybzKDOdg4GbSU6MZdins9/aeyAIwt+LCHgJ/wjFxcWMHTuWGzduMG7cOJo3b05JSQmnT5/G39+f48ePs3TpUlRUnjzN9PHxYebMmfK/c3NzOXPmDPPmzaO0tJQ5c+a8VB9+//13LCwsACgpKSEsLIxp06aRkpLCqlWrKqn9fDNnzqSkpET+94ABA5g3b54IeAkApMTfIS7iIq17zsbCtgEAxlYu/LF+FPduHMSlcZ8K68XcPUt6ciQ+g5dQw6gmAAYmdhzc/BkP7/6FTV3Z4tP5uZmEntvC/ZDDaEh0y7VTkJdFROgR3FsMoW7DngCY1ZKNfrnxVwBuLQYj0ap+wFcQfr9+FxvDGoxt4QFAfSsTSqSlBIbex6euLeoVjFLZdjWcJrXMGdLQGQAPSxOyC4rYfv2uPOC192YEElVVJrf1QlVFGU8r0FBRZv3FW/R0s8dYW/bQIzr9ERsu3uZeSgZqzxn5JQivatvB49haWvDpQD8APJ0dKS0pZffR0/i2boq6mlq5Olv3H6Ophwsf9uwMQP26DmTn5rLtwHF5wGvP8b/Q1NBg6rAPUFVVoYFLHdTV1Vi3cz9+77XC2EAfgKi4RNbv2s+96NgKX0sQXoejf2zDsqYt/T4cD4BTPU9KSkv489AuWrTrgpqaerk6h4K24OrZlK59hgJQx8WT3Jwsjuz7TR7wOnVkDxoSCYNHfoGqqip1XRugpq5O0Pa1tOvkh76hCWeO70VTW4eBI6YojPraEfAzyYlxmJhZvvk3QBCEvx1xZyf8I6xdu5YLFy7w66+/MmDAAGxtbbG3t2fo0KFs2rSJU6dOsXbtWoU6EokEExMT+Y+NjQ0DBw6kW7du7N+//6X7YGhoKG/L3NycNm3a8OGHH3Ly5EkePXpU7WPT1dVFX1+/2vWFf7eEB9dQVZNgXqu+fJtESw8Tq3rEP7j8/HpRV9E1sJQHuwBqGNVE18CK+Mgn9W5f3EFC1DVadJmKZe3yQdaiwlzs3Tphad9IYXsNQ9nUsZzMhOoemiBQVFLC7cRUGtU0U9jepJY5+UUlhCWnl6uTnJ1H/KOcCuskZuUS/ygHgOtxKXhamShMX2xiY45UKttXZvlfNygpLeVbn2boSTRe5+EJAgBFxcXcuv+Axu51FbY38XAhL7+AOxHR5eokp2UQl5RCYzdnhe1NPVxISEkjPjkVkE2T9HR2VJi+2NSjHlKplGt37su3Lduyi5LSUv43YQR6utqv8/AEAYDioiIiwm/i4tFEYbubZzMK8vN4cP92uTrpqUmkJMVR75k6rp7NSE1OICUpHoC7t67hVK+BQiDL1bMZUqmU8NvXAOjY7QOGjpmpUEbl8Wj24qLC13KMgiD884iAl/C3V1payubNm+nTpw+1a9cut9/FxYUePXoQEBBAaWlppe1paGgofBi+ChUVFZSUlFB7/LT06NGj9O3bl/r16+Pm5oafnx+nT5+Wlx88eDCzZ8+mb9++NGzYkKCgIKZNm8bgwYMBcHJyAmD69OlMmzaNsWPHlptOGRERgZOTE3fv3q1SH0+ePImfnx8eHh40a9aMadOmkZmZKd9///59RowYgaenJy1btuTzzz8nOTkZgIcPH9KgQQO++eYbeflt27ZRr149rl+/Xo13THhZj9Ji0NEzQ0lZ8XKto29OVlrsC+vpVpDjS1ffkqyMOPnf9m6d8P3wZ6wdm1XYjo6eGV7eI8vlC4u9H4yyimqFryEIVZWYlUdxqRTzGopfwM0efyGPy8wpVyc2MxsAi2fqlLUR/yiHwuISUnLyypWpIdFAU01VHhQDGNPCnbmdm1HLoMarH5AgVCAxJZ3i4hIsjBWnjJsby/IpxiallKsTkyj7HLYwfbaO7O+4pBQKi4pITsvA8pkyejraaEkkxCc/affTAX58M344NpaKgWJBeF3SUhIpKSnG2MRCYbuhiTkAyQlx5eokJcjuY4xNFUdflbWRkhhHUVEh6WnJ5cro6OohkWiRkihrV0/fCAsrGwAKCvK5e+c6h4O2YFPbCQtr21c/QEEQ/pFEwEv424uOjiYpKQkvL6/nlmnWrBlJSUnExMQ8t0xxcTF//vkne/bsoUePHq/Up+LiYi5dusSmTZto06YNmpqahIaGMm7cOLp06cLevXvZvn07hoaGTJ06lcLCJ0+Wfv/9d4YMGcKWLVto1Uoxb8eZM2cAmDFjBjNnzsTPz48LFy4QHx8vLxMYGIibmxuOjo6V9jMtLY1PP/2U3r17s3//fpYtW8bFixf5/vvvAUhMTGTAgAHY2NiwY8cOVq5cSXZ2Nu+//z65ubnUrFmTGTNmsGXLFi5fvsyDBw/w9/dn/PjxeHh4vNJ7KFRNUWEuqurl882pqWtSVJT33HqFBTmoVVBPVV1CUUGu/O8ahtYvnXg+5l4wD27/ib1bp+fmEBOEqsgrKgZAS03xHNRUk41WyS0qKlcnt1C2TVNdsY7kcZ28omJyH7erqVb+3NZUU5G/LiACXcIbl5dfAIDmMyMINTXUFfY/LTcvHwAtiUSxzuM28vILyHlc5tl2ASQa6uQ+1a4IdAlvWn6+7N5C45kcuRoasr8L8nPL18mTPXyQPFvn8Xmfn59Lfu7jMhUknleXSMjPV7wXkkql/O+LYaxb+g0FBXl07/dxdQ5HEIR/CZHDS/jbS0+XTWmpUeP5X0oMDAwASE1NpVatWgDs3buXQ4cOycvk5+djaWnJ8OHDGTVq1Ev3o2vXrvLE+Pn5+aioqNCmTRu+/vprQDbaa/bs2QwYMEBeZ8iQIYwYMYLU1FR5/i9nZ2e6detW/gUAExMTQDbNUVdXlzZt2mBsbExQUBAjR46ktLSUPXv28Mknn1Spz4mJiRQWFmJpaYmVlRVWVlasXLlSnjNs69atmJubM2vWLHmdn376iaZNm3Lw4EH8/Pzo06cPJ06c4KuvvkJLSwt3d3dGjBjxku+eUBVSqRSptPSZbc8ftajE81c8Qip9/r4XrJRUmZi75wg+uAhjS2c8Wg6pvIIgvEDpi85TQLmCc/XFNUAJ2f9LlZURhLel9AXXcQBl5QrO88rOYSWlF17moZLPCEF4zaSVzLJ4dqQ6VPE8r+Sq/+zqjyUlJQwe9QXFRUX8eWgXqxbNZtSkb8UoL0H4jxIBL+Fvz9BQNuQ/IyPjuWXKpug9HRTz9vZm8uTJSKVSbty4wf/+9z+aN2/OqFGjqjWlcfXq1ZiZyZ6QqqurY2RkhLr6k+Sbzs7O6OnpsXr1aiIiIoiKiuLOnTsACknpbWxsqvyaqqqqdO/enT179jBy5EiCg4NJS0uja9euVarv7OxM165dGTVqFCYmJrRo0YK2bdvy3nvvAXDr1i3u3r2Lp6fiEucFBQXcv/8k98c333yDj48PBQUFHDp0COUKblqEV3czeBs3z29T2FbTsTlZuRnlyhYV5qGmrvXcttQ0tCkuzK+wnrpG9fK3hF0J4vrpDZhYu9Ky23RUVMsnnxWEl6H9eJTW0yOuAPkIrWdHfsGTUVv5RSUK2/MKH9dRV3tSplix3bK2tdTF7Y/w9mhpykar5BUo5hHKfc7Ir6e3PTv6Kzc/X96m1uMy+QXl8xPlFRSgrSkpt10Q3hSJluzeojBf8d6jbGRXRSO0JBKtx2UU6+TnyUZtSTS10SgrU1D+nqYgPw+JpuK9kKqqKo51ZbMQbO2d+f7LMfx14g/6DB770sckCMI/n7jjE/72atasiZmZGRcvXsTX17fCMufPn6dGjRrY2trKt2lra8uDS7a2tpiamvLRRx+hoqLy0is0AlhaWmJtbf3c/RcuXGD48OG0bdsWLy8vunXrRl5eHmPHKn7ASiQvdwPau3dv1q5dS2hoKEFBQbRv3x49vaqvivfDDz8wduxYTp06xdmzZ5kyZQpeXl5s3LiR0tJSmjZtyldffVWunq7ukxX7oqOjycrKAuDKlSv4+Pi81DEIVWPv1hFLO8Wpu7ERF0iIuopUKlV4ipmdES9PHF8RXQNL0pMiym3PzojHyLzy6bBPk0qlXD25lrvX/qCWU0uadPzspadBCkJFTHW0UFZSIjFLcapL2d9WeuWnzFrqyb5UJTzKwdawRoV1JGqqGGppkPBIsd1H+QXkF5VU2K4gvClmRgYoKyuTmJKmsD3h8d/WZibl6lg93paQkoqd9ZOcSIlP1ZFoqGOoV0OewL5MZnYOefkFWJkZv9bjEIQXMTQ2Q1lZmdRkxcVsyv42NS9/z2JiLsvLlZIcj2VNuyd1UsrqWKGhIaGGviGpSfEKdbOzMinIz5O3ezvkEhoSTWo71pOX0dTSxsjEjKzM8gugCILw3yCGaQh/e8rKygwePJjdu3crJGovSwB//vx5AgMD+T979x0eVbE+cPybvumQ3iAJCYQ0QgClF2mGjrQfIiCKFMWuFylyAUHkigqIDRCkK71Kk15DDyRAEgglvXeSTf/9sbCwbBIpob+f59nnmtl558zZe9iczHlnZsCAAejpaW9ff0uTJk146623+PPPPzlw4ECV93PhwoU0btyYOXPmMGTIEJo3b65ee+vfUrYr4+HhQWBgINu2bWP37t306tXrnmPPnj3LtGnTqFWrFkOGDGHevHlMmzaN4OBg0tLSqF27NlFRUTg6OuLq6oqrqyuWlpZMmzaNyMhIAPLy8hg9ejTdunVjxIgRTJo0ieTk5Ac+H1ExYzMrrBxqa7zsa9anqDCfxOtn1PWUeVmkxF3A3rV+hW051KxPTkYc2Wkx6rLstBiy02Oxr1lxXHlCDy/jUsjfeDXoTpOgT2WwS1QZQ309vO2rczw6SeN78nh0IiaG+njYVNOKcTA3xdbMmGPRmn9UHYtOxMHcBFszVRaBv6MNp+OSKbojw/bY9UR0dXTwddBc5FuIR8nQwAAfD1eOnbugeZ2fu4iJsQLPmtqbfzjYWGFnXZ3gsxc0yoPPXsDR1hpbq2oA1PPy4PSFSIruyGYMPnseXV1d/Gq7I8TjYmBgiLunD2EhwRrXeVhIMApjU1zctB+2Wds6Ut3ajrAzRzXKw84cxcZO9R5A7boBhIedoviOdR3DzhxFV1cXjzp+ABzes4WNf83X2MAqMyOV5IRYHJxrVum5CiGeHTLgJZ4JQ4cOpWXLlgwcOJDly5dz7do13nnnHfbu3cvgwYOxtbXVyqQqz0cffYSbmxuTJk3ixg3t3b8ehqOjIxEREZw8eZLY2FjWrl3L7NmzATQWrf83JiYmREVFqdcuA1WW17Jly1AoFDRv3vye2zIzM2PFihXMmDGD69evExkZydatW3Fzc6N69eoMGDCAnJwcPv/8c8LDwwkPD+eTTz4hNDSUOnXqADB9+nTy8vIYN24c7777LjY2NowbN+6e+yAejp2LL3YufgRvn8mVsH+IvRzM/nUTMTQyxbNekLpedlqMRkZXjTotMKvmyP4NU4iOOEh0xEH2b5hCNRtXatS592soI/kK4afWY2XvSY3azUhPjCQtIUL9unMBfCEexGv+nkSlZTL7QAghcSmsColky4Wr9PDzwEhfj7zCIi6lZJJ9x9Su3vU8Cb6eyMJj5wmJS2HBsTCCryfSr34ddZ1uvrXIVhbyvz0nOR2bzN8XrrL0VDjtatfAxlR7ao0Qj1KvDq25HB3HzMWrOXPxEn9t3cOmvYd5rX1LjAwNyVMquXQtlqzc2/cmfTq25mjIeX5fs4UzFy8xf/UWjoac5/86tVXX6dG2Odm5eXwzbxmnzkewZd8RlmzYQfumDbGpXu0JnKl4kb0S1JvY65dZseB7Is6fYefmPzm4axNtXn0NQ0MjlPl5RF+NJDfn9m7h7Tr3JfT0UTb+NZ+I82fY8Nc8Qk8fpUPX/uo6rTr05EZuNot++Zrw0FMc3L2Zv9cu5uXmHahmZas+dmpyPH8u+J5LF0M4c/wAC378CmMTU1q06/7YPwshxNNBBrzEM0FXV5cff/yR0aNHs3nzZnr37s0nn3yCvb09I0eOpLi4mKFDh2qsO1UeIyMjpkyZQnx8PDNnzqzSPn744YfUr1+fkSNH0rNnT1avXs20adNQKBSEhobecztvv/02y5YtY+zYseqyTp06UVZWRs+ePSvNYrubh4cHc+bMITg4mJ49e/L666+jp6fH/Pnz0dXVpUaNGixbtowbN27w+uuvM3DgQAwMDFiyZAlWVlbs27ePlStXMmnSJCwtLTE0NGTatGkcPnyY5cuX39fnIx5c865f4FzrJc4eXMzxnXMwNrOmde/JGjskntozl8Nb/qf+WU/fgDa9JmNl78GJXb9wau88bBzr0Krnf9HVvfdrKC7qGGVlZaQnXWbXyjFar/KmTQpxP3wdrPm4VSAJOTf4ft8pDl2NZ0CDunT3rQXAtfRs/rv9KGfiUtQxrT1cGNrYl3MJqfyw/zQXk9J5r3k9mrrdnvrlbGnG2HYvUVBcyqwDZ9h68Sqd6roxuJH3Yz9HIfxqu/PpkP8jPiWVGQv/5NDpcwzs1oEebVsAcDU2gfGz53PmQqQ6ps3LgQzr241zEVF8t/AvLkRd4/03etEs0E9dx9nelvEjBlFQWMQPi1axZd9ROrduwpCesvSAePw8vPx5453PSU1OYOnc/xFy4iCdeg6idYeeAMTHXOHX78YRcf60OqZhk1fo+fpwLoWfZdm8b7l66QL93vyAeg1vP5yzc3Dmrfe/pLCwgOW/f8ehPZtp3rYLXfq8pXHst9+fQG5OFst//57NqxfgXMOdd//zDeYW1R7XRyCEeMrolD3MXCshnhJ5eXmsWbOGDh06qHdDfJ7ExMTQsWNHtm3bprFO2bPqy0X3nvEmxLPqs7iPnnQXhHjk9F/t8aS7IMQjd9q41ZPughCPXGvfijdDeprlnNz+pLtQIfNGQf9eSTxSshCLeC6YmJgwePDgJ92NKpeQkMC5c+dYsWIFLVu2fC4Gu4QQQgghhBBCiEdNBrzECyspKYmgoMpH3f39/VmyZMlj6pG2jIwMxowZg5ubGz/99JPGeyNHjuTYsWOVxq9btw53d1m0VgghhBBCCCHEi0UGvMQLy8bGhg0bNlRax8jI6PF0pgI+Pj6cOXOm3PcmT56MUqmsNN7JyelRdEsIIYQQQgghhHiqyYCXeGHp6enh6ur6pLvxwOzt7Z90F4QQQgghhBBCiKeS7NIohBBCCCGEEEIIIZ4rMuAlhBBCCCGEEEIIIZ4rMuAlhBBCCCGEEEIIIZ4rsoaXEOKx6/BS8ZPughCPXtyT7oAQj97/wto+6S4I8ch94bfnSXdBiMeg8t3rhXgWSYaXEEIIIYQQQgghhHiuyICXEEIIIYQQQgghhHiuyICXEEIIIYQQQgghhHiuyICXEEIIIYQQQgghhHiuyICXEEIIIYQQQgghhHiuyC6N4okbM2YMcXFxLF26FIDS0lLWrFnDunXruHz5MgCenp706dOH3r17o6Ojo44dNGgQx48f12jPwMAAGxsb2rZty3/+8x+MjY3vqR/Hjh1j8ODBGmX6+vpYWVnRqlUrRo8ejaWlZZWd56lTpygrK6NRo0YP3KZ4MRQUKNm+filhIcEUFhbg5uFN1z5vYWvvVGlcTnYmf69dxKWLIZSWlOLlG0jn3m9iYWmlrlNSUsLuras4fWwfebk5ONesRafXBlPTvY66TlFRIXu2ribkxEFu5Gbj4OxK+y79qOMT+MjOWYi7nYtPZWVIJDGZOVgqjHi1ritdvN00fifc7cjVeNaFXiY5Nx9bM2O6+9aitYfLY+y1ELclXg8h9MhystKiUZhUwzOgM14Nuld6DUdHHOT8sVXcyE7G1MKWuo164e6juTNmeuIlzh5cTHpyFAaGJrj5vIJfk/7o6t2+zU9NCCf00LKbdYxxqd0M/2ZvYGB4b/dIQlQ1ZUEhyzbv5Ni5ixQUFlK3litDegbhZGdTaVxmTi5LNmwnJCKK0pJSAn1qM6j7q1hZmj+mngshniWS4SWeKsXFxbz77rvMnDmT7t27s2bNGlauXElQUBDTp09n1KhRlJSUaMR06tSJQ4cOqV9///03w4YNY9WqVfzvf/+77z6sXr1a3dbu3buZOnUqe/bsYfTo0Q91buPHj2fOnDnqnwcMGEB0dPRDtSleDCv/mEXomaME9RxI30Hvk52Vzu+zJ5KXl1thTElJCYt+nkrs9cv06D+cHv2Hce1KOAt/mkpxcbG63tZ1izm0Zwut2vfg9aGfoqurx4I5X5GWkqCus275rwQf2EHrjj0ZNPILbOwcWfzrN1y9fOGRnrcQt1xKyWTG3pM4WZryaesGtHB3YsXpcDadv1JhzLHoRH46fJZ6TrZ81qYBPvZW/HYklCNX4x9jz4VQSUuI4OCmr7GwcqZ51y9wrduKc4cWE35yfYUxsZeOErx9Jg6ugTTvOgZbFz+O75xDdMRBdZ3crET2r5+MnoERTTt/Tp0G3Yk8vYnT++ar62SmXmPf2onoGxrTvOsX+DcfSEzkYY78/e0jPWchKjN76RqCz17gja7tGfX6a6RnZTP5l0Xk5uVXGFNSUsK0ucu4HB3HsD5deKdPF8KvRPP13KUUF5dUGCeEeHFJhpd4qixYsIDjx4+zdu1aatWqpS738PDg5Zdfpl+/fixYsIDhw4er31MoFNja2mq04+rqSlhYGFu3bmXSpEn31QcrKyuN9hwcHHjzzTeZNWsW2dnZWFhYPNC5mZvLkydx/65fieBi6EmGvDceL19VRpWbpzczJo7i2IEdvBLUu9y4sDNHiY+9xidfzsLOUZXR4uTizqyvPyH09BECX25FZkYqwQd30K3PWzRpFQRA7boBfD/5A/bv3ECvN94lIy2ZkBMH6d7vHXUdT696XIsK59iBHbh7+jyGT0G86FafvYSrlQWjmgcAUN/ZlpKyUjaERdGprhuG+npaMSvPRNK4pgODG3kDEOBkS25BEavOXqKZe+XZkUJUtbDgv6hu607jVz8GwNGtAaWlJVw8sYY6gV3R0zfUijl3ZBkuns0IbP32zZhACvNzCT26gppeLQEIP7kefUNjWnQbi66ePk7uDdHXN+T0vvl4v9QHUwtbIk9vwkhhTvOuX2hkfR3fOYfsjDgsqjs/+g9AiDtEXovh1PkIxg4fSKB3bQDqerjywdRZ7Dx8gl4dWpUbF3z2AtfiEvjhi/dxcVDdq7s5O/LZtz9z9Ox5Wjas99jOQQjxbJAML/HUKC0tZdmyZfTp00djsOsWHx8fevTowdKlSyktLf3X9oyMjNDXr5oxXT09PXR0dDAwMABg165d9O3bl/r16+Pv70+vXr04ePD2E9dBgwYxYcIE+vbtS6NGjdi0aRNjxoxh0KBBAHh5eQEwduxYxowZw6hRo7SmU165cgUvLy8uXbp0T3308vLixx9/5JVXXqFFixZcu3aN+Ph4PvnkE5o2bYqvry+tWrVixowZGp/fuXPnGDJkCIGBgTRr1oyJEyeSn696ulZWVsb8+fNp164dAQEB9OjRg02bNj34Bynu26WLIRgaKajtHaAuMzO3xN3Th4jzpyuMi7wYgo2dk3qwC8DO0QVbe2d1XFREKKUlJfgGNFbX0TcwoK5fQ3Udc4vqjBo9nfovtVTX0dHRQU9Pj6Kioio7TyEqUlRSwsWkNF6qYa9R3rimA8qiEiJSMrRiUnLzSci+UW5MUk4eCdk3HmmfhbhTSXERybFhOHs00Siv4dmUosJ8UuIvasXcyE4mJyMeF8/GmjG1m5KbmUhOhipTMfF6CI5uDTQGslxqN6OsrIzE62cA8Gv2Bi17fqlRR1dX9d+lxYVVc5JC3IeQ8MsojAwJ8PJQl1mameLt4caZixXf94aEX8bJzkY92AXg4mCLk50NZy5EPtI+CyGeTTLgJZ4a0dHRJCcn07BhwwrrNG3alOTkZGJjYyusU1xczL59+9i4cSM9evR4qD4VFxdz8uRJlixZQuvWrTE2NiYsLIwPPviALl26sHnzZlatWoWVlRWjR4+msPD2jePq1asZPHgwK1asoGXLlhrtHjp0CIBx48Yxfvx4evXqxfHjx0lIuD2NbMOGDfj7+1O7du177u+KFSv48ccf+emnn3Bzc+Pdd98lJyeHP/74g+3bt/P222/z+++/s2fPHgBiYmJ48803sbOzY+XKlcyZM4fDhw8zefJkAGbOnMmff/7JhAkT2Lx5M4MHD2bSpEksX778gT9TcX+SE2OxsrFHV1fz69ra1oGUpLgK41ISY8td48vazpHU5Hh120YKY8wtq2vVyc7KoKBAib6BAS6unhibmFJWVkZmRipb1vxBWkoijVt2qIIzFKJySTn5FJeW4WBhqlFub676OT5Le/AqLks13dfxrphbbciAl3icbmQlUlpSjHk1R41ys5s/56Rr39Nk3ywzr+5UfkxGPCXFhdzITtaqozCxxMDQRD0oZmJmTTUbNwCKi5QkRp8l9MhybJzqUs3W/eFPUIj7FJeUgp11da17Gwfr6sQlp1YSl4qjrbVWuaOtNfEpaVXeTyHEs0+mNIqnRkaG6il9ZVMGq1dX/WGelpZGzZo1Adi8eTM7duxQ11EqlTg5OTF06FBGjhx53/3o2rWregFZpVKJnp4erVu35quvvgJU2V4TJkxgwIAB6pjBgwczbNgw0tLScHRU3Yx6e3vTrVu3co9xa8qkubk55ubmtG7dGhsbGzZt2sSIESMoLS1l48aNGlM370WPHj3w9/dX971Hjx506tRJ3achQ4Ywf/58IiIiaN++PatWraJatWpMmzZNnQ03depUzpw5Q15eHosWLeKHH36gTZs2ANSsWZO4uDgWLFjAG2+8cV99Ew+mID8fIyOFVrmRkYICpbLCuPy8PKxtHbXKVXGqDD5lfh5GCu0Fi28dr0CZp3Hs/TvXs2PTCgBeat4ez7oBWrFCVLX8ItWacyYGmrcsxgaqaYx55WQa5hWqyowNNWMUN2NutSnE41BUmAeAvpGJRrn+zQXjiwq11ywqKrhxs05FMXkU3qxjcFcdVZmx+ri3lJWVsWHum5QUF2KkMKdBm2EPcjpCPLQ8ZQHGRkZa5QqFEcqCgkrilDjaWmmVGxsZkq+sOE4I8eKSAS/x1LCyUv0Cy8zMrLBOVlYWoDko1rZtWz7//HPKyso4d+4cX3/9Nc2aNWPkyJEPNKVx3rx52NurpsEYGhpibW2NoeHttTW8vb2xtLRk3rx5XLlyhevXrxMeHg6gsaC+q6vrPR9TX1+f7t27s3HjRkaMGEFwcDDp6el07dr1vvp+5zEVCgUDBw5k+/btnDt3juvXrxMREUFqaqp6SmNkZCS+vr4an1OTJk1o0qQJ586do6CggM8++0zjCVxxcTGFhYUolUoUCu2BGPHgysrKtKbrlpZVPH23sp29oKyS93TUx6uMDprt1/VvRM1aXlyPCmfPtjUUFxXS780PK21DiIdV+i/XqW45/w4qj4DK/uUIUdXKKvkeB9DR0Z5w8a/fzzo6cC917myztIQW3cdRUlxI+Im17Fk9nnb9pkmWl3ikyr23Ka342r373uPutiqMq/SeSAjxopIBL/HUqFGjBvb29pw4cYLOnTuXW+fYsWNYWFjg5uamLjM1NVUP9Li5uWFnZ8dbb72Fnp7efS9YD+Dk5ISLS8Xb1h8/fpyhQ4fSpk0bGjZsSLdu3cjPz2fUqFEa9e53MKh3794sWLCAsLAwNm3aRLt27bC0tLyvNu48Zl5eHgMHDkSpVBIUFMRrr71GvXr1NDKzKhsQvHVTMWvWrHLXVLtzEFBUjd1bV7F762qNMr/AJuTmZGnVLShQlpuddYvC2ISCAu0MsAJlPsYmqmwAhcKYwnKyxJQ3M8AUJndNB3NSZVXWqu1LaWkpu/5eScdur1PNylarDSGqiunNLK27s7LyKsj8AjC+WaYs0ty1K7/wZoyhQZX3U4iKGBipvkuL78rkKipQZWAZGGp/l9/K2ro7pvhm1paBkSkGNzPGys0QK8xTH/cWXT19HGqqMnNtnX34e+EIIs9s4eWOH9z3OQlxr1bv2MeaHfs0ypoE+JKVq73TtFJZgLFCO/PrFhNjBfkF2uvO5SkLMJGHsEKIcsiAl3hq6OrqMmjQIH7++WcGDBigXrtq0KBBuLm50bVrVzZs2MCQIUPQ09PekeuWJk2a8NZbb7FgwQLatm1Lq1bl7/TyoBYuXEjjxo2ZM2eOumzp0qXAvz+RrYyHhweBgYFs27aN3bt38/333z9UPw8dOsT58+c5fPgwNjY2gCp7Li0tTd1PT09PNm/eTElJifoz/eeff/jmm2/YuHEj+vr6xMfH88orr6jbXbJkCZcvX1ZP8RRV5+UWHajrp7mG3YWzx7l08SxlZWUaTy9TkxOwc6h4YNbGzon4mKta5Wkpibi4eQJga++MUplHbk4WZua3B1fTUxKpbmWLgYEhGWnJREWEEvBSSwwMbg9yOtdQDYJmZ2XIgJd4pOzMTNDV0SEpR3N61q2fnS3NtGKcLFV/6Cdm38DNyuKeYoR4VMwsHdDR0SU3M1GjPDdLtW6nhVUNrRhzK9XOibmZCVS3u/3Q6VYbFlYu6BsoMDGzJjczQSNWmZdFUWE+Flaq3xFxV05gYGiCnYuvuo6hkSlm1RzIv6G96YMQVal900Y08KmjUXYiLJyzEZe17m0SUtNxsa/4nsLJ1porsQla5Ymp6XjWlN1GhRDaZNF68VQZOnQoLVu2ZODAgSxfvpxr167xzjvvsHfvXgYPHoytra1WJlV5PvroI9zc3Jg0aRI3blTt4sSOjo5ERERw8uRJYmNjWbt2LbNnzwbQWLT+35iYmBAVFaVeuwxUWV7Lli1DoVDQvHnzh+qng4MDAJs2bSIuLo6TJ0/y3nvvUVRUpO7ngAEDyMjIYOLEiURFRXHixAm+/fZbmjRpgrm5Of3792f27Nls3LiRmJgY1qxZw4wZM7Czs3uovonyWVha4eLqqfHy9A6gQJlP5IUQdb3cnCyuRV3U2LnxbrW9A0hJiiM54fZiyMkJsSQnxlL75tpbnnVV23eHnTmqrlNcVMTFsJN43mw7Iz2Ftct/5cLZ4xrtXwo/i56ePjblLIwvRFUy1NfD2746x6OTNB4qHI9OxMRQHw+baloxDuam2JoZcyxac4DhWHQiDuYm2JpVnB0pRFXT0zfE1sWX2MtHNa7h2MvBGBqZYuWgvTmNeTVHTC3sibl0VKM85tLRm++pfg/b1wwg/uopSopvr2UXe+kIOjq62Lmo1vSMPLOZU3t+o+yOaWV5OalkpcVQzebel18Q4kFYWZrjWdNZ4xVQx4N8ZQEh4ZfV9bJybxB+5Tr17ti58W71vDyIT04lNjFFXRabmEJcUorGjo9CCHGLZHiJp4quri4//vgj69atY/Xq1fzwww+UlZXh7u5O79692bhxI0OHDmXSpEl4eFT8i83IyIgpU6YwePBgZs6cyZdfflllffzwww9JTU1VL4jv6enJtGnT+M9//kNoaGil/brTrR0To6Ki+O233wDo1KkTU6ZMoWfPnpVmsd2LevXqMXbsWBYtWsSsWbOwt7enc+fOODo6EhoaCoC9vT0LFy5kxowZ9OzZE0tLSzp37synn34KwNixY6levTqzZ88mOTkZR0dHPvzwQ955552H6pu4d7Vq+1Krti8rF82iU89BmJias2vrKhTGJjRu9aq6XnJCLMXFRTjVUK3FUq9Bc/ZuX8cfP08lqOdAALZvWIaDsyv+DZoBUN3ajgZN2vD32sUUFRVha+fEoT2bUebn0bqDaodTd08fPOvWY9Oq31Eq87CysSci7DRH92+jfZf/w8REMmXEo/eavydf7zrO7AMhtPF0ITIlgy0XrtI/0AsjfT3yCouIy7qBvbkxFjenw/Su58lvR0IxP3aeBi52nIpNIvh6Ih+2rP9kT0a8kHxe7sv+dRM5uvU73H3bkRofTsSpDdRrPgh9AyOKCvLITo/B1NIBhYkq49a3ST+O75zDqT3mONV6ibgrx4m5dJimnT9Tt1u30WtERx7iwMYpeAV2JyczjtDDy/Hw74iphe0dx57Eka3f4eHfkYL8LM4fW4WhkRleDR9uN2shHoSPpxu+nu78uGwtA7t1wMzEhNU79mKiUNCx+UvqerGJKRQVF+PuotqEp1mgH+t3HWTavKW80VW1U/TyLf9Q08mepvV9yz2WEOLFplP2MHOwhHjM8vLyWLNmDR06dFDvPPg8iYmJoWPHjmzbtk1jnbLnzf7zef9eSajl5eXy99pFXDh7AsrKqFnLi6593sL2juyqeTP/S2Z6CqOn/Kouy8xIZcvqP25mY+lR2zuALr2HYGF5e4ej4qIitm9cTsiJAxQWFuBcsxadeg6ipvvt6QcFynx2b11F2JlgsrMysLFzpEXbrjRq1u7xfADPqHobPvv3SuKeHY9OZO25y8Rn5VLdREFHL1e6+qgGeC8kpjHln+OMbOZPa4/bU313RUaz5cJV0vOU2JkZ08PPg5a1ZNpLVfreefaT7sIzI/ZyMOeD/yI7Iw5jU2s8AzpR9+aAU3JMGHvXTuDljh/g7tNWHRMVuoPwUxvIz0nD1NIe75d64+bdRqPdlLgLnD24mMyUqxgZW+BatzV+TV9HV+/2c+2kmFDOH/2TzNRr6Ojq4eBan4AWb2JibvNYzv1Z94XfnifdhedObl4+izds50RYOJRBHfcaDOkZhJPd7Wty0k9/kJKRyc8TPlGXpWVm8cf6bZyLiEJPT48ALw8G9wjCytL8SZzGc8W8UdCT7sIDyTm5/Ul3oULP6mf6PJEBLyGeAgkJCZw7d44VK1ZgZGTEvHnznnSXHikZ8BIvAhnwEi8CGfASLwIZ8BIvgmd1cEYGvERlZEqjeO4lJSURFFT5l42/vz9Llix5TD3SlpGRwZgxY3Bzc+Onn37SeG/kyJEcO3as0vh169bh7i7bigshhBBCCCGEECADXuIFYGNjw4YNGyqtY2RU8RbIj4OPjw9nzpwp973JkyejVCorjXdykoXDhRBCCCGEEOJZl5mZyQ8//MC+ffvIzc3Fy8uLzz77jEaNGj3prj1zZMBLPPf09PRwdX12dyGyt7d/0l0QQgghhBBCCPEYfPrpp6SkpPDDDz9gbW3N0qVLGTp0KOvXr6dWrVpPunvPFN0n3QEhhBBCCCGEEEKIF93169c5fPgwkyZNolGjRri7uzNhwgTs7OzYvHnzk+7eM0cGvIQQQgghhBBCCCGesOrVqzNv3jz8/f3VZTo6Oujo6JCdnf0Ee/ZskgEvIYQQQgghhBBCiCfMwsKC1q1bY2hoqC7bsWMH169fp2XLlk+wZ88mWcNLCCGEEEIIIYQQogq1a9eu0vd37979r22cPn2asWPH0rFjR9q0aVNFPXtxSIaXEEIIIYQQQgghxFNk165dvP3229SvX5/vvvvuSXfnmSQZXkIIIYQQQgghhBBV6F4yuCqybNkyvv76a4KCgvjf//6nMcVR3DvJ8BJCCCGEEEIIIYR4CqxYsYIpU6bwxhtv8MMPP8hg10OQDC8hhBBCCCGEEEKIJ+zq1atMmzaNDh06MGLECFJTU9XvKRQKzM3Nn2Dvnj0y4CWEEEIIIYQQQgjxhO3YsYOioiL++ecf/vnnH433XnvtNaZPn/6EevZskgEvIYR4yhUUKNm+filhIcEUFhbg5uFN1z5vYWvvVGlcTnYmf69dxKWLIZSWlOLlG0jn3m9iYWmlrlNSUsLuras4fWwfebk5ONesRafXBlPTvY66TnFREQd3b+L0sf1kZaZhWc2a+i+1pHXH19DXl18j4vE4F5/KypBIYjJzsFQY8WpdV7p4u6Gjo1NhzJGr8awLvUxybj62ZsZ0961Faw+Xx9hrIW5LvB5C6JHlZKVFozCphmdAZ7wadK/0Go6OOMj5Y6u4kZ2MqYUtdRv1wt2nrUad9MRLnD24mPTkKAwMTXDzeQW/Jv3R1bv9/ZyaEE7ooWU36xjjUrsZ/s3ewMDQ+JGdrxCVURYUsmzzTo6du0hBYSF1a7kypGcQTnY2lcZl5uSyZMN2QiKiKC0pJdCnNoO6v4qVpWS9iOfDyJEjGTly5JPuxnND1vB6gY0ZM4ZBgwapfy4tLWXVqlX079+fRo0a0ahRI/r378+aNWsoKyvTiB00aBBeXl4aLz8/P9q0acNXX31Ffn7+Pffj2LFjWm35+vrSsmVLxo8fT1ZWVpWe56lTpzh58uRDtfm4Xbp0iYEDBxIYGEjPnj05c+bMk+6SeIxW/jGL0DNHCeo5kL6D3ic7K53fZ08kLy+3wpiSkhIW/TyV2OuX6dF/OD36D+PalXAW/jSV4uJidb2t6xZzaM8WWrXvwetDP0VXV48Fc74iLSVBXWfzmoXs3bGOhk1fYfCIL2jY9BX271zPxr/mPdLzFuKWSymZzNh7EidLUz5t3YAW7k6sOB3OpvNXKow5Fp3IT4fPUs/Jls/aNMDH3orfjoRy5Gr8Y+y5ECppCREc3PQ1FlbONO/6Ba51W3Hu0GLCT66vMCb20lGCt8/EwTWQ5l3HYOvix/Gdc4iOOKiuk5uVyP71k9EzMKJp58+p06A7kac3cXrffHWdzNRr7Fs7EX1DY5p3/QL/5gOJiTzMkb+/faTnLERlZi9dQ/DZC7zRtT2jXn+N9KxsJv+yiNy8iv+GKCkpYdrcZVyOjmNYny6806cL4Vei+XruUoqLSx5j74UQzwp5NC8AKC4uZtSoUZw7d44PPviAZs2aUVJSwsGDB5k+fTp79uxhzpw56OnpqWM6derE+PHj1T/n5eVx6NAhvvnmG0pLS5k0adJ99WH16tU4OjoCql9oERERjBkzhtTUVObOnfvA5zZ+/HhKSm7/EhwwYADffPMNjRo1euA2H6eysjJGjhxJo0aNmDZtGnPmzOH999/n4MGD6OrKmPXz7vqVCC6GnmTIe+Px8g0EwM3TmxkTR3HswA5eCepdblzYmaPEx17jky9nYeeoymhxcnFn1tefEHr6CIEvtyIzI5Xggzvo1uctmrQKAqB23QC+n/wB+3duoNcb75J3I4cTh3cR1GMgrTr0AMCzbj0Admxczqs93sDM3PJRfwziBbf67CVcrSwY1TwAgPrOtpSUlbIhLIpOdd0w1NfTill5JpLGNR0Y3MgbgAAnW3ILilh19hLN3CvPjhSiqoUF/0V1W3cav/oxAI5uDSgtLeHiiTXUCeyKnr72gsTnjizDxbMZga3fvhkTSGF+LqFHV1DTqyUA4SfXo29oTItuY9HV08fJvSH6+oac3jcf75f6YGphS+TpTRgpzGne9QuNrK/jO+eQnRGHRXXnR/8BCHGHyGsxnDofwdjhAwn0rg1AXQ9XPpg6i52HT9CrQ6ty44LPXuBaXAI/fPE+Lg62ALg5O/LZtz9z9Ox5Wjas99jOQQjxbJC/lgUACxYs4Pjx4yxfvpwBAwbg5uaGh4cHQ4YMYcmSJRw4cIAFCxZoxCgUCmxtbdUvV1dX3njjDbp168bWrVvvuw9WVlbqthwcHGjdujVvvvkm+/fvJzs7+4HPzdzcnGrVqj1w/JOWnZ1NbGwsbdu2pWbNmnTu3JnU1NSH+kzEs+PSxRAMjRTU9g5Ql5mZW+Lu6UPE+dMVxkVeDMHGzkk92AVg5+iCrb2zOi4qIpTSkhJ8Axqr6+gbGFDXr6G6jjI/j8YtOuJd7yWN9u0cVO2mpyY9/EkKUYmikhIuJqXxUg17jfLGNR1QFpUQkZKhFZOSm09C9o1yY5Jy8kjIvvFI+yzEnUqKi0iODcPZo4lGeQ3PphQV5pMSf1Er5kZ2MjkZ8bh4NtaMqd2U3MxEcjJUmYqJ10NwdGugMZDlUrsZZWVlJF5XZYP7NXuDlj2/1Kijq6v679Liwqo5SSHuQ0j4ZRRGhgR4eajLLM1M8fZw48zFS5XGOdnZqAe7AFwcbHGys+HMhchH2mchxLNJBrwEpaWlLFu2jD59+lCrVi2t9318fOjRowdLly6ltLT0X9szMjKqsnV99PT00NHRwcDAAIBdu3bRt29f6tevj7+/P7169eLgwdup/YMGDWLChAn07duXRo0asWnTJo0pjV5eXgCMHTuWMWPGMGrUKAYPHqxxzCtXruDl5cWlSxX/wr3T/v376dWrFwEBATRt2pQxY8ZoTMOMiopi2LBhBAYG0qJFCz777DNSUlIAiImJoUGDBkyZMkVdf+XKlfj6+nL27FkALC0t8fPz46effiI6Opq5c+fSunVrrUE8Ly8vfvzxR1555RVatGjBtWvXiI+P55NPPqFp06b4+vrSqlUrZsyYofH/47lz5xgyZAiBgYE0a9aMiRMnqqeklpWVMX/+fNq1a0dAQAA9evRg06ZN9/S5iKqRnBiLlY29Vjafta0DKUlxFcalJMaWu8aXtZ0jqcnx6raNFMaYW1bXqpOdlUFBgRIrG3t69B+m1db5s8fQ09PH5l/WERPiYSXl5FNcWoaDhalGub256uf4LO3Bq7gs1XRfx7tibrUhA17icbqRlUhpSTHm1Rw1ys1u/pyTHqsVk32zzLy6U/kxGfGUFBdyIztZq47CxBIDQxP1oJiJmTXVbNwAKC5Skhh9ltAjy7Fxqks1W/eHP0Eh7lNcUgp21tW17m0crKsTl5xaQRTEJaXiaGutVe5oa018SlqV91MI8eyTAS9BdHQ0ycnJNGzYsMI6TZs2JTk5mdhY7ZuyW4qLi9m3bx8bN26kR48eD9Wn4uJiTp48yZIlS2jdujXGxsaEhYXxwQcf0KVLFzZv3syqVauwsrJi9OjRFBbefkK5evVqBg8ezIoVK2jZsqVGu4cOHQJg3LhxjB8/nl69enH8+HESEm6vV7Rhwwb8/f2pXbv2v/YzPT2d999/n969e7N161Z++uknTpw4wbffqtbFSEpKYsCAAbi6urJmzRp+++03cnNz+b//+z/y8vKoUaMG48aNY8WKFZw6dYpr164xffp0PvzwQwICbmf0fPXVV1y+fJmOHTtSo0YNZs6cWW5/VqxYwY8//shPP/2Em5sb7777Ljk5Ofzxxx9s376dt99+m99//509e/YAqgG3N998Ezs7O1auXMmcOXM4fPgwkydPBmDmzJn8+eefTJgwgc2bNzN48GAmTZrE8uXL7+X/RlEFCvLzMTJSaJUbGSkoUCorjMvPy8NIob0YsSpONaCpzK+4DkCBMq/cts+HHOPMsf00btkRExOzezoPIR5UfpFqzTkTA80HKcYGqmmMeUVFWjF5haoyY0PNGMXNmFttCvE4FBWqvkv1jUw0yvVvLhhfVKi9ZlFRwY2bdSqKyaPwZh2Du+qoyozVx72lrKyMDXPfZP+6SRQX5tOgzbAHOR0hHlqesgBjIyOtcoXCCGVBQSVxSkwU2nHGRobkKyuOE0K8uGQNL0FGhmo6iIWFRYV1qldXZYCkpaVRs2ZNADZv3syOHTvUdZRKJU5OTgwdOvSBdpbo2rWreqcipVKJnp4erVu35quvvgJU2V4TJkxgwIAB6pjBgwczbNgw0tLS1Ot/eXt7061bt3KPYWurSoE2NzfH3Nyc1q1bY2Njw6ZNmxgxYgSlpaVs3LiR4cOH31Ofk5KSKCwsxMnJCWdnZ5ydnfntt9/Ua4b9+eefODg48OWXX6pjZs2aRZMmTdi+fTu9evWiT58+7N27l4kTJ2JiYkK9evUYNuz2Tejp06f57LPP8PDwICoqCjs7O0xNTcnLy8PY2Fhjd6cePXrg7++v/gx79OhBp06d1J/NkCFDmD9/PhEREbRv355Vq1ZRrVo1pk2bps7Kmzp1KmfOnCEvL49Fixbxww8/0KZNGwBq1qxJXFwcCxYs4I033rinz0jcu7KyMq0sytKyirMqK9vZC8oqeU9HfbzK6KDdftiZYFYumo2rR12Ceg6sNF6IqlD6L9epbjn/DiqPoJwrW4hHp6yS73EAHR3t58//+v2sowP3UufONktLaNF9HCXFhYSfWMue1eNp12+aZHmJR6rce5vSiq/d8u497myrwrhK74mEEC8qGfASWFlZAZCZmVlhnVtT9O4cFGvbti2ff/45ZWVlnDt3jq+//ppmzZoxcuTIB5rSOG/ePOztVeutGBoaYm1tjaHh7UVcvb29sbS0ZN68eVy5coXr168THh4OoLEovaur6z0fU19fn+7du7Nx40ZGjBhBcHAw6enpdO3a9Z7ivb296dq1KyNHjsTW1pbmzZvTpk0bOnToAMCFCxe4dOkSgYGBGnEFBQVERUWpf54yZQqdOnWioKCAHTt2qFO8k5KSGDp0KK+99hrjx49nwYIFfP/99/j6+vL333+Tnp7On3/+We65KxQKBg4cyPbt2zl37hzXr18nIiKC1NRU9Y1HZGQkvr6+Gv9/NWnShCZNmnDu3DkKCgr47LPPNFLOi4uLKSwsRKlUolBoZx6JB7d76yp2b12tUeYX2ITcHO2dSgsKlOVmZ92iMDahoEA7A6xAmY+xiSobQKEwprCcLDHlzQwwhYnmdLBDe7awdd1iatX2ZdCILzAw0F5kWYiqZnozS+vurKy8CjK/AIxvlimLNHftyi+8GWNoUOX9FKIiBkaq79LiuzK5igpUGVgGhtrf5beytu6OKb6ZtWVgZIrBzYyxcjPECvPUx71FV08fh5qq7HFbZx/+XjiCyDNbeLnjB/d9TkLcq9U79rFmxz6NsiYBvmTlau80rVQWYFxOBtctJsYK8gu0153LUxZgIvekQohyyICXoEaNGtjb23PixAk6d+5cbp1jx45hYWGBm5ubuszU1FQ9wOLm5oadnR1vvfUWenp6971DI4CTkxMuLi4Vvn/8+HGGDh1KmzZtaNiwId26dSM/P59Ro0Zp1LvfQZjevXuzYMECwsLC2LRpE+3atcPS8t53nfv+++8ZNWoUBw4c4MiRI/znP/+hYcOGLF68mNLSUpo0acLEiRO14szNzdX/HR0dTU5ODqDK6OrUqROAevBr7Nix6OnpMXz4cCIjIxk3bhzFxcV88sknFZ57Xl4eAwcORKlUEhQUxGuvvUa9evU0MrMqG5i89RRt1qxZ5a7tdudgpKgaL7foQF0/zanFF84e59LFs5SVlWk8vUxNTlAvHF8eGzsn4mOuapWnpSTi4uYJgK29M0plHrk5WRo7LaanJFLdylY9oFVWVsaWNX9wZN9WAho2p8/gD6psnT4h/o2dmQm6Ojok5WhOz7r1s7Ol9rRaJ0vVH/qJ2Tdws7K4pxghHhUzSwd0dHTJzUzUKM/NUi2nYGFVQyvG3Eq1c2JuZgLV7W7/Dr7VhoWVC/oGCkzMrMnNTNCIVeZlUVSYj4WV6ndE3JUTGBiaYOfiq65jaGSKWTUH8m9ob/ogRFVq37QRDXzqaJSdCAvnbMRlrXubhNR0XOxt725CzcnWmiuxCVrlianpeNaU3UaFENpkDS+Brq4ugwYNYv369RoLtd9aAP7YsWNs2LCBAQMGoKenvfX7LU2aNOGtt97izz//5MCBA1Xez4ULF9K4cWPmzJnDkCFDaN68uXrtrX9L/a+Mh4cHgYGBbNu2jd27d9OrV697jj179izTpk2jVq1aDBkyhHnz5jFt2jSCg4NJS0ujdu3aREVF4ejoiKurK66urlhaWjJt2jQiI1W7yeTl5TF69Gi6devGiBEjmDRpEsnJyQAYGxtTUFBA7h1PwaZOnYqRkRFFRUXqqYblOXToEOfPn2fJkiV8+OGHdO7cGTMzM9LS0tSfl6enJxcuXNDIkPvnn39o27YttWrVQl9fn/j4eHXfXV1d2b9/PwsWLNBaaFQ8PAtLK1xcPTVent4BFCjzibwQoq6Xm5PFtaiLGjs33q22dwApSXEkJ9xedy85IZbkxFhq11XFedZVbd8dduaouk5xUREXw07ieUfbOzYt58i+rbRo243/e+tjGewSj5Whvh7e9tU5Hp2k8V1/PDoRE0N9PGyqacU4mJtia2bMsWjNAYZj0Yk4mJtga1ZxdqQQVU1P3xBbF19iLx/VuIZjLwdjaGSKlYP2mqHm1RwxtbAn5tJRjfKYS0dvvmcHgH3NAOKvnqKk+PZadrGXjqCjo4udi2qJg8gzmzm15zfK7phWlpeTSlZaDNVs7j0rXogHYWVpjmdNZ41XQB0P8pUFhIRfVtfLyr1B+JXr1Ltj58a71fPyID45ldjEFHVZbGIKcUkpGjs+CiHELfIXqwBg6NChtGzZkoEDB7J8+XKuXbvGO++8w969exk8eDC2trZamVTl+eijj3Bzc2PSpEncuFG1u2A5OjoSERHByZMniY2NZe3atcyePRtAY9H6f2NiYkJUVJR67TJQZXktW7YMhUJB8+bN77ktMzMzVqxYwYwZM7h+/TqRkZFs3boVNzc3qlevzoABA8jJyeHzzz8nPDyc8PBwPvnkE0JDQ6lTR/W0a/r06eTl5TFu3DjeffddbGxsGDduHABBQUFUr16dTz75hIsXL3LhwgVGjx4NqKYvjho1ipiYmHL75uDgAMCmTZuIi4vj5MmTvPfeexQVFak/rwEDBpCRkcHEiROJiopSL7jfpEkTzM3N6d+/P7Nnz2bjxo3ExMSwZs0aZsyYgZ2d3T1/RuLh1KrtS63avqxcNIsTh3dxPuQYC+Z8hcLYhMatXlXXS06I1cjoqtegOda2jvzx81TOnjzE2ZOH+OPnqTg4u+LfoBkA1a3taNCkDX+vXczB3ZsJDz3Fol++RpmfR+sOqo0n4mOucuCfjbi4euDfoCkx1y4RfTVS/VLml7+wvRBV6TV/T6LSMpl9IISQuBRWhUSy5cJVevh5YKSvR15hEZdSMsm+Y9Hi3vU8Cb6eyMJj5wmJS2HBsTCCryfSr36dSo4kxKPh83Jf0pMucXTrdyRcO03okRVEnNqA90u90Tcwoqggj7SECJR5t6ew+zbpR8ylw5zaM5eEa6c5uec3Yi4dxq/Z7bVM6zZ6jYL8LA5snEL8lZNEnN5IyIE/8PDviKmFrfrYORnxHNn6HYnXQ7gevp996yZiaGSGV8OH22RIiAfh4+mGr6c7Py5by+7gUxw7d5Epvy7GRKGgY/OX1PViE1O4ekdGV7NAPxxtrZk2bymHT4dy+HQo0+YtpaaTPU3r+5Z3KCHEC06n7GFSY8QzbcyYMcTFxbF06VJAlSW1bt06Vq9ezaVLlygrK8Pd3Z0WLVqwceNGatSowaRJk/Dw8GDQoEE4Ozszffp0rXaPHz/O4MGDGThwoMZi7RU5duwYgwcPZvfu3ZVOaczIyOC///0vR4+qnnZ6enry9ttv85///IfJkyfTs2fPcvt193nOmTOH33//naZNm/Lbb78BkJubS7NmzXjzzTf57LPP7v1DBPbu3ctPP/3ElStX0NXVpUmTJnzxxRfqxf0vXLjA999/z+nTp9HT06NBgwaMHj0aT09P9u3bx4gRI/j5559p3749oMoa69+/P19++SVvvPEGUVFRTJ8+nRMnTqCnp0ezZs34z3/+g6GhIe+99x4ffvghbdq0wcvLi2+++UYjQ23RokUsWrSI9PR07O3t6dy5M7GxsaSmprJ48WIAzpw5w4wZMwgNDcXS0pLOnTvz6aefolAoKC4u5rfffmPdunUkJyfj6OhIv379eOeddx5qcdD952WQ5H7k5eXy99pFXDh7AsrKqFnLi6593sLW/vZW9PNm/pfM9BRGT/lVXZaZkcqW1X9wKfwsenp61PYOoEvvIVhYWqnrFBcVsX3jckJOHKCwsADnmrXo1HMQNd1VgwL/bPmLPdvWVNi3YR9NolYdv0dw1s++ehvu77tEVO54dCJrz10mPiuX6iYKOnq50tVHtdj2hcQ0pvxznJHN/Gntcfv3yK7IaLZcuEp6nhI7M2N6+HnQspZMe6lK3zvPftJdeGbEXg7mfPBfZGfEYWxqjWdAJ+reHHBKjglj79oJvNzxA9x92qpjokJ3EH5qA/k5aZha2uP9Um/cvNtotJsSd4GzBxeTmXIVI2MLXOu2xq/p6+jq3c7GTYoJ5fzRP8lMvYaOrh4OrvUJaPEmJuY2j+Xcn3Vf+O150l147uTm5bN4w3ZOhIVDGdRxr8GQnkE42d2+Jif99AcpGZn8POH2Eh5pmVn8sX4b5yKi0NPTI8DLg8E9grCyNC/vMOI+mDcKetJdeCA5J7c/6S5U6Fn9TJ8nMuAl7kleXh5r1qyhQ4cO6h3/nicxMTF07NiRbdu2aaxT9rS7e+2DZ4UMeIkXgQx4iReBDHiJF4EMeIkXwbM6OCMDXqIyshCLuCcmJiYMHjz4SXejyiUkJHDu3DlWrFhBy5Ytn6nBLpAtmIUQQgghhBBCiPLIgJd4ZJKSkggKqnxU29/fnyVLljymHmnLyMhgzJgxuLm58dNPP2m8N3LkSI4dO1Zp/Lp163B3d3+UXRRCCCGEEEIIIcR9kgEv8cjY2NiwYcOGSusYGRk9ns5UwMfHhzNnzpT73uTJk1EqlZXGOzk5Vfq+EEIIIYQQQgghHj8Z8BKPjJ6eHq6uz+521/b29k+6C0IIIYQQQgghhHgAuk+6A0IIIYQQQgghhBBCVCUZ8BJCCCGEEEIIIYQQzxUZ8BJCCCGEEEIIIYQQzxUZ8BJCCCGEEEIIIYQQzxVZtF4I8dj9c0K+esTzr96T7oAQj8EXfnuedBeEeOROG7d60l0Q4pFr/aQ7IMQjIBleQgghhBBCCCGEEOK5IgNeQgghhBBCCCGEEOK5IgNeQgghhBBCCCGEEOK5IgNeQgghhBBCCCGEEOK5IitHCyHEU664SMnZg4uJvRxMcZESW2cf6rd+G4vqzpXGKfMyCdm/kMTrIZSWluDo3oD6Ld/C2MxKXae0tITzwSu5dnEvBfnZWNl5ENDyTawdvTTair9ykvPHVpKVFo2RwhxnzybUaz4QfQPFIzlnIe52Lj6VlSGRxGTmYKkw4tW6rnTxdkNHR6fCmCNX41kXepnk3HxszYzp7luL1h4uj7HXQtx2NuIyf23dQ0xCMpbmpgS1eJmubZpVeg0fPh3Kmp37SUnPxNbKkh5tW9Dm5UCNOpej41i2aSdXYuMxVhjR+qX69Hv1FfT19cpt8/s/VqIwMmTUgNeq9PyEuKWgQMn29UsJCwmmsLAANw9vuvZ5C1t7p0rjcrIz+XvtIi5dDKG0pBQv30A6934TC8vb9y0lJSXs3rqK08f2kZebg3PNWnR6bTA13euo6xQVFbJn62pCThzkRm42Ds6utO/Sjzo+geUdVgjxHJMML/HM2bRpE/369aN+/foEBgbSu3dv/vrrL/X7GRkZrF69utI2Bg0axJgxY+75mGPGjMHLy0vjFRAQQLdu3Vi1atUDn8stXl5erFu3DoCioiIWLVr00G2K58fRbT8Qe+ko9VoMonHHD8nPTWPfmv9SqMytMKa0tIQD678iLekSDduOoGHbEaTGh7N//WRKS4rV9UIO/EHkmU14NexB086fo6Orx751k8jJTFDXibtygkObp2FpXYOWPb6kbqPXuHZhDyd2/fxIz1uIWy6lZDJj70mcLE35tHUDWrg7seJ0OJvOX6kw5lh0Ij8dPks9J1s+a9MAH3srfjsSypGr8Y+x50KoXLoWy/9+X4GznQ2fvfV/tGhYj2Wb/2HjnkMVxhw7e4Efl62lfl1PPn+7Pz4e7vzy5wYOnw5V10lKTWfqb0swNDTg48F96dq6KX/vO8rCdVu12isrK2PR+m0cO3fhkZyjELes/GMWoWeOEtRzIH0HvU92Vjq/z55IXl7F9y0lJSUs+nkqsdcv06P/cHr0H8a1K+Es/GkqxcW371u2rlvMoT1baNW+B68P/RRdXT0WzPmKtJTb9y3rlv9K8IEdtO7Yk0Ejv8DGzpHFv37D1cty7QvxopEML/FMWbNmDV9//TXjx4+nYcOGlJWVcfjwYaZOnUpqairvv/8+3377LbGxsfTt27dKjx0YGMicOXPUPyuVStauXcuECROwsLAgKCjogds+dOgQ5ubmAGzZsoVvvvmGIUOGPGyXxXMgNSGc+CsnaNVzAo5uDQCwcfbh7z9Gcvncdnxe7lNuXOylI2SkXKXToB+xsK4BQHVbd7Yv+4iYS4dxrduavJxUos5tJ7D1UDwDOgHgULM+WxePIvzkOl5qPwqAkAMLcfFsxssdPwTAvoY/ZWWlXArZSnFRAfoGRo/6YxAvuNVnL+FqZcGo5gEA1He2paSslA1hUXSq64ZhOZksK89E0rimA4MbeQMQ4GRLbkERq85eopl75VkGQlS1ldv34ObkyPtv9AIg0Ls2pSWlrN91kM6tmmBoYKAV8+fW3TQJ8OHNnqr7i/p1PcnNy2Pltj00b+APwMY9hzE2MmL026+jr69HA586GBoasHDtVnp1aIlN9WoAXI9P4o91W7kcHVfusYSoKtevRHAx9CRD3huPl68qo8rN05sZE0dx7MAOXgnqXW5c2JmjxMde45MvZ2HnqMrEdXJxZ9bXnxB6+giBL7ciMyOV4IM76NbnLZq0Uv27qF03gO8nf8D+nRvo9ca7ZKQlE3LiIN37vaOu4+lVj2tR4Rw7sAN3T5/H8CkIIZ4WkuElnikrVqygd+/e9OnTB3d3d2rVqsWgQYMYMmQIS5YsAVRPMB8FAwMDbG1t1a8aNWrw8ccf4+bmxubNmx+qbVtbWxQK1dSwR9V/8WxKvBaCvoECh5r11WUKE0tsnX1JuHaq4rjrZzCv7qQe7AKwsK6BeXVnEq6q4pJizlFaWoKzZxN1HT19A5zcG5Jw9TQAGclXyM1MpHb9Lhrt1wnsRpe3fpXBLvHIFZWUcDEpjZdq2GuUN67pgLKohIiUDK2YlNx8ErJvlBuTlJNHQvaNR9pnIe5UVFzMhahrvFyvrkZ54wAf8pUFhF+J1opJSc8kPjmVl/29NcqbBPiQmJpOQkoaoJomGehdW2P6YpMAX8rKyggJj1KX/bRiHSWlpXz98TAszU2r8vSE0HDpYgiGRgpqeweoy8zMLXH39CHi/OkK4yIvhmBj56Qe7AKwc3TB1t5ZHRcVEUppSQm+AY3VdfQNDKjr11Bdx9yiOqNGT6f+Sy3VdXR0dNDT06OoqKjKzlMI8WyQAS/xTNHV1eXMmTNkZWVplA8fPpyVK1cyZswY1q9fz/Hjx/HyUq1BVFhYyLRp02jatCkNGzZkxowZlJaWVlmf9PT0MDQ0VB/rf//7H23btsXPz4+XX36Zjz76iPT0dABiY2Px8vJi7ty5NG/enHbt2pGbm6ue0rhu3TrGjh0LqKY5btu2DT8/PzZs2KBxzO+//57evct/Qna3kpISZsyYQevWrfHz8yMoKIg///xTo87atWvp1KkT9erVo1OnTixevFj9GS1cuBAfHx/OnTsHQGlpKQMGDKBXr14UFhY+8Ocm7k12eixmlvbo6Gp+XZtVcyAnPa7SOPNy1vgyr+ZETma8uo6BoTHGptXvatuR/BvpFBcpyUy5CoCenj4HN37Nmp/+j/W/DeLM/gWUFMuNo3j0knLyKS4tw8FC8490+5t/tMdnaQ9exWWpps043hVzqw0Z8BKPU1JqBsXFJTjaWGuUO9io1iWKS07ViolNSgHA0e7uGNXP8cmpFBYVkZKeidNddSzNTDFRKEhIud3u+wN6MeXDobg6aQ4CC1HVkhNjsbKxR/eu+xZrWwdSkiq+b0lJjC13jS9rO0dSk+PVbRspjDG3rK5VJzsrg4ICJfoGBri4emJsYkpZWRmZGalsWfMHaSmJNG7ZoQrOUAjxLJEpjeKZ8s477/DJJ5/QqlUrGjduTKNGjWjSpAn+/v5YWFgwfvx4lEoliYmJ6umHU6dOZc+ePUyfPh0nJyd+++03Tp48SY0aNf7laJXLzc1lxYoVREVF8fHHHwPw7bffsnfvXqZPn46zszMRERGMHTuWX3/9lfHjx6tj169fz+LFi8nPz8fMzExd3rlzZ3Jycpg2bRqHDh3C0tKSNm3asGHDBnr27AmoBpw2bdrE8OHD76mfK1asYPv27cycORN7e3v27t3LpEmTqF27No0aNWLlypX88MMP/Pe//6VevXpcuHCBKVOmkJSUxOjRoxkyZAh79+5l/PjxrFu3joULF3Lx4kXWr1+vHugTj05RYR76hsZa5QaGxhQV5VcYV1hwA7Nqjlrl+oYKitLzVG0X3MDA0KTctlXv51GQnw3A4b+/paZXS+o06E5G0mXCgv9CmZdJ006fPdB5CXGv8otUa7eYGGjeshgbqDJa8sp5Yp9XqCozNtSMUdyMudWmEI9DvrIAAGOFZkassZGhxvt3ystXAmCi0NwY5FYb+coCbtysc3e7AAojQ/LuaFcGusTjUpCfj5GR9oY2RkYKCpTKCuPy8/KwttW+b1HFqe53lPl5GCm074luHa9Amadx7P0717Nj0woAXmreHs+6AVqxQojnmwx4iWdKUFAQDg4OLFmyhMOHD7N//34A3NzcmDZtGg0bNkShUKinH+bm5rJu3TomTpxI69atAZg2bRrBwcH3feyTJ08SGKhai6CsrIz8/Hysra35/PPP6dixIwD+/v4EBQXRqFEjAJydnWnWrBmRkZEabQ0YMABPT0+tYygUCvVaXra2tgD07t2b9957j6SkJOzt7Tl69Cjp6el07dr1nvodHR2NiYkJLi4u2NnZMXDgQGrVqoW7uzsAv/zyC++++y5duqimrNWoUYPc3FwmT57MRx99hJGREdOnT6d79+6MHz+erVu3MmXKFNzc3O7zExT/pqysjLKy0rvKKs5G1KHinb2obGrszR3B/nX6rI6OeoF7Z4/GBLQYDNxaw6uMc4eX4tuk/7/uFinEwyj9l+tUt5wd7v5tYngl/3KEqHKllXyPA+jqlnMN/8t1r6OjU+nXPPzL7wghqkBZWZnWrInKrvfKdiSt/Jv73u5b7r7m6/o3omYtL65HhbNn2xqKiwrp9+aHlbYhhHi+yICXeObUr1+f+vXrU1paSnh4OPv372fZsmUMGzaMf/75R6Pu1atXKSoqwt/fX11mZGSEj8/9L1jp5+fHd999B6imVpqYmGBtrTmNoEePHhw5coTvvvuOa9euceXKFa5evaoeALvF1dX1no/bqlUrrK2t2bhxI8OHD2f9+vW0a9cOS0vLe4p/44032LVrF61bt8bb25vmzZvTpUsXrK2tSU9PJzExkR9++IHZs2erY0pLSykoKCA2NhYPDw+cnZ0ZN24c48aNo3379rz2mmxl/iicD17J+WMrNcpq1G5GTl6mVt2iwvxys7NuMTAypbhQ+0lqUWE+hkaqaV0GhiYUFWpniRUVqjLADI1M0TdUPSl1cte8hh1c63Pu8FIyU67KgJd4pExvZmndnZWVV0HmF4DxzTJlUYlGeX7hzRhDWbRbPD4mxqrv0fwCzWUA8irI/Lqz7O7sr7ybGTImxgpMbtZRFmgvL5BfUICpsXaWjRBVaffWVezeqrkzul9gE3JzsrTqFhQoy83OukVhbEJBgfZ9S4EyH2MT1f2OQmFMYTlZYsqbGWAKk7umsTvVBKBWbV9KS0vZ9fdKOnZ7nWpWtv9yZkKI54UMeIlnRmJiInPnzmXEiBE4ODigq6uLj48PPj4+tG/fnq5du3LixAmNGJ0KMln09e//0lcoFP86UPXf//6XHTt20LNnT9q2bcuoUaNYsGABSUlJWm3dKz09PXr27MnmzZsZOHAgu3bt0hic+jdubm7s3LmT48ePc/jwYfbt28f8+fP55ptvaNlStaDn2LFjadasmVaso+Pt1PKwsDD09fUJDQ0lKyvrngfcxL3z8O+Ik3tDjbK4K8dJvH6GsrIyjSejuZkJWFi53N2Emnl1JzKSr2iV52YmYO1QGwALK2eKCvNQ5mWhMLG8o04iphZ26OkbYlZNtZ5GSYnmtLGyUtVAgp6eTGsVj5admQm6Ojok5eRplN/62dnSTCvGyVL1R09i9g3crCzuKUaIR8Xeujq6urokpaZrlCfe/NnFXvuPb+ebZYmpabi73P5dnHRHjMLIECtLC/UC9rdk5d4gX1mAs71NlZ6HEHd7uUUH6vpp3rdcOHucSxfPat23pCYnYOdQ8X2LjZ0T8TFXtcrTUhJxcVPNirC1d0apzCM3Jwsz89v3LekpiVS3ssXAwJCMtGSiIkIJeKklBga371Gca9QCIDsrQwa8hHiByKL14plhaGjI6tWr2bRpk9Z7FhaqP2hsbGw0frm6u7tjZGTE6dO3d4UpLi4mPDy8yvuXkZHBypUrmThxImPHjqVXr154e3tz5cqV+9p5sbx07969exMZGcnSpUsxNzenRYsW99zekiVL2LlzJ82bN2f06NFs3ryZpk2bsnXrVqytrbGysiImJgZXV1f16/z588yaNUvdxsGDB/nzzz/5+eefMTY2ZvLkyfd8fHHvjM2ssHKorfGyr1mfosJ8Eq+fUddT5mWREncBe9f6FbblULM+ORlxZKfFqMuy02LITo/F/uaOj/Y1VWtZxF46oq5TUlxE/NWT6vfsXHzRN1AQHXFAo/24KyfQ1dXD2tHrYU9biEoZ6uvhbV+d49FJGt+lx6MTMTHUx8OmmlaMg7kptmbGHItO1Cg/Fp2Ig7kJtmYVZxkIUdUMDQzw8XDl2LkLmtfwuYuYGCvwrKmdJetgY4WddXWCz17QKA8+ewFHW2tsraoBUM/Lg9MXIikqLr6jznl0dXXxq+3+aE5IiJssLK1wcfXUeHl6B1CgzCfyQoi6Xm5OFteiLmrs3Hi32t4BpCTFkZwQqy5LToglOTGW2jfX3vKsWw+AsDNH1XWKi4q4GHYSz5ttZ6SnsHb5r1w4e1yj/UvhZ9HT08emnIXxhRDPL8nwEs8MKysr3nnnHWbPns2NGzcICgrCzMyMy5cv88svv6gXsd+2bRvJycnExMRQo0YNBg4cyI8//oitrS0eHh4sXLhQK+OqKpiZmWFubs7u3bvx9fVFqVSybNkyzp8/T0DAvS+SaXIzbTssLAxPT08UCgXu7u40aNCAX375hUGDBqGnp/cvrdyWnp7Ozz//jEKhoG7duly5coWLFy8yePBgdHR0GDZsGDNnzsTJyYlWrVoRERHBpEmTaNeuHYaGhmRmZjJu3Dj69etHmzZtMDMzY+DAgbRt2/ae1xETD87OxRc7Fz+Ct88koMVgDBXmnA/+C0MjUzzrBanrZafFUFJSRHU71RPMGnVacOHEGvZvmEJAi0EAnD20lGo2rtSo0xwAUws73H1eIeTAH5SUFGJezZmIM5soKrhB3Uaqaav6Bgr8mvYn5MAiDI3McPFsSmpCOOGn1lO7fleNzDAhHpXX/D35etdxZh8IoY2nC5EpGWy5cJX+gV4Y6euRV1hEXNYN7M2Nsbg5zat3PU9+OxKK+bHzNHCx41RsEsHXE/mwZf0nezLihdSrQ2um/LqYmYtX80rjQCKuxrBp72EGdG2PkaEheUolcYmp2NlUx9JMlaHYp2NrfvlzA+amW2jo68XJsAiOhpzn48F91e32aNucI2fC+GbeMrq0bkpCShp//r2b9k0bYlO92hM6W/Eiq1Xbl1q1fVm5aBadeg7CxNScXVtXoTA2oXGrV9X1khNiKS4uwqmGamC2XoPm7N2+jj9+nkpQz4EAbN+wDAdnV/wbqGYhVLe2o0GTNvy9djFFRUXY2jlxaM9mlPl5tO7QAwB3Tx8869Zj06rfUSrzsLKxJyLsNEf3b6N9l//DxEQyfIV4keiU3U/qiRBPgQ0bNrBq1SoiIyNRKpU4OTnRqVMnRowYgYmJCaGhoYwaNYqsrCx27tyJjY0NP/30E6tXr+bGjRt06tSJ7OxszMzMmD59+j0dc8yYMcTFxbF06dJK6x0+fJjp06dz/fp1LC0tady4MbVr12bu3LkcPnyYtLQ02rVrx5IlS2jcuLE6zsvLi2+++YZevXqRlZXFsGHDuHDhAjNmzKBTp04ArF69mi+//JKtW7fi4eFxz59XcXExM2fOZOvWraSkpGBra0vPnj15//331QNny5cvZ+nSpcTGxmJjY0PXrl358MMPMTQ05KOPPuLs2bNs2bJFvaPkV199xZYtW9i8eTP29ve/89OXi7TXGxEVK1TmEnJgIXFRxykrK8PGqS71W7+tsXbW3tVfciMnha5vz1WX5eWkcmb/AhKvh6Crp49DzQDqt3obYzMrdZ2S4iLOHV5KdPgBiouVVLfzIKDFYK3MravndxNxeiM5mQkYm1rh4d+Ruo16/csCtC+2z+I+etJdeK4cj05k7bnLxGflUt1EQUcvV7r6qP5QupCYxpR/jjOymT+tPW5PmdkVGc2WC1dJz1NiZ2ZMDz8PWtaSNeeqkv6rPZ50F54Zx85dZPWOvcQnp2JlacGrzV+i2yuqBxDnL19l8s+LeO/1nrR5OVAd88+Rk2zee5i0zGzsrKvzWvuWtGqk+RDtYtR1lm3eybW4RMxNTWjZqB7/F9QWff3yH46NmjITHw83Rg2Q9Tjv1WnjVk+6C8+UvLxc/l67iAtnT0BZGTVredG1z1vY3pFdNW/mf8lMT2H0lF/VZZkZqWxZ/cfNbCw9ansH0KX3ECwsb9+3FBcVsX3jckJOHKCwsADnmrXo1HMQNd3rqOsUKPPZvXUVYWeCyc7KwMbOkRZtu9KoWbvH8wE8o1r7Vrw27NMs5+T2J92FCpk3Cvr3SuKRkgEvIZ4Rc+bM4ciRI/z5559PuisPTQa8xItABrzEi0AGvMSLQAa8xItABryqngx4PXkypVGIp9ypU6e4evUqS5Ys4auvvnrS3RFCCCGEEEIIIZ56MuAlXmjz58/nl19+qbTOuHHj6Nu3b6V1HqW9e/eybNkyevfurZ7eCJCUlERQUOVPDfz9/VmyZMmj7qIQQgghhBBCCPFUkSmN4oWWlZVFZmZmpXWsra3Va1c9TUpKSoiNja20jpGREQ4ODo+pR/dOpjSKF4FMaRQvApnSKF4EMqVRvAhkSmPVkymNT55keIkXmqWlJZaWz+Yuc3p6eri6uj7pbgghhBBCCCGEEE8d3SfdASGEEEIIIYQQQgghqpIMeAkhhBBCCCGEEEKI54oMeAkhhBBCCCGEEEKI54qs4SWEeOy+8NvzpLsgxCNXHPekeyDEo/e/sLZPugtCPHIdXip+0l0QQgjxACTDSwghhBBCCCGEEEI8V2TASwghhBBCCCGEEEI8V2TASwghhBBCCCGEEEI8V2TASwghhBBCCCGEEEI8V2TASwghhBBCCCGEEEI8V2SXRvHU2rRpE8uWLSMyMhIdHR1q1apF37596d+/PwAZGRns2rWLvn37VtjGoEGDcHZ2Zvr06fd0zDFjxrB+/XqNMoVCQc2aNRk0aBD9+vV78BMCvLy8+Oabb+jVqxdFRUUsX76cIUOGPFSb4vmnLChk2eadHDt3kYLCQurWcmVIzyCc7GwqjcvMyWXJhu2ERERRWlJKoE9tBnV/FStLc3WdkpISVu/Yz/4TIeTcyKNWDUcGdXuV2m4u5bZ5NTaBcbPm8+O4D7G1qlaVpylEpc7Fp7IyJJKYzBwsFUa8WteVLt5u6OjoVBhz5Go860Ivk5ybj62ZMd19a9Hao/xrW4hHLfF6CKFHlpOVFo3CpBqeAZ3xatC90ms4OuIg54+t4kZ2MqYWttRt1At3H82dMdMTL3H24GLSk6MwMDTBzecV/Jr0R1fv9m1+RnIUoUdWkJ50GcrKqGZXi4AWg6hu5/HIzle8mC5dDGHn5j9Jio/BzNySpq070aJdt0qv87MnD7Fn2xoy0pKpZmVL6449adjkFY06sdcvs3XdEuJirqBQGNOgcRvadfk/9PXL/3N2+fwZGCqM6Tvo/So9PyHEs0UyvMRTac2aNUycOJF+/fqxfv161q5dS8+ePZk6dSo//fQTAN9++y2bNm2q8mMHBgZy6NAh9WvLli20a9eOCRMmsH379odq+9ChQ3Tu3BmALVu28M0331RFl8VzbvbSNQSfvcAbXdsz6vXXSM/KZvIvi8jNy68wpqSkhGlzl3E5Oo5hfbrwTp8uhF+J5uu5SykuLlHXW7JxB3/vP0L3V5rx8Zt90dPVY8pvi0lMTddqMzohiem/L6ekpETrPSEepUspmczYexInS1M+bd2AFu5OrDgdzqbzVyqMORadyE+Hz1LPyZbP2jTAx96K346EcuRq/GPsuRAqaQkRHNz0NRZWzjTv+gWudVtx7tBiwk+urzAm9tJRgrfPxME1kOZdx2Dr4sfxnXOIjjiorpOblcj+9ZPRMzCiaefPqdOgO5GnN3F633x1nZzMBPas/pKSogJeaj+Klzp+QFlJMbtXjSM7I+6Rnrd4sURfjWTxr9OxtXfmjWH/of5LLdm2YSn7/9lQYUzYmWBWLppNbe/6DBz+H2rV8WXN0p85e/KQuk5aaiIL5kzBwNCI19/+lBZtu3FozxY2r16g1V5ZWRlb1vxBWMixR3GKQohnjGR4iafSihUr6N27N3369FGX1apVi6SkJJYsWcL7779PWVnZIzm2gYEBtra2GmUff/wx27ZtY/PmzQQFBT1w23e2+6j6L54vkddiOHU+grHDBxLoXRuAuh6ufDB1FjsPn6BXh1blxgWfvcC1uAR++OJ9XBxU152bsyOfffszR8+ep2XDeqRlZrHzyEmGvBbEq81fBiDAy4OPpv3Iht0HGfl/PQAoLi5h28FgVm3fi4GBwWM4ayE0rT57CVcrC0Y1DwCgvrMtJWWlbAiLolNdNwz19bRiVp6JpHFNBwY38gYgwMmW3IIiVp29RDN3p8fafyHCgv+iuq07jV/9GABHtwaUlpZw8cQa6gR2RU/fUCvm3JFluHg2I7D12zdjAinMzyX06ApqerUEIPzkevQNjWnRbSy6evo4uTdEX9+Q0/vm4/1SH0wtbLkU8jf6+ka07Pkl+gYKAOxr+LNl4QguhfxNw1eGP54PQTz3dv29EqcabvR780MAvHwDKSktYd+OdTR/pQsGBtrX+Y5NK/ALbELXPkMAqOMTSN6NHP7Z8hcBjVoAcOCfjRgpFAwa8QX6+vrU9WuAgaEhm1Yt4JVXe1HNSnWfkxB3nc2rFhB7/XK5xxJCvHgkw0s8lXR1dTlz5gxZWVka5cOHD2flypXqqYfHjx/Hy8sLgMLCQqZNm0bTpk1p2LAhM2bMoLS0tMr6pKenh6GhofpY//vf/2jbti1+fn68/PLLfPTRR6Snq7JiYmNj8fLyYu7cuTRv3px27dqRm5uLl5cX69atY926dYwdOxZQTXPctm0bfn5+bNiwQeOY33//Pb17976n/q1bt44OHTowdepUGjZsyHvvvQegnvZZv359/P396dWrFwcP3n46XFZWxuLFi3n11VepV68eXbp0YcuWLer3k5KS+OSTT2jUqBGNGzdm5MiRXLt27UE/RnGfQsIvozAyJMDr9rQTSzNTvD3cOHPxUqVxTnY26sEuABcHW5zsbDhzIRKA0MgrlJSU8LK/t7qOgb4+DXzqaLR9+mIka3bu57X2rXija/uqPD0h/lVRSQkXk9J4qYa9Rnnjmg4oi0qISMnQiknJzSch+0a5MUk5eSRk33ikfRbiTiXFRSTHhuHs0USjvIZnU4oK80mJv6gVcyM7mZyMeFw8G2vG1G5KbmYiORmqTMXE6yE4ujXQmL7oUrsZZWVlJF4/A4BFdWe8GvZUD3YB6BsoMDGz5kZWUpWdp3ixFRcVcSXyPD4Bmtesf2BTCpT5XIvSvs4z0pJJTY7H964Yv8CmpKUkkpqcAMClCyF4+TbQmL7oF9iUsrIyIi+GqMtWL55DaWkJ7/7nG8zMLavw7IQQzyoZ8BJPpXfeeYcLFy7QqlUrhg8fzrx58zh37hzm5ua4u7szfvx4OnXqpJ5+CDB16lS2bt3K9OnT+euvv0hMTOTkyZMP3Zfc3FzmzZtHVFQUnTp1AlTTKXfu3Mn06dPZsWMH06dPJzg4mF9//VUjdv369SxevJhZs2ZhZmamLu/cuTPjxo0DVNMc27VrR5s2bTQGvEpLS9m0aRO9evW6575GR0eTnJzMhg0b+OSTTwgLC+ODDz6gS5cubN68mVWrVmFlZcXo0aMpLCwE4Pfff2fmzJm88847bNmyhf79+zN69GiCg4PJy8tj0KBBACxbtoylS5dSvXp1+vXrR1KS3CQ/DnFJKdhZV0dXV/Pr2sG6OnHJqZXEpeJoa61V7mhrTXxKmrqOscKI6hbmWnUysnJQFqiuEY8azvz05cf06tAKPV35tSEer6ScfIpLy3CwMNUotzdX/RyfpT14FZeVC4DjXTG32pABL/E43chKpLSkGPNqjhrlZjd/zkmP1YrJvllmXt2p/JiMeEqKC7mRnaxVR2FiiYGhiXpQzDOgE3Ub9dSok5OZQFZaNBZWNR78xIS4Q3pqEiUlxdjYal7nVrYOAKQkak8nT05UTam1sdO8hm+1kZoUT1FRIRnpKVp1zMwtUShMSE263W7fNz9g5Gdf4+js+vAnJIR4LsiURvFUCgoKwsHBgSVLlnD48GH2798PgJubG9OmTaNhw4YoFAr19MPc3FzWrVvHxIkTad26NQDTpk0jODj4vo998uRJAgMDAVX2U35+PtbW1nz++ed07NgRAH9/f4KCgmjUqBEAzs7ONGvWjMjISI22BgwYgKenp9YxFAoF5uaqQYZb0xx79+7Ne++9R1JSEvb29hw9epT09HS6du16X/1/7733qFFDdQN78eJFJkyYwIABA9TvDx48mGHDhpGWloaDgwOLFy9m8ODB6sX/Bw0ahFKppLi4mL///pvs7GxmzJihfqr29ddfc+zYMVatWsUHH3xwX30T9y9PWYCxkZFWuUJhhLKgoJI4JY62VlrlxkaG5CtVcTfyleW3bWSoPrbCyBDrahYP2n0hHlp+UTEAJgaatyzGBqppjHlFRVoxeYWqMmNDzRjFzZhbbQrxOBQV5gGgb2SiUa5vaHzzfe31GIsKbtysU1FMHoU36xjcVUdVZqw+7t1Kigs5vvNHdPUMqF2/8/2cihAVUipV15uRsbFGuZGR6ucCpfb1qMxXXcOKu2MUCnWbyrybdRSadQAMFQqUytv/fmSgSwhxNxnwEk+t+vXrU79+fUpLSwkPD2f//v0sW7aMYcOG8c8//2jUvXr1KkVFRfj7+6vLjIyM8PHxue/j+vn58d133wGqqZUmJiZYW2tmyvTo0YMjR47w3Xffce3aNa5cucLVq1fVA2C3uLre+y/eVq1aYW1tzcaNGxk+fDjr16+nXbt2WFreX0q2m5ub+r+9vb2xtLRk3rx5XLlyhevXrxMeHg6oFjXPyMggJSWFgIAAjTaGDRsGwOTJk8nKyuKll17SeL+goICoqKj76pf4d2VlZVrTcEtLK17rTYeKdzyqbI24WzsllVH5OnKVbKgkxGNT+i/rHeqWc6H+2wqJcmmLx6msrPLlFXR0tDNn/22dTx0dHbiXOncpKszn0OZvSE+8RLMuozG1sKu0DSHuVdm/LCOiU06G+L1c5/9+ryLf6EKIismAl3jqJCYmMnfuXEaMGIGDgwO6urr4+Pjg4+ND+/bt6dq1KydOnNCIUf8Bf9cvzoq2Kq6MQqH414Gq//73v+zYsYOePXvStm1bRo0axYIFC7Sm+SkUigpa0Kanp0fPnj3ZvHkzAwcOZNeuXcyePfuB+n/L8ePHGTp0KG3atKFhw4Z069aN/Px8Ro0aBfCvC5CXlpbi7u6uNVUTwMRE+4myeDird+xjzY59GmVNAnzJys3VqqtUFmCs0M7OusXEWEH+zSmJd8pTFmBy8xoxURippy3e6VYGmKnxvV+/QjwqpjeztO7OysqrIPMLwPhmmbJIc0fR/MKbMYay+YJ4fAyMVFNpi+/K5CoqUGW8GBhqZ67cytq6O6b4ZtaWgZEpBjczxsrNECvMUx/3lrycVA5unEpORjxNO32Gs8fLD3I6QpRLYaK63gqVSo3yW5ld5WVoKRQmN+toxijzVde0wtgUo1t1CjTrqOLyURjL/eiLrnjHxifdhYo1evDNzkTVkAEv8dQxNDRk9erVODo6Mny45s5BFhaqqVU2NjYaT3Tc3d0xMjLi9OnTeHurFuAuLi4mPDycxo01F8J8WBkZGaxcuZKZM2fSufPtqQBXrly5r0Gg8p5I9e7dm/nz57N06VLMzc1p0aLFQ/V14cKFNG7cmDlz5qjLli5dCqgGB83NzbGzsyM0NJR27dqp63z44Yc4OjpSp04dNm7ciLm5OVZWqulxRUVFfPbZZwQFBWmcv3h47Zs2ooFPHY2yE2HhnI24TFlZmcY1k5Cajou97d1NqDnZWnMlNkGrPDE1Hc+azqo6djbkKZVk5d7A0sxUo46tVTUMZUdG8RSwMzNBV0eHpBzN6TC3fna2NNOKcbJUXc+J2Tdws7K4pxghHhUzSwd0dHTJzUzUKM/NUn1Hl7eOlrmV6ns6NzOB6na1bsfcbMPCykW98HxupuZ3vTIvi6LCfCysXNRlmanXOLB+CiXFBbR6bSJ2Lr5Vc3JC3GRlY4+uri5pKZrX+a2f7RxctGJsHVTrcqWmJOBUw/12TOqtGGeMjBRYVLMiLVnzOs/NyaJAmV9uu0IIcYusPiyeOlZWVrzzzjvMnj2bmTNncvHiRWJiYti7dy/vv/8+jRs3plGjRpiYmJCcnExMTAympqYMHDiQH3/8kZ07dxIVFcXEiRMfycLqZmZmmJubs3v3bq5fv05ERAQTJkzg/Pnz6oXg78WtwbGwsDCUN59subu706BBA3755Rd69OiBnp7eQ/XV0dGRiIgITp48SWxsLGvXrlVnjd3q6/Dhw1m8eDEbN24kOjqaJUuWsHv3btq1a0f37t2xtLTkww8/5OzZs0RFRTFmzBgOHDig3h1TVB0rS3M8azprvALqeJCvLCAk/LK6XlbuDcKvXKfeHTs33q2elwfxyanEJqaoy2ITU4hLSlHv+Fivjup/g8+eV9cpKi7m1PnIStsW4nEy1NfD2746x6OTNLJ4j0cnYmKoj4dNNa0YB3NTbM2MORat+YfXsehEHMxNsDXTzjQQ4lHR0zfE1sWX2MtHNa7h2MvBGBqZYuVQWyvGvJojphb2xFw6qlEec+nozfdUUxHtawYQf/UUJcW317KLvXQEHR1d7FxUyzzk5aSyf+0kANr1+0YGu8QjYWBgiLunD2EhwRrXeVhIMApjU1zctK9za1tHqlvbEXZG8zoPO3MUGzvVewC16wYQHnaK4jvWbAw7cxRdXV086vg9ojMSQjwPJMNLPJU+/vhj3NzcWLVqFcuXL0epVOLk5ESnTp0YMWIEAD179uSff/6ha9eu7Ny5k88++wwjIyO++uorbty4QadOnWjbtm2V983AwIDZs2czffp0unXrhqWlJY0bN+bTTz9l7ty55OdrTy0oT5MmTQgICKB///7MmDFDvQNkr169OH36NK+99tpD9/XDDz8kNTWVkSNHAuDp6cm0adP4z3/+Q2hoKB4eHgwcOBClUsns2bNJSUnBzc2NmTNn8vLLqqkOy5Yt49tvv2Xo0KGUlJTg6+vLwoUL8fCQAZHHwcfTDV9Pd35ctpaB3TpgZmLC6h17MVEo6Nj89tpqsYkpFBUX4+6i2tmoWaAf63cdZNq8pbzRtQMAy7f8Q00ne5rWV/2xY2tVjdYv1WfJhh0UFRXjaGvN3/uPkqdU0qPtw2UXClGVXvP35Otdx5l9IIQ2ni5EpmSw5cJV+gd6YaSvR15hEXFZN7A3N8bi5lTf3vU8+e1IKObHztPAxY5TsUkEX0/kw5b1n+zJiBeSz8t92b9uIke3foe7bztS48OJOLWBes0HoW9gRFFBHtnpMZhaOqAwUa3d6dukH8d3zuHUHnOcar1E3JXjxFw6TNPOn6nbrdvoNaIjD3Fg4xS8AruTkxlH6OHlePh3xNRClQV8et/vKPOzaNRuJEWFeaQlRKjjDQxNsLCWnRpF1XglqDcL5nzFigXf06hpO65fCefgrk282uMNDA2NUObnkZwYi5WNPWbmquu8Xee+rFn6MxtN51PXvxEXQ08Qevoor7/9ibrdVh16cu7UYRb98jUt2nYjJTmenZtW8HLzDlSzqjjbXQghdMr+bbVAIcRjNWfOHI4cOcKff/75pLvyyOSc3P6ku/BMyc3LZ/GG7ZwIC4cyqONegyE9g3Cys1HXmfTTH6RkZPLzhNs3iGmZWfyxfhvnIqLQ09MjwMuDwT2CsLI0V9cpKi5mxZZdHDx1joLCQmq5ODGwW0dqu5U/RWDf8TP88ucGfp7wCbZW1R7ZOT8Pnuo1JZ5Bx6MTWXvuMvFZuVQ3UdDRy5WuPqopMBcS05jyz3FGNvOntcfta3dXZDRbLlwlPU+JnZkxPfw8aFnL+UmdwnPpe+f7X2vyRRV7OZjzwX+RnRGHsak1ngGdqNuwBwDJMWHsXTuBlzt+gLvP7Yd1UaE7CD+1gfycNEwt7fF+qTdu3m002k2Ju8DZg4vJTLmKkbEFrnVb49f0dXT19CktKWbtz/0pLdVcz+4WO2dfXuk79ZGd8/Oiw0uys+u9Oh9yjF1bV5GSGIdFNSuatgqiZfvuAFyJDGP+7En0GTSKhk1eUcccO7STg7s2kZWRhpWNPW1efY3Al1trtHv18gW2rV9KQuw1TMzMCXy5Fe279K9wvd5vJ7yLex1f+g56/9Gd7HOmte+zuR5axtfvPukuVKj6eO11kMXjJQNeQjwlTp06xdWrV/nf//7HV199pc74eh7JgJd4EciAl3gRyICXeBHIgJd4EciAV9WTAa8nT6Y0ihfC/Pnz+eWXXyqtM27cOPr27fuYeqRt7969LFu2jN69e2sMdiUlJREUVPkOH/7+/ixZsuRRd1EIIYQQQgghhHgmyICXeCH069ePjh07VlrH2tr6MfWmfJ9//jmff/65VrmNjQ0bNmyoNNbIyOgR9UoIIYQQQgghhHj2yICXeCFYWlpiaWn5pLvxQPT09HB1dX3S3RBCCCGEEEIIIZ4Zuk+6A0IIIYQQQgghhBBCVCUZ8BJCCCGEEEIIIYQQzxUZ8BJCCCGEEEIIIYQQzxUZ8BJCCCGEEEIIIYQQzxVZtF4I8dgV79j4pLsgxCOn/2qPJ90FIR69sCfdASGEEEKI8kmGlxBCCCGEEEIIIYR4rsiAlxBCCCGEEEIIIYR4rsiAlxBCCCGEEEIIIYR4rsiAlxBCCCGEEEIIIYR4rsii9UII8RxQFhWz4nQEx6MTURaXUNeuOoNf8sbJwqzSuKz8Apacusi5+FRKSsuo72zLoIZ1qW6ieEw9F+LeKQsKWbZ5J8fOXaSgsJC6tVwZ0jMIJzubSuMyc3JZsmE7IRFRlJaUEuhTm0HdX8XK0vwx9VwISLweQuiR5WSlRaMwqYZnQGe8GnRHR0enwpjoiIOcP7aKG9nJmFrYUrdRL9x92mrUSU+8xNmDi0lPjsLA0AQ3n1fwa9IfXb3bt/mpCeGEHlp2s44xLrWb4d/sDQwMjR/Z+YoXV0GBku3rlxIWEkxhYQFuHt507fMWtvZOlcblZGfy99pFXLoYQmlJKV6+gXTu/SYWllbqOiUlJezeuorTx/aRl5uDc81adHptMDXd65TbZnzMVX6eMYbPJ86hurVdlZ6nEOLpJxleQsumTZvo168f9evXJzAwkN69e/PXX3+p38/IyGD16tWVtjFo0CDGjBlzz8ccM2YMXl5eGq+AgAC6devGqlWrHvhcbvHy8mLdunUAFBUVsWjRoodu83FbuXIlbdu2pWHDhnz22WfcuHHjSXdJPEXmHDrLsehEXm/gxbvN65GRX8DUncfJLSiqMKaktJRv9pwgKjWLoS/7MrSxLxHJGXyz+wTFJaWPsfdC3JvZS9cQfPYCb3Rtz6jXXyM9K5vJvywiNy+/wpiSkhKmzV3G5eg4hvXpwjt9uhB+JZqv5y6luLjkMfZevMjSEiI4uOlrLKycad71C1zrtuLcocWEn1xfYUzspaMEb5+Jg2sgzbuOwdbFj+M75xAdcVBdJzcrkf3rJ6NnYETTzp9Tp0F3Ik9v4vS++eo6manX2Ld2IvqGxjTv+gX+zQcSE3mYI39/+0jPWby4Vv4xi9AzRwnqOZC+g94nOyud32dPJC8vt8KYkpISFv08ldjrl+nRfzg9+g/j2pVwFv40leLiYnW9resWc2jPFlq178HrQz9FV1ePBXO+Ii0lQavNxPhoFv86jdIS+a4X4kUlGV5Cw5o1a/j6668ZP348DRs2pKysjMOHDzN16lRSU1N5//33+fbbb4mNjaVv375VeuzAwEDmzJmj/lmpVLJ27VomTJiAhYUFQUFBD9z2oUOHMDdXPcnfsmUL33zzDUOGDHnYLj82x48fZ/LkycyaNQsnJyfeffddfv75Z0aPHv2kuyaeApEpGZyOTeaLto2o72wLgLdddT5cv59/Iq/zmr9nuXHHridyPT2HGd1a4lJNlQnmWt2C0VsOEnw9gRa1nB/bOQjxbyKvxXDqfARjhw8k0Ls2AHU9XPlg6ix2Hj5Brw6tyo0LPnuBa3EJ/PDF+7g4qP59uDk78tm3P3P07HlaNqz32M5BvLjCgv+iuq07jV/9GABHtwaUlpZw8cQa6gR2RU/fUCvm3JFluHg2I7D12zdjAinMzyX06ApqerUEIPzkevQNjWnRbSy6evo4uTdEX9+Q0/vm4/1SH0wtbIk8vQkjhTnNu36hkfV1fOccsjPisKgu3/Wi6ly/EsHF0JMMeW88Xr6BALh5ejNj4iiOHdjBK0G9y40LO3OU+NhrfPLlLOwcXQBwcnFn1tefEHr6CIEvtyIzI5Xggzvo1uctmrRS/V1Qu24A30/+gP07N9DrjXcBKC4u5ui+rfzz90oMDAwew1kLIZ5WkuElNKxYsYJQsZNEAAC2RklEQVTevXvTp08f3N3dqVWrFoMGDWLIkCEsWbIEgLKyskdybAMDA2xtbdWvGjVq8PHHH+Pm5sbmzZsfqm1bW1sUCtUUrUfV/0fpwoULmJiY0K5dO/z8/AgMDOTKlStPulviKXEuPhUjfT3qOd6e1mWhMMLb3oqQuJQK484mpOJoYaoe7AJwqWaGk4UpZ+IrjhPiSQgJv4zCyJAALw91maWZKd4ebpy5eKnSOCc7G/VgF4CLgy1OdjacuRD5SPssBEBJcRHJsWE4ezTRKK/h2ZSiwnxS4i9qxdzITiYnIx4Xz8aaMbWbkpuZSE5GPKCaJuno1kBjIMuldjPKyspIvH4GAL9mb9Cy55cadXR1Vf9dWlxYNScpxE2XLoZgaKSgtneAuszM3BJ3Tx8izp+uMC7yYgg2dk7qwS4AO0cXbO2d1XFREaGUlpTgG3D734W+gQF1/RpqtB1x/jS7t63mlVd7EdRjYFWenhDiGSMDXkKDrq4uZ86cISsrS6N8+PDhrFy5kjFjxrB+/XqOHz+Ol5cXAIWFhUybNo2mTZvSsGFDZsyYQWlp1U2H0tPTw9DQUH2s//3vf7Rt2xY/Pz9efvllPvroI9LT0wGIjY3Fy8uLuXPn0rx5c9q1a0dubq56SuO6desYO3YsoJrmuG3bNvz8/NiwYYPGMb///nt69y7/CdTdSkpKmDFjBq1bt8bPz4+goCD+/PNPjTpr166lU6dO1KtXj06dOrF48WL1Z7Rw4UJ8fHw4d+4cAKWlpQwYMIBevXpRWKi6EW3atCk3btzg119/5eDBgxw4cIAePXpoHGPdunV06NCBqVOn0rBhQ9577z0Adu3aRd++falfvz7+/v706tWLgwdvT4coKytj8eLFvPrqq9SrV48uXbqwZcsW9ftJSUl88sknNGrUiMaNGzNy5EiuXbt2T5+NeDzisnKxNzdBV1dzHRh7cxPisyue+hqXlYujhalWuYO5KQmVxAnxJMQlpWBnXR1dXc1bFwfr6sQlp1YSl4qjrbVWuaOtNfEpaVXeTyHudiMrkdKSYsyrOWqUm938OSc9Vism+2aZeXWn8mMy4ikpLuRGdrJWHYWJJQaGJupBMRMza6rZuAFQXKQkMfosoUeWY+NUl2q27g9/gkLcITkxFisbe63vamtbB1KS4iqMS0mMLXeNL2s7R1KT49VtGymMMbesrlUnOyuDggIlAC6uHoz+6hdeCeqNrp7ew56SEOIZJlMahYZ33nmHTz75hFatWtG4cWMaNWpEkyZN8Pf3x8LCgvHjx6NUKklMTFRPP5w6dSp79uxh+vTpODk58dtvv3Hy5Elq1KjxUH3Jzc1lxYoVREVF8fHHHwPw7bffsnfvXqZPn46zszMRERGMHTuWX3/9lfHjx6tj169fz+LFi8nPz8fM7Hb2SufOncnJyWHatGkcOnQIS0tL2rRpw4YNG+jZsyegGnDatGkTw4cPv6d+rlixgu3btzNz5kzs7e3Zu3cvkyZNonbt2jRq1IiVK1fyww8/8N///pd69epx4cIFpkyZQlJSEqNHj2bIkCHs3buX8ePHs27dOhYuXMjFixdZv369eqDPy8uLgQMHMmfOHMzNzZk0aRKdOnXS6kt0dDTJycls2LABpVJJWFgYH3zwAV988YV68O/7779n9OjR7N+/H0NDQ37//Xd+/vlnxo8fT+PGjdm/fz+jR4/GxsaGevXqMWjQIHx9fVm2bBm6urr88ccf9OvXj82bN2Nvb/+A/++KqpRXVIxCX/uGzlhfH2VRcTkRN+MKi3Ew1x7wUhjok59VcZwQT0KesgBjIyOtcoXCCGVBQSVxShxtrbTKjY0MyVdWHCdEVSkqzANA38hEo1z/5oLxRYXaa9AVFdy4WaeimDwKb9YxuKuOqsxYfdxbysrK2DD3TUqKCzFSmNOgzbAHOR0hKlWQn4+RkfbGN0ZGCgqUygrj8vPysLZ11CpXxan+jSjz8zBSaG+0cOt4Bco8jIwUWFbTfsghhHgxyYCX0BAUFISDgwNLlizh8OHD7N+/HwA3NzemTZtGw4YNUSgU6umHubm5rFu3jokTJ9K6dWsApk2bRnBw8H0f++TJkwQGqub6l5WVkZ+fj7W1NZ9//jkdO3YEwN/fn6CgIBo1agSAs7MzzZo1IzJSc1rKgAED8PTUXrdIoVCo1/KytVVNb+nduzfvvfceSUlJ2Nvbc/ToUdLT0+nates99Ts6OhoTExNcXFyws7Nj4MCB1KpVC3d31VPTX375hXfffZcuXboAUKNGDXJzc5k8eTIfffQRRkZGTJ8+ne7duzN+/Hi2bt3KlClTcHNzUx/jp59+YuXKldSuXZuYmBhq11atX5Obm6sxoAfw3nvvqQcbL168yIQJExgwYID6/cGDBzNs2DDS0tJwcHBg8eLFDB48WL0m26BBg1AqlRQXF/P333+TnZ3NjBkz0NdXfV18/fXXHDt2jFWrVvHBBx/c02ckqk5ZWRmld03LvfvnO1W2+1dl03srixPiUSsrK9PKFC4treR6Ra5z8fQqK6s8611HR3vCxb8tv6CjowP3UufONktLaNF9HCXFhYSfWMue1eNp12+aZHmJB1bud3Ul13vl37mVXc866uNVprLfBUKIF5MMeAkt9evXp379+pSWlhIeHs7+/ftZtmwZw4YN459//tGoe/XqVYqKivD391eXGRkZ4ePjc9/H9fPz47vvvgNUUytNTEywttZ8QtOjRw+OHDnCd999x7Vr17hy5QpXr15VD4Dd4urqes/HbdWqFdbW1mzcuJHhw4ezfv162rVrh6Wl5T3Fv/HGG+zatYvWrVvj7e1N8+bN6dKlC9bW1qSnp5OYmMgPP/zA7Nmz1TGlpaUUFBQQGxuLh4cHzs7OjBs3jnHjxtG+fXtee+01dd3Fixfz+++/M2/ePAICAnjjjTd4//33+f333+nRowcTJ07U2EDgzoEyb29vLC0tmTdvHleuXOH69euEh4cDqqmYGRkZpKSkEBBwe50FgGHDVE99J0+eTFZWFi+99JLG+wUFBURFRd3bByyq1Npzl1l77rJGWeOaDmQrtddhyS8uxtig4q95E0ODcjPA8ouKMTGUXw/iyVm9Yx9rduzTKGsS4EtWrvYOX0plAcYK7cyvW0yMFeQXaP/7yFMWYKLQzkIQoqoZGKkyaYvvyuQqKlBlYBkYames3Mraujum+GbWloGRKQY3M8bKzRArzFMf9xZdPX0caqp+39s6+/D3whFEntnCyx3l4ZV4MLu3rmL3Vs2d2/0Cm5Cbk6VVt6BAWW521i0KYxP1lESNOGU+xiaqa12hMKawnCwx5c0MMIWJdta6EOLFJn/RCLXExETmzp3LiBEjcHBwQFdXFx8fH3x8fGjfvj1du3blxIkTGjG3ntTc/cTlVjbQ/VAoFP86UPXf//6XHTt20LNnT9q2bcuoUaNYsGABSUlJWm3dKz09PXr27MnmzZsZOHAgu3bt0hic+jdubm7s3LmT48ePc/jwYfbt28f8+fP55ptvaNlStYvS2LFjadasmVaso+Pt1O2wsDD09fUJDQ0lKytLPeB2a7plkyaqxW5/+eUX+vTpw+uvvw6oBuwqOvfjx48zdOhQ2rRpQ8OGDenWrRv5+fmMGjUK4F93riktLcXd3Z1ff/1V6z0TE+0pFOLRa1e7BoHOthplJ2OSOZuQQllZmcbT08TsGzhbmt3dhJqjhSnX0rVvSpNybuBhU63K+izE/WrftBENfOpolJ0IC+dsxGWt6zwhNR0Xe9u7m1BzsrXmSmw529WnpuNZU3anE4+emaUDOjq65GYmapTnZqmuSwsr7SUgzK1U12ZuZgLV7WrdjrnZhoWVC/oGCkzMrMnN1Ly+lXlZFBXmY2GlWvw77soJDAxNsHPxVdcxNDLFrJoD+TcyquAMxYvq5RYdqOvXUKPswtnjXLp4Vuu7OjU5ATsHl7ubULOxcyI+5qpWeVpKIi5uqlkbtvbOKJV55OZkYWZ++8F0ekoi1a1sMTDQ3u1UCPFik0XrhZqhoSGrV69m06ZNWu9ZWFgAYGNjo/HLy93dHSMjI06fvr0zSnFxsTqLqCplZGSwcuVKJk6cyNixY+nVqxfe3t5cuXLlvnZeLC+dunfv3kRGRrJ06VLMzc1p0aLFPbe3ZMkSdu7cSfPmzRk9ejSbN2+madOmbN26FWtra6ysrIiJicHV1VX9On/+PLNmzVK3cfDgQf78809+/vlnjI2NmTx5svo9Y2NjUlNvL8js4ODAuHHjyMrKws/Pr9J1tBYuXEjjxo2ZM2cOQ4YMoXnz5iQkqG6My8rKMDc3x87OjtDQUI24Dz/8kG+++YY6deoQHx+Pubm5uu9OTk58//33WoOf4vGobqLAw6aaxsvfyQZlUQln429fJ9nKAsKTM/B3rHgdi3qONsRn3yA283bWTGxmLnFZNzR2fBTicbOyNMezprPGK6COB/nKAkLCb2c4ZuXeIPzKderdsXPj3ep5eRCfnEps4u2dR2MTU4hLStHY8VGIR0VP3xBbF19iLx/VuF+JvRyMoZEpVg61tWLMqzliamFPzKWjGuUxl47efM8OAPuaAcRfPUVJcdHtdi8dQUdHFzsXVfZ95JnNnNrzG2V3TD3Ly0klKy2Gajb3nhEvxN0sLK1wcfXUeHl6B1CgzCfyQoi6Xm5OFteiLmrs3Hi32t4BpCTFkZxwexOH5IRYkhNjqV1XFedZtx4AYWdu/7soLiriYthJPCtpWwjx4pIBL6FmZWXFO++8w+zZs5k5cyYXL14kJiaGvXv38v7776sXsTcxMSE5OZmYmBhMTU0ZOHAgP/74Izt37iQqKoqJEydqZVxVBTMzM8zNzdm9ezfXr18nIiKCCRMmcP78efVuhvfiVmZSWFgYyptp0e7u7jRo0IBffvmFHj16oHcfO7qkp6fz1VdfsXv3buLi4jh48CAXL14kMDAQHR0dhg0bxtKlS1m2bBnR0dH8888/TJo0CYVCgaGhIZmZmYwbN45+/frRpk0bvv76a7Zu3areKXHQoEHs2rWL+fPnq+O/++47/P39OXfuHJMmTaK4uPwFxh0dHYmIiODkyZPExsaydu1adfbarc9s+PDhLF68mI0bNxIdHc2SJUvYvXs37dq1o3v37lhaWvLhhx9y9uxZoqKiGDNmDAcOHFDv0imePB97K3zsrfjp0Fn2XIrheHQiX+86gamhPh3q3P5jJjYzl2vp2eqfm7o54GBuyvQ9JzhyNZ4jV+OZvucENaub08TV4UmcihAV8vF0w9fTnR+XrWV38CmOnbvIlF8XY6JQ0LH57WnXsYkpXL0jo6tZoB+OttZMm7eUw6dDOXw6lGnzllLTyZ6m9X3LO5QQVc7n5b6kJ13i6NbvSLh2mtAjK4g4tQHvl3qjb2BEUUEeaQkRKPNuZ936NulHzKXDnNozl4Rrpzm55zdiLh3Gr9ntdTnrNnqNgvwsDmycQvyVk0Sc3kjIgT/w8O+IqYWt+tg5GfEc2fodiddDuB6+n33rJmJoZIZXwx5afRXiYdSq7Uut2r6sXDSLE4d3cT7kGAvmfIXC2ITGrV5V10tOiNXI6KrXoDnWto788fNUzp48xNmTh/jj56k4OLvi30A1S6K6tR0NmrTh77WLObh7M+Ghp1j0y9co8/No3UGuZSGENpnSKDR8/PHHuLm5sWrVKpYvX45SqcTJyYlOnToxYsQIAHr27Mk///xD165d2blzJ5999hlGRkZ89dVX3Lhxg06dOtG2bdsq75uBgQGzZ89m+vTpdOvWDUtLSxo3bsynn37K3Llzyc/XXsOiPE2aNCEgIID+/fszY8YM9W6HvXr14vTp0xrrZ92L999/n6KiIv6fvfsOi+pYHzj+hQWWjtKLiIiIoIiIir1gw96iMVFTTKLexKvpavwZY+wl8RqNiTGYWGJiJ3aNvfcuoiJFijTpfVn4/bG6ZgWVGLvv53l87t3ZmdmZzXL27Htm3jNp0iRSUlKws7Pjtdde075fgwcPRqlUsnTpUqZNm4atrS39+vVjxIgRAIwfPx6FQsHnn38OQIMGDXj99df5+uuvadiwIZ06dSI/P5+ffvqJOXPmYG9vT+/evRk6dCh//fUXP//8M7m5ueWObcSIEaSmpjJs2DAAatSowZQpU/jss884f/48Hh4eDBw4kIKCAubMmUNKSgrVqlVj9uzZNGrUCIBly5YxY8YM3nnnHdRqNbVr12bRokV4eMjKiGfJR63qs/TkJX47FU5pKdS0q8TIlvUwV97Ztrro2EVScvKZ27s1AIYKBWPbNWTx8Uv8dOQCBvr61HW2YVCANwp9uR4inj2fvP0qi0O3snT9diiFmu6ufPxmP8xN7+SF+Xn1RlLSM/h+3EcAGBoYMO4/b/DLui0sWLkehUKBn5cHb/QI/kcXN4T4NxxcfWna5XMuHvmDAxumYmJmQ93mb1LrVsApPTmS3WvG0ajDf3H30ZxDufsEUaJWEX4ylKiLOzGzciCw40iq1ryzCt3Sugqteo3n7P7FHNo0A6WJJTX9u1GnyWs6r92q91dcPPw7hzbNQE9fgaNbPfyav4mxaaUn+TaIl8SAIZ+xac2vbF63FEpLqVrdi9ff+QRT0ztpFkL/+ImMtBQ+n6hJm2FgaMg7I75k46pfWLv8RxQKBZ7efnTp85bOsbpX/6GYmJizd/s6iooKcalancHDx5V7h0chhNAr/Sd7wYR4gc2dO5dDhw7x+++/P+2h/CN350h4HqRP/s/THoIQj51BR7naLF580y88+gtcQjxr2jcsfyW9EC+SVrWfz/y8z/Lvispjy+ZBFk+WrPASL72TJ08SFRXFkiVL+Prrr5/2cP6x5y3YJYQQQgghhBBCPG4S8BKP1cKFC5k/f/5963zxxRf07dv3CY2orN27d7Ns2TL69Omj3d4IkJSURHBw8H3b+vr6smTJksc9RCGEEEIIIYQQQvwDEvASj1W/fv3o0KHDfevY2Nz7LnJPwqeffsqnn35aptzW1pbQ0ND7tlUqlY9pVEIIIYQQQgghhHhYEvASj5WVlRVWVlZPexgPRaFQ4OYmt+sWQgghhBBCCCGeN3IbLiGEEEIIIYQQQgjxQpGAlxBCCCGEEEIIIYR4oUjASwghhBBCCCGEEEK8UCTgJYQQQgghhBBCCCFeKJK0XgjxxH3jMudpD0GIx+6TbSOf9hCEeOxGdXzaIxDi8TtFy6c9BCGEEA9BVngJIYQQQgghhBBCiBeKBLyEEEIIIYQQQgghxAtFAl5CCCGEEEIIIYQQ4oUiAS8hhBBCCCGEEEII8UKRpPVCCPEMS4w5w/lDv5F58zrGppWo4dcZr/rd0dPTK7e+uljFxSN/EHN5H4X5WVhWdqFWg15U9WqhUy8p9jxhR1aQkRqNvsIQW2dv6jYfhEUlJ22drJuxnD2whNSES+jp6ePkHkDd5m9gYlb5sc5ZiNtu5ubz+cYDfNKqPj6ONveteygqgbXnI0jOycfO3ITutavTyqNKuXXzVcV8vuEAr/jVuGcdIR6XmxmZfDJjPp8N7k/tGu73rXvw1HlWb99LSloGdtZW9AhqTutG/uXWzS8o5NOZ8+nbsXWZOnOXrWH/yXNl2nz8Vj8a+9V++MkIcZerl86wfcPvJCXEYm5hRZNWnWjetts9z1uKVSp2bF7BmeP7ycvJxs7BmZbte+LXoLlOvcyMm2xZt5Srl86gVqup4laDzr3ewNn1zt9Q8o04toQuJfpaOPr6etSqE0Bwj4FYWMl5ixAvKwl4iefa+vXrWbZsGVeuXEFPT4/q1avTt29f+vfvD0B6ejo7duygb9++9+xj0KBBuLi4MG3atAq95ty5c5k3b55OmUKhwNLSkvr16zNmzBhcXV0rPIerV68SHx9P69atAfDy8mLq1Kn07t27wn2IF9PNG5fZv34yVWs2o06T10hNuMS5A4spLVHj3bD8z8fhLd9wI+oEXvV7YF+1LulJ1zi+43sK8jOpWa8rAKkJl9i79itcPAIJDP4ItaqAsGOr2LXyC4IHzUFpYkl+Thq7V4/DvJIjgR0/RF1cyLlDy9i7djwdXv8WfYV8fYjH62ZuPlN3HievqPiBdY9eT2TewbME16qGn7MtJ2KT+PHQeQz19Wnq7qxTN6dQxTd7TpKam/+4hi7EPd3MyGTSj0vJyy94YN2jZ8P4btkaOrdsjF+tGhw/H87830MxNDCgWX1fnbo5efnMDPmdlLSMcvuKik+kWX1fOrdorFPuaGf90HMR4m7Xo66w+Idp1A1oSrsu/Ym5doktoUtRl6hp3aFXuW1+XzSb8IsnadG2Gx5evsRfj2TNbz+Qm5NF09adASgsyOen2V9iYGBIz/5DMTQ0YtfWVYTMncDIsd9iaWVNVmYaP/3vS2zsHHn1zREUqQrZvn45IXO/ZvjomRgYyHmLEC8j+csXz63Vq1czefJkxo4dS0BAAKWlpRw8eJBJkyaRmprK8OHDmTFjBnFxcfcNeD0MR0dHVq9erX2sUqm4dOkSEydOZNiwYWzcuPGeV7LuNnToUHr16qUNeB04cAALC4tHOl7xfLpw5A8q27kT2PFDAJyq1aekRM2l46up6d8VhYGRTv305Ejirx3Ft+kAfBq9AoBjVT8MDJWcO7iMat5tMFKacenEOqxsXGna5TPt59TW2ZsNIe8SFbabWgE9iLzwF6qiPJp3H4vSRPN5VJpYsXvNOJJiz+NUrfwVBkL8W6WlpeyLjGfZyfAKt1lx+gqBVR15o4E3AH7OduQUqlh59qpOwOtEbBKLj1+ioPjBQTQhHqXS0lL2Hj/DkvXbK9zm9807aeznw5s9gwGoV6sGOXl5rNiySyfgdfxCOL+u20J+YVG5/RSpVNxIuUnX1k3wrCYrGsXjs2PTCpxdq9HvzREAeNX2R12iZs+2tTRr0wVDQ93zloTYKMLOHaNDt9doE9wHAM9afhgZGbNt/W/4N2qFiakZB3ZtJC83h4/GzcbSShOkdalanXnTPyfqahh+DZpz/OAOCgvyefM/YzA105y3mJtbsnDOV0ReOU9NHzlvEeJlJDm8xHNr+fLl9OnTh1deeQV3d3eqV6/OoEGDeOutt1iyZAmgOcF8HBQKBXZ2dtp/zs7OtG3blg8//JCIiAguX7780H3b2dlhbGz8CEcrnkfqYhXJcRdw8dC9Gu9aowmqonxSEi6VaZOVFgeAc/UGOuX2rr4UqwpIibsAgI1jTTz9u+oEZU3MrTFUmpGTeQMAj7rBBPWdrA12AegrFACUqFWPYIZClC8mPZuQoxdpUd2F95vVfWD9lJx8bmTl0tDVQac8sKojSdl53MjKBSC3SMW3e0/h7VCZ0UENyutKiMcmOj6Rhas20qqBH8NfL3+ly9+lpGWQkJxKI19vnfLGfj4kpqZxI+UmALn5Bcxa9AfeHtX4YsjAcvu6fiMZtVqNm7Pjv5+IEPdQrFIReeUiPn6BOuW+/k0oLMgn+lrZ85bkRM15Sy1f3WOyh1cdigoLiLx6EYALZ45Qp16gNtgFYGFVmTFTFmq3Pga26MjQjydqg10Ailur0YvlIocQLy0JeInnlr6+PqdPnyYzM1OnfMiQIaxYsYLRo0ezbt06jh07hpeXFwBFRUVMmTKFJk2aEBAQwMyZMykpKXlkYzIy0ly5MjQ01L7e9OnTCQoKok6dOjRq1IiRI0eSlpYGQFBQEPHx8cybN49BgwYBmi2Na9eu1fYZGhpK9+7dqVu3LkFBQcyfPx+1Wl3hMd28eZMRI0YQGBhI3bp16d+/P8eOHdM+X1RUxMyZM2nRogX+/v7069ePAwcOaJ8fNmwYLVu2JCcnB4Dk5GQCAwOZOHHiQ75LoiJyMxMpURfr5NQCML/1OPtWcOvvlCaWmrZZKTrlORmJmv/N1PyvT6NXqF67nU6d5LiLFBXkYGWt2Y5rbGqFtaMnAOriIm7euMyp3Qsxr+SIo1u9fzk7Ie7NxsyY2T1a8kYDb5S3gqz3E5+pOTY5WZrplDveenw74KVUKJjVvQXvN/PD0lj5iEctxP3ZVrbiu7EjeLNnMEojwwfWj0vSHMed7HVz1znaah4nJKcCoDQ0ZPbo4Qx/vRdW5rp/A7fFJGiO/buOnGLI+Fm8/tnXfDk3hKvRZb9HhHhYaalJqNXF2NrpnrdY22kCrSmJCWXamJlrglMZabrnLTdTErV9FhcXk5wYh52DC9s3/M6UMe8ydsSrLPzfeJJuxGrbmFtYUcWtBgAqVRHXo66wfuXP2Ng54unt9+gmKoR4rkjASzy33n33XcLCwmjZsiVDhgzhp59+4ty5c1hYWODu7s7YsWPp1KkT/v7+2gDOpEmT2Lx5M9OmTeOPP/4gMTGREydOPJLxXL58mfnz5+Pr64u7uyaB5owZM9i+fTvTpk1j27ZtTJs2jSNHjvDDDz8Amm2Zjo6ODB48mLlz55bp89dff2XcuHG8+uqrrF+/npEjRxISElLhfGMAX331FYWFhSxbtowNGzbg7u7O+++/T15eHgBjxozh4MGDzJo1i3Xr1tGpUyeGDRvGnj17AM17plKpmDFjBqWlpYwZMwYHBwdGjRr1L98xcT+qIs1/HwOlqU65gZHJrefL5h+yr1IHcytHTu/5maTr51AV5pESH8a5g0vQ09OjWFVY7msV5mdxYsf3mJhZU80nqMzz2377iB0rRpOVHk/91kPKbKUU4lGyUBphY2ZS4fp5RZoVhyZGulkajA01wbJ8lebKvoFCH2dL80c0SiH+GQszU2wqWVW4/u0cX6Z3rfg2uRWszS/QHM8NDBQ429vet6/oeE3woLCoiJGD+jBy4CuoitVMmP8rMQlJFR6TEPdTUKA5b1Ga6B6/lUrN48Jbz/+du2cdrG0d2LAyhIjwcxTk5xEVEcbW0GXo6elRVFhAQX4uJWo1B3dvJPLKBXq//h9ee/sjcnOy+Gn2OLIy08r0+92UT/lh1hekJCXQvd87ZbZSCiFeHpLDSzy3goODcXR0ZMmSJRw8eJC9e/cCUK1aNaZMmUJAQADGxsYYGhpiZ2dHTk4Oa9euZfz48bRq1QqAKVOmcOTIkX/82gkJCfj738kFUFRUhLm5OUFBQXz22Wfo62tiyb6+vgQHB9OggWaptouLC02bNuXKlSsAWFtbo1AoMDU1pVKlSjqvUVpaysKFCxk4cCADBgzQzi0jI4OZM2cyYsSICuX6un79OjVr1sTV1RVjY2PGjh1Lt27dUCgUxMTEsHHjRkJDQ/H21mybePvttwkPDyckJITWrVtja2vLxIkTGT58OCqVipMnT7JmzRrtajbxeJSW3n/loZ5e2esV+goDWvb6kuN/zWPP2vEAmJhZ49/6HQ5vnoXCoOyqlvycNPaFfk1+bjqte3+FoVHZQEP9NkOgtJSrZzZxYP1kmncfKzm8xDPjQRvXK5ZNUYhny4NSMlQ0TyhApxaBBNT2ol6tGtqyOjWrM2LyHNb+tZeP3uz30OMU4rbSB+yY0NMve95iYGDA4OH/x+pl8wmZ+zUAllaV6frKYH5f9C1GRkqKi++kUXh7+DiUSk0QuIqbB7O++i+H92yhY48BOv12f/UdKC3l0J4tLP5xGm8OGy05vIR4SUnASzzX6tWrR7169SgpKSE8PJy9e/eybNky3nvvPf766y+dulFRUahUKnx97yR6VSqV+Pj4/OPXtbe3Z+nSpYAm+DVt2jRMTU35+OOPsba+k1+gR48eHDp0iFmzZhEdHU1kZCRRUVHaANj9pKWlkZqaSkBAgE55o0aNUKlUREZG4uf34CXaw4cP57PPPmPbtm0EBATQvHlzunbtilKpJCwsDIDXX39dp41KpcLS0lL7uF27dvTo0YO1a9fyxRdf4OHh8cDXFf+OoVKzNaX4rpVcqkLNFdLyAlMAFpWcCOo7mYK8TIryszCv7ExedgqlpaUojXVXt2SkRrP/zykUq/Jp1etLbJy8yu3Tsarmc2bv6svWpSMIP7lOAl7imWFiqDmVKVDpbvXOv3V3R9MKbB8T4llz90qu2/IKbq38Mql4rk9ne9syq8DMTIzxcq8qK7zEI2NsqjlvKSrQvQPp7ZVdxsbln7fY2Dkx9KOJ5GRnkpeTjY29ExnpmvMWEzNz7Qox9xo+2mAXQCVrO+wdq5AQF12mT89amvOW6jV9+d+kj9j3158S8BLiJSVbGsVzKTExkQkTJpCYqFmmr6+vj4+PD//5z3/49ddfyc3N5fjx4zptbl8Nvfuq6cPcptjAwAA3Nzfc3Nxo0qQJISEhxMbGMmTIEIqK7twl6csvv+Sjjz5CpVIRFBTEN998Q5cuXSr0Gve6uns751hFx92+fXv279/PtGnTcHFx4ZdffiE4OJirV69qX+O3334jNDRU+2/Tpk2sWLFC24dKpeLy5csYGBhw8ODBCr2u+HfMrRzR09PX5t+67XZSectbubb+Tl1cRPSlPeRkJmFsaoWljSv6+grSkyMBqGxfXVs3KfY8u1aOBUoJ6jsZW2fdxMhJsedJiDqpU6avr8DKxo38nJuPYopCPBLOVpofWYm3cnXdlpSt+ZHlYiXbGMXzx8XBDoDEVN3jbVKqZvtWlVvPV8Sh0xc4ezmiTHmRSoWluWk5LYT456xtHdDX19fm37rt9mN7x7J3CFWpijh9bC9pqUmYW1hh71QFhUJBwvUoAFxcq2NiaoaZuSVqddnE82p1sXa74rXL5wm/cErneYVCgaOzK5kZZbc9CiFeDhLwEs8lIyMjVq1axfr168s8d3tlkq2trc6Sf3d3d5RKJadO3fkyLC4uJjw8/F+Px9bWlsmTJxMWFsZ3330HQHp6OitWrGD8+PGMGTOG3r174+3tTWRkZIXuHmlra4utrS0nT+oGHU6cOIGhoSFVq1Z9YB9FRUVMnTqV2NhYOnfuzKRJk9ixYwf6+vrs2bMHT09NUvKUlBRtAM/NzY21a9fqJM7/7rvvSExM5JdffuHw4cP88ccf/+TtEQ9BYWCEXZXaxEUc1vm8xEUcwUhppk0o/3f6+gac3vMzkefv3Pa+pERNxJnNmFdyxMq2GgDpyZEcWD8ZUwsb2r06HSubsp+lmEt7OLZtjk6uMFVRPjdvXKaSrfsjnKkQ/46jhRl25iYcva77I+vo9UQcLUyxM694PjAhnhWOttbY21TmyNkwnfIjZ8NwsrPBzrpShfvacfgEC1dtpLj4zirImxlZXImOpXYNOZ6LR8PQ0Aj3Gj5cOHNE57zlwpkjGJuYUaVa2fMWhcKA9SsXcezgnV0ZarWaw3u3YGPniKOLGwBedeoTEX6e3Jwsbb2UpARSkxOoVkNzwe70sX2sWvIdhQV3zlsKC/K5HnUFpypuj3y+Qojng2xpFM8la2tr3n33XebMmUNubi7BwcGYm5sTERHB/PnzCQwMpEGDBmzZsoXk5GRiY2NxdXVl4MCBfPfdd9jZ2eHh4cGiRYtISno0y/lbtWpF9+7d+eWXX+jcuTOenp5YWFiwc+dOateuTUFBAcuWLePixYs6WxHNzMyIjo4mNTUVW1vdLQfvvPMOs2fPxtXVlWbNmnHu3DnmzZvHq6++WqH8XUZGRpw/f54TJ04wbtw4bG1t2bdvH3l5efj7++Pp6UmbNm0YP348X375JZ6enmzdupUFCxYwdepUAE6ePMnPP//MrFmzaNSoEe+//z7Tp0+nSZMmuLnJCcTj5NOoL3vXjufw5lm4125LakI4l0+GUrfZIAwMlagK88hKi8XMyhFjUyv09PXxqBvMldMbMLGwwaKyCxFnt5CScInm3cZoA8DH/5pHSYmaOo1fIy87hbzsO3dHMjKxxKKSE7UCehJ79RAH/pyMV0BPStQqwk+uo1iVT53Grz6tt0QI8opUxGfm4mBhor3bYp+6Nfjx0Hksjl6kfhV7TsYlcSQmkREt6j3dwQpRQXkFBcQnpmJvW1l7t8VXOrRi/u+hWJhtJKC2FycuXObwmYt8+Ebff9R37/atmPjDYmYs+p1OLQLJzctn9fa9mJua0LV108cxHfGSahPch5C5X7M85BsaNGlLTGQ4+3esp2OPARgZKSnIzyM5MQ5rWwfMLazQ19encYsOHNy9CatKttg6OHFk7zZiIsMZNGSU9rwlqNMrhJ09zqK5XxPUuR9qdTHb1y/HqpINDZu2BaBlux6cP32YxT9MpWW7HhQXq9i3I5TCwgLadZbzFiFeVnqlFVlqIsQzKjQ0lJUrV3LlyhUKCgpwdnamU6dODB06FFNTU86fP88HH3xAZmYm27dvx9bWlnnz5rFq1Spyc3Pp1KkTWVlZmJubV/jOh3PnzmXdunXs2rWrzHPp6el07twZJycnVq1axZEjR5g2bRoxMTFYWVkRGBiIp6cnCxYs4ODBg5iYmLBy5UqmT5+Oi4sL69evx8vLi6lTp9K7d28Ali1bxtKlS4mPj8fR0ZF+/frxzjvvoFAoKjTepKQkpk6dytGjR8nOzqZ69eoMHTpUu7UyPz+f2bNns3nzZjIzM6latSqDBw+mT58+5Obm0qNHD2rWrMn8+fMBzaq4V155BaVSyfLlyys8jr/7v1+LHlxJAJoVXReP/EFWejwmZjbU8OtErYAeACTHXmD3mnE06vBf3G/dXbFEXczFoyuIvrSHooIcKtlVo3bgqzi61QMgJzORTb/8556v5+7ThkYdRgCalWDnDi4jLekqpSVq7FxqU7fZQKxsJdBZEZ/Ej3zaQ3juhSXeZOJfxxjXvhE+jjY6ZcOa+tLK484WmR1XrrMxLIq0vALszU3oUceDFtVdyu03JSefEev2lOlD/HMGHXs87SE8dy5GRDHh+18Z/8Fb2hVWt8vef60nrRvdyTX016ETbNh9kJsZWdjbVKZXuxa0bFB+/s6UtAw+mDi7TB8A569Esmrbbq4nJIMe+Ht7MqBrO2wrV3ps83yRnDJp+bSH8Ny4eOYoOzavJCUxHstK1jRpGUyLdt0BiLxygYVzvuKVQR8Q0LgNoDmv3LV5JaeO7SU/LxcnFzfadu6Lp3c9nX6Tb8SxJXQpkVcvoq+voEYtX7r0eYtKle9cLE6IjWLbn78RG3OVkpIS3Gv40LHHABydH7wrQkCr2s/nFuf0yfc+r33aKo/94WkP4aUnAS8hxBMnAS/xMpCAl3gZSMBLvAwk4CVeBhLwevQk4PX0SQ4vIYQQQgghhBBCCPFCkRxeQtyycOFC7ba9e/niiy/o2/ef5c54XDZv3szYsWPvW+ftt99mxIgRT2hEQgghhBBCCCHEs0ECXkLc0q9fPzp06HDfOjY2Nk9oNA/WqlUrQkND71vn9h0rhRBCCCGEEEKIl4kEvIS4xcrKCisrq6c9jAozMzPDzMzsaQ9DCCGEEEIIIYR45kgOLyGEEEIIIYQQQgjxQpGAlxBCCCGEEEIIIYR4oUjASwghhBBCCCGEEEK8UCSHlxDiiWvfsPhpD0GIxy/+aQ9AiMdv+oWgpz0EIR67UXV2Pe0hCPEEBD/tAQjxyMkKLyGEEEIIIYQQQgjxQpGAlxBCCCGEEEIIIYR4oUjASwghhBBCCCGEEEK8UCTgJYQQQgghhBBCCCFeKBLwEkIIIYQQQgghhBAvFLlLo3gurF+/nmXLlnHlyhX09PSoXr06ffv2pX///gCkp6ezY8cO+vbte88+Bg0ahIuLC9OmTavQa86dO5d58+bplCkUCiwtLalfvz5jxozB1dW1wnO4evUq8fHxtG7dGgAvLy+mTp1K7969K9yHePlcvXSG7Rt+JykhFnMLK5q06kTztt3Q09Mrt36xSsWOzSs4c3w/eTnZ2Dk407J9T/waNNepFxURxvb1y7kRH4OxiSm1/QLp0O01lMYmAPw0+0uiIsLuOa6p369+dJMU4pabufl8vvEAn7Sqj4+jzX3rHopKYO35CJJz8rEzN6F77eq08qiiU+daaga/nbpM5M1MTA0NaOnhwit1PTFQ3LnedyUlnRWnr3A1NQMTQwP8Xex4zd8LKxPlY5mjEHnZqWxb9iHNuo7G3rXOfetev7yfi0dXkpuVjJmlHbUa9MbdR/fOmBt+fpe8nJtl2vYcuhiliWWZ8iunN3B67yK6Dl6AmaX9v5uMEPdwMyOTT2bM57PB/aldw/2+dQ+eOs/q7XtJScvAztqKHkHNad3IX6dOxPV4lq3fTmRcAibGSlo1rEe/jm0wMFBo61yJjuX3TTu5GhOHsdKI+j41eb1rOypZmD+WOQohnn0S8BLPvNWrVzN58mTGjh1LQEAApaWlHDx4kEmTJpGamsrw4cOZMWMGcXFx9w14PQxHR0dWr77zw16lUnHp0iUmTpzIsGHD2Lhx4z0DD3cbOnQovXr10ga8Dhw4gIWFxSMdr3ixXI+6wuIfplE3oCntuvQn5toltoQuRV2ipnWHXuW2+X3RbMIvnqRF2254ePkSfz2SNb/9QG5OFk1bdwYg6UYsi+ZOxM2jFq8N/pjszDS2hC4lLTWJN/8zBoCe/YdQUJCn0/fNlERWLZlLo+btH+/ExUvpZm4+U3ceJ6+o+IF1j15PZN7BswTXqoafsy0nYpP48dB5DPX1aeruDEBSdh5Tdh7H07YSI1vWIz4zl5VnrpBTqOLdxpogQ0RqBhO3H8XFypz3m9bFyEDBxrAoxm09zNQuzTAzMnyscxYvn7zsVPaum0BRYe4D68ZdPcyRrbPxrNcVRzd/4iOPcmz7XBQKQ6p6tQCgMD+LvJyb+LV4CzvnWjrtDZVmZfrMSo/n3MFlj2YyQtzDzYxMJv24lLz8ggfWPXo2jO+WraFzy8b41arB8fPhzP89FEMDA5rV9wUgKTWNST8uoWY1Vz58oy/xSSn8sXkXObn5DOnXDYCrMXF89f0vuDjY8cHrPTEyNGTD7kP835yfmf7JMMxMjB/rnIUQzyYJeIln3vLly+nTpw+vvPKKtqx69eokJSWxZMkShg8fTmlp6WN5bYVCgZ2dnU6Zs7Mz2dnZjBo1isuXL1OrVq17tL6/u/sV4m47Nq3A2bUa/d4cAYBXbX/UJWr2bFtLszZdMDQ00qmfEBtF2LljdOj2Gm2C+wDgWcsPIyNjtq3/Df9GrTAxNePMsX3o6ekxaOgolErNCaC6RE3o7z+RfjOZyjb22DvprpQpKSlhw6oQnFzc6PrK4Ccwe/GyKC0tZV9kPMtOhle4zYrTVwis6sgbDbwB8HO2I6dQxcqzV7UBrw0XIzE2MODT1gEYKPTxdwGlQp9fjofR09cDWzMTQs9fw9TIkP9rH4i5UhPcqu1ow8d/7mPjxShe9a/56CcsXkqlpaVEX9rN2X2/VrjNuUPLqFKjKf6tNMdcp2r+FOXncP7wcm3AKz0lCgAXj0ZYVHK6/xhKSji+fS5KE0vyslMfbiJC3EdpaSl7j59hyfrtFW7z++adNPbz4c2ewQDUq1WDnLw8VmzZpQ14/bnrICZKJZ8Pfg0DAwX1fWpiZGTIojWb6d2+BbaVK7Fux35MjY0Z//5bmJtqVqvX8XTnw6nzWL/7IK91bvvoJyyEeOZJDi/xzNPX1+f06dNkZmbqlA8ZMoQVK1YwevRo1q1bx7Fjx/Dy8gKgqKiIKVOm0KRJEwICApg5cyYlJSWPbExGRppAg6Ghofb1pk+fTlBQEHXq1KFRo0aMHDmStLQ0AIKCgoiPj2fevHkMGjQI0GxpXLt2rbbP0NBQunfvTt26dQkKCmL+/Pmo1eoKj2n06NGMGDGCwYMHU79+fRYuXEhJSQkLFiygY8eO1KlTh/r16/Puu+9y/fp1bbvc3FwmTpxI8+bN8ff3Z+DAgVy4cEH7/KlTpxgwYAB169aldevWTJgwgZycnId/80SFFKtURF65iI9foE65r38TCgvyib52qUyb5MQ4AGr5NtAp9/CqQ1FhAZFXLwKalYr6CgVGRne2bJmaalYb5uWW/9/22IHtxF+PpOdrQzEwkGsl4tGJSc8m5OhFWlR34f1mdR9YPyUnnxtZuTR0ddApD6zqSFJ2HjeyNCtnziak4u9ip7N9MdDNkdJSzXMA8Zk5eNlV1ga7AJQGCjxtK3E6PvlRTE8IADJSoji580fcvFvTqOPIB9bPzUomOz2BKjV0vwNcPZuQk5FIdnrCrX6jMTQywdzK8YF9hp8MpSAvE+8GkkpBPB7R8YksXLWRVg38GP56+SvR/y4lLYOE5FQa+XrrlDf28yExNY0bKZqtumcvR+Dv7amzfbGxX21KS0s5E34NgPikFGpVr6oNdgEojYzwdKvCqbArj2J6QojnkAS8xDPv3XffJSwsjJYtWzJkyBB++uknzp07h4WFBe7u7owdO5ZOnTrh7+/PgQMHAJg0aRKbN29m2rRp/PHHHyQmJnLixIlHMp7Lly8zf/58fH19cXfX5CSYMWMG27dvZ9q0aWzbto1p06Zx5MgRfvjhB0CzLdPR0ZHBgwczd+7cMn3++uuvjBs3jldffZX169czcuRIQkJCKpxv7LZt27bRtGlT1qxZQ9euXVmyZAkhISGMHj2abdu28f333xMdHa3T74cffsi+ffuYOnUqoaGhuLq6MnjwYDIzMwkPD+ftt9+mRYsWrF+/nlmzZnHx4kUGDx782FbVCY201CTU6mJs7XSv2FvbaX7UpCQmlGljZq4JWmWkpeiU30xJ1PYJ0KCpJv/LpjW/kpebTdKNWHZuWYWjixtOVaqV6bewsIC/Nv6Bf2ArXKt5/ruJCXEXGzNjZvdoyRsNvFEqFA+sH5+pCco6Wepu13K89fhGVi5FxWpSc/PL1LE0VmJiaKANilkYG5GSm1/mNRJzcknKyStTLsTDMrWwo/Nb8/FvNRgDgwfnh8tK01zAsKjsrFNufmsV152AVyRGxhYc2jSTtfMHsOb71zi0aRb5OWk67TJvXufi0RU0bD8chaHkpxOPh21lK74bO4I3ewajrMCW8LgkzfmKk71uzkZHW83jhORUilQqUtIycL6rjpW5GabGxtxI0VzAsDAzJSUto8xrJKamkXwz/WGmI4R4AchlevHMCw4OxtHRkSVLlnDw4EH27t0LQLVq1ZgyZQoBAQEYGxtjaGiInZ0dOTk5rF27lvHjx9OqVSsApkyZwpEjR/7xayckJODvfydpZlFREebm5gQFBfHZZ5+hr6+JGfv6+hIcHEyDBpqVNS4uLjRt2pQrVzRXlKytrVEoFJiamlKpUiWd1ygtLWXhwoUMHDiQAQMGaOeWkZHBzJkzGTFiRIVzfVlZWfHuu+9qH1etWpXp06fTpk0b7biCg4PZunUrAJGRkezbt4+QkBCaN9ckNf/qq6+wtLQkPT2dkJAQmjVrxrBhw7Tj+uabb2jXrh3Hjh0jMDAQ8Xjczp+lNDHRKVcqNY8LC8r+GHf3rIO1rQMbVoZgaGhEFbca3IiPZmvoMvT09Cgq1OTScHSuSqeeA/lzxc8c3L0JgMrWdgz5eKL2M/13Jw/vIj8vl9YdZFWAePQslEbwD35/5xWpADAx0j2FMTbUBMvyVcXkqTR5wEwMy57mmBgqyL/1fGuPKiw8coHFx8PoXrs6enp6bL4URUJmLsWPcFWwEEoTC6DieTtVt3J8GRiZ6pQbGGm+A1RFmu+AjJQo8nNuUr1Oe2r6dyUrLZYLh/9g9+r/o8OAbzEwNKakRM3RbXOoXrsd9lVqExWW9GgmJcRdLMxMH1zpb27n+DI11s2vZWKs+VLILygk91ad22V/Z6w0Iq+gEIA2gf4sWLGeX9dtoXtQc/T0YPPeI8QnpVD8D3ZMCCFeLBLwEs+FevXqUa9ePUpKSggPD2fv3r0sW7aM9957j7/++kunblRUFCqVCl9fX22ZUqnEx8fnH7+uvb09S5cuBTTBr2nTpmFqasrHH3+MtbW1tl6PHj04dOgQs2bNIjo6msjISKKiorQBsPtJS0sjNTWVgIAAnfJGjRqhUqmIjIzEz8+vQuN1c3PTeRwUFMTZs2eZM2cOUVFRREVFERERgYODZivQ7YBcvXr1tG2USiVjxmgSl4eFhRETE6MT9Lvt2rVrEvB6jEof8GNbr5zAlIGBAYOH/x+rl80nZO7XAFhaVabrK4P5fdG32i2Me7avY9ufv9G4ZTB16gWSm5vNri2rCfluAkM+moiFZSWdfg/v3Yq3b0PsHJzvfkkhnrgHrS3VgweuQL19q5EgT1fyVcWsOnuVreEx6OlptkYGebqyJyLuUQxXiIfywM/wrRvmNGj3Pvp6CqwdNatv7Vx8sLKpys6VXxAdtpsafp24dGw1qsI86jYf9NjHLcQ/UZHP+YM2FOjdOqK3bRxAfkEhK7fuZvO+I+jp6dHYz4d2TQLYfez0oxqyEOI5IwEv8UxLTExkwYIFDB06FEdHR/T19fHx8cHHx4d27drRtWtXjh8/rtPm9kng3V+iD5N3yMDAQBtEcnNzIyQkhJ49e2rzh93O5fXll1+ybds2evbsSVBQEB988AEhISEkJT34Kuq9vuxv5xz7J+M2vusK2U8//cT3339Pr169aNKkCW+99RY7d+5k06ZNFeq7pKSEbt26aVd4/d3fA37i0TM21WzFKirQvcPR7ZVdxsYmZdoA2Ng5MfSjieRkZ5KXk42NvRMZ6SmUlpZiYmaOWq1m15bV1GvYgh6v3lkNWN2zNjPHf8D+HX/Sufeb2vIb8TGkJifQodtrj3qKQjyU26u2ClS6V+zzb93d0dTI8E6d4rJ3fMxTFWP6t9VhXXzc6ejlRlJOHhZKQyyNlXx/8KxOXi8hnjTDWyu7iot0t9wW31rZdfsOjLZOZW+cY+vsjZHSjIzUaNKTIwk7vpqWPcahrzCkpERNaanm/KKkRE1pSUm5F1CEeBL+vpLr7/JunfuYmhhjeqtOQWFRmfb5hYU6d1/s2ropwc0DSbqZhrmZKVbmZsz7ba1OXi8hxMtFvuHEM83IyIhVq1axfv36Ms9ZWloCYGtrqw1yAbi7u6NUKjl16pS2rLi4mPDwit8B7F5sbW2ZPHkyYWFhfPfddwCkp6ezYsUKxo8fz5gxY+jduzfe3t5ERkZWKM+Vra0ttra2nDx5Uqf8xIkTGBoaUrVq1Yce748//sgHH3zAV199xauvvkq9evWIjo7WjsvDwwOA8+fPa9sUFxcTFBTE1q1b8fT0JCIiAjc3N+2/4uJipk6dyo0bNx56XOLBrG0d0NfX1+bfuu32Y3vHKmXaqFRFnD62l7TUJMwtrLB3qoJCoSDh+q27eLlWJzcnE1VRIW7VvXTamltYYefgTNIN3VUt4edPYGikpJav7gpEIZ4WZyvND/3EW3m4bkvK1gQCXKzMMTY0wNpUSWKW7tbfrIJCClRqXKzMAbiWmsHR64kYKPRxsTLH8tYPq+i0LNytLR/3VIS4JwtrFwByMnS/a3MyNN8BltZVKCrMJfLiDjJTY3TqlJaWolarUJpYEX/tGCXqYvasHc+q715h1XevcPyv7wHY/Ov77Fnz5ROYjRDlc3HQ3LE8MfWmTnlSqiYHXRUHO4yVRlhbWWoT2N+WmZNLfkEhLg62AERcj+fo2TAMDBS4ONhhZa75roiMu4F7lfvfwVQI8eKSgJd4pllbW/Puu+8yZ84cZs+ezaVLl4iNjWX37t0MHz6cwMBAGjRogKmpKcnJycTGxmJmZsbAgQP57rvv2L59O9euXWP8+PEVWm1VEa1ataJ79+788ssvhIWFYW5ujoWFBTt37iQmJobLly8zbtw4Ll68SFHRnatRZmZmREdHk5pa9lbg77zzDsuWLWP58uXExMSwYcMG5s2bx6uvvlrh/F3lcXJy4uDBg0RERBAZGcns2bPZvn27dlzu7u506NCBCRMmcOTIEaKiohg3bhyFhYU0atSIwYMHExYWxoQJE7h27RqnT5/mk08+ITo6mmrVqj30uMSDGRoa4V7DhwtnjugETi+cOYKxiRlVykker1AYsH7lIo4dvLPNV61Wc3jvFmzsHHF0ccPcohKmZuZER+je5TE3J4vU5BtY29jrlMdGX8XF1R1DQ6NHPEMhHo6jhRl25iYcva4bDD56PRFHC1PszDVX8n2dbDkVn4zqb7lbjsYkoq+nR21HTfLjS8npfH/gLLm38oIBnL+RSlxGDg3uugukEE+SRSUnzCwdiL16WKc89urhW8/Zo1AYcmr3Qi4dX6NTJyHyGOriIuxdffHw7UD7/jN0/tUOfBWA5t2/IKDdf57YnIS4m6OtNfY2lTlyNkyn/MjZMJzsbLCzrgRAXS8PToVdQfW3VbtHzl5EX1+fOp6aG0hduhbN3N/WanN+AZy7fI24xGQa1im7ElII8XKQLY3imffhhx9SrVo1Vq5cyW+//UZBQQHOzs506tSJoUOHAtCzZ0/++usvunbtyvbt2/nkk09QKpV8/fXX5Obm0qlTJ4KCgh7ZmL744gsOHDjA//3f/7Fq1SrmzJnDtGnT6NatG1ZWVgQGBvLxxx+zYMEC8vPzMTExYdCgQUyfPp2rV6+WWbE2ePBgjIyMWLx4MVOmTMHR0ZH33nuPd95551+Nc8aMGXz99df06dMHMzMz/Pz8mDBhAl999RUJCQk4OzszZcoUZsyYwciRIykqKsLPz4+QkBCsra2xtrbm559/Zs6cOfTq1QtTU1OaNGnCqFGjtNs5xePTJrgPIXO/ZnnINzRo0paYyHD271hPxx4DMDJSUpCfR3JiHNa2DphbWKGvr0/jFh04uHsTVpVssXVw4sjebcREhjNoyCj09PTQ09OjbedX2bAqBKWJKb7+TcjLzWbPtnXo6enTvF03nTEkxsfg6VPv6bwBQqBJUh+fmYuDhYl2BVafujX48dB5LI5epH4Ve07GJXEkJpERLepp23WrXZ1D0TeYvusEnb3duZGVy4ozV2jr6YqtmSYo1tzdmT8vXON/+07TvXZ1UnPzWXoinJp2lWjh7vI0piteUqrCPLLSYjGzcsTY1AqA2o37cWz7XE7ussC5ekPiI48Re/UgTTp/AoDCwAjvhn24cPh3lKaVcHIPIDM1hotHVuBSvREOrppcpibmuikIMtNiAahk64aZpe5FDiEep7yCAuITU7G3raxdgfVKh1bM/z0UC7ONBNT24sSFyxw+c5EP3+irbdcjqBmHTl9g6k/L6NKqCTdSbvL7pp20axKAbeVKADQPqMu6nQf49teV9AhqRmpGJktCt+HlXpWWDSqWC1cI8eLRK63InishhHiE9l4se4dBUb6LZ46yY/NKUhLjsaxkTZOWwbRo1x2AyCsXWDjnK14Z9AEBjTV34iwuLmbX5pWcOraX/LxcnFzcaNu5L57e9XT6PX1sLwd2biDpRhxm5hZUq+FNx+4DsLbVXdXy5Yev07RNZ4J7DHwi832R1A395GkP4bkTlniTiX8dY1z7RvjcWoV1u2xYU19aedzZyrvjynU2hkWRlleAvbkJPep40KK6bpDqUlIay09dJiY9CwulIc3dXejr54mB4s4C98ibmSw7GU7kzUzMjAxpVNWBfvVqlnuHR1HWNy5znvYQnjvJsRfYvWYcbfpMxN61jk5Zow7/xd3nzgW6a+e3EX4ylPzsm5hZOeDdsA/VvFtrny8tLeXaua1EnNtCTmYSSmMLqtZqSZ3G/VEYlH9hKipsF8e2z6Xr4AUS8KqgUXV2Pe0hPHcuRkQx4ftfGf/BW9Su4a5T9v5rPWnd6M4Nkf46dIINuw9yMyMLe5vK9GrXokyQ6tK1GJZt2E50fCIWZqa0aFCXV4ODMDBQaOtci01g6Z/biIxLwMzEhMC63rzaKajcOzyKsiwaBD/tITyU9MnP7krVymN/eNpDeOlJwEsI8cRJwEu8DCTgJV4GEvASLwMJeImXgQS8Hj0JeD19cvlSvHQWLlzI/Pnz71vniy++oG/fvvet86Rs3ryZsWPH3rfO22+/zYgRI57QiIQQQgghhBBCiGebBLzES6dfv3506NDhvnVsbGye0GgerFWrVoSGht63zu07VgohhBBCCCGEEEICXuIlZGVlhZWV1dMeRoWZmZlhZmb2tIchhBBCCCGEEEI8N/QfXEUIIYQQQgghhBBCiOeHBLyEEEIIIYQQQgghxAtFAl5CCCGEEEIIIYQQ4oUiAS8hhBBCCCGEEEII8UKRpPVCiCeufv6+pz0EIR674qc9ACGEEI/EKZOWT3sIQjx2rZ72AIR4DGSFlxBCCCGEEEIIIYR4oUjASwghhBBCCCGEEEK8UCTgJYQQQgghhBBCCCFeKBLwEkIIIYQQQgghhBAvFElaL4QQz7CzlyP4Y/MuYm8kY2VhRnDzRnRt3RQ9Pb1y66uKi1m5dTcHTp4nOzcPZ3tbegQ1o1l9X516Jy9eZvX2vVxPSMLCzJQm9WrzaqcgjJVG2jqlpaVs3HOIvw6d4GZGFnbWlQhuEUhw80aPdc7i5XMuIZUVZ64Qm5GNlbGSjrXc6OJd7d6fc7Wa1WcjOBCVQHZhEc5WZnT3qU5Td2edeqfikllzLoLYjGwslIYEujnRz88TY0PN6c8Ph86x71r8Pcf1Xa/W2JmbPLJ5CgGQl53KtmUf0qzraOxd69y37vXL+7l4dCW5WcmYWdpRq0Fv3H2CdOpkpcVx9sASUuIuoKevwM6lNvVavoW5lWO5fR7cOANDI2MadRjxyOYkxG1XL51h+4bfSUqIxdzCiiatOtG8bbd7Hs+LVSp2bF7BmeP7ycvJxs7BmZbte+LXoLlOvaiIMLavX86N+BiMTUyp7RdIh26voTQ20elr5+aVnD6+j7ycbGzsnWgT3Ie69Zs+1jkLIZ5dEvAS97V+/XqWLVvGlStX0NPTo3r16vTt25f+/fsDkJ6ezo4dO+jbt+89+xg0aBAuLi5MmzatQq85d+5c5s2bp1OmUCiwtLSkfv36jBkzBldX1wrP4erVq8THx9O6dWsAvLy8mDp1Kr17965wH09bUVER06dPZ9OmTSgUCgYMGMD777//tIclHrOr0XFM/3k5TevVoV9wG8KjrrNsw1+oS0ro2bZFuW3+t2QVp8Ku0rV1E3w9qxMZl8CPK/4kKyeXTi0bA3D03CW+/XUFtWtU48M3+6JWq1m9fS+Xo2KZOGIwCoUCgGUbtrNl/1H6BbehRtUqnL50hUVrNqHQ16d90wZP7H0QL7arKRnM3H2CxtWc6OvnyeXkdJafCkddUkKPOh7ltvlu/xlOx6fQxdudOk42RN7MZMGRC2QVFhFcqxoAx64n8r99p/FxsGZEi3oUl5Sw7vw1JqWkM6FjYxT6+vTy9aCdZ1WdvnOKivjfvjP4OFhja2b8uKcvXjJ52ansXTeBosLcB9aNu3qYI1tn41mvK45u/sRHHuXY9rkoFIZU9Wqh7W/Xyi+wqOxM4+CPURcXcv7wcvaum0DwwDkoDHQvYpzZt4i4iMO4+7R5bHMUL6/rUVdY/MM06gY0pV2X/sRcu8SW0KWoS9S07tCr3Da/L5pN+MWTtGjbDQ8vX+KvR7Lmtx/IzcmiaevOACTdiGXR3Im4edTitcEfk52ZxpbQpaSlJvHmf8Zo+1qxeA4Rl87Rscfr2Ng7cebYPv5YNBul0gSv2v5P5D0QQjxbJOAl7mn16tVMnjyZsWPHEhAQQGlpKQcPHmTSpEmkpqYyfPhwZsyYQVxc3H0DXg/D0dGR1atXax+rVCouXbrExIkTGTZsGBs3brznlaK7DR06lF69emkDXgcOHMDCwuKRjvdx++mnn9ixYwchISHExcXx4YcfUrt2bVq1khsIv8hWbN1FNWcnhg/QBGf9vT0pUZewbsd+OrdsjJGhoU79qLgbHD8fTv/ObendXnML9bpeHiiNjPh90w5aNqyHmYkxq7btxtneli+GDMLAQBPcqlXdjRGT57D72BnaNQkgJS2DjXsOM7hPZzo206zoquPpTmp6JucuX5OAl3hkVp29ipu1JR808wOgnosd6tISQi9co1Otahjd+ozeFp2WxYnYZPrV86SXbw0AfJ1sMTYw4PfTl2lR3QUzI0PWnIvA2dKM0UENMVBoMjh421szMnQve67F09bTFUcLMxzv+jqYvfcU5kaGDG/uV+HvGSEepLS0lOhLuzm779cKtzl3aBlVajTFv9VgAJyq+VOUn8P5w8u1Aa+LR/7AwMiUVr0nYGCoBMDM0p4DG6aRlhSBnYsPABmp0Zze/TM3k67qBMGEeJR2bFqBs2s1+r2pWT3oVdsfdYmaPdvW0qxNFwwNdT97CbFRhJ07Rodur9EmuA8AnrX8MDIyZtv63/Bv1AoTUzPOHNuHnp4eg4aOQqnUXIhQl6gJ/f0n0m8mU9nGnqiIMC6cPsJb74/VBrdqeNXlZkoiV8JOS8BLiJeU5PAS97R8+XL69OnDK6+8gru7O9WrV2fQoEG89dZbLFmyBNCcwD0OCoUCOzs77T9nZ2fatm3Lhx9+SEREBJcvX37ovu3s7DA2fr6u2oeFheHt7U3t2rXp2LEjlpaWREZGPu1hicdIVVxM2LVoGtWtpVMe6OdDfkEh4ZHXy7SJT0oBIKC2l055HU93CgqLuBgRBUBCcir1atXQBrsAKlmY4+Jgx6mwKwAcO38JI0MDggLr6/T10Zv9+OTtV//9BIVAszXxUtJNGro66JQHVnWkQKXmckp6mTbxmTkABFSx1ymv7WhNYbGasKQ0ABIyc6jrbKcNdgFYmShxsTLndFxyueM5HZ/MsetJDGpQCzMjw3LrCPEwMlKiOLnzR9y8W9Oo48gH1s/NSiY7PYEqNQJ1yl09m5CTkUh2egKlpaXERRyheu222mAXgLWjJ93fC9EGuwCObptDSamadv2nY2xa6ZHNS4jbilUqIq9cxMdP9zPr69+EwoJ8oq9dKtMmOTEOgFq+uhfRPLzqUFRYQOTVi4Dmwre+QoGR0Z3Puamp5mpFXq7mO+HC6SPY2DnqBLb09PQY9slkuvUd/AhmKIR4HknAS9yTvr4+p0+fJjMzU6d8yJAhrFixgtGjR7Nu3TqOHTuGl5fmB3ZRURFTpkyhSZMmBAQEMHPmTEpKSh7ZmIyMNFeGDG+tbLm91S8oKIg6derQqFEjRo4cSVqa5gdPUFAQ8fHxzJs3j0GDBgGaLY1r167V9hkaGkr37t2pW7cuQUFBzJ8/H7VaXeEx3bx5kxEjRhAYGEjdunXp378/x44d0z5fVFTEzJkzadGiBf7+/vTr148DBw5onx82bBgtW7YkJ0fzhZ2cnExgYCATJ07U1mnWrBl79+7l0KFD/PDDDxQVFdGuXTudcYwePZoRI0YwePBg6tevz8KFCykpKWHBggV07NiROnXqUL9+fd59912uX78TLMnNzWXixIk0b94cf39/Bg4cyIULF7TPnzp1igEDBlC3bl1at27NhAkTtGMVj09SajrFxWqcbG10yh1trQGIT04t08bC3BSAlPQMnfLEVM3fQ/JNTfDAwsyU1HTdv+viYjUpaRkkp2nqRMUn4mhnw6VrMXw+60de+/RrPpg4m78Onfj3kxPilqTsfIpLSnG0NNMpd7DQPE7ILLvty+JWnrmU3Hyd8sTsPACSb/2vhdKIm3fVKVaXkJqbX6YtaC7g/HYyHG8Haxq7OT3kjIQon6mFHZ3fmo9/q8EYGCgfWD8rTRMIsKism5fOvJLms5mdnkBuVjJFhbmYWtpxctcC1v04iNVz+3Fg/VTysnW/IwI7jqRtv6lUsq32aCYkxF3SUpNQq4uxtdM9flrbaXLJpSQmlGljZq4JWmWkpeiU30xJ1PYJ0KCpJm/dpjW/kpebTdKNWHZuWYWjixtOVaoBcCMuGnsnV84c38+3X49k7H/78e3XI7l49hhCiJeXBLzEPb377ruEhYXRsmVLhgwZwk8//cS5c+ewsLDA3d2dsWPH0qlTJ/z9/bUBnEmTJrF582amTZvGH3/8QWJiIidOPJofyJcvX2b+/Pn4+vri7u4OwIwZM9i+fTvTpk1j27ZtTJs2jSNHjvDDDz8Amm2Zjo6ODB48mLlz55bp89dff2XcuHG8+uqrrF+/npEjRxISElLhfGMAX331FYWFhSxbtowNGzbg7u7O+++/T16e5kfXmDFjOHjwILNmzWLdunV06tSJYcOGsWfPHkDznqlUKmbMmEFpaSljxozBwcGBUaNGaV+jf//+eHt7M3jwYEJDQ1m8eHG5ecy2bdtG06ZNWbNmDV27dmXJkiWEhIQwevRotm3bxvfff090dLTO/D788EP27dvH1KlTCQ0NxdXVlcGDB5OZmUl4eDhvv/02LVq0YP369cyaNYuLFy8yePDgx7a6T2jkFxQCYGKs+8PI5NaP/dvP/11tD3ccbKz5Ze1mzl+JJK+ggEvXYli+8S/09PQoKCoCoHUjf46eCyN0534yc3JJTc/gxxV/kl9QSGGhCoCsnFzSMrL4btka2japz9ihg6jr5cHCVRsk6CUemXxVMQCmhroZFkwMNasP81SqMm18HKyxNzfh12OXuHAjlbwiFZeS0vj99GX09KCgWHPBopVHFY5dT+LPC9fIKigkNTefBUfOk68qpuDW6/7dybhk4jNz6eVbft4wIf4NpYkFpha2Fa6vupXjy8DIVKfcwEiToFtVlEdhvubCxbkDS8nPSaNJp09o0O590lMi2b1mHMWqAm07CXSJx62gQHPeqzTRvdGHUql5XHjr+b9z96yDta0DG1aGEBF+joL8PKIiwtgaugw9PT2KCjWfYUfnqnTqOZBDezYz8fO3+d+kjygqyOfN/4xBX1/zczY3J4v4mAi2/rmM1h178dYHY7FzcOG3hTO5fPH045y6EOIZJjm8xD0FBwfj6OjIkiVLOHjwIHv37gWgWrVqTJkyhYCAAIyNjTE0NMTOzo6cnBzWrl3L+PHjtbmlpkyZwpEjR/7xayckJODvf2dJclFREebm5gQFBfHZZ59pv9x8fX0JDg6mQQPNUmgXFxeaNm3KlSuabVnW1tYoFApMTU2pVKmSzmuUlpaycOFCBg4cyIABA7Rzy8jIYObMmYwYMaJCub6uX79OzZo1cXV1xdjYmLFjx9KtWzcUCgUxMTFs3LiR0NBQvL29AXj77bcJDw8nJCSE1q1bY2try8SJExk+fDgqlYqTJ0+yZs0a7Wq23NxcRo0axfXr13Fy0lw1c3d3R61Wo1KpdLZnWllZ8e6772ofV61alenTp9OmTRvt+xMcHMzWrVsBiIyMZN++fYSEhNC8ueZuOF999RWWlpakp6cTEhJCs2bNGDZsmPb9+eabb2jXrh3Hjh0jMFB32bp4dEpK778yUl+/bG4hAwMFY4cN4offQ5n4w2IAKltZ8HavTsxevArlrZWR/Tq2pqSkhJVbd7N84w4MDBQEBdanQR0v4pI0qwKK1Wqyc/P45K1XCfTTbIu5ncNr9fY9ksNLPBIlDwic65eTQ8tAoc+Ydg1ZcOg8k3ccB6CyiZI3Gnrz3f4zKG9t1X3FrwYlpaWsPnuVP05fwUBfjzY1XAmoYq/dFvl32y7H4GZtga9TxYMSQjwuD7qopKenR8mt1ejGplY06zZam3POopITO1aMJiZ8Lx6+HR/7WIUAKH3Ajg49/bLrLAwMDBg8/P9YvWw+IXO/BsDSqjJdXxnM74u+1W5h3LN9Hdv+/I3GLYOpUy+Q3Nxsdm1ZTch3Exjy0UQsLCuhVheTlZnO8FEzcKlaHQCPmr58N+UTdm1ZJTm8hHhJScBL3Fe9evWoV68eJSUlhIeHs3fvXpYtW8Z7773HX3/9pVM3KioKlUqFr6+vtkypVOLj43N3tw9kb2/P0qVLAU3wa9q0aZiamvLxxx9jbW2trdejRw8OHTrErFmziI6OJjIykqioKG0A7H7S0tJITU0lICBAp7xRo0aoVCoiIyPx8/N7YD/Dhw/ns88+Y9u2bQQEBNC8eXO6du2KUqkkLCwMgNdff12njUqlwtLSUvu4Xbt29OjRg7Vr1/LFF1/g4XFnhcHnn39OREQEGzZsID8/n379+vHpp5/yyiuvMHLkSDZu3Ej16povdjc3N53XCQoK4uzZs8yZM4eoqCiioqKIiIjAwUGTL+d2YLBevXraNkqlkjFjNHe8CQsLIyYmRif4eNu1a9ck4PUYmZpoApn5hUU65Xn3WPl1m6OtNRP+O5jMnFyyc/JwsrMmNT2T0tJSzE01KwUUCgUDuranb8fWJN/MoLKVBWYmxoyfuwgLU82VWBOlEXp6evj7eOr0X69WDc6GR5CRnUMlC/NHOmfx8jEz0pyG5N+14irvHiu/bnO0MGN8x8ZkFRSSVaDCydKU1NwCSkvB/FbuLYW+Pq/V96JP3Rok5+RT2VSJmZEhE7YdwVypmzg5u7CIS0lp9Pf3Ku/lhHjiDG+t7CouumtbbpFmlYyh0gxDI833hGO1+jo3WLBx8sJIaUZ6StQTGq0QYGyq2YpeVFCgU357ZZexsUmZNgA2dk4M/WgiOdmZ5OVkY2PvREZ6CqWlpZiYmaNWq9m1ZTX1Gragx6t3LupW96zNzPEfsH/Hn3Tu/SZKpTGWVpW1wS7QpGepUasuxw78Vd5LCyFeAhLwEuVKTExkwYIFDB06FEdHR/T19fHx8cHHx4d27drRtWtXjh8/rtPm9snW3VclDQz++cfMwMBAG7xxc3MjJCSEnj17avOH3V799OWXX7Jt2zZ69uxJUFAQH3zwASEhISQlJT3wNe519fR2zrGKjrt9+/bs37+f/fv3c+jQIX755RfmzZvHypUrta/x22+/YWamm6NG/29XulQqFZcvX8bAwICDBw/y5ptvApCTk8OOHTuYPXu2dnXXt99+y7Bhwzh9+jQeHh7aYBdQJhn/Tz/9xPfff0+vXr1o0qQJb731Fjt37mTTpk0VmmNJSQndunXTrvD6u78HHsWj52BTGX19fZJu5d+67XY+rioOdmXaFKlUHDkbRi33qtjbVMbKXPOZi4q/AYB7Fc1n6GJEFKpiNfVq1aCKo6YftVpNzI0k2jTSBDedbG0oLS2lWK3WuRukWq35+zC6RyBCiH/C3twUfT09krJ1t7rcfuxiVTaoWlSs5uj1RLzsK2NvborlreBvVJpme5e7teZiQljiTVQlJfg521GlkqYfdUkJ1zOyaeVRRafPcwmpqEtKCazq+GgnKMRDsrB2ASAn4waV7e98z+dkaHIbWVpXQWlieWulV9mtvyUlahQKuRujeHKsbR3Q19fX5t+67fZje8cqZdqoVEVcOH0Yt+q1sLZ1wNzCCoCE65pgrYtrdXJzMlEVFeJWXfeChLmFFXYOziTd0OS70wTKUiktLdUJAKuLizEwlJuQCPGykhxeolxGRkasWrWK9evXl3nu9sokW1tbnS8Ud3d3lEolp06d0pYVFxcTHh7+r8dja2vL5MmTCQsL47vvvgMgPT2dFStWMH78eMaMGUPv3r3x9vYmMjKyQvmlbG1tsbW15eTJkzrlJ06cwNDQkKpVqz6wj6KiIqZOnUpsbCydO3dm0qRJ7NixA319ffbs2YOnp2Z1TEpKCm5ubtp/a9eu1Umc/91335GYmMgvv/zC4cOH+eOPPwBNcn4DAwNSU+8kn23ZsiX9+vUjMzNTu3X0Xn788Uc++OADvvrqK1599VXq1atHdHS09v25vZLs/Pnz2jbFxcUEBQWxdetWPD09iYiI0Bl7cXExU6dO5caNGw98f8TDMzI0xMfDjaPnwnQ+z8fOXcLUxJgaVV3KtDFQKFi0djN/Hb6TY0utVrN1/zEcba1xc9as7DtyNowFK9ZTXHzn5gy7jp4mL7+AhnU0d4W8vbLr4KkL/N2Ji+FUdXbA9Dm706l4NhkZKPB2qMyx60m6n/PriZgaGeBhW6lMGwN9fX49HsbOK7HaMnVJCdsvX8fBwpSqlTVb0Y9eT+SnwxcoVt/ZZrM7Io68omIa3HVXyKupGVibGmNnXv4KBCGeNItKTphZOhB79bBOeezVw7ees8fA0Bg7Zx/iIo6gLr4T9Eq6fo5iVYHOXRqFeNwMDY1wr+HDhTNHdI7nF84cwdjEjCrVPMu0USgMWL9yEccO3lmBpVarObx3CzZ2jji6uGFuUQlTM3OiI3Tv8pibk0Vq8g2sbTR37PWqXZ+83Bwiws9q6xQXF3Pl0hmq1ZC/BSFeVnKJXpTL2tqad999lzlz5pCbm0twcDDm5uZEREQwf/58AgMDadCgAVu2bCE5OZnY2FhcXV0ZOHAg3333HXZ2dnh4eLBo0aIKrbaqiFatWtG9e3d++eUXOnfujKenJxYWFuzcuZPatWtTUFDAsmXLuHjxos5WRDMzM6Kjo0lNTcXWVjc3yzvvvMPs2bNxdXWlWbNmnDt3jnnz5vHqq69WKH+XkZER58+f58SJE4wbNw5bW1v27dtHXl4e/v7+eHp60qZNG8aPH8+XX36Jp6cnW7duZcGCBUydOhWAkydP8vPPPzNr1iwaNWrE+++/z/Tp02nSpAlubm7069ePefPm4ejoiLe3Nzt37mTdunXUq1ePX375hRo1atCzZ89yx+fk5MTBgwcJCgpCX1+fP//8k+3bt2vfB3d3dzp06MCECRP46quvcHBw4KeffqKwsJBGjRrh6OjIgAEDmDBhAgMHDiQrK4sJEyZQUFBAtWrVHu4/pKiw3u1bMfGHxcxevIo2gf5cjopl/e6DvN61HUojI/IKCohPTMXeVrOaS19fnw7NGrJ57xFsKlnhbGfDtoPHCI+6zmeD+2sD1O2bNmDnkZPM/30dbQLrE5OQyPJNO2jqXwefGtUAqF3DnYDaXiz5cytFKhWujvbsO3GWy1GxfPbOa0/xXREvml6+NZi84xhz9p2hdY0qXElJZ2NYFP39vVAaKMgrUhGfmYuDhQmWxkr09fVoX7Mqmy9FY2NmjJOlGdsvx3A5OZ1PWt/Z2tXOsyq7rsbyw+FztPGoQkx6Nn+cvkyTao74OOiuUI1Nzy53NZkQT4qqMI+stFjMrBwxNtWscqnduB/Hts/l5C4LnKs3JD7yGLFXD9Kk8yfadr7NB7J79Tj2/TmRWgE9KcjL4Nz+Jdg41sSleqOnNR3xkmoT3IeQuV+zPOQbGjRpS0xkOPt3rKdjjwEYGSkpyM8jOTFOu5pLX1+fxi06cHD3Jqwq2WLr4MSRvduIiQxn0JBR6OnpoaenR9vOr7JhVQhKE1N8/ZuQl5vNnm3r0NPTp3m7bgD4NWjBoT2bWfHrHDp2H4BlJRsO7dlMZvpNXn/nkweMXAjxotIrlVutifsIDQ1l5cqVXLlyhYKCApydnenUqRNDhw7F1NSU8+fP88EHH5CZmakNpMybN49Vq1aRm5tLp06dyMrKwtzcvMJ3Ppw7dy7r1q1j165dZZ5LT0+nc+fOODk5sWrVKo4cOcK0adOIiYnBysqKwMBAPD09WbBgAQcPHsTExISVK1cyffp0XFxcWL9+PV5eXkydOpXevXsDsGzZMpYuXUp8fDyOjo7069ePd955B4VCUaHxJiUlMXXqVI4ePUp2djbVq1dn6NChdOnSBYD8/Hxmz57N5s2byczMpGrVqgwePJg+ffqQm5tLjx49qFmzJvPnzwc0V6NeeeUVlEoly5cvp6SkhP/973/8+eefZGRkUKNGDYYMGUKnTp2YPn06KSkpfPPNN4wePZr4+Hht7jOAixcv8vXXXxMeHo6ZmRl+fn60atWKr776il27duHs7Ex2drb2bpdFRUX4+fkxevRoatXSrPQ5fPgwc+bMISwsDFNTU5o0acKoUaNwdHz4rT/ZJ7Y+dNuXzdFzl1i1bTcJyalYW1nSsVlDurVpBmi2Jk74/lfef60nrW9tRSwuVrNq+x72HT9Lbn4+bs6OvNKxFX5eNXT6PXf5Gss37SAuMYVKlua0aliPXm1bYGBw53NfpFKxatseDpw8T1ZOLi4OdrzSsRWNfL2f3BvwHCve9ufTHsJz49j1RNaciyAhM4fKpsZ08HKjq4/mbrxhiTeZ+NcxhjX11W5FLFaXsOZcBPsi48ktUuFW2YI+dT2p66x7UeP8jVR+P32ZuIwcKpkoaVXdhR51PDBQ6C5w/3T9PqpWtmBEC0lq/E994zLnaQ/huZMce4Hda8bRps9E7F3r6JQ16vBf3H2CtHWvnd9G+MlQ8rNvYmblgHfDPlTzbq3TX2rCJc4fWs7NxCsYGChx8WiEX8u3MVLqplK4beOiodhXqU2jDiMe2xxfNO0blr2zqyjfxTNH2bF5JSmJ8VhWsqZJy2BatOsOQOSVCyyc8xWvDPqAgMaaGyoVFxeza/NKTh3bS35eLk4ubrTt3BdP73o6/Z4+tpcDOzeQdCMOM3MLqtXwpmP3AVjb3lmxm5eXw/b1y7lw+ghFhQU4u7rTsccA3GWFV4W0qm364ErPoPTJ/3naQ7inymN/eNpDeOlJwEuI59zduQqeBxLwEi8DCXiJl4EEvMTLQAJe4mUgAa9HTwJeT5/k8BLiOfe8BbuEEEIIIYQQQojHTXJ4iSdm4cKF2m179/LFF1/Qt2/fJzSi+9u8eTNjx469b523336bESNkS4AQQgghhBBCCPEskYCXeGL69etHhw4d7lvHxsbmCY3mwVq1akVoaOh969y+Y6UQQgghhBBCCCGeHRLwEk+MlZUVVlZWT3sYFWZmZoaZWfkJX4UQQgghhBBCCPHskhxeQgghhBBCCCGEEOKFIgEvIYQQQgghhBBCCPFCkYCXEEIIIYQQQgghhHihSMBLCCGEEEIIIYQQQrxQJGm9EOKJO2XS8mkPQYjHrn7Hpz0CIZ6AC097AEI8fnVDP3naQxDi8av9w9MegRCPnKzwEkIIIYQQQgghhBAvFAl4CSGEEEIIIYQQQogXigS8hBBCCCGEEEIIIcQLRQJeQgghhBBCCCGEEOKFIknrhRDiOVNYWMDWdUu5cOYIRUWFVPPwpusrb2Pn4HzfdtlZGWxa8ytXL52hRF2CV21/Ovd5E0sr63LrZ6SnMmfSxzQL6kK7Lq8+jqkIcU8FhUUs27Cdo+cuUVhURK3qbrzVMxhne9v7tsvIzmFJ6FbOXL5GiboEfx9PBnXviLWVhbZOelY2K7bs4tzla+Tk5eNkZ0OPoOY09a/zuKclXnLFqgLO7l9MXMQRilUF2Ln4UK/VYCwru9y3XUFeBmf2LiIx5gwlJWqc3OtTr8XbmJiXf/zOy05l69KR1PTvRp0m/cutk54cyY4/PqfzW/Mxs7T/13MT4rYCVTHLT13m2PVECorV1LKvzBsNvXG2NL9vu8z8QpacvMS5hFTUJaXUc7FjUEAtKpsal1t/a3g0m8Kimdu79UM9L4R48ckKL/HM8fLyYu3atcydO5egoCBt+dWrV9mzZ4/2cUJCAps2bXrs4xk9ejReXl46//z8/OjWrRsrV6781/3fni+ASqXi119//dd9ihfbil/+x/nThwnuOZC+g4aTlZnGz3PGk5eXc882arWaX7+fRFxMBD36D6FH//eIjgxn0bxJFBcXl6lfWlrKmmXzKSjIe5xTEeKe5ixdzZGzYQzo2o4PXutFWmYWE+b/Sk5e/j3bqNVqpixYRsT1eN57pQvvvtKF8MjrTF6wlOJiNQCq4mKm/LSM81ci6Rfchk/f7o+Hqwv/W7KKfSfOPqnpiZfU4S3fEnf1MHWbDyKwwwjyc26yZ/WXFBXc+/hdUqJm37qvuZl0lYCgoQQEDSU1IZy96yZQoi7/+H3sr3moiu59/M5MjWH/n5MpKVE/knkJ8XdzD5zl6PVEXqvvxX+a1SU9v5BJ24+RU6i6Zxt1SQlTdx3nWmom7zSqzTuBtbmcnM7UnccpVpeUqX8oKoFlJ8Pv2d+DnhdCvBwk4CWeWYMHD2b16tXax0OHDuX8+fPax6NGjWL//v1PZCz+/v4cOHBA+2/jxo20bduWcePGsXXr1n/V94EDB+jcuTMAGzduZOrUqY9iyOIFFRN5mUvnT9D3jf8S0LgNdfwb885/v6SgIJ+j+7bds92F04dJiIvmjaGjqVu/KfUatmDwB+NIvhHL+VOHytQ/un8bKUnxj3MqQtzTlehYTl68zAev96J1I38C/XwY9583yS8oZPvB4/dsd+RsGNHxN/j8nddpUq8OzQPqMnboIOISkzl89iIApy5eISY+kY/e7EfrRv7U9fJgSL9u1PP2JHTngSc1RfESSr0RTkLkcRp1HIG7TxBVPJvQqvcEVEV5RJy797lE3NVDpKdE0aLbF7jWbIZbrZa06vklWWmxxF49WKb+tXNbyU4v//hdoi4m/OSf7FgxihL1vYMPQjysKynpnIpL5j9N69LKowqBVR0Z264heapi/roSc892R2MSiUnL5tPWATSu5kQzd2fGtG1IXGYOR2JuaOtlFRTy85ELzD1wFhPDspuVHvS8EOLlIgEv8cwyMzPD2rr8pfpPmqGhIXZ2dtp/rq6ufPjhh1SrVo0NGzb8q77t7OwwNtYs1S4tLX0UwxUvsKuXzmCkNMbT209bZm5hhXsNHy5fPHXPdlcuncHW3hl7pyraMnunKtg5uJRpdzM1kS2hy+j12rBHPwEhKuBMeATGSiP8vDy0ZVbmZnh7VOP0pav3bedsb0sVRzttWRVHO5ztbTkddgUAE2Ml7Zo0wMNVdwuwi70tyTfTH/FMhLgjMfoMBobGOFatpy0zNrXCzqU2N6JP3rtdzGksKjtjaeOqLbO0ccWisgs3onTb5WQmcvbAEhq0/U+5fd2IPknY0RV4N3yFus0H/bsJCVGOcwmpKA0U1HW6s/3c0liJt4M1Z+JT7tnu7I1UnCzNqFLpzrbHKpXMcbY043TCnXbrzl/jbEIqH7byp36VsltxH/S8EOLlIgEv8cz6+5bGoKAg4uPjmTdvHoMGDWLQoEEcO3aMdevWaesUFRUxc+ZMWrRogb+/P/369ePAgTtX69euXUv79u2ZNGkSAQEBvP/++/96jAqFAiMjI+3rT58+naCgIOrUqUOjRo0YOXIkaWlpAMTFxeHl5cWCBQto1qwZbdu2JScnR7ulce3atYwZMwbQbHPcsmULderUITQ0VOc1v/nmG/r06VOh8anVambOnEmrVq2oU6cOwcHB/P777zp11qxZQ6dOnahbty6dOnVi8eLFlJRolo4vWrQIHx8fzp07B0BJSQmvv/46vXv3pqio6KHfN/HwkhPjsLZ1QF9f9/BtY+d43xVZKYlx5eb4srF3IjU5Qfu4tLSU1Uu/p279pnjV9n90AxfiH4hPSsHepnKZz7mjTWXik1Pv0y4VJzubMuVOdjYkpNwE0K7o0tPT0z5fXKzmVNgVnUCZEI9aVloc5lYO6N31uTav5Eh22r2P31lpcViUk+PLopIz2Rm6x+9j2+dStWYznKrVL7evyg416PL2AnwavYKevuIhZyLEvcVn5uBgYYq+vp5OuYOFKQlZufdt52RpVqbc0cKMG39r165mVWb3aElgVcdy+3nQ80KIl4sEvMRzYfXq1Tg6OjJ48GDmzp3L3Llz8ff3p1OnTtptj2PGjOHgwYPMmjWLdevW0alTJ4YNG6aT9+v69eskJycTGhrKRx999NDjycnJ4aeffuLatWt06tQJgBkzZrB9+3amTZvGtm3bmDZtGkeOHOGHH37Qabtu3ToWL17M//73P8zN71zF6ty5M1988QWg2ebYtm1bWrdurRPwKikpYf369fTu3btC41y+fDlbt25l9uzZbNu2jYEDB/LVV19x4sQJAFasWMGMGTMYPnw4mzZt4sMPP2ThwoXMmjULgLfeeouAgADGjh2LSqVi4cKFXLp0iW+//VYb6BNPVmF+Pkpl2eStSqUxhQUF92yXn5eH0tjkHu3u5EQ6sGsj6TeT6dz7zUczYCEeQl5BISZKZZlyY2MlBYWF92lXgKlx2XYmSiPyC+7d7reNf3Ej5Sa92rZ4uAELUQGqojwMjMoehw2NTFCp7p2brqgwF8Ny2hkYGaMqvJOn68rp9eRmJePX8u179mVqboPSxOKezwvxb+WpijE2KBtMNTEwoEBVNuectl1RcblbEI0NDcgvutPOxcocA8W9f8I+6HkhxMtFNjaL54K1tTUKhQJTU1MqVaoEaLYZGhsbY21tTUxMDBs3biQ0NBRvb28A3n77bcLDwwkJCaF169bavt5//31cXV3LeZV7O3HiBP7+mtUupaWl5OfnY2Njw6effkqHDh0A8PX1JTg4mAYNGgDg4uJC06ZNuXLlik5fr7/+OjVq1CjzGsbGxlhYaE5C7ew0qwz69OnD+++/T1JSEg4ODhw+fJi0tDS6du1aoXFfv34dU1NTqlSpgr29PQMHDqR69eq4u7sDMH/+fP7zn//QpUsXAFxdXcnJyWHChAmMHDkSpVLJtGnT6N69O2PHjmXz5s1MnDiRatWq/aP3Tzyc0tJS7Wq720pKyyZuve3vK1bK6e0+z2naJSfG89eG3xnw3meYmJa9yirE41Du57zk3p9XPe79Ob/ftvDy/j5KS0v5bcNfbNp7mO5tmhHo51OBEQvxYKWlpZTedby++/Hf3e9zzf3SHdz6XGelxXH+0HKadR2FkVKO3+LJKC0tpeSuz+fdj//ufucp//T4LYQQFSEBL/FCCAsLAzTBpL9TqVRYWlrqlD1MsKZOnTraVU/6+vqYmppiY6O7baZHjx4cOnSIWbNmER0dTWRkJFFRUdoA2G1ubm4Vft2WLVtiY2PDn3/+yZAhQ1i3bh1t27bFysqqQu0HDBjAjh07aNWqFd7e3jRr1owuXbpgY2NDWloaiYmJfPvtt8yZM0fbpqSkhMLCQuLi4vDw8MDFxYUvvviCL774gnbt2tGrV68Kj1/8Ozs3r2Tn5lU6ZXX8G5OTnVmmbmFhQbkruG4zNjGlsLDsCrDCgnxMTE0pKSlh9dJ5+NZvQo1adVGr79y5q7S0FLVajUIh21/Eo7dq2x5Wb9ujU9bYrzaZOWXvWldQUIhJOSu4bjM1MSa/sOx267yCQkyNdVdGqoqLmf97KAdPnad7m2YM7N7h4SYgRDkuHlnBxaMrdMpcPZuSnZdRpq6qKB9DI9N79mWoNKO4qOzxW1WUj5HSjNKSEo5tn4urZ1McqvrddefFUkpK1OjL9kXxGKw5F8GacxE6ZYFVHckqKHsczi8ufwXXbaZGhuWuAMtXFWNqJD9ZhRAPR44e4qlKTU3l5s2beHl5AXeu7vzTH9a32/3222+Ymele2bw7B4yxcdntYA9ibGz8wEDVl19+ybZt2+jZsydBQUF88MEHhISEkJSU9NCvr1Ao6NmzJxs2bGDgwIHs2LFDJzj1INWqVWP79u0cO3aMgwcPsmfPHhYuXMjUqVNp0UKzdWfMmDE0bdq0TFsnJyft/79w4QIGBgacP3+ezMzMCgfcxL/TqHl7atUJ0CkLO3uMq5fOUlpaqnPFMzX5BvaOVe7uQsvW3pmE2Kgy5TdTEqlSrQaZ6anERl8lNvoqp47u1amza8tqdm1Zzedfz6eyjSSAFY9WuyYNqO9TU6fs+IVwzl6OKPM5v5GaRhWHe+fZcrazITLuRpnyxNQ0alS9kwMpN7+AaQt/40p0LG/17ETnVo0fwUyEuMPDtwPO7rrH7/jIYyTGnC7zuc7JuIGl9b2P3xaVnUlPjixTnpNxAxtHT/JyUrmZeIWbiVeIvrRHp87Foyu5eHQlXQcvwMxSjt/i0Wrr6Yq/i+4x+URsMmdvpJT5nCdm5eJiZX53F1pOlmZEp5W9oJeUnYuHbaVHNmYhxMtFAl7iqQoJCWHfvn1s2rQJgMxMzRedtbU1169fr3A/np6eAKSkpODjc2dLyuzZs9HX12fkyJGPcNRlpaens2LFCmbPnk3nzp215ZGRkZia3vuq7d3KW7Ldp08fFi5cyNKlS7GwsKB58+YV7m/JkiXY2NjQpUsXmjVrxueff87bb7/N5s2b6dmzJ9bW1sTGxuoE8zZv3sxff/3F9OnTAdi/fz+///47P/74I1OnTmXChAl8++23FR6DeHiWVtZYWuneqbSoqJDd29ZyJeyMNql8TnYm0dcu0brDvVffeXr7cfbEAZJvxGnv1Jh8I47kxDjaBPfBwsqaDz6fVqbd9zNG07BZOxo1a4eF1bNx11TxYrG2ssDaSjenUFGRinV/7eNMeAT+3prje2ZOLuGRMfS8T56tul4eHDh1nrjEFG0C+rjEFOKTUujTviWguZnHjJ+Xcy02no/e7Etjv9qPaWbiZWZibo2Jue4xs7i4iLBjq0mMOa1NKl+Ql0lKfBjeDe99MxrHqvW4fnk/WTdjtXdqzLoZS1ZaHD6N+mJiZk37/jPKtPvrj8+pXqc9HnXaY2Imx2/x6FU2Naayqe6F3EJ1CaEXNHdKrHcrGJZVUEh4cjo96lS/Z191nWw5FJ1AXEaO9k6NcRk5xGfm0su3bCoQIYSoCAl4iaeqadOmLFq0iHXr1tGgQQN++eUXLC0t8ff358yZMzp1zczMiI6OJjU1FVtbW8zMzIiPjycxMRFPT0/atGnD+PHj+fLLL/H09GTr1q0sWLCAqVOnPvZ5mJubY2Fhwc6dO6lduzYFBQUsW7aMixcv4ufnV+F+bgfHLly4QI0aNTA2Nsbd3Z369eszf/58Bg0a9I9Wv6WlpfH9999jbGxMrVq1iIyM5NKlS7zxxhvo6enx3nvvMXv2bJydnWnZsiWXL1/mq6++om3bthgZGZGRkcEXX3xBv379aN26Nebm5gwcOJCgoKAK5xETj1Z1z9pU96zNil//R6eegzA1s2DH5pUYm5gS2LKjtl7yjTiKi1U4u2rytdWt34zdW9fyy/eTCO45EICtoctwdHHDt35TFAoFVdzKP6G0tKp8z+eEeBx8alSjdg13vlu2hoHd2mNuasqqbbsxNTamQ7OG2npxiSmoiotxr6JZkdrUvw7rduxnyk9LGdC1PaBJSF/V2YEm9TSBrW0HjnMpMoZ2TRpgY2XF1eg4ndf2rHbvlTZC/Bv2VWpjX6UOR7bOxq/5GxgZW3DxyB8YKc2oUTdYWy/rZixqtYrK9prggGvN5oQdX83e0In4NR8EwNkDS6lk64ZrzWbo6yuwdvQs9zVNzKzv+ZwQj4OPgzU+DtbMO3CW1+t7Ya40ZM25CMyMDGhf884F1riMHIpLSqhmrUk90qSaI6EXrjFt13Fe99fs/Fh++jJVK1vQ2E3uuCiEeDgS8BJPVYsWLRg9ejRz584lNTWVmjVr8sMPP+jcvfC2QYMGMX36dK5evcr69evp378/o0aNonv37hw+fJjZs2cze/ZsvvzySzIzM6latSqTJ09+IjmnDA0NmTNnDtOmTaNbt25YWVkRGBjIxx9/zIIFC8jPv/fdl/6ucePG+Pn50b9/f2bOnKm9A2Tv3r05derUP57L8OHDUalUTJo0iZSUFOzs7HjttdcYOnQoAIMHD0apVLJ06VKmTZuGra0t/fr1Y8SIEQCMHz8ehULB559/DkCDBg14/fXX+frrr2nYsCEODg7/aDzi0Rgw5DM2rfmVzeuWQmkpVat78fo7n2BqeufvJvSPn8hIS+HziZq7hBoYGvLOiC/ZuOoX1i7/EYVCgae3H136vCW5ucQz6ZO3X2Vx6FaWrt8OpVDT3ZWP3+yHuemdXHU/r95ISnoG34/T3HXX0MCAcf95g1/WbWHByvUoFAr8vDx4o0ew9nN+9Jwm5+OOwyfYcfhEmdddOXvCE5ideFk16zqKM/sWcXb/YkpLS7F1rkWTLp9hZHzn+H1y1wJys1PoOngBAAoDQ1r3nsDpvSEc3zEffYUBjlX9qNdysOTmEs+kj1rVZ+nJS/x2KpzSUqhpV4mRLethrjTU1ll07CIpOfnM7d0aAEOFgrHtGrL4+CV+OnIBA3196jrbMCjAG4W+3HVRCPFw9Ervd0sMIcQzYe7cuRw6dIjff//9aQ/lkdh7Me/BlYR4ztXP3/e0hyDEYzf9QtDTHoIQj90n8Y83NYYQz4LKY3942kN4KOmT//O0h3BPz+t7+iKRFV5CPMNOnjxJVFQUS5Ys4euvv37awxFCCCGEEEIIIZ4LEvASL62FCxcyf/78+9b54osv6Nu37xMaUVm7d+9m2bJl9OnTR7u9ESApKYng4OD7tARfX1+WLFnyuIcohBBCCCGEEEI8cyTgJV5a/fr1o0OHDvetY2Nj84RGU75PP/2UTz/9tEy5ra0toaGh922rVCof06iEEEIIIYQQQohnmwS8xEvLysoKKyurpz2Mh6JQKHBzc3twRSGEEEIIIYQQ4iUkt7wQQgghhBBCCCGEEC8UCXgJIYQQQgghhBBCiBeKBLyEEEIIIYQQQgghxAtFcngJIZ64uqGfPO0hCPHYner5zdMeghCP3ag6u572EIR47KYz52kPQYjHbtLTHoAQj4Gs8BJCCCGEEEIIIYQQLxQJeAkhhBBCCCGEEEKIF4oEvIQQQgghhBBCCCHEC0UCXkIIIYQQQgghhBDihSIBLyGEEEIIIYQQQgjxQpG7NIqnysvLi6lTpxIfH8+6devYtUtzt6erV68SHx9P69atAUhISOD06dN06dLlsY5n9OjRrFu3TqfM2NiYqlWrMmjQIPr16/ev+r893969e6NSqfjtt9946623/lWf4sVXoCpm+anLHLueSEGxmlr2lXmjoTfOlub3bZeZX8iSk5c4l5CKuqSUei52DAqoRWVTY20ddUkJa85FsPdaPNmFRVS3sWJA/Vp42lXS1knMzuWj0H1l+q9SyZyZ3Vo8snmKl9fVS2fYvuF3khJiMbewokmrTjRv2w09Pb17tjl74gC7tqwm/WYylaztaNWhJwGN2+jUiYuJYPPaJcTHRmJsbEL9wNa07fIqBgaa058Z4/5DelpKuf1Xtrbj84k/PLpJCgEUFBaxbMN2jp67RGFREbWqu/FWz2Cc7W3v2y4jO4cloVs5c/kaJeoS/H08GdS9I9ZWFto6arWaVdv2svf4GbJz86ju6sSgbh3xrFZFp6+TFy+zevteYm8kY25qQmBdb17r0g5jpdFjmbN4uSTGnOH8od/IvHkdY9NK1PDrjFf97vc9nl+/vJ+LR1eSm5WMmaUdtRr0xt0nSKdOWuJVzu5fTFryNQyNTKnm04Y6jfujr9AczzcuGkpuVnK5/ZtZ2tN18IJHN0khxHNDAl7imTB48GAGDBigfTx06FB69eqlDXiNGjUKFxeXxx7wAvD392fu3LnaxwUFBaxZs4Zx48ZhaWlJcHDwQ/d94MABLCw0J6cbN25k6tSpEvASDzT3wFkiUjN4vb4XxoYGrD0XwaTtx5jRrQXmSsNy26hLSpi66zgFKjXvNKqNurSU5acuM3XncaZ0boaBQrPAd+nJcHZHxPGaf03szE3YHBbN5B3HmNa1GY4WZgBEp2UB8H/tG2GkUGhfQ2kgi4TFv3c96gqLf5hG3YCmtOvSn5hrl9gSuhR1iZrWHXqV2+bC6SOs+HUOTVt3oaaPH2HnjrN66fcYGBji16A5ADdTEwmZO5Gq7jV5bfDHpCTGsX3D7+Tl5dDrtaEADBzyOcXFqjLj2bTmVxq16PB4Jy5eSnOWruZqTBwDu7XHRKlk1fY9TJj/K998/gHmpibltlGr1UxZsIyCwkLee6ULanUJv23cweQFS5n+8VAMDDTH5SV/bmPX0VO83qUddjaV2bTnMBN/XMyMT/+Do601ACcuXmZmyO+0bODHgK7tiU1M5o/NO8nKzWPkoFee2PsgXkw3b1xm//rJVK3ZjDpNXiM14RLnDiymtESNd8Pe5baJu3qYI1tn41mvK45u/sRHHuXY9rkoFIZU9dJcVMvJTGTvugnYOHnRpPOnZKXFceHQbxQVZNOg7X8AaNZ1FCVq3eN56o3LnNn3Cx6+HR/vxIUQzywJeIlngpmZGWZmZk97GAAYGhpiZ2enU/bhhx+yZcsWNmzY8K8CXn/vt7S09KH7ES+PKynpnIpLZlRQA+q5aD4/3vaVGbFuL39diaGXb41y2x2NSSQmLZuZ3VpQpZJmJZhbZUs+37ifIzE3aF7dhZu5+ey4cp03G3jT3ssNgLpOtnz05z7WX4hkSBNfAGLSsrE2Naa2o80TmLF42ezYtAJn12r0e3MEAF61/VGXqNmzbS3N2nTB0LDsqpNt65dTx78xXV95C4CaPv7k5Wbz18Y/tAGvfX/9idLYmEFDR2FgYECtOvUxNDJi/coQ2nTsTSVrO5xd3XX6LcjP449Fs6lVJ+CewTYhHtaV6FhOXrzMmCED8ff2BKCWhxv/nfQ/th88Tu/2Lcttd+RsGNHxN/h21HCqOGq+B6q5OPHJjO85fPYiLQLqcjMjk+2HTvBWr2A6NmsEgJ+XByOnfEfozv0Me7UHAEtCt9LYz4cPXtd8vut4ulNaUsqW/UcpLCpCaSSrvMTDu3DkDyrbuRPY8UMAnKrVp6REzaXjq6np3xWFQdnP17lDy6hSoyn+rQbfauNPUX4O5w8v1wa8wk+sw8DIhObdxqCvMMDZPQADAyNO7VmId8NXMLO0o7J9dZ1+VYV5HN7yLc7uDe4ZbBNCvPjk8rx4JsydO5egIM3S5aCgIOLj45k3bx6DBg1i0KBBHDt2jHXr1mnrFBUVMXPmTFq0aIG/vz/9+vXjwIED2v7Wrl1L+/btmTRpEgEBAbz//vv/eowKhQKjWyeCRUVFTJ8+naCgIOrUqUOjRo0YOXIkaWlpAMTFxeHl5cWCBQto1qwZbdu2JScnBy8vL9auXcvatWsZM2YMoNnmuGXLFurUqUNoaKjOa37zzTf06dOnQuO715x37NhB3759qVevHr6+vvTu3Zv9+/dr25WWlrJ48WI6duxI3bp16dKlCxs3btQ+n5SUxEcffUSDBg0IDAxk2LBhREdHP+zbKP6hcwmpKA0U1HW6s93F0liJt4M1Z+LL34oFcPZGKk6WZtpgF2i2IDpbmnE6QdPuQuJN1CWlNKzqqK1jqFBQ38Vep++Y9CzcKt/ZNiPEo1KsUhF55SI+foE65b7+TSgsyCf62qUybdJvJpOanEDtu9rU8W/CzZREUpNvAHA17Axetetrty/erlNaWsqVS2fKHc/uravJycmie793/uXMhCjrTHgExkoj/Lw8tGVW5mZ4e1Tj9KWr923nbG+rDXYBVHG0w9neltNhVwA4fyUStVpNI19vbR1DAwPq+9TU9h0Vd4PE1DQ6tdD92+ncqjFz/2+kBLvEv6IuVpEcdwEXj8Y65a41mqAqyicloezxPDcrmez0BKrU0P1Muno2IScjkez0BECzTdKpWn3t9kWAKp5NKS0tJTHmdLnjCTu2isL8TOq3ee/fTk0I8RyTFV7imbN69Wp69epF586dGTpUs+1k2LBhODo68uWXXwIwZswYrl27xqxZs3BwcGD37t0MGzaMefPmabdBXr9+neTkZEJDQykoKHjo8eTk5LB8+XKuXbvGhx9+CMCMGTPYvXs306ZNw8XFhcuXLzNmzBh++OEHxo4dq227bt06Fi9eTH5+PubmdwIPnTt3Jjs7mylTpnDgwAGsrKxo3bo1oaGh9OzZE4CSkhLWr1/PkCFDKjzWu+d84cIF/vvf/zJq1Cht0O2bb77h888/Z+/evRgZGfHzzz/z/fffM3bsWAIDA9m7dy+ff/45tra21K1bl0GDBlG7dm2WLVuGvr4+v/zyC/369WPDhg04ODg89PsqKiY+MwcHC1P09XVzXzhYmHIwKuG+7Zwsy66adLQw40ZWrraOsaGCSiZK3TqWpqTnF1KgKsbY0ICY9CwcLMz4cuthotOyMDU0oJVHFfr6eWq3RgrxMNJSk1Cri7G1c9Ipt7bTBGFTEhPwrOWn81xyYjwAtvbOOuW3+0hNSsCqsg3paSll6phbWGFsbEpqUtm/nYy0FA7u3kzrjr2obGP/7yYmRDnik1Kwt6mMvr7ucdPRpjL7T52/T7tUnOzKrrB1srMhIeWmto6JsZLKlhZl6qRnZlNQWER0fCIABgYGTFv4GxeuRmFoaECrBn4M6NYeQwP5WSAeXm5mIiXqYiwq6R7PzW89zk6Lw7Gq7vE8Ky0OAIvKzuW3SU/A1MKW3KzkMnWMTa0wNDLVBsV0xpKVwpUzG/Fu0AczSzmeC/Eyk2828cyxtrZGoVBgampKpUqVAM02Q2NjY6ytrYmJiWHjxo2Ehobi7a25kvn2228THh5OSEiINuAF8P777+Pq6vqPXv/EiRP4+/sDmtVP+fn52NjY8Omnn9Khgyani6+vL8HBwTRo0AAAFxcXmjZtypUrV3T6ev3116lRo+yWM2NjY20ur9vbHPv06cP7779PUlISDg4OHD58mLS0NLp27fqPxv/3OV+6dIlx48bx+uuva59/4403eO+997h58yaOjo4sXryYN954g759+wIwaNAgCgoKKC4uZtOmTWRlZTFz5kztKonJkydz9OhRVq5cyX//+99/NDbxz+WpijE2UJQpNzEwoEBVfO92RcXaHFx/Z2xoQH5msbaOqWHZrwHjW/+t81XFFKlLSMsrRF1Syuv1a2FrbsLFG6msvxhJal4+/21e7yFnJgQUFOQBoDTRzV2kVGoeF956XqdNviZga3x3G2NjbZ8FebfqGJfNiWRkbExBQX6Z8gO7NmFgaEjTNo8/V6R4OeUVFGKiVJYpNzZWUlBYeJ92BTjZWZcpN1EakV+gaZebX1B+37cS0ecVFJKVq/m7+OaXFTSv70vX1k25FhvPqq17yMzJlRxe4l9RFWmO1wZKU51yAyOTW8+XPe6qCnNv1blXmzyKbtUxvKuOpsxE+7p/d+X0BhQKQ2r6/7NzaCHEi0cCXuK5ExYWBqATxAFQqVRYWlrqlFWrVu0f91+nTh1mzZoFgL6+PqamptjY6F5Z7dGjB4cOHWLWrFlER0cTGRlJVFSUNgB2m5ubW4Vft2XLltjY2PDnn38yZMgQ1q1bR9u2bbGysvpH4//7nL29vbGysuKnn34iMjKSmJgYwsPDAU0S3PT0dFJSUvDz073i9t57muXfEyZMIDMzk4YNG+o8X1hYyLVr1/7RuMSDlZaWUnJXbre7H//d/e54dL8ccbfbPSiLnJ6eHsYGCr5o1xBHCzPszDUnoD4O1hgo9Fl55iq96tTQ2TYpxD9RWlJy3+f19MuuIHxQ/kM9PT1KH/DpvvtvR6Uq4uThXTRo0hZTU/k8i3+vtLSUkrs+3yUl9zku82+P5w/6zENxsRqARr61GNCtPXArh1dpKcs37qBvx9YPvFukEPdSWvqA47newx3PqUidv1EXFxF1cSfutdthZCzHcyFedhLwEk9MamoqN2/exMvLC7jzJadQlF29cj+32/32229lEt3fvU3A+NYV/3/C2Nj4gYGqL7/8km3bttGzZ0+CgoL44IMPCAkJISkp6aFfX6FQ0LNnTzZs2MDAgQPZsWMHc+bMeajx33bs2DHeeecdWrduTUBAAN26dSM/P58PPvgA0Kycu5+SkhLc3d354Ycfyjxnalr2Spv4d9aci2DNuQidssCqjmQVFJWpm19cjEk5q7NuMzUyLHcFWL6qGFMjTTsTQwPyVepy6wCYGhpgZKDA16nsDyB/F3tWnrnK9fQsCXiJh2ZsqjmGF9217fz2yq7yVmgZG5veqqPbpiBfs3rA2MQM5e06hWW3sxcW5GNsonv8unrpLAUFedRr2PxhpiFEGau27WH1tj06ZY39apOZk1OmbkFBISbGZVdn3WZqYkx+YdnvgbyCQkxvfeebGispKKfO7RVgZibG2hVg9WvX1Knj51WD5Rt3EB2fKAEv8dAMlZrjefFdK7lUhZrjuaFR2eP57VVbd7cpvrVqy1BphuGtFWPlrhArytO+7m2JMWdQFeXhdivhvRDi5SYBL/HEhISEsG/fPjZt2gRAZmYmoNnCeP369Qr34+mpubNRSkoKPj4+2vLZs2ejr6/PyJEjH+Goy0pPT2fFihXMnj2bzp07a8sjIyP/URCovNU5ffr0YeHChSxduhQLCwuaN/93P74WLVpEYGAgc+fO1ZYtXboU0AQOLSwssLe35/z587Rt21ZbZ8SIETg5OVGzZk3+/PNPLCwssLbWbKdQqVR88sknBAcH68xf/HttPV3xd9G9Q+iJ2GTO3kihtLRU5zOTmJWLi9W9A01OlmZEp2WWKU/KzsXDthIAzpZm5KuKySooxPJvP7aSsvOwNTPByEDBjaxcLibepEk1J8yM7gRIi9SaQJmlsSQ5Fg/P2tYBfX19bqYk6pTffmzvWKVMGztHTR6X1JQbOndZvJl6u40LSqUxlpWsuXkrgf1tOdmZFBbkl+k3/MJJKtvYU8Wt/LueCvFPtWvSgPo+uoGl4xfCOXs5oszx/EZqGlUc7O7uQsvZzobIuBtlyhNT06hR1UVTx96WvIICMnNysTI306ljZ10JI0NDHG9ti1QV617oUN9aiWZ4n4soQjyIuZUjenr65GToHs9zMjWfXUvrsilGLKw1n9+cjBs6d1m83YeldRUMDI0xNbchJ0P3b6AgLxNVUT6W1rrH84SoE5hZOmDt6PnvJyWEeO5JtmHxxDRt2pSIiAjWrVtHbGws3333HZaWltp8WX9nZmZGdHQ0qamp2sfx8fEkJibi6elJmzZtGD9+PLt27SI2NpaFCxeyYMECqlat+tjnYW5ujoWFBTt37iQmJobLly8zbtw4Ll68SFFR2aur93I7OHbhwgVtUn13d3fq16/P/Pnz6dGjxz9e/XY3JycnLl++zIkTJ4iLi2PNmjXaVWO3xzpkyBAWL17Mn3/+yfXr11myZAk7d+6kbdu2dO/eHSsrK0aMGMHZs2e5du0ao0ePZt++fdqVeuLRqWxqjIdtJZ1/vs62FKjUnE1I1dbLKigkPDkdX6eySYxvq+tkS0JWLnEZd1YTxGXkEJ+Zq73j4+2VW0dj7pycqtRqTsYlU9dZ81x6fiEhRy9yJEb3BPZw9A1MDA1wt/lnW26F+DtDQyPca/hw4cwRna0tF84cwdjEjCrVyv5gsbFzorKNPRdOH9Ypv3D6MLb2TtqE8561/Ai/cJJilUqnjr6+Ph416+i0jY2+SjWPWo9yauIlZ21lQY2qLjr//Gp6kF9QyJnwOyt5M3NyCY+Moe7f7tx4t7peHiQkpxKXeOfuuXGJKcQnpWjv+Fi3puZ/j5y9qK2jKi7m5MUr2r59PKphrDTi4F0J8k9cuIxCoaBmtX+W81SIv1MYGGFXpTZxEYd1judxEUcwUpqVG4CyqOSEmaUDsVd1j+exVw/fek5zPHeo6kdC1EnUxXeO53FXD6Gnp499FV+dtmmJV7BzkeO5EEJDLuWIJ6ZFixaMHj2auXPnkpqaSs2aNfnhhx907l5426BBg5g+fTpXr15l/fr19O/fn1GjRtG9e3cOHz7M7NmzmT17Nl9++SWZmZlUrVqVyZMn06tXr8c+D0NDQ+bMmcO0adPo1q0bVlZWBAYG8vHHH7NgwQLy88suuS5P48aN8fPzo3///sycOZNOnToB0Lt3b06dOvVI5jJixAhSU1MZNmwYADVq1GDKlCl89tlnnD9/Hg8PDwYOHEhBQQFz5swhJSWFatWqMXv2bBo1agTAsmXLmDFjBu+88w5qtZratWuzaNEiPDzufXIuHh0fB2t8HKyZd+Asr9f3wlxpyJpzEZgZGdC+5p2tt3EZORSXlFDNWpPHrkk1R0IvXGParuO87q8JTi4/fZmqlS1o7Ka5A56duQktPVxYejKcInUJTpZmbL4URZ5KRbfampUz3vaV/7+9+46K6mgfOP6VuoCA0gVFLIgoRdTYsBCNBrti5LWRGPNqjEmMyWv3F1tssUQNllgjihqTKFiCsRIVe0cRKyhFQBBBkb7w+wNds1KsiOX5nLMnZ+fOzM7d4OXy3JlncLIyxf9kODlKJTbG5Tkdm8iOSzfo16C22qwvIZ7H+549WOE7mXUr5tCwaRtuRFzkwO4tfNi1Lzo6umRmpHMrPgYTM0vKGxYEWNt06Mmfaxay2WAZtZ0bEn7uOOdOHab3gG9V/bZs243QkwdZtWgqzVt3JvHWTXZuWUcj97ZUMHk0myYvL49b8TG4NnB/5ecu3i11atpRt2Y1fvbfSL/ObSmvr88fO4LRVyho5/4oV2ZMfCI5ublUq1ywU10zNycCdh9g2tI19O1UkHtr7bZd2Fpb0rReXQDMTSrQ6r16rA7cQU5OLpXMTflr32HSMzPp2rpgtrhCVwdvz/dZvXkHBnoKGrvU4dL1KLYEh9ChZWO1mWFCPI86jXqyb9MEDgfNplrdNiTdvMilk4G4uPugpa1LTlY6d5OjMTC2QqFfcD2v28SbYzt9ObnXEOvq7xEbcYzoKwdp2uF/qn5rN+xO1OUQ9m/+AQe3LtxLieXcwbXUcG6HgdGj63l+Xh53k2OwleWMQogHyuU/KVugEOKV8vX15dChQ6xfv76sh1Jq7kz9oqyH8EZJy8phzclwTkQnkJ8Ptcwr8PF7jlgbPQoWT955lMS0DHy9PFRlt+9n4Hc8nNC4JLQ0NHCxNsWngSMV9R/lectRKll/+jIHI2+SmaukuokRferXxt68gqpOenYOG0OvciwqgdTMLCzK69HBsRqt7WU2QElCu80p6yG8McLOHGV30O8kxsdiVMGEpi09afFBFwAiLp9n2fyJfOTzJQ2avK9qczRkJwd2byH1zm1MzCzx+LA7bo1aqfUbefUC2wPWEBdzHf3yhrg1askHHXupdp2FgmWOU0d/RrdeA2nc4sNXc8JvkfoZ+8t6CG+UtPQM/AL/5vj5i5APtapVoX83T7XcWRMX/ErinRQWfv8ogHs7JZVfA7YTeukampqauDrU4OOunpgYG6rq5OTmsm7bbg6cDCUrO5vqla3p17kd9nbqS76Cj55m6z+HiE+6TUUjQz5o2pBubZqXuBHKu+7H863LeghvjJirRwg78ht378SiZ2BKTdf21G7QFYBb0ecJ3vg9jdp9TbU6j77Ta+d2cPFkIBn3bmNgbInjez2wc/RQ6zcx9gJnD/iRkhiJrp4RVWu3wqlpbzQ0H13PM9NT2by0Pw1af05NF89Xcr5vkyn938w0Fa/z3xUVxxXOgyxeLQl4CfGaOHnyJJGRkfz4449MnjxZNePrbfQ6/2IS4mWRgJd4F0jAS7wLJOAl3gUS8Hr5JOBV9mRJo3gnLFu2jEWLFpVYZ+zYsfTs2fMVjaiw4OBg/P396dGjh1qwKyEhAU/Pkp9SOTs7s3r16tIeohBCCCGEEEII8UaQgJd4J3h7e9OuXbsS65iaFp8A/FUYPnw4w4cPL1RuZmZGYGBgiW11dYvfzlwIIYQQQgghhHjXSMBLvBOMjY0xNn4zd5PT1NSkatWqT64ohBBCCCGEEEIIADTKegBCCCGEEEIIIYQQQrxMEvASQgghhBBCCCGEEG8VCXgJIYQQQgghhBBCiLeKBLyEEEIIIYQQQgghxFtFktYLIV650G5zynoIQpQ6l8D/lfUQhCh1P9rML+shCFHqRjntLeshCPEKeJb1AIR46WSGlxBCCCGEEEIIIYR4q0jASwghhBBCCCGEEEK8VSTgJYQQQgghhBBCCCHeKhLwEkIIIYQQQgghhBBvFUlaL4QQb5isrEz+DljD+TNHyM7Owq6GI50++hRzS+sS2927m8JfG1dxJfwMeco8HOq60aHHJxgZmxRZ/9A/QYTs2crIHxaXxmkIoSYzJ5d1py5xLCqezFwltS0q8vF7jlgblS+xXWpGFqtPhhN6MwllXj71bMzxaVCbivoKVR1lXh4bQ6+y71os97KyqW5qTN/6tbE3r1Bkn8q8PMb/fQRdLU3Gt2v8Mk9TvONyczI5e8CPmKtHyM3JxNymDvVaDcCook2J7TLTUzizbyXxN86Ql6ekUrX61GvxKXrli75+Xz6zjcunttJpwBK18nspcQStGlKovrFpFTx9fn7+ExPigbOXrvJb0F6i425hbGiAZ/NGdPJoRrly5Yptc/DUOf7cuY/E5BTMTYzp2ro5Ho3c1OpcjYrFf8tOImJuoqfQpdV79fD+8H20tDRVdXz9N3LgZGih/r/r700T17ov7ySFEG8MCXi9oxwcHJg+fTqxsbEEBASwd2/B7jNXrlwhNjYWDw8PAG7evMnp06fp2LFjqY5n9OjRBAQEqJUpFApsbW3x8fHB29v7hfp/eL5eXl7k5OSwdu1a+vfv/0J9vmobNmxgyZIlpKam4uHhweTJkzEwMCjrYYkysOHXeURFXqZ9dx90dfXYs/0Pls+fwDf/Nxd9/aKDA0qlklULp5CVlUnXXoPIUyr5e7M/KxdM4atRM9HSUv91cPZECH9t8sO4mGCYEC+bb8hZrial0Ke+AwptLTaFXmXKzmPM7NyC8rraRbZR5uUxfe9xMnOUfNaoLsr8fNadusT0PceZ1sEdLc2CiexrTl4k+GoMvd1qYV5ej6AL15m6+xgzOrljZVj4Oro5LIKI26k4WsrPv3i5Dm//ieS4y7i0+BhtbT3Cjm7gnz/H4+kzHx1F0dfvvDwl+wMmk5OTQYPWn5OXpyT04Br2BUyiXZ85aGiqX7+jLh3g7P5V6JU3LdRXSmIkAB49JqOlpaMq19TWfYlnKd5VV67H8OPydTSr54S35/tcjIzCf+sulHl5dGvTosg2R89e4Gf/jXRo2QTX2jU5fu4ii9YHoq2lhXt9ZwASkpKZ8stqatlVYdjHPYlNSOS3oL2k3c9gkHdnVV+RsfG413emQ4smap9hZS7XciHeVRLwescNGDCAvn37qt5//vnndO/eXRXwGjVqFDY2NqUe8AJwc3PD19dX9T4zM5ONGzfy/fffY2RkhKfn82+VGxISgqGhIQDbtm1j+vTpb1TA69ixY0yaNIl58+ZhbW3NF198wcKFCxk5cmRZD028YjciLhF+7gT9h4zDoW7B00+7mo7MmvAlR/fv4H3PHkW2O3/6MDdjrvPt/83DolJlAKwrV2Pe1G85d+oQbo1aApB2L5Vd237jWMgu9A1KnlkjxMtyOfEOp2JuMap1Q+rZmAPgaFGRoQH72HX5Bt2daxbZ7uiNeG4k32NW5xZUrlDw81q1ohEjtx3gyI04mle34fb9DHZfjuKTho60dagKgEslM77dvJ8t5yMY1NRZrc8byXcJPHeNCnoSABAvV1LcRW5GHKdlt++pZFcfADObOvz162Cuhv5NnUYfFdku5soh7iRG0t7nZ4xMqwBQ0bwaf/t/Q/SVg1St3QqAzPRUzh9ex7VzO9FVGBbZV0piJPqGZlhWcS7yuBAvYsPfe7GzrsRXfb0AcHO0J0+ZR8DuA3Ro2QQd7cIPL9YH7aGJax0+6VZwn1+vdk3S0tPZsH2vKuC1ee9B9HR1GTmgN1pamtSvUwsdHW1WbgzCq20LzCpWIDsnh7jE23TyaIq9XeVXd9JCiNea5PB6xxkYGGBi8no89dDW1sbc3Fz1qlKlCsOGDcPOzo6tW7e+UN/m5uYoFAXLW/Lz81/GcF+pCxcuoK+vT5s2bXBycsLNzY2IiIiyHpYoA1fCz6Cjq8De0VVVVt7QmGo163Ap7FSx7S6Hn8HMwloV7AKwqFQZc0sbtXb/7NjElQtn6Pvf4dR2blg6JyHEY0JvJqGrpYlLJTNVmZFCF0dLE87EJhbb7mxcEpWMDFTBLoDKFcpjbWTA6ZsF7c7H30aZl897tlaqOtqamtS3sSjUd64yj0WHQmlf245KRjKDVrxc8dfPoKWtwMq2nqpMoW+MuU1d4q6fLL7djdMYVrRWBbsAjEyrYFjRhrjIR+3Cj/9J/I0zuHcciXX1oq/fKYnXqWBm98LnIsTjcnJzuXDtOo1caquVN3atQ0ZmFhcjogq1SUxO4eatJBo5O6qVN3GtQ3xSMnGJt4GCZZJujvZqyxebuNYlPz+fMxevARAVdwulUklVayuEEOIhCXi943x9fWndujUArVu3JjY2lgULFuDj44OPjw/Hjh0jICBAVSc7O5tZs2bRokUL3Nzc8Pb2JiQkRNXfpk2baNu2LVOmTKFBgwYMGVI4T8Sz0tTUREdHR/X5P/74I61bt8bJyYlGjRrxzTffkJycDEBMTAwODg4sWbIEd3d32rRpQ1paGg4ODmzatIlNmzYxZswYoGCZ4/bt23FyciIwMFDtM+fMmUOPHkXPlHmcUqlk1qxZtGrVCicnJzw9PVm/fr1anY0bN9K+fXtcXFxo3749fn5+5OXlAbBy5Urq1KlDaGhBzoG8vDz69OmDl5cX2dnZADRt2pT79++zePFiDhw4wP79++natavaZxT33e/evZuePXtSr149nJ2d8fLy4sCBA6p2+fn5+Pn58eGHH+Li4kLHjh3Ztm2b6nhCQgLffvstDRs2pHHjxgwePJjr168/1XcjXr5b8TGYmFmioaF++TY1tyIxIbbYdonxMUXm+DK1qETSrZuq942at+O7Cb44uTUpVFeI0hKbmoaloT4aGuo5XiwN9bl5936J7YoKTFkZGhD3oF1sahoKbc1CM7asjPS5k5FFZk6uqmxj6FWUeXl85Fr0jDIhXsTd5BjKG1tS7rHrd/kKVtxLLv76fTc5BsMicnwZVrDmXsqj63cN5w/p8MlCKts3LbavlMRIcrMz2LNhNH/6erN56aeEhqwhT5lbbBshnkZC0h1yc5VUMlNfSmtlVvBgPfZWUqE2MQkFDx0qWTzepuD9zVtJZOfkkJicgvVjdYzLG6CvUBCXWNDvjZvxAOw9copBE2bTZ8Rkxvuu4Mr1mJdwdkKIN5UsaRQqf/75J927d6dDhw58/vnnAAwePBgrKyvGjx8PwJgxY7h27RqzZ8/G0tKS4OBgBg8ezIIFC1TLIKOiorh16xaBgYFkZmY+93jS0tJYt24d165dY9iwYQDMnDmT4OBgZsyYgY2NDZcuXWLMmDEsXryYcePGqdoGBATg5+dHRkYG5cs/evLfoUMH7t27x7Rp0wgJCcHY2BgPDw8CAwPp1q0bUBBw2rJlC4MGDXqqca5bt46///6buXPnqr6TiRMnYm9vT8OGDdmwYQM//fQT48ePx8XFhQsXLvDDDz+QkJDAyJEj6d+/P8HBwYwbN45NmzaxcuVKwsPDCQgIUAX6HBwc6NevH76+vhgaGjJx4kTat29faCyPf/fnz5/n66+/ZtSoUarg35w5cxg5ciT79u1DR0eH5cuXs3DhQsaNG0fjxo3Zt28fI0eOxMzMDBcXF3x8fKhbty7+/v5oaGjw66+/4u3tzdatW7G0tHzO/7vieWVlZKCrqyhUrqurIKuEf28Z6emYmlcqpl2G6r2FVcmJk4UoDek5uSj+9eT+IT0tLbWAVKF22blF5uBSaGuRkZqrqqOvXfh2R/Egb11GTi4KbS2uJaXwV3gk49s1Rluz8FiEeFE52elo6egVKtfW0SMnJ6OIFgWys+5TvkLh67eWjoKc5HTVeyOTkpdxZWXcJT3tNnl5Slybf4y+kQW3okMJP7GJ9HuJNGn/3TOcjRDqMjKzANBTqD9c0NPVUTv+b+kZBfct+gr1+5qHfWRkZnH/QZ3H+wVQ6OqQ/qDf67EFAa+s7Gy+8elB2v0MAveGMGnRKqYOG0hVa7lnFeJdJAEvoWJiYoKmpib6+vpUqFABKFhmqFAoMDEx4caNG2zbto3AwEAcHQumHn/66adcvHiRFStWqAJeAEOGDKFKlSpFfErxTpw4gZtbQU6i/Px8MjIyMDU1Zfjw4bRr1w4AZ2dnPD09adiwYKq+jY0NzZo14/Lly2p99enTh5o1Cz+hVygUqlxe5uYFeWJ69OjBkCFDSEhIwNLSksOHD5OcnEynTp2eatxRUVHo6+tTuXJlLCws6NevH9WrV6datWoALFq0iC+++EKVB61KlSqkpaUxadIkvvnmG3R1dZkxYwZdunRh3LhxBAUF8cMPP2BnZ6f6jAULFrBhwwbs7e2Jjo7G3t4eKAgK/jugB+rffXh4ON9//z19+vRRHf/4448ZOHAgt2/fxsrKCj8/Pz7++GN69uwJgI+PD5mZmeTm5vLXX39x9+5dZs2apUpqPnXqVI4ePcrvv//O119//VTfkXg++fn5qpmAD+Xl5xVTmxJ3QIKSlvKW1E6Ilys/P5+8x5aWP/7+30r6uS5pifrDdk9axF6uXDmyc5UsfrCUsaZZhSe0EOLJ8vPzyX/sev34+38rV9J1uKRUDCVe99VpaSto5TURwwqVMDCyAMCicl00NLU5d2gtdRr1VFs2KcSzKOn+BCg0gxeenGakXLlyJf74w6N/O+1bNKZBXQfq1X50/+9UqzpDp85n0659fPvJi22AJYR4M0nASzy1CxcuAKgFTwBycnIwMjJSK/t3sOZpOTk5MXv2bAA0NDTQ19fH1FR9+nLXrl05dOgQs2fP5vr160RERBAZGakKgD1UtWrVp/7cli1bYmpqyubNmxk0aBABAQG0adMGY2Pjp2rft29fdu/eTatWrXB0dMTd3Z2OHTtiampKcnIy8fHx/PTTT8yfP1/VJi8vj6ysLGJiYqhRowY2NjaMHTuWsWPH8sEHH9C9e3dVXT8/P5YvX87SpUtxdXWlb9++fPXVVyxfvpyuXbsyYcIEVbAK1L97R0dHjI2NWbp0KREREdy4cYOLFy8CBUsx79y5Q2JiIq6uj/JBAQwcOBCASZMmkZqaynvvvad2PCsri2vXrj3dFyye256g39kT9IdamZNbE9LupRaqm5WVia6i8MyBhxR6+mRlFZ4BlpWZgZ6+/osPVointDH0KhtDr6qVNba14m5mdqG6Gbm56BUxO+shfR3tImeAZeTkoq9T0E5PW4uMHGWRdQD0tbX4/ewV8vKhu3MNlI8FmZV5eWiUK/eEgLIQ6sKObCDs6Aa1sir2zbiXnlKobk52Bto6xV+HtXUNyM0ufP3Oyc5AR/fpc81paulgZetaqLySXX3OHVpLStJ1CXiJ56avVzBLKyNL/VqeXszMr3+XPT77K/3BjHV9PQX6D+pkZhXxOyIrC4MHn2ttYYa1hZnacQM9BQ7VbLlxM+GZz0cI8XaQgNc7ICkpidu3b+Pg4AA8epqi+YxLNh62W7t2LQYG6jdYj+cTUigKL7l6EoVC8cRA1fjx49mxYwfdunWjdevWfPnll6xYsYKEBPVfZM/y+ZqamnTr1o2tW7fSr18/du/erRacehI7Ozt27tzJsWPHOHjwIP/88w/Lli1j+vTptGhRsAXzmDFjaNasWaG2lSo9WqJw/vx5tLS0OHfuHKmpqaqA28Pllk2aFORUWrRoER999BG9e/cGCgJ2xZ37sWPH+Oyzz/Dw8KBBgwZ07tyZjIwMvvzyS6BgBl9J8vLyqFatGosXLy50TF+CJKWuUfO21HZqoFZ24ewxroSfJT8/X+0P8KRbcVhYFb+cxczCmpvRkYXKbyfGU9lO8hWJV6eNfRXcHuzE+NCJ6FucjUss9HMdf/c+NsbF7xZayciA68mFA8AJ9+5T48FMLWsjAzJycrmbmYXRv/7gSriXjpmBHjpamhy9EU/S/Qw+/W1Xob76rd3B4GbOtKohu36Jp1fDuR3W1dSv37ERx4i/cbrQz3laSlyJyxENK1pz51bhjWrSUuIwtbJ/6jHdu3OTWzHnqFKruVqgTKksCCTo6j3dgz4himJpWhENDQ0SkpLVyuMfvK9saV6ojc2Dsvik21Sr/OieOOFfbRS6OpgYG6kS2D+UmnafjMwsbCwLglyHTp/HQF+Bq4P6PU12Tg5G5eWeVYh3lSStfwesWLGC7757lJchNbXgj4Nn3Z3x4TK6xMREqlatqno9TAZf2u7cucOGDRuYMGECY8aMwcvLC0dHRyIiIp5p58WintL36NGDy5cvs2bNGgwNDWnevPlT97d69Wp27tyJu7s7I0eOZOvWrTRt2pSgoCBMTU0xMTEhOjpa7TsLCwtj3rx5qj4OHDjA+vXrWbhwIXp6ekyaNEl1TE9Pj6SkR4k+raysGDt2LKmpqTg5OZWYR2vlypU0btwYX19f+vfvj7u7O3FxcUBBANPQ0BALCwvOnTun1m7o0KFMnz6dWrVqcfPmTQwNDVVjt7a2Zs6cORw/fvypvyPxfIyMTahctabaq6ajK1mZGVy+cEZVL+1eKtevhavt3Pg4e0dXEhNiuRX3KHnrrbgYbsXHYF+7+HZCvGwV9RXUMKug9nK2NiMzR8nZm4+udXczs7h46w7OlUyL7culkhk3794nJiVNVRaTkkZs6n3Vjo/OD/579Ea8qk6OUsnJmFu4WBccG/F+faa0b6r2sjMxws7EiCntm1K/ssVL/Q7E20+vvAkmVvZqL0vbeuRkZxB/47SqXmZ6KomxF7CsWq/Yvqxs63HvTix3b0eryu7ejuZucgyWtsW3e1zG/Tuc2PML0ZcPqpVHXz6Ito4+FS1rPHVfQjxOR1ubOjWqcjT0gtp9+bHQcPT1FNS0LZwj1MrMBAvTihw5e0Gt/MjZC1QyN8XcpAIALg41OHXhMjm5uf+qE4aGhgZO9gUpRHYfPsGyP7aRm/toRu/tlLtcvh5N3ZrVXuapCiHeIBLwegc0a9aMq1evEhAQQHR0ND///DNGRkaqfFn/ZmBgwPXr11UBFgMDA2JjY4mPj8fe3p7333+fCRMmsHfvXqKjo1m2bBlLlizB1ta21M+jfPnyGBoasmfPHm7cuMGlS5f4/vvvCQsLU+1m+DQezkw6f/68Kql+tWrVqF+/PosWLaJr167PNPstOTmZyZMns2fPHmJjYzlw4ADh4eG4ublRrlw5Bg4cyJo1a/D39ycqKopdu3YxceJEFAoFOjo6pKSkMHbsWLy9vfHw8GDq1KkEBQWpdkr08fFh9+7dLFu2TNV+9uzZODs7ExoaysSJE8nNLTqpc6VKlbh06RInTpwgJiaGjRs3qmavPfzOBg0ahJ+fH5s3byYqKorVq1ezZ88e2rRpQ5cuXTA2Nmbo0KGcPXuWa9euMXr0aPbv36+aMSherer2daluX5cNq+Zx/OBuws4cZYXvZBR6+jRu+aGq3q24GLUZXS713TE1r8SvC6dw9kQIZ0+E8OvCKVjZVMW5fuHZh0K8SnUsTahjacKCkLPsvRLNsah4pu4+joGOFm1rPZr5G5OSxvXku6r3Te2ssDI0YMbe4xyKvMmhyJvM2Hsc24qGNKlasDW9eXk9WtawYc3Ji/x1IZJTMbf4ce8J0nNy6Fy34I8g24pGhYJwetpa6GlrUcOsAoYPki4L8SIsKtfForITR/6eS8T5XcRcPcK+TRPQ0TWgpounqt7d29FqM7qq1GpO+QqV2Bf4A1GXDhB16QD7An+ggllVqtRyf+rPN7epg2UVF84eWMXlM9uIjzrL6X0ruXLmL+o2+c8zLY8UoihebVtxNSqWuX5/cDr8Cr8F7WVL8EG6f9ACXR0d0jMzuXI9htS0R7vvftSuFYfPhLH8z22cDr/Csj+2cfhMGP9p31pVp2trd+6mpTN9qT8nwy6x7Z9DrA7cwQdNG2BWsYLqsxOTU5i5cj2nw68QcjKUHxb7UV5fj04ecp8jxLtKljS+A1q0aMHo0aPx9fUlKSmJWrVqsXjx4kLJzqEguPLjjz9y5coVtmzZQq9evRg1ahRdunTh8OHDzJ07l7lz5zJ+/HhSU1OxtbVl6tSpajmnSou2tjbz589nxowZdO7cGWNjYxo3bsx3333HkiVLyMgofoejf2vSpAmurq706tWLWbNmqXY79PLy4tSpU898Ll999RU5OTlMmTKFxMREzM3N6d27t2qnywEDBqCrq8uaNWuYMWMGZmZmeHt7M3ToUAAmTJiApqYmI0eOBKBhw4b06dOHyZMn895779G+fXsyMjJYunQp8+fPx8LCAi8vLz7//HN27drF8uXLuX//fpFjGzp0KElJSQwePBiAmjVrMm3aNEaMGMG5c+eoUaMG/fr1IzMzk/nz55OYmIidnR1z586lUaNGAPj7+zNz5kw+++wzlEoldevWZeXKldSoIU+Cy0rfQSP4a+MqggLWQH4+ttUd6PPZ/9DXf/RvOvC3paQkJzLyh4LlqFra2nw2dDzb/viVTet+QVNTE3tHVzr26P/My5uFKA3ftqrPmpPhrD11kfx8qGVegW9a1qO87qOl1yuPhZGYloGvlwcA2pqajPvgPfyOh7P0yHm0NDRwsTbFp4Ejmv9aav/fxnUx0NFmS1gEmblKqpsYMbZNoyJ3eBSiNLl3GsWZ/Ss5e8CP/Px8zKxr07TjCHQUj67fJ/cu4f69RDoNWAKAppY2Hl6TOL1vBcd3L0JDUwsrW1fqtRyAhsbTX7/LlSuHe6dRhB3dwOVTW8m8fwcDY0satvmC6k5tX/q5inePk301vuv/H/7YEcyslesxMTaiX+e2dH6/IDAbGRPHpIWrGNK7Gx6NCh68ezRyIydXydbggwQfPY2FaUW+6utFMzcnVb82luaM+9wH/607+WnV7xga6NOhVRP+49la7bP/b/DH/LEjmPmr/4Ry4OZoT99OH6jyfAkh3j3l8p9lLZgQbzFfX18OHTrE+vXry3ooz+TxXCBvgn1h6U+uJMQbziXwf2U9BCFK3Rybp895KcSbapTT3rIeghClzrCh55MrvYbuTP2irIdQrIrjCudBFq+WzPAS77yTJ08SGRnJ6tWrmTx5clkP55m9acEuIYQQQgghhBCitEnAS5SqZcuWsWjRohLrjB07lp49e76iERUWHByMv78/PXr0UC1vBEhISMDTs+QnHc7Ozqxevbq0hyiEEEIIIYQQQohnIAEvUaq8vb1p165diXVMTYvfgetVGD58OMOHDy9UbmZmRmBgYIltdXV1SzwuhBBCCCGEEEI8jyVLlhASEsKaNWueqZ2DgwPTp0/Hy8urlEZWsFIqPz+fhg0bltpnvCgJeIlSZWxsjLGxcVkP47loampStWrVJ1cUQgghhBBCCCFeorVr1zJv3rzXNqDUp08fpk+f/tqODyTgJYQQQgghhBBCCPFaSEhIYMKECRw9ehQ7O7uyHs4bTePJVYQQQgghhBBCCCFEaQsLC0NbW5stW7bg6ur63P1ERETQq1cvnJycaN++Pdu3b1c7HhwcjJeXFy4uLrRt25Z58+aRnZ2tOr5v3z68vLxwdXWladOmjB49mtTUVKBgySTAmDFjGD169HOPsbRJwEsIIYQQQgghhBDiNdC6dWt8fX2pUqXKC/Xj5+dHt27d2Lp1Kx9++CHffvst58+fB2D//v0MGzYMb29vtm3bxoQJE9i+fTsjRowAIDk5ma+++ooePXoQFBTEggULOH78ODNnzgQgJCQEKNiAbty4cS80ztIkSxqFEEIIIYQQQgghXqI2bdqUeHzPnj2l+vl9+vShV69eAAwbNowjR46watUqZs+ezS+//IK3t7fquK2tLZMmTeKTTz4hJiaGe/fukZ2djbW1NTY2NtjY2PDLL7+gVCoBMDc3B8DQ0BBDQ8NSPY8XIQEvIcQr16quflkPQYjSV3dxWY9AiFI3pawHIMQr4VnWAxBCFKPiuNf4fmtvyQGv0tagQQO1966urhw5cgSACxcuEBoayp9//qk6np+fD8C1a9do1aoVnTp1YvDgwZibm+Pu7o6Hhwdt27Z9dSfwEkjASwghhBBCCCGEEOIlKu0ZXE+ioaGewUqpVKKjowNAXl4e//3vf+nevXuhdg9nb82ZM4cvv/yS/fv3c+jQIUaMGEGDBg3w8/Mr/cG/JJLDSwghhBBCCCGEEOItEhYWpvb+1KlT2NvbA2Bvb09kZCRVq1ZVveLj45k5cyb379/n7NmzTJs2jerVq9O/f3+WLl3KtGnTOHLkCLdv3y6L03kuMsNLCCGEEEIIIYQQ4g2gVCpJTk7G0NAQhUJRbL1Vq1Zha2uLq6srv/32G5cvX2bOnDkADBw4kGHDhrFgwQI6duxIfHw848aNo3Llypibm3P37l3WrVuHtrY23t7eZGVlERQUhJ2dHRUrVgRAX1+fa9eucefOHVXZ60ZmeAkhhBBCCCGEEEK8AeLi4mjevDlBQUEl1hsyZAhr1qyhS5cuHDt2jKVLl1KtWjUAPD09mTt3Lrt376Zz586MGDGC5s2bs2DBAgBq1KiBr68vR44coVu3bvTu3RtNTU2WLVumWio5YMAA/P39GTNmTOme8Asol/8wM5kQQgghhBBCCCGEeK0tX74ca2trOnToUNZDea3JDC8hhBBCCCGEEEKIN0BaWhpBQUE0bdq0rIfy2pMZXkIIIYQQQgghhBBviOzsbNWOi6J4EvASQgghhBBCCCGEEG8VWdIohBBCCCGEEEIIId4qEvASQgghhBBCCCGEEG8VCXgJIYQQQgghhBBCiLeKBLyEEEIIIYQQQgghxFtFAl5CCCGEEEIIIYQQ4q0iAS8hhBBCCCGEEEII8VaRgJcQQgghhBBCCCGEeKtIwEsIIYQQQgghhBBCvFUk4CWEEEIIIYQQQggh3ir/D0yLUGPMghOKAAAAAElFTkSuQmCC"
},
"metadata": {},
"output_type": "display_data"
@@ -926,7 +1070,7 @@
{
"data": {
"text/plain": "",
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAADjCAYAAACfHTy/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9sUlEQVR4nO3dd3xN9//A8de92UQSIWJXjISQjURCkdiztFbtTe1RoxTVqj2+Qq0qMVpb7b2pxF5VoxQJQUSm7OT+/sgvt66bLXHR9/PxyIN7Pme8z7nn3Pu+n/P5fI5CpVKpEEIIIYQQ4iOg1HUAQgghhBBC5BVJboUQQgghxEdDklshhBBCCPHRkORWCCGEEEJ8NCS5FUIIIYQQHw1JboUQQgghxEdDklshhBBCCPHRkORWCCGEEEJ8NCS5FUIIIYQQHw19XQfwX2RnZ5ej+UuVKsXRo0fzKZrssbOzy1Ecvr6+LFq0SGOagYEBVlZWuLm50adPHypXrpwfoWaLt7c3jx8/5vbt2+90uykpKWzbto0dO3Zw+/ZtXr16hbm5OUWLFsXR0ZGaNWvSqlWrdxrT28rqfK5ZsyZr1659R9GkT6VScfDgQfbt28e1a9cIDQ1FpVJRtGhRKleuTL169WjWrBmmpqY6jfNd6dq1K+fOnct0ntxeG7q6tkTmcvoZDvD8+XNWrVrFyZMnCQoKQqVSUaRIEUqVKoWbmxtNmjShSpUq+Rg1jBs3ju3bt7NmzRrc3d2ztUxAQADdunWjTZs2zJgxQz1927ZtjB8/nsGDBzNkyBD19LTvq+nTp9O2bds834fseP07s3bt2qxcuTLDeZs3b87ff/8NoNOYX5eb8ys/SXKrA23atNGadvHiRR49ekTlypW1PiwKFy6co/W/TyfZ6/sTFRXFjRs32LVrF/v372fp0qXUrl1bxxG+OwkJCXz11VecOnUKpVKJo6MjJUuWJCEhgVu3brF582Z27NjxwSW3adI7rwHKly//jiPR9OzZM4YMGcLVq1dRKBRUrlyZatWqoVQqefr0KSdPnuTIkSPMnTuXX3/9lQoVKug03nepdu3aWFlZ6ToM8R7666+/6NGjB+Hh4VhYWFC9enUsLCx48eIF169f5/z584SFhTF16lT1Mu9DkpiX0n4EHjlyhNKlS7+z7Z49e5YXL15QtGhRrbI///xTndjmlY/xB6kktzrw+i/JNOPGjePRo0c0aNBA4xflh+7N/UlISGDcuHHs2bOH7777jkOHDukwundr/fr1nDp1ihIlSrBy5UqtJOru3bts375dR9G9vfTOa12Ljo6ma9euPHz4kLp16/Ltt99SpkwZjXlevXrFli1bWLJkCWFhYTqKVDf69euX7dqw7Fq9ejWJiYl5uk7x7o0ZM4bw8HDatGnDpEmTKFCggLosISGBU6dOER4errsAM+Ho6MjevXspVKhQtubv3LkzzZo1o1ixYvkcWdbs7e25efMmu3fvpkePHlrlO3fuBKBq1ar8+eef7zi6jO3duxcDAwNdh6EmbW7FO2VoaMj48eMBePToEY8ePdJxRO/OgQMHABg0aFC6tYOVKlVizJgx7zqsj9qsWbN4+PAhtWvXZsmSJVqJLUDBggXp3r07u3btSrdc5EzZsmX/U7XfH6MHDx5w584d9PX1mTJlikZiC6mf4z4+Pnz++ec6ijBzJiYmVKhQIdvJqqWlJRUqVMh2Mpyf6tati5mZGbt27dIqS05OZs+ePdjY2FCtWjUdRJexChUqULZsWV2HoSbJ7QcgLCyMmTNn0qhRIxwcHKhZsya9e/fm9OnTGvNt27ZN3f7x8ePH2NnZqf+6du2qnu+vv/5i1qxZtG3bFg8PD6pVq4aPjw9Tpkzh2bNn+b4/VlZWWFhYABAaGqpR9vDhQ3x9fenQoQNeXl5Uq1aNTz/9lDFjxvDPP/+kuz47Ozu8vb1JTk5m+fLlNG7cmGrVqlG3bl1mz55NQkJCtmN7+vQpzZo1w87OjhUrVqinv3z5kjlz5tCsWTNcXFxwc3OjcePGjBkzhmvXrmVr3Wm1gjlpZhIQEICdnR3jxo1Lt3zcuHHY2dkREBCgMT3tmCQlJbF48WIaNmyIo6MjTZs2ZevWrer5zp49S9euXXF1daVGjRqMGTMm32svg4ODmTRpEvXr16datWrUqlWLwYMHp3scg4KC1OdvdHQ006dPx9vbm6pVqzJt2rRMt/Py5Uu2b9+OQqFg4sSJ6OnpZTq/lZUV1tbWGtO6du2KnZ0dQUFB7Nq1i/bt2+Pi4kL16tXV88TGxrJ48WJatGiBo6Mjbm5udO7cmT179qS7nbT3Jj1p17Cvr2+GcezYsYO2bdvi5ORErVq1GDt2bL5dt7m5Hr29vbXaYWfnfXx9uc2bN9OyZUscHR3x8vJi0qRJREZGpru9pKQkfv31Vzp06ICrqyuOjo60bt2a1atXk5SUpDV/Tq7lx48fM3nyZBo3boyTkxM1a9akefPmTJo0ifv372frGEZGRrJ27Vp69+6tPufd3d3p3bs3Z86cSXeZ19/vw4cP0759e5ydnalZsyYjR47k6dOn6S4XHh7O1KlTqV27Ng4ODjRr1gw/Pz9UKlW2Yn39GEHqDz9jY+NsLePt7a1uMzp+/HiN75+0z6f4+Hg2b97MwIED8fHxwdHRkerVq2d6vbzuxIkTdOrUCRcXF2rUqMHgwYO5d++e1nxZfW6+ydfXFzs7O7Zt2wb8e76mtUv38fHR2B+A/v37Y2dnp/U9nCY2Npbq1avj4uJCdHR0tuKA1B8OjRs35saNG1rn2NmzZwkJCaFly5aZriO710TacXr8+DGAxj6+/hmVnc/BzD7X7t27xzfffIO3t7f6M79jx46sXLlSI55Xr16xbNkyWrVqhZubGy4uLjRo0IChQ4dy6tSpbB9DkGYJ771nz57RuXNnAgMDKVmyJA0aNODly5ecPXuW06dPM378ePWti7Jly9KmTRu2b99OgQIFaNy4sXo9r7d7XL58OQcPHsTOzg43NzcgNeH97bffOHz4MFu3btX6ks9LKpWK2NhYAIoUKaJRtnnzZn7++WcqVaqEg4MDhoaG/P333+zYsYMjR46wfv36DDuijRo1ihMnTuDu7o6NjQ0XLlzg559/5tmzZ8yZMyfLuP755x969+7N06dP+eGHH2jXrh2Qemu7Xbt2BAUFUaJECTw9PdHT0yM4OJi9e/dSpkwZHB0ds1x/8eLFefDgAVu2bKFu3brv5BbO8OHD8ff3x93dnbJly3Lu3Dm++eYbIPWLa9SoUTg5OVG7dm2uXLnCjh07CAoKYv369SgUijyP5/bt23Tv3p2wsDBsbGxo1KgRT5484dChQxw7dow5c+bQtGlTreXi4uLo0qULT548oUaNGlStWhVzc/NMtxUQEEBCQgJVq1bFxsbmreJevnw5mzdvxtXVlfr16xMcHAyknhvdunXjzz//xNLSknr16hEbG4u/vz8XLlzg8uXLTJw48a22/bpffvmFX3/9lerVq+Pj48OVK1f4/fff8ff3Z+PGjRQvXjzPtgVvdz2mJzvv46xZs9Sdhz755BMuXbrExo0buXfvHuvWrdM4L+Pi4ujXrx8BAQFYWFjg7OyMoaEh165dY/r06QQEBLB48WKUytR6nJxcy8HBwbRt25bw8HDKlStH3bp1SU5O5smTJ2zatAlnZ+dstSe/cuUKP/zwA6VKlcLGxgZnZ2eCg4M5c+YMZ86c4YcffuCLL75Id9lff/2V1atX4+bmxqeffsq1a9fYs2cPf/75Jzt27NBIPCMiIvjyyy+5d+8eVlZW+Pj4EBERwaxZs3J8hyztPIqIiGD37t20aNEiy2UaN27MH3/8wa1bt3B1deWTTz5Rl6W1HQ0KCmLixIkUK1YMGxsbHB0defHiBZcvX+bChQvcv38/w2Z5+/fv57fffqNatWrUr1+f27dvc+jQIfz9/Vm3bl2edlAuUKAAbdq04dSpU7x48YLGjRtr1V536NCB48ePs2nTpnT7juzfv5+oqCjatWuX446qLVu2ZPPmzezatYthw4app6fV5rZq1Uqj8uV1ObkmihYtSps2bThw4AAxMTEa/SbSq4TJ6HMwM/v27WPMmDEkJCRQoUIFGjZsSFRUFH///TezZs2iXbt2mJmZkZycTM+ePbl69SqFCxemZs2aGBkZqftFFChQgDp16mT/IKrEe2Hs2LEqW1tb1cKFCzWm9+/fX2Vra6saOXKkKj4+Xj39/PnzKicnJ1WVKlVUN2/e1FjG1tZWVb9+/Qy3dfbsWVVISIjGtOTkZJWvr6/K1tZWNW7cOK1lslrnmxYuXJju/qRt39bWVtWoUSNVSkqKRtnly5dVjx490lpmy5YtKltbW1XXrl3Tjc3W1lbVtGlT1fPnz9XTHz16pKpevbrK1tZW9fDhQ41l6tevr7K1tVW/vnHjhsrDw0NVrVo11YEDB9Ld9oABA1TJyckaZaGhoarbt29nciT+tXv3bnWs9erVU02bNk21Z88erdhe5+/vr7K1tVWNHTs23fK088bf319jetp2WrRooQoNDVVPTzv2Xl5eqpo1a6qOHTumLouKilI1b95cZWtrqzp79my29un1bWUlJSVF1aJFC5Wtra1q1qxZGu/9/v37VZUrV1Y5Ozurnj17pp4eGBioXn+HDh1UERER2Y5r3rx5KltbW9WECROyvcybunTporK1tVU5ODioAgICtMqnTp2qPi+joqLU0//++29VrVq1VLa2tqqjR49qLJPZtbR169Z0r5u0OOzt7VXHjx9XT09ISFCNGjVKZWtrqxo4cGCO9+vN8+ZNubke37y2VKrsvY9py3l5eanu3bunnh4aGqpq2LChytbWVvXHH39oLDNlyhSVra2tavjw4arIyEj19KioKFXfvn1Vtra2ql9//VUr7uxcy//73/9Utra2qqlTp2rF+vjx40yv29c9evRIdfnyZa3pf/75p6p69eoqV1dXVXR0tEZZ2vvj5OSkunTpknp6TEyMqkOHDipbW1vV5s2bNZaZNGmSytbWVtW7d29VTEyMevrVq1dVzs7OOf4M79Wrl/o969Kli2rZsmWqM2fOaBznN6V97m/dujXd8pcvX6rOnDmj9bn/6NEjVf369VWVK1dWBQYGapSlfcbZ2tqqNm7cqJ6ekpKimj17tsrW1lbVunVrjWUy+tzM6PrKKO609+HNmFQqlSopKUlVt25dVdWqVVUvXrzQKu/YsaPK1tZWdfXq1XSPxZvSYli8eLEqJSVFVbduXZWPj4+6PDY2VuXi4qLq0KGDSqVSqb799tt0Y87pNaFSpX/NpnccMvocVKnS/1z7559/VA4ODip7e3vVzp07NcpSUlJUp06dUuc1ad9Nn3/+uSouLk5j3qioKNX169czjC890izhPRYYGMixY8coUKAA3377LYaGhuqy6tWr07FjR5KTk1m/fn2O1uvh4aHVC1OpVDJ48GCsra3zbZSFqKgojh07xvjx4zExMeH777/Xqh10dnZOt93j559/jqurK+fOnSMqKird9U+cOFGj53eZMmXUIw9cuHAhw7jOnTtHt27diIuLY/ny5TRq1EijPO0WnYeHh7oGKI2lpSW2traZ7PW/mjdvzvjx4ylQoABPnjzBz8+PESNG0LBhQ7y9vVm+fDnx8fHZWld2ffPNN1haWqpfe3h4YG9vT0hICJ9++in16tVTl5mamtK+fXsAzp8/n+NtvX5L6/W/oKAgILUm9c6dO5QsWZLhw4drvPeNGzemQYMGxMTEaDSbeN2ECRMwMzPLdjxpnV0yagby888/M27cOI2/zZs3pzvvF198Qc2aNTWmxcTEsGXLFpRKJZMnT9aonalQoQIDBw4EYM2aNdmOOStNmjShbt266tcGBgZMmDABExMTjh49mq2alNd169Yt3fcs7fbs21yPGcnqfRw2bJhGjailpSUdO3YENK/j0NBQNm/eTIkSJZg+fbpGe0lTU1OmTZuGgYEBv/32m3p6Tq7ltHlr1aqlFWPJkiWz3b6wTJkyODs7a023t7fnyy+/JDo6WqtZUZru3bvj4uKifm1iYkLPnj0BzWMRExPD77//jlKpZNKkSZiYmKjLHB0d6dy5c7Zifd2cOXOoX78+kPoZOXfuXHr27Im7uzvdunXjjz/+yPE6CxcujKenp9bnfpkyZRg4cCApKSkcO3Ys3WVdXFzUn08ACoWCYcOGUbx4cf76669MP+Pzg56eHu3atSMxMVGrI/C9e/e4dOkSdnZ22bqr9yaFQkHz5s0JDAzk8uXLABw+fJhXr15l2iQhN9dETqT3OZiZ1atXEx8fzxdffKEVt0KhoHbt2uq8Ju16c3V1xcjISGNeU1PTHLcxlmYJ77GLFy8CUKdOHXUb1de1bt2aVatW5eqiDgsL4+jRo9y9e5fIyEhSUlKA1LY64eHh6uFf3taiRYu0xrs1Nzdn48aNGY6P+urVK44dO8Zff/1FRESEuk1OSEgIKpWKR48eUbVqVY1lDAwM0u31Xa5cOfWy6Tly5AgjRozAxMSEFStWpPtBlHZRrVy5kqJFi1K3bt1cj4fao0cPPvvsMw4ePEhAQAA3btzgwYMHPH78mLlz53LkyBH8/Pyy3c4tMwYGBul+EJUpU4abN2/i5eWVbhlkfLwyk9FQYGm389LO0yZNmqTbJKN169YcPHgw3fPZysoKBweHHMeUmdOnT3P27Fmt6WnNUV6XXluyP//8k7i4OKpVq5ZuB6rWrVvzww8/cOnSJVJSUrSSqdxo3ry51rTChQvj5eXF4cOHuXjxYrZuIafJaCiw1xO33FyPGcnO+5jeeZnedRwQEEBiYiJ16tRJ93qxsrKiXLly3Llzh7i4OIyNjXN0Laft0/z589HT08PT01PrSze7kpOTOXv2LJcvXyYkJETdD+DBgwdAatvm9KR3uzu9Y5F2Ljo6OqabdLdo0SLD29gZKVy4MEuXLuXWrVscPnyYS5cucePGDSIiIggICCAgIIBx48apk+2cuHDhAufOnePZs2ckJCSgUqnU+5PRsUjv3DcwMKBx48b4+flx8eJFjTag70K7du346aef2Lx5M3369FFPT/uR3KFDh1yvu1WrVvz888/s3LkTFxcXdu7ciYGBAc2aNctwmdxcEzmRUZvajKR9vqb9OM1MlSpVUCqVbNu2jYoVK9KwYcMcD4P6Oklu32PPnz8HUh/ikJ606TntTLJ7926+/fZbYmJiMpzn1atXeZLcpo1zq1KpCA0N5dy5c0RERDB69Gg2bNhAwYIFNeY/e/YsI0eOVP+Kyyi2NxUtWjTdDkNp68+oU9nQoUNJSkpi7dq1Gf7CrlWrFj169MDPz4+RI0eir6+Pvb09np6efPHFFznuYW9hYUH79u3VtRCPHz9m/fr1rF69mitXrrBq1Sp1rd/byOiYpCWb6bWrTivLSSe8NFkNBZZ2Pmc0XmTa+Zw23+tKliyZ43jSzt+MOsitXr1a/f89e/YwcuTIDNdVokQJrWlZXZ9mZmYUKlSIqKgoIiIi3uqDOk1GxyGzY5eZrIYCy+31mJHsvI/ptRtO7zpO6wSzadMmNm3alOk6IyIiMDY2ztG13LZtW86cOcO+ffsYMGAARkZGODg4UKdOHT7//PNsjw/89OlT+vfvz61btzKcJ6NjmN1jkfa+Z3V+5EblypXV7VmTk5O5dOkSc+fO5fLly8yZM4dGjRple/1RUVEMHjwYf3//DOfJ6Fjk9bmfF4oVK4a3tzcHDx7k3Llz1KxZk4SEBH7//XeMjY2z7PiVmbS7KGnn35kzZ6hTp06mnyO5uSZyIr3Pwcyk3UnKznekjY0NX3/9NfPmzePbb79l8uTJVKpUiVq1atGmTZsct6mW5PYDlpsOP48fP1b3IP3mm2+oV68e1tbW6pO8Y8eOXL58Oce9azPy5ji3z549o1u3bty5c4e5c+cyadIkddmrV68YPnw4ERERDBo0iObNm1OyZEmMjY1RKBSMGjWK3bt3pxtbbmvFmjdvzo4dO5g5cyYrVqzQSrbTjB8/ng4dOnDkyBHOnj3LpUuXuHbtGitXrmTu3LkanfdyqlSpUowZM4bk5GRWr17NiRMnsp3cptW4pyerY5IXNYl5KbPzOTc1Zmkfhjdv3sx1TG+zfcj5NZrZ+/muvc31mJHsHMfsnpdp261SpUqWX3yv3ynI7rWsp6fHggUL6NevH0eOHMHf35+rV69y4cIFli9fzs8//4yrq2uWcU6YMIFbt27RuHFj+vTpg42NDQULFkSpVLJx40YmTZqU4THMj06db0NPT48aNWqwatUqmjRpwtOnTzl9+nS2ayhnz56Nv78/NWvWZMiQIVSqVAkzMzP09PQ4ffo0vXv3zrPvnnelY8eOHDx4kE2bNlGzZk0OHz5MWFgYn332WY6aUaWnZcuWzJkzhwkTJpCUlJTlA35ye01kV24/B7OrV69eNG3alMOHD3PmzBkuXrzI6tWr8fPzY/z48XTv3j3b65Lk9j2WNkbfkydP0i1P+5WWk5ENTpw4QWJiIr169Ur3RAkMDMxFpNlnbW3N9OnT6dSpExs3bqRnz57qX3UXLlwgPDycxo0bM3To0HcS2/Tp00lOTmb37t3079+f5cuXa/WKTVO+fHnKly9P3759iY+PZ926dcyaNYspU6a8VXKbxsPDg9WrV2vUNKZ9AGVUy57TNpa6lHY+p523b0prm5tXA6m7u7tjaGjIzZs3efDggfp2bl7J6vqMiooiMjISY2NjjREBDAwMMqydymiIpzRPnjxJ90srLYa8HIReF9djTqR97rm5ufHtt9/maNmcXMv29vbY29szZMgQoqOj8fX1ZfXq1fz4449s2bIl0+3ExMTwxx9/ULRoUXXzhtfl1TFMq0XO6rsir5iYmODk5MTTp09zNHTg4cOH0dPTY8mSJVrNQbI6FhntW36c+znh6enJJ598wsGDB4mIiFA3SXi9fXButWzZkrlz53Lq1ClMTU3x8fHJdP63uSbyQ4kSJXjw4AGBgYHZfkxziRIl6Nq1K127diUpKYk9e/bwzTffMHv2bD777LMsR8lJ835V3QgNacN0nTp1Kt0xHnfs2AGg1c7IwMAg3fEdAfV60rvddf78eV68ePFWMWeHq6srPj4+JCUlsXz58mzF9vDhwzypgXuTnp4es2bNonnz5pw/f57+/furhynLjJGREb1798bKyoqXL19qjdebnqxqJNLamr3+IZ32pZXemKLh4eH5ckzyS9p5un//fpKTk7XK0568k1ft5iwtLWnTpg0qlYrvv/8+3W2+japVq2JsbMyff/6pbjv5urT9cXV11aiNtLKyIjw8PN2kIKtOOvv27dOaFh4ezpkzZ1AoFNmqScwuXVyPOeHh4YGenh7Hjh17qyei5eRaNjU1ZdSoUSgUCu7evZvluqOiokhJScHKykorsU1MTMyzJzS+fi6mlyTu3bs3R+vLTu1p2ufV65UraT/GM7rWIiMjMTU1Tbedc3rndlblSUlJHDx4EPj3+zIvZbU/kFq73r59e+Lj41m8eDFnz56lQoUKeRJP8eLFqVevHhYWFrRq1SrLmtPcXhNp+5lR3pBbaZ0xN27cmKvl9fX1ad26NQ4ODiQmJmbYHjs9kty+x8qUKUO9evV49eoV06ZN0zhZL1++zIYNG9DT09PqCVusWDFCQ0PTTYjTaq927typURv47NkzJk+enD87ko4hQ4agUCjYvn27us1wWmyHDh3SaOMXGRnJhAkT8u2Rnnp6esyePZumTZty7tw5BgwYQFxcnLr88OHDXLlyRWu5GzduEBoaSoECBbL1ZJuBAweyZs2adB9ZefXqVZYsWQKkdrhKU6ZMGUqWLMmdO3c4fPiwenpMTAyTJk3K0eDguubu7o6trS2PHz9m4cKFGl+ghw4d4tChQxQoUCBPn3r09ddfU7ZsWU6fPs3AgQPT/eJPSEjgxo0bOV53WqwpKSlMnTpV43r6559/1O/n6w9QAahRowaAujzNihUr1J1IM7Jv3z6NwcyTkpKYPn06MTEx1KtXL1dtkzOiq+sxu6ytrfn88895/Pgxo0aNSveH+cOHD9VPBoScXcu///47d+7c0Zr35MmTqFSqbI0pXKRIEQoVKsTdu3c13tvk5GTmzJmT7o+i3ChYsCCtW7cmOTmZ77//XuPz6/r166xbty5H67t9+za9evXi1KlTWk1lEhMTWbRoEbdu3cLExIRPP/1UXZb2wzyjB1yUK1eOiIgIrWR79erVGY4YkebixYtaNeW+vr48efIEOzu7fOlMlrY/GT2wJE3btm0xNDRUPzAjL2pt0yxdupSAgIBsfT/n5pqA7O9nTnXv3h0jIyM2b96s9Z6rVCrOnDmjbjvu7+/PH3/8oXW+BQYGcu/ePRQKRY7uUkuzhPfc1KlT+fLLL/n99985f/48zs7OvHz5knPnzpGcnMy4ceO0qvu9vb1Zu3Ytbdq0wcXFBSMjI2xsbOjTpw/e3t5UqlSJGzdu0KhRI1xdXYmPjycgIIDKlSvj4uKiHnokP1WpUoUGDRpw6NAhVq5cyTfffIODgwNeXl6cOXOGxo0bq3v6nzt3jsKFC+Pj48ORI0fyJR49PT3mzJlDSkoKBw4cYODAgSxduhQjIyMCAgJYs2YN1tbW2NvbU7BgQZ4/f87FixdJSUlh6NChGsO0ZSQ4OJhp06Yxc+ZMKleuTOnSpdW9zf/66y8A6tevr9V+bdCgQUyYMIGhQ4dSvXp1ChQowPXr19W3qfLrmOQ1hULBnDlz6NatG0uXLuXQoUNUqVKFJ0+ecOnSJfT19Zk2bVqe3l4sVKgQ69atY8iQIZw4cYKTJ09SuXJlypYti1Kp5Pnz59y5c4eoqCjMzc01vqizY+TIkVy5coUzZ87QoEEDatSooX6IQ3x8PF27dtXqYdy3b18OHDiAn58f586do2zZsty+fZunT5/y5Zdf8uuvv2a4vfbt29O3b19q1KiBlZUVV69eJSgoiGLFimm0X88Lurwes2vChAk8fvyYAwcOcOrUKSpXrkzJkiWJiYnh3r17PHz4EB8fH3VTg5xcywcPHmTs2LGULVsWW1tbjI2NCQoK4urVqyiVSoYPH55lfPr6+vTp04f58+fTtWtXPDw8MDc35+rVq4SGhtK5c+ccD+WYkZEjR3Lu3DlOnDihPhcjIyPx9/enQ4cOOdpOWuJx5swZLCwssLe3x9LSkoiICG7dukVISAj6+vpMnTpV40E8Xl5eGBkZ4efnx927dylWrBgKhYLevXtTvnx5+vXrx9dff82IESNYv349xYsX59atW9y/f58ePXpodPJ8U6dOnZg4cSIbN25UXzN3797F1NQ0y86sueXt7c327dsZNWoUXl5e6h8+bz4d0dLSkkaNGrF7924MDQ1p3bp1vsSTHTm9JiB1P8+dO0ePHj1wd3fHxMSEwoULM3r06LeKxcbGhunTpzN27FhGjBjB4sWLsbOzIyoqirt37xIcHMz58+cxNDTk1q1bTJ8+HUtLS6pWrYqFhQVhYWGcO3eOhIQEunbtKsntx8Ta2potW7awfPlyDh8+zMGDBzExMaFWrVr07Nkz3aFiRo4ciUql4siRI+zbt4+kpCRq1qxJnz59MDQ0ZP369cyfP5+TJ09y7NgxrK2t6dKlC4MGDaJfv37vbN8GDx7M4cOH2bRpEwMGDMDS0pKffvqJJUuWsH//fk6ePEmRIkVo1qwZw4cPZ+bMmfkaj76+PvPmzWP48OEcOnSIr776ip9++om2bduir6/P+fPnuXbtGlFRUVhZWfHpp5/SvXv3dMfBTM/ChQs5efIkZ86c4Z9//uHkyZMkJiZiYWFBvXr1aNmyJc2bN9fqRPLFF1+gVCpZtWoVly5dwtzcnPr16zNq1Kh8PyZ5zc7Oju3bt7NkyRJOnTrFgQMHMDU1pUGDBvTv3z9XY0Jmxdramo0bN3Lw4EH27NnDtWvX1DVLlpaWVK9enbp169KiRYscP1ve1NSUdevW8csvv7Bv3z6OHj2KgYEB1apV48svv0x3WK5KlSrh5+fH3LlzuX79OoGBgbi6uvK///0vy1v9vXr1olq1aqxZs4arV69iYmJC69atGTlyZJ4/nQzQ6fWYHcbGxqxYsYJdu3axfft2bt26xfXr1ylcuDClSpWiVatWGkNI5eRa7tmzJ8WLF+fSpUtcuHCB2NhYihUrRrNmzejZs2e2h6YbMGAAxYsXx8/Pj0uXLmFkZISbmxtDhw7N06YdFhYW/Pbbb/zvf//j8OHDHD58mNKlSzNq1Ch69uyZo+Q27Rw9ffo0Fy5c4J9//uH8+fPo6+tTsmRJvL296dq1K5UqVdJYztramp9++onFixdz8eJF9d2MVq1aUb58eVq1aoW5uTk//fQTf/31F3fu3KFatWpMnjwZlUqVaXLbtGlT6taty7Jlyzhy5Aj6+vr4+PgwcuRIKlasmKtjlpVGjRoxfvx4Nm/ezLFjx9S1jOk9+tvDw4Pdu3fTqFGjPBkZJbdyek1A6t2liIgI9uzZw8GDB0lMTKRUqVJvndxCaqftChUqsHLlSgICAjh48CBmZmZ88skndO/eXd3HpX79+oSHhxMQEMCtW7cIDw/H0tISNzc3vvzySxo2bJij7SpUH1rXRCGE+I/p2rUr586d48iRIxkOpSaE0J3evXtz+vRp9aOjhW5Jm1shhBBCiFy6du0aZ86coVKlSpLYviekWYIQQgghRA7NmTOH4OBgjh8/jkqlylY7bPFuSHIrhBBCCJFDe/fuJTg4mJIlSzJy5EgaNGig65DE/5M2t0IIIYQQ4qMhbW6FEEIIIcRHQ5JbIYQQQgjx0ZDkVgghhBBCfDQkuRVCCCGEEB8NSW6FeEd8fX2xs7PT+kvvKVbp8fb2ZurUqfkc5bs1btw4jWPh6elJr1698vUR0L6+vri4uOTb+gHCwsL48ccfadSoEQ4ODtSqVYtOnTpl+gSmD9mAAQNo1KhRhuVr167Fzs6OR48e5Xob48aNy/a18r6S812Id0OGAhPiHTI2NsbPz09rWnYsWrQIMzOz/AhLp8qUKcOcOXNQqVQEBgbi6+tLz5492bVrF2XKlNF1eDmWlJRE9+7diYqKol+/fpQvX54XL15w6dIljh07Ro8ePXQdYp5r0aIFo0aN4tq1a+k+QnnPnj04OztTtmzZXG/jq6++Uj/O9UMm57sQ+U+SWyHeIaVSibOzc66Wtbe3z7RcpVKRmJiIoaFhrtavK8bGxupj4uLiQunSpenUqRN79+6lf//+ug0uF86dO8ft27dZt24dNWrUUE9v3rw5KSkpOows//j4+FCgQAF2796tldwGBQVx+fJlJk6cmKt1x8XFYWxs/FaJ8ftEznch8p80SxBCx2JiYpg6dSqNGzfGyckJb29vJk2aRFRUlMZ8bzZLSLtNe+LECVq1aoWDgwNHjx5V34a8ffs2nTp1wsnJiRYtWnDq1CmtbW/bto2WLVvi4OBAnTp1mD9/PsnJyeryyMhIJk6cSJ06dXBwcKBu3bqMGDEi2+W5kZbEP3nyRD3t3r17jBgxgrp16+Lk5ESzZs345ZdfNL48g4KCsLOzY8eOHUydOpUaNWpQu3ZtZs6cSVJSUqbbXLRoEU5OTpw4cQKAu3fv0rdvX9zd3XFycqJx48asWLEiW/FHREQAYGVlpVWmVP77kbtt2zbs7Ox4+fKlxjytW7dm3Lhx6tdp7/Mff/xBy5YtcXR0pEuXLgQFBREeHs6wYcNwdXWlQYMG7N27N1sx5jUTExN8fHzYt2+fVkKzZ88e9PT08Pb2Zvz48fj4+ODo6EijRo2YN28eCQkJGvPb2dmxfPlyZs+ejZeXF7Vq1QK0myU8f/482+tbsWIFvr6+eHp64u7uzvjx47VqgZ89e8aYMWPw9PTE0dGRJk2aaN1lyep6yQ053z+88128/6TmVoh37M0vnri4OJKTkxkxYgSWlpYEBwezdOlSvvrqK9auXZvpup4/f84PP/zAwIEDKVGiBCVLluTu3bskJiYyevRounXrxldffcWKFSsYOnQoR48epXDhwgCsWrWK2bNn0717d8aNG8e9e/fUX9ajR48GYPr06Zw6dYpRo0ZRqlQpQkJCOHnypHr7WZXnxuPHjwEoXbq0xn7a2NjQsmVLChYsyF9//YWvry8xMTEMHjxYY/kFCxbg4+PDggULuHz5Mr6+vpQtW5ZOnTqlu72ZM2eyYcMGli9frn4u/IABAyhatCjTpk3D1NSUR48e8fTp02zFX6VKFZRKJRMnTmTQoEG4ubm9dW16SEgIM2bMYODAgejr6/PDDz8wevRoTExMqF69Ou3bt2fTpk18/fXXODk5UapUqbfaXm60bNmSXbt2ERAQoE5IAXbv3o2npyfR0dFYWFgwfvx4zMzMePDgAb6+voSEhDB9+nSNda1ZswYnJyemTZuWYaIWFhaW7fWtX78eNzc3ZsyYwYMHD5g1axZFihRRn+dhYWF06NABgBEjRlC6dGkePnyo0UY4O9dLbsj5ru1DON/Fe04lhHgnFi5cqLK1tdX6+/333zXmS0xMVF24cEFla2urun//vnp6/fr1Vd9995369dixY1W2traqK1eupLud48ePq6cFBgZqbCsqKkrl7Oysmjt3rsayv/76q8rR0VH18uVLlUqlUjVv3lw1ffr0DPcpq/KsjB07VtW8eXNVYmKiKiEhQXX//n1V165dVfXr11eFhoamu0xKSooqMTFRtWTJEpWXl5fWPg4dOlRj/i5duqi6d++ufr1w4UKVs7OzKiUlRTVp0iRVjRo1NI5haGioytbWVnXkyJFc79fq1atVVatWVdna2qqqVq2q6tSpk2rNmjWqxMRE9Txbt25V2draau1nq1atVGPHjlW/Hjt2rMrOzk51584d9bS1a9eqbG1tVbNnz1ZPi4iIUFWpUkW1evXqXMf9NhITE1UeHh6qCRMmqKfdvn1bZWtrq9q+fXu68+/cuVNlb2+viomJUU+3tbVVNWvWTJWSkqIxf9q5ktn2M1rfF198obWuBg0aqF/PmzdPVa1aNVVgYGC6687u9ZIVOd8/nvNdvN+k5laId8jY2Jh169ZpTCtTpgy///47q1ev5uHDhxq3Sx88eICNjU2G67OwsMDJyUlrulKp1Kg9K126NMbGxjx79gyAy5cvExMTQ5MmTTRqxjw9PYmLi+Pu3bvUrFkTe3t7tm/fjpWVFXXq1MHW1lZjO1mVZ8fdu3epWrWq+rWJiQnr16/H0tJSPS0+Pp5ly5axa9cugoODSUxMVJe9evWKggULql/Xrl1bY/0VKlTA399fY5pKpWLMmDGcOXOGNWvWULlyZXVZ4cKFKVWqFPPmzSMiIoJatWpRvHjxHO1T9+7dadasGUePHuXcuXOcPXuWH374gYMHD+Ln56dxuzY7ihUrRqVKldSvy5UrB6S+X2nMzMywtLTMdo1bXtPX16dJkybs2bOHSZMmYWhoyJ49ezAxMaFhw4aoVCr8/PzYtGkTQUFBxMfHq5cNDAzUOHc+/fRTFApFptvLyfpeP06Qek7s2bNH/frs2bN4eHho1J6+LrvXS3bI+Z61D+F8F+83SW6FeIeUSiUODg4a0w4dOsTYsWPp0KEDI0aMwMLCgpCQEAYNGqTxhZ2eokWLpjvd2NhY69aggYGBen1hYWEAtGnTJt3lg4ODAfj2228xNzdn1apVzJo1ixIlStCvXz++/PLLbJVnR9myZZk3bx4pKSncunWL2bNnM3z4cHbu3ImJiQkAs2fPZvPmzQwaNIhq1apRqFAhjhw5wpIlS4iPj9f4si9UqJDWfr/ZDjMxMZGjR4/i6emplZArFApWrlzJ/PnzmTp1KjExMVStWpXx48drdJjJipWVFR06dKBDhw4kJiYyadIktm3bxrFjx/Dx8cn2egCtUTIMDAwA7X01NDTM8pzJTy1atODXX3/l1KlT+Pj4sHv3bry9vSlYsCCrV69m5syZ9OnTB3d3d8zMzLh+/TpTp07VirlIkSJZbsvPzy/b60vv+L1+ToSHh2skU2/K7vWSHXK+Z+1DOd/F+0uSWyF0bP/+/VSpUkWjs9i5c+eytWxWtVsZMTc3B1I7lqRXS5NWg1WoUCEmTJjAhAkTuH37NmvWrOG7777D1taW6tWrZ1meHUZGRuqE38nJicKFCzNkyBDWrl1Lv379gNRj1KFDB/VrQN0ZJjcMDQ1ZtmwZffv2ZcqUKVrjB9vY2LBw4UISExO5fPky8+bNY8CAAZw8eVIjscguAwMDevTowbZt27h37x4+Pj4YGRkBaNTKQWonvQ+Vq6srpUqVYs+ePRQpUoSgoCAmTJgApL6H3t7ejBo1Sj3/vXv30l1Pds7rnKwvKxYWFjx//jzD8uxeL9kh5/vHc76L95eMliCEjsXFxalrJtLs2rUrX7fp4uKCiYkJT58+xcHBQesvrdPZ6+zs7Bg/fjyQfhKRVXl2NWrUCFdXV/z8/NS1MvHx8RrHKDk5WeO2cm5Ur16dn376id9//51p06alO4+BgQE1a9akX79+REdHZ5oApQkPD0+3E9SDBw+Af3uVW1tbA3D//n31PPfu3ctRLeD7RqFQ0KJFC44ePcqmTZuwsLCgTp06QN6f53m5vlq1auHv768xYsHrcnO9ZJec7x/u+S7eX1JzK4SOeXp6MnXqVBYvXoyLiwsnTpzg7Nmz+bpNMzMzhg4dyuzZs3n69Ck1a9ZET0+PwMBAjhw5gq+vLyYmJnTs2JGGDRtSqVIl9PT0+P333zEwMFDXymZVnltDhgyhZ8+ebNu2jU6dOuHp6cnmzZupWLEihQsX5tdff9W69ZobtWrVwtfXl0GDBmFiYsLIkSO5desWM2fOpFmzZpQpU4bo6GiWLVtGqVKlsjXWqr+/P3PmzKFNmzY4Ojqir6/PX3/9xbJlyyhZsiQNGzYEUmvtSpQowY8//sioUaOIjo5m+fLlWFhYvPV+6VKLFi1YtmwZ27Zto0OHDuokzdPTkzVr1rBu3TrKlSvHzp07efjwYa63k5fr69GjBzt27KBLly4MHDiQMmXKEBgYyIMHD/j666+zfb3klpzvQuQtSW6F0LGOHTsSFBTEunXrWLlyJbVr12bu3Lm0b98+X7fbq1cvrK2tWbVqFevWrUNfX5+yZctSr149dULi6urK77//TlBQEEqlEltbW5YuXUqFChWyVZ5bnp6euLm58csvv9C+fXu+/fZbJk+ezPfff4+JiQlt2rShYcOGuX4wwOvq1q3LggULGDZsGEZGRnTs2JGiRYuybNkynj17RqFChahevTqzZ89GT08vy/WljRN65MgRdW1c8eLFadmyJf369cPU1BRIrSVbtGgRU6ZMYdiwYZQtW5ZvvvmGGTNmvPU+6ZKtrS12dnbcvn2bli1bqqcPGjSIsLAwFi5cCEDjxo2ZOHEiAwYMyNV28nJ9hQsX5rfffmPu3LnMmTOH2NhYSpUqpdF2PDvXS27J+S5E3lKoVCqVroMQQgghhBAiL0ibWyGEEEII8dGQZglCiHyRnJxMZjeG9PU/zI+fzB5tqlAosnUrV3x85HwX4v0hzRKEEPnC29tb/WjR9Ny+ffsdRpM3goKCMh2zs2bNmlk+Mll8nOR8F+L9IcmtECJf3L59O9Me3m8+zOJDkJCQkGmSUrBgQcqXL/8OIxLvCznfhXh/SHIrhBBCCCE+GtKhTAghhBBCfDQkuRVCCCGEEB8NSW6FEO8tHx+fTDu0CPExkPNciLwlya0QQgghhPhoSHIrhBBCCCE+GpLcCiGEEEKIj4Ykt0IIIYQQ4qMhya0QQgghhPhoSHIrhBBCCCE+GpLcCiGEEEKIj4Y8fleIHIj236nrEITId/EHd+s6BCHyXZFJy/Nt3bVbnsi0/PSuuvm2bQH6ug5ACCGEEOJjotTX03UI/2mS3AohhBBC5CGlniS3uiTJrRBCCCFEHlIopUuTLklyK4QQQgiRh/Sk5lanJLkVQgghhMhD0uZWtyS5FUIIIYTIQwqlQtch/KdJoxAhhBBCiDykp6eX6V9ubdu2DTs7O62/OXPmaMy3efNmGjdujIODA61ateLYsWNvu0sfFKm5FUIIIYTIQ/k9WsLPP/9MoUKF1K+tra3V/9+zZw/ffvstAwYMwMPDg7179zJ48GDWr1+Ps7Nzvsb1vpDkVgghhBAiD+V3s4SqVatiaWmZbtnChQtp3rw5w4cPB8DDw4M7d+6wePFiVqxYka9xvS+kWYIQQgghRB7Kr2YJWQkMDOTBgwc0bdpUY3qzZs04e/YsCQkJ+bbt94nU3AohhBBC5CGlfuZ1hz4+PpmWHzlyJNPyFi1aEBYWRsmSJWnfvj19+vRBT0+P+/fvA2BjY6Mxf4UKFUhMTCQwMJAKFSpkYw8+bPme3Pr6+rJo0SIAFAoFBQsWpGTJktSoUYPOnTvny0H29vamXr16TJo0KVvzjxs3jhs3brB7d94+T71r166cO3cu03natGnDjBkz8nS76QkKCmLZsmWcPn2akJAQChQogIODA+3ataNJkyZA/h2HrNjZ2TFmzBh69+6tnjZr1ix27tzJixcv6Nq1K1WqVGH8+PGcPXs2w1sx4sNyL+gpy34/xK0HQbyIiMLY0IDyJa3p1qwen7rYa8ybkpLC1mP+bDvuz8PgEIwNDalUtgSjvmyFbdmSOtoDIbKmZ1UCk7qt0C9RFqWpOarEBJJDnhB79iCJd66p59MvWQ4jJ0/0S9mgZ10ahZ4eoVP76TBy8TaUivy5MW5lZcWQIUNwcnJCoVBw9OhRFixYwLNnz5g0aRIREREAmJmZaSyX9jqt/GP3TmpujY2N8fPzA+DVq1fcuXOHjRs3smnTJqZNm0br1q3zdHuLFi3SemMz89VXXxETE5OnMQBMnjyZ6Oho9evvvvsOY2Njxo4dq572LhK1K1eu0KdPHywtLenbty8VK1YkOjqaEydOMHr0aMqVK0flypXzPY6MbNy4kZIl/01Q/vjjD1auXMn48eNxcnKiWLFimJiYsHHjxhy9r+L9FhwaRkxcHC283Cha2Jy4hASOnr/OiAWrmNDjc9rW91DP+93KTew7e5kWXm609/EiNiGB2w8f8zIyOpMtCKF7SvMiKAyNiL96lpSocBQGhhhWccWs42Cid68l/tIpAAwqOWDkWpvkZ0GkhIWgV7S4jiMXbyOrmtusamYzUqdOHerUqaN+Xbt2bYyMjPDz82PAgAG5WufH6J0kt0qlUqOHnpeXF19++SX9+vVjwoQJuLq6UqZMmTzbnr29fdYzvaZs2bJ5tu3XVaxYUeO1qakpBQoUyLS3YlxcHMbGxnkWQ3x8PMOHD6d48eJs2LABU1NTdZm3tzedOnXSecL45vFIu63SrVs3lK89wjAvfgioVCoSExMxNDR863WJt1PbqQq1napoTOvQwIsukxew7sBJdXJ7MOAqu09fZPaQbnhXd9BFqELkWuLfN0j8+4bGtLjzxzDvOxETj4bq5DbuwnFiz+yHpEQKNukkye0HTk/v3XVpatq0Kb/88gt//fUX5ubmAERFRWFlZaWeJzIyEkBd/rHTWYcyIyMjvv32WxITE9m8ebN6+rZt22jZsiUODg7UqVOH+fPnk5ycrLHss2fPGDNmDJ6enjg6OtKkSRN1zTCkJm1Tp05Vv7579y59+/bF3d0dJycnGjdurNFjcNy4cbRo0UJjG7dv36Z37944Ozvj5ubG0KFDefLkicY8dnZ2rFixAl9fXzw9PXF3d2f8+PHZrgUOCAjAzs6O48ePM3ToUFxdXRk2bBiQeiJOmTKF2rVrU61aNdq2bcvp06e11nH8+HHatWuHo6MjHh4eTJ48WWP7+/btIzg4mJEjR2oktmkqV66sUWv6uufPnzN+/Hh8fHxwdHSkUaNGzJs3T6tB+pYtW2jevDmOjo64u7vTqVMnrl27lu1yOzs7Vq5cCaQ25fj+++8BqFKlCnZ2dgQEBKjH9nv58qV6uYSEBObNm0f9+vWpVq0aTZs2ZdeuXRqxpb23J06coFWrVjg4OHD06NH03xChc3pKJdaWFkTHxKqnrT9wkqrly+Bd3YGUlBRi4/8bHSLER0ylIiXyJQpjk38nvYqCpEQdBiXykkKpzPQvv5QvXx74t5Iozf379zEwMMjTisT3mU47lFWsWBFra2suX74MwKpVq5g9ezbdu3dn3Lhx3Lt3T53cjh49GoCwsDA6dOgAwIgRIyhdujQPHz7k0aNHGW5nwIABFC1alGnTpmFqasqjR494+vRphvMHBwfTpUsXypQpw+zZs4mPj2f+/Pl06dKFnTt3aiSJ69evx83NjRkzZvDgwQNmzZpFkSJF1PFmx7fffkurVq1YvHgxSqWShIQEevbsSWhoKMOHD8fa2pqdO3fSv39/dZIHsH//fkaMGEHbtm0ZMmQIISEhzJ07l8jISObPnw/A+fPn0dPTw9PTM9vxpAkLC8PCwoLx48djZmbGgwcP8PX1JSQkhOnTp6vXP2HCBHr16kXdunWJi4vj2rVrREVFZav8TZMnT2bTpk34+fmxceNGIPU8efz4sda8w4YN49KlSwwaNIgKFSpw4sQJvv76a8zMzKhbt656vufPn/PDDz8wcOBASpQokWEyL3QjNj6BuIREomNiOXn5Jn9cu01DdycAomPj+PN+IO28a7Fo8z42Hj5DTFw8pawsGdyuGY3+fz4h3nsGhij0DVEYm2Bo64RBxWok/HlB11GJfKJ8hzW3e/fuRU9PD3t7e6ysrChXrhz79++nQYMGGvPUqlXrP3PXUuejJZQoUYIXL14QHR3NwoUL6dOnDyNHjgRSmy8YGBgwY8YMevfuTeHChVm9ejWhoaHs27eP0qVLA1CrVq0M1//y5UuCgoKYMGEC3t7eQOqYb5lZvXo1SUlJ/PLLL1hYWACptYjNmzdn+/btdO3aVT2vlZUVc+fOBeDTTz/l5s2bHDhwIEfJrbe3N19//bX69datW7l16xY7duxQN22oU6cODx8+5KeffuJ///sfKpWKWbNm0axZM6ZNm6YRT79+/fjqq6+oVKkSz549w9LSMldNHezs7DTaB7u6umJiYsK4ceOYNGkSJiYmXLt2DQsLC4356tWrp/5/VuVvqlixojr5zKz5hr+/P0ePHmXlypXUrl0bSD1fQkJC8PX11UhuIyIiWLFiBU5Okgi9j+b/toutx/wBUCoU1K/uwNiunwEQ9DwUlUrFgYAr6OspGdq+GaYFTPjt4Cm+WbIeUxMjPB11115ciOwq2LAdxtVTP5dUKSkk3LrMq32/6TgqkV/yq1lC7969cXd3V1dyHTlyhE2bNtGtWzd1M4QhQ4YwevRoypYti7u7O3v37uXatWusW7cuX2J6H+k8uVWpVCgUCi5fvkxMTAxNmjQhKSlJXe7p6UlcXBx3796lZs2anD17Fg8PD3Vim5XChQtTqlQp5s2bR0REBLVq1aJ48czbMl24cAF3d3d1Ygupw2hUrlyZixcvaiS3b9aIVqhQgT179mQrtjRvJntnzpzB1taWcuXKaR2LnTt3AvDPP//w+PFjvvnmG415atasiVKp5MaNG1SqVClHcbxJpVLh5+fHpk2bCAoKIj4+Xl0WGBiIra0t9vb2hIeHM27cOFq2bKlOgNNkVZ5bZ86cwcLCAg8PD61jNGXKFJKTk9VjCVpYWEhi+x7r1KgOPjUcCAmL5NC5a6SkpJCYlNoUKTYu9ZyLiI5h9aQhOFRIbR9f18WelqOn8/POI5Lcig9CbMAREv66hKKQOUb21UGhgHx+ipXQnfx6iIONjQ1bt27l6dOnpKSkUK5cOb755huNvKRFixbExsayYsUKli9fjo2NDYsWLcLFxSVfYnof6Ty5ffr0KeXKlSMsLAxIHRorPcHBwQCEh4fnKGlTKBSsXLmS+fPnM3XqVGJiYqhatSrjx4+nRo0a6S4TGRlJlSpVtKYXKVJEaxiNNztjGRgY5HiQ5CJFimi8DgsL4+bNm1StWlVr3rSELe14DRo0KN11ph0va2trzp49S3x8PEZGRjmKy8/Pj5kzZ9KnTx/c3d0xMzPj+vXrTJ06VZ3o1qpVi1mzZrFmzRp69+6NkZERjRs35ptvvsHCwiLL8twKCwsjPDw83WMEEBISov4RU7Ro0VxvR+Q/m5LFsClZDIAWtavz1azljJi/Cr/JQzAyNACglJWlOrEFKGBsxKfO9uz94xJJycnoS5Ig3nMpoU9JCU1tDpdwzZ9CnYdj1nEwESun6zgykR/yq+Z24sSJ2ZqvXbt2tGvXLl9i+BDoNLm9e/cuz549o02bNuoefIsWLUq3ZjWtptbCwoLnz5/naDs2NjYsXLiQxMRELl++zLx58xgwYAAnT56kYMGCWvObm5sTGhqqNT00NJRy5crlaNvZoVBo/sIzNzfHzs5Oo7nBm9ISw0mTJuHo6KhVXqxYarJQs2ZNtmzZwtmzZzNtDpCe/fv34+3tzahRo9TT7t27pzVf69atad26NS9fvuTIkSNMnz4dfX19fvzxx2yV54a5uTmWlpYsX7483fLXR1Z48/iK91uDGo5MW72Vh09DsLJI/fFoaabdGbKwmSlJycnExidQqMDb3w0Q4l1K+Osipi26oixiTUroM12HI/LYu2xzK7TpLLmNj4/n+++/x9DQkHbt2mFmZoaJiQlPnz6lYcOGGS5Xq1YtfvnlF548eZLjjkEGBgbUrFmTfv36MXDgQJ4/f671FA8ANzc3Nm3aREREhDrpvn//Prdv3+bzzz/P2Y7mgqenJydOnKBYsWJYW1unO0/58uUpXrw4gYGBdO7cOcN1NWnShPnz5zNv3jyqV6+uNWLC7du3MTMzo0SJElrLxsXFYWBgoDHtzdEIXmdpaUm7du04efKkVk/N7JTnhKenJz///DMGBgY6HaNX5L24xNQe49ExcZQrUYwi5oV4HhapNd+LsAiMDPQpaJyzOxJCvA8U+qmfrUojE1J0HIvIe8p8apYgsuedJLcpKSlcuXIFgJiYGPVDHAIDA5kxY4a6Vnbo0KHMnj2bp0+fUrNmTfT09AgMDOTIkSP4+vpiYmJCjx492LFjB126dGHgwIGUKVNG/Szl1ztlpbl16xYzZ86kWbNmlClThujoaJYtW0apUqUyHN+2R48ebNu2jV69ejFw4EDi4+NZsGABJUqUyLDZRF767LPP2LBhA926daNXr16UK1eOqKgobt68SWJiIqNGjUKhUDBu3DhGjx5NTEwM9erVw8TEhCdPnnDixAlGjBiBjY0NRkZGLFiwgD59+vD555/To0cP9UMcTp8+zaZNm9i8eXO6ya2npydr1qxh3bp1lCtXjp07d/Lw4UONeRYuXEh4eDg1a9akSJEi3Llzh1OnTtGjR49sleeWl5cX9evXp0+fPvTp0wc7OztiY2P5+++/efjwYaa13uL98DIyWqtGNjEpmT2nL2JkaED5Uqk/7Bq5O/HbwdP437iDRzVbAMKiXnH88k2q21fUGAtZiPeNokAhVDFvjA6j1MPIsRaqxASSQoJ1E5jIV1Jzq1vvJLmNi4tTD99VoEABSpcuTa1atVi0aJHG43d79eqFtbU1q1atYt26dejr61O2bFnq1aunrkEsXLgwv/32G3PnzmXOnDnExsZSqlQpvvzyy3S3bWVlRdGiRVm2bBnPnj2jUKFCVK9endmzZ6vbr76pRIkSrF27llmzZjF69GiUSiVeXl6MGzcu3bFi85qhoSFr1qzB19eXpUuXEhISgoWFBfb29hr72bRpU8zMzFi6dKm6RrVUqVLUqVNHo52ps7Mz27dvZ/ny5SxbtowXL16oH787b968DGs+Bw0aRFhYGAsXLgSgcePGTJw4UeMpKA4ODvj5+bFv3z6io6MpXrw4vXv3ZuDAgdkqfxsLFy5k+fLl/Pbbbzx+/JhChQpRqVIl2rZt+9brFvlv2qotvIqLx9XWBqvC5oRGRLHv7GUeBD9nRKcWFPj/GtmeLbw5dO4aY3zX0LnJp5iaGLP1mD9JyckM/qKpjvdCiMyZtuiCwsiYxId3SYkKR2lqhmE1d/StSvDq4CZITO2/oDS3xMgxdSQfvZKfAGBSpxkAyeEvSbjur5sdELmipyc1t7qkUKlUKl0HIcSHItp/p65D+Ggc8L/CjpPn+DsomPDoGAoaG1GlXGk6NPCirqtmR8Gg56Es2LCbczf/Jik5GceKnzCkXTOqlv9vDEj+rsUf3K3rED4ahlVrYOTihX6xUihMTFElxJEU/JC4c8dIvHNVPZ/+J7aYd09/CMnEB7eJXDP3XYX8n1FkUvp9NvLCkAXaTale5ztcHiWfnyS5FSIHJLkV/wWS3Ir/gvxMbof7RmdavmBI/t8F/i/T+VBgQgghhBAfE2mWoFuS3AohhBBC5CEZglK3JLkVQgghhMhDUnOrW5LcCiGEEELkofx6QpnIHkluhRBCCCHykLRK0C1JboUQQggh8pA0S9AtSW6FEEIIIfKQJLe6JcmtEEIIIUQektESdEuSWyGEEEKIPCQ1t7olya0QQgghRB5SymAJOiXJrRBCCCFEHlIqpeZWlyS5FUIIIYTIQzLMrW5JciuEEEIIkYcUUnOrU5LcCpEDTaaZ6zoEIfLdxvIRug5BiA+a1NzqliS3QgghhBB5SE9P1xH8t0lyK4QQQgiRh2SYW92S5FYIIYQQIg/pSZtbnZLkVgghhBAiD8k4t7olya0QQgghRB6S5Fa3JLkVQgghhMhDMlqCbklyK4QQQgiRh6TmVrckuRVCCCGEyEPSn0y3JLkVQgghhMhDSqUqizkk+81PktwKIYQQQuQhaXOrW5LcCiF0wqWaOb7TndMt6z/6En/ejsLISElzn+LU9ihC+U8KUsBYj6DgWHYeCGbngWBSUt5tzELklH7x0pg1aYdBGRuUZhaoEuJJevqY6KM7ifvzkua81qUwb9MNw/KVISmJuJuXiNi+hpRXUTqKXuSWPMRBtz6a3xa+vr64uLjk+3YCAgKws7Pj+vXr2V7G19eXS5cuaU23s7Nj5cqV2V5PUFAQdnZ26j8HBweaNGnCwoULiYuLy/Z6PiTv6n0VurN5ZxBT5/6l8RcUHAtASWtjhveviAIFG38PYvGq+wQ/i2P0V7aMH2qn48iFyJqeZVEUxsbEnD9JxLbVRB3cBkCRfmMpUMtHPZ/S3JKiQ6egX7Q4kbt/I+rYLoztXSny1UR5lusHSE+pyvRP5C+puc2hqlWrsnHjRipUqJDtZRYtWkSBAgVwdXXVmL5x40ZKliyZ4xhGjhyJu7s7sbGxHDlyhMWLF/PixQumTp2a43W979q1a0fdunV1HYbIR1f/jOD4Hy/SLXsZnkD3IRf451GMetqO/cGMH2pL84YlWL3xIY+DP84fduLjEH/zCvE3r2hMe3VyP1ajZ2BavzkxZ48AUKhRGxSGRoTMGUdyWCgAiQ/vUXTQRArUrKeeT3wYpFmCbsnhzyFTU1OcnZ0pUKDAW6/L2dmZYsWK5Xi5Tz75BGdnZ2rVqsXEiRPx8vJix44dpLyje7Tvspa4ePHiODo6vrPtCd0wMdFL98sgIjJJI7FNc/Js6pd/udIF8zs0IfKeSkVyeChKk3/PXxOnmsT9eUmd2ALE37lO4rMnmLjU0kWU4i0oUGX6J/LXfya5vX37Nr1798bZ2Rk3NzeGDh3KkydPNOaJiopi9OjRuLi4UKtWLebNm8cvv/yCnd2/tz/Ta5awZcsWmjdvjqOjI+7u7nTq1Ilr164BqJedNWuWujlBQECAuuzNZgnHjx+nY8eOODk5UaNGDbp27crNmzcz3bcqVaoQFxfHy5cv1dMiIyOZMmUKtWvXplq1arRt25bTp09rLKdSqVi0aBFeXl64uLgwdOhQ/vjjD40Y0+Jcvnw5s2fPxsvLi1q1aqmXX7lyJY0bN6ZatWr4+PiwevVqjW08ffqUYcOG4enpiYODA97e3vz444/ZLk+vWcLjx48ZOnQobm5uODs707t3b27fvq0xj7e3N1OnTmX9+vXUr18fNzc3vvrqK41jJN4P3wyz49Cm2hzZ9ikLpzlhV9E0y2UsCxsAEB6ZmN/hCZEnFIZGKAsWQq+INQXrNcO4ijPxd24AoDQvjF4hCxIf3ddaLvHR3xiWLveOoxVvS0+Z+Z/IX/+JZgnBwcF06dKFMmXKMHv2bOLj45k/fz5dunRh586dmJqmfpmOHz8ef39/vv76a0qVKsWmTZv4888/M133+fPnmTBhAr169aJu3brExcVx7do1oqJSOwBs3LiRDh060LVrV1q0aAFAxYoV013X3r17GTlyJD4+PsydOxcDAwMuXbrEs2fPsLe3zzCGJ0+eULBgQQoXLgxAQkICPXv2JDQ0lOHDh2Ntbc3OnTvp378/27ZtUyfca9euZdGiRfTp0wcPDw/8/f2ZOHFiuttYs2YNTk5OTJs2jaSkJACmTZvG5s2bGTBgAE5OTly6dIk5c+ZgZGREp06dABgzZgzPnz9n4sSJFClShODgYG7cuKFeb1blb4qOjqZr164olUq+++47jIyMWLJkifq9LFGihHreo0eP8vDhQyZNmkRYWBjTp0/n+++/Z/78+RmuX7w7iUkqjp0Jwf/CS8IjE7EpW4CObcrw0wxnBoy5wt370ekup6+voH3r0jx5Gsutu5HvOGohcsf8s64U9GoIgColhbir5wjf8gsAemapn93JkWFayyVHhqMsWAj09CE56d0FLN5K1kOBifz0n0huV69eTVJSEr/88gsWFhZAam1n8+bN2b59O127duXvv//m0KFDzJw5k88++wyAOnXq0LRp00zXfe3aNSwsLBg7dqx6Wr169dT/d3Z2BqBEiRLq/6dHpVIxc+ZMvLy8WLx4sXp6eu1NU1JSSEpKUre5PXjwIMOHD0fv/zsd7Nq1i1u3brFjxw51Il2nTh0ePnzITz/9xP/+9z+Sk5NZvnw5bdu2ZfTo0QDUrl2bsLAwtmzZorVNc3NzFi1ahOL/u4A+evSIdevW8d1339GhQwcAPD09iYuLY/HixXTo0AGlUsn169cZOXIkzZo1U68r7fgCWZa/adu2bTx58oQ9e/ao2z3XqFGD+vXr4+fnx7hx4zSO6ZIlSzA0NARSa3yXLVtGSkoKSnl8jM7duBXJjRn/3pU4cy6UY2dC8POtzoBuNoyakn6nzZH9K2JTtiCjp1wnWUZLEB+I6ON7ib0SgNK8MAVcPECpRKGvjwpQGKR+RpGkfSdClZgAgMLQEFWsJLcfCqU0PdCp/8Q3/IULF3B3d1cntgAVKlSgcuXKXLx4EUDdzMDH57Xeq0ol9evXz3Td9vb2hIeHM27cOM6cOUNsbGyuYrx//z5Pnz7l888/z3LeESNGULVqVapXr87YsWNp3Lgxffv2VZefOXMGW1tbypUrR1JSkvrP09NTvZ9Pnz4lJCQEb29vjXW/vv+v+/TTT9WJLcAff/wBQKNGjbS2ERISQnBwMJB6fH755Rd+/fVXHj58qLXerMrfdOHCBSpVqqTRoc/CwgJPT0/1e5mmRo0a6sQWUt/zxMREQkNDEe+nx8FxnPYPxcXRIt3HV3ZqU5pWTUqyYu0/+F+UJibiw5H0/Anxd64Te/4koctnoTAyokjfMcC/CSz6BlrLpSW+qoSEdxareHtKpSrTP5G//hPJbWRkJEWLFtWaXqRIESIiIgAICQnBwMCAQoUKacxjaWmZ6bpr1arFrFmzuHv3Lr1798bDw4MxY8YQHh6eoxjT5s9OB7PRo0ezZcsWVq1ahY+PD3v27GHDhg3q8rCwMG7evEnVqlU1/pYsWcLTp0/V+5ve/hUpUiTdbb45PSwsDJVKhYeHh8Y2evbsCaBObufPn4+HhwcLFiygUaNGNGnShIMHD6rXk1X5m7LzXqYxMzPTeJ2W6MbHx2e4fqF7z17EY2igxNhIc/ijpj7WDOxRnu17n+C36ZGOohMib8ReCcDwk4roFyuhbo6Q1jzhdXpmFqnj3EqThA+KnkKV6Z/IX/+JZgnm5ubp1taFhoZSrlw5AKysrEhMTCQqKkojwc1OB6TWrVvTunVrXr58yZEjR5g+fTr6+voaHaOyklar/Pz58yznLVOmDA4ODgC4u7vzxRdfsGDBAlq1akWBAgUwNzfHzs6OadOmZbgOKysrQHv/MqrVVLwxIrW5uTkKhYJff/0VAwPt2gYbGxsgNVmfPn06KSkp3LhxgyVLljBixAj2799PmTJlsix/k7m5Of/884/W9NDQUMzNzTPcX/HhKFncmPj4ZGLjktXTarsXYewQO06cfcG8pXd1GJ0QeUPx/z+2FcYFSHkeTHJUBAZly2vNZ1C2IgmPH7zj6MTbkoc46NZ/oubWzc0Nf39/jZq9+/fvc/v2bdzc3ACoVq0aAEeO/DuWYEpKCseOHcv2diwtLWnXrh1eXl7cv/9vr1cDA4MsawvLly9P8eLF2bZtW7a3B6Cnp8fXX39NWFgYmzZtAlLbvgYGBlKsWDEcHBy0/iB1iC0rKyuN/QU4fPhwtrabNmJCeHh4uttI66SXRqlU4ujoyPDhw0lKStJqgpBVeRo3Nzfu3LmjcXwjIiL4448/1O+l+DBYmGn/KKpYriC1axbh3OUwVP9fueFU1Zzvvq7C1RvhTJ3zl3q6EB8CpalZOhP1KFDjU1IS4kl6GgRA7NUAjKu6omfx710yI9tqGFiXJPaK/7sKV+QRPUVKpn8if31UNbfJycns379fa3q3bt3Ytm0bvXr1YuDAgcTHx7NgwQJKlChBmzZtAKhUqRINGzbkhx9+IDY2lpIlS7Jp0ybi4uK0ai1ft3DhQsLDw6lZsyZFihThzp07nDp1ih49eqjnKV++PEeOHKF69eqYmJhgY2OjlfwpFArGjh3LyJEjGTJkCK1bt8bQ0JArV67g4OCQadtfT09P3NzcWL16NZ07d+azzz5jw4YNdOvWjV69elGuXDmioqK4efMmiYmJjBo1Cj09Pfr168ePP/5I0aJFcXd3JyAggLNnzwJk2eHKxsaGzp07M2bMGHr37o2TkxOJiYk8ePCAgIAAfvrpJ6KioujduzetW7fGxsaGxMRE1q5di5mZGfb29lmWp6dt27asXr2a/v37M3z4cPVoCfr6+nTv3j3TmMX75bsxVYhPSOHGrUjCwhMoV7YgrRqXIC4+haV+qbXz1lZGzJhYDRVw/I8X1K9tpbGOew9ece/BKx1EL0T2WHToi8LYhIR7t0gOf4memQUmbrUxKF6KiO1rUCWkVnxEH/odE2cPig6eRPSJfSiMjCnk3ZLEJw+J8T+u250QOSbtanXro0pu4+PjGTZsmNb0WbNmsXbtWmbNmsXo0aNRKpV4eXkxbtw4jSTzxx9/ZOrUqcyaNQtDQ0PatGlDpUqVWL9+fYbbdHBwwM/Pj3379hEdHU3x4sXp3bs3AwcOVM8zadIkfvzxR/r27UtcXBxr1qzB3d1da13NmjXD2NiYpUuXMnLkSIyMjLC3t6dhw4ZZ7vvgwYPp2bMnu3btom3btqxZswZfX1+WLl1KSEgIFhYW2Nvb8+WXX6qX6dq1K5GRkfz666+sXbuWWrVq8fXXXzNixAittsfpmThxIjY2NmzcuJHFixdTsGBBbGxsaNKkCQBGRkbY2tqydu1agoODMTY2plq1aqxcuRJLS0sSEhIyLU+Pqakpa9euZcaMGXz77bekpKTg6urKunXrNIYBE++/UwGhNKpbjA6tS1OwgB7hEYmcOPuCVb89UD91rKS1MYVMUz+mRg2spLWOX359IMmteK/FXjpLgVr1KejVEGVBU1RxcSQE3Sdy13ribvzbCTY5PJQXvt9h/lk3zFp2guQk4m5eJuL3tdLe9gMkD2rQLYVKJTf5MtO5c2eUSiVr167VdSjvxIIFC1i1ahUBAQEYGxvrOpz3Tu2WJ3QdghD5bmP5n3QdghD5rtT/Nubbus/cTH+c7jRe9lk/rEbk3kdVc/u2Dhw4QHBwMLa2tsTGxrJ7924uXLigMe7sx+TevXvs3LkTFxcXDAwMOHfuHCtXrqRTp06S2AohhBC5pJR2tTolye1rChQowI4dO3jw4AGJiYmUL1+e2bNn06BBA12Hli+MjY25fPkyv/32G69evcLa2prevXszZMgQXYcmhBBCfLAUMtyXTkly+5o6depQp04dXYfxzpQqVYo1a9boOgwhhBDio/IuxrJ99eoVTZs25dmzZ2zZskU9GhLA5s2b+fnnn3ny5Ak2NjaMGDEiy4dSfUz+E0OBCSGEEEK8K0pFSqZ/eeGnn34iOTlZa/qePXv49ttvadq0KStWrMDZ2ZnBgwdz5cqVPNnuh0CSWyGEEEKIPKRAlenf27p37x6//vprus0IFy5cSPPmzRk+fDgeHh5MnToVBweHj7b/UHokuRVCCCGEyEP5XXP7ww8/0LFjR/XTQNMEBgby4MEDmjZtqjG9WbNmnD17loSEhLfe9odA2twKIYQQQuShrJ5C5uPjk2n5m08Pfd3+/fu5c+cOvr6+/PnnnxplaU/vfDPprVChAomJiQQGBlKhQoVMt/0xkORWCCGEECIP5ddDHGJjY5kxYwYjRozQetIppD6OHsDMTPOxz2mv08o/dpLcCiGEEELkISWZ19xmVjObmSVLllCkSBE+//zzXC3/XyHJrRBCCCFEHsqPhzg8fvyYX375hcWLFxMVFQVATEyM+t9Xr15hbm4OQFRUFFZWVuplIyMjAdTlHztJboUQQggh8lB+NEsICgoiMTGRfv36aZV169YNJycn5s6dC6S2vS1fvry6/P79+xgYGFCmTJk8j+t9JMmtEEIIIUQeyqpZQm5UqVJF68FLf/31F9OnT+e7777DwcGBMmXKUK5cOfbv36/xdNW9e/dSq1YtDA0N8zyu95Ekt0IIIYQQeUip0H64wtsyMzPD3d093bKqVatStWpVAIYMGcLo0aMpW7Ys7u7u7N27l2vXrrFu3bo8j+l9JcmtEDmwf8J/o6ep+G+7YbFc1yEIke9K5eO6Far8f/xuRlq0aEFsbCwrVqxg+fLl2NjYsGjRIlxcXHQW07umUKl0+A4I8YGJ9t+p6xCEyHc3LOrqOgQh8p1H5fzrXPXg7zuZlperaJtv2xZScyuEEEIIkaeUqrxvliCyT5JbIYQQQog8lF8PcRDZI8mtEEIIIUQekppb3ZLkVgghhBAiDylTJLnVJUluhRBCCCHykDRL0C1JboUQQggh8pDU3OqWJLdCCCGEEHlIIW1udUqSWyGEEEKIPKRQ5f3jd0X2SXIrhBBCCJGHZLQE3ZLkVgghhBAiDymkza1O5Ti59fX1ZdGiRerXFhYWlC9fngEDBlC37rt7ZGPr1q2pUqUKM2bMeCfbCwgIoFu3bumWnT17FktLy3cSR2aCgoLYvn077du3x9raOt3yZcuWcfr0aUJCQihQoAAODg60a9eOJk2aADBu3Dhu3LjB7t2732nsdnZ2jBkzht69e6unzZo1i507d/LixQu6du1KlSpVGD9+/HtzvMXbuRf0lGW/H+LWgyBeRERhbGhA+ZLWdGtWj09d7DXmTUlJYesxf7Yd9+dhcAjGhoZUKluCUV+2wrZsSR3tgRC5s3PTL2xdv5RSZcvzo+8G9fTrl/05d/oQ9+78yZOgBxQpas3cFTt0GKnILYVKRkvQpVzV3BobG+Pn5wfA8+fPWbp0KQMGDGD9+vW4urrmaYDvm+nTp1O+fHmNaWZmZjqKRtPjx49ZtGgR9erV00pur1y5Qp8+fbC0tKRv375UrFiR6OhoTpw4wejRoylXrhyVK1fWUeSwceNGSpb8N0n5448/WLlyJePHj8fJyYlixYphYmLCxo0b35vjLd5OcGgYMXFxtPByo2hhc+ISEjh6/jojFqxiQo/PaVvfQz3vdys3se/sZVp4udHex4vYhARuP3zMy8hoHe6BEDn38sUzdm1ZjZGxiVaZ/8kDBJw+zCfl7ShcuKgOohN5RZGSpOsQ/tNyldwqlUqcnZ3Vr52cnKhbty6///77R5/cVqpUCQcHhzxbX3JyMikpKRgYGOTZOt8UHx/P8OHDKV68OBs2bMDU1FRd5u3tTadOnXSeML5+PgHcv38fgG7duqFUKtXT86LGVqVSkZiYiKGh4VuvS+Rebacq1HaqojGtQwMvukxewLoDJ9XJ7cGAq+w+fZHZQ7rhXT3vrj0hdGHDqoVUtKtGSkoKUZHhGmVfdPmKnoMmoK+vz7zvR/D40X3dBCnemoyWoFvKrGfJmrW1NZaWljx58gRIrc0dP348Pj4+ODo60qhRI+bNm0dCQoLGcnZ2dqxYsQJfX188PT1xd3dn/PjxxMTEaMx36dIl2rZti4ODAy1atODEiRPpxnHw4EFat26Ng4MDtWvXZvr06cTHx6vLAwICsLOz49SpUwwbNgwXFxfq1avHrl27AFizZg316tWjZs2aTJgwQSverISHhzN+/Hjc3d1xdHSkY8eOnD9/XmOerl270r9/f7Zv307jxo1xcHDg1q1bABw/fpx27drh6OiIh4cHkydP1jgWiYmJzJw5k3r16lGtWjVq167NgAEDiIqK0mg28cUXX2BnZ4ednR0A+/btIzg4mJEjR2oktmkqV66sUWv6uuy+l1u2bKF58+Y4Ojri7u5Op06duHbtWrbL7ezsWLlypfoYff/99wBUqVIFOzs7AgIC2LZtG3Z2drx8+VK9XEJCAvPmzaN+/fpUq1aNpk2bqt/PNOPGjVOfN61atcLBwYGjR4+mu79Ct/SUSqwtLYiOiVVPW3/gJFXLl8G7ugMpKSnExufsuhTifXHrz0uc/+MoX/YemW554SJW6OtLV5iPgUKlyvRP5K88uYpevXpFREQEpUuXBiAsLAwLCwvGjx+PmZkZDx48wNfXl5CQEKZPn66x7Pr163Fzc2PGjBk8ePCAWbNmUaRIEUaPHg1ASEgIvXv3xs7OjgULFhAZGcl3331HTEwMVar8W+tz5MgRhg4dSvPmzRk1ahT3799n/vz5BAcHs3DhQo1tTpkyhTZt2tC+fXs2bdrEmDFjuHXrFnfv3uW7774jMDCQGTNmUKZMGQYMGKCxbEpKCklJ/95uUCqVKJVKkpOT6du3L4GBgYwePZqiRYuydu1aevbsyYYNG6hWrZp6mRs3bvD48WOGDRuGmZkZJUqUYP/+/YwYMYK2bdsyZMgQQkJCmDt3LpGRkcyfPx+AZcuWsWHDBkaPHk2lSpUICwvjzJkzJCQkULVqVSZNmsTUqVO1mk6cP38ePT09PD09c/zeZue9PH/+PBMmTKBXr17UrVuXuLg4rl27RlRUVLbK3zR58mQ2bdqEn58fGzduBKBixYo8fvxYa95hw4Zx6dIlBg0aRIUKFThx4gRff/01ZmZmGm3Anz9/zg8//MDAgQMpUaJEhsm8ePdi4xOIS0gkOiaWk5dv8se12zR0dwIgOjaOP+8H0s67Fos272Pj4TPExMVTysqSwe2a0ej/5xPifZeSnMy65XOo27AVZcpV1HU4Ir9JhzKdynVym5bgPX/+nNmzZ1OwYEF1zaGdnR1jx45Vz+vq6oqJiQnjxo1j0qRJmJj829bIysqKuXPnAvDpp59y8+ZNDhw4oE5u/fz8UCgUrFixgkKFCgFQvHhxevTooRHPokWLcHZ21liXiYkJkyZN4vbt2+paTIAmTZowePBgABwdHTl06BB79uzh0KFD6uYB586dY//+/VrJbfv27TVef/HFF0ybNo3jx49z7do1fv75Z+rUqQNA7dq1adSoEcuWLcPX11e9TEREBFu2bKFEiRJA6m3yWbNm0axZM6ZNm6ZxbPr168dXX31FpUqVuH79OrVr16Zz587qeRo3bqz+f8WKqR+YbzadePbsGZaWlhgbG5NT2Xkvr127hoWFhcZ89erVU/8/q/I3VaxYUZ18vtlc4XX+/v4cPXqUlStXUrt2bQC8vLwICQnB19dXI7mNiIhgxYoVODlJMvS+mf/bLrYe8wdAqVBQv7oDY7t+BkDQ81BUKhUHAq6gr6dkaPtmmBYw4beDp/hmyXpMTYzwdNRdW3Ehsuvo/m2EhjxlzNTFug5FvAMyWoJu5Sq5jYmJoWrVqurXenp6/PTTT+raQpVKhZ+fH5s2bSIoKEijaUBgYCC2trbq12/WJlaoUIE9e/aoX1+9ehV3d3d1YgtQq1YtLCws1K9fvXrFX3/9pZE8ATRr1oxJkyZx8eJFjeTWy8tL/f9ChQphaWlJ9erVNdq9litXjoCAAK19nzlzJhUqVFC/TmsDeuHCBUxNTdWJLYCBgQENGzbUGnnA1tZWndgC/PPPPzx+/JhvvvlGo1a4Zs2aKJVKbty4QaVKlbC3t2flypXqxK1atWoa7VHzQ3beS3t7e8LDwxk3bhwtW7ZUJ8BpsirPrTNnzmBhYYGHh4fGcfP09GTKlCkkJyejp6cHpI7qIYnt+6lTozr41HAgJCySQ+eukZKSQmJS6hdDbFzq+RYRHcPqSUNwqFAWgLou9rQcPZ2fdx6R5Fa896Ijw9n22zJate+NmXlhXYcj3gF5iINu5Xq0hHXr1qFSqXjw4AFz585l7Nix7Nq1i2LFiuHn58fMmTPp06cP7u7umJmZcf36daZOnaqRHIH2SAMGBgYa7TlDQkL45JNPtGJ4vWNRVFQUKpWKIkWKaMxTqFAhDA0NiYiI0Jr+OkNDwyzjSFOhQoV0O5RFRkZqbR+gaNGiWtsvWlSzF2xYWBgAgwYN0loeIDg4GICBAweiVCrZvn07ixYtwtLSks6dOzNo0CAUCkW6y0Jqm+izZ88SHx+PkZFRhvOlJzvvZa1atZg1axZr1qyhd+/eGBkZ0bhxY7755hssLCyyLM+tsLAwwsPDNX5ovS4kJITixYsD2sdcvD9sShbDpmQxAFrUrs5Xs5YzYv4q/CYPwcgw9QdnKStLdWILUMDYiE+d7dn7xyWSkpPR//8fMUK8j7asX4qpqTkNm7fPembxUZCaW93K9WgJaQmeo6MjNjY2tG/fnsWLF/Pdd9+xf/9+vL29GTVqlHqZe/fu5SpAKysrQkNDtaa/3qmoUKFCKBQKjWmQmvQmJCRgbm6eq23nhLm5ebpxvnjxQmv7byaiaQnepEmTcHR01FpHsWKpX/yGhoYMGTKEIUOG8PDhQ7Zu3Yqvry+lS5fms88+yzC2mjVrsmXLFs6ePZtpc4D0ZPe9bN26Na1bt+bly5ccOXKE6dOno6+vz48//pit8twwNzfH0tKS5cuXp1v++g+gzJJ/8X5pUMORaau38vBpCFYWqT86Lc20O0IWNjMlKTmZ2PgEChV4+zsBQuSHp08ecfzg73TuPYKwlyHq6YkJCSQnJRHy7AkmBQpiWij/v6fEO5Qsya0u5ck9bQcHB5o3b862bdsICQkhLi5Oa2irN3uwZ5ejoyMBAQEanY/Onj1LeHi4+nXBggWpUqUK+/fv11h23759ALi5ueVq2znh5uZGdHQ0p0+fVk9LSkri8OHDWW6/fPnyFC9enMDAQBwcHLT+0nsgwyeffMLIkSOxsLBQD5uVdszfrB1v0qQJJUqUYN68eURHa48Levv2bXXt8Jty+l5aWlrSrl07vLy81HHlpDwnPD09efnyJQYGBukeNxnq68MUl5gIQHRMHFaFzSliXojnYZFa870Ii8DIQJ+Cxjm7GyHEuxQWGoIqJYV1K+Yyut9n6r97d27w9MkjRvf7jB0bV+o6TJHXVCmZ/4l8lWdjjnz11Vfs3bsXPz8/PD09WbNmDevWraNcuXLs3LmThw8f5mq93bt359dff6Vv37707duXyMhIfH19tW5nDx48mEGDBjF69GhatWrFP//8w/z582ncuLFGe9v8Uq9ePRwdHfn6668ZNWqUerSE58+fa43W8CaFQsG4ceMYPXo0MTEx1KtXDxMTE548ecKJEycYMWIENjY2fPXVV1StWhV7e3tMTEw4duwYEREReHikjgdarlw59PT02Lp1K/r6+ujp6eHg4ICRkRELFiygT58+fP755/To0UP9EIfTp0+zadMmNm/erNEOOE123suFCxcSHh5OzZo1KVKkCHfu3OHUqVPqTn9ZleeWl5cX9evXp0+fPvTp0wc7OztiY2P5+++/efjwoUbnPPH+eRkZrVUjm5iUzJ7TFzEyNKB8qdQfdY3cnfjt4Gn8b9zBo1pqe/2wqFccv3yT6vYV873duRBvo/QnFRg6fpbW9K3rlxIXG0PnPiMpVry0DiIT+UmaJehWniW35cuXp1mzZvz2228cP36csLAwdVLXuHFjJk6cqDXyQHYUK1aMFStW8MMPPzBs2DDKli3LpEmT1MNjpfHx8eF///sfixcv5quvvsLCwoL27dtr3E7PT3p6eixfvpxZs2Yxe/Zsdae7X375RWMYsIw0bdoUMzMzli5dqq4ZLVWqFHXq1FG3F3V1dWXfvn2sWrWK5ORkbGxsmDNnjrpTnqWlJZMmTeLnn39m586dJCUlcfv2bSB11IHt27ezfPlyli1bxosXL9SP3503b16GTycbNGhQlu+lg4MDfn5+7Nu3j+joaIoXL07v3r0ZOHBgtsrfxsKFC1m+fDm//fYbjx8/plChQlSqVIm2bdu+9bpF/pq2aguv4uJxtbXBqrA5oRFR7Dt7mQfBzxnRqQUF/r9GtmcLbw6du8YY3zV0bvIppibGbD3mT1JyMoO/aKrjvRAic4XMLHDzqKc1/eCu1Mfuvl726MFdLp87CcDz4CBiXkWzY1NqrW7Zcra41KyjtR7xfpLkVrcUKpWMJixEdkX779R1CB+NA/5X2HHyHH8HBRMeHUNBYyOqlCtNhwZe1HXV7CQY9DyUBRt2c+7m3yQlJ+NY8ROGtGtG1fJldBT9x+2GRd2sZxJvZfqEAURFhvOj7wb1tFNHdvPzwqnpzl/buzl9h01+V+H9J3hUzr92znGHVmdabtywR75tW0hyK0SOSHIr/gskuRX/Bfma3B7IvB21cePe+bZtkYfNEoQQQgghBDJago5JciuEEEIIkZdkRASdkuRWCCGEECIvSc2tTklyK4QQQgiRl2S0BJ2S5FYIIYQQIi+lSF99XZLkVgghhBAiLyUn6TqC/zRJboUQQggh8pI0S9ApSW6FEEIIIfKSNEvQKUluhRBCCCHykEpGS9ApSW6FEEIIIfKQStrc6pQkt0IIIYQQeUklzRJ0SZJbIYQQQoi8JM0SdEqSWyGEEEKIPKRKkcfv6pIkt0LkwIk6X+s6BCHy3b6Z53QdghD5zqNy/q1bOpTpliS3QgghhBB5SZJbnZLkVgghhBAiD6lknFudkuRWCCGEECIPSbME3ZLkVgghhBAiD6mSJLnVJUluhRBCCCHykkpGS9AlSW6FEEIIIfJQitTc6pQkt0IIIYQQeUja3OqWJLdCCCGEEHlIRkvQLaWuAxBCCCGE+JiokpIz/cutEydO0KVLFzw8PKhWrRo+Pj5Mnz6dqKgojfmOHj1Kq1atcHBwoHHjxmzduvVtd+mDIjW3QgghhBB5KCWfmiWEh4fj6OhI165dsbCw4O7du/j6+nL37l1++eUXAC5cuMDgwYP54osv+Oabb/D392fChAkULFiQJk2a5Etc7xtJboUQOmFe3YHSXT+jSF13TMqVIjE0nLCAq9yZvIBXdx9ozqxQULZfR8r27YCprQ3JMbFEXrvNzdE/EnXttk7iFyK3Gtc0omVtY568SObHNdHq6QrAy9GQ2o6GWFkoiU9UEfg8mf3+8fwTLG04Pygp+TNaQuvWrTVeu7u7Y2hoyLfffsuzZ8+wtrZmyZIlODo6MnXqVAA8PDwIDAxk4cKF/5nkVpolvAO9e/emUaNGJCQkaEy/ceMG9vb2rFu3Tj0tLCyMOXPm0KxZM5ycnHBycqJFixbMmDGDoKAg9XxBQUHY2dmp/ypXrkydOnUYNWoUjx8/1orh1atXLFq0iBYtWuDk5ISzszNffPEFq1atIj4+HoBt27ZhZ2fHy5cv8+lIpK9r1670799fY9quXbto1KgRVatWpXXr1ur93b9//zuNTeSfCqP7ULxNI14cO8vNkdN49PMmLOtUp/a5bZhWraQxr+PPP1J1/gQiL/3Jn8O/5+60n4gNfIKRVREdRS9E7liYKmjkbkR8gnabzM8+NaZjAxOevEhm24lYjl6Mp1hhJcPbF+ST4no6iFbkVkpSSqZ/ecnCwgKAxMREEhISCAgI0EpimzVrxr179zTyiI+Z1Ny+A5MnT6ZFixYsXbqUoUOHApCcnMykSZOwt7fnyy+/BODhw4d0796dpKQkunbtioODAwqFgj///JMNGzZw+fJlNm7cqLHukSNH4u7uTkpKCo8ePWLhwoX069ePnTt3oqeX+mH48uVLunfvTnBwMN27d8fNzQ2Ay5cvs3z5cpRKJd27d3+HR0TT5MmTUSr//Z316tUrvvnmG1q0aMH06dMxNTWlWLFibNy4kXLlyuksTpG3/vnfai53HY0qMVE97cnmvXx6eRcVx/TjSvevASjxRVPKdGvLhS8G8WzHYV2FK0SeaPOpMQ+Ck1EqoKCJQj1dqYA6ToZcupPImv2x6umX7yTyXR8zqlc24OFTqb39UGQ1FJiPj0+m5UeOHMm0PDk5maSkJP7++28WL16Mt7c3pUuX5u+//yYxMZHy5ctrzF+hQgUA7t+/T+nSpbOxBx82SW7fgbJly9K/f3+WLFlCixYtKF++PGvXruXWrVts2bJFndiNGjWKpKQktm7dirW1tXr5WrVq0a1bN3bu3Km17k8++QRnZ2cAXF1dMTU1ZdCgQfzzzz9UrFgRgO+++47AwEA2bdqEra2tellPT086d+7M/fv383Hvs5YWZ5rHjx+TkJBAq1at1Ik4oN7PtxUXF4exsXGerEvkXtjZy1rTYv5+SPTNu5hW/veD2WZ4D8LOXU1NbBUK9EyMSY6J1VpWiPddhVJ6ONsaMHNdNO3qm2iU6emBoYGCqBjNWr2oGBUpKSoSk6T3/YdElU/NEtLUr1+fZ8+eAVCnTh3mzp0LQEREBABmZmYa86e9Tiv/2EmzhHekb9++lC5dmilTphAcHMz//vc/unTpgr29PZDaAPz69esMHDhQI7FNY2hoyBdffJHldgoWLAhAUlISkJooHjhwgI4dO2oktmksLCxwdXXNcH1z5syhZcuWuLi4UKdOHUaOHMnz58815rl48SKdO3fGzc0NFxcXWrZsyfbt27Nd/nqzBF9fX1q2bAlAjx49sLOzw9fXN8NmCdu2baNly5Y4ODhQp04d5s+fT/JrDfnTmlpcvnyZnj174uzszKxZs7I8jkJ3DIsVJeFFGAD6hQpiUcORiAvXsft+BI1DL9Ik4gr1bx+mxBdNdRypENmnUEA7bxPOXk/gyQvtxCcxCf4JTsLD3pDqlQ0oXEhByaJKujQpQEy8ijPXE9JZq3hfqZJTMv07cuRIpn9ZWb58ORs2bOCHH37g/v37DBgwQOO7779Oam7fEUNDQ6ZMmUL37t3p3LkzZmZm6iYKAAEBAQDUrl07R+tNSUkhKSmJlJQUAgMDWbRoEeXLl6dSpdQ2ixcuXEClUlGnTp1cxR0aGkr//v0pVqwYL1++ZNWqVXTt2pU9e/agr69PdHQ0/fv3x83NjXnz5mFoaMjff/9NZGQkQJblb2rXrh1lypRh7NixTJo0iapVq1K8eHF1sv66VatWMXv2bLp37864ceO4d++eOrkdPXq0xryjRo2iQ4cO9O/fHxMTE611ifdDqS9bYVK6OHe+WwhAgQplUSiVlGzfnJSkJP4aP5ukiCjKDemGy/p5JEVGE3LwlI6jFiJrdRwNsSykZNEf8RnO47cvll7NC9CjWQH1tJDwZOZteEVohNTcfkjy+wlllStXBsDFxQUHBwdat27NoUOH1HdC3xwaLO0719zcPF/jel9IcvsOeXh44OHhgb+/P3PmzMHU1FRdllYbWqJECY1lkpOTUan+/VDT19d8y0aMGKHxumTJkqxYsULd3jbttsWb682u6dOna8Ti4uLCp59+ir+/P7Vr1+aff/4hKiqKkSNHYmdnB6Q2o0iTVfmbihcvrp6vYsWK6qYIbzaCj46OZuHChfTp04eRI0cC4OXlhYGBATNmzKB3794ULlxYPX/Hjh3p169fro6BeDcK2pWn6sJJhJ29RNCa1Jp9vYKpX/KGRQtzxqsd4eeuAfBs11Hq3z1CxW8GSnIr3nsFjRU09zRif0Ac0bEZJ6nxCSqCQ5P5JziJ24+SMCugpFFNI/q1KsD8ja94FScJ7ociv5slvM7Ozg4DAwMePXqEt7c3BgYG3L9/X6NSK6354ZttcT9W0izhHfr777+5ePEiCoWCc+fOZWuZ1q1bU7VqVfXfmyMZjB49mi1btrB582YWL15MsWLF6NOnjzqpTaNQKMiNEydO0LFjR9zc3LC3t+fTTz8F4MGDB0Bqe2JTU1OmTJnC3r17teLLqjy3Ll++TExMDE2aNCEpKUn95+npSVxcHHfv3tWYv169enmyXZE/jKyLUmPHMpIiorjYYZh6GJ2UuNRarpj7gerEFiD5VQzP9xzDooYDCj3pRS7eby28jHgVp+LE5YybFigVMOSLgsTFq9h8NI5rfydx+loCvlteUdRCSYMaRu8wYvG23uVoCVevXiUxMZHSpUtjaGiIu7s7Bw4c0Jhn7969VKhQ4T/RmQyk5vadUalUTJkyhU8++YQvv/yS77//ns8//1xdM1msWDEgtaa1TJky6uXmz59PXFwcx48fZ9GiRVrrLVOmDA4ODurXrq6ueHl5sXr1asaOHatuvxscHIyNjU2OYr527RpfffUVPj4+9O3blyJFiqBQKGjfvr16+DBzc3NWrVrFwoULGTNmDMnJyVSvXp2JEydiZ2eXZXluhYWltsls06ZNuuXBwcEar4sWLZrrbYn8pW9mSo3dKzCwKMTZ+p2JD/63TXfck9T/xz9/obVc/PNQlIaG6BU0ISkyWqtciPeBlYUSLwdDth6Pw9z030oGfX3QU4KlmYK4BChtpaRkUT22HY/TWD4kPIWnL1MoX1J+xH1I8qtZwuDBg6lWrRp2dnYYGxtz69YtVq5ciZ2dHQ0aNABg4MCBdOvWjSlTptC0aVMCAgLYvXs38+fPz5eY3keS3L4j27Zt48KFC6xdu5bq1auza9cupkyZwtatW9HT08Pd3R2A06dP06lTJ/VyaW1n36yJzIilpSWFCxdWz1+jRg0UCgWnTp3C09MzRzEfPnwYU1NTFixYoB7RIb0xdB0dHfn555+Ji4sjICCAmTNnMmjQIA4fPpyt8txIaze0aNEiihcvrlX+X/l1+qFTGhlS/felFKxUjoAmPYn+655GeXzwc+KCn2NcUruTpXHJYiTHxpEU9epdhStEjlmYKlAqFbTzNqGdt3Z7/6l9zDh2KZ4H//+QBkU691P1lKCU+6wflJTk/GlC4ujoyN69e1m+fDkqlYpSpUrRrl07evfujaGhIQDVq1fH19eXBQsWsGXLFkqWLMkPP/xA06b/nU64kty+A2FhYcyaNYs2bdpQo0YNAKZMmULbtm1Zu3YtPXr0oHr16jg4OLBkyRJ8fHzUNbk59eLFC8LCwtTtTUuWLEnjxo3ZsGEDn3/+udawW5GRkdy7dw8XFxetdcXFxWFgYKDRpGHXrl0ZbtvY2Ji6devy6NEjpk2bRnx8PEZGRtkuzwkXFxdMTEx4+vQpDRs2zNU6hI4plbj8uoDCHs5caPsV4f5X0p0tePM+bIZ2p6iPJy+O/AGAQZHCWLf0IfSYP6ikHaJ4fz15kcLyHdo/wFp4GWNsqGDLsVheRKSg9//Jq5udAX89+LcDbeliSqwLK2W0hA9MftXc9uvXL1v9R3x8fLIcS/djJsntO5A29NTXX3+tnla5cmW6dOnCwoULadq0KdbW1sydO5fu3bvTtm1bunXrpn6Iw+PHj9mwYQOGhoYYGBhorPvhw4dcuXIFlUrFs2fPWLlypbrpQJrJkyfTrVs3OnXqpPEQh6tXr7Ju3Tr69u2bbnLr5eWFn58f33//PQ0bNuTy5cvs2LFDY57jx4+zZcsWGjRoQMmSJXnx4gXr1q3D1dUVIyOjLMtzK220idmzZ/P06VNq1qyJnp4egYGBHDlyBF9fXxkV4T1nP3scxVv58GzXUQwtLSj1ZSuN8se/po7r/PfMZZT4oimum3z5Z8EqkiKjKNu3E0oDfW59O08XoQuRba/iVFy7pz3aS33X1B9lr5f99SARj6qGGBsquPUwCbOCCuq6GJKYBMcuSXL7IcnrdrUiZyS5zWcXLlxg+/btfP/991haWmqUDR06lH379jF9+nQWLFjAJ598wrZt21i5ciXbt29n0aJFKBQKypQpQ+3atZk3bx6FChXSWMe8ef9+uRcuXJjKlSvj5+enriGG1KYKGzZsYPXq1ezbt0/9VLKKFSvSp08fOnbsmG7sdevWZfTo0axbt45t27bh6urKsmXLaNy4sXqesmXLolQqWbBgAaGhoVhYWFC7dm31CAZZlb+NXr16YW1tzapVq1i3bh36+vqULVuWevXqaf0IEO8fM6fUoWysW3pj3dJbqzwtuU14Hsof9TphP3MsNsN6oDTQJ8z/Cld6fE3UtdvvNGYh8tPynTH4uBnhZmeAfTljkpLh3uMkdv8Rx/MwSZY+JO9ytAShTaFSyT09IbJrj0HuO8EJ8aHYNzN7o7kI8SFbNDL/xny93qJ+puUOu4/l27aF1NwKIYQQQuSp/H6Ig8icJLdCCCGEEHlIlSI3xXVJklshhBBCiDyUnChtbnVJklshhBBCiDyUkijNEnRJklshhBBCiDyUXw9xENkjya0QQgghRB6SZgm6JcmtEEIIIUQekmYJuiXJrRBCCCFEHpJmCbolya0QQgghRB5KjpdmCbokya0QQgghRB5KjpXkVpckuRVCCCGEyEOqRGmWoEuS3AohhBBC5KHkWOlQpkuS3AohhBBC5CFplqBbCpVKJXXnQgghhBDio6DUdQBCCCGEEELkFUluhRBCCCHER0OSWyGEEEII8dGQ5FYIIYQQQnw0JLkVQgghhBAfDUluhRBCCCHER0OSWyGEEEII8dGQ5FYIIYQQQnw0JLkVQgghhBAfjf8DkW1xTcPSWBgAAAAASUVORK5CYII=\n"
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAADgCAYAAACJmjfeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACAuUlEQVR4nO3ddVgU69vA8S8pIoqBidguJoqJYGK34rFQPIrdha3HwELF7k5MFLHzYCt2JxbmQUyUZt8/eJkf6wKCgug59+e69lKemXnmmdnZ2XufGh21Wq1GCCGEEEKIeOimdgGEEEIIIcSvTQJGIYQQQgiRIAkYhRBCCCFEgiRgFEIIIYQQCZKAUQghhBBCJEgCRiGEEEIIkSAJGIUQQgghRIIkYBRCCCGEEAmSgFEIIYQQQiRIAsZf3Lx587C0tEz0a/v27UnK39/fnx07dnx3+c6dO4elpSUuLi7fXDehYylRogS2trY4Ozuzb9++7y7P99i+fTuWlpbMmjXrp+3z+vXrDB06lBo1alCyZEnKly+Pg4MDs2fP5t27dz+tHN8jsdfkpEmTUqV8r1+/ZtmyZbRp04YqVaoo11bnzp3ZsmUL4eHhqVKulJTS70lM/lu3bk3mkou4zJo1K0n388jISLZu3UqHDh2wsbGhRIkSVK5cme7du7N7927ieqBbVFQUW7Zs4fXr199dTicnJywtLXny5Mk313327BmWlpa0bdtWSYvruoorz+Qoa1xifzaeP3+e4LqTJk1S1j137tx37zOpx5Ia30/x0U/tAoiEVahQgT59+mikHT58mDt37lCzZk2KFi2qsezrvxNy584dWrZsSd26dWnevHmylDcxKlSoQIUKFTTSvnz5gp+fH8ePH+fUqVO8fv2ajh07/rQy/UweHh5MmDABY2NjatSoQY4cOfj8+TPXr19n0aJFbNy4kTVr1lCkSJHULmqC4nofYytVqtRPLE203bt389dff/H582eKFi1KrVq1yJAhA//88w8nTpzg5MmTrF27lhUrVpA9e/afXr6UllLvScx9qFixYt9bNJFCQkND6dKlC76+vhQqVIg6depgamrKP//8w7Fjx/Dx8cHb25v58+djaGiobDd48GD27t3LwYMHf0o5M2TIQJ8+fciZM2eC6zVv3pwKFSpgamqqpP2Msu7fv5/OnTvHuSwqKirZKjKSeixFixalT58+lCtXLln2/yMkYPzFVaxYkYoVK2qkPX/+nDt37lCrVi0cHBy+O+8PHz4QFhb2o0VMsgoVKtC3b984l504cYKuXbsyZ84cWrRoQfr06X9y6VLW8+fPmTRpEvnz58fDw4NMmTJpLN+wYQMTJkzAxcWFXbt2oaOjk0ol/baE3sfUcOjQIQYPHkzWrFlZtGiR1ucmLCyMuXPnsmzZMgYOHMiGDRt+6fP7PVLqPYnrPiR+DStXrsTX15cuXbrg4uKicU1//vyZHj16cOzYMdasWUPXrl2VZW/evPmp5cyQIUOirs24vtNSsqwZMmQgNDSUffv2xRsw+vr6EhAQQLp06fj8+fMP7S+px1K0aNEkVQSlJGmSFr+UKlWqUK5cOb58+cKlS5dSuzjJzsfHh4iICP744w+tYBGgXbt2FC9enPv373P//v1UKOHv6cOHD/z1118YGhqycuXKOIMbQ0NDXFxcsLOz4+LFiz/UrCTEr+Lw4cMAdO7cWesHULp06Rg9ejTAT+/q87tImzYtVatW5fr16zx79izOdfbu3YuxsTG2trY/uXS/FgkY/4WOHTtGp06dKFeuHCVLlqRBgwbMnz+f4OBgZZ3hw4fToUMHAHbt2qXVX+bs2bP06dOHypUrU6JECcqWLUvr1q2T3Efye2TOnBmAoKAgjfSbN2/i4uJC9erVKVGiBNbW1jRr1oyVK1cSFRWlrBfTV2bChAlcvHiRjh07UqZMGaytrenQoUOiAgW1Ws2IESOwtLSkR48eSk3sly9fcHd3p3HjxpQuXZpy5crh5OTE3r17E3VsMf3nbt++He86f/31F4sXLyZHjhxKWkJ9hapWrYqlpaXW8U+aNImzZ8/Svn17SpcujY2NDaNGjSIoKIiPHz8ybtw47OzssLa2pnXr1pw5cyZRx/C9Ll++TK9evahYsSIlSpSgVq1auLm5afXZjOnX9Pfff9OpUydKlChBlSpVEvwBsXfvXt6+fUvz5s1RqVQJlqNz5860bt1ao8nrW/uMjIxk3bp1NG/enFKlSmFtbU2bNm3w8vLSyt/e3h5LS0siIiI00iMiIrC0tMTe3l5Ji+kDvHTpUvbt20fjxo2xsrLC3t4ed3f3H67NSEhUVBRbt27FycmJihUrUrx4cWxsbOjevTsXL17UWDeuvmb29vY0atSII0eOYG9vT8mSJWnbti1qtVpZ9urVK4YMGUKlSpUoWbIkTZo0YdOmTXGW59q1a/Tu3Vvpg1e3bl1mz54d5zk4cOAATk5OVKpUCSsrK+rVq4e7uzufPn3SWO/t27eMHz+eevXqYWVlRcWKFenSpQunT59O9HlKyftOeHg4S5cuVcpXt25dPDw8El22mDwguotRXCwtLZk9ezYjR47UKKevry8AderU0bgmP336xLx582jWrBnW1taUKFGC6tWrM3LkSF68eBHnPt69e8eIESOoWLEi1tbWtG/fnuPHj2usE1cfxrjEvtfFV9arV69iaWmpfId9LaYPaEww/S0NGjQA4g6qIyIiOHDgAPb29hgZGcW5/cePH5kxYwZ16tShRIkS2NjY0K9fP433JKHzHtNPcfv27QwYMAArKysqVarE/v374+3DGBQUxOzZs6lfvz5WVlZUq1aNgQMH4ufnp7He7du36dOnDzVq1KBEiRJUrVqVYcOG8fjx40Sdm9ikSfpfZv78+cybNw8TExNq1KhBxowZOXv2LPPmzePw4cOsX78eExMTatWqBcCOHTtQqVTUqVNHqfbetm0bo0ePxszMDHt7ezJkyMDTp085evQoI0aMIDg4mHbt2qVI+YODg7lw4QKARh++kydP0qNHD9KmTUutWrUwMzPj1atXHD58GDc3N968ecPQoUM18rp06RJbtmyhdOnStG7dmqdPn3L48GEuXbqEh4cHVlZW8ZZj7NixbN++nZo1azJ79myl70+vXr04c+YMlStXpmrVqgQFBXHgwAEGDhzIp0+faN26dYLHV7lyZXR0dNi1axefP3+mRYsW2NjYYGJioqxTunTppJ62OPn6+uLh4UHVqlVp27YtPj4+bNu2jcDAQJ4/f054eDgNGjTg7du37N27l27durFnzx7y5MmTLPuPzdPTk9GjR6Onp0fNmjXJkSMHly5dYuXKlRw4cIANGzZo9W0aPXo0WbNmpUOHDty/f5/ixYvHm/+BAweA6Jvwt9jZ2WFnZxfnsrj2GRYWRs+ePTl58iTm5uY0a9aM8PBwjh07xrBhw/D19WXy5MlJOBvaDh48yPXr16lWrRp2dnacPXuWpUuXcurUKTZu3EiaNGl+KP+4jBgxAi8vLywtLWnSpAn6+vrcuHEDHx8fTp06xbZt277Zj/b169cMGjSIWrVqkTFjRkxNTZVarg8fPtC6dWuMjIxo2LAhISEh7Nmzh7FjxxIaGsqff/6p5LN3716GDBmCoaEhtWrVInv27Fy6dIlFixbx999/s2HDBuUz4uXlxbBhw7CwsKBhw4YYGhpy4cIFli5dyvnz59m4cSM6OjqEhYXh5OTEo0ePqFmzJrVr1+bNmzfs37+fU6dOsXjxYqpVq5bg8aXkfUetVtOnTx98fHwoWLAgrVu35tWrV7i6upIlS5ZEv49VqlTh7t279O3bl3bt2lGnTh2KFSuGru7/6oPq16+v/D+mL+GOHTt4/vw5Tk5O5M6dG4j+QdymTRv8/PyUz0lISAinT5/G09OTs2fPsnfvXq3AqU+fPujo6NC0aVPev3/PgQMH6NatG1OnTqVZs2aJPpavxVfWUqVKUbhwYXx9fXn58qXGvUOtVuPt7U2WLFmoXr16ovZTvXp10qZNy759+zSa7QFOnTrF+/fvadiwYZwVA2/evKFdu3Y8fvyYChUqULNmTd6+fcv+/fvx8fFh4cKFVK5cOcHzHsPd3R1jY2Pat2/PvXv3sLa25tSpU1r7fP/+PW3atOHRo0cUL16cNm3aEBgYyP79+zl58iQeHh4ULlyYhw8f0rZtW/T19alTpw5ZsmTBz88Pb29vfHx82LVrF9myZUvUOYo5ueI3M2zYMLVKpVJ7enpqpF+5ckWtUqnU9vb26qdPnyrp4eHhyjajR49W0s+ePatWqVTqwYMHK2lhYWHqChUqqG1sbNRv3rzRyP/YsWNqlUqlbtGiRYJ5xGfu3LlqlUqlnjt3rtayoKAg9eXLl9UdOnRQq1Qqdd++fTWWN2rUSF28eHG1n5+fRvr9+/fVlpaWahsbGyXN399frVKp1CqVSr1ixQqN9efMmaNWqVTqUaNGKWmenp5qlUqlnjlzplqtVqtdXV3VKpVK3adPH3VYWJiy3r1799QqlUrt4uKikefTp0/VxYsXV9epU+eb50CtVqtXr16tLlq0qFLGokWLqps3b66ePHmy+vTp0+rIyEitbdq3b69WqVTqx48fay2rUqWKWqVSxXn8a9euVdLfvn2rLlWqlFqlUqnbtm2rDg0NVZa5u7urVSqVeuHChd8sf8z72L59e/XcuXPjfJ09e1ZZ//nz5+oSJUqoy5cvr75586aSHhUVpZ45c6ZapVKpO3XqpJW/vb29Ojg4+JvlUavV6mrVqqlVKpU6ICAgUevHd0xx7XPJkiVqlUql7tatm/rz589KemBgoLpJkyZqlUql9vb2VtJr1KihVqlU6vDwcI18wsPD1SqVSl2jRg0lLebzo1Kp1KtWrdJYd8CAASn2nly/fl2tUqnUTk5O6oiICI28pk+frlapVGo3Nzet/Lds2aJ1nDNmzNAqT8yyrz9DZ86cUatUKnXt2rWVtICAAHWpUqXUtra2GvcttVqtnjdvnlqlUqnHjRunpDk4OKhLly6t/vTpk5IWFRWl7tixo1qlUqkvXryoVqvV6r///lutUqnUs2bN0sjz/PnzWtdcfFLyvrNz507luor9WfTx8VEXKVIkznt8XD5//qxu166dsm+VSqUuW7asukuXLuoVK1ZondMYcd1TVqxYoVapVOo5c+ZorBsZGalu3bq1WqVSqX18fLTyqFOnjvrdu3dK+o0bN9SlS5dWlylTRv3x40eN89OmTRtlvbiuq7jKlVBZFy9erFHW06dPq1UqlXrKlCnfPHcqlUpdpUoVtVqtVvfr10+tUqm0ztfQoUPV5cuXV4eGhqoHDx6sVqlUGp+lPn36qFUqlXrDhg0a2927d09dunRptY2NjfrLly8JHkvMd5C1tbU6MDBQI5+vv5/UarV6zJgxapVKpZ46dao6KipKST906JBapVKpe/bsqVar1eqpU6eqVSqV+vTp0xp5LliwQK1SqdSLFi365jmKTWoY/0W2bdsGwMCBA7GwsFDS9fX1GTlyJEeOHMHLy4vRo0fHW2MRGRnJ+PHjSZcundavXBsbGyC6medHzJ8/n/nz58e5zMDAgNatWyvNJxD9i7F///5ERERQoEABjfULFSqEmZkZAQEBWnmlT59eq8miVq1aLFiwIN6+Km5ubqxbt4769eszY8YM9PX/9xGJaX56+PAhb9++VZrOLSws2LdvH1mzZk3E0cOff/5J+fLlWbNmDX///TcfPnzg5s2b3Lx5k9WrVyvNySVLlkxUfvFJly4djo6Oyt+ZMmWiQIEC3Lx5E2dnZ40Rk2XLlgWI97zExdfXV2le+VqfPn2UfoTe3t6EhYVpjbLV0dGhb9++7Nu3j1OnTuHv769x3SbUBPS1wMBAAI1m5hinT5/WamIFyJkzJ3/88YdGWlz79PT0RFdXVxnZHiNz5syMGjUKJycnNm/eTOPGjRNV1rgUKFBA41rV19dn+PDhHDx4kB07dtCzZ89E5ZPY9yRr1qy4ublRtGhR9PT0NNarWLEiy5YtS/TnPKY5Ly7dunXDwMBA+dvGxob06dNrXGdeXl4EBwczaNAgjfcfoEePHmzYsAEvLy9GjhyJgYEBarWakJAQrl+/TqVKlYDoa8nd3R34X5eWmM/r7du3+fLli/LelStXjoMHD35ztG5K33d27twJgIuLi8ZnsVq1atSsWZNDhw4lWL4YxsbGrF27Fi8vL7Zv386lS5f49OkTx48f5/jx40ybNo0WLVowatQojes3Lra2tri6ulKvXj2NdF1dXcqXL8/ly5eVz1ps/fv3J2PGjMrfxYsXp3Xr1qxatYpDhw790ODM+DRt2pSZM2eyc+dOunfvrqTHTBOX1H02aNCA/fv3s2/fPrp16wZEj0A/fPgw9erV03iPYrx584ZDhw5RrFgxjXstQOHChWnVqhWrV6/myJEjNGrU6JtlsLGxUa7f+ISFhbFnzx4yZcrEoEGDNPqt1qpViz59+igzQKj/fzqlixcvYmNjo6zbsWNHmjdvnuSZIiRg/Be5efMmQJwd/jNkyIClpSXnz5/nwYMH8TbvGRkZKTeL58+f8+DBA549e8ajR4+4fPkyEB1U/ojYU38EBwdz5MgRHj9+jLW1NXPmzNG6iHV0dJQm9ICAAO7du4e/vz+PHz/m+vXryg0sMjJS48svT548GgEfoIy6jmt0+I4dO5S5sapWraq1raWlJeXKlePChQtUrVqVsmXLYmdnR5UqVZI8iq1YsWK4ubkRGRnJrVu38PX15fTp05w9e5a7d+/SqVMntm/f/kPNwxYWFlrBQLp06QC08o0JkkJDQxOdf58+fRI16vHWrVtA3Nelvr4+1tbWPHnyhNu3b2sEDF8HDwkxNTUlICCADx8+YGZmprHs9OnTLFu2TGubMmXKaAWMX+/z8+fPPH78mPz588d5cy1Tpgx6enrKMX6vChUqaDQhAmTPnp0cOXLw5MkTgoKCNLotxCex70n27Nlp1qwZUVFR3L9/n4cPH/Ls2TMePHigBJyJ/Zwn9D59HWhB9Gfw06dPyuf1+vXrQPTcpPPmzdNaP23atLx9+5bHjx9TuHBhHB0dGTVqFB07dqRAgQLY2dlRuXJlbGxsNIJ9W1tb8uXLh4+PD3Z2dlSoUAFbW1uqVq1K/vz5v3lcKX3fuX37NsbGxhQuXFhr32XLlk10wAjRAZ2DgwMODg58+vSJCxcu4Ovri4+PDw8fPmTbtm28efOGJUuWJJhPkSJFKFKkCKGhoVy7do3Hjx/j7+/P3bt3OXv2rHK8X4tryhdra2tWrVrFrVu3UiRgzJIlC9WqVePw4cNcv36dkiVL8vnzZw4dOkSJEiW+2Zf5a9WqVcPY2Jj9+/crAeOxY8cICgqKN9i7efMmarWaiIiIOK9df39/Zb3EBIyJuef5+/sTFBRE1apVNX6MxYj9+XdwcGDTpk3MmzePjRs3Ymtri52dHVWrVv3mD6a4SMD4LxIzSCS+qWhivvBiD36Jy+XLl5k2bZrS4V9HR4e8efNSsWJFbty4EecksEnx9dQfgwYNYsSIEXh7ezNw4EBWrFhB2rRpNbbx8/PDzc2N48ePK/s3NzenXLly3L9/nw8fPmiVK65a1JhfWHEdw+vXr6lWrRpnz55l6tSpVKlSRavWcPny5axatYrdu3dz9uxZzp49i7u7O/ny5WPkyJHf7BP1NT09PUqWLEnJkiXp3Lkzz549o3///ty4cYO1a9cqIxy/R0K1CSnRJy4+MQMRvnVdfvnyRSP962sgIRYWFgQEBPD48WOtgNHFxUVjYvlnz55Rs2bNOPP5ep/f+kzp6+uTOXPmOGtdkiK+m3fWrFl59uwZnz59SlTAmBQ7duxgwYIFypeagYEBlpaWFC9enGfPniX6c55QLXBiPoMfP34EomuiE/LhwwcA/vjjD8zMzFi3bh3nzp1j3bp1rFu3DmNjY9q0acPgwYPR19fHyMiIzZs3s3TpUqU/mY+PD5MnT6Z48eKMGzcuwX7MkLL3nY8fP2rUysUWV015YqVPn54aNWpQo0YNhg0bxr59+xg2bBg+Pj7cvHkzwb7AYWFhzJ8/Hw8PD+Vza2JiQsmSJSlUqFCcNfU6Ojpxtq7E/DhNyYFbLVq04PDhw+zcuZOSJUuyf/9+vnz58l0BqpGREfb29uzevZunT5+SJ08e9uzZg5mZWbxzm8Zck/fu3ePevXvx5h2zXmLK8C3v378H4r8nxaZSqdi6dSvLli1T5uP09vZGT08Pe3t7xo0bp3W/TIgEjP8iMV8or1+/Jm/evFrLYy7a+G5SAC9fvsTZ2Rm1Ws2wYcOUX+lGRkaEhoayefPmZC+3vr4+kyZN4sGDB1y8eJExY8YwY8YMZfmXL1/o2LEjgYGBdO/enZo1a1KgQAHleOMbwJBUVatWZdGiRSxfvpyZM2cyfvx4rabztGnT0qtXL3r16sWrV684e/Yshw8f5tChQ/Tu3Zv9+/drdWSOERkZqTRbxjeqOnfu3IwaNYq2bdvy8OFDreWxR2XG+NYPgNQW+7osWLCg1vKY6zKuaYYSq06dOly6dIn9+/cn6wS3MV968T2VISoqiqCgoDg/U1+/Vwm9T/Eti/nS/pFzE5fDhw8zfPhwzM3NcXd3p3jx4lhYWKCvr8/x48eVQUQ/Q8w53rJlS6InFq9evTrVq1cnODiYS5cuceLECby8vFi5ciUZMmRQmvAzZszI0KFDGTp0KE+ePOH06dMcOHCAM2fO0KVLF44ePRpvIJ7S952MGTMSFBSEWq3Wmg7n6x9P8Tl8+DATJ07kjz/+0HrAQ4z69etz+vRptmzZwsOHDxMMGKdPn87atWuxsbHB2dmZIkWKKD/oZsyYEWfAqFarCQ4O1vqBGvOZSej75kdVrVqVrFmzsnfvXkaOHMnu3bsxNDRMVG1eXOrXr8/u3bvZv38/7du359ixY/zxxx9aLTUxYq7dNm3aMH78+O8+jqSI2efXMwLEiN39AqKbxqdNm0ZkZCQ3b97k9OnT7Ny5k0OHDvH582dWrVqV6H3LtDr/IjH9w+LqwxQaGsrVq1cxNjZWApq4Ji0+ePAgX758oWfPnsoNI+ZXT8y8gD9awxgXQ0NDpk+fjqGhIbt27dIIqE6fPs0///zDH3/8wcCBA7GyslJu2m/fvlX6Wv1ouYoVK4aenh6dO3fG0tKSQ4cOaZTjypUrTJ06lStXrgCQI0cOmjVrxvz583FwcCA8PFxpto+Lnp4earUaPz8/JY+4xLwvsZtAY/rPfP1r/e3bt/HeOH4VCV2XsdPjappLrCZNmpAhQwY2b94c7/QiMZJynZiYmJA3b17++eefOKehuHbtGsHBwRrNXzHNRF+/VwlNY3Ht2jWttJhm2NifweQS08/L3d2dRo0akT9/fqUZ9cGDB0DKfM7jEtOd4+rVq3EunzlzJkuWLOHLly8EBQWxYMEC5Usubdq02NnZMXz4cKVJ8Pz580D0QwAmTpyoTEWVN29e2rZty+rVq6lYsSIfPnxIsFYope87JUqUIDg4mBs3bmgti+t6iEvWrFl5+fIle/fujfPHZIyYe0rsqbri4uXlhbGxMcuWLaNatWoa96CErouY7lCxxcx28aN9sROir69P06ZNCQwMxMfHh/Pnz1OzZs3vrqGtWrUqJiYmHDhwAB8fH4KDg2nYsGG868dcuzHdKr526NAhZs2alej3MzEKFCiAoaEhN2/ejLN7QPv27SlXrhyfP39m06ZNuLq6olar0dPTw8rKih49euDp6YmxsbHyWUksCRj/RVq0aAFEDyqJaWaC6HmkJk2axMePH6lfv77y5RPzBRH72boxy75+ruaHDx+YOHGikl9KKFSoEL179wZg4sSJStV7TJm+ngMsNDSUMWPGKDfK5CqXvr4+EydORFdXF1dXV+WLISgoiFWrVjFv3jyNm7NarVbO17f6oDg7OwPRzfBxzcUYM58XoNG/LqYv2N9//62x/oIFC37aF/v3atKkCQYGBqxZs0arr9/ChQt5+PAhNjY25MqV67v3kSVLFqZMmUJYWBjOzs4cOXIkzvXOnDmj1MR83WcwPi1atECtVjNhwgSNmp93794pz2aO/WjNmFrU2O9VREQEixcvjncfZ86c0eizFh4ezqRJk4iIiKBVq1aJKmdSxPeZunfvHkuXLlXK/DM0bdoUAwMDFixYoFWrvn79epYsWcKBAwcwNjbG2NiYzZs3M3fuXB49eqSxbsw9L+YH8YsXL1i3bp1W/9XQ0FACAgLQ1dXF3Nw83nKl9H0n5n11c3PTmHP24sWLiZ7XtVSpUpQtWxY/Pz9GjBihNXctRAfQ3t7eFChQQBncBv/7YRP7/p8mTRpCQ0O1Bjzt3r0bHx8frfVjzJo1S6P/84ULF/D29sbMzCze7h9JEVdZY8R8702cOJHw8PAf6i8ZM61TTJcgc3NzrK2t410/V65c2NnZcfPmTVauXKmxzN/fn7Fjx7J48WKNbgoJHUtiy9igQQMCAwNZsGCBxjIfHx9u3bpF6dKlSZcuHefPn2f9+vXs2rVLY703b94QGhoab2tYfKRJ+l/E2tqaXr16sXDhQpo1a4a9vb0yD+O9e/coUqQII0aMUNaP6Td1/Phx3NzcqFmzpjJ34+bNm3n16hWWlpa8efOGo0ePEhwcjImJCZ8+fSIiIkKrY3dy6NKlC/v27ePOnTtMnTqVqVOnUrZsWfLly8eJEydo164d1tbWfPz4kWPHjhEQEECmTJl49+4d79+/T1K/t4RYWVnRvn171q5dy8SJE5k5cya2trZUr14dHx8fGjdujK2tLXp6epw9e5bbt29Tt27db86h2LJlS/z8/Fi1ahUODg6ULVuWYsWKYWRkxLNnzzh+/DifP39myJAhGjf31q1bs3HjRhYuXMiDBw/InTs358+f58mTJ6hUqgRrSlKbubk5Y8eO5a+//qJVq1bKPIxXrlzhypUrmJub//A8hhA9QnDRokWMHDmSXr16kSdPHipUqECWLFl4+/Ytvr6+Sm2Tvb09o0aNSlS+zs7OnDlzhlOnTtGoUSOqVq1KREQEPj4+BAQE4ODgoDHXnKOjI0eOHGHs2LH4+vqSKVMmjh8/TkhISLxBsYmJCX379qVmzZqYm5tz5swZ7t27R7Vq1b450fH3aN68OXv27GHkyJEcP36cbNmy8ejRI44dO0aGDBmA//WVSmm5c+dWro9mzZpRq1YtcubMye3btzl16hSmpqbK9aGrq8uwYcMYNGgQDg4O1K1bl6xZs/LkyROOHDlC5syZlXn0mjRpwubNm9m6dSt3796lXLlyhIeHc/z4cZ48eYKzs3OCo0RT+r5jb29PixYt8PT0pGnTplSvXp13795x8OBBcuXKFeck/XGZM2cOnTp1wsvLi7///hs7Ozty585NeHg4N2/e5Pz582TJkoV58+Zp/EiKuf9PmDBBeVZ4ixYtWLx4MX/88Qf16tXDwMCAa9euceHCBczMzHjz5k2c10VgYCBNmjTB3t6ef/75hwMHDqCnp8f06dOTpb90XGWNUaBAAaytrbl8+TLZs2f/4a4CDRo0wMvLi8uXL2vNyRgXV1dX2rVrh5ubGwcPHqR06dJ8/PiRAwcOEBQURL9+/TQerJDQsSTWsGHDuHz5MgsWLOD06dNYW1vz8uVLDh48iKmpKePGjQOgd+/eHD9+XOnLWrBgQWWeTLVardG3OzGkhvFfpn///ixcuJASJUpw9OhRtmzZAkTXaG3ZskWjo2zOnDkZPHgwadOmZf369Zw+fZps2bKxdu1aatSowY0bN1i3bh2XLl2iatWqbN++nXr16hEeHh7nZKLJIaY/o56eHjt27ODUqVOkTZuWlStX0qhRI/z9/Vm7di2nT5+mZMmSbNiwQZnC4uvatx81YMAAcuXKxZ49ezh8+DC6urrMnj0bFxcXpXybNm1CR0eHESNGKNN6fMvw4cPZuHEjzZs3JyAggG3btrFy5UouX76Mvb09mzdvpkuXLhrbFCpUiJUrV1KuXDmOHTvGli1byJYtG5s3b07SaOLU0rJlS9atW0flypU5c+YMHh4evH//nu7du7Njx44Ea3qSwt7env379/PXX3+RK1cuTp06xcqVKzl48CDp06fH2dmZ3bt3s2jRokT/ujYwMGDZsmWMGDGCDBkysGPHDvbv30++fPlwd3dnypQpGutXrlxZeTLK3r172bFjByVLlmTTpk1KMPa16tWr4+rqip+fH5s2bSIyMpKhQ4eycOHCRNeEJkXlypVZsGABRYoU4ciRI2zcuJGnT58qTy3KkycPly5dUgakpLSY68POzo5Tp06xdu1a/P39adWqFZ6enhoTiDds2JCVK1dSpkwZTp06xapVq7h69SrNmzfH09NT+TzE3Dd69OjBly9f2LRpE56enmTOnJmpU6dqTbj9tZ9x35k0aRJ//fUXxsbGbN26lcuXL9O3b994n2kcl6xZs7Jjxw7GjRtHyZIluXDhAqtXr2bLli18+vSJXr16sW/fPgoVKqSxXY8ePZRAa926dQQFBdG3b1+GDBlChgwZ2Lp1K97e3kRGRjJmzBil/3pMTWNsa9euxdLSks2bN3P06FFsbW2VUbnJIa6yxhbTN7xZs2bx9jdMLFtbW6VJO6Hm6Bjm5uZs376dTp06ERgYyPr16/Hx8aFEiRIsWrRIaTVL7LEkRubMmdmyZQvOzs4EBASwbt06zp49S/369dm6datybytQoACbNm2iSZMm3Lt3jzVr1nDo0CHKli3L+vXrlVkAEktH/au3ZwkhxL/UuXPn6NChA40bN9YY6CWESLxRo0bh6enJgQMH4hzwKZKH1DAKIYQQ4rf04MED9uzZg52dnQSLKUz6MAohhBDitzJr1ixOnjzJgwcPCA8Pp3///qldpH89qWEUQgghxG8lR44cPHr0CDMzM9zd3b85Cbv4cdKHUQghhBBCJEhqGIUQQgghRIIkYBRCCCGEEAmSgFEIIYQQQiRIAkYhvoOTkxOWlpZxvtzc3L65/blz57C0tOTZs2c/obQpJ2aC6tivYsWKYWNjQ69evTQeUZkchg8fjpOTU7Lm+bVr167RvXt3KlSoQMmSJalbty7u7u7fNcHu78zJySnBx6yNHj2aunXrJjnf7du3azz54nfw7NmzOD/r1tbWNGvWjD179iTr/n7G/eHjx49MnToVe3t7SpQogY2NDX369NF6fKcQMWRaHSG+U/369eN8vFxiHhNmbW3NyZMnyZw5c0oU7afKkSMH27ZtU/4ODw/n9u3buLq60qNHD3bv3o2Ojk4qljDx7t+/j5OTE+3bt2fQoEEYGxtz+/ZtpkyZwtWrV1m7dm1qF/Gn+eOPPxg6dCh+fn7K87FjhIaGsn//frp3757kfBs0aECVKlWSq5g/1bx585RnC6vVagICAliyZAkuLi6Ym5t/89Ggv5KePXsSERHB5MmTsbCwIDAwkGXLltGuXTu2bdum9Z4LIQGjEN/JyMiIrFmzfte2hoaG373tr0ZPT0/rWHLlysWnT58YNmwYd+/e1Xi0269s+/bt5M2blyFDhihpFhYWGBkZ0bVrV+7cufPbHMuPqlu3Lq6uruzatYsBAwZoLDt8+DDBwcEaz9BOLCMjI4yMjJKnkD+ZqampxrWeLVs2ZsyYQfny5dm3b99vEzDeu3ePCxcusGPHDooVKwZEP+Ju5syZ1KpViy1btjBixIhULqX41UiTtBAp4MOHD4wePZoqVapQvHhxKlWqxOjRowkODga0m5zs7e1xc3OjQYMGVKxYEV9fX5ycnJgxYwYjR46kXLlylClThsGDB2s0jfr5+dG1a1esra2pXLkygwcPJiAgQFn++PFjOnfuTNmyZbG2tqZz587cvXtXWX7s2DEcHBwoVaoUlSpVYvjw4Xz48CFZzoGhoSEQ/SxmgLCwMNzc3JQmsAoVKtC/f3/evn0L/K/Z78CBA7Rs2ZISJUooz9aOz6RJkyhfvjzXrl1LluPR0dHh+fPnPHjwQCPd1taWPXv2kD9/fiDupvHYaTHHsmfPHpo1a0bJkiVxcHDAz8+PBQsWYGtrS4UKFRg/fjy/6sxmRkZGNGzYkN27d2st27FjB9WqVePdu3d0796d8uXLU6JECWrWrMnKlSuV9ebNm0f79u0ZOHAgZcqUwdXVVatJ+t69e9/Mo2PHjixdupSqVatSsmRJ2rdvj5+fn7LO58+fcXV1pXLlylhbW9O+fXtu3LihLL906RLt2rXDysqK6tWrM378+GTrYqCrq4u+vj76+v+rfzl8+DAtW7akdOnSynt/4sQJZXliPtuxXbhwAWtra2bNmgVAYGAg/fr1o2LFilhZWdGmTRt8fX2TVGaI/rzEvv4MDAxYv3493bp1A+JuGv86zcnJCTc3N1xcXJT70MaNG7l48SJNmzalVKlStGnThsePHye6fOLXJAGjEClg+PDh3Lp1i/nz53PgwAFGjBiBl5dXgsHP+vXrGT16NMuXL1dqKlavXo2ZmRnbtm1j+vTpHDlyhNWrVwPw+vVrHB0dyZs3L9u2bWPx4sUEBQXRunVrvnz5AsCgQYPInj07np6ebN26FV1dXfr06QPA27dv6dOnDy1atGDv3r3Mnz+f8+fPM23atB8+/rt377Jw4UJKliypBFnTpk3j4MGDTJ06lQMHDjB16lTOnj3LokWLNLadMmUKPXr0YN++fVSvXp1x48bF2Rdy2rRp7Ny5k1WrVmFlZZUsx9O6dWv09fVp1KgRbdq0YebMmZw4cYLIyEgKFSpEmjRpknQeZs2axciRI9m6dSsfP36kbdu2PH78mHXr1jFw4EA8PDz4+++/k5Tnz9SiRQv8/f25fPmykhYQEMDp06dp0aIFzs7OZMyYkU2bNrF7927q1auHm5sbt2/fVtY/f/48ZmZm7Ny5UyvIDg4OTlQeFy5c4OLFiyxduhQPDw8CAwMZP368snzAgAEcP36cKVOm4OXlhYWFBc7Oznz48IE7d+7QqVMnqlSpgre3NzNmzODmzZs4Ozv/cLD+4cMHpk6dSnBwMI0aNQLgxo0b9O3bl4YNG7Jr1y62bNlC5syZGTp0KGFhYcq2CX22Y7ty5QrdunWjU6dODBw4EIBx48YRGhrK+vXr2bVrF/nz56dXr17K5/5bChUqhL29PbNnz6ZGjRqMHDmS7du38/r1aywsLMiSJUuSzsO6desoWrQo3t7e1KxZk4kTJzJu3DhGjhzJ+vXr+eeff3B3d09SnuLXI03SQnynXbt2ceDAAY20smXLsnz5cuzs7ChfvrxSk5I7d27Wr1/PvXv34s2vWrVq2NraaqQVKlSIQYMGAZAvXz7s7OyUL++NGzeSI0cORo8eraw/e/ZsbGxs2L9/Pw4ODjx9+hRbW1vMzc0xMDBg8uTJPHz4kKioKF6/fk1YWBi5cuXC3Nwcc3NzFi9eTGRkZJLOw4sXL5R+XRBdk2hiYoK9vT1DhgxRajNKlixJvXr1KFeuHBDdBGZra6t1Tjp27EjNmjUBGDhwIBs2bODq1atYWFgo68yaNQtPT09Wr16tNKklx/HkzZsXLy8vVq5cyZEjR1iyZAlLliwhQ4YMDBkyhFatWiXp3Dg7O1OhQgUAateuzbp165gwYQJp06alYMGCzJs3j/v372Nvb5+kfH8WKysrVCoVu3btUt5jb29vsmTJQqlSpejQoQPt2rUjXbp0APTr14/ly5dz9+5dihYtquTTr18/0qdPD0TX9sUIDg5OVB4RERFMmzYNU1NTANq0acP06dMBePjwIcePH2fFihVUrlwZiA6oMmTIwLt371ixYgV2dnb06NEDiP4cubu7U6tWLXx9falYsWKiz0fXrl3R09MDICoqioiICKysrFi5cqVSVj09PcaMGYOjo6OyXYcOHejatSuBgYHkzJkTSPizHePGjRuMHj2azp0707t3byX96dOnqFQqpbvEqFGjaNy4sVK2xJg/fz6bN29m165d7Ny5E09PT3R0dKhfvz6urq6YmJgkOq+iRYvSuXNnANq3b8+mTZtwcnJSzm39+vU5fPhwovMTvyYJGIX4Tvb29ri4uGikxfTNcnR05OjRo+zYsYPHjx/z4MEDnj17RoECBeLNL2/evFppX6+fPn16Pn78CMCtW7e4f/++RrAG0QMSYprrBg4cyOTJk/Hw8KBChQpUqVKFRo0aoaurS9GiRWnUqBE9evQga9as2NnZUb16dWrXrp2k85AtWzbWrVsHRAePU6dOxdjYmEGDBmkM6mnatCmnT59mxowZPH78mIcPH/Lo0SMlgIwRu7N9TJARHh6upF25coXz58+TOXNm5csXSLbjyZkzJ6NGjWLUqFH4+/tz+vRpPDw8GDNmDNmzZ6datWqJziv2e2psbIyZmZnGoCgjIyONWqdfUYsWLViyZAkjR45EX18fLy8vmjdvjpmZGY6OjuzevZtbt27x9OlT7ty5A0QHUzGyZMmivI9fy5w5c6LyMDMzU4JFiL4uYq6JmB8csfsPpkmTRumDd+vWLZ48eaL1OYHoLh1JCRgnTpxIqVKlCAkJYfPmzezZs4fOnTtjY2OjrFO0aFFMTU1ZunQpDx8+5MmTJ8oxxf7xktBnO8aQIUMIDw/H3NxcI71Pnz4MGTKEAwcOULZsWSpXrkyjRo2SVAOup6eHo6Mjjo6OBAUFceHCBfbt28fOnTtRq9XMnj070XnlyZNH+X/M9R37B56RkZHGZ1j8nqRJWojvlC5dOvLmzavxyp49O1FRUXTv3p2JEyeir69PgwYNWLJkCWXKlEkwv7gGAsT0A4xLVFQUNjY2eHl5abwOHDig/Npv164dx48fZ/To0aRPn565c+fSsGFD3rx5A4C7uzv79u2jS5cuvHv3jiFDhijbJpa+vr5y/JUqVWLFihX4+/vTrVs3jWDor7/+YuDAgYSHh2Nvb4+7uzsNGzZM1DHHbjo0NjZm48aNGBkZMXHiRI31fvR4pk2bxpkzZ5S/LSwsaN26NVu3biVHjhwcO3Ys3m0jIiK00mL3a4P/9R37nTRp0oRPnz5x6tQp5UdKixYtCAgIoEmTJmzdupXs2bPj6OjIjh07tLZPaIBLYvNI6HPw9Tn+WlRUFI0bN9b6nBw8eJDGjRsnuO3XsmfPTt68ebG0tOSvv/7C3t6eAQMGcPHiRWUdX19f6taty/Xr1ylSpAh9+vRRakMTe0wxevfuTadOnZgyZYpG3+TatWtz4sQJpk6dirm5OatWraJevXrcv38/Ucdx8OBBFi5cqPxtYmJC9erVcXNzo1OnTgle53HV2Mf0U47td7zWRcLkHRUimd2+fZvjx48zZ84cXFxcaNKkCXny5OHp06fJOsChcOHC+Pn5kTNnTiVgMzU1ZfLkydy7d4/AwEAmTJhAeHg4Dg4OTJ8+HW9vbwICAvD19eXq1atMnjyZAgUKKIMKJk+ezNmzZwkMDPzucpmZmTFp0iRu3brF3LlzAXj37h2bN29m7NixjBgxAgcHB4oWLcrDhw+TfE5UKhXW1taMGzeO3bt3K01dyXE8Z86c0RhwEcPQ0BAjIyOlb5eBgYHWAIUnT54k6Th+F5kzZ8be3p69e/eyZ88eypcvT968edm9ezfv379n48aN9OrVi9q1aysDjBL7niZHHjE10tevX1fSIiIisLe3Z//+/RQuXJgHDx5o/LCLiIhgypQpvHz5MimnQsvo0aPJnj07Q4cOVQa0rVy5kooVKyqDdezs7JT9JPVab9SoEf369cPExIRx48YB0V0+pkyZgr+/Pw0aNGDixIkcPnwYXV1dfHx8EpXvq1evWLhwYZzHnyFDBo3rHNC41mXwyn+XBIxCJDMzMzP09fXZt28f/v7+XL9+nQEDBhAQEJCszY+Ojo58+vQJFxcX7ty5w507dxg4cCDXr19HpVJhamqKj48Po0eP5vbt2/j7+7Np0yYMDAwoUaIEJiYmeHh4MH36dJ48ecK9e/fYu3cv+fLlI1OmTD9UtmrVqtGkSRNWrVrFrVu3MDExIX369Bw5coQnT55w9+5dxowZw82bN7/7nFStWpVGjRoxbtw4Pnz4kCzHM3DgQE6fPk3//v05f/48z58/x9fXl6FDh/L582dat24NRDd/3rlzB29vb/z9/VmwYEGC/VN/d3/88Qd///03Bw4c4I8//gCi598MDg5m//79vHjxgpMnTyp98hL7niZHHvnz56dOnTqMHz+es2fP8ujRI8aMGUNoaCgVKlTA2dmZW7duMX78ePz8/Lh8+TKDBw/m8ePH5MuXL+knI5Z06dLh6urKs2fPmDNnDhDdpeHu3btcuHCBZ8+e4enpqSz7nms9bdq0jB8/nsOHD7N7924MDQ25fv06Y8aM4cqVKzx79ozt27fz5cuXOJvd4+Lg4ECePHlwcnJSruE7d+6wYcMGli5dqvSXVKlUGBsbs3TpUp4+fcqJEydYtWpVko9B/DtIwChEMsuePTtTp07l6NGjNGjQgP79+5M9e3Y6duyoMdXHj7KwsGD9+vV8/vyZtm3b0r59ewwMDFi7di2ZM2dGX1+fZcuWoaurS8eOHWnYsCGnT59m6dKl5MmTRxl0cfbsWZo1a0bbtm3R09NTtvlRI0eOJEOGDIwePRpdXV3mzJnDvXv3aNy4MV26dCE4OJhBgwbx4MEDpXYmqUaNGkV4eDgTJ05MluOpWrUq69atIywsjP79+1O3bl0GDhyIjo4OmzZtwszMDIhupm3Xrh0TJ06kadOmvHjxgj///PO7juF3ULlyZYyNjXn//r3ydJd69erRuXNnpk6dSv369Zk8eTJ//PEH5cuX16jtS0hy5AEwefJkypcvT//+/XFwcODly5esWLGCzJkzU7p0aZYvX87t27dp3rw5PXv2JH/+/KxevTpRzcLfYmtri4ODA2vXruX69ev069eP0qVL06NHD5o1a8bWrVuZPHkyRkZGSTqm2CpXrkzTpk1xdXUlMDCQWbNmYWFhQc+ePalXrx6bNm1ixowZWv2B4xPz46pmzZosWLCAhg0b0rZtW/bs2cP06dNp3ry5st706dO5desWDRo0YM6cOQwbNuy7jkH8/nTUv+okYEIIIYQQ4pcgNYxCCCGEECJBMq2OEELLsmXLNEZRxmXkyJG0bNnyJ5Xox/zbjkckj9evX1OvXr0E1ylZsuRv8wzxf9vxiF+LNEkLIbR8+PCB9+/fJ7hOlixZkjS5b2r6tx2PSB6RkZEaj72LS5o0aciRI8dPKtGP+bcdj/i1SMAohBBCCCESJH0YhRBCCCFEgiRgFEIIIYQQCZKAUQghhBBCJEgCRiFEiqhZsyY1a9ZM7WIIkaLkOhf/FRIwCiGEEEKIBEnAKIQQQgghEiQBoxBCCCGESJAEjEIIIYQQIkESMAohhBBCiARJwCiEEEIIIRIkAaMQQgghhEiQPEta/Gccuhqa2kUQIsVViDyR2kUQIsWZlqmVovlXbnws3mUnd1X77nxfv35N1apVtdKnTJmCg4MDt2/fZtKkSdy4cYPMmTPTsWNHOnTo8N37S076qV0AIYQQQohfia6+Xorke+fOHdKkScPhw4fR0dFR0tOnT8+7d+/o1KkT9vb2jB8/nitXrjB+/HjSpUtHixYtUqQ8SSEBoxBCCCFELLp6KRMw3rt3j3z58pEtWzatZWvWrMHAwIAJEyagr69PwYIFefLkCUuXLv0lAkbpwyiEEEIIEYuOrm68rx9x9+5dChYsGOeyCxcuUKFCBfT1/1eXZ2Njw+PHj3nz5s0P7Tc5SA2jEEIIIUQsegnUMH7r2eFHjhyJd9m9e/fIlCkT7dq149GjR+TNm5eePXtStWpVXr16hUql0lg/piby5cuXmJmZJeEIkp8EjEIIIYQQsSTUhzHyO/OMiIjg4cOHFCpUiOHDh2NiYsKePXvo1q0bq1atIiQkBENDQ41t0qRJA0BoaOoP2pSAUQghhBAiFh1dnXiXJVSDmBB9fX3OnTuHnp4eRkZGAJQoUYL79++zYsUKjIyMCAsL09gmJlA0Njb+rn0mJ+nDKIQQQggRi56eXryvH5EuXTolWIxRuHBhXr9+TY4cOfjnn380lsX8nT179h/ab3KQgFEIIYQQIhZdPb14X9/r/v37lClThnPnzmmk37hxg0KFClG+fHkuXrxIZOT/Gr3Pnj1L/vz5yZIly3fvN7lIwCiEEEIIEYuOrk68r+9VsGBBChQowIQJE7hw4QJ+fn5MmTKFK1eu0LNnT1q0aEFQUBCjRo3iwYMHbN++ndWrV9O9e/dkPLLvJ30YhRBCCCFi+dGm57jo6uqyePFi3N3dGTBgAB8/fqRYsWKsWrVKGR29fPlyJk2aRPPmzcmaNStDhw6lefPmyV6W7yEBoxBCCCFELLr6KdMAa2ZmxpQpU+JdbmVlxebNm1Nk3z9KAkYhRLJZNmMg/o9uM2HBfiUt4NVTPFdPw+/OZXT19LC2qU3TdgNJa2ySiiUVImmioqLw2HuUHUdO8k/geyxyZqND41rUq1whzvVnrt3Gpn1/47txwU8uqUgOujrSY+9rKRow2tvb8/z5c+VvAwMDzMzMqFatGv379ydz5szJtp/mzZvTt2/fb67r5OSEubk5U6dOTZZ9W1paJri8efPmybav+Fy4cIFVq1Zx5coVPn/+TO7cuWnWrBkdOnRQ5nQaPnw4z58/Z926dSlaFoBnz55Rs2ZN1q5dS8WKFXn//j0DBgzg4sWLWFpaUq1aNXbs2MHRo0dTvCzi5/E9vpurvkfInDWXkvbl80fmju9ChoxmOPWeyKcPgXhtmEXgP8/pPWpxKpZWiKRZsnUP63YdonvLRhQtmIfTl2/y14I16OjoUteunMa6l27fZ/N+n9QpqEgWKVXD+DtL8RpGZ2dnnJ2dAQgJCeHevXtMnz6d9u3bs3nzZtKnT//D+9i2bZsyueW3zJs3L1n7Jpw8eVL5/969e5k8ebJG2tfD55PbunXrmDp1Kh06dKBXr15kyJCBS5cu4ebmxvnz51m0aBG6P/goo6TKmTMnJ0+exNTUFABvb28uXLiAh4cH2bNnx8TEhHbt2v3UMomU9f7tP2xbNZWMWTSnfjhxcAufg94zzG0zJhkyAZAxS3YWTemN353LFCxinRrFFSJJQkLD2LTvKG3qV+fPpnUAqFCiCHce+bP5gI9GwPglJATXxevJmsmUf96+T6USix+lpycB49dSPGA0NjYma9asyt8WFhYULVqUhg0bsnz5cgYOHPjD+0hKTWXGjBl/eH+xxT62mOA3dlpKunPnDlOnTmXo0KH8+eefSrqFhQW5cuWiffv27N27l0aNGv2U8sTQ09PTOAcfP34ka9asWFlZKWnp0qX7qWUSKctjyTiKlLLFwMCQ+7cuKOm3r56mYJEySrAIULSULUZp03Hz8gkJGMVvwcBAn+XjXchkqtmNwkBfj6AvwRppczfsIEvGDJQvYcmK7ft+ZjFFMvrRZ0b/G6XKGcmVKxe1a9dmz549AHz69IkxY8ZgY2ND2bJl6dChA9evX9fY5sSJE7Ru3ZpSpUpRtWpVZs2apcxVZG9vz7x58wAIDg5m1KhR2NnZUbJkSZo1a8bBgweVfJycnBg+fLjy9+XLl+nQoQNly5alYsWKjBgxgnfv3inL7e3tWbFiBX379sXa2pqKFSsyceJEIiIiEn28Tk5OjBkzhpYtW1KuXDm8vb0B8PT0pH79+lhZWVG/fn3WrFlDVFSUst3r168ZOHAg5cqVo2LFivTo0YPHjx8ry7du3Ur69OnjrK0rX748q1evpmrVqnGW6cKFC3To0IEyZcpQokQJ6tevz86dO5XlgYGB9OvXj4oVK2JlZUWbNm3w9fVVll+7dg1HR0esra0pX748ffv25cWLF0B0k7SlpSXnzp1j+PDhzJs3jxcvXmBpacn27duZN28e9vb2iT7O4cOH069fP5ydnSlTpgzLli1L9LkXKe/0EU/8H96ilfMIrWWvnz8kW858Gmm6unpkyWbOPy8e/5wCCvGD9HR1KZzXHLOMpqjVagLff2TNzoP43rjLH7X/d489d+02e0/4MqZHe3R0vn/6FZH6dPV04339V6XakatUKvz9/QkKCqJr1674+/uzZMkStmzZQunSpWnbti23bt0CooO6bt26UbZsWbZv387EiRPZtGkTCxcu1Mp3zpw53L17l6VLl7J3716qVq3KwIEDefbsmda6165dw8nJicKFC7NlyxbmzJnD1atX6dy5s8bEmXPmzKF8+fJ4e3szdOhQ1q9fz+7du5N0vFu3bqVDhw54eHhQpUoVNm/ezLRp0+jTpw979uxhwIABLFu2jBkzZgDw5csXnJycAFi/fj3r1q0jU6ZMtGrVitevXwPRk31aWVmhrx93RXGlSpXIkCGDVvrr16/p3LkzJUuWZMeOHXh5eWFlZcWoUaN48+YNAOPGjSM0NJT169eza9cu8ufPT69evfjy5QuRkZF0795dOSerV6/mxYsXjBw5Umtfo0aNwtnZmRw5cnDy5EkaNGigsTwxxwlw4MABbG1t8fT0/Ok1piJ+bwNesH3tDFp1HqVRixgj+EsQRsbatclpjNIREvz5ZxRRiGR18PRF6vccwYJNO7EtXZx6VcoDEPQlmIlLN9D9j4bkzZn6T+UQP0ZPTzfe139Vqo2Sjglkjh49ypUrVzh79qzSXDxo0CAuXbrE2rVrmTp1KuvWraNUqVIMHToUiJ78csKECQQGBmrl+/TpU9KlS4eFhQUZMmSgf//+lC9fXulPF9vKlSuxtLRkzJgxSr4zZ86kadOmnDx5kmrVqgFQuXJlOnToAEQ3965bt45Lly7RrFmzRB9v0aJFady4sfL3woUL6dmzJw0bNlTyDQoKYvz48fTv3589e/bw8eNHpk+frgSEkyZN4ty5c2zZsoW+ffvy/v17LCwsEl2GGKGhofTt25fOnTsrv4K7deuGl5cXjx8/xszMjKdPn6JSqbCwsMDIyIhRo0bRuHFj9PT0CAoK4t27d2TLlg1zc3MsLCyYPXt2nO9H+vTpMTY21mqmjpGY4wQwNTWlS5cuST5WkXLUajXrF/1FMesqWNvUjnudWDXmX5MaGPE7Kl4oL4v/GsCDp89ZsnU3/acsYPFfA5i5dhvZs2SibQP7b2cifnk/MkH3v1WqBYyfPn0CwN/fH7VaTY0aNTSWh4WFKQ/dvnfvHnZ2dhrL69atG2e+Xbt2pUePHlSqVAkrKyvs7Oxo3LhxnINr4sq3SJEipE+fnrt37yoBY8GCBTXWSZ8+PeHh4Uk4WsibN6/y/7dv3/Lq1StmzpzJnDlzlPSoqChCQ0N59uwZt27d4sOHD5QvX14jn9DQUPz8/IDovpvv379PUjkA8uTJg4ODA2vXruXevXs8ffqUO3fuACg1q3369GHIkCEcOHCAsmXLUrlyZRo1akSaNGlIkyYNXbp0wdXVlblz52JjY0O1atWoX79+ksuSmOMEzfMnfg3HD2zixZP7jHT3JDIyuouGWq0GIDIyAh0dXdIapyc0jprEkOAgMmbO9lPLK0RyyJ09K7mzZ6VM0cKkS5uW8YvWsmL7Pg6dvsjqSUOJUquJioxUPgsRkZHo6uj89MGH4sf8l2sS45NqAePNmzfJly8fBgYGmJiYsH37dq11YqaEia/JNS7W1tYcO3aMU6dOcebMGby8vFi0aBHLly+nUqVKGuvGfKC/plarMTAw0CpHYraNT+zR0jH9FEeMGIGtra3Wujlz5iQqKor8+fOzaNEireXGxsZA9LFu27aNyMjIOEd+u7i4UKZMGRwdHTXSHzx4gKOjI8WLF8fW1pY6deqQKVMmWrZsqaxTu3ZtTpw4wYkTJzh9+jSrVq1i/vz5bNmyhcKFC+Pi4oKjoyPHjh3jzJkzuLq6snz5cry8vJJ0XhJznJDyo81F0l0+e4igT+8Y2U27RqV/2zLU/6MH2XLlI+CVv8ayqKhIAv95TqkKNX9WUYX4Ie8+fuL0lVtUKlWMzKb/q3wokj+6hWf1zgOEhUfQdugkrW1t2/ejYdWKjO3Z4aeVV/y4/3JfxfikSsD46tUrjhw5QteuXVGpVAQFBREeHk6hQoWUdUaPHk2RIkVo3749BQsW1BoEs2bNGnbv3s3WrVs10ufOnUvZsmWpWbMmNWvWZMSIETRs2JADBw5oBYyWlpZcvHhRI+3OnTsEBQVp1SompyxZspA5c2b8/f01as727t3LoUOHcHNzQ6VSsXPnTtKnT6+MAg8PD2fw4MHUq1ePBg0a0KJFC9asWcP69es1RkkDnDt3jl27dsU56GXTpk1kyZKFVatWKWkxcyKq1WrCwsJwd3enadOmNGjQgAYNGhASEoKdnR0+Pj7o6emxZs0aRo4cSdu2bWnbti0XL17E0dGRO3fuJGnUemKOU/ya2nYbQ0jwF420fVsX8fTRbboPnYtppqzo6upyaOcqPn18S/oM0e/v7aunCQ35QtFS2j+WhPgVhYaFM37RWnq1bkLHZv9r3Tp77TYAaycPJyQ0TGMbr6On8Dp6itUTh5Ixg0xS/7vRlSZpLSkeMH758oWAgAAgeh7Gu3fvMnv2bHLnzk2nTp0wMjKiaNGiDBw4kFGjRpEzZ048PDzYvn07K1asAKBLly60aNGCOXPm0LRpU548ecLChQuVfoWx+fv74+3tjaurK3ny5OHq1au8ePECa2vt6Ts6deqEo6Mjrq6uODo68ubNG1xdXSlWrJhWcJmcdHR06Nq1K7NmzSJXrlxUrVqVu3fvMm7cOGrWrImhoSFNmjRh6dKl9OvXjyFDhmBiYsLChQs5fvw4/fv3B6Kbyvv378/UqVN5/fo1TZo0IU2aNJw5c4bZs2dTu3ZtpY9kbDly5ODVq1ccO3aMQoUKcfPmTSZOnAhEdwUwNDTk+vXrXLhwgTFjxmBmZsbx48f58uUL1tbWZMqUiT179hASEkK3bt3Q1dVlx44dmJqaUqBAgSQ1kyfmOMWvKXuu/Fpp6dJnRF/fgLwFiwNQuU4rju3byHzX7jRo2YPPn97jtX4WxawrU8Cy9E8usRDfJ4dZZhpXr8SK7fvQ19dDlS83V+74sdb7IE1q2FIgd06tbU5evgFAsYLSneZ3JDWM2lI8YFy5ciUrV64Eop/0kjNnTho0aICzs7MyF9/KlSuZPn06AwYMIDg4mIIFCzJ//nwlaCtatCgLFixg7ty5LFu2jGzZstGhQwd69uyptb+xY8fi5ubGkCFDeP/+Pebm5ri4uNC0aVOtdUuVKsXy5cuZPXs2zZo1w8TEhFq1ajF48GCNJumU4OzsTJo0aZSJt83MzGjVqhX9+vUDovtJrl+/nmnTpimjtosXL87KlSs1aj+7detGgQIFWLduHdu3byckJAQLCwt69eqFo6NjnE3VHTp04OHDhwwdOpSwsDDy5cvHoEGDmDt3LtevX1emLZoyZQo9e/bk06dPFChQgBkzZlCuXPQEtcuWLcPd3Z1WrVoRGRlJ6dKlWbVqFSYmJkkKGBN7nOL3lD5DZvqNXY7nmmmsnjsCo7TGWFeqQ3OnwaldNCGSZHjnNphnM2PHkVO8evOW7Fky0u2PRrRvJF0r/o309KSG8Ws66qR2xhPiN3XoamhqF0GIFFch8kRqF0GIFGdaplaK5t939sd4l80boD1d3X9Bqg16EUIIIYT4FckoaW0SMAohhBBCxCJN0tokYBRCCCGEiEUeLKBNAkYhhBBCiFikhlGbBIxCCCGEELFIH0ZtEjAKIYQQQsQiLdLaJGAUQgghhIhFmqS1ScAohBBCCBGLBIzaJGAUQgghhIhFRklrk4BRCCGEECIWqWHUJgGjEEIIIUQsujJIWosEjEIIIYQQsejqSg3j1yRgFEIIIYSIRaZh1CYBoxBCCCFELLrSh1GLBIziP2P86LOpXQQhUtyI/b1TuwhCpLiG4XdTNH9pkdYmAaMQQgghRCx6eqldgl+PBIxCCCGEELHINIzaJGAUQgghhIhFT9qktUjAKIQQQggRi8zDqE0CRiGEEEKIWCRg1CYBoxBCCCFELDIPozYJGIUQQgghYpEaRm0SMAohhBBCxCJjXrRJwCiEEEIIEYuurjqBpf/NaFICRiGEEEKIWKQPozYJGIUQQgghYpGJu7X9tjG0vb098+bNS7H8hw8fjpOTU6LWVavV7Nixg8DAQAC2b9+OpaVlorZ99uwZlpaWWi9ra2uaNWvGnj17vvsYfhUxx3ju3LnULopIAYYGOvjsqMLJXdU0Xge3VNZaN21aPbYsr0D9mtlToaRC/AAdHfJ0a0OVS97UfXeJGncPU3TGCPTTp1NWyVLdBpsj66jzjy81/U9SZvNcjAtYpGKhxffS01XH+/qvkhrGeIwaNYrIyMhErXv+/HmGDx/OkSNHAGjQoAFVqlRJ0v7mzZuHtbU1EB2ABgQEsGTJElxcXDA3N6d06dJJyu9XkjNnTk6ePImpqWlqF0WkgPx506Gvr8v4Gbd58SpYSY+M0lwvfTp9powuTq7saX9yCYX4cQVduqCaMICH7it4c/QMJqr8qMb1I33xwvjWdyaTbRkq7FvBa+8jXO7ggl46YwqP6kWlYxs5Xrox4YHvUvsQRBJIk7Q2CRjjkT59+kSvq1Zr/uIwMjLCyMgoSfszNTUla9asyt/ZsmVjxowZlC9fnn379v3WAaOenp7GsYl/l8IFTIiIiMLnVADhEXH/+rarkIUB3QphnFbvJ5dOiGSgo0PBIV15umwzd0fPBCDw6BnCAt9RxmM2pmVLUNClK0G3/bjUpj/8/3fCu9OXqPnIB4sOzXk4a2VqHoFIIh3+uzWJ8fnXxtBeXl40adIEKysr7O3tWbhwoUaN4dOnT+natSvW1tZUqVKFVatWUbt2bbZv3w5oN0mvWLGCWrVqUaJECezt7VmwYAFqtZpz587RoUMHAGrWrMn27du1mqQ/f/6Mq6srlStXxtramvbt23Pjxo1vHoOuri76+vro6/8vrvfz81PKXblyZQYPHkxAQICyPDIyklmzZlG5cmVKly5Nv379mDRpknIs586do1ixYixdupSKFSvi4OBAVFQUr1+/ZuDAgZQrV46KFSvSo0cPHj9+rOQbGBhIv379qFixIlZWVrRp0wZfX19l+bVr13B0dMTa2pry5cvTt29fXrx4AWg3SUdGRrJ69Wrq1q1LyZIlqVu3Lhs3blTyiinjsWPHaNSoESVKlKBevXocPnz4m+dM/HyF85vw5NmXeINFk3R6TB5ZnCs33jNo7LWfXDohfpx+BhOebdjJi027NdKD7j4EwLiABe99r/Jo7holWAQIffkP4R8+YVwwz08tr/hxerrxv5LLo0ePsLa2VuIOgNu3b9O+fXtKly6Nvb09a9euTb4d/qB/ZcC4evVqxowZQ+vWrfH29qZ///6sWLGCqVOnAhAcHEzHjh2Jiopi48aNzJo1i+3bt+Pv7x9nfkePHmXJkiWMHz+egwcP4uLiwqJFi/D29sba2lrpS7l161YaNGigtf2AAQM4fvw4U6ZMwcvLCwsLC5ydnfnw4UO8x/DhwwemTp1KcHAwjRo1AuD169c4OjqSN29etm3bxuLFiwkKCqJ169Z8+fIFgBkzZrB582bGjh2Lp6cnWbNmZd26dRp5R0ZGcuzYMTZv3sykSZMICQlRAsr169ezbt06MmXKRKtWrXj9+jUA48aNIzQ0lPXr17Nr1y7y589Pr169+PLlC5GRkXTv3p3y5cvj7e3N6tWrefHiBSNHjozz2KZOncrChQvp06cPu3btol27dkyaNInVq1drlHH69OmMGjWK3bt3o1KpGDZsGJ8/f473nInUUbiACZGRamZOKMmhrZXZ62HLkN6FSfv/tYkhoVG0732eSbPv8uFjeCqXVoiki/jwiVsDJ/Hu9CWN9BxNagHw6dYDHkxdzLPVnhrLM1cpj2HmjHy6df+nlVUkD11ddbyv5BAeHo6Li4vy3Q3w7t07OnXqRJ48efD09KR3797MmDEDT0/PBHL6ef51TdJqtZply5bRvn172rVrB0C+fPl4//4906dPp1+/fhw8eJC3b9+yfft2MmbMCMD06dNp2rRpnHk+ffoUQ0NDzM3NyZUrF7ly5SJbtmzkypULQ0NDpW9e5syZtZqiHz58yPHjx1mxYgWVK0cPAhg3bhwZMmTg3bt3Su1h165d0dOL/oKNiooiIiICKysrVq5cSdGiRQHYuHEjOXLkYPTo0Ur+s2fPxsbGhv3791O/fn08PDwYMWIEtWvXBmD06NFcvnxZ65icnZ3Jly8fEB3ofvz4kenTpyvlmTRpEufOnWPLli307duXp0+folKpsLCwwMjIiFGjRtG4cWP09PQICgri3bt3ZMuWDXNzcywsLJg9e7YyCCi2oKAgNm7cyPDhw2ncuLHy/jx79oylS5fy559/KusOGDCASpUqAdCrVy8OHDjAvXv3lL6e4tdQMF86dIDdB1+xZvNTihZOT6e2eclnkY4+I64QEaHG/3nwN/MR4neSsYIVBYd24/WuowTd1A4IDbJkouRiV0Kev+bZWq+fX0DxQ3RTuEl63rx5mJiYaKRt2bIFAwMDJkyYgL6+PgULFuTJkycsXbqUFi1apGh5EuNfFzC+ffuWN2/eULZsWY30ChUqEB4ezsOHD7l16xb58+dXgkWAIkWKxNtvsUmTJnh6elK3bl0KFSqEra0tdevWJVeuXN8sz7179wA0+iCmSZOGESNGANHNtQATJ06kVKlShISEsHnzZvbs2UPnzp2xsbFRtrt16xb379/XCphCQ0Px8/PDz8+PkJAQjX3p6OhQtmxZ7ty5o7FNTLAYk++HDx8oX758nPkC9OnThyFDhnDgwAHKli1L5cqVadSoEWnSpCFNmjR06dIFV1dX5s6di42NDdWqVaN+/fpa5+Phw4eEh4fH+f6sWbNGI8gsUKCA8v+YD1Z4uNRQ/Up0dGC46w3efwzn0dPoX8pXb34g8F0YY12KUrFMZs5efJvKpRQieWWyLUN5r8V8efSMq11GaC1PkyMrFfauwChnNs7V60hkkLSM/G4SqkmsWbNmgtvGDICNz/nz59m8eTNeXl5Ur15dSb9w4QIVKlTQ6IZmY2PDkiVLePPmDWZmZokrfAr51wWMXw9AiREVFT1kU19fHz09PeXvxMicOTM7d+7k8uXLnDp1ipMnT7J27Vr69u1Lnz59Etw29hufkOzZs5M3b14A/vrrL4KDgxkwYABr1qxRgquoqChsbGwYO3as1vbp06fnn3/+AeI/B7GlSZNG+X9UVBT58+dn0aJFWusZGxsDULt2bU6cOMGJEyc4ffo0q1atYv78+WzZsoXChQvj4uKCo6Mjx44d48yZM7i6urJ8+XK8vLw08kvM+xPD0NBQa73EHJv4edRquHxDu2vFmQvRgX+h/OkkYBT/Kjlb1qfUiql8vv8Y34ZdCH/7XmN5+hIqynktRj99OnwbdeG9r/Tb/R3p6aTMd83Hjx8ZOnQoo0ePJmfOnBrLXr16hUql0kjLli0bAC9fvkz1gPFf14fRzMwMMzMzLl68qJF+4cIFDAwMyJMnD0WKFOHJkye8f/9eWe7n58enT5/izNPb25uNGzdStmxZ+vXrx5YtW2jZsiV79+4Fomvx4lOwYEEArl+/rqRFRERgb2/P/v37491u9OjRZM+enaFDhxIcHN2cV7hwYfz8/MiZMyd58+Ylb968mJqaMnnyZO7du0fevHkxMjLiypUrGnldvXo13v0AqFQqXrx4Qfr06ZV8c+XKhbu7O+fPnycsLIwpU6bg7+9PgwYNmDhxIocPH0ZXVxcfHx8ePnzI2LFjyZIlC23btmXu3LksX74cPz8/rZrNggULYmBgEOf7kzVrVpl65zeTJbMhjevkIHvWNBrpaQyju1e8+yA1wuLfo8BAZ6zXz+Td2SucqdGO0FcBGsuzVKtIJR8PdHR0OFOjnVafR/H70NGJ/3XkyJEEXwkZN24c1tbWSpes2EJCQrQqSmIqd0JDQ5Pv4L7Tbx0wPnnyhOPHj2u8fH196dy5M+vXr8fDw4MnT56wa9cu5s+fT+vWrUmfPj2NGjUiU6ZMuLi4cOfOHa5cucKQIUOAuIO/0NBQ3Nzc8PLy4tmzZ1y4cIHz588rTcMxtXB37tzRGpSRP39+6tSpw/jx4zl79iyPHj1izJgxhIaGUqFChXiPLV26dLi6uvLs2TPmzJkDgKOjI58+fVLKfefOHQYOHMj169dRqVSkTZsWJycn5s6dy+HDh3n06BFubm7fDBibNGmCqakp/fr14+rVq/j5+TF8+HCOHz+OpaUlhoaGXL9+nTFjxnDlyhWePXvG9u3b+fLlC9bW1mTKlIk9e/bw119/4efnx6NHj9ixYwempqYazcoQ3bTcunVr5s6dy+7du3ny5AkbNmzAw8MDZ2fnBINv8evR19NhWF9LmtbT/KVsXyUrEZFqrt2Mf2CXEL+TPF1bU3TaMF5u3Ydvwy5EfAzSWJ6hdFHK7VxMiP9LTlVuTdCtB6lUUpEc9HSi4n19Ly8vLy5cuBBnKyFET8kXFhamkRYTKMbEGanpt26S3rVrF7t27dJIMzc35+jRoxgaGrJmzRomT55Mjhw56Nq1K507dwaimzqXL1/OhAkTaNWqFaampvTo0YObN29iYGCgtZ+WLVvy/v17Fi5cyMuXLzE1NaVu3bq4uLgA0TV01apVY8CAAQwaNEijbyTA5MmTmTZtGv379ycsLIxSpUqxYsUKMmfOrDFC6mu2trY4ODiwdu1aGjZsSMmSJVm/fj3u7u60bdsWPT09ypQpw9q1a8mcOTMA/fv3Jzw8nNGjRxMcHEyNGjWoWbNmgr9O0qdPz/r165k2bRqdO3cmMjKS4sWLs3LlSqWGdNasWUyZMoWePXvy6dMnChQowIwZMyhXrhwAy5Ytw93dnVatWhEZGUnp0qVZtWoVJiYmGjW5ACNGjCBTpkzMmDGDN2/ekC9fPv766y9atWoVbxnFr+l1QCh7Dr2kbXMLQkOjuHHnI1bFTHFqlYftu5/j/0IGu4jfX5rsZhSbMYIvj57xeNEGTMsU01j+xe8pVksnoWugz70J80ibJydp8/zvR1RYwFu+PIx7Fg7xa0qu0dCxeXp6EhgYqNFvEWDs2LHs3buXHDlyKF3LYsT8nT176j8dS0f9H+wU9uzZMx4/fqyMWoboKWuqVq3Khg0blCDod3To0CHKli2rBJAQPSI6R44cTJ48ORVLlvoqNz6W2kX4VzLQ18HRwYK6NbKTPZsRAW9C2XXwJR7b/fn67pIjWxq2rbBh0uw77DvyOnUK/C83Yn+31C7Cv07uji0otSz+++fVriMTXO6/djvXOmsPjhHfr2H43RTN//jN+AcqVS2eLt5lCXn9+jUhISEaaXXq1MHFxYUmTZqwc+dONm3axKFDh5RZU2bOnMnBgwcT7ML2s/zWNYzfKzQ0lG7dujF48GDq1KnDp0+fmD17Nvny5aNUqVKpXbwfsmLFCjw8PBg6dCgmJiYcOXKEs2fPsnKlPGVApIzwCDVrtjxlzZan31z31T+hEriL386z1Z5acyzGtY7490iJQS/x1RJmyZKF7Nmz06JFC5YvX86oUaPo0qUL165dY/Xq1YwfPz7Zy/I9fus+jN+rYMGCzJw5k127dtGoUSM6deqEsbExq1atirNJ+ncyY8YM0qVLR8eOHWnUqBG7du1izpw5GtPzCCGEECJ+ujpR8b5SSpYsWVi+fDmPHj2iefPmzJ8/n6FDh9K8efMU22dS/CebpMV/k9Rsif8CaZIW/wUp3SR99k78A/Zsivw3Z/P4TzZJCyGEEELEJ6XmYfydScAohBBCCBFLSjY9/64kYBRCCCGEiEUnhZ8l/TuSgFEIIYQQIhapYdQmAaMQQgghRCw/8kSXfysJGIUQQgghYpEmaW0SMAohhBBCxKKL1DB+TQJGIYQQQohYpA+jNgkYhRBCCCFikSZpbRIwCiGEEELEIk3S2iRgFEIIIYSIRVcnMrWL8MuRgFH8Z+xwS5vaRRAixa3qeDu1iyBEimuYwvnrqKVJ+msSMAohhBBCxKKrlhrGr0nAKIQQQggRiwSM2iRgFEIIIYSIRUZJa5OAUQghhBAiFqlh1CYBoxBCCCFELLpREjB+TQJGIYQQQohYpElamwSMQgghhBCxSA2jNgkYhRBCCCFi0ZE+jFokYBRCCCGEiEVHLY8G/JoEjEIIIYQQscgoaW0SMAohhBBCxKIjfRi1SMAohPghUVFRbPLeh/fBv/kn8C0WuXLQrllD6lSzU9Zp3qUfAYHvtLbdvWYhGTOk/5nFFeKHHV7fl8AXt2g99Eicy2+cWsu5PVNoNeQw6TOZ/+TSieQgz5LWlqSA0cnJCV9fX400AwMDzMzMsLe3Z8iQIaRNmzZZCxibvb09zZs3p2/fvim2D0tLy3iXLV68mBo1aqTYvr/l/v37PH/+nOrVqytpERERbNiwgZ07d/Lo0SPSpElDsWLF6NatGzY2Nsp6lpaWTJkyBQcHhxQv57x589ixYwdHjx4F4NixY4wfP56AgACGDBnC6tWrU/x9FD/P8o2eeHjtoXObFhQtXIAzF68yYfZidHR1qV2lEu8/fiIg8B29/myDVVHNz5dJOuNUKrUQ3+fBZW+e3DqMScZccS7/8OYRFw7O+smlEslNJyoitYvwy0lyDWP9+vUZNWqU8veXL184efIkU6ZMISoqinHjxiVn+VLFyJEjadCggVa6qalpKpTmf7p3707z5s2VgDE0NJROnTrx8uVL+vXrh7W1NSEhIXh6etKpUyemTZtG48aNf3o5nZ2dadeunfL37NmzyZ8/P2vXriVjxow0atSINGnS/PRyieQXEhrK1t0HaNmwLk4toq+1clbFuev3iG27D1K7SiXuP3oCQLWK5TDPmT01iyvED/n88R/O7J5MOtMccS6Piork+LaRGBln5POHVz+5dCI5yShpbUkOGI2MjMiaNatGWt68eblx4wZ79+79VwSM6dOn1zrGX9GcOXO4e/cuu3fvJmfOnEr6qFGjCAoKYuLEidjb25MuXbqfWq506dJp7PPDhw/UqFGD3Llz/9RyiJRnoG/Aoil/kck0w1fp+nz+EgzA/UdPME5rRK4c2VKjiEIkm5PbR2NeyBZ9gzS8fOirtfz6iZUEBwViVa0rZ7xdU6GEIrlIk7Q23eTKKE2aNOjrR8efL168YODAgVSqVInixYtTtWpVpk+fTlRU9DD17du3U7t2beXfEiVK4ODgwMWLF5X8Pn36xLBhwyhXrhw2NjasWrVKa5+XL1+mQ4cOlC1blooVKzJixAjevftfPyl7e3uWLl1Kt27dKFWqFPb29hw+fJjDhw9Tt25dSpcuTefOnQkMDEzSsb5//57x48dTrVo1rKysaNOmDefOnVOWz5s3j/bt2zNw4EDKlCmDq2v0jePSpUu0a9cOKysrqlevzvjx4wkKClK2u3btGo6OjlhbW1O+fHn69u3LixcvlGN5/vw58+fPx8nJifDwcDw9PXFwcNAIFmMMGDCAZcuWYWRkpLUsKiqKJUuWULduXUqUKEGZMmXo0qULT58+VdY5duwYDg4OlCpVikqVKjF8+HA+fPigLF+xYgW1atWiRIkS2Nvbs2DBAtT//wGbN28e9vb2QHRT+PPnz1mwYIHS3G9vb8+8efOUvP7++28cHBywsrKidu3azJ49m7CwMGW5paUlc+fOpUaNGlSuXJnHjx8n/s0SKUpPT5dC+fKQJVNG1Go1b99/YJ3nLi5cu0nzejUBePDoKRlMTBg9bS5123Wjdtsu/DVjPm/evk/dwguRBHfPb+XN81vYNhkT5/J3r+9z+cgCqjhMRN8g5bpmiZ8kKjL+13/UDweMERER+Pj4sHPnTpo2bQpAz549+fTpE6tWrWL//v04OzuzfPlypU8bwMuXL9m0aRPTp09nx44dpE2bluHDhytBx4ABA7h27RqLFy9m1apV+Pj48Pz5c2X7a9eu4eTkROHChdmyZQtz5szh6tWrdO7cmcjI/72hCxcupEGDBuzatYsiRYowdOhQFi9ezPTp01m8eDHXr19n2bJliT7eyMhInJ2duXDhAtOnT2f79u2oVCo6d+7MtWvXlPXOnz+PmZkZO3fuxMnJiTt37tCpUyeqVKmCt7c3M2bM4ObNmzg7O6NWq4mMjKR79+6UL18eb29vVq9ezYsXLxg5ciQA27ZtI0eOHDg7OzNv3jz8/f15//49ZcqUibOc2bNnx8rKCj09Pa1la9euZcWKFQwfPpwDBw6wYMECHj9+zNSpUwF4+/Ytffr0oUWLFuzdu5f58+dz/vx5pk2bBsDRo0dZsmQJ48eP5+DBg7i4uLBo0SK8vb219nXy5Eml3CdPntRafvz4cQYMGECrVq3YvXs3Y8eOZd++fQwZMkRjPQ8PD+bOncv8+fPJly9f4t4s8VMdPnmWJp36sGT9FiqVKUXd/x/0cv/REwLevsOyYH6mjRpMn06OXLl5hz6jJxEcEpLKpRbi2z69e865vW7YNv0Lo3SZtJZHRUZwbOtwLMv9Qc4CFVKhhCK56URFxvv6r0pyk/SuXbs4cOCA8ndISAi5cuWic+fO9OjRg5CQEJo2bUr9+vWVmq+OHTuybNky7t69S61atQAIDw9n/PjxFC1aFIBOnTrRu3dvAgICCAoK4uTJk6xevZpy5coB4O7urjHgZOXKlVhaWjJmTPSvvYIFCzJz5kyaNm3KyZMnqVatGgDVq1enWbNmALRq1YojR44wcOBArKysALC1teX+/fsaxzh27FilVjBG9+7d6dGjBydPnuTmzZvs2rULlUoFwPjx47l+/TorVqxgzpw5yjb9+vUjffroEaBDhgzBzs6OHj16AJAvXz7c3d2pVasWvr6+FClShHfv3pEtWzbMzc2xsLBg9uzZSu1n5syZ0dPTw9jYmIwZM/Lo0SPg+/pV5smTBzc3N+V8mpubU69ePfbv3w/A69evCQsLI1euXJibm2Nubs7ixYuVQPzp06cYGhpibm5Orly5yJUrF9myZSNXLu1O4FmzZlXKHVcz/+LFi2nVqhVt2rRRyjZ+/Hj+/PNPnj17pjRjN23alJIlSyb5WMXPU6xQAeZPHIXfE3+WeWxj8IRpzJs4imG9OqOnp0fRwgUAKFXMkvwWuek10pX9PidpXq9WKpdciPip1WpOeI4mt6oq+UvUiXOdKz5LCAv5RLl6g35y6URKkYm7tSU5YLS3t8fFxQW1Ws21a9eYNGkStra29OjRA319ffT19Wnfvj379+/n2rVrPHnyhLt37/LmzRulSTpGwYIFlf/HBFbh4eHcu3cPQCNAMDMzw8LCQvn73r172Nn9b9oOgCJFipA+fXru3r2rBIx58+ZVlseM4M6TJ4+SZmRkpNUk3a9fP+rU0bwxxARm9+7dI3369EqwCKCjo0O5cuU0atCyZMmiHBPArVu3ePLkCdbW1nzNz8+PihUr0qVLF1xdXZk7dy42NjZUq1aN+vXra60P0QEkRDePJ5W9vT1Xr15lzpw5PHr0iEePHvHgwQOyZ48ekFC0aFEaNWpEjx49yJo1K3Z2dlSvXp3atWsD0KRJEzw9Palbty6FChXC1taWunXrxhkwfsutW7e4du0a27ZtU9Jiapn9/PyUgDH2+yh+TeY5s2OeMzulixfBOG1aJs1dwtVbdyldvIjWulZFVZgYG/PgkX8qlFSIxLt91oN3r+7SvP9OoiKjR87G3KOiIiN4++ouV32WUPfPJejpGUav8//BhjoqkqioSHR1tVt6xK/tv1yTGJ8kB4zp0qVTvrzz5ctHtmzZ6NSpE3p6eowbN44vX77Qvn17QkJCqFevHs2bN8fKykpj1GwMQ0NDrTS1Wo2Ojg6AVoAZ00cyZr24qNVqDAwM4twmRkz+8cmSJUu8AUpC+429r6/7DkZFRdG4cWOlhjG2mODPxcUFR0dHjh07xpkzZ3B1dWX58uV4eXlpnSsLCwvMzMy4dOlSnCO6/fz8mDRpEiNGjKBw4cIay5YuXcqCBQto3rw5lSpVomPHjhw5coQ9e/Yo67i7u9O7d2+OHz/O6dOnGTJkCGXLlmXNmjVkzpyZnTt3cvnyZU6dOsXJkydZu3Ytffv2pU+fPnGen/hERUXRpUsXmjdvrrUsdo1kXH0xRep79+EjZy9dw8a6JJky/q+227JA9Ofn5esAnr18TbHCBSiQ938/+KKiogiPiCCjqczBKH5tj24cIOTLOzZOqaq1bNWYkljb9yYqMpx9K521lm91r0uO/OVp2HXtzyiqSE6REjB+7Ycn7raxsaFTp06sWLECe3t7QkJCuHnzJqdOncLMzAyIrgULDAyMN9j6Wkwz9aVLl5QpZD5+/KgxKMPS0lJjkAzAnTt3CAoK0qi5TG6WlpZ8+vSJe/fuKbWMarWaixcvUqhQoXi3K1y4MA8ePNAIRP38/Jg+fTqDBg0iICCANWvWMHLkSNq2bUvbtm25ePEijo6O3LlzR2lCj6Grq8sff/zBunXr6Ny5s9bAl+XLl3P9+nXMzbUnjV28eDG9e/emW7duStqKFSuU9+fq1avs2bOHkSNHUqBAATp27Ii3tzdDhgwhMDCQU6dO8enTJ9q1a0fZsmXp168fo0ePZu/evUkOGAsXLsyjR480zsu5c+dYu3Yt48aNw9hY5un7lYWGhTFp7hK6t2+JU4smSrrvlRsAFClcgC4uf1HVpixjB/ZSlp88f4nQsDDKlCj608ssRFLYNRtPeOhnjbTLRxcQ+PwmtZwWYpwhGxZFqmss97/jw+WjC6jttJAMZvl+XmFF8pEmaS3J8qSX/v37c+TIEcaNG4ebmxsA3t7e1K1bl5cvXzJz5kzCw8M1Rr4mJE+ePNSrV48JEyZgaGiImZkZM2fO1Ni+U6dOODo64urqiqOjI2/evMHV1ZVixYpRqVKl5DisOFWuXJmiRYsyePBgxowZQ5YsWVi/fj337t1j7Nix8W4XMzfh+PHjad++PR8/fmT8+PGEhISQL18+Pn/+zJ49ewgJCaFbt27o6uqyY8cOTE1NKVAguu9XunTpePz4MW/evMHMzIwePXpw4sQJHB0d6d+/P2XKlOH9+/ds3LgRLy8vZs2aFWfAlTNnTk6dOoW9vT26urrs3LmTgwcPKgG+iYkJHh4eGBgY0KpVK0JDQ9m7dy/58uUjU6ZMhIaG4ubmRrp06ShXrhyvXr3i/PnzSn/TpOjatSsDBgxg/vz5NGzYkFevXjFq1Chy5879W0xt9F+XI6sZDWtWZdUWL/T09FAVyMfVW3fZsH03jWpVI7+FOe0dGrFi03Yym5piU7YUD5/4s3LzDqpUKENZq+KpfQhCJChj1vxaaUbGGdHVMyBr7hIApMugOWXUu9fR/eIz5VDJk15+U9IkrS1ZAsY0adLg6upKhw4dOHDgACNGjGD16tXMnj2b7Nmz06BBA3LmzMn169cTnaebmxtubm4MHDiQqKgoWrduzdu3b5XlpUqVYvny5cyePZtmzZphYmJCrVq1GDx4sEaTdHLT09Nj5cqVuLm50adPH8LCwihRogSrV6+mdOnS8W5XunRpli9fzpw5c2jevDnGxsZUqlSJYcOGYWhoiKGhIcuWLcPd3Z1WrVoRGRlJ6dKlWbVqFSYmJkD0k3bc3Ny4f/8+3t7epE2blvXr17Ny5UqWLVvGixcvMDIyolixYqxbty7eAG7atGlMmDCBFi1akC5dOkqVKsX48eMZN24cL168oGDBgsybN4/58+fj4eGBrq4uNjY2LFu2DF1dXVq2bMn79+9ZuHAhL1++xNTUlLp16+Li4pLk81mvXj1mzZrFkiVLWLx4MRkzZlT6yYrfg0v3TuTKng3vgz68DnhDNrPMdG7rQNum0V0l/mzZlIym6dm+9zA7DhzBNL0JTeva07l1yj91SAghvocEjNp01IltJxbiNxdwS3uiXSH+bVbdTnpNvxC/m6Etkm0a6TiFHFod7zKj2h1TdN+/qmSpYRRCCCGE+NeQGkYtEjAKIYQQQsQmo6S1SMAohBBCCBGbjJLWIgGjEEIIIURsUsOoRQJGIYQQQojYpA+jlpQdZiSEEEII8buJUsf/+gGBgYEMGTIEGxsbrK2t6datG35+fsry27dv0759e0qXLo29vT1r1/46TwmSgFEIIYQQIrbIiPhfP6B37948efKEpUuXsm3bNoyMjOjYsSPBwcG8e/eOTp06kSdPHjw9PenduzczZszA09MzmQ7qx0iTtBBCCCFEbCnQJP3hwwfMzc3p3r278mjhXr160bRpU+7fv8+ZM2cwMDBgwoQJ6OvrU7BgQSW4bNGiRbKXJ6mkhlEIIYQQIrYUaJI2NTXF3d1dCRbfvn3L6tWryZEjB4UKFeLChQtUqFABff3/1eXZ2NgojwRObVLDKIQQQggRizqBUdI1a9ZMcNsjR458M/8xY8awZcsWDA0NWbRoEcbGxrx69UoJJmNkyxb9nPKXL19iZmaWiJKnHKlhFEIIIYSIRR0ZEe8rOfz55594enrSqFEjevfuzc2bNwkJCcHQ0FBjvTRp0gAQGhqaLPv9EVLDKIQQQggRmzr+pufE1CB+S6FChQCYNGkSV69eZf369RgZGREWFqaxXkygaGxs/MP7/FFSwyiEEEIIEVtkZPyv7/T27Vv27NlDRMT/ail1dXUpVKgQ//zzDzly5OCff/7R2Cbm7+zZs3/3fpOLBIxCCCGEELGoIyLjfX2vN2/eMGjQIM6cOaOkhYeHc+vWLQoWLEj58uW5ePEikbGC0rNnz5I/f36yZMnyQ8eTHKRJWvxnPO09MLWLIESKO5RrbmoXQYgUN7RF2RTNX50Cz5JWqVRUrVqViRMnMnHiRExNTVmyZAkfP36kY8eOpEmThuXLlzNq1Ci6dOnCtWvXWL16NePHj0/2snwPCRiFEEIIIWJLoWdJz5w5E3d3dwYOHMinT58oV64cGzZsIFeuXAAsX76cSZMm0bx5c7JmzcrQoUNp3rx5ipQlqXTU6gR6dgrxL3Kxhl1qF0GIFDdcahjFf8ChDSlbw/hp3pB4l6XvOz1F9/2rkhpGIYQQQohYEpqH8b9KAkYhhBBCiFh+ZHDLv5UEjEIIIYQQsaXAoJffnQSMQgghhBCxREkNoxYJGIUQQgghYpE+jNokYBRCCCGEiEUdJRPIfE0CRiGEEEKIWGTQizYJGIUQQgghYomSJmktEjAKIYQQQsQWJaOkvyYB4w/w9/enadOm1KpVi2nTpmksu3HjBm3btmXEiBE4OjoCcPjwYTZv3sytW7f48OEDZmZm2Nra0r17d/Lmzatsa29vz/Pnz5W/DQwMMDc3p2XLlnTp0kWrHEeOHGHDhg3cvHmTsLAw8ufPT5s2bWjZsiU6OjoAODk5YW5uztSpU1PiVGg4d+4cHTp04MiRI+TOnRt/f38GDBjA3bt3qVmzJmnTpuX58+esW7cuxcsifgIdHcwaNSVr0+akyZWLiHfveH/qJC9WLyfqyxet1bO1aIlFnwFcb9OCsNevUqHAQiSdgYEO3sut0dfX0UgPDomkSecrAKjyG9PNMTeqAsZ8CY7k4PFA1nq+JCJS+sP9bqIiJGD8mgSMP8DCwoLRo0czYsQIqlevToMGDQD49OkTAwYMwN7eXgkWJ06cyJYtW+jSpQsDBw4kY8aM+Pv7s2rVKlq0aMHmzZspWLCgkrezszPOzs4AhISEcO3aNUaPHk3atGlp166dsp6bmxseHh707NmToUOHYmRkxKlTp5g8eTI3b95MlYeWW1tbc/LkSTJnzgzA+vXrefXqFTt37iRjxowYGhoSKdX9/xrZ27TDvHNXXm3ayKdLFzCysCBXp66kzV+A+0MGaKybJrcF5l16pE5BhfgB+XOnRV9fhykLHvHyn1AlPfL/B0fkyGqI24jC3HrwmYlzH5LH3IhOLc1Jb6LPnJVPU6vY4jvJtDraJGD8QQ4ODhw7doxx48ZRpkwZcuTIwciRI4HoIBHg4MGDrFu3joULF1KzZk1l21y5clGhQgXatm3L3LlzmTNnjrLM2NiYrFmzKn9bWFhw7tw5PD09lYDx2LFjrFy5kgULFlCrVi1l3Xz58pEuXTqGDRtGs2bNsLa2TtFz8DVDQ0ONsn/8+JH8+fNrBMTiX0JHhxxt2xGwaycvli8G4NOlC0R8/EiBvyZgrCrCl3t3otfV1SXfsFFEfPyAoZFRKhZaiKQrmDctERFqTvi+IzxCu8awdeMcfAmJYqy7HxGRanyvfiQkNIo+HfPgsfMlAYHhqVBq8b3U0iStRTe1C/BvMGHCBNKmTcuoUaPYsmULf//9NzNnziR9+vQArFmzhooVK2oEizF0dHSYM2cOkydP/uZ+jL76kt24cSNFihTRCBZjNGrUiNWrV2NpaRlnXocPH6Zly5aULl2akiVL4uDgwIkTJ5Tljx8/pnPnzpQtWxZra2s6d+7M3bt3leXHjh3DwcGBUqVKUalSJYYPH86HDx+A6CZpS0tLnj17hpOTE9u3b+f8+fNYWlpy7tw5hg8fjpOTk5KXn58fXbt2xdramsqVKzN48GACAgKU5U5OTowZM4aWLVtSrlw5vL29v3muxM+hZ5yOt4cO8PbIIY30kKdPAEhjbq6kZW/VFoNMmXnlIV0RxO+nYF5j/F+GxBksApSzyoDvlQ8azc8nfN+jp6tDOSvTn1VMkUzUkVHxvv6rJGBMBqampri5uXH69GnGjx/P4MGDsbKyAiAiIoJLly5ha2sb7/bZs2cnXbp0Ce7j2rVr7N69m5YtWyppN27coEyZMnGur6+vT6VKlTA2NtZaduPGDfr27UvDhg3ZtWsXW7ZsIXPmzAwdOpSwsDAABg0aRPbs2fH09GTr1q3o6urSp08fAN6+fUufPn1o0aIFe/fuZf78+Zw/f16rHyfAvHnzqF+/vtJM/XVt5+vXr3F0dCRv3rxs27aNxYsXExQUROvWrfkSq//b1q1b6dChAx4eHlSpUiXBcyV+nsjPQfjPm83nG9c10jPaRb9HwY8eAmCULz+5Onbm8fTJRIWEauUjxK+uYF5jIiPVTB1eGO8VpfFcUor+znlIa6SLoYEOObKm4dnLEI1tPnyK4POXSCxypkmlUovvFRURGe/rv0qapJNJqVKlyJYtG69fv8bGxkZJf/v2LVFRUUp/vhgTJkxgx44dGmmXL19W/r9kyRJWrlwJQHh4OOHh4ZQqVYrGjRsr67x//54MGTIkuax6enqMGTNG6V8J0KFDB7p27UpgYCA5c+bk6dOn2NraYm5ujoGBAZMnT+bhw4dERUXx+vVrwsLCyJUrF+bm5pibm7N48eI4+yVmzJgRIyMjDAwMNJqpY2zcuJEcOXIwevRoJW327NnY2Niwf/9+HBwcAChatKjGsYtfl3HRYuRwdOL9qZOEPH4EunrkGzGaN3t2EXT1Cmly5ErtIgqRZPnzpEUH2Ofzhg1eL7EsYEx7h1zkNTdi0rxHAHwJ1r4HfgmJxDit3k8urfhR0iStTQLGZOLq6kpERASFCxfGxcUFT09PjIyMyJgxIzo6Orx//15j/T59+vDnn38C0X0cZ8yYobG8TZs2SrNtREQET548YdasWbRr146tW7diaGhI5syZtfJNjKJFi2JqasrSpUt5+PAhT5484c6d6H5mMUHfwIEDmTx5Mh4eHlSoUIEqVarQqFEjdHV1KVq0KI0aNaJHjx5kzZoVOzs7qlevTu3atZNcllu3bnH//n2tmsfQ0FD8/PyUv2OPIhe/rnQlSlJo8jRCX77g8bRJAORs3wH9dOl5vmxRKpdOiO+jowN/uT/gw8cInjyPrkW8fieIt+8jGNE7P6WKpU9we7UMkv7tyChpbRIwJoNdu3bh6enJggULyJ07N3/88Qdubm6MHTsWQ0NDSpYsia+vL926dVO2yZw5s1LrmCVLFq08TU1NNYKkggULYmpqiqOjI6dPn6Z69epYW1tz6dKlOMsUGRlJ9+7d+eOPP6hXr57GMl9fXzp37kz16tUpW7YsjRs3Jjg4mN69eyvrtGvXjnr16nHs2DHOnDnD3LlzWbRoEV5eXpiZmeHu7k7v3r05fvw4p0+fZsiQIZQtW5Y1a9Yk6dxFRUVhY2PD2LFjtZbF9AEF7f6b4teTqUZN8g0bRcizp9wfOpjIjx9JW6gwOdp14MEIF6LCwkFXD3T/f1oSPT3Q1ZX5zsQvT62Ga7eDtNLPXYnut50jmyEAaY20axKN0+rx+ct/txnzd/VfbnqOj/Rh/EFPnjxh7NixtGnThlq1alGkSBH69++Ph4cHPj4+AHTs2JGTJ09qDCqJ7eXLl4nal/r/f6ZG/f8XbKtWrbh37x6HDx/WWtfb25sTJ07E2Qy8cuVKKlasyLx58+jYsSN2dnZKGdRqNYGBgUyYMIHw8HAcHByYPn063t7eBAQE4Ovry9WrV5k8eTIFChSgY8eOLF26lMmTJ3P27FkCAwMTdSwxChcujJ+fHzlz5iRv3rzkzZsXU1NTJk+ezL1795KUl0g92Vu1Jf/ocQTdvMHd/r2JeBt9HWS0q4KuoSEq97mUPXKcskeOk29o9CwCJTdsQeU+J6FshfglZMloQP0aZmTNYqCRnsYw+sfP23fhBLwNwzyHZl/FjBn0SZdWj6cvNPs2il9fVKQ63td/ldQw/oCwsDAGDhxIzpw5GTFihJLeuXNnjh07xogRI9i1axcNGzbkxo0b9OzZkz///JO6deuSJUsWnjx5wpYtW9i3b59Gv0eAL1++KCOF1Wo1T58+ZfLkyWTLlo1KlSoBYGdnR5s2bRg0aBC9e/dWRmEfOXKEBQsW4OTkRNmyZbXKnTNnTg4fPsyFCxfIkSMH586dU6b0CQsLI2fOnPj4+PD06VMGDx6MiYkJ27dvx8DAgBIlShAeHo6HhwcGBga0atWK0NBQ9u7dS758+ciUKVOSzqGjoyObN2/GxcWFXr16AdFzS969exeVSpWkvETqMGvclNw9+/D26GEeT3FFHRGhLHuz25sPZ05rrG9ayZZcHTvzYORQQp75/+ziCpFkunowqEtePLxesmrrCyW9mk1mIiPVXL8bxMVrH6lobcri9c+UkdSVy2ckMlLN5ZsfU6vo4jtJDaM2CRh/wLRp07h//z5bt27VaDLV1dVl6tSpNG3alOHDh7Ns2TKGDRtG5cqV2bRpE7179+bdu3dkzJiR0qVLs2jRIuzt7TXyXrlypTLoRVdXl4wZM1KuXDlmzJhB2rRplfXGjx9PqVKl2LJlCytWrCAiIoICBQowbtw4mjdvHme5+/Xrx5s3b+jRI3oC5UKFCjF58mSGDBnC9evXKViwIMuWLcPNzY2OHTsSHBxM0aJFWbp0KXny5AGiRz/Pnz8fDw8PdHV1sbGxYdmyZejqJq3S2sLCgvXr1+Pu7k7btm3R09OjTJkyrF27VmugkPj16GfKjEWvfoS+fME/OzwxLqw5jVPoi+f/m4fx/6XNXwCA4Id+8qQX8VsICAxnv88bWjbKTmh4FLfvf6a4pQltm+Rg58F/eP4qlC27X1HDNjOThhbCc98/5M6RBudW5uw5GiBzMP6GpA+jNh21Wrrjiv+GizXsUrsI/zpZ6jdUmpjj8njqJAIP7NXcpm4D8g0fJY8GTCHDc81N7SL8Kxno69CyUXZq2WUhu5khAW/D2Pf3G7bsea0MailhaUI3R3MK5jHmQ1AEh08GsmbbC+TBVsnv0Abt1rPkdKu59rzJMYrtOJKi+/5VScAo/jMkYBT/BRIwiv+ClA4YrzeqEe+ykrv/TtF9/6qkSVoIIYQQIhbpw6hNAkYhhBBCiFjUUdL4+jUJGIUQQgghYokMl0EvX5OAUQghhBAilqhwaZL+mgSMQgghhBCx/Jcn6I6PBIxCCCGEELFIk7Q2CRiFEEIIIWKRJmltEjAKIYQQQsQiTdLaJGAUQgghhIglMlSapL8mAaMQQgghRCyRwRIwfk0CRiGEEEKIWNTh0iT9NQkYhRBCCCFiiQyWQS9fk4BRCCGEECIWaZLWpqNWq6XeVQghhBBCxEs3tQsghBBCCCF+bRIwCiGEEEKIBEnAKIQQQgghEiQBoxBCCCGESJAEjEIIIYQQIkESMAohhBBCiARJwCiEEEIIIRIkAaMQQgghhEiQBIxCCCGEECJB/weM9XbprwCBrwAAAABJRU5ErkJggg=="
},
"metadata": {},
"output_type": "display_data"
@@ -955,24 +1099,35 @@
{
"cell_type": "markdown",
"id": "55e6ce42",
- "metadata": {},
+ "metadata": {
+ "is_executing": true
+ },
"source": [
"Create an analysis report. It includes correspondent visualizations and details about your result metrics."
]
},
{
"cell_type": "code",
- "execution_count": 78,
+ "execution_count": 27,
"id": "5a3811ff",
- "metadata": {},
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-10-21T20:58:36.148703Z",
+ "start_time": "2023-10-21T20:58:35.395033Z"
+ }
+ },
"outputs": [
{
- "data": {
- "text/plain": "",
- "text/markdown": "App saved to ./docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__224023.html"
- },
- "metadata": {},
- "output_type": "display_data"
+ "ename": "AttributeError",
+ "evalue": "module 'datapane' has no attribute 'Report'",
+ "output_type": "error",
+ "traceback": [
+ "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m",
+ "\u001B[0;31mAttributeError\u001B[0m Traceback (most recent call last)",
+ "Cell \u001B[0;32mIn[27], line 1\u001B[0m\n\u001B[0;32m----> 1\u001B[0m \u001B[43mvisualizer\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mcreate_html_report\u001B[49m\u001B[43m(\u001B[49m\u001B[43mreport_type\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mReportType\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mMULTIPLE_RUNS_MULTIPLE_MODELS\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 2\u001B[0m \u001B[43m \u001B[49m\u001B[43mreport_save_path\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mos\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mpath\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mjoin\u001B[49m\u001B[43m(\u001B[49m\u001B[43mROOT_DIR\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mresults\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mreports\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m)\u001B[49m\u001B[43m)\u001B[49m\n",
+ "File \u001B[0;32m~/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_visualizer.py:480\u001B[0m, in \u001B[0;36mMetricsVisualizer.create_html_report\u001B[0;34m(self, report_type, report_save_path)\u001B[0m\n\u001B[1;32m 475\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m report_type \u001B[38;5;241m==\u001B[39m ReportType\u001B[38;5;241m.\u001B[39mMULTIPLE_RUNS_MULTIPLE_MODELS:\n\u001B[1;32m 476\u001B[0m boxes_and_whiskers_plot \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mcreate_boxes_and_whiskers_for_models_multiple_runs(\n\u001B[1;32m 477\u001B[0m metrics_lst\u001B[38;5;241m=\u001B[39m[\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mStd\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mIQR\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mJitter\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mLabel_Stability\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mAccuracy\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mTPR\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mTNR\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mFPR\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mFNR\u001B[39m\u001B[38;5;124m'\u001B[39m]\n\u001B[1;32m 478\u001B[0m )\n\u001B[0;32m--> 480\u001B[0m \u001B[43mdp\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mReport\u001B[49m(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m# Fairness and Stability Report\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 481\u001B[0m general_desc,\n\u001B[1;32m 482\u001B[0m \n\u001B[1;32m 483\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m## Model Composed Metrics\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 484\u001B[0m composed_metrics_desc,\n\u001B[1;32m 485\u001B[0m dp\u001B[38;5;241m.\u001B[39mDataTable(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mmodels_composed_metrics_df),\n\u001B[1;32m 486\u001B[0m \n\u001B[1;32m 487\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m## Boxes and Whiskers Plot Based On Multiple Models Runs\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 488\u001B[0m boxes_and_whiskers_plot_desc,\n\u001B[1;32m 489\u001B[0m dp\u001B[38;5;241m.\u001B[39mPlot(boxes_and_whiskers_plot),\n\u001B[1;32m 490\u001B[0m \n\u001B[1;32m 491\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m## Overall Fairness and Stability Model Metrics Comparison\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 492\u001B[0m overall_metrics_desc,\n\u001B[1;32m 493\u001B[0m dp\u001B[38;5;241m.\u001B[39mPlot(fairness_overall_metrics_bar_chart, responsive\u001B[38;5;241m=\u001B[39m\u001B[38;5;28;01mFalse\u001B[39;00m),\n\u001B[1;32m 494\u001B[0m dp\u001B[38;5;241m.\u001B[39mPlot(variance_overall_metrics_bar_chart, responsive\u001B[38;5;241m=\u001B[39m\u001B[38;5;28;01mFalse\u001B[39;00m),\n\u001B[1;32m 495\u001B[0m \n\u001B[1;32m 496\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m## Fairness and Stability Interactive Bar Chart\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 497\u001B[0m individual_metrics_interactive_bar_chart_desc,\n\u001B[1;32m 498\u001B[0m dp\u001B[38;5;241m.\u001B[39mPlot(interactive_bar_chart),\n\u001B[1;32m 499\u001B[0m \n\u001B[1;32m 500\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m## Model Ranks Based On Group Fairness and Stability Metrics\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 501\u001B[0m model_ranked_heatmap_desc,\n\u001B[1;32m 502\u001B[0m dp\u001B[38;5;241m.\u001B[39mPlot(model_rank_heatmap, responsive\u001B[38;5;241m=\u001B[39m\u001B[38;5;28;01mFalse\u001B[39;00m),\n\u001B[1;32m 503\u001B[0m \n\u001B[1;32m 504\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m## Total Ranks Sum For Group Fairness and Stability Metrics\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 505\u001B[0m overall_model_ranked_heatmap_desc,\n\u001B[1;32m 506\u001B[0m dp\u001B[38;5;241m.\u001B[39mPlot(total_model_rank_heatmap, responsive\u001B[38;5;241m=\u001B[39m\u001B[38;5;28;01mFalse\u001B[39;00m),\n\u001B[1;32m 507\u001B[0m )\u001B[38;5;241m.\u001B[39msave(path\u001B[38;5;241m=\u001B[39mos\u001B[38;5;241m.\u001B[39mpath\u001B[38;5;241m.\u001B[39mjoin(report_save_path, report_filename))\n\u001B[1;32m 508\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[1;32m 509\u001B[0m dp\u001B[38;5;241m.\u001B[39mReport(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m# Fairness and Stability Report\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 510\u001B[0m general_desc,\n\u001B[1;32m 511\u001B[0m \n\u001B[0;32m (...)\u001B[0m\n\u001B[1;32m 531\u001B[0m dp\u001B[38;5;241m.\u001B[39mPlot(total_model_rank_heatmap, responsive\u001B[38;5;241m=\u001B[39m\u001B[38;5;28;01mFalse\u001B[39;00m),\n\u001B[1;32m 532\u001B[0m )\u001B[38;5;241m.\u001B[39msave(path\u001B[38;5;241m=\u001B[39mos\u001B[38;5;241m.\u001B[39mpath\u001B[38;5;241m.\u001B[39mjoin(report_save_path, report_filename))\n",
+ "\u001B[0;31mAttributeError\u001B[0m: module 'datapane' has no attribute 'Report'"
+ ]
}
],
"source": [
@@ -982,9 +1137,13 @@
},
{
"cell_type": "code",
- "execution_count": 78,
+ "execution_count": null,
"id": "2326c129",
- "metadata": {},
+ "metadata": {
+ "ExecuteTime": {
+ "start_time": "2023-10-21T20:58:36.147687Z"
+ }
+ },
"outputs": [],
"source": []
}
diff --git a/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231021__202919.csv b/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231021__202919.csv
new file mode 100644
index 00000000..9deda582
--- /dev/null
+++ b/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231021__202919.csv
@@ -0,0 +1,5 @@
+Dataset_Name,Model_Name,F1_Score,Accuracy_Score,Model_Best_Params
+COMPAS_Without_Sensitive_Attributes,DecisionTreeClassifier,0.6429,0.6443,"{'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'min_samples_split': 0.1}"
+COMPAS_Without_Sensitive_Attributes,LogisticRegression,0.6461,0.6506,"{'C': 1, 'max_iter': 250, 'penalty': 'l2', 'solver': 'newton-cg'}"
+COMPAS_Without_Sensitive_Attributes,RandomForestClassifier,0.6481,0.6518,"{'max_depth': 10, 'max_features': 0.6, 'min_samples_leaf': 1, 'n_estimators': 100}"
+COMPAS_Without_Sensitive_Attributes,XGBClassifier,0.6549,0.6588,"{'lambda': 100, 'learning_rate': 0.1, 'max_depth': 5, 'n_estimators': 200}"
diff --git a/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231021__205710.csv b/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231021__205710.csv
new file mode 100644
index 00000000..9deda582
--- /dev/null
+++ b/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231021__205710.csv
@@ -0,0 +1,5 @@
+Dataset_Name,Model_Name,F1_Score,Accuracy_Score,Model_Best_Params
+COMPAS_Without_Sensitive_Attributes,DecisionTreeClassifier,0.6429,0.6443,"{'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'min_samples_split': 0.1}"
+COMPAS_Without_Sensitive_Attributes,LogisticRegression,0.6461,0.6506,"{'C': 1, 'max_iter': 250, 'penalty': 'l2', 'solver': 'newton-cg'}"
+COMPAS_Without_Sensitive_Attributes,RandomForestClassifier,0.6481,0.6518,"{'max_depth': 10, 'max_features': 0.6, 'min_samples_leaf': 1, 'n_estimators': 100}"
+COMPAS_Without_Sensitive_Attributes,XGBClassifier,0.6549,0.6588,"{'lambda': 100, 'learning_rate': 0.1, 'max_depth': 5, 'n_estimators': 200}"
diff --git a/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231021__205809.csv b/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231021__205809.csv
new file mode 100644
index 00000000..9deda582
--- /dev/null
+++ b/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231021__205809.csv
@@ -0,0 +1,5 @@
+Dataset_Name,Model_Name,F1_Score,Accuracy_Score,Model_Best_Params
+COMPAS_Without_Sensitive_Attributes,DecisionTreeClassifier,0.6429,0.6443,"{'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'min_samples_split': 0.1}"
+COMPAS_Without_Sensitive_Attributes,LogisticRegression,0.6461,0.6506,"{'C': 1, 'max_iter': 250, 'penalty': 'l2', 'solver': 'newton-cg'}"
+COMPAS_Without_Sensitive_Attributes,RandomForestClassifier,0.6481,0.6518,"{'max_depth': 10, 'max_features': 0.6, 'min_samples_leaf': 1, 'n_estimators': 100}"
+COMPAS_Without_Sensitive_Attributes,XGBClassifier,0.6549,0.6588,"{'lambda': 100, 'learning_rate': 0.1, 'max_depth': 5, 'n_estimators': 200}"
diff --git a/tests/__init__.py b/tests/__init__.py
index b8197a1a..a4e6e160 100644
--- a/tests/__init__.py
+++ b/tests/__init__.py
@@ -5,6 +5,7 @@
from munch import DefaultMunch
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
+from xgboost import XGBClassifier
from virny.datasets.base import BaseDataLoader
@@ -64,7 +65,10 @@ def models_config():
'LogisticRegression': LogisticRegression(C=1,
max_iter=50,
penalty='l2',
- solver='newton-cg')
+ solver='newton-cg'),
+ 'XGBClassifier': XGBClassifier(learning_rate=0.1,
+ n_estimators=200,
+ max_depth=7),
}
diff --git a/tests/custom_classes/test_metrics_composer.py b/tests/custom_classes/test_metrics_composer.py
index c37d21be..1b075669 100644
--- a/tests/custom_classes/test_metrics_composer.py
+++ b/tests/custom_classes/test_metrics_composer.py
@@ -1,4 +1,6 @@
import os
+
+import pandas as pd
import pytest
from tests import config_params, models_config, ROOT_DIR
@@ -7,17 +9,41 @@
from virny.configs.constants import *
+def compare_composed_metric_dfs(expected_composed_metrics_df, actual_composed_metrics_df,
+ model_name, composed_metrics_lst, groups, alpha=0.000_001):
+ for metric_name in composed_metrics_lst:
+ for group in groups:
+ expected_metric_val = expected_composed_metrics_df[
+ (expected_composed_metrics_df['Model_Name'] == model_name) &
+ (expected_composed_metrics_df['Metric'] == metric_name)
+ ][group].values[0]
+ actual_metric_val = actual_composed_metrics_df[
+ (actual_composed_metrics_df['Model_Name'] == model_name) &
+ (actual_composed_metrics_df['Metric'] == metric_name)
+ ][group].values[0]
+
+ assert abs(expected_metric_val - actual_metric_val) < alpha, f"Assert for {metric_name} metric and {group} group"
+
+
@pytest.fixture(scope='module')
-def models_metrics_dct(models_config):
+def models_metrics_dct1(models_config):
metrics_dir_path = os.path.join(ROOT_DIR, 'tests', 'files_for_tests',
'COMPAS_Without_Sensitive_Attributes_Metrics_20230202__094821')
models_metrics_dct = read_model_metric_dfs(metrics_dir_path, model_names=list(models_config.keys()))
return models_metrics_dct
+@pytest.fixture(scope='module')
+def models_metrics_dct2(models_config):
+ metrics_dir_path = os.path.join(ROOT_DIR, 'tests', 'files_for_tests',
+ 'COMPAS_Without_Sensitive_Attributes_Metrics_20231021__205806')
+ models_metrics_dct = read_model_metric_dfs(metrics_dir_path, model_names=list(models_config.keys()))
+ return models_metrics_dct
+
+
# ========================== Test compose_metrics ==========================
-def test_compose_metrics_true1(models_metrics_dct, config_params):
- metrics_composer = MetricsComposer(models_metrics_dct, config_params.sensitive_attributes_dct)
+def test_compose_metrics_true1(models_metrics_dct1, config_params):
+ metrics_composer = MetricsComposer(models_metrics_dct1, config_params.sensitive_attributes_dct)
models_composed_metrics_df = metrics_composer.compose_metrics()
# Check shape
@@ -37,8 +63,8 @@ def test_compose_metrics_true1(models_metrics_dct, config_params):
)
-def test_compose_metrics_true2(models_metrics_dct, config_params):
- metrics_composer = MetricsComposer(models_metrics_dct, {'sex': 0, 'race': 'Caucasian'})
+def test_compose_metrics_true2(models_metrics_dct1, config_params):
+ metrics_composer = MetricsComposer(models_metrics_dct1, {'sex': 0, 'race': 'Caucasian'})
models_composed_metrics_df = metrics_composer.compose_metrics()
# Check shape
@@ -56,3 +82,60 @@ def test_compose_metrics_true2(models_metrics_dct, config_params):
DISPARATE_IMPACT, STATISTICAL_PARITY_DIFFERENCE, ACCURACY_PARITY,
LABEL_STABILITY_RATIO, IQR_PARITY, STD_PARITY, STD_RATIO, JITTER_PARITY])
)
+
+
+def test_compose_metrics_true3(models_metrics_dct2, config_params):
+ metrics_composer = MetricsComposer(models_metrics_dct2, config_params.sensitive_attributes_dct)
+ models_composed_metrics_df = metrics_composer.compose_metrics()
+
+ # Check shape
+ assert models_composed_metrics_df.shape == (32, 5)
+
+ # Check column names
+ assert sorted(models_composed_metrics_df.columns.tolist()) == sorted(['Metric', 'Model_Name', 'sex', 'race', 'sex&race'])
+
+ # Check unique Model_Name
+ assert sorted(models_composed_metrics_df['Model_Name'].unique().tolist()) == sorted(['LogisticRegression', 'XGBClassifier'])
+
+ # Check all metrics presence
+ assert sorted(models_composed_metrics_df['Metric'].unique().tolist()) == (
+ sorted([EQUALIZED_ODDS_TPR, EQUALIZED_ODDS_TNR, EQUALIZED_ODDS_FPR, EQUALIZED_ODDS_FNR,
+ DISPARATE_IMPACT, STATISTICAL_PARITY_DIFFERENCE, ACCURACY_PARITY,
+ LABEL_STABILITY_RATIO, IQR_PARITY, STD_PARITY, STD_RATIO, JITTER_PARITY,
+ ALEATORIC_UNCERTAINTY_PARITY, ALEATORIC_UNCERTAINTY_RATIO,
+ OVERALL_UNCERTAINTY_PARITY, OVERALL_UNCERTAINTY_RATIO])
+ )
+
+ expected_composed_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'tests', 'files_for_tests', 'composed_metrics',
+ 'Multiple_Models_Interface_Use_Case.csv'), header=0)
+ # Check error disparity metrics
+ compare_composed_metric_dfs(expected_composed_metrics_df=expected_composed_metrics_df,
+ actual_composed_metrics_df=models_composed_metrics_df,
+ model_name='XGBClassifier',
+ groups=['sex', 'race', 'sex&race'],
+ composed_metrics_lst=[EQUALIZED_ODDS_TPR,
+ EQUALIZED_ODDS_TNR,
+ EQUALIZED_ODDS_FPR,
+ EQUALIZED_ODDS_FNR,
+ DISPARATE_IMPACT,
+ STATISTICAL_PARITY_DIFFERENCE,
+ ACCURACY_PARITY])
+ # Check stability disparity metrics
+ compare_composed_metric_dfs(expected_composed_metrics_df=expected_composed_metrics_df,
+ actual_composed_metrics_df=models_composed_metrics_df,
+ model_name='XGBClassifier',
+ groups=['sex', 'race', 'sex&race'],
+ composed_metrics_lst=[LABEL_STABILITY_RATIO,
+ IQR_PARITY,
+ STD_PARITY,
+ STD_RATIO,
+ JITTER_PARITY])
+ # Check uncertainty disparity metrics
+ compare_composed_metric_dfs(expected_composed_metrics_df=expected_composed_metrics_df,
+ actual_composed_metrics_df=models_composed_metrics_df,
+ model_name='XGBClassifier',
+ groups=['sex', 'race', 'sex&race'],
+ composed_metrics_lst=[OVERALL_UNCERTAINTY_PARITY,
+ OVERALL_UNCERTAINTY_RATIO,
+ ALEATORIC_UNCERTAINTY_PARITY,
+ ALEATORIC_UNCERTAINTY_RATIO])
diff --git a/tests/files_for_tests/COMPAS_Without_Sensitive_Attributes_Metrics_20231021__205806/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20231021__205809.csv b/tests/files_for_tests/COMPAS_Without_Sensitive_Attributes_Metrics_20231021__205806/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20231021__205809.csv
new file mode 100644
index 00000000..6c75b817
--- /dev/null
+++ b/tests/files_for_tests/COMPAS_Without_Sensitive_Attributes_Metrics_20231021__205806/Metrics_COMPAS_Without_Sensitive_Attributes_LogisticRegression_50_Estimators_20231021__205809.csv
@@ -0,0 +1,19 @@
+Metric,overall,sex_priv,sex_dis,race_priv,race_dis,sex&race_priv,sex&race_dis,Model_Name,Model_Params
+Std,0.023145077682000158,0.02295679688338056,0.023192092177276767,0.02302529995138481,0.02322231752697641,0.023174469226794232,0.023115907960185658,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+IQR,0.030332964086499062,0.029691096939145224,0.030493240971814644,0.03004027634723248,0.030521706647334536,0.030269718882647973,0.030395731968056942,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+Overall_Uncertainty,0.9098202687501268,0.9180360846366616,0.9077687454932526,0.9149079334836466,0.9065394382210347,0.9171805567370475,0.9025155301065038,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+Mean_Prediction,0.5193473548663423,0.5672318775670018,0.507390391209728,0.584256755568952,0.47748989086185556,0.5727983488084806,0.46629976465206924,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+Aleatoric_Uncertainty,0.9069476890999941,0.9155224984956714,0.9048065236769315,0.9124076160022803,0.9034268016583331,0.9146031627382991,0.8993499926212237,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+Statistical_Bias,0.4342679558492735,0.4335960867937419,0.43443572433532934,0.43407228764765693,0.4343941344091945,0.43288209382904624,0.4356433585334991,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+Label_Stability,0.9482575757575756,0.9283412322274881,0.9532307692307692,0.9544927536231883,0.9442367601246107,0.9465399239543726,0.9499622641509433,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+Jitter,0.04036796536796538,0.05642325176516105,0.036358893853399354,0.036007098491570515,0.043180113166762076,0.04230154419182134,0.03844897959183675,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+TPR,0.6220806794055201,0.48,0.648989898989899,0.4489795918367347,0.7006172839506173,0.48936170212765956,0.7102473498233216,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+TNR,0.7333333333333333,0.8088235294117647,0.7104677060133631,0.8164794007490637,0.6635220125786163,0.8106508875739645,0.6275303643724697,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+PPV,0.6525612472160356,0.5806451612903226,0.6640826873385013,0.5739130434782609,0.6796407185628742,0.5897435897435898,0.6860068259385665,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+FNR,0.37791932059447986,0.52,0.351010101010101,0.5510204081632653,0.2993827160493827,0.5106382978723404,0.28975265017667845,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+FPR,0.26666666666666666,0.19117647058823528,0.289532293986637,0.18352059925093633,0.33647798742138363,0.1893491124260355,0.3724696356275304,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+Accuracy,0.6837121212121212,0.6919431279620853,0.6816568047337278,0.6859903381642513,0.6822429906542056,0.6958174904942965,0.6716981132075471,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+F1,0.6369565217391304,0.5255474452554745,0.6564495530012772,0.5038167938931297,0.6899696048632219,0.5348837209302325,0.6979166666666666,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+Selection-Rate,0.4251893939393939,0.2938388625592417,0.45798816568047335,0.2777777777777778,0.5202492211838006,0.2965779467680608,0.5528301886792453,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+Positive-Rate,0.9532908704883227,0.8266666666666667,0.9772727272727273,0.782312925170068,1.0308641975308641,0.8297872340425532,1.0353356890459364,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
+Sample_Size,1056.0,,,,,,,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 250, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 42, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}"
diff --git a/tests/files_for_tests/COMPAS_Without_Sensitive_Attributes_Metrics_20231021__205806/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20231021__205809.csv b/tests/files_for_tests/COMPAS_Without_Sensitive_Attributes_Metrics_20231021__205806/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20231021__205809.csv
new file mode 100644
index 00000000..eec38f52
--- /dev/null
+++ b/tests/files_for_tests/COMPAS_Without_Sensitive_Attributes_Metrics_20231021__205806/Metrics_COMPAS_Without_Sensitive_Attributes_XGBClassifier_50_Estimators_20231021__205809.csv
@@ -0,0 +1,19 @@
+Metric,overall,sex_priv,sex_dis,race_priv,race_dis,sex&race_priv,sex&race_dis,Model_Name,Model_Params
+Std,0.04625367000699043,0.045700035989284515,0.046391911804676056,0.044785287231206894,0.04720057547092438,0.044880133122205734,0.04761683568358421,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+IQR,0.0597414563720425,0.058872319793249195,0.05995848337574118,0.05804315115806561,0.06083662515488741,0.05800687269566177,0.06146294885086563,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+Overall_Uncertainty,0.8795207510501655,0.8945882320644919,0.8757583386312036,0.8745047002582029,0.8827554006262907,0.8813648645976837,0.8776905553407417,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+Mean_Prediction,0.5246897339820862,0.5801356434822083,0.5108446478843689,0.5917010307312012,0.48147687315940857,0.582183837890625,0.46762949228286743,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+Aleatoric_Uncertainty,0.8708176016807556,0.8863023519515991,0.8669508695602417,0.8662495017051697,0.8737633228302002,0.8731518387794495,0.868500828742981,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+Statistical_Bias,0.4131621842653575,0.4106973970035241,0.4137776518538153,0.4088316087201598,0.4159547984019804,0.408983829201061,0.4173090045744518,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+Label_Stability,0.9079545454545456,0.8591469194312796,0.9201420118343195,0.8995169082125605,0.9133956386292836,0.8946768060836502,0.9211320754716982,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+Jitter,0.07335343228200376,0.1062269078247414,0.06514478927665741,0.07706990042393774,0.07095683133066294,0.0811003336695897,0.06566499807470172,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+TPR,0.6581740976645435,0.5066666666666667,0.6868686868686869,0.54421768707483,0.7098765432098766,0.5585106382978723,0.7243816254416962,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+TNR,0.7384615384615385,0.8014705882352942,0.7193763919821826,0.7940074906367042,0.6918238993710691,0.7928994082840237,0.6639676113360324,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+PPV,0.6695464362850972,0.5846153846153846,0.6834170854271356,0.5925925925925926,0.7012195121951219,0.6,0.7118055555555556,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+FNR,0.34182590233545646,0.49333333333333335,0.31313131313131315,0.4557823129251701,0.29012345679012347,0.44148936170212766,0.2756183745583039,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+FPR,0.26153846153846155,0.19852941176470587,0.2806236080178174,0.20599250936329588,0.3081761006289308,0.20710059171597633,0.3360323886639676,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+Accuracy,0.7026515151515151,0.6966824644549763,0.7041420118343196,0.7053140096618358,0.7009345794392523,0.7091254752851711,0.6962264150943396,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+F1,0.6638115631691649,0.5428571428571428,0.6851385390428212,0.5673758865248227,0.7055214723926381,0.5785123966942148,0.7180385288966725,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+Selection-Rate,0.4384469696969697,0.3080568720379147,0.4710059171597633,0.32608695652173914,0.5109034267912772,0.33269961977186313,0.5433962264150943,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+Positive-Rate,0.9830148619957537,0.8666666666666667,1.005050505050505,0.9183673469387755,1.0123456790123457,0.9308510638297872,1.017667844522968,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
+Sample_Size,1056.0,,,,,,,XGBClassifier,"{'objective': 'binary:logistic', 'use_label_encoder': None, 'base_score': None, 'booster': None, 'callbacks': None, 'colsample_bylevel': None, 'colsample_bynode': None, 'colsample_bytree': None, 'early_stopping_rounds': None, 'enable_categorical': False, 'eval_metric': None, 'feature_types': None, 'gamma': None, 'gpu_id': None, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.1, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'n_estimators': 200, 'n_jobs': None, 'num_parallel_tree': None, 'predictor': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': None, 'sampling_method': None, 'scale_pos_weight': None, 'subsample': None, 'tree_method': None, 'validate_parameters': None, 'verbosity': 0, 'lambda': 100}"
diff --git a/tests/files_for_tests/composed_metrics/Multiple_Models_Interface_Use_Case.csv b/tests/files_for_tests/composed_metrics/Multiple_Models_Interface_Use_Case.csv
new file mode 100644
index 00000000..fdcd3463
--- /dev/null
+++ b/tests/files_for_tests/composed_metrics/Multiple_Models_Interface_Use_Case.csv
@@ -0,0 +1,65 @@
+Metric,sex,race,sex&race,Model_Name
+Accuracy_Parity,0.015760,0.010971,-0.005266,DecisionTreeClassifier
+Aleatoric_Uncertainty_Parity,-0.004072,0.014248,0.007256,DecisionTreeClassifier
+Aleatoric_Uncertainty_Ratio,0.995327,1.016576,1.008393,DecisionTreeClassifier
+Equalized_Odds_FNR,-0.222727,-0.199043,-0.185362,DecisionTreeClassifier
+Equalized_Odds_FPR,0.095457,0.100382,0.132202,DecisionTreeClassifier
+IQR_Parity,0.003254,-0.000365,-0.000008,DecisionTreeClassifier
+Jitter_Parity,-0.011124,0.006842,0.004612,DecisionTreeClassifier
+Label_Stability_Ratio,1.020156,0.996574,0.997767,DecisionTreeClassifier
+Overall_Uncertainty_Parity,-0.007746,0.012562,0.003668,DecisionTreeClassifier
+Overall_Uncertainty_Ratio,0.991382,1.014195,1.004118,DecisionTreeClassifier
+Statistical_Parity_Difference,0.196061,0.116213,0.100951,DecisionTreeClassifier
+Disparate_Impact,1.237170,1.127488,1.108450,DecisionTreeClassifier
+Std_Parity,-0.002647,0.000628,-0.000949,DecisionTreeClassifier
+Std_Ratio,0.963159,1.009053,0.986485,DecisionTreeClassifier
+Equalized_Odds_TNR,-0.095457,-0.100382,-0.132202,DecisionTreeClassifier
+Equalized_Odds_TPR,0.222727,0.199043,0.185362,DecisionTreeClassifier
+Accuracy_Parity,-0.010286,-0.003747,-0.024119,LogisticRegression
+Aleatoric_Uncertainty_Parity,-0.010716,-0.008981,-0.015253,LogisticRegression
+Aleatoric_Uncertainty_Ratio,0.988295,0.990157,0.983323,LogisticRegression
+Equalized_Odds_FNR,-0.168990,-0.251638,-0.220886,LogisticRegression
+Equalized_Odds_FPR,0.098356,0.152957,0.183121,LogisticRegression
+IQR_Parity,0.000802,0.000481,0.000126,LogisticRegression
+Jitter_Parity,-0.020064,0.007173,-0.003853,LogisticRegression
+Label_Stability_Ratio,1.026811,0.989255,1.003616,LogisticRegression
+Overall_Uncertainty_Parity,-0.010267,-0.008368,-0.014665,LogisticRegression
+Overall_Uncertainty_Ratio,0.988816,0.990853,0.984011,LogisticRegression
+Statistical_Parity_Difference,0.150606,0.248551,0.205548,LogisticRegression
+Disparate_Impact,1.182185,1.317713,1.247712,LogisticRegression
+Std_Parity,0.000235,0.000197,-0.000059,LogisticRegression
+Std_Ratio,1.010249,1.008557,0.997473,LogisticRegression
+Equalized_Odds_TNR,-0.098356,-0.152957,-0.183121,LogisticRegression
+Equalized_Odds_TPR,0.168990,0.251638,0.220886,LogisticRegression
+Accuracy_Parity,-0.017426,-0.010226,-0.022433,RandomForestClassifier
+Aleatoric_Uncertainty_Parity,-0.020202,0.018765,0.001511,RandomForestClassifier
+Aleatoric_Uncertainty_Ratio,0.976215,1.022833,1.001816,RandomForestClassifier
+Equalized_Odds_FNR,-0.105253,-0.180461,-0.158729,RandomForestClassifier
+Equalized_Odds_FPR,0.079867,0.126599,0.145905,RandomForestClassifier
+IQR_Parity,-0.011821,-0.003389,-0.002438,RandomForestClassifier
+Jitter_Parity,-0.040291,-0.004564,-0.009985,RandomForestClassifier
+Label_Stability_Ratio,1.089016,1.017421,1.025583,RandomForestClassifier
+Overall_Uncertainty_Parity,-0.025571,0.016989,0.000197,RandomForestClassifier
+Overall_Uncertainty_Ratio,0.970915,1.020024,1.000230,RandomForestClassifier
+Statistical_Parity_Difference,0.060909,0.145251,0.102699,RandomForestClassifier
+Disparate_Impact,1.064341,1.161756,1.109701,RandomForestClassifier
+Std_Parity,-0.005710,-0.000903,-0.000312,RandomForestClassifier
+Std_Ratio,0.923399,0.987202,0.995557,RandomForestClassifier
+Equalized_Odds_TNR,-0.079867,-0.126599,-0.145905,RandomForestClassifier
+Equalized_Odds_TPR,0.105253,0.180461,0.158729,RandomForestClassifier
+Accuracy_Parity,0.007460,-0.004379,-0.012899,XGBClassifier
+Aleatoric_Uncertainty_Parity,-0.019351,0.007514,-0.004651,XGBClassifier
+Aleatoric_Uncertainty_Ratio,0.978166,1.008674,0.994673,XGBClassifier
+Equalized_Odds_FNR,-0.180202,-0.165659,-0.165871,XGBClassifier
+Equalized_Odds_FPR,0.082094,0.102184,0.128932,XGBClassifier
+IQR_Parity,0.001086,0.002793,0.003456,XGBClassifier
+Jitter_Parity,-0.041082,-0.006113,-0.015435,XGBClassifier
+Label_Stability_Ratio,1.070995,1.015429,1.029570,XGBClassifier
+Overall_Uncertainty_Parity,-0.018830,0.008251,-0.003674,XGBClassifier
+Overall_Uncertainty_Ratio,0.978951,1.009435,0.995831,XGBClassifier
+Statistical_Parity_Difference,0.138384,0.093978,0.086817,XGBClassifier
+Disparate_Impact,1.159674,1.102332,1.093266,XGBClassifier
+Std_Parity,0.000692,0.002415,0.002737,XGBClassifier
+Std_Ratio,1.015140,1.053930,1.060978,XGBClassifier
+Equalized_Odds_TNR,-0.082094,-0.102184,-0.128932,XGBClassifier
+Equalized_Odds_TPR,0.180202,0.165659,0.165871,XGBClassifier
From 072085b36e59a9a9f32fc6be369edbeb043e48ad Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Sun, 22 Oct 2023 03:25:43 +0300
Subject: [PATCH 038/148] Added tests for all metrics
---
..._Sensitive_Attributes_20231021__202919.csv | 5 -
..._Sensitive_Attributes_20231021__205710.csv | 5 -
..._Sensitive_Attributes_20231021__205809.csv | 5 -
tests/__init__.py | 48 +
tests/analyzers/__init__.py | 0
.../analyzers/test_subgroup_error_analyzer.py | 41 +
tests/custom_classes/test_metrics_composer.py | 74 +-
.../COMPAS_RF_expected_metrics.csv | 19 +
.../COMPAS_RF_expected_preds.csv | 1057 +++++++++++++++++
.../COMPAS_use_case/COMPAS_RF_predictions.csv | 1057 +++++++++++++++++
.../COMPAS_use_case/COMPAS_y_test.csv | 1057 +++++++++++++++++
tests/user_interfaces/__init__.py | 0
.../test_compute_model_metrics.py | 92 ++
tests/utils/test_stability_utils.py | 25 +-
14 files changed, 3421 insertions(+), 64 deletions(-)
delete mode 100644 docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231021__202919.csv
delete mode 100644 docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231021__205710.csv
delete mode 100644 docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231021__205809.csv
create mode 100644 tests/analyzers/__init__.py
create mode 100644 tests/analyzers/test_subgroup_error_analyzer.py
create mode 100644 tests/files_for_tests/COMPAS_use_case/COMPAS_RF_expected_metrics.csv
create mode 100644 tests/files_for_tests/COMPAS_use_case/COMPAS_RF_expected_preds.csv
create mode 100644 tests/files_for_tests/COMPAS_use_case/COMPAS_RF_predictions.csv
create mode 100644 tests/files_for_tests/COMPAS_use_case/COMPAS_y_test.csv
create mode 100644 tests/user_interfaces/__init__.py
create mode 100644 tests/user_interfaces/test_compute_model_metrics.py
diff --git a/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231021__202919.csv b/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231021__202919.csv
deleted file mode 100644
index 9deda582..00000000
--- a/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231021__202919.csv
+++ /dev/null
@@ -1,5 +0,0 @@
-Dataset_Name,Model_Name,F1_Score,Accuracy_Score,Model_Best_Params
-COMPAS_Without_Sensitive_Attributes,DecisionTreeClassifier,0.6429,0.6443,"{'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'min_samples_split': 0.1}"
-COMPAS_Without_Sensitive_Attributes,LogisticRegression,0.6461,0.6506,"{'C': 1, 'max_iter': 250, 'penalty': 'l2', 'solver': 'newton-cg'}"
-COMPAS_Without_Sensitive_Attributes,RandomForestClassifier,0.6481,0.6518,"{'max_depth': 10, 'max_features': 0.6, 'min_samples_leaf': 1, 'n_estimators': 100}"
-COMPAS_Without_Sensitive_Attributes,XGBClassifier,0.6549,0.6588,"{'lambda': 100, 'learning_rate': 0.1, 'max_depth': 5, 'n_estimators': 200}"
diff --git a/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231021__205710.csv b/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231021__205710.csv
deleted file mode 100644
index 9deda582..00000000
--- a/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231021__205710.csv
+++ /dev/null
@@ -1,5 +0,0 @@
-Dataset_Name,Model_Name,F1_Score,Accuracy_Score,Model_Best_Params
-COMPAS_Without_Sensitive_Attributes,DecisionTreeClassifier,0.6429,0.6443,"{'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'min_samples_split': 0.1}"
-COMPAS_Without_Sensitive_Attributes,LogisticRegression,0.6461,0.6506,"{'C': 1, 'max_iter': 250, 'penalty': 'l2', 'solver': 'newton-cg'}"
-COMPAS_Without_Sensitive_Attributes,RandomForestClassifier,0.6481,0.6518,"{'max_depth': 10, 'max_features': 0.6, 'min_samples_leaf': 1, 'n_estimators': 100}"
-COMPAS_Without_Sensitive_Attributes,XGBClassifier,0.6549,0.6588,"{'lambda': 100, 'learning_rate': 0.1, 'max_depth': 5, 'n_estimators': 200}"
diff --git a/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231021__205809.csv b/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231021__205809.csv
deleted file mode 100644
index 9deda582..00000000
--- a/docs/examples/results/models_tuning/tuning_results_COMPAS_Without_Sensitive_Attributes_20231021__205809.csv
+++ /dev/null
@@ -1,5 +0,0 @@
-Dataset_Name,Model_Name,F1_Score,Accuracy_Score,Model_Best_Params
-COMPAS_Without_Sensitive_Attributes,DecisionTreeClassifier,0.6429,0.6443,"{'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'min_samples_split': 0.1}"
-COMPAS_Without_Sensitive_Attributes,LogisticRegression,0.6461,0.6506,"{'C': 1, 'max_iter': 250, 'penalty': 'l2', 'solver': 'newton-cg'}"
-COMPAS_Without_Sensitive_Attributes,RandomForestClassifier,0.6481,0.6518,"{'max_depth': 10, 'max_features': 0.6, 'min_samples_leaf': 1, 'n_estimators': 100}"
-COMPAS_Without_Sensitive_Attributes,XGBClassifier,0.6549,0.6588,"{'lambda': 100, 'learning_rate': 0.1, 'max_depth': 5, 'n_estimators': 200}"
diff --git a/tests/__init__.py b/tests/__init__.py
index a4e6e160..04162dfa 100644
--- a/tests/__init__.py
+++ b/tests/__init__.py
@@ -25,6 +25,22 @@ def get_root_dir():
return root_dir
+def compare_metric_dfs(expected_composed_metrics_df, actual_composed_metrics_df,
+ model_name, metrics_lst, groups, alpha=0.000_001):
+ for metric_name in metrics_lst:
+ for group in groups:
+ expected_metric_val = expected_composed_metrics_df[
+ (expected_composed_metrics_df['Model_Name'] == model_name) &
+ (expected_composed_metrics_df['Metric'] == metric_name)
+ ][group].values[0]
+ actual_metric_val = actual_composed_metrics_df[
+ (actual_composed_metrics_df['Model_Name'] == model_name) &
+ (actual_composed_metrics_df['Metric'] == metric_name)
+ ][group].values[0]
+
+ assert abs(expected_metric_val - actual_metric_val) < alpha, f"Assert for {metric_name} metric and {group} group"
+
+
ROOT_DIR = get_root_dir()
@@ -112,3 +128,35 @@ def compas_without_sensitive_attrs_dataset_class():
target=target,
numerical_columns=numerical_columns,
categorical_columns=categorical_columns)
+
+@pytest.fixture(scope='package')
+def COMPAS_y_test():
+ y_test = pd.read_csv(os.path.join(ROOT_DIR, 'tests', 'files_for_tests', 'COMPAS_use_case', 'COMPAS_y_test.csv'), header=0)
+ y_test = y_test.set_index("0")
+ return y_test
+
+
+@pytest.fixture(scope='package')
+def COMPAS_RF_expected_preds():
+ expected_preds = pd.read_csv(os.path.join(ROOT_DIR, 'tests', 'files_for_tests', 'COMPAS_use_case',
+ 'COMPAS_RF_expected_preds.csv'), header=0)
+ expected_preds = expected_preds.set_index("0")
+ return expected_preds
+
+
+@pytest.fixture(scope='package')
+def COMPAS_RF_bootstrap_predictions():
+ models_predictions = pd.read_csv(os.path.join(ROOT_DIR, 'tests', 'files_for_tests', 'COMPAS_use_case',
+ 'COMPAS_RF_predictions.csv'), header=0)
+ models_predictions = models_predictions.reset_index(drop=True)
+ models_predictions_dct = dict()
+ for col in models_predictions.columns:
+ models_predictions_dct[int(col)] = models_predictions[col].to_numpy()
+
+ return models_predictions_dct
+
+
+@pytest.fixture(scope='package')
+def COMPAS_RF_expected_metrics():
+ return pd.read_csv(os.path.join(ROOT_DIR, 'tests', 'files_for_tests', 'COMPAS_use_case',
+ 'COMPAS_RF_expected_metrics.csv'), header=0)
diff --git a/tests/analyzers/__init__.py b/tests/analyzers/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/tests/analyzers/test_subgroup_error_analyzer.py b/tests/analyzers/test_subgroup_error_analyzer.py
new file mode 100644
index 00000000..d0f612f5
--- /dev/null
+++ b/tests/analyzers/test_subgroup_error_analyzer.py
@@ -0,0 +1,41 @@
+import pandas as pd
+from sklearn.metrics import confusion_matrix
+
+from virny.configs.constants import *
+from virny.analyzers.subgroup_error_analyzer import SubgroupErrorAnalyzer
+
+
+def test_overall_accuracy_metrics_computation():
+ y_test = pd.Series([0, 0, 1, 1, 0, 1, 0, 1, 1, 1])
+ y_preds = pd.Series([0, 0, 1, 1, 0, 1, 1, 0, 1, 1])
+
+ error_analyzer = SubgroupErrorAnalyzer(X_test=pd.DataFrame(),
+ y_test=pd.DataFrame(),
+ sensitive_attributes_dct=dict(),
+ test_protected_groups=dict(),
+ computation_mode=None)
+ prediction_metrics = error_analyzer._compute_metrics(y_test, y_preds)
+
+ # Check accuracy metrics
+ TN, FP, FN, TP = confusion_matrix(y_test, y_preds).ravel()
+
+ alpha = 0.000_001
+ expected_TPR = TP/(TP+FN)
+ expected_TNR = TN/(TN+FP)
+ expected_PPV = TP/(TP+FP)
+ expected_FNR = FN/(FN+TP)
+ expected_FPR = FP/(FP+TN)
+ expected_ACCURACY = (TP+TN)/(TP+TN+FP+FN)
+ expected_F1 = (2*TP)/(2*TP+FP+FN)
+ expected_SELECTION_RATE = (TP+FP)/(TP+FP+TN+FN)
+ expected_POSITIVE_RATE = (TP+FP)/(TP+FN)
+
+ assert abs(prediction_metrics[TPR] - expected_TPR) < alpha
+ assert abs(prediction_metrics[TNR] - expected_TNR) < alpha
+ assert abs(prediction_metrics[PPV] - expected_PPV) < alpha
+ assert abs(prediction_metrics[FNR] - expected_FNR) < alpha
+ assert abs(prediction_metrics[FPR] - expected_FPR) < alpha
+ assert abs(prediction_metrics[ACCURACY] - expected_ACCURACY) < alpha
+ assert abs(prediction_metrics[F1] - expected_F1) < alpha
+ assert abs(prediction_metrics[SELECTION_RATE] - expected_SELECTION_RATE) < alpha
+ assert abs(prediction_metrics[POSITIVE_RATE] - expected_POSITIVE_RATE) < alpha
diff --git a/tests/custom_classes/test_metrics_composer.py b/tests/custom_classes/test_metrics_composer.py
index 1b075669..fb9cc9b0 100644
--- a/tests/custom_classes/test_metrics_composer.py
+++ b/tests/custom_classes/test_metrics_composer.py
@@ -3,28 +3,12 @@
import pandas as pd
import pytest
-from tests import config_params, models_config, ROOT_DIR
+from tests import config_params, models_config, ROOT_DIR, compare_metric_dfs
from virny.utils.custom_initializers import read_model_metric_dfs
from virny.custom_classes.metrics_composer import MetricsComposer
from virny.configs.constants import *
-def compare_composed_metric_dfs(expected_composed_metrics_df, actual_composed_metrics_df,
- model_name, composed_metrics_lst, groups, alpha=0.000_001):
- for metric_name in composed_metrics_lst:
- for group in groups:
- expected_metric_val = expected_composed_metrics_df[
- (expected_composed_metrics_df['Model_Name'] == model_name) &
- (expected_composed_metrics_df['Metric'] == metric_name)
- ][group].values[0]
- actual_metric_val = actual_composed_metrics_df[
- (actual_composed_metrics_df['Model_Name'] == model_name) &
- (actual_composed_metrics_df['Metric'] == metric_name)
- ][group].values[0]
-
- assert abs(expected_metric_val - actual_metric_val) < alpha, f"Assert for {metric_name} metric and {group} group"
-
-
@pytest.fixture(scope='module')
def models_metrics_dct1(models_config):
metrics_dir_path = os.path.join(ROOT_DIR, 'tests', 'files_for_tests',
@@ -109,33 +93,33 @@ def test_compose_metrics_true3(models_metrics_dct2, config_params):
expected_composed_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'tests', 'files_for_tests', 'composed_metrics',
'Multiple_Models_Interface_Use_Case.csv'), header=0)
# Check error disparity metrics
- compare_composed_metric_dfs(expected_composed_metrics_df=expected_composed_metrics_df,
- actual_composed_metrics_df=models_composed_metrics_df,
- model_name='XGBClassifier',
- groups=['sex', 'race', 'sex&race'],
- composed_metrics_lst=[EQUALIZED_ODDS_TPR,
- EQUALIZED_ODDS_TNR,
- EQUALIZED_ODDS_FPR,
- EQUALIZED_ODDS_FNR,
- DISPARATE_IMPACT,
- STATISTICAL_PARITY_DIFFERENCE,
- ACCURACY_PARITY])
+ compare_metric_dfs(expected_composed_metrics_df=expected_composed_metrics_df,
+ actual_composed_metrics_df=models_composed_metrics_df,
+ model_name='XGBClassifier',
+ groups=['sex', 'race', 'sex&race'],
+ metrics_lst=[EQUALIZED_ODDS_TPR,
+ EQUALIZED_ODDS_TNR,
+ EQUALIZED_ODDS_FPR,
+ EQUALIZED_ODDS_FNR,
+ DISPARATE_IMPACT,
+ STATISTICAL_PARITY_DIFFERENCE,
+ ACCURACY_PARITY])
# Check stability disparity metrics
- compare_composed_metric_dfs(expected_composed_metrics_df=expected_composed_metrics_df,
- actual_composed_metrics_df=models_composed_metrics_df,
- model_name='XGBClassifier',
- groups=['sex', 'race', 'sex&race'],
- composed_metrics_lst=[LABEL_STABILITY_RATIO,
- IQR_PARITY,
- STD_PARITY,
- STD_RATIO,
- JITTER_PARITY])
+ compare_metric_dfs(expected_composed_metrics_df=expected_composed_metrics_df,
+ actual_composed_metrics_df=models_composed_metrics_df,
+ model_name='XGBClassifier',
+ groups=['sex', 'race', 'sex&race'],
+ metrics_lst=[LABEL_STABILITY_RATIO,
+ IQR_PARITY,
+ STD_PARITY,
+ STD_RATIO,
+ JITTER_PARITY])
# Check uncertainty disparity metrics
- compare_composed_metric_dfs(expected_composed_metrics_df=expected_composed_metrics_df,
- actual_composed_metrics_df=models_composed_metrics_df,
- model_name='XGBClassifier',
- groups=['sex', 'race', 'sex&race'],
- composed_metrics_lst=[OVERALL_UNCERTAINTY_PARITY,
- OVERALL_UNCERTAINTY_RATIO,
- ALEATORIC_UNCERTAINTY_PARITY,
- ALEATORIC_UNCERTAINTY_RATIO])
+ compare_metric_dfs(expected_composed_metrics_df=expected_composed_metrics_df,
+ actual_composed_metrics_df=models_composed_metrics_df,
+ model_name='XGBClassifier',
+ groups=['sex', 'race', 'sex&race'],
+ metrics_lst=[OVERALL_UNCERTAINTY_PARITY,
+ OVERALL_UNCERTAINTY_RATIO,
+ ALEATORIC_UNCERTAINTY_PARITY,
+ ALEATORIC_UNCERTAINTY_RATIO])
diff --git a/tests/files_for_tests/COMPAS_use_case/COMPAS_RF_expected_metrics.csv b/tests/files_for_tests/COMPAS_use_case/COMPAS_RF_expected_metrics.csv
new file mode 100644
index 00000000..55f650b9
--- /dev/null
+++ b/tests/files_for_tests/COMPAS_use_case/COMPAS_RF_expected_metrics.csv
@@ -0,0 +1,19 @@
+Metric,overall,sex_priv,sex_dis,race_priv,race_dis,sex&race_priv,sex&race_dis,Model_Name,Model_Params
+Std,0.068128,0.072994,0.066914,0.069108,0.067496,0.068876,0.067387,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'm..."
+Aleatoric_Uncertainty,0.836970,0.850505,0.833591,0.825442,0.844405,0.835656,0.838275,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'm..."
+Mean_Prediction,0.523332,0.579475,0.509313,0.596833,0.475934,0.585774,0.461361,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'm..."
+Statistical_Bias,0.404456,0.395950,0.406580,0.393744,0.411363,0.396692,0.412161,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'm..."
+Overall_Uncertainty,0.860751,0.878872,0.856227,0.850881,0.867116,0.860681,0.860822,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'm..."
+IQR,0.089400,0.096787,0.087556,0.089845,0.089113,0.090047,0.088758,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'm..."
+Label_Stability,0.840871,0.807204,0.849278,0.833816,0.845421,0.836274,0.845434,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'm..."
+Jitter,0.112213,0.134949,0.106536,0.114909,0.110475,0.115290,0.109160,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'm..."
+TPR,0.675159,0.613333,0.686869,0.564626,0.725309,0.585106,0.734982,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'm..."
+TNR,0.738462,0.801471,0.719376,0.812734,0.676101,0.804734,0.647773,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'm..."
+PPV,0.675159,0.630137,0.683417,0.624060,0.695266,0.625000,0.705085,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'm..."
+FNR,0.324841,0.386667,0.313131,0.435374,0.274691,0.414894,0.265018,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'm..."
+FPR,0.261538,0.198529,0.280624,0.187266,0.323899,0.195266,0.352227,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'm..."
+Accuracy,0.710227,0.734597,0.704142,0.724638,0.700935,0.726236,0.694340,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'm..."
+F1,0.675159,0.621622,0.685139,0.592857,0.709970,0.604396,0.719723,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'm..."
+Selection-Rate,0.446023,0.345972,0.471006,0.321256,0.526480,0.334601,0.556604,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'm..."
+Positive-Rate,1.000000,0.973333,1.005051,0.904762,1.043210,0.936170,1.042403,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'm..."
+Sample_Size,1056.000000,NaN,NaN,NaN,NaN,NaN,NaN,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 0.6, 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'm..."
diff --git a/tests/files_for_tests/COMPAS_use_case/COMPAS_RF_expected_preds.csv b/tests/files_for_tests/COMPAS_use_case/COMPAS_RF_expected_preds.csv
new file mode 100644
index 00000000..d684fc51
--- /dev/null
+++ b/tests/files_for_tests/COMPAS_use_case/COMPAS_RF_expected_preds.csv
@@ -0,0 +1,1057 @@
+0,1
+8,1
+4246,1
+544,0
+1780,1
+3940,0
+1564,0
+4519,0
+2664,0
+167,1
+346,0
+1726,0
+1583,0
+1717,0
+1820,0
+2342,0
+3017,0
+2341,0
+1084,0
+15,1
+1578,0
+5239,1
+4155,1
+3290,0
+2685,0
+2131,0
+3785,1
+1244,0
+4320,1
+4532,1
+1779,1
+3578,0
+911,0
+23,0
+977,1
+538,1
+642,0
+2276,0
+230,1
+1890,0
+4674,0
+3680,1
+3622,0
+1729,1
+3194,0
+4516,1
+1424,0
+3773,0
+3431,0
+4349,0
+4325,0
+4031,1
+4625,1
+2995,1
+800,1
+4303,1
+1038,1
+505,1
+1293,1
+168,0
+2476,1
+746,1
+3817,1
+3711,0
+1272,0
+3036,1
+3080,1
+3247,1
+1934,0
+4316,0
+3754,0
+881,0
+3225,0
+3694,0
+2656,0
+3659,0
+3559,1
+2445,1
+1995,0
+2280,1
+4640,0
+711,0
+240,1
+4811,0
+1034,0
+2533,0
+2417,0
+5173,0
+79,1
+297,0
+1183,0
+80,1
+3352,0
+1557,0
+3860,0
+3867,0
+4693,1
+1268,0
+2317,0
+1569,0
+3220,0
+4088,0
+3819,0
+2855,1
+1942,0
+239,0
+3485,0
+1434,1
+3119,1
+84,1
+5067,1
+5250,0
+2080,1
+2487,1
+4909,0
+3768,0
+4262,1
+2552,1
+3712,0
+3527,0
+1592,1
+393,1
+2264,0
+1255,0
+691,0
+2788,0
+931,0
+5272,1
+29,0
+3254,1
+4936,1
+653,1
+1736,0
+810,1
+2890,1
+4952,0
+2309,1
+3038,0
+4763,0
+1893,1
+4098,1
+3138,1
+1055,1
+4274,1
+2456,0
+2459,0
+5166,1
+3513,1
+4129,1
+107,0
+2894,1
+1001,1
+2775,0
+3618,0
+132,0
+426,0
+1002,0
+4607,0
+3664,0
+1094,1
+4355,1
+3761,0
+3482,0
+4498,1
+812,0
+2658,0
+1658,1
+2535,1
+472,1
+157,1
+65,0
+4809,0
+5229,0
+2086,1
+4220,1
+599,1
+4878,0
+3608,0
+3814,0
+829,0
+1281,1
+5062,1
+4009,1
+1738,1
+5128,0
+877,1
+3707,0
+1499,1
+3357,1
+996,0
+279,1
+1505,0
+465,0
+1223,0
+2955,1
+2677,0
+2813,1
+1338,0
+2291,0
+1330,1
+2820,1
+151,1
+5080,1
+33,1
+4817,0
+3053,1
+251,0
+468,1
+2025,1
+2620,1
+1405,1
+4336,0
+296,0
+1101,0
+2707,1
+3450,0
+3116,1
+290,0
+1513,0
+4608,0
+2405,0
+3493,1
+952,0
+4118,0
+2357,0
+4305,0
+4435,1
+4924,0
+3137,1
+2706,0
+3130,1
+3428,0
+3520,0
+1095,0
+422,0
+227,0
+1379,0
+4254,0
+5200,0
+3639,1
+969,1
+410,1
+2288,0
+4342,1
+2521,1
+4819,1
+4886,1
+1815,0
+4867,1
+3078,1
+3149,1
+4959,0
+3047,0
+3592,0
+794,0
+1907,1
+1371,1
+1618,0
+4011,0
+5190,0
+2228,0
+925,0
+1025,1
+896,1
+2714,1
+584,0
+1718,0
+4920,1
+3689,1
+624,1
+4889,1
+2586,1
+497,1
+2627,0
+1954,1
+1210,1
+842,0
+803,0
+4472,1
+3023,0
+4871,0
+106,0
+4570,1
+351,1
+1789,0
+4238,0
+4074,0
+2370,1
+4096,1
+2022,0
+439,0
+2699,0
+3333,1
+811,0
+4001,0
+4387,1
+3475,0
+1321,0
+4162,1
+4428,0
+2409,1
+179,0
+625,1
+3634,1
+1599,1
+3722,0
+3933,0
+4638,1
+2495,0
+2407,0
+3535,0
+555,1
+1870,1
+1886,1
+3750,1
+4351,1
+2284,0
+5063,1
+373,1
+3231,1
+4069,0
+589,0
+1740,1
+3311,0
+932,0
+501,1
+1615,0
+2078,0
+3515,1
+333,0
+2698,0
+1322,1
+3657,0
+418,0
+4263,0
+3107,0
+2899,0
+1691,0
+3459,0
+1773,0
+2807,1
+4796,0
+2921,0
+2210,0
+4892,1
+1029,0
+1702,1
+4198,0
+683,0
+4154,1
+401,0
+3386,1
+3050,1
+1752,1
+254,0
+1412,1
+1905,0
+1323,0
+4080,1
+4002,1
+1200,0
+4906,0
+3470,1
+4912,0
+4281,1
+5053,0
+787,1
+1961,0
+3826,0
+1438,0
+199,1
+1010,1
+4099,0
+3439,0
+2481,1
+4047,0
+4144,1
+2029,0
+2577,0
+2885,1
+3944,0
+926,0
+1129,0
+1924,0
+416,0
+3999,0
+763,1
+491,1
+1541,0
+1397,0
+2998,0
+2304,0
+4365,0
+3113,0
+2792,1
+1041,1
+228,0
+2157,0
+5001,1
+553,0
+1782,1
+4660,1
+3355,0
+1432,0
+2380,0
+3158,0
+4250,1
+4666,0
+2191,1
+2843,1
+248,0
+5124,1
+4265,1
+4448,1
+2145,0
+742,0
+4572,0
+2218,1
+2244,1
+2146,1
+3105,0
+2111,1
+705,1
+4831,1
+4988,0
+3880,0
+486,0
+3478,0
+4935,1
+4190,0
+1400,0
+1945,1
+721,1
+4987,0
+3365,1
+1837,0
+1090,1
+88,0
+4895,1
+471,1
+724,0
+4005,0
+4458,0
+2939,0
+3235,0
+4983,0
+3936,0
+485,1
+3955,1
+1235,0
+144,0
+879,0
+1467,1
+315,0
+2379,1
+4622,1
+4104,0
+5143,1
+2992,1
+1532,1
+2305,0
+1468,1
+1115,1
+4026,1
+2372,0
+1534,1
+4569,1
+1669,0
+1188,1
+2302,1
+3010,0
+1538,0
+586,0
+4056,1
+4838,1
+3410,0
+907,0
+1039,1
+3852,0
+1057,1
+530,0
+4489,1
+2229,0
+4930,1
+100,0
+3134,0
+2574,1
+1580,0
+4620,1
+4612,0
+4477,1
+3481,1
+944,1
+3321,0
+2647,0
+654,1
+2780,1
+2696,0
+1406,0
+4595,1
+109,0
+2648,0
+2100,1
+1253,1
+2803,0
+4446,0
+1545,1
+4409,0
+2346,0
+3811,0
+1892,0
+4050,0
+1049,1
+1351,1
+1978,0
+5016,0
+4402,0
+2394,0
+964,0
+4846,0
+3366,0
+1770,1
+3227,1
+577,0
+2124,0
+308,0
+4119,1
+1047,1
+655,1
+4034,1
+4370,0
+4372,0
+3909,1
+893,1
+1074,0
+4037,1
+1370,0
+2437,1
+4731,0
+2406,0
+5257,1
+4523,0
+3277,1
+4949,1
+5019,1
+1197,0
+4475,1
+438,1
+751,0
+3529,0
+3801,0
+2523,0
+149,0
+4947,0
+437,0
+12,0
+93,1
+4697,1
+1813,1
+5167,1
+626,0
+2463,1
+776,1
+1611,0
+5013,0
+1485,0
+2654,0
+5234,0
+1411,1
+1344,0
+4236,0
+5044,1
+4759,1
+429,1
+1957,0
+3238,1
+2653,0
+4518,1
+1988,0
+1175,0
+1871,1
+1926,0
+2663,0
+4994,0
+2042,1
+3135,1
+3896,1
+4245,1
+1743,0
+4955,0
+3658,1
+287,0
+3491,0
+2991,0
+1075,0
+1657,0
+561,1
+3458,1
+4945,1
+3891,1
+3848,0
+3532,1
+2447,0
+833,0
+1263,0
+1425,1
+4204,0
+1670,0
+3970,1
+2764,0
+4058,1
+5054,0
+2874,0
+807,1
+4368,1
+2686,0
+2098,0
+2835,1
+733,0
+4291,0
+4648,0
+1617,0
+4673,0
+994,0
+3207,0
+3094,0
+414,1
+4975,0
+5070,0
+2314,0
+3279,1
+1612,1
+4366,0
+1503,1
+252,0
+734,1
+350,1
+5130,0
+1765,1
+457,0
+1437,0
+3167,0
+90,1
+4836,1
+3406,1
+26,0
+549,1
+181,0
+2251,1
+2045,0
+1117,0
+1566,0
+3604,1
+1480,0
+2940,1
+4075,1
+2829,1
+5205,1
+3509,0
+4905,0
+4110,0
+4133,0
+4126,0
+2605,1
+69,0
+3874,0
+3123,1
+5186,1
+3971,1
+2617,1
+203,0
+5030,1
+4271,0
+3788,0
+387,1
+4788,1
+4258,0
+4049,1
+2142,1
+3240,1
+2348,1
+4841,1
+4467,0
+221,1
+677,1
+1420,1
+1319,0
+4805,0
+1746,0
+3929,1
+4815,0
+2186,1
+798,0
+2518,0
+4787,0
+177,0
+4241,0
+1433,1
+1335,1
+2980,0
+3755,0
+5189,0
+3931,1
+2016,0
+5071,0
+3075,1
+2924,0
+5111,0
+915,0
+4837,0
+527,0
+1086,1
+1595,1
+3409,1
+1032,1
+681,0
+765,1
+3250,1
+2818,0
+1044,0
+4561,1
+2941,0
+5243,0
+4814,1
+219,0
+2751,0
+1647,0
+582,0
+2480,0
+3966,0
+43,0
+2095,0
+210,0
+2344,1
+354,1
+1807,1
+1302,0
+1665,1
+1902,0
+805,0
+367,1
+4152,1
+4633,0
+4388,0
+135,0
+1839,1
+47,1
+718,1
+2195,1
+856,1
+4852,0
+2059,0
+670,1
+3074,0
+3638,1
+1741,0
+61,0
+2834,1
+3956,0
+95,1
+1448,1
+478,1
+121,0
+2860,0
+2114,1
+3471,0
+838,0
+2053,1
+1334,0
+2519,0
+693,1
+3648,0
+322,0
+1374,1
+3063,0
+3624,0
+2153,1
+2471,0
+2057,0
+2101,0
+1476,1
+2561,0
+1878,1
+1630,0
+1392,1
+731,0
+334,1
+291,1
+5217,0
+4086,0
+1295,1
+4327,0
+533,1
+1860,0
+1498,0
+3388,0
+1391,1
+4302,1
+2144,0
+657,1
+5119,0
+3611,0
+1921,1
+3433,0
+4986,1
+3542,1
+428,1
+1209,0
+1215,0
+5160,1
+4698,0
+1361,0
+1121,0
+2232,0
+4393,1
+2209,0
+4443,1
+2655,0
+2465,1
+3402,0
+4278,1
+1703,0
+2222,0
+1728,1
+2673,0
+1260,0
+5123,1
+5195,0
+848,1
+2902,1
+2908,0
+4010,1
+2575,0
+3492,1
+764,0
+3606,0
+4041,0
+2536,1
+2497,0
+2119,1
+5112,0
+2886,1
+2629,0
+102,0
+1096,1
+4942,1
+2093,0
+3103,0
+3303,1
+2757,0
+1732,1
+2404,1
+70,1
+1231,1
+4032,1
+2339,1
+2389,1
+3626,0
+831,1
+1242,1
+3248,0
+3349,1
+1020,0
+3661,0
+5010,0
+3631,1
+4187,1
+4315,1
+2728,0
+4436,1
+4210,0
+4147,0
+5175,0
+1173,1
+2957,1
+4602,1
+3285,0
+2328,0
+1512,1
+3163,1
+2168,1
+2643,1
+1554,1
+381,0
+1803,1
+2418,1
+4350,1
+2172,0
+1345,0
+1973,0
+2094,1
+2298,0
+4025,1
+1539,1
+233,1
+712,1
+1224,1
+4820,0
+3159,0
+633,1
+1941,1
+415,0
+1634,0
+2576,1
+4405,0
+4940,0
+1168,1
+757,1
+4425,0
+605,1
+17,1
+1454,0
+2366,1
+5236,0
+5037,0
+596,0
+4168,0
+3044,0
+5100,1
+1894,1
+4437,1
+3930,0
+1436,0
+371,1
+1623,0
+2534,1
+652,0
+598,1
+676,1
+238,0
+4818,1
+5133,0
+1643,1
+1261,0
+5273,0
+1103,0
+1360,0
+75,1
+3126,0
+4899,0
+3879,1
+3477,0
+3351,0
+4287,1
+2702,1
+1073,1
+5115,1
+3196,0
+4789,1
+1427,1
+828,1
+3963,1
+4248,1
+96,0
+5212,0
+4030,0
+3229,0
+4333,0
+3957,0
+621,0
+4984,0
+4063,1
+3100,0
+566,1
+3548,0
+5000,0
+4562,0
+748,0
+1983,0
+4229,1
+51,1
+889,1
+2859,1
+1305,0
+3305,0
+3213,1
+534,1
+745,1
+3565,0
+2758,0
+443,0
+2223,0
+195,0
+3411,1
+4695,1
+4769,1
+802,0
+3682,1
+1128,0
+3360,1
+2794,1
+5150,1
+3315,0
+2857,0
+4578,0
+4194,1
+4427,0
+644,0
+1220,0
+4803,0
+3939,0
+1745,0
+4653,1
+120,1
+3792,1
+2287,0
+2997,1
+5041,0
+4252,1
+2678,1
+5162,0
+3919,1
+1340,0
+5269,0
+2801,0
+5152,0
+2503,1
+134,0
+2748,1
+3668,1
+2846,1
+2550,1
+184,0
+1832,1
+3685,0
+511,0
+62,0
+2977,0
+2224,0
+3000,0
+2907,0
+122,0
+2067,0
+5072,1
+2742,0
+2513,0
+567,0
+4882,1
+3567,0
+864,0
+3928,1
+3739,0
+1212,0
+2985,0
+720,0
+3026,1
+3977,1
+4645,0
+602,0
+1194,1
+3371,0
+2873,0
+1144,1
+1292,1
+3868,1
+318,0
+274,0
diff --git a/tests/files_for_tests/COMPAS_use_case/COMPAS_RF_predictions.csv b/tests/files_for_tests/COMPAS_use_case/COMPAS_RF_predictions.csv
new file mode 100644
index 00000000..cfbd3758
--- /dev/null
+++ b/tests/files_for_tests/COMPAS_use_case/COMPAS_RF_predictions.csv
@@ -0,0 +1,1057 @@
+0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49
+0.3136182291179109,0.039802804982980805,0.0717552088984826,0.07999778942135849,0.19590717830327178,0.5414236741911992,0.2816087355959667,0.40097064600875465,0.26305983856185877,0.44975306598883436,0.45082220915685467,0.49391079868456444,0.277475603845748,0.3577625668454062,0.5144049527464655,0.19580459956709956,0.3613232206860607,0.09875729517896575,0.19326429276558266,0.35471852487443434,0.0868252433840669,0.33729521707467064,0.28359106446471744,0.13894005225278425,0.11335022659733186,0.47589518178827556,0.13528436114504921,0.36118542259995257,0.41282999725282093,0.4898768621349685,0.1178060462195662,0.21103253747824396,0.3809510212010212,0.43811801328269906,0.6624908880525541,0.136,0.3946477989844588,0.4402909796816864,0.132014652014652,0.037753968253968255,0.12751915998655128,0.19610198915196814,0.4769047305721053,0.15960717436783078,0.25539013369525493,0.16655522050383037,0.08904303014671118,0.1438967546767334,0.3281648258283772,0.3831700232799618
+0.619860212386725,0.38993953131454534,0.43534437219335687,0.2743866296248254,0.3181501701428083,0.7378487057811534,0.5226258710540055,0.5954698477769083,0.4825370214270135,0.5995501188353741,0.7061553371389817,0.49925537166005335,0.484381455378112,0.3978607126741746,0.6001137261274273,0.4350470315529963,0.48452428296511807,0.444339502967355,0.3605276011785842,0.33720621002717466,0.5760545964360578,0.6161902388102724,0.4301317453969516,0.6043139411867517,0.34726315174051725,0.4566754065106911,0.5393874856184833,0.4087378559795697,0.3751951029902649,0.31023546899451987,0.5924483872264154,0.49891009414787263,0.6476895888982253,0.17577347560995107,0.4442167362462827,0.6257703199609631,0.48728591095116847,0.36272072946286565,0.44505738964548713,0.6313186140210997,0.7125146972646506,0.41076806329874466,0.4175834129889679,0.42651796691531724,0.27894915365045864,0.3514960575796314,0.36619953400372646,0.605137761896444,0.2827220838578109,0.36808201879827934
+0.5511781261903357,0.41554633992759227,0.8557739200457781,0.5584559949907117,0.8290282176969158,0.8441066166128173,0.7763876477196733,0.2455014927033936,0.35355677321336343,0.7144484039383328,0.7445728935950159,0.5954109458065915,0.6884002820587483,0.7245948743487385,0.8644224181808162,0.7831197721852443,0.400153474687488,0.615982029715089,0.9219121347390388,0.7329917877500985,0.7894588399400112,0.9305096682274323,0.8250888770358594,0.43205424409398824,0.7830664421902092,0.849301440295638,0.6394189026103642,0.7708508574178703,0.8602331430321122,0.5632971875974916,0.5878692731772062,0.6027534688551054,0.4746090672434287,0.5458597927573777,0.7269408778033454,0.827463170654625,0.31718085336835683,0.5135262127155755,0.82201835892919,0.5922725362766046,0.5596837336192749,0.47520407774092455,0.605691053934537,0.6166104802627208,0.9008804222709061,0.2717048196469742,0.7402761157129935,0.6558546248749277,0.5589170526315422,0.4447208125625279
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.8334184253030094,0.8576141619236942,0.8243588245265443,0.8804644279020049,0.8025540910522031,0.8347102206743517,0.812811091580054,0.8155295359196895,0.8427912840124486,0.8834114529801927,0.816595166011179,0.8887262607510571,0.8289262559831818,0.8682377697822017,0.8425429049670992,0.8748471695840653,0.8610106825206663,0.8036559519162669,0.8502294893626179,0.8560039035255894,0.852326337652949,0.8910998873417862,0.8771483314450506,0.8222389076772303,0.8551288595084107,0.8032659833366634,0.7897127187628976,0.8079341195297846,0.8037366866403934,0.8330469540106575,0.8389123738487692,0.8416192634440851,0.8544615512223401,0.8975187135846504,0.8476033854347524,0.8391143841607949,0.838094447145523,0.7926832649165485,0.8547590683387566,0.8797772225892578,0.8786848845425206,0.8384317199633586,0.8379384969500131,0.8986381758977164,0.7807453593188757,0.7889167266696956,0.8351719755447569,0.8257819514276921,0.8899353872794549,0.8705998214946934
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.3161639535506358,0.27936790313864274,0.30680974107884446,0.19192642395389956,0.3111071526253976,0.27582034891505364,0.3447795339832688,0.2139394114681879,0.34800929780191425,0.37900322572396483,0.24297839070803068,0.28180901195002794,0.31579339412881313,0.3389297197513503,0.3325838825563431,0.2032861955506204,0.2954114413769466,0.40544973806624235,0.38581947011006984,0.2115212273887023,0.3676691392718354,0.23178065136721615,0.3799077283989242,0.5293187106083943,0.3838088372044119,0.25999255422320494,0.33171954711973556,0.3859668659584334,0.28642371646923936,0.35865178115138086,0.21870850843183104,0.3498163963507189,0.20957229792963364,0.2902056591601252,0.48615730239544425,0.324480568563187,0.20848608130548693,0.38580409355552125,0.13690788837783746,0.31073875064529266,0.3097727878122687,0.33807234150288357,0.20413514853277503,0.3223922640959846,0.23474381002648112,0.2652595767233699,0.27803500924884805,0.5192451420043224,0.27656478383112537,0.2707412493376073
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.8635193914632151,0.9091319076871279,0.9243968305617025,0.8914732937266757,0.8281043086989903,0.8346645688298399,0.7614665779812887,0.9568276806914764,0.8817392770502542,0.9063185324516964,0.992154610993124,0.8116312995622235,0.907040852493246,0.8890755490751466,0.8623495319648673,0.8473295213443919,0.8121078764227172,0.9396349068618578,0.9010923266007754,0.9020936104516273,0.8813235286131179,0.8984631495052032,0.8399400884187131,0.9069082233762756,0.9565472433483219,0.9053113571938298,0.8625471166802192,0.8364961877468515,0.9026665916105314,0.9328240969063023,0.9515137282211861,0.9216572138213968,0.7834477299325858,0.870339873179775,0.9237822222522668,0.8252059200969444,0.8045264672308826,0.9613987113141786,0.8403889759722918,0.86780408000905,0.9522794532581033,0.9707809584583109,0.9129199000074962,0.9551458141438057,0.901337886528899,0.867394346413372,0.8153473756984703,0.7871757864686453,0.8995097655070522,0.9858479461277337
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.8334184253030094,0.8576141619236942,0.8243588245265443,0.8804644279020049,0.8025540910522031,0.8347102206743517,0.812811091580054,0.8155295359196895,0.8427912840124486,0.8834114529801927,0.816595166011179,0.8887262607510571,0.8289262559831818,0.8682377697822017,0.8425429049670992,0.8748471695840653,0.8610106825206663,0.8036559519162669,0.8502294893626179,0.8560039035255894,0.852326337652949,0.8910998873417862,0.8771483314450506,0.8222389076772303,0.8551288595084107,0.8032659833366634,0.7897127187628976,0.8079341195297846,0.8037366866403934,0.8330469540106575,0.8389123738487692,0.8416192634440851,0.8544615512223401,0.8975187135846504,0.8476033854347524,0.8391143841607949,0.838094447145523,0.7926832649165485,0.8547590683387566,0.8797772225892578,0.8786848845425206,0.8384317199633586,0.8379384969500131,0.8986381758977164,0.7807453593188757,0.7889167266696956,0.8351719755447569,0.8257819514276921,0.8899353872794549,0.8705998214946934
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.8395535918839873,0.7695017523261071,0.7766929205645492,0.7731452771256521,0.733880185271111,0.8296099790439847,0.7685998568206784,0.7856936729135008,0.7116749284572401,0.8787418011626165,0.842331753924945,0.8324921433451119,0.8651695952309243,0.9033566437325655,0.8258053393825684,0.7692083510763108,0.8619282621802803,0.8670853641048585,0.7987187462664074,0.82264481752421,0.861024623204151,0.8351088745000945,0.8524924495039017,0.7189014264653021,0.7484150978128816,0.6777662058071584,0.7654552982743956,0.7452901239877795,0.7769826760786482,0.8434541096248432,0.8862615942724201,0.7472816521891886,0.7126825162087799,0.8111054205790269,0.8495545164139218,0.8020916395561238,0.7109766695256983,0.8201353536766759,0.7007006002017259,0.7247212529011887,0.8174542493478789,0.7996501093988936,0.8158204070124968,0.8841059587691683,0.8347919074988355,0.7469878045281061,0.7976980153091773,0.7861087663723778,0.6371627380565495,0.7649585940443687
+0.6632741865458981,0.6634190540192537,0.6873760311836742,0.32348203198816283,0.4898053776711256,0.6230319473453187,0.648771902508619,0.7120384419715602,0.6882441763394449,0.7380371112714709,0.2992389100182693,0.7677095289975511,0.396671019344086,0.5178032566192191,0.6579873938639647,0.459289484351055,0.30489186220865533,0.8701858962144496,0.700779686315113,0.5603070464873232,0.4861174345897087,0.6428523792545833,0.4824527818417818,0.36323181513180486,0.21946992324471398,0.3435581814759242,0.5329251823470167,0.69105294324255,0.6563882751816718,0.35264304464574975,0.4431850147536357,0.6311643577143302,0.4811609263696117,0.5737567825470098,0.6338088381933673,0.5394137602778507,0.7426449961216746,0.5712042895404607,0.4280641360000168,0.6780321574280955,0.8118280357067907,0.5102456838158752,0.6267791389620571,0.5440992085889327,0.6260259984974561,0.6208552555795573,0.49484288152261463,0.5668556180594874,0.622632545242917,0.46912868190199625
+0.8334184253030094,0.8576141619236942,0.8243588245265443,0.8804644279020049,0.8025540910522031,0.8347102206743517,0.812811091580054,0.8155295359196895,0.8427912840124486,0.8834114529801927,0.816595166011179,0.8887262607510571,0.8289262559831818,0.8682377697822017,0.8425429049670992,0.8748471695840653,0.8610106825206663,0.8036559519162669,0.8502294893626179,0.8560039035255894,0.852326337652949,0.8910998873417862,0.8771483314450506,0.8222389076772303,0.8551288595084107,0.8032659833366634,0.7897127187628976,0.8079341195297846,0.8037366866403934,0.8330469540106575,0.8389123738487692,0.8416192634440851,0.8544615512223401,0.8975187135846504,0.8476033854347524,0.8391143841607949,0.838094447145523,0.7926832649165485,0.8547590683387566,0.8797772225892578,0.8786848845425206,0.8384317199633586,0.8379384969500131,0.8986381758977164,0.7807453593188757,0.7889167266696956,0.8351719755447569,0.8257819514276921,0.8899353872794549,0.8705998214946934
+0.4562364062613081,0.41295670554689784,0.41055742753404767,0.4256205593809335,0.37367112595133717,0.4150611000106262,0.5210766937912145,0.44707928209160747,0.4490632532223949,0.3508972034067538,0.42656239320866957,0.35494508203538283,0.42173089831396593,0.3503070115911789,0.459065153368548,0.5854838373037284,0.4610549192700411,0.5012214182087713,0.5057691838656976,0.3976292766249149,0.3780610335210959,0.34726239676165227,0.44611724577859496,0.5690448942445705,0.4745514421886358,0.30335611010876806,0.4643395076973769,0.44057231746508657,0.355427527245641,0.4601350224240939,0.4362572653903151,0.4602570319789877,0.30674165799356473,0.4004674132100069,0.39091413687589865,0.4298173148636104,0.43014068201459205,0.5445588008404307,0.448012223387467,0.3690295831495209,0.4434353022134865,0.37404388108864267,0.3818746943245592,0.43140515090990583,0.3610239126436938,0.440670170457594,0.45399763875660676,0.44403779252776177,0.37292142918314675,0.44531297668563447
+0.8635193914632151,0.9091319076871279,0.9243968305617025,0.8914732937266757,0.8281043086989903,0.8346645688298399,0.7614665779812887,0.9568276806914764,0.8817392770502542,0.9063185324516964,0.992154610993124,0.8116312995622235,0.907040852493246,0.8890755490751466,0.8623495319648673,0.8473295213443919,0.8121078764227172,0.9396349068618578,0.9010923266007754,0.9020936104516273,0.8813235286131179,0.8984631495052032,0.8399400884187131,0.9069082233762756,0.9565472433483219,0.9053113571938298,0.8625471166802192,0.8364961877468515,0.9026665916105314,0.9328240969063023,0.9515137282211861,0.9216572138213968,0.7834477299325858,0.870339873179775,0.9237822222522668,0.8252059200969444,0.8045264672308826,0.9613987113141786,0.8403889759722918,0.86780408000905,0.9522794532581033,0.9707809584583109,0.9129199000074962,0.9551458141438057,0.901337886528899,0.867394346413372,0.8153473756984703,0.7871757864686453,0.8995097655070522,0.9858479461277337
+0.38476744781252475,0.3743989044200614,0.3924715973861388,0.38366875197374917,0.42162849316724377,0.3266066489585896,0.39820503891639975,0.4412377334299109,0.4247068353772117,0.31061327364925195,0.4827328015639995,0.48720957385236924,0.46852030483913837,0.3187299758917716,0.34282682069152753,0.3760002779701263,0.48858595668024984,0.47305812858771384,0.42789944847020267,0.37705109330894987,0.4073499291602718,0.3845609227916242,0.4235328250576197,0.4223398360369351,0.40514964137653936,0.3629035989879344,0.40527154887892036,0.42317244417893035,0.3771450329711037,0.40540988181938714,0.3944731657817856,0.43443298495326976,0.46995899023583865,0.4356246271925716,0.43938042191330184,0.41793354560191703,0.3622060645712461,0.45153076048025326,0.39222118317850957,0.4100955846601331,0.4161546372418238,0.4052294661567805,0.39528155434759493,0.4704369430043123,0.38164904231196745,0.2951318365722232,0.3765617410812942,0.42166463615466493,0.4644181252060538,0.3525449373231544
+0.5023070147079205,0.39792156787977917,0.7059930596630043,0.5838267668561559,0.4084002153439007,0.30379536670105894,0.46555378794908825,0.5307146739352389,0.4849847458790336,0.4153339870947359,0.3253079072171079,0.6516541383701804,0.5264385193345579,0.3925079253873737,0.4169824797391252,0.3247076122185088,0.18381593093985063,0.3034249125408557,0.41009108208952133,0.4863447525673108,0.5741218494394861,0.2999594047536658,0.524761643071094,0.6062533668092864,0.6579061804504497,0.2590141125962339,0.2657117992901239,0.5232707495007516,0.5976267064432204,0.6890159717186858,0.4829161728152915,0.269276903143238,0.4899077404673664,0.4920338034043929,0.3923297671470194,0.465371497652635,0.5225062402579947,0.49107624468780714,0.3873443025595564,0.37981745603025113,0.30540887551715745,0.3869445658300242,0.4529396240596067,0.5251536551713233,0.5531440801000599,0.3751238160957175,0.3362211095045336,0.5589156529839632,0.689416319796008,0.5778819191447674
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.4562364062613081,0.41298830455445057,0.41330740082810685,0.39927360615112606,0.45690779027609524,0.44219565547541556,0.4706593405868142,0.4173778792081401,0.4449058576264047,0.37839886427033464,0.4472318589834207,0.3373458430753832,0.42752251850664763,0.34125598674627966,0.46096874969043933,0.5460893134662073,0.46453184234696415,0.4945425643572692,0.4650503947709922,0.44390368619330167,0.39637595899530703,0.3939498684849793,0.4546215155747552,0.611522511951767,0.4609190863296557,0.369527484469136,0.5118522637740547,0.3716048106581025,0.3593951820261293,0.4921521408290968,0.41768578571042897,0.42595466964194784,0.39351218709736924,0.5392620151805597,0.41062220848119707,0.4077894657082936,0.4279424187521185,0.5231394838122655,0.4544363376679946,0.37110633627495476,0.45953616662685093,0.39164654541393096,0.4168871306606173,0.43140515090990583,0.35399076745672103,0.49950161745911165,0.38848596011240877,0.4322533775818424,0.4192436214551121,0.466989888419421
+0.550851117717168,0.8064562754830085,0.431166496810608,0.3497271029997902,0.4334227572126003,0.11303803415469167,0.5482428672715481,0.3307638115742118,0.525062424641961,0.8161523574862848,0.8574815166981495,0.45180731941684976,0.4728223793028164,0.4494044297613076,0.655331682233943,0.6536255465655969,0.8706227944463072,0.529557255120129,0.3961632673838298,0.5443770993306728,0.8119763084137273,0.7114247555998975,0.16936179281245067,0.9123582242904152,0.7744022690245288,0.4696534523758668,0.4502927813360618,0.4388465520238398,0.3061952766772282,0.8236303824966846,0.5060457795894157,0.8655073224198577,0.3566601801445316,0.4068784990907103,0.5555332539213683,0.8313777588404734,0.21831558855442654,0.39684874812344667,0.4503647606426236,0.30838156825969293,0.9101658072201811,0.43362689219770273,0.2996195105614793,0.793094844627039,0.4881405090668591,0.5395188797425357,0.6073506956826078,0.6554457821447888,0.5557917225859966,0.2105438790858487
+0.16581599580963505,0.039587222631228144,0.24065540607260089,0.14805318618596636,0.14111352356608034,0.16284031110502556,0.1285459227280874,0.1829280003793876,0.08329296852631049,0.19545674457959897,0.25627745924082207,0.09559039210806533,0.2213899590015144,0.17987156042077349,0.1260138738086296,0.03140976743851729,0.26544048096659006,0.07591948832032622,0.3687368920330892,0.09393822062239376,0.07802885868217642,0.12124935716255417,0.15682462657282387,0.10083290435333403,0.39817694576296747,0.22563472681944027,0.3107357792884767,0.10251584178307926,0.17127491263331612,0.28825034118006043,0.14985509975013958,0.15036972974004473,0.16532255581211147,0.10196182649892693,0.23611398668750078,0.015432683572462098,0.08186379209585262,0.09056118928480038,0.19504255029928327,0.1249454210993584,0.06983574010178181,0.16479803149987401,0.17191877955924487,0.36210373703737836,0.26454350935810395,0.19523814936371817,0.07034938911373102,0.11943760980546671,0.0688955868471455,0.1597995751408396
+0.4868131138858892,0.274850803207108,0.3488062188472422,0.40900232941533793,0.38562464593617607,0.573754378693529,0.3486713289241043,0.3724255897690899,0.4243387366292753,0.22618046846985032,0.4403053035777721,0.21488807204170368,0.5398763069588707,0.3593377826421289,0.4834475520986238,0.3381687480903969,0.4154308310997367,0.18885303393902259,0.33223462385884345,0.2890667305738595,0.28123884044259606,0.49038661278366497,0.3451326948741608,0.3877690729192231,0.4833391801449669,0.5937197218096605,0.2784754773126937,0.20822569706130095,0.4384406646889522,0.3223652484421499,0.44018672906651973,0.39217534946063687,0.5371814216910942,0.5574282840939775,0.28435146000007094,0.40290249162220504,0.37539845632798047,0.5554414989504547,0.2978574768064302,0.39824692794662814,0.47242655263759514,0.479295090632171,0.35821060006783073,0.3543913103474574,0.46701311647858745,0.5177548367158156,0.4357169492682359,0.4512069633561222,0.4697860131327354,0.4839554872437978
+0.19622504296947366,0.35168167801261846,0.39697666517291963,0.20330466619926843,0.33863607750363867,0.07335031101360533,0.24503235920788435,0.11264295628507325,0.1955459260488442,0.2641961139024801,0.3922416761652863,0.2790400667591831,0.2454608916507362,0.2773520027575335,0.3726570875946503,0.4199914416919167,0.21870528577570572,0.5173305649915468,0.4724067726729604,0.33811312155087914,0.2200313716942815,0.4592336797182074,0.19422227235451006,0.5227725015317263,0.5158949227558798,0.30898386045085824,0.34286363090889876,0.26246037155774427,0.27256028593172577,0.040828896983597686,0.07976244568476154,0.46403087124087883,0.2227356192241159,0.5424644020536776,0.4494815734248961,0.2597609258621169,0.19345558313252886,0.25951260936763293,0.3617032145544897,0.1827967286790976,0.23322959445460772,0.21550336751470212,0.2784836400673041,0.09488611523646194,0.3203595560876134,0.3431596627386109,0.1740735739630478,0.344342536898979,0.3580168143862882,0.26051449968754314
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.20642816091954025,0.351958745348219,0.33643714143837383,0.32242735042735043,0.457,0.3651191950464397,0.46620566399120167,0.3189547204748066,0.43025249525249526,0.42026405144563045,0.25934247920616416,0.2762352941176471,0.23145854076702674,0.37069611551449955,0.3430714285714286,0.42807357869801094,0.2831516587022411,0.22383207229928537,0.24409641684102604,0.386547619047619,0.38208000000000003,0.32481434939329673,0.43033819628647213,0.32803231292517004,0.17877197138924614,0.3719116643420215,0.35176861071597915,0.2824702946850819,0.21503064473652714,0.20588299414931105,0.19027298553016986,0.3178771810515266,0.3914231349110678,0.23482697426796809,0.21423029556650244,0.37530938123752494,0.2656580320950636,0.22759722222222223,0.43869439799331106,0.31796968634451106,0.3654788961038961,0.322314393939394,0.33282941917112885,0.1849053547322634,0.2443762626262626,0.24192338004620237,0.48548770355599863,0.4866968325791855,0.4475,0.20293201909358377
+0.34772759086698374,0.42010341644540256,0.34378189455504127,0.16148935664433334,0.24598204059228546,0.29156306688716266,0.0521247293659331,0.2576427407303837,0.231707185558964,0.16052023909711366,0.23708069592330885,0.32342895316599723,0.2708772823807431,0.3893991447469395,0.3039554564799959,0.19089384050886768,0.2751176507610792,0.3660250108309981,0.35526181805229995,0.23341228362937066,0.34953887693075486,0.4158003375742178,0.22892831924339524,0.2628897688038464,0.16446192447351785,0.3463483058281957,0.28864797137543596,0.1197934065226234,0.3830718079775421,0.28674696865391147,0.23026724082136976,0.27905540020188724,0.3659270998285256,0.3270765726979756,0.27770204509843616,0.3315645950888527,0.20725562072272374,0.2560886091167156,0.38212543364841944,0.09765676135339144,0.2375152917536234,0.2556599644053994,0.2810405610635409,0.16448043250431396,0.2858424575031006,0.20315496334683558,0.2585410909232601,0.1963128198677927,0.3986919346204423,0.19330484182658483
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.38622563362489,0.44439117105786335,0.4204486382183356,0.38657226128656935,0.45335836808401553,0.43625748795909336,0.4195637437615571,0.5345971517841034,0.43525885979797835,0.35966050835497626,0.5368910553461944,0.49398669519003385,0.4655159994347102,0.44715790740701494,0.3718824657597029,0.4649227343015574,0.47426762380209675,0.491779119267013,0.4854772404626294,0.5093148102172353,0.4474658810504231,0.3769121494038987,0.4610937630349212,0.5507659817113872,0.467020266499122,0.3163091147127723,0.5283370306738728,0.43045184339401615,0.3797349384669023,0.447709047404021,0.4892625820493109,0.44426922799635477,0.5700397528123503,0.48829509245499914,0.44060123040806887,0.4052622562424129,0.3995444231100692,0.5103671547550143,0.39979040067850286,0.3878791226499627,0.5133653642845729,0.501169134587228,0.3869877826060848,0.44953882027981673,0.3968021364255113,0.4973534127744377,0.3711799504855914,0.4673005551778713,0.529227300288105,0.547317159312285
+0.8334184253030094,0.8576141619236942,0.8243588245265443,0.8804644279020049,0.8025540910522031,0.8347102206743517,0.812811091580054,0.8155295359196895,0.8427912840124486,0.8834114529801927,0.816595166011179,0.8887262607510571,0.8289262559831818,0.8682377697822017,0.8425429049670992,0.8748471695840653,0.8610106825206663,0.8036559519162669,0.8502294893626179,0.8560039035255894,0.852326337652949,0.8910998873417862,0.8771483314450506,0.8222389076772303,0.8551288595084107,0.8032659833366634,0.7897127187628976,0.8079341195297846,0.8037366866403934,0.8330469540106575,0.8389123738487692,0.8416192634440851,0.8544615512223401,0.8975187135846504,0.8476033854347524,0.8391143841607949,0.838094447145523,0.7926832649165485,0.8547590683387566,0.8797772225892578,0.8786848845425206,0.8384317199633586,0.8379384969500131,0.8986381758977164,0.7807453593188757,0.7889167266696956,0.8351719755447569,0.8257819514276921,0.8899353872794549,0.8705998214946934
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.4908131138858892,0.27283628415084665,0.3410284410694644,0.41521661512962366,0.38562464593617607,0.573754378693529,0.3486713289241043,0.3803976177411179,0.40933873662927533,0.19976838055776241,0.4403053035777721,0.21488807204170368,0.5448763069588707,0.3623007456050918,0.4834475520986238,0.3381687480903969,0.4125916702605758,0.18885303393902259,0.3139726621363554,0.2997333972405262,0.29132431052806607,0.49181518421223636,0.3451326948741608,0.3823145274646776,0.4793391801449669,0.5937197218096605,0.2784754773126937,0.20822569706130095,0.44510733135561886,0.3223652484421499,0.44018672906651973,0.39217534946063687,0.5321814216910942,0.5636563542694162,0.2625783719769829,0.4069024916222051,0.3594645880670197,0.5554414989504547,0.2808521292128473,0.38796915016885036,0.44463498447368655,0.479295090632171,0.35821060006783073,0.3543913103474574,0.46101311647858745,0.5329631700491488,0.4207169492682359,0.4581300402791992,0.4697860131327354,0.4935364396247502
+0.8395535918839873,0.7695017523261071,0.7766929205645492,0.7731452771256521,0.733880185271111,0.8296099790439847,0.7685998568206784,0.7856936729135008,0.7116749284572401,0.8787418011626165,0.842331753924945,0.8324921433451119,0.8651695952309243,0.9033566437325655,0.8258053393825684,0.7692083510763108,0.8619282621802803,0.8670853641048585,0.7987187462664074,0.82264481752421,0.861024623204151,0.8351088745000945,0.8524924495039017,0.7189014264653021,0.7484150978128816,0.6777662058071584,0.7654552982743956,0.7452901239877795,0.7769826760786482,0.8434541096248432,0.8862615942724201,0.7472816521891886,0.7126825162087799,0.8111054205790269,0.8495545164139218,0.8020916395561238,0.7109766695256983,0.8201353536766759,0.7007006002017259,0.7247212529011887,0.8174542493478789,0.7996501093988936,0.8158204070124968,0.8841059587691683,0.8347919074988355,0.7469878045281061,0.7976980153091773,0.7861087663723778,0.6371627380565495,0.7649585940443687
+0.6393155447915785,0.5393098976986169,0.44214488373328076,0.4699291938016241,0.700984596402226,0.440765227224819,0.5227483013389438,0.28291717159166996,0.44145250319486123,0.5012515527629323,0.3153120265354918,0.6088134194626693,0.3444271645849898,0.3364905235043654,0.5638920408509551,0.25147071147524674,0.4623822844398737,0.49796938881963926,0.5590856894542524,0.3751172328523745,0.5404583342337085,0.3863250818007463,0.5281632691718937,0.6099091176228099,0.399731771766094,0.4268420822390866,0.4916520337882676,0.52144496631457,0.45977695126624846,0.5567248811440032,0.279870118381331,0.5537767792917451,0.33494787555295114,0.5121292752055484,0.4611111359975436,0.20763125640451618,0.2368424134747541,0.3204570552848915,0.5223908120769181,0.401936308598179,0.49664609114024283,0.35676220929801483,0.4016496793319081,0.38599610866791134,0.32668071896640977,0.40762544080846586,0.5032132372710515,0.574010331452156,0.4089055606623665,0.34770986501747003
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.4672775949995772,0.41298830455445057,0.41330740082810685,0.4069503000170782,0.4679953596770224,0.462714415674432,0.4810240992849063,0.4173778792081401,0.44741791699560696,0.38653383767459,0.4646996518646065,0.3373458430753832,0.42752251850664763,0.3573368784469721,0.4636645134901826,0.5646626293193738,0.46453184234696415,0.4945425643572692,0.4700503947709922,0.44390368619330167,0.4195615029301846,0.3939498684849793,0.4546215155747552,0.611522511951767,0.47284082546009043,0.39158859908387667,0.5196783507305763,0.39101629085238016,0.36893885868845006,0.4921521408290968,0.41768578571042897,0.43064216964194785,0.3966700818342114,0.5392620151805597,0.41062220848119707,0.4077894657082936,0.4279424187521185,0.5272904272084918,0.47027441483434496,0.374860489098875,0.469636479530707,0.4199014155438011,0.42682400517618135,0.43140515090990583,0.36158639587202157,0.49950161745911165,0.4081663955897804,0.4387233487331668,0.483133709456531,0.4768084212379538
+0.6817510569840836,0.5675379527035074,0.7179811226290611,0.7490514723974537,0.5885403571227564,0.6794779312825867,0.7210061902999954,0.6648918242804328,0.6485207860377996,0.6742388620483161,0.6004876045962603,0.6416003868672127,0.66258284111524,0.7644005423460958,0.8077411085274449,0.672526995404043,0.5612682101697373,0.6465637614103384,0.7327884797305124,0.6310816186892446,0.6206629847293976,0.7423592799874186,0.5872029583789348,0.6595679262830774,0.6621828267825519,0.6994265779159208,0.707669002015789,0.6540913101066974,0.6277425000582147,0.6276121707326885,0.6255652701499064,0.6485951949213522,0.6334301226570892,0.7029303423875131,0.7505450831584976,0.6727870583474339,0.6032393063460804,0.6295332100392514,0.6907259235191249,0.5724095270316282,0.6037615587594823,0.7650375077575953,0.6598074329998406,0.6976867468819695,0.7091482524561898,0.7309452561032576,0.5421669491002465,0.7150088818194769,0.618715250389683,0.564973583489802
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.7557326614438196,0.5456232935498291,0.6435356183298385,0.6265981051412367,0.5626306324514546,0.6789101966278547,0.5933027247371487,0.6315761399134131,0.6951427696343484,0.651553558376147,0.5768611118407637,0.7324536931442276,0.7096510180469363,0.5698959087646648,0.7266006678167407,0.7468835929269104,0.7161824943496846,0.6654670051889482,0.5523092135740392,0.6439558028102035,0.5805594865703566,0.6910411435752378,0.6855090867324397,0.6974072215469177,0.6953105568841539,0.7051676668399088,0.5531634887674894,0.6047113386514024,0.6212182635206015,0.6076338985102261,0.4771411981183371,0.6222246125060557,0.6632211206717009,0.6287980549674836,0.5438265857296625,0.5326732986843665,0.5869144647789546,0.6780895369798892,0.4735599420824378,0.6618390368869547,0.7683775906171085,0.5897294990649072,0.6477023758524905,0.4895065655784544,0.6963199203302092,0.532040650243274,0.6573217516409697,0.6668372253719802,0.7451770164862337,0.6856027444182438
+0.41951451717736893,0.44360478373697615,0.4045298719504722,0.46770143209621656,0.4123660119217174,0.39105203294392354,0.3785358186025169,0.4620505595375233,0.4482658716928347,0.4060308835064521,0.439491960018226,0.45285766164443436,0.5172397642843887,0.40598654793731653,0.39336653499763263,0.4367678776297136,0.45347957351379153,0.4968067362051234,0.4397440971762911,0.4436873324675291,0.4057507872897797,0.4588440967588396,0.42808118868507733,0.4524543476888539,0.36944021477355987,0.5016289389344339,0.3721608931753043,0.4554817405847064,0.37314230869022397,0.514370539854871,0.4130317526844465,0.4188690010140261,0.4495909849551795,0.46569207700354687,0.43750508768057145,0.42591714194103025,0.45807138866750846,0.4431677539956715,0.41345992369442236,0.45296121194843453,0.42957906811773017,0.43156038891346554,0.4541149367132152,0.4514154210395019,0.37837214410146397,0.4083146987835955,0.440634145587784,0.39916626216172546,0.5339892526743981,0.42172921813676323
+0.31053715245654756,0.27253310912323436,0.29632470604738165,0.22973493458201533,0.2678095544541643,0.26710148120638794,0.21936701070811973,0.23826333643187464,0.25896359388749435,0.3230504640593348,0.2622286067610375,0.23219118217999257,0.2613095737633457,0.2277853899086043,0.2371008373971871,0.20651661945376362,0.2939264074296968,0.23156451362096678,0.19395141756991843,0.19377057845853782,0.30462236133606974,0.16853401591804573,0.28364410363310116,0.3133186832314592,0.24860161507834241,0.3051576546569227,0.25838453342407386,0.252827144745277,0.25885290706375297,0.32772471772447204,0.2278889701698131,0.3181696340046628,0.18416942980835274,0.2953539504076243,0.4935927197681547,0.2761331048447388,0.28726433119443223,0.292114597414702,0.15764461122089465,0.23553114111759169,0.3461046214419718,0.1934869572742578,0.1684755096221024,0.2501130112245993,0.28762475758933437,0.2379438169131474,0.2639123066725193,0.3602804820128059,0.1981804206549201,0.20322085267145237
+0.23,0.17517144756119266,0.19333333333333333,0.34638888888888886,0.13247681396617567,0.26776118326118326,0.10329523809523809,0.41,0.4294886807181889,0.7164380465714137,0.056666666666666664,0.23954210134128168,0.5494576719576719,0.20359914463119377,0.4181818181818182,0.09680555555555555,0.13386508712315162,0.27959369076739055,0.4007142857142857,0.28650000000000003,0.38380380396714725,0.13480148005654854,0.205,0.1176606000490382,0.26429853283970933,0.5208333333333333,0.29,0.1899050157366561,0.23297895902547064,0.23444827036505658,0.17278846153846153,0.042625,0.2290057409590833,0.2640227488151659,0.49666666666666665,0.2051224191100311,0.18791666666666668,0.15510353535353535,0.24901496369309872,0.462125723738627,0.2215427611295119,0.26429418886198547,0.1103125,0.20439165409753643,0.228266330484243,0.2427142857142857,0.186242144254789,0.24919032258064516,0.08,0.38909031846752284
+0.4603442128808519,0.34947287755743667,0.3844197582672015,0.5238333388776109,0.4812258263462962,0.31632315740686845,0.20947477593605604,0.3090489443430944,0.4522614784615174,0.4689365258391007,0.5164731041250803,0.49624353495249,0.6022414297608129,0.4509124902225391,0.5646536450720546,0.18442848811405366,0.27462013055671747,0.42002928284957863,0.6496944863250751,0.4446920950221226,0.3396804935812937,0.42890088367964935,0.3382589029188069,0.2460791413789368,0.21552653727210458,0.48891980302065186,0.5485335671176673,0.40121584712414765,0.49630209247923757,0.494356940881448,0.3765690388472355,0.14884353704294065,0.27066231524772494,0.3443684492996711,0.41351165679091184,0.6070386615430003,0.2832929900895933,0.35291201623355584,0.3377134304989273,0.4998791384254199,0.5668062824931172,0.3084568944098695,0.2880529379165071,0.5483282495696766,0.30688611103817304,0.38585775236493897,0.4387561676335849,0.6192144187473272,0.30815125744138155,0.3297721537112483
+0.2135720458233238,0.10939871927846669,0.19224166033169957,0.26809952688039784,0.23169446627733284,0.17666774639178454,0.4520950448066969,0.20408921688939596,0.29859901107009856,0.3210730068600185,0.3534193076081122,0.2607301648106025,0.2564213344702632,0.25480948081379945,0.3843425625275381,0.05705514585330093,0.27890353865067524,0.15816418425666925,0.38876364463148616,0.26021402418789746,0.36228401055017406,0.31531339201229797,0.37589759339648837,0.21628513064577645,0.3481230160050526,0.3866781819317831,0.2258387257499624,0.18630296948689345,0.2681085589209409,0.34246071079021834,0.2376253390888835,0.33449712545113963,0.36087863652445235,0.2023977897538008,0.19717481238419998,0.33003691991679446,0.1926650718378572,0.3815317467685598,0.3235667287998176,0.11857275953114625,0.33825239957598746,0.32656452836277866,0.2552618631936047,0.25955170856970705,0.2790125192354817,0.27502686668606474,0.1439639002930243,0.13428009176844055,0.2518002607986306,0.20697706615007075
+0.355706082022468,0.2530748728076286,0.2906795219410335,0.1984373186429661,0.28305273301207395,0.2765974458445194,0.27266452799065033,0.1704465598930723,0.2952771542492594,0.2683288953028224,0.22835306503506128,0.25545103018671217,0.24127996378799843,0.2885269986127412,0.34136035532803893,0.23137425315384313,0.2680108538953904,0.2847870962191212,0.45630881099037046,0.3295461725561144,0.26228378395020097,0.2626871252552784,0.33996298761335625,0.4340454671857653,0.3096117145117464,0.1669092560515693,0.2725051258166598,0.30501635816055195,0.2934256789443499,0.35960426500252896,0.2126823581254321,0.3349721251350555,0.20512868349914096,0.27426702375527934,0.28159676224367736,0.23391780385970937,0.17059113492834466,0.30841104971884714,0.18456298567885288,0.2361029757024384,0.23037576008353725,0.30624155772736206,0.2231932377241211,0.275779132302792,0.2889070671027606,0.25491906109301854,0.22812155127642497,0.3813929312253427,0.28333076976175287,0.21426775663676093
+0.05415033805618573,0.1506987760928241,0.24523007191958798,0.2683593147265494,0.2338213079141758,0.09574358974358974,0.14781746031746032,0.08908491857471726,0.06484330484330485,0.2059348296630905,0.11689712048341348,0.12213952473274196,0.2208586800848464,0.3009991057447273,0.04825079744816587,0.22052297483121142,0.14149586243049403,0.04928891250195587,0.23530683853351733,0.19033774558774552,0.06750432900432901,0.1250606169350698,0.1311901729543125,0.19025296466152825,0.241933978624917,0.2150770171125365,0.1414486360094817,0.020591176470588234,0.06925247611242577,0.21733652020247007,0.04071428571428571,0.1149963924963925,0.18471438747298283,0.0802384689047883,0.1683957762610626,0.09374848559842962,0.09212178816969602,0.06675964780731515,0.3125475755320112,0.08805402930402931,0.11636045303902448,0.23717582105717983,0.2090619213873987,0.24531561266355859,0.1140354762458343,0.11317561138122048,0.10012068323833029,0.1162037037037037,0.06612897730851196,0.10081592289485924
+0.38622563362489,0.44439117105786335,0.4204486382183356,0.38657226128656935,0.45335836808401553,0.43625748795909336,0.4195637437615571,0.5345971517841034,0.43525885979797835,0.35966050835497626,0.5368910553461944,0.49398669519003385,0.4655159994347102,0.44715790740701494,0.3718824657597029,0.4649227343015574,0.47426762380209675,0.491779119267013,0.4854772404626294,0.5093148102172353,0.4474658810504231,0.3769121494038987,0.4610937630349212,0.5507659817113872,0.467020266499122,0.3163091147127723,0.5283370306738728,0.43045184339401615,0.3797349384669023,0.447709047404021,0.4892625820493109,0.44426922799635477,0.5700397528123503,0.48829509245499914,0.44060123040806887,0.4052622562424129,0.3995444231100692,0.5103671547550143,0.39979040067850286,0.3878791226499627,0.5133653642845729,0.501169134587228,0.3869877826060848,0.44953882027981673,0.3968021364255113,0.4973534127744377,0.3711799504855914,0.4673005551778713,0.529227300288105,0.547317159312285
+0.5766813416690799,0.8400283363813409,0.8202326704784672,0.8079189352606835,0.7383000242018452,0.8296437721504781,0.8000716091315586,0.7418132436625041,0.6322910469686392,0.8377577167245229,0.9035084721257235,0.8100257735654823,0.9006412300107053,0.8910869037948987,0.8326817363277524,0.8779690660401769,0.8708341775962652,0.9018362509014202,0.7663219352779086,0.8512114209453405,0.8718866452519518,0.9052007925749487,0.7369159246449712,0.906596888674348,0.8516854285467151,0.7137097228909047,0.8054618648628862,0.9355446262768582,0.873802042406693,0.9810130325499398,0.8389506006215888,0.8327273163288952,0.8342282874352267,0.7554424650345432,0.8292289575540097,0.6268075847980341,0.691634890850871,0.9416053946190612,0.6875049744869606,0.8386811408181629,0.9318897693626979,0.8263191032021188,0.9515575964914993,0.8540607806059056,0.9061001027718634,0.8490428345061082,0.8610273979269136,0.83023264081536,0.6833547498548229,0.9146208267748464
+0.355706082022468,0.2530748728076286,0.2906795219410335,0.1984373186429661,0.28305273301207395,0.2765974458445194,0.27266452799065033,0.1704465598930723,0.2952771542492594,0.2683288953028224,0.22835306503506128,0.25545103018671217,0.24127996378799843,0.2885269986127412,0.34136035532803893,0.23137425315384313,0.2680108538953904,0.2847870962191212,0.45630881099037046,0.3295461725561144,0.26228378395020097,0.2626871252552784,0.33996298761335625,0.4340454671857653,0.3096117145117464,0.1669092560515693,0.2725051258166598,0.30501635816055195,0.2934256789443499,0.35960426500252896,0.2126823581254321,0.3349721251350555,0.20512868349914096,0.27426702375527934,0.28159676224367736,0.23391780385970937,0.17059113492834466,0.30841104971884714,0.18456298567885288,0.2361029757024384,0.23037576008353725,0.30624155772736206,0.2231932377241211,0.275779132302792,0.2889070671027606,0.25491906109301854,0.22812155127642497,0.3813929312253427,0.28333076976175287,0.21426775663676093
+0.41951451717736893,0.44360478373697615,0.4045298719504722,0.46770143209621656,0.4123660119217174,0.39105203294392354,0.3785358186025169,0.4620505595375233,0.4482658716928347,0.4060308835064521,0.439491960018226,0.45285766164443436,0.5172397642843887,0.40598654793731653,0.39336653499763263,0.4367678776297136,0.45347957351379153,0.4968067362051234,0.4397440971762911,0.4436873324675291,0.4057507872897797,0.4588440967588396,0.42808118868507733,0.4524543476888539,0.36944021477355987,0.5016289389344339,0.3721608931753043,0.4554817405847064,0.37314230869022397,0.514370539854871,0.4130317526844465,0.4188690010140261,0.4495909849551795,0.46569207700354687,0.43750508768057145,0.42591714194103025,0.45807138866750846,0.4431677539956715,0.41345992369442236,0.45296121194843453,0.42957906811773017,0.43156038891346554,0.4541149367132152,0.4514154210395019,0.37837214410146397,0.4083146987835955,0.440634145587784,0.39916626216172546,0.5339892526743981,0.42172921813676323
+0.19507687611826252,0.17497047195505444,0.11191496391301944,0.18754076329474675,0.16370125633060087,0.1407874630111443,0.12114878039751574,0.14519939871844184,0.06833371077857135,0.09430214492613714,0.16179090407905108,0.07368588391187185,0.0630284181022717,0.18720066163186735,0.20326184802071992,0.038468632143875,0.2250523301521406,0.12063135085040719,0.21588876883028824,0.16884728503136404,0.10512367007229162,0.1133279425939455,0.06252772751087565,0.032277521372726145,0.06830216511398442,0.17725353483947195,0.1708712886707505,0.13373094579982456,0.17310189724295794,0.04056983522508348,0.372216761462943,0.026546677960565188,0.1669013342917598,0.18350890263523087,0.09280856675936229,0.15995572125492277,0.1002545170917457,0.1668762352359513,0.26901385201786193,0.1097596746759403,0.13341659833436997,0.21400148269260416,0.02740344692402545,0.09918889586919603,0.18053720298679493,0.17440075895235185,0.21101339878082737,0.05679613569093285,0.198051739005769,0.1695706327220684
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.4652227391229421,0.44214090358549785,0.42798375578554476,0.5363382573051113,0.43220764461968103,0.33881358343860307,0.45380698654535223,0.45108549917229845,0.46576573397557547,0.43384676710223,0.4445223667354965,0.4803911168859916,0.477790960388706,0.4950201231415511,0.48584883439887144,0.5575172153083513,0.44960321208624454,0.51347755599201,0.49291560015879665,0.5369991290462687,0.433883940123183,0.48958121741028543,0.4388909975444369,0.5929899060150144,0.40657310427433624,0.5108561224975957,0.5132426972740877,0.3855221657329599,0.3699609794959964,0.6393536633905379,0.49059074733569913,0.4228146437267955,0.4740414665830889,0.44981835798221576,0.4755176438971832,0.42892021277165243,0.5727190882551801,0.5250702667343312,0.5592342578750916,0.4380084303587132,0.5035886234454279,0.4006355468952724,0.40960053556172404,0.4406971314594053,0.38793985243944,0.5011038247917654,0.4591869136374979,0.4662626471752944,0.45794840263077724,0.4975674247159926
+0.2867854417666141,0.18713841088461186,0.2357850723688066,0.17643639557702237,0.25064819162699864,0.20057934639696406,0.1818582696646473,0.16611978207927067,0.1893951130510203,0.2616565429133813,0.31502570060085794,0.2072499512555977,0.14469080563085554,0.194671128566709,0.2116792250695445,0.12727500224645993,0.3161738592550628,0.24733160057872305,0.22614349926567454,0.25757521506383535,0.3010945228538733,0.23448578291942557,0.11972488672880825,0.23537247505518,0.22441096557073473,0.2545141639754433,0.28480363043380336,0.1722313844735225,0.19405965574876358,0.2520628277439573,0.25723222764494763,0.2298160279469341,0.20157316550856744,0.19113073963718244,0.13910702652989332,0.20442604411480547,0.18541701388196088,0.24556850416077214,0.30805469950902586,0.17303782853149496,0.23323976072637598,0.3504690118469977,0.2542093142020569,0.17824656763143512,0.1843649962003456,0.18862293765903282,0.2725492508572115,0.2629104007616884,0.3249285997747602,0.17084745894331888
+0.3414024116581517,0.8105408474501116,0.7516727606013701,0.15027936500220315,0.3132663610143326,0.6860020553692587,0.46892086257693427,0.5043974748026642,0.2362632591738297,0.5257355252998726,0.3073906494171391,0.7974889325988227,0.5704881625519941,0.24077240747491271,0.7289771752973385,0.584565211021664,0.3465428946234401,0.5726476859157846,0.6785472469559664,0.6272130297943307,0.5168570044591957,0.6127384845380331,0.45353945784902394,0.5097322045134158,0.27279995195810125,0.19885774799291767,0.4840180255210329,0.23486395685370665,0.7420002213601866,0.22658084581999238,0.6680866332052708,0.35940654162713975,0.43581955763902064,0.6044667975696943,0.869975327866248,0.26448965975862476,0.33986610963022407,0.4170035438091942,0.5447427048353619,0.8184832643216433,0.5110565403103423,0.22713958947600535,0.439056426989601,0.6697490897190838,0.10241416511349181,0.5067189971481691,0.5405204742247816,0.6252609541260162,0.6137323188420521,0.7665845296810729
+0.7736059646112404,0.534455065903884,0.6058380629664726,0.6888596766042461,0.6998987945474608,0.7774968542736707,0.6601218876723263,0.6840990352029358,0.7534939543179965,0.6559033341609003,0.6834610230569909,0.6519901920433887,0.7216428344295018,0.7217363990756915,0.6442249366233018,0.6271956230086377,0.7262229925003472,0.669255606247474,0.6662480756641219,0.6487052937064556,0.728747328929106,0.7013606155609428,0.6163904348299699,0.7444442126770285,0.7548234264337748,0.7700270755644322,0.6199834558902689,0.5736584117076509,0.6059777683813649,0.6324692371481963,0.7018368679507807,0.6329322628762354,0.6650449103571927,0.7159179135815283,0.5905617281055707,0.695052599952688,0.6303598120414654,0.7062168685401065,0.5759201557407554,0.7170221248827282,0.7557455907955435,0.6204963092474782,0.6501782514176433,0.6351052633206451,0.7646889700646277,0.6963011532361602,0.7348253663050381,0.7171784741790542,0.7538133801225974,0.7303445488491929
+0.6661478883921953,0.6140080479983625,0.30350081041680993,0.4614863332842078,0.4622805126816561,0.6047292980118167,0.5802369380460951,0.8238131817276638,0.5396977986294682,0.5980375885034882,0.32335431936276693,0.5965652704589707,0.4253381907094923,0.41800306035481205,0.5277054811842128,0.4291365080828763,0.5887214754666166,0.5581351450384804,0.38473678853728205,0.5087465658913293,0.5368585847723881,0.2122856103674229,0.5000742702710967,0.7368250602042322,0.7466250140353439,0.7071754291953666,0.6607852728723048,0.5778461583671931,0.25140129630273217,0.35335256070530774,0.5482444189090567,0.5879328688132828,0.4159111795689324,0.4882118323615743,0.4371271019987974,0.7036347535795383,0.3986304465629376,0.494040797119161,0.4497027112314179,0.49925247569401704,0.5119363725878001,0.36729832649421745,0.4432506956771202,0.5066702148889444,0.4396586981615447,0.40295229355519424,0.6168682673155892,0.5318634796889878,0.7289682310758845,0.5288822232983698
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.3703216107660838,0.3904351383719641,0.29866290652849564,0.2783693109540816,0.3598955069863228,0.37899875592777243,0.2930659622583886,0.33214709496783734,0.3910088645225788,0.3362150807176241,0.2544160303840503,0.37403281023034557,0.31659214988536816,0.42592903337399046,0.303777786693464,0.426130765994763,0.2358111057559967,0.34556642286435185,0.4266575216734101,0.38227044121647114,0.42751126483172713,0.2563535397933479,0.3973411996969029,0.49966417805866375,0.435753126993035,0.2558038682533931,0.35758725667095115,0.35853512991895736,0.3283852964143288,0.4309232595323577,0.39971100352205047,0.28956954538378077,0.4616727217548439,0.3640278485476345,0.45218616312330184,0.39585482224234825,0.34275372608196636,0.3695931783762736,0.3812671919374605,0.40415155652448703,0.3348520873303043,0.5046807917021983,0.30930494609782305,0.2871505943414618,0.2618886986238748,0.5175831609636528,0.3193830809461831,0.4570308297273627,0.37144469951245523,0.33922896338786074
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.18310829193170344,0.06603620866337243,0.3383709282530707,0.08965409146915997,0.20326671830870183,0.20251039877570026,0.2699782690499446,0.14893560988774207,0.23934066618829344,0.2122095214856948,0.21596013216199914,0.17589870408893382,0.13435319888467756,0.15786829727808127,0.22660474592478008,0.06531559769196671,0.44363398938389886,0.4981159719317399,0.3287156142228422,0.3729647973706872,0.4305276424136488,0.4323679384995631,0.17170237106379774,0.29188717649186735,0.18806106584107135,0.40620463072276936,0.14225870509883473,0.13353748193861154,0.21435465587970273,0.45115026049259305,0.2394888257928645,0.3207912555369397,0.23492680037725372,0.19078611968787354,0.1900382762290334,0.11911572339115395,0.0927057593639343,0.17769379795609624,0.2636589659683162,0.3860603044140871,0.4424314406152564,0.07816210325951184,0.51281108000975,0.22991274473013118,0.21458709988678148,0.47131088439363855,0.3511585601757735,0.1946801680860512,0.2759365079365079,0.14392622326316018
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.7081298688911021,0.3594912574493117,0.6416424674552131,0.561217947530632,0.7308590020205304,0.6007708549611772,0.1601698703227834,0.1117466581804766,0.22996598927259304,0.4576779986969495,0.5898495156739232,0.5106622277980241,0.4926626894606376,0.44942359799597015,0.6116071519204116,0.695914406059964,0.8167545147988241,0.35483399197419446,0.31054660104256504,0.5838003531496098,0.3081787768778651,0.2683736721375361,0.4922249642800346,0.746426157952053,0.1490174868510069,0.30753803895803083,0.4497570326261044,0.5332915066502946,0.1513892978360528,0.30306809422140035,0.6166990352559838,0.6721371034389079,0.4646382825719758,0.2441889613981006,0.387433909168118,0.6551769512880314,0.39602496177871305,0.35004519616631086,0.7847600940201199,0.38397763242361516,0.31362999527919355,0.77300860149992,0.2709086158347997,0.4488170863713221,0.9054617499020484,0.6045929041737726,0.7742968261125472,0.5453235388436047,0.7224168233271762,0.4148152482574411
+0.5446245940426713,0.5494926770405604,0.5746499121239179,0.6218406649829236,0.5114775443628693,0.6366129839131545,0.5165423024293757,0.6370925169428692,0.542762995507313,0.6224536133465991,0.6195887861627687,0.6201674372045437,0.5833410289212363,0.5737714291757635,0.5614949019230016,0.5919750750710743,0.6646789349958279,0.537933061240833,0.6078420386828899,0.62000043075478,0.5935821456662708,0.48387453640644323,0.6614913982224161,0.5906930411673309,0.6435112262060124,0.5472840965847809,0.5410355385864576,0.6163531582848534,0.5662630656101545,0.5127930515232252,0.5694412980213047,0.6006435517576451,0.5549067943647045,0.5709044806156345,0.6087876033966626,0.5875175561590011,0.6262948708083219,0.5694286554113226,0.5513503034907371,0.6881534223900474,0.6292988137160652,0.5658270041014457,0.6296448327653298,0.5804412641529479,0.5549867683110549,0.6376343018830283,0.6548520152987767,0.5776049635056665,0.6088880679489195,0.5441456733365482
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.2135720458233238,0.10939871927846669,0.19224166033169957,0.26809952688039784,0.23169446627733284,0.17666774639178454,0.4520950448066969,0.20408921688939596,0.29859901107009856,0.3210730068600185,0.3534193076081122,0.2607301648106025,0.2564213344702632,0.25480948081379945,0.3843425625275381,0.05705514585330093,0.27890353865067524,0.15816418425666925,0.38876364463148616,0.26021402418789746,0.36228401055017406,0.31531339201229797,0.37589759339648837,0.21628513064577645,0.3481230160050526,0.3866781819317831,0.2258387257499624,0.18630296948689345,0.2681085589209409,0.34246071079021834,0.2376253390888835,0.33449712545113963,0.36087863652445235,0.2023977897538008,0.19717481238419998,0.33003691991679446,0.1926650718378572,0.3815317467685598,0.3235667287998176,0.11857275953114625,0.33825239957598746,0.32656452836277866,0.2552618631936047,0.25955170856970705,0.2790125192354817,0.27502686668606474,0.1439639002930243,0.13428009176844055,0.2518002607986306,0.20697706615007075
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.7736059646112404,0.534455065903884,0.6058380629664726,0.6888596766042461,0.6998987945474608,0.7774968542736707,0.6601218876723263,0.6840990352029358,0.7534939543179965,0.6559033341609003,0.6834610230569909,0.6519901920433887,0.7216428344295018,0.7217363990756915,0.6442249366233018,0.6271956230086377,0.7262229925003472,0.669255606247474,0.6662480756641219,0.6487052937064556,0.728747328929106,0.7013606155609428,0.6163904348299699,0.7444442126770285,0.7548234264337748,0.7700270755644322,0.6199834558902689,0.5736584117076509,0.6059777683813649,0.6324692371481963,0.7018368679507807,0.6329322628762354,0.6650449103571927,0.7159179135815283,0.5905617281055707,0.695052599952688,0.6303598120414654,0.7062168685401065,0.5759201557407554,0.7170221248827282,0.7557455907955435,0.6204963092474782,0.6501782514176433,0.6351052633206451,0.7646889700646277,0.6963011532361602,0.7348253663050381,0.7171784741790542,0.7538133801225974,0.7303445488491929
+0.15331083849619997,0.11597222222222221,0.1299999534160664,0.13052665089411064,0.21221214759535656,0.4487579546941412,0.25376280046902483,0.058920418940605554,0.155528259285418,0.16932462819304925,0.3723162259316669,0.34139191919191925,0.21188293770456132,0.5309199743346086,0.37261005323505325,0.15139136462665875,0.1752765847875217,0.31864316239316237,0.3587289446185998,0.31836759074259074,0.3432841541165976,0.4594940327708486,0.10376923076923078,0.11434370329493458,0.23448254686489978,0.16679845686329223,0.24454545454545454,0.11987058022059977,0.23612054612054614,0.5620848746732977,0.25074211204925334,0.4721917449423485,0.41700114643763597,0.20673364868929386,0.3002694206200304,0.4485611577964519,0.12096320775756322,0.11204873346915534,0.2509090909090909,0.2373599701743099,0.10000972974169903,0.2175873015873016,0.21253336212177898,0.1703072447747761,0.20019699650684383,0.6031152194652195,0.33568900469977664,0.3018866069623725,0.42357652493541775,0.2699994701075296
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.8334184253030094,0.8576141619236942,0.8243588245265443,0.8804644279020049,0.8025540910522031,0.8347102206743517,0.812811091580054,0.8155295359196895,0.8427912840124486,0.8834114529801927,0.816595166011179,0.8887262607510571,0.8289262559831818,0.8682377697822017,0.8425429049670992,0.8748471695840653,0.8610106825206663,0.8036559519162669,0.8502294893626179,0.8560039035255894,0.852326337652949,0.8910998873417862,0.8771483314450506,0.8222389076772303,0.8551288595084107,0.8032659833366634,0.7897127187628976,0.8079341195297846,0.8037366866403934,0.8330469540106575,0.8389123738487692,0.8416192634440851,0.8544615512223401,0.8975187135846504,0.8476033854347524,0.8391143841607949,0.838094447145523,0.7926832649165485,0.8547590683387566,0.8797772225892578,0.8786848845425206,0.8384317199633586,0.8379384969500131,0.8986381758977164,0.7807453593188757,0.7889167266696956,0.8351719755447569,0.8257819514276921,0.8899353872794549,0.8705998214946934
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.32293646403780435,0.32113413246050515,0.38428265785831944,0.16032272151426605,0.050051293150561976,0.31545482077405956,0.24114793710475835,0.16828864912059285,0.404375927450447,0.5375247411066265,0.3255393840437212,0.17173357845697126,0.14531057301468736,0.20242404885204238,0.3156146123957367,0.09188445217377554,0.20239597002722276,0.3368553819962022,0.3808632203424355,0.23737699511727192,0.20265538696693988,0.18774900075285042,0.10141804697273261,0.13022726111569166,0.18799060357707004,0.20448222434776145,0.29156913478032503,0.16997154514905063,0.1428130434115916,0.08808817813309627,0.08724474438698518,0.15024225151354012,0.23588504140238128,0.11648319846929599,0.10222456790152666,0.19249350756685002,0.07564839912098888,0.15040798529208124,0.21104812244251686,0.38910426588534297,0.42154236672074263,0.061342685102069056,0.015144485371852211,0.36255355551416973,0.4411315076685834,0.33894082329309844,0.1430650833269879,0.12133809993760675,0.2534784301531021,0.16611556690045856
+0.6620652164405192,0.6789275283078301,0.7268764444902929,0.5854251732979575,0.7992797646698968,0.8684355660468526,0.8915595758527559,0.5518678039968046,0.5639765161004265,0.2894942152244075,0.7845823078901232,0.788449968385731,0.7158508561876349,0.7660477305406854,0.8204933068127367,0.6278541046066567,0.6231670014631029,0.5532973941710088,0.6359491888455762,0.5112580118525775,0.5811576097600581,0.8772451117797284,0.6974626308442952,0.584642038605796,0.5592287967003245,0.7727991170566938,0.7152000070309564,0.6055253349494256,0.869525199023475,0.8155190751559467,0.8087906716128086,0.680516473204355,0.8413660196866826,0.855712005323149,0.7464297335018429,0.6775438535523982,0.6144872802974604,0.43590148671944307,0.6091028405476806,0.8649949324598394,0.6091782275533401,0.47089206315023624,0.6777701878978643,0.6843762048723687,0.30378781907683794,0.7967814163972534,0.7511963594272979,0.3076341529388097,0.8021675389832937,0.5923487773021715
+0.7481532192887105,0.7643172961104141,0.6619078684076574,0.753356370055613,0.6097218187518236,0.7459306638445409,0.5571898331796022,0.7338125398827731,0.6875391120545947,0.7184638500210002,0.7677383401684401,0.7344991520716766,0.8644457478604777,0.7209534970654101,0.7308132904664383,0.9117768836870916,0.8135570461858612,0.7170141592528904,0.7434697133713503,0.7622876757342112,0.8062148431754923,0.8382139738209109,0.6092105318328546,0.726243202859118,0.6184617087543438,0.7861799821344667,0.7137273387256594,0.6433330090341862,0.8452531165990926,0.7462459892384584,0.7933819358212942,0.6135373189231468,0.7296101928854132,0.7062824996808539,0.7296278878815028,0.7242956736349364,0.6979262783136668,0.6576017104077628,0.811070733407268,0.7885797786315014,0.7430182314470943,0.7474037937704385,0.663552459061558,0.731576083117557,0.8403100615374334,0.8266807385153608,0.717457058830935,0.7440908531009702,0.6025756953951632,0.7360555778375112
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.8635193914632151,0.9091319076871279,0.9243968305617025,0.8914732937266757,0.8281043086989903,0.8346645688298399,0.7614665779812887,0.9568276806914764,0.8817392770502542,0.9063185324516964,0.992154610993124,0.8116312995622235,0.907040852493246,0.8890755490751466,0.8623495319648673,0.8473295213443919,0.8121078764227172,0.9396349068618578,0.9010923266007754,0.9020936104516273,0.8813235286131179,0.8984631495052032,0.8399400884187131,0.9069082233762756,0.9565472433483219,0.9053113571938298,0.8625471166802192,0.8364961877468515,0.9026665916105314,0.9328240969063023,0.9515137282211861,0.9216572138213968,0.7834477299325858,0.870339873179775,0.9237822222522668,0.8252059200969444,0.8045264672308826,0.9613987113141786,0.8403889759722918,0.86780408000905,0.9522794532581033,0.9707809584583109,0.9129199000074962,0.9551458141438057,0.901337886528899,0.867394346413372,0.8153473756984703,0.7871757864686453,0.8995097655070522,0.9858479461277337
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.34772759086698374,0.42010341644540256,0.34378189455504127,0.16148935664433334,0.24598204059228546,0.29156306688716266,0.0521247293659331,0.2576427407303837,0.231707185558964,0.16052023909711366,0.23708069592330885,0.32342895316599723,0.2708772823807431,0.3893991447469395,0.3039554564799959,0.19089384050886768,0.2751176507610792,0.3660250108309981,0.35526181805229995,0.23341228362937066,0.34953887693075486,0.4158003375742178,0.22892831924339524,0.2628897688038464,0.16446192447351785,0.3463483058281957,0.28864797137543596,0.1197934065226234,0.3830718079775421,0.28674696865391147,0.23026724082136976,0.27905540020188724,0.3659270998285256,0.3270765726979756,0.27770204509843616,0.3315645950888527,0.20725562072272374,0.2560886091167156,0.38212543364841944,0.09765676135339144,0.2375152917536234,0.2556599644053994,0.2810405610635409,0.16448043250431396,0.2858424575031006,0.20315496334683558,0.2585410909232601,0.1963128198677927,0.3986919346204423,0.19330484182658483
+0.43399232411556565,0.3880210026764744,0.41408983635653074,0.35562920216280014,0.4206666902959723,0.37678642881971564,0.39169381163398453,0.42262456595061193,0.43176830995340487,0.368812165558667,0.46367946949138356,0.42429894347815633,0.4850420096847177,0.302281762233925,0.4029910855621027,0.43597130763403974,0.47710038867070304,0.4782923601665337,0.43788194388956037,0.4536505682550652,0.39584681499391455,0.41032636521749816,0.4011342558618931,0.4371002264149695,0.40332505177775707,0.37233062040488646,0.3853880157912385,0.4505884348070552,0.35983276308578566,0.43448218440981295,0.37705181458871445,0.40699788679184074,0.3400722221293895,0.5249694701170622,0.43159850037896247,0.4038372187008506,0.3881571378777961,0.44804233027679957,0.38503390093268947,0.40111186422910045,0.4054585392744918,0.4048011831423874,0.4251472275511341,0.4228780687890388,0.3679849999042404,0.3852269236856018,0.40796335294067965,0.39357170532222535,0.5002473578428198,0.3529142107486882
+0.38622563362489,0.44439117105786335,0.4204486382183356,0.38657226128656935,0.45335836808401553,0.43625748795909336,0.4195637437615571,0.5345971517841034,0.43525885979797835,0.35966050835497626,0.5368910553461944,0.49398669519003385,0.4655159994347102,0.44715790740701494,0.3718824657597029,0.4649227343015574,0.47426762380209675,0.491779119267013,0.4854772404626294,0.5093148102172353,0.4474658810504231,0.3769121494038987,0.4610937630349212,0.5507659817113872,0.467020266499122,0.3163091147127723,0.5283370306738728,0.43045184339401615,0.3797349384669023,0.447709047404021,0.4892625820493109,0.44426922799635477,0.5700397528123503,0.48829509245499914,0.44060123040806887,0.4052622562424129,0.3995444231100692,0.5103671547550143,0.39979040067850286,0.3878791226499627,0.5133653642845729,0.501169134587228,0.3869877826060848,0.44953882027981673,0.3968021364255113,0.4973534127744377,0.3711799504855914,0.4673005551778713,0.529227300288105,0.547317159312285
+0.1659543948774305,0.11941998075927045,0.154883119742532,0.10468366272044177,0.18511540933793022,0.15805380195610857,0.1411610516261289,0.08272173821781849,0.21190768003432506,0.1004575570601471,0.20107215763676836,0.10152387756918163,0.18283600000498462,0.1996840149764986,0.08789082328728709,0.24027601298320758,0.21098513976228994,0.0662472981322213,0.20263781803276412,0.09026329310968263,0.35107860370652444,0.1614470980579335,0.49927261293365477,0.12361763784461152,0.044992977785485916,0.360024044939642,0.20303131270316893,0.173626934556836,0.04827857981005118,0.2388662309753628,0.12034220590176294,0.16293524298655754,0.03788152532980119,0.2085374483373611,0.3667027696542731,0.13666666666666666,0.1078678930150799,0.11574685668399208,0.12824585724125628,0.22954876931846482,0.18513877749754293,0.2257419929995882,0.4767540327520948,0.3259192983450201,0.29141846450546455,0.08664953970405848,0.2660938942200882,0.1953960715142454,0.052000000000000005,0.1312802667286193
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.31159460207013984,0.25518311625429996,0.3037205005604676,0.18784088016541198,0.2892416320364894,0.2936061665029528,0.3344883443897732,0.19988026858145883,0.32601961482954683,0.29568533694650745,0.2285101734683347,0.23578182358364128,0.2280915627175889,0.31047517429680477,0.315442383124344,0.1916588242870678,0.27440294884808125,0.3348381309132412,0.39943809679455333,0.21698477092404406,0.2976787463567396,0.2197784879628822,0.36160506731168934,0.4875638994807113,0.29533936012064926,0.2713427562146365,0.2892153459146082,0.298154720901077,0.2767308384703954,0.3154996400836942,0.2065904711948916,0.3262019295042479,0.1846750268596495,0.26414138026042727,0.32736720050866064,0.30344916865153504,0.15645153415155746,0.37410369646504626,0.1445490079326549,0.24045744256754487,0.2387455024372239,0.25633770905458664,0.18288344112112206,0.2973393719907018,0.24602842541109657,0.25467603284929957,0.25138439499135184,0.5170727119878556,0.26001940667200363,0.2227961360983862
+0.38476744781252475,0.3743989044200614,0.3924715973861388,0.38366875197374917,0.42162849316724377,0.3266066489585896,0.39820503891639975,0.4412377334299109,0.4247068353772117,0.31061327364925195,0.4827328015639995,0.48720957385236924,0.46852030483913837,0.3187299758917716,0.34282682069152753,0.3760002779701263,0.48858595668024984,0.47305812858771384,0.42789944847020267,0.37705109330894987,0.4073499291602718,0.3845609227916242,0.4235328250576197,0.4223398360369351,0.40514964137653936,0.3629035989879344,0.40527154887892036,0.42317244417893035,0.3771450329711037,0.40540988181938714,0.3944731657817856,0.43443298495326976,0.46995899023583865,0.4356246271925716,0.43938042191330184,0.41793354560191703,0.3622060645712461,0.45153076048025326,0.39222118317850957,0.4100955846601331,0.4161546372418238,0.4052294661567805,0.39528155434759493,0.4704369430043123,0.38164904231196745,0.2951318365722232,0.3765617410812942,0.42166463615466493,0.4644181252060538,0.3525449373231544
+0.698168416646566,0.6311606663981625,0.6656801658248935,0.655816439205106,0.7260724071818891,0.6915289847867715,0.6371426517989672,0.7191149499073624,0.7185949522535708,0.7157605940351429,0.6825971170282524,0.6770475275291608,0.7076480253662257,0.732623659072069,0.7114309065330611,0.7187380656411784,0.7079869594147492,0.6563146629490495,0.7499764176123799,0.7287835830422192,0.6849366984194034,0.6102595212620836,0.6809191202187592,0.7121928973407258,0.7454180788839162,0.7587711883694446,0.6995821043970339,0.6724299718373057,0.7198581730606035,0.6678240816601125,0.6751215497648779,0.7893035967002037,0.6193398646335243,0.7054210988438089,0.7393609671670974,0.6622990782979069,0.6143934794503823,0.613214809084716,0.6955067138005497,0.6329907961408162,0.5335255098196853,0.7448978312406505,0.5898872868012336,0.7159706693106661,0.7168886001559452,0.7167607451712961,0.7440871373160988,0.7122757971412079,0.706466031159203,0.7283983383184386
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.025891676385630998,0.09286318693827207,0.05451151470933038,0.13266769582277743,0.03500163606677427,0.1407874630111443,0.034511646092290266,0.13307631263981637,0.048855612107303575,0.08353283407171049,0.07749431420323404,0.03613328261530901,0.0630284181022717,0.1395970395334212,0.15194960138186475,0.038468632143875,0.07415664542924674,0.10531566822081728,0.14523092371325064,0.14326250325284776,0.06754272780017702,0.11145016481616771,0.0454419178775498,0.035610854706059486,0.042117518238029686,0.12980582412564368,0.08304540337050095,0.14717484625706329,0.10296012957004458,0.03327205246913414,0.03879316167982658,0.025644526615493164,0.16038644954211148,0.1475994033377464,0.0742522975890885,0.1326410254306958,0.07300523266589448,0.1347542164519887,0.2573010660969291,0.099773067883277,0.09275106248474378,0.028780109748888373,0.035851076725937785,0.10019650499328987,0.12957407123774392,0.05412613230876531,0.1306385815172123,0.06079669563823194,0.16216951459724996,0.12671457632726205
+0.4652227391229421,0.44214090358549785,0.42798375578554476,0.5363382573051113,0.43220764461968103,0.33881358343860307,0.45380698654535223,0.45108549917229845,0.46576573397557547,0.43384676710223,0.4445223667354965,0.4803911168859916,0.477790960388706,0.4950201231415511,0.48584883439887144,0.5575172153083513,0.44960321208624454,0.51347755599201,0.49291560015879665,0.5369991290462687,0.433883940123183,0.48958121741028543,0.4388909975444369,0.5929899060150144,0.40657310427433624,0.5108561224975957,0.5132426972740877,0.3855221657329599,0.3699609794959964,0.6393536633905379,0.49059074733569913,0.4228146437267955,0.4740414665830889,0.44981835798221576,0.4755176438971832,0.42892021277165243,0.5727190882551801,0.5250702667343312,0.5592342578750916,0.4380084303587132,0.5035886234454279,0.4006355468952724,0.40960053556172404,0.4406971314594053,0.38793985243944,0.5011038247917654,0.4591869136374979,0.4662626471752944,0.45794840263077724,0.4975674247159926
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.5736684813404901,0.5987333863061957,0.7908866343878337,0.521747497979635,0.576481589715104,0.5582021416653656,0.6023874326476427,0.6189669271714457,0.4830788116367717,0.5393947164054519,0.5847443440934268,0.6685522982250351,0.4769235458523774,0.7168910410080206,0.1782149779061485,0.675553400847003,0.3964419675540645,0.5748814296235123,0.5618675613095544,0.5978319904429484,0.29616072231914337,0.5996566950023073,0.6722814615762337,0.7088358613944848,0.3481896458779168,0.4714680205286678,0.487067897281782,0.6592047287990199,0.6337630406955242,0.6907011788161321,0.6109442520264018,0.49471274913225244,0.8010042340272479,0.5707327240528025,0.5854264439662189,0.7660126063447394,0.7466948290074196,0.268353272591503,0.5240785575644235,0.506770511243685,0.5392985857994426,0.8202563705238471,0.4263462986815664,0.6151089564624596,0.634361438633767,0.44643404995198277,0.32526875405359107,0.8242455126324165,0.723861006010749,0.20418268498742315
+0.31053715245654756,0.27253310912323436,0.29632470604738165,0.22973493458201533,0.2678095544541643,0.26710148120638794,0.21936701070811973,0.23826333643187464,0.25896359388749435,0.3230504640593348,0.2622286067610375,0.23219118217999257,0.2613095737633457,0.2277853899086043,0.2371008373971871,0.20651661945376362,0.2939264074296968,0.23156451362096678,0.19395141756991843,0.19377057845853782,0.30462236133606974,0.16853401591804573,0.28364410363310116,0.3133186832314592,0.24860161507834241,0.3051576546569227,0.25838453342407386,0.252827144745277,0.25885290706375297,0.32772471772447204,0.2278889701698131,0.3181696340046628,0.18416942980835274,0.2953539504076243,0.4935927197681547,0.2761331048447388,0.28726433119443223,0.292114597414702,0.15764461122089465,0.23553114111759169,0.3461046214419718,0.1934869572742578,0.1684755096221024,0.2501130112245993,0.28762475758933437,0.2379438169131474,0.2639123066725193,0.3602804820128059,0.1981804206549201,0.20322085267145237
+0.23447040510428724,0.2336139243507389,0.26355476735834865,0.09771836535323716,0.11904276673324081,0.14433805270915964,0.2966681082429754,0.1014170069015108,0.1992382173139399,0.19407530214030902,0.15709007278644888,0.07922872528596937,0.1707940972622374,0.1115425298838645,0.26378502126680947,0.18119981071276686,0.15514247685091453,0.3055072385856051,0.3146338867017505,0.2005657961243665,0.19855598976954186,0.17966404376627296,0.26377379187258126,0.3877582759282324,0.2823532101671324,0.21063646166315014,0.21396566539471418,0.1640735259784505,0.16417743369842067,0.10932394758818331,0.15152648730647805,0.34971978994340047,0.24304971671660355,0.30685048995508046,0.24231467171866675,0.19290315682928266,0.3707708103308535,0.1527574273398063,0.39250832652047146,0.17138558841292417,0.2230852047184373,0.309800751107422,0.16804146872575454,0.05714198886902017,0.24139328319171127,0.23570710902584047,0.1719639426360828,0.22644924489876392,0.2968237758188306,0.1865468577887509
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.7736059646112404,0.534455065903884,0.6058380629664726,0.6888596766042461,0.6998987945474608,0.7774968542736707,0.6601218876723263,0.6840990352029358,0.7534939543179965,0.6559033341609003,0.6834610230569909,0.6519901920433887,0.7216428344295018,0.7217363990756915,0.6442249366233018,0.6271956230086377,0.7262229925003472,0.669255606247474,0.6662480756641219,0.6487052937064556,0.728747328929106,0.7013606155609428,0.6163904348299699,0.7444442126770285,0.7548234264337748,0.7700270755644322,0.6199834558902689,0.5736584117076509,0.6059777683813649,0.6324692371481963,0.7018368679507807,0.6329322628762354,0.6650449103571927,0.7159179135815283,0.5905617281055707,0.695052599952688,0.6303598120414654,0.7062168685401065,0.5759201557407554,0.7170221248827282,0.7557455907955435,0.6204963092474782,0.6501782514176433,0.6351052633206451,0.7646889700646277,0.6963011532361602,0.7348253663050381,0.7171784741790542,0.7538133801225974,0.7303445488491929
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.8011055104365004,0.7434945237417712,0.6553533899279901,0.8110511717923825,0.7614488984045917,0.8403954620679133,0.67922286008842,0.8140222705420439,0.7408085604814991,0.6623535506111169,0.804458506478787,0.663668190066971,0.7946678346452094,0.7491696635859573,0.6112254144613033,0.8826417763916059,0.826557184491421,0.7419902078256083,0.7998846564733387,0.7229742029760202,0.7626376854640278,0.8550056502939847,0.7349307407122342,0.7802455983951689,0.8056310450203005,0.8306153501975411,0.7583482083906019,0.6778046042457773,0.682857274025174,0.7854643722510418,0.7294742375160216,0.6726791071405834,0.7489402944786395,0.7929559998521273,0.6544413326962253,0.769819299383201,0.7110831043448591,0.7120116384952763,0.7724721316610318,0.858762458217085,0.7430548011612905,0.723966048072347,0.6869985493218916,0.7708773821719803,0.8465692362166591,0.8405697913656547,0.8394239505034818,0.7442304648448969,0.789054031294047,0.819352190505095
+0.342371188160792,0.03531339052587853,0.3565057715275769,0.06224710084479371,0.2938329698523936,0.20821457735766896,0.19024147550423895,0.20077769427610595,0.185107369844009,0.15863331743328013,0.22066094204050074,0.14428186629948894,0.25269098042947,0.21306686306376296,0.0923179507616015,0.06558943672462945,0.37776449886122926,0.33066924147838717,0.18916524064982862,0.2566371170587963,0.21752887067395263,0.31092620519526953,0.20930055962566488,0.18216691343401611,0.33672310776288655,0.27435131762352394,0.16683584780032887,0.2627124216278141,0.27141629060160055,0.4788904329310246,0.36218852912352995,0.16178445220270718,0.32803700745997993,0.1661000382168595,0.21746378816061143,0.060512021040648546,0.2608436145012075,0.17874678653227008,0.11978587209149641,0.3356286239691898,0.2917546531685618,0.18429371463997624,0.27950721011522395,0.2593805411137644,0.17073714469015763,0.4642845904379647,0.27297415957424087,0.1502901013682135,0.3143647186147186,0.2335421676935004
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.4210213950928204,0.3290044787023524,0.2718683096244514,0.25443282232169157,0.25470069971084475,0.32962208702123297,0.28143921185249926,0.4199260797694486,0.593992278430667,0.26296824092831517,0.3512716293960272,0.5726040356440149,0.24704015097381887,0.31670237721980365,0.22377230835431905,0.45133746314293866,0.22223118371852496,0.22200695286884214,0.48123638432801874,0.2683173669076092,0.629868997971793,0.24431017109557676,0.48869509398927696,0.30842408408156624,0.3953949092043258,0.21607041354357406,0.33718811986621416,0.38511211596009715,0.3343894925721145,0.18281694510920643,0.286074059493848,0.2085619514488919,0.4508761146173635,0.38397545982970027,0.4786291423605885,0.4422465323247552,0.3890364489816976,0.30591514499681544,0.16721747499317569,0.11956039451652492,0.35553459191708336,0.467599506406875,0.30735659692457795,0.3970622042693836,0.3163040676745364,0.17692136240520687,0.32256745567156947,0.3731224690818133,0.2569035507394956,0.2745274779651472
+0.5657594634822763,0.4166933524743141,0.4101166399131846,0.3376465379338559,0.4223052790277799,0.4359994059364433,0.4333708200222249,0.44820785339909547,0.4358382210592752,0.4123095533860593,0.4261384036037495,0.44420523437240145,0.4436892755765816,0.4298532325292767,0.39119490019175435,0.4627540985503671,0.47069001712008435,0.5340749142067768,0.45958796233202365,0.38087145316187204,0.4449438921222532,0.3741334366586765,0.4573495120570605,0.5252183782033081,0.45804677853015213,0.34989795471991636,0.4098032343309431,0.4019062226141994,0.4135914845795093,0.4916182485583404,0.4215428557530592,0.4162110624032242,0.29135489303569867,0.5056531197693127,0.4310868261564426,0.38299895160200154,0.35085741165041634,0.4791076156434346,0.34940153583518874,0.348538567276611,0.495797734184368,0.47504365436556534,0.40898869356765843,0.36767297149899375,0.3438421104663616,0.4143342171461142,0.35005968329246123,0.43715584956831555,0.47997165172577055,0.46463163954000086
+0.6817510569840836,0.5675379527035074,0.7179811226290611,0.7490514723974537,0.5885403571227564,0.6794779312825867,0.7210061902999954,0.6648918242804328,0.6485207860377996,0.6742388620483161,0.6004876045962603,0.6416003868672127,0.66258284111524,0.7644005423460958,0.8077411085274449,0.672526995404043,0.5612682101697373,0.6465637614103384,0.7327884797305124,0.6310816186892446,0.6206629847293976,0.7423592799874186,0.5872029583789348,0.6595679262830774,0.6621828267825519,0.6994265779159208,0.707669002015789,0.6540913101066974,0.6277425000582147,0.6276121707326885,0.6255652701499064,0.6485951949213522,0.6334301226570892,0.7029303423875131,0.7505450831584976,0.6727870583474339,0.6032393063460804,0.6295332100392514,0.6907259235191249,0.5724095270316282,0.6037615587594823,0.7650375077575953,0.6598074329998406,0.6976867468819695,0.7091482524561898,0.7309452561032576,0.5421669491002465,0.7150088818194769,0.618715250389683,0.564973583489802
+0.39090955787398074,0.2193134603332116,0.40160890728307197,0.1479134082368084,0.26539269831101975,0.09237825878016351,0.21919856225191844,0.24025644576891175,0.07799511330885343,0.3072816564633295,0.2359966747109291,0.1837182645478122,0.2820316850889908,0.055614030181068384,0.22424954264947453,0.1483345306068206,0.1584969173680056,0.19109909874828016,0.1404781572396473,0.10383410506674609,0.19134187253126012,0.23670952668542283,0.19705743021065306,0.31258713361420687,0.12540519741214234,0.19385321914409956,0.14875159006570207,0.2642768638852566,0.18777429743492274,0.04170487583017588,0.1626601535768653,0.30344375120871,0.15316839279254013,0.17405908482797952,0.44802440905504864,0.16291094581087545,0.31803204150700487,0.19472109835825474,0.3201154251868801,0.15987939075666646,0.150741331594497,0.36005331479126634,0.0580372862327781,0.2765521064356978,0.22256986160099007,0.2092881484879053,0.2251277478376707,0.07383879358867972,0.31194763940009224,0.14790490075778678
+0.24804513506918444,0.2798329074418028,0.22400764726829042,0.21912767562313185,0.23783803999369396,0.249402555513171,0.19167918600622225,0.18307630803610736,0.18833987840196745,0.2476613604518798,0.16193433015005648,0.2586576064736581,0.2917324653801799,0.25059221788405883,0.24905912305327343,0.25304027041726446,0.19959737418999887,0.21036093198442274,0.20789994419415186,0.25312093162121824,0.15598657943628674,0.1836847204195828,0.1937851752134744,0.2927584700895637,0.23841054697697767,0.2767235431015095,0.28085247746581826,0.23904092990640266,0.25339291677105646,0.19298665343064925,0.20863524521896462,0.21396932699043014,0.22834328601665269,0.30337088680264523,0.26761795225693613,0.2096037879162279,0.15290627605370097,0.2198851912933937,0.2558343918847775,0.17186623988887678,0.24331342214725118,0.2154179887533757,0.28164649355847776,0.21803432967930328,0.28414464575148973,0.22140847455580961,0.25135898454094613,0.31866049335970975,0.22265718654523084,0.17473934055022222
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.025891676385630998,0.09286318693827207,0.05451151470933038,0.12766769582277743,0.03500163606677427,0.1407874630111443,0.034511646092290266,0.13307631263981637,0.18206206372020683,0.08353283407171049,0.07749431420323404,0.05613328261530901,0.0630284181022717,0.1395970395334212,0.15194960138186475,0.04303298524360545,0.07415664542924674,0.10531566822081728,0.14523092371325064,0.14326250325284776,0.07754272780017703,0.11145016481616771,0.0454419178775498,0.13744587049870852,0.042117518238029686,0.16520088009579292,0.08304540337050095,0.14717484625706329,0.0911435695242756,0.03327205246913414,0.03879316167982658,0.025644526615493164,0.23512972134201182,0.16225441499275806,0.0742522975890885,0.1304981682878387,0.07300523266589448,0.14475421645198866,0.3382547191294167,0.099773067883277,0.09275106248474378,0.038780109748888375,0.035851076725937785,0.10019650499328987,0.12957407123774392,0.05412613230876531,0.1306385815172123,0.06945731638207689,0.14494637410138222,0.12709919171187742
+0.6817510569840836,0.5675379527035074,0.7179811226290611,0.7490514723974537,0.5885403571227564,0.6794779312825867,0.7210061902999954,0.6648918242804328,0.6485207860377996,0.6742388620483161,0.6004876045962603,0.6416003868672127,0.66258284111524,0.7644005423460958,0.8077411085274449,0.672526995404043,0.5612682101697373,0.6465637614103384,0.7327884797305124,0.6310816186892446,0.6206629847293976,0.7423592799874186,0.5872029583789348,0.6595679262830774,0.6621828267825519,0.6994265779159208,0.707669002015789,0.6540913101066974,0.6277425000582147,0.6276121707326885,0.6255652701499064,0.6485951949213522,0.6334301226570892,0.7029303423875131,0.7505450831584976,0.6727870583474339,0.6032393063460804,0.6295332100392514,0.6907259235191249,0.5724095270316282,0.6037615587594823,0.7650375077575953,0.6598074329998406,0.6976867468819695,0.7091482524561898,0.7309452561032576,0.5421669491002465,0.7150088818194769,0.618715250389683,0.564973583489802
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.38476744781252475,0.3743989044200614,0.3924715973861388,0.38366875197374917,0.42162849316724377,0.3266066489585896,0.39820503891639975,0.4412377334299109,0.4247068353772117,0.31061327364925195,0.4827328015639995,0.48720957385236924,0.46852030483913837,0.3187299758917716,0.34282682069152753,0.3760002779701263,0.48858595668024984,0.47305812858771384,0.42789944847020267,0.37705109330894987,0.4073499291602718,0.3845609227916242,0.4235328250576197,0.4223398360369351,0.40514964137653936,0.3629035989879344,0.40527154887892036,0.42317244417893035,0.3771450329711037,0.40540988181938714,0.3944731657817856,0.43443298495326976,0.46995899023583865,0.4356246271925716,0.43938042191330184,0.41793354560191703,0.3622060645712461,0.45153076048025326,0.39222118317850957,0.4100955846601331,0.4161546372418238,0.4052294661567805,0.39528155434759493,0.4704369430043123,0.38164904231196745,0.2951318365722232,0.3765617410812942,0.42166463615466493,0.4644181252060538,0.3525449373231544
+0.24804513506918444,0.29252282178691097,0.24423132463005043,0.22611748020529632,0.23450470666036055,0.40567821830978346,0.18048275756868257,0.2046022040826491,0.247390566370449,0.2443683800394955,0.15010146499922558,0.26473367259672487,0.19241303777325972,0.25198196572583803,0.26879042435248696,0.20988363071088123,0.2148675819997706,0.21032557179929298,0.22654946052206174,0.24393135864773924,0.18579008284939494,0.18948305684034486,0.18507797314979982,0.34039897336584474,0.2580605150345616,0.3081552255547663,0.3175378219881714,0.28511664179790897,0.2617788003991672,0.2020252694759962,0.20604783263155202,0.21665897198595752,0.23722083703706093,0.2678627470245441,0.21984766149848756,0.20045251942330192,0.1560210301520616,0.21025372613598792,0.2868696607727886,0.17044269034517978,0.2381893922007668,0.2768385084179083,0.28424211686859463,0.22109705446441857,0.34234897088607386,0.24177411700000143,0.25533018015441905,0.33581329849949126,0.36644003047178425,0.21135413523512292
+0.026161946655901273,0.08522752771420283,0.05275327295108863,0.19133994423848336,0.302032014942453,0.4588480378983534,0.030683695980361896,0.14097764602635535,0.06327742674926937,0.0838421913810678,0.024969626562015193,0.03229058981013312,0.09374594590579688,0.13307099708028575,0.16504103597079198,0.04139989691552346,0.1497135798864413,0.17016411756892683,0.09650526129447325,0.2180190105241735,0.11912617677813729,0.18772002234659488,0.13570668686600237,0.1024124672964754,0.03528729244139022,0.07886618929681628,0.08068129240218251,0.0742204742967004,0.17891041871048693,0.02377659313309318,0.16216966504456617,0.1756937311093757,0.19244317739507724,0.2576363313091137,0.03713532498752123,0.2874343944187821,0.2041533872766555,0.22517496780356475,0.1625269285314504,0.16049573610917467,0.17116843381945512,0.044510124178902793,0.2339030727006706,0.17622896088246165,0.1784294340697573,0.23901920630903808,0.16542645299793032,0.16226452265958322,0.14798453035997303,0.09487973258324463
+0.41951451717736893,0.44360478373697615,0.4045298719504722,0.46770143209621656,0.4123660119217174,0.39105203294392354,0.3785358186025169,0.4620505595375233,0.4482658716928347,0.4060308835064521,0.439491960018226,0.45285766164443436,0.5172397642843887,0.40598654793731653,0.39336653499763263,0.4367678776297136,0.45347957351379153,0.4968067362051234,0.4397440971762911,0.4436873324675291,0.4057507872897797,0.4588440967588396,0.42808118868507733,0.4524543476888539,0.36944021477355987,0.5016289389344339,0.3721608931753043,0.4554817405847064,0.37314230869022397,0.514370539854871,0.4130317526844465,0.4188690010140261,0.4495909849551795,0.46569207700354687,0.43750508768057145,0.42591714194103025,0.45807138866750846,0.4431677539956715,0.41345992369442236,0.45296121194843453,0.42957906811773017,0.43156038891346554,0.4541149367132152,0.4514154210395019,0.37837214410146397,0.4083146987835955,0.440634145587784,0.39916626216172546,0.5339892526743981,0.42172921813676323
+0.3952678926227704,0.33746171893202725,0.30799625379193,0.29623327354342516,0.28534665799638703,0.3237045034817153,0.2366778566124768,0.3227257288192091,0.4058467574318256,0.3053363637805748,0.2835646474737934,0.4011775274416627,0.29210217197385474,0.31639073785420607,0.25503165005153217,0.35530873908016036,0.30412321297368544,0.3662039216400616,0.42579613542149836,0.28621619213016225,0.39885655202669457,0.29744512077506924,0.3855207632834414,0.3578611498852791,0.3085525576229269,0.2893464333313425,0.3624295322436504,0.40058763051193397,0.3278005305209667,0.3882468085788674,0.35138998609474753,0.21082376724549967,0.43318968322771895,0.3342865052209678,0.4436127940163979,0.3403266402236663,0.383162588518861,0.29960628703748227,0.3782668901315428,0.38127639759585175,0.3665163286285869,0.4222494596695708,0.2407185077383415,0.40647161472298093,0.2963944637998162,0.2821215967076167,0.32070842128942245,0.3762459717985488,0.2978331269727629,0.324338912114257
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.36050277243676015,0.25130991554267135,0.3361775272037448,0.1937597265772161,0.29488132946955536,0.329766013682663,0.3178148758763337,0.1977098553889852,0.34285607576420796,0.3217315698148066,0.22023943794407802,0.24565092191516733,0.23742646527501712,0.39747854165960056,0.32210262388089406,0.2252871061064288,0.28169519173308966,0.3778714700967527,0.45190190296239247,0.3377386504251163,0.2551504945343029,0.27692011577913817,0.38242810761915186,0.45118760761899696,0.3073088881904479,0.1669092560515693,0.2789650026199101,0.30103493027097705,0.29504920700211307,0.37735456352515845,0.20871479554954386,0.3244093912988351,0.17638605472573812,0.26556294888787824,0.29313155426560056,0.33893516392223966,0.16586737702409898,0.38129639170334223,0.1926078345956122,0.24793366369319744,0.2456086206036319,0.3461675236574567,0.19463694520927713,0.3161699147541714,0.2980881623617879,0.2996300625236948,0.2671288604757647,0.3867319835129244,0.2798820649420803,0.24584884205509105
+0.2398788595954545,0.2629620902187032,0.3118636727104991,0.23686369708529179,0.27609405334730597,0.26924104538238597,0.21273266319202516,0.2344335595896205,0.20281373721649992,0.299642396312684,0.27758148290794354,0.28674250798257217,0.24112248893976712,0.25619076790167633,0.24670980297790585,0.28377483596942066,0.3477041156610069,0.2965893131894228,0.24710822797285417,0.2503418487084488,0.2808287644202838,0.23665651727192646,0.20609241576420956,0.34686001459404,0.27653736012078406,0.2729106050103329,0.2820129853358235,0.25646248173443204,0.24946704787436202,0.35707979125069705,0.21499686930328377,0.420702354049052,0.23498092560470507,0.29880276361041963,0.40418383619933523,0.27516780913173877,0.26122244793604915,0.23129020255756605,0.28331008326916574,0.22741324252875875,0.2263427356095963,0.2806678215349187,0.22597879208768132,0.28260190638955307,0.33449296744700857,0.2653279295756894,0.2693008149536158,0.3265962407119664,0.19913672193373133,0.2334277746292287
+0.10463870714513761,0.08383174546515279,0.09881279343570779,0.10951279437310284,0.1351154093379302,0.1803944283086903,0.06461195410813665,0.11441278509364797,0.21108849487523149,0.06782622497759551,0.1196214878091047,0.06035721090251496,0.1484736639566924,0.25305758518968835,0.038891981965594305,0.10896564966723415,0.15004069531784547,0.08122674911076483,0.16102714660755646,0.0740111922693465,0.23534923076923076,0.12268534257204014,0.3921694383304802,0.13620535714285714,0.059015407656373135,0.25667861127578206,0.1510176608260358,0.11362693455683605,0.11489891029672358,0.19203210808938997,0.13213421817568263,0.21283694674503184,0.03613549358376945,0.12463367849609126,0.3082380260645296,0.09666666666666668,0.08652279294606677,0.10430758197745396,0.09494228581268488,0.19284535066295228,0.12776887087203098,0.2187531974813809,0.21599218334830167,0.29877644120216296,0.2281791161345372,0.07810985716437593,0.15327884283321455,0.09711020653534247,0.012,0.12707738688108672
+0.8620256144486582,0.934478978956324,0.7727005851960282,0.9005559706246125,0.8874276936289778,0.8973666756128867,0.9176574258445379,0.9604789803916363,0.8006023969358367,0.9033945725186477,0.9215638996814761,0.8198932115198833,0.9413915247277059,0.9309603603005899,0.9372701315711758,0.8261329279119529,0.9611296078819607,0.8631153868495199,0.9262771113420081,0.8168453316247892,0.7740322629980922,0.9765917905637324,0.842990404199093,0.7998572879104432,0.9175794787068103,0.9278276115578089,0.8440106760186393,0.8624816796407813,0.9002236332926573,0.7729939501380378,0.8765636934098509,0.919917598454326,0.9193050350400466,0.961410365106889,0.8249460769338793,0.8751800927894752,0.8512740144990382,0.8879715065407712,0.9005889879797964,0.8570542615433177,0.8811713143072822,0.957171779614046,0.9395668140982717,0.9449978312750621,0.8663244450098598,0.9255219077853357,0.8903310213906807,0.8884532513881651,0.8893043614180602,0.9541057923305175
+0.7960461960063576,0.29353280349916966,0.7275127913208281,0.4866454563012343,0.7478917586087054,0.6029179858133875,0.2949252516194587,0.20842623629040857,0.2433074954021902,0.43418126665138423,0.5468304794664347,0.42788110968137355,0.21085413269299505,0.4882873883839201,0.4872367157189656,0.36719184733695054,0.2634359996242797,0.40913787219621683,0.40238687097104103,0.5347767327355001,0.4677452691477977,0.33157787542697975,0.5313126822501056,0.606273291548819,0.1650613465001297,0.750016928443707,0.34123551492811593,0.3738873636235514,0.21609036808006302,0.3400412368161719,0.4914640780129584,0.788662077617288,0.5677141478831352,0.17249365771663605,0.5758262033771079,0.46313104646253017,0.35120008374181855,0.7356829566620589,0.2722547028497673,0.41583515226875106,0.41703455703660225,0.4262783423824256,0.33022033487224306,0.4016697339426163,0.4561015140265261,0.49964255680508285,0.8060102113112266,0.3339370720681534,0.40186814629037215,0.3864853951395444
+0.3779389296858898,0.4427095591925873,0.4988161860478315,0.4446225146624603,0.5535210810627179,0.5513038620538397,0.39494774000431887,0.40698428424897726,0.46349431722904927,0.6037371756014304,0.5869503459633333,0.640562217215646,0.423681680862934,0.494531717922103,0.5977895702552712,0.47129336490862533,0.34792346485839754,0.6209150128363277,0.43895367917295836,0.4059023401766034,0.45311592855057237,0.4959301051748597,0.47499202053215184,0.47805736663626014,0.49759050007385475,0.48153829661147596,0.509351288941133,0.4174237046935796,0.5031277323560865,0.44015640492184543,0.5655425013712995,0.5145961770763108,0.42546843213940577,0.5604786067266685,0.49837819049660115,0.4210718965181689,0.42476520324549155,0.4926912641589838,0.5136709536884432,0.4911225211529128,0.3243538483179307,0.4716198934431079,0.3571701846832183,0.384855643395022,0.4642023034678237,0.4236518615130161,0.2832773998253163,0.575511003714041,0.5557287452486993,0.6149269080148028
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.7736059646112404,0.534455065903884,0.6058380629664726,0.6888596766042461,0.6998987945474608,0.7774968542736707,0.6601218876723263,0.6840990352029358,0.7534939543179965,0.6559033341609003,0.6834610230569909,0.6519901920433887,0.7216428344295018,0.7217363990756915,0.6442249366233018,0.6271956230086377,0.7262229925003472,0.669255606247474,0.6662480756641219,0.6487052937064556,0.728747328929106,0.7013606155609428,0.6163904348299699,0.7444442126770285,0.7548234264337748,0.7700270755644322,0.6199834558902689,0.5736584117076509,0.6059777683813649,0.6324692371481963,0.7018368679507807,0.6329322628762354,0.6650449103571927,0.7159179135815283,0.5905617281055707,0.695052599952688,0.6303598120414654,0.7062168685401065,0.5759201557407554,0.7170221248827282,0.7557455907955435,0.6204963092474782,0.6501782514176433,0.6351052633206451,0.7646889700646277,0.6963011532361602,0.7348253663050381,0.7171784741790542,0.7538133801225974,0.7303445488491929
+0.8635193914632151,0.9091319076871279,0.9243968305617025,0.8914732937266757,0.8281043086989903,0.8346645688298399,0.7614665779812887,0.9568276806914764,0.8817392770502542,0.9063185324516964,0.992154610993124,0.8116312995622235,0.907040852493246,0.8890755490751466,0.8623495319648673,0.8473295213443919,0.8121078764227172,0.9396349068618578,0.9010923266007754,0.9020936104516273,0.8813235286131179,0.8984631495052032,0.8399400884187131,0.9069082233762756,0.9565472433483219,0.9053113571938298,0.8625471166802192,0.8364961877468515,0.9026665916105314,0.9328240969063023,0.9515137282211861,0.9216572138213968,0.7834477299325858,0.870339873179775,0.9237822222522668,0.8252059200969444,0.8045264672308826,0.9613987113141786,0.8403889759722918,0.86780408000905,0.9522794532581033,0.9707809584583109,0.9129199000074962,0.9551458141438057,0.901337886528899,0.867394346413372,0.8153473756984703,0.7871757864686453,0.8995097655070522,0.9858479461277337
+0.5278444302726603,0.5202836884099376,0.7299845730502877,0.559451554063487,0.5743971586147396,0.35471475065929975,0.5043148438406295,0.8632753761153191,0.6373561298677545,0.542254508365232,0.4184138893429799,0.6283483559265413,0.5594063439657393,0.2303514848734681,0.4526726002719663,0.7088648065737977,0.5608261579840051,0.3858472519269786,0.20448470973470975,0.7114288941370189,0.7063831627269375,0.21006180416765008,0.40537283558165343,0.6551884591966811,0.35287590702429156,0.49042019059504693,0.7808393095122969,0.4257761680418457,0.6131960850407674,0.4456152181045032,0.29830609539505176,0.36183777986044047,0.6113232887278072,0.5737721060145491,0.3349456950379359,0.46222813853899164,0.5155536569369125,0.3311019891816684,0.5459427774736327,0.7074213218280608,0.6277507519354129,0.5742211743662717,0.41568124329735034,0.7510971546020189,0.46914957476737684,0.4901527609479194,0.48685016287778443,0.3605346098669118,0.44021722545640296,0.3507808876318455
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.3467036011080332,0.56,0.62,0.46,0.5852941176470589,0.4208571428571428,0.52,0.3833333333333333,0.2866666666666666,0.33,0.14,0.71,0.5673333333333334,0.4026016260162602,0.32,0.5433333333333333,0.15,0.5402380952380952,0.46,0.1978174603174603,0.41,0.28,0.4814285714285714,0.335,0.44,0.3875,0.4561904761904762,0.32,0.41619735327963175,0.5465825242718446,0.3884444444444444,0.29,0.16757085020242915,0.25,0.315,0.6219451371571072,0.6852203647416414,0.6,0.2863636363636364,0.54625,0.31,0.5066666666666667,0.4125,0.4466666666666667,0.49,0.3487277983032293,0.30434782608695654,0.39625,0.73,0.33
+0.7141824400831325,0.6470085174569319,0.6197889528415362,0.5913779951773881,0.6694324482266112,0.869178136656386,0.7101534156155956,0.5731139656285132,0.45138894932017093,0.657682786519934,0.6865784768844931,0.7377645624983036,0.8725582632872546,0.697283455217571,0.7274549847103838,0.5390500503331025,0.814240804964062,0.8518228009590709,0.7343872780910194,0.755974475670176,0.629310323308667,0.7746775019821878,0.6303056592248517,0.649233452653333,0.8045730875888292,0.8674589197806775,0.8425855361586599,0.7274634929604465,0.7489737875112052,0.5471363521558379,0.7028089241687357,0.6621585004438748,0.7539212329440863,0.7108891396797086,0.682029531710359,0.7517865838823035,0.6752623329379284,0.7314429381926683,0.8292534072831645,0.7564288160853471,0.8555034360517293,0.7237828070851965,0.841176375588236,0.7124985346013828,0.7831121784149633,0.7227977603280632,0.7571235426562041,0.7232257680536255,0.7594950204228109,0.6897019617082014
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.4672775949995772,0.41298830455445057,0.41330740082810685,0.4069503000170782,0.4679953596770224,0.462714415674432,0.4810240992849063,0.4173778792081401,0.44741791699560696,0.38653383767459,0.4646996518646065,0.3373458430753832,0.42752251850664763,0.3573368784469721,0.4636645134901826,0.5646626293193738,0.46453184234696415,0.4945425643572692,0.4700503947709922,0.44390368619330167,0.4195615029301846,0.3939498684849793,0.4546215155747552,0.611522511951767,0.47284082546009043,0.39158859908387667,0.5196783507305763,0.39101629085238016,0.36893885868845006,0.4921521408290968,0.41768578571042897,0.43064216964194785,0.3966700818342114,0.5392620151805597,0.41062220848119707,0.4077894657082936,0.4279424187521185,0.5272904272084918,0.47027441483434496,0.374860489098875,0.469636479530707,0.4199014155438011,0.42682400517618135,0.43140515090990583,0.36158639587202157,0.49950161745911165,0.4081663955897804,0.4387233487331668,0.483133709456531,0.4768084212379538
+0.8334184253030094,0.8576141619236942,0.8243588245265443,0.8804644279020049,0.8025540910522031,0.8347102206743517,0.812811091580054,0.8155295359196895,0.8427912840124486,0.8834114529801927,0.816595166011179,0.8887262607510571,0.8289262559831818,0.8682377697822017,0.8425429049670992,0.8748471695840653,0.8610106825206663,0.8036559519162669,0.8502294893626179,0.8560039035255894,0.852326337652949,0.8910998873417862,0.8771483314450506,0.8222389076772303,0.8551288595084107,0.8032659833366634,0.7897127187628976,0.8079341195297846,0.8037366866403934,0.8330469540106575,0.8389123738487692,0.8416192634440851,0.8544615512223401,0.8975187135846504,0.8476033854347524,0.8391143841607949,0.838094447145523,0.7926832649165485,0.8547590683387566,0.8797772225892578,0.8786848845425206,0.8384317199633586,0.8379384969500131,0.8986381758977164,0.7807453593188757,0.7889167266696956,0.8351719755447569,0.8257819514276921,0.8899353872794549,0.8705998214946934
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.14870905822526598,0.047624633010583374,0.050778522736733576,0.07490764160783236,0.04783334928595582,0.11779817210725357,0.26895626294853553,0.10120775004564747,0.08474953425992299,0.03357377779798796,0.2289363396160157,0.05270884579262451,0.15429699665986488,0.060153864797253306,0.12397400047790358,0.06915314199385776,0.16175329611612072,0.07333027749003503,0.049142588154027465,0.08340997706262787,0.09663030675189567,0.11783928401595622,0.056092736307432965,0.08585596772976328,0.1515263698097581,0.11463239120166578,0.07527995562063175,0.08864704809355205,0.11995895843818907,0.13756024754504892,0.08343348242602086,0.11836352646595241,0.095292577163184,0.03233400668854318,0.09021156088451343,0.06760120848947584,0.32169425830929427,0.08557260956781197,0.05129586242501434,0.11024719053964885,0.10706236914785032,0.05592183462891938,0.14949224847830997,0.10290818090075579,0.10380136644720406,0.12541816758137464,0.05512525696160856,0.1059875469465421,0.12640483383650936,0.13025807716639995
+0.43399232411556565,0.3880210026764744,0.41408983635653074,0.45386161439569195,0.4206666902959723,0.41236514981408945,0.3779785759963369,0.4369565315497066,0.4713108089711634,0.36100585594751516,0.45139795360782153,0.42020803438724724,0.4897434016919022,0.3865177793079497,0.41543006150166856,0.431848725406066,0.47710038867070304,0.4852370144317486,0.4387990654161662,0.4660789763772073,0.3699922132645861,0.40231191570760516,0.4011342558618931,0.4371002264149695,0.4196788788218079,0.42555838882038394,0.39215272167359144,0.4350978185497808,0.3669067447800375,0.4529638547137507,0.37600635892217116,0.40699788679184074,0.37155050599469247,0.49462914356672094,0.43159850037896247,0.42154108012544816,0.39975789135546447,0.4622291672117174,0.37584443115498445,0.4073577114051802,0.4016508469667995,0.4048011831423874,0.4251472275511341,0.4228780687890388,0.36496375466686864,0.40452745178796184,0.4325992513711268,0.39357170532222535,0.47733491695946606,0.36213926918212525
+0.355706082022468,0.2530748728076286,0.2906795219410335,0.1984373186429661,0.28305273301207395,0.2765974458445194,0.27266452799065033,0.1704465598930723,0.2952771542492594,0.2683288953028224,0.22835306503506128,0.25545103018671217,0.24127996378799843,0.2885269986127412,0.34136035532803893,0.23137425315384313,0.2680108538953904,0.2847870962191212,0.45630881099037046,0.3295461725561144,0.26228378395020097,0.2626871252552784,0.33996298761335625,0.4340454671857653,0.3096117145117464,0.1669092560515693,0.2725051258166598,0.30501635816055195,0.2934256789443499,0.35960426500252896,0.2126823581254321,0.3349721251350555,0.20512868349914096,0.27426702375527934,0.28159676224367736,0.23391780385970937,0.17059113492834466,0.30841104971884714,0.18456298567885288,0.2361029757024384,0.23037576008353725,0.30624155772736206,0.2231932377241211,0.275779132302792,0.2889070671027606,0.25491906109301854,0.22812155127642497,0.3813929312253427,0.28333076976175287,0.21426775663676093
+0.34269146633829045,0.20643561541452202,0.20384119768254025,0.2032512412950796,0.2522566730850427,0.29593266617125524,0.22991855352251434,0.11735375188002144,0.3414259144080106,0.287096213658233,0.22793293005867996,0.2752293445763284,0.2416612056035199,0.2090201777976094,0.2454084605501448,0.22816896392993427,0.1908907919818491,0.29765264171245087,0.1707004821903957,0.22116713987032025,0.22869940222477617,0.2256010452535524,0.1992087202912905,0.40164695277752543,0.26748463616117185,0.14243944489073831,0.27320069649403467,0.2716563250536652,0.2845369210852472,0.34715391879520974,0.19254284038773853,0.21914527808061635,0.20671336656822187,0.3516227063915924,0.232692901031114,0.23181776479908187,0.18118761735138894,0.2834151474650981,0.26695842921914414,0.1930308631383549,0.23188411851544216,0.30953377623269057,0.2225068291838111,0.26105277841327573,0.3075369284558318,0.2788828816721653,0.22928168114865355,0.3492116421101384,0.40845812313218377,0.1818514990566359
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.8395535918839873,0.7695017523261071,0.7766929205645492,0.7731452771256521,0.733880185271111,0.8296099790439847,0.7685998568206784,0.7856936729135008,0.7116749284572401,0.8787418011626165,0.842331753924945,0.8324921433451119,0.8651695952309243,0.9033566437325655,0.8258053393825684,0.7692083510763108,0.8619282621802803,0.8670853641048585,0.7987187462664074,0.82264481752421,0.861024623204151,0.8351088745000945,0.8524924495039017,0.7189014264653021,0.7484150978128816,0.6777662058071584,0.7654552982743956,0.7452901239877795,0.7769826760786482,0.8434541096248432,0.8862615942724201,0.7472816521891886,0.7126825162087799,0.8111054205790269,0.8495545164139218,0.8020916395561238,0.7109766695256983,0.8201353536766759,0.7007006002017259,0.7247212529011887,0.8174542493478789,0.7996501093988936,0.8158204070124968,0.8841059587691683,0.8347919074988355,0.7469878045281061,0.7976980153091773,0.7861087663723778,0.6371627380565495,0.7649585940443687
+0.09757436861384228,0.09611111111111112,0.4199832020696506,0.6683333333333334,0.2271117216117216,0.7681402044148595,0.8450289644603666,0.9115499972590855,0.6007372798434442,0.485,0.7205238095238096,0.6485550745550746,0.9318122384012364,0.6327074331079593,0.45595238095238094,0.7584502551513305,0.31839519319648324,0.874272716184356,0.582716049382716,0.6049262820512822,0.2635735323235323,0.5709015151515152,0.5897769663224746,0.05,0.6137171899830128,0.6582608700058016,0.09791316526610645,0.5851198346252925,0.8124868713036968,0.7840804621996759,0.2432197802197802,0.5660530303030302,0.6778315018315019,0.5402289377289378,0.20664393939393938,0.0225,0.5936176786419477,0.67,0.24932136668501415,0.8292492645572355,0.5816666666666667,0.47208333333333335,0.9013333333333332,0.32240298507462684,0.0575268817204301,0.7584622180888166,0.05598997493734336,0.6502142857142857,0.5557400793650793,0.22260531135531136
+0.41951451717736893,0.44360478373697615,0.4045298719504722,0.46770143209621656,0.4123660119217174,0.39105203294392354,0.3785358186025169,0.4620505595375233,0.4482658716928347,0.4060308835064521,0.439491960018226,0.45285766164443436,0.5172397642843887,0.40598654793731653,0.39336653499763263,0.4367678776297136,0.45347957351379153,0.4968067362051234,0.4397440971762911,0.4436873324675291,0.4057507872897797,0.4588440967588396,0.42808118868507733,0.4524543476888539,0.36944021477355987,0.5016289389344339,0.3721608931753043,0.4554817405847064,0.37314230869022397,0.514370539854871,0.4130317526844465,0.4188690010140261,0.4495909849551795,0.46569207700354687,0.43750508768057145,0.42591714194103025,0.45807138866750846,0.4431677539956715,0.41345992369442236,0.45296121194843453,0.42957906811773017,0.43156038891346554,0.4541149367132152,0.4514154210395019,0.37837214410146397,0.4083146987835955,0.440634145587784,0.39916626216172546,0.5339892526743981,0.42172921813676323
+0.5864274915151976,0.5151545909135468,0.46126931133549,0.3677236338569068,0.3954469845040371,0.14550693922221547,0.22079709046097565,0.4395519195242711,0.48048362851440357,0.5615803885298972,0.7276596679156841,0.3360774887592038,0.3450929735607132,0.6345478993415763,0.5635794036745861,0.2518121706554465,0.33911042659148144,0.3491676085775993,0.3812713369184468,0.489830844769306,0.4171559744098064,0.3159565472194539,0.3489122079505351,0.6866347256954022,0.41088752999806494,0.6300393529485246,0.6129218139291285,0.42773440808778823,0.23511214390267238,0.40315209007053143,0.6257676914970249,0.4293679530083592,0.5721697195078199,0.287281739845905,0.4326811110070714,0.45114567621508955,0.4883177933260394,0.3021591699955653,0.8858821992714232,0.5712482743564707,0.17006666323266448,0.4842618386469114,0.3229926525282136,0.45417762132608563,0.335258958408416,0.42928166039205806,0.2877533178611484,0.604218563983365,0.5250444703809712,0.5541276742148943
+0.504953676174772,0.24332719278738868,0.44235223023505954,0.6813108734644736,0.3972005712101288,0.42054769941134523,0.5282283972077425,0.38565496396354115,0.44203442591063363,0.1429777003054323,0.12753046031928497,0.13717448663537166,0.43847086096150256,0.5318424625684929,0.25684449418113486,0.5080891513227435,0.22505745749389636,0.5658571281228877,0.5316932745303431,0.32189896474591784,0.4315906860602589,0.08847073135918214,0.09837458439620844,0.2756437686697621,0.4211362362878935,0.29499130602350165,0.27608489663774,0.6231963697632251,0.5279818179987558,0.49678285883105994,0.629659197552711,0.47465348673637936,0.2453046644113113,0.17720560659706194,0.6022869569668814,0.22202797873424945,0.34889019851276964,0.4424245201018073,0.29318548233017255,0.32567860972225715,0.7369742497751571,0.25275301877990775,0.2836869557070049,0.428225111054308,0.2183586234681142,0.15545694141767177,0.33868314078593803,0.5382380276416194,0.3505180940249168,0.5360662979609161
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.24322989451589283,0.4461272953662786,0.12638332522286352,0.27924694328221605,0.24433699746773793,0.27043220699672854,0.37319232465186725,0.33348385042865536,0.27631072335047174,0.1463042975275653,0.0694321590959217,0.11360934693685926,0.10549253097170613,0.1795589500984145,0.36776461138022737,0.4503626392403983,0.10492815354969967,0.1735402183523436,0.36533554826405257,0.15313369659236534,0.29280646337229205,0.09523076923076924,0.16365273101391722,0.4004479884174033,0.012176739926739929,0.2541935495761117,0.5906417482423408,0.2886554269317256,0.4685505910602994,0.12782466565164052,0.21215021906708983,0.16336994348943573,0.28741525235950455,0.3046198905772826,0.1988066824040302,0.6998933578052725,0.7311804404246247,0.029309661423681008,0.13326809618106972,0.030871921182266008,0.051474596935618885,0.04345314432254261,0.003333333333333333,0.48878190131999866,0.24773909947800113,0.3494851795308258,0.21077650342909202,0.273342964051229,0.150706159007983,0.2660742739001052
+0.3190549091845175,0.2363888888888889,0.4158333333333333,0.3754302724512846,0.4408426573426574,0.3024222709657492,0.5782392245435723,0.44134912863554243,0.2605,0.551516519794109,0.20801555466205093,0.2820175438596491,0.3730967741935484,0.38496386827425383,0.35647601010101004,0.43383702343408215,0.32236681754771573,0.3048015873015873,0.4494159544159544,0.4965035674319356,0.3561294477879844,0.1956234167713582,0.28463636363636363,0.4097065318881175,0.7614193279193279,0.2868322999851555,0.29060606060606065,0.4551443796299541,0.45293622204126405,0.21032236761648526,0.1824667363288053,0.40955555555555556,0.4091506069211345,0.31298606332645235,0.36142857142857143,0.20779046529989922,0.10106214863567806,0.4512438052143935,0.5336458461149729,0.24249753774152452,0.12066666666666666,0.37495875420875413,0.32435209235209234,0.6339303790861744,0.5316666666666666,0.5043211867919315,0.38933516483516484,0.3559535066981876,0.5424674905198161,0.31561224889485756
+0.3952678926227704,0.33746171893202725,0.30799625379193,0.29623327354342516,0.28534665799638703,0.3237045034817153,0.2366778566124768,0.3227257288192091,0.4058467574318256,0.3053363637805748,0.2835646474737934,0.4011775274416627,0.29210217197385474,0.31639073785420607,0.25503165005153217,0.35530873908016036,0.30412321297368544,0.3662039216400616,0.42579613542149836,0.28621619213016225,0.39885655202669457,0.29744512077506924,0.3855207632834414,0.3578611498852791,0.3085525576229269,0.2893464333313425,0.3624295322436504,0.40058763051193397,0.3278005305209667,0.3882468085788674,0.35138998609474753,0.21082376724549967,0.43318968322771895,0.3342865052209678,0.4436127940163979,0.3403266402236663,0.383162588518861,0.29960628703748227,0.3782668901315428,0.38127639759585175,0.3665163286285869,0.4222494596695708,0.2407185077383415,0.40647161472298093,0.2963944637998162,0.2821215967076167,0.32070842128942245,0.3762459717985488,0.2978331269727629,0.324338912114257
+0.3657110400600048,0.22143599516146406,0.23107166286319433,0.31532377354791047,0.280616024131804,0.22087396090125877,0.16455050393610648,0.17490105058498287,0.21873393581280073,0.23461333263115056,0.15571116523984294,0.2601141769134651,0.15997975108099236,0.2729314713803609,0.23219973910370048,0.24044782662189185,0.24314882909718066,0.209655721252378,0.2627676498839712,0.24694985096865316,0.24013621185471706,0.2015787734628181,0.18447376368961,0.2648202657671078,0.21644444728806195,0.2989965657204006,0.2934266336732127,0.2694257392265033,0.24685980166423588,0.1378895699431018,0.22916997887828774,0.34066187021292976,0.23096892066492491,0.24858380984465125,0.18054904639849728,0.20802258419454606,0.2823984116746402,0.28436687652210196,0.3511383821920264,0.17845623400959365,0.3460290254532905,0.23581561380671803,0.31081786718376114,0.22673058036606583,0.3485674487563752,0.2715758590811005,0.266218535421953,0.3294921631395276,0.36760243185007885,0.18750152516941918
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.3424467989577558,0.4752084298500073,0.5844644120224153,0.5320400051346845,0.35227832431178185,0.3513762177533381,0.39814021102717834,0.47399972460851536,0.3522863033269023,0.28221005134424404,0.37908931385425254,0.4617277324687914,0.3422179893321278,0.3966918257528186,0.3952460291518294,0.3678136540365013,0.45184866972279153,0.5239833521691398,0.43783661138893953,0.2397689253338323,0.4423157741939777,0.4099398058510013,0.35606033702423046,0.3341943781918267,0.368387328532412,0.3185304322274522,0.3437498667645144,0.3608223870838602,0.3774333416238859,0.44476015424929455,0.40646050444493076,0.2859061816101271,0.5399703722267122,0.3509900787735438,0.48245555943974927,0.4010267877265997,0.30133209255853555,0.5058120373001739,0.3726719380358155,0.47297556450590117,0.5069678220919706,0.3358223948207721,0.37928383107625613,0.37945858617007444,0.5043847855643703,0.3245051112484398,0.4031004797231252,0.32507521492078467,0.2145330204589744,0.351177309175445
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.2515102106521491,0.2401364791774697,0.3289370273740144,0.22726373489884039,0.29134547690418805,0.29330246162836165,0.25538399355427266,0.20011501753785527,0.1675510498249578,0.23285030528804448,0.2165613779067751,0.2969519719257631,0.26784374079992906,0.25703864153752387,0.24932164451735506,0.3103930538564811,0.20641827274834576,0.28834438523216394,0.1966140915367463,0.27809951182914056,0.29574142879250054,0.19285158273945907,0.21415870873279366,0.25498392412111265,0.29243133079790495,0.274731964065327,0.2955078774350735,0.3049602582991216,0.21535533888740002,0.2730753599158459,0.1866780437525988,0.2004431106774622,0.3900857576106364,0.2242057277001642,0.25638599851261207,0.2167777252401784,0.33189933731792465,0.19407380175444133,0.2178361275359397,0.19647864294803777,0.22646527579044748,0.18778784177954166,0.27567526167314754,0.262745811459482,0.32296009243434903,0.26411733308911095,0.28359704928669677,0.32648630649457067,0.1695932465294798,0.2339042949607183
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.0850743686138423,0.12111111111111113,0.40230463064107924,0.6183333333333334,0.21011172161172162,0.8198068710815261,0.6807432501746521,0.7319857770755992,0.6807372798434443,0.655,0.7448095238095237,0.5642693602693604,0.9082766735476797,0.6727074331079592,0.4733333333333334,0.6859502551513305,0.053421052631578946,0.9030227161843561,0.49827160493827166,0.5311762820512821,0.07808879483879484,0.5209015151515152,0.5624053670343993,0.07,0.5737171899830128,0.6829563828263144,0.04791316526610643,0.5377269774824353,0.8724868713036967,0.6961286549707603,0.44607692307692304,0.6137752525252526,0.7538315018315019,0.5620238095238096,0.2171287878787879,0.02,0.5725354275596967,0.66,0.32932136668501416,0.8092492645572356,0.84,0.5012500000000001,0.8106190476190476,0.4199029850746268,0.009193548387096774,0.7584622180888166,0.08265664160401003,0.5445,0.4693511904761904,0.07260531135531136
+0.27182036968867895,0.29186061096797145,0.4504025094978416,0.350025922493247,0.5035393406688973,0.24267887762270537,0.5001630155908853,0.3533929497556752,0.5778106154942573,0.4747661427011339,0.18683513021081247,0.4583580755573549,0.3580789113389828,0.2741682237253755,0.4133942614815896,0.5856618123441067,0.1704702440022154,0.22779104255228433,0.3288963274943137,0.7164568474878523,0.433881532891381,0.7842056759309037,0.3137309754103548,0.3856306659749412,0.6880527339499036,0.2683441723453748,0.30811040720454275,0.19957447923073837,0.2963140940730237,0.12903870701017206,0.23956291561772605,0.333550529595836,0.30390764599754966,0.14736301375134567,0.50997167458775,0.18673753373506188,0.2890741609824502,0.3675838449431476,0.3981740813191208,0.25272389742303164,0.4494737499204543,0.3126532026906526,0.7320664455173866,0.22174236220407906,0.15677716426073404,0.335281504476008,0.40530133016836756,0.6647950882395287,0.601217645266221,0.46339404605056805
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.6301697588127626,0.4870948996061512,0.6068136399191078,0.7419429286286342,0.6164568212545674,0.6235217130380819,0.5330430372786137,0.5226158867406835,0.4366466935140904,0.671502526535086,0.714458146493118,0.660190164779034,0.6560579815938662,0.8339270562559001,0.817600762802019,0.6737643842190014,0.5002314644792145,0.7068025264936361,0.4780929726883161,0.5987954827579249,0.5119369887549123,0.8282048701107939,0.485301493335945,0.5598889081176255,0.8161746637528001,0.7121088729911539,0.6814333230854817,0.658675244256024,0.4848708232329553,0.5916779294500752,0.4184504519049209,0.7856927576133237,0.5451208971589828,0.5867003400440512,0.5851553880421129,0.40782216006562555,0.6312406110766053,0.6405730995079566,0.7232681515564401,0.5559134206140667,0.6314865933946322,0.5324004360716101,0.697701028112415,0.41711539966635686,0.7481268247545907,0.6858822288901751,0.5162049240979761,0.620003115973073,0.5377716619417613,0.5159612653004754
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.619860212386725,0.38993953131454534,0.43534437219335687,0.2743866296248254,0.3181501701428083,0.7378487057811534,0.5226258710540055,0.5954698477769083,0.4825370214270135,0.5995501188353741,0.7061553371389817,0.49925537166005335,0.484381455378112,0.3978607126741746,0.6001137261274273,0.4350470315529963,0.48452428296511807,0.444339502967355,0.3605276011785842,0.33720621002717466,0.5760545964360578,0.6161902388102724,0.4301317453969516,0.6043139411867517,0.34726315174051725,0.4566754065106911,0.5393874856184833,0.4087378559795697,0.3751951029902649,0.31023546899451987,0.5924483872264154,0.49891009414787263,0.6476895888982253,0.17577347560995107,0.4442167362462827,0.6257703199609631,0.48728591095116847,0.36272072946286565,0.44505738964548713,0.6313186140210997,0.7125146972646506,0.41076806329874466,0.4175834129889679,0.42651796691531724,0.27894915365045864,0.3514960575796314,0.36619953400372646,0.605137761896444,0.2827220838578109,0.36808201879827934
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.5833563492063493,0.1033374463910818,0.6040976081099333,0.5340287458238341,0.2595071925183272,0.47628917530324183,0.29919514525448027,0.5413460824310328,0.3603437229684807,0.5742846619360389,0.669905648503218,0.8632383794255094,0.5895364438029119,0.47758929921438004,0.5016717203373439,0.49893605642000416,0.49170015093997244,0.6732393666028388,0.7223350986165389,0.7256443103357421,0.2936008513271864,0.793443068155243,0.13186295019599276,0.23408388431145777,0.8313924477672495,0.17316114376193023,0.3223772642088886,0.639539669448218,0.8157175429740378,0.558796165017837,0.38830175406585693,0.027774280280674142,0.7006717240614745,0.5270101435106807,0.026319340461575077,0.38499760625399043,0.2948717970399979,0.6720035528084769,0.5329978106303009,0.7765880958729768,0.1693811243795764,0.6761450025115188,0.7261896312975238,0.15675818027152913,0.6910511693396438,0.5552920247575686,0.4301057565803419,0.7701907909126967,0.7118578277909005,0.4334232460325461
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.24723915575973968,0.25721973013052346,0.27969699869717457,0.22986030465069962,0.2583611150471782,0.2672748959417279,0.20510311032299733,0.23484417309388683,0.14180543964692255,0.24864622725927782,0.2519669215063591,0.2546106281198458,0.21636689869613213,0.2599389409895816,0.249040630045575,0.21614293182388394,0.22662178609636752,0.2508372165535308,0.21667869911226284,0.2425545380382366,0.2643026775271605,0.1995774095727171,0.2142864867006806,0.23800201265838397,0.26541879764899723,0.27559989118574063,0.2561073852428814,0.2861932986990557,0.2506382190455332,0.331709129325725,0.22555389449133087,0.3380549035377692,0.21265683329034452,0.26887740162682777,0.3151158255483423,0.2086416183816486,0.22348685552931652,0.2289225380532431,0.20546508650226594,0.22974214638963372,0.1913913912771469,0.25336217351695917,0.22429288042241527,0.25069339882804675,0.31368756723052793,0.23912586209385875,0.211992605369791,0.35586906653932543,0.18850056658458963,0.23680963786497156
+0.5893173301814391,0.4049250030002583,0.38614866658559605,0.4671562684541307,0.44717095144815877,0.403157228780562,0.4693261257797562,0.47980400728934364,0.45848493658662526,0.5015051025890116,0.4750686829761015,0.49295723538297354,0.5096739181856751,0.3167615640754511,0.4104381469196898,0.38021020552623896,0.5097226705040632,0.5276570462687064,0.466406556899216,0.38267054244562,0.4379421815041219,0.45755124677042147,0.4408486422183126,0.4475561403172053,0.39878703496808415,0.414077354949333,0.43898055217548587,0.47434710370331373,0.3913566210424611,0.41043488152873914,0.4224311348502197,0.44314594385042616,0.48570247215162,0.4784595993359136,0.4403608239065354,0.42410866080929027,0.37141973817559126,0.46897618099487487,0.4008524712521653,0.41615114021568866,0.4388527123869385,0.4005620129204585,0.3907467412492831,0.4679127316547065,0.3945133807014068,0.3217871985792629,0.4211590765845524,0.41907466565318996,0.47846390092119384,0.39810946743011755
+0.7228888828566795,0.5763788790925606,0.23344475543613477,0.605309090278798,0.3369623276321493,0.25784358509849076,0.6046039267912151,0.36144453334378324,0.19751240914024987,0.5508839721708423,0.5136087370930755,0.5934886064342245,0.5306742834646306,0.39243394977430635,0.6153026886863677,0.38149603309185,0.5412955969140085,0.7374083092333819,0.6282033935030562,0.589924431046647,0.1049637526652452,0.7437837779017415,0.17933968801889721,0.3458310665377216,0.549886305669961,0.7573844520377837,0.7492558147631425,0.30586622539796227,0.22773575481572533,0.2962059152779629,0.668439965814182,0.6885012666104687,0.628759250931783,0.5675275954069562,0.2846792365573521,0.20030943439760343,0.276049404416855,0.18860762756688124,0.8394216728006479,0.6597372346911103,0.36837048260711264,0.3448612615549789,0.7775839877227954,0.4833098253621415,0.30942506953554944,0.5609957104484634,0.5632940334444158,0.48470828319851766,0.22067898370353792,0.3696993874552456
+0.19507687611826252,0.17497047195505444,0.11191496391301944,0.18754076329474675,0.16370125633060087,0.1407874630111443,0.12114878039751574,0.14519939871844184,0.06833371077857135,0.09430214492613714,0.16179090407905108,0.07368588391187185,0.0630284181022717,0.18720066163186735,0.20326184802071992,0.038468632143875,0.2250523301521406,0.12063135085040719,0.21588876883028824,0.16884728503136404,0.10512367007229162,0.1133279425939455,0.06252772751087565,0.032277521372726145,0.06830216511398442,0.17725353483947195,0.1708712886707505,0.13373094579982456,0.17310189724295794,0.04056983522508348,0.372216761462943,0.026546677960565188,0.1669013342917598,0.18350890263523087,0.09280856675936229,0.15995572125492277,0.1002545170917457,0.1668762352359513,0.26901385201786193,0.1097596746759403,0.13341659833436997,0.21400148269260416,0.02740344692402545,0.09918889586919603,0.18053720298679493,0.17440075895235185,0.21101339878082737,0.05679613569093285,0.198051739005769,0.1695706327220684
+0.48350159142569504,0.687055342847198,0.7979505905398112,0.6139394786672403,0.8725473020059883,0.3837989763751664,0.3280768365945046,0.489843278749047,0.8755741935483872,0.8388529306129838,0.4850244373232813,0.369685314335881,0.6595621468926554,0.17712852208510402,0.3966199259677521,0.2795497091019605,0.48517948924476767,0.4753947050973663,0.8609836500885133,0.7892053617553203,0.762862623483827,0.22938934894038007,0.30830892308955904,0.6184652014652015,0.40952182650454483,0.546458915313502,0.7210909296283745,0.46191975682006164,0.32666287441193076,0.2453199990736291,0.41693771987258216,0.45763188105469316,0.37112109629245116,0.6723162056082469,0.39164704482994794,0.6065400381678273,0.6689314926380048,0.27054332879716997,0.45472254308284216,0.4393999449437729,0.43653995407774104,0.6627953881273553,0.15004468650004008,0.4324437740078257,0.2263891749871078,0.5545383165239063,0.4873148725380614,0.12489412113707891,0.6714747941568666,0.42491255468213984
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.307134011095291,0.2785059598019674,0.2869355338964497,0.22973493458201533,0.25794139189022414,0.2759903700952768,0.21312901253123667,0.23297762214616036,0.24635029679468315,0.39170709300435347,0.26057538095458593,0.23219118217999257,0.22937952324445454,0.23650879416392342,0.23593804669951268,0.21562430954699316,0.3143702968735862,0.21969998657294648,0.17308481133040077,0.17179777750366004,0.3236044781624175,0.1651287285059672,0.2657309444972213,0.31934437112188446,0.24860161507834241,0.3875321286700513,0.25708294612248656,0.24941869134734257,0.24891679888451318,0.3227132134591831,0.252691058573932,0.31146620263211383,0.18500276314168607,0.3370804567222001,0.4693351807154692,0.2815683005738616,0.27895624981435996,0.30133010842446145,0.2598396776104691,0.22991452133302206,0.4120338369779195,0.21106246747833943,0.1684755096221024,0.3112470283134713,0.2947300207472291,0.2295774417045216,0.28455064237664457,0.3579727897051136,0.29219966489202664,0.20322085267145237
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.05112494135923111,0.042487336748605935,0.14127190900920625,0.07463483369183815,0.022702590045113415,0.10451784536055936,0.047869329471776245,0.10861568297644447,0.09327615266292241,0.028837454075203644,0.2600194842717999,0.023033311437727813,0.10567006129106239,0.05701150674069991,0.1288915266570881,0.020207357581734742,0.08130808478463161,0.075328081232493,0.03666122924570984,0.03413397193125108,0.011136363636363637,0.050624279131117216,0.008432683090592924,0.11396395390772937,0.019550629290617846,0.1666591225173023,0.017169363122752954,0.32849536628674336,0.08309296791117271,0.14261330215548787,0.054421284601678034,0.040959872012806785,0.04985277643702668,0.05109982793405678,0.10469987795693562,0.1701818582944696,0.10664013799933915,0.03405594154626663,0.03175528129815921,0.03979173578462798,0.15727685364961247,0.04955801887063652,0.04334080473868643,0.06516534637602076,0.2823267230958606,0.02140065703733638,0.03843877705781399,0.06897394307057242,0.030727037970249237,0.19322636491437745
+0.02978849792514182,0.06464601813589638,0.0322792326714438,0.10632565923123105,0.01780692816742671,0.13566000294246502,0.035488216741514915,0.08583943523965022,0.07224464538551684,0.10004883112048805,0.15460169242842295,0.04473928258724689,0.05566196025266531,0.08557286782216815,0.09151161682002529,0.07159584933659924,0.040105622815948906,0.11111144009294638,0.05848159256920229,0.11244223827718734,0.04252764380760818,0.11891862381488162,0.031502059502084075,0.034731027312784477,0.046893555921156994,0.0753295106050504,0.05717726358718103,0.08156252703585024,0.0847388853614202,0.02365486438073957,0.03798185774252996,0.01777334002195327,0.14712424299143168,0.1412345894024679,0.10558419109227309,0.1455996798020443,0.04011884638527942,0.1404894775797728,0.1876568379078719,0.08986434161884377,0.05964079381321672,0.044577625739805705,0.02493309779673722,0.09748741195063243,0.12740575263437995,0.02898649296133182,0.07725096717073787,0.11527964932091324,0.13443816435630443,0.1237000550724801
+0.11597979113252962,0.6697372474017211,0.32182560644879354,0.20051017363109724,0.13889993232019093,0.37975978523485004,0.5314285714285715,0.4485132088136303,0.1890420684043213,0.1916213651010085,0.05971345898075471,0.27298270150901727,0.5928207429179513,0.2364282622519216,0.3628191374242556,0.46017431179404705,0.19697557535776583,0.56246237394322,0.35737127007596087,0.3370524345259676,0.4087469623195289,0.1356698095270836,0.37605138685937756,0.2906523014111774,0.5545876214893803,0.3342686254856617,0.5030781399652424,0.4066368795874065,0.7776078431372548,0.3130056136688884,0.07727457355332086,0.19765328837828838,0.27955412487082676,0.5705138313760447,0.33814993398451176,0.7054823680823681,0.3560519216659342,0.22285869593740956,0.5854872087544394,0.19668816915442622,0.48662149012718786,0.5454156438527148,0.2901921271516576,0.5872069449605681,0.5484892255841934,0.5454572649572649,0.6078137052195964,0.3464094389561616,0.455922576057675,0.2579745522076674
+0.03415976550636998,0.008686737732308977,0.037674408683104336,0.016319622214631246,0.006252416817325539,0.04317934031227186,0.013648238153394871,0.07127344184189215,0.0,0.047790076543625146,0.05463389607433439,0.026430467030774313,0.031254935577355036,0.04838423826260235,0.04826546428800207,0.02433732472602105,0.08513196700566883,0.014928326188568975,0.0406052719593413,0.01308721950120944,0.017625076569037598,0.06579838746977687,0.008356836759943989,0.01426398571538764,0.030237024105425555,0.046586000203573494,0.03691410957866145,0.018484278820033204,0.032628313353285684,0.03514108437968391,0.015516129704075702,0.006976517792861403,0.0829232667458328,0.012341075848165715,0.024880689616451925,0.007564216884330826,0.019333147873263276,0.046756219977273784,0.04443540396896022,0.041989197244249474,0.020430501712453118,0.06444498005899187,0.023400296106808594,0.0249254232316419,0.006005753971975667,0.01403324782507486,0.024080678114820776,0.003949864235664282,0.012805555555555554,0.08282049074103658
+0.8334184253030094,0.8576141619236942,0.8243588245265443,0.8804644279020049,0.8025540910522031,0.8347102206743517,0.812811091580054,0.8155295359196895,0.8427912840124486,0.8834114529801927,0.816595166011179,0.8887262607510571,0.8289262559831818,0.8682377697822017,0.8425429049670992,0.8748471695840653,0.8610106825206663,0.8036559519162669,0.8502294893626179,0.8560039035255894,0.852326337652949,0.8910998873417862,0.8771483314450506,0.8222389076772303,0.8551288595084107,0.8032659833366634,0.7897127187628976,0.8079341195297846,0.8037366866403934,0.8330469540106575,0.8389123738487692,0.8416192634440851,0.8544615512223401,0.8975187135846504,0.8476033854347524,0.8391143841607949,0.838094447145523,0.7926832649165485,0.8547590683387566,0.8797772225892578,0.8786848845425206,0.8384317199633586,0.8379384969500131,0.8986381758977164,0.7807453593188757,0.7889167266696956,0.8351719755447569,0.8257819514276921,0.8899353872794549,0.8705998214946934
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.6817510569840836,0.5675379527035074,0.7179811226290611,0.7490514723974537,0.5885403571227564,0.6794779312825867,0.7210061902999954,0.6648918242804328,0.6485207860377996,0.6742388620483161,0.6004876045962603,0.6416003868672127,0.66258284111524,0.7644005423460958,0.8077411085274449,0.672526995404043,0.5612682101697373,0.6465637614103384,0.7327884797305124,0.6310816186892446,0.6206629847293976,0.7423592799874186,0.5872029583789348,0.6595679262830774,0.6621828267825519,0.6994265779159208,0.707669002015789,0.6540913101066974,0.6277425000582147,0.6276121707326885,0.6255652701499064,0.6485951949213522,0.6334301226570892,0.7029303423875131,0.7505450831584976,0.6727870583474339,0.6032393063460804,0.6295332100392514,0.6907259235191249,0.5724095270316282,0.6037615587594823,0.7650375077575953,0.6598074329998406,0.6976867468819695,0.7091482524561898,0.7309452561032576,0.5421669491002465,0.7150088818194769,0.618715250389683,0.564973583489802
+0.2311857123618472,0.08445962241622192,0.29600373634525456,0.21871560187081518,0.08962533482686713,0.20942357278836815,0.21999894452278837,0.03732189073261718,0.14798900632254441,0.25148459064461975,0.21810033929803554,0.026706829489506912,0.10269737597345303,0.02880701060282149,0.1322627263290303,0.13351003462686928,0.32890096614462594,0.06849733634959826,0.02931901326724787,0.10480291586818158,0.14602909904576086,0.017953528528039362,0.13057322595662482,0.19054805520092852,0.1305547096938977,0.19402173378017826,0.1326939429628405,0.21691501107483493,0.2831407024152832,0.14793688622761147,0.07531590193043405,0.08651361949639172,0.14566121899258933,0.10573311679255165,0.12298579313567608,0.13836725846772968,0.08780928128570195,0.12122710436189149,0.1887549508538515,0.1570207317265173,0.16438944324056162,0.18752092775704784,0.13589543453448197,0.1673641988880249,0.1507632695238702,0.16023497431100647,0.050095616187263235,0.10157468334175884,0.34544054507102445,0.0460124490591683
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.32560233685705753,0.3806429955254745,0.2782280204868841,0.49677310422839766,0.24676559186379055,0.5764679567895645,0.6924762867792245,0.35606593119569785,0.12717867697214844,0.028714285714285713,0.24339646559659325,0.463565056970564,0.0759023370593877,0.18340403351170412,0.4698349407655804,0.3098768345742562,0.060561305082410616,0.2160698588427421,0.21220437981805773,0.3718731082757399,0.29189317071817067,0.11149156317538671,0.7655862748362752,0.15219559193469231,0.3208274206829854,0.11185803138191995,0.5478966450216451,0.1832771654259132,0.3689779724781866,0.29839482485115837,0.259784339519056,0.542262266804729,0.7745075809515096,0.48471749829012295,0.5857151032511387,0.2677224194616811,0.19373500668470206,0.10485597956968923,0.06694392493339646,0.3065870962456965,0.2210671710934285,0.0656326192415646,0.11477267954247036,0.14251542089180988,0.07328329047543444,0.16016587981581865,0.18312650829847146,0.05722356554299659,0.5686028238055268,0.4943371644997629
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.8395535918839873,0.7695017523261071,0.7766929205645492,0.7731452771256521,0.733880185271111,0.8296099790439847,0.7685998568206784,0.7856936729135008,0.7116749284572401,0.8787418011626165,0.842331753924945,0.8324921433451119,0.8651695952309243,0.9033566437325655,0.8258053393825684,0.7692083510763108,0.8619282621802803,0.8670853641048585,0.7987187462664074,0.82264481752421,0.861024623204151,0.8351088745000945,0.8524924495039017,0.7189014264653021,0.7484150978128816,0.6777662058071584,0.7654552982743956,0.7452901239877795,0.7769826760786482,0.8434541096248432,0.8862615942724201,0.7472816521891886,0.7126825162087799,0.8111054205790269,0.8495545164139218,0.8020916395561238,0.7109766695256983,0.8201353536766759,0.7007006002017259,0.7247212529011887,0.8174542493478789,0.7996501093988936,0.8158204070124968,0.8841059587691683,0.8347919074988355,0.7469878045281061,0.7976980153091773,0.7861087663723778,0.6371627380565495,0.7649585940443687
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.6904433465632681,0.7217523671201199,0.3521079725578703,0.5964012336107537,0.5957252671712624,0.7663367616788883,0.6237172295382579,0.8364886066070271,0.6491290384893115,0.6730762444466712,0.46979248981882504,0.5650207623406593,0.6916047469490109,0.6391719794983076,0.8136199141310918,0.6318415170345469,0.5158364396167211,0.6829304481436865,0.43654784737050606,0.5124191622903066,0.7081834509996381,0.29642061588478136,0.5706658350797406,0.6601740175544036,0.567687919090212,0.7167572006476104,0.7346249662375738,0.590154620371679,0.42969635064409717,0.4380933363964482,0.6119749346268606,0.6903248407671272,0.652937915917606,0.37823878293296676,0.6763478475292223,0.7605837037076489,0.5943778977270022,0.6908571731737535,0.4459762204390627,0.6114002731894953,0.578992289128799,0.7212778244150697,0.5888891576182543,0.8788308004058252,0.7215518432000639,0.3133019674845545,0.6851360370539957,0.6539896920675551,0.7303437519896058,0.5741573826696499
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.02733117124501159,0.21305845224299985,0.22080727040057838,0.10546144022892437,0.07186199273903934,0.3814383137562639,0.1852622954303997,0.09718453944807211,0.0765681834865126,0.09391703872581797,0.13452034545910888,0.06547579049056149,0.12183898911816508,0.14124036272971624,0.19567155179707246,0.0711476100685124,0.27545071952452943,0.11145297039648377,0.22476770741646088,0.15711769856605565,0.13482013245698743,0.16181830715984621,0.20708535799922495,0.10635882129258466,0.21150471669174703,0.18105088770020103,0.126927263519229,0.19059515858634857,0.17832004938694268,0.03230710793746911,0.021800064288010287,0.016148880831934137,0.15019363480088954,0.12161862315821098,0.09042895341491047,0.15248041379345456,0.11162991918286705,0.12892800996298726,0.10853889771367786,0.23333058004522492,0.21237493882947292,0.05049961150899547,0.03598038675860105,0.14346490329819153,0.17753094515194484,0.15018051648668254,0.1462564462429942,0.25077827976844264,0.2708316536276572,0.11438126118737753
+0.7607189836483849,0.776991577252433,0.6530444096425125,0.7748108210512877,0.7527089276031239,0.7228057398117389,0.7000128998886842,0.6354592111889134,0.4665380119022105,0.49189063513926057,0.6840411038214907,0.8105630928958566,0.8708557253176976,0.765036078276846,0.7455156202621815,0.8053072329961738,0.7472981384582293,0.7125475204488836,0.9030165734529051,0.8803570793041484,0.6688002307465293,0.8138178818938135,0.826626877150676,0.6336695467287501,0.7553469036463479,0.7764899448881161,0.721116913983273,0.6677989364777336,0.7077075776775844,0.7154658726755193,0.773687766764953,0.704207769169302,0.7293329889263456,0.7406119296533382,0.8391698177884698,0.8037915603833765,0.6683483793643813,0.8870221636636804,0.7158443461399717,0.8390141668231861,0.7400452917067472,0.9552795740059531,0.6764735765265233,0.8285777645314024,0.8343256183987781,0.71800974212405,0.657816639035313,0.656013920205088,0.7035479276549634,0.7223478197700532
+0.18369076278995947,0.012890223955050002,0.09211878711235467,0.06938188194650298,0.15597989378215862,0.10327734142493322,0.11400549083419807,0.07651142614431425,0.08098775749182442,0.09971256129114726,0.11248886516543546,0.05517184193585929,0.10607286889506817,0.13453783003356332,0.06934552733453313,0.022263521516744756,0.22052744348519593,0.05316948403505202,0.20735678355481058,0.055418852544173204,0.06797959203074244,0.10723996044545885,0.04932042834893073,0.05558003062413764,0.1015443106854987,0.1323196761762561,0.13186016168229975,0.0857142097716766,0.10373223809059429,0.12687512517738717,0.12487786565254677,0.11929006419583475,0.1324361050652104,0.05164097224805552,0.09259455938949893,0.012073884280368818,0.1313546074617643,0.05791159030323817,0.05555180845932502,0.10608132552378688,0.08389776199280444,0.07546784918528164,0.21916872380513397,0.10281137652715397,0.044164181571297936,0.10506535014591613,0.08154918305880171,0.09472610354769832,0.06629528944698283,0.1271360391875623
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.3952678926227704,0.33746171893202725,0.30799625379193,0.29623327354342516,0.28534665799638703,0.3237045034817153,0.2366778566124768,0.3227257288192091,0.4058467574318256,0.3053363637805748,0.2835646474737934,0.4011775274416627,0.29210217197385474,0.31639073785420607,0.25503165005153217,0.35530873908016036,0.30412321297368544,0.3662039216400616,0.42579613542149836,0.28621619213016225,0.39885655202669457,0.29744512077506924,0.3855207632834414,0.3578611498852791,0.3085525576229269,0.2893464333313425,0.3624295322436504,0.40058763051193397,0.3278005305209667,0.3882468085788674,0.35138998609474753,0.21082376724549967,0.43318968322771895,0.3342865052209678,0.4436127940163979,0.3403266402236663,0.383162588518861,0.29960628703748227,0.3782668901315428,0.38127639759585175,0.3665163286285869,0.4222494596695708,0.2407185077383415,0.40647161472298093,0.2963944637998162,0.2821215967076167,0.32070842128942245,0.3762459717985488,0.2978331269727629,0.324338912114257
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.6788950452271015,0.7156563336717439,0.6055285568125053,0.5734008021626308,0.7212463528203873,0.5745380763456772,0.6803218030332693,0.6322755883342278,0.6342261276170014,0.7140372849267734,0.6142795986891663,0.5679972140200964,0.6185581466803453,0.6719043459188877,0.3923067492188697,0.6572883135708382,0.5745221998438212,0.6446623442764087,0.6095756201066423,0.7414441321986446,0.6769602935283366,0.527768698719688,0.6777638212781291,0.6841984840778886,0.6563121972062638,0.7314608113575681,0.6904344345680054,0.7075637521621678,0.4316166925637805,0.7150714482448914,0.7007445928155817,0.7144453763452648,0.6776398523369012,0.6693143473893878,0.7250849541585006,0.6810221638627024,0.6300681226380248,0.6813823891044305,0.663073499042645,0.5903781044800525,0.7122597053200838,0.6153549961093587,0.5220313615828857,0.7293602112754317,0.6813925002874419,0.7536279486520147,0.6253305106313707,0.5608543696432698,0.591952111020106,0.5477319772967298
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.7141824400831325,0.6470085174569319,0.6197889528415362,0.5913779951773881,0.6694324482266112,0.869178136656386,0.7101534156155956,0.5731139656285132,0.45138894932017093,0.657682786519934,0.6865784768844931,0.7377645624983036,0.8725582632872546,0.697283455217571,0.7274549847103838,0.5390500503331025,0.814240804964062,0.8518228009590709,0.7343872780910194,0.755974475670176,0.629310323308667,0.7746775019821878,0.6303056592248517,0.649233452653333,0.8045730875888292,0.8674589197806775,0.8425855361586599,0.7274634929604465,0.7489737875112052,0.5471363521558379,0.7028089241687357,0.6621585004438748,0.7539212329440863,0.7108891396797086,0.682029531710359,0.7517865838823035,0.6752623329379284,0.7314429381926683,0.8292534072831645,0.7564288160853471,0.8555034360517293,0.7237828070851965,0.841176375588236,0.7124985346013828,0.7831121784149633,0.7227977603280632,0.7571235426562041,0.7232257680536255,0.7594950204228109,0.6897019617082014
+0.8334184253030094,0.8576141619236942,0.8243588245265443,0.8804644279020049,0.8025540910522031,0.8347102206743517,0.812811091580054,0.8155295359196895,0.8427912840124486,0.8834114529801927,0.816595166011179,0.8887262607510571,0.8289262559831818,0.8682377697822017,0.8425429049670992,0.8748471695840653,0.8610106825206663,0.8036559519162669,0.8502294893626179,0.8560039035255894,0.852326337652949,0.8910998873417862,0.8771483314450506,0.8222389076772303,0.8551288595084107,0.8032659833366634,0.7897127187628976,0.8079341195297846,0.8037366866403934,0.8330469540106575,0.8389123738487692,0.8416192634440851,0.8544615512223401,0.8975187135846504,0.8476033854347524,0.8391143841607949,0.838094447145523,0.7926832649165485,0.8547590683387566,0.8797772225892578,0.8786848845425206,0.8384317199633586,0.8379384969500131,0.8986381758977164,0.7807453593188757,0.7889167266696956,0.8351719755447569,0.8257819514276921,0.8899353872794549,0.8705998214946934
+0.19507687611826252,0.17497047195505444,0.11191496391301944,0.18754076329474675,0.16370125633060087,0.1407874630111443,0.12114878039751574,0.14519939871844184,0.06833371077857135,0.09430214492613714,0.16179090407905108,0.07368588391187185,0.0630284181022717,0.18720066163186735,0.20326184802071992,0.038468632143875,0.2250523301521406,0.12063135085040719,0.21588876883028824,0.16884728503136404,0.10512367007229162,0.1133279425939455,0.06252772751087565,0.032277521372726145,0.06830216511398442,0.17725353483947195,0.1708712886707505,0.13373094579982456,0.17310189724295794,0.04056983522508348,0.372216761462943,0.026546677960565188,0.1669013342917598,0.18350890263523087,0.09280856675936229,0.15995572125492277,0.1002545170917457,0.1668762352359513,0.26901385201786193,0.1097596746759403,0.13341659833436997,0.21400148269260416,0.02740344692402545,0.09918889586919603,0.18053720298679493,0.17440075895235185,0.21101339878082737,0.05679613569093285,0.198051739005769,0.1695706327220684
+0.43399232411556565,0.3880210026764744,0.41408983635653074,0.35562920216280014,0.4206666902959723,0.37678642881971564,0.39169381163398453,0.42262456595061193,0.43176830995340487,0.368812165558667,0.46367946949138356,0.42429894347815633,0.4850420096847177,0.302281762233925,0.4029910855621027,0.43597130763403974,0.47710038867070304,0.4782923601665337,0.43788194388956037,0.4536505682550652,0.39584681499391455,0.41032636521749816,0.4011342558618931,0.4371002264149695,0.40332505177775707,0.37233062040488646,0.3853880157912385,0.4505884348070552,0.35983276308578566,0.43448218440981295,0.37705181458871445,0.40699788679184074,0.3400722221293895,0.5249694701170622,0.43159850037896247,0.4038372187008506,0.3881571378777961,0.44804233027679957,0.38503390093268947,0.40111186422910045,0.4054585392744918,0.4048011831423874,0.4251472275511341,0.4228780687890388,0.3679849999042404,0.3852269236856018,0.40796335294067965,0.39357170532222535,0.5002473578428198,0.3529142107486882
+0.3209130628553194,0.34197689703561707,0.07086081118786625,0.35800925768392483,0.2525246017857168,0.1693670647511251,0.17456667807021986,0.29910543301790005,0.3578750708317826,0.37865159885859945,0.2439317233360467,0.11097631747708864,0.23919061428949387,0.3583622533828493,0.3980735223801104,0.05007478023950658,0.349069941410845,0.16622363807392646,0.5123838096787634,0.46828533467827504,0.2883262434605325,0.3867443990480291,0.0931132137858592,0.1484213227945287,0.23715901758739727,0.2791515354264711,0.2849865319134582,0.17556036425827734,0.38241694463605946,0.14299784225237422,0.15104210539779514,0.2955050388538125,0.14138085320766802,0.3574351557723714,0.31390481841101825,0.34044740351980457,0.2740063451873398,0.26362178486120136,0.24050855169116592,0.30395251986012783,0.14101428227423324,0.2457968717287534,0.2273710892035951,0.20775422943062527,0.18535531130065194,0.1943789065144157,0.23890705141815066,0.1546163450295769,0.4567380122489858,0.1951846865998317
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.3136220750174438,0.18794913720773693,0.1729563834536065,0.1671582914423206,0.2764971180873673,0.27186448087553744,0.20690228041206665,0.16622413669167152,0.2781208544244589,0.3425625591966705,0.2233427745597708,0.25283059363715,0.2695622063804539,0.18285625306952255,0.2720611332257527,0.31441491610973216,0.20646874181274355,0.23237003404745937,0.12764083470223309,0.18646806552840156,0.15333078439564748,0.21375052761768562,0.14437499217122934,0.5876798801716215,0.2168209509628521,0.20469899218874152,0.29395512129890344,0.3229176610404922,0.2710074760183845,0.18229022898931505,0.26840922874469564,0.2846736917463344,0.1818323927925004,0.2918053663231321,0.19062421752512854,0.20484634825830375,0.1611610060404913,0.20022054851249016,0.27907165242556303,0.16642532050278772,0.16123327922303432,0.3497210460970818,0.2078615470224983,0.17969931416038887,0.33824030602369104,0.23017021307014418,0.22508993925472812,0.36444186217548313,0.31387537393407994,0.19181539870887815
+0.4669319796502088,0.26185731508634735,0.25172716819627916,0.36957720609841505,0.5265666029111421,0.2396675988357574,0.4843399577380427,0.31057307447585425,0.20138578405561847,0.39305819866594033,0.44419590621382826,0.31722545325469637,0.23941058726899267,0.343656415288885,0.4321210163045506,0.19816835819016088,0.3842797990372981,0.2702832628493206,0.1672141862899006,0.31107940666686956,0.44157754010695194,0.3722993652643936,0.43932668912595924,0.40380541937367975,0.3783469503893524,0.4094784597676688,0.2799866548348318,0.2852263087942223,0.33199489765279594,0.3758660024943672,0.5023195153304869,0.479159185588643,0.48566367118226644,0.1945348548108668,0.2286496646689557,0.1738186413564388,0.26892914195147777,0.23579197145968403,0.47281252275463304,0.43924493064699727,0.5946950362830885,0.36250539923039926,0.2846573145226548,0.1433528268216087,0.42814687622718667,0.4222387086213334,0.6136249584579595,0.3924650330779794,0.5092469979296066,0.45659013346148114
+0.3239569400573446,0.5735022484157346,0.2534369059412094,0.6834153432186574,0.3967552503148433,0.7163473815703015,0.14175056259072202,0.30674799566174665,0.6106573286470386,0.3677484399424916,0.17575558160745963,0.25759169602919596,0.47687012367460435,0.45217394734041577,0.3659965233343137,0.6251460404620777,0.560596467720396,0.07423147163709902,0.44417137903058806,0.31512434985045185,0.35947882079846516,0.3096187964583599,0.6984900294411278,0.17104622677579162,0.5538696912863386,0.6335642656915632,0.7558251735792549,0.403511271372453,0.5776116967309141,0.2293648003859941,0.39366630971345296,0.3549526804057295,0.5518973213278247,0.39193682560257614,0.13464326128152312,0.6174641816034729,0.4422071149242084,0.4885588346837869,0.5749984920531432,0.5523398840041114,0.37774569779426953,0.7209623019303136,0.3949697243903551,0.08052176996737995,0.3226357791982561,0.24174604616526327,0.30966210077079404,0.22143590956223655,0.27995634589178586,0.46704832330238377
+0.21592669917424812,0.09652018684428373,0.3013149738126602,0.07786140792545662,0.1308532581902639,0.2705859907850379,0.3465932342792694,0.18513520405137665,0.20012968050969865,0.27803582479689515,0.18491898563065842,0.11905522529854651,0.22599034706714796,0.09090491138641356,0.24681178482087407,0.19072282959320838,0.2659766076395794,0.200535491529624,0.10391958652478744,0.13083819248790352,0.13984640807778614,0.11661724179528189,0.07323899762488727,0.26702406328391093,0.2593445774999818,0.20381668292036423,0.20804311237095138,0.20961730703265158,0.20179023709653593,0.14234056541476683,0.19363634420344283,0.10021731435547242,0.26983088218263324,0.1377003012721617,0.23462650919757272,0.21008597577906218,0.1817489826717934,0.16103971216553137,0.16850356149316997,0.1515867699793073,0.18887151680628322,0.2747262539009066,0.21380243112537337,0.17181045367881143,0.20736625158705618,0.22640730739777123,0.07334268930871093,0.1534841118144711,0.27426702951824117,0.11059836386550112
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.217317411598486,0.2530609416078273,0.3390336770928839,0.30460509519074586,0.25398703288426694,0.3295027875844827,0.2524718527400566,0.46130257980698536,0.19956594537208777,0.32983352929250037,0.21918109350359413,0.20749491491608868,0.18958476959652265,0.22187541368805902,0.1255906741698571,0.13435337589928398,0.3285607138392434,0.147884671401782,0.1445178287895679,0.3251763762285505,0.301252963238706,0.18826199535645696,0.08816696291971998,0.09994234755573003,0.22875327465307133,0.2509005392827042,0.0841271648359008,0.16615264707418104,0.2802454152683333,0.2392841800669796,0.23207603722497297,0.21968879954741152,0.296618163947462,0.4181505991350025,0.2296382228551218,0.06935393106303157,0.22806147381511047,0.13905121632588066,0.030712824918028674,0.2799506719176526,0.32284792608556784,0.09887424009046496,0.36957890700015317,0.3025308036073114,0.2858673989439591,0.09851862491871985,0.3594305265596195,0.12876019464505076,0.26869639451542787,0.1925482039881667
+0.217317411598486,0.2530609416078273,0.3390336770928839,0.30460509519074586,0.25398703288426694,0.3295027875844827,0.2524718527400566,0.46130257980698536,0.19956594537208777,0.32983352929250037,0.21918109350359413,0.20749491491608868,0.18958476959652265,0.22187541368805902,0.1255906741698571,0.13435337589928398,0.3285607138392434,0.147884671401782,0.1445178287895679,0.3251763762285505,0.301252963238706,0.18826199535645696,0.08816696291971998,0.09994234755573003,0.22875327465307133,0.2509005392827042,0.0841271648359008,0.16615264707418104,0.2802454152683333,0.2392841800669796,0.23207603722497297,0.21968879954741152,0.296618163947462,0.4181505991350025,0.2296382228551218,0.06935393106303157,0.22806147381511047,0.13905121632588066,0.030712824918028674,0.2799506719176526,0.32284792608556784,0.09887424009046496,0.36957890700015317,0.3025308036073114,0.2858673989439591,0.09851862491871985,0.3594305265596195,0.12876019464505076,0.26869639451542787,0.1925482039881667
+0.2427283154694422,0.2512021862708743,0.284121241121417,0.22518271258494965,0.2554289729211738,0.2732540603857505,0.20365678617930477,0.26816791813727603,0.1526971524161174,0.23985191525950605,0.23851996108204246,0.22884881339764798,0.21251340018315087,0.2448281197553569,0.22617845374760293,0.20151270105157418,0.2205005683785112,0.22669526910298723,0.1757798785251957,0.19391489998084652,0.25633605477792903,0.21314373342991022,0.24120206363940927,0.2299630226451292,0.2605461520561807,0.26396123572355573,0.2272104742573912,0.2607774684003954,0.24459057593212516,0.34705256510325655,0.21962828995740072,0.29283138325346164,0.16681177639997224,0.25102465190486956,0.29138192871844326,0.20786159239169152,0.21876309762507082,0.2400143685715718,0.16797383084119222,0.22214725870646793,0.20162431781662682,0.22833006249721044,0.17738618366060574,0.2675227389409213,0.31184302146391424,0.2372027851707818,0.20529849656898033,0.341438221415217,0.18536035037775353,0.21116604576798462
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.24454090461741193,0.051168006739334644,0.04596548031046955,0.14083861699784328,0.2097987669699006,0.15587671022423438,0.21638433381678626,0.17780423533534814,0.0399083436729524,0.11403537133199616,0.24723215873583787,0.14252844165830283,0.15688014277977116,0.17671454276384707,0.1687700485371785,0.054256910332499866,0.352054541580632,0.07062881476630689,0.319305391015206,0.12358946710759268,0.008441457957238654,0.1524998358451925,0.15400787640681915,0.11003016828864239,0.24366525886253546,0.14332834124985092,0.17293106300326105,0.12831686918593516,0.24087772394228435,0.27533287559072056,0.04681221474650427,0.13249561252701164,0.11413220838634562,0.07429797957722135,0.07609426817286145,0.05407198565556592,0.2380110702792127,0.10317039972237384,0.17016280726006097,0.24335343618163793,0.04723627393904209,0.03922339541372427,0.16501385833726434,0.0699248190472762,0.07395455718276407,0.0903001994347831,0.052026771105637956,0.060329570516355874,0.05281654907335489,0.2754743508686982
+0.31902210741226145,0.26127626034494844,0.2774231345085032,0.223513260846269,0.2593793195539582,0.27516507657206496,0.21327290680694846,0.2322348583662145,0.2803132268241342,0.24042894810195314,0.23778544135104387,0.23433734904057235,0.22843352467097716,0.2143586541276825,0.23109797285383166,0.18108204181574902,0.26058500949217467,0.21518051825982817,0.16460954693859395,0.1578654556842096,0.3039032320714506,0.1728630630394281,0.24148712954090673,0.29531729962205244,0.24223484785863403,0.34973926830089747,0.2424353419822589,0.2599986248481402,0.2442483978765981,0.2783096181597086,0.21950396560274843,0.28657248383022726,0.16819989254099724,0.25102465190486956,0.3532216164290293,0.2700825610559171,0.212265105987378,0.2697412163388106,0.1490038430688326,0.21062341853319633,0.19657526490680144,0.17180903666267716,0.21344380406603208,0.2606989745137467,0.2864925745492377,0.23695490588651144,0.23920123118972914,0.37070618624691243,0.1834492016841634,0.19972078997152976
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.7481532192887105,0.7643172961104141,0.6619078684076574,0.753356370055613,0.6097218187518236,0.7459306638445409,0.5571898331796022,0.7338125398827731,0.6875391120545947,0.7184638500210002,0.7677383401684401,0.7344991520716766,0.8644457478604777,0.7209534970654101,0.7308132904664383,0.9117768836870916,0.8135570461858612,0.7170141592528904,0.7434697133713503,0.7622876757342112,0.8062148431754923,0.8382139738209109,0.6092105318328546,0.726243202859118,0.6184617087543438,0.7861799821344667,0.7137273387256594,0.6433330090341862,0.8452531165990926,0.7462459892384584,0.7933819358212942,0.6135373189231468,0.7296101928854132,0.7062824996808539,0.7296278878815028,0.7242956736349364,0.6979262783136668,0.6576017104077628,0.811070733407268,0.7885797786315014,0.7430182314470943,0.7474037937704385,0.663552459061558,0.731576083117557,0.8403100615374334,0.8266807385153608,0.717457058830935,0.7440908531009702,0.6025756953951632,0.7360555778375112
+0.8395535918839873,0.7695017523261071,0.7766929205645492,0.7731452771256521,0.733880185271111,0.8296099790439847,0.7685998568206784,0.7856936729135008,0.7116749284572401,0.8787418011626165,0.842331753924945,0.8324921433451119,0.8651695952309243,0.9033566437325655,0.8258053393825684,0.7692083510763108,0.8619282621802803,0.8670853641048585,0.7987187462664074,0.82264481752421,0.861024623204151,0.8351088745000945,0.8524924495039017,0.7189014264653021,0.7484150978128816,0.6777662058071584,0.7654552982743956,0.7452901239877795,0.7769826760786482,0.8434541096248432,0.8862615942724201,0.7472816521891886,0.7126825162087799,0.8111054205790269,0.8495545164139218,0.8020916395561238,0.7109766695256983,0.8201353536766759,0.7007006002017259,0.7247212529011887,0.8174542493478789,0.7996501093988936,0.8158204070124968,0.8841059587691683,0.8347919074988355,0.7469878045281061,0.7976980153091773,0.7861087663723778,0.6371627380565495,0.7649585940443687
+0.8395535918839873,0.7695017523261071,0.7766929205645492,0.7731452771256521,0.733880185271111,0.8296099790439847,0.7685998568206784,0.7856936729135008,0.7116749284572401,0.8787418011626165,0.842331753924945,0.8324921433451119,0.8651695952309243,0.9033566437325655,0.8258053393825684,0.7692083510763108,0.8619282621802803,0.8670853641048585,0.7987187462664074,0.82264481752421,0.861024623204151,0.8351088745000945,0.8524924495039017,0.7189014264653021,0.7484150978128816,0.6777662058071584,0.7654552982743956,0.7452901239877795,0.7769826760786482,0.8434541096248432,0.8862615942724201,0.7472816521891886,0.7126825162087799,0.8111054205790269,0.8495545164139218,0.8020916395561238,0.7109766695256983,0.8201353536766759,0.7007006002017259,0.7247212529011887,0.8174542493478789,0.7996501093988936,0.8158204070124968,0.8841059587691683,0.8347919074988355,0.7469878045281061,0.7976980153091773,0.7861087663723778,0.6371627380565495,0.7649585940443687
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.22011733147240886,0.07340927805555948,0.03535165573296483,0.06803384639649099,0.027390485197986175,0.11117147843021759,0.09292305325885192,0.056410063042825566,0.02040480332086219,0.031816283476994646,0.2294746462537707,0.035858791552579136,0.05848559586875589,0.09392753585527837,0.07276699716921975,0.12318214046526382,0.3817141893566742,0.023067382122896257,0.01612408857736823,0.04358544058645563,0.0029670329670329672,0.0197805885609375,0.02726179006840154,0.043421620614452344,0.0907723217553265,0.06450772364399569,0.0422679515004579,0.08352731801810688,0.1498453466591801,0.09918070471803966,0.01874346367812391,0.18917222108246418,0.04672507556512001,0.01132935555841761,0.06107199776943526,0.0428178414029263,0.1414901365962998,0.03359657912528842,0.07658131078114354,0.1868325015195122,0.055723980499879866,0.029370956169891254,0.056066885559059136,0.01513726518731813,0.06224200077332005,0.063663475262397,0.012267909956772445,0.06473846648655443,0.09578688888420356,0.03135377763416992
+0.3604493107654919,0.42740062103729765,0.42695825183736846,0.3317964901516465,0.4717938112815429,0.4438192333332009,0.3906831736519174,0.4394056841669911,0.40624711768596683,0.3359641716394034,0.48397072940957436,0.4578408117740618,0.4880135205031138,0.4441640979578352,0.3649245686478697,0.47715153352723183,0.5109731366064986,0.5616695782539495,0.47591426143236737,0.5510717391843912,0.4452553547346336,0.25151966869750875,0.40174145757238977,0.5490428181442768,0.4491818433411717,0.2909047849607674,0.4181066677223355,0.49975368088466593,0.391093270522944,0.4430316280491823,0.4950728201838134,0.4265657923547217,0.5250452101621711,0.5199852988874305,0.43545646725179277,0.3813455107107989,0.38778172340469846,0.5182993122355404,0.3979573590412353,0.4554507999436774,0.5331068107946169,0.4997036265647483,0.4219180130018065,0.49355786161117343,0.4746452294885854,0.5684421988462391,0.3705460337172397,0.481324001725276,0.4232231401996587,0.3811868515647636
+0.4453411293983331,0.4352076689227715,0.3889784597271938,0.41596736038755594,0.4124822340488542,0.4387256097586658,0.47840092361208897,0.4974545183172862,0.4915333588024511,0.36100585594751516,0.468721820250151,0.42472897130491943,0.5430253591822424,0.53911874831607,0.4260756287121492,0.44169720389126127,0.4736234655937798,0.4992485001307017,0.45284833471406116,0.44155243445091785,0.3847541180264909,0.4024415899431307,0.4956443379052514,0.44211468596924747,0.4350397957011817,0.3869352297668185,0.434285526717147,0.5240960346821854,0.402550444119075,0.501394467020579,0.399682509179999,0.47111158279415927,0.3174547088705513,0.47917296628778994,0.4613544189060345,0.43893611776400454,0.37931689410276415,0.45726880861714314,0.4613365699906191,0.44474617293474134,0.4086001470535109,0.4704443226384109,0.4215281799320865,0.44478383466466775,0.3903109195887076,0.36491763106748776,0.5545248695091595,0.40658147927377436,0.5035246350818313,0.318583935432153
+0.7481532192887105,0.7643172961104141,0.6619078684076574,0.753356370055613,0.6097218187518236,0.7459306638445409,0.5571898331796022,0.7338125398827731,0.6875391120545947,0.7184638500210002,0.7677383401684401,0.7344991520716766,0.8644457478604777,0.7209534970654101,0.7308132904664383,0.9117768836870916,0.8135570461858612,0.7170141592528904,0.7434697133713503,0.7622876757342112,0.8062148431754923,0.8382139738209109,0.6092105318328546,0.726243202859118,0.6184617087543438,0.7861799821344667,0.7137273387256594,0.6433330090341862,0.8452531165990926,0.7462459892384584,0.7933819358212942,0.6135373189231468,0.7296101928854132,0.7062824996808539,0.7296278878815028,0.7242956736349364,0.6979262783136668,0.6576017104077628,0.811070733407268,0.7885797786315014,0.7430182314470943,0.7474037937704385,0.663552459061558,0.731576083117557,0.8403100615374334,0.8266807385153608,0.717457058830935,0.7440908531009702,0.6025756953951632,0.7360555778375112
+0.8635193914632151,0.9091319076871279,0.9243968305617025,0.8914732937266757,0.8281043086989903,0.8346645688298399,0.7614665779812887,0.9568276806914764,0.8817392770502542,0.9063185324516964,0.992154610993124,0.8116312995622235,0.907040852493246,0.8890755490751466,0.8623495319648673,0.8473295213443919,0.8121078764227172,0.9396349068618578,0.9010923266007754,0.9020936104516273,0.8813235286131179,0.8984631495052032,0.8399400884187131,0.9069082233762756,0.9565472433483219,0.9053113571938298,0.8625471166802192,0.8364961877468515,0.9026665916105314,0.9328240969063023,0.9515137282211861,0.9216572138213968,0.7834477299325858,0.870339873179775,0.9237822222522668,0.8252059200969444,0.8045264672308826,0.9613987113141786,0.8403889759722918,0.86780408000905,0.9522794532581033,0.9707809584583109,0.9129199000074962,0.9551458141438057,0.901337886528899,0.867394346413372,0.8153473756984703,0.7871757864686453,0.8995097655070522,0.9858479461277337
+0.43399232411556565,0.3880210026764744,0.41408983635653074,0.35562920216280014,0.4206666902959723,0.37678642881971564,0.39169381163398453,0.42262456595061193,0.43176830995340487,0.368812165558667,0.46367946949138356,0.42429894347815633,0.4850420096847177,0.302281762233925,0.4029910855621027,0.43597130763403974,0.47710038867070304,0.4782923601665337,0.43788194388956037,0.4536505682550652,0.39584681499391455,0.41032636521749816,0.4011342558618931,0.4371002264149695,0.40332505177775707,0.37233062040488646,0.3853880157912385,0.4505884348070552,0.35983276308578566,0.43448218440981295,0.37705181458871445,0.40699788679184074,0.3400722221293895,0.5249694701170622,0.43159850037896247,0.4038372187008506,0.3881571378777961,0.44804233027679957,0.38503390093268947,0.40111186422910045,0.4054585392744918,0.4048011831423874,0.4251472275511341,0.4228780687890388,0.3679849999042404,0.3852269236856018,0.40796335294067965,0.39357170532222535,0.5002473578428198,0.3529142107486882
+0.24723915575973968,0.25721973013052346,0.27969699869717457,0.22986030465069962,0.2583611150471782,0.2672748959417279,0.20510311032299733,0.23484417309388683,0.14180543964692255,0.24864622725927782,0.2519669215063591,0.2546106281198458,0.21636689869613213,0.2599389409895816,0.249040630045575,0.21614293182388394,0.22662178609636752,0.2508372165535308,0.21667869911226284,0.2425545380382366,0.2643026775271605,0.1995774095727171,0.2142864867006806,0.23800201265838397,0.26541879764899723,0.27559989118574063,0.2561073852428814,0.2861932986990557,0.2506382190455332,0.331709129325725,0.22555389449133087,0.3380549035377692,0.21265683329034452,0.26887740162682777,0.3151158255483423,0.2086416183816486,0.22348685552931652,0.2289225380532431,0.20546508650226594,0.22974214638963372,0.1913913912771469,0.25336217351695917,0.22429288042241527,0.25069339882804675,0.31368756723052793,0.23912586209385875,0.211992605369791,0.35586906653932543,0.18850056658458963,0.23680963786497156
+0.20374058123555583,0.029587222631228153,0.12602999489667116,0.10873115228766124,0.1300745625271193,0.15650697777169223,0.11437925606142076,0.12346893319322466,0.10608511534662632,0.1618208298456562,0.21674510189252444,0.09422372544139866,0.17708440344595885,0.14163109370621707,0.08725262968926174,0.027316693457186618,0.2466794081645358,0.05975099140294061,0.27148930763578333,0.07278849765498564,0.05307052534884308,0.12059048860132282,0.138267616001047,0.1201944430970612,0.3070981448236854,0.1625651382217578,0.19288839823608203,0.08473442646813938,0.1499296906910793,0.21522167995079816,0.11863831653335638,0.13676301958161047,0.16750711470181406,0.08796182649892695,0.18452726558927787,0.019473098389429094,0.07760407281207321,0.0513446973495266,0.15114788836458365,0.0971113845311446,0.07608661082443123,0.08413906429081902,0.10382603448681905,0.20891847435236388,0.15339254887991946,0.16875879049442039,0.04914372307580019,0.10549394783363572,0.0688955868471455,0.1388275240193728
+0.46324331743547015,0.32180129831613885,0.3962350996440436,0.20748303322531758,0.1922336716497276,0.5052812509862136,0.47919816866714593,0.6455956173126856,0.2654255208476342,0.6061489704936924,0.04734868895412781,0.1573553408454311,0.5289460375480409,0.522233287404887,0.23654228618488232,0.5807710886338427,0.48234774496654026,0.34679621019089857,0.6977532020818771,0.22036724305817393,0.14498357580932802,0.5627996797503642,0.5211837100255087,0.21463550855914107,0.2359378551194328,0.41010269361168034,0.47371348582311357,0.43213649029189855,0.4650868737458394,0.2676673911628118,0.2661169630647418,0.39779094535757664,0.22476895481063394,0.41195914040886217,0.33989777556888984,0.4058400759911804,0.3816286903048078,0.20205177924541812,0.515223451447111,0.5958301547458222,0.47299643093878324,0.5316498369354862,0.44669853102729834,0.5085025149337323,0.3120998020015089,0.5466905154056786,0.12512699710885128,0.6064890583722135,0.4349773990448585,0.5669488112655472
+0.38476744781252475,0.3743989044200614,0.3924715973861388,0.38366875197374917,0.42162849316724377,0.3266066489585896,0.39820503891639975,0.4412377334299109,0.4247068353772117,0.31061327364925195,0.4827328015639995,0.48720957385236924,0.46852030483913837,0.3187299758917716,0.34282682069152753,0.3760002779701263,0.48858595668024984,0.47305812858771384,0.42789944847020267,0.37705109330894987,0.4073499291602718,0.3845609227916242,0.4235328250576197,0.4223398360369351,0.40514964137653936,0.3629035989879344,0.40527154887892036,0.42317244417893035,0.3771450329711037,0.40540988181938714,0.3944731657817856,0.43443298495326976,0.46995899023583865,0.4356246271925716,0.43938042191330184,0.41793354560191703,0.3622060645712461,0.45153076048025326,0.39222118317850957,0.4100955846601331,0.4161546372418238,0.4052294661567805,0.39528155434759493,0.4704369430043123,0.38164904231196745,0.2951318365722232,0.3765617410812942,0.42166463615466493,0.4644181252060538,0.3525449373231544
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.5446245940426713,0.5494926770405604,0.5746499121239179,0.6218406649829236,0.5114775443628693,0.6366129839131545,0.5165423024293757,0.6370925169428692,0.542762995507313,0.6224536133465991,0.6195887861627687,0.6201674372045437,0.5833410289212363,0.5737714291757635,0.5614949019230016,0.5919750750710743,0.6646789349958279,0.537933061240833,0.6078420386828899,0.62000043075478,0.5935821456662708,0.48387453640644323,0.6614913982224161,0.5906930411673309,0.6435112262060124,0.5472840965847809,0.5410355385864576,0.6163531582848534,0.5662630656101545,0.5127930515232252,0.5694412980213047,0.6006435517576451,0.5549067943647045,0.5709044806156345,0.6087876033966626,0.5875175561590011,0.6262948708083219,0.5694286554113226,0.5513503034907371,0.6881534223900474,0.6292988137160652,0.5658270041014457,0.6296448327653298,0.5804412641529479,0.5549867683110549,0.6376343018830283,0.6548520152987767,0.5776049635056665,0.6088880679489195,0.5441456733365482
+0.34065115106062777,0.20028710614963025,0.5319139661641378,0.23249750823579643,0.6783593338540018,0.32552816180518074,0.5898500056603052,0.18836465006679887,0.2479286563014633,0.1173350815850816,0.4295463381662889,0.3097867078045661,0.44742509824552534,0.2932250838563575,0.18984453624621472,0.2648902408944766,0.134655017684269,0.5155747258791598,0.3983031674208145,0.2054222825797316,0.14,0.13552094711486812,0.27796162629578924,0.2859366414514763,0.15448578611373448,0.6714945584235269,0.22258676344824782,0.6135820940958715,0.6546801111789289,0.23748771116514106,0.19527494509055693,0.31168018733977126,0.41399042917040324,0.26341858003974744,0.2101441488618908,0.5173234994289883,0.442652983792323,0.16990640058107892,0.30169713712324575,0.12514101271494987,0.2602873015553261,0.2391039094410479,0.27510476306496523,0.42315876006341957,0.12969714857018194,0.32774098674409247,0.23715174129353234,0.21862630585572304,0.10403788081836864,0.21141238623031053
+0.21592669917424812,0.09652018684428373,0.3013149738126602,0.07786140792545662,0.1308532581902639,0.2705859907850379,0.3465932342792694,0.18513520405137665,0.20012968050969865,0.27803582479689515,0.18491898563065842,0.11905522529854651,0.22599034706714796,0.09090491138641356,0.24681178482087407,0.19072282959320838,0.2659766076395794,0.200535491529624,0.10391958652478744,0.13083819248790352,0.13984640807778614,0.11661724179528189,0.07323899762488727,0.26702406328391093,0.2593445774999818,0.20381668292036423,0.20804311237095138,0.20961730703265158,0.20179023709653593,0.14234056541476683,0.19363634420344283,0.10021731435547242,0.26983088218263324,0.1377003012721617,0.23462650919757272,0.21008597577906218,0.1817489826717934,0.16103971216553137,0.16850356149316997,0.1515867699793073,0.18887151680628322,0.2747262539009066,0.21380243112537337,0.17181045367881143,0.20736625158705618,0.22640730739777123,0.07334268930871093,0.1534841118144711,0.27426702951824117,0.11059836386550112
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.7481532192887105,0.7643172961104141,0.6619078684076574,0.753356370055613,0.6097218187518236,0.7459306638445409,0.5571898331796022,0.7338125398827731,0.6875391120545947,0.7184638500210002,0.7677383401684401,0.7344991520716766,0.8644457478604777,0.7209534970654101,0.7308132904664383,0.9117768836870916,0.8135570461858612,0.7170141592528904,0.7434697133713503,0.7622876757342112,0.8062148431754923,0.8382139738209109,0.6092105318328546,0.726243202859118,0.6184617087543438,0.7861799821344667,0.7137273387256594,0.6433330090341862,0.8452531165990926,0.7462459892384584,0.7933819358212942,0.6135373189231468,0.7296101928854132,0.7062824996808539,0.7296278878815028,0.7242956736349364,0.6979262783136668,0.6576017104077628,0.811070733407268,0.7885797786315014,0.7430182314470943,0.7474037937704385,0.663552459061558,0.731576083117557,0.8403100615374334,0.8266807385153608,0.717457058830935,0.7440908531009702,0.6025756953951632,0.7360555778375112
+0.05112494135923111,0.042487336748605935,0.14127190900920625,0.07463483369183815,0.022702590045113415,0.10451784536055936,0.047869329471776245,0.10861568297644447,0.09327615266292241,0.028837454075203644,0.2600194842717999,0.023033311437727813,0.10567006129106239,0.05701150674069991,0.1288915266570881,0.020207357581734742,0.08130808478463161,0.075328081232493,0.03666122924570984,0.03413397193125108,0.011136363636363637,0.050624279131117216,0.008432683090592924,0.11396395390772937,0.019550629290617846,0.1666591225173023,0.017169363122752954,0.32849536628674336,0.08309296791117271,0.14261330215548787,0.054421284601678034,0.040959872012806785,0.04985277643702668,0.05109982793405678,0.10469987795693562,0.1701818582944696,0.10664013799933915,0.03405594154626663,0.03175528129815921,0.03979173578462798,0.15727685364961247,0.04955801887063652,0.04334080473868643,0.06516534637602076,0.2823267230958606,0.02140065703733638,0.03843877705781399,0.06897394307057242,0.030727037970249237,0.19322636491437745
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.5446245940426713,0.5494926770405604,0.5746499121239179,0.6218406649829236,0.5114775443628693,0.6366129839131545,0.5165423024293757,0.6370925169428692,0.542762995507313,0.6224536133465991,0.6195887861627687,0.6201674372045437,0.5833410289212363,0.5737714291757635,0.5614949019230016,0.5919750750710743,0.6646789349958279,0.537933061240833,0.6078420386828899,0.62000043075478,0.5935821456662708,0.48387453640644323,0.6614913982224161,0.5906930411673309,0.6435112262060124,0.5472840965847809,0.5410355385864576,0.6163531582848534,0.5662630656101545,0.5127930515232252,0.5694412980213047,0.6006435517576451,0.5549067943647045,0.5709044806156345,0.6087876033966626,0.5875175561590011,0.6262948708083219,0.5694286554113226,0.5513503034907371,0.6881534223900474,0.6292988137160652,0.5658270041014457,0.6296448327653298,0.5804412641529479,0.5549867683110549,0.6376343018830283,0.6548520152987767,0.5776049635056665,0.6088880679489195,0.5441456733365482
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.26281444583247315,0.23467861236851167,0.22988082426031106,0.22562789032270125,0.2409716562692447,0.30832223839468176,0.1904471506796281,0.19262896987505285,0.1775758950801153,0.2597532414918941,0.2556338161313007,0.26737623915960673,0.2269540059150619,0.24638236897616267,0.2407174209563831,0.28795020929117265,0.2366817345739811,0.23019782590698412,0.1761499496772323,0.23627352208967722,0.24877758752122706,0.18695563379826688,0.14574438948943796,0.27338590413646147,0.306734758835788,0.26837420532768713,0.2897905489741235,0.2598848046457668,0.2619770544911515,0.33974475176589686,0.20853180077647904,0.2148352573327471,0.22108184147719115,0.30717668662216707,0.30562951683213274,0.19859529257104164,0.19057130309418255,0.23122597386240368,0.24446619991642884,0.18634936890161571,0.2242157157731179,0.25708540409849545,0.2367615641769424,0.30031375073302535,0.2952012815929509,0.2171664315476482,0.22929923611853034,0.31054414422554744,0.20717505035054745,0.22544035324558093
+0.07228294573643411,0.053110859728506786,0.13066666666666665,0.08271253071253071,0.05,0.08515621664297984,0.05829700854700855,0.04912485121336822,0.025,0.11607252773618074,0.015930232558139534,0.011764705882352941,0.043546279451913,0.07048467467845974,0.07929369511163804,0.03240131578947368,0.10712499999999998,0.15449886096578178,0.14182763878469618,0.12796518607442978,0.10031746031746032,0.14486999421782026,0.012,0.08839008527567849,0.10396464646464647,0.04684096244131455,0.023934134401424122,0.09489893549522224,0.02070307685509433,0.13289044289044288,0.014451659451659452,0.03641422485001304,0.17004936597071116,0.027069004524886878,0.1116882290562036,0.0897186566320692,0.1529560774751564,0.18626484024039527,0.0261433519850786,0.1784332535743826,0.13121649902482851,0.03255908875177978,0.1330801000241994,0.04476052210223387,0.062264705882352944,0.22109608983128137,0.06603698560969452,0.06115573770491803,0.05658441558441558,0.27115913548949705
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.7736059646112404,0.534455065903884,0.6058380629664726,0.6888596766042461,0.6998987945474608,0.7774968542736707,0.6601218876723263,0.6840990352029358,0.7534939543179965,0.6559033341609003,0.6834610230569909,0.6519901920433887,0.7216428344295018,0.7217363990756915,0.6442249366233018,0.6271956230086377,0.7262229925003472,0.669255606247474,0.6662480756641219,0.6487052937064556,0.728747328929106,0.7013606155609428,0.6163904348299699,0.7444442126770285,0.7548234264337748,0.7700270755644322,0.6199834558902689,0.5736584117076509,0.6059777683813649,0.6324692371481963,0.7018368679507807,0.6329322628762354,0.6650449103571927,0.7159179135815283,0.5905617281055707,0.695052599952688,0.6303598120414654,0.7062168685401065,0.5759201557407554,0.7170221248827282,0.7557455907955435,0.6204963092474782,0.6501782514176433,0.6351052633206451,0.7646889700646277,0.6963011532361602,0.7348253663050381,0.7171784741790542,0.7538133801225974,0.7303445488491929
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.27880613699939066,0.4674691264390896,0.6130453972348047,0.4918295868765419,0.5675098554767684,0.47132177101140127,0.7696159207448886,0.2936189806245977,0.3967236692853861,0.6364375411399376,0.5813167165670542,0.4864896381989252,0.24820071004945915,0.6823228469050052,0.6274256133988565,0.3956578722655063,0.3321080498286145,0.5413658206914791,0.505864414067904,0.5517414866327914,0.37651096401440376,0.5141440641752957,0.6394909536988017,0.5545505694011058,0.5952433130764182,0.4739788661713945,0.4413814441522709,0.5960236675558963,0.49171106174102425,0.6113500908288815,0.6007729455721252,0.34829951877687976,0.6373606769413529,0.4657180621023596,0.20175208557723742,0.269877726603473,0.5464401920929187,0.5841533714585969,0.5777992480298937,0.4556407216626159,0.2803582650696764,0.612736671674992,0.5453243569921239,0.3320698604485522,0.5601238384355042,0.24751109227858692,0.4663314631651994,0.3244526161675461,0.40559284731494727,0.4735525702415979
+0.43399232411556565,0.3880210026764744,0.41408983635653074,0.35562920216280014,0.4206666902959723,0.37678642881971564,0.39169381163398453,0.42262456595061193,0.43176830995340487,0.368812165558667,0.46367946949138356,0.42429894347815633,0.4850420096847177,0.302281762233925,0.4029910855621027,0.43597130763403974,0.47710038867070304,0.4782923601665337,0.43788194388956037,0.4536505682550652,0.39584681499391455,0.41032636521749816,0.4011342558618931,0.4371002264149695,0.40332505177775707,0.37233062040488646,0.3853880157912385,0.4505884348070552,0.35983276308578566,0.43448218440981295,0.37705181458871445,0.40699788679184074,0.3400722221293895,0.5249694701170622,0.43159850037896247,0.4038372187008506,0.3881571378777961,0.44804233027679957,0.38503390093268947,0.40111186422910045,0.4054585392744918,0.4048011831423874,0.4251472275511341,0.4228780687890388,0.3679849999042404,0.3852269236856018,0.40796335294067965,0.39357170532222535,0.5002473578428198,0.3529142107486882
+0.7304687712395993,0.6173524522202548,0.6124735241255899,0.8517981107961977,0.4338940336947465,0.7158846886487457,0.797069759366828,0.6529515495055337,0.553436168154799,0.8220818815252412,0.6348251914040453,0.6451715850258973,0.58585607777556,0.5976989554782923,0.34341199261270494,0.6481387359630856,0.6282605195173756,0.6419742521247771,0.7266233168565904,0.17890296566913746,0.7899851423339003,0.617180334851301,0.3884567589254265,0.3241553801622198,0.7229673475838919,0.4382358382510922,0.6292013110408187,0.7604385926577371,0.2830505586046341,0.7344001399413815,0.3472408180694243,0.5957749088094915,0.36140492221020104,0.33866808341081395,0.760729464382395,0.5588742192161581,0.5996359316809666,0.42199896372175666,0.5934538866701401,0.43750735428832077,0.7828827495142382,0.12175608330017625,0.30671893301119524,0.7063156203504698,0.6928969326253849,0.12295075949805867,0.9212922072734429,0.24429147220722633,0.799874821865326,0.9077692624588372
+0.7481532192887105,0.7643172961104141,0.6619078684076574,0.753356370055613,0.6097218187518236,0.7459306638445409,0.5571898331796022,0.7338125398827731,0.6875391120545947,0.7184638500210002,0.7677383401684401,0.7344991520716766,0.8644457478604777,0.7209534970654101,0.7308132904664383,0.9117768836870916,0.8135570461858612,0.7170141592528904,0.7434697133713503,0.7622876757342112,0.8062148431754923,0.8382139738209109,0.6092105318328546,0.726243202859118,0.6184617087543438,0.7861799821344667,0.7137273387256594,0.6433330090341862,0.8452531165990926,0.7462459892384584,0.7933819358212942,0.6135373189231468,0.7296101928854132,0.7062824996808539,0.7296278878815028,0.7242956736349364,0.6979262783136668,0.6576017104077628,0.811070733407268,0.7885797786315014,0.7430182314470943,0.7474037937704385,0.663552459061558,0.731576083117557,0.8403100615374334,0.8266807385153608,0.717457058830935,0.7440908531009702,0.6025756953951632,0.7360555778375112
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.515253569512391,0.4004773285816537,0.38033122094397287,0.3497097650054083,0.4258139784451979,0.3504447391691775,0.46560130381209264,0.43642408095469937,0.4534631025254899,0.45270270075313646,0.424712096012634,0.4778379865988392,0.5218561706145542,0.3148017294429104,0.3720103704302071,0.4847803505227194,0.48126501686694334,0.515873836110504,0.46017429200251664,0.3985699926728489,0.4410406155085962,0.428685795527253,0.3792198389156176,0.4384042381288788,0.39541203496808414,0.39162798775701974,0.3905791194038026,0.46425307060640103,0.3961969207483977,0.43005308430671113,0.39320178398730277,0.43140151026127604,0.29575364228907447,0.5419422660019263,0.42768836190663706,0.4052074097160513,0.3577391995514929,0.4796332276519216,0.39085247125216527,0.38721738433547037,0.42571431047605,0.39146717275806664,0.42047560718883886,0.3706289058622982,0.36096970254048727,0.33490687600407637,0.3376115739583183,0.4085042169274405,0.5714159154143953,0.36990766493001076
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.3162745544395524,0.2489124123565624,0.14562144138654337,0.2782636284320958,0.300153846681398,0.21371042576308416,0.16694961488692242,0.4702929809651847,0.3281175477084149,0.23383371142914997,0.3230486101861614,0.4632720389516088,0.2603389103392397,0.2630669998886206,0.2710214908808341,0.31891350990117434,0.26056776010921634,0.2658893934411875,0.2994527686472655,0.2542183839564641,0.586713404948477,0.26873666225737336,0.45448811575906845,0.16322331192800868,0.10966135851984891,0.2643185520126019,0.26425437121696216,0.379723047255529,0.23503745246587954,0.3219203224115779,0.33973817141858076,0.30579941479049866,0.16372373147959615,0.41985729725621496,0.5940289330464708,0.33611539870629825,0.36339955590994405,0.3636439406528767,0.1514294380970055,0.08007760209419967,0.2659730416363039,0.3999812946756524,0.17975087717149507,0.381597544372417,0.4424387589761558,0.18375527633665276,0.24916725351596283,0.24886793064813342,0.29314288085196777,0.1546320016841456
+0.8635193914632151,0.9091319076871279,0.9243968305617025,0.8914732937266757,0.8281043086989903,0.8346645688298399,0.7614665779812887,0.9568276806914764,0.8817392770502542,0.9063185324516964,0.992154610993124,0.8116312995622235,0.907040852493246,0.8890755490751466,0.8623495319648673,0.8473295213443919,0.8121078764227172,0.9396349068618578,0.9010923266007754,0.9020936104516273,0.8813235286131179,0.8984631495052032,0.8399400884187131,0.9069082233762756,0.9565472433483219,0.9053113571938298,0.8625471166802192,0.8364961877468515,0.9026665916105314,0.9328240969063023,0.9515137282211861,0.9216572138213968,0.7834477299325858,0.870339873179775,0.9237822222522668,0.8252059200969444,0.8045264672308826,0.9613987113141786,0.8403889759722918,0.86780408000905,0.9522794532581033,0.9707809584583109,0.9129199000074962,0.9551458141438057,0.901337886528899,0.867394346413372,0.8153473756984703,0.7871757864686453,0.8995097655070522,0.9858479461277337
+0.8395535918839873,0.7695017523261071,0.7766929205645492,0.7731452771256521,0.733880185271111,0.8296099790439847,0.7685998568206784,0.7856936729135008,0.7116749284572401,0.8787418011626165,0.842331753924945,0.8324921433451119,0.8651695952309243,0.9033566437325655,0.8258053393825684,0.7692083510763108,0.8619282621802803,0.8670853641048585,0.7987187462664074,0.82264481752421,0.861024623204151,0.8351088745000945,0.8524924495039017,0.7189014264653021,0.7484150978128816,0.6777662058071584,0.7654552982743956,0.7452901239877795,0.7769826760786482,0.8434541096248432,0.8862615942724201,0.7472816521891886,0.7126825162087799,0.8111054205790269,0.8495545164139218,0.8020916395561238,0.7109766695256983,0.8201353536766759,0.7007006002017259,0.7247212529011887,0.8174542493478789,0.7996501093988936,0.8158204070124968,0.8841059587691683,0.8347919074988355,0.7469878045281061,0.7976980153091773,0.7861087663723778,0.6371627380565495,0.7649585940443687
+0.7505333519639384,0.37100604666879233,0.4883234863568532,0.4874348785311565,0.15637219251336898,0.6861050792283018,0.682574488888532,0.5180418348388751,0.2710028495225483,0.1276782826311193,0.45090179381872647,0.446626129718235,0.3678875906897949,0.3173757457923508,0.16124902216427642,0.444998968424591,0.45316389490610376,0.3965546259296259,0.5263641290430489,0.37676210949865047,0.2597111111111111,0.18437654394103903,0.2402427846039679,0.577056361334668,0.3424893162393163,0.7367759415415402,0.5940292751260587,0.4021939623675557,0.40550529655438383,0.5936732581782092,0.48146555154872384,0.3716143755275904,0.17634681981960335,0.09545945102932002,0.4860285501562956,0.5315773241070214,0.4827891697182741,0.6185158173158323,0.5877337649828611,0.4639285714285714,0.6977654376513297,0.6785529602517423,0.446465637065637,0.4936518232418758,0.4452288557213931,0.3900193413448318,0.3390534760322235,0.5697421798631476,0.3720767372723895,0.6404694835680752
+0.7025877679237544,0.7415318781846472,0.3836377399546009,0.6592656977039475,0.7235946107470751,0.7275215234149741,0.7942950996962475,0.6334705531977117,0.47715676942649976,0.45557844543119974,0.7228599539796781,0.7517562401008188,0.7207600976735051,0.8253955978861007,0.7901755308064761,0.724271631838537,0.6540700491453864,0.7459894488687451,0.5839821452686574,0.6132502908289531,0.5950156236050171,0.6956768484872433,0.6086011615808805,0.7135525003045611,0.6304038882935872,0.7777432068861924,0.7194501360754845,0.6058137267827771,0.7461707118469417,0.6323904777275042,0.7428099519720662,0.6263124316467181,0.7313224217900703,0.45807741974490684,0.5873260471493386,0.6388337536671845,0.6211656010893359,0.7270623716506147,0.7475939878847015,0.6935476907109307,0.6206155470794797,0.69112955037032,0.745382642251186,0.7222693729184653,0.785224275736177,0.7401851137916566,0.6103625799722717,0.7064221177450806,0.5794955937475182,0.7799185728918373
+0.23994459721859512,0.0930265712419703,0.4285354212860311,0.12760208741030657,0.3029787708651809,0.25175895843394164,0.24323211516136334,0.21610221587597234,0.32985183126494105,0.2626212580189766,0.14121392577542824,0.17357989982624583,0.35096906174750603,0.15239760283492948,0.19014040804068444,0.07917399471050324,0.3113570914538219,0.27667044853985007,0.296444258107457,0.2766999411774557,0.4024166666666666,0.38187973070245207,0.33204093945270413,0.1588624517666512,0.24551680361240658,0.40619710462086117,0.2858288805894602,0.30049905439504043,0.3456585909252168,0.3588267971753639,0.32525204150051723,0.2527991414818285,0.25806258419199785,0.19478380609885876,0.27811337278815573,0.17810193576070787,0.361726911604052,0.1787329401850349,0.21538827281363093,0.28951300431525867,0.26533804662695526,0.18373837439631394,0.3304268398268399,0.32052884868605824,0.21243336676873262,0.2740748078005664,0.2985564347796906,0.23321698612729008,0.2963131313131313,0.19361524283818146
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.46324331743547015,0.32180129831613885,0.3962350996440436,0.20748303322531758,0.1922336716497276,0.5052812509862136,0.47919816866714593,0.6455956173126856,0.2654255208476342,0.6061489704936924,0.04734868895412781,0.1573553408454311,0.5289460375480409,0.522233287404887,0.23654228618488232,0.5807710886338427,0.48234774496654026,0.34679621019089857,0.6977532020818771,0.22036724305817393,0.14498357580932802,0.5627996797503642,0.5211837100255087,0.21463550855914107,0.2359378551194328,0.41010269361168034,0.47371348582311357,0.43213649029189855,0.4650868737458394,0.2676673911628118,0.2661169630647418,0.39779094535757664,0.22476895481063394,0.41195914040886217,0.33989777556888984,0.4058400759911804,0.3816286903048078,0.20205177924541812,0.515223451447111,0.5958301547458222,0.47299643093878324,0.5316498369354862,0.44669853102729834,0.5085025149337323,0.3120998020015089,0.5466905154056786,0.12512699710885128,0.6064890583722135,0.4349773990448585,0.5669488112655472
+0.37832574237836725,0.350465078353563,0.45104905084504165,0.44426282879348894,0.4424086457912616,0.32069208947537825,0.3837363686906548,0.29435705407955903,0.405596471257522,0.3021609476474122,0.4972933909655513,0.43587376395523597,0.5353368467410052,0.309544608543308,0.4360387450973428,0.4146189840128413,0.6369651940675705,0.5224777633195408,0.429265973303087,0.4761549914745368,0.419945935304665,0.279413720295444,0.3738857148227687,0.5104071643806928,0.5368096683280096,0.31743191148550143,0.42678057322506924,0.5391289657589761,0.4133960539457398,0.4392451526573771,0.41431893487950106,0.30981708948614345,0.45913236877909375,0.4137544757908418,0.4176559183199313,0.41073407038449405,0.37576776766574704,0.5158312700216079,0.38661328067039763,0.3912564097826248,0.42432239899854207,0.4286597230953452,0.3517958855934147,0.5558936733794403,0.40951917422367584,0.3116919528019744,0.3926863368680516,0.4564483032483416,0.2735033949050919,0.29940098824011385
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.8395535918839873,0.7695017523261071,0.7766929205645492,0.7731452771256521,0.733880185271111,0.8296099790439847,0.7685998568206784,0.7856936729135008,0.7116749284572401,0.8787418011626165,0.842331753924945,0.8324921433451119,0.8651695952309243,0.9033566437325655,0.8258053393825684,0.7692083510763108,0.8619282621802803,0.8670853641048585,0.7987187462664074,0.82264481752421,0.861024623204151,0.8351088745000945,0.8524924495039017,0.7189014264653021,0.7484150978128816,0.6777662058071584,0.7654552982743956,0.7452901239877795,0.7769826760786482,0.8434541096248432,0.8862615942724201,0.7472816521891886,0.7126825162087799,0.8111054205790269,0.8495545164139218,0.8020916395561238,0.7109766695256983,0.8201353536766759,0.7007006002017259,0.7247212529011887,0.8174542493478789,0.7996501093988936,0.8158204070124968,0.8841059587691683,0.8347919074988355,0.7469878045281061,0.7976980153091773,0.7861087663723778,0.6371627380565495,0.7649585940443687
+0.5446245940426713,0.5494926770405604,0.5746499121239179,0.6218406649829236,0.5114775443628693,0.6366129839131545,0.5165423024293757,0.6370925169428692,0.542762995507313,0.6224536133465991,0.6195887861627687,0.6201674372045437,0.5833410289212363,0.5737714291757635,0.5614949019230016,0.5919750750710743,0.6646789349958279,0.537933061240833,0.6078420386828899,0.62000043075478,0.5935821456662708,0.48387453640644323,0.6614913982224161,0.5906930411673309,0.6435112262060124,0.5472840965847809,0.5410355385864576,0.6163531582848534,0.5662630656101545,0.5127930515232252,0.5694412980213047,0.6006435517576451,0.5549067943647045,0.5709044806156345,0.6087876033966626,0.5875175561590011,0.6262948708083219,0.5694286554113226,0.5513503034907371,0.6881534223900474,0.6292988137160652,0.5658270041014457,0.6296448327653298,0.5804412641529479,0.5549867683110549,0.6376343018830283,0.6548520152987767,0.5776049635056665,0.6088880679489195,0.5441456733365482
+0.4225266201395305,0.23862444215569079,0.24961621916267418,0.36594486508902113,0.3756537164544271,0.44173457548077777,0.1838526900736587,0.43056569258050714,0.38618313796149734,0.14764567234965859,0.6861670689232982,0.16600389919039135,0.27028967061769704,0.34454715070472347,0.20320717669625632,0.4575611518274001,0.39540873768915746,0.05131964815098348,0.03816184639363446,0.1864999348117583,0.32016236993452746,0.24915310094781468,0.07300865811283416,0.08802409108335224,0.4015249552819281,0.38866540335351,0.15801070132005648,0.4831642229381894,0.42276888119688777,0.33841887282556826,0.44885373090910924,0.26664410607479677,0.44535113057282394,0.11241190739410839,0.1924183106949797,0.09840669746414928,0.5373548648696486,0.155201994308408,0.15373318471021946,0.4646390550827092,0.3364090313260022,0.10718128629114243,0.5967124554345377,0.3896446452339044,0.16063137079376724,0.249513144217703,0.4684134721947615,0.522114587118945,0.15425140356434947,0.5354800873575822
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.8334184253030094,0.8576141619236942,0.8243588245265443,0.8804644279020049,0.8025540910522031,0.8347102206743517,0.812811091580054,0.8155295359196895,0.8427912840124486,0.8834114529801927,0.816595166011179,0.8887262607510571,0.8289262559831818,0.8682377697822017,0.8425429049670992,0.8748471695840653,0.8610106825206663,0.8036559519162669,0.8502294893626179,0.8560039035255894,0.852326337652949,0.8910998873417862,0.8771483314450506,0.8222389076772303,0.8551288595084107,0.8032659833366634,0.7897127187628976,0.8079341195297846,0.8037366866403934,0.8330469540106575,0.8389123738487692,0.8416192634440851,0.8544615512223401,0.8975187135846504,0.8476033854347524,0.8391143841607949,0.838094447145523,0.7926832649165485,0.8547590683387566,0.8797772225892578,0.8786848845425206,0.8384317199633586,0.8379384969500131,0.8986381758977164,0.7807453593188757,0.7889167266696956,0.8351719755447569,0.8257819514276921,0.8899353872794549,0.8705998214946934
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.03705583183919612,0.09671169152746581,0.047999389310596836,0.2813859828027161,0.05393577335435104,0.08039891604878394,0.1402808443629307,0.09226211846680372,0.02854919419555212,0.12516276554641576,0.09980024556527614,0.04710880101471575,0.0430265126894606,0.17699354089913974,0.06338480569917394,0.10147407826746102,0.044900767624368544,0.040743323257443995,0.10650859090632395,0.13393139248639205,0.09812103290420669,0.05824851459448244,0.023493799189817265,0.06268302858952217,0.08648432702602517,0.15737154392788405,0.0851863261285732,0.13834772325402295,0.00819758464666691,0.09853443229728487,0.034959875807858996,0.09196139979426288,0.0948925534247888,0.20515937413458832,0.16313900630996378,0.05728214129183681,0.01057793452426066,0.1662790912169547,0.23975453504867558,0.08821982383298291,0.028199622223198564,0.04655048124291042,0.029069690567044226,0.056316280865177634,0.10214084476151664,0.10519261056967823,0.13622955005464252,0.06327376636144426,0.18291979101551867,0.08422223973722981
+0.38476744781252475,0.3743989044200614,0.3924715973861388,0.38366875197374917,0.42162849316724377,0.3266066489585896,0.39820503891639975,0.4412377334299109,0.4247068353772117,0.31061327364925195,0.4827328015639995,0.48720957385236924,0.46852030483913837,0.3187299758917716,0.34282682069152753,0.3760002779701263,0.48858595668024984,0.47305812858771384,0.42789944847020267,0.37705109330894987,0.4073499291602718,0.3845609227916242,0.4235328250576197,0.4223398360369351,0.40514964137653936,0.3629035989879344,0.40527154887892036,0.42317244417893035,0.3771450329711037,0.40540988181938714,0.3944731657817856,0.43443298495326976,0.46995899023583865,0.4356246271925716,0.43938042191330184,0.41793354560191703,0.3622060645712461,0.45153076048025326,0.39222118317850957,0.4100955846601331,0.4161546372418238,0.4052294661567805,0.39528155434759493,0.4704369430043123,0.38164904231196745,0.2951318365722232,0.3765617410812942,0.42166463615466493,0.4644181252060538,0.3525449373231544
+0.3952678926227704,0.33746171893202725,0.30799625379193,0.29623327354342516,0.28534665799638703,0.3237045034817153,0.2366778566124768,0.3227257288192091,0.4058467574318256,0.3053363637805748,0.2835646474737934,0.4011775274416627,0.29210217197385474,0.31639073785420607,0.25503165005153217,0.35530873908016036,0.30412321297368544,0.3662039216400616,0.42579613542149836,0.28621619213016225,0.39885655202669457,0.29744512077506924,0.3855207632834414,0.3578611498852791,0.3085525576229269,0.2893464333313425,0.3624295322436504,0.40058763051193397,0.3278005305209667,0.3882468085788674,0.35138998609474753,0.21082376724549967,0.43318968322771895,0.3342865052209678,0.4436127940163979,0.3403266402236663,0.383162588518861,0.29960628703748227,0.3782668901315428,0.38127639759585175,0.3665163286285869,0.4222494596695708,0.2407185077383415,0.40647161472298093,0.2963944637998162,0.2821215967076167,0.32070842128942245,0.3762459717985488,0.2978331269727629,0.324338912114257
+0.12159194710817928,0.22608436906863483,0.035933240674088845,0.1414093688399209,0.024137324742578535,0.3255780890975277,0.08043356111416369,0.17971652541406222,0.1971088805434727,0.16522557320850717,0.04575023460820662,0.11186477071294001,0.21239738086167104,0.20930101633376072,0.1504088107041912,0.0745259435310209,0.17609355260660361,0.15926174579399924,0.1044354406192896,0.35918826716599256,0.18439004019915053,0.12926108078871906,0.019958780052238022,0.1538287459582735,0.05587467973163835,0.14681385095750135,0.10221427449067295,0.15384813864342228,0.10089871083621978,0.1476500520955878,0.038120949037977525,0.03296015945725259,0.07927716519519502,0.12847832789606695,0.13270884206100217,0.14803752235376483,0.07465151735263185,0.10216000998124425,0.12579281106134257,0.20613659143220503,0.14217148616374717,0.035063246577770976,0.03253895130632423,0.13841742041574256,0.10662360017094245,0.07353970058526253,0.09512597111264064,0.08500103241981265,0.17208629040067897,0.1425675359944421
+0.19561239395074828,0.15775066722281544,0.09518183297928927,0.11761950541142013,0.16800467486518916,0.13177833157807162,0.21996325103544398,0.2410228025013066,0.2412711587661703,0.19748633102696686,0.28773332324915385,0.047644943499896335,0.23405314067585853,0.04599611291278027,0.23368323380082998,0.2184856541501631,0.221705491920688,0.11684750792196841,0.13426340098288841,0.2060608999027151,0.19944373515355934,0.23521014044385752,0.06751550795330799,0.06087583555750977,0.1464611716203042,0.2111672425273378,0.27784597594934435,0.1752230133743531,0.1728347733954927,0.1848533169993799,0.09250220304623598,0.14175691147699565,0.10563714827900633,0.05646712622423624,0.11789335208133084,0.13120197593965502,0.29957968906536675,0.08808900061136826,0.22903227266533802,0.0882836820340862,0.1104741758663139,0.04022300090690184,0.1258536003247705,0.1705066252886474,0.1033840656536174,0.32545052664763796,0.2061538906980674,0.19951829631059717,0.19058526306418425,0.10111377847524244
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.24804513506918444,0.2798329074418028,0.22400764726829042,0.21912767562313185,0.23783803999369396,0.249402555513171,0.19167918600622225,0.18307630803610736,0.18833987840196745,0.2476613604518798,0.16193433015005648,0.2586576064736581,0.2917324653801799,0.25059221788405883,0.24905912305327343,0.25304027041726446,0.19959737418999887,0.21036093198442274,0.20789994419415186,0.25312093162121824,0.15598657943628674,0.1836847204195828,0.1937851752134744,0.2927584700895637,0.23841054697697767,0.2767235431015095,0.28085247746581826,0.23904092990640266,0.25339291677105646,0.19298665343064925,0.20863524521896462,0.21396932699043014,0.22834328601665269,0.30337088680264523,0.26761795225693613,0.2096037879162279,0.15290627605370097,0.2198851912933937,0.2558343918847775,0.17186623988887678,0.24331342214725118,0.2154179887533757,0.28164649355847776,0.21803432967930328,0.28414464575148973,0.22140847455580961,0.25135898454094613,0.31866049335970975,0.22265718654523084,0.17473934055022222
+0.38476744781252475,0.3743989044200614,0.3924715973861388,0.38366875197374917,0.42162849316724377,0.3266066489585896,0.39820503891639975,0.4412377334299109,0.4247068353772117,0.31061327364925195,0.4827328015639995,0.48720957385236924,0.46852030483913837,0.3187299758917716,0.34282682069152753,0.3760002779701263,0.48858595668024984,0.47305812858771384,0.42789944847020267,0.37705109330894987,0.4073499291602718,0.3845609227916242,0.4235328250576197,0.4223398360369351,0.40514964137653936,0.3629035989879344,0.40527154887892036,0.42317244417893035,0.3771450329711037,0.40540988181938714,0.3944731657817856,0.43443298495326976,0.46995899023583865,0.4356246271925716,0.43938042191330184,0.41793354560191703,0.3622060645712461,0.45153076048025326,0.39222118317850957,0.4100955846601331,0.4161546372418238,0.4052294661567805,0.39528155434759493,0.4704369430043123,0.38164904231196745,0.2951318365722232,0.3765617410812942,0.42166463615466493,0.4644181252060538,0.3525449373231544
+0.24328394698190936,0.18622969549241464,0.23772890145397066,0.23326599790034241,0.2724589735073171,0.2604407989801971,0.17052494244602945,0.1689503678267217,0.22778134118520607,0.24082141488301917,0.15043570524037864,0.2535019411100528,0.16261689305387525,0.2508734751598003,0.24627034477646093,0.188980001430033,0.22366119122907321,0.2163979699893382,0.22717818387966016,0.2439030368351432,0.17790209464010978,0.19666581766397256,0.1789141349718966,0.2392335414862109,0.24109888685608932,0.28605691493536733,0.29350617615441404,0.2607891944218481,0.2444253740717104,0.131554688603017,0.21788906216523724,0.21418208755074186,0.22423260151530236,0.2647069596650738,0.2241358461275347,0.19442724939286204,0.1689831643255079,0.20774728397424552,0.2995031114278875,0.1734597994897226,0.2168272656808848,0.24926702470755557,0.29884884921670635,0.2177447948776848,0.31895740723453303,0.230969766467057,0.25533018015441905,0.3282536184594963,0.3575041709210239,0.19048381111484322
+0.5446245940426713,0.5494926770405604,0.5746499121239179,0.6218406649829236,0.5114775443628693,0.6366129839131545,0.5165423024293757,0.6370925169428692,0.542762995507313,0.6224536133465991,0.6195887861627687,0.6201674372045437,0.5833410289212363,0.5737714291757635,0.5614949019230016,0.5919750750710743,0.6646789349958279,0.537933061240833,0.6078420386828899,0.62000043075478,0.5935821456662708,0.48387453640644323,0.6614913982224161,0.5906930411673309,0.6435112262060124,0.5472840965847809,0.5410355385864576,0.6163531582848534,0.5662630656101545,0.5127930515232252,0.5694412980213047,0.6006435517576451,0.5549067943647045,0.5709044806156345,0.6087876033966626,0.5875175561590011,0.6262948708083219,0.5694286554113226,0.5513503034907371,0.6881534223900474,0.6292988137160652,0.5658270041014457,0.6296448327653298,0.5804412641529479,0.5549867683110549,0.6376343018830283,0.6548520152987767,0.5776049635056665,0.6088880679489195,0.5441456733365482
+0.5446245940426713,0.5494926770405604,0.5746499121239179,0.6218406649829236,0.5114775443628693,0.6366129839131545,0.5165423024293757,0.6370925169428692,0.542762995507313,0.6224536133465991,0.6195887861627687,0.6201674372045437,0.5833410289212363,0.5737714291757635,0.5614949019230016,0.5919750750710743,0.6646789349958279,0.537933061240833,0.6078420386828899,0.62000043075478,0.5935821456662708,0.48387453640644323,0.6614913982224161,0.5906930411673309,0.6435112262060124,0.5472840965847809,0.5410355385864576,0.6163531582848534,0.5662630656101545,0.5127930515232252,0.5694412980213047,0.6006435517576451,0.5549067943647045,0.5709044806156345,0.6087876033966626,0.5875175561590011,0.6262948708083219,0.5694286554113226,0.5513503034907371,0.6881534223900474,0.6292988137160652,0.5658270041014457,0.6296448327653298,0.5804412641529479,0.5549867683110549,0.6376343018830283,0.6548520152987767,0.5776049635056665,0.6088880679489195,0.5441456733365482
+0.13943520804135473,0.05715475717372551,0.09037271587531873,0.12204214157520347,0.16188801003750122,0.30817365513655487,0.18682281604951329,0.16723930857277583,0.19884502334056273,0.11053146446511163,0.19319243169597755,0.08027687263729863,0.08746654401956878,0.1191922299615676,0.1531888160649429,0.08758155723609018,0.18240809363904043,0.0634963556779826,0.16426456068064602,0.18671360310729748,0.15731806570910425,0.306938429084313,0.032033424218029204,0.06566837420494934,0.1961553477446929,0.3856246550862239,0.048795147639546066,0.11373763719598345,0.15174526067947178,0.13044547544170293,0.06434778192681705,0.17719252551432738,0.1318794554980607,0.13551173283906345,0.05011415690932556,0.12938881136279115,0.250801772392478,0.12489094834820659,0.043777925683531865,0.13763638333048925,0.21154023627893717,0.10836506391702531,0.1236206025974198,0.08464388585921702,0.0824315844999121,0.053750145058592276,0.1786205026179858,0.0967193493069885,0.176289708912496,0.11272059592350205
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.5446245940426713,0.5494926770405604,0.5746499121239179,0.6218406649829236,0.5114775443628693,0.6366129839131545,0.5165423024293757,0.6370925169428692,0.542762995507313,0.6224536133465991,0.6195887861627687,0.6201674372045437,0.5833410289212363,0.5737714291757635,0.5614949019230016,0.5919750750710743,0.6646789349958279,0.537933061240833,0.6078420386828899,0.62000043075478,0.5935821456662708,0.48387453640644323,0.6614913982224161,0.5906930411673309,0.6435112262060124,0.5472840965847809,0.5410355385864576,0.6163531582848534,0.5662630656101545,0.5127930515232252,0.5694412980213047,0.6006435517576451,0.5549067943647045,0.5709044806156345,0.6087876033966626,0.5875175561590011,0.6262948708083219,0.5694286554113226,0.5513503034907371,0.6881534223900474,0.6292988137160652,0.5658270041014457,0.6296448327653298,0.5804412641529479,0.5549867683110549,0.6376343018830283,0.6548520152987767,0.5776049635056665,0.6088880679489195,0.5441456733365482
+0.3684593765841455,0.07806832719022111,0.34819373845516977,0.2203740400209025,0.062107870660231275,0.5405207057715004,0.4157336828319099,0.39455609862382224,0.29396929991660636,0.3080663351368367,0.5115986345878618,0.030069515560103732,0.3888405285506443,0.2006175138754562,0.41686749334969997,0.1479770905793214,0.30824908655088423,0.17132221333148728,0.40461673866555975,0.41692013429686553,0.36222979684606876,0.06223976041209734,0.3689086834729173,0.38634550045659344,0.3328099974386888,0.5780562199944483,0.15424871117801517,0.2846701480631849,0.2995925999177888,0.35775695208525654,0.2543924043665997,0.1238304223013415,0.20744616759693557,0.07972713380675288,0.23233675957664254,0.2071146505539218,0.14836981573061422,0.3698827111040471,0.3391915500529115,0.3949631894607685,0.2564993727535438,0.11818677471305769,0.3330396977962144,0.4412396670212948,0.32405018879303943,0.2590598084121238,0.22509988202919964,0.2501749463510808,0.3362034474695711,0.2967810068255144
+0.8395535918839873,0.7695017523261071,0.7766929205645492,0.7731452771256521,0.733880185271111,0.8296099790439847,0.7685998568206784,0.7856936729135008,0.7116749284572401,0.8787418011626165,0.842331753924945,0.8324921433451119,0.8651695952309243,0.9033566437325655,0.8258053393825684,0.7692083510763108,0.8619282621802803,0.8670853641048585,0.7987187462664074,0.82264481752421,0.861024623204151,0.8351088745000945,0.8524924495039017,0.7189014264653021,0.7484150978128816,0.6777662058071584,0.7654552982743956,0.7452901239877795,0.7769826760786482,0.8434541096248432,0.8862615942724201,0.7472816521891886,0.7126825162087799,0.8111054205790269,0.8495545164139218,0.8020916395561238,0.7109766695256983,0.8201353536766759,0.7007006002017259,0.7247212529011887,0.8174542493478789,0.7996501093988936,0.8158204070124968,0.8841059587691683,0.8347919074988355,0.7469878045281061,0.7976980153091773,0.7861087663723778,0.6371627380565495,0.7649585940443687
+0.6435482315706728,0.5026241848894379,0.5933471433254955,0.48932007538640543,0.6089225745324508,0.7450243774254208,0.4028095777607503,0.3999416778828111,0.8229090226543856,0.5406278345359086,0.6589421553372269,0.6213108454503242,0.828978629375185,0.5113163338376434,0.7589087490030778,0.43879433128130707,0.4789680245860693,0.3586111347395058,0.553541935769885,0.6270346667937116,0.5703149480670276,0.7890615850089183,0.4815577904296988,0.7225441586418135,0.7379735518225072,0.8228865852786084,0.23444302016387616,0.5390831346571943,0.5913991200684768,0.6897322386900568,0.8276661564055623,0.8291522550376361,0.8881326697898324,0.5017497954336985,0.5728837793368547,0.8205220129574587,0.5008323695665511,0.5985296699530374,0.8977223099325429,0.7460685596750907,0.8525622595811408,0.42408103033935235,0.5708690363837593,0.7976964193963262,0.4668956127403956,0.4023920177772364,0.37174711977540986,0.6185363365084764,0.4915000094942673,0.7175912327649031
+0.34772759086698374,0.42010341644540256,0.34378189455504127,0.16148935664433334,0.24598204059228546,0.29156306688716266,0.0521247293659331,0.2576427407303837,0.231707185558964,0.16052023909711366,0.23708069592330885,0.32342895316599723,0.2708772823807431,0.3893991447469395,0.3039554564799959,0.19089384050886768,0.2751176507610792,0.3660250108309981,0.35526181805229995,0.23341228362937066,0.34953887693075486,0.4158003375742178,0.22892831924339524,0.2628897688038464,0.16446192447351785,0.3463483058281957,0.28864797137543596,0.1197934065226234,0.3830718079775421,0.28674696865391147,0.23026724082136976,0.27905540020188724,0.3659270998285256,0.3270765726979756,0.27770204509843616,0.3315645950888527,0.20725562072272374,0.2560886091167156,0.38212543364841944,0.09765676135339144,0.2375152917536234,0.2556599644053994,0.2810405610635409,0.16448043250431396,0.2858424575031006,0.20315496334683558,0.2585410909232601,0.1963128198677927,0.3986919346204423,0.19330484182658483
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.631584411341985,0.2929929871910327,0.6586176523121222,0.4003911672682993,0.13027908839695515,0.29870683566980893,0.372526230914549,0.10210203946615089,0.2569243855153579,0.11236201538288826,0.5064101400733335,0.04708448569656136,0.2226436699589335,0.5673664919434765,0.6131182814500286,0.4482245178706827,0.544248034920564,0.46699412505281074,0.3603657271345591,0.7378282551142178,0.5810196808122241,0.17570013809719692,0.48914117301952476,0.3931517870263639,0.08315079365079367,0.686122843994758,0.7303138289360571,0.13433573513389396,0.6516617243872923,0.33608531788855667,0.8275391503512899,0.07285561735351269,0.4945671437032143,0.19024088256189067,0.4408414318841589,0.4885909602134405,0.5483973767798239,0.24061384050485907,0.19927999122157786,0.19404406447559444,0.506606797466366,0.7512120277967059,0.3500028283273254,0.3851087630190051,0.1283382660384032,0.3159460966850669,0.458509023281817,0.12432403828461103,0.29963048592730385,0.3190616493640946
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.8635193914632151,0.9091319076871279,0.9243968305617025,0.8914732937266757,0.8281043086989903,0.8346645688298399,0.7614665779812887,0.9568276806914764,0.8817392770502542,0.9063185324516964,0.992154610993124,0.8116312995622235,0.907040852493246,0.8890755490751466,0.8623495319648673,0.8473295213443919,0.8121078764227172,0.9396349068618578,0.9010923266007754,0.9020936104516273,0.8813235286131179,0.8984631495052032,0.8399400884187131,0.9069082233762756,0.9565472433483219,0.9053113571938298,0.8625471166802192,0.8364961877468515,0.9026665916105314,0.9328240969063023,0.9515137282211861,0.9216572138213968,0.7834477299325858,0.870339873179775,0.9237822222522668,0.8252059200969444,0.8045264672308826,0.9613987113141786,0.8403889759722918,0.86780408000905,0.9522794532581033,0.9707809584583109,0.9129199000074962,0.9551458141438057,0.901337886528899,0.867394346413372,0.8153473756984703,0.7871757864686453,0.8995097655070522,0.9858479461277337
+0.8334184253030094,0.8576141619236942,0.8243588245265443,0.8804644279020049,0.8025540910522031,0.8347102206743517,0.812811091580054,0.8155295359196895,0.8427912840124486,0.8834114529801927,0.816595166011179,0.8887262607510571,0.8289262559831818,0.8682377697822017,0.8425429049670992,0.8748471695840653,0.8610106825206663,0.8036559519162669,0.8502294893626179,0.8560039035255894,0.852326337652949,0.8910998873417862,0.8771483314450506,0.8222389076772303,0.8551288595084107,0.8032659833366634,0.7897127187628976,0.8079341195297846,0.8037366866403934,0.8330469540106575,0.8389123738487692,0.8416192634440851,0.8544615512223401,0.8975187135846504,0.8476033854347524,0.8391143841607949,0.838094447145523,0.7926832649165485,0.8547590683387566,0.8797772225892578,0.8786848845425206,0.8384317199633586,0.8379384969500131,0.8986381758977164,0.7807453593188757,0.7889167266696956,0.8351719755447569,0.8257819514276921,0.8899353872794549,0.8705998214946934
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.41889347905087976,0.3912044985480524,0.3498351995911343,0.7165239501592658,0.6090383680015008,0.46120377173689464,0.3594929035776058,0.4310381817616284,0.5094211382860968,0.35690076223654577,0.2836487814815727,0.5520106159077577,0.582157177491038,0.4138173133287883,0.4226232626426096,0.5186334104830911,0.4239289725126224,0.29192954519895226,0.3114500592644688,0.12946706976769787,0.4667656542689901,0.4138345759440006,0.39679266157745113,0.262330778845474,0.500675335218097,0.5310028303664457,0.39045349256047723,0.5695396221513149,0.3983218676378343,0.37415503664367106,0.20411064838378035,0.6450132552865517,0.5686142608221353,0.3026672116940259,0.4589570360109319,0.46640105277367416,0.47698049701626694,0.5799725320336689,0.4602001924148977,0.44387282622995455,0.4042478596197767,0.4830617955765545,0.4339928064501158,0.4767748683828229,0.5538927312338069,0.5955035324359659,0.4398206368489273,0.4966647592730734,0.571139222886615,0.6063024452349702
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.619860212386725,0.38993953131454534,0.43534437219335687,0.2743866296248254,0.3181501701428083,0.7378487057811534,0.5226258710540055,0.5954698477769083,0.4825370214270135,0.5995501188353741,0.7061553371389817,0.49925537166005335,0.484381455378112,0.3978607126741746,0.6001137261274273,0.4350470315529963,0.48452428296511807,0.444339502967355,0.3605276011785842,0.33720621002717466,0.5760545964360578,0.6161902388102724,0.4301317453969516,0.6043139411867517,0.34726315174051725,0.4566754065106911,0.5393874856184833,0.4087378559795697,0.3751951029902649,0.31023546899451987,0.5924483872264154,0.49891009414787263,0.6476895888982253,0.17577347560995107,0.4442167362462827,0.6257703199609631,0.48728591095116847,0.36272072946286565,0.44505738964548713,0.6313186140210997,0.7125146972646506,0.41076806329874466,0.4175834129889679,0.42651796691531724,0.27894915365045864,0.3514960575796314,0.36619953400372646,0.605137761896444,0.2827220838578109,0.36808201879827934
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.3952678926227704,0.33746171893202725,0.30799625379193,0.29623327354342516,0.28534665799638703,0.3237045034817153,0.2366778566124768,0.3227257288192091,0.4058467574318256,0.3053363637805748,0.2835646474737934,0.4011775274416627,0.29210217197385474,0.31639073785420607,0.25503165005153217,0.35530873908016036,0.30412321297368544,0.3662039216400616,0.42579613542149836,0.28621619213016225,0.39885655202669457,0.29744512077506924,0.3855207632834414,0.3578611498852791,0.3085525576229269,0.2893464333313425,0.3624295322436504,0.40058763051193397,0.3278005305209667,0.3882468085788674,0.35138998609474753,0.21082376724549967,0.43318968322771895,0.3342865052209678,0.4436127940163979,0.3403266402236663,0.383162588518861,0.29960628703748227,0.3782668901315428,0.38127639759585175,0.3665163286285869,0.4222494596695708,0.2407185077383415,0.40647161472298093,0.2963944637998162,0.2821215967076167,0.32070842128942245,0.3762459717985488,0.2978331269727629,0.324338912114257
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.37631822833677075,0.35350353290324193,0.40043072143643754,0.3711953992083908,0.40563276248344005,0.3203756363003617,0.34312111015479074,0.33302692154118646,0.4151361422783251,0.30125185673832133,0.4314802668552106,0.466707278332947,0.4905503755959181,0.33482158783492877,0.48066730175371275,0.39700927092551586,0.5631460207873228,0.5392098423905342,0.41950465656947494,0.4114420517029443,0.419945935304665,0.3000509788142605,0.3691687336906932,0.4539050771372674,0.46574929559983935,0.33000425815496315,0.43019016454662357,0.5276872146995779,0.40921407752945343,0.40357135029530566,0.44455147789754773,0.4150276369505352,0.44832295039109865,0.4201648551422508,0.4285885025895943,0.38803786030011017,0.3911672229316435,0.49295322620696647,0.38459318029757694,0.45744650068598447,0.43790572803812794,0.422723123671714,0.4226567876864565,0.5141067054144818,0.40282998555595045,0.3254764139548566,0.35168902582431444,0.4532215552050491,0.34262711464722023,0.3149718818371119
+0.75,0.6371428571428571,0.7959999999999999,0.29703216374269004,0.45529411764705885,0.54,0.48,0.12,0.51,0.58,0.42083333333333334,0.81,0.67,0.5426016260162602,0.8258333333333334,0.5,0.57,0.5933333333333334,0.7,0.42464285714285716,0.62,0.75,0.7914761904761904,0.59,0.47,0.7215909090909091,0.6302777777777778,0.855,0.82,0.46,0.691,0.44,0.66,0.67,0.6338095238095238,0.6759999999999999,0.5466489361702128,0.61,0.4,0.66,0.48444444444444446,0.74,0.63,0.1,0.655,0.33,0.39,0.32,0.55,0.19875
+0.09843525179856115,0.017497551709084045,0.06654946085325833,0.00125,0.02360769230769231,0.12239474389916868,0.007732414767708885,0.035779930076970244,0.01,0.020078752587991716,0.251631869394024,0.012873563218390805,0.015166666666666667,0.20546570309572465,0.2224183359574442,0.24284313725490192,0.22699704650188524,0.019964285714285716,0.04083333333333333,0.05833484440088213,0.06055555555555556,0.032084859584859585,0.15169491525423728,0.05938371569950518,0.010666666666666666,0.38519008524786374,0.015643939393939394,0.3038524390396259,0.2888040752351097,0.08115812265917603,0.027118469811139786,0.0020512820512820513,0.12285714285714285,0.05487012987012987,0.3631615737529359,0.3184333925292525,0.13866116268243928,0.08078947368421051,0.06349759615384615,0.20568627450980392,0.06671445721660314,0.14427983764809127,0.002895833333333333,0.010120759947814743,0.0280252781391161,0.02736928051911776,0.07832705276060581,0.3926025491638535,0.12444444444444444,0.03476854998615358
+0.5000110984182868,0.2729805950547973,0.28126831026558197,0.4212882111355193,0.3136958716931847,0.2427088928470849,0.6194578782567378,0.22183556271743135,0.2881439119039819,0.590890503754157,0.3926713350759688,0.3548107550297636,0.522513145757339,0.5727180042215888,0.435348194538555,0.5007089958131532,0.2504399537606032,0.3962949610148806,0.43265814134186004,0.44036878860793727,0.4005754850735856,0.5613562053588458,0.32759409747962487,0.6518016676855098,0.6173064001372817,0.6634259925993823,0.6619890697617856,0.32330416658153666,0.568800159663784,0.5895281712023469,0.3207222552684813,0.5490113843206459,0.23433163407919722,0.4217432687403276,0.5706774700090737,0.4833901989820377,0.17895294797298683,0.22666225258993392,0.566111062751862,0.2854241368873257,0.31578735169628463,0.5961257077740209,0.2854648207381781,0.3554693079203652,0.5167298678930689,0.5637205810852847,0.3144826214255464,0.3405483352744735,0.4279514611592616,0.14684976172144817
+0.46324331743547015,0.32180129831613885,0.3962350996440436,0.20748303322531758,0.1922336716497276,0.5052812509862136,0.47919816866714593,0.6455956173126856,0.2654255208476342,0.6061489704936924,0.04734868895412781,0.1573553408454311,0.5289460375480409,0.522233287404887,0.23654228618488232,0.5807710886338427,0.48234774496654026,0.34679621019089857,0.6977532020818771,0.22036724305817393,0.14498357580932802,0.5627996797503642,0.5211837100255087,0.21463550855914107,0.2359378551194328,0.41010269361168034,0.47371348582311357,0.43213649029189855,0.4650868737458394,0.2676673911628118,0.2661169630647418,0.39779094535757664,0.22476895481063394,0.41195914040886217,0.33989777556888984,0.4058400759911804,0.3816286903048078,0.20205177924541812,0.515223451447111,0.5958301547458222,0.47299643093878324,0.5316498369354862,0.44669853102729834,0.5085025149337323,0.3120998020015089,0.5466905154056786,0.12512699710885128,0.6064890583722135,0.4349773990448585,0.5669488112655472
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.43399232411556565,0.3880210026764744,0.41408983635653074,0.35562920216280014,0.4206666902959723,0.37678642881971564,0.39169381163398453,0.42262456595061193,0.43176830995340487,0.368812165558667,0.46367946949138356,0.42429894347815633,0.4850420096847177,0.302281762233925,0.4029910855621027,0.43597130763403974,0.47710038867070304,0.4782923601665337,0.43788194388956037,0.4536505682550652,0.39584681499391455,0.41032636521749816,0.4011342558618931,0.4371002264149695,0.40332505177775707,0.37233062040488646,0.3853880157912385,0.4505884348070552,0.35983276308578566,0.43448218440981295,0.37705181458871445,0.40699788679184074,0.3400722221293895,0.5249694701170622,0.43159850037896247,0.4038372187008506,0.3881571378777961,0.44804233027679957,0.38503390093268947,0.40111186422910045,0.4054585392744918,0.4048011831423874,0.4251472275511341,0.4228780687890388,0.3679849999042404,0.3852269236856018,0.40796335294067965,0.39357170532222535,0.5002473578428198,0.3529142107486882
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.41951451717736893,0.44360478373697615,0.4045298719504722,0.46770143209621656,0.4123660119217174,0.39105203294392354,0.3785358186025169,0.4620505595375233,0.4482658716928347,0.4060308835064521,0.439491960018226,0.45285766164443436,0.5172397642843887,0.40598654793731653,0.39336653499763263,0.4367678776297136,0.45347957351379153,0.4968067362051234,0.4397440971762911,0.4436873324675291,0.4057507872897797,0.4588440967588396,0.42808118868507733,0.4524543476888539,0.36944021477355987,0.5016289389344339,0.3721608931753043,0.4554817405847064,0.37314230869022397,0.514370539854871,0.4130317526844465,0.4188690010140261,0.4495909849551795,0.46569207700354687,0.43750508768057145,0.42591714194103025,0.45807138866750846,0.4431677539956715,0.41345992369442236,0.45296121194843453,0.42957906811773017,0.43156038891346554,0.4541149367132152,0.4514154210395019,0.37837214410146397,0.4083146987835955,0.440634145587784,0.39916626216172546,0.5339892526743981,0.42172921813676323
+0.26281444583247315,0.23467861236851167,0.22988082426031106,0.22562789032270125,0.2409716562692447,0.30832223839468176,0.1904471506796281,0.19262896987505285,0.1775758950801153,0.2597532414918941,0.2556338161313007,0.26737623915960673,0.2269540059150619,0.24638236897616267,0.2407174209563831,0.28795020929117265,0.2366817345739811,0.23019782590698412,0.1761499496772323,0.23627352208967722,0.24877758752122706,0.18695563379826688,0.14574438948943796,0.27338590413646147,0.306734758835788,0.26837420532768713,0.2897905489741235,0.2598848046457668,0.2619770544911515,0.33974475176589686,0.20853180077647904,0.2148352573327471,0.22108184147719115,0.30717668662216707,0.30562951683213274,0.19859529257104164,0.19057130309418255,0.23122597386240368,0.24446619991642884,0.18634936890161571,0.2242157157731179,0.25708540409849545,0.2367615641769424,0.30031375073302535,0.2952012815929509,0.2171664315476482,0.22929923611853034,0.31054414422554744,0.20717505035054745,0.22544035324558093
+0.7736059646112404,0.534455065903884,0.6058380629664726,0.6888596766042461,0.6998987945474608,0.7774968542736707,0.6601218876723263,0.6840990352029358,0.7534939543179965,0.6559033341609003,0.6834610230569909,0.6519901920433887,0.7216428344295018,0.7217363990756915,0.6442249366233018,0.6271956230086377,0.7262229925003472,0.669255606247474,0.6662480756641219,0.6487052937064556,0.728747328929106,0.7013606155609428,0.6163904348299699,0.7444442126770285,0.7548234264337748,0.7700270755644322,0.6199834558902689,0.5736584117076509,0.6059777683813649,0.6324692371481963,0.7018368679507807,0.6329322628762354,0.6650449103571927,0.7159179135815283,0.5905617281055707,0.695052599952688,0.6303598120414654,0.7062168685401065,0.5759201557407554,0.7170221248827282,0.7557455907955435,0.6204963092474782,0.6501782514176433,0.6351052633206451,0.7646889700646277,0.6963011532361602,0.7348253663050381,0.7171784741790542,0.7538133801225974,0.7303445488491929
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.37403984282907304,0.40418569047129504,0.4232363087212121,0.35129393010044097,0.2596255878218931,0.3029438850496749,0.45786842711393794,0.2254139732447497,0.40049170573183285,0.36964570437772004,0.22622706397523673,0.28784440660458727,0.3270790817438062,0.27416612125604034,0.396455555229467,0.2650934819331985,0.46057100302137854,0.48704809310045327,0.3749709506666873,0.3857642252972148,0.3686771676045433,0.5945765548617409,0.3996339517650733,0.4770740790605248,0.24210193974900013,0.22909012857192226,0.4480518883651336,0.3777600787343538,0.3712134304320166,0.4756399205935177,0.23641057551643418,0.5705299623132004,0.3180378733725128,0.42006008382023263,0.387280847238796,0.3287517338655256,0.2798205239434537,0.42396304716790584,0.597534109967486,0.3072805106441992,0.5459622988744666,0.5703367820520215,0.363432226755634,0.24571524828477476,0.2850913251224441,0.45768145611406985,0.37497144353288653,0.3482699509926372,0.43137871562894176,0.30605527022513335
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.3952678926227704,0.33746171893202725,0.30799625379193,0.29623327354342516,0.28534665799638703,0.3237045034817153,0.2366778566124768,0.3227257288192091,0.4058467574318256,0.3053363637805748,0.2835646474737934,0.4011775274416627,0.29210217197385474,0.31639073785420607,0.25503165005153217,0.35530873908016036,0.30412321297368544,0.3662039216400616,0.42579613542149836,0.28621619213016225,0.39885655202669457,0.29744512077506924,0.3855207632834414,0.3578611498852791,0.3085525576229269,0.2893464333313425,0.3624295322436504,0.40058763051193397,0.3278005305209667,0.3882468085788674,0.35138998609474753,0.21082376724549967,0.43318968322771895,0.3342865052209678,0.4436127940163979,0.3403266402236663,0.383162588518861,0.29960628703748227,0.3782668901315428,0.38127639759585175,0.3665163286285869,0.4222494596695708,0.2407185077383415,0.40647161472298093,0.2963944637998162,0.2821215967076167,0.32070842128942245,0.3762459717985488,0.2978331269727629,0.324338912114257
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.1447503324004171,0.05330911214763577,0.2183947297204354,0.2025494510349277,0.1601148664770373,0.16182558734575725,0.1549905941732961,0.22149275372215022,0.07964364872508804,0.18688052930754506,0.2615908725131192,0.09041692812501449,0.2096497747813539,0.1678552238139863,0.13464035327864055,0.05140752614359754,0.3537134284781137,0.05910304144039914,0.3801165390155642,0.11185355004261116,0.06964797221011129,0.15704490258171525,0.16052308927671965,0.13902136316034894,0.3904850199185947,0.2943546650883702,0.3105988528977253,0.13134872172260284,0.225547397369327,0.33224770384572994,0.2477143686359802,0.11961947291356716,0.16301486868227566,0.09020701594216023,0.3158822237695676,0.02986482045629334,0.07379296399349275,0.0996031541528331,0.21761070949009614,0.13125718664028457,0.060037179356314974,0.23063870178887314,0.14749753903885396,0.4341887378112459,0.3721904868017694,0.255822808661502,0.12413262852375975,0.13241567013954797,0.08394320589476452,0.18601237758549236
+0.8334184253030094,0.8576141619236942,0.8243588245265443,0.8804644279020049,0.8025540910522031,0.8347102206743517,0.812811091580054,0.8155295359196895,0.8427912840124486,0.8834114529801927,0.816595166011179,0.8887262607510571,0.8289262559831818,0.8682377697822017,0.8425429049670992,0.8748471695840653,0.8610106825206663,0.8036559519162669,0.8502294893626179,0.8560039035255894,0.852326337652949,0.8910998873417862,0.8771483314450506,0.8222389076772303,0.8551288595084107,0.8032659833366634,0.7897127187628976,0.8079341195297846,0.8037366866403934,0.8330469540106575,0.8389123738487692,0.8416192634440851,0.8544615512223401,0.8975187135846504,0.8476033854347524,0.8391143841607949,0.838094447145523,0.7926832649165485,0.8547590683387566,0.8797772225892578,0.8786848845425206,0.8384317199633586,0.8379384969500131,0.8986381758977164,0.7807453593188757,0.7889167266696956,0.8351719755447569,0.8257819514276921,0.8899353872794549,0.8705998214946934
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.38476744781252475,0.3743989044200614,0.3924715973861388,0.38366875197374917,0.42162849316724377,0.3266066489585896,0.39820503891639975,0.4412377334299109,0.4247068353772117,0.31061327364925195,0.4827328015639995,0.48720957385236924,0.46852030483913837,0.3187299758917716,0.34282682069152753,0.3760002779701263,0.48858595668024984,0.47305812858771384,0.42789944847020267,0.37705109330894987,0.4073499291602718,0.3845609227916242,0.4235328250576197,0.4223398360369351,0.40514964137653936,0.3629035989879344,0.40527154887892036,0.42317244417893035,0.3771450329711037,0.40540988181938714,0.3944731657817856,0.43443298495326976,0.46995899023583865,0.4356246271925716,0.43938042191330184,0.41793354560191703,0.3622060645712461,0.45153076048025326,0.39222118317850957,0.4100955846601331,0.4161546372418238,0.4052294661567805,0.39528155434759493,0.4704369430043123,0.38164904231196745,0.2951318365722232,0.3765617410812942,0.42166463615466493,0.4644181252060538,0.3525449373231544
+0.38476744781252475,0.3743989044200614,0.3924715973861388,0.38366875197374917,0.42162849316724377,0.3266066489585896,0.39820503891639975,0.4412377334299109,0.4247068353772117,0.31061327364925195,0.4827328015639995,0.48720957385236924,0.46852030483913837,0.3187299758917716,0.34282682069152753,0.3760002779701263,0.48858595668024984,0.47305812858771384,0.42789944847020267,0.37705109330894987,0.4073499291602718,0.3845609227916242,0.4235328250576197,0.4223398360369351,0.40514964137653936,0.3629035989879344,0.40527154887892036,0.42317244417893035,0.3771450329711037,0.40540988181938714,0.3944731657817856,0.43443298495326976,0.46995899023583865,0.4356246271925716,0.43938042191330184,0.41793354560191703,0.3622060645712461,0.45153076048025326,0.39222118317850957,0.4100955846601331,0.4161546372418238,0.4052294661567805,0.39528155434759493,0.4704369430043123,0.38164904231196745,0.2951318365722232,0.3765617410812942,0.42166463615466493,0.4644181252060538,0.3525449373231544
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.19507687611826252,0.17497047195505444,0.11191496391301944,0.18754076329474675,0.16370125633060087,0.1407874630111443,0.12114878039751574,0.13655618263803984,0.06833371077857135,0.09430214492613714,0.1533060555942026,0.07368588391187185,0.0630284181022717,0.18720066163186735,0.20326184802071992,0.038468632143875,0.2250523301521406,0.12063135085040719,0.21588876883028824,0.16884728503136404,0.10512367007229162,0.1133279425939455,0.06252772751087565,0.032277521372726145,0.06830216511398442,0.17725353483947195,0.16288494054788358,0.13373094579982456,0.17310189724295794,0.04056983522508348,0.3189613418301649,0.026546677960565188,0.1669013342917598,0.18350890263523087,0.09280856675936229,0.15995572125492277,0.1002545170917457,0.1668762352359513,0.26901385201786193,0.1097596746759403,0.13341659833436997,0.21400148269260416,0.02740344692402545,0.09918889586919603,0.18053720298679493,0.17440075895235185,0.21101339878082737,0.05679613569093285,0.198051739005769,0.1695706327220684
+0.8635193914632151,0.9091319076871279,0.9243968305617025,0.8914732937266757,0.8281043086989903,0.8346645688298399,0.7614665779812887,0.9568276806914764,0.8817392770502542,0.9063185324516964,0.992154610993124,0.8116312995622235,0.907040852493246,0.8890755490751466,0.8623495319648673,0.8473295213443919,0.8121078764227172,0.9396349068618578,0.9010923266007754,0.9020936104516273,0.8813235286131179,0.8984631495052032,0.8399400884187131,0.9069082233762756,0.9565472433483219,0.9053113571938298,0.8625471166802192,0.8364961877468515,0.9026665916105314,0.9328240969063023,0.9515137282211861,0.9216572138213968,0.7834477299325858,0.870339873179775,0.9237822222522668,0.8252059200969444,0.8045264672308826,0.9613987113141786,0.8403889759722918,0.86780408000905,0.9522794532581033,0.9707809584583109,0.9129199000074962,0.9551458141438057,0.901337886528899,0.867394346413372,0.8153473756984703,0.7871757864686453,0.8995097655070522,0.9858479461277337
+0.31053715245654756,0.27253310912323436,0.29632470604738165,0.22973493458201533,0.2678095544541643,0.26710148120638794,0.21936701070811973,0.23826333643187464,0.25896359388749435,0.3230504640593348,0.2622286067610375,0.23219118217999257,0.2613095737633457,0.2277853899086043,0.2371008373971871,0.20651661945376362,0.2939264074296968,0.23156451362096678,0.19395141756991843,0.19377057845853782,0.30462236133606974,0.16853401591804573,0.28364410363310116,0.3133186832314592,0.24860161507834241,0.3051576546569227,0.25838453342407386,0.252827144745277,0.25885290706375297,0.32772471772447204,0.2278889701698131,0.3181696340046628,0.18416942980835274,0.2953539504076243,0.4935927197681547,0.2761331048447388,0.28726433119443223,0.292114597414702,0.15764461122089465,0.23553114111759169,0.3461046214419718,0.1934869572742578,0.1684755096221024,0.2501130112245993,0.28762475758933437,0.2379438169131474,0.2639123066725193,0.3602804820128059,0.1981804206549201,0.20322085267145237
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.46324331743547015,0.32180129831613885,0.3962350996440436,0.20748303322531758,0.1922336716497276,0.5052812509862136,0.47919816866714593,0.6455956173126856,0.2654255208476342,0.6061489704936924,0.04734868895412781,0.1573553408454311,0.5289460375480409,0.522233287404887,0.23654228618488232,0.5807710886338427,0.48234774496654026,0.34679621019089857,0.6977532020818771,0.22036724305817393,0.14498357580932802,0.5627996797503642,0.5211837100255087,0.21463550855914107,0.2359378551194328,0.41010269361168034,0.47371348582311357,0.43213649029189855,0.4650868737458394,0.2676673911628118,0.2661169630647418,0.39779094535757664,0.22476895481063394,0.41195914040886217,0.33989777556888984,0.4058400759911804,0.3816286903048078,0.20205177924541812,0.515223451447111,0.5958301547458222,0.47299643093878324,0.5316498369354862,0.44669853102729834,0.5085025149337323,0.3120998020015089,0.5466905154056786,0.12512699710885128,0.6064890583722135,0.4349773990448585,0.5669488112655472
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.8395535918839873,0.7695017523261071,0.7766929205645492,0.7731452771256521,0.733880185271111,0.8296099790439847,0.7685998568206784,0.7856936729135008,0.7116749284572401,0.8787418011626165,0.842331753924945,0.8324921433451119,0.8651695952309243,0.9033566437325655,0.8258053393825684,0.7692083510763108,0.8619282621802803,0.8670853641048585,0.7987187462664074,0.82264481752421,0.861024623204151,0.8351088745000945,0.8524924495039017,0.7189014264653021,0.7484150978128816,0.6777662058071584,0.7654552982743956,0.7452901239877795,0.7769826760786482,0.8434541096248432,0.8862615942724201,0.7472816521891886,0.7126825162087799,0.8111054205790269,0.8495545164139218,0.8020916395561238,0.7109766695256983,0.8201353536766759,0.7007006002017259,0.7247212529011887,0.8174542493478789,0.7996501093988936,0.8158204070124968,0.8841059587691683,0.8347919074988355,0.7469878045281061,0.7976980153091773,0.7861087663723778,0.6371627380565495,0.7649585940443687
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.5767776074565016,0.4422286678041028,0.6648160433197847,0.6717255059837802,0.5790271259328401,0.4449375243378003,0.5086684788222061,0.4906245724246152,0.44528415376046043,0.49137630276175776,0.510113368306929,0.6539997339400445,0.5526753036463634,0.5164699375866018,0.5157440821887572,0.548066417812406,0.5104914702311907,0.595466458155411,0.49997335222224865,0.6223213869287982,0.5419699063313856,0.4130769091409552,0.5822042349558928,0.5519493952913086,0.5001011552550002,0.5103432008738609,0.4121172337405742,0.7071240729161242,0.6678820315152585,0.5433161383737892,0.6096639421049727,0.5224508051090625,0.5716561979383248,0.514429743331875,0.556402688606831,0.7548592045075115,0.4890043720019954,0.5977696234546843,0.40812458253318284,0.5064269017023524,0.6369867996947542,0.5356558214390293,0.5471583830624784,0.7319854349976752,0.7227271744652575,0.5831421988462391,0.3717607304355079,0.5244826452737875,0.5434647627853699,0.4324151540792998
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.38476744781252475,0.3743989044200614,0.3924715973861388,0.38366875197374917,0.42162849316724377,0.3266066489585896,0.39820503891639975,0.4412377334299109,0.4247068353772117,0.31061327364925195,0.4827328015639995,0.48720957385236924,0.46852030483913837,0.3187299758917716,0.34282682069152753,0.3760002779701263,0.48858595668024984,0.47305812858771384,0.42789944847020267,0.37705109330894987,0.4073499291602718,0.3845609227916242,0.4235328250576197,0.4223398360369351,0.40514964137653936,0.3629035989879344,0.40527154887892036,0.42317244417893035,0.3771450329711037,0.40540988181938714,0.3944731657817856,0.43443298495326976,0.46995899023583865,0.4356246271925716,0.43938042191330184,0.41793354560191703,0.3622060645712461,0.45153076048025326,0.39222118317850957,0.4100955846601331,0.4161546372418238,0.4052294661567805,0.39528155434759493,0.4704369430043123,0.38164904231196745,0.2951318365722232,0.3765617410812942,0.42166463615466493,0.4644181252060538,0.3525449373231544
+0.32778227630857637,0.4149074360279249,0.4800437646839161,0.5526563273158263,0.2870021729867394,0.19066656462293405,0.5795655501723045,0.40334335214664935,0.5215285191404627,0.07396129026326952,0.14476859624128632,0.3821865954469443,0.45030614155142784,0.557293278631525,0.2662858757297295,0.3659417687925746,0.3054270252620564,0.5671836791941148,0.18198316105464785,0.5378143302778668,0.3632512553281944,0.4891854928337232,0.49589576875440833,0.5159864007940954,0.3013473765933988,0.301635844457413,0.43159954258401423,0.19948080250485867,0.5026140981805716,0.3336024819832389,0.46579412495245576,0.29266854368672474,0.5190363484538497,0.3228967921234911,0.33028985654220205,0.09275645438765417,0.4764455132366637,0.23769757040666864,0.20164169615049177,0.3726572988999565,0.38288242210765877,0.339559541981126,0.24656766061778634,0.37742179437340306,0.37355670964581833,0.41799793949056413,0.5785483482268681,0.5488022004151536,0.4309017888588349,0.5025522037858114
+0.6817510569840836,0.5675379527035074,0.7179811226290611,0.7490514723974537,0.5885403571227564,0.6794779312825867,0.7210061902999954,0.6648918242804328,0.6485207860377996,0.6742388620483161,0.6004876045962603,0.6416003868672127,0.66258284111524,0.7644005423460958,0.8077411085274449,0.672526995404043,0.5612682101697373,0.6465637614103384,0.7327884797305124,0.6310816186892446,0.6206629847293976,0.7423592799874186,0.5872029583789348,0.6595679262830774,0.6621828267825519,0.6994265779159208,0.707669002015789,0.6540913101066974,0.6277425000582147,0.6276121707326885,0.6255652701499064,0.6485951949213522,0.6334301226570892,0.7029303423875131,0.7505450831584976,0.6727870583474339,0.6032393063460804,0.6295332100392514,0.6907259235191249,0.5724095270316282,0.6037615587594823,0.7650375077575953,0.6598074329998406,0.6976867468819695,0.7091482524561898,0.7309452561032576,0.5421669491002465,0.7150088818194769,0.618715250389683,0.564973583489802
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.6050599120550195,0.5332461600609301,0.7060497518987592,0.6938005673839439,0.7482185236908849,0.6043277050927539,0.684078537153879,0.5562323233253639,0.5383834869076956,0.63016688568333,0.5312383585016238,0.505103698527896,0.3991966303996529,0.7824534655480487,0.6916474286644468,0.7358784730306946,0.5443477703017726,0.5932908615092499,0.77939534154285,0.7166904649681441,0.4518168666438592,0.5257503903498004,0.4389604524043465,0.48516209312498276,0.5819984542392432,0.5484043755991352,0.693894907289841,0.564840598194248,0.6140631096855256,0.6761251736135749,0.6816252740579146,0.6666175007880646,0.7294236589423646,0.6499361197639337,0.6683675342799766,0.5389440056726295,0.6412735397504872,0.5915681889036459,0.5918696525801169,0.4311438526446375,0.35811192098889705,0.5980799514426155,0.7816080268246978,0.4503752614874273,0.6956574044461138,0.5113965581309489,0.7462221627169506,0.24992641871654395,0.5175030266909085,0.4926340957641412
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.5801175037168147,0.8686950653728175,0.7756280203025053,0.6686060331255118,0.7260028138905755,0.21900759697115058,0.20811956400884718,0.6727750233903618,0.017476290832455214,0.03642993841863507,0.8411652571819583,0.1681557338321029,0.7608378399521543,0.9409016605658089,0.8966165306389652,0.8795734595331556,0.9085728592821302,0.12129465206697969,0.5670158527979154,0.764793416206067,0.5438875451081334,0.6293074781307076,0.7715893020023455,0.6313137089713196,0.3594506750601367,0.7626858623493643,0.10563660496439775,0.611815236924143,0.595284914964485,0.8440804621996759,0.6749310233943977,0.6514511444664385,0.6408656600826811,0.6241704682724816,0.6092546620046622,0.7608007700288418,0.6881517857142857,0.6120186970467238,0.8381450519007274,0.8509159312239022,0.02938640280501575,0.18453388639745336,0.6124484017761934,0.7604238201535264,0.08702626222421664,0.216865475152623,0.026436688311688314,0.9012727272727272,0.11122366830925755,0.8545371295371293
+0.7481532192887105,0.7643172961104141,0.6619078684076574,0.753356370055613,0.6097218187518236,0.7459306638445409,0.5571898331796022,0.7338125398827731,0.6875391120545947,0.7184638500210002,0.7677383401684401,0.7344991520716766,0.8644457478604777,0.7209534970654101,0.7308132904664383,0.9117768836870916,0.8135570461858612,0.7170141592528904,0.7434697133713503,0.7622876757342112,0.8062148431754923,0.8382139738209109,0.6092105318328546,0.726243202859118,0.6184617087543438,0.7861799821344667,0.7137273387256594,0.6433330090341862,0.8452531165990926,0.7462459892384584,0.7933819358212942,0.6135373189231468,0.7296101928854132,0.7062824996808539,0.7296278878815028,0.7242956736349364,0.6979262783136668,0.6576017104077628,0.811070733407268,0.7885797786315014,0.7430182314470943,0.7474037937704385,0.663552459061558,0.731576083117557,0.8403100615374334,0.8266807385153608,0.717457058830935,0.7440908531009702,0.6025756953951632,0.7360555778375112
+0.3703216107660838,0.3904351383719641,0.29866290652849564,0.2783693109540816,0.3521663499158485,0.37899875592777243,0.2930659622583886,0.33214709496783734,0.3910088645225788,0.3362150807176241,0.2544160303840503,0.37403281023034557,0.31659214988536816,0.42592903337399046,0.30141415032982766,0.426130765994763,0.2400650231349141,0.3402516618536983,0.4248626498785383,0.38227044121647114,0.42751126483172713,0.24107495887548785,0.3973411996969029,0.49966417805866375,0.435753126993035,0.2558038682533931,0.35758725667095115,0.35007048345431085,0.3283852964143288,0.42942325953235766,0.39971100352205047,0.28956954538378077,0.4616727217548439,0.3640278485476345,0.45218616312330184,0.39585482224234825,0.34275372608196636,0.3695931783762736,0.3812671919374605,0.40415155652448703,0.3348520873303043,0.5046807917021983,0.30930494609782305,0.2871505943414618,0.2598886986238748,0.5175831609636528,0.3193830809461831,0.4570308297273627,0.36206158262933835,0.3333109587084162
+0.6883601145196355,0.491470737137239,0.48734019240863696,0.39193414636830926,0.6356617813000336,0.6985425164693756,0.4962539673060407,0.4955565109674322,0.36440301192087143,0.2911069252692567,0.6050318697566943,0.5860042025487954,0.3036187384332344,0.5030007801341628,0.5522129406875276,0.5535107375239814,0.40728838351411584,0.5075111984779818,0.5739568477336617,0.6855312094716081,0.3905506898861303,0.35546456342865335,0.4608981564675151,0.4461769746875996,0.6108015971623939,0.783345409450994,0.42864055310668897,0.4014769693843144,0.4706226899009112,0.43376884259307985,0.6498235845785536,0.5908146677050357,0.4281233557332561,0.3446322346302758,0.8256318340330947,0.5116697824225259,0.4789643625569262,0.35462776857677475,0.4741228011486426,0.5312270012151861,0.3864070039206493,0.5866543782866398,0.3495703285447149,0.5593856370263461,0.18403898819149234,0.5016873330049382,0.48744571677102144,0.3950459827389088,0.5940832564955408,0.37799968728679173
+0.7607189836483849,0.7371204287930492,0.6530444096425125,0.7748108210512877,0.7527089276031239,0.7228057398117389,0.7000128998886842,0.6354592111889134,0.46486800335715445,0.49189063513926057,0.6840411038214907,0.8015630928958565,0.8508557253176977,0.765036078276846,0.7455156202621815,0.8053072329961738,0.7397981384582293,0.703987435716059,0.9030165734529051,0.8803570793041484,0.6688002307465293,0.8138178818938135,0.814862951421233,0.6336695467287501,0.7553469036463479,0.7764899448881161,0.7111169139832731,0.6590426233464206,0.7077075776775844,0.7154658726755193,0.773687766764953,0.704207769169302,0.7293329889263456,0.7406119296533382,0.8242032626045233,0.744463568930385,0.6683483793643813,0.8870221636636804,0.7091776794733051,0.8390141668231861,0.7400452917067472,0.9552795740059531,0.6764735765265233,0.8285777645314024,0.8343256183987781,0.71800974212405,0.657816639035313,0.6054683064447677,0.7035479276549634,0.7223478197700532
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.11843525179856115,0.027497551709084044,0.06654946085325833,0.00125,0.03360769230769231,0.1323947438991687,0.0030918918918918918,0.27738242978073574,0.042272727272727274,0.03007875258799172,0.42104844691641724,0.022873563218390805,0.05516666666666667,0.24832284595286752,0.2224183359574442,0.24284313725490192,0.2669970465018852,0.029964285714285714,0.06083333333333333,0.07150944757548532,0.07055555555555555,0.05208485958485959,0.1716949152542373,0.06938371569950517,0.010666666666666666,0.40941547520860516,0.02564393939393939,0.41793963250011634,0.34674851967955417,0.08115812265917603,0.027118469811139786,0.0020512820512820513,0.11285714285714285,0.09487012987012987,0.4264949070862693,0.3384333925292525,0.21079480561329586,0.1307894736842105,0.15349759615384614,0.31333333333333335,0.21134965034965034,0.24375,0.07289583333333334,0.00516837899543379,0.04837337940493889,0.017369280519117757,0.11622178960271107,0.3494446544270114,0.13444444444444445,0.034703643310518804
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.23215515604685852,0.39783148824023995,0.12016961405925544,0.16534938436947688,0.21743074564315026,0.33525350382576635,0.17560554961644204,0.35287747844692435,0.3572177339325605,0.238381391098422,0.30260416161960824,0.26380733963767805,0.3511679964121162,0.27563247782689126,0.16392406290201625,0.3104363704158691,0.213726294940715,0.2060124258963372,0.19931974129903612,0.19503999739747804,0.16802928013881677,0.1769647055104825,0.16095146234732546,0.41700742285272613,0.22842868616387013,0.3894651357858077,0.2972393099202728,0.42859019735932075,0.3182515030809189,0.30483084815416095,0.2842621116815971,0.1999275237115135,0.21609962723781165,0.3679228658692945,0.24419026189242615,0.2452179057638746,0.1221507442174837,0.19373044012506327,0.3281399719639832,0.14776560133149771,0.2506525769045131,0.29304980489382726,0.26242168316640174,0.23449746729500653,0.5266018027858567,0.1869730494224393,0.3432485437071795,0.4671458573941554,0.32063454972786104,0.3516800386452058
+0.38476744781252475,0.3743989044200614,0.3924715973861388,0.38366875197374917,0.42162849316724377,0.3266066489585896,0.39820503891639975,0.4412377334299109,0.4247068353772117,0.31061327364925195,0.4827328015639995,0.48720957385236924,0.46852030483913837,0.3187299758917716,0.34282682069152753,0.3760002779701263,0.48858595668024984,0.47305812858771384,0.42789944847020267,0.37705109330894987,0.4073499291602718,0.3845609227916242,0.4235328250576197,0.4223398360369351,0.40514964137653936,0.3629035989879344,0.40527154887892036,0.42317244417893035,0.3771450329711037,0.40540988181938714,0.3944731657817856,0.43443298495326976,0.46995899023583865,0.4356246271925716,0.43938042191330184,0.41793354560191703,0.3622060645712461,0.45153076048025326,0.39222118317850957,0.4100955846601331,0.4161546372418238,0.4052294661567805,0.39528155434759493,0.4704369430043123,0.38164904231196745,0.2951318365722232,0.3765617410812942,0.42166463615466493,0.4644181252060538,0.3525449373231544
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.5515572609860712,0.625449632434313,0.8675240564463372,0.57649462030868,0.7565694070176052,0.5015617254907615,0.5473463578678761,0.5752890567962734,0.5514910020340428,0.6240927517945153,0.7330286765790293,0.8929904525560002,0.6203810808314953,0.8095987349464693,0.6586366488986906,0.6639989805355008,0.525602981921735,0.7700520700483452,0.5627570136039406,0.5714926412414674,0.7525452272188867,0.8548050813989114,0.5819355172530589,0.5318280363335137,0.5938330843425171,0.6243102352471578,0.5382236537178211,0.720286991965529,0.8508771533219621,0.6062162132630892,0.7127158439105716,0.6002201272975417,0.7229979906710764,0.6977400423200176,0.7104033309164897,0.7045373565469781,0.6467664614903899,0.5718297291105443,0.6551551820615699,0.7751356785316547,0.4371466875211096,0.686366672034041,0.6302338958728507,0.6498280273508666,0.6886413815310405,0.7317293618066576,0.5281577954296928,0.6309763843386051,0.570276164852737,0.604092423953829
+0.361185498597671,0.5184256420595236,0.49565862702006813,0.47109194913546504,0.35023382543501547,0.37290432930163697,0.7277621390900291,0.21975977738054767,0.34560973083641927,0.4206761438826069,0.24952025047442344,0.721019750088749,0.24402558200582292,0.5481798536854483,0.6428821232531489,0.3039496941109316,0.31275210952986915,0.6396955773274979,0.5092934342815597,0.5149726888466579,0.2611481858687243,0.7282264847503623,0.6117846610096287,0.273343968046444,0.4843361070118805,0.41997335142571807,0.6458822012200262,0.32609477538028814,0.575724388565259,0.3980603191242612,0.2544126990878831,0.41703065562267133,0.4062719675852597,0.3466245695928102,0.2999456192223285,0.22332211760316248,0.5330303255101521,0.4788286997169622,0.45062633018558124,0.28276525357919263,0.32116961830925106,0.344906641671261,0.5694928847479391,0.3595193000319955,0.13274550771213528,0.28898359853642536,0.48964988625730865,0.5161852850492483,0.48539474181777537,0.5164984583800212
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.4560461397727882,0.5461173920573384,0.3989784597271938,0.4957585971758499,0.49602089391845205,0.4666186524227374,0.44259902885189845,0.5180347020372038,0.4915333588024511,0.46557192593339475,0.5093011709086902,0.49829600223044257,0.5381706031902117,0.6065083582664355,0.4601488429542277,0.5030936339353506,0.484228471809399,0.5126188569690894,0.519689690682687,0.4895875432204051,0.41420281744349885,0.42126274400527,0.4956443379052514,0.4624333341244276,0.4044160929695695,0.6559289780308311,0.4251352874826973,0.5201953254623272,0.4039342248158197,0.49411483176222026,0.43678735019759374,0.48688197554340396,0.5233833290169618,0.5377802600686591,0.4732216378873146,0.44058905769823686,0.47881262894951304,0.4727908287170204,0.46525398412874985,0.5425019559514733,0.49482303472068656,0.4772510453274866,0.4618170559015858,0.4852996908713466,0.39834111637378217,0.4503606840068883,0.5802469925341263,0.4076342228261546,0.5565862357141202,0.3749889052970063
+0.3952678926227704,0.33746171893202725,0.30799625379193,0.29623327354342516,0.28534665799638703,0.3237045034817153,0.2366778566124768,0.3227257288192091,0.4058467574318256,0.3053363637805748,0.2835646474737934,0.4011775274416627,0.29210217197385474,0.31639073785420607,0.25503165005153217,0.35530873908016036,0.30412321297368544,0.3662039216400616,0.42579613542149836,0.28621619213016225,0.39885655202669457,0.29744512077506924,0.3855207632834414,0.3578611498852791,0.3085525576229269,0.2893464333313425,0.3624295322436504,0.40058763051193397,0.3278005305209667,0.3882468085788674,0.35138998609474753,0.21082376724549967,0.43318968322771895,0.3342865052209678,0.4436127940163979,0.3403266402236663,0.383162588518861,0.29960628703748227,0.3782668901315428,0.38127639759585175,0.3665163286285869,0.4222494596695708,0.2407185077383415,0.40647161472298093,0.2963944637998162,0.2821215967076167,0.32070842128942245,0.3762459717985488,0.2978331269727629,0.324338912114257
+0.6656291501712143,0.7774110273975239,0.31274461913789864,0.25639228748503606,0.4244461366098599,0.8440290670392624,0.686417504785819,0.7853992711493123,0.5246757970866192,0.7597015561147396,0.843888929984809,0.5368402250782401,0.9389237751626474,0.6271926397378139,0.7917959487019978,0.39257408311717606,0.5833630751498452,0.4990318572772586,0.37795506439810644,0.3173853930078701,0.6739969681890732,0.5687808148664879,0.5527633244465907,0.7511510070047914,0.7746512914736344,0.6978802819834108,0.4142094580187928,0.6047019490541635,0.2835609270103256,0.4283009627948246,0.723669987957597,0.5870427198383976,0.4255864707775172,0.20905621871844146,0.485609512323705,0.6341773297972558,0.5702985083620409,0.7208956313244294,0.6798758040750856,0.4780066259811758,0.8540040387396661,0.5613838644329977,0.4438458289355944,0.3831181727920318,0.2790880253752628,0.5359604826492085,0.44278355838043376,0.6756076758939917,0.7432799812225238,0.42026442100557077
+0.21188112708777038,0.12731605254048292,0.24826343710992788,0.3339424348346611,0.38916537297975756,0.6715869959830321,0.27326806181028307,0.21712319990220805,0.3718887030222563,0.2803001326828809,0.4808882004663188,0.0462198599444997,0.5749388723738945,0.3145323613088699,0.47098313203266307,0.39735879116408634,0.43277143622492537,0.07498519745610342,0.4860246288273805,0.3592966394483451,0.32898101572173466,0.09648098666637565,0.3388320505219774,0.3846502303112969,0.2549650017954278,0.6928695932721218,0.13107175821459807,0.3377853631947009,0.2923597345195992,0.46105121894337414,0.17214050378026233,0.06590509278059559,0.3028831515954732,0.18432262846189043,0.20771170146869053,0.19019250788162767,0.37872291502699207,0.46138432072748414,0.5026936940237303,0.4000378202222785,0.23332121640209966,0.11419088239598821,0.3487686253258459,0.3112549028045347,0.31227400056550325,0.2485824314483981,0.3102505825114026,0.1433501839067815,0.23784218600378934,0.2012973809106865
+0.41951451717736893,0.44360478373697615,0.4045298719504722,0.46770143209621656,0.4123660119217174,0.39105203294392354,0.3785358186025169,0.4620505595375233,0.4482658716928347,0.4060308835064521,0.439491960018226,0.45285766164443436,0.5172397642843887,0.40598654793731653,0.39336653499763263,0.4367678776297136,0.45347957351379153,0.4968067362051234,0.4397440971762911,0.4436873324675291,0.4057507872897797,0.4588440967588396,0.42808118868507733,0.4524543476888539,0.36944021477355987,0.5016289389344339,0.3721608931753043,0.4554817405847064,0.37314230869022397,0.514370539854871,0.4130317526844465,0.4188690010140261,0.4495909849551795,0.46569207700354687,0.43750508768057145,0.42591714194103025,0.45807138866750846,0.4431677539956715,0.41345992369442236,0.45296121194843453,0.42957906811773017,0.43156038891346554,0.4541149367132152,0.4514154210395019,0.37837214410146397,0.4083146987835955,0.440634145587784,0.39916626216172546,0.5339892526743981,0.42172921813676323
+0.2272287531880481,0.2924412093269984,0.027552118945295682,0.12277433837979039,0.03730691279833521,0.30313273528002965,0.16726395762079796,0.2359061294215603,0.2674807674579234,0.4350825501008896,0.012529419438216506,0.15109862770267304,0.15782240161025823,0.21357688519478998,0.1764386547711644,0.03545445145819028,0.11366210151262653,0.2422331359141926,0.171759752803358,0.10654523791404534,0.08183876765508273,0.07713397358606132,0.020995846886355047,0.09174330760261006,0.028000608629992478,0.1598062188365976,0.24401570663548594,0.20430160074123493,0.10060766519223203,0.11754007177004647,0.1454596860529695,0.03937730856190098,0.16143381407558205,0.1754641858232526,0.0521848023055441,0.1915690432942353,0.06132182801819701,0.10119175733166381,0.14834373316439003,0.22206921448194564,0.2806128056979292,0.11163044971900328,0.06080789577983326,0.20063570176108922,0.4023284823101584,0.04664062674876347,0.15991177521736138,0.0708112655560632,0.1161080718242591,0.09548254484495367
+0.5446245940426713,0.5494926770405604,0.5746499121239179,0.6218406649829236,0.5114775443628693,0.6366129839131545,0.5165423024293757,0.6370925169428692,0.542762995507313,0.6224536133465991,0.6195887861627687,0.6201674372045437,0.5833410289212363,0.5737714291757635,0.5614949019230016,0.5919750750710743,0.6646789349958279,0.537933061240833,0.6078420386828899,0.62000043075478,0.5935821456662708,0.48387453640644323,0.6614913982224161,0.5906930411673309,0.6435112262060124,0.5472840965847809,0.5410355385864576,0.6163531582848534,0.5662630656101545,0.5127930515232252,0.5694412980213047,0.6006435517576451,0.5549067943647045,0.5709044806156345,0.6087876033966626,0.5875175561590011,0.6262948708083219,0.5694286554113226,0.5513503034907371,0.6881534223900474,0.6292988137160652,0.5658270041014457,0.6296448327653298,0.5804412641529479,0.5549867683110549,0.6376343018830283,0.6548520152987767,0.5776049635056665,0.6088880679489195,0.5441456733365482
+0.8334184253030094,0.8576141619236942,0.8243588245265443,0.8804644279020049,0.8025540910522031,0.8347102206743517,0.812811091580054,0.8155295359196895,0.8427912840124486,0.8834114529801927,0.816595166011179,0.8887262607510571,0.8289262559831818,0.8682377697822017,0.8425429049670992,0.8748471695840653,0.8610106825206663,0.8036559519162669,0.8502294893626179,0.8560039035255894,0.852326337652949,0.8910998873417862,0.8771483314450506,0.8222389076772303,0.8551288595084107,0.8032659833366634,0.7897127187628976,0.8079341195297846,0.8037366866403934,0.8330469540106575,0.8389123738487692,0.8416192634440851,0.8544615512223401,0.8975187135846504,0.8476033854347524,0.8391143841607949,0.838094447145523,0.7926832649165485,0.8547590683387566,0.8797772225892578,0.8786848845425206,0.8384317199633586,0.8379384969500131,0.8986381758977164,0.7807453593188757,0.7889167266696956,0.8351719755447569,0.8257819514276921,0.8899353872794549,0.8705998214946934
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.43399232411556565,0.3880210026764744,0.41408983635653074,0.35562920216280014,0.4206666902959723,0.37678642881971564,0.39169381163398453,0.42262456595061193,0.43176830995340487,0.368812165558667,0.46367946949138356,0.42429894347815633,0.4850420096847177,0.302281762233925,0.4029910855621027,0.43597130763403974,0.47710038867070304,0.4782923601665337,0.43788194388956037,0.4536505682550652,0.39584681499391455,0.41032636521749816,0.4011342558618931,0.4371002264149695,0.40332505177775707,0.37233062040488646,0.3853880157912385,0.4505884348070552,0.35983276308578566,0.43448218440981295,0.37705181458871445,0.40699788679184074,0.3400722221293895,0.5249694701170622,0.43159850037896247,0.4038372187008506,0.3881571378777961,0.44804233027679957,0.38503390093268947,0.40111186422910045,0.4054585392744918,0.4048011831423874,0.4251472275511341,0.4228780687890388,0.3679849999042404,0.3852269236856018,0.40796335294067965,0.39357170532222535,0.5002473578428198,0.3529142107486882
+0.41951451717736893,0.44360478373697615,0.4045298719504722,0.46770143209621656,0.4123660119217174,0.39105203294392354,0.3785358186025169,0.4620505595375233,0.4482658716928347,0.4060308835064521,0.439491960018226,0.45285766164443436,0.5172397642843887,0.40598654793731653,0.39336653499763263,0.4367678776297136,0.45347957351379153,0.4968067362051234,0.4397440971762911,0.4436873324675291,0.4057507872897797,0.4588440967588396,0.42808118868507733,0.4524543476888539,0.36944021477355987,0.5016289389344339,0.3721608931753043,0.4554817405847064,0.37314230869022397,0.514370539854871,0.4130317526844465,0.4188690010140261,0.4495909849551795,0.46569207700354687,0.43750508768057145,0.42591714194103025,0.45807138866750846,0.4431677539956715,0.41345992369442236,0.45296121194843453,0.42957906811773017,0.43156038891346554,0.4541149367132152,0.4514154210395019,0.37837214410146397,0.4083146987835955,0.440634145587784,0.39916626216172546,0.5339892526743981,0.42172921813676323
+0.26228042156253883,0.4598994419937243,0.27585413584385216,0.2707639483286195,0.7237213362924954,0.23986689859158916,0.3066882608736891,0.20961864508083272,0.5543074148557742,0.31015646741076475,0.44730923747617624,0.6408781530201457,0.41891510994313946,0.23196122956848478,0.4756257946949926,0.2703544349071757,0.13407044960178868,0.49895599228341775,0.3604577737544983,0.3717362400995727,0.4620234962182729,0.40998621430194887,0.34878243444941814,0.42610072707464064,0.22483597560847443,0.28604428410354626,0.317881836043108,0.403122139038911,0.2164822846705252,0.4372182949628559,0.30432800447019714,0.3068567367425995,0.07341221368174776,0.519003577346266,0.18292209949105603,0.4059006300238143,0.34490584351510667,0.35469078777953966,0.2295547201868982,0.4048900979736985,0.35731893839026646,0.3816252535916761,0.42600398361968445,0.405286686810282,0.32051637683261186,0.4357469960398867,0.22338531432034917,0.34013561634659345,0.5032120113511032,0.17883871574347254
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.22772463971482895,0.2476760682012828,0.31571615896990496,0.21603314047094513,0.24700244239736172,0.2877415358489212,0.23802648173533053,0.20007069322350482,0.20658474581616723,0.2684208823850829,0.2541096509359561,0.32193001486668366,0.2483114833832587,0.22800552423925538,0.19868330920966637,0.3069078339542852,0.2873139830164951,0.35491588162453724,0.28587757992137336,0.2058348386740697,0.3268913891899098,0.25512733129132686,0.2151460392047559,0.36235041427203085,0.2987599155905027,0.2563230076140863,0.2693268294876452,0.31290325533466556,0.24635207822158547,0.38813557692280815,0.27876057678453403,0.3847811260880426,0.3585255677387063,0.2845699777470187,0.46128394407457707,0.2735601859465184,0.20509485353665294,0.2025440558658842,0.34320493939351243,0.20786423925522723,0.18036847697242478,0.3029580662757059,0.27355368259529445,0.26847655991224756,0.36671499910382627,0.2486932390481291,0.27557354695488173,0.35222108855597783,0.3275668174742308,0.2347955557516164
+0.3424467989577558,0.4752084298500073,0.5844644120224153,0.5320400051346845,0.35227832431178185,0.3513762177533381,0.39814021102717834,0.47399972460851536,0.3522863033269023,0.28221005134424404,0.37908931385425254,0.4617277324687914,0.3422179893321278,0.3966918257528186,0.3952460291518294,0.3678136540365013,0.45184866972279153,0.5239833521691398,0.43783661138893953,0.2397689253338323,0.4423157741939777,0.4099398058510013,0.35606033702423046,0.3341943781918267,0.368387328532412,0.3185304322274522,0.3437498667645144,0.3608223870838602,0.3774333416238859,0.44476015424929455,0.40646050444493076,0.2859061816101271,0.5399703722267122,0.3509900787735438,0.48245555943974927,0.4010267877265997,0.30133209255853555,0.5058120373001739,0.3726719380358155,0.47297556450590117,0.5069678220919706,0.3358223948207721,0.37928383107625613,0.37945858617007444,0.5043847855643703,0.3245051112484398,0.4031004797231252,0.32507521492078467,0.2145330204589744,0.351177309175445
+0.26281444583247315,0.23467861236851167,0.22988082426031106,0.22562789032270125,0.2409716562692447,0.30832223839468176,0.1904471506796281,0.19262896987505285,0.1775758950801153,0.2597532414918941,0.2556338161313007,0.26737623915960673,0.2269540059150619,0.24638236897616267,0.2407174209563831,0.28795020929117265,0.2366817345739811,0.23019782590698412,0.1761499496772323,0.23627352208967722,0.24877758752122706,0.18695563379826688,0.14574438948943796,0.27338590413646147,0.306734758835788,0.26837420532768713,0.2897905489741235,0.2598848046457668,0.2619770544911515,0.33974475176589686,0.20853180077647904,0.2148352573327471,0.22108184147719115,0.30717668662216707,0.30562951683213274,0.19859529257104164,0.19057130309418255,0.23122597386240368,0.24446619991642884,0.18634936890161571,0.2242157157731179,0.25708540409849545,0.2367615641769424,0.30031375073302535,0.2952012815929509,0.2171664315476482,0.22929923611853034,0.31054414422554744,0.20717505035054745,0.22544035324558093
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.6817510569840836,0.5675379527035074,0.7179811226290611,0.7490514723974537,0.5885403571227564,0.6794779312825867,0.7210061902999954,0.6648918242804328,0.6485207860377996,0.6742388620483161,0.6004876045962603,0.6416003868672127,0.66258284111524,0.7644005423460958,0.8077411085274449,0.672526995404043,0.5612682101697373,0.6465637614103384,0.7327884797305124,0.6310816186892446,0.6206629847293976,0.7423592799874186,0.5872029583789348,0.6595679262830774,0.6621828267825519,0.6994265779159208,0.707669002015789,0.6540913101066974,0.6277425000582147,0.6276121707326885,0.6255652701499064,0.6485951949213522,0.6334301226570892,0.7029303423875131,0.7505450831584976,0.6727870583474339,0.6032393063460804,0.6295332100392514,0.6907259235191249,0.5724095270316282,0.6037615587594823,0.7650375077575953,0.6598074329998406,0.6976867468819695,0.7091482524561898,0.7309452561032576,0.5421669491002465,0.7150088818194769,0.618715250389683,0.564973583489802
+0.41134289710116106,0.416137050063962,0.499345764944734,0.47043864248666883,0.5368479385982958,0.5351898120017324,0.4540275232053537,0.49178222158617985,0.4782538961013186,0.5744323543262564,0.515857160713741,0.5833096626430202,0.42822912525123485,0.49059915879340993,0.6000033147580001,0.4322851320016514,0.41757782920578324,0.5999465106692803,0.4337354252047044,0.42903260926974146,0.45492728334108484,0.5099575845557782,0.5558183123353069,0.45983421715132416,0.5031220895228088,0.46162752596884715,0.48357042391584065,0.36991223552615404,0.4746804559636601,0.414234379343902,0.5509498523060717,0.4936007500778271,0.453173239792084,0.5305467653177813,0.5051713749597394,0.3887935233537146,0.4884758449321847,0.5348084979057122,0.49452169984813904,0.49157307414559276,0.46143868098416113,0.46365412718330723,0.46827232021795967,0.3853841104393929,0.44516205500368317,0.41325793172447334,0.3304761537006549,0.5201616743205353,0.5382979657679922,0.5159365199057507
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.07868141649002382,0.011294344924481909,0.11033476556610887,0.052685949428629184,0.13814879926756152,0.09469434572519678,0.08857393383818253,0.07710867112613856,0.2853921568627451,0.21533500987848814,0.16492216117216116,0.20683383899465496,0.10109952090909782,0.025772868926533868,0.12729523809523807,0.13338827838827838,0.044867996762309376,0.02670340280138242,0.025211038961038962,0.10487000406968093,0.04478846153846154,0.12236107303470611,0.25322284878863827,0.029732906255041307,0.03195024077046549,0.10572115384615385,0.05915397153013251,0.07246850714400715,0.12448590381426201,0.0343421879398751,0.03644306452174154,0.13645745821995023,0.03890677506775068,0.05,0.223252688172043,0.015472500538677008,0.10450098899208805,0.0889683660378482,0.09566666666666666,0.1289322367104839,0.04966250374363582,0.05090909090909091,0.07536963155505799,0.24946053371616397,0.16857816081565224,0.02721830985915493,0.052707404593579046,0.05828335278147963,0.05678208384051021,0.057307738811021434
+0.5207420630930991,0.4663261998095595,0.4676534939914598,0.24995418449424836,0.4189171318499515,0.14550693922221547,0.21079709046097567,0.346603201575553,0.3773883904191655,0.5116769171448872,0.6527718455930791,0.3025457427274578,0.34415921287695256,0.36306175052521256,0.49075800828253846,0.24881217065544642,0.3968429111493773,0.30598079539078615,0.31970744023839764,0.475360256534012,0.31536232361615574,0.27551303648182546,0.33891220795053506,0.6485390882511787,0.23181589345661507,0.6200393529485246,0.5598827696400841,0.3415422087468519,0.23511214390267238,0.4079196376692811,0.5652679392787373,0.4293679530083592,0.4489738320619325,0.26157434578174305,0.33237091599466095,0.46324567621508955,0.4635677933260395,0.2675083763447716,0.8345396363423613,0.44515822551642203,0.17006666323266448,0.4416359246894757,0.23259319256746327,0.4984360020977491,0.325258958408416,0.4308438464897133,0.3019957421035726,0.505988371778572,0.531889372100873,0.5427465553337754
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.4562364062613081,0.4065473095737435,0.41194997862172067,0.4156205593809335,0.37367112595133717,0.4150611000106262,0.43810762943405474,0.4405161240764102,0.4632795887632338,0.3508972034067538,0.42656239320866957,0.3300721168016569,0.41178600738400034,0.33273651267577753,0.41762280254040235,0.5364490504449584,0.46453184234696415,0.5012214182087713,0.49910251719903087,0.3976292766249149,0.3780610335210959,0.34726239676165227,0.44611724577859496,0.5690448942445705,0.468782211419405,0.28926823698727416,0.47313950769737695,0.3716456574629366,0.355427527245641,0.4701350224240939,0.4270003496361187,0.4409703359316112,0.33037802162992835,0.4004674132100069,0.39091413687589865,0.4089224507163573,0.42649245296838023,0.5545588008404307,0.4142061794314231,0.37393552097913946,0.4434353022134865,0.3652203516768779,0.3818746943245592,0.43140515090990583,0.3610239126436938,0.440670170457594,0.41373685444288116,0.4322533775818424,0.3680603180720356,0.45460110017279765
+0.8395535918839873,0.7695017523261071,0.7766929205645492,0.7731452771256521,0.733880185271111,0.8296099790439847,0.7685998568206784,0.7856936729135008,0.7116749284572401,0.8787418011626165,0.842331753924945,0.8324921433451119,0.8651695952309243,0.9033566437325655,0.8258053393825684,0.7692083510763108,0.8619282621802803,0.8670853641048585,0.7987187462664074,0.82264481752421,0.861024623204151,0.8351088745000945,0.8524924495039017,0.7189014264653021,0.7484150978128816,0.6777662058071584,0.7654552982743956,0.7452901239877795,0.7769826760786482,0.8434541096248432,0.8862615942724201,0.7472816521891886,0.7126825162087799,0.8111054205790269,0.8495545164139218,0.8020916395561238,0.7109766695256983,0.8201353536766759,0.7007006002017259,0.7247212529011887,0.8174542493478789,0.7996501093988936,0.8158204070124968,0.8841059587691683,0.8347919074988355,0.7469878045281061,0.7976980153091773,0.7861087663723778,0.6371627380565495,0.7649585940443687
+0.6015395858658436,0.321363836211506,0.2917733642674783,0.4759680804036611,0.6540920453495608,0.39748366080864966,0.3960702773471184,0.5735666939833142,0.0690747088440203,0.46701135312847664,0.42452212607399836,0.41147996932532616,0.3381371740021005,0.22849113306517327,0.4644641864151196,0.41720396739476423,0.4817152873175132,0.6478770801225707,0.4074561597932736,0.3969759318192455,0.02774704197946543,0.18542920219489167,0.37984400787824135,0.7614605684096276,0.47833040880946476,0.19304713710186783,0.5392553505958774,0.3643290699412001,0.5257662249363837,0.42139153271852786,0.23926390280959764,0.13716471452591528,0.22533204630784442,0.27132971308141135,0.03812672215429175,0.3645398281657489,0.3326943877860715,0.4195879558284734,0.17679542621357242,0.36937906329066833,0.13718798865354842,0.22173804153849683,0.31080939102696525,0.26523913324184795,0.24965135489165796,0.21968447605917304,0.13463078125316652,0.10078160254179366,0.6199152366872852,0.3693323542012647
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.42773459544144543,0.4828056747073841,0.7220290834861665,0.34900096722452983,0.10773070307337856,0.3366410210844249,0.3651401125916599,0.5502951048352311,0.43233370615443967,0.19294459077571194,0.540788245079192,0.6288760960654846,0.3336816683075871,0.4479442890872931,0.7135458318423236,0.4038432070981063,0.3366382384440923,0.41140516556492324,0.07404564888015792,0.4766195091309651,0.5176619417816226,0.46307505051582326,0.1868287194730623,0.5380003520757515,0.23679608589743834,0.21186660088069229,0.20646252853017827,0.47381440621901916,0.37374572706362813,0.44999261562434983,0.7716225002971789,0.4321691524761333,0.367464434192731,0.17984517342250406,0.5720133550431432,0.46773542286817976,0.655201602607294,0.4275008415620771,0.22245799442845088,0.2541349690472005,0.5972804082259141,0.14634763698748032,0.43386115602074116,0.19899915845309007,0.3495905231510666,0.7961996380643476,0.17898430020666758,0.3933340191693987,0.7435015895154325,0.44984269278371464
+0.3424467989577558,0.4752084298500073,0.5844644120224153,0.5320400051346845,0.35227832431178185,0.3513762177533381,0.39814021102717834,0.47399972460851536,0.3522863033269023,0.28221005134424404,0.37908931385425254,0.4617277324687914,0.3422179893321278,0.3966918257528186,0.3952460291518294,0.3678136540365013,0.45184866972279153,0.5239833521691398,0.43783661138893953,0.2397689253338323,0.4423157741939777,0.4099398058510013,0.35606033702423046,0.3341943781918267,0.368387328532412,0.3185304322274522,0.3437498667645144,0.3608223870838602,0.3774333416238859,0.44476015424929455,0.40646050444493076,0.2859061816101271,0.5399703722267122,0.3509900787735438,0.48245555943974927,0.4010267877265997,0.30133209255853555,0.5058120373001739,0.3726719380358155,0.47297556450590117,0.5069678220919706,0.3358223948207721,0.37928383107625613,0.37945858617007444,0.5043847855643703,0.3245051112484398,0.4031004797231252,0.32507521492078467,0.2145330204589744,0.351177309175445
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.7736059646112404,0.534455065903884,0.6058380629664726,0.6888596766042461,0.6998987945474608,0.7774968542736707,0.6601218876723263,0.6840990352029358,0.7534939543179965,0.6559033341609003,0.6834610230569909,0.6519901920433887,0.7216428344295018,0.7217363990756915,0.6442249366233018,0.6271956230086377,0.7262229925003472,0.669255606247474,0.6662480756641219,0.6487052937064556,0.728747328929106,0.7013606155609428,0.6163904348299699,0.7444442126770285,0.7548234264337748,0.7700270755644322,0.6199834558902689,0.5736584117076509,0.6059777683813649,0.6324692371481963,0.7018368679507807,0.6329322628762354,0.6650449103571927,0.7159179135815283,0.5905617281055707,0.695052599952688,0.6303598120414654,0.7062168685401065,0.5759201557407554,0.7170221248827282,0.7557455907955435,0.6204963092474782,0.6501782514176433,0.6351052633206451,0.7646889700646277,0.6963011532361602,0.7348253663050381,0.7171784741790542,0.7538133801225974,0.7303445488491929
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.5025568939275548,0.7528616725808729,0.7085291381974983,0.7966665873928129,0.6322476969442034,0.44910640917517997,0.8148747488674846,0.6814793830786777,0.7452096157480307,0.7910129230231209,0.6791712905623268,0.7841640889287995,0.7374827115883614,0.784016676770431,0.7385330206710763,0.778595433628661,0.6225748913728583,0.7776416537191915,0.7718580564949532,0.8888680013343949,0.7671225895709742,0.8295812082257341,0.7499828551014098,0.757847336533575,0.8941743356733529,0.8447402150861766,0.8281157632946252,0.6166018115399095,0.7432368637942918,0.6725322989575447,0.7899119693920498,0.8273618750410553,0.6883724981278766,0.6075906228258814,0.7856382673620642,0.7178220856108125,0.704528570589435,0.6752989798379933,0.7783312595196092,0.7637734374949982,0.5836025204050673,0.8221399121660916,0.7966137136194547,0.6518535677987255,0.3956985046941615,0.5816740523836978,0.71534463280767,0.8356051788959757,0.8012335355654697,0.5475925211583028
+0.6817510569840836,0.5675379527035074,0.7179811226290611,0.7490514723974537,0.5885403571227564,0.6794779312825867,0.7210061902999954,0.6648918242804328,0.6485207860377996,0.6742388620483161,0.6004876045962603,0.6416003868672127,0.66258284111524,0.7644005423460958,0.8077411085274449,0.672526995404043,0.5612682101697373,0.6465637614103384,0.7327884797305124,0.6310816186892446,0.6206629847293976,0.7423592799874186,0.5872029583789348,0.6595679262830774,0.6621828267825519,0.6994265779159208,0.707669002015789,0.6540913101066974,0.6277425000582147,0.6276121707326885,0.6255652701499064,0.6485951949213522,0.6334301226570892,0.7029303423875131,0.7505450831584976,0.6727870583474339,0.6032393063460804,0.6295332100392514,0.6907259235191249,0.5724095270316282,0.6037615587594823,0.7650375077575953,0.6598074329998406,0.6976867468819695,0.7091482524561898,0.7309452561032576,0.5421669491002465,0.7150088818194769,0.618715250389683,0.564973583489802
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.8334184253030094,0.8576141619236942,0.8243588245265443,0.8804644279020049,0.8025540910522031,0.8347102206743517,0.812811091580054,0.8155295359196895,0.8427912840124486,0.8834114529801927,0.816595166011179,0.8887262607510571,0.8289262559831818,0.8682377697822017,0.8425429049670992,0.8748471695840653,0.8610106825206663,0.8036559519162669,0.8502294893626179,0.8560039035255894,0.852326337652949,0.8910998873417862,0.8771483314450506,0.8222389076772303,0.8551288595084107,0.8032659833366634,0.7897127187628976,0.8079341195297846,0.8037366866403934,0.8330469540106575,0.8389123738487692,0.8416192634440851,0.8544615512223401,0.8975187135846504,0.8476033854347524,0.8391143841607949,0.838094447145523,0.7926832649165485,0.8547590683387566,0.8797772225892578,0.8786848845425206,0.8384317199633586,0.8379384969500131,0.8986381758977164,0.7807453593188757,0.7889167266696956,0.8351719755447569,0.8257819514276921,0.8899353872794549,0.8705998214946934
+0.19287487742771706,0.3898831768973459,0.297941284589854,0.1108537093520518,0.10528905126401611,0.1600207536330565,0.19998750678686192,0.05872586879603368,0.15547317724564855,0.1689245315405812,0.14628357594878014,0.024807604683305357,0.08615877480789041,0.03598189885122824,0.10407299788000189,0.09426024913373306,0.12631464082011823,0.09176837599660674,0.03807437385682499,0.1053134055794789,0.1292155853611445,0.03424661677238243,0.2885824888844346,0.2818881594502144,0.11933381094597074,0.15595685244059368,0.19249074398912913,0.15195347399130507,0.22599974127932831,0.05164087622690084,0.08839280731658077,0.09525692646430127,0.37911275622321533,0.2174611728704069,0.10936474338371102,0.09575702368389041,0.07019400315514568,0.09190160638797554,0.1664868465263107,0.1303361153166044,0.30453527209668296,0.08886067385764804,0.08446635033173353,0.020048626010848405,0.1994004500981072,0.12563974446139597,0.08771596930852853,0.08860366040406813,0.22539974212442815,0.04202764885855327
+0.24723915575973968,0.25721973013052346,0.27969699869717457,0.22986030465069962,0.2583611150471782,0.2672748959417279,0.20510311032299733,0.23484417309388683,0.14180543964692255,0.24864622725927782,0.2519669215063591,0.2546106281198458,0.21636689869613213,0.2599389409895816,0.249040630045575,0.21614293182388394,0.22662178609636752,0.2508372165535308,0.21667869911226284,0.2425545380382366,0.2643026775271605,0.1995774095727171,0.2142864867006806,0.23800201265838397,0.26541879764899723,0.27559989118574063,0.2561073852428814,0.2861932986990557,0.2506382190455332,0.331709129325725,0.22555389449133087,0.3380549035377692,0.21265683329034452,0.26887740162682777,0.3151158255483423,0.2086416183816486,0.22348685552931652,0.2289225380532431,0.20546508650226594,0.22974214638963372,0.1913913912771469,0.25336217351695917,0.22429288042241527,0.25069339882804675,0.31368756723052793,0.23912586209385875,0.211992605369791,0.35586906653932543,0.18850056658458963,0.23680963786497156
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.39188252676911184,0.3578143606916818,0.3485527867292171,0.29623327354342516,0.2988046882792191,0.3474420894753784,0.2837841855472559,0.32373935245047974,0.4093831849517437,0.3053363637805748,0.2801271474737934,0.40421841448254975,0.3365730057388635,0.31489409015739017,0.2681454974433837,0.3719950290115813,0.2823833453956978,0.34238918742475116,0.42713722853890723,0.34051013480713976,0.40573155202669453,0.2749668619184008,0.3855207632834414,0.35769111096956974,0.30379098679543737,0.2870883688152135,0.40221740697475544,0.37785349391300854,0.3252398398099178,0.38933061522889345,0.3535843364022615,0.2422422230486932,0.43541911548027334,0.4204481389815537,0.44710646084339806,0.33478437547087514,0.3672665813916985,0.36383488394343777,0.39546772835385086,0.38478133633687406,0.3846258817577725,0.4222494596695708,0.23073716786878076,0.4652275884473163,0.31830018605213745,0.2772555206932356,0.32070842128942245,0.37393827949085645,0.2631145813247575,0.2994794028263865
+0.6817510569840836,0.5675379527035074,0.7179811226290611,0.7490514723974537,0.5885403571227564,0.6794779312825867,0.7210061902999954,0.6648918242804328,0.6485207860377996,0.6742388620483161,0.6004876045962603,0.6416003868672127,0.66258284111524,0.7644005423460958,0.8077411085274449,0.672526995404043,0.5612682101697373,0.6465637614103384,0.7327884797305124,0.6310816186892446,0.6206629847293976,0.7423592799874186,0.5872029583789348,0.6595679262830774,0.6621828267825519,0.6994265779159208,0.707669002015789,0.6540913101066974,0.6277425000582147,0.6276121707326885,0.6255652701499064,0.6485951949213522,0.6334301226570892,0.7029303423875131,0.7505450831584976,0.6727870583474339,0.6032393063460804,0.6295332100392514,0.6907259235191249,0.5724095270316282,0.6037615587594823,0.7650375077575953,0.6598074329998406,0.6976867468819695,0.7091482524561898,0.7309452561032576,0.5421669491002465,0.7150088818194769,0.618715250389683,0.564973583489802
+0.5758385949585669,0.2424555459320454,0.18435497975497497,0.07242058992597201,0.10900587573168653,0.06507839327851998,0.4897954704996279,0.2551227605293267,0.44007267690277,0.6032034200637997,0.2488644452015665,0.10865558825514425,0.09180524045088427,0.34062041827238315,0.14855721591721344,0.21536715541534224,0.11750435040467615,0.011183452814666824,0.11661619147456476,0.11468128859951211,0.07620212179724692,0.12101391837697571,0.06897490532211661,0.3375546940353026,0.15940861843874296,0.33864620182780003,0.11594868407835504,0.9216428698595763,0.35687836598521466,0.08475726143808253,0.46940485043013086,0.0274358180460794,0.2342447943869253,0.16172913286202778,0.36151165757791826,0.11426402023416857,0.2693671064194404,0.04557446808510639,0.1577088786825969,0.37719159937445157,0.46104208433172644,0.6385189222578809,0.3528880495550215,0.07790217039145649,0.40858650170280797,0.2233980247856636,0.04515360562829783,0.06869661628282317,0.37498825875353115,0.242758639259968
+0.18114130702443876,0.340310670637504,0.2694365193584618,0.5980449858219057,0.3367717629345634,0.47330628473203595,0.18952336253564306,0.5471375718607612,0.391032575030539,0.4466959127297903,0.2692941141696121,0.4850004971022159,0.21064832810198858,0.14226324350155212,0.19084302596119002,0.26927582383470666,0.42170432000314717,0.11193953444894453,0.21045950276327907,0.08144358970861493,0.12376002082293093,0.3830415730419137,0.459343637034113,0.3997227192243675,0.3374012306588055,0.2958562628813646,0.26346937008547483,0.16133829628911614,0.22225533112249518,0.4500848385479398,0.03768191663718216,0.2995965898406466,0.1599046880828879,0.34307956349243013,0.5255209671163064,0.26914512760240294,0.11515242136375857,0.23254999832680182,0.3228884113003144,0.2843464823094671,0.11925389234085436,0.4553603777779209,0.2953826763425839,0.44030821430902556,0.3423771036622448,0.14934010118578883,0.27031580739933103,0.3864343569082555,0.38090954953970296,0.23898050323868933
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.41951451717736893,0.44360478373697615,0.4045298719504722,0.46770143209621656,0.4123660119217174,0.39105203294392354,0.3785358186025169,0.4620505595375233,0.4482658716928347,0.4060308835064521,0.439491960018226,0.45285766164443436,0.5172397642843887,0.40598654793731653,0.39336653499763263,0.4367678776297136,0.45347957351379153,0.4968067362051234,0.4397440971762911,0.4436873324675291,0.4057507872897797,0.4588440967588396,0.42808118868507733,0.4524543476888539,0.36944021477355987,0.5016289389344339,0.3721608931753043,0.4554817405847064,0.37314230869022397,0.514370539854871,0.4130317526844465,0.4188690010140261,0.4495909849551795,0.46569207700354687,0.43750508768057145,0.42591714194103025,0.45807138866750846,0.4431677539956715,0.41345992369442236,0.45296121194843453,0.42957906811773017,0.43156038891346554,0.4541149367132152,0.4514154210395019,0.37837214410146397,0.4083146987835955,0.440634145587784,0.39916626216172546,0.5339892526743981,0.42172921813676323
+0.4055966832621487,0.7000027033658434,0.42132007577674524,0.7949729951570123,0.7601780782959449,0.3927810505907563,0.3592937488935275,0.2463877537518652,0.3108548366431775,0.1434915818948077,0.39431923098242444,0.29167755928963496,0.323205330520594,0.6209909883970182,0.8164393676904319,0.36929766383255386,0.6017288296110794,0.6950238340366373,0.6275921963697764,0.8572330170189798,0.699138007811822,0.27052347652347647,0.440781348417298,0.7573294004757165,0.10815079365079364,0.263300991951621,0.8690165059306412,0.6530446095927683,0.34644563530002587,0.3679104779605523,0.4561487047701085,0.09785561735351267,0.8216019711888675,0.17732421589522399,0.7507068830883529,0.4566005924689638,0.7695023551348023,0.3101099784194527,0.2662019776858178,0.5374012073327374,0.4668463685416625,0.7678786944633725,0.43583512946447833,0.6410784789755632,0.670306331953071,0.219807207796178,0.8683868154243148,0.3530334044065387,0.47547335532206,0.32480251093324797
+0.3952678926227704,0.33746171893202725,0.30799625379193,0.29623327354342516,0.28534665799638703,0.3237045034817153,0.2366778566124768,0.3227257288192091,0.4058467574318256,0.3053363637805748,0.2835646474737934,0.4011775274416627,0.29210217197385474,0.31639073785420607,0.25503165005153217,0.35530873908016036,0.30412321297368544,0.3662039216400616,0.42579613542149836,0.28621619213016225,0.39885655202669457,0.29744512077506924,0.3855207632834414,0.3578611498852791,0.3085525576229269,0.2893464333313425,0.3624295322436504,0.40058763051193397,0.3278005305209667,0.3882468085788674,0.35138998609474753,0.21082376724549967,0.43318968322771895,0.3342865052209678,0.4436127940163979,0.3403266402236663,0.383162588518861,0.29960628703748227,0.3782668901315428,0.38127639759585175,0.3665163286285869,0.4222494596695708,0.2407185077383415,0.40647161472298093,0.2963944637998162,0.2821215967076167,0.32070842128942245,0.3762459717985488,0.2978331269727629,0.324338912114257
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.4603442128808519,0.34947287755743667,0.3844197582672015,0.5238333388776109,0.4812258263462962,0.31632315740686845,0.20947477593605604,0.3090489443430944,0.4522614784615174,0.4689365258391007,0.5164731041250803,0.49624353495249,0.6022414297608129,0.4509124902225391,0.5646536450720546,0.18442848811405366,0.27462013055671747,0.42002928284957863,0.6496944863250751,0.4446920950221226,0.3396804935812937,0.42890088367964935,0.3382589029188069,0.2460791413789368,0.21552653727210458,0.48891980302065186,0.5485335671176673,0.40121584712414765,0.49630209247923757,0.494356940881448,0.3765690388472355,0.14884353704294065,0.27066231524772494,0.3443684492996711,0.41351165679091184,0.6070386615430003,0.2832929900895933,0.35291201623355584,0.3377134304989273,0.4998791384254199,0.5668062824931172,0.3084568944098695,0.2880529379165071,0.5483282495696766,0.30688611103817304,0.38585775236493897,0.4387561676335849,0.6192144187473272,0.30815125744138155,0.3297721537112483
+0.26281444583247315,0.23467861236851167,0.22988082426031106,0.22562789032270125,0.2409716562692447,0.30832223839468176,0.1904471506796281,0.19262896987505285,0.1775758950801153,0.2597532414918941,0.2556338161313007,0.26737623915960673,0.2269540059150619,0.24638236897616267,0.2407174209563831,0.28795020929117265,0.2366817345739811,0.23019782590698412,0.1761499496772323,0.23627352208967722,0.24877758752122706,0.18695563379826688,0.14574438948943796,0.27338590413646147,0.306734758835788,0.26837420532768713,0.2897905489741235,0.2598848046457668,0.2619770544911515,0.33974475176589686,0.20853180077647904,0.2148352573327471,0.22108184147719115,0.30717668662216707,0.30562951683213274,0.19859529257104164,0.19057130309418255,0.23122597386240368,0.24446619991642884,0.18634936890161571,0.2242157157731179,0.25708540409849545,0.2367615641769424,0.30031375073302535,0.2952012815929509,0.2171664315476482,0.22929923611853034,0.31054414422554744,0.20717505035054745,0.22544035324558093
+0.5502773790362006,0.4075801323199715,0.381566809916404,0.3377551679902984,0.4369422123258548,0.3487531791881439,0.4801095005334042,0.4664240809546994,0.4324231172041817,0.477334421183244,0.44104749973934204,0.5317006072199691,0.5112070478075368,0.34148239517054746,0.48935873139325337,0.507429921686072,0.48126501686694334,0.5258738361105041,0.46650762533584994,0.48800036496053273,0.4410406155085962,0.428685795527253,0.4080172451075825,0.4332394029640437,0.4037501089217615,0.39864427821457743,0.44084802529144296,0.46425307060640103,0.4214284681399004,0.48743218429199364,0.39988054986752053,0.44011241267042256,0.32805151462949994,0.5858306066686804,0.4393133186022859,0.40377034677898843,0.3463762512107429,0.4796332276519216,0.4568621040032463,0.3972173843354704,0.44571431047605004,0.39480050609139994,0.4611361927037012,0.361809006404299,0.3493642541168569,0.39720391368752894,0.378185282511507,0.4230721181620084,0.5738415633274258,0.43508508223869385
+0.6904433465632681,0.7217523671201199,0.3521079725578703,0.5964012336107537,0.5957252671712624,0.7663367616788883,0.6237172295382579,0.8364886066070271,0.6491290384893115,0.6730762444466712,0.46979248981882504,0.5650207623406593,0.6916047469490109,0.6391719794983076,0.8136199141310918,0.6318415170345469,0.5158364396167211,0.6829304481436865,0.43654784737050606,0.5124191622903066,0.7081834509996381,0.29642061588478136,0.5706658350797406,0.6601740175544036,0.567687919090212,0.7167572006476104,0.7346249662375738,0.590154620371679,0.42969635064409717,0.4380933363964482,0.6119749346268606,0.6903248407671272,0.652937915917606,0.37823878293296676,0.6763478475292223,0.7605837037076489,0.5943778977270022,0.6908571731737535,0.4459762204390627,0.6114002731894953,0.578992289128799,0.7212778244150697,0.5888891576182543,0.8788308004058252,0.7215518432000639,0.3133019674845545,0.6851360370539957,0.6539896920675551,0.7303437519896058,0.5741573826696499
+0.22390325454320895,0.1538451141508033,0.09926633180776574,0.17752574600111898,0.1252515034709617,0.32152155520859765,0.08202551878341797,0.04200202432430441,0.40323912318512095,0.3109141893346089,0.039124542124542125,0.230913632227411,0.1104749421442261,0.09476797026918828,0.04253022847512208,0.09622537188089553,0.2663438590630628,0.05955767659794819,0.1180427525125206,0.12225772588010851,0.18855981043589437,0.22453844569235343,0.28076103880114767,0.07257189066757333,0.1434093765771321,0.2901346665144777,0.34279473858501186,0.1254160000266744,0.20835880613440375,0.061192596841060085,0.06110772682963034,0.06214370208521028,0.11692557814567785,0.14731606477403159,0.0399149651378782,0.18706586879006648,0.0796612247492852,0.09211062575937212,0.02283575173915195,0.09521098102874813,0.07848573881756005,0.12711645286956533,0.053315415840555234,0.07148813208024071,0.1286399336273044,0.1484698503179019,0.08626391992192117,0.05385734750575532,0.09352469872254948,0.16573383130510677
+0.30943353560825626,0.18819259111894993,0.21700584651336122,0.17643639557702237,0.29854890782432236,0.2024661388497943,0.17538788028962748,0.1687807262852792,0.21671830429934918,0.23289644725523367,0.1878436706304755,0.2388813947163432,0.15459276314808681,0.194671128566709,0.2108142246092665,0.1952693199890027,0.2962252396416522,0.21492377043072275,0.21679109724987383,0.2525933883218391,0.1775147536205353,0.24593452087111425,0.11169050444442596,0.29643146711394863,0.22603025438341354,0.24787717815581226,0.31426360153628846,0.15370355459496549,0.20405965574876356,0.2084390040945634,0.24915049910898904,0.2328617299106712,0.20057176494834333,0.19435990630384908,0.1836919272613457,0.20172599502300378,0.18421701388196088,0.2523419956546584,0.34280885463556005,0.18660192152280888,0.21732309405970932,0.2573864404798941,0.2564163241131002,0.1702119945565268,0.2004089314166799,0.18192803461592036,0.2404616867602779,0.2599476638772339,0.28698940063422124,0.14282730417813844
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.3687440170652905,0.3446352898395834,0.25019237822885976,0.19605345873289587,0.3337097781822094,0.22128039730074783,0.21609350437842959,0.21929669228695062,0.2260383945640762,0.28824063769076746,0.33132457809286886,0.32021503884572694,0.1926533665993173,0.14842481943112232,0.30432269746399937,0.28082286151070357,0.4342963689824891,0.13820116897096885,0.1470907552440349,0.15663089513191017,0.19153846153846155,0.1668066949270827,0.20897515887552032,0.3381650067572193,0.19099572750149657,0.24629618878634374,0.23246691959211468,0.19909221071628122,0.3178837926537444,0.23542608320441752,0.16492041493199824,0.1726272222122305,0.15961217147720114,0.2055890044118165,0.1718141472009133,0.18456990969250017,0.10997607538869021,0.12660987490400985,0.20386156824306098,0.15337443006062323,0.31671220518977405,0.20234397546897548,0.12435553712800707,0.14617410849887613,0.22184281896098032,0.17374735432120605,0.31994353063239317,0.3441897599317986,0.2767723798995453,0.12219808188064808
+0.26281444583247315,0.23467861236851167,0.22988082426031106,0.22562789032270125,0.2409716562692447,0.30832223839468176,0.1904471506796281,0.19262896987505285,0.1775758950801153,0.2597532414918941,0.2556338161313007,0.26737623915960673,0.2269540059150619,0.24638236897616267,0.2407174209563831,0.28795020929117265,0.2366817345739811,0.23019782590698412,0.1761499496772323,0.23627352208967722,0.24877758752122706,0.18695563379826688,0.14574438948943796,0.27338590413646147,0.306734758835788,0.26837420532768713,0.2897905489741235,0.2598848046457668,0.2619770544911515,0.33974475176589686,0.20853180077647904,0.2148352573327471,0.22108184147719115,0.30717668662216707,0.30562951683213274,0.19859529257104164,0.19057130309418255,0.23122597386240368,0.24446619991642884,0.18634936890161571,0.2242157157731179,0.25708540409849545,0.2367615641769424,0.30031375073302535,0.2952012815929509,0.2171664315476482,0.22929923611853034,0.31054414422554744,0.20717505035054745,0.22544035324558093
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.4908131138858892,0.27283628415084665,0.3410284410694644,0.41521661512962366,0.38562464593617607,0.573754378693529,0.3486713289241043,0.3803976177411179,0.40933873662927533,0.19976838055776241,0.4403053035777721,0.21488807204170368,0.5448763069588707,0.3623007456050918,0.4834475520986238,0.3381687480903969,0.4125916702605758,0.18885303393902259,0.3139726621363554,0.2997333972405262,0.29132431052806607,0.49181518421223636,0.3451326948741608,0.3823145274646776,0.4793391801449669,0.5937197218096605,0.2784754773126937,0.20822569706130095,0.44510733135561886,0.3223652484421499,0.44018672906651973,0.39217534946063687,0.5321814216910942,0.5636563542694162,0.2625783719769829,0.4069024916222051,0.3594645880670197,0.5554414989504547,0.2808521292128473,0.38796915016885036,0.44463498447368655,0.479295090632171,0.35821060006783073,0.3543913103474574,0.46101311647858745,0.5329631700491488,0.4207169492682359,0.4581300402791992,0.4697860131327354,0.4935364396247502
+0.4462700162156684,0.24452258310176112,0.27771878435333586,0.2865184004175475,0.3246729742416241,0.20947043436768717,0.23147020570647878,0.17924212169446946,0.6540044845490612,0.7141084182465255,0.21737541528239201,0.4004982762335703,0.4183312904121162,0.17992376142106714,0.13482876159572488,0.18142746448233943,0.37449027333691426,0.16544887440168865,0.5569265619097983,0.19891933107242926,0.6712428248497505,0.4012529952147411,0.0683631308870591,0.42784027376132633,0.24862409746937875,0.5264535905271199,0.5026971677559913,0.2817677078328282,0.24217264289583998,0.16342464040025015,0.16257159420388614,0.31969931792345585,0.30161568795194477,0.6758718564348817,0.5749624221844934,0.3248704218338315,0.5714569335574068,0.27869331424078103,0.4196389901549748,0.2273211034723493,0.3258659738682567,0.29084037180313776,0.21908777049790687,0.6314870174647244,0.10269053200641651,0.17142152203250605,0.3222698297890317,0.1728240058910162,0.3217222056425439,0.2508144377683768
+0.6817510569840836,0.5675379527035074,0.7179811226290611,0.7490514723974537,0.5885403571227564,0.6794779312825867,0.7210061902999954,0.6648918242804328,0.6485207860377996,0.6742388620483161,0.6004876045962603,0.6416003868672127,0.66258284111524,0.7644005423460958,0.8077411085274449,0.672526995404043,0.5612682101697373,0.6465637614103384,0.7327884797305124,0.6310816186892446,0.6206629847293976,0.7423592799874186,0.5872029583789348,0.6595679262830774,0.6621828267825519,0.6994265779159208,0.707669002015789,0.6540913101066974,0.6277425000582147,0.6276121707326885,0.6255652701499064,0.6485951949213522,0.6334301226570892,0.7029303423875131,0.7505450831584976,0.6727870583474339,0.6032393063460804,0.6295332100392514,0.6907259235191249,0.5724095270316282,0.6037615587594823,0.7650375077575953,0.6598074329998406,0.6976867468819695,0.7091482524561898,0.7309452561032576,0.5421669491002465,0.7150088818194769,0.618715250389683,0.564973583489802
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.6386274914120214,0.17931334138640836,0.4714852687605694,0.22769796799480857,0.5415873926245948,0.33339462505748885,0.3963992979573267,0.1574464999238556,0.4581218750490404,0.44234585429100576,0.41829763479753046,0.19592216798199494,0.18560050735969238,0.3444493104151434,0.2783614847911241,0.3256166339067202,0.5505875897329672,0.3409395018628747,0.342064663816913,0.36760925574327685,0.26022024941543487,0.38951686776654043,0.5663155004988604,0.2977561964301514,0.3708223046200282,0.4883127411864953,0.2514004555272814,0.32751547479777043,0.4336147298234986,0.5159271976745451,0.6412721640656696,0.30113077843306874,0.44915494592317856,0.45602134289975793,0.29715855009392717,0.25211506788529503,0.32672630461392865,0.4972566664444964,0.42335269996696284,0.4357707834775584,0.315373016939021,0.45691746494611507,0.14096336319982888,0.4105788469211499,0.3105375224307288,0.388387411360397,0.3507033721792871,0.49736961259162926,0.3371841172862489,0.278938093269101
+0.7736059646112404,0.534455065903884,0.6058380629664726,0.6888596766042461,0.6998987945474608,0.7774968542736707,0.6601218876723263,0.6840990352029358,0.7534939543179965,0.6559033341609003,0.6834610230569909,0.6519901920433887,0.7216428344295018,0.7217363990756915,0.6442249366233018,0.6271956230086377,0.7262229925003472,0.669255606247474,0.6662480756641219,0.6487052937064556,0.728747328929106,0.7013606155609428,0.6163904348299699,0.7444442126770285,0.7548234264337748,0.7700270755644322,0.6199834558902689,0.5736584117076509,0.6059777683813649,0.6324692371481963,0.7018368679507807,0.6329322628762354,0.6650449103571927,0.7159179135815283,0.5905617281055707,0.695052599952688,0.6303598120414654,0.7062168685401065,0.5759201557407554,0.7170221248827282,0.7557455907955435,0.6204963092474782,0.6501782514176433,0.6351052633206451,0.7646889700646277,0.6963011532361602,0.7348253663050381,0.7171784741790542,0.7538133801225974,0.7303445488491929
+0.2206177441339936,0.4713631267644373,0.21983190977028422,0.21299245831271651,0.31584999375909234,0.3452057223985437,0.1879262735118913,0.21901257195995733,0.21328285544019812,0.2557110563628934,0.2782837263426602,0.29529817595956215,0.23502448204139723,0.28292996466195164,0.3044478350730932,0.21822421585141413,0.24166455284069333,0.25169848803227646,0.21127709050353044,0.3561282135588808,0.21188966322352937,0.2120246279846173,0.20026850500338356,0.23002866116470305,0.22413457488977404,0.2124699216384437,0.21493803265805436,0.3767773387767306,0.2313857076613209,0.24400280595036633,0.1844211441619001,0.20683799569914238,0.059435000863079734,0.22668698522672717,0.225828511658771,0.21148819570069288,0.12777404737670853,0.224664297971051,0.20539355013020294,0.16173189285165118,0.278097381166483,0.15422229223993186,0.3238030883895703,0.30311455349212435,0.26557075892744597,0.20799168638144677,0.28355496698694327,0.30436803355080405,0.18159299734523468,0.30118644420678065
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.34772759086698374,0.42010341644540256,0.34378189455504127,0.16148935664433334,0.24598204059228546,0.29156306688716266,0.0521247293659331,0.2576427407303837,0.231707185558964,0.16052023909711366,0.23708069592330885,0.32342895316599723,0.2708772823807431,0.3893991447469395,0.3039554564799959,0.19089384050886768,0.2751176507610792,0.3660250108309981,0.35526181805229995,0.23341228362937066,0.34953887693075486,0.4158003375742178,0.22892831924339524,0.2628897688038464,0.16446192447351785,0.3463483058281957,0.28864797137543596,0.1197934065226234,0.3830718079775421,0.28674696865391147,0.23026724082136976,0.27905540020188724,0.3659270998285256,0.3270765726979756,0.27770204509843616,0.3315645950888527,0.20725562072272374,0.2560886091167156,0.38212543364841944,0.09765676135339144,0.2375152917536234,0.2556599644053994,0.2810405610635409,0.16448043250431396,0.2858424575031006,0.20315496334683558,0.2585410909232601,0.1963128198677927,0.3986919346204423,0.19330484182658483
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.2969513691430097,0.2474905218079054,0.39878800547402443,0.2816381178212236,0.3230334405103706,0.27155192602929085,0.2572642406190617,0.2438842310320668,0.2624111798355347,0.3112959766405098,0.2928280966076672,0.28159006691219673,0.258004014161067,0.1722247879864864,0.30656112264673885,0.2143600561324261,0.3197990317465333,0.3497193048151975,0.3025861857958747,0.25379122742066706,0.3872725113788751,0.19378216811214305,0.4295166368544405,0.30418529965518176,0.34819419952990055,0.47093783695375896,0.28144340286268377,0.3321249179117695,0.3109731069030606,0.25838486077950124,0.23974465813840332,0.344127725291367,0.22644541809895494,0.24615255807637332,0.4344166008295906,0.28662076009998955,0.23845471296634904,0.28609413166856174,0.28475097406946576,0.2755544062851062,0.25588286608897454,0.2137117324692228,0.22099152101973196,0.4583941279984075,0.42815866219639814,0.25544698320740383,0.2648494497687272,0.36711745913654675,0.23574792068796413,0.3385659576155492
+0.7926167980546355,0.7750054645695522,0.5160233514505478,0.6247518917316502,0.352470756993493,0.29627741216616404,0.5580479585471264,0.4412228559767861,0.2813368623533659,0.5630069039138378,0.6161193504685533,0.509424799681288,0.6900844059139852,0.7684564852322912,0.7111291125362783,0.3648156383851609,0.5120965415810768,0.7648184251450375,0.7122630759780147,0.67406405821133,0.10950080287062654,0.7930462388428762,0.22120898832285227,0.39864105017410123,0.43328532184066887,0.7638729514906456,0.8133221485710497,0.38256935281107735,0.21099605466850938,0.2857433999591108,0.6485938505819402,0.6450493440969826,0.6506864727659074,0.5658386766031456,0.5390981514970695,0.25995698288328645,0.3649129752123268,0.17587999814344918,0.8048895026291712,0.5830771054538255,0.3359455193561088,0.4444383690364165,0.7531935378074708,0.7689230420150259,0.6838822302582279,0.7950365937845707,0.5773839432916933,0.6357664525376154,0.6943798729319681,0.3466375809808382
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.26281444583247315,0.23467861236851167,0.22988082426031106,0.22562789032270125,0.2409716562692447,0.30832223839468176,0.1904471506796281,0.19262896987505285,0.1775758950801153,0.2597532414918941,0.2556338161313007,0.26737623915960673,0.2269540059150619,0.24638236897616267,0.2407174209563831,0.28795020929117265,0.2366817345739811,0.23019782590698412,0.1761499496772323,0.23627352208967722,0.24877758752122706,0.18695563379826688,0.14574438948943796,0.27338590413646147,0.306734758835788,0.26837420532768713,0.2897905489741235,0.2598848046457668,0.2619770544911515,0.33974475176589686,0.20853180077647904,0.2148352573327471,0.22108184147719115,0.30717668662216707,0.30562951683213274,0.19859529257104164,0.19057130309418255,0.23122597386240368,0.24446619991642884,0.18634936890161571,0.2242157157731179,0.25708540409849545,0.2367615641769424,0.30031375073302535,0.2952012815929509,0.2171664315476482,0.22929923611853034,0.31054414422554744,0.20717505035054745,0.22544035324558093
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.4652227391229421,0.44214090358549785,0.42798375578554476,0.5363382573051113,0.43220764461968103,0.33881358343860307,0.45380698654535223,0.45108549917229845,0.46576573397557547,0.43384676710223,0.4445223667354965,0.4803911168859916,0.477790960388706,0.4950201231415511,0.48584883439887144,0.5575172153083513,0.44960321208624454,0.51347755599201,0.49291560015879665,0.5369991290462687,0.433883940123183,0.48958121741028543,0.4388909975444369,0.5929899060150144,0.40657310427433624,0.5108561224975957,0.5132426972740877,0.3855221657329599,0.3699609794959964,0.6393536633905379,0.49059074733569913,0.4228146437267955,0.4740414665830889,0.44981835798221576,0.4755176438971832,0.42892021277165243,0.5727190882551801,0.5250702667343312,0.5592342578750916,0.4380084303587132,0.5035886234454279,0.4006355468952724,0.40960053556172404,0.4406971314594053,0.38793985243944,0.5011038247917654,0.4591869136374979,0.4662626471752944,0.45794840263077724,0.4975674247159926
+0.8395535918839873,0.7695017523261071,0.7766929205645492,0.7731452771256521,0.733880185271111,0.8296099790439847,0.7685998568206784,0.7856936729135008,0.7116749284572401,0.8787418011626165,0.842331753924945,0.8324921433451119,0.8651695952309243,0.9033566437325655,0.8258053393825684,0.7692083510763108,0.8619282621802803,0.8670853641048585,0.7987187462664074,0.82264481752421,0.861024623204151,0.8351088745000945,0.8524924495039017,0.7189014264653021,0.7484150978128816,0.6777662058071584,0.7654552982743956,0.7452901239877795,0.7769826760786482,0.8434541096248432,0.8862615942724201,0.7472816521891886,0.7126825162087799,0.8111054205790269,0.8495545164139218,0.8020916395561238,0.7109766695256983,0.8201353536766759,0.7007006002017259,0.7247212529011887,0.8174542493478789,0.7996501093988936,0.8158204070124968,0.8841059587691683,0.8347919074988355,0.7469878045281061,0.7976980153091773,0.7861087663723778,0.6371627380565495,0.7649585940443687
+0.43399232411556565,0.3880210026764744,0.41408983635653074,0.35562920216280014,0.4206666902959723,0.37678642881971564,0.39169381163398453,0.42262456595061193,0.43176830995340487,0.368812165558667,0.46367946949138356,0.42429894347815633,0.4850420096847177,0.302281762233925,0.4029910855621027,0.43597130763403974,0.47710038867070304,0.4782923601665337,0.43788194388956037,0.4536505682550652,0.39584681499391455,0.41032636521749816,0.4011342558618931,0.4371002264149695,0.40332505177775707,0.37233062040488646,0.3853880157912385,0.4505884348070552,0.35983276308578566,0.43448218440981295,0.37705181458871445,0.40699788679184074,0.3400722221293895,0.5249694701170622,0.43159850037896247,0.4038372187008506,0.3881571378777961,0.44804233027679957,0.38503390093268947,0.40111186422910045,0.4054585392744918,0.4048011831423874,0.4251472275511341,0.4228780687890388,0.3679849999042404,0.3852269236856018,0.40796335294067965,0.39357170532222535,0.5002473578428198,0.3529142107486882
+0.026161946655901273,0.09111401181314274,0.08275327295108861,0.1289755622630717,0.03376113743497129,0.3951446204805673,0.054511646092290256,0.15911936119708958,0.05097746608837243,0.11384219138106777,0.12889397531064112,0.03014773266727598,0.13585385851270276,0.15959703953342122,0.16216071249297584,0.053076172988064385,0.1153108966647673,0.13183518982515532,0.09650526129447325,0.156968775592292,0.08200014334215139,0.12654258905859195,0.04368018914233987,0.134634904392204,0.1281082759749906,0.15626273181450417,0.09833304959068091,0.1108533795494172,0.09085721673877303,0.0434567227008632,0.03565084193061028,0.026837575489743373,0.1899195186137369,0.15556905516534225,0.08367074301398741,0.1324445155665248,0.06995732367713456,0.12894351272837568,0.23680661443299017,0.09973317426625572,0.09691201667690001,0.05395456862334725,0.04163702990319531,0.11872370926103121,0.13872565494815114,0.047122373034785454,0.15217219496259043,0.18136401090639434,0.16123159477667645,0.12132505772074056
+0.24848778309913336,0.2911073031018151,0.2106293548818302,0.18864395474501858,0.2038095238095238,0.3809037225029872,0.2889445150678034,0.17981649138387396,0.37302469352114637,0.4027841416439799,0.48396065999457943,0.15757855758582504,0.1789776282347806,0.17714057450853232,0.26376672261056583,0.37364027424701546,0.25659617026937437,0.31801933207125627,0.3838368298368299,0.16173151870057403,0.26286374165050636,0.5731584360448398,0.34488526179702655,0.3917695695060946,0.5729736587584819,0.15298671372317973,0.22188069892555062,0.13096243544853894,0.21680425980163476,0.4498624860112568,0.2758677148365511,0.2344867027488676,0.5334641823088045,0.2957469118159422,0.34327679045847626,0.1944869703519432,0.32952184577922006,0.2615123529168816,0.17187658813783202,0.29052853961294745,0.1793374681438531,0.2607347826667498,0.1637648123351274,0.09373517861123974,0.40523367871486754,0.21897461536745236,0.2526558441558442,0.3833699866435446,0.39199947089947096,0.2148997743013604
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7883971058936718,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8081941659300942,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7540345502540421,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7449815284183258,0.7489296155199525,0.7764588891454648,0.7611550243745044,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7928559779085116,0.7918610242948376,0.7167678241631024,0.7334196425816873,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.25310147129998295,0.2259722222222222,0.1974019142003801,0.38221608084353265,0.4296907584649917,0.5417311435177288,0.4704876406871456,0.10317655228035871,0.20304962680678554,0.3066660173803031,0.6679459805427548,0.4145378151260504,0.21624071272523956,0.44858069696868325,0.6719806826056827,0.22738359788359788,0.19887199483184503,0.3330876068376068,0.46623595505617976,0.42597707847707844,0.47023653506897867,0.6869444444444445,0.1773975266355078,0.20143484782292118,0.5004853479853479,0.46537859620876704,0.31062388591800355,0.31147063624958293,0.44612054612054614,0.644251854339671,0.3965799759397488,0.5218247204184704,0.5172141025641025,0.2669478753228753,0.33950018985079966,0.5344817927170868,0.26075270995669925,0.19896900128259493,0.2609090909090909,0.5280184224922266,0.21612633053221286,0.28209523809523807,0.3796448772732941,0.37405094895501273,0.47617753922897227,0.6212591588591588,0.5544839556896193,0.4852024486302421,0.4078161295106695,0.5511243524329335
+0.025891676385630998,0.10036318693827205,0.0532294634272791,0.12766769582277743,0.05006882974266359,0.15078746301114432,0.034511646092290266,0.1457941156701194,0.09715549806364111,0.10198683105511921,0.11478850306521952,0.0774866933555122,0.07358397365782726,0.1395970395334212,0.15354960138186474,0.05334403013092154,0.07415664542924674,0.10531566822081728,0.1809975903799173,0.16181805880840333,0.07825701351446274,0.11456445053045343,0.053638639189025214,0.10852974595053017,0.06119159231210374,0.15520088009579294,0.08256921289431048,0.16415079683880734,0.0911435695242756,0.05506884391298441,0.046469929356594254,0.03564452661549317,0.3014630546753452,0.17546870070704382,0.16092026149999683,0.15049816828783866,0.07700523266589449,0.13542088311865533,0.3574886221309863,0.099773067883277,0.09275106248474378,0.04267534784412647,0.039329337595503,0.12339650499328987,0.12957407123774392,0.06362613230876532,0.1306385815172123,0.07695731638207688,0.14494637410138222,0.15097137216300524
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.31053715245654756,0.27253310912323436,0.29632470604738165,0.22973493458201533,0.2678095544541643,0.26710148120638794,0.21936701070811973,0.23826333643187464,0.25896359388749435,0.3230504640593348,0.2622286067610375,0.23219118217999257,0.2613095737633457,0.2277853899086043,0.2371008373971871,0.20651661945376362,0.2939264074296968,0.23156451362096678,0.19395141756991843,0.19377057845853782,0.30462236133606974,0.16853401591804573,0.28364410363310116,0.3133186832314592,0.24860161507834241,0.3051576546569227,0.25838453342407386,0.252827144745277,0.25885290706375297,0.32772471772447204,0.2278889701698131,0.3181696340046628,0.18416942980835274,0.2953539504076243,0.4935927197681547,0.2761331048447388,0.28726433119443223,0.292114597414702,0.15764461122089465,0.23553114111759169,0.3461046214419718,0.1934869572742578,0.1684755096221024,0.2501130112245993,0.28762475758933437,0.2379438169131474,0.2639123066725193,0.3602804820128059,0.1981804206549201,0.20322085267145237
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.24723915575973968,0.25721973013052346,0.27969699869717457,0.22986030465069962,0.2583611150471782,0.2672748959417279,0.20510311032299733,0.23484417309388683,0.14180543964692255,0.24864622725927782,0.2519669215063591,0.2546106281198458,0.21636689869613213,0.2599389409895816,0.249040630045575,0.21614293182388394,0.22662178609636752,0.2508372165535308,0.21667869911226284,0.2425545380382366,0.2643026775271605,0.1995774095727171,0.2142864867006806,0.23800201265838397,0.26541879764899723,0.27559989118574063,0.2561073852428814,0.2861932986990557,0.2506382190455332,0.331709129325725,0.22555389449133087,0.3380549035377692,0.21265683329034452,0.26887740162682777,0.3151158255483423,0.2086416183816486,0.22348685552931652,0.2289225380532431,0.20546508650226594,0.22974214638963372,0.1913913912771469,0.25336217351695917,0.22429288042241527,0.25069339882804675,0.31368756723052793,0.23912586209385875,0.211992605369791,0.35586906653932543,0.18850056658458963,0.23680963786497156
+0.2656550101712423,0.2537999610792399,0.034519596846651915,0.09795719153110233,0.027748334363818336,0.32889499237061876,0.2797927722025585,0.17956348360543842,0.22112904600994054,0.2198441732471953,0.11056442548351676,0.15212889500672533,0.1804821483219218,0.2101503093363794,0.18458858195374586,0.01783322760141194,0.2730964793257568,0.16445866497348238,0.14255710546371508,0.15676407321669902,0.17299700395181614,0.09569221473649678,0.015008987745934968,0.26183340516387,0.038125742583379287,0.17913151460284538,0.1335847157625743,0.14910041789766854,0.03547055125589251,0.2971724890901179,0.1290940420369326,0.02835662815709207,0.14815503649950826,0.1074298981061015,0.13477794987849712,0.13814980317399853,0.044941336913947715,0.11945573041526256,0.21037622492530947,0.22729390112646602,0.1904572792737529,0.1475319400309672,0.010231258998631925,0.2153318915985878,0.18214016421667534,0.030671637807487048,0.09681048388003356,0.09617086645605061,0.12345125310442238,0.1725518036188158
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.5446245940426713,0.5494926770405604,0.5746499121239179,0.6218406649829236,0.5114775443628693,0.6366129839131545,0.5165423024293757,0.6370925169428692,0.542762995507313,0.6224536133465991,0.6195887861627687,0.6201674372045437,0.5833410289212363,0.5737714291757635,0.5614949019230016,0.5919750750710743,0.6646789349958279,0.537933061240833,0.6078420386828899,0.62000043075478,0.5935821456662708,0.48387453640644323,0.6614913982224161,0.5906930411673309,0.6435112262060124,0.5472840965847809,0.5410355385864576,0.6163531582848534,0.5662630656101545,0.5127930515232252,0.5694412980213047,0.6006435517576451,0.5549067943647045,0.5709044806156345,0.6087876033966626,0.5875175561590011,0.6262948708083219,0.5694286554113226,0.5513503034907371,0.6881534223900474,0.6292988137160652,0.5658270041014457,0.6296448327653298,0.5804412641529479,0.5549867683110549,0.6376343018830283,0.6548520152987767,0.5776049635056665,0.6088880679489195,0.5441456733365482
+0.21236475481088704,0.2702970214118416,0.238586050944402,0.1936410618486777,0.373478842260378,0.4119341067763902,0.16909274542811642,0.35570402294023795,0.21320403646125272,0.6573693202472113,0.16088652694540387,0.2935519578538869,0.48605885848934427,0.13262565704695425,0.5498941365185048,0.17111586033857398,0.18947328439201463,0.10142373347247949,0.13146936411630597,0.0666644576103185,0.26599561434910673,0.4526622686145118,0.32425053861760406,0.26398275006604466,0.2854994062396596,0.08772026962334875,0.19800595922030817,0.39833837204160005,0.18556087077973968,0.2813224246725766,0.21673406522177074,0.1545181485106556,0.14245329302877333,0.20784471628533477,0.3498585460400364,0.19361385113270912,0.18862131071943028,0.2636090243184817,0.30410049727968846,0.23846038849994922,0.5282817406170368,0.17581046353900198,0.14135503911084976,0.17518594484086333,0.21570783702772148,0.25686696706256074,0.11153011283199793,0.6199944329898234,0.29017763704040916,0.17189289058174542
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.8395535918839873,0.7695017523261071,0.7766929205645492,0.7731452771256521,0.733880185271111,0.8296099790439847,0.7685998568206784,0.7856936729135008,0.7116749284572401,0.8787418011626165,0.842331753924945,0.8324921433451119,0.8651695952309243,0.9033566437325655,0.8258053393825684,0.7692083510763108,0.8619282621802803,0.8670853641048585,0.7987187462664074,0.82264481752421,0.861024623204151,0.8351088745000945,0.8524924495039017,0.7189014264653021,0.7484150978128816,0.6777662058071584,0.7654552982743956,0.7452901239877795,0.7769826760786482,0.8434541096248432,0.8862615942724201,0.7472816521891886,0.7126825162087799,0.8111054205790269,0.8495545164139218,0.8020916395561238,0.7109766695256983,0.8201353536766759,0.7007006002017259,0.7247212529011887,0.8174542493478789,0.7996501093988936,0.8158204070124968,0.8841059587691683,0.8347919074988355,0.7469878045281061,0.7976980153091773,0.7861087663723778,0.6371627380565495,0.7649585940443687
+0.7481532192887105,0.7643172961104141,0.6619078684076574,0.753356370055613,0.6097218187518236,0.7459306638445409,0.5571898331796022,0.7338125398827731,0.6875391120545947,0.7184638500210002,0.7677383401684401,0.7344991520716766,0.8644457478604777,0.7209534970654101,0.7308132904664383,0.9117768836870916,0.8135570461858612,0.7170141592528904,0.7434697133713503,0.7622876757342112,0.8062148431754923,0.8382139738209109,0.6092105318328546,0.726243202859118,0.6184617087543438,0.7861799821344667,0.7137273387256594,0.6433330090341862,0.8452531165990926,0.7462459892384584,0.7933819358212942,0.6135373189231468,0.7296101928854132,0.7062824996808539,0.7296278878815028,0.7242956736349364,0.6979262783136668,0.6576017104077628,0.811070733407268,0.7885797786315014,0.7430182314470943,0.7474037937704385,0.663552459061558,0.731576083117557,0.8403100615374334,0.8266807385153608,0.717457058830935,0.7440908531009702,0.6025756953951632,0.7360555778375112
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.24723915575973968,0.25721973013052346,0.27969699869717457,0.22986030465069962,0.2583611150471782,0.2672748959417279,0.20510311032299733,0.23484417309388683,0.14180543964692255,0.24864622725927782,0.2519669215063591,0.2546106281198458,0.21636689869613213,0.2599389409895816,0.249040630045575,0.21614293182388394,0.22662178609636752,0.2508372165535308,0.21667869911226284,0.2425545380382366,0.2643026775271605,0.1995774095727171,0.2142864867006806,0.23800201265838397,0.26541879764899723,0.27559989118574063,0.2561073852428814,0.2861932986990557,0.2506382190455332,0.331709129325725,0.22555389449133087,0.3380549035377692,0.21265683329034452,0.26887740162682777,0.3151158255483423,0.2086416183816486,0.22348685552931652,0.2289225380532431,0.20546508650226594,0.22974214638963372,0.1913913912771469,0.25336217351695917,0.22429288042241527,0.25069339882804675,0.31368756723052793,0.23912586209385875,0.211992605369791,0.35586906653932543,0.18850056658458963,0.23680963786497156
+0.5231994852715474,0.15166746574252968,0.23463610911267452,0.43632598967524816,0.3134840112222737,0.7080004960368295,0.7633262578425973,0.47079523002626267,0.5827509638716442,0.2555904362442562,0.7284525893646986,0.5678496703765776,0.6304764492587656,0.15822309419553746,0.3520954257803983,0.3514652065847595,0.2153666072791311,0.41208400031813147,0.47120187367551475,0.5891682720682291,0.5058889276615611,0.24405126526134935,0.7926338938838939,0.8149937437166809,0.25440892274800775,0.24727160363597026,0.47957948995449,0.3564758106956581,0.2974870826502738,0.49148206490352964,0.33370030798648753,0.11781513550384867,0.7291604227018215,0.4668051449429869,0.4121495321263571,0.5776536514308345,0.3971420214110284,0.39201931941097606,0.3911242576649314,0.934146026618248,0.5063981189126338,0.18985790407370018,0.17452588412915698,0.3474906788271238,0.6348358844051888,0.1691500067999456,0.11935787172425753,0.18347634949982783,0.5045303719362234,0.8554948927122179
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.48707297543090433,0.5731987883947782,0.316352859404234,0.48586839110213104,0.5037102410453774,0.48447092300774713,0.5744272306758712,0.5560701747121111,0.6300568125687768,0.3442182016191612,0.5393616876441711,0.4164307195315554,0.3050914646388983,0.3440376880636329,0.7551390840117057,0.5249197002327193,0.49159565097341323,0.7308755350957574,0.7071160503178242,0.6710601212279792,0.6378571798325542,0.5128041138886118,0.49236944332778626,0.5635142141028885,0.5193808776365629,0.4324499792219825,0.5018639093228446,0.5966587506838009,0.5349417867730173,0.6882131404704472,0.5469442381022038,0.5325054039580687,0.40092294935543465,0.704240731078274,0.20839695309372644,0.6698395998283343,0.5665266927838616,0.6671123104774094,0.7666743833532605,0.5686016113292037,0.5735653022983253,0.2049450698043486,0.7290400563049583,0.4529359456742842,0.39689658285362994,0.41161936131146654,0.37337277000004176,0.5832368545349795,0.5384043916075208,0.4253831401058877
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.7404146136232432,0.5723180904114983,0.5478406689825234,0.6837602916329116,0.8704702058230906,0.8517998171605419,0.7187071659860773,0.5736884345141471,0.7126243437425482,0.5721776734216186,0.5804354467616573,0.5356579613992489,0.5059688483927981,0.7067369593657973,0.7033036048872953,0.24096179979027332,0.6050922930466434,0.3680532023089399,0.6847330030988324,0.3338127105319943,0.6435355197172933,0.8563453423194651,0.6742843832491389,0.48387917744550585,0.5494015555862467,0.6910311274795073,0.7180119766376969,0.6075292565845093,0.8980393786764742,0.584628105329712,0.7270394671512652,0.13820887784642882,0.4450097011580764,0.8652299588652298,0.3347913863696428,0.5631509574762001,0.5490738651264417,0.6758527468065668,0.6254889488752756,0.6888240082471135,0.6320827726780214,0.30001186171193883,0.8508837982233939,0.5129978345146151,0.6587996675971514,0.49390369971686043,0.578949394939556,0.5107053387376875,0.7935171968684251,0.4402462975960648
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.2135720458233238,0.10939871927846669,0.19224166033169957,0.26809952688039784,0.23169446627733284,0.17666774639178454,0.4520950448066969,0.20408921688939596,0.29859901107009856,0.3210730068600185,0.3534193076081122,0.2607301648106025,0.2564213344702632,0.25480948081379945,0.3843425625275381,0.05705514585330093,0.27890353865067524,0.15816418425666925,0.38876364463148616,0.26021402418789746,0.36228401055017406,0.31531339201229797,0.37589759339648837,0.21628513064577645,0.3481230160050526,0.3866781819317831,0.2258387257499624,0.18630296948689345,0.2681085589209409,0.34246071079021834,0.2376253390888835,0.33449712545113963,0.36087863652445235,0.2023977897538008,0.19717481238419998,0.33003691991679446,0.1926650718378572,0.3815317467685598,0.3235667287998176,0.11857275953114625,0.33825239957598746,0.32656452836277866,0.2552618631936047,0.25955170856970705,0.2790125192354817,0.27502686668606474,0.1439639002930243,0.13428009176844055,0.2518002607986306,0.20697706615007075
+0.3424467989577558,0.4752084298500073,0.5844644120224153,0.5320400051346845,0.35227832431178185,0.3513762177533381,0.39814021102717834,0.47399972460851536,0.3522863033269023,0.28221005134424404,0.37908931385425254,0.4617277324687914,0.3422179893321278,0.3966918257528186,0.3952460291518294,0.3678136540365013,0.45184866972279153,0.5239833521691398,0.43783661138893953,0.2397689253338323,0.4423157741939777,0.4099398058510013,0.35606033702423046,0.3341943781918267,0.368387328532412,0.3185304322274522,0.3437498667645144,0.3608223870838602,0.3774333416238859,0.44476015424929455,0.40646050444493076,0.2859061816101271,0.5399703722267122,0.3509900787735438,0.48245555943974927,0.4010267877265997,0.30133209255853555,0.5058120373001739,0.3726719380358155,0.47297556450590117,0.5069678220919706,0.3358223948207721,0.37928383107625613,0.37945858617007444,0.5043847855643703,0.3245051112484398,0.4031004797231252,0.32507521492078467,0.2145330204589744,0.351177309175445
+0.8334184253030094,0.8576141619236942,0.8243588245265443,0.8804644279020049,0.8025540910522031,0.8347102206743517,0.812811091580054,0.8155295359196895,0.8427912840124486,0.8834114529801927,0.816595166011179,0.8887262607510571,0.8289262559831818,0.8682377697822017,0.8425429049670992,0.8748471695840653,0.8610106825206663,0.8036559519162669,0.8502294893626179,0.8560039035255894,0.852326337652949,0.8910998873417862,0.8771483314450506,0.8222389076772303,0.8551288595084107,0.8032659833366634,0.7897127187628976,0.8079341195297846,0.8037366866403934,0.8330469540106575,0.8389123738487692,0.8416192634440851,0.8544615512223401,0.8975187135846504,0.8476033854347524,0.8391143841607949,0.838094447145523,0.7926832649165485,0.8547590683387566,0.8797772225892578,0.8786848845425206,0.8384317199633586,0.8379384969500131,0.8986381758977164,0.7807453593188757,0.7889167266696956,0.8351719755447569,0.8257819514276921,0.8899353872794549,0.8705998214946934
+0.7368148755857037,0.6125698435246025,0.46896605758601306,0.8717981107961976,0.4996420011744212,0.7406763553154123,0.7618439529152148,0.7120735733150575,0.5767695014881324,0.8308318815252411,0.6593564414040451,0.6651715850258973,0.56585607777556,0.5976989554782923,0.3773085443368429,0.7654277343210495,0.6282605195173756,0.6455348041885365,0.7266233168565904,0.17890296566913746,0.7417687162765257,0.667180334851301,0.5028731038417713,0.3241553801622198,0.732967347583892,0.41656917158442547,0.6318328899881871,0.8268671640863083,0.2983189201865549,0.7244001399413817,0.6144993743600395,0.6275209405555232,0.4212307061823264,0.44444692984618167,0.7360627977157285,0.5588742192161581,0.6530114591071271,0.43199896372175667,0.6472038866701401,0.33093372883883293,0.7866327495142381,0.1544227499668429,0.41671893301119534,0.7422680013028509,0.6979693963935009,0.11295075949805866,0.9220614380426737,0.2776248055405597,0.779874821865326,0.9077692624588372
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.40909094838621113,0.49123911825599803,0.6231709956709958,0.5422564102564102,0.31205594405594406,0.1948129363437049,0.2819353587588882,0.2754761904761905,0.24586681619034562,0.21189661274398117,0.37198818897637786,0.3426296958855099,0.4211904761904761,0.22070939543981907,0.3164365079365079,0.3089203007518797,0.459054680407312,0.20887551759834366,0.062,0.3805985797827903,0.42480555555555555,0.23979625316566985,0.1524285714285714,0.41409090909090907,0.4304894700120264,0.18884090909090911,0.4834761904761905,0.33073240165631473,0.4282195456325891,0.3396712958236316,0.21726437565918924,0.26842857142857146,0.22573232323232326,0.4143377750613776,0.22318452380952383,0.5017797619047619,0.23676785714285714,0.32030472334682863,0.1697121212121212,0.5086442307692307,0.2898656898656899,0.20777777777777778,0.14648809523809522,0.42711588698657665,0.3209400532849418,0.3188144796380091,0.32933333333333337,0.31971998624011005,0.28905022641467654,0.4380977449843467
+0.4672775949995772,0.41298830455445057,0.41330740082810685,0.4069503000170782,0.4679953596770224,0.462714415674432,0.4810240992849063,0.4173778792081401,0.44741791699560696,0.38653383767459,0.4646996518646065,0.3373458430753832,0.42752251850664763,0.3573368784469721,0.4636645134901826,0.5646626293193738,0.46453184234696415,0.4945425643572692,0.4700503947709922,0.44390368619330167,0.4195615029301846,0.3939498684849793,0.4546215155747552,0.611522511951767,0.47284082546009043,0.39158859908387667,0.5196783507305763,0.39101629085238016,0.36893885868845006,0.4921521408290968,0.41768578571042897,0.43064216964194785,0.3966700818342114,0.5392620151805597,0.41062220848119707,0.4077894657082936,0.4279424187521185,0.5272904272084918,0.47027441483434496,0.374860489098875,0.469636479530707,0.4199014155438011,0.42682400517618135,0.43140515090990583,0.36158639587202157,0.49950161745911165,0.4081663955897804,0.4387233487331668,0.483133709456531,0.4768084212379538
+0.4672775949995772,0.41298830455445057,0.41330740082810685,0.4069503000170782,0.4679953596770224,0.462714415674432,0.4810240992849063,0.4173778792081401,0.44741791699560696,0.38653383767459,0.4646996518646065,0.3373458430753832,0.42752251850664763,0.3573368784469721,0.4636645134901826,0.5646626293193738,0.46453184234696415,0.4945425643572692,0.4700503947709922,0.44390368619330167,0.4195615029301846,0.3939498684849793,0.4546215155747552,0.611522511951767,0.47284082546009043,0.39158859908387667,0.5196783507305763,0.39101629085238016,0.36893885868845006,0.4921521408290968,0.41768578571042897,0.43064216964194785,0.3966700818342114,0.5392620151805597,0.41062220848119707,0.4077894657082936,0.4279424187521185,0.5272904272084918,0.47027441483434496,0.374860489098875,0.469636479530707,0.4199014155438011,0.42682400517618135,0.43140515090990583,0.36158639587202157,0.49950161745911165,0.4081663955897804,0.4387233487331668,0.483133709456531,0.4768084212379538
+0.12159194710817928,0.22432288496969488,0.035933240674088845,0.15848629702102937,0.14023403829141357,0.39026024721718594,0.07043356111416368,0.207045568355687,0.1843040024946922,0.16522557320850717,0.04575023460820662,0.08186477071294003,0.1811796595449565,0.19590200971124416,0.176855256350227,0.06452594353102091,0.331165230928282,0.17688079341304686,0.11443544061928959,0.5150608722648722,0.22725367656278686,0.19763923047677953,0.2070009800337973,0.19501912094276608,0.05587467973163835,0.14681385095750135,0.10221427449067295,0.11707045505325948,0.16827380041465098,0.14209449654003223,0.22682160948863797,0.18207515533745927,0.06836807428610411,0.20684118406367913,0.10956131953847965,0.2651817850407357,0.1485608385279105,0.15695813172310003,0.13539100776846708,0.2277748490079625,0.23131679219519113,0.035063246577770976,0.24710448108184796,0.19474958824791033,0.14781904595921516,0.2564206529662149,0.3060879900024138,0.21580028013685268,0.19326163337575886,0.11612221085694616
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.40777858023021146,0.471023380906692,0.3109159098156427,0.3015947484631547,0.3100302680444044,0.4193287110059417,0.4489336951177176,0.6885900417791931,0.5143930751928414,0.34748749647801874,0.24377907838570556,0.4983634686085921,0.47913162546313953,0.355119434768566,0.2582491403469201,0.45640712696518165,0.518671151834377,0.286396545154458,0.4787968730254859,0.6534997455102698,0.5109935446786157,0.420575387061106,0.504687065265962,0.4435431973284522,0.44003763419230824,0.4121537209341231,0.27408293079590906,0.352001861252212,0.47289071016998674,0.49115947878959465,0.49290784808340876,0.43086705700325567,0.3924509400379753,0.3685538881315265,0.5896946309767218,0.5340657946969157,0.5495143708558343,0.41787540132708706,0.40230943592719143,0.12349774865845373,0.43860291820010106,0.463351366420656,0.3050711597982816,0.7123374842951589,0.36228455724134856,0.3897110490917838,0.354075119847015,0.37369941877174606,0.5074507631515991,0.3114210019861419
+0.23093777705108637,0.11479888151478188,0.24582832669122986,0.20114924264969106,0.2543056339275559,0.5048711018358275,0.30202447597447596,0.25279967254967256,0.24007949317766644,0.23390722703222702,0.3881618958239718,0.41791611493082087,0.3053641251221897,0.23196753616968785,0.23231087051087052,0.47562972896668543,0.24707293172777045,0.3018841411616933,0.20940476190476193,0.2541082183210666,0.3546711586496267,0.3743888888888888,0.7536547619047621,0.4661337156995052,0.20995230347274446,0.2838395992104582,0.5098413947163948,0.2786324702091732,0.3201315482980748,0.13815142704517702,0.23534565643278513,0.05362810925377204,0.6193897648245473,0.13270870192609321,0.37859899749373427,0.28372016377342457,0.19506183605517685,0.3141341642228739,0.2721222152322467,0.6947967807256797,0.28846215491006144,0.1312736259841523,0.09302227011494253,0.12581687321393206,0.4464623090090656,0.16403015775873794,0.43533892977248284,0.41808453946605256,0.32761390614216707,0.22522212664864422
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.9135554039015014,0.3767809913246586,0.505463301059087,0.3611738648921186,0.23809653854825785,0.875549129599412,0.40892436790858655,0.4534464139072824,0.3606344269955594,0.34184665561512306,0.6230834806418452,0.29466730195706936,0.33678837504662523,0.3796860095004102,0.34448347093428205,0.23187752875475404,0.3819799908888626,0.41961334250542925,0.32464504606177236,0.19524259922186998,0.48298897346518066,0.4760090248536117,0.7910266682800833,0.5946778266192969,0.2887033865020991,0.5226250487814363,0.3588245075058396,0.3503899750979502,0.43254047025691333,0.3516463494082734,0.19828157535750277,0.6072082375559673,0.5617802813379543,0.34373415283424036,0.3030539434772331,0.7738283509111791,0.611793240795201,0.10130325069301024,0.23429216554626023,0.3101812999343443,0.3181291181853649,0.3154090582395071,0.5300004529066779,0.47664485238124454,0.5410149161348625,0.26914689896798216,0.24441970544111594,0.435905033975369,0.6467289249778715,0.46105134015551175
+0.5446245940426713,0.5494926770405604,0.5746499121239179,0.6218406649829236,0.5114775443628693,0.6366129839131545,0.5165423024293757,0.6370925169428692,0.542762995507313,0.6224536133465991,0.6195887861627687,0.6201674372045437,0.5833410289212363,0.5737714291757635,0.5614949019230016,0.5919750750710743,0.6646789349958279,0.537933061240833,0.6078420386828899,0.6244542122673851,0.5935821456662708,0.48387453640644323,0.6614913982224161,0.5906930411673309,0.6435112262060124,0.5472840965847809,0.5410355385864576,0.6163531582848534,0.5662630656101545,0.5127930515232252,0.5694412980213047,0.6006435517576451,0.5549067943647045,0.5709044806156345,0.6087876033966626,0.5875175561590011,0.6262948708083219,0.5694286554113226,0.5513503034907371,0.6881534223900474,0.6292988137160652,0.5658270041014457,0.6296448327653298,0.5804412641529479,0.5549867683110549,0.6376343018830283,0.6548520152987767,0.5776049635056665,0.6088880679489195,0.5441456733365482
+0.15124275182903357,0.08076923076923076,0.24177777777777776,0.13952805469178708,0.29494899467547553,0.17655881458966566,0.11595854922279793,0.12231251032040533,0.39205882352941174,0.39787469241817064,0.29208333333333336,0.3380497198879551,0.12654294382281778,0.033437837388445565,0.2424285714285714,0.21252813852813854,0.09443218324707686,0.06528205128205128,0.04521103896103896,0.1571607688604457,0.17478846153846153,0.15862788590020319,0.29901984126984127,0.1890352318364366,0.06123595505617978,0.15509615384615386,0.2277534113060429,0.15775438668487174,0.1822636815920398,0.09117368977137692,0.09617192800824148,0.18548971628446637,0.21681666666666666,0.17,0.260752688172043,0.10454638009049776,0.12450098899208806,0.1851575890954923,0.18,0.19537403194190045,0.20805873015873014,0.11090909090909092,0.3080579281548072,0.28080567876226736,0.31293214721786144,0.08,0.20270740459357905,0.25321937787612847,0.21,0.0985009835507778
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.5446245940426713,0.5494926770405604,0.5746499121239179,0.6218406649829236,0.5114775443628693,0.6366129839131545,0.5165423024293757,0.6370925169428692,0.542762995507313,0.6224536133465991,0.6195887861627687,0.6201674372045437,0.5833410289212363,0.5737714291757635,0.5614949019230016,0.5919750750710743,0.6646789349958279,0.537933061240833,0.6078420386828899,0.62000043075478,0.5935821456662708,0.48387453640644323,0.6614913982224161,0.5906930411673309,0.6435112262060124,0.5472840965847809,0.5410355385864576,0.6163531582848534,0.5662630656101545,0.5127930515232252,0.5694412980213047,0.6006435517576451,0.5549067943647045,0.5709044806156345,0.6087876033966626,0.5875175561590011,0.6262948708083219,0.5694286554113226,0.5513503034907371,0.6881534223900474,0.6292988137160652,0.5658270041014457,0.6296448327653298,0.5804412641529479,0.5549867683110549,0.6376343018830283,0.6548520152987767,0.5776049635056665,0.6088880679489195,0.5441456733365482
+0.37832574237836725,0.350465078353563,0.45104905084504165,0.44426282879348894,0.4424086457912616,0.32069208947537825,0.3837363686906548,0.29435705407955903,0.405596471257522,0.3021609476474122,0.4972933909655513,0.43587376395523597,0.5353368467410052,0.309544608543308,0.4360387450973428,0.4146189840128413,0.6369651940675705,0.5224777633195408,0.429265973303087,0.4761549914745368,0.419945935304665,0.279413720295444,0.3738857148227687,0.5104071643806928,0.5368096683280096,0.31743191148550143,0.42678057322506924,0.5391289657589761,0.4133960539457398,0.4392451526573771,0.41431893487950106,0.30981708948614345,0.45913236877909375,0.4137544757908418,0.4176559183199313,0.41073407038449405,0.37576776766574704,0.5158312700216079,0.38661328067039763,0.3912564097826248,0.42432239899854207,0.4286597230953452,0.3517958855934147,0.5558936733794403,0.40951917422367584,0.3116919528019744,0.3926863368680516,0.4564483032483416,0.2735033949050919,0.29940098824011385
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.24328394698190936,0.18622969549241464,0.23772890145397066,0.23326599790034241,0.2724589735073171,0.2604407989801971,0.17052494244602945,0.1689503678267217,0.22778134118520607,0.24082141488301917,0.15043570524037864,0.2535019411100528,0.16261689305387525,0.2508734751598003,0.24627034477646093,0.188980001430033,0.22366119122907321,0.2163979699893382,0.22717818387966016,0.2439030368351432,0.17790209464010978,0.19666581766397256,0.1789141349718966,0.2392335414862109,0.24109888685608932,0.28605691493536733,0.29350617615441404,0.2607891944218481,0.2444253740717104,0.131554688603017,0.21788906216523724,0.21418208755074186,0.22423260151530236,0.2647069596650738,0.2241358461275347,0.19442724939286204,0.1689831643255079,0.20774728397424552,0.2995031114278875,0.1734597994897226,0.2168272656808848,0.24926702470755557,0.29884884921670635,0.2177447948776848,0.31895740723453303,0.230969766467057,0.25533018015441905,0.3282536184594963,0.3575041709210239,0.19048381111484322
+0.2352144604211037,0.12731605254048292,0.27295531386062816,0.37478734354913507,0.3920766885829531,0.6715869959830321,0.26326806181028306,0.3159723358807738,0.37286431277835386,0.3214674287379934,0.5008882004663188,0.05330054267341175,0.5749388723738945,0.3145323613088699,0.6095091204270724,0.4012828843123174,0.43822598167947086,0.07641376888467484,0.4960246288273805,0.3592966394483451,0.32898101572173466,0.10648098666637566,0.38006322065119846,0.4591345905223188,0.26496500179542776,0.6928695932721218,0.14334192707013277,0.35268572984542623,0.3268798583586085,0.47452155312632516,0.2068256357374089,0.06845800283350564,0.32629505902361805,0.19432262846189044,0.22272278629030173,0.1921369523260721,0.38878905575760647,0.4627794941814812,0.5054714718015081,0.4000378202222785,0.30671370308558715,0.12019088239598821,0.3581019586591792,0.49462758087971403,0.31227400056550325,0.25742502404099066,0.3112432679868467,0.253273075429117,0.2782211310189478,0.20792731628499658
+0.3874926184254415,0.64166329960632,0.5750709933351689,0.5421608901280565,0.38814544864876127,0.4306841067763903,0.45118098820536384,0.4650988024007326,0.703400547406615,0.6853294662375404,0.5562192544665836,0.5201552105169498,0.4782810807115665,0.42684937370942255,0.5515034482593955,0.36378808965760906,0.4338889877023191,0.13580007799594085,0.5359498794501287,0.30050123465469925,0.649809142827126,0.5972340345678567,0.350823505505054,0.27269369267362725,0.5337598354414246,0.7678911144573786,0.5211221188429748,0.45274001482320664,0.4445350031930819,0.49310559187909,0.484712645315481,0.1698514818439889,0.3383146398022553,0.45640115331227316,0.5504406627784484,0.35827417331091127,0.43490063384810007,0.4991596248399087,0.5762741646097544,0.231244271283832,0.6197420580773543,0.35859421078636694,0.14135503911084976,0.5932637973642076,0.22649644205135522,0.44456773423197776,0.5158478748848304,0.6584722339443736,0.558602620455654,0.31238778371887277
+0.8334184253030094,0.8576141619236942,0.8243588245265443,0.8804644279020049,0.8025540910522031,0.8347102206743517,0.812811091580054,0.8155295359196895,0.8427912840124486,0.8834114529801927,0.816595166011179,0.8887262607510571,0.8289262559831818,0.8682377697822017,0.8425429049670992,0.8748471695840653,0.8610106825206663,0.8036559519162669,0.8502294893626179,0.8560039035255894,0.852326337652949,0.8910998873417862,0.8771483314450506,0.8222389076772303,0.8551288595084107,0.8032659833366634,0.7897127187628976,0.8079341195297846,0.8037366866403934,0.8330469540106575,0.8389123738487692,0.8416192634440851,0.8544615512223401,0.8975187135846504,0.8476033854347524,0.8391143841607949,0.838094447145523,0.7926832649165485,0.8547590683387566,0.8797772225892578,0.8786848845425206,0.8384317199633586,0.8379384969500131,0.8986381758977164,0.7807453593188757,0.7889167266696956,0.8351719755447569,0.8257819514276921,0.8899353872794549,0.8705998214946934
+0.34772759086698374,0.42010341644540256,0.34378189455504127,0.16148935664433334,0.24598204059228546,0.29156306688716266,0.0521247293659331,0.2576427407303837,0.231707185558964,0.16052023909711366,0.23708069592330885,0.32342895316599723,0.2708772823807431,0.3893991447469395,0.3039554564799959,0.19089384050886768,0.2751176507610792,0.3660250108309981,0.35526181805229995,0.23341228362937066,0.34953887693075486,0.4158003375742178,0.22892831924339524,0.2628897688038464,0.16446192447351785,0.3463483058281957,0.28864797137543596,0.1197934065226234,0.3830718079775421,0.28674696865391147,0.23026724082136976,0.27905540020188724,0.3659270998285256,0.3270765726979756,0.27770204509843616,0.3315645950888527,0.20725562072272374,0.2560886091167156,0.38212543364841944,0.09765676135339144,0.2375152917536234,0.2556599644053994,0.2810405610635409,0.16448043250431396,0.2858424575031006,0.20315496334683558,0.2585410909232601,0.1963128198677927,0.3986919346204423,0.19330484182658483
+0.26281444583247315,0.23467861236851167,0.22988082426031106,0.22562789032270125,0.2409716562692447,0.30832223839468176,0.1904471506796281,0.19262896987505285,0.1775758950801153,0.2597532414918941,0.2556338161313007,0.26737623915960673,0.2269540059150619,0.24638236897616267,0.2407174209563831,0.28795020929117265,0.2366817345739811,0.23019782590698412,0.1761499496772323,0.23627352208967722,0.24877758752122706,0.18695563379826688,0.14574438948943796,0.27338590413646147,0.306734758835788,0.26837420532768713,0.2897905489741235,0.2598848046457668,0.2619770544911515,0.33974475176589686,0.20853180077647904,0.2148352573327471,0.22108184147719115,0.30717668662216707,0.30562951683213274,0.19859529257104164,0.19057130309418255,0.23122597386240368,0.24446619991642884,0.18634936890161571,0.2242157157731179,0.25708540409849545,0.2367615641769424,0.30031375073302535,0.2952012815929509,0.2171664315476482,0.22929923611853034,0.31054414422554744,0.20717505035054745,0.22544035324558093
+0.5446245940426713,0.5494926770405604,0.5746499121239179,0.6218406649829236,0.5114775443628693,0.6366129839131545,0.5165423024293757,0.6370925169428692,0.542762995507313,0.6224536133465991,0.6195887861627687,0.6201674372045437,0.5833410289212363,0.5737714291757635,0.5614949019230016,0.5919750750710743,0.6646789349958279,0.537933061240833,0.6078420386828899,0.62000043075478,0.5935821456662708,0.48387453640644323,0.6614913982224161,0.5906930411673309,0.6435112262060124,0.5472840965847809,0.5410355385864576,0.6163531582848534,0.5662630656101545,0.5127930515232252,0.5694412980213047,0.6006435517576451,0.5549067943647045,0.5709044806156345,0.6087876033966626,0.5875175561590011,0.6262948708083219,0.5694286554113226,0.5513503034907371,0.6881534223900474,0.6292988137160652,0.5658270041014457,0.6296448327653298,0.5804412641529479,0.5549867683110549,0.6376343018830283,0.6548520152987767,0.5776049635056665,0.6088880679489195,0.5441456733365482
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.8635193914632151,0.9091319076871279,0.9243968305617025,0.8914732937266757,0.8281043086989903,0.8346645688298399,0.7614665779812887,0.9568276806914764,0.8817392770502542,0.9063185324516964,0.992154610993124,0.8116312995622235,0.907040852493246,0.8890755490751466,0.8623495319648673,0.8473295213443919,0.8121078764227172,0.9396349068618578,0.9010923266007754,0.9020936104516273,0.8813235286131179,0.8984631495052032,0.8399400884187131,0.9069082233762756,0.9565472433483219,0.9053113571938298,0.8625471166802192,0.8364961877468515,0.9026665916105314,0.9328240969063023,0.9515137282211861,0.9216572138213968,0.7834477299325858,0.870339873179775,0.9237822222522668,0.8252059200969444,0.8045264672308826,0.9613987113141786,0.8403889759722918,0.86780408000905,0.9522794532581033,0.9707809584583109,0.9129199000074962,0.9551458141438057,0.901337886528899,0.867394346413372,0.8153473756984703,0.7871757864686453,0.8995097655070522,0.9858479461277337
+0.8334184253030094,0.8576141619236942,0.8243588245265443,0.8804644279020049,0.8025540910522031,0.8347102206743517,0.812811091580054,0.8155295359196895,0.8427912840124486,0.8834114529801927,0.816595166011179,0.8887262607510571,0.8289262559831818,0.8682377697822017,0.8425429049670992,0.8748471695840653,0.8610106825206663,0.8036559519162669,0.8502294893626179,0.8560039035255894,0.852326337652949,0.8910998873417862,0.8771483314450506,0.8222389076772303,0.8551288595084107,0.8032659833366634,0.7897127187628976,0.8079341195297846,0.8037366866403934,0.8330469540106575,0.8389123738487692,0.8416192634440851,0.8544615512223401,0.8975187135846504,0.8476033854347524,0.8391143841607949,0.838094447145523,0.7926832649165485,0.8547590683387566,0.8797772225892578,0.8786848845425206,0.8384317199633586,0.8379384969500131,0.8986381758977164,0.7807453593188757,0.7889167266696956,0.8351719755447569,0.8257819514276921,0.8899353872794549,0.8705998214946934
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.5502773790362006,0.4075801323199715,0.381566809916404,0.3377551679902984,0.4369422123258548,0.3487531791881439,0.4801095005334042,0.4664240809546994,0.4324231172041817,0.477334421183244,0.44104749973934204,0.5317006072199691,0.5112070478075368,0.34148239517054746,0.48935873139325337,0.507429921686072,0.48126501686694334,0.5258738361105041,0.46650762533584994,0.48800036496053273,0.4410406155085962,0.428685795527253,0.4080172451075825,0.4332394029640437,0.4037501089217615,0.39864427821457743,0.44084802529144296,0.46425307060640103,0.4214284681399004,0.48743218429199364,0.39988054986752053,0.44011241267042256,0.32805151462949994,0.5858306066686804,0.4393133186022859,0.40377034677898843,0.3463762512107429,0.4796332276519216,0.4568621040032463,0.3972173843354704,0.44571431047605004,0.39480050609139994,0.4611361927037012,0.361809006404299,0.3493642541168569,0.39720391368752894,0.378185282511507,0.4230721181620084,0.5738415633274258,0.43508508223869385
+0.3342190329335354,0.2919584176644711,0.21388635102274176,0.741448699685519,0.5507419492172064,0.29864316420853454,0.26234848573457115,0.6128063171228062,0.3068839609853152,0.45998812424243307,0.38727157189753825,0.378916900436166,0.34834601294411266,0.1934089067255211,0.5274244087363368,0.3311120675687588,0.18621220386757392,0.11128919356620356,0.2349306740351405,0.14501557399765216,0.15245554781572884,0.3527596239829892,0.4209430353801107,0.37248187778522684,0.4657734319227344,0.37110751816112975,0.404148222262902,0.33040760172127526,0.2683898269744977,0.33075186052619465,0.21385409078576298,0.30758694658472235,0.19146034486178462,0.266962344841321,0.2153270422352997,0.35492148677128904,0.6122661079472518,0.42519277079802825,0.31768471692700695,0.2510467773449717,0.4261866167147337,0.5009110451600141,0.2961823085909141,0.25948658608963276,0.2240366164069415,0.2865208712841368,0.27727961802210427,0.41308815396687637,0.36113259781761187,0.2717257171728383
+0.3112957097137522,0.556008887376576,0.6019023946878111,0.07204580463747114,0.8566390523828581,0.2965843868383588,0.33568777534780664,0.06844630715189749,0.3797432369986359,0.5084494505383053,0.1292579717812681,0.41468647347740145,0.17169588898910684,0.26308779363695634,0.5777925104376261,0.5625650132779435,0.2889603342571817,0.2651216695113303,0.7804167038988341,0.181858620932041,0.2839843222377815,0.3956616596586937,0.5725409245737549,0.6545861395359239,0.2699562778802576,0.7849867063023779,0.20100642465571347,0.14084093936024952,0.5503614836782995,0.3917145496529979,0.4744961993432442,0.7016024959775509,0.13670256640377462,0.8151972396330573,0.48379755902686866,0.6716856345491454,0.4938982175205438,0.4569936111054193,0.46073380999505176,0.12256428455337132,0.39578495508380734,0.10438623977565722,0.4864634341141818,0.5013451622260585,0.37577534409192453,0.41714231845180344,0.18486099200829348,0.27521984368494246,0.20099844987927185,0.4298772336221408
+0.6817510569840836,0.5675379527035074,0.7179811226290611,0.7490514723974537,0.5885403571227564,0.6794779312825867,0.7210061902999954,0.6648918242804328,0.6485207860377996,0.6742388620483161,0.6004876045962603,0.6416003868672127,0.66258284111524,0.7644005423460958,0.8077411085274449,0.672526995404043,0.5612682101697373,0.6465637614103384,0.7327884797305124,0.6310816186892446,0.6206629847293976,0.7423592799874186,0.5872029583789348,0.6595679262830774,0.6621828267825519,0.6994265779159208,0.707669002015789,0.6540913101066974,0.6277425000582147,0.6276121707326885,0.6255652701499064,0.6485951949213522,0.6334301226570892,0.7029303423875131,0.7505450831584976,0.6727870583474339,0.6032393063460804,0.6295332100392514,0.6907259235191249,0.5724095270316282,0.6037615587594823,0.7650375077575953,0.6598074329998406,0.6976867468819695,0.7091482524561898,0.7309452561032576,0.5421669491002465,0.7150088818194769,0.618715250389683,0.564973583489802
+0.14318433921963394,0.31663743907944325,0.315578639932147,0.15757751542085482,0.29561969873389743,0.17057328731665017,0.3305259378925238,0.120724126039912,0.37560401746621686,0.14344426446347877,0.28039586184875154,0.23728067646720896,0.18676831479600928,0.21447978524427289,0.2313581661396458,0.20774982971197886,0.29409885465355395,0.17904747777947272,0.2401218823072905,0.1490697706258106,0.15792716193835463,0.2037022224373163,0.1271217546892759,0.28211657589817846,0.2724683230491184,0.33252004502875415,0.25378867127281945,0.32114764295249926,0.12694310697849542,0.12881275317521312,0.05250303065411398,0.13960340906385485,0.07392634804762035,0.2877818255060931,0.06017424204181165,0.2558125544650489,0.15146749663171769,0.29003638631022727,0.20379731967633552,0.05126339136781333,0.2951454182509878,0.11688808982300009,0.2814076284546969,0.03879335626961293,0.32292790514969805,0.10990344193729193,0.19332156755877325,0.2781955538989001,0.22770323724313044,0.26325477135814446
+0.24804513506918444,0.2798329074418028,0.22400764726829042,0.21912767562313185,0.23783803999369396,0.249402555513171,0.19167918600622225,0.18307630803610736,0.18833987840196745,0.2476613604518798,0.16193433015005648,0.2586576064736581,0.2917324653801799,0.25059221788405883,0.24905912305327343,0.25304027041726446,0.19959737418999887,0.21036093198442274,0.20789994419415186,0.25312093162121824,0.15598657943628674,0.1836847204195828,0.1937851752134744,0.2927584700895637,0.23841054697697767,0.2767235431015095,0.28085247746581826,0.23904092990640266,0.25339291677105646,0.19298665343064925,0.20863524521896462,0.21396932699043014,0.22834328601665269,0.30337088680264523,0.26761795225693613,0.2096037879162279,0.15290627605370097,0.2198851912933937,0.2558343918847775,0.17186623988887678,0.24331342214725118,0.2154179887533757,0.28164649355847776,0.21803432967930328,0.28414464575148973,0.22140847455580961,0.25135898454094613,0.31866049335970975,0.22265718654523084,0.17473934055022222
+0.8395535918839873,0.7695017523261071,0.7766929205645492,0.7731452771256521,0.733880185271111,0.8296099790439847,0.7685998568206784,0.7856936729135008,0.7116749284572401,0.8787418011626165,0.842331753924945,0.8324921433451119,0.8651695952309243,0.9033566437325655,0.8258053393825684,0.7692083510763108,0.8619282621802803,0.8670853641048585,0.7987187462664074,0.82264481752421,0.861024623204151,0.8351088745000945,0.8524924495039017,0.7189014264653021,0.7484150978128816,0.6777662058071584,0.7654552982743956,0.7452901239877795,0.7769826760786482,0.8434541096248432,0.8862615942724201,0.7472816521891886,0.7126825162087799,0.8111054205790269,0.8495545164139218,0.8020916395561238,0.7109766695256983,0.8201353536766759,0.7007006002017259,0.7247212529011887,0.8174542493478789,0.7996501093988936,0.8158204070124968,0.8841059587691683,0.8347919074988355,0.7469878045281061,0.7976980153091773,0.7861087663723778,0.6371627380565495,0.7649585940443687
+0.7404146136232432,0.5723180904114983,0.5478406689825234,0.6837602916329116,0.8704702058230906,0.8517998171605419,0.7187071659860773,0.5736884345141471,0.7126243437425482,0.5721776734216186,0.5804354467616573,0.5356579613992489,0.5059688483927981,0.7067369593657973,0.7033036048872953,0.24096179979027332,0.6050922930466434,0.3680532023089399,0.6847330030988324,0.3338127105319943,0.6435355197172933,0.8563453423194651,0.6742843832491389,0.48387917744550585,0.5494015555862467,0.6910311274795073,0.7180119766376969,0.6075292565845093,0.8980393786764742,0.584628105329712,0.7270394671512652,0.13820887784642882,0.4450097011580764,0.8652299588652298,0.3347913863696428,0.5631509574762001,0.5490738651264417,0.6758527468065668,0.6254889488752756,0.6888240082471135,0.6320827726780214,0.30001186171193883,0.8508837982233939,0.5129978345146151,0.6587996675971514,0.49390369971686043,0.578949394939556,0.5107053387376875,0.7935171968684251,0.4402462975960648
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.8635193914632151,0.9091319076871279,0.9243968305617025,0.8914732937266757,0.8281043086989903,0.8346645688298399,0.7614665779812887,0.9568276806914764,0.8817392770502542,0.9063185324516964,0.992154610993124,0.8116312995622235,0.907040852493246,0.8890755490751466,0.8623495319648673,0.8473295213443919,0.8121078764227172,0.9396349068618578,0.9010923266007754,0.9020936104516273,0.8813235286131179,0.8984631495052032,0.8399400884187131,0.9069082233762756,0.9565472433483219,0.9053113571938298,0.8625471166802192,0.8364961877468515,0.9026665916105314,0.9328240969063023,0.9515137282211861,0.9216572138213968,0.7834477299325858,0.870339873179775,0.9237822222522668,0.8252059200969444,0.8045264672308826,0.9613987113141786,0.8403889759722918,0.86780408000905,0.9522794532581033,0.9707809584583109,0.9129199000074962,0.9551458141438057,0.901337886528899,0.867394346413372,0.8153473756984703,0.7871757864686453,0.8995097655070522,0.9858479461277337
+0.7481532192887105,0.7643172961104141,0.6619078684076574,0.753356370055613,0.6097218187518236,0.7459306638445409,0.5571898331796022,0.7338125398827731,0.6875391120545947,0.7184638500210002,0.7677383401684401,0.7344991520716766,0.8644457478604777,0.7209534970654101,0.7308132904664383,0.9117768836870916,0.8135570461858612,0.7170141592528904,0.7434697133713503,0.7622876757342112,0.8062148431754923,0.8382139738209109,0.6092105318328546,0.726243202859118,0.6184617087543438,0.7861799821344667,0.7137273387256594,0.6433330090341862,0.8452531165990926,0.7462459892384584,0.7933819358212942,0.6135373189231468,0.7296101928854132,0.7062824996808539,0.7296278878815028,0.7242956736349364,0.6979262783136668,0.6576017104077628,0.811070733407268,0.7885797786315014,0.7430182314470943,0.7474037937704385,0.663552459061558,0.731576083117557,0.8403100615374334,0.8266807385153608,0.717457058830935,0.7440908531009702,0.6025756953951632,0.7360555778375112
+0.24804513506918444,0.2798329074418028,0.22400764726829042,0.21912767562313185,0.23783803999369396,0.249402555513171,0.19167918600622225,0.18307630803610736,0.18833987840196745,0.2476613604518798,0.16193433015005648,0.2586576064736581,0.2917324653801799,0.25059221788405883,0.24905912305327343,0.25304027041726446,0.19959737418999887,0.21036093198442274,0.20789994419415186,0.25312093162121824,0.15598657943628674,0.1836847204195828,0.1937851752134744,0.2927584700895637,0.23841054697697767,0.2767235431015095,0.28085247746581826,0.23904092990640266,0.25339291677105646,0.19298665343064925,0.20863524521896462,0.21396932699043014,0.22834328601665269,0.30337088680264523,0.26761795225693613,0.2096037879162279,0.15290627605370097,0.2198851912933937,0.2558343918847775,0.17186623988887678,0.24331342214725118,0.2154179887533757,0.28164649355847776,0.21803432967930328,0.28414464575148973,0.22140847455580961,0.25135898454094613,0.31866049335970975,0.22265718654523084,0.17473934055022222
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.31053715245654756,0.27253310912323436,0.29632470604738165,0.22973493458201533,0.2678095544541643,0.26710148120638794,0.21936701070811973,0.23826333643187464,0.25896359388749435,0.3230504640593348,0.2622286067610375,0.23219118217999257,0.2613095737633457,0.2277853899086043,0.2371008373971871,0.20651661945376362,0.2939264074296968,0.23156451362096678,0.19395141756991843,0.19377057845853782,0.30462236133606974,0.16853401591804573,0.28364410363310116,0.3133186832314592,0.24860161507834241,0.3051576546569227,0.25838453342407386,0.252827144745277,0.25885290706375297,0.32772471772447204,0.2278889701698131,0.3181696340046628,0.18416942980835274,0.2953539504076243,0.4935927197681547,0.2761331048447388,0.28726433119443223,0.292114597414702,0.15764461122089465,0.23553114111759169,0.3461046214419718,0.1934869572742578,0.1684755096221024,0.2501130112245993,0.28762475758933437,0.2379438169131474,0.2639123066725193,0.3602804820128059,0.1981804206549201,0.20322085267145237
+0.4622102115440756,0.44668999135620263,0.41857325507246523,0.5210704811585586,0.3812667821109874,0.43949394657582563,0.5570220539865746,0.4841486307492778,0.5156282015675279,0.3508972034067538,0.4374517180834917,0.39465220715381233,0.5583985983444046,0.42047438136130255,0.4980419710183155,0.5854809382946624,0.45682764654276836,0.5303038366956397,0.533193598075826,0.40376454232539793,0.42646859803152354,0.35793753576212295,0.44611724577859496,0.5754018926060281,0.49360157027547663,0.45995986687158213,0.4746600314359335,0.44057231746508657,0.36668413268667494,0.48618944174989986,0.44926950695078455,0.48683387126994065,0.30988958635364355,0.41046741321000696,0.4919832905954942,0.42264156932667235,0.4350608933220358,0.5492286022679874,0.5350088885168274,0.44594621686799313,0.4605511621277827,0.3964034961632011,0.38117737463645,0.4691059628858495,0.3983586127110012,0.48094096240244566,0.538043993391725,0.45548211742417183,0.3991235045329748,0.43147677308911336
+0.38476744781252475,0.3743989044200614,0.3924715973861388,0.38366875197374917,0.42162849316724377,0.3266066489585896,0.39820503891639975,0.4412377334299109,0.4247068353772117,0.31061327364925195,0.4827328015639995,0.48720957385236924,0.46852030483913837,0.3187299758917716,0.34282682069152753,0.3760002779701263,0.48858595668024984,0.47305812858771384,0.42789944847020267,0.37705109330894987,0.4073499291602718,0.3845609227916242,0.4235328250576197,0.4223398360369351,0.40514964137653936,0.3629035989879344,0.40527154887892036,0.42317244417893035,0.3771450329711037,0.40540988181938714,0.3944731657817856,0.43443298495326976,0.46995899023583865,0.4356246271925716,0.43938042191330184,0.41793354560191703,0.3622060645712461,0.45153076048025326,0.39222118317850957,0.4100955846601331,0.4161546372418238,0.4052294661567805,0.39528155434759493,0.4704369430043123,0.38164904231196745,0.2951318365722232,0.3765617410812942,0.42166463615466493,0.4644181252060538,0.3525449373231544
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.17968734983758788,0.05586071819914549,0.07412406592170022,0.18473393434324822,0.21465481168666967,0.13593966922718748,0.2621477592411557,0.09403681378468828,0.06027772691351932,0.09884907496714349,0.23805055939468314,0.16127468902499437,0.24466758426601043,0.1519253625761349,0.14934852166429385,0.06062793842721699,0.38147987750744633,0.07947918347592925,0.27948145030995825,0.1976962849170728,0.0033111480865224622,0.10368104648180722,0.10346604368172521,0.17221073257895475,0.22563826508224916,0.25208338227269317,0.15311123739547006,0.15427011348067934,0.19382446437688594,0.2562217292505747,0.07651066740228489,0.07262111191265794,0.11970353301383488,0.10090087170490664,0.08007913576428642,0.06053593916607888,0.15987140673554637,0.08265559204694944,0.1526660564354796,0.24122288899585465,0.019429351995125837,0.04173704201448007,0.1583148767028228,0.08737307405897393,0.06694569569117179,0.08405522295272297,0.05353166661331755,0.07470589924870555,0.04380298130750531,0.23486702534708084
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.46324331743547015,0.32180129831613885,0.3962350996440436,0.20748303322531758,0.1922336716497276,0.5052812509862136,0.47919816866714593,0.6455956173126856,0.2654255208476342,0.6061489704936924,0.04734868895412781,0.1573553408454311,0.5289460375480409,0.522233287404887,0.23654228618488232,0.5807710886338427,0.48234774496654026,0.34679621019089857,0.6977532020818771,0.22036724305817393,0.14498357580932802,0.5627996797503642,0.5211837100255087,0.21463550855914107,0.2359378551194328,0.41010269361168034,0.47371348582311357,0.43213649029189855,0.4650868737458394,0.2676673911628118,0.2661169630647418,0.39779094535757664,0.22476895481063394,0.41195914040886217,0.33989777556888984,0.4058400759911804,0.3816286903048078,0.20205177924541812,0.515223451447111,0.5958301547458222,0.47299643093878324,0.5316498369354862,0.44669853102729834,0.5085025149337323,0.3120998020015089,0.5466905154056786,0.12512699710885128,0.6064890583722135,0.4349773990448585,0.5669488112655472
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.6817510569840836,0.5675379527035074,0.7179811226290611,0.7490514723974537,0.5885403571227564,0.6794779312825867,0.7210061902999954,0.6648918242804328,0.6485207860377996,0.6742388620483161,0.6004876045962603,0.6416003868672127,0.66258284111524,0.7644005423460958,0.8077411085274449,0.672526995404043,0.5612682101697373,0.6465637614103384,0.7327884797305124,0.6310816186892446,0.6206629847293976,0.7423592799874186,0.5872029583789348,0.6595679262830774,0.6621828267825519,0.6994265779159208,0.707669002015789,0.6540913101066974,0.6277425000582147,0.6276121707326885,0.6255652701499064,0.6485951949213522,0.6334301226570892,0.7029303423875131,0.7505450831584976,0.6727870583474339,0.6032393063460804,0.6295332100392514,0.6907259235191249,0.5724095270316282,0.6037615587594823,0.7650375077575953,0.6598074329998406,0.6976867468819695,0.7091482524561898,0.7309452561032576,0.5421669491002465,0.7150088818194769,0.618715250389683,0.564973583489802
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.3934943915314178,0.4127397356713399,0.5006604852751103,0.4271383409682471,0.5554573749786681,0.4693687524618717,0.48338902552265994,0.38988903046452217,0.40474776377400395,0.3414886471638789,0.5652493692130205,0.40908483361782727,0.5578113416357672,0.44188958815391355,0.33001859452882454,0.43726894659561827,0.6375445285366879,0.38322947733071017,0.4899859789413194,0.5412003144600712,0.4781049797179973,0.2506260588910909,0.40220604563527823,0.5609844226154934,0.4351497914611969,0.2845953737720394,0.43277676806310916,0.4538839548969406,0.32740704859229175,0.4600990404842419,0.4765823681813316,0.43942190742245296,0.5078241413611363,0.5342568730155653,0.43556650193646357,0.4429582670569392,0.36653559205783215,0.5520081259554284,0.42604093448108665,0.4700515460806895,0.47849147356862204,0.514762265946677,0.40568938113772324,0.5426412121701584,0.5576837808794038,0.551704516861638,0.3974893892851689,0.47090608372950654,0.4491085824741344,0.3533958968357901
+0.32622593772201486,0.24897987063673646,0.24657389542180147,0.19853007804139175,0.051685531843543,0.2708951812707955,0.16885936781988206,0.15336579991093818,0.38155541462993414,0.48580363768806195,0.0409115402715325,0.16235724607960134,0.11197174115896963,0.20158859840923904,0.25156688829369694,0.08703226769614458,0.16907614199886908,0.22015414309594214,0.312191645455393,0.15164639373735642,0.14699469671299076,0.15739434285739404,0.06583191514766178,0.11105361003762626,0.03790966049389936,0.12592992874991543,0.22290826359325489,0.17316415751666878,0.07488532792722441,0.07911992416484231,0.10524312971812914,0.03372912147870715,0.22748241147454812,0.10955140080779965,0.06231446502297229,0.2170334113968153,0.0596339768787391,0.13076027785926578,0.16050339199518804,0.35689887885054034,0.4177617763060131,0.10738821118302976,0.030494124918088183,0.30025390193670154,0.30463486986635546,0.1030889378847863,0.10692948871940434,0.06784038741858019,0.11874916501574169,0.14922374330755728
+0.026161946655901273,0.09744181342848851,0.05275327295108863,0.16113161090514996,0.06400575156182073,0.4461474755740797,0.12354083883750476,0.1190855239678947,0.07570628853788726,0.11034815093644479,0.024969626562015193,0.03229058981013312,0.11280657015549676,0.22300811144761046,0.17240788209823396,0.09139989691552346,0.11202975635702948,0.1954875336902141,0.1167421033997364,0.1441828357107676,0.08803451297732565,0.08661010653141582,0.029637113313867692,0.062412467296475385,0.046754129176084104,0.07078047035146047,0.0882625198390056,0.10164782472405083,0.11615368476428653,0.04110163951528242,0.04216966504456614,0.04569373110937569,0.15766428512697497,0.16947496656948688,0.04397407974605448,0.1563836005834614,0.11095620983239646,0.18484571892744092,0.09832878038330223,0.23261598013927173,0.2158595867500976,0.1637171948859735,0.04661120474575914,0.1713818556583124,0.15556687995720317,0.05839420630903809,0.10653338135485871,0.10171568607949664,0.22799430954595348,0.1031724155100739
+0.1871268205731722,0.3075640309537949,0.3703707121488143,0.1999713328659351,0.3278648356735733,0.06480864434693866,0.20579334724134438,0.10296448981921733,0.14616963340891204,0.170311359090555,0.30365508425422627,0.27404006675918313,0.17567310095306182,0.31735200275753356,0.2915631026322443,0.21726178159912632,0.20894470694217854,0.2783546509684891,0.18041351449435752,0.3259639132289238,0.1997668297522821,0.2134665470823248,0.10975575773396383,0.28404863785657186,0.43101857866985815,0.2215000455765939,0.34286363090889876,0.24841468307597256,0.28256028593172583,0.040828896983597686,0.08528480738636864,0.1777150132195729,0.12376424253647507,0.3192242174614941,0.17047860938019352,0.12669556802178028,0.1452770117039575,0.24124770223175804,0.312448179509902,0.1202973559824772,0.25819478307617794,0.14816540729705857,0.23441272261033938,0.08859563904598573,0.26922596230967666,0.17897447711048342,0.16191785673788608,0.247815563872006,0.30886506557525584,0.26301449968754315
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.1796972789115646,0.2751916221033868,0.21,0.27397078721854073,0.3,0.2727262022129654,0.21625,0.29676714788430786,0.12,0.16727400345396432,0.20871385799828912,0.17176470588235293,0.10352281304185632,0.25895893913001605,0.1934276807877245,0.12719298245614036,0.2889786155202822,0.19603529196658737,0.1508676387846962,0.3997059268151705,0.3833262260127931,0.33064696273021577,0.26698892773892774,0.45267519198183775,0.16280967570441254,0.24765815694271956,0.2093993710691824,0.2300143201106068,0.12787506402424698,0.06155691149808797,0.29401779701779707,0.23082257891920815,0.2507004103715272,0.15856900452488687,0.36017889979741313,0.13784067162033262,0.16223577283528687,0.41711007833563335,0.5493007014771721,0.3996181500732326,0.19078792759625707,0.34114285714285714,0.26605734767025085,0.3029630042178114,0.18407142857142858,0.1725,0.49204395604395607,0.3184124748490946,0.2575,0.2921836619446812
+0.7481532192887105,0.7643172961104141,0.6619078684076574,0.753356370055613,0.6097218187518236,0.7459306638445409,0.5571898331796022,0.7338125398827731,0.6875391120545947,0.7184638500210002,0.7677383401684401,0.7344991520716766,0.8644457478604777,0.7209534970654101,0.7308132904664383,0.9117768836870916,0.8135570461858612,0.7170141592528904,0.7434697133713503,0.7622876757342112,0.8062148431754923,0.8382139738209109,0.6092105318328546,0.726243202859118,0.6184617087543438,0.7861799821344667,0.7137273387256594,0.6433330090341862,0.8452531165990926,0.7462459892384584,0.7933819358212942,0.6135373189231468,0.7296101928854132,0.7062824996808539,0.7296278878815028,0.7242956736349364,0.6979262783136668,0.6576017104077628,0.811070733407268,0.7885797786315014,0.7430182314470943,0.7474037937704385,0.663552459061558,0.731576083117557,0.8403100615374334,0.8266807385153608,0.717457058830935,0.7440908531009702,0.6025756953951632,0.7360555778375112
+0.7736059646112404,0.534455065903884,0.6058380629664726,0.6888596766042461,0.6998987945474608,0.7774968542736707,0.6601218876723263,0.6840990352029358,0.7534939543179965,0.6559033341609003,0.6834610230569909,0.6519901920433887,0.7216428344295018,0.7217363990756915,0.6442249366233018,0.6271956230086377,0.7262229925003472,0.669255606247474,0.6662480756641219,0.6487052937064556,0.728747328929106,0.7013606155609428,0.6163904348299699,0.7444442126770285,0.7548234264337748,0.7700270755644322,0.6199834558902689,0.5736584117076509,0.6059777683813649,0.6324692371481963,0.7018368679507807,0.6329322628762354,0.6650449103571927,0.7159179135815283,0.5905617281055707,0.695052599952688,0.6303598120414654,0.7062168685401065,0.5759201557407554,0.7170221248827282,0.7557455907955435,0.6204963092474782,0.6501782514176433,0.6351052633206451,0.7646889700646277,0.6963011532361602,0.7348253663050381,0.7171784741790542,0.7538133801225974,0.7303445488491929
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.2650949439073475,0.26444994595786153,0.31009594708538457,0.26889483456833835,0.2718461039443197,0.2623293621726647,0.21145969947028415,0.24107738974383802,0.16315681503661633,0.2588298075083355,0.28469259401905467,0.2685344036906802,0.21636689869613213,0.2570917712461579,0.24670980297790585,0.21074043365986736,0.3268672178798207,0.2508372165535308,0.27976891386754077,0.2721720891917378,0.33695847575806404,0.24796072286635437,0.2398778762507902,0.2469243790983403,0.2983399879971847,0.29672017996137323,0.2676943302752328,0.284445861606791,0.25946704787436203,0.39428812312943423,0.28497762502600726,0.3642678042447058,0.21080199458066712,0.26352743671102985,0.38591102451664533,0.20760713562302793,0.2709843526979539,0.2374029140187989,0.35477026383382965,0.22744177041876848,0.2539259383715416,0.2786310094335569,0.2257859359779708,0.2736480616603267,0.37924264061644264,0.25356748108093224,0.2719036472270644,0.3524455456158046,0.2480642291037926,0.23034656108169874
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.39545330894278125,0.4107848052819708,0.36794701827429177,0.48472516749840155,0.5337991739399961,0.3418009754644919,0.23892348559018878,0.6797701085394992,0.2436017057015247,0.4605304153729394,0.17593520689810876,0.134793999253318,0.7047173052835195,0.24240127474699172,0.512905274310913,0.25694650787194623,0.4204229962245912,0.26870928195673616,0.40625941819821926,0.1517329539084336,0.12423216747880561,0.23613689891508916,0.1681522084527133,0.3155584918420509,0.4821613208473352,0.3250546095136362,0.7454832892951266,0.38793534718510103,0.41824127248769405,0.31930891649009885,0.3010058078972921,0.3289317462732791,0.04809201549356627,0.40394747237246215,0.5051749038078557,0.40113382940481723,0.560060383681593,0.2100058965838698,0.47250976610147466,0.2371607061887857,0.16730549029818728,0.1909742445663498,0.42513055993540044,0.2883973664075132,0.3957243724634229,0.38259113189226235,0.5492563596668087,0.5319594273107847,0.4636193790139246,0.4320761859634119
+0.4603442128808519,0.34947287755743667,0.3844197582672015,0.5238333388776109,0.4812258263462962,0.31632315740686845,0.20947477593605604,0.3090489443430944,0.4522614784615174,0.4689365258391007,0.5164731041250803,0.49624353495249,0.6022414297608129,0.4509124902225391,0.5646536450720546,0.18442848811405366,0.27462013055671747,0.42002928284957863,0.6496944863250751,0.4446920950221226,0.3396804935812937,0.42890088367964935,0.3382589029188069,0.2460791413789368,0.21552653727210458,0.48891980302065186,0.5485335671176673,0.40121584712414765,0.49630209247923757,0.494356940881448,0.3765690388472355,0.14884353704294065,0.27066231524772494,0.3443684492996711,0.41351165679091184,0.6070386615430003,0.2832929900895933,0.35291201623355584,0.3377134304989273,0.4998791384254199,0.5668062824931172,0.3084568944098695,0.2880529379165071,0.5483282495696766,0.30688611103817304,0.38585775236493897,0.4387561676335849,0.6192144187473272,0.30815125744138155,0.3297721537112483
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.03978849792514182,0.06125953403695647,0.0322792326714438,0.10743377788853004,0.01597999127424662,0.19889631064641,0.04284670730755265,0.05534960954937861,0.05079636952344787,0.1009059739776309,0.045032365191717265,0.034129103292857066,0.07761430722002338,0.08169583199154924,0.0877132831717441,0.08638210474785465,0.03104729197652805,0.15538763047229825,0.05877543793179444,0.0792647828696652,0.04385588304501196,0.07545372059847918,0.032397600463210885,0.0346456145046826,0.053849574439675515,0.0275092587503273,0.05494372443111702,0.0569727841634384,0.06309132458143914,0.013930540056415251,0.028864317220122185,0.010417302832973326,0.10062429827390551,0.13781606616451234,0.03619321645957365,0.14988464638332835,0.04212443379432428,0.12786380253018467,0.06579901080330035,0.21479989299197375,0.08318203040947912,0.101382099044279,0.017780005512906906,0.08817866259287907,0.11960768741158269,0.028209112008950866,0.05122805240401809,0.06278559653699696,0.10548185053976983,0.048404555718956264
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.5446245940426713,0.5494926770405604,0.5746499121239179,0.6218406649829236,0.5114775443628693,0.6366129839131545,0.5165423024293757,0.6370925169428692,0.542762995507313,0.6224536133465991,0.6195887861627687,0.6201674372045437,0.5833410289212363,0.5737714291757635,0.5614949019230016,0.5919750750710743,0.6646789349958279,0.537933061240833,0.6078420386828899,0.62000043075478,0.5935821456662708,0.48387453640644323,0.6614913982224161,0.5906930411673309,0.6435112262060124,0.5472840965847809,0.5410355385864576,0.6163531582848534,0.5662630656101545,0.5127930515232252,0.5694412980213047,0.6006435517576451,0.5549067943647045,0.5709044806156345,0.6087876033966626,0.5875175561590011,0.6262948708083219,0.5694286554113226,0.5513503034907371,0.6881534223900474,0.6292988137160652,0.5658270041014457,0.6296448327653298,0.5804412641529479,0.5549867683110549,0.6376343018830283,0.6548520152987767,0.5776049635056665,0.6088880679489195,0.5441456733365482
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.46324331743547015,0.32180129831613885,0.3962350996440436,0.20748303322531758,0.1922336716497276,0.5052812509862136,0.47919816866714593,0.6455956173126856,0.2654255208476342,0.6061489704936924,0.04734868895412781,0.1573553408454311,0.5289460375480409,0.522233287404887,0.23654228618488232,0.5807710886338427,0.48234774496654026,0.34679621019089857,0.6977532020818771,0.22036724305817393,0.14498357580932802,0.5627996797503642,0.5211837100255087,0.21463550855914107,0.2359378551194328,0.41010269361168034,0.47371348582311357,0.43213649029189855,0.4650868737458394,0.2676673911628118,0.2661169630647418,0.39779094535757664,0.22476895481063394,0.41195914040886217,0.33989777556888984,0.4058400759911804,0.3816286903048078,0.20205177924541812,0.515223451447111,0.5958301547458222,0.47299643093878324,0.5316498369354862,0.44669853102729834,0.5085025149337323,0.3120998020015089,0.5466905154056786,0.12512699710885128,0.6064890583722135,0.4349773990448585,0.5669488112655472
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.8334184253030094,0.8576141619236942,0.8243588245265443,0.8804644279020049,0.8025540910522031,0.8347102206743517,0.812811091580054,0.8155295359196895,0.8427912840124486,0.8834114529801927,0.816595166011179,0.8887262607510571,0.8289262559831818,0.8682377697822017,0.8425429049670992,0.8748471695840653,0.8610106825206663,0.8036559519162669,0.8502294893626179,0.8560039035255894,0.852326337652949,0.8910998873417862,0.8771483314450506,0.8222389076772303,0.8551288595084107,0.8032659833366634,0.7897127187628976,0.8079341195297846,0.8037366866403934,0.8330469540106575,0.8389123738487692,0.8416192634440851,0.8544615512223401,0.8975187135846504,0.8476033854347524,0.8391143841607949,0.838094447145523,0.7926832649165485,0.8547590683387566,0.8797772225892578,0.8786848845425206,0.8384317199633586,0.8379384969500131,0.8986381758977164,0.7807453593188757,0.7889167266696956,0.8351719755447569,0.8257819514276921,0.8899353872794549,0.8705998214946934
+0.4235807492875992,0.46613900804071756,0.7120290834861664,0.33623906246262514,0.10773070307337856,0.3366410210844249,0.2984734459249932,0.44232693990377286,0.354747499257888,0.211992209823331,0.45300503705914175,0.6298135960654845,0.31368166830758715,0.40704203344819534,0.7135458318423236,0.2633364110892793,0.3266382384440923,0.1516862184006986,0.06452183935634838,0.4475543570223348,0.29967874850431164,0.48307505051582333,0.16431982584242216,0.5202939300574028,0.21069218979354226,0.13611737727820786,0.20646252853017827,0.4790098085178697,0.3269719470801708,0.4599926156243498,0.731622500297179,0.4164191524761333,0.367464434192731,0.17984517342250406,0.5620133550431432,0.46773542286817976,0.655201602607294,0.39865026684943344,0.22245799442845088,0.23748881520104664,0.5196591939753344,0.14634763698748032,0.43386115602074116,0.18899915845309004,0.26085141639725395,0.7561996380643475,0.11825126853245944,0.2975931043824313,0.7435015895154325,0.44007525092324956
+0.01875137787133345,0.3527932582412637,0.1222643082734999,0.08276244463670113,0.2515816723274154,0.04568256246602592,0.14855671758293368,0.16060892412506,0.1425354318814751,0.06771145019185494,0.13969636647445074,0.12387976559620975,0.21563645374413123,0.15759597418832447,0.05544097945398256,0.31215366124049587,0.0259937100198619,0.06002814286810033,0.12754702297248455,0.14127255729977906,0.04871533621874704,0.5579617610769774,0.00946208899467516,0.0202952826552391,0.05665087706167727,0.21112406167510944,0.09969640413052484,0.03139096275883309,0.2474580498866213,0.09074865773209441,0.05437418752396288,0.16219693908631058,0.07122530431067069,0.16531283411738248,0.061387860307481695,0.04800093483439761,0.06864333851632239,0.26859468852562196,0.2235295936051897,0.1894632576982226,0.32809301708933375,0.05741006820878017,0.03390862000498827,0.1322318604666229,0.06819423371155149,0.09004096466157,0.19341196828938226,0.13962605312921572,0.0960648685903372,0.3580030935985922
+0.5406240352396003,0.6553545378902215,0.39256584227108043,0.7432793842344337,0.5359227696463003,0.4530156669698323,0.6417086561144901,0.6233102673683856,0.6854171436229579,0.3241110292171402,0.7048317418327524,0.19653090850874363,0.39375718714453944,0.322985678848153,0.6028490829704516,0.4178840421741842,0.437154042741355,0.824251674218695,0.7009796403876907,0.47178879573223037,0.5701704601301484,0.7620042551564592,0.6488776742405348,0.37119701735213895,0.45415792648970454,0.24130789428384603,0.5193476524789863,0.7371669934661688,0.7127969934656758,0.37383281564585535,0.7141912982448606,0.7247959001914609,0.43770511216923663,0.5920979479605435,0.6373021715267007,0.5545377547857422,0.727601043631409,0.5914523364353701,0.4357620641060274,0.6882267744053213,0.622757162135917,0.24733088505481987,0.6997713230781955,0.6108048531396267,0.7193879917927917,0.40025883499790155,0.5244232663266284,0.5051351829708391,0.37078217448458206,0.4276445810895264
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.7404146136232432,0.5723180904114983,0.5478406689825234,0.6837602916329116,0.8704702058230906,0.8517998171605419,0.7187071659860773,0.5736884345141471,0.7126243437425482,0.5721776734216186,0.5804354467616573,0.5356579613992489,0.5059688483927981,0.7067369593657973,0.7033036048872953,0.24096179979027332,0.6050922930466434,0.3680532023089399,0.6847330030988324,0.3338127105319943,0.6435355197172933,0.8563453423194651,0.6742843832491389,0.48387917744550585,0.5494015555862467,0.6910311274795073,0.7180119766376969,0.6075292565845093,0.8980393786764742,0.584628105329712,0.7270394671512652,0.13820887784642882,0.4450097011580764,0.8652299588652298,0.3347913863696428,0.5631509574762001,0.5490738651264417,0.6758527468065668,0.6254889488752756,0.6888240082471135,0.6320827726780214,0.30001186171193883,0.8508837982233939,0.5129978345146151,0.6587996675971514,0.49390369971686043,0.578949394939556,0.5107053387376875,0.7935171968684251,0.4402462975960648
+0.8278226723234258,0.7636983413425819,0.7615715674882999,0.6155921159593699,0.5598830322038519,0.9400848664323881,0.5599697162168418,0.2886565722799128,0.7790914605539443,0.6760340487014276,0.8060280431149625,0.767217938267011,0.7395675026563651,0.7651643242302804,0.7861463657704065,0.763482065720915,0.795907770554874,0.26800616539061856,0.6978369256786933,0.7587537362264588,0.8364238972723536,0.844435726211461,0.6477160789495933,0.7285255122339693,0.7269548980369969,0.8288026427294214,0.6231244463785027,0.5476100627324024,0.5278489325030948,0.7420185229262009,0.5831256490701971,0.8410805233953085,0.6861735748596675,0.23335743289387928,0.6836696506646733,0.7579034217104342,0.7667294649183526,0.7316781668473513,0.6656432501350118,0.7142245926758385,0.7512855383609193,0.6815936211644565,0.5003582902069924,0.7160625889111288,0.9208618872720148,0.6770440426660304,0.1553702294203506,0.47636557991937406,0.5549836258648705,0.6605363112073929
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.9357875457875459,0.9838946672573964,0.8003056120316944,0.8179715051536922,0.6809842019162433,0.870985100614535,0.9443253092947714,0.87313964215065,0.708278931445395,0.9310050793616802,0.8081369915458134,0.9037472336138909,0.8781820893964738,0.8250778320142231,0.93269144546353,0.9646173135081498,0.9645324246130724,0.7390041371490997,0.7590121746061809,0.8277008308111913,0.8968416657472982,0.7836346171360326,0.3305345798521306,0.8672899502597682,0.980248911591017,0.5374479997368432,0.6522154139480287,0.9347658568299276,0.6226439093258678,0.6674929066991474,0.9811623269997654,0.667512238505316,0.9281814760712647,0.8925000118287568,0.8995757612818838,0.9319531935083245,0.28838153434481945,0.9626392845505748,0.8129551639952374,0.8960610056234175,0.8341337775469718,0.6874353829871416,0.8768248325909507,0.9011621434487036,0.8942850530576846,0.882130688973798,0.7432511887721275,0.7134384212365218,0.30066742154641574,0.8444953960102882
+0.41951451717736893,0.44360478373697615,0.4045298719504722,0.46770143209621656,0.4123660119217174,0.39105203294392354,0.3785358186025169,0.4620505595375233,0.4482658716928347,0.4060308835064521,0.439491960018226,0.45285766164443436,0.5172397642843887,0.40598654793731653,0.39336653499763263,0.4367678776297136,0.45347957351379153,0.4968067362051234,0.4397440971762911,0.4436873324675291,0.4057507872897797,0.4588440967588396,0.42808118868507733,0.4524543476888539,0.36944021477355987,0.5016289389344339,0.3721608931753043,0.4554817405847064,0.37314230869022397,0.514370539854871,0.4130317526844465,0.4188690010140261,0.4495909849551795,0.46569207700354687,0.43750508768057145,0.42591714194103025,0.45807138866750846,0.4431677539956715,0.41345992369442236,0.45296121194843453,0.42957906811773017,0.43156038891346554,0.4541149367132152,0.4514154210395019,0.37837214410146397,0.4083146987835955,0.440634145587784,0.39916626216172546,0.5339892526743981,0.42172921813676323
+0.5446245940426713,0.5494926770405604,0.5746499121239179,0.6218406649829236,0.5114775443628693,0.6366129839131545,0.5165423024293757,0.6370925169428692,0.542762995507313,0.6224536133465991,0.6195887861627687,0.6201674372045437,0.5833410289212363,0.5737714291757635,0.5614949019230016,0.5919750750710743,0.6646789349958279,0.537933061240833,0.6078420386828899,0.62000043075478,0.5935821456662708,0.48387453640644323,0.6614913982224161,0.5906930411673309,0.6435112262060124,0.5472840965847809,0.5410355385864576,0.6163531582848534,0.5662630656101545,0.5127930515232252,0.5694412980213047,0.6006435517576451,0.5549067943647045,0.5709044806156345,0.6087876033966626,0.5875175561590011,0.6262948708083219,0.5694286554113226,0.5513503034907371,0.6881534223900474,0.6292988137160652,0.5658270041014457,0.6296448327653298,0.5804412641529479,0.5549867683110549,0.6376343018830283,0.6548520152987767,0.5776049635056665,0.6088880679489195,0.5441456733365482
+0.8248652216641141,0.724352050092617,0.6900098694418646,0.6731366059295528,0.7619084263276374,0.6678896272057697,0.8402318917246276,0.8430515776772011,0.7452096157480307,0.8014079509145572,0.7741232462591024,0.7781892553563989,0.7669614405392525,0.7638894931712658,0.7402082004998871,0.7920103011495446,0.7945194097864848,0.7688507738343392,0.7936795577369371,0.8765824490892337,0.7246184559337029,0.7344132066395131,0.764626584439641,0.8073775134347136,0.9017704895195068,0.8591671949680445,0.8547076019255219,0.753260784689951,0.7397212387942917,0.7839311794466597,0.7976689490457325,0.8099153699453258,0.7006849352253256,0.7709135147945406,0.823488780692362,0.7654097283870918,0.7042779590299924,0.6467542221122379,0.8259249093015139,0.8203630309081208,0.649337767548282,0.8610655539505673,0.7795544166940673,0.7342866057444013,0.7371370762053648,0.8362372435894527,0.7942176760263037,0.839116752193527,0.703343019094862,0.7272956258126638
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.1483003672788562,0.11118400341527257,0.18747489739539425,0.1212194760168687,0.022702590045113415,0.214626116906408,0.2524700740377829,0.19034628768416312,0.11303344709263062,0.04789995407520364,0.33354589663556683,0.0768110892155056,0.1442600804566234,0.06705585263870435,0.2756567314880242,0.06298496756864705,0.14399359695214714,0.10366141456582634,0.05666122924570983,0.05238794018521933,0.06974747474747475,0.05139690746896296,0.007754716988898009,0.14726987496036092,0.1988839626239512,0.35377523826034035,0.05564393939393939,0.3443625305074678,0.10068871530103776,0.19244474371332715,0.2861862102087593,0.03895987201280678,0.2046666666666667,0.12181308246503514,0.12374896133954945,0.2926618238581831,0.0999912018291264,0.04912685747244571,0.051755281298159206,0.059791735784628,0.1997016888768518,0.06158632075742898,0.1701311145526929,0.15479740913806037,0.44280566155434536,0.06316295546558705,0.07178325866316515,0.1268771072077111,0.03628259352580479,0.2890518348263119
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.06666088566763667,0.14188332104883958,0.09761403482426301,0.3215069505446516,0.12131271019556532,0.10817655371166747,0.16772974099475416,0.087065395133664,0.11159637619184283,0.15046106378733695,0.1137218141927271,0.04633976207156975,0.10520357261692835,0.2794580430636418,0.11233046675538885,0.11763901333239611,0.2641245894759356,0.05047751276271784,0.11767387371095099,0.12640502021930197,0.10254668477171902,0.15409088179697963,0.15071294577996508,0.21044580680370703,0.13342824155876795,0.26078372355036805,0.12803147584347083,0.1293354193578068,0.011221325611584348,0.16536264588286298,0.05498391755825989,0.19367844425770744,0.2095002929137555,0.31868389906749356,0.17267140708703113,0.0916457525569402,0.01009126306787798,0.3174855045954188,0.2561374089151239,0.09938413723276142,0.028199622223198564,0.20287470920161588,0.03452423602158968,0.10306545627448838,0.12148158297067592,0.1251400719578346,0.17698704992666955,0.18021236384209213,0.20614488516855256,0.10521390573943602
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.6386274914120214,0.17931334138640836,0.4714852687605694,0.22769796799480857,0.5415873926245948,0.33339462505748885,0.3963992979573267,0.1574464999238556,0.4581218750490404,0.44234585429100576,0.41829763479753046,0.19592216798199494,0.18560050735969238,0.3444493104151434,0.2783614847911241,0.3256166339067202,0.5505875897329672,0.3409395018628747,0.342064663816913,0.36760925574327685,0.26022024941543487,0.38951686776654043,0.5663155004988604,0.2977561964301514,0.3708223046200282,0.4883127411864953,0.2514004555272814,0.32751547479777043,0.4336147298234986,0.5159271976745451,0.6412721640656696,0.30113077843306874,0.44915494592317856,0.45602134289975793,0.29715855009392717,0.25211506788529503,0.32672630461392865,0.4972566664444964,0.42335269996696284,0.4357707834775584,0.315373016939021,0.45691746494611507,0.14096336319982888,0.4105788469211499,0.3105375224307288,0.388387411360397,0.3507033721792871,0.49736961259162926,0.3371841172862489,0.278938093269101
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.39471734581600854,0.17165479785124774,0.16221218541832474,0.2734650064630719,0.32966253056910894,0.21044885937254487,0.16846863821755254,0.10121968220540092,0.25131416845809545,0.32550608713943413,0.2171324721955722,0.2535548151187663,0.14391878889053708,0.36129731508621526,0.18386850340963065,0.19991458442406615,0.2537193419955654,0.19894951951670398,0.1658833342937245,0.21415570383228755,0.1750042700587864,0.24763299458933077,0.23629505216774493,0.20292130021433546,0.19421013835936052,0.24703344724919787,0.2561592065834328,0.2565681147665812,0.2597121781414047,0.17552410990876513,0.22651830940092554,0.32388105998927463,0.16562672909309625,0.30000827647541795,0.18960765164905724,0.24464352937176392,0.211995234652369,0.3511345546840587,0.3198078734980692,0.1718732379428317,0.2802115985496437,0.322116287565336,0.25898966617330693,0.19853881504414306,0.2647447986072754,0.2966906920051582,0.23205194353708755,0.35969443518768357,0.4018774566485751,0.1334175658742485
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.28547928698147657,0.1841068172761824,0.5668333283331309,0.2805177147438486,0.30142062715525414,0.42466244113417395,0.3702954394517696,0.28668132085025405,0.18907210550047102,0.3171301720988042,0.5166651075716439,0.6231432823107107,0.18390269123781333,0.4326912482698425,0.22337771352018573,0.39675904925725475,0.20447359689742978,0.44029881484468897,0.26532892892552,0.1686575522173544,0.09356788514506588,0.5835403705090836,0.42249301693215746,0.26384162187265114,0.2897817801920106,0.20993825550337622,0.22656573981982042,0.4106101970068579,0.26531330177437823,0.20770574758109067,0.3241321247211227,0.3416036288343626,0.34425258462466685,0.2787856037027759,0.4838656731150938,0.38399308391149417,0.5738062346068357,0.1651178823840679,0.42763176491869614,0.40048709590457526,0.20111312025692954,0.3045389665011309,0.47478154477530515,0.49822178037534093,0.17006118753176583,0.1633873942443712,0.2800366812818959,0.34786291581086837,0.2722603107516681,0.3480530148653574
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.43399232411556565,0.3880210026764744,0.41408983635653074,0.35562920216280014,0.4206666902959723,0.37678642881971564,0.39169381163398453,0.42262456595061193,0.43176830995340487,0.368812165558667,0.46367946949138356,0.42429894347815633,0.4850420096847177,0.302281762233925,0.4029910855621027,0.43597130763403974,0.47710038867070304,0.4782923601665337,0.43788194388956037,0.4536505682550652,0.39584681499391455,0.41032636521749816,0.4011342558618931,0.4371002264149695,0.40332505177775707,0.37233062040488646,0.3853880157912385,0.4505884348070552,0.35983276308578566,0.43448218440981295,0.37705181458871445,0.40699788679184074,0.3400722221293895,0.5249694701170622,0.43159850037896247,0.4038372187008506,0.3881571378777961,0.44804233027679957,0.38503390093268947,0.40111186422910045,0.4054585392744918,0.4048011831423874,0.4251472275511341,0.4228780687890388,0.3679849999042404,0.3852269236856018,0.40796335294067965,0.39357170532222535,0.5002473578428198,0.3529142107486882
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.4568308017657454,0.23481262637970432,0.416273640424778,0.3802041293223023,0.29255560848538675,0.366613764058129,0.5684326297302139,0.15851268610835295,0.42467736712408594,0.5156165812470966,0.48236197586389357,0.30435760281557944,0.5345330476252113,0.5446252902885761,0.40946481255210343,0.3794614231454185,0.2168434490528202,0.458260598251265,0.36595862232513804,0.4190942204476656,0.3322622790075377,0.45379854480216836,0.26027513612983233,0.5259703755200354,0.4947994787693854,0.6645732247834188,0.534229353258472,0.30646604659165233,0.643991093665812,0.5085231379822178,0.24103231905820202,0.4263577670041794,0.32360356866459145,0.4475353124994529,0.46520647076987987,0.41539828824212693,0.2427058580088182,0.20100983286124613,0.49819209070426707,0.17795805979842508,0.22692185510643892,0.5097177547292467,0.14165257869051595,0.3719273947538378,0.4721200349591112,0.4667600581177796,0.27702211483897793,0.5134630737216174,0.3882051314257853,0.324733511572321
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.38476744781252475,0.3743989044200614,0.3924715973861388,0.38366875197374917,0.42162849316724377,0.3266066489585896,0.39820503891639975,0.4412377334299109,0.4247068353772117,0.31061327364925195,0.4827328015639995,0.48720957385236924,0.46852030483913837,0.3187299758917716,0.34282682069152753,0.3760002779701263,0.48858595668024984,0.47305812858771384,0.42789944847020267,0.37705109330894987,0.4073499291602718,0.3845609227916242,0.4235328250576197,0.4223398360369351,0.40514964137653936,0.3629035989879344,0.40527154887892036,0.42317244417893035,0.3771450329711037,0.40540988181938714,0.3944731657817856,0.43443298495326976,0.46995899023583865,0.4356246271925716,0.43938042191330184,0.41793354560191703,0.3622060645712461,0.45153076048025326,0.39222118317850957,0.4100955846601331,0.4161546372418238,0.4052294661567805,0.39528155434759493,0.4704369430043123,0.38164904231196745,0.2951318365722232,0.3765617410812942,0.42166463615466493,0.4644181252060538,0.3525449373231544
+0.6696931940061099,0.7341526567487848,0.7326788133352591,0.7188759230689934,0.7459273109434759,0.7812738215059675,0.693388010075286,0.7848040179699431,0.7447359414804613,0.6883127938395416,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.765021908666469,0.7303799061982894,0.7499849410906647,0.6893166387534525,0.7498840324332267,0.7380516365394739,0.7569408598130287,0.7145096238228237,0.6930714505791308,0.7117625637107706,0.6853234934073751,0.7298837513293788,0.7797638716037194,0.727886914288072,0.7212505384422182,0.7500317518269719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7708816832631118,0.7510375534649598,0.7468154268671499,0.6871517631737499,0.6886930655543554,0.7426007754506686,0.7145986308358452,0.7263334764275549,0.6801470415793952,0.7427404872935837,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.7260770648655845,0.7008611040978993,0.7290926012071941,0.7192648702161084,0.7418190390673819
+0.38476744781252475,0.3743989044200614,0.3924715973861388,0.38366875197374917,0.42162849316724377,0.3266066489585896,0.39820503891639975,0.4412377334299109,0.4247068353772117,0.31061327364925195,0.4827328015639995,0.48720957385236924,0.46852030483913837,0.3187299758917716,0.34282682069152753,0.3760002779701263,0.48858595668024984,0.47305812858771384,0.42789944847020267,0.37705109330894987,0.4073499291602718,0.3845609227916242,0.4235328250576197,0.4223398360369351,0.40514964137653936,0.3629035989879344,0.40527154887892036,0.42317244417893035,0.3771450329711037,0.40540988181938714,0.3944731657817856,0.43443298495326976,0.46995899023583865,0.4356246271925716,0.43938042191330184,0.41793354560191703,0.3622060645712461,0.45153076048025326,0.39222118317850957,0.4100955846601331,0.4161546372418238,0.4052294661567805,0.39528155434759493,0.4704369430043123,0.38164904231196745,0.2951318365722232,0.3765617410812942,0.42166463615466493,0.4644181252060538,0.3525449373231544
+0.24804513506918444,0.3081599738972571,0.2348979912967171,0.22611748020529632,0.23450470666036055,0.4677106744355749,0.18048275756868257,0.1825348186379052,0.30152143969766376,0.2443683800394955,0.1451014649992256,0.26591698204090397,0.19241303777325972,0.25198196572583803,0.24173527279298948,0.20988363071088123,0.254176822702437,0.21032557179929298,0.23366484513744631,0.24761829038864305,0.1948024285284073,0.18948305684034486,0.18212925520108186,0.4303647503355787,0.2530813861779373,0.3081552255547663,0.3175378219881714,0.28511664179790897,0.29340206956498954,0.20341632173128774,0.20604783263155202,0.2154468507738363,0.23722083703706093,0.33233825328463945,0.21984766149848756,0.20045251942330192,0.1560210301520616,0.21025372613598792,0.2901048459579738,0.17044269034517978,0.2304763877164618,0.30667119877927246,0.28424211686859463,0.21664427751164161,0.36089768172622855,0.2317741170000014,0.2619968468210857,0.3502981554300004,0.3978755784205276,0.21135413523512292
+0.2286978704106757,0.21783133557126436,0.18997538793907318,0.21338706510477795,0.3777064245921452,0.1523225450239906,0.11545630844168411,0.19307115662410623,0.22266073947400133,0.214721438126857,0.19334876104724139,0.2739377573664791,0.15746730609069204,0.2705399276029173,0.2959668082881686,0.27831445874460503,0.3236411799331904,0.1896394830484101,0.2572374007322747,0.4043069426783908,0.21577351145889687,0.2139565451207185,0.11689950800874534,0.2973276823846994,0.20970738090033095,0.2768535405997883,0.1969057034603393,0.29135204282186183,0.3051418857029597,0.11439278945803759,0.14727284933043866,0.2555992601959393,0.21072221463229904,0.21377778043805473,0.155827920526303,0.1510272825913391,0.2118365109732193,0.29821217587742177,0.3883862147602355,0.14667590688282117,0.2420010878333642,0.21715852019234194,0.2692963357942793,0.1556084154264842,0.17822242920939624,0.3028130035776248,0.27685195115999656,0.2517242578674885,0.3072525873587605,0.17985907790211608
+0.34772759086698374,0.42010341644540256,0.34378189455504127,0.16148935664433334,0.24598204059228546,0.29156306688716266,0.0521247293659331,0.2576427407303837,0.231707185558964,0.16052023909711366,0.23708069592330885,0.32342895316599723,0.2708772823807431,0.3893991447469395,0.3039554564799959,0.19089384050886768,0.2751176507610792,0.3660250108309981,0.35526181805229995,0.23341228362937066,0.34953887693075486,0.4158003375742178,0.22892831924339524,0.2628897688038464,0.16446192447351785,0.3463483058281957,0.28864797137543596,0.1197934065226234,0.3830718079775421,0.28674696865391147,0.23026724082136976,0.27905540020188724,0.3659270998285256,0.3270765726979756,0.27770204509843616,0.3315645950888527,0.20725562072272374,0.2560886091167156,0.38212543364841944,0.09765676135339144,0.2375152917536234,0.2556599644053994,0.2810405610635409,0.16448043250431396,0.2858424575031006,0.20315496334683558,0.2585410909232601,0.1963128198677927,0.3986919346204423,0.19330484182658483
+0.6137030109447023,0.6256056649347632,0.30350081041680993,0.6750634253213521,0.5966628459598238,0.8340290670392624,0.3903897421898983,0.5925806638193148,0.49507064801088185,0.6854087834801287,0.8424603585562376,0.5409045525636202,0.9531491272753234,0.5780299567106774,0.8253463337043813,0.28514796948279364,0.7832421859248,0.5859333679603688,0.5008228954737178,0.5046375073899392,0.7566881272953561,0.5245438612340476,0.45447460545600654,0.6378750821338028,0.6545157730238301,0.547958740484545,0.5593202969889611,0.723761993961006,0.23535367725511314,0.38215288538063247,0.7611123127896277,0.5916081934886076,0.5175092216783382,0.42200050247282506,0.5103646249888223,0.6993737472902302,0.4110228662915044,0.795289321030794,0.7189465111457928,0.549168320281028,0.686319723795146,0.4103098505646586,0.49041736234378697,0.41328361840546207,0.5253209524592206,0.4595866073454468,0.6767958035474733,0.6224969886944848,0.6489810010228649,0.5332403458736052
+0.7736059646112404,0.534455065903884,0.6058380629664726,0.6888596766042461,0.6998987945474608,0.7774968542736707,0.6601218876723263,0.6840990352029358,0.7534939543179965,0.6559033341609003,0.6834610230569909,0.6519901920433887,0.7216428344295018,0.7217363990756915,0.6442249366233018,0.6271956230086377,0.7262229925003472,0.669255606247474,0.6662480756641219,0.6487052937064556,0.728747328929106,0.7013606155609428,0.6163904348299699,0.7444442126770285,0.7548234264337748,0.7700270755644322,0.6199834558902689,0.5736584117076509,0.6059777683813649,0.6324692371481963,0.7018368679507807,0.6329322628762354,0.6650449103571927,0.7159179135815283,0.5905617281055707,0.695052599952688,0.6303598120414654,0.7062168685401065,0.5759201557407554,0.7170221248827282,0.7557455907955435,0.6204963092474782,0.6501782514176433,0.6351052633206451,0.7646889700646277,0.6963011532361602,0.7348253663050381,0.7171784741790542,0.7538133801225974,0.7303445488491929
+0.8395535918839873,0.7695017523261071,0.7766929205645492,0.7731452771256521,0.733880185271111,0.8296099790439847,0.7685998568206784,0.7856936729135008,0.7116749284572401,0.8787418011626165,0.842331753924945,0.8324921433451119,0.8651695952309243,0.9033566437325655,0.8258053393825684,0.7692083510763108,0.8619282621802803,0.8670853641048585,0.7987187462664074,0.82264481752421,0.861024623204151,0.8351088745000945,0.8524924495039017,0.7189014264653021,0.7484150978128816,0.6777662058071584,0.7654552982743956,0.7452901239877795,0.7769826760786482,0.8434541096248432,0.8862615942724201,0.7472816521891886,0.7126825162087799,0.8111054205790269,0.8495545164139218,0.8020916395561238,0.7109766695256983,0.8201353536766759,0.7007006002017259,0.7247212529011887,0.8174542493478789,0.7996501093988936,0.8158204070124968,0.8841059587691683,0.8347919074988355,0.7469878045281061,0.7976980153091773,0.7861087663723778,0.6371627380565495,0.7649585940443687
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.6904433465632681,0.7217523671201199,0.3521079725578703,0.5964012336107537,0.5957252671712624,0.7663367616788883,0.6237172295382579,0.8364886066070271,0.6491290384893115,0.6730762444466712,0.46979248981882504,0.5650207623406593,0.6916047469490109,0.6391719794983076,0.8136199141310918,0.6318415170345469,0.5158364396167211,0.6829304481436865,0.43654784737050606,0.5124191622903066,0.7081834509996381,0.29642061588478136,0.5706658350797406,0.6601740175544036,0.567687919090212,0.7167572006476104,0.7346249662375738,0.590154620371679,0.42969635064409717,0.4380933363964482,0.6119749346268606,0.6903248407671272,0.652937915917606,0.37823878293296676,0.6763478475292223,0.7605837037076489,0.5943778977270022,0.6908571731737535,0.4459762204390627,0.6114002731894953,0.578992289128799,0.7212778244150697,0.5888891576182543,0.8788308004058252,0.7215518432000639,0.3133019674845545,0.6851360370539957,0.6539896920675551,0.7303437519896058,0.5741573826696499
+0.4811941062570764,0.501243764156159,0.41857325507246523,0.5876274950718933,0.42810826539948416,0.4460162185280849,0.5570220539865746,0.4841486307492778,0.5156282015675279,0.42479667796769915,0.4945414854086975,0.43831342688472863,0.5583985983444046,0.47211409931745046,0.5318337785459242,0.6077031605168848,0.46126710842617646,0.5271609795527826,0.5561002003302543,0.5197276964224626,0.44128939634953473,0.3748657426245788,0.4494505791119283,0.5762169535141123,0.5021729988469051,0.5076901694924705,0.5033442419622493,0.42261177918539927,0.36668413268667494,0.5137937944547973,0.474514825991273,0.5026042640191853,0.40864258488395505,0.46937262866493,0.5128167652145259,0.43594505729443145,0.5290245717860537,0.5492286022679874,0.583707881389602,0.44765523861927503,0.5493804608636982,0.4170819481460009,0.39071723624896504,0.5163170670652945,0.4437267379432569,0.5414205463518508,0.5447578744115551,0.45363687932893376,0.45041176805047484,0.4466991820526989
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.36787000589011165,0.23199179199634348,0.3639452787430153,0.3982223936570112,0.33559238391435825,0.1892401207038404,0.19522506228175251,0.25938121723441704,0.26042693570146536,0.25260128437355417,0.2171198521993389,0.3332853939098289,0.19838331593104525,0.26359085362439133,0.251950111944382,0.3007254778505615,0.260773125536941,0.289398886953331,0.4535838513590973,0.3465718876969072,0.2676381907567584,0.2269913593912658,0.4525938231702679,0.31155655100793794,0.3111979490640346,0.3877222258150493,0.35781687233380954,0.43947684135136045,0.2751053553305839,0.21385562763451144,0.23652547985400774,0.31779152310076175,0.2679047845308614,0.2265279831409188,0.22729607833241283,0.2868781260389613,0.22242582139676184,0.2510665615557262,0.40956715709064606,0.2752776119765035,0.4019585364710347,0.2598437917513008,0.3408685153594716,0.283012747345091,0.3211065056884512,0.28506184022885195,0.27934939070828774,0.36872078236312716,0.397814054061843,0.2916510987257872
+0.43399232411556565,0.3880210026764744,0.41408983635653074,0.35562920216280014,0.4206666902959723,0.37678642881971564,0.39169381163398453,0.42262456595061193,0.43176830995340487,0.368812165558667,0.46367946949138356,0.42429894347815633,0.4850420096847177,0.302281762233925,0.4029910855621027,0.43597130763403974,0.47710038867070304,0.4782923601665337,0.43788194388956037,0.4536505682550652,0.39584681499391455,0.41032636521749816,0.4011342558618931,0.4371002264149695,0.40332505177775707,0.37233062040488646,0.3853880157912385,0.4505884348070552,0.35983276308578566,0.43448218440981295,0.37705181458871445,0.40699788679184074,0.3400722221293895,0.5249694701170622,0.43159850037896247,0.4038372187008506,0.3881571378777961,0.44804233027679957,0.38503390093268947,0.40111186422910045,0.4054585392744918,0.4048011831423874,0.4251472275511341,0.4228780687890388,0.3679849999042404,0.3852269236856018,0.40796335294067965,0.39357170532222535,0.5002473578428198,0.3529142107486882
+0.3952678926227704,0.33746171893202725,0.30799625379193,0.29623327354342516,0.28534665799638703,0.3237045034817153,0.2366778566124768,0.3227257288192091,0.4058467574318256,0.3053363637805748,0.2835646474737934,0.4011775274416627,0.29210217197385474,0.31639073785420607,0.25503165005153217,0.35530873908016036,0.30412321297368544,0.3662039216400616,0.42579613542149836,0.28621619213016225,0.39885655202669457,0.29744512077506924,0.3855207632834414,0.3578611498852791,0.3085525576229269,0.2893464333313425,0.3624295322436504,0.40058763051193397,0.3278005305209667,0.3882468085788674,0.35138998609474753,0.21082376724549967,0.43318968322771895,0.3342865052209678,0.4436127940163979,0.3403266402236663,0.383162588518861,0.29960628703748227,0.3782668901315428,0.38127639759585175,0.3665163286285869,0.4222494596695708,0.2407185077383415,0.40647161472298093,0.2963944637998162,0.2821215967076167,0.32070842128942245,0.3762459717985488,0.2978331269727629,0.324338912114257
+0.3671773271254101,0.42740062103729765,0.41527666615961906,0.323225061580218,0.44271690356971066,0.4438192333332009,0.3906831736519174,0.4294056841669911,0.40624711768596683,0.3359641716394034,0.4798243879461597,0.4578408117740618,0.4880135205031138,0.4441640979578352,0.3478875316108327,0.47715153352723183,0.4988350371476982,0.5616695782539495,0.47591426143236737,0.552761553999206,0.4452553547346336,0.25151966869750875,0.405349662189563,0.5467700908715496,0.4491818433411717,0.2909047849607674,0.4181066677223355,0.4866605455976326,0.391093270522944,0.4430316280491823,0.48507282018381337,0.4094229352118646,0.5250452101621711,0.5199852988874305,0.43545646725179277,0.3813455107107989,0.38778172340469846,0.5182993122355404,0.3979573590412353,0.44253412281036586,0.5331068107946169,0.4997036265647483,0.4119180130018065,0.49355786161117343,0.4746452294885854,0.5684421988462391,0.3705460337172397,0.4772842031158298,0.4232231401996587,0.38512203674994866
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.307134011095291,0.2785059598019674,0.2869355338964497,0.22973493458201533,0.25794139189022414,0.2759903700952768,0.21312901253123667,0.23297762214616036,0.24635029679468315,0.39170709300435347,0.26057538095458593,0.23219118217999257,0.22937952324445454,0.23650879416392342,0.23593804669951268,0.21562430954699316,0.3143702968735862,0.21969998657294648,0.17308481133040077,0.17179777750366004,0.3236044781624175,0.1651287285059672,0.2657309444972213,0.31934437112188446,0.24860161507834241,0.3875321286700513,0.25708294612248656,0.24941869134734257,0.24891679888451318,0.3227132134591831,0.252691058573932,0.31146620263211383,0.18500276314168607,0.3370804567222001,0.4693351807154692,0.2815683005738616,0.27895624981435996,0.30133010842446145,0.2598396776104691,0.22991452133302206,0.4120338369779195,0.21106246747833943,0.1684755096221024,0.3112470283134713,0.2947300207472291,0.2295774417045216,0.28455064237664457,0.3579727897051136,0.29219966489202664,0.20322085267145237
+0.5406329257773813,0.6867605054967104,0.4664837953407301,0.768213479609266,0.7098390498347767,0.6455183949035791,0.7647069307010363,0.6365662312653041,0.33423151983440624,0.5824045650566285,0.684741005191994,0.5567924053497643,0.6344871956789828,0.7005258063461913,0.7834262162302271,0.5970896308827925,0.5774596999901087,0.6864286664168138,0.5409612417469418,0.4393757403971234,0.45318142060896605,0.5829689908242812,0.3224632832667643,0.7521406433485922,0.6406560264583392,0.5104548647645281,0.8140651872489104,0.7488622003079658,0.5249694682798536,0.47579105370403896,0.7180027305476011,0.6946367547753719,0.6367067122718079,0.5585200842272452,0.11630722848539675,0.23654544786634735,0.28259271863762186,0.6320841073682053,0.9097587838896517,0.633663332807005,0.33115272241099547,0.8449086849351304,0.4438859544147908,0.694579847434735,0.4235697566307458,0.7289982371342337,0.7415748268903266,0.5984089557907408,0.14348239199143278,0.7192811965010183
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.32809304786389043,0.3270517135624245,0.6505723618624286,0.4521556182235883,0.40803086885083756,0.550907063561263,0.5435606034106193,0.3664573935521942,0.5964732315959576,0.5572228298946451,0.546917508961755,0.4977729119090791,0.22546091225738196,0.7414800559621431,0.65618396137667,0.4099269742631828,0.4724684748543367,0.5442873396678148,0.6780788803667122,0.583752098826036,0.37439224861632986,0.5211037400202173,0.5260316010853088,0.29506600889352286,0.44378698906931086,0.4507581517976491,0.6136938728368654,0.541034644047025,0.5195322257122669,0.34262321464719747,0.466667768283763,0.7223053304924519,0.5435635474821114,0.6190629347362373,0.707571498249153,0.37874237225717167,0.429834176495904,0.48409393532177897,0.44785339290727594,0.3940605193113042,0.3377245022454399,0.33073135123388786,0.5605022789420343,0.45418014557888503,0.48507525324485423,0.3306142880038938,0.718967978866224,0.351618827686829,0.34431669417157257,0.4329835082564108
+0.26281444583247315,0.23467861236851167,0.22988082426031106,0.22562789032270125,0.2409716562692447,0.30832223839468176,0.1904471506796281,0.19262896987505285,0.1775758950801153,0.2597532414918941,0.2556338161313007,0.26737623915960673,0.2269540059150619,0.24638236897616267,0.2407174209563831,0.28795020929117265,0.2366817345739811,0.23019782590698412,0.1761499496772323,0.23627352208967722,0.24877758752122706,0.18695563379826688,0.14574438948943796,0.27338590413646147,0.306734758835788,0.26837420532768713,0.2897905489741235,0.2598848046457668,0.2619770544911515,0.33974475176589686,0.20853180077647904,0.2148352573327471,0.22108184147719115,0.30717668662216707,0.30562951683213274,0.19859529257104164,0.19057130309418255,0.23122597386240368,0.24446619991642884,0.18634936890161571,0.2242157157731179,0.25708540409849545,0.2367615641769424,0.30031375073302535,0.2952012815929509,0.2171664315476482,0.22929923611853034,0.31054414422554744,0.20717505035054745,0.22544035324558093
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.45748672571054533,0.5845641956250298,0.28734641190360977,0.21040898849414838,0.5062567386178494,0.23796738754658844,0.5326103300929133,0.22696719404188806,0.4674371323912353,0.43709202148624776,0.35645958991552945,0.36729332497885947,0.3358659837860993,0.21040656626708473,0.4225920996424263,0.3028648690355664,0.35327799442924823,0.4159346663413146,0.12088855182329943,0.21526483992216533,0.21579344524685826,0.4086247704258908,0.47432895986179974,0.4233520833002588,0.19829223979808241,0.2528760638649181,0.38125761496761834,0.2819812302128608,0.24245362378281274,0.4315709932354752,0.31792438843281884,0.5190508244401985,0.37573763200197563,0.4259345973490691,0.3420696501566066,0.3231190931104818,0.3023276750805751,0.26412843150668475,0.5689153586079629,0.4484864050002073,0.26314612510459473,0.42680638258819575,0.3323539353745562,0.4532771334683329,0.23865049639532632,0.31519841884684896,0.3847418503237591,0.4363680209443171,0.37456135884306535,0.40724744303709565
+0.24804513506918444,0.2798329074418028,0.22400764726829042,0.21912767562313185,0.23783803999369396,0.249402555513171,0.19167918600622225,0.18307630803610736,0.18833987840196745,0.2476613604518798,0.16193433015005648,0.2586576064736581,0.2917324653801799,0.25059221788405883,0.24905912305327343,0.25304027041726446,0.19959737418999887,0.21036093198442274,0.20789994419415186,0.25312093162121824,0.15598657943628674,0.1836847204195828,0.1937851752134744,0.2927584700895637,0.23841054697697767,0.2767235431015095,0.28085247746581826,0.23904092990640266,0.25339291677105646,0.19298665343064925,0.20863524521896462,0.21396932699043014,0.22834328601665269,0.30337088680264523,0.26761795225693613,0.2096037879162279,0.15290627605370097,0.2198851912933937,0.2558343918847775,0.17186623988887678,0.24331342214725118,0.2154179887533757,0.28164649355847776,0.21803432967930328,0.28414464575148973,0.22140847455580961,0.25135898454094613,0.31866049335970975,0.22265718654523084,0.17473934055022222
+0.41951451717736893,0.44360478373697615,0.4045298719504722,0.46770143209621656,0.4123660119217174,0.39105203294392354,0.3785358186025169,0.4620505595375233,0.4482658716928347,0.4060308835064521,0.439491960018226,0.45285766164443436,0.5172397642843887,0.40598654793731653,0.39336653499763263,0.4367678776297136,0.45347957351379153,0.4968067362051234,0.4397440971762911,0.4436873324675291,0.4057507872897797,0.4588440967588396,0.42808118868507733,0.4524543476888539,0.36944021477355987,0.5016289389344339,0.3721608931753043,0.4554817405847064,0.37314230869022397,0.514370539854871,0.4130317526844465,0.4188690010140261,0.4495909849551795,0.46569207700354687,0.43750508768057145,0.42591714194103025,0.45807138866750846,0.4431677539956715,0.41345992369442236,0.45296121194843453,0.42957906811773017,0.43156038891346554,0.4541149367132152,0.4514154210395019,0.37837214410146397,0.4083146987835955,0.440634145587784,0.39916626216172546,0.5339892526743981,0.42172921813676323
+0.7174738974598722,0.0930290404259289,0.4392216053118969,0.047974787951646294,0.5818915329301124,0.4059466131796641,0.39695072267304954,0.2230108561890456,0.20967100261764046,0.31670975797967255,0.6750072566401899,0.47680065358845036,0.22233699223785575,0.21245930775313213,0.9516334166247374,0.2698233818625817,0.39515054789958926,0.8053812328881989,0.32077083211255497,0.3027204462725847,0.70159966397831,0.7495832789097876,0.2212742324499633,0.557657975094959,0.8978901726575259,0.5510653662077715,0.7851785015847629,0.25755726481833485,0.40486694677871143,0.3366852845403163,0.05383117451764992,0.7751153504349029,0.6988430390850969,0.3039121645253252,0.5302513896786045,0.759248510426948,0.004399601642138955,0.25489867351129536,0.4206552004359655,0.14352058789472708,0.9180438755885253,0.4813046450236602,0.3436354413412549,0.5646420410922535,0.09243960898907386,0.15781676266617084,0.31569008550217154,0.20668753461361777,0.7301041316942144,0.7921148739820054
+0.43399232411556565,0.3880210026764744,0.41408983635653074,0.35562920216280014,0.4206666902959723,0.37678642881971564,0.39169381163398453,0.42262456595061193,0.43176830995340487,0.368812165558667,0.46367946949138356,0.42429894347815633,0.4850420096847177,0.302281762233925,0.4029910855621027,0.43597130763403974,0.47710038867070304,0.4782923601665337,0.43788194388956037,0.4536505682550652,0.39584681499391455,0.41032636521749816,0.4011342558618931,0.4371002264149695,0.40332505177775707,0.37233062040488646,0.3853880157912385,0.4505884348070552,0.35983276308578566,0.43448218440981295,0.37705181458871445,0.40699788679184074,0.3400722221293895,0.5249694701170622,0.43159850037896247,0.4038372187008506,0.3881571378777961,0.44804233027679957,0.38503390093268947,0.40111186422910045,0.4054585392744918,0.4048011831423874,0.4251472275511341,0.4228780687890388,0.3679849999042404,0.3852269236856018,0.40796335294067965,0.39357170532222535,0.5002473578428198,0.3529142107486882
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.3234691028338397,0.2081377430740965,0.20405396363998704,0.2032512412950796,0.24837295215481014,0.3015620701004474,0.22991855352251434,0.11735375188002144,0.34242373575877316,0.287096213658233,0.2314851935409764,0.2752293445763284,0.23940556650577552,0.2090201777976094,0.24361794067246895,0.2070080697553899,0.1908907919818491,0.23435868018347936,0.11127976220853544,0.21709345226722523,0.22593621867532332,0.19977369343850357,0.12572485951929419,0.3577806398789545,0.2509967691746428,0.14550477116638644,0.22184555514169513,0.2741563250536652,0.2929164412743604,0.3490143839114888,0.194503624701464,0.21914527808061635,0.20671336656822187,0.3458172002779877,0.22998103662433436,0.20461565049549424,0.14000856435482378,0.2834151474650981,0.25079974965438573,0.1930308631383549,0.23188411851544216,0.2519832973802287,0.2225068291838111,0.26750976033247137,0.27824112094788106,0.2500140487397557,0.22452453829151064,0.35527402027777966,0.37709548641523716,0.1818514990566359
+0.4652227391229421,0.44214090358549785,0.42798375578554476,0.5363382573051113,0.43220764461968103,0.33881358343860307,0.45380698654535223,0.45108549917229845,0.46576573397557547,0.43384676710223,0.4445223667354965,0.4803911168859916,0.477790960388706,0.4950201231415511,0.48584883439887144,0.5575172153083513,0.44960321208624454,0.51347755599201,0.49291560015879665,0.5369991290462687,0.433883940123183,0.48958121741028543,0.4388909975444369,0.5929899060150144,0.40657310427433624,0.5108561224975957,0.5132426972740877,0.3855221657329599,0.3699609794959964,0.6393536633905379,0.49059074733569913,0.4228146437267955,0.4740414665830889,0.44981835798221576,0.4755176438971832,0.42892021277165243,0.5727190882551801,0.5250702667343312,0.5592342578750916,0.4380084303587132,0.5035886234454279,0.4006355468952724,0.40960053556172404,0.4406971314594053,0.38793985243944,0.5011038247917654,0.4591869136374979,0.4662626471752944,0.45794840263077724,0.4975674247159926
+0.5446245940426713,0.5494926770405604,0.5746499121239179,0.6218406649829236,0.5114775443628693,0.6366129839131545,0.5165423024293757,0.6370925169428692,0.542762995507313,0.6224536133465991,0.6195887861627687,0.6201674372045437,0.5833410289212363,0.5737714291757635,0.5614949019230016,0.5919750750710743,0.6646789349958279,0.537933061240833,0.6078420386828899,0.62000043075478,0.5935821456662708,0.48387453640644323,0.6614913982224161,0.5906930411673309,0.6435112262060124,0.5472840965847809,0.5410355385864576,0.6163531582848534,0.5662630656101545,0.5127930515232252,0.5694412980213047,0.6006435517576451,0.5549067943647045,0.5709044806156345,0.6087876033966626,0.5875175561590011,0.6262948708083219,0.5694286554113226,0.5513503034907371,0.6881534223900474,0.6292988137160652,0.5658270041014457,0.6296448327653298,0.5804412641529479,0.5549867683110549,0.6376343018830283,0.6548520152987767,0.5776049635056665,0.6088880679489195,0.5441456733365482
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.31053715245654756,0.27253310912323436,0.29632470604738165,0.22973493458201533,0.2678095544541643,0.26710148120638794,0.21936701070811973,0.23826333643187464,0.25896359388749435,0.3230504640593348,0.2622286067610375,0.23219118217999257,0.2613095737633457,0.2277853899086043,0.2371008373971871,0.20651661945376362,0.2939264074296968,0.23156451362096678,0.19395141756991843,0.19377057845853782,0.30462236133606974,0.16853401591804573,0.28364410363310116,0.3133186832314592,0.24860161507834241,0.3051576546569227,0.25838453342407386,0.252827144745277,0.25885290706375297,0.32772471772447204,0.2278889701698131,0.3181696340046628,0.18416942980835274,0.2953539504076243,0.4935927197681547,0.2761331048447388,0.28726433119443223,0.292114597414702,0.15764461122089465,0.23553114111759169,0.3461046214419718,0.1934869572742578,0.1684755096221024,0.2501130112245993,0.28762475758933437,0.2379438169131474,0.2639123066725193,0.3602804820128059,0.1981804206549201,0.20322085267145237
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.06162280701754385,0.38869359736957465,0.09453703703703704,0.20824971563037206,0.07286897082892077,0.26203760602541093,0.1595389656938044,0.34114470695584276,0.13463908722225393,0.29974040462679225,0.09041467304625199,0.464655737704918,0.28743291001410476,0.1623121128799874,0.36427425515660805,0.24566972864533837,0.27648868496137213,0.3595690061079214,0.30993336177977676,0.36630742296918767,0.22246553811441902,0.2648169345987171,0.2184057971014493,0.21848175856309437,0.2839223823795253,0.18559303403355326,0.3151735431468952,0.2133177141493545,0.23886930983847282,0.23431623931623932,0.20650578179989942,0.212,0.5050621064174634,0.44512791286727454,0.6466666666666666,0.23567797466558665,0.3109330320201229,0.19369331963660452,0.3611050479388373,0.5199150776954073,0.34195878340063685,0.1800777296641985,0.2932258064516129,0.36855576719345856,0.2591917660166373,0.3771098901098901,0.15931694499053392,0.3949125840235111,0.1062243401748036,0.2651817707365833
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.5448348549078506,0.5305350040644673,0.5272862128892447,0.732347942115165,0.6162496211484695,0.6544836793541129,0.8777104003901262,0.7308528554011599,0.7464402209543682,0.5458746046583781,0.23622356206092993,0.581987126987127,0.8176665751733327,0.2991696770717506,0.5641409040640232,0.8944680677745194,0.6003422758903912,0.5227173406493122,0.7586683057945494,0.509445352744999,0.789137243120501,0.6489020740621263,0.7030531970917351,0.3642166440266841,0.6641376386447218,0.5838192687563297,0.8791879692967748,0.8071950959547882,0.43804522606687074,0.5724700592167061,0.22542010373594604,0.6359658219058029,0.5534752911246501,0.32695184210540745,0.752768544973545,0.7837427868906066,0.49251896465690825,0.7154723748950076,0.6708085508776064,0.6447326603355538,0.8372151529725798,0.7289167430440381,0.5116677948066438,0.5921027578824601,0.2587795294674314,0.7020116852718339,0.7478729636826827,0.6048190284167224,0.87773126509502,0.8963636363636363
+0.7430790797095264,0.693795809760338,0.6548424768611083,0.670237936597952,0.6597496052991498,0.7950109830481843,0.6702042393765365,0.5464989908073616,0.6679353929175101,0.7790820013927671,0.8983096464176227,0.5976951301591645,0.7616471906665738,0.7207337949687442,0.7838861051609436,0.6315896562657316,0.5215093940182179,0.7027684385566058,0.7531682813564796,0.7327291518055958,0.8336822649033784,0.8829547478534308,0.5702693463836203,0.6965811669493572,0.7164101926882224,0.7755003233731612,0.8746010465630552,0.6891388177030696,0.6353218368282787,0.6254620013848956,0.8793099864958046,0.8696115729483875,0.8296696183881896,0.7481636775472136,0.6783856609808621,0.7890571836962983,0.7935004604170084,0.591618143178373,0.5028687281971983,0.735430085208293,0.7759237463952657,0.641157057096201,0.5934758694484481,0.6198361842094963,0.5106066271165114,0.671760704902335,0.7812807726597846,0.7489141495067727,0.41926515977223033,0.7028475598340026
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.5740290165721204,0.2730932057387235,0.2621035130359436,0.4328787355632475,0.46570361128111853,0.1917907684248359,0.552625505457782,0.3496014843921341,0.27562876476020914,0.6010371999863525,0.5686358686769255,0.6246173061405084,0.6338734221231157,0.6124542132868027,0.5530087156802714,0.5697228073102174,0.44388405908001005,0.479153230125077,0.41139821008712363,0.3111124439016431,0.6561447309656215,0.42793353602669754,0.5578008138317745,0.4934119957544811,0.5202288423858892,0.3244987801292295,0.4592572313963183,0.3224266509986788,0.5723180260145779,0.6415931739065244,0.48660198938541577,0.5540382671833153,0.2494370284884391,0.35798245942261564,0.4422801638989654,0.5986884303432216,0.28457634565946743,0.5285030043887973,0.413013218223459,0.22325963496885454,0.307447945575313,0.5424347926522184,0.46398997241533535,0.6765613134791338,0.5447086083484722,0.4353924573132758,0.507995437303018,0.4103672174638577,0.3818176027762987,0.36272242947112426
+0.10207223422886331,0.04553768990422224,0.4235460021324864,0.29552502060071717,0.03307757584688638,0.3381472632890865,0.18197962333871465,0.3728826655181938,0.2806234435284543,0.15331102645627911,0.14860989107521638,0.12769002496307982,0.27009754669257197,0.22836782424337465,0.2686386278106048,0.09919524142082892,0.1287224679878652,0.2355477853206753,0.1053021978021978,0.11157798257158785,0.10009030900949696,0.2930996211080553,0.2903572805519551,0.1312791575011838,0.06633915668905985,0.1460030062125559,0.13266041997930342,0.051442356245137766,0.17320265515692754,0.3284776000875553,0.09279345917589273,0.06752598584918536,0.3114065448121288,0.13417204903580252,0.22470068210140773,0.13783533292693675,0.4081548358255973,0.4073634809385754,0.06816908697979922,0.35097256633255824,0.2079745404941525,0.15897421596603253,0.32077901293728606,0.3714474026599071,0.4739542611097307,0.2537443805293258,0.36358144528423897,0.05714768785073281,0.052511265577346915,0.20235135911323215
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.353118253968254,0.1033374463910818,0.5540976081099334,0.39877233556742375,0.10156779857893322,0.47134895423398854,0.2052696876711279,0.4385247316685056,0.3760771635691779,0.48313386828524535,0.4933677697153393,0.8632383794255094,0.5895364438029119,0.27612020093677103,0.165294695114109,0.36414118462513245,0.18578067133378404,0.6616333059967782,0.4970782640841647,0.6989776436690756,0.27460085132718637,0.7424875327650434,0.10186295019599274,0.21408388431145775,0.8199256110325557,0.17150236738356084,0.3523772642088887,0.5543730027815514,0.7817175429740375,0.3220653957870677,0.18030175406585694,0.027774280280674142,0.6761479924739129,0.273761917043662,0.036319340461575075,0.22186990062628492,0.06487179703999792,0.6695035528084768,0.49204905286632583,0.6409417544095625,0.1393811243795764,0.6891753055418218,0.6802685786659448,0.15754249399701933,0.4565172070754931,0.45325035809090186,0.42677242324700854,0.736619362341268,0.5649917459195554,0.30342324603254606
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.38476744781252475,0.3743989044200614,0.3924715973861388,0.38366875197374917,0.42162849316724377,0.3266066489585896,0.39820503891639975,0.4412377334299109,0.4247068353772117,0.31061327364925195,0.4827328015639995,0.48720957385236924,0.46852030483913837,0.3187299758917716,0.34282682069152753,0.3760002779701263,0.48858595668024984,0.47305812858771384,0.42789944847020267,0.37705109330894987,0.4073499291602718,0.3845609227916242,0.4235328250576197,0.4223398360369351,0.40514964137653936,0.3629035989879344,0.40527154887892036,0.42317244417893035,0.3771450329711037,0.40540988181938714,0.3944731657817856,0.43443298495326976,0.46995899023583865,0.4356246271925716,0.43938042191330184,0.41793354560191703,0.3622060645712461,0.45153076048025326,0.39222118317850957,0.4100955846601331,0.4161546372418238,0.4052294661567805,0.39528155434759493,0.4704369430043123,0.38164904231196745,0.2951318365722232,0.3765617410812942,0.42166463615466493,0.4644181252060538,0.3525449373231544
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.2712058552347251,0.3745824366910802,0.2939830602538365,0.2549130343410434,0.2733556444615568,0.17419056669890878,0.27084285416141685,0.21399539894112252,0.36274437936009457,0.12694051446959423,0.06034567185337309,0.25882136820403906,0.2884509657994336,0.308591002661719,0.17054926417956984,0.27685043276999666,0.3736393584192343,0.1880109462665324,0.21193899479864217,0.165393318809382,0.26307764395078337,0.503997285079759,0.30950701559368393,0.38093481132851437,0.147732294517069,0.15761158599607078,0.21002433105837603,0.08789647405434232,0.2609293256489155,0.3399020084547408,0.37961988800474233,0.24539031087484311,0.5104806591890205,0.225237372327151,0.23644053243777854,0.13712916066898292,0.312187266032557,0.2781401938625126,0.1628236428553729,0.39982607842649737,0.1668335840858261,0.2478901220845911,0.20151680454816862,0.21728053318235907,0.24415673865820156,0.23678677148541527,0.2628670069102611,0.2673413018386762,0.15734665439675247,0.2943743524089997
+0.43399232411556565,0.3880210026764744,0.41408983635653074,0.35562920216280014,0.4206666902959723,0.37678642881971564,0.39169381163398453,0.42262456595061193,0.43176830995340487,0.368812165558667,0.46367946949138356,0.42429894347815633,0.4850420096847177,0.302281762233925,0.4029910855621027,0.43597130763403974,0.47710038867070304,0.4782923601665337,0.43788194388956037,0.4536505682550652,0.39584681499391455,0.41032636521749816,0.4011342558618931,0.4371002264149695,0.40332505177775707,0.37233062040488646,0.3853880157912385,0.4505884348070552,0.35983276308578566,0.43448218440981295,0.37705181458871445,0.40699788679184074,0.3400722221293895,0.5249694701170622,0.43159850037896247,0.4038372187008506,0.3881571378777961,0.44804233027679957,0.38503390093268947,0.40111186422910045,0.4054585392744918,0.4048011831423874,0.4251472275511341,0.4228780687890388,0.3679849999042404,0.3852269236856018,0.40796335294067965,0.39357170532222535,0.5002473578428198,0.3529142107486882
+0.02978849792514182,0.06352697051684877,0.04356128395349508,0.10835112612427011,0.018592881344684235,0.13566000294246502,0.035488216741514915,0.07114246554268056,0.08650925684514947,0.10004883112048805,0.09490548379753076,0.03797179609803295,0.05566196025266531,0.08557286782216815,0.10436875967716816,0.08578149623686877,0.03635562281594891,0.10297793381427878,0.0659906834782932,0.11080739450917168,0.04181335809332246,0.10489524719150496,0.04525205950208408,0.012452776291712663,0.05689355592115699,0.07561451415871066,0.09007581431181871,0.10871900728068376,0.08073492323307846,0.0218580729368893,0.027981857742529967,0.016125745693157608,0.1190431240723101,0.18794994430866008,0.05926415254948873,0.16789482305896633,0.04134570978210563,0.15043303229793886,0.23326201092195872,0.08990423523586503,0.05624633211549415,0.0435776257398057,0.021454836927172004,0.08154828151584981,0.12740575263437995,0.031087683437522298,0.06916273187662023,0.05231855127659101,0.14223478271379233,0.07961985626191576
+0.12197862607097423,0.1026293626529276,0.12065429208281646,0.4288052150513252,0.12935220471803444,0.2801375070933305,0.06339215778805564,0.07474600985724358,0.09726133401759826,0.21500151565805237,0.18399482479268076,0.03746496901570688,0.09671847842381512,0.1625111808421195,0.0447821479936948,0.045459669662569396,0.14783813365334128,0.009577508151650028,0.06774471301645214,0.14168684822956806,0.08473475631289018,0.15845517611636573,0.017995539650580043,0.05569591518369221,0.15894869617438004,0.17044385951212157,0.023427125802474098,0.0633938819329971,0.09232668004263962,0.38806161286666524,0.13346910617600746,0.1350134762373398,0.04661654781379845,0.2264187837696488,0.041863773419091935,0.045074007139888454,0.5120476011842567,0.09856910098648111,0.04161241984078307,0.08650067605253364,0.08978458968997353,0.055164059180077475,0.19758434644738965,0.16369368172458476,0.12957798126555134,0.09684393334285751,0.04657554517003093,0.049493255569350685,0.14494051230942628,0.24184148035396213
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.217317411598486,0.2530609416078273,0.3390336770928839,0.30460509519074586,0.25398703288426694,0.3295027875844827,0.2524718527400566,0.46130257980698536,0.19956594537208777,0.32983352929250037,0.21918109350359413,0.20749491491608868,0.18958476959652265,0.22187541368805902,0.1255906741698571,0.13435337589928398,0.3285607138392434,0.147884671401782,0.1445178287895679,0.3251763762285505,0.301252963238706,0.18826199535645696,0.08816696291971998,0.09994234755573003,0.22875327465307133,0.2509005392827042,0.0841271648359008,0.16615264707418104,0.2802454152683333,0.2392841800669796,0.23207603722497297,0.21968879954741152,0.296618163947462,0.4181505991350025,0.2296382228551218,0.06935393106303157,0.22806147381511047,0.13905121632588066,0.030712824918028674,0.2799506719176526,0.32284792608556784,0.09887424009046496,0.36957890700015317,0.3025308036073114,0.2858673989439591,0.09851862491871985,0.3594305265596195,0.12876019464505076,0.26869639451542787,0.1925482039881667
+0.31053715245654756,0.27253310912323436,0.29632470604738165,0.22973493458201533,0.2678095544541643,0.26710148120638794,0.21936701070811973,0.23826333643187464,0.25896359388749435,0.3230504640593348,0.2622286067610375,0.23219118217999257,0.2613095737633457,0.2277853899086043,0.2371008373971871,0.20651661945376362,0.2939264074296968,0.23156451362096678,0.19395141756991843,0.19377057845853782,0.30462236133606974,0.16853401591804573,0.28364410363310116,0.3133186832314592,0.24860161507834241,0.3051576546569227,0.25838453342407386,0.252827144745277,0.25885290706375297,0.32772471772447204,0.2278889701698131,0.3181696340046628,0.18416942980835274,0.2953539504076243,0.4935927197681547,0.2761331048447388,0.28726433119443223,0.292114597414702,0.15764461122089465,0.23553114111759169,0.3461046214419718,0.1934869572742578,0.1684755096221024,0.2501130112245993,0.28762475758933437,0.2379438169131474,0.2639123066725193,0.3602804820128059,0.1981804206549201,0.20322085267145237
+0.8334184253030094,0.8576141619236942,0.8243588245265443,0.8804644279020049,0.8025540910522031,0.8347102206743517,0.812811091580054,0.8155295359196895,0.8427912840124486,0.8834114529801927,0.816595166011179,0.8887262607510571,0.8289262559831818,0.8682377697822017,0.8425429049670992,0.8748471695840653,0.8610106825206663,0.8036559519162669,0.8502294893626179,0.8560039035255894,0.852326337652949,0.8910998873417862,0.8771483314450506,0.8222389076772303,0.8551288595084107,0.8032659833366634,0.7897127187628976,0.8079341195297846,0.8037366866403934,0.8330469540106575,0.8389123738487692,0.8416192634440851,0.8544615512223401,0.8975187135846504,0.8476033854347524,0.8391143841607949,0.838094447145523,0.7926832649165485,0.8547590683387566,0.8797772225892578,0.8786848845425206,0.8384317199633586,0.8379384969500131,0.8986381758977164,0.7807453593188757,0.7889167266696956,0.8351719755447569,0.8257819514276921,0.8899353872794549,0.8705998214946934
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.026161946655901273,0.08522752771420283,0.05275327295108863,0.1438399442384833,0.06500575156182073,0.4588480378983534,0.030683695980361896,0.12963149218020148,0.05327742674926938,0.0838421913810678,0.024969626562015193,0.03229058981013312,0.07374594590579692,0.13307099708028575,0.16304103597079198,0.04139989691552346,0.13471357988644128,0.16740437730918656,0.09750526129447325,0.15251616904410092,0.10485709362248696,0.08661010653141582,0.05415113131044684,0.062412467296475385,0.03528729244139022,0.07886618929681628,0.08068129240218251,0.0742204742967004,0.17891041871048693,0.02377659313309318,0.04216966504456614,0.10569373110937566,0.15142049559319148,0.18023225256386333,0.027135324987521227,0.1467876409875018,0.07925779713398375,0.1741706387992358,0.09832878038330223,0.1204957361091747,0.1311684338194551,0.044510124178902793,0.051944538079092474,0.13645901615213962,0.13037748601780919,0.05839420630903808,0.10528338135485871,0.06436720123101182,0.14798453035997303,0.09487973258324463
+0.8635193914632151,0.9091319076871279,0.9243968305617025,0.8914732937266757,0.8281043086989903,0.8346645688298399,0.7614665779812887,0.9568276806914764,0.8817392770502542,0.9063185324516964,0.992154610993124,0.8116312995622235,0.907040852493246,0.8890755490751466,0.8623495319648673,0.8473295213443919,0.8121078764227172,0.9396349068618578,0.9010923266007754,0.9020936104516273,0.8813235286131179,0.8984631495052032,0.8399400884187131,0.9069082233762756,0.9565472433483219,0.9053113571938298,0.8625471166802192,0.8364961877468515,0.9026665916105314,0.9328240969063023,0.9515137282211861,0.9216572138213968,0.7834477299325858,0.870339873179775,0.9237822222522668,0.8252059200969444,0.8045264672308826,0.9613987113141786,0.8403889759722918,0.86780408000905,0.9522794532581033,0.9707809584583109,0.9129199000074962,0.9551458141438057,0.901337886528899,0.867394346413372,0.8153473756984703,0.7871757864686453,0.8995097655070522,0.9858479461277337
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.4652227391229421,0.44214090358549785,0.42798375578554476,0.5363382573051113,0.43220764461968103,0.33881358343860307,0.45380698654535223,0.45108549917229845,0.46576573397557547,0.43384676710223,0.4445223667354965,0.4803911168859916,0.477790960388706,0.4950201231415511,0.48584883439887144,0.5575172153083513,0.44960321208624454,0.51347755599201,0.49291560015879665,0.5369991290462687,0.433883940123183,0.48958121741028543,0.4388909975444369,0.5929899060150144,0.40657310427433624,0.5108561224975957,0.5132426972740877,0.3855221657329599,0.3699609794959964,0.6393536633905379,0.49059074733569913,0.4228146437267955,0.4740414665830889,0.44981835798221576,0.4755176438971832,0.42892021277165243,0.5727190882551801,0.5250702667343312,0.5592342578750916,0.4380084303587132,0.5035886234454279,0.4006355468952724,0.40960053556172404,0.4406971314594053,0.38793985243944,0.5011038247917654,0.4591869136374979,0.4662626471752944,0.45794840263077724,0.4975674247159926
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.8481947285055985,0.627669889741301,0.4391970213694959,0.48436566941220915,0.47731441031971883,0.7805844211449969,0.7122404648945807,0.48151232373924896,0.5483076485171648,0.46479399455728954,0.42158137630274245,0.21836776514038111,0.6945797494664945,0.7040414692871549,0.44964823760932837,0.48171590981327694,0.5198923235351419,0.5254232594327575,0.8937807192807193,0.4403376213589393,0.35200947721100884,0.717676681875514,0.46491798244446,0.3351661894320632,0.6327480231182052,0.5463760529826445,0.18512522287699607,0.30476917867807957,0.4373970445768078,0.3795746273938451,0.3911374582341714,0.5050545363452587,0.6758265125035503,0.47512518671745896,0.3478985691387902,0.6393176761506162,0.5423547865244681,0.41229843214509904,0.5528728498904117,0.3546543934863759,0.47648113202214754,0.6679898603843993,0.4174060699569428,0.5403117319560988,0.6855067304679067,0.4836029242571254,0.6182190162353032,0.6938472888739213,0.4591059417858465,0.6579071608935498
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.5446245940426713,0.5494926770405604,0.5746499121239179,0.6218406649829236,0.5114775443628693,0.6366129839131545,0.5165423024293757,0.6370925169428692,0.542762995507313,0.6224536133465991,0.6195887861627687,0.6201674372045437,0.5833410289212363,0.5737714291757635,0.5614949019230016,0.5919750750710743,0.6646789349958279,0.537933061240833,0.6078420386828899,0.62000043075478,0.5935821456662708,0.48387453640644323,0.6614913982224161,0.5906930411673309,0.6435112262060124,0.5472840965847809,0.5410355385864576,0.6163531582848534,0.5662630656101545,0.5127930515232252,0.5694412980213047,0.6006435517576451,0.5549067943647045,0.5709044806156345,0.6087876033966626,0.5875175561590011,0.6262948708083219,0.5694286554113226,0.5513503034907371,0.6881534223900474,0.6292988137160652,0.5658270041014457,0.6296448327653298,0.5804412641529479,0.5549867683110549,0.6376343018830283,0.6548520152987767,0.5776049635056665,0.6088880679489195,0.5441456733365482
+0.86784379626684,0.934478978956324,0.7971557134011563,0.9005559706246125,0.8994836436611532,0.9073666756128866,0.9176574258445379,0.9596456470583028,0.7583429570845668,0.9107685220984796,0.9147085537695263,0.8226932115198832,0.937545370881552,0.9364038700919259,0.9372701315711758,0.8632464480821709,0.9586296078819606,0.8631153868495199,0.9262771113420081,0.8093951151745727,0.8240556548109577,0.9765917905637324,0.842990404199093,0.7990833667096928,0.9261889011992115,0.8732706490878424,0.8910955661774627,0.8978806230125532,0.9010569666259906,0.7615209308179698,0.8871470267431841,0.9257509317876594,0.9152617840014394,0.9635156282647839,0.8609992215527099,0.8651800927894752,0.8551402770250354,0.8879715065407712,0.9029092482744467,0.9147710618478065,0.8804369375729055,0.9524658972611049,0.9395668140982717,0.9598191977145043,0.8865870712724861,0.9272477688807621,0.8749368503443355,0.8884532513881651,0.897301815393775,0.9573750230997483
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.3952678926227704,0.33746171893202725,0.30799625379193,0.29623327354342516,0.28534665799638703,0.3237045034817153,0.2366778566124768,0.3227257288192091,0.4058467574318256,0.3053363637805748,0.2835646474737934,0.4011775274416627,0.29210217197385474,0.31639073785420607,0.25503165005153217,0.35530873908016036,0.30412321297368544,0.3662039216400616,0.42579613542149836,0.28621619213016225,0.39885655202669457,0.29744512077506924,0.3855207632834414,0.3578611498852791,0.3085525576229269,0.2893464333313425,0.3624295322436504,0.40058763051193397,0.3278005305209667,0.3882468085788674,0.35138998609474753,0.21082376724549967,0.43318968322771895,0.3342865052209678,0.4436127940163979,0.3403266402236663,0.383162588518861,0.29960628703748227,0.3782668901315428,0.38127639759585175,0.3665163286285869,0.4222494596695708,0.2407185077383415,0.40647161472298093,0.2963944637998162,0.2821215967076167,0.32070842128942245,0.3762459717985488,0.2978331269727629,0.324338912114257
+0.5853237793310977,0.18163617603207768,0.19078350193582275,0.20915367811580313,0.3963580667922843,0.26054088222744737,0.3883094103168771,0.15313812681188774,0.29815138703186084,0.30812837434502244,0.37195552516226144,0.186863501131072,0.1413033268798081,0.19202611696578092,0.22319467961465836,0.187891348725576,0.33795191095276955,0.21396493499275515,0.22514316490926845,0.2844508618827321,0.22852916110929009,0.25763349996274043,0.4162373568666554,0.21451674477951965,0.21428101650978226,0.2734843759665193,0.21803235012537006,0.22672979000400226,0.31083299289131083,0.24852931126044076,0.3831506037151772,0.23485035453271988,0.31387130163119015,0.41891989362439547,0.1321698835861706,0.22034630774966188,0.1897393377002076,0.25083814143040944,0.39316857766953794,0.16859978097204564,0.2489171809340348,0.38720675995002707,0.16862338685985254,0.26536844387908237,0.18589652773187712,0.21214466408223653,0.27029541115445915,0.3302746559646632,0.316778358186261,0.22947570710211312
+0.2952399872211595,0.1866983382453867,0.22857673903547326,0.17643639557702237,0.2625106055468896,0.20057934639696406,0.1770963649027426,0.16611978207927067,0.19065949740084767,0.24035488625213422,0.1898589211751378,0.22402951921092357,0.1379933767970631,0.194671128566709,0.20936978016482208,0.12727500224645993,0.3161738592550628,0.2264066170695783,0.2213365517953284,0.2513918817305019,0.19294590522751506,0.23418007442913288,0.14169050444442594,0.3228969437696112,0.2073119147744362,0.24778576952169673,0.2687261097355651,0.15665276812132126,0.19405965574876358,0.21441421776977707,0.26268167295043743,0.21611256603107257,0.20157316550856744,0.19113073963718244,0.13910702652989332,0.20442604411480547,0.18421701388196088,0.24556850416077214,0.30805469950902586,0.17695279871579137,0.21732309405970932,0.26192712289459225,0.24544105872100466,0.17455982064348333,0.1843649962003456,0.18380303461592035,0.2374616867602779,0.2629104007616884,0.3164466509835135,0.20251668275837764
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.39545330894278125,0.4107848052819708,0.36794701827429177,0.48472516749840155,0.5337991739399961,0.3418009754644919,0.23892348559018878,0.6797701085394992,0.2436017057015247,0.4605304153729394,0.17593520689810876,0.134793999253318,0.7047173052835195,0.24240127474699172,0.512905274310913,0.25694650787194623,0.4204229962245912,0.26870928195673616,0.40625941819821926,0.1517329539084336,0.12423216747880561,0.23613689891508916,0.1681522084527133,0.3155584918420509,0.4821613208473352,0.3250546095136362,0.7454832892951266,0.38793534718510103,0.41824127248769405,0.31930891649009885,0.3010058078972921,0.3289317462732791,0.04809201549356627,0.40394747237246215,0.5051749038078557,0.40113382940481723,0.560060383681593,0.2100058965838698,0.47250976610147466,0.2371607061887857,0.16730549029818728,0.1909742445663498,0.42513055993540044,0.2883973664075132,0.3957243724634229,0.38259113189226235,0.5492563596668087,0.5319594273107847,0.4636193790139246,0.4320761859634119
+0.2818053509142151,0.10420600945857796,0.05031468926553672,0.22870064621458713,0.19655629231461944,0.4352082615168537,0.22079380615910058,0.12231053818348818,0.19902453948634719,0.07187150919175528,0.1282134216440668,0.05978427872704711,0.1757089032021918,0.38107165931259757,0.2602558479532164,0.3259123216695585,0.3075731283202716,0.056596060943887035,0.05,0.18305301301453156,0.3356362979520875,0.28082892760911177,0.24041003417855544,0.10208071511821512,0.2360609546979644,0.3584507922167668,0.08482843137254903,0.18512829817241586,0.07817417767417767,0.23181722319241044,0.3011006633986493,0.30307392108894193,0.24658476298643048,0.2341969217572933,0.0451767771523869,0.23321811115205524,0.22128837556889408,0.2581052929857791,0.2641524342530534,0.2809921590278821,0.24554281899982539,0.142768018018018,0.2171345671920245,0.32345742715543474,0.13561277484609316,0.17524058587015096,0.03448940737394001,0.22253731104874522,0.1968388003001688,0.33784672433690666
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.5726227910303792,0.3031957420159716,0.31460030741273753,0.346634404139336,0.44043264402036786,0.5511621538028174,0.6484024587534546,0.5572605386459552,0.6019766321695924,0.5140747140053176,0.6314712605034991,0.8248708385697188,0.2272669197390262,0.21942385760599367,0.2731026521637165,0.17158557903301902,0.38567688325909094,0.5128437423913444,0.6119720349465779,0.7556180158333463,0.3802043614627151,0.5133803358963376,0.7959212867437006,0.49217531104441553,0.5866199541100598,0.6550647459069399,0.6197727980028082,0.6399704446265835,0.6199019503418189,0.46073048307234016,0.34858568543380075,0.6146048612993358,0.2572772608636583,0.420570013588795,0.7607136712006043,0.49153692892531553,0.8491622854884443,0.46950868011725705,0.4777253216729719,0.3315800570039568,0.34570610110428873,0.46292039755626974,0.6608418762134812,0.6519283465466518,0.8916655594866747,0.3449712130686038,0.40289031256728797,0.32659354629262344,0.3728619830434086,0.5963212213641951
+0.327470256485502,0.15733619802123688,0.1455030220717112,0.18647760270495145,0.28139123887534867,0.20719864617111217,0.1584686382175525,0.10130824985275916,0.19414415331683937,0.28904454867789564,0.20753941594602116,0.2584407072349489,0.1353111848364135,0.16236833409566473,0.1689545322751108,0.20939845459935227,0.2771254950981597,0.18544088621263607,0.10255966113152332,0.20699884108718947,0.12843031720044856,0.17722444186875186,0.13806870781537592,0.15897479052580876,0.1930128358545436,0.1971735323103356,0.2025297934640904,0.12150299811930867,0.2273298544234035,0.14863416908748653,0.20889541021351024,0.23420977310064248,0.1580630015388733,0.25039346425543324,0.09799820816130181,0.21431526776409057,0.14878623233543914,0.20542026896977283,0.30005852885307754,0.166394946626305,0.17911029196862788,0.19362888208441378,0.2094113318266583,0.154215604659066,0.19981199347240913,0.16800337148909406,0.21089630126706,0.28192698671029875,0.3191738389999068,0.09772948795960451
+0.24328394698190936,0.18622969549241464,0.23772890145397066,0.23326599790034241,0.2724589735073171,0.2604407989801971,0.17052494244602945,0.1689503678267217,0.22778134118520607,0.24082141488301917,0.15043570524037864,0.2535019411100528,0.16261689305387525,0.2508734751598003,0.24627034477646093,0.188980001430033,0.22366119122907321,0.2163979699893382,0.22717818387966016,0.2439030368351432,0.17790209464010978,0.19666581766397256,0.1789141349718966,0.2392335414862109,0.24109888685608932,0.28605691493536733,0.29350617615441404,0.2607891944218481,0.2444253740717104,0.131554688603017,0.21788906216523724,0.21418208755074186,0.22423260151530236,0.2647069596650738,0.2241358461275347,0.19442724939286204,0.1689831643255079,0.20774728397424552,0.2995031114278875,0.1734597994897226,0.2168272656808848,0.24926702470755557,0.29884884921670635,0.2177447948776848,0.31895740723453303,0.230969766467057,0.25533018015441905,0.3282536184594963,0.3575041709210239,0.19048381111484322
+0.4652227391229421,0.44214090358549785,0.42798375578554476,0.5363382573051113,0.43220764461968103,0.33881358343860307,0.45380698654535223,0.45108549917229845,0.46576573397557547,0.43384676710223,0.4445223667354965,0.4803911168859916,0.477790960388706,0.4950201231415511,0.48584883439887144,0.5575172153083513,0.44960321208624454,0.51347755599201,0.49291560015879665,0.5369991290462687,0.433883940123183,0.48958121741028543,0.4388909975444369,0.5929899060150144,0.40657310427433624,0.5108561224975957,0.5132426972740877,0.3855221657329599,0.3699609794959964,0.6393536633905379,0.49059074733569913,0.4228146437267955,0.4740414665830889,0.44981835798221576,0.4755176438971832,0.42892021277165243,0.5727190882551801,0.5250702667343312,0.5592342578750916,0.4380084303587132,0.5035886234454279,0.4006355468952724,0.40960053556172404,0.4406971314594053,0.38793985243944,0.5011038247917654,0.4591869136374979,0.4662626471752944,0.45794840263077724,0.4975674247159926
+0.4652227391229421,0.44214090358549785,0.42798375578554476,0.5363382573051113,0.43220764461968103,0.33881358343860307,0.45380698654535223,0.45108549917229845,0.46576573397557547,0.43384676710223,0.4445223667354965,0.4803911168859916,0.477790960388706,0.4950201231415511,0.48584883439887144,0.5575172153083513,0.44960321208624454,0.51347755599201,0.49291560015879665,0.5369991290462687,0.433883940123183,0.48958121741028543,0.4388909975444369,0.5929899060150144,0.40657310427433624,0.5108561224975957,0.5132426972740877,0.3855221657329599,0.3699609794959964,0.6393536633905379,0.49059074733569913,0.4228146437267955,0.4740414665830889,0.44981835798221576,0.4755176438971832,0.42892021277165243,0.5727190882551801,0.5250702667343312,0.5592342578750916,0.4380084303587132,0.5035886234454279,0.4006355468952724,0.40960053556172404,0.4406971314594053,0.38793985243944,0.5011038247917654,0.4591869136374979,0.4662626471752944,0.45794840263077724,0.4975674247159926
+0.29143982053283096,0.18942712144964585,0.21700584651336122,0.18230560654160907,0.27764656851021835,0.20310016114510218,0.15512991170827242,0.17531729730126905,0.1874149796592618,0.226302701920109,0.18169700928214133,0.268297281441817,0.15329540568722225,0.21870809696720866,0.21521091454294905,0.23069573831121942,0.2773978312705068,0.20114172880934944,0.21893395439273103,0.2537044994329502,0.1775147536205353,0.19996685097827574,0.11872005002702682,0.24047611629723048,0.21515585290051337,0.2505658648889566,0.2828394682979228,0.14452754795320544,0.19945760764207146,0.1791928402068701,0.22474673237556353,0.20539705902030994,0.2020003363769148,0.2139294711526283,0.126326743794597,0.19632295713016068,0.1867723774187944,0.291161242720529,0.3429110524377578,0.17611859212075598,0.21732309405970932,0.24709016151532473,0.27434405249160737,0.1724742656187979,0.2090896673474158,0.18013134430859176,0.2404616867602779,0.27767262212849586,0.27837707436400033,0.14282730417813844
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.9176227657469882,0.6235796793606394,0.724816198465623,0.5586451998390545,0.5554463820493233,0.876004193873759,0.676215753447662,0.6309851948115378,0.7435584018664515,0.4052775651249336,0.4857214474357939,0.967111111111111,0.7597471519708361,0.8042682926829268,0.7092814486251318,0.575358395989975,0.8558865757193627,0.6822565394283138,0.5113888888888889,0.595271887620606,0.839452950387301,0.522835966699078,0.8776785714285714,0.8257575757575758,0.6655371743926605,0.6588276815776816,0.5944126984126984,0.5446072006432418,0.6364122478183855,0.7526104051003563,0.4764234249474687,0.6365583333333333,0.6217103174603174,0.6537099139244685,0.8237791448317765,0.9114195285227895,0.5049330989694262,0.8354022539423557,0.49074758306209915,0.6094319819452375,0.6238092569369166,0.6924168425079099,0.21828690678690676,0.5297246117508942,0.7569948708349327,0.45270336852689796,0.6636261002678913,0.5159622389782645,0.4874372125797359,0.6760468112717836
+0.5174952175020355,0.2914017661190621,0.6010909237362347,0.32883390034393306,0.4627683250262672,0.40579568079094563,0.6158648071070418,0.23684553503699718,0.22312369465631698,0.44956438721095365,0.6153025353435921,0.46562079987781935,0.4083361449410352,0.6409862963697625,0.47402606492522603,0.49570703342847905,0.22930270340161357,0.5944491496793154,0.5213646190508472,0.46331750928042587,0.33502952090382043,0.45276904954484304,0.4093441078334618,0.5772347258120801,0.31256061146208985,0.34171672884717824,0.5685203516930722,0.47457137814358324,0.6164020655494046,0.5610198854676309,0.670127115353628,0.6811973645526881,0.25668195194985743,0.36581454712670847,0.6095535925014925,0.436536871392918,0.28019238644121314,0.349742434759165,0.5993722375231311,0.7242969555955527,0.34762759933314014,0.5828539515435769,0.517536896588448,0.439203550180262,0.5559468272722975,0.5442441277601539,0.5803843922878835,0.4585591928348013,0.29023259014374325,0.6774430767181135
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.45933536947647197,0.352637404535175,0.5157806658157625,0.5461529257683729,0.43676472000411687,0.3695335272054163,0.4427971720437665,0.4046823752273876,0.4914260624916666,0.34889115960226386,0.4009689322183846,0.48700122043239674,0.34552781020995105,0.28163871653346567,0.3982290428081094,0.42474721001859905,0.4016474672735283,0.280985669443586,0.5334730642364294,0.2636539347200558,0.18085169388999967,0.3898211804303851,0.47289503350801226,0.3737363896630724,0.5607492785667229,0.5367674696271031,0.3909371175185901,0.5490121241089198,0.4224773128987958,0.4310762137899804,0.3112739758218412,0.19556636867775862,0.4895462872366088,0.3434453367081442,0.476441284382256,0.43989994563704116,0.5296042406055381,0.37426286733303443,0.4467122124543603,0.4767812678077858,0.46794142889412776,0.3726364054138508,0.3811311243363352,0.41146122013097686,0.49566760942977806,0.15327893271927143,0.33064086917284774,0.42363439185990953,0.3949231061272554,0.3564756986168565
+0.6817510569840836,0.5675379527035074,0.7179811226290611,0.7490514723974537,0.5885403571227564,0.6794779312825867,0.7210061902999954,0.6648918242804328,0.6485207860377996,0.6742388620483161,0.6004876045962603,0.6416003868672127,0.66258284111524,0.7644005423460958,0.8077411085274449,0.672526995404043,0.5612682101697373,0.6465637614103384,0.7327884797305124,0.6310816186892446,0.6206629847293976,0.7423592799874186,0.5872029583789348,0.6595679262830774,0.6621828267825519,0.6994265779159208,0.707669002015789,0.6540913101066974,0.6277425000582147,0.6276121707326885,0.6255652701499064,0.6485951949213522,0.6334301226570892,0.7029303423875131,0.7505450831584976,0.6727870583474339,0.6032393063460804,0.6295332100392514,0.6907259235191249,0.5724095270316282,0.6037615587594823,0.7650375077575953,0.6598074329998406,0.6976867468819695,0.7091482524561898,0.7309452561032576,0.5421669491002465,0.7150088818194769,0.618715250389683,0.564973583489802
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.5086686073280346,0.4066034745526568,0.3656125725113737,0.3391404019828119,0.3900860587345668,0.5777007268402536,0.47577614237456883,0.6777764019746217,0.6031471636779139,0.284292350469562,0.21755739130673113,0.6083355682517998,0.4027296144161386,0.48984181443149866,0.18560057365198424,0.36613087538490563,0.5151571388608511,0.3791034539048636,0.5173348646801519,0.5690899604704636,0.5771653768601049,0.40612448849244714,0.5920275995145658,0.4669876286821879,0.4229787703611151,0.3349211913852037,0.2782618351475474,0.4312269255622682,0.6280500413877552,0.28237781209541335,0.4879657375493311,0.40471802548006,0.20283600574797053,0.69433885903687,0.5327908522302309,0.6039012008452341,0.40274049433515147,0.425712812930157,0.13030964958216779,0.26569610387528125,0.4283847934919798,0.5024786790878059,0.3154237788633633,0.6297253758718411,0.29819815064373517,0.21264334391316314,0.2557059204166506,0.4125323522723163,0.475509426913802,0.3824809978007195
+0.755906397297352,0.7993206472471179,0.7303561253561255,0.7712909639261727,0.9108599254312647,0.8032306881397272,0.6880066219690023,0.7317818867968799,0.6359061270888736,0.36679988052568696,0.7722997611331515,0.5695946275946276,0.6061722898836358,0.6710730318034553,0.7500363211888499,0.8231760240983007,0.5630660577143858,0.33408980331262944,0.15283333333333332,0.723716610539013,0.7308636277315333,0.6003658604820196,0.38138900701981193,0.7117167832167831,0.9401181577368017,0.7763453997570567,0.8584761904761905,0.5985072662532378,0.8764265204922883,0.7743384266660034,0.7122279917578641,0.9472398046847604,0.8710618065844647,0.7488416425595752,0.7262243044808834,0.8774764610389612,0.36102334326619223,0.6265247623815905,0.7703431374674362,0.8674645633988715,0.8721875588941584,0.6262395097762296,0.4438318348318348,0.5637245149867323,0.5512829250646167,0.7618831609566904,0.7234503901895205,0.7350683302554084,0.7289354471928696,0.8639465061082712
+0.41951451717736893,0.44360478373697615,0.4045298719504722,0.46770143209621656,0.4123660119217174,0.39105203294392354,0.3785358186025169,0.4620505595375233,0.4482658716928347,0.4060308835064521,0.439491960018226,0.45285766164443436,0.5172397642843887,0.40598654793731653,0.39336653499763263,0.4367678776297136,0.45347957351379153,0.4968067362051234,0.4397440971762911,0.4436873324675291,0.4057507872897797,0.4588440967588396,0.42808118868507733,0.4524543476888539,0.36944021477355987,0.5016289389344339,0.3721608931753043,0.4554817405847064,0.37314230869022397,0.514370539854871,0.4130317526844465,0.4188690010140261,0.4495909849551795,0.46569207700354687,0.43750508768057145,0.42591714194103025,0.45807138866750846,0.4431677539956715,0.41345992369442236,0.45296121194843453,0.42957906811773017,0.43156038891346554,0.4541149367132152,0.4514154210395019,0.37837214410146397,0.4083146987835955,0.440634145587784,0.39916626216172546,0.5339892526743981,0.42172921813676323
+0.6417370768513503,0.4169917206514344,0.6773783061112185,0.36814716382694845,0.44340343720583847,0.49360105448684416,0.7821647345829144,0.2585073209987017,0.5120717541956648,0.3457004998687054,0.3641394993642061,0.702698310772618,0.4815822870374868,0.23438959273930596,0.7868363415656109,0.515267069488396,0.5218292638384087,0.24012882568570013,0.22717948425588197,0.34292497282156115,0.19739836077446285,0.524570544748615,0.6380143125761408,0.44102412851535194,0.26920192178816305,0.47957896544083495,0.2791876859418438,0.39418876509954714,0.42597680741530763,0.43960423028765194,0.21275079715875975,0.16216483990604943,0.45598897626893053,0.4698517554893341,0.34617528507962847,0.27285718978745543,0.45774685343014426,0.3783752493908801,0.32098491026784076,0.5546586289565822,0.5539347186113018,0.1533068260069031,0.5712747505406621,0.13193559711442585,0.31540771208232865,0.36714284705532046,0.4540581952145507,0.27116284264988605,0.7444056342213888,0.27967396812373535
+0.34772759086698374,0.42010341644540256,0.34378189455504127,0.16148935664433334,0.24598204059228546,0.29156306688716266,0.0521247293659331,0.2576427407303837,0.231707185558964,0.16052023909711366,0.23708069592330885,0.32342895316599723,0.2708772823807431,0.3893991447469395,0.3039554564799959,0.19089384050886768,0.2751176507610792,0.3660250108309981,0.35526181805229995,0.23341228362937066,0.34953887693075486,0.4158003375742178,0.22892831924339524,0.2628897688038464,0.16446192447351785,0.3463483058281957,0.28864797137543596,0.1197934065226234,0.3830718079775421,0.28674696865391147,0.23026724082136976,0.27905540020188724,0.3659270998285256,0.3270765726979756,0.27770204509843616,0.3315645950888527,0.20725562072272374,0.2560886091167156,0.38212543364841944,0.09765676135339144,0.2375152917536234,0.2556599644053994,0.2810405610635409,0.16448043250431396,0.2858424575031006,0.20315496334683558,0.2585410909232601,0.1963128198677927,0.3986919346204423,0.19330484182658483
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.43399232411556565,0.3880210026764744,0.41408983635653074,0.35562920216280014,0.4206666902959723,0.37678642881971564,0.39169381163398453,0.42262456595061193,0.43176830995340487,0.368812165558667,0.46367946949138356,0.42429894347815633,0.4850420096847177,0.302281762233925,0.4029910855621027,0.43597130763403974,0.47710038867070304,0.4782923601665337,0.43788194388956037,0.4536505682550652,0.39584681499391455,0.41032636521749816,0.4011342558618931,0.4371002264149695,0.40332505177775707,0.37233062040488646,0.3853880157912385,0.4505884348070552,0.35983276308578566,0.43448218440981295,0.37705181458871445,0.40699788679184074,0.3400722221293895,0.5249694701170622,0.43159850037896247,0.4038372187008506,0.3881571378777961,0.44804233027679957,0.38503390093268947,0.40111186422910045,0.4054585392744918,0.4048011831423874,0.4251472275511341,0.4228780687890388,0.3679849999042404,0.3852269236856018,0.40796335294067965,0.39357170532222535,0.5002473578428198,0.3529142107486882
+0.5446245940426713,0.5494926770405604,0.5746499121239179,0.6218406649829236,0.5114775443628693,0.6366129839131545,0.5165423024293757,0.6370925169428692,0.542762995507313,0.6224536133465991,0.6195887861627687,0.6201674372045437,0.5833410289212363,0.5737714291757635,0.5614949019230016,0.5919750750710743,0.6646789349958279,0.537933061240833,0.6078420386828899,0.62000043075478,0.5935821456662708,0.48387453640644323,0.6614913982224161,0.5906930411673309,0.6435112262060124,0.5472840965847809,0.5410355385864576,0.6163531582848534,0.5662630656101545,0.5127930515232252,0.5694412980213047,0.6006435517576451,0.5549067943647045,0.5709044806156345,0.6087876033966626,0.5875175561590011,0.6262948708083219,0.5694286554113226,0.5513503034907371,0.6881534223900474,0.6292988137160652,0.5658270041014457,0.6296448327653298,0.5804412641529479,0.5549867683110549,0.6376343018830283,0.6548520152987767,0.5776049635056665,0.6088880679489195,0.5441456733365482
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.3156023368570575,0.26941020938776356,0.26147802048688407,0.47065405660935,0.24676559186379055,0.5764679567895645,0.6924762867792245,0.3008670675593342,0.10853161814861903,0.028714285714285713,0.24339646559659325,0.463565056970564,0.0759023370593877,0.18340403351170412,0.4698349407655804,0.3098768345742562,0.060561305082410616,0.1488067009480053,0.21220437981805773,0.3718731082757399,0.29189317071817067,0.11149156317538671,0.7655862748362752,0.1481330919346923,0.2713036111591759,0.10627851655712212,0.3144383116883117,0.1832771654259132,0.3689779724781866,0.25011790177423526,0.259784339519056,0.542262266804729,0.6921663111102399,0.48471749829012295,0.5582151032511388,0.2677224194616811,0.1894492923989878,0.10485597956968923,0.06085696841165733,0.3065870962456965,0.21528504818840055,0.06229928590823128,0.11477267954247036,0.14251542089180988,0.07328329047543444,0.16016587981581865,0.18312650829847146,0.046439251817506404,0.5326250460277491,0.4943371644997629
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.2534142974929389,0.2360094799130627,0.1719873173911839,0.12981000388044436,0.290689084282008,0.13211786494644184,0.15800274076176563,0.23902143560402578,0.24646465016417793,0.27975705160187025,0.1624628082054212,0.2897012614067155,0.19946150161210588,0.09994574318348118,0.1642827327715673,0.11438369172977836,0.22688799611043653,0.09341640630438572,0.1412640117941309,0.07120221165169988,0.0919629962450912,0.2038444576289271,0.2894615463223877,0.32046585149414936,0.26259548985797443,0.13924391832310634,0.2100314432623171,0.1886825875813463,0.08035097018827203,0.14573375551261955,0.08559172383612922,0.23010197296097293,0.09941019902526271,0.135862981711088,0.43654228756804625,0.19509078908059901,0.1527271371428064,0.14657172422222164,0.27467713425227447,0.13460697136324049,0.07644830315865998,0.30495265271329414,0.13953207725203973,0.17880704142874262,0.210385902076343,0.0832107869807472,0.1909131819822044,0.29020594716702264,0.36525033747042707,0.12574251029327757
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.38476744781252475,0.3743989044200614,0.3924715973861388,0.38366875197374917,0.42162849316724377,0.3266066489585896,0.39820503891639975,0.4412377334299109,0.4247068353772117,0.31061327364925195,0.4827328015639995,0.48720957385236924,0.46852030483913837,0.3187299758917716,0.34282682069152753,0.3760002779701263,0.48858595668024984,0.47305812858771384,0.42789944847020267,0.37705109330894987,0.4073499291602718,0.3845609227916242,0.4235328250576197,0.4223398360369351,0.40514964137653936,0.3629035989879344,0.40527154887892036,0.42317244417893035,0.3771450329711037,0.40540988181938714,0.3944731657817856,0.43443298495326976,0.46995899023583865,0.4356246271925716,0.43938042191330184,0.41793354560191703,0.3622060645712461,0.45153076048025326,0.39222118317850957,0.4100955846601331,0.4161546372418238,0.4052294661567805,0.39528155434759493,0.4704369430043123,0.38164904231196745,0.2951318365722232,0.3765617410812942,0.42166463615466493,0.4644181252060538,0.3525449373231544
+0.7481532192887105,0.7643172961104141,0.6619078684076574,0.753356370055613,0.6097218187518236,0.7459306638445409,0.5571898331796022,0.7338125398827731,0.6875391120545947,0.7184638500210002,0.7677383401684401,0.7344991520716766,0.8644457478604777,0.7209534970654101,0.7308132904664383,0.9117768836870916,0.8135570461858612,0.7170141592528904,0.7434697133713503,0.7622876757342112,0.8062148431754923,0.8382139738209109,0.6092105318328546,0.726243202859118,0.6184617087543438,0.7861799821344667,0.7137273387256594,0.6433330090341862,0.8452531165990926,0.7462459892384584,0.7933819358212942,0.6135373189231468,0.7296101928854132,0.7062824996808539,0.7296278878815028,0.7242956736349364,0.6979262783136668,0.6576017104077628,0.811070733407268,0.7885797786315014,0.7430182314470943,0.7474037937704385,0.663552459061558,0.731576083117557,0.8403100615374334,0.8266807385153608,0.717457058830935,0.7440908531009702,0.6025756953951632,0.7360555778375112
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.41951451717736893,0.44360478373697615,0.4045298719504722,0.46770143209621656,0.4123660119217174,0.39105203294392354,0.3785358186025169,0.4620505595375233,0.4482658716928347,0.4060308835064521,0.439491960018226,0.45285766164443436,0.5172397642843887,0.40598654793731653,0.39336653499763263,0.4367678776297136,0.45347957351379153,0.4968067362051234,0.4397440971762911,0.4436873324675291,0.4057507872897797,0.4588440967588396,0.42808118868507733,0.4524543476888539,0.36944021477355987,0.5016289389344339,0.3721608931753043,0.4554817405847064,0.37314230869022397,0.514370539854871,0.4130317526844465,0.4188690010140261,0.4495909849551795,0.46569207700354687,0.43750508768057145,0.42591714194103025,0.45807138866750846,0.4431677539956715,0.41345992369442236,0.45296121194843453,0.42957906811773017,0.43156038891346554,0.4541149367132152,0.4514154210395019,0.37837214410146397,0.4083146987835955,0.440634145587784,0.39916626216172546,0.5339892526743981,0.42172921813676323
+0.40729168907234325,0.4223837342008057,0.5445641542270768,0.5436062912464797,0.5897923683991239,0.6692140673512008,0.5269544285804234,0.6537996598663897,0.522078708190135,0.6839576810841925,0.54701805947066,0.6572936100896294,0.4139772078561361,0.7208010235200273,0.765289633908282,0.2810664675128841,0.44921483994972683,0.6206600710805744,0.7484969947018074,0.40639525591341963,0.3982766486339711,0.44085407181687764,0.47629787028370635,0.584111646721635,0.5234919394474861,0.610557663465938,0.5522491352516266,0.3154864054857185,0.5711641998094368,0.35803715137229924,0.48899674751189254,0.5812136451583733,0.5929771951237919,0.6634131525429611,0.721502748214495,0.538111747218514,0.43588696602261906,0.5616467420850373,0.4356707908008158,0.46523937217435035,0.5219949884902388,0.6120816531184868,0.3675106696264738,0.510814891599699,0.616012031794705,0.5121524574818689,0.3047937319911194,0.37955355538767527,0.49337362872813534,0.4553158443196152
+0.43005641716526777,0.5840854699361676,0.542966522742339,0.6464313773855827,0.7171344443178725,0.6495830301724242,0.6395676017235971,0.5193467033277281,0.700346832019131,0.513113132567294,0.6181253284717168,0.5038051367421906,0.4885118030201998,0.7615122538249993,0.6427737131946677,0.5918764060610627,0.5570293695553051,0.6207532931375942,0.7844133558934332,0.723465692611334,0.4597410430823829,0.5009075752484229,0.43216501427012655,0.5776637607033609,0.5671265266161378,0.6012874592105689,0.7060289616378551,0.6342882973974876,0.6804076906007459,0.6891322282872961,0.6237486695117165,0.7373531284777362,0.6823622293912726,0.6570521271213914,0.6400974625048851,0.6881598836225327,0.5394270202282656,0.5902355957182213,0.6303144265397329,0.48955173063409707,0.3566322374801271,0.6212930661967139,0.7529188514488598,0.5192259446674585,0.6290238523324034,0.2602581609095693,0.4997827325489472,0.42415401444785716,0.486604554170595,0.492973732554842
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.2268354032696933,0.3523407968246215,0.29344904488122436,0.16044269608775624,0.3169576857272608,0.14711528016663616,0.22441393634527326,0.10551218953362451,0.24992558102514428,0.25954607874606606,0.4083669927891364,0.24303258919188506,0.1713473682675514,0.30863115002536007,0.35839198025937113,0.31714605132494555,0.16227580229551283,0.36943948372601965,0.38848903434303894,0.352160595873956,0.22216176837224144,0.21295716391740302,0.11450764602351034,0.41830755243857815,0.4279432399560912,0.2354379770795144,0.3885764311861638,0.2952281497032327,0.2514167185177686,0.15875414457913334,0.13543351565939057,0.32461402740025563,0.14189663605804426,0.5544595983666837,0.3008263086173447,0.133200525057185,0.2922059884213724,0.19654110709223732,0.3679565825207268,0.21180266603451967,0.27401209501574614,0.17549664793831435,0.2447567233500503,0.17621769402741752,0.24507023542788686,0.3303263842481838,0.33037327576352304,0.29370585195422527,0.3168693201838499,0.2593049308660924
+0.8395535918839873,0.7695017523261071,0.7766929205645492,0.7731452771256521,0.733880185271111,0.8296099790439847,0.7685998568206784,0.7856936729135008,0.7116749284572401,0.8787418011626165,0.842331753924945,0.8324921433451119,0.8651695952309243,0.9033566437325655,0.8258053393825684,0.7692083510763108,0.8619282621802803,0.8670853641048585,0.7987187462664074,0.82264481752421,0.861024623204151,0.8351088745000945,0.8524924495039017,0.7189014264653021,0.7484150978128816,0.6777662058071584,0.7654552982743956,0.7452901239877795,0.7769826760786482,0.8434541096248432,0.8862615942724201,0.7472816521891886,0.7126825162087799,0.8111054205790269,0.8495545164139218,0.8020916395561238,0.7109766695256983,0.8201353536766759,0.7007006002017259,0.7247212529011887,0.8174542493478789,0.7996501093988936,0.8158204070124968,0.8841059587691683,0.8347919074988355,0.7469878045281061,0.7976980153091773,0.7861087663723778,0.6371627380565495,0.7649585940443687
+0.13973566854662867,0.07248564470600856,0.18866872597289425,0.0733500862277783,0.27588666722009925,0.10757590442997182,0.13441570921210977,0.10146933762915103,0.15920021841563028,0.12631422572100426,0.28307605737028707,0.09070347146439303,0.22028257448644287,0.20143575443823944,0.09758694356003934,0.0889139773426752,0.2825974732418485,0.04767109272842969,0.16396138881029854,0.05518023988839413,0.04217707421147269,0.13770185476294608,0.17848801839910522,0.05589508204429903,0.05619568217524753,0.12281597692340596,0.30754985763084797,0.1450215053927443,0.05502645548089197,0.30459212220486426,0.15999008391951797,0.19114927723781566,0.0639926364409123,0.2025604555590419,0.45234414720786825,0.05333333333333334,0.07833840046252795,0.0951557846149942,0.09204459166415994,0.15398495330527764,0.10722158532819268,0.2057215036836092,0.17877876851323488,0.33179036979985604,0.325634102388127,0.12284330634829611,0.0892689610106446,0.10691413070404042,0.05582139148494289,0.08698795159614878
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.1773998823564994,0.2753738990894163,0.0981901826127509,0.02810756304931407,0.06210453421447666,0.07481077565524165,0.15462234732847308,0.18303337152719273,0.10598891211311867,0.21170085815239323,0.24531901378500465,0.0850490929453866,0.0810240796974069,0.2740796823936301,0.10556203638001188,0.27768943631077275,0.04164419649354342,0.0884226378709399,0.2461419875808973,0.06238682417553796,0.17623699715931912,0.12383476119316604,0.1277777197851878,0.11878921780803456,0.2162184146589491,0.08690385627491036,0.12322291534609116,0.13326256785139073,0.03154482350446601,0.10479526624290669,0.07911043365509711,0.1583573742973743,0.049412002573292896,0.21277619887101637,0.09891472650149896,0.024476047904191618,0.16734826387254045,0.042416059140047355,0.11586206942467506,0.11895801700469466,0.12121419675149422,0.09566583118087182,0.1414966783657444,0.041600195241439514,0.08089142154632085,0.043363904754108305,0.22620597158610228,0.21247796292270518,0.14655270461625602,0.058034857524101334
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.217317411598486,0.2530609416078273,0.3390336770928839,0.30460509519074586,0.25398703288426694,0.3295027875844827,0.2524718527400566,0.46130257980698536,0.19956594537208777,0.32983352929250037,0.21918109350359413,0.20749491491608868,0.18958476959652265,0.22187541368805902,0.1255906741698571,0.13435337589928398,0.3285607138392434,0.147884671401782,0.1445178287895679,0.3251763762285505,0.301252963238706,0.18826199535645696,0.08816696291971998,0.09994234755573003,0.22875327465307133,0.2509005392827042,0.0841271648359008,0.16615264707418104,0.2802454152683333,0.2392841800669796,0.23207603722497297,0.21968879954741152,0.296618163947462,0.4181505991350025,0.2296382228551218,0.06935393106303157,0.22806147381511047,0.13905121632588066,0.030712824918028674,0.2799506719176526,0.32284792608556784,0.09887424009046496,0.36957890700015317,0.3025308036073114,0.2858673989439591,0.09851862491871985,0.3594305265596195,0.12876019464505076,0.26869639451542787,0.1925482039881667
+0.3995068570117575,0.19525779463193696,0.07271712744569588,0.19397830321520484,0.1006242074508755,0.1092470981090122,0.1630982211828775,0.12225330801059694,0.19226233128874712,0.258758821495597,0.2021185256608745,0.35237661386511876,0.1267528450299063,0.1821737738990417,0.13844078091054482,0.07343204185890387,0.298499283810635,0.16350761742784356,0.19781902215930106,0.2986125572241476,0.15340851654177012,0.0847259810030526,0.06680355167208646,0.08488965355062682,0.03750162441220425,0.10172161795251125,0.1210134988417426,0.13392276434694503,0.3268724441945728,0.4453259857046767,0.235055009898849,0.053613004996119276,0.03935639922755399,0.43297826347386925,0.15888825212196378,0.23671841709131422,0.09409212463161103,0.21457502289721908,0.1808062053797546,0.17361605315811715,0.1447779716467152,0.23232775618731824,0.01784959799464297,0.09701075715614292,0.17200897954146452,0.25293473781117926,0.2037448886357478,0.04536965982049217,0.4146440126778391,0.2497505029302312
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.5446245940426713,0.5494926770405604,0.5746499121239179,0.6218406649829236,0.5114775443628693,0.6366129839131545,0.5165423024293757,0.6370925169428692,0.542762995507313,0.6224536133465991,0.6195887861627687,0.6201674372045437,0.5833410289212363,0.5737714291757635,0.5614949019230016,0.5919750750710743,0.6646789349958279,0.537933061240833,0.6078420386828899,0.62000043075478,0.5935821456662708,0.48387453640644323,0.6614913982224161,0.5906930411673309,0.6435112262060124,0.5472840965847809,0.5410355385864576,0.6163531582848534,0.5662630656101545,0.5127930515232252,0.5694412980213047,0.6006435517576451,0.5549067943647045,0.5709044806156345,0.6087876033966626,0.5875175561590011,0.6262948708083219,0.5694286554113226,0.5513503034907371,0.6881534223900474,0.6292988137160652,0.5658270041014457,0.6296448327653298,0.5804412641529479,0.5549867683110549,0.6376343018830283,0.6548520152987767,0.5776049635056665,0.6088880679489195,0.5441456733365482
+0.18861738589510224,0.46513367312835785,0.33654955197619735,0.05376467693472824,0.4624897588747345,0.7242038424345145,0.07204822449057019,0.1863613190424504,0.5140296259828987,0.08723970767093,0.3492307524323578,0.17152712189771638,0.09099389584875922,0.506108008932784,0.6104052503278282,0.2815105049728767,0.7022325421417205,0.11933613126820372,0.3294172883853648,0.3207315693095043,0.3899776467152713,0.6700162040874251,0.6396295596642539,0.3119044695060442,0.137729526289824,0.14121134789728257,0.44965788134071993,0.05318487409792401,0.21906537420096353,0.42745379197420713,0.402911326323001,0.7062088319971659,0.5591060867442789,0.28824324432137355,0.16501932275851336,0.2247130549531657,0.25686843611278287,0.0796118128280032,0.10340894410488424,0.45124495864125685,0.10889003488734744,0.12687820887372434,0.21187160005733172,0.2222944666468921,0.17998933893532118,0.15271648445970615,0.41204505770852734,0.1971695924572389,0.46521670056339137,0.134972689475525
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.4908131138858892,0.27283628415084665,0.3410284410694644,0.41521661512962366,0.38562464593617607,0.573754378693529,0.3486713289241043,0.3803976177411179,0.40933873662927533,0.19976838055776241,0.4403053035777721,0.21488807204170368,0.5448763069588707,0.3623007456050918,0.4834475520986238,0.3381687480903969,0.4125916702605758,0.18885303393902259,0.3139726621363554,0.2997333972405262,0.29132431052806607,0.49181518421223636,0.3451326948741608,0.3823145274646776,0.4793391801449669,0.5937197218096605,0.2784754773126937,0.20822569706130095,0.44510733135561886,0.3223652484421499,0.44018672906651973,0.39217534946063687,0.5321814216910942,0.5636563542694162,0.2625783719769829,0.4069024916222051,0.3594645880670197,0.5554414989504547,0.2808521292128473,0.38796915016885036,0.44463498447368655,0.479295090632171,0.35821060006783073,0.3543913103474574,0.46101311647858745,0.5329631700491488,0.4207169492682359,0.4581300402791992,0.4697860131327354,0.4935364396247502
+0.7532346817936277,0.7155791450987639,0.6222897852565531,0.6943934987365112,0.6794469819324912,0.5246505933581065,0.7273175531528326,0.703816332091728,0.5524378781122923,0.7288487691749694,0.5329886360145865,0.7134238700813721,0.6406530418830225,0.6823763876736985,0.6536768941535243,0.723493605931328,0.7083608957601202,0.6535570917314604,0.6996954885016973,0.681486708255014,0.6389384827153913,0.6708282248238904,0.7553940328202333,0.7064947619192499,0.5866676334266433,0.5772653807748341,0.6336558623358737,0.7478886107815521,0.6324774938810599,0.6276605086313662,0.7217466179490255,0.7327994041284279,0.6133519311617763,0.680976209153157,0.7404515097329333,0.6112746809280621,0.6652330856611596,0.6939358169008156,0.6753769880937861,0.7104655067034759,0.7030702132496413,0.739390560681023,0.7007982037415245,0.6812065723064064,0.7152078597752285,0.6736413618842956,0.699582308285776,0.7730660488612858,0.684096089444374,0.7188061286328914
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.33917885035693796,0.24429541861722778,0.40750845767466987,0.2336506071274142,0.3690748310733831,0.21590992648814286,0.21928872893729368,0.18715972806752595,0.1874149796592618,0.21623277516414494,0.18668088382704273,0.32976119284377525,0.22802425606682564,0.23571360898525154,0.3002755683573722,0.23572567126141103,0.2553737310749369,0.19933766921131638,0.2507092655915317,0.3636444662308937,0.2249356616356638,0.1965832233450551,0.14404243111512444,0.27507101190429273,0.27559543736066916,0.29028325057489396,0.2820636595894132,0.1993511008932266,0.24337786164948685,0.21148849655063348,0.30360064316349217,0.24246261047186063,0.308768141977411,0.26014118323428537,0.14720629976328586,0.24145037816652168,0.24647349784014813,0.3011237712234513,0.32344014981950137,0.21610201045225316,0.23058814710484044,0.26268793973737964,0.2883931768732064,0.2037224401445295,0.24526830410334935,0.2192527235923411,0.26931604123186714,0.31074050341348797,0.27206917610429476,0.1991791967618112
+0.025891676385630998,0.09286318693827207,0.05451151470933038,0.13266769582277743,0.03500163606677427,0.1407874630111443,0.034511646092290266,0.13307631263981637,0.048855612107303575,0.08353283407171049,0.07749431420323404,0.03613328261530901,0.0630284181022717,0.1395970395334212,0.15194960138186475,0.038468632143875,0.07415664542924674,0.10531566822081728,0.14523092371325064,0.14326250325284776,0.06754272780017702,0.11145016481616771,0.0454419178775498,0.032277521372726145,0.042117518238029686,0.12980582412564368,0.08304540337050095,0.14717484625706329,0.10296012957004458,0.03327205246913414,0.03879316167982658,0.025644526615493164,0.16038644954211148,0.1475994033377464,0.0742522975890885,0.1326410254306958,0.07300523266589448,0.1347542164519887,0.2573010660969291,0.099773067883277,0.09275106248474378,0.028780109748888373,0.035851076725937785,0.10019650499328987,0.12957407123774392,0.05412613230876531,0.1306385815172123,0.06079669563823194,0.16216951459724996,0.12671457632726205
+0.4060993632929036,0.3475894513068306,0.7507434554260983,0.5725405901689622,0.3851915766862578,0.6322877281498801,0.530206865180916,0.7610563275947091,0.6411789594957449,0.7730808183375659,0.8545146751798408,0.502954650512897,0.5252948525779739,0.6311930616981091,0.7312555211706615,0.507249066299989,0.47813451145861835,0.8461098922725919,0.6579648765857985,0.41705702493863456,0.6778570964136363,0.29954483521732,0.46319938047800713,0.5615819463828244,0.40177266356105823,0.40297393740193277,0.40299557110858186,0.48170752459127114,0.5776604248830026,0.6368138910561414,0.4234558136450209,0.8300518556967486,0.4489851756111837,0.3573862351531298,0.3466837610625158,0.4784741881097257,0.3886189252006869,0.4697717105129866,0.5105976547407345,0.8496431479362617,0.8287875467839488,0.4870431002697331,0.45884934717203735,0.4473095018527999,0.6804928981232541,0.5670341507258257,0.45563102357062535,0.4141080159272367,0.48229288790318137,0.3540824799756184
+0.4652227391229421,0.44214090358549785,0.42798375578554476,0.5363382573051113,0.43220764461968103,0.33881358343860307,0.45380698654535223,0.45108549917229845,0.46576573397557547,0.43384676710223,0.4445223667354965,0.4803911168859916,0.477790960388706,0.4950201231415511,0.48584883439887144,0.5575172153083513,0.44960321208624454,0.51347755599201,0.49291560015879665,0.5369991290462687,0.433883940123183,0.48958121741028543,0.4388909975444369,0.5929899060150144,0.40657310427433624,0.5108561224975957,0.5132426972740877,0.3855221657329599,0.3699609794959964,0.6393536633905379,0.49059074733569913,0.4228146437267955,0.4740414665830889,0.44981835798221576,0.4755176438971832,0.42892021277165243,0.5727190882551801,0.5250702667343312,0.5592342578750916,0.4380084303587132,0.5035886234454279,0.4006355468952724,0.40960053556172404,0.4406971314594053,0.38793985243944,0.5011038247917654,0.4591869136374979,0.4662626471752944,0.45794840263077724,0.4975674247159926
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.4672775949995772,0.41298830455445057,0.41330740082810685,0.4069503000170782,0.4679953596770224,0.462714415674432,0.4810240992849063,0.4173778792081401,0.44741791699560696,0.38653383767459,0.4646996518646065,0.3373458430753832,0.42752251850664763,0.3573368784469721,0.4636645134901826,0.5646626293193738,0.46453184234696415,0.4945425643572692,0.4700503947709922,0.44390368619330167,0.4195615029301846,0.3939498684849793,0.4546215155747552,0.611522511951767,0.47284082546009043,0.39158859908387667,0.5196783507305763,0.39101629085238016,0.36893885868845006,0.4921521408290968,0.41768578571042897,0.43064216964194785,0.3966700818342114,0.5392620151805597,0.41062220848119707,0.4077894657082936,0.4279424187521185,0.5272904272084918,0.47027441483434496,0.374860489098875,0.469636479530707,0.4199014155438011,0.42682400517618135,0.43140515090990583,0.36158639587202157,0.49950161745911165,0.4081663955897804,0.4387233487331668,0.483133709456531,0.4768084212379538
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.125962906437152,0.07411064470600856,0.19433907877918954,0.09792786541236435,0.15102152420259643,0.0923129885937002,0.13012111855317496,0.1707967682758873,0.050789962005373904,0.09751171879632124,0.17736566611530985,0.09171009708514909,0.16799222555280352,0.20829958546378585,0.06479409097211858,0.1854618128405107,0.24041905511811176,0.040023580840411487,0.2016562303230759,0.05134228008359799,0.06885383096822943,0.1635917138972574,0.16465022809993146,0.06448482563404263,0.07148228660110713,0.061160936306941444,0.23263393437487612,0.12098455847592289,0.02765803442826039,0.27367042395074465,0.12220375139434511,0.181036662495356,0.01778661105659703,0.13780788963726157,0.2939864420045748,0.189354276158624,0.048919575844012936,0.09380253058591222,0.05873527864962619,0.14466671937947875,0.11635746118678943,0.20718840887144463,0.1586855988755914,0.34559748922989153,0.23222600122953094,0.1263886890111454,0.1053744235377469,0.13179435711677456,0.018821391484942888,0.12423877349573872
+0.3463131301083965,0.06731027367009754,0.03019589947874593,0.14916556126925434,0.22739460195474887,0.1761132556479753,0.32609084658686044,0.3635003495356356,0.0690747088440203,0.1573109565127812,0.4090600403880769,0.1654157681684903,0.2050182886680253,0.21849113306517323,0.18073104983682295,0.15173160780990458,0.3504930650952909,0.06736604358567205,0.16653502342476886,0.3433308743328455,0.031080375312798766,0.20987100761879426,0.20556880240738365,0.2784111178601769,0.24134155770425347,0.12838169442540923,0.1512936406051701,0.1656179467720884,0.3379523959686678,0.2843221612381014,0.19073637371835592,0.1414724068336076,0.15485022951907607,0.2556775391683679,0.03134829269844294,0.20976505339097426,0.2762569050721579,0.1789812419717596,0.16266586256463422,0.22676089176090797,0.07842444031763053,0.1922301637311865,0.31680939102696526,0.1568540175517363,0.05905986305016609,0.27830295624269985,0.044167078893819864,0.09359379526549082,0.16045694653782888,0.4051140589171125
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.6904433465632681,0.7217523671201199,0.3521079725578703,0.5964012336107537,0.5957252671712624,0.7663367616788883,0.6237172295382579,0.8364886066070271,0.6491290384893115,0.6730762444466712,0.46979248981882504,0.5650207623406593,0.6916047469490109,0.6391719794983076,0.8136199141310918,0.6318415170345469,0.5158364396167211,0.6829304481436865,0.43654784737050606,0.5124191622903066,0.7081834509996381,0.29642061588478136,0.5706658350797406,0.6601740175544036,0.567687919090212,0.7167572006476104,0.7346249662375738,0.590154620371679,0.42969635064409717,0.4380933363964482,0.6119749346268606,0.6903248407671272,0.652937915917606,0.37823878293296676,0.6763478475292223,0.7605837037076489,0.5943778977270022,0.6908571731737535,0.4459762204390627,0.6114002731894953,0.578992289128799,0.7212778244150697,0.5888891576182543,0.8788308004058252,0.7215518432000639,0.3133019674845545,0.6851360370539957,0.6539896920675551,0.7303437519896058,0.5741573826696499
+0.38476744781252475,0.3743989044200614,0.3924715973861388,0.38366875197374917,0.42162849316724377,0.3266066489585896,0.39820503891639975,0.4412377334299109,0.4247068353772117,0.31061327364925195,0.4827328015639995,0.48720957385236924,0.46852030483913837,0.3187299758917716,0.34282682069152753,0.3760002779701263,0.48858595668024984,0.47305812858771384,0.42789944847020267,0.37705109330894987,0.4073499291602718,0.3845609227916242,0.4235328250576197,0.4223398360369351,0.40514964137653936,0.3629035989879344,0.40527154887892036,0.42317244417893035,0.3771450329711037,0.40540988181938714,0.3944731657817856,0.43443298495326976,0.46995899023583865,0.4356246271925716,0.43938042191330184,0.41793354560191703,0.3622060645712461,0.45153076048025326,0.39222118317850957,0.4100955846601331,0.4161546372418238,0.4052294661567805,0.39528155434759493,0.4704369430043123,0.38164904231196745,0.2951318365722232,0.3765617410812942,0.42166463615466493,0.4644181252060538,0.3525449373231544
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.7840928329638625,0.948164578333128,0.6504938989202789,0.633939724972357,0.8512213114759031,0.7844358419419523,0.652291755491229,0.6649758984848677,0.3340577303619197,0.6026691689029106,0.6056159480554916,0.9346955403962448,0.7391402657977595,0.5818286852652084,0.7896073133865344,0.4024881555522966,0.019256034534650742,0.7454884382536736,0.9346469591899392,0.46130909160978545,0.2564588967862847,0.9148665035127,0.5667144716533494,0.9480076565537169,0.7804593785147016,0.9333636134741687,0.6732206893260578,0.43711704552068065,0.9820304588689549,0.9629516052684421,0.8224438118276971,0.17018531525217598,0.9471136134643265,0.8207119875338413,0.7762252556156087,0.7014872824591792,0.5093599021665863,0.6663971297840076,0.8482649096316166,0.495236723047068,0.8142560890155097,0.845416484748241,0.023333333333333334,0.9098737930345746,0.8149727144420423,0.7287731201727639,0.6307032609405977,0.6620242091988896,0.9597362964547587,0.9730382770164416
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.10207223422886331,0.04553768990422224,0.4235460021324864,0.29552502060071717,0.03307757584688638,0.3381472632890865,0.18197962333871465,0.3728826655181938,0.2806234435284543,0.15331102645627911,0.14860989107521638,0.12769002496307982,0.27009754669257197,0.22836782424337465,0.2686386278106048,0.09919524142082892,0.1287224679878652,0.2355477853206753,0.1053021978021978,0.11157798257158785,0.10009030900949696,0.2930996211080553,0.2903572805519551,0.1312791575011838,0.06633915668905985,0.1460030062125559,0.13266041997930342,0.051442356245137766,0.17320265515692754,0.3284776000875553,0.09279345917589273,0.06752598584918536,0.3114065448121288,0.13417204903580252,0.22470068210140773,0.13783533292693675,0.4081548358255973,0.4073634809385754,0.06816908697979922,0.35097256633255824,0.2079745404941525,0.15897421596603253,0.32077901293728606,0.3714474026599071,0.4739542611097307,0.2537443805293258,0.36358144528423897,0.05714768785073281,0.052511265577346915,0.20235135911323215
+0.5719582085742787,0.6281208936708897,0.591693713515356,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.5703122952807843,0.644245925605217,0.6679564710241717,0.5723154317961914,0.5843435315511822,0.6621958618177841,0.729077969512311,0.708674149776304,0.653698410672138,0.5283990063348822,0.6563146629490495,0.7410724903683651,0.6491919953560754,0.6913923946219351,0.6372961428161047,0.6063979473215659,0.6615922954340513,0.6426721680689417,0.6886575439634907,0.6995821043970339,0.6349977252718322,0.6829923880701249,0.6761812682843407,0.6011509501706942,0.6845698880040213,0.6262064023511259,0.7015383149610248,0.6630834172798044,0.6589468055706341,0.43754339152738325,0.501952605550755,0.661938805989832,0.46200409753516725,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7005354384501459,0.6683077884014698,0.6626885705740225,0.5838387653982741
+0.31053715245654756,0.27253310912323436,0.29632470604738165,0.22973493458201533,0.2678095544541643,0.26710148120638794,0.21936701070811973,0.23826333643187464,0.25896359388749435,0.3230504640593348,0.2622286067610375,0.23219118217999257,0.2613095737633457,0.2277853899086043,0.2371008373971871,0.20651661945376362,0.2939264074296968,0.23156451362096678,0.19395141756991843,0.19377057845853782,0.30462236133606974,0.16853401591804573,0.28364410363310116,0.3133186832314592,0.24860161507834241,0.3051576546569227,0.25838453342407386,0.252827144745277,0.25885290706375297,0.32772471772447204,0.2278889701698131,0.3181696340046628,0.18416942980835274,0.2953539504076243,0.4935927197681547,0.2761331048447388,0.28726433119443223,0.292114597414702,0.15764461122089465,0.23553114111759169,0.3461046214419718,0.1934869572742578,0.1684755096221024,0.2501130112245993,0.28762475758933437,0.2379438169131474,0.2639123066725193,0.3602804820128059,0.1981804206549201,0.20322085267145237
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.355706082022468,0.2530748728076286,0.2906795219410335,0.1984373186429661,0.28305273301207395,0.2765974458445194,0.27266452799065033,0.1704465598930723,0.2952771542492594,0.2683288953028224,0.22835306503506128,0.25545103018671217,0.24127996378799843,0.2885269986127412,0.34136035532803893,0.23137425315384313,0.2680108538953904,0.2847870962191212,0.45630881099037046,0.3295461725561144,0.26228378395020097,0.2626871252552784,0.33996298761335625,0.4340454671857653,0.3096117145117464,0.1669092560515693,0.2725051258166598,0.30501635816055195,0.2934256789443499,0.35960426500252896,0.2126823581254321,0.3349721251350555,0.20512868349914096,0.27426702375527934,0.28159676224367736,0.23391780385970937,0.17059113492834466,0.30841104971884714,0.18456298567885288,0.2361029757024384,0.23037576008353725,0.30624155772736206,0.2231932377241211,0.275779132302792,0.2889070671027606,0.25491906109301854,0.22812155127642497,0.3813929312253427,0.28333076976175287,0.21426775663676093
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.3423937701229037,0.40607809027909164,0.4650792478676758,0.5069510039715827,0.42801292555393594,0.3377705482703511,0.29755910458119705,0.5081386229793813,0.2718595340510782,0.28090708222509464,0.2004109643729105,0.20818511593799716,0.5161841524198857,0.2526549008903187,0.45139080407796234,0.2825224937027418,0.410640677434268,0.2685117718079157,0.41403816236190844,0.1483480086112667,0.18630961852298533,0.3272690574566125,0.21674655864371067,0.25408808695015905,0.3626169296992635,0.2975441119337735,0.4769252555517671,0.2783650935779516,0.38009242088728457,0.34461576658242565,0.3032403679545135,0.2625888455178538,0.13813708581172215,0.3318826128657021,0.5154513790427326,0.38366292030177007,0.43125143125913445,0.41702562477510596,0.42772441483740403,0.35556800665017485,0.262515045199988,0.20513112080841334,0.3563354594347089,0.26594832965017945,0.4749748202872631,0.3654790534862385,0.46964651318677164,0.31558051228133027,0.2304217770913545,0.41782179154287297
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.7481532192887105,0.7643172961104141,0.6619078684076574,0.753356370055613,0.6097218187518236,0.7459306638445409,0.5571898331796022,0.7338125398827731,0.6875391120545947,0.7184638500210002,0.7677383401684401,0.7344991520716766,0.8644457478604777,0.7209534970654101,0.7308132904664383,0.9117768836870916,0.8135570461858612,0.7170141592528904,0.7434697133713503,0.7622876757342112,0.8062148431754923,0.8382139738209109,0.6092105318328546,0.726243202859118,0.6184617087543438,0.7861799821344667,0.7137273387256594,0.6433330090341862,0.8452531165990926,0.7462459892384584,0.7933819358212942,0.6135373189231468,0.7296101928854132,0.7062824996808539,0.7296278878815028,0.7242956736349364,0.6979262783136668,0.6576017104077628,0.811070733407268,0.7885797786315014,0.7430182314470943,0.7474037937704385,0.663552459061558,0.731576083117557,0.8403100615374334,0.8266807385153608,0.717457058830935,0.7440908531009702,0.6025756953951632,0.7360555778375112
+0.8635193914632151,0.9091319076871279,0.9243968305617025,0.8914732937266757,0.8281043086989903,0.8346645688298399,0.7614665779812887,0.9568276806914764,0.8817392770502542,0.9063185324516964,0.992154610993124,0.8116312995622235,0.907040852493246,0.8890755490751466,0.8623495319648673,0.8473295213443919,0.8121078764227172,0.9396349068618578,0.9010923266007754,0.9020936104516273,0.8813235286131179,0.8984631495052032,0.8399400884187131,0.9069082233762756,0.9565472433483219,0.9053113571938298,0.8625471166802192,0.8364961877468515,0.9026665916105314,0.9328240969063023,0.9515137282211861,0.9216572138213968,0.7834477299325858,0.870339873179775,0.9237822222522668,0.8252059200969444,0.8045264672308826,0.9613987113141786,0.8403889759722918,0.86780408000905,0.9522794532581033,0.9707809584583109,0.9129199000074962,0.9551458141438057,0.901337886528899,0.867394346413372,0.8153473756984703,0.7871757864686453,0.8995097655070522,0.9858479461277337
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.24561383968871198,0.17056175381259883,0.1691488012629362,0.4099322547147864,0.15434105489232022,0.2975709572116556,0.33476052891120545,0.14470061921529856,0.19510918911769917,0.13734620104453651,0.24634381325008842,0.09342639109189595,0.30908534153916095,0.2956646546937944,0.32336246353643255,0.278343642609201,0.2581579094613014,0.18116192874709372,0.12537500663104198,0.19612063955097614,0.19034796092826226,0.11707217026842805,0.09176707755825164,0.040069356602593496,0.35990584730598735,0.11371697642765394,0.21691862581675486,0.39671632205571705,0.38995810903731337,0.0788174894520334,0.38693638741110375,0.054627296414826026,0.1358280653289547,0.4560429806607318,0.22147845449983897,0.31734228272579923,0.23009055347183338,0.45635710321280565,0.2269575554635812,0.4149498197981078,0.27423944935147415,0.26698234176756336,0.04463297429118003,0.21867062502168028,0.3124341264434209,0.26531915493699965,0.36101530203768994,0.20725322366120733,0.23204594189032998,0.20149506993592478
+0.3424467989577558,0.4752084298500073,0.5844644120224153,0.5320400051346845,0.35227832431178185,0.3513762177533381,0.39814021102717834,0.47399972460851536,0.3522863033269023,0.28221005134424404,0.37908931385425254,0.4617277324687914,0.3422179893321278,0.3966918257528186,0.3952460291518294,0.3678136540365013,0.45184866972279153,0.5239833521691398,0.43783661138893953,0.2397689253338323,0.4423157741939777,0.4099398058510013,0.35606033702423046,0.3341943781918267,0.368387328532412,0.3185304322274522,0.3437498667645144,0.3608223870838602,0.3774333416238859,0.44476015424929455,0.40646050444493076,0.2859061816101271,0.5399703722267122,0.3509900787735438,0.48245555943974927,0.4010267877265997,0.30133209255853555,0.5058120373001739,0.3726719380358155,0.47297556450590117,0.5069678220919706,0.3358223948207721,0.37928383107625613,0.37945858617007444,0.5043847855643703,0.3245051112484398,0.4031004797231252,0.32507521492078467,0.2145330204589744,0.351177309175445
+0.5446245940426713,0.5494926770405604,0.5746499121239179,0.6218406649829236,0.5114775443628693,0.6366129839131545,0.5165423024293757,0.6370925169428692,0.542762995507313,0.6224536133465991,0.6195887861627687,0.6201674372045437,0.5833410289212363,0.5737714291757635,0.5614949019230016,0.5919750750710743,0.6646789349958279,0.537933061240833,0.6078420386828899,0.62000043075478,0.5935821456662708,0.48387453640644323,0.6614913982224161,0.5906930411673309,0.6435112262060124,0.5472840965847809,0.5410355385864576,0.6163531582848534,0.5662630656101545,0.5127930515232252,0.5694412980213047,0.6006435517576451,0.5549067943647045,0.5709044806156345,0.6087876033966626,0.5875175561590011,0.6262948708083219,0.5694286554113226,0.5513503034907371,0.6881534223900474,0.6292988137160652,0.5658270041014457,0.6296448327653298,0.5804412641529479,0.5549867683110549,0.6376343018830283,0.6548520152987767,0.5776049635056665,0.6088880679489195,0.5441456733365482
+0.4287363218007454,0.14419102648685075,0.1285202262700943,0.04332040828597992,0.3469022138944564,0.1657499456587119,0.324326961371701,0.21934218583887236,0.16920519436912987,0.4863582388608005,0.2523589472240467,0.2595677273092776,0.41454232846613637,0.5337571551394645,0.1653143534566689,0.17440080243307965,0.27415194199093884,0.4882743076986624,0.29381083630773497,0.21502448186783815,0.4457491731831873,0.21427422202863972,0.41782262797792263,0.2902072564296311,0.2797523986214117,0.12146122467381282,0.17856890337138484,0.3385830323936599,0.33964853244673326,0.18750564461713104,0.19488862216001795,0.19765369730157825,0.5737919989884562,0.16920812785486639,0.34367525500356594,0.6081221543438874,0.22031362350828146,0.23826294891310623,0.29719216115450753,0.326631564690138,0.32912398311199004,0.5379549434737413,0.0682794846076545,0.282711514521766,0.4544569104447262,0.30719899846449295,0.3095759262340265,0.13972945150044722,0.20846897575368767,0.2342566780932742
+0.5446245940426713,0.5494926770405604,0.5746499121239179,0.6218406649829236,0.5114775443628693,0.6366129839131545,0.5165423024293757,0.6370925169428692,0.542762995507313,0.6224536133465991,0.6195887861627687,0.6201674372045437,0.5833410289212363,0.5737714291757635,0.5614949019230016,0.5919750750710743,0.6646789349958279,0.537933061240833,0.6078420386828899,0.62000043075478,0.5935821456662708,0.48387453640644323,0.6614913982224161,0.5906930411673309,0.6435112262060124,0.5472840965847809,0.5410355385864576,0.6163531582848534,0.5662630656101545,0.5127930515232252,0.5694412980213047,0.6006435517576451,0.5549067943647045,0.5709044806156345,0.6087876033966626,0.5875175561590011,0.6262948708083219,0.5694286554113226,0.5513503034907371,0.6881534223900474,0.6292988137160652,0.5658270041014457,0.6296448327653298,0.5804412641529479,0.5549867683110549,0.6376343018830283,0.6548520152987767,0.5776049635056665,0.6088880679489195,0.5441456733365482
+0.8505135961742871,0.37971246547019794,0.61513000542309,0.3533990901173437,0.1914671041911567,0.8477252002559758,0.3754083861734268,0.6048518580790969,0.4087005934899059,0.5771816116326698,0.72296601261845,0.2894292067189741,0.25156621850616345,0.3408672147838445,0.3635354500888283,0.27660457004415107,0.5042871043677672,0.4960471574166505,0.2073086133784434,0.12861846718453124,0.6625310439236765,0.40041338740547394,0.7870963200213769,0.5868047953952018,0.3665380784840773,0.6263841401973511,0.42788233873144,0.3103899750979503,0.4182754469642658,0.434064860645676,0.3517225674989093,0.5949764845927734,0.4486470570320782,0.4106619887110694,0.5699785792958109,0.769128350911179,0.7731754675162676,0.3338656949593721,0.3784623020116692,0.24000899485449556,0.36455607849637794,0.18419809612348942,0.5125758482872672,0.4343707353664897,0.36039385661425655,0.3159124856187595,0.5508236576417556,0.382460057898814,0.5788953643782279,0.25246251139795206
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.32288732967358713,0.26127626034494844,0.3450361437303941,0.22518271258494965,0.2693793195539582,0.27516507657206496,0.20365678617930477,0.3462856999162968,0.3878389186680936,0.25740331046484466,0.2477854413510439,0.2367000530670695,0.21466487154024655,0.2764100210948579,0.22617845374760293,0.2452377225785489,0.2978401313781639,0.24160148029664316,0.16860954693859398,0.22402629389738757,0.30076210476764803,0.19518487508394528,0.24499776783877908,0.3253172996220524,0.28176176977179845,0.3357106102433235,0.2272104742573912,0.2579867707259768,0.24238793276031903,0.36909842048244534,0.21962828995740072,0.3077370436308201,0.24099008872152897,0.25102465190486956,0.44907198278868976,0.28993307006494295,0.22236041507289972,0.2523006892829327,0.22770240653990545,0.21881392537313463,0.2912070179271311,0.2912493788725631,0.19179220457961169,0.2861112857797165,0.3187047235915738,0.2608446384226961,0.21637212771052317,0.35196279955168075,0.19184806703689877,0.21116604576798462
+0.6817510569840836,0.5675379527035074,0.7179811226290611,0.7490514723974537,0.5885403571227564,0.6794779312825867,0.7210061902999954,0.6648918242804328,0.6485207860377996,0.6742388620483161,0.6004876045962603,0.6416003868672127,0.66258284111524,0.7644005423460958,0.8077411085274449,0.672526995404043,0.5612682101697373,0.6465637614103384,0.7327884797305124,0.6310816186892446,0.6206629847293976,0.7423592799874186,0.5872029583789348,0.6595679262830774,0.6621828267825519,0.6994265779159208,0.707669002015789,0.6540913101066974,0.6277425000582147,0.6276121707326885,0.6255652701499064,0.6485951949213522,0.6334301226570892,0.7029303423875131,0.7505450831584976,0.6727870583474339,0.6032393063460804,0.6295332100392514,0.6907259235191249,0.5724095270316282,0.6037615587594823,0.7650375077575953,0.6598074329998406,0.6976867468819695,0.7091482524561898,0.7309452561032576,0.5421669491002465,0.7150088818194769,0.618715250389683,0.564973583489802
+0.34772759086698374,0.42010341644540256,0.34378189455504127,0.16148935664433334,0.24598204059228546,0.29156306688716266,0.0521247293659331,0.2576427407303837,0.231707185558964,0.16052023909711366,0.23708069592330885,0.32342895316599723,0.2708772823807431,0.3893991447469395,0.3039554564799959,0.19089384050886768,0.2751176507610792,0.3660250108309981,0.35526181805229995,0.23341228362937066,0.34953887693075486,0.4158003375742178,0.22892831924339524,0.2628897688038464,0.16446192447351785,0.3463483058281957,0.28864797137543596,0.1197934065226234,0.3830718079775421,0.28674696865391147,0.23026724082136976,0.27905540020188724,0.3659270998285256,0.3270765726979756,0.27770204509843616,0.3315645950888527,0.20725562072272374,0.2560886091167156,0.38212543364841944,0.09765676135339144,0.2375152917536234,0.2556599644053994,0.2810405610635409,0.16448043250431396,0.2858424575031006,0.20315496334683558,0.2585410909232601,0.1963128198677927,0.3986919346204423,0.19330484182658483
+0.8334184253030094,0.8576141619236942,0.8243588245265443,0.8804644279020049,0.8025540910522031,0.8347102206743517,0.812811091580054,0.8155295359196895,0.8427912840124486,0.8834114529801927,0.816595166011179,0.8887262607510571,0.8289262559831818,0.8682377697822017,0.8425429049670992,0.8748471695840653,0.8610106825206663,0.8036559519162669,0.8502294893626179,0.8560039035255894,0.852326337652949,0.8910998873417862,0.8771483314450506,0.8222389076772303,0.8551288595084107,0.8032659833366634,0.7897127187628976,0.8079341195297846,0.8037366866403934,0.8330469540106575,0.8389123738487692,0.8416192634440851,0.8544615512223401,0.8975187135846504,0.8476033854347524,0.8391143841607949,0.838094447145523,0.7926832649165485,0.8547590683387566,0.8797772225892578,0.8786848845425206,0.8384317199633586,0.8379384969500131,0.8986381758977164,0.7807453593188757,0.7889167266696956,0.8351719755447569,0.8257819514276921,0.8899353872794549,0.8705998214946934
+0.5790100082095402,0.40063951274848486,0.408368664096175,0.5345727853739823,0.5339496210153849,0.21341982096486237,0.5077499203918228,0.19938291123546084,0.4292972656447293,0.34581538911397075,0.6731621426026131,0.3245652974666011,0.497759883161562,0.26022364824718947,0.6241276449804164,0.22920723528096543,0.3167150291581995,0.596717800089703,0.3103936043616359,0.4391440394460546,0.5042095246569864,0.42756137506955055,0.3082016727203252,0.33367752312151916,0.34431477845623576,0.4646453672134628,0.45229934886602,0.5400991430480809,0.3223178020821741,0.4178317087291598,0.12127183682695102,0.5099080974585701,0.25607735379775365,0.34079465231942757,0.5453824318448828,0.4145825966941655,0.36990276925217835,0.238858302146085,0.48163121044540275,0.25543046231906513,0.37547318586219575,0.1891083813080982,0.4136885542957722,0.4591960448899556,0.22706870872968477,0.36207812945653717,0.3880928659016349,0.3049879933418388,0.3213273508252671,0.33034481307723573
+0.5446245940426713,0.5494926770405604,0.5746499121239179,0.6218406649829236,0.5114775443628693,0.6366129839131545,0.5165423024293757,0.6370925169428692,0.542762995507313,0.6224536133465991,0.6195887861627687,0.6201674372045437,0.5833410289212363,0.5737714291757635,0.5614949019230016,0.5919750750710743,0.6646789349958279,0.537933061240833,0.6078420386828899,0.62000043075478,0.5935821456662708,0.48387453640644323,0.6614913982224161,0.5906930411673309,0.6435112262060124,0.5472840965847809,0.5410355385864576,0.6163531582848534,0.5662630656101545,0.5127930515232252,0.5694412980213047,0.6006435517576451,0.5549067943647045,0.5709044806156345,0.6087876033966626,0.5875175561590011,0.6262948708083219,0.5694286554113226,0.5513503034907371,0.6881534223900474,0.6292988137160652,0.5658270041014457,0.6296448327653298,0.5804412641529479,0.5549867683110549,0.6376343018830283,0.6548520152987767,0.5776049635056665,0.6088880679489195,0.5441456733365482
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.43399232411556565,0.3880210026764744,0.41408983635653074,0.35562920216280014,0.4206666902959723,0.37678642881971564,0.39169381163398453,0.42262456595061193,0.43176830995340487,0.368812165558667,0.46367946949138356,0.42429894347815633,0.4850420096847177,0.302281762233925,0.4029910855621027,0.43597130763403974,0.47710038867070304,0.4782923601665337,0.43788194388956037,0.4536505682550652,0.39584681499391455,0.41032636521749816,0.4011342558618931,0.4371002264149695,0.40332505177775707,0.37233062040488646,0.3853880157912385,0.4505884348070552,0.35983276308578566,0.43448218440981295,0.37705181458871445,0.40699788679184074,0.3400722221293895,0.5249694701170622,0.43159850037896247,0.4038372187008506,0.3881571378777961,0.44804233027679957,0.38503390093268947,0.40111186422910045,0.4054585392744918,0.4048011831423874,0.4251472275511341,0.4228780687890388,0.3679849999042404,0.3852269236856018,0.40796335294067965,0.39357170532222535,0.5002473578428198,0.3529142107486882
+0.3874926184254415,0.5270346642973456,0.5281662314304072,0.374637174953505,0.3931073661383299,0.4206841067763903,0.1717342548620787,0.3590436580112101,0.6821212681273358,0.6953294662375404,0.3329895674868967,0.5201552105169498,0.48605885848934427,0.3218832999281316,0.5498941365185048,0.15053556440508378,0.3518260506393818,0.13802763171981486,0.40266056174169335,0.2635954117194646,0.6416258094937928,0.4526622686145118,0.3545321112121465,0.2704209654009,0.29184316877475786,0.43353832738090714,0.20159003001676834,0.4015152673484592,0.4272936238827371,0.3158271089805628,0.4528935976964334,0.1545181485106556,0.2849811005367468,0.38090115331227314,0.537288758362756,0.3554808772215258,0.3729807204281865,0.47260548287593074,0.5462741646097544,0.23846038849994922,0.5282817406170368,0.31851999928358404,0.17390010868132766,0.37729187090113614,0.21649644205135524,0.3500785567428001,0.23914087618812907,0.6607799262520659,0.4206840987856566,0.31238778371887277
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.07860677225589587,0.0456517094017094,0.033933578852902484,0.05158220720720721,0.1367508885845959,0.13428634963675773,0.1147924036120344,0.07239057951499764,0.13805325682069866,0.11626808736579708,0.17127278106882166,0.03943121693121693,0.0485507242423937,0.05242366004042741,0.11143039506970476,0.04,0.1845943863609363,0.004702362028205755,0.11874813053362049,0.04,0.06870626386755418,0.20842583125492553,0.07903113553113554,0.06756548452047897,0.03554801953336951,0.11663829163397162,0.07259247483898117,0.09772285067873301,0.16059285091543157,0.07135993895474638,0.018883883883883883,0.09566076688124114,0.15573439662657151,0.12760424043507473,0.18209176788124157,0.055309381237524956,0.11848612054785188,0.048102564102564103,0.07324444444444445,0.14440143641432057,0.03290612344644603,0.07893252235671327,0.13023867766720007,0.12739552057401027,0.0677528735632184,0.07338579605183035,0.08294864186723538,0.051792797291704405,0.09,0.035172439975966245
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.21592669917424812,0.09652018684428373,0.3013149738126602,0.07786140792545662,0.1308532581902639,0.2705859907850379,0.3465932342792694,0.18513520405137665,0.20012968050969865,0.27803582479689515,0.18491898563065842,0.11905522529854651,0.22599034706714796,0.09090491138641356,0.24681178482087407,0.19072282959320838,0.2659766076395794,0.200535491529624,0.10391958652478744,0.13083819248790352,0.13984640807778614,0.11661724179528189,0.07323899762488727,0.26702406328391093,0.2593445774999818,0.20381668292036423,0.20804311237095138,0.20961730703265158,0.20179023709653593,0.14234056541476683,0.19363634420344283,0.10021731435547242,0.26983088218263324,0.1377003012721617,0.23462650919757272,0.21008597577906218,0.1817489826717934,0.16103971216553137,0.16850356149316997,0.1515867699793073,0.18887151680628322,0.2747262539009066,0.21380243112537337,0.17181045367881143,0.20736625158705618,0.22640730739777123,0.07334268930871093,0.1534841118144711,0.27426702951824117,0.11059836386550112
+0.23787956923464662,0.12340927805555946,0.03535165573296483,0.06803384639649099,0.027390485197986175,0.11117147843021759,0.09343308212014499,0.05493275968164204,0.02040480332086219,0.031816283476994646,0.35547621793805717,0.04585879155257913,0.04848559586875588,0.10392753585527835,0.04902167740543034,0.12318214046526382,0.3817141893566742,0.02159679388760214,0.01612408857736823,0.04358544058645563,0.0029670329670329672,0.01799811121954777,0.02726179006840154,0.043421620614452344,0.08567807572358045,0.06450772364399569,0.04431340604591244,0.07352731801810687,0.17317867999251343,0.16351403805137302,0.01874346367812391,0.18917222108246418,0.04672507556512001,0.01132935555841761,0.06107199776943526,0.0328178414029263,0.1414901365962998,0.03381163288872928,0.07658131078114354,0.22777812571513636,0.06572398049987987,0.029370956169891254,0.06678990522944722,0.025137265187318132,0.06224200077332005,0.06198037310587175,0.012267909956772445,0.055809895057983,0.15235991217451655,0.031418712699104984
+0.8434775913373693,0.27660972657609273,0.7375127913208281,0.4866454563012343,0.6929357399896432,0.5351907130861148,0.16644677176597888,0.19364845851263085,0.23939456070116447,0.42418126665138417,0.5368304794664347,0.4079366652369291,0.158760115598978,0.3864912955878275,0.5247367157189656,0.36934412947634615,0.18097493343679844,0.35637930723623046,0.28886581655363675,0.5317610224148729,0.45810726009802394,0.3740778754269799,0.5451222060596295,0.620397288119624,0.1650613465001297,0.7385883570151357,0.34123551492811593,0.40180597060367246,0.156726596276444,0.3146043436122884,0.5292021732510537,0.7718571229517637,0.3909845441535315,0.16780896394204217,0.5660737303555252,0.4973882737512381,0.307629089441174,0.6219302206814133,0.31330964790471244,0.4451693589976947,0.383421600225971,0.4391208081358503,0.33022033487224306,0.4003506863235687,0.7366312078950358,0.3522992536382727,0.8168435446445601,0.34129943448014655,0.35877855980948126,0.38873792039206967
+0.2185495247660896,0.05819234799238654,0.03019589947874593,0.1636185773689774,0.2290934439567559,0.2081989199370015,0.3908221487533966,0.1422076865708807,0.09634155392277377,0.1361873609404602,0.4317672092965331,0.14294072279041717,0.2524808794542556,0.21880721949147325,0.13393920327036019,0.15660126074909195,0.4522308457507561,0.09108473723494041,0.16533908021481675,0.3928535617226909,0.031080375312798766,0.11563886327266833,0.16854981159319526,0.20195429642726842,0.2357017117929611,0.12165472693519969,0.11152119955865503,0.15561721937897346,0.2548900403223582,0.28490791477567207,0.11376633685986633,0.14430506336106727,0.11669199359972486,0.30794841092355596,0.036102391059098675,0.13447692136584705,0.2195563433101701,0.1591817541430759,0.16519378624044523,0.3004063379739557,0.06369375764696286,0.1905519036351182,0.27637387216929205,0.17085529427939547,0.08757974902243873,0.2646351016760232,0.048583351058177425,0.09021061079319742,0.08675348333436568,0.26929208033759866
+0.08494136499163016,0.21982413083464497,0.03569204426306908,0.14594401397631968,0.023386666935806103,0.19299026687911713,0.03188842317106283,0.13272831868437587,0.1190689882711421,0.21185222699523445,0.05916798844590886,0.042285213272586365,0.15946286785644373,0.161475345065879,0.12734895880071845,0.062145649791326155,0.045994796579913004,0.15711363043971935,0.11175605672521767,0.05942695593617573,0.05033690539953672,0.07727654069026481,0.048423738221914286,0.03278530453471953,0.051833574834386685,0.0681648749586947,0.12104972588716718,0.11024066471824884,0.06824761357612984,0.057072178121084866,0.03740228796397528,0.013874441322816773,0.12975041710416912,0.1498669903013516,0.051251660475550825,0.23650938302550092,0.019330131857197355,0.29215252410074255,0.09100111878829953,0.14742000070315853,0.08813238185691746,0.10023429885644941,0.045473453594585524,0.16243550113090788,0.41032448026971813,0.018694250997868925,0.13103861754125384,0.10472385931726627,0.21345987623493257,0.07902071925497914
+0.34772759086698374,0.42010341644540256,0.34378189455504127,0.16148935664433334,0.24598204059228546,0.29156306688716266,0.0521247293659331,0.2576427407303837,0.231707185558964,0.16052023909711366,0.23708069592330885,0.32342895316599723,0.2708772823807431,0.3893991447469395,0.3039554564799959,0.19089384050886768,0.2751176507610792,0.3660250108309981,0.35526181805229995,0.23341228362937066,0.34953887693075486,0.4158003375742178,0.22892831924339524,0.2628897688038464,0.16446192447351785,0.3463483058281957,0.28864797137543596,0.1197934065226234,0.3830718079775421,0.28674696865391147,0.23026724082136976,0.27905540020188724,0.3659270998285256,0.3270765726979756,0.27770204509843616,0.3315645950888527,0.20725562072272374,0.2560886091167156,0.38212543364841944,0.09765676135339144,0.2375152917536234,0.2556599644053994,0.2810405610635409,0.16448043250431396,0.2858424575031006,0.20315496334683558,0.2585410909232601,0.1963128198677927,0.3986919346204423,0.19330484182658483
+0.3424467989577558,0.4752084298500073,0.5844644120224153,0.5320400051346845,0.35227832431178185,0.3513762177533381,0.39814021102717834,0.47399972460851536,0.3522863033269023,0.28221005134424404,0.37908931385425254,0.4617277324687914,0.3422179893321278,0.3966918257528186,0.3952460291518294,0.3678136540365013,0.45184866972279153,0.5239833521691398,0.43783661138893953,0.2397689253338323,0.4423157741939777,0.4099398058510013,0.35606033702423046,0.3341943781918267,0.368387328532412,0.3185304322274522,0.3437498667645144,0.3608223870838602,0.3774333416238859,0.44476015424929455,0.40646050444493076,0.2859061816101271,0.5399703722267122,0.3509900787735438,0.48245555943974927,0.4010267877265997,0.30133209255853555,0.5058120373001739,0.3726719380358155,0.47297556450590117,0.5069678220919706,0.3358223948207721,0.37928383107625613,0.37945858617007444,0.5043847855643703,0.3245051112484398,0.4031004797231252,0.32507521492078467,0.2145330204589744,0.351177309175445
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.1700052517157455,0.05207993166104449,0.08700105810908014,0.26990091147886586,0.19232234314980792,0.12479962936868941,0.2550165755751576,0.044263533008810134,0.11179935845305863,0.18569968528038308,0.31712517044125127,0.11830310943199837,0.04476435630658319,0.08965368705703933,0.0957677663519441,0.1858702729336994,0.2298758833986403,0.2775676978990741,0.13169447405828003,0.23380382775119618,0.0029670329670329672,0.2851224289466335,0.047791645828711656,0.13781084186503745,0.3258156584708514,0.1932537544494798,0.10497719424215031,0.15031108104200944,0.20265237351492907,0.14251670209793013,0.04004296139049737,0.14149866065846256,0.2061331412682032,0.052489919368665566,0.03839446328320379,0.026041666666666664,0.1911985269634059,0.14864575313076064,0.20274158942586484,0.08861232145798463,0.15326436156581938,0.04007542167135191,0.33254698811266875,0.03352680210156973,0.10228107548927204,0.05162933323781577,0.0485797605871586,0.12427759177601302,0.20005110989513764,0.11134825721302391
+0.8505135961742871,0.37971246547019794,0.61513000542309,0.3533990901173437,0.1914671041911567,0.8477252002559758,0.3754083861734268,0.6048518580790969,0.4087005934899059,0.5771816116326698,0.72296601261845,0.2894292067189741,0.25156621850616345,0.3408672147838445,0.3635354500888283,0.27660457004415107,0.5042871043677672,0.4960471574166505,0.2073086133784434,0.12861846718453124,0.6625310439236765,0.40041338740547394,0.7870963200213769,0.5868047953952018,0.3665380784840773,0.6263841401973511,0.42788233873144,0.3103899750979503,0.4182754469642658,0.434064860645676,0.3517225674989093,0.5949764845927734,0.4486470570320782,0.4106619887110694,0.5699785792958109,0.769128350911179,0.7731754675162676,0.3338656949593721,0.3784623020116692,0.24000899485449556,0.36455607849637794,0.18419809612348942,0.5125758482872672,0.4343707353664897,0.36039385661425655,0.3159124856187595,0.5508236576417556,0.382460057898814,0.5788953643782279,0.25246251139795206
+0.6817510569840836,0.5675379527035074,0.7179811226290611,0.7490514723974537,0.5885403571227564,0.6794779312825867,0.7210061902999954,0.6648918242804328,0.6485207860377996,0.6742388620483161,0.6004876045962603,0.6416003868672127,0.66258284111524,0.7644005423460958,0.8077411085274449,0.672526995404043,0.5612682101697373,0.6465637614103384,0.7327884797305124,0.6310816186892446,0.6206629847293976,0.7423592799874186,0.5872029583789348,0.6595679262830774,0.6621828267825519,0.6994265779159208,0.707669002015789,0.6540913101066974,0.6277425000582147,0.6276121707326885,0.6255652701499064,0.6485951949213522,0.6334301226570892,0.7029303423875131,0.7505450831584976,0.6727870583474339,0.6032393063460804,0.6295332100392514,0.6907259235191249,0.5724095270316282,0.6037615587594823,0.7650375077575953,0.6598074329998406,0.6976867468819695,0.7091482524561898,0.7309452561032576,0.5421669491002465,0.7150088818194769,0.618715250389683,0.564973583489802
+0.1178562206577428,0.05993553878447131,0.08140308752176723,0.10973961595959571,0.06805518675640275,0.0961277170570014,0.0774420004931745,0.13816644020806712,0.13196373571671116,0.20669932215973938,0.017814874424545008,0.057727321398935605,0.040982694588992834,0.07683987876236427,0.07526414021936235,0.10516939702482384,0.20623393583695526,0.04571977862797225,0.0759207031646867,0.07505851224392258,0.1016258186922106,0.0336003540817334,0.052197076067987486,0.09106152091784216,0.1620999600765632,0.11562286780667157,0.05374463559833321,0.1273060605268542,0.12411956860459586,0.06504618111964605,0.040143721345330514,0.05245763525203994,0.07025434981289394,0.03948327836042125,0.0884550651956592,0.056166860884700354,0.07594556300954504,0.06871513062731073,0.0689707557222261,0.03402951291114048,0.1082476939479368,0.061622790546058466,0.05460646923181103,0.031940476964142574,0.13137657870985583,0.10256033601405694,0.05355116981148427,0.05003117222179331,0.118432803677565,0.05063171272269699
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.5446245940426713,0.5494926770405604,0.5746499121239179,0.6218406649829236,0.5114775443628693,0.6366129839131545,0.5165423024293757,0.6370925169428692,0.542762995507313,0.6224536133465991,0.6195887861627687,0.6201674372045437,0.5833410289212363,0.5737714291757635,0.5614949019230016,0.5919750750710743,0.6646789349958279,0.537933061240833,0.6078420386828899,0.62000043075478,0.5935821456662708,0.48387453640644323,0.6614913982224161,0.5906930411673309,0.6435112262060124,0.5472840965847809,0.5410355385864576,0.6163531582848534,0.5662630656101545,0.5127930515232252,0.5694412980213047,0.6006435517576451,0.5549067943647045,0.5709044806156345,0.6087876033966626,0.5875175561590011,0.6262948708083219,0.5694286554113226,0.5513503034907371,0.6881534223900474,0.6292988137160652,0.5658270041014457,0.6296448327653298,0.5804412641529479,0.5549867683110549,0.6376343018830283,0.6548520152987767,0.5776049635056665,0.6088880679489195,0.5441456733365482
+0.21657483793604781,0.09380396305115096,0.05384490468861069,0.11917651405810042,0.15588011808267488,0.15907182661349245,0.14592333255150483,0.11852431644532924,0.07915311446703506,0.21584528358989746,0.24796362962135873,0.1764188743906945,0.17161400471475086,0.13255081458927495,0.10369059407116596,0.04339177435728479,0.2757568917977138,0.07847854512681461,0.23795877511252553,0.0628993777442568,0.07035776387354457,0.1491518807789017,0.13509417456753067,0.11553082556483167,0.2515530836963458,0.13134414570756883,0.17034981686778328,0.09942955499652532,0.1907546428970345,0.24875760363301244,0.1037853473108469,0.17114168099698523,0.11264441348785974,0.1529253892519634,0.18962825285866514,0.019473098389429094,0.10933040917197256,0.06674421267323395,0.15766620876580403,0.11146849678109672,0.11914882626373258,0.09669335225305346,0.13274869208096785,0.09306213663767454,0.10575071722333722,0.09932455982822304,0.05278749602785369,0.06382728116696904,0.16046460201667823,0.11689112873148488
+0.23632406629882147,0.07144566528453956,0.2533584488646142,0.1180820348787496,0.057930792073214804,0.2607207400016644,0.20566284282524794,0.12189481985063459,0.16457780600769428,0.21832605516769438,0.20172939858988553,0.025780903563580985,0.09362783631422986,0.08111077942768824,0.14516143217777697,0.11817519247541215,0.2324572680538733,0.0771365738494513,0.05926791144353968,0.1338483341784517,0.13331920547474818,0.04057309374543066,0.08984281121008103,0.14213409173785008,0.15195526936891102,0.1934534988835308,0.13888822738263437,0.1623793409904437,0.19945395057761114,0.15121486887953453,0.06379044865288871,0.10292773722148503,0.17781293280558835,0.04397648797232127,0.11298579313567611,0.13376977776869706,0.13164220421774003,0.09256699688239273,0.10205441040135563,0.10744031802778309,0.10906200510863999,0.10183064195692496,0.0772398573079468,0.07796801357206554,0.15400136476196546,0.16276084862794665,0.045176464518323904,0.09980226183551169,0.1982448811398719,0.02685601990273915
+0.6664340246443626,0.6473412378498997,0.2955368207406272,0.29892464140765773,0.38990465706805116,0.41000224661087764,0.34838592656972395,0.4547070055237629,0.44351905534539277,0.3290058791025377,0.40070260228612864,0.3562718907716212,0.25045270852478463,0.36830977227845163,0.4601929355929071,0.43597478743676504,0.6065484501912731,0.3029104137906459,0.4052021596946517,0.36666450036951337,0.5277827614094046,0.4783077809241075,0.44177954290829324,0.2684581174698554,0.28715293877964404,0.4316886762870684,0.2507689596976782,0.602939509775259,0.4545122635378832,0.40369591164158514,0.6859627802165916,0.6835381210809705,0.7230726859051652,0.2358576035437192,0.5677394868244331,0.4199409342538302,0.3983747638715817,0.4433704006509778,0.26146795177125876,0.42996105024410125,0.4305021322320227,0.36837597446190157,0.7178153735508248,0.7481001908922533,0.2029630000154992,0.36819153802625737,0.23070596723634865,0.8069505898418943,0.2664818122650951,0.7158957560175156
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.6002695966720026,0.6984621266684486,0.5543356915131613,0.4479278877115566,0.7111453867717066,0.6406688192297351,0.6793554495425248,0.44543263722321064,0.30111039718854865,0.6919394633171505,0.6469206113089219,0.6156881507032567,0.5445427074813247,0.599699324124072,0.6040684184861247,0.4038171095489508,0.35555548060030345,0.6467306677745439,0.5276020711344798,0.5524396285234825,0.6455945923639969,0.4819329643763704,0.6294106417346066,0.6783588300931254,0.5557530648572687,0.5554339945745232,0.6520371315293579,0.6231476557613308,0.6132982998623175,0.7056515788654087,0.6069371665458854,0.6562894227694172,0.41157174770373794,0.5867667390431204,0.49387014001988944,0.6459448806403938,0.24261219967522618,0.4332898912862525,0.634848736019893,0.26523498583905586,0.686303328227189,0.592663119529197,0.26340995581544147,0.7035604671733049,0.7226257794165544,0.5421629590322631,0.5837187756231039,0.39869834035895335,0.505212241791154,0.41302669826905797
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.7569409761051551,0.5809686257563714,0.4138904146379428,0.729093836372209,0.1788756633815234,0.7661986571477774,0.5327196392437424,0.234740826636551,0.2189543208958103,0.1525165116259083,0.37065240601921445,0.5099161648625976,0.4428066100566101,0.6188019228291268,0.5563998786333317,0.37420951810681835,0.5228065298698146,0.489309277545115,0.24224533120864641,0.6225827665498698,0.25074304361040606,0.3785771777242365,0.4730403403331188,0.4018661971434443,0.38010268782659506,0.8124499176847846,0.4248110650635415,0.6977561951926369,0.7536576900546035,0.5480581552765124,0.43691501802161814,0.46149558007183844,0.7480283405241664,0.11056264323911381,0.5892090818004438,0.4143543452701857,0.5846716550404697,0.6332769950637598,0.2610101169399082,0.7601844166794065,0.6700762396029838,0.888780261872349,0.8095835401725442,0.6886741487032256,0.6136431159420289,0.628461098038291,0.3232011105482989,0.3265117647462812,0.25267300004404913,0.7710539151635237
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.34772759086698374,0.42010341644540256,0.34378189455504127,0.16148935664433334,0.24598204059228546,0.29156306688716266,0.0521247293659331,0.2576427407303837,0.231707185558964,0.16052023909711366,0.23708069592330885,0.32342895316599723,0.2708772823807431,0.3893991447469395,0.3039554564799959,0.19089384050886768,0.2751176507610792,0.3660250108309981,0.35526181805229995,0.23341228362937066,0.34953887693075486,0.4158003375742178,0.22892831924339524,0.2628897688038464,0.16446192447351785,0.3463483058281957,0.28864797137543596,0.1197934065226234,0.3830718079775421,0.28674696865391147,0.23026724082136976,0.27905540020188724,0.3659270998285256,0.3270765726979756,0.27770204509843616,0.3315645950888527,0.20725562072272374,0.2560886091167156,0.38212543364841944,0.09765676135339144,0.2375152917536234,0.2556599644053994,0.2810405610635409,0.16448043250431396,0.2858424575031006,0.20315496334683558,0.2585410909232601,0.1963128198677927,0.3986919346204423,0.19330484182658483
+0.24428751803751797,0.34920464466423695,0.1316772916352859,0.16396897938676233,0.856244456362323,0.3287530632033349,0.40402510761969673,0.2898505898454352,0.1879381699765108,0.5398061562093821,0.3100809930385437,0.19405851167058732,0.4251100924253559,0.2368702078156385,0.12339428499563498,0.41414397794313884,0.3143565008115223,0.25943362466272996,0.33057166227663864,0.4593504136969719,0.3258042394081094,0.1847052947052947,0.4543587360741773,0.762510332318325,0.35455555555555557,0.6493426815390021,0.13203598978233766,0.6725736499968087,0.18496238561894998,0.5046199510271682,0.7045539337634068,0.5012619822304658,0.4200579559456964,0.19841953415720892,0.1928419269335527,0.16826660012595407,0.3943869339815811,0.20836639298386816,0.37409860746448986,0.3561125211761266,0.07190903514785868,0.36226585125635163,0.34762864474706573,0.26405824057243543,0.13109204623878537,0.8456457223339627,0.6738958184565377,0.37733210570524006,0.25182957631091957,0.30802761915835625
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.3952678926227704,0.33746171893202725,0.30799625379193,0.29623327354342516,0.28534665799638703,0.3237045034817153,0.2366778566124768,0.3227257288192091,0.4058467574318256,0.3053363637805748,0.2835646474737934,0.4011775274416627,0.29210217197385474,0.31639073785420607,0.25503165005153217,0.35530873908016036,0.30412321297368544,0.3662039216400616,0.42579613542149836,0.28621619213016225,0.39885655202669457,0.29744512077506924,0.3855207632834414,0.3578611498852791,0.3085525576229269,0.2893464333313425,0.3624295322436504,0.40058763051193397,0.3278005305209667,0.3882468085788674,0.35138998609474753,0.21082376724549967,0.43318968322771895,0.3342865052209678,0.4436127940163979,0.3403266402236663,0.383162588518861,0.29960628703748227,0.3782668901315428,0.38127639759585175,0.3665163286285869,0.4222494596695708,0.2407185077383415,0.40647161472298093,0.2963944637998162,0.2821215967076167,0.32070842128942245,0.3762459717985488,0.2978331269727629,0.324338912114257
+0.3016266739901564,0.24954994431288516,0.2333445021780182,0.30534097715911424,0.23916813431216713,0.09324315230612937,0.2330021514578751,0.15077721854193166,0.07711156312026521,0.320748504509106,0.12335099011129809,0.22114285374070264,0.26124310430041,0.22790472817900734,0.30065307545299963,0.07999390720547064,0.21976163160986,0.10749472383882047,0.22227897314856693,0.20037677777531054,0.07549728500782202,0.3423186430592452,0.10755768606854454,0.3045749108319556,0.10115066976431604,0.19248958278046321,0.22155224366047327,0.17694280895594003,0.31406312103286,0.036423296301664236,0.07358197101444207,0.1522794238645801,0.1275258131499605,0.18870438953845106,0.5096866078624174,0.20595998802130516,0.10277660156833006,0.12861983575523359,0.35266886872802217,0.1413264628287385,0.19401349479114785,0.3601433196050967,0.08621057288303635,0.16709620169321662,0.21925139996619883,0.08505913492681852,0.2132500409284076,0.08075693703410079,0.4107237515193994,0.13825463296035548
+0.02652016686706266,0.15690455892743171,0.05361555384639157,0.16063258771135763,0.057274726696890134,0.43310623846067764,0.15582940812238102,0.1252175147316762,0.05452742674926938,0.13822327109521762,0.04536362280966997,0.052303552224133076,0.1521244105131423,0.2434913336063043,0.17975222011613798,0.08954744540705394,0.10746869910430615,0.19945542195410682,0.119084728790126,0.20284198213749235,0.13294033450592488,0.09058248653484183,0.044452093022441144,0.07150790351371725,0.0928634344030492,0.1048667071853753,0.0930680050587039,0.10185835360078203,0.10243640576967093,0.06590322681686972,0.07075465193708479,0.0405095392982192,0.16743212990524145,0.14800859067748157,0.051452367781043555,0.16620905542757014,0.08938610798201133,0.14331277893211533,0.10503075912955849,0.2572252139027747,0.21384404692411288,0.10735523920286892,0.03732198960020389,0.16664919426168862,0.15701488296483995,0.059341792327251036,0.0922523092957756,0.0954384067711287,0.20839911417220655,0.09811086966855889
+0.28484144295090774,0.21722930757667525,0.09896973526820119,0.3354188513937541,0.32969952470740516,0.5986292926180282,0.42153032645612826,0.09428771838237432,0.11851348505167567,0.43092055650829664,0.5627001326276612,0.2797734938867873,0.2641526211731813,0.2578996135884178,0.4822756490837232,0.3951564997294553,0.28064755037820066,0.4098399384431993,0.4164554541788782,0.2835232244676143,0.37951221470608354,0.42542541919700233,0.518827160786287,0.1981404936632595,0.34304625747306117,0.472000551344537,0.13289809348637177,0.33105266765517344,0.2630068964692145,0.3811284419264286,0.4078506676572576,0.2432051855612465,0.28082109056100035,0.13640760158148876,0.3689956482282232,0.18972371346370637,0.14220640583417488,0.29341739302402287,0.37668604885520096,0.43275472881005106,0.13805979608686916,0.2720836421659629,0.4026026135216852,0.31969414724130635,0.5064367567915956,0.2286672805472154,0.5047602454256784,0.44907058401704636,0.2581378109959179,0.2826577178944074
+0.36385668834018475,0.14270899366329953,0.25225131947199914,0.3621679209924241,0.6572170204480706,0.8959945962338626,0.3268160615469247,0.19371225485282664,0.0920730542950692,0.5856793549758355,0.8497774577521384,0.22338769011434928,0.5608290244497912,0.3950348708961278,0.883097977108242,0.32366603937892563,0.388907184626302,0.2922085142410391,0.24040843739052598,0.16091624912536928,0.05614575806976965,0.5578722258384513,0.03323619821297839,0.341928131987088,0.42021840983619285,0.27308969385252874,0.17767366772688623,0.6918532953683583,0.7286525923962607,0.5851279142610527,0.1807338827596481,0.10928000338763415,0.2287499635211358,0.07136170373461372,0.21686698224420328,0.6859999878159926,0.17723028929414195,0.8625239748504017,0.7276478144325642,0.7457838918551157,0.5111750012375889,0.38012522814134575,0.24139446574170215,0.5597381061765464,0.14566721678246267,0.5977262730536653,0.26489333474033044,0.024883989145183173,0.25695455778366777,0.30305761898390016
+0.7404146136232432,0.5723180904114983,0.5478406689825234,0.6837602916329116,0.8704702058230906,0.8517998171605419,0.7187071659860773,0.5736884345141471,0.7126243437425482,0.5721776734216186,0.5804354467616573,0.5356579613992489,0.5059688483927981,0.7067369593657973,0.7033036048872953,0.24096179979027332,0.6050922930466434,0.3680532023089399,0.6847330030988324,0.3338127105319943,0.6435355197172933,0.8563453423194651,0.6742843832491389,0.48387917744550585,0.5494015555862467,0.6910311274795073,0.7180119766376969,0.6075292565845093,0.8980393786764742,0.584628105329712,0.7270394671512652,0.13820887784642882,0.4450097011580764,0.8652299588652298,0.3347913863696428,0.5631509574762001,0.5490738651264417,0.6758527468065668,0.6254889488752756,0.6888240082471135,0.6320827726780214,0.30001186171193883,0.8508837982233939,0.5129978345146151,0.6587996675971514,0.49390369971686043,0.578949394939556,0.5107053387376875,0.7935171968684251,0.4402462975960648
+0.217317411598486,0.2530609416078273,0.3390336770928839,0.30460509519074586,0.25398703288426694,0.3295027875844827,0.2524718527400566,0.46130257980698536,0.19956594537208777,0.32983352929250037,0.21918109350359413,0.20749491491608868,0.18958476959652265,0.22187541368805902,0.1255906741698571,0.13435337589928398,0.3285607138392434,0.147884671401782,0.1445178287895679,0.3251763762285505,0.301252963238706,0.18826199535645696,0.08816696291971998,0.09994234755573003,0.22875327465307133,0.2509005392827042,0.0841271648359008,0.16615264707418104,0.2802454152683333,0.2392841800669796,0.23207603722497297,0.21968879954741152,0.296618163947462,0.4181505991350025,0.2296382228551218,0.06935393106303157,0.22806147381511047,0.13905121632588066,0.030712824918028674,0.2799506719176526,0.32284792608556784,0.09887424009046496,0.36957890700015317,0.3025308036073114,0.2858673989439591,0.09851862491871985,0.3594305265596195,0.12876019464505076,0.26869639451542787,0.1925482039881667
+0.31053715245654756,0.27253310912323436,0.29632470604738165,0.22973493458201533,0.2678095544541643,0.26710148120638794,0.21936701070811973,0.23826333643187464,0.25896359388749435,0.3230504640593348,0.2622286067610375,0.23219118217999257,0.2613095737633457,0.2277853899086043,0.2371008373971871,0.20651661945376362,0.2939264074296968,0.23156451362096678,0.19395141756991843,0.19377057845853782,0.30462236133606974,0.16853401591804573,0.28364410363310116,0.3133186832314592,0.24860161507834241,0.3051576546569227,0.25838453342407386,0.252827144745277,0.25885290706375297,0.32772471772447204,0.2278889701698131,0.3181696340046628,0.18416942980835274,0.2953539504076243,0.4935927197681547,0.2761331048447388,0.28726433119443223,0.292114597414702,0.15764461122089465,0.23553114111759169,0.3461046214419718,0.1934869572742578,0.1684755096221024,0.2501130112245993,0.28762475758933437,0.2379438169131474,0.2639123066725193,0.3602804820128059,0.1981804206549201,0.20322085267145237
+0.217317411598486,0.2530609416078273,0.3390336770928839,0.30460509519074586,0.25398703288426694,0.3295027875844827,0.2524718527400566,0.46130257980698536,0.19956594537208777,0.32983352929250037,0.21918109350359413,0.20749491491608868,0.18958476959652265,0.22187541368805902,0.1255906741698571,0.13435337589928398,0.3285607138392434,0.147884671401782,0.1445178287895679,0.3251763762285505,0.301252963238706,0.18826199535645696,0.08816696291971998,0.09994234755573003,0.22875327465307133,0.2509005392827042,0.0841271648359008,0.16615264707418104,0.2802454152683333,0.2392841800669796,0.23207603722497297,0.21968879954741152,0.296618163947462,0.4181505991350025,0.2296382228551218,0.06935393106303157,0.22806147381511047,0.13905121632588066,0.030712824918028674,0.2799506719176526,0.32284792608556784,0.09887424009046496,0.36957890700015317,0.3025308036073114,0.2858673989439591,0.09851862491871985,0.3594305265596195,0.12876019464505076,0.26869639451542787,0.1925482039881667
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.4672775949995772,0.41298830455445057,0.41330740082810685,0.4069503000170782,0.4679953596770224,0.462714415674432,0.4810240992849063,0.4173778792081401,0.44741791699560696,0.38653383767459,0.4646996518646065,0.3373458430753832,0.42752251850664763,0.3573368784469721,0.4636645134901826,0.5646626293193738,0.46453184234696415,0.4945425643572692,0.4700503947709922,0.44390368619330167,0.4195615029301846,0.3939498684849793,0.4546215155747552,0.611522511951767,0.47284082546009043,0.39158859908387667,0.5196783507305763,0.39101629085238016,0.36893885868845006,0.4921521408290968,0.41768578571042897,0.43064216964194785,0.3966700818342114,0.5392620151805597,0.41062220848119707,0.4077894657082936,0.4279424187521185,0.5272904272084918,0.47027441483434496,0.374860489098875,0.469636479530707,0.4199014155438011,0.42682400517618135,0.43140515090990583,0.36158639587202157,0.49950161745911165,0.4081663955897804,0.4387233487331668,0.483133709456531,0.4768084212379538
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.3498994915598803,0.5395407966750675,0.42994603568637546,0.4816608536627767,0.6476581393589623,0.5014097652764831,0.5676345856759246,0.2811807015103785,0.41228913200587564,0.49848611285549826,0.5185021199662685,0.40506123088535545,0.4079201422092656,0.5573298713063458,0.36312544408188424,0.5136457336464374,0.3960290139507076,0.6267556093205203,0.6467980549255833,0.7721743758568609,0.40125085796753013,0.5753785133115877,0.3632584501798173,0.5233331443461631,0.3906458835712875,0.5169735402537275,0.7317868227127619,0.6533706337898352,0.32228747797300483,0.6114657357241609,0.7377081916890055,0.7300307241061513,0.7241212092349189,0.46549875082515996,0.5098845133054786,0.7255538342820558,0.4555517369465477,0.495186819979024,0.4920016588765567,0.4387278419641412,0.2739365687755949,0.40865364445490654,0.529219170654351,0.4993577991134313,0.3970095092121062,0.44692695922670667,0.46639604160413733,0.22049183697771613,0.3204687660393606,0.4501323342967835
+0.3006232232577772,0.2186365362242125,0.4840057616189746,0.4322127140522617,0.2702444879796138,0.4155688332164914,0.7987818349557197,0.8174037121574534,0.12510453106607963,0.4019576595579696,0.6930593407213611,0.7219654279001959,0.6147166774878062,0.5074147292099631,0.8008643272664112,0.6256008594696086,0.42733201244224667,0.48864903516572405,0.33990120457825257,0.2675487963329445,0.16237058239430588,0.3726742693634082,0.3686235151693394,0.3318888281450413,0.26782020984254185,0.3984771096414321,0.18737418113331064,0.1603557872124891,0.6743987381587008,0.6599386466344731,0.23907632702633763,0.40759288843646047,0.40478357066444454,0.4755434945538963,0.17763683538007985,0.37920002568118816,0.37827936530986084,0.5028829560476257,0.22871995667071668,0.6166288021812669,0.3570307053891875,0.4103630306365607,0.2834888489801639,0.30362505057963285,0.47770449665396797,0.7245805247373416,0.27293636677381494,0.6933109876746224,0.3107877471180141,0.2054429326219905
+0.15986906652386434,0.12573068098368928,0.08573255140517974,0.13092058292981817,0.1638199342368313,0.10917830633153856,0.18449754287890274,0.268776371537531,0.14632810189996914,0.3111938875582377,0.12406041973944516,0.1672935936538988,0.1122602139547923,0.10993838154646025,0.10864631034405631,0.16920630665250427,0.09845001129733365,0.28032230232903854,0.10244734544810609,0.11443774983759022,0.26198679612766507,0.04779918253502614,0.18022512940962457,0.07920653254898778,0.1724294175900181,0.21418097009798256,0.1300915812198442,0.29293318892496145,0.06085242055769591,0.15821381811129015,0.09301788964340957,0.1686899950585686,0.02945479203514979,0.05490943830500153,0.06652849118094313,0.04710318126258934,0.03578915723202022,0.25683640625423865,0.10108183335737811,0.0533114176046484,0.14771575499746192,0.05582099068885204,0.19404947383554258,0.30327728446526175,0.1537095399612611,0.08775684089182514,0.16549955611883171,0.18159518931216648,0.041877392167493005,0.11286131923417875
+0.45490646878647534,0.37089723140003955,0.3108824858461309,0.22799783535265894,0.42477530972789745,0.6576456689476896,0.4306620815002734,0.44363932372721426,0.18752906666359415,0.47606035579888434,0.21175030099223646,0.5634572382421815,0.5571589183851049,0.5876635093242539,0.43765026381886846,0.5869529527531508,0.26239183293248586,0.45136843248328967,0.7627997464704898,0.1678083992710209,0.4607915410204732,0.7036313437084982,0.5184580649244708,0.22896339717598826,0.3402541610232611,0.4345892884821913,0.3867553769442306,0.4863068876047844,0.37930581805581803,0.3918306788326519,0.207950368471209,0.3234558817774031,0.14232476574373418,0.321883711933161,0.2436508220091181,0.4874556584814303,0.1665632546100575,0.2625603679523643,0.528120182684699,0.33034043539801095,0.4747237814780395,0.4000448716309529,0.30755639066509755,0.49820881009950346,0.37371521968539445,0.46319808166300425,0.22387563115413314,0.4849091649295445,0.2529117802791195,0.4604331489759474
+0.5264475889761108,0.3795861781220662,0.4101166399131846,0.30714419651197433,0.4123052790277799,0.4359994059364433,0.4333708200222249,0.4448533459104467,0.4358382210592752,0.40516669624320206,0.4261384036037495,0.35051167249284015,0.4362847421255365,0.4282215959666057,0.3362179888146741,0.4263068896751313,0.45691820598332783,0.5351989700254939,0.4329831234442391,0.36236950468916584,0.4449438921222532,0.3741334366586765,0.45904381413725337,0.5194289045190975,0.45804677853015213,0.33571428125052877,0.3795183548811052,0.38447379018176714,0.4135914845795093,0.44450914850806383,0.3524078385683408,0.4162110624032242,0.254061069509534,0.4306135397105921,0.4310868261564426,0.376680425463651,0.3398232721787769,0.4764745624221461,0.34113774686636383,0.348538567276611,0.495797734184368,0.46721032103223187,0.3684078112147173,0.36767297149899375,0.34050877713302824,0.4130842171461142,0.3400596832924613,0.4306241202930385,0.42625747813745735,0.45428325630424377
+0.7628171640229702,0.8549294304990702,0.8191149756525031,0.8079189352606835,0.7394226857318213,0.824991138150018,0.8382825072957963,0.7493132436625042,0.7526913139162963,0.8870807060523049,0.8355842378524728,0.8377238708734345,0.9335346798892061,0.9213899042701214,0.829536684858394,0.8852516747358291,0.8708341775962652,0.8770665726545032,0.7663219352779086,0.8719905293030223,0.8895248047986563,0.9411802475015734,0.8366454047405053,0.8496490810352263,0.8589009574345187,0.6283607548392451,0.8390092130869927,0.9105965461928989,0.8814020424066931,0.9775367827723203,0.8788635374307056,0.8030583093823148,0.8838775249079935,0.7842397371696195,0.8981636297371272,0.7962565221440747,0.6663706632085947,0.9371686380982712,0.7361303936687178,0.8386811408181629,0.926920141440835,0.8474820852744764,0.9401391018370903,0.9236145081704759,0.8917813325623473,0.7957474250286438,0.8156315514881157,0.8268228610240013,0.6833547498548229,0.9146208267748464
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.39743284293644093,0.5907847728170467,0.44134823797909034,0.508308176565137,0.500418740543999,0.49141452190811996,0.4039172820867378,0.6998602600558024,0.5765749972028054,0.6938709304640136,0.507703488372093,0.535495269595724,0.4180690707813556,0.5885628991278198,0.4196917076582404,0.459587864437943,0.49354671397310473,0.304792201790417,0.5929199315699211,0.3881586073500967,0.4484382885667724,0.5124064365793219,0.5112452457088663,0.471398820628674,0.30729470531476755,0.8150687285223368,0.6397183034356948,0.6198621981737675,0.6083150069055734,0.5203302048189644,0.3461692281799688,0.39217073916851647,0.33623395563740793,0.5622130812033449,0.4745745171162579,0.3750838165546891,0.5926736379078629,0.47203915260717055,0.10775801073816227,0.31521648569593774,0.39557119456935985,0.4758917628372344,0.3935233129552666,0.6631382805616943,0.6910396250712114,0.5202318476004426,0.3964503549514475,0.596595816707114,0.6296814562004842,0.5255180396810267
+0.43232603438989003,0.3082268165391551,0.37241828206980293,0.2924851548413016,0.45237880056412627,0.4973953919240141,0.3875229076735275,0.3986869242179033,0.7468690827967134,0.35111105498964434,0.2967514830513197,0.4436172128358791,0.2568537537244911,0.3440017695587255,0.25850352768512885,0.627309999910246,0.4854340867312633,0.42935812182647726,0.6850871718539265,0.5297551900415141,0.5047048502660925,0.28293373383205106,0.4554921298195607,0.5091519794807307,0.24337659286231506,0.37493547921006554,0.45445136186166124,0.36565604600105056,0.5965986126605206,0.684672610042567,0.4092682482082012,0.32879961476009056,0.7579598261590681,0.28774375331815455,0.5272231987968842,0.47971725219948685,0.49144765357886777,0.3620471303938287,0.3523399660657137,0.6296823020669933,0.46599749829027587,0.6339629176977296,0.2706385201278531,0.6270789606789278,0.3046135915872089,0.41827812496234207,0.4464639029815762,0.4198206276206119,0.37471042368905805,0.4430832503108828
+0.05498205493594328,0.4210395512680054,0.7996818844625752,0.6159005491939653,0.18593693257444824,0.8280873790223695,0.5718798720689259,0.6486095850923738,0.6080850395124962,0.5874711498693701,0.14267555811291152,0.6696666952520108,0.7078853557120207,0.643162590679392,0.8981978181492599,0.3496726064633041,0.6084908641489886,0.7481924296034204,0.6366666666666667,0.6771745584390662,0.8176294740118268,0.6656029059450109,0.11860870502046972,0.17366453843956706,0.6344138390848917,0.13670084940709087,0.33388870851370855,0.32141170416271037,0.6242689116439116,0.6908785955141892,0.6584188574281704,0.6025054761048437,0.6136553088559694,0.8521143272113718,0.5566183640920483,0.7506017616642616,0.30196949141628776,0.23166276326959143,0.6222050927714544,0.6688680557083354,0.7447617086702624,0.5911723639776838,0.7746296652080013,0.27861846766430626,0.732449448316365,0.5593078171772141,0.3353602800963617,0.328355384471034,0.8250161031578754,0.1463301702272152
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.27347299395642494,0.5370615341387501,0.5412515162310683,0.5532726541540645,0.6299050599338065,0.4947179974264958,0.7934695051315049,0.38268111658680504,0.659397528718864,0.7580459536503008,0.6403311722672033,0.4825372572465442,0.25234617727133896,0.6837696126955233,0.6339536870346224,0.44747160092844146,0.43453345496344276,0.5502276233890057,0.6892272129903206,0.535049540292731,0.3416641207827291,0.4916334828875106,0.6539834648317623,0.7022296731918464,0.5854495853242674,0.4450092888280772,0.5135339876020377,0.6664745133288039,0.5690477531623077,0.6184929479717386,0.5505734654510746,0.6344174359278428,0.5303944850158337,0.4746753810846929,0.21314669098969805,0.4732429271860196,0.4154681379938346,0.5771108633849525,0.5815598322502173,0.5428821952624368,0.3367325960724493,0.6783551508969196,0.6318755771499969,0.4822650585647031,0.5944535540698703,0.23632724886566747,0.7190440998204292,0.49034987912480665,0.48440751765970624,0.4918773724751949
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.4389102206432877,0.4913008409760764,0.5685892892189637,0.6354766627050692,0.35185804631750967,0.6072652260414262,0.32502427460875827,0.48350388747603873,0.4708400938584654,0.3342051148506431,0.5435617121669059,0.5316502861675974,0.5770122891517756,0.703519509079115,0.6659733523643314,0.2992844263755653,0.4935994952710757,0.5801142014912033,0.7391751385710024,0.39901319608502034,0.3201792360513793,0.424635702648714,0.3681841172030416,0.4350799409496969,0.5480382479208905,0.5273347773261579,0.493836433586582,0.3710623747089203,0.6825310234087094,0.47674363158379424,0.5182308012829216,0.47755098474117524,0.6604845466663055,0.6570521271213914,0.43607730383258475,0.36386238506197993,0.3456634614329444,0.5498307256231829,0.5274729970829409,0.46920141216275957,0.34533843052057017,0.4598141513379558,0.24024760430964157,0.53787548518542,0.4836078740059954,0.24419784344925188,0.40010113382484375,0.2489106862622845,0.40119244462860437,0.4292849766770129
+0.2867854417666141,0.18713841088461186,0.2357850723688066,0.17643639557702237,0.25064819162699864,0.20057934639696406,0.1818582696646473,0.16611978207927067,0.1893951130510203,0.2616565429133813,0.31502570060085794,0.2072499512555977,0.14469080563085554,0.194671128566709,0.2116792250695445,0.12727500224645993,0.3161738592550628,0.24733160057872305,0.22614349926567454,0.25757521506383535,0.3010945228538733,0.23448578291942557,0.11972488672880825,0.23537247505518,0.22441096557073473,0.2545141639754433,0.28480363043380336,0.1722313844735225,0.19405965574876358,0.2520628277439573,0.25723222764494763,0.2298160279469341,0.20157316550856744,0.19113073963718244,0.13910702652989332,0.20442604411480547,0.18541701388196088,0.24556850416077214,0.30805469950902586,0.17303782853149496,0.23323976072637598,0.3504690118469977,0.2542093142020569,0.17824656763143512,0.1843649962003456,0.18862293765903282,0.2725492508572115,0.2629104007616884,0.3249285997747602,0.17084745894331888
+0.6904433465632681,0.7217523671201199,0.3521079725578703,0.5964012336107537,0.5957252671712624,0.7663367616788883,0.6237172295382579,0.8364886066070271,0.6491290384893115,0.6730762444466712,0.46979248981882504,0.5650207623406593,0.6916047469490109,0.6391719794983076,0.8136199141310918,0.6318415170345469,0.5158364396167211,0.6829304481436865,0.43654784737050606,0.5124191622903066,0.7081834509996381,0.29642061588478136,0.5706658350797406,0.6601740175544036,0.567687919090212,0.7167572006476104,0.7346249662375738,0.590154620371679,0.42969635064409717,0.4380933363964482,0.6119749346268606,0.6903248407671272,0.652937915917606,0.37823878293296676,0.6763478475292223,0.7605837037076489,0.5943778977270022,0.6908571731737535,0.4459762204390627,0.6114002731894953,0.578992289128799,0.7212778244150697,0.5888891576182543,0.8788308004058252,0.7215518432000639,0.3133019674845545,0.6851360370539957,0.6539896920675551,0.7303437519896058,0.5741573826696499
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.21592669917424812,0.09652018684428373,0.3013149738126602,0.07786140792545662,0.1308532581902639,0.2705859907850379,0.3465932342792694,0.18513520405137665,0.20012968050969865,0.27803582479689515,0.18491898563065842,0.11905522529854651,0.22599034706714796,0.09090491138641356,0.24681178482087407,0.19072282959320838,0.2659766076395794,0.200535491529624,0.10391958652478744,0.13083819248790352,0.13984640807778614,0.11661724179528189,0.07323899762488727,0.26702406328391093,0.2593445774999818,0.20381668292036423,0.20804311237095138,0.20961730703265158,0.20179023709653593,0.14234056541476683,0.19363634420344283,0.10021731435547242,0.26983088218263324,0.1377003012721617,0.23462650919757272,0.21008597577906218,0.1817489826717934,0.16103971216553137,0.16850356149316997,0.1515867699793073,0.18887151680628322,0.2747262539009066,0.21380243112537337,0.17181045367881143,0.20736625158705618,0.22640730739777123,0.07334268930871093,0.1534841118144711,0.27426702951824117,0.11059836386550112
+0.8334184253030094,0.8576141619236942,0.8243588245265443,0.8804644279020049,0.8025540910522031,0.8347102206743517,0.812811091580054,0.8155295359196895,0.8427912840124486,0.8834114529801927,0.816595166011179,0.8887262607510571,0.8289262559831818,0.8682377697822017,0.8425429049670992,0.8748471695840653,0.8610106825206663,0.8036559519162669,0.8502294893626179,0.8560039035255894,0.852326337652949,0.8910998873417862,0.8771483314450506,0.8222389076772303,0.8551288595084107,0.8032659833366634,0.7897127187628976,0.8079341195297846,0.8037366866403934,0.8330469540106575,0.8389123738487692,0.8416192634440851,0.8544615512223401,0.8975187135846504,0.8476033854347524,0.8391143841607949,0.838094447145523,0.7926832649165485,0.8547590683387566,0.8797772225892578,0.8786848845425206,0.8384317199633586,0.8379384969500131,0.8986381758977164,0.7807453593188757,0.7889167266696956,0.8351719755447569,0.8257819514276921,0.8899353872794549,0.8705998214946934
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.2286978704106757,0.21783133557126436,0.18997538793907318,0.21338706510477795,0.3777064245921452,0.1523225450239906,0.11545630844168411,0.19307115662410623,0.22266073947400133,0.214721438126857,0.19334876104724139,0.2739377573664791,0.15746730609069204,0.2705399276029173,0.2959668082881686,0.27831445874460503,0.3236411799331904,0.1896394830484101,0.2572374007322747,0.4043069426783908,0.21577351145889687,0.2139565451207185,0.11689950800874534,0.2973276823846994,0.20970738090033095,0.2768535405997883,0.1969057034603393,0.29135204282186183,0.3051418857029597,0.11439278945803759,0.14727284933043866,0.2555992601959393,0.21072221463229904,0.21377778043805473,0.155827920526303,0.1510272825913391,0.2118365109732193,0.29821217587742177,0.3883862147602355,0.14667590688282117,0.2420010878333642,0.21715852019234194,0.2692963357942793,0.1556084154264842,0.17822242920939624,0.3028130035776248,0.27685195115999656,0.2517242578674885,0.3072525873587605,0.17985907790211608
+0.41951451717736893,0.44360478373697615,0.4045298719504722,0.46770143209621656,0.4123660119217174,0.39105203294392354,0.3785358186025169,0.4620505595375233,0.4482658716928347,0.4060308835064521,0.439491960018226,0.45285766164443436,0.5172397642843887,0.40598654793731653,0.39336653499763263,0.4367678776297136,0.45347957351379153,0.4968067362051234,0.4397440971762911,0.4436873324675291,0.4057507872897797,0.4588440967588396,0.42808118868507733,0.4524543476888539,0.36944021477355987,0.5016289389344339,0.3721608931753043,0.4554817405847064,0.37314230869022397,0.514370539854871,0.4130317526844465,0.4188690010140261,0.4495909849551795,0.46569207700354687,0.43750508768057145,0.42591714194103025,0.45807138866750846,0.4431677539956715,0.41345992369442236,0.45296121194843453,0.42957906811773017,0.43156038891346554,0.4541149367132152,0.4514154210395019,0.37837214410146397,0.4083146987835955,0.440634145587784,0.39916626216172546,0.5339892526743981,0.42172921813676323
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.41951451717736893,0.44360478373697615,0.4045298719504722,0.46770143209621656,0.4123660119217174,0.39105203294392354,0.3785358186025169,0.4620505595375233,0.4482658716928347,0.4060308835064521,0.439491960018226,0.45285766164443436,0.5172397642843887,0.40598654793731653,0.39336653499763263,0.4367678776297136,0.45347957351379153,0.4968067362051234,0.4397440971762911,0.4436873324675291,0.4057507872897797,0.4588440967588396,0.42808118868507733,0.4524543476888539,0.36944021477355987,0.5016289389344339,0.3721608931753043,0.4554817405847064,0.37314230869022397,0.514370539854871,0.4130317526844465,0.4188690010140261,0.4495909849551795,0.46569207700354687,0.43750508768057145,0.42591714194103025,0.45807138866750846,0.4431677539956715,0.41345992369442236,0.45296121194843453,0.42957906811773017,0.43156038891346554,0.4541149367132152,0.4514154210395019,0.37837214410146397,0.4083146987835955,0.440634145587784,0.39916626216172546,0.5339892526743981,0.42172921813676323
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.39545330894278125,0.4107848052819708,0.36794701827429177,0.48472516749840155,0.5337991739399961,0.3418009754644919,0.23892348559018878,0.6797701085394992,0.2436017057015247,0.4605304153729394,0.17593520689810876,0.134793999253318,0.7047173052835195,0.24240127474699172,0.512905274310913,0.25694650787194623,0.4204229962245912,0.26870928195673616,0.40625941819821926,0.1517329539084336,0.12423216747880561,0.23613689891508916,0.1681522084527133,0.3155584918420509,0.4821613208473352,0.3250546095136362,0.7454832892951266,0.38793534718510103,0.41824127248769405,0.31930891649009885,0.3010058078972921,0.3289317462732791,0.04809201549356627,0.40394747237246215,0.5051749038078557,0.40113382940481723,0.560060383681593,0.2100058965838698,0.47250976610147466,0.2371607061887857,0.16730549029818728,0.1909742445663498,0.42513055993540044,0.2883973664075132,0.3957243724634229,0.38259113189226235,0.5492563596668087,0.5319594273107847,0.4636193790139246,0.4320761859634119
+0.4231419424662611,0.5226455658919584,0.7835925704255188,0.5428766431336297,0.37502656074316676,0.3774211384117503,0.5015851364803235,0.5194731719017999,0.5392527975661753,0.3040588479230208,0.47246146600002675,0.7342842513958838,0.5694689707381394,0.5394573255867229,0.7200232116821691,0.6646892851654033,0.47528610535617843,0.5668654046659691,0.42455517989095204,0.6029143401235956,0.5663217485456467,0.5662344306122815,0.4561922007015269,0.5778399842986608,0.42059365158532414,0.6334828753902589,0.6242343186151865,0.635504322118584,0.4874065719004622,0.6185151734550637,0.40604306733460105,0.4594301111930833,0.41020189651466693,0.4040235264723349,0.3793370609477293,0.4251190763820693,0.5978567271321177,0.5690748849926366,0.618389469031035,0.4967217638418854,0.6852011076434913,0.25446158928245677,0.43001992520289645,0.3890586189981432,0.4041104900284013,0.6297573015535947,0.451208359110918,0.514382152570234,0.46504517682432556,0.5019360130743099
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.4377034003189653,0.6553545378902215,0.40385372105895917,0.32348203198816283,0.42728464401881294,0.4155156669698323,0.6288043700410864,0.7075939975271157,0.6145047118518305,0.3627541400080531,0.2991585887331287,0.19653090850874363,0.39375718714453944,0.322985678848153,0.5478490829704515,0.42588404217418413,0.24252238542482982,0.6895607803172747,0.6304037603891869,0.4095225619659967,0.49220439111144787,0.4620269824291864,0.4428618727508728,0.3080332290321821,0.21946992324471398,0.2433814174991603,0.4704514981364904,0.6693196099092167,0.6271491447468892,0.2851430446457497,0.4431850147536357,0.3998126261125985,0.4333574320715565,0.5737567825470098,0.6338088381933673,0.36180698905660835,0.5067939860206643,0.557567925904097,0.4219453620536566,0.5956988240947623,0.8067853006640557,0.24733088505481987,0.43585357416044634,0.4540298989654601,0.4895268627257802,0.4330552555795571,0.4108650829522686,0.45551989789359765,0.4223372185412273,0.30850869824311716
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.3059883665275288,0.28137389908941635,0.12428787589771514,0.041594560685247875,0.14966637167030705,0.14044101244941287,0.2550803710041099,0.25032960028425777,0.19348891211311867,0.32109433964393297,0.5259045707523676,0.2132990929453866,0.16498472803905664,0.2794139340901386,0.18810668861505683,0.2343333291422537,0.08314174074813106,0.09213053566420357,0.30115363055059235,0.07659735049132743,0.2320166267889487,0.19037161158286867,0.15990684066430866,0.11168099633152449,0.23642848236901684,0.1645683557641504,0.19003243915561502,0.1232100940882723,0.040023487697415906,0.19492562175484113,0.0885442820678516,0.17121451715451716,0.049412002573292896,0.2460847933534561,0.1093868706137468,0.08001308494122865,0.26962193565794235,0.08947342387324006,0.21561029445484736,0.23972264263149984,0.1793974718097693,0.2073132273687548,0.39208011618183164,0.33267146860084845,0.1289442216873563,0.0602362694141719,0.3853676611206731,0.3051875420423807,0.09361937128292269,0.06857526030613789
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.04388380236988297,0.07985450390334246,0.0732294634272791,0.11231892418808087,0.03376113743497129,0.27540399215212924,0.034511646092290266,0.12942363465930465,0.053613125003101135,0.08592622499451318,0.14292270990003142,0.03014773266727598,0.0995670407552968,0.14899120503874388,0.1296131507633139,0.046201172988064386,0.1065335456824496,0.1128936189439293,0.10249951771440333,0.13096691894827556,0.06981951351446274,0.12654258905859195,0.04053733199948274,0.16698576960167572,0.05023237017788913,0.13096950462574955,0.0883330495906809,0.1108533795494172,0.09085721673877303,0.04552338936752987,0.0574690237487921,0.05683757548974337,0.18081843994798102,0.15513041047669757,0.07144745752754403,0.1413334044554137,0.08995732367713458,0.13564399506715588,0.2186310598579761,0.09973317426625572,0.08823405589901297,0.03187534784412647,0.039329337595503,0.14097726626452683,0.12482628387896876,0.04476407343964375,0.13292971165416193,0.12300454692930739,0.15129860796771066,0.1813250577207406
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.8395535918839873,0.7695017523261071,0.7766929205645492,0.7731452771256521,0.733880185271111,0.8296099790439847,0.7685998568206784,0.7856936729135008,0.7116749284572401,0.8787418011626165,0.842331753924945,0.8324921433451119,0.8651695952309243,0.9033566437325655,0.8258053393825684,0.7692083510763108,0.8619282621802803,0.8670853641048585,0.7987187462664074,0.82264481752421,0.861024623204151,0.8351088745000945,0.8524924495039017,0.7189014264653021,0.7484150978128816,0.6777662058071584,0.7654552982743956,0.7452901239877795,0.7769826760786482,0.8434541096248432,0.8862615942724201,0.7472816521891886,0.7126825162087799,0.8111054205790269,0.8495545164139218,0.8020916395561238,0.7109766695256983,0.8201353536766759,0.7007006002017259,0.7247212529011887,0.8174542493478789,0.7996501093988936,0.8158204070124968,0.8841059587691683,0.8347919074988355,0.7469878045281061,0.7976980153091773,0.7861087663723778,0.6371627380565495,0.7649585940443687
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.5986529614922455,0.5808895986362724,0.6159693739029087,0.5737914851585141,0.6124387428300837,0.6456811578204538,0.6860681200786105,0.8087352704901863,0.7081608267291183,0.6016035959959873,0.6538982597601166,0.7368774742576656,0.7275686193863838,0.7301174396481985,0.7908523707472941,0.6202774788454356,0.5779105168177682,0.6447471090437188,0.6982562242672976,0.3903635330404584,0.3057976932385945,0.6187854054892198,0.6716978058782398,0.6113379594003788,0.6867876827202112,0.672076127760076,0.4450899456317525,0.5440276137763073,0.7283519659689145,0.6816069920334717,0.3137459275963328,0.678672915723281,0.6815604838066869,0.4653220917535357,0.41574357712683424,0.4809828738085569,0.6209373958212762,0.6999407191269001,0.530328454233386,0.7075791669822087,0.6292794616308095,0.5913254165356414,0.45621710626588746,0.725241495055736,0.5612727438877867,0.6136284171463482,0.3767179294196196,0.5365975465274871,0.5160001575789321,0.6597562211791604
+0.24557690365954404,0.3365115646767689,0.4610381265474125,0.5614557619229283,0.3218298020501171,0.2398409404494194,0.2734028855890258,0.42884945429360605,0.4029561515574136,0.4268460465779054,0.27057955378416165,0.4430321976184347,0.2876395332581489,0.334838911948961,0.3355606294945684,0.1744403113626464,0.2482816473448647,0.13336764556350844,0.6027709230102074,0.2269321711448747,0.43173532773684614,0.364512312412595,0.3116505789732866,0.21847322171946068,0.24169964064901428,0.6681447044330013,0.6476803321173734,0.3047703922014822,0.43061940011799615,0.4123458157495994,0.2225857807291736,0.20698712397963098,0.24865355089116647,0.35433553613440494,0.3959803540877782,0.32683964950138744,0.2832677800055597,0.37845110524516373,0.25383228695127985,0.22501620110839338,0.42223188086399843,0.2611248689898194,0.15532003005859935,0.3198423171773839,0.29324684264890455,0.3657996366455329,0.2564056839321857,0.5769950248789294,0.3396335501580555,0.39682109129035714
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.3423937701229037,0.40607809027909164,0.4650792478676758,0.5069510039715827,0.42801292555393594,0.3377705482703511,0.29755910458119705,0.5081386229793813,0.2718595340510782,0.28090708222509464,0.2004109643729105,0.20818511593799716,0.5161841524198857,0.2526549008903187,0.45139080407796234,0.2825224937027418,0.410640677434268,0.2685117718079157,0.41403816236190844,0.1483480086112667,0.18630961852298533,0.3272690574566125,0.21674655864371067,0.25408808695015905,0.3626169296992635,0.2975441119337735,0.4769252555517671,0.2783650935779516,0.38009242088728457,0.34461576658242565,0.3032403679545135,0.2625888455178538,0.13813708581172215,0.3318826128657021,0.5154513790427326,0.38366292030177007,0.43125143125913445,0.41702562477510596,0.42772441483740403,0.35556800665017485,0.262515045199988,0.20513112080841334,0.3563354594347089,0.26594832965017945,0.4749748202872631,0.3654790534862385,0.46964651318677164,0.31558051228133027,0.2304217770913545,0.41782179154287297
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.3952678926227704,0.33746171893202725,0.30799625379193,0.29623327354342516,0.28534665799638703,0.3237045034817153,0.2366778566124768,0.3227257288192091,0.4058467574318256,0.3053363637805748,0.2835646474737934,0.4011775274416627,0.29210217197385474,0.31639073785420607,0.25503165005153217,0.35530873908016036,0.30412321297368544,0.3662039216400616,0.42579613542149836,0.28621619213016225,0.39885655202669457,0.29744512077506924,0.3855207632834414,0.3578611498852791,0.3085525576229269,0.2893464333313425,0.3624295322436504,0.40058763051193397,0.3278005305209667,0.3882468085788674,0.35138998609474753,0.21082376724549967,0.43318968322771895,0.3342865052209678,0.4436127940163979,0.3403266402236663,0.383162588518861,0.29960628703748227,0.3782668901315428,0.38127639759585175,0.3665163286285869,0.4222494596695708,0.2407185077383415,0.40647161472298093,0.2963944637998162,0.2821215967076167,0.32070842128942245,0.3762459717985488,0.2978331269727629,0.324338912114257
+0.26281444583247315,0.23467861236851167,0.22988082426031106,0.22562789032270125,0.2409716562692447,0.30832223839468176,0.1904471506796281,0.19262896987505285,0.1775758950801153,0.2597532414918941,0.2556338161313007,0.26737623915960673,0.2269540059150619,0.24638236897616267,0.2407174209563831,0.28795020929117265,0.2366817345739811,0.23019782590698412,0.1761499496772323,0.23627352208967722,0.24877758752122706,0.18695563379826688,0.14574438948943796,0.27338590413646147,0.306734758835788,0.26837420532768713,0.2897905489741235,0.2598848046457668,0.2619770544911515,0.33974475176589686,0.20853180077647904,0.2148352573327471,0.22108184147719115,0.30717668662216707,0.30562951683213274,0.19859529257104164,0.19057130309418255,0.23122597386240368,0.24446619991642884,0.18634936890161571,0.2242157157731179,0.25708540409849545,0.2367615641769424,0.30031375073302535,0.2952012815929509,0.2171664315476482,0.22929923611853034,0.31054414422554744,0.20717505035054745,0.22544035324558093
+0.3897048759502937,0.5820020497803712,0.16889199775588964,0.09203942812466108,0.18649016797638857,0.084,0.34277075855467815,0.264723229040316,0.1691372155814733,0.36820505079736476,0.18401944187086713,0.13478533952176294,0.18648945097720004,0.17907479464018425,0.17167829739523108,0.2949736358515707,0.21649835755767224,0.11691542288557213,0.03427458935933512,0.12958561177456526,0.13998132170859445,0.06867000303306035,0.0319817428582363,0.7150103270420289,0.11697403785669355,0.30651411984677074,0.19991754198991932,0.9415952924755743,0.24062991928684418,0.11778025453577808,0.645032535072845,0.01,0.41773301971094395,0.1951247294373212,0.30090189789441707,0.11740162923835012,0.12502115943824146,0.06557446808510639,0.07650189884749592,0.3459958000867918,0.39871226595179615,0.5898675272039778,0.3096641978123551,0.23585575632099584,0.5121366362869456,0.18341219876033305,0.1951831519493043,0.1123209549071618,0.08650471559763999,0.18701212524452593
+0.41951451717736893,0.44360478373697615,0.4045298719504722,0.46770143209621656,0.4123660119217174,0.39105203294392354,0.3785358186025169,0.4620505595375233,0.4482658716928347,0.4060308835064521,0.439491960018226,0.45285766164443436,0.5172397642843887,0.40598654793731653,0.39336653499763263,0.4367678776297136,0.45347957351379153,0.4968067362051234,0.4397440971762911,0.4436873324675291,0.4057507872897797,0.4588440967588396,0.42808118868507733,0.4524543476888539,0.36944021477355987,0.5016289389344339,0.3721608931753043,0.4554817405847064,0.37314230869022397,0.514370539854871,0.4130317526844465,0.4188690010140261,0.4495909849551795,0.46569207700354687,0.43750508768057145,0.42591714194103025,0.45807138866750846,0.4431677539956715,0.41345992369442236,0.45296121194843453,0.42957906811773017,0.43156038891346554,0.4541149367132152,0.4514154210395019,0.37837214410146397,0.4083146987835955,0.440634145587784,0.39916626216172546,0.5339892526743981,0.42172921813676323
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.34772759086698374,0.42010341644540256,0.34378189455504127,0.16148935664433334,0.24598204059228546,0.29156306688716266,0.0521247293659331,0.2576427407303837,0.231707185558964,0.16052023909711366,0.23708069592330885,0.32342895316599723,0.2708772823807431,0.3893991447469395,0.3039554564799959,0.19089384050886768,0.2751176507610792,0.3660250108309981,0.35526181805229995,0.23341228362937066,0.34953887693075486,0.4158003375742178,0.22892831924339524,0.2628897688038464,0.16446192447351785,0.3463483058281957,0.28864797137543596,0.1197934065226234,0.3830718079775421,0.28674696865391147,0.23026724082136976,0.27905540020188724,0.3659270998285256,0.3270765726979756,0.27770204509843616,0.3315645950888527,0.20725562072272374,0.2560886091167156,0.38212543364841944,0.09765676135339144,0.2375152917536234,0.2556599644053994,0.2810405610635409,0.16448043250431396,0.2858424575031006,0.20315496334683558,0.2585410909232601,0.1963128198677927,0.3986919346204423,0.19330484182658483
+0.38739404600180427,0.401784679089027,0.08747315205444185,0.42923867275443756,0.31345508939118555,0.4057903122248087,0.23751338445055037,0.43836061911145335,0.5481690737855629,0.27277209558377724,0.5615654165141528,0.46056639799242854,0.4054375,0.3609263620982025,0.36569216751619166,0.4,0.47250025928515604,0.1347420430170386,0.5287688553682343,0.42690994463654747,0.053761140819964345,0.4942808712177114,0.4268415779469697,0.2808800822547228,0.29569828230022405,0.7550347296813463,0.3722870351387611,0.5132148941523882,0.48041429159076215,0.6260467910590709,0.20484021370786074,0.31751361143857076,0.38854208754208763,0.34410388965890987,0.5990855311344646,0.13803030303030303,0.4792092740952598,0.190691719140254,0.3587535014005601,0.2173235681792662,0.17701022199520594,0.213495670995671,0.48615301932349664,0.4288859577922078,0.5422988505747126,0.43682603686635946,0.11999777089173491,0.34089644142178627,0.27471028037383177,0.42285520853390685
+0.4652227391229421,0.44214090358549785,0.42798375578554476,0.5363382573051113,0.43220764461968103,0.33881358343860307,0.45380698654535223,0.45108549917229845,0.46576573397557547,0.43384676710223,0.4445223667354965,0.4803911168859916,0.477790960388706,0.4950201231415511,0.48584883439887144,0.5575172153083513,0.44960321208624454,0.51347755599201,0.49291560015879665,0.5369991290462687,0.433883940123183,0.48958121741028543,0.4388909975444369,0.5929899060150144,0.40657310427433624,0.5108561224975957,0.5132426972740877,0.3855221657329599,0.3699609794959964,0.6393536633905379,0.49059074733569913,0.4228146437267955,0.4740414665830889,0.44981835798221576,0.4755176438971832,0.42892021277165243,0.5727190882551801,0.5250702667343312,0.5592342578750916,0.4380084303587132,0.5035886234454279,0.4006355468952724,0.40960053556172404,0.4406971314594053,0.38793985243944,0.5011038247917654,0.4591869136374979,0.4662626471752944,0.45794840263077724,0.4975674247159926
+0.4440286248526,0.28354349542447765,0.3736581527020072,0.5108171916076608,0.39916198803476655,0.43435323673409426,0.44887931627162886,0.30123328913987174,0.342911573689532,0.45140678178268195,0.5869980551001938,0.3979126645828297,0.3031815144929522,0.5123838730794392,0.4442007076735425,0.25191414428419906,0.1556138132673248,0.4803262971697496,0.45417246190719845,0.23883148708563304,0.5782591110656513,0.3106816255103602,0.2806480419720911,0.37608093577301976,0.15647691119696483,0.21479548834104695,0.191168013131643,0.3505808769124081,0.524074613078491,0.6795732693639104,0.3946267538159611,0.14562917159438332,0.1589027349496907,0.31404347504457997,0.2333661634509157,0.34801795519420864,0.28398216314413066,0.3856015718986183,0.26796261616957784,0.256032964571428,0.34208629490683345,0.27073012426800575,0.3331327822592455,0.3732581206639729,0.2881050805019404,0.3790045767636011,0.32595122293151296,0.2806876884791674,0.25958554282186497,0.17396199728063894
+0.21592669917424812,0.09652018684428373,0.3013149738126602,0.07786140792545662,0.1308532581902639,0.2705859907850379,0.3465932342792694,0.18513520405137665,0.20012968050969865,0.27803582479689515,0.18491898563065842,0.11905522529854651,0.22599034706714796,0.09090491138641356,0.24681178482087407,0.19072282959320838,0.2659766076395794,0.200535491529624,0.10391958652478744,0.13083819248790352,0.13984640807778614,0.11661724179528189,0.07323899762488727,0.26702406328391093,0.2593445774999818,0.20381668292036423,0.20804311237095138,0.20961730703265158,0.20179023709653593,0.14234056541476683,0.19363634420344283,0.10021731435547242,0.26983088218263324,0.1377003012721617,0.23462650919757272,0.21008597577906218,0.1817489826717934,0.16103971216553137,0.16850356149316997,0.1515867699793073,0.18887151680628322,0.2747262539009066,0.21380243112537337,0.17181045367881143,0.20736625158705618,0.22640730739777123,0.07334268930871093,0.1534841118144711,0.27426702951824117,0.11059836386550112
+0.7481532192887105,0.7643172961104141,0.6619078684076574,0.753356370055613,0.6097218187518236,0.7459306638445409,0.5571898331796022,0.7338125398827731,0.6875391120545947,0.7184638500210002,0.7677383401684401,0.7344991520716766,0.8644457478604777,0.7209534970654101,0.7308132904664383,0.9117768836870916,0.8135570461858612,0.7170141592528904,0.7434697133713503,0.7622876757342112,0.8062148431754923,0.8382139738209109,0.6092105318328546,0.726243202859118,0.6184617087543438,0.7861799821344667,0.7137273387256594,0.6433330090341862,0.8452531165990926,0.7462459892384584,0.7933819358212942,0.6135373189231468,0.7296101928854132,0.7062824996808539,0.7296278878815028,0.7242956736349364,0.6979262783136668,0.6576017104077628,0.811070733407268,0.7885797786315014,0.7430182314470943,0.7474037937704385,0.663552459061558,0.731576083117557,0.8403100615374334,0.8266807385153608,0.717457058830935,0.7440908531009702,0.6025756953951632,0.7360555778375112
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.841356957799042,0.6932598439352894,0.7419789336206268,0.7792859400062271,0.7360773926521912,0.9074050962820749,0.8723112384604108,0.5489223995601672,0.6376316701924085,0.5722177181453106,0.892550468442087,0.7821130300294925,0.9158875835815644,0.6561419598210254,0.8203948038110047,0.659837001551571,0.8067545147988241,0.6430663465363172,0.6824258794903771,0.6778529185419637,0.7944033416660105,0.890509191588845,0.596849041913081,0.7256331376700038,0.8267678729773169,0.8207492843549806,0.7561692525626073,0.7798730098935893,0.6924700608275397,0.6508171061993023,0.8006316285153917,0.8468170288578214,0.7564207911518068,0.5331406154470997,0.6566779149422252,0.8154454952440754,0.70639890740559,0.7138614421362393,0.8057581022716495,0.7654109016612907,0.6122946275905976,0.8207980071846745,0.9337247715466461,0.6108156045024239,0.9009789912813588,0.8747476660785344,0.9032877943133688,0.7103444650429849,0.7531787201799726,0.7911423806057468
+0.8334184253030094,0.8576141619236942,0.8243588245265443,0.8804644279020049,0.8025540910522031,0.8347102206743517,0.812811091580054,0.8155295359196895,0.8427912840124486,0.8834114529801927,0.816595166011179,0.8887262607510571,0.8289262559831818,0.8682377697822017,0.8425429049670992,0.8748471695840653,0.8610106825206663,0.8036559519162669,0.8502294893626179,0.8560039035255894,0.852326337652949,0.8910998873417862,0.8771483314450506,0.8222389076772303,0.8551288595084107,0.8032659833366634,0.7897127187628976,0.8079341195297846,0.8037366866403934,0.8330469540106575,0.8389123738487692,0.8416192634440851,0.8544615512223401,0.8975187135846504,0.8476033854347524,0.8391143841607949,0.838094447145523,0.7926832649165485,0.8547590683387566,0.8797772225892578,0.8786848845425206,0.8384317199633586,0.8379384969500131,0.8986381758977164,0.7807453593188757,0.7889167266696956,0.8351719755447569,0.8257819514276921,0.8899353872794549,0.8705998214946934
+0.7331618196039038,0.41003671199476627,0.6616424674552133,0.55295329551598,0.7544209067824353,0.7225733627981676,0.49237635522770157,0.16326732641778652,0.3556986992885181,0.46997259529206425,0.5738495156739232,0.548925385692761,0.5026626894606376,0.44942359799597015,0.6407500090632687,0.6957650349907816,0.8167545147988241,0.4409937385457527,0.3267068658984821,0.6078529185419639,0.5096957706391501,0.3433736721375362,0.5208331688972079,0.7438397588439147,0.2376603439938641,0.4329547056246974,0.4656661235351953,0.5698624097679602,0.24830253868397215,0.36906809422140036,0.6530363169398171,0.7232165182573109,0.5263049492386425,0.2865421305986149,0.387433909168118,0.6835102846213646,0.4644588181587937,0.5255645015605038,0.8024873667473927,0.41847180491778757,0.5189793821125614,0.8072980071846746,0.30375457493898667,0.5166489378357573,0.9109789912813588,0.6145929041737727,0.9032877943133688,0.5700314025372696,0.7374440507877402,0.46338667682886964
+0.6413031527673622,0.36409479023544766,0.8014892734790487,0.754032549118847,0.622984211812401,0.903939039618804,0.7586153664627211,0.6704988386985333,0.7015182466657237,0.7240666983047765,0.7212979406597274,0.9069076735688677,0.8474319884076951,0.6392807989816806,0.7061774841685995,0.4609677235608857,0.5464678773090088,0.7074482838697104,0.6634227818163752,0.6880468853872046,0.7002018293905458,0.5698237636557298,0.8198298832334914,0.6815558702165982,0.9120112009855451,0.7489913649389386,0.8003557993430997,0.7920011691224949,0.6695948613341112,0.7979440989083403,0.6811960990575969,0.8270258861418136,0.42690943919963686,0.6070372597183622,0.7672838894798173,0.49957807057492554,0.8404544412201992,0.706544612137598,0.41020734997886393,0.72556002904438,0.8448011425934591,0.5175216220172874,0.7388170101065882,0.6804721480592965,0.8153035807811105,0.7532802182275247,0.7820909729304293,0.7300136752064513,0.6342606969297129,0.8279341611445491
+0.39545330894278125,0.4107848052819708,0.36794701827429177,0.48472516749840155,0.5337991739399961,0.3418009754644919,0.23892348559018878,0.6797701085394992,0.2436017057015247,0.4605304153729394,0.17593520689810876,0.134793999253318,0.7047173052835195,0.24240127474699172,0.512905274310913,0.25694650787194623,0.4204229962245912,0.26870928195673616,0.40625941819821926,0.1517329539084336,0.12423216747880561,0.23613689891508916,0.1681522084527133,0.3155584918420509,0.4821613208473352,0.3250546095136362,0.7454832892951266,0.38793534718510103,0.41824127248769405,0.31930891649009885,0.3010058078972921,0.3289317462732791,0.04809201549356627,0.40394747237246215,0.5051749038078557,0.40113382940481723,0.560060383681593,0.2100058965838698,0.47250976610147466,0.2371607061887857,0.16730549029818728,0.1909742445663498,0.42513055993540044,0.2883973664075132,0.3957243724634229,0.38259113189226235,0.5492563596668087,0.5319594273107847,0.4636193790139246,0.4320761859634119
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.8334184253030094,0.8576141619236942,0.8243588245265443,0.8804644279020049,0.8025540910522031,0.8347102206743517,0.812811091580054,0.8155295359196895,0.8427912840124486,0.8834114529801927,0.816595166011179,0.8887262607510571,0.8289262559831818,0.8682377697822017,0.8425429049670992,0.8748471695840653,0.8610106825206663,0.8036559519162669,0.8502294893626179,0.8560039035255894,0.852326337652949,0.8910998873417862,0.8771483314450506,0.8222389076772303,0.8551288595084107,0.8032659833366634,0.7897127187628976,0.8079341195297846,0.8037366866403934,0.8330469540106575,0.8389123738487692,0.8416192634440851,0.8544615512223401,0.8975187135846504,0.8476033854347524,0.8391143841607949,0.838094447145523,0.7926832649165485,0.8547590683387566,0.8797772225892578,0.8786848845425206,0.8384317199633586,0.8379384969500131,0.8986381758977164,0.7807453593188757,0.7889167266696956,0.8351719755447569,0.8257819514276921,0.8899353872794549,0.8705998214946934
+0.5446245940426713,0.5494926770405604,0.5746499121239179,0.6218406649829236,0.5114775443628693,0.6366129839131545,0.5165423024293757,0.6370925169428692,0.542762995507313,0.6224536133465991,0.6195887861627687,0.6201674372045437,0.5833410289212363,0.5737714291757635,0.5614949019230016,0.5919750750710743,0.6646789349958279,0.537933061240833,0.6078420386828899,0.62000043075478,0.5935821456662708,0.48387453640644323,0.6614913982224161,0.5906930411673309,0.6435112262060124,0.5472840965847809,0.5410355385864576,0.6163531582848534,0.5662630656101545,0.5127930515232252,0.5694412980213047,0.6006435517576451,0.5549067943647045,0.5709044806156345,0.6087876033966626,0.5875175561590011,0.6262948708083219,0.5694286554113226,0.5513503034907371,0.6881534223900474,0.6292988137160652,0.5658270041014457,0.6296448327653298,0.5804412641529479,0.5549867683110549,0.6376343018830283,0.6548520152987767,0.5776049635056665,0.6088880679489195,0.5441456733365482
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.6492953339508547,0.5696067447566852,0.5106031291268747,0.34864945168188816,0.5231792701222235,0.8838395244937824,0.5327557081703972,0.4568256066165437,0.6845696419828561,0.9014602154756133,0.906327180028673,0.8636560103032015,0.57085598361283,0.49985510973199987,0.7540530351389806,0.5375534595719481,0.9350845668242834,0.8617468607309923,0.8326224514754075,0.7819506745762703,0.6425728025620129,0.3606847371164268,0.6003712798030117,0.5916796099147149,0.8129928940455156,0.8438365996754422,0.8435091835623942,0.32855618761200844,0.5569958335356151,0.2544234711876052,0.465840899300021,0.9109159355927607,0.8719212521377925,0.8428530863820781,0.4598514904520084,0.5580502558412254,0.5441975084050624,0.43763240195349273,0.6159473366620041,0.8159943265167834,0.5601507691197127,0.5176988326784682,0.8529620215172637,0.918069619262697,0.90370221253698,0.5048755475823223,0.9656483564512724,0.47088450581682695,0.6978265287721359,0.9438189227912561
+0.13119059621396015,0.02436490241577111,0.032195230682387915,0.11971714198698175,0.051876869443000094,0.07654758482704899,0.02886423512637588,0.05339887319779759,0.04308415032679739,0.12603228879005274,0.10777930402930404,0.07648565381219286,0.07359952090909784,0.04350452511102024,0.04674243193303502,0.13888827838827839,0.0829481229662461,0.02781451391249353,0.018544372294372294,0.04166365486333173,0.026177350427350428,0.06642585036264136,0.18600651081333575,0.030839906489948516,0.022931700942933873,0.07680219085166269,0.019089545759824397,0.04874510288868799,0.10597199233097386,0.04600494218298649,0.03227178360627458,0.0444019026643947,0.02381619535760575,0.021682605588855586,0.017596131991096588,0.00794498014586795,0.028331524775133596,0.1267445882328806,0.03264219114219114,0.11059825356304001,0.015310355861302654,0.011940098661028893,0.09833170420463062,0.09000851980914704,0.07613917496490166,0.053435180417207705,0.013183595069769523,0.03167071541884226,0.03263794810616099,0.08835982214435477
+0.27717584855738375,0.32769946296033514,0.03567157868301995,0.15055175553897185,0.13960192701311172,0.07952240051542858,0.16971091208815417,0.16186459972088674,0.290333894209565,0.18273892430249677,0.22295645739478365,0.2778717646457196,0.055039843673820255,0.19748297738702839,0.2088439499761078,0.01783322760141194,0.3155468570901258,0.16666297577597466,0.20419621394743662,0.20968674738933932,0.1540568461995002,0.0798015003743176,0.028528734358769788,0.031246035828300968,0.016498528984154662,0.10267176491626025,0.14905418386193336,0.1079568369373813,0.12139377584319211,0.20742724254495554,0.210930011929109,0.047718268742506335,0.04773296737038267,0.17557191977652817,0.14957078959236264,0.37251529618101387,0.06156917757178213,0.19157302136390184,0.20881327972771122,0.29522089410766583,0.2621736809714858,0.23861591279218028,0.018185804453177377,0.10688669820318183,0.19180414856428254,0.17769289411848788,0.27103017594427936,0.04464359424772813,0.18568955781755256,0.14926882115233497
+0.21592669917424812,0.09652018684428373,0.3013149738126602,0.07786140792545662,0.1308532581902639,0.2705859907850379,0.3465932342792694,0.18513520405137665,0.20012968050969865,0.27803582479689515,0.18491898563065842,0.11905522529854651,0.22599034706714796,0.09090491138641356,0.24681178482087407,0.19072282959320838,0.2659766076395794,0.200535491529624,0.10391958652478744,0.13083819248790352,0.13984640807778614,0.11661724179528189,0.07323899762488727,0.26702406328391093,0.2593445774999818,0.20381668292036423,0.20804311237095138,0.20961730703265158,0.20179023709653593,0.14234056541476683,0.19363634420344283,0.10021731435547242,0.26983088218263324,0.1377003012721617,0.23462650919757272,0.21008597577906218,0.1817489826717934,0.16103971216553137,0.16850356149316997,0.1515867699793073,0.18887151680628322,0.2747262539009066,0.21380243112537337,0.17181045367881143,0.20736625158705618,0.22640730739777123,0.07334268930871093,0.1534841118144711,0.27426702951824117,0.11059836386550112
+0.34772759086698374,0.42010341644540256,0.34378189455504127,0.16148935664433334,0.24598204059228546,0.29156306688716266,0.0521247293659331,0.2576427407303837,0.231707185558964,0.16052023909711366,0.23708069592330885,0.32342895316599723,0.2708772823807431,0.3893991447469395,0.3039554564799959,0.19089384050886768,0.2751176507610792,0.3660250108309981,0.35526181805229995,0.23341228362937066,0.34953887693075486,0.4158003375742178,0.22892831924339524,0.2628897688038464,0.16446192447351785,0.3463483058281957,0.28864797137543596,0.1197934065226234,0.3830718079775421,0.28674696865391147,0.23026724082136976,0.27905540020188724,0.3659270998285256,0.3270765726979756,0.27770204509843616,0.3315645950888527,0.20725562072272374,0.2560886091167156,0.38212543364841944,0.09765676135339144,0.2375152917536234,0.2556599644053994,0.2810405610635409,0.16448043250431396,0.2858424575031006,0.20315496334683558,0.2585410909232601,0.1963128198677927,0.3986919346204423,0.19330484182658483
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.5231994852715474,0.15166746574252968,0.23463610911267452,0.43632598967524816,0.3134840112222737,0.7080004960368295,0.7633262578425973,0.47079523002626267,0.5827509638716442,0.2555904362442562,0.7284525893646986,0.5678496703765776,0.6304764492587656,0.15822309419553746,0.3520954257803983,0.3514652065847595,0.2153666072791311,0.41208400031813147,0.47120187367551475,0.5891682720682291,0.5058889276615611,0.24405126526134935,0.7926338938838939,0.8149937437166809,0.25440892274800775,0.24727160363597026,0.47957948995449,0.3564758106956581,0.2974870826502738,0.49148206490352964,0.33370030798648753,0.11781513550384867,0.7291604227018215,0.4668051449429869,0.4121495321263571,0.5776536514308345,0.3971420214110284,0.39201931941097606,0.3911242576649314,0.934146026618248,0.5063981189126338,0.18985790407370018,0.17452588412915698,0.3474906788271238,0.6348358844051888,0.1691500067999456,0.11935787172425753,0.18347634949982783,0.5045303719362234,0.8554948927122179
+0.3823869391316221,0.05972193232082021,0.07962226792448208,0.3743579221008708,0.34727583102279136,0.29272547673240934,0.39239349281141167,0.35309491066332294,0.0932917618166798,0.14829040910257255,0.39350866685374164,0.2029307578096939,0.12190733103869478,0.436725389614734,0.467481358088403,0.23926490384471388,0.49624127548183045,0.2312667284645371,0.3344984219144535,0.2661585479621811,0.036618283677107205,0.24231977701215762,0.27072516092341675,0.31027780610354116,0.3963243065119706,0.33975213417123584,0.3910616245523025,0.3602096932146142,0.2659960031635735,0.4120565421578873,0.1994557216723704,0.2702555984880637,0.2568633450892084,0.41856053855172015,0.2916057738797304,0.14626259229080557,0.3362075415627181,0.361316598989279,0.04497347258415503,0.49983436329339964,0.19688627094229005,0.08405214787641814,0.2989057094849112,0.1585915196136612,0.30136579206564024,0.059808630974399,0.16303541438086644,0.032663150413179125,0.41820717802233126,0.43941773183380417
+0.24723915575973968,0.25721973013052346,0.27969699869717457,0.22986030465069962,0.2583611150471782,0.2672748959417279,0.20510311032299733,0.23484417309388683,0.14180543964692255,0.24864622725927782,0.2519669215063591,0.2546106281198458,0.21636689869613213,0.2599389409895816,0.249040630045575,0.21614293182388394,0.22662178609636752,0.2508372165535308,0.21667869911226284,0.2425545380382366,0.2643026775271605,0.1995774095727171,0.2142864867006806,0.23800201265838397,0.26541879764899723,0.27559989118574063,0.2561073852428814,0.2861932986990557,0.2506382190455332,0.331709129325725,0.22555389449133087,0.3380549035377692,0.21265683329034452,0.26887740162682777,0.3151158255483423,0.2086416183816486,0.22348685552931652,0.2289225380532431,0.20546508650226594,0.22974214638963372,0.1913913912771469,0.25336217351695917,0.22429288042241527,0.25069339882804675,0.31368756723052793,0.23912586209385875,0.211992605369791,0.35586906653932543,0.18850056658458963,0.23680963786497156
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.24328394698190936,0.18622969549241464,0.23772890145397066,0.23326599790034241,0.2724589735073171,0.2604407989801971,0.17052494244602945,0.1689503678267217,0.22778134118520607,0.24082141488301917,0.15043570524037864,0.2535019411100528,0.16261689305387525,0.2508734751598003,0.24627034477646093,0.188980001430033,0.22366119122907321,0.2163979699893382,0.22717818387966016,0.2439030368351432,0.17790209464010978,0.19666581766397256,0.1789141349718966,0.2392335414862109,0.24109888685608932,0.28605691493536733,0.29350617615441404,0.2607891944218481,0.2444253740717104,0.131554688603017,0.21788906216523724,0.21418208755074186,0.22423260151530236,0.2647069596650738,0.2241358461275347,0.19442724939286204,0.1689831643255079,0.20774728397424552,0.2995031114278875,0.1734597994897226,0.2168272656808848,0.24926702470755557,0.29884884921670635,0.2177447948776848,0.31895740723453303,0.230969766467057,0.25533018015441905,0.3282536184594963,0.3575041709210239,0.19048381111484322
+0.0709138655462185,0.18549675324675324,0.1830302850928114,0.3248738372738373,0.10006869253052769,0.06,0.49496559068093904,0.46914229360383203,0.12487577428002171,0.4421052868074598,0.10044954197895375,0.5319031539992691,0.19271842309609638,0.1434150750438603,0.2951119000960668,0.42066839206030143,0.37283740329236326,0.25679586563307494,0.17051804181561747,0.15035714285714286,0.073,0.6608536423599325,0.3142621583869944,0.1248852563579178,0.2366864792864793,0.12042948633247655,0.1432517730496454,0.1675182884748102,0.22982960492769586,0.07093023255813953,0.4896925465838508,0.1439396155599986,0.1210741868085618,0.2968487394957983,0.22553136200761018,0.19874589101820908,0.3148324263609891,0.3058436951176678,0.17390719367173366,0.2425,0.13748485389472004,0.16548199767711963,0.40477892210844757,0.14862412500089311,0.22272727272727275,0.1948281925299122,0.2668952960494542,0.27022995940750905,0.45327176363709926,0.3573741007194245
+0.38109965749111546,0.21485392052576047,0.18025235782922736,0.2351993014867309,0.31171756051375527,0.19610960941162628,0.2542552101008267,0.1675811388594572,0.3018242305334436,0.26408397689808427,0.3221973160067332,0.22317079760028222,0.13898495011705314,0.2448289747580546,0.2384405751421333,0.12374481070233558,0.3135685662952745,0.2579119040996354,0.2373160272230883,0.4400453219188035,0.21614953722756564,0.23100075891634475,0.23034136217098186,0.2054637702854697,0.15206548643125609,0.22653916918869116,0.1428060367878198,0.2433950705052256,0.3319765217897639,0.15364425399145226,0.20599071133899588,0.26934046261633704,0.14404920713413444,0.36271278771927273,0.23071566194125956,0.1468495940123479,0.17517776787627995,0.2367714267552582,0.2815932403663364,0.16506244791875957,0.2860049732424882,0.26398371375903407,0.10029664225674485,0.20352248742632872,0.1704777022922702,0.2777643453477643,0.27882519882496093,0.24393685207380197,0.3439283986711499,0.2543256602071291
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.41553264653030014,0.4206591361619443,0.3128824858461309,0.19500180360662725,0.3660934915460792,0.6511456689476895,0.4544954148336068,0.5729579363777852,0.11913286921737627,0.4017278642163927,0.20175030099223648,0.510254076732947,0.5451134638396503,0.6094698991381754,0.46664488865432263,0.4776110307862288,0.22091520047100865,0.5678734206989035,0.713183188736285,0.17447506593768758,0.4507915410204732,0.6571749945021489,0.4609285147955323,0.2216104559995177,0.3565109644787063,0.3859552032691587,0.41813632932518296,0.5205516479202582,0.425655979538055,0.15536320322558872,0.2264171868475267,0.368976376446031,0.16650563760938866,0.4762727595665154,0.25610835570349383,0.5319194916755268,0.28842323516510804,0.2230340373864805,0.34042186614555037,0.33224324789346943,0.46840559965985773,0.4748175989036801,0.296049897158604,0.46604796316044195,0.276508672066347,0.5103986760534606,0.1736454540935739,0.39368179122144065,0.26211049822783744,0.4545998156426141
+0.5446245940426713,0.5494926770405604,0.5746499121239179,0.6218406649829236,0.5114775443628693,0.6366129839131545,0.5165423024293757,0.6370925169428692,0.542762995507313,0.6224536133465991,0.6195887861627687,0.6201674372045437,0.5833410289212363,0.5737714291757635,0.5614949019230016,0.5919750750710743,0.6646789349958279,0.537933061240833,0.6078420386828899,0.62000043075478,0.5935821456662708,0.48387453640644323,0.6614913982224161,0.5906930411673309,0.6435112262060124,0.5472840965847809,0.5410355385864576,0.6163531582848534,0.5662630656101545,0.5127930515232252,0.5694412980213047,0.6006435517576451,0.5549067943647045,0.5709044806156345,0.6087876033966626,0.5875175561590011,0.6262948708083219,0.5694286554113226,0.5513503034907371,0.6881534223900474,0.6292988137160652,0.5658270041014457,0.6296448327653298,0.5804412641529479,0.5549867683110549,0.6376343018830283,0.6548520152987767,0.5776049635056665,0.6088880679489195,0.5441456733365482
+0.3671773271254101,0.46017996439702186,0.4258013353137713,0.3048804340123503,0.4054441762969834,0.4293953001235535,0.3994282677277222,0.42337168983271345,0.40624711768596683,0.3359641716394034,0.47826274270594304,0.5118490701693341,0.49720393252565775,0.4374974312911684,0.3371927931179291,0.4679297704418325,0.4988350371476982,0.5770692958234784,0.4738541467807122,0.5422463549766542,0.4452553547346336,0.28641919623150547,0.405349662189563,0.5445170915772659,0.42918184334117176,0.2909047849607674,0.43749655984680397,0.4866605455976326,0.387693270522944,0.4430316280491823,0.4733620226572557,0.3900670901484724,0.4888762840590345,0.5199852988874305,0.43927669197089386,0.38294377847832367,0.39148958857323785,0.5287428822532403,0.39362402570790195,0.4395519151446139,0.5331068107946169,0.48706052892165075,0.4239245919491749,0.4542055938201725,0.4502882038010243,0.45742029413683727,0.37898835528456126,0.4772842031158298,0.4255262094081461,0.40727028097678236
+0.38476744781252475,0.3743989044200614,0.3924715973861388,0.38366875197374917,0.42162849316724377,0.3266066489585896,0.39820503891639975,0.4412377334299109,0.4247068353772117,0.31061327364925195,0.4827328015639995,0.48720957385236924,0.46852030483913837,0.3187299758917716,0.34282682069152753,0.3760002779701263,0.48858595668024984,0.47305812858771384,0.42789944847020267,0.37705109330894987,0.4073499291602718,0.3845609227916242,0.4235328250576197,0.4223398360369351,0.40514964137653936,0.3629035989879344,0.40527154887892036,0.42317244417893035,0.3771450329711037,0.40540988181938714,0.3944731657817856,0.43443298495326976,0.46995899023583865,0.4356246271925716,0.43938042191330184,0.41793354560191703,0.3622060645712461,0.45153076048025326,0.39222118317850957,0.4100955846601331,0.4161546372418238,0.4052294661567805,0.39528155434759493,0.4704369430043123,0.38164904231196745,0.2951318365722232,0.3765617410812942,0.42166463615466493,0.4644181252060538,0.3525449373231544
+0.4338340677113668,0.3359827313737442,0.2619036989949771,0.39239497772282284,0.3144484686266687,0.39145822860196927,0.3321462417004335,0.19997304533990698,0.41903318603158124,0.32927332804379794,0.38006612150289476,0.3087897996617475,0.4109961340351147,0.31536209594051845,0.41762280254040235,0.4717709323911183,0.3629870456318318,0.5039642271250001,0.5026775209951372,0.3698226827078141,0.30318292334568747,0.35543635748121394,0.46207236074538427,0.5690448942445705,0.3099383675622084,0.2979100045529774,0.4769451977783858,0.29947916553364184,0.3453354981879275,0.44765578473521783,0.36265105091254396,0.3303353835841684,0.3529509119527691,0.4001019855291015,0.355268453846079,0.3638788921159328,0.4086545543892251,0.442047005476487,0.38331332160627535,0.2963919804539251,0.38579361681843183,0.3652203516768779,0.33246285705311274,0.3586170698928025,0.350989886751615,0.4622283688759492,0.4300808039088373,0.45303929964227474,0.3829251829369004,0.448657486439195
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.767021560392262,0.693795809760338,0.6548424768611083,0.6812767042555526,0.6597496052991498,0.7950109830481843,0.6787756679479651,0.5464989908073616,0.6955481380155496,0.7997352905925678,0.9099763130842892,0.5976951301591645,0.7549805239999072,0.7207337949687442,0.7838861051609436,0.6832367150892612,0.5288982829071069,0.7793781149474871,0.7684081803463786,0.7625588972556107,0.8336822649033784,0.8829547478534308,0.6026646197849178,0.6965811669493572,0.7164101926882224,0.7755003233731612,0.8746010465630552,0.6991388177030696,0.6353218368282787,0.6586194726819018,0.8793099864958046,0.8696115729483875,0.8296696183881896,0.7481636775472136,0.6828856609808621,0.7890571836962983,0.7935004604170084,0.591618143178373,0.5015060085198719,0.735430085208293,0.7759237463952657,0.6494903904295343,0.5934758694484481,0.6198361842094963,0.6884431095609131,0.671760704902335,0.7812807726597846,0.7596284352210586,0.41926515977223033,0.7028475598340026
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.20899631891170425,0.004955461205461205,0.012443181818181819,0.05406939468446319,0.0890820895522388,0.016251542356540468,0.056142196662116166,0.050721677540555586,0.087,0.06817841662588865,0.3466656890935071,0.030568181818181817,0.05640122267245272,0.14553665780489966,0.059156918529697185,0.0005538579067990832,0.10344991510619944,0.022432732495630846,0.04924871590272857,0.100174688697318,0.05828580554798247,0.20056355851639654,0.006834530156312334,0.011966199466056447,0.021017552878965926,0.0842998464434777,0.07546465045197455,0.08447285067873303,0.11600585097229392,0.20643782401144273,0.016582328031030925,0.102,0.028894362342638206,0.02326250313100109,0.1934995629578451,0.01852254428341385,0.08895835907712005,0.013803483422939068,0.0680812081990581,0.08113493495576074,0.03385201308994611,0.08759466926702421,0.1953125,0.11263544481230621,0.02465694591728526,0.08324170288364663,0.060268154160630825,0.03,0.0,0.08952090924376693
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.6069587858611919,0.663387137300255,0.5473315654816535,0.4479278877115566,0.7111453867717066,0.6406688192297351,0.6793554495425248,0.44543263722321064,0.30111039718854865,0.6818143713377539,0.6437014332267301,0.621492947185109,0.5445427074813247,0.599699324124072,0.6040684184861247,0.4038171095489508,0.35555548060030345,0.6225537334193741,0.5276020711344798,0.5524396285234825,0.6455945923639969,0.4770718532652593,0.6294106417346066,0.6697770665250192,0.5557530648572687,0.5554339945745232,0.6520371315293579,0.6231476557613308,0.6097755725895904,0.7056515788654087,0.6133610076054882,0.6621415128015715,0.40857773572768996,0.5867667390431204,0.49387014001988944,0.6459448806403938,0.24261219967522618,0.44576486425170186,0.6366410504597981,0.26523498583905586,0.686303328227189,0.5894747137320956,0.26340995581544147,0.6868445605866649,0.7226257794165544,0.5421629590322631,0.5837187756231039,0.39869834035895335,0.505212241791154,0.39503218245335586
+0.8395535918839873,0.7695017523261071,0.7766929205645492,0.7731452771256521,0.733880185271111,0.8296099790439847,0.7685998568206784,0.7856936729135008,0.7116749284572401,0.8787418011626165,0.842331753924945,0.8324921433451119,0.8651695952309243,0.9033566437325655,0.8258053393825684,0.7692083510763108,0.8619282621802803,0.8670853641048585,0.7987187462664074,0.82264481752421,0.861024623204151,0.8351088745000945,0.8524924495039017,0.7189014264653021,0.7484150978128816,0.6777662058071584,0.7654552982743956,0.7452901239877795,0.7769826760786482,0.8434541096248432,0.8862615942724201,0.7472816521891886,0.7126825162087799,0.8111054205790269,0.8495545164139218,0.8020916395561238,0.7109766695256983,0.8201353536766759,0.7007006002017259,0.7247212529011887,0.8174542493478789,0.7996501093988936,0.8158204070124968,0.8841059587691683,0.8347919074988355,0.7469878045281061,0.7976980153091773,0.7861087663723778,0.6371627380565495,0.7649585940443687
+0.7539793211527502,0.45715936238731736,0.5514475990878328,0.5352046765704372,0.4755759919467728,0.47965430148021715,0.9053505796449133,0.27702014264029606,0.46575894310957655,0.48989130042527257,0.902550468442087,0.395756138963487,0.6140716229721256,0.3110202974969845,0.6926999463695955,0.34213276421164046,0.3777397775246045,0.5754219921907479,0.5105717570723681,0.45281580489883333,0.5329154774406623,0.19813815984281344,0.4488921859035934,0.5607533531486828,0.8135186189307487,0.33389448570257224,0.28837930980087995,0.6601621580344343,0.4712101794046147,0.43691204147070806,0.6832116045742725,0.7567547429145507,0.588248970665381,0.24741479312962583,0.6372623146916684,0.8091342901897225,0.5751959330326013,0.440958975044759,0.6421461098397317,0.39061758723823226,0.42941772223788577,0.5868232762799559,0.9362247715466462,0.3343160907677271,0.20955772373760634,0.5907548745563314,0.9143935997910313,0.5401182596959658,0.549077942218815,0.4189120449735217
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.47566850434673424,0.5202836884099376,0.7299845730502877,0.559451554063487,0.5743971586147396,0.35471475065929975,0.4843148438406294,0.8632753761153191,0.6173561298677545,0.542254508365232,0.4184138893429799,0.6140983559265414,0.5494063439657393,0.2303514848734681,0.4402367028360689,0.6988648065737977,0.5608261579840051,0.3648551884349151,0.20448470973470975,0.7120955608036855,0.6909248293936041,0.21943680416765005,0.3975950578038756,0.6526884591966811,0.35287590702429156,0.49042019059504693,0.7377521883001755,0.4257761680418457,0.6131960850407674,0.4456152181045032,0.29830609539505176,0.3518377798604405,0.6113232887278072,0.5737721060145491,0.32494569503793586,0.46222813853899164,0.5155536569369125,0.3311019891816684,0.5177020367328921,0.7074213218280608,0.6277507519354129,0.5742211743662717,0.41568124329735034,0.7463912722490776,0.45619305302824636,0.48390276094791934,0.4768501628777845,0.3549469475292495,0.3917410455554555,0.35815315040556817
+0.3119102105541166,0.3111144020795556,0.4095940915648868,0.3727690581249912,0.37191463033769856,0.489839579247065,0.4044518180547812,0.48362263121979593,0.3790313458977596,0.22918008643645188,0.5128715582198636,0.14399524106724917,0.534828685350634,0.30770037851237614,0.4459728917882943,0.40990893214542756,0.3391381021490899,0.09175364785249855,0.2051334807766152,0.2952917757299908,0.29753846153846153,0.396625,0.19887256055816324,0.2695944812620715,0.24819991638649672,0.5315581591326012,0.4543115813450116,0.5656234632240392,0.3295095865420577,0.5911117891335723,0.3507616370984732,0.3276446187877498,0.45536990573159486,0.214123617276122,0.32177275200023564,0.2894847713560949,0.387070650460874,0.39886967595489226,0.3358603463453042,0.37990170645649324,0.21724329258013816,0.03355735930735931,0.3471068291314292,0.26936765833411674,0.18314116755504245,0.3935536547214452,0.46510984848484854,0.49091255706503845,0.37915637791781925,0.39334726860629116
+0.7546557846766128,0.3168988478536069,0.28323631019925366,0.8565600155581024,0.30176464351745813,0.48629784564360906,0.8032054570826894,0.827554092795577,0.14151317494751792,0.45387680650160356,0.31558371413131797,0.291344100208166,0.4982727444422268,0.4913487280749375,0.34803954793667863,0.7835898964832118,0.5262605195173756,0.46547794257189223,0.7193050620055214,0.08693058939676118,0.5027066699636419,0.7214596141305804,0.3151606496293172,0.13036361000159727,0.4759776289691734,0.41955818257343647,0.46712783379742817,0.8582957355148797,0.8218949665705366,0.4060391125276018,0.45748987676543557,0.5870177688307558,0.32537464557626583,0.6484491719381934,0.2486928074908993,0.6271157521929852,0.42383739171058005,0.1941100748328676,0.31062837894217216,0.3409337288388329,0.47022431563885236,0.6740870399252504,0.19766232923761032,0.5167926203152748,0.7216815106233571,0.09870833525563441,0.9120614380426737,0.7066227151364243,0.3696998038397481,0.440026185824251
+0.20717781250769043,0.4321033624276061,0.4958103776333369,0.4182778196011851,0.3834298473529435,0.6113447612843883,0.5673938898263021,0.461434884074242,0.6881250567904844,0.19913942234587395,0.4913296710975286,0.307873206858501,0.3929187278262207,0.13931371843781837,0.4692469961154754,0.2314323467230444,0.21169997795180506,0.6417703257269046,0.5629756624806962,0.46405379112308104,0.12187054526888286,0.1533492281347547,0.375543956043956,0.554162811603601,0.08983333333333335,0.5039518806922737,0.5205553751803752,0.6141632950352498,0.4398609736378499,0.6404431298654413,0.3154602598694582,0.3056442356284941,0.3374502540449313,0.4113585691927981,0.25284962171345965,0.5438401963728176,0.6250620757867213,0.5293557924807925,0.49775554235162384,0.5204711236221561,0.35577372543338043,0.4079892093502567,0.10002299836615874,0.1771176516893137,0.18330375069817517,0.46341295546558703,0.22573152572065613,0.13398119003801603,0.286964768728004,0.7275114875438041
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.24804513506918444,0.2798329074418028,0.22400764726829042,0.21912767562313185,0.23783803999369396,0.249402555513171,0.19167918600622225,0.18307630803610736,0.18833987840196745,0.2476613604518798,0.16193433015005648,0.2586576064736581,0.2917324653801799,0.25059221788405883,0.24905912305327343,0.25304027041726446,0.19959737418999887,0.21036093198442274,0.20789994419415186,0.25312093162121824,0.15598657943628674,0.1836847204195828,0.1937851752134744,0.2927584700895637,0.23841054697697767,0.2767235431015095,0.28085247746581826,0.23904092990640266,0.25339291677105646,0.19298665343064925,0.20863524521896462,0.21396932699043014,0.22834328601665269,0.30337088680264523,0.26761795225693613,0.2096037879162279,0.15290627605370097,0.2198851912933937,0.2558343918847775,0.17186623988887678,0.24331342214725118,0.2154179887533757,0.28164649355847776,0.21803432967930328,0.28414464575148973,0.22140847455580961,0.25135898454094613,0.31866049335970975,0.22265718654523084,0.17473934055022222
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.22390325454320895,0.1538451141508033,0.09926633180776574,0.17752574600111898,0.1252515034709617,0.32152155520859765,0.08202551878341797,0.04200202432430441,0.40323912318512095,0.3109141893346089,0.039124542124542125,0.230913632227411,0.1104749421442261,0.09476797026918828,0.04253022847512208,0.09622537188089553,0.2663438590630628,0.05955767659794819,0.1180427525125206,0.12225772588010851,0.18855981043589437,0.22453844569235343,0.28076103880114767,0.07257189066757333,0.1434093765771321,0.2901346665144777,0.34279473858501186,0.1254160000266744,0.20835880613440375,0.061192596841060085,0.06110772682963034,0.06214370208521028,0.11692557814567785,0.14731606477403159,0.0399149651378782,0.18706586879006648,0.0796612247492852,0.09211062575937212,0.02283575173915195,0.09521098102874813,0.07848573881756005,0.12711645286956533,0.053315415840555234,0.07148813208024071,0.1286399336273044,0.1484698503179019,0.08626391992192117,0.05385734750575532,0.09352469872254948,0.16573383130510677
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.8160800423564986,0.889832092494959,0.8745712176693904,0.840821386457063,0.8908560114120049,0.8959945962338626,0.8437658875242673,0.8904834778113926,0.8521398245510402,0.9192046973965711,0.8736426481392993,0.8445782325505129,0.8056518287565636,0.9042226938824206,0.883097977108242,0.8656809565304446,0.9053987156281051,0.8740622736713142,0.8721606769443343,0.8803164692623443,0.8632782384785891,0.8948649419084731,0.8693988396306206,0.8672611639421036,0.921733302726086,0.896190337287489,0.8807393014740929,0.9194256527377554,0.9213026917975684,0.9201876994105475,0.8127571283880911,0.8688286020721374,0.9025146748389636,0.9013641080625365,0.8967273697591938,0.8988235027687186,0.9221200797220291,0.8625239748504017,0.8932885568264893,0.8886550060908853,0.8632778513104296,0.8736422832632812,0.8845659156199243,0.8644234766987138,0.8425624818051939,0.8447052361979757,0.8786645732616876,0.8559859026793335,0.8812045690671052,0.8596953792506338
+0.4672775949995772,0.41298830455445057,0.41330740082810685,0.4069503000170782,0.4679953596770224,0.462714415674432,0.4810240992849063,0.4173778792081401,0.44741791699560696,0.38653383767459,0.4646996518646065,0.3373458430753832,0.42752251850664763,0.3573368784469721,0.4636645134901826,0.5646626293193738,0.46453184234696415,0.4945425643572692,0.4700503947709922,0.44390368619330167,0.4195615029301846,0.3939498684849793,0.4546215155747552,0.611522511951767,0.47284082546009043,0.39158859908387667,0.5196783507305763,0.39101629085238016,0.36893885868845006,0.4921521408290968,0.41768578571042897,0.43064216964194785,0.3966700818342114,0.5392620151805597,0.41062220848119707,0.4077894657082936,0.4279424187521185,0.5272904272084918,0.47027441483434496,0.374860489098875,0.469636479530707,0.4199014155438011,0.42682400517618135,0.43140515090990583,0.36158639587202157,0.49950161745911165,0.4081663955897804,0.4387233487331668,0.483133709456531,0.4768084212379538
+0.9027773741665598,0.24313072999952898,0.28004282108327455,0.9214841509521899,0.632667776509441,0.2786915899295155,0.799600419065785,0.9115351282462738,0.7356422851382627,0.7836237367909975,0.9373415071000946,0.6829478362140398,0.841235350613138,0.9106462101571635,0.8066547495971815,0.4202926734350413,0.8627410290645418,0.5866955185607505,0.8342167917849618,0.8048393625842067,0.33440054136498637,0.6908304849045589,0.8204220653632008,0.9108477759168632,0.8329412300634896,0.6652733758457959,0.7024086606808414,0.8840240596884094,0.9057797121645877,0.8236303824966846,0.8483903786933954,0.5867490778482825,0.6773963293732248,0.8093756435894309,0.9170732051490799,0.4862824520429429,0.6469946027814067,0.7801421773099159,0.7077107492490365,0.373541560654651,0.72851328634487,0.9234469341326625,0.8386834021201883,0.9532046736812461,0.5414841212411018,0.3604061591036668,0.7734743361749734,0.9005246074148853,0.6900276550713562,0.2338341243606877
+0.42068487767448487,0.5416473063176791,0.588764120595191,0.513444953830735,0.6043273953725228,0.6224234253988287,0.6355420570607403,0.6173681588393463,0.517977679682254,0.7073709289671167,0.6053170590199431,0.6331307031318092,0.5541735813304386,0.697711901040754,0.6409500014822003,0.6635471547097899,0.5772237965268564,0.6253600719156028,0.513920592879954,0.8265629651263103,0.7227483409761309,0.4977222392532876,0.6436161313100729,0.5629987969616479,0.7084052972301431,0.7943700522908844,0.6269727246378582,0.7019608243107366,0.5303372931751719,0.5292023980348278,0.8473611968813786,0.5046570998200752,0.6820562050108512,0.638648156299259,0.7538048404645401,0.6795640128349583,0.6199957778676455,0.5565011004532612,0.5414704555824238,0.6487915238045006,0.4900383024663514,0.5026038347329029,0.3658015503943194,0.5157918845980349,0.7073106000662098,0.834245958927917,0.6740750556892331,0.6312187081244448,0.5915630614494495,0.664111264992794
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.7803869959017017,0.6235867063865012,0.7164732695389843,0.6081554456565806,0.5830878296458362,0.8161920097953241,0.6539367740122617,0.9014045194961379,0.7102758853433909,0.5618071388911773,0.5178345535168634,0.672691855585375,0.6105470122620958,0.5861109274916128,0.5512070081257934,0.6913781308464243,0.7287010313266574,0.5183300263054753,0.18088947163947167,0.7188738013034253,0.7663784925982307,0.2575113403433579,0.6934790095525392,0.7557402679020326,0.544488829988363,0.6961645332824941,0.7804299527871507,0.5048640373842984,0.6062480330927155,0.4595397032245642,0.5365339251987163,0.36314291688013206,0.7999968702708107,0.6707143578851698,0.5003295551203717,0.7434322465302621,0.6891968996574072,0.5666139915839229,0.5753844730608662,0.6944366401455571,0.6918856123461427,0.5797156798607773,0.46632285031880316,0.7595326392486637,0.7168464811384402,0.47653268059821735,0.6324257810253187,0.42677298889808896,0.4050071363878245,0.7632594357061948
+0.6386274914120214,0.17931334138640836,0.4714852687605694,0.22769796799480857,0.5415873926245948,0.33339462505748885,0.3963992979573267,0.1574464999238556,0.4581218750490404,0.44234585429100576,0.41829763479753046,0.19592216798199494,0.18560050735969238,0.3444493104151434,0.2783614847911241,0.3256166339067202,0.5505875897329672,0.3409395018628747,0.342064663816913,0.36760925574327685,0.26022024941543487,0.38951686776654043,0.5663155004988604,0.2977561964301514,0.3708223046200282,0.4883127411864953,0.2514004555272814,0.32751547479777043,0.4336147298234986,0.5159271976745451,0.6412721640656696,0.30113077843306874,0.44915494592317856,0.45602134289975793,0.29715855009392717,0.25211506788529503,0.32672630461392865,0.4972566664444964,0.42335269996696284,0.4357707834775584,0.315373016939021,0.45691746494611507,0.14096336319982888,0.4105788469211499,0.3105375224307288,0.388387411360397,0.3507033721792871,0.49736961259162926,0.3371841172862489,0.278938093269101
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.38622563362489,0.44439117105786335,0.4204486382183356,0.38657226128656935,0.45335836808401553,0.43625748795909336,0.4195637437615571,0.5345971517841034,0.43525885979797835,0.35966050835497626,0.5368910553461944,0.49398669519003385,0.4655159994347102,0.44715790740701494,0.3718824657597029,0.4649227343015574,0.47426762380209675,0.491779119267013,0.4854772404626294,0.5093148102172353,0.4474658810504231,0.3769121494038987,0.4610937630349212,0.5507659817113872,0.467020266499122,0.3163091147127723,0.5283370306738728,0.43045184339401615,0.3797349384669023,0.447709047404021,0.4892625820493109,0.44426922799635477,0.5700397528123503,0.48829509245499914,0.44060123040806887,0.4052622562424129,0.3995444231100692,0.5103671547550143,0.39979040067850286,0.3878791226499627,0.5133653642845729,0.501169134587228,0.3869877826060848,0.44953882027981673,0.3968021364255113,0.4973534127744377,0.3711799504855914,0.4673005551778713,0.529227300288105,0.547317159312285
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.4913796605503139,0.5895622128042938,0.3521895758587834,0.6042803268259255,0.4933937487051569,0.6944318522382216,0.3922201085741335,0.2892041796720649,0.41269205391674807,0.46142548496118424,0.6853439001129807,0.7140803055293783,0.17994493765745337,0.36233494956920625,0.4557027538995919,0.17027908568668104,0.3446468416056796,0.16868616241348083,0.5574011913757343,0.6986594015247931,0.615299927079957,0.29846974832318623,0.657372973509073,0.5756432695210266,0.7235840667985185,0.4805619167596346,0.5735050252609778,0.48473875016558937,0.6018442056807409,0.4090499686549834,0.34691901876713405,0.8253475572128839,0.5477806604052933,0.6279236210924024,0.7293706464709685,0.31533767815012015,0.6516038510011863,0.4242116763585415,0.23284604494408387,0.27496646454922663,0.20267539281886346,0.336691105283634,0.7301403516172198,0.20723859892196667,0.29790285922397464,0.2959064917774701,0.13541485608362713,0.3613435462926234,0.40928299144677,0.3039703385868417
+0.5231994852715474,0.15166746574252968,0.23463610911267452,0.43632598967524816,0.3134840112222737,0.7080004960368295,0.7633262578425973,0.47079523002626267,0.5827509638716442,0.2555904362442562,0.7284525893646986,0.5678496703765776,0.6304764492587656,0.15822309419553746,0.3520954257803983,0.3514652065847595,0.2153666072791311,0.41208400031813147,0.47120187367551475,0.5891682720682291,0.5058889276615611,0.24405126526134935,0.7926338938838939,0.8149937437166809,0.25440892274800775,0.24727160363597026,0.47957948995449,0.3564758106956581,0.2974870826502738,0.49148206490352964,0.33370030798648753,0.11781513550384867,0.7291604227018215,0.4668051449429869,0.4121495321263571,0.5776536514308345,0.3971420214110284,0.39201931941097606,0.3911242576649314,0.934146026618248,0.5063981189126338,0.18985790407370018,0.17452588412915698,0.3474906788271238,0.6348358844051888,0.1691500067999456,0.11935787172425753,0.18347634949982783,0.5045303719362234,0.8554948927122179
+0.756324386280109,0.6295719179517485,0.5474547654651579,0.6186348110818612,0.5580223706265289,0.7817589447371942,0.6739416967099535,0.6560219326614802,0.43319579101465727,0.6401070289441765,0.7736403772648146,0.6550448651677141,0.6946257156552201,0.649884534787878,0.7364274583152104,0.47802892563063315,0.8357743251431675,0.8251388547009582,0.6589628626915076,0.6878461704632435,0.7001216698568559,0.5697747412493412,0.565383368411679,0.6196295759640321,0.5773941669783533,0.8061960229552807,0.8775434794499365,0.5205533316676232,0.5838953749035244,0.5005853658084948,0.687632614216974,0.5889028252946784,0.547584505060249,0.7185384256097254,0.6537575956076629,0.5521967338949398,0.5247303766689381,0.49570504369793306,0.8858821992714232,0.7556287713775319,0.6597830158186426,0.4874348038748757,0.8906278523814851,0.530274557723022,0.7633592042981345,0.5318206833968737,0.48817954178013084,0.780094812349984,0.7321416907459519,0.5164353665225865
+0.3614285714285714,0.5317016806722689,0.19641602809706257,0.36057142857142854,0.4906033263053724,0.3967435064935065,0.6383861927546137,0.32607142857142857,0.15858253968253969,0.6479353932584269,0.2444471163727545,0.29361484593837534,0.3739902072048143,0.46811767453448266,0.35401315789473686,0.5005367851446799,0.4744444444444445,0.5014553429027112,0.35083477633477644,0.3306060606060606,0.6408219184324447,0.48554526425954997,0.556484126984127,0.7280555555555556,0.33779691653375865,0.6367852564102564,0.24834126984126986,0.5764166666666667,0.29409956709956714,0.6949985994397758,0.7690637410138915,0.6291919191919192,0.1499341816078658,0.34634199134199134,0.1613365800865801,0.3653909581646424,0.6303835417456107,0.4975,0.33012936283138655,0.51,0.43429059829059824,0.5635137457044673,0.44103693930338667,0.2756663059163059,0.4897222222222222,0.7642391304347826,0.7475,0.25087142857142863,0.3415676715490148,0.473152445593622
+0.5446245940426713,0.5494926770405604,0.5746499121239179,0.6218406649829236,0.5114775443628693,0.6366129839131545,0.5165423024293757,0.6370925169428692,0.542762995507313,0.6224536133465991,0.6195887861627687,0.6201674372045437,0.5833410289212363,0.5737714291757635,0.5614949019230016,0.5919750750710743,0.6646789349958279,0.537933061240833,0.6078420386828899,0.62000043075478,0.5935821456662708,0.48387453640644323,0.6614913982224161,0.5906930411673309,0.6435112262060124,0.5472840965847809,0.5410355385864576,0.6163531582848534,0.5662630656101545,0.5127930515232252,0.5694412980213047,0.6006435517576451,0.5549067943647045,0.5709044806156345,0.6087876033966626,0.5875175561590011,0.6262948708083219,0.5694286554113226,0.5513503034907371,0.6881534223900474,0.6292988137160652,0.5658270041014457,0.6296448327653298,0.5804412641529479,0.5549867683110549,0.6376343018830283,0.6548520152987767,0.5776049635056665,0.6088880679489195,0.5441456733365482
+0.7404146136232432,0.5723180904114983,0.5478406689825234,0.6837602916329116,0.8704702058230906,0.8517998171605419,0.7187071659860773,0.5736884345141471,0.7126243437425482,0.5721776734216186,0.5804354467616573,0.5356579613992489,0.5059688483927981,0.7067369593657973,0.7033036048872953,0.24096179979027332,0.6050922930466434,0.3680532023089399,0.6847330030988324,0.3338127105319943,0.6435355197172933,0.8563453423194651,0.6742843832491389,0.48387917744550585,0.5494015555862467,0.6910311274795073,0.7180119766376969,0.6075292565845093,0.8980393786764742,0.584628105329712,0.7270394671512652,0.13820887784642882,0.4450097011580764,0.8652299588652298,0.3347913863696428,0.5631509574762001,0.5490738651264417,0.6758527468065668,0.6254889488752756,0.6888240082471135,0.6320827726780214,0.30001186171193883,0.8508837982233939,0.5129978345146151,0.6587996675971514,0.49390369971686043,0.578949394939556,0.5107053387376875,0.7935171968684251,0.4402462975960648
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.8334184253030094,0.8576141619236942,0.8243588245265443,0.8804644279020049,0.8025540910522031,0.8347102206743517,0.812811091580054,0.8155295359196895,0.8427912840124486,0.8834114529801927,0.816595166011179,0.8887262607510571,0.8289262559831818,0.8682377697822017,0.8425429049670992,0.8748471695840653,0.8610106825206663,0.8036559519162669,0.8502294893626179,0.8560039035255894,0.852326337652949,0.8910998873417862,0.8771483314450506,0.8222389076772303,0.8551288595084107,0.8032659833366634,0.7897127187628976,0.8079341195297846,0.8037366866403934,0.8330469540106575,0.8389123738487692,0.8416192634440851,0.8544615512223401,0.8975187135846504,0.8476033854347524,0.8391143841607949,0.838094447145523,0.7926832649165485,0.8547590683387566,0.8797772225892578,0.8786848845425206,0.8384317199633586,0.8379384969500131,0.8986381758977164,0.7807453593188757,0.7889167266696956,0.8351719755447569,0.8257819514276921,0.8899353872794549,0.8705998214946934
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.8939662504789624,0.6921113457886784,0.7801595211156385,0.6966379338796608,0.5710407483583293,0.8420026745552898,0.5014063471086032,0.8778850115778958,0.7059901710576766,0.4828193879301116,0.4072590336999353,0.6622673584186772,0.8103042677822865,0.6848649498919767,0.46770172821242156,0.7377814732404643,0.7254132211534435,0.5691744700118118,0.28355613830613824,0.6772482218681113,0.7742266881763026,0.30359302806071614,0.8936681178298826,0.792646516642496,0.5327680697544447,0.40391313112857424,0.7522077305649283,0.5279346879762843,0.6750121768950007,0.6290826530390958,0.32910446452218056,0.33678662436312523,0.7241142889774237,0.637075546535381,0.49602399956481613,0.707532146686615,0.773242287940396,0.594905657534883,0.5482978499374009,0.5956854773243891,0.643516034762616,0.7542472026393675,0.45832292948002007,0.7699601957848605,0.6455891043485167,0.49848609428125273,0.6814204501153251,0.30984016542246723,0.4361828761441219,0.7632988618480597
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.6646938564053209,0.6281208936708897,0.6718915479387146,0.6616228908180092,0.7260724071818891,0.6644727883577661,0.6371426517989672,0.725044928025524,0.7019769113399005,0.6750077530754536,0.651570391096487,0.6361273124007341,0.7109030845491198,0.7525992377731373,0.708674149776304,0.653698410672138,0.6656241203449654,0.6563146629490495,0.7410724903683651,0.6905474365713825,0.6913923946219351,0.6372961428161047,0.6678322003551522,0.6615922954340513,0.7397261444796324,0.7667900562939728,0.6995821043970339,0.6724299718373057,0.6829923880701249,0.6761812682843407,0.6751215497648779,0.7244085050956265,0.6262064023511259,0.7015383149610248,0.7273866116874944,0.6589468055706341,0.626396282581685,0.6192999154676947,0.6955067138005497,0.5892926904861665,0.5335255098196853,0.7093511917073273,0.5667399027044105,0.7037331881108423,0.6674273744844327,0.69124374856744,0.7440871373160988,0.7122757971412079,0.6987622844267023,0.5838387653982741
+0.27079506400834963,0.20501979819874894,0.5040057616189746,0.40241923157508064,0.29663613554773194,0.3983102636275455,0.8197156445156069,0.8080157155013079,0.0724056001128032,0.40809007355460253,0.703059340721361,0.7571376401120138,0.7920803225109359,0.5810229308677922,0.7271131109779004,0.6160403764398429,0.36023004006485954,0.4756723684990574,0.4606790717152739,0.1341031677039191,0.16237058239430588,0.32343386111378825,0.3761504851989247,0.16442078043326142,0.17340406320243512,0.40013459357164327,0.15110247092125456,0.16148129824295207,0.6602785011817452,0.5787803190658787,0.23907632702633763,0.45926587182154976,0.4199764178242728,0.47874493340281715,0.11593383044167391,0.36664938666685054,0.4359458240438576,0.49118914684123444,0.2580837035761422,0.4898188618671091,0.3233291559096484,0.3359620335703001,0.23296710495725215,0.27029100840466996,0.5060299405209677,0.716143631033782,0.31033197223250947,0.6543347319589148,0.6438957128131184,0.165700381435819
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.2536746987287057,0.2036152659488148,0.2969147423817374,0.21005171400350697,0.30138286328489333,0.20847543023152754,0.23083015211466992,0.25914841557499185,0.12139156832895315,0.4978126835854191,0.25592917195981096,0.20281436764285143,0.5012235337938714,0.4959650795186483,0.19131998339836628,0.16285681798656587,0.26997755055266354,0.41567151084917414,0.5113050436755917,0.2334999590092457,0.4425933455838381,0.19108173104190868,0.36941778022653105,0.18360995855341464,0.45471911712109736,0.24361407673953153,0.35030211545003376,0.33592856122801606,0.2887401517273787,0.29699485393066594,0.16127590190640742,0.283298028668025,0.38959794088858246,0.1455310160540729,0.5067201384774914,0.6060622192857399,0.26992404264040276,0.29613850934618846,0.26204326859089355,0.27644409725787006,0.28490395437766797,0.494386500789659,0.17960272462558838,0.36980382473417267,0.5552202809286961,0.36474083387853945,0.28421518183870853,0.23207875266056013,0.16488999289505304,0.23670709575521495
+0.8395535918839873,0.7695017523261071,0.7766929205645492,0.7731452771256521,0.733880185271111,0.8296099790439847,0.7685998568206784,0.7856936729135008,0.7116749284572401,0.8787418011626165,0.842331753924945,0.8324921433451119,0.8651695952309243,0.9033566437325655,0.8258053393825684,0.7692083510763108,0.8619282621802803,0.8670853641048585,0.7987187462664074,0.82264481752421,0.861024623204151,0.8351088745000945,0.8524924495039017,0.7189014264653021,0.7484150978128816,0.6777662058071584,0.7654552982743956,0.7452901239877795,0.7769826760786482,0.8434541096248432,0.8862615942724201,0.7472816521891886,0.7126825162087799,0.8111054205790269,0.8495545164139218,0.8020916395561238,0.7109766695256983,0.8201353536766759,0.7007006002017259,0.7247212529011887,0.8174542493478789,0.7996501093988936,0.8158204070124968,0.8841059587691683,0.8347919074988355,0.7469878045281061,0.7976980153091773,0.7861087663723778,0.6371627380565495,0.7649585940443687
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.39545330894278125,0.4107848052819708,0.36794701827429177,0.48472516749840155,0.5337991739399961,0.3418009754644919,0.23892348559018878,0.6797701085394992,0.2436017057015247,0.4605304153729394,0.17593520689810876,0.134793999253318,0.7047173052835195,0.24240127474699172,0.512905274310913,0.25694650787194623,0.4204229962245912,0.26870928195673616,0.40625941819821926,0.1517329539084336,0.12423216747880561,0.23613689891508916,0.1681522084527133,0.3155584918420509,0.4821613208473352,0.3250546095136362,0.7454832892951266,0.38793534718510103,0.41824127248769405,0.31930891649009885,0.3010058078972921,0.3289317462732791,0.04809201549356627,0.40394747237246215,0.5051749038078557,0.40113382940481723,0.560060383681593,0.2100058965838698,0.47250976610147466,0.2371607061887857,0.16730549029818728,0.1909742445663498,0.42513055993540044,0.2883973664075132,0.3957243724634229,0.38259113189226235,0.5492563596668087,0.5319594273107847,0.4636193790139246,0.4320761859634119
+0.41393884592845326,0.5181118089486688,0.514762640942466,0.47401007105809745,0.5050778076778869,0.5481885749749094,0.4558309100160775,0.4943086350263043,0.517977679682254,0.507612435437987,0.5794406475174789,0.5589837523761021,0.49249335439763686,0.45858232796722737,0.5639802018774409,0.47688752314331945,0.4918825421615435,0.595660796383566,0.4595323061922968,0.4545008931398639,0.5768711652561789,0.5238709018996666,0.5167961820045933,0.4961427765184972,0.5119106357864369,0.5229300531139661,0.4857269105289497,0.6060993542523205,0.4911564714771729,0.497988873044767,0.48471730581688377,0.49658518749803277,0.4875795623774458,0.5502911499511329,0.5077963749597394,0.49204975643313026,0.48790467505369095,0.5045875698462239,0.5642647502683594,0.5589782265297066,0.4464715731899764,0.4732082556236742,0.4225653803733244,0.4650716984389275,0.4478542656013822,0.49205445885562926,0.46283141256637705,0.5116404960360026,0.5524615893900845,0.49577078664175905
+0.6833284616920104,0.7249665816733664,0.7203217451336505,0.7152628694559398,0.750628878527031,0.7812738215059675,0.700468755416901,0.7848040179699431,0.7491544999133514,0.6896701191157193,0.7424289014397486,0.8035651180950851,0.7474590584526449,0.7806808798743341,0.7605182496947307,0.7499849410906647,0.6893166387534525,0.7409300167328012,0.744888191899755,0.7539496574669877,0.7438338676189373,0.7069185054217866,0.7263011939401903,0.6801377178789711,0.7272198169031492,0.7875145491104943,0.727886914288072,0.7357907345206496,0.7402043643986719,0.6773266577881885,0.7426391860759834,0.7489296155199525,0.7764588891454648,0.7583534679542709,0.7546554268671499,0.7003097049149645,0.724474667256105,0.7426007754506686,0.7062410283353857,0.7263334764275549,0.6801470415793952,0.736805529143073,0.7896428569106301,0.7884868978678701,0.7167678241631024,0.731111950273995,0.722380542838886,0.7271912759022885,0.7492410355610701,0.7418190390673819
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.8395535918839873,0.7695017523261071,0.7766929205645492,0.7731452771256521,0.733880185271111,0.8296099790439847,0.7685998568206784,0.7856936729135008,0.7116749284572401,0.8787418011626165,0.842331753924945,0.8324921433451119,0.8651695952309243,0.9033566437325655,0.8258053393825684,0.7692083510763108,0.8619282621802803,0.8670853641048585,0.7987187462664074,0.82264481752421,0.861024623204151,0.8351088745000945,0.8524924495039017,0.7189014264653021,0.7484150978128816,0.6777662058071584,0.7654552982743956,0.7452901239877795,0.7769826760786482,0.8434541096248432,0.8862615942724201,0.7472816521891886,0.7126825162087799,0.8111054205790269,0.8495545164139218,0.8020916395561238,0.7109766695256983,0.8201353536766759,0.7007006002017259,0.7247212529011887,0.8174542493478789,0.7996501093988936,0.8158204070124968,0.8841059587691683,0.8347919074988355,0.7469878045281061,0.7976980153091773,0.7861087663723778,0.6371627380565495,0.7649585940443687
+0.1420739946333417,0.017151758448651567,0.23430888094676317,0.03669405650435435,0.1276910336128968,0.11217702444208269,0.1980445244775709,0.06912736394394521,0.21829543453173972,0.11916252250766139,0.13772654560025166,0.04351775170798142,0.16474089292110183,0.09213947273974935,0.04583761519902062,0.030639671766040783,0.09485577769433247,0.2080143362873127,0.2666342053670268,0.23613242989787436,0.054958488352921844,0.13837595133595118,0.07060691416331237,0.07220614953563032,0.18293129121262197,0.21226163326002354,0.11333148704141191,0.1251085783233647,0.14772540842853768,0.1484845773096444,0.11306391772285958,0.1454621329726465,0.20787155976522625,0.12539916262626652,0.07389970536880143,0.008571953392337928,0.06930733286761873,0.10612197301293817,0.036071729497983665,0.19178743545500385,0.2602903486161214,0.060256375259311226,0.3407998092254841,0.16082234957868713,0.08243969056615358,0.22179762287755747,0.18811492344397224,0.06625011140358533,0.1813809523809524,0.13365686246179564
+0.6386274914120214,0.17931334138640836,0.4714852687605694,0.22769796799480857,0.5415873926245948,0.33339462505748885,0.3963992979573267,0.1574464999238556,0.4581218750490404,0.44234585429100576,0.41829763479753046,0.19592216798199494,0.18560050735969238,0.3444493104151434,0.2783614847911241,0.3256166339067202,0.5505875897329672,0.3409395018628747,0.342064663816913,0.36760925574327685,0.26022024941543487,0.38951686776654043,0.5663155004988604,0.2977561964301514,0.3708223046200282,0.4883127411864953,0.2514004555272814,0.32751547479777043,0.4336147298234986,0.5159271976745451,0.6412721640656696,0.30113077843306874,0.44915494592317856,0.45602134289975793,0.29715855009392717,0.25211506788529503,0.32672630461392865,0.4972566664444964,0.42335269996696284,0.4357707834775584,0.315373016939021,0.45691746494611507,0.14096336319982888,0.4105788469211499,0.3105375224307288,0.388387411360397,0.3507033721792871,0.49736961259162926,0.3371841172862489,0.278938093269101
+0.7504760611039726,0.7100038903242095,0.7318256604682213,0.6959575490736539,0.6952124580832851,0.7190126167196379,0.7273175531528326,0.7312374545371384,0.7005788375672704,0.7204527954449966,0.7048820441285344,0.7343144220706104,0.7623502229203953,0.687915163729227,0.7142378092755473,0.7271857265072011,0.7083608957601202,0.729011054211472,0.7017256445008185,0.721323933275812,0.7073588185483091,0.678846527208253,0.7553940328202333,0.7010816382227955,0.7225346169840927,0.6991260683158211,0.7059517038366993,0.726984249569652,0.6981945307920467,0.6843524323525275,0.7189750823685012,0.7302964721590149,0.6797579984801277,0.6654608490919203,0.7222535944528521,0.6896358659712805,0.7286266294628614,0.6982693802416543,0.6965253251998376,0.7110757935589538,0.6976960098972138,0.7312434448365859,0.7365199132501473,0.7217955427940507,0.7152078597752285,0.726318956340624,0.7322779116210407,0.7562602392593238,0.7380606150838446,0.7163132667414516
+0.8334184253030094,0.8576141619236942,0.8243588245265443,0.8804644279020049,0.8025540910522031,0.8347102206743517,0.812811091580054,0.8155295359196895,0.8427912840124486,0.8834114529801927,0.816595166011179,0.8887262607510571,0.8289262559831818,0.8682377697822017,0.8425429049670992,0.8748471695840653,0.8610106825206663,0.8036559519162669,0.8502294893626179,0.8560039035255894,0.852326337652949,0.8910998873417862,0.8771483314450506,0.8222389076772303,0.8551288595084107,0.8032659833366634,0.7897127187628976,0.8079341195297846,0.8037366866403934,0.8330469540106575,0.8389123738487692,0.8416192634440851,0.8544615512223401,0.8975187135846504,0.8476033854347524,0.8391143841607949,0.838094447145523,0.7926832649165485,0.8547590683387566,0.8797772225892578,0.8786848845425206,0.8384317199633586,0.8379384969500131,0.8986381758977164,0.7807453593188757,0.7889167266696956,0.8351719755447569,0.8257819514276921,0.8899353872794549,0.8705998214946934
+0.17798396343031506,0.3075640309537949,0.3703707121488143,0.1999713328659351,0.3278648356735733,0.06480864434693866,0.20737229460976545,0.10296448981921733,0.14616963340891204,0.170311359090555,0.29365508425422626,0.27404006675918313,0.17567310095306182,0.31735200275753356,0.2915631026322443,0.2072617815991263,0.18894470694217855,0.2783546509684891,0.18041351449435752,0.3259639132289238,0.1997668297522821,0.2134665470823248,0.10975575773396383,0.28404863785657186,0.43101857866985815,0.22686084457784234,0.34286363090889876,0.24841468307597256,0.27256028593172577,0.040828896983597686,0.08458713925890017,0.1777150132195729,0.12376424253647507,0.3192242174614941,0.17047860938019352,0.12669556802178028,0.1452770117039575,0.24124770223175804,0.302448179509902,0.1202973559824772,0.25819478307617794,0.14816540729705857,0.23441272261033938,0.08859563904598573,0.25922596230967665,0.17897447711048342,0.16191785673788608,0.247815563872006,0.30886506557525584,0.26301449968754315
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
+0.4025233628764797,0.49184069579297224,0.5169938995191062,0.49504407211856133,0.4461132911095509,0.3460104194935562,0.5565841512633228,0.49716039381854243,0.4357595313019073,0.4658536394374926,0.4623488146060858,0.4579100913356188,0.4586420980672905,0.4942932825060165,0.41440044353873473,0.3666109390740923,0.417228434825772,0.5949677733330495,0.40464107284391804,0.525568934121831,0.48670982292137915,0.32934090935707766,0.4758471158582276,0.4940630717217477,0.47737857753157853,0.37682677044420965,0.5035251573685561,0.5451240992507356,0.4430971912729025,0.45559145398505463,0.4623445258197823,0.3444920670035142,0.5443198087457453,0.4975617827504388,0.4227903325718094,0.4336621191787435,0.38088435442058993,0.3500647630196122,0.3897998962524799,0.384903124484586,0.483248433503473,0.3981157653453653,0.4966067382969336,0.497256875988893,0.3379921739553434,0.3921982315607174,0.426271600472521,0.5627464173357521,0.3834570960931994,0.3366534438382414
+0.26249192598345855,0.18799065225948028,0.1604719878124373,0.3497438235620844,0.366091532071951,0.3832284768320852,0.41152277882117005,0.3426073781155494,0.293030377481525,0.16814593165088548,0.3647587597560084,0.17332186721309983,0.27658576111051697,0.4039339124016355,0.5072478365388057,0.19988028729502091,0.4746078821089348,0.19770581914271845,0.342693085197661,0.366407157064791,0.1596182836771072,0.2532460838289149,0.3054037125464899,0.26180794154115694,0.5044608097450266,0.472781823911814,0.24202798458116243,0.5472888977287897,0.26074384629001546,0.44575213088815474,0.4239852386670037,0.29533092754624574,0.38052942985825455,0.4151542988715843,0.36055514150556867,0.18536721482851515,0.4012928572993682,0.2872140348867148,0.19653181444178794,0.2851686129552284,0.36282415063637147,0.1525670732495525,0.29436542622262923,0.24777839217829897,0.2665383379296702,0.19392599794726553,0.2822843614611437,0.037572241322270036,0.27853115445984994,0.3304388139793848
+0.3424467989577558,0.4752084298500073,0.5844644120224153,0.5320400051346845,0.35227832431178185,0.3513762177533381,0.39814021102717834,0.47399972460851536,0.3522863033269023,0.28221005134424404,0.37908931385425254,0.4617277324687914,0.3422179893321278,0.3966918257528186,0.3952460291518294,0.3678136540365013,0.45184866972279153,0.5239833521691398,0.43783661138893953,0.2397689253338323,0.4423157741939777,0.4099398058510013,0.35606033702423046,0.3341943781918267,0.368387328532412,0.3185304322274522,0.3437498667645144,0.3608223870838602,0.3774333416238859,0.44476015424929455,0.40646050444493076,0.2859061816101271,0.5399703722267122,0.3509900787735438,0.48245555943974927,0.4010267877265997,0.30133209255853555,0.5058120373001739,0.3726719380358155,0.47297556450590117,0.5069678220919706,0.3358223948207721,0.37928383107625613,0.37945858617007444,0.5043847855643703,0.3245051112484398,0.4031004797231252,0.32507521492078467,0.2145330204589744,0.351177309175445
+0.6199220418549087,0.5289733635591284,0.5581908919876182,0.6244480341240817,0.5998414246551763,0.591057774589016,0.612041719419595,0.5541736925040303,0.5914058983647612,0.5771816116326698,0.5486544203491438,0.5594757993858236,0.5982063149976593,0.5907822356227164,0.5550749437772096,0.5723124112974068,0.5776129644394575,0.6014308544430446,0.5531497958281871,0.6458310104124401,0.6157365410819419,0.63721878722338,0.564648353781655,0.5834706325884406,0.6159746997644991,0.5867683631639088,0.5938254135141128,0.6297529915607695,0.5190237322269334,0.5698796712502574,0.586123347766359,0.5949764845927734,0.607653480029998,0.5858808814306997,0.5617086470394274,0.5346887260256445,0.5863485846694219,0.5926353553059679,0.610762425850198,0.5767923197175332,0.6064092001264887,0.5538327507286238,0.5140389642958378,0.5882913324361972,0.4498477180062597,0.6161365729595683,0.6333065574623229,0.6457332630741446,0.5863829432505051,0.5293834193533832
+0.6861364245374463,0.6699707671934934,0.6516606592508524,0.6399710362997224,0.7234556929619547,0.6478573176322913,0.7175628147887998,0.6377127675437032,0.646989885685255,0.6900413216923638,0.6789054192075819,0.6226802226419407,0.6725983630898749,0.6956249199381455,0.6417872223136927,0.6746721288623347,0.6259013403022736,0.6336691967369128,0.6656102269736783,0.6968537777053149,0.6574060908847347,0.5516635556945332,0.6654449875931512,0.6831321297427435,0.6326472638194155,0.6731667208825742,0.6706168536311151,0.6483363413546571,0.6551235250465567,0.7056515788654087,0.6565330029697862,0.7175543036020963,0.6480369244612794,0.598263460397767,0.6771322704680796,0.6675469819835507,0.6194513997233129,0.6677600539727143,0.7068329061172729,0.6279481313416114,0.6931972676211283,0.6943125266323199,0.7141646849703558,0.6868445605866649,0.7226257794165544,0.6950348337657072,0.6105488795427301,0.6636887970268746,0.6331485824619436,0.5643561935460503
diff --git a/tests/files_for_tests/COMPAS_use_case/COMPAS_y_test.csv b/tests/files_for_tests/COMPAS_use_case/COMPAS_y_test.csv
new file mode 100644
index 00000000..57e16b09
--- /dev/null
+++ b/tests/files_for_tests/COMPAS_use_case/COMPAS_y_test.csv
@@ -0,0 +1,1057 @@
+0,1
+8,1
+4246,1
+544,0
+1780,1
+3940,0
+1564,1
+4519,0
+2664,1
+167,1
+346,0
+1726,0
+1583,0
+1717,0
+1820,0
+2342,0
+3017,1
+2341,1
+1084,0
+15,1
+1578,0
+5239,1
+4155,0
+3290,1
+2685,0
+2131,1
+3785,0
+1244,1
+4320,1
+4532,1
+1779,1
+3578,1
+911,0
+23,1
+977,1
+538,0
+642,1
+2276,0
+230,1
+1890,0
+4674,0
+3680,1
+3622,1
+1729,0
+3194,0
+4516,1
+1424,0
+3773,0
+3431,0
+4349,0
+4325,0
+4031,0
+4625,1
+2995,1
+800,0
+4303,1
+1038,1
+505,1
+1293,1
+168,0
+2476,1
+746,0
+3817,1
+3711,0
+1272,0
+3036,0
+3080,1
+3247,0
+1934,0
+4316,1
+3754,0
+881,0
+3225,0
+3694,0
+2656,0
+3659,1
+3559,0
+2445,1
+1995,0
+2280,1
+4640,1
+711,0
+240,0
+4811,0
+1034,0
+2533,0
+2417,0
+5173,0
+79,1
+297,0
+1183,0
+80,0
+3352,1
+1557,1
+3860,0
+3867,0
+4693,1
+1268,1
+2317,0
+1569,1
+3220,0
+4088,0
+3819,1
+2855,1
+1942,1
+239,0
+3485,0
+1434,0
+3119,1
+84,0
+5067,1
+5250,0
+2080,1
+2487,1
+4909,0
+3768,0
+4262,1
+2552,0
+3712,0
+3527,0
+1592,1
+393,1
+2264,0
+1255,0
+691,0
+2788,0
+931,1
+5272,0
+29,0
+3254,1
+4936,1
+653,1
+1736,0
+810,1
+2890,1
+4952,1
+2309,1
+3038,0
+4763,0
+1893,0
+4098,0
+3138,0
+1055,0
+4274,1
+2456,0
+2459,0
+5166,0
+3513,1
+4129,1
+107,0
+2894,1
+1001,0
+2775,1
+3618,0
+132,0
+426,0
+1002,1
+4607,0
+3664,1
+1094,0
+4355,1
+3761,0
+3482,0
+4498,0
+812,0
+2658,0
+1658,1
+2535,1
+472,1
+157,0
+65,0
+4809,0
+5229,0
+2086,0
+4220,0
+599,1
+4878,0
+3608,0
+3814,0
+829,0
+1281,1
+5062,1
+4009,1
+1738,1
+5128,0
+877,1
+3707,1
+1499,1
+3357,0
+996,1
+279,0
+1505,0
+465,0
+1223,0
+2955,1
+2677,0
+2813,1
+1338,1
+2291,0
+1330,0
+2820,0
+151,0
+5080,1
+33,1
+4817,0
+3053,0
+251,0
+468,1
+2025,0
+2620,1
+1405,1
+4336,0
+296,0
+1101,0
+2707,1
+3450,1
+3116,1
+290,0
+1513,0
+4608,0
+2405,1
+3493,0
+952,1
+4118,1
+2357,0
+4305,0
+4435,1
+4924,0
+3137,1
+2706,0
+3130,1
+3428,0
+3520,1
+1095,0
+422,0
+227,0
+1379,1
+4254,0
+5200,0
+3639,0
+969,0
+410,0
+2288,0
+4342,1
+2521,1
+4819,1
+4886,1
+1815,0
+4867,0
+3078,0
+3149,0
+4959,1
+3047,0
+3592,1
+794,0
+1907,1
+1371,0
+1618,0
+4011,0
+5190,0
+2228,0
+925,1
+1025,1
+896,0
+2714,1
+584,1
+1718,0
+4920,1
+3689,1
+624,0
+4889,0
+2586,1
+497,0
+2627,0
+1954,1
+1210,1
+842,0
+803,0
+4472,1
+3023,0
+4871,0
+106,0
+4570,1
+351,1
+1789,1
+4238,0
+4074,0
+2370,1
+4096,0
+2022,0
+439,1
+2699,0
+3333,1
+811,0
+4001,0
+4387,0
+3475,0
+1321,0
+4162,1
+4428,0
+2409,1
+179,0
+625,1
+3634,0
+1599,1
+3722,0
+3933,1
+4638,0
+2495,0
+2407,0
+3535,0
+555,1
+1870,0
+1886,1
+3750,1
+4351,0
+2284,0
+5063,1
+373,1
+3231,1
+4069,1
+589,1
+1740,1
+3311,0
+932,0
+501,0
+1615,0
+2078,0
+3515,1
+333,1
+2698,0
+1322,1
+3657,0
+418,1
+4263,0
+3107,0
+2899,1
+1691,1
+3459,0
+1773,0
+2807,0
+4796,1
+2921,0
+2210,1
+4892,0
+1029,0
+1702,0
+4198,0
+683,0
+4154,1
+401,0
+3386,1
+3050,1
+1752,1
+254,0
+1412,0
+1905,1
+1323,1
+4080,0
+4002,1
+1200,1
+4906,1
+3470,1
+4912,1
+4281,1
+5053,0
+787,1
+1961,0
+3826,1
+1438,0
+199,1
+1010,1
+4099,0
+3439,0
+2481,1
+4047,0
+4144,1
+2029,0
+2577,0
+2885,1
+3944,1
+926,0
+1129,0
+1924,0
+416,0
+3999,1
+763,1
+491,1
+1541,0
+1397,0
+2998,1
+2304,1
+4365,0
+3113,0
+2792,1
+1041,1
+228,1
+2157,0
+5001,1
+553,0
+1782,1
+4660,1
+3355,0
+1432,1
+2380,0
+3158,0
+4250,1
+4666,1
+2191,0
+2843,1
+248,1
+5124,1
+4265,1
+4448,0
+2145,1
+742,0
+4572,0
+2218,1
+2244,0
+2146,0
+3105,0
+2111,1
+705,1
+4831,0
+4988,0
+3880,0
+486,0
+3478,0
+4935,1
+4190,0
+1400,0
+1945,1
+721,0
+4987,1
+3365,1
+1837,1
+1090,1
+88,0
+4895,1
+471,1
+724,0
+4005,1
+4458,0
+2939,0
+3235,0
+4983,0
+3936,0
+485,1
+3955,0
+1235,1
+144,0
+879,0
+1467,0
+315,0
+2379,0
+4622,0
+4104,1
+5143,0
+2992,1
+1532,1
+2305,0
+1468,0
+1115,1
+4026,1
+2372,0
+1534,1
+4569,1
+1669,0
+1188,1
+2302,1
+3010,1
+1538,0
+586,1
+4056,0
+4838,1
+3410,0
+907,1
+1039,1
+3852,1
+1057,1
+530,0
+4489,0
+2229,0
+4930,1
+100,0
+3134,0
+2574,1
+1580,0
+4620,0
+4612,0
+4477,1
+3481,1
+944,1
+3321,1
+2647,0
+654,1
+2780,1
+2696,0
+1406,0
+4595,1
+109,0
+2648,0
+2100,1
+1253,1
+2803,0
+4446,0
+1545,1
+4409,1
+2346,0
+3811,0
+1892,0
+4050,0
+1049,1
+1351,1
+1978,0
+5016,0
+4402,0
+2394,0
+964,1
+4846,1
+3366,0
+1770,1
+3227,1
+577,0
+2124,1
+308,0
+4119,0
+1047,1
+655,0
+4034,1
+4370,0
+4372,0
+3909,1
+893,1
+1074,0
+4037,1
+1370,1
+2437,1
+4731,0
+2406,0
+5257,1
+4523,1
+3277,1
+4949,0
+5019,1
+1197,0
+4475,1
+438,1
+751,0
+3529,0
+3801,0
+2523,0
+149,0
+4947,0
+437,1
+12,0
+93,1
+4697,1
+1813,1
+5167,1
+626,0
+2463,1
+776,1
+1611,0
+5013,1
+1485,0
+2654,0
+5234,0
+1411,0
+1344,0
+4236,0
+5044,1
+4759,0
+429,1
+1957,0
+3238,1
+2653,0
+4518,1
+1988,1
+1175,0
+1871,0
+1926,0
+2663,1
+4994,0
+2042,0
+3135,1
+3896,1
+4245,1
+1743,1
+4955,1
+3658,0
+287,0
+3491,0
+2991,1
+1075,0
+1657,0
+561,1
+3458,1
+4945,1
+3891,0
+3848,0
+3532,1
+2447,0
+833,0
+1263,0
+1425,0
+4204,0
+1670,0
+3970,1
+2764,1
+4058,1
+5054,0
+2874,0
+807,1
+4368,1
+2686,0
+2098,0
+2835,1
+733,0
+4291,1
+4648,0
+1617,0
+4673,0
+994,1
+3207,0
+3094,0
+414,1
+4975,0
+5070,0
+2314,0
+3279,1
+1612,0
+4366,1
+1503,1
+252,0
+734,1
+350,1
+5130,0
+1765,1
+457,0
+1437,1
+3167,1
+90,0
+4836,0
+3406,0
+26,0
+549,0
+181,1
+2251,0
+2045,0
+1117,1
+1566,1
+3604,0
+1480,0
+2940,0
+4075,0
+2829,1
+5205,1
+3509,0
+4905,0
+4110,1
+4133,0
+4126,1
+2605,0
+69,0
+3874,0
+3123,0
+5186,1
+3971,1
+2617,1
+203,0
+5030,0
+4271,0
+3788,0
+387,0
+4788,1
+4258,0
+4049,1
+2142,1
+3240,0
+2348,1
+4841,1
+4467,1
+221,1
+677,1
+1420,1
+1319,1
+4805,0
+1746,1
+3929,1
+4815,1
+2186,1
+798,0
+2518,0
+4787,1
+177,1
+4241,0
+1433,1
+1335,1
+2980,0
+3755,0
+5189,0
+3931,1
+2016,1
+5071,0
+3075,0
+2924,0
+5111,0
+915,0
+4837,0
+527,0
+1086,0
+1595,1
+3409,1
+1032,1
+681,0
+765,0
+3250,0
+2818,0
+1044,1
+4561,1
+2941,0
+5243,1
+4814,1
+219,0
+2751,1
+1647,0
+582,0
+2480,0
+3966,0
+43,0
+2095,0
+210,0
+2344,0
+354,0
+1807,0
+1302,0
+1665,0
+1902,0
+805,1
+367,1
+4152,1
+4633,1
+4388,0
+135,0
+1839,1
+47,1
+718,0
+2195,0
+856,0
+4852,0
+2059,0
+670,0
+3074,0
+3638,1
+1741,0
+61,1
+2834,1
+3956,1
+95,1
+1448,0
+478,1
+121,0
+2860,0
+2114,0
+3471,1
+838,0
+2053,1
+1334,0
+2519,0
+693,1
+3648,1
+322,0
+1374,1
+3063,0
+3624,0
+2153,0
+2471,0
+2057,1
+2101,1
+1476,0
+2561,0
+1878,1
+1630,1
+1392,1
+731,0
+334,1
+291,1
+5217,0
+4086,0
+1295,1
+4327,1
+533,0
+1860,1
+1498,0
+3388,0
+1391,1
+4302,1
+2144,0
+657,0
+5119,0
+3611,1
+1921,1
+3433,0
+4986,1
+3542,1
+428,0
+1209,0
+1215,0
+5160,1
+4698,1
+1361,0
+1121,0
+2232,0
+4393,1
+2209,1
+4443,1
+2655,0
+2465,1
+3402,1
+4278,0
+1703,0
+2222,0
+1728,1
+2673,0
+1260,0
+5123,0
+5195,1
+848,0
+2902,0
+2908,0
+4010,1
+2575,0
+3492,1
+764,0
+3606,0
+4041,0
+2536,1
+2497,0
+2119,1
+5112,0
+2886,1
+2629,0
+102,0
+1096,0
+4942,0
+2093,1
+3103,1
+3303,1
+2757,1
+1732,1
+2404,1
+70,1
+1231,1
+4032,0
+2339,1
+2389,0
+3626,1
+831,1
+1242,1
+3248,0
+3349,1
+1020,0
+3661,0
+5010,0
+3631,1
+4187,1
+4315,0
+2728,0
+4436,1
+4210,1
+4147,0
+5175,0
+1173,1
+2957,1
+4602,1
+3285,0
+2328,0
+1512,1
+3163,1
+2168,0
+2643,0
+1554,0
+381,1
+1803,0
+2418,0
+4350,1
+2172,0
+1345,0
+1973,1
+2094,1
+2298,0
+4025,1
+1539,0
+233,0
+712,1
+1224,1
+4820,1
+3159,0
+633,0
+1941,1
+415,0
+1634,0
+2576,1
+4405,1
+4940,0
+1168,1
+757,1
+4425,0
+605,1
+17,1
+1454,0
+2366,1
+5236,0
+5037,0
+596,0
+4168,0
+3044,1
+5100,1
+1894,1
+4437,0
+3930,1
+1436,0
+371,1
+1623,0
+2534,0
+652,1
+598,1
+676,1
+238,0
+4818,1
+5133,1
+1643,1
+1261,0
+5273,0
+1103,0
+1360,0
+75,1
+3126,1
+4899,1
+3879,0
+3477,0
+3351,1
+4287,0
+2702,0
+1073,0
+5115,1
+3196,0
+4789,1
+1427,1
+828,0
+3963,1
+4248,0
+96,0
+5212,0
+4030,0
+3229,0
+4333,0
+3957,0
+621,0
+4984,0
+4063,0
+3100,1
+566,1
+3548,0
+5000,0
+4562,0
+748,0
+1983,0
+4229,1
+51,1
+889,1
+2859,1
+1305,0
+3305,0
+3213,1
+534,1
+745,0
+3565,1
+2758,0
+443,0
+2223,0
+195,0
+3411,1
+4695,1
+4769,0
+802,0
+3682,1
+1128,0
+3360,1
+2794,1
+5150,0
+3315,0
+2857,1
+4578,0
+4194,1
+4427,1
+644,0
+1220,0
+4803,1
+3939,0
+1745,1
+4653,1
+120,1
+3792,1
+2287,1
+2997,1
+5041,0
+4252,1
+2678,0
+5162,0
+3919,1
+1340,0
+5269,0
+2801,0
+5152,0
+2503,0
+134,0
+2748,1
+3668,1
+2846,0
+2550,0
+184,0
+1832,0
+3685,0
+511,0
+62,0
+2977,0
+2224,0
+3000,1
+2907,1
+122,0
+2067,1
+5072,1
+2742,0
+2513,0
+567,0
+4882,0
+3567,0
+864,0
+3928,1
+3739,1
+1212,0
+2985,1
+720,0
+3026,1
+3977,1
+4645,1
+602,0
+1194,1
+3371,0
+2873,0
+1144,0
+1292,1
+3868,0
+318,0
+274,0
diff --git a/tests/user_interfaces/__init__.py b/tests/user_interfaces/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/tests/user_interfaces/test_compute_model_metrics.py b/tests/user_interfaces/test_compute_model_metrics.py
new file mode 100644
index 00000000..2665ac32
--- /dev/null
+++ b/tests/user_interfaces/test_compute_model_metrics.py
@@ -0,0 +1,92 @@
+import pandas as pd
+from sklearn.compose import ColumnTransformer
+from sklearn.preprocessing import OneHotEncoder
+from sklearn.preprocessing import StandardScaler
+
+from tests import (COMPAS_y_test, COMPAS_RF_bootstrap_predictions, COMPAS_RF_expected_preds, compare_metric_dfs,
+ COMPAS_RF_expected_metrics)
+
+from virny.configs.constants import *
+from virny.utils.protected_groups_partitioning import create_test_protected_groups
+from virny.analyzers.subgroup_variance_calculator import SubgroupVarianceCalculator
+from virny.analyzers.subgroup_error_analyzer import SubgroupErrorAnalyzer
+from virny.utils.stability_utils import count_prediction_metrics
+from virny.datasets.data_loaders import CompasWithoutSensitiveAttrsDataset
+from virny.preprocessing.basic_preprocessing import preprocess_dataset
+
+
+def test_subgroup_variance_and_error_analyzers(COMPAS_y_test, COMPAS_RF_bootstrap_predictions, COMPAS_RF_expected_preds,
+ COMPAS_RF_expected_metrics):
+ dataset_split_seed = 42
+ test_set_fraction = 0.2
+
+ data_loader = CompasWithoutSensitiveAttrsDataset()
+ sensitive_attributes_dct = {'sex': 1, 'race': 'African-American', 'sex&race': None}
+ column_transformer = ColumnTransformer(transformers=[
+ ('categorical_features', OneHotEncoder(handle_unknown='ignore', sparse=False), data_loader.categorical_columns),
+ ('numerical_features', StandardScaler(), data_loader.numerical_columns),
+ ])
+ base_flow_dataset = preprocess_dataset(data_loader, column_transformer, test_set_fraction, dataset_split_seed)
+ test_protected_groups = create_test_protected_groups(base_flow_dataset.X_test, base_flow_dataset.init_features_df,
+ sensitive_attributes_dct)
+
+ y_preds, prediction_metrics = count_prediction_metrics(COMPAS_y_test, COMPAS_RF_bootstrap_predictions)
+ y_preds = pd.Series(y_preds, index=base_flow_dataset.y_test.index)
+ subgroup_variance_calculator = SubgroupVarianceCalculator(X_test=base_flow_dataset.X_test,
+ y_test=base_flow_dataset.y_test,
+ sensitive_attributes_dct=sensitive_attributes_dct,
+ test_protected_groups=test_protected_groups,
+ computation_mode=None)
+ subgroup_variance_calculator.set_overall_variance_metrics(prediction_metrics)
+ subgroup_variance_metrics_dct = subgroup_variance_calculator.compute_subgroup_metrics(
+ y_preds, COMPAS_RF_bootstrap_predictions,
+ save_results=False, result_filename=None, save_dir_path=None
+ )
+ variance_metrics_df = pd.DataFrame(subgroup_variance_metrics_dct)
+
+ # Compute error metrics for subgroups
+ error_analyzer = SubgroupErrorAnalyzer(X_test=base_flow_dataset.X_test,
+ y_test=base_flow_dataset.y_test,
+ sensitive_attributes_dct=sensitive_attributes_dct,
+ test_protected_groups=test_protected_groups,
+ computation_mode=None)
+ dtc_res = error_analyzer.compute_subgroup_metrics(y_preds=y_preds,
+ models_predictions=dict(),
+ save_results=False,
+ result_filename=None,
+ save_dir_path=None)
+ error_metrics_df = pd.DataFrame(dtc_res)
+
+ metrics_df = pd.concat([variance_metrics_df, error_metrics_df])
+ metrics_df = metrics_df.reset_index()
+ metrics_df = metrics_df.rename(columns={"index": "Metric"})
+ metrics_df['Model_Name'] = 'RandomForestClassifier'
+
+ # Check accuracy metrics
+ compare_metric_dfs(expected_composed_metrics_df=COMPAS_RF_expected_metrics,
+ actual_composed_metrics_df=metrics_df,
+ model_name='RandomForestClassifier',
+ groups=['overall', 'sex_priv', 'sex_dis', 'race_priv', 'race_dis', 'sex&race_priv', 'sex&race_dis'],
+ metrics_lst=[MEAN_PREDICTION,
+ STATISTICAL_BIAS,
+ TPR,
+ TNR,
+ PPV,
+ FNR,
+ FPR,
+ F1,
+ ACCURACY,
+ SELECTION_RATE,
+ POSITIVE_RATE])
+ # Check stability metrics
+ compare_metric_dfs(expected_composed_metrics_df=COMPAS_RF_expected_metrics,
+ actual_composed_metrics_df=metrics_df,
+ model_name='RandomForestClassifier',
+ groups=['overall', 'sex_priv', 'sex_dis', 'race_priv', 'race_dis', 'sex&race_priv', 'sex&race_dis'],
+ metrics_lst=[STD, IQR, JITTER, LABEL_STABILITY])
+ # Check uncertainty metrics
+ compare_metric_dfs(expected_composed_metrics_df=COMPAS_RF_expected_metrics,
+ actual_composed_metrics_df=metrics_df,
+ model_name='RandomForestClassifier',
+ groups=['overall', 'sex_priv', 'sex_dis', 'race_priv', 'race_dis', 'sex&race_priv', 'sex&race_dis'],
+ metrics_lst=[ALEATORIC_UNCERTAINTY, OVERALL_UNCERTAINTY])
diff --git a/tests/utils/test_stability_utils.py b/tests/utils/test_stability_utils.py
index f0fa66aa..61f16014 100644
--- a/tests/utils/test_stability_utils.py
+++ b/tests/utils/test_stability_utils.py
@@ -1,10 +1,11 @@
import numpy as np
+import pandas as pd
from sklearn.compose import ColumnTransformer
-from sklearn.preprocessing import OneHotEncoder
-from sklearn.preprocessing import StandardScaler
+from sklearn.preprocessing import OneHotEncoder, StandardScaler
-from tests import config_params, compas_dataset_class, compas_without_sensitive_attrs_dataset_class
+from tests import (config_params, compas_dataset_class, compas_without_sensitive_attrs_dataset_class,
+ COMPAS_y_test, COMPAS_RF_bootstrap_predictions, COMPAS_RF_expected_preds)
from virny.utils.stability_utils import count_prediction_metrics, generate_bootstrap
from virny.preprocessing.basic_preprocessing import preprocess_dataset
from virny.configs.constants import *
@@ -19,6 +20,7 @@ def test_count_prediction_metrics_true1():
assert np.array_equal(y_preds, np.array([0, 0, 1, 1, 0, 1, 1, 0, 1, 1]))
+ # Check stability and uncertainty metrics
alpha = 0.000_001
assert abs(prediction_metrics[MEAN_PREDICTION] - 0.47000000000000003) < alpha
assert abs(prediction_metrics[STATISTICAL_BIAS] - 0.42000000000000004) < alpha
@@ -30,7 +32,7 @@ def test_count_prediction_metrics_true1():
assert abs(prediction_metrics[OVERALL_UNCERTAINTY] - 0.9560071897163649) < alpha
-def test_count_prediction_metrics_true2():
+def test_count_prediction_metrics_false1():
y_test = np.array([0, 0, 1, 1, 0, 1, 0, 1, 1, 1])
uq_results = np.array([[0.6, 0.7, 0.3, 0.4, 0.5, 0.3, 0.7, 0.6, 0.4, 0.4]])
@@ -43,6 +45,21 @@ def test_count_prediction_metrics_true2():
assert actual == False
+def test_count_prediction_metrics_true2(COMPAS_y_test, COMPAS_RF_bootstrap_predictions, COMPAS_RF_expected_preds):
+ y_preds, prediction_metrics = count_prediction_metrics(COMPAS_y_test, COMPAS_RF_bootstrap_predictions)
+
+ alpha = 0.000_001
+ assert np.array_equal(y_preds, COMPAS_RF_expected_preds['1'].to_numpy())
+ assert abs(prediction_metrics[MEAN_PREDICTION] - 0.5233320457326472) < alpha
+ assert abs(prediction_metrics[STATISTICAL_BIAS] - 0.4044558084608265) < alpha
+ assert abs(prediction_metrics[JITTER] - 0.11221320346320351) < alpha
+ assert abs(prediction_metrics[LABEL_STABILITY] - 0.8408712121212122) < alpha
+ assert abs(prediction_metrics[STD] - 0.06812843675435999) < alpha
+ assert abs(prediction_metrics[IQR] - 0.08940024816894414) < alpha
+ assert abs(prediction_metrics[ALEATORIC_UNCERTAINTY] - 0.8369703514251653) < alpha
+ assert abs(prediction_metrics[OVERALL_UNCERTAINTY] - 0.8607514359506866) < alpha
+
+
# ========================== Test generate_bootstrap ==========================
def test_generate_bootstrap_true1(compas_without_sensitive_attrs_dataset_class, config_params):
column_transformer = ColumnTransformer(transformers=[
From aa47d418e5abf5417d278e8152c1d757cccf719a Mon Sep 17 00:00:00 2001
From: proc1v
Date: Sun, 22 Oct 2023 17:38:53 +0300
Subject: [PATCH 039/148] Added parameters to computation interfaces for
postprocessing
---
..._overall_variance_analyzer_postprocessing.py | 11 ++++++-----
.../metrics_computation_interfaces.py | 16 ++++++++++++++++
.../utils/postprocessing_intervention_utils.py | 17 ++++++++++++++++-
3 files changed, 38 insertions(+), 6 deletions(-)
diff --git a/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py b/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py
index 40019417..c712a91a 100644
--- a/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py
+++ b/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py
@@ -4,7 +4,7 @@
from tqdm.notebook import tqdm
from virny.analyzers.batch_overall_variance_analyzer import BatchOverallVarianceAnalyzer
-from virny.utils.postprocessing_intervention_utils import contruct_binary_label_dataset, predict_on_binary_label_dataset
+from virny.utils.postprocessing_intervention_utils import contruct_binary_label_dataset_from_df, construct_binary_label_dataset_from_samples, predict_on_binary_label_dataset
from virny.utils.stability_utils import generate_bootstrap
@@ -27,7 +27,7 @@ def __init__(self, postprocessor, sensitive_attribute: str,
self.postprocessor = postprocessor
self.sensitive_attribute = sensitive_attribute
- self.test_binary_label_dataset = contruct_binary_label_dataset(X_test, y_test, target_column, sensitive_attribute)
+ self.test_binary_label_dataset = contruct_binary_label_dataset_from_df(X_test, y_test, target_column, sensitive_attribute)
def UQ_by_boostrap(self, boostrap_size: int, with_replacement: bool, with_fit: bool = True) -> dict:
"""
@@ -50,7 +50,7 @@ def UQ_by_boostrap(self, boostrap_size: int, with_replacement: bool, with_fit: b
models_predictions = {idx: [] for idx in range(self.n_estimators)}
if self._verbose >= 1:
print('\n', flush=True)
- self.__logger.info('Start classifiers testing by bootstrap')
+ self._AbstractOverallVarianceAnalyzer__logger.info('Start classifiers testing by bootstrap')
# Remove a progress bar for UQ without estimators fitting
cycle_range = range(self.n_estimators) if with_fit is False else \
tqdm(range(self.n_estimators),
@@ -64,16 +64,17 @@ def UQ_by_boostrap(self, boostrap_size: int, with_replacement: bool, with_fit: b
X_sample, y_sample = generate_bootstrap(self.X_train, self.y_train, boostrap_size, with_replacement)
classifier = self._fit_model(classifier, X_sample, y_sample)
- train_binary_label_dataset_sample = contruct_binary_label_dataset(X_sample, y_sample, self.target_column, self.sensitive_attribute)
+ train_binary_label_dataset_sample = construct_binary_label_dataset_from_samples(X_sample, y_sample, self.X_train.columns, self.target_column, self.sensitive_attribute)
train_binary_label_dataset_sample_pred = predict_on_binary_label_dataset(classifier, train_binary_label_dataset_sample)
test_binary_label_dataset_pred = predict_on_binary_label_dataset(classifier, self.test_binary_label_dataset)
postprocessor_fitted = self.postprocessor.fit(train_binary_label_dataset_sample, train_binary_label_dataset_sample_pred)
+
models_predictions[idx] = postprocessor_fitted.predict(test_binary_label_dataset_pred).labels.ravel()
self.models_lst[idx] = classifier
if self._verbose >= 1:
print('\n', flush=True)
- self.__logger.info('Successfully tested classifiers by bootstrap')
+ self._AbstractOverallVarianceAnalyzer__logger.info('Successfully tested classifiers by bootstrap')
return models_predictions
\ No newline at end of file
diff --git a/virny/user_interfaces/metrics_computation_interfaces.py b/virny/user_interfaces/metrics_computation_interfaces.py
index 929a9882..32fe0d9b 100644
--- a/virny/user_interfaces/metrics_computation_interfaces.py
+++ b/virny/user_interfaces/metrics_computation_interfaces.py
@@ -55,6 +55,7 @@ def compute_model_metrics_with_config(base_model, model_name: str, dataset: Base
def compute_model_metrics(base_model, n_estimators: int, dataset: BaseFlowDataset, bootstrap_fraction: float,
sensitive_attributes_dct: dict, dataset_name: str, base_model_name: str,
+ postprocessor=None, postprocessing_sensitive_attribute: str = None,
model_setting: str = ModelSetting.BATCH.value, computation_mode: str = None, save_results: bool = True,
save_results_dir_path: str = None, verbose: int = 0):
"""
@@ -80,6 +81,11 @@ def compute_model_metrics(base_model, n_estimators: int, dataset: BaseFlowDatase
Dataset name to name a result file with metrics
base_model_name
Model name to name a result file with metrics
+ postprocessor
+ [Optional] Postprocessor object with fit and predict methods
+ to apply postprocessing intervention for the base model after training.
+ postprocessing_sensitive_attribute
+ [Optional] Sensitive attribute name to apply postprocessing intervention for the base model after training.
save_results
[Optional] If to save result metrics in a file
model_setting
@@ -112,6 +118,8 @@ def compute_model_metrics(base_model, n_estimators: int, dataset: BaseFlowDatase
sensitive_attributes_dct=sensitive_attributes_dct,
test_protected_groups=test_protected_groups,
computation_mode=computation_mode,
+ postprocessor=postprocessor,
+ postprocessing_sensitive_attribute=postprocessing_sensitive_attribute,
verbose=verbose)
y_preds, variance_metrics_df = subgroup_variance_analyzer.compute_metrics(save_results=False,
result_filename=None,
@@ -150,6 +158,7 @@ def compute_model_metrics(base_model, n_estimators: int, dataset: BaseFlowDatase
def run_metrics_computation(dataset: BaseFlowDataset, bootstrap_fraction: float, dataset_name: str,
models_config: dict, n_estimators: int, sensitive_attributes_dct: dict,
model_setting: str = ModelSetting.BATCH.value, computation_mode: str = None,
+ postprocessor=None, postprocessing_sensitive_attribute: str = None,
save_results: bool = True, save_results_dir_path: str = None, verbose: int = 0) -> dict:
"""
Compute stability and accuracy metrics for each model in models_config.
@@ -176,6 +185,11 @@ def run_metrics_computation(dataset: BaseFlowDataset, bootstrap_fraction: float,
[Optional] Model type: 'batch' or incremental. Default: 'batch'.
computation_mode
[Optional] A non-default mode for metrics computation. Should be included in the ComputationMode enum.
+ postprocessor
+ [Optional] Postprocessor object with fit and predict methods
+ to apply postprocessing intervention for the base model after training.
+ postprocessing_sensitive_attribute
+ [Optional] Sensitive attribute name to apply postprocessing intervention for the base model after training.
save_results
[Optional] If to save result metrics in a file
save_results_dir_path
@@ -204,6 +218,8 @@ def run_metrics_computation(dataset: BaseFlowDataset, bootstrap_fraction: float,
computation_mode=computation_mode,
dataset_name=dataset_name,
base_model_name=model_name,
+ postprocessor=postprocessor,
+ postprocessing_sensitive_attribute=postprocessing_sensitive_attribute,
save_results=save_results,
save_results_dir_path=save_results_dir_path,
verbose=verbose)
diff --git a/virny/utils/postprocessing_intervention_utils.py b/virny/utils/postprocessing_intervention_utils.py
index 85628023..564a346d 100644
--- a/virny/utils/postprocessing_intervention_utils.py
+++ b/virny/utils/postprocessing_intervention_utils.py
@@ -1,10 +1,25 @@
import copy
import numpy as np
+import pandas as pd
from aif360.datasets import BinaryLabelDataset
-def contruct_binary_label_dataset(X_sample, y_sample, target_column, sensitive_attribute):
+def construct_binary_label_dataset_from_samples(X_sample, y_sample, column_names, target_column, sensitive_attribute):
+ df = pd.DataFrame(X_sample, columns=column_names)
+ df[target_column] = y_sample
+
+ binary_label_dataset = BinaryLabelDataset(
+ df=df,
+ label_names=[target_column],
+ protected_attribute_names=[sensitive_attribute],
+ favorable_label=1,
+ unfavorable_label=0)
+
+ return binary_label_dataset
+
+
+def contruct_binary_label_dataset_from_df(X_sample, y_sample, target_column, sensitive_attribute):
df = X_sample
df[target_column] = y_sample
From c2980540ba0b0a7050e8b7dbda43c1cac985a823 Mon Sep 17 00:00:00 2001
From: proc1v
Date: Mon, 23 Oct 2023 20:25:53 +0300
Subject: [PATCH 040/148] Updated user_iterfaces for postprocessing
---
.../user_interfaces/metrics_computation_interfaces.py | 11 ++++++++++-
1 file changed, 10 insertions(+), 1 deletion(-)
diff --git a/virny/user_interfaces/metrics_computation_interfaces.py b/virny/user_interfaces/metrics_computation_interfaces.py
index 32fe0d9b..61ec2ab8 100644
--- a/virny/user_interfaces/metrics_computation_interfaces.py
+++ b/virny/user_interfaces/metrics_computation_interfaces.py
@@ -287,7 +287,9 @@ def compute_metrics_with_config(dataset: BaseFlowDataset, config, models_config:
def compute_metrics_multiple_runs_with_db_writer(dataset: BaseFlowDataset, config, models_config: dict,
- custom_tbl_fields_dct: dict, db_writer_func, verbose: int = 0) -> dict:
+ custom_tbl_fields_dct: dict, db_writer_func,
+ postprocessor=None, postprocessing_sensitive_attribute: str = None,
+ verbose: int = 0) -> dict:
"""
Compute stability and accuracy metrics for each model in models_config. Arguments are defined as an input config object.
Save results to a database after each run appending fields and value from custom_tbl_fields_dct and using db_writer_func.
@@ -306,6 +308,11 @@ def compute_metrics_multiple_runs_with_db_writer(dataset: BaseFlowDataset, confi
Dictionary where keys are column names and values to add to inserted metrics during saving results to a database
db_writer_func
Python function object has one argument (run_models_metrics_df) and save this metrics df to a target database
+ postprocessor
+ [Optional] Postprocessor object with fit and predict methods
+ to apply postprocessing intervention for the base model after training.
+ postprocessing_sensitive_attribute
+ [Optional] Sensitive attribute name to apply postprocessing intervention for the base model after training.
verbose
[Optional] Level of logs printing. The greater level provides more logs.
As for now, 0, 1, 2 levels are supported.
@@ -321,6 +328,8 @@ def compute_metrics_multiple_runs_with_db_writer(dataset: BaseFlowDataset, confi
sensitive_attributes_dct=config.sensitive_attributes_dct,
model_setting=config.model_setting,
computation_mode=config.computation_mode,
+ postprocessor=postprocessor,
+ postprocessing_sensitive_attribute=postprocessing_sensitive_attribute,
save_results=False,
verbose=verbose)
From 3672df5fc1ec5aad4f6c920b405d9a99ec177907 Mon Sep 17 00:00:00 2001
From: proc1v
Date: Mon, 6 Nov 2023 22:13:23 +0200
Subject: [PATCH 041/148] Added CreditCardDefault data loader
---
virny/datasets/credit_card_default_clean.csv | 29947 +++++++++++++++++
virny/datasets/data_loaders.py | 30 +
2 files changed, 29977 insertions(+)
create mode 100644 virny/datasets/credit_card_default_clean.csv
diff --git a/virny/datasets/credit_card_default_clean.csv b/virny/datasets/credit_card_default_clean.csv
new file mode 100644
index 00000000..475e1433
--- /dev/null
+++ b/virny/datasets/credit_card_default_clean.csv
@@ -0,0 +1,29947 @@
+,limit_bal,sex,education,marriage,age,pay_0,pay_2,pay_3,pay_4,pay_5,pay_6,bill_amt1,bill_amt2,bill_amt3,bill_amt4,bill_amt5,bill_amt6,pay_amt1,pay_amt2,pay_amt3,pay_amt4,pay_amt5,pay_amt6,default_payment
+0,20000,female,2,1,24,2,2,-1,-1,-2,-2,3913,3102,689,0,0,0,0,689,0,0,0,0,1
+1,120000,female,2,2,26,-1,2,0,0,0,2,2682,1725,2682,3272,3455,3261,0,1000,1000,1000,0,2000,1
+2,90000,female,2,2,34,0,0,0,0,0,0,29239,14027,13559,14331,14948,15549,1518,1500,1000,1000,1000,5000,0
+3,50000,female,2,1,37,0,0,0,0,0,0,46990,48233,49291,28314,28959,29547,2000,2019,1200,1100,1069,1000,0
+4,50000,male,2,1,57,-1,0,-1,0,0,0,8617,5670,35835,20940,19146,19131,2000,36681,10000,9000,689,679,0
+5,50000,male,1,2,37,0,0,0,0,0,0,64400,57069,57608,19394,19619,20024,2500,1815,657,1000,1000,800,0
+6,500000,male,1,2,29,0,0,0,0,0,0,367965,412023,445007,542653,483003,473944,55000,40000,38000,20239,13750,13770,0
+7,100000,female,2,2,23,0,-1,-1,0,0,-1,11876,380,601,221,-159,567,380,601,0,581,1687,1542,0
+8,140000,female,3,1,28,0,0,2,0,0,0,11285,14096,12108,12211,11793,3719,3329,0,432,1000,1000,1000,0
+9,20000,male,3,2,35,-2,-2,-2,-2,-1,-1,0,0,0,0,13007,13912,0,0,0,13007,1122,0,0
+10,200000,female,3,2,34,0,0,2,0,0,-1,11073,9787,5535,2513,1828,3731,2306,12,50,300,3738,66,0
+11,260000,female,1,2,51,-1,-1,-1,-1,-1,2,12261,21670,9966,8517,22287,13668,21818,9966,8583,22301,0,3640,0
+12,630000,female,2,2,41,-1,0,-1,-1,-1,-1,12137,6500,6500,6500,6500,2870,1000,6500,6500,6500,2870,0,0
+13,70000,male,2,2,30,1,2,2,0,0,2,65802,67369,65701,66782,36137,36894,3200,0,3000,3000,1500,0,1
+14,250000,male,1,2,29,0,0,0,0,0,0,70887,67060,63561,59696,56875,55512,3000,3000,3000,3000,3000,3000,0
+15,50000,female,3,3,23,1,2,0,0,0,0,50614,29173,28116,28771,29531,30211,0,1500,1100,1200,1300,1100,0
+16,20000,male,1,2,24,0,0,2,2,2,2,15376,18010,17428,18338,17905,19104,3200,0,1500,0,1650,0,1
+17,320000,male,1,1,49,0,0,0,-1,-1,-1,253286,246536,194663,70074,5856,195599,10358,10000,75940,20000,195599,50000,0
+18,360000,female,1,1,49,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+19,180000,female,1,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+20,130000,female,3,2,39,0,0,0,0,0,-1,38358,27688,24489,20616,11802,930,3000,1537,1000,2000,930,33764,0
+21,120000,female,2,1,39,-1,-1,-1,-1,-1,-1,316,316,316,0,632,316,316,316,0,632,316,0,1
+22,70000,female,2,2,26,2,0,0,2,2,2,41087,42445,45020,44006,46905,46012,2007,3582,0,3601,0,1820,1
+23,450000,female,1,1,40,-2,-2,-2,-2,-2,-2,5512,19420,1473,560,0,0,19428,1473,560,0,0,1128,1
+24,90000,male,1,2,23,0,0,0,-1,0,0,4744,7070,0,5398,6360,8292,5757,0,5398,1200,2045,2000,0
+25,50000,male,3,2,23,0,0,0,0,0,0,47620,41810,36023,28967,29829,30046,1973,1426,1001,1432,1062,997,0
+26,60000,male,1,2,27,1,-2,-1,-1,-1,-1,-109,-425,259,-57,127,-189,0,1000,0,500,0,1000,1
+27,50000,female,3,2,30,0,0,0,0,0,0,22541,16138,17163,17878,18931,19617,1300,1300,1000,1500,1000,1012,0
+28,50000,female,3,1,47,-1,-1,-1,-1,-1,-1,650,3415,3416,2040,30430,257,3415,3421,2044,30430,257,0,0
+29,50000,male,1,2,26,0,0,0,0,0,0,15329,16575,17496,17907,18375,11400,1500,1500,1000,1000,1600,0,0
+30,230000,female,1,2,27,-1,-1,-1,-1,-1,-1,16646,17265,13266,15339,14307,36923,17270,13281,15339,14307,37292,0,0
+31,50000,male,2,2,33,2,0,0,0,0,0,30518,29618,22102,22734,23217,23680,1718,1500,1000,1000,1000,716,1
+32,100000,male,1,2,32,0,0,0,0,0,0,93036,84071,82880,80958,78703,75589,3023,3511,3302,3204,3200,2504,0
+33,500000,female,2,1,54,-2,-2,-2,-2,-2,-2,10929,4152,22722,7521,71439,8981,4152,22827,7521,71439,981,51582,0
+34,500000,male,1,1,58,-2,-2,-2,-2,-2,-2,13709,5006,31130,3180,0,5293,5006,31178,3180,0,5293,768,0
+35,160000,male,1,2,30,-1,-1,-2,-2,-2,-1,30265,-131,-527,-923,-1488,-1884,131,396,396,565,792,0,0
+36,280000,male,2,1,40,0,0,0,0,0,0,186503,181328,180422,170410,173901,177413,8026,8060,6300,6400,6400,6737,0
+37,60000,female,2,2,22,0,0,0,0,0,-1,15054,9806,11068,6026,-28335,18660,1500,1518,2043,0,47671,617,0
+38,50000,male,1,2,25,1,-1,-1,-2,-2,-2,0,780,0,0,0,0,780,0,0,0,0,0,1
+39,280000,male,1,2,31,-1,-1,2,-1,0,-1,498,9075,4641,9976,17976,9477,9075,0,9976,8000,9525,781,0
+40,360000,male,1,2,33,0,0,0,0,0,0,218668,221296,206895,628699,195969,179224,10000,7000,6000,188840,28000,4000,0
+41,70000,female,1,2,25,0,0,0,0,0,0,67521,66999,63949,63699,64718,65970,3000,4500,4042,2500,2800,2500,0
+42,10000,male,2,2,22,0,0,0,0,0,0,1877,3184,6003,3576,3670,4451,1500,2927,1000,300,1000,500,0
+43,140000,female,2,1,37,0,0,0,0,0,0,59504,61544,62925,64280,67079,69802,3000,3000,3000,4000,4000,3000,0
+44,40000,female,1,2,30,0,0,0,2,0,0,18927,21295,25921,25209,26636,29197,3000,5000,0,2000,3000,0,0
+45,210000,male,1,2,29,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+46,20000,female,1,2,22,0,0,2,-1,0,0,14028,16484,15800,16341,16675,0,3000,0,16741,334,0,0,1
+47,150000,female,5,2,46,0,0,-1,0,0,-2,4463,3034,1170,1170,0,0,1013,1170,0,0,0,0,1
+48,380000,male,2,2,32,-1,-1,-1,-1,-1,-1,22401,21540,15134,32018,11849,11873,21540,15138,24677,11851,11875,8251,0
+49,20000,male,1,2,24,0,0,0,0,0,0,17447,18479,19476,19865,20480,20063,1318,1315,704,928,912,1069,0
+50,70000,male,3,2,42,1,2,2,2,2,0,37042,36171,38355,39423,38659,39362,0,3100,2000,0,1500,1500,1
+51,100000,female,3,3,43,0,0,0,0,0,0,61559,51163,43824,39619,35762,33258,2000,1606,1500,2000,1500,1000,0
+52,310000,female,2,1,49,-2,-2,-2,-2,-2,-2,13465,7867,7600,11185,3544,464,7875,7600,11185,3544,464,0,0
+53,180000,female,1,2,25,1,2,0,0,0,0,41402,41742,42758,43510,44420,45319,1300,2010,1762,1762,1790,1622,0
+54,150000,female,1,2,29,2,0,0,0,0,0,46224,34993,31434,26518,21042,16540,1600,1718,1049,1500,2000,5000,0
+55,500000,female,1,1,45,-2,-2,-2,-2,-2,-2,1905,3640,162,0,151,2530,3640,162,0,151,2530,0,0
+56,180000,female,3,1,34,0,0,0,-1,-1,-1,16386,15793,8441,7142,-679,8321,8500,1500,7500,679,9000,2000,0
+57,180000,female,2,1,34,0,0,0,0,0,0,175886,173440,172308,168608,132202,129918,8083,7296,5253,4814,4816,3800,0
+58,200000,female,1,2,34,-1,3,2,2,2,2,1587,1098,782,1166,700,1414,0,0,700,0,1200,0,0
+59,400000,female,2,1,29,0,0,0,0,0,0,400134,398857,404205,360199,356656,364089,17000,15029,30000,12000,12000,23000,0
+60,500000,female,3,1,28,0,0,0,0,0,0,22848,23638,18878,14937,13827,15571,1516,1300,1000,1000,2000,2000,1
+61,70000,male,2,1,39,0,0,0,0,0,-1,70800,72060,69938,16518,14096,830,4025,2095,1000,2000,3000,0,0
+62,50000,male,1,2,29,2,2,2,2,2,2,24987,24300,26591,25865,27667,28264,0,2700,0,2225,1200,0,1
+63,50000,female,2,1,46,0,0,0,-2,-2,-2,28718,29166,0,0,0,0,1000,0,0,0,0,0,1
+64,130000,female,2,1,51,-1,-1,-2,-2,-1,-1,99,0,0,0,2353,0,0,0,0,2353,0,0,0
+65,200000,male,1,1,57,-2,-2,-2,-1,2,2,152519,148751,144076,8174,8198,7918,0,0,8222,300,0,1000,1
+66,10000,male,2,1,56,2,2,2,0,0,0,2097,4193,3978,4062,4196,4326,2300,0,150,200,200,160,1
+67,210000,female,1,2,30,2,-1,-1,-1,-1,-1,300,300,1159,2280,300,4250,300,1159,2280,300,4250,909,0
+68,130000,female,3,2,29,1,-2,-2,-1,2,-1,-190,-9850,-9850,10311,10161,7319,0,0,20161,0,7319,13899,0
+69,20000,male,5,2,22,2,0,0,0,0,0,18565,17204,17285,18085,11205,5982,0,1200,1000,500,1000,0,0
+70,80000,male,1,2,31,-1,-1,-1,-1,-1,-1,780,0,390,390,390,390,0,390,390,390,390,390,0
+71,320000,male,2,2,29,2,2,2,2,2,2,58267,59246,60184,58622,62307,63526,2500,2500,0,4800,2400,1600,1
+72,200000,female,2,1,32,-1,-1,-1,-1,2,-1,9076,5787,-684,5247,3848,3151,5818,15,9102,17,3165,1395,0
+73,290000,female,1,2,37,1,-2,-1,-1,-1,-1,0,0,3155,0,2359,0,0,3155,0,2359,0,0,0
+74,340000,male,1,2,32,-1,-1,-1,-1,-1,-1,3048,5550,23337,4291,80153,25820,5713,23453,4314,80552,25949,2016,0
+75,20000,male,2,2,24,0,0,2,0,0,0,14619,17216,16642,16976,17332,18543,2850,0,610,630,1500,0,0
+76,50000,male,3,2,25,-1,0,0,0,0,0,42838,37225,36087,9636,9590,10030,1759,1779,320,500,1000,1000,0
+77,300000,female,1,1,45,-1,-1,-1,-1,-1,-1,291,291,291,291,291,291,291,291,291,291,291,291,0
+78,30000,female,2,2,22,0,0,0,0,0,0,28387,29612,30326,28004,26446,6411,1686,1400,560,3000,1765,0,1
+79,240000,female,2,2,44,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+80,470000,female,3,3,33,0,0,0,0,0,0,165254,157784,162702,69923,29271,29889,6400,7566,3000,960,1000,3000,0
+81,360000,female,1,2,26,0,0,0,0,0,-1,23411,27796,30400,33100,180000,196,4796,3400,3100,146900,196,2963,0
+82,60000,male,3,2,30,0,0,0,0,0,0,26324,27471,28108,21993,19899,19771,1576,1213,648,768,1140,0,1
+83,400000,female,2,1,44,0,0,2,0,0,0,131595,139060,126819,104430,104990,94058,10700,3,3050,3000,3200,2800,0
+84,50000,female,3,2,49,0,0,0,0,0,0,48909,47863,21489,20414,19342,19482,1676,1302,700,699,849,826,0
+85,160000,male,2,2,33,0,0,0,0,0,0,130028,107808,71934,118418,118407,120418,4400,3547,80000,4500,4800,4500,0
+86,360000,female,1,1,45,-1,-1,2,0,-1,-1,390,1170,780,390,390,390,1170,0,0,390,390,390,1
+87,160000,female,2,2,32,0,0,0,0,0,-1,3826,4751,6604,8604,7072,766,1147,2000,2000,0,766,2303,0
+88,130000,female,1,1,35,0,0,0,-1,-1,-1,81313,117866,17740,1330,7095,1190,40000,5000,1330,7095,1190,2090,0
+89,20000,male,3,2,44,2,2,0,0,0,2,8583,8303,9651,10488,12314,11970,0,1651,1000,2000,0,1500,0
+90,200000,male,1,1,53,2,2,2,2,2,2,138180,140774,142460,144098,147124,149531,6300,5500,5500,5500,5000,5000,1
+91,280000,female,1,2,39,-1,-1,-1,0,0,-2,7524,0,3968,3868,0,0,0,3968,0,0,0,0,0
+92,100000,female,1,2,27,-2,-2,-2,-2,-2,-2,-2000,5555,0,0,0,0,7555,0,0,0,0,0,0
+93,160000,female,2,1,37,-1,-1,-1,-1,-1,-2,880,1602,840,840,0,0,1602,840,840,0,0,7736,0
+94,60000,female,2,2,23,0,0,0,0,0,0,45648,46850,47214,19595,19209,19323,1937,1301,682,690,816,835,0
+95,90000,male,2,2,35,0,0,0,0,0,0,83725,85996,87653,35565,30942,30835,3621,3597,1179,1112,1104,1143,0
+96,360000,male,1,1,43,-1,-1,-1,-1,-1,0,3967,8322,3394,6451,26370,9956,8339,3394,12902,27000,0,68978,0
+97,150000,male,1,2,27,0,0,0,0,0,0,86009,86108,89006,89775,87725,40788,4031,10006,3266,4040,1698,800,0
+98,50000,female,3,1,22,0,0,0,0,0,0,18722,18160,16997,13150,8866,7899,1411,1194,379,281,321,197,0
+99,20000,male,2,1,38,0,0,0,0,0,-1,17973,19367,19559,18240,17928,150,1699,1460,626,1750,150,0,1
+100,140000,male,1,2,32,-2,-2,-2,-2,-2,-2,672,10212,850,415,100,1430,10212,850,415,100,1430,0,0
+101,380000,female,1,2,30,-2,-2,-1,0,0,0,-81,-303,32475,32891,33564,34056,223,33178,1171,1197,1250,5000,0
+102,480000,male,1,1,63,0,0,0,2,2,0,422069,431342,479432,487066,471145,469961,16078,55693,17000,0,18000,24200,0
+103,50000,female,3,2,22,0,0,0,0,0,0,44698,42254,38347,32496,23477,24094,1767,1362,1002,840,995,904,1
+104,60000,female,2,2,26,2,2,2,2,2,0,56685,55208,59175,60218,55447,55305,0,5000,2511,6,3000,3000,0
+105,70000,female,2,2,24,-1,-1,-2,-2,-2,-1,5580,0,0,0,0,26529,0,0,0,0,26529,2000,0
+106,80000,female,2,1,36,-1,-1,-1,-1,-1,-1,6108,2861,3277,3319,1150,1150,2861,3279,3319,1150,1150,1035,0
+107,350000,male,1,2,52,-1,-1,-1,-1,-1,-1,713,2272,722,867,1150,5263,2272,722,867,1150,5263,5011,0
+108,130000,male,2,2,38,0,0,0,-1,-1,-1,171438,178382,39940,120483,44127,126568,10908,0,133657,4566,133841,4796,0
+109,360000,male,2,1,35,1,-2,-2,-2,-2,-2,-103,-103,-103,-103,-103,-103,0,0,0,0,0,0,0
+110,330000,female,1,1,31,0,0,2,0,0,0,105879,108431,105594,105896,106491,107289,9260,0,3593,4100,15794,0,0
+111,50000,male,3,1,47,0,0,2,0,0,0,13244,14722,15181,15928,16671,17393,2000,1000,1000,1000,1000,1000,0
+112,280000,male,2,1,41,2,2,2,2,2,3,135673,138532,134813,144401,152174,149415,6500,0,14254,14850,0,5000,0
+113,100000,female,1,2,24,0,0,0,0,0,0,52128,52692,54477,56076,60100,59713,2000,2677,3076,5080,3000,2033,0
+114,50000,male,2,2,41,0,0,0,0,0,0,19015,19294,20259,20274,20311,19957,1340,1305,700,718,724,684,0
+115,30000,male,1,2,24,-1,2,0,0,3,2,18199,17618,18631,21319,20692,21201,0,1312,3000,0,1000,1000,1
+116,240000,male,1,2,28,-1,-1,-1,-1,-1,-1,326,326,326,5676,476,326,326,326,5676,476,326,526,0
+117,80000,male,2,2,26,2,0,0,0,0,0,14029,15493,16630,17055,17629,18186,2000,1700,1000,1000,1000,1000,1
+118,400000,male,2,1,34,-1,-1,-1,-1,-1,-1,19660,9666,11867,7839,14837,7959,9677,11867,7839,14837,7959,5712,0
+119,240000,female,2,2,38,0,0,0,0,-1,-1,50254,51445,53015,52479,1307,1203,2000,3000,3000,1307,1203,563,0
+120,50000,male,3,2,37,2,2,2,3,2,2,46004,45976,48953,48851,49318,51143,1000,4035,1000,1400,2800,0,1
+121,450000,male,1,1,40,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+122,110000,female,1,1,48,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+123,310000,female,2,1,35,2,0,0,0,0,0,304991,311243,306314,258610,246491,198889,13019,11128,8407,8599,6833,5987,1
+124,20000,male,1,2,27,0,0,0,0,0,0,19115,18962,19298,19378,19717,15630,1404,1130,600,861,313,0,0
+125,20000,male,2,2,23,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+126,200000,male,3,2,52,0,0,0,0,0,0,110151,99530,98951,100914,103146,104993,3568,3585,3602,3848,3669,3784,0
+127,180000,male,1,1,36,0,0,0,0,0,0,163736,116422,99278,95766,97753,95927,4655,2690,2067,2142,2217,1000,1
+128,50000,male,2,1,51,0,0,0,0,0,0,3347,3899,4503,5347,6375,7077,1000,1066,1300,1500,1200,134,1
+129,60000,male,3,1,55,3,2,2,0,0,0,60521,61450,57244,28853,29510,26547,2504,7,1200,1200,1100,1500,0
+130,30000,female,1,2,23,1,-2,-2,-2,-1,-1,4000,5645,3508,-27,13744,5906,5645,3508,27,13771,5911,3024,0
+131,240000,male,1,2,41,1,-1,-1,0,0,-1,95,2622,3301,3164,360,1737,2622,3301,0,360,1737,924,0
+132,420000,male,2,1,34,0,0,0,0,0,0,253454,247743,229049,220951,210606,188108,9744,9553,7603,7830,7253,11326,0
+133,330000,male,3,1,46,0,0,0,0,0,0,227389,228719,229644,227587,227775,228203,8210,8095,8025,8175,8391,8200,0
+134,30000,female,2,2,22,0,0,0,0,0,0,28452,26145,26712,25350,17603,-780,2000,1400,0,500,0,1560,0
+135,240000,male,2,1,34,0,0,0,2,2,2,10674,12035,13681,13269,14158,13891,1500,1800,0,1000,0,327,0
+136,150000,male,1,2,27,0,0,0,0,0,0,17444,19342,22000,24614,27200,30229,2500,3000,3000,3000,3500,5000,0
+137,210000,female,2,1,33,0,0,0,0,0,0,7166,7997,8792,9189,4404,5708,1500,1500,1000,500,2000,546,0
+138,50000,female,3,1,51,-1,-1,-1,-1,-2,-2,752,300,5880,0,0,0,300,5880,0,0,0,0,1
+139,50000,male,1,2,24,0,0,0,0,0,0,50801,50143,49586,19430,19375,18995,2360,1700,1000,900,870,2130,0
+140,240000,male,1,2,47,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+141,180000,male,2,2,28,-1,-1,-1,-1,-1,-1,1832,0,832,332,416,416,0,416,332,500,3500,832,0
+142,50000,male,2,2,23,1,2,2,2,0,0,10131,10833,20583,19996,19879,18065,1000,10000,400,700,800,600,0
+143,170000,male,2,2,29,-2,-2,-2,-2,-2,-2,12159,10000,10000,10000,9983,15846,10000,10000,10000,9983,15863,10000,0
+144,20000,male,1,2,29,-1,-1,-1,-1,0,-1,1199,15586,344,2340,6702,339,15586,344,2340,4702,339,330,0
+145,50000,male,1,2,28,0,0,0,0,0,3,4999,5913,7315,9195,10624,10138,1000,1500,2000,1583,1100,0,0
+146,170000,female,2,2,27,0,0,0,0,0,0,19269,20313,20852,17560,17918,9100,1661,1200,351,358,182,0,1
+147,200000,male,1,2,34,1,2,0,0,0,0,197236,176192,93069,135668,132233,59875,8000,5000,55500,5000,5000,8500,0
+148,80000,female,2,1,23,1,2,3,2,0,0,9168,10522,10205,9898,10123,12034,1650,0,0,379,2091,1,0
+149,260000,female,1,1,60,1,-2,-1,-1,-1,-1,-1100,-1100,21400,0,969,869,0,22500,0,969,1000,0,0
+150,140000,male,2,1,32,0,0,0,0,2,0,86627,78142,68336,64648,58319,55251,3455,3110,5000,0,2100,2602,0
+151,80000,male,1,2,25,0,0,0,0,0,0,42444,55744,43476,41087,41951,31826,30000,3000,6000,8000,2000,14000,0
+152,350000,male,1,2,41,1,-1,-1,-1,-1,-2,208,2906,1000,630,0,0,2906,1000,630,0,0,0,0
+153,280000,female,2,1,56,0,0,0,0,0,0,208775,182350,132257,101783,177145,169311,8042,6700,5137,100000,7000,6321,0
+154,30000,female,3,2,26,0,0,0,0,0,0,9014,10406,11427,11935,13084,14206,1700,1500,1000,1500,1500,1500,0
+155,140000,male,1,1,34,0,0,0,0,0,0,23944,28049,32073,43129,47086,48699,5000,5000,11885,5000,3000,5504,0
+156,200000,female,1,2,37,0,0,0,0,0,0,105420,102870,89643,90938,92505,94031,4000,3250,3250,3500,3560,5000,0
+157,200000,female,3,2,30,0,0,0,0,0,0,196031,196143,189524,167163,146975,122324,7300,7108,7680,6200,5000,4500,0
+158,210000,male,3,1,45,2,3,4,4,5,6,115785,122904,129847,137277,145533,154105,10478,10478,11078,11078,11678,10478,1
+159,50000,male,3,1,57,3,2,0,0,0,0,12854,12362,13447,13427,13711,14083,0,1600,500,500,600,600,0
+160,30000,male,1,2,41,2,2,2,2,2,0,24357,27453,26718,28168,27579,28321,3500,0,2200,0,1200,1250,0
+161,50000,male,2,2,27,2,-1,-1,-1,-1,2,390,390,780,216,1080,540,390,780,216,864,0,390,0
+162,290000,male,3,1,47,-1,-1,-1,-1,0,-1,1234,396,396,792,396,423,396,396,792,0,423,369,0
+163,250000,female,1,1,34,0,0,2,0,0,0,141223,156858,151841,152803,155997,160220,17994,0,5469,5656,6811,3920,0
+164,60000,female,2,1,46,0,0,0,0,0,0,21148,23803,24908,26034,26655,27756,3000,1500,1500,1000,1500,1500,0
+165,110000,female,1,2,27,0,0,0,0,0,0,101640,104795,104855,74737,76058,77254,5500,3900,3000,2900,3000,2800,0
+166,370000,male,1,2,50,-2,-2,-2,-2,-2,-2,6093,15130,8204,15398,4792,13453,15383,8204,15413,4792,13453,4699,0
+167,100000,male,2,1,27,-1,2,2,0,0,0,102349,96847,58824,29336,22979,-246,3166,0,1330,1398,12,50000,0
+168,90000,female,2,1,35,0,0,0,0,0,2,72112,73854,75526,77317,85852,88290,3500,3500,3652,10000,4000,0,0
+169,50000,female,2,2,22,0,0,0,0,0,0,28040,29092,29366,27737,28318,28806,1510,1442,982,1017,1277,567,0
+170,270000,male,2,2,37,0,0,0,0,0,0,37695,33397,30534,27598,26344,24641,5000,2000,3000,4000,3000,2000,0
+171,300000,female,1,2,30,-1,-1,-1,-1,-1,-1,688,3280,0,4340,2672,800,3288,0,4340,2672,800,746,0
+172,50000,female,2,2,22,-1,0,0,0,0,0,8567,15273,11650,7457,3115,7725,15000,1000,149,0,5000,10000,0
+173,50000,female,1,2,24,1,-2,-2,-2,-2,-2,-709,-709,-709,-2898,-3272,-3272,0,0,0,0,0,0,1
+174,360000,male,1,2,29,1,-2,-1,-1,-2,-2,0,0,77,0,0,0,0,77,0,0,0,0,0
+175,130000,male,3,1,56,1,2,2,2,2,3,64617,65978,67282,68557,72796,71345,3000,3000,3000,5500,0,0,1
+176,80000,male,1,2,30,-2,-1,0,0,0,0,6187,100,600,1438,1919,5380,504,500,1000,500,3500,0,0
+177,50000,male,2,2,30,1,2,0,0,0,2,48860,47801,48363,30221,22877,22361,0,1500,1000,2000,0,2000,0
+178,20000,female,2,2,22,0,0,0,0,0,0,16001,12622,13221,13130,14034,14906,1212,1201,500,1500,1500,1000,0
+179,80000,female,2,1,29,0,0,2,0,0,0,77883,81811,80250,61467,10662,11486,5800,1000,600,400,1000,0,0
+180,240000,male,1,2,37,-1,-1,2,0,0,-1,12212,26578,25331,26605,26279,1256,15000,0,2000,0,1256,65935,0
+181,80000,female,3,2,35,0,-1,0,0,0,0,49608,12412,14873,17364,17770,17460,12500,6500,3000,2000,3000,2000,0
+182,500000,female,1,1,47,0,0,0,0,0,0,56422,110616,110340,122967,108834,70064,70010,30357,30000,20000,52183,20000,0
+183,60000,female,2,1,24,0,0,0,0,0,0,58024,57891,48839,18971,19323,19395,2500,1600,3000,1000,737,2000,1
+184,20000,male,2,2,25,0,0,0,0,0,-1,10642,11677,13070,12280,1615,1620,1200,1593,601,135,1824,0,0
+185,100000,female,2,1,38,1,2,0,0,2,0,14483,13961,15323,16268,15868,16448,0,1600,1500,0,1000,1500,1
+186,360000,female,1,2,32,1,-1,-1,-1,-1,-1,2616,57077,5287,68445,13881,16240,57087,5295,68454,13889,16250,38313,0
+187,200000,female,3,2,47,2,2,2,2,2,2,199436,202947,193936,196186,200162,189915,8214,7000,6800,7134,0,6836,1
+188,130000,female,2,1,34,1,-1,0,0,0,0,0,5396,10270,13576,13864,14636,5396,5000,3500,501,1000,2000,0
+189,20000,female,2,2,31,1,5,4,4,3,2,21703,21087,21461,20835,20219,20487,0,1000,0,0,760,0,0
+190,310000,male,1,2,32,0,0,0,0,0,0,59901,62147,62102,65875,60387,43328,10020,6031,10057,5028,5060,4223,0
+191,60000,female,1,2,27,2,0,0,0,2,0,19625,20347,21669,23005,22499,22873,1342,1664,2000,0,900,846,1
+192,180000,female,1,2,29,-1,-1,-1,-2,-1,0,11386,199,0,0,17227,17042,199,0,0,17227,341,5114,0
+193,180000,female,1,2,24,-1,-1,2,0,0,-2,14670,22087,21282,10200,0,0,37867,0,200,0,0,0,0
+194,50000,male,2,1,36,0,0,0,0,-1,-1,47790,18114,18250,-14,72,658,2000,1000,2000,500,1000,20011,0
+195,50000,female,1,2,24,1,2,2,2,2,2,36166,37188,37680,38462,39228,40035,1900,1400,1700,1532,1600,0,1
+196,150000,female,2,1,34,-2,-2,-2,-2,-2,-2,0,0,0,116,0,1500,0,0,116,0,1500,0,0
+197,20000,female,1,2,22,0,0,0,0,-1,0,18553,19446,19065,8332,18868,19247,1500,1032,541,20000,693,1000,0
+198,500000,female,1,1,34,-2,-2,-2,-1,-1,-1,412,138,2299,1251,1206,1151,138,2299,1251,1206,1151,15816,0
+199,30000,female,3,2,22,1,2,2,0,0,0,29010,29256,28122,29836,1630,0,1000,85,1714,104,0,0,1
+200,180000,female,1,1,38,-2,-2,-2,-2,-2,-2,750,0,0,0,0,0,0,0,0,0,0,0,0
+201,140000,male,1,2,31,0,0,2,0,0,2,27123,27299,17985,20225,27407,10833,25000,0,3000,7800,0,2500,0
+202,140000,female,1,2,26,-1,0,-1,-1,-1,-1,13424,18000,13001,5818,13506,487,10000,13001,5841,13506,487,7004,0
+203,120000,male,2,2,26,0,0,0,0,0,0,107314,110578,113736,116000,119131,122135,5000,5000,4152,5000,5000,5000,0
+204,360000,female,2,1,48,0,0,0,0,0,0,226430,231878,234192,190211,173557,146511,9100,7300,5800,5600,5600,4100,0
+205,20000,male,3,1,43,-1,-1,0,0,0,0,227,20351,20237,19339,19450,19337,22359,1305,1258,1459,3457,1700,0
+206,100000,male,1,1,47,-1,-1,-1,-1,-1,-1,390,1473,390,390,390,0,1473,390,390,390,0,2380,0
+207,210000,female,2,1,41,-1,-1,-1,-1,-1,-1,3088,1586,343,3763,877,0,1586,343,3763,877,0,419,1
+208,80000,female,2,2,24,0,0,0,0,0,0,81625,81554,79599,49552,49509,49568,3200,3000,2038,2000,1800,1800,1
+209,330000,female,1,1,50,-1,-1,-1,-1,-2,-2,8872,4337,2854,1690,0,1709,4345,2854,1702,0,1709,258,0
+210,220000,male,1,2,24,0,0,0,-1,-1,-1,105607,108917,111520,8303,0,85632,5000,5050,8303,0,85632,0,0
+211,210000,female,1,1,38,1,-2,-1,0,-1,-1,0,0,250,123,789,1222,0,250,0,789,1222,9616,1
+212,40000,female,3,1,43,0,0,0,0,0,0,38257,38901,38103,36207,33138,31339,1700,1504,1200,1500,1500,1000,0
+213,30000,male,2,2,39,0,0,0,2,0,0,28347,28108,18388,12992,7736,8032,3036,2309,0,1000,2000,148,0
+214,470000,male,2,2,27,2,2,2,2,0,0,296573,303320,307843,479978,305145,309959,13000,11001,0,10484,10838,10367,0
+215,30000,male,3,1,42,-1,-1,-1,-1,-1,2,390,390,390,240,1320,780,390,390,240,1470,0,0,0
+216,240000,female,2,1,36,1,-2,-2,-2,-2,-2,-946,-946,-946,-946,-946,-946,0,0,0,0,0,0,1
+217,80000,male,2,2,36,2,0,0,0,0,0,79278,78501,78534,80016,76235,78245,3100,3500,3400,3000,3500,3000,0
+218,310000,female,1,2,38,-1,-1,-1,-1,-2,-2,1424,4542,126,0,0,0,4542,126,0,0,0,0,0
+219,360000,female,1,1,40,2,2,2,0,0,0,105167,115468,112157,114690,117845,120238,12000,0,5900,5000,4500,4700,1
+220,330000,female,3,2,45,0,0,0,0,0,0,335196,334954,335527,333860,335760,330121,12388,12378,12116,12450,12213,11678,0
+221,300000,female,2,2,35,0,0,0,0,0,0,291619,297268,205629,215827,208464,212508,12019,9006,17000,12000,9557,15000,0
+222,320000,female,2,2,33,0,0,0,0,0,0,91653,94037,108597,65913,43805,33263,10042,18832,2117,2076,5045,3754,0
+223,50000,female,3,2,37,1,3,2,0,0,0,52626,51537,49205,30394,30249,29957,0,24,1500,1000,1201,30592,1
+224,170000,female,1,2,28,0,0,0,0,0,0,130370,131199,128900,125514,127280,128839,6530,4860,22500,4820,4877,4962,0
+225,350000,male,3,1,44,-1,-1,-1,-1,-1,-2,3265,2686,1864,569,0,0,2686,1864,569,0,0,0,0
+226,20000,male,2,1,37,0,0,0,0,0,0,16455,16511,18902,18768,18650,19175,1609,3000,663,676,834,782,0
+227,50000,male,2,2,23,2,0,0,0,0,0,49758,48456,44116,21247,20066,18858,2401,2254,2004,704,707,1004,1
+228,20000,female,3,2,24,1,2,0,0,0,0,19154,18165,17233,7630,1730,0,0,1333,500,100,0,3200,0
+229,50000,female,1,2,24,0,0,0,0,0,0,35084,35796,30937,19420,10385,1308,2090,2002,1002,238,1011,389,0
+230,20000,male,2,2,23,1,2,0,0,2,0,20235,17132,16856,16875,13454,10104,0,1200,1000,0,1000,10000,1
+231,50000,male,2,1,26,0,0,-2,-1,-1,0,102800,0,0,2624,45567,46557,0,0,2624,45567,1747,2000,0
+232,190000,male,2,2,34,2,0,0,0,2,2,129801,131383,134379,142323,140120,150052,5000,5000,10000,0,12118,2769,1
+233,60000,female,2,1,33,0,0,0,0,0,0,58203,36367,20934,20694,20175,19421,1506,1298,1000,721,811,599,0
+234,80000,male,1,2,35,-1,-1,-1,-1,-1,-1,7988,3977,6848,1719,1378,19942,3983,6853,1719,1378,19942,2418,0
+235,150000,female,2,2,27,0,0,0,0,0,0,127402,110050,51547,44384,36900,29497,4500,1745,1566,1208,1077,2529,0
+236,210000,female,1,2,31,-2,-2,-2,-2,-1,-1,1440,0,7422,893,6082,2293,0,7422,893,6082,2293,3299,0
+237,240000,female,3,1,50,0,0,0,0,0,0,234205,231669,214642,207642,210375,214694,10116,9150,8008,8000,8009,7714,1
+238,140000,female,2,3,41,0,0,0,0,0,0,19346,21708,22940,19068,16409,16383,3000,2000,2198,1000,3000,2399,1
+239,60000,female,1,2,28,1,2,2,-2,-2,-1,21501,20650,0,0,0,2285,0,0,0,0,2285,0,0
+240,50000,male,1,2,39,0,0,0,0,0,0,47174,47974,48630,50803,30789,15874,1800,2000,3000,2000,2000,2000,0
+241,50000,female,2,2,27,0,0,0,0,0,0,26655,27724,28676,27990,28790,29399,1800,1750,900,1200,1200,1100,0
+242,180000,female,1,2,32,-1,-1,2,2,-1,-1,3139,5853,2821,0,2821,0,2821,0,0,2821,0,176,0
+243,30000,female,1,2,40,-1,-1,2,2,2,2,142,215,139,19,19,79,355,120,0,0,60,60,0
+244,20000,female,2,2,40,0,0,0,0,0,-2,19816,20396,20102,19575,0,0,1601,2203,2114,0,0,0,0
+245,250000,female,2,1,75,0,-1,-1,-1,-1,-1,52874,1631,1536,1010,5572,794,1631,1536,1010,5572,794,1184,0
+246,100000,female,2,2,27,0,0,0,0,0,0,37767,34457,30036,30337,30997,32904,1788,1799,1100,1150,2423,0,0
+247,330000,male,1,2,25,0,0,0,0,2,0,46140,45781,48139,51137,39450,25358,2504,4007,5056,74,1023,2566,0
+248,50000,male,3,1,46,0,0,0,0,0,0,35713,15392,16099,16418,16765,17484,1561,1268,587,611,1000,2000,0
+249,50000,female,2,2,26,1,2,2,0,0,0,50867,51486,48869,30115,29527,29998,1710,136,1206,2002,2005,3003,0
+250,30000,male,2,2,28,0,0,0,0,0,0,29242,29507,29155,25255,22001,0,5006,1244,851,955,0,0,0
+251,140000,female,2,2,26,0,0,0,0,0,0,101551,105246,104781,105334,107699,106828,5366,5087,3605,3894,3785,3304,1
+252,160000,female,1,2,28,0,0,0,0,-1,0,70243,47779,28052,7222,99669,84426,7042,2000,1000,99669,12600,10000,0
+253,400000,female,2,2,29,-1,0,-1,-1,-1,-1,19532,3719,1453,4944,1896,2486,3127,1469,4968,1905,2494,862,0
+254,50000,male,2,1,25,0,0,0,0,0,0,27699,28513,29341,29928,29533,28538,1565,1393,980,994,1024,886,0
+255,140000,female,2,1,48,0,-1,-1,-1,-1,-1,1154,1233,862,1355,1130,21361,1233,1075,1355,1130,21361,1347,0
+256,160000,female,2,1,33,-1,-1,-1,-1,0,-1,8015,2453,9624,52572,7333,2210,2453,9880,52572,1546,2210,0,0
+257,100000,female,3,1,43,0,0,-2,-2,-2,-2,62170,0,0,0,0,0,0,0,0,0,0,0,0
+258,220000,male,1,1,48,2,0,0,0,0,0,210380,213522,201852,169115,172169,162402,10000,9020,6000,5500,6000,5500,1
+259,510000,female,1,2,29,0,0,0,0,0,0,78331,99414,107686,103776,87265,36739,40010,20094,5000,5001,25365,65000,0
+260,50000,male,2,2,29,0,0,0,0,0,0,49276,35100,32563,27823,29130,28309,1602,1400,3000,3130,1062,6318,0
+261,160000,female,1,1,38,-1,-1,-1,-1,2,-1,4473,4664,5969,18941,16578,12652,4664,5969,18941,0,12652,1916,0
+262,230000,female,1,2,37,-2,-2,-2,-2,-2,-2,2283,50815,0,0,299,338,51315,0,0,299,338,0,0
+263,80000,female,1,2,37,-1,-1,-1,-1,-1,-1,10115,249,5986,188,1644,16872,258,5995,188,1644,16872,4000,0
+264,150000,female,2,1,25,-1,-1,-2,-1,-1,-1,6156,0,0,316,316,316,0,0,316,316,316,316,0
+265,10000,male,3,2,23,0,0,0,0,0,2,6974,7838,9002,9182,9729,9411,1134,1298,478,847,0,175,0
+266,130000,female,3,2,49,0,0,0,0,0,0,89003,91362,72197,49654,28065,27500,4100,3095,1630,561,600,0,1
+267,40000,female,1,2,48,0,0,0,0,0,0,34871,34449,33634,34586,34762,35673,1600,1600,1500,1500,1500,1500,0
+268,50000,male,2,2,27,3,2,2,0,0,-1,13694,14880,14242,13968,14319,2614,1700,0,426,501,2614,1390,1
+269,100000,male,3,2,32,0,0,0,0,0,0,70003,31545,20974,19713,19848,18126,2035,2004,616,2007,1009,2015,0
+270,120000,male,1,1,34,-1,2,-1,0,0,0,1082,632,1350,900,450,0,0,1350,0,0,0,450,0
+271,260000,female,1,2,58,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+272,200000,female,2,2,33,0,0,0,0,0,0,11253,12852,14024,14512,16325,11905,2000,1322,2000,2000,1200,3000,0
+273,360000,female,2,2,28,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+274,70000,female,2,2,36,0,0,0,0,0,0,68699,69120,68376,30163,14310,15085,4483,12496,3268,3000,3000,2000,0
+275,460000,male,1,1,40,2,-1,-1,-1,-1,-1,171,2715,-13,2641,-10,22535,2728,0,2654,0,22545,0,1
+276,50000,female,1,2,26,-1,-1,-1,-1,-1,-1,1156,316,316,316,316,316,316,316,316,316,316,316,0
+277,50000,male,3,1,33,0,0,0,0,0,0,50859,50462,50654,20046,20067,19703,2007,2199,691,707,703,697,0
+278,250000,female,2,1,31,0,0,0,0,0,0,103109,102594,97109,99029,100871,101299,4000,4500,5000,4000,5000,4400,0
+279,30000,female,1,2,27,0,0,-1,0,0,-2,1512,2458,664,1814,0,0,1000,664,1500,0,0,0,0
+280,270000,male,2,1,44,0,0,0,0,-1,-1,127543,109189,92630,69669,44149,43414,10063,5162,10150,44299,43509,31031,0
+281,180000,female,3,2,30,0,0,0,0,0,0,163935,153152,147032,122196,103692,70204,7722,6091,3563,3605,3000,3211,0
+282,100000,female,1,2,28,0,0,0,0,0,0,53494,52656,52600,52336,55831,56265,4173,3000,2025,5000,3000,3000,0
+283,230000,female,3,1,32,0,0,0,0,0,0,195126,88743,92195,94814,98182,98457,5000,5000,5000,5000,4000,5000,0
+284,210000,female,1,1,46,-1,-1,-1,-1,-1,-1,110346,41986,21874,20076,16171,586,41986,21874,20076,16171,586,19777,0
+285,210000,male,1,2,38,2,0,0,0,0,0,60502,62804,62769,62683,63663,46549,3276,2026,2000,2000,2000,2502,0
+286,440000,female,2,1,46,0,0,0,0,0,0,180641,181557,149944,113135,105280,97622,8610,6907,3727,3800,4001,2701,0
+287,100000,female,2,2,25,2,0,0,0,0,0,70896,71678,70125,69856,69718,51365,3472,2092,2000,2127,1960,1559,1
+288,240000,female,2,1,46,0,0,0,0,0,0,8751,9900,10605,10765,11765,4311,1295,1000,1000,1000,1000,1000,0
+289,280000,male,1,2,33,-1,-1,-1,-1,-1,-1,898,898,325,898,325,-339603,898,325,898,325,0,345293,1
+290,50000,female,2,2,22,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+291,30000,male,2,1,43,3,2,2,2,2,2,1700,2610,1914,2182,2000,2566,1100,0,300,0,600,0,0
+292,10000,male,2,2,27,0,0,2,0,0,0,7015,10227,9560,9901,9963,10182,3507,0,500,370,393,700,1
+293,130000,male,1,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,1500,0
+294,200000,male,1,2,31,0,0,0,0,0,0,194353,197344,186292,133345,133634,133990,9000,7465,4715,4804,5141,5300,0
+295,120000,female,2,1,29,-1,-1,-1,-1,-1,-1,1686,657,2179,1423,0,1820,657,2319,1423,0,1820,2496,0
+296,210000,female,2,1,36,0,0,0,0,0,0,143225,142996,144415,148190,147993,131629,6483,5082,6000,5900,4544,4700,0
+297,280000,female,1,1,36,0,0,0,0,0,0,58983,60788,63225,29701,30172,30771,2755,3463,1300,1100,1100,2000,0
+298,300000,male,1,2,34,1,-2,-1,0,-1,-1,0,0,13001,12601,19595,203,0,13001,0,19595,203,0,1
+299,100000,male,2,2,37,0,0,0,0,0,0,99209,98222,67185,66926,66796,64513,3490,2332,2314,2365,2497,2305,0
+300,440000,female,1,2,36,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,162000,0,0
+301,50000,female,3,1,40,0,0,0,0,0,0,49941,51213,12104,12898,13687,14458,2400,1206,1000,1000,1000,1000,0
+302,20000,female,1,2,25,0,0,2,0,0,0,11968,14564,27820,15824,15761,12510,2800,0,4000,1700,1000,2000,1
+303,200000,female,1,2,27,-1,-1,-1,0,0,0,871,665,960,4242,4084,7414,665,960,3908,1014,3500,2880,0
+304,110000,female,2,2,26,-2,-2,-2,-2,-2,-2,432,3220,5704,1256,1848,400,3220,5904,0,3000,0,0,0
+305,500000,female,2,1,36,-1,-1,-1,-1,-1,-1,10483,23956,0,8500,4590,0,23962,0,8500,4590,0,0,0
+306,300000,female,2,1,27,1,-1,-1,-2,-2,-2,0,5215,0,0,0,0,5215,0,0,0,0,0,0
+307,30000,male,3,1,55,2,2,2,3,3,4,9720,10613,11339,12841,13836,14514,1200,1200,2000,1500,1500,1500,1
+308,60000,female,1,2,27,-1,-1,-1,-1,-1,-1,20847,13801,14366,4889,273,11736,13809,14583,4889,273,13557,0,0
+309,400000,female,2,1,38,-1,0,-1,-1,0,-1,3697,3600,1354,5322,5103,2077,1000,1354,5322,6,2386,9085,0
+310,180000,female,2,1,34,0,0,0,0,0,0,143301,146333,147042,127814,130331,132845,7000,5000,5000,4900,5000,5100,0
+311,20000,male,1,2,40,0,0,0,2,0,0,10934,13738,16567,10411,13057,14340,3000,3100,0,3000,1500,0,0
+312,200000,female,3,1,49,-1,2,2,2,0,0,52439,51040,56205,54723,58657,59983,0,6000,0,5000,2286,3000,1
+313,100000,male,1,2,27,0,0,0,0,0,0,55734,52557,33415,28776,17580,6441,1631,1286,200,645,909,200,0
+314,60000,male,2,2,23,0,0,0,0,0,0,49507,33282,34312,17277,17808,19346,1970,2000,618,809,2000,616,1
+315,110000,female,2,2,36,0,0,0,0,0,0,47819,48947,50330,50894,52175,53652,2200,2500,2000,2100,2500,2200,0
+316,260000,female,3,1,53,1,-1,-1,-2,-2,-1,0,165,526,452,397,485,165,526,452,397,485,459,0
+317,50000,female,3,1,46,3,2,2,0,0,0,48522,50955,29516,29742,29898,24883,3754,1,1070,1030,863,654,0
+318,180000,male,2,2,29,1,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0
+319,110000,male,2,2,29,1,2,2,0,0,0,58362,56598,51908,48647,47862,47969,2500,0,2000,2000,1854,2000,1
+320,340000,female,1,2,27,0,0,0,0,0,0,172180,180140,166281,155628,145645,103263,21105,5461,5000,5849,2732,50000,0
+321,50000,male,2,2,24,-1,0,0,0,0,0,1399,2441,3865,7476,8384,8085,1070,1500,3666,2477,1306,1000,0
+322,230000,female,2,1,28,0,0,0,-2,-1,-1,26361,18826,1100,2100,767,6173,1710,1100,1000,767,6173,1000,1
+323,360000,female,2,2,32,0,0,0,0,0,0,93029,94054,91834,95631,100123,100738,10000,7000,10000,10000,10000,10000,0
+324,210000,male,2,2,43,1,-2,-1,0,0,0,0,0,38013,40555,45075,37056,0,38013,3000,5000,3000,3000,0
+325,220000,female,2,1,41,-1,2,2,-1,2,-1,650,650,325,950,475,325,325,0,950,0,325,325,1
+326,60000,female,2,1,34,2,2,2,2,2,0,24898,27976,27233,30184,29566,30225,3800,0,3720,0,1300,1291,1
+327,340000,male,2,1,55,-2,-1,-1,-2,-2,-2,50396,44665,8300,2190,24599,7416,44665,8321,2190,24599,7416,77195,0
+328,150000,male,1,1,40,2,2,2,2,2,2,99855,102586,100064,104975,107147,109428,5200,0,8100,4000,4200,4200,0
+329,200000,female,2,1,37,1,-1,2,-1,-1,-1,-179,505,189,6773,23209,16893,1000,0,6900,24000,17000,2500,1
+330,130000,female,2,2,40,0,0,2,0,0,0,9559,12394,11883,9826,10167,12685,3000,0,500,500,2700,500,1
+331,60000,female,1,2,28,1,2,0,0,0,0,10540,10232,11237,11427,20973,31857,0,1483,673,10000,11540,7000,0
+332,400000,female,2,1,43,1,-2,-2,-2,-1,-1,0,0,0,0,1600,78388,0,0,0,1600,78388,0,0
+333,20000,male,1,2,27,0,0,0,0,0,0,20571,19089,19658,19453,19108,18868,1323,1600,830,700,674,376,0
+334,190000,female,1,2,28,0,0,0,0,0,0,143464,146943,151905,153538,156664,160361,5795,7408,5645,5753,6370,5865,0
+335,260000,female,1,2,30,0,0,0,0,0,0,156882,160246,159988,158114,158762,159108,10000,8000,6000,7000,7000,6000,0
+336,140000,female,2,2,31,-2,-2,-2,-2,-2,-2,390,0,0,0,0,0,0,0,0,0,0,0,0
+337,50000,female,2,1,31,0,0,0,0,0,0,46512,47716,49675,30929,30078,29170,1974,4406,1061,1073,1046,1047,1
+338,120000,female,1,2,34,-1,-1,0,-1,-1,-1,882,6531,6313,1100,1330,830,6900,5037,1100,1330,3800,2037,0
+339,240000,female,2,2,30,-2,-2,-2,-2,-2,-2,92,92,92,0,92,0,92,92,0,92,0,1883,0
+340,50000,male,2,2,36,0,0,0,0,-1,0,5916,6172,4123,680,978,978,1212,1200,0,978,0,0,0
+341,200000,female,1,2,29,-1,2,-1,-1,-1,2,2393,183,4847,20183,24815,24248,0,4872,20183,5000,0,1000,0
+342,180000,male,1,1,39,0,0,-1,0,0,-1,274731,281713,242063,122295,-1005,1005,11000,145000,26000,0,101005,1898,0
+343,180000,female,1,2,26,0,0,0,0,0,0,145403,138232,130553,105894,108248,106517,5440,5051,3835,4106,4250,4028,0
+344,160000,female,1,2,29,-1,-1,-2,-1,0,0,3097,-707,-2697,2303,6182,1654,0,0,5000,5000,1500,13000,0
+345,100000,female,2,2,26,-1,-1,-1,0,0,0,1370,4192,4159,3542,1980,3980,4210,4159,1000,1080,2000,1525,0
+346,50000,female,2,2,29,0,0,0,0,0,0,47081,49316,50409,45545,39963,41145,3000,2000,2000,2000,2000,2000,1
+347,140000,female,2,2,31,0,0,0,0,0,0,138119,137950,140254,139679,141748,142174,6600,6500,5100,5300,6000,5000,0
+348,30000,female,2,2,26,0,0,0,0,0,0,17893,19012,20123,20222,20796,19844,1411,1522,621,795,715,1000,1
+349,90000,male,1,2,26,0,0,-1,0,0,-1,39128,20473,1940,1940,0,23101,1541,4200,0,0,23101,3000,0
+350,200000,male,1,1,36,1,-2,-1,-1,-2,-1,-14386,-13543,3432,-3684,0,1386,10118,47015,0,4000,100000,10000,0
+351,380000,male,1,2,30,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+352,80000,female,2,2,43,0,0,0,0,0,0,77057,78102,58501,51042,19036,19414,3177,2600,3000,1691,695,882,0
+353,50000,male,3,1,58,2,2,2,0,0,2,15899,18720,18122,18530,19089,18856,3400,0,1000,1001,634,638,0
+354,180000,male,2,1,45,-1,0,0,0,0,0,27679,28422,29650,29981,30419,31127,1481,2000,1100,1200,1500,1500,1
+355,240000,female,2,2,26,0,0,0,0,0,0,141315,128940,124226,113133,113966,103360,6349,5834,3870,4000,3825,3520,0
+356,380000,male,2,2,34,0,0,0,0,0,0,194314,179206,193992,174675,171253,169121,9010,35000,5000,6000,5000,4400,0
+357,110000,female,4,2,24,0,0,0,0,0,0,83755,77431,79044,80631,82333,84462,3000,2900,2900,3000,3500,4000,0
+358,260000,male,1,1,34,-1,-1,-1,-1,-1,-1,49657,291,51058,2351,34039,291,291,51058,35696,34039,291,291,0
+359,500000,female,2,2,23,4,3,2,0,0,0,507726,509229,499936,505507,484612,419643,10000,0,14000,16500,16000,19000,1
+360,320000,female,2,2,30,0,0,0,0,0,0,71305,71151,72029,72849,74374,74610,2589,2568,2570,2661,2781,2500,0
+361,50000,male,2,2,32,4,3,2,0,0,0,45734,44741,43562,44039,45008,25775,0,0,1262,1358,1275,1590,0
+362,110000,male,1,1,40,1,-2,-1,0,-1,-1,0,0,2066,2000,216,216,0,2066,0,216,216,66,1
+363,230000,female,1,2,35,-2,-2,-2,-2,-2,-2,761,300,399,665,576,613,300,399,665,576,613,520,0
+364,330000,female,2,1,56,1,-1,-1,-2,-1,-1,-9,1520,1488,0,3965,8676,1529,1507,0,3965,8676,384,0
+365,50000,female,2,1,61,0,0,0,0,0,0,47166,49396,50476,23319,23171,24774,3000,2237,975,1000,2000,1039,0
+366,10000,male,2,2,24,-1,2,2,2,0,0,2887,1923,2989,2813,2008,2132,0,1500,0,0,150,0,0
+367,300000,male,1,1,40,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+368,20000,female,2,1,32,3,2,0,0,0,0,20631,20010,19703,11084,10918,10985,0,1168,384,390,632,616,1
+369,180000,male,2,1,36,2,2,-2,-2,-2,-2,83538,0,0,0,0,0,0,0,0,0,0,0,1
+370,160000,male,1,2,30,-1,-1,-1,-1,-1,-1,99,2977,15086,8578,13028,21712,2977,15086,9123,13028,29712,50000,0
+371,90000,female,1,2,34,0,0,0,2,2,2,34302,35089,43449,42451,49718,48767,1640,9000,0,8000,0,2000,0
+372,30000,male,3,3,54,0,0,0,0,0,0,22987,22298,22352,23221,24339,25943,2500,2000,1500,4000,2000,0,0
+373,180000,male,1,1,46,0,0,0,0,0,0,173267,174590,175233,106288,28089,178719,8100,5299,3305,5040,160719,7000,0
+374,30000,male,3,1,58,0,0,0,0,0,0,19143,20168,21229,21495,21800,22437,1640,1700,915,800,1000,1961,0
+375,30000,male,2,1,43,1,2,0,0,0,2,20518,19901,20905,21509,25183,24242,0,1342,946,4200,0,1000,0
+376,140000,female,1,2,28,-1,0,0,-1,-1,-1,10833,14446,7609,4991,3400,3745,14000,3855,4991,3600,5500,4000,0
+377,210000,male,1,2,30,0,0,0,0,0,0,69937,71906,43308,44584,47842,49888,3500,3000,2000,4000,3000,10000,0
+378,50000,male,2,2,31,0,0,0,0,0,0,20526,15129,15093,9577,11139,12487,2000,3000,327,3000,3000,5000,1
+379,130000,female,2,2,29,0,0,0,0,0,0,89055,90780,70947,72367,73875,75355,4200,2575,2600,2674,2701,5750,0
+380,50000,female,2,1,37,2,2,2,0,0,0,1894,3200,3381,3559,1948,2415,1500,400,200,500,500,400,1
+381,140000,male,3,1,36,0,0,0,0,0,0,100594,78372,91502,90859,88616,88450,3000,30000,4000,4000,3400,3300,0
+382,170000,female,2,2,28,-1,0,0,2,0,0,2948,3848,5646,5464,5577,5889,1105,1903,0,296,500,95,1
+383,80000,male,2,2,25,0,0,0,0,0,-2,22619,31429,27923,25280,0,0,10010,1209,579,0,0,6305,0
+384,410000,female,5,1,42,0,0,0,0,0,0,338106,342904,344464,240865,234939,240176,15000,14000,9000,8500,9000,8300,0
+385,80000,female,1,2,29,1,-1,-1,-2,-2,-2,0,80000,0,0,0,0,80000,0,0,0,0,0,0
+386,80000,male,3,1,73,-1,0,0,2,2,2,63144,65631,68875,70646,72870,75018,3500,4330,3500,3500,3500,5100,1
+387,150000,male,2,1,43,0,0,0,0,0,0,153249,154049,156523,159653,162866,157759,7900,6500,5700,5700,5700,5334,0
+388,260000,male,1,1,30,-1,-1,-1,0,0,-1,1131,291,582,291,0,291,291,582,0,0,130291,651,1
+389,350000,male,1,1,38,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+390,280000,female,2,1,39,1,-1,0,0,0,0,-1312,35918,37297,37154,32581,33316,38621,2000,1130,922,1011,5000,1
+391,310000,male,2,1,44,0,0,0,0,0,0,103797,91989,87720,76218,72090,71620,4400,4013,3011,3000,3001,2653,0
+392,140000,female,2,2,29,0,0,0,0,0,0,20110,17102,18862,19996,21214,21085,3000,3000,3000,3500,2000,2000,0
+393,360000,male,1,1,51,-1,-1,-1,-2,-2,-2,38000,25000,0,0,0,0,25000,0,0,0,0,0,0
+394,140000,female,1,2,27,0,0,0,0,0,0,142428,144105,143952,142590,142650,142620,10000,10000,6000,6000,6000,5600,0
+395,100000,male,1,2,38,0,0,0,0,0,0,40810,42653,42351,43011,43011,28947,2502,1200,860,0,579,0,0
+396,50000,female,2,2,22,-2,-2,-2,-2,-2,-2,0,0,0,848,0,632,0,0,848,0,632,0,0
+397,210000,female,2,1,30,0,0,0,0,0,0,104701,106134,108423,91143,82733,74125,4002,5000,3500,3000,2700,5000,0
+398,120000,female,2,2,25,2,2,2,2,2,2,120298,120822,109887,116313,119311,117167,4007,0,8272,5000,0,4400,0
+399,240000,male,1,2,29,0,0,0,0,0,-1,156362,132280,99174,65372,28797,184922,5233,3289,2072,3018,184922,6100,0
+400,60000,female,3,3,42,0,0,0,0,0,0,41322,29091,28097,28665,28768,29064,1488,1394,962,1500,2541,2000,0
+401,150000,male,1,2,41,-1,-1,-1,-1,-1,2,1464,2084,384,0,2344,822,2091,384,0,2344,0,472,1
+402,30000,male,2,1,48,0,0,0,0,0,0,27879,28870,27806,25142,25667,26179,1774,1710,1046,1079,1089,2244,0
+403,160000,female,1,2,29,2,2,2,2,2,2,160432,163916,159676,166893,170098,153800,7500,0,11558,5800,0,5654,1
+404,200000,male,1,1,52,-2,-2,-2,-2,-2,-2,3858,2690,3410,0,0,82150,2690,3487,0,0,85900,396,0
+405,120000,female,2,1,25,0,0,0,-2,-2,-2,26476,21393,0,0,0,0,6000,0,0,0,0,0,0
+406,500000,male,1,1,37,1,2,0,0,0,0,507062,491956,430637,376657,356636,303510,325,15296,12137,12312,14113,10526,0
+407,320000,female,1,2,27,0,0,0,0,0,0,55607,62893,59001,61565,59508,66541,11404,8232,10450,9697,16477,11341,0
+408,280000,male,1,2,31,0,0,0,0,0,0,168382,175646,180650,182672,168399,167983,10000,8000,6371,6217,5947,6288,0
+409,60000,female,1,2,23,1,2,2,2,2,2,29332,28577,30805,31601,32349,32965,0,2709,1600,1400,1300,1200,1
+410,200000,female,1,1,38,-1,-1,-2,-1,-1,-2,190,0,0,367,-150,-150,0,0,367,150,0,0,0
+411,230000,female,1,1,32,1,-2,-1,-1,-1,-1,0,0,2809,4595,792,3404,0,2809,4606,792,3404,0,0
+412,230000,female,2,2,27,1,2,0,0,0,0,13668,12647,13135,10596,9218,5068,0,1064,423,313,1000,4641,1
+413,480000,female,3,1,41,-2,-2,-2,-2,-2,-2,14867,26665,199960,9033,19371,22593,26734,199982,9033,19371,22593,2000,0
+414,50000,female,3,1,35,-1,-1,-1,-2,-2,-2,22500,5000,0,0,0,0,5000,0,0,0,0,640,0
+415,200000,female,1,2,31,-2,-2,-2,-2,-2,-2,7184,14845,1097,0,0,160,17507,1102,0,0,160,1103,0
+416,50000,female,1,2,30,0,0,0,0,0,2,14811,16262,17286,17895,19450,18990,2000,1600,1200,2000,0,1000,0
+417,50000,male,2,1,48,0,0,0,0,0,0,44338,43048,35639,18753,19091,19548,3629,3332,2000,2000,2000,2500,0
+418,260000,female,1,2,36,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+419,30000,male,1,2,24,2,0,0,0,0,2,25265,26354,27710,27959,30002,29371,1500,1800,1007,2500,0,1800,0
+420,440000,female,1,2,29,0,0,0,0,0,0,169661,167199,158520,156977,157963,151936,8071,9021,7013,6013,6028,6010,0
+421,230000,female,2,2,38,-1,-1,-1,-1,-1,-1,10237,2795,1350,371,2980,0,2795,1350,371,2980,0,2213,0
+422,200000,male,2,1,38,2,2,2,0,0,0,104978,105924,102663,97090,98045,105253,4500,0,3500,3500,9000,0,1
+423,490000,female,2,1,30,0,0,0,0,0,0,192586,197967,201666,205798,196698,190306,10000,7143,7306,6303,6429,6000,0
+424,80000,female,2,1,32,-1,-1,-2,-2,-2,-2,11262,0,0,0,0,0,0,0,0,0,0,0,0
+425,20000,female,3,2,49,2,2,2,2,0,0,9551,12081,13087,12583,15327,16414,3000,1500,0,3123,1500,1000,1
+426,170000,female,1,2,31,-1,-1,-1,-1,0,-1,199,199,199,398,199,199,199,199,398,0,199,398,1
+427,70000,male,1,2,27,0,0,0,0,0,0,70119,68536,66601,29401,28949,29795,3600,1646,600,28468,1327,1000,0
+428,210000,female,2,2,33,0,0,0,0,0,0,212601,177946,119362,117766,68791,66167,6000,4500,5000,3000,3000,3000,0
+429,90000,female,2,2,25,0,0,0,0,0,0,91894,71732,73241,74424,76070,77648,3200,3300,3000,3001,3000,3100,0
+430,390000,female,1,2,27,0,0,0,0,0,0,304867,299998,300426,292869,292885,281826,13007,10612,10041,11000,10512,7000,1
+431,110000,female,1,2,29,0,0,0,0,0,0,48123,49537,50422,50990,52014,53206,2500,2500,2000,2000,2057,2500,0
+432,580000,female,1,1,36,0,0,0,0,0,0,159760,162189,166127,169365,168755,167964,6422,6565,5951,6006,5894,5946,0
+433,360000,male,3,1,55,0,0,-1,-1,-1,-2,9210,8485,17231,1770,0,0,6015,17454,1775,0,0,0,0
+434,270000,female,2,1,32,1,2,2,2,2,2,234752,233036,229286,217644,223690,221413,10000,8000,0,16000,8000,0,1
+435,60000,female,1,2,27,-1,-1,-2,-1,2,-1,14072,0,0,300,150,150,0,0,300,0,150,200,0
+436,110000,male,3,1,37,0,0,0,0,0,0,61807,62499,62162,60605,60272,60145,2300,2200,2300,2200,2300,2300,0
+437,50000,female,1,1,25,0,0,0,0,0,0,51044,50231,46677,44982,21399,20859,2500,3008,1000,761,800,704,0
+438,80000,female,1,2,23,0,0,0,0,0,0,77024,73281,57806,37642,46235,47110,3212,1600,956,40000,1800,1700,1
+439,50000,male,2,2,23,-1,-1,-1,-1,0,0,350,350,400,1695,12645,12584,350,400,1695,11300,485,2400,0
+440,100000,male,1,2,32,0,0,0,0,2,2,83831,85586,87289,91451,93381,89522,4000,4037,6500,3500,0,3200,0
+441,30000,female,1,2,26,1,-2,-1,-1,-1,-1,0,0,945,0,197,2995,0,945,0,197,2995,0,0
+442,200000,female,1,2,27,0,0,0,0,0,0,122923,124653,126355,114881,117213,124793,5704,5930,4000,4003,10033,4400,0
+443,240000,male,1,2,44,0,0,0,0,0,0,246135,231443,234557,200643,194410,198857,12026,9010,7400,8000,8000,7000,1
+444,220000,male,2,2,34,0,0,0,0,0,0,37304,33304,29254,24875,20329,15602,1600,1500,1100,1000,600,500,0
+445,160000,female,1,2,28,0,0,0,0,0,0,146433,107604,89902,90983,82255,83988,4500,4400,3000,2400,2500,2500,0
+446,180000,female,1,1,53,-1,-1,-1,0,0,-1,46122,1260,29366,5400,0,1599,1260,29366,54,0,1599,0,0
+447,200000,male,4,1,42,0,0,0,0,0,0,38564,38246,32253,30384,30900,0,5000,1485,1956,1500,0,2102,0
+448,140000,female,3,1,30,0,0,0,2,0,0,96304,98007,82227,65000,60848,58880,4505,12906,0,2210,2300,5200,0
+449,380000,male,1,1,51,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+450,600000,male,1,1,53,2,2,0,0,0,0,467150,458862,469703,447130,440982,434715,0,18000,16000,16000,21000,20000,1
+451,260000,male,2,2,37,0,0,0,-1,0,0,255691,262736,36638,122388,127402,131074,14000,5022,130000,7000,6000,6000,0
+452,200000,female,1,2,26,0,0,-2,-2,-2,-2,156786,179,1443,1443,1443,871,179,1443,1443,1443,871,2015,0
+453,80000,male,2,2,42,0,0,0,0,0,0,78129,28202,78553,49340,48919,48443,2500,51432,1800,1800,1800,1700,0
+454,40000,male,2,2,39,0,0,0,0,0,-1,40034,36549,17431,15031,10600,5315,2027,1207,301,212,5315,4987,0
+455,130000,male,3,2,39,1,2,2,2,2,2,71034,69329,74175,72383,77217,75820,0,6000,0,6000,0,6000,0
+456,50000,male,1,2,32,-1,0,0,0,0,-2,23974,24131,25326,25775,0,0,1800,1900,1300,0,0,0,0
+457,230000,female,2,1,41,-1,-1,-1,-1,-1,-1,819,18163,5473,8162,6985,9130,18163,5654,12887,6985,9130,6554,0
+458,70000,male,2,1,48,0,0,0,0,0,-1,50927,39883,32017,17630,9730,6400,2100,1217,500,0,6400,4590,1
+459,180000,female,2,1,38,0,0,0,0,0,0,152510,151651,159019,123022,126075,126219,5657,10372,5000,5000,5000,5000,0
+460,80000,female,2,1,36,-1,-1,-1,-1,-1,-1,1689,8638,5702,2980,1260,7868,8638,5723,2980,1260,7868,2198,0
+461,290000,female,2,2,26,0,0,0,-1,-1,0,20807,99860,100000,3015,23473,1448,80000,3000,3015,23473,1148,4900,0
+462,230000,female,1,2,28,0,0,0,0,0,0,30141,131255,110503,99283,97599,96116,120093,8034,3013,4010,5882,3000,0
+463,170000,female,3,3,56,1,-2,-1,-1,-2,-1,0,0,1991,0,0,150,0,1991,0,0,150,614,0
+464,230000,male,1,1,59,-1,0,0,0,0,0,208459,206331,203813,201331,198999,191671,7536,7277,7100,7120,6844,6945,1
+465,220000,male,1,2,38,0,0,0,0,0,0,212795,211043,212759,218541,167743,165300,8909,7500,9000,6729,6000,7009,1
+466,230000,male,2,2,32,0,0,0,0,0,0,28114,28006,25000,22046,19860,19831,1610,1224,655,627,620,500,0
+467,500000,male,2,1,38,0,0,0,-1,0,0,59372,49677,49515,42568,48268,51481,10026,7241,50091,25000,5078,2132,0
+468,90000,female,1,1,41,-1,-1,-1,-1,-1,-1,6160,3274,6190,307,2870,670,3276,6246,307,2870,670,1362,0
+469,390000,female,3,2,35,0,0,0,0,0,0,355215,363325,373181,252195,257496,263018,13802,16525,8893,9229,10000,9435,1
+470,400000,female,2,2,41,0,0,0,0,0,0,366193,372700,375948,195991,152127,155182,14020,13595,6243,6007,6061,6012,0
+471,180000,male,2,1,34,-1,-1,-1,-1,-1,-1,2927,2790,1140,2144,1180,1382,2790,1140,2144,1180,1382,2440,0
+472,60000,male,3,1,38,1,2,2,0,0,2,29295,30321,31018,32193,34213,35002,1800,1500,2000,2700,1500,0,0
+473,120000,female,2,1,32,-1,-1,-1,-1,-1,-1,4158,2682,0,6440,0,5930,2682,0,6440,0,5930,5120,0
+474,60000,female,2,2,29,0,0,0,0,0,0,27199,28358,28937,29614,30391,23159,1900,1400,1000,1100,1000,420,0
+475,50000,male,1,2,44,0,0,0,0,0,0,50893,28527,29241,28513,29106,29638,1800,1500,1200,1203,1166,1000,0
+476,70000,female,2,1,37,0,0,0,2,0,0,66759,68200,72972,71248,50610,50809,2518,5950,0,1782,1985,2700,0
+477,500000,female,1,1,38,-1,2,-1,-1,-1,0,600,300,501,300,600,450,0,501,300,600,300,600,0
+478,200000,male,1,2,31,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+479,250000,female,2,1,40,0,0,0,0,-1,2,44930,137101,90801,0,1069,919,120041,4435,0,1069,0,67619,0
+480,140000,male,2,2,26,0,0,2,2,2,2,131367,146193,140202,144035,140419,130271,17000,0,11400,550,5300,5400,1
+481,70000,female,2,2,28,0,0,0,0,-1,2,41264,41799,37887,37876,6736,4162,2112,1200,758,6736,0,0,0
+482,90000,male,3,1,48,1,2,2,2,2,2,77604,73317,71334,67009,63228,59378,1700,4000,1600,1600,1500,4086,0
+483,100000,female,2,1,43,-1,-1,-1,-1,-1,-1,2491,1709,574,556,2306,2562,1709,574,556,2306,2562,2111,0
+484,190000,male,2,1,31,0,0,0,0,0,0,177554,180633,172914,130139,115494,117465,7600,6303,4137,3502,4027,3517,0
+485,230000,female,1,1,42,-1,-1,-1,-1,-1,-1,6865,15111,13165,0,10500,6992,15111,13165,0,10500,6992,0,0
+486,320000,male,2,1,39,0,0,0,0,0,0,93768,91523,91579,91193,92837,95323,3317,3506,4218,5000,6080,938,0
+487,220000,female,2,1,36,-1,-1,-1,0,-1,-1,396,1648,792,396,396,396,1648,792,0,396,396,792,1
+488,260000,female,1,1,34,-1,-1,-1,-1,-1,-1,16426,6088,4663,3885,4414,2514,6277,4663,4140,4414,2646,7725,0
+489,90000,female,2,2,32,-2,-2,-2,-2,-2,-2,573,0,0,0,0,0,157,0,0,0,0,0,0
+490,30000,female,2,1,43,2,2,2,2,2,0,28703,26622,24022,24368,20859,19633,1300,2,1608,0,900,800,0
+491,260000,male,2,2,30,0,0,0,2,0,0,98560,100980,222102,108724,68500,69174,4000,11900,207,2003,2003,2003,0
+492,170000,female,2,2,28,0,0,-1,-1,-2,-2,28304,17616,308,0,0,0,4000,308,0,0,0,0,0
+493,80000,female,1,1,28,0,0,0,0,0,0,8574,9434,10038,10040,10400,10490,1203,1047,248,408,294,276,1
+494,50000,male,1,1,41,-1,-1,-1,-1,-1,-1,508,672,226,390,220,320,1000,390,1000,220,640,1000,0
+495,200000,female,3,2,47,0,0,0,0,0,0,203183,202961,194449,196814,200526,198717,7521,7000,7000,7128,8000,7100,0
+496,20000,male,2,2,23,0,0,2,0,0,0,16440,20417,18333,18848,30190,19664,7403,0,820,1025,1113,104,0
+497,250000,female,1,1,49,-1,-1,-2,-1,-1,-1,66,0,0,120,-6,1639,0,0,120,6,1645,0,0
+498,20000,male,1,1,38,0,0,0,2,2,0,15912,17272,20565,20705,20255,19933,1623,3916,750,0,800,850,0
+499,30000,female,2,1,38,0,0,0,0,2,2,20344,21705,22537,24161,25128,24576,2000,1500,2000,1500,0,1200,0
+500,90000,female,2,1,35,1,2,2,2,2,2,23132,22474,28067,27320,31199,30548,0,6000,0,4500,0,2000,0
+501,230000,female,6,2,46,0,0,0,0,0,0,221590,227397,230302,186635,189896,193351,10000,9000,8000,8000,7500,7000,0
+502,130000,female,1,1,33,0,0,0,0,0,0,19161,20544,22704,22304,22304,0,2000,3000,0,0,0,0,1
+503,30000,male,6,1,53,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+504,160000,male,1,2,35,-1,-1,-1,-1,-1,-1,396,396,396,0,792,1220,396,396,0,793,1220,0,0
+505,500000,female,2,2,43,-1,-1,-1,0,0,-1,3959,0,285138,249445,222831,200,0,285138,4989,100,200,528666,0
+506,180000,female,2,2,28,0,0,0,0,0,2,42238,38741,36696,35813,37893,34661,2500,2000,1128,2500,0,2000,0
+507,80000,female,2,1,30,0,0,0,0,0,2,21507,13207,13997,10914,10685,5515,1700,1400,200,1000,0,500,0
+508,120000,male,1,2,26,-1,-1,-2,-1,-1,-2,884,0,0,10446,0,0,0,0,10446,0,0,0,0
+509,130000,male,2,1,31,-1,-1,-1,-1,-1,2,1261,1261,1261,1411,930,390,1261,1261,1411,930,0,780,0
+510,120000,female,2,2,35,-1,-1,-1,-1,-1,-1,240,240,240,240,240,240,240,240,240,240,240,240,1
+511,360000,male,1,2,28,-1,-1,-1,-1,-1,-1,20223,52962,3978,1743,2828,50537,53228,3997,1750,2853,51041,3219,0
+512,50000,male,2,2,23,2,2,2,2,2,2,29509,30741,31438,31924,32566,33081,2000,1500,1300,1300,1200,1500,1
+513,20000,female,2,2,23,0,0,2,0,0,0,18355,20259,19534,16467,15746,13246,2900,10,577,430,1017,4,0
+514,100000,male,3,1,56,0,0,-1,0,0,0,94265,53376,85787,78762,79529,80335,2385,88678,2169,2634,3132,732,0
+515,70000,male,3,1,32,0,0,0,0,0,0,68739,67629,69188,68392,69884,71284,3060,3300,2610,2750,2750,5500,0
+516,50000,male,2,1,47,0,0,0,0,0,0,13917,16695,21320,18614,19003,19439,3000,5000,2000,618,679,500,0
+517,10000,female,2,2,22,1,2,0,0,0,0,10250,8558,10525,10050,9903,9984,0,2126,390,328,476,1287,0
+518,290000,female,1,1,34,0,0,0,0,0,0,93844,97708,103066,104864,110151,115297,6000,7000,5000,7000,7000,7000,0
+519,30000,female,1,1,31,0,0,0,0,0,0,16496,17522,18531,18744,19291,19818,1597,1606,819,1000,1000,1623,0
+520,410000,female,2,2,27,1,-1,0,0,0,0,-58,32991,36465,44310,62408,61420,33049,16000,8700,18775,15000,5350,0
+521,360000,male,1,2,28,-1,-1,-1,0,0,-1,1210,820,64644,125984,106584,125557,390,75720,62520,17000,132200,167000,1
+522,140000,female,2,1,42,0,0,0,0,0,0,111496,112133,69529,70804,70781,66735,6022,3021,5012,5112,3000,5000,1
+523,210000,female,1,2,32,0,0,0,0,0,0,67374,69489,70937,71761,73505,74827,3200,3200,2600,2900,2700,3000,0
+524,220000,female,2,2,27,-1,-1,-1,-1,-1,-1,1692,13250,433,1831,0,2891,13250,433,1831,0,2891,153504,0
+525,20000,male,2,2,27,1,2,0,0,0,2,18649,18066,19040,19446,20759,20241,0,1594,1000,1606,0,300,0
+526,620000,female,2,1,45,2,2,0,0,0,0,160837,156839,160440,163781,167159,170894,0,6200,6000,6000,6500,6000,1
+527,360000,male,1,2,26,1,-2,-2,-2,-1,-1,-8,-8,-8,-8,1677,2600,0,0,0,1685,2613,0,0
+528,20000,female,2,2,21,-1,-1,2,2,-1,-1,18763,14410,13771,362,5308,0,14410,0,28,22073,0,0,0
+529,50000,male,2,2,23,0,0,0,0,0,0,34549,18552,19334,18165,19322,19575,2836,1200,13000,1500,9000,1000,0
+530,50000,male,2,3,30,0,0,0,0,0,0,97538,49187,17518,17710,18079,18302,2454,1588,780,803,673,637,0
+531,10000,male,2,2,46,0,0,2,2,2,0,4073,6394,6143,6908,6652,6785,2400,0,871,0,244,251,1
+532,100000,female,3,1,50,2,0,0,3,3,2,53849,55030,61574,62470,61198,62524,2050,7500,2500,0,2500,2500,1
+533,50000,male,1,2,26,-2,-2,-2,-2,-2,-2,2411,3059,2333,1800,1620,0,3068,2440,1807,2204,0,0,0
+534,60000,male,2,2,25,-1,-1,0,-1,-1,0,480,1675,3630,578,4825,6200,1675,2500,578,4825,2000,2435,0
+535,440000,female,1,2,35,0,0,0,0,0,0,330759,337794,274075,252584,216547,179221,13100,11000,10000,9000,7100,5500,0
+536,120000,male,2,1,44,0,0,0,0,0,0,92007,87939,82094,59105,53442,46775,5417,2847,2066,1919,2200,0,0
+537,50000,female,1,2,52,0,0,0,-2,-1,-1,3257,4166,0,0,318,0,1000,0,0,318,0,0,0
+538,110000,female,2,1,40,1,2,2,2,2,2,92638,90905,95768,97004,99005,101213,600,7300,3700,3700,4000,3800,0
+539,200000,female,1,2,38,-1,-1,-2,-2,-1,-1,399,0,0,0,218,270,0,0,0,218,270,317,0
+540,150000,female,1,2,28,1,-2,-2,-2,-2,-1,0,0,0,0,0,318,0,0,0,0,318,0,0
+541,30000,female,2,1,36,2,3,2,2,0,0,28778,28039,28286,27533,28189,28805,0,1000,0,1100,1100,1500,1
+542,100000,female,1,2,24,0,0,0,0,-1,-1,30092,30486,30178,29735,14718,29427,1553,5000,87,14761,29514,330,0
+543,360000,female,1,1,34,-1,0,0,-1,0,-1,12339,10138,23912,9785,166,2142,10000,13912,9785,0,2142,4230,0
+544,390000,female,1,2,31,0,0,0,0,0,0,50620,43220,44237,46495,47751,51941,5000,3000,3000,2000,5000,5000,0
+545,220000,female,1,1,41,1,-2,-2,-2,-2,-2,-65,-65,-65,-65,-65,-200,0,0,0,0,0,0,1
+546,160000,female,2,2,25,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+547,230000,female,1,2,28,-1,-1,0,0,0,0,2403,7357,9752,12608,10797,20539,7357,2566,3000,1000,10000,2000,0
+548,120000,male,1,2,27,0,0,0,0,0,0,52437,50473,45087,35424,31760,31214,5024,5000,5000,4000,5000,3500,0
+549,100000,male,3,1,52,0,0,2,2,2,0,4657,6068,6418,6781,6144,7638,1500,1000,1000,0,2000,2000,1
+550,190000,female,1,2,41,-1,-1,-1,-1,-1,-1,28204,0,16500,0,26854,554,0,16500,0,26854,500,0,1
+551,50000,male,1,1,56,0,0,0,0,0,0,50715,51073,28185,28842,30399,29977,2500,1500,1100,2000,1500,1017,1
+552,240000,female,1,1,42,1,-1,-1,-2,-2,-2,0,6370,0,0,0,0,6370,0,0,0,0,0,0
+553,40000,female,2,2,24,-2,-2,-2,-2,-2,-2,35285,36714,37356,38184,38724,37255,2000,1600,1401,1607,1800,1751,0
+554,630000,female,2,1,47,0,0,0,-1,-1,-2,37850,68187,1207,2632,8654,0,38187,1207,2632,8654,0,4981,0
+555,160000,female,1,1,33,-2,-2,-2,-2,-2,-2,5233,5393,1824,350,150,199,5401,1829,350,150,199,1145,0
+556,110000,female,2,2,32,0,0,2,2,2,2,65299,74565,78516,79829,81603,83206,11000,5800,3200,3200,3100,3000,0
+557,20000,male,2,2,29,0,0,0,-2,-2,-2,17208,18419,0,0,0,0,2055,0,0,0,0,0,0
+558,210000,female,3,1,53,0,0,0,0,0,0,57192,58472,59658,60466,61593,65163,2800,2753,2400,2255,4767,0,0
+559,270000,male,1,2,34,-1,-1,0,-1,-1,-1,5780,12006,15736,6621,2457,14923,12006,5736,6621,2457,14923,1712,0
+560,360000,female,2,2,52,-2,-2,-2,-2,-2,-2,640,2113,-6,999,944,-3,2231,0,1005,948,0,789,0
+561,60000,female,2,1,42,-1,-1,-1,-1,-1,-1,631,2790,1758,416,416,3640,2790,1758,416,416,3640,730,0
+562,360000,male,2,2,38,-1,0,0,0,0,0,108351,111201,63146,63723,65108,66078,8005,8004,5000,5000,5000,105700,0
+563,390000,female,1,2,45,2,2,2,-1,2,2,834,155,-1690,4240,3346,2698,1,1693,6940,7,1230,3,0
+564,250000,female,3,2,35,-2,-2,-2,-2,-2,-2,7244,8472,1738,6706,2391,11082,8514,1751,6739,2403,11137,13407,0
+565,90000,female,1,2,24,0,0,0,0,0,0,13141,14526,15482,18219,22737,23387,1600,1500,3000,5000,1020,764,1
+566,360000,male,1,2,28,-1,-1,-1,-1,-1,-1,7071,401,3545,10540,10132,6220,1510,3575,10573,10155,6240,16071,0
+567,50000,male,3,2,26,0,0,0,0,0,0,35429,30626,30241,20284,19166,19567,1537,1947,800,1000,718,683,0
+568,270000,female,1,1,40,0,0,0,-2,-2,-2,18751,5706,0,0,0,0,1000,0,0,0,0,0,0
+569,200000,female,1,2,29,1,-1,-1,-1,-1,-1,55788,8360,4897,5065,19468,0,8394,4927,5089,19561,0,125,0
+570,50000,female,2,2,23,0,0,0,0,0,0,49809,50364,38429,18815,18305,19013,2040,2766,1690,1000,1000,1000,0
+571,350000,male,1,2,33,-1,-1,-1,-2,-2,-1,10900,10478,-22,-22,-22,4532,10530,0,0,0,4554,0,0
+572,160000,female,2,2,60,-2,-1,-1,0,-1,-1,3128,5156,1089,489,3177,1009,5156,1089,0,3177,1009,0,1
+573,80000,female,3,1,49,-1,-1,-1,-1,-1,-1,3367,4641,2290,1459,6764,7601,4641,2290,1459,6764,7601,7990,0
+574,290000,male,1,1,53,2,0,0,0,0,0,279610,282024,282508,284660,255892,238266,13000,10200,10265,8803,8300,8546,1
+575,270000,female,1,2,28,-1,-1,-1,0,0,0,475,475,5691,37526,50565,48888,475,5691,34000,14000,8000,15000,0
+576,80000,male,1,2,31,-1,-1,-1,-1,2,-1,5994,32223,8308,4082,538,4085,13647,8314,4082,0,4085,0,0
+577,50000,male,2,2,36,0,0,0,0,0,0,5197,6015,6615,7131,6987,6980,1300,1100,1000,500,500,1000,0
+578,30000,male,2,1,35,-2,-1,-1,-1,-1,-2,7797,2687,8762,3377,2000,0,2687,8765,3390,2040,0,0,0
+579,30000,male,2,2,28,1,-1,-1,-2,-2,-2,0,780,0,0,0,0,780,0,0,0,0,0,1
+580,90000,male,2,2,33,-1,0,0,0,0,0,35785,29155,27485,29266,35598,38449,15155,5485,5263,8598,5449,6537,0
+581,160000,male,1,2,26,-1,-1,-1,-1,-1,-1,1433,3746,30258,1036,21572,9528,3757,30348,1044,21636,9556,6066,0
+582,80000,female,3,2,53,0,0,0,0,0,0,77766,77954,78512,60452,61556,54022,4000,2374,2007,2500,3000,2000,0
+583,50000,male,2,2,42,0,0,0,0,0,0,50300,50898,49111,48943,45775,0,2200,1600,1700,1700,0,0,0
+584,20000,female,1,2,25,0,0,0,0,0,2,14603,15661,16394,16723,18056,17618,1600,1300,600,1600,0,800,0
+585,220000,male,1,1,43,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+586,210000,male,3,2,25,-1,-1,2,-1,-1,-1,8817,23634,21776,9631,1561,1990,23776,0,9631,1561,1990,7967,1
+587,130000,female,2,2,29,0,0,0,0,0,0,131575,130931,132969,45584,46516,47455,6700,6000,1291,1319,1336,1365,0
+588,260000,female,2,1,31,-1,-1,0,0,-1,-1,5841,23194,62361,67057,17024,18659,23194,50000,11500,17024,18659,38923,0
+589,230000,female,1,1,30,0,0,0,-1,0,0,30341,25981,24092,65840,56538,51522,5000,5000,65840,2000,2000,10000,0
+590,160000,male,1,2,34,0,0,0,0,0,0,83255,83912,85161,85715,86773,87526,4000,3924,3200,3300,3425,3013,0
+591,50000,male,1,1,35,0,0,0,0,0,0,34976,6018,13930,7106,6020,9011,1127,1074,215,249,4383,172,0
+592,80000,male,2,1,32,0,0,0,0,0,0,48747,45955,44989,41358,42379,38052,2145,1844,2009,5017,2000,5002,0
+593,110000,male,3,2,46,0,0,0,0,0,0,56700,57875,59044,59756,61004,62213,2681,2724,2287,2362,2374,2454,0
+594,200000,male,1,1,43,0,0,0,0,0,0,144678,140804,136437,135253,134629,134309,5090,5014,5009,4844,5002,4902,0
+595,360000,male,2,2,29,0,0,0,0,0,0,268112,263368,259969,255832,245462,250244,9429,8738,7017,7154,7073,7300,0
+596,210000,female,3,2,31,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+597,80000,female,2,2,24,2,0,0,0,0,0,79243,75254,58683,58886,60035,57264,3249,3000,5000,2500,2300,2200,0
+598,300000,female,2,1,36,-1,-1,2,0,-1,-1,-475,5191,4606,2303,2768,65373,10000,0,0,2768,65373,10780,1
+599,310000,female,2,1,43,0,0,0,0,0,0,23396,24182,25135,25095,25356,25514,1426,1379,867,898,933,807,0
+600,30000,male,3,1,59,-1,-1,-1,-1,-1,-1,390,390,390,390,390,1320,390,390,390,390,1320,0,1
+601,170000,male,1,1,53,0,0,0,0,0,0,17862,17927,18800,17647,18015,12930,1323,1196,544,563,629,361,0
+602,140000,female,2,2,28,2,2,2,0,0,2,26450,28823,28171,28740,30454,29930,3007,0,924,2070,0,3000,0
+603,180000,female,2,2,31,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,1576,0
+604,50000,male,1,2,34,1,2,2,2,2,2,22746,22099,24121,23437,25101,24549,0,2700,0,2200,0,1030,0
+605,50000,female,2,1,36,0,0,0,0,0,-2,9214,10359,7350,7500,0,0,1351,1500,150,0,0,0,0
+606,110000,female,1,2,24,0,0,0,0,2,0,40882,35428,39680,44097,42543,33189,2000,5000,5000,0,2000,3000,0
+607,450000,female,3,1,36,-2,-2,-2,-2,-2,-2,3996,9120,8528,0,6368,3000,9120,8528,0,6368,3000,3238,0
+608,200000,female,2,1,34,-1,-1,-1,-1,-1,-1,390,390,390,561,390,390,390,390,561,390,390,390,0
+609,220000,male,1,2,43,0,0,-1,-1,-1,-1,44177,25736,19292,18900,13580,33150,1006,32906,18900,13580,33150,0,0
+610,360000,female,1,2,29,0,0,-2,-2,-2,-1,3280,0,0,0,0,2650,0,0,0,0,2650,0,1
+611,50000,male,2,1,37,0,0,0,0,0,0,48226,48727,46228,46755,43686,44573,2000,1684,1601,2000,2000,2000,0
+612,40000,male,2,2,23,2,2,0,0,0,0,36650,29541,26190,26710,27274,29551,0,1435,955,993,2734,0,0
+613,190000,female,2,1,37,1,2,2,2,2,2,115049,117856,119570,116284,123528,125478,6000,5000,0,9000,4000,5000,0
+614,150000,male,1,2,33,0,0,0,0,0,0,21724,23168,23320,24085,24149,3323,2100,1200,965,64,509,8399,0
+615,200000,female,1,1,37,1,-2,-2,-2,-1,-1,0,0,0,0,595,0,0,0,0,595,0,2370,0
+616,270000,female,2,1,56,0,0,0,0,0,0,137807,123769,104377,106651,109294,101151,5000,5000,3953,4500,4000,3900,0
+617,60000,male,1,2,25,0,0,0,0,0,0,58839,53235,38533,39639,39619,39140,2018,1900,2000,1500,1900,2000,0
+618,200000,female,2,1,39,0,0,0,0,0,0,80833,79100,70764,71629,70805,70718,3315,3088,2572,2559,2526,2620,0
+619,150000,female,2,1,39,0,0,0,0,0,0,36146,36184,37511,33080,30223,31561,3000,3000,3000,2500,2000,2000,0
+620,180000,female,2,2,28,-1,-1,-1,-1,-1,-1,340,-120,420,460,460,610,0,1000,500,460,610,460,0
+621,90000,female,1,2,27,0,0,-2,-2,-2,-2,7624,0,0,0,0,0,0,0,0,0,0,0,0
+622,360000,female,2,1,37,1,-2,-2,-2,-1,-1,0,0,0,0,166,541,0,0,0,166,543,4268,0
+623,90000,female,1,2,24,-1,-1,-2,-2,-2,-2,491,0,0,0,0,0,0,0,0,0,0,0,0
+624,20000,female,2,2,24,0,0,0,0,2,0,13168,13888,14900,15916,15519,15829,1237,1249,1265,0,568,1327,0
+625,70000,male,1,1,46,0,0,0,0,0,0,60040,55274,51766,51757,50013,49946,2600,1800,2000,3140,2000,1800,0
+626,230000,male,1,1,39,-1,-1,-1,-1,-1,-1,660,660,660,660,660,660,660,660,660,660,660,660,0
+627,30000,male,3,1,48,0,0,0,0,0,0,29434,28960,29022,29201,29553,29693,1465,2000,1033,1200,1055,530,0
+628,200000,female,3,3,45,-1,-1,-1,-1,-1,-1,4430,7182,3855,3411,6788,9921,7193,3855,3411,6788,9921,5016,0
+629,100000,male,3,2,49,-1,-1,-2,-2,-2,-2,1440,0,0,0,0,0,0,0,0,0,0,0,0
+630,50000,female,2,2,23,0,0,0,0,0,2,26795,28056,29284,30487,33831,33138,2000,2000,2000,4000,0,2000,0
+631,20000,female,3,1,25,0,0,0,0,0,-2,16591,16442,6401,4300,1304,0,1155,1000,0,1304,0,0,0
+632,210000,female,2,1,47,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+633,110000,male,3,1,56,0,0,0,0,0,0,46486,35758,34323,30452,22628,23468,4086,1428,1318,2171,3198,4976,0
+634,20000,female,3,1,44,-1,-1,-1,-1,-1,-2,550,228,0,228,0,0,228,0,228,0,0,0,0
+635,50000,female,3,1,49,0,0,0,0,0,0,5630,6629,5918,6918,6941,4756,1107,1000,1000,1500,2150,0,0
+636,50000,male,2,1,41,0,0,0,0,0,0,21986,21520,20979,19894,18811,18805,1362,1294,682,680,694,618,0
+637,400000,female,1,2,40,-1,-1,-1,-1,-1,0,60125,1981,4521,20472,76933,173599,1981,4521,20500,77000,100000,7700,0
+638,170000,male,2,2,31,0,0,0,0,0,0,56364,58132,59171,55888,53672,51461,3000,3000,2000,3000,3000,3000,0
+639,280000,male,2,1,42,0,0,0,0,0,0,148363,148432,151310,141937,144990,147911,6900,6867,5500,5500,5500,5600,0
+640,130000,female,3,1,28,0,0,0,0,-2,-2,100143,50456,50000,0,0,0,2500,1000,0,0,0,0,0
+641,210000,female,2,2,32,0,0,0,0,0,0,46255,50486,54019,58091,61630,65576,5000,5000,5000,4500,5000,5000,0
+642,370000,male,2,2,28,0,0,0,0,0,0,276436,239025,149128,48907,53025,51434,20000,13000,5000,10000,4000,6000,0
+643,30000,female,2,1,31,0,0,2,0,0,0,29493,19433,18782,19006,19637,21251,3200,0,742,1000,2000,0,0
+644,150000,male,3,2,39,1,-1,-1,-2,-2,-2,214450,147280,150000,0,-5000,0,5180,5000,0,0,5000,0,0
+645,60000,male,3,1,31,2,0,0,-2,-2,-2,35369,35320,0,0,0,0,1027,0,0,0,0,0,1
+646,80000,female,2,2,24,0,0,0,0,0,0,77615,77303,66396,55639,56873,58390,3100,2586,2000,2500,3000,2500,0
+647,280000,female,2,1,44,2,2,2,2,2,2,186149,181779,192189,195517,199250,195874,0,15000,8000,7000,0,15000,1
+648,20000,female,2,2,46,8,7,6,5,4,3,21075,20795,20206,19617,18737,18148,0,0,0,0,0,0,0
+649,270000,male,1,2,32,-2,-2,-2,-2,-2,-2,0,0,1100,300,-200,-200,0,1100,300,0,0,0,0
+650,240000,female,2,2,26,0,0,-1,-1,-1,-1,14348,7500,7816,7500,7500,14497,1000,7816,7500,7500,14497,500,0
+651,20000,female,1,2,22,0,0,0,0,0,0,20137,20179,18067,18666,19115,19547,1300,1301,900,900,900,1600,0
+652,450000,female,1,1,42,1,-2,-2,-1,-1,-2,-200,-200,0,42000,0,0,0,200,42000,0,0,0,1
+653,10000,male,2,2,33,0,0,0,0,0,0,8177,9131,9669,7624,8049,6857,2500,1145,1000,1000,1000,1500,0
+654,280000,male,2,1,39,-2,-2,-2,-2,-2,-2,2082,3557,5623,5400,3866,3526,3597,5672,5427,3885,3543,3519,1
+655,290000,female,3,2,27,0,0,0,0,-1,-1,13820,15614,16293,7760,2000,0,2000,1300,0,2000,1000,0,0
+656,190000,female,1,2,28,0,0,0,0,0,0,46923,48666,49347,50386,43883,34412,2500,2000,3000,2000,2000,2000,1
+657,80000,female,1,2,23,0,0,0,0,0,-1,53261,38091,19744,14556,0,1460,4500,2011,3105,0,1460,0,0
+658,280000,female,2,2,28,-1,2,-1,-1,0,-1,427,298,1179,1714,2875,1047,0,1179,1714,1290,1047,1000,0
+659,160000,female,1,1,33,-2,-2,-2,-2,-2,-2,14150,8106,12431,12145,13391,7957,8106,12431,12145,13391,7957,1905,0
+660,90000,male,2,1,40,0,0,0,-1,-1,-1,42856,44925,0,787,1457,0,3114,0,787,1457,0,0,1
+661,140000,female,1,2,37,-1,-1,-1,-2,-2,-1,1034,40000,0,0,0,510,40000,0,0,0,510,0,0
+662,50000,male,1,2,22,0,0,0,0,0,-1,5137,5960,6270,6000,5810,390,1300,1000,120,200,390,1170,0
+663,40000,female,2,1,32,0,0,0,2,2,2,24114,25417,28777,29107,29693,30456,2000,4110,1100,1200,1400,0,0
+664,130000,female,3,1,43,0,0,0,0,0,0,130067,129385,96775,98071,97743,100124,5540,4403,3814,3562,4021,3681,0
+665,70000,female,3,1,27,0,0,0,0,0,2,61611,62711,63695,63926,67361,59480,3011,3095,2000,4600,0,2258,0
+666,30000,female,2,1,35,0,0,0,0,0,0,25078,25538,25880,25873,26157,26918,1500,1387,893,1000,1501,2000,0
+667,100000,female,3,1,35,1,2,2,2,2,2,97002,102698,97997,103384,97266,101492,8200,0,8000,0,8600,0,0
+668,20000,female,1,1,30,2,2,2,0,0,0,5766,7511,7678,7318,7458,7598,2000,500,0,500,500,0,1
+669,30000,female,2,2,34,2,-1,2,2,2,2,99568,32326,31840,37075,37662,36904,33000,33000,5810,1325,0,3095,0
+670,20000,male,2,1,34,0,0,0,0,0,0,12857,14183,14890,15642,16387,17113,1541,1248,1000,1000,1000,1000,1
+671,100000,female,1,2,28,2,0,0,0,0,0,96193,82342,81967,82177,78840,79261,3600,3800,3000,3000,3023,3000,1
+672,30000,male,2,2,25,2,2,7,7,7,6,2400,2400,2400,2400,2400,1800,0,0,0,0,0,0,1
+673,320000,female,1,1,41,0,0,0,0,0,0,97797,99672,101953,102284,104090,105859,4520,5050,3590,3700,3750,3510,0
+674,90000,male,3,2,42,2,2,2,2,2,2,64762,63164,32789,31641,29240,28306,0,2900,0,2500,0,1300,1
+675,190000,male,2,2,40,2,2,2,2,2,2,145613,156765,159386,161870,165725,169928,15000,6600,6500,6500,7000,7000,1
+676,200000,male,1,2,28,0,0,0,0,0,0,71989,122129,147936,149573,152574,156323,52129,30000,6000,6000,7000,10000,0
+677,300000,female,2,2,31,-1,-1,-1,-1,0,-1,3345,1083,4339,7423,4059,2508,1087,4355,7423,0,2508,4141,0
+678,30000,female,1,2,56,-1,0,0,-2,-2,-2,29033,17013,7024,7024,7024,7024,1283,7024,7024,7024,7024,7024,0
+679,110000,female,2,3,45,0,0,0,0,0,0,26650,20787,20566,21158,22141,22158,1532,2000,783,3000,2000,2000,0
+680,230000,female,1,2,29,-2,-2,-2,-2,-2,-2,0,0,1024,0,0,0,0,1024,0,0,0,0,0
+681,230000,female,1,1,35,0,0,0,0,-2,-2,4259,5432,6182,0,0,0,1250,1000,0,0,0,0,0
+682,310000,female,2,2,28,0,0,0,0,0,0,106468,108955,112374,54762,58189,57170,8000,6000,5000,5000,4000,5000,0
+683,320000,male,1,1,40,0,0,0,0,0,0,247276,241167,238196,231580,229683,235837,10000,10000,10000,19000,13000,8000,0
+684,360000,male,1,1,47,-1,-1,-1,0,-1,-1,1548,-32,177639,174397,4852,4125,0,177671,3508,4876,4188,10007,0
+685,20000,female,3,1,41,-1,-1,-1,0,0,0,780,0,732,642,1252,643,0,732,300,1000,500,1000,1
+686,170000,female,2,2,27,0,0,0,0,0,0,162671,166202,161973,167201,161327,171863,7500,6000,10000,7000,16000,6200,0
+687,140000,male,1,1,40,0,0,0,0,0,0,123049,125616,129695,130735,133467,136287,4310,5913,4426,4580,4770,4767,0
+688,80000,male,2,2,32,0,0,0,0,0,0,51372,51872,47593,43882,42256,42527,1853,1700,1522,1548,1488,1500,0
+689,150000,male,2,2,35,0,0,0,-1,-1,-1,60015,72227,51364,54340,0,2129,20000,30000,54340,0,2129,0,0
+690,170000,male,2,2,27,-1,2,2,-2,-2,-2,1170,780,0,0,0,0,0,0,0,0,0,0,0
+691,200000,female,2,1,29,2,0,0,0,0,0,159398,156955,132144,119136,122211,125021,6163,4530,4500,5000,5000,5000,1
+692,70000,male,1,2,30,0,0,2,0,0,2,55664,59529,57571,57871,60872,59329,5800,0,2250,4500,0,2500,0
+693,320000,male,2,1,37,-2,-2,-2,-2,-2,-2,43528,498,429,14257,5417,2967,500,431,14328,5439,2980,5028,0
+694,150000,female,1,2,29,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+695,50000,female,1,1,34,0,0,0,-1,0,0,27966,28539,11597,6611,7349,7570,1267,1553,7511,1000,343,1000,0
+696,90000,female,2,2,34,-1,2,2,-2,-2,-2,8792,7500,0,0,0,0,0,0,0,0,0,0,0
+697,280000,male,1,1,41,-2,-2,-2,-2,-1,0,28026,41302,51500,35752,3955,13969,41346,52110,35752,3955,13939,4437,0
+698,300000,female,1,2,31,0,0,0,0,2,-1,43610,43280,36156,30305,30155,561,1655,1797,750,0,561,500,0
+699,400000,female,2,2,40,-2,-2,-2,-2,-1,-1,0,8235,0,0,1524,0,8235,0,0,1524,0,385,0
+700,200000,female,1,1,27,-1,-1,-1,-1,-1,-1,5780,105,105,0,7384,8588,105,105,0,7384,8588,1304,0
+701,10000,female,3,2,22,0,0,0,0,-2,-2,8109,9778,8259,0,0,0,2000,1036,0,0,0,0,1
+702,50000,female,2,3,30,1,3,2,0,0,0,52515,51424,49967,20036,20076,37615,0,0,2000,1000,1000,1600,1
+703,30000,female,2,3,22,1,2,4,3,2,2,22582,26518,25814,25110,24569,26357,4600,0,0,0,2200,2500,0
+704,50000,male,1,2,26,-1,0,0,0,0,0,15448,16392,18096,18425,18619,19060,1500,2000,1500,1200,900,1000,1
+705,50000,male,2,1,38,1,2,0,0,0,0,58102,59011,56272,53663,51507,50616,2500,2500,2000,2000,3200,2000,0
+706,30000,female,3,1,46,1,2,2,2,2,2,12289,11806,13268,12758,13549,14673,0,1970,0,1000,1500,0,0
+707,20000,male,2,2,24,0,0,-1,2,0,0,10476,7279,688,688,688,1320,1000,688,0,0,650,0,0
+708,20000,male,2,2,49,0,0,0,0,0,0,16326,17497,18456,18424,18800,10000,1441,1400,368,376,200,0,0
+709,50000,male,1,3,49,0,0,0,0,0,0,17681,18249,18054,18569,19152,18088,1611,2000,780,1000,1000,2000,0
+710,30000,female,2,1,42,0,0,0,0,0,0,47912,25023,25768,26410,27960,46254,1755,1500,1000,1909,1000,2000,0
+711,360000,female,1,1,30,1,2,-1,0,-1,-1,18886,14249,3821,2404,319,0,0,3828,2000,319,0,0,0
+712,170000,male,2,1,42,1,-1,-1,-2,-2,-1,0,1690,0,0,0,4750,1690,0,0,0,4750,0,0
+713,400000,female,1,2,31,-2,-2,-2,-2,-2,-2,203,767,664,1250,-10,2174,770,667,1256,0,2184,0,0
+714,50000,female,2,1,49,0,0,0,0,0,0,34962,32275,31253,32014,33573,29645,1613,2000,1500,2000,1645,1064,0
+715,160000,female,2,2,27,0,0,0,0,0,0,80964,80337,82182,82586,85145,87049,4000,4000,3500,4000,4000,2500,0
+716,70000,female,2,1,33,0,0,0,0,0,0,69418,68943,38783,3758,1261,0,2382,2025,1000,25,0,1651,1
+717,150000,female,1,1,35,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+718,80000,female,2,2,48,0,0,0,0,0,0,45174,41885,42832,23799,11723,27236,3000,3413,2000,5000,17236,2000,0
+719,30000,female,2,2,22,0,0,2,0,0,0,23892,28459,25499,25778,28708,30520,5300,0,1000,3352,2300,0,0
+720,10000,male,2,2,22,0,0,0,0,0,0,7960,9649,8518,8628,9293,5033,2000,1000,500,1500,0,2500,1
+721,180000,female,1,2,27,1,-1,-1,-1,-1,-1,0,3338,3333,3333,3333,3333,3338,3333,3333,3333,3333,3333,0
+722,320000,male,1,1,47,-1,-1,-1,-1,-1,-1,9192,13920,4022,316,8420,316,13942,4022,316,8420,316,516,0
+723,80000,female,2,2,34,0,0,0,2,2,2,25935,27210,28783,30003,29385,31401,2000,2338,2000,0,2500,0,0
+724,10000,male,2,1,45,0,0,0,2,0,0,7139,8416,9815,9508,9754,10192,1400,1700,0,400,600,200,1
+725,360000,female,2,2,39,-1,-1,-1,0,-1,-1,12865,4462,19560,8894,5329,998,4484,19623,222,5355,998,9004,0
+726,450000,male,2,2,33,-2,-2,-2,-2,-2,-2,-14,2568,-387,-387,-387,113,2582,0,0,0,500,2515,0
+727,330000,female,2,2,29,0,0,0,0,-1,-1,49549,133957,128212,79407,8875,49880,90000,3000,5000,8875,49880,519,0
+728,60000,male,1,2,29,-1,2,-1,-1,2,2,546,255,464,1173,732,1023,0,500,1000,0,582,0,1
+729,50000,female,3,2,26,0,0,0,0,0,0,9935,11029,12795,9983,10884,7666,1234,2000,297,1000,307,361,0
+730,200000,male,2,1,38,0,0,0,0,0,0,152856,156104,158279,161934,165447,168802,6000,5000,5000,5000,4917,10000,0
+731,120000,male,1,2,34,1,2,-1,-1,-2,-2,1278,639,621,-18,-18,-18,0,621,0,0,0,0,0
+732,160000,female,1,1,37,-1,-1,-1,-1,-1,-1,316,316,0,316,632,0,316,0,316,632,0,316,0
+733,110000,male,2,1,57,0,0,0,0,0,0,46132,41050,40091,40659,38529,30900,2306,2111,3009,1725,1500,0,0
+734,70000,female,3,1,50,-2,-2,-1,0,0,0,27345,-1041,17571,17920,18296,18659,1041,18862,640,663,666,690,0
+735,150000,female,3,2,28,0,0,0,0,0,0,101593,101886,101441,100829,101913,96704,4000,4032,3410,4000,3665,3050,0
+736,610000,female,1,2,31,0,0,0,0,0,0,142764,126606,67887,58397,105301,105965,6540,2100,2150,50000,4700,2000,0
+737,110000,female,1,2,25,0,0,0,0,0,0,92849,94766,93894,85723,86443,84011,4346,4075,3144,3238,3167,3202,0
+738,80000,female,2,2,25,2,0,0,2,0,0,17330,19258,23416,22768,23243,23718,3000,4790,0,816,833,2000,1
+739,170000,female,2,1,33,0,0,0,0,0,0,109863,79574,78440,80141,81862,84237,4380,3000,3000,3000,4000,4500,0
+740,110000,female,1,2,30,-1,-1,-1,-1,-2,-2,1064,2001,3796,0,0,0,2007,3796,0,0,0,0,0
+741,140000,female,1,1,51,0,0,0,0,0,0,56764,57950,57668,55024,55883,55744,2115,2004,1941,2073,1909,2132,0
+742,70000,male,1,2,51,0,0,0,2,0,0,43048,43257,44115,41112,39922,40150,3000,4000,0,1500,3000,5000,0
+743,260000,female,2,1,46,-2,-2,-2,-2,-2,-2,29484,28592,16869,12713,10420,12532,10000,3000,12713,10420,12532,12151,0
+744,170000,male,3,2,38,0,0,0,0,0,0,21310,22957,24266,25556,29949,34434,2000,2000,2000,5000,5000,5000,0
+745,50000,female,2,1,34,0,0,0,0,0,0,10821,11877,13656,14949,16567,16826,1221,2000,1500,2000,2000,4000,0
+746,300000,female,3,1,34,0,0,0,0,0,0,280823,275303,271952,193403,187562,191069,11000,12000,7200,6500,6173,5500,1
+747,150000,female,1,2,31,2,-1,-1,-1,-1,-1,390,390,390,4825,5202,780,390,390,4825,5202,780,0,1
+748,50000,female,2,2,25,8,7,6,5,4,3,37647,37102,36238,36374,35229,34365,0,0,1000,0,0,3000,1
+749,50000,female,2,1,26,1,-2,-1,0,0,0,0,0,1756,2719,4049,5176,0,1756,1000,1537,1200,2000,0
+750,90000,female,1,2,25,2,0,0,0,0,-1,84710,87334,87862,18889,-783,73568,4000,3258,1000,0,77500,0,0
+751,50000,male,2,2,26,0,0,0,0,0,0,48036,46787,42011,19147,2845,20041,2100,1227,383,2000,20000,649,1
+752,500000,female,2,2,43,-1,0,0,0,0,0,43346,43976,39032,29092,22725,11590,4006,2383,1126,782,596,1572,0
+753,470000,female,2,1,36,-1,0,0,-1,-1,-1,873,1593,1518,285,688,2100,1005,1000,285,688,2100,1014,0
+754,230000,male,2,2,58,0,0,0,0,0,0,110163,112499,114837,116400,45643,51083,5600,5700,5000,1855,6400,0,0
+755,140000,female,2,2,26,0,0,-1,-1,0,0,4113,6030,16025,24616,19458,20047,2000,16025,24616,1000,1000,1000,0
+756,230000,female,2,1,30,2,0,-1,-1,-1,-1,9636,10152,1817,-828,6153,12663,1222,1837,0,7863,12675,2959,1
+757,420000,female,2,2,31,0,0,0,0,-1,-1,25103,21330,16024,9603,2131,64507,1509,1067,3061,2210,64524,2324,0
+758,30000,female,2,2,24,0,0,0,0,0,0,31319,31181,31540,31016,30531,30528,1564,1800,1100,1500,1500,3000,0
+759,50000,female,2,2,52,1,2,0,0,0,2,43343,43360,23417,21969,21179,18711,1300,1400,920,1700,0,900,1
+760,140000,female,2,2,24,-1,-1,-2,-1,-1,-2,197,0,0,233,0,0,0,0,233,0,0,0,0
+761,260000,female,2,1,35,-1,-1,-1,-1,-1,0,7967,67650,6000,0,88348,85962,67650,6000,0,88348,5000,25000,0
+762,90000,female,3,2,29,-1,2,-1,-1,-1,-2,19450,3123,2121,3113,0,0,0,3509,3113,0,0,0,0
+763,240000,female,2,1,33,0,0,0,0,0,0,240878,233838,238067,242579,238245,233710,10000,11000,10000,10000,10000,8000,0
+764,510000,female,1,2,35,-1,0,0,0,0,-1,2115,2116,5560,4535,3488,1116,1117,4560,91,69,1116,2115,0
+765,110000,female,2,1,35,0,0,0,0,0,0,81665,46070,34419,36829,38080,40434,2460,2000,3000,2000,3000,5000,0
+766,210000,female,1,2,28,-1,-1,-1,0,0,0,11442,3738,7526,10217,11737,8114,3738,7526,5000,5000,162,27760,0
+767,220000,male,2,1,40,-1,-1,-2,-2,-2,-2,158,0,0,0,0,612,0,0,0,0,612,1863,0
+768,200000,female,1,1,35,-2,-2,-2,-2,-2,-2,2257,4261,1265,2473,0,0,4266,1667,2473,0,0,0,0
+769,360000,female,2,2,53,-1,-1,-1,-1,-1,-1,10733,15206,15000,9744,11114,8123,15206,15032,9769,11114,8123,8736,0
+770,260000,male,1,2,44,-1,-1,-1,-1,-1,-1,316,316,316,316,316,466,316,316,316,316,466,316,0
+771,20000,male,2,1,33,0,0,0,0,0,0,11026,9535,10510,10472,10140,10101,1174,1149,501,356,507,458,0
+772,120000,female,2,1,32,0,0,0,0,0,0,113869,116110,111978,112822,114969,117949,5498,5500,4000,4300,5012,4003,0
+773,50000,female,1,2,33,-1,2,-1,-1,-1,-2,7363,5180,31902,11044,0,0,39,32013,11079,0,0,0,0
+774,60000,female,1,2,26,1,2,0,0,0,0,29649,21657,28736,42733,46404,37993,0,8000,15000,9000,10000,0,0
+775,200000,male,1,2,26,-2,-2,-2,-2,-1,-1,12716,16164,1954,5297,1483,3393,16244,1963,3359,4849,3410,2994,0
+776,20000,male,2,2,26,-1,-1,-1,-1,-2,-1,1438,1261,451,-810,-420,1320,1261,451,0,780,2130,0,0
+777,50000,female,1,1,32,2,0,0,-1,0,-1,47858,49223,42589,639,4639,2312,2500,3000,7000,4000,2413,2000,1
+778,50000,female,2,2,31,1,-2,-1,-1,-1,2,0,0,190,0,36059,32851,0,190,0,36059,0,2420,0
+779,230000,male,1,2,29,0,0,2,2,2,0,40732,44563,42804,44020,41278,34672,5000,0,3000,0,3000,3000,0
+780,50000,male,2,1,27,-1,-1,2,-1,-1,-1,819,3003,1677,1177,1313,1085,2184,5,1180,1316,1088,0,0
+781,100000,female,1,2,28,2,2,2,2,2,2,79580,81493,82759,83609,85325,87096,3790,3200,3100,3200,3332,3280,1
+782,210000,female,1,1,42,1,-2,-1,-1,-2,-2,0,0,2490,0,0,0,0,2490,0,0,0,0,1
+783,230000,female,2,1,32,0,0,0,0,2,0,87764,73526,72376,76870,75211,76645,2630,2614,6000,0,3000,2800,1
+784,500000,female,1,2,26,1,-2,-2,-2,-2,-2,31421,22150,0,0,0,0,22157,0,0,0,0,0,0
+785,370000,female,1,2,38,-1,-1,-1,-1,-1,-1,929,328,0,1539,1815,0,328,0,1539,1815,0,0,0
+786,230000,female,1,1,35,-1,-1,-1,-1,0,0,2648,191,1947,11674,16160,32519,200,1950,11692,10000,20000,6000,0
+787,80000,male,2,2,29,0,0,0,0,0,0,11894,12287,12407,14360,14657,4129,1284,1047,2000,359,175,1000,0
+788,60000,female,2,2,29,-1,0,0,0,-2,-2,55064,57833,9479,0,0,0,5000,1033,0,0,0,0,0
+789,30000,female,2,2,51,1,2,2,0,0,0,25382,26480,25761,25964,26507,27249,1800,0,928,960,1181,967,0
+790,70000,male,1,2,27,1,-1,-1,-1,-2,-1,-54,273,19,-254,-527,1096,600,19,0,0,1896,0,0
+791,410000,male,1,2,32,-1,-1,-1,-2,-2,-2,5335,5369,-281,-281,-281,-281,5400,0,0,0,0,0,0
+792,280000,female,3,1,40,1,-2,-2,-2,-2,-2,-288,-288,-288,-288,-288,2124,0,0,0,0,2412,0,0
+793,50000,female,1,1,34,0,0,0,0,0,0,46750,48317,48282,18299,19323,20329,2320,1282,3299,1323,1329,1114,0
+794,100000,female,2,1,30,0,0,0,0,0,0,97062,74352,75004,76705,78168,80347,2800,2700,5400,3500,3500,3200,0
+795,230000,female,1,2,29,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+796,50000,female,1,2,22,0,0,0,-1,-1,-2,13801,9549,5385,7781,0,0,1372,1275,7900,0,0,0,0
+797,100000,female,1,2,48,2,2,2,2,2,0,15355,17949,18158,18365,17932,18147,3164,800,800,0,662,3000,0
+798,210000,female,2,1,35,0,0,0,0,0,0,37148,35754,34232,32331,30337,28012,2000,2000,2444,1342,1038,2000,0
+799,400000,male,1,2,37,-1,-1,-1,-1,-2,-1,385,12695,1290,0,0,3058,13032,1290,0,0,3058,3768,0
+800,20000,male,2,2,25,4,3,2,0,0,0,20610,20005,19331,19333,17363,16314,0,0,500,715,326,0,1
+801,50000,female,3,1,44,-1,-1,-1,-1,0,0,2000,780,0,7472,10174,11104,780,0,7472,3000,1104,1000,0
+802,230000,female,1,2,28,-1,-1,-1,-2,-2,-2,6666,6666,0,0,0,0,6666,0,0,0,0,0,0
+803,220000,male,2,2,29,0,0,0,-2,-2,-2,31037,6244,0,0,0,0,3050,0,0,0,0,0,0
+804,300000,female,1,1,36,0,0,0,0,-2,-1,25239,25001,20800,0,0,65755,1713,1000,0,0,65755,3000,0
+805,80000,female,2,2,23,1,-1,2,-1,-1,-1,998,6858,1879,1145,7328,3703,6861,11,1146,7329,3704,426,0
+806,20000,female,3,2,36,0,0,2,2,2,2,16754,18873,19862,19245,20532,19953,2400,1600,0,1600,209,0,1
+807,190000,female,1,2,26,0,0,0,0,0,2,31061,32129,33142,33726,35758,35171,1750,1720,1300,2600,0,1400,0
+808,120000,female,1,3,44,0,0,2,0,0,0,70096,76446,73732,12329,12329,0,8100,0,247,0,0,0,0
+809,700000,female,1,1,39,0,0,0,0,-2,-1,99259,102345,109636,326,2016,61707,5000,10000,326,2016,61707,17785,0
+810,140000,female,1,2,24,1,-2,-2,-2,-1,-1,0,0,0,0,1086,0,0,0,0,1086,0,0,0
+811,300000,female,3,1,29,-1,0,0,0,0,-1,24921,21333,16212,11304,11396,6138,2000,3000,0,5000,6202,0,0
+812,120000,male,3,1,33,1,2,2,2,2,2,66055,67405,68405,69387,70727,72215,3000,2700,2700,2600,2800,0,1
+813,280000,female,2,1,39,0,0,2,0,0,0,213738,228963,223810,158542,162244,108143,20300,0,5600,6300,4000,4000,0
+814,70000,male,3,1,51,2,2,0,0,0,0,54968,51384,49734,50361,49185,47245,0,2100,1950,1900,2219,2100,1
+815,20000,female,3,2,24,-1,-1,-1,-1,-1,2,4101,507,3042,0,8402,6204,507,3042,0,8402,0,4739,0
+816,150000,female,2,1,45,-1,-1,-1,-1,-1,-1,2605,2605,4590,2605,2605,3795,2605,4590,2605,2605,3795,10675,0
+817,60000,male,1,2,30,0,-1,0,0,0,0,15380,4116,19453,17912,18480,18848,4147,19435,1000,1000,1000,1000,0
+818,50000,female,2,2,24,1,2,0,0,0,0,48861,48082,48614,26667,26036,26850,2000,2233,1083,1100,1400,3000,1
+819,150000,male,2,1,50,-1,0,0,2,0,0,55336,58255,36260,35037,34631,63156,5085,4000,0,2000,30000,5000,0
+820,20000,female,1,2,22,0,0,0,0,0,0,20243,20400,19583,19983,20196,19705,1410,1200,534,700,1000,0,0
+821,40000,male,1,2,27,0,0,0,0,0,0,11058,11471,11776,12660,12660,12413,2000,1500,2330,2300,1000,2078,1
+822,170000,female,2,2,33,1,-1,-1,-1,-2,-2,0,7042,2986,0,0,0,7042,2986,0,0,0,0,0
+823,50000,female,2,1,24,1,2,0,0,0,2,27087,26372,26992,27693,29237,28607,0,1400,1100,2100,0,1000,0
+824,10000,male,2,2,37,0,0,0,0,2,2,8755,8158,7540,8164,6963,5923,1167,1022,1036,0,2700,0,0
+825,200000,female,2,1,58,-1,-1,-1,-1,-2,-1,3035,199602,720,0,0,1500,199646,720,0,0,1500,185652,0
+826,50000,female,2,1,48,0,-1,-1,0,0,0,20944,4696,47225,16483,9343,9693,2360,49325,3001,1882,500,503,0
+827,320000,male,1,2,28,-1,0,0,-1,0,0,2007,3477,3037,1633,3633,0,2000,1000,1633,2000,0,3000,0
+828,20000,female,3,1,24,8,7,6,5,4,3,24310,23987,23353,22719,21796,21162,0,0,0,0,0,0,0
+829,470000,female,2,1,27,0,0,0,0,-1,0,152478,62084,54551,14363,97440,90717,3001,4005,2021,97441,5001,5001,1
+830,230000,female,3,2,30,-1,-1,-1,0,0,0,550,0,13013,14265,13659,0,0,13013,1252,3659,0,0,0
+831,20000,female,1,2,23,0,0,0,0,0,-2,17246,16988,15973,18773,0,0,2000,2000,3000,0,0,0,0
+832,30000,female,3,2,53,-1,-1,-1,-1,-1,-1,1598,2487,0,4810,2796,3245,2487,0,4810,2796,3245,7305,1
+833,80000,female,2,2,23,2,2,2,2,2,2,22895,23837,24253,24562,25126,25476,1600,1100,1000,1100,906,0,0
+834,110000,female,2,1,55,0,0,0,0,0,0,15069,16123,16850,17568,18133,18828,1600,1300,1000,1000,1000,1000,0
+835,420000,male,2,1,34,0,0,0,0,0,0,88948,79783,80575,92982,98502,103200,30000,10575,15000,10000,10000,20000,0
+836,500000,male,1,1,43,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+837,80000,female,2,2,22,1,2,0,0,0,0,79318,79459,79788,29069,26551,27109,2000,2201,2000,1000,1000,2000,0
+838,350000,female,2,1,31,0,0,0,0,0,0,67648,68557,63179,57987,53948,39965,3039,2047,1750,1703,1721,784,0
+839,30000,female,2,1,32,-2,-2,-2,-2,-2,-2,0,0,0,0,7463,6804,0,0,0,7463,6804,4985,0
+840,110000,female,2,2,33,1,-2,-2,-2,-2,-1,0,0,0,0,0,150,0,0,0,0,300,102,1
+841,500000,male,3,1,39,0,0,0,0,0,0,315201,332071,375070,354839,369532,367399,25000,50000,20000,19586,14122,12022,0
+842,490000,female,1,1,38,-1,-1,-1,-1,-1,0,4290,4738,2803,6027,10722,8452,4738,2803,6027,10722,6000,1139,0
+843,300000,female,2,1,34,-2,-2,-2,-2,-2,-2,205064,-86,-86,2014,-185,1815,0,0,2100,0,2000,5000,0
+844,50000,male,2,3,42,2,0,0,2,0,0,47647,50232,50510,32177,29530,29789,3700,3700,0,1072,1500,1132,1
+845,150000,male,3,1,37,4,4,4,3,2,0,151117,153787,150320,147989,143355,143131,6500,0,512,0,4388,4221,1
+846,80000,female,3,1,57,-1,2,-1,0,0,0,726,726,15400,15000,15000,15000,0,15400,0,0,0,100,0
+847,40000,female,2,2,23,0,0,0,2,2,6,20035,21406,24735,24050,43317,44059,2000,4000,0,20000,2000,0,0
+848,30000,male,2,2,32,1,2,2,0,0,0,29095,30819,29214,29478,23384,22428,2500,0,910,1000,1000,1000,0
+849,50000,male,1,1,37,0,0,-2,-2,-2,-2,30400,0,0,0,0,0,500,0,0,0,0,0,0
+850,140000,female,2,2,23,0,0,0,0,0,0,44733,44144,44739,43455,43980,44614,2100,2027,1800,1600,1750,1700,0
+851,50000,female,3,2,49,0,0,0,0,0,0,4987,6741,9366,8566,10066,0,2000,3000,1500,1500,0,0,0
+852,30000,female,2,2,25,-2,-2,-2,-2,-2,-2,26957,26269,17036,27497,16098,7300,1333,2256,27497,787,200,0,0
+853,40000,female,1,2,29,0,0,2,2,2,2,26461,29425,30145,29361,33893,34487,3400,1500,0,5000,1300,0,1
+854,100000,female,3,1,43,2,2,2,2,2,2,50485,51582,52141,52691,54199,53176,2200,2000,2000,2500,0,4500,1
+855,130000,male,2,2,29,0,0,0,0,0,0,131041,133698,131990,127512,128683,129669,7000,5151,4464,5000,4702,8000,0
+856,20000,female,2,2,27,0,0,0,0,0,0,20218,19194,20112,19712,19712,6321,1482,1400,0,0,0,0,0
+857,50000,male,1,2,26,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+858,260000,male,1,1,41,-2,-2,-1,0,0,0,1086,2853,38836,45087,47201,46199,3552,38836,20000,15000,15000,10000,0
+859,30000,female,3,2,52,2,2,7,7,7,7,2450,2450,2450,2450,2450,2450,0,0,0,0,0,0,1
+860,10000,female,2,1,31,0,0,0,0,0,0,15915,9050,9901,9975,9736,8703,2330,2200,1000,333,311,322,0
+861,200000,male,1,2,32,0,0,0,0,0,0,43515,44557,45574,49022,47459,49666,1739,1756,2662,1726,3000,2500,0
+862,30000,female,2,1,46,0,0,0,0,0,0,28234,28874,29437,27738,27268,27409,1484,1436,1120,995,989,800,0
+863,180000,female,2,2,35,0,0,0,-2,-2,-2,119333,123150,0,0,0,0,6000,0,0,0,0,0,0
+864,100000,male,1,2,35,0,0,-2,-2,-2,-2,29109,0,0,0,0,0,0,0,0,0,0,47970,0
+865,140000,female,2,1,39,0,0,0,0,0,0,105192,90337,74510,73876,76180,78400,3000,6000,4000,4000,4000,3000,0
+866,290000,female,2,2,34,0,0,0,0,0,0,310403,315048,314085,317631,315820,305498,12012,12012,11016,11088,12031,12031,0
+867,20000,female,2,3,52,0,0,0,0,0,0,14591,15616,16628,16958,17314,17664,1265,1277,607,629,638,641,0
+868,80000,female,3,1,40,0,0,0,0,0,0,35660,37082,38464,38922,40791,43108,2000,2000,1397,2500,3000,1600,0
+869,500000,female,3,1,38,-2,-2,-2,-2,-2,-2,13655,8351,2340,2340,11435,189,8351,2340,2340,11435,189,5391,0
+870,180000,male,1,1,45,-1,-1,-1,-1,-1,-1,4453,3310,7226,5060,2832,1890,3310,7228,5060,2832,1890,2576,0
+871,20000,female,3,1,40,-1,-1,-1,-1,-1,-1,2946,0,390,390,390,390,0,390,390,390,390,780,0
+872,30000,female,2,1,25,0,0,0,0,0,2,30606,29579,30291,30616,30456,29818,1800,1512,1259,2500,0,1000,0
+873,150000,male,1,2,33,0,0,0,0,0,0,45335,50262,54793,59244,64096,68837,6000,6000,6000,6000,6001,6000,0
+874,280000,female,2,2,27,-1,-1,-1,-1,-1,-1,5924,5174,980,3058,3158,9530,5174,1078,3058,3158,9530,0,0
+875,50000,female,2,1,43,0,0,0,-1,0,0,23587,24580,20165,10732,10566,10757,1800,1775,10732,384,757,501,0
+876,20000,female,2,1,43,2,0,0,0,0,2,15294,16340,17359,17776,19293,18844,1300,1300,700,1800,0,1000,0
+877,200000,male,1,2,30,-1,-1,-1,0,0,0,4935,-200,11463,11751,11772,5318,0,11663,9363,3232,3000,1000,0
+878,210000,female,2,1,49,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+879,230000,female,1,2,38,0,0,0,0,0,0,224020,227311,184500,128190,130883,133504,8750,7470,4540,4710,4750,4900,0
+880,50000,male,3,2,57,0,0,0,0,0,0,47917,48455,48120,28450,29046,29647,1988,1989,1018,1054,1084,1048,0
+881,50000,male,3,2,55,0,0,0,0,0,0,51737,27121,28103,28814,29261,29878,2930,1447,1158,1041,1082,994,1
+882,70000,female,2,2,23,0,0,0,0,0,0,49605,51804,53041,55150,57098,59141,3000,2700,3000,3000,3000,4700,0
+883,310000,male,1,2,30,-2,-2,-2,-2,-2,-2,1544,1648,1284,1088,892,-304,1300,1000,1000,1000,304,39544,0
+884,180000,female,2,1,30,-1,-1,-1,-1,-1,-1,2488,13476,3173,13202,6594,2549,13476,3173,13212,6594,2549,1000,0
+885,90000,female,2,2,24,0,0,0,0,0,2,24401,22771,19461,16181,14669,14422,1454,1384,407,673,0,102,0
+886,390000,male,2,2,28,0,0,0,0,0,0,149445,139794,133224,106127,51097,38555,8046,5150,5297,5084,5065,5042,0
+887,150000,female,3,1,34,-1,-1,-1,-1,-1,-1,772,337,618,150,150,377,340,618,150,150,227,0,0
+888,400000,male,2,2,37,1,1,1,2,0,0,13611,15066,15882,12599,18599,12284,3019,5014,3,7040,2006,2005,0
+889,80000,female,2,1,32,0,0,0,0,0,-2,28408,25695,11553,2350,0,0,1259,1035,1600,0,0,0,0
+890,320000,male,1,2,27,0,0,0,0,0,0,137574,199563,122093,105425,100206,96073,6048,6371,3043,3031,3066,3031,0
+891,240000,female,2,1,37,-1,-1,-2,-2,-2,-2,238,0,0,0,0,0,0,0,0,0,0,0,1
+892,200000,male,1,2,31,-2,-2,-2,-2,-2,-2,100,100,100,100,100,100,100,100,100,100,100,100,0
+893,110000,male,1,3,55,1,2,2,2,3,2,92610,94755,92351,101140,99260,101577,4500,0,11300,0,4100,0,1
+894,170000,female,1,2,28,2,2,2,2,2,2,131864,133897,129761,138604,136283,145012,5600,0,11000,0,11000,5656,1
+895,90000,female,3,3,51,0,0,0,0,2,0,11315,12340,13349,14276,13904,14184,1212,1221,1148,0,510,525,1
+896,200000,male,1,1,36,-1,-1,0,-1,-1,-1,3877,11496,5935,295,1867,0,11496,1011,297,2923,0,0,0
+897,360000,male,1,2,30,-2,-1,-1,-2,-2,-2,0,2500,0,0,0,0,2500,0,0,0,0,0,0
+898,140000,female,1,1,36,-1,-1,-2,-1,0,0,4036,0,0,2971,1607,0,0,0,2971,0,0,0,0
+899,220000,male,2,2,25,0,0,0,0,0,0,168286,155893,119575,51317,51926,34608,10000,3900,1000,1000,2000,2000,0
+900,100000,male,3,1,50,0,0,-2,-2,-2,-2,154970,0,0,0,0,0,0,0,0,0,0,0,0
+901,80000,female,2,2,40,2,0,0,0,2,2,57364,58637,59863,62860,63976,63293,2200,2200,4000,1777,0,2000,0
+902,30000,female,2,2,27,-1,-1,2,0,-1,2,27772,30461,29325,21449,29709,29086,3136,0,0,29709,0,1576,0
+903,50000,male,1,2,30,2,2,2,-1,2,2,4187,5152,3679,596,446,2699,2300,0,700,0,2300,0,1
+904,120000,female,2,2,26,0,0,0,0,0,0,22431,12399,4199,3059,674,0,1500,1000,682,0,0,738,0
+905,50000,male,1,2,27,0,0,0,0,0,0,7010,9876,11115,12915,14415,0,3000,1500,2000,2000,0,0,0
+906,360000,female,1,2,27,0,-1,0,-1,-1,-1,79837,27456,68117,39105,54456,46153,27465,50154,39105,54456,46153,40000,0
+907,90000,female,1,2,25,2,2,2,2,0,0,86014,92898,92860,88533,90942,88813,8300,2400,1000,4000,3600,4000,0
+908,500000,male,1,2,32,-1,0,0,0,0,0,386405,387910,293177,274539,253443,253671,25016,20018,10000,79377,52778,10000,0
+909,140000,female,3,1,46,0,0,0,0,0,0,68075,69972,71805,73613,75426,77169,3000,3000,3000,3000,3000,5000,0
+910,30000,male,3,1,45,0,0,2,0,0,0,17187,24045,23180,22000,22000,0,7900,0,0,0,0,0,0
+911,70000,male,3,1,30,0,0,0,0,0,0,19882,20611,21859,22445,22935,23404,1352,1600,949,1000,1000,1000,0
+912,200000,male,1,1,39,-2,-2,-2,-2,-2,-2,0,0,0,0,0,3983,0,0,0,0,3983,0,0
+913,350000,male,1,1,48,0,0,0,0,0,0,54969,47978,48631,48351,47939,33827,2087,1989,1591,1466,2000,1500,0
+914,120000,male,1,2,32,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+915,240000,male,1,2,46,0,0,0,0,0,0,471814,478380,395612,386295,356206,352257,16044,15087,12000,15000,12000,12000,0
+916,90000,female,1,2,23,0,0,0,0,0,0,22109,25011,29230,32747,38217,43744,6000,5000,4000,6000,8000,4000,0
+917,260000,female,1,2,33,1,-2,-2,-2,-1,-1,0,0,0,0,1980,2500,0,0,0,1980,2500,0,0
+918,50000,female,1,2,24,0,0,0,2,0,0,27245,28300,31900,31090,31837,32555,1800,4400,0,1400,1400,1400,0
+919,110000,male,1,1,40,0,0,0,0,0,0,8481,13066,17638,22204,26784,31352,4980,5124,5256,5416,5552,5742,0
+920,20000,female,1,2,24,-1,-1,2,-1,0,-1,1371,796,398,796,398,716,796,0,796,0,716,12111,0
+921,30000,female,2,2,24,0,0,0,0,0,0,27391,28412,28575,28925,24159,0,1767,1700,1010,1141,0,0,0
+922,180000,male,1,2,27,-2,-1,2,2,-2,-2,11392,14688,14040,13440,13440,13080,3500,0,0,0,0,0,1
+923,20000,male,2,1,46,0,0,0,0,0,0,5902,6767,8145,8153,8324,8490,1122,1500,291,302,304,319,0
+924,50000,female,2,2,22,0,0,0,0,0,0,50342,50482,49217,40882,20258,20303,1896,1656,1750,717,753,1000,0
+925,180000,female,1,2,36,-2,-2,-2,-2,-2,-2,10737,21197,11936,40420,9210,17795,21197,11936,40420,9210,17795,6915,0
+926,200000,male,1,1,34,-2,-2,-2,-2,-2,-2,1242,4006,941,2357,2945,1143,4034,945,2366,2947,1143,744,0
+927,260000,female,2,2,24,0,0,0,0,0,0,68411,60386,48663,50998,53835,56728,2500,4000,4000,3835,3805,3000,0
+928,320000,male,1,1,60,-1,-1,-1,-1,0,-1,9955,3465,84421,886,11741,4317,3465,84440,886,11533,4317,52466,1
+929,160000,female,2,2,29,2,2,-1,-1,-1,-1,1989,-8,866,0,892,0,0,874,0,892,0,594,1
+930,30000,male,2,2,32,2,0,0,2,2,2,7851,9065,11595,11112,12923,12566,1500,3000,0,2000,0,1000,1
+931,50000,female,2,1,36,0,0,0,0,0,0,16906,17645,18478,10279,10646,10776,1314,1147,348,512,435,190,0
+932,50000,male,2,2,30,0,0,0,0,-2,-2,21062,6495,2207,0,0,0,2000,1000,0,0,0,0,0
+933,90000,female,2,2,29,0,0,0,0,0,0,47585,52084,53817,54818,55985,57398,10000,2600,2500,2200,2500,3000,0
+934,240000,male,1,2,34,1,2,-1,-1,0,-1,11874,5979,6938,41858,10416,1711,0,6938,41877,0,1711,27162,0
+935,180000,female,2,1,32,1,2,2,2,0,0,15548,15009,17752,17172,18732,23389,0,3000,0,2000,5000,2000,1
+936,200000,female,2,1,32,-1,-1,-1,-1,-1,-1,5150,10190,10190,10190,10594,11193,10190,10190,10190,10594,11193,10190,0
+937,50000,female,1,2,25,0,0,0,0,0,2,42543,34629,27095,18538,20100,19630,1900,1428,600,3000,0,1000,0
+938,50000,male,2,1,44,-1,-1,-1,-1,-1,-1,1261,1261,1261,1261,1261,1261,1261,1261,1261,1261,1261,1261,0
+939,330000,female,1,1,37,-1,-1,-1,-1,0,-1,4785,3403,0,5882,5882,1013,3523,0,5882,0,1013,0,0
+940,80000,female,2,2,24,2,2,5,5,4,3,1200,1200,1200,1200,600,300,0,0,0,0,0,0,1
+941,50000,female,2,2,23,-2,-2,-2,-2,-2,-2,3779,3944,2118,2259,3527,1100,3955,2124,2266,3638,1303,0,0
+942,360000,female,1,2,29,0,0,-1,-1,-1,-1,15854,8174,1004,1004,646,3508,1000,1004,1004,646,3508,0,0
+943,240000,female,2,1,37,0,0,0,0,0,0,219099,217058,187841,186140,191678,191816,8131,8123,6700,10000,7700,6000,0
+944,50000,male,2,1,59,0,0,0,0,0,0,47069,48479,49520,18990,19539,19791,2169,2210,680,855,726,687,0
+945,470000,male,2,2,33,0,0,0,0,0,0,190258,181207,120318,129281,113437,164377,40012,10020,40069,25005,100000,51305,0
+946,160000,female,3,1,51,-1,2,-1,-1,-1,-1,2000,1000,2125,2125,1000,2125,0,2125,2125,1000,2125,23250,0
+947,30000,male,1,1,27,-1,0,0,0,0,-2,12897,13484,6655,6618,0,0,2011,2211,2101,148,0,0,1
+948,80000,female,2,1,32,0,0,0,0,0,0,81074,78262,76163,76813,77511,79069,3700,3400,2900,2900,2841,3100,0
+949,500000,female,3,2,42,-2,-1,-1,0,0,0,10889,26146,104279,103945,101945,90193,29987,104279,2085,1130,45551,0,0
+950,180000,male,2,2,39,-1,-1,-1,-1,-1,0,3135,2822,1938,5818,2628,2628,2833,2015,5818,2628,0,0,0
+951,110000,female,2,1,46,-1,-1,-1,-1,-1,0,2410,2151,2161,1719,107591,107940,2151,2161,1719,107591,5000,3500,0
+952,160000,male,1,1,41,0,-1,0,0,2,2,117126,11222,15513,18087,17499,19939,15315,15000,3000,0,3000,0,0
+953,210000,female,2,2,30,0,0,0,0,0,0,21780,20974,18652,13464,109722,105573,1325,1074,1000,99000,3745,4000,0
+954,200000,female,1,1,34,-1,0,0,-1,0,-1,6206,6723,7545,362,181,488,1120,1024,362,0,488,300,1
+955,350000,male,1,2,35,-1,-1,-1,0,0,0,4439,33720,14283,16426,10833,2261,33891,16267,4027,234,1565,26346,0
+956,250000,male,1,2,41,-1,-1,-1,0,-1,-1,1338,-24,8324,5872,23020,2367,0,8348,0,23020,2367,3117,1
+957,380000,male,1,2,43,1,2,2,-2,-2,-2,8201,7882,-2,-2,-2,-2,39,0,0,0,0,0,1
+958,30000,male,2,2,47,-1,-1,-1,-1,0,-1,396,396,396,792,396,772,396,396,792,0,772,0,0
+959,200000,male,2,2,31,0,0,0,0,0,0,33781,35879,26043,27497,29082,31647,3000,2000,2000,2000,3000,4000,0
+960,30000,male,2,2,30,-1,0,0,0,0,0,27826,28672,29622,30271,24536,22913,1600,1500,1000,1000,1000,1000,0
+961,50000,male,2,2,24,0,0,-1,-1,0,0,14937,12171,3847,11117,6479,6187,3027,3858,11139,3009,3016,3008,0
+962,500000,male,1,1,36,0,0,0,0,0,0,294827,292920,291760,288024,274632,266669,20007,20026,20020,10017,15024,10002,0
+963,30000,male,1,2,28,1,-2,-1,-1,-1,-2,0,0,1310,816,0,0,0,1310,816,0,0,0,0
+964,220000,female,1,1,36,-1,-1,0,-1,-1,-1,996,4102,4111,1057,990,1324,4102,1111,1057,990,1324,1039,0
+965,20000,female,2,1,27,0,0,0,-1,0,0,42784,41009,44267,47149,48497,14774,3000,5000,10000,3011,2011,2011,0
+966,180000,female,2,1,32,0,0,0,0,-1,-1,74189,30670,6428,4618,2708,54024,2000,1000,0,2708,54024,2000,0
+967,300000,male,1,1,42,-1,0,0,-1,0,0,11973,61834,25145,37666,19453,10492,20979,5000,37676,8808,2000,2709,1
+968,130000,female,2,1,33,0,0,0,0,0,0,133461,133393,132211,101807,101083,101597,7010,6657,3899,3952,3900,4000,0
+969,180000,female,3,1,39,2,2,2,2,2,0,10159,12689,12183,13979,13621,14809,2710,0,2000,0,2000,2000,1
+970,150000,female,1,3,30,-2,-2,-2,-2,-2,-2,50,6527,2168,-7,1373,-1,8589,2500,0,1380,0,2050,0
+971,140000,male,2,1,30,0,0,0,0,0,0,134203,127319,107496,69218,70702,72267,5000,3500,2700,2600,2742,2700,1
+972,50000,female,2,2,22,0,0,0,0,0,0,49609,61162,31485,15281,18031,18233,2100,2000,4000,3000,1500,1000,0
+973,20000,male,2,2,25,1,2,2,0,0,0,6174,7543,7255,3887,5887,0,2000,28,0,2000,0,0,1
+974,180000,male,1,2,28,-1,-1,-1,-1,-1,-1,666,662,-4,55566,1056,390,662,0,61411,1056,0,1998,0
+975,180000,male,2,2,26,0,0,0,0,0,0,5591,6619,10574,7733,6794,5487,1126,4081,240,504,169,62,1
+976,150000,female,3,1,54,-1,0,0,0,2,0,148747,145231,145341,153833,151194,145738,5500,5500,11000,0,6000,5215,0
+977,70000,female,1,2,24,0,0,0,0,0,0,63903,65248,62958,64209,59482,60883,3000,2190,2201,2181,2413,1952,0
+978,30000,male,2,2,29,8,7,6,5,4,3,34423,33952,33165,32391,31332,30558,0,0,0,0,0,0,0
+979,500000,male,1,2,36,-2,-2,-2,-2,-2,-2,45106,81264,18122,27229,21462,27911,81690,18225,27365,21570,28050,17397,1
+980,60000,male,3,1,49,0,0,0,0,0,0,44801,41545,40649,40843,40612,40656,3000,4506,2500,1800,4200,2500,0
+981,50000,female,1,2,23,-2,-2,-2,-2,-2,-2,49860,50187,50022,20114,18777,18273,2500,1289,917,1315,5042,2512,0
+982,130000,male,3,2,43,1,-1,-1,-2,-1,-1,1018,6377,-2,935,4985,1212,6433,2,937,4990,1215,9546,1
+983,260000,female,2,1,33,-2,-2,-2,-1,-1,0,134736,135593,120909,102524,40157,40805,6067,10000,3000,40157,1466,2000,0
+984,380000,male,3,1,53,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+985,360000,female,2,2,25,2,2,2,2,2,2,286732,290690,284059,294308,297916,279503,10792,0,15000,5800,0,126685,0
+986,50000,male,3,1,54,1,2,2,0,0,0,62847,60885,56828,55419,54054,53143,2100,0,2000,2000,2455,4000,0
+987,50000,female,3,1,39,0,0,2,-1,0,0,58300,59727,142,29886,30510,31276,7876,161,74354,927,1089,9100,0
+988,260000,female,1,1,44,-1,2,2,-1,-1,-2,1215,856,291,803,98,431,0,291,803,98,431,1104,1
+989,80000,female,2,2,27,0,0,0,0,0,0,57376,58649,59873,61077,62394,63655,2200,2200,2200,2300,2300,2600,0
+990,360000,female,1,2,25,0,0,0,0,0,-2,279846,169426,68810,12800,0,0,7004,1793,2757,0,0,0,1
+991,290000,female,1,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+992,200000,male,1,2,39,-2,-2,-2,-2,-2,-2,-200,-200,-200,0,60800,0,0,0,200,60800,0,0,0
+993,140000,male,1,1,45,0,0,0,0,2,2,39716,40799,41853,44452,45433,46383,1600,1600,3169,1700,1700,1495,0
+994,360000,male,1,1,38,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+995,50000,female,2,2,23,-1,-1,-1,0,-1,-1,780,0,780,390,390,500,0,780,0,390,500,18300,1
+996,120000,male,2,2,25,2,2,0,0,0,0,113348,110119,111700,83858,86434,88802,0,5000,3158,3934,3802,2000,0
+997,100000,male,2,1,29,0,0,0,0,-1,-1,94453,95860,67782,-2618,95748,101299,3320,5000,0,100000,7186,0,0
+998,200000,female,2,1,28,0,0,0,0,0,0,81865,86790,8441,97041,103541,3632,5000,2000,89000,6500,91,1504,0
+999,90000,female,2,1,40,-1,-1,-1,-1,-1,-1,4989,-818,1114,657,1332,780,0,2806,2256,2274,780,0,0
+1000,360000,male,1,2,36,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+1001,150000,female,3,2,30,-2,-2,-2,-2,-2,-2,456,9664,3420,2527,0,0,9664,3420,2612,0,0,0,1
+1002,140000,male,1,2,29,-1,-1,-1,-1,-1,-1,2937,5150,1514,2573,495,1744,2024,1522,2580,496,1749,2265,0
+1003,200000,female,2,2,36,-1,-1,-1,-2,-2,-1,1371,4068,0,0,0,980,4077,0,0,0,980,0,0
+1004,170000,female,2,1,37,0,0,0,0,0,0,166246,169163,136604,136607,133199,135242,6700,6800,4700,4700,5500,5000,0
+1005,30000,male,2,2,34,0,0,4,3,2,0,19785,24633,23961,23289,22779,51224,5500,0,0,0,3400,512,0
+1006,80000,female,1,2,27,0,0,-2,-2,-2,-2,80000,0,0,0,0,0,0,0,0,0,0,0,0
+1007,280000,male,1,2,31,0,0,0,0,0,2,164736,170564,150666,133465,133536,132964,8833,12005,5000,8000,3000,5000,0
+1008,410000,female,1,1,31,-1,-1,2,2,-2,-2,2744,2041,630,-736,-1591,-2303,2051,5,266,266,253,6384,0
+1009,450000,male,1,2,38,-1,0,-1,-1,-1,-1,29747,53311,10920,8072,22809,12415,30323,10973,8112,22923,12476,6728,0
+1010,80000,male,2,2,36,0,0,0,0,0,0,79148,52174,44275,42029,33838,29757,2000,2000,1500,1500,2000,1500,0
+1011,360000,male,1,1,46,0,0,0,0,-2,-2,92961,76243,51722,-8,-8,-16,10125,13092,0,0,0,0,0
+1012,130000,female,1,1,36,0,0,0,0,0,0,129689,107070,103942,94623,90556,92394,5000,4400,5000,4000,3500,4000,0
+1013,160000,female,1,2,26,0,0,0,-1,-1,-1,2198,11155,0,12315,0,11855,9155,0,12315,0,11855,0,1
+1014,140000,female,3,2,57,2,0,0,0,0,0,131795,134083,125360,99313,90623,92425,6743,5421,3926,3290,3310,3424,1
+1015,240000,female,3,1,40,1,-2,-1,-1,-1,-1,-55,-55,3545,1338,1075,1744,0,3600,1338,1075,1744,0,0
+1016,70000,male,1,3,57,0,0,0,0,0,0,69398,70352,69936,68118,65942,62495,2667,2321,2391,2316,2466,1451,0
+1017,150000,female,2,2,25,0,0,0,0,0,0,142827,126317,75324,78773,95375,57663,5000,4000,5000,40000,3000,2880,0
+1018,210000,female,3,1,37,-2,-2,-2,-2,-2,-2,138398,109115,101912,62959,60767,41150,5000,5000,2500,2800,2000,0,0
+1019,200000,female,1,1,35,-1,0,0,0,0,0,9918,10971,11817,17865,18239,14527,1219,1165,7865,592,807,679,0
+1020,310000,male,2,2,33,-2,-2,-2,-2,-2,-2,4040,4048,3959,205,3199,5104,4068,3964,205,3209,5109,1434,0
+1021,180000,male,1,1,38,0,0,0,0,0,2,153099,150227,138313,137274,147314,129870,7005,6500,5000,12042,32,1300,0
+1022,300000,male,2,2,31,0,0,0,-1,-1,-1,62198,35674,34979,510,2166,765,1600,2600,510,903,765,773,0
+1023,450000,female,1,2,41,-1,-1,-1,-1,-1,-1,11343,75083,25273,85357,27745,1990,75459,25413,85784,27856,2000,1900,0
+1024,200000,male,1,2,33,1,-1,-1,0,-1,-1,-5,3465,3191,1873,90687,4577,3470,3191,0,90729,0,6266,0
+1025,30000,female,2,1,67,2,2,0,0,2,2,30374,29038,27737,29499,30124,26855,0,1500,2182,1200,0,2302,1
+1026,400000,female,1,1,40,-1,-1,-1,0,0,-1,1107,3891,120338,8318,8488,130,3891,120407,0,170,130,8595,0
+1027,170000,male,1,2,33,-1,-1,-1,-1,-1,-1,764,1100,500,2499,1500,600,1105,500,2499,1500,600,2100,0
+1028,140000,female,1,2,31,-1,2,-1,-1,-1,-1,652,326,326,326,476,326,0,326,326,476,326,326,1
+1029,200000,female,2,2,35,0,0,0,0,0,0,64195,65565,66870,68752,70485,71887,3000,3000,3000,3000,2575,3000,0
+1030,60000,female,2,3,39,1,-2,-2,-2,-2,-2,-1540,-1930,-2320,-1220,0,0,0,0,2000,2000,0,0,0
+1031,60000,male,2,2,27,1,2,0,0,2,2,43356,42381,46663,49877,50734,49764,0,5000,4000,1800,0,2000,1
+1032,150000,male,1,2,23,0,0,0,0,0,0,11109,83376,79726,76986,78038,78321,78016,3048,4000,3500,3000,3000,0
+1033,180000,male,3,1,54,0,0,0,0,0,0,149698,137260,124500,111430,98182,84598,4834,4371,3849,3405,2887,2402,1
+1034,50000,female,3,2,23,0,0,0,0,0,0,43979,33403,20879,18573,17318,17936,2000,2000,2000,1000,1000,2800,0
+1035,50000,male,3,2,24,-1,-1,-1,-1,0,0,2562,8743,-290,18115,18495,18804,8769,0,18650,659,1000,1000,0
+1036,20000,male,2,2,26,-1,-1,-2,-2,-2,-2,70,-620,-620,-1400,0,0,0,0,0,1400,0,0,0
+1037,230000,female,2,2,52,2,-1,2,0,-1,-1,1292,3943,1990,1499,593,2553,3951,1,9,594,2560,3759,1
+1038,110000,female,2,1,42,0,0,0,0,0,0,55349,52914,49483,49292,49460,49470,2096,2003,1802,1783,1783,1756,0
+1039,90000,female,1,2,36,0,0,0,0,0,0,90922,80980,66503,67347,68509,67588,4273,3200,2500,2500,2631,2646,0
+1040,20000,female,1,2,22,2,2,2,2,2,2,16233,20547,20542,19572,20437,19994,5383,660,0,1538,0,2658,1
+1041,30000,female,1,2,23,0,0,0,0,0,0,26847,24815,21681,22293,17155,13470,2500,3500,2000,3500,2000,1000,0
+1042,220000,male,3,1,30,0,0,0,0,2,0,162105,170592,173969,183030,181385,174107,10000,5013,10626,52,5255,4222,1
+1043,140000,female,3,2,24,1,2,2,2,0,0,42897,45739,46468,45422,46371,47297,3821,1775,0,1833,1850,2000,1
+1044,300000,female,1,1,42,-2,-2,-2,-2,-2,-2,3000,3300,0,0,610,2165,3300,0,0,610,2165,2394,0
+1045,100000,male,2,1,49,0,0,0,2,0,0,34704,30906,28325,22160,18842,17023,2011,2028,10,558,1044,12,0
+1046,110000,male,2,2,31,2,2,3,3,2,-1,279,279,279,279,129,179,0,0,0,0,200,0,0
+1047,270000,female,3,2,33,0,-1,-1,-1,0,0,10000,10000,10000,123693,116843,110059,10000,10000,222750,5000,5008,5026,0
+1048,30000,male,1,1,42,0,0,-1,-1,-1,-1,28033,17085,200,323,29525,0,1525,200,323,29525,0,0,0
+1049,70000,male,3,2,41,0,0,0,0,0,0,70476,68539,69520,51605,50311,50729,2700,3500,2000,2000,2500,2500,0
+1050,230000,male,2,1,53,2,2,-2,-2,-2,-1,1350,0,0,0,0,470,0,0,0,0,470,0,0
+1051,20000,male,2,2,23,0,0,0,0,0,0,18852,16648,19395,20271,20445,17532,1500,4000,2000,2000,2900,2735,0
+1052,190000,female,1,2,33,1,2,0,0,0,0,115056,108137,89722,69861,49894,49727,0,4413,2942,2000,1583,1500,0
+1053,20000,female,2,1,29,0,0,0,0,0,0,15890,13995,13375,14205,15869,16666,2000,2000,1000,2000,1000,1000,0
+1054,80000,female,3,1,67,0,0,0,0,0,-1,20255,18885,21529,29236,10662,2408,6000,5002,10662,2,2408,11662,0
+1055,20000,male,3,1,33,2,0,0,0,0,-2,20500,16237,20960,6914,1017,780,2191,1000,0,1017,780,6380,1
+1056,60000,female,3,1,34,0,0,0,2,0,0,9928,11261,12853,12352,12703,13338,1500,2090,0,700,1000,1400,1
+1057,50000,male,2,1,49,0,0,0,0,0,0,10750,8755,8684,5983,4252,5034,1507,3109,2209,2000,2500,3000,0
+1058,280000,female,2,1,56,0,0,0,0,0,0,284204,284041,283396,213294,213384,213604,10261,17003,7657,7750,7861,8083,1
+1059,300000,male,1,1,42,0,0,0,0,0,0,120151,89618,47857,48128,50332,23688,4229,5024,6012,5191,12139,110247,0
+1060,30000,female,3,1,55,2,0,0,0,0,0,29278,30393,29785,30377,30155,31098,1600,1585,1377,1155,2600,0,1
+1061,270000,female,2,1,25,0,0,0,0,0,0,21586,239499,203867,188064,147915,139976,239104,7098,6179,5023,6090,4000,0
+1062,100000,male,3,2,30,0,0,0,0,0,0,87579,72308,53505,43371,48125,40388,4172,2094,3007,10021,3012,1527,0
+1063,240000,male,2,2,43,-1,-1,-1,-1,-1,-1,291,291,291,291,291,291,291,291,291,291,291,291,1
+1064,200000,male,1,2,40,-1,-1,-1,-1,-1,-1,2159,760,2775,22813,10526,326,1086,2775,22813,10526,326,573,0
+1065,110000,female,1,2,35,0,0,2,2,0,0,32691,36344,36055,36163,37028,38250,4500,600,1000,1600,2000,2000,0
+1066,230000,male,1,1,61,-1,-1,-1,-1,-1,-1,1477,3699,2252,4932,2783,7411,3710,2266,7338,2791,7433,4527,0
+1067,150000,female,2,1,44,-1,-1,-1,-1,-1,-1,390,5104,10318,5775,14441,780,5104,10318,10355,14441,780,66950,1
+1068,350000,male,1,2,33,-1,-1,-1,-1,-1,-1,148341,8095,15047,3220,20461,3249,8405,15052,3805,20467,3253,27168,0
+1069,360000,male,6,1,66,-1,-1,-1,-1,-1,-1,47615,74976,4040,151858,48580,1451,75351,4064,152618,48822,1451,171944,0
+1070,150000,female,2,2,40,1,-1,-1,-1,-1,-2,-19,3894,5570,10516,-3,-3,3913,5606,10568,0,0,2379,0
+1071,100000,male,3,2,47,0,0,0,0,0,0,94925,95130,60003,38500,4681,76728,3889,2412,1698,679,72809,2748,0
+1072,500000,male,1,2,27,0,0,0,0,0,0,204198,201648,197549,192093,187726,183860,7434,6342,5276,5271,5778,5029,0
+1073,500000,male,1,2,35,-1,0,-1,-1,-1,0,172041,70011,12976,34469,27425,28506,58761,13976,34828,28289,18175,17500,0
+1074,180000,female,3,1,47,-1,-1,-1,-1,-1,-1,316,316,316,316,316,316,316,316,316,316,316,316,0
+1075,400000,female,3,1,39,1,-1,-1,-1,-2,-1,2384,3500,471,-203,2371,1949,3603,471,203,2574,1949,1040,0
+1076,100000,female,2,2,29,0,0,0,0,0,0,61383,49560,40183,61820,8322,6182,1908,2000,1000,2000,3000,5000,0
+1077,10000,male,2,1,32,1,2,2,2,2,2,8425,8148,9481,9180,10052,10091,0,1632,0,1022,350,0,0
+1078,60000,female,1,2,30,2,2,2,2,2,2,34735,33895,36530,37133,37893,37131,0,3200,1500,1500,0,1700,0
+1079,50000,female,1,2,25,1,2,2,2,2,2,47054,48008,48913,49847,50840,49502,2000,2000,2000,1900,1900,1600,1
+1080,80000,female,2,2,23,-1,0,0,0,0,0,57314,58489,50452,51573,49061,33931,2145,2000,2012,2049,2008,1217,0
+1081,110000,female,2,1,43,0,0,2,0,0,0,108616,114854,105275,107561,105502,103813,9600,0,4000,3765,4000,4200,0
+1082,410000,female,2,1,41,0,0,0,0,0,0,354506,363666,369776,368779,369358,368043,14600,15500,14000,13580,14000,19000,1
+1083,260000,female,2,1,40,1,-1,-1,-2,-2,-2,0,342,0,0,0,0,342,0,0,0,0,0,0
+1084,30000,female,3,1,35,0,0,0,0,0,0,28786,26496,25098,26209,25325,26400,1500,1450,1500,1500,1500,1500,0
+1085,310000,female,1,2,28,0,0,0,0,-1,-1,36513,37628,39579,40879,85,4381,2500,3000,1500,85,4381,11100,0
+1086,70000,female,2,2,38,0,0,0,0,0,0,22578,23606,24619,25107,25634,26143,1397,1410,898,931,936,970,0
+1087,250000,male,1,2,31,0,0,0,0,0,0,215316,198490,169014,167776,168110,168505,6845,5945,5919,6000,6059,5837,0
+1088,210000,male,3,1,29,1,2,0,0,0,0,198510,194040,199393,194538,195990,194136,0,10000,7000,8000,8000,7200,0
+1089,360000,male,2,1,41,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+1090,50000,male,2,2,31,1,2,0,0,2,0,48657,45079,47714,19586,19143,20051,0,4300,2150,0,1204,1000,0
+1091,670000,male,1,2,29,0,0,0,0,0,0,244663,243209,229265,228114,232795,237726,10000,8000,8500,8190,9000,8000,0
+1092,130000,male,1,2,26,-1,-1,0,0,0,0,2343,32278,24175,15182,12805,14415,32322,1217,1000,3000,2000,390,0
+1093,170000,male,1,1,42,1,-2,-2,-2,-2,-1,0,0,0,0,0,2485,0,0,0,0,2485,7797,0
+1094,30000,male,3,2,29,-1,-1,-1,-1,-2,-2,390,0,780,0,0,0,0,780,0,0,0,0,0
+1095,110000,male,1,1,50,0,0,0,0,0,0,36802,38210,40259,41585,42913,44197,2000,3000,2000,2000,2000,2000,0
+1096,210000,female,3,2,46,1,2,0,0,-1,-1,5816,5579,20079,17309,2310,241,13,17309,0,2310,241,4000,1
+1097,30000,female,2,2,24,0,0,2,2,2,0,24238,26996,26269,27734,27151,28199,3462,0,2200,0,1500,1500,1
+1098,260000,female,2,1,46,0,0,2,2,2,0,18256,19556,18136,24018,21490,18196,2934,0,8000,0,2000,8000,0
+1099,150000,female,3,2,28,-2,-1,-1,-1,-1,-1,1723,2292,240,683,3486,5390,6876,240,683,3486,5390,1200,0
+1100,20000,female,2,1,35,1,2,2,3,2,0,18648,18061,21034,20419,19289,19600,0,3292,0,0,781,701,1
+1101,380000,female,1,1,40,-1,-1,-2,-2,-2,-2,6614,54457,47872,24543,0,0,49094,0,24543,0,0,0,0
+1102,200000,female,1,1,41,-2,-2,-2,-2,-2,-2,7812,0,0,1115,0,0,0,0,1115,0,0,0,0
+1103,120000,female,2,1,47,-1,-1,-1,-1,-1,-1,1188,2512,3444,1742,502,346,2512,3444,1742,502,346,325,0
+1104,80000,male,2,1,54,0,0,0,0,0,0,76962,79463,79761,30286,29898,30364,4000,3500,1100,1100,1200,1000,1
+1105,30000,female,2,2,33,1,2,0,0,0,0,31089,10989,11997,12397,13043,13325,0,1200,600,1000,650,650,0
+1106,110000,male,2,2,29,1,2,2,2,0,0,83687,85360,86274,84001,85897,88759,3900,3200,0,3400,4500,2600,0
+1107,50000,female,3,1,44,-1,-1,-1,-1,-1,-1,3424,155,1922,1473,1865,835,155,1922,1473,1865,835,1833,0
+1108,90000,female,2,1,24,0,0,0,0,0,0,84148,79847,75576,75266,74431,68399,5006,4007,5006,4003,3014,4007,0
+1109,110000,male,1,2,33,0,0,0,0,0,0,12633,88334,53978,23687,26567,8435,80004,1500,12013,7000,2000,4000,0
+1110,50000,male,3,1,54,0,0,0,0,0,0,38607,39681,40717,41682,42857,45581,2000,2000,1642,2000,3600,0,0
+1111,60000,male,1,2,27,-2,-2,-2,-2,-1,-1,11862,1856,-14,4839,9567,11407,1861,0,4853,9567,2000,0,0
+1112,150000,female,2,2,37,0,0,0,0,0,0,80463,82513,84271,43832,33963,34638,3348,3490,1402,1233,1240,1284,1
+1113,20000,male,1,2,24,1,2,0,0,0,-2,18738,18016,7190,7190,0,0,20,1500,0,0,0,0,0
+1114,140000,female,3,1,54,1,-2,-2,-2,-2,-2,-150,-150,-150,-150,-150,-150,0,0,0,0,0,0,1
+1115,120000,female,2,1,34,1,-1,-1,-1,-1,-1,-9,898,7752,4447,8495,0,907,7772,4447,8495,0,528,0
+1116,200000,female,2,2,40,2,0,0,0,0,0,176502,176297,162826,160186,161965,152361,8000,7300,6000,6000,6000,6000,1
+1117,20000,male,2,2,30,1,2,4,3,2,2,19977,21359,20581,19860,19690,1735,2000,0,0,0,500,0,1
+1118,50000,male,2,2,26,0,0,0,0,0,0,48221,49629,48868,49668,49780,49980,2571,1200,1000,40000,1000,0,0
+1119,200000,female,2,1,41,0,0,0,0,0,-1,18012,18367,16996,11461,8150,5584,1385,1020,229,183,5584,888,0
+1120,100000,female,2,2,29,-2,-1,0,0,0,0,75912,85276,88498,90289,92485,95630,10000,4000,2600,3000,4000,5000,0
+1121,300000,male,1,1,38,-1,-1,-2,-2,-2,-2,2285,0,0,0,0,0,0,0,0,0,0,0,0
+1122,500000,female,1,2,35,-1,-1,-1,-1,0,-1,22369,14100,24754,21443,13892,11241,14128,24902,21479,11465,11356,66710,0
+1123,360000,female,2,1,52,-1,-1,-2,-2,-2,-2,2995,2401,2277,500,3586,7399,2406,2282,500,3586,7399,600,0
+1124,160000,female,1,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+1125,50000,female,2,2,23,0,0,0,2,2,2,47053,47835,51109,51713,52738,48789,1842,4116,2000,1950,0,1885,1
+1126,230000,female,2,1,34,0,0,0,0,0,0,234328,234211,157345,155335,153427,150514,8913,5449,5339,5370,4435,4432,1
+1127,200000,female,2,2,34,1,-1,-1,-1,-1,-1,0,3346,0,465,1775,8722,3346,0,465,1775,8722,0,0
+1128,270000,male,1,1,44,3,3,4,4,4,4,256402,264267,271951,278509,283545,278436,17944,18112,15405,10000,0,0,0
+1129,50000,female,2,1,36,2,2,2,0,0,2,45159,49125,47956,43578,35126,34420,4700,0,2004,3500,0,1000,0
+1130,20000,male,2,2,28,1,2,2,2,0,0,15764,15718,17164,16594,18158,19554,500,2000,0,2000,1700,0,0
+1131,60000,female,2,2,31,0,0,0,0,2,0,59643,61279,61017,30117,29526,29201,3200,2535,2331,0,1073,2134,0
+1132,50000,male,2,2,31,-1,-1,-1,0,0,-1,2522,0,18171,17051,390,16526,0,18171,341,0,16526,324,0
+1133,50000,male,2,1,41,0,0,0,0,0,0,19339,20424,20086,18600,19153,19289,1703,1306,810,1000,900,900,0
+1134,130000,female,3,1,44,0,0,0,0,0,2,109006,110256,113283,101247,96939,81977,4500,5000,4000,10600,0,2300,0
+1135,230000,female,3,2,47,0,0,0,0,0,0,147300,121855,102074,94225,96616,95849,10000,5000,4000,4000,5000,4000,0
+1136,20000,male,2,2,25,0,0,0,-2,-1,0,3400,4129,0,0,3244,3314,1000,0,0,3244,124,66,0
+1137,30000,female,1,2,25,0,0,2,0,0,2,19801,20449,19798,20217,21435,19239,3000,0,700,1500,0,323,0
+1138,200000,female,1,1,39,-1,0,-1,0,0,0,8432,6977,6727,6864,5253,3388,3746,6737,2013,10,20,10901,0
+1139,140000,female,2,1,24,-1,-1,-2,-2,-1,-1,2515,0,0,0,2243,5530,0,0,0,2243,5530,4441,0
+1140,100000,female,2,1,35,2,0,0,2,2,0,98845,95265,98571,99322,96661,95951,4600,8002,4003,2,4005,4000,1
+1141,240000,male,2,1,32,2,2,2,0,0,0,127418,135942,132640,135320,138523,141618,10400,0,4500,5000,5000,5000,1
+1142,70000,female,1,2,31,2,2,7,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,1
+1143,360000,male,1,2,33,1,2,0,0,-1,-1,71195,60553,60158,16672,35039,8320,0,1399,0,35039,8320,5169,0
+1144,140000,female,1,2,30,1,2,0,0,0,0,149389,145757,144229,144470,144386,120586,0,5350,5555,5836,4191,4341,0
+1145,50000,male,2,1,52,-1,2,0,0,0,0,2072,1532,3106,2721,780,0,0,2000,5,0,0,0,0
+1146,210000,female,2,1,36,-1,-1,-1,0,-1,-1,396,590,2042,1646,396,396,590,2042,0,396,396,396,0
+1147,280000,male,1,2,30,1,2,2,0,0,0,191493,187913,169223,153063,133490,130377,1000,7600,5949,6000,5200,5117,0
+1148,180000,female,2,2,42,2,2,2,2,2,2,50420,51818,52372,52917,54123,55176,2500,2000,2000,2200,2100,2200,1
+1149,150000,female,1,2,30,-1,0,-1,0,-1,-1,10705,5416,5162,4068,249,249,1000,5162,1000,249,249,5565,0
+1150,20000,male,3,1,47,1,2,0,0,0,2,19739,19137,19857,15422,19279,9537,0,1200,0,9537,0,0,0
+1151,350000,female,2,1,29,-1,-1,-1,-1,-1,-1,8760,5882,9845,4677,5767,6532,5932,9908,4692,5787,6548,4863,0
+1152,130000,female,1,2,23,-1,-1,-1,0,-1,0,3820,2640,30403,9630,7120,3940,2640,30403,193,7120,79,9589,0
+1153,470000,male,3,1,39,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,789,0
+1154,340000,female,2,1,48,-1,-1,-1,0,0,-1,4052,0,4105,2895,2895,2360,0,4105,0,0,2360,1090,0
+1155,80000,male,2,2,26,1,2,2,2,0,0,77389,75585,80300,75724,77504,79715,0,6000,0,3000,3500,3000,0
+1156,70000,male,1,2,33,0,0,0,0,-2,-2,70524,70740,46740,0,0,0,2500,2000,0,0,0,0,0
+1157,230000,female,2,1,44,-2,-2,-2,-2,-2,-2,5990,1677,2920,2683,1674,3273,1677,2920,2683,1674,3273,2749,0
+1158,180000,female,2,1,36,0,0,0,-2,-1,0,21494,25600,0,0,36565,37353,5000,0,0,36565,1548,1000,0
+1159,210000,female,2,1,39,0,0,0,0,0,-1,26749,34451,25200,19850,15530,13021,14000,3007,5000,1000,13021,22171,0
+1160,20000,male,2,2,24,-1,-1,-1,-1,-1,-1,780,0,390,390,780,0,0,390,390,780,0,0,0
+1161,140000,female,2,2,25,2,0,0,-1,-1,0,137606,140557,111000,3238,89437,91136,6000,3200,3238,89437,3228,3000,0
+1162,200000,male,1,2,52,0,0,0,0,0,0,115702,113576,109812,104567,100541,96495,5517,5381,3838,3589,3397,3296,0
+1163,50000,female,3,1,59,0,0,0,0,0,0,47822,36488,36811,13234,11543,10751,2009,2000,556,378,619,5000,0
+1164,80000,female,1,2,23,-1,-1,0,0,-1,-1,3526,6687,4356,3450,4318,0,6687,1000,0,4318,0,254,0
+1165,30000,female,3,2,48,0,0,0,0,0,0,1445,3410,5338,7239,9112,10949,2000,2000,2000,2000,2000,2000,0
+1166,140000,female,1,2,28,0,0,2,0,0,0,9305,13614,13103,14077,15189,16275,4800,0,1500,1500,1500,1500,1
+1167,80000,male,3,1,62,-1,-1,-1,-1,-1,-1,1262,1642,1975,672,5112,3932,1642,1975,672,5112,3932,20289,0
+1168,220000,female,3,1,38,-1,-1,-1,-1,-1,-1,20000,3450,5516,47619,28800,8561,3450,5549,50019,28800,8561,16599,0
+1169,180000,female,1,2,32,-1,-1,-1,-1,-1,-1,666,666,666,666,666,666,666,666,666,666,666,666,0
+1170,140000,female,2,1,29,0,0,0,0,0,0,81764,92071,43777,22806,12643,29707,20167,5000,28800,2000,20007,10009,1
+1171,180000,male,2,2,25,2,2,2,0,0,0,10022,12847,12351,12350,12608,12892,3000,0,500,455,491,500,1
+1172,50000,female,2,2,35,0,0,0,0,0,0,14536,15694,16431,17056,17581,18089,1700,1300,900,800,800,900,0
+1173,170000,female,2,2,27,0,0,0,0,0,0,97474,78520,80131,70788,68927,70678,2932,3000,2500,3000,2900,2918,0
+1174,50000,male,2,2,38,0,0,0,0,0,0,50958,50889,49697,9176,9368,9554,2042,1150,329,340,342,354,0
+1175,50000,male,2,2,24,0,0,0,0,0,0,49144,20818,17890,18310,17931,18633,1500,1300,700,1000,1000,1000,0
+1176,300000,male,2,1,29,-1,-1,-2,-2,-2,-2,1874,-200,-200,-200,-200,-200,0,0,0,0,0,0,0
+1177,390000,female,1,2,27,2,0,0,0,0,0,386301,392458,290201,295606,300709,305904,17000,11000,11000,10656,11000,12000,0
+1178,90000,female,2,1,55,2,2,0,0,0,0,81998,83674,80890,31565,33049,22694,4003,3000,3000,3000,2000,2000,1
+1179,200000,female,1,2,29,0,0,0,0,0,0,194241,193425,196537,195268,192829,192499,12000,8500,7000,10000,10000,10000,0
+1180,460000,male,1,2,29,0,0,0,0,0,0,410033,385394,325663,324067,324749,327929,16088,13039,11127,11017,11110,11113,0
+1181,10000,male,2,2,23,0,0,0,0,0,-2,3714,4158,4654,3080,0,0,1104,1000,31,0,0,0,0
+1182,20000,male,2,1,30,-1,-1,0,0,-1,-1,1261,2835,2522,1261,1261,930,2835,1000,0,1261,930,540,1
+1183,50000,female,2,1,50,-1,-1,-1,-1,-2,-1,1232,1846,697,364,0,760,1846,697,364,0,760,5862,0
+1184,480000,female,2,1,38,0,0,0,0,0,0,90258,76099,56776,37484,37906,18387,30000,1708,1292,1010,772,705,0
+1185,180000,female,1,2,24,0,0,0,0,0,0,169263,174532,176686,165491,169222,173246,8000,6700,6000,6400,7000,7000,0
+1186,240000,female,1,2,29,0,0,0,0,0,-2,3093,2322,8186,3980,0,0,2000,2020,2500,0,0,85,0
+1187,250000,male,1,2,38,-2,-2,-2,-2,-2,-2,584,3291,8660,7495,1120,62,3307,8703,7532,1125,62,7718,0
+1188,270000,female,2,2,34,-1,-1,-1,-1,-1,-1,381,3376,2958,4154,5885,3129,3406,2983,4172,5912,3143,0,1
+1189,200000,male,1,1,37,0,0,0,0,0,0,123337,11148,19165,21171,17762,23670,11202,19275,22304,23850,23784,84430,0
+1190,100000,female,3,1,66,0,0,0,0,0,0,100036,100041,100402,97141,97143,97532,4702,4617,3600,3865,3850,3705,0
+1191,160000,female,1,1,39,-2,-2,-2,-2,-2,-2,710,666,403,1650,336,790,666,403,1650,336,790,1141,0
+1192,80000,female,2,1,45,0,0,0,0,0,0,81841,74516,69485,30396,30595,29033,4100,2507,2140,2000,1500,1000,0
+1193,130000,male,2,1,44,-1,2,0,0,0,0,29547,23154,18637,14691,8769,4166,0,1500,486,303,83,780,0
+1194,340000,female,3,2,44,0,0,0,0,0,0,142836,145125,146682,150407,147868,149349,7000,5500,6027,5328,5390,6047,1
+1195,360000,male,1,1,36,-2,-1,-1,-1,-2,-2,0,394,11142,0,0,0,394,11253,0,0,0,0,0
+1196,120000,female,3,1,40,0,0,0,0,0,0,108300,108538,94833,49078,40643,4200,5000,4121,2000,2000,2000,96583,0
+1197,120000,male,1,2,29,0,0,0,0,0,0,30101,31281,30180,30471,31110,31728,2000,2000,1090,1129,1135,1200,0
+1198,300000,female,1,2,48,0,0,0,0,0,0,247279,235093,224062,212480,202148,186955,10005,9500,7500,6914,6100,5500,0
+1199,60000,female,2,2,23,2,2,-2,-2,-1,-1,2516,0,0,0,1524,25421,0,0,0,1524,25421,1000,0
+1200,210000,female,2,1,50,0,0,0,0,0,0,106724,109251,103733,102027,103453,103651,4037,3519,3442,3553,3625,3470,0
+1201,210000,female,2,1,29,0,0,0,0,0,0,209807,123664,51353,43485,44784,45685,5088,2000,1600,2000,1800,1807,1
+1202,70000,female,3,1,49,2,2,2,2,2,2,21024,21790,21142,23772,24930,25709,1400,0,3000,1700,1340,1100,1
+1203,200000,male,2,1,33,0,0,2,-1,-1,0,50612,10537,5552,2506,9443,11818,10023,27,2614,9454,5019,5015,0
+1204,230000,female,2,1,51,0,0,0,0,0,0,51802,53956,56968,58099,59318,60504,3000,3921,2079,2155,2174,2225,1
+1205,20000,male,3,1,23,-1,-1,0,0,0,0,3675,19316,19844,19844,20388,19554,19316,1261,651,803,747,155,1
+1206,210000,female,1,1,37,0,0,0,0,0,0,211749,205947,201848,168664,172013,175557,7000,10015,10000,5331,5748,48061,0
+1207,160000,female,3,2,26,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,390,0
+1208,290000,female,1,1,30,-1,-1,-1,-1,-1,-1,1312,1312,1311,1486,1488,1650,1318,1317,1493,1495,1657,35267,1
+1209,80000,female,3,1,26,0,0,0,0,0,0,63677,64162,38141,38190,38586,39962,2000,1905,1350,1388,2401,1410,0
+1210,360000,male,1,2,43,-1,-1,-2,-2,-2,-2,4134,2128,960,6658,0,0,2134,982,6858,0,0,0,0
+1211,230000,male,1,2,32,0,0,0,0,0,0,164634,166134,142049,106677,88091,60929,7326,10000,10000,3000,2000,2000,0
+1212,360000,male,3,1,54,-2,-2,-2,-2,-2,-1,16230,-200,0,0,69000,2500,0,200,0,69000,2500,0,0
+1213,340000,female,1,1,30,0,0,0,0,0,0,351828,280067,259651,243094,223907,216912,30076,25118,20085,10041,8184,6626,0
+1214,50000,female,1,2,22,0,0,0,0,0,0,8537,9591,10581,10818,11050,10880,1200,1163,400,790,400,380,0
+1215,80000,male,2,2,38,0,0,0,0,0,0,89394,81223,77198,29891,34528,35229,5000,19153,1500,10000,1274,1275,0
+1216,50000,female,2,2,24,0,0,-1,-1,0,0,97043,39837,6928,17006,17363,17707,2000,6943,17006,630,633,657,0
+1217,30000,female,1,2,24,-1,-1,-1,0,0,0,3019,1479,18860,950,5660,0,1479,18881,0,4710,0,7153,0
+1218,210000,male,1,2,26,-1,-1,-2,-1,-1,-2,1360,0,0,3620,0,0,0,0,3620,0,0,15513,0
+1219,150000,female,2,1,42,-1,-1,-1,-1,-1,-1,3260,2270,5887,3935,3935,3935,2270,5887,3935,3935,3935,3935,1
+1220,20000,male,2,2,21,0,0,-1,0,0,-2,20297,17054,2333,1300,0,0,1240,2333,0,0,0,0,0
+1221,20000,male,3,2,22,0,0,0,-2,-2,-2,19624,16972,0,0,0,0,1000,0,0,0,0,0,1
+1222,240000,female,3,1,41,-1,-1,-2,-1,-1,-1,5325,-5,-5,1074,1972,1876,5,0,1079,1977,1885,1211,0
+1223,500000,female,2,1,50,-2,-1,-1,-1,-1,-1,16984,86772,53170,28622,19140,0,87004,53192,28622,19140,0,20211,0
+1224,90000,female,2,1,23,0,0,0,0,0,0,12770,14241,14895,25195,23769,2269,2500,1200,10500,7000,1000,0,1
+1225,50000,male,3,2,46,0,0,0,0,0,0,50131,28152,20746,27624,16015,16746,1388,2011,1006,1000,1000,1000,0
+1226,50000,female,2,2,22,0,0,0,0,0,0,50834,50770,50215,29386,29527,30125,2200,1517,1000,1500,2005,1305,1
+1227,680000,male,1,2,37,0,0,0,0,0,0,18314,16088,17806,15498,13810,164969,2700,2400,600,400,161000,5800,0
+1228,50000,male,1,1,47,0,0,2,2,2,2,45717,47974,49837,50807,49947,50424,3000,3000,2000,0,5000,0,0
+1229,100000,female,2,1,40,-1,-1,-1,0,-1,-1,326,326,652,326,326,326,326,652,0,326,326,652,0
+1230,280000,female,1,2,30,0,0,0,0,0,0,270276,506260,263734,268216,262895,264508,11000,10000,10004,10020,10100,10000,0
+1231,30000,male,2,2,54,0,0,0,0,0,0,26278,24767,27533,26400,25620,390,1700,3400,2528,0,390,780,1
+1232,50000,male,2,2,27,2,2,0,0,0,0,23901,13262,8643,7382,1975,50514,4146,1200,0,0,49800,0,1
+1233,60000,male,1,1,33,-1,-1,-1,-1,-1,-1,8308,7565,8373,7565,7565,7565,7565,8373,7565,7565,7565,7565,0
+1234,120000,male,2,1,57,0,0,0,0,0,0,118709,120580,118684,88557,91124,88094,5000,5007,4000,4003,4003,4000,1
+1235,80000,female,2,1,35,-1,-1,-1,-1,-1,0,2890,9796,13443,396,396,396,9796,13443,396,396,0,396,0
+1236,500000,male,1,1,45,-1,-1,-1,-1,-1,-2,140,94,39,44,0,0,94,39,44,0,0,790,0
+1237,70000,female,3,1,32,2,2,0,0,0,-1,18317,17330,11400,11120,10914,11315,0,1000,110,500,18963,1000,0
+1238,160000,female,2,1,45,-2,-2,-2,-2,-2,-2,0,0,0,1468,0,0,0,0,1468,0,0,0,0
+1239,100000,female,3,1,50,2,2,2,-1,0,0,110537,99734,99973,71008,66735,68621,0,3000,103000,2500,3000,3000,1
+1240,10000,male,3,2,35,0,0,0,0,0,0,7877,8918,9864,9673,9414,9156,1174,1120,310,316,1000,2000,0
+1241,90000,male,1,2,26,-1,-1,-1,-1,-1,0,10750,100,200,100,9894,20699,100,200,0,9894,20000,4100,0
+1242,170000,male,1,1,39,2,2,2,2,4,3,74298,80073,81959,89991,88018,86299,7000,3800,10000,0,0,3100,1
+1243,90000,female,2,2,35,-1,-1,-1,-2,-2,-2,2667,2667,0,0,0,0,2667,0,0,0,0,0,0
+1244,180000,female,3,2,42,0,0,0,0,0,0,67414,61256,66668,83568,90418,88898,10000,10000,17500,7000,25000,33600,0
+1245,350000,female,1,1,52,2,2,7,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,1
+1246,270000,male,2,2,35,0,0,0,-1,-1,-1,225400,220202,215056,10506,10224,9233,9000,9348,10600,10300,9300,1000,0
+1247,200000,female,1,2,29,0,0,-1,0,0,-2,65935,25574,28727,19164,0,0,1011,31209,383,0,0,0,1
+1248,20000,female,1,2,22,0,0,0,0,0,0,15829,15299,16262,16749,13764,18732,1600,1550,1000,1000,5283,0,0
+1249,100000,male,2,2,30,0,0,0,0,0,0,44953,46922,48677,49496,51010,32630,3000,3000,2000,2000,2000,2000,0
+1250,290000,male,1,1,46,0,0,0,0,0,0,194301,199451,198684,87700,88621,53243,10744,6000,1573,1629,3129,105423,0
+1251,70000,male,3,2,28,1,2,0,0,0,0,68970,67308,68582,68361,68060,68223,0,3005,2546,2602,2430,2659,0
+1252,230000,male,1,2,26,-2,-2,-2,-2,-2,-2,416,371,416,416,566,416,371,461,416,566,416,0,0
+1253,180000,female,1,2,28,-1,-1,-1,-1,-1,0,950,4369,9673,2861,12338,9124,4369,9673,3260,13959,3000,18396,0
+1254,210000,male,1,2,33,-1,-1,-1,-1,-1,-1,291,291,291,291,441,291,291,291,291,441,291,291,0
+1255,50000,male,1,2,24,2,2,0,0,0,0,49946,48808,45469,20228,18900,19066,0,2079,693,1080,700,1004,0
+1256,150000,male,1,2,37,0,0,0,0,0,0,45000,44386,46505,49103,51698,52549,3000,2500,3000,3000,1546,2000,0
+1257,380000,male,2,1,50,0,0,0,0,0,0,385662,294826,220022,154283,35270,332270,12020,9009,6109,3000,332000,12000,1
+1258,50000,male,2,1,44,0,0,0,0,0,0,45335,46027,30286,26275,26823,27371,1524,1427,941,972,992,1000,0
+1259,150000,female,3,1,43,-1,-1,2,0,-1,-1,264,948,632,316,316,1414,1000,0,0,316,1414,0,1
+1260,220000,male,2,2,29,0,0,0,0,0,0,122286,122839,123035,114385,115903,118528,5008,5007,6007,5000,4700,5503,0
+1261,80000,female,5,2,27,0,0,0,0,0,0,45268,47140,47411,48443,49478,43264,2600,1800,1700,1700,1700,1300,0
+1262,220000,female,2,1,32,0,0,0,0,0,0,194961,197536,203251,208355,213015,217475,7200,9000,10000,8000,8010,8500,0
+1263,70000,female,2,2,34,1,2,2,2,0,0,24208,25015,27189,26456,28361,31873,1500,2900,0,2500,4000,0,0
+1264,120000,male,2,2,37,-1,2,0,0,0,2,16241,16680,17695,17901,19608,19143,1000,1600,800,2000,0,1600,1
+1265,180000,female,2,2,32,0,0,0,0,0,0,20730,17107,35884,31057,29052,25933,1582,30000,1000,1000,1000,1000,0
+1266,50000,female,3,1,57,0,0,0,0,0,0,49017,50690,47487,48319,48449,49656,2500,2000,2000,1746,2000,1800,0
+1267,10000,female,2,3,46,1,2,0,0,0,0,9532,9236,10047,8775,8984,7628,0,1006,1390,1000,1000,2000,0
+1268,370000,female,1,1,53,-1,-1,-1,-1,-1,0,21160,8153,12094,30751,30131,9630,8162,12294,30751,30131,0,0,0
+1269,20000,female,1,2,26,-1,0,-1,-1,-1,-1,10658,9288,390,390,390,0,1072,390,390,390,0,780,0
+1270,150000,male,2,1,34,0,0,0,0,0,0,132214,135140,135263,137540,144786,146379,4414,4700,4306,10006,4822,4112,0
+1271,20000,male,1,2,26,-1,-1,-1,-1,-1,-1,416,416,416,416,416,982,416,416,416,416,982,0,1
+1272,480000,female,2,1,54,-2,-2,-2,-2,-2,-2,17189,6013,1717,1385,0,0,6026,1717,1390,0,0,2300,0
+1273,50000,male,3,2,26,0,0,0,0,2,0,25060,26649,28202,30727,30098,32580,2000,2000,3000,0,3000,3000,0
+1274,170000,male,2,2,31,0,0,0,0,0,0,24581,25611,26631,27383,27801,31337,1728,1748,1500,1011,4000,0,0
+1275,400000,female,2,2,30,-2,-2,-2,-2,-2,-2,-200,-200,-200,746,3956,2500,0,0,946,3956,2500,0,0
+1276,200000,female,1,2,31,0,0,0,0,0,0,38635,41031,45929,48661,49723,50896,3031,5929,3500,2000,2000,11028,0
+1277,360000,male,1,2,34,1,-2,-2,-2,-2,-1,0,0,0,0,0,150,0,0,0,0,150,59,0
+1278,140000,female,5,2,36,0,0,0,0,0,0,91226,83650,80037,53055,102587,98251,4182,4000,4000,98000,4000,3500,0
+1279,260000,male,3,1,34,-2,-2,-2,-2,-2,-2,12071,12497,1027,-103,-103,1047,2114,1027,103,0,1150,2503,0
+1280,440000,female,2,2,26,0,0,0,0,0,0,96190,90462,78267,71795,51812,25064,3513,3017,2037,2019,3010,3004,0
+1281,500000,male,2,1,43,0,0,0,0,0,0,12200,8140,10176,20719,15665,8074,1518,5019,15027,639,547,50274,0
+1282,230000,female,2,1,29,0,0,0,0,0,0,64982,44908,51535,24607,28279,48934,3000,11000,15000,13000,36000,3000,0
+1283,470000,male,2,1,41,-2,-2,-2,-2,-2,-1,13780,12242,32463,20621,13711,8294,12300,32520,34,68,8334,45684,0
+1284,20000,female,3,1,48,1,2,2,3,2,2,14589,16743,17522,17055,10400,0,2700,1400,0,0,0,0,1
+1285,210000,female,2,2,24,0,0,0,0,0,0,108491,111046,110716,97168,94524,96777,5800,3700,3505,3400,3769,3229,0
+1286,20000,female,1,2,23,0,0,-2,-1,0,0,6733,0,0,19132,19533,20235,0,0,19132,709,1027,600,0
+1287,20000,female,3,1,53,0,0,0,0,0,0,12197,13292,14362,14821,15143,15737,1600,1600,1000,710,1000,1000,0
+1288,200000,female,2,1,34,1,-1,-1,-1,-1,-1,-2,758,998,668,9815,36870,760,1000,670,9852,40063,1049,0
+1289,250000,female,2,2,36,0,-1,-1,0,0,0,6220,27217,6149,26202,6906,3855,27225,6159,25846,0,3855,3876,1
+1290,300000,male,2,2,41,0,0,0,-1,-1,2,34480,31159,18580,1400,6297,977,1472,1000,1410,6297,0,19480,0
+1291,320000,female,1,2,30,0,0,0,0,0,0,113801,90354,88467,79241,83530,90573,5017,4057,4014,8531,15005,5033,0
+1292,50000,male,2,2,29,1,2,2,2,0,0,37170,36297,39863,38924,39744,40533,0,4500,0,1600,1600,1600,0
+1293,200000,female,2,1,34,-2,-2,-2,-1,-1,-1,6626,2469,3760,4273,3015,5076,2476,3771,4285,3023,5088,6282,0
+1294,80000,female,1,2,29,0,0,0,0,0,0,16936,17963,18976,19660,20343,21003,1303,1316,1000,1000,1000,933,1
+1295,70000,male,2,1,37,-1,2,0,0,-1,-1,10323,6659,6740,3559,7086,6979,0,3559,189,7086,3370,0,1
+1296,60000,male,3,2,36,3,2,0,0,0,0,56807,55339,55751,37851,34195,33499,0,2141,2000,2000,2000,2000,0
+1297,10000,female,3,2,22,0,0,2,0,0,0,10012,9784,9473,8947,9135,8613,2452,7,308,320,328,1000,1
+1298,50000,female,3,2,30,0,0,2,0,0,0,50332,51247,50073,26550,25842,25996,4210,0,1500,1090,2000,2000,0
+1299,140000,male,2,2,26,2,0,0,0,0,0,133572,135367,113272,115685,118171,120550,6169,4500,4287,4500,4500,9500,1
+1300,30000,male,2,2,25,0,0,0,0,0,0,7160,8185,9286,9483,9780,10068,1300,1400,500,600,600,600,0
+1301,190000,male,2,1,49,-1,-1,-1,-1,-1,0,435,435,635,2084,161110,149941,435,635,2084,161110,5800,4138,0
+1302,70000,female,1,2,23,-1,-1,-1,-1,-1,-1,853,3128,4719,100,1610,690,3128,4722,0,1610,0,10909,0
+1303,330000,female,2,1,28,-1,-1,-1,-1,-1,-1,390,0,780,150,320,780,0,780,150,320,1000,0,0
+1304,110000,female,2,2,24,0,0,0,2,0,0,6470,8610,15123,9761,9717,8046,2654,7230,0,463,393,151,0
+1305,270000,male,3,1,47,0,0,0,0,0,0,165303,168837,172281,175705,179582,184650,6200,6254,6290,6710,8250,0,0
+1306,160000,male,2,1,31,3,2,0,0,0,0,26295,27074,28314,29341,31690,33993,1500,2000,1500,3000,3000,1500,1
+1307,20000,male,2,2,24,3,2,0,0,-1,-1,18937,18350,18918,19323,13180,5200,0,1251,656,13180,5200,0,0
+1308,320000,male,2,2,32,0,0,0,0,0,0,21460,23412,25331,25741,26800,28817,3000,3000,1500,2000,3000,2000,0
+1309,430000,male,1,2,31,0,0,0,0,0,0,29860,39305,43020,45540,8342,8310,10000,5000,5540,8310,5640,2820,0
+1310,50000,female,1,1,37,2,0,0,0,-1,2,8014,7668,7081,5738,6461,4822,1200,1000,91,11283,0,1000,0
+1311,140000,male,2,1,48,-1,-1,2,0,0,-2,1600,5012,4739,4739,0,0,5012,0,0,0,0,2770,1
+1312,500000,male,2,1,49,-2,-2,-2,-2,-2,-2,4214,6378,4074,116446,9335,3312,6378,4074,116446,9335,3312,43664,0
+1313,80000,male,3,1,45,0,0,0,0,0,0,26637,26437,26686,28372,28345,27279,1490,2000,2000,3000,5000,865,0
+1314,390000,female,1,1,34,1,-2,-1,-1,-2,-2,0,0,1266,0,0,0,0,1266,0,0,0,0,0
+1315,250000,female,1,1,43,-1,-1,-1,0,0,-1,17454,-50,45297,17371,11481,5922,24890,48394,0,5461,15000,6000,0
+1316,390000,female,1,2,31,-2,-2,-2,-2,-2,-2,6466,6266,12578,7650,48090,17013,6266,12581,7650,48090,28973,17271,0
+1317,100000,female,1,1,35,0,0,0,0,0,0,57612,58818,60841,61434,62743,66677,2134,3000,2200,2300,5000,3000,0
+1318,360000,female,1,1,42,0,0,0,0,0,0,179851,186961,201703,189455,194373,207022,10005,20117,15018,10027,20057,17000,0
+1319,140000,male,1,2,36,1,-1,-1,0,0,-1,-5,1135,17227,12918,10898,823,1140,17227,0,365,840,4507,0
+1320,110000,male,2,1,51,0,0,0,0,0,0,45964,46922,48140,49339,50542,52689,2000,2000,2000,2000,3000,2000,0
+1321,170000,male,3,1,48,2,-1,-1,0,-1,-1,316,316,632,316,466,316,316,632,0,466,316,0,0
+1322,170000,male,2,1,48,0,0,0,0,0,0,137823,137199,136331,123913,122657,122225,5396,5000,5000,5000,5000,4000,0
+1323,180000,female,2,2,25,0,0,0,0,2,2,4745,5765,6631,8386,8109,8820,1257,1123,1878,0,1000,0,0
+1324,140000,male,2,1,41,0,0,0,0,0,0,109326,111679,113921,114348,111382,112458,5600,5600,4500,4200,4500,4500,0
+1325,20000,female,2,1,49,0,0,-1,-1,0,0,13882,13342,808,18910,19306,19809,2018,404,19000,677,800,601,0
+1326,150000,male,1,2,28,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+1327,50000,female,2,2,28,0,0,0,0,0,0,48072,49518,49500,19600,20000,0,2518,1500,500,400,0,0,0
+1328,160000,female,2,1,38,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+1329,80000,male,2,1,41,-2,-2,-2,-2,-2,-1,3153,1013,0,0,2115,4264,1013,0,0,2115,4264,0,0
+1330,300000,female,3,2,29,-2,-2,-2,-2,-2,-2,-140,28092,3572,195,209,990,28232,3589,195,210,994,0,1
+1331,60000,female,3,2,32,0,0,0,0,0,0,62552,26929,27967,28526,28275,29151,1500,1500,1003,1500,1500,1044,0
+1332,70000,female,2,2,26,2,2,2,3,2,2,42583,43600,47550,46487,47298,46384,2000,5000,0,1700,0,3700,1
+1333,290000,female,1,2,31,-1,-1,-1,-1,-1,0,632,0,480,-150,66675,68071,0,480,4,69001,2500,3000,0
+1334,80000,female,1,2,23,0,0,0,-2,-2,-2,8766,4777,0,0,0,0,1600,0,0,0,0,0,0
+1335,50000,female,3,1,53,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+1336,200000,female,3,2,49,-1,-1,0,0,0,-1,7697,18951,27974,30596,38109,22170,20071,20036,15022,15113,22235,3919,0
+1337,200000,female,1,1,34,-2,-2,-2,-2,-2,-2,267,6794,10430,3576,2522,934,6817,10671,3576,2522,934,7764,0
+1338,50000,female,1,2,22,-1,-1,-1,-1,-1,-1,586,297,3674,1392,3085,3450,297,3675,1392,3086,3492,3721,1
+1339,20000,female,2,2,26,2,-1,0,0,0,0,1041,10757,11094,9351,8562,8058,10758,2679,502,224,513,9,0
+1340,200000,male,1,1,38,-1,-1,-1,-1,-1,-1,6186,735,1463,15550,5045,6709,735,1463,15550,5045,6709,3021,1
+1341,120000,female,1,2,35,1,2,0,0,0,0,77785,75984,78109,79198,80865,82859,0,4000,2988,3100,3500,6382,0
+1342,220000,female,2,1,49,0,0,0,0,0,0,172184,170697,168041,163783,160806,158866,7583,7461,5809,5608,6500,6100,0
+1343,630000,male,1,2,40,0,0,0,0,0,0,440474,444370,455286,327021,334558,341439,18000,20000,12000,13000,13022,13016,0
+1344,300000,female,1,2,34,-1,-1,-1,-1,-1,-1,19357,5000,3744,8059,3425,11860,5032,3744,8059,3425,11860,7595,0
+1345,10000,female,2,2,49,1,2,0,0,0,0,8184,5011,5728,4255,2782,1309,0,1000,0,0,0,0,1
+1346,50000,male,2,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+1347,280000,female,1,1,39,-1,0,-1,-1,-1,-1,7791,5851,430,2041,775,580,1000,430,2041,775,580,1029,1
+1348,130000,male,1,2,30,0,0,0,0,0,0,4536,5616,6455,6791,6991,0,1161,1000,336,200,0,0,0
+1349,30000,female,3,1,28,0,0,0,2,0,0,23182,19083,19632,15252,14021,13793,2000,2000,0,1500,1353,0,0
+1350,50000,female,2,1,27,0,0,0,0,0,0,9877,10800,5921,6042,4012,0,1140,1000,121,0,0,10620,0
+1351,70000,female,3,1,38,0,0,0,0,0,0,24758,25581,16105,17571,18330,16268,1273,1534,2000,1000,1000,1000,0
+1352,80000,male,2,2,29,0,0,0,0,0,0,41815,42938,44022,44792,45915,46998,2100,2100,1800,2000,2000,2500,0
+1353,20000,female,2,1,22,2,2,2,0,0,0,16726,19143,18391,18562,11798,0,3000,0,371,1236,0,0,1
+1354,390000,male,1,1,41,0,0,0,0,0,0,495559,248821,216051,208373,199727,186332,10218,8035,7035,6056,8053,5603,0
+1355,470000,female,2,2,32,0,0,0,0,0,0,147113,133486,125159,120869,60507,53100,5000,4500,2505,50000,3000,3000,0
+1356,240000,female,2,2,30,0,-1,-1,-2,-2,-2,7818,9363,0,0,0,0,9434,0,0,0,0,178,0
+1357,140000,female,1,2,29,-1,-1,-1,-2,-2,-2,14943,2888,0,0,0,0,2888,0,0,0,0,0,0
+1358,260000,female,2,1,37,2,2,2,0,0,0,244738,251351,244949,248273,119124,132619,12000,0,11000,4321,20000,27,1
+1359,150000,female,1,2,25,1,-2,-1,-1,-1,-1,191,1963,4729,1568,4295,0,1964,4729,1568,4295,0,1895,0
+1360,120000,male,1,1,46,0,0,2,2,2,2,14682,17325,17936,18536,19091,19629,3200,1200,1200,1000,1000,0,0
+1361,20000,female,2,1,47,0,0,0,0,0,2,18021,17352,17667,18187,20499,20718,1280,1293,813,2770,703,0,0
+1362,260000,female,4,2,42,-1,-1,-1,-1,-1,-1,399,2101,577,0,200,0,2101,577,0,200,0,664,0
+1363,50000,male,3,2,22,0,0,0,0,0,0,42678,38239,22691,8807,7143,6967,1500,1100,1000,500,500,1000,1
+1364,180000,female,2,2,27,2,2,2,2,0,0,126195,127881,128491,124080,126154,130064,6000,4575,0,4600,6000,3100,0
+1365,310000,female,5,1,35,1,-2,-2,-2,-2,-2,10350,0,0,0,0,0,0,0,0,0,0,0,0
+1366,360000,male,2,1,44,-1,-1,-1,-1,-1,-1,5101,9358,15452,9990,6515,5694,9419,15485,9995,6515,5694,12785,0
+1367,180000,female,2,2,30,0,0,0,0,0,0,14445,15404,19885,22355,22902,15373,1500,4911,10355,10902,3500,5493,0
+1368,270000,female,1,1,42,2,2,5,5,4,3,1250,1250,1250,1250,650,350,0,0,0,0,0,0,0
+1369,70000,male,1,2,28,0,0,0,0,0,0,67857,69711,64947,26022,28575,21460,3000,1500,13959,3000,1500,4000,0
+1370,50000,male,2,2,24,-1,-1,-1,-1,0,-1,2155,0,1978,14207,8602,7201,0,30300,14207,602,7201,383,0
+1371,30000,female,3,2,50,-2,-2,-2,-2,-1,2,0,0,0,0,7092,6832,0,0,0,7092,0,0,0
+1372,50000,female,2,1,54,0,0,0,0,0,-1,11351,11449,6515,2315,1817,2081,1150,1012,46,36,2081,2270,0
+1373,350000,male,2,1,37,-1,-1,-1,-1,-1,-1,325,294,6574,3543,1654,6186,294,6636,3559,1659,6215,325,0
+1374,200000,male,1,1,58,0,0,0,0,0,0,192461,195970,122214,124647,126921,129167,7822,4417,4446,4597,4677,4698,0
+1375,80000,male,3,2,26,1,2,2,2,2,2,71661,69947,74755,75732,74397,80138,0,6000,2800,0,7000,8,0
+1376,60000,female,2,1,31,0,0,0,3,2,2,47000,49236,57752,56243,55213,58700,3000,10000,0,0,4400,2200,0
+1377,30000,male,1,1,52,0,0,0,2,0,0,15743,16784,18998,18395,19100,20582,1300,2500,0,1000,1800,0,0
+1378,110000,female,1,2,36,0,0,0,0,0,0,108316,100784,88568,43720,42138,43085,4600,3500,2000,2000,1800,1700,0
+1379,300000,female,1,2,27,-1,-1,-1,0,0,0,42189,83754,120927,105303,82475,33262,83754,120927,0,716,25213,92250,0
+1380,50000,female,3,1,22,0,0,0,0,-1,0,22854,31329,23927,0,83,20083,9000,1507,0,83,20000,600,0
+1381,500000,male,1,2,39,-1,-1,-1,-1,0,-1,2450,11833,22963,7086,5453,1486,11833,22963,7086,0,1486,7570,0
+1382,360000,male,1,2,36,-1,-1,-1,0,0,0,356913,208305,68214,168014,16209,18918,210000,170000,100000,3000,3000,5000,0
+1383,20000,female,2,1,39,1,2,2,0,-1,-1,14112,11221,10656,7928,580,0,3520,0,1000,580,0,0,0
+1384,220000,male,1,1,39,0,0,0,0,0,0,75190,151004,152786,137946,118310,119147,100000,8000,6000,5000,5000,5000,0
+1385,20000,female,2,2,22,0,0,2,0,0,2,11192,15677,15133,15582,16677,16259,5000,0,1000,1500,0,700,0
+1386,60000,male,2,1,37,3,4,3,2,2,2,30381,29986,29210,29729,30505,32232,366,0,1300,1400,2400,2300,1
+1387,170000,female,1,2,30,-1,0,-1,-1,0,-1,1560,1280,590,1168,2160,145564,1000,590,1168,1582,145564,5069,0
+1388,200000,female,2,1,26,0,0,0,0,0,0,47236,45200,35939,34096,34876,34615,1800,1603,2000,2500,1500,1500,0
+1389,20000,female,1,2,23,0,0,0,0,0,0,19990,20038,19571,14362,15127,15872,1438,1300,1000,1000,1000,2000,0
+1390,140000,female,3,2,23,-2,-2,-2,-2,-2,-2,67505,36772,38399,39131,39508,3441,2000,2400,2132,1617,515,2031,0
+1391,330000,female,1,2,35,-2,-2,-2,-2,-2,-2,1663,0,0,0,29221,3194,0,0,0,29221,3194,0,0
+1392,180000,female,2,2,24,1,2,2,2,2,2,108580,105403,112073,111345,98404,102460,0,8564,4000,0,7414,0,1
+1393,360000,female,2,1,35,0,0,0,-1,-1,0,5157,2461,0,277,2599,3941,1012,0,277,2602,2019,1123,0
+1394,20000,male,3,1,51,2,0,0,0,0,0,14815,15837,16852,17188,17546,17895,1264,1279,615,635,639,664,0
+1395,50000,female,1,2,23,0,0,0,0,0,2,34422,32703,22851,6699,10060,7737,1544,1000,0,3361,0,100,0
+1396,100000,female,2,1,25,0,0,0,0,0,0,20755,20043,19778,24939,28639,8370,2000,2000,6000,4000,4000,3000,0
+1397,30000,male,2,1,36,2,2,0,0,0,0,30573,28473,29083,28313,28932,29565,0,2000,940,1000,1106,0,0
+1398,70000,female,2,1,44,0,0,0,0,0,0,4221,6642,8361,10208,11038,11848,2500,2000,2000,1000,1000,1000,1
+1399,470000,male,1,2,33,-1,-1,-1,0,0,-1,5613,11576,7017,1185,0,542,11606,7017,24,0,542,208896,0
+1400,300000,female,1,1,36,-1,-1,-2,-2,-2,-2,8385,-27,-27,-27,-27,-27,27,0,0,0,0,0,0
+1401,300000,female,1,1,45,-1,-1,-1,0,0,-1,6608,10009,22456,22056,14020,1230,10017,22456,0,0,1230,0,1
+1402,200000,female,1,2,26,-2,-2,-2,-2,-2,-2,2179,6440,3908,-5,1060,2996,6440,3908,5,1065,3000,1108,0
+1403,150000,female,2,1,41,0,0,0,0,0,0,79021,77975,74749,80757,83685,81569,4023,3016,10000,4011,3073,3005,0
+1404,220000,female,2,2,25,0,0,0,0,0,0,165040,167485,148133,123266,125736,128342,6809,7038,5000,4500,5000,4473,1
+1405,420000,male,1,2,31,-2,-2,-2,-2,-2,-2,1569,563,1914,1189,1208,4964,565,1923,1194,1214,4988,296,0
+1406,210000,female,2,2,45,-2,-2,-2,-2,-2,-2,467,2050,416,416,416,416,2050,416,416,416,416,416,0
+1407,450000,male,3,1,58,-1,-1,-1,-1,-1,-1,8940,6239,5535,9856,819,863,6271,5740,9905,823,867,2488,0
+1408,30000,male,2,1,38,-1,-1,-1,-1,-1,-1,184,1522,0,5480,175,-2000,1522,0,5480,175,0,2000,0
+1409,240000,male,2,1,30,-1,-1,-1,-1,-1,-1,2816,7608,26832,3518,1280,5900,7608,26834,3518,1280,5900,1319,0
+1410,420000,female,2,2,25,-1,0,0,0,0,0,28206,122212,117835,112705,111357,108306,100000,4013,3822,4086,3800,3600,0
+1411,60000,female,1,2,25,0,0,0,0,0,0,57174,58559,60586,39144,39615,39334,3000,3800,3300,1900,1600,1500,0
+1412,30000,female,3,2,24,-1,-1,-1,-1,-1,-1,4882,14630,6323,2870,1485,3926,14630,6485,2870,1485,3926,0,0
+1413,80000,female,1,2,29,-2,-2,-1,2,2,3,2673,0,317,317,1521,1204,0,317,0,1204,0,0,0
+1414,50000,male,2,2,37,0,0,0,0,0,0,48206,48659,47248,48241,49196,50296,2120,1750,1700,1800,2023,2113,0
+1415,230000,male,3,2,27,-2,-2,-2,-2,-2,-2,19200,10000,20176,10000,10000,10000,10000,20176,200,10000,10000,10000,0
+1416,200000,male,1,2,31,0,0,0,0,0,0,6618,6777,7957,4667,76187,74900,1900,3008,3500,73000,2700,3800,0
+1417,230000,female,2,2,28,0,0,0,0,0,0,12218,17667,20345,39945,41352,11032,6000,3500,20000,2000,1500,8000,0
+1418,130000,female,2,2,24,0,0,0,0,0,0,122750,118319,61466,48288,48898,49699,4966,2034,1710,1765,2000,2672,0
+1419,200000,female,3,2,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+1420,90000,female,1,2,33,0,0,0,0,0,0,80919,87993,17316,18026,18559,19097,9000,1500,1000,824,1000,857,0
+1421,120000,male,1,2,27,-1,-1,-1,-1,0,0,316,316,1360,9474,10158,2551,316,1360,10000,1000,2000,3000,0
+1422,200000,male,1,2,42,-2,-2,-2,-2,-2,-2,470,740,3774,836,1325,1440,740,3782,836,1325,1440,506,0
+1423,20000,female,2,2,32,2,3,2,2,2,0,17757,17193,16602,19521,18925,18806,0,0,3200,0,900,633,0
+1424,210000,female,1,1,37,2,2,2,2,2,2,76089,77985,79104,80399,81462,83366,3700,3000,3200,2500,3400,4300,1
+1425,80000,female,2,2,44,0,0,0,0,0,0,80610,81008,80725,50472,50340,42393,6502,4000,1889,2000,7700,9600,0
+1426,50000,female,1,1,29,0,0,0,0,0,0,50486,50035,49388,10275,9598,8382,2200,1192,1000,2000,1000,1500,0
+1427,70000,female,2,1,42,2,2,2,2,2,2,50886,51975,52527,53560,54653,55797,2200,2000,2500,2100,2200,2100,1
+1428,230000,male,2,2,32,2,2,2,2,2,2,189567,189023,187521,182671,174794,182160,9000,6300,6200,500,12500,0,1
+1429,20000,male,2,2,52,0,0,0,0,0,0,17420,19130,20340,19940,19940,0,2000,2000,0,0,0,0,0
+1430,30000,male,2,2,44,-1,0,-1,0,-1,-1,21043,21183,1754,666,1339,1748,1196,1757,2,1443,1949,0,0
+1431,100000,male,1,2,31,2,2,2,2,2,2,33752,32928,35572,34700,36942,36196,0,3200,0,2800,0,1511,1
+1432,80000,female,1,2,29,0,0,0,2,0,0,81337,80290,82215,80422,78284,77270,2842,20412,0,3000,3000,3000,1
+1433,210000,male,2,2,33,0,0,0,0,0,0,187610,191592,195739,198081,202410,206582,8500,9000,7100,7510,7700,9051,0
+1434,50000,male,2,2,54,1,2,0,0,0,0,48153,46885,27168,27585,27910,27380,0,1400,1200,1500,1000,1500,0
+1435,130000,female,2,2,23,0,0,0,0,0,0,133622,129784,126021,70186,71762,73192,4752,5010,2505,2700,2623,2800,0
+1436,70000,female,1,2,24,0,0,2,2,2,2,48432,52650,53099,51648,55409,54366,5000,1900,0,4600,0,2300,0
+1437,210000,female,1,1,33,0,0,0,0,0,0,17420,16182,14109,10955,11217,11367,1236,1613,1000,552,607,1500,0
+1438,100000,male,3,1,44,-1,-1,-1,-1,-1,-1,780,0,390,390,390,390,0,390,390,390,390,390,1
+1439,40000,male,1,2,24,1,2,0,0,0,3,28926,28182,28912,29495,33011,32194,0,1500,1064,4000,0,0,1
+1440,80000,female,2,2,25,2,3,2,2,2,2,69602,67930,72205,73116,74801,73444,0,6000,2700,3000,0,5300,0
+1441,210000,female,1,1,37,1,-1,-1,-1,-1,-1,0,732,873,148,129,292,732,873,148,129,292,0,1
+1442,20000,female,2,2,23,-1,-1,-1,2,-1,-1,7186,3478,137,1714,17694,12237,8060,137,5199,17694,575,0,0
+1443,10000,male,3,2,34,0,0,0,0,0,0,8813,8464,9474,9716,9960,10188,2148,1158,400,400,400,300,0
+1444,60000,female,3,1,50,0,0,0,0,0,0,61600,61952,60661,29095,17636,31406,3300,2000,900,889,21500,3600,1
+1445,40000,female,2,1,25,0,0,0,0,0,0,11273,12307,13348,13530,13811,14132,1520,1550,700,648,700,700,0
+1446,290000,female,1,2,33,-1,-1,-1,-1,-1,-1,413,486,820,60,1773,3904,486,820,60,1773,3904,0,1
+1447,50000,male,2,1,54,-2,-2,-2,-2,-2,-2,1583,2134,0,2025,0,1924,2134,0,2025,0,1924,0,0
+1448,20000,male,2,2,25,0,0,0,0,2,2,17384,13648,13924,15685,15292,17524,1500,1400,2000,0,2500,0,0
+1449,30000,male,2,2,26,0,0,0,0,0,0,33195,32705,32406,32167,31728,31061,1600,1500,1500,1300,1261,1003,0
+1450,20000,male,2,1,32,0,0,0,0,0,2,17104,18134,19123,19351,20411,19947,1613,1602,830,1512,0,545,0
+1451,50000,female,3,3,43,0,0,0,0,0,0,24443,24391,23595,22590,21788,21949,1800,1400,800,1000,900,900,0
+1452,500000,male,2,1,42,1,-1,2,2,0,0,-984,3516,1924,1924,8924,6729,4500,0,0,7000,36,532,1
+1453,90000,female,3,2,24,-1,-1,-1,-1,-1,-2,595,207,18189,557,0,0,207,18281,557,0,0,0,1
+1454,10000,male,2,2,26,0,0,0,0,0,0,15147,6641,15318,8610,8790,8963,2234,1135,1086,319,319,180,0
+1455,50000,female,2,1,37,2,2,3,3,3,3,1050,1050,1050,1050,1050,1050,0,0,0,0,0,0,1
+1456,120000,male,1,2,36,0,0,2,0,0,2,24466,28255,27507,27952,31136,30486,4500,0,1200,3800,0,1500,0
+1457,200000,female,1,2,27,0,0,0,0,0,0,157607,155693,155290,147604,146719,143317,7194,6760,5018,5370,5294,5300,0
+1458,300000,female,2,1,50,-1,-1,-1,0,0,0,8924,3131,117497,110680,104016,109839,3131,121715,4000,5000,9000,5000,0
+1459,90000,female,2,2,24,-1,0,0,0,0,0,17524,22184,23270,27372,31905,34954,5000,5000,5000,5000,3600,2000,0
+1460,90000,male,2,1,27,0,0,0,0,0,0,70482,70591,64926,59949,54029,48170,2580,2337,1634,1606,1371,620,0
+1461,140000,female,1,2,23,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+1462,180000,female,2,1,39,-1,-1,-1,-1,0,-1,1081,148,148,296,148,148,148,148,296,0,148,1495,0
+1463,360000,male,1,1,39,-1,-1,-1,-2,-2,-2,1761,2560,0,0,0,0,2816,0,0,0,0,2456,0
+1464,160000,female,3,2,29,1,-2,-2,-2,-2,-2,0,0,4150,2065,0,500,0,4150,2065,0,500,0,1
+1465,100000,male,1,1,45,0,0,0,0,0,0,10529,12723,15807,18901,21794,25051,2688,3688,3288,3288,3688,0,0
+1466,20000,male,2,2,21,0,0,2,0,0,-2,19277,20997,20200,20000,0,0,5000,0,0,0,0,0,1
+1467,360000,male,1,1,36,0,0,-1,0,0,0,40434,13352,129978,150637,138969,132118,2000,129990,30000,25000,5000,3000,0
+1468,230000,male,2,2,39,-1,-1,-1,-1,-1,-1,326,326,326,326,326,326,652,326,326,326,326,326,0
+1469,110000,female,3,2,29,0,0,0,0,0,0,101006,104474,106332,106906,108952,110444,5300,5300,4000,4100,4631,4404,1
+1470,210000,male,2,2,37,0,0,0,0,0,0,142149,139025,50283,159231,155342,156769,6534,3069,110017,5496,6307,5376,0
+1471,200000,male,2,2,26,-1,-1,0,0,0,0,1747,11817,14225,16017,12613,6600,12957,3884,5010,700,360,1713,0
+1472,50000,male,2,2,44,0,0,0,0,0,0,27560,19002,8542,8711,8893,9070,1159,1142,311,322,324,335,0
+1473,210000,female,1,2,30,1,-2,-2,-2,-1,-1,0,0,0,0,49525,0,0,0,0,49525,0,0,1
+1474,280000,male,1,2,31,1,-2,-1,0,-1,-1,-32,-32,4887,2067,6624,1489,0,4919,10,6657,1496,2244,0
+1475,500000,male,2,1,40,0,0,0,-1,-1,0,94585,61111,24801,6288,166251,162785,2659,2090,6333,178460,5506,6205,0
+1476,30000,female,1,2,25,0,0,0,0,0,-2,3924,4972,5873,5993,0,0,1099,1000,120,0,0,0,0
+1477,340000,female,2,1,36,0,0,0,0,0,0,167474,155293,134467,129891,113919,106675,7106,4435,4091,3548,4535,4127,0
+1478,360000,male,1,2,32,-1,-1,-1,-1,-1,-1,389,389,1955,5316,2265,6594,389,1955,5316,2265,6594,2974,0
+1479,70000,female,1,2,22,0,0,0,0,0,0,71358,70285,28867,29766,26522,27584,3280,1480,1360,960,1500,1000,0
+1480,20000,female,2,3,44,2,2,7,7,7,6,2400,2400,2400,2400,2400,1800,0,0,0,0,0,0,1
+1481,230000,male,1,2,32,0,0,0,0,0,0,44734,47178,29582,38426,42500,43531,10120,20000,10000,5000,5000,5000,0
+1482,60000,male,2,1,41,0,0,0,0,0,-1,48979,41597,29347,19544,11989,9079,5070,1219,1007,8,9381,1156,0
+1483,50000,male,1,2,28,3,2,2,0,0,0,49828,50467,48964,49447,44067,44760,2121,0,2000,2000,2000,2000,1
+1484,50000,female,1,2,29,0,0,2,2,2,2,10532,13145,12637,13922,13556,14528,2800,0,1500,0,1200,0,1
+1485,130000,female,4,2,28,0,0,0,0,0,0,36108,34256,36357,37878,39489,41833,3000,3000,2500,3000,3000,2000,0
+1486,160000,male,3,2,52,0,0,0,0,0,0,155684,157364,156581,72814,66825,63419,6525,6649,2724,2503,2310,2200,0
+1487,60000,female,3,2,48,2,0,0,0,0,0,43533,39252,38051,37988,38725,39685,1700,1700,2000,1500,1600,1000,0
+1488,160000,male,2,2,43,-1,-1,0,0,0,-1,12458,7146,11529,20860,0,780,7545,5000,10000,0,780,0,0
+1489,180000,female,1,2,25,0,-1,-1,0,-1,0,23800,1246,3430,8430,92925,88283,1246,3430,5000,92925,5000,5000,0
+1490,170000,male,2,1,36,2,2,2,0,0,0,75960,64683,51184,37938,25292,12646,2000,0,0,0,0,173869,0
+1491,360000,female,2,2,35,2,2,2,0,0,0,360023,363239,350214,319960,260944,202686,14693,30,12302,10004,7506,19721,1
+1492,130000,female,2,1,34,0,0,0,2,0,0,59955,61252,65399,63800,65312,37838,2260,5203,0,2670,1342,1815,0
+1493,180000,female,2,2,48,1,-1,-1,-1,-1,-1,2551,3044,3044,5283,1660,6671,3044,3044,5283,1660,6671,493,0
+1494,20000,male,1,2,27,1,2,-1,-1,0,0,6274,5971,3980,9040,9040,0,0,4000,9040,0,0,17291,0
+1495,230000,female,2,1,43,0,0,0,0,0,0,7806,8392,8967,8729,10816,15893,1295,1300,468,2816,5893,5977,0
+1496,220000,female,2,1,30,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+1497,240000,male,2,1,43,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+1498,50000,male,3,1,54,0,0,0,-1,-1,0,50356,48981,47942,1261,17147,16609,2000,1120,1300,17147,1000,1000,0
+1499,310000,female,2,1,39,0,0,0,0,0,0,7246,6713,9507,8894,7418,12154,1155,4507,1000,283,7482,2473,0
+1500,350000,male,1,1,70,0,0,0,0,0,0,100895,70244,64839,57583,45554,37063,3371,2089,3008,1300,1500,1372,0
+1501,50000,female,1,2,24,-1,-1,-1,-1,-1,-1,629,351,784,696,800,341,351,789,699,910,341,210,0
+1502,200000,female,2,1,30,1,-2,-1,0,0,0,26223,-137,73284,65428,65820,2859,0,73421,1309,392,2859,1250,0
+1503,480000,male,3,2,53,0,0,0,0,0,0,482250,475931,429037,383821,369920,699944,18093,15233,12597,15098,14155,20306,0
+1504,180000,female,1,1,27,2,2,2,2,2,0,81044,78403,58083,58244,56041,50816,2600,0,4700,0,2500,1092,1
+1505,200000,female,2,2,33,0,0,0,0,0,0,184676,178491,169860,165713,168199,160769,7900,6112,6000,6000,5838,5900,0
+1506,20000,male,3,1,34,2,0,0,0,0,0,15736,16762,17774,18125,18507,19063,1284,1296,647,672,864,1506,0
+1507,50000,male,2,2,48,0,0,0,-1,0,0,51631,45223,45461,18354,19118,19404,1800,1005,19763,1000,1000,1000,0
+1508,210000,female,3,2,33,1,-2,-1,-1,-1,-1,0,0,3104,4056,565,960,0,3104,4056,565,960,1958,1
+1509,20000,female,2,2,24,0,0,0,0,0,0,19433,20508,19662,20001,16448,16774,1700,1300,600,600,600,622,0
+1510,150000,female,2,1,31,1,-2,-1,-1,-1,-2,6526,779,8927,8660,692,0,783,9098,8660,698,0,0,0
+1511,50000,female,2,2,25,0,0,0,-1,-1,2,46528,47456,36251,438,43367,44305,1794,1021,438,43367,1800,0,0
+1512,190000,male,3,1,49,2,2,2,2,2,2,178367,179062,177663,180312,185910,191895,5000,3000,7100,8700,9300,9500,1
+1513,290000,female,1,2,27,2,0,0,0,2,2,232523,243753,253145,267412,273095,278260,16500,15000,20000,10000,9701,0,0
+1514,420000,male,2,1,39,0,0,0,0,0,0,171141,118103,119543,122851,126007,129144,5700,4600,5000,5000,5000,4700,0
+1515,340000,female,2,2,36,2,0,0,0,0,0,337981,344920,18921,21205,19810,13586,17181,2000,10000,5000,3000,1000,0
+1516,60000,male,2,2,40,3,3,5,4,3,2,9744,10940,10630,10320,9865,10055,1500,0,0,0,500,0,0
+1517,90000,female,1,2,27,0,0,0,0,0,0,81111,83081,60210,61221,62636,54261,3500,3000,2600,2600,3000,1500,0
+1518,30000,female,1,2,27,2,2,2,2,2,2,28207,29261,28497,29862,43148,30603,1800,0,2150,900,3776,0,1
+1519,160000,female,2,1,37,-1,-1,-2,-1,-1,-2,1988,0,0,1188,0,0,0,0,1188,0,0,1935,0
+1520,20000,male,2,2,35,-1,2,2,2,2,2,11916,11434,13433,13398,13040,14518,0,2200,480,0,1702,200,0
+1521,90000,female,2,1,25,0,0,0,0,0,0,87525,89052,85807,68186,69011,70341,4200,3000,3000,3000,2600,3000,1
+1522,120000,male,1,2,27,0,0,0,0,0,0,20874,21930,22165,20502,19030,15119,1700,1500,700,1000,1000,1000,0
+1523,120000,male,1,2,38,1,-2,-2,-2,-2,-2,-284,-610,-936,-1262,-1588,-1914,0,0,0,0,0,0,0
+1524,360000,female,2,1,50,-1,-1,-1,-1,-1,-1,147,686,6037,1560,0,275,686,6041,1560,0,275,0,0
+1525,160000,female,1,2,32,-2,-2,-2,-2,-2,-2,16922,2552,0,0,0,0,2555,0,0,0,0,0,0
+1526,320000,female,1,1,34,-2,-1,0,-1,-1,-1,65083,23750,22381,14685,7511,6722,23750,10162,14702,7511,6722,10000,0
+1527,20000,male,2,2,25,0,0,2,2,4,3,16508,19638,19030,22033,21109,20474,3400,0,3633,0,0,0,0
+1528,230000,female,1,2,29,0,0,0,0,0,0,63184,64667,65888,66645,67865,69231,3100,3000,2300,2300,2500,2300,0
+1529,50000,male,3,1,44,0,0,0,0,0,0,15931,17363,18735,19188,17578,16855,2000,2000,1006,1003,1000,1000,0
+1530,50000,male,3,1,48,-1,-1,0,0,0,0,2722,33868,26646,26832,27395,27940,33895,1439,959,994,1000,1013,0
+1531,40000,female,3,2,24,-1,2,-1,-1,0,0,5496,698,400,25289,24435,2201,0,400,25289,0,0,1329,0
+1532,120000,female,3,1,27,2,-1,-1,-1,2,-1,390,390,390,780,240,630,390,390,780,0,930,300,0
+1533,130000,female,2,2,25,-1,-1,-1,-1,-1,-1,1031,1583,776,776,776,776,1583,1000,776,776,776,12184,1
+1534,110000,female,3,2,28,0,0,2,2,0,0,85918,87442,82975,80446,80006,80421,4000,6000,12,3100,3200,3000,0
+1535,20000,male,2,2,22,1,2,0,0,0,0,8222,7948,8958,9456,10150,10727,0,1300,800,1000,900,2130,1
+1536,50000,male,3,2,22,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+1537,120000,female,3,1,30,0,0,0,0,0,0,115583,114915,117220,119599,120888,117881,4178,4223,4296,4800,4423,4080,0
+1538,50000,male,3,2,34,0,0,0,-2,-2,-2,50375,51400,0,0,0,0,2400,0,0,0,0,0,0
+1539,360000,female,2,2,34,1,-2,-2,-1,-1,-2,0,0,0,700,0,0,0,0,700,0,0,0,1
+1540,240000,female,2,1,44,-1,-1,-1,-1,-1,-1,3313,7458,2329,4267,2404,4243,7458,2335,4267,2404,4243,2952,1
+1541,150000,male,1,2,32,0,-1,-1,-1,-1,-2,46272,1079,0,41147,-3,-3,1082,0,41147,0,0,0,0
+1542,50000,female,2,2,23,0,0,0,0,2,0,30501,33113,33967,28115,27529,29896,3113,1421,4295,0,3000,896,0
+1543,500000,female,1,2,42,-1,-1,-1,2,-1,-1,30439,1844,844,614,2887,3850,1844,1000,0,3000,4000,6000,1
+1544,110000,female,2,1,33,0,0,0,0,0,0,115895,115609,113984,112510,112319,110730,6000,5500,4000,4000,4100,4000,0
+1545,170000,male,2,1,48,0,0,0,0,0,0,93420,96284,97322,99419,101590,111679,4371,3533,3716,3934,12030,0,1
+1546,230000,female,2,1,29,0,0,0,0,0,0,30818,31209,32211,31647,34304,36849,2000,2000,1113,5000,5000,2000,0
+1547,20000,female,3,3,47,0,0,0,0,0,0,9417,10436,11450,12257,12685,13306,1179,1193,1000,625,1000,405,0
+1548,100000,female,1,1,41,1,-2,-2,-2,-2,-1,0,0,0,0,0,18149,0,0,0,0,18149,0,0
+1549,110000,male,1,2,28,1,2,0,0,0,0,44278,41812,43095,46292,44744,36243,0,2000,5000,1514,1197,982,0
+1550,340000,male,1,1,52,-2,-2,-2,-2,-2,-2,30832,33652,35192,30000,10766,33887,33670,35212,30000,10766,33905,30200,1
+1551,50000,male,1,2,37,0,0,0,0,0,0,37774,38492,36453,29700,30167,29613,1976,1564,1170,1055,1052,1022,0
+1552,310000,male,1,1,50,-1,-1,-1,-1,-1,-1,316,316,10131,2456,316,316,316,10131,2456,316,316,316,0
+1553,50000,female,3,1,31,1,2,2,2,2,2,38102,40025,40071,40906,42100,41269,2830,1000,1800,2000,0,1704,1
+1554,240000,female,3,1,38,0,0,2,0,0,0,107148,113396,110084,112272,114779,116920,9500,0,4019,4317,4204,4314,1
+1555,50000,female,2,1,48,0,0,0,0,0,0,10929,13262,14273,14555,14860,15155,2526,1237,519,538,541,560,0
+1556,150000,female,1,2,34,-2,-1,2,0,0,-2,0,13206,10227,398,0,0,13206,0,0,0,0,0,0
+1557,140000,male,2,2,44,0,0,0,0,0,0,108033,105021,107659,109104,109352,101534,4000,4537,3800,3823,3806,3511,0
+1558,30000,female,3,1,56,0,0,2,2,0,0,16088,24800,25098,24396,24907,25555,9000,1000,0,903,1061,942,0
+1559,300000,female,1,1,30,0,0,0,0,0,0,93738,84636,88446,76244,67747,70389,3000,5000,2500,2500,3500,87000,1
+1560,50000,male,1,2,29,0,0,0,0,0,0,2087,2632,3355,3253,3640,3512,1000,1186,500,1000,500,1000,0
+1561,280000,female,2,1,37,0,0,0,0,0,0,29078,30144,32629,35126,35759,42317,1515,3000,3000,1292,7147,1415,0
+1562,120000,female,2,2,23,0,0,0,0,0,0,118063,120851,120013,77539,77333,79113,4700,3538,3000,3000,3000,5000,0
+1563,30000,female,1,1,27,1,-1,-1,-1,0,0,0,306,2017,6316,3107,0,306,2017,6316,62,0,1002,0
+1564,30000,female,2,2,23,-1,0,0,0,0,-1,3226,5591,6992,20412,14427,5119,3596,2992,16500,0,5119,0,1
+1565,180000,male,3,1,45,1,2,0,0,0,0,24400,24508,22627,23306,22780,20890,1500,1500,1000,1000,1000,1000,0
+1566,150000,male,2,1,33,1,2,2,0,0,2,8967,11510,12022,12524,13868,13502,3001,1000,1000,1700,0,1000,0
+1567,110000,female,2,1,40,0,0,0,2,0,0,84589,85418,38333,37419,38199,38957,3700,4890,0,1535,1545,1500,0
+1568,50000,male,1,2,24,0,0,0,0,0,0,50716,50606,33265,29300,20703,30101,3029,2000,1021,1004,10000,2500,1
+1569,230000,female,3,1,43,1,-1,2,-1,0,-1,0,3832,1823,3646,1823,1823,5655,0,3646,0,1823,1823,0
+1570,230000,female,2,2,25,0,0,0,0,0,2,95311,94489,93143,87654,90172,86850,4500,4114,3500,4000,3000,3000,0
+1571,160000,female,1,2,46,-2,-2,-2,-2,-2,-2,6241,8788,0,0,0,0,8805,0,0,0,0,0,0
+1572,50000,male,3,2,36,0,0,0,0,0,0,52855,49123,49522,19843,18440,18272,2206,1605,397,369,365,1088,0
+1573,210000,female,1,1,36,1,-1,-1,-1,-1,-1,0,1690,0,5619,4090,581,1690,0,5619,4090,581,0,0
+1574,120000,female,2,1,38,-1,-1,-1,-1,-1,-1,4100,7270,820,820,2870,970,7270,820,820,2870,970,820,0
+1575,240000,female,2,1,42,0,0,0,2,0,0,21943,36519,55515,49049,57178,42009,15000,20000,3330,30000,10000,10000,0
+1576,20000,male,3,3,47,0,0,0,0,0,0,18768,18795,19390,19464,18126,18827,1400,1400,1000,700,1600,0,0
+1577,50000,female,3,2,40,0,0,0,0,0,0,5538,6563,7422,8292,8465,8650,1271,1130,1000,307,325,436,0
+1578,50000,female,1,2,70,2,2,0,0,0,0,49546,48480,48621,17793,18224,18612,0,2200,700,700,674,608,0
+1579,50000,female,2,1,32,0,0,0,0,0,0,48508,49213,38280,12305,6436,0,3037,1800,1130,2000,0,0,0
+1580,100000,male,3,2,52,0,0,0,0,0,-1,73904,73249,12327,10793,5309,900,2781,2101,216,0,900,500,0
+1581,390000,female,1,1,49,-1,-1,-1,-2,-2,-1,15026,13357,0,0,0,100000,13357,0,0,0,100000,39268,0
+1582,550000,male,1,2,31,0,0,0,0,0,0,43769,38907,36111,32723,26946,26439,2018,1520,1131,1005,1107,1019,0
+1583,450000,female,2,2,36,-1,-1,-1,-1,-1,-1,13500,6350,11670,1530,1232,201,6364,11728,1532,1234,201,3,0
+1584,80000,female,2,1,50,-1,-1,-1,0,0,0,2587,2587,50097,48753,50000,49209,2587,50097,2000,2000,1933,1700,0
+1585,50000,female,3,1,48,0,0,0,0,0,0,4064,5987,7719,8588,9291,11127,2000,2000,1000,1000,2000,2000,0
+1586,50000,female,2,2,33,1,2,2,0,0,0,49617,50352,49243,49819,19324,20103,1813,0,2169,702,1101,529,0
+1587,180000,male,2,1,44,0,0,0,0,0,0,70721,69994,70204,70238,73296,73369,8000,3000,3000,5000,2595,3000,0
+1588,240000,male,1,2,35,-2,-2,-2,-2,-1,-1,15432,10835,22134,32823,1897,5627,10851,22258,20076,2099,5827,0,0
+1589,320000,female,3,2,29,-1,-1,-1,-2,-2,-1,500,500,0,0,0,2900,500,0,0,0,2900,0,0
+1590,480000,female,2,1,35,-1,2,-1,-1,2,0,18214,11031,182123,188956,179179,181746,0,182123,12960,0,9000,50000,0
+1591,150000,female,2,1,37,-1,2,2,-2,-1,-1,1184,794,2756,0,2430,4840,0,2772,0,2430,4844,0,0
+1592,110000,female,1,2,29,0,0,2,0,0,0,107195,109443,106637,106665,92417,90730,7845,4000,4000,3500,9500,9600,0
+1593,240000,male,1,2,30,-1,-1,-1,0,0,0,7744,7284,11234,15214,9107,5621,7305,11263,10018,21,3637,7008,0
+1594,50000,male,1,2,33,0,0,0,0,0,0,47853,49474,47822,8585,8797,9001,2412,1500,500,500,500,490,1
+1595,120000,male,2,2,27,-1,-1,-1,-1,-1,-1,2474,2469,2439,2439,2439,2116,2469,2439,2439,2439,2116,0,0
+1596,150000,female,1,1,31,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+1597,100000,female,3,2,53,0,0,0,0,0,0,101503,29880,31119,58653,59477,60695,1538,1777,29103,2283,2334,2290,0
+1598,260000,female,2,2,38,-2,-2,-2,-2,-2,-2,-2,-2,725,2074,0,585,0,727,2074,0,585,0,0
+1599,250000,female,2,2,26,-2,-2,-2,-2,-2,-2,16884,10397,5291,4671,4400,6011,2000,1000,1010,2000,6011,2325,0
+1600,100000,female,2,2,26,0,0,-2,-2,-2,-1,9614,0,0,0,0,16708,0,0,0,0,16708,2000,0
+1601,160000,male,1,1,51,2,3,2,0,0,0,79244,77441,75598,82277,84955,87549,0,0,8000,4000,4000,4000,1
+1602,270000,female,1,1,37,-1,-1,-1,-1,-1,-1,264,264,1191,3691,3445,56264,264,1191,3691,3445,56264,953,1
+1603,390000,female,2,2,42,-1,-1,0,0,0,0,5895,42006,31192,13859,10078,4635,42016,1397,347,250,145,94,0
+1604,210000,female,2,1,43,0,0,0,0,2,0,80527,82332,84043,88508,85802,85280,4000,4000,7000,0,3500,7000,0
+1605,30000,female,2,2,23,0,0,0,2,0,0,24285,26143,26929,19610,20591,19472,3002,2130,2,3004,8013,0,0
+1606,300000,female,3,1,30,-1,-1,0,0,-1,-1,12090,15035,25895,16416,3972,2200,15042,25500,6000,3972,2200,0,0
+1607,190000,female,3,1,38,0,0,0,0,0,0,89619,103095,110000,115674,121313,15538,15000,10000,5674,11313,5538,18272,0
+1608,130000,female,1,1,35,-1,-1,-1,-1,-1,-1,6348,321,321,0,321,0,321,321,0,321,0,0,1
+1609,360000,male,2,1,44,0,0,0,0,2,0,270248,138566,142337,149758,147152,149460,5000,5000,8600,0,5000,5000,0
+1610,320000,male,1,1,35,1,-2,-2,-2,-2,-2,291,2594,2691,291,291,291,2594,2691,291,291,291,3124,1
+1611,20000,male,2,3,35,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+1612,360000,male,1,1,32,-2,-2,-2,-2,-2,-2,10729,2523,-2,-2,-2,-2,2535,0,0,0,0,0,0
+1613,190000,female,2,2,25,0,0,0,0,-1,0,110031,105500,104430,93,158481,161866,8614,5000,93,159212,5800,5500,0
+1614,90000,female,2,2,33,0,0,-1,-1,0,0,63626,1788,1988,55970,59612,40281,1000,2000,61000,5000,1800,1200,1
+1615,30000,female,1,2,26,-1,-1,-1,-1,-1,2,2635,807,11428,2462,3605,1559,1270,11500,2462,1559,0,3192,0
+1616,240000,male,1,2,29,0,0,0,0,0,0,240248,221277,201606,183454,180255,184230,11000,9100,8000,8000,7000,8000,0
+1617,40000,female,1,2,26,0,0,0,0,0,0,12308,13604,14873,15624,15972,16308,1500,1500,1000,600,600,1700,0
+1618,170000,male,2,2,36,-1,-1,-1,-1,-1,-1,2104,2074,10719,12654,25784,19950,2081,10725,12654,25784,19950,200,0
+1619,180000,male,1,2,37,0,0,0,0,0,0,22121,31681,32552,34004,35792,36645,10000,1700,2000,2500,1600,2000,0
+1620,20000,male,3,1,63,2,2,2,2,2,0,16097,16951,17090,17128,16725,17263,1400,700,600,0,800,772,1
+1621,150000,female,3,1,48,0,0,2,0,0,0,37800,40874,39922,40953,42136,43279,4000,0,2000,2000,2000,2000,0
+1622,50000,female,2,1,47,0,0,0,0,0,0,44624,45128,3837,3913,4146,4225,2355,1064,140,296,296,301,1
+1623,140000,female,3,1,31,2,2,2,2,2,2,89910,92588,91936,94623,94952,95234,5000,1800,5000,1900,4700,0,0
+1624,50000,male,3,2,31,0,0,0,0,2,0,40011,33648,35082,38286,37543,0,1566,2000,3800,0,1546,0,0
+1625,200000,male,1,2,34,0,0,0,0,0,0,67002,76429,94564,95859,99593,101834,10000,18900,3000,4524,3084,3242,0
+1626,100000,female,1,1,43,-1,-1,-1,-1,-1,-1,9122,22971,15537,27075,8423,37259,22982,15561,27091,8423,37259,16751,0
+1627,250000,female,1,2,32,0,0,0,0,-1,-1,33323,30090,21218,10875,3328,1460,2038,2065,52,3336,1460,1000,0
+1628,80000,female,1,2,38,-2,-2,-2,-2,-2,-2,1927,446,909,1740,2190,518,446,909,1740,2190,518,5062,0
+1629,170000,female,2,1,50,0,0,0,0,0,0,177956,176155,171665,65479,61234,42484,7262,5586,2272,2998,39321,1390,0
+1630,80000,male,3,2,29,0,0,0,0,0,0,46638,47680,48395,49356,50560,51431,2091,1806,1767,2000,1767,1740,0
+1631,50000,male,2,1,49,0,0,0,0,0,0,49816,49749,48589,59469,20239,20059,3000,2000,1900,1004,1600,700,0
+1632,30000,female,3,2,40,2,2,2,2,0,0,23687,23020,25218,24514,25030,25557,0,2579,0,909,944,4642,0
+1633,70000,female,1,2,34,1,3,2,0,0,0,70971,71272,69405,34045,34995,36025,2000,0,1220,1500,1725,0,1
+1634,30000,female,3,1,47,-1,-1,-1,-1,-1,-1,1355,5137,1392,696,0,696,5174,1392,696,0,696,696,0
+1635,200000,male,1,1,34,-1,-1,-1,-1,-1,-1,5023,618,605,3098,805,2154,621,608,3114,1003,2164,1210,0
+1636,100000,female,2,2,27,-1,-1,-1,-2,-2,-2,11540,1300,0,0,0,0,1303,0,0,0,0,0,0
+1637,20000,male,2,2,44,0,0,0,0,0,0,17636,17947,17914,18357,19155,10200,1375,1122,565,1000,204,0,1
+1638,200000,male,1,2,29,-1,-1,-2,-2,-2,-2,2290,0,0,0,0,0,0,0,0,0,0,0,0
+1639,50000,male,3,1,72,2,0,0,0,2,2,35417,36453,37166,39710,40519,41324,1908,1621,3165,1600,1620,0,1
+1640,50000,male,2,1,48,0,0,0,0,0,0,40931,40892,41612,18825,18019,18124,1880,1650,10000,1000,700,600,1
+1641,50000,female,1,2,27,1,2,2,2,2,2,36794,35922,39319,38387,42764,41926,0,4000,0,5000,0,5000,1
+1642,220000,male,2,1,44,0,0,0,0,0,0,217743,180357,183453,176900,118965,172907,7000,8000,8000,6000,60000,7000,0
+1643,240000,female,3,1,39,-2,-2,-2,-2,-2,-2,0,1234,0,0,620,0,1234,0,0,620,0,0,0
+1644,50000,male,1,1,40,0,0,0,0,0,0,42549,36110,9715,8965,6652,7385,2200,2000,1000,500,1000,400,0
+1645,500000,female,1,1,45,-1,-1,-1,-1,-1,-1,36954,-24704,22999,18339,-3876,15586,0,83000,0,0,20000,18000,0
+1646,170000,male,1,2,26,-1,-1,-1,-1,-1,-1,23594,1512,1362,1591,3524,8545,1512,1362,1591,3524,8545,1485,0
+1647,30000,male,1,1,34,-1,-1,-1,-2,-2,-2,220,2500,0,0,0,0,2500,0,0,0,0,0,0
+1648,300000,male,1,1,43,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+1649,50000,male,2,2,30,0,0,0,0,0,0,50507,48751,44688,19823,13645,10876,4000,2220,1000,1500,1000,1500,0
+1650,100000,female,3,1,31,-1,-1,-1,-2,-2,-2,16033,1716,1200,0,0,1300,1716,1200,0,0,1300,6455,0
+1651,150000,female,1,2,29,0,0,2,0,0,0,108817,83654,79713,64468,66488,58131,7500,0,4000,4000,4000,3500,1
+1652,50000,male,1,2,28,0,0,0,0,0,0,46176,40870,41590,42419,43307,44167,2000,1700,1519,1572,1580,1637,0
+1653,190000,female,2,2,31,-1,-1,-1,-1,-2,-1,771,0,4251,0,0,6732,0,4251,0,0,6732,11306,0
+1654,20000,female,3,2,22,0,0,0,0,-1,-1,14562,5991,6870,0,2734,0,1121,1000,0,1367,0,0,0
+1655,50000,female,3,1,55,1,2,2,2,0,0,49003,49067,50498,47579,47567,48155,2005,3900,0,2000,1900,1900,0
+1656,30000,female,2,1,39,-1,-1,-1,-1,-1,-1,223,223,223,223,223,675,223,223,223,223,675,10473,1
+1657,90000,female,1,2,27,-2,-2,2,2,-2,-2,1179,6346,4607,-6,-2153,-4306,7020,2980,3000,0,0,0,0
+1658,500000,female,1,2,36,-2,-2,-2,-2,-2,-2,-312,-2479,2479,2479,763,288,0,4958,0,763,0,14472,1
+1659,280000,male,1,1,40,-1,-1,-1,-1,-1,-1,5310,2196,2928,9564,22017,5220,2196,2928,9564,22017,5220,1964,0
+1660,30000,male,2,1,31,0,0,0,-1,-1,-2,13265,7206,0,2320,0,0,1632,780,2320,0,0,0,0
+1661,90000,female,2,1,36,2,2,2,2,2,2,49295,50206,50781,51840,52607,53784,2000,1700,2200,1750,2200,2000,0
+1662,200000,male,2,1,42,1,2,0,0,2,2,38187,35827,19208,20023,19572,19652,44,1303,1522,0,1099,1339,1
+1663,100000,male,2,2,30,-2,-2,-2,-2,-2,-2,914,1170,0,0,1756,0,1475,0,0,1756,0,0,0
+1664,20000,male,3,2,40,0,0,2,3,2,2,12649,15526,16383,15831,15438,17371,3103,1408,0,0,2346,0,0
+1665,50000,male,2,1,51,0,0,0,0,0,0,49613,49326,47010,20661,14528,15544,3036,6000,1000,2000,2500,3000,0
+1666,50000,female,2,3,51,0,-1,0,0,0,-2,10571,2477,3234,2904,0,0,2477,2904,0,0,0,0,0
+1667,290000,male,3,2,32,-1,-1,-1,-1,-1,0,1520,1200,0,1000,28661,8976,1200,0,1000,9948,8974,175000,0
+1668,220000,female,1,2,36,-2,-2,-2,-2,-2,-2,0,420,0,584,790,0,420,0,584,790,0,1309,0
+1669,440000,male,1,1,37,-1,-1,-1,-1,-1,-1,4330,8369,16786,396,600,3596,8369,16786,396,600,3596,4095,0
+1670,50000,male,2,2,49,0,0,0,0,0,0,90231,90647,92309,93880,99418,101392,2852,2784,2603,10000,3164,2868,1
+1671,300000,male,1,2,31,-1,-1,-1,-1,-1,-1,40779,5401,2444,578,390,1424,5401,2444,578,390,1424,390,0
+1672,290000,female,1,1,50,0,0,0,0,0,0,165563,128747,120469,78892,81561,83687,7000,10009,5000,5000,5000,10000,0
+1673,390000,male,2,1,40,1,2,0,0,0,0,424244,395060,258372,261498,213003,102423,587,9500,30140,4235,1998,25226,0
+1674,50000,female,2,2,24,0,0,0,0,0,0,29186,29792,26660,27416,27836,28473,1500,1500,1200,1010,1100,980,0
+1675,220000,female,2,2,31,-1,-1,-2,-1,-1,-2,38746,0,0,110699,0,0,0,0,110699,0,0,0,1
+1676,150000,female,2,2,29,0,0,-1,0,0,0,3559,4724,2629,2584,1371,0,1222,2634,1008,506,0,0,0
+1677,50000,male,1,2,24,0,0,0,0,0,0,50963,49720,50839,93436,46733,50925,1844,1963,2635,1750,5000,2160,0
+1678,200000,male,1,1,44,-1,-1,-2,-2,-2,-2,667,0,0,0,0,0,0,0,0,0,0,0,0
+1679,120000,female,2,2,30,0,0,0,0,0,0,16812,17571,18013,18197,9032,11951,1358,1126,636,650,4000,1800,0
+1680,230000,female,1,1,61,-2,-2,-2,-2,-2,-2,1443,1443,1443,1443,1443,1443,1443,1443,1443,1443,1443,1443,0
+1681,180000,female,2,1,28,0,0,0,0,0,0,133868,125613,86893,89014,91946,93237,5300,4000,4000,10000,3200,3100,0
+1682,20000,male,1,2,22,0,0,0,0,0,0,23538,22780,23623,19600,20100,0,3000,1400,2500,500,0,0,0
+1683,20000,male,2,2,23,0,0,2,0,0,0,18804,17855,17199,17548,17992,31150,2150,1000,504,600,4000,4000,0
+1684,50000,male,3,1,46,-1,2,2,-2,-2,-2,13473,12800,0,0,0,0,0,0,0,0,0,0,1
+1685,290000,female,1,2,24,-2,-2,-1,-1,-1,0,14931,15090,19239,4940,93332,96112,15090,19239,4975,96151,5500,4000,0
+1686,290000,female,2,2,54,-2,-2,-2,-2,-2,-2,-68,-68,-68,675,-6,2168,0,0,743,0,2174,972,0
+1687,150000,female,1,2,27,-2,-2,-2,-2,-2,-2,0,610,610,0,610,0,610,610,0,610,0,0,0
+1688,190000,female,2,2,53,0,0,0,0,0,0,173058,133198,131891,133516,135008,136486,6300,5000,5000,5000,5100,5000,0
+1689,80000,female,2,2,25,0,0,0,0,0,0,81003,85894,87061,89008,93523,80288,8213,3491,3508,19523,3288,1570,1
+1690,250000,male,3,1,47,-1,-1,-1,-1,-1,-1,1170,1863,3100,2560,2580,3699,1863,3112,2950,2580,3699,0,0
+1691,20000,male,2,1,35,1,2,2,0,0,0,19755,19661,20018,20427,19377,19386,1000,1000,1000,1500,900,1000,1
+1692,180000,female,3,1,45,-1,-1,-1,-1,-1,-1,396,396,396,396,396,396,396,396,396,396,396,396,0
+1693,80000,male,1,2,25,-1,-1,-1,-1,-1,2,2109,1257,466,628,2395,930,1257,466,628,2395,0,601,0
+1694,300000,male,1,2,31,-1,-1,-1,-1,0,-1,2166,2894,8903,12445,24650,8339,2918,8974,12457,15113,8369,3832,0
+1695,50000,female,3,1,51,0,0,0,0,0,-1,20454,21899,20895,11241,-861,38040,2100,2000,1000,0,39500,1500,0
+1696,70000,female,1,1,40,0,0,0,0,0,0,51959,40519,31310,28929,29535,28160,1597,1407,972,1007,1028,913,0
+1697,150000,female,1,2,30,0,0,2,0,0,2,44795,43700,19543,34648,24241,19339,10000,20,30000,19800,0,5000,1
+1698,320000,female,1,2,29,-1,-1,-1,-1,-1,0,179226,-200,200,0,10000,210000,0,400,0,10000,200000,0,0
+1699,60000,female,1,2,24,0,0,0,0,0,0,60381,39798,38344,37311,37428,38187,1639,1590,1500,1354,1377,1514,0
+1700,20000,male,3,2,32,0,0,2,2,2,0,3677,6002,5758,12619,12274,15049,2400,0,7000,0,3000,4000,1
+1701,230000,male,1,2,35,2,2,2,2,2,2,117277,119823,120988,121464,123740,120937,5800,4500,3800,5000,0,4500,0
+1702,310000,female,2,1,29,0,0,0,-1,0,0,74955,77730,78497,72529,76345,79072,4000,5000,72529,5000,4000,4000,0
+1703,230000,female,1,2,36,-1,-1,-1,0,0,0,1545,306,8389,7465,6549,576,306,8389,9,0,0,342,0
+1704,200000,female,1,1,40,-2,-2,-2,-2,-2,-2,2552,8064,32082,6914,1905,3244,8084,32105,7186,1905,3244,9768,0
+1705,100000,female,1,2,30,0,0,0,0,2,0,28383,32903,42283,51539,50583,52588,5000,10000,10000,0,2846,1936,1
+1706,310000,male,2,1,64,-1,-1,-1,0,-1,-1,1920,0,10124,10130,7958,0,0,10124,6,7958,0,0,0
+1707,180000,male,3,1,33,2,2,0,0,0,2,159999,156038,159924,162775,174719,178651,0,8000,7000,15000,7000,0,1
+1708,390000,female,1,1,38,0,0,0,0,0,0,164418,167501,134282,128701,131529,135242,9000,7027,5000,5000,6000,5000,0
+1709,20000,female,1,2,26,1,-2,-1,-1,-1,-1,0,0,450,-150,750,568,0,450,0,900,568,1769,0
+1710,50000,female,2,1,26,0,0,0,0,0,0,45663,43522,43193,18768,19182,19447,2300,2349,800,835,726,361,0
+1711,140000,male,1,2,29,0,0,0,0,0,0,142087,255846,140057,100177,100873,98363,5528,4500,3500,4000,4000,4000,0
+1712,170000,male,1,2,37,-1,-1,-1,-1,-1,-1,4334,1343,1078,1392,1606,9955,1343,1078,1392,1606,9955,4382,1
+1713,250000,female,2,1,45,-2,-2,-2,-2,-2,-2,100323,37494,41300,0,0,0,2500,5300,0,0,0,0,0
+1714,50000,female,3,1,40,2,2,0,0,0,0,49157,47990,38426,7816,7859,7979,0,2050,500,500,400,400,1
+1715,250000,female,1,2,36,0,0,0,0,0,0,130360,133799,137119,141367,133174,136481,5000,5000,5847,5000,5000,5018,0
+1716,90000,male,1,2,27,0,0,0,2,2,2,56608,57897,63686,65233,66637,67882,2800,7400,3200,2600,2500,2500,0
+1717,90000,male,2,1,44,2,0,0,0,0,0,89875,92338,87511,47796,48306,49054,4000,4200,1700,1800,2083,1827,1
+1718,160000,female,1,2,27,0,0,-2,-1,-1,-1,13234,0,6000,15866,4168,2067,0,6000,15866,4168,2067,11826,0
+1719,360000,male,2,2,29,0,0,0,0,0,0,114527,119487,113438,112940,122122,121547,20046,5046,10000,10048,10043,5014,0
+1720,330000,female,1,2,26,0,0,0,0,0,0,58667,38323,32726,43579,28908,20777,2213,5000,20000,1000,672,1200,0
+1721,50000,female,3,1,54,1,2,0,0,0,0,64069,59153,56275,53936,51740,49043,0,2031,1918,1993,1614,1789,0
+1722,60000,female,2,1,42,2,2,0,0,0,0,57598,50821,19638,18919,16853,29682,0,2000,2000,1000,20000,10000,1
+1723,10000,female,3,2,42,0,0,-1,-1,-1,-1,4908,5665,381,390,0,780,1275,381,399,0,780,0,0
+1724,70000,male,2,1,41,1,2,2,2,0,0,34779,35921,36536,35651,36427,37169,2000,1500,0,1500,1500,3000,0
+1725,150000,female,1,1,31,-2,-2,-2,-2,-2,-2,2977,1408,0,0,0,0,1408,0,0,0,0,4400,1
+1726,250000,female,2,2,33,0,0,0,0,0,0,255223,47070,48130,49625,51500,0,1600,1650,2100,3000,0,94825,1
+1727,130000,female,3,1,33,0,0,0,0,0,0,122199,125283,120957,41771,42648,43495,5100,3085,1493,1548,1556,1700,0
+1728,130000,male,1,2,27,0,0,0,0,0,0,84664,72079,24934,17810,11705,10007,2039,2007,1000,1000,600,2000,0
+1729,100000,female,2,1,36,-2,-2,-2,-2,-2,-2,2205,0,1983,3543,0,0,0,1983,3543,0,0,2645,0
+1730,130000,male,2,2,37,0,0,0,-2,-2,-2,131446,102650,0,0,0,0,5000,0,0,0,0,0,0
+1731,80000,female,2,2,29,2,0,0,0,0,0,77416,75500,69313,67972,66800,68693,2661,2509,2500,3000,3000,3000,1
+1732,380000,male,1,2,41,0,0,2,0,0,0,350341,357703,344460,347754,334891,340728,28400,0,12800,12500,12500,12000,0
+1733,20000,female,2,2,23,0,0,0,0,0,0,17257,17417,14462,14750,15215,16209,1230,1239,527,702,1400,0,1
+1734,20000,male,2,2,25,0,0,3,2,2,-1,15789,21698,21054,20355,19980,3470,6500,0,0,10000,25065,177,0
+1735,140000,male,1,1,54,0,0,0,0,0,0,139406,140295,134000,74388,92555,86993,5545,4200,3105,86417,3936,48390,1
+1736,180000,male,1,2,33,-1,-1,-1,-1,-1,-1,2217,0,8264,0,3278,0,0,8264,0,3278,0,4646,0
+1737,230000,female,1,2,29,-2,-2,-2,-2,-2,-2,-5,-5,2969,3419,0,1841,0,2974,3425,0,1841,200,0
+1738,90000,male,1,2,32,-1,-1,-1,-1,-1,2,6546,1485,25558,1443,1677,1480,1498,25572,1443,257,0,58,0
+1739,160000,male,2,2,29,-1,-1,-1,-1,-1,-1,7002,6696,6062,4203,5780,12575,7229,6085,4230,5797,12589,6233,0
+1740,50000,female,1,2,22,0,0,0,0,0,0,49459,49281,50071,10104,9208,10075,2300,2000,1000,500,1000,500,0
+1741,140000,female,2,2,29,-2,-2,-2,-2,-2,-2,945,945,0,0,0,0,945,0,0,0,0,0,0
+1742,250000,female,2,1,31,0,0,0,0,0,0,42441,43061,29385,27677,86250,65710,4000,3000,901,63000,2700,2000,0
+1743,120000,female,2,2,24,-1,-1,-2,-1,-1,-1,100,0,0,618,9614,39133,0,0,618,9614,39133,1500,0
+1744,120000,female,1,2,27,0,0,0,0,0,0,79072,80795,82451,84177,85945,87813,3000,3000,3100,3122,3300,3060,0
+1745,260000,female,2,1,40,0,0,0,0,0,0,243196,258720,178102,77215,79331,81483,20008,7500,3000,3500,3605,3750,0
+1746,10000,male,2,2,38,2,2,3,3,3,3,1050,1050,1050,1050,1050,1050,0,0,0,0,0,0,1
+1747,60000,female,2,1,38,-2,-2,-2,-2,-2,-2,4764,30500,0,0,52829,41404,30500,0,0,52829,41404,22401,0
+1748,60000,female,2,1,29,0,0,0,0,0,0,33147,54511,56167,28609,27660,27059,24511,6000,17000,1984,1100,1600,0
+1749,50000,male,2,2,27,0,0,0,0,0,0,17771,18794,19062,19443,19849,20287,1311,1299,680,703,750,626,0
+1750,130000,male,3,1,34,0,0,0,0,0,0,5444,5927,7106,7106,8106,9106,1321,1500,0,1000,1000,598,0
+1751,130000,male,1,2,34,0,0,0,0,0,0,31179,30569,28659,26952,15852,0,2002,1400,600,1000,0,0,0
+1752,360000,female,1,2,32,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+1753,80000,female,2,1,36,0,0,0,0,0,0,20366,21084,22411,23624,23964,25661,1352,1679,1892,870,2096,0,0
+1754,50000,male,2,2,26,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+1755,290000,female,1,1,33,1,2,-1,-1,-1,-1,7064,1875,1814,8537,25576,13475,0,1814,8537,25576,13475,6000,0
+1756,200000,male,1,1,53,0,0,-2,-2,-1,-1,195050,0,0,0,1000,0,0,0,0,1000,0,0,0
+1757,20000,male,2,2,27,0,0,0,0,0,-2,18290,20144,19106,19292,0,0,2458,1200,386,1000,0,0,0
+1758,500000,male,1,2,33,-1,-1,-1,-2,-1,-1,5379,2062,10515,4158,7958,-196,2065,10556,4170,7963,196,7083,0
+1759,130000,female,1,2,26,1,2,2,2,2,2,22415,21146,23647,22984,24315,23155,0,3500,0,2000,0,2000,0
+1760,30000,female,1,2,27,0,0,0,0,0,0,23447,24563,25650,26222,26800,27554,1500,1500,1000,1000,1200,4271,1
+1761,20000,female,1,2,24,2,2,2,0,0,0,7919,8637,9339,10029,10615,11285,1000,1000,1000,900,1000,500,1
+1762,70000,female,2,2,26,0,0,0,0,0,0,30139,8241,8398,8864,9301,10702,2000,2000,2000,2000,3000,1500,0
+1763,200000,male,1,2,27,-1,-1,-1,-1,-1,-1,4890,3630,4882,10955,10435,1665,3630,4882,11034,10435,1665,3765,0
+1764,50000,female,2,1,46,-1,-1,-1,-1,-1,-1,569,1436,3220,6592,5085,1050,1440,3224,6621,5396,1050,0,1
+1765,360000,male,2,1,56,-1,-1,-1,-1,-1,-1,750,1224,3206,291,951,2941,1236,3537,291,951,2941,291,0
+1766,50000,female,3,1,56,0,0,0,0,0,0,33197,34961,28913,29093,29306,29506,2407,2960,1029,1059,1073,1200,0
+1767,180000,female,3,1,26,0,0,0,-2,-2,-2,32023,20233,0,0,0,0,10000,0,0,0,0,0,0
+1768,50000,male,2,2,25,2,2,0,0,0,2,7180,6922,7849,8018,8884,8593,0,1200,300,1000,0,1000,1
+1769,120000,female,1,2,28,-2,-2,-2,-2,-2,-2,-8,2046,0,409,872,1539,2054,0,409,872,1539,580,0
+1770,80000,female,2,1,37,2,2,2,2,2,2,15234,16893,17834,17250,18470,18023,2200,1500,0,1500,0,1600,1
+1771,330000,female,1,1,47,1,-2,-2,-2,-2,-1,2246,13990,20992,681,0,5180,13990,21060,681,0,5180,3820,0
+1772,40000,male,3,1,43,0,0,0,0,0,0,41094,36554,37568,38314,39141,40231,1611,1625,1371,1444,1765,1283,1
+1773,50000,male,2,2,26,0,0,0,0,0,0,27570,28820,29400,5124,6874,7654,2000,1200,1000,2000,1000,1979,0
+1774,80000,male,3,1,48,0,0,0,0,0,0,71515,70287,61892,26779,25464,25993,3679,2305,924,1069,1100,1110,0
+1775,450000,male,1,1,41,-1,-1,-1,-2,-1,-1,697,500,0,0,461,-3,505,0,0,461,3,0,0
+1776,30000,female,3,1,48,0,0,0,0,0,0,27947,27035,27876,26640,25896,25481,2000,1800,1500,1500,1500,1500,0
+1777,160000,male,2,1,28,0,0,2,2,0,0,62312,66965,67648,66020,67386,68336,5856,2311,0,2377,2000,1881,0
+1778,80000,female,1,2,22,-1,-1,0,0,-2,-2,10439,11501,12113,-33,2748,90,11501,1000,33,2871,90,0,0
+1779,400000,male,2,1,34,0,0,0,0,0,2,52271,56788,60049,60876,65178,45933,6000,5000,1902,5000,0,5000,0
+1780,220000,male,2,1,60,-1,-1,-1,-1,-1,-1,1994,1598,6944,7161,1534,11248,1606,6978,7196,1541,11304,483,1
+1781,40000,female,2,1,25,0,0,2,2,2,2,21590,24326,23642,25936,25384,26905,3400,0,3000,0,2100,0,1
+1782,280000,female,2,2,27,-1,0,0,0,2,0,82742,153791,85601,108984,105275,117635,10077,27785,30000,23,20000,3406,0
+1783,50000,female,1,2,25,0,0,0,-2,-2,-2,50380,38712,0,0,0,0,4000,0,0,0,0,0,0
+1784,110000,male,2,2,26,0,0,0,0,0,0,106417,103587,56676,47332,45171,47092,9026,6000,2000,2000,3000,4006,0
+1785,180000,female,1,1,44,1,-1,-1,-1,-1,-1,2788,5646,13647,30848,15520,558,5646,13901,30848,15520,558,26733,0
+1786,200000,female,1,2,26,0,0,0,0,0,0,18630,15996,16304,14973,20542,15810,1502,1200,300,7000,8000,4000,0
+1787,390000,female,1,2,33,0,0,0,0,0,0,85538,79875,82853,82747,44143,38488,3500,4502,3518,2003,3001,3000,0
+1788,400000,female,1,2,29,-1,0,0,0,0,0,5154,6016,7056,7310,9943,12849,1060,1100,310,3000,3000,6100,0
+1789,120000,female,3,2,37,-1,-1,-1,-1,-1,-1,776,1616,776,776,776,776,1616,776,776,776,776,776,1
+1790,200000,male,1,2,34,1,-2,-2,-2,-2,-2,-800,-2685,-6144,-7905,-10213,-11060,0,0,0,0,0,0,0
+1791,280000,male,2,1,33,0,0,0,0,0,0,207982,196055,182099,185925,188224,186529,8644,6445,15934,7016,6753,6008,0
+1792,230000,female,1,2,27,0,0,0,0,0,0,105217,107857,110177,60137,62035,64034,4326,4533,2337,3035,3034,3101,0
+1793,280000,female,1,1,36,-1,-1,-1,-1,-1,-1,21251,33746,8689,41652,9031,14106,33840,8689,41652,9031,14106,6680,0
+1794,130000,male,3,2,28,0,0,0,0,0,0,132258,133781,133834,132336,132614,132208,6900,7000,7000,6000,5500,6000,0
+1795,160000,female,2,1,35,-1,-1,-1,-1,-1,-1,776,1172,380,776,1172,380,1172,380,776,1172,380,776,1
+1796,120000,male,3,1,47,-1,-1,-1,-1,-1,-1,1051,671,291,1051,291,671,671,291,1051,291,671,1051,0
+1797,300000,female,3,1,31,-1,-1,-1,-1,-1,-1,331,331,331,331,-1,199,332,332,332,0,200,0,0
+1798,20000,female,1,2,31,-2,-2,-2,-2,-2,-2,264,264,2227,1357,1357,4500,264,2227,1357,1357,4500,1357,0
+1799,450000,male,1,2,31,-1,-1,-1,-1,-1,-1,10350,3629,3271,6271,2135,2546,3629,3271,6271,2135,2546,4877,1
+1800,250000,male,2,1,30,-2,-2,-2,-2,-2,-2,2419,28965,44179,37145,46733,46963,29062,44385,40682,46873,47104,52448,0
+1801,100000,female,2,1,58,0,0,0,0,0,0,101249,101476,94893,101301,101451,99319,3642,4230,10000,3582,5000,4133,0
+1802,150000,female,2,2,27,0,0,0,0,0,0,23165,24515,25592,24949,26846,26908,1723,1800,1100,2300,1000,1300,0
+1803,140000,male,2,2,35,0,0,0,0,0,0,101038,66734,64018,64656,65341,66277,4215,3221,2066,1864,1895,1883,0
+1804,500000,female,1,2,46,-2,-1,-1,-1,-1,-1,33332,163500,60560,104734,41018,6258,163500,70160,104734,41018,6258,70356,0
+1805,20000,male,2,2,36,-1,-1,-1,0,0,0,3152,0,4956,10148,6979,8353,0,4956,200,2000,1500,500,0
+1806,50000,male,2,2,53,0,0,0,0,0,0,18922,19486,19917,20017,20146,20221,1329,1310,680,705,728,690,0
+1807,100000,male,2,2,39,0,0,0,0,0,0,121895,107315,115214,83649,59993,62813,4500,10000,11000,3000,4000,3000,1
+1808,200000,female,2,2,27,2,2,0,0,0,0,186806,166153,157633,145423,146202,144685,0,6908,5200,5400,5700,9101,0
+1809,150000,female,2,2,37,0,0,0,0,0,0,86037,84679,82490,78890,75240,75639,5000,5000,4000,3500,3000,4000,0
+1810,80000,male,1,2,23,0,0,0,-1,2,2,60130,59744,44031,48089,44789,30423,2550,1848,6084,38,4,70,0
+1811,160000,male,1,1,40,1,-1,-1,-1,-1,-1,0,567,4027,3100,2123,4899,567,4059,3100,2123,4899,3165,0
+1812,180000,female,2,1,44,-1,-1,-1,-1,-1,-1,816,803,2599,0,2311,2194,803,2800,0,2311,2542,236,0
+1813,270000,female,1,1,32,-1,-1,-1,0,0,-1,23351,30960,180473,58839,21334,19080,30972,180519,1177,0,19080,133504,0
+1814,180000,female,1,2,41,0,0,-1,0,-1,-1,37353,24797,5549,22349,2974,0,1012,5549,17000,3322,0,2633,0
+1815,120000,male,1,1,54,-1,-1,-1,-1,0,-1,390,390,390,1878,390,930,390,390,1878,0,930,0,1
+1816,110000,female,1,2,29,0,0,0,0,0,0,48088,45980,44231,32489,26354,20221,2000,2010,3000,3000,3000,1000,0
+1817,50000,female,3,1,61,0,0,-2,-2,-1,0,42200,0,0,0,15883,16617,0,0,0,15883,1000,792,0
+1818,200000,female,3,2,30,0,0,0,0,0,0,185723,166726,160181,161469,104232,151726,8009,6402,6715,4625,50086,5458,0
+1819,70000,female,3,1,23,2,-1,-1,-1,-1,-1,254,2746,1885,2216,1348,29873,6840,1885,2216,1348,29873,1000,0
+1820,360000,female,2,2,30,0,0,-2,-1,0,0,23900,0,0,150,205150,0,0,0,150,205000,0,0,0
+1821,260000,female,2,1,35,0,0,0,0,0,0,425349,435873,445129,452162,258010,221780,14347,15000,12406,9279,6078,0,1
+1822,50000,male,3,1,32,0,0,0,0,0,0,40992,35215,29156,18891,19443,19478,2026,2021,1000,1001,1000,707,0
+1823,380000,female,2,1,39,-1,-1,0,0,0,0,19261,81961,61189,38875,17876,13313,81975,1480,3000,1000,3000,10024,0
+1824,50000,male,2,2,24,-1,-1,-2,-2,-2,-2,402,-2760,-3650,-3650,-3650,-3650,0,0,0,0,0,0,0
+1825,20000,male,3,1,38,0,0,-1,-1,-1,-1,19805,19900,390,390,0,780,1000,390,390,0,780,0,1
+1826,270000,male,6,2,32,-2,-2,-2,-2,-2,-2,24089,51408,27067,40359,51264,34874,52398,27787,40569,53500,35051,120391,0
+1827,460000,male,1,2,32,0,0,0,0,0,0,386437,393742,392625,368365,377858,362132,15000,15000,15000,15000,15000,20000,0
+1828,60000,male,3,2,24,0,0,0,0,2,0,58819,59810,56566,30627,30203,28648,3000,1768,3954,1000,1500,1200,0
+1829,200000,female,1,1,35,-1,-1,-1,-1,-1,-1,25663,14224,17560,3300,1920,2731,14224,17560,3300,1920,2731,0,0
+1830,50000,female,2,2,37,1,2,2,2,2,2,14008,13493,17259,16684,18017,17581,0,4000,0,1600,0,3000,1
+1831,20000,female,1,2,22,0,0,0,0,0,0,19760,18570,17604,11973,9517,6799,1376,1383,1000,455,1500,2200,0
+1832,290000,female,2,1,40,0,0,0,0,0,0,274558,256910,229566,148812,53157,47998,10700,11014,5800,1820,2000,2000,1
+1833,110000,female,2,2,36,0,0,0,0,0,0,116486,105604,96945,74171,70012,62256,4353,3294,5000,8300,5000,5000,0
+1834,160000,female,3,1,51,2,2,2,2,2,2,142064,144900,146534,147955,145488,155041,6600,5500,5310,0,12000,0,1
+1835,70000,female,2,1,31,0,0,0,0,0,0,60058,49647,43968,41127,39137,28712,1834,1608,1559,1630,1300,1000,0
+1836,200000,female,1,2,39,-2,-2,-2,-2,-1,-1,0,0,0,0,2330,0,0,0,0,2330,0,0,1
+1837,80000,female,2,2,40,0,0,0,0,0,0,78717,75873,68602,54617,55987,53895,3300,3300,2000,2200,2100,1900,0
+1838,20000,male,1,2,41,-2,-2,0,0,0,0,18803,18376,19342,19081,19799,18718,36147,1281,658,1000,1000,760,1
+1839,210000,male,1,2,48,-2,-2,-2,-2,-2,-2,0,570,0,0,0,0,570,0,0,0,0,0,0
+1840,180000,female,3,1,39,2,0,0,-2,-2,-2,172488,72050,0,0,0,0,3450,0,0,0,0,0,1
+1841,50000,male,2,3,53,0,0,0,0,0,0,34664,17242,18417,18877,18985,18184,1500,1500,1000,800,2000,1000,0
+1842,30000,male,2,2,26,1,3,2,2,0,0,31305,30527,30789,29504,30276,29695,0,1060,0,1251,1078,1243,1
+1843,150000,male,1,2,30,-1,-1,-1,-1,-1,-1,6708,1098,1908,1589,9918,-16586,1098,2000,1589,9918,1157,0,0
+1844,150000,male,1,2,28,-1,2,2,-2,-2,-2,1111,820,-311,-602,-893,-1184,0,0,0,0,0,0,1
+1845,260000,male,1,1,43,1,-1,-1,-1,-1,-2,0,2000,1620,8010,0,0,2000,1620,8080,0,0,0,0
+1846,310000,female,1,2,30,0,0,0,0,0,0,304329,292848,279138,252703,248895,244026,14027,16800,11600,11000,10000,30000,0
+1847,150000,female,1,2,33,0,0,0,0,0,0,96066,98277,88202,48179,49426,50534,4400,4000,2000,2000,1900,1700,0
+1848,200000,female,1,2,27,-1,-1,-1,-1,-1,-1,16093,11163,11657,9423,9726,11070,11197,11657,9423,9726,11070,7976,0
+1849,150000,male,3,2,45,0,0,0,0,0,0,99247,101194,81194,70590,72040,73423,4268,2725,2505,3000,3000,3000,0
+1850,220000,female,2,1,54,-1,-1,-1,-1,-2,-2,8727,2553,147,0,0,0,3011,147,0,0,0,0,0
+1851,540000,female,1,2,34,-1,-1,-1,-1,-1,-1,1784,892,946,946,946,946,892,1000,946,946,946,946,0
+1852,280000,male,2,2,30,0,0,0,0,0,0,204773,188704,185257,188344,179764,167051,8038,6000,5083,5000,5036,5000,0
+1853,230000,male,2,2,32,0,0,0,0,0,0,49619,43435,41719,38072,33802,30435,2072,1689,1046,1025,928,277,0
+1854,50000,male,1,1,39,0,0,2,3,2,2,33849,36798,37890,37131,38381,39585,3817,2000,150,2000,2000,1600,0
+1855,20000,female,2,2,24,1,-2,-2,-2,-1,-1,0,0,0,0,222,6345,0,0,0,222,6345,2000,0
+1856,10000,male,2,2,35,1,6,5,4,3,2,8257,8001,7741,7481,7075,6815,0,0,0,0,0,700,1
+1857,500000,male,1,1,46,0,0,0,0,0,0,407331,403816,386053,389008,392650,391336,15043,14000,14003,14011,15003,14009,0
+1858,50000,female,2,2,24,0,0,0,0,0,0,49819,50135,32101,17401,19820,17399,1672,1246,574,3000,649,285,0
+1859,420000,female,2,2,35,-1,-1,-1,-1,-1,-1,7572,18847,16615,14156,9058,3281,18920,16615,14156,9058,3281,5971,0
+1860,50000,female,2,2,23,0,0,-1,2,0,0,21998,15299,32514,26479,27396,27789,2063,33730,0,1500,1000,1019,0
+1861,280000,female,1,2,29,-2,-2,-2,-2,-2,-2,0,0,320,2139,0,0,0,320,2139,0,0,0,0
+1862,50000,male,2,1,46,0,0,0,-1,0,0,3656,4400,0,1704,3715,-105,1000,0,1704,2011,0,1649,0
+1863,160000,female,3,1,41,2,2,2,0,0,2,46017,47188,46134,47063,50034,51063,2200,0,2000,3900,2000,0,1
+1864,40000,female,2,1,23,2,2,2,2,2,2,33895,33068,35704,36173,36796,37288,0,3200,1500,1500,1400,1500,1
+1865,100000,female,2,1,31,0,0,-1,-1,0,-1,92265,93873,1473,2946,1473,540,5000,1473,2946,0,540,780,0
+1866,50000,female,1,2,26,0,0,0,0,0,0,41003,42032,42699,43617,44509,45420,1733,1400,1300,1271,1300,4500,0
+1867,130000,female,3,2,32,0,0,0,0,0,2,119312,116259,103438,49319,91191,82168,20021,40354,20000,43608,103,10000,0
+1868,30000,female,2,2,22,0,0,0,0,0,0,27358,28612,29183,28983,13100,0,2000,1500,0,500,0,0,0
+1869,140000,male,2,1,34,-1,-1,-1,-1,-1,-1,430,430,702,430,430,430,430,702,430,430,430,860,1
+1870,210000,female,2,1,32,-1,0,0,0,2,0,164015,155235,151267,149478,145041,107495,9320,4894,3301,3,4994,116880,0
+1871,50000,male,2,1,38,0,0,0,0,0,0,48797,47153,43238,17253,16307,16651,1864,1811,594,587,1000,1000,0
+1872,310000,male,2,1,29,0,0,0,0,0,0,31132,45718,62992,62473,69837,69898,20000,20000,2500,11056,3000,4377,0
+1873,300000,female,1,1,31,-2,-2,-1,0,0,0,0,1110,12192,7639,1722,4064,1110,12192,300,191,4064,390,0
+1874,30000,female,2,2,47,2,2,2,2,2,2,16039,17080,17302,17521,17893,18252,1600,800,800,800,800,0,1
+1875,90000,female,3,1,40,0,0,0,0,0,0,89928,81721,76947,46589,47730,49488,3416,4142,1700,1888,2710,1500,0
+1876,150000,female,2,1,34,2,2,2,0,0,0,39465,42829,41845,42844,43999,45110,4000,0,2000,2000,2000,2000,1
+1877,90000,male,1,2,25,0,0,0,0,0,0,32755,31325,28034,29753,30601,33083,2000,3000,2000,3000,3000,1000,0
+1878,80000,female,3,2,65,0,0,0,0,0,0,84985,84247,81619,30095,20639,7849,4000,2048,1300,1700,401,180,0
+1879,100000,female,1,2,28,-1,-1,-1,-1,-1,-1,555,712,712,712,862,712,712,712,712,862,712,1840,1
+1880,10000,male,2,2,33,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+1881,210000,male,1,2,31,0,0,0,0,0,0,161159,165071,173443,179686,197458,138218,8000,13000,10000,20000,7000,7000,0
+1882,170000,female,2,1,41,0,-1,-1,-1,-1,0,21170,9698,7360,6380,11937,6378,9734,7373,6380,11937,1000,6881,0
+1883,90000,female,2,1,32,1,2,2,2,2,2,85997,83779,88577,86365,91105,89347,0,7200,0,6200,24,3300,0
+1884,210000,female,3,2,36,1,-1,-1,-2,-1,-1,0,4866,0,0,5916,0,4866,0,0,5916,0,0,1
+1885,50000,female,1,2,26,0,0,0,0,0,0,36806,38212,39141,35524,30842,17043,2000,2000,8156,30000,1644,1209,0
+1886,150000,male,1,1,30,1,-1,2,-1,-1,-1,-819,35457,819,2145,17000,23698,36276,0,2145,17000,23698,411,0
+1887,80000,female,1,2,30,1,-1,-1,-1,-2,-2,0,1313,880,0,0,0,1313,883,0,0,0,0,0
+1888,130000,female,1,1,38,0,0,0,-2,-2,-2,64942,66775,0,0,0,0,4000,0,0,0,0,0,1
+1889,100000,male,2,2,30,1,3,7,6,7,8,72652,90461,89011,96593,105083,103522,20000,0,10000,10000,0,0,1
+1890,160000,male,1,1,41,0,0,0,-2,-1,0,53935,57997,-3,-3,2987,1993,5000,0,0,2990,6,2409,0
+1891,250000,male,2,2,31,0,0,0,0,0,0,14451,15774,16780,16807,17158,17500,1504,1510,537,556,559,658,0
+1892,500000,female,2,1,42,0,0,0,0,0,-1,60246,74832,126778,82611,71338,29756,40000,85000,139,20000,29761,70000,0
+1893,260000,male,2,2,32,0,0,0,0,0,0,106093,95060,90948,84986,84491,72248,4410,6500,9500,10000,9000,8000,0
+1894,50000,female,2,1,44,-2,-2,-2,-2,-2,-2,1473,390,390,390,390,0,390,390,390,390,0,780,0
+1895,30000,female,2,2,22,0,0,0,0,0,0,27388,29016,26941,27491,6726,0,2075,1000,550,135,0,0,0
+1896,110000,female,2,2,42,1,2,0,0,0,0,57046,51005,48572,49299,47126,48215,0,2100,2500,2000,2250,1200,0
+1897,500000,male,1,1,39,-1,-1,-1,-1,-1,-1,6057,9418,7667,6222,9435,7235,9418,7667,6222,9435,7235,8840,0
+1898,310000,female,1,2,32,0,0,0,0,0,0,35064,38195,39233,39577,42996,46319,4000,2000,2000,4000,4000,4000,0
+1899,580000,male,2,1,37,0,0,0,0,-1,-1,110417,89301,82057,27666,20226,276422,3757,2299,618,2636,326889,8689,0
+1900,340000,female,1,1,36,0,0,0,0,0,0,185268,326074,276519,251815,218706,165666,160444,10143,7190,6283,5208,4177,0
+1901,360000,female,2,1,42,-1,-1,-1,-1,-1,-1,22237,5683,1632,1632,22379,8901,6695,1632,1632,22379,8901,4852,0
+1902,290000,female,1,2,29,-1,-1,-1,-1,-1,-1,578,7124,7620,0,4788,0,7129,7620,0,4788,0,7026,0
+1903,30000,male,2,2,36,3,2,2,2,3,2,20424,19809,22478,24111,23447,24951,0,3000,2300,0,2500,0,0
+1904,80000,female,1,2,29,0,0,0,0,0,0,26524,23224,23141,22160,21478,20441,1500,1700,1000,1000,1000,1500,0
+1905,360000,male,1,1,38,-1,-1,-1,-1,-1,-1,780,0,390,390,390,390,0,390,390,390,390,390,1
+1906,170000,female,1,2,31,-1,-1,-1,-1,-1,-1,1561,1239,7315,10730,1686,9445,1239,7352,10730,1686,9445,3444,0
+1907,100000,male,2,1,42,0,0,0,0,2,0,56256,57685,58156,61103,59358,60060,3000,2688,5163,0,2358,2472,0
+1908,450000,male,2,2,37,0,0,-1,-1,0,0,457627,38692,4549,16885,6440,7440,1000,4549,16885,129,1000,0,0
+1909,260000,female,1,2,33,-2,-1,-1,-1,0,0,0,204,-810,2190,810,0,204,0,3000,0,0,0,0
+1910,240000,female,1,2,29,0,0,0,-1,-1,-1,25700,28677,22081,3428,67,1832,5009,2000,5000,0,3332,0,0
+1911,110000,female,2,2,28,0,0,0,-2,-2,-2,5660,1150,0,0,0,0,2000,0,0,0,0,0,0
+1912,240000,female,2,2,26,0,0,0,0,0,0,184501,177846,167934,169133,175175,146093,7627,6003,5504,10158,6000,6012,0
+1913,220000,female,2,2,35,0,0,0,0,0,0,34819,30937,30348,23459,23200,21281,2006,2022,1002,1007,1000,1008,0
+1914,20000,male,2,1,33,0,0,0,-2,-2,-2,2508,3448,-202,-202,950,0,1000,202,0,1152,0,1000,0
+1915,100000,female,1,1,51,1,-2,-2,-1,2,2,0,0,0,300,150,780,0,0,300,0,630,0,1
+1916,300000,male,1,2,32,-2,-2,-2,-2,-2,-2,264,264,264,264,414,264,264,264,264,414,264,264,0
+1917,20000,male,2,2,33,0,0,0,0,0,-1,8488,10179,11901,11901,9336,9054,2000,2000,0,0,9054,2000,1
+1918,360000,female,1,2,30,0,0,0,0,0,0,139762,143515,147037,146117,145884,147645,6000,6000,4818,5000,5000,4500,0
+1919,220000,male,1,2,28,0,0,0,0,0,0,221268,219545,216317,181012,181435,183283,8700,8500,6300,6700,7200,5300,1
+1920,470000,female,2,2,26,0,0,0,0,0,0,169699,170309,167876,170610,173643,178083,6200,7000,5716,5982,7000,5500,0
+1921,70000,female,2,2,22,0,0,0,0,0,0,65793,26665,22630,14573,15127,12596,2000,1400,291,1500,5000,2000,0
+1922,120000,female,1,2,26,0,0,0,0,0,0,10172,12400,14256,16859,17477,21588,3000,3000,4000,4000,5000,5000,0
+1923,50000,male,2,2,35,0,0,0,0,0,0,18510,19418,21097,21759,22421,23061,1500,2000,1000,1000,1000,1203,0
+1924,470000,male,2,1,49,0,0,0,0,0,0,169260,161760,154424,147137,138240,125866,6600,6170,5100,4726,4555,4375,0
+1925,130000,male,2,1,49,0,0,0,0,-1,-1,24008,21231,14323,7722,4689,-3614,3000,5000,2822,5000,0,6500,0
+1926,20000,female,1,2,24,-1,-1,-1,2,2,2,390,707,1320,930,780,240,1097,1003,0,240,0,780,1
+1927,260000,female,1,2,36,-2,-2,-2,-2,-1,-1,1891,2438,2280,746,1989,1668,2637,2280,746,1989,1668,2605,0
+1928,20000,male,1,1,39,-1,-1,-1,-1,-1,-1,628,662,596,630,664,598,700,600,700,700,600,1400,0
+1929,300000,female,1,2,28,2,-1,-1,0,0,-2,1314,168,1080,1080,0,0,170,1080,0,0,0,2500,1
+1930,460000,female,2,2,35,0,0,0,0,0,0,449790,450047,453770,396600,392879,398478,17610,17500,13810,14100,14520,15000,0
+1931,20000,female,1,2,24,1,-1,-1,-1,2,2,0,20087,2110,300,150,650,20087,2200,600,0,500,0,1
+1932,360000,female,2,2,27,0,0,0,0,0,0,238971,245515,248969,253896,259403,264352,10381,9036,9066,9576,9426,9435,1
+1933,290000,male,1,1,40,0,0,0,0,0,0,98441,95169,93718,89712,82809,76334,4000,4250,5000,3241,3500,7000,0
+1934,90000,male,1,1,30,0,0,0,0,0,0,38921,45577,46496,40244,39903,8629,12000,5000,3000,10000,1000,1838,0
+1935,180000,female,1,2,26,-1,-1,-1,-1,-1,-1,2049,0,351,631,13359,384,0,351,631,13359,384,487,0
+1936,360000,male,3,1,53,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+1937,120000,male,1,1,45,0,0,0,0,0,0,20877,21909,22922,23376,23866,24339,1369,1382,836,866,870,902,0
+1938,220000,male,2,2,30,0,0,0,0,0,0,217800,189016,137788,106713,96588,22743,7261,5170,4054,4500,1225,110000,0
+1939,220000,male,1,2,34,2,2,0,0,0,2,203101,185384,149839,142404,120918,87005,311,38024,8105,10117,37,5264,1
+1940,10000,female,1,2,27,-1,-1,-2,-2,-2,-2,499,0,0,0,0,0,0,0,0,0,0,0,1
+1941,320000,female,2,2,31,0,0,0,0,0,0,104850,101705,93489,95033,96941,108463,3600,4277,4000,3600,13203,4500,0
+1942,320000,male,1,1,33,0,0,0,0,0,0,325445,202853,57051,161651,182265,0,10000,15000,105000,55000,0,0,0
+1943,90000,male,2,2,39,0,0,0,0,-1,0,50477,22472,20148,4708,5000,5028,3000,5000,500,5000,500,500,0
+1944,180000,male,1,1,50,0,0,0,0,0,0,66114,69436,72560,76169,77988,69293,5000,5000,5000,3000,5000,5000,0
+1945,90000,female,1,2,28,0,0,0,0,0,-1,88345,90260,87535,89335,19715,4709,3360,1947,2000,10000,4709,82400,0
+1946,100000,male,1,1,36,0,0,0,0,0,0,23070,18806,20183,21540,25775,0,1700,2000,2000,5000,0,0,0
+1947,340000,male,2,1,41,0,0,0,0,0,0,331003,332829,274467,275341,280913,270448,15110,11019,9502,9579,9026,8719,0
+1948,50000,male,1,2,22,0,0,2,0,0,0,47726,51161,48310,50332,47492,50782,5500,0,3000,3000,5000,0,1
+1949,240000,female,2,1,41,-1,0,-1,-1,-1,-1,20272,11294,16873,1143,4317,14940,1000,16906,1143,4317,14940,0,0
+1950,10000,male,2,2,41,1,2,2,2,2,2,8722,9592,9289,10140,10417,10104,1157,0,1008,584,0,198,0
+1951,220000,female,1,1,42,2,2,2,2,2,2,2500,2500,2500,2500,2500,2500,0,0,0,0,0,0,1
+1952,100000,female,2,2,37,0,0,0,0,0,0,107669,107529,73323,51125,46879,45538,3536,2821,3963,3147,2670,725,0
+1953,220000,female,1,1,31,-2,-2,-2,-2,-2,-2,3785,1137,377,5763,3952,412,1142,377,5763,3952,412,1294,0
+1954,70000,female,3,1,57,0,0,0,0,0,0,67864,65062,66447,49103,45830,46769,2620,2730,1936,1700,1700,2000,0
+1955,30000,female,2,2,37,3,2,2,0,0,0,29657,30320,28991,29066,29340,30786,1763,0,1178,1223,2435,1200,1
+1956,130000,female,3,2,53,-1,-1,-1,-1,-1,-1,11085,45677,27951,17255,10400,18776,45697,27951,17307,10400,18776,2944,0
+1957,140000,female,2,1,25,0,0,0,0,0,0,81960,81757,83046,84034,77659,77180,3005,3000,3000,3000,3000,5000,0
+1958,20000,male,2,2,32,0,0,-1,0,0,0,4485,4843,15992,14897,12792,10042,1000,16000,600,1000,500,0,0
+1959,150000,female,1,1,38,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+1960,50000,female,2,2,26,0,0,-2,-2,-2,-2,4136,0,0,0,0,0,0,0,0,0,0,0,0
+1961,90000,male,2,1,29,1,1,1,0,0,0,41073,43480,73960,2442,48063,48186,3100,1000,770,48012,1756,1894,0
+1962,170000,female,3,1,37,0,0,0,0,0,0,158920,164353,167455,99297,59888,44262,8000,7000,5000,5000,5000,20000,0
+1963,70000,male,1,2,30,2,2,0,0,0,0,34985,34146,35271,35986,36905,37641,0,2000,1300,1500,1500,1576,1
+1964,200000,female,1,2,43,-2,-2,-2,-2,-2,-2,830,-6,-6,657,2088,150,0,0,663,2088,150,594,0
+1965,200000,male,1,1,42,0,-1,0,0,-1,-1,19318,19067,17858,326,326,326,19067,5000,0,326,326,326,0
+1966,20000,male,2,1,40,1,2,0,0,0,0,20498,19692,20498,19898,19906,18586,0,1600,0,398,0,0,1
+1967,200000,male,2,1,41,0,0,0,0,0,0,96910,92934,99528,100341,102585,108567,10000,7004,5000,5003,7345,7000,0
+1968,170000,male,2,2,26,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+1969,130000,male,1,2,25,1,-2,-2,-2,-2,-2,-2000,-2000,-2000,-2000,-2000,-2000,0,0,0,0,0,0,1
+1970,100000,female,1,2,27,0,0,0,0,2,0,90118,88435,90147,94425,92853,93816,4110,4101,6623,0,3503,3360,0
+1971,180000,male,2,2,31,0,0,0,2,0,0,28566,32876,39120,38339,42679,46953,5000,7000,0,5000,5000,5000,0
+1972,230000,female,3,2,26,-2,-1,0,0,0,0,1200,990,9079,11186,10159,11734,990,8089,2186,1159,1734,1200,0
+1973,20000,male,3,2,50,-1,-1,-1,-1,-1,0,2191,1140,12656,1693,303,12303,1140,12656,1700,500,12000,0,0
+1974,500000,female,1,1,35,0,0,0,0,0,0,35176,36193,44157,48322,21593,13866,2504,10004,5178,1047,2019,1004,1
+1975,150000,female,1,1,38,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+1976,80000,female,3,2,40,3,2,2,2,2,2,38503,40118,41199,42264,43083,43471,2500,2000,2000,1600,1200,2000,1
+1977,230000,male,2,1,29,0,0,0,0,0,0,56171,60250,63574,71941,75882,75619,5000,5000,10000,5000,5000,5000,0
+1978,80000,male,1,2,37,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+1979,230000,female,2,2,24,0,0,0,0,0,0,24973,24974,25566,23427,28229,31355,5000,5000,2100,5229,3355,4598,0
+1980,50000,female,2,2,49,2,0,-1,-1,-1,0,38947,37799,3,18080,12227,13296,2000,1000,19000,12500,2000,2000,1
+1981,50000,male,2,2,35,0,0,0,0,0,0,48813,50789,49624,19880,20431,19559,5000,23000,838,1000,1000,1000,0
+1982,10000,female,1,2,25,1,3,2,0,0,0,10438,10130,9738,9178,8398,0,0,0,0,0,0,0,0
+1983,140000,male,2,2,34,2,2,2,2,2,2,135949,130625,117392,111478,109353,97612,8408,3500,3500,3600,0,3600,0
+1984,50000,male,2,2,42,0,0,0,0,0,0,39236,39729,27068,28604,28199,58428,2094,1451,1987,1039,1500,1200,1
+1985,180000,male,3,2,28,0,0,0,0,0,0,129719,133702,133758,80055,69672,33194,6070,3521,5000,5000,5004,5029,0
+1986,360000,male,1,2,65,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+1987,580000,male,3,1,67,2,2,3,3,4,6,453985,470915,471175,486776,503914,527711,25704,9464,25065,25703,33000,215,0
+1988,310000,female,1,1,43,-2,-2,-2,-2,-2,-2,14619,1881,13750,9837,7785,14460,12484,13961,9838,7785,14460,14195,0
+1989,20000,male,3,2,52,0,0,2,0,0,0,16735,20373,12071,12567,13949,14318,4008,0,1000,1600,600,532,0
+1990,180000,female,1,2,43,-2,-1,-1,-1,0,-1,8657,6847,18762,22928,3129,2398,6847,18762,22928,0,2398,23149,0
+1991,60000,female,1,2,24,0,0,0,0,0,0,15050,16203,16891,15474,14612,16354,2000,1300,2000,1000,2000,1000,0
+1992,40000,female,3,1,59,0,0,0,0,0,2,14769,15271,15383,14548,16274,15650,1573,1512,504,2770,613,14,0
+1993,140000,female,2,1,34,0,0,2,0,0,0,121374,125965,102527,103337,105942,101830,8200,3000,4000,4500,4000,4200,0
+1994,220000,male,2,1,32,0,-1,-1,-1,-1,-1,8000,8288,8000,0,8000,0,8288,8000,0,8000,0,0,0
+1995,10000,male,2,2,22,0,0,0,0,0,0,8602,8728,9721,9609,9503,9771,1158,1151,339,344,425,195,1
+1996,20000,male,1,1,52,0,-1,-1,-1,0,-1,19965,390,390,780,780,10400,390,390,780,0,10400,0,0
+1997,50000,female,1,2,23,-1,0,0,0,0,0,15036,15790,18202,18601,19138,18319,1300,2701,700,847,655,700,0
+1998,50000,female,2,2,33,2,0,0,0,0,0,27752,28787,29800,30393,31031,33020,1487,1500,1081,1121,2500,0,1
+1999,320000,female,2,2,35,0,0,0,0,0,0,98697,100572,103621,103720,100136,102167,3891,5240,3616,3770,4264,3345,0
+2000,20000,male,2,2,34,-2,-2,-2,-2,-2,-2,2199,1530,750,2280,1500,780,1530,750,1140,3000,780,0,0
+2001,50000,male,2,1,40,0,0,0,0,0,0,48219,48978,49257,19641,20053,19613,2037,2316,690,715,718,690,0
+2002,340000,male,1,1,49,-1,-1,-1,-2,-1,2,1960,1052,6730,1346,3684,745,1228,7270,2000,4325,0,11271,0
+2003,360000,female,2,1,32,1,-2,-2,-2,-2,-2,-301,-301,-301,-301,-301,-301,0,0,0,0,0,0,1
+2004,300000,female,2,1,33,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+2005,40000,female,2,2,26,0,0,0,0,2,2,31475,32663,33813,34952,36447,35515,2000,2000,2000,2500,0,1500,0
+2006,150000,male,1,1,51,0,0,2,0,0,0,128968,138260,134573,136026,97517,47027,12900,0,5399,4224,1830,1889,0
+2007,20000,female,2,2,40,2,2,0,0,0,3,18278,17696,19008,19083,21871,21236,0,1612,687,3100,0,0,1
+2008,30000,female,3,1,35,1,-2,-1,0,0,-1,-5,-5,2605,893,895,2328,0,2610,18,2,2333,1,0
+2009,80000,female,2,1,27,-2,-2,-2,-2,-2,-2,390,0,780,0,0,0,390,780,0,0,0,0,0
+2010,390000,female,3,1,38,-2,-2,-2,-2,-1,-1,241,0,0,0,739,0,0,0,0,739,0,0,1
+2011,20000,female,2,2,22,1,2,2,2,2,2,5613,5377,6920,6911,6655,7191,0,1638,251,0,647,0,1
+2012,200000,male,2,1,42,0,0,0,0,0,0,68670,69702,70015,72073,71690,73661,4000,4000,5000,2563,5000,5000,1
+2013,80000,female,3,1,35,0,0,0,0,0,0,49544,50418,51810,28964,13059,13488,1970,2355,1500,1000,646,2000,0
+2014,50000,female,2,1,36,2,0,0,0,0,0,50922,50367,41627,42297,43031,45837,1715,1991,1661,1566,3526,0,1
+2015,230000,female,2,1,38,0,0,0,0,0,0,10906,9692,9162,10466,9426,8099,1364,1393,2003,1000,1000,500,0
+2016,190000,female,2,2,31,0,0,0,0,0,0,147586,155228,160588,162241,165794,168951,10000,7891,5743,6102,6000,6307,0
+2017,260000,male,3,1,36,-1,0,0,0,0,0,154462,153799,77156,73658,70273,67100,7425,2795,2779,2947,3400,5000,0
+2018,100000,female,1,1,39,-1,-1,-1,-1,-1,-1,29449,55139,34181,12592,71340,32453,55139,34181,12592,71340,32453,37035,0
+2019,140000,male,2,2,41,0,0,0,0,0,0,132758,83498,84837,85663,79852,81090,4002,3900,3000,2892,3059,3003,0
+2020,20000,female,2,1,42,2,0,0,0,0,0,12426,13143,14152,14435,14802,15256,1225,1234,517,600,700,710,1
+2021,80000,male,2,2,30,0,0,0,0,0,0,69392,64149,53200,29707,28427,10072,3046,1874,2000,1000,1000,199,0
+2022,360000,male,1,2,32,0,0,0,0,-1,-1,304907,309972,315730,113412,2500,0,12557,13738,5053,2500,0,0,0
+2023,70000,male,2,2,31,0,0,0,0,2,0,46079,47232,48618,51134,50222,48874,2200,2500,3600,0,1754,1892,1
+2024,30000,female,2,1,24,2,2,0,0,0,0,31214,28983,28301,31072,24147,4007,0,1400,3561,483,80,0,1
+2025,500000,female,1,1,39,0,0,0,0,0,0,358020,360047,369045,382231,204593,211655,15000,15000,20000,10000,10000,10000,0
+2026,320000,female,2,2,30,2,-1,-1,-1,-1,-1,416,416,416,416,1829,1833,416,416,416,1829,1833,2148,0
+2027,500000,female,1,1,34,0,0,0,0,0,0,32715,60927,76088,110294,108964,103548,30007,30000,50000,5000,5000,30000,0
+2028,240000,female,1,1,27,1,-2,-1,-1,0,0,0,0,402,14350,14129,10222,0,402,14350,1129,1222,204,0
+2029,50000,female,1,2,25,-1,-1,-1,-1,-1,-1,574,801,686,527,312,442,801,686,527,312,442,8016,0
+2030,120000,female,2,1,39,0,0,0,0,0,0,31611,32264,32786,33018,27114,26287,1562,1500,1059,988,922,826,0
+2031,250000,female,1,2,32,0,0,0,0,0,0,26465,30762,32833,34055,34321,23166,5000,3000,2500,1000,3050,4000,0
+2032,180000,female,2,1,39,0,0,0,0,0,0,65710,58159,60188,61090,62450,63911,2500,3000,2500,2500,2500,3000,0
+2033,10000,female,2,2,22,-1,-1,-1,-1,0,-1,5208,654,9954,9719,6547,654,654,9954,9919,0,654,264,0
+2034,200000,female,3,1,53,0,0,0,0,0,0,98426,91948,17042,10075,5107,7789,52306,1000,212,102,7786,4000,0
+2035,120000,female,1,2,29,-1,-1,-1,-1,-1,-1,380,380,380,380,380,380,380,380,380,380,380,2880,0
+2036,230000,male,2,1,38,-1,-1,-1,-1,-1,-1,326,326,326,326,326,326,326,326,326,326,326,326,0
+2037,330000,female,1,1,36,1,-2,-2,-1,-1,-1,0,0,0,1983,0,207,0,0,1983,0,207,49974,0
+2038,50000,female,2,2,28,0,0,0,0,0,0,28457,29491,30508,31599,32262,32904,1492,1509,1600,1170,1177,1217,1
+2039,130000,male,2,2,32,0,0,-2,-2,-2,-2,27495,0,0,0,0,0,0,0,0,0,0,0,0
+2040,110000,male,2,2,26,2,2,2,2,2,2,58112,56620,60732,61938,63097,64492,0,5700,2800,2300,2600,2300,1
+2041,30000,female,3,2,40,-1,0,0,-1,2,2,2208,7808,0,196,46,5346,7006,0,196,0,5300,0,0
+2042,120000,female,1,2,25,0,0,-1,0,0,-1,8676,10599,5814,4426,3038,5184,5000,5814,0,0,5184,7048,0
+2043,120000,female,1,2,28,-2,-1,-1,-1,0,0,398,954,0,170,170,0,958,0,170,0,0,0,0
+2044,210000,female,2,1,40,0,0,0,0,0,2,42820,44156,44864,45768,48204,49453,1856,1564,1468,3000,2000,2000,0
+2045,30000,male,2,1,47,1,2,0,0,2,2,15148,14620,15322,16469,16063,17295,0,1253,1400,0,1500,0,0
+2046,50000,male,3,2,27,2,2,2,2,2,2,54529,53143,53782,50982,51740,49062,1800,3900,300,3400,0,4000,0
+2047,140000,female,2,2,42,-1,-1,-1,0,-1,-1,176,395,1204,700,748,-784,395,1204,0,748,0,2688,0
+2048,140000,male,3,1,37,2,2,2,2,2,2,136184,138932,140185,136438,144979,139314,6400,5000,0,10800,0,5300,0
+2049,50000,male,2,1,55,0,0,0,0,0,0,50528,50541,49345,20238,18646,19034,2100,1305,1201,663,684,652,0
+2050,130000,male,3,1,46,1,2,0,0,0,0,26582,25956,25144,23235,13277,13895,100,2000,1000,700,1000,2000,1
+2051,80000,female,2,2,30,1,2,0,0,0,0,6393,6148,7311,7303,7456,7605,0,1266,258,267,269,278,1
+2052,50000,female,3,1,51,0,0,2,0,0,0,44766,48047,46640,40551,19398,0,4000,0,811,1000,0,0,0
+2053,100000,male,1,1,35,1,2,2,2,2,0,17365,18102,17514,20207,19745,20263,1310,0,3000,0,1000,1000,0
+2054,220000,male,2,1,48,-1,-1,-1,-1,-1,-1,61614,45669,11086,4564,6549,6413,45889,11134,4578,6593,6440,12249,0
+2055,260000,female,2,1,28,-1,-1,-1,0,-1,-1,711,711,5514,1989,711,8503,711,5514,0,711,8503,3011,0
+2056,320000,male,1,2,40,0,0,0,0,0,0,304702,307943,314201,319204,325758,319898,20000,12868,11721,12000,13000,11728,0
+2057,80000,female,2,1,30,0,0,0,0,0,0,5123,7864,9701,8969,8529,8737,3000,2005,1013,1000,350,500,0
+2058,140000,male,1,2,55,0,0,0,0,0,0,65640,66998,68201,68866,65781,66850,2800,3000,2500,2350,2400,2400,0
+2059,180000,male,2,1,26,0,0,0,2,-1,-1,175539,138825,51686,2594,171716,181693,3826,7000,0,171716,13400,0,1
+2060,80000,male,4,2,23,1,-1,-1,-1,0,0,-24,3032,3318,1278,2541,15452,3056,3324,1278,2003,15000,13004,0
+2061,250000,male,2,2,40,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+2062,80000,male,1,2,33,0,0,0,0,0,0,75454,77738,77235,76835,34751,0,4100,2000,0,0,0,0,0
+2063,30000,male,3,1,50,0,0,0,0,0,-1,28339,24232,15626,9330,4372,1419,1681,2000,0,0,1419,12000,1
+2064,120000,female,2,1,26,-1,-1,-1,-1,-1,-1,13587,11433,7823,0,4913,7023,11433,7823,0,4913,7023,2176,0
+2065,120000,female,2,2,29,0,0,0,0,0,0,82064,83847,85558,86491,88136,89886,4000,4000,3250,3195,3210,4200,0
+2066,20000,male,2,1,29,2,2,2,0,0,0,8024,11718,11238,12735,14359,19076,4000,0,2000,2000,5000,0,0
+2067,50000,male,2,2,40,0,0,0,0,-1,0,26566,14851,4013,2027,15090,14078,3000,1000,41,30525,477,688,0
+2068,250000,male,2,1,50,-2,-2,-2,-1,-1,-1,390,390,390,8042,16014,5607,390,390,8042,16014,5607,390,0
+2069,260000,male,1,2,37,0,0,0,0,0,0,112053,108596,100005,101759,100698,99222,5000,5000,5000,5000,5000,5000,0
+2070,180000,female,1,2,27,-1,2,-1,-1,-1,2,980,980,376,0,2202,150,0,376,0,2202,0,819,0
+2071,20000,male,3,1,49,-1,-1,-1,-1,-1,-1,390,678,0,780,0,378,678,0,780,0,378,0,0
+2072,150000,male,2,1,55,1,2,2,0,0,0,76516,78505,76652,77688,79440,81126,3800,0,2800,3000,3000,3200,1
+2073,260000,male,1,2,34,-1,-1,-1,-1,-1,-1,6776,3198,2123,11774,6166,3583,3222,2125,11892,6192,3601,3403,0
+2074,230000,male,1,1,43,1,2,2,2,2,2,9462,9701,10277,13148,12834,13861,1000,1000,3000,0,1200,0,0
+2075,70000,female,1,2,24,0,0,0,0,0,0,69572,71233,66844,50410,44958,46655,2828,2337,1702,1800,2600,2000,0
+2076,160000,female,1,1,33,-1,-1,-1,-1,0,0,7429,7165,1849,4715,799,0,8000,2000,4755,0,0,0,0
+2077,50000,female,2,1,42,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+2078,170000,male,2,1,37,-1,-1,-1,-1,-2,-1,490,-10,4910,0,0,1000,0,4920,0,0,1000,1030,0
+2079,210000,female,3,1,39,0,0,0,0,0,0,106028,107312,65968,67307,46511,47583,6000,5000,2697,2000,2012,1172,0
+2080,230000,male,1,2,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+2081,110000,male,2,1,36,2,2,2,2,2,2,57135,55648,59518,57964,66995,65762,0,4803,0,10000,0,7195,1
+2082,80000,female,2,1,39,0,0,-1,-1,-1,-1,44002,43156,22478,5011,4674,0,2300,22478,5011,4674,0,0,0
+2083,90000,female,2,1,54,-1,-1,-1,-1,-1,-1,692,392,332,14579,2091,506,394,332,14579,2091,506,417,0
+2084,90000,female,1,1,41,2,2,2,2,2,2,78700,80348,81630,82890,84709,86252,3500,3200,3200,3300,3100,3100,1
+2085,250000,female,1,1,42,-1,-1,2,0,-1,2,744,2244,1372,686,1522,686,2186,0,0,1522,0,4389,0
+2086,270000,male,2,2,31,1,2,2,2,2,0,16616,16911,14692,13907,10660,10683,2500,0,1000,0,2000,1000,0
+2087,20000,male,3,2,23,0,0,0,0,0,0,10103,11139,12106,12349,11420,11641,1205,1172,415,404,400,400,0
+2088,80000,female,5,2,34,1,2,-1,-1,-1,0,2898,1457,1261,1261,2522,1261,0,1261,1261,2522,0,780,0
+2089,20000,male,1,2,23,2,2,0,0,0,0,15077,15534,16540,17267,17475,17838,1000,1273,1000,631,650,803,0
+2090,150000,female,2,1,36,0,0,0,2,0,0,83853,87227,96253,93562,96510,63417,5000,11700,0,5000,2500,5000,0
+2091,80000,female,3,1,37,1,2,2,0,0,0,99396,100495,97982,100261,102147,91829,3560,0,3912,3832,3508,2800,1
+2092,130000,female,2,1,47,0,0,0,0,0,0,46096,37939,39138,40023,40536,41697,2167,2000,2000,1469,2000,2000,0
+2093,320000,female,1,2,28,-1,0,-1,-1,-1,-1,18506,12237,913,5356,58545,7357,1062,1116,5384,58837,7393,5926,0
+2094,50000,female,1,2,24,2,2,2,0,0,0,43379,46097,44187,43165,37967,36327,3628,8,1500,1490,1303,2000,1
+2095,260000,female,2,1,34,0,0,0,0,0,0,135489,138509,138076,110044,111906,104073,5007,5003,5004,4052,4010,3835,0
+2096,140000,female,1,2,35,2,2,2,2,2,2,56528,57973,58679,59379,60636,61656,2800,2100,2100,2200,2000,2400,0
+2097,10000,female,3,1,53,1,4,3,2,2,2,4479,4272,4064,3856,4390,4171,0,0,0,900,0,900,1
+2098,180000,male,1,2,30,0,0,0,0,0,0,139804,136528,57096,52694,50276,52945,7000,6000,3500,3500,3500,3900,0
+2099,250000,male,1,1,71,0,0,0,0,0,0,177484,177946,159849,145461,141487,147705,6243,5446,4721,4385,7805,200,0
+2100,20000,male,1,2,23,-1,2,2,2,2,2,15383,16142,15586,17322,16908,17564,1300,0,2000,0,1240,0,1
+2101,50000,male,3,2,28,0,0,0,0,0,0,48963,50381,50287,20406,20206,19690,2500,1293,839,870,940,865,0
+2102,120000,female,1,1,38,1,-2,-1,0,0,-2,0,0,4050,4050,0,0,0,4051,0,0,7,7,0
+2103,160000,female,2,1,49,1,2,2,2,2,2,58943,60210,60755,59180,62835,61670,2800,2120,0,4611,0,2213,0
+2104,60000,female,2,2,22,0,0,-1,-1,0,0,11718,4878,18347,15707,18976,6355,1000,37325,20800,3500,1232,113,0
+2105,130000,male,2,2,31,0,0,0,0,0,0,116437,112881,96191,88934,90633,91459,4911,3533,3301,3607,5516,7020,0
+2106,320000,male,2,1,41,1,-2,-2,-2,-2,-2,0,0,0,0,700,860,0,0,0,700,860,2420,1
+2107,50000,female,2,1,43,0,0,0,0,0,0,35268,34807,31071,30258,29579,28396,1600,1400,1500,1200,1500,1200,0
+2108,50000,male,2,2,33,0,0,0,0,0,0,48058,49348,41707,29358,29860,30461,2097,1456,1200,1100,1076,1200,1
+2109,70000,female,2,1,44,2,2,2,2,2,2,12662,13661,13145,14123,13754,14724,1500,0,1200,0,1200,0,1
+2110,80000,female,2,1,44,0,0,0,0,0,0,76992,73036,17576,5616,25439,25833,2000,1000,4554,21000,1000,1000,0
+2111,230000,male,2,2,27,-1,-1,-1,-1,0,0,416,568,1427,14947,13255,8226,568,1427,14947,437,1000,900,1
+2112,20000,male,3,2,43,-1,-1,2,0,0,0,390,1736,1170,780,780,0,1736,0,0,0,0,0,1
+2113,20000,female,3,2,39,0,0,2,2,3,2,12241,16020,16457,20906,20289,20407,4000,1000,4750,0,600,0,0
+2114,360000,male,2,2,42,0,-1,-1,-1,-1,-2,10000,10000,141,7054,-2946,-2946,10000,141,7054,1941,0,0,0
+2115,90000,female,1,2,28,-2,-2,-1,0,0,0,-1886,-2086,34347,35042,46098,46658,0,36633,1328,11696,1350,1337,0
+2116,160000,female,2,1,34,2,2,2,0,0,0,77290,72681,66526,66893,66637,67877,4500,2500,3000,3000,4000,2305,0
+2117,50000,male,1,2,36,1,2,2,2,0,0,49845,51215,47074,18853,19405,19237,2505,2300,0,1000,800,1000,0
+2118,220000,female,1,2,27,0,0,0,0,0,0,164855,168607,152765,152953,156065,145846,6102,7000,6500,5573,7000,8000,0
+2119,350000,male,1,2,42,2,0,0,0,0,0,320982,322788,272799,117867,117518,119718,12618,11127,4327,4261,4150,4153,1
+2120,120000,female,1,2,29,-1,-1,-1,0,-1,-1,3945,5795,10863,1601,1126,4802,5894,10863,0,1126,4802,9751,0
+2121,210000,female,1,2,30,1,2,0,0,0,0,73903,72153,73634,75095,76886,78604,0,2674,2687,3000,3000,3000,0
+2122,100000,female,2,1,31,2,2,0,0,0,2,17606,17040,19139,19325,20855,20372,0,2700,800,2000,0,1000,0
+2123,50000,female,3,2,52,0,0,0,0,0,0,34781,34458,33311,18033,18740,19408,1725,1800,3000,1000,1000,657,1
+2124,340000,female,1,2,26,-1,0,0,0,0,-1,58363,106270,159464,155685,137838,6556,56270,59503,3330,40,6556,16390,0
+2125,140000,male,1,1,57,2,2,2,2,2,3,108660,105504,113177,113622,116396,115826,0,10970,3805,4747,1932,8337,1
+2126,50000,male,2,2,42,0,0,0,0,0,0,47691,48738,48565,48301,50851,51153,3304,2300,2000,3500,3000,4000,0
+2127,50000,male,2,2,31,1,2,0,0,2,0,16617,16061,17082,18969,18524,18947,0,1294,2181,0,731,586,0
+2128,90000,female,1,2,27,0,0,0,0,0,0,56754,58835,59461,60974,62339,63648,3000,2200,2500,2500,2500,2600,0
+2129,160000,male,2,1,66,2,2,2,2,2,2,67771,69535,70848,71739,73090,74490,3400,3000,2600,2600,2700,2800,1
+2130,250000,male,2,2,27,0,0,0,0,0,0,34799,25831,24448,20492,18812,17663,2027,2000,1007,1031,2000,10000,0
+2131,50000,male,1,2,23,1,-2,-2,-2,-2,-1,0,0,0,0,0,19553,0,0,0,0,19553,389,0
+2132,300000,female,2,1,36,0,0,0,0,0,0,141486,79474,80813,111116,13534,10379,6000,5000,30303,2011,856,1010,0
+2133,230000,female,2,2,34,1,-2,-2,-2,-1,0,-2,-2,-2,-2,794,796,0,0,0,796,2,0,0
+2134,260000,male,1,1,43,1,-2,-2,-1,0,0,0,0,0,14855,13650,0,0,0,15055,0,0,0,1
+2135,60000,female,1,2,22,2,0,0,0,0,-1,58841,60970,58082,59882,19663,29343,3700,1400,2000,500,30000,1100,0
+2136,140000,male,3,1,41,-1,-1,-1,0,-1,-1,2139,0,1686,1686,205,6689,0,1686,0,205,6689,0,0
+2137,70000,female,3,3,49,2,0,0,0,0,0,92033,79841,80149,47735,48737,50225,3078,13489,7000,1771,2300,7600,1
+2138,20000,male,3,1,41,2,0,0,0,0,0,18738,18986,20110,19584,16539,19466,1376,1500,593,2701,4261,941,1
+2139,20000,female,2,1,27,3,2,0,0,2,3,4899,4675,5685,6490,6837,6435,0,1095,900,596,0,0,1
+2140,170000,male,4,1,28,0,0,0,-1,-1,-1,171098,166176,169759,11760,0,4902,14000,5695,11760,0,4902,6000,0
+2141,50000,male,2,2,26,0,0,2,0,0,0,13117,16887,16323,16752,17229,18931,4000,0,1000,900,2000,379,0
+2142,60000,male,1,1,49,2,0,0,0,0,0,60289,57426,25820,25793,28224,28968,1580,1500,1100,3000,1200,1100,1
+2143,230000,female,1,2,29,-1,-1,-1,-1,-1,-1,1960,11055,2269,9818,690,5369,11055,2269,9818,690,5369,4285,0
+2144,100000,male,2,2,30,0,0,0,0,0,-1,31373,32155,32331,29035,19576,33825,1602,1451,4,41,34938,292,0
+2145,150000,male,1,2,24,-1,-1,-1,-1,-1,-1,1050,3258,3664,1461,2348,3626,3258,3735,1461,2348,3626,3089,0
+2146,70000,male,2,2,51,0,0,0,0,0,0,67880,66658,58486,29171,17725,17693,3028,3199,1267,642,651,1665,0
+2147,150000,male,1,2,25,0,0,0,0,0,-1,52952,95134,31578,26089,16624,5107,60086,2000,2000,5000,6000,9000,0
+2148,50000,female,2,2,25,0,0,0,0,0,0,23529,27889,22800,21930,23183,17613,4820,1500,1000,2000,1000,500,0
+2149,110000,female,1,2,29,2,2,2,2,2,2,95690,105101,105676,106506,103591,109276,11000,3800,4000,0,8800,0,1
+2150,290000,female,1,2,25,0,0,0,0,0,0,305823,303701,296384,248801,241983,230925,15000,10500,10000,15000,7844,23333,1
+2151,310000,female,2,2,42,0,0,0,0,0,0,128166,102808,94484,95087,80331,66813,3844,5000,5000,6000,6000,7000,0
+2152,80000,female,2,1,38,0,0,0,0,0,0,74236,63120,53897,54292,55430,57011,2125,2000,2000,2010,2500,1336,0
+2153,220000,male,1,1,54,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+2154,230000,female,2,1,62,0,0,0,0,0,0,167635,170085,172204,173045,176163,179625,6474,7726,5601,6100,6427,6000,0
+2155,360000,male,1,1,52,0,0,0,0,0,0,236171,228951,220826,191655,162435,132093,8500,7800,6665,5670,4461,3100,0
+2156,320000,male,1,1,48,-1,-1,-1,-1,-1,-2,25840,13260,13217,17967,-13,-13,13326,13289,18064,0,0,0,0
+2157,20000,male,1,2,30,0,0,2,0,0,0,14406,20653,19995,19391,19120,19158,6500,84,7171,1000,1000,2000,0
+2158,360000,female,2,2,35,-1,-1,-1,-1,-1,-1,61793,79467,26943,148307,71373,7406,79651,26943,148307,71373,7406,3021,0
+2159,360000,female,2,1,38,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+2160,440000,female,1,1,37,-1,-1,0,-1,-1,-1,10858,46104,21349,11569,-1401,1773,50004,20000,12000,0,3773,0,0
+2161,400000,male,2,1,49,2,2,2,2,3,2,175904,179579,186539,196029,192680,195226,8000,11500,14100,4,6804,5,1
+2162,180000,male,2,1,35,1,2,0,0,0,0,32082,31293,31570,33370,33370,0,0,1400,2200,0,0,0,0
+2163,230000,female,1,2,30,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+2164,200000,female,1,2,29,0,0,0,0,0,0,9078,11612,12100,13900,15900,0,3000,1500,2000,2000,0,0,0
+2165,230000,male,1,1,34,0,0,0,0,0,0,22954,11225,10669,13498,12482,9949,1700,1380,8000,1000,4000,1000,0
+2166,50000,male,2,1,53,0,0,0,0,0,0,47824,48954,46716,18685,19076,19466,1948,1835,669,692,707,695,0
+2167,270000,male,1,2,36,-2,-2,-2,-2,-2,-2,15986,16635,15913,14192,10559,7672,2008,1513,1019,515,302,3050,0
+2168,440000,female,2,2,29,0,0,0,0,0,0,485921,234046,214092,201210,186455,169455,20000,7822,8000,6000,16000,4000,0
+2169,340000,male,1,1,53,-1,-1,-1,-2,-2,-1,3780,3295,1461,1903,1492,4409,3295,1461,1903,1492,4409,3396,0
+2170,320000,male,2,2,35,0,0,0,0,0,0,12233,16490,20011,17918,18627,19167,7000,4100,1000,1000,1000,1000,0
+2171,500000,female,2,2,36,-1,-1,-1,0,0,0,339,0,28119,29698,32229,27912,0,28119,2000,3200,3000,785,0
+2172,30000,female,2,1,33,-1,-1,-1,0,0,0,29568,3663,26539,28352,17596,7576,3701,27209,5024,523,1000,0,0
+2173,120000,female,3,2,55,0,0,0,0,0,0,102735,80762,77846,77404,75056,75951,3000,3000,2655,2664,3000,3000,0
+2174,310000,male,1,2,37,0,0,0,0,0,0,10513,11228,12222,12468,11809,12044,1193,1187,433,428,431,445,0
+2175,110000,female,3,2,31,0,-1,-1,-1,-1,-2,2705,2487,2500,2500,0,0,2487,2700,2500,0,0,0,0
+2176,400000,male,2,2,31,0,0,0,0,0,0,185677,189682,194509,199284,203502,195769,7000,8000,8000,7500,9000,5000,0
+2177,150000,female,1,1,55,-1,-1,-1,-2,-2,-2,2070,7620,0,0,0,0,7620,0,0,0,0,0,0
+2178,50000,male,1,1,42,0,0,0,-2,-2,-2,47454,30680,-220,-1000,-1000,0,3000,220,780,0,1000,0,0
+2179,270000,male,2,1,27,0,0,0,0,0,0,21256,19819,19200,18527,18413,18010,1618,1569,631,652,637,541,0
+2180,30000,female,3,1,39,0,0,0,0,-1,0,14517,3670,3280,2890,15839,13680,2500,2500,2500,15839,666,0,1
+2181,30000,male,1,1,57,0,0,2,3,2,0,23978,26749,28085,27344,26768,27454,3478,2073,0,0,1129,1163,1
+2182,20000,male,2,2,24,0,-1,-1,-1,-1,-1,10700,510,900,704,540,150,510,390,1094,2420,150,780,0
+2183,50000,female,2,2,22,0,0,0,0,0,0,18471,19483,19431,19307,19361,19738,1329,1307,683,857,856,834,0
+2184,100000,male,2,1,50,0,0,0,0,0,0,101430,87429,108011,104261,102451,99947,5001,64401,4000,4500,4200,3200,0
+2185,200000,female,1,2,29,1,-2,-1,-1,-1,-1,0,0,3941,16405,-150,2327,0,3941,16405,0,2477,0,0
+2186,500000,male,1,1,38,0,0,0,0,0,0,419487,389605,309466,246519,247263,251389,13000,20000,15000,9322,10000,10000,0
+2187,190000,male,2,1,43,0,0,0,0,0,0,90580,72260,80337,84221,91805,100053,10000,10000,10000,9000,10000,22000,0
+2188,130000,male,2,1,47,-1,-1,-1,-1,-1,-2,5837,21038,722,4399,0,0,21038,729,4399,0,0,5239,0
+2189,50000,male,2,2,23,0,0,2,0,-1,-1,17792,20036,18664,18416,416,416,2956,0,368,416,416,416,0
+2190,10000,male,3,2,22,0,0,0,0,0,0,9363,5062,6021,6763,7648,8367,1200,1200,1000,1000,1000,0,0
+2191,1000000,female,1,1,47,0,0,0,-1,0,0,964511,983931,535020,891586,927171,961664,50784,50723,896040,50000,50000,50256,0
+2192,150000,female,3,1,35,-1,-1,-1,-1,-1,-1,11500,4998,4996,4998,4998,49398,4998,4996,5000,4998,49398,4552,0
+2193,20000,male,2,1,37,0,0,-1,-1,-2,-1,17219,14640,19400,0,0,17666,2000,19400,0,0,17666,0,1
+2194,140000,female,1,2,30,2,-1,-1,-1,-1,-1,1070,4593,4705,1710,0,6096,4593,4705,1710,0,6096,0,1
+2195,210000,female,1,1,45,-2,-2,-2,-2,-2,-2,-200,-200,-200,0,2000,0,0,0,200,2000,0,0,0
+2196,360000,male,3,1,53,0,0,0,0,0,0,8669,8254,8988,6868,5604,6158,1303,1513,706,700,600,2000,0
+2197,60000,male,1,2,30,0,0,0,0,2,2,59959,49744,48257,46353,45481,48373,10020,4000,4000,0,3800,0,0
+2198,30000,male,2,1,33,0,0,0,0,0,0,15662,16601,21291,21939,22435,23160,1500,5000,1000,1000,1100,1000,0
+2199,140000,female,2,1,37,0,0,0,0,0,0,127693,26633,28180,29702,31223,35683,2000,2000,2000,2000,5000,2000,0
+2200,20000,female,1,2,21,0,0,0,0,0,-1,17471,14129,13937,9429,1393,2055,1400,3500,1567,162,2055,0,0
+2201,120000,female,2,2,32,0,0,0,0,0,2,15602,16482,16743,17185,18281,17312,2000,1551,2000,1500,457,7000,1
+2202,80000,male,1,1,45,1,-2,-1,-1,-1,-1,-50,-440,170,-220,390,0,0,1000,0,1000,0,780,0
+2203,50000,female,2,1,41,0,0,0,0,0,0,21910,23251,24059,24658,25212,25642,2000,1500,1000,1100,1000,1000,0
+2204,360000,female,1,2,27,1,-2,-1,-1,-1,-1,0,0,830,0,1271,179,0,830,0,1271,179,1970,0
+2205,500000,male,1,2,30,0,0,0,0,0,0,416171,437749,460317,472621,484993,496915,30000,30000,20000,20000,20000,70152,0
+2206,10000,male,2,2,21,0,0,0,0,0,0,7985,8677,9070,8880,9580,9000,1217,1000,200,700,200,0,0
+2207,210000,male,2,2,25,0,0,-2,-1,0,0,13899,-9,-9,3231,125140,124880,0,0,3240,125009,5009,5013,0
+2208,50000,male,3,2,41,0,0,2,0,0,0,22358,23257,23192,24073,21759,21959,1900,1000,1500,891,1000,700,0
+2209,200000,female,1,1,38,-1,2,-1,-1,-1,-1,6677,4561,1856,1856,1856,2508,0,1856,1856,1856,2508,26042,0
+2210,300000,female,1,2,36,-1,-1,-1,-2,-2,-2,10700,890,0,0,0,0,890,0,0,0,0,0,0
+2211,110000,male,2,2,24,0,0,0,0,0,0,44737,39590,39457,39075,39307,39564,2103,2005,2006,3006,3010,2013,1
+2212,50000,male,2,2,58,4,3,2,2,2,2,51996,51203,50071,8086,8263,9533,300,300,300,293,1400,400,1
+2213,340000,female,1,1,41,-1,2,-1,-1,2,-1,6814,6167,24386,3570,3094,14645,0,24386,3570,0,14645,4534,1
+2214,50000,female,2,1,32,-1,-1,-1,-2,-2,-2,819,699,0,0,0,0,699,0,0,0,0,0,1
+2215,110000,male,3,2,63,1,2,0,0,0,0,49992,48918,49890,46884,47350,43169,0,2164,1730,1788,1538,1607,0
+2216,600000,male,3,1,38,0,0,0,0,0,0,459600,372345,353121,337695,297541,256158,13713,13250,12854,11191,10029,10000,0
+2217,160000,male,1,2,32,-1,-1,-1,-1,0,0,2507,798,-2,2319,1523,-2,800,0,2321,4,0,801,0
+2218,450000,male,1,1,38,-1,-1,-1,-1,-1,-1,10591,7923,57139,15181,7247,13890,7964,57425,15257,7283,13959,11139,0
+2219,60000,male,1,2,31,1,-1,0,0,0,0,0,1012,22760,17032,6808,8741,1012,22066,5032,1565,8500,5205,1
+2220,310000,male,1,1,43,0,0,0,0,2,0,250708,256157,261550,285233,280905,272240,11000,11300,29841,69,9980,9546,1
+2221,20000,female,2,1,24,-1,0,0,-1,-1,-1,10361,19566,8746,3355,7143,1288,10000,1390,3355,7143,1288,0,0
+2222,60000,female,2,2,29,0,0,0,0,0,0,53274,54093,53111,50568,47791,45421,2591,2109,1705,2010,2000,1523,0
+2223,170000,female,2,1,38,-1,-1,-1,0,0,-2,521,5360,29271,26511,0,0,6439,29271,0,0,0,2730,0
+2224,190000,female,1,1,50,1,-1,-1,-1,-1,-2,0,2329,15951,332,0,0,2329,15990,332,0,0,0,0
+2225,230000,female,1,2,49,2,2,-1,-1,-1,-1,113,0,1100,0,2119,0,0,1100,0,2119,0,2916,1
+2226,80000,female,1,2,25,-2,-2,-2,-1,-1,-1,1174,0,0,5526,3292,12792,0,0,5526,3292,12807,600,0
+2227,120000,female,3,1,50,0,0,0,0,0,2,111564,112482,115046,80987,85921,84384,4200,4552,3100,6416,0,3228,0
+2228,20000,male,2,2,30,1,2,2,2,0,0,17260,19099,19309,18703,18937,20724,2422,816,0,685,2100,0,0
+2229,140000,female,2,1,26,0,0,0,0,0,-1,37283,24748,21854,21711,25999,902,7023,5080,10000,6000,902,18542,0
+2230,50000,male,2,2,24,0,0,0,0,0,0,49076,48923,49158,19270,18776,19167,2063,1298,700,800,815,237,0
+2231,180000,female,1,1,35,0,0,0,0,0,0,104335,108156,108874,111568,113817,116422,5500,4000,4500,4200,4500,4500,0
+2232,150000,female,3,1,50,-1,-1,-1,-1,-1,-1,3644,875,2162,0,5085,2887,875,2162,0,5085,2887,0,0
+2233,300000,female,1,2,35,0,0,0,0,0,0,294344,302638,300159,226705,229739,232942,15000,11311,7941,8412,9000,5258,0
+2234,380000,female,1,1,45,-1,-1,-1,-1,-2,-1,202,35993,86617,-3450,-3450,3502,37791,86697,0,0,7102,159753,0
+2235,90000,female,3,2,27,2,0,0,0,0,0,92290,90719,39902,39200,38531,32991,4183,1600,1280,1310,1432,1088,1
+2236,10000,female,2,2,22,1,2,2,2,0,0,8925,8637,10277,9736,9704,9725,0,1800,0,500,600,500,0
+2237,90000,female,3,2,28,2,0,0,0,2,0,63869,65212,66627,70652,69397,70842,2368,2500,5140,0,2600,3000,1
+2238,240000,male,1,1,34,-1,-1,-1,-1,-1,0,228,23282,48595,37573,26296,15788,23295,49000,37573,26296,7000,46495,0
+2239,180000,female,3,1,32,-1,-1,-1,-1,-1,0,396,712,712,712,1424,712,712,712,712,1424,0,5366,0
+2240,140000,male,1,2,32,0,0,0,0,0,0,101458,99196,78458,76387,76344,67302,3997,3520,2500,2689,2494,2498,0
+2241,280000,male,2,1,36,1,2,2,2,0,0,168708,172528,174328,170028,174281,185348,8000,6100,0,7000,14000,7000,1
+2242,120000,female,1,2,30,-1,-1,-1,-1,-1,-1,711,878,1131,441,441,441,878,1131,441,441,441,455,1
+2243,550000,female,2,1,32,0,0,0,0,0,0,546741,535509,548020,530672,155083,165975,22863,167622,14000,4300,158064,28840,1
+2244,170000,female,2,2,30,0,0,0,0,0,2,90727,93345,93812,95613,95972,97230,5000,5000,5000,4400,3000,3600,0
+2245,50000,female,2,1,36,2,2,2,0,0,2,2590,4836,4613,5378,5848,5606,2458,0,1000,557,0,2000,0
+2246,140000,female,2,1,35,0,0,0,0,0,0,137692,134899,137477,110865,69217,48018,5202,6405,4819,3091,2477,100002,0
+2247,10000,male,3,2,48,0,0,0,0,0,0,8858,9548,9540,9735,8070,0,1228,1000,195,161,0,0,0
+2248,240000,female,3,1,32,-1,-1,-1,-1,-1,0,1386,1207,1357,1559,23506,21532,1207,1357,1559,23506,1603,1407,0
+2249,30000,female,2,2,24,2,2,0,0,0,0,27954,27226,28427,28752,28447,24552,0,2000,1000,1100,1500,1000,0
+2250,30000,female,2,2,25,1,2,2,2,2,2,14149,15171,14635,15318,14930,16562,1543,0,1226,0,1882,0,1
+2251,200000,female,2,2,36,0,0,0,0,0,0,2324,3344,4450,14280,14894,15608,1064,1170,10000,1000,1000,464,0
+2252,140000,female,2,2,33,0,0,0,0,0,0,56426,41717,42823,25224,26855,23783,2000,2000,900,2000,10000,5000,0
+2253,200000,female,3,2,28,1,-2,-2,-1,-1,-1,0,0,0,304,13489,6788,0,0,304,13489,6788,188,0
+2254,80000,female,2,2,37,0,0,0,0,0,0,21054,21776,22790,23411,23882,24356,1365,1379,1000,1000,871,1000,0
+2255,100000,male,3,2,30,0,0,0,0,0,0,46675,46567,46638,46454,46262,47823,1800,2000,1700,1683,3500,1500,1
+2256,220000,male,2,2,26,2,2,2,2,2,0,215477,216099,210839,216988,213824,39819,5516,0,8275,0,800,223833,0
+2257,80000,female,2,2,25,0,0,0,0,0,0,7536,5024,5589,6094,45342,45877,1200,1100,1000,40000,1700,1700,0
+2258,350000,female,1,2,27,0,0,0,0,0,0,312770,320400,268598,250304,251436,249891,14599,10334,5728,8242,13138,4520,0
+2259,50000,female,2,2,26,0,0,0,0,-2,-2,33428,34385,35796,-229,-229,-229,1800,2100,0,0,0,0,1
+2260,360000,male,2,1,39,0,0,0,0,0,0,23690,67560,26649,15830,20025,21404,60284,16079,5024,9032,8035,12073,0
+2261,230000,female,2,1,33,0,0,2,-1,0,0,9530,12872,3724,153400,14788,21258,7000,0,153400,8000,10000,6000,0
+2262,30000,male,2,1,39,2,2,2,2,2,0,13888,16652,16087,17317,16900,17465,3000,0,1500,0,1000,3500,1
+2263,70000,female,2,2,24,0,0,2,2,2,2,41485,44697,47229,47956,47056,49565,4200,3600,1800,0,3308,2500,0
+2264,70000,female,2,2,23,-1,0,0,0,0,0,3082,4370,9353,15282,20400,12915,1500,5353,6282,6342,2055,3257,0
+2265,150000,female,1,1,44,1,-2,-1,-1,-2,-2,0,0,1512,0,0,0,0,1512,0,0,0,0,0
+2266,360000,male,1,2,35,-1,-1,-1,-1,2,0,1195,23944,884,789,244,244,23944,884,300,0,0,856,0
+2267,210000,female,2,1,56,1,-2,-2,-2,-2,-1,-325,-721,-1117,-1513,-1909,59017,0,0,0,0,61982,2200,0
+2268,50000,male,2,2,29,0,0,0,0,0,-2,32312,24213,24278,24750,0,0,1700,2000,1300,0,0,0,0
+2269,180000,female,2,2,48,-1,2,-1,-1,-1,-1,3116,1058,390,1726,390,2240,0,390,1726,390,2240,17488,0
+2270,210000,male,1,1,40,-1,-1,-1,-1,-1,-1,6223,8143,3712,3091,90817,308,8146,3719,3091,90817,308,3369,0
+2271,160000,female,3,1,53,-1,-1,-1,-1,-1,-1,2475,2475,5175,2475,3975,8175,2475,5175,2475,3975,8175,138,0
+2272,50000,female,3,1,37,2,0,0,0,0,0,38527,39609,40352,41183,42221,42935,2000,1700,1500,1700,1568,7400,1
+2273,200000,female,2,1,35,1,-2,-2,-2,-2,-1,0,0,0,0,0,688,0,0,0,0,688,0,0
+2274,20000,female,2,2,41,0,0,0,0,0,0,13723,14266,13305,14925,13925,9745,1500,2000,3000,4000,2000,0,0
+2275,500000,male,3,1,56,0,0,0,0,0,0,139117,130301,119701,121296,122477,125279,4500,5000,5000,5000,5000,5000,0
+2276,90000,female,3,1,49,0,0,0,0,0,0,104494,99941,95197,90508,85640,79775,3592,3382,3319,3172,4000,2360,0
+2277,70000,female,1,2,29,0,0,2,2,0,0,47310,51047,51727,50594,51823,54093,4500,1813,0,2046,3300,900,0
+2278,50000,female,3,1,49,0,0,-1,-1,-1,-1,33782,35650,390,390,46310,0,4000,390,390,46310,0,0,1
+2279,180000,male,1,1,37,-1,0,0,0,0,0,121915,116093,99267,74324,47642,37957,7416,7038,7000,6000,5000,5000,0
+2280,50000,male,2,2,27,1,3,2,2,0,0,41322,40383,42413,41434,45567,61595,0,3000,0,5000,20000,0,0
+2281,230000,female,2,2,33,0,0,0,0,0,0,232796,233564,235149,166637,165699,163858,9000,9500,6000,6150,6000,10500,0
+2282,70000,male,2,2,28,1,2,0,0,0,0,35155,26598,22793,23156,24810,27433,23,1637,1000,2000,3007,3014,0
+2283,30000,male,3,2,39,0,0,0,0,0,0,10178,14491,15504,15812,16143,16606,4491,1257,565,585,730,1000,1
+2284,10000,male,3,3,54,1,2,0,0,0,0,8210,7936,8792,9117,9305,9504,0,1146,471,483,502,460,0
+2285,90000,male,3,1,35,1,-1,2,2,-1,2,0,800,400,0,950,400,800,0,0,950,0,0,0
+2286,80000,female,3,1,43,2,2,3,3,2,3,68152,71459,73690,71908,76294,74788,5000,4000,0,5700,0,0,1
+2287,360000,female,1,1,46,1,-1,2,2,-1,-1,-200,2716,200,0,12140,42424,2916,0,0,12140,42424,19825,0
+2288,150000,female,1,2,29,-1,2,2,-1,2,-1,766,515,-150,974,269,191,0,85,1124,0,191,591,1
+2289,200000,female,1,1,32,1,2,2,-2,-2,-2,25830,780,0,0,0,0,0,0,0,0,0,0,0
+2290,300000,female,3,2,38,0,0,0,0,-1,-1,35103,43782,44508,67484,500,7391,10000,6000,30000,500,7391,7000,0
+2291,500000,male,1,1,37,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+2292,210000,male,1,2,27,-1,0,0,0,0,0,25025,25336,26029,26816,21116,10721,5000,4000,5000,3000,3000,3500,0
+2293,80000,female,2,2,33,0,-1,-1,0,-1,-1,17254,811,1533,722,811,337,1000,1533,0,900,337,1000,0
+2294,200000,female,1,1,44,2,0,0,0,0,0,188553,192100,126343,125700,126448,81008,8011,5203,4000,5000,3001,3000,0
+2295,230000,female,1,1,30,-1,-1,0,0,0,0,2212,17402,32450,17285,9766,9981,17402,20013,346,5000,8000,5000,1
+2296,60000,female,1,1,29,0,0,0,3,2,2,51855,53220,59244,57889,59017,56637,2200,7000,0,2013,7577,13,0
+2297,180000,male,2,2,32,1,2,2,0,0,0,172842,177065,163930,136145,133843,134352,8500,0,7000,5000,8000,5000,1
+2298,80000,male,2,1,26,0,0,0,0,0,0,51751,43280,44234,45276,39808,40598,2000,2000,1668,2000,1453,1664,0
+2299,220000,female,1,1,44,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+2300,30000,female,2,1,26,0,0,0,-1,2,-1,10540,9766,-2643,2596,1123,2390,1081,0,6712,0,2780,0,0
+2301,30000,female,1,2,30,1,-2,-1,-1,-1,-1,0,0,4990,4322,1955,980,0,4990,4322,1955,980,7490,0
+2302,30000,male,2,2,25,0,0,0,0,0,0,8864,10062,11581,12580,13716,14828,1500,2000,1500,1500,1500,2000,0
+2303,150000,male,2,1,40,0,0,0,0,0,0,54021,55154,56280,57397,58599,60668,2003,2044,2054,2127,3044,3150,0
+2304,30000,female,2,1,47,1,2,0,0,0,0,23709,23047,24056,24380,24835,25423,0,1698,1022,1000,1000,1000,0
+2305,180000,male,2,2,26,0,0,0,0,0,0,93169,58983,60506,58458,60770,61628,4500,4000,4000,4000,4000,4000,0
+2306,30000,male,1,2,56,2,0,0,0,0,0,27033,27772,28740,29313,29019,28916,1480,1448,1021,1040,1216,1270,0
+2307,240000,female,1,2,28,0,0,0,0,0,0,236772,201463,187916,149293,150614,150911,10000,7000,10040,7000,6000,5000,0
+2308,120000,female,2,2,31,0,0,0,0,0,0,26307,27361,28878,30428,31818,34293,1483,2000,2000,2000,3000,3000,0
+2309,150000,female,3,1,43,0,0,0,0,0,-2,17541,19021,7861,7691,0,0,2000,2000,2000,0,0,0,0
+2310,180000,female,1,1,47,1,-2,-1,-1,-1,-2,0,0,1154,2000,0,0,0,1154,2000,0,0,415,0
+2311,50000,male,2,1,46,0,0,0,0,0,0,44573,60540,15993,16327,16863,17282,2200,2600,600,800,700,700,0
+2312,360000,female,1,2,26,1,-2,-2,-1,-1,-2,-200,-200,0,3000,0,0,0,200,3000,0,0,0,1
+2313,30000,female,3,3,60,-1,-1,-2,-2,-1,-1,2365,-581,-581,-2054,1473,14510,0,0,0,5000,14510,0,0
+2314,50000,male,2,1,24,-1,-1,-1,0,0,0,390,918,19583,19593,19364,19893,918,19583,1000,1000,1000,1000,0
+2315,30000,female,2,1,39,-1,3,2,0,-1,3,1742,1560,780,780,2057,1737,0,0,0,2057,0,0,0
+2316,50000,female,1,2,53,0,0,0,0,0,0,50777,51086,50321,20141,18039,19349,2504,2059,666,1000,2008,1513,0
+2317,90000,male,2,2,30,0,0,0,-2,-2,-2,46927,40000,0,0,0,0,4000,0,0,0,0,85000,0
+2318,200000,female,2,2,39,7,6,5,4,3,2,195156,190843,186029,181866,179272,148704,0,0,0,39,85,3054,1
+2319,50000,male,3,2,52,0,0,0,0,0,0,47479,49344,19596,19194,19201,19199,29456,1300,675,694,704,798,0
+2320,80000,female,2,2,40,0,0,0,0,0,0,33918,50878,51787,52422,53608,50312,20000,2400,2000,2100,2500,2000,0
+2321,50000,female,2,2,41,0,0,0,-2,-2,-2,45408,36025,0,0,0,0,2025,0,0,0,0,0,0
+2322,200000,female,2,2,23,-1,-1,-1,-1,-2,-1,964,-36,1000,0,0,43527,0,1036,0,0,54677,872,0
+2323,90000,female,2,1,36,0,0,0,0,0,0,89309,88544,88888,48534,49874,32078,5000,3500,2000,2100,1000,1000,0
+2324,240000,male,1,2,28,0,0,0,0,0,0,199671,193523,187389,181348,174998,168176,7000,7000,7000,6500,6000,6000,0
+2325,90000,female,1,2,29,-2,-2,-2,-2,-2,-2,1709,2522,3426,3426,2921,2197,2522,3426,3426,2921,2197,3087,1
+2326,10000,male,1,2,23,2,2,2,2,-2,-1,2724,5520,5275,0,0,150,3000,0,0,0,150,275,0
+2327,210000,female,1,1,38,-1,-1,2,2,-1,-1,2360,4707,4465,0,9306,5855,4465,0,0,9306,5855,9840,0
+2328,140000,female,2,2,26,0,0,0,0,-1,-1,12436,14910,13780,13710,488,-1450,3380,1200,2000,500,0,0,0
+2329,50000,female,1,1,29,0,0,0,0,0,0,29719,30754,31939,33102,33918,35197,1815,2000,2000,1500,2000,1500,0
+2330,50000,female,2,1,28,0,0,0,0,0,0,36380,51418,43095,29717,30368,29113,30000,2052,1034,1100,1088,883,1
+2331,230000,female,3,1,45,-1,-1,-2,-1,0,-1,1633,8410,5722,10371,9998,1328,8435,5955,10371,0,1332,0,0
+2332,150000,female,2,2,27,-1,-1,-1,-1,0,0,4914,6237,3280,11167,15915,16268,6237,3280,11167,10000,686,352,0
+2333,240000,male,2,1,36,0,0,0,0,0,0,10767,144915,142909,143531,144893,144121,140013,5206,5008,6011,5250,5033,0
+2334,80000,male,2,2,25,1,2,2,2,0,0,81774,79597,47168,45312,46263,47341,0,3667,0,1680,1848,1863,0
+2335,140000,female,3,2,33,1,-2,-2,-1,-1,-1,0,0,0,4647,250,4654,0,0,4647,5423,4404,0,0
+2336,290000,male,2,1,50,0,0,0,0,0,0,88713,79214,81301,84033,86513,90056,3459,4000,5000,4000,5000,5000,0
+2337,80000,male,5,1,29,0,0,0,0,0,0,80534,78179,79348,81099,80540,67069,3006,2641,2827,2671,2611,2417,0
+2338,400000,male,2,1,34,0,0,0,0,0,0,372724,394443,398634,210628,203102,85374,28000,14547,8078,6500,5000,3012,0
+2339,20000,male,3,3,46,0,0,-1,0,-1,-1,20393,19908,20310,15617,219,1205,1425,20310,1020,219,1205,109,0
+2340,360000,male,1,2,30,-1,-1,-1,-1,-1,-1,11487,307,400,589,956,1383,307,400,589,956,1383,448,0
+2341,260000,female,2,2,25,0,0,0,0,-1,0,16373,15249,15018,15520,3491,5651,5006,5000,5000,3491,3000,2000,1
+2342,30000,male,1,2,28,1,2,2,0,0,0,10056,9815,7576,5746,3900,1944,2000,0,144,128,39,1944,0
+2343,130000,male,2,2,27,0,0,0,0,-1,0,131406,125858,118536,34394,66701,58437,5000,3572,3153,69200,2500,10000,1
+2344,490000,male,1,1,41,0,0,0,0,0,0,95997,98047,100412,102736,105083,107334,3600,4000,4000,4000,4000,4000,0
+2345,580000,male,1,1,42,0,0,0,0,0,0,264482,267508,255409,256321,250358,236608,9431,8842,7663,7814,7794,7887,0
+2346,20000,male,2,1,34,0,0,2,0,0,0,12619,14896,14360,14921,15328,16474,2800,0,800,800,1400,1000,1
+2347,180000,female,1,2,32,0,-1,0,0,0,-1,64008,3414,3844,5344,4000,10395,3414,1500,1500,0,10395,3600,0
+2348,90000,female,1,2,26,-1,-1,-1,-1,-1,-1,1224,3120,1712,5000,0,4210,3128,1712,5000,0,4210,750,0
+2349,90000,male,2,2,25,0,-1,-1,0,-1,-1,2908,1051,2422,1051,1051,83573,1052,2422,0,1051,83573,3098,0
+2350,440000,female,1,1,54,2,0,0,0,0,0,276955,198150,183825,185971,189968,193799,8752,8200,6700,7000,6870,7000,1
+2351,280000,female,2,1,52,0,0,0,0,0,0,50667,50400,50108,49425,48977,48459,2007,2007,1370,1407,1359,1381,0
+2352,230000,male,1,2,29,0,0,0,0,0,0,121344,121415,25210,21433,18203,13931,6317,5516,2015,2014,2019,5536,0
+2353,300000,male,2,2,35,0,0,0,0,0,0,276536,206885,169901,170540,152188,101485,26531,10017,9123,10259,5079,3816,0
+2354,20000,female,2,1,41,-1,2,-1,-1,0,0,6565,4460,1500,8745,5316,4058,0,1500,8745,0,0,1664,0
+2355,80000,female,2,2,26,0,0,0,-1,0,0,27041,27797,5958,11341,5259,4278,5879,1000,11360,486,478,0,0
+2356,20000,male,2,2,24,8,7,6,5,4,3,24348,24025,23391,22757,21834,21200,0,0,0,0,0,0,0
+2357,220000,male,1,2,34,-1,-1,-1,-2,-2,-2,17875,3431,-344,-344,-601,-601,3431,0,0,0,0,0,1
+2358,210000,female,2,1,44,0,0,0,0,0,0,73487,75456,86171,87895,89022,90868,3748,13000,3081,3217,3312,3151,0
+2359,130000,male,3,2,49,2,0,0,0,0,0,60273,61839,62370,63429,26779,27521,2536,1857,1681,971,1186,1698,1
+2360,400000,male,1,1,66,0,0,0,0,0,0,258070,77910,61440,44590,12270,0,47000,1500,0,0,0,0,0
+2361,120000,female,1,2,25,-1,-1,-1,-1,-1,-1,9642,12557,3938,1110,9848,3301,12557,3938,1110,9848,3301,0,0
+2362,460000,female,2,1,33,0,0,0,0,0,0,128302,59254,52099,45512,39041,33571,2371,2008,1560,1457,1299,769,0
+2363,230000,female,1,1,42,-1,-1,-1,-1,-1,-1,2915,4203,167,3351,1644,1733,4203,200,3351,1644,1733,4737,0
+2364,210000,male,2,2,28,0,0,0,0,0,0,187992,193623,187501,167142,170910,174336,8500,8600,6500,6500,6300,7900,0
+2365,30000,female,2,2,23,-2,-2,-2,-2,-2,-2,318,0,0,0,0,0,0,0,0,0,0,0,0
+2366,50000,female,3,1,39,0,0,0,0,0,0,41250,40813,10695,8841,8140,8267,1501,1297,448,449,419,415,0
+2367,250000,female,1,2,29,-1,-1,0,0,0,0,1181,1545,2319,1856,4356,7026,1545,1000,1500,2500,3000,1379,0
+2368,50000,female,2,2,25,3,3,2,2,2,2,35592,36518,36822,37421,38424,39035,1800,1200,1500,1750,1390,0,1
+2369,40000,male,2,1,38,2,2,2,2,2,2,33152,33623,34773,33917,36704,40404,1300,2000,0,3500,4471,0,1
+2370,230000,male,2,1,35,0,0,2,0,0,0,28827,36326,35448,36551,37460,38831,8000,0,2000,1500,2000,1500,0
+2371,210000,male,1,2,33,1,-2,-2,-2,-1,-1,0,0,0,0,700,0,0,0,0,700,0,0,1
+2372,60000,male,2,2,30,0,0,0,2,2,2,15145,16618,18475,17919,19167,18750,2000,2100,0,1500,0,1500,1
+2373,500000,female,1,1,41,0,0,0,0,0,0,190730,194336,197284,199489,201484,204017,8501,8001,6701,6321,6401,6379,0
+2374,110000,female,2,2,28,0,0,0,0,0,0,81449,83241,84960,86045,88060,93394,4000,4000,3400,3400,7000,3450,0
+2375,400000,male,1,1,44,0,0,0,0,0,0,95719,96369,92336,91816,57477,66203,4652,3565,2731,10031,16027,25000,0
+2376,280000,male,1,1,51,-1,-1,-1,-1,-1,-1,1323,445,393,294,223,13635,445,393,294,223,13635,16192,0
+2377,60000,male,2,1,35,0,0,0,0,-1,-1,22226,18597,13801,8038,7340,-153,1292,2245,161,7340,0,20341,0
+2378,100000,male,3,1,47,0,0,-1,-1,-2,-2,3933,2162,856,-1267,-363,-2389,1000,1000,0,5100,0,0,0
+2379,230000,female,2,2,42,0,0,0,0,0,0,64489,58611,54463,53008,52835,40015,3100,5000,5000,10000,3000,5000,0
+2380,80000,female,3,2,24,1,-2,-1,-1,-1,-1,0,0,2455,2500,1307,1550,0,2455,2500,1307,1550,896,0
+2381,110000,female,2,1,43,0,0,0,0,0,0,45021,45782,46187,47105,45253,46144,2100,1800,1638,1490,1957,2000,0
+2382,390000,male,1,1,47,-1,-1,-1,0,0,-1,9361,-25,18401,13200,6385,7088,0,18426,34,31,7088,0,0
+2383,150000,female,2,2,39,1,2,2,0,0,2,21019,19890,19271,19037,20448,19345,1602,0,1000,1709,0,1000,0
+2384,180000,male,2,2,29,1,2,2,-2,-1,2,5265,5002,0,0,1378,978,0,0,0,1704,0,2690,1
+2385,500000,male,1,2,32,1,-1,-1,-1,0,0,-218,466,1267,155951,159749,167416,1000,1267,155000,6000,10000,8000,0
+2386,50000,male,3,1,32,2,3,2,2,2,2,39589,40160,40796,41526,42209,44960,1500,1600,1700,1500,3600,0,1
+2387,20000,female,3,2,49,0,0,2,0,-1,-1,8503,11352,10198,10400,1150,0,3008,0,600,1150,0,0,0
+2388,130000,female,2,2,24,1,-2,-1,-1,-1,-1,-10,-10,3362,-3,998,937,0,3372,0,1001,939,1013,0
+2389,110000,female,3,1,27,0,0,0,0,0,0,61152,60833,61245,47316,47175,47141,2326,3000,1807,1698,1911,1808,0
+2390,200000,male,2,1,29,0,0,0,2,2,2,45982,46328,47534,48367,49366,47539,2078,3900,1900,1904,12,5224,0
+2391,50000,female,2,1,47,0,0,0,0,0,0,48991,43412,33995,29759,29766,29665,2000,1500,1050,1100,1100,1200,0
+2392,130000,male,1,2,29,0,0,0,0,0,0,126974,122107,108542,89356,91024,89779,5988,4560,3300,3509,3500,3415,0
+2393,260000,male,2,2,28,0,0,2,0,0,0,149814,184419,163036,159348,160198,104389,107000,0,5000,5000,6000,60000,0
+2394,180000,male,2,1,30,-1,-1,-1,-1,-1,-1,220,4680,0,7500,4100,0,4686,0,7500,4100,0,4500,0
+2395,330000,female,1,1,29,-1,-1,-1,0,0,0,730,213,2368,3368,1377,0,213,2368,1000,190,0,0,0
+2396,80000,female,2,2,29,1,2,2,2,2,2,54033,52595,56709,55201,69270,70582,0,5000,0,15000,2600,0,0
+2397,320000,male,1,2,32,-1,2,-1,-1,-2,-2,752,169,1940,0,0,0,0,1948,0,0,0,0,1
+2398,20000,male,2,2,38,-1,-1,-1,0,0,-1,10462,3327,19305,17748,8269,1074,10287,19305,355,0,1074,0,0
+2399,50000,female,3,2,43,2,2,7,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,1
+2400,210000,female,3,1,40,0,0,0,0,0,0,201169,210942,214523,138786,140918,144099,16286,10011,5000,6000,6000,6000,0
+2401,420000,male,2,2,31,2,2,0,0,2,0,239293,90568,88997,93971,92203,93059,0,3500,6600,0,4000,3000,1
+2402,210000,female,2,2,35,-2,-2,-2,-2,-2,-2,2593,0,0,0,1849,12837,0,0,0,1849,12837,4201,0
+2403,160000,female,2,1,42,0,0,0,0,0,0,35815,38023,40180,41318,42605,43857,3000,3000,2000,2000,2000,2000,0
+2404,20000,female,1,2,25,0,0,0,0,0,0,17776,18886,19551,18964,19676,20116,1700,1300,662,1000,747,602,0
+2405,360000,male,1,2,35,-1,-1,-1,-1,-2,-1,2010,2936,640,0,0,4750,2936,640,0,0,4750,1470,0
+2406,30000,male,2,3,50,2,0,0,0,0,0,11479,12981,14450,14903,16500,18715,2000,2000,693,2000,2500,668,1
+2407,50000,male,2,2,27,1,-1,0,0,0,0,-697,48266,47194,48224,49416,50126,49900,1800,1700,1857,2474,469,0
+2408,30000,male,2,1,38,1,-1,-1,-1,-1,-2,0,2281,3666,2713,0,0,2281,3666,2713,0,0,0,1
+2409,30000,female,2,2,24,0,0,0,0,0,0,28008,29549,30298,30046,29880,27039,2000,2000,900,1000,2000,0,0
+2410,280000,female,2,2,24,-1,-1,0,0,-1,-1,1006,1853,2657,1416,2706,1229,1855,1422,7,2719,1235,3831,0
+2411,30000,female,3,2,24,2,0,0,2,2,0,30279,30428,30485,31012,30402,30195,1500,2700,1300,0,1117,1353,1
+2412,20000,male,2,2,33,0,0,0,0,0,2,12518,12889,9638,8878,6474,2771,1300,1000,1000,500,0,0,0
+2413,300000,female,1,1,51,0,0,0,0,0,0,108639,85818,90069,85008,83983,50257,4107,7346,65000,2500,2022,1800,0
+2414,180000,female,1,2,35,-1,3,2,0,-1,2,1880,1702,1196,870,3028,2508,0,0,0,3028,0,326,0
+2415,20000,female,2,1,24,4,3,2,2,2,2,16549,16002,16047,15492,16739,16320,0,600,0,1500,0,2000,1
+2416,80000,female,3,1,39,0,0,0,-2,-1,-1,4948,3804,0,0,1715,0,1000,0,0,1715,0,0,0
+2417,20000,female,2,1,47,0,0,0,0,0,0,19553,18092,18175,19000,20000,0,1417,2000,3005,2000,0,0,0
+2418,60000,male,1,2,29,0,0,0,0,0,-1,31462,31499,16773,11568,9727,3832,6037,5084,6000,4000,3832,3065,0
+2419,20000,male,2,2,22,0,0,2,2,2,0,18743,19879,18872,21178,20329,20853,3000,0,3000,0,1000,400,0
+2420,30000,female,3,1,67,1,2,0,0,0,0,30734,28092,29112,29555,28536,29252,0,1800,1200,1083,1200,1250,0
+2421,50000,male,1,2,33,1,2,2,0,0,2,26957,28230,27483,27728,29681,29053,2000,0,1000,2400,0,2400,1
+2422,80000,male,1,1,47,0,-1,-1,0,-1,-1,49735,25144,7905,7905,20616,7727,25144,8000,0,20616,7727,6191,0
+2423,170000,female,2,2,24,-1,-1,2,0,0,-1,1166,4144,3889,4889,4139,430,3000,0,1000,0,1000,17342,1
+2424,160000,male,1,1,36,-1,-1,-1,-1,-1,-1,816,316,316,316,316,316,316,316,316,316,316,316,1
+2425,130000,male,1,2,27,1,2,2,2,-2,-1,60024,58104,54976,-3518,-1285,1601,4000,0,1580,1580,3202,0,0
+2426,30000,female,2,1,34,2,2,2,2,0,0,31746,32743,32931,30727,29679,30088,1800,1100,0,1000,2327,0,1
+2427,100000,female,1,2,36,1,-1,-1,-2,-2,-2,0,780,0,0,0,0,780,0,0,7600,0,0,0
+2428,120000,female,2,2,25,3,3,2,2,2,2,87057,84821,85194,76326,75122,75011,0,2700,2500,3200,2500,0,1
+2429,150000,female,1,1,49,-1,-1,-2,-1,-1,-1,850,0,0,31106,0,1505,0,0,31106,0,1505,997,1
+2430,100000,female,3,1,24,1,2,0,0,0,0,56341,54869,67965,73871,79707,85433,0,14130,7065,7065,7065,0,1
+2431,30000,male,2,2,24,2,0,0,0,2,2,25851,26912,27535,29175,28625,30383,1779,1402,2042,0,2192,0,1
+2432,160000,female,2,2,45,-2,-2,-2,-2,-2,-2,2057,2147,1945,1934,2045,1938,2147,1945,1934,2056,1938,2544,0
+2433,120000,female,3,1,48,-2,-2,-2,-2,-2,-2,2468,7869,506,2097,758,2005,7890,506,2097,758,2005,360,0
+2434,160000,female,1,2,40,-1,0,0,-2,-2,-2,67925,69771,73233,72328,74234,75500,3509,5824,0,2204,2000,0,0
+2435,340000,female,1,1,35,1,-1,-1,-1,-2,-1,-8,1722,1684,-15,-15,3016,1730,1692,0,0,3031,0,1
+2436,240000,male,3,1,55,0,0,0,0,0,0,25631,27047,26654,28065,29503,32042,2500,2000,2000,2000,3000,2000,0
+2437,30000,female,3,1,42,1,2,0,0,0,0,30607,29849,30653,28410,29068,30383,10,2000,2000,2000,2000,3000,0
+2438,50000,male,2,1,54,0,0,0,2,0,0,47872,48802,50214,19321,19867,20384,2000,2456,0,1000,1000,1000,0
+2439,200000,male,2,2,25,1,-2,-2,-1,0,0,0,0,0,1517,48669,49635,0,0,1517,48000,1775,1992,1
+2440,80000,female,2,2,44,0,0,0,-1,-1,-1,17047,11885,8254,5144,15365,2250,1435,1350,5144,15365,2250,2690,0
+2441,50000,female,2,2,41,2,2,2,2,2,2,5025,4805,46295,46885,47535,45994,0,42000,1600,1500,2000,2000,1
+2442,130000,female,2,1,29,0,0,0,0,0,0,18157,16520,15709,13209,14166,14025,2000,1010,1003,2040,2000,1000,0
+2443,290000,male,1,1,57,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+2444,30000,female,3,1,44,0,0,0,0,0,0,27631,29179,30146,26371,27567,30114,2000,1500,933,2000,3000,1000,1
+2445,340000,male,3,1,40,0,0,0,0,0,0,77181,59873,60396,63720,65211,60053,5305,3000,5000,3000,5000,6000,0
+2446,180000,female,1,2,28,-1,-1,-1,-1,0,-1,651,1883,651,2688,1000,2253,1883,651,2688,20,2253,9816,0
+2447,60000,female,1,2,23,0,0,2,0,0,0,59423,63347,61183,29052,29087,27296,5500,146,1500,1200,1500,1500,0
+2448,390000,female,1,2,25,-1,0,0,0,0,0,83514,79730,64171,58767,54224,51667,4013,4000,2100,2000,3000,1200,0
+2449,460000,male,1,1,35,0,0,0,0,0,0,384919,393029,394483,338220,347753,356161,15045,16017,13000,15000,15025,7002,0
+2450,500000,male,1,1,51,0,0,0,0,0,0,396402,395484,333041,294173,300616,266973,14034,15040,12018,15028,10038,10018,0
+2451,30000,female,2,1,44,-1,2,2,2,2,2,8347,9560,9258,11096,11165,10837,1500,0,2000,392,0,2000,0
+2452,80000,female,2,2,25,1,2,2,2,2,2,28789,31026,31401,31986,32468,31794,2998,1183,1400,1139,0,1178,0
+2453,250000,female,2,1,41,-1,-1,-1,-1,-2,-2,37137,51803,4997,0,0,0,51811,9544,0,0,0,0,0
+2454,280000,female,1,2,26,0,0,0,0,0,0,146130,120750,105492,104061,105202,107143,5042,4000,4000,4000,4368,4000,0
+2455,30000,female,2,2,26,2,2,2,2,2,2,25615,29849,31034,28071,29978,29365,5000,2000,0,2500,0,600,1
+2456,30000,male,1,2,28,2,0,0,0,0,0,22329,23665,47968,24784,25784,2901,2000,1400,2000,1000,1000,1000,1
+2457,20000,male,2,2,27,1,3,2,2,2,2,19443,18851,19248,18648,20040,19464,0,1000,0,2000,0,817,1
+2458,380000,female,3,1,56,-2,-2,-2,-2,-2,-2,0,1349,5947,16735,6444,0,1349,5957,16735,6444,0,7699,1
+2459,100000,female,3,1,29,4,3,2,0,0,-1,175441,153992,132132,114431,116766,95961,0,0,0,2335,102075,0,1
+2460,180000,male,2,2,32,-1,-1,-1,-1,-1,-1,1071,1671,1981,4241,4542,5261,1671,1981,4241,4542,5261,4731,1
+2461,80000,female,1,2,25,0,0,0,0,0,0,3409,4489,5345,5454,5598,178,1144,1000,109,144,0,0,0
+2462,220000,male,1,2,31,0,0,0,0,0,0,163148,158197,158956,157953,157098,157099,5725,5971,5846,5887,5802,5895,0
+2463,170000,female,2,2,26,0,0,0,0,0,0,141476,143850,134502,122186,122506,117121,5113,4514,4376,4432,4142,3455,0
+2464,140000,female,1,2,29,2,2,2,2,2,2,97905,100152,100772,101562,103214,88085,4700,3200,3500,3193,0,2304,1
+2465,20000,male,1,2,29,2,2,3,2,2,2,10512,12044,11562,11080,11700,12357,2000,0,0,800,1000,500,1
+2466,100000,female,3,1,38,0,0,0,0,0,0,62427,63922,65864,66578,69503,72346,2500,3000,2400,4000,4000,4000,0
+2467,50000,female,3,1,47,0,0,0,0,0,0,32516,32774,33597,29105,26154,27699,1870,1693,1106,1473,3000,2507,0
+2468,300000,female,2,2,30,-1,-1,-1,-1,2,-1,2186,0,290,707,161,7705,0,290,1209,0,7705,3798,0
+2469,30000,female,3,2,25,0,0,0,0,2,2,26769,27138,28122,29139,28534,30360,1500,1447,3000,0,2300,0,0
+2470,50000,male,3,1,53,0,0,0,0,0,0,49696,50893,50532,19632,18573,17212,2000,2000,1000,763,626,3639,0
+2471,160000,male,2,2,37,-1,-1,0,0,0,0,3090,52125,26325,29638,35474,38190,52165,5000,7000,8000,5000,1200,0
+2472,80000,male,2,2,27,0,0,0,0,2,0,45920,47186,46882,49170,48269,49121,5013,5000,4000,0,2002,1692,0
+2473,140000,female,2,1,28,0,0,0,0,0,0,132070,134766,106450,106422,104337,106886,6000,4000,4000,4000,4300,3600,0
+2474,20000,male,2,2,23,1,2,0,0,0,0,19403,18541,19254,19456,19323,19265,0,1298,1000,692,766,998,1
+2475,50000,male,3,1,51,-1,-1,-1,-1,-1,0,17453,7802,22214,4985,6551,7117,8338,22232,4985,6551,5000,5000,0
+2476,200000,female,1,2,34,1,-2,-2,-1,2,2,0,0,0,347,197,2917,0,0,347,0,2720,0,1
+2477,80000,female,2,1,23,-2,-2,-2,-2,-2,-2,780,0,390,390,390,540,0,390,390,390,540,390,1
+2478,80000,female,2,2,27,1,2,2,0,0,0,81635,83465,81472,82332,84067,78510,3716,0,2989,3105,2973,2830,0
+2479,210000,female,1,2,39,-1,-1,-1,-1,-2,-2,6000,0,2880,0,0,0,0,2880,0,0,0,0,0
+2480,260000,male,2,1,28,0,0,0,-1,-1,-1,26303,9408,5082,7732,1379,-8,5030,2025,7770,1385,0,1775,0
+2481,200000,male,2,1,46,1,-1,-1,-1,-1,-1,0,552,2523,2327,2308,0,552,2531,2327,2308,0,0,1
+2482,110000,female,2,1,33,2,2,2,2,2,0,110327,112130,108533,112475,108976,108385,5332,0,7800,0,4428,3863,1
+2483,10000,male,2,2,23,0,0,0,0,2,2,5857,6722,8305,9405,9100,13392,1117,1700,1230,0,761,0,0
+2484,200000,male,1,2,30,0,0,2,0,0,2,91936,94698,77034,64886,71957,66658,7500,0,1500,10000,2000,0,0
+2485,300000,male,1,2,31,-1,-1,-1,-1,-1,-1,360,360,360,360,980,360,360,360,360,980,360,3420,1
+2486,360000,female,1,1,39,-1,-1,-1,-1,-2,-2,7001,1224,394,-6,-6,2199,1224,394,6,0,2205,401,0
+2487,290000,female,2,1,32,0,0,0,0,0,0,78200,79726,80890,81615,75661,77012,3700,3600,3000,3000,3000,3000,0
+2488,30000,male,3,1,26,1,2,0,0,0,0,30814,29551,24034,21155,18413,0,0,1500,1150,900,0,0,1
+2489,300000,male,1,1,47,-2,-2,-2,-2,-1,-1,0,225,4019,4509,7155,5778,225,4019,3860,5000,5778,23978,0
+2490,300000,female,1,2,28,-1,-1,-1,-1,-1,-1,986,2939,27754,10534,1954,2140,2964,27968,10597,1954,2140,390,0
+2491,210000,female,3,2,45,-2,-2,-1,-1,-2,-2,316,312,2368,316,316,316,312,2376,316,316,316,8611,0
+2492,50000,male,3,1,36,0,0,0,0,0,0,74969,76012,77330,70579,63751,56977,2846,2671,2396,2177,2146,2055,1
+2493,340000,female,1,2,26,0,0,0,0,0,0,337871,311076,156674,129651,126192,94722,11208,5000,23809,4136,3600,3169,0
+2494,330000,male,1,1,34,0,0,0,0,0,0,138009,141253,130567,128257,116988,105961,7015,7000,10007,6500,6600,9000,1
+2495,220000,female,1,2,28,0,0,0,0,0,0,44109,32978,30415,28038,25669,16003,5000,13500,14000,13500,13500,15550,0
+2496,100000,female,2,2,30,0,0,0,0,-2,-2,23939,23572,24148,0,0,0,1500,1011,0,0,0,0,0
+2497,260000,male,1,2,30,-1,-1,-1,-1,-1,-1,399,399,399,399,399,399,399,399,399,399,399,399,1
+2498,180000,male,2,2,30,-1,-1,-1,-1,-1,-1,440,30404,0,880,150,430,30404,0,880,150,430,747,0
+2499,200000,male,2,1,44,-1,-1,2,0,0,-1,780,390,1170,780,0,390,390,780,0,0,390,780,0
+2500,110000,female,3,2,41,0,0,0,0,0,0,90599,60949,62235,63499,64877,66230,2213,2300,2300,2400,2431,8700,1
+2501,20000,male,2,2,48,0,0,0,2,0,0,7186,9063,10909,10440,10803,11330,2000,2000,0,680,1000,0,1
+2502,60000,male,1,2,25,0,0,0,0,0,0,13123,14403,16150,17870,19571,21235,1500,2000,2000,2000,2000,1000,0
+2503,30000,male,3,1,28,2,2,2,2,2,4,23848,23873,24182,26022,27462,27531,700,1000,2550,2013,1108,0,1
+2504,30000,female,1,2,24,2,2,2,0,0,0,31202,32801,30092,30148,30222,28949,2415,0,1045,915,1063,409,1
+2505,420000,female,1,1,37,-1,-1,-1,-1,-1,-1,38386,316,9894,13811,12141,11820,316,9894,13811,12141,11820,38800,1
+2506,340000,male,1,1,34,-1,-1,-1,-1,2,0,332,332,332,142202,139245,116431,332,332,142402,6,20032,3022,1
+2507,270000,male,2,1,38,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+2508,360000,female,4,2,36,-2,-2,-1,0,0,0,15019,1221,6909,5954,4160,1726,2074,7039,10,1,4,45197,0
+2509,230000,female,1,2,25,-1,-1,-1,-1,-1,-1,736,645,855,0,590,0,645,855,0,590,0,299,0
+2510,50000,female,2,1,33,0,0,0,0,0,0,47327,48765,49149,44073,40260,30222,2200,1518,1414,1432,1300,1102,0
+2511,230000,female,1,2,28,-2,-2,-2,-2,-2,-2,-5,2148,2932,354,200,0,2153,2932,354,200,0,0,0
+2512,200000,female,1,1,38,-2,-2,-2,-2,-2,-2,-3,687,2740,2044,1614,2066,690,2753,2054,1622,2076,578,0
+2513,100000,female,2,2,24,0,0,0,0,0,0,101887,102069,100657,101565,101116,101764,4902,4507,3936,3982,4135,3676,0
+2514,150000,female,2,1,47,0,0,0,0,0,0,153404,144960,148146,142279,139905,142833,6900,7200,5450,5265,5443,5350,0
+2515,50000,male,3,2,28,0,0,0,0,0,0,46709,12889,50199,74405,38772,39438,1690,38000,1500,4000,2000,1500,0
+2516,60000,male,2,2,29,0,0,0,0,0,0,34081,23215,30340,28368,28962,26589,2000,8565,969,1004,1000,900,0
+2517,70000,female,2,2,30,0,0,0,2,0,0,10149,11454,9638,8761,8572,9274,2000,2000,0,1000,1000,4000,0
+2518,20000,male,2,2,23,-1,0,-1,0,0,0,5044,3700,13181,12596,11699,2154,1011,13181,5,1033,1781,305,0
+2519,50000,female,2,2,25,0,0,0,0,0,0,24408,25169,13368,14142,14911,15660,1300,1500,1000,1000,1000,1000,0
+2520,500000,female,1,1,33,2,2,-1,-1,-2,-1,1569,1379,1800,0,0,4012,0,1800,0,0,4012,0,0
+2521,390000,male,3,1,49,1,-2,-2,-2,-2,-2,0,0,0,0,0,5112,0,0,0,0,5112,0,0
+2522,90000,female,1,2,27,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+2523,10000,male,2,2,22,0,0,0,-1,-1,-2,5748,3203,2162,2150,-440,0,1189,1025,3028,0,1000,0,0
+2524,30000,male,2,2,24,-1,-1,-1,0,0,-2,390,390,780,780,0,0,390,780,0,0,0,0,1
+2525,240000,male,3,1,35,1,-2,-2,-1,-1,-2,-2,-2,-2,968,-2,-2,0,0,970,0,0,0,1
+2526,180000,female,1,2,29,-1,0,0,0,0,0,36567,26613,26941,27705,21955,0,1682,1400,1554,0,0,0,0
+2527,70000,female,2,2,23,0,0,0,0,0,0,22658,31647,24487,25125,26651,26125,9397,1487,1039,2073,1045,1231,0
+2528,50000,male,2,2,26,-1,-1,-1,-1,-1,-1,1530,750,1140,1530,750,1140,750,1140,1530,750,1140,1530,0
+2529,20000,male,3,1,46,0,0,0,0,0,0,11325,12654,13659,13635,13922,14689,1519,1524,500,507,1000,500,0
+2530,260000,female,2,1,36,0,0,0,0,0,0,200593,206178,208601,213025,214931,219001,8500,7000,7508,7500,7595,7000,1
+2531,160000,male,2,1,26,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+2532,250000,female,1,1,42,0,0,-2,-2,-2,-2,25298,0,0,0,0,0,0,0,0,0,0,0,0
+2533,20000,male,1,1,49,-1,-1,-1,-1,-2,-2,1044,0,5596,0,0,0,0,5596,0,0,0,0,0
+2534,210000,male,3,1,37,-1,-1,-1,-1,-1,-1,2359,1519,1939,1939,1939,1520,1519,1939,1939,1939,1520,2358,0
+2535,100000,female,1,1,35,2,0,0,2,2,2,47253,49489,53034,53568,54563,56013,3000,5000,2000,2000,2500,2300,1
+2536,100000,male,1,2,28,0,0,0,0,0,0,72970,100360,91329,76840,77455,79472,30000,4094,2900,2850,3300,3123,0
+2537,230000,female,2,1,34,-2,-2,-2,-2,-2,-2,2329,1894,2528,1865,1496,1873,1894,2532,1865,1496,1873,0,0
+2538,20000,male,2,2,25,0,0,0,0,0,0,13896,12906,13983,10983,5400,0,2000,2500,2000,0,0,0,1
+2539,40000,male,1,2,24,0,0,0,0,0,0,30096,30819,13816,10291,7441,7435,1300,2013,319,415,266,277,1
+2540,100000,male,3,1,51,-1,-1,-1,0,0,0,54530,37295,96251,36221,36424,37791,55000,100044,2000,2000,2000,3000,0
+2541,20000,male,3,2,26,0,0,0,0,0,0,16514,17547,18541,19250,19805,20356,1306,1300,1000,1000,1258,590,0
+2542,140000,male,2,2,32,0,0,0,0,0,0,31367,29652,30178,20989,17125,14739,1614,10018,2009,1003,1017,1012,0
+2543,50000,male,3,2,23,2,2,2,0,0,0,44470,51192,48506,18524,19239,19283,7800,173,1000,1000,1000,1000,0
+2544,30000,female,2,2,26,0,0,-1,0,0,0,17341,-1030,29718,27417,28489,28427,485,31509,1500,1502,1500,3000,0
+2545,80000,male,2,2,28,0,0,0,-2,-2,-2,15268,5135,0,0,0,0,1315,0,0,0,0,0,0
+2546,20000,female,3,1,31,0,0,0,0,0,0,15654,16425,17265,16647,12213,10998,1330,1170,500,420,397,221,1
+2547,210000,female,1,2,26,0,0,0,0,-1,-1,9899,6000,4100,0,10790,7373,1008,1000,0,10790,7373,0,0
+2548,150000,female,1,1,30,0,0,0,0,0,0,40046,47317,48849,35920,37433,10791,7995,5849,1196,2000,1000,1000,0
+2549,200000,male,1,2,28,-1,-1,-1,-1,-1,-1,508,10680,1190,527,4524,5522,10712,1194,527,4537,5538,3883,0
+2550,200000,female,1,2,28,2,2,2,2,0,0,68398,73564,73548,44234,42599,46192,6900,1966,12,1604,5164,1104,1
+2551,50000,male,2,2,39,0,0,0,0,0,0,26813,22999,17485,10588,8368,940,1708,1454,289,1508,1042,0,0
+2552,80000,female,1,2,28,0,0,0,0,2,2,9782,11620,14415,16177,16582,16178,2001,3000,2000,800,0,600,0
+2553,310000,female,1,2,32,-2,-2,-2,-2,-2,-2,20138,8267,65993,8543,1695,750,8267,66008,8543,1695,750,7350,1
+2554,210000,male,1,2,29,0,0,0,0,2,0,140619,144410,148555,156733,153230,155159,7000,9000,11550,0,5389,5338,0
+2555,140000,male,1,1,40,2,0,0,2,2,2,136785,137175,140773,133147,140350,136475,5051,12602,0,12000,0,5000,1
+2556,20000,female,2,1,32,0,0,0,0,0,0,15498,16409,17291,17588,18034,18658,1600,1600,1000,1000,1500,700,0
+2557,10000,female,1,2,23,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+2558,250000,female,1,2,30,0,-1,2,0,0,-1,5607,9416,3421,11521,20424,7467,10000,0,10000,10000,17771,322,0
+2559,280000,male,1,2,31,1,-1,-1,0,0,-2,0,3495,2783,2001,-339,-1180,3495,2783,0,0,0,0,0
+2560,210000,male,2,1,48,-1,-1,-1,0,-1,-1,8666,8666,17307,8666,8666,17303,8666,17307,173,8666,17303,173,0
+2561,10000,male,2,2,54,0,0,2,2,0,0,5186,8225,8244,7963,8134,9995,3300,300,0,299,2000,0,0
+2562,60000,female,3,1,59,0,0,0,0,-1,0,59174,60922,61800,0,51301,52327,3298,3000,0,51301,2029,2083,0
+2563,180000,female,1,2,38,0,0,-2,-2,-2,-2,184650,0,0,0,0,0,0,0,0,0,0,0,0
+2564,10000,female,1,2,31,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+2565,200000,female,1,1,41,-2,-1,2,0,-1,-1,0,5932,5674,1484,4680,0,5932,0,0,4680,0,0,0
+2566,120000,female,1,2,29,-1,-1,-1,-2,-1,-1,1171,644,-155,-155,745,542,1000,0,0,2530,542,922,0
+2567,160000,female,2,1,28,0,0,0,0,0,0,54232,55456,56625,57757,59424,60631,2100,2100,2500,3000,2200,2200,0
+2568,180000,male,1,1,48,0,0,0,0,0,0,167140,160707,162477,166861,171083,169365,8000,6000,7000,7000,7000,7000,0
+2569,60000,female,3,1,42,0,0,0,0,0,0,58186,58364,59108,38827,39670,37503,2382,2373,1324,1402,1460,1045,0
+2570,80000,male,2,1,27,0,0,0,0,0,0,73000,71338,47202,38133,39096,40510,5000,2000,1500,1500,2000,2000,0
+2571,200000,male,1,2,27,-1,0,-1,-1,-1,-1,9747,17230,198,875,1977,2052,10051,198,877,1982,2058,2939,0
+2572,20000,female,3,2,22,1,2,0,0,2,2,18590,17838,18680,19788,22265,21629,0,1307,1580,3100,0,1000,1
+2573,360000,female,2,2,31,0,0,-2,-2,-2,-2,17582,0,0,0,0,0,0,0,0,0,0,0,0
+2574,140000,female,1,2,43,1,2,0,0,0,0,147560,142435,142096,136836,139417,141889,3,5000,5000,5100,10200,5000,0
+2575,110000,female,3,1,46,0,0,2,2,0,0,94025,101460,102724,100188,102110,107014,8942,3800,0,3685,6580,4703,1
+2576,360000,female,1,1,33,1,-2,-2,-1,0,0,-200,-200,0,13467,17800,0,0,200,13467,5300,0,0,0
+2577,30000,female,1,2,22,-1,-1,-1,0,0,-2,3963,6222,2936,588,0,0,6222,2936,0,0,0,0,0
+2578,100000,male,2,2,25,0,0,0,0,-2,-2,76222,79564,49000,-1000,0,0,4700,1500,0,31000,0,0,0
+2579,60000,male,3,2,34,0,0,0,0,0,0,35187,36236,37220,37963,38875,39184,1616,1600,1336,1500,1448,1157,1
+2580,130000,female,1,2,32,1,-2,-1,-1,-2,-1,0,0,3726,0,0,1300,0,3726,0,0,1300,5400,0
+2581,240000,female,2,2,34,-1,-1,-1,-1,-1,0,5516,4950,5232,6464,3820,11870,4950,5232,6464,3820,10000,2000,0
+2582,210000,female,2,1,35,2,2,2,0,0,2,61189,62721,61115,62334,66196,64979,3100,0,2235,4870,0,2563,1
+2583,360000,male,1,2,25,-1,-1,-1,0,0,-1,586,14074,5672,5084,3317,1646,14076,5672,0,0,1646,3875,0
+2584,30000,female,2,2,22,1,2,2,0,0,-2,22167,22474,18180,15900,0,0,1000,150,0,0,0,0,0
+2585,480000,male,1,1,49,1,-1,-1,-1,-1,0,-220,38929,339176,33146,37337,33777,39149,344261,33312,37511,31383,10633,0
+2586,90000,female,6,2,49,-1,-1,-2,-2,-2,-2,1722,0,0,0,0,0,0,0,0,0,0,11135,0
+2587,50000,female,1,1,42,0,0,0,0,0,0,4908,7479,11902,13871,19466,8128,3000,5000,5000,7000,3000,2000,0
+2588,20000,male,3,2,41,0,0,0,0,0,0,9186,9459,10102,10452,10907,10400,1200,1200,500,1000,600,0,0
+2589,160000,female,2,2,27,-2,-2,-1,-1,-1,0,490,-85,5215,4115,3921,3421,3085,5300,1000,22200,2000,149763,0
+2590,90000,female,2,2,24,0,0,0,0,0,0,14520,14747,4753,5152,4664,4833,1240,1220,1000,500,800,1680,0
+2591,300000,female,5,1,34,-2,-2,-2,-2,-2,-2,9474,0,0,0,0,0,0,0,0,0,0,0,0
+2592,500000,male,1,1,43,-1,-1,-1,-1,-1,-1,640,600,1490,1822,1740,0,600,1490,1822,1740,0,1486,0
+2593,130000,female,3,2,36,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+2594,250000,male,3,1,62,0,0,0,0,0,0,38924,38468,35930,40106,38214,28494,5000,5000,5000,3000,2000,10000,0
+2595,10000,male,3,2,25,2,0,0,0,0,-2,4693,5371,6327,6055,0,0,1300,1600,400,0,0,0,1
+2596,340000,male,1,2,30,0,0,-1,-1,-1,0,1933,2855,872,981,22936,8097,1000,872,981,22936,5000,5939,0
+2597,60000,male,3,2,24,-1,0,0,0,0,0,15527,16882,18190,27465,27643,27816,2000,2000,10000,991,1010,989,0
+2598,50000,male,2,1,47,0,0,0,0,0,0,48308,48019,48647,26894,10875,15878,2200,2068,3048,418,12004,5001,0
+2599,170000,male,2,2,34,-1,-1,2,0,-1,-1,7885,7190,6854,3142,5000,0,2336,0,0,5000,0,0,0
+2600,490000,male,3,1,51,-1,-1,-1,-1,-1,-1,389,376,467,78,399,10,377,481,1,711,1,1,1
+2601,20000,female,2,1,26,0,0,0,0,2,0,17679,16720,17705,19228,18804,19316,1300,1277,1800,0,1000,1000,1
+2602,550000,male,2,1,47,0,0,0,0,0,-2,68328,76797,55200,30000,0,0,10000,20000,5000,0,0,0,0
+2603,340000,female,2,2,39,0,0,0,0,0,0,66623,61474,57160,58794,61231,62516,2500,2500,2500,3300,2200,3000,0
+2604,10000,male,2,2,32,0,0,0,0,0,0,9576,9028,9644,9790,9990,0,1384,1000,196,200,0,0,0
+2605,230000,female,2,2,25,-2,-2,-2,-2,-2,-2,0,0,13499,9078,11009,6172,0,13499,9117,11009,6172,869,0
+2606,30000,male,2,1,39,1,2,0,0,0,0,29388,27850,28525,29091,28923,29553,0,1452,1018,1038,1100,964,0
+2607,200000,female,2,2,42,-1,-1,0,0,-2,-1,73032,12928,88930,30000,67861,18929,12928,79365,30000,37861,18929,15004,0
+2608,450000,female,1,1,37,0,0,-1,-1,-1,-1,13371,13480,5747,3339,9458,7231,4000,5747,3339,18916,7231,4972,0
+2609,380000,male,3,1,44,0,0,0,0,0,0,329877,309781,295550,277650,264217,238368,12055,9837,9154,9042,8515,7745,1
+2610,50000,female,2,1,31,2,0,0,0,0,0,29767,30206,27905,17174,17533,17240,1615,1670,605,626,654,567,1
+2611,80000,female,1,2,27,0,0,0,0,0,0,23107,24674,25351,25981,26464,23714,5034,10000,1000,1000,1000,1000,0
+2612,150000,female,2,1,42,1,-2,-2,-1,-1,-1,0,0,0,11068,0,189,0,0,11068,0,189,3307,1
+2613,50000,female,2,2,44,0,0,0,0,-1,-1,49006,49139,47608,3990,390,0,2000,1000,3600,390,0,4870,0
+2614,210000,female,1,2,39,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+2615,100000,female,2,2,24,0,0,0,0,0,2,59712,61743,63714,65056,73062,71738,3000,3000,2400,9100,0,4000,0
+2616,100000,male,2,2,38,0,0,0,0,0,-1,25994,27173,44285,45433,3952,3723,1994,19462,3000,302,3723,15462,0
+2617,500000,male,1,1,45,0,0,0,0,0,0,3136,2345,8471,7234,5828,1906,2002,7505,145,33,1150,300,0
+2618,30000,female,3,1,58,0,0,0,0,0,0,9819,10873,9646,9995,10371,5139,1230,1100,419,600,500,500,0
+2619,50000,male,2,2,46,0,-1,0,0,0,0,53541,29308,20274,19945,20472,21000,31483,1408,3000,1000,869,5000,0
+2620,50000,female,2,2,23,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+2621,420000,female,2,1,36,-1,-1,-1,-1,-1,-1,3663,4338,3400,2535,3216,4652,4338,3400,2535,3216,2652,2500,0
+2622,30000,female,2,1,32,2,2,0,0,0,-1,28156,27422,28335,20946,15525,7422,0,1542,1024,1000,7422,281,1
+2623,240000,male,1,2,32,0,0,0,0,0,0,240790,224497,213580,191771,166239,146584,6892,7866,5602,6118,6023,27064,0
+2624,80000,female,3,1,55,0,0,0,0,0,0,69116,64325,59653,55159,56277,57347,2500,2000,2000,2000,2000,2000,0
+2625,330000,male,1,2,45,0,0,0,0,0,0,265362,246735,248541,231534,230309,235992,7500,8001,7000,7000,8000,8000,1
+2626,50000,male,2,1,30,1,2,2,0,0,0,49371,50092,49029,25313,26006,27217,1800,240,1000,1100,1800,1500,1
+2627,200000,female,1,1,42,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,665,1
+2628,210000,female,1,1,34,1,-2,-1,-1,2,-1,-300,-716,416,1132,566,416,0,1548,1132,0,416,416,0
+2629,130000,male,2,2,31,1,2,2,2,0,0,70722,69040,70912,63626,59200,38263,0,4130,43,2000,1368,1418,0
+2630,390000,male,1,2,28,-1,0,0,0,0,0,10439,25143,35165,44543,45631,45793,15007,10529,10000,1773,2000,1592,0
+2631,100000,male,3,1,40,0,0,-1,-1,-2,-2,12878,7702,2377,0,0,0,2000,2377,40000,0,0,0,0
+2632,140000,female,1,1,33,0,0,0,0,0,0,85314,87042,90165,91318,94847,35773,4000,5000,2000,4000,5000,6000,0
+2633,80000,female,3,1,35,2,2,2,2,2,0,70002,71389,73788,74463,72834,74190,3100,4204,2790,0,3043,2625,1
+2634,50000,female,3,1,42,1,3,4,3,2,0,44498,46740,45718,44696,43848,44718,3240,0,0,0,1600,1845,1
+2635,50000,male,2,2,25,0,0,0,0,0,3,21316,23038,24720,26370,29332,28574,2375,2375,2375,3547,0,0,0
+2636,360000,male,1,1,39,1,-2,-2,-2,-1,-1,0,0,0,0,691,7020,0,0,0,691,7020,0,0
+2637,170000,female,2,1,49,1,2,0,0,0,0,153322,149027,150920,145689,33588,0,0,6320,5045,1000,0,0,1
+2638,50000,male,2,2,41,0,0,0,0,0,0,48152,45974,44792,18649,16260,18745,2043,3000,14000,545,5000,308,0
+2639,310000,female,1,2,25,2,0,0,0,0,0,266270,273719,235796,188031,170898,68369,11677,8406,6000,5074,3000,3000,1
+2640,210000,male,1,2,31,-1,-1,-1,-1,-1,-1,326,326,326,326,326,326,326,326,326,326,326,133,1
+2641,140000,male,2,1,37,0,0,0,0,0,0,90186,74504,72358,48081,45543,26788,2805,2877,1360,1400,1026,1200,0
+2642,150000,female,1,2,37,0,0,0,0,0,0,127111,106956,106129,106531,107062,109938,3878,3794,3783,3892,4662,3500,0
+2643,170000,male,1,1,40,-1,-1,-1,-1,-1,0,2000,2210,3000,2000,5000,3000,2210,3000,2000,5000,0,4000,1
+2644,260000,female,1,2,25,-1,2,-1,0,0,0,148,75,12117,9620,8690,11744,7,12117,2,0,3054,6972,1
+2645,170000,female,1,2,26,0,0,0,0,2,0,99387,102141,103972,108405,102303,99767,5250,5100,7500,0,3900,3600,0
+2646,310000,female,1,2,35,1,-2,-1,0,0,0,0,0,4488,4696,84522,86206,0,4488,264,80000,2950,3055,0
+2647,50000,female,3,2,23,0,0,0,0,0,2,34364,34212,33886,32929,34549,33458,1861,2004,1324,3768,1,1141,0
+2648,260000,female,1,1,35,2,2,-2,-1,0,0,1013,0,0,6895,3718,0,0,0,6895,0,0,0,1
+2649,100000,male,1,2,27,0,0,2,2,2,2,36014,39321,39145,39494,39896,28256,4200,900,1400,900,6440,500,1
+2650,40000,female,2,1,25,0,0,0,0,2,2,40633,40311,39380,41389,40628,41389,4300,2000,2938,0,3700,0,0
+2651,180000,female,1,1,46,1,2,2,2,2,2,82505,86302,84020,97554,95878,112141,6000,0,15000,0,18000,0,0
+2652,50000,male,3,1,41,2,2,2,0,0,0,26184,29261,28444,28878,27655,24480,3500,0,1100,1100,2000,1000,0
+2653,200000,male,1,2,29,-1,-1,-1,0,-1,-1,4810,0,726,726,495,1402,0,726,0,495,1562,1420,1
+2654,320000,female,2,1,53,0,0,0,0,0,0,33589,34608,38544,44486,52319,51764,3000,6000,8000,10000,1900,2000,0
+2655,220000,female,1,2,45,-1,-1,-1,-1,-1,-1,4624,2874,1210,632,15243,5471,2888,1216,640,15251,5472,4045,0
+2656,180000,male,2,1,46,0,0,0,0,0,0,60005,41223,49108,50016,45956,52926,3000,10000,3000,5000,15000,0,0
+2657,50000,female,2,2,36,0,0,0,0,0,2,94228,47635,42361,19574,20295,19439,2000,1500,1000,1800,0,1000,1
+2658,50000,female,2,2,22,0,0,0,0,0,-1,29637,30805,30336,13378,-1022,29857,1826,1200,268,0,31448,792,0
+2659,150000,female,1,2,32,0,0,0,0,0,0,83275,84220,77956,77682,52300,56223,3006,3000,2000,222,11170,5000,0
+2660,120000,female,1,1,38,-1,-1,2,-1,-1,-1,6856,17329,2047,8568,8814,17180,19600,0,14150,9000,17000,0,0
+2661,30000,male,2,2,34,0,0,0,0,0,0,29302,30052,29349,29476,30014,29785,1530,1416,1142,1102,1106,3450,0
+2662,10000,male,5,1,43,-1,0,0,0,-2,-2,17560,9829,3604,0,0,0,2537,1000,0,0,0,0,1
+2663,380000,male,1,2,34,-2,-2,-2,-2,-2,-2,34869,6305,5736,900,16915,936,6336,5766,904,16915,940,0,0
+2664,320000,female,1,1,38,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+2665,30000,female,2,2,41,0,-1,-1,0,-1,2,1448,1261,630,240,690,150,1261,630,0,840,0,780,0
+2666,470000,male,2,2,29,0,0,0,0,0,0,72830,49502,47771,52979,119678,94721,4003,4003,8003,70003,5030,6003,0
+2667,80000,female,3,1,40,0,0,0,0,0,0,75768,78069,79196,25722,26261,26784,3500,2934,897,929,935,984,0
+2668,20000,male,2,1,60,-1,-1,2,0,0,0,8570,10651,9944,10142,9591,10400,2620,0,500,380,1000,0,0
+2669,120000,male,1,1,51,0,0,2,0,0,0,125702,130461,131281,128594,117561,116732,8300,4500,4260,4595,4311,4280,0
+2670,150000,female,1,2,37,1,-2,-1,0,0,0,0,0,584,596,596,0,0,584,12,0,0,0,0
+2671,200000,female,2,2,43,0,0,0,0,0,0,180680,184436,188181,190775,196449,192085,8155,8302,7225,10153,6987,5262,0
+2672,20000,male,2,2,40,0,0,0,0,0,-2,45429,47961,49562,4410,0,0,2819,2420,88,0,0,0,0
+2673,170000,female,3,1,36,0,0,0,0,0,0,85780,80568,79823,79335,79506,80252,2906,3002,3000,3000,3500,3000,0
+2674,150000,female,1,2,34,-1,-1,-2,-1,0,-1,900,0,0,740,740,545,0,0,740,0,545,550,0
+2675,160000,male,2,2,30,-1,-1,-1,-1,-1,-1,632,0,632,316,0,316,0,632,316,0,316,316,0
+2676,280000,female,1,2,32,-1,-1,-1,-1,-1,-1,45536,11509,2110,2121,6789,14959,11509,5000,2121,6789,14959,16067,0
+2677,60000,male,1,1,42,2,0,0,0,0,2,39986,41036,42449,43243,48537,47606,2000,2100,1800,6000,0,2000,1
+2678,100000,male,3,1,44,0,0,0,0,0,0,39649,43608,46899,47447,48035,40484,5000,5000,1554,1595,1686,1200,0
+2679,360000,male,2,2,48,0,0,0,0,0,-2,68032,63174,44536,80570,8333,8325,4500,3000,50000,8400,8325,12967,0
+2680,500000,female,1,1,44,-2,-1,0,0,0,-1,71921,367979,294969,189612,128459,167105,368199,6486,234,90,167116,372495,0
+2681,290000,female,1,2,30,0,0,0,0,0,0,284239,284692,230891,232778,235004,226959,11000,10000,8000,10000,8000,7500,1
+2682,160000,female,1,2,31,-2,-2,-2,-1,-1,-1,0,0,0,150,150,150,0,0,150,150,150,178,0
+2683,50000,male,2,1,47,0,0,0,0,0,0,22923,23264,23879,23960,24067,24253,1400,1400,850,871,974,962,0
+2684,250000,female,2,1,35,0,0,0,0,0,0,27107,36565,39711,47523,52726,57649,10000,10000,10000,6000,6000,5000,0
+2685,350000,male,1,1,42,-1,-1,-1,-1,-1,-1,3800,3138,4150,3750,1362,8210,3138,4160,3750,2272,8210,9731,0
+2686,100000,female,2,1,22,0,0,0,0,0,0,99415,101507,99511,99813,95816,96884,4600,3478,3461,3461,3684,3510,0
+2687,30000,male,2,2,33,1,2,0,0,0,0,31956,30425,30615,29304,28996,28970,0,1753,1200,1041,1194,1100,0
+2688,450000,female,1,1,36,1,-1,-1,-2,-2,-2,0,2500,2500,0,0,0,2500,2500,0,0,0,0,0
+2689,20000,female,3,2,40,-1,-1,0,0,0,0,9755,894,5625,9625,12625,0,894,5000,4000,3000,0,0,0
+2690,30000,female,3,2,26,0,0,0,0,0,0,28063,29304,28047,26840,28271,28134,1700,1407,1200,2000,2000,1000,0
+2691,150000,female,3,2,47,0,0,0,2,0,0,103226,64671,64293,58024,59230,54638,2627,4123,0,1304,1338,376,0
+2692,30000,male,2,1,36,1,3,2,0,0,0,22327,21696,21054,21315,21623,22261,0,0,908,800,1000,1809,0
+2693,10000,male,3,2,23,0,0,0,0,0,0,6001,4308,3421,3615,4402,5173,2000,1500,400,1000,1000,500,0
+2694,50000,female,3,2,47,0,0,0,0,2,0,17569,18592,19621,21748,21262,21682,1613,1642,2769,0,923,950,0
+2695,50000,female,1,2,22,0,-1,-1,-1,-1,-1,4124,1070,0,1217,3766,381,1070,0,1217,3766,381,1980,0
+2696,130000,female,2,2,23,2,2,2,0,0,0,6271,6871,7599,9459,10303,11128,1500,1000,2000,1000,1000,1000,0
+2697,50000,female,3,2,22,0,0,0,0,0,0,47066,45132,47756,28275,28082,28846,2300,3862,2000,1100,1500,1100,0
+2698,180000,female,2,2,25,0,0,0,0,0,0,177633,139415,136942,114632,117808,120302,5203,30023,10024,10000,4458,5000,0
+2699,30000,male,2,1,47,2,2,2,0,0,0,24081,29818,28966,26902,25426,26799,6155,0,1030,1049,5000,482,1
+2700,60000,female,2,2,24,0,0,0,0,0,0,29717,28208,21372,18746,16745,16544,2076,1500,1500,689,2000,2983,0
+2701,200000,male,1,2,26,0,0,0,0,0,0,16811,21290,20207,23858,33236,33337,5023,4007,5001,10020,5073,5064,0
+2702,30000,female,3,2,23,0,0,-1,-1,-1,0,18292,18450,390,390,780,780,1000,390,390,780,0,0,0
+2703,320000,female,2,2,36,0,0,0,0,0,0,262613,164486,169691,188527,145676,135254,10043,15005,21640,5004,11628,20020,0
+2704,360000,female,1,1,37,-1,2,2,-2,-2,-2,1605,1448,0,0,0,0,14,0,0,0,0,0,0
+2705,60000,female,1,1,39,0,0,2,0,0,0,56045,59524,58563,56831,53628,34490,5000,2000,1000,3000,8000,0,0
+2706,50000,female,2,2,28,-2,-2,-1,0,0,0,13733,5570,2698,4640,6554,8434,2037,2698,2000,2000,2000,2000,0
+2707,30000,male,2,2,35,2,2,2,2,2,2,27143,28211,28654,27897,29587,30152,1800,1200,0,2300,1200,0,0
+2708,50000,female,2,1,31,1,2,0,0,0,0,34644,33669,19124,18117,18496,18880,0,1597,649,671,691,700,0
+2709,70000,female,1,2,24,0,0,0,0,0,0,42105,35575,32772,29766,29286,29404,1614,2042,2002,1052,1055,1063,0
+2710,310000,male,1,2,44,1,-1,-1,-2,-2,-2,-42,7281,0,0,0,0,7323,0,0,0,0,0,0
+2711,170000,female,2,2,39,-1,-1,-1,-1,-1,-1,2860,15643,1104,190,4786,2714,15643,1108,191,4786,2714,7714,0
+2712,150000,male,1,1,49,-2,-2,-2,-2,-2,-2,111348,109115,102598,3039,-309,-309,6000,4044,309,0,0,0,0
+2713,120000,female,1,2,30,-1,-1,-1,-1,-1,-1,3333,0,3333,0,984,984,0,3333,0,984,984,984,0
+2714,100000,female,1,2,33,0,0,0,0,0,0,75374,44796,47294,38712,39304,40479,2000,5000,1521,1595,2000,2716,0
+2715,140000,male,1,2,41,2,2,2,0,0,0,138379,143684,139902,142729,142406,142694,9000,0,6800,40000,5600,5900,1
+2716,180000,female,3,1,47,-1,0,0,0,0,0,14525,13828,10394,17562,8495,5090,1347,5000,10026,5000,785,5000,0
+2717,20000,female,3,1,51,0,0,-1,0,0,-2,19684,11580,780,780,0,0,1000,780,0,0,0,0,0
+2718,80000,female,2,2,25,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+2719,200000,female,2,1,39,0,0,0,0,0,0,178665,133266,95836,85635,66137,30410,3677,2441,1854,1567,5000,1953,0
+2720,200000,male,2,2,27,0,0,2,0,0,0,25334,26203,25652,25162,24995,23901,2204,1004,1004,1013,2018,4,0
+2721,30000,male,3,1,42,0,0,2,-1,-1,2,14617,20350,18456,4190,13702,13247,6000,28,5000,13702,0,10000,0
+2722,250000,female,2,2,40,-2,-2,-2,-2,-2,-2,0,1069,-320,-320,1680,4058,1069,320,0,2000,4058,3000,0
+2723,50000,male,3,2,30,1,2,3,2,2,2,31217,33423,32600,31777,33966,34759,3000,0,0,2700,1500,0,0
+2724,250000,male,1,2,31,-2,-2,-2,-2,-2,-2,-23,3102,4438,3416,-4,1404,3125,4455,3417,0,1408,1717,1
+2725,140000,female,1,2,25,0,0,0,0,0,0,23409,24725,26006,26771,28179,29746,2000,2000,1500,2000,2200,2000,0
+2726,170000,female,2,2,31,2,-1,-1,0,0,0,520,1316,6779,3416,2941,3518,1339,6779,2000,97,1002,1018,0
+2727,240000,female,2,2,47,-2,-2,-2,-2,-2,-2,316,21359,2762,10264,316,9801,21359,2762,10318,316,17677,31600,0
+2728,140000,female,1,1,37,0,0,0,0,0,0,135134,139178,139900,109665,108129,108067,6703,6120,4015,4042,4057,4012,0
+2729,50000,female,2,1,28,0,0,0,0,0,0,50998,51103,50262,20304,20319,20330,2209,1726,710,724,733,712,0
+2730,240000,female,2,1,47,1,2,2,2,2,2,124425,131943,133457,134749,132651,140600,10839,5000,4800,0,10000,5200,1
+2731,420000,female,2,1,57,-1,-1,-1,-1,-1,-1,666,2629,4352,1440,1486,2290,2629,4360,2064,1486,2290,1290,0
+2732,220000,male,1,1,53,-1,-1,-1,-1,-1,-1,1136,642,1582,1109,3319,2113,642,1582,1109,3319,2113,5410,0
+2733,70000,female,2,1,28,0,0,0,0,0,0,44230,44348,28978,17008,13780,14593,1747,1272,1212,1000,1020,800,0
+2734,90000,male,2,2,28,0,0,0,0,0,0,55779,51886,52495,47727,44404,35768,2100,2166,1400,1534,1300,665,0
+2735,220000,female,1,1,40,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,12096,0
+2736,200000,female,1,2,27,0,0,0,0,0,0,9314,6020,4817,2098,2280,4778,2020,2817,1098,1280,3778,3098,0
+2737,240000,male,3,1,55,0,0,0,0,0,0,229254,232693,189095,190481,194215,198313,8737,7506,6501,6501,7001,17001,0
+2738,310000,female,3,2,28,0,0,-1,-1,-1,-1,19610,14746,28216,4245,3500,396,10000,28216,4245,3500,396,396,0
+2739,80000,female,2,1,34,2,2,2,0,0,0,76142,80627,76776,61884,55501,54840,6611,1,3000,2504,2000,2200,1
+2740,290000,female,2,1,38,0,0,0,0,0,0,144160,147451,150617,153351,156213,158938,6000,6010,5600,5700,5700,6000,0
+2741,260000,male,2,1,43,0,0,0,0,0,0,175247,164173,152724,153527,153375,105491,8500,5950,4000,3000,6000,30588,1
+2742,120000,male,1,1,43,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+2743,260000,female,1,1,32,-1,-1,2,-1,-1,-1,598,2268,2268,1732,718,165,2268,0,1732,718,165,3735,0
+2744,360000,female,2,2,39,-1,2,2,-2,-2,-2,655,655,0,0,0,0,0,0,0,0,0,0,0
+2745,30000,female,3,1,36,0,0,0,0,0,0,7963,9152,10282,10180,10394,9614,1321,1451,349,362,343,356,1
+2746,30000,female,2,2,22,0,0,0,2,0,0,27444,29000,29886,28392,22612,22750,2000,1800,0,1000,1000,0,1
+2747,20000,male,1,2,22,0,0,0,0,0,0,3281,4325,5341,5751,6500,7386,1100,1100,500,1000,1000,1000,0
+2748,240000,female,2,2,25,0,0,0,0,0,0,175764,178600,182639,186275,190337,193961,6500,7000,6680,7070,6954,14870,0
+2749,200000,male,2,1,31,7,6,5,4,3,2,254266,240966,228663,217600,208432,200057,0,328,0,0,600,2500,1
+2750,70000,male,2,2,38,0,0,2,0,0,0,27000,31809,29776,30148,29918,29399,5600,0,1500,1057,2000,1035,0
+2751,200000,female,1,2,23,-2,-2,-2,-2,-2,-2,488,878,488,488,0,1915,878,488,488,0,1915,100,0
+2752,150000,female,1,2,31,-1,-1,-1,0,0,0,18395,-2390,10042,129691,88173,63034,312,20132,129665,127,315,0,0
+2753,160000,female,2,1,35,0,0,0,0,0,0,17742,12939,7035,4596,4635,2744,2000,1000,500,1000,1000,2000,0
+2754,180000,female,1,2,30,0,0,0,0,0,0,113647,52992,38394,30332,110824,99661,3000,3170,2000,100000,5000,4000,0
+2755,190000,male,2,1,39,0,0,0,0,0,0,144414,145572,142816,145463,147475,149853,7000,6000,6000,5500,6000,5500,0
+2756,20000,female,2,1,22,0,0,0,0,0,0,15749,16221,19836,14354,10962,9274,1500,5000,500,500,246,500,0
+2757,150000,male,1,2,27,0,0,0,0,0,0,82494,83044,84752,84743,78987,65590,3100,3500,3000,5000,3000,2500,0
+2758,310000,male,2,1,35,0,0,0,0,0,0,7589,9463,12296,15083,17840,20376,2000,3000,3000,3000,3000,3003,0
+2759,180000,female,2,1,36,0,0,0,0,0,0,98736,96566,81166,72463,72189,70712,6025,5000,6800,5000,5000,5000,0
+2760,80000,female,2,2,24,0,0,0,0,0,0,81908,83597,157646,79061,79834,81257,5501,3450,3000,3059,2915,2758,1
+2761,350000,female,2,1,41,0,0,0,0,0,0,85339,84393,86793,84406,73976,75497,5000,5016,5000,3000,3000,4000,0
+2762,50000,female,2,1,47,0,0,0,0,-2,-2,32547,33481,26775,0,0,0,1582,1800,0,0,0,0,0
+2763,90000,female,2,2,23,2,0,0,0,0,0,87669,86653,57819,30895,14543,9329,3499,3000,3000,10000,2000,10000,0
+2764,220000,male,2,1,35,0,0,-1,-1,-1,-1,112460,29300,8500,0,8500,8535,8500,8500,0,8500,8535,177000,0
+2765,50000,female,1,2,25,2,3,2,2,2,2,43870,42891,43582,44561,45592,46495,0,1700,2000,1900,1800,0,1
+2766,90000,male,3,1,46,-1,2,-1,-1,-1,-1,1651,390,390,390,1848,930,0,390,1950,1848,1710,0,0
+2767,400000,female,2,1,30,0,0,-1,-1,-1,-1,161226,139481,17939,10315,22728,11493,5000,17939,12845,22728,11493,10703,0
+2768,210000,female,3,1,40,-1,-1,0,0,0,0,2309,4791,4909,6588,9074,8651,4791,1909,2588,3074,3651,6349,0
+2769,180000,female,2,1,39,2,2,2,2,2,0,177113,180628,176137,183007,179505,105229,7800,0,11700,0,3775,7000,1
+2770,500000,male,1,1,55,-1,-1,-1,0,0,0,3925,11200,25509,9857,8945,9985,11253,25585,3,18,5034,5031,0
+2771,260000,female,2,1,39,2,0,0,2,0,0,228443,233958,252615,186443,190345,193739,10698,24799,0,7035,7078,7221,1
+2772,180000,female,2,2,26,0,0,0,0,0,-1,7149,12946,16163,13142,9800,4857,5946,3663,3159,3000,4857,6240,0
+2773,180000,female,2,1,34,-1,-1,-2,-2,-1,-1,8000,0,0,0,600,0,0,0,0,600,0,0,1
+2774,30000,female,1,2,24,0,0,0,0,0,0,22236,23574,24583,24915,25280,25791,1696,1705,1037,915,929,1097,0
+2775,360000,female,1,2,33,0,0,0,0,0,0,31482,31805,18203,13122,11547,10949,5119,5007,5002,5005,5024,4543,0
+2776,280000,female,1,1,47,-1,2,2,-1,0,0,2002,1311,0,430,430,-550,0,0,430,0,550,1304,0
+2777,100000,female,1,2,27,1,2,0,0,0,0,53213,50842,48205,47324,45723,46708,6,2031,1800,2000,1900,2000,1
+2778,50000,female,2,1,49,0,0,0,0,-1,-1,49467,41877,20082,5329,3990,2088,1472,1000,107,3990,2088,1470,0
+2779,20000,male,3,1,31,0,0,0,0,0,-2,17557,18739,19473,17136,0,0,1466,1200,343,0,0,0,0
+2780,80000,female,3,2,27,-2,-2,-2,-2,-2,-2,1672,0,1672,836,0,2902,0,1672,836,0,2902,836,1
+2781,110000,female,2,2,36,1,-1,-1,-2,-2,-2,0,780,0,0,0,0,780,0,0,0,0,0,0
+2782,50000,male,1,3,25,1,-1,2,-1,0,-1,6300,3395,3180,1831,1868,3300,9195,0,1831,37,3300,289,1
+2783,50000,female,2,1,50,0,0,0,-1,-1,-1,48119,48318,21750,4387,4392,9493,1554,1028,4387,4392,9493,492,1
+2784,20000,male,1,2,33,0,0,0,2,0,0,16117,17130,18655,17687,18023,18169,1285,2200,0,1000,1000,500,0
+2785,200000,female,3,1,41,0,0,0,0,-2,-2,98184,103228,119034,0,0,0,5143,19034,0,0,0,0,0
+2786,250000,female,2,2,44,1,-1,-1,0,0,0,0,664,62791,48598,50078,36050,664,65791,2000,2100,2000,0,0
+2787,150000,female,1,1,33,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+2788,50000,male,1,2,23,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+2789,200000,female,1,1,38,-1,-1,2,2,2,-1,1779,1354,250,7250,2639,10207,1354,0,7000,0,10500,3500,0
+2790,220000,male,2,1,38,0,0,0,0,0,0,147048,137560,131090,121259,117003,116902,6364,5892,5000,4369,4178,5000,0
+2791,60000,female,2,1,36,-2,-2,-2,-2,-2,-2,0,2426,3367,2898,11768,3983,2426,3367,2898,11768,3983,0,0
+2792,100000,male,2,2,43,0,0,0,0,0,0,47730,47525,47184,46836,46529,47070,1808,1728,1641,1673,1689,1754,0
+2793,20000,male,3,3,46,0,0,0,0,0,-2,15523,17264,18325,15680,0,0,2000,1500,500,0,0,0,0
+2794,140000,male,2,2,28,1,3,4,3,2,0,82265,86127,84107,82362,74000,60977,5747,0,0,0,2600,2800,1
+2795,50000,male,2,1,46,0,0,0,0,-2,-2,48677,39756,30000,0,0,0,2000,3000,0,0,0,0,1
+2796,50000,male,1,2,28,0,0,0,0,0,0,28639,29482,30455,28955,25959,26144,2100,2000,1000,600,3000,0,0
+2797,120000,female,2,1,30,-1,-1,-1,-1,0,-1,686,686,686,1372,686,836,686,686,1372,0,836,686,0
+2798,120000,female,1,1,39,1,-2,-2,-2,-1,-1,0,0,0,0,915,0,0,0,0,915,0,0,0
+2799,30000,male,2,2,38,0,0,0,0,0,0,28637,28711,29138,28852,28487,27788,2002,2002,1503,2006,2005,3000,0
+2800,180000,female,1,2,26,1,-2,-2,-2,-1,-1,0,0,0,0,298,7550,0,0,0,298,7550,0,0
+2801,500000,male,1,1,46,0,0,0,0,0,-1,53049,66623,70194,68618,67300,1825,16018,10000,4,333,1831,597,0
+2802,420000,male,1,1,44,0,0,0,0,0,0,337792,293987,294203,300314,258484,274817,12011,6472,6711,5170,189740,6656,0
+2803,20000,female,2,1,45,0,0,0,0,2,0,14296,15321,16333,17434,17013,17500,1262,1274,1375,0,771,805,0
+2804,50000,female,2,2,24,0,0,0,0,0,0,39083,40150,41181,41996,43021,45700,1700,1700,1501,1700,3400,0,1
+2805,260000,female,2,2,30,0,0,0,0,0,0,19674,17810,19753,21550,21032,19979,2000,3000,3000,3000,3000,3000,0
+2806,50000,male,2,2,27,0,0,0,0,-1,-1,47481,36112,31992,33361,100,0,1910,1790,79,100,1200,0,0
+2807,50000,female,1,2,26,-1,-1,-1,-1,-1,-1,750,0,3116,302,0,5778,0,3116,302,0,5778,200,0
+2808,50000,female,2,2,49,0,0,0,0,0,0,43342,44441,45390,46310,47262,48219,2100,2000,1113,1143,1159,1381,0
+2809,100000,male,2,1,49,0,0,0,0,0,0,69896,71360,72820,74264,75821,77410,2588,2644,2656,2752,2850,2965,0
+2810,50000,female,1,2,24,4,3,2,2,2,2,38965,38063,38838,39598,40313,41293,0,1700,1700,1500,1800,1700,1
+2811,180000,female,1,2,27,0,0,0,0,0,0,174546,175121,150710,135981,136064,137343,8269,6606,5000,4900,4900,4900,0
+2812,240000,female,1,1,38,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,100000,0,0,0,0,0
+2813,30000,male,2,1,38,2,0,0,0,0,-2,28484,29242,30037,29682,0,0,1905,1700,1108,0,0,0,0
+2814,30000,female,3,1,60,-1,3,2,0,0,3,5867,5621,4090,2829,2108,1801,0,0,0,1801,0,0,1
+2815,270000,female,1,1,45,0,0,0,0,0,0,96175,88092,78574,70330,61355,52969,3626,2700,3180,2300,2800,2009,0
+2816,30000,female,3,1,57,-1,-1,-1,-1,-1,-1,347,1353,78,135,68,193,1353,78,135,68,423,140,1
+2817,200000,female,2,1,31,-1,-1,-1,-1,-1,-1,1319,4997,3635,130,1209,938,4997,3650,130,1209,938,105,1
+2818,40000,female,2,1,29,-1,0,0,-2,-2,-1,8801,9544,0,0,0,7922,1000,0,0,0,7922,158,1
+2819,360000,female,1,1,31,-2,-2,-2,-2,-2,-2,0,18540,9007,9500,8675,6573,18540,10000,10000,9000,6600,32810,0
+2820,150000,female,3,1,57,-1,-1,-1,-1,-1,-1,5483,9136,17348,6456,12256,8156,9136,17348,6456,12256,8156,5256,0
+2821,80000,female,2,2,24,0,0,0,0,0,2,9933,11111,9998,8950,9415,5700,1370,1233,261,549,400,0,1
+2822,300000,female,1,1,32,1,-1,-1,-1,-1,-1,-227,44791,-649,129798,558,522,45018,0,130447,560,524,6776,0
+2823,220000,male,2,1,32,0,0,0,0,0,0,202010,103124,105226,107476,109746,111920,3746,3820,4000,4000,4000,4500,0
+2824,110000,female,2,1,42,-1,-1,-1,-1,-1,-1,776,776,776,776,926,776,776,776,776,926,776,776,0
+2825,50000,male,1,2,30,0,0,0,0,0,0,11787,9720,8613,5173,5593,0,1300,1034,0,1200,0,0,0
+2826,50000,female,3,2,60,0,0,0,0,0,0,31164,32384,27553,28101,28690,28467,1756,1445,993,1029,1054,977,0
+2827,230000,female,1,1,37,-1,-1,0,0,0,0,400,20123,20590,20029,17198,5177,20123,1256,1000,1000,500,801,0
+2828,50000,male,1,1,27,2,2,2,2,0,0,43333,46308,47250,46192,46997,48221,4000,2000,0,1700,2000,3600,1
+2829,240000,female,2,3,39,0,0,0,0,0,0,171907,171394,68907,70164,70672,69581,7200,3000,3000,2509,3000,2500,0
+2830,130000,female,1,2,26,0,-1,-1,-1,-2,-2,20054,1298,6712,-884,-6332,-9333,1298,6730,900,5448,0,25000,0
+2831,160000,female,1,2,34,0,0,0,0,0,0,43729,43535,40799,41255,31766,32570,2045,1809,1265,1154,1333,1313,0
+2832,210000,female,1,2,31,0,0,0,0,0,0,121697,120133,118496,116033,114617,108328,5000,5000,4036,5000,4000,4000,0
+2833,210000,female,2,2,32,-1,0,0,0,-1,-1,1952,2787,6316,6504,326,89599,1526,4000,514,326,89599,3292,0
+2834,330000,male,1,2,47,0,0,0,0,0,0,240063,242040,160008,160084,159453,159354,9500,5591,5500,6000,6000,6000,0
+2835,110000,female,2,1,51,0,0,0,2,2,2,10141,11472,12973,12468,13763,13989,1500,2000,0,1500,600,0,0
+2836,120000,female,2,2,28,1,2,2,2,2,2,108993,111266,112056,112819,111298,113290,5500,4100,4087,400,4000,8932,0
+2837,100000,female,1,2,29,-1,-1,-1,-1,-1,-1,5466,5652,9690,5286,8191,11272,5652,9690,6916,8191,6412,0,0
+2838,210000,female,2,2,34,0,0,0,0,0,0,63672,57299,59336,61349,63366,65155,2200,3000,3000,3000,3000,3500,0
+2839,350000,female,1,2,31,0,0,0,0,0,2,181550,177978,164481,198545,232543,165288,10000,20000,100048,60000,0,5000,0
+2840,180000,female,2,2,25,0,0,0,0,0,0,141836,140792,144021,146539,149286,151900,5124,6000,5300,5500,5500,6000,0
+2841,150000,female,1,2,28,0,0,0,0,0,0,66296,61916,39614,39863,26379,22081,3000,3005,5000,3000,5000,1000,0
+2842,50000,male,1,3,37,1,2,0,0,0,0,49457,47080,45833,45310,6313,5009,0,1200,1000,126,1000,0,0
+2843,230000,female,3,1,47,-1,-1,-1,-1,-1,-1,5482,15900,1678,0,764,0,15900,1678,0,764,0,1321,0
+2844,30000,female,2,1,39,2,2,0,0,0,2,9884,9586,10318,10522,11354,11022,0,1200,375,1000,0,1000,1
+2845,90000,female,2,1,24,2,2,2,2,2,2,86643,87249,86858,86373,85875,82150,3881,3000,2800,1500,2299,2500,1
+2846,390000,female,2,1,24,0,0,0,0,0,0,16406,16966,15428,13465,40736,39532,1500,1500,1000,30000,2000,3000,0
+2847,50000,female,2,2,25,2,2,2,2,2,2,15679,16228,17796,17213,18432,18981,1100,2150,0,1500,1000,0,1
+2848,320000,male,2,1,39,0,0,0,-1,-1,-1,51058,34619,18079,18077,1792,18344,1240,1403,18084,1801,18352,2072,0
+2849,20000,male,2,2,34,0,0,0,0,0,0,15907,17142,17844,18009,17356,17200,1498,1200,365,347,344,0,0
+2850,200000,female,2,1,41,0,0,0,0,0,0,42292,43764,44030,48466,49183,46919,3000,2000,5000,2000,3000,3000,0
+2851,500000,male,1,1,40,-2,-2,-2,-2,-2,-2,5255,721,17252,7388,6069,0,721,17252,7421,6069,0,0,1
+2852,190000,female,2,2,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,828,0
+2853,70000,female,1,2,25,2,0,0,0,0,0,5730,7625,9484,11317,13125,14742,2000,2000,2000,2000,2000,2000,1
+2854,220000,female,1,2,35,-1,-1,-1,-1,-1,-1,8304,11526,1270,0,1121,500,11526,1282,0,1121,500,0,1
+2855,50000,male,2,2,28,0,0,0,0,2,0,28864,30090,31282,33350,32682,33385,2000,2000,2900,0,1400,1600,0
+2856,50000,male,2,1,37,0,0,0,0,0,0,15175,16505,17516,17926,18487,19029,1579,1590,1000,1000,1000,1200,0
+2857,50000,female,2,1,46,2,2,2,2,2,2,28390,29639,30854,30062,32705,33519,2000,2000,0,3300,1500,0,0
+2858,70000,male,1,1,42,0,0,0,0,0,0,70730,58103,68197,50756,50843,46727,3500,15000,3000,2000,1840,1798,0
+2859,80000,female,1,2,26,0,0,0,0,0,0,66982,66130,67489,68535,66835,64962,2986,3056,2787,2745,2564,2926,0
+2860,50000,male,3,2,41,0,0,0,0,0,0,45487,45548,46076,19092,18227,18285,1858,1685,659,658,656,651,0
+2861,150000,female,1,2,27,-1,-1,-2,-2,-2,-2,1345,0,0,0,0,0,0,0,0,0,0,24948,0
+2862,300000,female,1,1,36,-2,-1,-1,-2,-2,-2,540,1283,843,0,444,0,1283,843,0,444,0,0,0
+2863,50000,female,1,2,25,0,0,0,0,0,0,10973,12092,13386,13663,14440,15150,1300,1500,500,1000,1000,1000,0
+2864,170000,female,2,1,42,0,0,0,0,-2,-2,4600,6519,7360,2437,2881,2659,2000,1000,2437,3103,2659,2659,0
+2865,350000,male,1,2,37,-2,-2,-2,-2,-2,-2,316,316,316,466,466,316,316,316,466,466,316,316,0
+2866,470000,female,2,2,33,0,0,0,0,0,0,43353,47682,46429,43405,42796,44171,5000,2600,1500,1500,2000,1500,0
+2867,20000,male,2,2,25,0,0,0,0,0,0,13610,14160,15200,14800,17800,10000,1360,1400,0,3000,200,0,0
+2868,140000,female,2,2,26,1,-1,0,0,0,0,0,811,1633,1666,1700,0,811,1000,33,34,0,0,0
+2869,60000,female,2,2,23,1,2,2,0,0,0,45014,45698,39068,51205,54520,55964,1774,0,12858,4166,2350,3300,0
+2870,160000,female,2,2,23,0,0,2,2,0,0,122339,137278,136572,95115,96847,101443,18518,3358,0,3200,8000,4366,0
+2871,150000,female,1,2,26,0,0,0,0,0,0,101569,103688,107321,106614,108805,111012,3756,5350,2562,2629,2669,2739,0
+2872,20000,female,1,2,23,-1,-1,-1,-1,-1,-2,292,780,0,593,0,0,780,0,593,0,0,0,0
+2873,210000,male,1,2,35,-1,-1,-1,0,-1,-1,6808,4954,8739,5420,4450,4064,4960,8747,8,4450,4064,3870,0
+2874,50000,male,2,2,23,-1,-1,0,0,0,0,3352,18685,15868,11348,7822,7357,18685,1105,500,500,500,1000,0
+2875,210000,female,1,2,31,-1,-1,-1,0,0,-1,15332,10000,19875,57751,25456,10625,10000,19875,50000,15456,10625,213,0
+2876,280000,male,1,1,44,-2,-1,-1,-1,-1,0,593,1763,53669,4707,22014,3415,1777,53934,4726,22102,12,1301,0
+2877,300000,male,2,2,36,-1,0,0,-1,-1,-1,15536,17923,27007,360,257,21140,10000,10140,360,257,21346,360,0
+2878,230000,female,3,1,37,0,0,0,0,0,0,228342,189966,142377,143828,143698,143342,6100,7000,5356,5400,5200,5500,0
+2879,250000,male,2,1,47,-2,-2,-2,-2,-2,-2,8996,18069,7966,3470,3128,2966,18069,7966,3470,3128,2966,3419,0
+2880,500000,female,1,1,36,-1,-1,-1,0,0,0,24170,8051,77908,50297,43679,49749,8091,78192,65,33766,37945,37947,0
+2881,50000,female,2,1,48,0,0,0,0,0,-1,12592,12899,7313,8036,3949,26984,2017,2000,1200,100,26984,5000,0
+2882,50000,male,3,2,46,0,0,0,0,0,-1,5942,5444,2464,2521,-1,167,1056,1000,57,0,168,1002,0
+2883,150000,female,2,1,36,0,0,0,0,0,0,296846,301634,314201,84135,90500,0,7143,13700,15000,7500,0,0,0
+2884,180000,female,1,2,53,1,-2,-1,-1,-1,-1,0,41300,41300,0,3270,41300,41300,41300,0,3270,41300,0,0
+2885,450000,male,2,2,37,0,0,0,0,0,0,136655,146400,156049,164076,170885,177483,13492,13641,12168,9650,9650,9650,0
+2886,70000,female,2,3,24,1,2,0,0,0,0,4177,2657,2752,1048,462,830,0,1500,0,0,1123,0,0
+2887,110000,male,3,1,40,0,0,0,0,0,0,93357,94938,79368,74778,75996,77423,4100,2612,2666,2700,2659,2694,0
+2888,200000,male,1,1,43,1,2,0,0,0,0,203393,198272,120005,121023,128387,130960,0,5812,4500,9352,4700,5000,1
+2889,210000,female,2,2,37,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+2890,320000,male,1,2,36,0,0,0,0,0,-1,146201,129311,112151,84218,76058,24068,5465,3137,52,2384,25094,30011,0
+2891,20000,male,1,2,37,0,0,0,0,0,0,66599,67259,69521,16970,17326,17688,2317,2579,606,628,649,623,1
+2892,130000,female,2,2,29,-1,-1,2,0,0,-1,1110,1170,780,390,0,780,1170,0,0,0,780,0,0
+2893,20000,male,1,1,29,0,0,0,-1,-1,-1,16961,16365,9342,556,19967,1742,2000,1139,556,20191,1742,0,0
+2894,210000,male,1,1,39,-1,-1,2,2,-1,2,3391,775,450,125,800,325,1000,0,0,1000,0,650,0
+2895,30000,female,2,2,33,0,0,0,0,0,0,25498,26149,26716,26918,27089,26277,1451,1408,1000,964,1136,716,1
+2896,60000,female,3,1,36,1,2,2,0,0,0,47987,48716,47632,48738,49601,52773,1788,0,1894,1801,3997,0,1
+2897,110000,male,2,1,49,0,0,0,0,0,0,75565,64833,48586,48430,48150,48271,4009,5000,2000,2000,2000,1800,0
+2898,130000,male,1,2,32,-1,-1,-1,-2,-2,-1,32236,41510,-1523,-1523,-1523,48477,10000,0,0,0,50000,5000,0
+2899,500000,female,1,2,38,0,0,0,0,0,0,74615,74399,68761,70260,70143,68506,4010,6720,5000,5000,4000,5000,0
+2900,500000,male,2,1,38,0,0,0,-1,-1,-1,499231,511629,-311,6391,420,7619,22600,501,6892,421,7695,8679,1
+2901,100000,male,2,2,35,-1,2,2,-1,-1,2,8102,10252,5607,59265,62554,55392,2500,0,59265,4100,2500,0,1
+2902,220000,male,1,2,25,0,0,-1,0,-1,2,29664,5995,8419,6523,508,370,1018,8424,20,878,1,3046,0
+2903,50000,male,2,2,40,0,0,0,0,0,0,40561,97214,48890,8694,8876,9052,18280,2284,311,322,323,334,0
+2904,500000,male,1,1,49,-1,-1,-1,-1,-1,-1,1320,1320,1320,1320,1320,1320,1320,1320,1320,1320,1320,1320,0
+2905,50000,female,1,2,29,-1,-1,-1,0,-1,-1,2459,2471,6015,5625,3056,2439,2471,6015,0,3056,2439,3026,1
+2906,200000,female,1,1,45,-2,-2,-2,-2,-2,-2,1417,12643,3977,0,2500,199,12660,3977,0,2500,199,2944,0
+2907,320000,female,2,2,50,-1,0,-1,-1,-1,-1,5714,7870,342,-6,1252,0,3000,342,2,1500,0,10701,0
+2908,450000,male,2,2,29,1,2,0,0,0,-1,16524,12624,11239,10569,3868,5000,676,1204,264,19,5000,0,0
+2909,20000,male,3,2,26,8,7,6,5,4,3,43340,42619,35381,31539,27409,23567,0,0,0,0,0,300,0
+2910,310000,female,2,1,44,-1,-1,-2,-2,-2,-2,500,0,0,0,0,0,0,0,0,0,0,0,0
+2911,120000,female,2,2,23,0,0,0,0,0,0,100727,96551,69676,44879,43532,44467,4324,3234,1448,1400,1400,1400,1
+2912,200000,female,2,1,48,0,0,0,0,0,0,354304,303188,153179,156229,159708,163051,8000,5600,5600,6000,6000,7200,0
+2913,50000,male,3,1,53,0,0,0,0,0,0,49466,50544,25381,9652,9464,9248,2442,1669,330,1342,330,430,0
+2914,130000,male,3,1,48,0,0,0,-2,-2,-1,100522,102650,0,0,0,6163,4650,0,0,0,6163,66564,0
+2915,50000,female,2,2,23,0,0,0,0,0,0,25421,26704,26952,15673,13903,27775,2000,1000,3400,1500,25298,3961,0
+2916,130000,male,2,2,26,0,0,0,2,2,0,16435,17166,19478,19862,19403,21070,1300,2600,1000,0,2000,2000,1
+2917,50000,female,2,2,42,0,0,0,0,-1,-1,50221,49664,49611,2190,19769,19335,2215,1462,248,20787,21402,522,0
+2918,30000,male,2,2,32,2,0,0,0,0,0,17287,14493,17240,19934,22441,24899,3000,3000,3000,3000,3000,0,0
+2919,30000,female,2,1,34,2,2,2,2,2,2,24014,25891,27385,27834,28241,28130,2274,2217,1200,1000,500,2000,1
+2920,160000,male,1,2,34,-1,-1,-1,-1,-1,-1,390,390,390,520,540,390,390,390,520,560,390,0,1
+2921,50000,male,1,2,27,0,0,0,0,2,0,43341,44442,45408,48279,47406,48553,1800,1729,3600,0,2055,2100,0
+2922,80000,female,2,2,28,0,-1,-1,0,0,0,18112,8857,69841,59075,58998,61038,10084,79200,2108,2200,3006,2523,0
+2923,60000,female,2,2,25,0,0,0,0,0,0,50269,47809,42769,38855,38768,38846,4749,1621,1400,1395,1500,1795,0
+2924,230000,female,1,2,27,1,2,0,0,-1,-1,46628,45253,10507,6742,4387,1670,0,1000,135,4387,1670,2798,0
+2925,390000,female,1,2,30,0,0,0,0,0,0,86124,89129,90294,92243,94186,97562,4300,3437,3346,3475,5000,10005,0
+2926,110000,female,2,1,28,0,0,0,0,0,0,3242,4095,4296,5043,5194,6110,1300,1054,1000,1000,1000,1500,0
+2927,50000,male,1,2,24,1,-2,-2,-2,-2,-1,0,0,0,0,0,181,0,0,0,0,181,1685,0
+2928,20000,female,2,1,35,1,2,2,-2,-2,-2,22382,20650,-15000,-15000,-15000,-15000,0,0,0,0,0,0,1
+2929,100000,male,2,2,29,0,0,0,-2,-2,-2,65324,11860,0,0,0,0,2106,0,0,0,0,0,0
+2930,70000,female,3,1,33,0,0,0,0,0,0,32405,22484,23169,23337,18265,18001,10580,8009,10004,5000,5000,5000,0
+2931,150000,male,2,1,31,2,2,0,0,0,0,156286,148841,134757,85874,84665,78130,57,6203,2819,3109,2842,3024,0
+2932,390000,male,1,2,31,0,0,0,0,0,0,19469,17227,17400,19180,20036,4071,2227,2400,2180,1036,2071,3291,0
+2933,50000,male,2,1,22,0,0,0,-1,-1,0,47559,50463,49094,1884,19792,19809,3690,2500,942,19792,727,792,0
+2934,90000,male,2,2,26,2,2,-1,2,0,0,121368,102385,91591,66033,70654,121966,0,95800,0,6000,3000,3000,0
+2935,290000,female,2,2,30,0,0,0,-1,0,0,288994,296230,158127,234456,236813,211237,12549,7003,234456,9500,7592,7626,1
+2936,20000,male,2,2,24,0,0,2,0,0,0,19401,20610,19682,19593,20001,19466,3232,0,815,858,832,560,0
+2937,90000,female,1,2,28,0,0,2,2,2,2,87916,87459,88183,91204,89687,91060,5800,5400,5804,0,6700,0,1
+2938,260000,male,3,2,48,0,0,0,0,0,0,266762,268508,266858,194413,189687,162473,11500,10000,5731,5654,5275,4000,0
+2939,90000,female,2,2,26,0,0,0,0,0,0,92472,92518,91504,91706,91801,91753,4600,4100,3900,4000,3700,3700,0
+2940,100000,female,2,2,27,3,2,0,0,-1,-1,104489,101123,101600,17046,1075,1442,0,4384,341,1075,1442,1396,1
+2941,150000,female,1,2,31,0,0,0,0,0,0,126419,128887,134208,139551,134321,104513,7000,12440,10000,5000,5000,10000,0
+2942,60000,female,2,1,46,0,0,0,0,0,0,60987,60832,50469,40564,40601,40467,2145,1612,1404,1442,1445,1389,0
+2943,80000,male,2,1,42,2,0,0,0,0,0,80586,77960,79804,75299,76933,78953,3000,3200,3000,3400,3300,3500,0
+2944,80000,female,2,1,24,-1,-1,-1,-1,-1,-1,15621,3760,1368,0,1421,0,3768,1368,0,1421,0,0,0
+2945,30000,female,2,1,26,1,2,0,0,0,0,30349,29580,30121,12787,6840,2250,0,1200,256,137,45,0,0
+2946,20000,male,2,1,38,-1,-1,-1,-1,-1,-1,2638,3016,3274,7028,1839,2985,3016,3282,7055,1839,2985,4988,0
+2947,50000,male,2,2,24,0,0,-2,-2,-2,-2,34500,0,0,0,0,0,0,0,0,0,0,0,0
+2948,250000,female,1,2,37,0,0,-1,-1,-1,-1,43971,32009,13346,9163,8338,17793,1007,13346,9163,8338,18618,1763,0
+2949,50000,female,1,2,22,0,0,0,0,0,0,41940,41811,35920,19987,18971,18654,1748,1253,2504,1004,1509,4495,1
+2950,120000,female,3,2,32,0,0,-1,-1,-1,2,5152,4529,890,890,3040,1000,1015,890,890,3040,0,1580,0
+2951,20000,female,2,1,36,1,-2,-2,-2,-2,-2,-25,-25,-25,-25,-25,-25,0,0,0,0,0,0,0
+2952,280000,female,3,2,33,-1,-1,-1,-1,-1,-1,2186,2186,2184,2542,2186,2109,2196,2194,2554,2196,2119,17555,0
+2953,50000,female,1,1,35,0,0,0,0,0,-1,46532,46624,45438,39527,7997,462,3000,1200,9,500,462,1500,0
+2954,360000,male,3,2,49,-2,-2,-2,-2,-2,-2,348,7963,198840,390,390,390,8047,200222,1044,390,390,343,0
+2955,100000,male,1,2,32,-1,-1,-1,-1,2,-1,671,671,671,1642,821,671,671,671,1642,0,671,671,1
+2956,140000,female,3,1,42,2,2,2,2,2,0,47556,48802,47722,50411,49473,50649,2300,0,3800,0,2000,2000,0
+2957,170000,female,2,1,33,0,0,0,0,0,0,172382,173101,171158,121399,118539,121276,6558,6316,3828,3569,3959,3997,0
+2958,50000,female,2,1,33,-1,0,0,0,0,0,25658,26539,27507,28299,12012,8923,1700,2080,3000,1000,1000,1000,0
+2959,50000,male,3,1,46,0,0,0,0,0,0,49083,27822,28702,29119,29240,28664,1463,1733,1150,1480,1200,3135,0
+2960,120000,male,2,1,47,-1,-1,-1,0,0,-1,2486,151,2853,2896,1149,1758,260,5753,1153,3,1759,4084,1
+2961,170000,female,2,2,38,0,0,0,0,2,2,86401,88991,91571,94045,97965,101176,3991,4071,4000,5600,5000,4000,0
+2962,380000,male,2,1,43,-1,0,0,0,0,-2,195221,188328,192624,149860,59256,61039,8000,8263,7127,4000,3000,2500,0
+2963,400000,female,3,1,37,0,0,0,0,0,0,76917,79075,81864,83747,85487,88315,4000,4000,3000,3000,4000,4000,0
+2964,50000,female,1,2,30,0,0,0,0,0,0,30145,26212,17354,18157,18952,14036,5000,2000,1000,1000,1000,1000,0
+2965,440000,female,2,1,42,1,-2,-2,-2,-2,-2,22597,7288,5683,-20,-20,9881,7324,5683,20,0,9901,121971,0
+2966,30000,female,2,1,24,2,2,2,2,2,2,150,150,150,150,150,300,0,0,0,0,150,0,0
+2967,470000,male,1,1,39,-1,-1,-1,-1,-1,-1,5572,3595,22816,2360,4206,5527,3595,22816,2360,4356,5527,6420,0
+2968,180000,female,3,1,40,-1,-1,-2,-1,-1,-1,1903,0,0,3155,1173,1021,0,0,3155,1173,1021,0,0
+2969,110000,male,3,2,32,0,-1,-1,-2,-2,-2,34000,223,0,0,0,0,223,0,0,0,0,0,1
+2970,300000,male,1,2,25,0,0,0,0,0,0,76918,41773,31180,19507,18169,18533,4103,1427,600,1200,2500,18000,0
+2971,120000,female,1,2,31,-1,-1,-1,-1,-1,-1,325,325,325,325,325,1866,325,325,325,325,1866,325,0
+2972,220000,male,1,2,33,-2,-2,-2,-2,-1,0,3233,2106,666,1064,707,9213,2108,1332,1064,707,9325,1500,0
+2973,50000,male,1,2,27,0,0,0,0,-1,-1,50459,36307,27713,3807,2746,625,1600,3071,500,2800,900,100,0
+2974,100000,male,2,1,43,1,-2,-2,-2,-1,0,0,0,0,0,551,551,0,0,0,551,0,0,0
+2975,170000,female,1,2,30,-2,-2,-2,-2,-2,-2,3733,1958,5956,1836,3959,1285,1958,5956,1842,3959,1285,0,0
+2976,360000,female,1,2,37,-1,-1,-1,-1,-1,-1,3355,5865,3300,6290,8220,28410,5865,3300,6290,8220,28410,4845,0
+2977,180000,female,2,2,43,0,0,0,-2,-2,-1,4819,5240,999,495,1776,79785,1010,1003,496,1781,81032,3600,0
+2978,120000,male,2,2,27,0,0,0,0,0,0,33474,29029,26523,20554,19348,17439,1789,2037,659,802,640,513,0
+2979,210000,male,3,2,32,-2,-1,-1,-1,-1,-1,1649,1000,0,1761,675,752,1000,0,1761,675,752,1104,0
+2980,60000,male,2,1,56,0,0,0,0,0,0,28842,30371,31556,32345,33663,34945,2000,2000,1315,2000,2000,2000,1
+2981,130000,male,2,1,40,0,0,0,0,0,0,20733,14261,22242,18265,21546,32411,7261,12272,10265,11546,12411,10000,0
+2982,50000,female,3,1,36,0,-1,0,0,0,0,3781,1710,25967,17227,15714,15876,1710,25000,754,600,800,1900,0
+2983,50000,female,3,1,52,1,2,0,0,2,2,30505,29731,31062,33231,33736,33042,0,1831,3000,1182,0,1228,1
+2984,100000,female,1,1,33,-1,-1,-2,-2,-2,-2,3976,0,0,0,0,0,0,0,0,0,0,402,1
+2985,150000,female,3,1,43,0,0,0,0,0,0,90606,93496,94196,91550,89586,88300,4348,3229,3150,3348,3244,8778,0
+2986,240000,male,2,1,38,2,-1,-1,0,0,-1,6848,836,2508,1672,836,563,836,2508,0,0,563,1090,1
+2987,120000,male,2,3,38,-2,-2,-2,-2,-2,-2,7787,3495,1706,-4,-4,-4,3505,1711,0,0,0,0,0
+2988,80000,female,2,1,32,-1,-1,-1,-1,-1,-1,199,199,199,199,0,22109,199,199,199,0,22109,45352,1
+2989,210000,female,2,1,27,2,2,0,0,0,0,174134,167095,161573,122362,116243,108414,16,6800,3800,5134,4000,4000,1
+2990,80000,female,2,2,37,-1,2,-1,0,0,0,1118,1102,10512,19529,27167,30878,0,10512,9529,8167,5000,6220,0
+2991,50000,female,2,1,38,0,0,2,0,0,0,20838,23204,22538,22864,23495,24100,3000,0,1000,1000,1000,1000,1
+2992,50000,female,2,3,52,0,0,0,0,0,0,50671,50525,38240,18443,20065,20296,1844,1292,804,5717,823,1299,0
+2993,330000,female,1,2,34,-1,-1,-1,-1,-1,-1,1406,1467,2599,17064,70464,-6053,1488,2599,17064,70464,0,232972,0
+2994,230000,male,3,2,28,0,-1,-1,-1,-1,0,152966,65722,11666,18844,34983,53935,65722,20000,18844,34983,408,14574,0
+2995,30000,male,3,1,44,4,3,2,2,-2,-2,7221,6962,6700,0,0,0,0,0,0,0,0,0,1
+2996,50000,male,1,1,41,2,0,0,0,0,0,39159,40194,41209,42125,43443,44476,1669,1684,1600,2000,1753,1696,1
+2997,220000,male,1,2,37,2,2,0,0,0,0,185955,181587,186054,188465,192758,196493,0,9000,7000,7500,7100,7500,0
+2998,270000,female,1,2,27,0,0,0,0,0,-1,11306,11263,13021,4144,2291,36491,1500,2000,2000,1000,37500,1000,0
+2999,160000,male,1,1,44,0,0,0,0,0,0,156400,157923,158746,153208,154163,155344,7200,8000,5510,5800,6000,5500,0
+3000,10000,female,2,1,24,1,2,2,2,2,2,3892,3686,5064,4837,5208,5475,0,1600,0,600,500,0,0
+3001,20000,male,2,2,25,0,0,0,0,0,0,15006,16166,17160,16760,16760,0,1406,1400,0,0,0,0,0
+3002,30000,male,3,2,25,2,2,2,0,0,2,22440,24168,23481,23950,25659,25098,2390,0,859,2097,0,1092,1
+3003,210000,female,2,2,32,0,0,0,2,0,0,85965,88586,94412,92195,92491,94369,4000,7500,0,3000,5000,5000,0
+3004,250000,female,2,1,50,0,0,2,0,0,0,116256,122392,118668,95735,96509,97089,11500,0,3543,3700,3547,3165,0
+3005,50000,male,2,2,28,0,0,0,0,0,0,23244,24364,25454,26030,26609,27662,1500,1500,1000,1000,1500,1100,0
+3006,180000,female,1,2,28,-2,-2,-2,-2,-2,-2,584,1133,572,803,916,1189,1133,572,803,916,1189,375,0
+3007,200000,male,1,2,35,-1,-1,-1,-1,-1,-1,7429,24325,40258,15103,14079,20878,24325,40265,15159,14079,20878,26716,0
+3008,350000,male,1,1,38,-2,-2,-1,0,0,-2,16459,4120,44164,35233,884,9924,941,44743,0,884,9924,10824,1
+3009,20000,male,1,2,22,0,0,0,0,0,0,18093,18543,18911,19000,19397,19941,1300,1611,700,704,867,597,0
+3010,30000,male,3,2,36,0,0,0,-2,-2,-2,30328,29999,0,0,0,0,1768,0,0,0,0,0,1
+3011,20000,male,1,1,34,2,0,0,2,2,2,6099,7559,8989,8436,12016,11404,2000,2000,0,4000,0,4000,0
+3012,140000,female,3,2,59,2,0,0,0,0,0,62042,63445,63729,63751,65421,68070,3000,2000,2000,2000,3000,3000,1
+3013,30000,male,3,1,44,2,2,2,0,0,0,18659,22544,21889,22721,23401,25000,4500,0,1500,1200,2000,3000,1
+3014,180000,female,1,2,30,0,0,-1,0,0,-2,15743,9814,9161,8252,0,0,1205,9402,0,0,0,0,0
+3015,20000,female,2,2,25,0,0,0,0,0,3,8011,9041,10903,11622,13280,12778,1320,2181,900,2000,0,0,0
+3016,100000,female,3,1,36,2,2,2,2,2,2,53530,55081,55581,59253,61145,62181,3000,2000,4600,3000,2200,2500,1
+3017,100000,female,3,1,36,0,0,2,0,0,2,101972,115335,112016,112906,120101,138819,16608,0,4233,9200,21000,4000,1
+3018,20000,male,2,1,45,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,19409,0
+3019,350000,male,1,1,31,0,0,0,2,0,0,18685,21057,23291,22812,27418,20203,3000,3000,0,5000,5000,5000,1
+3020,80000,female,2,1,32,0,0,0,0,0,0,80237,69568,64469,54020,55852,44286,3000,2500,2000,3000,2000,1500,0
+3021,120000,female,3,1,49,0,0,0,0,0,0,44244,44075,44823,44683,45537,50293,2000,3000,2000,3000,7000,3000,0
+3022,210000,female,2,2,30,-1,0,0,0,0,0,1654,33257,34395,35321,36249,37047,32000,2000,1500,1500,1400,1600,0
+3023,120000,male,1,1,37,-1,-1,-1,-1,-1,-1,32050,3872,52150,2740,4626,802,3872,52150,2740,4626,802,0,0
+3024,20000,male,2,2,22,0,0,2,0,0,0,8134,9992,10526,11049,11865,12665,2000,1000,1000,1000,1000,8100,0
+3025,200000,male,3,2,25,-2,-2,-2,-2,-1,-1,848,753,547,-2,2040,0,753,547,2,2042,0,0,0
+3026,50000,female,2,2,54,-1,4,3,2,3,2,1126,1113,1092,1415,1115,569,0,0,323,0,0,1188,0
+3027,170000,male,2,1,37,-2,-2,-2,-2,-2,-2,5635,6321,102108,2120,2873,0,6321,102108,2120,2873,0,870,0
+3028,450000,male,1,1,37,1,-1,-1,-2,-2,-2,0,245,0,0,0,0,245,0,0,0,0,0,0
+3029,300000,male,1,2,34,-1,-1,-1,-1,-1,-1,396,396,396,0,792,68095,396,396,0,792,68095,1700,0
+3030,300000,male,1,2,36,0,0,0,0,0,0,295433,301521,308038,306154,295664,290329,13000,13116,11000,11000,12000,9300,0
+3031,280000,male,2,1,37,-2,-1,-1,-2,-2,-2,2035,11009,9360,7480,4402,3646,11009,9370,7486,4402,3646,6059,0
+3032,170000,male,1,2,39,0,0,0,0,0,0,171160,187853,171095,137986,141319,139463,13000,6154,15000,6000,7000,5000,0
+3033,60000,male,1,1,38,2,0,0,0,2,2,30013,31226,32396,34657,35456,34736,2000,2000,2800,1500,0,1500,1
+3034,50000,male,2,2,29,0,0,0,0,0,0,23469,23110,22792,20861,19116,15286,1437,1236,649,831,568,226,0
+3035,380000,male,2,1,38,-2,-2,-2,-1,-1,-2,0,0,990,2086,0,4069,0,990,2086,0,4069,10000,0
+3036,70000,female,1,1,40,2,0,0,2,2,2,45251,42685,45674,44639,47624,48592,1800,3700,0,3707,1900,0,1
+3037,430000,male,1,1,48,-2,-2,-2,-2,-2,-2,4469,52213,46935,0,46987,882,52226,46935,0,46987,882,0,0
+3038,180000,male,1,1,38,-1,-1,-1,-1,-1,-1,326,326,326,326,326,326,326,326,326,326,326,326,0
+3039,330000,female,2,1,41,1,2,2,2,2,2,289884,283863,301265,306752,313710,309446,0,22200,12000,12000,978,23500,0
+3040,250000,female,1,2,26,-1,-1,-2,-2,-1,-1,7374,0,0,0,2546,0,0,0,0,2546,0,0,0
+3041,480000,female,1,1,38,0,0,0,0,0,0,384150,392013,361178,305024,289379,295768,15000,16000,12008,11000,11000,11000,0
+3042,210000,male,2,2,37,-1,-1,-1,2,-1,0,1890,3037,2429,823,1089,1451,3037,1200,0,1089,1201,1031,0
+3043,160000,male,2,2,26,0,0,0,0,-1,0,25060,24306,17671,22121,40835,37471,8026,7804,7730,67296,1340,1280,0
+3044,390000,male,5,2,29,1,2,0,0,0,0,407399,397464,395333,367400,304990,304303,0,14414,14411,76000,15000,13000,0
+3045,280000,male,1,1,44,1,-2,-2,-2,-2,-1,-136,-496,-856,-1216,-1576,4266,360,360,360,317,6252,8,0
+3046,50000,male,2,1,33,-2,-2,-2,-2,-2,-2,390,390,0,780,0,0,390,0,780,0,0,0,0
+3047,350000,male,1,1,60,1,-1,-1,-1,-2,-1,0,1150,4576,0,0,1206,1150,4576,0,0,1206,0,1
+3048,230000,female,1,2,40,-2,-2,-2,-2,-2,-2,360,0,0,0,0,0,0,0,0,0,0,0,0
+3049,30000,male,2,2,47,0,0,0,0,0,0,29596,29625,29523,29494,29464,29891,1600,1500,1500,1500,2000,2301,0
+3050,50000,male,2,1,37,-1,-1,-1,-1,-1,-1,4719,22449,6640,5410,9570,1500,22530,6640,5410,9570,1500,0,0
+3051,180000,male,1,2,26,0,0,0,-1,-1,-1,24464,25332,11991,4394,200,200,1573,3007,4394,200,200,200,0
+3052,150000,female,3,1,45,0,0,0,0,0,0,141415,144592,147635,129507,132219,134869,5457,5661,4636,4800,4850,5000,1
+3053,70000,male,1,2,27,0,0,0,0,0,2,39449,39742,40618,28782,30281,29175,2100,2000,1200,2590,0,1000,0
+3054,150000,male,2,2,26,0,0,0,0,0,0,10111,9847,10870,12189,12836,13828,1158,1181,1500,836,1200,2000,0
+3055,50000,male,3,2,25,1,2,2,0,0,2,43685,44694,43673,44659,49512,48454,2000,0,2000,6000,300,3000,0
+3056,430000,female,2,1,42,0,0,0,0,0,0,89395,90052,90604,91200,92134,92834,3243,3200,3185,3500,3500,3420,0
+3057,70000,male,1,2,25,-1,2,2,2,2,0,3635,4529,4308,4859,4638,4911,1100,0,624,0,500,1000,1
+3058,20000,male,3,2,36,1,-1,-1,-1,-1,-1,0,832,0,832,1486,0,832,0,832,1486,0,1248,0
+3059,310000,female,1,1,33,-2,-2,-2,-2,-2,-2,115,894,0,0,0,0,894,0,0,0,0,0,1
+3060,160000,female,2,1,23,0,0,0,0,0,0,96814,69870,68984,55559,44705,28223,10008,20014,1894,6425,2204,62529,0
+3061,30000,male,3,2,38,1,2,0,0,0,0,30771,29975,27541,27785,28839,29412,0,2000,1000,1500,1052,591,0
+3062,480000,female,3,1,39,-2,-2,-1,-1,-1,0,51303,74639,67306,19895,23650,12616,73428,20496,34,23682,29,10565,0
+3063,180000,female,1,2,28,0,0,0,2,0,0,99307,104403,110366,101550,98615,49730,6700,10605,0,4751,1754,0,1
+3064,210000,male,2,1,40,-1,-1,0,0,0,0,5130,15266,11423,9329,12329,10039,15266,2500,1200,3000,1077,2104,0
+3065,360000,male,1,2,30,-1,-1,-1,-1,-1,-1,312,312,312,312,251,-61,313,313,313,252,1,95971,1
+3066,180000,male,3,2,31,2,2,0,0,0,0,36864,35587,35989,36013,36164,31637,0,1800,1230,1200,1350,2310,0
+3067,200000,female,1,2,29,1,2,0,0,2,2,16198,14320,15439,14757,14275,13680,0,5000,1000,0,2000,0,0
+3068,50000,male,3,2,22,0,0,-1,0,0,0,48423,44450,956,976,1976,2939,2150,956,20,1000,1000,1000,1
+3069,240000,male,2,1,48,0,-1,-1,-2,-1,-1,3972,783,0,0,3853,29252,783,0,0,3853,29252,16747,1
+3070,180000,female,1,2,29,0,0,0,0,0,0,35619,22745,12200,9531,10131,0,1745,1200,1531,3500,0,0,0
+3071,80000,female,3,1,33,-1,-1,0,-1,-1,-2,325,107,1107,1338,0,0,107,1000,1338,0,0,1080,0
+3072,50000,female,3,1,32,0,0,0,0,0,0,42740,44744,47539,17360,17928,19619,3000,4000,1000,1000,2000,1000,0
+3073,280000,female,2,1,36,0,0,0,0,0,0,101803,100836,96333,97475,100652,1823,5005,7066,10000,5000,1823,4225,0
+3074,70000,female,1,2,29,0,0,0,0,0,0,43462,41845,40476,43687,43858,48127,3000,3000,7000,10000,15000,1000,0
+3075,400000,male,1,2,36,-1,-1,-1,-1,-1,-2,6233,11152,-1,376,0,0,11219,0,377,0,0,1759,0
+3076,210000,female,3,1,45,-1,-1,-1,-1,-1,-1,430,430,430,430,430,430,430,430,430,430,430,10798,0
+3077,80000,male,3,2,33,0,0,0,0,0,0,55424,56598,57724,58892,61991,63224,2068,2081,2113,5000,2264,2342,0
+3078,30000,female,2,2,24,2,2,7,7,7,7,300,300,300,300,300,300,0,0,0,0,0,0,0
+3079,310000,male,2,2,29,2,2,2,-1,2,-1,400,400,400,20334,19050,21573,0,0,20334,0,21573,0,0
+3080,360000,female,3,2,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+3081,200000,male,2,2,28,-1,0,0,0,-1,-1,29804,30892,25355,21666,15404,11559,20044,10198,15083,15450,11593,18784,0
+3082,50000,male,2,1,33,0,0,0,0,0,0,50431,45619,33610,19221,18925,19608,1823,1500,1000,1000,1000,1000,0
+3083,320000,female,2,1,41,0,0,0,0,0,0,49846,53811,38717,35409,35036,35939,5000,2000,2000,3000,3000,1500,0
+3084,60000,male,2,2,27,0,0,0,2,2,0,23439,26042,29182,29906,29292,29729,3300,3900,1500,0,1074,1200,0
+3085,230000,female,1,2,30,2,2,2,2,2,2,216409,221419,224753,228022,232724,260472,10000,8500,8500,8500,32000,200,0
+3086,150000,female,1,1,44,-1,-1,-1,-2,-2,-2,1843,1367,0,0,0,0,1367,0,0,0,0,0,1
+3087,360000,female,1,1,39,-1,-1,-1,-1,-1,-1,165,853,165,300,0,1790,853,165,300,0,1790,0,0
+3088,50000,male,1,2,34,0,0,0,0,0,0,20613,28018,22744,18484,16378,13352,10000,10000,1500,3000,2803,5000,0
+3089,280000,female,1,1,37,-1,-1,-1,-1,-1,-1,3915,6686,3719,11013,21011,29459,6691,85,11045,21012,29460,10284,0
+3090,50000,female,3,1,50,0,0,0,0,0,0,38499,39216,15554,8704,8904,4687,1743,1021,200,200,100,0,0
+3091,500000,male,1,1,32,0,0,0,0,0,0,15491,22984,20700,19805,23802,23085,12992,2009,5000,5000,2000,7000,0
+3092,400000,female,3,1,41,0,0,0,0,0,0,18487,12366,13010,12620,17945,20030,2620,1000,0,13945,7116,1280,1
+3093,280000,male,2,2,28,-2,-2,-2,-2,-2,-2,1799,1768,1848,-8,1601,-3,1782,1857,0,1609,3,1077,0
+3094,360000,female,2,2,41,0,0,0,0,0,0,158277,203726,293675,196475,2475,0,50000,100000,0,0,0,0,0
+3095,260000,female,1,2,29,1,-1,0,-1,-1,-1,15502,16832,16832,16332,16332,-334,18000,16666,16666,16666,0,17000,1
+3096,330000,male,1,1,42,0,0,0,0,0,0,241191,114291,113296,35048,36491,37252,10000,5449,5000,2000,2000,5000,0
+3097,350000,female,2,1,33,-2,-2,-1,0,0,0,-7438,144562,147437,135043,137980,138908,152000,6000,5000,4000,4017,5000,0
+3098,500000,female,2,1,39,-1,-1,-1,-1,-1,-1,36550,18752,22376,39018,4233,397,18795,22398,39041,4233,397,28337,0
+3099,440000,female,1,1,35,0,0,0,0,0,0,128808,133340,133075,109705,111202,116169,10000,5000,5000,7126,10000,10000,0
+3100,260000,male,2,2,28,0,0,0,0,0,0,234867,237497,215343,205576,207688,198955,10500,9150,7500,8000,7500,7100,0
+3101,500000,male,3,1,48,0,0,0,0,2,-1,36875,26031,32389,32830,17191,72198,1192,32382,2011,0,72198,10000,0
+3102,100000,male,2,1,35,0,0,0,0,0,0,81415,80759,79755,81209,60720,74375,4000,3000,3004,2278,15000,3000,0
+3103,70000,male,3,1,47,0,0,0,0,0,0,67670,62529,59024,26008,28210,18296,2730,2490,1000,5746,2000,143,0
+3104,440000,male,1,2,43,0,0,0,0,0,0,58108,51013,48337,49532,53714,56818,2400,3000,2000,5000,4000,4000,0
+3105,220000,female,1,1,44,-1,0,0,0,0,0,208858,212640,216062,209288,202578,195567,7611,7484,7109,6969,6661,6426,0
+3106,160000,female,1,1,32,-1,-1,-1,-1,-1,-1,3189,3203,3421,2750,2750,5224,3248,3421,2750,2750,5224,2313,0
+3107,200000,male,2,1,46,-1,2,-1,-1,2,-1,7340,5980,4486,9790,4944,4696,0,4486,10000,0,4696,4696,0
+3108,30000,female,2,2,25,0,0,0,0,0,0,24458,29022,28230,22204,21954,22606,5000,1518,529,535,750,347,0
+3109,110000,female,1,2,27,0,0,0,0,0,0,113461,112026,111792,111936,112030,111975,4251,4218,4167,4238,4181,4246,0
+3110,60000,female,2,1,43,0,0,0,0,0,0,57033,58994,59732,36914,37684,38613,2880,2473,1322,1366,1554,1369,0
+3111,260000,male,1,2,28,-1,-1,-1,-1,-1,-1,76996,11515,13392,22209,54807,62534,11515,13419,22209,54807,62534,37935,0
+3112,110000,male,2,1,36,0,0,0,0,0,0,109361,102505,103834,76491,77245,78049,3940,3256,2696,2780,2900,3000,0
+3113,260000,male,3,1,44,0,0,0,0,0,0,257987,260104,253488,145630,148720,139633,7100,135546,4500,4590,4501,4795,0
+3114,280000,female,1,2,32,0,0,0,0,0,0,157480,155362,156387,159584,163009,161769,6400,6100,5600,5805,7007,5400,0
+3115,210000,male,1,2,30,-1,-1,-1,0,-1,-1,462,562,1864,932,932,1014,1032,2234,0,932,1014,1000,0
+3116,80000,female,2,1,37,0,-1,0,0,0,0,5744,33115,34131,34809,35539,36271,33115,1568,1246,1291,1324,728,0
+3117,200000,female,1,2,37,0,0,0,0,0,0,75360,57589,54711,44396,25948,14505,2050,15000,6003,845,290,12715,0
+3118,100000,female,2,2,33,2,2,0,0,0,0,74763,73010,74198,74964,76655,78328,0,3000,2000,2000,2000,2000,0
+3119,210000,male,2,1,42,-1,-1,-1,-1,-1,-1,9377,9534,9850,9905,8540,8785,9540,9856,9905,8540,8785,3080,0
+3120,140000,female,2,2,35,1,2,0,0,0,0,148305,141907,141940,113028,112667,112318,0,7000,3923,4000,4100,4788,0
+3121,180000,male,1,2,29,0,0,0,0,2,2,93962,95955,98354,105327,107500,105614,3500,4000,8600,4000,0,8100,0
+3122,240000,female,2,2,34,0,0,0,0,0,0,122810,114408,97395,83314,73292,59270,10066,7255,3035,3030,3018,2012,0
+3123,150000,female,1,2,24,-1,-1,-1,0,0,-1,4857,1729,49200,50000,0,50000,1733,49200,1000,0,50000,0,0
+3124,80000,male,2,1,54,0,0,0,0,0,-1,105365,108702,108486,94119,18809,40619,5030,2698,2172,376,40619,25311,1
+3125,210000,female,2,1,37,0,0,-2,-2,-2,-2,22908,32513,6192,2885,8419,2810,32513,9,8,8444,3118,0,1
+3126,180000,female,1,2,28,0,0,0,0,0,-1,12595,18704,24410,29184,7325,326,7000,7000,7000,5000,326,7276,0
+3127,100000,female,1,2,26,0,0,0,0,0,0,96353,99710,102093,97701,99322,98787,4900,5000,4000,3800,3710,4100,0
+3128,20000,male,1,2,28,0,0,0,0,0,0,17359,16828,17723,18733,12249,19910,2700,4150,1500,577,8000,300,0
+3129,140000,male,2,2,34,0,0,0,0,0,0,128312,119084,62922,60196,58935,58654,5000,2200,2300,2300,2100,2000,0
+3130,200000,male,3,2,40,-2,-2,-2,-2,-2,-2,390,1799,390,390,418,1604,1799,390,390,418,1604,0,0
+3131,80000,male,2,2,25,0,0,0,0,0,0,77142,45209,46410,43053,44387,43780,2000,2000,2000,2000,2000,2000,0
+3132,20000,female,2,2,49,1,2,2,2,0,0,18718,18132,19530,18950,16510,19386,0,3000,0,1000,3000,2000,1
+3133,80000,female,2,2,24,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,400,0
+3134,170000,female,1,1,41,0,0,0,0,0,0,165602,138507,136176,61000,59477,44218,80000,4742,2022,2076,1776,10433,0
+3135,70000,female,2,1,41,2,2,2,2,2,2,50241,51145,50022,53390,54579,55722,2000,0,4200,2200,2200,2200,1
+3136,90000,female,3,1,40,-1,-1,-1,-1,-1,-1,3569,7319,7608,1720,45000,0,7385,7608,1720,45000,15000,1543,0
+3137,30000,male,2,2,30,0,0,0,0,0,0,22221,23248,24260,24743,25261,25763,1391,1403,886,917,922,955,0
+3138,50000,male,1,2,25,-1,-1,-1,-1,-1,-2,2543,14335,566,5243,0,0,14439,566,5243,0,0,1380,0
+3139,50000,female,2,2,21,-1,-1,-1,-1,-1,-1,390,1499,780,797,1166,0,1499,780,797,1166,0,0,1
+3140,260000,female,1,2,39,0,0,0,0,0,0,231024,208119,213219,202106,208890,215455,10000,10000,8000,10000,10000,20000,0
+3141,360000,female,1,1,33,-1,-1,-1,-1,-1,-1,50067,17607,41262,8882,17348,29216,17607,41285,8882,17348,29216,4043,0
+3142,500000,female,3,2,52,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+3143,160000,male,3,1,46,2,2,0,0,0,0,168501,160421,157661,73322,57835,41842,0,6322,2275,2343,3069,77005,0
+3144,460000,female,1,2,39,0,0,0,0,0,0,89095,93634,111899,199682,177073,175979,6000,20000,90000,9000,10000,10000,0
+3145,20000,female,2,2,26,2,0,0,0,0,0,19366,19297,20023,19625,15188,0,1800,1500,500,500,0,0,1
+3146,360000,male,2,2,25,1,-1,2,0,-1,-1,0,1647,1488,490,1697,789,1647,5,2,1705,792,0,0
+3147,300000,female,1,1,38,-1,-1,-1,-2,-2,-2,1008,228,0,0,0,0,228,0,0,888,0,0,0
+3148,70000,female,2,1,28,1,3,2,2,2,0,29836,30856,30658,31850,31207,32037,1800,600,2000,0,1500,1500,1
+3149,50000,female,1,2,26,0,0,0,0,0,0,26808,44361,32088,20100,15117,18501,30040,2037,592,5003,5012,2023,0
+3150,150000,female,3,1,51,0,0,0,0,0,0,113647,117322,119935,124913,128108,131382,5001,4000,6006,5000,5008,0,0
+3151,390000,male,2,1,42,-1,-1,-1,-1,-1,-1,1565,1733,2472,2626,989,4647,1733,2492,2637,992,4667,277,0
+3152,280000,male,1,2,37,0,0,0,0,0,0,251486,245307,218043,196016,195307,168946,9352,8077,7171,8014,6235,4445,0
+3153,50000,female,3,1,28,0,0,-1,-1,-1,-1,3377,4256,4207,694,238,0,1000,4207,694,238,0,0,0
+3154,280000,female,1,2,38,1,-2,-1,-1,-1,-1,0,0,3898,1460,18901,0,0,3898,1460,18901,0,0,1
+3155,50000,female,2,1,41,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+3156,50000,male,1,2,32,0,0,0,2,0,0,13185,5070,6815,6068,7798,8511,1255,2000,0,2000,1000,500,0
+3157,150000,female,1,2,28,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+3158,120000,female,1,2,31,1,-1,-1,0,-1,-1,0,1730,2457,2192,2655,0,1730,2459,0,2655,0,0,1
+3159,360000,female,2,3,37,0,0,0,-1,-1,-1,10764,8874,3501,328,0,770,1052,1002,328,0,770,11309,0
+3160,20000,male,2,2,33,-1,0,0,0,0,0,3010,1603,19980,19983,20066,19855,1272,19288,681,917,1000,889,0
+3161,50000,female,3,1,46,0,0,0,0,-2,-2,48797,49115,47991,0,0,0,2000,1018,0,0,0,0,0
+3162,20000,female,1,2,23,1,2,2,2,0,0,10407,10096,11926,11440,12596,13533,0,2000,0,1500,1300,0,1
+3163,90000,male,2,1,35,0,0,0,0,0,0,90467,88834,89791,53096,52340,27660,4000,5000,3100,1700,1421,319,1
+3164,230000,male,2,1,35,0,0,0,0,0,-1,176853,180639,180117,179717,124117,182717,10000,5000,0,5000,189600,10000,0
+3165,20000,male,2,2,22,-1,2,0,0,0,2,17990,17413,18608,19138,20690,20174,0,1502,822,2000,0,220,0
+3166,100000,female,2,2,23,-2,-2,-2,-2,-2,-2,45756,9187,5408,12920,9656,4737,9187,5408,12920,9656,4737,4513,0
+3167,270000,male,2,2,26,0,0,0,0,0,0,214277,199757,198551,201945,203636,205104,10000,7500,8000,7409,7869,10035,0
+3168,160000,male,2,2,28,-1,-1,-1,-1,-1,-1,1390,550,550,550,550,550,550,550,550,550,550,550,0
+3169,80000,female,2,2,29,0,0,0,0,0,0,46724,35074,32812,25930,26414,27128,2000,2000,1100,1000,1100,1000,0
+3170,10000,male,1,2,24,2,0,0,0,0,2,7554,8287,9580,9267,10096,9415,1500,2000,700,1500,0,1000,1
+3171,500000,female,2,1,27,-2,-2,-2,-2,-2,-2,11354,9983,13570,10000,10000,10000,9983,13587,10000,10000,10000,25304,0
+3172,90000,female,1,1,43,-1,-1,2,-1,-1,-1,16139,7199,4367,7660,21175,4009,4367,9,7660,21175,4009,7452,0
+3173,150000,female,3,1,59,-2,-2,-2,-2,-2,-2,11067,12367,10557,9974,11507,1926,12405,10557,9974,11507,1926,5512,0
+3174,50000,male,3,1,49,0,-1,-1,-1,0,0,2522,1173,-88,2912,390,390,1173,0,3000,0,0,780,0
+3175,260000,male,3,1,48,0,0,0,0,-1,0,200716,203751,205530,-170000,171696,174151,8812,9158,0,497000,10000,7000,0
+3176,50000,female,2,2,22,-2,-1,0,0,0,0,836,10214,10057,9221,8808,3861,10214,2000,0,423,3861,3665,0
+3177,30000,male,1,2,28,-1,2,2,0,0,0,1190,2107,1098,1098,1248,982,1098,0,0,982,150,0,1
+3178,70000,male,2,2,26,2,2,2,2,0,0,46599,45578,48505,47427,48447,45145,0,4000,0,2000,1700,3000,0
+3179,360000,male,1,1,52,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+3180,430000,female,1,2,39,-2,-1,-1,-1,-1,-1,673,4549,7566,987,4870,975,4576,7642,990,4889,981,317,0
+3181,50000,female,2,2,23,-1,0,0,0,0,0,1291,2075,2895,2698,2500,2296,1100,1181,300,300,300,250,0
+3182,150000,female,5,2,26,0,0,2,0,0,0,22683,24349,2130,2130,32,-780,2219,0,0,0,0,0,0
+3183,70000,female,2,2,23,1,2,0,0,2,2,17461,16892,18013,19315,19859,19390,0,1400,1600,1000,0,1000,1
+3184,150000,female,1,2,25,0,0,0,0,0,0,42437,35082,19538,13277,3200,0,2265,2538,277,200,0,0,0
+3185,110000,male,3,1,38,0,0,0,0,0,0,14084,11129,9316,7681,8897,11729,2500,2500,1000,1500,3000,500,0
+3186,20000,female,1,2,38,-1,0,0,3,2,2,3527,4556,5867,5495,5126,5899,1241,1700,0,0,1000,0,1
+3187,20000,male,3,2,39,0,0,0,0,2,2,7824,9000,9867,11929,12091,12245,1307,1174,2236,500,500,0,0
+3188,50000,male,1,2,31,-2,-2,-2,-2,-2,-2,11479,12002,3508,339,1655,679,12002,3508,339,1655,679,1600,0
+3189,10000,male,1,2,33,0,0,0,0,0,0,8417,6281,8567,10046,10063,10132,1700,4700,2502,1500,3000,0,0
+3190,20000,male,2,2,24,0,0,2,0,0,0,15703,19775,19096,19612,20164,19771,4663,0,1000,1000,5000,0,0
+3191,180000,male,2,2,34,1,-2,-2,-2,-2,-2,149172,100466,98458,89384,88315,84320,4600,4207,3500,4000,5000,602,1
+3192,60000,female,2,1,26,0,0,2,0,0,0,60597,61332,58787,58472,57777,60985,5504,0,2304,2261,4600,2100,1
+3193,20000,male,1,1,30,1,2,2,2,2,0,6885,8627,8340,10044,9739,10571,2000,0,1855,0,1000,397,1
+3194,70000,female,1,2,25,0,0,0,0,0,0,71106,67954,68976,49145,49688,47780,3292,3290,1706,1759,1729,1717,0
+3195,60000,female,2,1,38,0,0,0,0,0,-1,48399,48241,36162,36560,40855,885,1764,1400,5000,5000,885,1721,0
+3196,200000,male,1,2,28,-2,-2,-2,-2,-2,-2,3330,2665,115323,21547,4056,3180,2686,115916,21722,4076,3196,17660,0
+3197,200000,male,1,2,34,1,-2,-1,0,0,-2,-1730,-1730,1111,1111,-29,-3789,0,3000,0,0,0,0,1
+3198,300000,female,1,1,37,-1,-1,0,-1,-1,-1,3144,5688,2297,3115,3172,1589,5734,2018,3138,3187,1597,2394,0
+3199,390000,male,1,2,34,-1,-1,-1,-1,-1,-1,13006,522,1790,7957,3044,27603,524,1790,7957,3044,27603,11219,0
+3200,80000,female,2,1,23,0,0,0,0,0,0,72364,64105,45867,29713,30270,27912,2756,1366,1000,1023,1093,700,0
+3201,100000,female,1,2,25,-1,-1,-1,-1,0,0,12660,5000,0,6272,10135,11958,5000,0,6272,4000,2000,0,0
+3202,230000,male,3,2,30,1,2,2,3,2,2,213894,218966,238075,233210,233833,190628,10040,28341,0,6508,187,5000,0
+3203,40000,female,3,1,49,1,-2,-2,-2,-2,-1,0,0,0,0,0,150,0,0,0,0,150,159,0
+3204,180000,female,2,1,25,0,0,0,0,0,-1,33322,29500,28418,16084,14210,711,1900,1864,600,600,711,2576,0
+3205,420000,male,2,2,28,0,0,0,0,0,0,22872,23309,24612,25400,26333,27887,1700,2000,1500,1500,2000,1567,0
+3206,20000,male,2,1,59,0,0,-1,-1,-1,-1,2946,0,1473,240,390,1320,0,1473,240,540,1320,0,0
+3207,340000,female,2,1,31,-1,0,0,0,0,0,33639,37373,40990,42415,38367,37940,5000,5000,3000,2000,2000,3000,0
+3208,20000,female,1,2,25,2,2,2,2,2,2,9317,18576,18219,17095,19748,18722,10000,800,0,3500,0,1000,1
+3209,320000,male,3,2,52,0,0,0,0,0,0,31858,33562,35119,36886,38756,40543,5000,5000,5000,5000,5000,5000,0
+3210,360000,male,1,1,39,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+3211,100000,female,1,2,29,0,0,0,0,0,0,33330,36282,38673,43014,48300,57497,3500,3000,5000,6000,10000,0,0
+3212,310000,female,1,2,36,-2,-2,-2,-2,-2,-2,0,298887,0,0,0,0,298887,0,0,0,0,199417,0
+3213,140000,female,2,2,24,0,0,0,0,0,0,35806,36823,36285,36683,37150,41210,3000,1580,1294,1355,5000,5000,0
+3214,200000,male,2,2,33,1,2,2,2,0,0,98990,96566,103019,100464,102844,105505,0,9000,0,4000,4500,4000,0
+3215,30000,female,2,2,28,-1,-1,-2,-1,-1,-2,1743,0,0,2779,0,0,0,0,2779,0,0,0,1
+3216,130000,female,3,1,25,0,0,0,0,0,0,132110,133734,129299,131871,132168,129779,6359,4505,4530,4798,4600,4655,0
+3217,20000,female,3,1,44,0,0,2,0,0,-2,17095,19112,17980,18780,0,0,3000,0,1000,1000,0,0,0
+3218,120000,female,5,1,57,0,0,0,0,0,0,116497,109247,98109,74387,75237,78967,5000,5007,5000,5000,5000,5000,0
+3219,190000,female,1,2,32,-2,-2,-2,-2,-2,-2,8010,922,3200,15010,4575,7279,922,3208,15010,4575,7279,0,0
+3220,50000,female,2,1,26,0,0,0,0,0,0,43721,42060,42332,37872,35748,33631,2228,2500,1660,1457,1300,1340,0
+3221,130000,female,5,2,27,0,0,0,0,0,0,107599,109902,112635,114472,117556,116090,4030,4600,4200,5000,5000,21932,0
+3222,220000,female,2,1,48,0,0,0,0,0,0,28132,30362,31387,32559,35019,37422,2700,1534,1700,3000,3000,3000,1
+3223,200000,female,2,1,29,0,0,0,0,0,0,70422,67991,56909,56841,51245,42268,3500,2472,1683,1755,1658,3579,0
+3224,50000,female,3,1,59,0,0,0,0,0,0,37201,27863,27712,28433,21449,20688,1503,1352,1073,1077,900,1000,0
+3225,30000,female,2,1,26,2,2,2,2,2,2,30954,30670,29856,30584,27883,29334,2074,0,2304,0,2400,0,0
+3226,200000,female,2,1,33,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+3227,400000,female,3,1,50,2,-1,-1,-1,-1,-2,5523,8033,0,550,0,0,8037,0,550,0,0,0,1
+3228,120000,female,1,1,41,0,0,0,0,0,0,118847,113190,114113,111593,112533,111672,5000,6000,5000,5000,5000,5000,0
+3229,60000,female,2,1,38,0,0,0,0,0,0,45972,49874,47329,35587,36193,29978,5000,5000,5000,5000,5000,15000,0
+3230,150000,female,1,2,25,-1,-1,0,0,0,-1,3167,13680,12848,8445,6868,1310,13879,4000,0,0,1310,0,0
+3231,240000,female,2,1,44,-2,-1,-1,2,2,3,16925,1411,1696,1437,2714,2202,1411,1200,0,1479,0,0,0
+3232,130000,male,2,2,29,-1,-1,-2,-2,-2,-2,3594,0,0,0,0,0,0,0,0,0,0,0,0
+3233,200000,male,3,1,40,2,0,0,2,2,2,91368,92989,99704,101169,103401,109831,4000,8300,4000,4000,8300,0,1
+3234,240000,female,2,1,56,2,2,-2,-2,-2,-2,2500,0,0,0,0,0,0,0,0,0,0,0,1
+3235,30000,female,1,2,22,-1,-1,2,0,0,0,14885,16579,17498,25032,25626,27191,1939,1500,8213,1000,2000,3200,1
+3236,50000,female,2,1,26,0,0,0,0,0,0,44335,44626,40928,29367,29156,27337,2126,2104,990,1200,1654,897,0
+3237,30000,male,2,2,26,2,0,0,0,2,2,13660,14708,17725,20320,19480,19222,1269,3286,2881,1,632,1,0
+3238,310000,male,1,1,33,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+3239,120000,female,2,2,28,2,2,2,2,0,0,111840,114252,115306,112404,114269,116332,5300,3600,0,3400,3500,4494,1
+3240,290000,female,2,1,34,0,0,0,0,0,0,16196,17220,18231,18593,18986,19967,1292,1303,665,692,1300,636,0
+3241,50000,male,2,2,45,0,0,0,0,0,0,45911,47521,48599,7476,7792,4122,2350,2421,298,468,1649,1500,0
+3242,130000,female,1,2,27,0,0,0,0,0,0,86883,99516,77188,78304,79941,81648,40000,3400,3000,3052,3190,3300,0
+3243,50000,male,5,1,30,0,0,0,0,0,0,47311,44136,17865,6431,6939,4509,2900,1035,500,508,410,0,0
+3244,210000,female,2,1,33,-1,-1,-1,-2,-1,-1,98,1090,0,0,580,500,1120,0,0,580,500,0,0
+3245,50000,male,3,1,47,1,3,2,0,0,-1,4759,4540,4284,2946,1473,1473,0,0,0,0,1473,1473,1
+3246,10000,female,2,2,40,0,0,0,0,0,0,6160,6787,7377,7127,6931,6660,1123,1103,243,296,280,16,0
+3247,10000,male,3,2,22,0,0,0,0,0,0,5757,6706,7715,7873,8742,9551,1200,1128,286,1000,955,0,0
+3248,80000,female,2,2,24,2,2,3,2,3,2,75444,80025,78129,82581,81053,79133,6400,0,6300,0,0,5000,1
+3249,360000,male,2,1,65,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+3250,530000,male,1,2,32,-2,-2,-1,0,0,0,12451,24095,15688,24511,12144,34963,24120,15791,12808,8090,34110,90231,0
+3251,20000,male,2,2,46,0,0,0,0,0,0,20376,19927,19907,19349,17484,-1216,2000,1500,607,1360,1300,20538,0
+3252,170000,male,2,1,42,0,0,0,0,0,0,131629,131374,129544,131937,132958,134525,5300,5100,5000,4700,5000,4800,0
+3253,220000,female,2,1,33,-1,-1,-1,-1,-1,2,16090,4991,-1350,18150,350,200,4991,0,20000,350,0,16115,0
+3254,180000,male,3,1,40,-1,-1,-1,0,-1,-1,991,991,1316,325,1657,325,991,1316,0,1657,325,325,0
+3255,440000,female,1,1,37,-1,-1,-1,-1,-1,-1,5302,13333,686,-414,2736,12586,13333,1383,0,3150,13000,5500,0
+3256,20000,male,2,1,62,2,0,0,0,0,0,17870,18740,19343,19402,11731,0,1462,1367,682,627,0,0,1
+3257,400000,female,2,2,39,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+3258,130000,male,2,2,27,0,0,0,-2,-2,-2,44826,40650,0,0,0,0,1092,0,0,0,0,0,0
+3259,420000,male,1,2,29,0,0,0,0,0,0,194505,144086,144169,122453,120509,119783,5479,5502,4193,5006,4503,4003,0
+3260,80000,female,2,1,34,0,0,0,0,-1,0,78688,80539,76681,34197,27398,28646,4000,2333,3032,28298,2000,2000,0
+3261,20000,female,2,1,45,0,0,0,0,0,-2,18569,40278,18760,18662,0,0,2500,3000,1000,0,0,0,0
+3262,320000,female,2,2,29,1,2,0,0,3,2,93070,90725,92697,106221,104313,103251,0,3500,15100,11,3129,11,1
+3263,160000,male,1,1,40,0,0,0,0,0,0,27563,28350,25186,36100,21707,7928,5002,5000,14400,10000,4000,0,0
+3264,50000,female,2,2,23,0,0,0,0,0,2,48725,51175,50115,33814,34423,31988,4987,1661,2000,3000,0,3213,0
+3265,50000,male,2,2,35,0,0,0,0,-1,-1,14536,10827,9594,7309,1277,3310,2000,2000,2000,1277,3294,0,0
+3266,70000,female,2,1,43,0,0,0,0,0,0,71037,71880,71927,71370,71003,71411,3352,3400,2900,2900,2900,2558,0
+3267,20000,male,3,2,59,1,2,2,4,3,2,19074,18482,20329,19616,19303,1013,0,2300,0,0,0,2821,1
+3268,160000,female,2,2,24,0,0,0,0,0,0,157389,158475,162309,162462,160085,158236,6800,6500,6000,6200,6200,6000,0
+3269,130000,female,1,2,33,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+3270,20000,female,1,2,23,0,0,3,2,2,0,16918,20627,19985,19702,18395,18763,4000,1,651,0,655,653,0
+3271,170000,female,2,1,48,-2,-2,-1,-1,-1,-1,18727,64028,107946,13608,110667,6878,66513,108323,13608,112876,3998,1118,0
+3272,300000,female,1,2,39,-1,-1,-1,-1,-1,-1,729,0,236,766,227,0,0,236,800,227,0,0,0
+3273,160000,female,1,2,31,-1,-1,-1,-1,-2,-2,1672,4411,500,0,0,0,4411,504,0,0,0,0,0
+3274,110000,female,3,1,52,1,-2,-1,-1,-2,-2,0,0,1000,0,0,0,0,1000,0,0,0,0,0
+3275,230000,female,1,2,27,0,0,0,0,0,0,92167,92799,94328,96203,98474,98835,3340,3401,3420,3797,3476,2818,0
+3276,60000,female,2,2,21,0,0,0,0,0,0,40969,32724,24975,25475,26010,26183,1859,1410,910,939,1000,1000,0
+3277,280000,male,1,1,35,0,0,0,0,2,0,146368,244092,210226,177595,153181,145852,101585,90762,50119,282,50436,54184,0
+3278,180000,female,1,2,47,1,-2,-1,-1,-2,-1,-6,-6,1251,0,0,679,0,1257,0,0,679,421,0
+3279,30000,female,1,1,30,2,2,2,3,2,2,12109,12917,13909,13394,13036,15019,1300,1500,0,0,2200,0,1
+3280,50000,female,2,2,28,0,0,0,0,0,0,48010,40668,30361,22266,18469,21551,5000,2000,5000,6560,10000,13694,0
+3281,270000,female,2,1,41,-1,2,-1,0,-1,-1,832,416,832,416,566,416,0,832,0,566,416,416,0
+3282,80000,female,2,2,24,-1,-1,-2,-2,-2,-2,2346,0,0,0,0,0,0,0,0,0,0,0,1
+3283,120000,male,1,2,31,2,0,0,2,0,0,25719,29961,32451,31630,34115,36551,5000,3000,0,3000,3000,4000,1
+3284,120000,male,3,1,53,-1,-1,-1,-1,-1,-1,291,291,0,582,291,0,291,0,582,291,0,582,0
+3285,30000,male,1,2,23,0,0,0,0,0,0,29025,28331,29792,30106,30318,28985,1507,5538,1030,1500,1500,1500,0
+3286,380000,male,1,2,36,0,0,0,0,0,0,68943,75024,61114,60586,55489,55702,8000,5000,2500,5000,4000,4000,0
+3287,80000,female,2,1,37,2,2,2,0,0,0,80508,81731,78772,76818,70319,-1560,3100,0,2000,3000,0,75003,1
+3288,20000,female,2,2,26,0,0,0,0,0,0,17938,18798,19347,8007,4890,0,1456,1005,160,98,0,0,0
+3289,160000,male,3,1,34,-1,0,0,0,0,2,2947,4593,6057,6519,7130,6578,2000,2000,1000,1000,0,2000,0
+3290,230000,female,2,2,26,-1,-1,-1,4,3,2,8328,0,600,600,300,150,0,600,0,0,0,686,1
+3291,370000,male,2,2,39,2,0,0,0,0,0,334394,337272,340152,345904,322168,272461,14005,12004,12362,12006,9555,11005,1
+3292,30000,female,3,1,41,1,2,0,0,2,0,29717,28569,29168,30566,29229,26260,0,2000,2200,0,1100,1100,0
+3293,20000,female,2,2,24,0,0,0,0,0,0,20073,19940,19441,18680,19071,19217,1319,1291,656,679,784,376,0
+3294,20000,male,2,2,23,1,3,2,2,0,0,17529,16967,17176,16605,17185,18340,0,780,0,1000,1600,1000,1
+3295,470000,male,2,1,52,0,0,0,0,0,0,84672,86821,88892,90944,93739,96428,5000,5000,5000,5000,5000,5000,0
+3296,220000,female,2,2,29,0,0,0,0,0,0,36106,33494,29518,29569,28587,21201,3000,3000,6000,5000,1136,10000,1
+3297,80000,male,3,2,32,0,0,0,0,0,0,78887,69433,48198,49182,49939,50626,2569,2000,2000,1770,2002,2008,0
+3298,180000,female,2,1,33,-2,-2,-2,-2,-2,-2,0,0,0,0,653,0,0,0,0,653,0,0,0
+3299,100000,female,2,2,39,0,0,-1,0,0,-1,24110,10497,20159,7053,0,1120,2000,20159,500,0,1120,1909,0
+3300,10000,female,2,2,21,0,0,0,0,0,0,7888,8987,9604,9800,10000,0,1383,1000,196,200,1000,0,0
+3301,280000,female,2,1,51,-2,-2,-2,-2,-2,-2,2477,3470,0,0,0,0,3470,0,0,0,0,1715,0
+3302,110000,female,1,1,31,2,2,2,0,0,0,107507,108067,83164,79428,80235,79412,7960,0,3000,3000,3100,3000,1
+3303,210000,female,1,2,27,0,0,0,0,0,0,135066,121769,97575,93763,95790,92855,5600,4000,3220,3400,3252,3400,0
+3304,200000,female,1,1,36,0,-1,-1,0,0,0,10317,5755,8587,7782,6987,7662,5788,8587,5314,5000,5000,6000,0
+3305,260000,male,1,2,27,-1,-1,-1,-1,0,-1,868,1317,1757,31741,3842,2450,1320,1770,31744,1,2606,291,0
+3306,600000,male,1,2,36,-2,-2,-2,-2,-2,-2,-1,-1,1095,899,598,-2,0,1096,4,601,0,492,0
+3307,330000,male,2,1,47,-2,-2,-1,0,0,0,19540,23240,166722,215506,138371,21757,25487,166744,60057,560,17921,201134,0
+3308,500000,female,1,2,31,0,0,0,0,0,0,258257,247282,197247,188044,210940,201108,25239,18011,13014,45049,20102,89442,0
+3309,200000,male,1,3,29,-1,-1,-1,-1,-1,-1,7505,5894,3002,1715,2604,-1,5919,3017,1720,2611,0,380,0
+3310,200000,male,2,1,36,2,-1,-1,-1,-2,-2,7300,3238,2655,2200,0,0,3238,2655,0,0,0,1966,1
+3311,210000,female,2,2,27,-1,-1,-1,0,0,2,5353,280,4609,4703,6324,1621,280,4609,94,1621,0,32,0
+3312,500000,female,1,1,46,-2,-2,-2,-2,-2,-2,3982,3700,12953,9019,4236,-31,3718,13023,9070,4257,0,0,0
+3313,10000,female,2,1,44,0,0,0,-2,-2,-2,4125,5275,0,0,0,0,1275,0,0,0,0,0,0
+3314,160000,female,1,2,24,0,0,-2,-2,-2,-2,37000,0,0,0,0,0,0,0,0,0,0,0,0
+3315,50000,female,3,1,42,0,0,0,0,0,0,50906,48888,47037,12187,9962,10015,2009,1180,1000,1000,348,1000,0
+3316,130000,male,2,2,33,1,2,2,0,0,0,130565,131878,115173,108310,112083,81362,5012,0,4000,5000,4000,2106,0
+3317,140000,female,1,2,28,0,0,0,0,0,0,138036,140922,144072,142381,142807,141635,6600,7000,5300,6000,5500,5500,1
+3318,80000,female,2,2,45,0,0,-2,-2,-2,-2,83150,-8000,0,0,0,0,0,8000,0,0,0,0,0
+3319,500000,female,1,2,31,-2,-2,-2,-1,0,-1,17496,1001,15782,29251,20095,77684,2000,5000,37223,0,80583,10155,1
+3320,500000,female,2,1,39,0,0,0,0,0,0,146700,126765,107965,89339,67854,54918,4585,3789,3942,2433,10000,762,0
+3321,320000,female,2,1,35,0,0,0,2,0,0,4050,4914,6630,6393,9721,10584,1073,1789,0,3425,1000,3425,0
+3322,50000,male,2,2,29,1,2,0,0,0,0,49612,48546,49157,49890,48941,49940,0,1900,1333,0,999,0,0
+3323,120000,female,2,2,40,0,0,0,-2,-2,-2,4180,5100,0,0,0,0,1000,0,0,0,0,0,0
+3324,500000,male,1,1,59,-2,-2,-2,-2,-2,-2,0,0,994,3342,1240,700,0,994,3342,1240,700,2250,1
+3325,290000,female,2,1,42,-2,-1,-1,-1,0,0,-132,18364,2417,4583,1402,3227,18496,2429,4598,7,3227,1,0
+3326,280000,male,1,1,50,-1,-1,-1,0,0,-2,19378,347,4197,3755,0,0,348,4399,18,0,0,0,0
+3327,30000,female,3,1,41,0,0,0,0,0,0,39230,37737,36619,34752,33229,32211,1618,2000,1500,1500,2000,1248,1
+3328,80000,male,1,2,31,1,2,2,2,2,2,21004,20384,22231,21576,23229,22708,0,2500,0,2000,0,1000,1
+3329,50000,male,2,2,24,0,0,0,2,0,0,48136,72898,36103,29384,29356,29089,3700,5396,6,1003,1449,1022,0
+3330,10000,male,3,2,24,1,2,2,2,2,2,7826,8745,8440,9229,8969,8819,1200,0,900,0,2000,0,0
+3331,550000,male,1,1,49,-1,-1,-1,-1,-1,-2,42141,1515,1488,18334,-114,-114,1522,1495,18426,0,0,22670,1
+3332,60000,male,2,2,41,0,-1,-1,-1,-1,-1,14895,6750,5784,5246,3760,11411,6750,5784,5246,3760,11411,7435,0
+3333,140000,female,2,1,28,0,0,0,-1,-1,-1,5925,7729,0,150,1550,98426,2000,0,150,1550,106155,3500,0
+3334,50000,female,2,2,28,0,0,0,0,0,0,46096,25370,26331,24749,25269,26847,1442,1403,1000,919,2000,1000,0
+3335,300000,female,2,1,27,0,0,0,0,0,0,286321,283547,578971,293063,296677,230338,20000,12003,10524,11238,8814,9463,1
+3336,30000,female,3,1,29,2,2,2,2,2,0,26836,28894,30571,31011,30389,30115,2500,2670,2000,0,1000,1000,1
+3337,50000,female,2,2,25,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,7700,1
+3338,250000,female,2,1,33,2,2,-2,-2,-2,-2,2500,0,0,0,0,0,0,0,0,0,0,0,1
+3339,60000,male,1,2,39,0,0,0,0,0,0,54978,56144,57251,58543,58345,59757,2050,2053,2219,2200,2394,1890,0
+3340,80000,male,3,2,44,2,0,0,0,2,2,57076,58358,58992,62696,64148,62965,2800,2200,4700,2600,0,4400,0
+3341,480000,male,1,2,33,1,-2,-2,-2,-2,-2,-897,-897,-897,-897,-897,-897,0,0,0,0,0,0,0
+3342,30000,male,2,1,44,1,3,2,2,2,2,23171,22523,21863,23296,22783,24310,0,0,1800,0,1910,780,1
+3343,10000,female,2,2,25,0,0,0,0,0,0,9150,9206,10051,9850,8214,8054,1185,1030,1000,1000,2000,2000,0
+3344,410000,female,1,2,41,-2,-2,-2,-1,-1,-1,0,0,0,150,150,1929,0,0,150,150,1929,136869,0
+3345,100000,male,1,1,33,0,0,2,2,2,2,38219,42604,44607,45576,46495,47182,5000,3000,2000,1800,1600,2000,0
+3346,200000,male,3,1,41,0,0,0,0,0,0,84573,76348,50776,51018,25982,10170,2544,1433,3224,775,5000,2000,0
+3347,380000,female,2,1,48,0,0,0,0,0,0,363191,373421,363343,290371,289600,288256,15504,14000,12500,12000,11000,14000,0
+3348,100000,male,2,2,27,0,0,0,0,2,0,41298,42448,44368,48652,47885,48850,2000,2500,4900,0,1763,2000,0
+3349,50000,female,3,1,27,0,0,0,2,0,0,37651,38498,40644,39731,35657,27014,1754,2900,0,1265,832,500,1
+3350,130000,female,2,1,28,0,0,0,0,0,2,107216,91888,83975,76842,78093,67557,4000,4000,8000,6000,0,2500,1
+3351,120000,male,2,2,34,0,0,0,0,0,2,131773,58259,54699,54832,53693,48731,3000,1944,5000,3692,0,2000,0
+3352,150000,female,2,1,42,0,0,0,0,0,2,139172,141401,137320,138016,144084,136604,6022,5022,5100,10500,0,10000,0
+3353,310000,female,1,1,39,-1,-1,-1,-1,-1,2,1989,4566,5329,5724,1518,1336,4566,5433,5724,1336,0,3167,0
+3354,110000,female,2,2,51,-2,-2,-2,-1,-1,-1,150000,0,0,3007,857,55973,0,0,3007,857,100000,1000,0
+3355,420000,male,2,1,37,0,0,0,0,0,0,415257,411624,388363,390003,398229,409615,16850,15522,14000,14500,18007,12733,1
+3356,140000,male,2,1,28,-1,-1,-1,2,-1,-1,6007,7332,7983,3277,2964,4791,7340,7983,0,2964,4800,2353,1
+3357,500000,female,1,1,37,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+3358,260000,female,2,2,26,0,0,2,2,0,0,258364,279322,282092,255409,257913,262004,45446,9000,0,9394,9628,8539,0
+3359,90000,female,2,1,48,-1,-1,-1,-1,-1,-1,316,316,316,316,316,316,316,316,316,316,316,316,1
+3360,90000,female,2,2,41,-1,0,0,0,0,0,48276,47820,46602,47141,16114,15825,2281,1219,1164,556,595,480,0
+3361,20000,male,3,2,35,-1,3,2,0,0,0,8918,8634,8280,11500,9000,0,0,0,4000,7000,0,0,0
+3362,30000,male,2,2,36,0,0,0,0,0,0,36124,35538,34359,32450,30633,30628,2500,2215,1156,1200,3000,3000,1
+3363,140000,female,2,1,36,0,0,0,0,0,0,45849,46909,47928,48731,49793,50812,2100,2100,1900,2000,2000,2100,0
+3364,340000,female,2,2,32,0,0,0,0,0,0,80174,82761,83636,85282,87070,88828,3871,3136,3014,3123,3168,4855,0
+3365,120000,female,1,2,31,-2,-2,-2,-2,-2,-2,-66,-33,-33,-33,-33,-33,0,0,0,0,0,0,0
+3366,420000,male,1,1,34,-1,0,0,0,-2,-2,18037,9944,3254,-16,-16,-16,3048,3016,0,0,0,3262,0
+3367,100000,male,3,1,48,-2,-2,-2,-2,-2,-2,6345,0,0,0,0,0,0,0,0,0,0,0,0
+3368,350000,female,2,2,37,0,0,0,0,0,0,128146,117713,51961,46207,35052,12536,4052,1700,1500,2000,500,2000,0
+3369,50000,male,2,1,26,0,0,0,0,0,0,48992,49689,31368,9454,6020,5000,1769,1003,189,120,100,3710,0
+3370,30000,female,1,2,28,2,2,4,4,4,4,37,37,37,37,37,37,0,0,0,0,0,0,0
+3371,360000,female,1,2,29,-1,-1,-1,0,-1,-1,1766,4500,14697,10687,1968,1272,4534,14697,0,2141,1272,24078,0
+3372,20000,female,3,2,23,-1,-1,-1,0,0,-1,17432,1165,19325,19311,18430,400,1165,19325,386,369,400,5125,0
+3373,400000,female,2,2,38,0,0,0,0,-1,-1,2988,3983,3417,3267,186,1200,1222,1000,1200,186,1200,0,0
+3374,170000,male,3,1,45,0,0,0,0,0,0,40441,40937,34090,34894,36829,37727,5000,2000,2000,3000,2000,2000,0
+3375,110000,female,2,1,36,1,2,0,0,2,2,10448,10144,14516,19396,9298,14116,0,5000,5000,0,5000,0,1
+3376,200000,female,2,1,37,-1,-1,-1,-1,-1,-2,390,31638,770,2108,0,0,31638,770,2118,0,0,0,1
+3377,200000,female,1,1,32,-2,-2,-2,-2,-2,-2,6540,17288,3009,20311,15643,5696,17301,3009,26257,15643,5696,12149,0
+3378,360000,male,1,2,29,-1,-1,-1,-1,-1,-1,5143,2092,1864,969,2500,0,6159,1870,969,2500,0,0,0
+3379,500000,male,1,1,37,-1,-1,-1,-1,-1,-1,1961,1188,-150,150,6805,0,1188,0,300,6805,0,0,0
+3380,20000,male,2,2,22,0,0,0,0,-1,-1,18462,16699,19674,19258,9546,12051,1510,3875,759,10000,19126,1946,0
+3381,270000,male,3,1,32,3,2,0,0,0,0,150616,146262,149449,150893,153878,157324,0,7100,5500,6000,6000,5100,0
+3382,20000,male,2,2,44,1,2,0,0,0,0,6535,6285,7672,8390,9101,9796,0,1500,1000,1000,1000,1000,1
+3383,350000,female,1,1,43,-2,-2,-2,-2,-2,-1,0,0,0,0,0,1146,0,0,0,0,1146,54269,0
+3384,150000,female,2,1,26,0,0,-1,-1,-2,-2,115786,123423,5250,0,0,0,10000,5250,0,0,0,0,0
+3385,260000,female,1,2,30,0,0,0,0,-1,-1,83138,93416,84117,28683,3154,13603,14038,5018,10000,3154,13603,9189,0
+3386,90000,male,1,2,33,-1,-1,2,-1,-1,2,1650,721,421,2754,309,159,721,0,2833,1000,0,2000,0
+3387,310000,female,2,1,32,0,0,0,0,0,0,162530,155831,96835,89223,80462,73899,6100,4252,5000,2780,4881,3000,0
+3388,210000,female,1,2,43,1,-1,0,0,0,0,-3309,177952,167125,139784,142662,145725,184212,5482,3493,3590,3815,3876,0
+3389,40000,female,2,1,45,1,2,0,0,0,0,11402,10928,11940,12241,12544,12835,0,1200,500,500,500,500,1
+3390,80000,female,2,1,25,1,-2,-2,-2,-1,-1,0,0,0,0,13369,0,0,0,0,13369,0,0,0
+3391,50000,male,3,2,22,0,0,0,0,-1,-1,6673,5054,2340,1990,1377,1080,1056,1000,40,1377,1080,382,1
+3392,370000,female,1,1,46,-1,-1,-1,0,0,-1,26555,1572,166229,168601,171018,600,1572,166235,3372,4018,600,600,0
+3393,130000,male,2,2,28,0,0,0,0,0,0,113613,112867,92617,94896,92347,94323,5847,3413,3872,3465,3627,5000,0
+3394,710000,female,2,1,40,-2,-2,-2,-1,2,0,5200,0,0,1004,854,8626,0,0,1004,0,8000,5000,1
+3395,180000,female,3,2,24,1,-1,-1,-1,-2,-1,0,35300,1000,0,0,1245,35300,1000,0,0,1245,0,0
+3396,80000,female,2,1,30,0,0,0,0,0,2,42755,45053,46104,48327,53549,52457,3000,1800,3000,6000,2900,2000,0
+3397,560000,female,1,2,32,0,0,0,0,0,0,68199,31211,23991,15488,12579,11400,1548,1446,14720,427,1000,300,0
+3398,170000,female,1,2,26,0,0,0,0,0,0,47642,40779,34570,33153,24969,22893,4000,2006,1000,1000,1000,1000,0
+3399,30000,female,3,1,63,-1,-1,-1,0,-1,-1,8866,5884,11146,7779,8092,1565,5884,11146,0,8092,1565,2620,0
+3400,430000,female,1,2,30,-1,-1,-1,-1,-1,-1,2202,7172,4705,2029,41581,25984,7232,4723,2035,41784,26108,37216,0
+3401,500000,female,2,1,37,-1,-1,-1,-1,-1,-1,7325,355,355,1204,2378,6344,355,355,1204,2378,6344,14889,0
+3402,10000,male,2,2,26,0,0,0,0,0,0,7606,7030,8454,9454,5784,0,2000,2000,1000,0,0,0,1
+3403,130000,female,1,2,25,0,0,0,0,0,0,5279,7887,10116,9110,6500,5874,4000,4000,2500,236,1700,74,0
+3404,160000,female,2,2,50,-2,-2,-2,-2,-2,-2,3,3,3,3,13333,0,13333,13333,13333,26663,0,11913,0
+3405,150000,male,1,2,33,1,2,2,2,0,0,88590,85800,91242,88399,89629,94637,0,7400,0,3300,7000,0,1
+3406,340000,female,2,1,43,-2,-2,-2,-2,-2,-2,33245,249,27476,0,0,24272,249,27477,0,0,24272,11008,0
+3407,200000,female,2,1,37,0,0,0,0,0,0,184144,189158,190569,191730,171269,151550,8017,8000,8000,9000,7000,6000,0
+3408,130000,male,2,2,37,0,0,0,0,0,0,125780,128768,130112,129785,121609,123586,6500,5000,5000,5000,6000,5000,0
+3409,320000,female,3,1,30,0,0,0,0,0,0,49889,51151,48449,48948,49967,36697,2825,2961,1600,1579,1692,1068,0
+3410,50000,male,3,1,54,2,0,0,-1,0,0,55518,52931,55122,33975,18827,19222,3000,4000,53083,1268,708,664,0
+3411,360000,male,1,1,46,-1,-1,-1,-1,0,0,2171,1063,91502,100125,84773,76951,1068,91679,45086,2223,2091,9890,0
+3412,420000,female,2,2,29,0,0,0,0,0,-2,408568,418589,426336,84732,64614,3068,18000,18691,5027,3000,3068,175056,0
+3413,110000,male,1,2,30,1,2,-1,-1,-1,0,2932,2373,2373,1475,3102,3151,0,2373,1475,4000,3000,2373,0
+3414,80000,male,2,2,35,0,0,0,0,0,0,26994,28659,57803,27562,28224,28867,2000,30000,1000,1000,1000,1500,0
+3415,60000,female,3,1,43,0,0,0,0,0,0,60283,61227,60385,30368,29667,30159,3000,1700,1135,1100,1500,1200,1
+3416,60000,male,2,2,24,0,0,0,0,0,0,47757,26340,16532,15782,17782,9450,1468,2000,0,2000,0,0,0
+3417,210000,male,2,2,26,0,0,0,0,0,0,186109,168198,97223,202134,102844,39995,5929,3272,4362,5040,3195,105,0
+3418,360000,female,1,1,46,0,-1,0,0,0,0,42094,10594,31532,46342,56571,65268,10600,30000,20000,15000,10000,10000,0
+3419,20000,male,2,2,48,0,0,2,0,0,0,6111,10479,10167,10695,11365,12170,4500,0,1000,1000,1000,1000,0
+3420,150000,female,1,2,42,1,-2,-2,-2,-2,-1,-874,-874,-874,-874,-874,4126,0,0,0,0,5000,0,0
+3421,310000,male,3,2,30,-2,-2,-2,-2,-2,-2,-44,-44,8915,-35,7028,-116,0,8959,0,7063,0,23240,0
+3422,240000,female,2,1,40,-1,-1,-1,0,-1,2,3571,2298,2632,904,5559,2748,2309,2637,2,5567,8,2730,1
+3423,160000,female,3,1,55,-1,-1,-1,-1,-1,-1,4144,2016,3384,1449,5542,7314,2016,3399,1449,5590,7314,1579,0
+3424,240000,female,1,2,40,-1,2,2,-2,-1,-1,1841,764,-13,-13,687,-44,2,0,0,700,0,0,0
+3425,20000,male,1,2,22,0,0,0,0,0,0,14677,16625,17924,18674,15452,15882,3004,3006,3007,489,2110,2201,0
+3426,190000,male,1,1,55,-1,-1,-1,-1,-1,-1,390,390,390,390,6026,7410,390,390,390,6026,7410,390,1
+3427,280000,female,2,1,40,1,-2,-2,-2,-2,-2,-10,-10,-10,-10,-10,-10,0,0,0,0,0,0,0
+3428,80000,male,2,3,58,0,0,0,-2,-2,-2,3719,4444,0,0,0,0,1000,0,0,0,0,0,0
+3429,290000,female,3,1,49,0,0,0,-1,-1,0,169004,166920,153092,3804,155233,148003,7600,7521,3804,160897,5198,6000,0
+3430,200000,female,1,1,34,-1,-1,-1,-1,0,0,3987,1631,21698,12657,11349,9006,1631,21698,12657,569,3000,25000,0
+3431,320000,male,1,1,50,-2,-2,-2,-2,-2,-2,6426,-4,816,30026,49154,1299,0,824,31144,25664,2610,1833,0
+3432,350000,female,2,2,27,0,0,0,0,0,0,16022,17059,17772,18127,18536,19224,1600,1300,650,700,1000,750,0
+3433,110000,male,1,2,33,0,0,2,2,2,2,39768,44333,43320,48236,49195,48253,5548,0,5651,1876,0,2000,0
+3434,300000,female,2,1,37,1,-2,-2,-1,-1,-1,0,0,0,363,0,944,0,0,363,0,944,2000,1
+3435,500000,female,1,1,44,1,-1,-1,-2,-1,-1,706,1108,380,-270,2305,2733,1242,380,22,2575,3009,6026,0
+3436,120000,female,1,2,35,-1,-1,-1,-1,-1,-1,500,2483,250,1579,223,421,2483,252,1579,223,421,8228,0
+3437,80000,female,3,3,31,0,0,0,-1,-1,-1,5154,5390,6276,1322,500,175,1124,1010,1322,500,175,1331,0
+3438,200000,female,2,2,33,0,0,0,0,0,0,198878,195883,190282,164492,165076,166008,7700,7527,4900,5100,5300,4610,1
+3439,150000,female,1,2,26,-1,-1,-1,-1,-1,-1,1551,2961,4175,1707,4492,6149,2990,4175,1707,4492,6149,34672,1
+3440,150000,female,1,2,40,0,0,0,0,0,-1,145074,152179,149313,129768,136084,30312,11000,6000,40000,42000,34880,201277,0
+3441,210000,male,2,1,42,1,-2,-2,-2,-1,-1,652,0,326,321,1435,8480,0,326,326,1440,8521,9592,0
+3442,150000,male,2,2,36,-1,-1,-2,-2,-2,-2,5382,0,0,0,0,0,0,0,0,0,0,0,1
+3443,50000,female,1,2,26,0,0,2,0,0,0,39052,44416,43407,44382,45672,46758,6000,0,2000,2000,2000,2000,0
+3444,80000,male,2,1,33,0,0,0,0,0,0,79537,76226,49645,50235,47014,47575,2359,1745,1725,1704,1730,1677,0
+3445,50000,male,2,1,34,0,0,-1,0,-1,-1,2522,0,2522,1261,1261,1428,0,2522,0,1261,1428,1261,0
+3446,20000,female,2,1,50,2,0,0,0,0,0,17393,18119,19413,19704,19563,20391,1315,2401,900,709,1548,0,0
+3447,50000,male,2,1,37,0,0,0,0,0,0,27516,28871,29500,28914,29529,29319,2000,1435,1149,1197,1009,990,0
+3448,50000,male,1,2,29,1,2,2,2,2,2,14497,13975,25731,26112,26548,25970,0,12000,1100,1000,0,2500,0
+3449,280000,male,2,1,46,1,2,2,2,2,2,188894,194489,197722,192140,203913,200564,10101,8000,0,15000,0,7053,1
+3450,230000,male,2,1,51,0,0,0,0,0,0,197993,84076,77766,70066,62865,55311,2965,3500,2600,2500,1901,2370,0
+3451,230000,male,2,2,30,0,0,2,0,0,0,38651,45681,44652,48540,52477,56506,8000,0,4970,4907,4936,5024,1
+3452,80000,female,3,1,37,0,0,0,0,0,0,63185,62209,61991,30597,30794,30684,5021,10036,3000,2000,2000,2000,0
+3453,60000,female,2,3,35,0,0,2,0,0,0,12695,15453,13420,15211,14395,16141,3000,0,2000,1000,2000,1000,0
+3454,200000,male,2,1,37,0,0,0,0,0,0,199669,204168,202381,172574,171795,170960,9300,7851,6400,6500,6537,6200,0
+3455,30000,female,3,2,22,-1,-1,0,-1,0,-1,-854,29393,27390,2390,780,24310,33404,1000,2390,0,48620,156,0
+3456,340000,female,1,2,34,-1,-1,-1,-1,-1,-1,32488,42449,30042,28987,13104,59204,42552,30084,29033,13120,59273,1241,0
+3457,250000,female,2,1,40,-1,-1,-1,-1,-1,-1,4843,2942,1054,1708,3014,3037,2942,1057,1708,3014,3037,4974,0
+3458,200000,male,1,1,52,-1,-1,-1,-1,-1,-1,1015,932,1453,821,1123,878,934,1461,823,1126,880,926,0
+3459,150000,male,1,2,39,0,0,0,0,0,0,146736,149030,148258,106114,105951,78487,7027,6000,3220,3600,2670,2618,0
+3460,100000,female,3,1,53,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+3461,220000,female,2,1,41,0,0,0,0,0,0,126532,90013,91191,86139,83743,78555,4500,4006,3000,3000,3000,6000,0
+3462,140000,male,1,2,32,1,-2,-1,0,0,0,-4,-680,1824,1508,300,-206,0,3000,0,0,0,2000,1
+3463,40000,male,1,1,28,-1,-1,2,-1,-1,-1,10371,11895,11228,2475,5341,6255,2567,0,2475,5341,1500,0,1
+3464,200000,female,2,2,30,0,0,0,0,0,0,185070,182566,178604,181878,182444,185250,7022,6501,6500,6504,7008,8009,0
+3465,520000,female,1,2,35,0,0,0,0,0,0,60912,56728,55758,57911,54152,43108,7000,5000,5004,5000,5000,5031,0
+3466,30000,female,2,1,22,0,0,0,0,0,0,16534,17213,17723,17431,17882,17694,2002,1553,1002,2002,1000,542,0
+3467,20000,male,2,2,28,0,0,0,0,0,0,17973,17835,18795,18252,17589,17480,1318,1278,635,802,350,0,0
+3468,50000,male,2,2,40,0,0,0,0,0,0,14633,12921,13957,16703,17052,17391,1218,1254,3000,617,621,643,1
+3469,300000,female,3,2,29,0,0,0,0,-2,-2,143568,147715,149506,-4394,-4394,-4394,7951,6890,0,0,0,0,0
+3470,500000,female,1,2,36,-1,-1,-1,-1,-1,-1,10935,4079,3943,3338,1224,31022,4081,4283,3338,1224,31022,1088,0
+3471,490000,female,2,2,27,0,0,0,0,0,-1,222705,191752,195022,196099,201289,86703,5011,5217,5000,5340,94762,5026,0
+3472,200000,male,1,2,27,-1,-1,-1,0,0,-1,630,825,1890,1260,630,630,825,1890,0,0,630,1030,0
+3473,40000,female,1,2,23,2,2,2,0,0,0,19827,20709,21070,21420,23066,23683,1500,1000,1000,2000,1000,894,1
+3474,150000,female,1,2,28,-1,-1,-2,-1,-1,-2,3752,2730,500,2727,712,0,2730,500,2727,712,0,0,0
+3475,50000,male,1,1,29,0,0,0,0,0,0,48310,49690,40697,16751,17093,13191,2300,1400,335,342,4000,200,1
+3476,100000,male,2,2,27,0,0,0,0,0,0,99668,100181,99156,80234,80090,79494,4850,3740,2798,2865,3020,2377,0
+3477,50000,female,3,1,42,2,2,2,0,0,2,44961,48164,38684,41034,43597,42743,4000,0,3000,3228,0,4000,1
+3478,130000,female,2,2,25,-1,-1,-1,0,0,0,390,390,36659,23150,27376,33104,780,36659,5000,5000,7000,5000,0
+3479,70000,female,1,2,27,-1,-1,-1,-1,-1,-1,157,157,157,157,307,507,157,157,157,307,507,357,0
+3480,30000,female,1,1,30,0,0,0,0,0,2,28289,29537,29378,22692,24169,23782,2013,1440,800,1800,108,1130,0
+3481,50000,male,1,2,28,0,0,0,0,0,0,31170,20413,13738,6326,1452,1612,2005,1206,1000,600,500,1000,0
+3482,80000,male,1,1,45,-1,-1,-1,-1,-1,-1,1473,1473,24770,3366,1473,44314,1473,24770,3366,1473,44314,4000,1
+3483,220000,female,1,2,30,0,0,0,0,0,-1,72546,74618,62379,37137,-669,14069,5206,30176,10258,14000,15070,6029,0
+3484,200000,male,2,1,45,0,0,0,0,0,0,200378,162374,154234,143953,147834,147373,6061,7048,5016,10294,5136,5225,0
+3485,120000,female,2,2,24,0,0,0,0,0,-1,11296,12200,11761,6761,7189,1087,1400,1000,0,1000,1087,801,0
+3486,100000,female,2,2,25,2,2,2,0,0,0,98499,101051,98503,98949,48552,49545,5000,0,3900,1801,1800,2000,0
+3487,100000,female,3,1,59,1,-1,0,-1,-1,-1,0,7240,7702,1550,12079,35920,7240,1000,1558,12079,35920,0,0
+3488,50000,female,1,2,23,0,0,0,0,0,0,50025,22656,19610,17801,18078,18137,1626,1581,1000,900,700,1000,0
+3489,240000,male,2,1,37,-1,-1,-1,0,0,0,2208,5652,34351,22241,8472,500,5665,35000,8877,500,0,21257,0
+3490,60000,male,1,2,28,0,-1,0,0,-1,2,2295,5293,13421,9900,310,160,6000,10000,900,310,0,3400,0
+3491,260000,female,2,1,34,-2,-2,-2,-2,-2,-2,8214,2149,3065,750,0,0,2151,3065,750,0,0,377,1
+3492,30000,female,3,1,56,2,2,2,2,2,2,17643,18564,17969,20645,21666,21170,1500,0,3000,1500,0,1900,1
+3493,440000,female,3,1,40,0,0,0,0,0,0,54408,57901,61914,65863,69792,73346,5000,5000,5000,5000,5000,5000,0
+3494,360000,female,2,2,30,0,0,0,0,0,0,132250,132655,135959,139796,143642,147418,5000,5000,5000,5000,5000,5000,0
+3495,50000,female,1,2,26,-1,0,0,0,-2,-2,5310,34105,34536,0,0,0,29000,1000,0,0,0,0,1
+3496,270000,male,1,1,50,-1,-1,-1,-1,-1,-1,316,316,316,5772,316,316,316,316,5772,316,316,5174,0
+3497,150000,female,1,2,27,-1,0,0,-2,-2,-2,30585,30138,0,0,0,0,6000,0,0,0,0,0,0
+3498,200000,male,3,2,26,-1,-1,-1,-1,-1,-1,8355,8355,8355,8355,8355,8355,8355,8355,8355,8355,8355,8285,0
+3499,50000,female,2,1,36,0,0,0,0,0,0,44510,42564,38181,30805,28252,28783,3000,3000,3000,2000,2000,5000,0
+3500,210000,female,1,2,33,-1,2,2,-1,-1,-1,970,2273,1303,5385,1814,0,1303,3,5387,1814,0,0,0
+3501,50000,female,2,2,27,2,2,2,2,0,0,47760,45064,45744,43123,42343,43020,0,3400,0,1528,3038,0,1
+3502,50000,male,2,2,24,0,0,0,0,0,0,19839,20231,20142,19920,19722,20437,1328,1315,703,723,1050,668,0
+3503,440000,male,1,2,29,-2,-2,-1,0,0,0,26430,23509,278956,274859,99618,103884,1249,279048,10758,5000,5080,2515,0
+3504,60000,female,1,2,28,2,2,2,2,2,2,43662,42682,45603,44569,47452,46536,0,3628,0,3600,0,4000,1
+3505,70000,female,2,1,41,0,0,0,0,0,-1,6017,8798,3810,2790,0,4513,3000,1500,0,0,4513,0,0
+3506,290000,female,2,2,25,0,0,0,0,0,0,71559,66658,68627,61578,59274,61314,2500,3000,3000,3000,3000,3000,0
+3507,140000,male,2,2,29,-1,-1,-1,-1,-2,-2,487,487,2010,0,0,0,487,2010,0,0,0,299,0
+3508,310000,female,2,2,33,0,0,0,0,0,0,110786,115540,117674,108103,114721,105624,6555,6000,3272,15874,4182,15694,0
+3509,450000,female,1,2,36,1,-2,-1,-1,-2,-2,-44,10223,200,0,0,0,10267,200,0,0,0,0,0
+3510,360000,male,1,1,34,-1,-1,-1,-1,-1,-1,997,1267,3935,2437,2797,256,1270,3946,2444,2805,258,1,0
+3511,550000,female,2,1,34,0,0,0,0,0,0,383973,380082,389694,342198,344808,347188,15000,20000,20000,12000,12000,13000,0
+3512,180000,male,1,1,44,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,4003,0
+3513,140000,male,2,1,37,0,-1,0,0,0,0,34661,5309,51293,56740,59455,57532,5334,50006,9460,9461,2507,10007,0
+3514,50000,male,1,2,33,0,0,0,0,0,0,17094,17779,19275,18829,15913,7561,2000,3000,1000,1000,1000,2115,0
+3515,200000,female,2,1,30,-2,-2,-2,-2,-2,-2,0,0,441,653,500,600,0,441,653,500,600,751,0
+3516,60000,male,2,1,39,0,0,0,0,0,0,54282,49541,46074,39917,39382,39799,2128,1608,1391,1410,1580,1548,0
+3517,140000,male,1,2,28,0,-1,-1,0,-1,-1,3234,4324,5477,4490,1500,-51183,4340,5491,2013,1510,18,89898,0
+3518,70000,male,2,1,42,0,0,0,0,0,0,70293,69199,66398,66282,67580,67273,3300,2600,2600,3000,2600,2600,0
+3519,20000,female,2,1,50,1,2,2,2,3,2,7973,9686,9382,10821,10361,10046,2000,0,1600,0,0,1500,0
+3520,100000,female,2,1,24,0,0,0,0,0,0,68963,64880,60536,55708,51724,48671,3000,2700,2000,1900,1700,1794,0
+3521,360000,male,1,2,33,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+3522,100000,female,3,1,24,-1,-1,-1,-1,-1,-2,440,470,470,470,0,0,500,470,470,0,0,0,0
+3523,160000,female,3,2,41,-1,2,2,0,0,0,26736,29052,28328,29099,29724,30624,3000,0,1200,1200,1500,2000,0
+3524,160000,female,2,2,27,0,0,0,0,0,0,163418,164211,165587,161950,161680,164031,6200,7600,6100,5900,6300,7500,0
+3525,130000,male,2,2,26,-1,0,0,-1,-1,-1,296,1299,-1,500,0,936,1003,0,501,0,936,1002,1
+3526,100000,female,3,1,40,0,0,0,0,0,0,48923,48404,46266,45405,44723,42934,2084,1973,1708,1728,1621,1359,0
+3527,90000,male,1,1,35,0,0,2,2,2,2,15952,18780,19177,18574,19721,19254,3100,1000,0,1600,0,800,1
+3528,80000,male,2,2,23,2,0,0,0,0,0,8613,12438,15212,15657,17404,19103,4000,3000,1000,2000,2000,2836,0
+3529,220000,female,2,1,28,5,6,5,4,3,2,216435,219973,215959,210438,207114,210491,8355,1000,0,0,6800,97,1
+3530,260000,female,1,1,39,-2,-2,-2,-2,-2,-2,5912,3768,1444,2402,2040,3172,3786,1451,2424,2050,3187,1972,1
+3531,30000,male,3,1,45,2,2,2,3,5,4,25161,24476,28721,31262,30217,29158,0,5000,3300,0,0,0,1
+3532,100000,female,2,1,40,1,2,2,-1,0,-1,4535,3546,-2106,8538,390,150,0,0,10644,0,150,780,1
+3533,80000,male,2,2,39,0,0,0,0,0,0,55084,51265,47950,48869,49445,49979,3012,2100,2001,2001,2000,1782,0
+3534,20000,female,2,2,31,0,0,-1,-1,-1,-2,5526,5561,2935,5909,0,0,1032,2938,6039,0,0,0,0
+3535,140000,male,1,1,41,0,0,0,0,0,0,19853,22525,25141,29701,34197,38615,3000,3000,5000,5000,5000,3000,0
+3536,30000,female,1,2,25,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+3537,90000,male,2,1,39,0,0,0,0,0,0,20612,21956,23280,23812,24377,24821,1676,2000,1220,1100,1000,1100,0
+3538,150000,female,2,2,23,0,0,0,0,0,0,59555,59684,59501,59075,59171,53557,2812,2599,2143,2208,2112,5000,0
+3539,250000,male,3,1,28,0,0,0,0,0,0,191305,90497,92278,93354,95309,97411,3899,3913,3186,3301,3525,3095,0
+3540,20000,female,2,1,37,1,2,2,0,0,0,19911,20797,20085,20126,20469,20655,1500,0,500,650,600,0,1
+3541,50000,male,2,1,28,0,0,-1,-1,-1,-1,20914,29303,2515,7885,14493,2113,10087,2522,7951,14493,2120,3027,0
+3542,100000,male,2,1,31,3,2,-1,0,0,-1,2000,1000,3000,2000,1000,1150,0,3000,0,0,1150,0,1
+3543,500000,male,1,1,46,-1,-1,-1,-1,-1,-1,3580,18785,10742,37171,6192,31453,18785,10742,37171,6192,31453,12333,0
+3544,50000,female,2,1,36,2,0,0,0,0,-1,47357,49260,50556,12557,9959,11361,3000,3266,600,1672,20000,1000,0
+3545,40000,female,1,2,27,0,0,-1,-1,0,0,32228,38904,4235,87230,72647,65070,8040,4235,87230,3000,10000,4317,0
+3546,80000,female,2,1,35,0,0,2,0,0,2,75530,79324,76090,75892,77310,80752,7000,0,3000,4000,5000,0,0
+3547,100000,male,1,1,35,0,0,0,0,0,0,45124,46168,47160,98775,49513,53433,1730,1722,3214,2119,5064,0,0
+3548,180000,male,1,2,29,-2,-2,-1,0,0,0,1073,3191,10693,11285,13863,5646,3206,10696,1291,3877,11077,700,0
+3549,90000,female,3,1,53,0,0,0,0,0,0,87235,88338,78994,50095,48987,49519,4000,2602,2000,3000,2000,5000,0
+3550,10000,female,2,2,23,-2,-2,-2,-2,-2,-2,1082,2731,757,876,3551,0,2731,757,876,3551,0,13460,0
+3551,200000,female,1,2,33,-1,-1,-1,-1,0,0,165,145,-20,446,165,0,145,0,631,0,0,165,0
+3552,80000,male,3,1,57,2,2,2,2,2,2,7431,9895,9937,9629,10571,10749,2600,350,0,1100,500,1300,1
+3553,90000,male,2,2,33,2,2,2,2,2,2,62011,63426,64288,65236,66639,67893,3000,2500,2600,2600,2500,2800,1
+3554,80000,female,2,1,42,0,0,-2,-2,-2,-2,30900,0,0,0,0,0,0,0,0,0,0,0,1
+3555,90000,female,2,2,24,2,2,2,0,0,0,124457,118666,105806,98257,91442,66762,6600,0,2915,3154,2977,90000,1
+3556,80000,female,2,1,46,-1,-1,-1,0,-1,-1,2350,2350,4700,2350,2350,2350,2350,4700,0,2350,2350,350,0
+3557,140000,male,1,2,27,-1,-1,-1,0,-1,-1,832,0,825,409,521,416,0,825,0,528,416,1059,1
+3558,480000,male,2,1,39,0,0,0,0,0,0,398380,394515,393648,330221,296004,279768,20091,25370,15203,12013,12013,10135,0
+3559,230000,male,1,1,39,1,2,2,2,2,0,276758,282285,269849,255954,235290,203223,12000,10000,8300,0,8006,6270,0
+3560,70000,male,1,2,27,-1,3,2,0,0,-1,4168,3942,1929,2870,1435,3047,0,0,1980,0,3047,0,1
+3561,200000,female,1,2,39,0,0,0,0,0,0,126082,127734,125205,113304,114667,110138,6216,4371,4037,6613,4055,3575,0
+3562,180000,female,1,2,35,0,0,0,0,0,0,66376,67033,68862,71970,69843,67219,5000,4000,5000,3000,2700,3000,0
+3563,190000,male,3,1,37,0,0,0,0,0,0,181295,178857,181463,178984,175131,170136,8019,8008,6700,6800,6324,6120,0
+3564,20000,female,2,1,24,1,2,0,0,2,2,18817,18227,19632,20298,20337,19863,0,1720,1754,893,0,400,0
+3565,10000,male,1,2,24,0,0,2,0,0,0,7680,10160,9844,9554,9515,9700,2616,0,400,499,500,900,1
+3566,80000,female,1,1,45,0,0,0,0,0,0,81133,81466,80822,79207,79652,81165,3502,3000,4000,3100,3000,3000,0
+3567,60000,male,3,2,28,2,2,2,2,2,2,53567,59629,60943,60716,58458,49529,6950,3250,1767,0,3654,0,0
+3568,500000,female,1,2,37,-1,-1,-1,-1,0,0,4168,19169,22893,52002,16521,-38,19169,22893,53198,0,0,12000,0
+3569,50000,male,3,2,42,-1,-1,2,2,2,-1,550,1974,1250,1400,700,550,1974,0,700,0,550,1100,1
+3570,360000,female,1,2,28,1,-1,-1,-1,-1,-2,0,420,0,742,0,0,420,0,742,0,0,198,0
+3571,10000,female,3,1,56,0,0,2,2,2,0,7324,9808,9501,10029,9730,9974,2609,0,830,0,400,500,0
+3572,300000,male,1,1,54,-1,-1,-1,-1,-1,-1,206,555,0,718,468,366,555,0,718,468,366,0,1
+3573,70000,male,2,1,48,0,0,0,-1,-1,-1,8439,7606,8638,1230,390,890,1188,2000,1230,390,890,215,0
+3574,250000,female,2,1,32,0,0,-2,-2,-2,-2,39936,16666,16998,17504,0,0,8666,16998,17504,0,0,0,0
+3575,10000,male,3,1,51,2,2,2,2,0,0,3577,6012,6066,5820,6026,7680,2500,300,0,300,1774,284,1
+3576,140000,female,3,1,28,0,0,0,0,0,0,25184,27742,30129,21477,26097,24767,5000,3011,5000,5000,3000,5000,0
+3577,100000,female,2,1,40,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+3578,110000,female,1,1,31,1,-2,-1,-1,0,0,0,0,638,225,225,0,0,638,225,0,0,0,0
+3579,210000,male,2,1,38,-1,-1,-1,-1,-1,-1,291,291,291,291,291,291,291,291,291,291,291,1451,0
+3580,210000,female,1,1,40,-2,-2,-2,-2,-2,-2,14472,680,0,0,0,0,680,0,0,0,0,0,0
+3581,70000,female,2,2,26,3,2,2,2,2,2,49201,48134,52431,52479,53345,52333,0,5100,2000,2000,0,4046,1
+3582,20000,male,2,1,47,0,0,0,0,0,0,15166,15014,16024,16345,17579,18750,1257,1267,588,1500,1500,0,0
+3583,220000,male,1,2,31,-2,-2,-2,-2,-2,-2,4935,3796,5227,2291,4739,1640,3796,5227,2293,4739,1640,3012,0
+3584,20000,female,3,3,51,2,0,0,0,0,2,18355,17165,17676,18300,20278,20192,1600,1500,900,3600,393,0,1
+3585,80000,male,1,1,28,2,2,2,0,0,0,56272,58756,59587,60997,62856,66897,4000,2400,3000,3000,5100,0,0
+3586,500000,female,2,1,42,0,0,0,0,0,0,506787,487049,478965,401635,423136,422271,21000,17414,12000,30000,18000,11000,1
+3587,210000,male,3,2,66,0,0,0,0,0,0,209396,136809,139411,138991,140886,143721,6510,6450,5103,5500,5307,5011,0
+3588,80000,male,2,2,27,2,0,0,0,0,0,76896,78663,78692,56032,57248,58515,3613,3100,2000,2100,2200,2041,1
+3589,50000,female,2,1,37,2,2,2,0,0,0,40994,43594,38222,13026,13268,13497,5500,0,580,600,600,600,0
+3590,240000,male,1,1,35,1,-1,-1,0,0,0,0,11901,5736,1000,650,7574,11901,5758,0,150,7424,0,0
+3591,150000,female,2,2,23,-2,-2,-2,-2,-1,2,198,4824,1276,4830,10251,5706,4848,1282,4854,10251,0,7328,0
+3592,210000,female,2,1,49,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+3593,360000,female,2,2,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+3594,230000,female,4,1,29,0,0,0,0,0,0,70069,64375,65691,67150,68398,69917,3000,2386,2553,2483,2657,3000,0
+3595,500000,male,1,2,35,1,-1,-1,-1,-1,-1,-453,1168,1215,6461,2567,735,2336,1215,6461,2567,1470,11605,0
+3596,150000,female,2,1,34,-1,0,0,0,0,0,50523,46054,46191,45564,45840,47077,1763,2500,2000,2000,2000,2100,0
+3597,30000,female,2,2,31,1,2,0,0,2,3,27254,26531,27857,29685,31260,30468,0,1772,2600,2200,0,0,1
+3598,470000,male,1,1,57,0,0,0,0,0,0,83852,85008,83882,66207,65549,60805,3477,4100,2022,2100,2156,1740,0
+3599,200000,male,1,1,59,0,0,0,2,2,2,27119,28081,30299,29516,31378,31914,1700,3000,0,2500,1200,0,0
+3600,470000,male,1,2,35,0,0,0,0,0,0,211775,218246,218615,221365,137387,201955,9883,6000,6194,30364,100018,4817,0
+3601,310000,male,1,2,32,0,0,0,0,0,-1,53340,85711,69195,59169,12056,10032,69220,3095,5000,2000,10058,23219,0
+3602,210000,female,1,2,28,0,0,0,0,0,0,204191,204530,185587,136410,140051,142976,9000,9007,5254,6000,5500,5000,0
+3603,500000,female,2,1,41,-1,-1,-1,-1,-1,-1,24433,187206,10894,29161,28238,33272,187206,10909,29161,28238,33272,175357,0
+3604,80000,female,2,2,27,0,0,0,0,2,2,72991,75134,76083,81183,79906,75294,3320,2800,6400,2870,0,3150,0
+3605,20000,male,3,2,38,0,0,0,0,-1,-1,11805,12186,9331,6927,12457,8900,1400,1023,0,12469,598,1,1
+3606,150000,male,3,2,32,1,-1,0,0,0,0,3706,40093,65063,69046,60619,61096,40093,30000,10000,10030,5000,5000,0
+3607,390000,male,3,1,39,0,0,0,0,0,0,475934,308108,205228,185134,181949,136559,59324,6093,5411,6025,5000,3617,0
+3608,10000,male,1,2,29,0,0,0,0,0,0,10208,8598,7100,9305,9805,5720,1500,1000,4000,500,2500,0,0
+3609,390000,female,3,1,46,-2,-2,-2,-2,-2,-2,14315,7097,6548,8976,909,17682,7097,6548,8976,909,17682,12710,0
+3610,210000,male,3,1,41,-1,-1,2,0,0,-1,390,1732,1170,780,390,69438,1732,0,0,0,69438,3750,1
+3611,350000,female,1,1,33,-2,-2,-2,-2,-2,-2,16414,693,693,1144,-4618,-8026,693,0,1144,4279,0,0,1
+3612,150000,female,1,2,35,-1,-1,-1,0,0,-1,3299,596,978,1178,1007,2075,599,982,1007,5,2075,2669,0
+3613,210000,female,2,1,36,0,0,0,0,0,0,54717,55522,54929,55696,54773,51616,2017,1900,1900,1925,1845,1886,0
+3614,100000,male,1,1,55,0,0,0,0,0,0,18135,31498,17158,18758,17168,0,2000,4000,2000,3000,0,0,0
+3615,210000,male,1,2,36,0,0,0,0,0,0,210463,109132,47182,37067,24511,22634,5187,2043,1552,2013,3002,3003,1
+3616,290000,female,2,1,48,-1,-1,-1,-1,-1,-1,31386,31394,1369,15010,3280,0,31401,1369,15010,3280,0,3357,0
+3617,330000,male,2,1,50,1,-1,-1,-1,-1,-1,-13,2750,-27,5344,16566,995,2763,0,5371,16648,1000,997,1
+3618,50000,male,2,2,37,0,0,0,0,0,0,50701,50462,50218,20141,20072,19493,2202,2083,697,711,717,674,0
+3619,80000,male,3,2,27,0,0,0,0,0,0,47163,86021,44400,23954,24574,24772,1821,3600,1000,1000,1000,1000,0
+3620,340000,male,2,1,35,0,0,0,0,0,0,39229,40747,41930,43397,44710,46143,2000,2000,2000,2000,2000,2000,0
+3621,120000,male,3,1,38,0,0,0,0,0,0,40538,41870,58882,59862,51172,52533,1988,18000,1857,1723,2075,1500,0
+3622,30000,female,2,2,22,0,-1,-1,-1,-1,-2,3158,5547,3312,3145,3022,3247,5572,3321,3154,3031,3339,2921,0
+3623,260000,female,1,2,35,0,0,0,0,0,0,20556,25256,50175,46516,42815,39004,9581,30000,1590,1472,1317,1314,0
+3624,50000,male,2,1,64,0,0,0,0,0,-1,48369,44762,17403,17907,19000,18055,2384,5461,2872,1093,19055,2239,0
+3625,420000,female,3,2,25,1,2,0,0,0,0,72874,71035,57503,56467,53995,55304,0,2000,1892,1979,2226,23011,1
+3626,130000,female,2,1,28,0,0,0,-1,-1,-1,71983,71514,73274,3541,3333,3333,4000,7000,3600,3333,3333,3110,0
+3627,270000,female,2,1,30,0,0,0,0,0,0,62599,59368,57856,49804,47310,42812,5000,5000,5000,5000,5240,5000,0
+3628,50000,male,3,2,30,0,0,0,0,2,0,6615,7640,8649,9302,9008,9188,1135,1144,797,0,329,490,0
+3629,20000,male,2,1,34,0,0,0,0,0,0,17179,17815,9519,10469,14272,15033,1300,1500,1415,4000,1000,1000,1
+3630,140000,female,2,1,34,0,0,0,0,0,0,132541,136186,139418,140962,137819,137094,7000,7000,5300,5300,10100,5400,0
+3631,100000,female,2,1,35,0,0,0,0,0,0,106229,98217,42482,43326,44235,45498,3000,1707,1551,1607,2000,2000,0
+3632,50000,male,3,2,41,2,2,2,2,3,2,29368,28612,31623,33393,32587,31914,0,3500,2589,0,0,1332,0
+3633,500000,male,1,2,37,-1,0,0,0,-1,-1,27181,12525,7218,2183,6371,5208,7254,2208,11,6402,5234,2899,0
+3634,80000,male,2,1,35,0,0,0,0,0,0,78507,80327,80125,28345,28938,29665,3085,2969,1007,1042,1200,1501,0
+3635,220000,female,2,1,34,-1,-1,-1,-1,-1,-1,51565,15683,1381,3300,2452,2728,15683,1381,3300,2452,2728,0,1
+3636,30000,male,2,1,34,2,0,0,0,0,2,27358,25652,26723,27104,28616,29102,1750,1800,1118,2100,1100,0,0
+3637,240000,male,2,2,26,0,0,0,0,0,0,161766,166147,169882,173246,177112,187951,7000,6500,6183,6640,14000,0,0
+3638,220000,male,3,1,41,-2,-2,-2,-2,-2,-2,10804,34407,14510,7229,12806,35433,34415,14565,7229,12806,35433,11405,0
+3639,320000,male,2,1,32,-1,-1,-1,-1,0,0,6443,443,-1327,28484,47711,34755,451,0,29811,20000,2386,462,0
+3640,230000,female,2,1,36,0,0,-1,2,-1,2,52689,0,150,150,921,771,0,150,0,921,0,51362,0
+3641,20000,male,3,2,44,-1,2,-1,-1,-1,-1,780,390,390,390,390,0,0,390,390,390,0,780,0
+3642,280000,female,2,1,34,0,0,0,0,0,0,82691,75867,76835,70722,60694,62032,3500,3200,2500,2400,2500,2500,0
+3643,110000,male,2,1,44,0,0,0,0,0,0,111188,109512,108727,107381,106831,108305,6010,5507,4500,4502,4200,4500,0
+3644,180000,female,2,1,26,0,0,0,0,0,0,186248,178001,145248,58142,22312,7340,18000,5044,6506,500,500,2000,0
+3645,100000,male,3,1,51,0,0,0,0,0,0,93970,93752,92293,92434,95478,40514,3799,3269,3407,5024,5056,5135,0
+3646,80000,male,2,1,37,0,0,-1,-1,0,0,43311,16348,9360,6295,14844,29065,5377,9383,6295,10018,21939,5002,0
+3647,260000,female,3,2,30,-1,-1,-1,-1,-1,-1,1264,6894,2917,-70,2300,2784,6894,2917,0,2784,5568,1714,0
+3648,110000,female,2,2,25,2,2,2,2,2,0,111483,114125,114087,113879,112268,107423,5900,3500,3400,0,4000,4000,0
+3649,150000,female,2,1,31,0,0,0,0,0,0,104014,108229,109374,111279,125353,126913,5500,4005,3241,15500,4000,3568,0
+3650,180000,female,2,2,35,-1,-1,-1,-1,-1,0,15288,4194,1300,0,4689,4689,4194,1300,0,4689,0,1582,0
+3651,230000,female,2,1,28,0,0,0,0,0,0,53542,79186,49984,35526,24540,16038,36000,1222,7510,491,6600,0,0
+3652,500000,female,1,2,27,0,0,0,0,0,0,73798,74781,75559,76426,56197,42998,4794,5560,2426,3521,1641,913,0
+3653,300000,male,2,2,30,0,0,-1,0,0,0,1485,-9,11970,10292,10116,829,0,11979,206,10,4,11591,0
+3654,180000,female,2,2,31,-1,-1,-1,-1,-1,0,326,326,326,326,76465,79695,326,326,326,76465,5000,5000,0
+3655,30000,female,2,2,24,2,2,3,3,3,3,1050,1050,1050,1050,1050,1050,0,0,0,0,0,0,1
+3656,110000,female,3,2,29,1,2,2,2,2,-1,6467,6920,6242,6712,871,16391,1114,0,1000,0,16391,832,0
+3657,100000,female,2,1,28,0,0,0,0,0,0,36428,48850,20904,13955,14573,16084,6000,5000,1000,4000,5000,8000,0
+3658,390000,male,1,2,31,0,0,0,0,0,0,381453,375926,363787,291427,260026,178599,15024,30002,15052,10507,25001,25082,0
+3659,180000,female,6,1,35,0,0,0,0,0,-2,29197,30719,31500,31939,0,0,2000,1400,639,0,0,0,0
+3660,300000,female,3,1,37,1,2,2,-1,-1,-1,5975,5312,1896,1523,2559,2881,1905,5,1527,2569,2889,2074,0
+3661,260000,female,1,2,36,-1,-1,-1,-1,-1,-1,7740,1445,782,790,849,12319,1445,782,790,849,12319,7575,0
+3662,360000,female,2,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+3663,80000,female,2,2,26,0,-1,0,0,0,-1,509,437,3586,2248,2222,4822,525,3519,2201,2203,8389,8048,0
+3664,100000,female,1,2,26,-1,-1,-2,-2,-2,-2,26273,-73,-73,-73,-73,-73,0,0,0,0,0,0,1
+3665,20000,male,3,1,47,2,2,2,2,2,0,14328,17196,17418,17608,17187,17528,3114,800,770,0,776,549,1
+3666,210000,female,1,2,33,-1,-1,-1,-1,0,0,27042,0,188,16464,13947,0,0,188,16476,0,0,0,0
+3667,10000,female,2,1,25,0,0,0,0,0,2,6991,8008,9018,9198,9896,9703,1126,1136,316,833,100,292,0
+3668,150000,male,1,2,26,-1,-1,-1,-1,0,0,360,360,360,16133,22309,22377,360,360,16133,7000,796,819,0
+3669,360000,male,3,1,37,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,780,0
+3670,80000,female,2,2,42,0,0,0,0,0,-2,16959,17910,14919,15375,-150,-150,1235,1369,825,0,0,0,0
+3671,130000,female,1,2,29,-1,-1,0,0,0,-1,13194,9403,15383,9189,8499,1738,9403,10007,184,170,1738,5256,0
+3672,30000,male,1,2,36,0,0,0,0,0,0,9934,10305,1394,1594,566,0,1000,1000,200,0,0,0,0
+3673,430000,female,2,1,30,2,0,0,0,0,0,332721,277080,219739,210142,179350,130328,10896,8123,7522,7003,4700,5000,1
+3674,20000,female,2,2,23,0,0,0,0,-1,2,16641,17969,18635,-1542,19909,19417,1602,1268,0,21451,0,652,0
+3675,50000,male,2,2,32,0,0,0,0,-2,-2,50342,44659,40893,-45,-45,0,8025,5023,0,0,5250,0,0
+3676,140000,female,2,1,26,0,0,0,0,0,0,129996,132004,127275,48724,48875,49667,7000,5000,2000,2000,2000,2000,0
+3677,200000,male,1,2,32,-1,-1,-1,-1,-1,-1,11494,9085,5455,26975,8734,10756,9139,5481,27110,29889,10809,2648,0
+3678,80000,male,2,1,28,2,2,2,2,2,0,65499,63882,67741,69355,65139,60345,0,5000,3200,7,2309,3862,0
+3679,50000,female,2,2,23,0,0,0,0,0,0,12630,11999,12990,12793,12686,12980,1211,1202,452,460,504,394,1
+3680,280000,female,2,2,27,1,2,0,0,0,0,297192,284462,283374,238039,234017,145132,0,11143,7300,6024,6000,3500,0
+3681,710000,male,2,1,51,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+3682,180000,male,1,2,29,1,-1,-1,-1,-1,-1,0,100000,0,7632,0,6071,100000,0,7632,0,6071,0,0
+3683,500000,male,1,2,39,-2,-2,-2,-2,-2,-2,12106,12559,18993,50199,22879,16070,13351,18997,50933,24652,18060,3306,0
+3684,360000,male,2,2,33,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+3685,50000,male,1,2,29,-1,0,0,2,0,0,20258,22932,22265,23896,26514,28073,3000,0,2000,3000,2000,1500,0
+3686,80000,male,2,2,27,2,0,0,0,0,0,62824,63883,57722,116742,72204,79105,2178,2674,2200,14710,8000,3005,1
+3687,50000,female,2,1,44,0,0,2,0,0,0,43596,46320,43976,44287,38113,30778,5000,0,2500,1500,2000,1000,0
+3688,50000,female,2,2,23,0,0,0,0,0,0,13717,13822,9847,5892,6413,6915,2008,1106,1000,1000,1000,1000,0
+3689,150000,male,1,2,33,-1,2,-1,-1,-1,-1,1532,1000,1430,810,786,447,0,1430,810,786,447,2215,0
+3690,360000,male,2,2,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+3691,50000,female,2,1,32,0,0,0,0,0,0,49547,49740,50275,20089,19964,19918,2100,2097,1289,712,713,1000,0
+3692,50000,female,1,3,48,0,0,-1,-1,-2,-2,83400,80000,4990,3596,1386,4775,1600,4990,13616,1310,4789,1345,0
+3693,200000,female,1,2,29,-2,-2,-2,-2,-2,-2,9344,723,723,1038,2035,3664,723,723,1038,2035,3664,723,0
+3694,80000,male,1,2,29,1,-1,-1,-1,-2,-2,-54,36656,5114,0,0,0,36710,5114,0,0,0,0,0
+3695,140000,female,2,1,46,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,780,0
+3696,20000,female,1,3,22,0,0,0,0,0,-2,14993,16244,18300,18100,-1900,0,1800,2800,0,0,1900,0,1
+3697,80000,female,3,2,34,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+3698,110000,male,2,1,30,0,0,0,0,0,0,107372,109156,111795,54358,58499,61445,5000,5000,3000,5000,6000,3000,0
+3699,140000,female,1,2,27,0,0,0,0,0,0,143536,141849,131491,94362,85863,83974,5341,4000,3500,3000,13000,2300,0
+3700,300000,female,1,2,31,0,0,0,0,0,0,32608,39029,38177,54867,66276,78169,20018,6028,25030,20023,20000,10000,0
+3701,50000,female,2,2,29,0,0,0,0,-2,-2,47411,19817,15688,0,0,0,1300,1210,0,0,0,0,1
+3702,180000,female,5,1,39,0,0,0,0,0,0,84484,79099,77640,78369,80010,83683,3007,2804,2802,2901,5000,80000,0
+3703,290000,female,2,1,39,0,0,0,0,0,0,212943,216910,213931,212770,211098,202491,16923,7714,7283,7407,10000,6000,0
+3704,60000,female,2,1,36,1,-2,-2,-2,-1,2,0,0,0,0,982,832,0,0,0,982,0,1500,0
+3705,100000,female,2,1,38,1,2,0,0,2,0,12893,12447,14967,16773,16427,19053,0,3000,2000,0,3000,2000,0
+3706,30000,male,2,1,41,0,0,0,-2,-2,-2,29866,30900,0,0,0,0,1900,0,0,0,0,0,0
+3707,220000,female,3,2,27,2,2,2,3,2,0,150739,153827,156531,154721,150627,154034,7000,7000,2300,0,5600,4500,0
+3708,230000,female,2,2,30,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+3709,30000,female,1,2,29,1,-2,-2,-2,-2,-1,0,0,0,0,0,4443,0,0,0,0,4443,890,0
+3710,20000,female,2,1,47,0,-1,-1,-1,-1,0,1343,1547,1539,1066,18187,18212,1547,1539,1066,18660,771,1000,0
+3711,50000,male,2,2,30,-1,-1,2,2,-1,-1,780,780,780,0,390,1320,780,0,0,390,1320,0,0
+3712,80000,female,2,1,46,1,-2,-2,-2,-2,-1,0,0,0,0,0,650,0,0,0,0,650,0,1
+3713,90000,male,1,2,29,0,0,2,0,0,0,24802,27551,20559,17228,6531,8411,3200,0,1000,1000,2000,0,0
+3714,80000,male,1,2,31,0,-1,-1,0,0,0,19824,5000,19037,12344,26344,1011,5000,19037,0,14000,0,3949,0
+3715,50000,female,3,2,23,2,0,0,0,0,0,37350,39740,40779,41793,42916,44199,3000,2000,2000,1800,2000,2000,1
+3716,50000,female,2,2,29,-2,-2,-2,-2,-2,-2,5520,0,0,0,0,0,0,0,0,0,0,0,0
+3717,20000,male,3,2,53,2,2,-2,-2,-1,-1,19369,3888,3167,-129,9703,9871,3900,3179,773,9832,10084,4380,0
+3718,250000,female,1,1,38,-1,-1,-1,-1,-1,-1,532,1106,771,625,1099,326,1106,771,625,1099,326,326,0
+3719,120000,female,2,2,24,-1,-1,-1,-1,-1,-1,889,1742,1077,902,1077,1271,1742,1077,902,1077,1271,1595,0
+3720,110000,female,2,2,28,1,2,0,0,0,2,112597,107799,108464,110737,114581,111219,0,4000,4000,8500,0,4000,1
+3721,160000,male,1,2,33,-1,-1,-2,-2,-2,-2,100,0,0,0,0,0,0,0,0,0,0,0,0
+3722,80000,female,3,1,52,2,0,0,-1,0,0,82198,80531,42334,39137,39074,40103,3543,1139,40003,2000,2100,24,0
+3723,410000,male,2,1,36,-2,-2,-2,-2,-2,-2,41116,38144,31177,27185,13818,8477,5071,3041,3096,3845,212,3,0
+3724,100000,female,2,1,43,-1,-1,-1,-1,-1,0,21293,70962,9217,1845,41194,40325,70973,9226,1845,41194,2920,1374,0
+3725,750000,female,2,1,43,-1,-1,-1,-2,-1,-1,72495,99628,74635,63749,85067,83208,99664,74640,63758,85072,83215,124063,0
+3726,30000,male,2,2,47,0,0,0,0,0,0,29554,28893,29537,30087,17534,15145,1895,1539,1089,718,400,5000,0
+3727,80000,male,2,2,33,1,2,0,0,0,0,19073,16106,57525,54990,52458,54093,3895,50000,2000,2000,2344,1235,0
+3728,430000,female,1,2,31,-2,-2,-1,0,0,0,10226,5671,52983,70672,52378,56360,5873,52983,35002,10203,7500,10000,0
+3729,480000,male,1,1,44,0,0,0,0,0,0,350110,316685,312615,316685,302248,311651,14082,15023,15098,10008,15045,20164,0
+3730,360000,female,3,1,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+3731,150000,female,1,1,37,0,0,-1,-1,-1,-2,26416,18915,16047,17633,0,0,2497,16047,18776,0,0,0,0
+3732,130000,male,1,2,28,0,0,0,0,0,0,89418,83196,75028,65086,60346,52272,4000,2338,2000,2018,2000,1700,0
+3733,40000,male,2,1,47,1,2,2,3,2,0,37611,36726,40985,40085,39354,40322,0,4898,0,0,1800,3000,0
+3734,280000,female,1,1,34,-1,0,0,0,0,0,11584,12211,10247,10247,6170,11170,7011,3000,0,123,5000,0,1
+3735,40000,male,2,1,45,2,2,2,2,2,0,33547,36991,35965,37246,36781,20650,4000,0,2000,0,1200,0,0
+3736,120000,female,1,2,26,-2,-2,-1,0,0,0,10415,7172,110688,100552,89147,88388,5771,120055,5073,3508,3707,3016,0
+3737,290000,male,1,1,39,-1,-1,-1,-1,-2,-2,1757,3555,2256,2830,1682,1235,3579,2262,2830,1682,1235,1280,0
+3738,250000,male,3,1,39,-1,-1,-1,-1,-1,-2,1976,3314,0,800,3576,0,3318,0,800,3576,0,0,0
+3739,200000,male,1,1,43,-1,-1,-1,-1,-1,-1,1144,2480,3372,1081,2384,6595,2506,3380,1085,2394,6601,29708,0
+3740,80000,male,2,2,32,0,0,0,0,0,-1,81115,77649,40630,23697,6557,32763,5000,1200,0,5000,37000,3000,0
+3741,130000,female,2,2,27,0,0,0,0,0,0,18776,21458,22760,23215,23706,21951,3000,2000,778,811,2000,2865,0
+3742,290000,female,2,1,37,-1,0,0,0,0,0,1428,2741,4029,5451,6357,7246,1500,1500,1500,1000,1000,1000,1
+3743,180000,female,1,2,29,-1,-1,-1,-1,-2,-2,1010,3070,307,0,0,0,3394,307,0,0,0,0,0
+3744,360000,female,1,1,31,-2,-2,-2,-1,0,-1,-5,-5,-5,4232,3189,7511,0,0,4237,16,7548,4105,0
+3745,140000,female,2,1,37,-1,-1,-1,-1,2,-1,316,586,5842,9422,8956,316,586,5842,8956,0,316,316,0
+3746,350000,female,1,1,41,-1,-1,-1,-1,-1,-1,57956,15987,36582,8197,14494,54284,15987,36607,8243,14494,54284,6702,0
+3747,260000,male,1,2,36,-2,-2,-2,-2,-2,-2,0,0,0,0,8867,763,0,0,0,8867,763,748,0
+3748,40000,male,1,2,26,0,0,0,0,0,0,18338,20033,21687,22327,22816,23436,2000,2000,1000,1000,1000,1500,0
+3749,180000,female,1,2,27,1,-2,-2,-2,-2,-2,-200,-200,-200,-200,-200,-200,0,0,0,0,0,0,1
+3750,80000,male,3,1,27,0,0,0,-1,0,0,22381,11420,7021,6157,7606,3432,1500,3000,6157,1500,138,59,1
+3751,500000,female,1,1,45,-1,-1,-1,-1,-1,-1,3852,2395,4730,4628,5127,3400,2403,4730,4628,5127,3400,1720,0
+3752,80000,male,4,2,27,-2,-2,-2,-2,-2,-2,46089,4840,0,0,0,0,4840,0,0,0,0,0,0
+3753,30000,male,3,1,57,0,0,0,0,0,0,20976,22332,23654,24952,26551,29598,2000,2000,2000,2000,4500,0,0
+3754,220000,female,2,1,37,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,3422,0
+3755,70000,female,2,2,22,0,0,0,0,0,-1,68247,68263,22551,16008,0,13180,2120,1010,328,0,13180,2000,0
+3756,510000,male,1,1,41,-1,-1,-1,-1,-1,-1,3196,16447,3317,10771,5552,2253,16447,3317,10771,5552,2253,96,0
+3757,20000,female,2,2,22,0,0,0,0,0,0,18011,19389,17628,16694,19040,18631,2000,1494,2000,5000,2000,1094,0
+3758,100000,female,2,1,40,2,2,2,2,2,2,47243,48294,49213,49827,51005,53142,2000,1900,1600,2000,3000,0,1
+3759,340000,female,2,1,30,0,0,0,0,0,0,338272,339191,325675,285417,284834,284549,15000,15000,15000,12000,12500,11000,0
+3760,180000,female,1,2,29,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+3761,290000,female,0,2,38,1,-1,-1,-1,-1,-1,0,1437,3070,1406,2196,1481,1437,3078,1406,2196,1481,0,0
+3762,80000,male,2,2,53,0,0,0,0,0,0,80577,78781,78363,48902,49996,-1719,3261,2342,1630,1759,0,52085,0
+3763,280000,male,1,1,42,-2,-1,-1,0,0,-2,1751,22046,63729,55664,31014,28903,22909,64167,1113,32000,578,1768,0
+3764,180000,female,1,2,40,-2,-2,-2,-2,-1,0,0,0,0,0,11855,2520,0,0,0,11855,0,18066,0
+3765,140000,female,1,1,66,1,-2,-2,-2,-1,2,0,0,0,0,825,675,0,0,0,825,0,23715,0
+3766,500000,female,1,2,32,-1,-1,-1,-1,-1,-1,103880,39356,301441,37945,104491,35234,39560,302961,38139,104673,35387,177258,0
+3767,230000,male,2,2,34,0,0,0,0,0,0,151778,152966,157188,158490,161456,164677,5556,7200,5820,6100,6500,5100,0
+3768,250000,female,2,1,26,1,3,2,2,2,0,631,631,631,1231,1068,6816,0,0,600,0,6000,5000,1
+3769,10000,male,2,2,24,0,0,0,2,0,0,5803,6849,8371,8090,8261,8773,1300,1800,0,450,800,0,0
+3770,230000,male,1,1,39,0,0,0,0,0,0,220706,227741,183268,186989,159345,162695,11200,6200,6237,7000,6000,6100,0
+3771,70000,male,1,2,29,0,0,0,0,0,0,63603,65513,59389,54064,58891,58347,7666,3800,1200,5000,4000,3000,0
+3772,140000,female,1,1,39,-2,-2,-2,-2,-2,-2,4654,5525,5088,4480,2338,4250,5525,5088,4480,2338,4733,22566,0
+3773,430000,female,1,1,48,-1,-1,-2,-2,-2,-1,9900,0,0,0,0,2299,0,0,0,0,2299,37980,0
+3774,120000,female,1,2,28,-1,-1,2,0,0,-1,200,1986,1117,425,-267,1451,1986,0,0,0,2210,0,1
+3775,20000,female,2,2,25,0,0,0,0,0,0,16654,12801,14155,19975,19975,0,2000,2000,7000,0,0,0,0
+3776,30000,male,1,2,32,0,0,2,0,0,0,29250,30496,29702,28839,29375,32729,3600,0,1500,1300,4000,0,0
+3777,80000,male,3,2,43,7,6,5,4,3,2,81071,79283,76767,75393,74731,23207,0,0,0,0,0,2000,1
+3778,400000,female,1,2,39,0,0,0,0,0,0,404924,359634,360270,325340,328627,329948,13521,12374,11643,11868,18000,15000,0
+3779,200000,female,1,1,37,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+3780,30000,male,5,2,23,-2,-1,-1,-1,0,0,2700,899,-1581,28419,29016,30908,899,0,30000,1055,2376,0,0
+3781,50000,female,2,2,46,1,2,0,0,0,0,50471,49399,50556,29759,30381,30440,0,2247,1054,1090,1261,1143,0
+3782,250000,male,1,1,46,-1,-1,-1,-1,-1,-1,1197,-19,3121,2372,502,1979,0,3140,2387,504,1989,19150,1
+3783,120000,male,1,2,28,-1,0,0,0,0,0,8922,43070,47023,53576,57529,61392,35000,5000,8000,5000,5000,4000,1
+3784,80000,male,3,1,45,1,-1,0,0,-1,-1,-1213,35789,36751,390,390,390,38677,3000,0,390,390,1170,0
+3785,430000,female,1,1,33,-2,-2,-2,-2,-2,-1,1837,373,1198,0,538,77543,373,1198,0,538,77543,584,0
+3786,120000,female,1,2,24,0,0,0,0,0,0,75796,76004,67187,49924,33188,19826,3700,2023,2016,2000,1200,1000,0
+3787,20000,female,2,2,22,0,0,0,0,0,0,20386,20033,28679,14768,18192,20372,1510,1300,1086,3677,2500,573,0
+3788,20000,female,2,2,32,0,0,0,0,0,0,129106,127610,107828,102937,98525,77711,4420,3650,3120,3200,2900,2000,0
+3789,80000,male,1,2,25,-2,-2,-2,-2,-2,-2,0,0,0,0,0,150,0,0,0,30000,150,657,0
+3790,20000,female,2,2,44,0,0,0,-1,-1,-1,7678,10475,-10,190,6160,402,3347,0,200,7018,6073,15000,0
+3791,140000,female,2,2,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+3792,10000,female,2,2,22,0,-1,0,0,0,0,14896,12011,7929,7693,6838,3486,7000,4000,207,229,70,0,0
+3793,220000,female,3,2,34,-2,-2,-2,-2,-1,0,99518,-482,-482,-482,18,4834,937,0,0,500,4816,3000,0
+3794,60000,male,1,1,48,-1,-1,2,0,0,-1,282,61573,32122,31423,2914,1470,62773,0,0,0,1470,58587,0
+3795,80000,male,3,1,59,1,2,0,0,-1,-1,21723,21097,22140,18349,3540,0,0,2000,0,3540,0,0,0
+3796,30000,male,2,2,25,0,0,0,0,-1,-1,29745,16309,5235,3122,11446,1914,2500,1517,2000,11446,1914,6699,1
+3797,140000,female,2,1,27,1,2,2,0,0,0,139058,140243,132693,135638,132105,134851,4900,0,5200,5000,5100,4800,0
+3798,20000,male,2,2,26,0,0,0,0,0,0,4491,5906,7298,8515,9869,11196,1500,1500,1500,1500,1500,1500,0
+3799,100000,female,3,2,46,0,0,0,0,0,0,94657,81175,63464,45910,46996,42935,3000,2009,3000,2000,2000,1701,0
+3800,220000,male,1,2,35,0,0,0,0,0,0,158882,164258,161778,165741,175823,29765,8000,5669,7599,14800,2303,2000,0
+3801,80000,female,1,2,40,0,0,0,0,0,0,27432,27902,28447,23537,7613,3356,1833,1378,1328,195,269,56,0
+3802,80000,female,3,2,46,0,0,0,0,0,0,76184,78306,79835,40499,41346,42348,3345,3344,1447,1497,1686,1509,0
+3803,130000,male,2,2,28,2,2,0,0,0,0,70952,69264,70184,8518,11296,6514,0,3000,2000,3000,2000,0,1
+3804,300000,female,1,1,33,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+3805,60000,female,2,1,42,0,0,0,0,0,0,58264,57923,58987,17350,17937,17298,3200,3000,800,1000,1000,1000,0
+3806,360000,female,1,1,32,-1,-1,-2,-1,0,0,249,0,0,685,685,1530,0,0,685,0,845,53,0
+3807,10000,male,2,2,24,-1,-1,-1,-1,-1,-1,12,12,12,12,12,12,0,0,0,0,0,1393,1
+3808,50000,male,2,2,32,0,0,0,0,2,0,32813,34973,35603,37595,29818,24416,3000,1700,2600,0,10000,6000,1
+3809,50000,male,2,1,48,0,0,0,0,0,0,42156,40584,33777,18815,17033,17450,4022,1347,1013,1000,700,1000,0
+3810,200000,male,2,1,35,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,28027,0
+3811,30000,female,2,2,24,1,2,2,0,0,0,15164,16607,17032,17448,18507,19046,2000,1000,1000,1500,1000,1000,1
+3812,220000,male,1,1,42,0,0,2,2,-2,-2,3208,9134,8820,1502,4505,3766,6000,0,0,3003,31,4007,0
+3813,200000,female,1,2,41,-2,-2,-2,-2,-2,-2,5954,10464,7165,6946,9776,2007,10464,7165,6966,9776,2007,1603,0
+3814,80000,female,3,2,27,1,4,3,2,0,0,84718,82861,80581,51537,51381,48866,0,0,0,1790,1890,1740,1
+3815,200000,male,2,1,39,-2,-2,-2,-2,-2,-2,15109,3139,12840,3950,7688,2241,3155,12848,3950,7690,2241,2795,0
+3816,240000,female,1,1,34,-1,2,-1,-1,-1,-1,652,326,326,326,326,326,0,326,326,326,326,711,1
+3817,500000,female,2,2,28,-1,-1,-1,0,0,-1,72620,873,8596,6418,6243,1984,873,8596,275,300,1984,27014,0
+3818,230000,male,3,1,38,-2,-2,-1,-1,0,0,6901,0,188,6498,44938,56015,0,188,6498,40000,12000,2500,0
+3819,20000,male,3,2,22,0,0,0,0,0,0,11242,11070,11788,9607,9191,0,1282,1000,192,184,0,0,0
+3820,50000,male,1,1,35,0,0,0,0,0,0,40730,41283,28134,29208,7778,9790,4069,1500,1500,0,5000,0,0
+3821,100000,female,2,1,35,0,0,0,0,0,0,5830,6694,7855,8076,8297,9349,1118,1279,500,500,1349,1691,0
+3822,230000,female,2,2,37,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+3823,60000,male,2,2,28,0,0,0,0,0,2,42243,37131,38136,38903,41483,40257,7773,1628,1395,3210,0,2000,0
+3824,120000,female,3,1,48,-1,2,-1,-1,0,-1,3845,199,1823,3646,1823,1823,0,1823,3646,0,1823,1823,1
+3825,130000,female,3,2,23,-1,0,0,0,0,0,5719,15578,19887,11659,11735,8541,10000,5000,2000,2000,2000,1000,0
+3826,50000,female,3,1,25,2,2,0,0,0,0,31097,30322,31142,29391,30099,28041,0,1833,1000,1000,10000,10000,1
+3827,400000,female,1,2,30,-1,-1,-1,-1,-1,-1,14013,5422,15941,5776,5448,15435,5460,16020,5805,5475,5634,6182,0
+3828,240000,female,2,2,27,-2,-2,-1,2,0,0,4400,0,1129,1129,1971,2059,0,1129,0,1000,496,1000,1
+3829,70000,male,3,2,53,0,0,0,0,0,0,9928,11259,12262,17046,17618,18321,1497,1500,5000,1000,1000,1000,0
+3830,20000,female,1,2,22,0,0,0,0,0,0,28758,14780,18829,18401,3000,0,1423,5000,400,200,0,0,0
+3831,50000,male,3,2,28,2,2,2,0,0,2,28129,29184,28421,28751,30685,30040,1800,0,1100,2400,0,1500,1
+3832,240000,female,1,1,54,0,0,0,0,2,0,60381,64395,66323,70422,69170,71018,5000,3000,5200,0,3000,5400,0
+3833,380000,male,1,2,31,0,0,0,0,0,0,167061,158903,275057,156348,153778,139177,6000,6010,5209,5000,5000,4000,0
+3834,50000,male,2,2,24,0,0,0,0,0,0,5219,6475,7483,7709,7934,8242,1500,1274,500,500,440,450,0
+3835,50000,female,2,2,33,0,0,0,0,0,0,12498,16264,17918,16072,17041,19028,4000,2000,1000,2000,2396,1000,0
+3836,430000,female,1,2,33,0,0,0,0,2,2,40984,37873,34499,28300,24237,12860,10000,5000,10000,0,4000,10000,0
+3837,60000,female,1,2,26,0,0,2,0,0,0,22921,23044,17660,13104,8722,17976,5000,0,0,174,13810,0,0
+3838,30000,female,2,2,25,0,0,0,0,0,0,3638,4401,5297,4340,3105,5053,1130,1026,125,1500,2000,14,0
+3839,170000,male,3,1,48,0,0,0,0,0,0,170845,171762,170464,127364,127024,125341,6800,7790,4587,4675,4525,4497,0
+3840,70000,female,1,2,29,0,0,2,2,2,2,40783,44205,44784,43763,46646,47724,4100,1600,0,3600,2000,1900,0
+3841,130000,female,2,2,28,-1,-1,-1,-1,-1,-1,390,7412,390,4134,540,390,7412,390,4134,540,390,2596,0
+3842,50000,male,1,1,50,1,2,0,0,0,0,49252,44326,39689,29422,12856,0,1521,1345,2074,238,0,0,1
+3843,20000,female,3,2,38,1,-1,-1,-1,-1,-2,0,3796,5081,888,0,0,3796,5081,888,0,0,0,1
+3844,50000,male,3,1,48,-1,-1,-1,-1,-1,-1,1058,1726,390,390,390,390,1726,390,390,390,390,390,1
+3845,20000,male,3,2,28,2,0,0,0,2,0,14043,13266,14340,15301,14916,15515,1600,1600,1500,0,1000,500,0
+3846,110000,female,2,2,32,-1,-1,-1,0,-1,-1,2015,1403,2684,1149,715,1174,1403,2684,4,715,1174,3805,0
+3847,90000,female,2,2,24,0,0,0,0,0,0,76453,49430,50169,49661,42831,27495,2500,2000,2000,3551,1500,1000,0
+3848,180000,female,1,2,24,0,0,0,0,0,0,64800,66747,67227,68398,70409,71408,4000,2600,2000,3000,2025,4791,0
+3849,50000,female,2,2,28,0,0,0,2,0,0,43747,44488,47342,46326,46358,45283,1746,3600,0,1666,1559,1551,0
+3850,200000,male,2,1,36,1,-2,-1,-1,-1,-1,-1,-1,296,299,278,4575,0,297,303,279,4597,0,0
+3851,20000,female,1,1,32,2,2,2,2,2,2,11337,14372,11411,11653,7833,7945,6000,0,744,0,620,0,1
+3852,50000,male,1,2,44,0,0,0,0,0,0,51671,50272,49293,47154,50069,50442,1928,1595,1526,13000,1569,2614,0
+3853,170000,female,2,1,39,0,0,0,2,0,0,114007,117677,124636,121232,124199,129346,7000,10500,0,5000,11000,4500,1
+3854,380000,male,1,1,48,0,0,0,0,0,0,356375,347165,318600,284972,285249,266406,40000,20000,20000,20000,10000,20000,0
+3855,30000,male,2,2,39,1,2,2,0,0,0,1623,2441,3244,4034,4812,6210,1000,1000,1000,1000,1500,0,1
+3856,30000,female,2,2,23,0,0,0,0,0,0,19594,20619,21631,22062,22707,23312,1346,1358,789,1000,981,1010,0
+3857,160000,male,3,1,36,-1,-1,-1,-1,-1,-1,4030,6720,0,8484,2060,0,6720,0,8484,2064,0,798,0
+3858,60000,female,3,1,39,2,0,0,2,0,0,29565,31123,34134,23552,24020,26615,3000,3638,0,1000,3000,0,1
+3859,450000,female,1,2,31,2,-1,0,0,0,0,1638,54490,112841,112603,90202,39564,54490,62841,2000,0,1000,27224,0
+3860,80000,female,2,1,43,-2,-2,-2,-2,-2,-2,398,379,298,-300,-300,-300,381,607,0,0,0,598,1
+3861,90000,female,1,2,26,1,2,2,-1,-1,2,23812,15616,11988,32658,30885,26639,0,1525,35011,3000,0,2000,0
+3862,30000,male,2,1,33,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+3863,50000,male,2,2,25,2,0,0,0,0,0,48885,49133,48468,42840,30378,29706,2200,2500,2070,1266,2000,1068,1
+3864,30000,male,3,1,49,2,2,2,2,2,2,26343,27127,26393,29646,30390,29755,1500,0,3712,1363,0,1141,0
+3865,50000,male,3,1,52,1,2,0,0,0,0,32119,29498,26196,23806,16818,14438,0,6900,0,0,0,0,1
+3866,320000,female,1,1,34,-1,-1,-1,0,-1,-1,7417,7488,24003,10208,22215,7332,8000,25000,0,22500,32516,22000,0
+3867,300000,female,2,1,43,-1,-1,-2,-2,-2,-2,1314,0,0,0,0,0,0,0,0,0,0,0,0
+3868,390000,female,1,2,43,0,0,0,0,0,0,90294,87292,88335,89396,90769,91825,3200,3200,3200,3500,3300,4000,0
+3869,50000,female,2,2,23,0,0,0,0,0,0,47662,41023,42162,6765,19286,9558,2000,2102,255,3000,191,0,0
+3870,20000,male,2,1,26,2,2,3,3,3,3,1050,1050,1050,1050,1050,1050,0,0,0,0,0,0,1
+3871,90000,male,2,2,52,0,0,0,0,0,0,87186,87526,88924,88735,87521,85699,3505,3962,2909,3107,3127,3032,0
+3872,300000,male,3,2,51,-1,-1,-1,-1,-1,-1,18341,19847,6246,3872,11875,5290,19854,6279,3883,11883,5305,9998,0
+3873,300000,female,4,2,32,0,0,0,0,0,-1,54053,65235,64747,65150,-450,700,15235,1491,1303,0,2000,1400,0
+3874,200000,male,1,1,34,-1,-1,-1,-1,0,0,5392,1938,4819,13074,2070,0,1938,4819,13074,0,0,790,0
+3875,50000,male,2,2,24,0,0,0,0,0,0,33715,22824,17144,18104,19205,19014,6600,1900,1500,1500,1500,1500,0
+3876,20000,male,2,2,24,-1,-1,2,-1,0,0,390,780,390,780,780,0,780,0,780,0,0,0,1
+3877,390000,male,1,2,35,-1,-1,-1,0,0,0,30356,32910,78686,63021,41653,24679,33074,78772,1371,919,13770,183622,0
+3878,70000,male,2,2,41,0,0,0,0,0,0,69866,63679,54762,38750,39924,37757,10000,5090,2000,2000,4000,2000,0
+3879,300000,male,3,2,43,0,0,0,0,0,0,158741,155438,146043,142726,138849,137499,5823,5310,5302,5035,5118,4532,0
+3880,140000,female,3,1,50,0,0,0,0,0,0,139153,141383,140700,137365,137209,138934,6006,5000,5000,5120,5200,4800,0
+3881,200000,female,1,1,37,-1,0,0,0,0,0,97821,97934,44716,42073,42867,33876,4220,2029,2073,2867,3876,2295,0
+3882,80000,female,3,2,28,-1,-1,-1,-1,-1,-1,2147,612,2110,2298,1196,390,612,2110,2298,1196,390,0,0
+3883,80000,female,3,1,45,0,0,-2,-2,-2,-2,80250,0,0,0,0,0,0,0,0,0,0,0,0
+3884,170000,female,1,1,36,-1,-1,-1,-1,-1,-1,1218,2434,1537,2156,1898,2656,2434,1537,2156,1898,2656,1626,0
+3885,50000,female,1,2,29,0,0,0,0,0,0,50187,51318,47091,41660,47368,49317,3000,23000,1120,6000,2675,0,0
+3886,100000,male,2,2,27,0,0,0,0,0,0,82609,81989,82466,78234,75615,76849,3106,3000,2805,2739,3085,2958,0
+3887,30000,female,2,2,22,0,-1,2,-1,-1,-1,1924,7096,2982,1732,3836,2461,7096,0,1732,3836,2461,3704,0
+3888,30000,female,6,1,49,0,0,0,0,0,0,26305,27307,13294,14069,14518,15025,1500,1500,1000,676,900,900,0
+3889,320000,female,2,1,36,-2,-1,0,0,0,0,73024,66537,58762,43112,67290,62132,2904,2973,1579,40020,3127,1206,0
+3890,70000,female,2,2,25,0,0,2,0,0,0,41511,44525,43514,44489,45617,46702,4000,0,2000,2000,2000,3000,1
+3891,50000,female,2,1,24,0,0,0,0,0,0,49387,50284,50639,48563,49628,48293,2000,1727,1846,1777,1665,1500,0
+3892,130000,male,3,1,48,0,0,0,0,0,0,68629,57168,58103,58595,59822,55572,2187,2000,2000,2053,1964,3002,0
+3893,50000,female,2,2,27,1,2,2,2,2,2,8951,8862,10061,9751,11585,11250,200,1500,0,2000,0,1600,1
+3894,50000,male,2,1,33,0,0,0,0,0,0,16149,13662,14675,14967,15282,15585,1223,1236,528,548,550,569,0
+3895,50000,male,2,2,30,0,0,2,0,0,-2,2496,4533,4279,4592,0,0,2254,0,313,0,0,0,0
+3896,160000,male,3,1,30,1,2,0,0,0,0,102867,82729,72583,60565,54651,48468,31,2609,2037,2010,2017,3012,0
+3897,450000,male,2,1,46,-1,-1,-1,-1,-1,-1,130,1926,15671,18552,24222,32867,1926,15671,18574,24231,32885,9343,0
+3898,380000,female,1,1,33,0,0,0,0,0,0,112926,108573,216399,213259,203377,185056,4677,130533,7609,12000,7000,6000,0
+3899,30000,female,1,2,29,1,2,2,0,0,0,12517,13027,12421,6105,5083,0,1006,0,0,0,0,0,1
+3900,50000,male,2,2,24,0,0,0,0,0,0,47530,46155,28650,19659,19802,19699,1537,1679,688,713,858,660,0
+3901,220000,male,2,2,30,-1,-1,2,-1,2,2,776,1552,776,221876,223986,204957,1552,0,221876,7500,4,10000,1
+3902,50000,female,2,1,32,-1,-1,-1,-1,-1,2,390,390,390,390,930,390,390,390,390,930,0,780,1
+3903,90000,female,1,2,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+3904,80000,male,2,1,26,0,0,0,0,0,0,67692,63789,65771,28690,29137,29569,2763,3500,900,700,700,700,0
+3905,390000,male,1,1,44,-1,-1,-1,0,0,-1,4197,4688,63661,60616,61357,2798,4711,63701,1214,1241,2812,46220,0
+3906,140000,male,2,2,43,0,0,0,0,0,0,128947,106671,101362,87420,88774,81869,4039,7010,2359,7617,2760,2366,0
+3907,360000,female,2,1,32,0,-1,-1,-1,-1,-1,101403,2389,11996,0,67372,66666,2389,11996,0,67372,66666,66666,0
+3908,50000,male,3,2,26,2,0,0,0,0,0,50951,49139,46802,47622,48686,47459,2500,2100,1900,2000,1746,1890,1
+3909,260000,male,1,1,37,0,0,0,0,0,0,244736,249018,253704,255353,175022,130299,10000,10000,5000,5000,5000,3200,1
+3910,180000,female,3,1,43,-1,-1,0,0,0,0,1207,60267,61424,61039,64260,64618,60267,3000,2154,5000,3000,3000,1
+3911,360000,male,1,2,26,1,-2,-2,-2,-2,-1,-1917,-1917,-1917,-1917,-1917,18083,0,0,0,0,20000,1000,0
+3912,230000,female,1,2,35,-1,-1,-2,-2,-2,-2,2630,0,0,0,0,0,0,0,0,0,0,0,1
+3913,130000,male,1,2,25,-1,-1,-1,-1,0,0,13350,6123,2565,8975,43663,23566,6141,2572,9010,42739,5583,384,0
+3914,20000,female,3,1,42,0,0,0,0,0,0,17775,18974,18586,18957,19374,19583,1500,1285,656,699,2000,1286,0
+3915,200000,female,3,1,41,-2,-2,-2,-2,-2,-2,-140,-70,-70,13968,6652,9696,0,0,14038,6684,9744,1046,0
+3916,220000,female,2,1,35,0,0,0,0,0,0,100252,102510,107102,27361,29340,33933,3500,6000,3000,2340,5000,2000,0
+3917,20000,male,1,2,25,0,0,0,0,0,0,8226,9281,10325,10378,7085,6542,1349,1393,446,390,422,2093,0
+3918,20000,male,2,2,24,0,0,0,0,0,0,17697,18445,19382,18440,18826,17311,1634,1571,629,652,618,640,0
+3919,240000,female,3,2,40,0,0,0,0,0,0,227819,222299,227281,195027,199186,203475,8200,8800,7000,7200,7500,7800,1
+3920,480000,female,1,1,50,-1,-1,-1,-1,-1,-1,14638,11940,12318,6295,5284,6220,11956,12331,6295,5284,6220,9104,0
+3921,50000,female,2,1,29,0,0,0,0,0,0,26052,27631,29128,29707,28825,29022,2000,2000,2500,1033,1053,1034,0
+3922,100000,male,2,1,40,0,0,0,-2,-2,-2,37596,23808,0,0,0,0,1000,0,0,0,0,0,0
+3923,120000,female,1,2,34,0,0,0,2,2,2,105356,107588,115372,112027,119702,121650,3931,9600,0,9500,4100,0,1
+3924,230000,female,1,1,27,0,0,0,0,0,0,104001,106155,111244,116300,121346,130318,4000,6000,6000,6000,10000,11058,0
+3925,20000,male,2,1,32,0,0,0,0,0,0,16849,17618,18194,17759,18759,5340,1434,1400,355,1000,126,450,0
+3926,50000,male,2,2,27,0,0,0,-1,-1,-2,25140,23936,11107,1210,0,0,1252,1093,1210,0,0,0,0
+3927,130000,female,1,1,32,2,2,2,2,2,2,114227,115922,117545,114168,121621,124168,5000,5000,0,9500,4700,0,0
+3928,150000,female,1,1,38,-2,-2,-2,-2,-2,-2,1736,0,0,0,0,0,0,0,0,0,0,0,0
+3929,60000,female,1,2,30,1,2,2,2,2,2,41259,40715,43153,43845,44795,45710,400,3406,1700,1800,1800,0,0
+3930,260000,male,2,2,44,0,0,0,0,0,0,36048,37157,38040,33882,34589,35397,1688,1571,1213,1253,1381,1166,0
+3931,500000,male,2,1,40,0,0,0,0,0,-2,30415,31645,32556,36642,-8,-8,2006,3000,5080,8,0,0,0
+3932,270000,female,2,1,34,0,0,0,0,0,0,74813,75221,73293,72213,74734,76089,3000,4000,4000,5000,4000,5000,0
+3933,410000,female,1,2,34,1,-1,-1,-2,-2,-1,0,13621,0,0,0,666,13621,0,0,0,666,0,1
+3934,60000,female,2,2,29,2,-1,-1,2,0,0,2469,59068,61284,58698,58033,57539,59068,4898,0,2300,2200,2110,0
+3935,200000,female,1,1,31,-1,-1,-1,-1,-1,-1,261,6229,5815,851,2029,1997,6229,5815,854,2029,1997,10342,0
+3936,50000,male,3,3,45,-1,-1,-1,-1,0,0,780,0,390,2300,1910,780,0,390,4300,0,0,0,0
+3937,500000,female,1,2,35,-2,-2,-2,-2,-2,-2,-73,-73,-73,-73,-73,-73,0,0,0,0,0,0,1
+3938,150000,female,1,1,35,-2,-2,-2,-2,-1,-1,329,-31,3189,0,150,880,0,3220,0,150,880,0,0
+3939,170000,male,3,1,44,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+3940,50000,female,2,2,25,0,0,0,0,0,2,51461,51179,50628,50154,53936,51459,2000,1771,1770,6038,0,2112,0
+3941,130000,male,2,1,42,-1,-1,-1,-1,-1,-1,1048,1048,1048,1048,390,390,1048,1048,1048,390,390,390,0
+3942,120000,male,3,1,30,2,2,2,0,0,2,122246,124010,120459,121749,81046,79608,6000,0,5020,6100,0,2800,0
+3943,70000,male,1,2,28,0,0,0,0,0,0,9214,10560,12071,12866,14644,16230,1500,2000,1000,2000,2000,3000,0
+3944,320000,female,2,1,44,-1,-1,-1,-1,-1,-1,3493,12444,46163,1373,6064,2145,12498,46185,1387,6094,2155,1273,0
+3945,110000,female,2,1,37,0,0,0,0,0,0,79646,110818,107558,80437,79727,81001,50000,3500,10000,3000,3000,3000,0
+3946,420000,female,1,2,30,0,0,0,0,-1,-1,34567,36416,7406,0,12150,150,10000,2056,0,12150,150,399,0
+3947,240000,female,2,1,49,-1,-1,-1,-1,-1,-1,18045,17401,47608,12279,75882,90611,17409,47622,12279,75882,90611,61411,0
+3948,380000,male,1,2,33,0,0,0,0,0,0,70591,76715,80080,81162,89571,96627,10000,5000,5000,10000,10000,10000,0
+3949,20000,female,2,2,22,0,0,0,0,0,0,17356,18205,10140,10345,7552,8001,1274,1119,324,278,579,170,0
+3950,50000,female,1,2,42,0,0,2,2,2,2,35539,38246,37332,39702,38932,41770,3600,0,3000,0,3500,3387,1
+3951,20000,male,3,2,23,-1,2,-1,-1,-1,-1,780,390,380,390,0,780,0,380,400,0,780,0,0
+3952,20000,female,2,2,31,0,0,0,0,0,3,16659,17688,18788,19177,21109,20474,1600,1700,1000,2400,0,0,0
+3953,240000,female,1,2,28,0,0,0,0,0,0,237633,200572,189615,197092,201528,197155,7065,6002,10002,7030,6275,8088,0
+3954,340000,female,2,1,57,1,-2,-2,-2,-1,-1,-8,-8,-8,-8,1595,-5,0,0,0,1603,0,0,1
+3955,90000,female,2,2,23,2,2,2,2,2,2,18168,17593,19492,18884,21410,21841,0,2500,0,3000,930,0,1
+3956,50000,female,2,1,56,0,0,0,0,0,0,31276,29179,26482,16770,15529,16266,1556,1247,1770,700,1000,1129,0
+3957,210000,female,2,1,33,0,0,0,0,0,0,137009,121126,101951,96329,84224,81570,20000,15011,10000,10000,5000,10001,0
+3958,60000,female,2,2,25,0,0,2,6,5,4,44331,48590,59129,57663,56225,54759,5000,12000,0,0,0,0,0
+3959,50000,male,2,1,53,0,0,2,2,0,0,12291,14295,9714,9047,8983,9289,3300,1000,0,1000,1000,1423,0
+3960,50000,female,1,2,26,1,-1,-1,0,0,0,0,1950,2576,12576,22397,15944,1950,2576,10000,10000,685,612,0
+3961,90000,female,2,2,26,0,0,0,0,0,0,21854,23036,24100,25000,25000,26254,1536,1600,1500,0,1254,1214,0
+3962,250000,male,1,1,31,-2,-2,-1,-1,-1,-1,3759,17694,14505,4757,11357,6679,8873,14548,4771,11491,6896,890,0
+3963,290000,male,3,1,47,2,0,0,0,0,-1,255412,217382,250549,31370,-4020,107239,5130,4647,949,4391,146216,60686,1
+3964,240000,male,2,2,35,-1,-1,-1,-1,-1,0,8602,18703,643,11455,1326,663,18718,646,11478,1329,3,1322,0
+3965,360000,male,1,2,29,-1,-1,-1,-1,0,-1,1360,7995,-7,3651,2085,1102,8035,0,3658,10,1107,584,0
+3966,340000,male,1,2,36,0,0,0,0,0,0,11951,16332,20391,22104,26361,34333,5000,5012,5000,5006,10010,10000,0
+3967,290000,female,1,2,48,0,0,0,0,0,-1,74864,36317,34491,29657,9134,2383,1411,1200,593,200,5637,0,0
+3968,50000,female,2,2,25,2,0,0,0,0,-1,48690,49347,16002,6120,3910,299,1692,1033,122,78,299,9292,0
+3969,310000,female,2,1,41,-1,-1,-1,-1,-1,-1,530,7233,4158,8408,542,2314,7233,4318,8408,542,2314,648,0
+3970,10000,male,2,2,22,0,0,0,0,0,0,9358,7926,9310,9500,9700,10000,1216,2800,190,200,300,0,0
+3971,260000,female,1,2,31,0,0,0,0,0,0,181679,187642,190152,186696,188632,190948,8900,7200,6800,7100,7200,6500,0
+3972,180000,female,3,2,26,0,0,0,0,0,0,71702,66234,57253,53736,46213,39701,2950,2200,2000,5000,2000,2300,1
+3973,20000,male,3,2,26,-1,-1,-1,-2,-2,-2,96,780,0,0,0,0,1560,0,0,0,0,0,0
+3974,360000,female,1,2,28,-2,-2,-2,-2,-2,-2,2400,2500,0,0,0,0,2500,0,0,0,0,0,0
+3975,80000,female,1,1,30,0,0,0,0,0,2,65622,67265,67382,51958,55196,54235,3300,2100,2000,4000,0,3000,0
+3976,450000,female,2,1,44,0,0,0,0,0,0,10716,12254,12815,17782,9074,8490,8000,5000,7000,3000,2000,1626,0
+3977,30000,female,2,2,22,0,0,0,0,0,0,30190,28985,28724,29357,30188,26316,1532,2169,1000,1200,2000,1500,1
+3978,500000,male,1,1,39,0,0,0,0,-1,-1,26501,21340,11003,1848,1116,927,1261,5901,46,1121,947,201323,0
+3979,210000,female,1,1,34,0,0,0,0,0,0,146756,150057,153238,156384,160056,163188,5500,5510,5500,6000,6000,6000,0
+3980,300000,male,3,2,64,-1,-1,-1,-1,-1,-1,1068,1168,1005,1372,1610,1355,1168,1005,1372,1610,1355,1426,0
+3981,100000,male,4,1,52,0,0,0,0,0,0,90939,83090,63145,56962,52385,22543,3467,2000,1476,4992,808,1000,1
+3982,240000,male,1,1,47,1,2,2,2,2,2,138103,134976,137251,144457,147604,145071,500,6000,11000,5600,0,11077,1
+3983,50000,female,2,2,56,0,0,-1,0,0,-1,30121,31295,19100,18900,0,3900,2295,19100,0,0,3900,0,0
+3984,20000,male,2,2,22,3,2,2,3,2,2,17710,17137,19830,19240,18419,20126,0,3000,0,0,2000,0,1
+3985,110000,female,2,2,23,0,0,0,0,-1,0,1877,2507,1320,1270,63697,51866,1000,1000,100,63697,2427,2050,1
+3986,200000,male,1,3,43,-1,-1,-1,-1,-1,0,9873,-709,10291,0,582,291,0,11000,0,873,0,291,0
+3987,220000,male,3,2,33,1,-1,-1,0,0,0,-117,487,2879,4483,6087,-273,1000,3000,2000,2000,0,2000,0
+3988,50000,female,2,2,43,0,0,0,0,0,0,9784,11578,7384,13479,6734,6801,2303,2095,500,1000,500,500,1
+3989,60000,male,2,2,26,0,0,0,0,0,0,40171,37274,30203,30809,33323,33190,1491,2000,1092,3000,1353,2000,0
+3990,20000,female,1,2,23,2,2,2,2,2,2,9736,12759,12459,12957,13104,12744,3500,200,1000,500,0,1000,1
+3991,170000,male,2,2,39,-1,-1,-1,0,-1,2,2429,8054,4380,316,6131,5612,8077,4380,0,6131,0,3000,1
+3992,30000,female,1,2,29,2,-1,-1,-1,2,0,2030,1533,3897,6978,4081,3686,1533,3897,4081,0,155,96,0
+3993,160000,female,1,1,29,-1,-1,-2,-1,-1,-1,1778,0,0,150,150,989,0,0,150,150,989,0,1
+3994,200000,male,1,1,35,0,0,0,0,0,0,199891,198608,115177,116226,139737,187728,8500,6000,4000,25000,50000,70000,1
+3995,120000,male,3,2,25,0,0,2,0,0,-1,81129,72699,39909,18334,7382,19801,7504,29,10004,6,19824,18129,0
+3996,230000,female,1,1,38,0,-1,-1,-1,-1,-1,12907,316,1156,316,316,316,316,1156,316,316,316,316,0
+3997,20000,female,3,1,42,-1,-1,-1,-1,-1,-1,10665,637,11869,7312,1868,1470,637,11869,7314,2274,1470,2200,0
+3998,10000,male,3,2,46,2,2,3,3,3,3,1050,1050,1050,1050,1050,1050,0,0,0,0,0,0,1
+3999,100000,female,3,2,24,1,-2,-2,-2,-1,-1,0,0,0,0,2483,0,0,0,0,2483,0,80,0
+4000,130000,female,2,2,24,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+4001,50000,male,2,2,47,0,0,0,0,0,0,91481,47099,47486,24769,23029,23495,3956,1365,848,1000,1000,1000,0
+4002,140000,female,3,2,31,0,0,0,0,0,0,92636,94641,96667,98883,79972,81642,3500,3600,3900,3000,3000,3200,0
+4003,50000,male,2,2,49,0,0,0,0,0,0,47864,99572,50396,9430,9638,9801,3473,2294,328,350,323,312,0
+4004,360000,male,1,2,29,-2,-2,-2,-2,-2,-2,3206,2347,3770,3466,1630,2931,2358,3788,3483,1638,2946,16950,0
+4005,20000,female,2,2,22,4,3,2,2,2,2,19529,18937,18335,19530,19076,20444,0,0,1500,0,1700,0,1
+4006,110000,female,2,2,33,0,0,0,0,0,0,107028,106818,108730,112035,48492,43413,4000,3783,6488,4850,2000,6446,0
+4007,100000,male,2,2,33,5,4,3,2,2,2,90822,88562,86256,87150,85636,91007,0,0,3200,0,6803,6950,1
+4008,260000,female,1,1,39,0,0,0,0,0,0,256557,188370,186778,184132,189947,89016,6726,6637,7784,10000,3500,3434,0
+4009,50000,female,1,2,23,0,0,0,0,0,0,46750,45985,26675,16948,16303,18019,1505,2000,592,604,2000,2000,0
+4010,360000,female,2,1,39,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+4011,30000,female,2,1,27,2,2,2,2,2,2,27896,26835,28690,27633,29184,28776,0,2659,0,2309,1087,0,1
+4012,50000,male,2,2,23,0,0,0,0,0,0,49798,50795,50150,9658,10011,9345,2193,2040,330,492,332,500,0
+4013,270000,female,2,2,31,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+4014,250000,female,1,1,44,-2,-2,-2,-2,-2,-1,4976,5417,7948,1797,1580,12573,5417,7948,1797,1580,12573,4338,0
+4015,250000,male,1,2,48,-2,-1,-1,-1,0,-1,5241,2738,2360,6976,3701,2872,2754,2377,7006,11,2981,0,0
+4016,120000,female,2,1,24,1,-2,-2,-2,-1,0,0,0,0,0,4629,5551,0,0,0,4629,1000,1915,0
+4017,250000,female,3,2,36,-1,0,0,0,0,0,44242,58876,73068,102311,75543,88283,25000,24000,30000,25000,30000,25000,0
+4018,260000,female,2,2,29,-1,-1,-1,-1,-1,-1,1267,553,0,202,11990,3359,553,0,202,11990,3359,1035,0
+4019,240000,male,2,1,39,2,0,0,0,0,0,234661,234364,235982,239281,244329,249130,10200,10200,8725,9068,9068,15000,0
+4020,60000,female,2,2,27,0,0,0,0,0,0,18224,19928,20939,21291,21734,22184,2000,1648,1000,936,962,3013,0
+4021,250000,female,1,1,40,-1,-1,-1,0,-1,-1,326,326,652,326,326,326,326,652,0,326,326,326,1
+4022,100000,female,2,2,26,0,0,0,0,0,0,98542,82569,87486,84536,76008,69865,3326,8003,2745,2689,2896,2731,0
+4023,150000,female,1,2,35,1,-1,-1,-2,-2,-1,0,1070,-240,-240,-240,390,1070,0,0,0,1170,390,0
+4024,170000,female,1,1,45,0,0,0,0,0,0,165243,156688,151405,127090,126388,126399,7067,6443,4617,4711,4673,4603,0
+4025,710000,female,1,2,32,0,0,0,0,0,0,28585,31719,34854,35774,35524,35047,3561,3696,1616,3024,5011,2011,0
+4026,20000,male,2,1,50,0,0,0,0,2,0,6620,7556,8570,10020,9715,10153,1200,1300,1600,0,600,600,0
+4027,360000,female,2,2,36,0,0,0,0,0,0,83412,77205,16250,13600,12640,0,3700,1123,500,640,0,0,0
+4028,150000,female,3,1,60,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+4029,150000,female,3,1,49,-1,-1,-1,-1,0,-1,3114,23946,7838,7642,8009,10800,23979,7838,7642,367,10800,5068,0
+4030,50000,male,3,2,58,0,0,0,0,0,0,7556,7312,6959,5813,3985,3169,1140,1048,163,135,151,2000,0
+4031,140000,female,3,1,38,2,2,0,0,2,2,122283,118913,120435,139795,142950,140505,0,5000,21500,5500,0,5000,0
+4032,250000,male,1,1,42,1,-2,-1,-1,-1,-1,-8,-8,1632,-88,17451,43978,0,1640,0,17539,44197,1758,0
+4033,20000,male,2,2,36,0,0,2,2,3,2,11423,13976,13455,15227,14699,14313,2749,0,2000,0,0,1230,0
+4034,360000,female,2,1,42,-2,-2,-2,-2,-2,-2,2333,6295,0,0,1070,0,6295,0,0,1070,0,0,0
+4035,160000,female,2,1,34,-1,-1,-1,-1,-1,-1,2734,0,625,406,338,0,0,625,406,338,0,0,1
+4036,180000,female,2,1,30,0,0,0,0,0,0,27225,28245,26743,28943,30943,0,1765,1000,2200,2000,0,0,0
+4037,50000,male,2,2,23,0,0,0,0,0,0,28569,27693,20401,17510,18038,16145,1400,1600,600,771,1000,305,0
+4038,50000,male,2,2,45,0,0,0,2,0,0,19834,19387,22574,20483,20121,20191,1340,5000,0,729,793,642,0
+4039,220000,female,1,1,60,2,2,2,2,2,0,19024,20424,19798,21468,20986,22469,2000,0,2000,0,2000,2000,1
+4040,150000,male,2,1,39,0,0,0,2,2,2,76415,78836,87265,85084,93323,91783,4150,10575,0,9717,0,3300,1
+4041,160000,male,2,1,40,-1,-1,-1,-2,-2,-2,1672,2927,0,0,0,0,2941,0,0,0,0,0,0
+4042,160000,female,3,2,30,-1,-1,-1,-1,0,-1,1055,2579,1155,3334,1055,8824,2579,1155,3334,0,8824,1055,0
+4043,200000,female,2,1,29,0,0,0,0,0,0,73700,73624,73928,72060,72393,72969,3304,3815,3004,3006,4012,3012,0
+4044,190000,male,1,2,32,0,0,2,0,0,0,5484,6192,4988,3440,3341,3228,2450,0,200,1000,1000,1000,0
+4045,50000,female,2,1,32,0,0,0,0,0,0,47445,37395,9858,8536,9674,9591,1697,1118,285,299,1110,40207,1
+4046,50000,male,2,2,24,-1,-1,-1,-1,0,-1,390,390,390,780,390,390,390,390,780,0,390,0,0
+4047,140000,female,2,2,35,0,0,0,0,0,0,88394,90252,92775,93606,95301,96653,3280,4270,3500,3606,3500,3550,0
+4048,60000,female,2,2,26,0,0,0,0,2,2,48867,49979,51316,54046,55036,53985,2200,2470,4200,2000,0,6200,0
+4049,10000,female,3,1,24,0,0,0,0,0,0,8283,8754,9436,5856,6059,5999,1500,1246,210,298,120,0,0
+4050,400000,male,1,2,28,1,-1,2,-1,0,0,-1320,5773,3944,87146,90818,96316,9952,10,87170,10013,10008,20039,0
+4051,500000,female,1,2,44,0,0,0,0,0,0,380502,295489,206296,354521,358009,394932,10481,12042,160042,46043,53181,15071,0
+4052,320000,female,2,2,24,-1,-1,-1,0,-1,-1,44500,51257,54659,35196,71244,35299,51334,54726,103,71404,35448,47699,0
+4053,240000,male,1,1,50,-1,-1,-2,-2,-2,-2,2115,0,0,0,0,0,0,0,0,0,0,0,0
+4054,110000,female,3,1,44,0,0,0,0,0,0,128341,131227,133490,135888,137708,78581,4861,4300,3500,3500,2564,2300,0
+4055,240000,male,1,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+4056,50000,female,3,2,31,2,2,2,0,0,0,26411,28902,28139,28697,35084,29983,3231,0,1026,1063,1397,6212,1
+4057,100000,female,3,2,46,2,-1,2,0,0,-2,216,964,964,365,0,0,964,0,0,0,0,301,0
+4058,50000,male,1,2,25,-1,-1,-1,-1,-1,-1,25045,15180,6964,7604,2173,6586,15522,6964,7604,2173,6586,11890,0
+4059,50000,male,3,2,24,-1,0,0,-1,-1,-2,25437,25873,0,100,0,0,2000,0,100,0,0,0,1
+4060,50000,male,2,1,43,-2,-1,0,0,2,0,1040,4254,6955,9486,9191,12524,4254,2962,5191,0,3500,3000,1
+4061,150000,female,2,2,30,0,0,2,2,2,2,63150,68125,66432,73312,72015,76521,6000,0,8023,0,5700,0,0
+4062,200000,female,2,1,37,-2,-2,-2,-2,-2,-2,4157,601,432,1602,3017,937,606,432,1602,3017,937,1275,0
+4063,80000,female,2,2,28,0,0,0,0,0,0,47234,48147,45958,43437,41444,35501,3000,2007,1361,1512,2000,476,0
+4064,360000,male,1,1,35,-1,-1,-1,-1,-1,-1,11936,21865,3366,5210,13308,7089,21983,4567,5236,13373,7123,5510,0
+4065,120000,male,2,2,49,0,0,0,0,0,0,38878,39917,32048,29131,30288,30192,2000,2000,2000,3000,3000,5000,0
+4066,230000,male,1,2,28,0,0,2,0,0,0,70966,70366,66633,56055,22935,17354,5606,1050,1634,3000,3203,1000,0
+4067,60000,female,2,1,34,0,0,0,0,0,0,54316,55575,15158,15450,15933,16095,2770,1275,544,3923,575,596,1
+4068,90000,male,2,1,37,1,2,2,2,2,0,9549,9257,11983,12065,11731,11809,0,3200,572,0,422,437,0
+4069,50000,male,2,2,29,3,2,2,0,0,0,49747,51075,43662,18115,17300,17947,2500,14,2000,1000,1500,1500,1
+4070,240000,male,2,1,31,-1,-1,-1,-1,-1,-1,1051,475,1051,671,291,671,475,1051,671,291,671,671,0
+4071,230000,female,2,1,42,-1,-1,-1,-1,-1,-1,6946,120,8794,2095,129,303,500,16000,9100,7400,7500,8100,0
+4072,80000,female,1,2,23,0,0,0,0,0,0,23998,17442,15948,17118,9883,8689,3150,2000,6000,500,304,500,0
+4073,400000,female,1,2,28,-1,-1,-1,0,-1,-1,3299,6930,2375,1211,6661,517,6978,2387,1127,6694,519,593,0
+4074,120000,male,1,1,45,0,0,0,0,0,2,117775,117106,118207,116885,123040,120546,5700,6000,5000,10000,0,4500,0
+4075,250000,male,1,1,39,1,-1,-1,-1,-1,-1,0,93,5354,167,908,0,93,5354,167,908,0,0,0
+4076,30000,female,1,2,24,1,2,0,0,2,2,29846,28941,18643,19005,12751,10891,0,4000,600,0,2500,419,0
+4077,150000,female,1,1,54,0,0,0,0,0,0,152059,150510,152228,141778,142694,145622,7100,5800,5300,5200,5300,5600,0
+4078,310000,male,3,2,37,2,2,0,0,0,0,207995,211176,214160,220579,227036,321979,8000,8000,10000,10000,100000,0,0
+4079,150000,male,2,2,34,0,0,0,0,0,0,135587,138473,141297,144605,148420,150500,4000,4000,4500,5000,3500,0,0
+4080,80000,female,1,2,29,0,0,0,0,-2,-1,11040,5830,4136,0,0,150,1500,2000,0,0,150,419,0
+4081,200000,female,1,1,37,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+4082,50000,male,2,2,24,0,0,0,0,0,0,35166,29045,15188,7582,7741,7958,1300,1106,1500,281,346,159,0
+4083,190000,male,2,1,23,0,0,0,0,0,0,223483,183900,182911,156432,152708,133584,11837,6070,5136,5183,5237,4396,1
+4084,50000,male,2,2,33,2,0,0,2,2,2,30773,33275,41329,5392,5722,4501,4000,9000,0,1000,0,1000,0
+4085,100000,male,2,2,31,1,2,2,2,3,2,24377,25167,24541,27304,26669,26172,1400,0,3100,0,0,2000,1
+4086,150000,male,1,1,33,0,0,0,0,0,0,144761,146271,128105,130555,133985,136151,6005,5005,5005,6005,5005,5005,0
+4087,80000,male,2,2,43,0,0,0,2,2,2,19260,16902,15173,10493,10313,6687,1270,1874,0,3313,0,291,0
+4088,200000,male,2,1,30,1,-2,-2,-2,-2,-2,736,736,736,736,736,316,736,736,736,736,316,1156,0
+4089,120000,female,3,2,46,0,0,0,0,0,0,116697,108828,101417,89852,91503,89571,4200,4715,3200,3010,3772,3464,0
+4090,60000,female,2,1,49,2,0,0,0,2,0,61093,57227,32091,32792,31277,29512,1739,1791,2378,0,1092,3554,1
+4091,450000,female,6,1,51,-1,-1,-1,-1,-1,-1,144396,150396,396,396,396,546,6396,396,396,396,546,396,0
+4092,120000,male,1,2,32,-1,-1,-1,-1,-1,-1,890,390,390,1480,0,6477,390,390,1480,0,6477,0,1
+4093,130000,male,2,1,43,-2,-2,-2,-1,0,0,0,0,0,96963,99004,101833,0,0,96963,3554,4435,3304,0
+4094,240000,female,1,2,36,-1,-1,2,0,-1,2,5367,6959,6649,5149,13750,5777,6959,15,0,7013,0,726,1
+4095,90000,female,2,2,26,0,0,0,0,0,0,11181,11237,9442,5318,11928,15558,3194,8823,0,7000,6660,10000,0
+4096,210000,male,2,2,25,2,0,0,0,2,0,7474,8625,3511,4950,4727,5494,1500,1500,1500,0,1000,1000,1
+4097,90000,female,2,2,23,-1,-1,0,0,0,0,803,16983,18644,12718,12984,13247,16983,2000,500,424,431,1000,0
+4098,420000,female,1,1,40,-2,-2,-2,-2,-2,-2,1794,7748,2950,17827,23711,63784,7786,2965,18048,23831,64101,30731,0
+4099,290000,male,1,1,63,0,0,0,0,0,2,183800,187658,193030,195356,207180,211614,6820,8500,7020,15000,8000,0,1
+4100,390000,male,1,2,29,0,0,2,0,0,0,43062,47142,46088,47016,48332,62205,5100,0,2000,2071,15000,2300,0
+4101,230000,male,1,2,32,-2,-2,-2,-2,-2,-2,489,0,1257,0,1169,641,0,1257,0,1169,641,0,0
+4102,90000,female,2,1,29,0,0,0,0,0,0,13770,14024,9232,4173,4408,5846,1522,3010,1500,1500,1500,2000,0
+4103,280000,female,2,1,45,1,-2,-1,-1,-2,-2,0,0,3288,0,0,0,0,3288,0,0,0,2942,0
+4104,280000,female,1,2,28,-2,-2,-2,-2,-2,-2,21670,15767,15288,4923,19616,5191,15846,15364,9948,19693,5216,488,0
+4105,30000,female,3,1,25,-2,-1,0,0,2,0,0,20249,3765,29393,26408,27653,20657,1000,26408,0,1653,823,0
+4106,20000,male,2,1,38,-1,0,0,0,0,0,18596,19245,19744,14999,15121,19283,1342,1231,524,741,5000,1000,0
+4107,180000,female,1,1,43,-1,-1,-1,0,-1,-1,36484,24049,89271,1946,11859,506,24049,91272,162,11859,506,1304,0
+4108,70000,female,3,2,26,0,0,0,0,0,0,7139,8361,10030,11578,13408,12302,1500,2000,2000,2000,1000,2000,1
+4109,230000,female,2,1,34,-1,-1,-1,-1,-1,-1,2007,3220,6163,2765,2050,1197,3229,6191,2782,2055,1200,1710,0
+4110,50000,male,2,2,36,0,0,2,0,0,0,17003,18157,17301,16486,17681,17825,3000,1000,1000,2000,1000,2000,0
+4111,250000,male,2,1,47,-1,-1,-1,-1,-1,-1,10735,19147,4192,5947,5453,0,19269,4192,5966,5453,0,0,0
+4112,140000,male,1,1,47,0,0,0,0,0,0,109259,108015,107209,106353,100653,99546,5400,5211,4000,4000,4000,3600,0
+4113,140000,female,2,1,41,0,0,0,0,2,0,43616,44710,45661,50880,49934,51106,2100,2000,6000,0,2000,4200,0
+4114,130000,female,1,2,25,-1,-1,-1,-1,-1,-1,1088,1521,6042,1085,947,495,1521,6044,1619,947,495,0,0
+4115,120000,female,2,1,40,-2,-2,-2,-1,0,0,73900,0,0,3663,3663,0,0,0,3663,0,0,0,0
+4116,60000,female,2,2,43,1,2,0,0,3,2,44193,43205,47476,54735,53584,54703,0,5000,8100,0,2150,0,1
+4117,80000,female,3,2,32,0,0,0,0,0,0,77385,79038,80899,79387,81593,80254,2900,3200,3000,3500,3100,6200,0
+4118,240000,female,1,1,41,-1,-1,-1,-1,-1,-1,4420,16829,4745,2430,7792,33196,16920,4774,2442,7829,33361,1076,0
+4119,50000,male,3,1,32,0,0,0,0,0,-2,46727,47973,48990,49261,0,0,2000,2005,1745,0,0,0,1
+4120,270000,female,1,2,33,-2,-2,-2,-2,-2,-2,12091,0,6743,338,0,432,0,6743,338,0,432,3042,0
+4121,170000,female,1,1,52,-1,-1,2,-1,-1,-1,2939,5447,416,7509,6387,1516,3000,5,7509,6387,1666,3023,0
+4122,50000,male,2,1,51,0,0,0,0,0,0,42462,43684,42256,6501,6638,7027,1928,1200,300,242,500,500,1
+4123,230000,female,5,1,29,0,0,0,0,0,0,123436,127873,129832,133273,139818,65649,7000,6000,6000,10000,30000,3044,0
+4124,390000,female,1,2,26,-2,-1,-1,0,0,0,5044,1248,199466,200701,210885,213137,1248,201925,6195,30000,8000,8000,0
+4125,200000,female,2,1,39,0,0,2,0,0,0,151955,158956,149765,131741,134488,137240,9201,5000,4500,4600,4700,5319,1
+4126,500000,female,2,1,27,0,0,0,0,0,0,174725,178556,182274,185523,183530,187150,6630,6831,6500,6500,6500,5900,0
+4127,30000,female,1,2,25,3,2,0,0,0,0,14190,12900,11006,5584,5268,4112,0,2046,0,0,0,915,1
+4128,450000,female,1,2,33,-1,-1,-1,-1,-1,-1,30627,3693,6696,2461,4192,4378,4008,6696,5000,4192,4378,71100,0
+4129,50000,male,2,2,25,0,0,-1,-1,-1,0,11014,11092,692,1184,24119,24027,1402,694,1186,34029,1002,1023,0
+4130,50000,female,1,2,26,0,0,0,0,0,0,48150,47684,47528,48525,45790,46764,1797,2113,2500,1742,1817,2000,0
+4131,220000,male,1,2,48,0,0,0,2,0,0,115294,117945,130365,126780,129570,133553,6000,16000,0,5000,6300,3000,0
+4132,30000,female,2,2,33,0,0,0,0,0,0,29965,28048,29775,27736,26956,28142,2000,3000,3000,2000,2000,2000,0
+4133,50000,female,3,1,42,3,2,2,0,0,0,34542,30557,29577,29529,28276,28768,1000,1000,1000,1000,1000,1000,0
+4134,50000,male,2,1,31,0,0,0,0,0,0,48469,48872,49429,49144,50032,50519,2138,2095,1711,1771,1900,3510,0
+4135,30000,female,2,2,24,2,0,0,0,0,-2,28510,28481,28045,27259,0,0,2000,1200,0,0,0,0,1
+4136,200000,female,1,2,42,-1,-1,2,-1,-1,-1,660,1320,660,1320,1320,1710,1320,0,1320,1320,1710,27077,1
+4137,50000,female,2,1,46,1,2,2,2,2,2,43244,42276,45235,45816,44970,47649,0,4000,1600,0,3400,0,1
+4138,80000,female,2,2,26,0,0,0,0,0,0,47788,45221,46830,48429,52142,56060,4000,3000,3000,5000,5000,5000,0
+4139,20000,male,3,1,26,3,2,3,2,0,0,10135,11926,11448,10970,11636,12442,2100,0,0,1000,1000,0,1
+4140,70000,female,2,1,44,0,0,0,0,0,0,68687,69531,71271,70712,50793,50605,2545,2918,6329,1996,1977,1975,0
+4141,130000,male,3,1,44,0,0,-2,-2,-2,-2,15722,0,0,0,0,0,0,0,0,0,0,0,0
+4142,200000,male,3,1,34,0,0,0,0,0,0,192910,199344,186878,140743,129806,121623,10000,10000,6000,10000,10000,5000,0
+4143,320000,female,1,1,34,-2,-2,-2,-2,-2,-2,11317,2612,1265,3031,13001,8807,2617,1265,3031,13001,8807,4003,0
+4144,170000,female,1,2,27,0,0,0,-1,0,0,61785,17848,14000,124208,122955,116191,3848,4000,124208,5000,5000,5000,0
+4145,280000,female,1,2,30,-1,-1,-1,-1,-1,-1,8527,13219,10132,29142,20644,1647,13244,10157,29187,20669,3003,3250,0
+4146,10000,female,2,2,34,0,0,0,0,0,-2,8014,9170,9180,8300,0,0,1300,1000,1166,0,0,0,0
+4147,200000,male,1,1,35,1,2,0,0,0,0,204441,198879,202466,168015,169799,171981,0,8555,10000,6500,7103,6000,0
+4148,70000,male,2,2,27,0,0,0,0,0,0,63298,65785,65353,84184,47686,49276,4100,2400,2500,1800,2400,4800,0
+4149,230000,female,1,2,45,0,0,0,0,0,0,204625,205816,205294,194263,212257,206084,15006,15026,15000,20000,15030,15030,0
+4150,150000,female,1,2,40,-1,-1,-1,-2,-1,-1,800,2400,0,0,1000,0,2400,0,0,1000,0,0,0
+4151,320000,female,1,1,29,0,0,0,0,-1,-1,95322,98787,97996,27996,1712,-216,5000,2000,2000,2000,0,10000,0
+4152,50000,male,1,2,25,4,4,4,4,3,2,35906,37038,38151,37264,36396,35659,2000,2000,0,0,0,3001,0
+4153,200000,female,2,1,44,1,2,2,2,0,0,2667,2478,6406,6216,5258,7002,0,4000,14,2000,2000,2000,1
+4154,200000,male,2,1,39,-1,-1,-1,-1,-1,-1,326,326,326,326,326,326,326,326,326,326,326,326,1
+4155,160000,female,2,2,29,-1,-1,-1,-1,-1,-2,2248,-2,4903,5525,-10,-10,0,4905,5525,10,0,5685,0
+4156,380000,male,1,2,42,0,0,0,2,-1,0,1837,4791,6697,2700,1218,1533,3000,2000,0,1218,700,500,0
+4157,50000,male,2,1,51,0,0,0,2,2,6,11583,16051,25725,25017,34385,33248,5000,10000,0,10000,0,10000,1
+4158,500000,female,2,1,51,-2,-2,-2,-2,-2,-2,8864,1462,18653,45391,1460,580,1462,18661,45402,1460,580,1588,0
+4159,150000,male,3,1,34,0,0,0,0,0,0,38808,39879,40589,41551,42420,43105,2000,1674,1636,1690,1544,1751,0
+4160,90000,male,2,2,33,0,0,0,0,0,0,56291,58385,60412,61710,63020,64274,3000,3000,2300,2300,2300,2379,1
+4161,60000,male,2,3,46,0,0,2,2,2,2,24677,26963,28210,27473,29176,28242,3000,2000,0,2289,0,1500,1
+4162,140000,male,1,2,27,-1,-1,-1,-1,-1,-1,13497,15680,3400,3218,16478,4078,15688,4000,3218,17000,4500,4448,0
+4163,220000,female,1,2,40,-1,-1,-1,-1,-1,-1,13654,12312,23031,7229,3942,2132,12312,23031,7234,3942,2132,5809,0
+4164,450000,male,3,2,41,0,0,0,0,0,0,262138,242290,221480,201670,181345,160000,10027,8517,7020,6821,6027,5010,0
+4165,200000,male,2,1,48,0,0,-2,-2,-2,-2,205150,0,0,0,0,0,0,0,0,0,0,0,0
+4166,140000,female,1,2,34,0,0,2,0,0,0,30996,33690,33430,32768,29701,24377,3200,1500,1800,2000,2000,1000,1
+4167,290000,female,1,1,46,0,0,0,0,0,0,6615,8494,10336,15127,19685,29275,2000,2000,5000,5000,10000,5000,1
+4168,260000,male,1,2,34,0,0,0,0,0,0,87281,96870,115398,146597,159844,145729,15000,20084,50029,20139,15147,12025,0
+4169,60000,female,1,2,27,0,0,0,0,0,0,61015,58160,51237,29999,28972,29444,3016,5011,1005,1000,14000,3104,0
+4170,280000,male,1,2,31,-1,-1,-1,-1,-1,-1,12740,17239,14496,16185,8962,8756,17352,14575,16266,9007,8800,20947,0
+4171,310000,female,3,1,40,0,0,0,0,0,0,69569,71437,71464,72299,50967,51153,3366,2400,2212,1985,2422,1407,0
+4172,80000,female,3,1,50,0,0,0,0,0,0,6627,9503,11966,14493,20328,23506,3000,3000,3000,8000,3506,3000,0
+4173,150000,female,1,2,33,0,-1,-1,-1,-1,-1,74033,237,1420,1141,1067,1128,237,1426,1141,1067,1200,1150,0
+4174,80000,male,2,2,28,0,0,0,0,0,0,49302,35916,25528,26034,26615,28173,1412,1425,931,1000,2000,2000,0
+4175,480000,female,2,1,45,-1,-1,-1,-1,-1,-1,1223,22308,6070,5924,547,1308,22313,6083,5924,547,1308,1480,1
+4176,350000,female,2,1,34,1,2,0,0,0,0,23589,22585,23263,23755,23900,25016,0,1700,1500,1000,2000,1500,0
+4177,230000,male,1,2,30,1,-2,-2,-2,-1,-1,0,0,0,0,625,514,0,0,0,625,514,3,0
+4178,180000,male,3,2,46,0,0,0,0,0,0,109114,71952,16765,14611,16209,25653,2835,1500,1000,2000,10000,20000,0
+4179,50000,male,2,1,32,0,0,0,0,0,0,50764,50428,49564,21002,20230,19462,2200,1500,1500,2000,1700,2000,1
+4180,310000,female,2,1,43,1,2,2,2,2,2,266629,270414,264482,280240,285805,272059,9500,0,20000,10000,0,9755,1
+4181,10000,male,1,1,41,0,0,3,2,2,2,6859,9751,9451,9169,10056,8559,3000,0,0,1002,0,500,0
+4182,280000,male,1,2,25,0,0,0,0,0,0,9895,7402,7701,8951,6916,8790,3011,3007,3019,2004,3044,93462,0
+4183,50000,male,2,2,52,0,0,0,0,0,0,50557,49214,50156,20186,17966,19659,2283,2225,1008,757,2601,700,1
+4184,50000,female,2,2,51,2,0,0,2,2,2,10728,11751,13247,12737,13732,13362,1504,2000,0,1200,0,494,1
+4185,10000,female,1,2,22,1,3,2,2,2,2,8352,8078,7800,8672,8388,9248,0,0,1000,0,1000,0,0
+4186,290000,male,1,1,43,0,0,0,0,0,0,294475,295310,290951,237255,241778,236917,12021,11212,8503,9047,9003,10014,0
+4187,240000,male,1,2,33,1,-2,-2,-2,-2,-1,0,0,0,0,0,41300,0,0,0,0,41300,868,0
+4188,100000,female,2,2,26,1,2,0,0,0,0,48006,46561,46764,48298,49137,49576,0,2200,3000,2000,1800,2000,1
+4189,160000,female,2,2,25,-1,-1,-1,-1,-1,-1,21570,7501,10703,12448,2129,24461,7545,10841,12448,2141,24603,16897,0
+4190,230000,male,2,1,46,0,0,0,0,0,0,170354,131022,108061,87461,69221,57462,7200,3348,2510,5000,3500,6500,0
+4191,230000,female,2,1,46,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,83,0
+4192,300000,female,3,1,41,1,-1,-1,-1,-2,-1,0,1018,685,1144,0,67,1018,687,1144,0,67,0,0
+4193,500000,male,3,2,32,0,0,2,0,0,0,211508,183713,158759,119566,123098,132355,10070,3066,13366,20898,20155,16101,0
+4194,200000,male,1,2,29,-1,0,0,0,0,2,1124,1206,1292,1778,2064,1000,1000,1000,1400,1200,0,1203,0
+4195,210000,female,1,2,44,0,0,0,0,0,0,125615,77485,79668,92326,30500,25265,5000,4000,3402,2013,1026,1000,0
+4196,50000,female,2,2,23,-1,-1,-1,-1,0,0,373,-17,4230,1243,1904,0,0,4247,1243,1094,0,0,0
+4197,130000,male,2,2,25,0,0,2,2,2,0,112561,119435,105382,49643,46812,45914,12421,0,7000,0,2000,1822,0
+4198,90000,female,2,1,37,-1,-1,-1,-1,-1,-1,2522,0,1261,1261,1261,1261,0,1261,1261,1261,1261,390,0
+4199,80000,female,3,1,36,-1,-1,-1,-1,-1,-1,5587,6906,1470,1720,2890,7678,6906,1470,1720,2890,7678,1730,0
+4200,30000,male,3,2,23,2,2,2,2,2,2,10732,20501,20831,21231,20589,31018,10000,1000,1000,0,13000,0,0
+4201,480000,female,2,2,30,1,-2,-2,-2,-1,0,0,0,0,0,330982,355339,0,0,0,330982,30000,13174,0
+4202,80000,female,3,1,41,0,0,0,0,0,0,54074,50967,29143,33520,19060,14275,10000,10000,5000,3000,3000,5000,0
+4203,90000,female,2,2,24,0,0,0,-1,0,0,36179,36137,28400,28982,29782,24389,1953,2000,29982,800,1516,60615,0
+4204,70000,male,2,1,31,1,2,2,2,2,2,32945,32133,35089,34225,36663,35921,0,3500,0,3000,0,3000,0
+4205,50000,male,3,2,31,0,0,0,2,0,0,5458,7208,17221,16738,17106,15415,2000,10600,0,700,3000,4200,0
+4206,110000,female,3,1,39,0,0,0,0,0,0,73064,70373,71730,73208,75095,72530,3900,3200,2600,3000,3100,3100,0
+4207,120000,male,2,2,30,0,0,0,0,0,0,100802,104378,106651,108362,96168,99399,5200,5500,5000,5000,5000,5000,0
+4208,180000,male,2,2,24,-2,-2,-2,-2,-1,2,2294,1290,2109,600,476,326,1296,2120,901,476,0,326,0
+4209,50000,male,2,2,33,1,2,2,2,2,2,40159,41323,40364,42781,41966,48865,2100,0,3400,0,7800,0,1
+4210,150000,female,1,1,29,-1,-1,-1,0,0,0,2565,3648,5586,5586,3672,1160,3648,5586,0,426,4040,2320,0
+4211,340000,female,1,2,30,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+4212,300000,female,2,2,33,0,0,0,0,0,0,351232,298709,268531,157953,161183,163942,9198,7668,4429,4821,4684,3152,0
+4213,150000,female,1,1,36,-1,0,0,0,0,2,123160,134948,130982,125296,122664,112055,20000,6100,4000,5500,3002,7000,1
+4214,30000,male,1,2,38,2,0,0,0,0,0,69707,71904,62630,57406,46231,73262,4000,5000,8000,1460,40000,10000,0
+4215,50000,male,2,2,52,0,0,-1,0,0,0,47595,28491,3642,12291,16674,17331,8080,15012,10000,8000,2000,2000,0
+4216,100000,male,1,1,42,-1,2,-1,-1,-1,-1,2206,1016,452,1016,1096,2202,0,452,1580,1096,2122,0,1
+4217,270000,female,2,1,35,-1,-1,-1,-1,-1,-1,165,165,165,165,0,601,165,165,165,0,601,928,0
+4218,320000,male,1,1,43,-1,-1,-1,0,0,-1,3274,86251,14857,12157,8690,4166,86682,14871,260,43,4186,904,1
+4219,160000,male,2,2,26,-1,-1,-1,0,-1,0,1236,1234,4888,4187,8995,9731,1234,4890,1010,8998,2005,3669,0
+4220,300000,female,1,2,26,0,0,0,0,0,0,10545,10421,15196,19406,23260,15423,3000,5000,5000,4000,5000,5000,0
+4221,30000,female,2,1,49,0,0,0,2,0,0,2273,2127,2552,1992,1583,1320,2000,1300,0,0,150,0,1
+4222,290000,male,3,1,41,-2,-2,-2,-2,-2,-2,-4,-4,798,-2,494,-6,0,802,0,496,0,1292,0
+4223,180000,female,2,1,49,-2,-1,-1,-2,-2,-1,106,3166,106,59,-47,347,3166,106,59,47,570,106,0
+4224,150000,male,1,1,57,-2,-2,-2,-1,-1,0,153664,137074,86466,2120,143701,146318,22000,2509,2120,143701,6000,5200,0
+4225,60000,female,2,1,30,-1,0,0,0,0,0,54379,55029,54422,19843,19095,19495,2269,1385,1000,693,717,661,0
+4226,260000,female,1,2,33,-2,-2,-2,-1,0,0,6475,2500,500,210,210,-90,2500,500,210,0,0,0,0
+4227,150000,male,2,1,32,0,0,0,0,0,0,143706,140120,138520,139329,142149,111435,6010,5007,5016,10101,5006,4015,1
+4228,230000,male,3,1,55,0,0,0,0,0,0,214423,214585,170063,176893,183699,188700,10000,10000,10000,10000,10000,9000,0
+4229,250000,female,1,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+4230,70000,female,2,1,29,0,0,0,0,0,0,1929,2948,3960,4038,4123,4264,1054,1066,144,150,210,500,0
+4231,360000,male,3,1,44,-1,-1,-1,-1,-1,-1,1982,-18,3746,-4,906,850,0,3764,0,910,854,1131,1
+4232,200000,male,1,1,34,-1,-1,-1,-1,-1,-2,5879,5884,5171,4598,-95,-2175,5884,5171,4598,0,0,0,0
+4233,30000,female,1,2,30,0,0,0,0,0,0,27851,29490,29200,29400,50000,0,2100,1500,600,600,0,0,0
+4234,20000,male,2,1,30,-1,-1,-1,-1,-1,-1,1473,1473,390,390,390,0,1473,390,390,390,0,780,0
+4235,80000,male,3,2,66,0,0,0,0,0,0,58592,52465,16937,15159,12195,0,2912,3000,3000,3000,0,0,0
+4236,260000,female,1,2,32,-2,-2,-2,-2,-2,-2,-34,6846,1479,173,6326,369,6880,1486,174,6357,370,2500,0
+4237,210000,female,2,1,35,0,0,0,0,0,0,64740,66692,68579,70036,71706,73162,3000,3000,2600,2800,2800,2900,0
+4238,50000,male,3,1,35,0,0,2,0,0,2,35214,37305,34789,8671,9550,8741,3900,2,500,1000,0,500,0
+4239,140000,male,1,2,26,0,0,0,0,0,-2,66526,65667,67571,26968,-4082,-4082,3990,4000,2000,0,0,0,0
+4240,90000,male,3,1,42,2,2,2,3,3,3,48674,49895,52570,53614,54534,53374,2300,4116,2500,2052,0,0,0
+4241,20000,male,2,1,31,0,0,0,0,0,0,35651,20160,20080,19680,19680,0,4960,1400,0,0,0,0,0
+4242,360000,male,1,1,44,-1,-1,-1,-1,-1,-1,165,165,165,165,165,165,165,165,165,165,165,165,0
+4243,580000,female,2,1,57,-1,-1,-1,-1,-1,-1,20498,2290,4968,4481,5574,14240,2290,4968,4485,5583,14242,9986,0
+4244,180000,male,2,2,39,0,0,2,0,0,0,29478,32342,31523,32989,33679,34350,3353,0,2000,1222,1231,2704,0
+4245,60000,male,2,1,51,0,0,0,0,0,0,60557,58563,27436,29752,30351,28871,3040,3000,3000,4000,2000,3000,0
+4246,60000,female,2,1,25,0,0,0,0,0,0,39831,33147,32239,30110,30465,30510,4500,4500,2000,1301,1128,1023,0
+4247,50000,male,2,2,30,0,0,0,0,0,0,50995,50882,32777,32081,29598,29648,2500,1500,1226,1059,2000,1138,0
+4248,100000,female,2,1,39,-1,-1,-1,-1,0,0,200,200,200,2795,94722,96638,200,200,2795,92485,2519,2961,0
+4249,380000,male,1,1,46,0,0,0,0,0,-1,141102,84229,28749,14258,7594,190628,5034,2071,29,72,190710,30052,0
+4250,310000,female,1,1,37,-1,-1,-1,-1,0,-1,325,4373,26863,7443,4221,8172,4373,26863,7443,0,8172,31362,0
+4251,50000,male,2,2,37,1,2,0,0,0,0,28731,27985,29000,29731,30400,33427,0,1482,1213,1300,3703,0,1
+4252,20000,male,2,2,33,0,0,0,0,0,0,16128,17441,18589,18607,19892,24338,2000,2000,2001,2001,100,4737,0
+4253,30000,female,2,2,50,0,0,2,0,0,0,27284,29001,28201,28763,29383,28987,4664,0,994,1047,1412,756,0
+4254,50000,female,2,2,32,1,2,0,0,0,3,32814,32004,33017,33868,38151,37253,0,1550,1400,5000,0,0,1
+4255,30000,female,3,3,52,1,2,2,2,-1,-1,10033,6486,7064,2890,2500,3280,0,3192,0,2500,3280,0,1
+4256,490000,male,1,1,42,0,0,0,0,0,0,497657,498379,498646,436116,438700,436436,18260,18529,15000,15500,15620,15420,0
+4257,500000,female,1,2,34,-1,0,0,0,0,0,218570,218978,218778,236377,225650,15233,18978,18778,36377,10650,15233,0,0
+4258,80000,male,3,2,27,0,-1,-1,-2,-2,-2,13165,2100,0,0,0,0,2100,0,0,0,0,0,0
+4259,200000,male,2,1,33,0,0,-2,-2,-2,-2,205150,0,0,0,0,0,0,0,0,0,0,0,0
+4260,360000,male,1,2,29,0,0,0,0,0,0,205119,209680,213527,174907,126309,97746,8270,8423,6753,5139,5000,4000,0
+4261,30000,male,2,1,39,0,0,0,0,0,0,29493,30346,28777,27962,26306,28994,2006,1500,3000,3000,9000,2000,1
+4262,170000,female,1,1,36,0,0,0,0,0,0,46113,48241,50255,51410,52429,53554,3182,3000,1990,2000,2000,3000,0
+4263,10000,male,2,2,21,0,0,0,0,-1,-1,6703,8422,9205,9393,4176,0,2000,1000,188,2538,0,0,0
+4264,230000,female,2,1,52,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+4265,200000,male,1,1,49,-1,-1,-1,-1,0,-1,416,416,0,832,416,416,416,0,1248,0,416,416,1
+4266,160000,female,1,2,35,0,0,0,0,0,0,61089,53073,46508,42835,46169,40482,1965,1972,1509,4000,3000,4000,0
+4267,270000,male,2,1,34,2,0,0,0,0,0,275572,277585,232661,150298,134808,129645,10332,10000,18021,8026,6011,5000,1
+4268,80000,male,2,2,28,0,0,0,0,0,0,57798,50910,49940,49460,50687,50288,2050,1780,1800,2000,2000,2000,0
+4269,360000,female,1,2,29,-1,-1,-1,-2,-2,-2,1146,2500,0,0,0,0,2500,0,0,0,0,0,1
+4270,140000,female,2,2,27,0,0,0,0,0,0,111820,104189,100638,93092,94663,96257,3817,4500,3500,3600,3700,3500,0
+4271,80000,female,3,2,43,0,0,0,0,0,0,76594,78254,78401,49496,50562,45682,3100,3100,1669,1759,1700,3001,0
+4272,200000,female,1,2,25,0,0,0,0,0,-1,1698,2751,3665,4665,6665,150,1086,1000,1000,2000,150,776,0
+4273,80000,female,1,2,25,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,390,0
+4274,390000,male,1,1,35,0,0,0,0,0,0,28804,43996,47532,49414,51380,50661,20000,5006,5006,5008,3004,3006,0
+4275,80000,female,2,2,31,-1,-1,0,0,0,0,1019,8479,9947,10671,11923,12050,8479,2000,2000,2000,2000,1000,1
+4276,80000,female,3,1,44,0,0,0,0,0,0,40821,42443,42573,43386,13513,13781,2281,1411,1224,491,493,662,1
+4277,20000,male,2,1,31,1,2,0,0,0,0,21635,19749,19469,19856,19147,20369,0,1303,690,851,1700,0,1
+4278,30000,female,3,2,22,0,0,0,0,0,0,28579,26683,25591,16337,19690,19986,2006,2041,2001,4004,2006,2000,0
+4279,60000,male,5,2,23,-1,-1,-1,-1,-1,-1,5363,262,-144,450,202,196,1000,0,1000,0,400,300,0
+4280,100000,female,2,2,25,0,0,0,0,0,0,59219,60464,61956,63228,64561,66025,2197,2500,2300,2350,2540,4920,0
+4281,100000,male,2,1,52,0,0,0,0,0,0,81382,72937,65480,66777,68176,69547,4611,4000,2387,2472,2502,2544,0
+4282,40000,female,3,1,48,0,0,0,0,0,0,69282,36108,37112,37695,38580,0,3500,1750,1300,1409,0,0,0
+4283,120000,female,1,2,30,-1,-1,-1,-1,-1,-1,316,316,316,316,316,7516,316,316,316,316,7516,316,0
+4284,20000,female,3,1,56,0,0,0,0,0,0,12685,13634,12115,12356,12623,13905,1188,1201,442,466,1500,421,0
+4285,310000,female,2,2,26,0,0,0,0,0,0,87717,93707,83632,81133,75499,73540,9156,2782,4013,2688,2651,2652,0
+4286,50000,male,2,2,23,1,2,0,0,0,0,19203,17242,18245,18454,18685,19271,0,1299,807,678,897,800,1
+4287,500000,male,2,1,49,1,2,0,0,0,-2,9502,9206,11000,13000,0,0,0,2000,2000,0,0,0,0
+4288,290000,male,3,1,40,0,0,0,0,0,2,151996,155371,157605,133904,128276,130419,7800,7549,10000,15000,5000,0,0
+4289,30000,male,2,2,34,0,0,0,0,0,0,19101,17444,12676,9171,5928,7746,1653,1110,0,109,7849,0,0
+4290,100000,female,1,2,23,-1,-1,-1,0,0,0,850,0,8472,8472,1768,0,0,8472,0,0,0,9038,0
+4291,360000,female,1,2,31,-1,-1,-1,-1,-1,-2,8288,21865,44440,3904,0,0,21888,44640,3904,0,0,0,0
+4292,20000,male,3,1,51,-1,-1,-2,-2,-2,-2,2300,0,0,0,0,0,0,0,0,0,0,0,1
+4293,150000,female,2,1,37,1,2,2,0,0,0,108784,110405,106317,30906,31457,32134,4800,0,1240,1200,1200,1300,1
+4294,360000,female,1,1,31,-1,-1,2,-1,-1,-1,3680,9995,3225,4230,6113,8745,13517,0,4230,6113,8745,6324,0
+4295,490000,female,2,1,30,0,0,0,0,0,-1,26088,24092,24488,16995,-1527,62491,2003,2041,1092,4,64895,3003,0
+4296,40000,female,2,1,44,-1,-1,-1,-1,-1,-1,11770,4719,922,4665,4059,5588,4740,922,4665,4059,5588,7000,0
+4297,100000,female,3,1,36,-1,-1,-1,-1,-1,-1,1490,0,210,0,90,90,0,210,0,90,0,0,0
+4298,20000,female,2,2,24,0,0,0,0,0,0,14367,16130,18136,18258,19478,19866,2001,2600,701,1500,705,1000,0
+4299,500000,female,2,1,32,0,0,0,0,0,0,37664,9689,9487,12641,14778,10665,3000,1000,6000,4000,3000,23000,0
+4300,50000,male,2,2,28,-2,-2,-2,-2,-2,-2,49703,50237,26924,27458,28036,28772,1761,1448,982,1020,1200,1155,0
+4301,260000,male,1,2,34,-1,-1,-1,-1,-1,-1,324,826,326,326,326,476,828,326,326,326,476,326,0
+4302,140000,female,2,1,49,-1,-1,-2,-2,-2,-1,2457,0,0,0,0,579,0,0,0,0,579,1968,0
+4303,260000,male,1,2,49,-1,-1,-1,-1,-1,-1,316,316,4866,316,316,4843,316,4866,316,316,4843,316,0
+4304,200000,female,1,2,32,-1,-1,-1,-1,0,0,3450,12113,16152,19443,19189,13947,12174,16239,19446,529,400,277,0
+4305,50000,female,2,2,28,0,0,-1,0,0,-1,47132,22104,983,23594,7428,29039,1651,984,23001,5001,30001,8599,0
+4306,200000,female,1,2,32,1,-1,-1,-1,-2,-2,0,2300,15093,0,0,0,2300,15093,0,0,0,0,0
+4307,20000,female,2,2,26,0,0,0,0,0,0,6690,8628,8515,6584,3403,3748,2600,1500,1500,1000,402,0,0
+4308,10000,male,3,2,24,0,0,0,0,0,0,4050,5426,6743,8544,9858,1303,2000,2000,2000,2000,1000,0,0
+4309,30000,male,2,2,34,0,0,0,0,0,-1,28014,29248,29254,19837,14793,404,1694,1200,8697,2000,1000,2759,0
+4310,170000,female,3,1,40,0,0,0,0,0,0,73784,73815,53032,29086,93786,92728,3663,3426,1317,93276,3197,3185,0
+4311,50000,female,3,1,45,0,0,0,-2,-1,-1,4410,4055,0,0,6553,19653,4050,0,0,6553,13100,0,0
+4312,420000,female,1,2,34,-1,-1,-1,-1,-1,-1,13207,6184,6692,1039,1039,1503,6222,9723,1045,1042,1509,9215,1
+4313,70000,female,2,1,30,0,0,0,0,0,0,8432,9596,10637,11965,12178,13962,1300,1200,1507,1000,2000,1000,0
+4314,300000,female,2,1,31,-1,-1,-1,0,0,0,316,316,17597,15257,9482,10716,316,17597,2000,2690,2000,316,0
+4315,500000,male,2,2,31,2,2,2,0,0,0,533142,504834,413844,305875,46420,14540,3089,14000,14000,1500,14000,2000,0
+4316,20000,female,2,2,49,0,0,0,3,2,2,15945,16971,19796,19188,18740,20219,1288,3113,0,0,1800,663,0
+4317,280000,female,1,2,30,0,0,0,0,0,0,161001,136271,131048,119654,115808,115116,5000,6000,4000,4000,5000,5270,0
+4318,150000,male,1,1,41,-1,-1,-1,-1,0,0,390,390,390,15080,780,0,390,390,15080,0,0,0,0
+4319,180000,male,2,1,35,-1,-1,-1,-1,-1,-1,1099,1099,1099,1099,0,1099,1099,1099,1099,0,1099,0,0
+4320,50000,male,1,2,25,0,0,0,-2,-2,-2,50401,46275,0,0,0,0,5000,0,0,0,0,0,0
+4321,150000,female,2,2,24,1,-2,-1,-1,-1,-1,0,0,3230,1085,10000,0,0,3230,1085,10000,0,0,0
+4322,30000,male,2,2,26,1,4,3,2,2,4,24386,23744,23090,22436,26886,30858,0,0,0,5000,5000,0,0
+4323,250000,male,1,1,37,-2,-2,-2,-2,-1,-1,-207,-207,-207,-207,11361,700,0,0,0,11568,700,0,0
+4324,300000,female,3,1,39,0,0,2,2,2,2,37672,40743,41226,40263,42788,41947,4000,1446,0,3179,0,3462,0
+4325,80000,male,2,1,30,0,0,0,0,0,-1,110692,105273,103223,97871,38640,14734,3500,4000,2600,3000,19707,50000,0
+4326,50000,female,3,1,58,0,0,0,0,0,0,50019,18458,19318,15949,14986,19401,1400,1229,687,2000,5000,1000,0
+4327,120000,male,3,1,36,-1,-1,-1,-1,-1,0,326,326,326,326,652,326,326,326,326,652,0,290,0
+4328,330000,female,2,1,39,8,7,6,5,4,3,377779,372355,365250,358145,352121,346216,0,0,0,0,0,0,1
+4329,140000,female,2,3,30,0,0,0,0,0,0,107060,104629,98453,96149,96500,96550,4598,4333,3381,3637,3645,3440,0
+4330,150000,female,2,1,50,3,2,0,0,-2,-1,3227,3029,3964,0,0,2322,0,1000,0,0,2322,0,0
+4331,330000,male,1,1,57,-1,-1,-1,-1,-2,-1,3166,-206,3429,0,0,749,552,5726,0,0,749,799,0
+4332,380000,female,1,1,34,2,2,2,2,2,2,322199,331518,337703,343612,351089,358401,16001,13150,13000,13150,13300,13000,0
+4333,50000,male,2,1,32,0,0,0,0,0,0,46253,46117,46919,17459,17825,18193,1998,3000,625,647,664,649,0
+4334,120000,female,1,2,26,0,0,0,0,0,0,104546,105326,111987,112652,114337,115105,4000,10000,4000,5000,4200,4500,0
+4335,150000,female,2,1,37,0,0,0,0,0,0,135211,142398,121570,130780,130780,0,10109,10000,10000,10000,20000,16100,0
+4336,130000,female,2,1,38,0,0,0,0,0,0,127626,128136,88423,90235,92154,85510,5400,3100,3100,3200,3000,3100,0
+4337,160000,female,2,2,27,0,0,0,0,0,-2,78592,80240,39835,41150,0,0,3700,1700,2000,0,0,0,0
+4338,30000,female,3,1,44,-1,-1,2,0,0,0,1072,5122,4440,4050,3660,3660,4440,0,0,0,0,0,0
+4339,370000,male,2,1,33,1,-2,-2,-1,2,2,0,0,0,361,211,3659,0,0,422,0,3448,0,0
+4340,180000,female,1,1,51,-1,-1,-1,-1,-1,-1,513,396,396,396,396,396,396,396,396,396,396,792,0
+4341,50000,male,2,1,54,2,2,0,0,0,0,48580,47112,30246,26953,27249,27521,0,1500,1000,986,986,996,0
+4342,170000,female,1,2,34,-1,-1,-1,-1,-1,-1,326,326,326,326,476,476,326,326,326,476,476,326,1
+4343,60000,female,2,1,25,0,0,2,0,0,0,34733,37460,36558,37945,38782,39582,3600,0,2000,1600,1600,1340,1
+4344,20000,male,2,2,34,-1,-1,-1,-1,0,0,13936,8643,1973,17711,13747,13901,8735,1973,17711,2000,5000,5000,0
+4345,20000,male,2,2,23,1,2,2,2,2,0,16332,18111,18325,18391,14235,18955,2500,1000,600,0,5000,1300,1
+4346,50000,female,1,2,25,0,0,0,0,2,2,35427,36307,36989,38559,39958,38313,2000,2000,3000,3000,0,3090,0
+4347,150000,female,3,2,52,0,0,-1,-1,-1,-1,5678,3608,694,-6,2266,1601,1010,696,0,2272,1605,3027,0
+4348,170000,female,2,1,34,0,0,0,0,0,0,166851,107434,99487,49017,48812,0,5000,5000,3000,3000,0,1219,0
+4349,30000,female,2,1,43,0,0,0,0,2,2,27862,29106,29784,29884,27833,29459,2000,1500,2000,0,3000,0,0
+4350,50000,female,1,2,25,1,-2,-2,-2,-2,-1,0,0,0,0,0,550,0,0,0,0,550,0,1
+4351,100000,male,2,2,25,-1,-1,-1,-1,-1,-1,416,416,0,416,416,1850,416,0,832,416,1850,0,0
+4352,500000,male,1,1,53,-1,-1,-1,-1,-1,-1,107782,10961,11525,3228,9146,2430,11016,11602,3244,9191,2442,7992,0
+4353,180000,male,1,2,35,-1,-1,-1,-1,-1,-1,326,326,10726,24104,326,326,326,10726,24104,326,326,326,0
+4354,280000,male,1,2,33,-2,-2,-2,-2,-2,-2,640,-160,32060,3901,1276,-2,0,32220,3920,1282,2,3446,0
+4355,50000,female,2,2,27,-1,-1,-2,-2,-2,-1,1500,0,0,0,1075,4249,0,0,0,1075,4307,0,0
+4356,360000,female,2,1,49,0,0,0,0,0,0,338321,329178,320709,310208,289883,279709,12323,22023,12023,10023,10823,7523,0
+4357,170000,male,1,1,44,-1,-1,-1,-1,-1,-1,6569,29039,1716,2442,14605,2895,29069,1721,2442,14605,2895,9608,0
+4358,90000,male,2,1,36,4,3,2,0,0,0,62737,61413,59823,29526,25903,26563,0,0,1300,1000,1000,1500,1
+4359,50000,female,2,1,25,0,0,0,0,0,0,49772,50261,50630,30192,30297,28541,2082,1726,1013,1061,1135,886,0
+4360,20000,male,1,1,24,-1,-1,-1,-1,-1,-1,625,702,316,316,316,316,709,316,316,316,316,316,1
+4361,220000,female,2,1,34,0,0,0,0,0,0,109815,91363,93091,91706,91748,93261,3634,3566,3394,3659,3700,3183,0
+4362,200000,female,4,2,25,-1,-1,-2,-1,-1,-2,2017,0,381,1060,429,0,0,381,1060,429,0,398,0
+4363,70000,female,1,2,29,0,0,0,0,0,0,66648,66638,57404,33045,30137,21832,3000,5137,968,2500,6000,5000,0
+4364,400000,female,1,1,28,0,0,-2,-2,-1,-1,181178,86663,62200,38000,150,193,4000,2000,1000,150,193,3690,1
+4365,90000,female,1,1,36,-1,-1,-2,-2,-2,-1,9999,0,0,0,0,1980,0,0,0,0,1980,0,0
+4366,50000,female,3,2,54,4,4,3,2,2,0,51300,50222,49097,50036,49145,47639,0,0,2000,0,1900,2000,1
+4367,60000,male,3,1,31,1,2,0,0,0,0,69311,60059,54851,38863,39135,39049,0,2293,1367,1407,1410,1400,1
+4368,50000,female,3,1,47,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+4369,100000,male,1,1,52,1,2,2,2,0,0,21509,20877,24122,23440,28843,31353,0,3600,0,6000,3000,0,1
+4370,180000,female,2,1,34,2,2,2,2,2,2,95008,97088,98093,99578,101828,103986,4500,3500,4000,4000,4000,4000,1
+4371,210000,female,1,1,42,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,35910,0
+4372,430000,female,1,1,35,-1,-1,-1,-1,-1,0,3642,492,0,925,12151,39673,492,0,925,12151,29000,30000,0
+4373,20000,female,2,1,41,-1,-1,-1,-1,-1,-1,2468,1077,1140,0,7014,7696,1087,1140,0,7014,800,0,0
+4374,40000,female,2,1,51,0,0,0,0,0,0,144397,147924,26974,22710,37977,39347,3988,2014,799,32001,2000,1000,1
+4375,180000,female,1,2,27,-2,-2,-1,-1,-1,0,12275,6491,37424,0,5758,18091,6491,37433,0,5758,18000,1000,0
+4376,140000,female,1,2,28,-1,0,0,0,0,2,13159,39243,41831,45893,10186,4887,30000,7000,8000,5000,0,9579,0
+4377,30000,female,3,2,45,0,0,0,0,-1,-1,28611,23312,19590,18447,15525,0,1352,1290,4150,15525,0,0,0
+4378,210000,male,1,1,36,0,0,-1,-1,-1,-1,102245,103640,792,396,0,546,5000,792,396,0,546,396,0
+4379,90000,male,2,1,35,8,7,6,5,4,3,112662,111077,108539,106001,103816,101878,0,0,0,0,0,0,1
+4380,160000,female,1,1,29,0,0,-1,-1,0,0,50989,25227,26666,839,26516,-150,1695,28800,839,26500,0,0,0
+4381,130000,female,2,2,27,1,-1,-1,0,0,0,-191,191,2898,4728,5149,5561,382,2898,1900,500,500,1000,0
+4382,10000,female,2,2,21,0,0,0,-1,-1,-2,8660,9756,8560,780,0,0,1800,1300,800,0,1900,0,1
+4383,170000,male,2,1,39,0,0,0,0,0,0,143339,125864,112300,110371,113685,98489,20000,6000,5000,5000,3000,2000,0
+4384,20000,male,2,2,29,0,0,0,0,0,0,15760,17092,17781,17289,17710,18217,1593,1282,700,700,800,500,0
+4385,50000,female,1,2,29,0,0,0,0,0,0,38242,28797,16068,16387,16882,17350,1799,2000,582,754,893,943,0
+4386,360000,male,1,1,59,-2,-2,-2,-1,0,-1,17154,4536,4500,71028,5019,28028,5095,5048,72133,25,28168,18758,0
+4387,50000,female,1,2,23,-1,-1,-1,0,0,-1,1413,-60,550,390,0,780,0,1000,230,0,780,0,0
+4388,80000,female,1,2,25,-1,-1,2,-1,0,-1,390,5640,390,780,390,390,5250,0,780,0,390,390,0
+4389,160000,male,1,2,32,-1,-1,-1,-1,-1,-1,5315,8145,2480,1920,2192,8187,8300,2480,1920,2192,8187,552,0
+4390,380000,male,1,1,37,0,0,0,0,0,0,173252,113001,74275,47723,67463,36751,10069,12712,10000,20000,16751,29000,0
+4391,220000,female,1,2,32,0,0,0,0,0,0,33710,33702,31682,33407,35128,37826,8959,1300,2000,2000,3000,20000,0
+4392,50000,male,3,2,54,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+4393,140000,female,2,2,50,0,0,0,0,0,2,95310,97902,100214,102496,108405,106649,4000,3800,3800,7600,0,4000,0
+4394,270000,male,1,2,48,2,0,0,0,0,0,56376,56911,56758,26872,23660,12053,2680,1420,15,42,2476,0,0
+4395,50000,male,2,2,26,0,0,0,0,0,0,51212,50165,19814,20210,20125,19010,2000,1296,692,709,698,1000,0
+4396,100000,female,2,2,25,1,2,3,4,4,3,53111,55650,59730,61693,59186,57949,4000,5600,3500,0,0,0,1
+4397,360000,male,2,2,28,-1,-1,-1,-1,-1,-1,9780,6672,11201,9718,8781,11846,6712,11244,9747,8806,11872,19035,0
+4398,20000,male,2,2,39,0,0,0,0,0,0,19592,19401,19979,20107,19472,19719,1334,1302,694,707,835,772,0
+4399,50000,male,2,2,27,0,0,0,0,0,0,50902,50716,49179,19747,19726,20140,2128,2300,1004,730,700,800,0
+4400,360000,female,2,2,46,1,2,0,0,0,0,361863,343268,285707,271529,276759,279953,0,11426,9781,10370,13899,9952,0
+4401,20000,female,2,1,50,1,-1,-1,-1,-1,0,-5,4995,2197,3047,4262,7163,5000,2200,6050,5000,3000,2000,0
+4402,100000,male,3,2,42,0,0,0,0,0,0,70542,72400,74192,75660,77444,79154,3000,3000,2703,2998,3000,6100,0
+4403,80000,male,1,2,27,0,0,0,0,-1,0,76817,74554,43727,16307,1755,470,3000,1400,326,1755,0,39080,0
+4404,140000,male,3,1,39,0,0,0,0,0,0,136918,128636,127237,94159,95794,89345,5000,5900,4000,3000,5000,3000,0
+4405,390000,female,1,1,28,0,0,0,0,0,0,64440,67503,68566,65411,66597,57361,5000,5007,5000,5000,5000,2000,0
+4406,350000,male,1,1,39,-1,-1,2,0,-1,0,325,2770,2247,1930,80392,78638,2770,0,8,80408,3142,2720,0
+4407,170000,male,2,1,48,-1,-1,-1,0,0,-2,390,390,780,780,0,0,390,780,0,0,0,0,0
+4408,270000,female,3,1,37,1,-1,0,0,0,0,265044,60052,68660,77184,85591,101945,73000,10000,10000,10000,20000,25000,0
+4409,460000,female,3,1,42,0,0,0,-2,-1,-1,43792,35047,35415,0,1619,3795,1600,1000,0,1619,3795,954,0
+4410,200000,female,3,2,37,-2,-2,-2,-2,-2,-2,3938,8556,4846,807,2183,210,8576,4850,1047,2183,210,0,0
+4411,450000,female,1,2,28,-1,-1,-1,-1,-1,-1,108,-58,14276,1346,1448,4005,0,14500,1346,1448,4005,166,0
+4412,240000,male,1,1,47,-1,-1,-2,-2,-2,-2,207,99,0,0,0,0,99,0,0,0,0,0,0
+4413,260000,female,1,2,29,-2,-2,-2,-2,-1,-1,1476,1476,1476,1476,20976,1476,1476,1476,1476,20976,1476,1476,0
+4414,110000,female,2,1,34,0,0,0,0,0,0,24147,25750,27012,27762,32126,37779,2000,2000,1500,5000,6400,0,0
+4415,50000,male,2,1,51,0,0,0,0,0,0,38434,39492,39394,33490,27316,0,1681,1583,1347,1183,0,0,0
+4416,250000,female,3,3,49,1,2,2,0,0,0,260260,262132,240448,186817,185488,184091,13000,0,6672,7000,7000,9000,0
+4417,380000,male,1,1,41,-1,-1,-1,-2,-2,-2,3907,13253,-4,-4,-4,-4,13345,0,0,0,0,0,1
+4418,110000,female,2,1,28,0,0,0,0,0,0,41799,43152,44625,45579,46843,48062,2027,2500,2000,2000,2000,1600,0
+4419,200000,female,1,1,44,0,-1,-1,-2,-2,-1,26814,367,0,0,561,3854,368,0,0,561,3878,3,0
+4420,500000,female,1,2,41,-1,-1,2,0,0,-1,10386,34000,28854,92952,50089,2165,28854,0,70000,32000,2165,41242,0
+4421,260000,female,2,1,35,0,0,0,0,2,0,70098,70972,77604,82681,81244,83268,2598,7835,6386,0,3795,4000,0
+4422,270000,female,2,1,38,0,0,0,0,0,0,60654,59464,54715,51796,53256,59733,3000,3019,5000,5000,10000,10000,0
+4423,150000,male,2,2,29,0,0,0,0,0,0,15453,18925,23590,27810,38000,0,4000,5003,5000,10190,0,0,0
+4424,30000,female,3,3,42,3,3,2,2,2,2,27669,26955,27425,28179,28545,27942,0,1200,1500,1100,0,1000,0
+4425,290000,female,1,2,46,0,-1,-1,-1,-1,0,289002,1332,21429,2228,156721,157203,1343,21542,2239,156733,7219,17512,0
+4426,200000,male,2,2,30,-1,-1,-1,-1,-1,-1,326,326,326,326,326,802,326,326,326,326,802,0,0
+4427,210000,female,1,2,35,-2,-2,-2,-2,-2,-2,552,-18,-18,-18,-18,-18,0,0,0,0,0,0,0
+4428,100000,female,2,1,49,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+4429,50000,female,2,1,45,0,0,0,0,0,0,45390,46210,46549,20084,20264,19064,2321,1660,3000,1004,1003,627,0
+4430,210000,female,3,2,56,0,-1,-1,-1,-1,0,27316,15316,15316,15623,11090,15316,15316,15316,15623,11090,10000,76826,0
+4431,240000,male,2,1,44,-2,-2,-2,-1,0,0,-9095,-30000,-10608,2657,4245,3392,10000,13000,13265,3392,1000,0,0
+4432,140000,female,2,2,25,0,0,0,0,2,0,33740,34154,21945,23581,23066,23531,1363,1952,2000,0,1000,1018,0
+4433,50000,male,2,1,49,0,0,0,0,0,0,35623,12601,10527,10679,10734,11550,1168,1500,1000,1000,1000,1000,0
+4434,360000,female,1,1,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,3220,1
+4435,180000,male,2,1,47,0,0,0,0,0,0,84973,89989,94895,98738,127382,155470,6000,6000,5000,30000,30000,20000,0
+4436,100000,male,2,2,36,8,7,6,5,4,3,110072,108478,105931,104554,102360,100413,0,0,1170,0,0,0,0
+4437,90000,female,2,1,29,0,0,0,0,0,0,5618,6645,7635,8020,8403,9504,1125,1115,500,500,1252,154,0
+4438,90000,female,1,1,37,-2,-2,-2,-2,-2,-1,1243,0,2366,-1438,-1438,66129,0,2366,1068,0,67567,2500,0
+4439,90000,male,2,1,52,2,2,2,2,2,2,90603,92152,86671,91280,85868,91047,3900,0,6800,0,6500,0,0
+4440,30000,male,3,2,25,-2,-2,-2,-2,-2,-2,780,0,390,749,390,0,0,390,749,390,0,805,1
+4441,300000,male,2,2,29,0,0,0,0,0,0,49833,49831,51818,50244,49484,53472,5000,5000,5000,5000,5000,5000,0
+4442,20000,male,3,1,36,0,0,0,0,0,0,18839,19919,20042,20204,19662,14218,1690,1203,755,701,600,115,0
+4443,30000,female,1,2,25,0,0,0,0,0,0,8341,10039,11560,16611,18179,19712,2000,2000,5611,2000,2000,1500,1
+4444,50000,female,1,2,27,0,0,0,0,0,0,12814,15588,17321,19026,20714,22210,3000,2000,2000,2000,2000,840,0
+4445,50000,male,3,1,45,-1,-1,-2,-2,-2,-2,1189,0,0,0,0,0,300,0,0,0,0,0,0
+4446,30000,female,1,2,22,0,0,0,2,3,2,8679,9570,11238,9453,9022,8237,1190,1858,800,0,0,500,1
+4447,60000,female,1,2,28,1,2,0,0,0,0,47262,46226,47557,48464,49532,50552,0,2100,2000,2000,2000,3000,0
+4448,200000,female,1,2,25,1,-2,-2,-2,-2,-1,0,0,0,0,0,476,0,0,0,0,476,288,1
+4449,450000,female,2,1,39,-1,0,0,-2,-2,-2,810,1810,0,0,0,0,1000,0,0,0,0,1040,0
+4450,140000,female,2,1,32,0,0,0,0,0,0,129653,116582,112170,102931,100179,102417,5820,4920,3600,3700,3900,3602,0
+4451,120000,female,2,1,47,0,0,0,0,0,0,112448,115646,115767,38070,39306,39200,6500,4300,1175,1658,784,0,0
+4452,270000,female,2,2,45,0,0,0,-1,-1,-1,7088,8139,8966,8294,3902,468,1173,1000,8294,3902,468,291,0
+4453,130000,male,1,2,46,0,0,0,0,0,0,110766,114977,120976,40177,41529,43734,6000,9000,2000,2000,3000,4000,1
+4454,50000,male,2,1,27,0,0,0,0,0,0,9837,3898,21682,20833,20289,19380,1010,21282,694,1000,700,400,0
+4455,220000,female,2,1,52,-1,-1,-2,-2,-2,-2,20208,5183,3627,2963,2256,-119,5209,3649,2977,2267,0,0,0
+4456,50000,male,2,1,26,0,0,0,0,0,0,28440,23228,21482,18029,18705,18698,1436,1162,2184,871,500,0,0
+4457,20000,male,2,2,36,2,0,0,-1,-1,-1,19597,35869,9066,309,3019,16496,1503,2036,309,3100,16890,500,0
+4458,110000,male,3,1,54,0,0,0,0,0,0,105449,107957,82407,70562,70982,71609,4500,3786,2666,2900,3100,2856,0
+4459,70000,female,1,2,36,0,0,0,0,0,0,75021,71101,73831,46898,48686,47171,2893,4231,8000,2500,1675,2000,0
+4460,380000,female,3,1,38,0,0,0,0,0,0,380781,389354,373512,304594,305275,303402,16750,14100,11000,11000,11100,13500,0
+4461,160000,male,4,2,26,-2,-1,-1,0,0,0,2810,16175,8632,25234,21234,567,16261,8641,20012,62,1,0,0
+4462,90000,female,2,2,29,-1,-1,-1,-1,-1,-1,18858,11056,3909,3506,4128,4254,11056,3916,3506,4128,4254,3438,0
+4463,130000,male,3,3,52,0,0,0,0,0,0,106140,69025,58860,45207,41556,42455,3003,2000,2000,2000,1590,2000,1
+4464,240000,female,1,2,26,1,-1,-1,-2,-1,-1,-11,3919,-23,-23,7859,-2,3930,0,0,7882,0,805,0
+4465,120000,male,3,1,32,2,2,2,2,2,2,67502,68842,69825,70891,72213,73786,3000,2700,2800,2600,2900,0,0
+4466,240000,female,1,1,44,0,0,0,0,0,0,188307,179988,184976,188934,196884,199267,6600,8000,7000,11000,7181,7236,0
+4467,300000,male,1,2,45,0,0,0,0,0,0,62296,64460,56439,53637,55981,58270,3000,3000,3000,3000,3000,3000,0
+4468,100000,female,2,1,40,0,0,0,0,0,0,26702,26616,26704,27640,30035,33697,2008,2000,2000,3000,5000,3000,0
+4469,200000,female,1,2,25,-2,-2,-1,0,-1,-1,6096,2886,8264,7776,2814,2610,2886,9288,0,2814,2610,2828,0
+4470,50000,male,2,1,39,0,0,0,0,0,0,39323,45625,38157,15966,15733,17703,7031,2013,3005,2007,5007,1003,0
+4471,100000,female,1,1,40,1,-2,-2,-1,2,2,-166,-482,-1114,880,414,1098,0,0,1994,0,1000,0,0
+4472,500000,male,1,2,39,-1,-1,-1,-1,0,-1,83528,-24702,23804,92715,6655,3966,472,113935,108041,33,3984,2122,0
+4473,20000,male,5,2,50,0,0,0,-1,-1,-2,19062,19242,14725,780,0,0,1333,1000,780,0,0,0,0
+4474,280000,female,1,2,39,-1,-1,-1,-1,-1,-1,1726,325,2001,1364,1313,1242,350,2001,1400,1320,1300,1500,0
+4475,160000,female,1,2,23,0,0,0,0,0,-2,151246,155926,113767,50531,-10,-5,10517,20258,20157,0,0,3570,0
+4476,30000,male,2,2,21,0,0,0,0,0,0,26587,25917,17072,15994,12017,5614,1385,1270,367,336,112,0,0
+4477,50000,male,1,3,45,0,0,0,0,0,0,20408,16422,14388,18804,23460,27870,6000,5000,5000,5000,5000,5000,0
+4478,20000,male,1,2,24,-1,-1,-1,-1,-1,-1,3808,4470,8176,7909,2948,1220,4515,8186,7913,3049,1624,3800,0
+4479,140000,male,1,2,32,0,0,0,2,0,0,50890,59395,73225,56999,61050,67086,9395,15000,0,5000,7086,6505,0
+4480,130000,male,3,2,27,0,0,0,0,0,0,89956,61868,63766,65839,67908,63530,2317,3000,3000,3000,5000,2305,0
+4481,100000,female,2,2,23,0,0,0,0,0,0,13530,14564,15561,18306,20594,26368,1258,1255,3000,3000,7000,1225,0
+4482,100000,male,2,2,25,0,0,0,0,0,0,86098,85014,86735,87321,82289,83850,3200,3155,3504,3001,3301,2839,0
+4483,50000,male,2,2,26,2,2,2,2,2,2,32976,34154,33311,35246,34548,36910,2000,0,2800,0,3100,0,1
+4484,360000,male,1,2,31,1,-2,-1,-1,-2,-1,0,0,1650,0,0,1650,0,1650,0,0,1650,0,0
+4485,10000,male,3,3,42,1,2,0,0,0,2,5674,5440,7968,8829,9685,9384,0,2800,1000,1000,0,1000,1
+4486,50000,male,3,1,65,0,0,0,0,0,0,48341,47465,47942,48418,49530,28085,2068,1545,1171,1658,1321,0,0
+4487,10000,male,2,2,24,2,0,0,0,0,0,223,3035,4810,7546,9260,10000,3000,2000,3000,2000,1000,0,0
+4488,210000,male,1,1,38,1,-2,-1,0,-1,-1,-9,-9,1739,1739,475,475,0,1748,0,800,475,975,1
+4489,320000,male,2,1,31,-1,-1,-1,-1,-1,-1,6927,10063,1876,396,11256,546,10063,1876,396,11256,546,396,0
+4490,70000,female,2,2,23,0,0,0,0,0,0,39935,40973,41989,42823,43718,45203,1683,1699,1533,1585,2210,1875,0
+4491,160000,female,2,2,24,0,0,0,0,0,0,52373,51839,39847,39114,39935,41269,1676,1940,1400,1451,2000,1533,1
+4492,180000,male,2,1,36,0,0,0,0,-1,-1,4524,6435,6894,8292,21866,0,2000,1200,2000,21866,0,0,1
+4493,70000,female,2,1,27,1,2,0,0,0,0,71570,68138,67682,50256,43353,44219,0,2705,2115,1583,1597,1500,1
+4494,280000,female,2,2,30,-1,-1,-1,0,0,-2,1373,207,3516,2769,0,0,207,3516,0,0,0,0,0
+4495,40000,male,1,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+4496,50000,female,3,2,51,2,2,2,2,0,0,33384,34554,35690,34817,36252,37645,2000,2000,0,2000,2000,2000,0
+4497,80000,female,5,1,25,0,0,0,0,0,0,75296,74792,75825,77454,78862,73442,4000,3400,4000,3349,2784,3000,0
+4498,30000,male,3,2,42,5,4,3,2,0,0,32755,31973,30937,29999,29214,29846,0,0,6,1054,1111,0,1
+4499,20000,female,2,1,24,-1,-1,-2,-2,-2,-2,750,0,0,0,0,0,165,0,0,528,0,0,0
+4500,130000,female,2,2,42,2,2,2,2,2,2,119378,121993,123503,124578,127434,130285,6000,5000,4600,5000,5100,4500,0
+4501,10000,male,2,2,25,-1,-1,-1,-1,-1,-1,1261,1261,390,390,390,0,1261,390,390,390,0,780,0
+4502,70000,female,1,2,25,0,0,0,0,0,0,68839,64027,61580,29435,26341,26949,3213,1659,2000,1107,1200,1100,0
+4503,280000,male,1,2,34,0,0,0,0,0,0,212093,220586,214180,226277,216716,232367,18685,15038,23084,11001,20000,10000,0
+4504,300000,male,1,1,34,0,0,0,0,0,0,66176,68108,70306,99217,142188,145013,3000,3500,30049,50000,5200,5000,0
+4505,50000,female,2,1,40,0,0,0,0,0,0,47374,47517,42672,23665,20085,20263,2200,2500,5946,3000,7000,600,1
+4506,230000,male,2,1,29,0,0,0,0,0,0,113736,99346,83649,46513,35306,36217,4028,3000,2000,2000,1500,2000,0
+4507,80000,female,2,1,39,0,0,0,0,0,2,63368,67331,75973,70283,73491,66976,5000,10000,2550,5100,0,2700,0
+4508,50000,male,1,2,38,-1,-1,-1,-1,-1,-1,390,390,390,390,390,5010,390,390,390,390,5010,390,1
+4509,470000,female,2,2,40,0,0,0,0,0,0,277185,282983,290274,294508,300646,306652,10257,11982,10536,10879,10971,11326,0
+4510,210000,male,2,2,39,0,0,0,0,0,0,33459,35911,40288,42605,43870,13750,3000,5000,3000,2000,1000,12000,0
+4511,200000,female,1,2,32,-1,-1,-1,-1,-2,-1,146,-3,670,0,0,868,0,673,0,0,868,4,0
+4512,50000,male,2,1,46,0,0,0,0,0,0,49566,49483,48495,28641,28846,29024,1968,1644,1013,1044,1045,1034,0
+4513,300000,female,2,1,37,2,0,0,0,2,0,51893,53056,54176,60363,59973,60399,2000,2000,7100,0,2000,994,0
+4514,500000,female,1,1,33,-1,-1,-1,-1,-1,-1,1110,1110,1416,1416,1416,1416,1110,1416,1416,1416,1416,5723,0
+4515,150000,female,2,1,36,-2,-2,-2,-2,-2,-2,48020,50048,88831,1931,26265,0,8000,40146,1941,26396,0,0,0
+4516,50000,male,2,2,25,0,0,0,-1,-1,-2,11391,8081,16297,1000,0,0,1286,10048,1003,0,0,0,0
+4517,270000,male,1,1,37,0,0,0,0,0,0,156346,159223,165480,76144,77944,76577,7000,9000,5000,3000,3000,3000,1
+4518,60000,female,2,2,27,1,2,2,2,0,0,49099,49817,50406,47771,48803,52190,1800,1710,0,1800,4200,0,1
+4519,200000,female,3,2,31,0,0,2,2,2,2,167358,175635,174261,179026,181658,185523,11000,3000,7001,5000,6200,10007,0
+4520,50000,female,2,2,23,0,0,0,0,0,0,32822,20669,4510,2893,2000,2800,1150,1000,300,400,800,0,0
+4521,140000,female,1,2,31,-2,-2,-2,-2,-2,-1,15953,24916,12174,3961,3070,2306,25148,12174,3961,3070,2306,450,1
+4522,120000,female,2,2,25,0,0,0,0,-1,-1,5259,4290,5192,380,441,425,1290,1261,300,441,425,989,0
+4523,20000,male,2,1,29,0,0,0,0,0,0,14275,15335,16223,15594,15920,15338,1297,1185,492,510,557,324,0
+4524,210000,female,1,2,30,-1,0,-1,-1,-1,0,23375,21829,11057,26520,27894,18772,20000,12000,27000,30000,10000,21000,0
+4525,70000,female,3,2,27,0,0,0,0,0,2,57879,54856,55972,56543,60179,59058,2600,2618,2100,4550,0,2340,0
+4526,230000,male,2,2,37,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+4527,270000,female,2,1,33,-1,-1,-1,-1,-1,-1,2323,5430,1152,56891,4866,9334,5434,1152,56891,4866,9533,1993,0
+4528,20000,male,1,2,56,1,-2,-1,0,0,2,0,0,17901,18217,20269,11180,0,17901,519,2210,0,0,0
+4529,120000,female,1,2,30,-1,-1,-1,-1,-1,-1,326,326,326,326,326,326,326,326,326,326,326,326,0
+4530,140000,female,1,2,24,0,0,0,-1,-1,-1,4679,3146,0,2000,4716,7485,1000,0,2000,4716,7485,10254,0
+4531,180000,female,2,2,33,0,0,0,0,0,0,153833,153648,145440,140057,132260,110427,7107,5002,4470,4620,4346,3800,0
+4532,190000,male,1,1,36,-1,-1,-1,-1,-1,-1,1779,1288,1655,1213,344,221,1288,1655,1213,344,221,28160,0
+4533,100000,female,2,2,29,2,2,2,2,2,2,80234,80369,83130,83961,85574,84039,2000,5001,3100,3100,0,6410,0
+4534,50000,female,1,2,26,1,2,0,0,0,0,42207,42226,38859,39475,40187,40992,2200,1962,1562,1500,1474,2300,0
+4535,150000,male,3,1,44,0,0,0,0,0,0,146277,127679,73323,74783,76360,77868,3952,2614,2631,2735,2740,2720,0
+4536,250000,female,2,1,38,0,0,0,0,0,0,255571,250002,253610,234205,238892,252563,10605,9327,8362,9000,18244,0,0
+4537,220000,female,1,1,24,2,3,2,2,2,0,184761,178939,183158,183890,179764,181627,0,10000,6300,0,6118,6097,1
+4538,200000,male,3,2,28,0,0,0,0,0,0,54663,46147,44095,25454,17651,18994,11000,3000,3000,2000,3000,10000,0
+4539,250000,female,2,1,44,0,0,0,0,0,0,47463,41059,35722,29492,23522,16815,3000,4000,3000,3000,2000,2000,0
+4540,280000,female,1,2,32,0,0,0,0,0,0,202506,197855,239059,282518,248238,210267,10547,80004,68410,7767,6308,5437,0
+4541,30000,male,3,1,64,2,2,2,0,0,0,13594,14078,14547,15304,16056,20196,1000,1000,1000,1000,4600,0,1
+4542,80000,female,2,2,29,0,0,0,0,0,0,89061,31367,34848,69990,36711,38103,4000,4000,2000,4000,2000,2000,0
+4543,380000,female,2,2,31,0,0,0,0,0,0,381530,385605,257188,145505,142529,229320,32640,18077,12005,10028,28888,25000,0
+4544,350000,female,2,1,32,-2,-2,-1,0,0,0,19637,239770,8111,198877,191248,183157,242247,8111,198748,7000,6509,7022,0
+4545,160000,male,1,2,48,-1,2,2,-2,-2,-2,23037,22260,0,0,0,0,0,0,0,0,0,0,1
+4546,70000,male,3,1,45,2,0,0,0,0,0,67505,61595,46920,47184,48058,48888,2600,2056,1700,2000,2000,2000,1
+4547,150000,male,1,1,33,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+4548,160000,female,1,1,39,0,0,2,0,0,0,43583,50028,48928,49812,50855,52354,7500,0,2000,2000,2500,2100,0
+4549,40000,male,2,2,27,0,0,2,0,0,0,26663,31589,31772,32146,33128,33923,5700,1000,1200,1500,1500,1900,1
+4550,350000,female,2,2,30,0,0,0,2,0,0,245211,255975,269446,219615,217851,222158,15000,20000,0,10000,8352,9500,0
+4551,50000,male,3,2,27,0,0,0,0,0,0,50577,46529,46791,47922,49482,0,2138,1400,3000,5000,0,0,1
+4552,220000,female,1,1,38,0,0,0,0,0,0,4438,7211,9948,10528,12412,13745,3000,3000,1000,2000,1500,0,0
+4553,200000,female,1,1,26,-1,-1,-1,-1,-1,0,6666,6666,6666,6666,11862,12501,6666,6666,6666,11862,7501,1000,0
+4554,390000,male,1,1,41,-1,0,0,-1,-1,0,7445,14439,7391,948,4592,2777,10038,1036,952,4601,13,2229,0
+4555,330000,male,1,2,32,-2,-2,-2,-1,-1,-1,28106,1323,-363,137,4094,607,2701,363,513,4107,607,0,0
+4556,100000,male,1,1,60,0,0,0,0,0,0,101761,101801,101863,101729,98103,99521,3856,3919,3986,3865,3760,3863,1
+4557,70000,female,2,1,58,0,0,0,0,0,0,138681,70341,23755,23835,25221,25780,3500,1508,588,1500,700,470,0
+4558,240000,female,1,1,41,0,0,0,0,0,0,126395,129371,132218,136003,139798,142574,5000,5000,6000,6000,5098,5281,0
+4559,30000,male,2,2,23,0,0,0,0,0,0,27275,26948,28183,25484,27062,28703,2000,2000,1400,2000,2100,2500,0
+4560,30000,female,2,1,43,2,2,2,2,2,2,15246,17838,17272,18131,17711,19007,3141,0,1434,0,1581,1705,1
+4561,160000,male,2,2,29,0,0,0,0,0,0,163982,161499,154469,121367,119910,117993,6150,5540,4205,4300,4500,4300,0
+4562,120000,female,2,1,40,0,0,0,0,0,0,22462,15692,19312,13262,16923,16903,5000,10000,5000,7000,5000,10000,0
+4563,10000,female,2,1,55,3,2,2,2,2,2,5358,6339,6111,7031,6780,7676,1200,0,1000,0,1000,0,1
+4564,470000,male,1,2,33,0,0,0,0,0,0,72083,68136,69036,71466,67538,70400,5031,5500,5000,5000,4000,5000,0
+4565,200000,female,2,2,26,-1,-1,2,-1,0,-1,3374,4053,2337,1904,548,1403,4053,0,1904,0,1403,0,1
+4566,50000,male,4,2,22,0,0,0,0,0,0,6514,7513,9981,10442,10496,10933,1500,3000,1000,600,1000,404,0
+4567,90000,female,1,2,29,1,-1,-1,-2,-2,-2,0,194,0,0,0,0,194,0,0,0,0,217,0
+4568,220000,female,1,1,35,-1,-1,-1,-1,-1,-1,288,392,-4,392,396,396,500,0,792,400,396,792,0
+4569,40000,female,2,2,23,-1,2,-1,-1,0,0,652,326,326,26370,24572,24918,0,326,26370,886,1075,830,1
+4570,200000,male,3,1,50,1,2,2,2,2,2,177088,172365,175766,171377,163943,162195,0,6998,4558,5921,4526,5014,1
+4571,120000,male,2,1,43,0,0,0,0,0,0,33131,33121,32222,32877,30587,25938,2000,1500,1000,1000,2000,1000,0
+4572,210000,male,1,1,43,-1,-1,-1,-1,-2,-1,880,724,844,-36,-916,1030,724,1000,0,0,3000,670,1
+4573,30000,female,2,2,22,-1,3,2,0,0,2,31176,30408,29205,29090,30121,28013,0,0,1013,2400,0,1200,0
+4574,110000,male,2,1,54,2,2,2,2,2,2,56839,58039,58792,59620,60819,62069,2700,2300,2400,2300,2400,0,1
+4575,280000,male,2,1,35,0,0,0,0,0,0,278948,278433,277620,275495,270350,260554,10609,10470,10002,9948,9475,9239,0
+4576,150000,female,1,1,31,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+4577,20000,male,3,2,49,0,0,0,0,0,0,15237,16030,17948,18647,19193,19721,1600,2500,1000,846,1000,593,0
+4578,80000,male,2,2,25,0,0,0,0,0,0,29820,24513,19664,19258,20842,16386,2306,2000,1000,2000,1500,29651,0
+4579,50000,male,2,1,43,2,0,0,0,0,0,30106,30566,30699,30038,29224,29346,1878,1641,1000,934,1109,960,1
+4580,170000,male,1,2,36,0,0,0,0,0,0,92480,94089,97286,97196,97227,101272,4000,5000,3000,4000,8000,4000,0
+4581,200000,male,1,1,45,1,-1,-1,-2,-2,-2,0,479,0,0,0,0,479,0,0,0,0,0,1
+4582,300000,male,1,2,38,-1,-1,-1,-1,-1,-1,390,390,390,374,284,1064,390,390,374,300,1170,1170,0
+4583,100000,male,2,1,46,2,2,2,0,0,0,17497,18219,17629,18036,18446,18840,1300,0,700,700,700,800,1
+4584,80000,male,1,2,28,1,2,-1,0,-1,-1,5431,1961,1646,3266,380,1951,0,1700,2000,380,1951,1900,0
+4585,30000,male,1,1,32,0,0,2,0,0,0,28401,31065,30031,29838,29651,1567,3434,0,597,593,31,0,1
+4586,80000,female,1,1,35,0,0,0,0,0,0,27560,22441,19960,6199,5623,6880,1701,2000,2000,1000,2000,3000,0
+4587,60000,male,1,2,30,-1,-1,-1,-1,-1,-1,264,264,264,264,264,264,264,264,264,264,264,0,1
+4588,110000,female,2,2,24,0,0,0,0,0,0,94597,96263,61195,28154,24773,21620,4260,2310,1010,980,900,750,0
+4589,10000,female,2,1,46,1,2,-1,-1,-1,-1,9841,9628,4060,4530,2140,1875,121,4060,4530,2140,1875,0,1
+4590,290000,female,3,2,32,0,0,0,0,0,0,21981,24610,27009,26671,24826,22287,3000,3000,3000,3000,3000,3000,0
+4591,30000,male,1,2,26,0,0,-1,-1,-1,-1,27172,27000,780,0,30525,0,1000,780,0,30525,0,0,0
+4592,60000,male,2,2,45,0,0,0,0,0,0,59475,60423,59674,29411,27730,26638,2500,1509,1000,1000,2000,1500,0
+4593,150000,male,3,1,49,0,-1,-1,-1,-1,-1,4029,4048,2842,3910,4697,1719,4054,2866,4082,4697,1735,0,0
+4594,750000,female,3,1,40,-2,-2,-1,-1,-1,-1,16372,15344,3329,38488,9777,66692,15420,3691,38679,9825,67024,76641,0
+4595,30000,male,2,1,29,0,0,0,0,0,0,10721,25066,13817,14983,15525,0,2000,1500,1400,1000,0,0,0
+4596,160000,female,2,2,51,-1,-1,-1,-1,-1,-1,6136,5932,4353,3746,5487,2702,5932,4353,3835,6934,3370,2276,0
+4597,50000,female,2,1,31,0,0,0,0,0,-1,50628,48748,46368,2443,6251,357,2350,3000,1000,6000,400,9844,1
+4598,50000,female,1,2,42,-1,-1,-1,-1,-1,2,1310,37073,7700,42038,42610,42096,37073,7700,42038,42096,587,9162,0
+4599,160000,male,2,2,30,2,2,2,2,2,2,75406,76907,78047,79362,81089,82796,3300,3000,3200,3152,3200,3100,0
+4600,150000,female,1,2,23,0,0,0,0,0,0,151669,152794,147323,112904,77642,78542,5900,5598,4440,2800,3000,3000,0
+4601,30000,female,2,1,42,0,0,0,0,0,2,27276,30470,27699,28257,30695,30059,3671,1500,1018,2900,0,869,0
+4602,350000,male,1,1,35,0,0,2,-1,2,2,19734,5338,3042,2418,2233,7176,3000,0,2500,0,5000,0,0
+4603,20000,female,1,2,24,0,0,0,0,0,0,18821,18714,18942,20179,20204,20239,2000,1300,1500,2500,1000,1000,0
+4604,50000,male,2,2,39,0,0,0,0,0,0,47206,8464,9799,10054,9736,9955,1500,1500,400,344,371,314,0
+4605,180000,male,3,1,27,0,0,0,0,0,0,12303,11757,11695,5891,753,21753,2000,1700,300,0,21000,1000,1
+4606,30000,male,3,2,23,2,0,0,0,0,0,29144,30419,30097,25887,25707,0,2033,1420,0,92,0,0,1
+4607,100000,male,2,1,52,0,0,0,0,0,0,55120,56636,58215,16809,24482,21849,2403,2875,1010,10844,1074,580,0
+4608,20000,male,2,2,24,1,2,2,2,2,2,11893,12906,12902,12398,13297,12934,1500,500,0,1100,0,1500,0
+4609,80000,male,1,2,29,0,0,0,0,0,0,73722,75323,64277,45455,42231,42804,3300,2500,1556,1600,1600,1600,0
+4610,150000,male,2,1,43,0,0,0,0,0,0,89488,89951,86961,79284,74531,78359,5016,5050,3026,5000,5012,4057,0
+4611,230000,female,1,2,30,-1,-1,-1,-1,-1,-1,754,-441,4410,0,711,5650,0,4851,0,711,5650,0,0
+4612,50000,male,1,1,25,0,0,2,0,0,0,5472,5891,6595,8400,4041,4815,1500,1000,2000,1000,1000,2000,0
+4613,210000,female,1,2,39,-1,-1,-1,0,-1,-1,3962,1772,3608,1918,1429,2381,1777,3613,5,1433,2387,2857,0
+4614,50000,male,2,3,41,0,0,0,0,0,0,52260,40893,81308,41463,40045,40845,1679,1640,1449,1454,1466,1526,0
+4615,240000,female,2,1,37,0,-1,-1,0,-1,-1,1854,1346,3195,1932,7363,1546,1346,3195,0,7383,1546,4390,0
+4616,500000,female,3,2,40,0,0,0,0,0,0,264961,237006,139311,128095,181304,219929,20078,30141,30000,60000,50000,30000,0
+4617,210000,male,2,2,28,0,0,0,-2,-2,-2,5373,6200,0,0,0,0,1000,0,0,0,0,0,0
+4618,160000,female,2,1,40,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,200,0
+4619,250000,female,1,2,48,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+4620,500000,female,1,2,46,0,0,0,0,-1,-1,20614,18050,15341,15985,1147,5492,5001,3007,8000,1147,5492,3000,0
+4621,100000,male,2,1,35,1,2,2,2,2,2,59121,57604,62635,64994,63827,67839,0,6000,4000,0,5100,2200,1
+4622,20000,female,2,2,26,0,0,0,0,0,0,16385,17518,19302,18818,19052,9097,1700,2484,1000,475,363,4000,0
+4623,30000,female,2,1,30,0,0,0,-2,-2,-2,14451,15525,0,0,0,0,1525,0,0,0,0,0,0
+4624,50000,female,1,2,27,0,-1,-1,-1,-1,-1,13301,1400,780,390,42958,44849,1400,780,390,42958,3500,0,0
+4625,160000,male,2,2,27,0,0,2,2,0,0,109405,118110,119697,116284,119248,122228,12000,5000,0,5000,4958,36000,0
+4626,50000,male,3,2,28,1,-1,-1,0,-1,-1,-9802,99,103,249,386,11504,10000,103,245,386,11504,2000,0
+4627,90000,female,3,1,25,-1,-1,-1,-1,0,-1,3363,174,1473,390,390,780,174,1473,780,0,780,0,1
+4628,20000,male,2,2,28,0,0,0,0,0,0,11449,12811,11779,12379,12879,14879,1582,1400,1000,500,2000,500,0
+4629,50000,male,1,1,44,0,0,0,0,-2,-2,35145,36275,37150,0,0,0,2000,1871,0,0,0,0,0
+4630,230000,female,3,2,39,1,2,0,0,0,-2,11391,10923,13554,12134,0,0,0,3200,0,0,0,0,0
+4631,150000,male,2,2,31,3,2,2,0,0,2,76113,77728,75888,77017,77706,79274,3400,0,2960,3100,3000,2711,0
+4632,50000,male,1,2,45,0,0,0,0,0,0,48719,49966,32538,20270,19992,20054,2212,2503,693,1000,1000,1000,0
+4633,280000,female,1,2,36,-1,-1,-1,-1,-2,-2,27290,0,720,0,0,0,0,720,0,0,0,0,0
+4634,500000,female,1,1,37,0,0,0,0,0,0,315816,267100,277636,287998,298343,308378,10000,15000,15000,15000,15000,15200,0
+4635,90000,female,2,1,47,-1,-1,-1,-1,-1,-1,1887,43542,12148,880,10880,880,43542,12148,880,10880,880,1080,0
+4636,360000,male,1,2,29,-1,0,0,0,-1,-1,64606,44466,40165,20733,12525,7482,5135,20856,103,12587,7518,6412,0
+4637,140000,male,2,2,50,0,0,0,0,0,-2,98668,88727,27203,27209,-20006,-30177,4410,1804,14000,10968,0,82000,0
+4638,140000,male,1,2,44,-1,-1,-1,-1,-1,-1,5287,5717,7146,5930,5280,5930,5717,7146,5930,5280,5930,0,0
+4639,230000,female,1,2,44,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+4640,50000,female,2,2,25,0,0,2,0,0,0,39033,37002,21933,16137,16030,15373,6455,0,1500,3000,5000,5000,0
+4641,130000,female,2,1,50,-1,-1,-1,-1,-1,-1,1504,1027,2172,836,836,0,1027,2172,836,836,0,2508,0
+4642,330000,female,1,2,44,0,0,2,0,0,0,243621,259517,253863,257535,262753,268145,21400,0,9400,9542,9766,9786,1
+4643,210000,male,1,2,30,-1,-1,-1,-1,0,0,4830,0,1000,15385,20302,25112,0,1000,15385,5302,5112,4213,0
+4644,10000,female,1,1,27,2,0,0,0,0,2,4920,5937,6945,7088,8108,8264,1256,1264,407,1291,435,0,0
+4645,50000,female,2,1,54,0,0,0,0,0,0,49320,49724,50218,18983,17435,17057,1925,2152,800,610,620,900,0
+4646,100000,female,1,1,46,0,0,0,2,0,0,39245,41602,47885,46817,48400,51588,3000,7000,0,2500,4000,0,0
+4647,70000,female,3,1,26,0,0,0,0,0,0,65763,38209,27874,28439,26590,29043,3000,2000,955,3000,3000,790,0
+4648,50000,female,2,1,45,0,0,0,0,0,0,40650,42718,45047,45632,46535,47351,2850,3160,1740,1748,1650,3530,0
+4649,170000,female,1,1,28,0,0,0,0,-1,-1,20302,14653,7234,9908,3205,60,3000,1000,5000,3205,60,0,0
+4650,100000,female,2,1,50,2,2,2,2,2,2,44078,45077,47837,48678,48420,48888,2000,3841,1900,1900,1800,2000,1
+4651,80000,male,1,1,36,0,0,0,0,0,-2,60110,51784,50071,47099,41063,6408,2186,1491,1099,1243,6408,6825,0
+4652,150000,male,3,2,27,0,0,0,0,0,0,77298,69832,66692,67518,64210,60747,3029,4000,2258,2500,2500,1624,0
+4653,50000,female,3,2,23,0,0,0,0,0,0,26956,27596,28192,28356,28554,28718,1462,1448,1002,1032,1024,1028,0
+4654,80000,male,2,1,34,1,-2,-1,-1,-1,-2,0,0,862,41300,0,0,0,862,41300,0,0,10000,0
+4655,120000,female,1,2,24,0,0,0,0,0,0,78304,79348,81881,82628,84404,86096,2900,3850,3000,3100,3088,3151,0
+4656,470000,male,3,1,47,0,0,0,0,0,0,163529,129341,106390,82181,79402,72121,4700,30002,20000,40000,35000,40000,0
+4657,80000,female,3,1,52,0,0,0,0,0,0,18100,6826,7582,8082,8082,8082,1244,1000,500,0,0,0,0
+4658,60000,male,1,2,30,0,0,2,0,0,0,46307,51232,50109,50979,52998,54264,6000,0,2000,3000,2300,2000,0
+4659,80000,male,2,2,42,0,0,0,0,0,0,75264,75919,78078,28868,29174,29444,3200,4613,1100,1500,1500,966,0
+4660,50000,male,2,1,57,0,0,2,0,0,0,25551,22957,18027,13836,14966,13220,2733,759,500,6326,3259,2281,1
+4661,500000,male,1,1,43,0,0,0,0,0,0,403800,404640,412082,417759,428608,421871,17000,16500,15000,19000,18032,5000,1
+4662,110000,male,2,2,26,0,0,0,0,0,0,49732,46766,41796,44251,42921,37748,2300,2000,3000,3000,2000,10000,0
+4663,80000,female,2,1,44,0,0,0,-2,-2,-2,40769,41150,0,0,0,0,2150,0,0,0,0,0,0
+4664,50000,male,2,2,27,2,2,2,2,2,2,48655,45570,44015,36724,45751,46497,460,5021,0,10000,2005,37,1
+4665,400000,female,1,1,44,4,3,2,0,0,-1,278863,275153,269528,269278,269278,1976,0,0,150,0,3355,5688,1
+4666,90000,female,1,2,29,0,0,0,0,0,0,90749,90595,89059,88822,90978,89363,3481,5167,3300,3615,3217,3500,0
+4667,150000,female,5,1,53,0,0,0,0,0,0,135903,137719,144913,135063,134417,134490,7474,14004,4876,4750,5090,4594,0
+4668,360000,female,1,1,35,-1,-1,-2,-2,-2,-2,10621,0,0,0,150,137,0,0,0,150,137,0,0
+4669,170000,male,3,1,29,0,0,0,0,0,0,165027,168990,172307,35234,32869,33862,7200,7500,1200,1200,1500,1300,0
+4670,110000,male,3,2,37,2,0,0,0,2,0,103356,85352,55489,49958,50524,50361,2700,1827,5400,1473,2100,1848,1
+4671,220000,female,1,2,29,0,0,0,0,0,0,224852,224416,173565,176156,175745,160362,10235,8000,7000,7000,7000,7000,0
+4672,200000,female,2,1,36,0,0,0,0,0,0,198807,200616,202228,198794,203070,161002,10700,8000,7500,8200,10000,29000,0
+4673,500000,female,1,2,47,-2,-2,-2,-2,-2,-2,0,3270,30760,143791,-200,-200,3270,30760,143791,0,0,0,0
+4674,340000,male,1,1,48,0,0,0,0,0,0,321046,329563,335012,197797,201935,140812,13690,12693,6100,6300,5100,5400,0
+4675,180000,female,2,2,32,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+4676,490000,male,1,2,44,-1,-1,-1,-1,-1,-1,2920,4040,3649,8343,6641,5779,4060,3659,8357,6660,5796,4736,0
+4677,60000,female,2,2,26,0,0,0,0,0,0,56146,56929,55009,30181,41528,21069,2314,1459,914,1900,800,932,0
+4678,250000,male,1,2,30,-2,-2,-2,-2,-2,-2,2729,2538,6244,1297,1763,1907,2543,6247,1300,1766,1912,1000,0
+4679,20000,female,2,2,30,2,0,0,0,0,0,15997,17336,18345,18643,19094,19224,1600,1602,900,900,636,744,1
+4680,170000,male,3,1,39,1,2,2,2,0,0,171062,166870,165156,161137,164501,166064,0,13000,0,6000,12400,5700,0
+4681,160000,female,3,2,37,2,2,0,0,0,2,16626,16075,17490,20724,23952,23859,0,2000,3539,3566,446,3000,1
+4682,80000,female,1,2,25,-1,-1,-2,-2,-2,-2,1672,0,0,0,0,0,0,0,0,0,0,0,0
+4683,380000,female,1,1,36,-1,-1,-1,-1,-1,-2,8183,10554,5453,739,-8632,-11922,10617,5478,784,14,380,253,0
+4684,70000,female,3,1,33,0,0,0,0,0,0,71230,65305,50178,29969,30081,29380,2500,3108,2000,1048,1095,940,1
+4685,80000,male,1,2,29,0,0,0,0,0,0,78038,79183,81356,63039,64371,65650,3000,3500,3500,2500,2351,2441,0
+4686,380000,male,2,1,58,0,0,0,0,0,0,369699,331755,303016,290019,294689,301491,12172,11095,11007,11000,12006,11000,0
+4687,230000,female,1,2,24,0,-1,-1,-1,-1,0,14979,2480,1434,1420,9225,19013,2480,1434,1420,9225,10000,15000,0
+4688,130000,male,2,2,28,2,2,2,0,0,0,134505,135624,129959,93360,90040,89873,6200,0,3500,3238,3216,3207,1
+4689,160000,female,1,1,35,-1,-1,-2,-2,-2,-2,2851,0,0,0,0,0,0,0,0,0,0,0,0
+4690,50000,female,3,1,42,0,0,0,0,0,0,44332,25913,19057,18788,18108,15256,8802,1500,2000,1000,2000,2000,0
+4691,180000,male,1,1,45,2,2,2,0,0,0,106462,113728,98314,94552,92422,63022,10000,0,10000,3000,5000,4000,0
+4692,220000,female,2,2,31,0,0,0,0,0,0,75451,78094,80680,81944,83963,85930,4000,4000,3000,3000,3000,3000,0
+4693,200000,female,3,1,41,1,-1,-1,-1,0,-1,0,340,0,148,148,198,340,0,148,0,198,7296,1
+4694,520000,male,3,1,41,2,2,0,0,0,0,435924,366194,330211,251920,256512,262474,0,12620,8758,9047,9959,10500,1
+4695,30000,male,2,2,46,0,0,0,0,0,2,12485,13119,13716,13598,16256,16442,1221,1208,480,3650,600,0,1
+4696,150000,female,2,3,41,1,-2,-2,-1,-1,-1,0,0,0,3355,962,821,0,0,4026,962,821,380,0
+4697,210000,female,2,1,32,-1,-1,-1,-1,-1,-1,733,737,737,407,737,407,737,737,407,737,407,1232,0
+4698,50000,female,2,2,36,2,0,0,0,0,0,42380,40288,32631,29968,29092,29977,1901,1744,1027,1033,1345,1000,1
+4699,20000,female,2,1,37,0,0,0,0,0,0,17843,18833,17830,18184,18565,19076,1280,1276,630,653,798,581,0
+4700,290000,male,1,1,44,-1,-1,-1,-1,-1,-1,19213,33274,17495,1528,4176,189,33548,17732,1862,4188,189,7324,0
+4701,50000,female,2,2,32,1,-1,0,0,-1,-1,30382,45888,48599,-250,12122,3685,54608,7060,112,32132,11304,52681,0
+4702,130000,female,3,1,42,0,0,0,0,0,0,127524,127839,128380,97713,96245,95779,5051,5101,3600,3501,3800,3412,0
+4703,60000,male,2,2,24,0,0,-1,0,0,-1,54809,-827,1188,792,0,27248,0,2188,0,0,27248,1000,0
+4704,20000,male,1,2,25,0,0,2,2,2,2,11394,14367,13844,14614,14733,14823,3600,0,1300,500,505,37,0
+4705,160000,female,2,2,35,0,0,0,0,0,0,124459,130916,132179,135030,135656,135448,10000,5000,4854,10000,6000,4000,0
+4706,250000,female,3,1,39,-1,-1,-1,0,-1,-1,5086,14180,49453,10989,2975,4099,14180,49453,0,2975,4099,6470,0
+4707,80000,male,3,1,38,0,0,0,0,0,0,19277,20060,20977,20695,18587,20767,1400,1306,1019,685,2500,0,0
+4708,60000,female,2,1,33,0,0,0,0,0,0,54660,49907,44057,27510,28086,29119,1879,1500,1000,1019,1500,1000,0
+4709,80000,male,2,2,30,0,0,0,0,0,0,13793,67840,61546,55294,40868,33420,63023,3010,3053,2013,2015,3019,1
+4710,60000,male,2,2,25,2,2,2,0,0,0,60323,60729,56473,28603,22191,20750,2000,0,1135,1822,1500,1500,0
+4711,410000,male,1,1,38,-1,-1,-1,-1,-1,-1,10867,2719,0,11900,478,387,2719,0,11900,478,387,0,0
+4712,240000,female,1,2,34,0,0,0,0,0,0,14038,25558,26526,28082,29695,31223,12000,1500,1800,1860,1800,2000,0
+4713,30000,male,3,2,46,3,2,0,0,0,0,13784,13277,13984,14350,14650,15156,0,1234,600,532,750,825,1
+4714,200000,female,2,2,31,0,0,0,0,-2,-2,8350,4750,5134,245,56,167,2001,1001,501,201,501,501,0
+4715,180000,female,2,1,46,1,2,0,0,0,0,35916,30711,27555,26574,23123,30680,1711,1300,7504,1123,13000,0,0
+4716,100000,male,2,2,32,-1,0,0,0,0,0,88550,91724,94799,97861,104634,92537,5000,5000,5000,9000,10000,5000,0
+4717,50000,female,5,2,42,0,0,0,0,0,0,50806,48798,29003,28911,28601,29215,1545,1454,1019,1039,1091,1015,1
+4718,60000,female,3,2,45,-1,-1,-1,-1,-1,-1,1876,1876,1876,1876,1876,1876,1876,1876,1876,1876,1876,1876,1
+4719,50000,female,1,2,26,0,0,2,2,2,2,5800,8189,7909,9767,9466,11300,2500,0,2000,0,2000,400,1
+4720,240000,female,1,1,34,-2,-1,-1,-2,-2,-2,597,6449,626,626,626,626,6507,626,626,626,626,626,0
+4721,220000,female,1,2,29,0,0,0,0,0,0,47944,44914,46446,37604,15540,20330,5000,5008,7000,4000,5000,150,0
+4722,40000,male,3,2,42,-1,2,-1,0,0,-1,1978,1415,1748,832,416,1851,3,1749,0,0,1851,0,0
+4723,80000,female,1,2,23,0,0,0,0,-2,-2,71487,55641,24987,-600,-600,-600,2157,1500,0,0,0,0,0
+4724,320000,male,2,2,52,-1,-1,-1,-1,-1,-1,1122,5000,396,1176,396,396,5000,792,1176,396,396,39316,0
+4725,420000,male,2,1,43,0,0,0,0,0,0,44670,60376,30099,66049,61043,62054,30253,20016,40015,30004,3000,3224,0
+4726,500000,male,2,1,48,-1,-1,-1,-1,-1,-1,28352,35294,74846,37985,33050,22185,35465,75212,38169,33209,22289,22289,0
+4727,290000,female,2,2,24,0,0,0,0,0,0,145341,136849,122627,115857,101472,98069,7000,6000,5024,5000,5000,10000,0
+4728,190000,male,1,1,45,0,0,0,0,0,0,181814,172493,166982,155621,142439,133742,7035,6000,6000,10000,5000,5000,0
+4729,100000,male,1,2,33,2,0,0,0,0,0,101329,103532,100485,101552,100752,100652,3900,6000,3900,4100,17000,3750,1
+4730,230000,female,2,2,26,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,8618,0
+4731,50000,male,2,1,36,1,3,2,0,0,2,19606,19017,18409,18823,20379,18720,0,0,1000,2000,0,1000,0
+4732,210000,male,2,1,43,0,0,0,0,0,0,47025,45456,44048,15398,8657,3180,2300,1326,400,230,100,112136,0
+4733,90000,female,2,2,24,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+4734,480000,male,3,1,56,0,0,0,0,0,0,103497,105310,107013,106039,108188,109691,5300,5300,4000,5000,4000,5200,0
+4735,120000,male,1,2,41,1,-2,-2,-1,0,0,-8,-208,-408,57392,58805,60200,0,0,58000,2000,2000,0,0
+4736,160000,male,2,2,28,1,2,2,2,2,2,162761,164692,159948,161469,162129,154704,6000,14,12000,6000,0,11318,0
+4737,110000,male,2,1,27,1,2,2,2,2,2,46657,48615,49519,48421,50644,51662,3000,2000,0,3000,2000,3000,0
+4738,260000,female,2,1,60,1,-2,-1,-1,-2,-2,-20,-20,2000,0,0,0,0,2020,0,0,0,0,0
+4739,80000,male,1,2,24,-1,0,-1,2,-1,0,2130,3100,173,173,3435,11962,1010,173,0,3438,10004,5500,0
+4740,50000,male,2,1,58,-1,-1,-1,-1,-1,-1,1956,2060,4904,2056,2515,1464,2060,4904,2056,2515,1464,1515,0
+4741,50000,female,2,1,45,0,0,0,0,0,0,35116,26171,25088,21090,21749,22386,1441,1500,756,1000,1000,829,1
+4742,100000,female,2,2,29,0,0,0,0,0,0,75012,77784,73535,72067,59495,56850,4000,3105,4069,3000,2500,2000,0
+4743,20000,male,3,1,56,1,2,0,0,2,2,8766,8481,13318,15096,14717,16159,0,5000,2000,0,2000,0,1
+4744,260000,female,1,1,44,1,-1,-1,-2,-1,2,0,6500,0,0,2223,2056,6500,0,0,2223,0,60934,0
+4745,680000,female,1,1,42,0,0,0,0,0,0,189514,188883,190076,181957,182226,177731,8000,9000,7000,7000,7000,7000,0
+4746,50000,male,2,2,25,-1,-1,2,0,0,0,1789,50005,48731,46882,500,0,48731,0,2102,0,0,0,0
+4747,170000,female,1,2,27,0,0,0,0,0,0,118801,108980,112125,109579,107030,101130,4000,5300,3800,3880,3500,3400,0
+4748,210000,female,2,1,37,-1,-1,-1,0,0,0,326,326,978,652,326,0,326,978,0,0,0,652,1
+4749,500000,male,1,1,51,-2,-2,-2,-2,-2,-2,10063,10166,11579,68712,26476,8974,10395,11888,88612,26476,8974,11522,0
+4750,180000,female,1,1,45,0,0,0,2,0,0,18472,20546,24956,24262,24782,26208,2690,5100,0,1058,2000,3000,0
+4751,340000,female,2,1,37,1,-1,-1,-1,0,-1,-653,2094,1256,845,2149,696,3254,1256,845,2000,696,696,0
+4752,160000,male,3,2,30,0,0,0,0,0,0,160388,175167,127848,96066,93974,40170,142159,3592,7317,2312,1637,1074,0
+4753,30000,female,2,1,22,2,0,0,0,0,0,26846,27718,28067,28334,28984,14769,2000,1500,1000,800,728,1000,1
+4754,230000,female,2,1,44,0,0,0,0,0,0,205938,209941,173679,92937,94552,76849,8476,6593,2966,3135,2956,2040,0
+4755,30000,male,3,2,22,2,0,0,0,0,0,28328,29505,25362,19493,5765,0,1704,1250,390,115,0,0,0
+4756,480000,male,2,2,33,-1,-1,0,0,0,-1,57732,55379,71063,60155,66078,64958,55614,47003,30171,40282,115224,12973,0
+4757,360000,male,1,1,44,-1,-1,-1,-2,-1,-1,16731,4840,-16,-16,3267,3438,4864,0,0,3283,3455,0,0
+4758,500000,male,1,1,50,1,2,2,2,2,2,74850,76463,77611,78735,80430,82068,3400,3000,3000,3100,3110,0,1
+4759,220000,male,1,1,37,-1,-1,0,-1,-1,2,17039,7113,9574,1727,4201,622,7540,9571,1739,4918,0,24037,0
+4760,100000,female,1,2,29,3,2,0,0,2,0,87791,85548,85391,50605,49666,50689,0,2500,5864,0,2000,2000,1
+4761,200000,female,2,2,31,1,-2,-2,-1,-1,-2,0,0,0,1500,0,0,0,0,1500,0,0,0,0
+4762,200000,male,1,2,40,0,0,0,0,0,-1,193048,193926,198233,200350,200390,19959,6410,6342,4007,4008,19959,1000,0
+4763,90000,female,2,2,23,0,0,0,0,0,0,91653,88619,90298,91343,90887,90858,4200,4100,3307,3405,3311,6204,0
+4764,50000,male,2,2,24,0,0,0,0,0,0,27963,28715,29381,29140,25022,29608,2001,2001,1014,1006,7004,1003,0
+4765,80000,female,2,1,42,2,2,2,2,2,2,45691,46662,47595,48312,49392,50426,2000,2000,1800,2000,2000,1900,1
+4766,260000,female,1,1,48,0,0,0,-2,-2,-2,8339,8333,0,0,0,0,5000,0,0,0,0,0,0
+4767,80000,female,3,1,25,0,0,0,0,0,0,61943,61458,57045,50652,48476,49815,2215,1900,1800,1920,2300,1485,0
+4768,20000,male,1,2,23,1,-2,-2,-2,-2,-2,-348,-738,-738,-1518,-1518,-1518,0,0,0,0,0,0,1
+4769,50000,male,2,2,53,1,-1,-1,-1,0,-1,0,3333,0,8796,6346,3600,3333,0,8796,1000,4000,0,0
+4770,90000,female,1,2,29,0,0,0,0,0,0,92464,91709,92412,91297,91790,91377,3600,4331,3218,3613,3300,3519,0
+4771,290000,male,2,1,30,0,0,0,0,0,0,351890,254163,250180,236027,221443,198031,11000,8607,8000,8525,8476,10000,0
+4772,20000,female,3,1,30,-2,-2,-2,-2,-2,-1,18920,20030,21408,21974,22391,27189,1700,2000,1200,1000,12000,1000,0
+4773,230000,female,1,2,36,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+4774,360000,female,2,2,34,1,-2,-2,-1,0,0,0,1680,0,5950,6352,6563,1680,0,5950,500,317,1150,0
+4775,50000,male,2,2,40,0,0,0,0,0,0,48331,49163,49754,19169,19480,19569,2300,2200,1000,1000,800,700,1
+4776,80000,male,2,2,36,-2,-2,-2,-2,-2,-2,59223,26241,10387,74864,74305,0,1141,10725,74864,1486,0,0,0
+4777,100000,female,2,2,56,0,0,2,0,0,0,97549,102864,98969,70352,68186,68538,9300,0,2500,2700,2700,2600,1
+4778,390000,female,1,2,28,0,0,0,0,0,0,286888,291645,277888,175268,167781,147878,11000,11000,5600,5700,5600,3400,0
+4779,120000,male,2,1,52,2,0,0,0,0,0,107269,106791,105262,46605,45590,46204,4449,2731,3000,5000,3000,3000,0
+4780,20000,female,2,2,35,1,3,2,0,0,0,20971,20360,19583,19575,16624,0,0,0,392,332,0,0,0
+4781,150000,female,2,2,24,2,2,2,-1,-1,-1,63486,66741,744,5714,809,2315,4330,3,5762,813,2318,1616,1
+4782,20000,male,2,1,38,0,-1,2,0,0,-2,16828,20192,19414,19606,0,0,20192,0,392,0,0,0,1
+4783,20000,male,1,1,44,0,0,0,0,0,0,17974,32768,16057,14189,13265,12214,2000,1506,1000,800,1000,1000,0
+4784,250000,male,1,2,44,0,0,0,0,0,0,98727,102134,106434,107673,109780,113961,5000,6000,4500,4000,6000,4500,0
+4785,230000,female,2,2,25,0,0,0,0,-1,0,19225,16375,11864,10004,62349,52791,2000,2000,5000,65349,2000,2000,0
+4786,20000,male,3,1,40,0,0,0,0,0,0,20167,37198,17858,16400,14711,18691,1308,2466,555,583,4275,973,0
+4787,80000,female,2,1,41,0,0,0,0,0,0,21709,22432,23693,24089,24832,25269,1378,1639,1089,1132,1000,1100,0
+4788,310000,female,2,2,32,0,0,0,0,0,0,51007,50644,50109,49339,49177,48754,2200,2100,1700,2000,1800,2000,0
+4789,480000,male,1,2,49,0,0,0,0,0,0,456668,424843,325772,320760,325841,331602,14706,15377,10481,11003,11303,11329,0
+4790,20000,female,1,2,24,0,0,-1,-1,-2,-2,16199,0,187,-18,-18,-18,0,187,0,0,0,0,0
+4791,50000,male,3,1,22,0,0,0,0,0,0,46450,47599,48456,44546,43256,13342,2200,2016,2009,2092,1020,1018,0
+4792,190000,male,2,1,35,6,5,4,3,2,0,254951,237094,218603,202639,199480,188113,0,0,0,0,142000,7000,1
+4793,50000,male,2,2,41,0,0,0,0,0,0,45284,43951,47169,19096,19652,18889,1844,4562,667,847,700,655,0
+4794,50000,female,2,2,29,2,2,2,0,0,0,8281,8998,9695,11521,12331,13125,1000,1000,2000,1000,1000,1000,1
+4795,50000,male,2,1,38,0,0,0,0,0,0,22619,19055,20161,20553,18933,18855,2000,2000,1000,1000,1000,2000,0
+4796,300000,female,2,1,45,-1,-1,-1,-1,0,-1,41051,70951,18911,15982,2665,57096,71277,19003,16050,2659,54394,52000,0
+4797,60000,male,2,1,33,0,0,0,0,0,0,42246,38923,32532,27780,29280,39976,2008,3004,3003,2000,1064,2000,0
+4798,260000,male,1,2,28,1,-1,-1,-1,-1,-1,-1197,37785,3780,3202,3754,848,40000,3780,3202,4000,848,5795,0
+4799,190000,male,1,2,27,1,-1,0,0,0,0,-4370,82387,83701,85035,86482,88164,87998,3017,3029,3127,3433,3356,0
+4800,500000,male,3,3,53,0,0,0,0,0,0,415022,421996,426103,125218,126650,114473,12602,11000,4711,6000,11000,10000,0
+4801,300000,female,1,2,31,0,0,-1,-1,0,0,60700,33843,5045,10288,12565,6947,5000,5045,10288,5000,5000,10000,0
+4802,50000,male,2,2,43,0,0,0,0,0,0,50665,50854,47862,20246,20321,20387,1940,1407,704,730,796,520,1
+4803,50000,female,3,1,27,-1,0,0,0,3,2,29321,30048,31396,35045,34203,34743,1503,1851,4500,0,1250,0,1
+4804,130000,female,2,1,42,0,0,0,0,0,0,24565,22446,23245,27410,12085,9535,5000,2000,5000,3000,6000,2280,0
+4805,80000,male,1,1,38,-1,-1,-2,-2,-2,-2,604,0,0,0,0,0,0,0,0,0,0,0,0
+4806,50000,male,2,3,37,0,0,0,0,0,0,44828,43746,43122,43803,41425,42536,2005,2056,1737,1501,1797,1680,0
+4807,50000,female,2,2,31,0,0,0,0,0,0,40019,20394,19597,17830,18397,19064,2006,1519,1000,1000,1000,1000,0
+4808,120000,female,1,2,27,0,0,0,0,0,0,70835,59986,60779,62958,57763,53004,3000,2500,3000,2000,2000,2500,0
+4809,220000,female,1,2,33,-1,-1,-1,-1,-1,-1,3217,11428,16838,22237,10684,4262,11435,16876,22237,10684,4262,6500,0
+4810,50000,female,1,2,35,0,0,0,0,0,0,51505,50581,48280,46978,46657,48233,2500,2200,2000,2000,5000,2000,0
+4811,90000,female,1,2,29,0,0,0,0,0,0,88254,89080,89613,89532,90362,94337,4200,4000,3307,3453,6730,0,0
+4812,360000,female,2,2,43,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,84216,0
+4813,280000,female,2,1,49,0,0,-2,-1,0,-1,20650,0,0,4533,5533,65607,0,0,4533,1000,65607,2000,0
+4814,270000,female,1,1,57,-2,-2,-2,-2,-2,-2,13559,736,316,5116,15884,10606,736,316,5116,15884,10606,1420,0
+4815,200000,male,1,1,31,0,0,0,0,0,0,160292,119080,113723,109447,75423,22919,6036,4002,4005,3002,1002,1002,0
+4816,80000,male,3,2,25,0,0,0,0,0,0,80493,78736,71663,57571,58485,59655,3035,3021,2300,2500,2300,2500,0
+4817,60000,female,1,2,34,1,-2,-1,-1,-2,-1,0,0,15798,0,0,11688,0,15798,0,0,11688,0,0
+4818,60000,female,2,2,31,0,0,0,0,0,0,58173,59626,55775,28187,28978,27119,3400,2300,1200,1200,1500,1500,0
+4819,90000,female,1,2,28,-1,0,0,0,0,0,23940,92233,91308,53991,56032,51010,75000,5000,4300,2800,2800,3600,0
+4820,10000,female,3,3,48,0,0,0,0,0,0,7065,8148,9199,9558,9136,9392,1200,1200,500,500,500,0,0
+4821,140000,male,2,2,36,0,0,0,0,0,0,94586,92692,87696,80284,80086,81759,3519,3027,2905,3000,3000,3100,0
+4822,280000,male,1,1,42,0,0,0,0,0,0,173092,160948,146106,97334,91671,81030,5853,4422,3138,2817,2927,2334,1
+4823,140000,female,2,1,24,0,0,0,0,2,0,121241,67929,65536,67645,62839,53457,4000,4000,8000,0,5000,2000,0
+4824,110000,male,3,1,52,0,0,0,0,0,0,13962,15219,15424,15479,15989,16276,1500,1545,600,750,700,2000,0
+4825,120000,female,3,2,26,0,0,-2,-1,0,0,22492,-2018,-718,1282,81988,83665,1534,1300,2000,81899,3200,4000,0
+4826,130000,female,2,1,39,0,0,0,0,0,0,131657,129859,128714,128962,131873,131482,5000,6208,4700,5000,5000,4800,0
+4827,290000,male,2,1,48,0,0,0,0,0,0,224662,216134,163926,97524,35353,24481,10160,7147,5041,1581,3020,10000,0
+4828,80000,male,2,1,33,0,0,0,0,0,0,22064,22338,23352,23301,23900,24965,1700,1700,1000,1500,2000,2000,0
+4829,50000,female,2,2,22,2,2,2,2,2,2,15006,14475,16227,16662,16253,17982,0,2000,1000,0,2000,0,1
+4830,450000,female,2,1,33,-2,-2,-2,-2,-2,-2,318,316,326,4007,0,0,316,326,4007,0,0,0,0
+4831,50000,male,3,1,37,3,2,2,0,0,0,30411,31130,30308,28902,29215,28963,1500,0,1016,1046,1129,869,1
+4832,170000,female,1,2,27,-2,-2,-2,-2,-2,-1,154189,149826,113019,60868,19458,90,5926,2672,10,0,90,4563,0
+4833,210000,male,2,2,30,0,0,0,0,0,0,38967,48465,57928,60359,69782,83991,10000,10000,3000,10000,15000,326,0
+4834,30000,female,2,2,23,2,0,0,0,0,0,21684,23018,24630,24813,25333,25911,2000,2000,888,920,1000,2000,0
+4835,230000,male,1,2,33,0,0,0,0,0,0,57171,56150,57074,50670,50652,51267,2100,2300,2000,2000,2000,2000,0
+4836,170000,male,2,2,34,-1,-1,-1,-1,-1,-1,2806,326,676,326,326,326,652,676,326,326,326,1722,1
+4837,20000,female,2,2,22,0,0,0,0,0,0,17958,18499,19762,19807,19830,20347,1329,1592,637,700,827,357,0
+4838,50000,male,3,1,54,1,2,2,0,0,2,49271,24982,25142,15498,16613,16197,1000,1000,1000,1366,0,1552,0
+4839,100000,female,2,1,42,0,0,0,0,0,0,65917,67673,66292,67793,67182,66132,4000,3000,2500,3000,2500,2500,0
+4840,140000,female,1,2,27,-1,-1,-2,-2,-2,-2,390,0,0,0,0,0,0,0,0,0,0,2943,0
+4841,100000,female,1,2,30,0,0,0,0,0,0,90375,81572,71451,68530,66844,65820,3007,3200,3000,3500,2600,2500,0
+4842,150000,female,1,1,37,1,-1,2,2,-2,-1,0,1505,1333,0,0,1930,1505,0,0,0,1930,0,1
+4843,60000,female,3,2,23,1,2,0,0,0,0,28831,28024,24215,6000,7568,7568,0,1050,0,1568,0,6729,1
+4844,200000,male,3,1,33,0,0,0,0,0,0,199343,200070,200852,197426,196341,197787,10021,10036,7126,6508,6011,5537,1
+4845,200000,female,1,2,27,0,0,0,0,0,0,11912,19196,11938,15972,17952,5925,14443,4938,5972,7952,2925,1718,0
+4846,50000,female,1,2,35,0,0,0,0,0,0,48585,49134,50203,10042,20085,9578,2220,2289,483,350,334,400,1
+4847,60000,male,2,2,32,0,0,0,0,0,0,51934,40855,37742,29450,8850,0,2000,2000,1400,200,600,0,0
+4848,50000,female,3,1,32,1,2,2,2,0,0,45652,44646,47619,46455,47432,48442,0,4000,0,1432,3100,0,1
+4849,140000,female,2,1,55,0,0,0,0,0,2,22662,23306,21048,22332,30228,316,2500,2500,2000,12988,2168,932,0
+4850,640000,female,1,2,41,0,0,0,0,0,0,55645,56656,60185,59218,58963,58992,3000,5000,2300,2128,2125,2222,0
+4851,210000,male,2,1,41,2,2,2,2,2,2,87705,90376,90687,91888,93852,95734,4800,2500,3900,3400,3400,3400,1
+4852,60000,female,2,1,27,0,0,0,0,0,0,43757,29772,30710,28914,29823,28916,2000,2000,1500,1500,1500,1100,0
+4853,80000,female,2,1,32,3,2,2,2,0,0,72385,72643,73462,71681,73375,74794,2000,2600,0,2850,2800,3000,1
+4854,290000,female,1,1,37,-1,-1,-1,-1,-1,-1,3486,550,1922,550,550,3810,550,1922,550,550,3810,2927,1
+4855,150000,female,1,2,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+4856,200000,female,2,2,40,0,0,0,0,0,0,99729,139201,155871,193666,216666,18871,59201,35000,54461,46666,18871,0,0
+4857,130000,female,2,2,29,2,2,2,2,2,2,2880,4446,4833,4236,5178,4182,2000,1000,0,1000,0,1500,1
+4858,490000,male,2,2,34,-2,-2,-1,0,0,0,0,0,244033,224216,212123,214715,0,244033,15011,9003,9019,8000,0
+4859,200000,male,2,1,40,-1,-1,-2,-2,-2,-1,9759,-241,-241,-241,-241,7817,0,0,0,0,8058,0,1
+4860,210000,female,1,1,54,-1,-1,-1,-1,0,0,7771,7078,838,20372,36489,90261,7078,1295,20000,16489,60000,5000,0
+4861,260000,female,1,2,29,-1,-1,-1,-1,-1,-1,3735,-8,4865,507,3787,1443,0,4873,507,3787,1443,0,1
+4862,80000,male,2,1,42,0,0,0,0,0,0,48237,48594,49432,49043,47805,45626,2200,2005,2000,2000,2000,2000,0
+4863,50000,male,3,1,53,0,0,0,0,0,0,41674,40012,31089,14638,13577,16333,1660,1612,652,1300,3000,2500,0
+4864,210000,female,2,2,30,0,0,0,0,2,0,77637,80205,82549,89170,56683,10496,4400,4600,9086,0,1000,99100,0
+4865,210000,female,2,3,52,-1,-1,-1,-1,0,0,815,815,815,910,58095,37684,815,815,910,58000,1500,2000,0
+4866,40000,female,3,1,41,1,2,2,2,2,0,20057,20931,21780,23114,22606,22903,1500,1500,2000,0,822,1000,0
+4867,110000,female,2,1,33,0,0,0,0,0,2,184406,169795,154733,138071,126242,123449,7400,6700,4700,7800,0,117880,0
+4868,50000,male,1,2,49,0,0,0,0,0,0,25277,27209,23740,19448,19594,19762,3000,3014,684,1000,713,677,0
+4869,80000,female,1,2,27,-1,-1,-1,0,-1,-1,3199,1205,917,917,702,3099,1325,917,0,702,3099,0,0
+4870,80000,female,1,2,37,-1,-1,-1,-1,-1,-1,6734,1990,4500,4640,3966,3410,1990,4500,4640,3966,3410,879,1
+4871,250000,female,1,2,43,0,0,0,0,0,0,93163,96024,90901,69927,71403,69948,4409,3023,2600,2700,2801,2500,0
+4872,100000,female,1,2,27,0,0,0,0,0,0,75296,76672,78343,79111,79993,81279,3000,3400,3000,3000,3000,3000,0
+4873,50000,male,2,2,29,2,2,2,2,2,2,43205,46516,45468,48703,50774,49514,4000,0,4000,3000,0,3000,1
+4874,150000,female,1,2,32,2,2,2,0,0,2,120800,123379,122881,123954,131543,134319,6000,3000,4600,9800,5100,5000,1
+4875,70000,male,2,2,30,0,0,2,2,2,2,17526,20235,19612,22170,22612,22101,3000,0,2900,942,0,1000,1
+4876,150000,male,1,2,29,-1,-1,-2,-1,-1,-1,249,0,0,12877,1558,225,0,0,12877,1558,225,0,0
+4877,360000,female,1,2,31,-1,-1,-1,-1,-2,-2,1483,9386,2635,-227,-1763,-4303,9386,2643,227,1536,12975,19818,0
+4878,90000,male,2,2,29,0,0,0,0,0,0,51864,53135,53759,56397,87349,55700,2098,1680,20000,5000,4833,2000,0
+4879,160000,female,2,1,28,0,0,0,0,0,0,6031,7057,7912,8080,8250,8565,1280,1132,300,300,452,312,0
+4880,70000,female,2,2,36,0,0,0,0,0,0,67864,59165,29314,28844,29443,30101,2044,1773,1181,1215,1297,1008,0
+4881,360000,female,2,1,33,0,0,0,0,0,0,325839,300726,252603,253759,255424,253826,11083,8948,8727,9118,9026,8997,0
+4882,420000,female,1,2,33,-1,-1,-2,-2,-1,-1,25718,0,0,0,1643,6800,0,0,0,1643,3400,403500,0
+4883,50000,female,2,1,47,0,0,0,0,0,0,48888,47988,9757,8941,9893,6181,1900,1139,2000,1000,300,500,0
+4884,160000,female,2,2,28,3,2,2,2,2,2,110819,107629,113902,115543,118353,116298,0,9600,5000,4800,0,3900,1
+4885,100000,female,2,1,38,1,-1,-1,-2,-2,-1,0,199,0,0,0,150,199,0,0,0,150,550,0
+4886,240000,female,3,1,41,-1,-1,-1,0,-1,-1,3973,3724,7448,3724,5814,10942,3724,7448,0,5814,8852,0,0
+4887,390000,female,1,2,42,0,0,0,0,0,2,98262,94122,89672,83663,84449,75445,5003,5000,3200,9000,0,5000,0
+4888,80000,female,2,1,37,0,0,0,0,0,0,57830,55107,51616,47843,48427,49101,2103,2023,1850,1800,1806,1516,0
+4889,360000,female,1,2,29,0,0,0,0,0,0,25633,26897,26439,25932,28396,28611,2000,1289,1000,4000,2000,1000,1
+4890,210000,female,2,1,34,-1,-1,-1,-1,-1,-1,3402,4774,375,3498,3517,4567,4774,375,3498,3517,4567,2488,0
+4891,320000,female,1,2,28,1,-2,-1,-1,-1,-1,0,0,1200,0,600,5937,0,1200,0,600,5937,470,1
+4892,20000,female,3,1,50,0,0,2,0,0,0,8612,8862,8992,9452,10520,11320,2202,500,1000,2000,800,0,0
+4893,180000,female,2,1,27,2,2,0,0,0,0,186895,167768,125879,119283,117515,109499,0,6000,3663,3700,3400,2771,1
+4894,490000,male,2,1,50,0,0,0,0,0,0,205873,210880,215628,217883,223541,224889,10000,10000,10000,10000,8000,10000,0
+4895,30000,female,2,2,22,0,0,0,0,2,0,25536,26635,27383,29061,28492,29850,1800,1500,2100,0,1800,1000,0
+4896,290000,female,1,1,34,-1,-1,-1,0,0,-2,111,0,904,904,0,0,0,904,0,0,0,6397,0
+4897,340000,female,2,1,46,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+4898,40000,female,2,1,43,-1,-1,-1,-1,-1,-1,220,960,960,960,1383,960,960,960,960,1383,960,960,0
+4899,50000,male,2,2,23,-2,-2,-2,-2,-2,-2,-29,9881,10188,2277,18488,10263,9910,10294,2284,18546,11294,7752,0
+4900,30000,male,2,2,30,2,0,0,0,2,2,21326,20425,20135,19529,17428,25227,1400,1700,1679,0,10000,0,1
+4901,60000,female,1,2,34,2,-1,-1,0,-1,-1,493,240,823,683,240,998,240,823,0,240,998,223,0
+4902,180000,male,5,2,29,1,-2,-2,-2,-2,-1,92245,64364,5527,1600,2600,390,11400,1000,340,1000,390,390,0
+4903,160000,male,3,1,57,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,390,0
+4904,170000,male,1,1,33,1,2,-1,0,0,0,9020,326,7788,104556,141077,138790,0,7788,100000,41077,5200,5600,0
+4905,50000,male,2,1,42,2,0,0,0,0,0,12664,42985,15085,17245,17316,17297,2000,2000,17000,1000,1000,2955,0
+4906,50000,male,2,1,45,0,0,0,0,2,0,8558,9886,10593,11358,11033,11402,1471,1178,943,0,553,600,0
+4907,360000,female,1,1,32,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+4908,160000,female,2,1,35,2,2,2,2,2,2,131104,133828,135146,136520,139432,141971,6300,5000,5100,5252,5000,6000,1
+4909,260000,female,1,2,39,0,0,0,0,0,0,107801,122955,117089,95975,62817,61221,30054,20057,5113,3040,20000,30007,0
+4910,350000,female,1,2,31,2,0,0,0,0,2,20042,108444,280478,143142,160442,98479,100000,200000,0,135000,0,100000,0
+4911,30000,female,2,2,26,0,0,0,2,0,0,27376,27639,27788,25484,25707,25797,1500,3608,0,1000,1100,2200,0
+4912,180000,female,2,2,27,1,2,0,0,0,2,17207,16647,17657,17705,19043,18589,0,1590,638,1628,0,834,0
+4913,230000,female,1,2,30,-1,-1,-1,-1,-1,-1,1219,283,1906,501,283,423,283,1906,501,283,423,283,0
+4914,50000,female,1,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+4915,370000,male,2,1,38,2,0,0,0,0,0,376014,377594,355120,315740,322540,319195,16000,13217,12000,12000,12000,15000,1
+4916,30000,male,2,1,42,0,0,0,2,0,0,24317,28401,30910,30155,30389,30418,4491,3000,0,1068,2257,0,0
+4917,280000,male,1,2,31,1,-1,2,2,-1,-1,0,3405,2973,0,962,3481,3405,0,0,962,3481,9,0
+4918,210000,female,2,2,53,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,390,1
+4919,150000,female,1,1,49,-1,-1,2,2,-1,2,416,797,381,-35,1015,33,797,0,0,1050,0,2575,0
+4920,170000,female,1,2,30,-1,-1,-1,0,0,0,8404,16835,2200,7510,12510,19720,16835,2200,5510,5000,8100,0,0
+4921,80000,male,2,2,28,0,0,0,0,0,0,73233,74853,76408,77435,79187,79696,3400,3400,2900,3045,6000,0,0
+4922,30000,female,2,1,29,1,2,2,2,2,2,16609,16057,18089,17504,18727,18279,0,2300,0,1500,0,1500,1
+4923,50000,male,2,2,38,0,0,0,0,0,0,51047,49761,50712,50441,50919,50604,1849,1800,1788,1993,2069,2500,0
+4924,140000,female,2,2,24,0,0,0,0,0,0,38483,43627,35893,40883,16256,14354,10169,20000,15000,628,1392,1200,0
+4925,30000,female,1,1,22,2,2,0,0,0,0,26505,25799,26762,24956,25654,26177,0,1710,1000,1100,1100,1000,0
+4926,50000,male,2,1,45,0,0,0,0,0,0,42614,38426,38318,17331,14916,18459,10016,20070,3006,6002,5000,2500,0
+4927,20000,male,1,2,24,-1,-1,-1,-1,-1,-2,390,390,390,780,0,0,390,390,780,0,0,0,0
+4928,180000,male,1,1,37,0,0,0,0,0,-2,15288,16534,18100,19900,-100,-100,1500,2000,2000,0,0,0,0
+4929,30000,male,2,2,46,0,0,0,0,0,-2,24794,25017,24117,23917,0,0,2000,1500,0,0,0,0,0
+4930,210000,male,2,2,26,0,0,0,0,0,0,92083,88001,90533,93027,96524,100765,4000,4000,4000,5000,6000,23500,0
+4931,30000,male,2,2,35,0,0,0,0,0,0,20180,21827,20723,19523,4294,3974,2000,2032,0,1000,3000,1000,0
+4932,50000,female,2,2,31,0,0,0,0,0,0,20451,20426,19894,20294,20145,20175,1600,1600,1000,900,1000,1000,0
+4933,270000,female,1,2,31,-2,-2,-2,-2,-2,-2,973,417,1593,913,1471,1302,592,1593,913,1471,1302,7107,0
+4934,70000,female,2,2,25,0,0,0,0,0,0,22935,23963,24979,25665,26357,26768,1398,1414,1100,1104,1000,1155,0
+4935,110000,male,2,2,32,-1,-1,0,0,0,0,2308,101780,50815,46147,39769,9353,101780,1501,1100,1000,2000,41644,0
+4936,20000,female,1,2,24,-1,-1,-1,-1,-1,-1,3305,2296,14059,9140,1073,500,2296,14777,9140,1073,500,0,1
+4937,150000,male,2,1,37,0,0,0,0,0,0,147891,149402,148152,150781,146446,149658,5004,4957,4208,4201,4837,3500,1
+4938,420000,male,1,1,59,0,0,0,0,0,0,175795,160687,139704,100178,62967,49259,5300,4976,4899,3074,2023,3000,0
+4939,20000,male,1,2,24,-2,-2,-2,-2,-2,-2,299,-1,-1,494,2284,490,0,0,495,2290,491,1695,0
+4940,50000,male,2,2,51,0,0,0,0,0,0,50383,49073,31036,20061,19710,19687,2304,2224,19691,1000,725,1000,0
+4941,170000,male,1,2,51,0,0,0,0,0,0,195038,189067,180389,137030,129222,122229,7509,5573,4309,4239,5142,2856,0
+4942,20000,male,3,1,35,1,2,0,0,0,0,24122,23089,22422,20794,19914,7476,1300,1481,503,2019,233,100,0
+4943,360000,female,3,2,36,-1,-1,-2,-2,-2,-2,2473,-27,-27,-27,-27,-27,0,0,0,0,0,0,1
+4944,280000,female,1,2,34,-1,2,2,-2,-1,-1,8719,844,0,0,1000,0,0,0,0,1000,0,0,0
+4945,340000,male,1,2,35,-1,-1,-1,-1,-1,-1,842,2865,-22,7569,797,1211,2873,0,7591,799,1214,18309,0
+4946,180000,male,1,1,46,0,0,0,0,-2,-2,160580,171644,184650,0,0,0,13714,16500,0,0,0,0,1
+4947,280000,male,1,2,33,-1,-1,0,0,0,0,8814,151643,153190,147589,149291,151357,151650,5546,6007,5507,6007,4184,1
+4948,60000,male,1,2,27,0,0,0,0,2,0,14853,19589,27176,29712,29099,31601,5000,8000,3000,0,3000,3000,1
+4949,150000,male,1,1,56,2,0,0,0,0,0,116928,87215,43045,40813,42164,43465,5006,3000,1452,5000,5000,2000,1
+4950,300000,female,1,2,24,0,0,0,0,0,0,35040,35167,31333,35906,38963,40283,1518,1507,5406,3963,2283,900,0
+4951,210000,female,1,1,34,0,0,0,0,0,0,200239,195025,165356,116351,95854,91173,9510,7000,10079,4500,3532,3500,0
+4952,50000,male,1,2,29,0,0,0,0,0,0,27878,28908,29922,30517,31164,32677,1484,1498,1093,1139,2039,1800,0
+4953,140000,female,1,2,30,-1,-1,-1,-1,-1,-1,282,282,282,282,454,610,282,282,282,454,610,454,0
+4954,180000,female,1,2,42,-1,0,0,0,0,0,4314,5495,54903,56458,58616,55032,2500,50000,3000,3000,2000,2500,0
+4955,380000,male,3,1,44,-1,0,0,0,0,0,40352,41385,42397,43243,45716,46629,1523,1535,1381,3000,1494,2000,0
+4956,10000,female,2,2,22,0,0,-1,0,0,-2,7418,8080,780,780,0,0,1000,780,0,600,0,0,0
+4957,50000,male,3,1,45,0,0,0,0,0,0,45982,41372,18059,18020,18028,17744,1421,1500,629,672,626,2000,0
+4958,50000,female,2,2,22,0,0,0,0,0,0,50186,49061,43528,29606,30305,28895,1994,1500,1009,1124,1100,2000,1
+4959,50000,female,1,2,25,-1,0,0,0,0,0,8540,9875,11396,13190,14967,16551,1479,2000,2000,2000,2000,4060,0
+4960,140000,female,2,1,37,0,0,0,0,0,0,10025,9787,8127,8850,9262,5789,2000,1000,2000,2000,1000,2000,0
+4961,110000,male,2,2,36,0,0,0,0,0,0,109345,111980,111563,106625,48631,49724,4400,4200,4406,1800,1900,1900,0
+4962,260000,male,2,1,63,-1,-1,-1,0,0,-1,3382,2403,1161,772,383,1661,2519,1201,1,1,1668,2507,0
+4963,50000,female,2,2,26,0,0,0,0,0,0,49722,49052,49243,8760,8796,9176,2200,1325,490,300,500,500,0
+4964,180000,female,1,2,30,3,2,-1,0,0,0,1782,192,1291,1891,3914,26414,0,1291,600,2023,22500,32800,0
+4965,150000,female,2,2,26,2,0,0,0,0,0,56956,58756,59945,60751,62120,63315,2716,2761,2400,2500,2400,1860,0
+4966,80000,female,1,1,39,0,0,0,0,0,0,36444,33840,31768,28223,25557,18220,3015,4012,1013,2010,655,1007,0
+4967,210000,female,1,2,31,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+4968,320000,male,1,1,44,-1,-1,-1,-1,-1,-1,7500,8500,7500,7500,7500,7500,8500,7500,7500,7500,7500,7500,0
+4969,100000,female,2,1,36,0,0,0,0,0,0,92688,94925,96865,99196,101000,0,3000,2746,3156,3000,0,0,0
+4970,100000,female,1,1,35,0,0,-1,-1,-1,-1,52708,15075,20035,4116,-110,3512,9967,20195,4228,0,3622,0,0
+4971,50000,male,1,2,24,0,0,0,0,0,0,16277,14875,19195,13134,13398,13549,4006,6200,3000,2000,2000,2500,0
+4972,240000,male,3,1,43,-1,-1,2,2,2,2,2690,2500,2500,2500,2500,0,2500,0,0,0,0,0,1
+4973,300000,female,1,2,33,1,-2,-1,0,-1,-1,0,0,12351,6417,5245,12082,0,12351,0,5245,7000,0,0
+4974,200000,female,1,2,30,0,0,0,0,-2,-2,199229,132458,59153,0,0,0,6101,3500,0,0,0,0,1
+4975,270000,female,1,1,31,0,0,0,0,0,0,86716,88329,91247,91823,93164,95211,6000,6005,4000,4000,4000,5000,0
+4976,150000,female,1,2,26,2,2,2,2,2,2,75373,76865,78214,76363,79893,48052,3300,3200,0,5137,0,2200,1
+4977,260000,female,2,2,29,-2,-2,-1,0,0,-1,-5,-5,9571,7235,0,197,0,9576,29,0,197,568,0
+4978,50000,female,2,2,24,0,0,0,0,0,0,26239,17824,17615,17956,18091,18259,1300,5869,1000,795,1000,1000,0
+4979,130000,female,2,1,32,1,2,0,0,0,2,51559,50465,51531,52076,55432,56571,0,2500,2000,4200,2200,0,1
+4980,80000,female,1,2,28,0,0,0,0,0,2,57776,7561,7793,7433,5962,4960,1200,1306,512,1000,0,110,0
+4981,20000,male,1,2,32,0,0,0,3,2,0,11777,14851,17575,17063,15711,28600,3276,3000,3,7,2058,669,0
+4982,410000,female,2,1,50,0,0,0,0,0,0,246659,248934,246011,240845,213767,214410,11000,10000,7500,8000,8000,7000,0
+4983,80000,male,2,1,36,2,2,2,2,2,2,77054,81697,79347,81325,76550,78715,6900,0,5800,0,4000,2000,1
+4984,160000,female,3,1,58,-1,-1,-1,-1,-1,-1,2034,68942,40194,942,942,942,68942,40194,942,942,942,942,0
+4985,500000,female,1,2,40,-2,-2,-2,-2,-2,-2,15929,18155,-131,10527,61751,2926,18222,0,10658,61751,2926,13609,0
+4986,20000,female,2,1,36,0,0,0,0,0,0,16320,18044,19003,19224,19050,19353,2000,1283,1003,1000,1002,1005,0
+4987,180000,female,4,1,34,-1,-1,-1,-1,0,0,6892,6892,6892,6282,8282,0,6892,6892,6282,2000,0,0,0
+4988,200000,female,2,1,45,0,0,0,0,0,0,193641,121830,122181,121888,66771,65495,4543,5000,4500,3100,3000,1300,1
+4989,310000,male,3,1,44,0,0,0,0,0,0,238739,244629,250277,265764,271231,277427,10000,10000,20000,10000,11000,11000,0
+4990,160000,male,1,2,40,-1,-1,-1,-1,-1,-1,1430,0,715,715,715,865,0,715,715,715,865,715,0
+4991,170000,female,3,1,61,1,-2,-2,-2,-1,-1,0,0,0,0,200,0,0,0,0,200,0,0,0
+4992,500000,male,1,1,45,-1,-1,-1,-1,-1,-1,5307,6583,5650,4472,67798,65653,6616,5678,4495,67969,65814,38464,1
+4993,140000,female,1,2,28,1,-1,-1,-1,-1,-2,0,330,330,69,-261,-591,330,330,69,0,0,29953,0
+4994,80000,female,3,1,48,0,0,0,0,0,0,44508,43709,52660,48532,44469,45068,1785,10000,1541,1610,1604,1485,0
+4995,420000,female,2,2,28,-1,0,0,0,0,-1,27186,27759,21103,22217,23440,61084,5009,5006,5000,5000,61084,3000,0
+4996,280000,female,1,2,31,-2,-2,-2,-2,-2,-2,326,326,0,326,652,0,326,0,326,652,0,652,0
+4997,20000,male,3,1,44,0,0,2,3,2,2,11007,15010,15767,15223,14837,16083,4525,1300,0,0,1495,3198,0
+4998,170000,female,2,1,31,0,0,0,0,-2,-1,63948,62090,63000,0,0,3300,5000,4000,0,0,3300,0,0
+4999,30000,female,2,2,26,0,0,0,0,0,0,12479,10100,10923,10549,4747,4864,1233,1056,500,500,1000,2000,0
+5000,20000,male,3,2,26,0,0,-2,-2,-2,-2,16320,0,0,0,0,0,0,0,0,0,0,0,0
+5001,280000,female,1,1,49,-2,-2,-2,-2,-2,-1,4378,-324,-324,-324,-324,88036,2,322,0,0,88360,10045,1
+5002,30000,female,3,2,40,1,2,2,2,2,2,53720,52268,49338,44430,40875,40272,0,3000,1000,2000,5000,0,0
+5003,170000,female,1,1,38,0,0,-2,-2,-2,-2,5556,0,0,0,0,0,0,0,0,0,0,0,0
+5004,290000,female,1,1,38,1,-1,0,0,0,-1,0,7023,9680,7860,7860,8142,7023,5000,3000,0,8142,0,0
+5005,290000,female,1,2,24,1,-2,-2,-1,0,-1,0,0,0,2700,1350,1350,0,0,2700,0,1350,8334,0
+5006,360000,female,2,2,33,-1,-1,-1,-1,0,0,5344,9852,5137,4912,1150,0,9860,8537,4912,0,0,9294,0
+5007,190000,female,2,1,34,0,0,2,2,2,0,86730,93705,91317,96079,94428,100618,9310,0,7200,0,8000,4000,0
+5008,90000,male,2,2,26,0,0,-2,-2,-2,-2,70182,-18,-18,-18,-18,-18,0,0,0,0,0,0,0
+5009,20000,male,3,2,48,1,2,2,0,0,0,16434,17452,16879,17059,17263,17675,1577,0,757,628,700,2488,0
+5010,290000,female,2,1,42,0,0,0,0,0,0,154753,122241,113434,115273,97040,89942,7000,6000,5000,5000,4000,3000,0
+5011,460000,female,1,2,38,0,0,0,0,0,0,296815,283744,273414,250033,238734,226905,10279,10084,9025,9036,8526,7272,0
+5012,230000,female,1,2,26,-2,-1,2,-1,0,-1,-10,1732,476,3157,340,769,2122,0,3157,0,769,1265,0
+5013,170000,male,2,1,37,-2,-2,-2,-2,-2,-2,326,326,326,326,326,324,326,326,326,326,324,2,0
+5014,180000,female,1,1,40,-1,0,0,0,-1,0,4236,6614,6216,3622,4095,6596,3016,3000,1622,4095,3000,2827,0
+5015,20000,male,2,2,27,0,0,-1,0,0,0,19331,18225,18418,19297,19000,19683,1209,19330,2303,1000,1000,1000,0
+5016,50000,male,2,1,25,0,0,0,0,0,0,48213,47750,46153,45572,45412,44985,1800,1700,1585,2000,2000,1600,0
+5017,200000,male,1,2,30,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,20271,0
+5018,80000,female,3,1,53,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+5019,380000,male,1,1,53,-1,0,0,-1,-1,0,4901,22010,2302,20798,16394,26002,22000,2300,9947,16400,18000,7400,0
+5020,500000,male,1,1,40,-1,-1,-1,-1,-1,-1,11640,12831,11520,12486,11609,12660,12836,11525,12489,11614,12665,543,1
+5021,170000,male,2,1,49,2,2,2,2,2,2,26991,30090,18104,19050,18783,8042,4019,0,1060,0,807,0,1
+5022,20000,female,1,2,23,0,0,0,0,0,0,14605,14532,15700,16346,16837,18298,2000,2000,1000,1000,2000,2000,0
+5023,320000,female,2,1,32,0,0,0,0,0,0,160832,164750,168370,169371,172868,150827,8000,8000,5500,6100,6000,5000,0
+5024,50000,female,1,2,23,0,0,0,0,0,0,48064,49362,48038,8760,9646,7747,2091,1310,1000,1000,277,296,1
+5025,400000,male,2,1,45,0,0,2,0,0,2,337135,373869,366338,374255,409777,527566,44000,0,14000,42000,126000,18000,0
+5026,320000,female,1,2,33,-1,-1,2,0,0,-1,368,10038,8434,7061,1289,365,10550,0,0,0,365,12110,0
+5027,200000,male,1,2,28,0,0,0,0,0,0,220343,214375,201917,161221,162438,157415,7000,8016,5000,12000,6000,7000,0
+5028,20000,male,1,2,28,0,-1,-1,-1,0,0,7381,2769,3503,4809,5732,8632,3000,3010,6000,1000,3000,0,1
+5029,230000,female,3,2,42,1,-2,-1,-1,-1,-1,0,0,324,0,2600,3007,0,324,0,2600,3407,200,1
+5030,130000,female,1,2,29,-1,-1,-1,-1,0,0,280,1954,304,978,652,326,2038,311,1000,0,0,326,1
+5031,310000,male,1,2,28,0,0,0,0,0,0,272588,169978,156699,131276,118837,119402,9978,6699,11276,9695,19402,6270,1
+5032,50000,female,3,2,58,0,0,0,0,0,0,24885,26250,26955,27647,28149,28940,1772,1447,1139,1100,1262,1009,0
+5033,90000,male,3,2,45,0,0,0,-1,0,0,86519,88925,56116,48430,49585,50443,4100,2500,52285,2000,2100,5000,0
+5034,260000,female,3,1,42,0,0,0,0,0,0,56437,57929,59369,63215,64087,130579,3000,3000,5400,5000,2222,2337,0
+5035,270000,male,1,2,36,0,0,0,2,0,0,78630,68921,46512,40335,37165,22156,10076,4018,14,2051,2000,0,0
+5036,210000,female,1,2,30,0,0,0,0,0,0,52771,64767,57527,56655,50745,53269,44767,10000,2655,5745,3269,1500,0
+5037,220000,female,2,2,52,0,0,0,0,0,0,127624,125718,125917,124683,127890,131520,6046,5600,5000,8000,6000,3736,0
+5038,80000,male,2,2,30,2,2,2,0,0,2,72183,81844,78743,79176,81574,78445,10895,0,2900,6355,0,3100,1
+5039,50000,female,3,2,61,0,0,0,2,2,0,36205,38609,42996,43992,43155,44436,3000,5064,2000,0,2000,2000,0
+5040,20000,female,2,1,39,0,0,0,0,0,0,45629,46661,47594,49281,18714,19162,2500,2400,2000,900,800,600,0
+5041,20000,female,1,2,23,0,0,0,-2,-2,-1,11967,5252,-340,-780,-780,780,1031,650,0,0,1560,150,0
+5042,100000,female,1,2,25,-1,0,0,-1,-1,0,16659,13585,7886,5578,8608,11756,10000,4000,5578,11756,10000,5470,0
+5043,320000,male,2,2,32,0,0,0,0,0,0,75122,70308,51223,52371,54518,56601,4000,3000,2000,3000,3000,4000,0
+5044,200000,female,2,2,31,1,-2,-1,-1,-1,-1,0,0,6372,1957,0,596,0,6372,1957,0,596,789,0
+5045,80000,female,1,2,25,-1,-1,-1,-1,-1,-1,232,815,631,1237,1529,357,815,631,1237,1529,357,2957,0
+5046,120000,female,2,1,34,2,2,2,2,2,2,64139,65430,63937,67290,68565,69784,2900,150,5000,2500,2500,3000,1
+5047,20000,male,2,2,43,0,0,0,0,0,0,19197,19997,20060,18780,19580,0,1500,1500,1000,800,0,0,0
+5048,200000,female,1,1,35,-1,-1,-1,-1,0,-1,10118,2105,483,5452,389,389,2106,486,6175,1,390,390,0
+5049,140000,female,2,1,24,-1,-1,-1,-1,-1,-1,696,696,696,696,696,696,696,696,696,696,696,696,0
+5050,50000,male,2,1,52,2,0,0,0,0,-1,27548,28578,29660,30600,-300,9037,1478,1560,1500,0,9337,323,1
+5051,60000,male,2,2,25,1,2,2,0,0,0,61514,61748,58583,28301,29301,14400,1800,0,600,1000,300,28154,0
+5052,50000,male,2,2,30,0,0,0,0,0,0,47110,48447,48345,20079,20656,19818,2401,1735,700,876,711,701,0
+5053,200000,female,2,2,33,0,0,0,0,0,0,189740,194328,196018,189865,193703,199154,6450,6600,5350,5500,7100,5500,0
+5054,20000,male,2,1,53,0,0,2,2,2,2,16039,19752,19112,20223,18806,20001,4000,0,1382,0,3000,0,1
+5055,200000,female,1,1,32,1,-2,-2,-2,-2,-1,0,0,0,0,0,900,0,0,0,0,900,880,0
+5056,350000,female,3,1,49,-2,-1,2,-1,-1,-1,10658,8598,3816,4223,1414,5941,9004,0,4223,1414,5941,2720,0
+5057,50000,female,3,1,40,0,0,0,0,0,2,20831,21592,22571,23024,25567,24463,1400,1360,810,2900,0,1100,1
+5058,120000,male,2,1,44,-1,2,-1,0,-1,-1,4936,2476,5696,1762,1381,1061,0,5696,0,1381,1061,1320,1
+5059,150000,male,2,1,35,-1,-1,-1,-1,-1,-1,4030,592,2483,4556,1606,2047,593,2490,4573,1610,2053,4349,0
+5060,180000,female,2,1,48,-1,-1,-1,-1,-1,-1,11054,11272,26680,27988,1480,22133,11272,26703,27988,1480,22133,0,0
+5061,120000,female,2,2,27,1,-2,-2,-2,-1,-1,0,0,0,0,940,170,0,0,0,940,170,2018,1
+5062,130000,female,1,1,55,0,0,0,0,0,0,126205,128064,131524,46445,44973,45578,4998,5946,1620,1623,1659,1749,0
+5063,80000,female,2,1,41,-2,-2,-2,-2,-2,-2,7274,6280,21016,14422,5157,6579,6280,21115,14422,5157,6579,11251,0
+5064,390000,female,2,1,49,0,0,0,0,-1,-1,7383,5731,3386,3134,259,578,1066,1000,63,259,578,1141,0
+5065,50000,female,1,2,27,1,2,0,0,2,2,21824,21187,23815,26418,25859,29745,0,3000,3000,0,4500,0,1
+5066,50000,male,2,2,31,1,2,2,0,0,0,25859,26937,27687,28424,29311,30169,1800,1500,1500,1500,1500,1500,0
+5067,320000,female,2,1,29,-1,-1,-1,0,0,0,3196,7655,204787,122501,63816,17257,7655,205211,6100,5000,2000,8000,1
+5068,50000,female,2,3,48,2,0,0,0,0,0,18460,20942,18942,18811,18183,18561,2813,1289,658,659,679,654,1
+5069,200000,female,2,1,43,2,2,2,2,2,2,171647,167478,178983,180784,184201,187467,0,14500,6400,7000,7000,7000,0
+5070,30000,male,3,2,59,1,2,0,0,0,0,13486,12984,13991,14114,14406,14692,0,1528,651,668,674,683,1
+5071,290000,female,2,1,36,-2,-2,-2,-2,-2,-2,754,-98,-309,63,227,946,0,0,500,590,1045,0,0
+5072,50000,female,3,1,57,0,-1,-1,-1,-1,-1,3964,1690,3780,1468,1468,1644,1690,3780,1468,1468,1644,1363,0
+5073,50000,female,2,1,52,-1,-1,-2,-2,-2,-1,600,972,0,0,0,6500,972,0,0,0,6500,1863,0
+5074,140000,male,3,1,45,2,2,2,2,2,2,134073,130521,137328,136280,136247,134089,0,10707,5014,5091,4608,42,1
+5075,50000,male,2,1,43,0,0,0,0,0,0,15941,14154,15109,14125,14034,14946,1255,1210,487,508,1534,526,1
+5076,80000,female,2,2,23,0,0,0,0,0,-1,4125,10174,6160,9020,4670,6124,6174,3160,5020,1670,6124,1600,0
+5077,50000,female,1,2,31,0,0,0,0,0,0,30291,31498,32205,32846,33535,34201,2000,1534,1175,1218,1224,1281,0
+5078,280000,female,2,2,28,-2,-2,-2,-2,-2,-2,17795,4117,1199,247,0,1896,4125,1201,249,0,1896,548,0
+5079,80000,female,2,1,53,0,0,0,0,0,0,37242,37634,38281,38993,39268,39620,2000,2000,2000,2000,1408,1300,0
+5080,60000,female,2,1,29,0,0,0,0,0,0,62325,59359,30604,22204,19895,19199,2864,1300,1000,803,1107,1000,0
+5081,360000,female,1,2,26,-1,0,0,-2,-2,-2,1374,12920,0,0,0,0,12534,0,0,0,0,0,0
+5082,520000,male,2,2,32,0,0,0,0,0,0,17718,12490,7894,6426,4045,1806,1222,1200,505,502,100,216338,0
+5083,210000,female,2,1,43,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+5084,360000,male,1,2,26,0,-1,-1,0,-1,-1,11910,1356,4073,17812,2981,1936,1500,5000,15000,3000,2000,1033,0
+5085,100000,male,1,2,27,0,0,0,0,0,0,99777,99479,94028,14578,33254,16723,4252,2620,408,26130,653,35012,0
+5086,50000,female,3,1,45,2,0,0,0,0,0,47639,35495,16246,14987,15298,15447,1271,1242,683,702,553,723,1
+5087,280000,female,2,1,31,0,0,0,2,2,2,127609,76057,75377,68277,72042,65921,6000,6000,0,4800,0,2226,0
+5088,120000,male,1,2,26,0,0,0,0,0,0,19544,24230,28022,29249,29926,35357,5000,4200,2000,1300,6000,6000,0
+5089,50000,male,1,2,29,2,2,2,2,0,0,45728,48772,50614,49009,45856,47891,3800,3000,5,1800,3600,0,1
+5090,360000,female,1,1,48,-2,-2,-2,-2,-1,-1,2119,-3,-3,-3,711,875,3,0,0,714,879,1519,0
+5091,140000,female,2,1,35,-1,-1,-1,-1,-1,-1,4694,4340,4332,4058,2929,4345,4340,4332,4172,5544,4345,2178,1
+5092,130000,male,1,2,25,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+5093,240000,female,1,1,33,-2,-2,-1,0,-1,-1,9187,4740,5240,7795,3771,1891,5005,5240,4101,3771,1891,46438,0
+5094,70000,female,3,2,40,0,0,0,0,0,0,60525,60932,60190,25126,24718,27726,14011,14494,6019,7010,8007,5008,0
+5095,80000,male,2,3,45,0,0,0,0,0,0,28219,29276,30210,30505,31184,28641,1816,1750,1045,1123,1038,2008,0
+5096,20000,female,5,3,35,0,0,0,0,0,0,17962,17858,17972,16592,15369,16247,1336,1211,1500,1300,1500,1000,0
+5097,180000,female,2,2,29,0,0,0,2,0,0,172271,179760,180488,142201,141826,125974,11600,9635,0,5245,5172,3726,1
+5098,80000,male,2,2,25,0,0,0,0,0,0,63771,62642,60005,53384,55060,54583,2500,2500,1900,2500,2500,2000,0
+5099,300000,female,2,2,39,0,0,-2,-2,-2,-2,8386,341,341,341,341,343,341,341,341,341,343,1977,0
+5100,70000,male,2,2,31,0,0,-1,-1,-2,-2,62737,40745,1880,0,0,0,4030,2500,0,0,0,0,0
+5101,180000,female,1,1,30,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+5102,150000,male,2,1,33,0,0,2,2,2,2,87721,87396,79424,76350,79721,77028,7200,3000,0,6000,0,3000,0
+5103,30000,female,3,2,36,2,2,2,2,2,2,25437,26734,26011,27353,26776,28620,2000,0,2078,0,2291,0,1
+5104,180000,female,1,2,24,0,0,0,0,0,0,130780,121531,112378,93411,95559,94356,4700,4500,3300,3600,3900,3500,0
+5105,20000,male,2,2,31,5,4,3,4,3,2,21763,21145,20930,20182,19836,11998,0,549,0,0,0,0,0
+5106,30000,male,2,2,29,2,2,2,0,0,0,20501,25151,24453,24849,25399,27020,5000,0,1100,1100,2200,1200,0
+5107,500000,male,1,2,38,-2,-2,-2,-2,-2,-2,0,2326,1164,0,0,0,2326,1164,0,0,0,28666,1
+5108,290000,female,1,2,29,0,0,0,0,0,0,62029,46716,39340,22587,24219,26647,3000,2000,2000,2000,3000,2000,0
+5109,500000,female,2,1,47,0,0,0,0,0,0,182516,104838,112662,66679,70090,73728,5000,10000,5000,5000,5000,5000,0
+5110,150000,male,2,2,37,-1,0,0,0,0,0,69012,63265,64131,64942,61803,58987,2500,2500,3780,2200,2000,2000,0
+5111,200000,male,1,1,37,-1,2,-1,-1,-1,-1,446,123,123,200,123,280,0,123,200,123,280,151,1
+5112,50000,female,2,2,23,0,0,0,2,0,0,20821,11864,13094,12434,12429,12505,1190,2000,0,600,594,610,0
+5113,180000,female,1,1,47,1,-2,-1,-1,-2,-2,-12,-12,3300,0,0,0,0,3312,0,0,0,0,1
+5114,150000,female,1,1,40,1,-1,-1,0,-1,-1,-15,17671,14517,1870,3495,0,17686,14517,0,3495,0,21754,0
+5115,210000,female,2,2,34,1,-1,-1,-1,-1,-2,0,1075,229,799,0,0,1075,229,799,0,0,2247,1
+5116,30000,female,5,2,23,2,2,-1,-1,-1,-1,2826,2068,16952,15336,24336,436,0,16952,16104,14000,486,0,0
+5117,360000,male,3,1,51,-1,-1,-1,-1,-1,-1,3019,2438,1008,1250,0,860,2444,1008,1250,0,860,0,0
+5118,60000,female,2,1,38,1,2,2,2,0,0,22212,21568,24209,23524,24491,25033,0,3000,0,1500,1100,1000,0
+5119,230000,female,2,2,25,-1,-1,0,0,0,0,2045,44711,45742,38502,30581,32738,44711,4000,4000,3000,3000,2000,0
+5120,260000,male,3,1,39,0,0,-1,-1,-1,2,3518,0,2551,-139,2311,47,0,2551,0,2450,0,5800,0
+5121,210000,female,2,2,34,-1,-1,-1,-1,-1,-1,8547,2987,4571,3265,8623,5907,2996,4584,3274,8648,5924,15748,0
+5122,200000,female,1,2,42,-1,-1,-1,-1,-1,-2,4359,3814,4604,3350,0,0,3841,4644,3350,0,0,5706,0
+5123,20000,male,2,1,37,0,0,0,0,0,-2,16436,17584,18166,8190,8190,0,1418,1000,3144,0,0,0,0
+5124,30000,male,3,2,53,2,0,0,0,0,0,28033,28675,28997,29214,28933,29134,1788,1500,1173,1100,1100,1000,0
+5125,180000,female,1,2,32,2,2,2,2,2,2,73618,76990,78181,82645,84739,83282,4500,3000,5700,3500,0,3200,1
+5126,50000,male,2,1,28,2,0,0,0,0,0,42435,44030,43979,31508,16519,19231,3000,2000,2000,2000,3000,1000,1
+5127,200000,male,3,1,43,0,0,0,0,0,0,146206,150404,154977,157166,160870,164101,5404,5854,5000,5000,4600,5000,0
+5128,140000,female,1,2,27,0,0,0,0,0,0,16437,18848,21209,25503,27918,37186,3000,3000,5000,3000,10000,4000,0
+5129,250000,female,1,2,42,-1,-1,-1,-1,-1,0,4673,16014,4063,5589,15895,9948,17381,4063,6018,15895,1000,5928,0
+5130,200000,male,1,1,43,0,0,-1,0,0,0,202225,-4359,190829,96686,100131,102467,1029,200000,10000,5000,4000,4000,0
+5131,80000,female,1,2,30,0,0,0,0,0,0,44999,45843,46879,47799,48876,49909,2100,2100,2000,2000,2000,4500,0
+5132,60000,female,3,1,48,0,0,0,0,0,0,62652,57562,51278,46685,31584,26482,2300,2200,1900,1191,1219,7971,0
+5133,360000,female,1,2,29,-1,2,-1,-1,0,-1,780,390,390,540,540,390,0,390,540,390,390,390,0
+5134,50000,male,1,2,23,-1,-1,-1,-2,-2,-2,3063,3625,0,0,0,0,3625,0,0,0,0,0,1
+5135,240000,female,3,2,36,1,-2,-2,-2,-1,-1,-28,-28,-28,-28,1522,6820,0,0,0,1550,6900,4100,0
+5136,330000,female,2,2,30,-1,-1,-1,-1,-1,-1,13204,12500,865,15387,5945,896,12500,865,15500,6000,896,0,1
+5137,50000,female,2,2,25,1,2,2,2,2,2,13750,15224,14687,16135,15737,17316,2000,0,2000,0,2000,0,1
+5138,110000,male,3,2,33,1,2,0,0,0,-2,7128,1852,2625,2625,0,0,0,1000,0,0,0,0,1
+5139,30000,male,3,2,29,1,-2,-2,-2,-2,-1,0,0,0,0,0,7035,0,0,0,0,7035,0,1
+5140,20000,male,2,1,36,1,2,2,0,0,0,5566,6527,6274,6470,7366,8044,1200,0,300,1000,800,0,1
+5141,20000,male,1,2,43,0,0,2,-1,-1,0,13361,18302,13348,512,18141,11575,6020,141,1048,23261,134,0,1
+5142,160000,male,1,2,31,0,0,0,0,0,0,136809,77080,160336,92820,91449,89559,6000,5000,15000,5000,7000,10000,0
+5143,80000,male,2,2,24,0,0,0,0,0,0,79047,81120,69986,46965,46518,47330,3837,2800,2008,1700,2000,1800,0
+5144,180000,female,1,1,47,-1,-1,-1,-1,-1,-1,8059,11622,16379,9795,8414,6557,11680,16466,9844,8456,6589,5823,0
+5145,80000,male,2,2,27,-1,-1,-1,-1,2,-1,390,390,390,1080,540,390,390,390,1080,0,390,390,0
+5146,150000,male,1,2,30,0,-1,-1,-1,-1,-2,4785,2087,1200,4100,0,0,2087,1212,4100,0,0,0,0
+5147,130000,male,1,2,29,0,0,0,0,0,0,81907,83620,85327,87021,88843,90618,3034,3096,3112,3222,3250,3357,1
+5148,240000,male,3,2,32,-1,-1,-1,-1,-1,-1,4717,11980,0,473,11483,11886,11980,0,473,11483,11886,690,0
+5149,400000,female,1,2,28,-1,0,-1,0,0,0,1416,1548,22085,21021,19761,12613,1052,22085,420,56,687,800,0
+5150,500000,male,2,2,32,-1,-1,-1,-1,0,-1,10339,6405,-4617,16879,5195,290,6405,99,22480,0,580,36753,0
+5151,20000,male,1,2,22,0,0,2,0,0,0,18523,17889,16473,19004,19254,16287,3500,0,3000,574,539,342,1
+5152,240000,male,1,2,35,-1,-1,-1,-1,-1,-1,446,2852,-348,152,272,5291,2852,0,500,500,5291,1000,0
+5153,110000,female,2,1,26,2,2,2,2,2,2,85814,91999,91803,94376,96409,98072,8500,2200,5000,3700,3400,4000,1
+5154,80000,female,2,2,26,0,0,0,0,0,0,56373,57301,58017,56556,57890,58657,2129,2014,1985,3000,3001,2266,0
+5155,50000,male,3,1,58,-2,-2,-2,-2,-2,-2,4025,5318,4151,4186,3545,2659,5318,4151,4186,3545,2860,2702,0
+5156,330000,male,1,1,37,-1,-1,-1,-1,-2,-2,8447,-1,176,0,0,0,0,177,0,0,0,0,0
+5157,200000,male,3,1,40,0,0,0,0,0,0,187431,192558,196537,76167,76810,72039,8124,8339,5004,2961,2579,2761,0
+5158,230000,female,5,1,32,-1,-1,-1,-1,-2,-2,11000,0,8100,-2900,-2900,-2900,0,8100,0,0,0,110256,0
+5159,140000,female,2,2,26,0,0,2,0,0,-1,28282,148806,139462,125046,46364,83460,125000,6,4578,1427,87179,26291,1
+5160,360000,male,2,1,34,1,-2,-2,-2,-2,-2,-62,-31,-31,-31,-31,-31,0,0,0,0,0,0,0
+5161,70000,male,3,1,46,2,2,2,2,2,2,29258,31137,32855,33316,34137,33439,2352,2531,1300,1500,0,1400,1
+5162,360000,female,2,1,40,1,-2,-1,0,-1,-1,-242,-3748,5512,4102,1756,4400,649,10000,0,1756,4400,0,0
+5163,260000,female,1,2,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+5164,80000,female,3,3,29,-1,0,0,0,0,0,76121,70109,58186,56234,53229,45519,2456,2053,1812,1819,1686,1224,0
+5165,180000,female,2,2,48,-1,-1,-1,-1,-1,-1,10000,10000,10000,10000,20000,10338,10000,10000,10000,20000,10338,20894,0
+5166,190000,female,1,2,30,-1,-1,-1,0,-1,-1,6544,18191,18205,14442,31465,2589,19699,18295,9900,31465,2589,22041,0
+5167,190000,male,1,1,50,2,2,2,2,2,2,69518,71443,72413,73366,74830,76237,3500,2600,2600,2650,2650,3000,1
+5168,260000,male,1,1,39,0,0,0,0,0,0,259394,264334,263431,253596,258387,259118,9876,10020,9900,9331,9307,9676,0
+5169,200000,male,2,2,27,0,0,0,0,0,2,233637,175918,181089,183180,192223,189681,7000,8100,6600,12000,0,6054,1
+5170,340000,female,1,2,47,0,0,0,0,0,0,326065,339260,332032,280450,282510,281197,20070,12747,9582,20070,18092,20102,1
+5171,200000,female,2,1,47,-1,-1,0,0,0,0,528,13921,14943,14692,14733,14820,13921,1528,500,528,655,284,0
+5172,150000,female,1,1,36,-1,-1,-1,-1,-1,-1,13447,17877,25172,4694,6292,13943,17914,25349,4694,6324,14433,17378,0
+5173,100000,male,2,1,40,0,0,0,-1,-1,-1,99958,76554,58610,9779,12273,2701,2975,2789,9779,12273,3105,16828,0
+5174,100000,female,2,1,45,0,0,2,0,0,0,87590,103301,100818,75860,77656,78274,17200,247,3000,3000,3000,3000,1
+5175,200000,female,5,2,34,-1,-1,-1,-1,-1,-1,13943,8943,1662,2553,1977,3175,8964,1662,2553,1977,3175,1804,0
+5176,230000,male,1,2,39,0,0,0,0,-2,-2,38395,39943,20650,0,0,0,2500,2000,0,0,0,0,0
+5177,200000,male,1,1,40,-2,-2,-2,-2,-2,-2,-7,1765,5074,19268,5606,2534,1772,5099,19364,5634,2547,33300,0
+5178,140000,male,1,2,28,2,2,2,2,2,2,113780,115297,114448,114653,115720,116690,5800,3500,4500,4000,4000,4500,0
+5179,30000,male,2,2,24,0,0,0,0,0,0,26931,27791,28792,29121,29368,13174,1598,1599,928,600,627,1500,0
+5180,100000,female,2,2,30,1,-2,-2,-1,2,0,0,0,0,1378,1209,3174,0,0,1378,0,2000,2000,0
+5181,50000,male,2,1,41,-1,-1,-1,0,-1,-1,390,390,780,390,390,390,390,780,0,390,390,1170,1
+5182,330000,female,1,1,41,-1,-1,-2,-2,-2,-2,4122,0,0,0,0,0,0,0,0,0,0,0,0
+5183,500000,female,1,1,36,2,0,0,0,0,0,197231,175599,176947,178647,176380,172666,8500,8341,6600,6925,7225,6653,1
+5184,500000,female,2,2,31,-2,-1,-1,-1,0,0,4543,8723,17058,19858,19974,22774,9001,10000,3000,10000,6000,10000,0
+5185,50000,female,2,2,28,0,0,0,0,0,0,47605,47553,47205,45686,43629,46909,2300,2000,2000,2000,4000,0,0
+5186,50000,female,1,2,25,0,0,0,0,-1,0,16762,19126,13918,8239,6376,10077,4029,4031,3000,6376,5000,0,0
+5187,50000,female,2,1,42,0,0,0,0,0,0,47971,47627,47750,48194,48111,48664,2087,2100,1900,1900,1900,1900,0
+5188,20000,male,2,1,51,0,0,2,0,0,0,16849,18686,18877,19252,19415,19954,2116,800,682,701,858,394,0
+5189,70000,female,3,2,24,1,2,2,0,0,0,69346,70864,68645,28929,28597,28237,3200,13,1008,1103,1100,850,0
+5190,60000,female,1,2,34,0,0,0,0,0,0,55447,48270,41087,25518,26276,27012,2178,1511,1200,1300,1300,1252,1
+5191,230000,male,1,2,36,0,0,0,0,0,0,218637,223208,159930,141834,213408,222681,10034,5600,10753,100000,12823,8910,0
+5192,60000,male,3,1,58,2,2,0,0,2,0,22658,22703,23495,24349,23960,24530,700,1546,1400,0,900,0,0
+5193,330000,male,2,1,43,-1,-1,-1,0,0,-1,13200,9843,15440,45033,64723,3784,9863,15440,35033,30000,3874,25349,0
+5194,500000,female,1,1,35,-1,-1,-1,-1,-1,-1,2153,9869,4055,3000,3000,8063,9869,4065,3000,3000,8063,6000,0
+5195,30000,female,3,1,45,-2,-2,-2,-2,-2,-2,0,1930,1930,2072,4072,0,1930,1930,2072,4072,0,0,0
+5196,160000,female,1,1,53,0,0,0,0,0,0,52607,53548,56214,57246,58443,59883,2834,3500,2500,2207,2500,2300,0
+5197,110000,male,2,2,40,0,0,0,0,0,0,109191,110937,108869,43207,42954,43839,5000,3814,2000,1600,1600,1600,0
+5198,50000,female,1,2,35,0,0,0,2,0,0,30716,29768,31155,30124,29984,29629,1600,4300,0,1100,1500,1500,0
+5199,50000,female,2,1,43,-1,-1,-1,-1,-1,-1,560,1121,195,197,197,197,1121,195,197,197,197,197,0
+5200,20000,male,1,2,25,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+5201,50000,male,2,2,23,2,2,-1,0,0,0,49365,48927,49543,19649,20064,19691,1200,50189,682,710,690,693,0
+5202,210000,male,1,2,28,1,-2,-2,-2,-2,-1,0,0,0,0,0,8270,0,0,0,0,8270,0,0
+5203,500000,female,2,1,30,-2,-2,-2,-2,-2,-2,344,5757,1820,2308,807,4966,5757,1820,2308,807,4966,3240,0
+5204,320000,male,3,1,50,0,0,2,0,0,2,29943,32751,18262,18157,19043,17759,4300,0,1000,2000,0,1000,0
+5205,350000,female,1,2,32,0,-1,-1,-1,0,0,10830,2749,3229,3096,6373,10531,2749,3229,3500,4000,5000,4000,0
+5206,50000,male,3,2,27,0,0,0,0,0,0,45557,46763,43000,29241,29115,28804,2300,1803,1200,1400,1500,1500,0
+5207,50000,female,2,1,34,0,0,0,-1,-1,2,10745,8473,4390,19206,20486,15252,1200,1000,19206,1500,0,345,0
+5208,20000,female,2,1,33,2,0,0,0,0,0,18075,19075,19106,18467,19018,19383,1600,1601,810,1000,692,647,1
+5209,80000,female,2,1,47,0,0,2,0,0,0,77714,79049,79206,78031,78293,78870,5000,3000,3000,3000,3000,5000,1
+5210,170000,male,1,2,35,0,0,0,0,0,-2,169282,173226,134832,70479,0,0,10126,5667,9223,0,0,0,0
+5211,50000,female,2,1,24,0,0,0,0,0,0,48928,32646,31428,24880,26098,26886,2000,3505,2000,8000,4000,3650,1
+5212,400000,male,3,2,49,0,0,-2,-2,-1,0,36560,0,0,0,1757,21667,0,0,0,1757,20000,10158,0
+5213,90000,female,2,2,48,2,2,2,0,0,0,87673,94448,91211,38041,42605,41396,9100,0,1170,5000,18000,5000,1
+5214,50000,male,2,2,22,2,2,2,0,0,0,50262,51040,35046,28893,28772,27521,2009,5,1200,2000,1100,3405,0
+5215,60000,female,1,2,24,0,0,0,2,0,0,57693,55760,59007,56492,57565,56569,2700,4800,0,2100,2200,2500,0
+5216,50000,female,2,2,50,0,0,-2,-2,-2,-2,20800,0,0,0,0,0,0,0,0,0,0,0,0
+5217,250000,female,1,1,45,0,0,0,0,0,0,214000,90010,78886,79845,79323,77788,3188,3282,2698,2752,2843,2511,0
+5218,320000,female,3,2,53,-1,-1,-1,-1,0,0,3479,3479,3479,12610,23942,34183,3479,3479,12610,15000,14184,16826,1
+5219,260000,female,1,2,27,0,0,0,0,0,0,15178,23360,22099,18985,19662,22274,12007,8000,1000,1000,5000,5000,0
+5220,20000,male,2,2,24,0,0,0,0,0,0,19102,18054,19026,19406,18258,18694,1318,1290,670,663,740,536,0
+5221,50000,male,1,2,25,0,0,0,0,0,0,18595,18326,18814,19189,19233,19108,1310,1297,672,837,836,836,0
+5222,50000,male,2,1,35,1,2,0,0,0,2,29273,29504,32007,34474,37905,38131,1000,3000,3000,4000,1000,10000,0
+5223,50000,male,1,2,35,3,2,0,0,0,0,39437,38525,40809,33021,35479,36238,0,3000,2000,3000,1500,2000,0
+5224,150000,female,1,2,27,-1,-1,-1,-1,-1,-1,7310,4756,1919,8144,2969,8642,4756,1919,8144,2969,8642,0,0
+5225,20000,female,2,2,21,1,3,2,2,-1,-1,21003,20260,9686,0,6884,0,39,0,5000,13749,0,0,1
+5226,190000,female,1,1,39,2,2,0,0,0,0,171462,163148,165281,173231,132145,146854,0,10000,15000,10091,20000,10000,1
+5227,250000,male,1,1,46,-1,2,-1,-1,-1,-2,5379,992,12738,2310,0,0,0,12738,2310,0,0,840,0
+5228,380000,male,1,1,32,0,0,0,0,0,0,53369,73954,35199,31136,28839,14584,30307,5044,5036,5081,2022,2026,0
+5229,330000,female,2,2,28,0,0,0,0,0,0,255834,258822,254855,258220,256058,256840,9425,9000,9174,9590,9500,9400,0
+5230,50000,female,2,2,31,0,0,0,0,0,0,45861,47667,48119,8257,8037,9470,3687,5000,1000,309,2000,1000,0
+5231,140000,female,1,2,31,0,0,0,2,2,2,41314,42377,43923,43051,44109,43253,1732,2278,3000,1892,0,1572,0
+5232,20000,female,2,2,50,1,2,2,2,2,2,5065,4840,6100,5856,6432,6182,0,1500,0,822,0,2540,1
+5233,70000,female,1,2,28,0,0,0,0,0,0,53690,54374,47762,44487,45618,46706,2208,1800,2000,2000,2000,3000,0
+5234,160000,female,1,2,31,0,0,0,0,0,0,160843,153543,157871,143690,134386,138038,6000,7225,5000,5000,5900,4992,0
+5235,240000,female,2,1,34,-2,-2,-2,-2,-2,-2,6170,0,0,0,0,0,0,0,0,0,0,0,0
+5236,300000,female,1,2,27,-2,-2,-2,-2,-2,-2,3102,1499,318,2488,187,607,1506,319,2488,187,607,1945,0
+5237,70000,male,2,2,28,0,0,2,0,0,0,24510,25807,26578,27826,29712,30563,2000,1500,2000,2500,1500,1200,0
+5238,30000,female,2,1,28,0,0,0,2,0,0,11692,14505,17262,16690,17763,18960,3000,3000,0,1500,1500,1500,1
+5239,390000,female,1,2,32,0,0,0,0,0,0,22008,23645,24947,26223,27643,29025,2000,2000,2000,2000,2000,2000,0
+5240,20000,female,2,2,40,0,0,0,0,0,0,6689,7723,8730,8936,8994,9244,1300,1294,500,350,400,400,0
+5241,330000,female,1,1,44,0,0,0,0,0,0,234447,202747,180566,182604,186415,190303,8903,7903,6418,6633,6852,6910,0
+5242,420000,female,1,2,29,-2,-2,-2,-2,-2,-2,4406,4595,-13,2666,1614,6066,4205,5000,2679,1622,6080,3594,0
+5243,200000,male,1,1,63,-1,-1,-1,-1,-1,-1,316,316,316,316,316,316,316,316,316,316,316,316,0
+5244,70000,male,2,2,29,0,0,3,2,0,0,61762,70242,68107,42630,12927,27184,9500,0,0,1570,15184,2000,1
+5245,180000,female,2,1,40,0,0,0,-2,-2,-2,20831,1537,-43,-43,-43,-43,1000,0,0,0,0,0,0
+5246,260000,female,3,3,55,0,0,0,0,0,0,185441,190942,194161,197287,172561,165409,10000,8000,7150,7057,7396,4060,0
+5247,80000,female,3,2,25,-1,-1,-1,-1,-1,-1,571,3948,4695,390,1289,935,3952,4695,390,1289,935,390,0
+5248,250000,female,1,2,32,-1,-1,-1,-1,-1,-1,165,165,165,165,165,315,165,165,165,165,315,130,0
+5249,140000,male,1,2,29,0,0,0,0,0,0,137708,140804,137635,97928,99634,101020,5730,5200,3100,3200,3400,3300,0
+5250,40000,female,2,2,24,1,2,0,0,2,2,36890,36023,36993,38427,39875,39272,0,1989,2423,2000,0,1000,1
+5251,50000,female,2,1,36,0,0,0,-1,-1,-1,27433,12916,6509,4417,0,4331,1161,1000,5254,4166,8497,4679,0
+5252,210000,female,2,1,37,0,0,0,0,0,0,162518,138078,134428,129871,131091,118405,8006,7009,5000,5000,17137,3863,0
+5253,180000,female,2,1,33,0,0,0,0,0,-1,30781,31202,31188,32979,22526,13338,2000,1408,2979,2526,13338,15186,0
+5254,50000,male,2,2,45,0,0,0,0,0,0,46090,48343,50157,18675,18542,17129,3000,3000,1008,1000,1000,1000,0
+5255,320000,female,2,2,54,0,0,0,0,0,0,156238,156087,153054,79107,70043,71724,10000,10000,10000,2500,3000,3000,0
+5256,230000,male,1,1,41,-1,-1,-1,-2,-2,-2,9360,9650,0,0,0,0,9650,0,0,0,0,0,0
+5257,160000,female,2,1,40,-1,-1,-1,-1,-1,-1,671,671,671,671,671,1492,671,671,671,671,1492,0,0
+5258,110000,male,2,2,25,0,0,0,0,0,0,99353,90517,78484,74652,75251,75643,3500,3500,3000,3000,2870,3000,0
+5259,250000,female,3,1,39,0,0,0,0,0,0,18376,20070,21428,22757,24382,28768,2000,2000,2000,2000,5000,4000,0
+5260,20000,female,5,2,37,0,0,0,0,0,0,6725,7843,10600,18660,7060,0,2000,3000,8060,0,0,0,0
+5261,170000,female,1,2,28,0,0,0,0,0,0,12324,13467,14394,15249,15999,16753,1350,1158,1100,1000,1025,1512,0
+5262,140000,male,3,1,32,0,0,0,0,0,0,140456,125288,117263,77496,79815,77911,5200,5006,5000,5000,3000,5000,0
+5263,60000,female,2,1,42,0,0,0,2,2,2,56166,58022,61331,55566,59331,60569,2760,4941,0,4675,2361,0,1
+5264,20000,male,1,2,24,-1,-1,-1,-1,-2,-2,10283,0,750,0,0,0,0,750,0,0,0,0,1
+5265,80000,male,2,1,53,0,0,0,0,0,0,66484,59837,53367,48154,43214,44229,2731,2058,1700,1565,1730,1812,0
+5266,60000,male,3,2,34,2,0,0,0,0,0,58501,59225,59592,58654,58664,59323,2300,2578,2039,2088,2767,1750,0
+5267,210000,female,5,1,35,0,0,0,-2,-2,-1,84018,23953,0,0,0,239,2000,0,0,0,239,323,0
+5268,320000,male,2,2,27,0,0,0,0,0,0,319069,323319,298072,180882,175560,131390,12661,11157,5730,5904,5890,2464,0
+5269,50000,female,3,1,55,0,0,0,0,0,0,37234,37942,38003,11625,18442,9743,1963,2025,562,339,1200,600,0
+5270,10000,male,2,3,37,0,0,-1,0,0,-2,8634,3192,1352,13352,0,0,1000,676,6000,120,0,0,0
+5271,50000,male,2,2,51,0,0,0,0,0,0,48726,49050,49584,19791,18518,19078,2100,1600,700,670,866,618,1
+5272,140000,female,2,1,33,0,0,0,0,0,0,133094,132777,131672,133496,128509,124035,5005,4603,5002,4505,4400,4300,0
+5273,50000,female,2,1,38,-1,-1,-1,-1,-1,-1,588,588,926,643,643,643,588,926,643,643,643,643,0
+5274,80000,male,2,1,36,2,2,4,4,3,2,600,600,600,600,300,150,0,0,0,0,0,1000,1
+5275,300000,female,1,1,36,0,0,0,0,0,0,272899,254078,252427,254160,250645,245851,9251,10505,9157,9319,9600,8500,0
+5276,520000,female,1,2,33,0,0,0,0,0,0,485298,499489,413019,168770,168964,191188,22000,18300,26500,30000,27000,25000,1
+5277,200000,female,2,3,57,0,0,0,0,0,0,79761,79515,80592,86216,88071,90842,3500,3000,7000,3400,4400,6500,0
+5278,200000,female,2,1,35,1,-2,-1,-1,-1,-1,0,0,5825,0,3217,8273,0,5825,0,3217,8273,5158,0
+5279,60000,female,2,1,44,0,0,0,0,0,0,56970,58848,20641,22229,24708,27255,3000,2000,2229,3000,3000,3305,0
+5280,180000,female,2,1,42,0,0,0,2,0,0,102449,104807,111048,107782,110879,113666,5500,9500,0,5000,5000,5000,0
+5281,120000,female,2,2,24,0,0,0,0,0,0,32317,33496,34481,30102,30220,33523,2000,2000,2000,3000,6000,0,0
+5282,50000,male,2,1,47,0,0,0,0,0,0,49032,48764,49521,48830,49728,50146,2599,2556,1665,1600,1800,2000,0
+5283,20000,male,1,2,33,0,0,0,0,0,0,17593,38478,19703,19697,17303,1554,1472,1400,394,346,31,0,0
+5284,10000,male,2,2,27,0,0,0,0,0,2,16944,8261,9252,9590,10129,8932,2296,1139,477,830,0,1241,1
+5285,520000,male,1,2,34,0,0,0,0,0,0,9568,8211,6850,13178,17059,17528,5014,5010,13009,10035,10007,5025,0
+5286,500000,female,1,1,33,-2,-2,-1,-1,-2,-1,125,-18088,1664089,121757,97115,377217,4366,1684259,121831,97670,379267,26759,0
+5287,50000,male,2,2,24,0,0,0,0,0,0,50244,17987,18973,19369,19769,19385,1400,1301,700,700,700,700,0
+5288,200000,female,2,1,29,0,0,0,0,0,0,61518,66541,53862,37056,19790,20842,25138,2569,793,49,15085,44701,0
+5289,360000,female,1,2,36,1,-1,-1,-1,-1,-1,-8,2379,0,11850,150,459,2387,0,11850,300,459,52,0
+5290,400000,female,1,1,48,-1,-1,-1,-1,-1,-1,5880,18368,591,13654,45363,2640,18368,591,13662,45363,2640,28663,0
+5291,90000,male,2,2,30,-1,-1,-1,0,0,-1,370,370,922,552,182,312,370,922,0,0,500,600,0
+5292,90000,female,2,2,29,-1,0,0,-1,2,0,917,2917,0,3708,3503,9097,2000,0,3708,0,5693,170,0
+5293,200000,female,1,2,29,0,0,0,0,2,0,61099,64160,76593,93988,50292,10510,4160,14593,20150,0,5739,12050,0
+5294,150000,female,1,1,38,-1,-1,-1,-1,-1,-1,110,564,13347,13155,10610,8394,567,13504,13221,10663,8436,2468,1
+5295,350000,male,2,2,31,0,0,0,0,0,0,360347,357139,272072,267277,255680,261573,13100,10000,10000,8200,9000,9000,0
+5296,500000,male,2,1,31,0,0,0,0,0,0,378886,382234,274586,273718,168418,167635,15057,11035,11035,7029,8035,10388,0
+5297,160000,female,2,2,24,0,0,0,0,0,0,13038,158725,155808,98160,99057,100984,155000,5000,5000,3537,5000,4000,0
+5298,80000,male,1,2,35,0,0,0,0,0,0,52065,55205,55900,55622,56295,61598,5000,2606,2200,2100,6679,1700,0
+5299,130000,male,2,2,38,0,0,-2,-2,-2,-2,133400,0,0,0,0,0,0,0,0,0,0,0,0
+5300,100000,female,3,2,31,0,0,0,0,-1,-1,85030,49489,50424,51563,780,0,1820,2308,3000,780,0,0,0
+5301,80000,male,2,1,46,0,0,2,0,0,0,30773,38879,26128,29137,30283,30523,10036,15,5003,3003,2007,1007,0
+5302,50000,female,2,2,24,0,0,2,0,0,0,18201,26525,12969,13758,14390,16571,14813,1000,1000,1000,3000,1000,0
+5303,80000,female,1,1,50,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+5304,200000,male,1,2,27,1,-2,-2,-2,-1,-1,0,0,0,0,1202,84482,0,0,0,1202,84482,3162,0
+5305,330000,female,2,2,28,0,0,0,0,0,0,37637,38676,40786,41767,42501,43359,1500,2600,1500,1400,1400,1500,0
+5306,50000,female,1,2,26,2,0,0,0,0,2,10622,11642,12635,15403,16657,16240,1500,1500,3000,1500,0,3000,1
+5307,80000,female,2,2,23,-1,-1,-2,-2,-2,-2,309,-77,-77,-270,-463,-656,0,0,0,0,0,0,1
+5308,270000,female,2,1,33,-1,-1,-1,-1,-1,0,11489,8874,3567,1556,7952,10794,8874,3567,1556,7952,4000,2000,0
+5309,30000,female,3,1,60,0,0,0,2,0,0,11575,12351,13505,12677,12995,13443,1600,2000,0,1000,1000,1000,0
+5310,500000,male,2,2,30,-1,-1,-1,-1,-1,-1,869,2496,1924,976,986,1200,2507,1933,980,990,1206,1069,0
+5311,60000,female,1,2,26,-1,-1,2,-1,0,-1,3437,16932,2301,6220,2227,10416,16960,0,6227,0,10416,0,0
+5312,20000,female,2,1,34,2,2,2,0,0,0,17151,16887,17302,18029,18362,18669,300,1000,1000,1000,1000,1000,0
+5313,180000,female,2,2,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+5314,30000,female,2,1,38,0,0,-2,-2,-2,-2,3656,0,0,0,0,0,0,0,0,0,0,0,0
+5315,200000,male,1,1,45,-1,-1,-1,-1,-1,-1,577,0,2470,0,1350,1006,0,2470,0,1350,1006,0,0
+5316,320000,female,1,2,32,-2,-2,-2,-2,-2,-2,3916,2872,4704,3382,2575,8097,2886,4732,3398,2588,8137,2474,0
+5317,210000,female,3,1,28,0,0,0,0,0,0,37608,39001,40053,41084,42416,43707,2000,2000,2000,2000,2000,2000,0
+5318,200000,female,1,2,30,-1,-1,-1,-1,-1,-1,665,2618,963,1459,1028,878,2618,963,1459,1028,878,878,0
+5319,170000,male,2,2,41,-2,-2,-2,-2,-1,-1,6175,7404,7829,2218,3972,3643,7417,7862,2218,4866,3643,2732,0
+5320,50000,male,3,1,42,0,0,0,0,0,0,47838,49246,50376,9408,9605,9806,2180,2310,336,348,360,349,0
+5321,20000,female,2,3,52,0,0,2,0,0,0,8586,10041,10571,10995,11169,11979,1600,1000,600,500,1000,500,0
+5322,20000,female,2,1,22,0,0,0,0,0,0,18475,18993,19973,20081,20292,20289,1400,1300,700,800,1000,1000,0
+5323,580000,female,1,1,31,0,0,0,0,0,0,484798,475282,485511,488800,500723,511905,19000,20036,20000,20000,20056,16987,0
+5324,80000,female,3,2,25,0,0,0,0,0,0,80012,78748,76722,70370,64510,51695,3010,2700,2300,2500,2000,1400,0
+5325,50000,female,1,1,38,0,0,-1,-1,-1,-1,19926,21658,3445,99,949,137,4158,3500,1000,1000,200,900,1
+5326,30000,male,2,2,31,0,0,0,0,0,0,26788,28352,86253,28351,28571,23400,2001,1600,600,1000,468,0,0
+5327,50000,female,2,1,31,0,0,0,0,0,0,45614,44187,29253,14199,14965,15712,2450,2100,1000,1000,1000,1000,1
+5328,20000,male,3,2,25,2,2,4,4,4,4,1650,1650,1650,1650,1650,1650,0,0,0,0,0,0,1
+5329,100000,female,2,1,41,2,0,0,0,0,0,71978,73715,74621,72567,77231,78780,3500,2800,3000,6000,3000,2000,0
+5330,80000,male,3,2,48,0,0,0,0,0,0,80002,80433,80081,29437,29195,28675,3500,3500,1205,1200,1100,1018,0
+5331,40000,female,3,1,48,2,2,-1,-1,-1,2,780,0,390,540,1080,540,0,390,540,1080,0,780,0
+5332,80000,female,3,1,27,1,2,2,0,0,0,79108,78637,75688,46378,46175,41118,3200,0,1806,2124,1599,1500,0
+5333,10000,male,3,2,31,0,0,2,0,0,0,10119,10188,9089,9271,9618,8516,3000,0,295,459,1500,2000,0
+5334,200000,female,1,1,41,-1,-1,-1,0,0,-1,10529,1936,25483,16767,19941,19665,1940,25513,4767,7541,19665,5633,0
+5335,140000,female,3,2,23,0,0,0,0,0,0,100448,103990,104462,43810,44434,45251,5450,4200,1810,1765,2000,1665,0
+5336,340000,female,1,1,34,0,0,0,0,0,0,76786,57803,68670,20299,27816,43637,39749,15000,12000,10000,20000,5400,0
+5337,220000,male,1,2,28,2,0,0,2,2,2,205130,212060,225462,116915,116021,114001,9975,19254,0,8500,0,8000,1
+5338,80000,female,1,2,23,1,2,0,0,2,2,80461,78259,66068,50748,51490,50626,37,2122,3600,1600,18,1800,1
+5339,20000,male,3,2,24,0,0,0,0,0,2,12188,12904,14217,14360,16140,16287,1220,1533,676,2177,559,0,1
+5340,500000,male,1,1,36,-1,-1,-1,-1,-1,-1,25334,6834,2914,-341,38853,0,6867,2929,0,39194,0,0,0
+5341,100000,female,2,1,48,1,2,2,2,-1,-1,7828,7260,430,0,860,430,430,0,0,860,430,1166,0
+5342,150000,male,2,1,39,1,-2,-2,-1,-1,-2,-7,4422,367,3287,0,0,4429,367,3691,0,0,0,0
+5343,360000,male,2,2,27,0,0,0,0,0,0,160317,163699,167112,170691,174289,178008,4700,4800,5000,5000,5200,4100,0
+5344,60000,female,2,1,37,0,0,0,0,0,0,57694,58656,59750,60602,53838,54609,2800,3000,2800,2100,2123,2100,0
+5345,500000,male,1,1,34,-1,-1,-1,-1,-1,-1,1895,1086,740,0,1868,1883,1086,740,0,1868,1883,621,0
+5346,270000,female,1,2,27,-1,-1,-1,0,-1,-1,2016,1183,1307,800,4098,1181,2000,2500,0,4100,1200,5000,0
+5347,230000,female,2,2,30,0,0,0,0,0,0,74664,63540,66131,58430,72617,66787,3000,10000,10000,20145,11745,686,0
+5348,160000,female,2,2,33,0,0,0,0,0,0,140225,140745,139923,140815,139935,138912,5211,5000,5000,5000,5000,6000,0
+5349,20000,male,1,2,26,0,0,0,0,0,0,14554,15273,16616,16643,17372,18070,1260,1600,600,1000,1000,1000,0
+5350,230000,male,2,1,34,0,0,0,0,0,0,131887,133440,134272,136281,138687,118873,5005,5007,5000,5008,5000,4005,0
+5351,50000,female,3,2,23,0,0,0,0,0,0,33239,33199,33757,23332,23782,16816,6010,5008,3013,5035,5001,5002,0
+5352,500000,female,2,1,52,-1,-1,-1,-1,-1,-1,7593,8660,0,30498,1174,0,8677,0,30498,1174,0,800,0
+5353,80000,female,3,2,30,2,0,0,2,2,2,71165,72123,76696,79659,80079,79657,2700,5800,4800,1800,1000,2800,0
+5354,50000,male,3,3,55,0,0,0,0,0,0,45555,41372,41544,13007,16233,14952,1968,1843,434,5000,582,679,1
+5355,20000,male,2,2,29,1,2,0,0,0,0,20832,20203,19946,19037,19233,14764,0,1289,491,2586,5000,198,0
+5356,200000,female,1,1,40,-2,-2,-2,-2,-2,-2,6549,9389,18475,1016,4934,7749,9421,14068,3,4948,7770,23918,0
+5357,100000,female,2,1,44,0,0,0,0,0,2,39000,40123,41217,42193,44722,44024,1900,1900,1800,3200,0,2000,0
+5358,390000,female,2,1,44,0,0,0,0,0,0,169658,173758,177722,180132,184420,188329,8000,8000,6500,7000,7200,5500,0
+5359,450000,male,2,1,44,-1,-1,-1,-1,-1,-1,3004,5938,3700,14327,14890,6687,5971,3712,14347,14903,6707,25963,0
+5360,10000,male,3,1,40,1,2,2,3,2,2,7229,6968,8881,8594,8312,9241,0,2035,0,0,1069,1000,1
+5361,270000,male,2,2,29,0,0,0,0,-1,-1,18465,20987,17555,17803,1852,2044,3022,1000,2054,1857,2069,6327,0
+5362,190000,male,1,2,33,0,0,0,0,0,0,137502,127014,120826,112211,110396,113386,6112,4202,4200,4200,5000,4200,0
+5363,30000,female,1,2,30,0,0,0,0,0,0,32751,33804,31336,32389,33142,33999,1600,2000,1500,1200,1330,2500,0
+5364,360000,female,1,2,28,-2,-2,-2,-2,-2,-2,23088,11628,8556,4578,4784,11938,12000,8598,4601,4808,11997,3708,0
+5365,50000,female,2,2,28,0,0,0,0,0,0,19969,27267,19833,24014,27429,29189,8000,3302,5000,6500,10000,20000,0
+5366,240000,female,1,1,41,-1,0,0,0,0,0,10839,16665,13039,9439,11378,13046,10000,3500,0,5000,5000,5000,0
+5367,150000,male,2,2,26,0,0,0,0,0,0,144614,146446,122634,74711,76532,76452,6700,3764,2700,3000,3000,2800,0
+5368,150000,male,2,2,44,0,0,-2,-2,-1,-1,143650,0,0,0,1000,0,0,0,0,1000,0,5000,0
+5369,20000,male,2,2,23,1,2,0,0,0,0,17682,18595,19447,19312,17987,17822,1500,1500,1000,1000,1000,1000,0
+5370,50000,male,1,2,24,-1,-1,-1,-1,-1,-1,390,0,672,-108,2830,0,0,672,0,2938,0,0,1
+5371,40000,female,2,1,38,0,0,0,0,0,0,38491,36881,37968,36155,36933,37666,3000,2000,1500,1500,1500,2000,0
+5372,20000,male,1,2,25,1,2,3,2,0,0,16688,18427,17843,17259,17781,18034,2300,0,0,800,700,800,1
+5373,150000,female,1,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+5374,50000,female,2,1,48,-1,-1,2,-1,-1,-1,1079,7179,6478,7527,3060,1490,7651,0,7535,3060,1490,1095,0
+5375,50000,female,3,1,44,1,-1,-1,-1,-1,-1,-42,26267,26372,7490,5155,0,26309,26479,7490,5155,0,12754,1
+5376,50000,male,2,2,23,-1,-1,0,0,-1,-1,2165,14796,20816,11804,1420,0,15000,20300,9500,1420,0,0,1
+5377,50000,male,3,2,24,0,0,0,0,-1,-1,7198,8421,9202,9800,1000,0,1500,1000,598,1000,0,0,1
+5378,200000,female,1,2,35,0,0,0,0,0,0,75203,77949,74865,72766,70444,69003,4000,4000,5012,4000,3000,4000,0
+5379,200000,male,1,2,37,2,2,2,2,2,2,157131,166590,168386,164182,169029,172084,13500,6000,0,7500,6000,4000,1
+5380,120000,female,3,1,38,0,0,0,0,0,0,117738,120127,119719,118042,120682,120491,5820,5670,4250,4450,4470,4150,0
+5381,90000,male,2,2,28,2,0,0,0,2,2,18978,20675,23329,24940,24404,27227,2000,3000,2000,0,3400,0,1
+5382,30000,female,1,2,24,-1,-1,-1,-1,-1,0,784,390,7480,0,1803,1023,390,7480,0,1803,0,0,0
+5383,70000,male,1,2,29,-1,-1,0,-1,2,-1,2343,14336,13155,3929,1953,967,15000,4000,4000,0,1000,1000,0
+5384,490000,female,2,1,52,-1,-1,-1,-1,-1,-1,2779,22595,755,7000,0,4341,22595,762,7000,0,4341,1061,0
+5385,50000,male,3,1,39,-1,-1,-1,-1,-1,-1,2522,0,2866,1961,1261,2681,13196,2866,1961,1261,2681,1261,0
+5386,320000,male,2,1,55,0,0,0,0,0,0,235477,216433,203354,117272,38591,28400,11000,8600,5000,1900,960,2500,0
+5387,50000,female,1,2,27,1,2,2,0,0,2,12884,14382,13859,14032,14852,14464,2000,0,700,1200,0,1365,1
+5388,140000,female,1,2,25,-1,0,0,-2,-2,-2,2229,15985,0,0,0,0,15980,0,0,0,0,0,1
+5389,500000,female,2,2,49,-1,-1,-1,0,0,-1,27891,8970,385228,391047,0,150,8982,385228,7821,0,150,363,0
+5390,500000,male,1,1,58,-1,-1,-1,0,-1,-1,7285,28390,13138,6653,7081,4651,28730,14587,28,7114,4672,3114,0
+5391,50000,male,1,2,34,0,0,0,0,0,0,48559,47008,15435,10235,9119,8237,2573,2000,500,459,500,500,0
+5392,170000,male,3,1,31,0,0,0,0,0,0,3062,112762,112880,111210,111525,112360,112000,6000,4500,4500,5000,4500,0
+5393,130000,female,3,1,36,0,0,2,2,2,2,23997,26733,26942,26210,27982,27383,3440,941,0,2197,0,910,1
+5394,150000,female,3,2,27,0,0,2,0,0,0,3081,7997,8710,9559,10401,11069,5000,1000,1000,1000,1000,1398,0
+5395,50000,female,1,2,25,0,0,0,0,0,0,43875,45052,44938,40655,40930,40146,2200,2000,2000,2000,3000,3000,0
+5396,410000,male,1,1,48,0,0,0,0,-1,-1,231152,238985,243779,250399,5194,-376,12000,10000,7250,5225,0,1436,0
+5397,60000,female,5,2,33,0,0,0,0,0,0,52176,39107,39547,39555,40216,41039,2000,2000,1500,2000,2200,2000,0
+5398,150000,male,3,1,45,-1,0,-1,-1,-1,-1,29169,15000,15000,0,15000,0,1000,15000,0,15000,0,0,0
+5399,260000,female,2,1,43,-2,-2,-2,-2,-2,-2,690,2500,0,0,0,0,2500,0,0,0,0,0,0
+5400,230000,male,1,1,40,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+5401,50000,male,2,3,49,0,0,0,0,2,0,24282,23470,23297,22546,19563,20227,1500,1500,2150,0,1000,1000,0
+5402,230000,female,1,2,23,-2,-2,-2,-2,-2,-2,61580,62272,1462,622,1083,622,2862,1462,622,1083,622,872,0
+5403,280000,female,1,1,44,0,0,0,0,0,0,235635,197003,198808,187425,177340,180506,7665,6497,5555,5027,5065,5361,0
+5404,500000,male,2,2,67,-1,-1,-1,-1,-1,-1,4410,2662,2533,1821,2498,3622,2681,2547,1826,2505,3630,3099,0
+5405,30000,male,2,1,38,0,0,0,0,0,0,29723,30428,26558,27265,27953,28456,2000,2000,1500,1500,1500,1500,0
+5406,330000,female,2,1,31,0,0,0,0,0,0,298644,297005,303257,302905,304151,299959,13000,13000,11000,11100,11000,16000,0
+5407,180000,male,1,1,50,0,0,0,0,0,0,181624,182765,180769,141352,142078,141695,9021,6126,4856,4990,5133,5002,0
+5408,30000,male,2,2,47,3,2,2,0,0,0,29774,30797,29216,29681,29321,28068,1800,0,1200,1000,1046,904,1
+5409,200000,male,1,2,36,-1,-1,0,0,0,0,1801,9483,60571,57990,9568,82,9556,60025,5032,5054,5000,3000,0
+5410,80000,female,3,1,41,0,0,0,0,0,-1,52456,20925,15115,12465,6925,6049,11500,3000,4000,1260,6100,0,0
+5411,80000,male,2,2,25,0,0,0,0,0,0,31780,33261,34703,36125,38374,39382,2000,2000,2000,3000,1800,2000,1
+5412,100000,female,1,2,27,-1,-1,-1,-1,-1,-1,3904,398,931,5983,2010,1413,400,931,5983,2010,1413,3655,0
+5413,300000,male,1,1,54,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+5414,240000,female,1,1,58,1,-1,-1,-1,-2,-1,0,222,1900,0,0,5435,222,1900,0,0,5435,7000,1
+5415,50000,female,2,1,49,-1,-1,-1,-1,-1,-1,12515,9115,1198,198,1198,11198,9115,1198,198,1198,11198,29358,1
+5416,50000,female,3,1,50,0,0,2,0,0,0,35415,38940,36319,22538,23013,23465,6960,0,1000,1000,1000,1000,0
+5417,100000,male,2,1,42,0,0,2,2,2,0,17565,19700,18306,18239,17053,16753,3183,0,1274,0,754,700,0
+5418,110000,male,3,2,40,0,0,0,0,0,0,84965,85007,84965,79625,79370,81134,3280,2913,2790,2851,3053,2458,0
+5419,180000,female,2,1,40,0,0,0,0,0,0,23820,22749,21221,18190,17919,18402,2005,2000,2004,2500,3000,4000,0
+5420,140000,female,2,2,26,0,0,0,0,0,0,140881,136889,140615,78486,48476,50509,8140,8000,4000,1917,3000,3000,0
+5421,80000,male,2,2,28,-1,0,0,0,0,0,77701,19577,22033,57522,58939,60790,2000,2800,36000,2500,3000,5000,0
+5422,90000,female,1,2,26,-1,-1,-1,-1,-1,-1,17018,3692,5037,5899,4129,17246,3692,5037,5899,4129,17246,4221,0
+5423,90000,male,3,1,45,2,0,0,-1,-1,-2,37681,27664,18037,1696,-4,2889,1519,5035,6700,0,2893,304,1
+5424,240000,female,2,2,41,0,0,0,0,0,0,188983,190556,189914,190434,179424,183299,7106,12014,6075,5900,5900,5500,0
+5425,150000,male,1,1,41,1,-2,-1,-1,-1,-2,-200,-200,1600,5431,0,0,0,1800,5431,0,0,0,0
+5426,240000,female,1,2,33,-1,0,0,0,0,0,153062,156122,159998,161434,163403,167230,7000,8000,7000,6000,8000,7000,0
+5427,80000,male,3,2,34,0,0,0,0,0,0,78562,56877,57761,58707,56220,60463,2100,2100,2100,2100,5500,5200,0
+5428,110000,female,2,1,42,2,2,2,2,2,0,28383,27653,29003,29447,27701,28285,0,2000,1000,0,1000,1000,0
+5429,120000,female,2,2,39,0,0,2,0,0,0,22033,24067,24372,24670,25617,26535,2400,1000,1000,1500,1500,1500,0
+5430,360000,female,2,1,42,-2,-2,-2,-2,-2,-2,18186,7954,11609,10070,5079,4086,9548,11624,10070,5079,4086,1190,0
+5431,150000,male,4,2,30,0,0,0,0,0,0,175348,153679,110237,46972,29045,20105,9304,2921,15000,1137,600,0,0
+5432,80000,male,1,1,53,0,-1,0,0,0,0,2783,1108,21400,21000,21000,0,1200,21000,0,0,0,0,0
+5433,140000,male,2,1,47,3,3,3,2,0,0,192182,187720,189659,185477,189351,193122,0,6500,0,6497,6536,6760,1
+5434,50000,male,2,1,40,0,0,0,0,0,0,15090,16421,17144,17636,17850,18212,1577,1300,777,647,658,811,0
+5435,20000,female,3,1,36,1,2,0,0,0,0,17216,17541,18300,19100,2200,0,900,1200,1000,100,0,0,0
+5436,240000,female,1,1,29,0,0,-1,0,0,0,21409,17833,194043,194991,192800,178318,1000,194043,6530,7000,7000,10000,0
+5437,50000,male,1,2,49,0,0,0,0,0,0,47754,48648,8868,9044,9234,9418,2280,1500,323,335,337,500,0
+5438,380000,male,1,1,57,0,0,0,0,0,0,319243,357782,374313,371566,362232,352161,150039,30031,27403,15168,35235,25078,0
+5439,30000,male,2,2,49,-1,-1,-1,-1,-1,-1,1659,1473,390,390,390,1320,1473,390,390,390,1320,0,0
+5440,50000,female,2,1,31,1,2,2,2,0,0,23781,24900,25098,24396,25310,25740,1800,900,0,1310,1000,1000,0
+5441,160000,female,2,1,36,-1,-1,-1,-1,-1,-1,2511,2242,6109,2500,2689,0,2242,6745,2500,2689,0,0,1
+5442,50000,male,2,3,53,0,0,0,0,0,-1,49170,49446,36445,24788,24967,28652,2009,2500,1000,1500,28939,1200,0
+5443,80000,female,3,2,31,0,0,0,2,2,2,34620,35759,40020,40766,39982,44621,2000,5200,1700,0,5500,0,0
+5444,70000,female,2,2,28,1,2,2,2,0,0,70736,72014,72215,70779,62525,71427,3000,2200,0,3000,10000,10000,1
+5445,200000,male,1,2,29,0,0,0,0,0,0,187889,190967,195622,126281,128702,131001,8000,8000,5000,5000,5000,5000,0
+5446,100000,female,3,1,28,3,4,3,2,0,-1,110946,106423,101256,48876,28468,3875,0,0,0,1603,3875,55,1
+5447,180000,male,2,2,38,2,2,0,0,0,-2,21564,20939,22182,12382,-18,-18,0,2100,200,0,0,0,1
+5448,360000,male,3,1,53,-1,-1,-1,-1,-1,-1,45421,68526,47416,48811,193712,80601,68536,47427,48846,193712,80601,11166,0
+5449,230000,male,1,2,39,-1,-1,-1,2,-1,-1,834,-150,517,53,603,10141,0,667,0,700,10200,5200,0
+5450,190000,female,2,1,48,0,0,0,0,0,0,210612,206806,203803,167103,163528,162555,7496,9144,5972,5858,6174,6047,0
+5451,260000,male,1,2,32,0,0,0,0,0,0,122423,123006,122956,123709,120603,122674,5940,6000,4500,4500,4546,4510,0
+5452,30000,female,2,2,25,-1,2,2,0,0,0,4471,5747,5509,6260,7654,8522,1500,0,1000,1500,1000,800,0
+5453,150000,female,3,2,25,1,-2,-2,-1,-1,-1,0,0,0,900,0,583,0,0,900,0,583,2000,0
+5454,80000,female,2,2,34,1,-1,-1,-2,-2,-2,0,7400,-600,-600,-600,-600,7400,0,0,0,0,0,0
+5455,80000,male,2,1,37,2,2,2,2,0,0,81562,56352,29582,28852,29464,28688,11,3500,0,1033,1502,2002,1
+5456,180000,female,3,1,43,-2,-2,-2,-2,-2,-2,1242,0,0,0,0,0,0,0,0,0,0,0,0
+5457,350000,female,1,2,33,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,0,0,0,0,0,940,0
+5458,200000,female,3,1,30,-1,-1,2,-1,-1,-1,1120,1100,740,740,890,740,1100,0,740,890,740,740,0
+5459,140000,male,2,2,27,0,0,0,0,0,0,24050,68059,62503,61129,59089,58160,50000,3000,4000,5000,4000,2000,0
+5460,20000,male,1,2,25,0,0,-1,-1,-2,-2,2652,3127,1500,0,0,0,1200,1500,0,0,0,1632,1
+5461,20000,female,3,3,55,1,2,3,2,2,2,18558,20358,19743,19128,20560,20082,2400,0,0,1744,0,600,1
+5462,220000,male,1,2,37,0,0,0,0,0,0,34339,35075,32355,31573,51279,53590,1294,2000,2000,30000,3000,2000,0
+5463,290000,female,1,2,36,1,2,2,2,2,0,170422,173840,169476,177186,161057,163338,7594,0,12000,0,6818,5182,1
+5464,80000,female,3,1,40,0,0,0,0,0,0,29676,30707,31721,32350,33031,33926,1513,1527,1156,1200,1445,3700,0
+5465,16000,female,2,1,48,2,2,0,0,0,0,4577,4358,5366,5473,5750,6995,0,1089,196,365,1500,0,0
+5466,100000,female,2,1,33,0,0,0,0,0,0,82308,83994,85688,86643,88280,90054,3261,3307,2581,2502,2525,2600,0
+5467,390000,female,2,1,37,0,0,0,0,0,0,200612,202794,191419,81360,66864,66729,8315,6839,3000,2348,2401,2355,0
+5468,550000,female,1,2,35,0,0,0,0,0,0,83707,49676,49196,37784,35317,7433,3023,5070,3017,7148,2037,14243,0
+5469,80000,female,2,2,31,0,0,0,0,0,0,81358,69913,71541,72541,54061,55136,3126,3391,3000,2000,1974,2043,0
+5470,150000,female,2,1,39,-1,0,0,0,0,-1,12365,58266,40921,24053,25856,77913,53444,20144,14182,16819,78287,15679,0
+5471,20000,female,2,1,27,0,0,-1,-1,-2,-2,7286,2160,780,0,0,0,1006,780,0,0,0,0,0
+5472,20000,female,2,2,21,0,-1,-1,-2,-2,-2,20000,1685,0,0,0,0,1685,0,0,0,0,0,0
+5473,100000,female,3,2,29,-2,-2,-2,-1,-1,-1,2038,11383,1661,1891,3681,870,11386,1665,1894,3689,870,1755,0
+5474,30000,male,3,2,28,2,2,2,2,2,3,300,300,300,300,1300,1150,0,0,0,1000,150,0,1
+5475,80000,female,3,1,47,0,0,0,0,0,0,33590,34524,34038,33231,33440,5513,2079,1200,0,816,365,5000,0
+5476,30000,male,1,2,33,2,2,2,2,2,2,27274,25744,27504,26987,26927,25553,0,3000,1000,1300,0,1000,1
+5477,140000,male,3,2,23,-1,-1,-1,-1,-1,-1,390,390,390,1434,1309,540,390,390,1434,1309,540,540,0
+5478,200000,male,2,2,32,0,0,0,0,0,0,180461,171839,173325,153953,144206,143178,8300,10000,6000,6000,6000,4500,0
+5479,290000,male,1,2,41,0,0,0,0,0,0,255049,247090,242309,238609,238712,237847,9006,8507,10902,8600,8671,8210,0
+5480,50000,male,2,2,23,0,0,-1,0,0,-1,96234,44882,1270,880,390,390,1052,1270,0,0,390,0,0
+5481,260000,female,1,2,28,1,-2,-1,-1,-2,-2,0,0,355,2165,2165,0,0,355,2835,335,335,335,0
+5482,60000,male,2,1,24,0,0,0,0,0,0,24608,18686,18571,18118,16179,12919,1400,1500,1295,3655,330,507,0
+5483,280000,male,1,1,34,0,0,0,0,0,0,212968,312960,373419,232919,228387,235187,237000,150000,10000,150000,10572,7313,0
+5484,100000,female,1,2,36,0,0,2,0,0,2,10672,11025,5791,3623,5554,5309,2355,0,500,2000,0,1000,0
+5485,290000,female,3,1,48,-1,0,0,-1,-1,-1,284990,274764,225000,16635,15000,47143,10000,25000,16635,15000,47143,2088,0
+5486,50000,male,3,1,49,0,0,0,2,0,0,10644,12163,14147,13626,15194,16929,2000,2500,0,2000,2000,2000,0
+5487,150000,male,1,2,66,0,0,0,2,2,2,131027,135519,147692,149166,151934,137885,6600,16200,5200,5110,0,5300,0
+5488,390000,female,1,1,39,-2,-2,-2,-2,-2,-2,48417,15530,112316,114797,131601,130295,2000,97472,4000,20000,31667,6539,0
+5489,180000,female,2,1,44,0,0,0,0,0,0,161186,167080,170788,174764,162667,166953,10000,8000,7000,6000,7000,10000,0
+5490,290000,female,2,1,55,1,-2,-1,-1,-1,2,0,166,2462,-150,1134,777,166,2462,150,1833,0,500,1
+5491,180000,male,2,2,34,0,0,0,0,0,0,22387,23453,20171,20245,20769,23770,1500,1500,1000,1000,3490,1000,0
+5492,80000,female,1,2,31,-1,-1,-1,-1,-1,2,14401,4374,15020,4233,5934,158,4374,15037,4233,6092,0,13391,0
+5493,450000,female,1,1,42,-1,-1,-1,-1,-1,-1,72517,0,6281,3446,6157,0,0,6281,3446,6157,0,14380,0
+5494,20000,male,2,2,37,0,0,0,0,0,0,20009,20602,21255,19105,19609,19283,1700,1600,1200,1000,900,1000,0
+5495,80000,male,1,2,25,0,0,0,0,0,0,31443,26358,20050,10850,4204,0,1800,1621,0,0,0,0,0
+5496,100000,female,2,2,36,0,0,0,0,0,0,87656,90341,92244,93316,95158,97776,5000,4300,3500,3500,4200,4500,0
+5497,70000,male,3,1,39,0,0,0,0,0,0,58665,55845,55362,39615,40477,43295,6852,2010,1500,1500,3500,2000,0
+5498,330000,male,3,1,49,0,0,0,0,0,0,217148,218414,216225,181352,181172,179835,7849,7919,6198,6525,6523,6122,0
+5499,200000,male,1,2,30,-2,-2,-1,-1,-2,-1,1488,2493,5261,993,2494,3890,2505,5268,996,2501,3896,5189,0
+5500,30000,male,1,2,36,0,0,0,0,2,2,27748,24640,51026,27400,26823,28621,1500,1500,4200,0,2252,0,0
+5501,200000,female,3,1,69,2,2,2,2,2,-2,2500,2500,2500,2500,0,0,0,0,0,0,0,0,1
+5502,80000,female,1,2,27,-1,-1,-1,-1,-2,-2,5060,0,3885,0,0,0,0,3885,0,0,0,860,0
+5503,340000,female,1,2,40,0,-1,0,-1,-1,2,68616,6691,10961,8722,4776,2812,7355,10012,8740,4776,0,6000,0
+5504,20000,female,2,2,56,0,0,0,0,0,0,17091,17596,15524,14807,13667,16271,3000,3006,3506,3500,7011,7125,1
+5505,130000,female,1,2,29,2,0,0,0,0,0,126509,109944,105049,68154,67397,61764,6000,6000,5000,2500,3000,3000,0
+5506,400000,male,1,2,31,0,0,0,0,2,0,115506,123607,140859,157131,126146,115529,10000,20009,20146,68,5109,5084,0
+5507,200000,female,2,1,29,0,0,0,0,0,0,34391,26945,26349,26925,27841,29368,1507,1427,1003,2000,2000,1060,0
+5508,80000,female,2,1,47,0,0,-1,-1,-2,-2,4762,3235,1970,0,0,0,1000,1970,0,0,0,0,0
+5509,50000,male,3,1,39,0,0,0,0,0,0,26979,21029,18765,19145,19229,19026,1328,1298,678,687,691,700,0
+5510,30000,female,1,2,25,0,0,0,0,0,0,19783,20959,22269,22601,23085,23646,1500,1668,1000,1000,944,762,0
+5511,70000,female,2,2,22,0,0,2,0,0,0,31377,31420,30940,24765,25942,27073,6000,1125,1300,3000,2500,1200,0
+5512,500000,male,1,2,33,-1,-1,-1,-1,-1,-1,3933,5924,39167,4683,7222,35746,5954,39373,4706,7259,35924,5750,0
+5513,80000,male,1,2,27,-1,-1,-1,-1,-2,-1,6544,4924,1990,0,0,4350,4924,1990,0,0,4350,0,0
+5514,120000,male,2,1,40,0,0,0,0,0,0,94166,73086,62511,36996,30311,26414,3500,2347,5000,3000,2000,10000,0
+5515,390000,male,1,1,33,0,0,0,0,0,0,17794,23518,28139,32711,36215,40650,6000,5000,5000,4000,5000,8883,0
+5516,30000,male,3,1,52,0,0,0,0,0,0,28889,30050,29797,18464,12235,0,2002,1025,1230,1042,0,0,0
+5517,70000,female,1,2,30,0,-1,-1,2,0,0,6749,64626,47161,27534,26660,27022,64626,3000,0,946,1424,1000,0
+5518,140000,male,3,2,39,0,0,0,0,-1,-1,115940,100572,10776,10776,1059,0,10000,1000,0,1059,0,0,0
+5519,30000,female,2,1,27,0,0,0,0,0,0,52636,27761,28791,29078,30125,8941,3164,1615,902,1374,767,849,0
+5520,190000,female,2,2,25,1,-2,-1,0,0,-1,0,0,2251,2251,497,7681,0,2251,0,600,9289,6374,0
+5521,270000,male,1,2,33,0,0,2,0,0,0,117705,123812,125284,126708,134352,108585,8000,5000,5000,10000,5000,5000,0
+5522,290000,male,1,2,35,-2,-2,-2,-2,-2,-2,184910,118701,97606,76053,53994,31812,4166,3400,2588,1696,1113,1647,1
+5523,50000,male,2,2,29,0,0,0,-2,-2,-2,1972,2524,0,0,0,0,2500,0,0,0,0,0,1
+5524,200000,female,1,1,41,0,0,0,0,0,0,30689,31895,32808,28298,26538,24645,5003,5000,5000,2000,5000,3000,0
+5525,30000,female,2,2,24,0,0,2,0,0,2,5807,7153,7877,8591,10302,10006,1600,1000,1000,2000,0,1500,0
+5526,150000,male,2,1,29,0,0,0,0,0,0,46625,66174,81085,75300,77276,64065,30151,40104,10013,5083,1819,4793,0
+5527,30000,female,3,2,48,-1,-1,-1,-1,-1,-1,2946,0,390,390,390,0,0,390,390,390,0,780,1
+5528,500000,male,1,1,34,-2,-1,-1,-1,-1,-1,33348,90852,42389,19238,34750,21464,90889,42398,19244,34750,21464,28557,0
+5529,20000,female,1,2,23,0,0,0,2,0,0,17229,17591,17750,17175,18716,18782,1300,2180,0,1818,1000,680,0
+5530,50000,male,3,1,29,1,2,0,0,0,0,22446,21799,23130,24432,26862,29244,0,1698,2000,3000,3000,5000,0
+5531,280000,male,2,2,30,2,2,2,2,2,0,110550,113877,115223,116930,112607,95949,6600,4700,5100,0,4200,3000,0
+5532,80000,male,3,2,24,1,-1,-1,-1,-1,-1,0,832,416,416,416,416,1248,416,416,416,416,416,0
+5533,200000,male,1,2,27,1,-2,-1,0,-1,-1,0,0,6331,6460,630,500,0,6331,129,630,500,0,0
+5534,30000,female,3,1,60,0,0,0,0,0,0,27331,27171,28491,28091,28664,0,2000,2000,0,573,0,0,0
+5535,30000,female,2,1,24,0,0,0,0,0,0,22280,23671,24233,22893,3332,3400,1748,1310,490,67,68,0,0
+5536,380000,female,2,1,35,-1,-1,-1,-1,-1,-1,2661,2022,1823,1823,1823,1198,2022,1823,1823,1823,1198,2068,0
+5537,260000,female,2,2,26,0,0,0,0,-1,-1,164351,164244,158124,62373,746,-45734,7000,5115,2000,746,5025,54836,0
+5538,50000,male,2,2,22,1,2,0,0,0,0,50043,98450,48689,19773,19931,19237,1000,2000,900,900,1000,1000,0
+5539,90000,male,3,1,53,0,0,0,0,0,0,99905,87296,90388,56087,27055,22320,3763,5150,1100,977,1202,3495,0
+5540,20000,male,2,1,40,1,2,2,0,0,0,15919,16939,16374,16604,16837,17357,1570,0,800,650,800,1000,0
+5541,10000,male,2,2,27,1,-1,0,0,0,0,-2000,2475,4428,6368,9046,10000,4475,2000,2000,2780,2000,0,0
+5542,400000,female,2,1,44,1,-2,-1,-1,-1,-1,0,0,1228,3405,961,-251,0,1228,3405,961,0,0,0
+5543,300000,female,1,2,32,-2,-1,-1,-2,-2,-1,2081,1925,1656,1756,1776,3414,1925,1656,1756,1776,3414,109,0
+5544,150000,female,5,1,25,-2,-1,-1,-1,0,0,1072,963,3271,16741,8230,6517,1321,3271,16741,0,3885,11970,0
+5545,50000,female,2,2,33,0,0,0,0,0,0,51444,52607,48083,30205,29747,30042,2000,1500,1690,1200,1200,992,0
+5546,100000,female,2,2,25,2,2,0,0,0,0,101827,99365,100349,72391,72396,72668,0,3927,2700,2800,3000,3000,1
+5547,150000,female,2,1,38,-2,-2,-2,-2,-2,-1,0,0,0,0,0,150,0,0,0,0,150,810,1
+5548,110000,male,2,2,34,0,0,0,0,0,0,111576,102942,99241,73151,64731,66025,4100,3680,2511,2350,2370,2610,0
+5549,100000,female,2,2,28,0,0,0,0,0,0,106750,76374,68584,66901,63261,64409,3004,47000,2540,3000,3000,3000,0
+5550,50000,male,2,1,33,0,0,0,0,0,0,21460,12570,13530,14876,14157,18888,1300,1200,5000,1000,5000,8000,1
+5551,80000,male,1,2,29,0,-1,-1,-1,-1,-1,6228,589,390,390,390,383,589,390,390,390,383,2390,0
+5552,210000,female,1,2,25,-1,-1,-1,0,0,0,4576,1837,141555,140550,153587,153278,1837,141555,4272,20150,6000,9749,0
+5553,140000,female,3,1,60,0,0,0,0,0,0,137730,137498,137187,136807,136631,136080,4990,4975,4897,5029,4792,4987,1
+5554,240000,female,1,1,43,0,-1,-1,-2,-2,-2,8862,3220,0,0,0,0,3220,0,0,0,0,0,0
+5555,110000,female,2,2,36,0,0,0,0,0,0,48120,44723,37745,34519,29541,42400,5000,2000,2000,2000,16468,3000,0
+5556,100000,female,3,2,48,-2,-2,-2,-2,-2,-2,2422,894,0,0,1639,923,894,0,0,1639,923,0,0
+5557,50000,male,2,1,24,0,0,0,0,0,0,17961,18689,19284,19517,19193,18848,1700,1600,1200,1000,1000,1200,0
+5558,90000,female,2,1,35,0,0,0,0,0,0,82164,77060,76589,62892,58326,59491,2926,3571,2381,2083,2100,1976,0
+5559,150000,male,1,2,33,0,0,0,0,0,-2,26739,32939,34300,35100,-1200,-1200,7000,2500,1000,0,0,0,0
+5560,100000,female,2,1,30,2,2,2,2,2,2,29778,30678,31154,31625,31059,33123,1600,1200,1200,0,2500,1300,1
+5561,140000,female,2,1,62,0,0,0,0,0,0,142250,142172,141738,141524,141845,142150,5200,5100,5000,5200,5100,5200,0
+5562,230000,female,1,2,33,0,0,0,0,0,0,172567,174987,133263,114889,117139,120252,7000,6000,4500,4000,5000,4500,0
+5563,20000,female,2,2,25,0,0,0,0,0,0,19223,18206,19195,38040,20009,20138,1293,1397,836,1653,565,206,1
+5564,230000,female,3,2,38,0,0,0,0,0,0,14887,23751,52698,101007,103598,150430,10000,30000,50000,4691,50000,4000,0
+5565,150000,male,2,2,26,-2,-2,-2,-2,-2,-2,3627,0,0,0,0,0,0,0,0,0,0,0,1
+5566,20000,male,2,2,24,0,0,0,0,0,0,10534,8864,6741,3820,16945,17509,1300,1305,500,13500,1000,1500,0
+5567,120000,female,3,1,35,0,0,0,0,0,0,27666,28036,29555,28458,29129,29700,1500,2000,1000,1500,1500,1500,0
+5568,30000,female,3,1,58,1,2,2,2,3,2,24921,26225,25502,28588,27616,27903,2000,0,3509,0,1128,0,1
+5569,220000,male,1,1,42,1,2,0,0,0,0,59932,57477,54788,54468,51920,49016,0,2421,1964,2000,2000,1600,0
+5570,250000,male,1,1,41,-1,-1,-1,-1,-1,-1,9146,10906,4614,28790,4418,10676,10957,4614,28796,4418,10676,0,0
+5571,80000,male,2,1,34,0,0,0,-2,-2,-2,11460,16000,0,0,0,0,5000,0,0,0,0,0,0
+5572,60000,male,1,2,22,0,0,2,0,0,0,57392,60254,58971,29137,29900,30069,4400,304,1100,1216,1300,589,0
+5573,130000,female,2,1,37,1,-2,-1,-1,-1,-1,0,0,306,3670,1473,5555,0,306,3670,1473,5555,1473,0
+5574,400000,male,3,1,43,-1,0,0,0,0,-1,145801,134269,100229,57583,8556,316,6100,26621,6600,406,316,316,0
+5575,150000,female,2,2,28,0,0,0,0,0,0,103227,105462,109160,109859,112314,114614,3900,5450,4000,4227,4321,5000,0
+5576,230000,female,3,1,58,-2,-2,-2,-2,-2,-2,316,316,2310,316,316,316,316,2310,316,316,316,316,1
+5577,70000,female,3,2,24,0,0,0,0,0,0,75894,70947,59783,18965,15936,1518,10004,3012,1000,1000,1518,20911,0
+5578,50000,female,2,1,39,0,0,0,0,0,0,47407,37716,30873,24659,15849,8540,2039,1400,1612,0,0,0,0
+5579,90000,female,1,1,38,-1,-1,-1,-1,-1,-1,380,2132,0,1066,1752,569,2132,0,1066,1752,569,2132,0
+5580,30000,female,3,2,49,0,0,2,0,0,0,27838,30715,29322,28015,28610,28884,3330,0,1148,1195,910,1000,0
+5581,30000,male,2,1,49,3,2,2,2,2,2,26319,27404,27769,28227,28642,28042,1800,1100,1200,1000,0,2200,0
+5582,250000,female,1,2,26,-2,-2,-2,-2,-2,-2,1245,712,0,0,0,0,712,0,0,0,0,0,0
+5583,30000,female,2,2,23,1,-1,-1,-2,-2,-1,-1,604,0,0,0,359,605,0,0,0,359,0,0
+5584,150000,female,2,1,27,-2,-2,-2,-2,-2,-2,929,0,0,0,0,0,0,0,0,0,0,0,0
+5585,400000,female,1,2,48,-1,-1,-1,0,0,-1,24478,10841,53336,25017,16039,38994,10846,53383,16044,0,39727,0,0
+5586,30000,female,2,1,52,0,0,0,0,-1,-1,20533,20819,21990,15525,25242,0,2000,2000,5000,25242,0,5000,1
+5587,270000,female,1,2,50,-1,-1,-1,-1,0,-1,3095,2340,0,1250,2250,178,2340,0,1250,1000,178,1772,0
+5588,360000,male,3,1,37,-1,-1,-2,-2,-2,-1,303,0,0,0,0,860,0,0,0,0,860,0,0
+5589,80000,female,2,1,23,2,0,0,0,0,0,82628,134880,67325,68652,70388,76743,2500,2404,3000,2800,7700,0,1
+5590,70000,female,2,2,33,0,0,0,0,0,2,14320,15383,16318,17048,18772,18320,1600,1500,1000,2000,0,1000,0
+5591,50000,female,1,2,29,0,0,0,0,0,0,41897,17304,16544,14787,15975,17098,4000,2000,3000,3000,3000,3000,0
+5592,220000,female,2,2,38,0,0,0,0,0,0,142846,146533,151098,153094,156295,151840,6000,7000,6000,6000,10000,10000,0
+5593,70000,male,2,2,29,0,0,0,2,0,0,56626,58512,61926,60332,61658,65561,2800,5000,0,2300,4950,2700,1
+5594,340000,female,1,1,39,0,0,0,0,0,0,250571,251917,256908,260462,265927,271766,9125,11750,9325,9665,10274,9832,0
+5595,20000,female,3,1,43,-1,-1,-1,0,-1,-1,390,0,780,390,390,0,0,1170,0,390,0,780,0
+5596,300000,female,2,2,32,0,0,0,0,0,0,139578,123041,110751,99222,83859,72220,6000,4500,3500,3000,3000,7500,0
+5597,180000,female,1,2,29,-2,-2,-2,-2,-2,-2,0,0,432,0,0,0,0,432,0,0,0,0,0
+5598,60000,male,2,2,33,1,-2,-2,-2,-2,-1,-64,-64,-64,-64,-64,16759,0,0,0,0,17000,13000,0
+5599,160000,female,2,2,27,2,2,2,2,2,2,157818,161308,162923,161481,155819,168283,7500,5800,5700,0,18100,0,1
+5600,50000,male,2,2,37,0,0,0,0,0,0,50148,50522,50073,49130,48658,0,2064,2005,1367,1700,0,0,0
+5601,100000,female,1,1,38,-1,-1,-1,-1,-1,-1,1669,710,1824,1968,0,640,710,1824,1968,0,640,0,0
+5602,60000,female,3,1,48,-1,-1,-2,-2,-2,-1,2970,430,430,717,430,4171,430,430,717,430,4171,2914,0
+5603,30000,male,2,2,23,0,0,0,0,0,0,26725,28289,29489,30237,30504,29771,2000,2000,1502,1112,1100,2000,0
+5604,500000,female,2,2,33,-2,-2,-2,-1,0,0,13284,17262,81198,40049,54258,59569,17311,81938,40060,30000,20000,10000,0
+5605,20000,female,2,1,35,0,0,0,0,0,0,18126,19174,20095,18583,19313,36046,1347,1268,1000,1000,1000,1000,0
+5606,50000,female,2,2,23,0,0,-1,-1,-1,-1,35131,6559,836,836,836,3300,5582,836,836,836,3300,1476,0
+5607,180000,female,2,1,35,0,0,0,0,0,0,174635,173281,175102,134494,135881,124651,8155,8199,4960,5404,4686,4563,0
+5608,90000,female,2,2,23,0,0,0,0,0,0,19204,12681,14155,14916,15673,17404,2000,2000,1000,1000,2000,2000,0
+5609,150000,female,2,1,33,0,0,0,0,0,0,37794,39240,40653,41249,42356,43278,2000,2000,1500,1700,1700,1668,0
+5610,30000,male,2,1,44,0,0,0,0,0,-2,30003,30470,30147,26030,0,0,1643,1420,913,700,0,0,0
+5611,130000,male,3,2,45,0,0,-1,0,-1,-1,13513,11800,2522,1261,390,390,1000,2522,0,390,390,390,0
+5612,80000,female,3,1,39,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+5613,210000,female,2,1,33,0,0,0,0,0,0,206409,198390,200035,96882,99087,101427,8546,7542,11538,3735,4129,2821,0
+5614,530000,female,1,2,39,0,0,0,0,0,0,439330,407763,364298,345867,346676,352736,17045,14089,11962,11763,12557,12496,0
+5615,360000,male,2,1,51,1,3,2,0,0,0,3551,3348,2504,1878,1252,626,0,0,0,0,0,626,1
+5616,140000,female,2,2,36,0,0,0,0,0,0,134183,136457,97395,99249,77188,71675,8144,6812,5036,3000,15000,10000,0
+5617,20000,female,2,1,24,2,0,0,0,0,0,19618,17576,18266,18637,19028,14924,1451,1141,512,533,1000,600,0
+5618,200000,female,1,1,40,-1,-1,-1,-1,-1,-1,316,316,316,316,316,316,316,316,316,316,316,316,0
+5619,40000,female,2,2,25,0,0,0,2,0,0,39092,39816,40817,39082,38091,40159,1967,3300,0,1400,3100,0,1
+5620,200000,male,3,2,27,0,0,0,0,0,0,60225,61040,32298,31046,21581,16001,4119,5000,3037,3025,3035,3000,0
+5621,90000,male,5,2,34,0,0,0,0,0,0,101023,97045,102372,100794,98277,96735,3580,13000,7000,6000,7000,8200,0
+5622,410000,male,2,1,45,0,0,0,0,0,0,278405,285415,279484,274639,281158,288051,13000,10515,9884,11000,11425,11700,0
+5623,170000,female,3,2,42,0,0,0,0,0,0,77795,66420,83733,89389,97696,101063,5000,20000,8000,10000,5000,4000,0
+5624,230000,female,1,1,37,0,0,0,0,0,0,89299,90714,86954,76098,76501,64763,5000,5000,3000,4000,5000,5000,0
+5625,210000,female,2,2,42,-1,-1,-1,0,-1,-1,1631,1024,1520,916,586,1466,1024,1520,0,586,1466,427,0
+5626,200000,male,2,2,29,0,0,0,0,0,2,7468,34399,36792,49648,33498,30895,30035,10008,15011,5010,153,14100,0
+5627,50000,female,1,2,25,1,2,0,0,0,0,43099,42133,43127,44210,45844,49869,0,2000,1800,2500,5500,1801,0
+5628,130000,male,2,2,42,0,0,0,0,0,0,83521,84373,86004,87718,90720,87851,3087,3059,3080,4355,3323,3192,0
+5629,210000,male,2,2,34,0,0,0,0,-1,-1,24708,21544,41616,34833,17628,2400,1995,21067,14492,17680,2407,497,0
+5630,130000,female,2,2,42,0,0,0,0,0,0,42946,43969,44975,45723,46515,47450,1676,1682,1430,1318,1331,1525,0
+5631,80000,female,2,2,41,-1,2,2,2,2,2,66053,67397,68193,69465,70545,72233,3000,2500,3000,2500,3000,0,0
+5632,360000,female,2,1,49,-1,-1,-2,-2,-2,-2,15000,0,0,0,0,0,0,0,0,0,0,780,0
+5633,500000,male,1,1,42,1,1,0,0,0,0,9615,9996,177741,163299,159110,135658,1054,177080,4425,5666,4825,100225,0
+5634,60000,female,2,1,53,-1,-1,-1,-1,-1,-1,390,390,390,390,540,390,390,390,390,540,390,390,1
+5635,160000,female,2,2,26,0,0,0,0,-1,-1,8218,4450,3291,1623,905,0,1216,1000,32,905,0,0,0
+5636,50000,female,2,2,22,2,0,0,0,0,0,47076,48628,48524,8411,8587,8758,2617,2463,350,311,313,324,1
+5637,50000,male,3,1,33,0,0,0,2,0,0,19374,17772,20090,19052,19601,16460,1346,2664,1261,782,606,583,0
+5638,360000,male,1,2,36,0,0,0,0,0,-1,256324,246283,211725,49064,19272,18609,12009,9530,2116,9291,18718,19333,0
+5639,30000,female,2,2,38,1,-2,-2,-1,2,2,0,0,0,239,89,589,0,0,239,0,500,0,0
+5640,20000,female,2,2,27,-1,2,-1,2,0,0,226,226,4294,2863,1583,1320,0,4294,0,0,150,0,0
+5641,360000,female,1,1,32,0,0,0,0,-1,0,37736,28746,19783,17738,1262,382,1174,1100,396,1266,9,7643,1
+5642,50000,female,1,2,28,0,0,0,0,0,0,6608,4571,6260,6760,4762,5684,2000,2000,500,2000,2000,1000,0
+5643,460000,female,1,1,43,-2,-2,-2,-2,-2,-2,7677,21748,4032,23724,12972,11111,21958,4052,23862,13036,11167,45034,0
+5644,20000,male,2,2,24,-1,2,2,2,0,0,19318,18735,20905,20270,19409,19954,0,2480,0,1000,1035,1000,0
+5645,330000,male,2,1,39,1,-1,-1,0,0,0,-208,208,125755,128671,132598,136229,416,125755,5000,6000,6000,10000,0
+5646,200000,female,3,1,29,1,-2,-1,-1,-1,-1,0,0,1000,34614,749,0,0,1000,34614,749,0,0,0
+5647,50000,female,2,1,38,2,2,2,2,0,0,50965,50956,50603,49788,37353,0,1101,1500,39,1280,0,0,1
+5648,50000,female,2,1,24,0,0,0,0,0,0,7052,2105,7358,2912,2881,553,2003,7000,2900,2500,400,0,0
+5649,50000,male,2,2,24,1,-1,-1,-1,-1,-1,-22,834,-639,1559,-205,613,3000,0,3000,0,2000,1000,0
+5650,270000,female,2,1,42,-1,-1,2,-1,-1,-1,1138,11899,5794,19857,3681,3188,11921,329,20218,3699,3204,13193,0
+5651,200000,female,2,1,33,-1,-1,-1,-1,0,0,7770,3266,200,15845,15845,-39,5846,200,15845,0,0,0,0
+5652,300000,female,2,2,28,0,0,0,0,0,0,199801,121321,94524,86637,78939,70689,5017,3200,3500,3000,3000,74000,0
+5653,50000,female,1,2,26,1,-2,-2,-2,-1,-1,-1,-1,-1,-1,349,350,0,0,0,350,351,4076,0
+5654,250000,female,3,1,55,0,0,0,0,0,0,296963,237684,178151,180993,155516,125063,8000,7400,9700,5100,4500,4012,1
+5655,400000,male,1,2,33,0,0,0,-2,-2,-1,201800,205150,0,0,0,91057,9150,0,0,0,91057,100000,0
+5656,360000,female,1,2,27,0,0,0,0,0,0,119138,100553,96679,79703,71682,24230,20006,25006,20200,40000,0,0,0
+5657,120000,female,2,1,29,0,0,0,0,0,0,122842,123704,123291,121242,121403,121863,6500,6100,4603,4774,9000,0,1
+5658,50000,female,2,1,49,2,0,0,0,0,0,19169,20195,21207,21628,22233,22519,1341,1353,774,953,805,832,1
+5659,340000,female,2,1,40,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+5660,180000,male,2,2,29,0,0,0,0,0,0,98535,99196,98905,75576,59889,51422,3977,6516,1611,3000,7080,1132,0
+5661,50000,female,1,2,23,1,-1,0,0,0,0,-1971,50265,45397,45256,28355,16624,53267,1835,3039,0,7000,9300,0
+5662,150000,male,2,2,37,-1,0,0,0,0,0,111880,106841,102490,103711,104153,103240,4000,3700,3700,3756,3800,3500,0
+5663,100000,female,2,1,41,2,2,2,2,2,0,97031,96919,93277,97576,94742,95578,3500,0,7000,0,3600,4000,1
+5664,200000,female,2,2,28,1,-1,-1,-1,-1,-1,0,1732,828,0,497,1809,1732,828,0,497,1809,0,0
+5665,160000,male,2,2,43,0,0,-2,-2,-2,-2,8460,0,0,0,0,0,0,0,0,0,0,0,0
+5666,50000,male,3,1,55,0,0,0,0,0,0,44258,28040,27935,51904,24147,24425,2489,1384,841,1013,819,15154,0
+5667,150000,female,2,1,40,0,0,0,0,0,0,40548,41597,42405,43498,44596,45700,2000,1800,1800,1800,2000,1800,0
+5668,50000,female,3,1,52,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+5669,220000,female,2,2,36,0,0,0,0,0,0,126695,106534,109884,106114,108202,110938,4000,5500,3775,4100,5000,4500,0
+5670,30000,female,2,1,23,2,2,2,2,2,2,11851,14416,13887,14564,15183,14790,2762,0,910,1000,0,1200,1
+5671,30000,female,2,1,26,2,0,0,0,0,2,25369,23073,21520,18669,15710,15308,1700,1600,700,1401,0,600,1
+5672,50000,female,3,2,57,0,0,0,0,0,0,18599,18598,18835,18475,18135,17777,1321,1278,638,654,659,557,0
+5673,160000,female,2,2,35,0,0,2,0,0,0,25590,29169,28406,28836,30208,30853,4000,0,1200,2000,1300,1291,0
+5674,180000,male,1,2,31,-2,-2,-2,-2,-2,-2,0,48544,17700,4270,0,19331,48544,17700,4270,0,19331,0,0
+5675,190000,male,1,1,31,0,0,0,0,0,0,158416,124910,95406,95313,48731,87197,6004,5148,5313,3000,40000,0,0
+5676,480000,female,1,1,39,0,0,-1,0,0,0,106660,400000,66270,80274,82160,110773,302000,66270,15000,3044,30042,34048,0
+5677,270000,female,1,2,32,0,0,0,0,0,-1,25343,40414,39956,39827,9456,386,20000,5000,5000,1000,386,0,0
+5678,200000,male,2,2,37,-2,-2,-2,-2,-2,-2,162,536,0,495,0,0,536,0,495,0,0,546,0
+5679,80000,male,1,2,38,-1,-1,-1,0,-1,-1,780,259,7544,390,390,332,259,7544,0,390,332,780,1
+5680,410000,male,2,1,36,-2,-2,-2,-2,-1,-1,3827,9921,28961,2954,9942,2628,10534,29750,3483,10470,2636,122005,0
+5681,50000,female,1,2,25,-1,2,0,0,0,-1,2823,1760,2640,1760,880,1910,0,1760,0,0,1910,0,1
+5682,50000,female,3,2,42,0,0,0,0,0,0,2389,3405,4414,4653,4596,4688,1064,1073,312,166,168,174,0
+5683,210000,male,1,1,39,-2,-2,-2,-1,-1,-2,980,0,650,3446,0,0,0,650,3446,0,0,0,1
+5684,20000,male,1,2,28,0,0,0,0,0,0,16196,17232,18339,18734,19281,19413,1600,1700,1000,1000,556,193,0
+5685,150000,female,1,2,28,0,0,0,0,0,0,109835,110255,110247,110955,105145,105377,5500,5300,3853,4000,4000,3952,0
+5686,130000,female,1,2,25,1,2,-1,-1,-1,-1,2576,2356,5978,2750,3641,1735,0,6000,2750,3641,1735,7290,1
+5687,200000,female,1,2,26,0,0,0,0,0,0,121830,91216,93099,94949,96929,98909,3311,3400,3400,3512,3586,3148,0
+5688,110000,female,2,2,23,0,0,0,0,0,0,106963,101958,85914,73638,72119,73764,5023,3900,2600,5000,3000,3000,0
+5689,180000,female,1,1,30,-1,-1,-2,-2,-2,-2,2743,0,0,0,0,0,0,0,0,0,0,0,1
+5690,300000,female,1,1,40,-1,-1,-1,-1,0,0,10920,3939,10184,115184,63758,19813,3939,11082,115184,19800,0,2356,0
+5691,360000,male,1,2,32,-1,-1,-1,-1,0,0,27,185,0,617,617,0,185,0,617,0,0,0,0
+5692,380000,female,2,1,30,-2,-2,-2,-2,-2,-2,3745,738,1175,576,576,-2,745,1180,578,578,0,580,0
+5693,360000,female,1,2,29,-1,-1,-2,-2,-2,-1,2868,0,0,0,0,629,0,0,0,0,629,2475,1
+5694,80000,male,1,2,28,-2,-2,-2,-2,-2,-2,8598,9467,-270,3697,9455,4144,9467,0,3967,9455,5000,2900,1
+5695,350000,female,1,3,48,-1,-1,-1,-1,-1,-1,181212,6021,154505,19653,26963,55533,6046,157181,19751,27070,55613,11811,0
+5696,20000,female,5,1,28,0,0,0,2,0,0,21501,21415,21529,19542,18547,17519,1674,2200,0,686,705,4176,0
+5697,320000,female,1,2,35,0,0,0,0,0,0,227927,218565,223284,98028,102498,80469,10000,10000,5000,6000,5000,5000,0
+5698,90000,male,3,1,62,0,0,0,0,-1,-1,86200,81995,16985,12985,285,-4715,2500,1000,1000,500,0,31000,0
+5699,40000,female,1,2,27,-1,-1,0,0,0,-1,32540,14163,30107,31567,32583,31309,14163,20000,3000,3000,31749,0,1
+5700,50000,female,2,1,40,-1,0,0,0,0,0,46616,44515,48510,35774,18261,16644,2005,5000,610,631,634,3000,0
+5701,210000,female,1,2,24,-1,-1,0,0,0,-1,4055,113782,59367,29583,26756,29553,114482,20176,6793,20112,29676,47642,0
+5702,30000,female,2,2,22,3,2,0,0,2,2,30078,28639,26017,27790,27209,30508,87,2002,3200,0,3926,0,0
+5703,310000,female,1,2,27,1,-1,-1,-2,-1,-1,0,113,0,0,6960,6008,113,200,0,6960,6008,0,1
+5704,280000,female,2,2,35,-2,-2,-2,-2,-2,-2,1616,1198,494,698,1233,5080,1198,494,698,1233,5080,17095,0
+5705,280000,female,1,1,41,0,0,0,0,0,0,99755,81244,81193,82470,49630,46517,3000,3007,5000,2000,1700,2000,0
+5706,260000,female,1,2,33,2,-1,-1,-1,-1,2,1381,491,491,1132,1711,1070,493,493,1134,1072,2,3103,0
+5707,90000,male,2,1,41,-1,-1,0,0,0,0,-1750,76674,77974,80064,81747,86611,79786,2836,3657,2972,6228,0,0
+5708,280000,male,1,1,49,-2,-2,-2,-2,-2,-2,11797,6163,-54,-54,-54,-54,6231,0,0,0,0,0,0
+5709,360000,female,3,2,34,-1,2,2,-2,-2,-2,2500,2500,0,0,0,0,0,0,0,0,0,0,0
+5710,30000,female,3,2,27,2,2,2,2,2,2,13257,14046,13523,14498,14123,15184,1300,0,1200,0,1300,0,1
+5711,380000,male,2,1,48,0,0,0,0,0,0,379080,294675,226959,219918,203575,188774,13000,9500,8000,7200,6700,7500,0
+5712,80000,female,2,2,22,3,2,0,0,0,2,42080,41131,42281,42605,47544,33115,0,2200,1500,5600,0,2275,0
+5713,50000,female,1,2,25,2,2,2,2,2,2,45708,48862,47748,50799,49904,49978,3900,0,3800,0,4000,0,1
+5714,280000,female,1,1,37,1,-2,-2,-1,-1,-1,449,12487,-10,3090,240,2010,12611,0,3100,240,2010,212,0
+5715,120000,female,2,3,37,2,2,2,2,2,2,26446,27719,27570,28318,29217,28598,2000,600,1500,1500,0,1056,1
+5716,180000,male,1,1,49,0,0,0,0,0,0,63444,65420,67722,70970,72670,76444,3000,4000,5000,3000,5000,5000,0
+5717,380000,male,3,2,33,-1,-1,-1,-1,-1,-1,2989,3731,3003,69127,33815,115854,3742,3012,69294,33827,115860,64486,0
+5718,110000,female,1,2,27,0,0,0,2,0,0,30961,31860,35254,30250,21436,25325,1700,4000,0,1000,5000,3000,0
+5719,50000,female,2,3,37,-1,-1,-1,-1,-1,0,1149,1420,1253,190,13390,9902,1424,1256,190,13400,30,16447,0
+5720,200000,female,1,2,48,-2,-2,-2,-1,2,2,0,0,0,5000,5000,0,0,0,5000,0,0,0,0
+5721,200000,male,1,1,44,-1,-1,-1,-1,-1,-1,25929,1582,21133,2941,8191,22842,1582,21133,2941,8191,22842,5567,0
+5722,150000,female,1,1,35,0,0,0,0,0,-1,27329,42144,35757,33789,33219,5621,20228,10036,18002,10000,5621,0,0
+5723,60000,male,2,1,40,0,0,0,0,0,0,58078,58139,59461,37170,18464,15822,2354,2538,1000,2000,1000,1000,1
+5724,200000,female,2,2,30,0,0,0,0,0,0,155768,156041,157356,123271,123831,124070,7325,7470,4460,4583,4376,4533,0
+5725,90000,female,2,1,35,2,0,0,0,0,2,63426,57922,55010,52540,56236,40922,2700,2500,1900,4600,0,1600,1
+5726,150000,female,1,2,32,-1,-1,-1,-1,-1,-1,1758,468,2988,2232,4535,0,468,2988,2232,4535,0,1593,0
+5727,20000,male,3,2,23,1,2,2,3,2,2,9126,8835,11088,10618,10304,11232,0,2400,0,0,1100,0,1
+5728,150000,female,3,1,34,0,0,0,0,0,0,112391,98583,95810,87216,88201,87483,5000,4000,4000,3290,3200,3215,0
+5729,180000,male,1,2,34,-1,0,-1,-1,-1,-1,16953,15884,11153,3889,800,0,1000,11153,3924,800,0,2190,0
+5730,470000,male,2,2,34,-2,-2,-2,-1,-1,0,23747,23305,0,1632,141186,143916,1116,0,1632,141190,6000,7004,0
+5731,30000,female,3,2,59,2,2,2,2,2,2,21767,24764,24031,25001,24531,21743,3363,0,1600,0,2000,0,1
+5732,20000,female,1,2,22,-1,-1,2,0,0,-1,8266,10377,5529,4482,0,2030,2313,0,0,1449,2030,1280,0
+5733,400000,female,1,1,36,-1,-1,-1,-1,-1,-1,14421,8392,13025,2816,6856,11069,8911,13025,2816,6856,11069,6823,0
+5734,210000,female,1,2,27,0,0,0,0,0,0,15663,8513,8607,9137,10637,3443,1500,1006,1500,1500,2600,99,0
+5735,120000,male,3,1,38,2,2,2,2,2,2,77468,78642,79757,80853,82715,84805,3000,3000,3000,3300,3600,2700,1
+5736,160000,female,4,1,42,-2,-2,-2,-1,0,0,-1582,3097,0,2039,1033,0,5624,0,2039,0,0,0,0
+5737,200000,female,1,2,26,0,-1,-1,-1,-1,-1,6242,1776,3587,0,2160,900,1776,3598,0,2160,900,1850,0
+5738,160000,female,1,2,30,-1,-1,-2,-1,-1,2,9640,0,0,2804,403,253,0,0,2804,403,0,3144,0
+5739,160000,female,2,2,37,2,2,2,2,2,2,147333,143786,151842,147962,156921,159416,200,12000,0,11500,5811,0,1
+5740,250000,male,3,1,51,-2,-1,-1,-1,0,-1,179,1533,364,381,3987,7135,1540,387,381,3985,7161,0,0
+5741,140000,male,3,1,56,0,0,0,0,0,0,7272,7906,8717,9046,9369,10165,1299,1500,1000,1000,1500,1000,0
+5742,330000,female,2,2,30,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+5743,220000,female,1,2,24,2,0,0,0,0,0,161081,158578,161256,157028,159971,168805,7100,7200,5800,5900,12000,0,1
+5744,30000,female,3,1,29,1,2,2,2,2,2,13164,12668,15038,14502,15501,15105,0,2905,0,1386,0,600,0
+5745,260000,male,1,2,35,1,2,0,0,2,0,149124,145333,148332,160810,155683,158771,0,6910,16502,0,5847,5873,1
+5746,380000,female,2,1,30,0,0,0,0,0,0,295543,299922,307166,311716,306830,303453,11000,12602,11500,10500,11000,10152,0
+5747,10000,female,2,2,33,0,0,0,0,0,-1,15004,8663,9437,9630,8399,1697,2452,1000,193,168,1734,770,1
+5748,190000,female,1,2,44,0,0,0,0,0,0,181045,184249,158883,99255,80219,81912,8000,7000,4000,3000,3000,3000,0
+5749,30000,female,2,1,38,0,0,0,0,0,0,23819,15367,10159,9859,8360,4101,1553,1033,381,384,404,1297,0
+5750,300000,female,1,1,39,1,2,-1,-1,-1,-1,6077,5806,2994,5338,4714,2362,29,3009,5364,4714,2362,4,0
+5751,20000,male,2,1,27,0,0,2,0,0,0,17062,19248,18181,18156,19102,17363,2850,0,514,2000,1000,1570,0
+5752,20000,male,2,1,35,0,0,0,0,0,-1,17584,19819,11280,3680,4480,1650,3013,1005,1000,3000,1650,0,0
+5753,80000,female,3,2,22,0,0,-1,-1,-2,-2,37990,39400,15674,-1,-1,-1,2400,15674,0,0,0,0,0
+5754,240000,male,2,1,33,0,0,0,0,0,0,225312,229394,232686,195509,198861,202057,8000,7400,6500,7000,7000,7000,0
+5755,90000,female,3,2,26,0,0,0,0,0,0,14692,15722,16733,17453,17970,18175,1269,1280,1000,950,652,1000,0
+5756,100000,female,2,1,43,0,0,0,0,0,0,98944,75296,78049,48644,54963,57269,4000,5000,3000,9000,4000,5000,0
+5757,320000,male,1,3,32,-1,-1,-1,-1,-1,-1,802,4929,2064,4365,1183,3287,4929,2064,4365,1183,3287,2810,0
+5758,360000,male,2,1,45,2,2,-2,-2,-2,-2,2500,0,0,0,0,0,0,0,0,0,0,0,0
+5759,180000,male,2,1,38,1,2,2,0,0,0,2826,4612,4571,5071,5195,0,2000,200,500,124,0,0,1
+5760,300000,male,2,1,40,-2,-2,-2,-2,-2,-2,15876,4347,0,2208,2475,7580,4347,0,2208,2475,7580,0,0
+5761,20000,female,1,2,22,-2,-2,-2,-2,-2,-1,-9,-9,904,304,0,302,0,913,304,0,302,7676,0
+5762,270000,female,2,2,26,0,0,0,0,0,0,29951,12211,13533,14391,15255,16273,1300,1533,1391,1255,1273,1000,0
+5763,20000,female,3,2,49,0,0,0,0,0,0,19437,20154,18957,19334,19373,19460,1337,2000,666,714,810,600,0
+5764,360000,female,2,1,35,0,0,0,0,0,0,39685,32219,34541,22420,16253,15773,1600,3019,900,600,369,2471,0
+5765,120000,male,2,1,38,0,0,0,0,0,0,50441,41960,34024,30564,22702,23175,2000,1361,1000,824,851,812,0
+5766,130000,female,3,2,27,0,0,0,0,0,0,129150,105529,107691,108418,115638,117958,5300,5400,4000,9000,4400,4500,0
+5767,60000,female,3,2,45,0,0,0,0,0,0,54920,39886,40056,39996,40261,32644,1726,1502,1287,1322,1179,1156,0
+5768,60000,male,2,1,36,0,0,0,0,0,0,46064,47320,48337,49332,50536,51694,2000,1805,1800,2000,2000,2000,0
+5769,120000,female,3,2,31,-1,-1,-1,-1,-1,-1,1769,390,390,390,390,390,390,390,390,390,390,1079,0
+5770,130000,male,3,2,33,0,0,0,0,0,0,92457,95365,98095,100796,102504,104089,6000,5000,5000,4000,4000,5000,0
+5771,360000,female,1,1,31,-1,-1,-1,-1,-1,-2,460,460,460,399,0,0,460,460,399,0,0,0,0
+5772,10000,male,3,2,24,-1,-1,-1,0,0,0,6217,5082,5400,5012,1740,390,5112,5400,2,4,0,5039,0
+5773,120000,female,1,2,24,-1,-1,-2,-2,-2,-2,600,0,0,0,0,0,0,0,0,0,0,0,0
+5774,60000,male,2,2,26,2,2,2,2,0,0,61103,61380,62158,120142,60428,58192,3000,2746,0,2297,1875,1158,1
+5775,240000,female,1,1,40,2,2,2,2,-2,-2,2500,2500,2500,0,0,0,0,0,0,0,0,0,1
+5776,160000,female,2,1,40,0,0,2,0,0,2,137695,146193,139323,140719,143638,144482,12121,0,5100,10251,5205,0,0
+5777,200000,female,2,1,44,-2,-2,-2,-2,-2,-2,0,138,0,0,1675,69,138,0,0,1675,69,39411,0
+5778,300000,male,1,2,29,-2,-2,-1,-1,-1,-2,0,0,150,3550,0,0,0,150,3550,0,0,0,0
+5779,100000,female,2,2,26,-1,-1,-1,-1,-1,-1,780,0,390,390,390,380,0,390,390,390,380,400,0
+5780,280000,female,1,1,30,0,0,0,0,0,0,217773,215017,209089,167458,137312,109980,8155,10048,6011,6010,6514,10011,0
+5781,190000,female,2,2,26,-1,-1,-1,-1,-1,-1,11613,10000,10000,10000,10000,10941,10000,10000,10000,10000,10941,79027,0
+5782,50000,male,2,1,48,1,2,2,2,2,0,17613,18334,17742,19273,18826,19213,1298,0,1829,0,849,822,0
+5783,210000,female,3,1,33,0,0,0,0,0,2,31570,32756,33905,35035,37465,36713,2000,2000,2000,3000,0,734,0
+5784,120000,female,1,2,26,0,0,0,0,0,0,110934,99271,90066,80165,78108,77588,4432,2988,4492,2797,2991,2900,0
+5785,140000,female,1,2,33,-2,-2,-2,-2,-2,-2,1825,0,1264,0,0,1980,0,1264,0,0,1980,1351,0
+5786,50000,female,1,2,23,-2,-2,-2,-2,-2,-2,807,0,0,0,0,0,0,0,0,0,0,0,0
+5787,150000,female,1,2,31,-2,-1,-1,-1,-2,-2,2005,2869,16719,8568,797,1158,2876,16732,8593,799,1161,41380,0
+5788,50000,male,1,2,23,4,3,2,0,0,2,27101,26431,14109,9417,9952,9165,88,12,473,825,323,10000,0
+5789,120000,male,1,1,50,1,-2,-2,-1,0,-1,0,-2008,-4016,4016,2008,8299,0,0,10040,0,8299,0,1
+5790,240000,female,1,2,29,-1,0,0,0,0,0,30380,15579,20496,15296,24332,23896,10023,10000,5000,15000,15000,5000,0
+5791,20000,male,1,2,26,0,-1,-1,-1,-1,-1,1490,3150,10464,0,1690,18156,3150,10464,0,1690,18156,19800,0
+5792,80000,female,2,2,24,0,0,0,0,0,0,78913,78726,70110,62590,54177,60662,2900,2329,2400,2000,7400,0,0
+5793,140000,female,2,1,28,0,0,0,0,0,0,99296,89391,79173,43370,28850,17896,3205,2894,2000,1500,1000,2000,0
+5794,50000,female,2,2,25,0,0,0,0,0,0,28428,27383,12620,6730,6872,7057,2000,1110,240,250,300,2335,0
+5795,150000,female,2,3,26,-2,-2,-2,-2,-2,-2,4181,25988,3177,49174,11823,669,26034,3182,49174,11823,669,1534,0
+5796,90000,female,3,1,53,0,0,0,0,0,0,65237,62521,60363,58142,55896,53525,2255,2200,2100,2014,1876,1901,1
+5797,640000,male,1,2,36,0,0,0,0,0,0,192325,68891,71564,32968,37541,42064,4000,4000,3000,5000,5000,3000,0
+5798,360000,male,1,2,31,-1,-1,-1,-1,-1,-1,15285,52698,2875,6918,10014,6478,53751,2879,6918,10014,6478,42108,0
+5799,130000,female,2,1,33,-1,-1,-1,-1,-1,-1,2454,1456,382,1043,2835,-184,1500,382,2000,3000,0,2000,0
+5800,210000,female,1,1,34,0,0,0,0,0,0,201324,207222,209189,106090,108300,87404,10646,8601,3601,3719,3300,3400,0
+5801,190000,male,1,2,36,2,2,2,2,2,2,107689,109678,110887,111871,114223,116577,5200,4500,4300,4300,4400,4500,1
+5802,150000,female,1,1,44,-1,-1,-1,0,0,-1,1365,0,839,693,0,3975,0,839,0,0,3975,0,0
+5803,10000,male,3,2,25,-1,-1,-1,-1,-1,-1,3161,390,390,390,0,1280,390,390,390,0,1280,6380,0
+5804,30000,female,1,1,24,-1,-1,-1,-1,-1,-1,9280,2643,3415,2250,2486,844,2643,3415,2250,2486,844,0,1
+5805,200000,male,1,1,67,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+5806,140000,female,1,2,25,3,2,0,0,0,0,21593,14021,10084,89223,58280,44593,0,2000,83000,3000,32000,2000,1
+5807,170000,female,2,2,30,0,0,2,0,0,0,121009,136552,132655,134140,115892,116653,19078,0,5000,5000,4500,4500,0
+5808,20000,female,2,2,24,2,2,2,2,-1,-1,6270,8284,8000,0,186,3314,2284,0,0,186,3314,3515,1
+5809,80000,female,2,1,45,0,0,-2,-2,-2,-2,82150,0,0,0,0,0,0,0,0,0,0,0,0
+5810,110000,male,2,1,49,0,0,0,0,0,0,51803,52888,54570,55368,56623,57196,1921,2563,2300,2300,1704,700,0
+5811,150000,female,1,2,28,0,0,0,0,0,-2,147933,111608,91705,32907,0,0,3202,20088,700,0,0,0,0
+5812,50000,female,2,2,43,-1,0,0,0,0,0,26342,27457,27381,17930,18128,18490,1547,1251,1200,600,627,759,0
+5813,50000,female,3,1,70,2,2,0,0,0,0,54084,51564,50733,30363,30444,30482,0,2504,1200,1500,1100,1301,0
+5814,50000,male,3,1,50,2,0,0,0,0,0,48607,49540,49583,19695,20004,19904,2100,1500,1000,1000,1000,700,0
+5815,10000,female,2,2,22,0,0,0,0,0,0,2274,3297,4730,5649,7304,8252,1067,1500,1000,1751,1073,2041,1
+5816,280000,female,1,2,38,-1,0,0,-1,0,-1,17878,14011,30079,13139,13989,15559,2000,30000,14000,1000,16000,0,1
+5817,50000,male,2,2,42,2,2,2,0,0,0,51614,52034,50151,20448,20464,20456,2000,39,718,800,800,800,0
+5818,10000,female,1,2,22,0,0,0,0,0,0,9397,9709,10228,10432,9839,9859,1200,1153,357,501,429,196,0
+5819,140000,female,2,1,28,0,0,0,0,0,0,131292,134057,135820,84829,86753,88808,7000,5820,3829,3753,3808,4744,0
+5820,140000,male,1,1,34,2,2,2,2,0,0,104651,105162,104207,100326,102740,103444,5000,3600,0,4000,4000,3603,1
+5821,300000,male,1,1,45,0,0,0,0,0,0,193462,185703,190060,189912,145909,127078,6835,7542,7930,6534,6153,2815,0
+5822,30000,female,2,1,26,1,2,2,0,0,2,27330,28090,28827,27299,29110,28492,1500,1517,1000,2255,0,1988,0
+5823,200000,male,3,1,47,0,0,0,0,2,0,185272,189657,103861,75480,70042,72157,10000,10000,6000,0,5000,3000,0
+5824,270000,female,2,2,26,0,-1,0,0,-1,-1,33224,52425,69048,68206,17510,26175,52425,27595,10343,18083,26279,17013,1
+5825,90000,female,2,3,36,0,0,0,0,0,0,91458,91049,70101,28942,27508,28250,3137,5094,1106,1001,1201,1074,0
+5826,10000,male,2,2,26,2,2,7,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,1
+5827,50000,female,3,2,22,2,2,0,0,0,0,22719,18408,19330,19561,19815,18574,0,1573,804,675,738,1000,0
+5828,80000,female,1,2,25,-2,-2,-2,-2,-2,-2,0,0,988,0,0,0,0,988,0,0,0,0,0
+5829,110000,female,2,2,26,0,0,0,0,0,0,65800,67251,70065,72017,77943,79694,2510,4000,3000,7000,3100,1377,0
+5830,370000,male,1,2,30,0,-1,-1,0,0,0,6592,3563,184429,180508,178220,72656,4000,192718,5000,5000,3000,2000,0
+5831,50000,male,2,2,23,-1,0,-1,-1,-1,-1,1678,1440,1322,1411,540,540,1200,1322,1500,540,540,780,0
+5832,10000,male,2,2,37,-1,-1,-1,0,-1,0,885,1475,780,390,780,390,1475,780,0,31250,0,0,0
+5833,180000,female,1,2,27,0,0,2,0,0,0,99137,119635,115839,105643,119358,116097,22500,121,10000,20000,25000,0,0
+5834,60000,female,2,1,59,4,4,5,4,3,2,56998,59111,59595,58079,56892,55826,3601,2000,0,0,0,4000,0
+5835,90000,female,1,1,43,0,0,0,0,2,2,58043,61485,62540,81123,80073,82472,5003,5000,20000,10,10104,87,1
+5836,120000,female,1,1,30,1,-2,-2,-2,-2,-1,0,0,0,0,0,150,0,0,0,0,150,200,0
+5837,110000,male,1,2,30,0,0,0,0,0,0,110800,112008,96347,49506,49142,49251,4404,2826,1880,1805,2182,2000,0
+5838,280000,female,3,1,61,0,0,0,0,0,0,162734,146990,149201,152377,155764,148302,7000,6000,5500,5800,5200,6000,0
+5839,200000,male,1,2,28,0,-1,2,2,-1,-1,7464,22182,10373,2669,1024,170722,22182,7,0,6177,180722,5000,0
+5840,130000,male,2,2,29,0,0,0,0,0,0,62530,62562,62650,63896,65411,64684,2272,2230,2243,2500,3000,4000,0
+5841,200000,female,2,2,28,1,2,0,0,2,2,61844,60294,63663,67596,66388,71272,0,5000,5000,0,6000,0,1
+5842,50000,female,2,2,26,0,0,0,0,0,0,29356,30483,31180,18401,18785,19248,1603,1300,658,680,773,524,1
+5843,30000,male,3,1,53,0,0,-2,-2,-2,-2,1596,0,0,0,0,0,0,0,0,0,0,0,0
+5844,230000,female,1,1,30,-1,-1,-1,-1,-1,-1,13995,28064,23326,13684,12883,11068,28097,23352,13684,12883,11068,11436,0
+5845,180000,female,1,2,31,-1,-1,-1,-1,-1,-1,3920,1020,0,860,13335,15248,1020,0,860,13335,15248,17676,0
+5846,220000,male,1,1,40,0,0,0,0,0,0,129597,147323,132188,83844,89299,94777,20000,8000,5000,7000,7000,5000,0
+5847,50000,male,1,2,46,0,0,-2,-2,-2,-2,51400,0,0,0,0,0,0,0,0,0,0,0,0
+5848,20000,male,1,2,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+5849,250000,female,2,2,40,-1,-1,-1,-1,0,0,2348,329,-1404,3596,8596,8941,329,5000,5000,5000,4000,3000,0
+5850,50000,male,3,2,41,0,0,0,0,-1,-1,47384,48814,49771,19375,71,19661,2194,2151,755,71,19837,792,0
+5851,180000,female,2,2,26,0,0,0,0,0,0,10874,9324,7738,6369,6109,7603,2000,2000,2000,3109,5000,5520,0
+5852,320000,male,2,2,44,-1,-1,-2,-2,-2,-2,36831,28785,13104,2621,9075,6564,28791,13227,2621,9075,6564,12767,0
+5853,10000,female,3,1,41,-1,-1,2,0,-1,-1,780,780,780,390,390,780,1473,0,0,390,780,0,1
+5854,320000,female,1,2,31,-2,-2,-2,-2,-2,-1,1345,5458,9572,3826,737,3865,5458,9579,3826,737,3865,300,0
+5855,250000,male,2,2,30,0,0,0,0,0,0,170559,173347,177321,177580,170956,158503,6523,7992,6475,6050,6197,6000,0
+5856,30000,male,2,2,24,1,2,2,3,2,0,20985,20393,20399,19945,19645,11229,0,2403,0,0,2000,0,0
+5857,260000,male,2,2,31,-1,-1,-1,-1,-1,-1,326,326,326,326,326,326,652,326,326,326,326,144,0
+5858,130000,female,2,1,37,0,0,0,0,0,0,122944,121530,107783,84353,169121,87863,6013,5312,3100,3123,6293,3273,0
+5859,180000,female,1,1,30,0,0,0,0,0,2,149069,152317,156282,161163,172190,148963,7500,8000,9000,14000,0,5500,1
+5860,270000,female,1,2,27,0,0,0,0,0,0,200750,204418,197854,173743,149095,145068,9500,8929,7265,5400,5300,5100,0
+5861,80000,female,3,2,30,0,0,0,-1,0,0,36676,38247,39856,28698,29299,30120,2165,2774,30458,1063,1308,4317,0
+5862,30000,female,1,2,27,-1,0,0,0,0,-1,418,1470,2418,2009,3009,7093,1052,1000,500,1000,7093,1000,0
+5863,100000,male,3,1,35,2,2,0,0,2,2,101326,97751,92431,97227,88899,93766,0,3500,7000,0,7000,0,1
+5864,340000,female,2,2,33,0,0,0,0,0,0,336190,301626,306575,311784,318320,325028,10300,10302,10365,10750,11150,11271,1
+5865,210000,female,2,1,26,0,0,0,0,0,0,207033,202432,142119,99699,17718,150758,9000,5500,3600,1000,135000,5314,0
+5866,280000,female,1,2,27,-2,-2,-2,-2,-2,-2,-5,-5,-5,8164,0,1133,0,0,8169,0,231133,3300,0
+5867,710000,male,2,2,33,-1,-1,-1,-1,-1,-1,8471,16849,940,6299,4720,3738,17330,944,7586,4739,3754,25259,0
+5868,50000,female,2,2,23,0,0,0,0,0,0,42790,39480,36360,29123,28809,29263,1635,1423,1020,1050,1503,1016,0
+5869,190000,male,1,2,35,0,0,0,0,0,0,24873,23522,22117,23433,22173,22598,1807,2000,2010,1003,2007,3019,0
+5870,400000,female,1,2,32,0,0,0,0,0,0,48419,51886,53291,57265,61035,64879,5000,3000,5000,5000,5000,5000,0
+5871,110000,female,3,1,53,-2,-2,-2,-2,-2,-2,1457,745,0,0,0,0,745,0,0,0,0,0,0
+5872,20000,female,2,1,23,2,0,0,0,2,0,16219,17626,18398,19052,15429,9199,1674,1446,1100,0,379,1085,1
+5873,20000,female,1,2,25,2,2,0,0,0,0,18446,17859,18718,17009,18721,20209,0,1718,900,2000,1800,0,1
+5874,20000,female,2,1,29,1,2,2,2,2,2,12186,11700,13474,13006,13743,11167,0,2000,0,1055,0,215,0
+5875,20000,male,2,2,23,1,2,2,2,2,0,4673,6433,6181,6778,6524,8408,2000,0,700,0,2000,2000,0
+5876,230000,female,1,2,43,0,0,0,0,0,0,39677,39261,38228,36542,35989,34347,5000,5000,3000,3459,4000,5000,0
+5877,180000,male,2,1,37,-1,-1,-1,-1,0,0,14480,33915,5198,13263,6817,4188,34045,5217,13263,6000,1000,4085,0
+5878,280000,male,2,1,41,-1,-1,-1,-1,-1,-1,3520,3110,3188,4176,10276,9898,3110,3188,4189,10276,9898,1691,0
+5879,510000,female,1,2,36,0,0,0,0,0,0,234900,214522,217620,218692,191069,195124,9975,8200,7268,7000,7177,7200,0
+5880,150000,male,2,1,40,0,0,0,0,0,0,141697,144833,137737,140047,144557,133716,7000,7000,6000,7000,5021,9000,0
+5881,20000,male,3,2,26,2,0,0,0,0,0,17880,19224,19327,18696,19233,19909,1641,2400,632,800,1000,1500,1
+5882,110000,female,3,1,38,0,0,0,0,0,0,100699,88694,74647,49021,34594,23116,3530,3066,2033,2021,1024,1003,0
+5883,230000,female,1,2,34,-1,2,-1,-1,2,-1,907,591,119,699,383,32774,0,1000,1000,0,33500,3000,1
+5884,180000,female,1,2,27,0,0,0,0,0,0,124501,126822,129440,128571,128631,129813,5000,6000,5000,5000,5000,5000,0
+5885,230000,female,3,2,36,0,0,0,0,0,0,13809,13533,13200,15789,14242,15251,1533,1200,2789,1242,1251,1272,0
+5886,370000,female,1,2,35,0,0,-2,-1,-1,0,40229,-101,-101,2329,156619,155988,0,0,2430,161450,6035,6439,0
+5887,500000,female,1,2,30,-2,-2,-1,-1,-2,-2,1078,5543,500,617,617,617,5562,810,617,0,0,28572,0
+5888,260000,female,2,1,43,1,-2,-2,-1,0,-1,0,-416,-1248,832,416,1398,0,0,2080,0,1398,0,0
+5889,80000,male,2,1,53,0,0,0,-2,-2,-2,5800,6666,0,0,0,0,1000,0,0,0,0,0,1
+5890,140000,female,2,2,27,1,2,2,3,2,2,118013,123630,128308,125776,123659,131290,9044,8200,1000,0,9874,0,0
+5891,50000,male,1,2,30,0,0,0,0,2,2,29994,30756,23618,26009,24731,46882,2000,1300,3000,0,25000,0,0
+5892,50000,female,2,1,45,0,0,0,2,2,2,26615,22241,23406,15379,16715,11133,2000,2000,0,1500,0,1000,0
+5893,80000,male,1,2,32,-1,-1,-2,-2,-2,-2,4055,0,0,0,0,0,0,0,0,0,0,0,0
+5894,150000,female,2,2,28,0,0,0,0,0,0,85118,88844,92345,82866,76412,80259,5000,5000,5000,5000,5000,5000,1
+5895,50000,female,2,1,46,0,0,0,0,0,0,49859,49160,49222,29291,29391,29826,2438,2200,1187,1213,1073,1066,0
+5896,80000,male,2,3,39,2,0,0,0,0,0,76123,54669,28674,28240,28540,27934,2000,1500,1200,1300,1200,1200,0
+5897,140000,female,1,1,40,0,0,0,0,0,0,67371,69027,56175,57666,59604,62480,3100,3888,2800,2800,3800,3000,0
+5898,140000,female,1,2,30,0,0,0,0,0,0,105732,99769,102682,102332,104544,107155,5000,5500,5000,4000,4500,4500,0
+5899,50000,female,2,2,24,-1,-1,-1,-1,0,-1,1580,306,995,1055,102,2110,306,995,1055,0,2110,0,0
+5900,30000,female,2,2,24,0,0,2,0,0,0,25111,27558,26552,27703,28128,28859,3551,0,1902,1022,1200,1200,0
+5901,230000,male,2,2,32,0,0,0,0,0,0,171111,164406,76691,76952,77577,78017,7468,3000,2723,2810,2793,2860,1
+5902,150000,female,2,2,26,0,0,0,0,0,0,94347,96358,99230,98285,102743,103062,5000,4500,4500,6000,5000,5000,0
+5903,200000,female,2,1,53,-1,-1,-1,-1,-2,-1,5059,0,16556,0,0,47140,0,16556,0,0,47140,0,0
+5904,110000,female,1,1,41,2,2,7,7,7,7,150,150,150,150,150,150,0,0,0,0,0,0,0
+5905,150000,female,2,1,44,0,0,0,0,0,0,17723,19440,14945,12966,14882,8105,2019,2020,2000,2000,2000,1000,0
+5906,200000,female,3,1,46,-1,-1,-1,-1,-2,-2,1207,5590,2500,0,0,0,5590,2500,0,0,0,0,1
+5907,180000,female,3,2,33,1,-1,2,-1,-1,-2,0,199,199,580,0,0,199,0,580,0,0,0,0
+5908,90000,female,1,2,29,-1,-1,-1,-1,0,0,6146,6193,0,3199,1888,0,6198,200,3199,0,0,0,0
+5909,200000,female,1,2,30,-1,-1,-1,-1,-1,-1,105,271,588,111,305,432,271,588,111,305,432,0,1
+5910,230000,female,2,1,45,-1,-1,-1,-1,0,0,107,107,1741,107,107,0,107,1741,214,0,0,0,0
+5911,80000,male,1,2,29,-1,0,0,0,0,0,17562,17709,15631,13402,13197,11624,3015,2008,1009,2005,507,2607,0
+5912,230000,female,1,2,33,-1,-1,-2,-2,-2,-2,6283,0,0,0,0,0,0,0,0,0,0,0,0
+5913,340000,female,2,2,31,4,3,2,-1,-1,-1,581775,572677,384060,304508,247178,228349,0,0,1000,4320,287982,8007,1
+5914,290000,female,2,1,53,-1,-1,-1,-1,-1,-1,1538,199,1440,1017,3798,4898,199,1440,1017,3798,4898,5034,0
+5915,60000,female,3,1,41,0,0,0,0,0,0,55773,55953,55562,55063,54819,55195,2627,2700,2500,2300,3000,2500,0
+5916,320000,female,1,2,29,0,0,-2,-1,-1,0,12130,0,0,364,16177,16706,0,0,364,16177,800,650,1
+5917,200000,female,2,2,25,-2,-2,-1,-1,0,-1,22701,7940,9855,24091,24583,7354,0,10145,24091,492,7354,9694,0
+5918,50000,female,3,1,54,0,0,0,0,0,0,16648,16200,15622,14277,12930,11657,1588,1483,611,458,403,351,0
+5919,50000,male,3,2,24,4,3,2,2,2,0,27226,26508,26976,27206,26631,27185,0,1200,968,0,998,1479,1
+5920,230000,female,2,1,43,0,0,0,0,0,0,84821,87055,87601,89762,92735,95768,4293,4162,5000,5000,5000,5000,0
+5921,130000,female,1,2,29,0,0,3,3,2,0,106271,119728,121140,117767,115640,116062,15107,5000,0,0,4200,5000,0
+5922,80000,female,3,1,39,-1,-1,-1,-1,-1,-1,715,2012,3550,7529,0,3228,2012,3550,7529,0,3228,0,0
+5923,120000,female,1,2,31,0,0,0,0,0,2,82683,83075,75735,62511,62179,60981,4445,4020,3000,5700,0,2500,0
+5924,200000,female,2,1,34,0,0,0,-1,-1,-2,4798,4490,5366,2141,0,0,1125,1000,2141,0,0,0,0
+5925,300000,male,3,2,34,-1,-1,-1,-1,-1,-1,4741,3767,10436,9650,4198,0,3767,10436,9856,4198,0,0,0
+5926,200000,female,2,1,36,-1,-1,-1,-1,-1,-1,1070,4078,1099,1099,1099,1099,4107,1099,1099,1099,1099,1099,0
+5927,80000,female,2,1,46,0,0,0,0,0,0,34494,35930,37326,38203,39580,40920,2000,2000,1500,2000,2000,2000,0
+5928,80000,female,3,2,32,1,-1,-1,-1,0,0,-137,41873,11047,9258,3100,814,42010,11047,9300,0,0,4032,0
+5929,60000,female,1,2,25,0,0,0,0,0,0,51907,52997,53559,54716,54533,58085,1935,2000,2000,2000,6000,0,0
+5930,30000,female,2,1,30,0,0,0,2,0,0,25156,25949,28478,27754,28186,30240,1500,3000,0,1001,2500,1200,0
+5931,300000,female,2,1,42,-1,-1,-1,-1,-1,-1,38913,319,8157,21228,326,1518,319,8157,21228,326,1518,47374,0
+5932,100000,female,1,1,38,0,0,0,0,0,0,66762,68566,65132,48738,51020,51948,5000,2436,3000,3000,2000,3000,0
+5933,290000,female,1,2,31,0,0,0,0,0,-1,44193,15950,15315,14199,9681,162,1380,1212,284,5000,162,380,0
+5934,270000,male,0,2,39,1,-1,-1,-1,-1,-2,0,10193,69553,18607,0,0,10193,70213,19008,399,0,0,0
+5935,70000,female,2,2,24,0,-1,0,0,0,-1,7033,1602,28199,28980,29795,27091,1954,28000,1250,1496,29251,1000,1
+5936,90000,female,2,1,24,-2,-2,-2,-2,-2,-2,91272,91337,88129,76209,65295,27224,5000,3069,2028,2110,2142,39245,0
+5937,170000,female,1,2,26,0,0,0,0,0,0,108426,109889,84897,82608,84388,86096,3600,3111,3000,3100,3101,3306,0
+5938,80000,female,2,1,36,0,0,0,0,0,0,69760,60445,50857,39813,40248,40935,2500,2061,1413,1460,1751,1958,1
+5939,100000,female,2,1,41,0,0,0,0,0,0,95326,97972,99147,74548,76284,77841,4825,4600,3000,2940,3000,3000,0
+5940,240000,male,1,1,47,-2,-2,-2,-2,-2,-2,5731,0,0,0,0,0,0,0,0,0,0,0,0
+5941,290000,female,1,1,41,-1,-1,-1,-1,-2,-1,11200,0,970,0,0,2184,0,970,0,0,2184,1140,0
+5942,120000,female,1,2,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+5943,200000,male,2,2,26,0,0,0,0,0,0,103194,107027,107765,109970,113436,115402,5500,4000,4000,5242,5000,4400,0
+5944,20000,male,2,2,22,0,0,0,0,0,0,13447,10232,7842,9262,4335,0,2200,2000,2200,1200,0,0,0
+5945,500000,male,1,1,38,-1,-1,-1,-1,-1,-1,75433,26358,7860,2983,8767,4691,27486,7860,3047,8831,4734,11484,0
+5946,100000,female,2,2,25,0,0,0,0,0,0,98349,97473,91096,76371,77162,78084,3600,3000,2700,2800,3000,2800,0
+5947,350000,male,1,1,55,-1,-1,-1,-1,-1,-1,5961,6318,1485,788,15015,666,6326,1485,788,15015,666,0,0
+5948,50000,female,2,2,24,1,2,0,0,0,0,34069,23196,22883,18069,19273,19929,0,1636,700,1500,1000,500,0
+5949,340000,female,2,1,52,0,0,0,0,0,0,331508,319742,255166,197695,201907,195961,12100,10000,7000,7000,7000,8000,0
+5950,180000,female,2,1,29,0,0,0,0,0,0,26000,26310,26662,26166,26176,25442,1800,1500,1056,950,1000,1050,0
+5951,300000,female,1,1,54,-1,-1,-1,-1,-1,-1,1080,-18,4190,2539,2590,5440,0,4208,2539,2590,5440,5646,0
+5952,220000,female,1,1,32,1,2,0,0,2,2,17325,16758,18474,20667,20195,21854,0,2000,2500,0,2000,0,0
+5953,80000,male,1,2,26,0,0,0,0,0,0,56417,50855,47656,35351,32895,22755,2600,4000,3000,3500,3500,2300,0
+5954,50000,female,2,1,32,0,0,0,0,0,0,44751,43952,29136,19048,17946,17340,1500,1239,612,607,2593,584,0
+5955,100000,male,2,2,26,0,0,0,0,0,0,60077,62438,49234,50521,51820,53056,4000,3000,2000,2000,2200,1700,0
+5956,200000,male,1,2,27,0,0,-1,-1,-1,-1,58725,76287,22869,30268,54466,37127,30229,22946,30684,54589,37208,55031,0
+5957,480000,female,1,1,45,-1,0,-1,-1,-1,-1,17976,10928,650,1597,3750,9429,1008,650,1597,3750,9429,1000,0
+5958,170000,female,2,1,34,0,0,0,0,0,0,35348,34622,31450,28229,26422,15081,1402,1789,652,798,1081,173,0
+5959,20000,female,1,2,25,-1,0,0,0,0,0,15790,16906,17936,5995,7885,9657,1372,1500,1000,2000,2000,0,1
+5960,80000,male,2,1,28,0,0,0,0,0,0,32114,28984,16391,3729,4663,5429,1324,4122,139,1000,1000,1000,1
+5961,80000,male,1,2,26,0,0,0,0,0,0,79650,80821,65609,49640,49685,46684,3515,2627,1697,2000,1700,3000,1
+5962,300000,male,2,1,31,1,2,0,0,0,0,250121,221336,159556,32897,20992,12621,10236,7063,1005,1045,1004,1005,0
+5963,150000,male,1,2,29,-1,-1,0,0,0,0,1934,12166,15378,6832,10164,0,12170,8200,0,8160,0,0,0
+5964,50000,female,2,2,24,0,-1,-1,0,0,-2,14814,9631,36631,29150,0,0,10755,36671,583,0,0,0,0
+5965,50000,female,2,1,26,-1,-1,-1,-1,-1,-2,1902,782,0,4699,0,0,782,0,4699,0,0,0,0
+5966,100000,female,3,2,28,2,0,0,0,0,0,99627,101079,69971,60824,60969,59650,3796,3041,2500,2600,2171,2600,0
+5967,90000,female,2,1,45,-1,-1,-1,-1,-2,-2,37453,9009,179,0,0,0,24509,179,0,0,0,0,0
+5968,70000,female,1,2,24,1,2,2,2,2,2,15932,16879,16315,17099,16683,18753,1500,0,1355,0,2353,0,1
+5969,90000,female,5,2,23,0,0,0,0,0,0,83176,74918,75422,29364,9571,9665,3504,2942,979,191,193,14210,0
+5970,400000,male,1,1,42,0,0,0,0,0,0,34084,36916,21089,22943,22994,25172,4085,1539,3013,3003,3003,5979,0
+5971,10000,male,2,2,36,0,0,2,0,0,-1,7393,9400,7226,5733,5755,1600,2329,0,1007,2200,1600,3883,1
+5972,80000,male,1,2,27,0,0,0,0,0,0,72565,63342,51529,41484,34097,29200,10000,4000,2000,3000,2500,0,0
+5973,70000,male,1,2,33,0,0,0,0,0,0,63845,65443,65169,64370,15082,0,3224,1680,3000,142,142,0,0
+5974,100000,male,3,1,44,2,2,2,2,2,2,30076,31287,31676,32259,31608,33524,2000,1200,1400,0,2600,0,0
+5975,210000,female,2,1,33,-1,-1,-1,-2,-2,-2,1971,748,0,0,0,0,822,0,0,0,0,0,1
+5976,360000,female,3,2,39,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+5977,280000,male,1,1,28,1,2,0,0,0,2,285249,276229,277026,280771,270992,111885,5,10031,10021,7111,34,171574,0
+5978,180000,male,1,2,32,0,0,0,0,0,0,85040,77213,68131,62704,60133,59335,2937,2226,2271,2108,3012,1933,0
+5979,220000,male,1,1,45,1,2,0,0,0,0,157122,153320,156996,158717,162122,165399,0,7600,5700,6000,6000,12300,0
+5980,200000,male,1,2,47,-1,-1,-1,-1,-1,-1,696,696,696,696,846,696,696,696,696,846,696,696,0
+5981,130000,female,2,2,25,1,2,0,0,0,0,52180,49874,52000,53590,54606,51033,0,5000,4000,3000,3500,13000,0
+5982,200000,male,2,1,47,-2,-2,-2,-2,-2,-2,389,389,389,389,389,389,390,390,390,390,390,385,0
+5983,170000,female,1,1,44,-1,-1,-1,-1,-1,-1,29940,15903,5641,2194,18601,2557,15927,5641,2194,18601,2557,3871,0
+5984,140000,male,1,2,30,0,-1,-1,-1,-1,-1,22778,6405,1683,-885,3019,-177,6500,2515,0,8000,0,1000,0
+5985,50000,female,3,1,54,0,0,0,0,0,0,50318,50579,48491,29157,29097,29039,2008,3537,5700,1102,1200,1100,0
+5986,200000,female,3,2,26,0,0,0,0,0,2,22629,24943,27210,36359,39299,40428,3000,3000,10000,3700,2000,3000,0
+5987,200000,male,3,2,33,0,0,0,0,0,0,181542,173731,152447,119730,122537,109504,7100,5354,4363,4816,4381,3330,0
+5988,360000,female,3,1,36,2,0,0,-2,-2,-2,150527,153900,0,0,0,0,7000,0,0,0,0,0,0
+5989,50000,male,2,1,33,0,0,0,0,0,0,13538,9199,6879,6753,5440,5440,2000,1284,264,109,390,0,0
+5990,500000,female,1,2,37,-1,-1,-1,-1,-1,-1,6364,1625,517,0,1450,2668,1625,517,0,1450,2668,1480,0
+5991,90000,female,2,2,30,0,0,0,0,2,2,75382,73980,75036,77094,75708,76610,3350,3300,5500,1600,3950,0,1
+5992,500000,male,1,2,36,-1,-1,-1,0,0,0,2450,1038,34741,20409,23804,22697,1100,35157,3000,5000,5000,5000,0
+5993,80000,female,3,1,33,0,0,0,0,0,0,78428,76513,74383,48315,48831,48950,3373,7248,2980,2000,1903,1851,0
+5994,230000,male,3,1,53,-1,-1,-1,-1,-1,-1,2150,9413,6020,18468,9665,28100,9413,6161,18468,9665,28100,3480,0
+5995,120000,female,1,2,30,-1,-1,-1,-1,-1,-1,416,416,416,0,832,416,416,416,0,832,416,416,1
+5996,190000,female,3,1,56,0,0,0,0,0,0,67211,63278,57104,57380,58225,58847,2818,2700,2191,2300,2130,2280,0
+5997,500000,male,2,1,50,0,0,0,0,0,0,265803,246770,223989,223232,219158,212237,16770,13989,33232,29695,32838,38770,0
+5998,80000,female,2,1,42,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+5999,450000,female,1,2,35,1,-2,-1,0,0,-2,0,0,3581,3654,0,0,0,3581,73,0,0,0,0
+6000,280000,female,1,1,30,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+6001,360000,female,3,1,47,-2,-2,-2,-2,-2,-2,1458,-4,3994,0,0,7429,0,3998,0,0,7429,490,1
+6002,30000,female,2,2,21,0,0,0,0,0,0,28871,28430,29051,29265,28267,28925,1802,1802,1358,1100,1151,1568,0
+6003,50000,female,2,1,25,0,0,2,0,0,2,35676,34407,30785,31573,35191,34476,3400,0,1300,4300,0,1500,1
+6004,60000,female,2,1,49,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+6005,30000,female,2,1,28,0,0,0,0,0,-1,8618,9975,4885,1065,-264,942,1700,1020,1000,0,1206,0,0
+6006,20000,male,2,1,49,0,0,0,0,0,-2,16348,10535,10720,10120,0,0,2010,1508,1000,0,0,0,1
+6007,20000,male,3,3,57,1,2,0,0,0,0,20442,20141,19888,20318,20364,20134,1200,1300,1000,1000,1000,1000,0
+6008,200000,male,1,1,43,2,0,0,0,-2,-2,43272,21546,4397,0,0,0,2000,2000,0,0,0,0,1
+6009,100000,female,1,2,25,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+6010,300000,female,3,1,39,-1,-1,-2,-2,-2,-2,1117,0,0,0,0,0,0,0,0,0,0,0,0
+6011,210000,female,1,2,39,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+6012,70000,female,3,1,71,0,0,0,2,0,0,64670,66197,70867,54425,55555,48530,3166,6550,0,2033,1915,1708,0
+6013,210000,female,2,2,29,1,1,-2,-2,-1,0,1767,-3355,-3987,-1987,1697,4347,0,0,2000,4000,3000,5000,0
+6014,440000,male,1,1,31,1,2,2,2,0,0,274263,267233,360999,149363,142757,119034,0,100006,0,6000,4000,8000,1
+6015,410000,male,1,2,33,-1,-1,-1,0,0,0,4111,874,25014,26184,21515,15656,897,26880,15083,12049,4077,5541,0
+6016,110000,male,1,1,36,0,0,0,0,0,0,104498,107819,109836,44356,45932,47473,5000,4823,2000,2000,2000,2000,0
+6017,200000,female,1,2,36,0,0,-2,-2,-2,-2,120869,0,0,0,0,0,0,0,0,0,0,0,0
+6018,180000,female,3,1,42,-1,-1,-1,0,-1,-1,2069,2675,448,448,29926,5287,2675,448,0,29926,5287,10843,1
+6019,150000,female,1,1,46,0,0,0,0,0,0,21787,22817,24134,24635,29032,29766,1382,1699,1200,5000,1214,1500,0
+6020,330000,female,1,2,33,1,-2,-2,-1,2,2,-200,-200,-200,150,150,350,0,0,350,0,200,0,0
+6021,500000,female,2,1,41,-1,-1,2,-1,-1,-1,8938,73679,65181,5466,30177,11602,65215,326,5494,30328,11658,132,0
+6022,350000,female,2,1,35,-2,-2,-1,-1,-2,-2,83379,26305,26858,40098,10855,-2,26436,26921,40098,10855,2,0,0
+6023,200000,female,2,1,36,-1,-1,-1,0,-1,-1,473,4511,5122,1936,1771,0,4528,5122,0,1771,0,604,1
+6024,280000,male,1,1,45,-1,-1,-1,-1,-1,-1,2270,1703,-15,30943,15631,17508,1703,0,30958,15631,17508,10049,1
+6025,80000,female,3,1,39,-1,-1,-1,-1,-2,-1,5280,5000,5000,0,0,5000,5000,5000,0,5000,5000,470,0
+6026,280000,female,1,2,29,-1,-1,-1,-1,-1,-1,4356,12345,2663,867,3060,858,12384,2664,867,3060,858,3193,0
+6027,130000,female,2,2,23,2,2,2,2,0,0,115978,121386,108759,94692,96419,98233,12073,3400,0,3482,4037,2630,0
+6028,160000,female,2,1,49,0,0,0,0,0,0,76445,78013,19007,19392,19928,20445,4000,3000,1000,1000,1000,1000,0
+6029,20000,female,2,2,23,2,2,7,7,7,6,2400,2400,2400,2400,2400,1800,0,0,0,0,0,0,1
+6030,300000,female,2,2,32,0,0,0,0,0,-2,26575,27062,20111,8738,250,0,1321,9160,1000,250,0,0,0
+6031,100000,female,1,2,32,0,0,0,0,0,0,93724,96017,98111,68668,66845,67452,3800,4000,2500,2500,3000,2600,0
+6032,130000,male,2,1,38,-1,-1,-1,-1,-1,-1,780,0,11440,3752,1824,390,0,11440,3752,1824,390,390,0
+6033,500000,male,1,1,55,2,2,2,2,2,2,4957,4957,4957,4957,4957,4957,0,0,0,0,0,0,1
+6034,200000,female,2,1,27,1,3,2,2,2,2,183994,182427,182657,174547,181454,177141,5200,7000,0,13300,0,6200,1
+6035,360000,female,1,2,30,0,0,0,0,0,0,70701,74550,78212,69453,73423,72575,10000,10005,10000,10000,10000,10000,0
+6036,20000,female,2,1,26,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+6037,400000,male,2,2,29,1,2,0,0,0,0,21092,19756,19058,15146,15064,12774,0,1510,1010,1000,2000,2000,0
+6038,200000,female,3,1,52,1,2,2,0,0,0,203385,192055,164665,155614,145920,104728,5891,0,6100,5792,4240,2900,0
+6039,30000,female,5,1,60,0,0,0,0,0,0,19282,20364,21638,25392,24428,26410,1700,2617,5710,1000,3342,0,0
+6040,30000,male,2,1,58,-1,-1,-1,-1,-1,-1,2450,4765,3767,4151,3940,3697,4777,3770,4151,3940,3697,843,1
+6041,50000,male,2,1,55,1,2,0,0,-1,-1,44306,43321,43454,44254,2150,1689,0,1200,1000,2150,1689,0,0
+6042,230000,female,1,1,51,-1,-1,-1,-1,-1,-1,986,2295,2754,74,3381,2308,2295,2764,74,3381,2308,2381,1
+6043,210000,female,1,1,36,1,-1,-1,-2,-1,-1,0,799,0,0,4150,0,799,0,0,4150,0,0,1
+6044,50000,female,1,2,49,2,2,4,4,4,4,150,150,150,150,150,150,0,0,0,0,0,0,1
+6045,170000,female,5,1,33,0,0,0,0,0,0,143737,129898,124370,112589,26958,8535,6247,6375,4468,1000,1306,110000,0
+6046,230000,male,1,1,44,-1,-1,-1,-1,0,-1,815,815,815,1630,815,815,815,815,1630,0,815,629,0
+6047,230000,female,1,2,48,0,0,0,0,0,0,161083,164757,168214,159106,162436,165878,7800,7684,5600,5755,6000,6300,0
+6048,350000,female,1,1,36,0,0,0,0,0,0,352032,353903,351888,351175,352835,354265,13068,14412,12947,13016,12823,12915,0
+6049,170000,female,1,2,36,-1,-1,2,-1,-1,-1,248,832,416,2304,323,-1092,1416,0,2304,0,0,0,0
+6050,150000,female,2,1,36,2,2,2,2,2,2,137723,141048,142475,143966,146736,149697,7000,5200,5300,5200,5500,5200,0
+6051,90000,female,2,1,27,-1,-1,0,0,0,0,1767,17684,18382,21415,6654,10323,17684,3000,5000,3000,5000,7000,0
+6052,320000,female,1,2,33,-2,-2,-2,-2,-2,-1,-347,-347,-347,-347,-347,13694,0,0,0,0,14041,1613,0
+6053,120000,female,2,2,45,0,0,0,0,0,0,92000,94000,96000,98000,100000,0,2000,2000,2000,2000,0,0,0
+6054,20000,female,3,1,56,2,0,0,0,0,0,12864,14150,15334,16222,17598,9950,1500,1500,1000,1500,1500,1500,0
+6055,280000,female,1,1,41,2,-1,-1,-1,-2,-1,280,6852,486,0,0,244,6859,486,0,0,244,0,0
+6056,90000,female,2,2,28,0,0,0,0,0,-2,81553,39759,29601,20650,0,0,2000,1396,1050,0,0,0,0
+6057,450000,male,1,1,30,0,0,-2,-2,-2,-2,25244,0,0,0,0,0,0,0,0,0,0,134745,0
+6058,270000,male,2,2,27,0,0,0,0,0,0,144376,91373,15016,14092,14315,111458,6000,2000,1000,2000,100000,100000,0
+6059,80000,female,2,1,41,0,0,0,0,0,0,74228,76138,45441,30526,28356,2661,3500,2000,1400,1600,400,1000,0
+6060,230000,female,2,1,41,0,0,0,0,0,0,166988,170603,172056,172615,174555,177010,8000,7500,6500,6500,7000,7068,0
+6061,50000,female,2,1,30,-1,-1,2,-1,2,2,416,832,416,3285,2685,2270,832,0,3285,0,190,0,1
+6062,250000,male,1,1,48,0,-1,-1,-1,0,-1,205323,5317,4898,19351,4858,6973,10021,5033,19619,4874,7050,12073,1
+6063,220000,female,1,2,42,-1,-1,-1,-1,-1,-1,26340,31523,35718,24288,25720,48759,31533,20600,24288,25720,48759,23303,0
+6064,30000,female,1,1,38,0,0,0,0,0,0,26460,27042,27617,28546,13487,8307,2000,1400,1300,700,1000,0,0
+6065,120000,male,2,2,68,2,2,0,0,0,0,125406,123819,122209,122047,122019,130079,4400,4436,4370,4440,12600,4500,1
+6066,100000,female,2,2,26,0,0,0,-1,0,0,22320,15193,13516,1541,8805,11329,1227,1150,1600,8000,5000,0,0
+6067,150000,female,1,2,25,3,3,2,2,2,2,147260,148157,146844,145037,145349,145506,8100,5202,5300,5300,5300,5500,1
+6068,670000,male,1,2,28,0,0,0,0,0,0,88612,91137,99314,95292,63782,41114,5000,10000,4500,6000,1300,3000,0
+6069,200000,male,1,1,36,-1,-1,-1,-1,-1,-1,8065,49307,5679,8855,49572,2684,49362,5679,8855,49572,2684,13050,0
+6070,70000,female,3,1,47,0,0,0,0,0,0,71392,70757,71451,70654,70965,71373,3200,3400,2900,2750,3152,2700,0
+6071,50000,female,2,1,41,1,2,2,2,2,0,15910,15370,16490,16962,15446,14739,0,1700,1002,2,684,442,0
+6072,80000,female,2,2,64,2,2,0,0,0,0,74037,71892,70762,71296,72832,74138,390,4000,2671,4000,2670,2923,1
+6073,10000,male,1,2,23,2,2,3,3,3,3,1050,1050,1050,1050,1050,1050,0,0,0,0,0,0,1
+6074,140000,female,1,1,37,0,0,2,2,2,2,124375,133384,135691,137675,135371,138455,11000,6000,5700,0,5500,5000,1
+6075,30000,female,2,2,21,0,0,0,0,0,0,17444,11276,13324,5427,4521,0,2276,2328,1435,90,0,0,0
+6076,200000,male,2,2,36,0,0,0,0,0,0,99483,97546,98897,94943,96967,99016,4841,4300,3300,3361,3500,3206,1
+6077,90000,female,2,2,24,0,0,2,2,2,2,26928,29773,30091,30922,34112,34280,3600,1100,1630,4000,1200,0,1
+6078,130000,female,2,1,52,1,2,2,2,0,0,112434,98455,103351,100724,97675,102080,0,12700,0,4000,11461,0,0
+6079,160000,female,2,2,26,-1,-1,-1,-1,0,-1,8036,7663,768,10488,4724,104205,7663,768,10488,2049,104205,3000,0
+6080,150000,female,3,1,58,-2,-2,-2,-2,-2,-2,42218,44828,-7772,-7772,69762,71591,4828,0,0,77534,2991,4509,0
+6081,150000,female,1,2,34,-2,-2,-2,-2,-2,-2,1198,10848,8830,16864,17199,20025,12003,5000,16864,18000,20025,51514,0
+6082,20000,male,1,2,24,-1,-1,-1,2,0,0,3302,0,679,679,5679,7570,0,679,0,5000,2000,0,0
+6083,80000,female,1,2,26,-1,-1,-1,0,-1,-1,666,666,1332,666,666,416,666,1332,0,666,416,416,1
+6084,460000,male,2,1,31,0,0,0,-1,-1,-2,120430,123150,0,6261,0,0,6000,0,6261,0,0,0,0
+6085,60000,female,3,1,40,1,-1,0,0,-1,0,749,44893,34812,15768,25915,25058,60295,3000,3020,25915,1500,2000,1
+6086,50000,male,2,1,38,0,0,0,0,0,0,49695,49848,49557,49233,49068,48542,2200,2100,2000,2000,1700,1900,1
+6087,200000,female,3,1,35,0,0,0,0,0,0,188096,171535,167877,128550,131511,127781,8000,6700,5000,5100,4700,4800,1
+6088,60000,female,2,1,30,0,0,0,0,0,0,59533,61276,61117,25254,26237,26752,3300,1900,1100,3000,1011,5000,0
+6089,200000,male,1,1,31,-1,0,0,0,0,0,58008,72062,72912,80819,84186,83710,20000,20000,10000,20000,10000,10000,0
+6090,230000,male,1,1,33,0,0,0,0,0,0,218094,225070,227528,121751,219354,111792,12000,9100,4600,4200,4100,5000,0
+6091,50000,male,2,1,38,0,0,0,0,0,0,25809,14888,20803,18395,18386,18420,2000,20000,700,665,727,505,0
+6092,60000,female,3,2,51,0,0,0,0,0,0,56793,57455,59295,19212,19232,19218,2342,3057,700,700,682,700,0
+6093,180000,male,2,1,47,-1,-1,-1,-1,-1,-1,1473,1473,390,390,390,780,1473,390,390,390,780,0,1
+6094,50000,female,2,1,47,0,0,0,0,0,0,50732,50713,45549,40043,39844,39599,2000,2106,1600,1606,1581,2000,0
+6095,150000,male,3,1,62,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+6096,140000,female,2,1,36,-1,-1,-1,-1,-1,-1,326,501,1251,0,2106,652,501,1251,0,2106,652,0,1
+6097,120000,male,1,1,35,1,2,2,2,2,2,114127,117131,114496,120538,115975,116937,7000,1500,9975,0,8000,0,1
+6098,200000,female,1,1,39,0,0,0,0,0,0,193162,191772,174199,173102,152178,129082,7294,5443,6000,5500,5000,5000,0
+6099,500000,male,1,2,31,1,-2,-1,0,0,0,0,0,399,35528,10389,0,0,399,35129,0,0,1307,0
+6100,120000,female,2,1,36,2,2,0,0,2,2,117922,114621,115581,118481,116444,117283,0,4400,9000,0,9000,4400,1
+6101,500000,male,1,2,28,-2,-2,-2,-1,2,-1,17155,0,0,1116,969,6745,0,0,1116,3,6745,5003,0
+6102,50000,female,3,2,23,0,0,0,0,0,0,47333,11354,12367,12612,12875,13131,1193,1206,451,466,469,638,0
+6103,30000,female,3,2,51,0,0,0,0,-1,-1,17261,20543,18180,7200,18183,8975,5000,8180,2200,18183,8975,3000,0
+6104,240000,male,1,1,35,-2,-2,-2,-2,-2,-2,2007,21790,17102,13367,22659,22707,21817,1120,13434,22772,22820,8050,0
+6105,170000,female,2,1,37,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+6106,80000,male,1,2,26,1,1,-2,-2,-2,-2,74384,0,0,0,0,0,5000,0,0,0,0,0,0
+6107,360000,male,1,2,29,-1,-1,-1,-2,-1,0,2273,1170,0,0,7972,8275,1175,0,0,7972,435,2947,0
+6108,50000,female,2,2,24,2,0,0,2,2,2,20632,21994,23914,23231,24851,24301,1700,2600,0,2000,0,2200,1
+6109,70000,female,2,1,27,2,0,0,0,0,0,76062,73367,70935,52943,50971,50681,3000,3500,5450,5900,3100,2650,1
+6110,250000,female,2,1,29,2,2,2,0,0,2,128413,124320,108995,84196,95286,93613,5300,0,3100,12500,0,2100,1
+6111,150000,female,1,1,39,1,2,2,2,2,2,80762,77506,75239,71245,69214,24036,0,3700,0,2000,0,2000,1
+6112,100000,female,2,1,41,-2,-2,-2,-1,-1,-2,390,390,0,944,0,0,780,0,944,0,0,0,0
+6113,360000,male,1,2,32,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+6114,30000,female,3,1,47,-2,-2,-2,-2,-2,-2,6911,10507,4785,4567,11762,4209,10523,4790,4736,55762,4209,22815,0
+6115,490000,male,1,1,29,-1,-1,-1,-1,0,-1,115,109,1375,230,115,113,109,1381,230,0,113,0,1
+6116,180000,female,2,1,60,2,2,2,0,0,0,178854,177159,177477,176197,170173,139649,2600,5022,5000,6000,7000,6000,1
+6117,420000,female,1,1,36,-1,-1,-1,-1,-1,-1,0,1493,0,11511,14916,15564,0,0,11511,14916,15564,11339,0
+6118,20000,male,1,2,33,2,0,0,-2,-2,-2,16339,20650,0,0,0,0,5000,0,0,0,0,0,1
+6119,480000,male,1,1,47,0,0,0,0,0,0,69046,70490,71931,73362,74897,76461,2548,2602,2618,2709,2800,6098,0
+6120,350000,male,1,2,27,1,-2,-2,-2,-1,-1,21872,68309,162651,13514,36306,14974,137308,164395,49,36491,15049,14158,0
+6121,360000,male,2,1,57,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+6122,240000,female,1,2,27,-2,-2,-2,-2,-2,-2,3293,9051,2804,3958,12157,3874,9079,2804,3958,12157,3874,937,0
+6123,280000,female,1,2,30,-1,-1,-1,-1,-1,-1,29989,168,1206,300,460,861,168,1206,300,460,861,7595,1
+6124,150000,female,2,1,39,0,0,0,0,0,0,32891,30930,28901,27587,25531,26586,5000,1650,2000,2000,3000,2000,0
+6125,320000,male,2,2,30,0,0,0,0,0,0,29668,30282,30737,26875,26318,25880,1353,1224,739,742,751,703,0
+6126,20000,female,2,2,22,-1,-1,2,0,0,-1,631,1170,780,390,0,780,1800,0,0,0,2000,0,1
+6127,50000,female,3,1,36,0,0,0,0,0,2,45260,46605,47317,48259,50245,50265,2075,1787,1729,2765,1000,2000,1
+6128,280000,male,1,2,33,0,0,0,0,0,0,275487,207378,107293,6283,5783,5283,8879,4743,1640,0,0,0,0
+6129,450000,female,2,1,53,-2,-2,-2,-2,-2,-2,2542,2545,1158,1103,110,187,2557,1273,1109,0,187,2014,0
+6130,260000,female,1,2,53,0,0,0,0,0,0,235073,235704,198181,143561,110982,72514,30000,10087,6030,5001,10002,148,0
+6131,500000,male,1,1,56,0,0,0,0,0,0,87161,89009,92651,93725,95517,97581,3248,5140,3510,3461,3646,3770,0
+6132,470000,male,1,2,35,0,0,0,0,0,0,393780,371511,318025,248281,254175,256613,15107,13111,10000,10014,9598,10044,0
+6133,150000,female,2,2,23,0,0,-1,0,0,-2,15952,29836,1860,1535,0,0,20039,1860,0,0,0,0,0
+6134,100000,female,3,1,46,0,0,2,2,2,2,91983,100538,101670,98047,101891,98173,11000,3700,0,7500,0,3800,0
+6135,100000,male,1,2,38,1,2,2,2,2,2,24796,27085,26352,33871,33192,35637,3000,0,8000,0,3000,0,0
+6136,220000,male,2,2,39,-1,-1,0,0,0,0,3553,15696,17257,21624,26246,30781,15696,5000,5000,5000,5000,5000,0
+6137,300000,female,1,2,37,1,2,0,0,0,0,34085,29305,25945,22318,18636,15374,0,1380,753,630,1000,500,0
+6138,230000,female,1,2,31,-2,-2,-2,-1,-1,-1,0,0,196,533,1238,957,0,196,533,1238,957,1187,0
+6139,300000,female,3,2,39,1,-2,-1,-1,-1,-1,-3928,-5973,4735,6186,116,14429,1720,344467,6822,49,15000,12000,1
+6140,50000,male,3,2,48,0,0,0,0,0,-1,79681,79989,76394,24873,-2132,28561,3200,2581,1200,2070,31500,1200,0
+6141,170000,male,3,1,47,-2,-2,-2,-2,-2,-2,1521,0,0,0,0,0,0,0,0,0,0,0,0
+6142,460000,male,1,1,41,-1,-1,-1,-1,-1,-1,5383,40004,0,650,0,2232,40134,0,650,0,2232,3208,1
+6143,30000,female,1,2,34,1,2,2,2,2,2,24022,24744,24053,25624,25977,25413,1396,0,1967,903,0,1100,1
+6144,30000,female,1,2,24,-1,-1,-1,-1,2,2,165,165,165,323,158,-1027,165,165,323,0,0,5527,1
+6145,20000,male,2,1,42,0,0,0,0,0,0,21431,19745,19943,19235,19245,13670,1386,1189,570,589,600,200,1
+6146,220000,male,3,1,44,-1,-1,-1,-1,-1,0,380,380,380,380,56663,57436,380,380,380,56663,2000,2000,0
+6147,70000,female,1,1,62,0,0,0,0,0,0,69926,69474,60975,38546,37843,38632,4000,3000,1341,1359,1403,1352,0
+6148,330000,female,2,2,40,2,2,0,0,0,0,131096,127564,130167,132754,135691,139646,0,4725,4752,5077,6366,8550,0
+6149,370000,male,1,1,40,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+6150,230000,male,1,2,28,-2,-1,-1,-1,-1,-1,23855,18298,1741,16594,18261,18333,18309,1741,33188,20000,19000,19319,0
+6151,50000,male,3,1,49,0,0,0,0,0,-1,40281,9630,10614,10478,10490,390,1173,1157,411,608,690,780,0
+6152,360000,male,2,2,31,0,0,0,0,0,0,281600,281178,265549,244053,239088,193401,14128,11208,6554,7248,7122,6144,1
+6153,390000,female,2,2,37,0,0,0,0,0,0,324452,309369,269703,266017,271657,245958,13106,10111,10005,11000,9007,9000,0
+6154,360000,female,2,3,42,0,0,0,0,0,0,429169,278515,259097,259999,265746,259299,16629,9519,9367,10001,9513,9973,0
+6155,30000,female,2,1,27,0,0,2,2,0,0,10011,12830,13225,12718,12829,13083,3000,901,0,465,467,485,1
+6156,500000,male,1,1,33,1,-2,-2,-2,-1,0,2907,-110,-110,-310,82690,84529,9,0,0,83000,3000,4561,0
+6157,120000,female,3,2,32,0,0,0,0,0,0,67876,69903,71446,79589,81354,83044,3120,3300,10000,3200,3200,10000,0
+6158,360000,male,1,2,29,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+6159,20000,female,2,1,27,0,0,0,0,0,0,19961,16437,16579,17437,18314,19616,1500,2579,1437,1314,1616,800,0
+6160,50000,female,2,1,48,0,-1,-1,0,-1,-1,5994,1478,2946,1473,1473,1473,1478,4419,0,1473,1473,1473,0
+6161,230000,female,1,2,27,1,-1,-1,-1,-1,-2,0,1988,19690,25681,0,0,1988,19878,25681,0,0,0,0
+6162,160000,female,1,1,48,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+6163,110000,female,1,1,32,2,2,0,0,2,2,114430,108202,108657,108668,103867,111842,0,6000,8200,0,9956,4000,1
+6164,50000,male,2,2,25,2,2,2,3,2,0,32233,31440,33489,18968,15611,19304,0,3041,0,3,5700,700,0
+6165,30000,male,3,2,28,2,2,2,0,0,0,22323,25961,25141,22272,22844,19436,4000,9,1000,1013,1300,10000,1
+6166,50000,male,2,2,35,0,0,0,0,0,-1,57570,54383,49966,7825,3753,34287,2460,1140,226,555,35190,1203,1
+6167,240000,female,3,1,37,-2,-2,-1,-1,-2,-1,-3,-3,1130,3525,0,2116,0,1133,3525,0,2116,7442,0
+6168,90000,male,3,2,29,0,0,0,0,0,0,83683,65192,46273,46979,48139,44432,4000,3000,1700,2000,1591,2647,0
+6169,150000,female,1,1,29,-1,-1,-1,-1,-1,0,598,3188,33850,4625,1035,520,3188,33850,4625,1035,0,0,1
+6170,100000,female,2,1,35,3,3,2,2,0,0,61089,59556,60486,58296,33247,34118,0,2525,0,1206,1423,3400,1
+6171,70000,female,1,2,24,2,2,2,0,0,0,26410,31128,24486,21879,13127,14149,5190,42,3000,3000,1400,2000,1
+6172,430000,female,2,2,27,-2,-2,-2,-2,-2,-2,263,263,4119,4390,20952,15562,1764,4120,535,20990,2506,500,1
+6173,150000,male,1,2,31,0,-1,-1,0,0,0,64378,14054,140230,98674,107664,111561,14127,140951,10000,10000,5219,50005,0
+6174,50000,male,1,2,48,0,0,-1,0,0,0,53540,53321,49263,29063,26644,27201,1066,50045,992,1000,1000,1008,0
+6175,200000,male,1,2,33,-2,-2,-2,-2,-2,-2,-18,-18,-18,-18,-18,-18,0,0,0,0,0,0,1
+6176,150000,female,2,1,28,0,0,0,0,0,0,19946,18646,13086,13086,3555,0,2000,1500,1500,1000,0,0,0
+6177,50000,male,2,2,25,0,0,0,0,0,0,5832,33559,32774,23113,19852,17308,30074,1800,1000,700,1000,1000,0
+6178,300000,male,1,2,31,0,0,-1,0,-1,-1,16772,943,38450,29925,33769,21020,934,38500,29700,33769,21020,5418,0
+6179,50000,female,2,1,44,0,0,0,0,0,0,45578,41906,35703,22360,23659,27421,3016,5003,3000,3000,5000,924,0
+6180,30000,male,1,2,30,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+6181,380000,male,1,1,53,1,-1,-1,-1,-1,-1,0,767,4090,9471,1993,1164,767,4090,9476,1993,1164,3514,0
+6182,70000,female,1,1,45,1,2,2,0,0,0,69794,70756,65348,58253,35943,27930,3000,0,3000,5943,10000,2249,0
+6183,360000,male,2,2,28,0,0,-1,0,0,0,19390,22726,12148,12885,12994,15320,7113,12163,3787,714,5369,10026,0
+6184,50000,male,2,2,41,0,0,0,0,0,0,41993,43163,36546,6421,5263,-12,1942,1725,1000,400,0,0,0
+6185,20000,female,1,2,30,1,2,2,-1,0,-1,11730,7221,0,3041,3041,1326,1712,0,3041,0,1326,0,0
+6186,80000,female,2,2,27,0,0,0,0,0,0,80088,81371,79183,64862,58651,55230,4791,2418,2118,2066,2150,3000,0
+6187,30000,male,2,1,49,0,0,2,2,0,0,12855,16012,16453,15891,16224,16710,3690,1000,0,589,756,1500,0
+6188,50000,female,3,2,55,0,0,0,0,0,0,51682,37869,27114,29625,32788,28668,3960,7232,11000,15788,13668,4490,0
+6189,30000,female,3,1,37,0,0,0,0,0,0,26411,27578,29312,29680,29689,31050,1898,2632,1000,1176,830,0,0
+6190,260000,male,1,1,38,-1,-1,-1,-1,-1,-1,10448,1199,6675,1175,888,4186,1211,6818,1180,892,4207,6175,1
+6191,210000,female,2,1,39,-1,-1,-1,-1,-2,-1,44100,0,28428,0,0,12000,0,28428,0,0,12000,33664,0
+6192,200000,female,1,2,29,0,0,0,0,0,0,7523,8445,9090,3270,774,0,3000,1000,0,700,0,0,0
+6193,50000,male,1,1,56,-1,0,0,0,0,0,5433,12906,7044,6787,6534,6277,1117,1098,231,234,238,175,1
+6194,490000,male,3,1,28,0,0,0,0,0,0,108157,107692,108590,109389,110491,111158,4056,3993,3831,4111,3939,4001,0
+6195,170000,male,1,1,45,-1,-1,-1,-1,-1,-1,3479,570,0,1546,4981,4769,570,0,1546,4981,4769,6452,0
+6196,500000,male,1,2,29,-1,0,0,0,0,0,15732,15760,18426,19200,3817,4817,3000,3000,2000,1000,2000,1885,0
+6197,220000,male,2,1,46,2,0,0,0,0,0,157646,159833,160032,162303,164700,166756,5800,5759,5938,6200,6009,6044,0
+6198,150000,female,1,2,30,0,0,0,0,0,0,141330,133582,125026,108358,110070,111654,8000,8000,5000,5000,5000,5000,0
+6199,50000,female,2,1,34,2,2,2,2,2,2,44654,45650,46320,45290,48322,49094,2000,1700,0,3760,1700,0,0
+6200,50000,male,2,1,52,0,0,0,0,0,0,46436,41290,40251,15273,14229,15001,2300,2000,1000,1000,1000,1000,0
+6201,100000,female,1,2,26,0,0,0,0,0,0,91857,78797,70936,68104,68055,68084,3572,2600,5600,2600,2600,2510,0
+6202,310000,female,2,2,25,0,0,0,0,0,0,28598,22017,14605,15125,18048,16607,8820,1576,1000,3100,2000,1000,0
+6203,510000,female,1,1,35,0,0,0,0,0,0,62382,55076,113654,104449,95937,96634,5000,70000,3500,4000,3500,5000,0
+6204,200000,male,2,1,41,1,2,2,2,2,-1,11201,1383,976,1126,563,413,980,0,563,0,413,2513,0
+6205,50000,male,3,1,43,0,0,2,0,0,0,7978,11396,8900,8565,8590,19894,3887,0,453,312,1500,500,0
+6206,300000,female,1,2,38,1,3,2,0,0,-1,10361,9692,3772,1919,316,2360,0,3,0,0,2360,0,0
+6207,450000,female,1,1,40,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+6208,30000,male,2,2,27,-1,-1,-1,-1,-1,-1,3902,1950,890,0,750,0,1950,2390,0,750,0,1280,0
+6209,60000,female,1,2,27,-1,-1,-1,-1,-1,2,836,836,390,150,1320,780,836,390,150,1560,0,0,0
+6210,140000,female,2,2,23,2,0,0,0,0,0,25621,26805,27763,28342,29123,29930,1600,1500,1000,1200,1250,1200,1
+6211,50000,female,2,2,32,0,0,0,0,0,0,36211,28530,20084,18088,18476,20168,1709,2004,7497,671,2000,6100,0
+6212,90000,female,3,2,28,0,0,0,0,0,2,86493,86960,87187,86669,90391,87207,4200,4000,3200,6700,0,4000,0
+6213,190000,female,2,1,34,0,0,2,0,0,2,138628,156232,152251,153820,163265,166627,21440,0,5600,11950,6200,0,0
+6214,150000,female,1,2,29,0,0,0,0,0,0,147331,146999,146277,147946,145846,143531,6740,6850,5664,5660,5480,5310,0
+6215,390000,female,2,2,28,-1,-1,-1,-1,0,-1,19081,1170,6512,14122,7894,3927,1170,6512,14122,0,3927,200,0
+6216,30000,male,3,1,47,0,0,0,0,0,0,28923,29803,25373,23231,23913,21120,1586,1365,1663,5106,1050,0,0
+6217,240000,male,1,1,60,2,0,0,0,0,0,184427,188583,191992,185383,179565,92788,7001,6180,6000,5951,5285,192557,1
+6218,260000,female,1,2,29,-1,-1,-2,-1,-1,-1,470,0,0,550,880,1287,0,0,550,880,1287,925,1
+6219,30000,male,3,2,25,0,0,0,0,0,-2,10198,28773,18031,13127,0,0,18808,1200,263,0,0,0,0
+6220,500000,female,1,2,28,0,0,0,0,0,0,58076,59534,51006,44360,34229,37880,2001,6620,6015,10001,4137,5000,0
+6221,60000,female,2,2,29,2,2,2,0,0,0,41387,42117,41140,42110,42988,43841,1685,0,1655,1707,1718,1775,0
+6222,200000,male,3,1,30,0,0,0,0,0,0,144933,148103,148137,151505,154728,157912,7000,4000,4000,4000,4000,4550,0
+6223,80000,male,2,1,31,0,0,0,0,0,0,70664,62223,26400,27201,27363,-4000,2036,1500,1201,1500,2000,2000,0
+6224,100000,female,2,2,30,1,-2,-2,-2,-2,-2,-4,-4,-4,-4,-4,-4,0,0,0,0,0,0,0
+6225,380000,male,1,1,42,-1,-1,-1,-1,-2,-1,4377,-3,3885,0,1140,505,0,3888,0,1140,505,0,0
+6226,210000,male,2,1,30,0,0,0,0,0,0,32903,33275,34174,34141,34456,34737,1600,1846,1209,1248,1247,1212,1
+6227,10000,male,2,2,27,0,0,0,0,0,0,8257,7995,4878,5444,2639,2697,2000,1100,600,300,300,1000,1
+6228,500000,male,2,1,44,0,0,0,0,0,0,91718,93338,96781,98274,100528,102748,4000,5000,4000,4000,4091,6169,0
+6229,240000,female,1,1,37,2,0,0,0,-2,-2,118402,119764,72050,0,0,0,5598,4000,0,0,0,0,1
+6230,270000,male,1,2,29,0,0,0,0,0,0,227479,181629,185614,189524,193971,199763,7000,7000,7000,7500,9000,10000,0
+6231,50000,male,2,2,25,0,0,0,0,0,0,21006,18851,19722,19644,18687,18033,4788,1532,1002,1006,2004,2309,0
+6232,120000,female,1,2,36,0,0,0,0,2,2,84171,76025,78068,78589,77213,82567,3438,4000,12242,0,6894,0,0
+6233,280000,male,1,2,28,0,0,0,0,0,-1,281663,211805,96763,67554,-3,1244,80019,5000,439,10603,1247,2187,0
+6234,260000,female,1,2,28,0,0,0,0,0,0,126418,129214,131933,134482,135772,138229,6000,5200,5000,5000,5000,5000,0
+6235,360000,male,1,1,38,-1,-1,-1,-1,-1,-1,7975,4062,1914,4877,2100,3602,4062,1914,4877,2100,3602,9452,0
+6236,210000,female,1,2,30,1,-1,-1,-1,-1,-1,0,795,588,1488,609,768,795,588,1488,609,768,588,0
+6237,390000,male,1,2,29,0,-1,0,0,0,0,9918,15918,103169,95669,88080,80576,16008,100000,5000,4000,4000,3000,0
+6238,40000,male,2,1,36,0,0,2,2,2,0,34871,37999,37089,39464,38698,40051,3700,0,3000,0,2000,800,0
+6239,10000,female,2,2,27,0,0,0,0,0,0,6691,7723,17734,9081,8877,9261,1142,1286,500,320,529,500,0
+6240,120000,female,2,1,43,-2,-2,-2,-2,-2,-2,0,999,0,0,0,0,999,0,0,0,0,0,1
+6241,200000,male,3,1,43,-1,-1,-1,0,0,-1,1435,1270,3783,2522,1261,1436,1270,4000,0,0,1436,1261,0
+6242,80000,female,2,1,37,-1,-1,-1,-1,-1,-1,1480,3832,898,425,0,2791,3832,898,425,0,2791,0,0
+6243,60000,female,2,2,27,0,0,0,0,2,0,12193,13983,15746,17486,17067,17255,2000,2000,2000,0,620,1710,0
+6244,130000,female,2,2,39,2,2,2,2,0,0,50033,52440,52993,51546,52663,53737,3500,2000,0,2100,2100,2200,1
+6245,100000,female,2,2,29,0,0,0,0,0,-1,17848,19032,19664,16407,15068,40794,1775,1407,328,935,42000,1500,0
+6246,20000,male,2,1,45,-1,2,2,0,0,0,3213,4308,4093,4866,6781,7668,1300,0,1000,2000,1000,0,0
+6247,460000,male,1,2,34,0,0,0,0,0,0,45358,42991,45848,50875,56479,50889,2613,7021,10019,10051,10046,5016,0
+6248,80000,male,2,2,32,1,2,0,0,0,-2,82212,79682,28242,21400,0,0,7,1200,1408,0,0,0,0
+6249,80000,male,1,2,26,0,0,0,0,0,0,74487,76126,69856,48816,48476,48448,7576,3000,1800,1800,2000,2000,0
+6250,240000,female,1,2,28,0,0,0,0,0,0,209848,214477,218142,195913,197823,189111,10000,9000,7000,7000,6625,7000,0
+6251,200000,female,3,1,38,0,0,0,0,0,0,97584,75187,72556,63524,49914,18068,3600,2500,3000,2000,2000,2000,0
+6252,230000,male,2,2,29,-2,-2,-2,-2,-2,-2,200,840,0,3458,499,5180,840,0,3458,499,5180,0,0
+6253,260000,female,1,1,53,2,-1,-1,-1,-1,-1,827,827,827,827,755,-72,827,827,827,755,0,1726,0
+6254,90000,female,2,1,38,0,0,0,0,0,0,88758,89680,89876,49922,46302,45430,3900,3487,1629,4000,3000,813,0
+6255,320000,male,2,2,29,0,0,0,0,0,0,324693,321110,325024,322246,297637,301575,11650,12500,11900,10503,10886,10040,0
+6256,280000,female,2,1,47,0,0,0,0,0,-1,231181,26610,24910,20133,5821,143866,1610,1910,1133,821,155681,4785,0
+6257,120000,male,2,2,29,1,2,0,0,2,2,87376,85135,86024,91380,93263,95079,0,3200,6800,3500,3500,0,1
+6258,400000,female,1,2,27,1,-2,-1,0,0,-1,140,140,12527,12640,14805,238,140,12527,253,2305,238,238,0
+6259,50000,female,1,1,55,0,0,0,0,0,0,25043,26411,27451,19431,19837,20232,1775,1815,695,719,724,750,0
+6260,10000,female,1,2,23,2,2,7,7,7,6,2400,2400,2400,2400,2400,1800,0,0,0,0,0,0,1
+6261,70000,male,2,2,26,0,0,0,0,0,0,69900,67591,68338,26916,27480,28043,2506,1925,1000,997,1020,1100,0
+6262,210000,male,1,1,30,0,0,0,0,0,2,65600,63396,64150,66135,70118,67254,2300,3000,3000,5000,0,3000,0
+6263,140000,female,2,1,39,-1,-1,-1,0,0,0,1007,3680,4214,3790,3357,3426,3685,4214,76,67,69,1376,0
+6264,290000,male,2,1,50,-1,-1,-1,-2,-2,-2,929,1729,0,0,0,0,1732,0,0,0,0,335,0
+6265,30000,male,3,1,32,0,0,0,0,0,-1,28292,30494,28317,16454,450,1400,3000,1431,483,0,700,0,0
+6266,110000,female,1,2,32,1,2,0,0,0,2,58679,56871,56279,24271,52040,25453,1210,2056,1200,2300,0,1000,1
+6267,20000,female,3,2,54,0,0,2,2,2,0,9777,10140,9360,9833,9153,9116,2000,1000,1000,0,500,500,0
+6268,220000,female,2,1,36,0,0,0,0,0,0,136556,139453,142295,145127,148159,151462,5100,5163,5196,5372,5761,5396,0
+6269,180000,female,2,1,36,-1,-1,-2,-1,-1,-1,682,0,0,1012,0,669,0,0,1012,0,669,0,0
+6270,30000,male,1,2,26,4,3,2,0,0,-2,25899,25177,22768,18600,0,0,0,600,800,0,0,0,1
+6271,50000,female,2,2,31,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+6272,150000,male,3,1,29,0,0,-2,-2,-2,-2,38675,0,0,0,0,0,0,0,0,0,0,0,0
+6273,150000,female,1,2,32,0,0,0,0,0,0,30697,40139,49410,58549,67560,86315,10000,10000,10000,10000,20000,1718,0
+6274,140000,male,3,2,30,1,3,2,2,2,0,84014,85107,82532,81236,78306,72173,3300,0,6500,0,3000,3000,0
+6275,80000,female,2,1,48,0,0,0,0,0,0,79518,77757,32325,25670,30089,29395,2264,1420,1002,6005,2000,970,0
+6276,200000,female,1,1,33,0,0,0,0,0,0,105775,88262,69596,32709,31816,33368,3493,2536,1065,10020,6097,5022,0
+6277,400000,male,1,1,44,-1,-1,-1,-1,-1,-1,4482,-10,1903,850,808,775,0,1913,850,808,775,380,0
+6278,130000,female,2,1,28,2,2,0,0,0,0,135805,125973,95602,91328,93099,95825,75,3369,3423,3400,4275,2307,0
+6279,50000,female,2,2,22,0,0,0,0,0,0,38604,36684,33826,30387,28850,29022,1575,1757,1047,1042,1036,1039,0
+6280,190000,male,2,1,51,0,0,0,0,0,0,86713,75143,43487,34904,108419,75455,3359,13487,1414,40710,43406,2773,1
+6281,470000,female,1,2,40,0,0,0,0,0,0,17243,14722,15270,15615,16261,16969,1243,1300,600,900,1000,1324,1
+6282,280000,male,1,1,55,-1,-1,0,0,2,-1,2326,4917,4906,4707,2254,5375,4917,2453,2254,0,5375,1165,0
+6283,460000,female,1,2,26,-1,-1,-1,-1,-1,-1,18738,16345,20246,9936,10833,21169,16447,20373,10018,12387,21865,13898,0
+6284,340000,female,2,2,32,0,0,0,0,0,0,169246,100967,102819,105477,107454,110419,6000,4500,5000,4000,5000,4000,0
+6285,110000,male,2,2,27,0,0,0,0,0,0,103550,105089,107164,105988,108617,103497,6000,6000,4000,5000,4000,4000,0
+6286,440000,female,2,2,27,-1,0,0,0,0,0,25154,27028,29098,21447,13547,16008,10011,5052,3163,5010,5000,5000,0
+6287,90000,female,2,2,23,-2,-2,-2,-2,-2,-2,3440,6140,5812,13955,22687,15621,6140,5812,13955,22687,15621,2540,0
+6288,70000,female,2,2,24,-2,-2,-2,-1,-1,0,63912,53137,45078,6823,28989,29059,2400,2000,1000,30848,975,863,0
+6289,30000,female,2,2,24,1,2,2,2,2,2,7134,7872,9528,9725,9427,10118,1000,1800,500,0,1000,0,0
+6290,120000,female,2,2,49,0,0,0,0,-2,-2,3903,2246,3040,0,0,0,1300,1000,0,0,0,0,0
+6291,300000,female,2,2,27,-1,-1,-1,0,0,-1,12752,9314,26887,23981,19378,12759,9314,27187,13981,9378,12759,16980,0
+6292,60000,female,1,2,25,0,0,0,0,0,0,16313,10253,7735,6923,7035,9175,5000,3000,2000,2000,4000,800,0
+6293,180000,male,2,2,36,-1,-1,-1,-1,0,-1,100,100,109,1863,1763,591,100,109,3626,0,907,1208,1
+6294,30000,female,1,2,43,1,2,2,2,0,0,17775,18688,21488,20847,21162,21809,1500,3433,0,800,1000,1000,1
+6295,360000,male,1,2,35,-1,-1,-1,-1,-1,-1,15798,16630,15687,38750,15802,15730,16713,15766,38944,15881,15809,30594,0
+6296,150000,male,1,1,49,-2,-2,-2,-2,-2,-2,15472,14860,19601,13262,14329,34193,14877,19608,13280,14329,34193,7880,0
+6297,70000,female,1,2,28,0,0,0,0,0,0,20335,21699,22460,20345,42123,19852,2000,1500,3000,721,1200,2000,0
+6298,150000,female,2,1,44,0,0,0,0,0,0,61951,55504,22050,17360,17360,12000,15000,1200,0,0,0,0,0
+6299,440000,female,1,1,33,-2,-2,-2,-2,-2,-1,0,0,0,0,0,100,0,0,0,0,100,300,0
+6300,500000,male,1,1,52,1,-1,-1,-1,-1,-1,-5,43528,104315,71776,60753,0,43533,104406,71776,60753,0,8200,0
+6301,260000,male,2,2,29,1,2,0,0,0,0,263943,258331,261518,194791,198894,197564,0,7700,6000,6130,7500,6500,1
+6302,360000,male,1,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+6303,140000,male,1,2,28,0,0,0,0,0,0,132880,133904,134552,135151,136327,136647,6400,7000,5000,5200,5100,5000,0
+6304,10000,male,1,2,24,0,0,2,0,0,0,4216,6476,6224,6347,12856,8078,2500,0,227,239,3412,0,1
+6305,200000,female,1,2,32,-2,-2,-2,-2,-2,-2,2580,-35,3519,1846,1330,14470,0,3554,1855,1337,14542,2955,0
+6306,210000,male,2,1,35,0,0,0,0,0,0,128595,131627,136428,54058,55398,56698,4606,6815,1800,2000,2000,2000,0
+6307,20000,male,2,2,27,2,0,0,0,0,2,13747,15020,16059,16081,17423,17695,1500,1600,580,1600,700,0,1
+6308,240000,male,1,1,44,-1,-1,-1,-1,-1,-1,4221,2188,2701,2427,1104,2362,2188,2701,2427,1104,2362,519,0
+6309,30000,male,2,2,51,5,4,3,2,3,2,26551,25855,25146,26549,25849,25285,0,0,2113,0,0,2191,1
+6310,450000,female,2,1,38,-2,-2,-2,-2,-2,-2,10972,15005,13887,17255,17515,0,15008,1200,5255,4566,0,3648,0
+6311,60000,female,3,2,40,-1,-1,0,0,0,-1,24496,20329,15219,16158,14295,10930,20391,1200,3658,0,10930,11677,0
+6312,100000,female,2,2,30,0,0,0,0,0,0,58335,56745,56058,51573,47665,43756,2801,2300,1613,1594,1654,1222,0
+6313,500000,male,1,1,49,-1,-1,-1,-1,-1,-1,12939,28805,41027,36073,46096,103065,28954,41027,36073,46096,103065,154321,0
+6314,50000,male,3,1,51,-1,-1,0,0,0,0,636,2228,3287,4843,6379,6878,4600,1500,2000,2000,1000,3000,0
+6315,80000,female,2,1,35,-1,-1,-1,-1,-1,-1,997,40297,6597,665,10117,0,40297,6597,3465,10117,0,665,0
+6316,20000,female,2,2,22,2,2,2,2,0,0,5743,7487,8114,7835,8605,10948,2000,900,0,900,2500,0,1
+6317,500000,male,1,2,43,0,0,0,0,0,0,141323,143548,146487,139155,142337,145411,5000,5015,5000,5000,5000,5000,0
+6318,140000,female,1,2,31,0,0,0,0,0,0,71066,55271,50706,48847,47437,42576,2042,1958,1501,1619,1514,1553,0
+6319,500000,female,2,2,29,0,0,0,0,0,0,455042,364288,261185,215575,174736,118438,12564,10000,6476,5489,5000,5000,0
+6320,50000,male,2,2,24,2,0,0,0,0,0,43247,45036,44384,19524,35268,16099,3000,1300,642,612,1192,600,1
+6321,170000,male,1,1,60,0,0,0,0,0,0,170359,178514,98196,100108,95629,89472,11700,3600,3500,3500,3300,3500,1
+6322,220000,female,2,1,44,0,0,0,0,0,2,136838,142250,149864,155828,178160,175140,10000,10000,10000,25000,0,20000,0
+6323,70000,female,2,1,33,2,2,2,2,3,2,63963,65350,66279,70580,69180,70392,3000,2600,6000,0,2500,1165,1
+6324,360000,female,2,2,34,0,0,0,0,0,0,122193,109382,109845,105271,96644,94973,5004,4031,3082,7018,2755,1813,0
+6325,430000,female,1,2,29,0,0,-1,0,0,0,34785,0,18518,16574,12215,6660,0,18518,5,244,1038,41500,0
+6326,20000,male,3,2,26,2,2,-1,-1,2,0,20155,10356,556,20897,20438,20325,0,600,20900,1,805,752,0
+6327,200000,female,3,2,53,-1,0,-1,0,0,-1,784,1972,2577,2652,-6,1279,1188,2581,1013,0,1285,0,0
+6328,200000,female,2,3,35,-1,-1,-1,-1,0,-1,1992,8287,9427,2040,16338,2076,8290,9427,2240,16000,2076,833,0
+6329,80000,female,2,2,25,0,0,0,0,0,0,78401,76930,77977,58469,58722,59770,3562,3112,2076,2279,2175,2300,0
+6330,130000,male,1,1,35,2,0,0,0,0,0,77578,79724,81221,34289,38550,40600,4000,3500,5000,5000,3000,9900,0
+6331,150000,male,1,1,49,-1,-1,-1,-1,-1,-1,6338,8460,1682,7898,3336,975,8470,1682,7898,3336,975,0,0
+6332,150000,male,3,1,53,2,2,2,2,2,0,17790,18209,18608,20294,19828,20396,1000,1000,2000,0,900,2000,1
+6333,190000,female,2,2,27,2,2,2,0,0,0,4686,5459,6214,7104,8973,10809,1000,1000,1000,2000,2000,2000,1
+6334,450000,female,2,2,36,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+6335,80000,female,2,1,31,-1,-1,-1,-1,-1,0,390,390,390,390,780,390,390,390,390,780,0,0,0
+6336,260000,female,2,2,31,-1,3,2,2,2,0,82274,80426,78536,94069,92447,95925,0,0,17000,0,5015,4293,0
+6337,80000,male,1,2,34,2,2,2,2,2,2,62423,63827,64682,65614,67007,68349,3000,2500,2600,2600,2600,2000,1
+6338,500000,male,1,1,39,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+6339,260000,male,1,1,43,-1,-1,-1,-1,-1,-1,76,773,0,1703,329,248,826,0,1703,329,248,702,0
+6340,260000,female,1,2,30,2,0,0,0,0,0,94114,96689,101023,93738,96218,102547,5000,6000,5000,4000,8000,5000,1
+6341,50000,male,1,2,33,2,4,3,2,0,0,24947,24529,23840,22790,23001,24557,249,0,0,1500,2100,0,0
+6342,360000,female,1,1,46,1,-1,-1,-2,-2,-2,-8,859,-820,-813,-2292,-2292,867,0,7,0,0,0,0
+6343,170000,female,1,2,53,-2,-2,-2,-2,-2,-2,-200,-200,-200,0,2769,0,0,0,200,2769,0,0,0
+6344,120000,female,2,1,34,1,-2,-1,-1,-1,-1,0,0,369,0,7490,941,0,369,55,7490,941,280,0
+6345,50000,female,2,1,26,0,-1,0,0,0,0,5195,15371,14163,15517,14685,14016,15387,1500,2000,1000,2000,2000,0
+6346,50000,female,1,1,40,-1,2,-1,-1,2,2,465,465,760,1360,518,3518,0,760,600,0,3000,0,1
+6347,310000,male,1,1,48,0,0,-1,-1,-1,2,29662,5384,4488,2630,150,335,1536,4510,2652,150,185,0,0
+6348,50000,male,1,2,27,0,0,0,0,0,0,17541,18716,19098,3291,1855,540,1762,1144,66,37,158,390,0
+6349,140000,female,2,2,32,0,0,0,0,0,0,121508,99470,83330,57609,59526,31515,5000,4000,3000,3000,2500,0,0
+6350,100000,female,2,1,28,2,0,0,0,0,2,73073,74739,70844,63924,57326,59654,3500,3003,1910,2400,3300,0,1
+6351,20000,male,3,2,32,1,2,0,0,0,0,19844,19238,20205,19588,20037,19880,0,1302,685,748,697,690,0
+6352,120000,female,1,2,27,0,0,0,2,0,0,11379,9559,10861,10055,11040,10466,1200,1500,0,1100,550,600,1
+6353,30000,female,3,1,59,0,0,0,0,0,0,28170,32597,32289,31276,30428,29371,4946,2000,1220,1232,1052,1500,0
+6354,20000,male,3,1,27,0,0,2,0,0,0,20184,20702,20057,19583,19991,20446,2950,2,687,709,965,559,1
+6355,160000,female,2,2,27,1,-1,-1,-2,-2,-1,0,1519,0,0,0,2755,1519,0,0,0,2755,966,1
+6356,180000,female,2,1,37,1,-2,-1,0,0,0,-1279,-2329,2115,2329,850,0,0,4444,214,0,0,0,0
+6357,40000,female,1,2,26,0,0,0,2,2,2,20936,20647,21561,18438,20619,17582,3000,4000,0,5000,0,8000,0
+6358,80000,female,2,1,34,0,0,0,0,-2,-2,49005,49551,45930,0,0,0,2141,2150,0,0,0,0,0
+6359,120000,male,2,2,31,3,3,2,2,-2,-2,113722,110525,103632,-36,-18,-18,0,0,0,0,0,0,0
+6360,20000,female,2,2,22,-1,-1,-1,-1,-2,-2,2480,179,1669,0,0,0,179,1669,0,0,0,0,1
+6361,20000,male,2,2,33,0,0,2,0,0,0,18271,19857,19090,18500,4860,4080,2967,0,0,0,0,0,0
+6362,100000,male,1,1,52,4,5,4,3,2,0,101762,102832,100328,97883,96238,96160,3504,0,0,0,3469,3422,1
+6363,500000,male,1,2,45,1,-2,-2,-2,-1,2,0,0,0,0,1899,1749,0,0,0,1899,0,70200,0
+6364,80000,female,2,1,29,0,0,0,0,0,0,78293,79555,77025,76991,79066,75356,3161,4000,3000,3500,3100,5700,0
+6365,150000,female,1,2,41,-2,-2,-2,-2,-1,-1,9682,-399,0,0,399,150,399,399,0,399,150,200,0
+6366,30000,female,3,2,26,0,0,0,0,-1,-1,27594,29717,28812,28762,10404,8578,2595,1200,1020,10404,51000,0,0
+6367,120000,male,1,2,34,1,2,2,-1,-1,-1,650,625,300,475,300,325,300,0,500,300,500,300,1
+6368,70000,female,2,1,27,2,2,2,0,0,2,25773,28943,28184,28449,30379,30931,3600,0,1030,2400,1200,0,1
+6369,150000,male,2,1,32,0,0,0,0,0,0,141346,145483,146410,142858,146007,130721,10000,7000,4000,8071,4000,3283,0
+6370,210000,female,2,1,42,1,-2,-2,-1,0,0,0,0,0,6622,6506,6511,0,0,6622,298,1000,1179,0
+6371,80000,female,2,1,30,1,2,0,0,0,0,82891,80997,81380,75374,77158,78710,0,3299,2699,3000,2987,3100,0
+6372,90000,male,2,2,29,0,0,0,0,0,0,86294,88412,89853,69362,70537,56775,4400,4111,2100,2200,2510,2000,0
+6373,20000,female,2,2,22,0,0,0,0,0,0,17807,18520,39053,20055,19606,19925,1298,1909,1666,5000,703,775,0
+6374,240000,female,1,2,36,1,-1,0,0,0,0,0,18000,18485,17406,19345,21134,18000,2000,2000,2000,3000,2000,0
+6375,50000,male,2,2,29,2,2,0,0,2,2,30117,30712,32332,34156,33360,25988,1370,2210,2190,1000,0,680,1
+6376,250000,female,1,2,28,0,0,0,0,0,0,273927,211551,132145,88487,66701,52054,21700,11710,6030,9150,11600,48930,0
+6377,280000,female,1,2,31,1,-2,-2,-2,-1,-1,0,0,0,0,710,7611,0,0,0,710,7611,4750,0
+6378,150000,female,2,2,33,-1,0,0,0,0,0,46006,45425,32139,53639,51873,64675,2000,3000,40009,5000,20000,62339,0
+6379,330000,female,2,1,47,1,-2,-2,-1,-1,-1,0,0,0,3155,4550,1264,0,0,3155,4550,1264,813,0
+6380,240000,male,1,2,30,-1,-1,-1,-1,-1,0,5354,4790,900,6849,26249,6633,4790,900,6849,26249,2200,3000,1
+6381,130000,female,2,2,34,0,0,-2,-2,-1,-1,42063,0,0,0,150,1000,0,0,0,150,1000,0,0
+6382,450000,male,1,2,37,0,0,0,0,0,0,16259,15026,17363,11708,11329,4749,6000,4000,6000,5000,2000,2092,0
+6383,50000,male,1,2,26,-1,-1,-1,-1,2,2,526,526,526,1913,1226,1752,526,526,1913,0,1052,0,1
+6384,70000,female,3,1,24,0,0,0,0,0,0,68083,50822,31179,28686,10806,11673,3012,5000,2000,3000,3000,0,0
+6385,80000,male,2,2,26,0,0,0,0,0,0,33490,35908,29995,27297,21524,23005,5000,1318,1200,2000,2000,2000,0
+6386,50000,male,1,2,24,-1,-1,-1,-1,-1,-1,236,4324,1861,0,1780,2581,4324,1861,0,1780,2581,2140,0
+6387,30000,male,3,1,33,2,0,0,0,0,0,29742,30266,45414,21331,21987,22452,1406,1366,1000,1000,980,1000,1
+6388,50000,male,2,2,23,0,0,0,0,0,0,48025,47611,44249,29321,29309,29739,2122,1815,1184,1206,1411,904,0
+6389,70000,male,2,1,29,0,0,0,0,0,0,68540,64645,66460,46988,43530,44804,3000,3000,2000,2500,2000,2000,0
+6390,50000,female,2,2,33,0,0,0,0,0,0,14720,15743,16756,17089,17446,17825,1265,1278,611,632,668,591,1
+6391,100000,female,3,2,27,0,0,0,0,0,2,53423,39096,40037,40584,43629,41432,1958,1953,1500,3700,0,1700,1
+6392,200000,female,2,2,24,0,0,0,0,0,0,39723,40586,44233,45124,46252,47207,1353,4000,1267,1500,1500,1500,0
+6393,180000,male,1,2,38,1,-2,-2,-2,-2,-2,3999,2183,5828,0,2165,645,2183,5828,0,2165,645,4390,0
+6394,240000,female,1,2,38,-1,-1,-1,-1,-1,-1,6916,2098,9927,3633,3603,926,2106,9951,3633,3603,926,7199,1
+6395,90000,female,3,1,35,2,2,2,0,0,0,35077,37557,29355,20046,14905,15075,3407,56,603,553,430,133,0
+6396,50000,female,2,2,33,0,0,0,0,0,0,16926,17749,18760,19132,19533,19936,1400,1312,684,709,728,709,0
+6397,80000,male,2,2,48,0,0,0,0,0,0,74658,72885,47663,48350,47208,46292,2500,2000,2000,2000,2000,2000,0
+6398,210000,female,1,1,43,-2,-1,-1,-1,-2,-2,0,981,2148,0,0,0,981,2148,0,0,0,0,0
+6399,350000,male,3,1,41,0,0,0,0,0,0,349125,338832,296868,237193,233591,237351,12005,10095,8389,8474,7640,6847,0
+6400,160000,male,2,2,45,0,0,0,0,0,0,131895,132154,129237,90981,92580,77184,5336,4900,2807,2898,2713,2885,1
+6401,70000,male,1,2,33,0,0,0,0,0,0,66874,132127,52335,27374,27133,10721,2423,4136,1024,1215,435,186,1
+6402,140000,female,1,1,33,1,-1,-1,-2,-2,-2,0,840,0,0,0,0,840,0,0,0,0,0,0
+6403,80000,male,2,1,47,0,0,0,0,0,0,52690,51560,51047,48260,46198,43253,2022,1711,1584,1576,1690,1285,0
+6404,110000,female,2,1,39,2,2,0,0,2,2,110109,106656,104407,108689,106342,111575,0,5200,7700,0,7800,0,1
+6405,50000,male,2,2,25,0,0,-1,0,0,-2,17355,5934,16637,4000,0,0,1000,24677,0,0,0,0,0
+6406,30000,male,1,1,38,0,0,2,0,0,0,27429,29085,29282,29270,29078,28652,2403,1200,588,588,574,0,0
+6407,30000,female,2,2,27,0,0,2,0,0,0,28392,31439,30394,29994,29834,15960,3500,0,0,0,0,0,0
+6408,200000,male,2,2,33,0,0,0,0,0,2,80012,81703,83290,85085,89707,63787,2972,2952,3107,6056,0,3000,1
+6409,290000,female,2,2,28,0,0,0,0,0,0,133789,137875,124871,118193,121283,124109,6300,6000,5000,5000,5000,5000,0
+6410,220000,male,1,2,34,0,0,0,0,0,0,29549,28267,29708,25407,25109,23320,2000,3000,800,5000,5000,2000,0
+6411,180000,male,1,2,28,0,0,0,0,0,-1,9853,18399,29973,42347,-53,10653,10732,22119,17012,0,10706,9659,0
+6412,500000,male,3,1,38,0,0,0,0,0,0,74223,72419,64537,60228,59038,58738,3338,3022,2502,2250,2350,2200,0
+6413,210000,male,2,1,39,-1,-1,-2,-2,-2,-2,7128,3605,4308,3713,5133,5749,3623,4315,3713,5133,5749,6762,0
+6414,100000,female,1,2,24,3,2,2,2,0,0,100016,97562,104365,101783,101603,103457,0,8440,0,3873,7733,0,1
+6415,100000,female,2,2,23,0,0,0,0,0,0,8002,7954,9777,10026,9657,9279,2000,2000,1000,504,1000,2000,0
+6416,130000,female,2,2,25,2,2,0,0,0,0,138910,119948,135259,95956,97770,92206,0,18259,3456,3770,3706,3708,1
+6417,10000,male,2,2,21,0,0,0,0,0,0,9042,10038,9784,9984,9780,0,1305,1000,200,196,0,0,1
+6418,50000,male,2,2,35,-1,-1,-1,-1,-1,0,780,0,390,390,28094,28263,0,390,390,28094,1011,965,0
+6419,240000,male,1,1,37,0,0,0,0,0,0,191748,169943,137358,132792,135652,139389,7000,4883,4753,5000,6000,6000,0
+6420,20000,female,3,1,53,0,0,0,-2,-2,-2,12237,12870,0,0,0,0,1000,0,0,0,0,0,0
+6421,20000,female,1,1,38,-1,-1,-1,-2,-1,-1,1925,500,0,0,6360,11220,500,0,0,6360,11220,0,0
+6422,150000,female,1,2,39,3,2,2,-1,-1,-2,99,99,0,1980,0,0,0,0,1980,0,0,0,0
+6423,230000,male,2,1,36,-1,-1,2,2,2,0,3872,5376,3878,4824,2720,1526,2000,397,2720,0,1000,435,0
+6424,50000,male,2,2,26,-1,0,0,0,0,0,49713,50581,46567,27211,28274,29005,2000,2000,1000,1500,1500,2000,0
+6425,300000,female,2,1,35,0,0,0,-1,-1,-1,10911,18463,16022,10880,2558,2324,12042,6191,10892,2558,2332,4099,0
+6426,110000,female,2,3,54,-1,-1,-1,-1,-1,2,316,316,632,150,632,166,316,632,150,632,0,0,0
+6427,230000,female,1,2,33,-2,-2,-2,-2,-2,-2,4533,0,510,0,162,0,0,510,0,162,0,0,0
+6428,50000,female,2,2,30,1,-1,0,0,0,0,0,10228,49243,49651,22569,15429,10228,40000,993,10100,8926,9748,0
+6429,70000,female,2,2,24,0,0,0,0,0,0,66915,68852,69390,64457,66021,67267,3167,2521,2400,2600,2614,2376,0
+6430,360000,female,1,1,27,-2,-2,-2,-2,-2,-2,0,0,7365,0,0,0,0,7365,0,0,0,8665,0
+6431,110000,female,2,2,32,0,0,0,0,0,0,108159,106812,108464,108829,110557,106082,5400,5400,4100,4100,4100,4200,0
+6432,120000,female,2,2,48,0,0,0,0,0,-1,116183,116394,113245,48888,40241,49923,5078,2657,978,805,52169,1600,0
+6433,200000,female,1,1,45,-1,-1,-1,-1,-2,-1,15127,1890,3699,367,-1530,4812,1896,3712,379,1217,9652,16,1
+6434,260000,female,5,1,46,-1,-1,-1,-1,-1,-2,9507,4405,0,2776,0,0,4405,0,2776,0,0,0,0
+6435,290000,female,1,1,47,-1,-1,-1,-1,-1,-1,15485,12332,3979,7139,6448,1476,12369,4690,7160,6471,1476,6078,0
+6436,20000,female,2,2,22,0,0,0,0,0,0,17503,12245,12974,14192,14096,7045,1273,1392,2000,389,1000,140,0
+6437,50000,female,3,2,22,0,0,0,0,0,0,46687,47831,48764,47109,39415,39920,1896,1829,1924,1308,1480,1171,1
+6438,50000,female,2,1,23,0,0,0,0,0,0,33713,34437,28709,28386,28361,28449,5012,3000,3548,2500,2000,2000,0
+6439,60000,female,1,2,23,0,0,0,0,0,-1,3517,3277,11335,9341,6451,3592,1000,10341,0,0,3592,3911,0
+6440,330000,male,1,1,46,-1,-1,-1,-1,0,0,7401,4567,6242,24353,20219,23163,4567,6443,24353,10219,13163,5909,0
+6441,60000,female,2,1,23,0,0,0,2,2,0,58844,43427,30408,30632,30021,30445,2000,4300,1000,0,2000,1500,0
+6442,180000,female,2,1,25,0,0,0,0,0,0,134733,120775,112784,114794,105248,107130,9148,4030,4211,3798,4000,4327,0
+6443,80000,female,1,2,28,1,2,2,2,2,2,53541,54694,55297,55788,57146,58351,2600,2100,2000,2400,2300,2315,0
+6444,450000,female,1,2,32,1,-1,0,0,-2,-1,0,1042,4064,-8,-8,402,1042,3057,0,0,410,0,0
+6445,150000,female,4,1,36,-2,-2,-2,-2,-2,-2,5253,0,0,0,0,0,0,0,0,0,0,0,0
+6446,280000,female,2,2,28,1,-2,-1,0,0,-1,0,0,11905,8350,2428,4662,0,11905,200,49,4662,6278,0
+6447,180000,male,3,2,47,0,0,0,0,2,0,67011,69935,72031,77597,72079,66310,4000,4000,7501,0,3001,10000,0
+6448,380000,female,3,1,54,-1,-1,0,0,-1,-1,1630,65757,65201,39281,80561,19302,65757,1628,196,80962,19395,13452,0
+6449,150000,male,2,1,45,-2,-2,-2,-2,-2,-2,390,390,390,390,285,-105,390,390,390,285,0,1668,0
+6450,280000,female,1,2,52,-1,-1,-1,-1,-2,-2,886,0,930,0,0,0,0,930,0,0,0,0,0
+6451,160000,female,2,2,34,-1,-1,-1,-1,-1,-1,18958,11842,7918,13780,12297,12752,24000,8000,13780,12300,12752,6000,0
+6452,120000,male,2,2,29,0,0,0,0,0,0,118277,121004,118774,91369,88015,88087,6513,3740,3215,3300,3405,3303,0
+6453,330000,female,1,2,34,0,0,0,0,0,0,261974,245882,228275,227974,185431,107493,15000,10008,10000,20000,25000,3500,0
+6454,210000,female,2,1,49,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+6455,200000,male,1,2,27,1,-1,-1,-1,-1,-1,-36,7203,5360,4481,10330,5599,7239,5395,4503,10381,5627,4935,0
+6456,340000,female,5,1,27,0,0,0,0,0,0,281544,283173,282231,216946,216403,218209,11000,11031,8000,8000,8300,7500,0
+6457,200000,male,1,2,34,-1,-1,-1,-1,-1,-2,959,451,-1,605,-5,-5,452,0,606,0,0,0,0
+6458,160000,female,3,1,34,0,0,2,2,-2,-2,4763,4899,697,-1373,-1773,-1773,3009,0,1373,0,0,1040,0
+6459,500000,female,2,2,48,-1,-1,-1,-1,-1,-1,77461,68781,58436,9536,8302,64460,68781,58436,9536,58302,64460,14000,0
+6460,50000,male,2,1,43,0,0,0,0,0,0,28287,28924,29521,29876,30201,15611,1485,1472,1217,1347,558,550,0
+6461,170000,female,2,2,23,-1,0,0,0,0,0,32192,32555,32292,32372,31202,31688,1608,2301,2379,2202,2688,2110,0
+6462,260000,female,1,2,29,1,2,0,0,0,0,234922,227802,215320,177965,171201,164834,6,6918,5295,4805,5002,3005,0
+6463,360000,male,2,1,49,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+6464,400000,male,1,2,29,0,0,0,-1,-1,2,41057,11150,6298,138307,149548,148632,1300,1001,138307,16996,5010,96,0
+6465,380000,female,1,2,32,-1,0,0,0,0,0,91806,100291,108245,109006,117195,121246,10000,10000,10000,10001,6000,38000,0
+6466,50000,male,3,2,29,0,0,2,0,0,-1,7334,7344,5420,4104,1596,1594,2500,0,1596,0,1594,0,1
+6467,130000,male,2,1,40,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,390,0
+6468,110000,female,2,1,24,1,-1,0,0,0,0,-1256,65064,66102,54275,51791,52928,68500,3114,4016,2000,2000,2000,0
+6469,50000,male,1,1,23,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+6470,190000,male,2,2,26,0,0,0,0,0,0,155260,136185,139013,140035,146365,148961,7416,6900,5100,10000,5500,6700,0
+6471,170000,female,2,1,46,-1,-1,-1,-2,-1,-1,2741,1848,0,0,1542,3498,1848,0,0,1542,3498,8095,1
+6472,210000,female,4,2,25,0,0,0,0,-2,-2,179248,21612,5259,-243,-243,-243,3151,2000,0,0,0,0,0
+6473,50000,male,3,2,25,0,0,0,0,2,2,46277,47713,44006,29737,30615,29975,2500,2300,2500,1500,0,1000,0
+6474,20000,female,3,1,45,2,0,0,0,0,0,14064,12451,11176,6934,11203,7737,3000,1006,144,10000,308,2000,1
+6475,80000,female,2,1,26,0,0,0,0,0,-2,33319,32066,31875,18686,0,0,1700,1720,1002,0,0,0,1
+6476,500000,female,1,2,39,-1,0,0,0,-2,-2,4417,5642,8689,-131,-131,-131,5467,5026,0,0,0,0,0
+6477,250000,female,2,2,31,1,2,0,0,0,0,59878,58348,59530,60668,59786,130890,0,2150,2116,65,72460,5000,1
+6478,50000,male,3,1,34,0,0,0,0,0,0,6808,6198,22456,19776,9433,7487,1318,19776,1096,572,645,0,0
+6479,300000,male,2,1,38,0,0,0,2,2,2,181387,171685,181780,177363,189423,188567,8000,14500,0,15150,7700,0,0
+6480,30000,female,2,1,40,2,2,3,3,2,2,27975,29906,30604,29834,29936,29862,2700,1500,0,1100,1000,0,1
+6481,50000,male,2,2,34,2,2,0,0,0,-1,61220,56388,53813,22667,23488,20022,9,2061,0,821,21414,703,0
+6482,180000,female,2,2,35,-2,-2,-2,-2,-2,-2,-117,2573,-77,-77,1823,227,2690,0,0,1900,230,0,0
+6483,50000,female,5,1,28,0,0,0,0,0,-2,9014,9608,12025,16025,0,0,3000,3000,4000,0,0,0,0
+6484,50000,male,3,1,46,0,0,0,0,0,0,6066,7161,8234,8595,8955,9305,1200,1200,500,500,500,500,0
+6485,190000,female,2,1,40,0,0,2,0,0,0,184276,191540,192422,150300,92391,93119,15000,6000,6000,4000,4000,3300,0
+6486,200000,female,2,2,32,-2,-2,-2,-1,0,0,940,174,1684,1581,2381,2381,174,1689,1581,800,0,0,0
+6487,140000,female,2,2,26,0,0,0,0,2,0,141057,144306,141949,141345,136379,126211,7200,19000,10400,0,4931,9100,0
+6488,10000,male,3,1,47,0,0,2,0,0,2,6817,9119,8826,8849,9567,9265,2588,0,318,862,0,502,1
+6489,180000,female,5,1,54,0,0,0,0,0,0,88545,90403,92245,94082,96050,97963,3279,3343,3366,3483,3507,3628,0
+6490,170000,female,3,2,29,-1,-1,-1,-2,-2,-2,14460,738,0,0,0,0,738,0,0,0,0,0,0
+6491,50000,male,2,1,36,1,-2,-2,-2,-2,-1,0,0,0,0,0,2949,0,0,0,0,2322,0,0
+6492,200000,male,2,2,32,-1,-1,-1,-1,-1,-1,9249,9362,11109,9471,11132,9633,9363,11119,9473,11140,9636,23635,0
+6493,170000,female,2,1,42,-1,-1,-1,-1,-1,-1,1085,326,326,326,326,326,326,326,326,326,326,326,1
+6494,50000,male,2,2,52,1,2,0,0,0,2,5893,5653,6747,7859,7464,7199,0,1200,1200,1200,0,1200,0
+6495,230000,female,2,2,24,-1,-1,-2,-1,0,-1,2360,0,0,4135,814,2294,0,0,4135,0,2294,7368,0
+6496,500000,female,2,2,36,0,0,0,0,-2,-1,21368,21094,12675,5803,5841,2227,4066,5004,28,2033,3130,94593,0
+6497,50000,male,2,2,25,2,2,3,3,3,3,1050,1050,1050,1050,1050,1050,0,0,0,0,0,0,1
+6498,80000,male,1,2,38,0,0,0,0,0,0,32562,23346,18361,10434,7387,3300,1482,1011,8,111,3509,0,0
+6499,200000,female,2,1,61,-1,-1,-1,-1,-1,-1,780,0,780,387,-3,4540,0,780,387,0,4543,1386,0
+6500,360000,male,3,2,34,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+6501,140000,female,1,1,41,-1,2,-1,-1,0,-1,780,390,390,780,390,390,0,390,780,0,390,390,0
+6502,290000,female,2,1,48,1,2,0,0,0,0,292907,285272,288543,209443,132211,133946,0,14000,9000,5000,5000,5000,1
+6503,50000,male,2,1,41,0,0,0,0,0,0,48027,48725,29600,20150,19232,17143,3000,1600,2004,2000,1000,4000,1
+6504,10000,female,2,3,38,0,0,0,-1,0,0,3213,2797,0,1660,660,660,1000,0,1660,0,0,0,0
+6505,80000,male,2,2,27,2,-1,-1,0,0,0,1195,553,1074,35783,35488,36020,700,1074,35000,1300,1400,1300,0
+6506,20000,male,3,2,22,0,0,0,0,0,0,18535,18541,18270,16992,19025,35744,5109,1600,2400,3800,739,2000,1
+6507,150000,male,1,2,37,-2,-2,-2,-2,-2,-2,120,0,0,0,0,0,0,0,0,0,0,0,0
+6508,230000,female,1,2,37,0,0,2,0,0,-2,9092,12509,12784,12584,0,0,3500,700,0,0,0,0,1
+6509,60000,female,3,2,24,0,0,0,0,0,0,60491,61319,56550,43279,28289,28013,2560,1593,1348,1012,1016,1007,1
+6510,360000,female,1,2,26,-1,-1,-1,-1,0,-1,724,125,416,190,190,66,125,418,190,0,66,151,0
+6511,100000,male,2,1,36,0,0,0,0,0,0,46202,47239,48258,49218,99677,51738,1784,1803,1763,1843,4654,2297,0
+6512,30000,male,2,1,33,0,0,0,0,0,0,23467,24195,25286,25807,26350,27409,1409,1500,942,959,1500,946,0
+6513,330000,female,2,1,30,0,0,0,0,0,-1,155285,156122,11733,9620,0,4520,10000,10000,2000,0,4520,2500,0
+6514,20000,female,1,2,24,-1,2,-1,0,0,-1,632,316,948,632,316,1096,0,948,0,0,1096,0,0
+6515,80000,female,2,1,49,1,2,2,2,2,2,42053,40185,42887,31745,32211,25836,0,3500,0,4500,0,1500,0
+6516,90000,female,5,2,23,0,0,0,0,0,0,40145,41194,42197,42726,43802,42761,2000,2000,1502,1737,1500,5050,1
+6517,20000,female,2,2,23,0,0,0,0,0,0,16740,17451,18141,18239,18302,18337,1600,1600,1000,663,654,651,0
+6518,230000,male,3,1,61,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+6519,160000,male,2,2,28,-1,2,-1,-1,-2,-1,3498,3260,678,0,0,678,0,678,0,0,678,0,0
+6520,200000,female,2,1,36,-1,-1,-1,-1,-1,-1,2500,0,5448,632,0,646,0,5448,632,0,646,0,0
+6521,20000,male,2,2,27,0,-1,0,-1,-1,-2,1955,2530,1845,3169,240,930,2535,1205,3274,630,1080,0,0
+6522,170000,male,1,1,35,0,0,0,0,0,0,51207,38528,34688,30542,61032,23711,5000,2000,3000,1000,6000,8753,0
+6523,180000,female,2,1,26,0,0,0,0,0,0,3679,4711,3996,6007,3260,0,1105,1000,2011,503,0,0,0
+6524,50000,female,2,1,29,0,0,0,0,0,0,98492,50095,49057,17426,17789,18003,2477,2409,769,792,659,631,0
+6525,360000,female,1,1,40,-1,-1,-1,-1,0,-1,16540,1160,10600,51571,28310,14482,1160,10646,51571,0,14482,12874,0
+6526,230000,female,2,2,28,-1,-1,-1,-2,-1,-1,875,375,-250,-125,609,362,1000,0,0,4000,3000,9000,0
+6527,80000,female,1,2,28,0,0,2,2,2,2,75709,80033,78145,80584,81693,78470,6800,0,6000,3000,0,5100,1
+6528,60000,male,1,2,31,2,2,2,2,2,2,61432,57751,59200,57558,52992,61325,0,4770,2250,0,50000,0,1
+6529,150000,female,3,1,52,-1,-1,-1,-1,-1,-1,420,0,1672,453,2129,1414,0,1672,453,2129,1414,1961,0
+6530,120000,female,3,1,52,0,0,0,0,0,0,117029,118439,118437,116456,116957,119366,5800,4500,4120,4388,4500,4350,0
+6531,430000,female,1,1,43,-1,-1,-1,-1,-1,-1,20849,3662,7719,4437,2912,6368,3814,7759,4451,2915,6383,9025,0
+6532,360000,male,3,1,32,0,0,0,0,0,0,89120,191329,92915,52341,51739,55079,105484,4500,2000,2100,4400,2934,0
+6533,200000,female,2,1,60,-1,-1,-1,-1,-1,-1,396,396,461,396,546,396,396,461,396,546,396,396,0
+6534,50000,male,2,2,26,0,0,0,0,0,2,40959,41996,43296,44187,49132,48191,2000,2000,1608,5684,0,2000,0
+6535,150000,female,2,1,36,0,0,0,0,-1,-1,70001,45813,44309,27428,2013,4724,2500,1200,2618,2013,4724,0,0
+6536,20000,female,1,2,46,0,0,0,0,0,0,12146,7698,6005,6411,3125,3164,1273,1039,1000,123,101,48,0
+6537,20000,male,1,2,23,0,0,0,0,0,0,5565,6841,7853,8565,9565,12065,1276,1288,1000,1000,2500,1000,0
+6538,50000,male,2,2,24,1,3,2,0,-1,-1,52935,50946,22740,2314,1823,18839,0,0,0,1823,18839,641,1
+6539,260000,female,2,2,27,0,0,0,0,0,-1,19713,22378,24836,32816,42816,8938,3000,3000,10000,10000,8938,2000,1
+6540,230000,female,3,2,30,0,0,0,0,0,0,1873,2778,4734,6642,8520,9869,1500,2000,2000,2000,1500,2000,1
+6541,170000,male,3,1,43,-1,-1,-1,-1,-2,-2,19247,1230,2910,0,0,0,1230,2910,0,0,0,0,0
+6542,180000,male,1,2,28,-2,-2,-2,-2,-2,-1,-124,0,0,0,225,35173,1004,0,0,225,24815,10250,0
+6543,30000,male,1,2,38,1,2,0,0,0,2,24172,23497,24817,25602,26535,26947,0,1715,1500,1500,1000,4670,0
+6544,20000,male,2,2,22,3,2,2,3,2,2,16014,15474,19739,19194,38414,19200,0,4900,0,800,800,500,1
+6545,260000,male,3,1,50,2,0,-1,0,-1,-1,655,1182,1076,696,1012,530,1076,1076,0,1012,530,696,1
+6546,180000,female,3,2,30,-1,-1,-1,-1,-1,-2,1730,6792,0,3180,2682,0,6792,0,3180,2682,0,5593,0
+6547,230000,female,2,1,32,0,0,0,0,0,0,57259,46226,36089,34158,22872,22592,2500,3000,3000,1500,1500,2000,1
+6548,120000,female,2,3,43,0,0,0,0,0,0,46889,47496,48307,49272,49016,43127,1856,1667,1632,1664,1880,1059,0
+6549,280000,male,1,1,63,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+6550,270000,female,2,2,29,0,0,0,0,0,0,150185,141926,135741,126197,118340,110557,4988,7000,5000,5000,5000,5000,0
+6551,70000,male,1,1,39,0,0,0,0,0,0,67474,68750,59186,48178,46197,48444,3100,7172,10000,1662,3000,1350,0
+6552,60000,male,2,2,31,0,0,0,0,0,2,53234,54361,55395,56416,58792,56130,2580,2557,2500,4500,0,2000,0
+6553,180000,male,2,2,28,0,0,0,0,0,0,78128,81976,83338,90031,93692,96100,5000,4000,8000,5000,4000,5500,0
+6554,160000,female,2,1,32,0,0,0,0,0,2,30414,24158,10091,5905,6210,4302,1200,1036,309,500,0,1000,1
+6555,50000,female,1,2,25,0,0,-1,-1,-2,-2,14500,0,790,3696,6696,5724,0,790,3696,3000,5724,2271,0
+6556,60000,female,2,2,48,-2,-2,-2,-1,0,0,53044,51158,29452,1696,38585,38884,1607,1675,1696,38000,1500,1400,0
+6557,50000,male,2,2,48,3,2,0,0,0,0,12961,12029,11738,11011,9888,10076,507,1158,373,365,359,1111,1
+6558,80000,female,2,1,56,1,-1,-1,-1,-1,-1,-2,697,-3,1186,-4,1633,699,0,1579,0,1637,4844,0
+6559,30000,female,2,1,22,0,0,0,0,0,0,28622,28219,27764,27973,28576,12135,1700,1500,700,700,500,1000,0
+6560,90000,female,1,2,26,0,0,0,0,0,0,32154,33521,34443,31223,31723,32505,1888,1810,1300,1152,1310,1197,0
+6561,130000,female,2,1,33,0,-1,0,0,-1,-1,9768,8480,2420,0,682,0,8486,1001,0,682,0,0,0
+6562,200000,male,1,1,38,-2,-2,-2,-2,-2,-2,2780,2645,-10,4115,1315,0,2658,0,4125,1315,0,0,0
+6563,20000,female,2,2,23,0,0,0,0,2,2,11564,13063,14337,15596,15204,17149,2000,1500,1500,0,2200,0,1
+6564,300000,male,3,1,31,-1,-1,-1,-1,-1,-1,1877,2466,0,462,0,3069,2500,0,462,0,3069,280,0
+6565,160000,female,1,1,41,0,0,0,0,0,0,120528,100050,102324,104697,103202,94360,7000,4000,4000,4115,4000,3690,0
+6566,500000,female,1,1,41,-1,-1,-2,-2,-1,-1,680,0,0,0,74731,0,0,0,0,74731,0,0,0
+6567,50000,female,2,2,25,2,2,2,0,0,0,50863,50887,19345,19152,18953,19388,1600,0,1000,1000,900,900,1
+6568,20000,male,1,2,25,0,0,0,0,0,0,20052,5328,18428,19709,19833,19376,1500,15000,2000,1000,900,1000,0
+6569,240000,male,3,1,40,2,3,3,2,2,2,213732,217347,217329,211132,219202,223434,8500,5000,0,16000,8000,0,1
+6570,200000,male,2,2,29,2,2,2,2,2,2,172325,174082,177684,180259,183704,186507,6000,8000,7000,6500,6000,5600,1
+6571,200000,female,2,2,27,-1,-1,2,0,0,-1,184,2250,823,823,-658,1266,2250,0,0,0,1924,0,1
+6572,260000,female,1,2,36,-1,-1,-1,-1,-1,-1,10425,12722,4948,13100,10854,7537,2297,7256,13100,10854,7537,3710,0
+6573,100000,male,2,2,26,2,2,2,2,-2,-2,89296,101755,90684,23000,25000,0,14002,560,0,2000,0,53528,0
+6574,360000,male,3,1,42,-1,-1,-1,0,-1,-1,25988,1815,22648,19433,16708,24047,1815,22674,95,16790,24283,17387,0
+6575,280000,female,6,3,38,0,0,0,-1,-1,-1,286469,293875,296257,232,-94,143864,8024,8034,232,94,145935,5000,0
+6576,360000,male,1,1,47,0,-1,0,0,0,-1,10221,8337,9696,14332,21446,9476,8536,5000,8500,10000,9476,7000,0
+6577,420000,female,1,1,34,-1,0,0,-1,0,-1,440,1479,2940,3160,4160,883,1039,1500,3160,1000,883,28000,0
+6578,400000,female,2,1,42,-2,-2,-1,0,0,0,0,641,1290,1319,694,697,641,1290,29,0,3,703,0
+6579,50000,female,2,1,41,2,0,0,0,-1,0,33343,31392,27315,-60,28890,29168,1502,1000,0,30070,1180,1000,0
+6580,500000,male,1,1,45,-2,-2,-2,-2,-2,-2,186610,130751,43890,38759,46834,28408,261524,43919,38787,46834,28408,63001,0
+6581,50000,male,2,2,56,0,0,0,0,0,0,48025,49128,49348,44932,19559,18859,1884,1997,1943,693,683,680,0
+6582,80000,female,1,2,24,-1,2,-1,-1,-1,-1,1275,887,890,382,2786,2557,2,893,382,2794,2561,77004,0
+6583,80000,female,2,2,23,2,3,2,2,0,0,84176,81516,80146,61392,60325,60469,0,2000,0,3091,2400,2000,0
+6584,20000,female,2,2,50,0,0,0,0,0,0,13922,15433,15683,16050,17401,17573,3000,3000,1000,2000,1000,1000,0
+6585,460000,female,1,2,27,0,0,0,0,0,0,81252,74766,79012,74349,77504,90032,5020,10027,3001,5004,15000,5039,0
+6586,240000,male,1,2,33,0,0,0,0,-2,-2,47742,27044,24007,0,0,0,1898,1006,0,0,0,0,0
+6587,120000,male,2,2,30,0,0,0,0,0,0,53456,53862,39505,45373,46641,47569,2058,1672,10000,2000,1704,1920,0
+6588,20000,male,2,2,24,1,3,2,2,3,2,7719,7455,7187,8367,7945,7669,0,0,1300,0,0,1000,0
+6589,290000,male,3,1,50,0,0,0,0,-1,0,62381,32320,22528,10502,82823,52624,1778,1565,212,82902,2008,1177,0
+6590,50000,female,2,2,38,0,0,0,0,0,0,33801,27027,24459,23161,22282,20537,1433,1319,773,787,757,615,0
+6591,200000,female,2,1,40,0,0,0,0,0,0,22065,23382,21522,8815,4280,0,2000,1128,4280,0,0,0,0
+6592,20000,female,3,3,27,0,0,2,2,-1,-1,17973,20482,19693,11932,1280,0,2800,0,239,3380,0,0,0
+6593,100000,male,1,1,43,0,0,0,0,0,0,43970,45756,46680,47926,49028,49561,2500,2000,2000,2001,2014,1605,0
+6594,260000,female,1,2,36,0,0,0,0,0,0,107350,110114,112189,114503,117031,112857,4500,4000,4000,4200,8790,4200,0
+6595,20000,female,2,2,27,4,3,2,0,0,0,21750,21127,20332,19932,19932,7080,0,0,0,0,0,0,0
+6596,10000,female,2,2,22,0,0,0,0,0,2,5964,7145,8144,8861,10104,9803,1284,1283,1000,1535,0,1000,0
+6597,420000,male,1,1,47,-2,-2,-2,-2,-2,-2,46179,82842,77628,52294,0,0,84459,79192,57145,0,0,0,0
+6598,130000,female,3,2,27,0,0,0,0,0,0,29645,28193,30790,21200,21810,13629,2000,5000,5000,1000,4000,6587,0
+6599,150000,female,1,2,25,0,0,0,0,0,0,36497,38190,39322,40260,41458,42251,2287,2071,1591,2000,1632,10000,0
+6600,120000,male,1,2,33,-1,-1,-1,-1,-1,-1,291,291,291,291,291,291,291,291,291,291,291,291,0
+6601,30000,female,2,2,25,0,0,0,0,0,0,7244,8265,9436,10123,10335,10691,1142,1313,1000,375,528,600,0
+6602,260000,female,2,2,31,0,0,0,0,0,0,166071,137702,77683,163040,86008,88575,7000,3000,7152,8000,4000,4000,0
+6603,60000,male,3,2,34,-1,-1,-1,-1,-1,-1,326,326,326,326,476,326,326,326,326,476,326,326,1
+6604,70000,female,3,2,52,0,0,0,0,0,0,105991,67243,67533,28653,29253,26185,2777,1751,969,1004,938,1122,0
+6605,110000,male,2,2,26,2,0,0,0,0,2,28290,30516,39584,43581,48458,17129,3000,10000,5000,6000,0,2000,0
+6606,180000,male,2,2,37,-1,-1,0,0,0,-1,8788,40927,28306,31578,21195,11776,40970,1210,10015,10009,11783,110306,0
+6607,300000,female,2,2,48,-2,-2,-2,-2,-2,-2,6301,0,2417,470,4690,0,4126,2417,470,4690,0,18774,0
+6608,260000,female,1,1,38,-2,-1,-1,-2,-2,-2,622,3074,0,688,2605,377,3084,691,0,2613,378,693,0
+6609,50000,female,2,1,41,2,2,2,0,0,0,36329,36711,28415,18459,16077,12428,3406,0,640,660,296,60,1
+6610,90000,female,3,1,45,0,0,0,0,0,0,63115,33963,33807,2966,1223,0,1988,1900,59,24,0,0,0
+6611,20000,female,2,2,24,1,2,0,0,2,0,6025,5786,10471,11542,11216,14834,0,5000,1550,0,4000,4026,1
+6612,220000,female,1,2,30,-1,-1,-1,-1,-1,2,2731,3403,5990,7767,42731,33266,3403,5990,7767,40645,0,4622,0
+6613,240000,male,1,2,27,0,0,0,0,-1,2,2961,4748,7013,7722,732,291,2000,2873,1000,882,0,0,0
+6614,440000,female,2,2,40,0,0,0,0,0,0,98496,82803,79894,73984,137370,132889,10000,10000,10000,80000,7000,6000,0
+6615,60000,female,2,1,37,5,4,4,3,2,2,60480,59966,58411,58868,55232,58430,1001,0,2001,0,4301,2000,0
+6616,380000,male,2,1,31,-1,-1,-1,-1,-1,-1,6749,7917,9645,11865,13133,4702,7959,9683,11916,13191,4717,9354,0
+6617,30000,female,3,1,44,2,2,2,2,2,2,19608,20696,20071,21432,21704,21205,1700,0,2000,760,0,2000,1
+6618,120000,female,2,2,35,0,0,0,0,0,0,71708,72047,67080,68660,69411,2855,3200,3000,3700,3500,1000,68074,0
+6619,150000,male,1,2,29,-2,-2,-2,-2,-2,-2,4583,6917,831,6469,5138,7810,6989,833,6488,5153,7833,7130,0
+6620,90000,male,2,2,28,0,0,0,0,0,2,43314,44354,45372,46317,51292,50316,2037,2055,2000,5913,0,2100,0
+6621,180000,female,2,1,34,0,0,-2,-1,0,0,25000,0,0,6398,15218,24901,0,0,6398,9000,10000,500,0
+6622,10000,female,2,2,37,-1,0,0,0,0,-1,7841,7400,6770,5163,3575,390,1157,1000,103,72,400,0,0
+6623,20000,male,2,2,24,2,2,0,0,2,0,15166,14638,15582,17809,17385,18437,0,1500,2500,0,1500,1500,1
+6624,80000,female,3,1,41,2,2,2,2,2,2,57754,56258,60313,61129,62348,61193,0,5000,2400,2341,0,2439,1
+6625,610000,male,2,1,30,0,0,0,0,0,0,50724,8723,6245,7089,8059,8666,2134,1210,2000,2000,1666,1500,0
+6626,180000,female,3,2,27,1,-2,-2,-1,-1,-2,0,0,0,8081,0,0,0,0,8081,0,0,0,0
+6627,50000,male,3,1,53,1,-1,-1,0,0,-1,0,484,929,474,0,1288,484,1000,0,0,1288,334,1
+6628,130000,male,1,2,30,0,0,0,0,0,0,130705,132472,129576,129829,125382,124942,6500,4700,5000,4600,5200,4500,1
+6629,160000,male,1,2,26,0,0,0,-1,-1,-1,135233,130038,79027,6666,6666,6666,5600,3715,6666,6666,6666,6666,0
+6630,200000,male,1,2,29,0,0,0,2,2,2,137218,141808,151020,152040,164405,161525,6808,11620,5000,15000,0,4089,0
+6631,20000,male,1,2,29,0,0,2,0,0,0,14897,17512,16926,17368,17959,19023,3170,0,1000,1000,3000,0,0
+6632,50000,female,2,2,56,0,0,0,0,0,0,47060,48481,49505,17612,19461,18660,2180,2204,656,2159,678,851,0
+6633,30000,female,2,1,46,1,2,2,2,2,2,27882,28937,30128,30548,31326,30688,1800,1980,1200,1400,0,800,1
+6634,140000,male,2,1,29,0,0,0,0,0,0,130767,134946,130470,132038,131961,124256,6696,5000,4866,5300,5055,5000,0
+6635,160000,male,2,1,45,1,2,2,2,2,2,11569,11092,12900,12396,13692,13323,0,2000,0,1500,0,2000,0
+6636,410000,male,1,1,33,-1,-1,-1,-2,-1,-1,3244,8339,0,0,1759,2624,8339,0,0,1759,2624,0,0
+6637,320000,female,1,2,30,0,0,-1,-1,-1,-1,8144,7824,7500,7500,7500,7500,7500,7500,7500,7500,7500,42562,0
+6638,50000,female,2,1,36,0,0,0,0,0,0,47404,48786,49768,27838,84810,27785,2148,2130,1200,1012,2034,973,0
+6639,110000,male,2,2,29,0,0,0,0,0,0,107221,109494,111954,111771,111703,111864,4000,4300,4164,4500,4200,5000,0
+6640,530000,female,3,1,50,0,0,0,0,0,0,219884,223526,206593,275847,163157,164838,10000,10000,10000,7000,7000,5000,0
+6641,80000,female,2,2,40,0,0,0,0,0,0,46982,38738,31923,25885,20195,19494,1728,1411,1009,605,2012,209,1
+6642,190000,female,1,2,26,2,0,0,0,0,0,204297,106428,109736,111487,114878,118541,6355,6500,5000,5117,5644,4767,1
+6643,500000,male,2,1,58,-1,-1,-1,-1,-1,-1,4101,11076,3834,-754,6276,16871,11155,4024,754,7030,17050,6063,0
+6644,270000,female,3,2,30,1,-1,-1,-1,-1,-1,0,2900,2000,2000,0,4759,2900,2000,2000,0,4759,0,0
+6645,20000,female,2,2,26,2,2,0,0,0,0,17368,16801,17789,17419,17628,18125,0,1281,771,640,790,761,0
+6646,90000,male,2,1,39,0,0,0,0,2,2,27764,27690,27593,25833,25318,22684,1500,1500,1500,1500,0,1755,1
+6647,10000,male,2,2,44,1,2,2,0,0,0,6898,7642,5381,3791,3791,0,1019,0,0,0,0,0,0
+6648,320000,female,2,1,36,0,0,0,0,0,0,4062,5143,5988,6988,7988,0,1155,1000,1000,1000,0,2500,0
+6649,190000,female,1,1,33,0,0,-1,-1,-1,-1,42740,46046,10725,1582,-46,4054,10000,11000,11336,0,4100,7500,0
+6650,380000,male,1,1,39,-1,-1,-2,-1,-1,-2,6347,0,0,46350,0,0,0,0,46350,0,0,24000,1
+6651,180000,male,2,2,30,0,0,0,0,0,0,145563,147348,143548,133408,136481,140008,10035,5096,5000,5200,6024,5015,0
+6652,360000,female,1,2,33,-1,-1,-1,-2,-2,-2,898,11573,0,0,0,0,11573,0,0,0,0,5140,0
+6653,150000,male,2,1,30,1,2,-1,-1,0,0,40496,3880,1377,4007,7742,11376,1000,5000,5960,5000,5000,1000,0
+6654,50000,female,1,1,57,1,2,0,0,0,2,45608,44619,44856,32461,49916,29117,0,1600,871,30347,0,0,1
+6655,50000,male,2,2,39,1,2,2,2,2,2,39966,37584,38423,37212,39319,36082,0,3000,0,3007,7,3119,0
+6656,50000,male,3,1,51,0,0,0,0,0,0,42257,44243,64104,33406,34104,34869,3000,2500,1985,1163,1256,1316,0
+6657,340000,female,2,2,30,0,0,0,0,-1,-1,47664,38192,39234,20960,360,360,2000,2000,3000,360,360,45385,0
+6658,320000,male,1,2,26,-1,0,0,0,0,-2,111710,12484,13917,12125,0,0,1267,1700,243,0,0,220000,0
+6659,230000,female,1,2,42,-1,-1,-1,-1,-1,2,326,326,326,1458,952,476,326,326,1458,952,0,326,0
+6660,120000,female,1,2,31,-1,-1,-1,-1,-1,-1,643,586,3660,5754,5666,5666,586,3660,5754,5666,5666,6246,0
+6661,30000,male,1,2,34,1,2,2,2,2,0,26921,27809,21658,22794,22289,22916,1700,0,1800,0,1000,1000,0
+6662,240000,male,1,2,34,-1,-1,-1,-1,-1,-1,21027,27568,9166,6855,8089,9052,27994,9212,6949,8134,10043,28012,0
+6663,240000,female,2,1,32,1,-2,-1,-1,-1,-1,0,0,493,-5,574,3509,0,493,0,579,3509,1198,0
+6664,210000,male,1,2,30,0,0,2,0,0,0,99342,99506,100117,101212,101197,103175,4900,4100,3600,4500,4000,3900,0
+6665,20000,male,3,2,24,1,2,0,0,0,0,17231,15897,16232,16555,16104,16055,0,1300,573,576,600,1900,0
+6666,20000,female,2,1,42,0,0,0,0,0,0,16560,17278,18289,18653,19195,19580,1293,1304,668,843,853,790,1
+6667,110000,female,1,2,25,1,2,-1,-1,0,0,4382,1972,1426,5660,5660,0,5,1426,5660,0,0,0,0
+6668,130000,male,2,1,39,0,0,0,0,0,0,88014,88951,90672,89252,91118,95105,3245,3217,3177,3286,4200,2500,0
+6669,80000,female,2,1,28,0,0,0,0,0,0,77857,80002,82020,73904,75558,77279,4000,4000,3000,3000,3000,3000,0
+6670,20000,male,2,1,36,1,2,0,0,0,0,12564,12077,12779,13033,13308,13985,0,1212,466,485,900,1000,1
+6671,10000,male,1,1,38,-1,-1,2,0,0,2,4711,9617,9307,9665,10470,10169,5000,0,500,1100,0,1000,1
+6672,180000,male,2,1,37,-1,-1,-1,-1,-1,-1,5480,11834,17380,8329,20406,9772,11850,17552,8333,20406,9772,9315,0
+6673,280000,female,2,2,29,0,0,0,0,0,0,140888,143746,55506,56741,57983,59185,5040,3000,2000,2000,2000,3000,0
+6674,220000,male,1,2,29,2,2,2,2,2,2,124820,126740,121910,89608,53535,36312,6300,0,6000,2500,0,1500,1
+6675,260000,male,2,1,42,3,3,2,2,0,0,215521,210695,213758,208821,213083,217340,0,8000,0,7800,7800,8300,1
+6676,30000,male,2,1,40,1,2,0,0,-1,-1,15526,14923,10936,11436,1520,0,0,1000,500,1520,0,0,0
+6677,50000,female,2,1,29,-2,-2,-1,-1,-1,-1,21523,1481,19766,19661,16740,13272,19505,20509,1513,1515,1539,20217,0
+6678,150000,female,3,2,47,0,0,0,0,0,0,153720,150540,153103,152060,151470,151974,7000,7000,5200,5500,6300,5100,0
+6679,160000,male,3,2,38,0,0,0,0,0,0,47269,45688,47690,48712,49525,50389,2767,2769,1791,1928,1960,1461,0
+6680,20000,male,2,2,26,1,-1,-1,0,0,0,0,132,10067,10144,10400,0,132,10200,540,600,1000,0,0
+6681,280000,male,1,1,42,0,-1,-1,0,0,0,18958,2640,182251,173922,160553,147124,2676,189570,6084,5798,4627,3589,0
+6682,50000,male,2,2,24,0,0,0,0,0,0,6716,7737,8741,8911,8943,9140,1290,1294,464,324,345,500,0
+6683,300000,female,1,2,43,1,-2,-2,-1,-1,-2,1352,2380,0,970,0,89,2380,0,970,0,89,0,0
+6684,230000,male,2,1,31,0,0,2,0,-1,-1,60528,49036,31226,15568,10000,0,5000,0,5000,10000,0,10000,0
+6685,60000,male,3,2,27,0,0,0,0,0,0,37170,36918,10163,10692,15307,19838,2000,3000,1000,5000,5000,1000,0
+6686,190000,male,3,1,29,-2,-2,-2,-2,-2,-2,51632,9803,3427,924,-876,-969,1000,3524,929,869,7,1587,0
+6687,60000,male,2,2,43,1,-2,-1,-1,-2,-2,0,0,780,0,0,0,0,780,0,0,0,0,0
+6688,100000,female,2,2,25,2,0,0,0,0,0,88420,89705,91943,71201,69804,71088,3600,4000,2500,2700,2600,2600,1
+6689,30000,female,2,1,45,0,0,0,0,0,0,17166,18578,20260,20626,21142,21790,2000,2000,1000,1000,1000,1500,0
+6690,200000,female,2,2,30,6,5,4,3,2,0,71310,69676,67976,68468,67439,56163,0,0,2000,0,1925,1130,1
+6691,30000,male,1,3,27,0,0,0,0,0,0,25107,26312,28102,29078,29201,24122,2000,3000,2000,1000,1500,1000,0
+6692,130000,male,2,2,25,0,0,0,0,-1,0,126454,128179,75525,76862,6131,27117,4252,3000,1537,10000,21300,651,0
+6693,120000,male,2,2,29,0,0,0,0,0,0,60098,50910,44943,37176,38245,28682,2000,1500,1500,1500,1500,1500,0
+6694,160000,female,2,2,35,1,-2,-2,-1,-1,-2,-200,-200,0,6171,0,0,0,200,6171,0,0,0,0
+6695,20000,female,2,2,23,0,0,0,0,0,-1,17772,19058,19681,19507,14656,756,1877,1500,500,0,756,23750,0
+6696,30000,female,2,2,24,2,2,2,0,0,0,26133,28926,28167,28568,29019,30430,3526,0,1168,1060,1900,0,0
+6697,70000,female,2,2,23,0,0,0,0,0,0,65026,29549,29705,29012,28355,16579,4000,1595,775,1000,600,2000,0
+6698,80000,male,3,2,25,0,0,0,-1,0,0,78230,76277,36232,30200,30326,30290,2289,1005,31063,1094,1109,1013,0
+6699,80000,female,2,2,23,0,0,0,-1,-1,0,6085,4728,5750,1361,1402,1911,1128,1150,1361,1402,1000,344,0
+6700,100000,male,2,2,50,0,0,0,0,0,0,104466,96370,81293,66435,64975,66951,4000,3000,3000,3000,3000,3000,0
+6701,570000,male,1,2,31,0,0,0,0,0,-1,26775,28753,48474,42377,41302,1666,15004,25000,1302,1000,1666,3778,0
+6702,170000,male,1,1,45,2,-1,-1,-1,-1,-1,360,360,360,360,360,870,360,360,360,360,870,0,0
+6703,50000,female,2,2,25,1,-1,-1,-1,-1,-1,0,870,590,3700,1999,7300,870,590,3700,1999,7300,17120,0
+6704,310000,female,1,2,39,0,0,0,0,0,0,300500,265766,245458,249435,240521,246525,11027,10500,14000,10000,10000,10000,0
+6705,140000,male,1,2,27,0,0,0,2,0,0,19484,20114,16606,9609,5429,9763,2000,10063,0,2000,5000,5000,1
+6706,200000,female,2,2,29,0,0,2,0,0,0,69412,69878,64222,50518,44892,76088,4012,2008,3008,9056,36100,22500,0
+6707,300000,female,2,2,26,0,-1,-1,-1,0,0,11342,9670,2615,10170,7200,7200,9670,2615,10170,0,0,908,1
+6708,300000,female,1,2,26,0,0,0,0,0,0,296186,290906,275061,250488,250357,249990,20006,9000,10000,9000,10000,8000,0
+6709,140000,male,2,2,55,0,0,0,0,0,0,162452,164055,141301,99115,101597,101290,5000,140000,4000,4000,4000,4000,0
+6710,560000,male,1,1,47,-1,-1,-1,-1,-1,-1,10501,69458,23445,105199,47519,73537,69803,23560,109726,48237,74014,19443,0
+6711,200000,male,1,1,46,1,2,2,2,2,2,73537,71796,80453,58257,97180,95531,0,10000,0,40000,0,15000,1
+6712,230000,female,3,1,31,0,0,0,0,0,0,184444,182933,178409,175091,171800,168476,7016,5500,5125,5031,4969,5071,0
+6713,200000,male,1,1,36,0,0,2,2,2,0,2346,4802,4579,5840,5603,6352,2500,0,1500,0,1000,1000,1
+6714,160000,male,2,2,34,2,2,2,2,2,2,73820,72341,76917,75370,81943,80203,0,5500,0,7500,0,2000,1
+6715,220000,male,1,2,29,0,0,0,0,0,0,216096,189566,183838,157898,164860,168294,10110,12000,5852,10000,6610,5836,0
+6716,60000,male,3,2,25,0,0,0,0,0,0,59817,47872,38605,28184,28862,29161,3000,2000,1500,1500,1300,2000,0
+6717,390000,female,2,1,43,2,2,2,0,0,0,78658,60152,40238,41366,37788,19025,4514,0,1528,0,1000,3574,1
+6718,280000,female,1,2,39,-2,-2,-2,-2,-2,-2,1863,869,262,1203,4,320,872,262,1203,150,470,1000,0
+6719,80000,male,1,1,60,0,0,0,0,-2,-2,53315,47740,50100,0,0,0,3300,6267,0,0,0,4189,0
+6720,360000,male,2,1,34,0,0,0,0,0,0,31580,32618,33610,34281,34944,35498,1549,1541,1212,1200,1000,1000,0
+6721,20000,female,2,2,21,0,0,0,0,0,0,18770,18410,18821,19307,19260,20028,1400,1200,1000,6000,1000,5000,0
+6722,500000,female,2,1,31,-1,-1,-1,0,0,0,2181,5625,60201,45299,40940,16923,5700,60207,1000,838,4476,24236,0
+6723,90000,female,1,2,23,-1,-1,-1,0,0,0,316,3066,3832,6194,5878,316,3066,3832,5878,0,0,3316,0
+6724,30000,female,1,1,33,0,0,0,0,0,0,27729,28138,28285,28463,29303,29766,1500,1500,1500,1300,1100,1032,0
+6725,390000,male,1,2,47,1,-1,-1,-2,-1,-1,0,3760,0,0,123,0,3760,0,0,123,0,0,0
+6726,360000,male,1,1,32,1,-2,-2,-2,-2,-2,0,0,0,0,-5,-5,0,0,0,0,0,0,1
+6727,10000,female,2,2,32,0,0,0,0,0,0,9463,9338,10073,10059,9760,10048,1165,1200,400,520,600,500,0
+6728,150000,female,1,1,32,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+6729,40000,female,2,2,27,0,0,0,0,0,0,29009,34183,35606,37018,37184,38066,9000,2000,2000,1349,1500,1500,0
+6730,210000,female,5,2,29,0,0,0,0,0,0,67931,65289,64778,65861,63794,65069,12411,13000,12340,14000,12364,13000,0
+6731,50000,female,2,1,41,0,0,0,0,0,0,46965,42713,33812,20483,19409,19318,1650,1317,698,693,1000,545,0
+6732,10000,male,2,2,23,0,0,2,0,0,2,7886,9085,7784,8547,8907,6844,1500,1000,1000,600,200,500,1
+6733,310000,female,2,2,26,0,0,0,0,0,0,40604,42926,44209,45472,46739,47895,3000,2000,2000,2000,2000,1000,0
+6734,50000,male,1,2,34,0,0,0,0,0,-2,43796,44423,29980,30000,0,0,2100,1200,1000,0,0,0,0
+6735,150000,female,1,1,37,-1,-1,-1,0,0,-1,4787,1046,344,1291,1193,1914,1054,344,1193,0,3000,0,0
+6736,50000,male,3,1,48,0,0,0,0,0,0,11839,13240,14015,14293,14763,14968,1600,1300,511,700,600,800,1
+6737,250000,female,1,2,30,0,0,2,0,0,2,77245,84828,82228,83116,87990,86564,8722,0,3010,6249,0,3212,0
+6738,30000,female,3,1,46,2,2,2,2,3,2,22352,23392,23908,24815,24133,25087,1700,1200,1600,0,1500,0,1
+6739,30000,male,1,1,32,0,0,0,0,0,0,22541,19623,20606,20693,21134,22435,1338,1321,727,761,2500,1800,1
+6740,30000,female,3,1,50,2,2,2,2,2,2,30615,28691,30474,27468,25813,25251,0,3017,12,3000,0,4000,1
+6741,20000,female,2,1,44,8,7,6,5,4,3,16942,16721,16193,16445,15624,15096,0,0,780,0,0,0,1
+6742,30000,female,1,2,24,0,0,0,0,0,0,17615,18338,19350,19734,20301,20812,1310,1322,706,885,1000,614,0
+6743,300000,male,1,1,45,-1,-1,-1,-1,-1,-1,999,-7334,8333,6666,8333,8333,0,24000,6666,10000,8333,15449,1
+6744,90000,male,2,1,28,0,0,-2,-2,-2,-2,5580,0,0,0,0,0,0,0,0,0,0,776,0
+6745,30000,male,2,2,24,0,0,0,-1,-1,2,25063,22275,0,517,25420,24863,1545,0,1517,25420,0,980,0
+6746,200000,female,2,1,51,0,0,0,0,0,2,128208,131152,133976,136646,145147,142651,5000,5000,4888,10700,0,10100,1
+6747,180000,female,2,2,29,0,0,0,2,2,0,100534,102971,108232,108628,94416,178120,5364,8633,3600,0,3700,9603,0
+6748,70000,female,2,2,26,0,0,0,0,0,-1,50680,51256,47394,7879,-1940,27545,2000,1500,0,0,30000,656,0
+6749,230000,female,2,2,29,-2,-2,-2,-2,-1,2,0,0,0,0,1004,854,0,0,0,1004,0,5183,0
+6750,240000,female,1,1,45,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+6751,190000,female,3,1,41,-1,-1,-1,-1,-1,-1,2665,-35,3527,3869,4468,-12,0,3562,3869,4468,12,4550,0
+6752,80000,female,1,1,29,-2,-2,-2,-2,-2,-2,4225,20000,11556,0,0,0,20000,11556,0,0,0,0,0
+6753,300000,female,2,1,34,0,0,0,0,0,0,86116,83724,80721,79939,58586,14570,3894,2783,3575,1605,1520,0,0
+6754,220000,female,1,1,36,0,0,0,0,0,0,210475,216513,196219,200117,204312,208373,9639,7123,7162,7419,7462,8621,0
+6755,340000,male,2,1,31,0,0,0,0,0,0,63098,64417,65752,69639,80057,83713,2338,2406,5000,11610,5000,2971,1
+6756,480000,female,1,2,57,-1,-1,-2,-1,-1,-1,7066,2328,4279,24973,76738,25108,6378,5096,25173,25896,25108,25000,0
+6757,60000,female,1,1,25,0,0,0,0,0,0,45575,43303,27113,19582,19109,17236,1432,11279,1960,1000,633,527,0
+6758,200000,male,2,1,28,-1,0,0,0,0,0,11445,12379,12187,7402,10827,11351,5013,3038,3007,5005,2056,2826,0
+6759,20000,male,2,1,53,0,0,2,2,-2,-1,19646,20077,19462,0,0,150,3000,30,0,0,150,850,0
+6760,110000,female,3,2,46,0,0,0,0,0,0,45846,47104,48325,0,49461,48438,2000,2000,2000,0,2000,2000,0
+6761,470000,female,2,2,32,0,0,0,0,0,0,491428,488642,485382,360959,338592,123737,300000,15937,11891,120000,6380,250000,1
+6762,200000,male,2,1,42,-1,-1,-1,-1,-2,-2,748,49007,11095,0,0,0,49007,11095,0,0,0,53025,0
+6763,130000,male,1,2,30,0,0,0,0,0,0,16757,21481,22389,22535,24236,20246,5000,1598,744,2000,744,3000,0
+6764,80000,male,1,1,46,0,0,0,0,0,0,78861,77719,45961,29537,29758,30153,2435,1463,1039,1068,1267,1000,0
+6765,120000,female,2,1,30,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+6766,180000,male,1,2,27,0,0,0,0,0,0,29735,24414,18300,16908,37319,34978,19000,5000,10009,22000,20000,15000,0
+6767,400000,male,2,1,42,0,0,0,0,0,0,286710,280752,284624,237176,211342,208432,11011,9816,8000,7824,8700,6500,0
+6768,150000,male,3,1,43,0,0,0,0,0,0,150797,52509,50683,46602,40599,37192,3008,2014,1599,2014,2018,1041,0
+6769,640000,female,3,2,34,0,0,0,0,0,-1,105423,133637,118372,33929,79807,19552,51644,30291,41,70128,19576,194014,0
+6770,500000,male,1,1,32,1,1,1,1,0,0,48169,53197,63010,64178,64992,50722,20000,20012,10036,15000,10000,50000,0
+6771,70000,female,1,2,26,1,2,2,2,2,2,28106,30447,29659,31767,31124,35511,3100,0,2600,0,5100,1400,1
+6772,100000,female,1,2,24,-1,3,2,-1,-1,-1,1331,1326,652,326,326,476,0,0,326,326,476,326,0
+6773,80000,female,3,1,42,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+6774,120000,female,2,1,30,0,0,0,0,0,0,84094,85804,86212,87003,88833,92348,3081,4001,3114,3232,5000,4000,0
+6775,210000,female,1,2,31,0,0,0,0,0,0,40167,41518,43023,44005,45294,46387,2000,2500,2000,2000,2000,2000,0
+6776,50000,female,1,2,25,-1,-1,2,-1,-1,-2,13572,17983,15590,10610,0,0,5000,200,10610,0,0,0,0
+6777,50000,female,2,1,45,0,0,0,0,0,0,46188,14082,15021,7696,7872,8028,1261,1200,300,300,287,297,0
+6778,260000,male,2,1,35,-2,-1,-1,-1,-2,-2,-48,4001,5975,0,0,0,4261,6000,0,0,0,0,0
+6779,20000,male,2,2,22,1,-2,-2,-1,0,0,-50,-440,-830,780,780,0,0,0,2000,0,0,0,0
+6780,30000,male,2,1,40,2,2,0,0,0,0,38001,34416,32515,28499,29133,29988,0,1634,796,865,1143,0,0
+6781,310000,female,2,1,29,0,0,0,0,0,0,182202,162547,140911,111881,78759,78877,5118,3758,3901,2206,3089,3023,0
+6782,100000,male,1,2,34,-1,-1,-1,-1,0,0,43128,6164,3775,22690,21288,9289,6200,3775,22690,0,0,62588,0
+6783,300000,female,1,1,38,-2,-2,-2,-2,-2,-2,390,0,0,0,0,0,0,0,0,0,0,1100,0
+6784,30000,male,3,1,47,0,0,2,0,0,-2,27609,30791,29913,30461,0,0,3630,0,1300,0,0,0,0
+6785,320000,male,2,2,34,0,0,0,0,0,0,173742,167837,100407,88717,179,-336,8100,6000,7000,2,0,2003,0
+6786,120000,female,1,2,32,0,0,0,0,0,0,81878,83429,77262,78783,75252,77090,3014,5000,5000,2726,4000,3000,0
+6787,80000,male,2,2,24,0,0,0,0,0,2,26170,25215,26189,26801,28593,26020,1414,1388,1000,2180,0,929,1
+6788,20000,male,3,1,50,2,2,2,0,0,0,15089,17037,17457,17868,18428,19120,2200,1000,1000,1000,1000,900,1
+6789,380000,male,1,1,53,-2,-2,-2,-2,-2,-2,360,360,360,720,360,360,360,360,720,0,360,360,0
+6790,180000,female,1,2,30,0,0,0,0,0,0,173094,131039,132269,144990,152632,155935,7000,4900,15000,10000,6000,6500,0
+6791,50000,male,2,2,27,0,0,0,-2,-2,-2,26380,26439,-200,-200,-200,-200,1000,0,0,0,0,0,0
+6792,280000,male,1,2,33,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+6793,30000,female,3,2,47,0,0,0,0,0,0,25262,24365,5160,6160,5780,4790,1518,1000,1000,0,1000,0,0
+6794,100000,male,2,2,25,2,0,0,-2,-2,-1,97614,50976,-212,-212,-212,138,3000,0,0,0,500,500,1
+6795,30000,male,1,2,45,0,0,0,0,-1,2,27990,27632,27992,16065,930,780,1850,4700,1000,930,0,0,0
+6796,160000,female,2,2,30,0,0,0,0,0,0,124178,118255,111807,107418,90471,86363,4507,4000,3500,3300,3500,3000,0
+6797,210000,male,1,1,42,-1,-1,-1,-1,-1,-1,2295,6072,8319,5330,1586,4920,6090,8369,5346,1590,4934,3568,0
+6798,10000,male,1,2,30,0,0,0,0,0,0,7930,7718,8518,8950,9795,3274,1200,1000,1000,1000,59,0,0
+6799,420000,female,2,2,36,-1,-1,-1,0,-1,-1,3581,16629,33433,28468,35669,23317,16647,33595,16000,36625,23317,23983,0
+6800,400000,female,1,1,37,-2,-1,0,0,0,0,-151,27952,47213,121013,87332,106519,78130,20000,93000,30000,20000,12014,0
+6801,70000,female,1,2,29,0,0,0,0,0,0,62870,63992,64720,66031,67459,69171,2134,1600,1587,1700,2000,1900,0
+6802,110000,male,2,2,31,0,0,0,0,0,0,61050,62663,62425,59118,49449,38047,2600,2100,2000,2000,1500,1000,0
+6803,300000,male,1,1,54,0,0,-2,-2,-2,-2,234589,0,0,0,0,0,0,0,0,0,0,0,0
+6804,120000,female,1,2,27,-1,0,0,0,0,0,22027,51757,113157,106767,30237,-1280,35000,100000,0,0,0,2750,0
+6805,180000,male,1,2,27,0,0,0,0,0,0,13895,14385,13190,17676,14792,11210,5000,3000,8700,1500,600,4000,0
+6806,400000,male,1,1,46,0,0,0,0,0,0,31864,34538,31648,127340,129411,128796,4237,4000,100000,5000,4183,3613,0
+6807,100000,male,1,1,44,0,0,0,0,0,0,37222,38628,39982,40914,42053,43151,2000,2000,1600,1800,1800,1700,0
+6808,220000,female,2,1,32,-2,-2,-2,-2,-2,-1,183718,172250,175771,180794,184650,167856,6243,6376,7942,8270,170000,6002,1
+6809,220000,female,2,1,43,-1,-1,-1,-1,-1,-1,316,316,316,956,1087,316,316,316,956,1087,316,4342,0
+6810,140000,female,2,1,27,0,0,0,0,0,0,126771,132730,124689,105447,106704,97725,10000,5000,5000,5000,5000,5000,0
+6811,90000,female,2,1,51,0,0,0,0,0,0,112577,105189,97048,88247,88564,90145,4000,3330,3087,3162,4496,4003,1
+6812,30000,female,1,2,23,0,0,0,0,0,0,29292,28809,30005,30452,29197,29381,1804,2000,1200,1600,1211,1165,0
+6813,240000,female,1,2,28,0,0,-1,-1,-1,-2,2276,3188,454,2500,0,0,1000,454,2500,0,0,0,0
+6814,110000,female,1,1,37,0,0,2,2,0,0,106658,111694,112131,108106,109798,107372,10800,3808,0,4000,5000,5000,0
+6815,60000,female,1,2,24,2,2,2,2,2,3,37356,41624,40655,43974,46625,45590,5200,0,4000,3500,0,0,1
+6816,20000,male,2,2,26,1,5,4,3,2,0,13242,12762,12276,11790,11460,14090,0,0,0,0,3000,5000,1
+6817,180000,male,2,1,53,0,0,0,0,0,0,173481,176308,179878,182005,175016,178293,7900,8000,7000,6565,6800,6100,1
+6818,130000,female,2,2,26,0,0,0,0,0,0,84133,84458,62441,48175,29874,15525,2758,2741,2175,1874,1525,0,0
+6819,130000,female,3,1,36,0,0,0,0,0,0,42553,43606,44577,45013,45695,46283,1740,1711,1587,1823,1956,1125,0
+6820,70000,male,1,2,26,2,0,0,0,0,0,50587,51329,48122,43912,44834,45737,2214,3510,1720,1780,1800,1900,0
+6821,10000,male,2,1,42,-1,2,0,0,2,2,9860,9169,9055,9908,9611,10059,0,1200,1000,0,1000,0,1
+6822,50000,female,1,2,24,-2,-2,-2,-2,-2,-2,894,1020,0,0,0,0,1020,0,0,0,0,0,0
+6823,190000,female,1,1,31,-1,3,2,-1,-1,-1,8121,6523,750,14724,919,-3899,0,0,14724,0,0,25000,0
+6824,60000,male,2,2,36,0,0,0,0,0,0,59219,58852,54811,39960,40133,37607,3083,1857,1289,1615,1484,2500,0
+6825,20000,male,1,2,25,1,2,2,0,0,0,17147,19557,18935,19005,17862,20393,3000,0,653,900,3000,27,1
+6826,80000,female,2,2,42,2,2,2,2,2,2,73981,76489,77611,78683,80315,81887,9625,3000,2900,3000,3000,0,1
+6827,500000,female,1,1,51,-1,-1,-1,0,0,0,5255,86992,37272,24445,77828,61029,86992,37272,0,65428,1221,21984,0
+6828,220000,male,3,1,52,1,-2,-2,-2,-2,-2,-4300,-4300,-4620,-4620,-5820,-5820,0,0,0,0,0,0,0
+6829,230000,female,2,1,36,-2,-2,-2,-2,-2,-2,3786,2894,1200,2735,3231,909,2914,1406,2735,3241,913,0,0
+6830,20000,male,2,2,25,2,2,2,2,2,0,15522,16469,15907,17140,16724,18438,1500,0,1500,0,2000,1500,0
+6831,50000,male,2,2,39,0,0,0,0,-1,-1,48803,48808,20131,19940,390,540,1487,1200,399,390,540,390,1
+6832,120000,female,1,2,29,0,0,0,0,0,0,110488,107488,97021,86283,87345,81666,4000,5000,3000,3300,3010,3000,0
+6833,130000,female,2,2,34,0,0,0,0,2,0,99593,100415,103618,107525,104042,100190,4050,5600,7800,0,3900,3100,1
+6834,230000,female,1,2,26,2,-1,-1,-1,-1,0,363,363,363,372,1971,2566,363,363,372,1971,1000,865,0
+6835,350000,male,1,2,32,0,0,0,0,0,0,92134,120340,142794,101923,103119,84834,30000,25000,5000,5000,4000,5000,0
+6836,300000,female,1,2,38,-2,-2,-2,-2,-2,-2,13548,13097,3025,4128,1726,-587,2060,2004,2003,1726,692,116422,0
+6837,70000,female,2,2,55,0,0,0,0,0,0,67572,58969,57625,45675,46236,46758,2124,2311,1622,1674,1677,1697,0
+6838,280000,male,1,2,33,0,0,0,0,0,0,281604,283292,281327,189287,185398,184414,10000,10059,5201,5211,5500,5500,0
+6839,60000,female,2,1,25,0,0,0,0,0,0,20636,21367,22334,22426,22240,25378,1369,1336,927,801,4000,5000,1
+6840,310000,male,2,2,42,0,0,0,0,0,0,169749,172685,176630,180315,184072,188194,7000,6630,6379,6586,7086,7522,1
+6841,290000,male,3,2,34,0,0,0,0,0,0,5451,6230,140802,143354,146225,148820,1200,135000,5200,5500,5500,5400,1
+6842,180000,male,1,1,35,1,2,2,2,2,2,133424,134835,131176,139976,138325,146136,5000,0,11000,700,10300,0,1
+6843,340000,female,1,2,43,1,-2,-2,-2,-2,-2,-212,-212,-212,-212,-212,-212,0,0,0,0,0,154,0
+6844,360000,female,1,2,29,-2,-2,-2,-2,-2,-2,5041,7485,4480,3260,3884,4352,2500,7740,3260,3884,4352,4509,0
+6845,180000,female,1,1,33,-1,0,0,0,0,0,996,1999,2216,2301,2364,2286,1503,1400,250,228,106,1601,1
+6846,30000,female,3,1,48,0,0,0,0,0,0,25615,26950,27899,29614,30127,29646,1751,1700,2500,1000,2000,4034,0
+6847,100000,male,1,2,32,0,0,0,0,0,0,26127,26608,24689,25699,26809,25836,2000,2000,1700,1500,1500,1700,0
+6848,180000,male,2,1,42,0,0,0,0,0,0,87815,79072,59852,60761,62425,63982,3800,3000,2500,2800,3000,2000,0
+6849,210000,female,1,2,31,2,2,2,2,0,0,131297,128743,129104,125887,112439,104537,9735,4000,0,4000,3850,12203,1
+6850,180000,female,2,1,36,0,0,0,0,0,0,111190,113912,116231,117803,120350,124190,6000,5700,5000,4600,6000,3500,0
+6851,60000,female,3,3,48,0,0,2,2,-1,0,53116,55950,54439,-561,20115,20000,3689,0,0,20907,400,0,0
+6852,500000,male,1,2,30,0,0,0,0,0,0,192257,201402,444462,418237,424244,383145,40000,300018,15000,17000,15000,11100,0
+6853,200000,female,2,1,37,0,0,0,0,0,0,5766,6786,7796,8512,10205,11032,1274,1284,1000,2000,1000,574,0
+6854,610000,female,2,1,39,0,0,0,0,0,0,145143,136334,103624,101044,106356,92459,5002,5000,4006,10000,7000,5000,0
+6855,50000,male,2,2,29,0,0,0,0,0,0,47373,48076,23459,16175,17753,18302,2000,2083,2000,2000,1000,1000,0
+6856,80000,female,6,2,25,0,0,0,-2,-1,0,6643,9400,0,0,11457,6709,3000,0,0,45568,3000,3001,0
+6857,210000,male,1,2,38,0,0,0,0,0,0,103310,111472,79503,75528,72567,69502,107651,2861,2388,3000,3000,2500,0
+6858,50000,male,1,2,56,1,2,0,0,0,0,52108,50445,42652,9965,9720,9951,52,2176,334,336,375,1000,0
+6859,360000,male,1,1,58,-1,-1,-1,-1,-1,-1,5619,14822,43000,4650,12132,13953,15008,43065,4650,12132,13953,2200,0
+6860,240000,male,2,2,30,-2,-2,-1,-1,-1,-1,53812,2000,2396,4657,2452,2418,2010,2613,5076,2464,2428,4170,0
+6861,20000,male,3,1,56,0,0,0,0,2,0,10847,12176,12884,13784,13420,13686,1508,1216,1116,0,490,658,0
+6862,10000,male,1,2,22,0,0,-1,-1,-1,-1,2946,0,390,390,390,0,0,390,390,390,0,780,1
+6863,30000,female,2,2,23,2,0,0,0,0,0,30558,30363,29077,30029,26366,28916,1500,1600,1500,1000,3000,0,1
+6864,360000,male,0,2,30,0,0,-1,0,0,-1,40250,23022,12272,34345,36777,30,23000,12280,25007,25008,1767,3300,0
+6865,260000,male,1,2,29,0,0,0,0,0,0,52079,52083,46703,47500,45030,48249,6000,5000,5000,4000,5000,5000,0
+6866,100000,male,2,1,52,0,0,0,0,0,0,64358,64956,66816,36448,37481,37684,2416,3000,1500,2000,1360,1500,0
+6867,500000,female,2,1,40,-1,-1,-1,-1,-1,-2,2231,-9,2312,2928,0,0,0,2321,2928,0,0,0,0
+6868,70000,female,3,2,42,0,0,0,0,0,0,69470,70279,70207,30348,28320,28704,3085,2808,2455,1337,2000,882,0
+6869,200000,female,1,1,38,-2,-2,-2,-1,2,-1,26344,0,0,320,170,2865,0,0,329,0,2865,801,0
+6870,230000,female,5,2,45,0,0,0,0,0,0,144407,146277,149338,152555,155934,159332,5400,5500,5700,6000,6000,6000,0
+6871,200000,male,2,2,36,-1,-1,-2,-1,-1,-1,2989,0,0,2989,9059,52248,0,0,2989,9059,52546,10380,0
+6872,110000,male,2,1,38,2,2,2,0,0,2,96898,96071,93321,94034,99531,96614,4826,5,4000,7300,0,4000,1
+6873,260000,female,1,2,33,0,0,0,0,0,0,6818,8040,11736,10190,18122,0,1340,4036,204,8122,0,200,0
+6874,50000,female,3,3,55,-1,-1,-1,0,0,2,390,390,911,1080,930,390,390,911,559,390,0,390,0
+6875,50000,male,2,2,44,0,0,0,0,0,0,49120,50823,49844,20239,20241,19921,2504,1590,701,803,1000,671,0
+6876,80000,male,2,2,23,0,-1,2,-1,-1,-2,25992,904,68,232,-604,-440,1000,0,1000,0,1000,0,0
+6877,260000,male,1,2,29,-1,-1,-1,-1,-1,-1,7168,4495,4032,2104,2650,3472,4497,4035,2111,2653,4054,5014,0
+6878,80000,male,1,2,31,0,0,0,0,0,0,48783,42692,34593,38808,40942,40854,5000,3000,5000,5000,3000,2000,0
+6879,80000,female,1,2,29,0,0,0,0,0,0,48164,49388,51760,52650,55477,55020,2000,3305,3000,7767,7007,5000,0
+6880,200000,female,5,1,36,-1,-1,-1,-1,-1,-1,2353,2957,738,4152,2866,1414,3011,747,4164,2874,1418,2148,0
+6881,370000,female,2,2,29,4,3,2,0,0,0,390509,382898,365461,304436,311426,275628,0,0,10019,11000,10000,10000,1
+6882,60000,female,1,1,43,2,2,2,2,2,2,46806,47758,48669,49559,50608,51426,2000,2000,2000,2000,1806,2300,1
+6883,260000,male,1,2,29,1,2,-1,-1,-1,-2,56536,23827,29423,37900,-3400,-4000,778,29423,10000,0,0,24450,0
+6884,30000,male,2,2,35,3,2,2,0,0,0,13461,14179,13654,13979,15525,0,1228,0,553,1825,0,0,1
+6885,120000,male,2,2,32,1,2,2,2,2,2,60316,61763,63154,64524,66345,68104,3000,3000,3000,3000,3000,0,1
+6886,130000,female,3,2,39,0,0,0,2,0,0,133825,134495,133745,130814,130758,123468,7500,10000,0,4500,4500,4179,0
+6887,160000,female,3,1,38,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+6888,230000,female,2,2,31,-1,-1,-1,-1,0,0,5070,4317,1421,10452,5978,62292,4317,1421,10452,700,57229,2500,0
+6889,300000,female,1,2,26,0,0,-1,-1,0,-1,293554,291421,3760,3359,10670,2969,7877,5016,5008,10032,2977,11875,0
+6890,180000,female,2,2,29,-2,-1,-1,-1,-1,-1,4000,6028,6028,3996,9062,3997,6028,6028,3996,9066,3997,6992,0
+6891,80000,female,2,2,24,1,-2,-2,-1,-1,-1,0,159,0,110,-390,1104,159,0,110,390,1884,0,1
+6892,180000,female,4,1,30,0,0,0,-1,-1,-1,107337,101268,101754,15147,2187,7382,3735,2231,15147,2187,7382,850,0
+6893,50000,male,2,2,25,3,2,0,0,0,0,50516,22781,25064,12927,18691,19291,9,1210,1000,6000,1060,780,1
+6894,10000,male,2,1,62,-2,-2,-2,-2,-2,-2,2778,1939,2038,1938,0,0,1939,2040,1938,0,0,0,0
+6895,50000,male,2,2,46,-1,-1,-1,-1,0,0,1540,26060,0,2650,3320,2764,26060,0,3472,2320,1764,2841,0
+6896,90000,female,1,1,31,1,2,-1,0,0,-1,8318,6111,33212,8978,1782,23173,39,33500,0,0,25000,0,0
+6897,30000,female,3,2,29,2,0,0,2,2,2,23136,24205,28318,28755,29442,30003,1744,4857,1200,1300,1200,1100,1
+6898,180000,male,1,1,38,0,0,0,0,0,0,181302,181271,180439,182958,181287,179734,6747,6573,6506,6581,6801,6100,0
+6899,150000,female,2,1,38,0,0,0,0,0,0,140133,140414,141314,141000,142358,143358,6601,6501,5201,5501,5282,5200,0
+6900,590000,male,1,1,63,0,0,0,-1,0,0,630458,646770,693131,324522,358774,369685,28000,61115,325000,40000,20000,51000,0
+6901,60000,male,2,1,39,0,0,0,0,0,0,59929,35338,22856,22122,19531,16594,2110,2000,200,467,500,4100,0
+6902,100000,male,2,2,27,2,0,0,3,2,0,63004,66964,75856,74062,72756,76355,5000,10000,0,0,5000,5000,1
+6903,20000,female,2,2,25,-2,-2,-2,-2,-2,-2,7666,6664,6598,6632,6666,6666,6664,6600,6700,6700,6666,6982,0
+6904,10000,male,1,2,22,2,2,2,0,0,2,6883,9108,8813,10066,10017,9705,2500,0,1400,1100,0,500,1
+6905,300000,male,1,2,26,2,2,2,0,0,2,273138,279307,273333,277270,284915,286837,12000,0,10000,12180,10000,10817,1
+6906,260000,female,2,2,40,0,0,0,0,0,0,241565,244619,127074,14,124493,128463,13000,6500,0,124479,6000,6500,0
+6907,160000,female,3,1,28,0,0,0,0,0,0,38660,38942,39787,40069,37647,38268,2500,1877,2000,3000,1400,5000,0
+6908,260000,female,1,2,32,-2,-2,-2,-2,-2,-2,0,0,3210,0,0,2712,0,3210,0,0,2712,0,1
+6909,280000,female,1,2,29,-1,-1,-1,-1,-1,-1,2187,1461,53603,976,20825,1159,1469,53871,981,20929,1164,0,0
+6910,260000,female,1,2,35,1,-1,-1,-1,-1,-1,-15,16596,1935,5365,0,294,16611,1935,5365,0,294,741,0
+6911,240000,male,1,1,43,-2,-2,-2,-2,-2,-2,3645,9077,4234,7118,8187,8708,9088,4234,7118,8187,8708,9291,0
+6912,50000,female,2,3,49,0,0,0,0,0,2,45681,14657,9677,8826,10177,9865,1209,1300,350,1500,0,300,0
+6913,260000,female,2,2,44,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+6914,60000,female,2,2,24,2,2,2,0,0,2,60270,65005,63309,62369,64603,66584,5706,0,2250,5000,4800,0,1
+6915,130000,female,2,1,26,0,0,0,0,0,0,24579,23741,11666,11806,11081,11396,1187,1500,616,500,500,485,0
+6916,140000,female,1,2,31,0,0,0,0,0,0,112936,117021,107837,96546,95489,97347,6000,5000,3400,3617,3600,3700,0
+6917,20000,male,3,2,39,2,0,0,0,0,0,18243,17557,19880,19471,16211,14365,1677,3000,590,687,524,235,1
+6918,360000,female,1,2,35,1,-2,-2,-2,-2,-1,0,0,0,0,0,1392,0,0,0,0,1392,12884,0
+6919,220000,male,1,2,28,0,0,0,0,0,0,127021,132595,102667,108998,117186,121062,28500,5000,9604,10000,6000,14000,0
+6920,500000,male,1,2,37,-1,-1,-1,-1,-1,-1,4331,60446,30592,154167,13410,25426,60446,30594,150843,163881,25426,39526,1
+6921,50000,male,3,3,59,0,0,0,0,0,0,50739,50142,18894,18512,16853,18401,1500,1500,1000,1000,2000,1000,0
+6922,210000,female,1,2,28,-1,-1,-1,-1,0,0,262,3771,5474,69536,76188,72678,3771,5474,69536,10000,4000,2100,0
+6923,200000,male,1,1,41,0,0,0,0,0,0,90930,94502,93559,95060,88930,-23670,5032,2263,1901,1779,0,0,0
+6924,370000,male,1,2,28,0,0,0,0,0,-1,87313,90345,37554,7628,1026,1422,5000,6000,2000,1000,1422,3600,0
+6925,200000,male,2,2,27,1,2,2,2,2,2,112050,115353,112099,118764,120780,123710,6501,0,10000,4001,5000,0,0
+6926,260000,male,1,1,51,1,-2,-2,-2,-2,-2,-200,-200,-200,6682,1718,1512,0,0,6882,1734,1512,0,0
+6927,50000,female,1,2,23,-1,-1,-1,-1,-1,-1,15512,2552,13890,2545,15688,3088,2552,13914,2545,16508,3088,0,0
+6928,260000,female,1,2,33,0,0,0,0,0,0,18460,20321,22643,20864,25604,28748,3000,3000,2000,5634,3748,1000,0
+6929,230000,female,3,2,48,-1,-1,-1,-1,-1,-1,2781,12515,3090,1879,30467,4460,12540,3099,1884,30468,4473,5635,0
+6930,20000,male,2,2,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+6931,500000,male,2,2,33,0,0,0,0,0,0,3311,4254,2234,5404,2375,10078,4019,2019,5025,2011,10046,3017,0
+6932,160000,female,2,1,50,-1,-1,-1,-1,-1,-1,1261,2261,1390,390,390,0,2261,1390,390,390,0,780,1
+6933,50000,male,2,2,25,0,-1,2,0,0,0,1552,2452,1878,1482,326,-70,2452,0,0,0,0,3000,1
+6934,220000,female,2,1,37,2,0,-1,-1,0,0,2345,2572,15,947,631,715,1007,16,1578,0,400,1,1
+6935,150000,male,3,1,64,0,0,0,0,0,0,56852,58031,59202,60304,61650,0,2688,2730,2680,2850,0,0,0
+6936,180000,female,1,2,35,-1,-1,-1,0,-1,-1,11123,7883,16477,13207,73813,34935,7936,18207,0,22479,34935,5382,0
+6937,80000,female,2,1,40,0,0,-2,-2,-2,-2,82150,0,0,0,0,0,0,0,0,0,0,0,1
+6938,50000,female,3,2,27,0,0,0,2,2,2,41991,42736,45821,46767,45886,48701,1720,3805,2000,0,3581,0,0
+6939,30000,female,2,2,26,1,2,2,0,0,0,5231,6299,6052,6299,7190,7469,1300,0,500,1000,400,1500,1
+6940,180000,female,2,2,31,0,0,0,0,0,0,176731,177490,178659,138243,138023,137923,6814,7756,4788,5100,5500,5100,0
+6941,70000,male,3,1,64,0,0,0,0,0,0,62188,62848,56718,47191,45959,47635,3000,2200,1700,1700,2441,2000,0
+6942,300000,female,1,2,33,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+6943,640000,female,1,1,50,-2,-2,-2,-2,-2,-2,6482,8853,22238,9877,10110,23910,8853,22243,9877,10110,24616,5952,0
+6944,60000,female,1,2,28,1,-2,-2,-1,-1,0,0,0,0,619,39224,34881,0,0,619,39224,1500,1500,0
+6945,120000,female,2,2,24,2,0,0,0,0,0,67714,51385,35160,13425,8517,6174,2102,1021,274,3001,1004,4005,1
+6946,280000,female,1,2,27,-1,-1,-1,-1,-1,-1,36382,2000,400,0,1398,4626,2000,400,0,1398,4626,0,0
+6947,260000,female,1,2,32,0,0,0,0,-1,-1,8161,10086,12985,0,560,0,2000,3000,0,560,0,0,0
+6948,50000,male,2,3,34,0,0,0,0,0,0,48538,49580,47557,20914,19646,20332,3000,3006,1500,701,1000,1000,0
+6949,70000,male,2,2,47,1,2,0,0,2,2,64586,62983,64885,68164,66948,71122,0,2950,4965,0,5289,0,0
+6950,50000,male,1,2,38,-1,-1,-1,-1,-1,-1,390,770,580,1380,0,390,770,590,1400,0,390,390,1
+6951,470000,male,1,1,40,2,0,0,0,0,0,241153,204223,151253,138087,109094,106004,10000,5214,4500,5000,4200,5000,1
+6952,320000,female,1,1,41,-2,-2,-2,-2,-2,-2,56093,0,0,0,12974,0,0,0,0,12974,0,5616,0
+6953,50000,female,3,2,23,0,0,0,0,0,0,49385,49527,29550,29894,30125,30192,1500,1467,1201,1236,1103,1042,0
+6954,230000,female,3,1,32,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+6955,140000,female,2,2,29,0,0,0,0,0,0,43030,44335,45351,46317,55506,56609,2000,1755,1721,10000,2028,3000,0
+6956,50000,male,2,2,25,0,0,2,0,0,0,6302,7993,8506,8716,8926,9128,1800,800,500,500,500,400,1
+6957,450000,female,1,2,45,1,-2,-2,-2,-1,-1,0,0,0,0,4595,198,0,0,0,4595,198,5095,0
+6958,500000,male,2,1,49,-1,-1,-1,-1,-1,0,371,3523,483,12988,92539,94292,3540,485,13052,92539,3160,1910,0
+6959,20000,male,2,2,37,0,0,-2,-1,0,0,15960,0,-1953,5985,6893,8273,0,18047,7985,1000,2000,0,0
+6960,230000,male,1,1,38,-1,-1,-1,-1,-1,-1,1902,2161,1144,1346,1024,-4,2170,1149,1352,1029,0,654,0
+6961,50000,male,2,2,24,1,3,3,2,2,0,53890,54084,52026,51899,50836,47828,2200,0,1800,105,2300,1600,0
+6962,300000,male,2,1,31,-1,-1,-1,-1,-1,-1,12793,14185,12970,14786,12794,14180,14212,12985,14816,12808,14201,14109,0
+6963,100000,female,3,1,36,2,2,2,2,2,2,92675,92857,80748,80708,75366,76590,3445,709,6077,2805,2906,0,0
+6964,30000,male,2,2,27,0,0,0,0,0,0,29063,28601,28503,27525,27630,0,1908,1200,2,835,0,0,0
+6965,400000,male,2,1,44,-1,-1,0,0,0,-1,6389,59407,26616,15333,9995,4175,59570,1105,10021,51,4735,1733,0
+6966,170000,male,1,2,30,-1,2,2,-1,-1,-1,998,998,0,499,724,390,0,0,499,724,390,424,0
+6967,340000,female,3,2,57,0,0,0,0,0,0,49467,50551,53490,104477,54351,25346,1880,3819,2073,5264,2571,53860,0
+6968,210000,female,2,1,35,0,0,0,0,0,0,44552,45831,46870,48089,49311,50296,2000,1800,2000,2000,1803,2000,0
+6969,80000,female,2,1,38,-1,-1,-1,-1,-1,-1,1894,316,316,514,316,1605,316,316,514,316,1605,316,1
+6970,20000,female,1,2,24,-1,-1,-1,0,0,0,7795,4110,10269,5880,3330,4339,4112,10269,118,67,2000,2128,0
+6971,300000,female,1,1,51,-1,-1,-1,-1,-2,-2,311,830,225,0,0,0,832,225,0,0,0,0,0
+6972,20000,male,3,2,43,-1,0,0,-1,0,0,6085,6607,2800,11052,10522,9150,1045,1028,11052,311,183,0,1
+6973,50000,male,1,1,40,0,0,0,0,0,0,50657,50529,49162,19969,19893,20282,2015,2190,809,3012,5795,2001,0
+6974,60000,female,1,2,27,-1,-1,-1,-1,-1,2,3136,1286,1047,-239,1475,1289,1286,1047,0,3000,0,0,0
+6975,60000,female,2,2,50,0,0,0,0,0,2,59853,24975,26000,26545,30966,30330,1500,1450,965,4864,0,1001,0
+6976,50000,male,3,1,51,1,2,0,0,0,0,48091,47028,46672,28478,29074,29671,1,2213,1019,1055,1080,1245,1
+6977,120000,female,2,2,26,1,2,2,2,2,2,52623,51208,57538,56019,60135,61298,0,7200,0,5200,2300,0,0
+6978,20000,male,3,2,59,2,2,2,0,0,0,5119,5546,6302,7193,8075,8938,1500,1000,1000,1000,1000,1000,0
+6979,240000,female,2,1,40,-1,-1,-1,-1,-1,-1,326,326,326,326,326,326,326,326,326,326,326,326,0
+6980,420000,female,1,2,36,-2,-2,-2,-2,-2,-2,0,3363,13581,1024,7853,5562,3363,13591,1026,7853,5562,990,0
+6981,180000,female,1,2,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+6982,410000,female,3,2,28,2,2,2,2,0,0,407490,415276,384242,343283,320407,328827,16195,15282,15164,12005,15000,10507,0
+6983,30000,male,1,2,41,0,0,0,2,2,0,16098,17130,18621,19017,18571,19264,1597,2088,1000,0,1001,380,1
+6984,110000,male,2,2,25,2,0,0,0,0,0,38449,38433,37038,38336,12907,13541,3000,1800,2000,600,1000,5000,0
+6985,90000,male,1,2,33,-1,-1,-1,-1,-1,2,498,498,498,498,3482,2793,498,498,498,3482,0,483,0
+6986,220000,male,1,1,41,-1,-1,0,-1,-1,-1,30262,37068,14271,9884,4090,6108,37092,10071,9884,4090,6108,19933,0
+6987,50000,female,3,1,57,2,0,0,0,0,0,47349,46353,38081,16970,17695,18401,1892,2600,2000,1000,1000,1500,1
+6988,30000,female,3,2,22,0,0,0,0,0,0,20741,21906,23183,13273,3027,3177,1500,1700,750,200,200,100,0
+6989,520000,male,1,1,55,-1,-1,-1,-1,-1,-1,2292,5139,8290,35024,10881,7208,5227,8309,35026,10883,7310,4890,0
+6990,80000,female,3,1,39,2,2,2,2,2,2,48401,49326,50207,51081,52118,51129,2000,2000,2000,2001,0,4100,0
+6991,20000,male,3,2,58,0,0,-2,-2,-2,-2,12066,0,0,0,0,0,0,0,0,0,0,0,0
+6992,210000,female,1,2,29,-1,-1,-1,-1,2,-1,27371,871,871,2042,1021,1666,871,871,2042,0,1666,316,0
+6993,100000,female,2,2,28,0,0,0,0,0,0,101557,101518,97664,70995,70183,71068,5000,4000,2700,2500,2800,2600,0
+6994,320000,female,1,1,33,1,-2,-2,-1,-1,-1,0,0,0,1248,1479,0,0,0,1248,1479,0,0,0
+6995,500000,female,2,1,44,0,0,0,0,0,0,38034,39044,38458,39222,40043,40854,1632,1639,1403,1452,1475,1117,0
+6996,20000,female,3,1,41,0,0,0,0,0,2,16208,16942,18255,18468,19715,19250,1300,1600,813,1700,0,831,0
+6997,10000,male,2,1,59,0,0,0,0,0,0,6827,7849,8704,8877,9063,9318,1290,1145,318,329,406,186,0
+6998,310000,male,3,1,43,-1,-1,-1,0,-1,-1,4323,650,10453,10115,600,1788,650,10453,202,1098,1788,200,0
+6999,200000,female,1,2,37,-1,-1,-1,-1,0,-1,11211,12329,11846,25920,8035,8521,12329,11846,25924,161,8521,5538,0
+7000,180000,male,3,2,29,-2,-2,-2,-2,-2,-1,4358,3160,2611,8710,5127,8758,3169,2618,8736,5142,8766,15040,0
+7001,50000,male,2,1,32,0,0,0,0,0,0,37293,35441,26265,19526,13250,11250,1634,1420,391,300,500,0,0
+7002,150000,female,2,2,41,-1,-1,-1,0,-1,-1,2371,40800,1995,285,4926,5523,40824,2340,0,4970,5527,903,0
+7003,500000,female,1,1,45,0,0,0,0,0,0,93669,101892,76452,20965,50466,61566,10147,5331,10000,30000,12000,10000,0
+7004,230000,male,2,2,31,0,0,0,0,0,0,14529,16597,18968,21435,27151,26815,5500,3000,4000,8000,4000,5000,1
+7005,20000,male,2,2,38,0,0,0,0,0,0,19845,18245,17658,16576,13529,10387,1694,1368,547,504,347,6000,0
+7006,190000,female,2,2,28,0,0,0,0,0,0,43072,43537,41016,40702,40676,27560,3768,3500,2500,4000,3000,3000,0
+7007,20000,female,2,2,24,0,0,0,0,0,0,19043,20210,18091,19431,19478,17492,1500,1408,5000,1000,2000,5000,0
+7008,170000,male,3,1,51,0,0,0,0,0,0,55396,56493,55594,50417,45347,46247,8000,6000,1709,1645,1653,1725,0
+7009,210000,female,2,2,43,0,0,0,0,0,0,180962,181870,159975,138349,112371,111979,6601,5085,4087,4220,27704,73000,0
+7010,100000,male,2,1,44,2,2,2,2,3,2,59586,60842,61749,65130,63816,65011,2800,2500,5000,0,2400,2400,1
+7011,260000,female,2,1,42,0,0,0,0,0,2,50060,54213,49512,18657,33296,32622,5000,2655,800,15000,0,10000,0
+7012,200000,female,2,2,25,0,0,0,0,0,0,22371,24569,28630,29962,30733,39192,2569,4500,1800,2000,9000,5000,0
+7013,90000,male,2,3,40,0,0,0,0,-1,-1,106947,71111,25286,8773,3786,390,1965,5064,5007,3788,390,390,1
+7014,470000,female,1,1,35,0,0,0,0,0,0,270005,262579,248080,232961,217802,202092,9500,9000,8086,14700,7000,9000,0
+7015,270000,female,1,2,27,-1,0,0,0,0,2,153201,136157,115733,93359,55264,11292,5933,9851,4214,4300,0,1000,0
+7016,100000,male,1,1,49,0,0,0,2,2,2,63977,64854,69258,67546,71938,73605,2500,6100,0,5500,3000,0,1
+7017,200000,female,1,2,40,1,-2,-2,-1,-1,-1,-433,-433,-433,8567,17363,0,0,0,9000,17363,0,0,0
+7018,70000,female,2,1,43,0,0,0,0,0,0,38173,38750,39493,39879,40314,40725,1957,1700,1408,1448,1456,1475,0
+7019,200000,female,1,1,40,-1,-1,-1,-1,-1,-1,16204,7870,18041,4288,2270,467,7870,18090,4288,2270,467,18,0
+7020,50000,female,2,1,31,0,0,0,0,0,0,52754,50393,25953,27350,19931,16845,3000,5000,3000,3002,3007,7000,0
+7021,90000,female,2,1,24,0,0,0,0,0,0,28329,28980,29564,29710,29700,0,1800,1774,920,1102,4014,0,0
+7022,50000,female,2,1,30,0,0,0,0,0,0,48139,49364,50558,23921,24423,25059,2299,2493,856,887,1043,922,0
+7023,240000,female,1,1,37,-1,-1,-2,-2,-2,-2,317,0,0,0,0,0,0,0,0,0,0,0,0
+7024,140000,male,1,2,35,-1,-1,-1,-1,-1,-1,325,537,4233,857,325,325,537,4233,857,325,325,954,0
+7025,120000,male,1,1,52,2,2,2,2,3,2,112593,112623,115258,119620,118928,121619,3300,6000,7800,1500,4800,0,0
+7026,460000,male,2,1,61,1,-1,-1,-1,-1,-1,0,8602,0,880,1018,99,8602,0,880,1018,99,1922,0
+7027,170000,female,2,1,25,0,-1,0,0,-1,-1,1906,3970,3406,1703,495,6616,4000,2703,0,495,6616,495,0
+7028,500000,female,1,1,39,0,0,0,0,0,-1,39823,61597,52210,27843,28926,11931,30006,23016,566,22323,11931,10683,0
+7029,50000,male,2,1,51,0,0,0,0,0,0,31281,30832,20497,19465,18474,20096,2556,1582,811,700,2318,1101,0
+7030,210000,female,1,2,26,1,-1,2,0,0,-2,-12,488,488,488,-260,-506,500,0,0,0,0,0,0
+7031,50000,male,1,2,24,0,0,0,0,0,2,42509,43565,44530,40206,46538,47311,2041,2006,1632,7177,1701,0,0
+7032,200000,female,2,1,42,-1,-1,-1,-1,-1,-1,326,645,586,600,485,0,645,586,600,485,0,0,0
+7033,20000,female,1,2,26,-1,-1,-1,-1,-1,0,11030,5331,20985,6932,37345,28798,5331,20985,6932,37845,2000,11200,0
+7034,80000,female,2,1,53,1,2,2,2,0,0,9715,9415,11254,10777,12096,13895,0,2000,0,1500,2000,0,0
+7035,430000,male,2,1,32,1,-1,-1,-2,-2,-2,0,2500,0,0,0,0,2500,0,0,0,0,0,1
+7036,350000,female,1,2,44,3,2,2,2,2,2,314607,322032,327193,333278,340791,348006,14000,12000,13000,13000,13000,12200,1
+7037,50000,female,2,1,34,-1,-1,-1,-1,-1,-1,2738,8192,3595,900,6483,0,8199,3622,900,6483,0,0,0
+7038,210000,female,3,1,55,0,0,0,0,0,0,217016,204418,204377,146575,144521,147938,8049,9000,6000,5500,5816,5500,1
+7039,20000,male,2,2,51,-1,-1,-2,-1,-1,-2,780,0,-1500,780,0,0,0,0,2280,0,0,0,0
+7040,160000,female,2,2,29,0,0,-1,-1,-1,-1,36134,21827,421,421,2876,1949,21000,421,421,2876,1949,8090,1
+7041,50000,female,3,1,46,2,0,0,2,2,0,25706,25040,25376,23845,21691,20426,1434,2456,784,0,778,573,1
+7042,50000,female,1,2,24,0,0,0,0,0,0,49982,49650,48321,30281,30380,28852,1963,1739,1033,1058,1041,1007,0
+7043,30000,male,3,2,31,3,2,0,0,0,2,30588,26860,21165,21281,22938,22422,0,1646,762,2000,0,647,1
+7044,100000,male,1,2,29,2,2,2,2,2,0,48186,48924,47837,51361,50417,51400,1800,0,4321,0,2400,0,1
+7045,360000,male,2,2,28,0,0,0,0,0,0,35564,25173,10633,7217,7364,-7,2086,3017,144,147,0,763,0
+7046,310000,female,2,1,34,0,0,-1,-1,-1,-1,4153,2199,5565,4050,4922,15362,1002,5565,4050,4922,15362,12000,0
+7047,50000,female,2,3,30,2,2,0,0,0,0,40087,38281,34519,33965,33273,31960,0,1466,1282,1293,1257,3013,0
+7048,120000,female,2,1,37,0,0,0,2,0,0,12006,13024,14795,14313,14762,14902,1171,1942,0,626,478,495,0
+7049,30000,female,2,2,29,1,2,0,0,0,2,16493,15545,16557,16857,18121,18375,0,1275,575,1539,700,0,1
+7050,200000,female,2,2,30,0,0,0,0,0,0,193300,191254,176720,164729,162097,154016,6860,5870,5009,5543,6037,5002,0
+7051,20000,male,3,2,37,0,0,0,-1,-1,-2,19716,20518,16551,1700,0,0,1547,1350,1700,0,0,0,0
+7052,50000,female,2,2,23,0,0,0,2,0,0,47020,48383,47231,20508,20584,19625,2139,2500,6,2000,2000,2000,1
+7053,70000,female,1,2,25,0,0,0,0,0,0,8272,10128,11106,11443,10323,11150,2000,1163,500,376,1000,800,0
+7054,290000,female,1,2,32,1,-2,-1,0,-1,-1,0,0,3786,3786,2881,2430,0,3786,0,2881,2430,0,0
+7055,90000,female,1,2,30,2,2,3,3,3,3,750,750,750,750,2450,2150,0,0,0,2000,0,0,0
+7056,150000,male,2,1,37,2,2,2,2,2,2,106628,100750,86686,78497,67612,55050,7400,0,4800,1800,0,2100,1
+7057,90000,male,2,2,38,0,0,0,0,0,0,112212,109495,48950,20253,18810,19496,5170,21287,1353,1000,1000,607,0
+7058,80000,male,1,1,40,0,0,2,2,2,2,28054,31201,31594,30787,34513,34995,3600,1200,0,4246,1200,1500,1
+7059,100000,male,1,2,32,1,2,2,0,0,0,95794,97390,94110,92823,68136,53170,4000,0,2000,2000,3000,0,0
+7060,200000,female,2,1,41,-2,-2,-2,-1,0,0,-780,-783,909,2004,2008,0,0,1692,2004,4,54,0,0
+7061,140000,female,2,2,31,3,3,2,2,2,2,124716,127047,128479,129869,132540,135201,5800,5000,5000,4900,5000,5000,1
+7062,110000,female,2,2,45,-1,-1,-1,0,0,0,836,9376,85924,33342,33193,32993,9376,85924,1167,1197,1180,1163,0
+7063,50000,female,3,3,43,0,0,0,0,0,0,31199,36067,24727,30182,27043,25995,12009,2111,11000,1000,6000,6001,0
+7064,60000,female,2,1,42,0,0,0,0,0,0,61759,60399,38994,40338,40142,39904,2600,2000,2000,1614,1590,2000,0
+7065,130000,male,1,1,40,0,0,0,0,0,-2,25375,26128,25327,25775,0,0,1500,1852,1300,0,0,0,0
+7066,320000,female,2,1,43,0,0,0,0,0,0,181048,186444,188596,192145,195813,198648,8500,7000,6800,7000,6965,7500,0
+7067,120000,female,3,1,42,-1,-1,-1,0,-1,0,2207,263,4531,1211,4015,2042,263,4531,0,4015,0,1007,0
+7068,450000,female,2,2,35,1,2,0,0,0,0,347994,311267,365723,370496,374405,373155,0,90000,14011,14029,14052,14000,0
+7069,200000,female,2,1,36,-1,0,0,0,0,0,136286,183615,184792,195062,195156,192436,50000,7000,15000,7500,7500,10000,1
+7070,20000,male,1,2,31,1,3,2,0,0,-2,16170,15646,14020,13345,0,0,0,5,1925,0,0,0,1
+7071,410000,female,2,1,29,-2,-2,-2,-1,-1,0,6764,6500,6764,1743,149153,145597,6500,6764,3542,161064,5072,4891,0
+7072,210000,female,1,1,40,0,0,0,0,0,0,206803,207471,152365,146625,146163,146180,7876,5400,6000,6000,6000,10000,0
+7073,210000,female,1,1,36,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+7074,130000,male,3,1,38,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+7075,170000,female,1,2,27,-2,-2,-2,-2,-1,2,6504,1046,0,0,910,382,1046,0,0,910,0,532,1
+7076,190000,female,2,1,55,0,0,0,0,0,0,104344,106814,104047,88269,90264,88823,6003,5009,5750,3500,3500,3200,0
+7077,230000,female,1,2,28,0,0,0,0,0,0,95956,87294,85336,81640,82462,80964,4231,4061,2846,2800,2909,2601,1
+7078,120000,female,2,2,29,0,0,0,0,0,0,114538,117171,115941,116877,117359,117029,6000,5500,4160,4120,4250,4380,0
+7079,50000,female,2,2,23,0,0,2,0,0,0,17313,20019,19399,19785,20465,20877,3000,0,709,1000,750,1000,1
+7080,220000,female,2,2,41,0,0,0,0,0,0,32016,29052,23115,20354,7438,4887,2004,2009,5004,1000,1000,3000,1
+7081,320000,female,1,2,32,2,0,0,0,0,0,313383,313136,317847,313990,312070,319672,12937,13036,10072,9600,11056,9964,0
+7082,160000,female,2,1,27,0,0,0,-2,-2,-2,75652,44675,-183,-218,-218,-218,1020,0,0,0,0,0,1
+7083,20000,female,2,2,23,0,0,0,0,2,0,4561,6474,8353,13192,14871,11536,2000,2000,5000,2000,1000,2000,0
+7084,460000,female,1,2,34,1,-2,-2,-2,-2,-2,-258,-258,-258,1209,703,990,0,0,1467,703,990,3200,0
+7085,490000,male,1,1,38,1,-2,-2,-1,0,0,380,380,380,15240,19656,24006,380,380,15240,5000,5000,7396,0
+7086,130000,female,2,1,47,0,0,0,0,0,0,85317,86865,88760,35671,36977,38931,3813,4013,1274,1878,3116,0,0
+7087,170000,male,2,2,41,0,0,0,0,0,0,162500,122372,66038,67934,69834,71668,4781,3000,3000,3000,3000,3000,0
+7088,150000,female,2,2,24,0,0,0,0,0,0,108924,109705,108748,108116,108951,109901,4000,5500,4000,4100,4300,4000,0
+7089,180000,female,1,2,33,-2,-2,-2,-2,-2,-2,1246,1845,471,471,248,335,1845,471,471,248,335,200,0
+7090,50000,male,3,2,35,0,0,0,-1,-1,-1,41646,43257,31473,1473,1473,3873,4000,5300,1473,1473,3873,390,0
+7091,240000,female,5,1,44,0,0,0,0,0,0,47315,34623,34347,36082,32957,18797,3000,3500,9700,4000,6300,3000,0
+7092,390000,female,1,2,37,-1,-1,-1,-1,-1,-1,20666,20666,10000,20666,10000,10000,20666,10000,20666,10000,10000,10500,0
+7093,50000,male,3,2,47,0,0,0,0,0,0,48593,48653,15433,15037,10527,10736,1278,1469,463,381,383,398,0
+7094,310000,male,1,1,43,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+7095,100000,female,1,2,28,1,-1,-1,-2,-2,-2,290,930,977,0,0,0,1534,977,0,0,0,0,0
+7096,260000,female,1,2,36,-1,-1,-2,-2,-2,-1,2992,0,0,0,0,150,0,0,0,0,150,310,0
+7097,30000,female,2,2,28,0,0,0,0,2,2,28347,29880,29588,30687,25637,26468,2000,2000,2200,0,1800,0,0
+7098,310000,male,2,2,27,-2,-2,-2,-2,-2,-1,68928,43431,61756,88416,59964,44873,43894,61816,39022,10041,15080,46146,0
+7099,270000,male,1,2,40,0,0,0,0,0,0,193444,202284,199443,147121,162262,107338,15000,7000,10000,25000,15000,15000,0
+7100,250000,female,1,1,30,-1,-1,-1,2,-1,-1,1923,-574,2533,1607,56694,58091,900,4500,0,57000,5000,0,1
+7101,130000,female,2,1,31,0,0,0,0,0,0,32215,33690,34859,34051,32827,16702,2000,2000,2000,1000,2000,7131,0
+7102,220000,male,1,1,35,0,0,0,0,0,0,21960,21860,25463,28036,34552,43827,2000,4000,3000,7000,11000,3000,0
+7103,60000,female,2,2,48,0,0,0,0,0,0,86550,82592,77423,70653,22552,23708,3000,3000,3000,5000,3000,3000,0
+7104,120000,male,1,2,29,-2,-2,-2,-2,-2,-2,119324,119255,120584,70990,0,0,5025,4023,3300,0,0,68010,0
+7105,30000,female,2,1,35,-1,-1,2,0,0,0,11359,27657,26745,27345,25300,0,27657,0,1000,0,0,0,0
+7106,130000,female,1,2,30,2,2,2,2,2,0,124651,128263,129669,131057,128857,131469,7100,5000,5000,0,4928,4574,1
+7107,100000,female,2,1,35,-1,-1,-1,0,0,-1,29048,0,4069,37069,20233,22227,0,4069,33000,20000,22227,20000,0
+7108,200000,female,1,2,26,0,-1,-1,-1,-1,-2,1290,599,0,253,0,0,599,0,253,0,0,0,0
+7109,260000,female,2,1,47,0,0,0,0,0,0,164137,167734,171932,175152,180719,183138,10000,10000,9000,10000,7000,6000,0
+7110,390000,male,1,1,45,2,2,0,0,0,0,185204,180455,131386,131879,115183,75131,0,6000,3500,5000,4500,3000,1
+7111,340000,female,1,2,42,0,0,0,-1,-1,-1,308023,327245,206832,1682,1352,1520,27245,9184,1682,1352,1520,1442,0
+7112,140000,female,2,2,24,-2,-2,-2,-2,-2,-2,137037,127771,124714,73593,73344,78629,5053,3615,2573,2858,8000,2000,1
+7113,220000,female,2,2,39,0,0,0,0,0,0,142186,141068,140391,140549,140303,140737,7000,7000,5006,6000,6312,6000,0
+7114,20000,male,2,1,31,-1,-1,-1,-1,-1,-1,1572,1386,999,2640,1000,0,1386,1003,2640,1000,0,0,0
+7115,500000,male,2,2,40,-1,-1,-1,-1,0,-1,33179,97882,48017,49403,40018,54109,99159,48276,49450,201,54379,9905,0
+7116,210000,female,2,1,33,0,0,0,0,0,-1,8770,10972,22610,10161,5933,4164,6000,15042,5000,0,4164,816,1
+7117,340000,female,2,2,39,0,0,0,0,0,0,308286,315601,318616,243586,248766,254056,13775,10631,8900,9200,9525,8600,0
+7118,130000,male,2,1,44,2,0,0,0,0,2,16357,17287,19992,22329,23964,23428,1500,3000,3000,2000,0,1500,1
+7119,200000,female,2,2,34,0,0,0,0,0,0,189279,195200,60278,58972,55731,99900,10000,5023,5000,5000,50000,4000,0
+7120,150000,male,1,1,35,0,0,0,0,0,0,160292,153981,129725,103050,54447,46943,6100,5100,4200,1900,1600,1500,1
+7121,50000,female,3,2,22,0,0,0,0,0,0,36926,52845,52148,32718,32096,30563,20007,3014,1309,5009,2008,4622,0
+7122,60000,female,1,2,25,2,2,2,2,4,3,38050,39147,38223,43261,42009,41036,2000,0,6000,0,0,1400,1
+7123,60000,male,1,2,27,-1,-1,-1,-1,0,-1,1386,5273,1586,5781,1188,1061,5273,30000,11776,0,1061,1239,0
+7124,150000,female,3,1,29,0,0,0,0,0,0,118025,120493,123087,124843,127431,130008,4278,4500,3700,3716,3768,4000,0
+7125,180000,male,1,1,38,2,2,2,2,2,2,47276,49256,50186,51102,52178,53213,3000,2000,2000,2000,2000,2100,1
+7126,50000,male,2,2,22,0,0,0,0,0,0,55100,52440,47080,15718,13674,15145,2372,2149,1203,2000,1716,628,0
+7127,10000,female,3,1,48,0,0,0,0,0,0,7863,8504,8162,6978,2278,0,1172,1000,186,0,0,0,0
+7128,100000,female,2,2,24,0,0,0,0,0,0,94056,96272,97464,80034,80533,77479,3730,3033,2676,2796,2806,2379,0
+7129,30000,female,2,2,21,-2,-2,-2,-2,-2,-2,0,780,3260,4311,1551,0,780,3260,4311,1551,0,0,0
+7130,50000,male,3,1,51,0,0,0,0,0,0,48550,46267,46716,29744,30060,29449,2000,1400,984,1013,1006,939,0
+7131,30000,male,2,1,39,0,0,0,0,2,0,19643,20721,21867,24291,23766,23696,1700,1800,3100,0,565,98,1
+7132,100000,female,2,2,30,2,2,2,2,2,2,96638,98491,99983,100555,103300,101471,4300,4000,3100,4500,0,3845,1
+7133,100000,male,2,2,35,2,2,2,0,0,2,24524,27313,26580,26840,28810,28966,3500,0,1000,2400,780,2400,0
+7134,290000,male,2,1,37,-2,-2,-2,-2,-2,-2,199911,204462,208769,213085,211829,96532,8001,8001,8037,10074,5010,179228,0
+7135,140000,female,2,1,42,0,-1,-1,0,0,0,3726,2826,1646,4650,5764,7116,2846,1646,4500,3000,3000,1838,0
+7136,240000,female,1,1,39,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+7137,380000,male,1,2,27,-1,2,-1,-1,-1,-1,2501,1138,966,1258,1121,1362,0,966,1500,1121,1362,1472,0
+7138,230000,female,3,1,54,-1,-1,-1,-1,-1,-1,1227,784,1854,396,1950,1099,784,1854,396,1950,1099,2040,0
+7139,40000,female,1,2,24,0,0,0,0,0,0,28140,32343,39717,37263,35224,34111,5000,8017,7000,4000,5000,5000,1
+7140,210000,female,1,1,34,0,0,0,0,0,0,74261,75602,76062,76287,76971,77737,3500,3300,3000,3000,3000,3000,0
+7141,150000,female,2,1,37,0,0,0,0,0,-2,144744,147891,116541,114511,0,0,4610,2336,2290,0,0,0,0
+7142,70000,female,3,1,27,2,2,2,2,2,2,27241,30416,29628,32350,33218,32532,3628,0,3218,1532,0,2257,1
+7143,80000,female,2,2,24,0,0,0,-2,-2,-2,9591,1726,0,0,0,0,1000,0,0,0,0,0,0
+7144,50000,male,2,2,30,0,0,0,0,0,0,49259,47114,83908,18801,16494,19191,2500,3320,2000,1000,3000,1000,0
+7145,300000,female,2,2,27,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+7146,180000,female,2,2,30,0,0,0,0,0,0,63182,64274,55112,56394,57577,58564,2166,2002,2200,2242,2100,2330,0
+7147,150000,female,1,2,35,-2,-2,-2,-2,-2,-2,9164,14011,7715,8295,7301,4388,14021,7723,8295,7301,4388,1600,0
+7148,60000,male,1,2,24,0,0,0,0,0,0,20873,22228,22691,22816,26587,22917,2000,1246,720,4780,1700,4000,0
+7149,100000,female,2,2,37,0,0,0,0,0,0,177961,108173,15697,11353,9306,9693,3082,2022,1000,1000,500,300,1
+7150,90000,female,2,1,26,2,0,0,0,0,0,89947,91929,88433,88010,87814,87831,5000,4300,3500,3500,3700,3100,0
+7151,20000,male,2,1,43,0,0,0,0,0,0,14102,14870,16116,16436,16781,17112,1300,1500,588,610,611,788,0
+7152,320000,female,1,2,32,-2,-2,-2,-2,-2,-2,-1,-1,-1,-1,0,-400,0,0,0,1,400,6083,1
+7153,90000,female,3,1,68,-2,-2,-2,-2,-1,-1,2000,1000,1000,1000,1052,69237,0,1000,1000,1052,71062,3000,0
+7154,500000,male,2,2,36,1,-2,-1,0,0,0,226,8546,121867,116089,114293,118081,9125,126768,3468,4050,15099,5015,0
+7155,210000,male,1,1,37,-1,-1,-1,-1,-1,-1,3094,565,1188,2667,546,578,565,1188,2667,546,578,2769,0
+7156,30000,male,2,2,29,2,0,0,-2,-2,-2,28603,28785,0,0,0,0,1000,0,0,0,0,0,1
+7157,20000,male,2,1,51,0,0,-2,-2,-2,-2,10400,0,0,0,0,0,0,0,0,0,0,0,1
+7158,50000,female,1,2,23,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+7159,360000,female,3,1,39,-1,-1,-1,-1,-1,-2,4964,177,2011,1116,0,0,177,2011,1116,0,0,0,0
+7160,80000,female,3,1,28,0,0,0,0,0,-2,36847,38847,35017,36175,0,0,2000,2000,2000,0,0,0,0
+7161,150000,male,1,1,47,-1,-1,-1,-1,-1,-1,4003,2877,3190,389,389,389,2891,3205,390,390,390,376,0
+7162,20000,male,2,1,36,2,2,2,2,2,2,25274,25026,23073,22857,21143,21482,1700,0,1653,0,1940,0,0
+7163,150000,female,3,1,55,-2,-2,-2,-2,-2,-2,1194,2095,2154,2900,2512,3514,2101,2160,3046,2519,3625,0,0
+7164,340000,male,3,1,29,0,0,0,0,0,0,332123,327362,324322,316472,317349,314212,14000,12000,12000,12000,12000,12000,0
+7165,500000,male,2,1,61,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+7166,100000,female,3,1,33,0,0,2,0,0,2,32526,37106,36260,36995,39355,39982,5396,0,1285,2916,1368,0,0
+7167,160000,male,2,1,62,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+7168,300000,female,1,1,42,-1,-1,-1,-1,-1,-1,400,0,14583,2506,2996,370,0,14583,2513,2996,370,1986,0
+7169,240000,male,1,2,34,0,-1,2,-1,0,0,18825,12675,2880,13267,10036,24731,12880,0,13267,2000,15000,0,0
+7170,60000,female,2,1,30,2,0,0,0,0,0,60558,59361,60167,58078,59198,60677,3500,3000,1000,2000,2000,1000,1
+7171,20000,female,2,2,21,0,0,0,-2,-2,-2,13717,9058,0,0,0,0,1005,0,0,0,0,0,0
+7172,80000,female,2,1,25,-1,2,2,0,0,0,1374,2373,2182,2232,3053,2271,1170,0,220,1000,282,0,0
+7173,20000,male,2,1,47,-1,-1,-1,-2,-2,-2,390,780,0,0,0,0,780,0,0,0,0,0,0
+7174,240000,female,1,1,35,-1,-1,0,-1,0,-1,5770,10412,4578,5928,5619,13227,10420,1150,5928,3619,13227,7764,0
+7175,20000,male,2,2,25,1,2,2,2,2,0,19242,20339,19707,20899,20450,20197,1700,0,1800,0,1000,900,0
+7176,290000,male,2,1,33,0,0,0,0,0,0,190547,173438,154966,131245,130861,120312,7158,5816,5000,5000,5000,4000,0
+7177,120000,female,1,2,33,0,0,0,0,0,0,53087,54805,55308,56407,57753,60130,2572,2009,2020,2256,3500,1739,0
+7178,100000,female,2,2,33,0,0,0,0,0,0,61089,81262,59110,70052,84659,57648,30010,10047,20000,17000,5000,10000,0
+7179,20000,male,2,1,42,0,0,0,0,0,0,18317,18455,19399,19962,14938,3039,1500,1400,1009,307,1200,0,0
+7180,60000,female,2,1,49,1,2,2,2,0,0,17013,18440,18841,18241,18946,20634,2000,1000,0,1000,2000,0,1
+7181,150000,female,2,2,26,0,0,0,0,0,2,10693,13188,19902,23068,26184,25615,3000,7000,3500,3500,0,3500,1
+7182,500000,male,1,1,57,-1,-1,-1,-1,-1,-1,4560,600,0,51697,37511,1685,600,0,51697,37511,1685,414,0
+7183,120000,female,2,2,24,0,0,0,0,0,-1,34670,35606,27065,25948,11884,3107,2033,1200,0,0,3107,8542,1
+7184,80000,female,2,1,35,-1,-1,-1,-1,-1,0,7961,15290,1806,-1203,14107,8575,20004,1806,0,20000,0,6955,0
+7185,100000,female,3,1,39,0,0,0,0,0,0,39667,40704,41718,41536,42243,42929,1649,1663,1471,1360,1212,4472,0
+7186,20000,male,1,1,53,0,0,0,0,0,0,13605,14629,15640,15950,16130,17011,1249,1260,570,436,1150,1000,0
+7187,200000,female,2,1,33,0,0,0,0,0,0,23762,25944,26988,25237,22131,13774,4000,2000,600,3000,4000,100,0
+7188,80000,male,1,1,39,0,0,0,2,0,0,61708,65080,68835,41462,36589,39985,5000,5169,21,3000,4000,57,0
+7189,80000,male,1,2,33,0,0,0,0,0,2,75985,79918,70203,67934,75781,73848,12036,10010,3000,9400,0,8000,0
+7190,150000,male,1,2,26,0,0,0,2,0,0,29712,28045,31732,26989,33624,29786,3200,6300,0,10000,2000,2000,0
+7191,50000,male,2,1,50,0,0,0,0,0,0,47721,48993,50280,18762,18290,19165,2037,2324,1000,1000,1165,1596,0
+7192,370000,female,1,2,28,-1,-1,-1,-1,-1,-1,577,27895,-4247,4347,5562,0,63895,0,8694,5562,0,3500,0
+7193,130000,female,2,2,25,0,0,0,0,3,2,107594,109896,112064,130239,127980,130305,4023,4030,20000,0,4500,0,1
+7194,450000,female,1,1,41,-1,0,0,2,-1,-1,2663,3146,3246,1623,1623,1694,2146,1623,0,1623,1694,2795,0
+7195,200000,female,2,1,44,-1,2,-1,-1,0,0,500,500,61807,7849,14978,46333,0,61807,7849,10000,35000,10000,0
+7196,130000,male,1,2,30,0,0,2,0,0,0,90864,104418,100455,38632,35826,36730,16000,0,1500,1395,1500,1511,0
+7197,230000,female,5,2,23,0,0,0,0,0,0,55197,53593,53470,137734,135386,14718,2712,1551,95022,3015,3003,153001,0
+7198,90000,female,1,2,29,0,0,0,0,0,0,9124,10220,12044,27847,8251,26501,10000,10016,25000,8000,26000,12000,0
+7199,30000,male,3,1,53,-1,-1,-1,-1,-1,-1,263,14833,5242,19705,10417,9736,14849,5250,19711,10417,9979,5108,0
+7200,180000,male,2,1,43,-1,0,0,0,0,0,4425,5546,6363,7363,3723,2645,1200,1000,1000,1000,500,1000,1
+7201,140000,male,1,2,32,-1,-1,2,2,2,-1,9556,6434,5413,5841,5215,8671,3000,0,5000,0,8671,7000,0
+7202,380000,male,1,1,52,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+7203,30000,female,2,1,56,2,2,2,2,3,2,26008,27091,27648,29297,28544,29125,1800,1300,2400,0,1200,2500,1
+7204,80000,female,3,1,46,2,0,0,0,0,2,77490,80204,79650,81338,81438,80959,5000,4000,4003,13000,3515,0,1
+7205,60000,female,3,1,47,0,0,0,0,0,0,59098,23100,17708,10148,9284,2241,1392,1000,203,186,347,17971,1
+7206,290000,female,1,2,32,-2,-2,-2,-2,-1,0,0,5743,8809,0,7241,10289,5743,5000,0,7241,5000,5000,0
+7207,160000,female,2,1,26,-1,-1,-1,-1,-1,-1,1319,3934,399,690,590,0,3941,399,690,590,0,1926,1
+7208,20000,male,1,2,28,0,0,0,0,0,0,7032,14244,14065,16161,11106,12500,12500,3000,4000,2000,2000,5000,0
+7209,80000,female,3,1,65,0,0,0,0,0,0,80260,82116,80299,81416,81617,81607,3750,3520,3069,3271,3262,3237,0
+7210,360000,female,1,1,34,-2,-1,-1,-1,0,0,4259,1374,846,14998,14998,679,1376,852,14998,0,683,4902,0
+7211,30000,female,1,2,44,1,2,0,-1,0,0,39347,34702,34822,15722,16467,17537,1200,1000,18000,1000,1500,1000,0
+7212,140000,female,2,1,37,-1,-1,-1,-1,-1,-1,330,330,330,330,330,947,330,330,330,330,947,2389,0
+7213,150000,male,1,2,33,0,0,0,0,0,0,78038,63176,52807,34199,32061,23682,5000,10116,5000,6000,3000,7000,0
+7214,130000,male,1,1,45,0,0,0,0,0,0,58180,59134,61156,62377,63832,65099,2886,2908,2129,2354,2366,2291,0
+7215,410000,male,1,1,34,-1,0,0,0,0,-1,109256,15134,5063,1019,14585,5370,15000,4867,803,14436,5396,875,1
+7216,70000,female,1,2,28,0,0,0,0,0,0,48910,50171,51238,52196,53747,47695,2050,2100,2000,2000,2100,1500,1
+7217,30000,female,1,2,24,0,0,0,0,0,0,27181,26849,27594,28157,28723,28059,2000,1500,1000,1000,1000,1000,0
+7218,50000,female,2,1,37,-1,-1,-1,-1,-2,-1,7465,2790,1323,156,-177,2406,2790,1323,156,2,2583,1581,0
+7219,180000,male,2,1,45,0,0,0,0,0,0,119109,119166,121661,122244,119536,109210,6000,6000,5000,4200,3862,3887,0
+7220,30000,female,2,2,36,-1,-1,-1,0,0,-1,390,390,780,390,0,780,390,780,0,0,780,0,0
+7221,20000,male,1,2,38,0,0,0,0,2,0,16787,17912,18706,20086,19632,20160,1700,1400,1684,0,1000,850,0
+7222,30000,male,2,2,24,0,0,-2,-1,-1,-2,12800,0,0,90,-40,-3000,0,0,90,0,0,10400,0
+7223,20000,female,2,2,53,0,0,0,0,0,0,8847,10202,11227,11145,11381,12191,1500,1500,400,416,1002,0,0
+7224,280000,male,1,2,27,-1,-1,0,0,0,-1,6564,1333,21064,19969,578,35152,1334,21003,428,12,35152,892,0
+7225,50000,female,2,1,28,0,0,0,0,0,0,14262,16024,17744,19440,23089,24695,2000,2000,2000,4000,2000,2000,1
+7226,360000,male,1,1,34,1,-2,-2,-2,-1,-1,-130,-130,-130,-130,25619,-395,0,0,0,25749,0,0,1
+7227,190000,female,3,1,41,2,0,0,2,0,0,185738,187764,100526,94909,94804,94007,7762,7700,0,3545,3386,3575,1
+7228,180000,female,1,1,36,-2,-2,-2,-2,-2,-2,2846,2092,4629,3007,5827,1118,2092,4631,3007,5827,1200,1030,0
+7229,60000,female,1,2,24,0,0,0,0,0,0,48890,43651,34358,34986,35770,36622,2000,1800,1500,1500,1600,1500,0
+7230,320000,female,2,1,47,-1,-1,2,-1,2,-1,10159,37758,15591,39240,28424,25120,38075,0,39424,0,25120,35375,0
+7231,10000,male,3,2,33,-1,-1,-1,-1,-1,-1,1655,1473,390,390,540,150,1473,390,390,540,150,3780,1
+7232,200000,female,2,1,52,-1,-1,2,-1,-1,2,316,632,316,782,782,316,632,0,782,316,0,632,1
+7233,50000,male,2,2,24,0,0,0,0,0,0,9923,5088,5625,4428,5092,5685,1200,2065,1000,2070,2000,10327,0
+7234,180000,female,1,2,25,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+7235,20000,male,2,2,24,2,2,2,2,4,3,15586,16649,16090,20648,19759,19160,1609,0,5148,0,0,0,1
+7236,300000,female,2,1,28,2,0,0,0,0,0,296665,300861,263571,252197,226555,206642,11500,9000,8000,7000,7500,6006,0
+7237,90000,female,1,2,28,-1,-1,-2,-2,-2,-2,350,0,0,0,0,0,0,0,0,0,0,0,1
+7238,160000,female,2,2,23,-1,2,0,0,0,-1,116212,88542,68311,48875,37261,4267,0,2483,900,20000,4267,24659,1
+7239,20000,male,2,2,39,0,0,0,0,0,0,14154,15179,16191,16512,16858,17193,1258,1270,591,612,615,637,0
+7240,150000,female,2,2,28,-1,-1,-1,-1,-1,-1,8200,2500,7500,11478,7080,1651,2500,7500,11478,7080,1651,43600,0
+7241,50000,male,3,2,26,1,2,3,2,0,0,48560,52047,50597,20378,18344,19618,4570,0,0,2000,2000,341,0
+7242,60000,male,3,3,43,0,0,0,0,0,0,70367,66657,63553,59633,55689,52778,2415,3000,2125,2007,3000,1758,0
+7243,210000,female,1,1,54,0,0,0,0,0,-1,16355,18063,18077,14113,7049,2026,3000,2000,3000,150,2026,1026,0
+7244,150000,male,2,2,27,0,0,0,0,0,0,134492,138107,89238,49677,97028,99214,6000,7000,2200,48500,3600,3500,0
+7245,60000,female,2,2,24,0,0,0,0,0,0,58143,60221,50135,19553,11896,15241,3044,1123,7553,474,3586,305,1
+7246,210000,female,2,1,35,0,0,-1,-1,-1,0,25806,5861,1666,1010,300,300,1035,1666,1010,300,0,4817,0
+7247,210000,male,2,2,28,-2,-2,-2,-2,-2,-2,198724,200500,0,0,0,0,4500,0,0,0,0,0,0
+7248,360000,female,3,1,31,-1,-1,-1,-1,-1,-1,28835,14596,10705,3400,6410,5479,14596,10705,3400,6410,5479,4120,0
+7249,10000,male,1,2,25,0,0,2,3,2,0,6005,8891,9389,9111,8837,8135,3000,800,0,0,500,500,0
+7250,140000,female,1,2,32,0,0,0,0,2,2,142043,0,137909,138999,137275,136141,7000,0,5000,9100,3400,0,0
+7251,100000,female,1,2,33,1,2,0,0,0,0,55066,53612,54720,55808,56976,58108,0,2000,1998,2068,2079,2155,0
+7252,50000,male,2,2,23,-1,-1,-1,0,0,-1,836,836,1616,780,390,540,836,1616,0,0,540,390,1
+7253,360000,female,3,2,42,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+7254,360000,male,2,1,42,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+7255,30000,female,2,2,27,0,0,0,0,0,-2,11228,11814,5240,400,0,0,1104,1400,0,0,0,0,0
+7256,20000,male,2,2,36,2,2,2,0,0,0,10360,13336,13307,13633,15054,16505,3467,486,545,1639,1700,1504,0
+7257,260000,female,1,1,42,0,-1,-1,0,-1,-1,8606,3856,12996,8788,15104,16764,3856,13000,0,15104,16764,9118,0
+7258,100000,female,1,2,38,2,2,2,2,2,2,37160,39750,40298,40835,41529,42697,3500,1500,1500,1500,2000,1500,1
+7259,340000,female,2,2,39,-2,-2,-1,-1,0,0,56412,45990,84050,172925,140040,95230,10034,50024,100108,4933,10114,2014,0
+7260,50000,female,1,2,31,1,2,0,0,2,2,1129,1111,3186,6527,3328,33166,0,3000,3341,0,30000,0,1
+7261,180000,female,2,1,32,0,0,0,0,-2,-2,8135,12621,17987,-99,-99,-99,5000,15000,0,0,0,13550,0
+7262,360000,female,1,2,33,-1,-1,-1,0,0,-1,1616,3700,6562,3730,420,699,3700,6562,0,0,699,6041,0
+7263,60000,female,2,1,35,0,0,0,0,0,2,27892,29438,32620,33274,35732,35008,2000,4000,1197,3000,0,1400,0
+7264,20000,female,3,1,28,1,2,2,0,0,-1,18710,19132,18409,14301,14373,1270,1400,30,1000,1000,1270,10489,0
+7265,150000,female,1,1,44,1,2,2,-1,-1,2,27270,24600,0,10195,24232,22000,0,0,10195,24232,0,0,1
+7266,150000,male,1,1,50,0,0,0,0,0,0,101639,91674,135883,95806,97648,99737,3820,50001,3569,3529,3697,5229,0
+7267,300000,male,1,2,32,0,0,-1,0,0,-1,30749,50185,3342,1287,0,3899,20000,3342,0,0,3899,2346,0
+7268,420000,female,3,2,35,0,0,0,0,0,0,63715,62201,56125,49114,47563,45829,3002,2200,1700,1800,1700,1500,0
+7269,500000,male,1,2,34,0,0,0,0,0,0,324503,324262,323101,296962,84615,267596,15633,19725,13091,5066,195829,20225,0
+7270,150000,female,2,2,30,0,0,-2,-2,-2,-2,65591,0,0,0,0,0,0,0,0,0,0,0,0
+7271,50000,male,3,1,54,0,0,0,3,2,2,34301,35450,39455,38564,37842,40342,1700,4630,0,0,3105,0,1
+7272,110000,female,2,2,24,1,2,2,0,0,-1,68068,70276,68044,34059,20284,31179,3900,0,10452,6475,51179,7760,0
+7273,150000,female,2,1,38,-2,-2,-2,-2,-2,-2,1106,2199,2997,735,1104,0,1208,1006,50000,1104,0,0,0
+7274,80000,male,1,2,26,0,0,0,0,0,0,77397,77839,69534,60747,52280,43461,3328,2811,1192,1516,2316,1500,0
+7275,150000,female,3,1,34,0,0,-1,-1,-1,-1,19130,10000,8000,0,10000,0,1000,8000,2000,10000,0,0,0
+7276,50000,female,2,2,39,0,0,-2,-2,-2,-2,20650,0,0,0,0,0,0,0,0,0,0,3000,0
+7277,20000,male,2,2,33,0,0,0,0,0,0,36658,19253,20179,18800,19500,0,4000,1409,0,1000,0,0,0
+7278,80000,female,2,2,33,0,0,0,0,0,0,69937,69798,69200,44651,45185,45674,3032,5000,2000,2000,2000,2000,0
+7279,150000,male,1,1,41,2,2,2,0,0,2,113358,124745,121249,124237,132252,134925,14779,0,5000,10000,5000,0,1
+7280,240000,female,3,1,41,1,-2,-2,-1,0,0,-2225,-8523,-10951,88670,199444,178706,12,16,103751,117086,6146,4501,0
+7281,100000,female,2,1,27,-2,-2,-2,-2,-2,-2,390,1780,0,0,0,0,4780,0,0,0,0,0,0
+7282,130000,female,2,1,45,0,0,0,0,0,0,79277,63767,62599,51950,44189,38034,3500,3022,2000,2000,2000,2000,0
+7283,20000,male,2,1,37,0,0,0,0,0,0,18419,18710,18929,14900,10400,0,1373,1384,615,600,0,0,0
+7284,340000,female,1,2,35,-1,-1,-1,-1,-1,-1,317,3074,3002,2613,1806,1989,3074,3002,2613,1806,1989,3370,0
+7285,430000,male,1,1,40,-1,-1,-1,-1,-1,-1,6112,10548,31401,417588,3414,4761,10590,31448,417588,3414,4761,15331,0
+7286,110000,female,1,1,57,0,0,0,0,0,0,16090,17522,18426,19117,19655,20329,2000,1500,1000,1000,1000,1000,0
+7287,90000,female,3,1,49,0,0,0,0,0,-1,10242,10930,10549,9421,6851,2133,2006,2012,3022,2020,2139,2006,0
+7288,10000,female,1,2,26,0,-1,-1,0,0,0,9459,231,3364,6129,9009,9188,231,5000,3000,3000,329,340,0
+7289,100000,male,1,2,32,-1,-1,-2,-2,-2,-2,4270,0,0,0,0,0,0,0,0,0,0,0,0
+7290,390000,female,1,1,34,-2,-2,-2,-1,-1,0,7639,10876,6203,1518,46365,48795,6083,1051,1545,47280,3000,3000,0
+7291,130000,female,2,2,43,-1,-1,-1,-1,0,-1,2048,2529,11929,5722,3076,5250,2529,11929,5722,0,5250,3526,0
+7292,180000,female,2,1,37,0,0,0,0,0,0,78089,75159,76602,76896,78588,77770,3333,3310,2900,3040,3500,2300,0
+7293,50000,male,2,3,51,0,0,0,0,0,0,79502,65237,64426,18430,18020,17991,4000,1565,641,648,654,649,0
+7294,80000,female,2,1,30,0,0,0,0,0,0,64596,64871,61000,48300,47300,3500,4424,1600,0,1500,1500,1500,0
+7295,30000,female,3,2,33,1,2,2,0,0,2,24457,25474,26241,25388,26377,27794,1716,1500,911,1400,2000,0,1
+7296,150000,female,1,2,30,-1,-1,-1,0,0,-1,7015,0,6700,6700,7427,13583,0,6700,0,727,13583,4973,0
+7297,230000,male,2,2,46,1,-1,-1,-1,-1,-1,378,907,1599,378,756,0,907,1599,378,756,0,754,0
+7298,90000,female,2,2,23,2,3,3,2,2,2,82623,86621,84369,82117,84395,85739,5900,0,0,3600,2900,3500,1
+7299,80000,female,2,3,30,0,0,0,0,0,0,11976,10010,10982,11325,11569,10303,1185,1157,500,400,500,5000,0
+7300,700000,male,1,2,35,-1,0,-1,0,0,0,8277,18282,130130,105055,70896,41509,17599,130370,3381,145,4639,12235,0
+7301,30000,female,2,2,22,0,0,0,0,0,-2,27447,28623,28700,29300,0,0,1923,1000,600,0,0,0,1
+7302,90000,female,1,1,28,-1,0,0,0,0,0,12759,10941,10420,14420,9855,9097,5000,6000,4000,5000,3500,5000,1
+7303,200000,male,2,2,44,-1,-1,-1,-1,-1,-1,310,2226,1230,3393,1340,3416,2306,1234,3510,1344,3426,6324,0
+7304,230000,male,2,1,50,0,0,0,0,0,0,94314,96269,56058,57174,58371,59561,4082,1990,2003,2074,2115,2094,1
+7305,100000,male,1,2,54,0,0,0,0,0,0,99932,42389,41842,40291,40556,40534,1712,1639,1418,1618,1529,1414,0
+7306,360000,female,1,2,28,0,0,0,0,0,0,152072,151168,153306,144485,145601,140336,5708,6059,5009,5021,5027,100017,0
+7307,500000,male,1,1,43,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+7308,240000,female,2,2,42,-1,-1,-1,-1,-1,-1,3328,164327,10690,4772,1294,2147,164820,11728,7738,1297,2153,2073,0
+7309,360000,male,1,2,28,0,0,0,0,0,0,78398,86955,127146,103273,91933,108163,25126,60259,27208,31262,90114,30463,0
+7310,360000,male,2,1,30,2,2,2,2,2,-2,2500,2500,2500,2500,0,0,0,0,0,0,0,0,1
+7311,320000,male,1,1,43,0,0,0,0,0,0,110032,110045,112393,111541,114934,118228,4028,4000,5000,5000,5000,5000,0
+7312,50000,female,2,1,40,0,0,0,0,-1,-1,21696,8987,9604,9800,500,0,1383,1000,196,500,0,0,0
+7313,140000,female,2,2,31,0,0,0,0,0,0,50822,52468,52238,53368,56488,58542,2473,2000,2000,4000,3000,2000,0
+7314,360000,female,2,1,30,0,0,-1,-1,-1,-1,6419,5290,1330,2255,4164,0,1067,1341,2255,4164,0,211,0
+7315,180000,female,1,2,27,-1,-1,-1,-1,-1,-1,641,1812,5307,28004,957,0,1812,5347,28004,957,0,455,1
+7316,330000,female,1,1,40,-2,-2,-2,-1,-1,0,2573,1800,-910,-1878,252686,72401,1800,0,594,256662,3000,4944,0
+7317,140000,female,1,2,24,0,0,2,2,-2,-2,6265,7300,1934,0,0,0,2198,5,0,0,0,0,1
+7318,360000,female,1,1,27,-2,-2,-2,-2,-2,-2,2459,944,2037,989,2885,989,955,2043,992,2903,992,3153,0
+7319,150000,female,1,2,27,2,2,2,2,0,0,15475,18212,18617,18020,18726,19414,3000,1000,0,1000,1000,1000,1
+7320,220000,female,3,2,29,0,0,0,0,0,0,14246,15601,17140,14131,15424,17345,2601,2140,2131,3424,2345,3385,0
+7321,260000,male,3,2,31,0,0,0,0,0,0,257920,256117,232981,202190,202800,202490,10036,8185,6715,7033,6728,6882,0
+7322,30000,female,3,1,54,0,0,0,0,2,2,17708,18734,19442,20741,21162,20671,1615,1323,1622,900,0,765,0
+7323,580000,male,1,2,31,-1,-1,-1,-1,-1,-1,2507,2174,6527,1818,2227,2666,2190,6558,1825,2236,2678,1707,0
+7324,50000,male,2,2,25,0,-1,-1,-1,-1,-1,1582,300,591,441,741,441,300,591,441,741,441,291,0
+7325,230000,female,1,1,36,-1,-1,2,-1,-1,-1,878,9567,3074,3660,3790,6006,9574,0,3660,3790,6006,5647,1
+7326,20000,male,2,1,39,2,0,0,0,0,0,20264,20328,19299,19928,20204,20398,1500,1500,900,700,1480,0,1
+7327,110000,male,3,1,35,2,0,0,0,2,2,67591,69773,71886,76767,78462,79890,3200,3200,6000,3000,2800,3200,1
+7328,240000,female,1,2,28,0,0,0,0,0,0,168068,168685,94520,14422,12552,20550,6042,3558,1000,600,10550,9000,0
+7329,50000,female,2,1,34,0,0,0,0,0,0,49940,50761,49009,14275,17251,15077,2128,1344,505,5585,556,563,0
+7330,20000,female,1,3,51,-1,-1,-1,-1,-1,-1,3680,0,543,780,2500,0,0,543,780,2500,0,0,0
+7331,190000,female,3,1,42,0,0,0,0,0,0,113516,116157,115639,115849,118313,119973,6000,5581,4237,4423,5000,8888,0
+7332,100000,female,3,2,50,0,0,2,0,0,0,84027,88734,86369,89994,89681,89849,7500,0,5001,3390,4000,10000,0
+7333,500000,male,2,1,34,-2,-2,-2,-2,-2,-1,13010,5016,-32,6443,0,265,5041,0,6475,0,265,5099,0
+7334,170000,female,1,1,40,-1,-1,-1,-1,-1,-1,511,997,2446,720,236,210,1001,2446,720,236,210,52,0
+7335,150000,female,2,2,23,0,0,0,0,0,0,7795,13821,6640,5831,10514,5432,7000,1000,1070,6000,2432,116,0
+7336,30000,male,2,1,48,0,0,0,0,0,0,46780,38099,38600,29400,30000,0,1899,1400,1188,600,0,0,0
+7337,80000,male,2,2,41,2,0,0,0,0,0,80140,80627,80668,49233,48737,48280,3253,3211,1691,1721,1800,1576,1
+7338,340000,female,3,1,49,-2,-1,-1,-1,-2,-2,20452,18816,24010,5320,16612,21373,18832,24099,5320,16612,21373,44729,0
+7339,210000,female,2,2,30,0,0,2,2,2,0,89670,94043,85022,90779,84209,70162,7500,103,10000,0,3000,2000,0
+7340,30000,female,1,2,23,0,0,0,0,0,0,28239,29974,29841,27592,17569,4059,2500,1011,301,37,17,0,0
+7341,230000,male,1,2,27,-1,-1,-1,-1,-1,-1,3257,1816,1816,1806,764,3368,1816,1816,1806,774,3368,1027,0
+7342,20000,male,2,2,23,0,0,0,0,0,0,18497,15172,17488,17923,16838,18535,1900,2900,1000,800,2000,1000,0
+7343,70000,female,3,1,26,0,0,0,0,0,0,71147,72227,71078,50777,50841,50682,3800,3200,1950,2000,1828,2200,0
+7344,310000,female,1,1,66,0,0,0,0,0,0,259874,236662,220421,224801,229520,234145,8874,7984,8029,8324,8435,8552,1
+7345,80000,male,2,2,36,0,0,0,0,0,0,19211,20237,21268,23903,24367,24964,1337,1368,3003,1000,1000,2000,1
+7346,150000,female,2,2,27,0,0,0,0,0,0,146778,139111,134382,134593,91112,68482,6554,10000,4749,3304,2285,700,0
+7347,20000,male,3,1,49,0,0,0,0,-1,-1,13881,12170,13237,10790,390,780,1218,1285,608,390,780,0,0
+7348,220000,female,2,1,54,-1,-1,0,-1,-1,2,264,1138,3874,264,3105,2074,1138,3000,264,3105,0,264,0
+7349,150000,female,1,2,30,0,0,0,0,0,0,150426,151052,143488,142419,145100,153229,5520,5200,5100,5300,10900,0,0
+7350,530000,male,1,2,30,0,0,0,0,0,0,214022,393664,235392,232640,239004,236657,20000,10000,10000,10000,9000,10500,0
+7351,150000,female,2,1,28,-1,-1,-1,0,0,0,108,-218,63174,43374,43950,44501,0,65748,1537,1585,1597,1615,0
+7352,150000,female,1,2,29,-1,-1,-1,0,0,0,2356,16836,1094,6382,5288,5288,16836,2000,5288,0,0,0,1
+7353,420000,female,2,1,30,0,0,-1,0,0,-1,83640,63751,153092,111922,88709,36484,1275,156564,0,0,36484,69380,0
+7354,80000,female,2,1,31,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+7355,100000,female,2,1,37,-1,0,0,0,0,0,87055,84712,76202,72368,71384,70346,3000,3403,2656,2500,2600,3000,0
+7356,30000,female,2,2,27,2,2,2,2,2,2,15191,16144,16383,16518,16907,17279,1500,800,700,800,800,800,1
+7357,50000,male,2,1,37,0,0,0,0,-2,-2,23607,24921,25775,0,0,0,2000,1800,0,0,0,0,0
+7358,330000,female,1,2,39,-1,-1,-1,-2,-1,-1,1972,1586,0,0,1588,0,1586,0,0,1588,0,0,1
+7359,140000,female,2,2,36,0,0,2,2,0,0,134783,142708,143475,136331,135778,135910,12800,5000,0,5100,5000,5000,0
+7360,50000,female,2,1,34,0,0,0,0,0,0,95380,48764,50711,50389,49030,50045,2140,3082,1760,1926,1980,1750,0
+7361,360000,male,2,1,37,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+7362,180000,male,2,2,38,-1,-1,2,0,0,0,54198,54173,52687,52096,51508,50867,4400,0,2000,2000,2000,3000,1
+7363,130000,female,2,1,27,2,0,0,2,0,0,54921,55055,54804,52439,52609,52739,2000,6844,0,2071,2115,1640,0
+7364,130000,female,2,2,31,1,2,2,0,0,0,120890,122275,109903,80909,71679,66169,5200,47,3000,2800,2713,2000,0
+7365,20000,male,1,2,24,2,2,0,0,2,2,18199,17623,18317,19525,19084,19601,0,1300,1500,0,1600,0,0
+7366,260000,female,1,2,30,0,0,0,0,0,0,89538,82621,78236,49417,21226,23174,4000,2092,1333,769,2300,0,0
+7367,50000,female,2,2,51,0,0,0,0,0,0,57595,54503,51217,47919,44593,38475,1996,1804,1664,1560,1370,1335,0
+7368,320000,female,2,1,29,0,0,0,0,0,0,145907,150336,110569,106095,92573,89650,30236,5004,4086,5033,5020,3006,0
+7369,70000,female,2,1,37,0,0,0,0,0,0,49775,50600,47585,48493,49559,51079,2000,2500,2000,2000,2500,2050,1
+7370,180000,female,1,1,47,-1,-1,-1,-1,0,-1,807,4246,2727,5507,1382,538,4246,2727,5507,0,538,304,0
+7371,60000,male,2,1,54,2,2,0,0,0,0,61493,58784,54087,37613,39038,37814,55,2400,1316,2000,1531,1477,0
+7372,80000,male,2,1,23,-2,-2,-2,-2,-2,-2,795,1698,798,-2,748,708,1703,800,0,750,810,1310,0
+7373,10000,female,3,1,49,0,0,0,0,0,0,6904,7841,9635,17622,8991,0,1206,2000,176,360,0,0,0
+7374,150000,female,2,1,33,1,2,0,0,0,0,42932,42010,46007,47978,49100,50181,0,5000,3000,2000,2000,2000,1
+7375,50000,female,3,2,55,0,0,0,0,0,0,45698,49270,48186,20127,18988,19942,6000,2044,3150,1000,3000,905,0
+7376,150000,male,3,2,41,0,0,0,0,0,0,64425,57073,32516,21018,21320,143489,1745,1269,0,1545,135000,5000,0
+7377,350000,male,1,2,38,0,0,0,0,0,-1,36098,21848,23309,13002,14473,11496,3604,2072,0,2071,11553,14328,0
+7378,380000,female,1,2,44,0,0,0,0,0,0,371917,355744,347667,304356,311458,299277,15071,13500,11000,12000,12000,11000,0
+7379,130000,female,3,2,25,-1,-1,-1,-1,-1,-1,250,174,1214,1125,139,0,174,1214,1125,139,0,391,0
+7380,180000,female,1,1,35,-1,-1,-2,-2,-2,-2,1651,0,0,0,0,0,0,0,0,0,0,295,0
+7381,100000,female,2,1,41,0,0,0,0,0,0,107224,107126,101859,79519,74368,58481,7000,3533,2673,3500,4303,3023,0
+7382,30000,female,3,1,31,3,2,2,2,2,2,23368,24688,24988,24288,26098,25530,2000,1000,0,2200,0,1100,1
+7383,430000,male,1,2,28,0,0,0,0,0,0,406995,438832,312608,341552,345532,339050,40000,30000,35000,30000,20019,40000,0
+7384,200000,female,2,1,37,-1,2,-1,-1,-1,-1,2681,1273,2192,430,430,6136,0,2192,430,430,6136,2923,1
+7385,360000,male,2,1,43,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+7386,80000,female,1,2,32,-1,-1,-1,-1,-1,-1,1147,1147,1147,1147,1100,5053,1147,1147,1147,1100,5100,18500,0
+7387,40000,female,1,2,26,2,2,2,2,2,0,27255,26532,29089,28522,28914,29482,0,3000,200,1000,1200,1300,1
+7388,80000,female,2,2,29,0,0,0,0,0,0,12393,14187,13263,11045,10259,5773,2022,1308,506,1516,1000,1000,0
+7389,20000,male,3,2,23,0,0,0,0,0,0,17030,18064,19046,19221,18603,19075,1315,1297,672,675,781,734,0
+7390,250000,female,2,2,24,-1,-1,-1,0,0,-1,956,1339,2617,1817,975,1141,1339,2617,0,0,1141,1720,1
+7391,70000,male,2,1,43,0,0,-1,-1,-1,0,16186,3680,4540,39994,6844,12308,2000,4540,39994,6850,10000,13000,0
+7392,20000,female,1,1,34,0,0,0,0,0,0,14676,15721,19335,20029,20473,19860,1286,3900,1000,900,900,600,1
+7393,160000,female,4,1,39,1,-2,-2,-2,-2,-2,-18,-18,-18,-18,-18,-18,0,0,0,0,0,0,0
+7394,70000,male,2,1,36,0,0,0,-2,-2,-2,27868,28850,0,0,0,0,1850,0,0,0,0,0,1
+7395,50000,female,2,2,34,-2,-2,-2,-2,-2,-2,588,592,390,390,280,720,592,390,390,280,913,390,0
+7396,30000,female,3,1,41,2,2,2,3,2,2,26042,27127,28762,29485,28878,30699,1800,2378,1496,0,2462,0,1
+7397,80000,male,2,1,48,0,0,0,0,0,-1,46495,8241,11000,16000,0,54070,3000,3000,5000,0,54070,5247,0
+7398,20000,male,2,1,52,0,0,0,0,0,0,15768,16792,18105,18157,18538,19200,1285,1598,650,674,971,580,0
+7399,50000,female,5,1,32,0,0,0,0,0,0,10335,9538,6793,13864,5243,5391,1200,1024,163,146,2000,1000,0
+7400,50000,male,1,2,26,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+7401,230000,female,1,1,36,-1,-1,-1,-1,-1,-1,2078,380,2100,530,2282,1390,380,2100,530,2282,1390,380,0
+7402,10000,female,2,2,23,1,-2,-2,-2,-2,-2,-1000,-1000,-1000,-1000,-1000,-1000,0,0,0,0,0,1000,1
+7403,20000,male,2,1,42,0,0,2,0,0,2,16070,19107,18506,18802,20199,19394,3300,0,900,1700,0,253,0
+7404,110000,male,2,2,34,2,0,0,0,0,2,108180,107597,89775,47139,47259,46348,5000,3000,2020,5000,0,3000,0
+7405,200000,female,1,2,29,-1,-1,-1,-1,-1,-1,5624,2519,2519,2519,13137,566,2519,2519,2519,13137,566,416,0
+7406,20000,male,2,1,59,1,-1,0,0,-1,-1,-1213,30322,20033,19871,15410,18969,52082,15800,2000,20085,39070,25000,0
+7407,80000,male,1,2,29,-1,-1,2,0,0,0,2946,4599,1863,3309,1446,390,4599,0,1446,0,0,2493,0
+7408,280000,female,2,2,31,1,-2,-2,-2,-1,-1,0,0,0,0,5360,251,0,0,0,5360,251,5360,0
+7409,140000,female,2,1,45,0,0,0,0,-1,-1,106974,109061,7262,7410,1545,0,4924,1000,148,1545,0,0,0
+7410,60000,female,1,2,25,0,0,0,2,2,2,24066,24786,27050,26317,28200,28762,1414,2678,0,2310,1173,0,0
+7411,50000,male,2,1,51,0,-1,-1,0,0,0,113247,108550,118310,9904,9905,9974,3000,10510,4000,500,1000,2000,0
+7412,200000,female,1,1,34,-2,-2,-2,-2,-2,-2,0,0,0,0,0,35979,0,0,0,0,35979,6191,0
+7413,180000,female,1,1,38,1,2,0,0,0,0,114413,111165,117004,119542,122452,130293,0,10000,6000,5000,10000,6500,0
+7414,260000,female,2,2,45,0,0,0,0,0,0,207977,207713,197120,198815,201007,205181,9000,7009,7000,8000,8000,8000,0
+7415,150000,male,1,2,32,0,0,2,2,2,0,52582,57496,55705,57210,57084,13194,6395,0,2100,222,1000,650,1
+7416,130000,female,1,2,32,0,0,0,0,0,0,126080,129104,130745,127344,127809,119976,7000,8000,5000,4500,4500,5000,0
+7417,120000,male,3,2,50,-1,-1,-1,-1,-2,-2,390,0,780,0,0,0,0,780,0,0,0,0,1
+7418,210000,female,2,1,30,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+7419,110000,female,1,3,33,0,0,0,0,0,0,165090,106448,103618,79687,76742,77096,4259,3212,28246,2730,2834,2711,0
+7420,30000,male,2,2,28,-1,-1,-1,-1,-1,-1,29617,4096,2058,540,13056,1690,4096,2064,540,13056,1690,16964,0
+7421,170000,female,1,2,25,-1,-1,-1,-1,-1,-1,12218,5500,100,1608,1800,897,5507,100,1608,1800,897,1443,1
+7422,360000,female,1,2,32,-1,-1,-1,0,0,0,13819,2148,34766,14138,14690,19792,2148,34766,2005,2190,7300,20296,0
+7423,130000,male,1,2,37,0,0,0,0,0,0,116093,100296,95053,96146,98310,95726,3647,4198,3490,3800,3920,3447,1
+7424,30000,female,1,2,24,2,2,2,0,0,0,12324,15628,15069,15868,16657,13998,4500,0,1000,1000,668,203,1
+7425,160000,female,2,1,31,-2,-2,-2,-2,-2,-2,239,0,0,0,1446,426,0,0,0,1446,426,0,0
+7426,30000,female,2,1,43,-1,0,0,0,0,0,25166,26195,27209,27924,30204,30000,1437,1451,1166,2900,600,0,0
+7427,10000,female,2,2,22,1,-1,-1,-2,-2,-2,0,1000,0,0,0,0,1000,0,0,0,0,0,1
+7428,50000,female,2,2,38,0,0,-1,0,0,-1,2410,0,4494,3034,2327,5892,0,4494,61,47,5892,164,0
+7429,80000,male,2,1,40,0,0,0,-1,-1,-1,23833,17815,15140,140,3090,180,5000,5000,5000,3100,1000,5000,0
+7430,260000,female,1,1,49,1,-2,-2,-1,0,0,0,0,0,1180,1180,0,0,0,1180,0,0,0,0
+7431,170000,male,3,2,26,2,0,0,0,0,0,74453,66087,60649,61408,59390,57037,5020,3003,3009,2013,3041,3000,1
+7432,30000,female,3,2,25,0,0,0,0,0,0,20983,22636,24417,27020,28107,28727,2000,2500,3000,1500,1056,544,0
+7433,50000,female,3,2,51,0,0,0,0,0,0,25577,26352,16846,17562,18275,18711,1269,1284,1000,1000,740,1000,0
+7434,120000,male,3,1,40,0,0,0,0,0,0,88185,91748,94242,88828,97643,79371,5000,4251,6000,10000,3019,13154,0
+7435,240000,female,2,1,31,2,0,0,0,0,0,71876,72382,72155,72543,73011,73484,3100,2400,2367,2435,2500,3000,1
+7436,180000,male,1,2,41,0,-1,-1,-1,0,0,16366,18339,2766,97996,55156,36213,18339,2766,97996,1861,1196,3000,0
+7437,60000,female,3,2,26,0,0,0,0,0,0,38726,39764,41084,41741,42461,43457,1663,1983,1640,1542,1703,1758,0
+7438,150000,female,3,2,32,0,0,0,0,0,0,113932,87187,81491,77078,66927,50881,2500,3000,2000,5000,5055,5000,1
+7439,360000,female,2,2,26,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+7440,350000,female,1,2,32,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+7441,30000,female,1,1,43,-1,-1,-1,-2,-2,-2,390,780,0,0,0,0,780,0,0,0,0,0,0
+7442,120000,female,1,2,29,0,0,0,0,0,0,121805,120933,120629,116316,117358,118560,4600,4300,4200,4219,4500,7600,0
+7443,330000,male,1,1,43,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+7444,500000,male,2,2,44,-2,-2,-1,0,0,-2,26697,26319,79424,77920,55625,30092,1131,150042,4790,3236,866,630,0
+7445,100000,female,2,1,34,0,0,0,0,0,0,102724,100186,102604,101856,101105,101071,4600,5000,4000,4000,4200,3800,0
+7446,80000,female,2,1,37,1,2,-1,-1,-1,-1,2626,2410,3237,2760,914,0,0,3237,2760,914,0,0,0
+7447,260000,female,2,2,30,0,0,0,0,0,0,34405,52512,52263,52261,52140,52615,20000,1826,1971,2000,2500,2000,0
+7448,500000,male,2,1,41,0,0,0,0,0,0,171565,184782,152365,139757,153348,127391,20241,20154,20019,20151,20037,21,0
+7449,90000,male,1,2,52,0,0,0,0,0,0,91656,87106,48730,27535,27751,29923,5110,2000,3000,1000,3000,3000,0
+7450,360000,female,2,1,38,-1,-1,-1,-1,-1,-1,1604,238,2402,3580,183,1995,239,2414,3597,183,2005,3635,0
+7451,360000,male,3,2,34,-1,-1,-1,-1,-1,-1,3821,1937,944,1219,2216,1440,1937,944,1219,2216,2000,648,0
+7452,100000,female,2,2,25,0,0,0,-1,-1,-1,8791,4910,0,674,0,980,1000,0,674,0,980,4413,0
+7453,200000,male,2,2,36,0,0,0,0,0,0,190120,194533,194175,189457,187050,187082,9000,9000,8000,10000,8000,7000,1
+7454,490000,female,2,2,52,0,0,0,0,0,0,191937,194347,202400,46634,47622,50844,7133,11365,1700,1740,4026,2060,0
+7455,460000,male,1,1,40,0,0,0,0,0,0,100026,89681,81812,82326,76055,74979,5095,5011,5047,4021,4071,3000,0
+7456,20000,male,1,2,39,1,2,2,2,2,2,10968,12495,11998,13795,13431,16199,2000,0,2000,0,3000,0,1
+7457,230000,female,2,1,35,0,0,0,0,0,0,76050,76921,65452,61129,55199,55380,3000,4000,3000,3000,2000,3000,0
+7458,170000,female,2,2,28,0,0,0,0,0,0,169531,174799,179868,177952,176160,175304,8000,8000,7000,7000,8000,9000,0
+7459,60000,female,3,1,63,0,0,0,0,0,0,56285,56894,57006,28198,23888,24083,5000,2156,3017,2009,3000,3000,0
+7460,90000,female,2,1,33,0,0,2,0,0,0,26772,70398,56266,47804,44230,48144,56388,112,1779,1786,5414,2418,0
+7461,160000,male,1,1,38,1,-1,-1,-2,-2,-2,0,499,0,0,0,0,499,0,0,0,0,0,0
+7462,20000,male,2,2,30,2,2,2,0,0,0,20586,20568,20185,20016,20044,20172,1300,700,700,1700,1600,700,1
+7463,500000,female,1,1,36,1,-2,-2,-2,-2,-2,0,0,0,0,0,200,0,0,0,0,200,159200,0
+7464,30000,female,2,1,42,0,0,0,0,0,0,9801,10535,11552,11933,12092,17884,1200,1200,573,500,6000,1200,1
+7465,170000,male,2,2,31,-1,-1,-1,-1,0,-1,2908,3408,2908,9283,2908,2908,3408,2908,9283,0,2908,7163,0
+7466,100000,female,3,1,44,0,0,0,0,0,0,80808,77825,70721,69603,65499,62296,3025,3000,3000,3000,3000,3000,0
+7467,50000,male,2,2,39,0,0,0,0,0,0,48493,49073,50370,29862,29275,29535,2109,2406,1278,1036,1115,947,0
+7468,110000,male,2,2,28,2,2,2,2,0,0,111541,113676,114223,110876,107710,90071,5400,4000,0,4000,3700,4000,1
+7469,20000,female,1,2,23,0,0,2,0,0,0,11672,8584,8279,8444,8621,8868,2424,0,284,294,371,500,0
+7470,70000,female,3,2,26,0,0,0,0,0,0,28995,30131,31610,37209,40749,40541,1600,2000,7000,5000,1500,1500,0
+7471,310000,female,2,1,42,-2,-2,-2,-2,-2,-1,-606,44878,19950,79227,20097,25594,45484,20033,79520,94,25910,10933,0
+7472,30000,male,2,2,28,2,2,2,2,0,0,35991,35751,34639,32493,32001,33064,2000,1200,0,1500,3100,0,1
+7473,30000,female,2,1,27,0,0,2,2,2,2,21632,24267,24572,24872,25427,25860,3300,1000,1000,1100,1000,1100,1
+7474,100000,female,1,1,36,0,0,0,-2,-2,-2,51713,25272,0,0,0,0,1000,0,0,0,0,0,0
+7475,150000,female,1,2,30,-2,-2,-2,-2,-2,-2,217,0,2403,0,4932,402,0,2403,0,4932,402,3516,0
+7476,80000,male,2,2,27,0,0,0,0,0,0,78406,52520,27543,51180,27017,28560,1500,3024,1200,2000,2000,1000,0
+7477,200000,female,3,1,40,0,0,0,0,0,2,158809,150904,144302,137700,135443,128229,5380,5141,5032,9400,4400,0,0
+7478,20000,male,2,1,36,1,2,2,2,2,0,19006,18418,20465,20381,18446,18598,0,2690,900,0,1000,1000,1
+7479,30000,male,2,1,33,0,0,0,0,0,0,23900,25507,26489,27017,56186,29146,2000,1418,946,1437,3000,0,0
+7480,50000,female,3,1,42,0,0,0,0,0,0,13436,14460,15472,15778,16109,16427,1246,1258,564,585,586,608,0
+7481,130000,female,5,1,32,0,-1,-1,0,0,0,3275,376,17055,14693,14855,14817,376,17055,575,449,1000,339,0
+7482,330000,male,1,2,32,0,0,0,0,0,0,162657,151305,138277,141453,112633,121242,5500,4723,5500,4000,10700,4500,0
+7483,80000,female,3,2,53,-2,-2,-2,-2,-2,-2,5687,0,0,19230,0,0,0,0,19230,0,0,0,0
+7484,50000,female,1,1,34,-1,-1,-1,-1,-1,-1,2531,14504,22553,14900,6758,3727,14608,22730,14911,6758,3727,2440,0
+7485,150000,female,1,2,33,-1,0,0,-2,-2,-2,10544,11982,-18,-18,-18,-18,2000,0,0,0,0,0,0
+7486,210000,female,2,1,30,1,-1,-1,0,0,-1,0,241,4651,4746,3938,3479,241,4651,95,301,3479,1000,0
+7487,30000,female,2,1,30,3,2,2,-2,-2,-2,30583,29901,0,0,0,0,389,0,0,0,0,0,0
+7488,500000,female,1,2,30,1,-1,2,-1,-1,-1,17144,2447,1221,1157,1133,2107,3678,6,1162,1133,1010,5,0
+7489,60000,female,1,2,32,1,2,-1,-1,-1,-1,31634,5720,18026,0,279,-101,0,18026,0,279,0,56839,0
+7490,20000,female,2,1,29,-1,-1,-1,-1,0,0,1473,390,390,870,480,780,390,390,870,0,300,1500,0
+7491,30000,female,2,2,23,2,2,2,0,0,2,21034,27321,26589,27050,29446,28825,7000,0,1200,3000,0,2000,1
+7492,120000,male,2,1,60,2,2,2,2,2,2,27497,27960,28996,29321,29803,30511,1200,1800,1100,1100,1350,1500,1
+7493,80000,female,2,1,37,1,2,0,0,0,0,79900,64815,52806,57028,59456,55623,21,1819,5000,4000,4000,1894,1
+7494,360000,female,1,1,35,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+7495,150000,male,2,1,36,-1,-1,-1,0,0,-1,6750,15227,17610,19467,3173,1534,15227,17610,10055,0,1534,0,0
+7496,10000,female,3,2,51,0,0,0,0,0,0,53095,54562,5428,7928,6091,0,2134,1000,2500,122,0,0,0
+7497,230000,female,3,1,30,0,-1,0,0,0,0,134272,238601,135099,133431,53103,49586,107000,3826,5000,5000,2000,3000,0
+7498,380000,female,3,2,31,-1,-1,-1,-1,-1,-1,3859,9194,15157,11147,12483,13680,9240,15233,11202,12493,13748,18061,0
+7499,350000,female,1,2,48,-2,-2,-2,-2,-2,-2,0,7900,7620,790,0,0,7900,0,790,0,0,1948,0
+7500,130000,female,2,2,23,0,0,0,0,0,0,113900,109062,105252,103969,104254,99525,5000,6000,10000,10000,5000,9000,0
+7501,490000,female,1,2,29,-2,-1,-1,0,0,0,4301,16230,28800,27870,27540,27630,16388,28800,0,0,6136,3080,0
+7502,150000,female,2,2,28,0,-1,0,-1,-1,-2,12272,4447,5228,1623,0,0,4447,1000,1623,0,0,0,0
+7503,340000,female,2,2,38,-2,-2,-2,-2,-2,-2,0,780,0,0,0,0,780,0,0,0,0,0,1
+7504,80000,female,1,2,52,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+7505,230000,female,1,2,36,-2,-2,-2,-2,-2,-2,0,0,0,1279,0,2794,0,0,1279,0,2794,0,0
+7506,160000,male,2,2,37,0,0,0,0,0,0,119165,118392,117553,113256,112678,111924,6008,6011,3606,3803,4003,3311,0
+7507,300000,female,2,1,33,-1,-1,-1,-1,-2,-1,1326,0,256,0,0,126,0,256,0,0,126,0,0
+7508,400000,female,2,1,24,0,0,0,0,0,0,176294,190256,89128,39276,23440,59922,44776,1502,2026,1015,52100,5101,0
+7509,80000,female,2,1,45,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,390,0
+7510,320000,male,2,1,45,-1,-1,-1,-1,-1,-1,1471,5184,4144,6290,977,-23,5318,4160,6296,977,23,0,0
+7511,310000,male,1,2,36,-2,-2,-2,-2,-2,-1,17611,24122,26242,21026,18121,7842,10000,4000,0,0,7842,24003,0
+7512,270000,female,2,1,32,-2,-2,-1,0,0,-2,3979,511,10069,9214,199,0,511,10069,186,199,0,0,0
+7513,280000,female,3,1,53,0,0,2,0,0,0,4405,7322,7043,8932,9654,10774,3000,0,2000,1000,2000,2000,0
+7514,330000,male,1,2,31,0,0,-1,-1,0,0,163406,137664,3381,40635,40490,38431,7558,5000,42054,3000,2000,1100,0
+7515,50000,male,2,2,49,0,0,0,2,2,2,7282,8307,9709,9404,10254,9940,1300,1700,0,1000,0,200,0
+7516,240000,female,1,2,26,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+7517,180000,female,3,2,27,-1,-1,-1,-1,-1,-1,3898,0,715,4079,0,213,0,715,6942,0,213,0,0
+7518,270000,male,1,2,28,4,4,3,2,2,2,237881,232799,227597,230751,235931,240595,0,0,8400,9000,8700,9000,1
+7519,70000,male,1,2,36,2,2,2,2,2,2,50016,48941,51809,50675,54839,53803,0,4000,0,5000,0,4000,1
+7520,290000,male,1,2,27,0,0,0,0,0,0,246284,218441,176099,170282,166869,173273,10000,8000,6500,7000,10000,10000,0
+7521,350000,female,1,2,41,-2,-2,-2,-2,-2,-2,0,3813,1298,500,2398,0,3813,1298,500,2398,0,1902,0
+7522,210000,male,2,1,54,2,-1,-1,-1,-1,-1,471,176,195,485,210,3483,176,195,485,0,4466,417,0
+7523,110000,male,2,2,47,2,2,2,2,2,2,53016,56532,57502,58460,59876,58761,5000,2500,2500,2500,0,5000,1
+7524,300000,male,2,1,32,-1,-1,-1,-1,-1,-2,2884,1706,2960,579,0,0,1706,2964,579,0,0,2937,1
+7525,140000,female,2,2,38,0,0,0,0,0,2,141453,132415,130305,79775,74462,74954,8000,3100,3000,5417,0,500,0
+7526,80000,male,1,2,27,0,0,2,0,0,0,77111,81555,72868,55780,53523,54679,6384,0,2100,2100,2200,2200,0
+7527,360000,female,2,1,42,-1,-1,-1,-1,-2,-2,44380,968,990,390,390,3103,968,990,390,390,3103,0,0
+7528,210000,female,2,2,33,0,0,0,0,0,0,19951,21620,23251,24358,25805,27168,2000,2000,1500,2000,1800,1500,0
+7529,50000,male,2,2,22,-1,2,2,2,0,0,19875,19273,21133,19121,19663,20235,0,2500,0,1000,1050,600,1
+7530,80000,female,1,2,28,1,-2,-2,-2,-1,-1,0,0,0,0,2284,-786,0,0,0,2284,0,0,1
+7531,130000,female,3,2,27,0,0,0,0,0,0,49780,51200,88209,53958,50577,41585,2300,50577,2000,2000,1488,1542,0
+7532,50000,female,1,2,22,0,0,0,0,0,0,49077,47610,46490,21056,20425,20632,2610,2609,715,930,2000,770,0
+7533,80000,female,3,2,34,-2,-2,-2,-2,-2,-2,585,-395,-2241,0,0,0,395,1846,8759,0,0,0,0
+7534,350000,male,1,2,35,-1,-1,2,2,2,-1,3260,4248,785,135,0,1006,4273,0,0,1006,1006,0,0
+7535,330000,female,2,1,37,-2,-2,-2,-2,-2,-2,2148,0,3080,3119,0,7255,0,3080,3119,0,7255,9060,0
+7536,80000,female,2,2,23,2,2,2,0,0,2,20661,22515,23339,23654,25119,24567,2500,1500,1000,2000,0,1058,0
+7537,280000,female,1,1,51,-1,-1,-1,-1,-1,-1,11223,15225,4951,2408,8360,6202,15262,4951,2408,8360,6202,200,0
+7538,30000,male,2,2,49,0,0,0,0,0,-2,27414,26910,25321,19455,0,0,1526,1696,1015,0,0,0,0
+7539,200000,male,3,1,44,0,0,0,0,0,0,69106,70393,73220,74419,76078,77822,3000,4000,3000,3000,3000,3000,0
+7540,120000,female,1,2,26,-1,-1,-1,-1,-1,-1,2897,481,721,444,710,1920,485,721,444,710,1920,0,0
+7541,50000,female,2,1,38,0,0,0,-2,-2,-2,3239,4166,0,0,0,0,1000,0,0,0,0,0,0
+7542,50000,male,2,2,31,1,2,0,0,0,0,18190,12521,14308,14769,15925,15441,0,2000,1000,1542,764,3000,0
+7543,300000,male,1,1,58,1,2,2,2,2,2,158230,160242,156171,165556,169250,172804,6000,0,12000,6500,6500,6500,1
+7544,20000,male,2,2,30,0,-1,0,0,0,0,12755,832,2800,1231,1052,0,832,1000,900,500,0,0,0
+7545,50000,male,2,2,46,0,0,0,0,0,0,47772,46935,33937,19277,14563,17293,2000,1221,595,1000,3500,2000,1
+7546,500000,female,2,2,44,0,0,0,0,0,0,77257,73089,81210,88888,107072,115264,10000,10000,10000,20000,10000,0,0
+7547,130000,female,2,1,40,-1,-1,-1,0,-1,-1,1445,1445,1651,1651,390,0,1445,1651,0,390,0,780,0
+7548,70000,female,1,2,28,2,2,2,2,2,2,59794,58267,63931,64585,66207,67577,0,6672,2300,2800,2600,0,1
+7549,70000,female,3,2,29,-1,-1,2,0,0,0,24336,25510,24726,25377,24818,14978,3010,0,875,600,1000,600,0
+7550,120000,female,2,2,27,0,0,0,0,0,2,36175,37062,32916,30947,22974,19539,3000,2000,1500,2000,0,8000,0
+7551,340000,male,2,1,48,0,0,0,0,0,0,73627,75052,76022,76402,75356,76237,3870,3819,2823,2876,2853,2863,0
+7552,130000,male,1,2,41,-1,-1,-1,-1,-1,-1,1392,0,696,1076,316,696,0,696,1076,316,696,696,1
+7553,240000,male,1,2,33,0,0,0,0,0,0,239009,243242,242128,216017,199069,202358,15018,35521,20003,7009,15018,20100,0
+7554,50000,female,2,1,37,0,0,0,0,0,2,28522,29906,34057,34611,38359,37592,1849,5000,1417,4488,0,1540,0
+7555,210000,female,2,1,48,-1,-1,-1,-1,-1,0,11876,11876,11876,11876,18954,11876,11876,11876,11876,18954,5000,11876,0
+7556,30000,male,2,2,30,2,2,2,2,2,2,20732,21451,20808,21761,22762,23139,1347,0,1300,1500,900,0,1
+7557,80000,female,2,2,22,0,0,0,0,0,0,76737,70614,68502,27160,27712,29245,3500,10092,966,2000,2000,1037,0
+7558,50000,male,3,1,42,0,0,0,0,0,0,50708,44610,44043,28557,27903,29164,1872,1566,983,1027,3000,999,0
+7559,220000,female,3,1,25,0,0,0,0,0,0,93674,123673,92036,93935,94607,93903,3500,4846,3000,3000,3000,10000,0
+7560,40000,male,2,1,37,1,2,0,0,0,0,12127,11647,13138,14903,17664,19371,0,2000,2000,3000,2000,2000,0
+7561,280000,male,1,2,26,0,0,0,0,2,2,245969,251120,254735,270486,276026,271408,10600,9300,20000,10000,0,11000,0
+7562,90000,female,2,1,31,-1,-1,-2,-2,-2,-2,350,0,0,0,0,0,0,0,0,0,0,0,0
+7563,180000,female,2,2,39,0,0,0,0,0,0,166915,117351,115402,105844,98396,101390,6000,7030,8000,5396,5390,5006,0
+7564,50000,male,2,2,30,0,0,0,0,0,0,32781,31702,26829,18948,18830,19358,1489,1326,642,2000,824,1000,1
+7565,320000,male,2,2,27,0,0,0,0,0,0,144648,150320,151365,154025,157082,160217,8000,6000,5671,5700,5741,9900,0
+7566,70000,male,2,1,38,0,0,0,0,0,0,52121,53235,52015,38985,36097,36995,1965,1995,1336,1430,1500,1292,0
+7567,260000,female,1,2,36,1,2,2,2,2,2,2111,545,2332,1277,1996,1020,0,2007,0,1020,0,923,1
+7568,360000,male,1,1,38,0,0,0,0,0,0,277523,117239,121284,93951,58200,52585,4013,90054,9011,3007,2592,1013,0
+7569,100000,female,2,2,38,0,0,0,0,0,0,89842,82669,70018,57847,43618,38715,4025,2511,1523,1292,1236,627,0
+7570,100000,female,1,1,32,-1,-1,-1,-1,-1,0,380,380,380,380,425,1045,380,380,380,425,1000,0,1
+7571,140000,female,2,1,39,0,0,0,0,0,0,133641,136663,137110,139761,137215,133572,7000,6010,6000,5400,5000,5200,0
+7572,90000,female,2,2,28,1,2,2,2,0,0,83480,89264,89896,86706,87385,88351,8000,3000,0,3000,5000,5000,0
+7573,220000,male,1,2,25,-1,-1,0,0,0,0,-1855,84332,85897,90106,94129,101037,88444,4000,5000,5000,8000,5000,0
+7574,260000,female,1,2,34,-2,-2,-2,-2,-2,-2,5237,0,0,0,3982,0,0,0,0,3982,0,0,0
+7575,260000,female,1,1,42,-1,-1,-1,-2,-2,-2,78,984,0,0,0,0,984,0,0,0,0,0,0
+7576,20000,male,1,2,24,-1,-1,-1,0,0,-2,4720,0,20200,20000,0,0,0,20200,0,0,0,0,0
+7577,50000,female,1,2,27,2,0,0,0,0,0,49296,50080,50725,43492,44377,41297,1881,1915,1472,4012,2008,10002,0
+7578,70000,female,2,2,23,0,0,0,0,0,0,57034,58224,59158,60675,62047,65298,2700,2500,2500,2500,4300,3000,0
+7579,170000,female,2,1,36,2,2,2,2,2,2,15031,16784,17711,17131,18197,18748,2500,1500,0,1500,1000,0,1
+7580,30000,female,2,2,22,0,0,0,0,0,0,30719,30123,30112,26763,22303,24397,1900,1626,1267,766,10000,919,0
+7581,200000,male,2,2,68,0,0,0,0,0,0,203533,204149,179350,152525,152765,152680,8870,7578,5700,5882,5799,5888,0
+7582,50000,female,2,2,39,0,0,0,0,0,0,16729,17772,18419,18786,19187,17175,1620,1267,634,665,668,1000,0
+7583,50000,male,2,2,30,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+7584,470000,female,2,1,35,0,0,0,0,0,0,64875,57920,59307,61500,59563,57368,2505,3000,3016,2200,3000,1600,0
+7585,20000,female,1,2,22,-1,-1,-1,-1,0,-1,7702,274,1395,10555,9500,9588,274,1395,10555,0,9588,491,1
+7586,50000,male,2,2,26,2,-1,-1,-1,-1,-1,291,291,291,291,291,0,291,291,291,291,0,873,0
+7587,360000,female,2,1,56,0,0,0,0,0,0,500090,477461,455591,430313,406010,377820,15900,16489,14128,13210,10442,9500,0
+7588,20000,female,2,3,46,1,-2,-1,0,0,-1,0,0,390,390,390,150,0,390,0,0,150,390,0
+7589,140000,female,1,2,26,-1,-1,-1,-1,-1,-1,6208,2136,6573,0,770,0,2136,6573,0,770,0,0,0
+7590,10000,female,3,1,47,0,0,0,0,0,0,2855,3871,4883,5053,5275,0,1069,1081,251,375,0,0,1
+7591,90000,female,1,2,30,0,0,2,0,0,0,19003,21876,21231,22071,23211,23773,3500,0,1500,1500,1100,2100,0
+7592,200000,female,2,1,46,-1,-1,-1,0,0,0,722,9086,9213,7360,11560,21808,9086,9219,147,4200,11808,4067,0
+7593,390000,female,2,1,39,-1,-1,-1,-1,-1,0,827,827,827,1036,15209,15156,827,827,1036,15000,1000,1000,0
+7594,90000,female,2,2,25,0,0,0,0,0,0,78651,79972,81415,81878,83206,85350,3600,3805,3100,3200,4100,2500,1
+7595,130000,female,1,2,27,1,-1,0,0,-1,-1,0,1483,2450,0,1089,2249,1483,1000,0,1089,2249,2184,0
+7596,120000,female,2,2,33,1,-1,2,-1,3,2,0,974,194,1758,1450,520,974,0,1954,0,0,950,1
+7597,160000,female,2,1,35,-1,-1,-2,-2,-1,-1,549,0,0,0,1893,0,0,0,0,1893,0,177,0
+7598,70000,female,2,2,24,2,2,-1,2,2,2,71339,69515,59878,58318,61865,63695,6,62343,0,4500,3000,2500,0
+7599,80000,male,3,1,60,0,0,0,0,0,0,68085,70604,26890,27450,27634,28216,10000,1500,1000,1100,1041,1500,0
+7600,250000,female,2,2,36,0,0,0,0,0,0,62131,63238,51547,48483,49553,49683,2741,1741,1824,1942,2100,1366,0
+7601,240000,male,2,2,37,0,0,0,0,0,0,171974,175049,176990,169198,166131,169245,8000,7000,6000,5200,5400,5400,0
+7602,50000,female,2,2,49,0,0,0,0,0,0,12272,7980,7959,8978,7357,7841,2005,2000,1019,3007,3008,5015,0
+7603,30000,female,3,2,23,0,0,0,0,-1,-1,2277,3158,4080,5080,150,178,1078,1000,1000,150,178,300,0
+7604,50000,male,3,1,51,2,0,0,0,0,0,55028,50184,50391,19867,20154,18732,3000,1600,1000,1000,1000,1000,1
+7605,80000,female,2,2,24,-1,-1,2,0,0,0,2152,3832,3587,3332,3400,-300,2245,0,267,68,0,0,1
+7606,130000,male,2,1,47,0,0,0,0,0,-2,109640,109699,91200,45400,0,0,8436,2270,0,0,0,0,0
+7607,50000,male,3,2,23,0,0,0,0,0,0,47033,43512,32287,34156,14618,3648,1707,1318,496,1076,708,20027,0
+7608,200000,male,2,1,39,1,-2,-2,-2,-1,2,-390,-390,-390,-391,710,321,0,0,0,1101,1,13988,0
+7609,140000,male,3,1,33,0,0,0,0,0,0,140795,93199,64487,53220,50051,45859,3609,2039,3014,2514,1656,1005,0
+7610,30000,female,1,2,23,0,0,0,0,0,0,18397,19789,21450,22391,23029,23745,2000,2000,1300,1000,1100,2000,0
+7611,20000,female,1,2,25,1,2,2,2,2,2,11729,12236,17994,17412,18422,18768,1000,6000,0,1600,800,800,0
+7612,70000,male,2,2,29,0,0,0,0,2,2,18312,19516,20685,22142,23340,22817,1500,1500,1800,1700,0,1300,0
+7613,20000,female,3,3,48,0,0,0,0,0,0,19590,19120,18932,18749,18620,18668,1308,1593,800,700,741,531,0
+7614,410000,male,1,1,42,0,0,0,0,0,0,27559,29866,32233,34450,36954,39251,3000,2800,3000,3000,3000,2000,0
+7615,250000,male,1,1,41,-1,-1,-1,-1,-1,-1,390,390,390,1130,1683,2587,390,390,1130,1683,2587,0,1
+7616,140000,female,2,2,27,2,0,0,0,0,0,136308,137077,138919,138035,138857,138894,5150,7750,5000,5379,5200,4850,1
+7617,90000,female,1,2,26,0,0,0,0,0,0,17704,14478,17681,15240,19364,18828,5005,5145,1801,5024,8007,5046,0
+7618,340000,male,1,1,38,-1,-1,-1,-1,-1,-1,325,325,325,580,9664,29200,325,325,580,9664,29200,5260,0
+7619,230000,female,2,1,28,-1,-1,-1,-1,-1,-1,1190,1716,0,1012,0,753,1716,0,1012,0,753,7600,0
+7620,80000,male,3,2,33,0,0,2,2,2,2,30013,33514,34662,35784,37065,36320,4000,2000,2000,2000,0,3600,0
+7621,50000,female,2,2,42,0,0,0,0,0,0,51521,46015,15057,19825,4264,3690,1451,13609,13327,250,1000,700,1
+7622,60000,female,2,1,35,0,0,0,0,0,0,60505,60820,54853,39112,39714,38850,2300,2000,1500,1500,1600,1400,0
+7623,50000,female,2,2,24,0,0,0,0,2,0,8587,9941,10950,11519,11191,11903,1500,1481,1050,0,903,333,0
+7624,210000,female,2,2,28,0,0,0,0,0,0,145643,133339,137000,55855,58370,59537,4741,5778,1955,3370,1913,1998,0
+7625,140000,female,1,2,27,0,0,0,0,0,0,135249,138577,141555,110852,113639,95052,5500,5700,4200,4700,3800,4000,0
+7626,20000,male,3,2,32,0,0,0,0,2,2,4338,5355,6369,6891,6635,7287,1092,1106,628,0,762,0,0
+7627,20000,male,3,3,48,1,-2,-1,0,0,0,-739,-5978,16089,14457,20106,10258,0,42400,289,201,410,0,1
+7628,230000,male,1,2,32,-2,-2,-2,-2,-2,-2,2785,3943,3126,3126,500,500,1223,1000,0,0,0,0,0
+7629,210000,male,2,2,27,0,0,0,0,0,0,30365,29858,30713,27644,26236,26312,1606,2000,1200,1200,1000,1000,0
+7630,20000,male,2,2,34,0,0,0,0,0,0,36773,17288,16212,17567,16089,20743,3210,2000,1600,871,5214,300,0
+7631,50000,female,2,2,24,0,0,0,0,0,2,45537,46601,47276,48224,48760,48382,2100,1760,1707,2602,1000,1640,0
+7632,30000,male,3,2,49,0,-1,-1,0,-1,-1,15966,240,17433,16865,29220,11400,262,20416,852,29220,728,0,0
+7633,50000,female,2,2,36,0,0,0,0,0,0,37329,32540,26601,27358,28017,28593,1500,1500,1200,1100,1042,1009,1
+7634,150000,female,1,1,30,1,2,-1,0,-1,2,44820,14657,20950,3601,696,696,0,20962,1,696,0,50348,0
+7635,160000,male,2,1,57,-1,2,2,-1,-1,-1,2008,280,-110,187,197,307,0,0,687,400,500,700,0
+7636,90000,female,3,1,42,0,0,0,0,0,0,14376,15374,11195,8948,9143,6003,1278,1086,581,273,227,162,0
+7637,150000,male,2,1,39,-1,-1,-1,-1,-1,-1,10086,32353,13181,2010,7790,0,32400,13181,2020,7790,0,0,0
+7638,200000,male,3,2,36,-2,-2,-2,-2,-2,-2,45810,0,0,0,0,0,0,0,0,0,0,40714,1
+7639,170000,male,1,1,40,0,0,0,0,0,0,171841,171014,168142,169821,173014,163570,7540,7540,6301,6517,6035,6435,0
+7640,100000,female,2,1,38,0,0,0,0,0,2,84883,86616,88207,89428,95895,93092,4000,4500,3500,8000,4000,0,0
+7641,20000,male,3,1,39,0,0,0,0,0,0,16946,14960,12772,12630,12524,11179,1529,1161,409,444,405,163,0
+7642,30000,male,1,2,24,0,0,0,0,0,0,27576,27089,27986,28580,28649,29147,1500,1500,1050,1100,1000,2000,0
+7643,200000,male,1,2,32,0,0,0,-2,-2,-2,42325,32061,0,0,0,0,2000,0,0,0,0,0,0
+7644,180000,male,2,1,46,-1,-1,-1,-1,-1,-1,390,390,390,0,390,930,390,390,0,390,930,135,0
+7645,160000,female,2,1,44,1,-1,0,0,0,-2,0,5621,6468,6600,0,0,5621,1000,132,0,0,0,0
+7646,80000,female,2,2,31,1,2,0,0,2,2,54207,52775,53906,60099,61402,60272,0,2000,7100,2400,0,4600,0
+7647,70000,female,1,1,36,2,0,0,0,0,0,81719,85389,86287,65287,35345,9360,5000,3000,2000,3000,5000,0,0
+7648,80000,male,3,2,44,2,0,0,0,-2,-2,78950,79788,70319,0,0,0,2815,1858,0,0,0,0,1
+7649,50000,male,2,2,45,0,0,0,0,0,0,48406,49880,47206,19189,19008,19687,2286,1302,678,695,1000,687,1
+7650,140000,female,2,1,58,2,2,2,2,2,2,70428,71902,72924,72335,75508,77116,3200,2800,1200,4500,3000,0,1
+7651,90000,female,2,1,50,0,0,-1,-1,-1,-1,76025,55440,11227,4000,5000,10327,10374,16926,4000,6000,10327,0,0
+7652,120000,female,1,2,27,-1,-1,-2,-2,-2,-2,19333,0,0,0,0,0,0,0,0,0,0,0,0
+7653,80000,female,2,2,33,-2,-2,-1,-1,0,0,47867,31925,731,55541,56703,57833,1925,731,56000,2055,2070,4447,0
+7654,20000,male,2,2,43,4,3,2,0,0,0,34213,30100,25871,21970,18669,19669,0,0,0,0,1000,53301,1
+7655,20000,male,1,2,28,1,2,-1,0,0,0,10631,1512,20400,20000,20000,0,0,20400,0,0,0,0,0
+7656,440000,female,2,2,34,-2,-2,-2,-2,-2,-2,0,200,751,2674,317,565,200,751,2700,320,570,0,0
+7657,310000,female,2,1,28,0,0,0,0,0,0,106540,110211,208505,150380,38551,42901,5000,100000,7000,10000,5000,5000,0
+7658,80000,female,2,2,25,-2,-2,-2,-2,-2,-1,0,0,0,0,0,442,0,0,0,0,442,1102,0
+7659,200000,male,1,2,28,-2,-1,2,0,0,2,95065,112893,110059,34125,36031,31885,20000,0,34000,2500,0,50000,0
+7660,300000,female,2,1,34,1,2,0,0,0,-1,6451,4828,6858,8048,1701,2920,0,4004,2000,0,2920,2282,1
+7661,140000,female,2,1,35,0,0,0,0,0,-1,10215,14293,13035,5753,2296,1398,4293,1004,115,46,1398,6837,0
+7662,230000,female,2,1,43,-1,-1,-1,-1,-1,-1,3451,5560,1180,8563,5180,2524,5587,1186,8605,5201,2532,4759,0
+7663,130000,female,3,1,38,0,0,0,0,0,0,100443,95794,92765,48481,47779,42362,3516,4112,2007,2516,1119,1016,1
+7664,40000,female,5,1,48,0,0,0,0,0,0,37896,40262,40370,39970,39970,0,3292,1400,0,0,0,0,0
+7665,20000,female,3,1,23,0,0,0,0,2,2,20030,18808,17080,18293,18752,19195,1600,1300,1500,900,900,787,0
+7666,90000,female,2,2,26,0,0,0,0,0,0,43310,40275,37800,37323,34396,34938,2500,3000,3000,2000,3000,3000,0
+7667,50000,female,3,2,41,2,2,2,2,2,2,24064,24981,25473,25857,26298,25725,1600,1200,1100,1000,0,1948,1
+7668,220000,male,2,1,49,0,0,0,0,0,0,153880,143020,117567,153069,153045,144529,6300,4500,37486,6000,5200,5002,0
+7669,60000,female,2,3,64,2,0,0,0,0,0,24541,25838,27022,28357,28992,24505,2000,2000,2000,1000,1000,2000,1
+7670,240000,male,3,1,48,0,0,0,0,0,0,111990,125109,129014,131864,134744,138504,15000,6000,5000,5000,6000,6000,0
+7671,400000,female,2,2,40,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+7672,120000,male,1,2,30,-1,-1,-1,-2,-1,2,179,1403,0,0,473,323,1403,0,0,473,0,9438,0
+7673,280000,female,1,1,37,1,-2,-2,-1,-1,-1,0,0,0,539,94,3582,0,0,539,0,3582,392,0
+7674,390000,female,2,2,28,-1,-1,-1,-1,-1,-1,1421,1286,2123,2219,1205,3343,1294,2133,2230,1209,3365,2151,0
+7675,340000,female,1,1,46,-1,-1,-1,-1,-1,-1,9435,40670,14007,11922,84739,11132,40670,24330,11943,84739,11132,46039,0
+7676,10000,male,2,2,47,-1,-1,-1,-1,-1,0,219,9110,9797,-10433,9767,9067,10400,1000,0,20200,200,0,1
+7677,110000,male,2,1,35,0,0,0,0,0,0,48131,73221,74341,50184,51412,49448,32123,3000,1800,2041,2069,3000,1
+7678,100000,male,2,2,31,0,0,0,-2,-2,-2,95972,97650,-5000,-5000,-5000,-5000,5000,0,0,0,0,0,0
+7679,130000,female,2,1,25,0,0,0,0,0,0,119703,122967,125101,54560,52681,44529,5200,5301,3000,2000,5000,13801,0
+7680,230000,male,2,1,45,2,2,2,2,0,0,221691,226696,223872,98219,100276,102263,10000,3600,0,3628,3643,3929,0
+7681,290000,female,2,1,39,0,0,0,0,2,2,296002,284025,278422,283034,284430,294131,12000,11600,12628,8000,16600,4000,1
+7682,50000,male,1,2,29,0,0,0,0,0,0,16645,18368,20053,20721,21234,22881,2000,2000,1000,1000,2000,0,0
+7683,120000,female,1,2,27,-2,-2,-2,-2,-2,-2,13394,17356,6826,36830,6280,150,17456,6826,36837,6280,150,504,0
+7684,240000,female,1,1,36,-1,-1,-1,0,-1,-1,7058,4786,6853,5673,7588,2737,4789,6853,113,7588,2737,0,1
+7685,360000,female,1,2,32,0,0,0,0,0,0,166848,149903,138091,138123,140324,108772,7294,6135,4504,4669,4060,3475,0
+7686,110000,female,3,2,31,0,0,0,0,0,0,77595,78322,66068,61486,60695,58147,3700,2212,2100,2200,2200,1910,0
+7687,60000,female,3,2,23,0,0,0,0,-1,0,23268,16603,8651,500,29468,30201,1215,1001,502,29468,1201,1000,0
+7688,130000,male,1,2,33,1,-2,-2,-1,0,0,0,0,0,8495,6480,0,0,0,8495,0,0,0,1
+7689,250000,female,1,1,31,-1,-1,-1,-1,-1,-2,315,-72,7304,95,0,0,0,7376,0,0,0,0,0
+7690,410000,male,3,2,38,-1,-1,-1,-1,-1,-1,4822,232,2255,2546,2650,6286,233,2266,2558,2663,6303,12,0
+7691,130000,female,3,2,53,0,0,0,0,0,0,100184,99001,88214,90167,90682,92672,4700,3200,3403,3300,3500,3300,0
+7692,200000,male,1,2,38,0,0,0,2,2,2,180486,183076,195535,190960,202139,194326,7000,15500,0,14184,0,6700,0
+7693,60000,female,1,2,25,2,2,0,0,0,0,37287,36412,37280,35321,36099,36724,0,1800,1414,1500,1377,1402,0
+7694,20000,male,1,2,25,-2,-2,-2,-2,-2,-2,85,1347,3969,1855,3569,3823,1377,4122,1865,3611,3823,19386,0
+7695,20000,male,2,1,37,0,0,0,0,2,0,17214,9633,10944,11280,11011,7755,2248,1500,757,0,430,1000,0
+7696,380000,female,2,1,50,0,0,0,0,2,2,294100,313346,299786,307801,288820,266266,30125,11600,20009,11000,0,40000,0
+7697,80000,male,3,1,47,0,0,0,0,-1,0,78415,80093,74598,34712,40452,39762,3369,1688,694,44492,1455,1365,1
+7698,160000,male,2,2,31,0,0,0,0,0,0,24645,24956,25819,25754,25898,25925,1420,1699,1050,1104,1041,1000,0
+7699,50000,male,1,2,23,1,2,0,0,0,0,47201,47548,48402,28331,29174,29739,1400,1800,1100,1300,1200,1100,0
+7700,50000,male,2,1,34,0,0,0,0,0,0,24249,25952,29915,30215,5964,2800,2100,5000,1000,0,56,0,0
+7701,310000,male,2,1,34,0,0,0,0,0,0,97196,95832,83123,46342,44693,43296,6000,5000,4000,3000,3000,2000,0
+7702,130000,male,2,2,30,0,0,0,0,2,2,95799,97858,100534,105347,103550,109733,4500,5200,8000,0,8100,0,0
+7703,180000,male,1,2,33,0,0,2,0,0,0,33331,35311,31648,23461,20671,17122,5317,23,208,10,51,0,0
+7704,130000,female,2,1,43,0,0,0,0,0,0,129099,130522,106158,97685,80733,82883,5008,6003,4000,3000,4870,3000,0
+7705,50000,male,1,1,35,0,0,0,0,0,0,50482,50267,44880,45122,49518,50389,6749,5000,8000,5000,10000,2000,0
+7706,150000,female,2,1,30,1,2,0,0,0,0,36472,33947,35518,30564,21849,25168,0,5035,5000,900,10000,7000,1
+7707,230000,female,1,2,25,0,0,0,0,0,-2,32915,21726,12299,5860,0,0,4794,3116,5029,0,0,0,0
+7708,20000,female,1,2,23,0,0,0,0,0,0,19082,19286,19637,18826,19522,21775,1321,1400,1000,1000,2583,0,0
+7709,360000,female,1,1,33,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+7710,180000,female,1,1,31,1,-2,-2,-1,-1,-2,0,0,0,2537,0,0,0,0,2537,0,0,0,0
+7711,280000,male,2,1,37,0,0,0,0,0,0,196807,193629,195583,189545,184042,183287,7005,10023,7047,7023,7012,7017,0
+7712,90000,female,1,2,23,-1,0,0,2,2,2,11495,10764,11304,9601,10050,8304,1200,3000,0,2000,0,2000,1
+7713,210000,male,2,1,41,1,2,0,0,0,0,149343,145319,86335,69670,59502,119494,0,5000,3600,2000,2000,5000,0
+7714,240000,male,1,2,30,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+7715,200000,female,1,1,49,-1,-1,-2,-2,-2,-2,4739,-61,-61,-61,-61,-61,0,0,0,0,0,0,0
+7716,180000,female,1,1,35,0,0,0,0,0,0,47603,48705,50140,60607,67976,20412,5705,3003,10607,7976,5412,2460,0
+7717,190000,male,3,1,44,1,-1,2,0,0,0,-1600,2400,2184,2184,2184,0,4000,0,0,0,0,0,0
+7718,50000,female,3,1,53,-1,-1,-1,-1,-1,-1,4794,3848,4682,4521,4165,4809,4000,5000,5000,4200,4810,4763,0
+7719,80000,female,5,1,23,-1,-1,-1,0,0,0,5000,0,31432,24455,26920,0,0,31432,3000,3000,0,0,0
+7720,50000,male,2,2,23,2,2,0,0,0,0,32589,32583,21197,7666,4768,5685,1000,2000,1000,1000,1000,1000,1
+7721,130000,male,1,2,29,0,0,-2,-2,-2,-2,102640,-10,-10,-10,-10,-10,0,0,0,0,0,0,0
+7722,30000,female,2,1,52,2,2,2,2,2,2,18499,20391,20758,21118,21632,22129,2500,1000,1000,1000,1000,0,1
+7723,30000,female,1,2,28,0,0,0,0,0,-1,36541,17625,26243,25829,-175,664,5000,11000,3000,2000,1500,0,0
+7724,50000,male,2,2,24,0,0,2,2,0,0,20378,23346,23670,22994,23473,23932,3300,1000,0,1000,1000,962,1
+7725,360000,female,1,1,41,0,0,0,0,0,0,100608,95511,96288,100251,99983,122578,4000,6000,5000,4000,80000,5000,0
+7726,80000,female,2,2,24,2,0,0,0,0,0,45647,45248,33696,40092,40946,41588,2039,2000,7000,1482,2501,3082,1
+7727,460000,male,1,2,33,0,0,0,0,0,0,161054,164509,168730,172072,154177,157246,6050,7000,6000,5593,5630,6089,0
+7728,200000,male,1,1,48,-1,-1,-1,-1,-1,-1,5472,4306,4655,4930,3601,3366,4318,4681,4958,3712,3476,990,0
+7729,50000,male,2,2,22,0,0,0,-1,-1,0,49334,48237,49496,10353,4337,15017,5000,2510,10371,16533,11017,698,1
+7730,370000,female,2,2,28,0,0,0,0,0,0,87248,82477,71825,69872,63656,46555,2896,2097,2000,1818,1044,28034,0
+7731,20000,female,2,1,42,3,2,2,2,2,2,18464,19465,19649,19978,20512,20831,1600,800,950,1000,800,0,1
+7732,50000,female,1,2,24,0,0,0,0,0,0,50537,44686,38493,33769,34211,34944,2554,1900,1355,1300,1300,1500,0
+7733,80000,male,2,1,54,0,0,0,0,0,0,26730,24568,27979,22460,22743,22988,1500,3901,1001,1001,1001,1901,0
+7734,170000,female,1,1,31,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+7735,400000,male,1,1,54,-2,-2,-2,-2,-2,-2,1348,21411,-25,4895,48976,15319,21532,0,4920,49221,15395,0,0
+7736,500000,female,2,1,41,0,0,0,0,0,0,131720,103746,91805,76152,62783,44422,3900,3200,2766,2100,1703,1092,0
+7737,250000,male,3,1,44,-1,-1,-1,-1,-1,-1,6826,3900,4482,43546,38051,576,3924,4482,43676,38166,576,2389,1
+7738,80000,female,2,2,22,0,0,0,0,0,0,80491,64868,51936,30165,30145,30085,2327,1687,1052,1076,1121,1237,0
+7739,90000,female,2,3,40,1,2,0,0,0,2,89762,90395,87428,61778,68248,66997,3000,2773,2402,7660,0,2711,0
+7740,120000,male,3,2,44,4,3,2,0,0,0,149229,138487,127516,124530,120937,67711,0,0,6000,5067,1548,120862,1
+7741,310000,male,2,1,44,0,0,0,0,0,0,3947,5987,7739,8843,12204,14520,2500,2000,2000,3500,2500,1500,0
+7742,20000,male,2,2,22,0,0,-2,-2,-1,-1,13540,397,998,734,1698,500,406,1101,736,1799,601,0,0
+7743,60000,female,2,2,29,-1,2,2,-1,2,2,4603,4186,0,1887,1543,3972,0,0,1887,0,3557,0,0
+7744,460000,female,1,2,29,0,0,0,0,0,0,170894,160223,160894,165246,169983,173330,7018,7000,7002,8007,8038,6052,0
+7745,220000,male,2,1,40,-1,-1,-1,-1,-1,-1,2300,1000,11289,4887,3083,9401,1000,11289,4887,3083,10020,6473,0
+7746,220000,male,1,2,32,0,0,0,0,0,0,203689,204943,172926,104747,180458,182435,10000,8000,6000,107000,13000,8000,1
+7747,20000,male,2,2,33,1,2,0,0,0,-2,17439,16872,17483,9152,0,0,0,1000,183,0,0,0,0
+7748,80000,male,3,1,38,-1,-1,2,0,-1,2,6270,14412,12540,1261,2705,1261,19421,0,0,2705,0,1261,1
+7749,220000,male,1,2,31,-1,-1,-1,-1,-1,-1,7521,4023,5878,6452,5157,4159,4028,5892,6463,5163,4169,3733,0
+7750,20000,male,2,2,23,0,0,0,0,0,0,10478,11193,12207,14402,16399,20929,1193,1207,2402,2399,5000,0,0
+7751,100000,female,2,2,26,0,0,0,0,0,0,46891,48134,49331,50508,51543,52685,2000,2000,2000,2000,2000,2000,0
+7752,230000,female,1,2,31,0,0,0,0,0,0,81734,82238,80623,90997,62063,62003,3687,4539,2220,3214,2407,2061,0
+7753,300000,female,2,1,40,0,0,0,0,0,-1,184164,151244,150727,196467,201425,-8276,7028,6000,50000,10013,9505,175074,0
+7754,20000,male,2,2,24,0,-1,-1,-1,-1,-1,2522,390,0,780,0,780,390,0,780,0,780,0,0
+7755,160000,male,1,2,29,-1,-1,-1,0,-1,-1,390,4238,780,390,390,540,4238,780,0,390,540,780,0
+7756,70000,female,2,1,27,1,2,0,0,2,2,48098,47922,51806,55625,57072,58269,881,4700,4700,2500,2300,2300,1
+7757,240000,female,2,2,37,0,0,0,0,0,0,280110,281104,286048,369693,243198,243498,10000,15002,9000,10000,8600,8500,0
+7758,100000,male,2,2,25,-1,-1,-1,0,0,0,1285,2530,23496,23263,23176,23542,2530,23496,1500,1500,2000,1500,0
+7759,220000,male,2,2,30,-2,-2,-2,-2,-2,-2,18301,20161,24621,17125,18378,1344,2026,10040,1000,1253,1350,4416,0
+7760,50000,male,2,2,42,0,0,0,0,0,0,5268,5896,6645,7009,6869,7268,1107,1246,1000,500,1000,390,0
+7761,80000,female,3,1,44,-1,-1,-1,-2,-2,-2,5730,5837,0,0,0,0,5837,0,0,0,0,0,0
+7762,130000,male,1,2,28,2,2,2,-2,-2,-2,114144,102650,0,0,0,0,0,0,0,0,0,0,1
+7763,30000,female,2,2,23,1,2,0,0,2,2,27171,27429,26571,28128,27548,29536,1000,1800,2300,0,2600,0,0
+7764,360000,female,2,1,46,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+7765,280000,male,2,1,34,0,0,0,0,0,0,126305,128888,123909,124078,124489,114110,4728,4700,4210,4455,4109,4000,1
+7766,230000,male,1,1,45,0,0,0,0,0,0,43885,44926,45941,46853,47834,48942,1749,1764,1676,1735,1902,2189,0
+7767,30000,female,1,2,24,-1,-1,-1,-1,-1,-1,3055,18392,640,0,2583,4653,18407,640,0,2583,4653,2583,0
+7768,70000,female,2,1,28,0,0,0,0,0,0,45738,36105,27484,28526,30053,30379,4016,2000,2000,2000,2000,2000,1
+7769,100000,male,2,2,32,0,0,0,0,0,0,43788,44843,45814,46727,46798,46799,1759,1730,1643,1696,1685,1653,0
+7770,50000,male,2,2,27,0,0,0,-1,2,0,50679,45126,37800,51457,50463,41758,2033,1900,51457,0,1642,1538,1
+7771,150000,female,2,2,26,-2,-2,-2,-2,-2,-2,221,0,0,0,0,0,0,0,0,0,0,0,0
+7772,20000,male,2,2,46,-1,-1,-1,0,0,-2,780,0,1170,780,0,0,0,1170,0,0,0,0,1
+7773,100000,male,3,3,48,2,-1,0,0,0,0,10514,8408,5250,9360,4098,800,13008,1119,7110,110,102,0,1
+7774,90000,female,2,2,25,2,2,2,0,0,0,41757,42797,41814,42813,43571,46350,2001,0,2000,1600,3500,0,1
+7775,50000,male,3,2,49,0,0,0,0,0,0,34461,35582,40610,11292,3266,10012,2000,6000,2000,2200,10000,2100,0
+7776,200000,male,1,1,49,2,2,2,2,2,2,2500,2500,2500,2500,2500,2500,0,0,0,0,0,0,1
+7777,250000,female,2,2,26,0,0,0,0,0,-1,46467,17787,18852,24097,19152,1547,1500,1500,5645,500,1547,0,0
+7778,140000,female,1,1,32,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+7779,320000,female,2,1,44,-1,-1,-1,-1,0,-1,396,396,396,792,396,396,396,396,792,0,396,396,0
+7780,20000,female,2,1,22,2,2,2,2,2,2,20439,20564,20479,19415,20540,20903,1602,900,0,1800,850,0,1
+7781,80000,female,2,2,26,0,0,0,0,0,0,46738,48237,49642,52052,40505,41471,3001,3000,3000,3000,1637,2928,0
+7782,300000,female,2,2,36,1,-2,-1,-1,-1,-1,0,0,200,0,16418,88632,0,200,0,16418,88632,1913,0
+7783,500000,female,1,1,38,0,0,0,2,-1,-1,54787,72780,48785,16025,19120,11461,20015,1670,0,19120,11461,18038,0
+7784,30000,male,2,2,22,1,-1,0,0,0,0,4873,14891,14860,14260,8864,2578,16547,3000,1000,1000,1990,3597,0
+7785,130000,female,4,2,47,2,-1,-1,0,-1,-1,1478,1501,2598,1299,1299,1299,1501,2598,0,1299,1299,1299,0
+7786,40000,male,2,1,25,0,0,0,0,0,2,37540,38611,39508,38674,38410,37661,1976,1873,1300,2824,0,2000,0
+7787,20000,female,2,2,22,0,0,0,0,-2,-1,19194,19840,7627,0,0,19191,1129,1002,0,0,19191,0,0
+7788,470000,female,1,2,39,-1,-1,-1,-1,-1,-1,1264,5478,4753,5289,831,2140,5478,4757,5289,831,2140,2440,0
+7789,200000,female,1,2,42,-1,-1,-1,-1,-1,-1,1347,208,1582,3607,894,301,208,1677,3607,894,301,2457,1
+7790,50000,female,2,2,31,2,2,2,2,2,2,30619,31634,32317,32787,33416,34116,1800,1500,1300,1300,1400,1500,1
+7791,130000,female,2,1,36,0,0,0,0,0,0,26244,27068,28383,29018,29671,-2000,1550,1769,1404,1493,0,4720,0
+7792,100000,female,2,1,33,-2,-2,-2,-2,-2,-1,5576,792,0,1889,2458,10175,792,0,1889,2458,10175,122,0
+7793,160000,male,1,2,29,-1,-1,-1,-1,-1,0,554,-78,622,-10,326,326,0,700,0,652,0,0,0
+7794,50000,male,3,2,26,0,0,0,0,0,-1,24132,20109,19932,19762,10708,20148,1902,1200,30,1031,20201,605,0
+7795,180000,male,1,1,42,0,0,0,0,0,0,124064,121847,82809,81755,81316,81206,5087,2891,3755,2941,3206,2837,0
+7796,50000,male,3,2,29,0,0,0,0,0,0,47863,48261,19258,19268,19040,19555,2000,2000,1000,1000,1000,1000,0
+7797,70000,female,3,1,40,0,0,0,0,0,0,65198,65674,58599,49179,49080,49705,2924,1924,1726,1763,2136,1384,0
+7798,270000,male,2,1,53,2,2,2,2,2,2,211630,209812,219829,214795,228084,232680,3000,15000,0,17000,8500,0,1
+7799,210000,female,2,1,48,-2,-2,-2,-2,-2,-2,140,140,140,60,120,-20,140,140,60,200,0,0,0
+7800,70000,female,2,1,43,0,0,0,0,0,-1,66083,67681,40849,2917,1473,917,3017,2025,58,29,917,40442,0
+7801,160000,female,1,2,31,-1,-1,-1,-1,0,-1,3555,7340,0,7634,7350,7938,7340,0,7634,0,7938,3993,0
+7802,30000,female,2,1,27,0,0,0,0,0,0,4527,7427,11013,16013,16340,3396,3000,6000,5000,327,3396,1680,0
+7803,250000,male,1,2,29,-1,-1,-1,-1,-1,0,12044,3260,4037,1184,5107,1893,3276,4057,1196,5123,6,2539,0
+7804,10000,female,3,1,51,1,2,0,0,2,2,2731,2541,3499,4441,4233,5566,0,1000,1000,0,2000,1170,0
+7805,50000,male,2,2,27,1,2,2,2,2,2,17654,17082,20088,19483,19742,19275,0,3300,0,1560,0,881,0
+7806,120000,male,3,1,38,-1,-1,-1,-1,0,-1,3465,5543,5463,10912,5228,9769,5558,5479,10929,24,9769,18,0
+7807,50000,male,2,2,28,0,0,0,0,0,0,49417,48104,49348,28433,53718,27084,1966,2210,1946,983,1950,946,0
+7808,250000,male,1,2,36,0,0,0,0,0,0,143200,146391,91714,88397,90312,92456,7000,3500,3100,3200,3500,3500,0
+7809,20000,male,2,2,48,-1,-1,2,0,0,-2,390,1170,780,780,0,0,1170,0,0,0,0,0,1
+7810,70000,female,2,2,25,0,0,0,0,0,0,19508,19633,19685,18887,19073,20208,2000,2000,1000,2000,3003,3007,0
+7811,50000,male,2,2,46,-1,-1,0,0,0,0,2635,27299,21206,20127,19049,19730,27921,1262,656,655,2433,1000,0
+7812,110000,male,2,2,41,0,0,0,0,0,0,120767,133593,125852,118254,120537,112021,24800,4400,4300,4205,4500,4304,0
+7813,100000,female,1,2,32,1,2,0,0,-1,0,7130,6873,8101,8235,34087,34749,0,1500,565,36252,1500,2500,0
+7814,20000,male,2,1,31,-2,-2,-2,-2,-1,-1,-66,-66,460,-201,1600,0,0,526,201,1801,0,0,0
+7815,120000,female,2,1,25,0,0,0,0,0,0,30925,73143,73130,74898,76779,79594,43272,3120,2888,3001,4500,2500,0
+7816,50000,male,2,2,26,0,0,0,-1,-1,-1,5385,4754,-43,1757,-765,18032,2000,0,1800,0,19000,4000,0
+7817,140000,male,2,1,29,1,2,2,2,2,2,73302,74539,75724,73909,78305,76888,3000,3000,0,5763,0,6100,1
+7818,140000,male,2,1,34,-1,-1,-1,-1,-1,-1,711,711,711,10976,711,711,711,711,10976,711,711,291,1
+7819,250000,female,1,1,39,0,0,0,0,0,0,196409,182372,191040,199400,206988,167607,6023,15000,10011,11214,5315,3180,0
+7820,180000,female,2,2,30,0,0,0,0,0,0,43779,44213,44561,45130,47790,48222,1751,1712,1894,4000,1837,1711,0
+7821,130000,male,2,2,26,0,0,0,-2,-2,-2,55348,55400,0,0,0,0,1650,0,0,0,0,0,0
+7822,200000,male,1,2,27,-2,-2,-2,-2,-2,-2,2436,3458,758,-2,750,26903,5963,760,0,752,26983,599,0
+7823,100000,female,1,2,26,0,0,2,2,2,0,64086,68836,69704,70566,69311,70844,6005,2600,2600,0,2685,2800,0
+7824,20000,male,2,2,23,-1,0,0,0,0,0,15879,15441,9124,12915,4305,18495,4000,2000,10000,500,16000,1000,0
+7825,290000,female,3,2,27,0,0,0,-1,-1,-1,63584,28972,10772,22463,164570,9672,2000,1399,22468,164791,9672,18889,0
+7826,110000,male,1,1,46,0,0,0,0,0,0,106111,108698,105666,57940,59247,59594,5015,4081,2101,2202,2204,2100,0
+7827,30000,female,2,2,27,2,2,5,5,4,3,1200,1200,1200,1200,600,300,0,0,0,0,0,0,0
+7828,150000,female,3,2,23,0,0,0,0,0,0,6319,8190,6686,7686,4526,65839,2000,1000,1000,0,63300,11632,0
+7829,150000,female,2,2,34,-1,-1,-1,-1,-1,-1,1467,698,4102,713,810,5438,701,4137,719,817,5467,9587,0
+7830,120000,female,1,2,25,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+7831,280000,male,2,1,28,0,0,0,0,0,0,24189,25294,26667,26926,27492,28333,1500,1800,1000,1000,1300,1000,0
+7832,90000,female,2,1,36,1,-2,-2,-2,-2,-1,-191,-191,-191,-191,-191,209,0,0,0,0,550,3780,0
+7833,130000,male,2,1,39,0,-1,-1,-1,-1,-1,10896,390,390,390,390,390,390,390,390,390,390,390,0
+7834,30000,male,2,2,24,1,2,2,2,0,0,27262,26545,28590,27831,28433,30257,0,2800,0,1050,2300,0,1
+7835,100000,male,1,1,25,-1,0,0,0,-2,-2,91842,40308,41800,0,0,0,1809,2301,0,0,0,0,0
+7836,30000,female,1,2,27,0,0,0,0,0,2,20234,20476,21991,22544,24061,23428,2000,3000,2000,2000,1000,0,1
+7837,90000,female,2,1,28,0,0,0,0,0,0,45537,43173,36230,28068,20229,20650,3000,2500,2000,2000,1100,0,0
+7838,160000,female,2,1,25,4,3,2,0,0,0,103398,100925,97701,99434,99527,16331,0,0,2321,432,546,550,0
+7839,260000,male,1,1,51,-1,-1,-1,-1,-1,-2,771,1593,419,529,0,4090,1596,437,529,0,4090,98,0
+7840,50000,male,1,2,28,2,0,0,0,0,0,48508,45951,44013,28094,29138,30625,2500,2000,1200,1500,2000,1500,1
+7841,260000,male,3,2,27,0,0,0,0,0,0,132755,137049,137558,140455,144032,146615,6417,5000,5184,6000,5026,4005,0
+7842,220000,female,1,2,35,-1,-1,-1,-1,-1,-1,7443,5572,5572,5572,5774,3264,5600,5600,5600,5802,3279,5613,0
+7843,20000,female,2,2,22,0,0,0,0,0,0,19248,20054,19133,19397,19702,20506,2000,1300,678,706,2037,0,0
+7844,300000,female,1,2,25,1,5,4,3,2,3,315632,309330,302869,306395,311256,305413,0,0,10000,10000,0,0,1
+7845,250000,female,1,2,31,1,-2,-2,-2,-2,-2,-129,-129,-329,-329,-329,-529,0,200,0,0,200,86,0
+7846,200000,male,2,2,30,-1,-1,-1,-1,-1,-1,416,416,416,416,416,0,416,416,416,416,0,832,0
+7847,20000,female,2,2,21,0,0,2,0,0,0,13660,15056,15400,12900,19500,0,2000,1000,0,6600,0,0,0
+7848,50000,male,2,2,25,3,3,2,2,2,0,26798,27274,27529,28280,27691,28278,1200,1000,1500,0,1200,1200,1
+7849,100000,female,3,2,28,0,-1,-1,0,0,0,7220,13677,49773,61244,31410,20529,13695,49813,50054,33,10028,100000,0
+7850,170000,male,2,1,37,0,0,0,0,0,0,164240,167116,165432,120084,123439,107682,8019,6196,4300,5000,4006,4007,0
+7851,120000,male,1,1,37,0,0,0,0,0,0,68329,72212,79334,80531,80944,78771,5000,9000,3000,3100,3000,3000,0
+7852,120000,female,2,2,38,0,0,0,0,0,0,33814,35033,36175,15833,16170,16897,1766,1908,566,591,1000,626,0
+7853,50000,male,2,2,26,0,0,0,0,2,0,37862,17545,18537,19941,19500,18921,1304,1296,1700,2,800,1000,0
+7854,260000,female,1,2,28,0,0,0,0,0,0,63504,66283,67341,54725,36117,35144,4000,3002,2000,2000,2464,1000,0
+7855,60000,female,2,2,44,0,0,0,-1,-1,-2,57657,54173,67300,590,0,0,3400,1650,1180,0,0,400,0
+7856,120000,female,2,2,28,-1,2,2,-2,-2,-2,200,200,0,0,0,0,0,0,0,0,0,0,1
+7857,220000,female,3,1,47,-1,-1,-1,-1,-1,-1,38412,50367,64735,22792,184483,62140,50451,64775,22794,184483,62140,48080,0
+7858,200000,male,1,2,26,-1,-1,-2,-2,-2,-2,299,-201,-201,-201,-201,-201,0,0,0,0,0,0,0
+7859,90000,female,2,1,45,0,0,0,0,-1,0,63049,71245,70819,20301,87497,86938,10000,1612,0,87497,10000,20000,0
+7860,310000,female,1,1,25,0,0,0,0,0,0,184538,153625,142810,125869,107986,83461,5019,3872,3147,2912,5109,1604,0
+7861,110000,female,2,1,34,0,0,0,0,0,0,18328,19385,20400,20729,21465,21740,1300,1280,600,1005,709,732,0
+7862,140000,female,2,2,42,0,0,0,0,0,0,24984,26010,27026,27714,28139,28697,1434,1450,1138,1021,1026,1061,0
+7863,160000,female,1,1,51,0,0,-1,-1,-1,0,63406,64176,2348,2447,10968,10934,2901,2348,2447,10968,531,208,0
+7864,80000,female,2,2,24,2,2,2,2,2,2,23787,23124,26700,27064,27685,27091,0,4300,1100,1200,0,2500,1
+7865,500000,female,1,1,36,0,0,0,0,0,0,251931,301458,234316,199360,163408,186618,101458,10009,20071,20000,35565,18000,0
+7866,130000,male,2,2,29,0,0,0,0,0,0,130708,132080,130128,101794,101826,101763,6658,5146,4000,4000,3866,3435,0
+7867,240000,female,2,1,44,0,0,0,2,0,0,220439,224653,238637,232995,206167,210100,9657,19253,0,7641,7522,7949,0
+7868,50000,female,2,2,24,2,2,7,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,1
+7869,180000,female,1,1,42,1,-1,-1,-2,-2,-2,0,1290,0,0,1200,0,1290,0,0,1200,0,0,0
+7870,240000,male,2,2,33,-1,-1,-1,0,-1,-1,1863,15172,8930,7324,10506,10625,15172,8930,0,10526,10625,11982,1
+7871,180000,male,2,1,30,0,0,0,0,0,0,135001,135199,134817,52629,51543,52781,6100,6000,1900,1680,1900,3888,0
+7872,130000,male,2,2,33,0,0,0,0,0,0,114984,118641,119286,121377,123655,125917,5800,4400,4350,4500,4600,5000,0
+7873,50000,female,1,2,24,0,0,0,-2,-2,-2,12806,13490,0,0,0,0,7522,0,0,0,0,0,1
+7874,500000,male,1,2,34,-1,-1,-1,2,0,-1,154085,4373,65539,62450,36039,2300,4373,62450,0,500,2300,211192,0
+7875,200000,male,2,1,29,0,0,0,0,0,2,168374,172158,175701,181235,192713,189449,8000,7900,10000,14400,0,6700,0
+7876,220000,female,1,2,29,-2,-2,-2,-2,-2,-2,19030,14287,8183,21189,7838,321,14287,8194,22000,7838,321,21317,0
+7877,70000,male,2,1,33,0,0,2,0,0,0,21670,24401,23716,24124,24684,25222,3400,0,1100,1100,1100,1103,0
+7878,440000,male,1,1,31,-1,0,0,0,0,-1,21359,18905,16540,13247,7577,1652,5023,3024,1043,3037,1660,365,0
+7879,290000,male,4,1,52,0,-1,-1,-1,0,0,302396,2000,2208,105145,106511,108228,2000,2604,215917,3685,3700,3786,0
+7880,50000,female,2,2,23,0,0,0,0,0,0,30941,30730,29908,28809,27905,13835,1751,1402,776,773,522,430,0
+7881,120000,female,2,2,23,0,0,0,0,0,0,115653,108971,83592,22321,32150,36644,5000,5000,2000,20000,10000,10000,0
+7882,80000,female,3,1,44,-1,-1,-1,-1,-1,-1,485,10735,2954,24243,7043,13531,10735,2957,24277,7046,13671,3206,0
+7883,170000,female,2,1,27,0,0,0,0,0,0,164214,165825,167008,131544,125652,127224,8001,7077,5000,5000,5000,5000,0
+7884,160000,male,1,2,41,-1,-1,-1,-1,-1,-1,396,396,396,0,688,396,396,396,0,688,500,0,1
+7885,280000,male,1,2,29,-1,2,-1,-1,-1,0,7712,1171,1599,436,47613,31987,0,2013,436,47613,1472,2275,1
+7886,40000,female,2,1,47,2,2,2,2,0,0,31121,30343,34021,33177,33870,34537,0,4514,0,1378,1382,1427,1
+7887,80000,female,3,1,53,0,0,0,0,0,0,66002,68679,70906,71474,72936,63912,5000,5000,3000,3000,3000,3000,0
+7888,210000,female,2,1,40,-1,-1,-1,-1,-1,-1,12555,560,5287,2000,900,406,560,5287,2000,900,406,900,0
+7889,60000,female,2,1,29,2,2,2,2,2,2,56252,57760,58250,56352,57930,16563,3000,2100,0,2801,0,3619,1
+7890,20000,female,2,1,40,0,0,0,0,0,0,14492,15304,16035,16517,16781,17142,1349,1080,562,500,456,218,1
+7891,230000,female,2,2,36,1,-2,-2,-2,-1,-1,2404,681,4048,0,5092,7452,687,4053,0,5092,7464,2485,0
+7892,90000,female,1,1,50,0,0,0,0,0,0,58979,64004,65298,65233,66717,67562,6000,3000,2300,2500,3000,2500,0
+7893,170000,female,1,1,35,-1,-1,-1,-1,-1,-1,736,316,1970,1132,1132,1397,1289,1970,1132,1132,1397,1397,0
+7894,70000,female,2,2,22,0,0,0,0,0,0,57889,33868,33390,26457,27165,27562,1592,1497,947,1134,1000,1021,0
+7895,50000,male,2,2,29,0,0,2,2,2,0,24043,26806,26077,27898,27315,27709,3165,0,2257,0,1000,2000,0
+7896,140000,female,1,1,48,-2,-2,-2,-2,-1,-1,5349,2210,5472,0,544,0,2216,5472,0,544,0,0,0
+7897,50000,female,3,2,55,0,0,0,0,0,0,47860,47294,45136,29378,29750,30327,1936,3654,1038,1222,1217,946,0
+7898,270000,female,1,2,45,0,0,0,0,0,0,96131,98635,39177,110453,111230,113670,4204,2819,93694,3948,4199,3309,0
+7899,170000,female,2,1,49,2,2,0,0,0,0,164210,159883,126712,87369,76552,78277,0,6400,3600,3000,3000,3100,1
+7900,180000,female,1,2,27,0,0,0,0,0,0,95757,98098,101255,101341,98419,85259,3880,5114,3238,3401,2980,3000,0
+7901,80000,female,1,2,29,-1,-1,-1,-1,-1,-1,928,4844,3305,3287,630,2436,4844,3326,3287,630,2436,1882,0
+7902,450000,female,1,2,37,-1,0,0,0,0,0,71985,85047,74354,57628,57381,14870,15000,1879,20000,20000,5000,50893,0
+7903,400000,male,1,2,29,-1,-1,-1,-1,0,-1,6748,7777,20192,17337,5396,516,7777,20192,17337,0,516,53871,0
+7904,400000,female,2,2,35,-1,2,-1,-1,-1,2,1908,952,333,4928,8235,3317,0,333,4928,8235,0,1708,0
+7905,60000,male,3,2,25,0,0,0,0,0,0,57530,59869,59942,28934,27461,28504,3869,2742,1200,1461,1504,1683,0
+7906,110000,male,1,2,25,0,0,0,0,0,0,51139,53797,56394,58341,60242,62234,3500,3500,3500,3000,3000,3000,0
+7907,60000,female,2,2,24,0,0,0,0,0,0,27295,27403,23837,23078,22618,23950,1724,1600,1000,1000,2500,1300,0
+7908,140000,male,1,2,37,0,-1,0,0,0,0,3351,64555,63796,55234,52959,50617,64555,2898,1890,2000,2000,1900,1
+7909,20000,male,2,1,24,0,0,0,0,0,0,10085,11416,12520,12714,13059,13193,1500,1600,700,700,500,1000,1
+7910,50000,male,1,2,30,0,0,0,2,2,2,60762,58791,59529,55405,55904,52160,2300,4400,0,4000,0,4000,1
+7911,30000,female,3,2,53,0,0,0,0,2,0,21101,21831,23457,24972,24432,25126,1374,2000,1908,0,1100,1000,0
+7912,210000,female,2,2,26,0,0,0,0,0,0,193345,160508,156422,146954,137937,134581,8000,6005,5200,5500,5000,5500,0
+7913,50000,male,2,2,36,2,2,2,2,2,2,32899,34076,34522,33668,35323,36588,2000,1300,0,2200,2000,1500,1
+7914,200000,male,1,2,30,-1,-1,-1,-2,-1,2,15176,2693,6632,0,734,584,2715,6632,0,734,0,22489,0
+7915,120000,female,3,1,50,0,0,0,0,0,0,119231,120651,73115,64398,42588,42863,3825,2276,1909,1510,1663,1445,0
+7916,200000,female,1,2,29,-1,-1,-1,-1,-2,-1,8972,0,65,0,0,5162,0,65,0,0,5162,0,1
+7917,180000,female,2,1,35,-1,-1,-1,-1,-2,-1,1866,590,360,0,0,414,590,360,0,0,414,0,0
+7918,440000,female,2,1,47,1,-1,-1,-1,-1,-1,-6,1160,1807,-11,2220,165,1166,1891,0,2231,165,1573,1
+7919,150000,female,2,2,22,0,0,0,-1,0,0,7600,8749,10652,32330,15681,6173,1300,3652,33866,410,200,776,0
+7920,130000,male,1,1,70,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+7921,50000,female,2,1,26,0,0,0,0,0,0,14661,11586,9275,11181,2931,27209,3000,1000,5000,0,25000,5000,0
+7922,180000,female,2,2,28,1,2,-1,-1,-1,0,7445,1706,1600,0,22357,21541,0,1600,0,22357,1500,785,1
+7923,80000,female,2,2,24,0,0,0,0,0,0,77139,78690,57259,56939,59066,60008,3010,2100,2000,3000,2500,2100,0
+7924,170000,female,1,2,29,-2,-2,-2,-1,0,0,0,0,0,10232,9677,0,0,0,10232,194,0,0,0
+7925,150000,female,1,2,25,-1,0,-1,-1,-1,-2,18836,5312,740,10,0,0,2000,740,1410,0,0,0,0
+7926,240000,male,2,2,35,0,0,0,0,0,0,179662,180787,181379,170318,128076,64634,7003,8000,8000,2500,2400,2600,0
+7927,140000,male,2,2,24,0,0,0,2,2,2,125080,127751,136996,140813,142170,144587,4688,11421,7580,5000,4913,0,1
+7928,20000,female,2,1,36,0,0,0,0,0,0,9845,5419,6098,6840,8560,13410,3000,2000,1000,2000,5000,0,0
+7929,240000,female,1,1,38,-1,-1,-1,0,0,-1,8213,20000,44384,28734,13200,43791,20000,44384,750,2000,81800,1050,0
+7930,30000,female,2,1,45,0,0,0,0,0,0,30226,31237,13511,13781,14070,14350,1676,1223,493,511,514,532,0
+7931,50000,female,2,2,29,2,2,2,0,0,2,5804,6855,6599,6577,7120,6857,1300,0,236,650,0,810,1
+7932,20000,female,2,1,37,0,0,2,0,0,0,17450,20358,19722,19616,19228,19878,3200,0,830,750,1000,282,1
+7933,20000,female,2,1,50,7,6,5,4,3,2,22858,22246,21623,21000,20388,19915,0,0,0,0,0,994,1
+7934,310000,female,2,1,48,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+7935,200000,male,2,2,39,0,0,-1,0,0,2,13124,11774,6328,4714,42184,39576,1058,6336,10,39585,39,1087,0
+7936,330000,male,3,2,48,1,-1,-1,-1,-1,-1,0,571,0,11942,300,-200,571,0,11942,300,0,0,0
+7937,100000,female,3,1,53,0,0,0,0,0,0,99768,100098,75296,73774,75603,77807,3919,3010,3000,6000,3500,3000,0
+7938,50000,female,3,2,35,0,0,0,0,0,0,33507,32401,7087,7227,7378,7527,1108,1118,258,267,271,1147,0
+7939,120000,male,2,2,30,0,0,0,0,0,0,77413,70630,61181,52187,49327,41096,5000,3000,2000,2000,1500,1500,0
+7940,160000,male,1,1,42,0,0,0,0,0,3,69896,71971,73996,75065,82472,80984,3810,3831,2900,8800,0,0,0
+7941,170000,male,1,1,62,0,0,0,0,-1,-1,12980,12724,11888,10802,1477,1302,1550,1000,216,1477,1302,1302,0
+7942,30000,female,2,2,23,-1,-1,-1,-2,-2,-2,390,780,0,0,0,0,780,0,0,0,0,0,0
+7943,150000,male,1,2,29,0,0,0,0,0,0,146330,147720,148748,104123,132321,37683,4979,3592,2556,2300,1427,1000,0
+7944,320000,female,2,2,33,-1,-1,-1,-1,-1,-1,16003,1933,8835,3728,764,5468,1939,8835,3751,764,5468,749,0
+7945,50000,female,2,1,58,1,2,2,2,2,2,32113,31319,33688,32849,34950,35658,0,3200,0,2795,1431,0,0
+7946,20000,female,1,2,26,0,0,0,0,0,0,18362,19669,16479,16694,17334,17063,1640,1506,721,1000,1000,600,0
+7947,20000,male,2,2,25,4,5,4,3,2,0,20014,19432,18840,18248,17816,18021,0,0,0,0,636,1200,1
+7948,50000,male,2,1,34,0,0,0,0,0,0,45398,37433,30609,30432,30254,30088,2008,2000,1500,1501,2105,2219,0
+7949,160000,male,3,1,46,-1,-1,-1,-1,-1,-1,1672,766,762,762,762,762,766,762,762,762,762,762,0
+7950,20000,female,2,2,34,0,0,0,0,0,0,19727,20330,20199,19609,19957,2361,2000,1200,0,348,0,420,0
+7951,130000,male,2,1,27,0,0,-1,0,0,0,53119,48994,17285,12448,12855,11795,3106,22511,600,1005,1004,1006,1
+7952,150000,female,2,2,24,1,-1,-1,-2,-2,-2,0,10437,4044,594,0,0,10437,4156,600,0,0,9240,0
+7953,20000,female,2,2,23,0,0,0,0,0,0,16622,18913,15868,16188,14891,3044,3015,5086,5000,3202,5000,694,0
+7954,20000,male,3,1,45,0,0,2,2,2,2,10574,13097,12595,13157,12803,13851,3010,0,1070,0,1260,0,1
+7955,70000,female,3,1,56,0,0,-2,-2,-2,-1,16976,0,0,0,0,1000,5000,0,0,0,1000,1770,0
+7956,50000,male,1,2,26,-1,0,0,0,0,0,18017,18561,19204,19588,20024,18694,1629,1272,656,706,954,700,0
+7957,200000,male,2,1,40,0,0,0,0,0,0,63182,44876,38764,37618,35737,40710,1765,10007,2019,5027,15031,7088,0
+7958,320000,female,2,2,30,-1,-1,-1,-1,0,0,3720,4206,15610,10556,11863,5619,4206,15610,10556,8000,5600,2604,0
+7959,50000,male,3,2,34,-1,2,2,-2,-2,-2,780,780,0,0,0,0,0,0,0,0,0,0,0
+7960,70000,male,2,2,25,0,0,0,0,0,0,23018,24044,25059,25559,26094,26612,1400,1415,915,947,952,986,0
+7961,200000,female,3,2,33,-2,-2,-2,-2,-2,-2,0,0,0,0,1246,-3,0,0,0,1246,0,1266,0
+7962,250000,female,2,1,29,-2,-2,-2,-2,-2,-2,0,256,258,258,258,258,256,258,258,258,258,258,0
+7963,70000,female,1,2,25,0,0,0,0,0,0,66738,68601,65615,66429,67858,69723,3005,3000,2500,2500,3000,1400,1
+7964,90000,female,2,1,36,-1,-1,-1,-1,-1,-1,685,0,490,850,1000,1360,0,490,850,1000,1360,0,1
+7965,400000,male,1,2,32,0,0,0,0,0,2,21930,20489,20734,16476,17857,14656,5028,5030,2012,4014,37,2013,0
+7966,130000,female,1,2,33,-1,0,0,0,-1,-1,2629,9995,7267,2518,16202,2505,9900,4300,2000,16202,2505,2348,0
+7967,110000,female,1,1,40,0,0,2,0,0,0,52691,55000,52277,52055,52437,55560,5000,0,2000,3000,5000,2000,0
+7968,150000,male,1,2,38,1,2,2,2,0,0,139005,135350,148041,143259,142519,142162,0,15000,0,5099,5472,5000,0
+7969,330000,female,1,2,28,-2,-2,-2,-2,-2,-2,1127,13030,14922,17722,3390,0,13030,2500,3000,3390,0,0,0
+7970,30000,female,3,2,21,2,2,2,0,0,0,28309,31229,29752,27262,27262,24265,3700,0,0,0,0,0,0
+7971,360000,female,1,2,32,-1,-1,-1,-1,0,-1,42524,53303,3924,43900,88865,12104,53563,3924,43900,50000,12104,960,0
+7972,50000,male,1,1,54,0,0,0,0,0,0,48768,49419,17303,17647,18016,18375,2173,1287,631,653,658,832,0
+7973,60000,female,2,2,24,2,2,2,2,2,2,27583,26860,28601,29819,30192,31045,0,2500,2000,1000,1500,0,1
+7974,200000,female,2,2,27,-2,-2,-2,-2,-2,-2,264,264,264,264,264,264,264,264,264,264,264,0,0
+7975,180000,female,1,2,43,-2,-2,-2,-2,-2,-2,0,0,0,5436,100,9330,0,0,5436,100,9330,0,0
+7976,50000,male,3,2,52,0,0,0,0,0,0,48946,98823,50031,20413,18336,18405,2047,3167,682,662,1000,1000,0
+7977,80000,female,3,1,38,-1,-1,-1,0,0,-2,330,0,330,330,0,0,0,660,0,0,0,0,0
+7978,50000,female,2,2,23,2,2,2,3,2,2,31805,32988,34935,34076,34685,33976,2000,2800,0,1300,0,3700,1
+7979,270000,female,3,1,30,-1,-1,-2,-2,-1,-1,3842,3934,0,0,3353,764,3934,0,0,3353,764,35532,0
+7980,100000,female,2,2,23,-1,-1,-1,-1,-1,-1,694,650,687,620,0,627,656,687,620,0,627,3620,1
+7981,170000,female,2,2,38,0,0,0,0,0,0,151050,148362,142223,126060,123978,120689,6000,5012,5000,5000,5000,5000,0
+7982,30000,male,1,1,30,0,0,0,0,0,0,10024,12855,14634,16378,16961,19669,3000,2000,2000,1000,3000,1000,0
+7983,230000,female,2,2,38,0,0,0,0,0,0,104364,106549,108719,111039,113365,115625,3867,3941,4123,4267,4300,4084,0
+7984,200000,female,1,1,34,-1,-1,-1,-1,-1,-1,7448,5471,4506,10067,9273,2931,5473,4506,10137,9521,2931,10381,0
+7985,130000,male,1,2,36,0,0,0,0,-2,-2,127790,128272,6230,0,0,0,6000,1400,0,0,0,0,1
+7986,30000,male,2,1,62,0,0,0,-2,-2,-2,11188,2990,0,0,0,0,1000,0,0,0,0,0,0
+7987,140000,female,2,1,26,0,0,0,0,0,0,41547,40925,36775,35877,34812,33899,2000,1800,1300,1400,1400,1000,0
+7988,490000,male,1,1,43,-1,-1,-1,-1,-1,-1,25916,14187,56573,81414,62063,14122,14187,56717,81414,62063,14122,25417,0
+7989,160000,male,2,2,30,0,-1,-1,0,-1,-1,2720,1280,5850,150,1240,0,1280,5850,0,1240,0,0,0
+7990,180000,male,2,1,42,0,0,0,0,0,0,27884,28958,29864,30632,31274,32144,1526,1432,1200,1072,1326,704,1
+7991,260000,female,2,1,32,0,0,0,0,0,0,243742,237204,238314,219634,186841,189010,8017,8117,14044,5410,5855,5254,0
+7992,80000,female,2,2,27,0,0,0,0,0,0,73684,68883,45257,45981,46032,46192,2896,1722,1619,1665,1700,1833,1
+7993,360000,female,1,2,29,-1,-1,-1,0,0,0,357,3050,9118,19183,36842,10621,3050,9118,11000,30000,428,3166,1
+7994,20000,female,1,2,25,-1,-1,-1,-1,-1,-2,2650,0,855,640,0,0,0,855,640,0,0,2742,0
+7995,20000,male,1,2,28,0,0,0,-2,-2,-2,19849,20650,0,0,0,0,1650,0,0,0,0,0,0
+7996,80000,female,3,1,28,0,0,0,0,0,0,75903,34137,32390,32651,32170,31493,2014,1705,2000,2000,3000,3000,0
+7997,500000,male,1,2,32,0,-1,0,0,0,-1,18290,25287,24385,18168,4469,27796,25287,1037,363,89,27796,8000,0
+7998,160000,male,1,1,55,0,0,0,0,0,0,152162,154715,155026,79051,81089,-311,6500,4270,2518,2994,0,0,0
+7999,20000,female,1,2,22,0,0,0,0,0,0,12404,13694,14768,15518,16265,16706,1500,1300,1000,1000,711,1000,0
+8000,330000,female,1,1,36,-1,-1,-1,-1,-1,-1,399,26,519,452,457,0,26,707,452,457,0,0,0
+8001,80000,female,1,2,26,0,0,2,2,2,2,38174,40550,41577,41595,43264,43402,3000,2000,1000,2500,1000,2000,1
+8002,220000,male,2,1,40,2,0,0,0,0,0,206473,208464,175407,175170,174726,175057,8027,6218,6220,6316,6504,6504,0
+8003,230000,female,2,2,28,0,0,2,2,2,2,185399,198941,201358,204067,200720,212403,18150,7200,7500,0,15079,8000,0
+8004,90000,female,2,2,25,0,0,0,0,0,0,81694,78656,78054,78116,75483,72821,3609,5000,4000,3315,7539,5000,0
+8005,300000,male,3,1,61,-1,-1,-2,-1,2,2,274750,0,0,411,261,8561,0,0,411,0,8300,0,1
+8006,30000,female,2,1,45,0,0,0,0,0,0,30488,30900,30480,31124,29333,30177,1600,1500,1100,1053,1320,967,1
+8007,80000,female,2,1,40,2,2,2,2,0,0,78610,80666,82713,80838,49575,48354,3900,4000,0,1920,1800,1800,1
+8008,60000,male,1,2,27,0,0,0,-2,-2,-2,10908,13331,0,0,0,0,8331,0,0,0,0,3860,0
+8009,360000,male,5,1,31,0,0,0,0,0,0,275178,280535,82455,83359,85171,87046,7500,3500,2500,2500,2600,3000,0
+8010,360000,male,1,2,27,-1,2,-1,-1,-1,-1,1809,400,2420,2540,0,346,0,2420,2540,0,346,604,0
+8011,30000,female,2,2,23,0,0,0,2,0,0,10805,10527,12443,11949,12107,12907,1184,2100,0,500,1000,0,0
+8012,190000,male,3,1,50,0,0,0,2,0,0,106410,108770,115325,112063,114484,121179,5491,9800,0,4300,8700,4500,0
+8013,130000,female,2,1,45,0,0,0,0,0,2,128671,129901,127658,127362,128726,129081,7000,4710,4500,9400,3600,5500,0
+8014,110000,female,1,2,34,0,0,0,0,0,0,110712,110988,98270,79402,80804,81024,4112,3648,2800,3100,3133,2800,0
+8015,350000,female,2,1,46,-1,-1,-1,-1,-1,-1,13000,13576,15059,13000,25300,626,13576,15059,13000,25300,626,0,0
+8016,50000,female,3,1,52,0,0,0,0,0,0,41140,41599,32533,23156,23782,24386,1500,1500,1000,1000,1000,1000,0
+8017,130000,female,2,3,38,-1,-1,-1,0,0,-1,780,0,11836,7216,8826,390,0,11836,2000,2000,390,390,0
+8018,50000,male,1,2,29,-1,2,2,2,2,0,53746,51631,50880,51034,46154,42852,0,5160,1753,0,1508,5000,1
+8019,50000,male,2,2,25,0,0,-1,0,0,-1,27206,0,14805,14699,14999,497,0,14805,294,300,498,1003,0
+8020,380000,female,2,2,31,0,0,0,0,0,0,200932,190991,175028,162699,138158,135920,10000,10000,5849,4570,5447,120000,0
+8021,260000,female,1,2,30,0,0,0,0,0,0,162241,137320,126479,110217,102703,84519,5045,8016,5000,4000,4014,3000,0
+8022,140000,female,2,2,28,-2,-2,-2,-2,-2,-2,-176,-176,-176,-176,-176,-176,0,0,0,0,0,652,0
+8023,270000,female,1,2,36,-1,-1,-1,-1,-1,-1,3458,3833,9791,10532,6559,500,3833,9791,10532,6559,500,961,0
+8024,30000,female,2,1,33,0,0,0,0,0,0,30147,28789,29885,30188,21647,22087,1554,1650,950,800,800,500,0
+8025,240000,male,1,2,35,1,-2,-2,-2,-2,-2,220,0,0,0,0,0,0,0,0,0,0,0,0
+8026,70000,male,3,2,32,0,0,0,0,0,0,65460,65721,45492,45482,46371,47603,2352,2030,1800,2000,2000,2000,1
+8027,120000,male,1,1,50,2,2,2,0,0,2,38565,39997,39211,39917,42268,43192,2200,0,1500,3000,1600,1500,1
+8028,160000,female,2,2,42,2,2,0,0,0,0,152630,95758,97251,98010,99669,101664,0,4385,3639,3762,3800,3897,1
+8029,170000,male,3,2,36,-1,-1,-1,0,0,-1,396,5596,6953,16157,28856,4941,5596,6953,10000,15000,4941,22114,1
+8030,380000,female,1,2,31,0,0,0,0,0,0,331697,332339,322995,314161,327945,289814,15000,15000,20019,20000,9934,9330,0
+8031,160000,female,2,1,26,1,2,0,0,0,0,75628,72717,74651,70403,71890,73893,0,3211,2505,2612,3500,5000,0
+8032,30000,male,2,2,39,2,3,2,2,2,3,27000,26286,26556,26818,29425,28662,0,1000,1000,3200,0,0,0
+8033,260000,female,1,1,40,-2,-2,-2,-2,-2,-2,2095,781,3985,942,-18,3739,785,4004,946,0,3757,6119,0
+8034,70000,male,2,2,41,2,2,2,3,3,2,34751,37683,40265,42306,41352,44342,3500,3500,3000,0,4000,2000,1
+8035,240000,male,2,1,39,-1,-1,-1,-1,-1,-1,5357,4397,11204,3403,2223,1761,4437,11237,4293,2229,1766,591,0
+8036,170000,female,2,1,43,0,-1,-1,-1,-1,-1,20699,11614,11487,14716,8172,8244,11614,11487,14743,8172,8244,13733,0
+8037,30000,male,2,1,36,1,4,3,2,2,2,28083,27371,26645,25919,27535,28197,0,0,0,2038,1268,0,0
+8038,90000,male,3,2,32,0,0,0,-1,-1,-2,87182,82741,68883,265,-613,-613,3045,1497,265,0,0,31000,0
+8039,250000,male,2,2,25,2,0,0,0,0,0,28681,30615,33726,36823,34829,23994,3000,4000,4000,5000,4000,2000,0
+8040,270000,female,2,2,25,0,0,0,0,0,0,23579,24613,25617,25434,25966,26486,1419,1423,910,942,951,1000,0
+8041,130000,female,2,2,24,-2,-2,-2,-2,-2,-2,986,-14,4388,0,0,1109,0,4402,0,0,1109,4200,1
+8042,360000,male,1,1,43,-1,2,-1,-1,-1,-1,20310,6588,11627,35765,9681,3002,34,12085,41879,10053,4016,505,0
+8043,490000,male,1,1,35,0,0,0,0,0,0,23396,19454,17195,15691,14466,13908,1207,1107,507,1507,1500,3615,0
+8044,110000,female,2,1,31,0,0,0,0,0,0,79126,76304,77783,79323,80563,78669,2782,2761,2770,2900,3000,2568,0
+8045,100000,male,2,2,27,-2,-2,-2,-2,-2,-2,33628,35760,0,33333,0,0,36066,156,33333,0,0,0,0
+8046,200000,male,3,1,28,-1,-1,-1,-1,-1,-2,1793,5189,8627,1530,-200,-200,5191,9003,1530,0,0,980,0
+8047,50000,female,2,2,24,0,0,0,0,0,0,51261,51493,50136,20287,20281,20027,2600,2000,730,800,900,750,0
+8048,220000,male,2,2,30,-1,0,0,-2,-2,-2,2501,2071,0,0,0,0,1000,0,0,0,0,0,0
+8049,360000,male,3,2,41,2,-1,0,0,0,0,218,7022,9744,89215,98256,99145,7022,3001,80000,10500,5000,10000,0
+8050,20000,female,2,1,51,-1,-1,-2,-2,-2,-2,10400,0,0,0,0,0,0,0,2000,0,0,0,0
+8051,70000,female,2,1,44,0,0,0,0,0,0,79867,79593,29340,28026,28605,28705,2163,2000,2000,1000,5000,322,0
+8052,180000,female,2,2,29,0,0,0,0,0,0,122024,123228,120339,122743,124893,126390,4500,4300,4200,4487,4087,3700,0
+8053,50000,male,2,2,32,0,0,0,0,2,2,48934,25276,18588,19994,20258,19783,1602,1320,1718,729,0,397,0
+8054,140000,female,1,2,28,0,-1,0,0,0,0,5845,10322,12830,13317,14936,18504,10322,5000,1000,2000,4000,4000,0
+8055,220000,male,2,1,47,-2,-2,-2,-2,-2,-2,7625,8325,1497,0,0,7625,8334,1497,0,0,7625,2226,0
+8056,150000,female,2,2,50,-1,-1,-1,-1,-1,-2,7890,8958,780,7500,0,0,8958,780,7500,0,0,0,0
+8057,30000,male,2,2,33,0,-1,0,0,0,0,29574,26663,27731,56359,28847,13030,28000,2336,2000,2546,1000,0,0
+8058,300000,female,2,1,32,0,0,0,0,-2,-2,170379,142384,72350,0,0,0,6600,3750,0,0,0,0,0
+8059,420000,male,1,1,36,-1,2,-1,-1,-1,-1,860,430,2010,6058,160,580,0,2010,6058,160,1000,430,0
+8060,80000,female,2,2,30,0,0,0,2,0,0,35738,37108,41012,40052,41110,42071,1946,4850,0,1700,1800,1800,0
+8061,100000,female,3,2,46,1,-1,2,2,-1,0,0,203,203,0,7856,16544,203,0,0,7856,10000,865,0
+8062,120000,female,2,2,25,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,997,1
+8063,230000,female,1,2,38,0,0,0,0,0,0,25195,28652,32838,35511,26828,19887,10000,15000,6120,10000,6000,4000,0
+8064,200000,female,2,1,28,-1,-1,-1,0,-1,-1,2816,316,632,316,316,316,316,632,0,316,316,316,0
+8065,200000,male,1,2,29,-1,-1,-1,0,0,-1,389,389,1167,778,389,389,390,1168,1,1,390,778,0
+8066,230000,male,3,1,30,0,0,0,0,0,0,105105,51584,44005,35161,24985,25176,2068,1894,1466,1018,1136,503,0
+8067,200000,male,2,2,27,-1,0,0,-2,-2,-2,131791,17666,0,0,0,0,2000,0,0,0,0,0,0
+8068,50000,male,3,1,65,1,2,2,2,2,2,11763,11283,13288,12780,13522,13155,0,2200,0,1100,0,1200,1
+8069,220000,male,1,1,36,-1,-1,-1,-1,0,-1,16783,4861,2267,1350,925,11597,4880,2267,1350,0,11597,178577,0
+8070,90000,male,3,2,27,2,2,2,2,0,0,90221,91898,91334,59253,58519,58443,4000,2090,0,2078,2900,2000,1
+8071,500000,male,2,2,35,0,0,0,0,0,0,207237,224007,275615,220088,216482,136086,20001,30168,6022,6375,5005,5000,0
+8072,130000,female,1,2,29,-1,-1,-2,-2,-2,-2,2139,0,0,0,0,0,0,0,0,0,0,0,0
+8073,210000,male,2,1,37,0,0,0,0,0,0,85327,85263,48645,50826,52346,53819,2500,3000,3000,2500,2500,2000,0
+8074,200000,female,1,2,30,-1,-1,0,0,0,0,1674,7398,6867,7477,7232,6442,7398,1000,1000,145,276,780,0
+8075,20000,male,1,2,24,2,2,2,2,2,2,1891,5680,5441,6346,6099,7235,4000,0,1000,0,1237,1000,1
+8076,410000,female,1,1,38,2,2,2,0,0,0,180922,184241,176857,175193,165929,114527,7670,2,5561,5432,4546,5191,1
+8077,290000,female,1,1,35,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+8078,270000,female,2,2,26,0,0,0,0,0,0,84188,82668,74901,72785,71836,55234,5000,3200,3000,5000,5234,3000,0
+8079,90000,female,1,2,27,0,0,0,0,0,0,14421,18846,22509,24129,24815,27725,5000,4000,2000,1075,3500,3000,1
+8080,30000,female,1,2,27,0,0,0,0,0,0,26135,27407,29002,26806,25948,22162,2000,2500,1500,1000,2000,3000,0
+8081,360000,female,1,2,28,-1,-1,-1,-1,-1,-1,26349,1245,2043,265,265,5862,4045,2043,265,265,5862,1907,0
+8082,240000,male,1,1,30,0,0,0,0,0,0,240770,243509,228735,198585,202762,202932,9000,8009,7100,7324,7200,7074,0
+8083,180000,female,2,2,23,0,0,0,0,0,0,180636,157396,160925,132312,80984,42562,20000,20000,10130,3000,4000,84000,0
+8084,50000,female,2,1,24,-2,-2,-2,-2,-2,-2,900,0,0,0,0,0,0,0,0,0,0,0,0
+8085,50000,female,2,2,47,0,0,0,0,0,0,50883,51117,51125,50497,50544,50555,2200,5300,2000,2000,2000,2000,1
+8086,100000,male,2,2,30,0,0,0,0,0,0,83312,58651,37913,38582,39408,40593,2900,2000,1600,1600,2000,1700,0
+8087,50000,male,2,2,39,0,0,0,0,0,0,47378,48333,48638,49207,49599,50594,2105,1800,1735,1938,1960,2000,0
+8088,360000,male,1,1,48,0,0,0,0,0,0,167922,159433,126114,18258,6989,7691,6206,10030,1061,1011,3016,189853,0
+8089,550000,female,5,2,52,-2,-2,-2,-2,-2,-2,277376,266532,256321,19753,464,8199,6001,6016,19753,464,8199,0,0
+8090,260000,female,2,1,39,2,0,0,2,2,2,136007,139215,146127,143637,154531,147016,5400,9500,0,12766,0,0,1
+8091,500000,female,1,1,34,-2,-2,-1,2,2,-2,0,0,3500,3500,0,0,0,3500,0,0,0,0,1
+8092,130000,male,1,2,27,-1,-1,-2,-2,-2,-2,1960,0,0,0,0,0,0,0,0,0,0,0,0
+8093,30000,male,2,2,39,0,0,0,0,0,0,28708,28285,26702,20115,18426,18013,1514,1278,671,870,879,0,0
+8094,160000,female,1,2,40,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+8095,420000,female,2,1,40,-2,-2,-2,-2,-2,-1,3976,2892,2890,3391,2409,4270,2916,7898,3401,2416,4281,3785,1
+8096,50000,female,3,1,22,2,2,2,2,2,2,40189,43434,44316,45189,46214,48904,3900,1900,1900,1900,3600,0,0
+8097,30000,female,1,2,36,1,2,0,0,0,0,25747,25048,26060,26578,27133,27783,0,1433,951,983,1099,750,1
+8098,50000,female,2,2,32,0,0,2,0,0,0,40253,40757,33922,30097,29013,28167,5806,6,1000,1000,1200,1100,0
+8099,160000,female,1,1,39,1,-1,2,2,-2,-2,-5,776,186,0,0,0,781,0,0,0,0,0,1
+8100,120000,female,2,2,26,3,3,2,2,3,2,12034,12548,12056,13958,13468,6144,1000,0,2400,100,0,57258,0
+8101,50000,female,1,2,28,0,0,0,0,0,0,46471,43507,44016,43396,41470,48676,1807,2016,1796,1570,10000,1778,0
+8102,130000,male,2,2,42,0,0,0,-2,-2,-2,130888,133400,0,0,0,0,6000,0,0,0,0,0,0
+8103,150000,male,1,2,42,2,0,0,0,0,0,143896,147475,75423,70034,44311,20056,6482,3440,2046,4311,5056,1169,1
+8104,450000,male,1,1,48,-1,2,-1,-1,-1,-1,5514,1509,949,575,3489,0,0,949,575,4929,0,0,1
+8105,150000,male,1,1,29,-1,-1,-1,0,0,-2,46745,20853,90787,11232,0,0,20995,91269,56,0,0,0,0
+8106,90000,female,2,2,53,0,0,0,-2,-2,-1,30045,30000,0,0,0,439,1000,0,0,0,439,20959,0
+8107,130000,male,1,2,28,0,0,0,0,0,-2,92174,93991,54735,31682,0,0,4086,2635,1700,0,0,0,0
+8108,130000,male,2,2,30,0,0,0,0,0,2,131801,129141,132221,131743,131986,131430,4800,5250,5050,5700,5100,5012,0
+8109,390000,female,2,1,41,-2,-1,0,0,0,0,3983,25146,197534,179690,170173,164339,25146,185059,9137,6513,5058,6000,0
+8110,200000,male,2,2,29,2,2,4,4,4,4,2500,2500,2500,2500,2500,2500,0,0,0,0,0,0,1
+8111,300000,female,2,1,50,0,0,0,0,0,0,23436,22055,18497,8426,11291,14449,1350,2008,301,3000,5000,5000,0
+8112,140000,female,2,1,42,0,0,0,0,0,0,19080,18807,18624,19652,23477,22330,4344,4548,3760,5854,3039,3866,0
+8113,200000,female,1,2,35,-1,-1,-1,-1,-1,-1,909,2708,3514,2297,928,0,2711,3514,2297,928,0,2308,0
+8114,30000,male,2,2,30,0,0,0,0,0,0,27020,27985,28782,24082,17060,0,1703,1500,1000,1000,0,0,0
+8115,30000,male,3,2,24,2,2,2,0,0,-2,28470,31407,30200,30000,0,0,3407,0,0,0,0,0,0
+8116,160000,female,1,2,37,0,0,0,0,0,0,153002,157427,158160,156314,145663,113486,7812,6700,5000,5049,3825,3570,0
+8117,210000,female,2,2,37,0,0,0,0,0,0,31090,58054,44624,43339,44245,45125,28008,15000,1552,1605,1615,1698,0
+8118,310000,female,2,2,51,-2,-2,-2,-2,-2,-2,107,0,0,235,0,0,0,0,235,0,0,584,0
+8119,400000,female,2,1,33,0,0,-2,-2,-2,-2,9940,0,11451,101,551,19982,0,11451,104,600,20015,0,0
+8120,50000,female,3,1,35,2,2,2,2,0,0,49873,50796,49727,21826,10208,10100,2200,568,0,516,400,300,1
+8121,80000,male,2,1,33,0,0,-1,-1,-1,0,28496,16984,1155,-144,57245,49947,1000,1155,0,59000,2061,1390,0
+8122,340000,female,1,2,33,-1,-1,-1,-1,-1,-1,592,7102,7796,1653,6185,415,7102,7796,1653,6185,415,2247,0
+8123,140000,male,1,2,27,-2,-1,0,0,0,0,25001,138430,135573,98172,93677,95276,141472,8000,5075,4000,4000,5000,0
+8124,380000,male,1,1,39,2,0,0,0,0,0,127449,130506,132838,136616,140240,143914,6600,6000,6000,6000,6000,6005,1
+8125,50000,female,2,1,34,1,2,2,0,0,2,51046,52337,51170,51526,50524,48510,2400,0,3000,6000,0,2000,1
+8126,10000,male,2,2,35,0,0,0,0,0,0,7026,8106,9363,9559,9855,10042,1200,1400,500,600,500,200,0
+8127,30000,female,2,2,28,-1,-1,-2,-1,-1,-1,5688,-378,-378,920,5448,0,0,0,1298,5448,0,10000,0
+8128,360000,female,1,1,50,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+8129,150000,female,2,1,47,-1,-1,-1,-1,-1,2,316,316,316,0,782,316,316,316,0,1098,0,0,0
+8130,50000,male,1,2,23,0,0,2,2,0,0,15336,18681,19463,16894,17667,19211,3600,1400,0,1200,2000,1000,0
+8131,120000,male,2,3,42,0,0,0,0,0,0,3135,4422,5540,6442,7182,8057,1500,1200,1000,1000,1000,1000,0
+8132,250000,female,1,2,35,-2,-2,-2,-2,-2,-2,661,661,268,0,0,0,0,268,0,0,0,0,0
+8133,20000,male,1,2,24,0,0,0,0,0,0,13359,14438,15461,16200,16936,17273,1300,1270,1000,1000,619,800,1
+8134,30000,female,1,1,30,0,0,2,2,0,0,15199,17728,19129,18527,18758,19285,3100,2000,0,679,837,721,1
+8135,260000,male,1,2,27,0,0,0,0,0,0,158711,129796,101721,76699,56738,39134,30000,4132,3410,2600,1800,1200,0
+8136,250000,female,1,2,30,0,0,0,0,-1,-1,21550,23932,37329,26339,4836,9655,3500,15054,7885,4836,9655,5000,0
+8137,260000,female,2,1,41,-1,-1,-1,-1,-1,-1,2699,3543,500,3540,2957,917,3543,505,3540,2957,917,0,0
+8138,150000,female,2,1,35,0,0,0,0,0,0,128278,131715,133625,49019,44801,39742,7000,6000,1800,1600,2000,1700,0
+8139,160000,female,2,2,33,-1,-1,-1,0,0,0,11859,0,11354,13012,17388,24140,0,11354,2000,6000,13000,11000,0
+8140,80000,male,2,2,30,0,0,0,-2,-2,-2,79813,82150,0,0,0,0,3750,0,0,0,0,0,0
+8141,500000,female,1,2,38,1,-2,-2,-2,-2,-2,27794,29712,65437,30368,6265,44196,30199,70403,30455,36,45225,35217,0
+8142,110000,female,2,2,29,1,2,2,2,2,2,21068,16412,16809,8682,8861,8623,1102,1000,0,602,0,1000,0
+8143,100000,male,1,2,28,0,0,0,0,0,0,97032,99895,26333,28110,2226,0,5341,7009,1777,2000,0,0,0
+8144,360000,female,1,1,35,0,0,0,0,0,0,101953,125238,205209,125982,128161,136447,25238,4385,11939,5681,10447,8010,0
+8145,330000,male,2,1,65,-2,-1,-1,-2,-2,-2,0,2500,0,0,0,0,2500,0,0,0,0,0,0
+8146,70000,female,3,1,32,0,0,0,2,0,0,10856,10822,13627,10852,12676,14463,2000,3000,0,2000,3000,4000,0
+8147,140000,male,1,2,29,-1,-1,2,0,0,-1,1712,2304,978,652,326,1052,2314,0,0,0,1052,652,1
+8148,200000,male,1,2,31,0,0,0,0,0,0,151819,154914,157776,160520,163878,167872,6000,5769,5411,5603,6367,4500,0
+8149,50000,male,2,1,49,2,0,0,0,0,0,47585,47582,21391,21867,19774,20486,2500,1300,2000,700,1000,2600,1
+8150,290000,male,1,1,56,0,0,0,0,0,0,222000,226917,415700,232732,220460,224780,10013,8501,15018,10001,7997,7624,0
+8151,30000,male,2,1,57,0,0,0,0,0,-1,29204,20564,16341,7593,7828,1366,1400,1000,1000,235,1366,0,0
+8152,180000,female,1,2,31,0,0,0,0,0,0,21760,22794,23801,24117,24468,25106,1689,1693,1009,888,1045,1077,0
+8153,30000,male,2,1,38,1,2,2,0,-1,-1,16063,17512,16800,16600,11959,12957,2000,0,0,11959,1200,0,0
+8154,180000,female,1,1,47,0,0,0,0,0,0,174648,104179,84940,65613,67256,71934,5000,13000,3000,2700,6000,5000,0
+8155,240000,male,1,1,39,-1,-1,-1,-1,-1,-1,2688,2688,2688,2688,2688,2688,2688,2688,2688,2688,2688,2688,0
+8156,130000,female,5,1,27,0,0,0,0,0,0,133792,127622,129795,122416,124653,126995,5000,5000,5000,5000,5000,4000,0
+8157,230000,male,1,1,32,1,-2,-2,-2,-2,-1,0,0,0,0,0,150,0,0,0,0,150,990,1
+8158,500000,male,1,2,43,0,0,0,-1,-1,-1,504644,512650,0,3887,0,7413,22650,0,3887,0,7413,0,1
+8159,360000,male,2,2,33,1,-1,-1,-2,-2,-2,197746,151600,741,-659,-659,-659,156108,741,659,0,0,0,0
+8160,50000,male,2,2,23,2,2,0,0,0,0,52156,51041,50205,20218,20263,19864,0,1310,705,750,730,700,1
+8161,200000,male,1,2,31,-1,-1,-1,0,0,-1,3702,25548,10594,7969,2865,5625,25678,10623,25,16,6000,19,1
+8162,230000,male,3,1,45,0,0,0,0,0,0,203135,208225,178559,172772,175057,177113,10000,6528,6000,6500,7000,10000,0
+8163,70000,female,2,1,32,3,3,4,4,5,6,31507,33699,35839,37954,39787,41601,3000,3000,3000,3000,3000,0,1
+8164,50000,male,2,2,29,2,2,2,2,2,2,39634,40697,41526,42045,42822,43962,2000,1800,1500,1600,2000,1700,1
+8165,500000,male,1,1,46,-1,-1,-1,-2,-2,-1,10678,6914,813,17280,26162,2518,6944,813,17280,26162,2534,2553,0
+8166,140000,male,2,1,28,0,0,0,0,0,0,110384,106389,97978,98857,101264,103524,3729,3539,3538,4000,4097,3631,1
+8167,140000,female,2,2,23,-1,-1,-1,0,0,0,396,396,21570,24986,25256,25091,396,21570,4500,1050,1183,6000,0
+8168,130000,male,2,2,32,0,0,0,2,0,0,109292,111908,111465,93557,95582,96226,4500,11350,0,3500,4200,3000,1
+8169,160000,female,3,1,48,0,0,2,0,0,0,153390,158421,152835,152638,142454,128895,15102,0,6000,5300,4784,4500,0
+8170,50000,female,3,2,58,1,-1,2,0,0,0,0,9587,8845,8867,9074,9254,10587,331,317,350,331,500,0
+8171,20000,male,3,1,41,0,0,0,2,0,0,13225,13655,14461,13221,12591,12631,1700,2100,0,458,1000,1000,1
+8172,360000,female,2,1,42,0,0,0,0,0,0,118368,124934,131328,137605,140729,146194,10000,10000,10000,5500,8000,6000,0
+8173,160000,female,2,1,51,0,0,0,2,0,0,67610,69908,78087,75255,78593,59816,4000,10000,0,5000,3000,3000,1
+8174,250000,female,1,1,37,-2,-1,2,2,-1,0,0,2886,2325,177,8068,5587,2886,202,0,8068,620,0,0
+8175,130000,female,2,2,25,-2,-2,-2,-2,-2,-1,668,1017,1298,550,-286,55138,1200,1300,964,1698,60549,5000,1
+8176,190000,male,1,2,36,1,2,2,2,2,2,153364,149482,160000,155932,166414,169625,0,13000,0,13000,6100,0,1
+8177,180000,female,2,2,25,-1,-1,-1,-1,-1,-1,2984,154,2111,1027,596,589,154,2115,1027,596,589,1115,0
+8178,80000,male,2,2,43,0,0,0,0,0,0,78144,78940,80238,50642,50533,50758,3318,3463,1600,1770,50000,1753,0
+8179,240000,male,1,2,40,-1,-1,-1,-1,-1,-1,1643,7060,650,4770,2515,37405,8000,5000,5000,0,40000,22669,0
+8180,50000,male,2,2,35,0,0,0,0,0,0,48064,49399,49943,18568,18740,19036,2500,2000,1000,1000,1000,1000,0
+8181,160000,female,2,2,50,-1,2,-1,0,-1,2,3139,1473,1863,390,930,390,0,1863,0,930,0,0,0
+8182,90000,female,2,1,49,-2,-2,-2,-2,-2,-2,264,0,528,0,528,264,0,528,0,528,264,0,0
+8183,310000,female,2,1,37,-2,-2,-2,-1,0,0,100648,-2000,3500,159028,162372,165588,716,6000,159028,5899,5921,6130,0
+8184,60000,male,1,2,27,0,0,0,0,2,2,39068,40107,41137,43644,44498,45417,1970,2000,3500,1700,1800,0,0
+8185,240000,male,1,2,29,0,0,0,0,0,-1,61888,12310,12073,9643,-8074,108493,5022,4014,113,6423,120000,15000,0
+8186,50000,female,2,2,24,0,0,2,2,0,0,46393,50022,50895,48598,47668,45400,4700,2000,0,2200,2000,2000,0
+8187,150000,female,1,1,34,-1,-1,-1,-1,-1,-1,9779,60911,19796,1725,1150,0,61168,19796,1725,1150,0,0,0
+8188,130000,female,2,1,44,2,2,2,2,2,2,99801,102403,103828,104139,106519,109109,5100,4000,3500,4200,4500,3500,0
+8189,20000,female,1,2,22,0,0,2,0,0,0,10003,13329,11613,10750,10606,7263,4211,0,237,242,163,22,0
+8190,150000,male,1,1,40,0,0,0,0,-1,0,123548,94995,52874,64269,73351,68257,4221,3094,30454,100049,5098,30242,0
+8191,240000,male,1,1,42,0,0,0,0,0,0,72339,91045,91027,51508,51127,0,20000,2213,1030,1023,6790,10893,0
+8192,50000,male,3,1,45,0,0,0,0,0,0,29875,15028,5639,6389,7130,7857,1700,1250,1000,1000,1000,1000,0
+8193,50000,male,3,1,51,0,0,0,0,0,0,43045,42965,43132,43995,43230,43334,1738,1653,1516,1530,2139,1572,0
+8194,270000,male,1,1,51,-1,-1,-1,-1,-2,-2,19984,2099,12985,0,0,0,2099,13056,0,0,0,0,1
+8195,20000,female,2,2,28,0,0,0,0,0,0,10818,11938,12949,13332,13618,14619,1300,1217,600,500,1230,0,0
+8196,300000,female,2,1,33,-2,-2,-2,-2,-2,-2,11613,12893,10841,11900,0,0,1513,1000,1059,0,0,51167,0
+8197,390000,male,1,1,34,0,0,0,-1,0,0,91701,68587,101211,96725,125810,182122,60081,84908,121081,80000,85000,8000,0
+8198,110000,female,1,1,37,0,0,2,0,0,0,14519,16982,16002,15262,15626,14465,3536,3,521,1000,520,325,0
+8199,90000,male,2,1,58,0,0,0,0,0,0,85818,88988,50780,50929,48735,49746,5100,2200,2200,1944,2200,2000,0
+8200,300000,female,2,1,30,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+8201,450000,male,3,1,42,2,0,0,0,0,0,152652,128708,100429,77069,63851,36877,7032,3003,10000,11000,3000,58000,1
+8202,20000,male,2,2,30,0,0,0,2,2,2,16728,17759,19752,19155,20385,19218,1307,2300,0,1525,0,1000,1
+8203,500000,female,1,2,33,1,-1,-1,-1,-1,-1,0,212,298,306,150,316,212,298,306,150,316,0,0
+8204,30000,female,2,2,46,0,0,0,0,0,0,32006,60079,26882,27570,28075,29065,1755,1500,1135,1100,1455,775,0
+8205,50000,male,2,2,51,0,0,0,2,2,0,15096,16541,18356,18181,18285,10220,2000,2400,420,600,600,500,1
+8206,140000,female,2,2,26,-1,0,0,0,0,0,9589,78122,79327,117859,120556,122894,70000,3100,40000,4600,4500,4800,0
+8207,10000,male,2,1,43,3,2,2,4,3,2,8261,9470,11163,10852,10396,10085,1500,2000,0,0,0,350,1
+8208,120000,female,2,2,37,-2,-2,-2,-2,-2,-1,874,0,0,0,305,20502,0,0,0,305,21742,0,0
+8209,30000,male,2,2,30,4,3,2,2,2,0,30562,29809,28920,29887,29525,25006,0,0,1900,15,1030,30802,0
+8210,30000,female,2,1,22,1,2,2,2,2,0,28037,29055,28303,29462,28859,29122,1745,0,3554,0,1190,1030,0
+8211,20000,male,1,2,33,1,2,2,2,2,2,17971,17399,19057,18453,19755,19288,0,2260,0,1600,0,644,0
+8212,10000,male,3,2,36,-1,-1,-1,-1,2,2,6517,344,0,10040,9735,10362,344,900,10040,0,790,0,0
+8213,110000,female,2,1,35,0,0,0,0,0,0,114023,102850,66639,57595,58814,60086,4097,3360,2100,2100,2200,3000,1
+8214,280000,female,1,1,29,-1,-1,-1,-1,-1,-1,2597,3807,1160,985,0,65862,3807,1160,985,0,65862,66240,0
+8215,500000,male,1,1,42,0,0,0,0,0,0,580928,597793,597415,569034,551702,568638,25624,21898,20851,19599,26000,20000,0
+8216,50000,female,3,1,46,4,5,4,3,2,0,33100,32319,31499,30748,30162,30016,0,0,0,0,3100,798,1
+8217,230000,male,2,1,30,-1,-1,-2,-1,-1,-1,5200,0,0,8780,11990,0,0,0,8780,11990,0,0,0
+8218,50000,male,2,1,53,-1,-1,-1,-1,-1,-1,493,493,493,493,493,493,493,493,493,493,493,493,0
+8219,120000,female,2,2,24,0,0,0,0,0,2,15322,16267,45844,47082,54307,53290,1500,30000,2000,8000,0,5000,0
+8220,30000,male,2,2,26,0,0,0,0,0,0,26301,27376,28359,24844,25364,25935,1500,1450,889,920,992,1000,0
+8221,330000,female,2,1,28,0,0,0,0,2,2,225079,229947,233122,246414,253338,249107,10000,8507,17215,11000,0,12000,0
+8222,360000,male,2,1,30,-1,-1,-1,0,0,0,6323,6934,17170,11152,6000,0,7001,17173,1000,1000,0,200000,0
+8223,40000,male,1,2,26,0,0,0,0,2,2,6586,7618,8484,10333,10023,11258,1300,1150,2000,0,1400,0,0
+8224,110000,female,1,2,29,2,0,0,0,0,0,106321,107630,106354,79154,69988,69018,4334,4250,2946,2506,2458,2524,1
+8225,40000,female,3,1,39,-2,-2,-2,-2,-2,-2,7955,5392,5151,3434,1143,0,5392,5151,3434,1143,0,0,0
+8226,70000,female,2,1,30,1,2,0,0,0,0,42490,35668,32397,24306,24316,20216,17,5043,2500,2009,2015,2010,0
+8227,100000,male,3,2,26,2,0,0,0,0,0,107643,109895,93420,73119,73642,71579,4048,3105,2700,2510,2703,2700,1
+8228,210000,female,2,1,50,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+8229,360000,male,2,1,38,-1,-1,-1,-1,2,-1,696,546,-150,1692,846,846,546,0,2538,0,846,696,0
+8230,260000,male,2,2,27,0,0,0,0,0,0,150943,149285,151779,135141,124475,107735,5501,5061,5000,5000,3900,3246,0
+8231,200000,female,1,2,34,-2,-2,-2,-2,-2,-2,500,810,500,0,0,300,810,500,0,0,300,0,0
+8232,160000,male,1,1,43,-1,-1,-1,0,0,0,162,414,6437,16520,14374,10969,414,6437,10428,463,426,219,1
+8233,420000,female,2,1,29,0,0,0,0,0,0,56255,121215,132536,131704,331059,328958,71536,12536,11704,212059,12958,12819,0
+8234,140000,female,1,2,28,1,2,0,0,0,0,86761,84546,87251,88227,90170,92044,0,5000,3300,3500,3500,3550,1
+8235,180000,male,1,2,38,0,0,0,0,0,0,141510,144439,146529,151106,153900,0,6700,6000,7000,6900,0,0,1
+8236,150000,female,3,1,39,2,2,0,0,0,0,153994,147038,122498,75782,71306,69737,0,5000,3000,3000,3000,5000,0
+8237,30000,female,2,1,35,0,0,0,0,0,2,22206,23846,24554,25213,27638,27042,2000,1409,1068,3000,0,3450,0
+8238,500000,male,1,2,34,0,0,0,0,0,0,8007,10556,14332,20393,22633,24318,3000,4000,6500,5000,2000,4000,0
+8239,240000,male,2,1,45,0,0,0,0,0,0,237868,242260,101542,30284,168674,171825,8932,4707,1862,140061,5262,5300,0
+8240,30000,male,1,2,22,0,-1,0,0,0,2,2949,19689,17681,17113,13368,11739,19689,2092,1500,1500,0,161,0
+8241,80000,male,2,2,28,0,0,0,0,2,0,47916,49964,49965,50142,46888,47592,3122,2123,4300,0,2800,3000,0
+8242,80000,male,2,2,34,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+8243,310000,male,1,1,39,1,-1,0,0,0,0,166517,18901,19781,22432,24058,25646,150000,1500,3000,2000,2000,3000,0
+8244,180000,female,1,2,33,0,0,0,0,0,0,94001,99558,106353,113047,115572,117660,8000,10000,10000,4500,4500,5300,0
+8245,60000,female,2,2,23,0,0,0,0,0,0,63709,64261,50243,15092,12037,10000,2351,1237,422,528,2000,5000,1
+8246,170000,female,2,2,33,-1,-1,-2,-1,-1,-1,298,0,0,467,203,0,0,0,467,203,0,1116,0
+8247,180000,female,2,1,31,0,0,0,0,0,0,173517,160996,132054,115551,109539,108837,10122,35206,40600,5000,10000,10000,0
+8248,180000,male,2,1,28,0,0,0,0,0,0,180827,175914,176778,172440,168914,171645,6600,7738,6200,6418,13000,0,1
+8249,350000,male,2,1,42,-1,-1,-1,0,0,-1,1037,1360,8686,3061,396,391,1365,8722,72,0,391,1406,0
+8250,360000,male,2,1,36,0,0,-1,-1,-1,-1,20328,12664,1901,2355,4206,5889,1204,1901,2355,4206,5889,0,0
+8251,140000,male,2,1,46,0,0,0,0,0,-1,133899,137171,139414,97268,99960,86728,5425,4979,3715,4498,86728,2412,1
+8252,310000,female,3,2,30,-1,0,0,0,0,0,118109,131107,97009,51757,50009,45262,18008,20000,12000,5000,3000,1900,0
+8253,30000,male,3,2,25,0,0,0,0,0,2,22821,23846,24864,25360,26999,26414,1397,1415,911,2051,0,1500,0
+8254,200000,male,1,2,32,-1,-1,-1,-1,-1,2,5494,19614,628,628,1604,668,19614,628,628,1604,0,168,1
+8255,120000,female,1,2,37,2,2,2,2,2,2,744,744,744,1188,594,1038,444,444,888,0,888,0,1
+8256,260000,male,1,1,45,0,0,0,0,0,0,21480,25791,31654,35784,40726,45923,5000,6781,5000,6452,6696,6892,0
+8257,60000,female,1,2,32,0,0,0,0,0,0,31142,31473,31684,31837,32246,32122,1842,2000,2000,2000,1500,3000,0
+8258,50000,male,2,2,24,0,0,0,0,0,0,10834,11771,12762,12769,13512,14772,1509,1500,605,1500,1500,3000,0
+8259,80000,male,1,2,28,0,0,0,2,0,0,47933,39695,42372,41393,42275,43418,2100,3650,0,1700,2000,3000,0
+8260,60000,male,1,1,46,1,2,0,0,0,0,62063,60513,60398,31194,30343,30427,0,1744,1100,1074,1200,1000,0
+8261,200000,female,3,1,27,1,2,2,2,3,4,104307,101788,110000,115000,120000,127640,0,10000,5000,5000,7661,6608,0
+8262,140000,female,1,2,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+8263,30000,male,2,2,25,0,0,0,0,0,0,26328,27470,28541,28509,29265,0,1868,1939,907,1100,0,0,1
+8264,110000,female,2,1,34,0,0,2,2,2,2,43780,48076,48989,47900,52123,51131,5000,2000,0,5000,0,5000,0
+8265,90000,female,3,1,39,-1,-1,-1,-1,-1,-1,7328,3697,4487,3169,3847,5403,3784,4511,3174,3852,5417,4720,0
+8266,40000,female,1,2,27,1,-1,-1,-2,-1,-1,0,450,0,0,247,0,450,0,0,247,0,0,0
+8267,110000,female,1,1,29,-1,-1,-1,-1,0,-1,3261,1380,1380,2760,1380,1700,1380,1380,2760,0,1700,0,0
+8268,640000,female,1,2,30,0,0,0,0,0,0,116714,77893,60259,40539,26432,5018,4000,4000,2003,7202,5314,3535,0
+8269,20000,male,3,2,51,0,0,0,0,-1,-1,9953,13989,14953,14710,900,0,5000,1275,2704,3200,0,0,0
+8270,50000,female,2,1,36,0,0,0,0,0,0,44625,46078,46689,8261,8434,8738,2174,1785,296,306,444,10686,0
+8271,30000,male,2,1,25,-1,-1,-2,-1,2,2,30527,29910,0,25919,26383,25691,1389,0,25919,1000,0,19283,0
+8272,140000,female,2,2,32,0,0,0,0,0,0,136497,135505,137629,120147,122247,122574,5000,5000,4300,5000,5158,4200,0
+8273,70000,male,2,2,36,1,-1,-1,0,0,0,0,690,25566,26227,26375,26510,690,25566,1066,1091,1100,1312,0
+8274,80000,female,2,1,42,0,0,0,0,0,0,23931,23366,22275,21631,22961,19269,1500,2000,1000,3000,1000,1000,1
+8275,100000,female,1,2,31,-2,-2,-2,-2,-2,-2,0,0,0,960,960,1185,0,0,960,0,1185,379,0
+8276,180000,male,3,2,40,0,0,0,0,0,-1,66218,15155,11052,8541,37951,57757,1811,5008,5000,30000,62010,50077,0
+8277,50000,female,2,2,28,0,0,0,0,0,0,48370,39618,27417,25542,26160,26686,1468,1400,900,1000,1000,600,0
+8278,170000,male,1,1,35,-1,-1,-2,-2,-2,-1,473,-103,-103,-103,-103,2297,0,0,0,0,2400,0,1
+8279,50000,female,3,2,23,2,2,2,2,2,2,42304,45327,46294,47147,46272,49050,3695,2000,1900,0,3700,0,1
+8280,140000,male,1,2,28,0,0,0,0,0,0,135648,138049,99274,100878,102984,106628,5247,3213,2857,2963,4566,1969,1
+8281,100000,male,1,2,29,2,2,2,2,2,2,74396,75317,77084,78308,79901,81630,2700,3600,3100,3000,3200,3000,1
+8282,10000,male,2,1,36,0,0,0,0,0,0,8593,9582,8986,9691,9889,10131,1300,1200,1000,1000,569,200,0
+8283,50000,female,2,2,22,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+8284,30000,female,2,1,24,0,0,0,2,2,0,26755,27828,29103,29565,26319,27738,1507,2172,1523,0,2000,2000,1
+8285,80000,female,2,2,27,0,0,0,0,-1,0,26144,26625,3600,0,68424,42601,1075,1200,0,68424,1264,0,0
+8286,290000,female,2,2,29,0,0,0,0,0,0,263796,268765,209697,212359,216989,221260,11320,10000,7600,8000,8000,8200,0
+8287,110000,female,1,2,27,0,0,0,0,0,-1,8086,8848,9283,8950,8943,333,1232,1000,0,326,333,12425,0
+8288,30000,female,3,2,24,1,3,2,2,2,0,23031,22393,21736,23192,22701,22954,0,0,1800,0,1000,1000,0
+8289,70000,female,2,1,23,0,0,0,0,0,0,43397,44336,35757,27906,25731,21430,2500,21000,2000,687,1500,2000,0
+8290,300000,female,1,2,26,0,0,0,0,0,0,277680,281719,284381,155562,158448,162626,12005,10155,6000,5000,6000,6000,0
+8291,30000,male,2,1,47,0,0,0,0,2,0,24422,25480,26425,30525,29063,29022,1455,1400,4500,0,1500,2000,1
+8292,200000,female,1,2,36,-2,-2,-2,-2,-1,-1,0,0,0,932,2469,0,0,0,932,2487,0,0,0
+8293,130000,male,2,2,27,0,0,0,0,0,0,81603,84249,85424,82632,84522,86061,3963,3500,2956,3220,3100,3344,1
+8294,80000,male,1,2,25,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+8295,50000,female,2,2,37,0,0,0,0,0,0,67570,61248,54707,29250,29905,29519,3000,3000,2100,1500,1300,1200,0
+8296,310000,female,1,2,30,0,0,0,0,0,0,33376,34587,30488,27112,24722,9862,2000,2000,1000,1000,661,1000,0
+8297,160000,female,2,1,31,-2,-2,-2,-2,-2,-2,11648,780,0,5100,0,0,780,0,5100,0,0,0,0
+8298,240000,male,2,1,30,0,0,0,0,0,0,227675,181461,186160,191355,192406,190086,10003,10009,10014,8500,10000,8000,0
+8299,100000,female,2,1,36,0,0,0,0,0,0,21237,16723,15868,8275,5954,7075,3013,4031,3012,2006,3121,5781,0
+8300,200000,female,5,2,27,0,0,0,0,0,0,98761,85583,84398,88612,86159,89751,4000,3000,3000,3338,5000,4000,0
+8301,50000,female,1,2,38,0,0,0,0,0,0,46179,38055,28857,27495,26344,24879,1881,1683,1064,900,862,1000,0
+8302,320000,female,3,2,45,0,0,0,0,0,0,300598,308931,186223,114605,117159,119733,14227,9334,4106,4405,4678,4527,0
+8303,60000,male,1,1,37,0,0,0,0,0,0,57985,59312,27420,27965,28552,29276,2550,1500,1001,1038,1200,1233,0
+8304,60000,male,2,1,43,0,0,0,0,0,-1,58777,40584,12617,22670,17701,950,5005,5000,10216,876,1252,0,0
+8305,50000,male,2,1,42,0,0,0,0,0,-1,46100,46949,18755,11112,11374,5919,2133,1058,2000,2043,5919,16346,1
+8306,360000,male,2,1,41,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+8307,60000,female,2,2,32,0,0,0,0,0,0,60745,61085,56863,18473,15434,7301,2613,5900,1000,428,1000,2000,0
+8308,210000,female,2,2,28,0,0,-1,0,0,-2,2162,61,259323,139861,1684,826,61,130000,10000,1684,826,1793,0
+8309,20000,male,2,1,39,2,2,2,2,2,2,20591,20284,20645,20750,20300,20482,1500,1000,718,3,1800,0,1
+8310,100000,female,2,1,40,-1,-1,0,0,0,-1,10228,50764,52520,24550,5973,57200,50836,39033,524,18,57227,422,0
+8311,200000,female,1,2,32,0,0,0,0,0,0,47517,8219,9000,10000,11340,0,1219,1000,1000,1340,0,0,0
+8312,180000,female,2,1,28,-2,-2,-2,-2,-2,-2,454,14213,10621,3913,1707,15087,14213,10628,7826,1707,15087,5379,0
+8313,70000,female,1,2,50,0,0,0,0,0,0,64315,58564,56741,25172,29186,25430,3000,10032,8000,5139,1000,1000,1
+8314,170000,female,2,2,48,0,0,0,0,0,0,83074,85834,87003,88753,90624,92455,4100,3500,3200,3300,3334,4000,0
+8315,80000,male,1,2,36,0,0,0,0,0,0,68931,67706,67017,65159,64152,65208,2500,3000,2244,2478,4800,0,0
+8316,400000,female,1,1,41,-1,-1,-1,0,0,0,8,1274,19143,20305,22063,20695,1274,19143,1305,2063,1695,195000,0
+8317,140000,female,2,1,40,0,0,0,0,0,0,138389,110701,83468,41202,41687,36335,5148,3216,2003,3000,3041,5056,0
+8318,60000,male,3,1,57,0,0,0,0,0,0,20865,16590,10816,6956,2489,0,1262,1003,0,1050,0,0,0
+8319,360000,male,1,1,44,0,0,0,0,0,0,333549,342782,340216,344545,140386,144042,15047,15000,14000,5008,10055,30015,0
+8320,240000,female,2,1,43,0,0,0,0,0,0,48502,49001,47026,45827,39527,40868,2200,1923,1682,2000,2000,1300,0
+8321,80000,female,2,2,27,1,2,0,0,0,0,57004,55220,43506,39025,40017,29797,0,1900,1418,1800,1300,1000,0
+8322,270000,female,2,2,39,0,0,0,0,0,0,116168,118661,121106,118269,120737,123227,4173,4275,4054,4191,4302,4567,0
+8323,30000,female,3,1,39,2,2,2,2,2,2,20652,24993,24293,25896,26435,25859,4700,0,2010,1100,0,2100,0
+8324,480000,male,1,1,58,-2,-2,-2,-2,-2,-2,24610,-310,148544,18791,5909,68988,4,149654,18885,5940,69337,200655,1
+8325,160000,male,2,1,50,-1,-1,-1,-1,-1,-1,269,0,697,697,895,1341,0,697,697,895,1341,402,0
+8326,180000,female,2,2,34,2,0,0,0,2,2,51385,53925,54848,57988,59438,61974,3140,923,4663,2530,3687,5000,1
+8327,300000,male,1,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+8328,200000,female,1,2,31,0,0,0,0,0,0,191953,189147,191673,192051,193348,193337,6887,7019,7000,7200,7200,7000,0
+8329,50000,female,2,2,30,0,0,0,0,0,0,37522,38614,39671,40213,41064,43382,2000,2000,1500,1500,3000,2000,0
+8330,320000,female,3,1,39,-1,-1,-1,-1,-1,0,3065,41679,8275,8275,7606,14611,41679,8344,8275,7606,10000,11010,0
+8331,30000,female,1,1,35,2,0,0,0,0,0,27703,28743,27048,26592,23874,23293,1500,1356,900,1000,1100,664,1
+8332,500000,female,1,1,38,-2,-2,-2,-2,-2,-2,913,9724,9350,6972,11879,15574,9782,9350,6972,11879,15574,12921,0
+8333,360000,male,1,1,40,0,-1,-1,-2,-1,2,21489,40715,-34041,-34503,43013,11654,41088,2,38,85155,58,13652,0
+8334,50000,female,2,1,53,0,0,2,0,0,0,13868,14307,14762,15232,16988,17912,2000,1000,1000,2000,1200,2000,1
+8335,80000,female,1,2,29,0,0,0,0,2,2,61565,62857,64773,68073,69538,70841,2281,2961,5000,2700,2600,2700,0
+8336,10000,male,2,2,23,0,0,0,0,0,0,5324,6509,7313,6469,6988,7489,1279,1083,500,1000,1000,142,0
+8337,280000,female,1,2,23,0,0,0,0,0,0,262579,235354,199360,193888,193132,188016,6453,6000,5334,5397,5400,5894,0
+8338,300000,female,2,1,31,-1,-1,-1,-1,-1,-1,3863,4242,5090,309,2700,7593,5021,5134,322,5013,7611,8059,0
+8339,280000,female,1,1,34,0,0,0,0,0,0,232834,218803,202031,111603,94050,76232,9001,6369,3864,3501,3001,1701,0
+8340,170000,male,2,1,42,0,0,0,0,0,0,164824,132485,120267,117453,115778,117411,6107,6000,4500,4500,4500,4500,0
+8341,260000,female,1,1,36,0,0,0,0,-1,0,88273,91908,90857,-81334,142645,149655,6000,5020,81569,331788,10002,5003,0
+8342,360000,male,2,1,44,1,-1,-1,-1,-1,-1,-3,583,-17,3440,1368,146,586,0,3457,1375,200,754,0
+8343,360000,female,2,2,31,-1,0,0,0,0,-1,9688,7612,7537,11227,9703,61882,2012,3004,5011,1061,65663,2019,0
+8344,200000,male,3,1,38,0,0,0,0,0,0,181532,179645,180615,180127,166755,167416,8218,7912,6284,6313,6200,6419,0
+8345,50000,female,1,2,28,0,0,0,0,0,0,21514,22563,23585,23894,24549,24990,1700,1700,1000,1039,1000,1000,0
+8346,130000,female,3,1,45,1,-1,2,-1,-1,-1,0,780,390,540,11040,953,780,0,540,11040,953,9622,0
+8347,20000,male,2,1,32,0,0,2,0,0,0,19468,20844,19362,19402,19607,19821,3000,0,850,920,750,300,1
+8348,50000,female,3,1,52,0,0,2,-1,0,0,22916,13238,346,14580,11231,10804,1656,0,14580,500,458,873,1
+8349,190000,female,1,1,30,-1,-1,-1,-1,-1,-1,6936,500,0,19000,19000,19000,500,0,19000,19000,19000,19000,0
+8350,140000,male,2,1,36,-1,-1,0,0,0,0,780,16570,17378,12568,15678,15620,16570,1220,3000,3500,332,390,0
+8351,70000,female,2,1,40,0,0,0,0,0,0,69341,19472,22066,23515,10990,0,2000,3000,2000,3000,0,150,0
+8352,150000,female,1,2,36,0,0,-2,-2,-2,-2,15447,0,0,0,0,0,0,0,0,0,0,0,0
+8353,140000,female,2,2,29,0,0,0,0,0,0,128583,132734,132135,126622,127495,119304,7000,5000,5000,6000,6000,5300,0
+8354,50000,male,2,2,27,2,0,0,0,0,0,48387,47637,48479,18616,19196,17906,2300,2100,1000,1000,1000,680,1
+8355,350000,female,1,1,55,-1,-1,-1,-1,-1,-1,3518,1931,1630,7461,4124,1261,1935,1630,7461,4124,1261,2798,0
+8356,80000,male,2,2,53,3,2,0,0,0,0,35637,34783,36198,37094,38489,40341,0,2000,1500,2000,2500,2000,1
+8357,400000,male,1,2,34,1,-2,-2,-1,-1,0,-5,-5,-5,1299,4374,4986,0,0,1304,4375,1025,2952,0
+8358,170000,female,1,1,38,0,0,0,0,0,0,71712,70194,43210,23096,23397,27817,3332,7770,5000,3000,5000,25000,0
+8359,20000,female,2,3,47,1,2,0,0,0,0,9325,8562,9571,9912,10036,10400,1000,1159,500,432,600,0,0
+8360,450000,male,1,1,40,-1,-1,2,0,0,0,22861,19093,6576,9133,6918,12382,6596,0,6918,4351,8161,0,0
+8361,200000,female,3,1,36,1,-2,-2,-1,-1,-1,-5,-5,-5,2999,4804,4402,0,0,3004,4804,5008,169,0
+8362,200000,female,1,1,36,-1,-1,-1,-1,-1,-1,2444,1301,3207,3284,1111,8349,1301,3210,3284,1111,8349,4249,0
+8363,100000,female,3,1,53,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+8364,60000,male,2,1,39,-1,0,0,0,0,0,14085,14575,18423,13099,14537,16928,2000,5000,4000,2000,5000,2000,0
+8365,230000,female,2,1,37,0,0,0,0,0,0,16302,15849,16884,17620,18353,18901,1265,1300,1001,1000,1000,1000,0
+8366,230000,female,2,2,29,0,0,0,0,0,0,24524,24897,22219,23512,12894,15183,3000,4000,3047,3000,3000,3000,0
+8367,60000,male,2,1,46,-1,0,-1,0,0,0,3046,286,6466,6469,5364,3664,285,6466,3,5,10,15219,0
+8368,160000,female,1,1,34,1,-2,-2,-1,-1,-2,5520,0,0,708,560,0,0,0,708,560,0,560,0
+8369,310000,male,1,1,34,-1,-1,-2,-1,-1,0,493,-7,-7,500,736,739,0,0,507,736,3,797,1
+8370,430000,female,1,2,30,-1,-1,-1,-1,-1,-1,31423,3650,44671,81979,9120,85407,3650,44671,82555,9120,85407,14261,0
+8371,240000,female,1,1,47,1,-2,-2,-1,0,0,-40,-40,-40,1160,1160,0,0,0,1200,0,0,0,0
+8372,60000,male,2,2,29,0,0,0,0,0,0,54050,54555,15177,16610,16821,20048,2500,2000,2000,628,3525,3000,0
+8373,30000,male,2,2,28,0,0,0,0,0,-2,26054,25144,25775,18585,0,0,2000,2000,2000,0,0,0,0
+8374,180000,male,2,1,30,-1,-1,-1,-1,0,-1,375,375,375,750,375,399,375,375,750,0,399,399,1
+8375,20000,male,2,2,24,1,2,3,2,2,2,16706,18342,17755,17967,17538,18647,2200,0,800,0,1401,0,0
+8376,30000,male,1,2,24,2,2,0,0,0,0,16035,15493,16197,16669,16865,17199,0,1270,742,613,615,646,1
+8377,320000,female,2,1,55,-2,-2,-2,-2,-2,-2,11973,4076,7879,5436,51529,18088,4093,7917,5459,51787,18178,3659,0
+8378,500000,male,2,2,32,-1,-1,0,0,0,-1,264,286,550,286,22,14454,286,528,0,128,15239,100000,1
+8379,170000,female,2,1,47,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+8380,20000,female,2,2,24,0,0,0,0,0,0,21838,20544,19991,20305,19349,20467,2349,1296,1000,696,2213,0,0
+8381,360000,female,1,2,29,0,0,0,0,0,-1,73753,61008,49781,12846,4548,9820,5121,10180,41,22,9865,14847,0
+8382,90000,female,1,2,24,0,0,0,0,0,2,30639,25390,27618,26382,27546,17660,2913,9000,0,2000,0,10639,0
+8383,100000,female,1,1,40,-1,-1,-1,0,-1,-1,390,390,780,390,390,7140,390,780,0,390,7140,1230,0
+8384,100000,male,1,2,37,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+8385,170000,male,1,1,38,-2,-2,-2,-2,-2,-2,0,0,0,1012,0,0,0,0,1012,0,0,492,0
+8386,100000,female,2,2,32,2,0,0,0,2,2,50332,52644,54905,58133,60197,59226,3000,3000,4000,3000,0,4300,0
+8387,20000,male,1,2,27,-1,-1,2,-1,0,-1,1760,2699,1261,780,390,1320,2200,0,780,0,1320,0,0
+8388,220000,male,2,1,32,-1,-1,-1,-1,-1,-1,1565,3067,5797,1195,1797,1195,3082,5820,1198,1802,1198,1802,0
+8389,470000,female,1,2,31,-2,-2,-2,-2,-2,-2,22988,10353,5603,11685,5093,2791,10363,5910,13380,5093,2791,9527,0
+8390,100000,female,2,2,24,0,-1,-1,-1,-1,-1,13391,10577,8905,0,4290,0,10608,8944,200,4290,0,0,0
+8391,10000,male,2,2,23,-1,-1,0,-1,-1,-1,1504,6007,6470,390,0,780,6007,1000,390,0,780,0,0
+8392,230000,female,1,2,29,-1,-1,-1,-1,0,-1,2521,-1000,12009,5627,215,3039,0,13009,8018,0,3039,2000,0
+8393,50000,female,1,2,28,2,2,2,2,2,2,31336,32039,32714,32482,33807,34398,1500,1500,600,2000,1300,1500,0
+8394,50000,male,3,1,30,0,0,0,0,0,0,50545,49502,46418,19980,19751,20477,2603,1621,1000,1000,1204,1000,1
+8395,120000,female,2,2,30,0,0,0,0,0,0,116887,117419,116281,117392,117791,112505,4615,7175,4529,4625,4029,4237,0
+8396,160000,female,1,1,33,-1,-1,-1,-1,-1,-1,2355,2714,12094,2855,3803,8911,2719,15000,2855,3803,8911,0,1
+8397,120000,male,1,2,27,-1,-1,-1,-1,-1,-1,880,880,880,880,880,1030,880,880,880,880,1030,880,0
+8398,30000,female,2,2,21,0,0,0,0,0,0,26757,26831,26620,26134,26865,25752,1520,1339,852,2067,1400,100,0
+8399,180000,female,1,2,29,-2,-2,-2,-2,-2,-2,100,0,0,0,0,0,0,0,0,0,0,0,0
+8400,30000,male,1,2,23,0,0,0,0,0,0,30287,28171,29410,29705,28647,28776,1496,1735,1030,1017,1033,989,0
+8401,200000,female,1,1,40,-1,-1,-1,-1,-2,-2,3266,390,11314,-71,-467,-863,390,11320,0,0,0,2000,0
+8402,10000,female,2,2,33,0,0,0,0,0,0,7659,18814,19570,19967,9908,9646,11400,1135,532,449,693,10000,0
+8403,230000,male,2,2,39,0,0,0,0,0,0,35289,27678,13800,10238,6968,4704,1646,1017,214,406,412,1420,0
+8404,200000,female,3,1,53,0,0,0,0,0,0,126027,129008,130376,133207,136159,138741,6500,5000,5000,5100,5000,5400,0
+8405,110000,male,2,1,46,0,0,0,0,2,0,44953,47315,46997,50740,49115,49529,3087,1769,4512,0,1930,1601,1
+8406,50000,male,2,1,40,0,0,0,0,0,0,18485,10767,9775,10122,9146,9341,1166,1200,481,321,336,174,0
+8407,50000,female,1,2,23,0,0,0,0,-1,0,48482,47226,11151,-2897,48211,48154,2500,3002,1500,52000,1900,1800,0
+8408,220000,male,1,1,43,-2,-2,-2,-2,-2,-2,7695,2701,98376,3874,5226,14973,2725,98875,3893,5252,15047,3980,0
+8409,500000,male,1,1,43,-1,-1,2,-1,-1,0,14132,35814,20089,28077,132588,115442,35820,18,28077,132588,28500,20000,0
+8410,140000,male,1,1,43,0,0,0,0,0,0,100021,95122,84315,70871,70923,64202,4535,2856,2503,2378,3014,2048,0
+8411,50000,female,1,2,30,2,0,0,0,0,0,2989,4008,4861,4958,5244,8134,1228,1081,178,366,3156,0,0
+8412,50000,male,2,2,24,0,0,0,0,0,0,7240,8264,9273,9609,9657,9927,2644,1153,489,351,431,198,0
+8413,150000,female,1,2,32,0,0,0,0,0,0,116908,107164,110884,111706,113942,116626,4000,5500,4145,4186,4630,4000,0
+8414,150000,male,1,2,35,1,2,2,2,2,2,143376,145607,146509,148507,152044,136643,6000,4500,5100,5322,20,5033,0
+8415,240000,male,3,1,43,0,0,0,0,0,0,191453,193548,190288,186770,180458,178722,8500,8300,7000,7000,7000,6500,0
+8416,180000,male,1,2,31,2,2,7,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,0
+8417,240000,male,2,1,44,-1,-1,-1,-1,0,-1,5428,9054,13158,6507,2955,1092,9064,13158,6860,2295,1092,2076,0
+8418,150000,female,1,2,27,0,0,0,0,0,2,138066,140522,138722,130494,147851,145535,5767,6100,30000,19227,0,2606,0
+8419,260000,female,3,1,41,-1,-1,-2,-1,-1,-1,1145,-4,-4,2177,158,0,4,0,2181,158,0,0,0
+8420,160000,female,1,1,34,-1,-1,-1,-1,-1,-1,430,430,430,850,3350,4874,430,430,850,3350,4874,9858,0
+8421,290000,female,2,1,39,0,0,0,0,0,0,58281,62061,65710,69452,73627,77890,5000,5000,5000,5000,5000,7000,0
+8422,240000,male,1,2,48,0,0,0,0,0,0,116058,117196,121245,122736,125599,128506,4500,6000,5000,5000,5000,5000,0
+8423,50000,male,2,1,56,1,2,0,0,0,0,32134,30391,10725,10541,10052,10400,0,1159,365,448,600,0,0
+8424,170000,female,3,1,46,-1,-1,-1,-1,-1,0,246,123,5436,1229,93787,95816,123,5436,1229,93970,4000,3348,0
+8425,130000,female,1,1,46,0,0,0,0,0,0,147582,138996,140558,90522,90917,92330,5394,4229,3211,3297,3312,3381,1
+8426,80000,male,1,2,27,1,-2,-2,-1,0,0,0,0,0,8956,8956,0,0,0,8956,0,0,0,0
+8427,30000,male,1,1,45,0,0,0,0,0,-2,29029,27381,28945,29373,0,0,2000,2138,1102,0,0,0,0
+8428,100000,female,3,1,40,0,0,0,0,0,0,97763,93834,86360,77594,78030,78506,4500,3000,3000,3000,3000,3000,0
+8429,10000,male,2,2,23,2,0,0,0,0,0,8638,8958,9414,9344,9545,9586,1294,1150,480,500,348,402,0
+8430,320000,female,1,2,30,-2,-2,-2,-2,-2,-2,0,200,3663,992,1627,6661,200,3696,997,1635,6694,2508,0
+8431,50000,male,2,1,36,0,0,0,-2,-2,-2,48612,50525,0,0,0,0,3000,0,0,0,0,0,0
+8432,80000,male,1,2,29,1,2,2,-2,-2,-2,49373,49812,0,0,0,0,1980,19800,0,0,0,0,1
+8433,70000,female,2,2,26,0,0,0,0,0,0,23409,23174,26103,28342,24894,25272,3003,5106,4026,755,1029,5303,1
+8434,700000,female,2,2,28,0,0,0,0,0,0,16262,12219,9861,6384,5126,2680,2192,2015,1005,1009,1000,1000,0
+8435,360000,female,1,2,26,-1,-1,-1,-1,-1,-1,7142,44008,21715,5064,9147,6068,44234,21823,5089,9192,6098,16495,0
+8436,380000,male,1,2,30,0,0,0,0,0,0,192132,148842,177842,120027,97256,108213,10123,50434,7132,11068,20050,35925,0
+8437,50000,male,2,2,40,0,0,0,0,0,0,42807,32187,48600,7514,9336,-177,10000,21019,1500,3000,1210,7900,0
+8438,20000,male,2,1,45,1,2,0,0,0,-2,20011,10753,10853,10670,-120,-120,0,10600,800,0,0,0,1
+8439,350000,female,1,2,33,0,0,0,0,0,0,314994,322472,244792,140218,181571,167905,12695,9790,5302,95621,11920,6107,1
+8440,80000,female,1,2,29,1,-2,-1,0,-1,-1,0,0,8061,8061,9390,4337,0,8061,0,9390,4500,0,1
+8441,150000,male,3,1,35,2,2,2,0,0,0,135215,137863,130622,126063,118836,116865,6000,30,5050,5025,5000,3000,1
+8442,300000,female,1,2,35,0,0,0,0,0,0,47295,87717,78638,77038,74345,49452,55047,27354,2124,5000,5500,4000,0
+8443,400000,male,2,1,39,0,0,0,0,0,0,399099,272898,202937,169138,144434,124802,15395,10232,12115,6285,11106,3124,0
+8444,250000,female,2,1,35,0,0,0,0,0,0,242971,244628,243223,245031,247911,247353,8310,7938,8101,8430,8808,7820,0
+8445,50000,female,1,2,23,0,0,0,0,0,-1,49061,47209,47471,21571,19005,772,2138,1400,431,380,772,8,1
+8446,230000,female,3,1,44,-1,-1,-1,-1,-1,-1,54798,11632,4987,6222,15121,17425,11632,4987,6222,15121,17425,17007,0
+8447,100000,female,2,2,27,0,0,0,0,2,0,43865,45548,46266,49290,48372,49412,2400,1776,3800,0,2000,1800,0
+8448,380000,male,2,2,34,-1,2,-1,-1,0,-1,4384,3852,2300,632,316,316,0,2300,632,0,316,316,0
+8449,260000,female,2,2,28,0,0,0,0,0,0,251560,379318,226538,202887,195364,181206,9139,13805,7100,6952,12812,6362,0
+8450,470000,male,2,2,31,0,0,0,0,0,0,78833,80562,82718,85334,87948,90479,3000,3500,4000,4000,4000,4200,0
+8451,80000,male,2,2,29,-1,0,0,0,0,0,48098,49089,47184,47059,47938,48904,2081,2068,1833,1889,1915,1879,0
+8452,140000,male,1,2,36,0,0,0,0,0,0,74177,65336,53578,49288,43870,44854,4000,3500,2000,2500,1800,2000,1
+8453,140000,male,1,1,45,2,2,2,2,2,2,64393,65271,66606,64940,73677,75316,2500,3000,0,10000,3000,0,1
+8454,50000,male,2,1,36,2,2,2,2,0,0,50808,48287,47265,20840,19568,19812,0,3259,0,844,706,677,1
+8455,180000,female,2,1,37,0,0,0,0,0,0,14704,14417,13387,9537,38456,35947,1244,1064,278,31369,1268,1118,1
+8456,30000,female,2,2,23,4,3,2,2,3,2,15847,15308,15910,16752,16197,16583,0,1150,1400,0,800,0,1
+8457,30000,female,2,2,22,2,0,0,0,0,3,18796,20489,22142,25438,28453,27699,2000,2000,4000,3600,0,2200,1
+8458,50000,female,1,1,25,0,0,0,0,0,0,30479,31200,31817,29229,29529,30053,1528,1461,1030,1070,1320,1212,1
+8459,250000,female,1,2,35,1,2,0,0,0,0,45429,34800,31217,25231,17009,4553,0,1443,560,4875,400,0,0
+8460,310000,female,2,2,25,0,-1,0,-1,-1,-1,38942,130331,56527,560,300,2381,135868,1306,560,300,2387,572,0
+8461,360000,female,2,1,51,1,-2,-1,-1,-1,-1,0,0,390,540,540,390,0,780,540,540,390,390,0
+8462,50000,male,2,2,31,0,0,0,0,-1,-1,48640,49483,40850,0,800,400,2000,3000,0,400,20000,10000,0
+8463,480000,female,1,2,30,0,0,-1,0,0,-1,75834,-105,37649,45469,20020,3167,105,37754,32970,8000,3167,10981,0
+8464,50000,female,1,2,24,-1,-1,-1,-1,-1,-1,1303,1303,748,1693,1138,748,1303,748,1693,1138,895,1528,0
+8465,160000,male,2,2,37,1,-2,-2,-2,-1,-1,0,0,0,0,461,603,0,0,0,461,603,829,0
+8466,140000,female,1,2,30,0,0,0,0,0,0,4975,5445,6455,6847,8075,8592,1200,1108,500,1500,650,0,0
+8467,310000,female,1,2,27,-1,-1,-1,-1,-1,-1,833,323,1083,2134,2474,2097,323,1093,2140,9201,2103,6571,0
+8468,30000,female,1,2,27,-1,-1,-1,-1,-1,-1,7843,2670,2670,2670,10302,15643,2670,2670,2670,10302,15643,9947,0
+8469,40000,female,2,1,27,1,2,0,0,0,0,11310,10842,12896,14675,17265,17974,0,2554,2000,3000,1000,3000,0
+8470,80000,male,3,1,55,0,0,0,0,0,0,79788,81571,75814,49784,51408,48587,25000,7704,8700,3000,12900,3000,0
+8471,30000,female,2,2,41,0,0,0,0,0,0,25159,25931,27369,25111,22235,19000,1762,2200,790,922,663,1310,0
+8472,200000,female,2,2,26,-2,-2,-2,-2,-2,-2,58147,1468,2321,327194,6680,3963,1468,2321,163597,6680,3963,2514,0
+8473,270000,female,3,1,42,2,0,0,0,0,0,106986,103249,89221,86996,86384,85440,3578,3207,3000,3200,3241,3078,0
+8474,180000,male,1,2,32,0,0,0,0,0,0,154374,153018,146396,136531,138502,136665,7500,7000,5000,5000,6000,5137,0
+8475,180000,female,2,2,34,-1,-1,-1,-1,-1,-1,194,191,187,176,188,187,200,187,180,200,187,750,0
+8476,10000,male,3,2,21,0,0,2,0,0,0,4797,6457,6154,6154,6280,0,2400,0,0,126,0,0,0
+8477,120000,male,1,1,48,-1,-1,-1,-1,-1,-1,360,360,360,150,870,510,360,360,150,870,510,870,1
+8478,30000,male,1,2,36,2,0,0,0,0,0,24796,26088,27032,26723,23143,17106,2000,1804,2014,1521,1204,1500,1
+8479,300000,female,1,1,30,1,-2,-1,0,-1,-1,-6027,-6027,3973,3973,1244,1631,0,10000,0,1244,1631,2000,0
+8480,50000,female,3,1,61,2,0,0,0,2,0,5016,6065,6985,6354,4908,3724,1135,1055,656,0,133,50,0
+8481,150000,male,3,1,58,-2,-2,-2,-2,-1,2,0,0,0,0,7043,1504,0,0,0,7043,0,3063,0
+8482,300000,female,2,2,36,-1,2,2,-1,-1,-1,1041,654,0,780,70,430,3,0,780,150,710,1000,0
+8483,50000,male,2,2,26,0,0,0,0,0,0,48065,49237,29651,30049,28376,28954,2500,1862,1150,1200,1200,1202,0
+8484,10000,male,2,2,34,0,0,0,0,0,0,8097,9109,10125,10327,10552,18836,1151,2167,369,391,436,200,0
+8485,260000,female,2,2,35,-1,-1,-1,-1,-1,-1,188,188,188,188,194,188,188,188,188,194,188,221,0
+8486,400000,female,1,1,28,-1,-1,2,0,0,0,6500,405016,391178,392932,394410,410127,405016,0,14000,13560,28000,0,0
+8487,50000,female,2,2,39,0,0,0,0,0,0,26262,15020,16460,16888,17464,18171,4000,2000,1000,1000,1000,596,0
+8488,50000,female,2,2,22,2,2,2,0,0,0,50974,51688,50024,29381,28957,28435,3000,0,800,808,1200,775,0
+8489,280000,female,1,2,28,-1,-1,-1,0,0,-1,3678,1829,10002,13476,23572,14603,3658,10020,10000,11000,14603,3819,0
+8490,10000,female,2,2,22,0,0,0,0,0,0,10063,8632,8775,7092,7410,7311,1194,1027,176,1253,2311,3101,0
+8491,80000,female,2,1,32,1,2,0,0,0,0,73181,71452,72651,74266,75892,75816,0,3000,2800,2800,2700,2800,0
+8492,150000,female,3,1,52,-1,-1,-1,-1,-1,-1,170,905,1203,2064,2847,0,1125,1203,2064,2847,0,0,0
+8493,20000,female,2,2,53,4,4,3,3,2,2,18396,17826,18547,19118,18679,19812,0,1300,1170,0,1600,0,0
+8494,50000,male,2,2,24,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+8495,170000,female,1,2,31,1,-1,-1,-2,-2,-1,0,843,0,0,0,1880,843,0,0,0,1880,456,0
+8496,130000,female,2,2,33,0,0,0,0,0,0,79579,70067,63951,57467,51614,46071,2702,2207,2000,1717,1770,1245,0
+8497,50000,female,2,2,29,-1,-1,-1,0,0,0,1303,801,11512,11512,8490,0,801,11512,0,0,0,950,0
+8498,50000,female,3,2,27,1,2,2,2,0,0,18019,9946,10319,8603,7298,6709,5559,2446,0,260,1000,1214,0
+8499,180000,male,2,1,40,0,0,0,0,0,0,126937,109884,49475,50840,50090,48345,5000,2000,2000,2000,2000,2000,1
+8500,20000,female,2,1,50,0,0,2,2,2,2,10511,14913,14382,16820,16411,17287,4593,0,3000,0,1304,1000,0
+8501,410000,male,1,2,29,0,0,0,0,0,0,53629,50359,44596,44016,38728,36540,3037,3015,3549,5029,4325,6029,0
+8502,50000,female,2,2,26,0,0,0,0,0,0,26701,28014,28725,29295,29902,30683,1749,1479,1049,1080,1280,1330,0
+8503,270000,female,2,1,47,-2,-2,-2,-2,-2,-2,8400,7500,7500,7500,7500,7500,7500,7500,7500,7500,7500,10466,0
+8504,80000,female,1,2,24,-1,-1,-1,-1,0,-1,3940,4115,84,8708,8728,2793,4117,84,8708,20,2795,0,0
+8505,140000,female,3,2,48,0,0,0,0,0,0,129915,132240,111948,58672,59199,54286,6000,3079,3000,2000,2000,56793,0
+8506,60000,male,2,1,29,2,2,2,2,2,2,40587,41642,40673,43342,44299,45222,2000,0,3348,1800,1800,0,1
+8507,180000,female,1,2,26,2,2,0,0,0,0,182218,173980,262878,128739,130929,130437,0,5000,5000,4738,4915,4661,0
+8508,320000,female,1,2,34,-2,-2,-2,-2,-2,-2,-532,-532,-528,-1336,-1336,-1336,0,4,0,0,0,0,0
+8509,40000,male,2,2,26,3,3,2,2,2,2,5754,6407,6156,7146,7384,7117,900,0,1100,500,0,708,1
+8510,380000,female,1,2,32,-1,-1,-1,-1,-1,-1,41727,44178,82860,753,11599,8348,44178,89999,753,11599,8348,1571,0
+8511,150000,female,2,1,36,1,2,2,4,3,2,125938,132110,142876,139097,138592,141447,9734,14500,0,2000,5300,5000,0
+8512,110000,female,1,2,25,0,0,0,0,0,0,63594,56267,53550,44084,42077,37770,2260,1499,1309,1487,2000,5000,0
+8513,110000,male,1,2,26,0,0,0,0,0,0,109386,99100,50827,51834,52921,54013,2432,3686,1850,1917,1968,1950,0
+8514,100000,female,3,1,26,0,0,0,0,0,0,45807,47099,40027,37735,35437,34155,5000,2500,3000,1597,2457,5660,0
+8515,240000,male,1,2,35,-1,-1,-1,-1,-1,-1,11906,54684,1874,1151,23169,9372,55167,1874,1151,23169,9372,396,0
+8516,50000,female,2,2,25,0,0,0,0,0,0,30857,28481,27634,26691,26329,25923,1800,1400,915,1500,1500,2000,0
+8517,50000,male,1,2,38,0,0,0,0,0,0,27148,27619,20997,21018,20556,20302,1655,1323,734,1058,406,0,0
+8518,200000,male,2,2,29,1,2,0,0,0,0,204212,186635,137983,82191,83964,86067,0,4075,3000,3100,4400,2930,0
+8519,80000,female,1,2,27,2,-1,-1,0,0,0,100,980,28798,29398,15037,0,980,28798,1000,1000,0,0,0
+8520,40000,male,3,2,49,2,0,0,0,0,0,34470,31226,30321,30124,33614,35665,2000,3000,3000,4000,3000,2000,1
+8521,250000,male,2,1,29,1,-2,-2,-1,-1,-1,-24,-24,-24,746,7146,434,0,0,770,7200,688,0,0
+8522,230000,female,1,2,24,0,0,0,0,0,0,69158,73712,68831,61534,25914,36313,8149,2214,5904,5542,15502,5000,0
+8523,30000,male,1,2,26,2,2,0,0,0,0,7510,7247,8165,8529,8743,8949,0,1200,500,500,500,500,1
+8524,80000,female,3,2,52,0,0,0,0,0,0,73056,74736,65581,63939,65278,66578,2953,2333,2288,2369,2385,2458,1
+8525,100000,female,1,2,37,-1,-1,0,-1,-1,-2,1725,21711,10487,780,0,0,21711,1000,780,0,0,0,0
+8526,230000,female,2,1,28,0,0,0,0,0,0,54228,21092,18481,15609,5802,72049,1500,1139,600,800,70196,3000,0
+8527,490000,male,1,1,50,-1,-1,-1,-1,-1,-1,17884,6836,4657,3398,1476,1602,6836,4657,3398,1476,1602,7531,1
+8528,30000,female,3,2,44,2,0,0,0,0,2,25039,25989,23078,23697,25257,25595,1700,1384,1003,2100,900,0,1
+8529,40000,male,3,1,49,0,0,0,0,0,0,34203,33885,34605,35970,35711,39360,1880,1600,22703,1280,4632,0,0
+8530,450000,male,1,1,34,-2,-2,-2,-2,-2,-2,-9,1844,0,0,0,0,1853,0,0,0,0,0,1
+8531,50000,female,2,2,23,2,0,0,0,0,0,48537,30271,26283,26547,27119,27697,2000,2000,1000,1000,1028,1000,1
+8532,20000,male,2,2,26,1,4,3,2,3,2,19276,18691,18048,18553,19465,16523,0,0,1000,1400,0,3000,0
+8533,260000,female,3,1,36,0,0,0,0,0,0,118028,113611,107853,103031,98487,77783,4379,3670,4000,4000,3000,3000,0
+8534,10000,male,2,2,28,-1,2,-1,-1,2,2,200,100,370,1766,1496,8356,0,370,1496,0,7000,0,0
+8535,500000,male,1,2,38,-2,-2,-2,-2,-1,0,0,0,0,218,11959,13692,0,0,218,11959,2000,403,0
+8536,70000,female,2,1,25,0,0,0,0,0,0,34645,36021,32128,27265,27133,26234,2000,1804,1100,1005,1504,1007,0
+8537,100000,female,3,1,28,-2,-2,-2,-2,-2,-2,3166,6896,416,416,416,412,6896,416,416,416,412,1223,0
+8538,50000,female,3,1,30,-2,-2,-2,-2,-2,-2,0,614,0,0,0,0,614,0,0,0,0,0,0
+8539,400000,female,1,2,33,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+8540,270000,male,2,1,49,-1,-1,0,0,0,0,3197,61164,61145,62186,62123,58995,61164,4000,5000,6000,5000,5000,0
+8541,260000,male,1,2,38,0,-1,-1,-1,-1,0,3953,3953,3953,3953,16466,14246,3953,3953,3953,16466,2000,5217,0
+8542,250000,female,2,2,32,0,0,0,0,0,0,72618,72972,43497,13877,14395,14063,3800,3000,4500,3000,5000,6000,0
+8543,360000,male,1,2,30,-1,-1,-1,0,-1,-1,28245,8017,19703,7474,2741,9526,8057,19764,37,2752,9573,25462,0
+8544,230000,male,2,2,30,0,0,0,0,0,0,120113,112301,104587,98333,88909,78872,4501,4585,3328,3500,2872,3000,0
+8545,110000,male,2,2,27,0,0,0,0,0,0,84342,89446,38580,39359,42021,43324,6657,2000,1418,3306,2000,2000,0
+8546,50000,female,2,1,32,-1,-1,-1,-1,-1,-1,316,282,316,316,316,316,282,350,316,316,316,316,0
+8547,80000,male,1,1,38,0,0,0,2,0,0,39410,41460,46307,45324,41887,38600,3000,6000,0,2033,5000,1500,0
+8548,10000,female,2,1,32,0,0,0,0,0,0,4695,5719,6733,7616,7779,8646,1103,1117,1000,286,1000,200,1
+8549,20000,male,3,1,52,1,2,2,-2,-2,-2,10474,10000,0,0,0,0,0,0,0,0,0,0,1
+8550,200000,female,3,2,33,-1,-1,-1,0,-1,-1,834,165,6682,16045,4679,280,165,6682,10000,4679,280,0,0
+8551,180000,male,1,2,40,0,0,0,0,0,0,93648,92017,87173,83205,84996,89723,4246,3000,3100,3200,7500,2916,0
+8552,120000,female,3,1,69,0,0,0,0,0,0,106775,108715,100937,102939,105307,106617,3810,3700,3658,4000,4515,3500,0
+8553,80000,female,2,1,47,0,0,0,0,0,0,6612,7118,7930,6674,6810,0,1188,1000,133,136,0,1407,1
+8554,220000,male,1,1,50,-1,-1,-1,-1,-1,-1,3484,6742,4028,3576,2378,5946,6758,4028,3576,2378,5946,1489,0
+8555,360000,male,1,2,32,-1,-1,-1,0,0,0,8140,0,20470,10357,8540,0,0,20470,207,0,0,3185,0
+8556,50000,female,1,2,25,0,0,0,0,0,0,49604,29449,16005,16472,18072,18405,2000,1600,1000,2000,618,2000,0
+8557,150000,female,2,1,31,-1,0,0,0,-1,-1,23427,25252,19004,15206,1423,8923,5554,5070,5076,1457,9047,22720,0
+8558,70000,female,2,2,27,0,0,0,0,0,0,67661,68482,69309,36808,37734,38353,3409,2908,1318,1520,1400,1524,0
+8559,20000,female,1,2,25,1,2,2,2,2,3,8483,10186,10871,10402,12077,11594,2000,1000,0,2000,0,0,1
+8560,150000,female,1,1,32,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+8561,40000,male,2,1,35,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+8562,170000,male,1,2,27,0,0,2,2,2,2,133149,138769,145050,146641,149603,157601,11936,13314,5801,5800,11000,1000,0
+8563,220000,female,2,1,37,2,0,0,2,0,0,48166,49164,46730,45680,46651,49507,2100,3900,0,1858,3800,0,0
+8564,110000,female,2,1,41,0,0,0,0,-2,-2,108936,111169,108740,0,0,0,3991,2375,0,0,0,0,1
+8565,30000,female,2,1,47,0,0,0,0,0,0,29187,29254,30206,58287,29522,30103,1505,1457,1016,1207,1600,1000,0
+8566,230000,female,1,2,32,0,0,0,0,0,0,195409,203432,180786,95445,63048,99961,21844,14105,21124,2520,50961,2670,0
+8567,270000,female,2,2,38,-2,-2,-2,-2,-2,-2,11421,6060,4180,1833,511,6635,2000,1000,2,1,6668,1026,0
+8568,360000,female,1,2,47,2,2,3,2,0,0,291410,296936,283943,266246,258197,114052,22913,7000,0,8500,5145,106000,1
+8569,180000,female,2,2,25,0,0,0,2,0,0,169225,172888,182533,176099,178391,181986,7800,14010,4,6431,6600,6675,0
+8570,360000,male,2,1,49,1,-2,-1,-1,-2,-2,0,0,8209,-41,-41,-41,0,8209,0,0,0,0,1
+8571,280000,female,1,2,47,0,0,0,0,0,0,269124,266163,215177,184270,130954,92215,11268,8196,6281,4403,3532,3510,0
+8572,170000,female,1,1,63,0,0,0,0,0,0,54957,56462,58023,59560,61442,63422,3000,2500,2500,3000,3000,2651,0
+8573,50000,female,2,3,33,0,0,0,0,0,0,48111,47583,38897,20190,19633,19035,2100,1690,11700,1200,1200,1000,0
+8574,160000,male,3,2,44,-1,-1,-1,0,-1,-1,325,325,650,325,475,650,325,650,0,475,650,625,0
+8575,160000,female,1,2,42,-2,-2,-2,-2,-2,-2,0,0,0,0,741,0,0,0,0,741,0,0,0
+8576,160000,female,3,2,24,0,0,0,0,0,0,153470,151486,153378,93971,96587,96623,10000,4600,4800,5000,3000,1000,0
+8577,50000,male,2,2,27,2,2,0,0,0,0,94297,49377,41247,9818,9003,9203,5600,1595,505,500,500,659,0
+8578,50000,female,2,2,49,2,0,0,0,0,0,50986,48599,17815,16362,14694,13520,1325,1512,532,514,524,384,0
+8579,180000,female,2,2,30,0,0,0,-1,-1,-1,101281,102650,0,975,4645,1000,4650,0,975,4645,1000,0,0
+8580,210000,female,1,2,38,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+8581,20000,male,2,1,40,1,2,2,-2,-2,-2,21447,20650,0,0,0,0,0,0,0,0,0,0,0
+8582,570000,male,1,2,29,-1,-1,-1,-1,-1,-1,4119,-1031,5100,5150,5150,5138,0,11500,5200,5150,5138,81438,0
+8583,280000,male,1,2,27,-1,-1,-1,-1,-1,-1,5521,-7,1485,5727,1247,2037,7,1492,5727,1247,2037,26920,0
+8584,50000,female,2,2,24,1,2,0,0,0,0,49469,42983,40307,17575,14691,14393,0,2199,1000,5000,2000,5000,1
+8585,20000,female,2,2,46,1,2,2,2,0,0,16626,16071,19205,19712,19249,38900,0,3473,1000,727,1100,1100,1
+8586,30000,male,1,2,28,-1,-1,2,0,0,0,9262,11792,11311,11820,13558,20271,3000,0,1000,2100,7000,0,1
+8587,240000,male,1,1,37,0,0,0,0,0,0,222976,227463,220804,217991,221981,214320,8494,7762,7176,7505,7273,7509,0
+8588,30000,male,1,2,47,2,0,0,0,2,2,25690,26719,27774,28809,30399,29760,1445,1500,1500,2200,0,1200,0
+8589,90000,female,2,1,47,0,0,0,0,0,0,28477,28718,28847,28747,29177,29452,2000,2000,2000,2000,2000,2000,0
+8590,60000,male,2,2,25,0,0,0,0,0,0,56598,47311,25227,26039,27493,26416,3000,2000,1500,2000,1500,1500,0
+8591,500000,male,1,2,34,0,0,0,0,0,-1,203729,147289,63994,40501,11248,4189,10043,8078,10000,10000,4200,0,0
+8592,70000,male,2,1,34,0,0,0,0,0,0,66977,68904,68863,33809,34764,36989,3013,2627,1210,1500,3000,2000,1
+8593,140000,male,2,2,27,2,2,2,0,0,2,30121,33315,32485,33142,35443,34724,4000,0,1500,3000,0,1500,0
+8594,30000,male,2,2,32,3,2,2,2,0,0,31895,31091,31002,29879,29382,23110,0,2300,0,996,1000,0,0
+8595,140000,male,2,1,55,0,0,0,0,0,0,78314,81049,82810,83544,85692,87425,4000,4000,3000,3500,3158,8000,0
+8596,290000,male,1,2,44,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+8597,360000,female,1,1,36,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+8598,30000,male,1,2,34,0,0,0,0,2,2,29160,29302,29698,31157,31714,30496,1494,1466,2501,1759,0,15912,0
+8599,170000,female,2,1,33,-1,-1,-1,-1,-1,-1,1870,0,400,1000,0,1243,0,400,1000,0,1243,6912,0
+8600,290000,male,1,1,46,-1,-1,-2,-1,-1,-2,2052,4146,700,5055,694,3207,4146,700,5077,694,3207,0,0
+8601,270000,female,2,2,53,1,1,-2,-2,-2,-1,716,-1524,-3764,-4,-19205,42418,2,2,6002,2,64446,5002,0
+8602,200000,male,1,1,49,-1,-1,-1,-1,-1,-1,1377,528,216,1311,2842,0,792,216,1311,2842,0,623,1
+8603,140000,female,1,1,45,-1,-1,-1,-1,-1,-1,316,316,316,316,632,150,316,316,316,632,150,316,0
+8604,230000,female,3,2,39,-2,-2,-2,-2,-2,-2,1876,1876,1876,2848,1876,4634,1876,1876,2848,1876,4634,1876,0
+8605,80000,male,1,2,26,0,0,0,0,0,0,76867,51936,28221,28809,19551,19925,1600,1300,859,3000,800,50000,0
+8606,350000,male,2,2,36,0,0,0,0,0,0,230738,232382,234254,211309,210897,191037,9503,9015,7511,8011,7361,7011,0
+8607,50000,female,3,1,42,0,0,0,0,0,0,51123,50646,41150,30405,30671,30664,2089,2190,1100,1271,1264,2778,0
+8608,50000,male,3,2,32,0,0,0,0,0,0,50114,50893,49660,29742,29311,29739,1991,1875,1044,1060,1211,1179,0
+8609,390000,female,2,1,45,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,3971,1
+8610,80000,female,1,2,25,1,-2,-1,-1,-2,-2,0,0,300,0,0,0,0,300,0,0,0,500,0
+8611,150000,female,2,2,23,-2,-1,-1,0,0,0,27414,10053,151996,152753,153844,151252,10096,156292,4700,5019,5300,5002,0
+8612,10000,male,2,2,23,0,0,0,0,0,2,8109,9219,10200,9694,9684,9872,1400,1300,500,1000,500,0,0
+8613,100000,male,2,2,31,1,2,0,0,0,0,97669,92311,90519,80051,76446,76815,0,3631,3000,3000,2800,2697,0
+8614,310000,female,1,1,41,0,0,0,0,0,0,48815,39593,104341,76635,46219,55045,2063,76651,7129,3000,10000,10000,0
+8615,80000,male,1,2,31,0,0,0,0,0,0,46516,30122,24099,7764,4804,10221,15029,5048,229,303,6018,500,0
+8616,40000,male,1,1,46,-1,2,2,-1,0,0,780,390,0,1170,780,0,0,0,1170,0,0,0,1
+8617,180000,female,2,1,43,-2,-2,-2,-2,-2,-2,1091,2062,0,0,6017,0,2062,0,0,6017,0,0,0
+8618,100000,male,1,1,60,1,3,2,0,0,-1,8311,8031,5790,3860,2599,2712,0,0,0,0,2712,0,0
+8619,140000,female,1,1,31,-2,-2,-2,-2,-2,-2,1094,421,-6,2319,4051,418,422,0,2325,4063,419,969,0
+8620,230000,male,2,2,27,-1,-1,-1,-1,-1,-1,396,396,396,396,396,546,396,396,396,396,546,396,0
+8621,20000,male,2,2,24,1,2,0,0,2,2,10248,10783,12291,14666,14289,17525,1000,2000,2900,0,3500,0,1
+8622,90000,female,3,1,55,0,0,0,0,0,0,23379,23715,24310,24561,22829,22486,1402,1387,1028,816,804,987,0
+8623,50000,male,1,2,29,0,0,0,0,0,0,16303,47714,48916,19894,20572,21230,32000,2000,1000,1000,1000,2000,0
+8624,50000,female,2,1,39,0,0,0,0,0,0,22187,23755,21772,22541,22871,23989,5000,2049,5000,1500,1500,3000,0
+8625,50000,male,2,1,51,0,0,0,0,0,0,46926,49161,49366,29441,30061,28728,3000,1500,1024,1064,1029,1023,0
+8626,200000,male,1,2,28,-1,-1,-1,0,-1,-1,13383,1183,14714,11938,303,3262,1183,14714,0,303,3262,3635,0
+8627,20000,male,1,2,23,1,2,3,2,0,0,18679,20380,19753,19160,19661,19816,2300,0,0,788,558,198,1
+8628,400000,male,1,2,46,0,-1,0,0,-1,-1,10965,9280,13582,7272,414,10799,9283,7276,7,417,10802,21202,0
+8629,20000,male,2,2,38,0,0,0,0,0,0,17760,19646,17922,18895,19325,19859,6500,2000,2000,1500,1000,1000,0
+8630,40000,male,2,2,36,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,10000,0,0,0
+8631,240000,male,1,2,28,0,0,0,0,0,0,134245,137044,138197,140983,138214,141187,4967,4916,4982,5017,5272,5200,0
+8632,240000,female,1,1,37,-1,-1,-1,0,0,0,5024,17181,28395,24582,10715,9346,17267,28473,12069,21,2978,25895,0
+8633,80000,female,2,2,38,0,0,0,0,0,0,70590,62162,51770,49506,45722,46660,2200,2000,2015,1700,1700,2000,0
+8634,180000,male,1,1,37,0,0,0,0,0,0,121744,121125,122498,123916,125661,127458,4406,4397,4405,4711,5040,4571,0
+8635,20000,female,1,2,22,0,0,0,0,2,0,3978,5249,6362,7256,6995,7228,1500,1362,1000,0,350,300,1
+8636,20000,male,3,1,44,0,0,0,0,0,0,18467,19106,19690,19684,19697,19849,1328,1302,686,701,855,988,0
+8637,20000,male,2,1,41,-1,-1,-1,-1,-1,-1,9598,0,2889,0,1448,0,0,2889,0,1448,0,0,0
+8638,360000,female,2,2,25,-1,-1,-1,-1,-1,-1,947,4075,6385,991,4632,2014,4098,6401,997,4641,2014,5,0
+8639,130000,female,2,1,31,-1,-1,0,0,0,0,6279,10862,5878,15306,8015,5965,11054,5172,14593,727,5222,4200,0
+8640,30000,male,1,1,47,2,2,8,8,8,8,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,1
+8641,110000,female,2,1,33,1,2,0,0,0,0,7801,5289,9893,9986,9981,11714,0,5000,500,400,2000,0,0
+8642,30000,male,3,2,46,6,5,4,3,2,0,33134,32351,31397,30321,30000,28961,0,0,0,0,5000,0,0
+8643,80000,female,1,2,26,0,0,0,0,0,0,29322,28563,25443,28790,29929,23796,3000,3000,4000,1500,1000,2000,1
+8644,350000,female,3,1,31,0,0,0,-1,-1,-1,144718,214075,102601,99735,107130,0,100012,62635,99735,107130,0,0,0
+8645,50000,female,2,2,24,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+8646,110000,female,1,2,23,0,0,0,0,0,0,83914,85064,78997,71276,68385,62475,4022,3300,2000,3000,2500,2310,0
+8647,180000,female,2,2,32,-1,-1,-2,-2,-2,-2,134,357,288,837,467,15868,357,288,837,467,15868,351,0
+8648,440000,female,5,1,32,0,0,0,0,0,0,324469,324109,287932,287892,276902,221866,11129,10300,11098,11200,12000,131400,0
+8649,100000,female,1,2,42,0,0,0,0,0,0,91141,93027,94925,96837,98894,100500,2635,2688,2718,2854,2500,0,0
+8650,200000,male,1,2,33,-2,-2,-2,-2,-2,-2,5448,7616,14771,1973,9500,40647,7616,14771,1973,9500,40647,589,0
+8651,140000,female,2,1,39,0,0,0,0,0,0,131764,134654,138303,119845,122457,125487,6500,7500,5000,4700,5228,4500,0
+8652,230000,female,1,2,31,1,-1,-1,-1,0,-1,-22,227,3480,3555,1850,1580,249,3480,3555,0,1580,520,1
+8653,10000,female,2,2,44,-2,-2,-2,-1,0,0,390,390,780,17585,18301,18663,390,780,17585,1000,667,692,1
+8654,280000,female,2,2,35,0,0,0,0,0,0,184050,171714,154940,136894,138467,128473,7088,6107,5000,5057,5005,50012,0
+8655,310000,male,2,1,42,-2,-2,-2,-2,-2,-2,2647,4206,1858,3057,2538,3069,4206,1858,3057,2538,3069,6591,1
+8656,260000,female,5,1,33,0,-1,-1,0,0,0,3140,2740,107139,105188,104418,106990,2740,107139,4000,4000,4696,5000,0
+8657,270000,male,1,2,29,-1,-1,-1,-2,-1,-1,38840,197,-61,-61,20207,538,197,0,0,20268,538,29995,0
+8658,50000,male,1,2,23,0,0,0,0,0,0,48954,35213,33404,18727,13793,19354,2000,4005,1000,1000,6000,1000,0
+8659,450000,male,1,1,46,-1,-1,-1,-1,-1,-1,1135,1135,1135,1135,1135,1135,1135,1135,1135,1135,1135,1135,0
+8660,190000,male,3,1,54,1,-2,-2,-1,0,-1,-596,-1072,-1548,40733,10876,2907,0,0,43500,2000,2907,3000,0
+8661,290000,female,1,2,28,0,0,0,0,0,0,42601,34927,32034,29620,29822,28502,5000,6010,5000,1200,2000,901,0
+8662,480000,female,1,1,60,-1,-1,-1,0,0,0,13406,7233,96977,67030,24334,28699,13736,96989,4,241,15819,28966,0
+8663,360000,male,5,1,34,0,-1,-1,-1,0,-1,30447,9428,11704,19036,41147,53733,10052,11767,20036,22207,54981,2227,0
+8664,380000,male,1,2,32,-1,-1,-1,-1,-1,-1,326,24899,2816,11773,23397,10551,24899,2816,11773,23397,10551,43302,0
+8665,20000,male,3,2,24,0,0,0,0,0,0,9249,10439,11448,11561,12221,12865,1500,1487,600,1000,1000,1000,1
+8666,50000,male,3,1,52,0,0,0,0,0,0,39429,39548,39490,38801,36087,25189,1781,1770,1148,1174,949,590,0
+8667,450000,male,1,1,34,0,0,0,0,0,0,451113,460261,455701,451559,429235,391559,18500,20000,17000,16300,14108,16000,0
+8668,50000,female,2,2,24,2,2,2,0,0,0,48283,48767,35917,26946,22458,23569,1700,0,1036,817,1486,3500,1
+8669,380000,male,1,1,34,0,0,0,0,0,0,106065,97979,100599,81087,82793,85301,3385,4074,2592,2696,3569,5240,0
+8670,150000,female,3,2,34,-2,-2,-2,-2,-2,-1,1464,1576,264,330,1350,386,1586,264,330,1350,386,1259,0
+8671,50000,female,2,2,23,0,0,0,0,0,0,21249,20771,17626,10078,9654,9648,1649,1300,500,500,300,500,0
+8672,150000,female,1,2,33,1,-2,-2,-2,-2,-2,-286,-286,-286,-286,-286,-286,0,0,0,0,0,750,0
+8673,50000,female,3,1,43,0,0,0,0,0,0,39177,39607,17070,13038,8904,4740,2000,1500,3500,600,500,4000,0
+8674,50000,male,2,2,24,0,0,0,0,0,0,34695,38561,36086,32945,29348,23570,6013,3011,1019,1019,2015,17,0
+8675,230000,female,1,2,26,-1,-1,-2,-2,-2,-2,3741,0,0,0,0,0,0,0,0,0,0,1010,1
+8676,310000,female,1,2,32,-1,-1,-1,-1,-2,-2,13560,-65,6500,0,0,0,0,6565,0,0,0,0,0
+8677,310000,female,2,1,34,-1,-1,-1,-1,-1,-1,3595,4073,11263,2710,2371,2318,4073,11321,2710,2371,2318,4352,0
+8678,50000,female,2,1,50,0,0,0,0,0,0,50658,48999,49388,48853,47765,48145,2357,1746,1628,1520,2202,934,0
+8679,240000,male,2,2,32,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+8680,400000,female,1,2,26,-1,-1,-1,-1,-1,-1,1140,937,1663,5019,9539,1697,940,1667,5039,9579,1703,12856,0
+8681,90000,female,2,2,47,0,0,0,-2,-2,-2,17247,11691,0,0,0,0,1000,0,0,0,0,0,0
+8682,50000,male,3,1,43,2,2,2,0,0,0,10413,12923,12030,12650,13405,13793,3000,0,1500,1500,1000,1500,0
+8683,250000,female,1,2,30,0,0,0,0,0,0,156155,153647,153535,153122,149564,152470,5560,6809,5443,5376,5665,6000,0
+8684,200000,male,1,1,44,0,0,0,0,2,0,66689,65515,49492,51802,38896,36436,2362,1706,4185,15,1537,1064,0
+8685,10000,male,3,1,37,0,0,0,0,0,-2,14498,7512,7308,5275,0,0,2248,1120,375,0,0,0,0
+8686,310000,male,2,1,36,0,0,0,0,0,0,32782,33587,39572,44598,50570,64916,11406,10773,10819,15766,20645,5000,0
+8687,340000,female,3,2,46,1,-1,-1,0,0,-1,0,1321,35028,35028,8500,1612,1321,35028,0,0,1612,0,1
+8688,220000,male,2,1,34,0,0,0,0,0,0,144544,137465,134420,132066,131319,130478,6500,4700,5000,5000,5000,10000,0
+8689,500000,male,1,2,36,0,0,0,0,0,0,151630,150824,117130,146443,122439,83535,12074,10000,40561,12550,20803,65678,0
+8690,80000,female,2,1,41,0,0,0,0,0,0,52564,53681,56893,59021,117568,72869,1963,4120,3069,2215,30000,3000,0
+8691,200000,male,1,2,36,0,0,0,0,0,0,103457,111541,113809,35797,36087,38505,10000,5000,1412,1300,3000,0,0
+8692,270000,female,2,1,36,-2,-2,-2,-2,-2,-2,72364,65094,30704,12383,143874,15081,65140,30773,12383,144570,20081,112791,0
+8693,100000,female,2,2,29,2,0,0,0,0,0,42440,43303,35304,33365,29260,30073,1599,2000,1500,1500,1300,4000,1
+8694,100000,male,2,2,29,1,3,3,2,2,2,99679,101249,98768,96287,102069,81931,4000,0,0,7629,0,18895,1
+8695,50000,male,1,2,25,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+8696,260000,female,3,2,33,1,-1,-1,-1,0,0,0,926,650,3562,3044,3044,926,650,3562,0,0,0,0
+8697,100000,female,2,2,24,-1,-1,-1,-1,-1,-1,396,0,1967,5476,396,811,0,1967,7142,396,811,817,0
+8698,240000,female,3,2,31,-1,-1,-2,-2,-2,-2,298,0,0,0,0,0,0,0,0,0,0,0,0
+8699,50000,female,3,1,28,0,0,2,0,0,0,14484,18528,18923,19310,19848,20367,4300,1000,1000,1000,1000,1000,1
+8700,50000,male,2,2,54,0,0,0,0,-2,-1,72374,81665,67450,0,0,16271,15000,2650,0,0,16271,2000,0
+8701,200000,female,1,2,44,0,0,0,0,0,-1,34606,34800,33275,33435,32778,3277,2100,2000,3435,3000,3277,29928,0
+8702,150000,male,2,1,36,2,0,0,0,0,0,86333,88931,92441,102903,105240,109479,4000,5000,12000,4000,6000,50000,1
+8703,150000,male,2,1,41,0,0,0,0,0,0,19350,20703,10403,10927,11598,13235,2000,3000,1000,1000,2000,2000,0
+8704,50000,male,2,1,40,0,0,0,0,0,0,50066,47636,9762,8620,9303,8693,1450,1500,400,1000,1000,2000,0
+8705,100000,male,1,2,27,0,0,0,0,0,0,70204,63931,65119,61153,64976,66309,4000,2276,2377,5000,2411,2384,0
+8706,30000,male,1,2,25,1,-1,-1,-1,-1,2,0,327,1871,337,1846,333,327,1871,337,1996,0,3135,0
+8707,350000,female,1,2,31,0,0,0,0,0,0,96659,86985,77472,68901,58259,47743,3500,5300,2500,2000,2000,2000,0
+8708,50000,male,2,2,50,0,0,-2,-2,-2,-2,25925,0,0,0,0,0,0,0,0,0,0,0,0
+8709,50000,female,2,1,34,2,2,2,2,0,0,20377,19427,19590,19209,19456,35976,1650,800,200,674,636,660,0
+8710,250000,female,1,2,43,-1,-1,-1,0,0,0,2177,2000,12327,10538,8712,3002,2000,12327,211,174,2228,5642,0
+8711,300000,female,3,2,24,-1,0,0,-1,0,-1,7571,6156,5475,13581,13930,14000,1181,1475,13581,349,14070,268,1
+8712,80000,female,2,2,22,-1,-1,-1,-1,-1,-1,1812,390,388,1187,263,1913,390,388,1191,263,2259,1815,0
+8713,30000,male,2,1,45,1,2,2,0,0,2,14286,15304,14766,14763,16662,16247,1542,0,539,2148,0,724,1
+8714,370000,female,3,2,29,-1,-1,-1,-2,-2,-2,28397,19340,-400,-1900,-1900,-1900,19438,7,0,0,0,0,0
+8715,50000,male,2,1,43,0,0,0,0,0,0,8214,8034,9044,9225,9417,9617,1140,1150,331,341,356,330,0
+8716,30000,female,1,1,22,0,0,0,0,0,2,22479,22650,22513,22391,23654,22738,2004,2004,2001,2001,1,1701,0
+8717,200000,female,2,2,26,0,0,0,0,0,0,26179,26643,23524,23788,26089,25908,4022,3000,3000,4092,1000,3000,0
+8718,230000,female,3,1,48,1,-1,-1,-1,-1,-1,-5,4582,2883,20099,13870,4234,4587,2883,20099,13870,4234,0,0
+8719,290000,female,2,2,29,0,0,0,0,0,0,68652,70695,71523,73099,74469,76200,3149,2598,2767,2702,2968,2703,0
+8720,100000,female,2,1,39,-2,-2,-2,-2,-2,-2,0,0,0,7700,0,0,0,0,7700,0,0,0,0
+8721,80000,male,1,2,26,1,2,2,0,0,0,40029,41095,40137,40793,42990,42854,2000,0,1603,3000,2000,1056,0
+8722,90000,female,2,2,39,0,0,0,0,0,0,45709,45045,42151,37842,30849,28061,2000,2000,1200,1018,1200,710,1
+8723,90000,male,1,1,37,0,0,0,0,0,0,40028,38704,37135,35141,33502,34173,2000,1800,1150,1200,1150,1100,0
+8724,80000,male,2,2,26,0,0,0,0,-1,-1,15387,20847,23059,0,526,678,6000,3070,0,526,680,0,0
+8725,260000,female,1,2,39,-1,-1,2,-1,-1,-1,1550,978,588,390,390,540,978,0,390,390,540,390,0
+8726,210000,male,1,2,34,0,0,0,0,0,0,44947,45610,47836,50344,51074,52229,2000,3000,3942,2000,2000,2050,0
+8727,80000,female,2,1,26,2,2,2,2,2,2,27458,28522,27770,29396,29974,30529,1800,0,2400,1200,1200,1200,1
+8728,170000,female,2,2,25,0,0,0,0,0,0,4360,7927,49946,49464,46476,19417,7000,49008,1000,949,1143,17336,0
+8729,240000,female,1,2,38,0,0,0,0,0,0,167856,172145,178840,186168,166745,165582,7000,10000,10000,10000,5000,10000,0
+8730,150000,female,1,2,32,1,-1,-1,-1,0,0,-300,7628,0,1089,1089,843,7928,0,1089,0,0,0,0
+8731,220000,female,1,2,28,-1,-1,-1,-2,-2,-2,25000,25000,0,0,0,0,25000,0,0,0,0,0,0
+8732,80000,male,1,2,27,0,0,0,0,0,0,42653,46609,47306,51179,52073,52833,5000,1801,5000,2035,2100,6200,0
+8733,160000,male,1,1,41,-2,-2,-1,-1,-2,-1,155458,157690,150209,151343,154456,157632,7200,6100,5300,5400,165759,4872,0
+8734,140000,female,2,1,37,0,0,0,0,0,0,136650,137562,141347,134503,137015,136581,5420,6500,5000,5200,5100,5000,0
+8735,130000,female,2,2,25,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+8736,280000,female,1,2,34,0,0,0,0,0,0,95278,98281,101651,103776,105617,107788,4525,5000,3800,3500,3500,3500,0
+8737,200000,male,1,2,28,-1,2,-1,-1,-2,-2,4420,460,99165,0,0,0,0,99165,0,0,0,3090,0
+8738,50000,male,2,3,36,0,0,0,0,0,0,26432,27708,28928,29475,29579,30445,1700,2000,1300,1200,1500,2000,1
+8739,150000,female,2,2,44,0,0,0,0,0,0,39471,41515,43879,44446,45394,46702,2636,3000,1528,1600,2000,2000,0
+8740,210000,female,1,1,36,0,0,-2,-2,-2,-2,15991,0,0,0,0,0,0,0,0,0,0,0,0
+8741,190000,male,1,1,39,1,-2,-2,-2,-2,-2,-2,-2,-472,-472,-472,-472,0,0,0,0,0,0,1
+8742,140000,female,1,2,28,0,0,0,0,2,2,123662,124785,128906,137279,140419,142254,4600,6200,12000,5500,5300,0,0
+8743,160000,female,3,1,41,-1,-1,-1,-1,-1,-1,2392,316,416,416,416,2606,316,416,416,416,2606,316,0
+8744,180000,female,1,1,39,0,0,0,0,0,0,177893,134212,128505,130078,128771,106396,6200,6000,5000,5001,4100,3600,1
+8745,20000,female,1,2,22,0,0,0,0,0,-1,9930,8176,6860,7000,10199,1500,1336,1000,140,3199,1500,780,0
+8746,50000,female,2,1,37,0,0,0,0,-1,0,23325,21940,20718,24048,5017,3570,1400,1200,5000,5017,71,2710,0
+8747,150000,female,1,1,34,1,-2,-2,-1,-1,-2,0,0,0,600,-150,-150,0,0,600,0,0,0,0
+8748,210000,female,3,1,33,0,0,0,0,0,0,127491,118800,105606,94344,82676,73154,6018,4900,4340,2880,2650,2000,0
+8749,500000,female,2,2,43,-1,-1,-2,-1,-1,-1,374776,26890,12866,162415,122430,188547,27024,12930,162434,123042,188715,200284,0
+8750,70000,female,2,2,22,0,0,0,0,0,0,24817,27424,28406,29013,29625,30404,3018,1500,1000,1001,1191,1000,0
+8751,100000,male,1,2,27,-1,2,0,0,0,0,17553,10628,5836,6746,7889,0,0,1000,2000,3323,0,0,1
+8752,20000,female,2,2,27,0,0,0,0,0,0,15703,17140,18127,18605,16351,16928,2000,1600,1030,1000,1000,1000,0
+8753,20000,male,2,2,23,0,0,2,0,0,0,13987,15958,16168,16268,16600,0,2200,900,500,332,2000,0,0
+8754,50000,male,2,2,25,2,0,0,0,0,0,47987,49084,46759,8195,8367,8534,2690,2359,293,304,306,316,1
+8755,340000,female,3,2,27,1,2,0,0,0,0,29221,14802,153697,153381,143426,139945,12,145000,5055,5017,5059,7382,0
+8756,130000,male,1,2,29,0,0,-1,-1,2,0,9700,0,72,10458,10149,11805,0,72,10458,0,2000,1230,0
+8757,320000,female,2,1,53,0,0,0,0,0,0,8513,151835,153327,155528,158745,161937,150000,8510,5000,4500,4544,5000,0
+8758,220000,female,1,1,41,7,6,5,4,3,2,243234,238172,232446,227800,225044,222356,0,0,0,0,0,6000,1
+8759,50000,male,3,1,24,0,0,0,0,0,0,48497,49564,19207,18963,19741,19901,2089,1580,1000,1000,1500,1500,1
+8760,150000,female,1,2,25,0,0,0,0,0,2,39445,40799,40832,33843,37015,30074,2000,1417,1256,4429,1000,0,0
+8761,500000,male,1,2,29,-1,-1,-1,-1,0,-1,20641,25986,23721,20799,34132,56917,26111,24112,20886,28032,57196,49720,0
+8762,220000,female,1,2,29,-1,-1,-1,-1,-1,-1,13488,16105,17563,13184,14111,15549,16130,17563,13184,14111,20239,179580,0
+8763,70000,female,1,2,24,-1,0,0,0,0,0,28059,17712,18642,20011,19147,19056,2000,3000,3000,2000,2000,3668,0
+8764,70000,female,2,2,24,0,0,0,0,0,0,27431,27163,18987,20170,15900,0,5006,1400,2013,370,0,0,0
+8765,360000,female,1,2,26,-2,-2,-2,-1,0,0,0,0,0,23707,25233,23504,0,0,23707,2000,3391,4217,0
+8766,100000,male,1,2,30,2,0,0,0,0,0,53718,55851,56424,57584,58957,60317,3000,2100,2100,2300,2500,2500,0
+8767,360000,male,3,2,30,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+8768,210000,female,2,2,29,0,0,-1,-1,0,0,14073,13034,2569,36116,36287,5695,2059,2576,36120,1093,2968,1430,0
+8769,50000,female,2,1,34,0,0,0,0,2,0,37643,29647,24965,7592,1582,1099,1538,1575,1582,593,242,17012,0
+8770,50000,female,1,2,25,0,0,0,0,0,0,34476,25857,26621,27178,28038,28871,2000,1500,1000,1300,1300,1011,0
+8771,400000,female,1,2,30,0,0,0,0,0,0,139862,125280,109278,94511,64995,28654,9209,3807,2403,1933,1014,104078,0
+8772,290000,female,1,1,36,0,0,0,-2,-2,-2,49885,51400,0,0,0,0,2400,0,0,0,0,0,0
+8773,320000,female,2,1,39,0,0,0,0,0,0,38332,63396,66871,69339,31525,30861,30000,4700,3000,5000,5000,7000,0
+8774,20000,female,2,1,24,2,0,0,0,0,0,17597,18629,19318,19434,19571,19792,1619,1308,688,706,806,595,1
+8775,500000,male,1,1,51,0,0,0,0,0,0,225233,235045,244517,243132,243869,251540,15000,15006,10000,10000,12000,15000,0
+8776,290000,male,1,1,40,0,0,0,0,-1,2,63421,40201,13802,0,2242,1850,1619,4000,0,2242,0,4450,0
+8777,50000,male,1,1,38,0,0,0,0,0,-2,47036,47876,28754,29137,-711,29578,1704,1200,583,711,30289,989,0
+8778,50000,male,1,1,60,0,0,0,0,0,0,50546,50854,50024,20281,20285,20066,2112,1712,705,759,748,487,0
+8779,390000,female,3,1,53,-1,-1,-1,-1,-1,0,2820,513,55120,2011,380,380,513,55120,2011,380,0,0,0
+8780,90000,female,1,2,27,-1,-1,-1,0,0,-2,700,2122,1897,1190,0,0,2122,1897,0,0,0,0,1
+8781,50000,female,3,1,53,0,0,-1,-1,-1,2,20225,21190,90,390,1080,540,1800,90,690,1080,0,780,0
+8782,230000,female,1,2,28,0,0,0,0,0,0,51545,42151,44532,42517,44087,40581,2000,3000,2000,2000,1242,2759,1
+8783,70000,male,2,1,37,2,2,2,2,2,2,44207,45305,46067,45029,47835,48797,2100,1800,0,3700,1900,2000,1
+8784,360000,female,2,1,36,0,0,2,0,0,2,63389,48359,37054,50009,53984,25258,15000,11,20000,5000,0,37000,0
+8785,300000,female,2,2,31,-1,0,0,0,0,0,10817,8785,10282,11797,15571,17303,2000,2000,2000,4000,2000,3000,0
+8786,50000,male,3,1,51,0,0,0,0,0,0,5703,7596,8511,10361,11039,11107,2000,1200,2000,1000,400,1000,1
+8787,80000,female,3,2,26,1,2,-1,-1,-2,-1,4923,3121,1551,1100,0,4374,0,1551,1100,0,4374,73,1
+8788,10000,male,2,1,50,2,2,2,0,0,0,9415,8852,8297,8792,9277,9744,1000,1000,1000,1000,1000,1000,0
+8789,10000,male,2,2,28,0,0,2,0,0,0,5236,7202,7434,7660,7822,8191,2200,500,500,285,500,500,0
+8790,140000,female,2,2,29,-1,-1,-1,-1,-1,-1,743,896,2385,732,100,1526,900,2385,735,0,1526,981,0
+8791,100000,male,2,1,50,0,0,-1,-1,-1,-1,23908,3360,560,480,480,390,1000,560,500,480,390,390,0
+8792,30000,male,3,2,42,0,0,0,0,0,0,8185,9395,10928,11445,12108,12753,1500,2000,1000,1000,1000,1243,1
+8793,280000,male,1,1,49,-1,-1,-1,-1,0,-1,503,694,695,10639,13158,768,694,695,10639,3158,768,517,0
+8794,80000,female,1,2,25,1,2,0,0,2,2,5999,5758,7039,7595,7053,7082,0,1416,943,100,443,0,1
+8795,30000,male,2,1,59,0,0,0,0,0,0,20044,21246,22115,22158,22610,0,1531,1400,443,452,0,0,0
+8796,390000,female,1,1,64,1,-2,-2,-2,-2,-1,0,0,0,0,0,8668,0,0,0,0,8668,4490,1
+8797,10000,female,3,1,49,-1,2,2,-2,-2,-2,1409,864,0,0,0,0,0,0,0,0,0,0,1
+8798,70000,male,1,1,49,-1,-1,-1,-1,-1,-1,1261,2041,1261,2431,904,1801,2431,1261,2431,904,2191,0,1
+8799,160000,female,2,2,37,-1,-1,-1,0,0,0,12037,5123,2460,6460,5360,0,5123,2460,4000,107,0,3960,0
+8800,80000,female,2,1,51,1,2,2,2,2,2,15839,16591,16027,17160,16743,17961,1300,0,1400,0,1500,800,0
+8801,30000,male,2,2,24,0,0,2,0,0,0,22885,25886,25172,27239,57036,28789,3700,0,2500,2100,3000,1700,1
+8802,200000,female,2,1,40,-1,-1,-1,-1,-1,-1,7236,12958,0,2797,5982,8339,13003,0,2797,5982,8339,0,0
+8803,60000,female,1,2,24,-1,-1,-1,-1,-2,-1,836,390,317,-73,-463,7942,390,317,0,0,10000,1000,1
+8804,220000,female,1,1,36,0,0,0,0,0,0,56477,32919,24175,37975,39752,33351,9005,10000,15000,9000,21000,0,0
+8805,30000,female,1,1,41,0,0,0,0,0,0,26480,27529,28783,28312,28159,28870,1481,1735,994,2003,1180,1238,0
+8806,60000,female,1,2,33,0,0,2,0,-1,-1,11237,20978,12861,7888,7463,3192,10000,0,0,7463,6384,18704,1
+8807,30000,female,2,2,23,3,3,3,3,2,2,29093,29532,29954,29176,29958,30520,1200,1200,0,1400,1200,0,1
+8808,180000,male,1,2,36,0,0,0,0,0,2,141489,84237,82508,81808,86024,67747,4000,3000,4000,9000,0,3000,0
+8809,430000,female,1,1,34,-1,-1,-1,-1,-1,-1,5149,4588,11164,1531,9848,10178,4600,11220,1531,9902,10202,5926,0
+8810,190000,male,2,2,28,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+8811,20000,female,3,3,39,0,0,0,0,0,0,18988,15975,16579,15102,16795,34457,1400,4500,2500,3240,3000,4000,0
+8812,150000,female,1,1,48,-2,-2,-2,-2,-2,-2,6773,1731,21886,447,3458,898,1731,21888,447,3458,898,2001,0
+8813,140000,male,2,2,61,0,0,0,0,0,0,131978,135760,127508,92126,69050,73537,6000,3600,2500,5000,5000,5000,0
+8814,200000,male,1,1,40,-1,-1,2,-1,-1,-1,3061,13342,6143,2982,6013,15916,13681,24,2991,6031,16028,4211,0
+8815,240000,female,1,2,35,-2,-2,-2,-2,-2,-2,0,0,0,2429,0,799,0,0,2429,0,799,17125,0
+8816,50000,male,2,1,33,2,0,-1,-1,-1,0,42923,42803,1473,390,1573,390,2330,1473,390,1573,0,780,0
+8817,50000,male,2,1,37,0,0,2,2,2,2,24801,27600,26858,28209,29108,29980,3200,0,1800,1500,1500,2500,1
+8818,470000,male,2,2,34,0,0,0,0,0,0,247503,245552,238161,240607,230142,198171,9024,10400,10000,25000,8000,8000,0
+8819,90000,male,2,1,37,2,-1,-1,0,0,0,117793,93777,87401,38144,39177,36687,6732,92113,1317,1598,1461,1354,0
+8820,420000,female,1,1,45,1,-1,-1,-1,-1,-1,-34,10321,6244,2970,3608,3019,2686,6500,3004,3797,3103,4302,0
+8821,430000,female,2,1,32,-2,-2,-1,2,0,0,-15308,-33350,95740,77875,62675,48764,8,145740,7,2500,2021,2000,0
+8822,150000,female,5,2,27,-2,-2,-1,-1,0,-1,12178,22344,65330,20333,8433,10332,22452,65676,20368,25,10363,4881,0
+8823,450000,female,1,1,35,-1,-1,-1,-1,-1,-1,6126,6869,16895,7312,6213,5073,6869,16918,7316,6213,5073,15532,0
+8824,220000,female,2,1,41,1,2,-1,-1,-1,-1,6516,194,3619,7069,4092,0,0,3655,7069,4092,0,0,0
+8825,150000,male,1,2,35,0,0,0,0,0,0,251063,244285,238438,232570,226808,220586,9000,10000,10000,8000,8000,7000,0
+8826,120000,male,1,2,31,-1,-1,-1,-1,-1,-1,2340,4908,70,220,220,220,4908,70,220,220,220,360,0
+8827,80000,female,1,1,32,-2,-2,-2,-2,-2,-2,871,3179,3344,3552,0,0,3381,3384,3958,0,0,0,0
+8828,230000,female,2,2,32,1,2,0,0,-1,-1,73757,69748,23266,13565,80,0,0,1200,1027,80,0,0,0
+8829,40000,female,3,1,24,1,8,7,6,5,4,25933,25589,25234,24579,23635,22680,0,0,0,0,0,0,0
+8830,300000,female,2,1,66,1,-1,2,-1,0,0,0,200,200,22935,16858,0,200,0,22935,0,0,0,0
+8831,360000,female,2,1,51,-1,-1,-1,-1,-1,-1,19155,1473,1430,18697,659,781,1473,1430,18740,659,781,1557,0
+8832,50000,female,1,2,22,2,2,2,0,0,0,8823,10606,4991,4461,2561,0,2000,300,200,0,0,0,1
+8833,200000,male,1,2,33,-1,-1,-2,-1,-1,-2,3557,-60,-60,1740,0,0,0,0,1800,0,0,0,0
+8834,170000,male,2,1,38,0,0,0,0,0,-1,157174,139101,192575,157028,135838,125483,9900,83200,0,3006,132854,5003,0
+8835,100000,female,3,2,56,0,0,0,0,0,0,70048,67942,45591,39764,33091,34265,2200,1505,1300,1210,3000,2000,0
+8836,20000,female,1,2,21,0,0,0,0,0,0,17374,18555,19489,19479,19705,8440,1466,1400,390,394,629,0,0
+8837,20000,male,3,2,24,-1,-1,-1,0,0,0,1473,390,8595,7454,7208,0,390,8595,149,144,0,780,0
+8838,210000,female,2,1,36,-1,0,0,0,0,0,47718,233289,227143,221126,215358,163444,199000,7613,7116,6980,5813,5762,0
+8839,50000,female,2,2,29,0,0,0,0,0,0,49793,50466,50085,50686,46805,47220,1866,1733,1724,1684,2058,1341,0
+8840,50000,male,2,2,42,0,0,0,0,0,0,47689,42338,31539,17342,17541,18149,2000,1281,700,700,1000,1000,0
+8841,120000,male,2,2,26,0,0,0,0,0,0,114815,113360,116797,92346,88542,80225,6159,10008,3051,3100,3052,2908,1
+8842,80000,female,3,1,52,2,2,3,3,3,2,36649,39448,40101,40748,39816,40607,3700,1600,1600,0,1600,1600,1
+8843,190000,male,1,2,29,1,-1,2,2,2,-1,0,2214,66,66,0,4433,2214,0,0,66,4433,0,1
+8844,180000,female,1,2,31,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+8845,180000,male,1,2,29,-1,-1,-1,-1,-1,-1,996,1593,2597,998,847,1912,1597,2604,1001,849,1915,4055,1
+8846,110000,female,2,2,26,0,0,2,0,0,0,46633,49569,42867,43875,45036,46319,4029,0,2000,2000,2180,2000,0
+8847,220000,male,1,2,35,-1,0,0,-2,-2,-2,53419,53358,0,0,0,0,7000,0,0,0,0,0,0
+8848,80000,female,2,2,22,0,0,0,0,0,0,2524,5097,6107,7141,7355,7357,3000,1500,1500,700,500,500,0
+8849,200000,male,1,1,40,-2,-2,-2,-2,-2,-2,15596,1470,7289,0,0,2376,1470,7289,0,0,2376,0,0
+8850,60000,male,1,1,51,0,0,0,3,2,0,35619,36688,40841,39952,38081,36483,1647,4800,0,0,1326,3500,1
+8851,500000,female,1,1,42,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+8852,300000,male,1,2,33,0,-1,-1,-1,-1,-1,34339,962,4215,2579,970,2656,962,4247,2595,970,2672,978,0
+8853,150000,female,1,1,30,2,0,0,0,0,0,151060,139648,119043,112072,113932,105706,3864,3868,2808,3037,2583,1079,1
+8854,90000,female,2,2,24,1,2,0,0,2,0,13137,10724,9621,17701,15496,9341,0,1000,10000,0,1000,3105,0
+8855,240000,male,1,1,44,-1,-1,-1,-1,-1,-1,1473,1473,1473,1473,1473,1473,1473,1473,1473,1473,1473,390,1
+8856,190000,female,2,1,45,0,0,0,0,0,0,143701,126337,121378,75252,79028,81548,4664,4222,2705,5000,4000,5000,0
+8857,80000,male,1,2,37,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+8858,500000,female,2,2,37,0,0,0,0,0,0,51652,29550,33040,30757,35559,38981,5300,4000,3000,5300,5000,5000,0
+8859,360000,female,1,2,42,-2,-1,-1,-1,-1,-2,45603,29788,2950,6366,11480,222,29882,2950,6366,11480,222,4285,0
+8860,60000,male,3,2,24,0,0,0,0,0,-1,33270,16636,17321,17421,18421,891,1715,1400,500,1000,900,19000,0
+8861,140000,female,1,2,25,-1,-1,-1,-1,-1,-1,1605,1844,1311,643,2561,1440,1844,1311,643,2561,1440,1582,0
+8862,50000,female,2,1,37,0,0,0,0,0,0,25234,23518,21746,18082,18461,18830,1384,1300,700,670,676,700,0
+8863,30000,male,3,1,41,1,2,2,2,2,2,4743,5609,5371,5833,5594,6074,1090,0,552,0,573,0,1
+8864,150000,female,3,1,28,0,0,0,0,-1,-1,70537,38474,9299,10299,759,0,8000,2000,1000,759,0,0,0
+8865,180000,female,2,1,26,-2,-2,-2,-2,-2,-1,52666,181987,181255,174825,140909,177257,272817,7017,8201,8246,186732,8000,0
+8866,660000,female,2,2,33,0,0,0,0,0,0,495736,390258,349361,331565,329604,322581,13393,12113,12004,12008,11503,12019,0
+8867,210000,male,1,2,28,1,0,0,0,0,0,5397,5079,6020,6143,6268,399,5000,1000,123,125,0,1280,0
+8868,230000,female,5,2,52,0,0,0,0,0,0,155131,156687,153635,74503,46254,141916,6641,6015,2663,5015,100095,5027,0
+8869,100000,male,2,1,24,1,2,2,2,2,2,13233,13427,13609,14683,15001,15306,700,700,1300,700,700,0,1
+8870,50000,male,3,1,43,0,0,0,0,0,0,5653,16890,17606,17955,18418,18601,11340,1300,641,751,573,476,0
+8871,340000,male,2,1,38,0,0,-1,-1,-1,0,8347,5190,612,1429,19513,19650,2000,612,1429,19513,3000,3000,0
+8872,220000,female,1,1,43,0,0,2,-1,0,-1,6873,4911,2080,2080,4160,2080,2230,0,2080,2080,2080,4160,0
+8873,170000,female,2,1,30,-1,-1,0,0,0,2,2457,4599,25158,61524,62779,59390,4599,23000,40000,4418,0,2800,1
+8874,280000,male,2,2,26,-2,-2,-2,-2,-2,-2,2103,2768,4425,23083,489,2937,2781,4447,23198,491,2951,0,0
+8875,370000,female,1,1,39,0,0,0,0,0,0,141552,67739,49097,48216,47675,48074,2157,2000,1668,2000,3000,1000,0
+8876,450000,male,1,2,36,-1,-1,-2,-2,-2,-2,2500,0,0,0,0,0,0,0,0,0,0,0,1
+8877,130000,male,2,2,28,0,0,0,0,0,0,88549,74624,76133,77648,79370,80071,2709,2750,2767,2961,2913,3000,0
+8878,400000,female,1,1,32,1,-1,-1,-1,-1,-1,0,3328,3328,3828,4893,4687,6656,3328,3828,4893,4687,3008,0
+8879,90000,male,1,2,29,0,0,0,0,0,0,72774,67584,57985,56268,55970,56825,2900,2700,2200,2100,2200,2200,0
+8880,450000,male,1,1,33,-1,-1,-1,-1,-1,-1,390,390,390,390,389,990,390,390,390,389,992,780,0
+8881,130000,female,2,2,33,0,0,0,0,0,0,127781,122319,107674,89780,90625,90492,4700,3500,3200,3200,3300,3100,0
+8882,20000,female,1,2,24,-1,2,0,0,0,2,19214,15703,9914,8200,11876,4792,0,1000,0,5000,5400,13324,0
+8883,50000,female,2,1,27,2,2,0,0,0,0,49882,44110,44443,19522,19775,20325,0,1280,662,837,1000,1120,1
+8884,200000,female,2,2,29,0,0,0,0,0,0,93005,82750,79064,75657,72451,63919,3500,3000,3000,3000,3000,2000,0
+8885,150000,male,1,2,55,-1,-1,-1,-1,-1,-1,291,291,291,285,2085,8669,291,291,285,2091,8695,74646,0
+8886,250000,female,1,2,40,-1,-1,-1,-1,-1,-1,3264,2395,2986,24971,500,2162,2395,2991,25185,500,2162,0,0
+8887,270000,male,1,1,47,-1,0,0,-1,-1,-1,5908,8003,8156,5572,3697,19529,2222,2040,5599,3715,19626,2777,0
+8888,260000,male,1,2,36,0,0,0,0,0,0,97626,99675,59934,61680,65403,66745,5195,2961,3000,5000,2700,2800,0
+8889,110000,male,2,1,34,0,0,0,0,0,0,102638,101681,100316,100512,102215,103909,4600,4000,4000,3800,4000,4000,0
+8890,50000,male,2,2,25,2,2,4,3,2,2,42883,47887,46836,45785,47003,48085,6000,0,0,2100,2000,0,0
+8891,200000,male,2,1,49,-1,0,-1,0,-1,-1,8143,39869,38685,22125,17778,24354,39100,38759,102,17868,25125,35031,0
+8892,60000,female,2,2,25,0,0,0,0,0,0,53447,51734,50293,26667,26608,27665,2025,5000,2000,1000,1500,1000,0
+8893,200000,male,2,1,46,1,-1,-1,-1,-1,-1,0,760,1281,1328,1114,1205,760,1281,1328,1114,1205,1403,0
+8894,50000,male,3,1,38,-1,-1,-1,-1,-1,0,9536,0,1261,1261,2522,1261,7014,1261,1261,2522,0,780,0
+8895,70000,female,1,2,22,3,2,2,0,0,0,71501,71769,68530,29959,29315,28805,1966,49,1168,1032,1200,1200,0
+8896,50000,female,1,2,24,0,0,0,0,0,0,48482,39603,23610,18079,18668,17273,2000,1504,1000,1000,1000,1000,0
+8897,230000,female,3,2,34,0,-1,0,0,0,0,1181,1394,1413,1382,1201,820,1394,1200,1150,1000,800,2000,0
+8898,20000,female,2,1,45,-1,-1,-1,0,-1,-1,10827,8264,2480,390,880,1560,8264,2480,0,880,1070,40000,0
+8899,330000,male,2,2,28,0,0,0,0,0,0,53260,37207,40560,41978,46728,40502,2000,4000,2000,5039,2164,2000,0
+8900,50000,female,3,2,51,0,0,0,0,0,0,26660,26909,27485,27477,27651,27853,1763,1729,1111,1137,1188,997,1
+8901,460000,male,1,1,42,-1,-1,-1,-1,-1,2,11924,7721,1711,-2,7126,1996,7728,2229,2,7128,10,957,0
+8902,30000,female,2,2,27,0,0,0,0,0,0,26264,27536,28771,27744,28302,29725,2000,2005,1000,1000,2250,0,1
+8903,200000,male,3,2,30,0,0,0,0,0,0,111053,112269,76726,72487,74108,67036,5020,4005,2800,3300,3000,2700,0
+8904,50000,male,1,2,23,2,3,2,0,0,0,7557,7293,8017,8687,9048,9306,0,1000,810,500,408,500,1
+8905,50000,male,2,1,38,0,0,0,0,0,0,25742,23300,21266,19418,19315,18559,1372,1286,666,680,816,819,0
+8906,200000,male,2,1,33,-1,-1,-1,-1,-1,-1,3353,5341,5966,3348,5051,7128,5341,5966,3348,5061,7128,4722,0
+8907,360000,female,1,2,38,0,0,0,0,0,0,53035,54125,55135,54645,54859,55112,3492,3452,1912,2000,2091,1929,0
+8908,230000,male,1,2,43,-1,0,0,0,0,0,1156,10892,20039,29045,74551,92182,10000,10000,10000,1681,103197,3267,0
+8909,200000,female,2,1,34,0,0,0,0,0,0,68262,53329,44222,36869,31640,25334,2791,2668,1820,2000,882,600,0
+8910,20000,male,3,1,51,0,0,0,0,2,2,14341,15371,16375,18905,19462,18967,1266,1270,2800,1000,0,512,1
+8911,200000,male,2,1,41,0,0,0,0,0,0,193781,197132,195011,196986,187687,193978,10000,7010,8000,7000,14500,5600,0
+8912,30000,female,1,2,27,-2,-2,-2,-2,-2,-2,1784,6801,2118,4171,1714,2001,6855,2118,4171,1714,2001,0,0
+8913,360000,female,1,1,31,0,0,0,0,0,-1,6656,6722,8605,28405,-105,3895,2000,4000,20000,5000,4000,889,0
+8914,10000,male,2,2,29,2,2,2,2,3,2,5833,8162,8480,9089,8658,8372,2600,600,895,0,0,764,1
+8915,180000,female,2,1,34,0,0,0,0,0,0,181076,168338,169278,171274,169691,173760,6013,6307,6300,6300,7000,14000,0
+8916,270000,male,2,2,31,-2,-2,-2,-2,-2,-2,0,1521,0,0,0,0,1521,0,0,0,0,200,0
+8917,240000,female,2,2,42,1,2,2,0,0,0,187558,187333,163332,166813,170739,174532,6700,0,6900,6000,6000,6000,1
+8918,280000,female,2,2,43,0,0,0,0,0,0,31248,32081,32897,33350,34047,34525,1527,1541,1192,1233,1239,1273,0
+8919,330000,male,2,1,34,-1,-1,-2,-2,-2,-2,901,0,0,0,0,0,0,0,0,0,0,0,0
+8920,200000,female,3,2,46,-2,-2,-2,-2,-2,-2,13929,2837,5892,2267,11679,0,2837,5892,2267,11679,0,0,0
+8921,100000,male,3,2,36,2,0,0,0,0,2,38546,42298,42636,44728,49192,51391,4400,1028,3120,6218,4016,4536,0
+8922,170000,female,1,2,30,2,0,0,0,0,0,27267,28523,29742,30183,31041,31871,2000,2000,1233,1500,1500,2000,1
+8923,210000,female,1,2,29,0,0,0,0,0,0,3675,4460,5542,15378,18106,18804,1082,1164,10000,3000,1000,1000,0
+8924,100000,male,2,2,26,0,0,0,0,0,0,32186,32949,33680,34419,37782,76185,2000,2000,2000,4500,40000,3000,0
+8925,200000,female,3,1,67,0,0,0,0,0,0,188072,166668,159513,150852,151996,147690,17014,15019,15000,15000,10000,10000,0
+8926,230000,male,2,2,30,0,0,0,0,0,0,101832,92396,84297,49681,46224,44800,5000,4000,2029,2000,2500,1300,0
+8927,90000,female,3,2,35,0,0,0,0,0,0,101106,96216,89964,29802,29174,26111,4208,4022,686,753,740,5034,0
+8928,170000,female,2,1,28,0,0,0,0,0,0,105509,106445,68703,66338,62135,65706,4285,3000,3000,3000,5000,3000,0
+8929,100000,female,2,1,42,2,2,0,0,0,0,101494,98994,96845,97037,93480,95516,13,3709,4000,3500,3600,3500,1
+8930,20000,male,3,2,24,0,0,0,0,-1,-1,17895,19598,19701,3486,199,0,2000,1000,400,199,0,0,0
+8931,50000,male,3,1,53,0,0,0,0,0,0,6618,7641,8651,8824,9008,9187,1133,1143,316,326,328,339,0
+8932,180000,female,3,2,40,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+8933,60000,female,2,1,28,0,0,0,0,0,0,29701,27243,28227,28393,29149,28819,1463,1447,1393,1200,1000,1283,1
+8934,80000,female,2,1,39,0,0,0,0,0,-1,8755,13290,11244,13444,6782,226,5000,5000,3000,2000,226,0,0
+8935,350000,male,1,1,30,-2,-2,-2,-2,-2,-2,51672,31250,29178,29180,52550,43538,13113,12110,15044,32244,40218,112406,0
+8936,20000,male,3,1,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+8937,160000,female,3,1,30,-1,-1,0,-1,-1,-1,2215,8977,3300,10770,11800,10043,8977,1000,10770,11800,10043,5325,0
+8938,150000,male,3,2,29,1,3,2,2,2,2,54803,52996,51169,53979,52639,58508,0,0,4000,0,7127,0,1
+8939,150000,male,3,1,44,0,-1,-1,0,0,0,80015,19386,39008,19483,32901,8790,19418,40010,19,20000,0,13669,0
+8940,50000,male,2,2,46,0,0,0,0,0,0,45206,45836,49577,18666,19058,19450,2362,20103,667,692,709,689,0
+8941,500000,male,1,1,45,-1,-1,-1,-1,0,-1,6197,4934,6783,11507,4883,5897,4969,6802,11523,14,5914,7622,0
+8942,480000,female,2,1,37,-1,-1,-1,-1,-1,-1,5269,2217,9731,9272,2718,1498,2217,9731,9272,2718,1498,1138,0
+8943,340000,male,1,2,44,0,0,0,0,0,0,83059,85634,73950,59324,156094,110234,20000,5000,2000,112000,4234,4000,1
+8944,180000,female,1,1,47,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+8945,50000,female,3,3,45,0,0,0,0,0,0,25649,22379,16670,8433,8609,8783,1347,1138,302,312,317,321,0
+8946,360000,female,1,2,31,0,0,0,0,0,0,114287,114746,115304,114966,113208,113504,5200,5000,4000,5000,8000,4000,0
+8947,350000,male,3,1,31,0,0,0,0,0,0,232501,231747,197689,207984,183208,190436,20000,20023,20014,20000,20000,20000,0
+8948,180000,male,2,2,30,-1,-1,-1,-1,-1,-1,10000,10000,10970,12786,10300,10000,10000,10970,12786,10300,10000,11080,0
+8949,50000,male,1,1,34,0,0,0,0,0,0,45341,31383,16235,17035,15601,16349,2115,2000,2022,1000,1000,2000,0
+8950,70000,female,2,1,31,-1,0,0,0,2,2,6895,16381,18715,22630,22276,13564,10000,3000,4100,0,1000,0,1
+8951,40000,female,3,2,23,2,2,2,0,0,0,34415,35170,34305,34985,35719,36428,1600,0,1250,1296,1302,1348,1
+8952,270000,female,1,1,37,-1,-1,0,0,0,0,1257,71665,69256,67842,68235,72706,73700,3168,3000,4000,8000,3000,0
+8953,70000,female,2,2,23,0,0,0,0,0,0,4753,5843,6720,8171,7127,9044,1172,1049,1500,500,2000,3000,0
+8954,280000,male,1,2,41,-2,-2,-2,-2,-2,-2,5819,14656,8971,5747,11927,40170,3683,9059,5787,11985,40370,8314,0
+8955,260000,female,2,1,42,0,0,0,0,0,0,194654,184008,174268,181592,174184,153907,6540,7691,12831,6015,6410,9606,0
+8956,20000,female,1,2,23,0,0,2,0,0,0,6988,8310,10015,9195,9539,9574,1444,2000,329,492,342,354,1
+8957,80000,female,1,2,26,0,0,0,0,0,0,78128,71083,58715,39389,12012,2900,3362,1389,889,900,58,0,1
+8958,20000,male,3,1,27,1,3,2,0,0,-2,20386,20757,19200,20000,0,0,1000,0,1000,0,0,0,0
+8959,290000,male,1,2,37,2,0,0,0,0,0,131279,134113,136948,139674,142793,162091,4700,4800,4735,5100,21500,6000,1
+8960,180000,female,2,2,33,0,0,0,-1,-1,0,10083,11211,13669,316,120961,123355,1600,3316,316,120961,5000,3100,0
+8961,250000,female,1,1,43,-1,-1,2,-1,-1,-1,1041,6854,3774,4508,2916,4969,6854,0,4508,2916,4969,0,0
+8962,230000,male,1,2,30,0,0,0,0,0,0,149545,136888,74555,45100,64387,45782,60000,20000,5000,30000,35000,90000,0
+8963,240000,female,2,2,41,0,-1,-1,-1,-1,0,8435,169,1913,150,482,5482,169,1921,150,482,5000,5000,0
+8964,190000,female,2,1,34,0,0,0,0,0,0,139569,101823,100209,85218,112672,76224,4500,40000,25000,35000,2897,20000,0
+8965,200000,male,1,2,29,-1,-1,-1,-1,-1,-1,170,3300,38526,-93,18681,12399,3318,42497,0,18774,12461,9526,0
+8966,30000,male,2,2,43,0,0,0,0,0,-2,28118,29266,28829,15762,0,0,2000,1209,700,0,0,0,0
+8967,180000,female,3,2,42,0,0,0,0,0,0,102646,82849,78064,73437,108072,49206,5006,5000,5005,42500,3000,2000,0
+8968,210000,female,1,2,33,-1,-1,-1,0,0,-2,1888,320,1403,418,-16,-342,320,1409,0,0,0,2108,1
+8969,30000,female,2,1,34,-1,-1,2,-1,-1,3,5088,996,888,656,1957,1536,996,0,656,1957,0,0,1
+8970,60000,female,2,2,44,0,0,0,0,0,0,43221,41539,40356,39672,39863,40319,2021,1918,1390,1576,1647,1516,0
+8971,200000,male,1,1,29,-1,-1,-1,0,0,-1,295,1130,12791,40341,9238,1017,1130,12791,28000,1000,2000,74179,0
+8972,150000,female,1,2,35,0,0,2,2,0,0,128102,136722,137525,133431,135837,143319,12644,4926,0,5122,10349,0,1
+8973,130000,female,1,1,41,-1,-1,2,2,2,0,767,9637,8256,14890,13742,7630,9804,0,7600,0,5000,10000,1
+8974,210000,female,2,1,34,0,0,0,0,-1,0,149092,153941,157358,3561,34600,32581,7000,7600,1019,36500,3000,3000,0
+8975,140000,female,2,1,37,-1,0,0,0,0,0,65863,63803,61998,63517,62463,62168,3000,10000,6500,3900,6700,2000,0
+8976,80000,female,2,1,39,1,2,0,-1,-1,-1,38986,34931,33890,2065,5215,3745,6,1000,2065,5215,3745,1390,1
+8977,240000,female,1,1,36,-1,-1,-1,-1,-1,-1,12181,6746,12104,2788,4084,3288,6746,12104,2788,4084,3288,4788,0
+8978,50000,male,3,2,44,0,0,0,0,0,0,48138,49262,49878,16748,17177,17691,2203,2139,700,700,800,1000,0
+8979,50000,male,1,2,30,0,0,2,2,2,0,45948,50813,45393,49351,45473,48595,6012,10,8212,1200,4008,4407,0
+8980,160000,male,2,1,49,-1,-1,-1,-1,-1,-1,435,435,435,435,435,435,435,435,435,435,435,870,0
+8981,260000,female,1,2,31,-1,-1,-1,-1,-1,-1,597,1304,5734,24898,150,381,1306,5734,24898,3883,381,2234,0
+8982,80000,male,2,2,31,8,7,6,5,4,3,126786,124971,121216,97622,88878,80518,0,0,0,0,0,0,0
+8983,100000,female,2,1,46,-1,3,2,0,0,-1,5291,5045,3336,1863,390,930,0,0,0,0,930,0,1
+8984,280000,female,2,1,35,1,-1,2,-1,-1,0,-3,146,146,1596,1672,1596,149,0,1600,1672,1562,326,0
+8985,50000,male,3,2,36,0,0,0,0,-2,-2,47911,48418,7000,0,0,0,2166,1000,0,0,0,0,0
+8986,260000,female,1,2,31,-1,-1,-1,-1,-1,0,1629,933,2218,4068,9829,21270,933,2220,4068,9829,11680,553,0
+8987,30000,male,2,1,36,0,0,2,0,0,0,18441,19936,20803,21655,22646,23764,1800,1500,1500,1500,1500,1500,1
+8988,30000,female,2,1,25,1,2,0,0,0,0,30347,28517,29709,29833,29306,29348,0,1800,1000,1041,1138,932,0
+8989,130000,male,2,2,33,2,2,-1,-1,-2,-2,2183,2000,700,0,0,0,13,700,0,0,0,0,0
+8990,50000,female,3,2,48,0,-1,-1,-1,-1,0,1500,2000,1382,-118,13656,13927,2000,1382,0,13925,498,516,0
+8991,150000,male,2,1,35,2,2,2,2,2,2,144194,145889,146189,146838,148754,150746,6600,5300,5600,5500,5700,5500,1
+8992,200000,female,1,1,58,-2,-2,-2,-2,-1,-1,-200,-200,-200,0,5957,0,0,0,200,5957,0,0,0
+8993,560000,male,2,1,32,1,-2,-2,-1,-1,-2,19924,16297,4593,2512,11461,3402,1163,1023,2519,46518,3421,11467,0
+8994,20000,male,3,2,26,-1,3,2,0,0,0,20780,20172,19400,20000,20000,0,0,0,1000,0,0,0,0
+8995,270000,male,1,1,41,-1,-1,-1,-1,-1,-1,316,316,316,571,7711,571,316,316,571,7711,571,571,0
+8996,300000,female,1,2,48,2,0,0,0,0,0,304040,305627,305697,269017,275230,260419,11500,12000,10000,10500,10000,10000,1
+8997,100000,female,2,1,29,1,4,3,2,2,2,85264,83376,81445,82710,84242,82730,0,0,3200,3000,0,3300,0
+8998,20000,male,3,2,43,0,0,0,0,0,0,19107,20120,19445,19831,19473,20009,1330,1274,660,752,906,650,0
+8999,20000,male,3,1,69,0,0,0,0,0,0,18516,19193,18578,17989,19533,20039,1700,2000,2000,2000,831,400,0
+9000,70000,male,3,1,56,0,0,0,0,0,0,42039,46330,47480,49242,29993,29618,5000,2238,3000,3000,1500,1500,0
+9001,60000,female,2,2,31,2,0,0,0,2,2,19921,20993,21736,23172,22661,24087,1700,1400,1800,0,1800,0,0
+9002,180000,female,2,1,51,2,2,0,0,0,0,15100,14627,15632,15787,16117,17162,0,1495,650,671,1401,706,0
+9003,360000,female,1,2,31,-1,-1,-1,-1,-1,-1,1041,5792,1358,5209,697,-4,5821,1367,5220,700,0,934,0
+9004,200000,male,1,1,34,2,2,2,2,2,2,170487,174258,175905,178528,175581,180145,8000,6000,7000,0,7500,6000,1
+9005,170000,female,2,1,42,0,0,0,0,0,0,37772,38862,39914,40559,41953,42210,2000,2000,1610,2200,1600,1600,0
+9006,170000,female,1,1,51,-2,-2,-2,-2,-2,-2,4667,5910,1630,2326,660,1373,5914,1630,2326,660,1373,6674,0
+9007,60000,female,3,1,51,1,-1,-1,-1,-1,-2,0,724,0,785,0,0,724,0,785,0,0,0,0
+9008,30000,male,2,2,27,1,2,0,-1,2,0,29956,28469,58384,29553,29933,30000,0,2000,30000,1000,1000,0,1
+9009,140000,female,1,1,37,0,0,0,0,0,0,37625,38023,39577,39465,45180,44213,1657,2211,1459,6398,1729,1633,0
+9010,20000,male,1,2,25,0,0,0,0,0,0,15848,16883,17839,18040,18414,16213,1595,1551,752,773,772,354,0
+9011,20000,female,1,2,27,0,0,0,0,-1,-1,14088,8842,6653,2946,1186,416,1111,1009,7,1190,416,831,0
+9012,520000,male,1,2,39,-1,-1,-1,-1,-1,-1,13273,12709,5480,5397,70137,11819,12712,5487,5397,70137,11820,7888,0
+9013,30000,female,2,2,22,0,0,-1,2,-1,-1,10348,9287,1900,150,2558,2829,1013,1900,0,2558,2829,3000,0
+9014,70000,female,1,2,24,1,2,0,0,2,0,71017,64454,64182,30351,29826,29699,0,1809,2500,0,2000,1500,0
+9015,80000,female,3,1,54,0,0,0,0,0,0,76752,77528,68966,63972,50072,51239,3768,3009,2009,1818,2000,6000,0
+9016,50000,male,3,1,36,1,3,2,5,4,3,21031,20411,23766,23114,22173,21521,0,4000,0,0,0,1250,1
+9017,170000,female,1,2,25,0,0,0,-2,-2,-2,26359,5275,0,0,0,0,1275,0,0,0,0,0,0
+9018,160000,female,2,2,24,2,2,2,2,2,2,67018,67257,68939,72267,73602,75133,1900,3400,5100,2800,2900,2800,0
+9019,360000,female,2,2,30,1,2,2,-1,-1,-2,7102,6922,1861,1457,-129,-2629,1893,0,1457,2500,326,0,0
+9020,420000,female,2,2,25,-1,2,0,0,0,-2,2804,2615,3392,4392,-796,-796,0,1000,1000,0,0,20500,0
+9021,30000,male,3,2,45,0,0,0,0,0,0,28185,28296,23455,24179,24289,24649,1377,1370,1294,1015,900,913,0
+9022,60000,male,2,1,36,1,2,0,0,0,0,36544,37357,38067,38823,39638,40424,1700,1632,1388,1439,1445,1500,0
+9023,160000,female,2,1,31,0,0,0,0,0,0,135320,146230,76660,79825,82951,85168,5000,10000,5000,5000,4000,4000,0
+9024,170000,female,1,1,44,-2,-2,-2,-2,-2,-1,10309,4944,28144,1883,27938,14832,4944,28144,1883,27938,14832,0,0
+9025,20000,male,3,1,52,1,2,0,0,0,-2,20838,20212,20148,19845,0,0,0,1200,397,0,0,0,1
+9026,290000,female,1,1,45,-2,-2,-2,-2,-2,-2,1092,1335,1222,1513,2661,2436,1335,1222,1513,2661,2436,37015,0
+9027,340000,female,2,2,52,-2,-2,-2,-2,-2,-2,3375,3267,-2,498,11466,412,3283,0,500,11523,414,15055,0
+9028,60000,male,1,2,31,1,-2,-2,-1,0,-1,0,-880,-2640,1760,880,3110,0,0,4400,0,3110,0,1
+9029,500000,female,1,1,36,-1,-1,-1,0,0,-1,51465,24201,384973,349790,315125,16576,24201,384986,7017,6342,16576,43710,0
+9030,230000,female,3,2,54,0,0,0,0,0,0,66108,45000,33477,34914,36352,37745,6840,3000,2000,2000,2000,2000,0
+9031,30000,female,5,1,53,0,0,0,0,0,0,28191,27166,17769,18107,18541,4770,1600,1300,1000,1200,2000,1000,0
+9032,20000,male,1,2,25,1,-1,2,2,2,2,0,1825,1346,587,338,1239,3650,0,300,0,1000,0,0
+9033,140000,female,2,2,30,-1,-1,-2,-2,-2,-2,854,0,0,0,0,0,0,0,0,0,0,0,0
+9034,500000,male,2,1,31,0,0,0,0,0,0,39291,29122,26639,22828,21293,17544,1700,1174,1007,1013,1018,264,0
+9035,120000,female,1,1,39,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+9036,70000,female,2,2,25,0,0,0,0,0,0,63745,55670,47413,44590,45890,47126,2294,2100,1600,2000,2000,1750,1
+9037,280000,female,2,1,50,-1,-1,-1,-1,-1,-1,25040,41270,570,1068,48313,10252,41275,570,1074,48313,10252,19226,0
+9038,130000,male,2,1,53,-1,-1,-1,-1,-1,-1,780,0,390,390,390,390,0,390,390,390,390,390,0
+9039,70000,male,1,2,30,0,0,0,0,2,0,68971,69872,66932,69043,70252,55732,2700,3100,3900,2500,2500,2500,1
+9040,340000,female,2,1,42,-1,-1,-1,-1,-1,-1,14087,11007,16971,10734,9200,23818,11013,17025,10734,9200,23818,46291,0
+9041,210000,male,1,2,28,-1,-1,-1,-1,-1,-1,1832,1074,1002,711,420,1572,1074,1002,711,420,1572,0,0
+9042,80000,female,2,2,57,-1,-1,-1,-2,-2,-2,3072,2856,0,0,0,0,2856,0,0,0,0,0,0
+9043,120000,female,2,2,43,-1,-1,-1,-1,-1,-1,316,71316,316,316,2766,1996,71316,316,316,2766,1996,2054,0
+9044,100000,female,1,2,28,0,0,0,0,0,0,102697,100462,101879,100999,101188,99328,4600,4000,4000,4000,4000,4400,0
+9045,20000,male,1,2,22,0,0,0,0,0,0,14720,15432,16252,14877,9487,-5910,3880,1200,298,5390,4000,9666,0
+9046,220000,female,1,1,46,2,2,0,0,0,0,243517,228368,224414,196229,190050,183779,0,10000,7200,7001,6900,6400,0
+9047,70000,female,1,2,34,2,2,2,2,2,2,44347,43357,46626,47562,48651,49700,0,4000,2000,2000,2000,2000,1
+9048,20000,female,2,1,26,0,0,0,0,0,0,73404,75132,77264,74319,9968,10769,2600,2500,2000,1000,1000,1000,0
+9049,100000,female,2,2,32,0,0,0,0,0,0,54933,56151,56677,58237,59643,63275,2700,2055,2500,2500,4800,2500,0
+9050,110000,female,2,2,24,0,0,0,0,0,0,49782,50858,51780,53647,53308,54366,1878,1800,2647,1892,1901,1728,0
+9051,80000,female,3,2,27,2,2,2,2,-1,-1,3682,4714,2336,0,5471,5415,3193,0,0,5471,5415,5124,0
+9052,30000,female,1,2,29,1,-1,-1,-1,-1,-1,0,686,405,3190,2844,0,686,409,3190,2844,0,0,0
+9053,30000,female,2,1,34,0,-1,-1,0,0,-1,27816,1250,24135,24745,22805,10745,1260,24135,1000,2000,10745,18572,0
+9054,60000,male,1,2,27,0,0,0,0,0,0,57753,59186,59001,27971,28619,29213,2960,1628,1002,1100,1100,922,1
+9055,50000,female,1,2,27,0,0,0,0,0,2,44421,45897,46920,47864,50856,48390,2500,2100,2000,3900,0,2000,0
+9056,260000,female,2,1,53,0,0,0,0,0,0,222134,223345,225258,189500,182771,188876,10020,10007,10017,10003,10007,10036,0
+9057,500000,female,1,2,29,0,0,0,0,2,2,201500,196051,161342,154127,149472,139130,10000,7031,10100,5663,0,4448,0
+9058,110000,female,1,2,35,-1,2,-1,0,0,-1,549,179,1166,790,806,1729,0,1166,0,446,1729,0,0
+9059,30000,female,3,1,33,2,2,2,2,2,2,27126,29970,29192,31103,31771,30404,3600,0,2700,1300,0,1300,0
+9060,180000,female,1,2,31,-1,-1,-1,-2,-2,-2,8260,5921,0,0,0,0,5921,0,0,0,0,0,1
+9061,170000,female,1,1,35,1,-1,-1,-2,-2,-2,0,3209,0,0,0,0,3209,0,0,0,0,0,1
+9062,320000,female,1,1,34,-1,-1,-1,-1,-1,-1,800,18873,-150,150,21565,4818,18873,0,500,21565,5000,168492,1
+9063,10000,female,2,1,53,0,0,0,-2,-2,-2,9269,10400,0,0,0,0,1400,0,0,0,0,0,1
+9064,50000,male,2,2,26,1,5,4,8,7,6,48481,47426,56623,55815,55033,53625,0,10000,0,0,0,0,0
+9065,170000,female,1,2,32,1,-2,-2,-2,-1,-1,0,0,0,0,500,500,0,0,0,500,500,500,1
+9066,120000,female,1,1,51,0,0,0,0,0,2,120290,116082,118405,99081,106300,104433,6000,6000,4000,9000,0,5000,0
+9067,30000,female,3,1,47,1,2,0,0,0,0,32724,29279,27149,14930,14400,0,0,1500,797,680,0,0,0
+9068,160000,male,2,2,29,0,0,0,0,0,0,157186,136159,96395,58773,60737,115158,6227,5000,5000,3000,60000,5000,0
+9069,50000,female,1,2,27,2,2,2,2,2,2,45722,46694,47617,48542,49630,50047,2000,2000,2000,2000,1700,2000,1
+9070,30000,female,2,1,44,0,-1,-1,-1,-1,-2,4180,390,0,780,0,0,390,0,780,0,0,0,0
+9071,50000,male,2,1,36,0,0,0,0,0,0,47606,48653,50144,47838,48914,50442,1815,2306,2000,2000,2500,1700,0
+9072,240000,female,2,1,45,1,-1,-1,-1,-1,-1,0,396,396,396,396,396,396,396,396,396,396,396,0
+9073,180000,female,1,2,31,4,4,4,3,2,2,83020,84654,82852,81162,79958,178148,3500,0,0,0,100000,0,1
+9074,500000,female,2,2,28,0,0,0,0,0,0,215459,201715,141177,130352,126422,113148,7412,4721,3854,3622,3433,3201,0
+9075,240000,female,3,2,50,0,0,0,0,0,0,223045,218120,221051,191997,196221,200058,9490,8163,6753,7197,7176,5265,0
+9076,50000,male,2,2,23,0,0,-1,-1,-2,-2,30101,0,780,0,0,0,434,780,0,0,0,0,0
+9077,50000,female,2,1,30,2,0,0,-2,-2,-2,6425,4580,0,0,0,0,1050,0,0,0,0,0,1
+9078,220000,male,1,2,38,0,0,0,0,0,0,197600,201708,121499,124409,68319,0,8200,5100,5400,3300,0,0,0
+9079,200000,male,2,1,36,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+9080,230000,female,1,1,35,-1,-1,-1,-1,-1,-1,4043,10609,4982,43509,2271,13486,10670,5008,43736,2282,13553,2980,0
+9081,20000,male,3,2,56,0,0,0,0,0,0,15552,16596,17609,17329,17850,18046,1300,1300,700,800,602,600,0
+9082,130000,female,1,1,37,2,2,2,2,2,2,41795,43914,44396,45365,46093,47185,3100,1500,2000,1600,2000,2000,1
+9083,100000,male,2,1,50,0,0,0,0,0,0,95549,98909,81181,48194,40692,18110,5025,2939,18263,15761,418,583,0
+9084,20000,male,2,2,39,0,0,0,0,0,0,15972,16432,17618,17365,17719,17740,1500,1600,347,354,355,0,1
+9085,50000,female,2,2,26,0,0,0,-1,0,0,48801,50140,48776,19251,19650,14974,2144,1000,19251,622,558,290,0
+9086,140000,male,3,1,45,2,2,2,2,2,2,78663,76839,80561,83643,82183,90823,0,5000,5000,0,10000,0,1
+9087,90000,male,2,2,32,0,0,0,0,0,0,23730,24693,6470,9882,28283,27893,2000,5000,5000,25000,22000,5000,0
+9088,290000,female,1,1,39,1,-1,-1,0,0,-1,1358,2586,11101,21101,2833,4820,2613,11101,10000,2839,4826,1352,0
+9089,180000,female,2,2,34,0,0,0,0,0,0,181385,170946,171079,126724,125786,127419,8194,8500,4600,5000,4600,5000,1
+9090,200000,female,3,1,57,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+9091,110000,male,1,1,32,2,2,2,2,2,2,95686,98374,99562,100532,102779,100966,5100,3700,3500,4000,0,10060,1
+9092,50000,male,3,2,28,0,0,0,0,0,0,17141,18361,19214,15519,15129,13747,1500,1211,516,520,622,5000,0
+9093,290000,female,2,1,48,-2,-2,-2,-2,-2,-2,10608,34470,11888,27114,3501,12511,34470,11890,27114,3501,12511,5797,0
+9094,380000,male,1,1,46,2,2,2,2,2,2,88069,90418,88327,92492,94617,96579,4400,0,6300,3500,3400,0,1
+9095,480000,male,2,1,39,0,0,0,0,0,0,428927,436425,300134,315067,321825,328781,15000,30000,20000,12000,12500,12200,0
+9096,30000,female,2,2,22,0,0,-2,-2,-2,-2,18830,0,0,0,0,0,0,0,0,0,0,0,0
+9097,380000,male,1,1,50,0,0,0,0,0,0,211463,201613,191343,184267,172328,230031,10000,10000,10000,20000,95000,50000,0
+9098,340000,female,1,1,42,0,0,0,0,0,0,221587,216472,218817,223329,226176,230921,8409,8500,8500,8500,8500,8500,0
+9099,30000,female,2,2,22,0,0,-1,-1,2,2,17358,-36,23114,24727,24192,25905,0,23150,2000,0,2119,0,0
+9100,200000,male,3,1,29,-1,-1,-1,-1,-1,-1,15456,46620,22935,8335,971,4278,46722,22985,8346,971,4296,21767,0
+9101,360000,female,1,2,30,0,0,0,0,0,0,40514,31871,27793,19409,18093,10800,1800,2025,3000,2000,1000,2000,0
+9102,160000,male,1,1,49,-1,-1,2,-1,-1,-1,316,632,316,316,316,316,632,0,316,316,316,316,1
+9103,50000,male,2,2,40,1,1,-1,-1,0,0,50209,-2522,409,29148,30270,22814,0,2931,30000,5270,2814,3089,0
+9104,200000,male,2,2,32,-2,-2,-2,-2,-2,-2,1473,1473,390,390,540,390,1473,390,390,540,390,0,0
+9105,60000,male,2,2,30,0,0,0,0,0,0,39264,41622,42627,43914,45053,46303,3000,2000,2000,2000,2000,2000,0
+9106,80000,female,3,1,53,-1,2,-1,-1,-1,-1,780,390,390,390,390,1320,0,390,390,390,1320,0,0
+9107,100000,female,2,1,38,2,2,0,0,0,0,50721,49635,50509,51666,52834,54955,0,2000,2000,2000,3000,3000,1
+9108,330000,male,1,1,37,-2,-2,-2,-1,-1,-1,18807,15865,34284,2780,20247,1806,2087,10054,2840,21101,1814,1861,1
+9109,500000,female,1,2,44,-2,-2,-2,-2,-2,-2,0,5218,3981,0,3672,7617,5218,3981,0,3672,7617,2691,0
+9110,180000,female,2,1,32,0,0,0,0,0,0,54842,55435,56810,63562,41150,0,2073,2359,8000,3000,0,0,0
+9111,200000,female,2,1,44,0,0,0,2,0,0,120515,117292,24612,19527,16471,13408,3030,4452,0,708,656,1000,0
+9112,420000,female,1,1,39,0,0,0,0,0,0,304964,312224,315822,275393,278745,244543,14000,11230,10000,8091,6965,6362,0
+9113,110000,female,2,2,23,0,0,0,0,0,0,34486,43872,45140,46885,48129,49327,10000,2000,2500,2000,2000,2000,0
+9114,50000,female,2,1,24,2,0,0,0,0,0,50710,45641,29259,9442,9792,9684,1974,1552,334,498,500,493,1
+9115,130000,female,3,1,46,0,0,0,0,0,0,17505,18529,19545,20217,20890,21541,1312,1328,1000,1000,1000,799,1
+9116,250000,male,2,1,36,0,0,0,0,0,0,168899,174479,157088,136787,139385,122947,10000,8300,5200,5500,5000,5000,0
+9117,50000,female,2,2,26,-1,-1,-1,-2,-1,3,528,378,-150,-678,2057,1206,378,0,0,3263,0,0,0
+9118,260000,male,2,1,43,0,0,0,0,0,0,99523,76712,55185,82040,60867,59005,3514,3049,58312,3018,3020,1511,0
+9119,240000,male,2,1,54,0,0,2,0,0,0,16135,249258,243589,204754,201426,198736,234000,30,7046,7023,10005,8014,0
+9120,300000,female,1,2,28,0,0,2,0,0,0,24763,33484,31501,32678,36147,40503,10700,0,2000,4000,5000,0,0
+9121,200000,female,1,1,35,-1,-1,-1,-1,-1,-1,82831,15081,32105,4476,6491,1262,15089,32130,4476,6619,1262,1974,0
+9122,600000,female,3,1,46,-1,-1,-1,-1,-1,-1,22921,11441,23471,30871,17314,10000,11444,23537,31171,17348,10000,10000,0
+9123,130000,female,2,2,29,0,0,2,0,0,2,88345,94597,92077,93272,96298,95745,8600,0,3500,7100,3600,2900,0
+9124,150000,female,1,2,28,-2,-2,-2,-2,-2,-2,9625,2099,5306,8240,1686,149,2099,5306,8240,1686,149,1760,0
+9125,200000,male,1,2,30,-2,-1,0,0,0,2,-1883,9208,103360,77818,26276,3235,15143,100057,292,10019,16,810,0
+9126,80000,female,2,1,34,1,2,2,2,2,2,46461,47526,46466,48183,49057,51091,2100,0,2800,1800,3000,0,1
+9127,60000,female,2,1,34,0,0,0,0,0,0,30834,33011,33434,34935,36344,37803,3000,2000,3000,4000,3000,3000,0
+9128,360000,male,2,1,31,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+9129,110000,female,4,1,37,0,0,0,0,0,0,70204,69876,69584,59666,60916,61423,2745,2800,2200,2200,2207,3003,0
+9130,70000,female,3,1,35,3,2,2,2,0,0,69852,67531,28650,27590,27850,28085,0,2708,0,1010,1013,2000,1
+9131,50000,male,1,2,27,1,-2,-1,2,2,2,0,0,71,71,3871,3612,0,71,0,3800,0,0,1
+9132,10000,female,2,2,46,0,0,2,2,3,2,2496,4245,4525,5450,5073,4843,1800,500,1000,0,0,800,1
+9133,120000,male,1,1,51,0,0,0,0,0,0,117446,117781,122030,114294,114144,116894,4400,8002,4200,4200,8000,4000,0
+9134,220000,male,2,1,41,-1,-1,-1,-1,-1,-1,8840,1369,5924,1759,1824,7022,6643,5924,1759,1824,7022,2515,0
+9135,440000,male,1,2,33,-1,2,-1,2,-1,3,1137,343,812,168,2653,2203,0,1300,0,2777,0,0,1
+9136,50000,male,2,1,49,-1,-1,-1,-1,0,-1,1261,1261,1261,480,390,540,1261,1261,480,300,540,780,0
+9137,210000,male,2,2,32,0,0,2,0,0,0,155913,165227,161427,164860,187329,186079,13000,0,5666,24886,6282,6494,0
+9138,490000,female,2,2,34,0,-1,-1,0,0,-1,13955,10859,57426,35554,15858,23033,52280,57428,1068,3000,23033,20225,0
+9139,160000,male,1,2,30,-1,-1,-1,-1,-1,-1,4180,7781,1256,14160,6180,2000,7781,1276,14160,6180,2000,290,0
+9140,180000,female,2,1,39,0,0,0,0,0,0,46202,47359,48316,28220,29260,30173,2200,2111,1015,1500,1400,5350,0
+9141,330000,female,2,1,45,0,0,0,0,0,0,123813,127050,135631,138036,141330,144529,5100,10600,5000,5000,5000,5000,0
+9142,20000,male,2,2,34,0,0,2,0,0,0,17650,18740,18373,18768,19315,20836,2500,1000,1000,1000,2000,0,0
+9143,120000,female,2,2,37,0,0,0,0,0,0,93822,96916,99051,99927,101541,103379,4848,4877,3625,3600,3751,3900,0
+9144,360000,female,1,2,30,-2,-2,-2,-2,-2,-2,-28,-28,1072,1980,10780,2036,0,1100,2025,10819,2110,5600,0
+9145,440000,female,5,2,29,0,0,0,0,0,0,217407,219860,265058,142132,92400,0,8005,50000,7000,9000,0,1058,0
+9146,70000,female,2,2,34,0,0,0,0,0,0,62694,63995,66446,67786,69686,70500,1818,3000,1903,2458,1900,0,0
+9147,230000,female,1,1,44,1,-1,-1,-1,-1,-2,3884,949,2864,933,0,0,949,2873,933,0,0,0,0
+9148,30000,male,2,2,28,2,0,0,2,2,2,26177,27249,29473,28719,29513,28890,1800,3000,0,2400,0,1600,1
+9149,260000,male,2,1,34,0,0,0,0,0,0,176688,179281,180957,165911,169863,71403,6929,5088,4138,4789,2450,1507,0
+9150,30000,male,2,2,25,2,2,4,3,2,2,18941,24602,23921,23259,22369,23408,6000,0,0,0,1800,0,1
+9151,20000,female,3,3,56,-1,2,-1,-1,0,-1,190,2946,1473,780,390,1738,1473,1473,780,0,1766,0,1
+9152,70000,female,3,2,55,0,0,0,0,0,0,69997,41409,31450,29592,29703,19582,1700,3018,3338,3000,717,595,0
+9153,90000,male,3,1,31,0,0,0,0,0,0,68476,68485,67000,45837,49959,52981,4017,4000,4000,5000,4000,4000,0
+9154,70000,female,2,2,30,2,0,0,2,0,0,29773,30542,33033,32203,32884,33587,1550,3000,0,1200,1250,2000,1
+9155,30000,female,2,2,22,1,2,0,0,0,0,29676,28532,29510,29040,29178,0,0,1493,803,420,0,0,0
+9156,270000,male,2,1,51,0,0,0,0,0,-1,32108,32784,29891,24531,19391,8850,15000,10000,10000,10000,8850,22123,0
+9157,30000,male,2,1,35,0,0,0,0,0,0,25989,27100,27868,28430,29077,29540,1533,1301,863,947,836,915,0
+9158,410000,female,1,1,46,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+9159,240000,male,2,2,30,0,0,0,0,0,-1,151127,155421,154926,148681,24105,9770,10000,10000,300,1000,9770,18037,0
+9160,30000,female,2,2,31,0,0,0,0,0,2,30589,31547,28734,27551,28836,11718,1488,1400,1300,3000,0,500,0
+9161,110000,male,2,1,32,0,0,0,0,-2,-2,56573,26953,28190,-18,-18,-18,2000,2000,0,0,0,0,0
+9162,20000,male,2,2,24,0,0,0,0,0,0,17850,15528,13597,14088,13723,16318,2019,2000,1003,1000,3000,2000,0
+9163,500000,male,3,1,55,-2,-2,-2,-2,-2,-2,735,-5,-5,1012,500,0,0,0,1017,500,0,1059,0
+9164,240000,female,2,2,32,0,0,0,0,0,0,308013,190907,192181,189877,188205,182325,7000,6615,6401,6503,6393,6051,0
+9165,140000,female,2,2,25,0,0,0,0,0,0,137585,131666,114989,81475,82812,71484,6200,4246,5000,3000,3000,2800,0
+9166,50000,male,1,2,24,0,0,0,0,0,0,42058,35340,22110,19837,19855,20151,1367,1606,692,709,721,692,0
+9167,130000,male,1,2,27,0,0,0,0,0,0,32464,33805,34810,35194,35951,36703,1867,1872,1256,1500,1500,1500,0
+9168,50000,female,3,1,51,0,0,0,0,0,0,50448,34741,21312,17398,17773,17368,2017,2130,500,2000,2000,2000,1
+9169,260000,female,1,2,25,-1,-1,0,0,0,-1,359,7822,13926,15393,22746,2946,9188,13907,3015,10413,2960,3820,0
+9170,100000,male,2,1,35,-1,-1,-1,-1,-1,-1,1131,291,291,291,291,502,291,291,291,291,502,80,0
+9171,30000,female,3,1,47,2,2,0,0,2,0,25280,24589,26160,29927,29336,29820,0,2000,4200,0,1100,1100,1
+9172,60000,male,1,2,26,-1,-1,2,-1,0,-1,440,880,440,880,440,1681,880,0,880,0,1681,811,0
+9173,20000,female,3,1,35,0,0,2,2,0,0,15791,18218,18621,18024,18434,19826,3000,1000,0,700,1700,0,1
+9174,60000,female,2,1,24,3,2,2,2,0,0,33866,33041,35284,31602,32221,30208,0,2900,0,1200,1409,1115,1
+9175,350000,female,2,3,44,2,2,-2,-2,-2,-1,52949,-4577,-4577,-2699,-2699,297301,3682,0,1878,0,300000,0,0
+9176,130000,female,2,1,41,2,2,0,0,0,0,133894,130312,128653,100795,95299,86564,0,7347,4000,3450,3300,4000,1
+9177,390000,female,2,2,26,2,2,2,0,0,0,185111,172865,153795,140387,128112,115514,5000,3000,5000,4548,4100,3300,0
+9178,460000,male,1,1,39,2,2,5,5,5,5,2495,2495,2495,2495,2495,2495,0,0,0,0,0,0,1
+9179,30000,male,3,2,31,0,0,0,0,0,-2,27838,28791,27788,29784,0,0,1703,1200,2196,2500,0,0,1
+9180,170000,female,2,1,35,-1,-1,0,-1,-1,-1,10316,2798,4543,3229,2062,0,2798,4022,3229,2062,0,0,1
+9181,20000,male,2,2,27,3,2,0,0,0,-2,20771,19935,3110,2140,0,0,0,1000,100,2000,0,0,1
+9182,260000,male,2,1,31,0,0,0,0,-2,-2,12695,9277,7065,0,0,0,4005,4150,0,0,0,0,0
+9183,190000,female,1,2,32,0,0,0,0,0,0,161248,157952,157663,161039,161907,161729,6500,7000,10000,7000,6500,6000,0
+9184,480000,male,1,1,37,0,0,0,0,0,2,470317,469673,450172,371819,390178,383822,18507,19307,13534,28001,14,11568,0
+9185,60000,male,2,2,33,0,0,0,0,0,0,58760,57635,56706,56452,58542,60273,2500,2000,2100,3000,3210,10000,0
+9186,260000,female,1,1,38,0,0,0,0,0,0,256359,208852,192782,189886,196398,194568,10027,10107,20000,10000,10000,10000,0
+9187,50000,female,3,2,50,-2,-2,-2,-1,0,0,48781,50283,51400,9463,9661,9854,2283,2400,9463,350,353,365,0
+9188,160000,female,1,2,25,0,0,0,0,0,0,76038,64399,52532,39455,26505,13302,2791,3000,1286,890,497,267,0
+9189,280000,female,1,2,29,-1,-1,-1,-1,-1,-1,768,786,1379,1885,143,1250,788,1383,1890,143,1253,316,0
+9190,290000,female,3,1,29,0,0,0,0,0,0,161623,166345,167924,170227,164584,161912,11200,6000,6000,6000,6700,5000,0
+9191,240000,female,3,1,36,-1,-1,-1,-2,-2,-2,8020,717,0,0,0,0,724,0,0,0,0,6516,0
+9192,20000,female,2,1,41,0,0,0,0,0,-1,7434,8453,9249,9438,5700,1140,1300,3000,189,0,1140,390,0
+9193,230000,female,3,1,40,-1,-1,-1,-1,-1,-1,1856,32254,4805,1600,4712,3466,32254,4819,1600,4712,3466,3199,0
+9194,120000,female,2,1,31,0,0,0,0,2,2,46736,75853,79570,106523,108614,107519,30000,5000,30000,3900,4000,3800,1
+9195,400000,male,1,2,28,-2,-2,-2,-2,-2,-2,1202,-14,2893,13854,13860,12215,0,2907,13863,13869,12216,29171,0
+9196,80000,male,2,1,34,1,2,2,0,0,0,64575,65961,64308,65047,66504,74360,3000,0,2400,2500,9000,0,0
+9197,200000,female,1,1,37,0,-1,-1,0,0,0,74418,3251,86800,84144,83699,121930,3251,86804,1820,29000,71439,2738,0
+9198,20000,male,2,1,48,1,4,3,2,3,2,17453,16898,16334,17270,16713,16297,0,0,1500,0,0,3000,1
+9199,100000,male,2,2,26,-1,2,-1,0,-1,-1,214,107,214,107,107,38362,0,214,0,107,38362,1600,1
+9200,150000,male,2,3,25,-1,-1,-1,0,0,0,1180,7667,9044,8397,6763,0,7705,9047,8,33,0,0,1
+9201,180000,female,2,2,23,0,0,0,0,0,2,178239,178856,177754,178191,183051,179546,7969,6379,6319,10671,3000,5400,1
+9202,500000,female,2,1,47,-1,-1,-1,-1,-1,-1,396,396,396,396,396,396,396,396,396,396,396,396,1
+9203,360000,female,2,2,46,-1,-1,-1,-1,-1,-1,4000,311,913,465,157,4247,311,920,465,157,4247,157,0
+9204,320000,male,1,2,38,-1,-1,-1,-1,-1,-1,3872,5409,16770,83490,0,52281,5409,16778,83490,0,52281,15643,0
+9205,220000,male,1,1,42,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+9206,50000,female,1,2,36,1,2,2,2,2,2,29003,29244,30827,31224,30587,32763,1000,2363,1200,0,2700,1157,1
+9207,310000,male,1,1,47,-2,-2,-2,-2,-2,-2,960,1863,2667,0,2654,0,1869,2681,0,2654,0,2397,0
+9208,50000,male,2,2,50,0,0,0,0,0,0,16242,13277,10834,10531,10239,5741,1215,1087,297,309,220,100,0
+9209,160000,female,2,2,23,0,0,0,-1,-1,-2,21905,22473,21380,283,0,-17149,1373,1000,283,0,0,20261,0
+9210,280000,female,2,1,40,-1,-1,-1,-1,-1,2,415,415,415,565,830,415,415,415,565,830,0,415,0
+9211,20000,male,3,2,44,4,3,2,0,0,2,12480,12001,11516,11436,12553,12501,0,0,408,1300,300,0,1
+9212,60000,male,1,2,24,-1,-1,-1,-2,-1,-1,390,780,0,0,371,18239,780,0,0,371,18239,650,1
+9213,390000,male,2,1,37,0,0,0,0,0,0,178087,185212,187648,192538,198828,206489,10000,7001,8001,10000,10000,14807,0
+9214,50000,male,2,2,25,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+9215,450000,male,1,2,31,-1,-1,-1,2,-1,0,757,1422,2469,1562,20030,9248,1422,2000,0,20030,1000,1000,0
+9216,180000,male,2,2,26,0,0,0,0,0,0,171041,111580,71902,10045,10484,10816,5000,3340,500,1000,1000,416,0
+9217,140000,male,3,2,30,2,2,2,2,2,0,145627,145339,136223,113942,109652,109118,6005,210,7903,0,4183,4213,0
+9218,40000,female,2,2,33,1,2,2,0,0,-1,21576,23242,21057,20746,20613,867,3000,0,1000,1062,1600,1542,0
+9219,80000,male,2,2,26,0,0,0,0,0,2,24906,26242,27360,27480,29642,28779,2000,1800,1100,3000,0,1000,0
+9220,240000,female,3,2,35,-1,-1,-2,-2,-2,-2,4215,0,0,0,0,0,0,0,0,0,0,0,0
+9221,80000,male,2,2,33,0,0,0,0,0,-1,69963,64081,62582,47595,44724,44287,5000,2012,2000,3000,44287,3000,0
+9222,360000,female,3,1,45,0,0,0,0,0,-1,167370,183070,190369,185069,195069,27004,20000,16000,5000,20000,30000,10000,0
+9223,300000,female,2,1,31,-1,-1,-1,-1,-1,-1,3862,-3,6367,570,3749,127,0,6370,570,3749,1217,60959,0
+9224,390000,female,1,2,29,-2,-2,-1,-1,-1,-1,0,0,1630,1871,2400,3480,0,1630,1871,2400,3480,1600,0
+9225,320000,male,1,1,37,-1,-1,-2,-2,-2,-1,14515,0,0,0,0,13439,0,0,0,0,13439,0,1
+9226,220000,female,1,1,26,0,0,0,0,0,0,52593,65221,73395,81697,57517,58920,15000,10000,10000,5000,1776,10000,0
+9227,340000,female,1,2,29,0,0,0,0,0,0,132024,135687,138933,139824,142461,145269,6400,7000,5000,5200,5500,25000,0
+9228,90000,female,2,1,32,1,-1,-1,-1,-1,-1,0,323,0,2520,1651,0,323,0,2520,1651,0,0,0
+9229,130000,female,2,2,33,0,0,-1,-1,-1,-1,7547,3773,4329,8638,2279,-1,1011,4345,9261,2285,0,338,0
+9230,160000,male,2,1,37,2,-1,-1,-1,-1,-1,833,833,833,833,833,833,833,833,833,833,833,833,1
+9231,280000,male,1,1,38,-2,-2,-2,-2,-2,-1,101259,7224,11169,2300,0,10551,7259,11055,2311,0,10551,15000,1
+9232,310000,female,2,2,38,-1,-1,-1,-1,0,0,1276,3666,2779,3140,1831,5347,3666,2787,3140,0,5347,1420,0
+9233,130000,male,2,2,29,0,0,0,-2,-2,-2,30857,43333,0,0,0,0,13333,0,0,0,0,0,0
+9234,180000,female,2,1,30,0,0,2,0,0,0,149218,217602,96169,70083,59509,78312,10915,5,5050,10000,20000,2000,0
+9235,30000,male,2,1,39,1,2,0,0,0,0,30559,26457,27469,28013,28614,29636,129,1456,1000,1050,1500,1505,0
+9236,170000,female,2,2,34,-1,-1,-1,-1,-1,-1,8069,2855,11744,5886,12916,3177,2855,11900,5886,12916,3177,4511,1
+9237,240000,male,1,1,29,-1,-1,-1,-2,-1,-1,17882,367,-4661,-23,4638,2500,403,4838,4638,4661,2500,0,0
+9238,70000,male,1,2,31,0,0,0,0,0,0,52440,55961,63341,64694,67905,59383,5000,10000,3000,5000,3000,2900,0
+9239,110000,female,1,2,28,1,-1,-1,-1,0,0,-100,200,400,46952,48455,47324,500,400,46952,3000,3000,2000,1
+9240,20000,female,3,1,23,1,2,2,-2,-2,-2,14428,14310,0,0,0,0,480,0,0,0,0,0,1
+9241,210000,female,1,2,30,-1,-1,-1,-1,0,0,7056,2881,1166,13740,6813,2144,3033,1172,13940,0,0,0,0
+9242,20000,female,2,2,21,0,0,0,0,0,0,20040,17850,13560,11748,10632,10019,1499,1099,333,2000,2000,800,0
+9243,360000,female,2,1,43,-1,-1,-1,-1,-1,-1,1999,10145,4005,19158,3569,31171,10145,4723,19158,3569,31171,3283,0
+9244,80000,male,3,1,59,0,0,0,0,0,0,71720,73024,74297,33412,30070,30254,3234,3075,1126,1091,1074,1028,0
+9245,170000,female,1,2,34,0,0,0,0,0,0,55623,49216,46239,36300,29350,28164,2253,1888,1200,3782,1160,976,0
+9246,70000,female,2,2,30,0,0,0,0,0,0,3878,4957,6209,6338,6587,6828,1300,1500,380,500,500,800,0
+9247,110000,male,2,1,30,0,0,-1,2,2,2,26000,9000,63853,59308,60576,42784,1500,63853,1500,2062,0,7222,0
+9248,10000,female,1,2,27,0,0,0,2,2,0,8128,8470,10255,9389,8345,8572,1400,2500,500,0,500,2000,0
+9249,60000,female,1,2,23,0,0,0,0,0,0,17191,17864,18408,18393,18238,18345,1700,1600,1000,1000,1000,2000,0
+9250,220000,male,1,1,39,0,0,0,0,0,0,38647,27796,12372,4610,3668,-809,2017,3000,1000,0,0,3000,0
+9251,50000,male,1,2,33,0,0,0,0,0,0,21171,22698,14125,18025,9063,10747,2028,2000,4000,2000,2000,2000,0
+9252,50000,female,2,2,22,0,-1,-1,0,0,0,1470,627,14596,19323,19728,20142,627,14596,5000,716,742,404,0
+9253,70000,female,2,2,26,0,0,0,0,0,0,23790,23880,24843,25338,25461,26008,1425,1388,883,906,952,877,0
+9254,180000,male,2,2,26,0,0,0,0,0,0,145574,108617,102711,95652,97661,99656,3907,3600,3415,3542,3616,2000,0
+9255,60000,male,1,2,31,2,2,2,2,2,2,60705,62352,60745,58828,55606,58551,3200,0,4580,0,4727,0,1
+9256,100000,female,2,1,40,2,2,2,2,2,2,44421,45504,46157,46900,47999,49057,2100,1700,1800,2000,2000,2000,1
+9257,500000,male,2,2,28,0,0,0,0,0,0,24677,28287,32988,21579,26674,28697,7013,8071,3013,8012,5019,2006,0
+9258,50000,male,2,2,38,0,0,0,-2,-2,-2,26533,16426,0,0,0,0,1000,0,0,0,0,0,0
+9259,340000,female,2,2,27,-1,-1,-1,-1,-1,-1,24583,1954,11271,6559,1924,10057,1964,11337,6591,1933,10072,33,0
+9260,450000,male,1,2,31,-1,-1,-1,-1,-1,-1,3960,4397,2177,17871,11451,3570,4412,2180,17895,11502,3581,37092,0
+9261,160000,male,1,2,31,-1,-1,-1,-1,-1,-1,813,1351,0,2773,215,2026,1351,0,2773,215,2026,0,0
+9262,180000,male,2,1,33,0,0,-1,-1,0,0,177017,107267,11426,96562,144345,141659,20135,12099,96562,49000,140000,6000,0
+9263,50000,male,2,1,25,1,-1,0,0,0,0,-8,37230,10496,3614,2254,1494,18631,1000,0,0,0,0,1
+9264,500000,male,2,1,38,1,2,0,0,2,0,91662,88467,90193,94629,92621,80971,0,4500,7200,8,3403,2311,0
+9265,80000,female,2,2,23,-1,-1,0,0,0,0,3796,7913,7012,11009,16418,27694,7913,1000,9000,6000,12000,5000,0
+9266,280000,male,3,1,49,-1,-1,-1,-1,-1,-1,4792,3410,2295,3105,582,14013,3410,2295,3105,582,14013,4240,0
+9267,240000,female,5,1,41,2,2,2,2,2,2,239633,242710,229923,238940,238775,238202,9000,0,18000,9000,8600,0,0
+9268,20000,female,1,2,24,0,0,0,0,0,0,15036,16069,16774,17266,17539,18033,1580,1280,770,700,785,600,0
+9269,50000,male,2,2,27,0,0,0,0,0,0,46858,22534,18131,18530,19079,19608,2000,4131,1000,1000,1000,1000,0
+9270,100000,female,1,1,42,2,2,2,2,2,2,46195,47166,46112,48925,49794,50823,2000,0,3900,1800,2000,2000,1
+9271,80000,female,2,2,34,1,3,2,0,0,-2,84054,82194,78715,26681,0,0,3,5,1075,0,0,0,1
+9272,150000,female,1,2,40,-1,-1,-1,-1,-2,-2,7296,1819,1012,0,0,0,1819,1012,0,0,0,0,1
+9273,220000,male,2,2,30,1,2,2,2,2,2,105348,106432,102996,100198,100357,95471,4268,3251,2900,5000,0,105300,1
+9274,270000,female,2,2,34,0,0,0,0,0,0,131310,123737,115927,106350,98365,89909,6000,5700,3800,3700,3300,3100,0
+9275,230000,female,3,2,25,0,0,0,0,-1,-1,26214,26504,20010,0,104160,0,2000,1067,0,104160,0,0,0
+9276,140000,female,2,1,30,0,0,2,4,3,2,106298,111040,122612,120270,118091,122963,6451,15000,1100,0,7000,0,1
+9277,180000,male,2,2,40,-1,-1,-1,-2,-2,-2,4289,1000,0,0,0,0,1000,0,0,0,0,10443,0
+9278,140000,female,2,2,27,1,2,2,-1,0,0,28332,27464,-1116,90558,92530,83880,0,28,92000,3800,3600,2604,0
+9279,30000,male,2,2,35,0,0,2,2,2,0,20290,24727,24031,25579,25030,25526,5100,0,1949,0,912,2100,1
+9280,80000,male,2,1,36,0,0,0,0,0,0,25028,26054,20344,7311,6100,2160,3033,3379,0,0,0,0,0
+9281,140000,male,2,2,30,0,0,0,0,0,0,131026,130023,76098,50419,47202,43946,5006,2169,1651,2122,3006,2505,0
+9282,20000,male,3,2,38,0,0,0,0,0,0,18878,19286,18977,18335,18718,18475,1318,1289,647,669,664,682,0
+9283,360000,male,1,1,37,-1,-1,-1,-1,-2,-1,797,357,759,0,0,2318,360,759,0,0,2318,0,0
+9284,130000,female,1,2,28,-2,-2,-2,-2,-1,-1,9821,8582,0,0,1170,0,8611,0,0,1170,0,1070,1
+9285,70000,female,1,1,36,1,2,0,0,0,0,31919,31123,32203,34656,36927,38308,0,1600,3000,3000,2000,1420,1
+9286,300000,male,1,2,41,-1,-1,-1,-1,-1,-1,2930,1610,0,800,0,1951,1610,0,800,0,1951,0,0
+9287,500000,male,2,2,32,-2,-2,-2,-2,-2,-2,71731,75357,62407,63706,59452,47868,25487,80389,50132,22208,30167,25036,0
+9288,20000,male,2,2,30,0,0,0,0,0,0,39508,16063,17090,17506,17924,18526,2546,1300,700,700,900,600,0
+9289,140000,male,2,1,45,-1,3,2,2,2,2,104144,106179,106947,107690,109821,107893,5200,4000,4000,4000,0,4100,1
+9290,400000,female,2,2,27,1,-2,-1,-1,-2,-1,0,0,890,0,0,1180,0,890,0,0,1180,1470,0
+9291,30000,female,2,2,28,0,0,0,0,0,3,15280,16230,17153,17351,19509,18900,1500,1500,780,2600,0,900,1
+9292,50000,male,1,1,33,2,2,0,0,0,-1,12632,13131,14817,13725,13147,5932,1000,2000,7000,5000,5932,25497,0
+9293,380000,male,2,1,38,0,0,0,0,0,0,88112,91640,93480,95256,96964,71250,4569,4000,3000,5000,5000,2070,0
+9294,360000,female,2,2,27,-2,-2,-1,0,0,0,5497,3300,512,2512,2593,0,3000,512,2000,2473,0,947,1
+9295,620000,female,1,2,52,-1,-1,-1,0,-1,-1,31400,32166,17206,164582,75743,54737,32335,17244,154826,76300,55012,55136,0
+9296,200000,male,3,1,69,0,0,0,0,0,0,83858,66979,65728,64490,53186,52136,3207,3042,2100,2008,2508,2000,0
+9297,20000,female,2,1,25,-1,2,0,0,0,0,19744,19137,19476,16911,11893,9583,0,1200,0,5000,1000,0,1
+9298,170000,female,1,2,29,-1,-1,-1,0,0,0,5539,337,11277,11277,14277,-47,1147,11477,0,3000,0,0,1
+9299,250000,female,1,2,26,0,0,0,2,2,2,195126,199972,205635,212608,207919,205377,9500,10800,12018,3000,5000,12000,0
+9300,120000,female,2,2,25,1,-2,-2,-2,-2,-2,0,0,0,0,-10810,-15296,0,0,0,0,0,85929,1
+9301,150000,male,3,1,46,0,0,0,0,0,0,96396,98366,99456,79956,78154,76634,4073,3404,2722,54788,2770,2798,0
+9302,200000,female,3,1,41,2,0,0,0,0,0,199802,195038,129415,88682,74132,71281,9231,4872,2894,2637,2591,2410,0
+9303,200000,male,1,1,39,0,0,0,0,0,0,91415,79928,23532,23632,12852,5799,20387,2023,5060,1549,3029,8419,0
+9304,180000,female,1,1,44,0,0,0,0,0,0,97925,98817,98495,96309,98484,100319,4303,4200,3500,3700,3600,3800,0
+9305,500000,female,1,2,34,0,0,0,0,0,0,119451,143348,159291,262663,308074,400050,26000,20000,106700,50000,100000,200000,0
+9306,20000,female,2,2,24,0,0,0,0,0,0,13867,14834,15931,15850,16226,14411,1500,1450,369,429,288,250,0
+9307,500000,male,2,1,39,0,0,0,0,0,0,342548,290244,250186,276579,239874,226502,8628,6242,231888,7945,7840,6966,1
+9308,80000,female,1,1,47,-1,-1,-1,-1,-1,-1,15739,17253,35369,18351,14249,10637,17253,35369,18351,14249,10637,12331,0
+9309,80000,female,3,2,23,0,0,2,2,2,2,71988,76940,68255,55983,59823,51519,6200,2000,2,6278,0,1567,0
+9310,360000,male,1,2,30,0,0,0,0,0,0,36590,29751,22581,12936,7970,7970,1400,1000,1000,3000,0,0,0
+9311,230000,female,1,2,28,-1,-1,-1,-1,-1,-1,12089,2306,13827,11686,46963,15962,2306,13835,11686,46963,15962,1596,0
+9312,70000,male,2,2,32,3,2,0,0,0,2,21986,21351,22090,22723,24351,23809,0,1400,1000,2000,0,2074,1
+9313,20000,male,2,2,25,-2,-2,-1,2,0,0,1000,0,16668,16105,16496,16872,0,25464,0,800,800,800,0
+9314,250000,female,2,1,37,0,0,0,0,0,0,215928,221963,224949,229577,234221,238960,9510,8160,8364,8493,8625,8737,0
+9315,400000,male,2,2,33,0,0,0,0,0,0,61705,58018,52383,48139,35898,30754,3000,3000,3000,4000,3000,4000,0
+9316,420000,female,1,1,30,-1,-1,-1,-1,-1,-1,3790,19292,15068,37435,-1896,18995,19292,15087,37435,287,25087,3046,0
+9317,320000,male,2,2,37,0,0,-1,0,0,0,31989,35554,85376,88585,101546,41685,5001,92586,5001,15001,3011,6001,0
+9318,30000,male,1,2,25,0,0,0,0,0,0,29108,29806,30477,30651,30107,26304,1800,1800,1300,1560,1000,1100,1
+9319,470000,male,1,2,30,0,0,0,0,0,0,290137,294980,276255,241089,223366,207733,15128,12235,10123,10019,10102,10000,0
+9320,70000,male,1,2,31,1,2,2,0,0,0,65779,34480,33632,35747,38981,43331,3000,0,3000,4000,5000,0,1
+9321,70000,female,2,2,23,-1,0,0,0,0,0,18193,19241,19346,15754,15855,15011,1352,1237,545,726,353,99,1
+9322,30000,female,1,2,25,0,0,0,0,0,0,22399,25859,26540,13842,16299,18547,5000,1500,499,3000,3000,3000,0
+9323,30000,female,2,1,22,1,2,2,0,0,-2,14274,14367,13296,12516,0,0,1000,0,0,0,0,0,1
+9324,30000,female,2,1,45,2,2,2,0,0,0,30330,30948,29480,28805,19733,16543,1400,0,928,602,768,1299,1
+9325,70000,male,2,2,35,0,0,0,0,0,0,67306,69023,69340,39191,40009,40893,3400,2310,1600,1600,1700,2000,0
+9326,20000,female,3,2,50,0,0,0,0,0,0,16350,17382,18488,19179,19720,19822,1300,1400,1000,1000,626,300,0
+9327,210000,male,2,2,31,2,2,0,0,2,0,200332,195530,176634,128137,130500,128838,0,6800,4900,4500,4700,4900,1
+9328,170000,female,1,1,36,-1,-1,-1,0,-1,-1,1000,1000,3000,1000,1000,1500,1000,3000,0,1000,1500,1000,0
+9329,300000,male,2,2,31,-1,-1,-1,-1,-1,-1,86267,78176,48163,13461,5121,5663,78580,48408,13538,5145,5690,13535,0
+9330,10000,female,2,2,24,0,0,0,0,0,0,7199,8275,9232,9266,9501,9729,1350,1270,300,350,350,300,1
+9331,50000,female,1,2,24,-2,-2,-2,-2,-2,-2,220,220,677,1200,666,1480,220,677,1200,666,1480,3710,0
+9332,200000,female,2,1,30,1,2,0,0,0,0,35706,34064,30519,26166,28097,29855,1500,2547,2500,2500,3500,2000,0
+9333,220000,female,1,2,36,-1,-1,-2,-2,-2,-2,2978,125,15064,101,1011,1411,125,15064,101,1011,1906,486,0
+9334,400000,female,2,1,34,-1,-1,0,-1,-1,0,14986,25772,12621,13983,3378,3770,25772,1500,13983,3378,2000,9353,0
+9335,260000,female,1,2,30,-1,-1,-1,-2,-2,-2,449,1340,0,0,0,0,1340,0,0,0,0,3250,0
+9336,10000,female,2,1,37,0,-1,0,0,0,0,10000,7419,7392,8265,8631,17974,7419,1400,1000,500,500,500,0
+9337,140000,male,1,2,28,0,0,0,-1,-1,-1,23702,23917,24460,435,435,435,1457,1000,435,435,435,435,0
+9338,50000,male,3,2,43,0,0,0,0,-1,0,97348,49221,29457,9279,888,19947,3711,1060,212,888,19709,690,0
+9339,330000,female,2,1,42,0,0,0,0,0,0,18516,24202,32912,36710,40442,42283,10000,10000,5000,5000,5000,5000,0
+9340,130000,female,1,2,29,-2,-2,-2,-2,-2,-2,-200,-200,0,2115,0,0,0,200,2115,0,0,0,1
+9341,360000,female,1,2,33,-2,-1,2,-1,0,0,0,883,887,26292,22279,550,883,4,26514,557,550,2500,0
+9342,450000,male,1,2,28,-1,0,0,0,-1,-1,9845,11991,17111,19585,9756,3282,3000,10000,3000,10000,3300,326,0
+9343,500000,male,1,2,36,-1,-1,0,-1,-1,-1,15401,23032,54759,52030,71797,93159,23128,40105,52221,71852,93218,179568,0
+9344,240000,male,2,1,33,-1,-1,-1,-1,-1,-1,8383,3470,2220,2220,3356,2220,3470,2220,2220,3356,2220,3829,0
+9345,60000,female,2,2,29,1,2,0,0,0,0,9045,7910,6770,6880,5021,4952,1000,1000,1000,2000,2000,3000,0
+9346,340000,male,2,1,42,0,0,0,0,0,0,76166,83909,169911,130718,131684,126223,10000,115000,5000,6000,10000,10000,0
+9347,500000,female,2,1,53,-1,-1,-1,-1,0,-1,7855,17481,12021,132906,122256,37380,17512,12021,132906,0,37380,3500,0
+9348,270000,female,2,1,33,0,0,0,0,0,0,121065,96197,92217,94082,96367,97793,3500,3349,3400,3800,3300,2601,1
+9349,50000,male,2,2,33,0,0,0,0,0,2,24060,17474,18297,20114,13235,12482,1400,1183,2000,1200,0,610,0
+9350,20000,male,3,2,29,0,0,0,0,0,0,11455,12866,5596,7337,8063,8769,2000,1500,2000,1000,1000,2100,0
+9351,130000,female,1,1,36,-1,-1,-1,-1,-1,-1,9164,4603,5000,1500,0,390,4605,5000,1500,0,390,5874,0
+9352,200000,female,1,1,55,0,0,0,0,0,0,110778,111431,96867,77140,81849,78046,3796,4262,2645,5834,2771,2945,1
+9353,360000,female,2,2,25,0,0,0,0,0,0,336179,173781,161223,145172,131346,134135,6781,7226,5032,5346,15003,15011,0
+9354,90000,female,2,1,55,0,-1,-1,-1,-1,-1,15000,1055,-180,2320,1286,1132,1055,0,2500,2000,1132,1110,1
+9355,200000,female,1,1,50,-1,-1,-1,0,0,-1,1662,2482,19272,22388,21105,3471,2482,19272,10004,10000,3471,13754,0
+9356,80000,female,1,1,43,-1,-1,-1,-2,-2,-1,21057,2282,-185,-185,-185,665,2282,0,0,0,1000,0,0
+9357,30000,female,3,1,45,1,2,2,2,0,0,29334,28198,29497,28268,30817,17219,0,2457,0,3000,344,0,0
+9358,50000,male,2,2,28,0,0,0,0,0,0,48566,47893,48760,22967,39687,23755,2000,2313,813,875,1008,695,0
+9359,50000,male,2,2,33,0,0,0,0,0,0,53282,50936,49911,19817,20492,20365,3000,2300,715,1000,878,1000,1
+9360,450000,female,1,1,69,-1,-1,-1,-1,-1,-1,2000,0,1173,0,6265,2374,0,1173,0,6265,2374,708,1
+9361,130000,female,2,1,37,0,0,0,0,0,0,3811,8692,10467,10067,12567,12567,5000,2000,0,2500,0,0,1
+9362,350000,male,1,2,33,0,0,0,0,0,0,53562,49396,42968,38575,34226,31026,2045,1660,1338,1300,2000,865,0
+9363,20000,male,3,2,22,-2,-2,-1,-1,2,2,20732,19981,431,20786,20355,18752,2,431,20355,0,2732,7189,1
+9364,170000,male,2,2,27,0,0,0,0,0,0,21958,22572,14549,10849,12509,64218,1300,2000,1000,2000,52292,2200,0
+9365,240000,female,2,1,38,1,2,0,0,2,2,47320,46392,51652,54969,42373,48952,0,6000,4059,14,10022,0,0
+9366,130000,male,1,2,30,0,0,0,0,0,0,77939,78524,63421,60269,59984,27126,3916,3000,3000,3000,1000,2000,0
+9367,360000,female,1,1,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+9368,10000,male,2,2,26,1,4,3,2,0,0,9526,9240,8950,8660,8840,9472,0,0,0,468,929,0,0
+9369,10000,female,3,1,42,2,0,0,0,0,0,8965,8640,9412,9604,9800,0,1228,1000,192,196,0,8138,1
+9370,200000,female,3,2,70,-1,-1,-1,0,0,-2,7109,9999,5300,5300,0,0,10025,5300,0,0,0,0,0
+9371,150000,female,2,1,35,0,0,0,0,2,0,39883,41045,41701,40699,25218,9340,1806,1462,2000,0,2000,44,0
+9372,50000,male,5,2,33,0,0,0,0,0,0,47423,33843,31251,30935,28905,27487,1600,1600,1200,1200,1000,972,0
+9373,40000,male,2,2,26,1,2,2,2,2,2,39826,40690,32183,38897,40234,40536,1900,390,8000,2500,1500,0,0
+9374,400000,male,1,2,42,-2,-2,-2,-2,-2,-2,4279,100815,15906,81768,4887,43827,101319,15942,82308,4903,44257,53406,0
+9375,80000,male,2,2,25,-1,2,-1,0,-1,0,832,416,832,416,832,416,0,832,0,832,0,416,1
+9376,50000,male,2,2,28,-1,2,-1,0,0,-1,2809,187,3135,937,-3,894,0,3141,2,0,897,906,0
+9377,170000,male,2,2,42,0,0,0,0,0,0,142118,144803,133868,119956,121277,122926,7040,6165,5004,5003,5001,5009,0
+9378,190000,male,3,2,34,0,0,0,0,0,0,47713,49242,52394,55521,113760,116299,3000,5000,5000,60000,5000,5000,0
+9379,20000,male,2,1,62,0,0,0,-2,-2,-2,19724,19581,0,0,0,0,1000,0,20500,0,0,0,1
+9380,30000,female,1,2,23,1,3,2,2,2,2,12271,11791,11305,12216,12374,12026,0,0,1100,500,0,445,0
+9381,20000,male,1,2,29,0,0,0,0,0,0,14492,15759,17371,17873,18073,10817,1500,2000,651,500,1000,500,0
+9382,390000,female,2,2,48,0,0,0,0,0,0,171189,176989,178698,182101,155517,154668,10000,10000,8004,10000,6000,10000,0
+9383,100000,female,3,2,66,0,0,0,0,0,0,82583,83398,85103,86802,88912,90400,3035,3100,3100,3500,3500,7100,1
+9384,50000,male,2,1,34,0,0,0,0,0,0,44849,41873,28077,18291,16886,27476,2550,1636,1000,1000,1000,1000,1
+9385,120000,female,3,1,54,0,0,0,0,0,0,67094,69010,70683,71504,73230,73613,3000,3000,2300,2600,2500,1500,0
+9386,80000,female,1,2,24,-1,-1,-1,-1,-1,-1,329,49,317,827,390,120,500,320,900,400,120,400,0
+9387,340000,female,2,2,39,0,0,0,0,0,0,132749,134235,128079,64598,12014,710,5290,6706,3003,241,712,43974,0
+9388,110000,female,2,2,23,0,0,0,0,0,0,111271,111532,107998,79211,77881,80628,6000,4016,3000,3000,4000,4000,0
+9389,90000,female,2,1,42,-1,-1,-2,-2,-1,-1,390,0,-390,-780,780,0,0,0,0,1560,0,0,0
+9390,10000,male,2,2,26,0,0,0,0,-1,-1,2989,3454,2917,1473,390,1320,2000,1000,29,390,1320,0,1
+9391,160000,male,2,2,28,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+9392,170000,male,1,2,34,1,2,2,2,0,0,23535,22876,25674,24963,25640,26278,0,3503,0,1078,1215,1000,0
+9393,440000,female,2,1,28,-2,-2,-2,-2,-2,-2,8325,-4341,-15641,7059,-4220,-16370,0,752,34000,284,3650,52719,0
+9394,310000,male,1,2,32,0,0,0,0,0,-1,6023,23782,26024,26201,20896,6579,18000,3000,1500,500,6579,40200,0
+9395,110000,male,2,1,55,0,0,0,0,0,0,106670,108727,107386,78268,75846,75685,6000,3300,3012,3008,3000,3069,0
+9396,50000,male,3,2,23,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+9397,100000,female,1,1,39,2,2,2,2,2,2,97284,99542,99898,99786,97670,100959,4700,2950,3100,5,6170,7,1
+9398,350000,female,1,2,29,0,0,0,0,0,0,42518,31386,24540,22187,12900,7938,1740,1000,452,448,2000,8206,0
+9399,310000,female,2,2,27,1,2,0,0,2,0,192910,188501,190938,202835,199417,203830,0,7000,15001,1,8001,8001,0
+9400,120000,female,2,1,40,0,0,0,0,0,0,109399,109397,36850,37739,38381,39142,3900,1700,1500,1400,1400,1500,0
+9401,50000,female,3,1,25,1,-1,0,0,0,0,-1159,40819,11143,9580,9793,8768,48000,3009,1000,321,2000,1000,0
+9402,300000,male,1,2,32,1,2,2,-1,0,0,10566,11293,12000,3458,56338,56735,1200,1200,9427,55000,2000,2000,0
+9403,130000,female,2,2,29,2,2,0,0,0,-1,172094,156589,145398,136115,138893,127502,0,3300,2500,2778,130000,3689,0
+9404,260000,male,1,2,30,-1,-1,-1,-1,-1,-1,1943,855,7288,1055,710,755,855,7288,1055,710,755,955,0
+9405,490000,male,1,2,35,-2,-2,-2,-2,-2,-2,-13,2639,1610,1231,1419,14143,2652,1618,1237,1426,14214,11493,0
+9406,500000,male,1,1,43,-1,-1,-1,0,0,-1,14872,53132,74478,61069,37369,2581,53421,74559,1343,907,2592,42767,0
+9407,30000,female,1,2,25,-2,-2,-2,-2,-2,-2,9634,4476,8830,8153,6422,500,7,7002,13,155,1,0,0
+9408,60000,female,1,2,31,0,0,0,0,2,0,32632,34099,35525,38820,38066,39681,2000,2000,3900,0,2400,1500,1
+9409,140000,female,2,1,45,0,0,0,2,2,2,55444,57549,60971,61374,63243,64554,3000,5000,2000,3000,2500,0,0
+9410,180000,female,1,2,30,0,0,0,0,2,2,149525,152460,154206,135881,130728,123155,7320,6100,9710,4800,0,4300,0
+9411,20000,male,1,2,23,0,0,0,0,0,-2,18436,19219,6140,6140,0,0,1500,1000,0,0,0,0,0
+9412,50000,female,2,1,29,0,0,2,2,2,0,40117,45598,44570,47133,46249,47179,6138,0,3618,0,1850,1862,1
+9413,400000,female,2,2,30,2,0,0,0,0,0,24054,25381,26085,26779,29283,29764,1624,1328,1022,3000,1000,1171,0
+9414,20000,male,3,2,24,1,-1,0,0,0,2,0,5536,18884,18059,18163,16990,5536,14000,137,500,0,0,0
+9415,430000,female,2,1,43,-1,-1,-1,0,0,0,8894,11198,14861,13846,13451,16162,11198,14861,1400,951,14082,14482,0
+9416,400000,female,1,1,32,-2,-2,-2,-2,-2,-1,110,532,2651,0,644,636,587,2651,0,644,636,572,0
+9417,200000,female,2,2,36,-1,-1,-1,-1,-1,-1,694,2695,660,2315,1290,5745,2721,660,2315,1290,5745,0,1
+9418,10000,female,2,2,22,-1,-1,0,0,0,0,656,8748,9644,9541,8971,9645,10128,1200,400,323,1600,300,0
+9419,80000,male,3,2,43,2,2,0,0,-1,-1,76292,77465,78834,12577,18376,23766,3006,5250,33,18431,23944,28457,0
+9420,140000,female,1,2,28,0,0,0,0,0,0,115743,117357,112527,91802,94114,91201,5000,5000,3600,4000,4000,4000,0
+9421,20000,female,2,2,28,2,2,0,0,0,0,24611,18920,13124,18859,19828,36666,0,1200,7500,1015,15000,0,1
+9422,340000,female,2,1,33,2,-1,-1,-1,-1,-1,411,10983,8548,11190,8210,7981,11038,8591,11246,8251,8021,0,0
+9423,230000,female,2,1,44,-1,-1,-1,-1,-1,-1,5630,390,5090,19394,205,0,390,5090,19394,0,3916,3916,1
+9424,120000,female,2,1,37,-1,2,0,0,0,0,200,200,42200,42000,42000,0,0,42000,200,0,0,0,0
+9425,210000,female,1,1,34,0,0,0,0,0,0,8011,5832,7906,5111,2069,0,1126,2400,200,205,0,0,0
+9426,80000,female,1,2,25,0,0,0,0,0,0,45392,46723,41986,40060,38124,37140,5000,2000,2000,2000,3000,2000,0
+9427,150000,male,1,2,31,-1,-1,-1,-1,0,0,3084,-1,600,4102,4102,6121,0,601,4102,0,2019,5515,0
+9428,130000,female,2,1,53,0,0,0,0,0,0,126750,119997,108738,71835,62539,61906,5996,4148,2477,2346,2640,30000,0
+9429,20000,male,1,2,35,-1,2,2,-1,0,0,17007,16200,0,8303,8519,9371,0,0,8303,500,1000,460,1
+9430,200000,female,2,1,29,0,0,0,0,0,-2,204541,170572,80620,82300,0,0,7186,3900,3900,0,0,0,0
+9431,200000,male,1,2,29,-1,-1,-1,-1,-1,-1,99,99,99,99,99,348,99,99,99,99,348,0,0
+9432,80000,female,1,2,22,0,0,0,0,0,0,78028,79347,76022,58897,54512,51937,3200,2229,1900,4000,5000,21000,0
+9433,80000,male,2,2,30,-1,-1,-1,-1,-1,-2,2688,2208,0,1000,0,0,2208,0,1000,0,0,0,1
+9434,500000,male,1,1,44,-1,-1,-1,-1,-1,-1,150758,62931,21296,19897,4460,4195,63256,21408,19996,4482,4212,16748,0
+9435,50000,male,2,1,43,2,2,2,2,2,2,15641,15105,16545,16977,16563,17688,0,2000,1000,0,1400,0,1
+9436,200000,female,1,1,44,-1,-1,-1,-1,-1,-1,798,4130,6952,827,1426,763,4150,6952,827,1426,763,870,0
+9437,80000,male,2,1,45,0,0,0,0,-2,-2,4089,5015,2521,531,9766,10042,1042,1000,531,9354,438,200,0
+9438,50000,male,2,2,26,0,0,0,0,0,0,47169,48197,47738,47676,46694,47807,1804,1746,1681,1695,1890,4005,0
+9439,130000,male,2,2,37,0,0,0,0,0,0,117471,104341,96395,82476,84205,84162,3857,3734,2924,3029,3009,3116,0
+9440,310000,female,1,1,35,-1,-1,0,0,0,0,2948,62593,152141,125325,109142,103020,62635,100042,4017,9184,4081,6042,0
+9441,190000,male,2,1,37,2,-1,0,0,-1,2,2461,8040,9640,0,5100,2350,8040,2000,0,5100,0,2792,1
+9442,100000,male,2,2,29,0,0,0,0,0,0,70878,72753,58789,53091,55229,57144,3100,2640,2000,3000,3000,3000,1
+9443,230000,female,1,1,38,-1,-1,0,0,0,0,2130,62469,62583,59047,52574,43723,62469,5000,2000,5000,5000,3000,0
+9444,70000,female,2,2,25,0,0,0,0,0,0,66174,67555,25059,26834,14112,28191,3000,2000,2400,2012,14500,3000,1
+9445,500000,female,1,1,30,0,0,-1,0,0,-1,8371,8759,5574,10403,2293,2702,1015,5584,6348,46,2702,4648,0
+9446,50000,male,2,1,36,2,2,2,2,0,0,49732,48658,51802,50737,48763,50908,0,4000,7,1900,3903,2,1
+9447,120000,male,2,2,35,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+9448,80000,female,2,1,39,0,0,0,0,0,0,51644,53177,52446,49999,41411,42328,3000,2037,2000,1499,2000,1623,0
+9449,50000,female,2,1,34,0,0,2,0,0,0,11367,10982,10243,10826,11699,10146,3000,1000,1000,1000,2000,2000,0
+9450,350000,male,2,2,51,0,0,0,0,0,0,39943,40859,45398,50634,60540,65074,1859,5398,5634,10540,5096,2296,0
+9451,60000,female,2,2,29,0,0,0,0,0,2,60000,60594,57606,33159,36183,27572,3100,2000,3000,3800,0,2000,0
+9452,200000,female,1,1,47,-1,-1,-1,-1,-1,-1,935,1418,-2,120,150,928,1418,0,122,300,928,464,1
+9453,50000,female,2,2,23,0,0,0,0,0,0,45078,44291,39408,29689,23879,23355,3000,3000,947,1000,837,866,0
+9454,90000,female,2,1,43,-2,-2,-2,-2,-2,-2,7489,5798,15112,0,0,0,5833,15114,0,0,0,0,0
+9455,360000,male,2,2,31,-1,-1,-1,0,0,-1,744,9613,18748,18694,11606,7516,9667,18781,6729,58,7553,8758,0
+9456,440000,female,2,2,25,2,2,0,0,0,0,225416,220405,226731,231456,237707,243555,0,10000,10000,10000,10000,10000,1
+9457,170000,female,2,1,52,0,0,0,0,0,0,168516,168529,169956,119844,117944,118163,6791,7333,4218,4269,4481,4144,0
+9458,190000,female,2,1,33,0,0,0,0,0,0,142272,143386,141711,142569,141733,142982,8007,8000,8000,5500,5339,5058,0
+9459,290000,male,1,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+9460,210000,male,1,2,37,1,-1,-1,-2,-2,-1,0,1422,0,0,0,478,1422,0,0,0,478,0,0
+9461,20000,male,1,2,24,0,-1,-1,-1,-1,-1,3395,2296,396,396,8972,3984,2296,396,396,8972,3984,396,1
+9462,400000,female,1,1,35,-2,-2,-2,-2,-2,-1,10043,17883,9322,15693,5588,10161,18057,9368,15771,5616,10173,10077,0
+9463,360000,female,1,1,32,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+9464,250000,male,1,1,53,1,-1,-1,-1,-1,-1,0,4190,21500,0,10180,7680,4190,25690,0,10180,7680,0,1
+9465,30000,male,2,1,30,0,0,0,0,0,-2,27836,28998,29480,29500,0,0,2000,1200,1000,0,1500,0,0
+9466,280000,female,1,1,47,0,0,0,0,-1,0,257561,270827,212405,194345,161084,174622,20000,15000,0,161084,15000,20000,0
+9467,70000,female,3,1,59,2,2,2,2,2,2,68766,70772,71622,68443,72210,70267,3700,2604,0,5001,9,2603,1
+9468,70000,male,1,2,26,0,0,0,-1,0,0,35666,18116,18397,17262,24921,0,5000,17831,17262,15001,0,11672,0
+9469,20000,male,2,2,47,0,0,2,0,0,0,14591,16254,16686,17406,18123,19680,1900,1000,1000,1000,1864,1000,0
+9470,350000,male,1,2,32,-1,-1,0,0,-1,-1,15179,4981,19194,4389,1717,4066,4983,15084,2028,1725,4086,2476,0
+9471,200000,female,1,2,37,0,0,0,0,-1,0,21111,25562,8603,28692,29019,43308,5000,5000,20089,30000,15093,15051,0
+9472,90000,male,3,2,25,0,0,0,0,-2,-2,6822,6995,7884,0,0,0,1172,1061,0,0,0,193,1
+9473,100000,female,1,1,52,0,0,0,0,0,0,4740,3584,3609,3381,3666,2233,2000,2000,2054,2000,0,975,0
+9474,50000,female,2,1,22,0,0,0,0,0,0,48255,41550,35553,23711,25975,900,2400,1842,1000,1928,900,31150,0
+9475,280000,female,3,1,51,-2,-2,-2,-2,-2,-2,2158,0,0,0,0,0,0,0,0,0,0,0,0
+9476,50000,male,3,1,38,1,5,4,3,2,0,51106,50059,48988,47917,47020,48027,0,0,0,0,1943,1727,1
+9477,120000,female,2,2,29,-2,-2,-2,-2,-2,-2,3570,3362,0,0,0,0,0,0,0,0,0,6330,1
+9478,100000,male,3,2,25,2,2,2,0,0,0,96889,102893,99176,80358,75007,76805,8513,128,3011,3000,3200,3400,1
+9479,130000,male,2,2,29,-1,-1,-1,-1,-1,-1,3920,3848,942,942,768,-174,4000,942,942,768,0,0,0
+9480,200000,female,1,2,30,0,0,0,0,0,0,196845,189104,183255,147612,148088,99985,8990,7000,5500,6000,4220,3610,0
+9481,350000,male,1,2,34,0,0,0,0,0,0,147070,109978,77151,73814,79692,79949,7331,10000,5000,10000,5000,5000,0
+9482,20000,female,1,2,44,0,0,0,0,0,0,19018,18581,19864,20181,20210,20043,1327,2000,1000,710,1043,1000,0
+9483,150000,female,1,2,32,0,0,0,0,0,2,125995,127467,130080,131238,141612,140868,5000,4723,3323,11086,0,4000,0
+9484,130000,female,1,1,30,0,0,0,0,-1,-1,9255,10264,7060,4480,3000,0,1204,1000,3990,3000,0,200,0
+9485,330000,female,1,2,34,0,0,0,0,0,0,173630,178833,187820,190202,194964,199008,8000,12000,7000,8000,7287,7400,0
+9486,80000,female,2,3,52,0,0,0,0,0,0,63134,57072,55618,50345,52031,53141,2087,2019,2000,2500,2095,2002,0
+9487,10000,male,5,2,35,3,2,0,0,0,-2,10281,9949,8838,8838,0,0,25,4000,0,1000,0,0,0
+9488,360000,male,1,2,29,1,-2,-1,-1,-1,-1,-1808,-1808,6458,825,825,825,0,9091,825,825,825,825,0
+9489,120000,male,1,1,36,0,0,0,-1,0,0,43488,44785,47195,12432,13226,14258,2000,3200,37432,1000,1258,1000,0
+9490,20000,female,2,2,22,0,0,0,0,0,0,7130,8185,9084,8667,8848,5328,1177,1076,249,258,500,500,0
+9491,280000,female,1,2,35,-1,2,2,-1,2,-1,199,199,-127,1012,536,982,0,0,1548,0,982,601,0
+9492,100000,female,2,1,45,-2,-2,-2,-2,-2,-1,0,0,0,0,0,1505,0,0,0,0,1505,0,0
+9493,70000,male,2,2,31,0,0,0,0,0,0,63441,29091,29802,30395,31034,31668,1789,1500,1089,1130,1150,1200,0
+9494,350000,female,1,1,31,-2,-2,-1,0,0,-1,7914,4221,23907,28528,24965,5727,4221,23916,25528,2965,5753,8095,0
+9495,50000,male,2,1,36,0,0,0,0,0,0,22430,23763,24564,26145,26774,27476,2000,1500,2000,1200,1300,1150,0
+9496,470000,female,1,2,35,-1,0,0,0,0,0,37342,39348,43806,48213,52585,56883,2500,5000,5000,5000,5000,5000,0
+9497,350000,male,1,2,31,0,0,0,0,0,0,297967,286352,160042,131977,133067,41470,100066,5715,6005,6287,2103,3,0
+9498,140000,male,1,2,56,0,0,0,0,0,0,140630,142166,51334,51533,52233,53826,6100,2411,2000,2041,3000,1874,0
+9499,140000,female,2,2,23,0,0,0,0,0,0,49235,45173,39585,36189,21772,21417,2517,1559,2000,1003,1000,1002,0
+9500,380000,male,1,2,27,-1,0,0,0,0,0,73903,66541,58665,43837,72069,61925,2924,2555,1515,37056,2413,1522,0
+9501,50000,male,2,2,24,1,2,2,2,2,2,33991,33168,34805,34933,36692,37934,0,2500,1000,2900,2000,1500,1
+9502,260000,female,3,1,48,0,0,0,0,0,0,97908,84773,70259,58341,58730,52789,2980,2338,1911,5014,5004,2007,0
+9503,20000,female,3,1,25,1,2,3,2,2,0,19045,20438,19771,20241,19364,18260,2000,0,1000,0,1000,0,0
+9504,190000,female,3,1,39,-1,-1,-2,-1,-1,-1,157,-1049,-2681,1975,2244,3294,0,0,6475,2244,2284,0,0
+9505,220000,male,2,1,39,5,4,3,2,0,0,187665,175338,163018,128157,131067,108683,0,11,0,4561,5007,170806,0
+9506,230000,female,1,2,36,0,0,0,0,0,0,111691,117858,121697,119772,115730,111222,8000,6000,5000,5000,5000,5000,0
+9507,20000,female,2,1,43,0,0,0,0,0,0,7470,8492,9547,20766,12197,12994,1145,1200,2000,3000,1000,2000,0
+9508,100000,male,2,1,52,0,0,0,0,0,0,21641,22983,24290,25080,25768,27407,2000,2000,1500,1093,2228,0,0
+9509,150000,female,1,2,26,-1,-1,-1,0,-1,0,38052,0,18600,18400,1527,1527,0,18600,0,1527,0,0,0
+9510,320000,female,1,2,28,-1,-1,-2,-1,-1,-2,11684,1127,1943,13312,-5,-5,1135,1952,13375,5,0,0,0
+9511,50000,female,2,1,33,0,0,0,0,0,0,76025,78548,77882,79471,81121,1685,3750,1558,1589,1650,9980,0,1
+9512,50000,male,2,2,53,0,0,0,0,0,0,50302,49440,49891,20503,20159,20268,2100,1793,700,731,735,616,0
+9513,370000,female,2,2,39,0,0,0,0,0,0,181221,180616,114073,57660,23093,18436,10073,6367,5100,2000,3000,3000,0
+9514,150000,female,1,1,37,-1,-1,-2,-1,-1,0,58337,0,0,14515,8758,6882,0,0,14515,8758,6880,8267,0
+9515,200000,female,2,1,40,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,390,1
+9516,200000,male,2,1,34,-1,-1,-1,-1,-1,0,170,1512,-15,1067,2176,3378,1525,0,1082,2179,2013,165,1
+9517,30000,male,2,2,37,0,-1,2,0,0,0,1197,2536,1100,710,320,-70,2600,0,0,0,0,1000,1
+9518,200000,female,2,2,46,0,0,0,0,0,0,121198,123834,136629,139504,142269,145250,4593,14955,5143,5166,5349,5538,0
+9519,200000,male,1,2,26,-2,-2,-1,0,0,0,0,1516,11533,9463,3884,3033,1516,11533,189,1000,2050,11300,0
+9520,240000,female,2,2,26,0,0,0,0,0,0,138859,136521,135459,117308,107928,103799,5308,4915,4100,4000,4002,4000,1
+9521,40000,female,2,1,24,2,2,2,2,2,0,28953,35389,34205,39361,35125,35890,6918,0,6000,0,2000,5000,1
+9522,140000,male,1,2,31,0,0,0,-2,-2,-2,97448,70631,0,0,0,0,1413,0,0,0,0,0,0
+9523,50000,male,2,2,35,0,0,0,0,0,0,50497,49289,36295,20067,20197,20202,2011,5009,2000,1000,1500,3000,0
+9524,50000,female,3,1,48,0,0,0,0,0,0,38031,31677,27240,31505,25979,25925,2000,2000,5000,2000,21000,0,0
+9525,160000,female,2,2,25,-1,-1,-1,0,-1,-1,227,0,354,355,47,605,861,354,1,48,906,0,0
+9526,140000,male,1,2,32,-1,-1,-2,-1,0,-1,12319,0,0,61,561,528,0,0,61,500,528,498,0
+9527,240000,female,3,1,28,0,0,0,0,0,0,230184,228640,227399,200357,197198,186551,9000,9000,7000,7000,6512,6000,1
+9528,230000,female,1,2,29,-1,-1,-1,-1,-1,-1,495,466,3432,495,495,495,466,3461,495,495,495,0,0
+9529,200000,female,2,2,32,0,0,0,0,0,0,165074,170905,186093,188139,141208,144242,10000,20000,6000,5300,5500,4600,0
+9530,50000,female,1,1,49,0,0,0,0,0,0,44767,45719,45665,49287,48290,50000,5001,2007,5003,303,3000,0,0
+9531,360000,female,1,2,30,-1,-1,0,0,-1,-1,23725,45913,80945,54064,52342,33074,61137,79800,42015,53710,33074,119504,0
+9532,500000,female,1,1,42,1,-2,-1,-1,-1,-1,0,0,1680,0,6745,0,0,1680,0,6745,0,756,0
+9533,20000,male,3,2,22,1,2,0,0,0,0,18977,18374,18458,18852,19546,21165,0,1680,1000,1000,2100,0,0
+9534,80000,male,2,2,30,2,2,2,2,2,2,73113,74639,75408,76618,77459,75327,3300,2600,3000,3000,1580,5800,0
+9535,30000,female,1,1,44,-2,-2,-2,-2,-2,-2,616,0,0,0,0,0,0,0,0,0,0,0,0
+9536,80000,female,2,1,35,0,0,0,0,0,0,14376,15689,16393,16724,17086,17431,1435,1139,470,500,490,544,0
+9537,30000,female,2,1,52,0,0,2,0,0,0,27101,30360,28002,23879,4178,0,4110,94,1879,84,0,0,0
+9538,200000,female,3,1,48,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+9539,240000,male,4,2,29,0,0,0,0,0,0,219419,151914,159320,148705,134563,195628,7000,10082,8095,7015,67006,7026,0
+9540,280000,male,2,2,29,0,0,0,2,2,0,255317,259137,276794,281455,276403,234607,9439,22000,10694,0,8475,9266,1
+9541,170000,female,2,2,33,-1,-1,-2,-2,-2,-2,1547,0,0,0,0,0,0,0,0,0,0,0,0
+9542,100000,female,3,2,44,0,0,0,0,0,0,89988,92388,94478,59387,60953,59786,3852,4135,2200,2521,2162,2697,0
+9543,70000,female,2,2,24,0,0,2,0,0,0,65508,50382,49271,50449,51636,53666,4000,0,2000,2000,3000,2000,1
+9544,110000,female,2,3,27,0,0,0,0,0,0,91538,84348,78925,49341,50289,44221,3354,2745,2341,1959,5000,3000,0
+9545,100000,female,3,2,27,0,0,0,0,0,0,83587,85389,86981,81522,81171,79766,3151,3065,2892,2936,3000,3000,0
+9546,80000,male,1,2,39,2,2,2,2,0,0,78246,79404,80388,78128,75762,73873,3000,3001,0,2703,3100,8302,1
+9547,300000,female,2,1,33,-1,-1,-1,-1,0,-1,1496,1496,1496,2490,1996,1494,1500,1500,2494,1006,1498,2003,0
+9548,150000,female,1,1,40,-2,-2,-2,-2,-1,0,52097,30188,20242,5332,61826,5220,2000,1000,5003,61826,5000,20000,0
+9549,150000,male,2,2,26,0,0,-1,0,0,0,69358,42457,92213,70406,70037,14461,4213,92457,5023,4311,7030,3054,0
+9550,10000,male,3,1,52,1,2,0,0,0,0,6969,6712,7722,7875,8041,8357,0,1128,281,292,450,1415,1
+9551,210000,female,1,2,35,-2,-2,-2,-2,-2,-2,0,0,0,820,0,0,0,0,820,0,0,0,0
+9552,20000,male,2,2,25,0,0,0,0,0,0,19770,19463,20998,19468,36702,0,1465,4000,0,367,0,0,1
+9553,20000,male,2,1,38,0,0,0,0,2,0,6715,7736,8745,9394,9101,9282,1287,1296,945,0,481,829,0
+9554,80000,female,3,1,48,2,2,2,0,0,0,63695,33283,22442,15553,5593,1350,6056,652,517,0,27,5200,0
+9555,270000,male,2,1,49,-2,-2,-2,-2,-2,-2,-173,-173,-173,-173,-173,-173,0,0,0,0,0,0,0
+9556,200000,female,1,1,33,-2,-2,-1,0,0,-1,0,225,5628,5540,16378,4850,225,5628,23,16378,4850,2255,0
+9557,200000,male,1,1,34,-1,-1,-1,-1,-1,2,2727,1332,2003,816,4530,4245,1332,2003,816,4530,0,0,0
+9558,10000,male,2,2,34,0,0,0,-1,0,0,9323,8708,0,9601,10005,9058,1000,0,9601,800,1000,1000,0
+9559,360000,male,1,2,34,-1,-1,0,0,0,0,5275,24267,33473,51900,30424,48646,24267,10000,20000,3003,20000,30000,0
+9560,20000,male,2,1,40,1,2,0,0,0,0,20138,19531,18867,19253,20003,19470,0,1146,532,900,781,0,1
+9561,40000,female,1,1,27,0,0,0,0,0,0,40856,39045,39825,38847,31535,32159,2023,1803,1425,1293,1300,1339,0
+9562,110000,male,3,1,50,0,0,0,0,0,0,109192,106322,67727,47313,47255,47255,4300,3000,2000,1700,1800,1664,0
+9563,50000,male,3,1,50,0,0,0,2,0,0,63889,65512,68764,14353,16110,17832,2800,4000,0,2000,2000,1000,0
+9564,100000,female,1,2,28,0,0,0,0,0,0,46430,47679,48783,49981,44211,48568,2000,2000,2000,1514,5000,0,0
+9565,50000,male,2,2,21,0,0,0,0,0,0,21023,27270,11342,8305,7288,0,3000,1000,0,0,0,0,0
+9566,30000,female,3,1,23,2,2,0,0,2,2,15955,15410,17149,18362,18919,19161,0,2000,1500,1000,700,0,1
+9567,20000,male,1,2,23,2,2,2,2,2,2,7040,7897,7622,8294,8016,9382,1128,0,800,0,1500,815,1
+9568,100000,male,2,1,44,2,2,2,2,0,0,30094,31111,31407,30603,31411,32089,1800,1100,0,1300,1200,1400,1
+9569,80000,female,2,1,24,-1,0,0,-1,-1,-2,1462,2472,0,492,0,0,1502,0,492,0,0,0,0
+9570,120000,male,1,2,29,0,0,0,0,0,0,118303,98232,150952,77639,79966,61248,3358,3400,6000,3200,4000,845,1
+9571,30000,male,2,2,36,-1,-1,2,-1,-1,-1,3024,3462,390,240,2150,780,3462,0,240,2300,780,0,0
+9572,80000,male,5,1,25,-2,-2,-2,-1,0,0,59366,49079,0,16638,18367,33081,15027,0,16638,2000,15081,0,0
+9573,170000,female,1,2,30,1,-2,-1,-1,-2,-2,0,0,550,0,0,0,0,550,0,0,0,0,1
+9574,20000,male,1,1,40,0,0,0,0,0,0,30832,17896,17258,18981,19496,18594,3500,1500,2000,800,800,700,0
+9575,50000,female,3,1,36,0,0,0,0,0,0,46311,47579,47897,28263,8548,8906,2014,1332,698,310,500,330,0
+9576,300000,female,1,1,31,0,0,0,0,0,0,149893,152529,152882,113347,114554,116357,7000,6000,4084,4056,4300,6609,0
+9577,20000,female,1,2,26,2,2,2,2,2,2,300,300,300,300,300,300,0,0,0,0,0,0,1
+9578,130000,male,2,2,29,0,0,0,0,0,0,29252,30086,30680,30797,31147,31996,2000,1793,1300,1223,1851,1000,0
+9579,500000,female,2,1,41,-1,-1,-1,-1,2,2,2503,613,2339,4333,1285,1969,1043,4401,3150,0,1000,498,0
+9580,30000,male,2,2,41,-1,0,0,0,3,2,9736,10453,11771,13032,12538,12187,1182,1500,1761,0,0,1100,0
+9581,180000,female,2,1,41,0,0,0,0,0,0,139184,141752,122164,111328,113890,116823,6411,6000,5000,4500,5000,4200,0
+9582,340000,male,1,2,33,-1,-1,-1,-1,0,-1,8427,10289,9452,22630,8819,9327,10300,9461,22676,8007,9336,32776,0
+9583,480000,female,1,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+9584,80000,female,2,2,30,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+9585,140000,female,3,2,24,0,0,0,0,0,0,20923,19713,19385,19244,17185,36377,1633,1600,800,1753,20000,938,0
+9586,180000,female,3,2,30,0,0,0,0,0,0,105873,90251,62144,56728,52918,20856,5000,3500,1000,1420,1000,500,0
+9587,30000,female,2,2,30,0,0,2,0,0,0,16570,18989,18387,22047,23691,25547,3000,0,4000,2000,2250,1500,0
+9588,290000,male,1,3,55,0,0,2,0,0,0,7970,10320,10005,10838,11663,13301,2482,0,1000,1000,2000,2000,1
+9589,110000,female,3,2,45,0,0,0,0,0,0,9242,9484,13922,18766,28498,30667,5000,5000,5000,10000,5000,5000,0
+9590,60000,male,1,2,25,0,0,0,0,0,0,24200,34708,25326,27914,30476,31982,11000,2000,3000,3000,2000,2000,0
+9591,80000,female,1,1,35,-1,2,-1,-1,-1,-1,3614,82,3723,303,662,3295,0,3723,891,662,3295,1088,0
+9592,110000,male,1,2,25,0,0,0,0,0,0,64155,65743,66533,67677,39066,39884,2621,2123,1952,2000,1468,800,0
+9593,20000,male,2,1,42,1,2,0,0,0,0,17614,17042,18052,18562,18814,19500,0,1300,810,700,1000,900,1
+9594,150000,male,3,2,31,-1,-1,-1,-1,-1,-1,4213,5897,2365,5004,5531,3567,5914,2378,5019,5547,3576,5138,0
+9595,240000,female,3,1,44,-1,-1,-1,-1,0,-1,24469,11511,4670,17480,5489,7740,11511,4670,17480,0,7740,6788,0
+9596,400000,male,1,1,44,0,0,0,0,0,0,18432,24198,22584,22655,23417,16845,6838,2159,1000,3000,1008,1000,0
+9597,120000,male,1,1,34,2,2,2,2,2,2,97463,99018,100493,101937,104159,102324,4000,4000,4000,4000,0,8000,1
+9598,330000,male,1,2,39,0,0,0,0,0,0,365672,346014,334826,265256,264516,264079,12350,12780,9400,20000,9610,10200,0
+9599,30000,male,2,2,29,-1,-1,-1,-1,0,-1,390,390,390,1438,719,1588,390,390,1438,0,1588,0,0
+9600,100000,male,3,1,55,2,-1,-1,-1,-2,-1,435,435,285,-150,-585,1020,435,285,0,0,2040,0,0
+9601,140000,male,1,2,37,-1,-1,-1,-1,-1,-1,291,291,291,291,291,441,291,291,291,291,441,291,0
+9602,50000,male,5,2,33,0,0,0,0,0,-2,45226,46080,32218,20650,0,0,1618,1647,1050,0,0,0,0
+9603,310000,male,1,2,37,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+9604,160000,female,3,1,49,-2,-2,-1,-1,-1,-2,741,6339,3334,3086,6959,5404,6339,3338,3090,6971,5410,1816,0
+9605,110000,female,1,2,25,-2,-2,-2,-2,-2,-2,86107,83894,85037,44819,24512,25447,0,4000,2100,2000,1500,1500,0
+9606,20000,male,2,1,45,-2,-2,-2,-2,-2,-2,1651,0,390,390,780,0,0,390,390,780,0,0,0
+9607,30000,female,3,2,23,-1,-1,-1,-1,-1,-1,528,913,10773,916,3091,700,913,10773,916,3091,700,0,0
+9608,50000,male,2,1,47,1,-1,-1,-1,-2,-2,0,835,226,-1300,-1300,-1300,835,226,0,0,0,0,0
+9609,20000,male,3,2,24,0,0,0,0,2,2,13470,14748,15761,17497,17075,19777,1500,1264,2000,0,3000,0,1
+9610,220000,female,1,2,36,-1,-1,-1,-1,-1,-1,1838,921,943,1467,25075,6862,923,945,1471,25150,6882,7715,0
+9611,460000,male,1,2,36,-1,-1,-1,0,0,0,11469,13749,32838,33203,3129,5945,13766,32871,21000,165,3551,28979,0
+9612,150000,female,1,2,34,1,-2,-2,-2,-1,2,0,0,0,0,552,252,0,0,0,552,0,13404,1
+9613,50000,female,3,1,53,0,0,0,0,0,-2,20211,48672,34694,35503,2025,0,36396,1662,1471,2125,0,0,0
+9614,100000,female,1,1,32,2,0,0,0,0,2,98033,97995,98781,97946,101885,98015,4620,4700,3900,7900,0,7700,0
+9615,260000,male,1,1,50,0,0,0,0,0,-1,115937,118957,119649,122448,-3353,123939,5800,6000,8000,40000,127292,6000,0
+9616,50000,male,3,1,41,4,3,2,0,0,-1,52955,51847,50307,27707,28479,28979,0,0,0,974,31100,1200,1
+9617,50000,female,2,2,27,0,0,0,0,0,0,46465,47776,47626,45227,29436,10363,2367,1606,1198,1196,343,154,0
+9618,240000,female,1,2,34,-1,-1,-2,-2,-2,-2,4970,0,0,0,0,0,0,0,0,0,0,0,0
+9619,230000,male,3,2,24,0,0,0,0,2,0,82066,80317,70854,74413,72447,73418,4000,3500,6000,0,3000,2800,0
+9620,90000,female,2,2,28,0,0,0,0,0,2,69186,72450,73798,74682,79586,78261,5000,3158,2600,6000,0,19000,0
+9621,20000,female,2,2,22,0,0,2,0,0,0,5473,7492,4988,11680,6590,0,2300,0,102,1500,0,0,0
+9622,70000,female,3,2,25,0,0,0,0,2,0,68658,68618,61208,50111,49207,50524,4500,2783,25000,0,3000,6000,0
+9623,260000,male,1,2,29,0,0,0,0,0,0,128208,100939,92549,90038,88772,111287,17000,6000,5000,6500,25000,4000,0
+9624,20000,female,2,2,35,1,2,0,0,-2,-2,14181,12467,6689,0,0,0,0,1000,0,0,0,0,1
+9625,150000,female,2,2,29,0,0,0,0,0,0,94409,92047,79088,81399,74009,65871,5000,5000,5000,6000,5000,4000,0
+9626,200000,female,3,2,51,0,0,0,0,0,0,196875,180428,131111,112995,107300,101918,7657,4814,3921,4000,4365,11000,0
+9627,50000,male,1,2,57,0,0,0,0,0,0,50770,50709,49814,51199,20306,20306,1814,1816,2201,716,721,693,0
+9628,210000,male,2,1,39,-1,-1,-1,-1,-1,-1,1443,1443,1443,1443,1443,1443,1443,1443,1443,1443,1443,1443,0
+9629,360000,male,1,2,27,-1,-1,-1,-1,0,0,759,5695,1390,8531,8531,-33,5702,1395,8531,0,0,0,0
+9630,30000,female,2,2,34,1,2,2,2,2,2,23860,23192,30042,28276,30483,29848,0,7300,0,2666,0,1000,0
+9631,170000,female,2,2,35,0,0,0,-1,-1,-1,13500,7499,7301,10342,14295,20471,1315,1200,10342,14295,20471,6401,0
+9632,500000,female,2,2,32,0,0,0,0,0,0,44462,37890,28527,27030,27454,30486,7000,7000,8000,10000,12000,2876,0
+9633,80000,male,2,2,31,0,0,0,0,0,0,45605,46669,47892,49098,50152,51812,1800,2000,2000,2000,2500,4000,0
+9634,70000,male,2,2,24,3,2,2,2,2,2,63000,64397,65253,63609,68397,69605,3000,2500,0,6000,2500,2700,1
+9635,100000,male,3,2,26,0,0,0,0,0,-1,30627,31894,33049,33112,0,715,2326,2000,1300,0,715,0,0
+9636,300000,female,2,1,26,-1,-1,-1,-1,-1,-1,316,316,316,316,316,466,316,316,316,316,466,316,0
+9637,200000,female,2,1,49,-1,-1,2,0,0,0,3024,11080,8736,26383,27959,20360,10000,0,20000,10000,5000,1520,0
+9638,190000,male,1,2,30,-1,-1,-1,-1,-1,-1,25953,1590,478,10035,24345,1150,1698,478,10035,24345,1191,14512,0
+9639,30000,female,3,1,43,0,0,0,0,0,0,23101,16480,15459,15366,15680,15000,1481,1400,307,314,300,1770,0
+9640,230000,female,3,1,58,1,-2,-1,-1,-1,0,0,0,3000,1800,29387,22980,0,3000,1800,29387,1200,2525,0
+9641,80000,male,1,1,46,0,0,0,0,0,0,39115,40176,39681,29213,25356,22723,2000,2490,1522,1100,960,988,0
+9642,280000,female,1,2,36,1,-2,-2,-1,-1,-2,124,0,0,428,0,0,0,0,428,0,0,0,0
+9643,140000,female,1,2,29,1,2,0,0,0,0,144922,141289,137377,93261,95368,97063,17,5547,3242,3512,3333,4383,0
+9644,30000,female,3,1,35,2,2,2,2,2,2,27160,26444,28694,27936,29930,29302,0,3000,0,2600,0,1600,1
+9645,30000,female,2,1,36,2,2,2,2,2,2,16818,20213,19590,21261,20783,22081,4000,0,2000,0,1800,0,1
+9646,20000,male,2,1,51,0,0,0,0,0,0,18673,17572,18584,19097,19328,37576,1297,1309,822,682,0,1558,0
+9647,230000,female,2,1,30,-1,-1,-1,0,-1,-1,3686,5557,5816,1288,23196,15072,5619,5838,7,23312,15147,16518,0
+9648,20000,male,2,2,23,0,0,2,0,0,-2,16831,20404,19621,14051,0,0,4183,0,281,0,0,0,1
+9649,360000,female,1,2,27,0,0,0,0,0,2,21275,22517,23707,24145,24068,24350,1800,1800,1000,1649,1003,3,1
+9650,60000,female,1,2,24,0,0,0,0,0,0,56119,57282,58533,59349,55302,56563,2664,2800,2400,2100,2181,2213,0
+9651,20000,female,2,2,48,0,0,0,2,0,0,14218,15247,16986,16418,16615,16944,1562,2301,0,610,604,779,1
+9652,500000,male,1,1,44,-1,-1,-1,0,-1,-1,367,15272,12925,75667,67609,71946,16652,76146,67697,67609,71946,14000,0
+9653,380000,male,2,1,39,-2,-2,-2,-1,-1,-2,0,4107,2517,710,0,0,4107,2517,716,0,0,1183,0
+9654,160000,male,1,2,27,1,-2,-2,-1,-1,-1,-1860,-2790,-4650,930,930,2010,0,0,5580,930,2010,0,0
+9655,170000,male,1,2,48,2,2,7,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,0
+9656,430000,female,1,2,29,0,0,0,0,0,0,67336,53400,52214,32386,32848,28557,3261,3051,1199,2000,2000,140908,0
+9657,320000,male,1,1,39,-1,-1,0,-1,-1,-1,8374,17634,38000,1140,997,1633,17634,21000,1140,997,1633,0,0
+9658,180000,male,1,1,31,-1,-1,0,0,-1,-1,1100,860,1480,380,740,1100,860,1000,0,740,1100,380,1
+9659,50000,male,2,2,42,-1,0,0,0,0,0,47612,97918,49376,19693,19677,19657,2113,1949,685,700,712,674,0
+9660,60000,male,2,2,29,2,2,2,2,2,2,47631,48574,49476,50360,50509,52522,2000,2000,2000,1100,3000,0,0
+9661,360000,female,3,2,38,1,-1,-1,0,0,0,-507,751,15369,7845,6786,0,1502,15369,200,0,0,0,0
+9662,80000,female,2,2,23,0,0,0,0,0,0,80998,63184,58346,56361,55933,56936,4500,1973,3000,5000,2100,3200,0
+9663,50000,male,3,1,41,-2,-2,-2,-2,-2,-2,26948,16272,1000,0,0,0,5017,1103,0,0,0,0,0
+9664,200000,female,2,2,37,2,0,0,0,0,0,214261,210315,206563,202896,173111,170326,8000,9000,8000,7000,7200,10500,0
+9665,460000,female,1,2,36,-1,-1,-1,0,0,-1,58312,36388,52920,50106,50147,1341,36570,52937,1006,1019,1347,1965,0
+9666,130000,female,2,2,23,0,0,0,0,0,0,78426,77613,62963,58470,59069,51599,3000,3000,3000,2500,2000,3000,0
+9667,440000,male,2,2,29,0,0,0,0,0,0,430990,436979,329814,289341,287809,293176,18887,12076,10042,11005,11069,9006,0
+9668,280000,male,2,2,38,2,2,2,0,0,0,168581,170775,166749,168739,166757,161777,6000,5,5858,5741,5608,5712,1
+9669,20000,male,3,2,39,0,-1,0,-1,-1,-1,6530,8389,10090,3450,13030,9507,8389,5000,3450,13030,9507,19794,0
+9670,60000,female,2,2,24,0,0,0,0,0,0,57925,58188,58411,58743,60042,57781,2100,3000,2500,2500,2300,5000,0
+9671,210000,female,2,2,38,0,0,0,0,0,0,194358,185907,180618,184110,189134,194966,8000,10000,8000,8000,9000,8000,0
+9672,100000,female,3,2,46,0,0,0,0,0,0,56009,58104,62126,68082,73858,77226,3000,5000,7000,6900,4600,4200,0
+9673,240000,male,1,1,46,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+9674,280000,female,3,2,43,0,0,0,0,0,0,194868,178774,172045,175487,179270,183394,7000,7000,6200,6500,7000,7000,0
+9675,130000,female,1,2,29,-1,3,2,2,2,2,78,78,78,78,78,-121,0,0,0,0,0,0,0
+9676,360000,male,1,2,35,-2,-2,-2,-2,-2,-2,1533,-12,2493,-6,1299,-2,24,2505,0,1305,0,0,1
+9677,210000,female,3,2,36,0,0,0,0,0,0,203447,206683,99411,63322,73433,75381,6549,4500,2407,12700,3200,4000,0
+9678,20000,male,3,2,23,2,2,2,2,3,2,15034,17676,17100,19111,18525,18080,3200,0,2600,0,0,1700,1
+9679,20000,female,2,2,23,0,0,0,0,0,0,4731,6642,11508,16953,17310,18466,2000,5000,6000,626,1441,0,0
+9680,50000,male,2,1,34,1,2,2,2,2,2,16501,15947,18134,17622,19249,14259,0,2500,0,2000,0,1000,1
+9681,100000,female,2,1,39,0,0,0,0,0,0,97040,65668,66046,66779,45833,46369,2617,2098,1916,1707,1732,1379,0
+9682,50000,male,3,2,29,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+9683,130000,male,2,2,27,1,2,2,2,2,2,123371,125905,126524,127534,130524,132416,6000,4300,4400,5000,4000,63,1
+9684,270000,female,1,2,31,0,0,-2,-1,-1,0,13759,0,0,2786,4686,3184,0,0,2786,4686,0,0,0
+9685,50000,female,2,2,24,-1,-1,-1,-1,0,0,390,390,390,780,780,0,390,390,780,0,0,0,0
+9686,80000,female,2,1,35,0,0,0,0,0,0,9647,10390,10816,9746,9798,10401,1206,1131,322,490,1402,201,0
+9687,10000,female,1,2,29,-1,-1,-1,-1,-1,-1,1727,1508,3096,3400,4522,-240,1508,3098,3400,4522,0,1000,0
+9688,190000,female,2,1,34,-1,-1,-1,-2,-1,-1,500,300,0,0,418,964,300,0,0,418,964,670,0
+9689,50000,male,1,2,27,0,0,2,0,0,2,40688,43816,42816,43528,46258,47340,4100,0,1723,3600,2000,2780,0
+9690,100000,female,3,1,46,2,2,2,2,2,0,42674,45983,46927,47759,46865,47930,4000,2000,1900,0,2000,4000,1
+9691,150000,male,2,2,49,0,0,0,0,0,0,151822,86002,75782,76333,77956,77553,2985,2700,5000,2823,2865,2679,1
+9692,510000,male,3,2,30,-2,-2,-2,-2,-2,-2,548,0,0,0,0,1769,0,0,0,0,1769,0,0
+9693,110000,female,2,2,24,-1,-1,-1,-1,0,0,1362,1352,1867,36986,40053,41196,1352,1867,36986,5000,3000,23000,0
+9694,150000,female,1,1,58,-1,-1,-1,-1,-1,-1,1657,2277,4049,1665,559,0,2277,4066,1665,559,0,663,0
+9695,50000,female,2,1,54,0,0,0,0,0,0,48403,48119,43590,18264,18659,18918,2020,3128,1000,656,645,630,0
+9696,50000,female,2,2,23,-1,0,0,0,0,0,25622,33564,25680,13577,1148,-6,10122,10028,5000,6,0,0,0
+9697,360000,female,2,1,29,1,-1,2,-1,-1,-1,0,828,414,414,414,414,1244,2,416,416,416,600,0
+9698,10000,female,1,2,24,2,0,0,2,2,2,6524,7559,9564,9264,9862,10050,1300,2300,0,900,500,0,0
+9699,210000,female,1,2,26,1,2,2,0,0,0,120098,121222,117783,120126,122643,125123,4500,0,4302,4455,4523,4516,0
+9700,370000,male,2,2,28,0,0,0,0,0,0,261021,265512,269491,223905,226566,226817,10001,10000,10000,8207,7641,7521,0
+9701,360000,female,2,1,33,0,0,-2,-1,-1,-1,3177,0,0,1672,0,986,0,0,1672,0,986,780,0
+9702,50000,female,2,1,31,0,0,2,0,0,2,44970,48101,46993,47940,50903,49794,3855,0,1694,3713,2000,1900,1
+9703,360000,male,2,2,38,-2,-2,-2,-2,-1,0,0,0,0,0,3189,177585,0,0,0,3189,177000,5000,0
+9704,170000,female,1,1,35,0,0,-1,-1,-1,-1,86239,75600,2800,21881,0,6780,1512,2800,21881,0,6780,530,0
+9705,70000,male,2,2,26,0,0,0,-1,0,0,67864,68284,67375,71270,71157,71008,3517,3700,71270,3000,3000,3000,1
+9706,360000,female,1,2,34,-1,-1,-1,-1,-1,-1,8871,6378,26648,6707,3450,0,6411,26987,6740,3467,0,239400,0
+9707,230000,male,5,1,42,0,0,0,0,0,0,92230,90614,90385,59317,60404,61604,3292,2755,2270,2193,2205,2284,0
+9708,50000,male,1,1,38,0,0,-2,-2,-2,-2,12650,0,0,0,0,0,0,0,0,0,0,0,0
+9709,200000,male,1,1,41,-1,-1,-1,-1,-1,-1,1378,-22,5440,-2,796,1390,0,5462,0,798,1394,3600,0
+9710,140000,male,2,2,30,-1,-1,-1,-1,-1,-1,326,326,326,326,326,326,326,326,326,326,326,326,1
+9711,120000,female,2,2,33,0,0,0,0,0,0,120411,122717,118886,117170,117403,117388,6300,6100,4600,5000,4800,5000,0
+9712,280000,female,3,2,46,-2,-2,-2,-2,-2,-2,1401,5201,3615,1963,2086,1297,5201,3615,1963,2086,1297,1154,0
+9713,300000,female,1,2,29,0,-1,-1,-1,0,-1,26857,9505,8933,14357,24549,3031,9511,8933,14357,15000,3031,20993,0
+9714,20000,female,2,2,22,0,0,2,2,2,2,15169,17793,17207,20409,20844,20349,2874,0,3490,900,0,361,0
+9715,160000,female,2,2,25,2,2,2,2,2,0,158629,162097,163567,163617,156554,156557,7500,5600,5822,14,5700,5800,1
+9716,20000,male,1,2,24,2,0,0,0,0,0,17781,19388,19933,17331,12822,19924,2000,1300,390,388,10000,400,1
+9717,120000,male,2,1,41,0,0,0,0,0,0,44966,45726,40795,39938,40610,39397,1690,2562,1392,1442,1415,1422,0
+9718,290000,female,2,1,37,-2,-2,-2,-2,-2,-2,1961,3144,500,0,0,0,3148,501,0,0,0,0,0
+9719,60000,male,2,1,32,0,0,0,0,0,2,30781,25870,26964,27265,30329,24104,1505,1599,900,4500,0,1000,0
+9720,110000,female,1,2,29,0,0,0,0,0,0,69718,67961,68306,69786,48728,18574,3000,2000,2049,2000,1000,1000,0
+9721,50000,female,3,1,43,0,0,0,0,0,0,42874,43727,28742,8150,6771,6713,1862,1077,1000,1000,1000,1000,0
+9722,630000,male,1,2,32,-2,-2,-2,-2,-2,-2,2731,3817,4679,5679,6679,6850,1138,1000,1000,1000,171,73415,0
+9723,30000,male,1,2,28,0,0,0,0,2,0,23837,24948,25611,29245,28686,26549,1800,1400,4000,0,2631,500,0
+9724,50000,male,2,2,33,0,0,0,0,0,0,50094,50461,50994,30521,30242,30193,2479,2412,1162,1199,1223,1199,0
+9725,60000,male,2,1,42,0,0,0,0,0,0,49244,48310,41746,25488,26199,28200,2000,2000,1000,1501,3000,1500,0
+9726,150000,male,2,2,27,0,0,0,0,0,-1,12593,39494,33616,24519,10656,30168,38018,1203,41,2587,31382,11027,0
+9727,10000,male,3,2,24,-1,-1,0,0,0,0,273,8327,9379,9566,9766,10042,8327,1200,342,354,438,200,0
+9728,20000,male,2,2,27,0,0,0,0,0,0,18860,17904,15300,12776,3585,0,1360,1206,256,72,0,0,0
+9729,80000,male,3,2,32,0,0,0,0,0,0,71375,18353,94675,90470,85449,80309,1414,83402,4000,3058,2903,2626,0
+9730,160000,female,2,2,52,0,0,0,0,0,0,38695,40757,42769,44448,46269,48036,3000,2700,2700,2700,2700,2700,0
+9731,100000,male,2,2,43,0,0,0,0,0,0,103601,105282,83616,67825,66756,57075,5088,3098,5010,3038,4031,3000,0
+9732,90000,female,3,1,34,0,0,2,0,0,0,49771,52930,48683,44102,35577,28500,4000,0,1312,1200,1070,2882,0
+9733,50000,female,3,2,60,0,0,2,2,0,0,27943,31060,31293,29256,29870,30503,3577,1042,0,1080,1515,862,0
+9734,170000,male,1,2,30,0,0,0,0,0,0,117010,119463,123476,124934,127918,130782,4337,6000,5000,5000,5000,4898,0
+9735,240000,female,1,2,32,-1,-1,-1,-1,-1,-1,5695,9420,16278,8998,10242,19098,9420,16290,8998,10421,19098,6697,0
+9736,80000,female,2,2,25,-1,-1,-1,-1,-1,-1,3002,1921,13454,1807,3560,3337,1921,13454,1807,3560,3337,6240,0
+9737,80000,female,1,2,30,0,0,0,0,0,0,69533,71314,73027,74215,75865,77448,3500,3500,3000,3000,3000,3000,0
+9738,360000,female,2,1,37,-2,-2,-2,-2,-2,-2,0,0,0,0,474,0,0,0,0,474,0,0,0
+9739,140000,male,1,1,31,2,0,0,2,2,2,51028,52112,55232,55932,54910,57344,2500,4600,2200,0,3513,3000,0
+9740,60000,male,2,2,49,0,0,0,0,0,0,81411,52017,35423,24023,20175,16137,38709,1609,661,656,1000,5000,0
+9741,110000,male,3,2,27,0,0,0,0,0,0,55567,65753,65379,65467,64596,62405,15753,5379,5467,4596,3405,1492,0
+9742,160000,female,1,2,28,0,0,0,0,0,0,164262,158903,150548,152170,155476,165902,7900,7000,5600,5900,13200,0,0
+9743,200000,female,3,1,45,-1,-1,0,-1,0,-1,80,-460,4091,5463,4978,975,2230,5029,5463,100,975,255,1
+9744,280000,female,2,1,29,0,0,0,0,0,0,233717,87171,87786,86510,83560,84808,10004,3066,3171,3501,3030,2789,0
+9745,360000,male,2,1,33,1,2,2,7,6,5,296148,304249,383030,377145,370850,364365,14906,97225,0,0,0,0,0
+9746,90000,female,1,2,26,-1,-1,-1,-2,-1,-1,13416,5206,0,0,1980,170,7380,0,0,1980,170,1397,1
+9747,200000,male,2,2,46,0,0,0,0,0,0,18564,77518,82794,80248,64174,51204,60000,20000,20248,45000,40000,54600,0
+9748,50000,male,1,1,50,1,2,3,2,2,2,29394,31722,30928,30134,32085,32609,3100,0,0,2600,1200,0,1
+9749,400000,female,1,1,32,-2,-2,-2,-2,-2,-2,7217,-507,-3,8067,1154,2061,0,1000,8070,1154,2061,0,0
+9750,360000,male,1,1,49,1,-1,-1,-1,-1,-1,-3,630,1019,320,5817,907,633,1030,321,5846,911,6965,0
+9751,150000,male,3,1,50,0,0,0,0,0,0,88900,91812,92411,94416,96328,74550,4161,2971,3151,3200,3990,0,0
+9752,50000,female,3,2,61,1,2,0,0,2,0,47731,45925,47041,49180,47500,48479,0,2200,3600,0,1763,1725,1
+9753,150000,male,2,2,35,0,0,-1,-1,0,0,6008,8765,19674,57858,53588,56892,8008,20155,63992,3004,6002,5702,0
+9754,100000,female,2,2,37,1,2,-1,-1,-2,-2,3492,3293,326,324,174,1367,10,650,324,0,1367,4166,1
+9755,310000,female,1,1,30,0,0,0,0,0,0,27289,28020,31140,27695,17338,17731,1489,4415,1084,491,540,4000,0
+9756,120000,male,2,2,39,1,-1,2,2,-2,-2,0,780,780,0,0,0,1170,0,0,0,0,0,0
+9757,90000,female,2,1,44,0,0,0,0,0,0,82253,88238,83204,81645,84629,87981,8238,3200,3000,5000,5000,3000,0
+9758,150000,female,1,1,36,-2,-2,-2,-2,-2,-2,14843,14528,11317,14037,12030,10738,14528,11322,14042,12030,10738,322,0
+9759,50000,male,2,1,42,0,0,0,0,0,0,35255,21317,22252,22541,22863,20288,1690,1620,900,780,750,1670,0
+9760,210000,male,1,1,53,-1,-1,-1,-1,-1,-1,6060,5934,9303,10976,2543,3483,5983,9331,11008,2550,3493,1308,0
+9761,300000,female,2,2,42,-1,-1,-1,0,0,-2,28077,1063,11510,10310,0,0,1500,11516,0,0,0,7000,0
+9762,110000,female,2,1,33,2,0,0,0,0,0,87514,75394,82627,57533,59289,60828,4000,10090,2100,3000,3000,3000,1
+9763,150000,female,1,2,25,0,0,0,0,-1,0,150562,148689,147296,144927,54116,6072,5196,3171,3699,69245,1030,0,0
+9764,210000,male,1,1,42,-1,-1,-1,-1,-1,-1,1729,1262,6867,2271,1054,1197,1315,6867,2271,1054,1197,701,0
+9765,30000,male,1,2,34,2,2,2,2,2,0,21107,24117,24424,24627,24093,24785,3374,1000,900,0,1094,1000,1
+9766,240000,female,2,1,42,-1,-1,-1,-1,-1,-1,632,0,316,632,0,316,0,316,632,0,316,948,0
+9767,120000,male,2,2,34,-1,-1,-1,-1,-1,-1,856,856,856,856,856,856,856,856,856,856,856,2664,0
+9768,80000,female,1,2,24,0,0,0,0,0,0,31815,30672,33185,28600,29101,28939,4038,3199,914,850,2055,8318,0
+9769,80000,female,2,2,25,1,2,0,0,2,0,31040,30259,31712,33734,29822,30966,0,2000,2444,0,3000,1000,1
+9770,360000,male,1,1,32,-1,-1,-1,0,0,0,2612,3218,6989,2729,1436,-14,3234,7021,6,7,0,0,0
+9771,130000,male,1,2,34,2,2,2,0,0,2,72996,75241,73442,75115,79230,81278,4000,0,3500,5500,3500,0,1
+9772,290000,male,2,1,36,2,-1,-1,0,-1,-1,322,326,652,326,326,11757,330,652,0,326,11757,550,0
+9773,240000,female,3,1,33,0,0,0,0,-1,0,129600,133161,30098,366,725,2576,7000,1030,7,725,2217,158215,0
+9774,60000,male,2,2,23,0,0,2,2,-1,0,4553,7730,12944,-7511,12606,6540,3258,0,0,28000,2000,50,0
+9775,200000,female,2,1,60,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+9776,150000,female,2,1,28,0,0,0,0,0,0,99294,96094,97642,70371,72257,72536,5008,5000,2499,3000,2789,2439,0
+9777,300000,male,3,2,29,0,0,0,0,0,0,103792,108297,75385,76864,124477,192001,8401,4266,3087,49195,70000,7016,0
+9778,30000,female,2,2,24,-1,-1,2,2,2,2,2590,8346,8069,13042,12690,15503,6000,0,5464,0,3027,0,0
+9779,250000,male,2,1,40,0,0,0,0,0,0,142477,85965,71453,54063,52723,56752,7000,3000,2000,3500,5000,3000,1
+9780,20000,male,3,2,40,0,0,0,0,0,0,17180,17715,18841,18989,11583,11859,1500,1500,1000,1000,1000,1000,0
+9781,370000,female,1,2,34,0,0,0,0,0,0,206161,203907,178625,164483,157497,141493,10000,7014,6000,6000,6000,4000,0
+9782,20000,female,1,2,23,1,2,0,0,-1,0,6081,3408,4016,3282,1814,2232,0,1000,100,1814,1000,0,1
+9783,120000,female,2,2,23,0,0,-1,0,-1,-1,7945,3077,700,268,632,8815,1000,1200,200,632,8815,8400,1
+9784,50000,male,2,2,23,0,0,0,0,0,0,19766,14066,11524,10812,11643,12458,1300,1162,1000,1000,1000,1000,0
+9785,190000,female,1,2,27,0,0,0,0,0,0,72656,38054,39410,38288,39276,36885,2000,2000,1500,1500,1300,1302,1
+9786,20000,female,2,2,22,0,0,0,2,2,2,15034,16285,20498,19509,20038,18982,1500,4500,0,1600,0,1000,0
+9787,240000,female,2,1,42,1,2,0,0,-1,-1,15100,14557,24893,14782,2381,2381,0,14782,0,2381,2381,0,0
+9788,150000,male,2,2,32,0,0,0,0,0,0,80437,84560,35726,27886,32415,39531,7000,3000,3000,5000,8000,2000,0
+9789,180000,female,2,1,35,0,0,0,0,0,0,8694,7607,6801,6759,6918,9777,1500,2000,1000,3000,4000,2000,0
+9790,180000,male,2,2,36,0,0,0,0,0,0,136613,133557,129909,133043,133835,132587,6600,6000,6000,6000,5000,6000,0
+9791,70000,male,1,2,31,0,0,-2,-2,-2,-2,45450,0,0,0,0,0,0,0,0,0,0,0,0
+9792,230000,female,1,2,32,-1,0,-1,-1,-1,-1,441,28641,713,1344,3786,6571,28200,720,1344,4674,6571,1814,0
+9793,360000,male,1,2,27,-1,-1,-1,-1,-1,-1,5810,4036,2310,1300,0,348,4041,2310,1300,0,348,1080,0
+9794,120000,female,2,2,33,0,0,0,0,0,2,52266,53351,54425,54925,59010,60191,2522,2559,2000,5000,2300,0,0
+9795,90000,male,3,1,49,2,2,2,2,2,2,74766,76470,77514,78730,80316,82321,3500,2900,3100,3000,3500,6500,1
+9796,110000,male,2,1,32,0,0,0,0,0,2,110198,107710,83913,47369,48905,46046,3851,3021,1649,3513,0,1664,0
+9797,100000,female,3,1,53,0,0,0,0,0,0,36838,37785,32905,29866,30503,28518,1607,1385,971,1018,984,810,0
+9798,90000,male,1,2,26,1,2,2,0,0,0,58518,52526,45640,41539,39373,32080,3006,99,1500,1500,2015,1200,0
+9799,50000,female,1,1,35,1,2,2,2,0,0,47438,46400,49276,48286,47915,48386,0,3700,0,2000,6000,0,0
+9800,50000,female,2,2,53,0,0,0,-1,-1,2,7343,7969,8832,10931,11578,10547,1139,1002,13359,800,0,426,0
+9801,180000,female,1,1,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+9802,50000,male,2,1,41,0,0,0,0,0,0,36696,46041,47890,8412,9412,0,10000,3012,1000,1000,0,0,0
+9803,20000,female,3,2,26,0,0,0,0,0,0,13804,14578,15893,16330,16517,16944,1300,1563,1000,600,700,2000,0
+9804,20000,male,2,2,26,2,2,2,2,2,3,36060,31741,30013,25938,28447,24288,0,2600,0,6500,0,0,0
+9805,20000,female,2,1,23,1,2,2,2,2,3,7979,8700,9907,9599,14422,18885,1000,1500,0,5000,5000,900,0
+9806,20000,male,3,2,49,0,0,0,-1,0,-1,19363,19609,-391,19413,12223,2110,1200,160,20394,347,2110,12996,0
+9807,50000,female,3,1,48,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,0,1
+9808,210000,male,2,1,46,-2,-2,-2,-2,-2,-2,0,1828,765,0,0,0,1828,765,0,0,0,0,0
+9809,490000,male,4,1,51,-1,-1,-1,-1,-1,2,4770,16917,739,-11,5132,2724,17143,742,0,5143,13,5744,0
+9810,280000,female,1,2,28,1,-1,-1,0,-1,-1,0,5072,4872,4284,4322,9887,5072,4900,0,4322,9887,49300,1
+9811,200000,female,3,2,54,-2,-2,-2,-2,-2,-2,880,1948,3635,1186,0,0,1948,3635,1362,0,0,0,0
+9812,100000,female,2,2,24,1,-1,-1,-2,-2,-1,0,670,0,0,0,150,670,0,0,0,150,477,1
+9813,250000,male,1,2,56,-2,-2,-2,-2,-2,-2,777,-3,772,-8,-8,1726,0,775,0,0,1734,0,0
+9814,240000,male,2,2,54,-1,-1,-1,0,-1,2,7832,64445,11680,4060,17903,15961,64461,11680,0,17964,61,620,0
+9815,80000,female,2,1,26,0,0,0,0,0,0,75405,75681,72263,50312,49878,50101,3000,2200,1730,1800,2500,3000,0
+9816,100000,male,3,1,67,2,2,2,2,2,2,16918,20511,19944,22915,23472,23016,4145,0,3260,1000,0,2286,1
+9817,30000,female,3,1,41,-2,-2,-2,-2,-2,-2,0,18393,7501,11216,14333,0,18393,7501,11216,14387,0,0,0
+9818,180000,female,1,2,42,-2,-2,-2,-2,-2,-2,177061,180778,3647,1593,1228,1006,8000,3653,32,0,1006,0,0
+9819,80000,female,1,2,32,0,0,0,0,2,2,60918,62445,63905,67943,68811,70526,2500,2500,5100,2100,3000,3000,0
+9820,110000,female,2,1,46,-2,-1,0,0,0,0,1495,83590,82293,78622,78430,78120,86367,2846,2755,2838,2808,2740,0
+9821,180000,female,2,1,30,0,0,0,0,-1,-1,39259,41054,25590,5817,13623,-2202,3000,6000,1000,13623,388,77001,0
+9822,150000,female,2,1,29,2,2,2,2,2,2,99986,103662,103978,105272,106437,109108,6800,3500,4500,3000,4600,2500,1
+9823,50000,female,2,1,52,0,0,0,0,0,0,15377,17121,17832,18532,19233,20650,2000,1300,1000,1000,2000,0,0
+9824,230000,female,2,2,23,-1,-1,2,2,-2,-1,1050,2203,2005,0,0,780,2203,0,0,0,780,0,1
+9825,340000,male,1,1,41,-1,-1,-1,-1,-1,-1,624,2431,595,1193,25235,5868,2431,595,1193,25235,5868,2387,1
+9826,30000,male,2,2,25,1,2,2,2,2,2,26623,27703,26753,30107,30614,27190,1800,0,4100,900,0,40925,1
+9827,270000,female,2,1,45,0,0,0,0,0,0,17074,28137,32602,9462,8835,8054,15000,5000,5000,5000,5000,1500,0
+9828,50000,female,1,2,36,-1,-1,-1,-1,-1,-1,11684,45135,34539,7000,6000,0,45135,34539,7000,6000,0,0,0
+9829,130000,female,3,1,43,0,0,0,0,0,2,74020,71527,66370,43882,41063,29215,5000,3000,2500,4100,0,5000,0
+9830,200000,female,1,2,27,-1,0,-1,0,0,0,31789,22289,29815,35442,8321,20718,22091,29851,283,1387,20057,51281,0
+9831,360000,male,1,1,46,0,0,0,0,0,0,14591,14828,14250,13780,15077,14009,3005,3024,4004,4008,3008,2024,1
+9832,500000,male,2,2,27,0,0,0,0,0,0,131519,127055,122368,108543,93906,82288,6662,12105,8610,3555,4073,2666,0
+9833,100000,female,1,2,25,0,0,0,0,0,0,11801,12905,14378,14838,15447,16539,1600,2000,1000,1000,1500,0,0
+9834,270000,female,2,1,50,0,0,0,0,0,0,22821,24949,26526,27778,29322,30677,2500,2000,2000,2000,2000,2000,0
+9835,100000,male,2,1,52,0,0,0,0,0,0,64254,21178,101565,82087,81201,77928,2211,81565,2625,3931,2900,2800,1
+9836,20000,female,2,2,25,0,0,0,0,0,0,17950,17330,18560,14509,17972,15352,2000,2000,1000,6000,1000,3000,0
+9837,50000,female,2,1,45,0,0,0,0,0,0,47823,48468,50955,49813,49290,50603,3144,3878,3000,2500,2000,1787,0
+9838,200000,female,2,2,32,-1,-1,-1,-1,-1,-1,2147,1173,912,1140,293,0,1173,912,1140,293,0,308,0
+9839,170000,male,1,1,44,1,2,0,0,0,0,84947,78724,68387,51511,33939,34330,2000,2000,3057,2000,5000,2000,1
+9840,20000,female,1,2,28,2,0,-1,0,0,0,18540,19726,8564,19775,19878,19898,2000,8568,19000,800,1000,20000,1
+9841,70000,male,3,1,50,2,3,2,2,2,0,56781,55327,52927,30432,16546,16722,2,3,2214,0,600,800,1
+9842,260000,female,1,2,38,-1,-1,-2,-2,-2,-2,252,0,0,0,0,0,0,0,0,0,0,0,0
+9843,200000,female,1,1,28,-1,-1,-2,-2,-2,-2,1760,0,0,0,0,0,0,0,0,0,0,0,0
+9844,190000,female,1,2,25,0,0,0,0,0,0,106223,103922,106082,95645,89762,91835,7500,16027,9000,2919,3220,22000,0
+9845,220000,male,3,1,58,0,0,0,-2,-2,-1,22599,23875,0,0,0,52884,1875,0,0,0,52884,105660,0
+9846,170000,female,3,2,30,0,0,2,0,0,0,38903,37979,37069,37960,38796,39267,5144,0,1508,1600,1264,1391,0
+9847,290000,female,1,2,47,0,0,0,0,0,0,281950,263710,262786,254495,247060,220298,11900,11000,7900,9050,6900,6000,0
+9848,60000,female,1,2,25,0,0,0,0,0,0,31493,32634,30312,22999,23484,24438,2000,2000,1000,1005,1500,2000,0
+9849,100000,female,3,1,50,0,0,0,0,0,2,36925,38324,39680,41687,43607,43739,2000,2000,2680,2600,1000,5261,1
+9850,130000,female,3,1,44,-1,2,2,-1,0,-1,632,316,0,632,316,316,0,0,948,0,316,316,0
+9851,360000,male,1,1,40,-2,-2,-2,-2,-2,-1,1126,3449,3168,1469,1833,1449,3455,3168,1469,1833,1449,0,0
+9852,30000,female,2,1,38,3,2,0,0,0,-1,3379,1715,1170,780,390,150,0,1100,0,0,150,780,0
+9853,20000,male,3,2,28,-1,0,0,0,0,0,16122,16787,14459,14743,16351,17126,2000,2000,2000,2000,2000,2000,1
+9854,110000,female,1,2,37,2,2,2,2,2,2,600,600,600,600,600,600,0,0,0,0,0,0,1
+9855,130000,female,2,2,43,0,0,0,0,0,0,87289,81818,41268,31836,33559,10390,5000,2000,2000,2000,2000,2000,0
+9856,50000,female,2,2,23,0,0,0,0,0,0,49026,48983,38417,27038,26254,26352,1748,1408,1000,1000,1000,1000,0
+9857,110000,male,2,1,48,0,0,0,0,0,0,107767,108561,108895,78194,76385,76858,5700,5000,2700,2901,3000,3000,0
+9858,80000,female,1,2,25,0,0,0,0,0,0,78327,79322,76290,58987,57947,58077,3000,2454,2059,2100,2149,1956,0
+9859,150000,female,2,1,34,-2,-2,-2,-2,-2,-2,316,1801,1139,2246,5435,466,1801,1139,2246,5435,466,316,0
+9860,80000,female,2,1,29,1,2,2,0,0,0,56340,57022,55081,55350,55906,57538,2600,0,2200,2028,3000,2200,0
+9861,320000,male,1,2,35,0,0,0,0,0,0,164511,177809,155421,166507,170930,171359,15000,34000,12000,5000,81000,4100,0
+9862,170000,female,1,2,35,-1,-1,-1,-1,-1,0,897,861,3749,1487,1939,588,861,3761,1495,1939,0,10613,0
+9863,60000,female,1,2,26,0,0,0,0,0,0,41525,33907,27517,27506,28115,28815,1815,1760,1100,1052,1200,1100,0
+9864,180000,male,1,2,23,2,2,2,2,2,2,157074,158088,166492,168487,172662,172027,5000,12552,6200,7000,2304,6180,1
+9865,470000,male,2,2,29,0,0,0,0,0,0,59235,47091,34901,33953,34188,35444,3106,5017,3007,2001,2093,10076,0
+9866,70000,female,3,1,47,1,-2,-1,2,0,0,30950,33087,42935,28346,27279,28976,3107,48323,0,2001,3000,3003,0
+9867,280000,female,2,1,41,0,0,0,0,0,0,40483,42538,44561,45450,46715,47642,2718,2741,1630,2000,1705,1572,0
+9868,210000,female,1,2,26,-1,-1,-1,-2,-1,-1,231,1608,0,0,312,0,1624,0,0,312,0,0,0
+9869,300000,male,1,2,30,0,0,0,0,-1,-1,185327,29446,21689,12500,12500,12500,1500,5000,3500,12500,12500,12500,0
+9870,140000,female,2,1,42,0,0,0,0,0,0,158495,160681,144194,144802,147311,150207,5530,6600,5100,5460,5460,5100,0
+9871,450000,male,1,1,41,-1,-1,-1,-1,-1,-1,70825,17236,8680,113233,5907,0,17913,9278,114865,6411,0,0,0
+9872,160000,female,2,1,38,0,0,0,0,2,2,105313,109030,109731,116452,114481,121885,5416,4002,8565,0,9502,0,0
+9873,50000,female,3,1,45,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+9874,50000,male,1,2,42,-1,-1,0,0,0,0,12751,19660,14659,14951,14195,14471,22660,1300,519,518,515,528,0
+9875,50000,male,2,1,32,0,0,0,0,0,0,50669,48942,27836,40346,38668,20016,1613,1484,3675,698,1000,706,0
+9876,150000,female,1,2,25,0,0,2,2,2,2,129911,140013,137279,143848,146986,149805,12200,1000,10400,5600,5400,5000,1
+9877,90000,male,1,1,53,0,0,0,0,0,0,23551,23607,22132,63204,19412,18099,2400,1582,770,1696,820,520,0
+9878,270000,female,2,1,42,0,0,0,0,0,0,225245,211517,165608,223292,220582,218090,10000,118000,113300,9000,8000,10000,0
+9879,70000,male,1,2,36,0,0,0,0,0,0,65275,68595,67916,56766,50395,42214,5000,3000,3000,3000,7000,7000,0
+9880,360000,male,2,2,33,-1,-1,-1,0,-1,-1,9582,2119,10549,4409,2567,6234,2139,10580,110,2578,6265,0,0
+9881,200000,female,2,1,34,1,-1,-1,-1,0,0,2500,9814,0,4379,1699,0,9814,0,4379,0,0,0,1
+9882,250000,female,1,1,42,0,0,-1,-1,0,-1,249406,256400,13600,3274,2446,26710,11400,13600,3274,0,26710,12000,0
+9883,360000,female,2,2,34,0,0,0,0,0,0,205363,207315,211278,215020,218771,222172,8000,8000,8000,7766,7803,7971,0
+9884,20000,female,2,1,39,1,2,0,0,0,0,19565,18968,19612,16213,16812,18382,0,1300,717,1000,2000,1000,0
+9885,250000,female,1,2,28,2,2,2,0,0,0,21404,48774,28705,32017,19052,9847,28705,0,4000,3000,1500,1000,1
+9886,60000,female,2,2,25,2,2,4,4,3,2,600,600,600,600,300,150,0,0,0,0,0,586,1
+9887,200000,male,2,2,36,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+9888,30000,female,3,2,38,0,0,0,0,0,0,25546,28820,28538,28208,29326,29508,3700,718,1500,1500,3000,12357,1
+9889,500000,female,1,2,39,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+9890,280000,female,3,1,45,0,0,0,0,0,0,50415,59538,67642,39396,26096,34104,10000,10000,36432,0,10000,28580,0
+9891,200000,female,2,1,42,-1,-1,-1,-1,-1,-1,1261,0,2521,6934,2255,3021,0,2521,6935,2255,3021,0,0
+9892,360000,female,2,1,35,1,-2,-2,-1,-1,-1,0,0,0,3602,1197,0,0,0,3602,1197,0,474,0
+9893,50000,female,3,2,44,2,2,2,2,2,0,42115,41164,43658,44644,43798,44912,0,3500,2000,0,2000,2000,1
+9894,60000,male,2,2,30,0,0,0,0,0,0,57041,58268,59568,61298,29587,27267,2148,2303,2669,1032,1000,1300,0
+9895,110000,male,2,1,42,-2,-2,-2,-2,-2,-1,100534,90201,77817,64246,65746,57715,3678,1948,1285,1500,60589,1620,0
+9896,200000,female,3,1,44,0,0,0,0,0,0,34760,37871,39879,42946,46141,46305,4000,3000,4000,4000,3000,3000,0
+9897,70000,female,2,2,39,2,0,0,0,0,0,67607,69623,71030,30087,29742,29191,3700,3700,1300,1300,1100,1200,0
+9898,220000,female,5,1,37,2,2,2,0,0,0,189976,189665,171669,167294,172042,162565,15510,0,5500,7250,6500,3500,1
+9899,20000,female,1,2,24,-1,-1,-2,-2,-2,-2,379,0,0,0,0,0,0,0,0,0,0,0,0
+9900,220000,female,1,2,27,-2,-2,-1,0,0,0,4289,4637,1252,8069,18117,23176,1031,3077,7500,10048,15010,9000,0
+9901,180000,male,2,1,40,1,2,0,0,0,0,172584,167622,130083,64398,62277,58216,1000,4052,2293,2295,2400,2110,0
+9902,100000,male,2,1,53,2,0,0,0,0,0,43611,45415,47053,47747,48459,49560,2500,2400,1845,2400,2500,0,1
+9903,200000,female,1,1,41,-1,-1,-1,-1,0,0,6402,5189,2394,15612,525,0,5189,2394,15648,0,0,0,0
+9904,200000,male,3,2,34,1,2,2,3,2,2,138839,142121,193777,189225,192304,188695,7001,56100,5,7269,28,5828,0
+9905,400000,female,1,1,38,-2,-2,-2,-2,-2,-2,123,123,123,0,349,0,123,123,0,349,0,0,0
+9906,60000,male,1,1,38,2,2,2,0,0,0,59310,60482,58748,49375,38433,38378,2700,0,2100,1600,1600,1600,0
+9907,60000,male,2,2,22,0,0,0,0,0,0,59575,51991,35435,19262,19285,19565,2051,1653,680,700,700,693,0
+9908,210000,female,2,1,37,-2,-2,-2,-2,-2,-2,1094,1335,3056,213,825,1240,1335,3056,213,825,1240,5693,0
+9909,200000,male,1,1,32,0,0,0,0,0,0,30144,32649,32425,32625,9687,5526,3000,1000,1000,400,1000,752,0
+9910,50000,female,1,2,29,-2,-2,-2,-2,-2,-2,0,0,0,0,2900,0,0,0,0,2900,0,0,0
+9911,300000,female,1,2,38,-1,-1,-1,2,-1,2,2984,-46,154,154,1626,976,0,200,0,1626,0,0,1
+9912,510000,female,1,1,48,-1,-1,-1,-1,-1,-1,9686,19121,9891,8600,3365,6011,19121,9922,8600,3365,6011,3301,0
+9913,160000,female,1,2,32,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+9914,50000,female,2,1,36,-2,-2,-2,-2,-1,-1,3477,1909,1726,991,5777,5968,1909,1726,991,5782,5968,2045,0
+9915,220000,female,1,2,32,-2,-2,-2,-2,-2,-2,21332,27844,33260,9142,15687,9148,28567,34393,9203,15765,9194,11317,0
+9916,20000,male,2,2,22,1,3,2,2,0,0,6792,6540,7278,7013,7398,8775,0,1000,0,500,1500,0,1
+9917,410000,male,1,2,31,-1,-1,-1,0,0,-1,4182,0,4120,4120,0,3086,0,4120,0,0,3086,4320,1
+9918,50000,female,2,1,25,-1,0,0,0,0,0,42726,43072,34984,30090,23820,18012,3941,1432,1000,2000,2036,404,1
+9919,50000,male,3,1,38,0,0,0,0,0,0,10825,11377,10760,10973,10693,9888,1500,1155,368,372,356,500,0
+9920,50000,male,3,1,48,0,0,0,0,0,0,10420,8451,9641,9468,9294,9263,1310,1500,500,500,500,200,0
+9921,70000,female,2,2,29,0,0,2,-1,0,0,4059,5791,208,4170,4563,5331,2000,0,4170,1000,1000,1000,0
+9922,120000,male,2,2,25,0,0,0,0,0,0,120633,118741,104754,79227,77751,69889,4622,3384,2589,3000,2460,1300,0
+9923,170000,male,2,1,30,-1,-1,-1,0,-1,-1,416,416,632,416,416,566,832,632,200,416,566,416,0
+9924,160000,male,1,1,51,0,0,0,2,2,2,1380,1481,2623,2457,4912,3669,1331,2473,0,2500,0,0,1
+9925,30000,female,2,2,22,0,0,2,0,0,0,30397,31148,28755,30720,28298,9064,3500,0,3500,694,343,266,0
+9926,10000,female,2,1,40,1,-1,0,0,0,0,0,1912,3071,4012,9882,5857,1912,1200,1000,1000,1000,0,0
+9927,160000,female,2,1,33,0,0,0,0,0,0,189935,183501,175363,172417,165800,158671,8113,6395,10000,6160,5772,5854,0
+9928,20000,male,2,2,33,0,0,0,2,0,0,17439,18498,21335,33247,17261,17601,1340,3177,0,1546,776,646,0
+9929,250000,female,1,2,35,-2,-2,-2,-2,-2,-2,0,0,26267,26599,2948,2065,0,26267,532,2948,2065,13780,0
+9930,30000,female,2,2,26,2,2,2,0,0,2,23064,25479,24705,25202,26608,25926,3100,0,791,1699,0,1000,1
+9931,180000,female,1,2,29,0,0,0,0,0,0,123154,126078,78070,50730,48039,47665,5200,3045,3500,2700,2720,2000,0
+9932,240000,female,2,2,34,-1,-1,-1,-1,-1,-1,3403,2858,3619,3262,3228,3127,3502,4099,3500,3228,3127,2221,1
+9933,30000,female,2,2,25,1,3,2,2,2,2,16368,15825,15274,17018,16608,18020,0,0,2000,0,2000,0,0
+9934,50000,female,1,2,28,1,2,0,0,0,3,4323,3851,2808,3325,3989,3610,0,602,569,718,0,0,0
+9935,280000,female,2,2,24,-1,-1,-1,-1,-1,-2,1481,11884,-27,5443,-13,-13,11943,0,5470,0,0,0,1
+9936,20000,male,1,2,37,2,2,2,2,2,0,14688,16827,17251,17672,17250,18305,2700,1000,1000,0,1500,1500,1
+9937,130000,female,3,1,54,0,0,0,0,0,0,77506,78535,72776,66053,52505,12242,2900,2564,2368,2200,364,152,0
+9938,70000,male,1,2,29,1,2,0,0,0,0,71267,67401,63239,23163,41106,42021,5,2910,1000,20000,1600,2000,1
+9939,180000,female,2,1,32,-1,2,-1,0,-1,-1,1991,991,7658,1000,1650,1000,0,7667,0,1650,1000,2000,0
+9940,320000,male,1,1,46,-2,-2,-2,-1,-1,-2,3266,12186,1403,24305,7463,1957,12253,3290,11465,7537,1966,2987,0
+9941,30000,female,2,1,33,2,0,0,2,2,0,31947,31564,34804,33808,31740,31135,1872,5550,1238,0,1515,4665,1
+9942,280000,female,2,2,33,1,-2,-2,-2,-2,-1,0,0,0,0,0,35833,0,0,0,0,35833,1500,0
+9943,80000,female,2,2,50,0,0,-1,-1,-1,-1,8985,5305,2992,2984,2992,2992,2000,2992,2984,3000,2992,2992,0
+9944,140000,female,2,2,27,0,0,0,0,0,0,136899,139889,142460,142020,139879,140810,5200,6000,5500,5900,5200,5000,0
+9945,180000,male,2,1,27,0,0,0,0,0,0,181219,183311,183936,181370,179904,172758,7000,8021,6315,6432,6409,6008,0
+9946,20000,male,2,2,55,2,2,2,2,-2,-2,11736,11180,780,0,0,0,780,0,0,0,0,0,0
+9947,420000,female,1,2,29,0,0,0,0,0,0,105582,97913,75353,78322,77048,23007,23004,20002,7096,20261,3068,10009,0
+9948,200000,female,1,2,29,0,0,0,-2,-1,0,53493,3123,3221,3287,63687,65034,1060,1000,66,65437,2422,2418,1
+9949,140000,female,1,2,25,0,0,0,0,0,0,45068,44158,48437,50667,52888,54060,5000,5000,3000,3000,2000,2000,0
+9950,170000,female,3,2,33,0,0,0,0,0,0,166348,162319,165592,167482,171106,164042,7354,7464,6127,6550,6100,10000,0
+9951,30000,female,2,2,24,0,0,0,2,0,0,18220,20606,22880,22217,23694,24151,3000,2620,0,2000,1000,1000,0
+9952,50000,female,1,2,26,1,-2,-2,-1,0,0,0,0,0,6954,7361,6957,0,0,6954,500,1000,500,0
+9953,150000,female,1,1,45,0,0,0,0,0,0,123580,126136,128709,131292,134011,136711,3575,3647,3678,3793,3835,3952,0
+9954,30000,male,2,2,30,0,0,0,0,0,0,6933,9640,10094,10300,10300,0,3000,1000,206,0,0,0,1
+9955,50000,male,3,2,38,0,0,0,0,0,0,50174,32012,34274,38668,40416,20355,3000,3000,5000,2000,3000,1200,0
+9956,300000,female,1,2,39,-1,-1,-2,-2,-2,-2,2019,-1,-1,-1,-1,-1,1,0,0,0,0,2774,1
+9957,50000,female,1,2,27,0,0,0,0,0,0,39607,40399,36712,33485,37712,40065,5014,5000,5000,5000,5000,5000,0
+9958,110000,female,2,1,41,0,0,0,0,0,0,100143,98338,92457,79496,72458,72168,4000,4000,3530,4000,4000,5000,0
+9959,110000,female,1,2,32,1,-1,0,0,0,-2,0,1670,11693,7903,-18,-18,1670,10200,0,0,0,0,0
+9960,390000,female,1,1,34,-1,-1,0,0,0,-1,3060,60248,53157,73183,69592,24629,60248,7183,66000,0,24629,43433,0
+9961,200000,male,3,2,46,-1,-1,-1,-1,-1,-1,396,396,396,396,396,396,396,396,396,396,396,396,0
+9962,30000,male,1,1,38,8,7,6,5,4,3,35031,34552,33756,32960,31881,31085,0,0,0,0,0,0,1
+9963,230000,male,1,2,30,0,0,0,0,0,0,101874,97302,97383,97487,96588,95221,8000,5016,5000,5000,5000,5200,0
+9964,210000,female,1,1,44,-2,-2,-2,-2,-2,-2,0,70,24329,780,0,1615,70,24259,780,0,1615,8198,0
+9965,30000,female,2,1,54,-1,-1,-1,-1,-1,-1,3334,3366,890,2662,1542,-2695,3366,890,2662,1542,0,6000,0
+9966,130000,female,3,1,41,0,0,0,0,0,0,101885,72686,70672,64530,63041,56493,3500,2389,2368,5000,1964,1707,0
+9967,130000,male,3,2,37,1,-2,-1,0,0,0,-896,-896,2604,2604,1,1,0,3500,0,0,0,0,0
+9968,480000,female,1,2,27,-1,0,0,0,0,0,12759,15410,20116,10060,9301,923,3001,5000,500,500,500,21299,0
+9969,160000,female,1,1,37,-1,-1,-1,-1,-1,-1,9293,5875,9121,2412,2271,2187,5902,9128,2412,2271,2187,4792,0
+9970,10000,male,1,2,27,0,0,0,0,0,-1,6599,7736,8492,8138,4990,1598,1400,1000,1009,1000,1598,0,0
+9971,360000,female,2,2,33,-1,-1,-2,-2,-2,-2,8552,1118,1227,1541,1389,390,1118,1227,1541,1389,390,390,0
+9972,260000,female,2,1,28,0,0,0,0,-1,0,251811,256753,143240,150000,14098,28736,9388,5000,10000,14098,15000,15000,0
+9973,330000,female,2,1,45,0,0,0,0,0,0,47644,48906,50531,50595,40491,31020,2000,2500,1309,1243,2027,1056,0
+9974,30000,female,2,1,47,1,2,2,-2,-2,-2,5163,2475,0,0,0,0,0,0,0,0,0,0,1
+9975,80000,male,2,1,31,2,0,0,-2,-2,-2,81712,78535,0,0,0,0,3271,0,0,0,0,0,1
+9976,120000,female,2,1,29,-1,-1,-1,-1,-1,-1,7778,3157,5456,0,2777,0,3179,5463,0,2777,0,0,1
+9977,170000,male,2,2,30,0,0,0,-1,-1,-1,6383,7189,-1,192,0,397,1000,0,193,0,397,0,1
+9978,140000,female,1,2,31,1,-2,-2,-2,-2,-2,0,241,0,0,0,0,241,0,0,0,0,1419,0
+9979,80000,female,2,2,37,-2,-2,-2,-2,-2,-2,3946,0,0,0,0,0,0,0,0,0,0,0,0
+9980,200000,male,3,1,44,0,0,0,0,0,0,138877,144085,142520,151078,176717,168431,6437,5000,10000,27080,10017,4200,0
+9981,80000,female,2,2,26,-1,2,2,-2,-2,-2,780,780,0,0,0,0,0,0,0,0,0,0,1
+9982,230000,male,2,1,36,0,0,0,0,0,0,19505,20715,19750,19506,19255,17479,3000,3000,3000,3000,3000,3000,0
+9983,260000,female,1,1,40,-2,-2,-2,-2,-2,-2,2500,0,0,0,0,0,0,0,0,0,0,0,0
+9984,50000,female,2,2,28,-1,-1,-1,-1,-1,-1,780,0,390,390,885,885,0,390,390,885,885,885,0
+9985,340000,male,2,1,35,1,-2,-2,-2,-2,-2,-6,-6,-6,-6,-6,-6,0,0,0,0,0,0,0
+9986,50000,male,1,2,39,0,0,0,0,0,0,49869,42146,43927,19234,18799,16412,2146,3927,1234,1000,1450,2000,0
+9987,200000,female,3,2,45,1,-2,-2,-2,-1,0,666,1928,-15,1753,4717,1230,1937,0,1768,6137,0,27,0
+9988,280000,female,2,2,36,0,0,0,0,0,0,91093,92775,81718,83347,85623,87252,3224,2965,2987,3623,3148,3194,0
+9989,170000,male,2,2,35,0,0,0,0,0,2,115634,118823,120475,109993,115151,112232,5935,6040,4000,8000,0,4320,0
+9990,100000,female,2,1,38,2,2,2,0,0,2,37516,38622,37706,38148,40630,39827,2000,0,1369,3100,0,1443,0
+9991,360000,female,1,1,48,1,-1,-1,-2,-2,-2,491,3670,-114,-200,-200,-200,3700,0,0,0,0,0,1
+9992,30000,female,1,2,23,0,0,0,0,0,0,14790,19563,16671,13353,13232,9601,12037,10038,8057,6000,4221,3258,1
+9993,150000,female,2,2,26,1,-2,-1,-1,-2,-2,2341,340,380,462,3,166,340,380,462,103,266,0,0
+9994,50000,male,2,2,29,-2,-2,-2,-2,-2,-2,15519,19259,18652,24312,28903,28294,4000,0,6000,5000,0,2000,0
+9995,40000,female,1,2,35,0,0,0,0,0,0,26801,36208,25378,28058,31145,38030,10000,5000,5000,5000,7500,4596,0
+9996,30000,male,3,2,58,-1,-1,-1,0,0,0,390,390,1170,780,780,0,390,1170,0,0,0,0,0
+9997,140000,female,1,1,35,0,0,0,0,0,0,26187,28431,26141,24958,27574,27151,3000,2000,2000,3000,1661,3500,0
+9998,150000,male,2,2,30,-1,-1,-1,-1,-1,-1,8821,5943,6569,24604,4878,1477,5964,6588,24677,4896,1477,4303,0
+9999,150000,female,2,2,37,0,0,0,0,0,0,152349,152359,150257,79162,79617,79670,7000,7000,5000,3000,4000,3500,0
+10000,360000,female,1,2,47,1,2,0,0,2,0,366577,345484,354469,187836,186172,189759,0,14148,11500,0,5324,5500,0
+10001,170000,male,2,2,43,0,0,0,0,0,0,136485,87236,79244,59144,60228,61578,3602,3903,2265,2188,2353,2411,0
+10002,50000,male,1,2,26,0,0,0,0,0,2,44838,45894,47121,45625,49367,46001,1769,1996,1800,4603,0,1486,1
+10003,260000,female,1,1,43,-1,-1,-1,-1,0,-1,3209,0,2552,2236,2236,2450,0,2552,2236,0,2500,0,0
+10004,350000,female,3,1,32,-1,-1,-1,-1,-1,-1,70910,30372,90588,3047,-4,920,30516,91041,3062,0,924,5124,0
+10005,210000,female,2,1,41,-1,-1,-1,-1,-2,-2,17605,2032,106,-10,-10,-10,2164,106,0,0,0,0,0
+10006,50000,female,2,1,39,3,2,2,-2,-2,-2,5171,4925,-350,-350,-350,-350,0,350,0,0,0,0,0
+10007,170000,male,2,1,46,0,0,0,0,0,0,94791,89330,88384,84456,69871,62012,4300,3314,3050,2600,2600,4860,1
+10008,50000,female,2,2,24,0,0,0,0,0,0,48600,47819,48527,39147,38314,37758,2200,1889,1510,1400,1700,2000,1
+10009,50000,female,2,1,32,0,0,0,0,0,2,24402,26872,28430,29160,31187,30537,8442,2000,1200,2500,0,1200,0
+10010,280000,female,2,2,33,-1,-1,-1,-1,-1,-1,281,5631,5525,0,21339,607,5631,5549,0,21339,607,0,0
+10011,430000,male,2,2,42,0,0,0,0,0,0,59648,52811,45441,39174,28261,25411,2035,1587,1161,1943,995,606,0
+10012,340000,female,1,2,30,-1,-1,-1,-1,0,-1,8571,21012,10607,47258,35675,20691,21041,10607,47258,983,20691,23849,0
+10013,310000,female,1,2,32,-2,-2,-2,-2,-2,-2,90654,20784,5649,9141,5122,380,27778,5649,9141,5122,380,2475,0
+10014,120000,male,1,1,41,-1,-1,-2,-1,0,-1,416,0,0,832,416,416,0,416,1248,0,416,0,0
+10015,200000,male,2,2,27,-1,-1,-1,-1,-1,-1,1990,2035,1577,2424,671,1606,2035,1577,2424,671,1606,27124,1
+10016,500000,female,2,2,41,-1,-1,-1,-1,0,-1,48650,15183,11626,8986,4465,24166,15183,11727,8986,0,24166,4117,0
+10017,270000,male,3,1,53,0,0,0,0,0,0,239963,224278,196747,108242,72480,36440,8710,8119,4500,3000,2000,131904,1
+10018,190000,male,1,2,26,0,0,0,0,0,0,184136,186387,172506,89806,91744,93903,9000,6500,3500,3500,3800,3600,0
+10019,340000,female,3,1,37,-1,-1,-1,-1,-1,-1,16275,20037,9085,9461,12654,7296,20047,9126,9481,12657,7306,9928,0
+10020,390000,female,3,2,30,0,0,0,0,0,0,338174,256104,221739,184529,175781,173442,8738,6545,6601,5700,6100,5000,0
+10021,90000,female,1,2,31,0,0,2,0,0,-1,63872,66983,63070,1184,4154,3502,5003,0,1000,4000,3502,1400,0
+10022,200000,female,2,1,27,0,0,0,0,2,2,174381,177078,184026,192069,198862,176770,7000,10000,11000,10043,0,7000,0
+10023,230000,female,1,1,43,-2,-2,-2,-1,0,0,0,0,200,43998,23400,13000,0,200,43998,52,13000,26200,0
+10024,100000,female,3,1,39,-2,-2,-2,-2,-2,-2,1890,24105,52262,9920,8633,53312,24105,52282,9920,8633,53312,4589,0
+10025,30000,female,1,2,24,2,0,0,0,2,2,11483,12810,13591,14530,14154,15320,1519,1300,1166,0,1400,0,1
+10026,50000,male,2,1,50,0,0,0,0,0,0,6449,7314,8474,8488,8665,8843,1129,1289,303,313,321,472,0
+10027,200000,female,1,1,44,1,-2,-2,-2,-2,-2,-40,-40,-40,-40,-40,-40,0,0,0,0,0,0,0
+10028,50000,female,2,1,39,0,0,0,0,0,0,42822,43872,25400,24202,25904,27567,2000,2000,1000,2000,2000,2000,0
+10029,130000,male,2,2,31,0,0,0,0,0,0,5551,6953,8176,8884,9737,11404,1500,1500,1000,1000,2000,2000,1
+10030,260000,male,2,1,46,0,0,0,0,0,0,29562,22429,11333,11651,12651,9247,1500,1000,1000,1000,205,1988,0
+10031,80000,female,1,1,28,-1,2,-1,-1,-1,-1,9598,6278,8721,3589,8209,10253,60,8721,3589,8209,10253,4829,0
+10032,20000,male,2,2,30,1,-2,-2,-1,-1,-2,-2610,390,0,780,0,0,3000,0,780,0,0,0,0
+10033,160000,female,2,1,27,0,0,0,0,0,0,31666,31865,32691,31490,28324,30798,3000,3000,3000,3000,3000,3000,0
+10034,70000,female,3,2,24,0,0,0,0,-1,0,65429,67513,67767,69275,1058,48376,3136,2076,2243,1058,48000,2000,0
+10035,70000,male,1,2,26,0,0,0,0,0,0,60701,61865,63063,10879,11127,13004,2735,2726,311,343,3000,2000,0
+10036,400000,male,1,2,38,-1,-1,-1,-1,2,2,3456,49709,8834,57959,49590,22972,50263,8834,50000,0,8695,0,1
+10037,30000,male,1,2,26,1,-1,-1,-2,-2,-2,0,780,0,0,0,0,780,0,8000,0,0,0,0
+10038,240000,female,1,2,35,0,0,0,0,0,0,18336,19648,11138,11481,18265,4365,5118,5015,5000,10000,2000,5326,0
+10039,40000,female,2,1,43,0,0,0,0,0,0,36415,37409,30019,30426,22867,12900,1939,1399,806,862,258,0,0
+10040,510000,female,3,1,61,0,0,2,0,0,0,181733,192903,181801,178179,223100,216225,17000,0,6508,50000,7000,6000,0
+10041,20000,female,2,2,23,1,2,0,0,0,0,17538,16975,17651,17603,17962,0,0,1400,352,1139,0,1500,0
+10042,80000,male,2,2,26,0,0,0,-2,-2,-2,60315,61650,0,0,0,0,2850,0,0,0,0,0,0
+10043,10000,female,1,1,37,0,0,-2,-2,-2,-2,5300,0,0,0,0,0,0,0,0,0,0,0,0
+10044,50000,female,3,1,61,0,0,0,2,0,0,38158,35961,37417,24663,24655,26088,2220,2943,0,887,2000,716,0
+10045,200000,male,2,1,31,1,2,2,0,0,0,29070,31302,29192,28170,28763,28453,3019,6,991,1032,1310,2000,0
+10046,140000,male,3,1,59,0,0,0,0,2,0,129684,130838,131910,136810,133090,134415,6193,6200,10000,0,5000,5000,0
+10047,60000,male,2,2,28,0,0,0,0,0,0,60721,61452,59797,30372,45283,24588,4000,1353,27826,1300,1903,3000,1
+10048,100000,male,1,2,27,0,0,0,0,-1,-1,5552,4784,4743,2805,354,443,1120,1000,0,354,443,441,1
+10049,30000,female,2,1,34,2,2,0,0,0,0,30082,29315,30369,29787,30284,29057,0,1750,1025,1100,1500,1000,0
+10050,500000,male,2,1,42,0,0,-1,-1,-1,-2,1131,0,157,2025,-1,-1,0,157,2029,0,0,649,0
+10051,420000,female,2,2,31,0,0,0,0,0,0,50771,48196,46932,45546,46369,42651,1862,2010,1700,1622,1520,1316,0
+10052,130000,female,2,1,36,2,2,0,0,0,2,131989,128467,131073,132399,140254,139209,0,6230,5000,10200,4400,4570,1
+10053,360000,female,1,1,56,0,-1,-1,-2,-2,-1,60206,7690,0,0,0,6232,7690,0,0,0,6232,158,0
+10054,150000,female,1,2,36,-1,-1,-1,-1,-1,0,9788,6252,30244,2434,29139,26987,6252,30620,2434,29139,1210,10000,0
+10055,360000,male,1,2,33,-1,-1,-1,-1,-1,-1,845,-4,831,899,1172,820,0,835,899,1172,820,670,0
+10056,230000,female,2,2,29,0,0,0,0,0,0,157107,119402,78875,76117,75428,150130,6000,3020,3000,2500,80000,5000,0
+10057,180000,female,1,1,31,-1,-1,-1,-1,-1,-1,18710,45460,3700,0,228,-372,45460,3700,0,228,0,0,0
+10058,160000,female,1,1,34,1,-2,-2,-1,0,-1,-49,-375,-1027,603,277,1451,0,0,1630,0,1500,0,1
+10059,250000,female,2,1,43,-1,-1,-2,-1,-1,0,399,508,-3,-3,51169,51482,508,3,24,51800,1826,1787,0
+10060,170000,male,3,1,40,-2,-2,-2,-2,-2,-1,6115,868,2687,2885,2092,36612,872,2700,2899,2102,101556,8496,0
+10061,100000,female,2,1,28,0,0,0,0,0,0,95251,98226,98295,100406,100430,101392,5401,3576,3754,3806,3796,4000,0
+10062,200000,female,1,1,37,-1,-1,-1,0,0,0,3660,16991,19200,18856,14301,913,17302,20891,7377,2000,0,127188,1
+10063,60000,female,2,1,53,0,0,0,0,0,0,55505,57374,35751,25824,25831,27393,3000,2015,2000,1000,2000,2000,0
+10064,300000,male,1,1,44,0,0,0,0,0,0,58137,51459,49737,48015,36004,6748,3000,2000,1500,3000,1000,3000,0
+10065,290000,male,2,2,29,-1,2,-1,-1,-1,0,22277,21451,2467,166,4030,9097,0,2467,200,6000,6000,6000,0
+10066,30000,female,2,2,23,2,2,2,0,0,2,19674,21050,20414,22008,23480,23777,2000,0,1934,1824,830,0,0
+10067,340000,male,2,1,35,0,0,0,0,0,0,292302,88857,92068,91367,89601,86899,3904,4708,3163,3209,3102,3194,0
+10068,90000,male,2,2,31,0,0,0,0,0,0,34704,36426,35387,36838,35867,36841,3000,1549,2000,2000,2000,1000,0
+10069,140000,female,1,2,28,1,2,0,0,0,2,99215,96776,98949,100673,106935,104427,0,3932,3717,8000,0,4000,1
+10070,150000,male,1,2,31,0,0,0,0,-1,-1,110921,64600,58158,24856,704,1899,3000,1500,1000,704,1899,0,0
+10071,70000,male,3,1,47,0,0,2,2,0,0,62080,67523,68334,67132,66796,67743,6874,2030,0,1866,1878,1909,1
+10072,750000,female,1,1,41,0,0,0,0,-1,-1,184022,163441,92767,75696,35485,4889,6817,2330,2705,50854,4913,550,0
+10073,200000,female,2,2,26,0,0,0,0,0,0,116070,111996,88327,73717,56921,48160,5096,2700,4017,7921,10160,5594,0
+10074,230000,female,2,1,39,2,0,0,0,0,0,183718,187811,176457,125552,127993,112107,7236,5603,4187,4327,5237,15226,1
+10075,180000,female,3,1,43,-1,-1,-1,-1,-1,-1,1473,22969,27315,13315,8194,12800,22969,27392,13315,9000,12800,9460,0
+10076,210000,female,2,1,40,-1,-1,2,-1,-1,-1,2216,6142,1108,1499,2447,888,5258,0,1500,2500,1000,1500,0
+10077,170000,male,2,2,31,0,0,0,0,0,2,136330,173367,160847,87399,74761,67855,46000,10002,3046,5000,0,10000,0
+10078,30000,female,2,2,26,0,0,2,2,-1,2,8009,10181,10064,150,1150,1000,2316,199,0,1150,0,0,0
+10079,30000,male,1,2,24,0,0,0,0,0,0,28749,29457,29530,28433,21365,0,2004,2169,1260,819,0,0,0
+10080,90000,female,2,1,33,0,0,0,2,2,2,76395,79168,84904,87914,90043,91534,4000,8000,5348,3700,3128,0,0
+10081,50000,female,2,1,30,2,2,0,0,0,0,29826,29068,29778,30370,31003,32291,0,1496,1088,1123,1800,2200,1
+10082,240000,female,1,2,28,1,-1,-1,-1,-1,-1,0,1748,0,14944,968,10408,1748,0,14944,968,10408,0,1
+10083,280000,female,1,1,63,-2,-2,-2,-2,-2,-2,4108,2219,4734,0,1420,2705,2219,4734,0,1420,2705,3275,0
+10084,410000,female,3,2,31,-2,-2,-2,-2,-2,-2,0,0,0,0,0,3932,0,0,0,0,3932,1238,0
+10085,30000,female,2,1,42,2,2,2,0,0,2,4641,7071,6811,6795,7342,7075,2521,0,245,658,0,268,1
+10086,260000,male,1,1,40,-1,-1,-1,-1,-1,-1,524,248,552,0,80,121,248,552,0,80,121,219,0
+10087,30000,female,2,1,51,0,0,0,0,0,0,16883,17909,18920,19297,19699,20091,1303,1314,691,713,718,742,0
+10088,10000,male,2,1,23,1,3,2,2,2,0,8679,8399,8101,8995,8216,7756,0,0,1000,0,500,500,0
+10089,290000,male,1,1,41,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+10090,150000,female,1,2,37,-1,-1,-2,-2,-2,-2,2195,0,0,0,0,0,0,0,0,0,0,0,1
+10091,30000,male,2,1,24,0,0,0,0,0,0,29416,30476,30386,29769,30395,30348,1540,1447,1027,1066,1288,1104,0
+10092,360000,female,1,2,44,0,0,0,0,0,0,347696,329864,322159,289377,146946,130085,20000,20009,30000,10000,10000,10000,0
+10093,240000,female,2,1,47,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+10094,60000,male,1,2,28,1,-1,0,0,2,2,0,3132,3144,3638,3436,22219,3132,1053,547,0,19000,0,1
+10095,50000,female,2,2,31,0,-1,-1,-2,-1,-1,9514,2067,-6,-409,793,2385,2100,405,0,2385,2385,3000,0
+10096,50000,female,1,2,42,-1,-1,-2,-2,-2,-1,1618,0,0,0,0,3702,0,0,0,0,3702,4817,0
+10097,50000,male,2,2,29,0,0,0,0,0,0,23236,19132,15138,14036,14752,15445,1660,1065,5000,5000,5000,2000,0
+10098,10000,male,2,2,24,1,2,2,2,2,2,4231,5508,5271,6182,5937,6838,1500,0,1000,0,1000,0,1
+10099,110000,female,3,1,48,1,2,0,0,0,2,35341,24107,34090,24843,18105,16952,0,11412,739,1560,0,691,1
+10100,220000,female,1,2,29,1,-1,-1,-1,-1,-1,0,3003,2646,1125,0,3455,3003,2646,1125,0,3455,1000,0
+10101,400000,female,3,1,44,0,0,0,0,0,0,120456,113855,87798,19583,20453,21309,3557,2350,5700,1000,1000,1000,0
+10102,90000,female,2,2,26,0,0,0,0,2,2,70206,71353,72707,74101,72818,73940,3300,3168,3143,2700,3600,1700,0
+10103,150000,female,3,1,48,2,2,2,2,2,2,84647,76858,62650,59255,45983,52986,5950,0,10000,0,20000,0,1
+10104,80000,female,2,2,26,0,0,0,2,0,0,77037,71799,75743,67626,69081,70772,3300,5800,0,2700,3000,2700,0
+10105,50000,male,3,2,23,0,0,0,-1,-1,-1,7965,8404,10240,170,-220,390,1500,2000,170,0,1000,3309,0
+10106,50000,male,2,2,33,0,0,0,0,0,0,48355,49715,49736,17599,16753,10582,2140,1161,510,503,500,1000,0
+10107,20000,male,2,1,38,2,2,2,2,2,2,6313,8625,8338,9199,9378,9081,2426,0,1000,471,0,482,0
+10108,50000,male,2,2,29,-1,0,0,0,0,0,10498,8238,6411,5341,3483,4093,1345,1000,2000,1000,1000,2000,0
+10109,140000,female,2,2,27,0,0,0,0,0,0,62986,64498,63093,58650,54946,53773,5000,3000,5000,3000,3000,3000,0
+10110,280000,female,1,1,36,-1,-1,-1,-1,-1,-2,4480,2120,1627,2649,0,0,2120,1627,2649,0,0,0,1
+10111,130000,female,2,1,37,1,2,2,2,0,0,67612,65997,70604,68904,70369,71682,0,6300,0,2700,2600,2800,1
+10112,70000,female,1,1,25,1,-2,-2,-1,2,-1,0,0,0,398,248,3408,0,0,398,0,3408,1067,0
+10113,470000,male,1,1,38,0,0,0,0,0,0,156454,152017,153651,155381,155287,160843,5526,5484,5504,5655,9471,5269,0
+10114,500000,male,2,2,33,0,0,0,0,0,0,134503,114682,124240,131006,137911,119343,20031,20029,20058,20127,10000,10027,0
+10115,40000,male,2,2,35,2,0,0,0,0,-2,21072,20454,19977,20650,0,0,1504,1427,1100,0,0,0,0
+10116,40000,female,2,1,45,1,2,0,0,0,0,40910,39592,40135,37403,30159,27854,0,2196,4,603,925,389,0
+10117,50000,female,1,1,22,-1,0,0,0,0,-1,5856,8725,10000,17916,6789,150,3005,2700,7916,0,150,198,0
+10118,40000,female,1,2,24,-1,2,-1,-1,0,-1,780,390,390,780,390,150,0,390,780,0,150,780,1
+10119,50000,female,2,2,26,0,0,0,0,0,0,48457,44932,20024,18830,18087,17616,1351,1561,628,775,1602,594,0
+10120,310000,female,2,2,44,-2,-2,-2,-2,-2,-2,6571,1156,1156,1889,3367,2267,1156,1156,1889,3367,2267,0,0
+10121,140000,female,2,2,34,0,0,2,2,2,0,27098,29832,29354,30609,29981,30581,3485,300,2038,0,1100,2570,1
+10122,80000,female,2,2,27,0,0,0,-1,0,0,36406,31472,10246,20202,20077,20247,2000,5056,20202,726,891,10000,1
+10123,210000,male,2,2,26,1,-2,-2,-2,-1,3,0,0,0,0,1290,990,0,0,0,1290,0,0,1
+10124,50000,female,1,2,23,0,0,0,0,0,0,18975,19763,21081,21432,21933,22569,1400,1649,1000,1000,1000,1200,0
+10125,400000,male,1,2,39,2,2,2,2,2,2,50747,49666,52727,51286,55077,55500,0,4500,0,4800,1600,0,0
+10126,60000,female,2,1,36,0,0,0,0,-1,0,57262,27275,22095,14293,12217,16170,5816,1000,5000,12217,8000,1100,0
+10127,160000,female,3,2,54,1,-2,-2,-1,-1,-2,0,0,0,1690,0,0,0,0,1690,0,0,0,0
+10128,400000,male,1,2,31,1,-2,-1,0,0,0,-166,-490,29186,30789,7879,13928,1,30001,2128,3009,8006,1028,0
+10129,450000,female,1,1,46,-1,-1,-1,-1,-1,-1,28205,3760,4148,2312,6909,4189,3793,4148,2312,6909,4189,1539,1
+10130,20000,female,3,2,35,0,0,0,2,0,0,10704,11352,13297,12418,12581,12305,1517,2852,0,500,700,500,0
+10131,50000,female,2,1,47,0,0,0,0,2,2,47500,46937,44681,47537,46644,49765,2700,2000,3600,0,3890,0,0
+10132,200000,female,2,1,41,-2,-2,-2,-2,-2,-2,23570,735,0,0,0,0,742,0,0,0,0,0,1
+10133,160000,male,1,2,42,-2,-2,-2,-2,-2,-2,51997,0,0,0,0,0,0,0,0,0,0,0,0
+10134,60000,female,2,2,48,2,3,2,3,2,2,60717,59183,62075,60501,61808,60668,0,4500,0,2400,0,2200,1
+10135,280000,female,2,2,30,-1,-1,-1,-1,-1,-1,3510,-32,4628,2589,3120,4334,0,4660,2601,3135,4354,3027,0
+10136,200000,female,2,2,28,-1,-1,-2,-2,-2,-2,1243,0,0,0,0,0,0,0,0,0,0,1434,0
+10137,100000,male,2,1,56,0,0,0,0,0,0,96392,87986,89230,90745,92774,101275,4424,3600,3000,3200,9800,0,0
+10138,10000,female,1,2,22,0,0,0,2,2,2,6579,7611,8926,8634,9442,9144,1300,1602,0,948,0,484,1
+10139,80000,male,1,2,28,0,0,0,0,0,0,49740,48501,48117,48502,48610,49650,2000,2000,2000,1800,1800,2000,1
+10140,440000,male,1,2,35,0,0,0,0,0,0,421895,413687,420892,352705,359770,351535,15100,16076,12445,13183,12874,12146,1
+10141,500000,female,2,2,36,-2,-2,-2,-2,-2,-2,11168,9287,9963,17145,7645,16079,9287,9963,17223,7645,16079,11288,0
+10142,20000,male,3,2,24,0,0,0,0,0,-2,14628,16391,18045,18055,0,0,3000,2000,1000,0,0,0,0
+10143,500000,female,1,2,30,-1,-1,-1,-1,-1,-1,5800,7210,229,3377,441,24116,7210,229,3377,441,24116,0,0
+10144,30000,male,1,2,24,-1,-1,-1,-1,-1,-1,8217,3000,0,504,279,254,5000,0,504,300,500,1000,0
+10145,180000,female,1,2,32,2,-1,-1,-1,-1,-1,326,2241,2579,326,1005,625,2241,2583,326,1005,625,605,0
+10146,120000,female,1,2,23,0,0,0,0,0,0,100904,91354,160932,54967,42017,30455,6629,3117,1551,2000,1273,2000,0
+10147,120000,female,3,2,50,0,-1,0,0,0,0,149540,118675,120047,100637,79613,79286,125000,4065,4000,3000,3000,3000,1
+10148,140000,male,2,1,40,0,0,0,0,0,0,77356,80113,82083,83029,84737,94101,4000,3900,3200,3200,10800,0,0
+10149,60000,male,2,2,26,0,0,0,0,2,0,23146,23868,26447,28109,28720,28308,1400,3000,2100,1200,1200,2000,1
+10150,10000,female,2,2,22,-1,-1,-1,-1,-1,-1,528,0,264,264,264,264,0,264,264,264,264,1056,1
+10151,120000,female,1,1,39,0,0,0,0,0,-1,51662,30285,24879,29479,27553,14587,10000,6000,5000,7553,14587,1706,0
+10152,70000,female,2,2,26,0,0,2,0,0,0,28986,30609,31301,31980,32813,33614,2400,1500,1500,1500,1500,1500,0
+10153,330000,female,1,2,28,1,-2,-2,-2,-2,-2,0,1056,2006,-2,1683,1382,1056,2014,0,1685,1388,967,0
+10154,70000,female,2,2,40,0,0,0,0,0,0,65059,65204,55018,27430,25498,27678,3141,7000,5505,3000,4000,5000,0
+10155,410000,female,3,1,48,-1,-1,-1,-1,-1,-1,6578,43564,16813,11080,16595,15843,43821,16865,11100,16615,15866,1547,0
+10156,360000,male,1,1,57,-1,-1,-1,-1,-1,-1,2505,4070,3307,0,380,2566,4070,3307,0,380,2566,166,0
+10157,200000,male,1,2,28,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,597,0
+10158,20000,female,3,1,34,-1,-1,-1,-1,-1,-2,1030,4177,1786,1050,0,0,4177,1786,1050,0,0,0,0
+10159,90000,female,3,1,49,-1,2,2,0,0,0,69380,70886,69402,1332,1604,958,2800,0,0,272,166,3756,0
+10160,60000,female,2,1,30,0,0,0,0,0,0,36082,37127,38117,38874,38667,39544,1628,1618,1375,1403,1520,1205,0
+10161,120000,male,1,2,34,1,-1,-1,-2,-1,2,-325,279,-117,-513,1091,545,1000,0,0,2000,0,550,0
+10162,210000,female,1,2,30,1,-2,-2,-1,-1,-1,0,0,0,830,0,10533,0,0,830,0,10533,13877,0
+10163,40000,female,2,2,25,2,0,0,0,2,2,25741,26772,27794,29333,29816,30577,1750,1772,2311,1100,1400,0,1
+10164,130000,female,3,1,42,0,0,0,0,0,0,105406,95012,83245,76631,75607,73006,4349,3000,2410,7639,12962,2889,0
+10165,150000,female,1,2,38,-1,-1,-2,-2,-2,-2,675,0,0,0,0,0,0,0,0,0,0,0,0
+10166,30000,male,2,1,39,1,2,2,0,0,2,22595,24928,24230,26811,28702,28092,3000,0,3000,2327,0,1200,1
+10167,380000,male,3,1,52,2,0,0,0,0,2,390409,369065,375150,383319,385813,365587,15353,14219,15022,29000,0,27000,0
+10168,150000,female,3,1,40,0,0,0,0,0,0,56690,58775,62769,64233,65704,69835,3606,5600,2500,2500,5400,2600,1
+10169,50000,female,1,2,22,2,2,2,0,0,0,41632,44069,37395,32284,32805,33751,3509,0,1302,1191,1492,1949,1
+10170,170000,male,1,2,27,0,0,0,0,0,0,17066,20456,24644,25739,30372,34924,4000,5000,5000,5000,5000,5000,0
+10171,360000,male,3,1,41,-1,-1,-1,-1,-1,-1,498,498,498,498,498,498,498,498,498,498,498,498,1
+10172,500000,female,1,1,38,0,0,0,0,0,0,238708,313903,323841,319331,316208,304388,90012,28000,15000,9494,108914,18200,0
+10173,200000,female,1,2,36,1,-2,-1,-1,-1,-1,12099,0,1540,0,3045,0,0,1540,0,3045,0,0,0
+10174,240000,female,1,1,33,-1,0,0,0,0,0,30973,32008,32889,33410,34327,34500,1537,1418,939,1193,690,0,0
+10175,210000,female,2,1,38,-1,-1,-1,-1,-1,-1,142,307,307,614,307,307,307,307,307,614,307,307,0
+10176,110000,female,2,1,28,0,0,0,0,0,2,66831,62435,59977,59411,55112,45025,3021,2800,2710,5227,0,1900,0
+10177,10000,male,3,1,46,-1,2,2,4,3,2,6277,7019,9557,9269,8836,8548,1000,2819,0,0,0,250,1
+10178,180000,female,1,2,34,-1,-1,-2,-2,-2,-2,1599,0,0,0,0,0,0,0,0,0,0,0,0
+10179,50000,female,2,1,41,2,3,2,2,2,2,29463,28715,28950,29684,29078,29944,0,1000,1500,0,1500,2100,0
+10180,180000,male,1,2,32,0,0,0,0,0,0,63461,54673,53358,41379,32620,19061,3018,3071,3042,1161,3023,32,0
+10181,40000,female,2,2,24,0,0,0,0,0,0,38221,34975,19606,21272,22923,24539,3107,3000,2000,2000,2000,0,1
+10182,50000,male,1,2,25,-1,-1,-1,-1,-1,-1,910,1597,997,-3,999,491,1607,1000,0,1002,492,3243,0
+10183,200000,female,1,2,29,-2,-2,-2,-2,-2,-1,390,390,192,-198,-588,691,390,192,140,0,1727,287,0
+10184,120000,female,1,2,27,2,2,-2,-1,-1,-1,500,0,0,41150,0,125,0,0,41150,0,125,0,0
+10185,90000,male,3,1,62,0,0,-1,0,0,0,98784,52485,46978,47512,48111,48761,1050,47003,1680,1734,1828,1737,0
+10186,130000,male,2,2,32,0,0,0,0,0,0,65599,63875,57122,56003,57992,61049,3000,3000,4000,4000,4000,5000,0
+10187,120000,female,2,2,48,0,0,0,0,0,2,72528,74047,75564,77242,81826,83630,2680,2741,2933,6000,3300,0,0
+10188,350000,female,1,1,46,0,0,0,0,0,-1,102060,86242,63012,47172,19482,125875,10069,5631,20036,5000,125000,3000,0
+10189,200000,male,1,2,28,-2,-2,-2,-2,-2,-2,778,504,3724,445,8963,482,506,3742,447,9007,484,489,0
+10190,80000,male,2,2,26,0,0,0,0,0,0,76158,81858,80337,61002,58148,52515,8000,5000,4000,5000,3000,5000,0
+10191,20000,female,2,2,46,1,2,2,0,0,0,15481,16537,15979,16410,17142,17705,1600,0,1000,1000,1000,650,0
+10192,90000,female,2,2,31,0,0,0,2,2,2,23418,24443,26695,25967,26946,28346,1408,2660,0,1400,2000,1200,0
+10193,160000,female,2,1,34,0,0,0,0,0,0,5283,5920,6999,8109,8596,9455,1500,1200,2000,1000,1000,500,1
+10194,50000,male,3,1,41,2,2,2,0,0,0,31303,35716,30087,29610,40736,25690,5700,0,1000,12000,2000,900,0
+10195,220000,female,1,2,30,1,2,-1,-1,0,-1,29007,23428,339,207,207,12890,0,339,500,0,12999,0,0
+10196,70000,female,1,1,29,0,0,0,0,0,0,68532,69475,69582,69589,68728,69304,3300,3100,2800,2600,2940,3000,0
+10197,30000,male,3,1,52,2,3,2,0,0,0,31521,30749,29506,29106,29106,29700,0,0,0,0,594,0,0
+10198,80000,female,3,1,46,2,0,0,0,-1,-1,58934,52253,34721,5544,9318,7298,2254,2086,19,9346,7319,1352,1
+10199,10000,male,2,2,23,0,-1,-1,-1,0,-1,3072,2529,390,9478,8170,953,2535,390,9478,0,953,0,0
+10200,80000,female,2,1,46,0,0,-1,0,0,0,4742,3913,6383,5016,1760,2783,1277,6387,102,35,1850,6099,0
+10201,50000,male,3,2,25,0,0,0,0,0,0,45943,45922,34514,23610,21760,6398,1818,1400,472,435,128,25518,0
+10202,60000,male,1,3,47,0,-1,-1,0,0,0,49689,2497,59271,28101,29724,25664,3007,59274,1500,2013,1000,1000,0
+10203,50000,male,2,2,41,0,0,0,0,0,0,40710,42736,43751,44619,45900,46845,3000,1729,1597,2000,1709,1665,0
+10204,80000,female,3,2,26,0,0,0,0,0,0,78513,76475,80131,75920,75421,73991,3000,5000,3500,8000,3000,3200,0
+10205,120000,male,2,2,32,0,0,0,0,0,0,113650,105592,105428,76543,144089,74115,3999,6025,3069,3001,6000,3112,0
+10206,80000,female,3,3,60,0,0,0,0,0,2,30959,15774,9365,6515,6845,5789,1458,1230,250,800,0,300,0
+10207,110000,male,1,2,33,0,0,0,0,0,0,111249,111480,64237,57066,112716,57044,4000,2800,2200,2200,3000,2000,0
+10208,140000,female,3,1,51,0,0,0,0,0,0,58213,60764,59949,40979,42339,43529,3500,2000,1447,2000,2184,2000,0
+10209,50000,female,2,2,22,1,2,0,0,0,2,5139,4911,5924,6822,7411,9146,0,1102,1000,1000,2000,3000,0
+10210,50000,male,3,1,38,0,0,0,0,0,0,44837,45385,45763,27659,28236,28797,1871,1852,990,1023,1029,1137,0
+10211,320000,male,1,1,42,0,0,0,0,0,0,19252,21351,20819,20993,19089,16062,4027,5048,10029,10470,7027,10058,0
+10212,140000,male,2,1,38,2,2,2,2,2,2,131877,135309,131671,138771,141146,127184,7000,0,10800,4800,0,5000,0
+10213,180000,female,2,2,35,-2,-2,-1,-1,-1,-1,827,669,785,1809,2067,0,675,785,1809,2067,0,0,0
+10214,50000,male,2,2,25,1,2,0,0,0,0,21679,18566,19918,19584,18508,20047,0,2000,1500,1000,2000,676,1
+10215,310000,male,2,1,36,0,0,0,0,0,0,52191,36758,29180,22426,18592,14976,3012,5000,2000,5000,5000,3000,0
+10216,50000,female,1,2,23,-1,-1,-1,0,-1,-1,1300,628,4050,3050,1243,865,628,4050,0,1243,865,3000,0
+10217,160000,male,3,1,62,0,0,0,0,0,-2,37615,38707,40460,41149,-1,-1,1700,2400,2000,0,0,0,0
+10218,220000,female,2,1,33,-2,-2,-2,-2,-2,-2,9649,8300,1590,1341,8171,14253,8300,1590,1341,8171,14253,3513,0
+10219,140000,male,2,1,41,0,0,2,2,2,2,57607,60676,64072,62444,67411,71144,4000,5000,0,6000,5000,0,0
+10220,50000,male,1,1,49,0,0,0,0,0,0,50430,46924,48351,28442,29481,30232,2500,2500,1500,1500,1256,1018,0
+10221,60000,male,2,2,24,0,0,2,0,0,0,57480,60491,57187,57619,57033,58493,4207,1000,1690,1473,2354,2009,0
+10222,20000,male,3,2,28,-1,2,2,2,0,0,3515,4301,5075,4845,6753,9615,1000,1000,0,2000,3000,2000,1
+10223,100000,female,1,1,27,0,0,2,0,0,2,39056,43420,42417,40287,42938,42095,5000,0,1500,3300,0,1571,0
+10224,150000,female,3,1,29,0,0,0,0,0,0,149278,142117,144947,140696,143607,136575,3984,3825,3361,3469,3812,3020,0
+10225,260000,male,2,2,30,-1,-1,-1,-1,-1,-1,326,326,326,326,476,326,326,326,326,476,326,326,0
+10226,50000,male,3,1,38,0,0,0,0,0,0,31304,33479,34617,35735,37154,38380,3000,2000,2000,2000,2000,2000,0
+10227,320000,male,1,2,29,-1,-1,-1,0,0,0,838,4288,24495,29226,41415,20738,4309,24495,5036,20004,1250,9,0
+10228,180000,male,2,1,35,0,0,0,0,0,0,95757,76696,77720,79430,81098,82791,3400,2900,3000,3100,3200,7300,0
+10229,120000,female,2,1,35,1,-2,-2,-2,-1,2,0,0,0,0,54683,2657,0,0,0,54683,0,2239,1
+10230,500000,female,1,1,41,-1,-1,-1,-1,-1,3,5094,5626,1715,-285,1715,1395,6000,1715,0,2000,0,0,0
+10231,220000,male,1,1,32,-2,-2,-2,-2,-2,-2,8757,-2323,-3322,-3322,-3622,-2852,9,23000,0,0,3000,0,0
+10232,50000,male,2,2,26,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+10233,180000,female,3,1,56,-1,-1,-1,-1,-1,-1,440,440,440,440,440,440,440,440,440,440,440,440,1
+10234,230000,female,2,2,33,1,-1,-1,-1,-1,-1,-133,611,19640,13242,1782,3106,744,19640,13242,1782,3106,0,0
+10235,220000,female,1,2,36,-1,-1,-1,-1,-1,-2,4952,1734,819,3750,657,0,1734,827,3750,0,0,0,0
+10236,160000,male,2,1,41,0,0,-2,-2,-2,-2,2524,0,0,0,0,0,0,0,0,0,0,0,1
+10237,50000,male,1,2,23,0,0,0,-1,-1,-2,17528,17921,0,940,0,0,1000,0,940,0,0,0,0
+10238,100000,male,2,1,41,0,0,0,0,2,2,100284,90952,92840,99296,101872,99555,3500,3400,8000,4300,0,1650,0
+10239,360000,male,1,1,32,-1,-1,-1,-1,-1,-1,2708,5562,3906,8413,3079,4075,5588,3924,8454,3093,4095,3045,0
+10240,160000,female,2,1,38,-1,-1,-1,-1,-1,-1,6000,6000,6228,6000,6000,6000,6000,6228,6000,6000,6000,6000,0
+10241,100000,female,1,2,25,-1,-1,-1,-1,-1,-1,9424,1259,586,3195,3732,42605,1259,586,3195,3732,42605,30583,0
+10242,170000,female,1,2,24,0,0,0,0,0,0,171465,145196,110163,112157,106497,108832,18500,13998,3760,4000,12212,4200,0
+10243,80000,female,2,2,26,0,0,0,0,0,0,11284,10110,10859,59187,111059,56320,1500,1000,56500,2500,2500,2000,0
+10244,50000,male,2,1,44,0,0,0,0,0,0,38736,28402,28813,29550,29106,29718,3000,2000,1500,1100,1096,1200,0
+10245,500000,female,2,1,32,-2,-2,-2,-2,-2,-2,0,0,293,0,0,259,0,293,0,0,259,2621,0
+10246,20000,male,1,3,47,0,0,0,3,2,0,16888,17928,20312,19696,19648,20154,1616,3000,0,408,826,872,0
+10247,30000,female,2,2,26,0,0,0,0,0,0,14923,16277,17003,17420,17790,18993,1600,1300,700,650,1500,0,0
+10248,60000,female,1,2,30,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,3789,0
+10249,360000,male,1,1,44,-1,-1,-1,-1,-1,-1,18295,3199,6131,7662,19423,28351,3204,6195,7664,19423,28351,3250,0
+10250,240000,male,1,1,50,0,0,0,0,0,0,52771,54522,55634,56628,58228,59985,3000,2400,2300,2300,2500,2100,0
+10251,50000,female,3,1,36,0,0,2,0,0,0,49212,49243,5112,48455,48456,47234,5450,0,45554,2100,1900,2000,0
+10252,50000,male,2,2,46,2,2,0,0,0,0,49423,48332,46043,18759,19161,19516,10,2000,655,688,666,649,0
+10253,60000,female,3,1,29,0,0,0,0,0,0,59190,56704,48980,34416,28818,28546,2200,2300,3000,1100,1000,1000,0
+10254,210000,female,1,2,25,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+10255,330000,male,2,1,42,-1,-1,-1,-1,-1,-1,870,0,870,0,435,435,0,870,0,435,435,435,0
+10256,90000,female,1,2,25,-1,-1,2,-1,0,-1,3407,10839,4788,7370,1051,14014,10850,5,5042,0,14014,5812,0
+10257,380000,female,1,2,27,0,0,0,0,0,0,44986,109142,43758,39106,37978,33428,70000,2014,1004,3000,2000,3302,0
+10258,500000,female,2,1,34,0,0,0,0,0,0,60278,56247,46940,45607,41412,31200,1745,1635,2000,3450,3000,2000,0
+10259,30000,female,3,1,35,0,0,0,0,0,0,23697,20523,20762,22535,22622,11400,3000,3102,3008,3136,1103,0,0
+10260,50000,male,2,2,33,0,0,2,2,0,0,29616,34040,30385,18399,19037,17945,5000,2000,0,2000,726,510,1
+10261,360000,female,1,1,33,0,0,0,0,0,0,364367,365353,346416,261694,230654,201528,14050,11992,8581,7991,9083,8000,0
+10262,310000,female,1,2,28,-2,-1,0,0,0,-1,3473,35890,29935,20339,12924,839,201153,20146,3000,512,839,165305,0
+10263,60000,female,2,2,26,1,2,0,0,2,2,58603,58918,55709,54173,54065,57499,2000,2500,3200,1000,4500,0,0
+10264,120000,female,3,1,47,0,0,0,0,0,0,118148,118593,101152,80503,75407,77157,5033,5000,3007,3000,3000,3000,0
+10265,140000,female,1,1,33,0,0,0,0,0,0,27234,20191,26276,26847,21713,22143,1389,12000,915,788,791,821,0
+10266,220000,female,1,1,41,0,0,0,0,0,0,219198,114930,100749,74457,68604,53333,5068,5000,2000,3000,3000,1000,0
+10267,400000,male,1,2,29,0,-1,-1,-1,0,0,31348,27887,38915,29926,24383,45588,28102,39186,30153,12029,38220,6004,0
+10268,50000,female,2,1,56,0,0,0,0,0,0,48836,48049,47060,19171,18624,18923,2000,2000,1000,1000,1000,1000,0
+10269,80000,male,2,2,35,1,-2,-2,-1,-1,-1,0,0,0,19980,173,0,0,0,19980,173,0,0,1
+10270,150000,female,3,1,33,0,0,0,0,0,-1,21112,13155,14534,3334,318,1963,5000,4500,3300,300,2029,16368,0
+10271,50000,male,1,2,26,0,0,0,0,0,0,28408,29117,28764,28390,29443,29041,1477,1444,1100,1500,1100,967,0
+10272,50000,female,2,1,50,0,0,0,0,0,0,50224,47178,48400,29781,30082,26609,2200,2520,1000,1100,1000,1000,0
+10273,210000,male,2,2,25,0,0,0,0,0,0,96518,35523,34809,25199,25395,25692,1681,1409,886,912,1035,900,0
+10274,90000,male,1,2,30,0,0,0,0,0,2,41789,42913,44388,45348,48454,47524,2100,2500,2000,4000,0,2000,0
+10275,320000,male,1,2,31,-1,-1,0,0,0,0,1391,48556,49210,50052,53325,53765,50006,3011,4000,4019,5000,3065,0
+10276,180000,female,3,2,29,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+10277,310000,male,2,2,24,0,0,0,0,0,0,165477,167227,103601,102895,101017,95530,6000,4500,4348,3407,4000,4000,0
+10278,50000,female,2,2,23,0,0,0,0,0,0,48529,44669,45684,46592,47568,48907,1743,1758,1666,1725,2128,1374,0
+10279,120000,male,1,2,41,0,0,0,0,0,2,113796,116467,116060,115711,121575,120940,6000,4500,4500,7900,3000,4023,0
+10280,150000,female,2,2,36,-1,-1,-2,-1,-1,-1,1374,-4,-4,6340,4998,5710,0,0,6344,4998,5712,5000,0
+10281,20000,male,2,1,47,-1,2,-1,0,-1,-1,8424,4310,16990,3820,4350,3180,0,16990,0,4350,3180,780,0
+10282,180000,female,3,1,43,-2,-1,0,0,0,0,130500,47346,48176,49140,48129,45759,47346,1678,1642,2000,2000,1424,0
+10283,120000,female,2,1,39,0,0,0,0,0,0,114644,117110,117050,117486,117720,118773,4320,4200,4200,4300,4400,4200,0
+10284,100000,male,1,2,27,1,-1,-1,0,-1,-1,0,429,858,429,429,429,429,858,0,429,429,429,0
+10285,210000,female,1,1,51,-1,-1,-2,-2,-2,-2,1900,0,0,0,0,0,0,0,0,0,0,0,0
+10286,100000,female,2,2,23,0,0,0,0,0,2,85435,85957,86295,86945,94526,91630,3143,3052,3264,10398,0,3390,0
+10287,120000,female,2,1,41,-1,-1,-1,-1,-1,-1,7877,11532,13695,2050,804,0,11532,13740,2050,804,0,0,0
+10288,190000,female,3,1,54,-1,-1,-2,-2,-2,-2,88,-468,-1024,-1397,-1953,-825,0,0,1580,556,2047,7932,0
+10289,80000,male,4,2,30,0,0,0,-2,-2,-2,59292,13943,0,0,0,0,5009,0,0,0,0,0,0
+10290,70000,male,2,1,34,0,0,0,0,0,-1,59841,60021,58476,20717,11473,22021,2610,1366,414,229,22021,668,0
+10291,60000,male,2,2,42,1,2,0,0,0,0,60560,56471,36057,35077,69251,71478,2065,1988,2500,62731,3600,1600,1
+10292,50000,female,1,2,25,0,0,-1,0,0,0,8107,4895,12128,12128,6000,0,1000,12128,0,0,0,0,0
+10293,110000,female,2,1,45,0,0,0,0,0,0,108214,107512,82828,47978,47276,48109,5300,3300,1700,1900,1770,3000,0
+10294,200000,female,1,2,47,-1,0,-1,-1,-1,-1,8172,20004,7737,8586,4291,52605,20003,9189,8586,4291,52605,21,0
+10295,210000,female,1,2,33,1,-2,-2,-1,-1,-1,0,0,0,25478,9485,0,0,0,25478,9485,0,0,0
+10296,30000,male,3,1,50,1,2,0,0,2,0,22320,21674,22995,24310,23781,25383,0,1685,2000,0,2000,1000,1
+10297,160000,female,1,2,32,-1,-1,-1,-1,-1,-1,1179,4042,270,52,0,394,4042,270,0,0,394,646,1
+10298,20000,female,3,2,23,0,0,2,2,2,2,13884,16344,15784,17517,17097,18654,3000,0,2000,0,2000,0,1
+10299,70000,male,2,2,42,0,0,0,0,0,0,66681,68768,69699,69484,71067,67568,3768,2699,2660,2879,2568,2570,0
+10300,260000,female,3,1,51,-2,-2,-2,-2,-2,-2,1821,7091,1546,37708,4080,11036,7091,1555,37708,303,7500,0,0
+10301,260000,female,2,2,51,0,0,0,0,0,0,200964,205714,208756,168828,155644,159135,8000,8065,7000,10000,10000,10000,0
+10302,50000,female,3,2,54,0,0,0,0,0,0,42659,35552,31512,25361,26946,28492,1500,2000,2000,2000,2000,1000,0
+10303,170000,female,2,2,26,1,2,0,0,0,0,16237,15692,17120,17836,18396,18935,0,2000,1000,1000,1000,1000,0
+10304,20000,male,2,2,25,1,2,0,0,0,0,15863,14498,15064,13605,11844,10152,0,1157,574,423,374,648,0
+10305,40000,female,1,2,24,1,2,2,0,0,0,9958,12140,11653,11762,12418,13108,2500,0,600,1000,900,1000,0
+10306,220000,male,3,1,39,0,0,0,0,0,-1,192815,208365,88004,31237,15980,529,20000,5003,3047,5000,1000,81000,0
+10307,30000,female,2,1,23,0,0,0,0,2,2,29336,30047,29904,32025,32479,30894,1800,1470,3500,2000,0,1400,1
+10308,20000,male,2,2,22,-1,0,0,0,0,0,17676,18833,19002,18982,13762,0,1451,1400,380,0,0,0,1
+10309,120000,female,1,2,34,0,0,0,0,0,0,67253,31954,16991,18730,21076,24134,1954,1991,3730,9076,4134,497,0
+10310,110000,female,1,2,32,0,0,0,2,2,2,30852,31957,37051,36303,42800,38381,1906,6000,0,8000,0,5000,0
+10311,170000,female,2,1,23,2,0,0,0,0,0,160189,150377,138779,129548,121625,108462,5936,4584,4002,4093,4187,4335,0
+10312,90000,female,1,2,32,1,2,2,0,0,0,32226,33255,32426,32763,33602,34193,1839,0,1176,1367,1300,4337,1
+10313,140000,male,1,2,35,-2,-2,-2,-2,-2,-2,2000,0,0,0,0,0,0,0,0,0,0,0,0
+10314,200000,male,2,1,41,-2,-2,-2,-2,-2,-2,23025,22369,23344,23627,3977,1100,0,1400,1110,1000,0,1736,1
+10315,50000,male,2,2,27,0,0,0,0,0,0,46301,47731,46649,48020,49439,45771,2187,1700,2000,2044,1319,30000,0
+10316,70000,female,2,2,23,-2,-2,-1,0,-1,0,0,3999,44446,21436,19987,19939,3999,44446,41,19995,6000,10305,0
+10317,50000,female,2,1,45,0,0,0,0,0,0,49073,12630,9215,9215,8011,5615,2022,2000,0,1000,1904,1664,0
+10318,20000,male,2,2,57,0,0,0,0,0,0,20104,19887,19486,19501,19274,19703,3000,1500,1600,900,900,600,0
+10319,20000,female,2,1,47,3,2,2,2,2,2,17772,18487,17892,19294,19840,19376,1300,0,1700,1000,0,850,1
+10320,200000,male,1,2,32,1,2,2,2,2,2,18726,18141,20838,20217,22896,22400,0,3000,0,3000,0,3000,1
+10321,460000,male,1,2,28,0,0,-1,-1,-1,0,17919,13041,9681,3284,732,2732,1500,9681,3284,732,2000,0,0
+10322,140000,female,1,2,28,1,-2,-2,-2,-1,-1,0,0,0,0,50000,0,0,0,0,50000,0,0,0
+10323,240000,male,1,3,65,0,0,0,-1,-1,-1,4110,5000,0,1000,0,167747,1000,0,1000,0,167747,4810,0
+10324,70000,female,2,1,53,0,0,-1,-1,-2,-2,24645,0,14000,0,0,0,0,14000,0,0,0,0,0
+10325,410000,female,1,1,53,-1,-1,-1,-1,-1,-1,4213,187,7884,1842,1129,7592,187,7898,1842,1129,7592,0,0
+10326,90000,male,2,2,28,0,0,0,0,0,0,91431,88920,88344,50209,48262,49316,4672,4042,1748,1892,2000,1861,0
+10327,260000,male,2,1,35,-1,-1,-1,-1,-1,-1,228,340,352,364,376,388,500,400,400,400,400,284,0
+10328,260000,male,3,1,53,-2,-2,-2,-2,-2,-2,3304,7378,3641,4726,2966,5946,7378,3696,4726,2966,5946,6020,0
+10329,200000,male,3,1,36,-1,2,-1,0,0,2,1762,881,24842,28367,28721,20139,4,24846,5004,1540,4,6411,1
+10330,500000,male,1,2,35,-1,-1,-1,-1,-1,-2,4814,12939,19502,128406,-200,-200,13275,19522,128406,0,0,0,0
+10331,20000,male,1,1,35,0,0,0,0,0,0,5745,6023,7053,5909,3287,3604,2224,1171,500,500,500,5000,1
+10332,20000,male,2,2,40,0,0,0,0,0,0,17068,18283,19424,19208,19600,20000,1800,1600,384,392,400,0,1
+10333,20000,female,2,2,24,0,0,0,0,0,0,19096,20087,16752,15017,13754,4699,1335,5000,370,350,176,94,0
+10334,360000,male,3,1,58,-1,-1,-1,-1,0,-1,1351,554,1090,780,390,388,554,1096,780,0,388,887,0
+10335,20000,male,2,2,43,2,0,0,2,2,2,9286,10176,12298,11809,12333,11986,1200,2300,0,1015,0,1900,1
+10336,30000,male,2,2,25,3,2,2,2,0,0,18585,19301,19702,19102,19508,19899,1300,1000,0,700,700,1000,1
+10337,180000,male,1,1,44,0,0,0,0,0,0,18896,20166,16995,15324,6758,5730,2006,6995,282,0,200,0,0
+10338,30000,male,3,1,48,0,0,2,2,3,2,20817,23860,24372,25776,25088,24537,3400,1200,2100,0,0,2200,0
+10339,190000,female,6,1,48,0,0,0,0,0,0,146034,142003,135885,102718,68604,45976,5704,4305,2800,2366,2066,96264,0
+10340,220000,female,1,2,35,0,0,0,0,0,0,11636,11004,8392,10887,16542,10164,3004,3392,4000,6542,5000,3909,0
+10341,40000,male,1,1,37,0,0,0,2,2,-1,12745,6889,8530,4610,-220,1060,1500,3005,0,0,2000,4000,0
+10342,100000,male,1,1,30,2,0,0,0,0,0,85806,85195,85464,86921,88524,91241,3100,4000,4000,3500,5000,10000,1
+10343,30000,female,1,2,41,0,0,0,0,0,0,22346,26357,29043,29419,29848,29306,8816,4021,2000,5000,6000,6000,0
+10344,60000,female,3,2,40,0,0,0,0,0,0,35602,35911,36246,29831,29667,30062,1654,1762,1044,1065,1266,979,0
+10345,80000,female,2,2,28,0,0,0,2,2,2,44739,46708,49611,50496,51543,50563,3000,4000,2000,2000,0,5000,0
+10346,180000,female,2,1,41,2,0,0,0,0,0,106944,78405,47542,44952,24904,26825,3500,2000,1500,2000,3000,3000,0
+10347,90000,female,2,2,32,1,-2,-2,-2,-2,-1,-295,-295,-295,-295,-295,9727,0,0,0,1,10022,0,0
+10348,230000,female,1,2,32,1,-1,-1,-2,-2,-2,0,351,0,0,0,0,351,0,0,0,0,432,0
+10349,90000,female,2,2,26,0,0,0,0,0,0,83900,84236,79623,70039,70962,71013,4022,2917,2500,2451,2600,2700,1
+10350,290000,female,2,1,39,-1,-1,-1,-1,-1,-1,316,316,316,316,316,297,316,316,316,316,297,2828,0
+10351,100000,female,2,1,58,2,2,0,0,0,0,87851,85594,87095,88357,77155,80108,0,3300,2839,3000,4000,2000,1
+10352,360000,female,1,1,37,-1,-1,-1,0,0,-1,4644,1417,3588,2589,1549,1278,1417,3588,0,0,1278,1998,0
+10353,100000,male,2,2,28,0,0,0,0,0,0,61396,60621,58855,48570,47651,38481,3012,2500,1700,2100,2500,2708,0
+10354,200000,female,1,2,33,-1,-1,-1,-2,-2,-2,846,4292,0,0,0,0,4974,0,0,0,0,0,0
+10355,70000,female,1,2,30,0,0,0,0,0,0,19492,20054,14016,14782,15249,15595,1600,1300,1000,701,1000,1000,0
+10356,200000,female,2,2,26,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+10357,70000,female,1,2,24,0,0,0,0,0,0,68689,68161,69534,67399,66963,66797,3120,3166,2609,2574,3000,3500,0
+10358,460000,female,2,2,33,-1,-1,-1,-1,-2,-1,877,0,3352,0,0,44849,0,3352,0,0,44849,0,0
+10359,80000,female,2,1,47,0,-1,-1,-2,-2,-2,7345,4596,0,0,0,0,4596,0,0,0,0,0,0
+10360,90000,female,2,1,49,-2,-2,-2,-2,-2,-2,316,714,1443,13982,4105,1594,714,1443,13982,4105,1765,2000,0
+10361,310000,female,1,2,29,-1,-1,-1,-1,-2,-1,760,3674,368,-2444,-2444,151306,3674,500,0,0,155438,5231,0
+10362,310000,female,1,1,38,1,-2,-2,-2,-2,-1,0,0,0,0,0,69,0,0,0,0,69,500,1
+10363,50000,female,2,2,29,0,0,0,0,0,0,48517,49391,27780,28585,28130,29005,3000,2000,1200,1000,1300,1000,0
+10364,220000,female,1,2,30,-1,-1,-1,0,0,-1,15069,0,14129,28246,9995,198,680,14129,16000,5000,198,14952,0
+10365,70000,female,1,2,25,0,0,0,0,0,0,31680,28410,24046,19194,16621,10797,2000,2000,2000,3000,2500,900,0
+10366,60000,male,1,1,34,0,0,0,0,0,0,37749,38785,39803,40837,41783,42689,1948,1966,2000,1600,1600,1600,0
+10367,450000,male,1,1,54,-1,-1,-1,-1,-2,-2,727,0,419,0,0,0,0,419,0,0,0,6154,0
+10368,20000,female,1,2,29,-1,-1,-1,-1,-1,-1,342,792,677,-1,213,856,792,677,0,214,856,0,0
+10369,420000,female,1,2,33,-2,-2,-2,-2,-2,-2,6135,-2314,-3859,172,3859,8274,51,0,4031,3859,5000,0,1
+10370,10000,male,2,2,22,0,0,0,0,0,0,6579,7599,8608,8780,9114,9234,1134,1143,315,476,420,1000,1
+10371,20000,female,2,1,25,2,2,4,4,4,4,1650,1650,1650,1650,1650,1650,0,0,0,0,0,0,1
+10372,200000,female,2,2,49,2,2,2,2,2,2,91140,93011,90634,95464,99894,98171,4200,0,7260,6100,0,3800,1
+10373,80000,female,2,1,25,0,0,0,0,0,2,78639,80188,80711,59119,62019,60955,3200,2500,2182,4700,0,2000,0
+10374,80000,male,3,2,30,0,0,0,0,0,0,78010,5976,5812,4788,3758,3812,1106,1060,154,147,127,52,1
+10375,60000,male,1,2,23,0,0,0,0,0,0,59318,54553,51323,38031,38825,39255,2065,1597,1473,1521,1538,1521,0
+10376,230000,male,1,2,28,-1,-1,-1,-1,-1,-1,326,326,326,326,1176,326,326,326,326,1176,326,776,0
+10377,100000,male,1,2,30,1,2,0,0,0,0,94432,92080,93046,94898,97763,99102,0,3400,3383,4380,4300,2497,0
+10378,200000,male,1,2,29,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+10379,110000,male,1,2,26,0,0,0,0,0,0,57861,47409,47743,45654,26525,22937,2191,1525,18236,1500,2000,1000,0
+10380,50000,male,2,2,22,0,0,0,-2,-2,-2,47478,43300,0,0,0,0,1000,0,0,0,0,432,0
+10381,260000,male,1,1,53,1,-2,-2,-1,-1,2,0,990,0,1930,4304,150,990,0,1930,4304,0,150,1
+10382,220000,female,1,2,32,0,0,0,0,0,2,205310,203343,209214,210965,214989,203159,7600,9800,7200,7700,7500,7250,0
+10383,200000,male,1,1,32,-1,-1,-1,-2,-1,-1,1727,1796,-4,-4,1565,1686,1809,0,0,1569,1691,0,0
+10384,10000,female,2,1,26,1,2,2,2,0,0,5015,4789,6199,5951,6255,6401,0,1500,0,400,400,700,1
+10385,180000,male,2,1,34,0,0,0,0,0,0,37671,39009,40213,41702,43687,44982,1800,2000,2000,2500,2000,2000,0
+10386,210000,female,2,2,30,0,0,0,2,2,2,45998,47107,50999,51884,50926,54404,2150,5000,2020,0,4500,2000,0
+10387,310000,male,1,2,29,2,0,0,0,0,0,45153,36123,26113,22661,20351,16639,2904,1500,1000,2000,1000,2000,1
+10388,360000,male,1,2,29,-2,-2,-2,-2,-2,-2,12018,31282,28823,51120,2222,-34,32038,28982,51379,2233,0,0,0
+10389,200000,male,1,1,51,0,-1,0,0,-1,0,102847,52556,34369,14240,23762,18198,52556,2003,1000,26068,10019,61500,0
+10390,180000,male,2,1,39,2,2,2,0,0,0,180645,184303,179230,181763,180019,171711,8000,0,7000,7000,6150,6700,1
+10391,140000,male,2,2,27,0,0,0,2,2,2,34229,35262,38079,37167,41146,40332,1583,3400,0,4600,0,2000,0
+10392,50000,female,1,2,32,1,2,2,2,0,0,20091,20175,22718,22057,23044,24990,700,3200,0,1500,2340,924,1
+10393,60000,male,3,1,33,0,0,0,0,0,0,59615,59570,60851,56113,30326,30038,2300,2317,2500,1100,1300,1198,0
+10394,90000,female,2,1,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+10395,100000,male,2,2,40,0,0,0,0,0,0,86208,173340,36562,37298,39687,40044,3595,3218,1345,3000,1275,440,0
+10396,20000,male,3,2,24,1,-2,-2,-2,-2,-2,-1400,-1400,-1400,-1000,-1000,0,0,0,1000,0,1000,0,0
+10397,110000,male,1,2,29,0,0,0,0,0,0,18166,18364,19742,23886,29949,34969,3000,3500,5500,10000,6000,10000,0
+10398,70000,female,1,2,25,0,0,0,0,0,0,24526,25532,25971,14859,14930,15091,1790,1229,519,687,557,546,0
+10399,170000,female,2,1,33,-2,-2,-2,-2,-2,-2,4018,6302,6844,1467,4797,2659,6330,6844,1467,9594,2659,7076,0
+10400,500000,male,1,1,64,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,1063,1
+10401,30000,male,2,1,38,1,2,2,2,0,0,9303,9009,13861,13344,13972,18735,0,5000,0,1000,5000,0,0
+10402,50000,female,2,2,23,0,0,0,0,-1,-1,33109,32856,27438,4786,768,-579,1660,1600,624,768,173,30267,0
+10403,10000,female,2,2,22,0,0,2,0,0,0,9721,11756,10844,10468,10101,9911,2939,0,507,365,404,459,0
+10404,200000,female,1,2,35,0,-1,0,0,0,0,13766,39072,44758,45571,40592,7145,39124,15000,1622,2068,1000,2031,0
+10405,390000,female,1,2,29,0,0,0,0,0,0,196172,196262,157388,123706,115813,112143,9599,10054,4242,4346,5000,5000,0
+10406,140000,female,2,2,32,2,2,2,3,2,2,76187,84734,91142,88800,90750,88591,9834,8742,0,3500,0,3100,1
+10407,220000,female,3,1,50,-2,-2,-2,-2,-2,-2,612,10612,2225,4782,416,12287,10612,2225,4782,5286,12287,416,0
+10408,500000,female,1,1,40,-2,-2,-2,-2,-2,-2,2121,0,0,0,0,522,0,0,0,0,522,117,0
+10409,100000,female,2,1,49,-2,-2,-2,-2,-2,-2,1261,1261,1261,390,390,390,1261,1261,390,390,390,0,0
+10410,400000,female,3,1,30,0,0,0,0,0,0,121219,113770,355718,298654,263190,202907,4981,263106,10900,10063,7708,5394,0
+10411,80000,male,1,2,26,0,0,0,0,0,0,76436,75437,58309,59217,59955,57100,5990,2500,3000,2500,3000,1500,0
+10412,30000,male,2,2,39,0,0,0,0,0,0,28138,28401,28949,28218,27262,27434,1793,1731,1200,1000,1009,1200,0
+10413,240000,male,1,1,35,0,0,0,0,0,0,160161,159484,162231,163255,165436,168178,7405,8005,6005,30912,5000,5150,1
+10414,500000,male,1,2,49,-2,-2,-2,-2,-2,-2,478030,419644,309019,292878,152025,110034,205,10500,9692,4823,3986,1188,1
+10415,50000,male,2,1,36,0,0,0,0,0,0,42150,44148,45333,27095,28508,28814,3000,3000,2000,2000,967,886,0
+10416,180000,male,2,1,34,-1,-1,-1,-1,-1,-1,1341,4185,291,570,2260,1583,4185,291,570,2260,1583,3974,0
+10417,100000,female,2,1,33,0,0,0,0,0,2,70096,71667,73043,73928,80682,77485,3300,3200,2650,9000,0,3100,0
+10418,180000,female,2,2,29,0,0,2,0,0,0,85465,95546,93000,93526,66726,42668,11508,0,2340,1850,4000,0,0
+10419,50000,male,3,2,40,0,0,0,0,0,0,52828,93362,46645,19114,19341,20047,3000,2403,6700,1000,1000,2000,0
+10420,360000,male,1,2,29,-1,-1,-2,-2,-2,-2,51400,0,0,0,0,0,0,0,0,0,0,0,0
+10421,330000,female,2,1,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+10422,200000,male,1,1,38,-1,-1,-1,-1,-2,-2,3048,0,100000,0,0,0,0,100000,0,0,0,0,0
+10423,40000,male,2,2,22,-1,-1,-1,0,0,0,900,2833,9495,6965,2759,0,2833,9495,0,0,0,0,0
+10424,260000,male,1,2,37,0,0,0,0,0,0,36664,22228,39330,39880,78787,52790,1690,19342,15000,53787,22790,3217,0
+10425,320000,male,1,1,40,-1,-1,-1,-1,0,-1,10853,33968,86024,232017,15622,7463,34151,86466,232242,3199,7500,30,0
+10426,10000,female,2,1,22,-1,-1,-1,0,0,0,390,390,9159,9363,8160,7552,390,9159,700,279,1000,800,0
+10427,230000,female,2,1,30,0,0,0,0,0,0,218495,223270,227807,218047,223370,206937,8270,8366,6012,9474,6962,24338,0
+10428,10000,female,2,2,24,-1,-1,-1,-1,-1,2,5666,576,1709,1470,2010,780,576,1709,1470,2010,0,1080,1
+10429,30000,male,1,2,25,2,-1,2,-1,-1,-1,581,1312,731,7300,6071,7849,1312,0,7300,6071,8000,16000,1
+10430,90000,male,2,1,41,0,0,0,0,0,0,45431,46338,45129,45640,46175,46716,2749,2206,1113,1135,1153,1134,0
+10431,300000,female,3,1,41,1,-2,-2,-2,-2,-2,390,390,780,390,390,5144,390,780,0,390,5144,390,0
+10432,230000,female,2,2,31,0,0,0,0,0,-1,17587,19297,19580,8247,-6666,13334,2000,1000,2000,0,20000,8200,0
+10433,150000,male,2,2,27,0,0,0,0,0,0,9489,11757,12438,14240,15288,-1000,2500,1202,3000,1048,0,23799,0
+10434,60000,male,2,1,52,0,0,0,0,0,0,56893,58170,56539,29425,28013,29075,3000,2000,1000,1000,1500,2450,0
+10435,50000,male,2,2,25,0,0,0,-2,-2,-2,41739,20650,0,0,0,0,1650,0,0,0,0,0,0
+10436,140000,male,2,2,31,0,0,0,0,0,0,64300,62758,77133,71397,71546,83412,20009,32637,15027,10021,20055,10037,0
+10437,90000,female,3,1,25,0,0,0,0,0,0,80603,73487,70581,67336,67069,67890,2827,2370,2300,2300,2700,2700,0
+10438,80000,female,3,1,50,-1,0,0,2,2,2,67328,69356,73445,74645,73330,78032,3113,5850,3000,0,6103,0,1
+10439,260000,female,2,1,38,-1,-1,-1,-1,0,0,892,2955,10319,4078,749,1040,2955,10319,4078,0,1040,1724,0
+10440,60000,female,3,1,53,-1,3,2,2,-1,0,747,498,249,0,58628,59550,0,0,0,115800,2141,2134,0
+10441,50000,male,2,1,48,2,2,2,2,2,2,44489,45470,46424,45377,48441,47511,2000,2000,0,3800,0,1800,1
+10442,150000,male,1,2,34,-1,2,2,2,0,0,40749,39815,46887,45832,52968,60034,0,8538,0,8810,8942,9344,0
+10443,220000,female,1,1,36,-1,-1,-1,-2,-1,-1,307,191,-125,-441,10243,9927,200,0,0,11000,10000,11000,0
+10444,330000,female,1,1,36,0,0,0,0,0,0,95255,101046,100349,100218,100334,98097,10500,4074,3600,4005,3600,3400,0
+10445,300000,female,2,2,37,0,0,0,0,0,0,67943,69969,71387,72340,73853,75316,3121,3175,2736,2829,2843,2941,0
+10446,70000,female,2,1,29,-1,0,0,0,0,0,71232,71262,71509,70695,71189,70554,2751,3600,2694,2800,2743,2700,0
+10447,300000,female,1,2,29,-2,-2,-1,0,0,0,-1282,-1282,132218,133533,136877,139940,0,133500,5000,5500,5500,5500,0
+10448,70000,female,2,1,43,0,0,2,0,0,2,31652,35809,34934,35652,38079,37314,5000,0,1300,3000,0,1500,0
+10449,110000,male,2,2,24,2,2,2,2,2,2,101402,104878,105325,102220,107970,103301,6600,3700,0,7500,0,3906,0
+10450,240000,female,2,2,28,0,0,0,0,0,0,121109,124460,126384,126917,90822,83742,6000,5000,4000,4000,4000,3000,0
+10451,80000,female,3,2,54,0,-1,-1,0,0,0,60980,1541,4822,4918,5188,5797,1541,4822,324,500,700,500,0
+10452,50000,male,3,2,26,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+10453,420000,female,1,1,32,0,0,0,0,0,0,45465,46232,31233,22768,22588,22172,1706,1401,804,852,0,8100,0
+10454,220000,female,2,1,41,2,0,0,2,0,0,27094,27819,30363,29579,48933,97187,1465,3009,0,20000,50000,1240,0
+10455,150000,female,1,2,31,0,0,0,0,0,0,90121,51385,26352,27607,29457,40706,2031,2000,2000,2457,12060,40000,0
+10456,60000,female,1,2,31,-1,-1,-1,0,0,-1,9815,11093,699,699,0,1000,11160,699,0,0,1430,850,0
+10457,260000,female,2,1,46,-2,-2,-2,-2,-2,-2,0,135,0,0,109,945,135,0,0,109,945,9300,0
+10458,180000,female,1,2,34,1,-2,-2,-1,-1,-1,0,0,0,4279,488,659,0,0,4279,488,659,5067,1
+10459,130000,female,2,2,25,1,2,0,0,0,0,39728,38815,39828,40468,41315,42133,0,1960,1600,1650,1655,1725,0
+10460,220000,female,2,1,45,0,0,0,0,0,0,204052,207977,214117,216712,194521,198246,7600,10000,8255,7200,7500,8500,0
+10461,200000,male,5,2,40,2,0,0,0,0,0,58118,205712,194265,139360,82750,0,150000,7673,5000,5000,0,0,0
+10462,130000,male,1,2,27,-1,-1,-1,-1,0,-1,326,326,326,2400,1075,1650,326,326,2400,0,1650,652,1
+10463,420000,female,1,2,41,-1,-1,-1,-1,0,0,22186,15258,13513,80831,39333,26831,15262,13523,80854,787,850,75341,0
+10464,30000,female,1,1,23,0,0,0,0,0,0,26669,28080,28836,28812,29400,30000,1844,1600,576,588,600,0,1
+10465,110000,male,3,1,43,-1,-1,-1,0,0,0,390,5050,63032,33228,31073,25035,5050,63032,1100,1100,1000,1000,0
+10466,150000,female,2,2,25,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+10467,50000,female,2,1,38,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+10468,200000,female,1,1,41,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,1433,0
+10469,170000,female,1,1,33,0,0,0,0,0,0,170440,170060,115372,211577,120407,122952,8200,5200,5000,5000,5000,4000,1
+10470,200000,female,4,2,25,0,0,0,0,0,0,134857,123653,108765,96918,98685,97621,4257,3274,3025,3266,3145,2176,0
+10471,200000,female,2,1,31,1,2,0,0,0,0,153829,153229,148438,143121,141466,128846,7022,6700,5500,6000,9800,0,0
+10472,50000,female,6,2,33,2,0,0,0,0,0,50786,50450,45210,29917,17859,0,2034,1251,848,872,0,0,0
+10473,500000,male,1,2,38,0,0,0,0,0,0,477468,488083,498839,411820,422671,394599,21000,22800,15200,19000,16000,10000,0
+10474,150000,male,1,2,25,-1,-1,-1,-1,-2,-2,3125,8418,797,-3,-3,-3,8443,799,0,0,0,0,0
+10475,30000,male,2,2,25,-2,-2,-2,-2,-2,-2,836,836,390,390,390,0,836,390,390,390,0,780,0
+10476,230000,female,1,2,33,-1,-1,-1,-1,0,0,483,0,342,955,957,1407,0,342,955,2,1511,4373,0
+10477,360000,female,2,1,49,0,0,-1,-1,-2,-2,13219,8644,454,-2,-2,-2,3050,456,0,0,0,519,1
+10478,380000,female,1,1,37,0,0,0,0,0,0,452092,442041,446224,419943,420016,426622,17400,16672,14088,14500,14700,14671,0
+10479,30000,female,3,2,43,2,2,2,2,3,2,13509,13499,14979,15737,15201,14807,500,2000,1300,0,0,1400,0
+10480,50000,female,2,2,43,0,0,0,0,0,0,53651,51703,48675,40059,41411,42722,3000,2000,1436,2000,2000,2000,0
+10481,420000,female,2,1,47,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+10482,70000,male,2,2,32,0,0,0,0,0,0,66982,68817,60607,28622,24485,18419,3036,2264,858,797,814,2003,0
+10483,50000,female,2,1,37,0,0,0,0,0,0,51734,51665,51105,47494,31375,30781,2003,1680,1860,1061,1392,8000,0
+10484,350000,female,2,2,33,0,0,0,0,0,0,341200,328857,324873,300004,306269,273732,14000,12000,10400,12000,12000,9000,1
+10485,200000,male,1,2,32,0,0,-2,-2,-2,-1,10532,0,0,0,0,2842,0,0,0,0,2842,204297,0
+10486,340000,male,2,2,29,-1,-1,0,0,-1,2,5060,7604,14900,0,2650,1000,7604,10000,0,2650,0,1000,0
+10487,50000,male,2,2,25,0,0,0,0,0,0,24724,25895,23627,24827,25521,26523,2000,2000,2000,1500,2000,2000,0
+10488,20000,female,2,2,22,0,0,2,2,2,2,15189,17802,17219,18377,17941,19572,2869,0,1444,0,1933,0,1
+10489,360000,female,1,2,34,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+10490,140000,male,1,2,29,0,0,0,0,0,0,29785,32140,34002,23567,24377,4327,4000,3000,3000,1000,1000,2000,0
+10491,150000,male,2,1,39,2,2,0,0,0,2,117485,114166,116491,118839,126102,123914,0,4225,4282,9207,0,4679,1
+10492,100000,female,1,1,35,0,0,2,0,0,0,98899,102435,98188,97189,97013,96950,8800,0,3600,3500,3700,3443,1
+10493,460000,male,1,1,44,-1,-1,-1,0,-1,-1,1762,3152,531,522,4434,9767,3152,531,500,4434,9767,0,0
+10494,150000,female,2,1,34,1,2,2,0,0,0,147833,148066,142163,135075,135309,135165,6130,27,4610,5000,5000,3760,0
+10495,290000,female,1,1,39,-2,-2,-2,-2,-2,-2,79298,-40,122380,0,32720,-200,0,122420,0,32720,200,0,0
+10496,240000,female,2,1,35,0,0,0,0,2,2,109226,110226,111030,114584,115681,112528,5500,5400,8000,4179,0,4000,0
+10497,210000,female,1,2,41,-1,0,0,0,0,0,779,11040,12471,13684,15356,16337,11000,2200,2000,2000,2000,2000,0
+10498,350000,female,2,2,33,0,0,0,0,0,0,293303,338272,177483,182381,194678,215024,50070,10000,8000,15036,30050,8110,0
+10499,280000,female,3,1,37,-1,-1,2,-1,-1,-1,4591,38854,15287,14201,26133,4504,38979,16,14201,26133,4504,10748,0
+10500,150000,male,2,1,43,0,0,0,0,0,0,105416,106773,106500,104670,55442,55936,5800,4648,2000,2889,2700,94000,0
+10501,170000,female,2,1,29,-1,-1,-1,-1,0,-1,7383,23400,49771,30929,31429,14170,23518,50026,31023,20157,14233,22818,0
+10502,50000,male,3,1,40,1,2,0,0,0,0,24091,13698,14908,15033,15705,11616,0,1475,600,1000,500,570,0
+10503,100000,male,2,1,51,3,4,3,2,2,2,56002,55557,54083,54601,55585,57027,1000,0,2000,2000,2500,0,1
+10504,50000,male,2,2,24,0,0,0,0,0,0,47578,33666,16177,16607,17186,17749,2000,2000,1000,1000,1000,1000,0
+10505,230000,female,2,1,33,1,-2,-2,-1,-1,-2,0,0,0,1990,0,0,0,0,1990,0,0,0,1
+10506,90000,male,2,2,28,2,0,0,0,0,0,33382,35526,37513,38637,44088,35705,3000,3000,3000,10000,3000,2000,1
+10507,20000,male,2,2,24,1,2,-1,0,-1,-1,12060,11047,780,390,12246,12409,0,780,0,12246,911,0,0
+10508,260000,female,2,2,40,-1,-1,-2,-2,-2,-2,1022,1085,0,0,0,0,1085,0,0,0,0,300,0
+10509,290000,female,1,1,40,-1,-1,-2,-2,-2,-2,636,6732,0,3692,0,1957,6732,0,3692,0,1957,0,1
+10510,50000,female,2,1,34,1,2,0,0,0,0,49378,48052,48573,28902,28205,30388,0,2033,1119,985,2000,4000,0
+10511,60000,female,3,2,42,0,0,0,0,0,0,54216,27596,28772,19067,19467,9247,4000,2000,1000,1000,331,343,0
+10512,180000,female,2,1,36,-1,-1,-1,-2,-2,-2,787,398,0,0,0,0,398,0,0,0,0,0,0
+10513,250000,female,2,1,43,0,0,0,0,0,0,82650,81977,24585,16753,17113,17298,3503,1553,1000,1000,1000,1382,0
+10514,90000,male,1,1,29,0,0,0,0,0,0,82410,85150,81812,76424,77086,77634,8000,3000,3100,3000,3000,2500,0
+10515,10000,female,3,1,52,2,2,2,2,2,2,3475,4366,4148,4579,4360,4787,1100,0,500,0,500,0,0
+10516,290000,female,1,1,37,0,0,0,0,0,-1,54966,41327,24872,20318,26030,7258,4020,8000,0,16000,7258,10000,0
+10517,80000,female,2,2,27,0,0,0,0,0,0,79534,81391,77033,47413,48650,49841,3174,2308,3400,2000,2000,14410,0
+10518,30000,female,2,2,25,2,2,2,2,3,2,300,300,300,1126,826,676,0,0,828,0,0,31496,0
+10519,200000,female,2,1,37,-1,-1,-1,0,-1,-1,24779,8313,1951,1951,3124,3259,8318,1951,0,3124,3259,0,0
+10520,50000,female,3,1,56,0,0,0,0,0,0,63348,62934,60513,18712,17015,20284,2400,2500,1000,1000,5000,2000,0
+10521,220000,male,2,1,47,4,3,2,2,2,2,216591,197022,198088,187000,179703,174571,0,6000,0,14004,0,7000,1
+10522,430000,male,2,1,48,0,0,0,0,0,0,32263,32802,25645,25045,25568,26144,1794,2399,884,914,987,869,0
+10523,50000,female,2,1,27,0,0,0,-1,0,0,48945,36467,18890,30288,30003,29763,1819,2664,31057,1064,1073,1043,1
+10524,410000,male,1,2,33,-2,-2,-2,-1,-1,-1,333,333,333,1019,2218,1216,333,333,1019,2218,1216,1019,0
+10525,50000,female,2,1,39,-1,2,2,2,0,0,23912,23242,25451,24743,25263,25763,0,2600,0,918,921,1127,0
+10526,110000,male,2,2,47,0,0,0,0,0,0,72897,72755,71698,72418,72293,73954,3290,3200,2700,2800,3000,2650,0
+10527,50000,male,1,2,28,1,2,0,0,0,-1,50146,47918,48866,4372,-1203,49830,0,2400,1000,0,51830,0,0
+10528,30000,female,3,3,56,3,2,2,2,2,2,26551,25844,27574,28420,29318,28704,0,2478,1600,1498,0,1100,1
+10529,80000,female,1,1,25,3,2,2,2,3,3,6269,7212,7246,8073,8349,8420,1200,300,1100,700,500,0,1
+10530,230000,male,2,1,39,-1,-1,-1,-1,-1,-1,8681,8681,8888,4932,10986,5081,8681,8888,4932,10986,5081,4321,0
+10531,300000,male,2,1,66,0,0,0,0,0,0,259513,257866,261088,257288,256369,212395,10000,15000,9500,11000,9000,6000,1
+10532,230000,female,2,2,28,0,0,0,0,0,0,23063,14024,11825,14765,12383,10008,2000,2000,5000,1000,2000,1000,0
+10533,220000,male,1,1,36,-1,-1,-2,-2,-2,-2,769,0,0,0,0,0,0,0,0,0,0,863,0
+10534,200000,female,1,2,26,0,0,0,0,0,0,199649,202127,198168,189696,192462,194025,7263,7266,7000,7940,7009,7000,0
+10535,130000,female,1,2,30,2,0,0,2,0,0,112822,115526,123658,120259,121205,124778,4527,10122,1,4355,8918,0,1
+10536,20000,male,1,2,25,0,0,0,0,0,0,17263,17581,19670,16730,18757,12875,4321,5200,350,4500,1000,4500,0
+10537,400000,female,1,2,31,0,-1,-1,0,-1,0,7912,4220,3364,2832,34967,38706,4220,3364,2500,34967,10000,22600,0
+10538,230000,female,1,2,29,0,0,0,0,0,0,31206,28395,29127,25446,26141,26852,1500,1500,1000,1100,1300,710,0
+10539,30000,male,2,1,36,0,0,0,0,0,0,6727,5023,6714,8714,9514,3300,2000,2000,2000,5000,0,0,0
+10540,190000,male,2,1,44,0,0,0,0,0,0,197494,194913,192896,116537,112086,108660,7200,8000,4100,4000,5000,7000,0
+10541,220000,female,1,2,27,-1,-1,-1,0,0,-1,471,5261,16436,16071,96,480,5272,17571,0,0,549,0,0
+10542,20000,male,2,2,30,0,0,0,0,0,0,19149,20221,19812,10717,13534,15298,1392,1201,1000,3000,2000,399,0
+10543,280000,female,2,2,29,-2,-2,-2,-2,-2,-1,0,0,0,0,0,5017,0,0,0,0,5017,101,0
+10544,190000,male,2,1,36,0,0,0,0,0,0,79584,83108,82179,80874,81720,87685,7007,2912,2871,3501,8001,3234,0
+10545,260000,male,1,2,36,-1,-1,-1,-2,-2,-2,5877,427,-73,-73,-73,-73,10000,0,0,0,0,0,0
+10546,80000,female,2,1,34,0,0,0,2,0,0,63343,65325,69261,67551,71282,72942,3000,5631,0,5000,3000,4500,0
+10547,60000,female,2,2,24,-1,0,0,0,0,0,57147,58104,58311,58828,58945,57918,3000,3000,2500,2100,4000,2100,0
+10548,80000,male,3,1,52,-1,0,0,0,0,0,35861,18521,19385,20561,21261,21457,1500,1500,1500,1028,876,1449,0
+10549,360000,female,1,1,36,-1,-1,0,0,-1,2,15521,36003,51414,17993,11546,9771,36011,20094,1000,11546,0,306,1
+10550,350000,female,2,1,33,-1,-1,-2,-2,-2,-1,598,0,0,0,0,687,0,0,0,0,687,18296,0
+10551,50000,male,2,2,25,0,0,0,0,3,3,46741,48883,50074,60158,75277,90464,2900,2000,14455,16560,17000,0,0
+10552,360000,female,1,1,40,-1,-1,-2,-1,-1,-1,10210,-1814,-11035,12319,6050,2125,0,0,32319,6050,2125,35860,0
+10553,100000,female,3,2,41,-1,-1,-1,-1,0,-1,7432,1633,2043,4830,3535,4307,1633,2043,4830,0,4307,0,1
+10554,360000,female,1,2,29,-1,-1,-2,-2,-2,-1,1498,0,0,0,0,902,0,0,0,0,902,0,0
+10555,120000,female,1,2,31,-1,-1,-1,0,-1,0,388,-26,74,374,1549,7101,0,100,300,1584,7010,4500,0
+10556,20000,female,3,1,51,0,0,0,-2,-2,-2,19255,20650,0,0,0,0,2000,0,0,0,0,0,0
+10557,100000,male,1,2,31,2,2,2,2,2,2,84886,86729,87706,88859,90685,92736,4100,3300,3500,3400,3700,4000,1
+10558,60000,male,2,2,22,0,0,0,0,0,-1,60103,52193,44934,17769,10400,1760,3033,2093,560,600,1760,17933,0
+10559,240000,female,1,2,28,-1,2,2,-1,-1,-2,5018,2300,0,2500,0,0,0,200,2500,0,0,0,1
+10560,70000,female,1,2,25,0,0,0,0,0,0,67906,68201,69003,70146,71592,66053,2519,2371,2544,3000,1866,1266,0
+10561,360000,female,1,2,31,-2,-2,-2,-2,-2,-2,12521,18746,47535,186,38169,2665,18843,48271,187,38359,2678,6169,0
+10562,290000,male,1,1,47,-2,-2,-2,-2,-2,-2,3700,18019,4516,8140,59512,2716,18035,4516,8140,59512,2716,3516,0
+10563,90000,female,1,2,24,0,0,0,0,0,0,85365,88054,90370,26420,27398,28295,4054,4444,1420,1398,1345,3265,0
+10564,80000,female,3,2,54,0,0,0,-1,-1,-1,12011,10484,12190,4000,0,4000,3794,6000,6500,0,4000,0,0
+10565,50000,male,2,2,38,1,2,0,0,0,0,28651,24587,25468,31488,68450,31036,0,5000,10000,5000,2500,0,0
+10566,50000,female,3,2,54,0,0,0,0,0,0,48065,48968,47368,9515,9483,9292,2082,1672,500,500,355,264,0
+10567,160000,female,2,1,45,-1,-1,-1,-1,-1,-1,19477,10477,7396,5224,16989,1640,10528,7433,5245,17053,1647,30028,0
+10568,120000,female,3,2,53,2,0,0,2,0,0,66963,68780,70830,71557,73052,74502,3500,3800,2500,2804,2820,3000,1
+10569,500000,female,1,2,27,0,0,0,0,0,0,78335,61234,55446,47208,32019,22318,2315,2599,1500,2019,1200,1784,0
+10570,50000,female,2,2,24,-1,-1,-1,0,-1,-1,1572,1572,6561,5091,353,26864,1572,6561,102,353,27000,1000,0
+10571,50000,male,2,2,28,0,0,0,0,0,0,35277,34627,35096,9657,9617,9404,1800,1600,500,500,341,500,1
+10572,50000,male,2,2,28,0,0,0,0,0,0,2940,3989,5116,4425,6353,15829,1100,1205,2000,2000,10000,1000,0
+10573,210000,female,1,2,33,-1,-1,-1,-1,-1,-1,591,1053,2989,2046,17239,3680,1053,2992,2046,17239,3680,0,0
+10574,80000,male,2,2,26,0,0,0,-2,-2,-2,5844,6700,0,0,0,0,1067,0,0,0,0,0,0
+10575,20000,male,1,2,31,0,0,0,2,2,2,12761,13481,15322,14779,15543,16139,1229,2070,0,1000,1000,0,0
+10576,310000,female,1,1,34,-1,-1,-1,0,-1,-1,455,455,1415,883,883,1033,455,1415,0,883,1033,883,1
+10577,150000,female,1,1,29,0,0,2,0,0,0,18231,20625,17443,21649,22045,18814,3000,2,5000,2000,1500,2107,0
+10578,50000,female,2,1,50,0,0,0,0,0,0,48926,45156,27762,19238,15585,15892,2036,1243,3991,712,715,582,1
+10579,100000,male,3,1,30,2,2,2,2,0,0,68436,66783,74555,72759,74131,75603,0,9557,0,2700,2707,3120,1
+10580,150000,male,5,2,31,-2,-2,-2,-2,-2,-2,136692,91815,0,0,0,0,2000,0,0,0,0,0,0
+10581,50000,male,2,2,23,1,2,0,0,0,0,6226,5981,6870,7038,2268,5051,0,1032,200,285,3000,2000,0
+10582,180000,female,3,1,51,1,-1,2,2,0,-1,0,31,31,31,1931,878,31,0,0,1900,878,0,1
+10583,50000,female,3,2,23,-2,-2,-2,-2,-2,-2,8647,4872,-5,2809,0,0,4890,0,2814,0,0,0,0
+10584,50000,female,3,1,36,0,0,0,0,0,0,44449,35238,37551,17808,13765,14038,2500,11000,600,500,502,521,0
+10585,50000,female,3,1,43,-1,-1,-1,-1,-1,-1,6748,1366,1173,1473,1473,1623,1366,1173,1773,1473,1623,946,0
+10586,230000,male,2,1,41,0,0,0,0,0,0,231187,231272,228653,225471,224853,230078,10500,10000,9000,8200,9000,9000,0
+10587,70000,female,2,2,24,0,0,0,0,0,2,68659,68259,14690,9980,15607,15209,3500,1400,700,6000,0,1000,0
+10588,50000,male,3,1,51,-1,-1,-1,-1,-1,-2,6700,13902,42835,8500,0,0,13902,42863,8500,0,0,0,0
+10589,10000,female,2,2,31,0,0,0,-1,-1,-1,10503,9996,6528,4328,4328,4171,1140,1000,4328,4328,4171,4718,0
+10590,30000,male,3,2,27,0,0,0,0,0,2,27061,28129,29377,29625,30134,28716,1504,1752,1000,2257,0,2287,0
+10591,230000,female,2,1,29,0,0,0,0,0,0,69853,61844,24802,61631,46396,28311,2310,2000,49000,1500,1000,2000,0
+10592,50000,female,3,1,61,0,0,0,0,0,2,20907,22236,23250,23564,30882,30242,1672,1686,1000,7764,0,1000,0
+10593,20000,male,2,1,31,0,0,0,0,0,0,17766,18806,19772,18940,18587,20352,1630,1596,664,838,2241,0,0
+10594,20000,female,2,2,31,0,0,0,0,0,0,16569,22372,25285,24669,20899,11968,11000,5000,0,418,5000,3816,0
+10595,360000,male,2,1,26,-2,-1,-1,-2,-2,-2,0,2500,0,0,0,0,2500,0,0,0,0,0,0
+10596,120000,male,1,2,28,0,0,0,0,0,2,8460,7729,8920,7439,26832,26287,5000,1500,7000,21300,0,1000,0
+10597,400000,male,1,1,35,-2,-1,0,0,0,0,11802,73011,79259,87413,92269,100973,73022,10000,10009,8000,10000,10029,0
+10598,360000,male,1,1,40,-2,-2,-2,-2,-2,-2,5772,11664,15390,7090,2115,20075,11694,10048,35,2126,21220,35114,0
+10599,500000,male,1,1,55,0,-1,0,0,0,0,16593,226145,216931,207423,197914,188329,226145,7815,7372,7113,6967,6261,0
+10600,500000,male,1,1,50,0,0,0,0,0,0,197004,202740,203537,167013,169395,171648,20000,15000,15000,15000,15000,15000,0
+10601,80000,male,2,2,26,-1,0,0,0,0,0,2159,4132,5949,7144,5309,500,2000,2002,2005,15,523,0,0
+10602,20000,female,2,2,23,-2,-2,-2,-2,-2,-2,9410,7120,0,0,0,0,7120,0,0,0,0,0,0
+10603,20000,female,1,2,24,0,0,0,0,0,0,24146,25374,19075,18907,18507,20046,2024,2000,1005,1188,2002,1015,0
+10604,200000,male,2,1,51,-1,-1,-1,-1,-1,-1,1690,0,396,792,0,396,0,396,792,0,396,792,1
+10605,50000,female,3,1,27,0,0,0,2,0,0,11231,6482,8799,8033,8933,7995,2000,5000,0,1000,1000,1000,0
+10606,120000,female,3,1,46,-1,-1,-2,-2,-2,-2,4940,0,0,0,0,0,0,0,0,0,0,0,1
+10607,30000,male,2,2,37,0,0,0,0,0,0,27526,28794,29480,29679,16451,0,1714,1400,599,0,0,0,0
+10608,390000,male,2,1,35,0,-1,-1,0,0,0,33808,15275,17331,78340,76892,57954,15347,17375,70077,15103,3290,16153,0
+10609,200000,male,1,1,57,-1,-1,-1,0,0,0,1964,2684,11764,9830,669,-716,2698,11764,1000,0,0,2000,0
+10610,260000,female,1,1,52,2,2,2,2,-1,-1,150,150,150,150,2500,0,0,0,0,2500,0,0,1
+10611,210000,male,2,2,33,-1,-1,-1,-1,-1,0,1024,264,264,264,42515,43104,264,264,264,42515,1559,1472,0
+10612,180000,male,1,1,46,-1,3,2,-1,-1,-1,780,780,390,390,390,540,0,0,390,390,540,390,0
+10613,120000,female,2,1,27,0,0,0,0,2,0,83567,78276,78971,80907,79219,77809,4326,3000,9000,0,3000,3000,0
+10614,50000,male,1,2,26,-1,2,2,-1,0,-1,5713,5406,-978,978,652,626,0,0,1956,0,626,0,1
+10615,50000,male,2,2,32,0,0,0,0,0,0,46281,27311,41032,29626,26328,28475,1658,29000,1027,1300,2600,1280,0
+10616,50000,male,1,2,30,0,0,0,0,0,2,43935,47744,40339,44377,48723,49841,5000,2000,5000,5000,2010,9,0
+10617,90000,female,2,2,24,0,0,0,0,-2,-2,80699,68100,33434,0,0,0,2991,2655,0,0,0,0,0
+10618,80000,female,1,2,23,1,2,0,0,2,0,32337,31543,32141,28622,24619,23211,0,1659,4000,0,1000,25000,0
+10619,50000,male,2,2,24,0,0,0,0,0,0,23553,21507,17827,7655,7881,8248,1700,2000,500,500,500,1000,0
+10620,310000,female,2,2,24,0,0,0,0,0,0,203519,182513,161002,139275,120762,102598,6373,5600,5000,4500,3500,2816,0
+10621,100000,male,1,2,25,0,0,0,0,0,0,18883,20272,22577,21037,22373,23352,2000,3000,1000,2000,1500,1000,0
+10622,230000,female,3,1,50,1,-1,-1,-1,-1,-1,0,211,3546,0,1490,0,211,3546,0,1490,0,890,0
+10623,120000,female,3,2,40,0,0,0,0,0,0,31543,31641,32286,32692,32261,32644,1600,1600,1200,1200,1200,1500,1
+10624,230000,male,1,1,48,0,0,0,0,0,0,160879,161797,165107,105508,108101,110094,7000,6607,3773,4290,4164,2000,0
+10625,360000,female,3,1,38,1,2,2,0,0,0,29773,24395,22285,21359,21581,16065,2000,0,687,3864,1065,11500,0
+10626,500000,male,1,1,37,-1,-1,-1,-1,-1,-1,37443,24110,28593,22707,23495,40283,24197,28832,22784,23536,40542,12169,0
+10627,50000,male,3,1,44,0,0,0,0,0,0,49996,50386,24565,21098,18965,18063,1596,1291,695,668,654,637,1
+10628,30000,female,2,2,49,0,0,0,0,2,2,11554,12662,13744,14712,14334,15593,1300,1300,1200,0,1500,0,0
+10629,720000,female,1,1,45,0,0,0,0,0,0,125529,112933,105582,104501,83504,79411,8019,8043,10092,3020,2591,10081,0
+10630,10000,male,1,2,22,0,0,0,0,0,3,4060,2774,3764,4001,5134,4762,1300,1200,300,1200,0,0,0
+10631,400000,female,1,2,27,-2,-2,-2,-2,-2,-2,5457,4438,5048,7013,52189,16153,4460,5072,7048,52317,16232,4516,1
+10632,150000,female,1,2,33,-1,-1,-1,-1,-1,-1,2858,9934,19312,46321,146947,237926,9934,19312,30000,105180,103752,5742,0
+10633,500000,male,1,2,54,-2,-2,-2,-2,-2,-2,2634,1108,1318,36032,0,11270,1119,1318,36032,0,11270,28051,0
+10634,50000,male,2,1,25,0,0,0,0,0,0,43259,35307,23096,18970,19514,20038,1405,1366,1000,1000,1000,600,0
+10635,210000,female,2,2,26,0,0,0,0,0,0,26847,26883,27180,27035,27390,28045,1500,1500,1000,1500,2000,1000,0
+10636,260000,female,1,2,36,-1,-1,-2,-1,-1,-2,531,0,0,1245,0,0,0,0,1245,0,0,0,0
+10637,240000,female,2,1,38,1,2,-1,2,2,2,7466,221,189,189,1648,1459,899,198,0,1459,0,1250,1
+10638,360000,female,2,2,30,-2,-2,-2,-2,-2,-2,0,90,0,0,4460,2169,90,0,0,4460,2169,0,0
+10639,200000,female,1,2,30,-2,-2,-2,-1,0,-1,0,0,324,3741,1374,2932,0,324,3741,0,3118,0,0
+10640,50000,female,3,2,43,-1,-1,-1,-2,-2,-2,150,809,-60,-210,-360,-510,809,0,0,0,0,0,0
+10641,80000,female,2,2,23,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+10642,230000,male,1,2,29,0,0,0,0,0,0,32375,36817,40170,43473,44663,47207,5000,5000,5000,3000,5000,5000,0
+10643,500000,female,1,1,40,-1,-1,0,0,0,0,4240,80648,110704,99984,71135,56594,80648,35000,10000,10000,2430,10000,0
+10644,70000,male,1,2,40,2,2,0,0,0,2,45740,44727,45738,48977,52191,53242,0,1750,4000,4000,2060,2200,1
+10645,50000,female,1,1,36,2,0,0,2,2,2,37397,40292,43073,44067,44955,44081,3500,3452,2000,1738,0,4000,1
+10646,210000,male,3,2,34,-1,-1,-1,-1,0,0,862,1136,1511,54400,81139,82585,1144,1515,54409,30000,3759,435,0
+10647,220000,female,1,1,41,0,0,0,0,0,0,157980,163974,140964,105353,100750,85261,11024,5198,6006,10362,5000,4000,0
+10648,100000,female,2,1,29,2,2,0,0,2,2,75242,73482,76628,82320,83359,85837,0,5000,7000,2500,4000,0,0
+10649,150000,male,2,2,45,-1,-1,-2,-1,-1,-1,9487,0,0,159,14903,410,0,0,159,14903,509,0,0
+10650,50000,male,2,1,42,-2,-2,-2,-2,-1,0,1464,1469,2185,0,19777,19910,1469,2185,0,19777,629,296,0
+10651,50000,male,3,1,45,-1,-1,2,-1,-1,-1,261,1305,1134,1073,1312,51,2305,0,1200,1500,0,0,0
+10652,410000,male,2,2,48,0,0,0,-1,-1,0,28921,13482,8484,15286,17116,18777,5422,3040,15362,17133,5076,4040,1
+10653,80000,female,2,2,29,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+10654,70000,male,2,1,35,1,2,2,0,0,0,68375,71660,66948,30406,29128,23597,5000,0,1001,944,5000,5000,0
+10655,210000,female,3,2,28,-1,-1,-2,-1,-1,-1,1082,0,0,232,0,150,0,0,232,0,150,81,0
+10656,290000,female,2,2,36,0,0,0,0,0,0,320952,326625,290268,296053,302793,307336,11149,10524,10600,11500,10000,65000,0
+10657,50000,male,2,1,42,0,0,0,0,0,0,12111,12911,13990,14356,14657,15013,1300,1300,600,532,600,494,1
+10658,380000,male,2,1,40,0,0,0,0,-1,-1,31526,51255,63052,0,1184,21852,21255,13052,0,1184,21852,40534,0
+10659,60000,female,2,2,24,1,2,0,0,0,2,59201,58493,58820,57827,61055,56668,2300,2700,2200,4500,0,2200,0
+10660,200000,male,1,1,37,0,0,0,0,0,-1,4289,2907,3720,7720,5030,2990,1187,1000,4000,1000,3020,0,0
+10661,200000,female,5,2,32,0,0,0,0,0,0,64059,66113,15421,15728,16057,16398,3372,1246,553,572,597,2000,0
+10662,190000,male,1,2,33,-1,-1,-1,0,-1,0,546,1213,15571,14625,28520,24920,1213,15571,0,28520,0,0,0
+10663,80000,female,2,1,46,0,0,0,0,0,0,73366,76178,78560,49399,48420,50600,4000,4000,2000,3000,3003,3003,0
+10664,480000,female,1,2,33,0,0,0,0,0,0,118986,62137,79556,97836,96299,88757,30000,30276,30000,30000,15000,15000,0
+10665,20000,male,3,1,53,0,0,0,0,0,0,16854,18075,19020,19000,19500,10000,1500,1400,380,500,500,0,0
+10666,230000,male,3,2,30,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+10667,160000,male,2,1,31,0,0,0,0,0,0,75636,77220,79129,80710,82749,84871,3400,3800,3500,3500,3500,3600,0
+10668,50000,male,3,1,49,1,2,0,0,0,0,36728,35835,32092,32581,33897,34691,36,1833,1322,2000,1358,3446,0
+10669,80000,female,2,1,47,1,2,-1,-1,-1,-1,17401,8824,13261,6261,6261,6261,0,13261,6261,6261,6261,6261,0
+10670,240000,female,2,1,39,-2,-2,-2,-2,-2,-2,11958,0,0,0,0,0,0,0,0,0,0,0,0
+10671,50000,female,1,2,27,-1,-1,-1,-1,-1,-1,451,-49,6258,1032,2766,1401,0,6307,1035,3164,1405,1507,0
+10672,300000,male,2,1,35,1,2,0,0,0,0,240394,239798,242518,224580,179060,154320,10000,10000,8000,8000,10000,3632,0
+10673,200000,female,2,2,23,0,-1,-1,-1,0,0,67821,4938,-849,107555,108177,110506,4938,473,110000,3899,4100,8000,0
+10674,180000,male,2,1,43,0,0,0,0,0,0,171992,175427,150965,71478,72955,74426,6099,4427,1949,2007,2030,2000,0
+10675,370000,male,3,2,27,-1,0,0,0,0,0,50886,61378,96133,103773,137735,234740,11378,36133,18773,37735,100000,5600,0
+10676,230000,male,2,2,28,0,0,0,0,0,0,31875,31611,32411,34162,34884,35569,2000,2000,4000,2000,2000,1500,0
+10677,90000,female,2,1,27,2,2,2,0,0,0,85753,87510,85188,87112,169533,90316,4000,0,4200,3285,7787,4000,1
+10678,20000,male,1,2,26,0,0,0,0,0,2,11065,11788,13082,13498,14278,13899,1206,1500,634,1151,0,514,1
+10679,280000,female,1,1,57,-1,-1,-1,2,2,3,929,1669,5707,4795,5328,4969,1669,4795,0,4115,0,0,0
+10680,200000,female,1,1,39,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+10681,140000,male,2,1,73,0,0,0,0,0,0,135206,135316,134943,135772,138675,137197,5082,5008,5000,6016,5018,5264,0
+10682,150000,female,1,2,27,0,0,-1,0,0,0,3467,2182,1764,9558,59865,55717,2008,1764,9000,55000,4000,4000,0
+10683,50000,female,2,1,31,2,2,2,2,2,2,26441,28297,29532,28758,30287,31133,2600,2000,0,2000,1500,1500,1
+10684,50000,female,2,2,25,0,0,0,0,-2,-2,40407,31811,13898,0,0,0,1814,1000,0,0,0,0,0
+10685,20000,female,1,2,23,0,0,0,2,0,0,15573,17013,19413,14871,15478,16068,2000,3000,0,1000,1000,1000,0
+10686,200000,female,1,2,33,0,0,0,0,0,0,150573,140844,144245,135946,135736,134500,6550,7200,5300,5400,5240,5260,0
+10687,20000,female,2,2,23,0,0,0,0,0,0,8647,9734,10594,11002,11608,9186,1232,1092,500,1000,500,500,0
+10688,30000,male,2,2,24,0,0,0,0,0,0,26573,26988,14964,15428,15612,16630,1500,1600,1000,569,1280,0,1
+10689,80000,female,2,1,34,2,2,2,0,0,0,17294,22256,21660,22055,22603,23133,5210,0,1000,1000,1000,1000,1
+10690,230000,female,2,2,30,0,0,0,0,0,0,112402,116273,118467,108826,100862,92481,6000,6000,4000,4000,3500,4000,0
+10691,240000,female,1,1,38,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+10692,200000,female,1,1,38,2,-1,2,2,-2,-1,166,1694,1519,0,0,600,1694,0,0,0,600,0,1
+10693,80000,male,2,1,49,0,0,0,0,0,0,71775,68083,50642,47283,42340,40223,2911,1920,1541,1502,1619,1472,0
+10694,290000,male,2,1,39,1,-1,-1,-1,-2,-2,-9,698,728,-2,-2,-2,707,730,0,0,0,0,1
+10695,70000,female,2,2,23,0,0,0,2,0,0,18285,16903,18903,18443,10139,10141,1400,2332,0,365,364,527,1
+10696,30000,female,2,1,38,0,0,0,0,2,0,7979,9046,10279,10610,10339,8710,1200,1423,754,0,1000,3000,0
+10697,30000,female,3,1,31,2,2,2,-1,-1,-1,18870,3222,390,390,390,390,1906,0,390,390,390,390,1
+10698,280000,male,2,2,37,-1,-1,0,0,0,0,1152,49293,44707,39607,37542,34812,49349,3045,5028,5034,5024,5002,0
+10699,200000,female,2,1,28,-1,-1,-1,-1,-1,-1,3099,3174,0,3239,0,500,3174,0,3239,0,500,0,0
+10700,60000,male,1,2,28,-1,-1,-2,-2,-2,-2,20000,0,0,0,0,0,0,0,0,0,0,0,0
+10701,140000,male,5,2,26,0,0,0,0,0,0,136953,133265,82163,83238,85383,86615,6350,2900,2950,4000,3576,2200,0
+10702,390000,male,2,2,29,0,0,0,0,0,0,160537,186227,189792,109806,69845,48101,30000,9000,5000,2815,2111,3000,0
+10703,30000,female,1,2,28,0,0,0,0,0,0,6359,7461,5172,5931,7665,9535,1230,1241,1000,2000,2000,0,0
+10704,160000,male,3,1,54,-1,2,-1,0,0,0,780,390,1560,1170,780,390,0,1560,0,0,0,390,1
+10705,500000,female,2,2,32,0,-1,-1,-1,0,0,13631,3840,7527,77166,74397,77055,3840,7527,77166,3397,4055,2266,0
+10706,180000,female,2,2,26,-1,-1,-1,-1,-1,-1,5000,1600,2700,12000,0,1995,1600,2700,12000,0,1995,0,0
+10707,290000,female,2,1,33,0,0,0,0,0,0,117275,110481,107735,100195,84268,76356,3700,4005,4000,3000,2928,2000,0
+10708,140000,male,1,2,35,0,0,0,0,0,0,142119,142362,142292,99399,101677,100867,6000,6982,3500,3800,3700,4000,0
+10709,50000,female,2,1,31,0,0,0,0,0,0,13641,15409,16052,15993,15780,15549,2000,1223,1000,1000,1000,1000,0
+10710,130000,male,1,1,47,2,2,2,2,2,2,115704,117277,118814,119915,121325,122052,4900,5000,4503,4605,4400,4204,0
+10711,160000,male,3,1,48,0,0,0,-2,-2,-2,156197,102650,0,0,0,0,4700,0,0,0,0,0,1
+10712,110000,male,2,1,35,0,0,0,0,0,0,112820,112134,110436,50175,50874,50730,4800,4108,4100,3000,1900,1800,0
+10713,180000,female,2,1,33,-1,-1,-1,0,0,0,506,0,174,1974,3462,4114,0,174,1800,2600,2000,3500,0
+10714,260000,female,5,2,32,0,0,0,0,0,0,169734,168207,155963,148701,141039,143838,6568,6025,5703,5123,5148,5368,1
+10715,310000,female,1,1,32,0,0,0,0,0,0,66916,63746,58216,57112,53694,49205,2440,2041,1520,1581,1774,1523,0
+10716,450000,male,2,1,44,-1,-1,-1,-1,-1,-1,19951,7277,1096,1968,1575,3889,8203,1105,2012,2007,4019,510,0
+10717,130000,male,1,2,27,0,0,0,0,0,0,69353,49878,30242,31239,31893,32549,2139,1503,1500,1157,1186,5000,0
+10718,300000,female,1,1,36,1,2,-1,0,0,-1,5602,2700,6300,8100,5400,2700,0,6300,5400,0,2700,7150,0
+10719,160000,female,1,1,39,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,2000,0
+10720,30000,male,2,2,26,-1,0,0,0,-1,-1,12813,14899,16790,12400,780,0,3000,3000,6000,780,0,0,0
+10721,270000,male,2,1,48,2,2,2,0,0,0,53624,67736,63082,73568,77642,73452,15018,0,20000,5000,10000,0,1
+10722,360000,male,2,1,63,1,-2,-1,-1,-1,-1,-3,-3,590,-10,2162,3528,0,593,0,2172,3545,0,1
+10723,360000,male,2,1,42,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+10724,180000,male,2,1,40,-1,-1,-1,-1,-1,-1,3071,5630,9040,1288,1419,2385,5639,9044,1290,1421,2386,1964,0
+10725,360000,female,3,1,41,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,0,0
+10726,280000,male,1,1,45,2,2,2,2,2,2,2482,2482,2482,2482,2482,2482,0,0,0,0,0,18,1
+10727,220000,male,2,2,44,0,0,0,0,0,0,5005,9880,10542,10903,10981,9931,5000,1147,508,374,384,1008,0
+10728,20000,female,3,1,47,0,0,0,-1,-1,-2,8152,7268,3699,780,0,0,1125,1000,780,0,0,0,0
+10729,310000,male,3,1,32,0,0,0,0,0,0,172772,152397,110375,84373,57779,14163,8295,6000,4000,3000,1000,2000,0
+10730,160000,male,2,2,52,1,2,-1,0,0,0,2259,1869,12671,8315,5085,4900,1310,12671,166,102,1100,2610,1
+10731,50000,male,1,2,27,1,-2,-2,-2,-2,-2,-2900,-2900,-2900,-2900,-2900,-2900,0,0,0,0,0,0,0
+10732,20000,male,2,1,38,0,0,0,0,-2,-2,16619,17845,19000,0,0,0,1500,1500,0,0,0,0,1
+10733,20000,male,2,2,26,0,0,0,0,0,0,18626,20296,18902,38250,19709,19774,2000,1308,683,1472,714,357,1
+10734,470000,male,2,1,32,0,0,0,0,0,0,181224,143173,145293,148871,152309,155769,7000,6000,6000,6000,6000,8000,0
+10735,160000,female,2,1,31,0,0,0,-1,-1,0,42781,42774,41817,749,5572,10573,2300,2300,749,5572,5573,13793,1
+10736,220000,male,1,2,31,-2,-2,-2,-2,-2,-2,2828,2828,2828,2828,2828,3013,2828,2828,2828,2828,3013,2828,0
+10737,50000,female,2,1,42,0,0,0,0,0,0,11618,12641,13953,13924,14399,14610,1216,1528,499,700,600,541,0
+10738,50000,male,2,2,22,2,2,2,0,0,0,13752,17945,17807,17430,18262,14224,4448,1003,1000,1014,1004,1468,1
+10739,230000,female,1,1,53,-1,-1,-2,-2,-2,-2,10000,0,0,0,0,0,0,0,0,0,0,0,0
+10740,70000,female,2,1,51,2,2,2,2,2,2,43913,44911,45772,46611,47508,48476,2000,1900,1900,1800,1900,1900,0
+10741,360000,male,3,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+10742,90000,female,2,2,24,-1,-1,-2,-2,-2,-2,520,0,0,0,0,0,0,0,0,0,0,0,0
+10743,180000,male,1,2,27,-1,-1,-1,-1,-1,-1,2658,2014,536,1123,536,536,2014,536,1123,536,536,629,1
+10744,50000,male,2,1,53,0,0,0,0,0,0,47750,49149,47843,29018,29777,28722,2180,1874,1049,1237,1100,1300,1
+10745,210000,female,1,2,39,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+10746,50000,female,1,2,24,0,0,2,0,0,0,52227,55264,52028,32140,32216,31482,5350,0,1085,2000,1226,2415,0
+10747,10000,male,2,2,23,2,0,0,0,0,0,8206,6828,9694,9888,10094,9762,1134,3000,345,356,425,194,0
+10748,80000,male,1,2,42,0,0,0,0,0,0,74380,68820,59079,30289,27415,28447,2619,2036,1215,1500,1504,1200,0
+10749,200000,female,3,1,34,-2,-2,-2,-1,-1,-1,3600,-4,-4,752,0,2718,4,0,756,0,2718,2722,0
+10750,500000,male,1,1,41,2,0,0,0,0,0,564757,572834,430774,437950,447203,456453,19850,17200,15853,17000,17000,15740,1
+10751,50000,female,2,1,42,0,0,0,0,0,0,49401,47828,48416,20098,20130,20158,2100,2000,702,718,730,632,0
+10752,50000,female,3,2,22,2,0,0,2,0,0,31285,30275,26633,19576,15794,19496,3000,2000,0,4532,4500,4500,0
+10753,80000,male,3,1,46,2,2,0,0,0,0,40154,39021,21862,22297,22766,23531,80,1500,797,827,1144,666,0
+10754,50000,female,1,2,23,1,2,0,0,0,0,10393,9895,10726,10863,11200,11272,0,1500,800,700,600,600,0
+10755,50000,male,2,2,22,-1,0,0,2,0,0,5696,6723,8619,8334,8510,8728,1277,2173,0,459,513,161,0
+10756,80000,female,2,2,24,0,0,0,0,0,0,78749,77025,66725,21604,9352,9276,4000,2784,1882,1000,457,20000,0
+10757,100000,female,2,1,39,3,2,2,2,2,0,76620,74813,69802,69887,68023,68734,0,5395,2433,0,2471,5191,1
+10758,360000,male,1,2,49,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+10759,510000,female,1,1,37,-1,-1,-1,-1,-1,-1,386,733,739,1939,739,2739,763,739,1939,739,2739,1110,0
+10760,120000,male,2,1,26,0,0,0,0,0,0,47733,49609,47753,48950,50149,51159,3000,2000,2000,2000,2000,2000,0
+10761,130000,female,3,1,48,0,-1,-1,-1,-1,-1,13570,785,1534,397,22262,251,785,1534,397,22262,251,1380,0
+10762,330000,male,1,2,44,0,0,0,0,0,0,604019,605943,439854,404157,370686,294348,19001,14000,12000,15000,7000,7000,0
+10763,50000,female,3,2,40,0,0,0,0,0,0,29311,30862,26614,15571,14971,15546,10000,5000,1500,800,2000,2000,0
+10764,30000,male,2,2,43,0,0,2,0,0,0,25724,29638,27000,27382,26876,28351,5300,0,1100,1000,2300,0,0
+10765,200000,female,1,1,24,0,0,0,0,0,0,156683,155336,156489,152357,150829,149851,5808,5382,5279,5389,7026,5258,0
+10766,80000,female,2,1,33,2,2,2,2,2,2,53843,55933,56575,57303,58593,59738,3500,2100,2200,2300,2200,2100,0
+10767,220000,female,1,1,39,0,-1,-1,0,0,-1,6589,2901,10836,26227,18590,785,2901,10836,18590,0,785,8700,0
+10768,70000,female,1,2,30,1,-2,-2,-2,-2,-1,-25,-25,-25,-50,-25,475,0,0,0,0,500,0,0
+10769,350000,female,2,1,48,0,0,0,0,0,0,311013,305633,301114,285750,289399,284597,11019,10728,9812,10397,10099,9967,0
+10770,40000,male,2,2,27,0,0,0,0,0,0,38561,38614,39951,40552,38935,40187,1700,2000,1526,1500,1900,1400,0
+10771,60000,male,2,2,24,0,0,0,0,0,2,60753,54892,59268,17967,20309,17867,2800,6100,621,2609,0,756,0
+10772,120000,male,2,1,34,-1,-1,-1,-1,0,0,6059,1943,2402,18700,9900,0,1943,2500,38098,5000,0,0,0
+10773,50000,female,2,2,48,0,0,0,0,0,0,50894,49333,9923,10126,10113,10130,1385,1200,350,400,360,400,0
+10774,100000,female,1,1,44,0,0,0,0,0,2,68444,71722,73525,75303,79994,78550,5000,3000,3000,5900,0,5000,1
+10775,210000,male,2,1,30,0,0,0,2,0,0,85988,88410,93234,90571,94653,142549,5000,7500,0,6000,50000,0,1
+10776,20000,female,2,2,35,0,0,2,0,0,0,16528,19347,18600,19000,19000,20000,3400,0,1000,0,1000,0,0
+10777,240000,male,3,2,42,0,0,0,0,0,0,159362,227686,177380,126645,128877,121803,146282,7005,4601,5000,5300,6100,0
+10778,170000,female,2,1,43,0,0,0,0,0,0,95780,109078,115606,121493,132016,145820,13298,9913,7900,10523,16289,3600,0
+10779,330000,male,1,2,34,-1,-1,-1,-1,0,-1,316,310,6994,632,316,38277,310,7006,2000,0,38277,6000,0
+10780,70000,male,2,2,43,0,0,0,0,0,0,59829,57240,29079,28562,29155,29448,1586,1739,1002,1033,1142,1014,0
+10781,50000,female,3,1,29,0,0,0,0,0,0,45561,47322,49054,7378,8103,8963,2500,3125,417,1000,1000,500,0
+10782,130000,male,2,2,38,0,-1,0,0,0,0,9439,62132,48108,40918,35111,24846,63053,1478,1119,1016,1026,1049,0
+10783,50000,male,3,2,36,2,2,7,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,1
+10784,450000,female,1,2,30,0,0,0,0,0,0,46244,32387,30976,29455,30012,20109,1599,1311,2000,1000,2000,647,1
+10785,100000,male,2,1,41,2,2,2,2,2,2,68786,69604,67887,72744,73932,75560,2500,0,6000,2500,3000,3000,1
+10786,120000,female,1,2,26,0,0,0,0,0,0,11513,12227,13321,15090,16836,18554,1206,1300,2000,2000,2000,2000,0
+10787,270000,female,1,2,29,0,0,0,0,-1,-1,14728,20865,24812,12674,9486,2460,10000,5000,3900,9486,2460,0,0
+10788,80000,male,1,2,36,-2,-2,-2,-2,-2,-2,5012,1200,0,1159,0,0,1200,0,1159,0,0,6028,0
+10789,80000,female,3,1,40,0,0,0,-1,0,0,80855,78074,38360,60060,59322,59973,2800,2700,61400,2312,2800,2800,0
+10790,320000,male,1,2,33,-2,-2,-2,-2,-2,-2,3903,3609,4615,5256,22760,700,3609,4615,5256,22760,700,1992,0
+10791,380000,male,1,1,35,1,-1,-1,-1,-2,-2,-6,15099,1299,0,0,0,15105,1300,0,0,0,0,0
+10792,380000,female,2,2,41,0,0,0,0,-1,0,86950,76202,63536,22345,9222,10551,3239,1283,453,9222,10551,5088,0
+10793,180000,female,2,1,41,-2,-2,-2,-2,-2,-2,21450,0,6980,10628,9920,6205,0,6980,10628,9920,6205,6381,0
+10794,100000,female,2,2,31,0,0,0,0,0,0,32430,34169,36495,36910,37838,38457,2579,2905,1320,1522,1400,1419,0
+10795,290000,female,1,2,29,0,0,0,0,-1,0,41435,30229,9020,-77,8123,210989,1690,3000,0,8200,205000,6000,0
+10796,90000,male,1,2,27,-1,-1,-1,-1,-1,-1,1040,3953,6986,868,350,874,3963,6986,868,350,874,548,1
+10797,10000,male,2,1,24,5,4,3,2,0,0,9829,9539,9244,8949,9137,9177,0,0,0,480,340,500,1
+10798,150000,male,3,2,31,-2,-2,-2,-1,-1,-2,31991,18322,11429,3714,0,0,18696,11629,3814,0,0,0,0
+10799,160000,female,2,2,32,2,2,2,2,-1,0,400,400,400,0,20818,20818,0,0,0,20818,0,0,0
+10800,200000,female,1,1,27,2,2,2,0,0,0,191406,201756,197185,146021,147473,147669,15100,3028,5169,5400,5306,5232,1
+10801,30000,female,2,2,23,-1,-1,-1,-1,-1,-1,1393,1393,1393,1543,1596,2970,1393,1393,1543,1596,2970,0,0
+10802,70000,female,1,2,24,0,0,0,0,0,0,65920,67413,68623,68867,70179,67976,3150,3000,2250,2400,2350,2400,0
+10803,160000,male,2,2,30,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,679,0
+10804,140000,female,1,2,27,2,2,2,2,2,2,94903,96912,98015,99155,100979,99251,4400,3600,3600,3500,0,3470,1
+10805,50000,female,3,2,22,0,0,0,0,0,-1,11867,12588,13089,13731,13891,1769,1309,1200,1232,891,4435,1836,0
+10806,50000,female,1,2,23,-1,-1,-1,-1,0,0,496,454,-42,13109,13266,13401,454,0,14109,1000,1000,1000,0
+10807,150000,male,1,2,31,0,0,0,0,0,0,1575,4711,4956,6692,14418,25825,3651,1068,1977,9118,12625,122,0
+10808,120000,female,1,2,34,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+10809,160000,female,2,1,63,1,-2,-1,-1,-1,-1,-2,-2,2647,1210,0,1886,0,2649,1210,0,1886,491,0
+10810,180000,female,4,2,26,0,0,0,0,0,0,252810,240518,39162,5461,2309,0,8013,3060,109,46,0,0,0
+10811,220000,female,2,2,27,0,0,0,0,0,0,220588,218136,177720,131874,118918,110338,9000,7500,4500,5000,5000,3000,0
+10812,10000,male,2,2,22,2,0,0,-1,-1,-2,8631,9202,9975,528,0,0,1238,1275,528,0,0,0,1
+10813,80000,female,1,1,36,-1,-1,-1,-1,-1,-1,1069,1460,4337,0,2649,708,2000,4507,999,2649,787,288,0
+10814,110000,female,2,2,28,0,0,0,0,0,0,105080,107420,107325,108545,105341,106822,5540,5361,4500,4000,4500,4100,0
+10815,80000,female,2,1,51,1,-2,-2,-1,-1,-1,-12,-12,-12,17691,4599,4134,0,0,17703,4599,4134,0,1
+10816,270000,male,2,1,52,0,-1,-1,-1,2,-1,18758,4937,2000,9078,5058,6177,4937,2000,9078,0,6177,4600,0
+10817,160000,female,1,2,36,1,2,0,0,0,0,163897,116343,118552,119376,122039,121841,0,5677,4197,4509,4412,4228,0
+10818,50000,male,2,2,44,0,0,0,0,0,0,16726,18144,19116,19543,20116,18163,2000,1600,1000,1000,1000,811,0
+10819,60000,female,2,1,39,0,0,0,0,0,0,58017,59481,60360,38307,35519,35356,2396,2110,1272,1257,1245,1138,0
+10820,140000,male,2,2,28,0,0,2,2,2,2,137706,118294,115038,119696,87930,96561,12300,0,8200,0,10000,0,0
+10821,360000,female,2,2,34,0,0,0,0,0,0,277569,246380,236139,241056,246297,246072,10500,8500,8750,9200,9800,8700,0
+10822,200000,female,4,2,34,-1,-1,-2,-2,-2,-1,6093,4297,15765,3997,4931,429,4310,15818,4009,4945,429,0,0
+10823,40000,female,2,1,36,1,2,0,0,0,0,38430,37537,38156,39581,36506,37893,0,1575,2000,1500,2000,3000,1
+10824,50000,female,3,1,50,2,0,0,0,2,0,48381,47810,48123,51060,50162,48209,2200,2100,4000,0,2000,2000,1
+10825,50000,female,2,1,46,0,0,0,0,0,0,48095,26873,27774,28387,28982,29599,1500,1387,1000,980,1026,843,0
+10826,70000,male,1,2,27,0,0,0,0,0,0,134781,69502,117846,49535,48247,49040,6012,1936,1874,1740,2000,1800,0
+10827,500000,male,1,1,41,-1,-1,-1,-2,-1,-1,719,1550,-50,-50,10037,79,1558,0,0,10087,79,471,0
+10828,160000,male,1,2,37,-1,2,-1,-1,0,-1,17723,497,1100,652,326,5654,0,1100,652,0,5654,0,1
+10829,180000,female,3,2,28,0,0,0,0,0,0,176802,179271,180382,132104,129772,124734,6963,6208,3749,4365,4517,177,0
+10830,100000,male,2,2,25,0,-1,-1,-1,-1,-1,48285,390,390,390,390,390,390,390,390,390,390,9528,0
+10831,50000,female,2,2,38,0,-1,-1,0,0,0,4965,495,16982,17203,17577,17936,500,17000,800,800,800,900,0
+10832,210000,male,2,1,33,0,0,0,0,0,0,141571,138588,142343,69004,70596,69388,5000,6000,2270,2500,2472,2600,1
+10833,140000,male,1,2,29,-2,-2,-2,-2,-2,-2,700,700,700,3105,1259,700,700,700,3105,1259,700,700,0
+10834,80000,female,2,2,23,0,0,0,0,0,0,50884,48709,19010,21808,15995,12290,2427,1214,600,656,282,0,1
+10835,120000,female,1,2,28,0,0,0,2,0,0,75982,78213,82563,78273,79914,81514,3451,6275,0,2898,2926,6210,1
+10836,280000,male,2,1,48,0,0,0,0,-2,-2,74267,54500,5520,0,0,0,3110,1200,0,0,0,0,0
+10837,80000,female,2,1,45,0,0,0,0,0,0,30063,30399,24577,24788,18522,17873,1843,1233,882,633,842,12000,0
+10838,200000,female,3,2,31,-1,-1,0,0,0,2,2126,99787,194779,194179,164444,83277,99787,100000,0,83277,0,77325,0
+10839,300000,female,1,2,27,-1,-1,-1,-1,0,0,2566,4658,197,10767,26117,15800,4725,197,10770,15350,5000,424,0
+10840,40000,male,1,1,34,-1,-1,-1,-1,-1,-1,7018,7402,8374,7505,7515,9120,7419,8382,7505,7515,9120,6180,0
+10841,360000,male,2,1,38,1,-2,-2,-1,2,2,0,0,0,2500,2500,0,0,0,2500,0,0,0,1
+10842,60000,male,1,2,30,1,-1,-1,0,0,0,0,345,11736,11387,10228,10497,345,13737,0,4000,6000,0,0
+10843,110000,female,2,2,29,2,2,4,4,3,2,600,600,600,600,300,150,0,0,0,0,0,921,1
+10844,50000,male,2,2,42,1,-2,-2,-2,-2,-2,-4,-4,0,0,0,0,0,4,700,0,0,2300,0
+10845,150000,female,2,2,24,-2,-2,-2,-2,-2,-2,1563,5689,490,0,2893,0,5689,494,0,2893,0,499,0
+10846,60000,female,5,2,22,0,0,0,0,0,0,61094,61260,55730,29846,28600,28970,3000,3000,2000,1500,1500,2000,0
+10847,20000,female,1,2,25,0,0,0,-1,-1,-2,17693,13037,600,1040,0,0,1081,600,1040,800,0,0,0
+10848,360000,female,2,2,33,0,0,-1,-1,0,-1,9797,5333,3299,8786,6801,8488,1000,3331,8786,1000,8488,0,0
+10849,30000,male,1,2,25,0,0,-2,-2,-2,-2,7833,0,0,0,0,0,0,0,0,0,0,0,0
+10850,70000,female,2,1,36,0,0,0,0,0,0,59331,57786,58608,28105,30656,32674,3500,3000,3000,3000,3000,3000,0
+10851,50000,male,2,2,28,0,0,0,0,0,0,48433,49608,45568,9742,8790,6591,2000,1500,442,300,238,500,1
+10852,80000,male,2,1,37,2,2,2,2,2,2,58024,59300,59831,60554,61938,63269,2800,2100,2300,2500,2500,500,1
+10853,200000,female,2,1,35,0,0,0,0,0,0,7677,14704,8000,10285,16285,4815,7240,2000,2285,6000,1500,0,0
+10854,480000,female,3,1,42,-2,-2,-2,-2,-2,-2,7245,0,0,0,790,0,0,0,0,790,0,0,0
+10855,60000,male,2,1,46,2,0,0,0,0,0,59748,60684,59532,30193,27726,26520,2500,2108,1008,1160,2000,4000,1
+10856,150000,female,3,2,60,0,0,0,0,0,0,149892,137990,136171,100508,102610,101682,6780,4800,3496,3618,4000,3497,1
+10857,400000,male,1,1,40,-1,-1,-2,-1,-1,-2,4750,0,0,2827,0,0,0,0,2827,0,0,3347,1
+10858,300000,female,1,2,36,1,-2,-2,-1,2,-1,-78,-78,-78,1222,1072,4689,0,0,1300,0,4689,0,1
+10859,80000,female,3,2,26,0,0,2,0,0,0,40931,44374,43365,44143,45079,45977,4100,0,1800,1800,1800,2000,0
+10860,30000,male,2,2,25,1,2,3,2,0,0,25787,28067,27332,26597,27512,57002,3000,0,0,1500,1600,900,0
+10861,300000,male,2,2,33,0,0,0,0,0,0,283552,252308,204975,159596,116322,247931,10000,7009,6000,6100,245000,7600,0
+10862,50000,female,2,1,23,0,0,0,0,-1,0,50643,50199,23986,-17250,20129,20502,2741,2079,2177,41608,713,837,0
+10863,400000,female,2,1,53,0,0,-1,0,0,0,252860,257062,99832,100967,101788,117818,11416,99835,3501,3641,17823,4180,0
+10864,280000,female,2,2,26,0,0,0,0,0,0,70219,69487,85733,131138,131414,130758,3165,20014,50014,5015,4518,4609,0
+10865,160000,female,1,2,30,-1,2,2,-1,-1,-1,6548,3200,0,4775,456,0,7,0,4775,456,0,0,0
+10866,450000,male,1,1,53,-1,-1,-1,-1,-1,0,3873,3119,8970,1323,11990,8838,3128,9008,1323,12008,214,1327,0
+10867,50000,male,3,1,47,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+10868,120000,female,3,1,47,0,0,0,0,0,0,16224,16085,17677,16450,18407,15841,2001,2317,1002,3009,1000,1000,0
+10869,60000,female,2,1,57,0,0,0,0,0,0,20866,22131,22685,24938,25085,28862,2000,2000,2950,926,4600,0,0
+10870,210000,female,1,2,26,0,0,0,0,0,0,129882,131991,134515,134141,137667,126127,6000,6000,3000,5000,5000,3000,0
+10871,110000,female,2,2,24,0,0,0,0,0,0,28956,33115,31752,30539,29468,33259,5000,2000,2000,2000,7000,2000,0
+10872,110000,female,1,1,32,1,2,0,0,0,0,42867,41901,44126,43483,43435,41010,0,3000,2000,2000,2000,3600,1
+10873,140000,male,2,2,41,0,0,0,0,0,0,92281,92370,92446,65774,65076,64295,3551,3814,2333,2340,2279,2273,0
+10874,430000,female,2,1,36,1,-2,-2,-2,-2,-2,1821,2324,2250,3004,1074,1623,2324,2250,3004,1074,1623,2493,0
+10875,20000,male,2,1,43,-1,-1,-1,-1,-1,0,4820,1837,390,390,780,780,1837,390,390,780,0,0,0
+10876,360000,female,1,1,31,1,-1,-1,0,-1,-1,-1,180,14418,8625,516,0,181,14418,0,516,0,1235,0
+10877,630000,female,1,2,29,0,0,0,0,0,0,497106,497921,490093,435019,329476,338557,15868,12371,26454,8510,11039,5390,1
+10878,60000,female,2,3,39,0,0,0,-1,0,0,52149,32476,8128,9972,13037,-161,1173,1000,9972,10000,0,20588,0
+10879,50000,male,3,2,41,0,0,2,-1,0,0,48238,35194,9802,26781,28542,29235,4866,126,58542,3032,2000,2000,0
+10880,200000,male,1,1,41,-1,-1,-1,-1,-1,-1,855,0,316,8386,316,10104,0,316,8386,8896,10104,955,0
+10881,20000,male,3,2,61,2,0,0,-2,-2,-2,18828,10400,0,0,0,0,1400,0,0,0,0,0,0
+10882,260000,male,1,1,37,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+10883,210000,female,1,1,32,-1,-1,-1,-1,-1,-1,8600,0,4231,4221,4221,4483,0,4231,4221,4221,4483,4300,0
+10884,30000,female,2,2,31,0,0,0,0,0,0,28716,26570,26829,26839,27449,25125,2000,1600,1000,1000,1000,0,0
+10885,500000,male,1,2,33,-1,-1,-1,-1,0,0,1025,1691,1316,4941,8539,3842,2000,1316,5000,5000,2000,1223,0
+10886,20000,female,3,1,47,0,0,0,0,2,0,19753,19728,19763,20240,18955,15255,1401,1306,2000,0,800,800,0
+10887,240000,female,1,1,40,-1,-1,-1,-1,-1,-1,626,626,626,626,626,626,626,626,626,626,626,626,0
+10888,20000,female,3,1,45,0,0,0,0,-1,-1,16392,16367,12426,11449,341,20875,2000,2426,1000,407,21769,793,0
+10889,150000,male,1,2,30,2,2,2,2,2,2,17352,21338,20304,21585,20718,22813,5000,0,2000,0,3000,0,1
+10890,150000,female,1,2,30,0,0,2,0,-1,-1,14883,12683,2700,1500,18439,1381,4908,0,0,18439,1381,0,0
+10891,500000,male,1,1,41,0,0,0,0,0,0,231887,122499,107198,98450,93828,92237,6115,4550,3533,3525,5034,4080,0
+10892,220000,female,2,1,53,0,0,0,0,0,0,207592,212099,214669,173187,176496,169649,8165,6889,6033,6247,6142,6146,1
+10893,30000,female,2,2,22,-1,0,-1,-1,-1,-1,13271,9277,2655,2800,4503,780,2015,2655,2800,4503,780,11500,0
+10894,10000,female,2,1,40,1,2,2,2,2,2,8481,8711,6946,5863,4180,4322,2000,0,450,0,600,320,1
+10895,170000,female,2,1,28,1,-2,-1,0,0,0,0,0,9311,10257,20872,34403,0,9311,1257,10872,14003,1500,0
+10896,120000,male,1,1,45,1,-1,0,0,0,0,0,106257,108360,109121,109061,112079,106257,5400,4000,3944,4817,8892,1
+10897,280000,female,1,2,29,0,0,0,0,0,0,105403,51190,44598,38322,38255,31427,3109,1369,3002,3005,1505,2000,0
+10898,10000,female,3,2,22,0,0,0,-1,-1,2,7572,8520,6118,245,10274,9963,1118,1020,250,10300,0,200,0
+10899,200000,female,3,1,54,6,5,4,3,2,2,110185,107665,104686,102549,101400,0,0,0,0,0,0,0,0
+10900,260000,female,2,1,36,0,0,0,0,0,0,107030,115455,115106,118811,121514,124815,13011,5000,5000,4000,4815,4500,0
+10901,500000,female,1,2,43,-2,-2,-2,-2,-2,-2,274261,209672,179618,152069,110763,69267,11375,5066,5145,5145,5117,5086,0
+10902,500000,female,1,2,32,-2,-2,-2,-2,-2,-2,0,0,973,229,3330,7980,0,973,229,3330,7980,538,1
+10903,260000,female,1,2,50,0,0,0,0,0,0,254749,259549,258390,256252,250390,251336,11046,10004,10000,10000,10000,20000,0
+10904,90000,male,2,1,32,0,0,0,0,0,0,36081,37802,29985,28447,24775,25498,3002,1600,1500,1000,1500,1500,0
+10905,160000,male,2,1,52,0,0,0,-2,-2,-2,161747,164150,0,0,0,0,7350,0,0,0,0,0,1
+10906,230000,female,2,2,25,0,0,0,0,0,0,187472,188140,178221,156627,128110,121517,9200,6707,3000,2725,3544,2417,0
+10907,360000,male,2,1,46,1,-2,-2,-2,-2,-2,5800,0,0,0,0,0,0,0,0,0,0,76873,0
+10908,50000,male,3,2,29,0,0,0,0,0,0,49156,50162,49170,49426,50906,45886,4000,2400,2000,2459,2100,5000,0
+10909,130000,male,3,2,44,0,0,0,0,0,0,83648,72031,59850,49099,49015,49265,3100,2300,2000,1900,2200,1800,0
+10910,240000,female,2,2,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+10911,50000,male,1,2,22,0,0,0,0,0,0,13444,14819,15967,16599,17329,17888,1600,1700,1200,1000,1000,1000,0
+10912,320000,female,1,2,43,0,0,0,0,0,0,34702,76361,58124,70717,78149,70379,50390,20000,20000,15000,40000,40000,0
+10913,130000,female,2,1,44,0,0,0,0,0,0,69120,66171,65225,65588,66662,68176,3000,3000,3000,2500,3000,3000,0
+10914,50000,female,3,2,48,1,2,2,0,0,0,49295,50414,49158,29375,28050,27721,2200,0,1008,1004,1032,932,0
+10915,330000,female,1,2,24,0,0,0,0,0,0,341499,334929,317997,274132,267622,261246,12500,10882,9902,10000,10000,17629,0
+10916,330000,male,1,2,37,-2,-2,-2,-2,-2,-2,0,0,0,0,0,1624,0,0,0,0,1624,0,0
+10917,120000,female,2,2,23,0,0,2,0,0,0,107934,123579,118117,77943,78834,76889,19000,8,3000,3000,3500,3500,0
+10918,180000,female,2,1,29,2,2,2,2,2,2,113436,109439,111108,108476,104655,107338,1308,7623,3900,11,7700,0,1
+10919,500000,female,1,1,47,-2,-2,-2,-2,-2,-2,97832,47708,131063,131508,182843,10790,27369,135784,15000,75550,216,27183,0
+10920,250000,female,2,1,54,-1,-1,2,-1,-1,-1,17582,600,600,9375,8765,3649,1200,0,9375,8765,3649,95417,0
+10921,260000,female,2,2,29,0,0,0,0,0,0,56380,40882,214941,196242,193177,161731,4121,196000,6020,6330,6032,5000,0
+10922,270000,female,1,1,36,-2,-2,-2,-2,-2,-2,3291,0,0,0,0,0,0,0,0,0,0,0,0
+10923,500000,male,1,1,42,1,-1,-1,-1,-1,-2,3747,11652,32269,8974,1349,7867,11684,34545,8981,1349,7867,0,0
+10924,60000,female,3,1,42,-1,-1,2,0,-1,-1,1570,21835,20680,390,390,14290,20680,0,0,390,14290,2892,1
+10925,240000,male,1,2,28,0,0,0,0,0,0,147974,150683,137645,140388,142521,143736,5300,4931,4966,5000,4771,4354,0
+10926,500000,female,1,2,41,2,2,-2,-2,-2,-2,2500,0,0,0,0,0,0,0,0,0,0,0,1
+10927,330000,male,2,2,33,0,0,0,0,0,0,137974,138692,141674,136790,141469,143453,7000,7000,5000,7004,6015,5012,0
+10928,80000,female,2,2,24,-2,-1,-1,-1,0,0,2530,3041,6603,1483,1485,4665,3055,6622,1483,2,4683,1700,0
+10929,80000,female,1,2,23,0,0,0,0,0,0,80133,74838,62696,27693,25594,29155,3539,3180,818,1018,10006,3616,0
+10930,180000,male,3,1,39,0,0,0,0,0,2,122187,123790,125258,125214,131276,114050,6000,6000,4400,9000,0,4000,1
+10931,60000,female,1,2,24,0,0,0,0,0,0,18220,18743,17624,17457,21386,4340,1553,1200,349,5345,0,316,1
+10932,150000,female,2,1,44,-2,-2,-2,-2,-2,-2,292,7948,3363,1774,0,0,8144,18285,1774,0,0,0,0
+10933,10000,female,3,1,45,2,-1,-1,-1,-1,-2,390,390,0,780,5018,5275,390,0,780,5018,375,0,0
+10934,340000,female,1,1,41,0,0,0,0,0,0,325371,326867,322454,275928,264601,265494,25034,11000,10000,10000,10000,10000,0
+10935,80000,female,3,1,39,0,0,0,0,0,0,83482,80406,71540,68325,65105,62011,2900,2340,2300,2289,2500,1551,0
+10936,430000,female,1,2,34,0,0,0,0,0,0,35792,36894,44848,39219,32008,19397,2000,10002,2000,5000,2000,7027,0
+10937,340000,female,1,2,36,0,0,0,-1,0,0,91938,85927,71707,92695,86244,71538,3911,5104,92695,3114,2613,2366,0
+10938,80000,female,2,1,35,0,0,0,0,0,-1,2227,3432,4416,5275,0,316,1250,1200,1000,0,316,31002,0
+10939,150000,female,1,1,34,0,0,0,0,0,0,97874,130901,127985,126207,126814,125640,54190,6000,5000,5000,5000,5000,0
+10940,320000,female,1,2,27,2,0,0,0,0,2,253197,258621,262825,268326,284625,290787,11000,10000,9876,20900,11000,0,1
+10941,120000,female,2,1,28,0,0,0,0,0,0,96833,78920,74310,75710,77503,73945,3000,5000,3000,3000,4000,1500,0
+10942,620000,female,1,2,31,0,0,0,0,0,0,569023,562316,475333,473182,481896,513798,23009,20004,20008,14000,35804,250005,0
+10943,130000,male,1,2,37,0,0,0,0,0,0,22563,22222,21783,9421,8809,8596,1500,1505,1000,500,1000,115,0
+10944,230000,female,2,1,46,-1,-1,-1,-1,-1,-1,4328,1518,1958,368,1613,1371,1518,1972,368,1613,1371,752,1
+10945,60000,female,1,2,28,2,2,2,2,2,2,22343,24678,25079,24380,26022,26542,3000,1100,0,2200,1100,1000,1
+10946,420000,male,3,2,32,-1,-1,0,-1,-1,-2,41104,6784,6346,1409,14107,8379,6887,2028,1413,14109,8452,1928,0
+10947,80000,male,2,2,36,0,0,0,0,0,0,59189,35690,33984,34384,29340,21985,3007,1503,2017,1024,1017,2000,0
+10948,200000,female,1,1,42,0,0,0,0,0,0,23242,24575,25284,25938,26478,26889,1711,1420,1074,1107,1000,1000,0
+10949,80000,male,2,1,43,1,2,0,0,0,0,77871,71898,72926,73745,75675,75999,1261,3214,3000,3500,2266,3000,0
+10950,200000,male,1,2,34,3,2,-1,-1,-1,-2,1571,361,1716,460,0,0,0,1716,460,0,0,0,1
+10951,110000,female,3,1,42,0,0,0,0,0,0,116292,118781,121030,119267,116142,113887,5836,5780,5000,4206,5000,5000,0
+10952,60000,male,2,1,37,0,0,0,0,0,0,54770,58257,59675,60646,60071,60066,5000,3000,2500,2500,3000,2500,1
+10953,340000,female,1,1,33,0,0,0,-2,-1,-1,35695,40924,0,0,7687,21200,6018,0,0,7687,21200,10600,0
+10954,50000,female,3,2,22,0,0,0,0,0,0,50089,41382,36995,17726,13623,13781,1798,1117,4749,500,508,250,0
+10955,80000,female,2,2,48,0,0,0,2,0,0,60261,60129,57488,47846,48464,48940,2234,5311,0,1787,1700,1500,0
+10956,30000,male,2,2,29,2,2,2,2,2,2,21959,24685,24983,25375,25923,25358,3400,1000,1100,1100,0,2100,0
+10957,200000,female,2,2,24,0,0,0,0,0,0,21447,23429,26158,29486,27166,25954,2649,3500,4008,1098,1500,1000,0
+10958,200000,male,1,1,49,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,390,0
+10959,90000,female,2,1,34,2,0,0,0,-1,0,49530,18717,3053,3537,46816,47398,1449,1213,1087,47698,1740,1888,1
+10960,160000,male,1,1,49,0,0,0,0,-1,-1,143804,145244,145978,41600,2500,2500,6235,6632,1910,2500,2500,2500,0
+10961,50000,male,2,1,44,1,2,2,2,0,0,49615,48552,50175,12790,12743,17305,0,3056,0,2000,5000,3000,1
+10962,230000,female,1,1,36,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+10963,300000,female,1,2,27,-2,-2,-2,-2,-2,-2,525,7792,8347,10471,9813,10690,7797,8361,10490,9828,10698,6666,0
+10964,300000,female,1,1,59,-1,-1,2,2,2,2,2500,2500,2500,2500,2500,2500,0,0,0,0,0,0,0
+10965,50000,female,1,1,35,0,0,0,-2,-2,-2,50456,51400,0,0,0,0,2400,0,0,0,0,0,0
+10966,260000,male,2,1,45,-1,-1,-2,-2,-2,-2,3814,2688,500,2870,1141,679,2861,500,2870,1141,679,0,0
+10967,140000,female,2,1,38,-1,-1,-1,-1,-1,-1,1156,316,1156,736,316,1156,316,1156,736,316,1156,316,0
+10968,30000,male,2,2,28,0,0,0,0,0,0,25198,25988,27107,27450,29193,27372,1500,1600,1000,2100,1400,500,0
+10969,230000,female,2,2,35,-1,-1,2,-1,-1,-1,30300,1689,409,1333,168,140,1689,0,1333,168,140,0,0
+10970,260000,female,1,1,28,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+10971,110000,female,2,1,28,1,2,0,0,0,0,106932,103381,75794,76947,79105,72344,27,4000,3000,3000,10000,3000,0
+10972,360000,male,2,2,26,0,0,0,0,-1,0,89635,80129,75246,72996,73177,67271,3122,2007,1500,73177,2452,2256,0
+10973,20000,female,2,1,63,-1,2,2,0,-1,-1,858,2310,1716,929,978,0,1716,0,0,978,0,0,0
+10974,230000,female,1,1,41,-1,-1,-1,0,-1,-1,1886,8013,3962,1410,1410,1410,8034,4007,0,1410,1410,1410,0
+10975,220000,female,1,2,30,0,0,0,0,0,0,91178,99541,74718,64087,72992,74646,10128,10000,5000,10000,3000,10000,0
+10976,230000,female,1,2,32,1,2,2,2,0,0,205498,210424,212979,207759,212014,225246,10000,7598,0,8000,17000,0,1
+10977,500000,female,2,2,27,0,0,0,0,0,0,196931,138247,96888,16476,12534,394163,5188,3417,3000,1276,388071,11700,0
+10978,50000,male,3,1,36,0,0,0,-1,-1,-2,10849,3701,4600,2300,0,0,1101,1000,2300,0,0,0,0
+10979,500000,female,1,1,49,0,0,0,0,0,0,435737,421983,414453,422168,423674,413326,20157,13670,13596,14454,33720,12284,0
+10980,30000,female,2,1,22,-1,-1,-2,-1,0,0,4476,5814,5254,15570,10117,1875,5841,5280,15587,325,0,1400,1
+10981,50000,male,1,2,23,0,0,0,0,0,0,20655,21718,22316,22762,20231,19445,1701,1299,745,711,1000,685,0
+10982,80000,male,1,2,27,-1,-1,-1,-2,-2,-2,1300,179,0,0,0,0,179,0,0,0,0,0,0
+10983,40000,female,1,2,23,-1,-1,2,0,0,0,32346,35595,34113,35513,36513,35956,4082,0,2000,1000,500,0,0
+10984,500000,female,2,1,37,0,0,0,0,0,-1,156951,115610,81334,78637,36993,22089,20167,2114,1751,5132,22197,156937,0
+10985,30000,male,2,1,29,0,0,0,0,0,-2,29852,30348,31570,32661,0,0,1600,1738,1829,0,0,0,0
+10986,90000,female,1,2,28,0,0,0,0,0,0,62062,62617,57990,51537,52486,48483,2971,2168,1686,1878,1611,1334,0
+10987,20000,male,2,1,35,0,0,0,0,0,-1,20139,19067,19787,19682,7468,2312,1480,1200,394,210,5546,0,1
+10988,60000,male,2,2,22,1,3,2,0,0,0,25300,23150,20999,21423,19049,18282,0,0,1000,1000,1000,1000,0
+10989,500000,male,1,2,32,0,0,0,0,0,0,208603,211340,166739,166464,168722,170299,8444,8009,5301,5220,5419,5313,0
+10990,70000,male,1,1,40,1,2,2,2,2,2,12026,13531,13017,14299,13927,15692,2000,0,1500,0,2000,0,0
+10991,180000,female,1,2,26,-1,-1,-1,-1,-1,-1,873,7233,2701,1900,45517,9451,7233,2701,1900,45517,9451,5795,0
+10992,450000,female,1,2,38,0,-1,-1,-1,-1,-2,1414,1080,97,1749,0,0,1080,97,1749,0,0,0,1
+10993,220000,male,2,2,35,1,-2,-1,0,0,-1,0,0,81677,46177,3308,2912,0,220230,7308,0,2912,0,0
+10994,20000,female,2,2,45,1,1,-1,0,-1,-1,4516,-630,18976,8005,3034,9287,700,21400,1005,3034,9287,85,0
+10995,170000,female,2,1,50,-1,-1,-1,-1,-1,-1,79210,660,15360,891,13460,32136,660,15360,891,13460,32136,0,0
+10996,110000,male,1,1,48,0,0,0,0,0,0,73472,75431,76296,77260,72907,63104,3139,2529,2348,2308,2180,1687,0
+10997,70000,male,2,1,45,0,0,0,0,0,0,43050,43410,36226,29369,25873,26101,1888,1225,856,6000,1097,604,0
+10998,290000,male,5,1,38,-2,-2,-2,-2,-2,-2,555,0,0,0,0,0,0,0,0,0,0,0,0
+10999,50000,female,1,2,23,-1,-1,-1,-1,0,-1,1050,1050,974,1224,1224,1025,1050,974,1300,1050,1025,1050,0
+11000,160000,female,2,2,32,0,0,0,0,0,0,156098,156259,155404,153234,156731,155818,6000,6000,5600,6000,6000,5500,0
+11001,360000,female,2,1,37,-1,0,0,0,0,0,725,1172,1619,1266,1212,1324,1002,1002,202,501,502,501,1
+11002,200000,female,3,2,29,0,0,-2,-2,-2,-2,98700,0,0,0,0,-3500,0,1000,0,0,0,3976,0
+11003,200000,male,2,1,38,0,0,0,0,0,0,8565,86497,138640,75983,44160,34671,85000,60000,3500,2000,2000,2000,0
+11004,100000,male,2,2,29,-1,-1,-1,0,-1,-1,2494,1999,6632,6150,10122,2689,2005,6633,18,10152,2697,3607,0
+11005,70000,male,2,2,48,-1,-1,-1,-1,-1,-1,193,188,299,829,338,865,188,299,829,338,865,833,0
+11006,60000,female,2,1,23,2,2,0,0,0,0,63143,59608,59182,27882,24574,22330,0,1478,2000,1000,3000,2000,0
+11007,170000,female,2,1,43,0,0,0,0,0,0,51054,52127,52651,53851,53095,54316,2489,2000,2048,1927,2104,2071,0
+11008,50000,male,1,2,25,0,0,0,0,0,0,40181,66569,19281,18679,12980,8592,1500,2400,5700,8000,3062,1000,1
+11009,360000,male,2,1,28,0,0,0,-2,-1,-1,207571,182384,161295,199803,198614,2383,6114,4899,202074,200395,2383,98668,0
+11010,210000,male,2,2,24,0,0,0,0,0,0,40985,41028,42041,42842,43757,45403,1987,2000,1800,1757,2533,2030,1
+11011,20000,female,3,2,30,-1,-1,-1,0,0,0,390,286,9457,10311,10374,10692,286,9847,1000,1000,500,442,0
+11012,20000,male,2,2,24,0,0,2,2,0,0,17196,20609,20654,19118,18104,19846,4007,700,0,1000,2000,800,1
+11013,20000,female,2,1,37,0,0,0,0,0,-2,17312,17762,18814,19614,0,0,1500,1500,1000,0,0,0,1
+11014,460000,female,3,1,57,-2,-2,-2,-2,-2,-2,7516,23485,7398,6143,9634,9581,23524,7409,12286,9634,9581,38354,0
+11015,30000,female,1,2,22,1,2,2,0,0,0,25229,25533,24441,24441,11255,0,1000,0,0,0,0,0,1
+11016,30000,female,3,1,38,2,2,0,0,2,2,5685,5448,7347,8024,7751,9607,0,2000,800,0,2000,0,1
+11017,30000,female,1,2,26,0,0,0,0,0,-1,9417,4638,3617,3787,4820,914,3150,1000,1200,2000,914,7311,0
+11018,20000,male,2,1,33,1,2,0,0,3,2,18139,17559,18662,21345,20721,20836,0,1400,3000,0,600,0,1
+11019,150000,male,1,2,32,2,2,-2,-2,-2,-2,3354,-18,-18,-18,-18,-18,0,0,0,0,0,0,1
+11020,200000,male,2,1,27,0,0,0,0,0,0,112133,116017,119576,121954,124517,127441,5693,7000,4362,4525,5000,5000,0
+11021,110000,female,2,1,48,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+11022,400000,female,1,2,32,1,2,2,2,2,2,29864,29104,31379,27969,9513,1346,0,3000,0,1000,0,10025,1
+11023,50000,male,2,2,25,1,2,0,0,-1,0,11023,9497,4273,0,6805,5554,14,1000,0,6805,2000,3782,0
+11024,100000,female,1,1,28,0,0,0,0,0,0,106203,108327,106142,102449,100212,102674,8000,5300,3605,3500,4100,3000,0
+11025,120000,male,1,1,34,2,2,2,2,2,0,118096,120455,116061,116959,112050,111153,12000,0,9500,0,4100,5000,1
+11026,220000,female,1,1,43,-1,3,2,0,0,0,1090,1257,1090,1090,1090,0,167,0,0,0,0,0,1
+11027,100000,female,2,1,40,0,0,0,0,0,0,90828,83479,73749,68512,72518,65890,3523,3025,2344,5000,3000,2000,0
+11028,410000,female,1,1,35,-1,-1,-2,-2,-2,-1,99687,0,0,0,0,18000,0,0,0,0,18000,0,0
+11029,50000,female,2,1,28,1,2,0,0,2,0,5490,4471,5570,6676,5235,3728,0,1200,1308,0,500,1000,0
+11030,50000,male,1,2,26,0,0,0,0,0,0,50947,23750,11105,5960,5220,3024,3432,1071,158,500,400,337,0
+11031,90000,female,3,1,33,2,2,2,2,2,2,75619,77116,78252,78470,81056,82572,3300,3000,2100,4000,3001,3100,0
+11032,260000,male,1,2,30,-2,-2,-2,-2,-2,-2,-7,-7,-7,1544,-43,-43,0,0,1551,0,0,0,0
+11033,70000,female,1,2,24,0,0,2,0,0,0,8244,10569,8159,8241,9103,9361,2500,0,1000,1000,409,1000,0
+11034,130000,male,2,1,53,2,2,2,0,0,0,109994,125138,114344,96995,100086,92344,17100,17,4000,5000,4000,4000,1
+11035,120000,female,3,1,43,1,2,-1,-1,-1,-2,2057,1722,716,926,0,0,524,716,926,0,0,485,0
+11036,160000,female,3,1,44,1,-1,-1,-2,-2,-1,0,14121,0,0,0,150,14121,0,0,0,150,790,0
+11037,50000,female,2,2,32,0,0,0,0,0,0,49138,49718,49437,40186,19179,16043,2250,1900,1800,700,1000,1000,1
+11038,220000,female,1,2,27,-1,-1,-1,-1,-1,-1,3352,3352,3352,3352,3352,3352,3352,3352,3352,3352,3352,3352,1
+11039,500000,female,1,2,28,0,0,0,0,0,0,5392,6038,6972,7037,7603,10602,1502,1502,502,1003,10024,40060,0
+11040,360000,male,1,2,26,0,0,-1,-1,-1,-1,7127,6872,3381,1151,1155,381,1034,3397,1156,1160,382,1902,0
+11041,320000,male,2,2,32,1,2,2,2,2,2,114180,115491,109226,111673,111053,105999,5012,11,7013,4014,57,5031,0
+11042,380000,male,1,1,39,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+11043,70000,male,2,1,45,0,0,0,0,0,0,31218,32321,41713,42233,43288,46001,1608,10000,1511,1735,3600,0,1
+11044,120000,female,1,1,32,-1,-1,-1,-1,-1,2,3556,326,326,476,802,326,652,326,476,802,0,326,1
+11045,80000,female,3,1,52,1,-1,-1,-1,-1,-1,0,2583,3001,21306,5051,2450,2583,3001,21306,5051,2450,0,1
+11046,220000,male,1,2,25,1,2,0,0,0,0,222737,216397,207870,172612,166705,166192,0,7109,6050,6000,9111,6171,0
+11047,20000,male,2,2,34,0,0,0,0,-1,0,15494,11950,11292,10790,780,780,1488,1220,608,780,0,0,0
+11048,50000,male,2,1,39,0,0,0,0,0,0,46410,48710,8108,7358,3098,0,5000,2001,2000,0,0,0,0
+11049,120000,female,2,1,34,-1,-1,-1,-1,0,0,326,499,1870,652,326,0,499,1870,652,0,0,1705,0
+11050,50000,female,1,2,30,-1,-1,-1,-1,-1,-1,14855,7468,12372,14029,14298,16496,7468,12534,14031,14298,16496,600,0
+11051,80000,female,1,2,24,0,0,0,0,0,0,81111,67891,56993,42663,43136,43676,3000,7139,6000,1694,2000,3000,0
+11052,130000,male,2,2,28,0,0,0,0,0,0,119513,121776,122440,125189,127644,74295,6000,4500,5100,5365,2846,2600,0
+11053,450000,male,1,3,37,-2,-2,-2,-2,-2,-2,324,302,5018,317,1614,324,303,5041,1,1622,325,316,0
+11054,80000,male,2,2,27,2,0,0,0,0,3,56789,58276,60102,61423,72197,71003,2400,3000,2500,11576,39,38,1
+11055,100000,female,3,1,39,0,0,0,0,0,-1,4247,4097,6314,3410,1396,1640,1283,2500,1500,1000,1700,300,0
+11056,260000,female,2,1,43,2,2,2,2,2,2,2500,2500,2500,2500,2500,2500,0,0,0,0,0,0,1
+11057,50000,male,3,3,45,-1,0,-1,-1,-1,-1,24077,22385,3000,5260,1025,5900,1000,3008,5260,1025,5900,2800,0
+11058,200000,female,1,2,30,0,0,0,0,0,0,74961,69702,63210,57098,46455,38265,2513,1656,5000,20000,15000,14000,0
+11059,260000,female,2,1,40,-2,-2,-2,-2,-2,-2,209,217,613,2339,1474,1254,217,613,2339,0,1254,431,0
+11060,470000,male,3,2,37,2,0,0,0,0,0,499024,494290,470617,398523,389927,381295,20600,19000,14000,13600,13600,13500,1
+11061,100000,female,2,1,41,0,0,0,0,0,2,76828,77371,85154,84914,83097,1308,4000,10200,2100,2850,0,72375,0
+11062,360000,male,1,2,31,-1,-1,-1,-2,-1,-1,509,1350,0,0,1713,4819,1363,0,0,1713,4819,6439,1
+11063,50000,male,2,2,24,0,0,0,0,0,0,42025,37828,6382,6284,6681,6813,1500,2000,1000,500,243,256,0
+11064,20000,female,2,1,23,0,0,0,0,0,0,18774,18608,18312,18474,18074,19618,1700,1577,2000,808,2000,2000,0
+11065,360000,female,2,2,34,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+11066,190000,male,1,2,31,0,0,0,0,0,0,182396,187565,188334,182889,81409,85059,8300,5302,6037,3500,5000,4000,0
+11067,180000,female,2,2,34,0,0,0,0,0,0,59076,50505,38547,63249,51437,45279,3000,3000,33000,2000,2000,2000,0
+11068,220000,female,2,1,35,0,0,0,0,0,-1,228754,227903,93311,67900,64150,6000,10626,3600,3100,4000,6000,0,0
+11069,200000,male,3,1,34,0,0,0,0,0,0,75420,73548,47100,27112,21220,15719,3015,1903,10033,949,10078,92757,0
+11070,150000,female,2,2,29,-1,-1,-1,-2,-1,-1,1739,1984,112,0,3865,5562,1984,112,0,3865,5575,10963,0
+11071,240000,male,2,1,41,0,0,0,0,0,0,22165,21292,16469,13737,9071,177268,7002,3002,5002,3009,177004,5452,1
+11072,340000,female,2,2,28,0,0,0,0,0,0,329096,259604,231178,201471,181740,140088,10025,7007,7865,5795,5000,4000,0
+11073,100000,female,2,2,26,-1,0,0,0,0,0,53743,52320,46686,44497,44674,42653,3000,2500,3000,2000,5000,2600,0
+11074,80000,male,3,1,29,0,0,0,0,0,0,42488,43805,45126,45775,48033,56981,2000,2051,1700,3000,10000,2200,0
+11075,210000,male,1,1,40,0,0,0,0,0,0,60183,63035,70237,70228,67289,85008,10000,10000,10000,2576,20000,10000,0
+11076,300000,female,2,1,38,-1,-1,-1,-1,0,0,5848,24718,45114,16949,9537,0,24718,45533,17136,0,0,0,0
+11077,220000,female,3,1,37,-1,-1,2,-1,-1,-1,200,400,200,200,350,350,400,0,200,350,350,200,1
+11078,250000,female,1,2,50,1,-2,-1,-1,-1,-1,0,0,138,946,377,0,0,138,946,377,0,0,0
+11079,70000,male,2,2,32,0,0,0,0,0,0,37199,38296,39357,40302,41202,41865,1700,1700,1600,1700,1500,1600,0
+11080,170000,male,1,2,27,2,0,0,0,2,2,46899,45809,44572,43211,41394,37958,2732,2578,2300,2000,1200,0,0
+11081,160000,female,2,2,34,0,0,0,0,0,0,57287,12226,13962,14844,15716,131874,1264,2000,1000,1000,116425,4500,0
+11082,110000,male,2,2,24,0,0,0,0,0,0,105927,65575,66495,67415,68538,78911,2375,2395,2397,2583,12000,2583,0
+11083,60000,female,1,2,25,-2,-1,-1,-1,-1,-1,564,2035,2175,3528,10260,6378,2045,2175,3528,10260,6378,6869,0
+11084,290000,female,2,2,29,-2,-1,-1,-1,-1,-1,0,1591,0,302,390,1278,1591,0,302,390,1278,0,0
+11085,240000,female,3,2,33,0,0,0,0,0,0,221960,223205,226399,203561,205730,199631,9500,10000,7100,7500,7990,7000,0
+11086,30000,female,2,2,23,4,3,2,2,2,2,28607,27868,28312,28747,29439,29909,0,1200,1200,1300,1100,0,0
+11087,490000,male,1,1,45,-1,-1,-1,-1,-1,-1,9763,7059,5606,3136,3353,12336,7059,6000,3136,3353,12336,1493,1
+11088,20000,male,3,2,43,1,-1,2,0,0,0,-20,780,780,1560,780,0,800,0,0,0,0,0,0
+11089,260000,male,1,2,34,0,0,0,0,-2,-2,254332,257628,161545,0,0,0,11710,7503,0,0,0,195603,0
+11090,210000,female,1,2,32,-1,2,-1,-1,-1,-1,552,276,381,404,943,1909,0,381,404,943,1909,465,0
+11091,300000,female,1,1,47,-2,-2,-1,-1,-1,-1,3289,5189,7128,5916,9634,0,5189,7128,5923,9634,0,6485,0
+11092,40000,male,2,1,42,-1,-1,-1,-1,-2,-2,780,0,780,0,0,0,0,780,0,0,0,0,0
+11093,500000,male,1,2,37,-1,-1,-1,-1,-1,-1,3214,0,3030,1167,2255,0,0,3030,1167,2255,0,0,0
+11094,260000,female,1,2,30,2,-1,-1,-1,-1,-1,1196,1563,1443,1443,1443,1443,2000,1500,1443,1443,1443,3943,0
+11095,90000,female,2,1,37,0,0,0,0,0,0,85220,86745,71536,72964,64487,65845,3000,3000,2411,2294,2383,2285,1
+11096,20000,male,2,2,25,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+11097,270000,female,1,2,31,0,0,0,0,0,0,167428,168827,148031,92943,94464,92899,6155,5382,3270,3377,3329,3553,1
+11098,100000,male,2,1,42,0,0,2,2,0,0,58392,61562,61392,59619,59814,58571,5500,2000,2,2007,2225,1947,0
+11099,350000,male,1,2,31,0,-1,-1,-2,-2,-2,51900,1000,0,0,0,0,1000,0,0,0,0,0,0
+11100,200000,male,2,1,39,-1,-1,2,-1,0,0,162,1879,1707,617,620,0,1879,8,617,3,0,0,0
+11101,30000,female,2,2,39,1,2,0,0,0,0,26981,26264,27240,27440,28000,0,0,1500,600,560,0,15225,0
+11102,20000,female,2,2,23,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,390,0
+11103,240000,female,1,2,29,-1,-1,-1,-1,-1,-1,1356,326,326,326,476,326,326,326,326,476,326,3926,0
+11104,50000,male,1,2,30,1,2,2,0,0,0,7690,8805,9502,10189,10869,11533,1400,1000,1000,1000,1000,1000,0
+11105,80000,female,1,1,44,0,0,0,0,0,0,68677,68947,67025,64850,63658,63005,3152,2873,2380,2401,2492,2073,0
+11106,160000,male,1,2,29,-1,-1,-2,-2,-2,-2,2275,0,0,0,0,0,0,0,0,0,0,0,0
+11107,250000,female,2,2,26,0,0,0,0,0,0,70522,72062,73511,75314,74172,71933,2667,2700,3000,5000,2800,1800,0
+11108,50000,female,2,2,31,-1,-1,-1,-1,-1,-1,422,1334,3962,0,660,1840,1532,3962,0,660,1840,0,1
+11109,80000,female,3,1,45,-1,-1,-1,2,2,3,2516,0,1890,1712,4180,3820,0,1890,0,2523,0,0,0
+11110,90000,female,2,1,39,-1,-1,-1,-1,-1,-1,27571,337,3734,-45,1905,22636,337,3740,38,1950,22636,0,0
+11111,20000,male,2,2,22,0,-1,0,0,0,0,19666,20076,19875,19659,19310,16286,20700,2000,800,465,1000,0,0
+11112,50000,female,2,1,43,1,2,0,0,2,2,43791,42809,45085,48020,47120,50319,0,3000,4000,0,4000,2000,0
+11113,150000,female,2,2,23,0,0,0,0,0,0,146480,147880,146958,147218,146817,103651,6380,4570,4500,5000,3300,1300,1
+11114,50000,female,2,1,39,1,-2,-2,-1,-1,-1,0,0,0,2219,390,390,0,0,2219,390,390,390,0
+11115,500000,female,2,2,39,-1,0,-1,-1,-1,2,17749,22130,42532,-118,67910,54976,10106,42744,0,68445,42,1232,0
+11116,200000,female,1,2,28,-1,-1,-1,-1,-1,-1,326,326,326,326,326,326,326,326,326,326,326,326,0
+11117,90000,female,1,2,27,0,0,0,0,0,0,25118,26128,25248,26386,24171,25607,1440,1500,1500,2000,2000,2000,0
+11118,100000,female,2,2,39,0,0,0,0,0,0,100224,101236,101125,96765,99823,96165,4000,3544,3519,5000,3500,4000,0
+11119,600000,female,2,1,46,-2,-2,-2,-2,-2,-2,2585,1649,3474,1952,2182,2305,1652,3480,1957,2186,2310,7511,0
+11120,20000,male,2,2,22,-1,2,-1,0,0,0,2880,1435,1170,780,390,0,0,1170,0,0,0,780,0
+11121,60000,female,1,1,37,0,0,0,0,0,2,37934,39020,40071,41098,43536,44670,2000,2000,2000,3100,2000,0,0
+11122,180000,female,3,3,40,0,0,0,0,0,0,30712,27597,25427,21230,17357,13303,1774,3000,892,1000,620,440,0
+11123,290000,female,1,1,29,0,0,0,0,0,0,232319,109791,106730,93882,91746,76547,5071,4539,3000,3500,3856,3000,0
+11124,230000,female,3,1,32,-1,-1,-1,-1,-1,-2,8756,930,8400,1900,0,9198,930,8485,1900,0,9198,0,0
+11125,180000,female,2,2,34,0,0,0,0,0,0,115700,119834,121342,124337,127181,130147,6000,5000,5000,5000,6000,5000,0
+11126,150000,male,1,2,30,-1,-1,-1,0,-1,-1,3415,2419,1541,1345,23018,1989,2425,1541,4,23087,1996,4010,0
+11127,460000,male,2,1,39,0,0,0,0,0,0,168182,165850,163366,151904,146707,140104,6051,5677,5350,5473,5218,4542,0
+11128,140000,female,1,2,36,-1,-1,-1,0,0,-1,780,177,1170,390,0,930,177,1170,0,0,930,0,0
+11129,500000,female,1,2,41,-1,-1,-1,-1,-1,-1,2345,3595,1537,360,0,785,3595,1537,363,0,785,0,1
+11130,20000,male,3,1,36,0,0,0,-1,-1,-1,6620,7114,3948,18838,-71,8929,2151,3600,20044,65,9000,5203,0
+11131,70000,male,2,2,62,1,2,0,0,0,2,24635,23020,22496,22070,22101,20724,1100,1703,1000,1800,0,900,0
+11132,150000,male,1,2,23,-1,-1,-1,-1,-1,-1,1389,7139,813,3028,5264,208,7139,813,3032,5264,208,3538,0
+11133,10000,male,2,1,58,2,2,2,2,2,0,8857,9964,9654,10348,10044,10009,1400,0,1000,0,515,344,1
+11134,500000,male,1,2,33,0,-1,-1,0,0,0,76440,1397,56449,55121,54797,19732,1397,56449,1515,1426,747,1476,0
+11135,260000,female,1,1,37,-1,-1,-1,-1,-1,-1,2644,268,157,1484,307,157,268,157,1484,307,157,438,0
+11136,10000,female,5,2,24,-1,0,0,0,0,-2,5742,4576,4139,2583,0,0,1500,2000,583,0,0,0,0
+11137,210000,female,1,2,37,-1,-1,-1,0,-1,-1,10128,19631,23906,373,3073,7418,19631,23906,0,3073,7418,11894,0
+11138,180000,male,1,2,31,-2,-2,-2,-2,-2,-2,2930,3300,2860,4216,2609,9609,3300,2860,4216,2609,9700,6525,0
+11139,40000,male,2,2,31,0,0,0,0,0,0,37408,37681,37987,37100,37098,37846,1931,1888,1458,1489,1510,1505,0
+11140,180000,female,2,1,38,0,0,0,-2,-2,-2,9705,2170,0,0,0,0,1000,0,0,0,0,0,0
+11141,250000,female,2,1,39,-1,-1,-1,-1,-1,-1,8040,8099,45964,6496,11108,3321,8099,46224,6496,11108,3321,7154,0
+11142,50000,male,2,2,23,0,0,0,0,0,0,45256,41608,36554,19367,19705,19696,2161,1621,1000,1000,1000,1000,0
+11143,400000,female,3,2,35,-1,-1,-1,-1,-1,-1,8125,7017,10525,13295,11024,6666,7018,10542,13378,11045,6666,6862,0
+11144,240000,female,1,2,30,-2,-2,-2,-2,-2,-2,0,0,9625,8864,9248,23353,0,9625,0,9248,23353,1205,0
+11145,180000,female,1,1,33,-1,-1,-1,-1,-1,-1,3060,2337,766,316,4356,316,2337,766,316,4356,316,716,0
+11146,300000,male,1,2,33,-1,-1,-1,-1,-1,-1,4499,0,2299,900,1400,0,0,2299,900,1400,0,200,0
+11147,300000,female,2,2,32,0,0,0,0,0,0,192727,194694,188465,189094,179211,87266,8000,8001,5000,4030,4551,20000,0
+11148,140000,male,1,1,35,1,2,0,0,2,2,91296,88979,97448,105795,103988,110769,0,10000,10000,0,8500,4100,0
+11149,70000,female,1,2,25,-1,-1,0,0,-1,-1,2781,18180,3463,4256,4244,10032,18180,1500,3000,4244,10032,7329,0
+11150,20000,female,1,2,25,0,0,0,0,0,0,15465,16489,17509,17856,18270,18967,1280,1300,637,700,1000,1600,0
+11151,290000,male,2,1,36,-1,-1,-1,-1,-1,-1,16082,27310,12811,11111,24586,11992,27411,12821,11111,24586,11992,12772,0
+11152,130000,female,2,2,24,2,2,-1,0,0,-2,1176,0,41,1062,-201,-201,0,41,1021,0,0,0,1
+11153,70000,male,2,1,37,0,0,0,2,2,2,67573,68884,70511,48772,27026,26056,3000,3500,0,2200,0,1000,1
+11154,60000,female,3,2,26,0,0,0,0,0,0,58643,47548,48491,28518,29157,30073,2100,2000,1000,959,1300,500,0
+11155,340000,female,2,1,31,-1,-1,-1,-1,-1,-1,18495,1609,17707,31778,46063,43101,1611,17709,31780,47056,43117,46771,0
+11156,50000,female,1,1,34,-2,-2,-2,-2,-2,-2,51400,0,0,0,0,0,0,0,0,0,0,0,0
+11157,150000,male,2,2,29,0,0,0,0,0,0,71593,71123,29040,106509,85608,86191,3060,1531,80000,3101,4000,2438,0
+11158,180000,female,1,2,28,0,0,0,0,0,2,90874,79901,82451,83201,77081,74441,3000,3900,3400,5600,0,2600,0
+11159,50000,female,2,2,30,0,0,0,0,0,0,48779,50097,50313,10264,10082,9899,2400,1700,348,354,362,320,0
+11160,200000,male,2,2,39,0,0,0,0,0,0,15138,16396,6989,6619,7362,7252,1513,1106,335,845,1513,413,0
+11161,140000,female,1,1,33,0,0,0,0,0,0,55222,54293,53294,51558,52800,51806,2510,2450,1676,1900,1826,3968,1
+11162,190000,female,2,1,45,2,0,0,0,0,0,140329,128107,131132,96083,97453,99426,6800,7000,3585,3700,3754,7900,0
+11163,140000,female,1,2,26,0,0,0,0,0,0,84151,87784,90424,92022,95377,98237,5000,5000,4000,5000,5000,5000,0
+11164,50000,male,2,2,34,1,2,0,0,0,2,50940,48429,23091,10202,10476,10161,0,2000,500,1200,0,500,0
+11165,360000,male,2,1,47,0,-1,-1,-1,-1,-1,8289,389,389,389,389,389,390,390,390,390,390,375,0
+11166,180000,male,2,2,29,1,2,0,0,0,0,191262,183554,164619,133372,92101,60389,0,7100,5500,3500,3000,30000,0
+11167,160000,female,5,2,40,0,0,0,0,0,0,147977,149890,124283,123733,123275,122624,6000,4370,4400,4470,4420,6350,0
+11168,180000,male,2,2,30,0,0,0,2,0,0,40735,36337,36882,34000,34798,35488,1581,4626,0,1500,1419,1400,1
+11169,200000,female,2,1,39,-1,2,-1,-1,-1,-1,3603,272,5881,0,3331,0,0,5881,20,3331,0,8447,0
+11170,350000,female,1,1,32,0,0,0,0,0,0,67761,63187,58719,60737,63593,82202,8007,2200,3000,4000,20000,8000,0
+11171,90000,female,2,2,29,0,0,2,0,0,0,83158,91759,88487,88201,87219,86803,12128,0,3301,3136,3156,3244,0
+11172,50000,male,3,2,34,0,0,0,2,0,0,9110,10454,12274,11780,14578,18309,1500,2000,0,3000,4000,0,0
+11173,30000,male,1,2,29,1,-2,-1,0,0,2,0,0,22015,22649,24583,25227,0,22015,1000,2300,1200,0,0
+11174,280000,male,2,2,45,0,0,-1,0,0,0,170678,26031,191493,136249,111454,96425,7000,208141,5003,5002,5000,3000,0
+11175,140000,female,2,1,25,0,0,0,0,0,0,140876,48005,13650,12371,12511,10697,3600,4015,600,500,800,119,0
+11176,200000,male,1,2,38,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+11177,20000,male,3,1,29,0,0,0,-2,-2,-2,11136,20649,-1001,-1,-1,-1,10000,0,1000,0,0,0,0
+11178,120000,female,2,2,28,-1,-1,-1,-1,-1,-1,4174,3821,1113,390,390,14613,3821,1113,390,390,14613,770,0
+11179,130000,male,3,1,54,3,3,2,0,0,0,131139,132596,127906,86109,81941,84545,6000,0,3029,4000,5000,3300,0
+11180,150000,male,3,2,32,0,0,0,0,0,0,148352,151267,143254,137379,35290,1200,5210,5212,4610,706,1200,0,0
+11181,10000,female,1,1,37,0,0,0,0,0,0,7600,8473,8793,9106,7792,7500,3000,3000,3014,3000,3000,7589,0
+11182,200000,male,2,2,58,0,0,0,0,0,0,105836,108055,110258,112451,115090,117064,3923,4001,4025,4451,4167,3527,0
+11183,480000,male,2,1,44,-2,-1,-1,-1,-1,-1,21149,1729,20468,-16,3109,18216,1743,20690,0,3125,18307,524,0
+11184,80000,female,3,2,39,0,-1,-1,-1,-1,0,4285,1866,5256,4451,9937,13102,1866,5256,4451,9937,9000,22000,0
+11185,200000,male,2,2,31,0,0,0,0,0,0,173103,176817,180416,184018,188151,199766,6500,6546,6600,7100,15000,0,0
+11186,50000,female,2,1,40,1,2,2,2,2,0,37458,38514,30266,30897,30050,24651,2010,0,2000,0,2000,2000,0
+11187,130000,female,3,1,32,-1,-1,-1,0,0,-1,326,326,4058,5732,7406,4124,326,4058,2000,2000,4124,326,1
+11188,200000,male,2,1,28,2,2,7,7,7,7,2443,2443,2443,2443,2443,2443,0,0,0,0,0,0,1
+11189,170000,male,1,1,36,0,0,0,0,2,-1,82898,80400,29253,29196,22400,3605,10000,1400,2500,0,3605,0,0
+11190,150000,male,1,1,46,0,0,0,0,0,0,97832,98403,99263,100920,86781,71408,4555,3500,3300,3027,3000,2700,0
+11191,510000,female,1,2,35,-1,-1,-1,-1,0,0,198,3125,200,22397,28782,18617,3125,200,22397,18000,1000,1602,0
+11192,270000,female,2,1,65,1,-1,-1,-1,-1,0,0,2521,5145,8422,6374,1566,2521,5184,8422,6374,0,1429,0
+11193,130000,male,2,2,26,2,2,0,0,0,0,134836,128038,126862,97925,100484,54125,0,5000,3500,4055,10000,50000,1
+11194,130000,female,3,1,57,0,0,0,0,0,0,125824,80801,81929,41671,42034,32219,4000,4000,3000,2500,1500,2000,1
+11195,120000,male,2,2,34,-2,-2,-2,-1,-1,-1,67,0,0,222,836,1259,0,0,222,836,1259,2797,0
+11196,140000,male,1,1,43,-1,-1,-1,-1,-1,-1,1872,1249,1872,1453,1453,1034,1249,1872,1453,1453,1034,1872,0
+11197,360000,female,1,2,35,0,0,-1,0,0,-2,6392,3773,17917,21057,0,0,3000,18117,5371,0,0,0,0
+11198,50000,male,2,2,24,0,0,0,2,0,0,15519,19520,21103,20101,20402,20132,5000,2300,0,1000,2000,1000,0
+11199,30000,female,2,1,31,-1,2,2,3,2,2,699,309,-471,1479,1320,930,0,0,1950,0,390,0,1
+11200,30000,male,3,2,26,1,-1,2,0,-1,-1,-857,29237,1170,780,10500,0,30484,0,0,10500,0,0,0
+11201,150000,female,1,1,42,-1,2,2,-1,0,-1,496,1188,940,965,965,726,940,0,965,0,726,0,0
+11202,50000,male,3,1,58,0,0,0,-2,-2,-1,50456,51400,0,0,0,10400,2400,0,0,0,10400,0,0
+11203,10000,female,2,1,22,0,0,0,0,0,0,8730,8523,9527,9713,9762,10312,1303,1307,493,354,712,0,0
+11204,60000,male,3,2,26,1,2,0,0,0,0,61966,60308,47536,17079,18219,19542,0,5021,5000,2000,2000,1720,0
+11205,200000,female,2,2,28,0,0,0,0,0,0,63314,64699,66029,66836,68390,69800,3000,3000,2500,2632,2700,3500,0
+11206,50000,male,3,2,46,0,0,0,0,0,0,50297,46613,46666,20162,19864,19680,1852,4050,676,730,866,3000,1
+11207,10000,female,2,1,23,1,3,2,2,2,0,11640,10685,9730,11645,10702,10392,0,0,3000,0,500,1000,0
+11208,310000,female,1,2,44,-1,-1,-1,0,0,-1,11983,7759,16799,32372,6680,4732,7797,16818,20313,1006,4739,6615,0
+11209,170000,male,2,2,29,-1,-1,0,-1,-1,-1,3362,64602,18070,910,9080,4839,64612,4000,910,9080,4839,5130,0
+11210,310000,male,2,1,34,-1,0,0,-1,-1,-1,63908,64224,4595,636,72955,-18,1867,1023,641,73319,0,150,0
+11211,20000,male,1,1,50,0,0,-2,-2,-2,-2,9164,0,0,0,0,0,0,50000,0,1300,0,0,1
+11212,230000,female,1,1,39,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+11213,50000,male,1,2,31,0,0,0,0,0,0,4560,7302,9011,11540,14180,15307,3000,2000,3000,3000,2000,5000,0
+11214,260000,female,1,2,28,0,0,0,0,0,0,39105,45868,44567,37437,41321,43970,8000,8000,9000,13000,12000,10000,0
+11215,110000,female,2,2,59,2,0,0,0,0,0,89595,126322,59115,57149,54180,51796,2437,3804,1857,1840,1832,1648,0
+11216,210000,female,1,2,30,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+11217,260000,male,2,2,31,0,0,0,0,0,0,62446,54074,46407,38874,31324,24031,2000,2000,2000,2000,2000,72000,0
+11218,400000,male,3,1,51,0,0,0,0,0,0,373702,343591,352484,338823,283288,185288,13000,15000,14000,11500,8000,7000,0
+11219,20000,male,2,1,58,-1,-1,2,2,-1,-1,21116,21470,200,0,28740,1295,21654,0,0,28740,1565,0,0
+11220,180000,female,2,1,42,-2,-2,-2,-2,-2,-2,390,1260,598,2056,4300,1802,1260,598,2056,4300,1802,3691,0
+11221,180000,male,2,2,26,3,2,2,0,0,2,129728,132185,126527,126407,131572,127154,6006,5,5008,10006,10,5004,0
+11222,30000,male,3,2,44,2,2,2,0,0,0,28290,30728,29701,29121,29715,0,3600,0,600,594,0,0,0
+11223,50000,female,2,1,34,0,0,0,0,0,0,40798,38937,34737,18702,15604,16333,2000,2000,1000,578,1000,1000,0
+11224,150000,male,1,2,26,0,0,2,2,2,2,131490,145714,147332,149199,151978,148131,16441,5500,5800,5400,5000,0,0
+11225,30000,female,1,2,23,4,4,3,2,3,2,29944,29399,28632,30363,29594,30932,206,0,2500,0,2000,0,0
+11226,60000,male,1,2,24,0,0,0,0,-1,-1,8169,11027,27469,150,262,3467,3000,17000,0,262,3467,11250,0
+11227,500000,male,1,1,40,2,2,2,0,0,2,267116,271396,265433,270868,285667,290318,10100,0,9932,19502,9600,10031,1
+11228,180000,female,1,1,37,2,2,-2,-2,-2,-1,1310,0,0,0,0,1350,0,0,0,0,1350,1210,1
+11229,180000,male,3,1,35,0,0,0,0,0,0,111752,54470,48311,38221,33947,24731,2258,1734,1183,1174,1000,537,0
+11230,60000,female,2,1,48,0,0,0,0,0,0,46578,39085,18628,19002,19715,18900,1308,1290,664,1003,693,759,1
+11231,200000,female,1,1,30,1,-2,-2,-2,-2,-1,0,0,0,0,0,5659,0,0,0,0,5659,0,0
+11232,150000,female,2,1,25,0,0,0,0,0,0,147476,140352,110722,98874,65258,58027,6640,4100,4000,2675,2500,1500,1
+11233,190000,male,2,1,58,2,0,0,0,0,0,135184,139664,142293,113086,115433,117789,6586,5881,3292,3399,3469,5000,0
+11234,170000,male,2,2,42,0,0,0,0,0,0,102141,100600,103156,94090,95922,99324,4002,5107,3600,3500,5000,3000,0
+11235,280000,male,1,2,29,0,0,0,0,0,0,135056,130889,127768,130339,133035,135715,4547,4584,3647,3757,3799,3912,0
+11236,290000,female,3,1,43,-1,-1,-1,-1,-1,-1,1994,390,390,390,390,780,390,390,390,390,780,568,0
+11237,240000,male,2,1,44,0,0,0,0,0,0,21643,19743,20298,15475,15852,16208,1400,1300,1000,1000,1000,1000,0
+11238,110000,female,2,1,24,0,0,0,0,0,2,42667,43734,43495,43504,45987,44274,2600,1667,1525,4000,0,3000,0
+11239,140000,female,1,2,27,0,0,0,0,0,0,126785,129752,132554,268084,137061,129250,6500,6500,5000,5000,5568,3600,0
+11240,250000,male,2,1,38,2,0,0,0,-1,-1,67788,22453,13683,22970,5409,4490,5080,5028,15127,8028,5021,6032,1
+11241,100000,male,3,2,32,2,2,0,0,0,0,103540,98205,12605,10437,7920,7350,254,1418,250,306,524,23910,0
+11242,20000,female,3,1,54,0,0,2,0,0,2,6268,8221,6997,8028,9510,8815,3000,0,3000,2000,0,5363,0
+11243,120000,female,2,2,27,2,0,0,0,0,0,51244,51819,53375,54620,56170,57240,2000,2000,1700,2000,1700,1656,0
+11244,120000,male,1,2,30,1,-2,-1,-1,-2,-2,0,0,1990,0,0,0,0,1990,0,0,0,0,0
+11245,130000,female,2,2,25,1,2,2,2,0,0,4393,4178,10018,5353,5465,4559,0,6000,0,173,326,80,0
+11246,10000,male,2,2,24,0,0,2,2,-1,0,6933,9301,9000,0,10500,10674,2500,0,1000,10500,368,184,0
+11247,100000,male,1,2,31,0,0,2,2,-1,-1,27163,29408,29395,28895,105,955,3000,1000,0,1000,1000,1000,0
+11248,70000,female,2,1,34,2,2,2,2,2,2,16965,17398,18310,18611,18966,19403,1000,1500,900,800,900,2000,1
+11249,360000,male,1,1,37,-1,-1,-1,-1,-1,-1,25078,20970,14407,6820,10099,7806,21006,14430,6820,10099,7806,7862,0
+11250,130000,female,1,2,26,-2,-2,-2,-2,-2,-1,0,0,0,402,0,2054,0,0,402,0,2054,0,0
+11251,240000,male,2,1,38,0,0,0,0,0,0,132090,143966,155632,162379,156655,157536,20030,20000,10070,10037,13137,10052,0
+11252,20000,male,2,2,34,1,-2,-2,-2,-2,-1,0,0,0,0,0,8081,0,0,0,0,8081,0,1
+11253,60000,female,1,1,43,-1,3,2,0,0,-1,495,330,495,330,165,340,0,330,0,0,340,0,0
+11254,20000,male,2,1,45,4,3,2,0,0,0,21605,20987,20200,19600,19600,20000,0,0,0,0,400,0,0
+11255,50000,female,2,2,29,0,0,0,0,0,0,45013,43995,39478,19865,19388,19792,2007,1358,680,845,871,1000,0
+11256,230000,female,1,2,31,0,0,0,0,0,0,20356,21504,21729,23113,22936,23378,1676,1700,2007,1000,1000,1000,0
+11257,60000,male,1,2,29,0,0,0,0,2,2,40851,41891,44788,47728,48617,49669,2000,3600,3700,1800,2000,0,0
+11258,100000,male,2,1,42,0,0,0,0,0,0,100699,94528,89010,81545,75592,68715,3368,3995,2800,3267,2919,334,1
+11259,340000,female,1,1,49,1,-2,-2,-1,-1,-1,-11,-11,-11,2894,0,530,0,0,2905,0,530,0,1
+11260,260000,male,1,2,30,0,0,0,0,0,0,14096,15558,16986,17700,19401,21067,2000,2000,1000,2000,2000,2000,0
+11261,220000,female,1,2,41,-1,-1,-2,-2,-2,-2,2500,0,0,0,0,0,0,0,0,0,0,0,0
+11262,130000,female,1,2,27,-2,-2,-2,-2,-2,-2,5188,-26,3955,0,708,2773,0,3981,0,708,2773,860,0
+11263,300000,male,1,2,29,0,0,0,0,0,0,298072,305851,245210,204845,190840,165498,13636,10633,7016,10058,7125,5035,0
+11264,50000,male,3,1,47,1,2,0,0,0,0,66978,65198,48951,17744,36230,37128,0,2600,635,657,750,501,1
+11265,30000,female,2,2,25,1,2,2,2,2,2,26568,27456,27915,27185,28806,28208,1600,1200,0,2200,0,2500,0
+11266,280000,female,1,1,32,1,-2,-1,0,0,-2,0,0,3508,3508,-200,-200,0,3508,0,0,0,0,1
+11267,50000,male,3,2,26,2,2,2,0,0,0,22578,23720,23046,23314,23801,24354,1800,0,950,862,947,814,0
+11268,200000,female,3,1,42,0,0,0,0,2,-1,1554,1645,1408,1800,819,886,1345,1108,669,0,886,2415,0
+11269,360000,male,2,1,32,0,0,0,-1,-1,0,7230,9835,8217,2963,15437,15722,5017,2041,2980,16038,8032,10095,0
+11270,50000,male,2,2,23,0,0,0,0,0,-1,47038,51310,49956,19485,13925,15706,10020,2170,1200,4000,15706,10000,0
+11271,280000,female,1,2,31,-2,-2,-2,-2,-2,-2,1558,0,940,0,699,0,0,940,0,699,0,399,0
+11272,50000,female,1,2,43,0,0,0,0,0,0,42627,39610,26538,20818,19759,17907,1610,1279,687,690,671,506,0
+11273,180000,female,3,1,31,-2,-2,-2,-2,-2,-2,247,1562,1548,768,0,0,1562,1548,768,0,0,0,0
+11274,140000,female,2,1,37,1,-1,-1,0,0,-2,0,177,1460,1460,0,0,177,1460,0,0,0,0,1
+11275,120000,female,1,2,33,2,0,0,0,0,0,18653,19844,20908,21560,22214,22845,1500,1400,1000,1000,1000,2000,1
+11276,20000,male,2,2,30,0,0,0,0,0,0,20001,20041,20205,19998,20367,20399,1400,1290,694,869,2102,1214,0
+11277,130000,female,1,2,30,3,2,2,0,0,0,8830,9533,10220,10353,10636,10711,1000,1000,600,600,400,600,1
+11278,60000,female,2,2,29,0,0,0,0,0,0,54932,85672,41483,19394,18893,19043,1900,1572,1000,700,668,6000,1
+11279,360000,female,1,2,50,-1,-1,-1,-1,-1,-1,11530,11753,0,2855,1730,0,11763,0,2855,1730,0,11150,0
+11280,360000,male,1,2,32,0,0,0,0,0,0,26833,23626,20571,15423,15001,14917,1722,2636,1006,1003,1011,2003,0
+11281,260000,female,3,1,41,0,0,0,2,2,0,137614,137133,134970,88806,86858,89970,5700,9000,4500,0,5000,3700,1
+11282,50000,female,3,1,31,0,0,0,0,0,0,50612,43616,43339,29735,30360,29697,1879,1863,1042,1081,1081,1072,0
+11283,20000,male,2,2,43,-1,-1,-1,-1,-1,-1,54,54,54,54,54,54,0,0,0,0,0,2966,1
+11284,80000,male,1,1,34,0,0,2,2,2,0,73839,78934,76649,81845,80021,82334,6700,0,7500,0,4200,3000,1
+11285,210000,female,1,2,30,-1,0,0,0,-1,0,1993,2722,2753,291,582,291,1062,1000,0,582,0,2682,1
+11286,500000,male,2,2,30,0,0,-2,-2,-2,-2,380417,377866,-3634,-3634,-3634,-3634,9027,3634,0,1907,0,210000,0
+11287,50000,male,2,1,31,0,0,0,0,0,0,51319,52214,50260,32502,27697,25940,5000,2300,1100,1000,1000,1500,1
+11288,30000,female,2,2,27,2,0,0,-2,-2,-2,29810,1651,0,0,0,0,1000,0,0,0,0,0,0
+11289,260000,male,2,1,38,-1,-1,-1,-1,-1,-1,17949,5693,28669,1207,2654,1441,5722,28811,1313,2667,1447,2588,0
+11290,200000,male,1,1,40,-1,-1,-1,-1,-1,-1,4394,3366,9379,4253,4403,4326,3405,9436,4274,4424,4347,10741,0
+11291,290000,female,2,2,41,-1,-1,-1,-1,-1,-1,6959,6891,980,4059,2473,3332,6891,980,4059,2473,3332,3203,0
+11292,30000,male,2,2,27,0,0,0,0,0,0,10410,11431,12439,12530,12790,12891,1495,1503,594,610,462,478,0
+11293,260000,female,2,3,38,-1,-1,-1,-1,-1,0,8000,8000,8000,8000,24406,18043,8000,8000,8000,24406,2000,389,0
+11294,500000,male,2,1,33,0,0,0,0,0,0,88832,90687,84613,89944,80339,77214,6047,5016,10055,2513,3009,14542,0
+11295,180000,female,2,2,35,-2,-2,-2,-1,-1,-2,0,0,0,2072,-28,-28,0,0,2072,0,0,0,0
+11296,50000,male,3,2,30,2,0,0,0,0,0,50110,50322,27078,19107,19506,20024,1500,1620,1000,707,841,657,1
+11297,450000,female,1,2,40,-1,-1,-1,-1,-2,-2,9612,19253,6665,0,0,0,19293,6665,0,0,0,8768,0
+11298,110000,male,3,2,24,0,0,0,0,0,0,78453,48208,8882,47695,48461,48903,1500,1900,40000,2000,1800,1400,0
+11299,340000,male,1,2,29,0,0,0,0,0,0,191426,190339,148694,150872,149218,152598,8200,6500,6000,6000,6000,5000,0
+11300,20000,female,2,2,22,-1,2,2,-1,-1,-1,496,496,-4,400,2800,17333,0,0,404,2800,17333,346,0
+11301,50000,female,2,1,32,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+11302,140000,female,3,1,35,0,0,0,0,0,0,46915,115681,110827,113078,98901,100466,70000,4130,4600,3600,3600,3708,0
+11303,400000,female,1,1,31,-1,-1,-1,-1,-1,-1,5581,2833,1162,325,325,325,2833,1162,325,325,325,325,0
+11304,50000,female,2,2,40,-1,-1,-1,-2,-2,-2,15584,4377,0,0,0,0,4377,0,0,0,0,0,0
+11305,130000,male,3,2,53,-1,-1,-1,-2,-2,-2,7477,6519,1403,5773,2464,2108,6540,1411,5790,2571,2214,4172,0
+11306,70000,male,2,2,29,0,0,0,0,0,0,34449,35009,21307,8840,8131,7535,1600,1300,500,1000,1000,1500,1
+11307,40000,female,1,2,24,-1,-1,-2,-2,-2,-2,19133,0,0,0,0,0,0,0,0,0,0,0,0
+11308,130000,female,1,2,29,-1,-1,0,0,0,0,390,99235,98080,97224,97940,99170,99235,4368,3449,3713,3610,3531,0
+11309,70000,female,2,1,40,0,0,0,0,0,0,43045,44088,45102,45861,47951,49252,2036,2050,1809,3000,2251,1627,0
+11310,250000,male,1,2,30,0,0,0,0,0,0,6476,10023,12947,16095,23343,26028,5000,5000,4000,10000,4000,5000,0
+11311,150000,female,5,1,25,2,0,0,0,0,0,156252,121999,28119,100540,88865,88526,3468,1867,92920,3578,3000,2200,0
+11312,300000,male,2,2,31,0,0,0,0,0,0,285038,291480,298378,131103,128742,124882,12507,15056,5027,5007,5063,3039,0
+11313,20000,male,2,2,24,-2,-2,-2,-2,-2,-1,-331,19398,1238,5300,0,16100,19729,1000,5300,0,16100,0,0
+11314,20000,female,2,2,23,-1,0,0,0,0,0,6872,7805,8801,18601,18909,39156,1204,1200,10000,538,10000,600,0
+11315,20000,female,1,2,24,2,2,0,0,0,2,14750,14229,16438,16770,17995,17556,0,2773,605,1500,0,1456,1
+11316,210000,female,3,1,42,1,-1,-1,0,0,-1,0,1200,12466,16870,17741,13049,1200,12466,6004,6000,7282,9731,1
+11317,220000,male,1,2,31,-2,-2,-2,-2,-2,-2,332,332,328,1024,1888,1132,333,329,1029,1897,1137,1499,0
+11318,300000,male,1,2,32,-1,-1,-1,-1,-1,-1,2144,2085,2431,2198,14487,725,2085,2431,2198,14487,725,7818,0
+11319,120000,male,1,2,38,0,0,0,0,0,-1,52234,39644,19920,9155,14155,3867,1575,1800,1500,14000,4000,2850,0
+11320,50000,female,2,2,25,-1,2,0,0,0,0,6806,6552,7561,7712,7936,47743,0,1125,276,348,40000,1151,1
+11321,210000,female,2,1,42,-1,-1,-1,-2,-2,-2,4221,336,0,0,0,0,336,0,0,0,0,0,0
+11322,170000,female,2,2,56,-1,-1,-1,-1,-1,-1,4767,0,451,0,424,1482,0,451,0,424,1482,688,1
+11323,60000,female,1,2,23,0,0,0,0,0,0,27369,27961,28509,28628,28785,28921,1466,1452,1009,1040,1048,856,0
+11324,20000,male,2,1,41,2,2,3,2,2,2,17213,19041,18449,17857,18735,19277,2400,0,0,1320,1000,0,1
+11325,50000,male,2,2,27,2,0,0,0,0,2,41932,38411,30659,30963,30505,28696,1600,1712,1016,2500,0,2848,1
+11326,180000,female,3,1,43,1,-1,-1,-1,-2,-2,0,8016,1200,0,0,0,8016,1200,0,0,0,0,0
+11327,20000,female,2,1,28,2,2,2,0,0,0,20574,21041,19055,15335,10812,6483,1100,0,550,288,400,0,1
+11328,310000,female,1,2,32,1,-2,-1,0,0,-2,0,0,326,326,-235,-235,0,326,0,0,0,1200,0
+11329,130000,male,3,1,48,0,0,2,-1,-1,-1,11926,18095,5552,3038,11094,8670,10840,3,3041,11202,8671,6485,0
+11330,160000,female,2,2,25,0,0,0,0,0,0,153392,143297,140984,120742,115637,111354,8000,7000,5000,5000,5000,10500,0
+11331,500000,female,1,2,33,0,0,0,0,0,0,48206,45445,43875,34003,33079,28257,2100,1800,1500,1500,2000,10200,0
+11332,20000,male,2,2,29,0,0,0,0,0,0,18920,20302,19477,20210,20077,20022,1700,1300,1000,800,700,750,0
+11333,70000,male,3,2,53,0,0,0,0,0,0,14054,15078,15787,16100,16437,16764,1554,1263,576,596,600,622,0
+11334,130000,female,2,1,27,-1,-1,-1,-1,0,0,792,0,396,485,46773,47313,0,396,485,46684,1700,1712,0
+11335,310000,female,2,1,40,0,0,0,0,0,0,180225,85799,103459,80237,74627,52057,10000,20000,10000,6000,5000,5000,0
+11336,20000,female,3,2,25,-1,-1,-1,0,0,-2,12547,14699,900,900,0,0,14745,900,0,0,0,0,1
+11337,180000,female,3,1,41,-1,-1,-1,-1,-2,-1,3600,5184,5719,0,0,7632,5184,5719,0,0,7632,0,0
+11338,30000,female,3,1,43,1,2,2,2,2,2,12603,13103,13785,13911,13548,14465,1000,1200,646,0,1300,1000,0
+11339,50000,female,2,1,39,0,0,0,0,2,0,10960,12030,13125,14104,13735,14307,1250,1300,1200,0,800,600,0
+11340,210000,female,1,2,27,-1,-1,-1,-1,-1,-1,272,894,2168,762,660,3140,902,2168,762,660,3140,0,0
+11341,90000,female,1,2,42,2,0,0,0,0,0,88346,85975,86302,67592,69518,68228,3500,3500,3000,3000,3000,2800,1
+11342,20000,female,2,1,58,0,0,0,0,0,0,19698,19224,18690,17392,16408,16343,1315,1254,596,592,594,553,0
+11343,130000,male,1,1,29,1,2,0,0,0,-1,162757,143233,130477,99119,101535,89883,5,6000,5000,5000,100207,1622,1
+11344,60000,female,2,2,24,1,-2,-2,-2,-1,-1,0,0,0,0,150,560,0,0,0,150,560,1170,0
+11345,310000,female,2,1,35,0,0,-1,0,0,-1,14332,8257,11505,17264,10919,3185,1041,11512,7271,5000,3215,15558,0
+11346,80000,male,2,2,40,0,0,0,-1,-1,-1,81511,65605,62779,634,892,412,3200,3000,1000,1000,412,3542,0
+11347,200000,female,2,1,40,-1,-1,-1,-1,0,-1,7261,32333,12610,7850,977,9205,32543,13587,7850,0,9205,0,0
+11348,180000,male,1,2,27,0,0,0,0,0,0,94450,96632,99127,100581,102800,104931,4600,5000,4000,4000,4000,4200,0
+11349,200000,female,1,1,34,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+11350,180000,female,3,1,63,-1,-1,-2,-2,-2,-2,1344,0,0,0,0,0,0,0,0,0,0,0,1
+11351,10000,male,2,2,23,0,0,-1,-1,0,0,17834,8511,1651,9984,10096,9847,1033,1651,9984,415,358,114,0
+11352,50000,male,2,2,30,0,0,0,0,0,-1,51396,52908,7456,7608,7978,10400,2481,1000,152,370,11000,511,0
+11353,210000,male,3,1,33,0,0,0,0,0,0,44249,45146,30089,30400,24236,22002,8130,3027,10018,6,66,4008,0
+11354,20000,female,4,2,22,0,0,0,0,0,0,17576,17632,18385,18657,8539,0,1500,1200,1000,1000,0,0,0
+11355,50000,male,2,2,31,0,0,0,0,0,-2,47709,47838,49597,43885,0,0,3007,5230,1927,0,0,0,0
+11356,290000,male,1,2,43,0,0,0,0,0,0,197175,210932,217394,221950,228203,233974,17000,10000,10000,10000,10000,5000,0
+11357,360000,female,1,2,37,0,0,0,0,0,-1,16600,19190,20384,23255,22495,380,3194,2384,3271,2509,381,2469,0
+11358,500000,female,2,1,38,-1,-1,0,0,-1,0,2343,4666,3492,3008,16871,19188,4695,2506,2015,16883,5013,8031,0
+11359,50000,female,2,1,41,0,0,0,0,0,0,25395,26421,27741,27982,28589,29157,1440,1760,1001,1057,1063,5699,0
+11360,180000,male,2,2,25,0,0,0,0,0,-1,4236,5230,6570,7192,6437,12499,2001,2000,1018,6154,12527,5016,0
+11361,200000,female,2,1,44,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+11362,140000,male,2,1,48,0,0,0,0,0,0,80740,82439,84125,85968,88679,99558,3000,3060,3241,4264,12400,0,0
+11363,360000,female,2,1,46,-1,-1,-1,-1,-1,-1,6402,13301,3762,7483,6399,9145,13389,3785,7527,6418,9187,15762,1
+11364,60000,female,2,2,34,0,0,0,0,0,0,59291,60720,59503,49305,28903,28577,3000,2267,1000,1100,1300,1025,0
+11365,110000,male,2,2,24,0,0,0,0,0,0,91915,92168,90705,40086,41449,42260,3800,3818,1426,2000,2000,3261,0
+11366,50000,male,2,2,28,0,0,0,0,0,0,17868,18028,38126,18690,19082,19505,1711,20809,668,692,740,632,0
+11367,130000,female,2,2,27,-1,-1,-1,-1,-1,-1,390,390,390,390,390,380,390,390,390,390,380,400,0
+11368,20000,male,1,2,23,0,0,0,0,0,0,8693,10045,11776,11776,10886,-1000,1500,2000,0,0,0,0,0
+11369,200000,female,1,1,35,-1,2,-1,-1,-1,-1,1972,582,1891,0,1908,290,0,1891,0,1908,290,3100,1
+11370,10000,male,3,2,41,2,2,2,0,0,2,3983,4764,5528,7420,8298,8019,1000,1000,2000,1000,0,1390,1
+11371,330000,female,1,2,30,-1,-1,-2,-2,-2,-2,5014,59970,18585,13835,45476,25125,60207,18585,13835,45476,25125,21370,0
+11372,360000,female,2,1,34,0,0,-1,-1,-2,-2,9561,5866,1297,0,0,0,1166,1297,0,0,0,444,0
+11373,230000,female,2,1,46,-1,-1,-1,-1,-1,-1,3503,3354,858,5505,2263,10352,3970,858,5505,2263,10352,13000,0
+11374,140000,male,2,1,37,-1,2,-1,0,-1,-1,2081,991,1982,991,1091,1420,0,1982,0,1091,1420,7351,1
+11375,50000,male,1,1,38,-1,-1,-1,-1,-1,-1,2536,3147,8321,4453,4038,4764,3147,8321,4453,4038,4764,3662,0
+11376,30000,male,2,2,31,2,0,0,0,0,-1,23559,23381,540,150,-30,170,1000,500,0,600,200,5183,0
+11377,170000,male,1,2,29,1,-2,-2,-2,-1,-1,0,0,0,0,1015,0,0,0,0,1015,0,0,0
+11378,50000,female,2,2,32,1,2,0,0,0,0,49340,48297,49255,8838,9011,9872,0,3000,1000,1000,1000,1000,0
+11379,290000,female,1,1,35,-1,-1,-2,-2,-1,-1,703,-20,-20,-20,2663,-677,0,0,0,2800,0,0,1
+11380,140000,male,1,2,43,0,0,0,0,0,0,138859,141393,135784,136258,137747,138593,5100,4779,6000,6000,6000,5200,1
+11381,110000,male,2,1,39,0,0,0,0,0,0,49464,40359,34533,36819,32467,35806,3007,3000,3000,3000,4000,3000,0
+11382,170000,male,1,2,27,0,0,0,0,0,0,127902,131631,133090,130937,134043,137023,5631,5090,4937,5043,5023,11939,0
+11383,390000,female,2,1,31,0,0,0,0,0,-2,49667,33900,33545,16666,0,0,1700,17000,333,0,16666,13807,0
+11384,160000,male,1,1,47,-2,-2,-2,-2,-2,-2,1562,1499,-3,-3,1274,0,1503,0,0,1277,0,0,0
+11385,20000,female,2,1,37,4,3,2,0,0,0,20460,19860,19100,18500,18500,18500,0,0,0,0,0,4500,0
+11386,40000,male,1,2,24,0,0,0,2,0,0,36904,34372,38496,37580,38820,39693,1600,6700,0,2000,1700,1400,0
+11387,400000,male,2,1,37,-1,-1,-1,-1,-1,-1,7011,9639,8102,8585,12633,20338,10000,8501,9003,13000,20500,11000,0
+11388,260000,female,2,2,29,-2,-2,-2,-2,-2,-2,4400,942,1058,2106,2282,2531,942,1058,2106,2282,2531,0,0
+11389,260000,female,3,1,52,0,0,0,0,0,0,207627,212821,214885,219204,223899,228279,8535,6430,6495,6849,6799,32430,0
+11390,240000,male,1,2,48,1,3,4,3,2,0,180189,191054,192447,188156,183299,180090,15281,6000,0,0,9013,6183,0
+11391,230000,female,2,1,38,-2,-2,-2,-2,-2,-2,12696,9883,2035,6337,3388,2132,9883,2035,6337,3388,2132,2204,0
+11392,50000,male,2,1,45,-1,-1,-1,-1,-2,-2,4900,7222,3150,0,0,0,7222,3150,0,0,0,2977,0
+11393,400000,male,1,2,37,-1,-1,-1,-1,-1,-1,1783,1251,629,0,303,219,1251,629,0,303,219,1640,0
+11394,30000,male,2,1,31,0,0,0,0,0,0,29285,29390,30300,29463,29531,29901,1820,1730,1154,1034,1212,1054,0
+11395,300000,male,1,2,37,0,0,0,0,0,0,52268,53440,54615,47146,47486,16937,3000,3011,582,602,627,587,0
+11396,100000,female,1,2,24,-1,-1,2,-1,-1,2,7576,15532,7626,11896,15520,7156,15532,0,11896,11008,0,23164,0
+11397,130000,male,1,2,26,0,-1,0,0,0,0,4417,93163,90056,69832,46645,11869,105072,5000,3000,12000,10000,3500,0
+11398,180000,female,1,2,41,0,0,0,0,0,-2,6734,7752,8763,8938,8568,9357,1124,1135,310,378,1000,0,0
+11399,130000,male,3,2,24,1,2,0,0,0,0,101767,41823,33740,17009,11580,0,12,1407,347,11,0,0,1
+11400,130000,female,1,2,25,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+11401,50000,female,2,1,57,-1,-1,-1,-2,-2,-2,173,274,0,0,0,0,274,0,0,0,0,2590,0
+11402,230000,female,2,1,36,-2,-2,-2,-2,-2,-1,198,29430,22925,6120,6519,12051,29439,22993,6167,6519,12086,5948,1
+11403,140000,male,3,1,35,0,0,0,-2,-2,-2,136324,138438,0,0,0,0,5407,0,0,0,0,0,0
+11404,60000,male,2,2,30,0,-1,-1,-1,-1,0,41540,390,390,0,15666,15915,390,390,0,16056,1000,390,0
+11405,30000,male,2,1,23,-1,-1,-1,-1,-1,-1,390,390,390,0,780,0,390,390,0,780,0,0,0
+11406,40000,female,3,1,39,0,0,2,2,2,2,34378,37584,38072,37160,39628,40428,3768,1400,0,3081,1600,0,1
+11407,250000,female,2,1,40,1,2,2,-2,-2,-1,7067,998,0,0,0,1604,4,0,0,0,1604,0,0
+11408,20000,male,2,1,53,-2,-2,-2,-2,-2,-2,35419,31195,26849,23060,23060,-129,0,0,0,0,129,18143,0
+11409,120000,male,2,1,27,2,3,2,0,0,3,110162,107008,103800,106075,115747,113999,0,0,4000,11000,0,0,1
+11410,210000,female,2,2,29,0,0,0,0,0,0,86598,88304,90648,93164,94167,97672,4000,4000,4000,10000,5000,3000,0
+11411,380000,male,1,2,33,-1,-1,-2,-2,-2,-2,2500,0,0,0,0,0,0,0,0,0,0,0,1
+11412,130000,male,2,2,28,-1,-1,-1,-1,-2,-2,381,550,547,226,73,-121,551,548,226,105,89,0,0
+11413,80000,female,2,1,49,0,0,0,0,0,0,79545,80932,22320,22765,23393,23470,3708,1364,809,989,930,1216,1
+11414,80000,female,2,1,31,0,0,-1,0,-1,-1,3601,-876,6440,2802,1290,4547,9,9242,0,1290,4547,1850,1
+11415,140000,male,2,2,36,0,0,0,0,0,2,59693,61732,62411,64372,70015,68745,3000,2300,3000,6700,0,3000,0
+11416,220000,female,2,3,50,0,0,0,0,0,0,127571,116768,55863,57079,51202,53195,5200,2000,2000,2000,3200,2001,0
+11417,20000,female,2,2,23,1,2,2,2,2,2,6218,6959,8635,8350,9063,8771,1000,1800,0,1000,0,1000,1
+11418,200000,female,2,1,43,2,2,2,2,-1,-1,150,150,150,150,2500,0,0,0,0,2500,0,0,1
+11419,50000,female,2,1,24,0,0,0,0,0,0,37159,30814,27382,28081,28578,29450,1500,1500,1153,1100,1346,960,0
+11420,20000,male,2,2,30,0,0,0,0,0,0,20027,18971,19339,19733,19799,10400,1395,1153,547,611,600,0,0
+11421,230000,male,3,2,37,-1,0,0,0,-1,0,36571,35484,41862,21655,64645,44627,1700,10010,5000,64667,5003,3016,0
+11422,230000,female,2,2,29,2,2,2,0,0,0,232044,236365,229553,190525,192974,186407,9500,0,6829,7300,7000,7000,1
+11423,60000,female,2,2,24,1,-2,-1,-1,-2,-2,0,0,1668,844,200,2930,0,1668,844,1044,2930,3783,0
+11424,50000,male,3,1,54,2,2,2,0,0,0,18691,21072,20039,20042,20097,20288,3000,0,700,750,900,692,1
+11425,130000,male,3,1,40,-1,0,-1,-1,-2,-2,3015,2620,1330,0,0,0,1000,1330,0,0,0,0,0
+11426,20000,female,2,2,27,0,0,-1,2,2,2,17304,0,26373,26644,26079,27941,0,26373,1000,0,2300,1200,0
+11427,440000,female,2,2,31,0,0,0,0,0,-1,49803,25781,18400,10978,1175,32857,1390,4375,271,497,34255,1048,0
+11428,150000,female,1,2,23,-1,-1,-1,-1,-1,-2,227,6686,11609,3234,1414,5281,6692,11609,3623,1414,5281,2822,0
+11429,410000,male,2,2,42,-1,-1,-1,-1,0,-1,7114,8223,6557,16128,7539,5300,8309,6645,16141,0,5300,5600,0
+11430,320000,male,2,1,32,0,0,0,0,0,0,43265,28007,24986,23844,20650,0,1528,3019,2022,2000,0,82600,0
+11431,30000,male,2,2,26,0,0,0,0,2,0,26990,24706,25022,26405,25861,27778,4900,2000,2100,0,2500,1840,0
+11432,80000,male,2,2,29,1,2,0,0,0,0,75234,76417,76916,51070,52727,54847,3007,5090,2001,3000,3000,3000,0
+11433,50000,female,3,1,47,1,3,2,2,2,5,28164,27432,28668,29191,35551,34420,0,2000,1300,7000,0,0,1
+11434,50000,male,2,2,39,1,2,0,0,0,0,50468,48621,49987,19663,16769,16550,0,2600,650,752,596,578,1
+11435,140000,female,1,2,52,-1,-1,-1,-1,-2,-2,1388,0,980,0,0,0,0,980,0,0,0,0,0
+11436,500000,female,1,1,38,-1,-1,-1,-1,-1,-1,7789,9656,7477,8370,8890,6424,9666,7488,8370,8890,6424,21032,0
+11437,60000,female,3,1,48,0,0,0,0,0,0,59063,53377,37418,37543,35447,35641,2000,1900,1500,1300,1300,1300,0
+11438,150000,male,1,2,35,-1,-1,-2,-1,0,0,5888,0,0,11310,11310,0,0,0,11310,0,0,0,0
+11439,130000,male,5,2,46,2,0,0,0,0,0,79705,59716,38343,37834,37429,36991,2475,1600,1300,1400,1400,2000,0
+11440,20000,male,2,2,41,0,0,0,0,0,0,18577,18961,18126,16557,17519,17111,2000,2000,1000,3000,2000,3000,0
+11441,310000,male,2,1,43,-1,-1,-1,-1,-1,-1,4943,2691,2060,2004,2503,814,2691,2060,2018,2505,816,3052,0
+11442,90000,male,2,1,42,-1,-1,-2,-2,-2,-2,780,0,0,0,0,0,0,0,0,0,0,0,0
+11443,210000,female,1,2,46,-1,-1,-1,0,0,-1,15655,3918,29881,24247,21664,1556,4854,30366,0,433,1556,14047,1
+11444,10000,female,2,2,22,1,2,0,0,0,-2,7194,6934,8786,8014,0,0,0,2000,430,0,0,0,1
+11445,30000,male,3,1,59,0,0,0,0,0,0,29272,29096,22088,21624,21833,18174,1404,1268,694,866,695,838,0
+11446,30000,female,2,1,22,2,2,0,0,0,2,28574,14220,14188,7058,7976,7734,0,1230,1000,1000,0,2000,1
+11447,30000,female,1,2,24,0,0,0,0,0,0,28885,27924,27709,27457,26848,26407,1459,1414,952,1002,832,2698,0
+11448,220000,female,2,1,45,1,-1,0,-1,0,-1,0,6010,7069,43957,30693,13264,6010,1229,43957,614,13264,700,0
+11449,20000,male,3,1,45,-1,2,0,0,0,0,1340,950,1560,1170,780,780,0,1000,0,0,0,0,1
+11450,300000,male,1,1,30,-1,-1,-1,-1,-1,-1,649,949,1938,81,671,8067,949,1938,81,671,8067,1513,0
+11451,160000,female,2,1,30,0,0,0,-2,-2,-2,5331,6020,1194,694,1800,186,1153,1202,694,1800,186,3573,0
+11452,10000,male,2,2,25,0,0,0,0,0,0,5378,6482,7308,5736,6236,-764,1200,1000,115,500,180,5000,0
+11453,20000,female,2,2,23,2,0,0,0,0,0,16235,17857,18862,18931,19624,20049,2200,1610,679,1000,900,599,1
+11454,20000,male,1,2,29,3,2,2,2,0,0,16330,15784,18200,17613,18371,19865,0,3000,0,1200,1800,0,1
+11455,70000,male,2,1,26,0,0,0,0,0,0,66866,27072,26744,28087,27393,26646,2000,1396,3000,980,955,941,1
+11456,50000,female,2,1,30,0,0,0,0,0,0,43334,41935,14854,14125,12176,13827,1986,1040,1000,1000,3000,1000,0
+11457,130000,female,1,2,26,-1,-1,2,0,0,0,10274,10750,8699,7199,5699,6275,2352,0,199,199,2275,1699,0
+11458,180000,female,1,1,38,-1,-1,-1,-1,-1,-1,27959,13855,16277,0,28743,8210,13855,16277,0,28743,8210,14004,0
+11459,50000,male,2,2,28,1,2,2,2,0,0,9500,7913,9572,9281,8835,9038,0,1800,0,400,350,400,1
+11460,500000,male,1,1,44,-1,0,0,-2,-2,-2,35755,72000,0,0,0,0,40000,0,0,0,0,11621,0
+11461,340000,female,1,2,27,0,0,0,-1,-1,-1,30452,36919,24268,3210,3240,11095,6919,4322,3210,3240,11095,3345,0
+11462,150000,female,2,2,25,-2,-2,-2,-2,-2,-2,3303,125,7351,1279,0,0,125,7424,1279,0,0,0,0
+11463,150000,female,2,1,40,-1,-1,-1,-1,0,-1,32117,3502,2056,7756,4993,918,3505,2056,7756,0,918,22200,0
+11464,100000,female,2,1,47,0,0,0,0,0,0,27555,29798,31028,33544,35328,41835,3000,2028,3354,2328,7300,0,0
+11465,100000,female,1,2,28,0,0,0,0,0,0,16601,14414,11307,11139,11361,9816,1539,1124,495,500,758,0,0
+11466,30000,female,1,2,23,2,2,2,2,2,2,25487,26513,27026,27871,29017,28403,1738,1251,1596,1742,0,1374,1
+11467,150000,female,2,1,34,2,0,0,0,0,0,30821,33009,34867,24438,18883,14737,3000,3000,1000,2000,4500,0,0
+11468,10000,male,1,2,23,0,0,0,0,0,0,7684,8685,8557,7319,7650,8862,1300,1500,500,600,1500,0,0
+11469,190000,female,1,2,38,0,0,0,0,0,0,77720,79417,81326,81650,83354,85163,3774,3799,2874,2970,3138,3054,0
+11470,70000,female,1,2,33,0,0,0,0,0,0,39416,40784,42791,43797,44938,47177,2000,3000,1718,2000,3000,1630,0
+11471,360000,female,1,1,48,-1,-1,-1,-1,-1,-1,8243,10742,3300,0,1270,0,10752,3300,0,1270,0,889,0
+11472,500000,female,2,1,37,0,0,0,0,0,0,71455,79079,73583,79481,115741,168319,10004,10104,10000,40000,10000,10000,0
+11473,210000,male,2,1,45,0,0,0,0,0,0,82902,84897,56023,57137,58333,59373,3814,2931,2045,2117,2010,1853,0
+11474,320000,male,2,1,37,0,0,0,0,0,0,188106,178067,178018,172200,164032,165857,6496,6343,6003,5967,6525,5167,0
+11475,50000,female,2,1,22,0,0,0,0,0,2,39843,40662,41971,43020,46150,45288,1762,2000,2020,3800,0,2000,0
+11476,500000,female,1,2,38,0,0,0,0,-1,-1,4590,4218,5090,2043,8479,236,1128,1000,0,8479,236,2990,0
+11477,320000,male,2,1,42,-2,-2,-2,-2,-2,-2,730,1550,0,2000,700,760,1550,0,2000,700,760,810,0
+11478,80000,male,2,2,26,0,0,0,0,0,0,76304,78680,79897,27950,28579,29138,4203,3900,1200,1230,1230,1000,0
+11479,250000,male,1,1,42,1,1,1,1,2,2,352016,341600,321232,307354,285901,272322,15210,8273,8100,100,8942,254000,1
+11480,250000,male,1,1,40,-1,-1,-1,-1,-1,-1,396,396,396,396,396,109,396,396,396,396,109,0,0
+11481,220000,male,1,1,33,-2,-1,-1,-2,-2,-2,0,2500,0,0,0,0,2500,0,0,0,0,0,0
+11482,250000,female,1,2,37,-1,-1,-1,-1,-1,-1,1391,3498,8963,0,14660,62832,3498,8963,0,14660,62832,4620,0
+11483,50000,female,2,1,24,0,0,0,0,0,2,42120,41444,33933,28945,28131,27531,1921,1490,1148,2370,0,1179,0
+11484,360000,female,1,2,43,1,-1,-1,-1,-1,-1,0,10121,390,2809,390,390,10121,780,2809,390,390,390,1
+11485,260000,female,1,1,38,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+11486,50000,male,2,1,45,0,0,0,0,0,-2,9659,10610,6525,3660,0,0,1155,1000,73,0,0,0,0
+11487,20000,male,2,2,25,-1,-1,0,0,0,-2,390,5548,7001,6695,0,0,5548,2000,2000,0,3300,0,0
+11488,10000,male,2,2,23,0,0,0,0,0,-2,2068,6000,6457,6177,0,0,4400,1000,500,0,0,0,0
+11489,500000,female,2,1,34,1,2,0,0,0,0,523618,483244,459273,386722,366421,241182,0,16004,15004,15004,9814,31004,0
+11490,330000,female,2,2,33,1,-2,-2,-1,0,0,-271,-1648,-2437,95131,46017,46470,0,0,102680,1728,1695,2000,0
+11491,170000,male,2,2,34,0,0,0,0,0,0,113270,112012,114535,115448,117426,115675,6000,6000,4106,4312,5097,3800,0
+11492,20000,male,2,2,63,2,2,4,4,4,4,1650,1650,1650,1650,1650,1650,0,0,0,0,0,0,0
+11493,80000,male,2,1,29,0,0,2,0,0,0,37822,40900,39944,40744,42084,42923,3700,0,1462,2000,1536,2001,0
+11494,240000,female,2,1,32,-1,-1,-1,-1,-1,-1,4101,7101,5500,5500,5500,5463,8500,5500,5500,5500,5463,5500,0
+11495,150000,female,2,2,28,0,0,0,0,0,0,46576,43583,45569,46533,47653,49729,2500,3000,2000,2000,3000,2000,0
+11496,200000,male,2,1,34,0,0,0,0,0,0,135654,173946,176894,170754,172332,175960,66022,6101,5898,6053,6288,8000,0
+11497,300000,male,1,2,33,0,-1,0,0,0,-1,1617,7785,3420,814,-494,8006,7785,3000,0,0,8500,0,0
+11498,100000,male,2,1,35,4,4,3,2,2,2,82348,82156,83318,81380,83710,88057,1700,3100,0,3800,5900,3200,1
+11499,290000,female,2,2,33,0,0,0,0,0,0,14026,9154,2778,9981,23989,22667,9000,2000,9000,23000,22000,1797,0
+11500,100000,male,3,1,56,0,0,0,0,0,0,10882,11952,13047,13330,14112,14477,1250,1300,500,1000,600,600,0
+11501,10000,male,1,3,46,0,0,0,0,0,0,6772,7790,8799,8974,9162,9375,1128,1137,312,323,356,268,1
+11502,420000,female,1,2,41,0,0,0,0,0,0,79899,82012,84079,85614,87053,88657,3391,3427,2909,2877,2976,2686,0
+11503,20000,female,2,1,42,0,0,0,0,0,0,19185,18621,19605,19717,19203,19871,1323,1307,691,705,995,722,0
+11504,300000,female,1,1,37,-1,-1,-1,-1,-1,-1,616,1370,916,316,898,748,1370,916,316,898,748,748,0
+11505,50000,male,3,2,26,0,0,0,0,0,0,42040,30427,17818,17028,16387,15728,2000,2000,1000,1000,1000,1000,0
+11506,180000,female,2,1,44,-1,-1,-2,-2,-1,-1,33800,0,0,0,1972,0,0,0,0,1972,0,1800,0
+11507,420000,male,2,1,41,-1,-1,-1,-1,-1,-1,16657,2578,523,1855,14539,7647,2590,525,1864,14611,7685,26477,0
+11508,100000,female,2,1,49,-1,-1,-1,-1,-1,-1,10430,3313,490,6974,8018,8441,3313,490,6974,8018,8441,11461,0
+11509,80000,female,2,2,38,2,0,0,2,0,0,18733,20081,17245,13507,14479,14083,2000,2500,0,2000,2000,3000,0
+11510,210000,male,1,1,42,0,0,0,0,0,0,103772,95228,87678,79254,71836,63675,4000,4000,3000,4000,3000,3000,0
+11511,80000,male,3,1,42,1,-2,-2,-2,-2,-1,0,0,0,0,0,7010,0,0,0,0,6204,1000,0
+11512,240000,female,1,2,31,0,0,0,0,0,2,65220,68155,70184,71784,78659,81212,4000,3167,2767,8233,4000,4000,0
+11513,500000,male,1,1,45,-1,-1,-1,-1,-1,-1,37875,150573,32413,193427,21978,38102,162003,32611,200967,22074,38272,3491,0
+11514,100000,male,2,2,27,0,0,0,0,0,0,10458,9899,6618,3895,4037,12959,2500,1162,3000,159,11845,200,0
+11515,610000,female,1,2,36,-2,-2,-2,-2,-2,-2,874,-256,-255,-538,107592,168966,0,1,0,108130,30695,179,0
+11516,170000,male,2,2,27,-1,-1,-1,-1,-1,-1,416,416,416,416,416,416,416,416,416,416,416,416,0
+11517,320000,male,1,1,45,-2,-2,-2,-2,-2,-2,37361,21796,10798,9198,2314,14497,21903,10832,9244,2325,14568,29249,0
+11518,200000,female,3,1,38,0,0,0,-1,-1,2,60473,151786,109495,13785,22173,10482,101796,29894,13943,21865,0,26218,0
+11519,360000,male,1,2,35,1,-1,-1,-2,-2,-2,0,1010,0,0,0,0,1010,0,0,0,0,0,1
+11520,200000,male,2,1,34,1,-2,-1,-1,-2,-2,0,0,188,0,0,0,0,188,0,0,0,0,0
+11521,150000,female,2,1,39,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+11522,100000,male,1,1,44,0,0,-2,-2,-2,-2,48850,0,0,0,0,0,0,0,0,0,0,0,0
+11523,200000,male,1,2,29,0,0,0,0,0,0,45841,37221,34718,32148,25380,22701,4000,7000,7000,7000,7000,295,0
+11524,30000,male,2,1,26,-2,-2,-2,-2,-1,0,-201,349,-199,0,199,199,550,0,199,199,0,3915,0
+11525,260000,male,1,1,36,0,0,0,0,0,0,239206,212271,191813,193555,197090,200841,9029,9000,7100,7509,8000,6888,1
+11526,300000,female,2,1,34,-1,-1,-1,-1,-1,-1,1000,1000,1000,1000,2000,1000,1000,1000,1000,2000,1000,1000,1
+11527,110000,male,2,1,32,0,0,0,0,0,0,73772,75299,72978,67877,60444,61737,2765,2404,2292,2196,2300,2200,0
+11528,50000,female,1,2,24,-2,-2,-2,-2,-2,-2,780,0,580,-200,300,0,0,580,0,500,0,0,0
+11529,500000,male,3,2,44,0,-1,-1,-1,-1,0,16179,1520,2031,2593,45858,161299,2029,5262,3023,45868,130586,5024,0
+11530,60000,female,1,2,30,0,0,0,0,0,0,24396,25463,27036,27074,25911,26431,1463,2036,937,1911,951,2056,0
+11531,80000,male,1,2,39,0,0,0,0,0,0,49171,50376,51536,52782,53781,55389,2000,2000,2100,2000,2500,2500,1
+11532,370000,male,1,1,40,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+11533,150000,male,2,2,38,-1,-1,-1,-1,-1,2,476,476,476,476,1102,476,476,476,476,1102,0,476,0
+11534,210000,male,1,2,35,1,-2,-2,-2,-2,-2,-36,-18,-18,-18,-18,-18,0,0,0,0,0,0,0
+11535,500000,female,2,2,34,0,0,0,0,0,0,175570,141773,132747,94651,73734,62519,8734,40000,3912,2101,34000,32000,0
+11536,150000,male,1,1,42,8,7,6,5,4,3,161569,159190,155821,153075,151269,149723,0,0,0,0,0,15,1
+11537,110000,male,2,1,39,0,0,0,0,0,0,54806,54544,55357,56281,56483,56685,2000,2200,2200,2149,2170,2000,0
+11538,60000,female,1,1,49,0,0,0,0,0,0,61618,61382,34958,33760,32946,0,2800,1400,675,659,0,3353,0
+11539,480000,female,1,2,33,0,0,0,0,-1,0,621749,550102,475386,384078,397682,399659,22024,21008,17134,400046,17003,4436,0
+11540,30000,male,1,2,35,2,2,2,2,2,2,14489,15460,15514,14968,16026,15619,1500,600,0,1300,0,1300,0
+11541,240000,female,2,1,28,1,2,2,2,0,0,210333,206332,214981,194817,186895,168541,0,12014,0,5307,5001,4505,1
+11542,350000,female,1,2,40,1,-2,-1,-1,-2,-2,-644,-644,5170,-1496,-2366,-2366,0,6033,1500,4,0,1500,0
+11543,240000,female,2,1,38,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+11544,80000,female,1,2,27,0,0,0,0,0,0,77967,79561,61018,36084,13693,79701,3565,1752,1105,1499,78000,0,0
+11545,100000,male,1,1,43,0,0,0,0,0,0,42451,43564,45522,46832,37683,28680,2100,3000,2500,2000,2000,2000,0
+11546,30000,female,2,1,30,-2,-1,-1,-2,-1,-1,3165,13538,390,1050,1251,962,13538,390,1050,1851,962,0,0
+11547,290000,male,1,2,41,-2,-2,-2,-2,-2,-2,3394,-186,37392,6106,14839,11209,0,37578,6136,14913,11264,2296,0
+11548,200000,male,1,1,34,-1,-1,-1,-1,-1,-2,3692,-16,1886,4700,0,0,0,1902,4723,0,0,0,0
+11549,360000,female,1,1,32,-1,-1,-1,-1,-1,-1,39587,17900,5307,23102,64617,10542,18011,5307,23102,64617,10542,9702,0
+11550,430000,male,2,1,46,0,0,-1,0,0,0,52930,960,354716,361373,368484,365148,510,358689,15066,14126,13065,12908,1
+11551,150000,male,1,2,44,0,0,0,0,0,0,13786,14418,15429,15094,15525,0,1232,1243,688,825,0,0,0
+11552,200000,male,2,2,30,-2,-2,-2,-2,-2,-2,48492,49934,24753,123439,132269,129224,20294,24891,125171,17816,26269,4349,1
+11553,50000,male,3,1,31,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+11554,240000,female,3,1,36,1,-1,-1,-1,2,0,-608,1966,4421,8521,8323,16620,5000,5000,10112,0,13000,10000,0
+11555,20000,female,1,2,24,0,0,2,0,0,0,3634,6568,7307,8027,8892,9739,3000,1000,1000,1000,1000,1000,0
+11556,150000,female,1,1,30,-2,-2,-2,-2,-2,-2,10427,-20,-20,-20,-20,-20,0,0,0,0,0,0,0
+11557,230000,male,1,1,39,0,0,0,0,0,0,18835,22319,18732,11986,13596,7469,10005,8737,4000,8000,3000,5891,0
+11558,20000,male,2,1,31,-1,-1,-1,0,-1,-1,836,390,780,390,390,0,390,780,0,390,0,780,1
+11559,100000,female,2,1,33,1,2,2,2,2,2,23384,22722,24909,24210,26103,27554,0,2569,0,2287,2028,0,0
+11560,280000,female,2,1,30,0,0,0,0,0,0,71770,74066,75907,77723,79550,81801,4000,3000,3000,3000,3500,4000,1
+11561,90000,female,3,1,39,0,0,0,-1,-1,-1,4968,4713,2290,1764,1728,1954,1203,1005,1764,1728,1954,1416,0
+11562,240000,female,1,2,29,0,0,0,0,0,0,23094,18951,18977,12055,7878,5531,2009,2000,300,1000,2000,2000,0
+11563,80000,male,3,1,27,2,-1,0,0,0,0,40846,3099,1950,1170,780,780,1149,1000,0,0,0,2440,1
+11564,160000,female,2,1,34,0,0,0,-1,-1,-1,51721,46381,25254,10740,50207,10298,2037,1000,10740,50207,10298,17413,0
+11565,280000,female,1,1,37,0,-1,-1,0,0,-1,1908,12699,7819,7831,5428,2295,12763,7819,12,27,2309,13004,0
+11566,170000,female,1,1,30,2,2,2,2,2,2,158819,161487,157577,168094,170922,166972,6500,0,13000,5500,1000,7000,0
+11567,90000,female,2,1,47,2,2,2,0,0,2,61066,62999,61388,64376,67347,74960,3500,0,4000,4000,8900,0,1
+11568,160000,female,1,2,29,-1,2,-1,0,-1,2,2599,1302,1852,736,3542,1852,0,1852,0,3542,0,1116,0
+11569,420000,female,3,1,36,-2,-2,-1,0,0,0,0,0,277510,279493,285447,291183,0,277510,10000,10000,10000,10500,0
+11570,280000,male,2,2,30,-1,-1,-1,-1,-1,-1,651,1650,651,651,651,651,1650,651,651,651,651,0,0
+11571,30000,male,2,2,26,1,2,2,2,2,2,17989,17417,19807,20186,19725,22225,0,3000,1000,0,3000,0,1
+11572,140000,female,1,2,34,2,0,0,2,0,0,125623,128592,137440,126342,130295,132945,5000,11000,0,6000,5000,7000,0
+11573,220000,male,1,1,48,2,-1,-1,-1,0,-1,1480,9202,26390,13007,7387,20018,9202,26390,13007,0,20018,14661,0
+11574,260000,female,1,2,27,-1,-1,-1,-1,0,-1,399,399,399,798,399,399,399,399,798,0,399,399,0
+11575,170000,female,2,2,27,1,-1,0,0,0,0,-1020,25607,23922,24399,24919,26884,27107,1500,863,903,3000,6186,0
+11576,190000,female,2,1,33,0,0,0,-2,-2,-2,40173,41150,0,0,0,0,2200,0,0,0,0,0,0
+11577,50000,male,2,2,31,0,0,0,0,0,0,40754,41588,43409,45919,48530,0,2000,2000,3000,3000,0,0,0
+11578,200000,female,1,2,31,-1,-1,-1,-1,-1,-1,4938,2277,1209,0,1440,0,2286,2712,0,1440,0,0,0
+11579,300000,female,1,2,44,-2,-2,-2,-1,0,-1,9799,299,0,800,800,180,299,0,800,0,180,0,0
+11580,230000,female,1,1,34,-1,-1,0,0,-1,-1,3394,8338,11744,9359,19002,8443,8338,9359,0,19002,8740,0,0
+11581,50000,male,2,1,57,0,0,-1,0,0,0,53320,52754,27231,26852,27820,25529,1300,50499,1000,1500,1500,1000,0
+11582,150000,male,3,2,25,-1,-1,-1,0,0,-1,9240,386,12870,11173,1719,413,386,12884,251,39,414,6556,0
+11583,150000,female,3,1,35,0,0,0,0,0,0,89604,97129,98795,98925,100017,99607,10000,4275,3550,3750,3600,3100,1
+11584,10000,male,1,1,50,0,0,0,0,0,0,10043,9616,9718,9916,9250,7461,1194,1076,274,370,472,375,0
+11585,240000,female,3,1,43,0,0,0,0,0,0,61190,62506,63864,65130,66494,67441,2300,2400,2329,2411,2050,2000,0
+11586,230000,female,2,2,27,0,0,0,0,0,0,47520,46256,32029,31397,27834,28153,2000,2500,1200,2000,18000,5000,0
+11587,170000,female,2,1,34,-1,-1,-1,-1,-1,0,326,326,326,326,652,326,326,326,326,652,0,326,0
+11588,460000,female,1,1,38,-1,-1,-1,-1,-1,-1,21203,21828,13776,8226,12497,4503,21833,13779,8226,12497,4503,5844,0
+11589,240000,male,2,2,46,-2,-2,-2,-2,-2,-2,2995,3808,5736,3328,3901,3413,4028,7266,3422,5020,3517,57,0
+11590,80000,female,2,1,43,1,2,0,0,2,0,24621,23948,24751,26493,25936,26304,0,1500,2150,0,944,2000,0
+11591,290000,male,2,2,29,0,0,0,0,0,0,1199,2528,3781,6076,6336,10570,2000,2000,3000,1000,5000,1000,0
+11592,30000,male,2,2,22,0,0,0,0,0,0,30455,30403,30454,29227,28929,29484,1515,1455,1028,1044,1420,1111,0
+11593,240000,female,2,2,35,0,0,0,0,0,0,227457,232729,223431,226361,223508,238587,9000,10000,8000,9000,19000,9000,0
+11594,80000,female,2,1,42,-2,-2,-2,-2,-2,-2,10593,41217,8815,24012,0,2229,41217,8815,24012,1153,2229,2190,0
+11595,30000,male,2,2,33,0,0,0,0,0,-2,28949,30319,29400,30000,0,0,2233,1000,600,0,0,0,0
+11596,180000,female,2,3,52,-2,-2,-2,-2,-2,-2,0,0,145,0,0,0,0,145,0,0,0,0,0
+11597,50000,female,2,2,26,-1,-1,-1,-1,-1,-2,390,390,0,780,0,0,390,0,780,0,0,0,1
+11598,30000,female,3,2,52,3,2,2,2,2,2,26494,26675,29111,28325,28840,5450,900,3974,0,600,0,0,1
+11599,110000,male,1,2,32,0,0,0,2,2,2,112380,113369,113214,108350,109072,106848,6200,9900,0,8007,0,5000,1
+11600,180000,female,2,2,33,1,-2,-2,-2,-2,-2,5931,2294,900,0,0,0,2294,900,0,0,0,788,0
+11601,50000,male,2,1,49,0,0,0,-1,-1,-1,46693,14453,6701,3581,0,6000,1158,1010,3581,0,6000,3261,0
+11602,140000,female,2,2,29,0,0,0,0,0,0,141740,138128,128812,131374,135353,137238,7001,4700,4706,6100,5300,4806,0
+11603,90000,female,2,1,38,0,0,0,0,0,0,92481,90698,80720,69788,63868,40136,3507,3328,2100,2542,3000,93245,1
+11604,90000,female,2,2,25,-1,0,0,2,3,2,23662,25970,28531,30072,29323,28709,3000,3000,2300,0,0,4860,1
+11605,180000,male,2,2,31,0,0,0,-2,-2,-2,130171,12666,0,0,0,0,1110,0,0,0,0,0,0
+11606,360000,female,1,2,29,0,0,0,0,0,0,92693,87415,69552,38898,31222,55801,20595,20200,10063,1897,30278,83275,0
+11607,140000,male,2,2,28,2,2,2,2,2,2,12642,13740,13818,13994,14222,14537,1600,600,700,600,700,600,1
+11608,90000,female,3,2,23,0,-1,-1,0,-1,-1,119836,21836,11036,29836,986,21615,30000,11036,19836,986,21615,5885,0
+11609,150000,female,1,2,27,-1,-1,-1,0,0,-2,222,3,3359,2924,0,0,3,3461,261,0,0,0,0
+11610,200000,male,2,1,56,0,0,0,0,0,0,195456,199692,171784,175197,179069,189686,8007,6300,6276,6701,13800,0,0
+11611,110000,female,2,1,48,0,0,0,0,0,0,216582,110865,74340,47152,48138,49171,8788,3152,1687,1745,1831,1732,0
+11612,410000,female,1,2,25,-1,-1,-1,-1,-1,-1,4151,4357,10513,9137,7781,28870,4357,10513,9137,7781,28870,15000,0
+11613,50000,male,3,1,58,0,0,0,0,0,0,31236,30141,18683,19055,19462,19343,3088,1500,651,682,680,595,0
+11614,170000,female,2,1,43,0,0,0,0,0,0,78429,81991,81688,100841,23528,32579,5000,3000,20000,5000,10000,10000,0
+11615,210000,female,2,1,39,-1,-1,-1,0,0,-1,836,4247,17162,12949,12023,7324,4278,17213,6015,2083,7360,12142,0
+11616,290000,male,1,2,35,0,0,0,0,0,0,247280,250007,261236,223092,185522,170190,30000,29000,10000,8000,30000,48000,0
+11617,160000,female,1,2,27,-1,-1,-1,-1,-1,0,2431,5026,3720,3465,4218,2913,5030,3722,4300,5000,2500,5400,0
+11618,50000,male,2,2,27,0,0,0,0,0,0,48603,48338,45090,19031,19534,19301,1963,1972,672,800,700,1000,1
+11619,50000,male,2,2,28,0,0,0,0,0,0,33094,47035,44384,45267,46215,47949,17012,2300,1618,1675,2500,2139,0
+11620,30000,female,2,2,21,0,0,0,0,0,-2,10406,5068,2023,1163,0,0,1000,1002,23,0,0,0,0
+11621,30000,female,3,2,24,1,2,0,0,0,0,18103,18418,19270,19810,19583,20231,900,1215,755,639,1200,243,1
+11622,80000,female,2,2,27,0,0,0,0,0,0,55647,57737,58577,60169,58426,58204,3000,3923,2500,2100,2200,2075,0
+11623,20000,male,1,2,39,2,0,0,0,0,0,16869,17895,18939,19150,19549,20073,1606,1650,823,857,1000,400,1
+11624,130000,female,3,1,39,-1,-1,2,-1,-1,-1,1755,1890,735,1575,316,5039,1890,0,1575,316,5039,1156,0
+11625,80000,female,1,1,34,-1,2,2,2,2,3,4269,4057,5326,5092,6008,5618,0,1500,0,1000,0,1000,1
+11626,80000,male,2,1,40,0,0,0,0,0,0,45747,40851,35933,30605,25189,19766,1618,1533,1038,852,765,627,0
+11627,180000,female,3,2,39,1,-1,0,-1,0,0,0,4835,2220,11303,9359,9041,4835,2200,11303,187,181,3050,0
+11628,150000,male,1,1,37,0,0,0,-1,0,0,49112,48450,19790,50123,45987,46555,1510,1850,101123,1650,1700,0,0
+11629,100000,male,2,2,26,0,0,0,0,0,0,73070,74847,97369,98232,97752,0,10000,43000,5000,3000,0,0,0
+11630,50000,female,3,1,47,0,0,0,0,2,0,29336,30502,31161,25294,24843,19576,1641,1300,1629,0,1000,1007,0
+11631,290000,male,2,1,48,-2,-2,-2,-2,-2,-2,730,4426,820,0,2653,0,4426,820,0,2653,0,0,1
+11632,490000,male,1,1,54,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+11633,130000,female,1,2,30,1,-2,-2,-2,-2,-2,-915,-915,-915,-915,-915,-1070,0,0,0,0,0,0,0
+11634,20000,male,1,2,24,1,-1,-1,-1,-1,-1,0,150,0,597,0,4740,150,0,597,0,4740,0,0
+11635,30000,female,1,2,23,1,2,0,0,0,0,10764,10454,11862,12104,12351,8000,0,2000,242,247,2000,0,1
+11636,230000,female,1,2,25,0,0,0,0,0,0,52906,54454,53457,55128,52788,53671,3000,2000,2500,2500,2000,2000,0
+11637,260000,male,1,2,52,-1,-1,-1,-1,-1,0,582,0,582,291,4471,5394,0,582,291,4471,1000,1000,0
+11638,290000,male,1,1,38,-2,-2,-2,-2,-2,-2,2500,0,0,0,0,0,0,0,0,0,0,0,0
+11639,220000,female,2,2,54,-1,0,0,-1,-1,-1,2742,3131,2664,891,1927,4250,1500,1500,891,1927,4250,3000,0
+11640,60000,male,2,2,26,3,2,0,0,0,0,61014,59473,56912,47513,42945,45648,0,2100,1500,1700,3500,1341,1
+11641,150000,female,3,1,45,0,0,0,0,0,0,59885,59054,60254,59604,60707,61988,2200,2200,2300,2213,2300,2245,0
+11642,80000,female,2,1,39,3,2,0,0,2,2,13683,13178,13853,14823,14443,15802,0,1200,1200,0,1600,2200,1
+11643,30000,female,2,2,23,2,0,0,2,2,2,16089,17127,19108,18503,20100,19629,1300,2272,0,1900,0,1000,1
+11644,210000,female,2,1,34,0,0,0,0,0,0,86792,88106,89419,88758,85239,81723,3319,3892,3184,3128,2944,2870,0
+11645,50000,female,3,1,27,2,2,2,2,2,2,27358,28422,28858,29289,28685,30847,1800,1200,1200,0,2800,1200,0
+11646,250000,female,1,1,47,-1,-1,-1,-1,-1,-1,43098,10606,49815,19857,56064,45427,10615,49825,19866,56074,45443,29916,0
+11647,200000,female,2,2,34,-1,-1,0,-1,-1,-1,12842,9490,6955,28300,13227,11202,13805,6797,28314,13291,11258,11912,1
+11648,150000,male,2,1,48,1,2,0,0,2,0,144837,141815,143704,151572,149807,153088,0,5000,9500,0,5005,6010,1
+11649,30000,female,2,1,26,0,0,0,0,0,2,29072,29276,30204,28501,29687,29497,1600,1500,1000,4000,1900,0,0
+11650,50000,female,2,2,23,0,0,0,0,0,0,35454,33824,28528,28102,25574,26524,1901,1900,1050,1000,2000,2500,0
+11651,210000,male,1,2,32,0,0,0,0,0,2,124838,102995,17383,172065,181981,174744,5000,1400,155000,12700,0,6300,0
+11652,20000,male,2,1,31,0,0,0,0,0,0,18490,25404,19789,19985,19676,6971,1500,2393,1000,494,139,19710,0
+11653,110000,male,1,1,56,3,2,2,3,2,2,46335,45319,50030,48940,48026,55979,0,5800,0,0,8774,0,1
+11654,140000,male,1,2,26,0,0,0,0,-1,0,84729,102693,41266,39634,115440,133580,26894,1500,11888,115440,23900,10586,0
+11655,50000,male,3,1,56,0,0,0,0,0,0,24729,20285,26026,12059,9765,10097,1338,1011,482,228,365,1261,0
+11656,230000,female,2,2,27,-1,0,0,0,0,0,79872,85538,77063,40102,52454,12314,10033,5010,5,45000,8000,35660,0
+11657,200000,female,1,2,28,0,0,0,0,0,2,184602,187145,190983,188714,196262,198059,7000,7000,9000,10700,10600,0,0
+11658,120000,female,2,1,30,-1,-1,-2,-1,-1,-2,2706,161,250,2561,-295,-295,569,250,3265,0,0,0,0
+11659,50000,male,2,1,46,0,0,0,-1,-1,-1,49046,49221,46505,6991,4809,1890,2185,2938,6996,4809,1890,6890,0
+11660,140000,female,3,1,39,0,0,0,0,0,0,108028,104626,101376,80840,75462,75957,3889,4412,3000,3000,3000,4000,0
+11661,100000,female,3,2,48,-1,-1,-1,0,0,0,16584,16009,64886,66202,72526,74323,16137,64886,2353,10000,3000,2670,0
+11662,80000,male,3,1,43,0,0,-1,-1,-1,-1,231550,223337,206390,0,1257,33592,5067,12290,0,1257,35238,1145,0
+11663,100000,male,2,2,29,2,2,3,2,2,2,86974,98246,95884,93528,96397,96258,12700,0,0,6050,1600,3400,1
+11664,120000,female,2,2,23,0,0,0,0,0,0,38609,41992,36607,38828,38325,39222,5000,4000,4017,3000,3000,3000,0
+11665,50000,male,2,1,50,-2,-2,-2,-2,-2,-2,3526,-4,1473,2517,1217,4459,0,1477,2524,1320,4572,2206,1
+11666,30000,female,2,2,24,-1,-1,-1,-2,-2,-2,784,4184,0,0,0,0,4200,1000,0,0,0,0,0
+11667,330000,female,2,2,27,0,0,0,0,0,0,237515,230471,233421,201240,186444,158521,11012,11012,6548,6497,6037,5141,0
+11668,240000,male,1,1,53,0,0,0,0,0,0,232943,236437,133385,136654,136639,123951,9700,5000,5500,5500,5000,5000,0
+11669,290000,female,2,2,39,0,0,0,0,0,0,228342,235380,240049,107993,110691,50143,10600,10200,4000,4534,2670,700,1
+11670,60000,male,2,2,42,0,0,0,0,0,2,60660,57718,38144,29542,30700,30064,3500,1731,2009,4121,0,1000,0
+11671,360000,female,1,2,29,-1,-1,-1,-1,-1,-1,5751,1501,624,0,1000,1866,1501,624,0,1000,1866,252,0
+11672,200000,female,1,2,39,-2,-2,-1,-1,-2,-2,0,0,798,0,307,497,0,798,0,307,497,0,0
+11673,450000,female,1,1,33,0,0,0,0,0,0,67139,60995,62728,63223,63011,43156,3000,3000,2000,8110,2600,2000,0
+11674,80000,male,1,1,41,1,2,0,0,0,0,102383,92704,87338,46927,80194,0,0,4000,939,80000,0,0,0
+11675,230000,female,2,1,32,-2,-2,-2,-2,-2,-2,750,0,0,790,0,2803,0,0,790,0,2803,0,0
+11676,160000,female,2,1,32,-1,-1,-1,0,0,0,390,390,1560,1170,780,390,390,1560,0,0,0,390,0
+11677,20000,female,3,2,53,-1,-1,-2,-2,-1,-1,4400,-220,-220,-610,390,0,0,0,0,1390,0,780,0
+11678,200000,female,3,1,28,-1,-1,2,-1,0,-1,188,2791,188,376,188,6884,2791,0,376,0,6884,4187,1
+11679,240000,female,2,1,35,-1,-1,-1,-1,-1,-1,1473,1473,1473,1473,1473,1473,1473,1473,1473,1473,1473,390,1
+11680,80000,female,3,2,39,-1,-1,-1,-1,-1,-1,4762,6712,1814,4811,1379,6136,6734,1817,4817,1381,6137,6251,0
+11681,20000,male,2,1,53,0,0,0,0,0,-2,12278,13209,7215,1520,0,0,1500,1060,30,0,0,0,0
+11682,120000,female,1,2,25,0,0,0,0,0,0,120568,122285,123294,81042,81225,79777,5224,5427,2830,3000,2900,2818,0
+11683,130000,female,3,2,24,2,2,3,2,2,2,49583,53275,51960,49723,47120,46188,5100,0,0,4500,0,1500,1
+11684,200000,male,3,1,45,0,0,0,0,0,0,97933,78409,58998,60219,61748,64220,3200,2200,2200,2500,3500,90000,0
+11685,330000,male,1,2,36,-2,-2,-2,-2,-2,-2,-10,-10,-10,-10,-10,-10,0,0,0,0,0,0,0
+11686,30000,female,3,1,22,1,2,0,0,4,4,21508,20881,23217,28498,28060,29999,0,3000,6000,1200,3000,0,1
+11687,20000,male,2,2,25,2,2,3,3,3,3,1050,1050,1050,1050,1050,1050,0,0,0,0,0,0,0
+11688,170000,male,1,1,41,-1,-1,-1,0,0,-1,10540,0,9871,9739,66,230,0,9871,0,0,230,23709,1
+11689,150000,female,2,2,24,1,2,0,0,0,0,170971,165806,146001,113907,115578,111863,39,6000,3937,4077,4504,23066,0
+11690,20000,male,2,2,25,0,0,2,2,2,2,15859,18486,18686,18983,18540,19775,3200,800,900,0,1700,0,0
+11691,160000,female,1,2,29,1,-1,-1,-1,-1,-1,-146,15414,1857,550,2602,10381,17833,2252,9694,10000,11797,7289,0
+11692,140000,female,2,2,38,0,0,2,0,0,2,15438,12140,11225,6688,6908,6438,2620,0,310,400,0,1435,0
+11693,150000,male,2,2,27,0,0,-1,-1,0,0,61606,61950,200,51099,24487,17624,5000,200,52399,5063,1500,2200,0
+11694,120000,female,3,2,47,1,2,2,2,2,2,121400,123055,118030,122443,120370,123766,7352,0,8990,0,9000,0,0
+11695,50000,male,2,2,29,0,0,0,0,2,2,13192,14668,15614,17155,16741,19131,2000,1500,1800,0,2843,0,1
+11696,180000,female,1,2,32,1,2,2,0,0,-2,17816,18247,33230,5168,0,0,1000,0,103,0,0,0,0
+11697,60000,male,1,2,28,0,0,0,0,2,0,18996,20806,22447,24337,23808,24610,2120,2000,2269,0,1200,2269,1
+11698,100000,male,2,2,34,2,2,2,2,2,2,54126,57919,57778,59227,58151,61966,5300,1400,3000,0,4800,2500,1
+11699,120000,male,2,2,28,-1,-1,-1,-1,-1,-1,4310,3905,2411,1925,2943,6249,3905,2411,1925,2943,6249,1780,1
+11700,20000,male,1,2,24,1,-2,-2,-2,-2,-1,0,0,0,0,0,1273,0,0,0,0,1273,0,1
+11701,70000,female,1,2,29,2,2,2,2,2,2,44594,45588,46540,47378,46490,47758,2000,2000,1900,0,2200,3600,1
+11702,200000,male,2,1,58,2,2,0,0,2,0,190672,186230,188391,199101,185247,165232,0,6784,13788,14,6021,5099,0
+11703,500000,female,1,1,48,-1,0,0,0,0,0,273430,268256,262467,254307,249106,242741,9704,10851,9005,9074,8501,8985,0
+11704,460000,male,1,1,41,-1,-1,-1,-1,-1,-2,81848,7653,47633,1296,0,0,8877,47830,1296,0,0,0,0
+11705,160000,male,2,2,57,0,0,0,0,0,0,152689,148126,144978,141639,138383,134951,5500,5300,5053,5010,4850,5000,0
+11706,20000,male,6,2,27,0,0,0,0,0,-2,19189,19226,18371,18400,0,0,1376,1206,2222,0,0,0,0
+11707,300000,male,2,2,42,-1,0,0,0,0,-1,1188,3071,7854,10426,16784,4334,2000,5000,5000,10000,4334,3578,1
+11708,40000,male,2,1,44,0,0,0,0,0,0,36917,38260,32680,23472,25436,34309,2000,2000,1000,3000,10000,1142,0
+11709,130000,female,3,1,26,0,0,0,0,0,0,131724,130186,124530,115800,98268,83729,5510,8970,5239,5234,4000,4000,1
+11710,120000,female,1,2,25,0,0,0,-1,0,-1,11431,6857,6865,8209,4825,4322,6000,3147,12000,4000,5000,1759,0
+11711,20000,female,2,2,22,0,0,0,0,0,0,18062,18374,19222,18014,18627,15811,1700,1500,1000,1000,1000,1000,0
+11712,200000,female,1,2,47,-2,-1,-1,-1,0,-1,23905,10163,20426,15592,12541,8667,12020,21008,16026,60,8667,18500,0
+11713,20000,male,2,1,51,0,0,0,0,0,0,18321,18446,18285,18235,16259,10640,1355,1136,646,381,337,1251,0
+11714,10000,male,2,2,32,0,0,0,0,2,0,7231,7497,9355,9594,8535,8713,1142,2000,758,0,313,1000,0
+11715,400000,female,1,2,28,0,0,0,0,0,0,10430,24979,29925,25423,7064,15920,24030,14062,1824,40,15673,16694,0
+11716,180000,female,1,2,28,1,2,2,2,2,2,65054,57314,54485,59415,57110,19339,1568,4,8000,387,0,0,0
+11717,60000,female,2,2,23,0,0,0,0,0,0,21295,22629,23338,23810,25418,26050,1679,1388,860,2000,1055,2000,0
+11718,260000,female,1,2,28,0,0,0,0,0,0,187068,193245,204730,246985,240543,227725,10360,60000,100008,10000,11700,5000,1
+11719,50000,male,3,1,36,0,0,0,0,0,0,36809,24248,18588,18958,19355,19788,1601,1309,679,703,755,396,0
+11720,120000,female,2,1,30,2,0,0,0,2,2,87199,89008,90834,95499,93857,99504,4110,4203,7100,0,7396,3700,1
+11721,300000,female,1,1,47,2,2,2,2,2,2,5000,5000,5000,5000,5000,5000,0,0,0,0,0,0,1
+11722,20000,male,2,2,36,0,0,-2,-2,-2,-2,18400,0,0,0,0,0,0,0,0,0,0,0,1
+11723,180000,male,2,1,26,-1,-1,-1,-1,-1,-1,396,396,396,396,396,396,396,396,396,396,396,396,0
+11724,30000,female,2,2,23,0,0,0,0,0,0,27141,25125,27835,24743,28020,25607,3000,5000,1000,20000,3000,8000,0
+11725,70000,male,2,2,31,0,0,2,2,3,2,5942,8176,8891,9522,9084,8792,2500,1000,923,0,0,400,0
+11726,220000,male,1,2,51,-1,-1,-1,-1,-1,-1,20730,-270,53895,-105,20895,20835,0,54165,0,21000,20940,33460,1
+11727,110000,female,1,1,37,-1,-1,0,0,0,0,2610,54223,57299,50418,48093,3389,54300,6600,400,4000,1771,0,1
+11728,180000,male,1,2,33,0,0,0,-1,-1,-2,37711,40102,78400,3000,0,0,3000,40129,3000,0,0,0,0
+11729,80000,female,1,2,31,-1,-1,-1,-1,-1,-1,5759,8395,1768,4284,7202,2014,8414,1775,4284,7202,2014,5218,0
+11730,100000,female,1,1,34,1,2,2,2,2,2,46092,45074,48287,49091,50149,51176,0,3978,1900,2000,2000,0,0
+11731,50000,female,2,1,45,0,0,2,2,2,2,46248,50893,48854,50901,50015,48179,5750,0,3800,1890,0,1850,1
+11732,50000,female,2,2,28,0,0,0,-1,0,0,59321,56454,53278,19437,19845,19911,2329,2353,39886,704,730,656,0
+11733,130000,female,1,1,38,-1,-1,-1,-2,-2,-2,5190,649,0,0,0,0,649,0,0,0,0,0,1
+11734,240000,male,1,2,33,0,0,0,0,0,0,124105,127593,130474,134296,139117,143634,7000,5000,6000,7000,7000,5445,0
+11735,160000,female,2,2,27,1,-2,-1,0,0,-2,0,0,6204,6204,0,0,0,6204,0,0,0,0,0
+11736,50000,male,2,2,34,0,-1,0,0,0,0,48973,50601,49805,27605,29447,30045,91000,1200,600,29057,1076,1300,0
+11737,30000,male,2,3,45,0,-1,-1,0,0,-2,3390,390,780,780,0,0,390,780,0,0,0,0,0
+11738,60000,female,2,1,39,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+11739,60000,female,2,2,57,0,0,0,0,0,0,53584,41935,30077,30246,30257,29768,2000,2000,2300,2000,3000,1500,0
+11740,100000,female,3,1,51,0,0,0,0,0,0,98918,96916,98492,89961,93971,85526,4523,4213,3100,10000,3220,3130,0
+11741,140000,male,1,1,27,1,-2,-2,-2,-2,-2,-488,-488,-488,-488,-488,-488,0,0,0,0,0,0,0
+11742,150000,male,2,1,35,0,0,0,0,0,0,125063,118843,137751,141330,146389,132617,10050,30000,5000,6088,5150,10000,0
+11743,500000,male,2,2,28,0,0,0,0,0,0,47399,48711,48642,49062,149034,181876,2361,1500,1128,100330,100486,2114,0
+11744,20000,male,2,1,33,0,0,0,0,0,0,4128,5550,6599,6839,7228,7457,1500,1300,500,500,500,1000,1
+11745,240000,female,2,2,37,-2,-2,-2,-2,-2,-2,500,0,0,0,0,0,0,0,0,0,0,0,0
+11746,90000,male,3,3,34,-2,-2,-2,-2,-2,-2,33957,4976,176,21601,7423,9252,4990,176,21665,8213,9279,16445,0
+11747,160000,female,1,1,69,2,2,-2,-2,-2,-2,498,135,0,0,0,508,135,0,0,0,508,1287,0
+11748,280000,female,2,2,33,-2,-2,-1,0,0,-1,167,3690,1735,1735,1714,843,3700,1735,0,1700,1000,22000,1
+11749,260000,female,2,2,27,0,0,0,-1,-1,0,25419,19045,19270,11915,114479,24511,3000,3017,11915,114479,2000,2500,0
+11750,130000,male,5,1,44,0,0,0,0,0,0,75472,75095,59335,54668,22780,13417,2452,2140,1093,13706,500,100,1
+11751,500000,female,3,1,50,0,0,0,0,-1,0,5310,5484,14539,13291,3645,4763,2703,10043,6065,3648,2003,1004,0
+11752,120000,male,2,1,39,2,-1,-1,-1,-1,-1,435,435,1887,435,435,435,435,1887,435,435,435,435,0
+11753,210000,male,1,2,30,-1,0,0,0,0,0,1060,3229,4107,5931,4665,6607,2200,1005,3208,2000,2000,49980,0
+11754,50000,male,2,1,46,0,0,0,0,0,0,48905,49764,36535,32428,15313,16057,1800,1430,1000,1000,1000,1000,0
+11755,210000,male,2,1,36,-1,-1,-1,-1,-2,-2,1060,777,7971,-8,-8,-8,779,7994,0,0,0,1704,0
+11756,10000,female,2,2,27,1,2,2,0,0,0,8944,9882,9538,9808,8650,0,1230,0,500,450,0,0,1
+11757,70000,female,2,2,34,2,2,2,0,0,2,64913,63387,58840,56431,56859,54449,3000,0,2000,4219,1700,323,0
+11758,150000,male,2,2,31,-1,-1,2,0,-1,-1,8839,18814,14776,15582,7722,10156,11394,0,13000,7722,11000,21191,0
+11759,60000,male,3,2,57,0,0,0,0,0,0,15602,16629,17638,17989,18383,21781,1284,1293,644,684,3721,761,0
+11760,120000,male,2,2,29,-1,2,2,2,-2,-2,5521,2197,1010,0,0,0,1010,0,0,0,0,0,1
+11761,80000,female,1,2,30,0,0,0,0,0,0,48006,48159,46099,47039,48286,48974,2100,3000,2000,2000,2000,2000,0
+11762,490000,male,1,2,36,-2,-2,-2,-2,-2,-2,5310,2691,3367,-46,9285,-14,2711,3384,0,9331,0,2960,0
+11763,450000,male,1,1,44,-2,-2,-2,-2,-2,-2,32000,3417,4700,20916,9695,6361,3423,4700,20916,9695,6361,6447,0
+11764,20000,female,5,2,23,0,0,0,0,0,-2,16371,17801,18256,18425,0,0,2000,1200,369,0,0,0,0
+11765,10000,male,1,2,23,0,0,2,2,4,5,3035,5802,5561,8455,9730,8999,3000,0,3000,2000,0,0,0
+11766,20000,female,3,1,44,-2,-2,-2,-2,-1,-1,836,390,390,390,1487,3560,390,390,390,1487,3560,15000,0
+11767,50000,male,2,2,27,0,0,0,0,0,0,6105,7347,8000,8000,10000,0,1500,1000,0,2000,0,2556,0
+11768,300000,male,1,1,51,-1,-1,-1,-1,0,0,18961,4371,3391,34282,12983,0,4387,3472,47371,64,0,33588,1
+11769,80000,male,1,2,27,-2,-2,-2,-2,-2,-2,2049,805,1672,12205,3487,24764,2003,2019,12241,3510,24843,4001,0
+11770,310000,male,1,1,39,-1,-1,-2,-1,-1,2,360,0,91059,155,28100,4544,0,91059,155,28490,0,1041,0
+11771,50000,female,3,1,41,0,0,0,0,0,0,48403,49448,50125,9717,9549,9840,2550,2227,339,500,600,500,0
+11772,500000,male,2,1,39,-1,-1,-1,-1,-1,-1,23800,297,9342,3518,5597,717,297,9342,3518,5597,717,25349,0
+11773,80000,female,3,1,40,0,0,-1,-1,-1,-2,22747,16260,6500,15525,0,0,3002,6500,15525,0,0,0,0
+11774,30000,female,3,3,26,1,2,0,0,0,0,30698,29034,28317,27872,28456,28230,0,1442,986,1021,1015,1143,1
+11775,10000,male,2,2,42,1,2,0,0,0,0,9980,9178,7912,4838,10096,10112,1000,1517,194,6700,1000,1500,1
+11776,390000,female,1,1,39,-1,-1,-1,0,0,-1,31825,56333,70133,63177,63670,22407,56613,70159,1264,493,22505,1162,0
+11777,290000,male,2,1,44,-2,-2,-2,-2,-2,-2,167,616,640,526,336,527,619,643,528,337,529,696,1
+11778,120000,female,2,1,33,0,0,0,0,0,0,46640,50865,54401,57873,61917,63880,5000,5000,5000,5000,3000,3000,0
+11779,50000,female,1,2,27,0,0,0,0,0,0,28387,36276,17445,15575,8075,-589,10000,1031,4050,4000,0,0,0
+11780,280000,male,1,1,36,-2,-2,-2,-2,-2,-2,2624,-26,5214,17187,2848,5287,0,5240,17273,2861,5313,0,0
+11781,20000,female,1,2,24,0,0,0,0,0,0,18556,19162,19293,19298,19198,0,1805,1400,405,400,0,0,0
+11782,20000,female,2,2,22,0,0,-2,-1,0,0,8392,-100,0,1828,2800,0,0,1000,1828,1500,0,3000,0
+11783,90000,female,1,2,27,2,0,0,0,0,2,27459,28514,29733,30138,33248,32564,1800,2000,1200,3600,0,2000,1
+11784,90000,female,2,1,30,2,2,0,0,0,0,64937,63240,51426,37872,33780,47367,0,1798,1426,1450,40000,711,0
+11785,120000,female,2,2,35,1,-2,-1,-1,-1,-1,0,0,554,4131,930,0,0,554,4131,930,0,2581,0
+11786,80000,female,3,1,40,0,0,0,0,0,0,12171,11554,7830,4305,5427,6180,1500,1218,311,1351,1000,2000,1
+11787,180000,female,2,1,68,0,0,0,0,0,0,127933,133279,127636,138164,142921,153691,15000,12000,20000,10000,20000,5000,0
+11788,200000,female,1,2,32,-1,-1,-1,-1,-1,-1,326,6914,2343,23834,11000,1315,6914,2343,23834,11000,1315,1934,1
+11789,50000,female,3,1,55,0,0,0,0,2,0,46300,10849,8857,9658,9359,9554,1200,1147,1222,0,350,338,0
+11790,360000,male,1,2,30,0,-1,-1,-1,-1,-1,14409,3540,500,500,0,1191,3540,500,500,0,1191,0,0
+11791,30000,female,2,1,27,0,0,0,0,0,0,23134,23302,22844,22101,19535,19580,1712,1400,442,391,500,0,0
+11792,50000,female,2,2,24,0,0,0,0,-1,-1,50062,34819,48909,15033,3198,0,2000,15412,870,3198,0,0,0
+11793,80000,female,2,1,37,-2,-2,-2,-2,-2,-2,1324,1087,0,5963,1280,1243,1087,0,5963,1280,1243,1216,0
+11794,120000,male,2,2,34,1,2,2,3,2,0,45755,46725,49653,48571,47664,48720,2000,4000,0,0,2000,2000,1
+11795,30000,female,1,2,29,0,-1,0,0,0,0,8326,557,8557,8400,20966,13638,557,8000,43,20109,222,62,0
+11796,260000,female,2,2,30,-1,-1,-1,-1,-1,-1,165,165,274,165,333,165,165,274,165,333,165,293,0
+11797,50000,male,2,1,62,0,-1,0,0,0,0,51350,50350,49289,49058,47512,48930,50908,1800,1800,1800,2200,1774,0
+11798,30000,female,2,1,23,2,2,2,2,2,2,26795,29654,28879,30892,30500,0,3300,0,2500,0,0,0,0
+11799,50000,male,3,1,59,0,0,-2,-2,-2,-2,51400,0,0,0,0,0,0,0,0,0,0,0,0
+11800,340000,female,3,1,40,0,0,0,0,0,0,183139,179156,170491,158370,151685,143623,9000,9000,7000,6000,5400,5000,0
+11801,170000,female,2,1,36,-1,-1,2,-1,0,-1,2600,5234,2394,7794,5920,2798,5234,0,8000,1500,2798,2600,0
+11802,20000,male,2,2,25,1,2,0,0,0,0,20415,18266,18921,19297,18926,17717,1264,1249,625,700,1000,1000,0
+11803,230000,female,1,1,35,-1,-1,-1,-1,-1,-1,1246,3284,4283,3476,3283,426,3312,4309,3549,3297,426,1390,0
+11804,460000,male,1,2,28,0,0,0,0,0,0,460609,427584,373370,285926,264644,247298,18138,15481,10000,9072,8945,8567,0
+11805,20000,male,2,2,56,1,2,2,2,0,0,17819,18239,19094,12393,13037,13817,1000,1500,0,1000,1000,1000,0
+11806,210000,male,1,2,30,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+11807,30000,male,2,2,25,2,2,2,0,0,0,29894,31423,30392,28314,29076,30065,2300,0,784,984,1400,0,0
+11808,50000,female,2,2,30,1,3,2,2,2,2,47629,46592,47517,48439,49418,50326,0,2000,2000,1900,1900,1900,1
+11809,130000,male,1,2,26,1,-1,2,2,-1,-1,-888,5806,888,0,5087,3103,6694,0,0,5087,3103,2490,0
+11810,30000,female,3,2,24,2,2,2,2,2,3,15335,14804,16546,15985,17869,17291,0,2300,0,2300,0,0,1
+11811,60000,male,2,1,35,0,0,0,2,2,2,10560,11312,13050,12578,14008,13179,1200,1900,0,1600,0,500,1
+11812,160000,female,2,2,28,-1,-1,-1,-1,-1,2,1426,326,1976,810,2165,1997,326,1976,810,2165,0,28377,0
+11813,180000,female,2,2,32,0,0,0,0,0,0,54797,56909,57466,58609,59828,59842,3000,2100,2100,2163,1000,2203,0
+11814,460000,female,3,2,32,0,0,0,0,0,0,89747,89175,102350,134878,162715,203451,5000,15000,35000,30000,43451,20000,0
+11815,30000,female,3,1,53,2,0,0,0,0,0,34775,35946,37685,33305,28305,20371,1733,2452,1072,1089,3101,5000,0
+11816,280000,male,2,1,36,0,0,-2,-2,-2,-2,143650,0,0,0,0,0,0,0,0,0,0,0,0
+11817,100000,male,2,2,33,1,-2,-2,-2,-1,0,0,0,0,0,79679,79691,0,0,0,79679,3300,3210,0
+11818,30000,male,2,2,29,6,5,4,3,2,0,32875,32101,31071,30136,28496,29675,0,0,0,0,1642,0,1
+11819,150000,female,1,2,29,0,0,0,0,0,0,39215,49300,53030,65006,50515,0,11200,16000,12376,1109,0,0,0
+11820,200000,female,2,1,47,-1,-1,-1,-1,0,-1,11418,2541,10599,13865,6177,5519,2541,10599,13865,0,5519,2358,0
+11821,150000,male,1,2,28,0,-1,-1,-1,0,0,123767,18479,7672,1736,82188,67578,20732,7672,1736,82178,5000,2600,0
+11822,370000,female,2,1,45,0,0,0,0,2,2,162526,168389,338660,221808,222304,217704,10000,10000,114000,10000,0,9000,0
+11823,200000,female,1,2,34,-1,-1,-1,-1,-1,-2,2603,11381,0,1000,0,0,11381,0,1000,0,0,0,0
+11824,200000,female,1,1,32,-1,0,0,0,0,0,10760,11945,14562,22457,15569,9819,2000,5000,10000,5000,602,10000,0
+11825,30000,female,1,2,24,2,2,6,6,5,4,1800,1800,1800,1800,1200,600,0,0,0,0,0,0,0
+11826,210000,female,2,2,27,-1,-1,-1,-1,-1,-1,190,-310,1527,1901,0,2706,0,3054,2189,0,2706,0,0
+11827,120000,female,2,1,42,0,0,0,0,0,0,94218,95129,172957,85332,87103,71237,3415,3002,3177,3271,2702,2620,0
+11828,470000,female,2,1,35,0,0,0,0,0,0,218675,225519,230011,234639,239502,244328,8717,8000,6671,6882,6960,8751,0
+11829,60000,female,6,1,39,-1,-1,-1,-1,-1,-1,183,1419,3541,2248,0,449,1419,3541,2248,0,449,0,0
+11830,260000,male,1,1,53,-1,3,2,0,0,-1,1361,1188,792,792,396,2289,0,0,396,0,2289,164047,0
+11831,80000,male,2,1,28,-1,-1,-1,-1,-1,-1,390,390,390,540,540,540,390,390,540,540,540,390,1
+11832,100000,female,3,1,47,0,0,0,0,0,0,46104,47146,48162,48806,49910,51400,2086,2102,1746,1890,2400,0,0
+11833,200000,male,1,1,38,1,-2,-1,0,0,0,-57,-382,1293,968,643,318,0,2000,0,0,0,1370,0
+11834,360000,male,3,1,34,1,1,-1,-1,0,0,277040,-22960,338600,22960,22960,0,0,361560,22960,0,0,0,0
+11835,70000,female,2,1,27,2,2,2,2,2,0,31455,34623,34757,35888,35180,35941,4000,1000,2000,0,1500,3000,1
+11836,420000,male,3,1,45,2,0,0,0,0,0,520453,520643,517746,428655,352793,350036,18500,20000,16000,11717,12000,12000,0
+11837,150000,female,1,1,32,1,2,2,-2,-2,-2,4605,4390,-25,-25,-25,-25,22,0,0,0,0,0,0
+11838,240000,male,2,1,44,0,-1,-1,-2,-1,0,8421,14201,-28,-401,5109,7001,14230,0,0,7000,2000,3919,0
+11839,360000,female,1,2,43,1,-1,-1,-1,-1,-1,0,7221,26194,0,3550,2511,7221,26194,0,3550,2511,6895,0
+11840,390000,female,2,1,30,0,0,0,0,0,0,98984,102158,96446,87912,89991,91470,5700,4000,3200,3500,3100,3000,0
+11841,180000,male,2,2,27,-1,-1,-1,-1,-1,-1,11599,644,644,29944,644,264,644,644,29944,644,264,1024,0
+11842,50000,female,1,2,25,-1,-1,-1,-1,-1,-1,2058,287,3423,0,3198,0,287,3423,0,3198,0,0,0
+11843,180000,female,2,2,26,0,0,0,0,0,0,88846,89730,93682,103273,104492,109818,3279,6428,13669,3816,8048,3501,1
+11844,200000,male,2,1,41,1,2,0,0,0,0,69963,67223,69167,69289,70333,70610,0,2943,2301,2374,2500,5300,0
+11845,50000,male,2,1,36,1,-2,-2,-2,-2,-1,0,0,0,0,0,4473,0,0,0,0,4473,1650,0
+11846,280000,male,2,2,29,-1,-1,-1,-2,-2,-1,330,9500,0,0,0,261,9500,0,0,0,261,0,0
+11847,90000,female,2,2,40,-2,-2,-2,-2,-2,-1,9663,69279,59483,3065,854,2328,69616,59483,26665,854,2334,10825,0
+11848,420000,male,1,1,46,2,2,0,0,0,0,436968,428712,425345,354852,353113,353720,0,16100,13000,14064,111170,11300,0
+11849,70000,female,2,1,37,1,2,-1,0,0,2,7204,5326,5954,1069,4711,4514,0,5954,0,4514,0,0,0
+11850,170000,female,2,1,34,-1,-1,-1,-1,-1,-1,1837,1328,321,0,3857,0,1328,324,0,3857,0,253,0
+11851,210000,female,1,2,48,1,-2,-2,-1,-1,0,0,0,0,486,836,836,0,0,486,836,0,0,1
+11852,80000,male,1,1,33,0,0,0,0,0,0,75593,71643,49481,38427,34683,159,2503,1508,1500,1600,279,0,0
+11853,70000,female,1,2,48,0,0,0,0,0,0,62319,65102,63529,61778,42092,36751,6000,4000,3000,5000,5000,2000,0
+11854,100000,male,2,1,29,2,2,2,3,3,2,82781,85536,90018,91151,89429,91185,5000,6800,3500,0,3400,3500,0
+11855,60000,male,3,2,31,2,2,2,0,0,0,30841,34336,33489,35615,38027,39239,4000,0,3000,3000,2000,3000,0
+11856,350000,male,2,2,29,0,0,0,0,0,0,36151,37624,38568,39569,41162,41961,2056,2000,2000,2004,2067,2060,0
+11857,180000,female,2,2,36,1,-2,-2,-2,-1,-1,0,0,0,0,1482,0,0,0,0,1482,0,9262,0
+11858,200000,male,2,2,30,0,0,0,0,0,0,67825,70193,64997,60907,62452,62191,10000,3000,2154,2500,2400,2300,0
+11859,120000,female,1,2,26,0,0,0,0,0,0,67519,110908,46025,43887,36207,24612,3000,2100,2700,2000,1127,2202,0
+11860,70000,female,2,2,24,0,0,-2,-1,-1,-1,16366,15500,9660,6208,702,4320,1000,9660,6208,702,4320,1650,0
+11861,200000,female,1,1,29,0,0,0,0,0,2,21326,30928,124497,126854,139660,145455,10000,95000,4552,15002,8000,0,0
+11862,200000,female,1,2,39,-1,-1,-1,-1,-1,-1,10140,9956,16636,38409,8958,4573,9984,16754,38522,8983,4585,4549,0
+11863,50000,male,1,1,38,0,0,0,0,0,0,21912,22939,23647,24118,24729,25267,1685,1393,864,1000,950,936,0
+11864,290000,male,1,1,49,-1,-1,-1,0,-1,-1,4599,28420,7051,20356,17803,2722,28420,7051,20000,17803,2722,14979,0
+11865,120000,male,2,2,26,0,0,0,0,0,0,74831,78082,80333,82497,84438,86332,4000,3062,3000,2773,3000,1899,0
+11866,220000,female,2,2,37,-1,-1,-1,-1,-1,-1,1918,4626,5602,769,5595,2538,4626,5602,769,5595,2538,1686,0
+11867,50000,female,3,1,50,0,0,0,-2,-2,-2,43140,43496,0,0,0,0,2500,0,0,0,0,0,0
+11868,360000,female,1,1,35,1,-1,2,0,0,0,0,2819,2600,2800,2800,0,2819,0,200,0,0,0,0
+11869,140000,male,2,2,45,0,0,0,0,0,0,36856,27919,24865,22892,50652,47334,1500,1273,607,41774,1712,1563,0
+11870,30000,female,2,2,22,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+11871,130000,female,2,2,23,-2,-2,-2,-2,-2,-2,136,0,0,0,0,0,0,0,0,0,0,0,0
+11872,140000,female,1,2,35,-1,2,-1,0,-1,-1,2736,1276,2552,1276,1276,1276,0,2552,0,1276,1276,1276,0
+11873,260000,female,2,1,37,-1,-1,-1,2,2,2,3689,3992,503,503,503,503,3993,503,0,0,0,1200,0
+11874,50000,female,3,2,54,0,0,0,0,0,0,22136,23165,24178,24659,25175,25832,1388,1401,882,913,1075,782,0
+11875,60000,male,2,1,32,0,0,0,0,0,0,56228,56861,58152,58615,54338,55915,2147,4740,1926,2597,2638,2478,0
+11876,20000,male,1,2,36,0,0,0,-2,-2,-2,7075,7860,0,0,0,0,1000,0,0,0,0,0,0
+11877,250000,female,3,2,26,0,0,0,0,0,0,188526,188454,176634,159655,139273,117986,7002,6500,6000,5500,4000,3847,0
+11878,20000,male,3,2,27,0,0,0,0,-1,2,20443,19038,38730,-210,690,150,1558,1400,400,1290,0,780,0
+11879,200000,female,3,2,29,-1,-1,-1,-1,0,0,1945,995,2234,3678,32405,30943,1000,2244,3678,31996,1097,1579,0
+11880,50000,female,3,2,25,0,0,0,0,0,0,6954,6032,6529,7533,7857,4424,2161,1000,1004,3004,1005,2006,0
+11881,210000,male,2,2,35,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+11882,110000,male,1,2,29,1,-2,-2,-1,0,-1,0,0,0,9150,1960,3930,0,0,9150,0,3930,0,0
+11883,20000,male,2,2,28,1,2,2,2,0,0,2013,1837,3831,2825,1970,1735,0,2212,0,0,175,0,0
+11884,250000,male,1,2,30,0,0,0,0,0,0,61331,42741,43214,36847,23230,21139,3000,2000,1048,1006,1507,10000,0
+11885,10000,male,2,2,21,0,0,-2,-2,-2,-2,9900,0,0,0,0,0,0,0,0,0,0,0,1
+11886,140000,female,1,2,30,-1,-1,-1,-1,-1,-1,4717,5329,5445,5328,6243,21030,5329,5445,5328,6243,21030,10266,0
+11887,100000,female,2,2,25,0,0,2,0,0,0,87401,93476,91077,92885,94831,96907,7497,0,3324,3442,3653,4449,1
+11888,130000,female,3,1,43,3,2,2,2,2,2,19085,18491,20579,19950,21625,21129,0,2400,0,2000,0,1800,1
+11889,80000,female,1,2,23,0,-1,-1,-1,-1,-1,78358,826,-507,3129,1956,4246,826,0,4969,4990,2500,4000,0
+11890,350000,female,3,1,38,-2,-2,-1,0,0,0,362,792,3015,6980,8762,7532,792,3019,4580,4000,284,1000,0
+11891,140000,male,3,1,45,-1,-1,-2,-2,-2,-2,1553,0,0,0,0,0,0,0,0,0,0,0,0
+11892,120000,female,2,1,33,1,-2,-2,-2,-1,-1,0,0,0,0,197,0,0,0,0,197,0,0,0
+11893,480000,male,3,1,46,0,0,0,0,0,2,277803,287770,296399,314867,331653,324093,16000,15000,25000,22000,5000,10000,0
+11894,20000,female,2,2,24,0,0,0,0,3,2,3980,5075,5979,6796,6463,2255,1318,1183,1000,0,0,2440,1
+11895,30000,male,2,1,43,0,0,0,0,0,0,24643,24963,24428,23598,23696,23147,2496,1357,1000,843,993,853,0
+11896,500000,female,2,2,48,0,0,0,0,0,0,185627,182655,180782,194893,93416,94255,8000,9387,20000,3525,3338,3450,0
+11897,360000,male,3,1,55,0,0,0,0,0,-2,23439,19112,10730,20530,987,837,5000,1200,10000,987,0,1017,0
+11898,90000,female,2,1,34,1,-1,-1,-2,-2,-1,0,2098,0,0,0,501,2098,0,0,0,501,0,0
+11899,90000,female,3,1,44,0,0,0,0,0,0,94393,93361,91820,48220,45766,43343,3820,3785,1721,1651,1661,2147,0
+11900,150000,female,1,2,33,-1,-1,-2,-2,-2,-2,717,-959,-959,-959,-959,-959,0,0,0,0,0,0,0
+11901,130000,female,3,1,49,1,-1,2,0,0,0,0,10152,9840,11671,11914,12155,10152,0,2000,431,438,244,0
+11902,10000,male,1,2,26,-1,2,-1,-1,-1,-2,10252,5677,2735,4564,0,0,0,2735,4564,0,0,0,0
+11903,70000,male,2,1,35,0,0,0,0,0,0,32507,29775,31273,33739,34632,33746,3000,2000,3000,1600,1500,1600,0
+11904,220000,male,1,2,32,0,0,0,0,0,0,207384,213290,219202,222114,173898,166686,9252,11000,8769,6678,6053,6235,0
+11905,150000,female,1,2,29,-2,-2,-2,-2,-2,-2,23414,23349,0,3180,0,13649,1000,0,3180,0,13649,1000,0
+11906,160000,female,2,1,34,2,2,0,0,0,0,160285,156328,159322,124363,126802,129365,0,7661,4607,4602,4671,4780,0
+11907,80000,female,1,2,27,-1,-1,-1,-2,-2,-1,825,825,-6042,-6867,-8692,54375,825,0,0,0,150000,10000,0
+11908,50000,male,3,1,39,0,0,-2,-2,-2,-2,44574,0,0,0,0,0,0,0,0,0,0,0,0
+11909,20000,male,2,1,32,0,0,0,2,2,0,9622,10974,14963,15123,14741,15340,1511,4500,700,0,1000,1500,0
+11910,10000,female,5,2,21,0,0,0,0,0,-2,7691,8107,8036,8099,0,0,1192,1000,162,0,0,0,0
+11911,320000,female,2,2,34,-1,-1,-1,-1,0,-1,7806,2944,11755,52566,36658,42332,2944,11768,52592,0,42332,27435,0
+11912,290000,female,1,1,40,-1,-1,-1,-1,-1,-1,550,550,550,550,550,550,550,550,550,550,550,0,0
+11913,50000,female,1,1,43,0,0,0,0,2,0,49390,50612,29975,30559,29433,30045,2449,1778,2382,0,1251,1051,0
+11914,140000,female,2,1,51,-2,-2,-2,-2,-2,-2,4885,649,-9,-9,3177,-10,650,0,0,3186,0,0,0
+11915,140000,female,1,1,36,0,0,0,0,0,0,132629,135901,138858,97585,95447,91717,5406,5700,3600,13500,3466,3333,0
+11916,50000,female,2,1,49,-1,-1,0,0,-1,-1,3126,25362,23683,22833,1352,20791,25368,1237,457,1354,20794,540,0
+11917,360000,male,1,2,34,-1,2,0,0,0,-2,9,9,2009,1029,0,0,0,2000,0,0,0,399,1
+11918,140000,male,3,1,43,-1,0,0,0,0,0,139445,137950,133250,98147,98924,95100,5500,5000,3500,3510,3500,3500,1
+11919,280000,female,2,1,48,-2,-2,-2,-2,-2,-2,9517,36527,14899,18374,13369,8854,36527,14927,18410,13369,8854,17863,0
+11920,410000,male,1,2,37,0,0,0,0,0,0,59728,66109,67396,70701,74590,78380,8000,3000,4400,5000,5033,345,0
+11921,30000,female,1,2,26,-1,-1,-1,-1,0,0,125,125,125,4671,25871,15222,125,125,4671,25000,3000,2256,0
+11922,50000,female,3,1,50,1,2,2,-2,-2,-2,4446,4166,0,0,0,0,0,0,0,0,0,0,0
+11923,60000,female,2,2,26,0,0,0,0,0,0,57171,58656,53271,54331,55513,56898,2464,1932,1944,2057,2351,1963,0
+11924,170000,female,2,2,29,0,0,0,0,0,0,47742,45529,42805,38017,39239,39411,2105,2447,1200,3000,2000,1500,0
+11925,230000,male,2,2,28,-1,-1,-1,-1,-1,-1,651,651,651,0,651,1496,651,651,0,651,1496,1953,0
+11926,30000,female,2,1,25,0,0,0,2,2,2,29883,27523,31010,30207,31203,30554,2000,4273,0,2640,0,1500,1
+11927,360000,female,1,1,42,-1,-1,-1,-1,-1,-1,5658,4164,2469,0,5724,7334,4164,2469,0,5724,7334,5221,0
+11928,360000,male,1,1,30,0,0,0,-1,-1,-1,98048,69568,22030,498,3150,1074,4000,5000,498,3150,1074,2416,0
+11929,150000,male,1,2,38,0,0,-2,-2,-2,-2,421504,299860,300000,0,0,0,17000,17000,0,0,0,0,0
+11930,110000,female,3,1,36,0,0,-1,-1,-1,-2,2309,3238,250,3100,0,0,1002,450,3100,0,0,0,0
+11931,280000,male,1,2,32,0,0,0,0,0,-1,32068,31915,34433,31236,0,500,5000,5000,5000,0,500,4800,0
+11932,200000,male,1,1,37,-1,-1,0,0,0,0,2896,10706,10323,8440,4963,10222,10720,3014,1027,2022,10017,2030,1
+11933,50000,male,3,2,33,1,-2,-2,-1,-1,-2,0,0,0,1000,0,0,0,0,1000,0,0,0,0
+11934,150000,male,2,2,28,0,0,0,0,0,0,79426,71364,71219,56277,54231,55243,3003,2503,1880,1875,2666,1396,1
+11935,360000,male,1,2,36,0,0,-1,-1,-1,-1,331365,338400,493,0,2030,2112,15000,493,0,2030,2112,750,0
+11936,130000,male,3,1,49,0,0,0,0,0,0,119466,116833,106524,89412,86993,87433,5044,5067,5013,5002,4002,5009,0
+11937,230000,female,3,1,48,-1,-1,0,0,-2,-1,500,14883,33151,0,0,469,14883,20757,0,0,469,716,0
+11938,480000,female,2,2,48,-1,-1,-1,-1,-1,-1,2475,995,3647,7621,1735,302818,1000,3652,7626,1740,302823,19608,0
+11939,30000,female,3,1,35,2,0,0,0,0,0,28852,29777,29478,30290,27803,25762,1700,1700,1500,1500,1500,1500,1
+11940,150000,female,2,2,42,0,0,0,0,0,0,89341,79904,72182,61014,49502,46055,5000,6000,3000,2000,10000,5000,0
+11941,500000,male,1,1,42,-1,-1,-1,-1,-1,-1,29365,94120,36511,18323,7865,7960,94135,36575,18323,13445,9016,7077,0
+11942,220000,female,2,1,43,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+11943,360000,female,1,2,56,-2,-2,-2,-2,-2,-2,437,241,0,0,0,2628,241,0,0,0,2628,163,1
+11944,160000,female,2,1,42,0,0,0,0,0,0,165686,169969,170142,119529,122059,111378,8450,5289,4022,4195,3986,3958,1
+11945,270000,female,2,2,42,-1,-1,-1,-2,-2,-2,12263,10025,0,0,0,0,10025,0,0,0,0,0,0
+11946,610000,male,1,2,35,0,0,0,0,0,0,269672,274882,276887,260761,266747,271886,10000,11000,10000,11000,10000,10000,0
+11947,20000,male,3,2,29,-1,-1,-1,-1,-1,-1,4453,7997,6573,7422,4381,11718,8019,6779,7547,4589,12000,7556,0
+11948,70000,female,2,1,28,1,3,2,0,0,2,9192,8905,8611,8879,9746,8710,0,0,400,1000,0,700,1
+11949,260000,female,1,1,35,0,0,0,0,0,0,51133,60247,63615,71839,75506,78647,10000,5000,10000,5000,5000,10000,0
+11950,30000,male,2,1,47,-1,-1,0,0,0,0,778,5898,8610,8402,10878,10790,5900,3000,299,3000,608,274,1
+11951,20000,male,2,2,34,1,2,0,0,0,0,20690,20075,19492,19859,19232,15608,0,1500,805,7000,542,242,1
+11952,160000,female,3,2,25,-1,-1,-1,-1,-1,-1,141,-756,11520,1520,5171,3716,201,13040,0,5171,3716,107,0
+11953,20000,female,2,2,23,0,0,0,0,0,0,16575,17629,18552,15562,16308,17034,1327,1250,800,1000,1000,1000,0
+11954,330000,male,1,1,61,-2,-2,-2,-2,-2,-2,14897,19364,906,2342,1702,882,19364,906,2342,1702,882,1940,0
+11955,70000,male,2,2,25,0,0,0,2,2,2,50224,58639,11512,10586,20389,17369,10000,10000,0,10000,0,33000,0
+11956,300000,male,1,2,27,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+11957,280000,female,2,2,30,2,2,2,2,2,0,254307,257669,226452,215692,194206,185854,9100,5509,7604,0,9200,6400,0
+11958,180000,female,2,1,33,0,0,0,0,0,0,47050,49282,50159,51336,54332,56249,3000,2000,2011,4000,3000,3000,0
+11959,50000,female,1,2,50,0,0,0,0,0,0,51016,49000,20356,20241,20304,20119,2098,1303,698,719,716,833,0
+11960,230000,female,3,2,30,-2,-2,-2,-1,2,0,122344,115723,44178,4221,4009,8990,5492,2600,7797,0,5180,4606,1
+11961,200000,female,2,1,51,-1,-1,-1,-1,-1,-1,9754,55904,8720,4410,1186,28679,56243,8860,4410,1186,28679,0,1
+11962,250000,male,2,2,30,0,0,0,-1,2,-1,5724,6729,4973,9693,799,4295,2000,2305,4720,0,4305,0,0
+11963,100000,male,1,2,31,1,2,0,0,2,0,104395,101736,106101,54707,54924,52141,1867,1867,5026,2800,2800,2800,0
+11964,470000,female,1,2,30,-2,-1,-1,-2,-1,-1,1689,499,350,2277,41523,2175,499,350,2277,41523,2175,6351,1
+11965,80000,female,1,2,26,-1,-1,-1,-1,-1,-1,3900,331,9970,4250,4574,0,331,9970,4250,4574,0,0,0
+11966,250000,male,2,1,39,0,0,0,0,0,0,20461,22813,24063,24886,26446,20301,3000,2000,1500,2000,2000,3000,0
+11967,20000,male,3,1,36,2,2,3,3,3,3,1050,1050,1050,1050,1050,1050,0,0,0,0,0,0,1
+11968,360000,female,1,2,32,1,-2,-2,-1,-1,-1,0,0,0,499,1113,392,0,0,499,1113,392,455,0
+11969,80000,female,2,1,26,0,0,0,0,0,0,35897,30090,29299,12406,1308,-52,1510,2085,248,26,52,0,0
+11970,100000,female,2,1,27,1,1,-1,0,0,0,3856,-1278,7571,5386,1133,4143,2,9586,1014,500,3010,1,0
+11971,50000,male,1,1,40,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,200,0
+11972,620000,male,1,1,39,0,0,0,0,0,0,346927,90849,90493,90025,88406,89111,5200,5400,3173,3200,3500,3164,0
+11973,100000,female,3,1,28,2,0,0,2,2,2,29770,30485,32434,32592,33102,33860,1825,3100,1300,1500,1771,0,0
+11974,30000,male,1,2,22,0,0,0,3,2,0,18796,23153,27439,26708,26141,26823,5000,5000,0,0,1115,2500,0
+11975,180000,male,1,2,28,-1,-1,-1,-1,-1,-1,2619,1839,2544,1134,1313,1332,1839,2544,1134,1313,1332,2444,1
+11976,330000,female,1,1,36,-1,-1,2,-1,-1,-1,2964,36,36,24699,2912,14231,36,0,24863,2912,14231,6976,0
+11977,90000,male,2,2,34,1,2,0,-1,-1,0,50281,14033,12628,20172,73512,72588,0,2000,20172,73512,3000,4000,0
+11978,280000,male,1,1,41,-1,-1,-1,-1,-1,-1,718,3910,1906,837,360,350,3927,1913,841,360,350,2095,0
+11979,20000,male,2,2,30,1,2,0,0,0,-2,18231,34558,17363,17569,0,0,0,1200,406,0,0,0,1
+11980,120000,male,1,2,37,-1,2,-1,-1,-1,-1,1235,316,316,16885,46929,69521,0,316,16885,54629,77046,4499,0
+11981,240000,female,1,2,27,0,0,0,0,0,0,176829,174143,165755,166291,141380,130742,7058,6800,4050,6084,8028,4267,0
+11982,80000,female,3,1,53,1,-1,-1,-2,-2,-1,0,1710,0,0,0,496,1710,0,0,0,496,2560,1
+11983,30000,male,2,1,35,1,-2,-2,-1,3,2,-2221,-8152,-4220,30821,30071,28767,0,0,35821,0,0,1000,0
+11984,70000,female,1,1,28,0,0,0,0,0,-2,20596,24911,28346,12170,-1686,-3594,5000,4000,12,0,0,0,0
+11985,20000,male,2,1,46,1,2,0,0,0,-2,19866,19257,18901,18210,0,0,0,1200,9,1000,0,0,1
+11986,180000,female,1,1,38,2,0,0,0,0,0,183939,176737,179787,181918,169664,173169,8000,7900,6900,6200,6700,6700,1
+11987,140000,male,2,2,62,0,0,0,0,0,0,143107,138581,123491,118886,117059,117405,4839,5000,5000,7500,7000,5029,0
+11988,20000,female,1,2,24,0,0,0,0,0,0,17147,18264,19145,17322,16989,12699,1700,1500,822,1000,1000,500,0
+11989,230000,female,1,1,31,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+11990,90000,female,2,2,39,2,2,2,2,2,2,82326,82827,87070,87961,86445,91520,2700,6500,3200,0,6500,0,0
+11991,170000,female,2,1,33,-1,-1,-1,-1,-1,-1,263,641,0,638,0,362,641,0,638,0,362,1079,0
+11992,80000,male,2,2,30,0,0,0,0,0,0,79949,65416,45991,47229,48468,49490,2500,2000,2000,2000,1826,2000,0
+11993,80000,male,2,1,36,-1,-1,0,0,0,0,9097,31091,34651,26569,20082,25535,31091,20000,5000,10000,10000,0,0
+11994,80000,male,1,2,37,0,0,0,0,0,0,68553,69191,71918,71534,73344,75218,3000,3310,2200,2400,2500,2400,0
+11995,100000,female,2,1,36,1,2,2,2,0,0,79695,77855,83945,81702,83232,84947,0,7400,0,3000,3100,3400,1
+11996,120000,female,2,2,26,0,0,0,-2,-2,-1,4787,6190,0,0,0,4800,1500,0,0,0,4800,0,0
+11997,50000,female,2,1,47,2,0,0,2,2,2,10992,12047,15257,15410,15917,15514,1540,3750,700,900,0,600,1
+11998,260000,male,2,1,64,2,2,2,2,2,2,2500,2500,2500,2500,2500,2500,0,0,0,0,0,0,1
+11999,180000,male,1,1,35,0,0,0,0,0,0,170128,172258,138807,132806,135603,137803,7187,5000,4749,5141,4916,4000,0
+12000,30000,female,2,1,23,0,0,0,0,0,0,27141,28297,29012,29754,30211,29853,1900,1500,1200,1300,1500,1180,0
+12001,80000,male,3,1,52,1,2,2,2,2,2,13701,13034,4119,2705,2855,1411,0,1200,0,1411,0,390,1
+12002,50000,male,2,1,36,0,0,2,0,0,0,14668,17194,13948,12165,10242,8428,2800,0,500,360,500,125,0
+12003,50000,male,3,1,41,0,0,0,0,0,0,13868,13060,11151,7921,6949,4716,1227,1073,230,241,138,1191,0
+12004,90000,female,2,2,28,2,0,0,0,2,0,48177,49563,47750,47169,46284,47519,2500,2500,3700,0,2200,1800,1
+12005,180000,female,3,1,35,0,0,0,0,0,0,133733,92955,90159,68789,26614,27528,3514,3569,3204,1000,1310,4459,0
+12006,20000,female,2,3,52,0,0,0,0,0,0,19773,18459,19398,18561,18949,17426,1331,1270,633,655,759,547,1
+12007,460000,female,2,1,39,-1,-1,-1,2,0,-1,15950,13101,22551,21851,22214,80132,13101,10000,0,10000,80132,4882,0
+12008,80000,male,1,2,31,1,2,2,0,0,0,61241,62155,56049,50829,50687,47362,2515,16,2003,2013,5007,113,0
+12009,50000,male,2,2,35,1,2,2,0,0,2,40624,41381,40416,41395,44063,44587,1700,0,1650,3505,1400,1700,1
+12010,50000,male,2,2,37,0,0,0,0,0,0,50581,47990,33276,28507,28709,29793,2020,2010,2000,2000,2000,2000,1
+12011,240000,male,1,1,39,1,-2,-2,-2,-2,-2,-18,-18,-18,-18,-18,-18,0,0,0,0,0,0,0
+12012,360000,male,2,1,43,-1,-1,-1,-1,-1,-1,6146,945,5497,4162,1724,1569,1000,5500,4182,1800,1570,1180,0
+12013,150000,female,4,2,23,0,0,0,0,0,0,27338,23410,24410,27007,28585,27827,1403,1403,3000,2000,1155,2000,0
+12014,20000,male,2,2,24,0,0,0,0,-2,-2,18186,19086,19618,0,0,0,1500,1000,0,0,0,0,0
+12015,30000,male,3,2,44,4,3,2,7,7,7,2646,2646,2646,2646,2646,2646,0,0,0,0,0,0,0
+12016,200000,female,1,2,44,-2,-2,-2,-2,-2,-2,0,0,0,7800,30223,10715,0,0,7800,30223,10715,1354,0
+12017,80000,female,6,2,51,0,0,0,0,-1,0,9747,7592,7420,1467,7505,3837,1203,1020,1467,7505,135,61,0
+12018,260000,female,2,2,28,0,0,0,0,0,0,154489,143383,132873,122528,111409,100032,6000,5000,5000,4000,3600,5005,0
+12019,20000,male,2,2,49,2,0,0,0,0,0,7823,8691,9701,9894,10102,10534,1151,1161,354,367,600,600,1
+12020,240000,female,1,2,39,0,0,0,0,0,0,123704,125133,128856,131620,134413,137188,4905,5800,4900,4900,5000,4515,0
+12021,120000,female,1,2,44,1,2,2,2,0,0,27500,28565,29003,28241,28933,30956,1800,1200,0,1300,2500,0,0
+12022,20000,female,2,2,22,0,0,0,0,0,0,20117,18784,19538,17958,4968,780,1466,2000,1000,600,0,0,0
+12023,20000,female,3,1,52,0,0,2,0,0,0,9410,11840,11260,11260,11260,0,2600,0,0,0,0,0,0
+12024,430000,female,1,1,37,-1,-1,-1,-1,-1,-1,1669,412,23547,5064,13258,2249,416,23547,5064,13258,2249,3686,0
+12025,80000,female,2,1,46,0,0,0,0,0,0,76270,77376,38556,34345,36020,38420,3400,3000,3000,3000,3000,3000,0
+12026,50000,male,2,2,25,0,0,0,0,0,0,47809,49040,29662,28360,28831,29487,2141,1763,1161,1077,1167,1004,0
+12027,140000,male,3,2,35,0,0,2,0,0,0,47422,52831,51345,49734,50476,50751,6800,8,1718,4000,2001,1879,0
+12028,50000,male,2,1,31,1,2,0,0,0,0,51203,50110,51066,50737,50827,50856,0,2100,1800,1900,2100,1800,0
+12029,50000,male,1,2,25,0,0,0,0,0,0,45079,45741,47561,39482,40066,38994,1773,3528,2002,2005,1398,908,0
+12030,50000,female,2,1,26,1,2,2,2,2,2,16919,17854,18265,20455,19986,21747,1500,1000,2500,0,2100,0,0
+12031,80000,female,2,1,37,0,0,0,0,0,0,39839,40596,41914,42618,43525,44433,1700,1996,1700,1745,1800,2500,0
+12032,50000,male,3,1,55,2,0,0,0,0,0,42166,43687,44121,43360,40555,31309,2200,1632,1113,1336,3142,2126,1
+12033,80000,female,2,1,60,1,-1,-1,-1,-1,-1,-2,759,596,-4,1426,1300,761,597,0,1430,1309,1844,1
+12034,360000,female,1,1,52,-1,-1,-1,-1,-1,-1,7542,6302,4719,1577,1577,21220,6302,4719,1577,1577,21220,10744,0
+12035,60000,female,2,2,41,0,0,0,0,0,0,60672,58929,60335,59384,60861,59241,2741,3000,2300,2600,2200,2665,0
+12036,290000,female,1,2,31,-1,-1,-1,0,0,0,1170,0,83289,82889,82889,1964,0,83289,0,0,0,7951,0
+12037,50000,male,1,2,56,0,0,0,0,0,0,47076,48427,49317,50855,18177,18823,2110,2000,2376,709,998,535,0
+12038,360000,female,5,2,28,0,0,0,0,-1,-1,243114,46734,12558,0,730,500,1587,1028,0,730,500,0,0
+12039,440000,female,2,1,40,-1,-1,-1,-1,-1,-1,3278,2028,981,873,873,840,2035,982,874,874,841,7453,0
+12040,500000,male,1,1,36,-1,-1,-1,0,0,0,396,1043,19230,116696,194483,195454,1043,19230,100062,94503,10000,40000,0
+12041,240000,male,2,2,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+12042,100000,male,2,2,31,0,0,0,0,0,0,21345,26288,23386,25362,26318,42484,6363,4386,5362,4344,20000,4382,0
+12043,200000,female,1,1,47,1,2,2,-2,-2,-2,4503,3350,-2209,-2209,-3607,1069,0,630,0,200,10000,2800,0
+12044,260000,male,1,1,43,1,-1,2,0,-1,-1,-10,5172,2800,3804,5009,3035,5182,9,2998,5034,3050,2965,0
+12045,70000,female,3,1,53,2,2,2,2,2,2,54251,55402,53925,56814,58053,59246,2600,0,4400,2300,2300,2100,1
+12046,20000,male,3,1,53,0,0,2,0,0,0,17614,19323,19694,20004,20159,20059,2000,1000,1000,1000,1000,800,1
+12047,180000,male,1,2,38,1,2,0,0,0,0,124233,125768,126202,127677,99764,0,5000,4200,3000,5000,2000,0,1
+12048,80000,female,2,1,44,0,0,0,0,0,0,47102,24470,25614,21053,18531,19051,1473,1617,856,672,828,910,0
+12049,140000,female,1,1,41,0,0,0,0,0,0,142129,130705,99736,80445,81005,79387,15126,9064,4009,5014,5011,7006,1
+12050,50000,female,2,1,26,0,0,0,0,-1,2,22915,22247,22493,660,1979,836,1411,1650,0,1979,0,1320,0
+12051,120000,male,1,1,36,2,0,0,0,2,0,117492,104895,58743,60469,57532,55702,3985,3000,5000,0,2000,1600,1
+12052,320000,female,1,1,42,0,0,0,0,0,0,197352,201913,103278,62891,64948,66961,9000,6000,3000,3000,3000,3000,0
+12053,70000,male,2,1,39,0,0,0,0,0,0,6056,7292,8663,9018,9222,9568,1500,1500,500,500,500,1000,0
+12054,120000,female,2,1,42,-1,-1,-1,-1,-1,-1,499,499,499,499,499,1148,499,499,499,499,1148,0,0
+12055,150000,female,2,2,25,0,0,0,0,0,0,100165,102327,101572,103062,83567,85098,5000,3500,3000,3000,3100,3100,0
+12056,230000,female,2,1,32,-1,0,0,0,0,-2,1560,1766,2720,3720,0,0,1046,1000,1000,0,0,44752,0
+12057,290000,female,2,1,34,0,0,0,0,0,0,38027,23036,129433,117500,113149,102593,6000,120000,5000,5000,5000,3500,0
+12058,50000,female,2,1,36,-1,-1,-2,-2,-2,-2,4782,0,0,0,0,0,0,0,0,0,0,0,0
+12059,360000,male,1,2,34,0,0,-1,0,0,0,14867,14612,13739,7995,9480,9952,1079,14598,1017,5022,5049,3304,0
+12060,160000,female,3,1,56,-1,-1,-1,-1,0,0,2992,4562,-928,1619,928,0,4562,0,2547,0,0,0,0
+12061,30000,female,2,2,42,3,2,2,0,-1,-1,2231,3048,2845,1630,12037,12933,1000,12,0,12037,1100,0,1
+12062,60000,male,1,2,27,0,0,0,0,0,2,21387,22416,23444,26038,28607,27997,1378,1406,3000,3000,0,923,1
+12063,420000,male,2,1,34,0,0,0,0,0,0,226007,226465,205276,206521,209775,194883,10000,9600,6700,7000,7042,7112,1
+12064,50000,male,1,1,42,0,0,0,0,0,0,49887,49515,38680,29664,29057,29083,1850,1507,1100,1200,1116,2900,0
+12065,360000,female,2,2,34,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+12066,250000,male,3,1,46,0,0,0,0,-1,0,55891,59152,20615,13896,79740,70097,21343,1238,1235,79788,2148,18253,0
+12067,160000,male,1,2,32,0,0,2,2,2,3,82345,91345,92444,93715,97451,97477,9000,3500,3700,5400,1900,0,0
+12068,50000,male,2,2,30,1,2,0,0,0,0,52419,51309,51135,48371,56294,61259,0,2500,2271,50000,10100,3000,0
+12069,160000,male,1,2,29,1,-1,-1,0,0,-1,-113,18887,2323,9032,5630,9141,19000,3000,9000,0,9596,10284,0
+12070,220000,male,1,2,31,0,0,0,0,-1,0,5254,5868,8708,4078,5365,4055,5000,3040,3520,5371,20,0,0
+12071,70000,female,3,1,43,2,2,2,2,2,2,26193,26977,27733,27982,27396,28341,1500,1500,1000,0,1400,2000,0
+12072,50000,male,3,1,43,0,0,0,-1,0,0,10898,8754,0,16475,16821,17220,1000,0,16475,611,679,344,0
+12073,120000,male,1,2,29,0,0,0,0,0,0,25602,30156,33632,36574,38985,40339,5000,4000,3500,3000,2000,5036,0
+12074,50000,male,3,3,55,2,0,0,0,0,0,47067,48410,49218,18937,19183,19761,2400,2200,824,700,900,852,0
+12075,210000,female,2,1,32,0,0,0,0,0,0,132082,131015,133815,134585,127282,125338,6500,6500,4400,5000,7000,6000,0
+12076,120000,female,1,2,28,-1,2,-1,-1,2,2,594,594,15611,7628,7361,9200,0,15611,3000,0,2000,0,0
+12077,260000,female,2,1,40,0,0,0,0,0,0,138602,135999,133752,135053,133888,132486,4870,6307,5007,5015,4773,4770,0
+12078,120000,male,2,1,41,1,2,2,2,2,2,39606,40679,39730,42148,44509,45643,2000,0,3400,3200,2000,2000,0
+12079,250000,male,1,2,30,1,-2,-2,-1,-1,-1,0,0,0,700,150,200,0,0,700,150,200,0,0
+12080,30000,male,2,2,33,0,0,0,0,0,0,29956,30536,30162,29819,14071,0,29000,1200,637,2000,0,0,0
+12081,50000,male,2,1,28,-2,-2,-2,-2,-2,-2,2862,20499,9555,4807,14429,9872,20637,9588,4821,14472,10002,3254,0
+12082,70000,female,3,2,23,0,0,2,0,0,0,16103,17185,16581,14106,14427,11689,2800,0,650,650,570,450,0
+12083,200000,female,1,2,59,0,0,0,0,0,0,180887,166921,155945,109271,36753,78079,10000,30000,7,7000,73000,700,0
+12084,100000,female,2,1,29,0,0,0,0,0,0,48065,49189,50746,51158,49226,51211,1900,2400,1800,1800,2800,2100,0
+12085,200000,male,2,1,36,-1,-1,-1,-1,-1,-1,4670,4670,4670,4670,4670,4670,4670,4670,4670,4670,4670,4670,1
+12086,280000,female,1,2,29,-1,-1,-1,-1,-1,-1,3009,3437,4132,2693,659,3277,3454,4170,2703,659,3297,423,0
+12087,420000,male,1,1,54,-1,-1,-1,-1,-1,-1,12349,6545,6377,18801,22180,13211,6576,6420,18892,22285,13270,10683,0
+12088,400000,female,1,2,32,0,0,0,0,-1,-1,35383,33892,22071,18161,14669,686,12119,9177,90,14709,686,18444,0
+12089,180000,female,2,2,27,0,0,0,0,0,0,28978,25271,19917,22659,16114,15587,5029,12000,12659,10000,9000,9000,0
+12090,340000,female,1,2,29,0,0,0,0,0,0,182441,181085,179607,177506,176233,173279,6550,6500,5830,6053,5200,5076,0
+12091,500000,male,1,2,38,-1,-1,-1,-1,-1,-1,3109,34228,7981,695,1130,41026,34241,7993,695,1130,41026,25880,0
+12092,420000,female,2,2,37,1,-1,0,0,-1,0,6277,30512,17516,8773,15437,26376,31326,1150,205,15442,22292,1003,0
+12093,180000,female,1,2,32,-2,-2,-2,-2,-2,-2,10989,228,1540,0,0,0,228,1541,0,0,0,0,0
+12094,120000,male,3,1,46,0,-1,0,0,0,0,94953,116914,89799,89913,88484,90477,120656,3520,2931,3180,3432,1116,0
+12095,50000,female,2,1,49,0,0,2,0,0,0,48501,51105,39094,19476,19483,19634,3500,0,680,693,851,700,0
+12096,150000,female,2,2,26,0,0,0,0,0,0,36302,33060,33988,35112,36532,36345,2070,3995,3113,2540,3348,2029,0
+12097,20000,female,1,2,22,1,2,2,0,0,2,11087,11712,11164,11395,11927,9186,1100,0,289,594,0,50,0
+12098,150000,male,3,1,27,2,2,2,2,0,0,183405,188959,192342,189717,195670,198611,10000,8000,2000,9000,8000,110000,0
+12099,40000,male,2,2,27,6,5,4,3,2,0,42055,41146,40114,38797,38244,38478,0,0,0,0,871,116,1
+12100,180000,female,1,1,30,0,0,0,0,0,0,116218,124296,128002,127286,119733,116705,10000,6007,4304,4241,4200,4250,0
+12101,120000,female,2,2,43,2,2,0,0,0,0,124613,121211,120920,47951,41563,36779,0,3507,2000,2500,2000,1500,1
+12102,420000,male,1,2,42,0,0,0,0,0,0,155814,155282,116385,106961,92331,89566,5397,5678,3577,3023,3026,3012,0
+12103,20000,female,1,2,29,1,2,0,0,0,2,6345,6098,7107,7401,7826,7552,0,1118,412,694,0,300,0
+12104,120000,female,2,2,24,0,0,0,0,0,0,29161,29891,30893,32804,32213,31891,1500,1500,2401,1155,1460,1086,0
+12105,230000,female,2,1,27,0,0,0,0,0,0,25947,26998,25825,25908,26341,27898,1800,1500,1500,1000,2000,2000,0
+12106,50000,male,2,3,46,0,0,0,0,0,0,49776,50405,49099,19125,18504,19197,2056,1300,669,671,1000,684,1
+12107,50000,female,2,1,36,0,0,0,0,0,0,52136,50942,49715,21332,20096,18883,2218,2519,712,706,740,600,0
+12108,320000,male,1,1,40,0,0,0,0,0,0,151222,135038,108924,109710,116813,118984,6500,8000,4000,9000,4000,5000,0
+12109,70000,female,2,2,23,2,0,0,0,2,0,69074,70811,67397,50126,47604,43429,2875,2327,3533,0,1367,1322,1
+12110,280000,female,1,2,27,0,0,0,0,0,0,160889,165400,166712,170059,154387,157832,9000,6000,6000,6000,6000,6000,0
+12111,180000,male,1,1,48,0,0,0,0,0,0,66092,65236,65912,66523,67020,67259,2370,3000,3000,2588,2500,3500,0
+12112,50000,female,1,2,29,-1,-1,-1,-1,-1,-1,2000,5743,1134,3067,5496,1194,5934,1134,3067,5496,1194,6499,0
+12113,340000,female,2,2,25,1,-2,-2,-1,-1,-1,0,0,0,1888,4777,4752,0,0,1888,4777,4752,1888,0
+12114,200000,female,2,2,25,0,0,0,0,-1,-1,41357,22770,23231,6979,2428,2099,3262,3346,3034,2440,2109,0,0
+12115,180000,female,2,2,28,0,0,0,0,0,0,10479,11793,12500,13383,14760,15472,1410,1117,1000,1500,1000,1000,0
+12116,50000,female,1,2,25,0,0,0,0,0,0,42056,46024,45452,45450,41154,39034,5000,2000,1500,2000,4000,1364,1
+12117,120000,female,2,2,31,0,0,0,0,0,0,115573,117767,115918,116918,118698,121372,5700,4172,4168,4770,5119,2954,0
+12118,360000,male,3,1,46,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,9451,0
+12119,240000,male,2,1,50,-1,-1,-1,-1,-1,-1,419,419,419,419,419,419,419,419,419,419,419,419,0
+12120,70000,female,2,2,25,4,3,2,0,0,0,30542,29780,28968,29540,29505,29428,0,0,2032,1069,1066,1002,1
+12121,20000,female,3,3,41,-2,-2,-2,-2,-2,-2,2795,198,2310,973,406,1317,941,3637,973,406,2228,1923,0
+12122,190000,male,2,1,32,1,2,2,2,2,0,13041,13936,13415,14590,14216,14823,1400,0,1400,0,1000,1000,0
+12123,200000,female,2,1,38,-1,-1,-1,-1,-1,-1,780,0,390,390,390,390,0,390,390,390,390,390,0
+12124,410000,male,2,1,45,-2,-2,-2,-2,-2,-2,597,2326,7670,1761,6930,0,2329,7670,1761,6930,0,2675,0
+12125,110000,male,1,2,27,0,0,0,0,0,0,34314,33538,37448,34963,28197,30331,5000,5000,3000,3150,3000,3000,0
+12126,210000,female,2,2,27,0,0,0,0,0,0,87909,86769,85001,83811,82399,81434,4100,3500,3113,3000,3331,2546,0
+12127,300000,male,1,1,42,1,2,2,2,2,2,32643,33427,32591,34943,35536,36403,1600,0,2900,1300,1600,0,0
+12128,390000,female,1,2,29,0,0,0,0,0,0,283965,278793,275339,268728,271979,272076,8724,8445,8103,8324,9198,8365,0
+12129,30000,male,2,1,51,0,0,0,0,0,-2,28916,29451,27779,28340,0,0,11592,1500,959,0,0,0,1
+12130,20000,female,2,2,24,0,0,0,0,0,0,2004,3193,4050,4129,4367,4613,1211,1068,147,304,467,0,1
+12131,70000,female,2,2,23,-1,-1,-1,0,0,0,1823,326,6598,6405,7248,8090,326,6598,227,1270,1296,271,0
+12132,70000,female,1,1,35,4,4,3,2,0,0,77021,73268,70275,46045,42357,41026,0,2001,0,1666,1505,2079,0
+12133,50000,male,1,2,25,-1,3,2,0,0,-1,1304,978,652,326,0,1454,0,0,0,0,1454,0,1
+12134,30000,male,3,2,51,0,0,0,0,2,2,25358,26447,26946,28957,29408,29840,1800,1300,2400,1000,1000,0,0
+12135,130000,male,1,2,33,1,2,2,2,0,0,36672,35807,40851,39526,41346,40630,0,6000,0,3000,1000,1100,0
+12136,130000,male,2,1,39,0,0,-1,0,-1,-1,1240,0,1138,1138,2478,-3040,0,1138,0,2500,0,0,0
+12137,20000,male,2,1,38,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+12138,30000,female,2,1,34,-1,-1,2,0,0,0,411,995,579,1430,1414,1398,1000,0,1420,400,400,0,0
+12139,170000,female,2,2,26,0,0,0,0,0,0,30005,30621,30308,30163,29999,29973,1842,1708,1163,1199,1173,952,0
+12140,120000,male,2,1,31,2,2,2,2,2,2,53672,56495,57455,58127,59367,60333,4300,2500,2200,2300,2114,1,1
+12141,50000,male,1,2,42,1,2,2,2,2,2,44350,43360,45892,46886,48037,47551,0,3300,2000,2000,396,1600,0
+12142,130000,female,3,1,41,0,0,0,0,0,0,131728,132063,128599,131454,126621,126724,7000,4700,5013,4601,4525,4800,0
+12143,110000,female,3,2,32,0,0,0,0,0,0,50433,42098,42753,42428,43740,44858,2200,2000,2500,2300,2300,2000,0
+12144,80000,female,1,2,28,0,0,0,0,0,0,53301,55444,60738,62818,45413,44793,3525,10000,7296,3000,3000,4500,0
+12145,500000,female,2,2,32,0,0,0,0,2,0,33763,43081,44277,46605,35766,26175,10000,2200,3500,0,1100,800,0
+12146,180000,female,2,1,46,-2,-2,-2,-2,-2,-2,0,12103,2250,899,0,1375,12103,2250,899,0,1375,0,0
+12147,120000,female,3,1,58,1,-1,-1,-2,-2,-1,0,2228,0,0,0,672,2228,0,0,0,672,2507,1
+12148,20000,female,2,1,23,0,0,-1,-1,-1,0,14313,4256,200,0,18844,12052,1000,200,0,18844,241,0,0
+12149,370000,male,2,2,30,-1,-1,-1,-1,-1,-1,25588,1259,1259,3661,4484,24233,2096,1263,3665,4488,24262,11175,1
+12150,50000,male,2,2,22,0,0,0,0,0,0,49551,42517,35458,19778,19929,19790,1707,1321,687,705,811,874,0
+12151,150000,male,1,1,51,0,0,0,0,0,0,92766,94732,96940,46349,47360,48717,4000,4000,1482,1577,2000,1500,0
+12152,80000,male,1,2,29,-1,-1,-1,-2,-2,-2,1567,20175,0,0,0,0,20175,0,0,0,0,900,1
+12153,460000,female,1,2,28,0,0,0,-1,0,0,16560,12570,19403,10063,8628,0,2500,9456,10063,0,0,13182,0
+12154,50000,male,3,1,53,2,2,2,2,2,2,45870,46944,45874,48326,47440,50426,2100,0,3500,0,3758,5,1
+12155,80000,female,2,2,25,0,0,0,0,0,0,62242,28610,29425,29990,29153,19863,19885,1700,1169,1044,717,1000,0
+12156,260000,female,1,1,35,0,0,0,0,0,0,89420,86716,82868,80715,76377,44627,3578,2400,2000,2000,1464,1188,0
+12157,320000,male,1,2,32,-1,-1,-1,0,0,-1,488,2290,14080,9931,7590,9685,2301,14109,11,38,9733,20444,0
+12158,50000,female,2,2,46,0,0,0,0,0,0,44808,44899,46346,47273,48357,50393,2100,2500,2000,2000,3000,1600,0
+12159,360000,female,1,1,55,-1,-1,-1,-1,-1,-1,2334,37570,5102,15701,7771,10615,37570,5102,15701,7771,10615,10068,0
+12160,50000,female,2,2,50,0,0,0,0,0,0,20001,15345,37420,18151,4823,6574,2000,32009,1500,1000,3012,1503,0
+12161,150000,male,2,1,30,-2,-2,-2,-2,-2,-1,9248,6831,2902,6468,1883,1519,6871,2918,6506,1893,1527,5330,0
+12162,70000,female,2,1,32,0,0,0,0,0,0,67417,63334,61578,63061,64403,64948,2303,2400,2500,2500,2300,2400,0
+12163,150000,female,1,2,27,-1,-1,-1,-1,-1,-1,5561,4141,7714,9772,13539,5819,4141,7725,9772,13539,5819,4302,0
+12164,50000,male,2,2,42,0,0,0,0,0,0,48842,49709,30628,30993,29802,29253,2576,1495,1250,4732,1100,1100,0
+12165,90000,female,2,2,23,-1,-1,-1,-1,0,0,13808,4300,2748,1048,450,450,4335,4448,6980,0,0,711,0
+12166,100000,male,2,1,30,0,0,0,0,0,0,57998,60063,63925,68058,69273,56101,3000,5000,5305,3000,6600,0,1
+12167,440000,female,1,2,34,-1,-1,0,0,-2,-1,3290,4949,10065,2500,0,11560,4949,6020,0,0,11560,258,0
+12168,250000,male,1,2,35,-1,-1,-1,-1,-1,-1,2746,1666,3572,76552,100566,0,1666,3597,76552,100566,0,0,0
+12169,10000,female,3,1,55,2,2,4,4,4,4,420,420,420,420,420,420,0,0,0,0,0,780,1
+12170,80000,female,2,1,37,1,2,0,0,0,2,55595,54142,55247,55738,59829,58715,0,2600,2006,5000,0,5000,0
+12171,220000,female,1,1,54,1,-2,-1,-1,-1,-1,0,0,788,0,349,600,0,788,0,349,600,0,0
+12172,40000,male,1,2,25,-1,-1,-1,0,-1,0,1946,17810,2872,396,2462,396,17810,2872,0,2462,0,17188,1
+12173,150000,male,2,2,28,2,0,0,0,0,0,148095,143845,132677,86265,88390,90599,8000,5300,3500,5000,4000,3000,0
+12174,20000,male,2,2,35,4,3,2,2,2,2,17936,17368,16792,18013,17583,18998,0,0,1500,0,1708,0,1
+12175,240000,female,2,1,41,1,2,0,0,0,0,137327,133724,136539,137487,141291,20143,0,6702,5000,6019,6099,14762,1
+12176,200000,male,1,2,29,0,0,0,0,0,0,170707,159654,162208,162357,144236,127362,6017,8000,5800,5200,5000,5000,0
+12177,50000,female,1,2,23,0,0,0,0,0,0,4821,15898,16862,16110,18458,19112,12000,1551,579,3000,954,570,0
+12178,180000,female,2,1,41,0,0,-2,-2,-2,-2,184650,0,0,0,0,0,0,0,0,0,9000,0,0
+12179,50000,male,2,1,25,0,0,2,2,2,2,21397,24233,23551,24848,26298,28112,3500,0,2000,2000,2400,0,1
+12180,20000,male,1,2,31,-1,-1,-1,-1,-1,-1,1261,390,390,390,0,780,390,390,390,0,780,0,0
+12181,210000,female,1,1,39,0,0,0,0,0,0,35639,42091,27751,30418,23180,68842,10000,1372,5000,1304,60000,3000,0
+12182,500000,male,1,1,43,-1,-1,-1,-1,0,-1,4125,5840,4464,8722,4137,4123,5864,4465,8724,0,4123,7124,0
+12183,240000,female,1,2,30,1,1,-2,-2,-2,-2,9028,-1868,-1868,-1868,-1868,-1868,0,0,0,0,0,0,1
+12184,30000,male,2,1,36,1,3,2,5,4,3,18811,18225,22630,21988,21057,25412,0,5000,0,0,5000,0,0
+12185,190000,male,1,1,42,-1,-1,-1,-1,-1,-1,7776,3706,7517,2168,4918,5300,3706,7523,2168,5300,3000,0,0
+12186,10000,male,2,2,45,-1,-1,0,0,0,0,492,9017,9787,9897,9707,-173,10300,1000,500,200,0,10200,0
+12187,360000,male,2,2,34,-1,-1,-1,-1,-1,0,1978,8583,993,26454,10456,31581,8625,998,26561,10456,21738,0,0
+12188,80000,female,2,1,39,0,0,0,0,0,0,46401,39456,30712,29629,28241,28030,1560,1421,1001,1000,1008,964,0
+12189,60000,male,2,1,40,0,0,0,0,0,0,18875,20064,21227,22564,24191,25778,1500,1500,2000,2000,2000,2000,1
+12190,100000,female,3,1,45,-1,-1,-1,-1,-1,-1,1480,916,1238,916,1444,1450,916,1238,916,1444,1450,1143,0
+12191,100000,female,1,2,28,-1,-1,-1,-1,-1,-1,557,1033,3667,2300,1132,2072,1033,3667,2300,1132,2072,2692,0
+12192,10000,male,3,1,46,0,0,0,0,0,-2,7170,8240,8050,10400,0,0,1200,1000,150,0,0,0,0
+12193,180000,male,2,2,24,0,0,0,0,0,0,182545,177885,182341,126946,127013,122277,9000,9300,4600,5000,5000,5000,0
+12194,280000,female,2,1,39,2,3,2,2,2,2,186838,190570,194189,189806,201410,205479,8000,8000,0,14500,7300,7500,1
+12195,50000,female,2,2,37,0,0,2,0,0,0,49078,51063,40371,19522,19140,17912,3800,0,805,818,1000,592,0
+12196,380000,male,1,1,55,0,0,0,0,0,0,126880,130324,152869,137442,82800,42083,7000,25390,10000,20000,1659,1600,0
+12197,50000,female,2,1,42,0,0,0,0,0,0,27901,24898,23702,18327,17996,15938,1770,1194,564,1500,1000,2000,0
+12198,150000,male,1,2,35,0,0,0,0,0,0,147471,151713,130107,78623,79743,78745,20000,5000,2000,7000,15000,5000,0
+12199,210000,female,1,2,35,0,0,0,-1,0,-1,44125,39465,23908,5088,792,150,1732,1000,5484,0,150,396,0
+12200,30000,male,1,2,36,3,2,0,0,-1,-1,26851,26136,30391,13150,18504,6699,0,5334,39,18559,6821,26275,1
+12201,70000,female,3,2,43,0,0,0,0,0,0,72770,69438,69776,51450,26516,27044,4108,2500,928,2000,969,1002,1
+12202,80000,male,2,2,28,3,2,0,0,0,0,79425,77223,75075,76348,77798,79843,107,2563,2356,2296,2800,910,1
+12203,50000,female,2,1,44,0,0,0,0,0,0,19091,20179,21190,21838,22485,23110,1400,1352,1000,1000,1000,1000,0
+12204,480000,female,2,1,35,0,0,0,0,0,0,227221,243942,244961,248394,253596,211055,51000,10000,8000,8200,23000,8000,0
+12205,500000,female,2,1,38,-1,-1,0,0,0,0,9889,24911,71852,18155,32201,39668,24920,50290,5002,15001,17028,778,0
+12206,170000,female,1,2,26,0,0,0,0,0,0,22138,23227,18894,7695,4777,3517,1808,1054,207,151,147,100,0
+12207,330000,female,1,2,29,-1,0,0,0,0,-1,9894,11877,14949,34292,8832,11304,3000,5001,22000,1000,11304,275,0
+12208,30000,male,2,1,37,0,0,0,2,2,2,19625,20673,23702,23026,27798,27219,1671,3700,0,5335,0,2054,0
+12209,120000,female,2,1,36,-1,-1,-1,0,-1,-1,326,0,652,326,326,476,0,978,0,326,476,326,0
+12210,80000,female,1,2,25,0,0,0,0,0,0,66426,55334,53738,49021,45494,44218,2657,1800,1799,1616,1697,1737,0
+12211,160000,male,2,1,31,0,0,0,0,2,0,54835,46575,7169,9036,8749,9447,3500,2000,2000,0,1000,500,0
+12212,110000,male,2,1,30,0,0,2,0,0,0,100908,105371,52113,53317,54040,54805,7000,0,2053,2500,2200,2156,1
+12213,20000,female,2,1,36,2,0,0,0,2,0,17638,17058,17541,19338,17889,18486,1666,1149,1946,0,1007,0,1
+12214,140000,male,1,1,49,2,0,0,0,0,0,136128,98337,60627,39760,40045,40865,4756,3600,1500,1300,1318,1307,1
+12215,50000,male,1,2,30,4,3,2,2,2,2,37570,36705,37215,37718,38584,37829,0,1400,1400,1601,0,2500,0
+12216,20000,female,2,2,22,-1,0,0,-1,-1,-2,11999,3617,4165,6323,0,0,1062,1000,10488,0,0,0,1
+12217,200000,female,2,2,29,0,0,0,0,0,0,170964,174509,176523,180295,184104,195976,7788,6400,6700,6907,20163,1000,1
+12218,320000,female,2,1,50,0,0,0,2,0,0,271305,268368,275804,261312,245234,243238,9703,20303,12,8303,10029,8010,0
+12219,400000,female,3,1,42,-1,-1,-1,-1,-1,-1,10132,16932,13088,28540,11860,3978,16932,13088,28540,11860,3978,2390,0
+12220,250000,female,2,2,35,0,0,0,0,0,0,241711,205944,210513,214696,219218,228900,7481,8000,7682,7979,13350,3000,0
+12221,550000,female,1,2,34,-1,0,0,0,0,0,42132,44045,45392,48244,36206,38021,3005,3004,4010,3002,3000,10010,1
+12222,300000,male,1,1,38,-1,0,0,0,0,0,105932,100815,103744,103422,111152,110811,5137,30022,5006,10014,4016,4013,0
+12223,50000,female,2,1,34,0,0,0,0,0,0,46337,47384,48382,49392,50608,50722,1792,1790,1800,2000,1835,3628,0
+12224,160000,female,1,1,34,-1,-1,-1,-1,-1,-1,1072,3297,5923,158,11030,158,3297,5939,158,11030,158,158,0
+12225,80000,male,1,2,25,0,0,0,-1,0,0,20708,26286,18209,5471,6896,9506,6545,8807,5500,4000,3500,1000,0
+12226,280000,male,3,2,38,-2,-1,0,0,0,0,192080,197796,314042,116480,118270,124742,5716,117698,3884,3376,7503,3591,0
+12227,500000,female,3,2,35,-1,-1,-1,-1,-1,-1,1900,1489,1989,1200,1451,548,1489,1989,1200,1451,548,1048,1
+12228,340000,female,2,1,39,-2,-2,-2,-2,-2,-2,93767,65758,353,5674,3344,3406,65758,359,5674,3692,3406,2622,0
+12229,160000,female,2,1,42,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+12230,120000,female,1,2,26,-1,-1,2,-1,-1,-1,942,780,390,390,390,150,780,0,390,390,150,780,0
+12231,150000,male,1,2,28,0,0,0,0,0,0,28416,37392,44547,52871,57877,64020,10000,10008,10012,10002,8006,7005,0
+12232,110000,male,1,2,34,-1,-1,2,-1,-1,0,15908,18873,890,3420,4309,733,4013,2,3430,4319,2,1905,0
+12233,120000,female,2,2,28,-1,2,-1,-1,-1,-1,2049,1579,590,3617,2001,0,0,590,3617,2001,0,204,1
+12234,110000,female,1,2,36,0,0,0,0,0,0,141670,138542,120439,113273,81261,76051,6278,5485,3396,2844,3005,2510,0
+12235,320000,female,2,1,36,-2,-2,-2,-2,-2,-2,-20,-20,-20,-20,-20,-20,0,0,0,0,0,0,0
+12236,50000,male,3,1,42,0,0,0,0,0,0,29224,23807,17623,17974,18350,18721,2000,1293,644,666,676,681,0
+12237,50000,female,2,1,38,0,-1,-1,-1,-1,-1,1226,1226,1226,1226,1765,1066,1226,1226,1226,1765,1066,170,0
+12238,90000,female,2,2,23,2,4,4,3,4,3,37639,38743,37825,40299,39093,38167,2000,0,3400,0,0,1000,0
+12239,270000,female,1,1,40,-1,-1,-1,-1,-1,-1,19769,34813,43852,29677,33341,28413,34813,43856,29682,33341,28413,1351,0
+12240,50000,female,2,1,25,1,2,0,0,0,0,19454,18856,19590,18861,4581,2158,0,1200,477,121,22,0,0
+12241,50000,male,2,1,47,2,0,0,0,0,0,27143,27349,26568,26414,26263,27076,1700,1500,1000,1000,2000,2500,0
+12242,360000,female,2,1,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+12243,120000,female,2,1,26,0,0,0,0,0,0,4317,5240,5283,5444,6412,5121,2000,1000,1000,1000,1825,1272,0
+12244,290000,female,3,2,37,-1,-1,-1,-1,-1,-1,396,396,396,396,396,396,396,396,396,396,396,396,0
+12245,200000,male,3,1,36,-1,-1,-1,-1,-1,-1,5308,3959,13868,4094,2247,17794,3981,13909,4106,2253,17847,2123,0
+12246,110000,female,2,2,25,2,0,0,0,0,0,109924,111805,108207,75808,78490,81238,6000,4380,3000,5000,10000,3000,1
+12247,50000,male,2,2,39,0,0,0,0,0,0,23540,16980,16908,17327,17895,18346,2010,1500,1000,1000,900,1000,0
+12248,150000,male,1,1,42,-1,-1,-1,-1,-1,-1,2716,0,1106,1323,2098,0,0,1106,1323,2098,0,0,0
+12249,280000,female,1,2,32,-1,-1,-1,0,-1,-1,13532,3312,14907,3008,8988,11547,23871,14907,0,8988,11547,19826,0
+12250,310000,female,1,2,29,0,0,0,0,0,0,44592,40110,39805,36823,38987,32304,2000,1620,1332,2772,1500,1500,0
+12251,450000,male,2,2,32,-2,-2,-2,-2,-2,-2,-3768,-3938,-5738,-5738,-5738,-5738,179,1800,0,0,0,0,0
+12252,40000,female,2,2,23,2,2,2,0,0,0,33313,34086,33239,33938,34694,35389,1600,0,1250,1300,1270,2800,1
+12253,50000,female,2,2,38,0,0,0,0,0,-1,41724,92054,50120,19587,10577,7533,5000,5120,10292,5577,7533,1000,0
+12254,290000,male,2,2,35,-1,-1,-1,-2,-2,-1,17397,11754,28874,77790,8142,9547,12556,29020,78178,8572,9590,151945,0
+12255,60000,male,3,1,39,0,0,0,0,0,0,36343,27996,25656,16907,15837,11195,5140,3008,3000,6000,2000,3000,0
+12256,20000,male,3,1,47,0,0,2,2,2,2,7384,9356,9400,10085,9785,10481,2108,352,837,0,855,0,1
+12257,80000,female,2,1,27,-1,-1,-1,-1,-1,-1,1995,0,680,2862,5539,0,0,680,2862,5539,0,5775,0
+12258,100000,male,2,1,36,1,2,2,2,4,3,9670,9371,11705,12919,12139,11653,0,2500,1700,0,0,0,0
+12259,50000,male,1,1,37,2,0,0,0,2,0,48716,49504,44127,22053,20129,19262,2213,1804,2700,0,700,1000,1
+12260,250000,female,2,1,36,1,-1,-1,0,0,-1,-26,8966,4559,3110,0,664,8992,4563,24,0,664,698,0
+12261,210000,female,1,2,34,-1,-1,-1,-1,-1,-1,1262,33414,1828,0,11854,30949,33414,1828,0,11854,30288,1460,1
+12262,280000,female,1,2,35,-2,-2,-2,-2,0,-1,6302,4618,183,2568,2371,7610,4663,0,4953,12,7647,1676,0
+12263,110000,female,2,2,35,0,0,0,0,0,0,125719,121523,116319,116082,111141,110854,4316,4120,4001,4173,4103,3888,0
+12264,60000,male,2,2,36,2,2,2,2,2,0,80709,76179,71219,67687,61691,57626,2300,2000,3000,0,3000,2000,0
+12265,200000,male,1,1,40,-1,-1,-1,-2,-1,-1,540,454,0,0,990,0,454,0,0,990,0,0,0
+12266,30000,male,2,2,35,0,0,2,2,-2,-2,22583,25067,23237,0,0,0,3026,0,0,0,0,0,0
+12267,80000,male,1,2,26,0,0,0,0,0,0,79565,78617,79229,77858,79566,74746,3481,3000,3000,3000,3000,1656,0
+12268,50000,male,2,2,39,0,0,0,0,0,0,17698,16533,17636,16956,17532,19078,2005,4000,1000,1000,2000,1000,0
+12269,160000,female,1,1,39,1,-1,-1,-1,0,0,-16,1955,2047,15848,16848,0,1971,2047,15848,1000,0,0,0
+12270,130000,female,2,2,26,0,0,0,0,0,-2,110922,113974,126194,17832,-3000,0,5000,15066,5007,0,3000,825,1
+12271,230000,female,2,2,35,-1,-1,0,0,0,0,2873,29488,65868,58171,56033,47192,29525,50014,8242,7032,5030,8007,0
+12272,260000,female,2,1,35,-1,-1,-1,-1,0,-1,213,213,203,2571,187,5469,214,204,2582,1,5496,427,0
+12273,200000,male,2,1,54,0,0,0,0,0,0,177664,183236,183493,146143,144339,140340,10000,7000,5000,6000,6000,5000,0
+12274,420000,male,1,1,32,0,0,0,0,0,0,45060,25056,24751,24984,24983,23751,1407,1332,963,877,1000,908,1
+12275,100000,female,1,2,22,2,0,0,0,2,0,36891,38498,39185,39867,39696,7594,2201,1888,1500,96,300,432,1
+12276,100000,female,1,2,25,1,-1,-1,-1,-1,-1,0,460,0,85,60,520,460,0,85,60,520,0,0
+12277,390000,male,1,2,34,-2,-2,-2,-2,-1,0,5053,-9,1906,0,2258,7028,0,1915,0,2258,5001,5000,0
+12278,80000,female,2,2,28,-2,-2,-2,-2,-2,-2,0,0,641,658,2019,0,0,641,658,2019,0,0,0
+12279,50000,male,3,1,45,1,2,2,2,0,0,46166,42253,46794,44995,45934,48796,0,5600,0,1800,4000,0,0
+12280,90000,female,3,2,38,1,2,2,2,-2,-2,8144,7102,1170,0,0,0,2034,0,0,0,0,0,1
+12281,240000,female,2,1,56,0,0,0,0,0,2,138785,141894,143270,201082,215709,204302,6500,5000,60000,17464,6516,20002,0
+12282,50000,female,3,1,47,-1,-1,-1,-1,-1,-1,12785,19971,5095,14867,8037,2642,19982,5095,14867,8037,2642,7023,0
+12283,30000,female,2,2,21,-1,-1,0,0,-1,-1,290,12115,11306,3562,1621,1307,20002,1101,1,1724,1408,0,0
+12284,200000,female,2,1,39,0,0,0,0,0,-2,25483,31537,34114,29982,-18,-18,6541,5351,200,0,0,0,0
+12285,320000,female,3,2,40,1,2,2,2,2,0,298343,304421,298042,315502,310308,306056,12300,0,24000,0,11000,14000,1
+12286,90000,male,2,2,35,0,0,0,0,0,0,22672,21212,20662,20715,21149,20078,1339,1315,867,896,728,577,0
+12287,20000,female,3,1,23,0,0,0,0,0,0,17589,18387,19157,19308,19486,19785,1313,1308,684,707,848,790,1
+12288,80000,female,1,2,23,0,0,0,0,0,0,24215,30798,30350,32469,32663,34909,10000,2000,2500,2000,3000,1000,0
+12289,380000,female,2,1,36,0,0,0,0,0,0,52956,63002,71599,80377,84113,86612,25000,11000,10000,5000,7000,11000,0
+12290,300000,female,1,2,37,-2,-1,0,0,0,0,0,51,12351,12351,12363,9974,51,12300,0,12,49,11767,0
+12291,110000,male,2,2,51,0,0,0,0,0,0,69564,51264,51584,49601,50485,50565,2500,1800,1800,2000,2000,2000,0
+12292,100000,female,2,1,29,0,0,0,0,0,0,53840,43503,43417,43872,42215,42917,1748,1662,1670,1525,2000,1660,0
+12293,250000,female,1,1,39,-1,-1,2,-1,-1,-1,1000,4070,3629,1570,248,1247,3629,3,1575,248,1247,621,0
+12294,250000,male,1,2,33,-1,-1,-1,-1,-2,-1,22824,6540,6686,-14795,-23003,4017,6573,6793,41,42,35602,3,0
+12295,220000,male,1,2,30,0,0,0,0,0,0,87604,89687,90889,91892,93815,96466,5000,4200,4000,4000,5000,5000,0
+12296,20000,female,1,2,27,3,2,2,0,0,2,16732,17866,17276,17514,18462,18036,1700,0,800,1361,0,800,1
+12297,240000,female,5,1,34,-1,-1,-1,-1,-1,-1,1731,6763,0,5717,10134,1045,6763,5717,0,10134,1045,6585,0
+12298,210000,male,1,1,40,0,0,2,0,0,2,130868,138909,135322,136339,143681,140425,11760,0,4546,9524,2,4756,0
+12299,200000,female,2,2,26,0,0,0,2,2,0,105433,108408,116094,116289,112011,106313,5498,11084,3800,0,4005,2911,0
+12300,120000,female,2,2,25,1,-2,-1,-1,-1,-2,0,0,12162,1553,0,0,0,12162,1553,0,0,0,1
+12301,140000,male,3,2,26,0,0,0,0,0,0,18648,19561,13902,14183,13207,12996,1309,1139,420,418,816,0,0
+12302,30000,male,1,2,24,0,0,0,0,0,0,28495,29632,30629,29357,30143,30419,1900,1800,1045,1250,1100,1100,0
+12303,50000,female,3,1,52,0,0,0,0,0,0,16033,17360,18068,18426,18812,19275,1593,1301,659,682,775,584,0
+12304,240000,female,1,2,28,0,0,0,0,0,0,133230,136579,139281,132487,107437,109237,5500,5036,4000,6200,5500,5000,0
+12305,200000,female,2,1,46,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+12306,490000,male,1,1,57,0,0,0,0,0,0,354782,348786,349958,340602,303047,331606,17035,20059,12943,15049,50017,20021,0
+12307,60000,female,1,2,36,-1,2,-1,0,0,-1,2130,1940,7801,1308,3058,2190,0,7801,1158,1900,2190,2153,1
+12308,300000,male,2,1,37,1,-1,2,0,0,0,-165580,324392,296931,30355,26771,23737,505000,331,1070,17771,18000,16079,0
+12309,310000,female,1,2,36,1,-1,-1,-1,-1,-2,-8,1703,-8,1624,0,0,1711,0,1632,0,0,173,0
+12310,360000,male,2,1,43,-2,-2,-2,-2,-2,-2,0,751,327,0,0,234,751,327,0,0,234,455,0
+12311,60000,female,2,2,23,0,0,0,0,0,0,60380,55367,111334,19358,19760,20223,2296,2510,838,862,1015,400,1
+12312,120000,female,1,2,27,-1,-1,-1,-1,-1,-1,390,390,390,390,390,0,390,390,390,390,0,780,0
+12313,210000,male,2,2,26,0,0,0,0,0,0,206714,197252,140440,122678,120215,112973,7868,5000,5004,4500,3950,3800,0
+12314,50000,male,2,1,38,0,0,0,0,0,0,22178,21976,21697,20683,19283,19965,1700,1650,850,700,1000,1000,0
+12315,510000,female,4,1,34,-2,-2,-1,0,-1,-1,10554,568,22058,23205,11571,12179,1074,22657,11586,24637,12719,20798,0
+12316,10000,female,1,2,24,0,0,0,0,0,0,6709,7895,8751,8925,9111,9360,1300,1146,320,330,400,1000,0
+12317,250000,female,1,2,36,-1,-1,-1,-1,-1,0,6378,72173,6341,174,1676,388,72534,6456,174,1682,2,0,0
+12318,210000,female,1,2,26,0,0,-1,-1,0,-1,3292,6399,2085,3000,6634,1298,3399,2085,3000,3634,1300,2000,0
+12319,160000,male,5,2,46,0,0,0,0,-2,-2,169746,159376,162998,0,0,0,4318,4000,0,0,0,73175,0
+12320,80000,female,2,2,24,0,0,0,-2,-2,-2,3278,4000,0,0,0,0,1000,0,0,0,0,0,0
+12321,230000,male,1,2,28,0,0,0,0,0,0,29108,29240,30062,31253,31965,36782,1587,1409,10000,1193,6782,1026,0
+12322,30000,female,2,1,53,1,3,2,3,2,0,18663,18080,18986,18390,17954,18654,0,1500,0,0,1000,692,1
+12323,50000,female,2,1,29,2,3,2,0,0,0,50136,50044,46543,19359,17850,18203,1000,5,661,770,800,763,1
+12324,190000,female,1,2,28,2,2,2,2,2,2,159438,163684,166163,168592,171923,169165,8150,6500,6500,6000,0,6200,1
+12325,130000,female,2,1,46,0,0,0,-2,-2,-2,125557,124900,0,0,0,0,2498,0,0,0,0,0,0
+12326,140000,female,3,1,46,0,0,0,0,0,0,132586,135165,125427,128016,127323,130020,4800,4500,4600,4800,4800,4500,0
+12327,110000,male,2,2,29,0,0,0,0,0,0,112533,109515,48917,46765,40212,39690,4101,3000,2000,3000,5000,3000,0
+12328,20000,male,2,2,21,0,0,0,-2,-2,-2,19030,19783,0,0,0,0,1500,0,0,0,0,0,0
+12329,250000,female,1,1,32,0,0,0,0,0,0,255413,253019,240332,244688,240221,224740,10500,12000,10000,10000,9000,9000,0
+12330,360000,female,2,1,35,0,-1,-1,-1,-1,-1,106010,24892,10772,21847,21835,9255,24976,10786,21916,21904,9261,22127,1
+12331,30000,female,1,2,21,2,2,0,0,0,-2,30769,29559,29197,29488,0,0,0,1000,590,0,0,0,0
+12332,50000,male,3,2,54,0,0,0,0,0,0,43099,44233,35147,12236,11013,11388,2212,2126,415,401,559,554,0
+12333,100000,female,2,1,29,0,0,0,0,0,0,49707,48657,49699,47635,48664,49578,2000,2000,1691,1782,1739,1400,0
+12334,150000,female,5,2,33,0,0,0,0,0,0,232327,237150,239410,39584,32815,35626,5877,5419,1009,1120,5000,7128,0
+12335,150000,female,1,2,30,-2,-2,-2,-2,-2,-2,12516,5568,6106,4357,0,0,5568,6106,4357,0,0,0,0
+12336,200000,female,1,1,41,-1,-1,-1,-1,-1,-1,4533,8756,3539,5529,10332,6894,8756,3539,5529,10332,6894,3188,0
+12337,20000,male,1,2,40,0,0,0,0,0,0,13639,14711,15462,16004,16203,16916,1600,1300,800,605,1000,2000,0
+12338,310000,female,2,1,37,-2,-2,-1,0,0,0,0,0,5365,6274,7017,8893,0,5365,1000,1000,2000,2000,0
+12339,100000,female,1,2,26,1,2,2,2,2,2,93295,95108,96662,94216,99732,101737,4200,4000,0,7400,3800,0,0
+12340,50000,female,2,2,32,0,0,2,2,2,2,41114,44131,43121,45795,44929,48179,4000,0,3400,0,4000,0,1
+12341,130000,female,2,2,24,0,0,-1,-1,-1,0,48764,27347,37528,2793,28865,14986,1034,37559,2805,28865,300,11083,0
+12342,100000,female,3,3,47,-1,-1,2,0,-1,-1,836,1859,1672,836,836,836,2695,0,0,836,836,836,0
+12343,280000,male,1,2,28,-1,-1,-1,-1,0,0,4468,11517,1973,11028,14261,17097,11525,2149,11030,4008,7106,1193,0
+12344,200000,male,1,1,37,-1,0,0,0,0,0,173867,139769,132534,116331,111178,105907,7000,5000,4500,5000,5000,4300,0
+12345,90000,male,1,1,34,2,0,0,0,0,0,54933,55460,56599,58155,60058,61250,2009,2057,2500,3000,2189,2282,1
+12346,150000,female,2,1,41,-2,-2,-2,-1,-1,-1,1906,4983,12029,13821,1493,2229,5002,12040,13821,1493,2229,2057,0
+12347,20000,female,2,2,42,2,2,2,2,2,2,18155,17595,19355,19554,19795,19342,0,2344,800,683,0,1500,1
+12348,360000,female,1,2,30,-1,-1,-1,-1,-1,-1,11193,332,272,1465,18503,5151,332,272,1465,18503,5151,0,0
+12349,40000,female,2,1,28,1,2,2,2,2,0,27746,23209,22040,23396,20430,20763,2000,0,2000,0,1000,1000,1
+12350,240000,female,2,1,55,0,0,0,2,0,0,74270,75959,80473,78883,80625,79334,3200,6100,0,2900,3000,3100,0
+12351,500000,female,1,1,36,-1,-1,-1,-1,-1,-1,7297,12349,26488,6534,9788,25314,12349,26488,6534,9788,25314,103508,0
+12352,20000,female,2,2,39,4,3,2,0,0,0,11553,11081,11021,11240,11476,11708,0,420,402,417,423,1472,1
+12353,140000,male,2,2,44,0,0,0,0,0,0,85119,86901,89583,90432,92332,94197,3153,4126,3231,3351,3400,3494,1
+12354,100000,male,2,2,27,0,0,0,0,0,-1,100442,96018,97453,99407,95600,981,5000,8000,3500,3500,981,0,0
+12355,120000,female,1,2,32,0,0,0,0,0,0,18955,18973,18204,17344,13246,26781,1315,1169,2472,453,500,8494,0
+12356,100000,female,2,1,44,1,2,0,0,0,0,97581,94594,44145,46148,43750,44771,0,2000,3000,2000,2000,2000,0
+12357,140000,female,2,2,33,-1,-1,-1,-1,-1,-1,4882,4882,4876,4666,4884,4666,4882,4876,4666,4884,4666,4666,0
+12358,210000,female,1,2,27,0,0,0,0,0,-1,99050,17924,19123,20650,0,1136,1301,1500,2000,0,1136,67412,0
+12359,500000,female,1,2,35,1,-1,-1,-1,-1,-1,0,640,31762,42935,2464,2532,640,31764,51986,55000,2532,5717,1
+12360,110000,female,1,2,27,-1,-1,-2,-2,-2,-2,2280,0,0,0,0,0,0,0,0,0,0,4650,0
+12361,340000,female,1,2,30,-1,-1,-1,-1,-1,-1,2943,3352,3738,1794,1339,10673,3375,3759,1803,1345,10726,869,0
+12362,330000,female,1,2,27,0,0,0,0,2,2,322464,325625,323182,325197,327750,321936,13248,13120,12833,14344,8567,7060,1
+12363,50000,female,2,2,34,0,0,0,0,0,0,45504,46223,12761,7477,8372,9240,2000,2043,1000,1000,1390,1150,0
+12364,10000,female,1,1,39,1,-2,-1,2,0,0,0,0,9996,9689,9747,10328,0,9996,0,363,752,0,1
+12365,70000,male,3,1,42,0,0,2,2,2,2,26550,28208,28642,30670,31133,31965,2400,1200,2820,1100,1500,1300,0
+12366,450000,female,2,1,37,-1,-1,-1,-1,-1,-1,1212,791,2663,783,1730,-51443,1032,2663,783,1730,0,70803,1
+12367,30000,female,2,1,33,0,0,0,0,0,0,12051,13101,14413,14476,14792,15145,1250,1537,600,550,600,800,0
+12368,150000,female,2,2,32,5,4,3,2,2,2,79529,77757,75841,73678,77273,56577,0,0,0,4874,1000,0,0
+12369,230000,female,2,1,37,2,2,2,0,0,0,72514,74421,71201,72029,71923,72020,5118,0,4000,2607,2732,2482,1
+12370,30000,female,3,1,47,2,2,2,2,2,2,28073,28515,27150,28100,28104,28181,1800,0,2300,1200,1300,0,1
+12371,30000,male,1,2,30,0,0,0,0,0,0,29965,28841,28278,28770,29432,28949,2000,1700,2008,2000,7600,2000,0
+12372,20000,male,3,2,45,1,2,2,2,2,2,15748,16497,16928,17354,16934,18347,1300,1000,1000,0,1700,600,1
+12373,70000,female,3,3,51,0,0,0,0,0,0,32485,30527,13407,13643,12722,13515,1267,1191,427,957,1000,14001,0
+12374,50000,female,2,1,45,-1,-1,0,0,0,0,2618,1969,20771,20231,19485,18280,2007,20275,1204,1001,1003,1210,0
+12375,360000,female,1,1,46,1,-1,-1,-1,-1,-1,723,17392,-8,32170,680,6205,17392,0,32178,680,6205,18814,0
+12376,400000,female,1,2,29,1,2,0,0,0,0,77970,70557,71867,72137,72955,76467,0,3200,2750,3000,5800,2800,0
+12377,130000,female,3,1,36,-1,-1,-1,-1,-1,-1,2342,2951,596,1520,700,3688,2951,596,1520,700,3688,2803,0
+12378,130000,male,1,2,27,-1,-1,2,0,0,-2,2207,2499,1248,922,-693,-2292,3747,0,0,0,0,10000,0
+12379,340000,female,1,1,40,-1,-1,-1,-1,-1,-1,1600,93661,41533,15711,1338,6800,93661,41634,15711,1338,6800,3750,0
+12380,270000,female,2,1,40,0,0,0,0,0,0,26183,24181,19543,17160,14818,12702,1826,1469,514,581,612,312,1
+12381,60000,female,2,2,38,0,0,0,0,0,-1,13138,22389,16586,5516,16378,2670,20000,5000,3000,16000,3000,980,1
+12382,130000,female,2,2,31,0,0,0,0,0,0,80533,42126,44370,85115,69011,70460,1816,3060,69000,2578,2671,2888,0
+12383,10000,male,3,2,22,0,0,0,0,0,0,9240,9131,9601,9797,9997,7497,1230,1000,196,200,0,0,0
+12384,160000,female,1,2,33,2,2,2,2,2,2,132510,128981,138289,134773,142913,146003,0,13000,200,10500,5600,5200,1
+12385,270000,female,1,1,33,0,0,0,-2,-1,0,22604,26906,0,0,4448,5667,5000,0,0,4448,1300,2443,0
+12386,80000,male,2,1,30,2,0,0,0,2,2,38370,39448,58788,62814,61682,65644,2000,20000,5000,0,5010,2500,1
+12387,340000,female,1,1,39,-1,-1,-1,-1,-1,-1,4676,3806,526,36374,32413,12092,3806,526,36374,32413,12092,13743,0
+12388,360000,male,1,1,52,-1,-1,-1,-1,0,-1,14432,15329,13062,41977,24354,25948,15329,13062,41977,0,25948,21318,0
+12389,240000,male,1,2,43,-2,-2,-2,-2,-2,-2,5740,0,0,0,0,0,0,0,0,0,0,0,0
+12390,50000,female,2,2,26,-1,-1,-1,-1,-2,-2,3475,-25,2500,0,0,0,0,2525,0,0,0,0,0
+12391,50000,male,3,1,23,0,0,0,-2,-2,-2,13352,14111,0,0,0,0,1066,0,0,0,0,1000,0
+12392,180000,female,2,1,28,-1,-1,-1,-1,-1,-1,1206,661,1503,1379,1216,1440,661,1512,1379,1216,1440,316,0
+12393,370000,female,1,1,31,-2,-1,0,0,0,0,0,229818,234379,239082,244124,243986,229818,8409,8500,8800,8800,14100,0
+12394,60000,male,2,2,27,1,2,2,2,2,2,10401,11770,10957,11480,10851,11365,2000,0,1000,0,1000,0,1
+12395,50000,male,2,2,25,-1,-1,-1,-1,-1,-1,1355,1355,1386,1442,3798,1599,1355,1386,1442,3798,1599,1694,0
+12396,50000,male,3,1,52,-2,-1,2,-1,0,0,-11,46501,24458,37778,39124,38585,46512,159,37778,2000,2000,13144,0
+12397,130000,female,1,2,29,0,0,0,0,0,0,41224,45136,48970,52740,56467,60119,4500,4500,4500,4500,4500,4500,0
+12398,500000,female,1,1,49,-1,-1,-1,-1,-1,-1,4007,9933,14557,53328,58052,37435,10021,14576,53850,58332,37616,46591,0
+12399,300000,male,1,2,27,1,-1,-1,-2,-1,-1,0,11174,0,0,3330,3330,11174,0,0,3330,3330,3330,0
+12400,120000,female,2,2,25,0,0,0,0,0,-2,75913,78060,64074,64074,0,0,4501,2562,0,0,0,0,0
+12401,110000,female,2,1,25,1,2,2,2,2,0,102884,100388,104529,81319,76549,77433,0,6000,4000,0,4000,2730,0
+12402,220000,male,3,2,30,0,0,-1,-1,-1,-1,35258,17740,4698,5036,8269,3681,1066,4723,5051,8293,3692,3087,0
+12403,140000,female,2,2,26,0,0,-1,-1,-1,0,8178,3776,3776,3776,4173,4287,1000,3776,3776,4173,1000,5049,0
+12404,30000,female,2,2,24,-1,0,0,0,0,0,20069,21148,22185,22551,23223,24837,1700,1700,1000,1000,2000,1400,0
+12405,200000,female,2,2,35,-1,-1,-1,-1,-1,-1,11409,1222,3308,481,-19,3821,1228,3324,483,0,3840,0,0
+12406,350000,female,1,1,33,-1,-1,-1,-1,-1,-1,1314,5133,1667,9737,363,1112,5249,1667,9839,363,1112,1981,0
+12407,150000,male,2,2,42,-2,-2,-2,-2,-2,-2,6407,-6,-3,-3,-3,1040,0,0,0,0,1043,0,0
+12408,20000,male,2,2,24,2,2,4,4,4,4,1650,1650,1650,1650,1650,1650,0,0,0,0,0,0,1
+12409,200000,female,1,1,56,0,0,0,0,0,0,15603,16842,18556,19247,19935,21098,1500,2000,1000,1000,1500,3000,0
+12410,20000,male,2,2,24,2,2,4,4,4,4,1650,1650,1650,1650,1650,1650,0,0,0,0,0,0,0
+12411,320000,male,1,1,35,-1,-1,-1,-2,-2,-2,2695,500,0,0,0,0,505,368,0,0,0,0,0
+12412,100000,female,1,2,29,-1,-1,-1,0,0,0,170,3224,78671,60430,60647,61153,3224,78671,3000,2500,3000,3000,0
+12413,280000,female,1,2,28,0,-1,-1,-1,-1,-1,7370,3395,1860,2368,3343,5110,3420,1865,2375,3353,5124,9028,1
+12414,50000,male,1,1,47,0,0,0,0,0,0,11066,15539,17274,19975,23632,25242,5000,2000,3000,4000,2000,0,0
+12415,20000,male,1,2,23,0,0,0,0,0,0,18311,19598,20154,20132,20129,20226,2000,1307,701,717,834,674,0
+12416,160000,female,1,2,33,-1,-1,-1,-1,-1,-1,5256,3290,1140,559,2065,450,3290,1140,559,2065,450,825,0
+12417,60000,male,3,2,23,0,0,0,0,0,0,15592,16643,15557,15526,16273,17001,2000,1400,1000,1000,1000,1000,0
+12418,150000,male,3,1,49,0,0,0,0,0,0,32866,37293,36772,4521,6452,6742,5028,3000,3000,2000,378,3306,0
+12419,460000,male,1,2,34,0,0,0,0,0,0,362816,372284,380257,386847,301231,325831,15325,16000,15000,11000,30000,20004,0
+12420,500000,male,3,2,51,-1,-1,-1,-1,-1,-1,2362,575,360,964,957,176,575,361,978,958,176,310,0
+12421,320000,male,2,1,34,0,0,0,0,0,0,14237,26123,28637,24385,8559,3207,15031,8081,5072,6591,1223,0,0
+12422,200000,female,1,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+12423,430000,female,2,1,28,0,0,0,0,0,0,25968,22938,18753,14734,17572,18784,1313,5002,1000,5000,5000,2000,0
+12424,150000,male,2,1,58,-2,-2,-2,-2,-2,-2,4473,3273,2473,1473,1473,1473,3273,2473,1473,1473,1473,1473,0
+12425,100000,female,2,2,28,2,0,0,0,0,0,95197,87478,89245,90247,91979,94450,4050,4114,3379,3338,4000,5373,0
+12426,30000,male,1,2,30,0,0,2,0,0,0,13216,15003,15461,16204,16642,17067,2000,1000,1000,700,700,700,0
+12427,260000,female,3,1,31,0,0,-2,-2,-2,-2,20000,0,0,0,0,0,0,0,0,0,0,7287,0
+12428,40000,female,1,2,24,0,0,0,2,2,0,29782,32298,34610,35326,23489,11762,3000,3000,1500,0,1000,500,1
+12429,290000,male,2,2,34,1,-2,-1,0,0,0,0,0,4524,8440,10300,0,0,4524,4000,2000,0,0,1
+12430,140000,male,1,2,27,-1,-1,-1,-1,-1,-1,776,0,776,380,1157,768,0,1552,380,1157,783,388,0
+12431,60000,female,2,2,22,1,2,2,0,0,0,52126,52707,47939,29351,28128,27811,2030,0,1014,1001,1020,1142,1
+12432,210000,male,1,2,41,0,-1,-1,-2,-2,-2,62261,6615,0,0,0,0,6615,0,0,0,0,0,0
+12433,170000,female,1,2,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+12434,370000,female,3,1,37,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+12435,30000,male,1,2,23,0,0,0,0,0,0,30235,28246,30395,29962,30360,29899,3000,3000,2468,1700,2500,1046,0
+12436,360000,female,1,1,32,-1,-1,-2,-2,-2,-2,2500,0,0,0,0,0,0,0,0,0,0,0,0
+12437,290000,male,2,2,43,0,0,0,0,-1,-1,124362,111594,58039,3818,1318,0,5100,2507,1500,2000,0,1333,0
+12438,50000,female,3,1,36,0,0,0,0,0,0,13572,10805,8623,8799,8468,8768,1188,3000,176,169,300,1200,0
+12439,210000,female,3,1,27,1,-2,-1,-1,-2,-2,0,0,1008,0,0,0,0,1008,0,0,0,1114,0
+12440,170000,male,3,1,31,2,0,0,0,0,0,170485,229805,167524,185414,121092,117320,8000,8000,5000,5000,4500,5000,0
+12441,360000,male,1,1,40,0,0,2,-1,-1,-1,76584,85400,17295,8331,2643,6008,21358,86,8372,2656,6038,3325,0
+12442,90000,female,1,2,25,-1,-1,-1,-1,0,0,9359,-5,1881,7638,4464,26224,0,1886,7650,1005,23773,1000,0
+12443,210000,male,3,1,44,1,2,2,-2,-2,-2,19131,18447,0,0,0,0,0,0,0,0,0,0,1
+12444,160000,female,2,1,50,-2,-2,-2,-2,-2,-2,3440,3208,3315,2645,1049,1469,3219,3322,2645,1049,1469,3490,0
+12445,30000,female,2,2,22,0,0,2,0,0,0,10094,14870,13329,7275,26804,29362,5300,0,607,20000,3000,0,0
+12446,80000,male,2,2,23,2,2,0,0,0,0,71528,69817,70719,39288,40500,41668,0,2131,2000,2000,2000,3000,0
+12447,250000,female,2,1,36,0,0,0,0,0,0,126751,129559,132714,135829,138959,140779,4559,5000,5000,5000,3779,4709,0
+12448,60000,female,1,2,27,1,2,2,0,0,0,7169,8396,8113,8971,10824,11646,1500,0,1000,2000,1000,1500,0
+12449,130000,male,1,2,30,0,0,2,0,0,2,127253,135822,127930,127762,134010,133548,12207,0,5000,10100,4500,0,0
+12450,180000,male,1,2,30,0,0,0,0,0,0,174297,152251,96399,87026,78137,58332,22000,4000,2000,5000,3000,3000,0
+12451,200000,male,1,2,27,-2,-2,-2,-2,-2,-2,5105,7261,15191,8991,8986,8609,7261,15220,8991,8986,8609,8299,0
+12452,210000,male,1,1,28,0,0,0,0,0,0,124667,201007,144968,134975,136469,139866,145273,5065,5012,5000,5078,5000,0
+12453,240000,female,1,2,30,0,0,0,0,0,0,12876,4420,4508,8064,4520,4476,1905,3632,7100,0,3500,3600,0
+12454,460000,female,2,2,46,0,0,0,0,0,0,305814,315479,328208,320056,326599,337552,15000,20065,12000,12070,17000,12400,0
+12455,400000,female,1,1,38,-1,-1,-1,-1,-1,-1,16195,10713,11340,10390,620,10390,10713,11340,10390,620,10390,727,0
+12456,20000,male,3,2,25,0,0,0,0,0,0,13701,14413,15781,15939,16271,16590,1241,1609,717,738,740,789,0
+12457,60000,female,2,1,37,0,0,0,0,0,0,60655,60281,59968,40377,40679,40493,2410,2203,1500,1600,1500,1400,0
+12458,110000,female,2,2,34,0,0,0,0,0,0,93039,81169,82800,107986,99627,80610,4500,4100,67606,4100,3100,2861,0
+12459,80000,female,3,2,26,2,2,2,2,2,0,41586,44690,43671,49683,48757,49782,3775,0,6768,0,1834,1744,1
+12460,50000,male,1,2,30,-1,-1,-1,-1,-1,-1,390,390,390,390,390,23269,390,390,390,390,23269,1500,0
+12461,360000,female,1,2,28,0,-1,-1,-1,-1,-1,2386,3166,2776,2386,3166,2983,3166,2776,7158,3166,2983,2386,0
+12462,70000,male,2,1,24,0,0,0,0,0,0,49169,48960,49864,48481,46946,47958,1840,1744,2001,2000,1800,1706,0
+12463,20000,female,2,2,22,0,0,0,0,0,2,16072,17205,17903,18321,19680,18292,1700,1300,700,1643,0,1000,0
+12464,200000,female,3,1,50,0,0,0,0,0,0,141886,141771,141129,134295,135962,112870,7000,8000,4100,4200,4300,4500,0
+12465,90000,female,3,1,46,-2,-2,-2,-2,-2,-2,1609,686,3904,686,686,686,1372,3904,686,686,686,686,0
+12466,30000,male,1,1,36,-1,2,2,-1,2,2,1123,543,153,1495,955,1735,200,0,1495,0,1170,0,0
+12467,260000,female,1,1,44,-1,-1,-1,-1,-1,-2,2772,6675,-3098,11377,0,0,6675,20,50000,0,0,0,1
+12468,50000,female,2,1,34,0,0,0,0,0,0,7900,8922,9926,9970,10339,11009,1309,1313,357,530,1000,622,1
+12469,30000,female,2,1,25,-1,2,2,0,0,0,30119,31240,30311,30270,28958,30974,1900,0,957,7000,4530,0,0
+12470,20000,female,3,1,33,0,0,0,0,0,0,2909,3537,4120,3802,3484,3152,1224,1197,269,269,261,227,0
+12471,30000,male,2,1,33,2,2,0,0,0,0,42646,30060,28391,26156,25377,27422,2159,1500,1000,1000,3800,0,1
+12472,290000,female,1,3,29,0,0,0,0,0,0,221626,190440,118163,110728,106426,15300,6530,4200,4938,10000,2420,221000,1
+12473,50000,male,1,2,26,2,2,-1,0,0,0,2467,-368,1465,2282,2397,2470,0,2000,1000,300,300,2000,1
+12474,60000,female,1,2,31,0,-1,2,2,2,2,3610,855,111,411,261,6695,900,0,300,0,6500,0,0
+12475,200000,male,1,2,34,0,0,0,2,2,2,156449,162377,174501,155355,129942,118202,10000,15000,0,10000,0,11000,1
+12476,50000,male,3,1,48,0,0,0,0,-1,-1,45600,12404,7857,3181,2430,780,1800,1506,6,2430,780,0,0
+12477,190000,female,1,2,29,0,0,0,0,0,0,188463,179419,165858,159374,158040,159833,6536,6031,20036,5732,5648,6011,0
+12478,70000,female,2,1,38,1,2,2,2,2,2,30175,31289,31678,32255,32890,33595,1900,1200,1400,1300,1400,1400,0
+12479,300000,male,1,2,31,1,-1,-1,-1,-1,-1,-122,22953,3565,19869,26249,1332,23075,3583,19969,26380,1338,0,0
+12480,400000,male,1,2,27,0,0,2,2,2,2,58995,63064,60984,61034,60881,46569,5000,0,500,39,707,0,0
+12481,200000,female,1,1,46,1,-2,-2,-2,-1,-1,9367,0,0,0,9400,13039,0,0,0,9400,13039,0,1
+12482,560000,male,2,1,43,-1,0,0,0,0,0,168211,139873,142391,145345,148177,139831,5060,4827,4974,4942,4573,4074,0
+12483,150000,female,2,1,37,0,0,0,0,0,0,40680,44960,45976,46890,47873,48833,4960,1765,1679,1739,1757,1795,0
+12484,300000,female,1,1,36,-1,-1,-1,-2,-2,-1,2072,2654,0,0,0,380,2654,0,0,0,380,0,0
+12485,80000,female,2,1,24,0,0,0,2,2,2,48578,50789,54936,55735,56699,55632,3000,5000,2300,2000,0,2500,0
+12486,150000,female,1,1,52,-1,3,2,0,0,-1,3391,3227,1129,2034,2140,6731,20,802,1705,1806,6427,16,1
+12487,20000,female,2,1,29,0,0,0,0,0,-2,8624,9972,9799,9999,0,0,1500,1000,200,0,0,0,0
+12488,50000,female,2,1,27,0,0,0,0,0,0,43583,35245,27520,25928,26470,27077,3100,1723,1100,1111,1200,1130,0
+12489,150000,female,2,2,23,0,0,0,2,0,0,41408,40958,39934,8433,6741,7586,2074,1926,0,408,3000,8275,0
+12490,140000,female,1,1,34,1,-2,-2,-2,-2,-1,0,401,3930,3951,0,12555,401,3930,3951,0,12555,0,0
+12491,500000,female,1,1,52,-1,-1,-1,-2,-2,-2,1323,1725,0,0,0,0,1725,0,0,0,0,0,0
+12492,90000,female,2,2,29,0,0,0,0,0,0,89068,83890,77489,46544,48266,49926,4073,5021,3000,3000,3000,2000,0
+12493,30000,male,2,2,28,-1,0,0,0,-1,-1,27368,23023,27428,28720,780,0,3000,5000,2000,780,0,0,1
+12494,50000,female,3,2,50,0,0,2,0,0,0,47405,50138,25768,26142,26771,27175,4130,0,1100,1200,1000,1100,1
+12495,280000,female,2,2,32,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+12496,390000,male,1,2,26,2,0,0,0,0,0,112320,106156,95039,85806,76981,69641,5073,3950,2627,2044,2344,3036,1
+12497,100000,female,2,2,27,2,3,3,2,2,3,97156,97634,96461,96975,101280,101935,2900,1300,3000,5450,2000,0,1
+12498,200000,male,1,2,33,0,0,0,0,2,0,197272,196700,194403,197746,190198,192015,8600,7700,11100,0,5600,5640,1
+12499,230000,female,2,2,41,0,0,0,0,0,0,38975,35294,39295,38459,40242,42495,5000,5000,5000,3000,5000,3000,0
+12500,20000,female,2,1,48,0,0,2,2,2,2,11492,15791,15806,29542,15484,15046,4500,550,0,1445,0,400,0
+12501,180000,male,1,2,40,0,0,0,0,-1,-1,123705,126429,20650,7751,1630,0,6019,1074,2038,819,0,0,0
+12502,10000,male,2,2,23,3,2,2,0,0,0,4256,5113,4883,5155,5275,0,1081,0,353,375,0,0,0
+12503,327680,male,3,2,42,0,0,0,0,0,0,344011,336175,333048,277250,256365,243600,11219,11461,9100,8345,7783,9200,1
+12504,100000,female,2,1,42,-1,0,0,0,0,0,976,5476,10303,11007,11254,5934,4500,5000,1000,5200,1052,4000,1
+12505,80000,female,2,1,41,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+12506,250000,female,1,1,37,0,0,0,0,0,0,13504,13486,14261,7019,7062,7242,1267,1310,232,238,279,122,0
+12507,440000,female,1,2,34,-2,-2,-2,-2,-2,-2,4196,10121,32921,22680,13711,11074,10137,32921,15701,5711,5074,14825,0
+12508,140000,female,1,2,24,-1,-1,0,0,0,0,13408,97396,92990,93960,96724,91539,97396,4070,3225,4137,3100,2300,0
+12509,20000,female,2,2,50,0,-1,-1,-1,-1,-2,5100,2940,6050,3100,0,0,2940,6050,3100,0,0,1035,0
+12510,50000,female,2,1,29,2,2,2,2,0,0,46191,44808,38605,32455,15865,23753,3800,1500,0,628,10362,786,0
+12511,30000,female,2,1,29,-1,-1,-1,-1,-1,-2,2405,390,2476,3055,0,0,390,2476,3059,0,0,0,0
+12512,210000,female,2,1,34,0,0,0,0,0,0,140272,115922,105875,97873,90872,72969,6018,6029,3000,3500,3000,3000,0
+12513,20000,male,2,2,28,0,0,0,2,2,2,6866,8246,10101,9790,10632,10312,1500,2000,0,1000,0,1000,0
+12514,150000,female,3,1,24,-2,-2,-2,-2,-2,-2,6479,1670,4330,8036,1505,974,1670,4330,8040,1505,974,0,1
+12515,50000,male,1,2,23,0,0,0,0,2,0,51175,47514,23927,20162,19342,18347,2500,2280,2157,0,660,638,0
+12516,210000,female,2,1,47,0,0,0,0,0,0,17952,18894,20296,21704,24086,26414,1500,2000,2000,3000,3000,1000,0
+12517,250000,female,3,1,49,-2,-2,-2,-2,-2,-2,632,316,316,316,316,316,0,316,316,316,316,316,1
+12518,130000,male,1,2,37,0,0,0,0,0,0,109383,106149,44841,45451,46564,47516,5300,1700,1300,1500,1500,1400,0
+12519,290000,male,1,1,38,2,2,0,0,0,0,324016,294976,297386,243558,241765,236413,0,12139,80000,10000,8443,10000,1
+12520,150000,female,2,2,29,0,0,0,0,0,-1,19020,7717,9858,9188,7518,23574,1500,5000,2000,1000,33054,704,0
+12521,80000,female,3,2,28,0,0,0,0,0,0,77450,78100,76204,66876,66182,67199,3500,2600,2400,2500,2700,2300,0
+12522,50000,male,2,1,39,0,0,0,0,0,0,11665,12405,13355,13622,11550,11713,1232,1182,449,565,504,233,0
+12523,240000,male,2,1,49,-2,-2,-2,-2,-2,-2,4639,1825,973,-110,-110,-110,1838,976,110,0,0,0,0
+12524,90000,male,2,2,27,0,0,2,2,2,2,20249,44731,43712,52966,51988,56117,25000,0,10000,0,5000,3150,0
+12525,220000,male,1,2,38,1,2,-1,-1,0,-1,7311,5590,1066,2404,1338,19082,0,1066,2404,0,19082,4421,0
+12526,170000,male,2,2,33,-1,-1,-1,-1,-1,-1,2164,165,165,0,4841,95,165,165,0,4841,95,531,0
+12527,70000,male,1,2,26,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,313,0
+12528,160000,male,1,2,53,2,2,-1,-1,-2,-1,1309,0,4582,0,0,2191,0,4582,0,0,2191,4825,1
+12529,250000,female,1,2,29,-1,-1,-1,0,-1,-1,17949,9863,6942,2779,2497,2830,9863,6955,2517,2497,2830,10809,0
+12530,70000,male,1,1,42,0,0,0,0,0,0,71255,71338,71267,69813,71324,71268,2800,2800,2900,2800,2800,2990,1
+12531,90000,female,2,2,27,-1,-1,-1,0,0,0,509,511,4451,4104,8993,5382,511,4451,82,5161,108,0,1
+12532,50000,female,2,1,23,0,0,0,0,0,0,49103,44351,38726,28598,29277,27310,1800,2128,1000,1100,1000,999,0
+12533,150000,female,1,2,30,0,0,0,0,0,0,150311,138240,138887,144170,149970,145262,5500,3400,5883,5800,2905,2799,1
+12534,20000,female,2,1,21,1,-2,-1,-1,-2,-2,0,0,289,0,0,0,0,289,0,0,0,0,1
+12535,20000,female,1,2,23,0,0,0,0,0,0,16841,17676,18804,19037,20137,20160,1642,2000,1000,1730,587,208,0
+12536,50000,female,5,1,29,0,0,0,0,0,0,85305,86152,56250,57603,19336,18964,4000,2257,2000,2000,700,600,0
+12537,200000,male,1,1,31,0,0,0,0,0,0,179063,159466,162739,163555,166452,168398,5000,5100,5000,6000,4500,20000,0
+12538,200000,female,3,2,25,-1,-1,-1,0,-1,-1,1676,3122,2991,390,1211,390,4595,2991,0,1211,390,1112,0
+12539,120000,female,2,2,52,0,0,0,0,0,0,119796,117229,239224,91231,90184,90072,4700,5590,4000,3600,3700,32696,0
+12540,270000,female,3,1,37,-1,-1,-1,-1,-1,-1,384,2197,186,0,173,0,2197,186,0,173,0,433,1
+12541,300000,female,1,2,31,0,0,0,-1,-1,-1,11158,1616,3658,658,662,0,1000,2700,658,662,0,0,0
+12542,400000,male,2,2,29,0,0,0,0,0,0,41008,42351,43146,44227,45062,46012,2005,1800,1800,1700,1700,1800,1
+12543,120000,male,3,1,24,0,0,0,-2,-2,-2,79172,61300,0,0,0,0,2500,0,0,0,0,0,0
+12544,130000,male,2,2,25,0,0,0,0,0,0,4841,6750,7559,5198,5198,5198,2000,1000,2200,0,0,0,0
+12545,150000,male,2,1,30,-2,-2,-2,-2,-2,-2,116778,59731,89742,116067,97725,76466,60367,100483,116567,50156,10383,316,0
+12546,200000,female,1,2,40,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+12547,130000,male,2,1,49,0,0,0,0,0,0,130558,131939,100513,35288,34359,33488,5311,2502,1512,1612,2000,1000,0
+12548,120000,female,1,2,27,-1,-1,-1,-1,-1,-1,1026,1026,1026,1026,1026,1026,1026,1026,1026,1026,1026,1026,0
+12549,230000,female,2,2,32,-2,-2,-2,-2,-2,-2,1168,698,2371,4524,299,395,698,2371,4524,299,395,0,0
+12550,50000,male,1,2,26,0,0,-1,-1,-1,-1,11550,11368,138,1022,316,450,1000,200,1200,600,600,600,0
+12551,10000,female,3,1,49,-1,-1,-2,-1,2,2,32,-358,-748,1690,1138,930,0,0,2828,0,182,0,1
+12552,360000,male,1,2,28,-2,-2,-2,-2,-2,-2,14433,15157,8564,1495,5977,1211,2394,8606,1502,6006,4217,2228,0
+12553,140000,female,1,2,24,0,0,0,0,0,-1,124722,77682,77870,19353,8966,14300,3645,2322,387,1000,14300,2900,0
+12554,50000,female,2,2,25,3,2,2,0,0,0,49081,50074,48610,17857,18369,19011,2063,0,800,800,1000,1000,1
+12555,120000,female,2,1,44,0,0,0,0,0,0,16407,17433,18444,18810,19218,21385,1296,1307,673,711,2500,793,0
+12556,500000,male,1,1,56,-1,-1,-1,-1,-1,-1,22981,97007,32109,56370,36918,35017,97345,32189,56436,36918,35017,23547,0
+12557,500000,male,1,2,33,0,0,0,0,0,0,49981,45803,43838,25588,24648,23773,2200,2000,3000,2000,2657,85500,0
+12558,10000,male,2,2,25,-1,2,0,0,-1,-1,7786,8512,9290,9480,388,10000,1000,1000,190,388,10000,0,0
+12559,160000,female,3,1,39,0,0,0,0,0,0,40892,42416,43367,44344,45486,50520,2500,3000,2000,1856,6000,2000,0
+12560,60000,female,2,2,31,-1,-1,2,-1,-1,-1,326,1152,826,22662,38211,19671,1152,0,22662,38211,19671,12245,0
+12561,60000,female,2,1,40,0,0,0,-1,-1,-1,25158,18473,7506,4790,6388,5816,5000,1508,4790,6388,6046,17806,0
+12562,160000,female,2,2,40,1,-1,-1,-1,-1,-1,0,372,-7,3298,455,-325,372,0,3305,455,0,0,0
+12563,500000,female,1,2,40,-1,-1,-1,-1,-2,-1,5158,5514,14199,1537,1537,5517,5514,14220,1537,1537,5517,550,0
+12564,360000,female,1,1,41,0,0,0,0,0,0,250180,141206,64277,32727,13004,0,4428,2017,305,1240,0,0,0
+12565,10000,male,2,2,27,2,2,2,0,0,2,6743,9060,8768,9465,10212,10198,2600,0,1000,900,300,0,1
+12566,30000,female,3,1,44,2,2,2,2,0,0,33382,34547,35100,32859,32041,31262,2000,1500,0,1112,1175,2200,1
+12567,60000,female,2,2,26,0,0,0,0,0,0,3724,5782,24653,25831,27483,28085,5600,20000,2500,3000,2000,1500,0
+12568,80000,female,2,1,44,0,0,-1,-1,-1,-1,1719,1732,1250,175,175,175,1000,1250,175,175,175,175,0
+12569,410000,male,2,1,37,-2,-2,-2,-2,-2,-2,4339,1695,17106,9600,2052,3829,1815,17106,9600,2052,3829,3400,0
+12570,70000,female,2,1,27,3,2,3,2,0,0,70084,71379,69264,26547,24173,24620,3000,0,0,2000,1000,1000,1
+12571,60000,female,3,2,47,-1,-1,-1,-1,-1,-1,696,696,696,696,696,696,696,696,696,696,696,380,1
+12572,80000,male,2,1,41,0,0,0,0,0,0,12781,9994,10704,9201,6275,2678,2000,4000,1000,1000,1000,1000,0
+12573,30000,male,3,2,38,0,0,0,0,0,0,14095,15117,16130,16462,16808,17140,1255,1268,600,611,612,1000,0
+12574,110000,female,3,1,49,0,0,0,0,0,0,52775,52687,53403,56028,57996,59839,3000,3000,5000,3000,3000,2000,0
+12575,150000,female,2,1,30,-1,-1,2,-1,-1,-1,696,1392,696,696,873,1392,1392,0,696,873,1392,696,1
+12576,30000,female,2,1,38,1,2,0,0,0,2,9033,8136,8339,8730,9386,3014,0,1000,1000,1300,0,1000,0
+12577,150000,male,3,1,38,0,0,0,0,0,0,40441,38497,39552,40393,41243,42157,2000,2000,1500,1500,1600,1600,0
+12578,50000,male,3,1,55,0,0,2,0,0,2,42067,45127,44106,44839,47634,46718,4055,0,1767,3683,0,1817,0
+12579,40000,male,2,3,41,0,0,0,0,0,0,39295,38490,38224,37764,38029,32179,1786,1890,2000,1104,948,337,0
+12580,70000,female,2,2,23,0,0,0,0,0,0,54428,25085,25282,21858,19171,8443,2002,1819,509,539,2000,1000,0
+12581,100000,male,1,1,46,2,0,0,0,0,0,98482,89958,78533,75568,63637,50711,3517,2700,19782,2063,3000,1400,1
+12582,10000,female,3,2,22,1,2,0,0,2,0,8846,8560,9706,10406,10109,10057,0,1300,1000,0,1000,1000,0
+12583,60000,male,3,2,29,0,0,0,0,0,0,4262,11674,6281,7920,8472,8735,7662,1269,1908,1000,727,0,0
+12584,100000,male,1,2,27,-1,-1,-1,-1,-1,-2,2927,831,1226,330,0,0,831,1226,330,0,0,0,1
+12585,50000,female,2,2,29,0,0,0,0,0,0,9730,9067,9816,9889,8765,9136,1500,1091,1000,1000,1000,2000,0
+12586,10000,male,2,1,30,-1,-1,-1,-1,-2,-2,390,0,780,0,0,0,0,780,0,0,0,0,1
+12587,50000,female,1,1,54,2,2,2,0,0,0,47927,50421,17637,17680,18091,18750,4090,0,633,696,1000,1000,1
+12588,10000,female,3,2,36,0,0,0,0,0,0,4945,6157,7172,8048,8318,8679,1300,1124,1000,400,500,200,0
+12589,80000,male,2,2,36,0,0,0,0,0,0,75345,77112,78707,38084,38910,39691,4419,4000,2000,2000,2000,3232,0
+12590,50000,male,2,2,47,0,0,0,0,0,0,37486,35996,36679,16707,17057,17423,1800,2021,650,619,650,1000,0
+12591,470000,male,1,2,27,-1,-1,-1,-1,0,0,4007,3201,14509,21168,14501,8726,3201,14509,21168,0,1528,6970,0
+12592,530000,female,2,2,39,0,0,0,0,0,0,398763,396324,355438,317549,290182,292602,17016,14102,11100,11005,11102,9060,0
+12593,200000,female,1,1,34,-2,-2,-2,-2,-1,0,12322,25851,35691,-24303,38674,30784,13871,74000,882,124264,14692,8640,1
+12594,20000,male,1,2,23,0,0,0,0,0,-1,18055,2059,2576,1834,1092,942,1100,1500,200,200,942,19840,0
+12595,80000,female,3,2,24,0,0,0,0,0,0,80235,81960,79121,59165,60084,59920,3626,3862,2056,2200,2130,2213,0
+12596,150000,female,2,2,38,-1,-1,-1,0,0,0,5219,0,5200,1561,1633,230,0,5200,0,72,460,4487,0
+12597,30000,female,2,1,41,2,2,0,0,0,-1,25594,21485,22320,23933,22742,2500,0,1300,5000,945,1850,1060,1
+12598,170000,female,5,1,37,-2,-2,-1,-1,-1,-1,743,0,16474,4650,2359,0,0,16474,4650,2359,0,1977,0
+12599,230000,female,3,1,30,0,0,0,0,0,0,190919,191785,164602,136569,139522,132239,7214,6264,10000,5028,5000,5000,0
+12600,170000,female,2,1,37,2,0,0,2,2,2,135419,138547,148175,149758,147262,156808,6800,13500,5500,0,12000,0,1
+12601,290000,male,3,1,47,-1,-1,-2,-2,-2,-2,1200,0,0,0,0,0,0,0,0,0,0,4634,0
+12602,170000,female,2,2,27,0,0,0,0,0,0,64195,66163,67856,38803,40259,41541,3000,3000,2308,3000,3000,1800,0
+12603,200000,female,1,2,26,0,0,0,0,0,0,118267,103114,85698,64423,49432,34814,3263,5114,1613,1402,3055,7043,0
+12604,80000,male,3,1,55,0,0,0,0,0,0,82567,84221,80041,19000,15178,14717,3121,8443,1582,548,531,479,0
+12605,340000,female,2,2,32,-2,-2,-2,-2,-2,-2,0,0,2500,2500,0,0,0,5000,0,0,0,0,1
+12606,110000,female,1,2,28,0,0,2,0,0,0,112953,225099,221798,111960,111636,111733,12500,0,4400,4218,4323,4550,0
+12607,10000,male,2,2,36,0,0,2,0,0,0,6672,8405,8869,8901,9838,6771,2000,800,240,1000,771,1100,0
+12608,80000,female,2,2,27,0,0,0,0,0,0,64561,47041,25439,26140,28833,28459,2176,1299,1000,3000,981,2000,0
+12609,60000,female,2,3,28,0,0,0,0,0,0,34580,15924,18124,28644,18656,15952,1300,2500,1000,1688,1000,1000,0
+12610,340000,female,2,2,27,-1,-1,-1,-1,-1,-1,14745,9318,4794,7819,332,16516,9318,5343,7819,332,16516,5000,0
+12611,20000,male,1,1,54,0,0,0,0,0,0,10618,12135,16878,19624,20036,18309,2000,5000,3000,689,1000,2000,0
+12612,500000,male,2,1,49,-2,-1,0,0,0,0,5157,77667,94159,95209,97952,202991,77677,20000,3500,4371,107500,0,0
+12613,250000,female,1,1,53,0,0,0,0,0,0,252916,251830,245429,186620,193003,191867,9011,8146,6000,13003,11867,17186,0
+12614,50000,female,2,2,24,1,-2,-1,-1,0,0,0,0,51400,11330,12144,12938,0,51400,11330,1000,1000,1519,0
+12615,100000,male,1,3,48,-1,-1,-1,0,0,-1,525,1022,897,897,319,2757,1100,1000,0,0,2800,5400,1
+12616,280000,male,1,2,31,-1,-1,-2,-1,-1,-1,2158,-2,-2,5823,2900,42128,0,0,5825,2915,42338,2419,1
+12617,500000,male,1,1,41,0,0,0,0,0,0,505128,500867,489856,356583,289398,274590,19295,18694,12271,9699,9420,8818,0
+12618,20000,male,2,2,24,0,0,0,0,0,0,16793,18215,18679,16264,17119,10550,1700,1150,467,1000,1200,400,0
+12619,140000,female,2,2,24,1,-2,-1,-1,2,0,0,0,167,80644,146651,55776,0,167,80677,0,2500,28,0
+12620,250000,female,2,2,30,0,0,0,0,0,-1,43694,33357,44167,19806,22231,6852,15284,20087,5093,10000,6876,0,0
+12621,50000,male,1,2,27,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+12622,70000,female,2,1,33,2,0,0,0,0,0,49307,48214,27572,26810,20541,19234,1500,1300,1505,1000,1000,2000,1
+12623,230000,female,2,1,27,0,0,0,0,0,0,228863,227814,218694,191956,191741,176784,8862,8933,6956,7845,6784,7471,0
+12624,500000,male,3,2,31,-2,-2,-2,-2,-2,-2,453,16577,40489,39744,26765,2837,16783,40496,1075,2133,2851,85327,0
+12625,280000,female,1,1,40,0,0,0,0,0,0,212617,207478,211850,209651,214520,213520,7297,7584,7416,8000,7639,7312,0
+12626,160000,female,2,1,40,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+12627,50000,female,2,1,32,1,-2,-1,0,0,0,0,0,530,26530,26574,26289,0,530,26000,951,943,970,0
+12628,500000,female,1,1,38,0,0,0,0,0,0,105587,105478,100026,86265,67539,53676,3627,3059,2670,2331,2406,1645,0
+12629,290000,female,2,2,24,0,0,0,0,0,0,230014,219207,215223,216261,217537,216014,8411,8600,7000,7300,7000,6000,0
+12630,100000,male,3,2,29,0,0,0,0,0,-2,47919,30820,28503,6810,-3,-3,2000,1000,1039,12920,0,0,0
+12631,480000,male,1,1,61,0,0,0,0,0,0,91524,94123,95336,97645,92109,79795,5000,4000,7172,4000,2500,3000,0
+12632,110000,female,3,2,33,0,0,0,0,0,0,110704,55885,56779,56580,57509,58715,2056,2100,2100,2076,2400,2100,0
+12633,350000,female,1,2,24,2,2,0,0,2,0,86342,84103,86179,91608,86705,90208,0,3500,6800,0,5100,105000,1
+12634,70000,male,2,3,34,-2,-2,-1,0,0,0,58875,0,72772,39980,40126,39788,0,72772,1400,1500,1500,1600,0
+12635,290000,male,2,1,38,0,0,0,0,0,0,118801,99370,84836,82168,80299,77324,3530,3019,2818,3000,3199,2350,0
+12636,210000,female,2,2,34,-2,-1,-1,-2,-2,-2,6769,12656,5570,2285,0,0,12660,5570,2285,0,0,0,0
+12637,240000,male,1,1,38,-1,-1,-1,-1,-1,-1,4890,4157,14342,11411,3006,13268,4164,14371,11411,3006,13336,0,0
+12638,260000,female,2,1,49,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+12639,80000,male,2,2,27,0,0,0,0,0,0,38220,33962,31297,27679,7689,8802,3000,1000,730,2015,1000,2000,0
+12640,50000,male,2,1,38,0,0,0,0,0,0,50748,48626,20712,17834,18248,19390,1500,1200,2500,618,4000,3000,0
+12641,10000,male,3,2,28,2,0,0,-1,-1,0,6302,6390,0,1170,9956,9992,1000,1600,1170,9956,282,91,1
+12642,50000,female,6,1,45,0,0,0,0,0,0,48984,49878,47024,29194,27146,28506,2000,1500,2000,2000,2000,1500,0
+12643,200000,female,2,1,39,1,-2,-1,-1,-1,-2,0,0,12888,2075,0,0,0,12888,2075,0,0,5051,0
+12644,400000,female,2,1,39,-2,-2,-2,-2,-1,-1,91170,55588,14037,20356,90159,79053,55974,14079,20417,90180,79176,34790,0
+12645,210000,female,1,1,37,0,0,-1,-1,-1,-1,24547,48302,4549,3085,7300,6583,4519,9098,3085,7300,6583,5060,1
+12646,500000,male,1,2,42,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+12647,60000,male,3,1,55,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+12648,150000,female,2,2,25,0,0,0,0,0,0,151761,149060,151308,152576,152368,142030,5752,6308,16644,12381,9320,5977,0
+12649,60000,female,1,2,26,1,-1,0,0,0,0,0,23040,28266,43296,44307,43550,23040,8000,20000,1669,1549,15000,0
+12650,450000,male,5,1,35,0,0,0,0,-1,-1,254679,179510,212496,51953,74870,-2313,10000,205004,52000,74896,500,110124,0
+12651,430000,female,2,1,42,2,2,2,2,2,2,289358,296219,300873,294527,308523,318274,13000,11000,0,19000,15000,0,1
+12652,50000,female,2,2,30,-1,-1,-1,0,0,-1,1383,1383,4149,2766,1383,1383,1383,4149,0,0,1383,5419,0
+12653,80000,female,2,2,23,-2,-2,-2,-2,-2,-2,0,2946,390,390,390,780,4419,390,390,390,780,0,0
+12654,200000,male,3,1,36,0,0,0,2,2,2,25469,26663,28509,27381,29054,28052,2000,3000,0,2500,0,1500,1
+12655,60000,female,2,2,25,0,0,0,0,0,0,18280,19468,20986,23783,25548,21811,1482,2000,3000,3000,1500,2000,0
+12656,50000,male,2,1,48,2,0,0,0,0,0,49913,50588,50245,19424,19829,20386,2077,1311,689,712,879,799,0
+12657,150000,female,1,1,35,0,0,0,0,0,0,38484,43489,48194,32264,25579,0,8000,5175,3000,10000,0,0,0
+12658,200000,female,1,2,26,-1,0,-1,0,-1,-1,980,2980,3438,2102,38,0,2000,3438,50,38,0,0,0
+12659,80000,male,2,1,29,0,0,0,0,0,0,78265,79364,73622,75092,75976,77511,3070,2623,2644,2743,2783,2909,1
+12660,30000,female,2,3,41,1,-1,0,0,-1,0,8247,16463,7090,10000,18438,17068,16463,1314,10000,18438,733,11796,0
+12661,200000,female,2,2,33,0,0,0,0,-2,-2,47132,27179,13457,-387,-387,-387,1917,1000,0,0,0,0,0
+12662,170000,female,1,2,30,0,0,0,0,0,0,30552,29342,30544,30477,2609,1359,2500,2500,780,1100,400,918,0
+12663,130000,male,2,1,52,0,0,2,2,0,0,82399,89003,90160,87817,89746,98655,7931,3500,0,3499,10648,0,0
+12664,180000,female,2,2,28,0,0,0,0,0,0,103203,108032,109741,112907,115924,118832,6500,5000,5000,5000,5000,5000,0
+12665,160000,male,1,2,27,-1,-1,-1,-1,-1,-1,11924,0,4477,2682,29011,4000,0,4477,2682,29011,4000,5459,0
+12666,20000,female,3,2,29,-1,2,2,-1,-1,-1,957,738,356,356,4616,728,356,0,356,4616,728,449,0
+12667,250000,male,1,2,42,0,0,0,0,0,0,255473,256003,254970,209124,213392,205180,11300,12177,7200,8000,7700,8003,0
+12668,150000,male,1,2,28,-1,-1,-1,-2,-2,-2,252,6514,-31,-31,-31,-31,6546,0,0,0,0,0,0
+12669,180000,male,1,1,35,-1,-1,-1,-1,-1,-1,574,396,395,846,1027,381,396,395,848,1027,381,5819,0
+12670,120000,male,1,2,27,0,0,0,0,0,0,60109,44206,38083,36728,36952,35475,2415,1816,1381,1264,1228,1217,0
+12671,430000,female,1,1,42,-2,-2,-2,-2,-2,-2,1580,1526,806,2792,3010,-200,1526,806,2792,3010,200,0,0
+12672,200000,male,1,1,38,2,0,0,0,0,0,194281,188638,190824,133233,115882,117534,7332,5818,4451,4472,3850,3602,0
+12673,20000,female,3,2,38,-1,-1,2,0,-1,-1,12193,11242,8015,3668,3508,5278,5015,0,0,3508,5278,780,0
+12674,370000,female,1,1,42,0,0,0,0,0,0,271452,256269,200761,125646,111185,45816,11295,8300,5000,4600,10000,280000,0
+12675,30000,female,3,2,25,0,0,0,0,0,0,25366,27626,22034,16312,14614,0,5000,1000,326,292,0,0,0
+12676,180000,female,1,2,25,0,-1,2,-1,-1,2,7026,10080,3254,1443,7105,2929,10080,0,1443,7105,0,5253,0
+12677,360000,male,1,1,48,-1,-1,-1,-1,-2,-1,5518,2532,5504,-4,-4,881,2548,5536,0,0,885,1595,0
+12678,260000,female,1,2,33,0,0,0,0,0,0,248034,241535,174423,46654,202945,180891,11381,7256,2312,200128,7175,5612,0
+12679,200000,female,1,2,25,0,0,0,0,0,0,190123,194059,194464,76223,77822,80598,8487,5105,3000,2828,4073,1794,0
+12680,50000,female,2,1,39,0,0,0,0,0,0,30049,30147,28703,28918,29126,28643,1800,1500,1142,1200,1200,1200,0
+12681,50000,female,2,2,22,3,2,0,0,0,0,50953,49363,49243,46382,47261,48219,8,3011,1264,2000,1159,1244,1
+12682,270000,male,1,2,33,-1,-1,-1,-1,-1,-1,9711,9363,13951,8938,15280,18002,9391,13999,8964,15325,18028,211,0
+12683,10000,female,2,2,22,2,0,0,0,0,0,7582,8502,9479,9669,9978,9928,1200,1136,326,444,199,0,1
+12684,390000,male,1,1,38,-1,-1,-1,0,0,-1,9610,6090,18119,15220,7658,7547,6090,18119,304,416,7547,897,0
+12685,350000,female,1,1,50,-1,-1,-1,-1,-1,-1,50376,20717,10133,28858,8693,9194,20717,10173,28858,8693,9194,17436,0
+12686,350000,male,1,1,40,0,0,-1,-1,0,0,63200,6470,630,20682,20902,16754,4150,630,20902,5000,2000,3000,0
+12687,300000,male,2,2,33,0,0,0,0,0,0,306623,296304,295855,201842,201309,200695,12000,11504,8500,8000,8000,11000,0
+12688,50000,male,2,2,38,0,0,0,0,0,0,42856,29248,17775,17833,18246,18642,1300,1600,650,700,700,700,0
+12689,250000,female,1,1,35,0,0,0,0,0,0,88132,81826,71488,69145,68680,70047,3500,3070,2372,2413,2428,2507,0
+12690,360000,male,1,2,33,-1,2,0,0,2,0,5971,5732,6465,9465,9290,4209,0,1000,3000,0,5000,3780,0
+12691,180000,female,1,1,42,1,-2,-2,-2,-2,-2,0,0,0,0,0,1031,0,0,0,0,1031,0,0
+12692,150000,male,4,1,41,0,0,0,0,0,0,78354,69250,69790,71535,73131,72502,2507,3001,3001,3013,3133,3000,0
+12693,250000,female,2,1,35,1,2,2,2,2,2,196192,191745,205681,200988,217830,223254,0,17000,0,20000,9078,8500,0
+12694,200000,male,3,2,29,0,0,-1,-1,-1,-1,41151,21132,482,482,462,446,1650,482,482,462,466,0,0
+12695,260000,female,1,1,46,-1,-1,-1,-1,-1,-1,451,268,604,664,734,1076,268,604,664,734,1076,1220,1
+12696,150000,female,1,2,52,0,0,0,0,0,0,135450,137647,141046,143490,146060,149861,4771,4952,4019,4132,5037,3500,1
+12697,400000,female,1,2,36,-1,-1,0,-1,-1,-1,39601,21357,30689,2514,4215,827,21357,10689,2514,4215,827,10827,0
+12698,20000,male,2,1,32,0,0,0,0,0,0,14662,10305,11127,12928,13721,14492,1500,1300,2000,1000,1000,1000,0
+12699,90000,female,3,2,25,0,0,0,0,2,0,43519,44677,45868,47535,40920,38622,1861,2052,2719,0,1600,890,0
+12700,200000,male,3,1,34,0,0,0,0,-1,2,73494,82253,179964,-36,5654,804,10000,100000,0,5690,0,4421,0
+12701,70000,female,1,2,27,1,2,2,2,2,2,61401,62712,63586,64440,65761,67128,2900,2500,2500,2500,2600,1000,0
+12702,80000,male,2,1,49,0,0,0,0,-1,-1,5885,7001,8632,10316,316,2523,2000,2000,2000,316,2523,316,0
+12703,240000,male,1,2,43,0,0,0,0,0,-2,73462,82677,76248,79684,58231,7100,65361,30646,70204,10000,7100,8318,0
+12704,200000,female,1,2,28,-1,-1,-1,0,-1,0,339,5322,7756,4792,3107,17423,5322,7756,0,38700,16724,6393,0
+12705,270000,female,1,2,29,0,0,0,0,0,0,125120,102046,91426,93262,96104,98374,4000,2969,3000,4000,3500,3450,0
+12706,210000,female,1,1,32,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+12707,140000,male,2,2,24,-1,-1,-1,-1,-1,0,16343,1462,4326,6380,48866,23797,1462,4326,6398,48866,3500,2000,1
+12708,120000,male,3,1,36,-1,0,0,0,0,0,31218,32319,32687,32972,33559,34604,2000,1600,1200,1500,2000,1500,0
+12709,130000,female,1,1,36,2,2,2,2,0,0,65767,74474,78652,76790,78400,79996,9813,6000,0,3001,3058,2866,1
+12710,80000,male,2,2,24,0,0,0,0,0,0,35926,32813,22638,18805,6058,0,5041,4238,5051,3118,0,0,0
+12711,170000,male,1,1,38,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+12712,300000,female,1,2,33,-2,-2,-2,-2,-2,-2,920,1592,0,0,0,0,1592,0,0,0,0,0,0
+12713,380000,male,1,1,37,-1,-1,-1,-1,-1,-1,15019,4162,2107,0,1630,0,4472,2107,0,1630,0,0,0
+12714,110000,female,1,2,26,0,0,0,0,0,0,58716,50943,46942,47935,49083,49603,2500,2100,2000,2000,2500,2000,0
+12715,80000,female,1,2,24,0,0,0,-2,-2,-2,30985,44300,0,0,0,0,14300,0,0,0,0,0,0
+12716,20000,male,2,2,30,0,0,0,0,0,-2,28674,15491,16299,16428,0,0,1392,1200,329,0,0,8644,0
+12717,200000,male,1,2,28,-2,-2,-2,-2,-2,-2,972,-1,-1,299,299,293,0,0,300,300,294,0,0
+12718,360000,male,3,1,62,0,0,0,0,0,2,234825,242378,235716,171573,95455,91687,15000,12000,10000,10000,0,10000,0
+12719,170000,female,2,2,50,-1,-1,-1,-1,-1,-1,10072,2417,199,1628,0,4968,2417,199,1628,0,4968,0,0
+12720,500000,female,1,1,46,-2,-2,-1,0,0,-1,28412,72222,248807,179086,160121,52190,72234,248902,3582,3202,52190,53710,0
+12721,50000,female,2,2,24,0,0,0,0,0,0,16090,50912,34027,9568,9913,10132,36027,1807,1000,500,400,500,0
+12722,50000,male,3,1,52,2,2,2,4,3,3,37530,38630,41774,40806,41357,41380,2000,4086,0,1500,1000,1800,0
+12723,80000,female,3,1,26,0,0,0,0,0,0,46802,33357,32883,29425,30117,30492,1903,1397,5000,1300,1400,1300,0
+12724,50000,male,1,2,31,0,0,0,0,0,0,50758,49517,49528,44768,40295,33088,2501,2005,1312,1614,1706,0,0
+12725,30000,female,2,2,23,0,0,0,0,0,0,28420,27929,28920,27997,28378,29321,1482,1703,1001,1500,1845,1001,1
+12726,30000,male,2,1,41,0,0,0,0,0,0,5413,13938,8448,8620,8000,0,9200,1000,172,160,0,0,0
+12727,20000,male,3,2,23,1,2,0,0,0,3,14034,13524,14983,16197,18932,18271,0,2000,1780,3000,0,0,1
+12728,500000,male,1,2,29,0,0,0,0,0,0,499452,455071,359940,345238,274743,250930,30483,15773,10393,10580,120081,10996,0
+12729,170000,female,3,1,42,-1,-1,-1,-1,-1,-1,552,552,552,552,552,0,552,552,552,552,0,33290,0
+12730,20000,female,1,2,23,1,-1,0,0,-1,-1,0,342,1342,1372,2037,1068,342,1000,30,2037,1218,462,0
+12731,90000,male,3,2,50,0,0,0,0,0,0,76495,71616,60177,54440,45788,41874,3243,2390,1840,1690,1954,1497,0
+12732,230000,male,1,1,35,-1,-1,-2,-2,-2,-2,3454,0,0,0,0,0,0,0,0,0,0,0,1
+12733,210000,female,2,2,35,0,0,0,0,0,0,209802,208421,190737,142271,137171,130687,8800,8023,4809,5001,5000,5000,0
+12734,20000,male,2,2,23,0,0,0,0,0,0,17728,18835,38099,18471,16408,17135,1700,1262,1244,595,1000,1000,0
+12735,60000,female,2,1,48,-1,-1,-1,-1,-1,-1,9015,14700,438,2575,0,4532,14700,438,2575,0,4532,3566,0
+12736,300000,female,2,1,29,-1,-1,-1,-1,0,-1,1825,2017,2476,5797,1542,1256,2017,2476,5797,0,1256,23265,0
+12737,50000,male,1,2,30,0,0,2,2,2,2,44572,48361,47192,50588,40009,43685,4500,0,4000,0,5000,0,0
+12738,50000,male,2,2,35,0,0,0,0,0,0,50000,37891,8434,8604,8865,9058,1150,1200,310,400,340,301,1
+12739,500000,male,1,1,61,-1,-1,-1,0,0,0,11430,29015,25364,19550,21096,23491,29205,25428,9575,11116,15063,217,0
+12740,490000,male,1,2,30,0,0,0,0,0,0,250637,254499,254762,253583,232878,236555,11032,10000,10000,9012,10000,10000,0
+12741,110000,female,3,1,29,1,2,0,0,0,2,109636,96380,56414,56677,109583,107981,0,3000,2000,53700,0,3000,0
+12742,360000,female,2,1,27,0,0,0,-1,-1,-1,6449,3885,3113,1347,2179,5575,1108,1024,1353,2188,5602,776,1
+12743,80000,female,2,1,42,0,0,-1,-1,0,0,43024,9821,600,53900,55000,65000,5098,600,53900,1100,10000,0,0
+12744,180000,female,1,2,27,2,2,0,0,2,2,153198,151128,152785,168657,165872,173667,1813,5667,18483,0,11000,1842,1
+12745,180000,female,1,2,27,-1,-1,-1,-1,-1,-1,581,5394,1485,4778,23350,583,5396,1485,4778,23350,583,5883,0
+12746,70000,female,2,2,22,0,-1,0,0,0,0,9232,68209,66087,50716,48862,49850,68209,2081,2000,2000,1828,1518,0
+12747,140000,male,2,2,26,0,0,0,0,0,0,105930,59125,54636,51407,12016,60890,3029,2000,2059,1019,55317,2015,0
+12748,340000,female,1,2,30,-2,-2,-2,-2,-2,-2,24400,27791,6097,2272,4336,2581,27800,6097,2272,4336,2581,1865,0
+12749,70000,female,2,2,36,-1,2,2,2,2,2,1156,2254,2044,4152,3023,4014,2044,0,4000,0,2000,0,1
+12750,300000,male,1,2,34,0,0,0,0,0,0,271928,274915,279570,241030,228125,215438,10230,9483,8172,8081,7707,7981,1
+12751,20000,female,2,2,23,2,2,2,2,4,3,18495,20194,18880,22215,20638,19342,3000,0,4613,0,0,0,1
+12752,170000,female,2,1,42,-1,-1,-1,-1,-1,-1,415,415,415,415,1215,1390,415,415,415,1215,1390,1215,0
+12753,280000,female,1,1,44,0,0,0,0,0,0,146390,148737,151000,152538,154291,155955,5111,5100,4300,4500,4500,4500,0
+12754,90000,female,3,2,50,0,0,0,0,0,0,83939,86583,87014,46293,47576,46663,4000,2500,2000,2000,2000,2000,0
+12755,160000,female,2,2,27,1,-1,-1,-2,-2,-2,0,418,0,0,0,0,418,0,0,0,0,0,1
+12756,300000,female,1,2,46,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+12757,60000,male,1,1,38,1,2,0,0,2,2,49808,48736,49525,57564,56517,81397,0,1900,8900,0,26000,2100,1
+12758,210000,male,1,1,46,-1,-1,-1,-1,-1,-1,3035,5764,46884,80514,391,1487,5790,46915,80871,391,1497,10194,0
+12759,130000,female,2,1,29,0,0,0,0,0,0,132214,132361,128904,101785,101849,99296,5500,5904,4785,3849,4296,3139,0
+12760,160000,female,1,2,35,0,0,-2,-2,-2,-2,11988,-890,-890,-890,-890,-890,0,0,0,0,0,0,0
+12761,20000,female,1,2,37,0,0,0,-1,-1,-2,8400,2000,0,2000,0,0,1000,0,2000,0,0,0,1
+12762,240000,female,2,1,40,-1,-1,-1,-1,-1,-1,4480,1725,10062,8662,4566,3915,1735,10096,8675,4566,3927,2529,0
+12763,340000,female,1,1,38,-1,-1,0,0,0,-1,15065,41951,86114,82049,57667,80767,41951,50000,30000,5000,80767,10000,0
+12764,150000,male,1,1,42,0,0,0,0,0,2,136518,146249,147624,138636,146609,149438,13571,7500,10600,11200,5400,0,0
+12765,180000,male,1,1,46,0,0,0,-2,-2,-2,142826,61650,0,0,0,0,3000,0,0,0,0,0,0
+12766,300000,female,1,2,26,-1,0,0,0,0,0,48729,47798,57390,36766,38586,84950,7500,18340,1000,3000,57543,64629,0
+12767,180000,male,2,1,44,-1,-1,-1,-1,-1,-1,1110,1110,1110,1110,1110,1110,1110,1110,1110,1110,1110,1110,0
+12768,50000,female,2,2,22,0,0,0,0,0,0,44320,45884,47104,48205,17555,7809,2280,2500,1401,0,3000,2110,0
+12769,50000,female,3,1,55,0,0,0,0,0,2,46731,47439,41493,19129,20561,20083,1810,1614,700,1745,0,1000,0
+12770,340000,male,1,1,37,-1,-1,-1,-1,-1,-1,8480,21524,12247,651,12105,7661,21631,12308,654,12164,7699,13379,0
+12771,190000,male,1,2,31,-2,-2,-1,-1,0,0,-579,0,400,579,579,-421,579,400,579,0,421,0,1
+12772,180000,female,1,1,43,-1,-1,-1,-1,-1,-1,4824,1001,13413,8577,8596,24297,1001,13413,8577,8596,24297,26134,0
+12773,20000,male,3,2,28,1,2,0,0,0,0,5653,5419,6365,6608,7001,7233,0,1200,350,500,500,300,1
+12774,450000,male,2,2,29,0,0,0,0,0,0,51686,54224,49606,43803,62914,81529,10068,10075,10000,20000,20000,5200,0
+12775,100000,female,1,2,30,1,2,0,0,0,0,105033,102513,100693,71253,70206,71060,0,3509,3047,3500,3000,2500,0
+12776,80000,male,2,2,26,0,0,0,0,-1,-1,68194,24956,22145,33675,3047,77511,2000,3000,18000,3047,77511,4000,0
+12777,10000,male,3,2,36,0,0,0,0,2,0,6470,7404,8415,9075,8785,8959,1200,1440,800,0,320,900,1
+12778,20000,female,2,2,22,0,0,0,0,0,0,5099,5835,6763,7283,7370,7371,1200,1257,1000,420,502,500,0
+12779,260000,female,2,1,53,1,2,2,2,2,2,118107,121763,133107,133107,148107,148107,3656,15000,0,15000,0,15000,1
+12780,150000,male,3,1,52,0,0,0,0,0,0,88812,90649,92499,94364,97589,99921,2564,2616,2647,4000,3158,2215,1
+12781,500000,female,1,2,34,-2,-2,-2,-2,-2,-2,19656,65732,14611,23169,6738,0,65732,14643,23169,6738,2159,0,0
+12782,110000,female,1,1,46,-1,-1,-1,-1,-1,-1,734,9455,1277,2170,16070,1760,9483,1338,2176,16070,1760,927,0
+12783,160000,male,2,1,32,0,0,0,0,0,0,93174,95274,97291,98768,101016,103176,4500,4500,4000,4000,4000,4000,0
+12784,200000,female,2,2,36,0,0,0,0,0,0,131694,122349,112715,102542,92335,81667,4269,3891,3488,3250,2755,2530,0
+12785,190000,female,1,1,45,1,2,0,0,0,0,75758,73989,75760,76899,78761,80883,0,3600,3000,3100,3600,3500,0
+12786,180000,female,1,2,28,-1,-1,-1,-1,-1,-2,8366,16912,9199,4745,0,0,16912,9211,4758,0,0,2771,1
+12787,50000,female,1,2,25,1,3,2,2,2,2,27796,27069,27324,29561,28952,31307,0,1000,3000,0,3000,0,1
+12788,100000,male,3,1,54,0,0,0,5,4,3,46041,59526,72823,71105,69424,68006,15000,15000,0,0,0,2700,0
+12789,130000,female,2,2,29,1,3,2,2,2,2,129094,125616,126531,127571,121365,125368,0,4500,4500,900,7200,4980,1
+12790,120000,male,2,1,58,-1,-1,-1,-1,-1,-1,396,396,396,396,396,396,396,396,396,396,396,396,0
+12791,340000,female,3,2,37,0,0,0,0,0,0,289995,269901,267494,265058,263658,256621,10015,10019,10025,10052,10011,9014,0
+12792,20000,male,2,2,22,0,0,0,0,0,0,19844,19929,18775,13854,10718,0,1369,1162,524,606,0,0,0
+12793,30000,male,2,1,34,0,0,0,0,0,0,28893,26807,27942,27179,27385,28943,2000,2000,940,1000,2000,2000,1
+12794,250000,male,2,1,44,-1,0,-1,0,0,-2,4602,18382,15450,1867,-1,-1,5000,16000,0,1,0,0,0
+12795,70000,female,2,2,25,0,0,0,2,2,0,70488,51152,35122,28633,28039,28621,2000,4500,1200,0,1200,1185,0
+12796,50000,female,2,3,47,2,2,2,2,2,0,37277,38383,38954,39618,38852,39553,2000,1500,1600,0,1500,3000,0
+12797,280000,male,1,1,60,-2,-2,-2,-2,-2,-2,792,0,192,396,0,396,0,192,996,0,396,396,0
+12798,500000,female,2,1,46,-1,-1,-1,0,0,0,886,21803,90182,79310,68380,58772,21831,90182,2500,2380,2772,3000,0
+12799,140000,female,2,1,50,1,2,2,2,2,2,136183,139121,140047,141215,142019,137251,6901,4800,5006,5507,5,5308,0
+12800,200000,female,2,2,31,0,0,0,0,0,0,192698,196484,177001,100908,98873,95548,8135,7163,3783,3766,3500,4000,0
+12801,50000,male,2,1,36,2,2,7,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,1
+12802,320000,male,1,1,58,-1,2,-1,0,0,-1,380,64,948,632,316,316,0,1200,0,0,316,316,0
+12803,50000,female,3,1,59,1,2,0,0,0,0,44977,43981,44996,45736,46748,47816,0,2045,1785,1900,2000,2210,0
+12804,30000,male,2,3,49,0,0,0,0,0,0,12939,14128,15354,5023,5275,54,1405,1631,300,375,54,1000,0
+12805,100000,female,1,2,25,2,2,-2,-2,-2,-2,100000,0,0,0,0,-150953,0,0,0,0,0,150400,0
+12806,340000,male,2,2,44,0,0,0,0,0,0,327058,335584,330510,272220,269629,266723,16004,312723,9748,9800,9569,12500,1
+12807,350000,female,2,1,38,-1,-1,-1,-1,-1,-1,7633,7600,21405,6390,6076,9610,7638,21511,6421,6106,9657,5731,0
+12808,20000,male,2,2,24,2,0,0,2,2,2,4127,5557,7458,7192,7923,7647,1500,2000,0,1000,0,1000,1
+12809,110000,male,1,2,26,0,0,0,0,0,0,110925,110909,111851,153551,75749,77217,5607,4400,2683,5466,5000,2000,0
+12810,290000,female,2,2,29,0,0,0,0,0,0,264929,261675,263204,263612,259786,208000,12324,10508,8530,8777,7421,8002,0
+12811,40000,male,2,2,26,1,2,2,2,2,2,11318,10845,12655,12156,20897,20411,0,2000,0,9000,0,1850,1
+12812,120000,male,4,1,39,2,0,0,0,0,-1,114647,114645,72188,42840,19860,390,5000,10000,4000,5000,390,780,1
+12813,190000,male,1,1,55,-1,-1,-1,-1,-1,-1,5928,9770,8032,30,240,540,9770,8034,0,600,690,742,0
+12814,150000,female,2,2,23,0,0,0,0,0,0,115206,111447,103317,96140,87455,87601,6000,3306,3412,3500,3500,3300,0
+12815,300000,female,1,2,42,-1,-1,-1,0,0,-2,6349,668,9737,367,-23,-413,668,9800,0,0,0,0,0
+12816,240000,female,2,1,32,0,0,0,0,0,0,53286,16920,12869,14497,12262,8331,8000,1500,5000,1000,3000,2666,0
+12817,60000,female,2,1,33,2,0,0,0,0,0,60099,60983,55595,54940,47959,29763,2500,2006,5000,2000,2000,0,1
+12818,150000,male,2,2,29,-1,-1,-1,0,0,0,51620,9070,117140,89524,36772,16157,9070,117146,1793,959,343,28763,0
+12819,80000,female,3,2,47,-2,-2,-2,-2,-2,-1,194843,197581,202150,0,0,48855,5501,6150,0,0,48855,1832,0
+12820,160000,female,2,1,43,-1,-1,-1,-1,-1,-1,5617,267,509,15695,515,515,267,509,15695,515,515,515,0
+12821,200000,male,1,1,30,0,0,0,0,0,0,182338,123079,124075,99440,104685,54038,4653,5000,5000,6000,5000,10000,0
+12822,90000,male,2,1,42,2,2,2,2,2,0,95773,95489,94681,93965,90545,90529,4000,3500,3500,0,3500,4200,0
+12823,360000,male,2,1,38,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+12824,350000,female,2,1,38,-1,-1,-1,-1,-1,-1,4482,4985,4322,4992,4295,5952,4998,4333,5005,4305,5963,6015,0
+12825,30000,female,3,1,51,0,0,0,0,0,0,17454,18964,20442,21592,23079,24529,1800,1800,1801,2001,2000,2001,0
+12826,40000,male,3,2,23,0,0,0,0,0,-2,15045,15899,16700,17500,0,0,1400,1200,1000,0,0,0,0
+12827,160000,male,2,2,24,-1,0,0,-1,0,0,4449,5316,5711,6003,3527,127,1283,3008,6023,71,0,0,0
+12828,200000,male,2,2,40,0,0,0,0,0,2,16816,17852,18562,18965,24424,23883,1610,1310,713,5800,0,3000,0
+12829,330000,male,1,2,33,0,0,0,0,0,0,223445,122096,125969,127044,127027,129945,5005,6000,3614,4000,4000,4000,0
+12830,500000,male,1,1,47,-1,2,-1,0,0,-1,7233,2321,18261,16456,11225,36770,0,18261,0,0,40270,0,0
+12831,500000,female,2,1,28,-2,-2,-2,-1,0,0,67763,47746,28148,24377,15421,11239,2244,4625,24448,2028,2009,1710,0
+12832,460000,female,1,1,54,-1,-1,-1,-1,-1,-1,7623,9483,18511,80877,45369,56789,9495,18513,80877,45369,56789,17540,0
+12833,120000,female,1,2,27,-1,2,-1,0,-1,-1,6553,2752,10834,2016,3589,1569,0,10834,280,3589,1569,2527,0
+12834,130000,female,2,1,45,2,-1,-1,-1,-1,-1,990,990,990,990,1130,990,990,990,990,1130,1000,9880,0
+12835,20000,male,1,2,22,-1,0,0,0,0,0,7268,12946,8811,9638,11740,11047,11500,6074,9000,5000,6047,1000,0
+12836,170000,male,1,1,41,0,0,0,0,0,0,149941,68912,72741,76149,84474,92400,3200,6000,5000,10000,10000,780,0
+12837,50000,female,1,1,29,0,0,0,0,0,0,48305,49726,50389,30410,30364,30063,2500,2109,1100,1100,1100,1100,0
+12838,50000,male,2,1,36,-1,0,0,0,0,0,3580,4597,5757,5869,5838,5971,1084,1244,356,212,230,205,1
+12839,50000,male,3,1,43,0,0,0,0,0,0,17113,17751,18332,18301,18639,18516,1303,1274,633,1000,724,1000,0
+12840,220000,female,1,2,36,0,0,2,0,0,0,13043,4111,1522,5198,3974,-38,2190,1,3980,20,0,7762,0
+12841,260000,female,3,2,38,0,0,0,0,0,0,30845,20395,17902,18258,18640,18956,1275,1279,635,657,669,668,0
+12842,500000,female,1,1,54,0,0,0,0,0,0,428841,432871,436858,432945,338417,318436,15703,12000,15236,98363,11000,9000,0
+12843,20000,female,2,2,25,0,0,0,0,0,0,20195,19638,17198,14253,18475,13878,1376,1121,460,6000,624,2000,0
+12844,20000,male,3,2,40,0,0,2,0,0,-2,5945,8184,7839,7999,0,0,2345,0,160,0,0,0,1
+12845,80000,male,2,2,25,0,0,0,0,0,-1,45113,26796,19100,14600,9000,2000,1456,1200,0,0,2000,5500,0
+12846,500000,male,2,1,35,-2,-2,-2,-2,-2,-2,2295,1384,1384,1384,5590,4542,1384,1384,1384,5590,4542,1000,0
+12847,160000,male,1,2,27,-1,-1,-2,-2,-2,-2,165,0,0,0,0,0,0,0,0,0,0,0,1
+12848,200000,male,2,2,27,0,-1,-1,-1,-2,-2,7934,16140,9043,-1136,-1136,-1136,16140,1000,0,0,0,0,0
+12849,50000,female,1,1,34,0,0,0,0,0,0,42980,44015,45284,46186,47440,48453,1731,2000,1655,2000,1800,2000,0
+12850,20000,male,2,2,25,0,0,0,0,0,0,19791,19591,15788,14911,11699,12224,1917,1000,1000,1000,1068,0,1
+12851,170000,female,2,1,38,0,0,0,0,0,0,146518,142954,134372,84558,86538,88299,7031,6026,3200,3500,3200,4000,0
+12852,10000,male,1,2,23,-1,2,-1,-1,-1,-2,780,390,390,780,0,0,0,390,780,0,0,0,1
+12853,20000,female,3,2,28,1,3,6,5,4,3,19109,23788,23154,22520,21596,20962,5000,0,0,0,0,0,1
+12854,150000,female,2,2,29,-1,-1,2,0,0,2,2501,6845,4592,8617,2190,1369,4400,0,4025,407,0,1845,0
+12855,470000,female,1,1,47,0,0,0,0,0,2,447057,450070,451090,442237,450924,428239,17600,17400,15360,31000,0,28900,0
+12856,200000,female,1,1,32,0,0,0,0,0,-1,36154,23885,24718,25213,68126,9636,9216,7013,15000,10000,10000,10000,0
+12857,130000,female,1,2,27,0,0,0,0,0,-1,26868,28429,29710,34310,21900,780,2000,2000,5000,438,780,0,0
+12858,70000,female,3,2,40,0,0,2,0,0,0,12924,14615,14692,14784,15175,16360,2600,1000,1000,1000,2000,2000,0
+12859,270000,female,2,1,34,0,0,0,0,0,0,160006,163338,166672,170000,173547,177013,5420,5532,5572,5763,5804,5996,0
+12860,150000,male,3,2,27,-1,-1,2,0,0,0,57386,58531,56544,48153,49288,36872,5000,422,2000,2041,2039,751,1
+12861,240000,female,1,1,41,1,2,0,0,0,-2,8827,6993,7094,3227,-18,-18,0,1200,0,0,0,0,0
+12862,100000,female,2,1,60,-2,-1,-1,-1,-1,-1,0,198,198,324,171,0,198,198,324,171,0,144,0
+12863,200000,male,1,1,40,-1,-1,-1,-1,-1,-1,6750,4501,6360,2620,5900,37084,5007,7096,2620,6000,17703,4914,1
+12864,220000,male,1,2,33,0,0,0,0,0,0,22708,24330,25918,27479,28877,30237,2000,2000,2000,2000,2000,2000,0
+12865,70000,male,3,1,69,1,2,0,0,0,0,11572,11095,12109,12905,14683,15435,0,1204,1000,2000,1000,1500,1
+12866,260000,male,2,2,44,0,0,0,0,0,0,99176,63497,51524,52681,53852,55967,2259,2000,2000,2000,3000,1681,0
+12867,180000,female,1,2,29,0,0,0,0,0,0,134797,134041,132295,130166,129158,127963,5000,4600,4600,4700,4972,5000,0
+12868,210000,female,3,2,35,-2,-2,-2,-2,-2,-2,1983,-17,9000,7905,1434,1008,0,9017,7905,1434,1008,660,0
+12869,130000,female,2,1,36,1,2,0,0,0,0,98469,96054,97910,96744,97444,95630,0,4400,4000,3500,3600,10000,0
+12870,320000,female,2,1,39,0,0,0,0,0,0,147440,137938,131816,120761,120375,120897,5009,6125,4001,4013,5000,4015,0
+12871,30000,female,2,2,27,2,-1,0,0,-1,-1,1473,2998,2946,1473,1473,28058,2998,1473,0,1473,28058,1100,1
+12872,50000,female,2,2,25,0,0,0,0,0,0,50485,50397,49167,45077,36815,38203,2000,3045,1660,1500,2000,10000,0
+12873,380000,female,2,2,27,0,0,-1,0,0,0,4400,0,270219,3641,3717,3791,0,270219,131,135,136,76,0
+12874,20000,female,2,2,22,2,0,0,0,3,2,6643,7872,9077,10989,10529,10213,1500,1500,2225,0,0,202,1
+12875,50000,male,2,2,31,2,0,0,0,-1,-1,49804,28662,29476,4011,1000,0,2000,1500,1000,1000,0,0,0
+12876,140000,female,1,2,28,-1,-1,-1,-1,-2,-2,8483,9526,33788,-18,-18,-18,9532,33788,0,0,0,0,0
+12877,150000,female,3,1,46,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+12878,370000,male,1,2,36,0,0,0,0,0,0,297678,306455,307734,225974,231720,222733,12033,12015,7035,15037,7066,8000,1
+12879,100000,female,1,1,41,0,-1,-1,-1,0,-1,96832,2590,-11925,21289,17236,1238,2592,12,38525,0,1238,0,0
+12880,100000,male,3,2,27,0,0,0,0,0,0,98746,99118,66147,64691,49332,50366,4146,2556,2802,1786,1850,2000,0
+12881,50000,male,2,1,29,3,2,2,0,0,0,32750,33532,32597,19576,19034,19525,1600,7,900,700,800,800,1
+12882,400000,female,1,2,33,-1,2,-1,-1,-1,-1,565,565,11471,1779,0,3470,0,11495,1779,0,3470,24096,0
+12883,250000,female,1,1,43,-2,-2,-2,-2,-2,-2,34200,0,110801,0,18805,0,0,110801,0,18805,0,0,0
+12884,150000,female,3,1,45,1,-1,0,0,0,0,-141,10987,12733,6908,6713,8048,11254,2000,1225,1244,1447,7000,0
+12885,120000,male,3,2,37,2,2,2,2,2,2,117681,119513,120990,121795,113328,120615,5200,5000,4200,0,9200,0,1
+12886,260000,female,1,2,31,0,0,0,0,0,0,117271,121442,121805,127594,110146,112364,7000,4150,8000,4000,4000,5000,0
+12887,90000,female,2,2,23,0,0,0,0,0,0,80551,11066,2408,57167,57700,58817,2028,1007,57113,2092,2400,1800,0
+12888,130000,male,1,1,39,2,-1,-1,-1,-1,-1,390,390,390,1068,3169,390,390,390,1068,3169,390,390,0
+12889,50000,female,2,2,29,1,2,2,2,0,0,46376,45354,49086,48027,49037,48032,0,4500,0,1751,1736,2971,1
+12890,120000,female,2,1,29,1,2,0,0,0,0,126412,120812,121895,121208,121678,122067,0,4600,4512,4600,4600,5200,1
+12891,140000,male,3,2,33,-1,-1,-1,-1,-1,-1,473,-27,3788,0,9386,722,0,3815,0,9386,722,1468,0
+12892,170000,female,1,2,34,0,0,0,0,0,0,172095,160914,103021,99219,99179,99902,6317,3632,3494,3620,3800,4000,0
+12893,330000,female,3,2,31,-1,-1,-1,-1,-1,-1,5480,30630,6350,6033,2205,0,30630,6350,6033,5649,0,173,0
+12894,210000,male,2,1,33,-2,-2,-1,-1,-1,-1,0,0,106669,13333,12780,18472,0,106669,13333,12780,19136,18660,1
+12895,300000,male,1,1,39,0,0,2,-1,-1,2,27459,34405,3283,3961,24306,22644,8000,0,3961,24306,0,7651,1
+12896,130000,female,2,1,39,0,0,0,0,0,0,93797,91523,88331,81192,78774,77117,3339,2892,2733,2752,3159,3000,0
+12897,360000,female,1,2,29,0,0,0,0,0,0,27370,20750,14898,7524,7524,0,1328,2000,150,0,0,0,0
+12898,150000,male,2,2,26,2,2,0,0,0,0,37594,30432,20346,19447,8420,8631,0,1150,664,500,500,1000,0
+12899,90000,female,2,2,33,2,2,0,0,2,2,61367,59814,61816,65180,63979,63733,0,3000,5010,0,5000,0,1
+12900,260000,female,1,1,61,1,-2,-2,-2,-2,-2,-551,16449,-20320,-20320,-20320,-20320,17000,2631,0,0,0,0,0
+12901,30000,female,3,1,21,4,3,2,0,0,0,32179,31397,30358,29758,29758,23036,0,0,0,0,1000,0,1
+12902,80000,female,2,1,45,0,0,0,0,0,0,79552,81392,80966,79295,81142,80672,3130,3107,2847,3134,3072,3010,0
+12903,500000,female,1,1,33,-2,-2,-2,-2,-2,-2,363,2089,4822,48741,92978,0,2089,4822,48741,92978,0,39037,0
+12904,20000,female,2,1,33,0,0,0,0,0,-2,13864,14534,9662,8091,0,0,1242,1020,2000,0,0,0,0
+12905,60000,male,3,2,36,0,0,0,0,0,0,34364,34246,13266,19876,19274,17923,5000,1029,19507,1000,358,3045,0
+12906,210000,male,2,2,37,0,0,0,0,0,0,15637,17560,16765,18641,18654,16229,3017,3023,5014,5012,2012,2010,0
+12907,50000,male,1,2,24,0,0,2,2,2,2,29595,31798,32979,32152,34668,33961,3000,2000,0,3200,0,1600,1
+12908,350000,male,2,2,32,0,0,0,0,0,0,228009,220450,190173,192649,197269,201360,9000,8700,7000,7600,7800,8500,0
+12909,200000,male,2,2,37,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+12910,280000,female,1,2,28,0,0,0,0,0,-1,51439,44605,45426,38563,29669,24892,20000,10000,0,0,24892,106941,0
+12911,230000,male,1,1,41,-2,-2,-2,-2,-2,-2,1552,792,19272,1172,1172,2246,792,19272,1172,1172,2246,1172,0
+12912,200000,female,1,1,35,2,0,0,0,0,0,195441,192803,304997,188504,189527,192851,8597,8583,6880,7235,6839,6600,1
+12913,220000,female,1,1,32,1,2,2,2,2,2,202792,198157,211340,209612,219064,222672,0,16501,3200,13000,7500,0,0
+12914,160000,female,2,2,30,-1,-1,-1,-1,-1,-1,584,4572,7379,669,21381,200,4572,7379,669,21581,0,1100,0
+12915,200000,female,2,2,29,0,0,0,0,0,0,180016,166678,128324,128334,131104,133762,6073,6100,5000,5000,5000,5100,0
+12916,60000,female,2,1,45,0,-1,-1,0,0,0,56965,2495,57899,30345,30244,25474,3000,61000,3000,3000,3000,9000,0
+12917,60000,female,3,1,33,0,0,0,0,0,0,57561,57766,49351,28549,29063,28863,2100,3000,1500,1500,1100,1100,0
+12918,380000,male,1,1,36,-1,-1,-1,-1,-1,-1,28057,14266,22101,24038,41215,35010,14412,22211,24159,41417,35184,2109,0
+12919,240000,male,1,1,38,1,-2,-2,-2,-2,-1,0,0,0,0,0,690,0,0,0,0,690,0,0
+12920,70000,female,2,2,30,0,0,0,0,0,0,19758,8960,9949,10298,10511,9764,1162,1151,500,513,424,195,0
+12921,180000,female,3,1,33,-1,0,0,0,0,-1,170126,171247,156803,159342,10400,20650,5950,7133,7369,600,20650,21650,0
+12922,150000,female,2,2,42,-1,-1,-1,-2,-1,-1,2800,67568,0,0,6674,0,67568,0,0,6674,0,0,0
+12923,140000,male,1,2,34,2,2,2,2,2,2,124640,131032,132065,129307,131154,134470,9900,4700,800,4012,9800,1,1
+12924,200000,male,2,2,25,0,0,0,0,0,0,107001,108619,110149,110333,85201,84809,5000,5000,5000,3000,5000,10000,1
+12925,130000,female,1,2,24,2,0,0,0,0,0,126874,129837,131332,97878,99594,98667,6500,5400,3446,3561,4000,3700,1
+12926,180000,female,2,1,30,0,0,0,0,0,0,4747,4221,9065,5016,5931,6826,1200,5000,1000,1000,1000,2000,0
+12927,50000,female,2,2,30,-1,-1,-1,-1,-1,-1,4166,2859,1452,1190,543,920,2859,1452,1190,543,920,534,0
+12928,80000,female,2,2,24,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+12929,40000,female,2,1,23,2,3,2,2,2,0,31772,30983,33168,33527,32854,33947,0,3000,1200,0,1641,1362,0
+12930,210000,female,1,1,36,-2,-2,-2,-2,-2,-2,167,0,0,0,0,0,0,0,0,0,0,0,0
+12931,150000,female,1,2,29,-1,-1,-1,0,-1,-1,560,290,549,204,16048,0,390,649,145,16048,0,0,0
+12932,280000,female,1,2,62,2,2,2,2,2,2,2500,2500,2500,2500,2500,2500,0,0,0,0,0,0,1
+12933,100000,male,2,2,28,0,0,0,0,-2,-1,180765,64653,10388,3762,1434,12609,3018,1400,3786,1774,12714,38665,0
+12934,100000,male,2,1,33,2,0,0,0,0,0,66393,67827,69202,70153,71468,72930,3100,3100,2700,2600,2650,2800,1
+12935,50000,male,3,2,23,2,0,0,0,0,0,11744,10935,11664,10872,9392,9456,1507,1500,300,500,500,118,1
+12936,150000,female,3,1,25,0,0,0,0,0,0,29823,25968,24823,22908,19325,12854,1630,7000,5000,3000,257,40825,0
+12937,20000,male,1,2,40,0,0,0,0,0,0,20324,18509,20076,20035,14057,0,1500,20000,909,1000,0,0,0
+12938,270000,female,1,1,50,-1,-1,-1,-1,-1,-1,1363,0,6098,3500,7324,9466,0,6098,3500,7324,9466,2296,0
+12939,20000,female,2,1,28,2,-1,-1,-1,-1,-1,390,390,390,390,390,0,390,390,390,390,0,780,1
+12940,50000,female,1,2,28,2,0,0,0,0,0,34018,35165,36076,37478,38173,39012,2000,1800,2000,1000,1000,1000,1
+12941,250000,male,2,1,53,0,0,2,0,0,0,177537,198017,192962,156134,161603,166631,25000,0,7000,8000,8000,5000,0
+12942,80000,female,1,2,33,0,0,0,0,0,0,60156,60309,30640,15917,35608,23470,5027,3000,3000,20000,767,1000,0
+12943,400000,male,2,1,40,7,6,5,4,3,2,405366,397754,389903,384981,381863,359314,0,0,0,106,2281,42617,1
+12944,50000,male,1,2,35,1,2,0,0,0,0,20579,19948,19521,19247,19816,20015,4,2000,807,1000,1000,681,0
+12945,50000,female,2,1,53,-1,-1,-1,-1,-1,-1,7061,2229,10939,12575,1341,998,2233,10939,12575,1341,998,820,0
+12946,50000,female,1,1,34,0,0,0,0,2,0,49135,49209,36372,30305,29742,30556,1971,2000,3342,0,1400,1000,0
+12947,280000,female,2,1,44,0,0,0,0,0,0,286706,272243,203744,203520,207878,211812,10480,8041,7200,7500,7093,5702,0
+12948,240000,female,1,2,29,-1,-1,-1,-1,-1,-1,59,548,208,0,44,19,548,208,0,44,0,643,1
+12949,30000,female,2,1,27,2,2,2,2,0,0,19193,20084,20460,19836,20266,21568,1500,1000,0,900,1800,900,1
+12950,250000,male,1,2,29,-1,-1,-1,-1,-1,-1,520,2047,1155,3582,580,1398,2047,1155,3582,580,1398,1660,0
+12951,150000,female,1,3,55,-1,-1,-1,-1,-1,2,280,280,759,754,480,165,280,759,754,480,0,1235,0
+12952,60000,female,2,2,23,0,0,0,0,0,0,28406,28781,29219,29036,29493,29776,1790,1760,1200,1500,1367,1000,0
+12953,50000,male,2,1,35,1,-1,-1,-1,-2,-2,0,1118,667,0,0,0,1118,673,0,0,0,0,0
+12954,160000,male,2,1,33,0,0,0,0,2,0,102292,105536,110390,122358,120714,124145,4500,6200,15000,0,5000,3800,0
+12955,100000,male,2,1,44,0,0,2,0,0,-1,11119,12376,4419,2946,1473,3230,3000,0,0,0,3230,0,0
+12956,70000,male,1,2,31,0,0,0,2,0,0,67270,67807,70410,68248,47910,48820,3400,4602,63,1800,1731,1702,0
+12957,200000,female,2,2,35,-1,-1,-1,-1,-2,-2,1709,2400,675,0,0,0,2400,675,0,0,0,0,0
+12958,500000,female,1,2,51,-1,-1,-1,-1,-1,-1,187,369,535,-13,20807,20897,370,537,0,20911,21001,88,0
+12959,180000,female,1,2,28,1,2,2,0,0,0,3775,5570,4722,8643,7783,12398,2005,31,5000,1000,5000,5000,0
+12960,30000,male,1,2,31,0,0,0,0,0,0,28398,18550,13198,13222,14620,17376,2081,1196,1000,2000,3000,5000,0
+12961,360000,male,1,1,51,0,0,0,0,0,0,353200,337593,341528,350949,355869,210989,13806,12303,15005,13729,7700,8000,0
+12962,150000,male,1,2,36,0,0,0,0,0,0,95716,96181,99933,102278,104710,107148,3226,4959,5000,2790,5083,0,0
+12963,80000,male,2,2,26,2,0,0,0,0,0,81268,78311,79915,81371,79916,79227,3450,3508,3405,3359,3108,3400,1
+12964,150000,female,1,2,25,0,0,0,-1,-1,-2,25484,26726,27810,172,0,0,1726,1810,172,0,0,0,0
+12965,230000,male,2,1,50,-2,-2,-2,-2,-2,-2,21570,4700,0,0,0,0,4700,0,0,0,0,0,0
+12966,100000,female,2,2,36,-1,-1,-2,-2,-2,-2,14891,-709,-1813,-2011,1751,2238,0,0,0,3989,946,154,0
+12967,60000,female,3,1,36,1,2,2,2,0,0,57285,61118,61947,60353,4980,2160,5336,2550,16,0,0,0,1
+12968,50000,male,1,2,23,0,0,0,0,0,0,29772,17515,10483,4697,4793,4891,1229,1000,94,96,98,2330,0
+12969,20000,male,2,2,22,3,2,2,2,0,0,12553,14551,15016,14480,15093,17077,2500,1000,0,1000,2400,0,1
+12970,290000,female,1,2,30,-1,-1,-1,-1,-1,-1,560,463,100,0,100,0,463,100,0,100,0,0,0
+12971,110000,male,1,2,29,0,0,0,0,0,0,109241,109833,108778,74692,77912,49264,5209,3009,1494,3220,2004,72677,0
+12972,50000,female,2,2,22,0,0,0,0,0,0,22458,22571,22309,22315,22934,23243,1513,1500,1000,978,839,1800,0
+12973,230000,female,2,1,43,2,2,2,0,0,0,222819,232264,227054,196356,199525,201836,14300,158,7100,7400,7500,7820,1
+12974,50000,male,2,2,30,2,2,2,2,2,-2,200,200,200,200,-200,0,0,0,0,0,200,0,1
+12975,150000,female,2,2,26,0,0,-1,-1,-2,-1,9189,4359,4880,0,0,2250,2000,4880,0,0,2250,0,0
+12976,20000,male,2,1,40,-1,-1,-1,-1,-1,-1,836,836,390,390,390,390,836,390,390,390,390,30500,1
+12977,90000,female,3,1,45,1,2,0,0,0,0,83760,80136,76823,47008,32358,33318,0,3365,2051,1200,1500,1500,1
+12978,60000,female,1,2,26,-2,-2,-2,-2,-2,-2,0,-108,-216,-324,-432,-540,108,108,108,108,108,0,0
+12979,80000,male,1,2,26,0,0,0,0,0,0,67229,24772,20000,20000,20000,0,2089,6000,200,0,0,0,0
+12980,280000,male,2,1,25,-1,-1,0,0,0,0,3863,84601,67765,63628,60860,60316,89295,2192,1899,1673,2125,1511,0
+12981,230000,female,1,1,36,-2,-2,-2,-2,-2,-2,3240,0,0,0,0,0,0,0,0,0,0,0,0
+12982,100000,female,3,2,58,0,0,0,0,0,0,43386,44686,45634,46576,47519,51404,2000,2000,2000,2000,5000,30000,0
+12983,80000,female,1,2,24,-1,-1,-1,-1,-1,-1,390,1063,390,741,390,765,1063,390,741,390,765,390,0
+12984,60000,female,2,1,41,0,0,0,0,0,0,60255,58374,48442,53444,27705,28291,2000,2500,1000,2400,1200,2000,0
+12985,70000,male,2,1,35,0,0,0,0,0,0,70480,66646,69641,46458,50679,50061,3237,4938,1693,5000,2200,1718,0
+12986,110000,female,2,1,49,-2,-2,-2,-2,-2,-2,115672,109892,67912,50994,40652,5785,5085,2044,2026,2097,1011,48179,0
+12987,60000,male,2,2,26,-1,-1,2,0,-1,2,1396,1653,392,502,962,422,1700,0,500,1000,0,20417,0
+12988,110000,male,2,2,26,0,0,0,0,0,2,34949,35686,37086,37967,40551,39749,1600,2000,1500,3200,0,1500,0
+12989,120000,male,3,1,54,-1,3,2,-1,-1,-1,632,632,316,316,316,316,0,0,316,316,316,316,0
+12990,280000,female,2,2,43,-1,2,2,-2,-2,-2,4172,3560,-40,-40,8160,657,0,40,0,8200,657,3,0
+12991,50000,female,2,2,23,0,0,0,0,0,0,47598,40714,38124,19893,20314,18810,2559,1969,684,713,672,670,0
+12992,20000,female,1,2,22,-1,-1,-1,-1,-1,-1,2654,0,8369,433,1669,7800,0,8369,433,1669,7800,9817,0
+12993,240000,female,1,2,30,-1,-1,-1,-1,-1,-1,498,-2,20517,0,11423,0,0,20519,0,11423,0,0,0
+12994,50000,male,2,2,22,0,0,0,0,0,0,22616,21415,20769,21339,19382,18577,1668,1283,853,1000,758,475,0
+12995,200000,female,2,2,27,0,0,0,0,0,0,65489,41413,40400,25570,10060,8619,4013,2684,5625,1020,3044,39777,0
+12996,320000,male,2,2,28,0,0,0,0,0,-1,11639,7508,5591,2371,4754,4932,2552,2016,0,12,5036,10306,0
+12997,20000,male,2,1,56,3,2,2,2,2,2,17740,17166,19148,18542,20122,19400,0,2273,0,1882,0,0,1
+12998,50000,male,2,2,44,0,0,0,0,0,0,47505,48471,44301,19052,17569,17976,2100,2100,800,1000,700,818,1
+12999,180000,male,2,1,41,-1,-1,-1,-1,-1,-1,859,1811,1335,366,1811,1828,1811,1335,366,1811,1828,366,1
+13000,80000,male,1,1,28,0,0,-2,-2,-2,-2,78429,0,0,0,0,0,0,0,0,0,0,0,0
+13001,240000,female,2,1,48,-2,-2,-2,-2,-2,-2,-5,-5,1056,-4,950,158,0,1061,0,954,158,1796,1
+13002,260000,female,2,2,28,-1,-1,-1,-1,-1,-1,500,10500,10500,10500,10500,10500,10500,10500,10500,10500,10500,10500,0
+13003,80000,female,1,1,40,1,-1,-1,-1,-1,-2,0,1027,1273,174,-156,-156,2054,1273,174,0,0,1000,0
+13004,80000,male,2,1,40,0,0,0,0,0,0,64120,63656,63023,60237,60263,59180,2438,3000,2100,2200,2400,2200,1
+13005,100000,male,2,1,47,0,0,2,0,0,2,66539,71766,69111,64287,67838,66135,7000,0,2500,5500,0,3000,0
+13006,20000,male,2,1,64,-1,-1,-1,-1,-1,-1,528,0,264,264,255,678,0,264,264,255,687,0,1
+13007,130000,female,2,2,31,0,0,0,0,0,0,97544,99208,102946,103750,105818,98401,4000,5300,3700,3600,3700,3500,0
+13008,120000,female,2,1,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+13009,90000,female,2,1,35,0,0,0,0,0,0,84681,81491,81003,68764,67957,69313,3666,3914,2774,2620,2640,3000,0
+13010,180000,female,2,2,25,-1,-1,-1,-1,-1,-1,3231,12513,-628,4940,1740,390,15000,0,10000,6000,6000,1567,0
+13011,80000,female,1,2,32,0,0,0,0,0,0,60542,61715,60582,61453,61858,61104,3000,2100,2349,2200,2200,2200,0
+13012,130000,male,2,1,45,-1,-1,-1,-1,-1,-1,390,390,390,390,390,0,390,390,390,390,0,780,1
+13013,230000,female,1,2,26,-1,0,-1,-1,-1,-1,17532,13033,2688,2688,2688,6393,10000,2688,2688,2688,6393,6504,0
+13014,130000,female,1,2,26,-1,-1,-1,-1,-1,-1,3597,4398,3738,1396,13069,1285,4398,3746,1396,13069,1285,1034,1
+13015,190000,male,2,2,33,0,0,0,0,0,0,176028,166336,162100,155584,157988,154366,7063,8004,5500,7000,6000,5000,0
+13016,210000,female,1,2,31,0,0,0,0,0,0,182501,187796,190227,127436,129714,131440,9000,8000,5000,5000,5000,5000,0
+13017,20000,female,3,1,52,0,0,2,0,0,3,11271,13513,12999,14456,16313,15766,2743,0,1686,2089,0,0,0
+13018,20000,male,1,2,23,0,0,0,0,0,0,15196,16373,17590,18107,18756,19949,1428,1500,800,936,2000,797,0
+13019,280000,female,2,2,30,0,0,0,0,-1,-1,61282,53394,17644,0,5468,0,7900,4157,0,5468,0,330,0
+13020,500000,female,1,1,47,0,-1,-1,0,0,2,12943,4814,18365,8728,28521,27920,5025,18571,5000,20000,0,5000,0
+13021,230000,male,1,1,39,-1,-1,-1,-1,-1,-1,1319,770,3465,0,486,634,770,3465,0,486,634,0,1
+13022,130000,male,2,1,31,2,2,0,0,0,0,131635,126548,127748,100291,93552,95521,0,5100,4100,3392,3521,3724,1
+13023,660000,male,1,2,40,0,0,0,0,2,0,142417,122122,104284,113345,111423,119349,6500,6000,15000,0,10000,6000,0
+13024,350000,female,3,1,50,-1,-1,-1,-1,-1,-1,41069,312,34034,1157,8584,2076,315,34034,1157,8584,2076,6265,0
+13025,40000,male,3,2,24,2,0,0,0,0,0,39149,39189,40543,38922,39901,40746,1658,2012,1392,1605,1668,1201,1
+13026,50000,female,3,1,33,1,2,0,0,0,0,51421,50322,49741,28442,28597,29375,0,1379,945,2002,2008,1002,1
+13027,20000,male,2,1,43,2,0,0,0,0,0,18908,19232,20087,19874,19963,14879,1700,1530,700,700,600,1000,1
+13028,80000,female,2,1,35,0,0,-2,-2,-2,-2,76978,0,0,0,0,0,0,0,0,0,0,0,0
+13029,50000,female,2,2,23,0,0,0,0,0,0,49100,47910,32842,19748,19403,19536,15000,2024,5004,1000,1000,1000,0
+13030,290000,male,2,1,40,0,0,0,2,0,0,273270,272944,286497,279146,179536,79060,12022,24000,3,10023,10000,5000,0
+13031,80000,female,1,2,27,-1,-1,-1,-2,-1,2,1152,7900,0,0,333,183,7900,0,0,333,0,1500,0
+13032,230000,male,3,2,29,1,2,2,2,2,2,237332,236068,236702,236309,237399,229421,8000,10000,9000,9000,0,9100,0
+13033,30000,female,2,1,29,2,2,0,0,0,0,26414,27189,28235,28669,29355,29913,1500,1800,1200,1300,1200,600,0
+13034,200000,female,1,2,29,-1,-1,0,0,0,-2,2704,4959,5800,6000,0,0,4959,1000,200,0,0,0,0
+13035,50000,female,2,2,26,2,0,0,2,2,0,26023,27054,29458,29737,29123,29854,1453,2857,1058,0,1216,1097,1
+13036,50000,male,2,1,57,4,3,2,0,0,0,51187,50106,48608,19600,20000,0,0,0,392,400,0,0,0
+13037,200000,female,1,1,48,-2,-2,-2,-2,-2,-2,8000,7919,4684,2992,7559,4967,7919,4687,3051,7559,4967,4134,0
+13038,20000,male,2,2,23,0,0,0,-1,-1,2,17821,19099,0,1728,1953,1780,2000,0,1728,225,0,0,0
+13039,50000,female,3,2,48,0,0,0,0,0,0,45163,25870,28027,28007,28770,28929,1500,3000,1200,1200,1162,1000,0
+13040,90000,male,1,2,31,0,0,0,0,0,0,79397,77962,73870,58792,58402,59633,2950,3000,2205,2300,2300,3000,1
+13041,30000,female,2,2,23,0,0,0,0,2,0,22517,24148,25437,28391,27801,28684,2000,2000,3700,0,1500,1500,0
+13042,80000,female,2,2,30,0,0,0,0,0,0,79194,80575,76782,48643,49263,49869,3077,2291,1723,1775,1802,1763,0
+13043,20000,male,2,2,31,1,-1,2,0,0,0,0,184,184,5932,7725,7679,184,0,5924,2000,2451,0,0
+13044,50000,female,1,2,30,0,0,0,2,2,2,19930,36105,29604,27764,28656,29087,28019,13000,0,2000,1000,5000,0
+13045,100000,male,1,2,33,0,0,0,0,0,0,84647,87369,88489,83639,80893,81643,4085,3505,3479,3097,3259,3253,0
+13046,210000,female,1,2,28,-2,-2,-2,-2,-2,-2,18755,6122,54832,2233,0,0,6122,54832,2351,0,0,0,0
+13047,500000,female,1,1,38,1,-2,-1,-1,-2,-1,0,0,2331,0,0,2199,0,2331,0,0,2199,0,0
+13048,30000,male,2,2,25,0,0,2,0,0,2,7527,9705,9009,9333,9505,8699,2700,0,1000,700,0,784,1
+13049,160000,female,2,1,41,2,2,2,0,0,-2,24674,23583,22983,22983,0,0,2800,0,200,0,0,0,1
+13050,180000,female,1,2,28,-2,-2,-2,-2,-2,-1,168318,127111,74197,-19,-19,142176,4163,1898,0,0,142195,5100,0
+13051,490000,female,1,1,37,-1,-1,-1,0,0,-1,36518,77996,274442,233793,49461,12207,77996,274526,4693,989,12207,93707,0
+13052,50000,male,1,2,29,-1,-1,0,0,0,0,1162,37702,32617,28814,16478,25349,37719,1095,2000,10000,13352,10000,0
+13053,130000,male,1,2,27,0,0,0,0,0,0,87685,89577,91199,89446,91336,84756,3300,3130,3100,3200,3100,3100,0
+13054,50000,female,2,2,34,1,-2,-1,-1,-1,0,0,0,400,0,600,600,0,400,0,600,0,4275,1
+13055,200000,female,1,1,58,-1,-1,-1,-1,-1,-2,283,5361,6309,385,0,0,5361,6309,385,0,0,3390,0
+13056,50000,female,1,2,27,1,2,2,0,0,2,42764,42459,37166,31989,33587,32514,732,1200,1300,2651,0,1400,1
+13057,180000,female,1,2,33,0,0,0,0,0,0,18205,22876,26930,29530,47722,2500,5000,5000,3000,0,0,2598,0
+13058,500000,female,1,2,39,-2,-2,-2,-1,0,-1,1950,2900,1950,2739,2739,170,2900,2000,2739,0,170,205,1
+13059,210000,female,2,1,46,-1,-1,-1,0,-1,-1,3095,2768,5536,2768,1075,2006,2768,5536,0,1075,2006,1344,1
+13060,20000,male,1,2,35,3,2,2,2,0,0,10216,10653,11371,10906,11588,12416,900,1200,0,1000,1400,0,1
+13061,190000,female,2,3,29,1,-2,-1,0,0,0,0,0,306,306,306,0,0,306,0,0,0,0,0
+13062,140000,male,3,2,29,0,0,0,0,0,0,142132,142239,142140,142111,194934,95484,5600,6150,5900,4000,4000,50000,0
+13063,20000,male,3,2,51,-2,-2,-2,-2,-2,-2,21353,20736,20000,0,0,0,0,38,0,0,0,0,1
+13064,420000,female,1,2,29,0,0,0,0,0,0,57707,133661,135987,134719,135426,111697,86000,7000,4500,5000,4000,3500,0
+13065,180000,female,1,2,29,-1,-1,-1,-1,-1,-1,10447,18006,4815,10060,49264,5983,18006,5860,11470,49613,5983,7133,0
+13066,290000,male,2,2,28,0,0,0,0,0,0,240745,216678,205930,209010,213471,217561,9323,9000,8000,8000,7800,8238,0
+13067,190000,female,1,2,40,0,0,0,0,0,0,78388,80740,83134,96310,98411,107391,3600,4000,14000,3000,10000,4000,0
+13068,360000,male,1,1,39,-1,2,-1,-1,0,-1,1139,264,2193,528,264,264,0,2193,528,0,264,264,0
+13069,20000,male,2,1,53,2,0,0,0,0,0,15794,16515,17827,17874,18288,18557,1281,1593,640,702,612,1000,1
+13070,260000,female,2,1,32,0,0,0,0,0,0,200581,196761,78041,55871,28775,27497,7651,1765,1304,772,930,901,0
+13071,20000,male,3,1,55,1,2,0,0,0,0,19420,19810,20037,19640,15378,7284,1000,1400,393,308,1000,0,0
+13072,50000,male,3,1,52,0,0,0,0,0,0,19438,20696,19533,17328,14614,15573,2003,2003,1500,1000,2000,2000,0
+13073,250000,male,1,1,55,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,3861,0
+13074,30000,female,2,1,26,-2,-2,-2,-2,-2,-2,-32,5588,1200,2444,2309,0,11208,1211,2444,2615,0,0,0
+13075,460000,male,2,2,30,0,0,0,0,0,0,396155,367501,257836,388058,324478,313547,15299,7524,324097,12039,12006,12272,0
+13076,80000,male,2,2,26,0,0,0,0,0,0,80233,79849,77796,30300,29922,29120,4000,2300,1300,1300,1500,1500,0
+13077,60000,female,2,1,35,1,2,2,2,2,3,5601,5366,6772,6515,7906,7487,0,1500,0,1500,0,0,0
+13078,80000,female,2,2,26,0,0,0,0,0,0,67798,69206,70057,71886,73724,75498,3100,2600,3000,3000,3000,6500,0
+13079,90000,female,2,1,28,-1,0,0,0,0,0,10962,13244,7097,6624,6806,6266,4512,2500,2397,2150,709,22000,1
+13080,50000,female,2,2,34,0,0,0,0,0,0,27080,23365,24962,25557,26156,26032,1500,2000,1000,1000,1000,1000,0
+13081,50000,male,3,2,50,0,0,0,0,0,0,50693,43217,32829,26811,24477,24177,1900,1677,900,1023,1024,1016,0
+13082,360000,female,1,1,41,1,-1,-1,-2,-1,-1,0,105,0,0,71,77,105,0,0,71,77,100,1
+13083,360000,female,1,1,49,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+13084,230000,female,1,2,29,0,0,0,-1,0,0,106984,102650,0,30866,32332,30480,4650,0,30866,2000,2000,2000,0
+13085,240000,female,2,1,39,-1,-1,-1,0,0,0,9000,2831,68105,95615,123931,151559,2831,68116,30800,30000,30000,10000,0
+13086,110000,female,2,1,27,0,0,0,0,0,0,81700,84584,60379,64369,66400,68294,5000,3000,5000,4000,3000,3000,0
+13087,210000,female,2,1,28,-2,-2,-2,-2,-2,-2,1412,1194,404,2851,2959,693,1194,404,2851,2959,782,2657,1
+13088,300000,female,1,2,28,0,0,0,0,-1,0,4553,4042,2060,0,78794,80385,1033,1000,0,78794,2900,3000,0
+13089,200000,male,3,1,65,0,0,0,0,0,0,183653,167157,144218,137975,132600,121028,7130,6611,4282,4367,4079,3664,0
+13090,220000,male,2,2,29,0,0,0,0,0,0,223773,223304,221631,182629,165314,161971,8391,9000,6901,6000,6000,6435,0
+13091,90000,female,3,1,45,-1,0,0,-1,-1,-1,2579,2516,0,298,659,636,2514,0,298,659,636,1012,0
+13092,210000,female,2,1,44,0,0,0,0,0,0,89755,90031,70660,71172,71844,69923,3600,3100,2900,2600,2700,4000,0
+13093,500000,male,1,2,31,-2,-2,-1,0,-1,-1,81252,14979,26089,13333,13256,106200,16527,27243,1000,13256,106354,213405,0
+13094,160000,female,1,2,33,-1,-1,-1,-1,-2,-2,6113,980,11140,2659,14336,16533,980,11490,2673,14558,16615,1787,0
+13095,140000,female,1,1,47,0,0,0,0,0,0,141530,130248,133547,134346,133933,137585,7000,7004,5013,5000,6000,5000,0
+13096,120000,female,1,1,42,0,0,0,0,0,0,23331,12125,13903,13858,14777,46061,5000,5000,5000,5000,10000,6000,0
+13097,80000,male,2,2,46,0,0,0,0,0,0,44302,45311,46321,47259,48230,49351,1192,1202,1135,1165,1326,2204,0
+13098,240000,female,2,1,38,0,0,0,-2,-2,-2,56331,13594,0,0,0,0,3004,0,0,0,0,0,0
+13099,170000,female,1,2,30,0,0,0,0,0,0,49341,49227,51798,53332,56303,59198,4000,4000,3000,4000,4000,4000,0
+13100,30000,male,2,2,38,0,0,0,0,0,0,26825,18401,18432,17844,18237,10900,2100,2500,1000,1000,3000,7002,0
+13101,260000,female,1,1,31,-1,0,0,0,0,2,8078,27201,27879,28420,39206,37705,20000,2000,2000,12000,0,2000,0
+13102,400000,male,1,1,34,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+13103,500000,female,2,1,31,0,0,0,0,0,0,21008,17863,15219,14044,14191,13650,1500,2000,1100,505,700,2000,0
+13104,100000,female,1,2,32,1,-1,-1,0,-1,-1,0,325,650,325,647,7706,650,650,0,647,7706,1679,1
+13105,240000,male,1,1,39,0,0,0,0,0,0,236229,222103,221963,181559,173023,156115,8019,7218,10060,5893,7008,25043,0
+13106,10000,male,3,1,53,-1,-1,0,0,0,0,1772,8304,9506,9702,9999,10344,8304,1500,500,600,800,0,0
+13107,80000,female,2,1,36,-1,-1,-1,-1,-1,-1,2741,9266,1125,4380,2210,1150,9266,1125,4401,2210,1150,390,0
+13108,60000,male,2,2,28,0,0,0,0,0,0,55731,57239,57183,24564,24155,25023,3000,1800,1000,1100,1200,1500,0
+13109,200000,female,1,2,38,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+13110,260000,female,2,2,41,0,0,0,0,0,0,252582,253302,254767,190432,105466,2312,9725,10617,8555,4722,2146,199485,1
+13111,260000,female,2,1,39,0,0,0,0,0,0,255674,260778,124739,126892,131160,133400,10663,4520,4537,6308,6000,0,1
+13112,260000,male,1,2,30,-1,-1,-1,0,0,-1,496,496,992,992,496,1488,496,992,496,0,1488,496,0
+13113,300000,male,1,1,34,0,0,0,0,0,0,1257,6467,7655,7507,7659,-574,5600,1500,0,300,0,6600,0
+13114,310000,female,2,2,27,0,0,0,0,0,0,44834,35597,34161,38689,32710,24343,2015,2000,5034,1045,776,389,0
+13115,140000,female,1,1,32,0,0,0,0,0,0,129371,131025,39505,40894,39229,40679,5650,1650,2007,1500,2100,1500,0
+13116,200000,female,2,1,50,-1,-1,-2,-1,-1,-2,4608,-200,0,12141,0,0,0,200,12141,0,0,0,1
+13117,230000,male,2,1,39,-1,-1,-1,-1,-1,-1,326,326,326,326,326,326,326,326,326,326,326,324,0
+13118,50000,male,2,2,27,0,0,0,0,0,0,91493,47836,47360,48296,47790,49045,3749,2500,2000,2000,2069,2000,0
+13119,180000,female,2,1,29,0,0,-1,0,0,0,3783,2813,839,1557,51680,53115,2000,839,718,50824,2242,1100,0
+13120,100000,male,1,2,26,0,0,0,0,0,0,50848,51118,48443,50352,51399,53078,3000,3000,3000,3000,3000,3000,0
+13121,80000,female,2,1,49,-1,2,-1,-1,-1,0,2222,390,390,390,721,331,0,390,390,721,0,461,1
+13122,350000,female,1,2,39,-1,-1,-1,-1,-1,-1,3860,648,11094,4041,4485,9364,648,11198,4057,4523,9407,3948,0
+13123,140000,female,2,2,32,-1,-1,-1,-2,-1,-1,3003,3134,0,0,1186,0,3134,0,0,1186,0,1047,1
+13124,360000,female,1,2,29,0,0,0,0,0,0,148582,96639,82386,50887,52249,35311,90044,10090,50006,20000,5000,20000,0
+13125,10000,male,6,2,47,0,0,0,-1,-1,-1,7968,8800,0,2640,695,738,1000,0,2640,695,738,0,0
+13126,130000,female,1,2,25,0,0,0,0,0,0,37112,34653,9522,3939,6939,950,2009,2000,2000,3000,900,0,0
+13127,320000,male,1,1,41,0,0,0,0,0,0,321281,324449,254293,206521,202697,203332,27000,17000,7030,7000,10000,30000,0
+13128,180000,female,2,1,34,1,2,2,2,2,2,142024,144790,146552,142714,152219,149618,6500,5600,0,12000,0,11800,1
+13129,180000,female,1,1,39,0,0,0,0,-2,-2,43507,44282,23946,0,0,0,2000,2000,0,0,0,0,0
+13130,150000,female,2,1,39,2,2,0,0,0,0,156713,152744,150785,140166,143125,151741,0,5694,5014,5215,11016,0,1
+13131,80000,male,2,2,27,1,-2,-2,-1,0,0,0,0,0,23374,24836,26412,0,0,23374,2000,2000,13000,0
+13132,70000,male,1,2,50,0,0,0,0,0,0,56551,34489,32669,31429,31749,21385,1900,1630,890,1300,762,1000,0
+13133,150000,male,2,1,66,0,0,0,0,0,0,190790,167666,145132,148054,146358,145253,4942,4875,4085,4113,4074,4820,0
+13134,480000,female,3,1,36,-1,0,0,-1,-1,-1,19311,13368,7000,7331,7000,7000,1368,1000,7331,7000,7000,7000,0
+13135,50000,female,3,2,45,0,0,-2,-2,-2,-2,51400,0,0,0,0,0,0,0,0,0,0,0,0
+13136,100000,female,1,2,28,1,-2,-2,-2,-2,-1,0,0,0,0,0,281,0,0,0,0,281,0,1
+13137,50000,female,3,2,26,0,0,0,0,0,0,26708,25230,26999,27748,28351,28864,2000,3000,1500,1200,1136,1032,0
+13138,280000,male,1,2,28,0,0,0,0,0,0,139719,136052,118076,101457,81124,42347,6000,4000,4000,4000,3000,1000,0
+13139,20000,female,2,1,48,-1,2,2,-1,0,-1,780,780,390,780,390,1735,390,0,780,0,1735,0,0
+13140,30000,male,3,1,50,-1,2,0,0,-2,-2,3607,2644,3895,0,0,0,0,1309,0,0,0,0,1
+13141,70000,female,2,1,38,0,0,0,0,0,0,40271,41126,21125,6197,4560,0,3000,7000,1100,1000,0,0,0
+13142,30000,male,3,2,59,0,0,0,0,0,0,28372,29152,29643,29593,27952,0,2010,1500,788,559,0,0,0
+13143,200000,female,1,1,64,1,-2,-2,-2,-1,-1,0,0,0,0,67052,0,0,0,0,67052,0,0,0
+13144,210000,male,1,2,30,1,-1,2,0,0,-1,0,855,855,855,855,599,855,0,0,0,599,0,0
+13145,210000,female,1,1,66,0,0,0,0,0,0,132797,135581,138644,141679,92170,93998,4921,5317,5631,3345,3360,3483,0
+13146,470000,male,1,1,39,-1,0,0,0,0,0,79455,74993,48344,45433,45853,21158,2348,1542,1041,2019,789,5013,0
+13147,50000,male,2,2,38,0,0,0,0,0,0,44620,49641,46396,19673,17083,17694,10000,2014,1000,1000,3000,4000,0
+13148,240000,female,2,1,37,-1,0,0,0,0,0,12365,92184,86507,89138,91118,93229,90500,3000,3000,2500,2500,3000,0
+13149,60000,male,3,1,38,2,2,2,0,0,0,32232,25086,24404,25212,28147,30152,4000,0,1500,3500,2600,0,1
+13150,100000,female,2,1,33,2,0,0,0,0,0,96547,97120,95375,54612,30306,60897,5305,3590,1118,720,50000,4200,0
+13151,200000,female,2,2,25,0,0,0,0,0,0,194202,197220,130930,130775,128752,122695,8000,4500,4532,5451,5000,4500,0
+13152,130000,male,1,1,58,0,0,0,0,0,-1,137671,139089,50093,49303,14772,150,4300,1500,0,0,1233,870,0
+13153,50000,male,2,2,24,0,0,0,0,0,0,50628,50705,50328,19542,19439,19683,2235,1858,823,838,702,687,0
+13154,300000,female,1,2,34,2,2,2,2,-2,-2,2500,2500,2500,0,0,0,0,0,0,0,0,0,1
+13155,210000,male,1,2,32,-1,2,2,-1,-1,-1,2869,2639,0,6299,0,197,0,0,6299,0,197,0,0
+13156,70000,male,1,2,27,0,0,0,0,0,0,71201,70686,70195,71005,71135,69846,2691,21000,2500,2800,2800,2700,0
+13157,100000,female,3,2,49,-1,0,0,0,0,0,85438,89125,93751,13700,15474,17211,5105,10000,2000,2000,2000,2000,0
+13158,30000,female,2,1,25,0,0,0,0,0,0,18757,19419,19341,12459,12244,11550,1475,1000,249,600,201,0,0
+13159,200000,male,1,2,30,-1,-1,0,0,-1,-1,1528,4179,1689,1851,34808,-30895,4191,1200,1893,42804,10,85820,0
+13160,360000,male,2,1,36,-1,-1,-1,-1,-1,-1,6783,2337,10990,74562,-28,5677,2347,11046,74934,0,5705,8503,0
+13161,20000,male,2,2,24,3,2,0,0,0,0,18585,18003,19012,19100,19506,20037,0,1612,700,714,861,393,1
+13162,150000,female,1,2,32,1,-1,-1,-1,0,-1,0,258,44476,18547,32581,95780,258,44476,18547,17000,95780,99983,1
+13163,750000,female,1,2,28,1,-1,-1,0,0,-1,9500,9655,401003,399493,400993,409483,250000,401003,7990,11000,417990,3080,0
+13164,100000,male,2,2,24,0,0,0,0,0,0,91572,95201,94977,97332,74637,77386,5100,3000,3139,27000,4000,4000,0
+13165,300000,male,2,1,36,1,2,2,2,2,2,54977,56189,56663,57428,58455,57556,2500,1800,2100,1900,0,3500,1
+13166,90000,female,2,2,55,0,0,0,0,0,0,82901,64530,33550,34216,34933,35628,1544,3114,1223,1267,1275,1320,0
+13167,50000,male,2,2,28,0,0,0,0,0,0,21510,23357,32197,12595,13445,13803,2200,10000,3000,1000,1500,0,0
+13168,120000,female,2,1,48,0,0,0,0,0,0,78384,77085,73326,72594,72008,74622,4000,3505,3005,3008,7253,12,0
+13169,120000,female,2,1,39,0,0,0,0,0,0,44630,37772,27827,3228,3294,0,1999,1040,265,66,0,0,0
+13170,30000,male,2,1,42,0,0,2,0,0,0,18583,20940,20306,20965,21625,22055,2975,0,1000,1000,790,816,1
+13171,220000,male,2,1,43,0,0,0,0,0,0,84466,84356,84151,83591,83789,83885,4000,4000,3500,3500,3500,3500,0
+13172,180000,female,2,2,31,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+13173,20000,male,3,2,52,2,0,0,0,0,0,14038,13568,14630,27408,13984,0,1338,1400,274,560,0,0,1
+13174,140000,female,2,2,26,0,0,0,0,0,2,135294,137425,134487,135945,131296,139207,7462,6487,5025,6101,10601,2,0
+13175,400000,female,2,1,46,-1,-1,-1,-1,-1,-1,30018,19735,26181,134967,52991,163837,19753,26245,135000,53000,163837,37345,0
+13176,180000,female,1,2,27,-1,-1,-1,-1,-1,-1,11168,6496,9733,4088,5428,13138,6678,9740,4088,5428,13138,12174,0
+13177,340000,female,2,1,36,1,-2,-2,-1,-1,-1,0,0,0,150,920,0,0,0,150,920,0,17386,0
+13178,250000,male,3,2,46,0,0,0,0,0,0,244563,248218,70004,64953,51507,50338,10925,2351,1886,1616,1756,1182,0
+13179,50000,female,2,1,50,0,0,0,0,0,0,8925,9208,10238,10700,10762,11587,1200,1200,1000,1000,1000,1000,0
+13180,220000,female,1,2,24,0,0,0,0,0,0,51908,53087,54167,55267,56586,57993,2017,1965,2000,2210,2500,2339,0
+13181,400000,male,2,2,35,0,0,-2,-1,0,0,11052,0,0,53826,55061,71541,0,0,53826,1642,20000,1256,0
+13182,320000,female,1,1,37,-2,-2,-2,-2,-2,-2,14536,2935,3019,4179,4256,2675,2949,3034,4200,4277,2688,3651,0
+13183,260000,female,2,1,40,-1,-1,-1,-1,-1,-1,148,359,397,208,790,2788,360,398,208,792,2788,3675,0
+13184,350000,male,1,1,42,-1,-1,-1,-1,-1,-1,1134,2985,240,1041,-12,6449,2995,240,1051,0,6461,18,0
+13185,30000,male,2,2,34,0,0,0,0,0,0,28509,29739,29372,29514,27226,25408,2003,1504,2017,2000,1000,1100,0
+13186,10000,male,2,2,24,0,0,0,2,0,0,11035,12349,13598,9378,4883,5001,1500,1528,0,730,199,100,1
+13187,50000,female,2,2,23,0,0,-2,-1,-1,-2,5961,0,0,700,0,0,0,0,700,0,0,0,0
+13188,30000,female,3,2,23,0,0,2,2,0,0,26280,28952,29482,28712,29311,30065,3420,1300,0,1210,1391,665,0
+13189,350000,male,1,2,35,2,-1,-1,0,-1,-1,105,3298,50064,8003,8293,23080,3308,50206,40,8334,23102,5004,0
+13190,410000,male,1,1,37,-1,-1,-1,-1,-1,-1,5770,2290,2756,3560,6661,3877,2290,2756,3560,6661,3877,1249,0
+13191,130000,female,3,1,35,0,0,0,-1,-1,-1,65743,63724,63163,386,1770,384,2606,3174,386,1778,384,1446,0
+13192,80000,female,3,2,28,0,0,0,0,0,0,70194,71912,69776,70985,72444,69685,3500,3000,2500,2500,2500,2500,0
+13193,380000,female,2,1,51,1,-2,-2,-2,-1,-1,0,0,0,0,630,1297,0,0,0,630,1613,1618,0
+13194,320000,female,1,1,42,1,2,2,0,0,0,318844,324589,320622,252323,253557,256525,10000,450,7025,7161,8000,6883,0
+13195,20000,male,1,2,23,2,0,0,2,2,2,3206,4093,5514,5277,5791,5550,1100,1500,0,600,0,600,1
+13196,50000,male,2,2,32,0,0,0,0,0,0,48536,41045,41532,18646,19183,19214,3030,2124,646,828,1097,612,0
+13197,30000,male,2,2,25,0,0,0,0,0,0,19955,20348,18339,18794,23530,23531,1338,1500,1000,5000,2000,24,0
+13198,50000,male,2,2,24,1,2,2,2,2,2,41974,43210,42368,44553,45679,46275,2200,150,3200,2000,1500,2000,0
+13199,50000,male,2,2,41,0,0,0,0,0,0,40709,37503,18086,18545,15453,15847,3000,2000,1000,1000,800,3000,0
+13200,50000,male,2,1,51,0,0,0,0,0,0,49083,49462,50004,17751,17725,17688,2238,2170,617,631,635,614,0
+13201,200000,male,1,2,27,0,0,0,0,0,0,4770,5983,9018,7380,7042,2583,1300,3138,500,2000,1000,1000,0
+13202,80000,male,2,2,29,0,0,0,0,0,0,50695,53476,46685,35760,33853,35708,10010,3000,5000,5000,3000,5000,0
+13203,20000,female,3,3,53,0,0,0,-1,-1,0,9677,9578,12102,1473,18177,18046,4578,2795,1473,18177,2046,2615,0
+13204,180000,female,2,2,28,-2,-2,-2,-2,-2,-2,2177,1175,0,2530,0,0,1175,0,2530,0,0,0,0
+13205,230000,female,1,2,33,0,0,0,0,0,0,228639,226778,184466,157857,131706,62237,10075,10135,6034,10000,3000,5000,0
+13206,180000,female,2,2,33,-1,-1,-1,0,-1,-1,6314,1795,1190,1079,659,90,1795,1190,0,659,90,8856,0
+13207,90000,female,2,2,23,0,0,0,0,0,0,42105,43919,46812,44976,46406,47625,2500,3970,2500,2500,2500,1700,1
+13208,20000,male,2,2,23,2,2,7,7,6,5,2400,2400,2400,2400,1800,1200,0,0,0,0,0,0,1
+13209,100000,male,2,2,32,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+13210,60000,male,3,2,44,0,0,0,0,0,0,57694,58749,38110,38525,38346,37416,2800,1900,1300,1363,1500,1466,0
+13211,130000,female,2,2,35,0,0,0,0,0,2,42950,44293,45004,46257,49312,50252,2036,1747,2000,3800,1900,1900,1
+13212,50000,female,2,1,55,0,0,2,0,0,0,37984,41234,37701,28181,28711,29368,3900,0,1300,1100,1100,1000,1
+13213,70000,female,1,2,23,0,0,0,0,0,0,8878,10077,11203,11320,11487,11895,1500,1600,600,500,600,2600,0
+13214,360000,female,2,2,53,-1,-1,-1,-1,-1,-1,5583,495,1862,230,661,658,495,1862,230,661,658,532,0
+13215,20000,male,1,2,22,1,2,2,0,0,0,19438,20528,19464,18604,18172,14444,1700,0,700,620,800,300,1
+13216,20000,male,3,2,34,-1,-1,2,2,-2,-2,390,780,780,0,0,0,780,0,0,0,0,0,1
+13217,440000,female,3,2,36,0,-1,-1,-1,0,0,7887,2516,5252,13192,29029,27812,2516,5252,13192,20000,1179,623,0
+13218,400000,male,1,1,41,-1,-1,-1,-1,-1,-1,1630,816,1617,875,917,5434,816,1617,875,917,5434,14115,0
+13219,170000,female,1,2,29,0,0,0,0,0,0,90450,82581,81703,66496,36000,25167,3600,3000,4710,1500,1000,1000,0
+13220,200000,male,2,1,32,-1,2,-1,0,0,0,9864,5114,499,499,499,0,0,499,0,0,0,0,0
+13221,220000,female,1,1,41,-1,0,-1,-1,-1,-2,30038,22411,7141,3070,2609,10273,1089,7161,4072,2613,10322,511,0
+13222,280000,female,2,1,31,0,0,0,0,0,0,207966,209146,213900,5202,4282,1000,5078,5069,109,97,25,145,0
+13223,360000,male,1,2,29,0,0,0,0,0,0,90071,83204,75869,58219,45605,32245,3032,2311,1570,1500,983,3000,0
+13224,20000,male,2,1,51,1,2,2,0,0,0,18462,18175,16184,16913,17640,18688,300,1000,1000,1000,1500,1200,0
+13225,290000,female,1,1,44,-2,-2,-2,-2,-2,-2,301,768,531,22058,468,681,768,531,22058,468,681,446,0
+13226,380000,female,2,1,33,1,-1,-1,-1,-1,0,0,73,32510,474,25877,45038,73,32789,474,25877,20000,10000,0
+13227,180000,male,1,2,28,0,-1,2,0,0,0,2569,2834,394,904,2514,4054,2834,0,900,2000,4000,2000,0
+13228,120000,female,1,2,26,0,0,-1,0,0,-1,1379,9839,4390,850,850,831,9000,4390,0,0,831,6000,0
+13229,50000,female,2,2,27,0,0,0,0,0,0,162865,167086,169217,18056,18179,18563,5000,3703,1000,660,686,638,0
+13230,20000,male,1,1,48,2,2,0,0,0,0,14246,13727,14725,15018,15338,15242,0,1238,531,555,547,533,1
+13231,20000,male,2,2,25,1,2,2,5,4,3,10515,11548,13863,13369,12582,12088,1500,2800,0,0,0,0,0
+13232,170000,female,2,2,29,0,0,0,0,0,0,161581,163500,166003,167287,165510,168507,6000,8000,6300,6000,6500,6100,0
+13233,180000,female,2,2,24,0,0,0,0,0,-1,54357,19435,11718,5265,3950,270,1260,1000,105,79,270,0,0
+13234,200000,male,1,2,36,1,-2,-2,-2,-1,-1,0,0,0,0,3774,0,0,0,0,3774,0,686,0
+13235,200000,male,2,1,55,1,2,2,2,2,0,181339,177233,188461,191363,188683,196057,0,14000,7000,0,10000,5000,1
+13236,360000,female,1,2,26,-2,-2,-2,-2,-2,-2,145,3526,8510,7831,8864,10845,3600,8510,4000,5000,5000,5398,1
+13237,10000,female,2,2,26,0,0,0,0,0,0,6346,7364,8374,8540,8719,8905,1129,1139,305,316,331,303,0
+13238,60000,female,2,1,60,8,7,6,5,4,3,69183,68216,66616,65016,63449,62149,0,0,0,0,0,0,0
+13239,40000,female,2,1,24,2,0,0,2,2,2,25618,26701,30421,29633,31548,30889,1800,4500,0,2400,0,3000,1
+13240,100000,male,2,2,39,-1,-1,-1,-1,0,0,4530,4921,4560,4290,6670,8844,4921,4569,4290,5000,5000,3000,0
+13241,50000,female,2,2,23,0,0,0,0,2,2,38333,40401,42897,44388,46528,44986,3000,3500,2500,3000,0,3500,0
+13242,300000,male,1,2,29,-2,-2,-2,-2,-2,-2,22391,3637,1705,-4,36581,332,4018,1809,0,36583,334,0,0
+13243,110000,male,3,2,29,0,0,0,0,0,2,64351,64739,75697,86483,97054,105553,1415,12182,12201,12403,10350,3000,1
+13244,120000,male,1,1,37,0,0,0,0,0,0,19020,17570,16907,14920,10866,8788,1363,1564,528,494,3000,3000,0
+13245,150000,male,2,1,45,0,0,0,0,0,2,64869,57318,35970,26727,71112,63889,3049,2049,0,63889,0,4000,0
+13246,230000,female,2,2,30,-1,-1,-1,0,0,-1,1243,113,7978,2831,3518,846,113,8178,500,1000,846,0,0
+13247,180000,female,2,1,35,0,0,-2,-2,-2,-2,43068,316,316,316,316,316,316,316,316,316,316,314,0
+13248,320000,female,2,2,33,-1,-1,-1,0,0,-1,7444,5755,34909,16313,9279,5824,5783,35069,4341,46,5849,48366,0
+13249,80000,female,1,2,23,1,-1,2,-1,0,0,-12,2321,60,5182,2792,189,2333,0,5182,0,0,2597,0
+13250,160000,female,1,2,29,-1,-1,-1,0,-1,0,1289,2089,5464,2079,1908,1394,2106,5500,2000,2000,1350,700,0
+13251,50000,female,2,2,23,0,0,0,0,0,0,34997,36030,36740,37469,38254,39014,1900,1610,1339,1387,1395,1452,1
+13252,180000,male,2,2,26,-1,-1,-1,-1,-1,-1,316,692,316,692,316,859,692,316,692,316,859,1008,0
+13253,110000,male,3,2,26,0,0,0,0,0,0,44089,29251,30454,33100,34727,36823,3002,2500,3000,2000,2500,1500,0
+13254,150000,male,1,2,32,-1,-1,-1,-1,2,-1,994,10168,-4,5515,3673,6106,10290,0,5519,3,6134,3779,0
+13255,210000,female,3,1,52,-1,-1,-1,-1,-1,-1,65265,38627,142285,22092,35141,56188,39000,150109,180,58000,56200,20000,0
+13256,10000,male,2,2,43,2,-1,-1,-1,-1,-1,654,608,654,5954,0,1308,608,700,5954,0,1308,0,1
+13257,30000,female,2,2,22,-2,-1,2,-1,-1,-1,0,2343,126,4462,0,150,2343,0,4462,0,150,860,0
+13258,450000,female,1,2,36,-1,-1,-1,-1,-1,-1,3893,522,2218,99,99,412,600,2300,0,0,412,3146,1
+13259,110000,female,1,2,25,1,2,2,0,0,0,60491,61874,56386,44181,35538,25417,3000,31,3000,1500,2000,1000,0
+13260,270000,female,2,1,37,0,0,0,0,0,0,110593,102486,94362,86861,78538,70158,4500,3500,4000,3000,3000,2200,0
+13261,50000,female,3,1,46,0,0,0,0,0,2,51207,47915,49073,47889,51139,49000,2162,2284,2100,4200,0,4200,0
+13262,100000,female,3,3,43,0,0,0,0,0,0,62300,63759,64448,38500,39469,40653,2464,1902,1378,1589,2000,1506,0
+13263,360000,female,2,2,30,-2,-2,-2,-2,-2,-2,2500,0,0,0,0,0,0,0,0,0,0,0,0
+13264,110000,female,2,1,32,1,2,0,0,0,0,75505,73740,75231,76265,77860,79251,0,3313,2879,2976,2839,2935,1
+13265,180000,female,3,2,55,-1,-1,0,0,0,0,6770,103101,104834,44452,41810,42641,164163,3877,1535,1517,1526,1580,0
+13266,230000,female,1,1,34,2,2,2,2,2,2,190784,195724,198707,201634,205949,210077,9300,7500,7500,7500,7500,7600,0
+13267,20000,female,3,1,41,0,0,0,2,2,2,7478,8497,10162,9852,10418,10102,1146,1811,0,876,0,374,0
+13268,50000,female,1,2,22,2,2,2,2,2,2,46035,46620,47341,45527,48358,47442,2000,1800,0,4100,0,2500,1
+13269,10000,male,3,2,31,0,0,0,0,0,0,5062,5687,6132,5851,5735,6087,1259,1100,197,362,1000,1000,0
+13270,320000,male,1,1,46,0,-1,-1,-1,-1,-1,3337,9061,7809,5238,8594,3743,9061,7935,5238,8594,3743,12820,0
+13271,280000,female,1,2,26,0,0,0,0,0,0,36395,35945,36381,36594,37010,36334,1700,1600,1300,1500,2000,99334,0
+13272,20000,male,2,1,28,0,0,0,0,0,0,18537,19205,19687,19684,19842,19965,1358,1230,617,776,1000,4000,0
+13273,70000,male,2,2,36,0,0,0,0,0,0,66888,69306,24348,24744,25195,25777,4000,1704,1100,1000,1000,1000,0
+13274,80000,female,2,2,36,0,0,2,2,2,2,47502,50423,49311,52584,53589,54748,4000,0,4100,2000,2200,2200,0
+13275,200000,female,1,2,25,-1,-1,-2,-1,-1,-1,92400,0,0,92384,13180,1194,0,0,92384,13196,1200,0,0
+13276,30000,male,2,2,24,0,0,0,0,0,0,27306,28312,29327,27836,28423,29813,1747,1800,1136,1178,2430,0,0
+13277,100000,female,2,1,41,1,3,2,2,2,2,51345,50249,51421,52684,51400,0,0,2300,2400,0,0,0,1
+13278,110000,male,1,2,26,0,0,0,0,0,0,64767,67724,49104,51202,50289,50528,6000,2000,3000,2000,2000,3000,0
+13279,300000,female,1,1,33,-1,-1,-1,-1,0,-1,356,1313,5273,4345,1106,1322,1320,5273,4598,0,2620,5956,0
+13280,300000,female,2,1,31,0,0,0,0,0,0,89240,92016,92971,94817,96756,98325,4214,3377,3395,3468,3133,3307,0
+13281,340000,female,1,2,29,0,0,0,0,0,0,82770,54523,30874,34939,40537,41658,10000,5874,5000,10000,2000,1400,0
+13282,270000,male,1,1,37,-1,-1,-1,0,-1,-1,396,396,792,396,396,396,396,792,0,396,396,396,1
+13283,100000,male,2,2,26,0,0,0,0,0,0,80117,46939,17841,15317,12630,11750,2683,2500,3000,6000,2500,1000,0
+13284,50000,male,1,1,33,1,2,0,0,0,0,46745,45727,45515,45470,4220,4220,0,1200,155,3000,0,0,0
+13285,360000,female,2,1,40,0,0,0,0,0,0,352583,343476,279728,264189,271688,288740,10461,10212,8000,10000,20000,10000,0
+13286,90000,female,2,1,49,0,0,0,0,0,0,91263,70251,45385,46331,47494,48433,3100,1800,1700,2000,1746,1941,0
+13287,140000,male,2,1,42,0,0,0,0,0,0,127939,100372,84587,65589,69117,65911,5059,14659,5000,8000,5000,10000,0
+13288,150000,female,1,2,28,-1,-1,2,-1,-1,2,1159,2468,1159,1159,11476,10249,2468,0,1159,11476,0,2034,0
+13289,50000,male,3,2,34,-2,-2,-2,-2,-2,-2,17095,18261,19313,19304,19725,5770,1448,1500,419,455,115,19627,0
+13290,30000,female,3,2,26,2,3,2,2,2,2,28189,27467,26729,27291,28819,29201,0,0,1300,2123,1000,2000,1
+13291,230000,female,2,1,54,-2,-2,-2,-2,-2,-2,0,880,0,0,0,0,880,0,0,0,0,1740,0
+13292,240000,female,2,1,40,-2,-2,-2,-2,-2,-2,0,0,0,0,0,1306,0,0,0,0,1306,0,1
+13293,200000,female,1,1,44,-1,-1,-2,-2,-2,-1,65520,0,0,0,0,17480,0,0,0,0,17480,76220,0
+13294,330000,male,2,1,42,-1,-1,-1,0,0,-1,118601,4101,133359,138959,102279,106172,4101,133359,6000,2046,106172,63750,0
+13295,110000,male,1,1,29,0,0,0,0,0,0,51499,50405,49156,46426,43765,41295,1887,1601,1500,1696,1658,1179,0
+13296,200000,female,3,1,54,0,0,0,0,0,0,114643,115828,116585,116005,118334,117902,6000,4200,4252,4300,4500,4000,0
+13297,50000,female,2,3,46,0,0,0,0,0,0,44076,44406,45320,38446,36748,36827,1810,2500,2000,2000,1465,2000,0
+13298,70000,female,1,2,27,0,0,0,0,-1,-1,69972,69528,67622,68922,1223,70027,5000,1900,2000,1223,70027,2600,0
+13299,360000,female,2,1,59,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+13300,50000,female,2,2,54,0,0,0,0,0,0,4625,4832,10010,9357,8714,9733,1121,6135,308,316,2000,500,1
+13301,80000,female,3,2,28,-1,-1,-1,-2,-2,-2,4280,2800,0,0,0,0,2800,0,0,0,0,0,0
+13302,200000,female,2,1,69,0,0,0,0,0,0,106878,100879,102998,105090,107718,88964,4000,3800,3802,4363,3500,3303,0
+13303,50000,male,2,2,27,0,0,0,0,0,0,47261,48054,47434,20099,18682,18538,2055,1935,675,662,650,666,1
+13304,30000,male,1,2,27,0,0,0,0,-1,-1,18239,17963,18425,1183,2000,0,2000,3000,300,3000,0,0,0
+13305,390000,female,1,2,31,0,0,0,0,0,0,252109,252401,180074,178025,198721,162444,12009,7508,6000,39604,6341,5000,1
+13306,380000,female,1,1,42,2,-1,-1,-1,0,-1,326,326,326,652,326,29326,326,326,652,0,29326,326,1
+13307,20000,female,2,1,46,0,0,0,0,0,3,16294,17327,18335,18935,20624,20702,1600,1600,1200,2600,700,0,1
+13308,80000,female,2,2,31,0,0,0,0,0,0,28190,27045,22843,20578,19049,16221,1751,1500,1000,779,545,500,1
+13309,50000,female,2,1,49,0,0,0,0,0,0,47649,49100,50380,19144,17625,17246,2220,2500,644,628,642,1500,0
+13310,50000,female,1,1,25,0,0,0,0,2,0,11324,11811,13008,12540,10746,8482,1500,1433,1465,0,500,1000,0
+13311,200000,male,2,2,44,-1,-1,-1,0,-1,-1,541,541,1082,541,541,541,541,1082,0,541,541,541,0
+13312,100000,male,3,2,28,-1,0,0,-1,-1,-1,103728,104908,65800,18300,33336,31558,3184,3000,18300,33336,984,63000,1
+13313,180000,male,1,2,31,-1,-1,-1,-2,-2,-2,300,253,0,0,0,0,253,0,0,0,0,3642,0
+13314,120000,female,2,2,27,-1,-1,2,-1,-1,-1,1066,5079,2528,4007,7457,2819,5079,0,4007,7457,2819,8638,0
+13315,390000,female,2,2,31,1,2,0,0,-1,-1,20852,18376,15229,18229,9290,1826,0,1000,3000,9290,1826,3706,0
+13316,250000,female,2,1,37,-1,-1,-1,-1,0,0,25366,36567,24079,13141,22728,9300,36655,24104,13144,12000,9300,14154,0
+13317,350000,male,2,1,47,1,2,2,2,2,0,301553,287780,295141,291422,279294,276594,0,21300,10000,0,9500,9500,1
+13318,70000,female,2,2,30,0,0,0,0,0,0,71856,71916,71442,68144,68671,68863,3377,3504,2620,2791,2639,2859,0
+13319,210000,female,1,2,33,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+13320,180000,male,1,2,29,0,0,0,0,0,0,85069,85434,116352,55698,37315,16696,5344,3013,3034,4069,3018,3069,0
+13321,80000,male,1,2,25,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,390,1
+13322,120000,female,3,2,26,-1,-1,-1,-1,-1,-1,1467,975,246,246,246,884,975,246,246,246,884,1000,0
+13323,210000,female,1,1,23,-2,-2,-2,-1,0,0,0,0,0,29337,30362,31356,0,0,29337,1500,1500,1500,1
+13324,20000,male,2,1,38,-1,0,0,0,0,0,18669,19304,19905,20302,20133,20000,1326,1317,714,925,400,0,0
+13325,150000,female,1,1,38,-1,-1,-2,-2,-2,-1,750,0,0,0,0,2040,0,0,0,0,2040,13061,1
+13326,390000,male,1,1,38,0,0,0,0,0,0,30642,31843,32860,33511,34271,35040,2000,1548,1199,1300,1337,13000,0
+13327,310000,female,1,2,36,-1,-1,-1,-1,-1,-1,6514,8619,6204,2905,7944,13125,8619,6206,2905,7944,13524,16233,0
+13328,230000,female,1,2,27,0,0,0,0,0,0,10941,12058,13348,14620,15877,16611,1300,1500,1500,1500,1000,1500,0
+13329,90000,female,2,1,51,0,0,0,0,0,0,12822,10944,12255,12192,12448,12895,1188,1499,436,452,654,455,0
+13330,140000,male,1,2,29,0,0,0,2,2,2,11693,13490,16747,16183,17762,17327,2000,3500,0,2000,0,5000,0
+13331,150000,female,1,2,28,0,0,0,0,0,0,105035,103502,92810,74078,75564,79941,4500,3137,2700,3000,6000,3500,0
+13332,130000,male,2,2,27,0,0,0,-2,-2,-2,92043,61650,0,0,0,0,2850,0,0,0,0,0,0
+13333,210000,female,1,2,27,-1,-1,0,0,-1,0,1441,2557,3655,0,41257,35432,3000,3626,0,41257,709,0,0
+13334,100000,female,1,2,25,1,-1,-1,-1,-1,-2,0,3473,0,1012,0,0,3473,0,1012,0,0,0,0
+13335,150000,male,5,1,36,0,0,0,0,0,0,220889,133616,136378,139219,142172,145065,3800,3900,4000,4100,4100,5500,0
+13336,200000,female,1,2,29,0,-1,0,0,0,0,1467,439,2257,43720,43968,45182,439,2000,42000,1700,2000,1700,0
+13337,80000,female,2,2,27,0,0,2,0,0,0,78672,83807,81833,79673,79735,81271,7018,0,3000,3100,3000,3100,0
+13338,230000,male,1,2,27,-1,-1,-1,-1,-1,-1,5652,7652,2062,2007,2104,394,7662,2066,2007,2108,394,3214,0
+13339,50000,male,2,3,37,0,0,0,0,-1,0,49642,48381,44113,8522,17948,9390,2060,1014,170,17948,188,390,0
+13340,260000,female,2,2,33,-2,-1,0,0,0,0,4141,131000,129698,120375,118847,120361,133280,4813,4039,4095,4271,3701,0
+13341,110000,male,2,2,23,0,0,0,2,2,2,43027,44340,48959,49672,50758,49676,2000,5700,1800,2500,0,2000,0
+13342,20000,male,3,1,56,0,0,2,0,0,0,14231,16074,14212,14694,13807,14412,2100,1000,1000,700,1000,500,0
+13343,360000,female,2,1,42,1,-1,-1,-1,-1,-1,0,6815,0,1000,6344,2408,6815,0,1000,6344,2408,0,0
+13344,160000,male,1,1,36,0,0,0,0,-1,-1,67879,36865,47986,0,15655,0,2500,15000,0,15655,0,1674,0
+13345,10000,male,2,2,35,0,0,0,0,0,0,8857,8661,9055,9665,9297,5555,2300,1000,1000,1000,2000,3094,0
+13346,150000,male,1,1,31,2,2,2,2,2,2,159734,160247,131511,129369,123191,132072,4800,4006,3669,0,11781,0,1
+13347,500000,male,1,1,35,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+13348,500000,male,1,1,69,-1,-1,-1,-1,-1,-1,1200,5652,271,1234,1015,3579,5652,271,1234,1015,3579,2053,0
+13349,360000,female,2,2,28,0,0,0,0,0,-1,63352,58601,19567,16658,17249,247,6010,4000,0,2000,247,12000,0
+13350,50000,female,1,2,28,0,0,0,0,0,2,48726,48261,39336,10142,10174,9904,2406,2000,462,736,0,147,0
+13351,270000,female,1,1,35,2,0,0,0,0,0,128442,131185,134297,208396,106524,104447,6300,6800,4000,4200,7000,3000,0
+13352,10000,female,3,1,58,0,0,0,0,0,0,7569,8598,9590,9782,9986,9173,1158,1150,335,346,336,1323,0
+13353,30000,female,2,1,29,0,0,0,0,0,0,15455,6570,11000,12460,28778,24244,2000,5000,2000,17000,1500,2000,0
+13354,80000,female,3,1,30,1,-1,2,2,-2,-2,0,1684,1509,-357,-357,-357,1684,0,0,0,0,0,0
+13355,360000,female,2,1,27,-1,-1,-1,-1,-1,-1,896,778,-192,38469,7449,156,782,0,38661,7486,156,12508,0
+13356,120000,female,1,2,26,0,0,0,0,0,0,112774,115733,91961,94433,97787,87413,5000,3500,4000,5000,3500,3500,0
+13357,400000,female,2,2,35,0,0,0,0,0,0,109943,222085,223350,213831,210563,211925,120018,10071,8037,8018,8809,5022,1
+13358,500000,female,2,2,26,0,0,0,0,0,0,59039,58262,54586,29280,31284,29371,4028,2077,1001,3008,1305,1007,0
+13359,140000,male,3,1,54,-1,-1,-1,-1,-1,-1,1045,1947,998,955,1976,1895,1952,1001,957,1981,1900,1822,0
+13360,110000,male,2,2,27,0,0,0,0,0,0,29734,31743,33202,34656,38596,40970,2500,2000,2000,4500,4000,1500,0
+13361,30000,male,2,2,34,0,0,0,0,0,0,29949,24653,29779,29749,30053,29674,6000,12000,6000,6000,5000,5000,0
+13362,140000,female,1,1,56,0,0,0,0,0,0,138468,93802,94531,96264,98135,100062,4300,3500,3600,3881,4200,3521,0
+13363,150000,female,3,1,39,0,0,0,0,0,0,108755,112554,113583,115846,118369,121786,5163,4000,3764,4000,5000,5030,0
+13364,280000,male,3,1,37,0,0,0,0,0,0,271276,275970,280276,188923,192333,195774,16991,10447,6006,6006,6147,5001,1
+13365,20000,male,3,1,45,-1,2,0,0,2,0,5577,5346,9984,19089,18356,17203,0,5000,10089,0,2000,4166,0
+13366,340000,female,3,1,36,-1,2,2,-1,-1,2,2566,1689,-11,35947,83360,82516,8,0,35958,50000,0,10000,0
+13367,60000,male,2,2,25,2,2,2,0,0,0,36090,22083,15444,13695,17598,17472,2017,5,1000,5000,1000,603,1
+13368,20000,male,1,1,62,0,0,0,0,0,0,17607,18711,9540,10540,11540,0,1500,1000,1000,1000,0,0,0
+13369,50000,female,1,2,25,0,0,0,0,0,0,23794,22588,20376,10203,9868,9700,1398,1136,483,340,368,300,0
+13370,200000,female,2,1,35,0,0,0,0,0,0,71561,74084,74770,75826,77741,79597,4000,3010,2600,3000,3000,3000,0
+13371,180000,female,1,2,30,0,0,0,0,0,0,40311,43847,50763,69026,32030,33679,10000,10000,23000,5000,4000,3500,0
+13372,240000,female,1,1,34,0,0,0,0,0,0,41484,42522,43538,44402,45333,46551,1709,1725,1589,1646,1972,1263,0
+13373,360000,male,2,2,32,0,0,0,2,0,0,33215,28683,16989,12751,10272,9631,1331,6478,14,443,6093,190,0
+13374,50000,female,2,1,26,0,0,0,0,-1,0,49744,40859,20706,-1166,19133,19127,1500,1206,0,20689,697,641,0
+13375,100000,male,3,2,50,0,0,0,0,0,0,95889,96791,97414,69166,53270,-1465,4200,2785,2291,1965,1465,62121,0
+13376,80000,female,3,2,26,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+13377,50000,female,3,1,32,2,2,2,2,2,2,46364,47429,46345,49231,48537,46774,2100,0,3600,1900,0,3285,1
+13378,420000,female,3,2,27,-2,-2,-1,0,0,0,1486,-3341,116659,119808,122181,130976,2679,120000,5003,5000,10979,5016,1
+13379,190000,female,1,1,35,-1,-1,0,0,0,0,980,68738,105265,126905,150953,153223,68738,50000,26905,30000,7000,10000,0
+13380,180000,female,2,1,33,1,-1,0,0,0,0,-84,482,6566,6905,7385,7847,982,6500,1000,1000,1000,1000,0
+13381,40000,female,1,2,22,0,0,0,0,0,0,34521,35662,36918,37478,20650,0,2000,2000,1071,1500,0,0,1
+13382,50000,male,2,2,43,1,2,2,0,0,0,44344,45363,44326,44901,45844,48385,2021,0,1596,1655,3684,0,1
+13383,10000,male,2,2,23,2,2,7,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,1
+13384,200000,female,1,2,39,0,0,0,0,0,0,155693,158710,133245,131906,135533,137809,6000,5000,4871,5905,5491,5000,0
+13385,120000,male,3,1,39,-1,-1,-1,0,0,0,7764,10721,30607,25005,19771,34315,10730,30629,0,0,27000,18125,0
+13386,100000,female,2,1,48,2,2,2,0,0,0,44050,44508,42925,45596,46022,46785,1800,0,3548,1668,1677,1668,0
+13387,100000,female,1,2,24,0,-1,-1,-2,-2,-2,93411,4081,0,0,0,0,11645,0,0,0,0,0,0
+13388,360000,male,1,2,29,0,0,0,-2,-1,-1,229928,32890,-10,-10,2150,0,4905,0,0,2160,0,0,0
+13389,100000,female,2,1,28,-1,-1,-1,-1,-1,-1,316,316,316,316,2588,782,316,316,316,2588,1098,0,1
+13390,290000,female,2,1,49,-1,-1,-1,-1,-1,-1,5287,2323,704,2135,1591,5392,2334,707,2145,1599,5419,5039,1
+13391,240000,male,1,2,34,1,2,-1,-1,0,0,40286,38008,9497,9124,7128,2745,14,9497,9124,2000,1200,1000,0
+13392,290000,female,2,1,37,0,0,0,0,-1,0,48978,58858,36129,20369,29521,59219,20078,5017,509,29526,35000,93600,0
+13393,500000,female,2,2,33,-2,-1,0,0,-2,-2,11058,18578,84087,50058,35036,4757,18641,75207,5100,5089,118,1647,0
+13394,50000,male,2,1,32,1,3,2,2,2,2,14949,14424,15888,15335,16485,16070,0,2000,0,1400,0,1600,1
+13395,220000,female,2,2,30,0,0,0,0,0,0,18598,24781,22901,23815,37748,16657,10000,2015,5000,20000,3000,1210,0
+13396,20000,male,2,1,44,0,0,0,0,0,0,17441,17696,18672,18654,19584,19390,1309,1285,657,2000,388,390,1
+13397,420000,female,2,1,36,0,0,0,0,0,0,185882,172613,134188,121983,111256,103481,10000,10000,10000,11256,13841,15059,0
+13398,100000,female,1,2,29,2,2,2,2,2,2,74032,75557,76434,74611,79292,80945,3300,2700,0,5900,3100,0,0
+13399,230000,female,1,1,43,-1,-1,-1,-1,-1,3,3245,1855,5776,1332,5342,3162,1867,5816,1340,5342,4,0,1
+13400,50000,female,2,1,53,0,0,0,0,-1,2,46940,48372,48184,3736,2003,380,2188,1000,75,2003,0,0,1
+13401,70000,male,1,1,42,0,0,2,2,0,0,119687,127218,128391,125183,124527,125255,11100,4551,9,4230,4253,4545,0
+13402,180000,male,1,2,31,-1,-1,-1,-1,-1,-1,914,907,900,923,922,900,907,900,923,922,900,946,0
+13403,90000,male,1,2,27,-1,-1,-1,-1,-1,-1,3382,4983,3396,1457,750,3091,4983,3396,1464,750,3091,5943,0
+13404,50000,male,2,2,24,0,0,0,0,0,0,44193,44790,29397,29157,29765,29941,1806,1752,1168,1205,1207,1199,0
+13405,50000,female,3,2,22,2,2,2,0,0,0,42717,51319,50245,9246,18992,9697,9289,300,332,400,358,350,0
+13406,60000,female,1,2,26,1,-2,-1,-1,0,0,0,0,539,37970,39354,40048,0,539,37970,2000,1500,1481,0
+13407,50000,female,3,2,41,2,2,0,0,0,0,23203,23534,24838,25429,26020,26541,1000,2000,1000,1000,955,1500,1
+13408,300000,female,1,1,58,-2,-2,-2,-2,-2,-2,1257,2851,0,4319,0,0,2851,0,4319,0,0,6860,0
+13409,30000,female,1,2,36,0,0,2,0,-1,-1,14254,16598,15908,16029,6501,0,2890,0,321,6501,0,0,1
+13410,10000,male,1,2,25,0,0,0,0,0,0,9501,5794,7109,9082,7165,6951,1300,2000,3000,234,284,1149,0
+13411,70000,male,1,2,30,0,0,0,0,0,0,36201,25510,11402,8464,6464,-1000,1586,1000,0,0,0,0,0
+13412,160000,male,2,2,32,0,0,0,0,0,0,22506,24135,25418,28196,29961,49404,2000,2000,3000,2000,20000,2000,0
+13413,260000,male,2,2,30,0,0,0,0,0,0,434442,443629,452727,48238,19335,7093,10000,10031,2141,3074,3000,3000,0
+13414,360000,male,1,2,39,0,0,0,0,0,0,163150,150666,173353,156875,64965,36290,50122,50181,20609,30291,30121,30092,0
+13415,60000,female,3,1,30,1,2,0,0,0,0,15442,16091,17512,18413,19951,21454,1200,2000,1500,2000,2000,1300,0
+13416,180000,female,2,2,39,0,-1,-1,-1,-1,-1,57500,785,47392,0,460,0,785,47822,0,460,0,2070,0
+13417,40000,female,2,2,23,2,2,2,2,2,2,33699,34766,33903,36266,36935,33441,1900,0,3200,1350,0,1400,1
+13418,160000,male,2,2,36,-1,-1,-1,0,-1,-1,836,836,1672,836,836,836,836,1672,0,836,836,836,0
+13419,610000,female,1,2,35,0,0,0,0,0,0,389335,388150,392776,399343,402432,409912,14117,14100,14144,17100,17500,3600,0
+13420,50000,female,3,2,35,0,0,0,0,0,0,9999,11020,12027,12109,12360,12602,1489,1496,578,594,596,613,0
+13421,320000,male,1,1,48,2,2,2,2,2,2,201932,215392,218370,220977,225021,221730,18300,8000,7700,7700,0,7900,1
+13422,150000,male,1,2,29,-1,0,0,0,0,-1,108756,152194,105290,149530,146455,141711,46980,64890,122080,106625,141711,138195,0
+13423,170000,male,1,1,36,-1,-1,-1,-1,-1,-1,2015,2015,2015,2015,2015,1925,2015,2015,2015,2015,1925,2105,0
+13424,500000,male,2,1,53,-2,-2,-2,-2,-2,-2,37979,9482,6058,7859,126683,7440,9482,6058,7859,126683,7440,8259,0
+13425,200000,male,2,1,57,-1,-1,-1,-1,-1,-1,780,0,780,390,0,390,0,780,390,0,390,390,0
+13426,290000,female,1,2,27,0,0,0,0,0,0,110359,108371,102628,100000,92238,90447,5000,6039,4000,4000,4000,3000,0
+13427,40000,female,2,2,53,3,2,2,0,0,2,14186,15264,14708,14704,16997,16568,1600,0,500,2500,0,209,0
+13428,300000,female,1,2,30,-1,-1,-1,-1,-1,-1,6045,7151,4790,3145,4274,0,7157,4790,3145,4274,0,2215,0
+13429,50000,male,3,2,32,2,0,0,0,0,0,40486,41526,42539,43532,42858,43481,1691,1704,1697,1558,1727,1446,1
+13430,20000,male,2,2,29,0,0,0,0,2,0,10321,11348,12359,13730,13371,13491,1200,1208,1579,0,608,2000,0
+13431,30000,female,2,1,22,1,2,2,0,0,0,28933,30175,29383,29823,30379,29686,2000,0,1200,1162,1097,3846,0
+13432,140000,male,2,2,34,1,2,2,0,0,0,94153,100214,97720,98997,101439,103840,8500,0,3800,4200,4250,4100,0
+13433,80000,male,2,1,32,-1,-1,-1,-1,-1,-1,1253,4091,4111,940,1550,4030,4091,4120,949,1550,4030,6030,0
+13434,260000,female,2,2,35,1,-2,-2,-1,-1,-1,0,0,0,8500,2890,210,0,0,8500,2890,210,48000,0
+13435,130000,female,1,2,27,1,-2,-1,0,0,0,-24,-350,30656,29426,29100,-1410,326,32100,0,0,0,0,1
+13436,380000,female,3,2,39,0,0,0,0,0,0,55241,49773,81365,87341,87358,103740,10000,60218,10076,15012,20667,15000,0
+13437,200000,male,2,1,36,1,-2,-2,-2,-1,-1,0,0,0,0,1680,0,0,0,0,1680,0,0,0
+13438,50000,female,3,1,46,0,0,0,0,0,0,21453,22365,12874,13341,10556,9396,1634,1143,610,509,500,1000,0
+13439,50000,male,1,2,25,0,0,0,0,0,0,49654,49917,25239,10228,10107,9178,1600,2310,303,369,331,4,0
+13440,90000,female,2,1,26,0,0,0,0,-1,-1,47121,49332,47590,50000,780,0,3000,2000,3000,780,0,2808,0
+13441,20000,male,1,2,25,1,-2,-2,-2,-2,-1,0,0,0,0,0,1000,0,0,0,0,1000,0,1
+13442,140000,female,2,1,26,0,0,0,2,2,2,75289,90613,54597,31734,27211,23784,20000,3011,0,3000,0,5000,0
+13443,30000,male,3,3,45,0,0,2,0,0,2,21325,24355,23670,24002,26373,25798,3376,0,1023,2925,0,1000,0
+13444,230000,male,1,2,28,0,0,0,2,-1,-1,6289,10112,8637,7277,2818,2455,5112,7283,0,3000,2455,1285,0
+13445,100000,male,3,1,36,2,0,0,2,0,0,8674,10520,13337,12829,15446,17178,2000,3000,0,3000,2000,2000,1
+13446,240000,female,1,2,46,2,2,-2,-1,0,-1,456,0,0,2240,1681,2267,0,0,2240,0,2267,3074,0
+13447,200000,male,1,1,36,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+13448,80000,male,1,2,26,0,0,0,0,0,0,83593,72883,67337,60807,59088,47829,2727,3170,1940,2200,1700,1708,0
+13449,360000,male,1,1,56,-1,-1,-2,-1,-1,-1,1094,0,0,1149,2386,5103,0,0,1149,2386,5103,0,0
+13450,150000,male,2,2,37,0,0,0,0,0,0,71341,62432,56091,58919,60363,40448,4117,4002,5000,1925,5316,5000,0
+13451,130000,male,2,2,27,0,0,0,0,0,0,29078,30110,31119,31891,32429,33035,1506,1515,1287,1200,1341,1663,0
+13452,30000,female,2,1,56,0,0,2,0,0,2,11564,14099,13580,13657,16356,16540,3042,0,600,2942,600,0,0
+13453,250000,male,1,2,33,0,0,0,0,0,0,28306,20367,19509,42394,46739,55573,10000,1504,25000,10000,10002,5200,0
+13454,500000,male,1,1,42,-2,-2,-2,-2,-1,0,38525,6281,12855,18041,286939,286836,6283,12859,18041,292462,10593,12200,1
+13455,30000,male,2,3,43,2,2,2,2,2,2,14870,16327,16762,17182,17760,17327,2000,1000,1000,1000,0,1000,1
+13456,390000,male,1,1,41,2,2,2,2,2,2,167795,171245,167317,175283,179140,182864,7299,0,12000,6500,6500,0,1
+13457,390000,female,1,2,27,0,0,0,0,0,0,78549,81775,82963,84236,84971,87112,4500,4000,3500,4000,3500,10000,0
+13458,360000,male,2,2,37,1,-2,-1,-1,-1,-1,-490,-870,390,-710,260,10,0,2000,0,1500,1000,1000,0
+13459,90000,female,2,1,25,0,0,0,0,0,0,57846,50663,45515,42599,38559,36337,2018,2033,2016,2010,2010,1114,0
+13460,100000,female,3,1,35,0,0,0,0,0,0,47843,48885,49904,50774,51957,52991,2111,2130,2000,2000,1898,2000,0
+13461,30000,male,3,1,31,2,-1,-1,-1,-1,-1,390,390,390,0,780,0,390,390,0,780,0,0,0
+13462,160000,male,3,2,25,0,0,-2,-2,-2,-2,31400,0,0,0,0,0,0,0,0,0,0,0,0
+13463,20000,male,1,2,26,1,2,0,0,0,0,15397,10403,7207,7351,7512,8380,0,1500,264,280,1000,813,0
+13464,240000,female,1,2,36,0,0,0,0,0,0,7283,5266,5113,7113,7113,4178,1263,1000,2000,2500,2000,5000,0
+13465,80000,male,1,2,26,2,3,2,2,2,2,61851,62271,63154,63519,64351,67122,2000,2500,2000,2000,4000,2700,1
+13466,30000,female,2,2,22,0,0,0,0,0,0,29668,29744,29068,29567,29144,29541,1555,2165,3002,1005,3000,2000,0
+13467,150000,male,2,1,45,0,0,0,0,0,0,44832,46939,57181,49453,86869,79150,6020,15043,5021,46034,5002,5000,0
+13468,160000,female,2,2,28,0,0,0,0,0,0,84668,88294,91784,108310,103166,104677,5000,5000,20000,5000,5400,6100,0
+13469,20000,female,1,1,58,0,0,0,0,0,0,17241,18463,19640,19114,18679,15000,1500,1626,100,600,300,0,0
+13470,230000,male,1,1,45,0,0,0,0,0,0,26071,27937,28774,29202,29683,30277,2200,2000,1100,1000,980,1012,0
+13471,100000,female,2,1,46,0,0,0,0,0,0,98200,74247,71635,72809,74100,75316,3228,3000,2743,3000,3000,3000,0
+13472,420000,male,2,2,39,0,0,0,0,0,0,204984,209929,190689,173547,176980,180109,8006,7000,6000,6500,6500,10000,0
+13473,480000,female,2,1,37,-1,-1,-1,-1,-1,-1,24887,27984,82870,52263,19518,14785,27994,82979,52263,19518,14785,7931,0
+13474,10000,male,3,1,37,-1,-1,-1,-1,-1,-1,678,500,381,2977,1000,0,602,381,2986,1203,0,0,1
+13475,180000,female,3,1,41,2,2,2,0,0,0,100094,101204,98680,100644,102750,104792,3582,0,3605,3731,3752,4038,1
+13476,200000,male,1,2,32,-2,-2,-2,-2,-1,-1,47244,92754,57928,523,223,7037,62330,57928,523,223,7037,11000,0
+13477,140000,male,2,2,36,1,2,2,2,2,2,44570,45563,46115,47053,48150,49009,2000,1600,2000,2000,1800,0,1
+13478,20000,female,1,1,23,0,0,0,0,0,0,11862,11259,12482,10528,9293,17099,1300,1446,500,500,8000,1000,0
+13479,80000,female,1,2,39,-2,-1,-1,-1,-1,-1,-224,1357,3446,4969,0,2650,1581,3466,4969,0,2650,935,0
+13480,10000,female,2,1,29,0,0,0,0,0,0,7170,8158,9593,10104,9923,8032,1500,2000,1000,313,356,3000,1
+13481,50000,male,2,1,35,-1,2,0,0,0,0,15609,14686,15831,16884,18070,19218,0,2100,2000,2000,2000,2000,1
+13482,340000,male,3,2,38,-2,-2,-2,-2,-2,-2,660,1131,291,291,291,291,1131,291,291,291,291,8048,0
+13483,330000,female,2,2,39,0,0,0,0,0,0,156853,139687,120586,123152,115105,85737,5757,3923,4108,3632,3779,3672,0
+13484,230000,female,1,1,47,-1,-1,-1,0,0,-1,740,740,10860,10120,7050,740,740,10860,0,0,740,0,0
+13485,360000,male,1,2,40,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+13486,30000,female,3,3,48,0,0,2,0,0,0,18385,20422,18905,24817,29220,17260,4000,0,10000,5000,1700,0,0
+13487,500000,male,1,2,42,2,0,0,0,0,0,419352,428101,436809,443840,452841,468305,17008,17326,16101,16634,23501,20623,1
+13488,200000,male,1,1,42,-1,-1,-1,-1,-1,0,3664,718,2946,390,390,390,718,2946,390,390,0,1313,0
+13489,50000,female,2,1,55,0,0,0,0,0,0,41768,42561,42871,7606,11267,14453,2079,2001,500,4423,4000,2000,1
+13490,240000,female,3,2,36,0,0,0,0,0,0,236267,239009,193335,194976,197168,196918,9000,7500,7000,6622,17150,20000,1
+13491,290000,female,1,1,45,-1,-1,-1,-1,-1,-1,664,0,632,0,3152,316,0,632,0,3152,316,0,0
+13492,20000,female,3,2,24,1,-1,-1,-2,-2,-2,-8,4485,0,0,0,0,13148,433,0,0,0,0,1
+13493,60000,female,3,2,49,1,2,0,0,0,0,28763,25470,24125,22597,20784,15599,0,1301,1000,600,600,763,0
+13494,160000,male,2,2,24,0,0,0,0,0,0,76054,73992,73246,71321,141494,72913,3275,3000,3000,3000,3500,2500,0
+13495,200000,female,1,2,31,-1,-1,0,0,0,-1,1041,1053,3042,1381,1381,27106,2000,2011,0,0,27106,35200,0
+13496,70000,female,2,1,33,0,0,0,0,0,-1,43981,33439,24926,10681,7431,4705,1683,3160,3000,3000,5060,5032,0
+13497,140000,male,1,2,35,0,0,0,0,0,0,10339,18276,25852,14390,13728,2905,10006,10048,5008,2018,2005,1005,0
+13498,460000,male,1,1,44,-1,-1,-1,-1,-1,-1,15264,51372,103119,68541,28269,75942,51383,103142,68541,28269,76056,52143,0
+13499,160000,female,2,2,36,-2,-2,-1,-1,-1,-1,2992,1300,8899,6257,-1197,12151,1300,12038,10696,613,14262,0,0
+13500,200000,female,2,1,40,-1,-1,-1,-2,-2,-2,6699,4856,-3,-3,-3,-3,4880,0,0,0,0,0,0
+13501,80000,female,3,2,55,0,0,0,0,0,0,78009,78616,49662,48867,48278,46773,2420,2000,1656,1693,1767,1581,0
+13502,310000,female,1,1,47,-2,-2,-2,-2,-2,-2,5202,6495,5781,7754,12315,14099,3000,1000,4000,5000,5000,5000,0
+13503,290000,female,2,1,29,2,2,0,0,0,0,63872,62290,63624,64427,62853,63923,0,3000,2406,2431,2433,2434,1
+13504,120000,male,1,2,27,0,0,2,0,0,0,11472,13485,11649,11435,11400,12661,2652,0,342,521,2000,3000,0
+13505,20000,male,3,2,31,2,2,2,2,2,2,13335,15617,15090,16859,16472,21819,2800,0,2001,0,5782,0,0
+13506,90000,male,1,2,29,-1,-1,-1,0,-1,-1,140,0,280,140,133,2506,0,420,0,133,2513,910,0
+13507,60000,male,1,1,60,-1,-1,-1,-1,-1,-1,390,390,2840,390,390,769,390,2840,390,390,769,390,0
+13508,260000,male,2,1,39,2,0,0,2,0,0,110529,113505,114531,111037,95454,96370,7010,7004,15,3000,3000,3000,1
+13509,180000,female,2,2,30,0,0,0,0,0,0,167539,171133,173037,170470,174373,163873,7782,6352,5883,6427,6500,5029,0
+13510,50000,male,3,2,41,0,0,0,0,0,0,15502,14446,10339,10766,10945,11214,1500,1500,600,500,600,500,0
+13511,50000,male,3,1,40,0,0,0,0,0,0,34582,25281,15264,12465,13262,13523,2000,2000,1000,1000,482,2000,0
+13512,50000,male,3,2,53,0,0,0,0,0,0,48019,49127,43711,33626,19371,19808,2279,1902,1000,841,900,692,0
+13513,200000,female,1,2,32,0,0,0,0,0,0,14254,19902,17822,15022,13051,10790,10000,2000,1000,2000,1790,1000,0
+13514,170000,male,2,1,35,-1,-1,-1,0,0,-1,3995,6300,15291,9085,5801,6603,6380,15291,182,116,6603,4000,0
+13515,50000,female,1,2,22,0,0,0,0,0,0,49086,48614,44211,27415,26630,8551,2047,1539,633,634,433,25586,0
+13516,440000,male,3,1,47,0,-1,-1,-1,-1,-1,98161,1238,1238,1238,1238,2165,1238,1238,1238,1238,2165,150000,1
+13517,100000,male,2,1,28,-1,-1,-2,-2,-2,-2,10000,0,0,0,0,0,0,0,0,0,0,0,0
+13518,50000,male,3,2,49,0,0,0,2,0,0,26116,27192,29535,28761,29298,30111,1500,2803,0,1000,1300,1200,1
+13519,220000,male,1,1,47,0,0,0,0,0,0,85224,69475,69651,68255,61183,60982,3209,2913,2435,2300,2378,2266,0
+13520,150000,female,3,2,43,-2,-2,-2,-2,-2,-2,1622,12946,0,0,1761,18304,13016,0,0,1761,18306,4275,0
+13521,20000,male,1,2,28,1,-2,-2,-2,-1,0,0,0,0,0,12723,30000,0,0,0,12723,18000,32200,0
+13522,160000,female,2,1,39,1,2,2,-2,-2,-2,40712,29920,0,0,0,0,0,0,0,0,0,0,0
+13523,50000,male,1,2,28,0,0,0,-1,-1,-1,44476,45984,20972,16359,1340,0,2869,1527,16408,1444,0,0,0
+13524,130000,female,3,1,40,0,0,-2,-2,-2,-2,102650,0,0,0,0,0,0,0,0,0,0,0,0
+13525,20000,male,2,2,36,0,0,0,0,0,-2,15198,19590,18514,30382,0,0,5000,2000,1000,6000,0,0,1
+13526,200000,female,2,1,34,-2,-2,-2,-2,-2,-2,28484,3440,8795,13676,-1282,-1282,3440,8795,13676,1282,0,0,0
+13527,20000,female,1,2,22,-2,-2,-2,-2,-2,-2,483,480,390,390,390,390,487,390,390,390,390,390,0
+13528,300000,female,1,1,39,-1,-1,-1,-2,-1,-1,1134,611,0,0,706,0,613,0,0,706,0,0,0
+13529,120000,female,1,2,25,0,0,2,0,0,0,105169,109456,105810,98712,84856,70059,8000,3000,4100,4000,3600,2000,1
+13530,360000,female,1,2,27,-1,-1,-1,0,0,-1,949,40,175512,74334,46985,50276,40,175539,1372,0,50276,13460,0
+13531,140000,male,1,3,59,0,0,0,0,0,0,141148,139572,86612,62906,83167,83315,4900,3340,1931,22444,2441,1657,0
+13532,210000,female,2,2,25,0,0,0,0,0,0,79453,61742,65068,73934,74752,82638,3000,5000,10000,2800,10000,5000,1
+13533,200000,male,1,2,30,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+13534,130000,female,1,2,28,0,0,0,0,0,0,31283,32045,28974,23386,23958,24740,1900,1500,1000,1100,1337,1500,1
+13535,240000,female,2,1,48,-1,-1,-2,-2,-2,-2,101,0,0,0,0,0,0,0,0,0,0,0,1
+13536,80000,male,3,1,65,0,0,0,-1,-1,-1,25043,17472,8922,3932,2900,0,1374,1026,3944,3208,0,0,0
+13537,500000,female,1,2,36,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+13538,320000,male,1,1,46,2,4,3,2,2,2,339202,337495,325700,313988,327542,317129,5000,0,0,23800,0,12165,1
+13539,210000,female,1,2,56,0,0,0,-2,-2,-2,203653,23520,0,0,0,0,5000,0,0,0,0,0,0
+13540,200000,female,2,1,42,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+13541,50000,male,1,2,37,2,0,0,0,0,2,11533,12951,22339,22669,24121,23540,1612,10000,1000,1820,0,696,0
+13542,340000,female,1,1,38,-1,-1,-1,0,0,-1,4397,13840,10780,8201,7675,5653,13847,10780,0,2000,5653,1976,0
+13543,240000,male,2,1,62,-1,-1,0,0,-1,2,1901,3855,3802,1901,2165,1965,3855,1901,0,2165,0,108,0
+13544,240000,female,1,2,28,0,0,0,0,0,0,46746,36935,29718,22828,19808,12606,1868,1683,1500,5000,2606,5000,0
+13545,50000,male,2,1,40,0,0,0,0,0,0,30211,48389,52230,18887,17693,18074,21190,5144,591,577,609,505,0
+13546,50000,male,3,1,55,2,2,2,0,0,0,19056,18586,17418,15004,15804,17443,1000,1000,1000,1000,4024,2000,0
+13547,20000,female,2,2,45,0,0,-1,2,2,2,13521,4964,882,882,914,930,1000,900,0,182,16,0,1
+13548,510000,male,1,1,35,-2,-1,0,0,-2,-1,0,2754,3700,0,0,102097,2754,1000,0,0,102097,3509,0
+13549,220000,female,1,2,25,1,-2,-1,-1,-1,-1,0,0,2598,640,168,1579,0,2598,790,168,1579,7203,0
+13550,220000,female,2,2,30,-1,-1,-1,-1,0,0,596,892,7681,11642,23030,22449,892,7681,20000,20000,0,0,0
+13551,60000,male,1,2,37,0,0,0,0,0,0,42372,35580,28330,28136,26752,27357,1500,1800,1088,1200,1200,1000,0
+13552,40000,female,2,2,26,2,2,2,2,2,2,5678,9900,9592,10433,10521,10203,4500,0,1000,400,0,2200,1
+13553,50000,male,1,2,64,0,0,0,0,0,0,46351,20055,18725,17848,14610,11314,1377,1165,522,1000,485,426,0
+13554,360000,female,1,1,46,-1,-1,2,2,-2,-2,600,2462,2274,0,0,0,2462,0,0,0,0,0,1
+13555,120000,male,1,1,51,1,-2,-2,-1,0,-1,0,-416,-1248,832,416,1398,0,0,2080,0,1398,0,1
+13556,20000,male,3,2,23,0,0,-1,0,0,0,17010,-820,19970,19580,20180,20000,0,21490,600,600,600,0,0
+13557,30000,male,2,1,33,0,0,0,-2,-2,-2,34914,35000,0,0,0,0,1000,18000,0,0,0,0,0
+13558,110000,female,1,2,29,-1,-1,-1,-1,-1,-1,316,316,316,316,466,316,316,316,316,466,316,632,0
+13559,170000,female,2,2,31,0,0,0,0,0,0,165987,169790,115786,72309,73812,75149,8400,4000,2210,2282,2159,1800,0
+13560,180000,male,2,1,48,-1,2,2,-2,-2,-2,919,919,0,0,0,0,0,0,0,0,0,0,0
+13561,50000,female,2,2,23,1,2,2,0,0,2,42586,43813,42779,38180,40685,37662,2200,0,1600,3300,0,1600,0
+13562,180000,female,1,2,28,-1,-1,-1,-1,-1,-1,47815,8473,950,13408,3819,1107,8480,957,13408,3819,1107,20679,0
+13563,80000,female,2,1,50,0,0,0,-1,0,-1,56602,14233,15729,3000,1500,1500,5000,5000,3000,0,1500,4473,0
+13564,20000,female,1,1,34,0,0,0,0,0,0,5048,6797,9489,11349,14176,15616,2000,3000,2000,3000,3000,3000,0
+13565,30000,female,3,1,57,0,0,0,0,0,0,17779,19097,19816,18471,16305,0,2000,1500,1000,841,0,1030,0
+13566,80000,male,2,2,28,-1,-1,0,0,0,0,10394,86115,77955,49955,47700,48689,77900,3694,1694,1454,1499,1711,0
+13567,200000,male,1,1,53,-2,-1,-1,-1,-1,-1,513,974,4271,3696,0,2099,974,4271,3696,0,2099,7784,0
+13568,120000,female,2,1,42,0,0,0,0,0,0,117059,117000,116955,109973,108693,104890,5026,4541,4100,4100,4000,4000,0
+13569,160000,female,5,1,52,0,0,0,0,0,0,202638,208706,210143,75166,68355,69602,7638,6263,2394,2274,2172,2291,0
+13570,500000,female,1,1,44,-1,-1,0,0,0,-1,301,11057,58508,57855,134,11421,11063,49019,134,0,11421,0,0
+13571,50000,female,2,2,22,0,0,0,0,0,2,45675,41712,29756,32418,34983,18175,3630,2000,3500,2713,0,193,0
+13572,50000,female,2,1,39,0,0,0,0,0,0,43724,45017,46106,28381,29546,29573,2000,2000,2000,2000,1000,1000,0
+13573,200000,male,1,2,41,0,0,2,0,0,0,24720,20982,20398,19888,22713,19405,3000,0,8000,5000,3000,0,0
+13574,30000,male,2,2,25,0,0,0,2,0,0,7298,8322,9826,9519,10362,11187,1147,1651,0,1000,1000,1000,1
+13575,190000,female,2,1,33,1,-2,-2,-2,-2,-2,-2500,-3000,-3000,-3000,-3000,-3000,0,0,0,0,0,0,0
+13576,120000,female,2,1,41,0,0,0,-1,2,0,14792,20084,0,6849,6598,16205,10000,0,6849,0,10000,2000,0
+13577,30000,female,3,2,39,0,0,0,0,0,0,27782,5585,29572,26387,11207,0,2023,27887,2000,1000,0,0,0
+13578,30000,female,3,2,27,-1,-1,0,0,0,-1,5334,697,12791,12490,13990,300,3565,12591,490,1500,300,0,0
+13579,310000,male,1,2,33,0,0,2,0,0,0,47224,51442,51531,51375,29069,29895,4900,1500,1000,1200,1200,1200,0
+13580,30000,female,2,1,31,0,0,0,0,0,0,28405,29639,30246,23774,24384,15855,4000,1555,631,769,317,0,1
+13581,440000,male,1,2,52,2,0,0,0,0,0,424606,418158,410821,403658,412248,456264,15010,14660,14500,15089,51000,27000,1
+13582,50000,female,1,2,27,3,2,2,2,2,2,33202,34370,34806,35433,36216,36969,2000,1300,1500,1500,1500,1100,1
+13583,70000,male,2,2,38,0,0,0,-1,0,0,71586,59856,15379,2985,29351,29977,1308,15006,3000,29100,1100,1100,0
+13584,260000,female,1,2,31,0,0,0,0,0,0,180891,165412,108223,108860,80757,79073,8250,5500,5000,3500,3000,4000,0
+13585,320000,male,1,1,46,-1,-1,-1,0,0,0,10836,19751,72623,61459,44390,29773,19799,73706,1692,1023,761,67235,0
+13586,210000,female,2,1,34,0,0,0,0,0,0,128553,109234,87567,83716,69925,64108,3762,3808,4177,2594,2442,2319,0
+13587,280000,female,1,1,29,0,0,0,0,0,0,58308,61024,62665,63730,57916,59122,4000,3000,2315,2103,2500,2000,0
+13588,140000,male,1,2,32,0,0,0,0,0,0,83768,79736,76167,66410,71150,75781,5000,6029,8000,6000,6000,3000,0
+13589,20000,female,3,2,22,0,0,0,0,0,0,14218,13573,14137,13737,12680,12067,1700,1500,0,0,1067,392,0
+13590,340000,male,1,2,25,-1,0,0,0,0,0,239715,421651,203784,181490,154478,135259,10469,6618,5168,5014,5398,2738,1
+13591,70000,female,3,3,39,0,0,-1,0,-1,0,34244,32193,10803,15133,3148,4699,3000,11000,5000,3150,2000,4000,0
+13592,120000,female,1,1,50,1,-1,-1,-2,-1,-1,-110,16390,0,0,660,0,16500,0,0,660,0,0,0
+13593,60000,female,2,2,24,0,0,0,0,0,0,57771,53334,0,41645,41833,41481,2336,1414,0,2000,1503,3200,0
+13594,30000,male,3,2,29,0,0,0,0,0,0,28547,29398,29864,30115,15818,13813,1700,1500,1010,1000,1000,1200,0
+13595,30000,male,2,2,29,0,0,0,0,0,0,12174,13309,13874,15304,8588,4873,1635,1200,1630,4000,1000,300,0
+13596,80000,male,1,1,25,0,0,2,2,0,0,48470,52374,52889,51520,50741,50322,4700,2000,0,1800,1850,1800,1
+13597,50000,male,2,1,49,0,0,0,0,0,0,28788,21485,18800,17272,14226,14991,1377,1500,500,2000,1000,2000,0
+13598,100000,male,3,2,37,0,0,0,0,0,0,20116,19319,16356,10144,8095,10140,4000,2000,4000,3095,5140,4122,0
+13599,60000,male,2,1,35,-1,0,0,0,0,0,60130,60655,56106,29270,29412,29798,3007,3015,5000,2000,3000,3000,0
+13600,10000,female,2,2,23,-1,5,4,3,2,2,4205,4003,3800,3597,3395,4187,0,0,0,0,1000,0,1
+13601,280000,female,1,1,41,-2,-1,0,0,-2,-2,939,8188,36670,0,1455,3023,8188,30000,0,1455,3023,24668,0
+13602,250000,female,3,2,47,-2,-2,-2,-2,-2,-2,7363,27415,0,1930,1643,1687,27474,0,1930,1643,1687,0,0
+13603,40000,male,2,1,48,0,0,-1,-1,-1,-1,1672,0,836,836,571,1735,0,836,836,571,2000,0,0
+13604,30000,female,1,2,25,1,2,2,2,0,0,29628,30453,30082,28933,25255,25344,1600,1000,7,880,3028,0,0
+13605,50000,male,1,1,57,0,0,0,0,0,0,42624,39943,7218,6946,6808,6542,2173,1248,366,500,384,500,0
+13606,70000,female,3,2,29,0,0,0,-1,0,0,70780,67741,40195,48568,49039,50387,3088,1787,50314,1768,2541,1588,0
+13607,130000,female,2,1,28,0,0,0,0,0,0,86914,85558,77163,80240,46637,51409,6134,3100,5000,3000,6000,13031,0
+13608,60000,female,2,2,24,0,0,0,0,0,0,60839,59316,59707,18490,19505,20197,3400,1705,1200,1300,1003,1000,0
+13609,200000,female,2,1,29,0,0,0,0,0,0,81568,81876,82617,83284,64520,54178,3500,3000,2500,3000,2000,2000,0
+13610,100000,female,1,2,33,0,0,2,0,0,0,90825,97242,94407,95124,96354,64168,8800,0,2951,2300,7174,2700,0
+13611,190000,female,2,2,30,0,0,0,0,0,0,194724,190781,191861,155967,153193,156494,8900,6200,5500,5600,5800,5600,1
+13612,20000,male,3,1,36,8,7,6,5,4,3,24166,23845,23214,22583,21662,21031,0,0,0,0,0,0,1
+13613,230000,male,1,2,42,-2,-2,-2,-2,-2,-2,380,380,380,380,380,380,380,380,380,380,380,380,1
+13614,90000,female,2,2,26,0,0,2,0,0,0,87561,92996,89866,48574,41746,38486,8548,0,1527,1617,1490,659,0
+13615,240000,female,1,2,29,0,0,0,0,0,0,191059,197548,203823,216971,223048,228755,10000,10000,17000,10000,10000,8000,0
+13616,20000,female,2,2,23,2,0,0,0,0,0,11995,13324,14029,14308,14625,18245,1528,1233,512,547,3880,0,1
+13617,20000,female,3,2,22,2,2,0,0,0,-2,19393,18801,19077,11993,0,0,0,1023,240,0,0,0,1
+13618,50000,female,1,2,24,0,0,0,0,0,0,2757,3776,4785,5031,5134,5138,1070,1079,325,332,238,1180,0
+13619,230000,female,2,2,40,0,0,0,0,0,0,72742,73256,66321,66271,62401,61510,5000,4023,5000,5000,5267,3000,0
+13620,430000,female,2,1,41,-2,-2,-2,-2,-2,-2,2830,21419,15555,6705,6705,5673,21419,0,6705,0,5673,7791,0
+13621,50000,male,2,1,34,0,0,0,0,0,0,48976,47404,46338,14234,19545,20173,2023,3105,3119,11000,909,3000,0
+13622,230000,male,2,2,32,0,0,0,0,0,0,143345,134344,116691,116220,112746,108653,6000,5000,5000,5000,5000,5038,0
+13623,240000,female,5,2,36,-2,-1,2,0,0,-2,-235,1765,871,871,-155,-155,2000,0,0,155,0,0,0
+13624,120000,female,1,2,30,-1,2,-1,-1,-1,-1,330,165,165,0,165,0,0,165,0,165,0,0,1
+13625,280000,female,2,1,26,0,0,0,0,0,0,256455,245712,231025,182159,80747,51689,8354,5501,4293,2079,1892,20012,0
+13626,500000,male,1,2,29,-1,-1,-1,-1,-1,-1,8898,1276,24031,41305,5405,32310,1283,24174,41306,5455,36914,12457,0
+13627,260000,male,2,1,53,-2,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0
+13628,140000,female,1,2,31,-1,-1,-1,-1,-1,-1,727,829,550,1045,432,898,829,550,1045,432,898,208,0
+13629,310000,female,3,2,28,0,0,0,0,0,0,220845,179260,116798,109647,114745,103646,7809,10000,10000,10334,10000,5000,0
+13630,50000,female,3,1,36,2,2,2,2,0,0,45557,46732,46589,30949,29857,30322,2200,1100,0,1224,1105,1400,0
+13631,50000,female,3,1,35,0,0,0,0,0,0,48829,49789,19726,20074,20121,17021,2046,3000,1500,1000,1600,1500,0
+13632,30000,female,3,2,29,2,2,2,2,2,0,15070,17509,17923,18134,17704,18256,3000,1000,800,0,1000,700,1
+13633,200000,male,1,1,43,0,0,2,0,0,0,142291,152679,148682,146505,150963,146553,14200,0,7000,7000,6500,11000,0
+13634,80000,female,3,2,33,0,0,0,0,-1,-1,73132,74668,77427,80700,15525,81621,2710,4000,5000,15525,81621,2493,0
+13635,310000,female,3,2,36,-1,-1,-1,-1,-1,-1,6282,5835,912,1688,5590,1649,5864,919,1696,5617,1657,4510,0
+13636,220000,female,2,2,26,0,0,0,0,0,-1,57222,160712,210445,74138,1808,95818,107789,54539,1483,1808,94020,2581,0
+13637,80000,female,2,2,26,0,0,-2,-2,-1,-1,35997,0,0,0,2345,2330,0,0,0,2345,2330,0,0
+13638,500000,female,1,2,38,0,0,0,0,0,0,56197,55246,62402,42594,43652,38254,5000,10004,8000,3000,5000,8000,0
+13639,100000,female,1,1,37,0,0,0,0,0,0,70113,71567,72410,73846,75556,77742,3181,2628,2640,2897,3600,2500,0
+13640,200000,male,1,1,37,-1,-1,-1,-1,-1,-1,4052,4503,0,1115,1336,1878,4520,0,1115,1336,1878,0,1
+13641,20000,male,2,2,39,0,0,0,0,-2,-2,8799,9671,11500,0,0,0,1171,2000,0,0,0,0,0
+13642,20000,female,2,1,28,0,0,0,0,0,0,74510,75262,49919,43303,27929,15530,2734,1200,1077,3000,633,8000,0
+13643,80000,male,2,2,38,0,0,0,0,0,0,54809,55944,57075,57745,59099,60489,2612,2655,2214,2435,2669,16981,0
+13644,110000,male,2,2,29,0,0,-2,-2,-2,-2,41300,0,0,0,0,0,0,0,0,0,0,0,0
+13645,100000,male,2,1,38,0,0,0,0,0,0,99660,99908,98052,94423,96056,97320,4600,3500,3400,3500,5000,3500,0
+13646,400000,male,5,1,30,0,-1,-1,-1,-1,-1,3443,69,188,188,177,2378,69,188,188,177,2400,11320,0
+13647,320000,male,1,1,40,-1,-1,-1,-1,-1,-1,430,430,430,430,430,430,430,430,430,430,430,430,0
+13648,180000,male,2,2,28,0,0,0,0,0,0,139097,131157,128342,122345,109228,101428,5699,4300,4023,3785,3684,4000,0
+13649,180000,female,2,2,27,0,0,2,0,0,0,5319,6531,5446,4853,3965,3310,2300,0,288,143,246,33,0
+13650,30000,female,2,2,22,0,0,0,0,0,0,30123,30299,27758,22720,19136,14452,1600,2000,2000,614,924,0,1
+13651,30000,male,2,2,35,1,3,2,2,2,2,14320,13808,13289,14068,14596,14212,0,0,1000,900,0,1431,1
+13652,240000,female,1,2,42,0,0,0,0,0,0,238107,242159,225695,210199,208307,203779,12067,10009,10000,10000,10000,30296,0
+13653,100000,female,1,2,24,2,0,0,0,0,0,76831,72100,66575,68499,69584,71247,4037,3000,3000,3000,3000,2600,0
+13654,90000,male,2,1,50,0,0,0,0,0,0,85241,86576,86914,28698,29722,29400,3600,2196,1027,1486,588,352,0
+13655,20000,male,2,1,22,0,0,0,0,0,0,19356,19754,20279,19887,19887,0,1485,1400,398,0,0,0,0
+13656,60000,male,2,2,28,0,0,2,2,2,2,37788,39366,41531,42048,41241,44056,2500,3114,1496,0,3500,0,1
+13657,90000,male,3,1,38,2,2,2,0,0,0,28774,29420,28502,30162,17274,15243,1400,0,2041,1007,1015,330,0
+13658,80000,female,2,1,40,-1,0,-1,-1,-1,-1,5143,8351,3234,1819,1909,1909,6458,3917,1819,2299,1909,3069,0
+13659,500000,female,1,1,34,0,0,0,0,0,0,174246,149600,83320,79359,57549,44994,6371,5000,10051,7549,2102,50000,0
+13660,430000,male,1,2,34,0,0,0,0,-1,0,81963,93893,100177,-3849,304425,293920,15000,70000,3116,313094,10300,15000,0
+13661,130000,male,1,2,27,-1,-1,-1,-1,-1,-1,339,339,339,339,339,339,339,339,339,339,339,339,0
+13662,500000,female,2,1,66,-1,-1,-1,-1,-1,-1,3718,1755,2988,11645,13237,303512,1755,2988,11645,13237,303512,0,0
+13663,350000,female,2,1,38,-1,-1,-1,-1,-1,-1,282,2728,1606,1015,24555,185,2750,1612,1017,24560,1000,917,0
+13664,320000,male,1,2,34,-1,-1,-1,-1,-1,-1,744,2291,2197,3934,5541,3141,2297,2203,3957,5557,3150,3056,0
+13665,160000,female,2,2,24,0,0,0,0,0,0,142214,145225,149812,151426,154688,158511,5300,7000,5600,5700,6400,6400,0
+13666,110000,male,1,2,25,2,0,0,0,2,0,109887,99030,89317,80674,79311,81246,3500,6748,5700,0,3200,5700,1
+13667,60000,female,3,3,53,0,0,0,0,0,0,57605,48877,39689,27736,28420,29002,2088,1900,962,1100,1023,963,0
+13668,260000,female,4,2,33,0,0,0,0,0,0,18457,22815,27086,27821,30767,29890,5000,5000,1137,5000,1085,5000,0
+13669,50000,male,1,1,47,0,0,0,0,0,0,49550,51636,53561,53283,53057,52908,2743,2668,1712,1762,1894,1670,0
+13670,270000,male,2,2,44,0,0,0,0,0,0,274610,274870,258759,225454,225032,225698,10556,10050,8370,8510,8250,10671,0
+13671,210000,male,1,1,52,0,0,0,-1,-1,-1,44933,38542,39332,11140,8463,10406,1793,8242,12000,8534,11000,7500,0
+13672,20000,female,2,1,29,0,0,2,3,3,2,16196,17825,20234,20510,19897,19900,2200,3000,900,0,500,0,0
+13673,30000,female,2,2,49,2,2,2,2,2,2,28859,28116,30226,29454,31775,30743,0,2900,0,2787,0,1445,0
+13674,500000,female,1,1,56,-1,-1,-1,-1,-1,-1,881,1035,29944,10528,17907,3147,1035,29944,10528,17907,3147,5011,0
+13675,360000,female,1,2,31,-1,-1,0,0,-1,-1,24500,2251,7714,4502,1896,5117,2251,5463,2251,1896,5117,7172,0
+13676,90000,male,2,2,30,-1,-1,-1,-1,-1,-1,2629,1076,1613,993,7881,1516,1079,1617,996,7904,1521,413,0
+13677,10000,female,2,2,28,0,0,0,0,0,-1,7797,8893,9665,9862,4854,1430,1228,1000,197,1597,1430,1184,0
+13678,200000,female,2,2,36,0,0,0,0,0,0,93863,93893,90837,85520,84945,81431,4762,3856,2753,2900,3000,2800,0
+13679,60000,male,2,2,37,1,-2,-2,-1,-1,-1,-391,-781,-781,389,389,609,0,0,1950,0,1000,0,0
+13680,80000,male,2,1,40,-1,-1,-1,0,0,0,5810,216,5741,6143,7039,26799,216,7741,500,1000,20000,1500,0
+13681,500000,male,1,2,32,-2,-1,0,0,0,0,11086,22919,35937,31227,21135,2632,23008,20046,5075,5103,2646,20642,0
+13682,50000,male,2,1,21,-1,0,0,0,0,0,47285,47807,48371,48629,49410,49568,2108,2062,1710,1923,1512,1000,0
+13683,50000,female,2,2,24,0,0,0,0,0,0,45404,38383,39851,27258,27679,28619,1700,2156,1200,1010,1400,970,0
+13684,200000,female,1,2,30,-1,-1,-1,-1,-1,-1,4520,10382,4447,126476,700,0,10382,4447,126476,700,0,860,0
+13685,470000,male,2,1,45,0,0,0,0,0,0,293261,279104,220728,198425,182826,130586,18000,10018,10000,10000,4771,6000,0
+13686,180000,female,3,1,41,-1,-1,-1,-1,-1,-1,6092,3576,13920,11112,3182,1985,4198,13935,11112,3182,1985,3276,0
+13687,240000,male,2,1,33,0,0,0,0,0,-1,23486,19867,14653,8626,0,1128,3000,2000,0,1790,1128,0,0
+13688,200000,male,1,1,30,2,2,2,2,2,2,2500,2500,2500,2500,2500,2500,0,0,0,0,0,0,1
+13689,20000,male,2,2,40,8,7,6,5,4,3,20753,20496,19930,19434,18577,18011,0,0,70,0,0,0,1
+13690,80000,female,2,2,32,0,0,2,0,0,0,11572,14038,14207,14643,14856,15160,2670,700,672,600,550,570,1
+13691,30000,male,2,2,54,0,0,2,2,2,2,10568,13075,13565,13055,13525,0,3000,1000,0,1000,2000,0,0
+13692,200000,female,1,2,35,-1,-1,-2,-1,0,0,816,0,0,3240,3240,0,0,0,3240,0,0,0,0
+13693,100000,female,2,1,38,1,2,0,0,0,0,66459,43930,25762,27848,66537,57506,0,1700,3000,40000,2500,2560,0
+13694,70000,female,3,1,30,2,2,2,2,2,2,56448,57550,58008,58957,60367,61617,2600,2000,2500,2500,2400,2500,1
+13695,140000,male,2,1,30,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+13696,30000,female,2,1,27,2,2,2,3,3,4,26648,27536,28203,29048,29903,30431,1600,1400,1600,1600,1600,1000,0
+13697,100000,female,2,2,27,0,0,0,0,0,2,96191,96908,97565,98561,103039,95803,3504,3500,3800,7500,0,3600,1
+13698,60000,male,2,2,38,0,0,0,0,0,0,42184,42108,41300,40840,40366,39737,2014,1616,1566,1700,1600,1400,0
+13699,50000,female,1,2,23,-1,-1,2,-1,-1,-1,8225,2763,2545,1170,2480,8047,5308,0,1170,2480,8047,4428,0
+13700,120000,female,1,1,35,-2,-2,-2,-2,-2,-2,0,0,0,0,0,150,0,0,0,0,150,974,0
+13701,50000,male,3,2,23,0,0,-1,-1,-1,-1,42821,6609,1600,5087,4270,7881,1008,1600,5087,4270,7881,1000,0
+13702,300000,male,2,2,28,0,0,0,0,0,0,293498,299066,295173,286885,287816,294383,13007,11067,10026,10500,11080,10500,0
+13703,360000,female,1,1,36,-1,-1,-1,0,0,-2,2471,467,10947,9594,0,0,1000,11000,0,0,0,37704,0
+13704,40000,female,2,1,36,0,0,0,0,0,0,24230,25840,27556,27447,26254,29645,2000,2500,1500,1500,4000,0,0
+13705,190000,female,2,2,40,-1,-1,-1,-2,-2,-2,18255,18779,0,0,0,0,19241,0,0,0,0,0,0
+13706,30000,female,1,2,23,0,0,0,0,0,0,14294,15253,2142,29288,26579,25972,1300,2000,28000,800,501,553,0
+13707,280000,female,3,2,47,2,2,-1,-1,2,-1,1792,0,2292,1153,607,3076,0,2292,1153,0,3076,4983,1
+13708,30000,female,2,2,23,0,0,0,0,0,0,25287,26501,30300,25806,26149,25478,2011,5000,868,1092,3000,1500,0
+13709,500000,female,1,1,32,-1,-1,-1,-1,0,0,185419,10573,0,282562,288459,293233,10573,0,282562,11000,9572,8928,0
+13710,260000,female,1,2,32,-1,-1,-1,-1,-1,0,1694,5499,1384,2085,5351,3179,5525,1390,2095,5361,15,1894,0
+13711,60000,female,2,1,46,0,0,0,0,0,0,20351,21395,22388,22431,22324,22601,2000,2000,1000,1000,2000,0,0
+13712,70000,female,3,1,36,0,0,0,2,0,0,28518,29558,32054,31239,31935,32602,1504,3000,0,1200,1200,1300,1
+13713,30000,male,2,2,27,2,2,2,2,2,0,25465,29058,28236,29383,24131,26979,4000,0,2000,0,5000,2000,0
+13714,300000,male,3,1,37,-1,-1,-1,-1,-1,-1,4926,2847,3351,1961,4409,2503,2855,3357,1965,4419,2509,1139,0
+13715,30000,female,2,2,22,2,2,2,2,2,2,26163,26449,27915,27170,29071,29446,1000,2201,0,2500,1001,6,0
+13716,40000,male,3,2,43,2,2,7,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,1
+13717,80000,male,1,2,25,0,0,0,0,0,0,65734,58048,53012,53571,56721,57312,3000,3404,2000,4000,3000,5000,0
+13718,50000,male,1,2,35,0,0,0,0,0,0,48264,19142,18188,18397,18161,18383,1565,7240,795,1000,673,647,1
+13719,90000,female,1,1,38,-1,-1,0,0,-1,-1,2346,15271,16360,41936,538,2716,15271,2000,30000,538,2716,652,0
+13720,260000,male,1,2,29,2,2,2,2,2,2,2497,2497,2497,2497,2497,2497,0,0,0,0,0,0,1
+13721,100000,female,1,1,58,1,2,2,2,2,2,27044,26325,30882,30090,34419,33714,0,5000,0,5000,0,5000,1
+13722,280000,male,1,2,34,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+13723,80000,female,2,1,22,0,0,0,0,-2,-2,17087,15576,16361,0,0,0,1500,1049,0,0,0,0,0
+13724,150000,female,2,2,27,0,0,0,0,0,0,143596,147891,147248,139846,142808,150770,6241,5000,4400,4500,9600,0,0
+13725,90000,female,2,2,39,-1,0,0,-2,-1,0,2618,8489,371,385,13273,20971,7639,11336,1501,13278,10022,14045,0
+13726,130000,female,1,1,33,-1,2,0,0,0,-1,10653,7439,15206,12446,7047,5472,13,12454,30,21,5488,1725,0
+13727,210000,male,2,2,36,-1,-1,-1,0,0,-1,5491,8398,14307,17891,8517,23960,8406,14307,6000,0,23960,1000,0
+13728,420000,female,1,2,44,-1,0,0,0,0,0,559,1560,3360,3343,3091,3578,1001,2400,100,62,1276,1500,0
+13729,500000,male,1,2,39,0,0,0,0,-1,-1,128068,143227,52196,43180,1095,856,20000,12000,0,1095,856,50000,0
+13730,180000,male,1,2,30,1,-2,-2,-2,-1,-1,-203,-698,-193,-688,817,1157,0,1000,0,2000,1000,2000,1
+13731,150000,female,2,1,36,0,0,2,0,0,0,141460,145408,142139,137453,139827,136320,8021,5066,6000,5029,5016,5100,0
+13732,440000,male,1,2,30,0,0,0,0,0,0,50735,52938,54190,45962,47421,49512,3000,3000,2000,2150,3000,3000,0
+13733,50000,male,1,2,27,0,0,0,0,0,0,49114,49907,38376,19595,19851,20256,2005,1323,840,713,727,701,0
+13734,140000,male,2,1,29,-1,-1,-1,0,0,-2,3300,1300,3074,594,0,0,1300,3668,0,0,0,0,1
+13735,150000,male,1,2,29,0,0,0,0,0,0,119613,115349,109765,101179,99940,96190,5900,5019,4588,4500,5000,5000,0
+13736,150000,female,2,2,27,2,2,-1,-1,-1,-2,573,0,220,693,0,0,0,220,693,0,0,0,0
+13737,480000,male,6,2,49,-2,-2,-2,-2,-2,-2,7174,0,0,0,0,0,0,0,0,0,0,0,0
+13738,100000,female,1,2,35,0,0,0,0,0,0,99031,90779,84891,76232,77833,74885,3300,4300,3000,2626,2913,2600,0
+13739,310000,female,1,2,33,0,0,0,0,0,0,71855,72440,63399,59912,45740,44325,5000,5000,3000,25000,3000,2000,0
+13740,280000,female,1,2,27,0,0,0,0,0,0,56144,58180,34855,36000,37684,22478,5000,5000,2000,2000,2000,2000,0
+13741,60000,male,2,2,51,-1,0,0,0,0,0,10304,11330,12334,13319,14447,15549,1500,1500,1500,1500,1500,1500,1
+13742,160000,female,1,2,31,1,-2,-2,-2,-1,-1,-200,-200,-200,0,10199,0,0,0,200,10199,303,0,0
+13743,90000,male,2,1,48,0,0,0,0,0,0,51666,52385,51790,50346,48745,46842,2919,3005,1700,1722,1414,1061,0
+13744,50000,female,1,2,28,-1,-1,-1,-1,-1,-1,2926,1252,435,1309,589,1210,1254,435,1309,589,1210,1065,0
+13745,200000,female,2,1,26,0,0,0,0,0,0,45487,47247,48160,49361,50564,51572,2800,2000,2000,2000,2000,2000,0
+13746,240000,male,2,2,67,0,0,0,0,0,0,508581,471796,468202,442401,419209,425061,17389,80167,15167,16000,13133,196084,0
+13747,200000,female,1,1,32,-1,-1,-1,-1,-1,-1,846,810,1198,6081,4203,3044,864,1198,6081,4203,3044,0,0
+13748,100000,female,2,2,23,-2,-2,-2,-1,-1,0,101771,102878,79618,4370,78453,80063,3800,7,971,79681,2861,2698,1
+13749,50000,female,1,2,29,2,0,0,0,0,0,45367,46815,10099,8686,8614,6977,2335,1629,500,500,1000,1000,1
+13750,240000,female,1,2,30,-1,-1,-1,-1,-1,-1,1749,1087,3503,1003,1003,1003,1099,6430,1003,1003,1003,203,0
+13751,300000,female,1,2,25,1,-2,-1,0,0,0,-4,-231,10610,10520,120,0,227,10841,0,100,0,0,0
+13752,350000,female,3,1,43,-1,2,-1,0,-1,-1,14103,5397,54554,92400,3520,3330,0,54554,83288,3520,3330,21852,0
+13753,50000,female,3,1,26,1,2,0,0,0,0,48421,42779,34992,25916,27207,26192,0,1424,1500,1677,1500,1500,1
+13754,50000,female,2,1,36,0,0,0,0,0,0,46801,38296,28923,29254,29313,29661,2839,1438,1159,1035,1196,1007,0
+13755,30000,female,2,2,25,2,2,2,2,2,2,24022,25038,25429,25714,26353,26868,1700,1100,1000,1200,1100,1200,1
+13756,50000,male,2,1,47,-2,-2,-2,-2,-2,-2,-2640,0,2640,0,1000,4702,2640,2640,1500,1000,4702,36015,0
+13757,20000,female,2,1,34,0,0,0,2,3,2,6827,7759,9618,10313,9863,9558,1200,2000,1000,0,0,508,1
+13758,270000,female,2,2,30,0,0,0,0,0,0,280435,276971,225836,219426,210514,180129,13600,8000,7000,10000,7000,10000,0
+13759,380000,male,1,1,49,2,0,0,0,0,0,380933,380703,356474,308948,547880,309322,14651,12238,13479,13532,12015,11525,1
+13760,10000,female,2,2,22,5,4,3,2,2,2,8541,8270,7995,7720,8224,7944,0,0,0,778,0,158,1
+13761,80000,female,2,2,29,0,0,0,0,0,0,7880,8316,4761,5964,5697,2590,3034,3002,2093,1023,1000,1000,0
+13762,240000,female,2,1,35,2,2,2,2,2,2,32463,33444,33996,34539,35238,35910,1800,1400,1400,1400,1400,0,1
+13763,280000,female,1,2,35,0,0,0,0,0,0,211645,213513,106539,106361,108590,110915,6445,5245,3800,3881,4069,4035,0
+13764,160000,male,1,2,41,0,0,0,0,2,2,42863,43874,44843,50072,49142,52336,2000,2000,6000,0,4200,2000,0
+13765,180000,female,1,2,25,0,0,0,0,0,0,112403,83515,71259,66661,62770,58067,3500,3500,3000,3000,2300,2400,0
+13766,50000,female,2,1,35,0,0,0,2,0,0,4555,5764,6974,5315,4645,3955,1290,1500,0,1000,1000,1500,0
+13767,50000,male,2,1,37,0,0,0,0,0,0,33105,31113,26669,29876,29257,28071,10005,5000,4800,1002,2000,2000,0
+13768,20000,male,2,2,22,1,2,2,2,0,0,14380,13536,15040,14174,14472,14763,0,2040,0,526,532,1585,0
+13769,20000,male,2,2,33,0,0,0,0,0,0,18357,18668,19597,19589,19275,0,1471,1400,392,386,0,0,0
+13770,140000,male,1,2,27,0,0,0,0,0,0,72274,70098,60180,43920,42670,41584,3231,2290,3499,1800,2000,2000,0
+13771,360000,male,2,2,28,-2,-2,-2,-2,-1,0,0,0,0,0,1090,8788,0,0,0,1090,7910,170027,0
+13772,180000,male,2,1,49,-1,-1,-1,-1,-1,-1,26660,660,660,660,36906,1470,660,660,660,36906,1320,0,0
+13773,390000,male,1,1,36,-2,-2,-2,-2,-1,-1,3931,3625,1600,3815,8330,4765,3625,1600,3315,11645,4765,2171,1
+13774,30000,female,3,1,33,1,2,2,2,0,0,39995,38049,35435,31976,29704,27687,1700,1100,0,1030,1000,3330,0
+13775,210000,female,1,1,35,-1,-1,-2,-2,-2,-2,3805,0,0,0,0,0,0,0,0,0,0,0,0
+13776,20000,male,2,2,24,0,0,0,2,0,0,6128,7171,9582,9282,9977,10812,1300,2700,0,1000,1000,0,0
+13777,450000,male,1,1,43,2,2,-2,-2,-2,-2,1000,0,0,0,0,0,0,0,0,0,0,0,0
+13778,50000,male,3,1,24,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+13779,50000,male,3,2,46,1,2,0,0,0,0,49220,48161,49310,49725,49910,48694,0,2000,1900,2007,2000,2012,1
+13780,20000,male,2,2,39,2,2,2,0,0,0,19518,20202,19082,18890,19287,19751,1299,0,667,692,776,3730,1
+13781,200000,female,1,2,39,-1,-1,-1,-1,-1,-1,7475,15540,3889,10496,31948,33016,15617,3927,10549,32108,33181,8910,0
+13782,230000,female,1,2,27,0,0,0,0,0,0,70327,66310,54176,42944,40391,35820,2963,1941,1534,1532,1565,1330,0
+13783,50000,male,2,1,41,2,0,0,0,0,0,48958,48293,48999,7470,6406,3679,2572,2602,349,706,500,1000,1
+13784,50000,female,2,2,26,0,0,2,2,2,2,44883,47349,47475,46730,27204,9662,3189,1500,101,1590,0,194,0
+13785,50000,male,1,2,57,0,0,0,0,0,0,51102,50484,49175,21944,20142,18728,2500,2158,927,696,1000,374,0
+13786,20000,male,2,2,23,0,0,2,2,0,0,9811,15726,15723,15173,15925,16245,6097,547,0,1000,585,1000,0
+13787,40000,male,1,1,47,2,2,2,2,2,2,11084,12605,13102,12595,14386,14005,2000,1000,0,2000,0,2000,0
+13788,100000,male,1,2,26,-1,-1,-1,-1,-1,-1,567,390,508,0,4580,2274,390,508,0,4580,2274,0,0
+13789,150000,female,2,1,43,0,0,0,0,0,0,158844,149298,157537,162697,113925,116382,10004,10009,8014,5008,5012,5000,0
+13790,240000,male,1,1,36,0,0,0,0,2,2,14559,15513,17242,18450,18013,19406,1500,2000,1500,0,1700,700,0
+13791,360000,male,2,1,37,-2,-1,-1,0,0,-2,-5,3584,2280,2280,0,0,3589,2280,0,0,0,0,0
+13792,130000,male,1,2,43,0,0,0,0,0,0,130874,132743,131862,101971,101689,101303,5500,6000,4000,4000,4000,3800,0
+13793,50000,female,2,2,23,0,0,2,2,0,0,10587,25768,12218,13656,15918,10771,3500,2500,1980,3500,1000,0,0
+13794,160000,male,2,1,60,0,0,0,0,0,0,18056,19385,20093,20643,20920,21336,1626,1334,884,758,763,942,0
+13795,340000,female,2,1,32,0,0,0,0,0,0,34228,96716,74983,43557,15559,0,75113,2047,766,77,0,394,0
+13796,20000,male,3,2,23,0,0,0,-1,-1,-1,2331,3544,3064,1587,-193,3107,2700,2300,2100,0,5000,0,1
+13797,60000,male,3,2,52,0,0,0,0,0,0,22460,23592,24665,26305,23756,25353,1500,1500,2000,1500,2000,2000,0
+13798,220000,female,2,1,35,0,0,0,0,0,0,223150,226034,227153,174717,171145,174076,10000,9200,6300,6200,6600,9000,0
+13799,280000,female,1,1,32,-1,-1,-1,0,0,-1,1280,2816,10802,23323,17041,282,2816,10802,13000,10041,282,7501,1
+13800,60000,male,2,1,30,0,0,0,0,0,0,58920,60069,54853,59509,30565,30031,2319,1887,1500,1500,1300,1200,0
+13801,230000,male,1,1,42,2,0,0,0,0,0,222059,161817,160270,60604,60986,62195,7300,4160,2308,2300,2223,2304,1
+13802,240000,female,1,2,30,-1,-1,0,0,0,-1,325,18428,32384,22749,7804,290,18428,15000,0,0,300,350,0
+13803,420000,female,1,1,29,-2,-1,-1,-1,-1,-1,3020,2916,1985,6850,1822,4249,2916,1985,6860,1822,4249,444,0
+13804,230000,female,2,2,31,0,0,-2,-1,-1,0,47906,0,0,1255,80158,81775,0,0,1255,80158,3107,2857,0
+13805,30000,female,1,2,26,1,2,0,0,0,-1,30739,29586,29412,18587,1558,4681,0,1331,49,5,5363,8,1
+13806,210000,female,2,1,30,0,0,0,0,0,0,134664,136326,135173,124843,125294,104545,6006,5005,8500,4392,4000,4000,0
+13807,250000,male,1,2,29,0,0,0,0,0,0,51268,52542,53779,54503,55685,57985,2500,2500,2000,2000,3000,4100,0
+13808,70000,female,2,1,34,0,0,0,0,0,0,58053,53334,54448,55700,51511,52652,2000,1999,2181,1900,2000,2142,0
+13809,20000,female,2,2,43,0,0,0,0,0,0,20212,20749,19930,15961,20107,19275,1415,1400,421,6000,3000,13000,0
+13810,130000,male,3,1,44,0,0,0,0,0,0,123770,122189,118909,84865,86846,88069,4600,4871,3500,3500,3500,3100,0
+13811,460000,male,1,1,41,0,0,0,0,0,0,321987,318546,316330,325874,325857,327232,12000,12850,16700,11200,12000,11080,0
+13812,170000,female,2,2,29,0,0,-2,-2,-2,-2,5155,0,0,0,0,0,0,0,0,0,0,0,0
+13813,200000,male,2,2,31,-1,-1,-1,-1,-1,-1,7179,7626,3802,1271,1489,1260,7631,3803,1271,1489,1260,1373,0
+13814,70000,male,3,1,43,0,0,0,0,0,6,31796,32786,34242,35668,50052,51651,1500,2000,2000,15000,3000,0,1
+13815,200000,female,1,1,32,-1,2,-1,-1,0,-1,220,110,110,11946,32836,110,0,110,11946,21000,110,0,1
+13816,20000,female,2,2,30,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+13817,200000,male,3,2,55,0,0,0,0,0,0,195507,182942,176158,159556,162943,156612,7048,6000,6000,5800,6000,6000,0
+13818,250000,male,2,2,45,2,0,0,0,0,0,237510,241605,240337,242803,240521,245310,9076,9007,9031,9000,10011,9008,1
+13819,50000,male,2,1,34,0,0,0,0,0,0,37699,35203,15360,15031,12173,11728,2000,2000,1150,2000,1000,1000,0
+13820,30000,female,2,2,25,0,0,0,2,2,2,25664,26693,28456,29687,30690,31093,1448,2211,2000,1626,1049,11,0
+13821,50000,male,1,1,44,-1,0,0,0,0,0,50404,50782,49019,20208,19677,20153,2300,1440,1000,1000,2000,560,0
+13822,90000,male,3,1,45,0,0,0,0,0,0,13366,14394,16044,16080,16569,16744,1250,1900,600,747,599,775,0
+13823,360000,male,1,2,34,2,2,-2,-2,-2,-2,2500,0,0,0,0,0,0,0,0,0,0,0,0
+13824,290000,female,2,1,45,2,2,-2,-2,-2,-2,95,-6,-6,1217,1055,176,6,0,1223,1276,0,1190,0
+13825,170000,male,1,2,24,0,0,0,0,0,2,169883,171851,158426,96704,101555,97884,6808,4625,3510,9100,0,3500,0
+13826,290000,female,1,1,52,-1,-1,-1,0,0,-1,33765,2682,470,119955,119685,9780,2682,470,119685,0,9780,2412,0
+13827,30000,male,3,2,39,1,2,0,0,0,0,27934,27206,28404,24865,24528,25011,0,2000,1100,1100,1042,917,1
+13828,250000,female,1,1,25,-1,-1,-1,0,0,0,4769,6720,23393,13214,8162,5138,6720,23393,6000,0,3000,18148,0
+13829,210000,male,3,2,32,0,0,0,0,0,0,104558,105661,108462,69037,71416,73425,4268,5000,3000,3500,3500,3000,0
+13830,360000,female,1,1,30,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+13831,120000,female,2,1,37,0,0,0,0,0,0,78233,53236,35222,72861,74429,60783,2015,2200,39000,2500,2400,2250,0
+13832,170000,male,1,2,28,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+13833,20000,male,3,2,55,-1,3,2,0,0,-1,3413,3206,2250,1500,750,1650,0,0,0,0,1650,0,0
+13834,80000,male,2,1,25,0,0,0,0,0,0,77199,79640,48977,49369,49778,50404,3700,1600,1600,1610,1866,1200,0
+13835,200000,female,2,1,43,-1,-1,-1,-1,-1,-1,1875,2239,316,2681,3486,2296,2239,316,2681,3486,2296,3413,0
+13836,150000,female,1,2,32,0,0,0,0,2,2,35601,36488,35729,38117,37259,33010,2003,2000,3419,13,2088,9,0
+13837,110000,female,3,1,44,0,0,0,0,0,0,13348,70263,67431,64534,65873,66974,67431,2378,2458,2530,2338,1473,1
+13838,180000,female,2,2,26,-1,-1,-1,0,-1,-1,390,390,5248,4167,780,467,390,5248,5,780,467,3513,0
+13839,520000,female,3,1,41,-2,-2,-1,0,0,0,7322,2728,385425,387189,395445,402289,2728,415552,14000,14005,14000,15200,0
+13840,20000,male,3,1,44,2,2,2,2,0,0,12436,12943,15428,14883,15494,16086,1000,2700,0,850,850,850,1
+13841,180000,female,2,2,44,-1,-1,-1,-1,-1,-1,7432,7433,7184,7184,7344,7184,7433,7184,7184,7344,7184,7184,0
+13842,30000,male,3,1,36,-1,-1,-1,-1,0,-1,1493,1555,390,780,390,390,1858,390,780,0,390,0,0
+13843,380000,female,1,1,31,0,0,0,0,2,0,225905,225515,227387,197959,194710,199300,11000,9000,15000,0,8000,8000,0
+13844,160000,female,1,2,42,-1,-1,-2,-2,-2,-2,4980,0,0,0,0,0,0,0,0,0,0,0,0
+13845,220000,male,1,2,32,-1,-1,-1,0,0,-1,17715,316,632,632,316,316,316,632,316,0,316,632,0
+13846,250000,male,1,2,29,0,0,0,0,0,0,124442,93302,92934,94002,92826,88001,5000,5000,3500,4000,4000,5000,0
+13847,330000,male,1,1,53,1,-2,-1,-1,-1,0,-317,-2066,-3283,3542,7643,9584,569,817,6976,7645,2188,7,0
+13848,50000,male,2,2,26,2,0,0,0,0,0,24724,49102,49885,25773,25544,26264,25000,2010,796,957,1175,0,0
+13849,340000,female,1,2,35,-1,-1,0,0,0,0,484,15904,44852,41971,81011,38472,15904,30000,20000,50000,20000,10000,0
+13850,180000,female,2,1,41,0,0,0,0,0,0,99925,102359,96462,96846,95549,94131,5024,4300,3500,4000,4000,3650,0
+13851,30000,male,1,2,35,0,0,0,0,0,0,26974,28144,28280,25990,25999,26425,2000,1339,849,1125,1043,0,1
+13852,10000,male,3,2,45,1,2,2,2,0,0,9503,7238,9407,8126,8838,9039,0,2310,0,1000,500,335,0
+13853,120000,female,2,1,37,-1,-1,-1,-1,-1,-1,396,396,396,2707,3247,396,396,396,2707,3247,396,595,0
+13854,250000,female,2,2,38,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+13855,200000,female,1,2,39,-1,-1,0,0,-1,-1,2277,16002,13207,8738,6471,2723,16021,1005,185,6482,2731,3974,0
+13856,500000,female,1,2,32,0,0,0,0,0,0,298809,304686,307591,312314,318647,325369,12475,12650,11354,11545,12000,11000,1
+13857,90000,female,1,2,29,1,2,0,0,0,0,9370,9078,10267,10350,10564,10771,0,1500,550,529,531,550,1
+13858,80000,male,3,2,38,0,0,0,0,0,0,7790,9123,10656,11474,13117,15899,1467,2000,1000,2000,3000,0,0
+13859,740000,female,2,1,35,2,-1,-1,-1,-1,-1,960,8154,1477,15713,8988,25449,8229,1487,15754,9012,25596,7003,1
+13860,300000,male,1,2,34,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+13861,210000,male,3,1,44,-2,-2,-2,-2,-2,-2,1525,800,850,2340,2380,2694,800,850,2340,2380,2694,1530,0
+13862,230000,male,1,1,37,-1,-1,-1,-1,-1,-1,3102,30428,5711,5770,7652,17825,30580,5739,5799,7690,17914,360,0
+13863,270000,male,3,2,51,0,0,0,0,0,0,152979,101616,105562,6102,6741,65672,3500,4000,1000,1000,63000,3000,0
+13864,270000,female,1,2,32,0,0,0,0,0,0,54914,55423,57875,57456,33334,31723,3000,5000,3300,1337,1500,1000,0
+13865,180000,female,1,2,30,-2,-1,-1,-1,-1,-1,0,2647,735,2414,256,3858,2647,735,2414,256,3858,275,0
+13866,280000,female,2,2,30,-1,-1,-1,0,0,-1,1478,-3,12353,22633,7666,10260,0,12356,11079,1447,10310,290,0
+13867,50000,male,2,2,46,0,0,0,0,0,0,29254,26289,21751,20154,16784,17352,1737,1300,668,8000,1000,3100,0
+13868,20000,female,2,2,26,2,2,2,0,0,0,19017,20018,19384,19405,19978,19791,1600,0,600,847,670,483,1
+13869,170000,female,3,1,54,0,0,0,0,0,0,139211,136982,130585,127013,126635,127093,7020,7005,7000,6000,6000,6000,0
+13870,300000,female,2,1,39,0,0,0,0,0,0,145138,148586,151878,123417,104922,107005,5785,6163,4728,3811,3830,3970,0
+13871,20000,male,2,1,50,1,2,0,0,2,0,1065,675,1285,1895,1340,950,0,1000,1000,0,0,450,1
+13872,110000,female,2,2,31,2,0,0,0,0,2,1472,2785,5496,7496,9298,3340,1500,3000,2000,2000,0,93665,1
+13873,80000,male,2,1,54,1,3,2,2,2,0,47339,47270,46037,48457,47722,48678,967,0,3012,0,1569,1396,0
+13874,80000,female,1,2,23,0,0,0,0,0,0,69584,66342,60514,48965,29648,28737,2519,1838,1434,1015,1505,663,0
+13875,60000,female,2,1,48,0,0,0,-1,0,0,58794,59987,33908,19513,17281,16802,7296,1903,19513,759,851,390,0
+13876,30000,male,2,2,27,0,0,0,0,0,0,18951,17298,14793,15566,15014,15413,1270,1300,1000,1000,800,1000,0
+13877,40000,male,1,2,26,0,0,2,2,2,0,39723,12302,9369,22949,11188,13306,10000,92,15000,0,3000,4000,0
+13878,180000,female,3,1,43,1,-1,-1,-1,-1,-1,0,2602,498,498,1835,11337,2602,498,498,1835,10000,380,1
+13879,290000,male,2,1,50,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+13880,50000,female,1,2,26,3,2,2,2,2,0,27056,27031,28317,28568,27302,28171,700,2062,969,700,1500,1500,1
+13881,150000,female,1,2,32,-1,-1,0,0,0,-1,1663,14045,13155,15183,11498,2392,14045,1030,5183,0,2392,7007,0
+13882,50000,male,2,1,41,0,0,0,0,-1,0,50220,50756,49966,523,18450,18478,2055,1000,523,18868,806,968,0
+13883,20000,male,2,1,36,0,0,0,0,0,0,20710,21790,21017,19772,15628,12501,1739,1453,691,512,1430,0,0
+13884,180000,female,1,2,28,2,2,2,2,2,2,158245,161695,163620,165604,169075,172401,7400,6000,6100,6200,6200,6300,0
+13885,360000,male,1,2,30,-1,-1,-1,-1,-1,-1,30627,4297,2720,2040,2722,5057,4318,2740,2050,2736,5273,5105,0
+13886,90000,female,3,1,33,0,0,0,0,0,0,86960,85585,87235,84511,84488,86184,3200,3114,3000,3100,3100,3500,1
+13887,450000,male,1,1,48,-2,-2,-2,-2,-2,-2,20938,80176,37417,22048,20926,13187,80191,37417,22080,20926,13337,88744,0
+13888,140000,male,1,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+13889,400000,female,1,2,27,-1,-1,-1,-1,-1,-1,2691,426,426,27926,0,430,426,426,27926,27500,430,3504,0
+13890,50000,female,2,1,30,-1,2,-1,-1,-1,-1,4959,423,3139,2464,6170,0,0,6024,5428,6170,0,0,0
+13891,420000,female,2,1,50,0,0,0,0,0,0,405779,412684,411394,277995,249697,258353,16000,15000,182781,99000,13000,35000,0
+13892,390000,female,1,2,35,0,0,0,0,0,0,245997,243904,244361,243287,247613,246330,10800,9110,10000,9200,9000,15000,1
+13893,200000,female,2,1,40,-2,-2,-2,-2,-2,-2,39929,32910,17965,9846,13621,10466,33000,18000,9900,13650,10500,9900,0
+13894,130000,male,1,2,29,0,0,0,0,0,0,110524,108204,99784,71451,67024,62655,10000,5000,4000,4000,7500,8200,0
+13895,360000,female,1,2,36,-1,-1,-1,-1,-1,-1,1365,2703,863,390,390,3540,3000,1000,1000,390,3540,390,0
+13896,290000,male,2,1,46,0,0,0,0,0,0,196566,168372,171699,133147,135147,127087,7800,7839,4706,5400,4604,4900,0
+13897,120000,female,2,2,24,0,0,0,0,0,2,112336,113351,115515,113948,122127,121962,4200,4100,4100,10000,4560,0,0
+13898,40000,female,1,2,24,0,0,0,0,2,0,35225,35939,36606,38687,37296,38181,1933,1600,3000,0,1500,1500,1
+13899,500000,male,1,1,42,-2,-1,0,0,-2,-2,5121,29478,43892,6420,49240,6772,31305,43864,6453,49470,3723,103686,0
+13900,150000,female,1,1,36,-2,-2,-2,-2,-2,-2,16228,29414,4975,3960,2914,1068,30745,4975,5017,2914,1250,4734,0
+13901,240000,female,1,2,26,-1,2,-1,-1,0,-1,1611,1435,2236,3166,1925,3326,14,2236,3166,0,3326,490,1
+13902,80000,male,3,2,44,0,0,0,0,0,0,10350,10993,11865,11549,11549,11231,1199,1461,535,700,500,0,0
+13903,220000,female,1,1,48,-1,-1,-2,-2,-2,-2,3467,3327,839,-3,1856,1528,3340,840,3,1859,2134,1648,0
+13904,110000,female,1,1,31,-2,-2,-2,-2,-2,-1,0,0,0,0,163,63755,0,0,0,163,63755,2000,0
+13905,220000,female,2,1,52,0,0,0,0,0,0,52536,53624,43462,36222,19055,3098,4151,16992,5225,2000,1000,83020,0
+13906,100000,female,2,2,34,1,-2,-1,-1,-1,-1,0,0,1531,0,1799,0,0,1531,4886,1799,0,0,0
+13907,70000,female,3,1,42,0,0,0,0,0,0,6489,9372,11179,8688,8295,10147,3000,2000,295,1000,2000,1000,0
+13908,50000,female,2,1,27,1,2,2,2,2,2,15345,14812,16696,16134,17380,16958,0,2137,0,1503,0,800,0
+13909,200000,female,1,2,32,-1,-1,-1,-1,-1,-1,34500,10706,3835,12559,6764,7700,36659,3835,12559,6764,7700,4,0
+13910,220000,male,3,1,42,-1,-1,-1,-1,-1,-1,285,825,0,1230,3227,3820,825,0,1230,3227,3820,3650,0
+13911,200000,female,3,1,42,2,0,0,0,0,0,203340,205172,198577,141141,144216,144027,8064,9474,4944,5240,5214,10314,0
+13912,350000,female,1,1,43,-1,-1,-1,0,-1,-1,6337,4300,16229,56929,7082,4640,4300,16229,45000,108501,4640,638,0
+13913,80000,female,3,2,24,2,0,0,0,0,0,58850,59867,47925,23642,21707,20544,2700,4500,1000,933,5000,500,0
+13914,50000,female,2,2,56,0,0,0,0,0,0,48316,34161,33751,22467,19927,20352,1700,1760,898,864,900,998,0
+13915,200000,male,1,2,32,-1,-1,-1,-1,-1,-1,396,396,396,396,396,396,396,396,396,396,396,396,0
+13916,60000,female,3,1,31,0,0,0,0,0,0,27347,22915,22243,20938,22486,21394,5000,7243,5000,5000,5394,16000,0
+13917,50000,male,3,1,49,0,0,0,-2,-2,-2,50180,51400,0,0,0,0,2400,0,0,0,0,0,1
+13918,360000,female,1,2,33,-1,-1,-2,-1,-1,-2,7831,0,0,764,0,2844,0,0,764,0,2844,2219,0
+13919,30000,female,3,2,50,-1,-1,2,-1,-1,-2,178,1860,940,1110,0,0,1860,0,1110,0,0,0,1
+13920,90000,female,2,2,32,2,3,2,3,2,2,76442,76633,78174,78800,77417,82369,2000,3400,2500,0,6250,3100,0
+13921,200000,female,1,1,32,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+13922,100000,male,6,2,51,2,0,0,0,0,0,101658,97937,98893,101044,96045,97227,4134,3952,3611,3298,3401,3415,0
+13923,200000,female,3,2,49,0,0,2,0,0,0,196272,209034,203592,194238,192451,196355,17500,0,7000,7350,7300,11500,0
+13924,300000,female,1,1,26,-1,-1,0,0,-1,-1,1946,2612,3408,1908,1108,530,2612,1914,0,1108,530,100,1
+13925,10000,male,3,1,30,0,0,3,2,0,0,8315,11267,10626,10160,10052,9635,3258,0,0,357,400,300,0
+13926,400000,male,2,2,44,0,0,0,0,0,0,6902,7904,7566,7716,7722,7890,1216,1213,363,219,234,159,0
+13927,130000,female,3,1,34,1,2,2,2,2,0,126701,129388,130768,131858,125874,127988,6200,5000,4732,0,5000,5000,1
+13928,180000,male,2,2,50,-1,-1,-1,-1,-1,0,1156,396,776,776,1552,776,396,776,776,1552,0,776,0
+13929,370000,female,3,2,27,0,0,0,0,0,0,63412,159542,160885,162368,165591,121614,100000,6000,6000,8000,4500,3000,0
+13930,60000,female,1,2,46,0,0,0,0,0,2,30073,18385,20732,21196,23175,22724,3000,3000,1000,3000,0,3500,0
+13931,210000,female,1,2,29,0,0,0,0,0,0,205131,197019,196021,103522,145487,141876,10000,4720,50075,110000,10000,10000,0
+13932,70000,female,3,1,46,0,0,0,2,2,2,11332,12093,13891,13371,14654,14271,1250,2000,0,1500,0,600,1
+13933,20000,female,1,2,33,1,3,3,2,2,2,16180,16635,16082,15529,16525,16110,1000,0,0,1400,0,1504,0
+13934,200000,female,1,2,35,0,0,0,0,0,0,99291,87757,82417,83877,82814,35484,2742,3000,2018,2743,1578,9013,0
+13935,130000,female,2,1,30,0,0,0,0,0,-2,21996,19730,20456,20783,-290,-680,3000,3000,2000,0,0,1000,0
+13936,120000,male,2,1,38,1,2,2,2,2,2,116344,111960,115804,92542,83581,61650,0,6781,0,5550,0,0,0
+13937,330000,female,1,1,34,0,0,-1,-1,0,0,21576,24226,15577,89851,86005,121319,5002,15579,89851,5000,50000,100000,0
+13938,30000,female,3,1,54,2,2,2,0,0,2,23498,26400,25682,26155,27972,27374,3600,0,1200,2400,0,2300,1
+13939,480000,female,2,2,39,0,0,0,0,0,0,502904,481990,476680,402695,362128,347271,180000,17000,12638,12058,11101,9567,0
+13940,100000,male,1,2,39,-1,-1,-1,-1,-1,-1,1442,1261,1411,1411,1075,1139,1261,1411,1411,1075,1500,0,0
+13941,270000,female,1,1,43,-2,-2,-2,-2,-2,-2,1626,1443,1443,1443,9629,1773,1443,1443,1443,9629,1773,14524,0
+13942,40000,female,3,1,55,2,2,7,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,1
+13943,180000,female,2,2,34,1,2,0,0,0,0,180373,176063,175324,177197,181041,180044,0,7632,6083,6671,7515,6413,0
+13944,240000,male,2,2,25,2,0,0,0,0,0,178878,181717,165662,144277,112210,116047,6095,4729,5682,5500,5000,16290,1
+13945,210000,female,1,1,38,-1,-1,-1,-2,-2,-2,4868,13118,16114,3353,10775,2938,13174,16114,3353,10775,3000,16520,0
+13946,50000,female,2,2,23,1,-1,-1,2,2,0,3,34361,44804,44800,43576,44315,34361,10443,2001,1,2001,2001,0
+13947,230000,female,3,1,44,-1,-1,-1,-1,-1,-1,1424,6534,3733,1443,1443,1435,6553,3756,1443,1443,1435,2965,0
+13948,50000,female,2,2,24,-1,-1,-2,-2,-2,-2,2675,0,0,0,0,0,0,0,0,0,0,0,1
+13949,250000,female,1,2,41,1,3,2,0,0,-1,4649,3964,3281,934,467,12871,0,10,0,0,12871,0,0
+13950,120000,female,3,1,45,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+13951,160000,male,2,1,35,-2,-2,-1,-1,-2,-2,1822,2229,7110,1539,-1,1238,2229,7116,1539,0,1240,598,0
+13952,210000,male,2,1,29,-1,-1,-1,-1,-1,-1,1685,6644,3584,1756,732,730,6715,5800,6256,732,730,3050,0
+13953,260000,female,1,2,29,0,0,0,0,0,0,203896,196219,188608,172722,159826,146891,7282,6486,5712,5647,5386,5000,0
+13954,310000,female,2,1,32,0,0,0,0,0,0,73491,76452,78736,80590,82453,84252,4000,4000,3000,3000,3000,5000,0
+13955,50000,female,3,1,42,0,0,0,0,0,0,50427,48115,46991,47276,47870,47865,6506,2607,3312,13107,2648,0,1
+13956,360000,female,1,2,30,-2,-2,-2,-2,-2,-2,750,1166,398,0,418,1840,1166,398,0,418,1840,0,0
+13957,50000,female,1,2,24,0,0,0,0,0,0,49144,48202,43656,29466,29936,30350,1837,1462,1038,1086,1069,1034,0
+13958,240000,male,2,1,44,0,0,0,0,0,0,199446,200899,205084,194800,183962,188496,7500,10006,7000,7000,8000,7000,0
+13959,500000,male,3,1,49,0,0,0,0,-2,-2,74919,70287,10546,-4729,-10505,-14433,1862,1074,4753,5475,3751,28598,0
+13960,150000,female,1,1,40,0,0,0,0,0,0,152880,151333,151264,146328,148012,151014,6000,10031,4630,4918,9000,5104,0
+13961,160000,female,2,1,38,-1,-1,-1,-1,-1,-1,316,316,316,316,316,316,316,316,316,316,316,316,0
+13962,410000,female,2,2,42,0,0,0,-1,-1,0,37492,33535,7267,14190,132106,289397,1625,1031,14224,132116,163020,10014,0
+13963,50000,female,3,2,63,2,2,2,2,0,0,51432,50316,50866,48194,47233,50224,0,3600,0,3000,5001,2000,0
+13964,50000,male,3,2,38,0,0,0,0,0,0,47350,44948,40326,19576,19565,19531,1772,1301,835,856,854,672,0
+13965,170000,female,1,2,29,0,0,0,-1,0,0,115194,111991,22499,25015,34343,53403,10000,10000,25015,10000,20000,20000,0
+13966,100000,female,1,2,47,0,0,-2,-2,-2,-2,22970,0,0,0,0,0,0,0,0,0,0,0,0
+13967,230000,male,1,1,46,2,2,2,2,2,0,193112,197039,200300,203018,199689,202833,8500,8000,7500,0,6622,20200,1
+13968,20000,male,2,2,30,1,2,0,0,2,0,17819,17244,18938,19836,19390,19664,0,2000,1500,0,1000,1500,1
+13969,170000,female,1,1,50,-2,-2,-2,-2,-2,-2,3955,5269,1986,1611,316,1608,5269,1986,1611,316,1608,2957,0
+13970,160000,female,1,2,36,-1,3,2,-1,2,-1,598,598,168,1449,916,2133,0,0,1449,0,2133,0,1
+13971,400000,male,3,2,35,-1,-1,-1,-2,-2,-1,92,101,-42,-42,-42,1058,101,0,0,0,1100,1100,0
+13972,340000,female,1,2,29,0,0,0,0,0,0,82922,81084,74530,66897,64699,35540,3600,2962,2500,1800,1000,1000,0
+13973,90000,male,3,1,31,1,2,2,3,5,5,63276,61693,75670,83772,83401,81487,0,15000,10000,1500,0,1500,1
+13974,140000,female,1,2,32,-2,-1,0,0,0,0,0,10626,11579,10165,13067,92743,10626,1154,1000,3067,80000,3015,0
+13975,280000,female,2,1,27,-2,-2,-2,-2,-2,-2,747,0,5737,922,107,980,0,5737,922,107,980,648,0
+13976,180000,female,2,1,40,-1,-1,-1,0,0,2,632,316,166,6988,6822,466,316,166,6822,466,0,632,0
+13977,500000,male,1,1,53,1,1,-1,0,-1,0,7196,-1189,4639,2800,854,10854,0,7439,0,854,10000,13313,0
+13978,360000,female,1,1,34,-2,-2,-2,-2,-2,-2,9100,15658,1874,6330,-200,-200,15658,1874,6330,0,0,0,0
+13979,50000,male,1,2,23,0,0,0,0,0,0,8003,9025,9868,9406,9605,9805,1310,1153,400,350,360,350,0
+13980,220000,male,1,1,55,-1,-1,-2,-1,-1,-1,1782,0,0,80737,5381,2232,0,0,80737,5381,2232,121953,0
+13981,500000,male,1,1,35,0,0,0,0,2,0,143839,117883,100809,104716,101568,92150,4844,5095,7229,0,2843,1200,0
+13982,100000,male,2,2,41,-1,-1,-2,-2,-2,-2,780,0,0,0,0,0,0,0,0,0,0,0,0
+13983,20000,female,1,2,29,-1,-1,-2,-1,0,-1,3417,-802,-1282,1718,1238,1831,4,0,3000,0,1831,1500,1
+13984,80000,female,3,1,26,0,0,0,-1,0,0,76118,78451,55339,25374,20054,20249,4196,3569,26022,504,1000,133,0
+13985,160000,female,1,1,38,-1,-1,-1,-1,-1,-1,827,827,827,827,827,827,827,827,827,827,827,827,0
+13986,240000,male,2,1,39,1,-1,-1,-1,-1,-2,0,1263,-13,1667,-300,-300,1263,0,1680,0,0,1442,0
+13987,450000,male,3,1,36,-1,-1,-2,-2,-2,-2,550,0,0,0,0,0,0,0,0,0,0,0,0
+13988,50000,male,3,2,39,0,-1,-1,2,0,0,34390,810,19009,18035,18364,18670,810,51000,0,1000,1000,1000,0
+13989,150000,male,2,1,37,0,0,0,0,0,0,27707,28434,29356,30777,32193,32589,1477,1489,2000,2000,1169,1194,1
+13990,290000,female,2,1,36,0,0,0,0,0,0,154336,125684,111298,82204,82792,83832,3600,3010,3000,2500,3000,2500,0
+13991,50000,female,2,2,22,0,0,0,-1,0,0,29632,9856,9541,5411,4782,3192,6016,9021,6000,4000,2500,5000,0
+13992,80000,male,3,1,38,-1,-1,2,2,-2,-1,197,2348,1260,0,0,16640,4568,352,0,0,16640,0,0
+13993,50000,male,2,2,45,3,2,3,2,4,3,25867,29133,28371,31208,30149,29375,4000,0,3600,0,0,0,1
+13994,50000,male,2,1,30,0,0,0,0,0,0,14040,14903,7288,6662,4920,6060,1152,1032,166,149,2000,68,0
+13995,500000,male,2,1,42,0,0,0,0,0,0,114374,130999,153648,172515,178758,192589,50012,51343,70000,70000,80000,50000,0
+13996,500000,female,1,1,39,-2,-2,-2,-2,-2,-2,3220,0,15040,35498,19508,21199,0,15040,35498,19508,21199,10894,1
+13997,200000,female,3,1,40,0,0,0,2,0,0,44600,42954,44318,32010,33271,34297,3000,6032,0,3000,3000,3000,0
+13998,30000,female,3,1,22,2,2,0,0,0,0,30678,29893,29086,25352,25096,24920,1,1957,678,684,776,235,0
+13999,80000,female,3,1,51,-2,-2,-2,-2,-2,-2,387,2120,15094,4140,747,1053,2126,15094,4173,747,1053,0,0
+14000,50000,female,1,1,50,1,2,0,0,0,0,50175,48275,49646,44051,45912,45383,0,7775,3000,3000,5000,3000,0
+14001,50000,male,2,1,31,0,0,0,2,2,2,42159,43172,46450,45402,48677,47740,2000,4000,0,4000,0,2300,1
+14002,280000,female,2,2,38,0,0,0,0,0,0,94451,96041,98301,74624,75173,77419,4000,4033,3000,3300,3500,6259,0
+14003,260000,female,2,1,48,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+14004,30000,female,2,2,22,1,-1,0,0,0,0,-802,19786,20517,13167,10686,10074,21286,1154,413,372,500,1225,0
+14005,210000,female,1,1,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+14006,50000,female,2,1,31,0,0,0,2,0,0,45074,46546,48945,47994,48704,41189,2201,3600,0,1500,1500,1531,1
+14007,20000,female,2,1,29,0,0,0,0,0,0,10747,11558,9961,10310,10372,9838,1317,1150,499,361,573,193,0
+14008,310000,female,1,1,47,0,0,2,0,0,0,131559,135970,121016,111214,101957,92805,17839,0,5000,4000,4000,3000,0
+14009,100000,female,2,1,42,1,-2,-2,-1,-1,-1,0,0,0,1054,1230,1054,0,0,1054,1230,1054,1054,0
+14010,180000,female,2,2,36,0,0,0,0,0,2,161159,151558,154648,156584,166960,164012,7000,7100,6000,13100,0,6000,1
+14011,100000,male,1,2,26,0,0,0,0,0,0,18999,23699,9390,5781,8065,17277,5129,1227,1000,5914,10000,0,0
+14012,20000,male,2,2,25,-1,3,2,2,-2,-2,11657,11045,2160,0,0,0,0,21,10800,0,0,0,1
+14013,240000,female,2,2,46,0,0,0,0,0,0,128272,131718,135075,134705,143883,145643,5500,6004,3000,10500,4000,2000,0
+14014,200000,male,2,2,45,0,0,0,0,0,0,200996,194699,183344,153880,155359,158776,9200,9000,8000,6000,6000,6000,0
+14015,30000,female,2,2,24,-1,-1,2,0,0,-1,1104,1162,774,386,-4,16305,1164,2,2,0,16309,0,0
+14016,500000,female,2,2,38,-1,-1,-1,-1,-1,-1,18410,-10,1429,-601,120195,976,0,1439,0,120796,981,4829,0
+14017,230000,female,3,1,43,-2,-2,-2,-2,-2,-2,1099,2508,976,416,416,416,2508,976,416,416,416,416,0
+14018,110000,female,3,2,27,0,0,0,2,0,0,28686,32765,27864,25691,28257,24161,5000,7000,0,10000,4161,5000,1
+14019,230000,female,1,2,34,1,-1,0,-1,-1,-1,1103,16234,68813,4427,13882,41463,16286,65280,4446,13949,41660,9005,0
+14020,80000,female,1,1,45,1,2,0,0,2,0,74081,72329,74409,78180,76831,79570,0,3300,5600,0,4000,4000,1
+14021,200000,female,1,1,33,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+14022,80000,female,3,2,51,0,0,0,0,0,0,77499,77838,77790,80528,23567,25171,3000,3013,4000,2000,2000,2000,0
+14023,170000,male,2,1,30,0,0,0,0,0,0,150693,154424,148564,105858,105075,107358,7000,7000,4000,4000,4000,4000,0
+14024,120000,female,1,1,31,-1,-1,2,0,0,-2,413,4480,2080,2280,0,0,4269,0,200,0,0,0,0
+14025,100000,female,1,1,45,1,-1,-1,-2,-2,-2,0,5220,0,0,0,0,5220,0,0,0,0,0,1
+14026,210000,female,1,2,34,-1,-1,-1,-2,-1,-1,300878,2250,0,0,692,1560,2250,0,0,692,1560,1838,0
+14027,300000,female,1,2,26,-1,-1,-1,-1,-1,-1,3853,1946,790,3569,657,0,1946,790,3569,657,0,3412,0
+14028,70000,female,2,2,49,-1,-1,-1,0,-1,0,390,390,772,390,780,390,390,772,8,780,0,989,0
+14029,30000,female,2,2,40,-1,-1,-2,-2,-1,-1,944,-764,-1202,-2230,6770,9579,0,0,0,9000,4653,0,0
+14030,30000,female,2,1,51,0,0,0,0,0,0,10874,11896,12906,13162,13438,13705,1205,1215,471,488,491,508,0
+14031,80000,female,2,1,30,0,0,0,0,0,0,83093,78682,77416,53338,53749,51026,3204,3060,3000,2000,2000,8500,0
+14032,180000,female,1,1,37,-1,-1,-1,-1,-1,-1,29206,16231,8392,25062,13088,23174,16231,8405,25062,13088,23174,8556,0
+14033,360000,female,1,1,28,0,0,0,0,0,-2,164857,192513,178030,117997,0,0,30650,9300,6000,0,0,0,0
+14034,50000,male,2,1,46,0,0,0,0,0,0,48885,48793,34440,30889,30182,29912,2000,2500,2000,1500,5000,1500,0
+14035,170000,male,5,1,35,0,0,0,0,0,0,91109,88263,89620,90797,47200,47707,6006,4400,3827,2200,2500,2331,0
+14036,230000,female,2,1,40,-2,-2,-2,-2,-2,-2,0,0,0,144,225,0,0,0,144,225,0,0,0
+14037,500000,male,1,1,44,-1,-1,-1,-1,-1,-1,6723,17385,32046,32530,18896,17049,17410,32077,32579,18914,17069,16738,0
+14038,30000,male,2,2,26,3,3,2,2,2,2,12894,12404,12408,11912,13707,14328,0,500,0,2000,1000,1000,1
+14039,120000,male,1,2,31,-1,-1,-1,-1,-1,-1,1316,1316,1316,533,4116,9834,1316,1316,533,4116,9834,7100,1
+14040,200000,male,1,2,38,-2,-2,-2,-2,-2,-2,3388,-12,1081,1884,2089,7097,0,1093,1893,2097,7132,488,1
+14041,60000,female,3,1,38,0,0,0,0,-1,-1,26583,24825,23027,12947,390,700,1864,1206,259,390,700,13628,0
+14042,140000,male,2,2,39,1,2,2,0,0,0,143673,146921,143084,142011,136431,128118,7000,0,6000,5200,5000,5000,0
+14043,50000,male,3,2,44,0,0,0,0,0,-2,40151,38951,28984,29422,0,0,2000,2000,2000,0,0,0,0
+14044,90000,female,2,1,35,-1,-1,-1,-1,-1,-1,6574,3997,5740,27384,3665,26721,4192,5743,27391,3667,26724,1799,0
+14045,150000,female,1,2,28,-1,-1,-1,-2,-1,-1,893,2300,0,0,2222,0,2300,0,0,2222,0,0,0
+14046,250000,female,3,2,29,-2,-2,-1,-1,-1,-1,686,0,947,7385,3806,22319,0,947,7385,5301,46660,2964,0
+14047,100000,female,2,2,24,2,0,0,2,2,-1,17938,20486,21644,9209,6495,78080,2842,3000,0,6000,80900,0,1
+14048,320000,male,1,1,43,-1,0,0,0,0,0,18625,28143,32159,31851,3105,-45,10000,5000,0,0,0,0,1
+14049,50000,male,3,2,31,0,0,0,0,0,0,49415,49547,15464,15701,12192,12515,1278,1195,432,443,526,291,0
+14050,90000,female,1,2,28,1,2,2,2,2,0,56889,55407,64428,64767,65579,67328,0,10000,2000,2000,3000,3000,1
+14051,250000,male,2,2,42,0,0,0,0,0,0,212787,218035,223068,228051,233072,237879,9000,9000,9000,9000,9000,9000,0
+14052,120000,female,2,2,27,0,0,0,0,0,0,110686,103869,90809,67313,16040,116654,7000,5000,5000,4000,110000,4593,0
+14053,140000,female,3,2,24,0,0,0,0,0,0,126546,124926,111220,75706,69278,58589,4922,3910,4604,4000,3000,4000,0
+14054,330000,female,1,2,34,-1,0,-1,0,0,0,203,1558,39927,53430,44798,40341,1503,40003,15000,0,0,25017,0
+14055,500000,male,1,1,33,-1,-1,-1,0,0,-1,1901,3800,5239,5239,1559,2680,3800,5239,0,0,2680,299,0
+14056,30000,male,2,2,24,1,2,-1,-1,-1,-1,2706,1261,390,390,390,390,0,390,390,390,390,780,0
+14057,80000,male,1,1,41,2,2,2,2,2,2,79950,82956,83656,84457,83897,80159,4900,3000,3000,3100,0,11000,1
+14058,320000,male,1,1,40,1,-1,-1,-1,-1,-1,14,1200,2987,-13,2670,-4,1205,3002,0,2683,0,0,0
+14059,600000,male,2,1,50,0,0,0,0,0,0,225274,230414,237135,241033,246081,250971,8773,10561,8629,8934,8984,9306,1
+14060,200000,female,2,2,36,2,2,2,2,2,2,76308,78669,75995,79781,81533,80243,4000,0,5500,3000,0,6100,1
+14061,240000,female,2,2,39,1,2,0,0,0,0,228610,182982,150022,151787,154922,159113,0,7000,5000,5000,6000,6000,0
+14062,30000,male,2,1,54,0,0,0,0,3,2,6551,8482,10184,12408,11922,12167,2049,1851,2400,0,587,0,0
+14063,20000,male,2,2,33,0,0,-1,-1,-1,-1,14765,6371,4150,988,390,1935,1000,4150,988,390,1935,1316,0
+14064,130000,female,1,2,32,0,0,0,0,0,2,132105,130973,97006,60608,62065,60842,8000,4559,5000,5000,0,6000,0
+14065,190000,male,3,1,38,0,0,0,0,0,0,94921,97397,99789,102131,104491,106755,4000,4000,4000,4000,4000,4000,0
+14066,470000,female,1,1,46,0,0,0,2,0,0,42974,45277,54321,52932,46712,45537,3000,10000,0,6000,5000,10000,0
+14067,50000,female,1,2,29,0,0,2,2,0,0,15416,17392,18446,17852,18236,20524,2233,1639,0,672,2602,2000,0
+14068,250000,female,2,1,33,0,0,0,0,0,0,3694,4716,6126,7514,8883,12860,1090,1500,1500,1500,4200,1500,0
+14069,500000,female,1,1,45,0,0,0,0,0,0,193083,210013,218508,230776,245546,255905,21507,15020,20007,20007,15912,26402,0
+14070,500000,male,1,2,28,2,0,0,0,0,0,216657,174694,165203,136067,16120,93532,8508,4699,623,1590,93469,2554,0
+14071,60000,female,1,2,25,0,0,0,0,0,0,16006,16840,18001,18048,12583,12754,1400,1500,500,700,500,1000,0
+14072,20000,male,2,1,61,1,2,2,2,3,2,12961,13668,13145,15023,14510,13854,1209,0,2087,0,550,0,1
+14073,50000,male,2,1,50,1,1,-2,-2,-2,-2,36750,0,0,0,0,0,5000,0,0,0,0,0,0
+14074,20000,male,2,1,45,2,2,0,0,0,0,21136,20043,20192,19459,36290,19774,11,2505,2000,3000,1203,500,1
+14075,140000,male,1,2,27,0,0,0,0,0,0,7845,12338,13919,14019,4347,4729,5000,3000,300,500,4000,6000,0
+14076,80000,female,2,1,53,0,0,0,0,0,0,31333,32365,33380,34043,34756,35448,1541,1556,1219,1262,1270,1314,0
+14077,110000,female,2,1,29,0,0,0,0,2,0,106302,108590,107414,108887,107145,102075,5500,5224,7641,0,3785,3668,0
+14078,360000,female,1,2,39,-2,-2,-2,-2,-2,-2,3377,37305,5721,11379,7939,7081,37500,5749,11436,7978,3566,6109,0
+14079,50000,female,5,2,21,0,0,0,0,0,0,1211,3173,7076,7729,9442,9887,2000,4000,2000,2000,1000,2000,0
+14080,380000,male,1,1,52,1,-1,-1,-1,-1,-2,0,2879,1395,3261,0,0,742,1395,3261,0,0,0,0
+14081,50000,female,2,1,38,-2,-2,-1,0,0,2,18750,0,31288,27335,30626,29921,0,95000,1000,3700,16,518,0
+14082,300000,female,2,1,49,-1,-1,-1,0,0,0,300,97,6497,5897,6005,0,97,6500,0,408,0,30000,0
+14083,360000,male,1,1,29,0,0,0,0,0,-1,55104,52585,45914,8835,3421,2391,2094,1760,204,17,2403,0,0
+14084,60000,female,2,2,23,0,0,0,2,2,0,27104,28179,30586,30885,30268,30103,1500,2867,1080,0,1319,2200,0
+14085,30000,male,2,2,29,0,0,-1,-1,0,-1,7965,3101,3126,7365,3245,828,1000,3126,7365,0,828,8511,0
+14086,120000,male,1,2,28,0,0,2,2,0,0,9383,16571,16607,16043,16379,16706,7703,600,0,595,599,619,0
+14087,50000,female,1,2,26,-1,-1,-1,-1,-1,-1,1389,722,179,10100,13285,5489,722,179,10100,13285,5489,0,0
+14088,150000,female,2,1,40,-1,0,0,0,0,0,4083,10193,12620,13027,17760,83146,6248,4620,3027,7050,75415,6056,0
+14089,50000,female,2,2,23,2,2,-2,-2,-2,-1,4338,0,0,0,0,74,0,0,0,0,74,390,1
+14090,50000,female,2,2,23,0,0,0,0,0,0,50105,51099,50269,28553,30196,30208,2205,2204,1000,2013,5004,2009,0
+14091,50000,female,2,1,39,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,390,1
+14092,550000,female,1,2,28,0,0,0,0,0,0,257553,251236,246572,240595,237968,220199,12036,9071,8022,6797,7095,6469,0
+14093,190000,male,2,1,37,1,2,0,0,0,-2,49541,48458,46423,38493,0,0,0,1400,770,0,0,0,0
+14094,310000,female,2,1,37,0,0,0,0,0,0,44981,42940,43449,44925,42725,34303,1942,1460,1936,1742,1303,1249,0
+14095,110000,male,3,2,49,0,0,0,0,0,0,113928,112775,110399,48532,44703,47869,4915,4379,12466,5000,5307,5000,0
+14096,160000,female,2,1,27,-1,0,0,0,0,0,86772,71275,54769,39137,26971,3426,2805,1487,958,539,1000,390,0
+14097,200000,female,1,2,32,0,0,0,0,2,0,219146,212111,206307,204787,195475,191626,7950,7700,11800,4000,10000,10000,0
+14098,300000,male,1,2,29,-1,-1,-1,-1,-1,-1,696,696,696,696,696,696,696,696,696,696,696,696,0
+14099,150000,female,2,2,28,0,0,0,0,0,0,86787,89610,86738,75859,74108,75898,5120,4021,2500,3000,2800,1700,0
+14100,90000,male,6,1,57,-2,-2,-2,-2,-2,-1,0,0,0,0,0,585,0,0,0,0,585,0,0
+14101,210000,female,1,2,26,0,-1,0,0,0,0,6608,3582,63527,32088,16731,62561,3582,63000,20000,5000,52343,15000,0
+14102,360000,female,1,1,33,-1,-1,-1,-1,-1,-1,10571,11174,10000,10000,18335,18889,11174,10000,10000,18335,18889,19775,0
+14103,150000,male,1,2,28,0,0,0,0,0,-2,6065,9606,3425,3425,0,0,5000,1000,0,0,0,53082,1
+14104,100000,female,2,1,34,-1,2,-1,-1,0,0,296,148,620,296,148,0,0,620,296,0,0,563,0
+14105,180000,female,1,2,26,-2,-2,-2,-2,-2,-2,4312,2117,5944,2102,10214,0,2117,5944,2102,10214,0,0,0
+14106,270000,male,2,1,39,0,0,0,0,0,0,110917,114809,113771,103023,108340,96962,7005,6039,3367,20033,3486,3566,0
+14107,60000,male,2,2,53,0,0,0,0,0,0,56765,57849,57432,27126,27579,29085,3000,4000,2000,2000,2000,2000,0
+14108,220000,female,2,1,33,2,2,0,0,0,0,223904,211137,197721,181231,182649,182644,0,8240,6549,6605,6490,6319,1
+14109,200000,male,1,2,60,-1,-1,-1,-1,-1,-1,12716,12453,21910,12474,17785,12500,12453,21957,12474,17811,12500,0,0
+14110,120000,female,2,2,54,0,0,0,0,0,0,20157,19295,13531,10129,11581,12782,2000,1500,1500,2000,1782,2000,0
+14111,500000,male,1,2,43,-1,-1,-1,-1,-1,-1,37575,105652,51072,77094,77669,42059,107243,52090,78372,78949,42985,62793,0
+14112,50000,male,5,2,26,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+14113,30000,male,5,2,38,0,0,-2,-2,-2,-2,30000,-720,-720,-1500,0,0,0,0,0,1500,0,0,0
+14114,50000,male,2,1,35,0,0,0,0,-1,0,49008,49198,34239,14448,28799,29199,2171,2021,930,31074,1503,1030,0
+14115,20000,female,2,1,50,2,-1,2,-1,-1,2,390,780,390,549,1320,780,780,0,549,1320,0,0,1
+14116,240000,female,1,2,27,1,2,0,0,0,0,21260,20643,38552,18580,12773,5423,0,19000,437,1000,1000,5503,0
+14117,30000,male,1,2,28,0,0,0,0,2,0,10480,11503,12513,13804,13442,14066,1199,1209,1500,0,1000,1500,1
+14118,70000,female,3,1,45,0,0,0,0,0,0,69877,68751,69744,50190,49603,49469,2600,2215,2000,1800,2000,2000,0
+14119,50000,female,3,1,25,2,0,0,0,0,-1,49805,50654,41776,17083,9412,1038,2025,2062,2016,1022,1388,19000,1
+14120,500000,female,1,2,28,2,0,0,2,0,0,98541,102052,111690,78070,78376,80912,6000,13151,0,3000,5000,10000,1
+14121,170000,male,1,1,41,0,0,0,0,0,0,56742,49176,41969,37409,36214,30798,5019,10041,5012,5024,5012,11174,0
+14122,20000,female,3,2,22,-1,-1,-1,-1,-1,-2,390,390,0,780,0,0,390,0,780,0,0,0,0
+14123,100000,female,2,2,27,0,0,0,0,0,0,94656,88758,90357,89209,84983,81484,4171,4044,3420,3300,3886,2730,0
+14124,20000,male,1,2,23,1,2,0,0,2,0,18551,17469,18414,20234,18438,18225,0,1576,2396,0,1200,2500,0
+14125,210000,male,3,2,27,-1,-1,-1,-1,0,0,22431,2004,45408,28138,6356,2900,2010,45408,28138,2900,0,22427,0
+14126,50000,male,1,1,41,1,2,0,0,0,0,48063,46565,38617,8999,8870,5876,0,1906,500,500,300,1000,1
+14127,20000,female,3,3,43,1,2,-1,0,-1,-1,4094,1683,2924,1462,1462,6105,0,2924,0,1462,6105,0,0
+14128,190000,male,2,2,36,0,0,0,0,0,0,58107,60172,62206,63612,65422,67334,3000,3034,2439,3000,3000,3000,0
+14129,20000,male,2,1,35,-1,0,-1,-1,-1,-1,4966,3120,2549,2696,1188,2677,1200,2549,2696,1188,2677,3241,0
+14130,220000,male,1,2,31,0,0,0,0,0,0,75538,78315,80361,82199,84782,87284,4000,4000,4000,4000,4000,4000,0
+14131,20000,female,2,2,34,-1,-1,-1,-1,-1,-1,780,0,390,390,390,12190,0,390,390,390,12190,780,0
+14132,140000,female,3,1,32,0,0,0,0,0,0,88966,39565,41284,45793,40782,32283,3000,3000,10000,1400,1660,2000,0
+14133,20000,male,2,2,27,0,0,0,0,0,0,15526,33140,17589,18945,36552,18797,1300,1300,1650,850,1500,700,0
+14134,210000,female,1,1,50,-1,-1,-1,-1,-1,-1,90,90,90,90,180,90,90,90,90,180,0,90,1
+14135,220000,female,1,2,36,-1,-1,-1,-1,-1,-1,5385,5337,5484,5342,5618,5236,5363,5511,5368,5646,5262,3894,1
+14136,120000,female,1,1,38,-1,-1,-1,-1,-1,-1,980,4000,1000,0,19100,0,4000,1000,0,19100,0,0,1
+14137,50000,male,2,2,25,-1,3,2,0,0,0,10695,10386,9993,9993,15300,0,0,0,200,5307,0,0,1
+14138,230000,female,1,2,24,1,2,0,0,2,0,20887,18705,17295,18335,9320,1858,0,1200,3000,0,254,1637,0
+14139,20000,male,3,2,23,-1,0,0,0,0,0,9525,16977,18546,18846,18066,17463,8000,2000,900,0,1000,0,0
+14140,210000,female,1,2,31,0,0,0,0,0,0,140839,119171,119680,118070,111841,111716,4500,6000,5102,5000,5000,4000,0
+14141,210000,male,1,2,26,0,0,0,0,0,0,204824,209873,214775,111893,107697,105578,10000,10000,5000,4000,4000,4000,0
+14142,10000,male,1,2,38,0,0,-1,-1,-1,-1,8188,6780,390,390,0,780,1000,390,390,0,780,0,0
+14143,100000,female,2,2,28,-1,-1,-1,-1,-1,-1,1215,1042,1042,1004,1612,622,1042,1042,1004,1650,622,622,1
+14144,30000,male,2,2,23,0,0,0,0,0,0,27044,28384,29037,29667,29669,29995,2000,1427,1291,1029,1229,549,0
+14145,300000,male,1,1,40,-1,2,2,-2,-2,-2,7111,7111,0,0,0,0,0,0,0,0,0,0,0
+14146,140000,male,1,2,29,0,0,0,0,0,0,60764,62782,63636,65570,67354,69073,3000,2500,3000,3000,3000,3000,0
+14147,50000,male,2,3,35,0,0,0,0,0,0,4943,49411,48859,10076,8442,8610,45200,1285,332,306,308,173,1
+14148,200000,male,2,1,40,0,0,-1,0,0,0,1296,2035,120921,126429,85500,81305,2564,124500,8000,3500,4000,3000,0
+14149,260000,male,1,2,33,-1,-1,-1,-2,-1,-1,1025,799,-1,-1,358,492,803,0,0,359,494,0,0
+14150,250000,male,2,1,52,2,2,2,0,0,2,29086,33288,32459,34600,36539,38287,5000,0,3000,2500,2500,0,1
+14151,500000,female,1,1,52,-2,-2,-2,-2,-2,-2,144430,50001,62622,166818,78909,40268,50133,62646,166853,79331,40268,66607,0
+14152,60000,female,3,1,44,2,0,0,0,0,0,32202,29503,29538,29971,29798,28679,1802,1737,1170,1189,1230,1100,1
+14153,360000,female,2,2,25,-1,-1,-1,-1,-1,-1,442,442,442,442,434,442,444,444,444,436,452,886,0
+14154,90000,female,2,1,41,1,1,-2,-2,-2,-2,28636,-2364,-2364,-2364,-2364,-2364,0,0,0,0,0,0,1
+14155,150000,male,2,2,23,0,0,-1,0,0,0,151686,147474,7474,8173,87500,89731,3000,120000,823,80000,3684,4500,1
+14156,130000,male,1,2,54,1,-2,-1,0,0,0,0,0,6244,11108,11428,12233,0,6244,5000,500,1000,1000,0
+14157,120000,male,2,1,52,0,0,0,0,0,0,125022,127457,121408,119070,121696,119138,4509,9496,4252,4535,4304,4536,1
+14158,160000,male,2,2,29,0,0,0,0,0,0,128809,127595,115094,111678,105336,104306,5000,4000,5000,4000,3603,4200,0
+14159,500000,male,3,1,37,0,0,0,0,0,0,89574,91782,90989,83633,84491,85522,5053,6052,5038,7029,8018,4022,0
+14160,130000,male,1,2,28,-1,-1,-1,-1,-2,-2,500,0,35660,-20,-20,-20,0,35660,0,0,0,5350,0
+14161,360000,female,1,2,29,1,-2,-1,0,0,-1,0,0,70010,71610,73610,317,0,70010,2000,2000,317,11892,0
+14162,120000,male,2,1,51,0,0,0,0,0,2,115771,118818,119395,108802,99988,84253,5829,5900,4100,7100,0,17400,1
+14163,240000,female,2,1,41,1,-1,-1,-1,-1,-1,0,40529,3211,9795,11756,12522,40529,3211,9795,11756,12522,6199,0
+14164,50000,male,2,2,35,0,0,0,0,0,0,41970,31319,18172,18687,19234,19552,1291,1303,818,1000,787,559,0
+14165,30000,male,2,3,27,0,0,-1,0,0,0,14935,9000,13358,19332,18149,11743,4500,13358,18154,796,484,432,0
+14166,50000,male,1,2,25,0,0,0,0,0,2,19456,20486,21241,21788,23281,22756,1645,1400,900,2000,0,1000,0
+14167,80000,female,1,1,38,2,-1,0,0,-1,0,389,754,1965,390,985,370,755,1800,0,985,0,399,1
+14168,230000,female,1,2,27,0,0,-1,-1,-1,-1,7701,7744,6997,1386,5578,1386,2028,6997,1386,5578,1386,3495,0
+14169,50000,male,1,1,41,0,0,0,0,0,0,46631,46929,47393,22944,24071,24397,2100,1500,824,1500,877,2796,0
+14170,340000,female,1,2,42,0,0,0,0,0,0,374245,357516,334316,307974,318240,289763,15917,10126,1000,10521,279000,11000,1
+14171,170000,male,1,2,30,-2,-2,-2,-2,-2,-2,740,740,740,740,740,740,740,740,740,740,740,740,1
+14172,450000,female,2,2,32,0,0,0,0,0,0,14237,17907,14127,15988,19747,13986,5016,1139,2000,3938,1000,0,0
+14173,350000,female,1,2,36,-1,-1,-1,-1,0,-1,655,23524,-3626,6531,4440,750,23537,5,10971,0,750,0,0
+14174,50000,male,2,1,50,-1,-1,0,0,0,0,19061,49738,49986,8771,8628,7464,52498,1906,278,352,448,200,0
+14175,210000,female,2,2,25,-1,-1,0,0,0,0,461,6472,83589,73689,64854,66124,13966,80000,2326,2272,3661,0,0
+14176,290000,female,2,2,26,1,2,2,0,0,0,18099,18912,18249,20305,26615,27063,1400,0,2305,6615,1896,2358,0
+14177,180000,female,1,2,30,0,0,2,0,0,0,174847,181556,94532,22800,96940,99550,12151,0,2000,75206,4110,1807,1
+14178,230000,female,1,2,34,-1,0,0,0,-1,0,18482,22938,3569,2845,1935,6781,5000,1000,0,2000,5000,1000,0
+14179,140000,female,2,1,27,0,0,0,0,0,0,125273,125756,111799,107375,104299,106280,6000,6000,3910,3936,3871,3841,1
+14180,30000,female,1,2,24,0,-1,2,-1,0,0,2880,3285,2280,248,248,-150,3285,0,248,0,0,0,1
+14181,140000,female,1,2,26,0,0,0,0,0,0,136170,139270,137548,96340,94201,97068,6799,5100,3300,3400,7461,3498,0
+14182,50000,male,2,1,46,0,0,0,2,0,0,15220,16961,19930,19328,37113,19165,2000,3258,0,679,1528,587,0
+14183,80000,female,2,1,22,-1,-1,-1,-1,0,-1,1941,2132,1667,2146,1073,2761,2132,1667,2146,0,2761,1073,0
+14184,120000,male,1,2,28,0,0,0,0,0,0,35220,38036,38746,40107,41464,42680,3700,1640,2000,2000,2000,1800,0
+14185,400000,female,2,2,37,-2,-2,-2,-2,-2,-2,8948,10306,22263,20511,27808,8342,10306,22263,20568,27808,8342,14187,0
+14186,70000,male,2,1,43,0,0,0,0,0,0,93025,95655,66404,31688,17317,6270,3664,2127,618,738,125,0,0
+14187,190000,female,2,2,39,0,0,0,0,2,0,70396,65185,53691,56997,55956,58020,5000,2000,4200,0,3000,9000,1
+14188,60000,female,2,1,40,0,0,0,0,0,0,57030,48742,35628,31738,28217,29817,5000,2000,1022,1009,5000,1000,0
+14189,20000,female,3,1,38,-1,-1,0,0,0,-1,1118,12776,11417,16449,6989,2021,12783,1000,6782,670,2021,0,0
+14190,30000,female,3,2,50,-1,-1,-2,-2,-2,-2,665,0,0,0,0,0,0,0,0,0,0,0,1
+14191,450000,male,1,1,41,-1,-1,-2,-2,-2,-2,560,0,0,0,0,0,0,0,0,0,0,2274,0
+14192,70000,female,1,1,38,0,0,0,2,2,2,64839,65184,69361,69836,71179,69484,2400,5700,2600,3000,0,2800,1
+14193,160000,female,2,1,38,-1,0,0,0,0,0,61934,65918,67214,71604,75500,83933,5000,3000,6000,6000,10000,5000,0
+14194,140000,female,2,1,30,-1,-1,-1,-1,-1,-1,2290,2290,2292,3365,1567,1707,2290,2292,3365,1567,1707,1707,0
+14195,130000,female,1,2,26,0,0,0,0,0,0,7852,8871,9883,10079,10289,10495,1152,1164,360,372,376,540,1
+14196,70000,female,2,2,42,2,2,2,2,2,2,44689,45669,46621,45573,48678,47744,2000,2000,0,4000,0,2000,1
+14197,10000,male,3,2,34,0,0,0,0,0,0,7165,8647,9247,9431,8843,9075,2000,1141,325,331,389,1000,0
+14198,30000,female,2,2,54,0,0,2,0,0,2,29230,30786,27167,27440,30117,29523,3500,0,3000,6000,0,781,0
+14199,20000,male,1,2,42,0,0,0,-2,-2,-1,15610,18250,0,0,0,1000,3000,0,0,0,1000,8024,0
+14200,360000,female,2,2,44,-1,-1,-1,-1,-1,-1,10311,2758,1397,298,7950,60097,2758,1397,298,7950,60097,1200,0
+14201,50000,male,3,2,29,2,2,3,3,3,3,1050,1050,1050,1050,1050,1050,0,0,0,0,0,0,1
+14202,20000,male,2,2,24,1,2,0,0,0,2,16981,16424,17242,18448,19495,20026,0,1400,1500,1500,1000,0,1
+14203,110000,male,2,2,29,-1,-1,-1,-1,-1,-1,10839,2995,2419,4219,9704,6952,2995,2419,4219,9704,6952,5038,0
+14204,150000,female,1,2,40,-2,-2,-2,-2,-2,-2,-3,371,0,0,222,0,374,0,0,222,0,401,0
+14205,140000,female,2,1,30,0,0,0,0,0,0,21593,17636,17800,14869,12895,12833,2000,2000,2000,1000,1000,600,0
+14206,70000,female,3,1,47,0,0,0,0,0,0,70798,69923,66375,63639,64973,66391,2500,2350,2300,2360,2500,2300,1
+14207,80000,male,4,2,28,1,2,0,0,0,0,87377,84962,68301,32106,32776,31832,62,2145,1300,1310,1500,1215,0
+14208,80000,male,1,2,32,-1,0,0,0,-1,-1,14939,14457,2312,1156,1156,1469,1000,2000,0,1156,1469,0,0
+14209,50000,male,2,2,24,1,2,0,0,0,0,51116,49042,54439,9753,9952,9352,0,2327,1072,199,9000,298,0
+14210,100000,male,1,2,27,0,0,0,0,0,0,14712,19142,37882,40882,45683,5765,5000,20000,3000,5000,2000,2000,0
+14211,130000,female,2,2,35,0,0,0,-2,-2,-2,1923,1995,0,0,0,0,1000,0,0,0,0,0,0
+14212,400000,male,1,2,32,0,0,0,0,0,0,71991,80225,41429,25858,10219,15967,10242,10268,3000,4000,6070,2007,0
+14213,500000,male,1,2,41,-1,-1,-1,0,0,-1,326,628,6290,11604,24679,8642,628,6290,6000,14000,8642,326,1
+14214,450000,male,1,2,26,0,0,0,-1,-1,-1,20571,37283,43482,5626,73516,11854,20000,20006,5676,74306,11889,13347,0
+14215,80000,female,1,2,26,0,0,0,0,0,0,19891,20650,21002,19478,17882,5120,1576,1424,576,1000,102,300,0
+14216,500000,male,1,1,45,-1,-1,-1,-1,-1,-1,10147,7358,11727,10850,9061,13017,7395,11807,10904,9106,13081,7063,0
+14217,210000,female,1,2,32,-2,-2,-2,-2,-1,0,1400,2800,1400,1400,27100,25644,2800,1400,0,27100,1543,75000,0
+14218,440000,female,1,2,28,0,0,0,0,0,0,67594,64042,62021,59545,48225,40049,3000,3000,5000,3000,3000,3000,0
+14219,280000,male,1,2,27,0,0,0,0,0,-1,39664,28033,27292,16567,7021,10171,9022,10006,6000,1000,10200,7900,0
+14220,10000,male,2,1,50,2,2,7,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,1
+14221,210000,female,2,1,36,0,0,0,0,0,0,124011,119970,68742,65557,65287,64428,5011,3000,3000,3000,3000,2500,0
+14222,100000,male,1,2,26,0,0,0,2,0,0,96644,99119,97195,69299,68030,63601,5000,5900,0,2500,2500,2600,0
+14223,210000,female,1,2,33,0,0,-2,-2,-2,-2,6309,0,0,0,0,0,0,0,0,0,0,0,1
+14224,500000,female,1,1,37,-1,-1,-1,-1,0,0,993,1413,14123,159738,158400,160588,1413,14123,159738,4285,5001,4294,0
+14225,150000,male,1,1,39,0,0,0,0,0,0,65627,64803,62844,61785,61136,57287,2982,2803,2019,2060,2098,2024,0
+14226,390000,female,1,1,40,1,-1,0,0,0,0,30245,227123,211996,210100,206462,203201,236533,38142,15152,38097,23080,15055,0
+14227,100000,female,2,1,26,2,0,0,0,0,0,97361,96265,49380,29152,28832,29949,4732,1500,1500,1500,1500,1964,1
+14228,300000,male,1,1,45,-1,-1,-1,-1,-1,-1,5045,688,6431,3645,2041,1800,688,6495,3681,2448,1910,360,0
+14229,80000,male,2,1,46,0,0,0,0,0,0,79656,80382,61813,30457,30477,30506,3211,2800,1200,1300,1700,1700,0
+14230,50000,male,2,2,22,1,2,0,0,0,0,50781,45429,28927,19896,19475,19168,41,1617,816,1003,1004,912,0
+14231,200000,female,2,2,34,0,0,0,0,0,0,30833,34322,36725,36749,40138,42459,4000,3000,3000,4000,3000,3000,0
+14232,380000,female,1,1,42,-1,-1,-1,-1,-2,-2,7079,10387,2956,316,316,312,10437,2982,316,316,312,1323,0
+14233,90000,female,3,2,25,0,0,0,0,0,0,74818,57334,49899,37251,33061,30869,2400,1502,2006,1500,1500,1500,0
+14234,50000,male,1,2,27,2,2,2,2,2,2,6291,6045,7487,7218,7800,7526,0,1550,0,700,0,800,1
+14235,30000,female,3,2,51,-1,-1,-1,-1,-1,-2,770,-10,390,3797,0,0,0,400,3797,0,0,0,0
+14236,300000,male,1,1,44,0,0,0,0,0,0,21507,18505,17036,12863,9597,2304,1379,1008,270,206,329,19769,0
+14237,20000,male,3,1,57,-1,-1,-1,-1,0,0,390,390,390,21515,2942,0,390,390,10728,59,0,0,1
+14238,50000,female,1,1,47,-1,-1,-1,-1,-1,-1,390,390,390,2728,0,780,390,390,2728,0,780,0,0
+14239,50000,male,1,2,28,0,0,-1,-1,-1,-1,18771,10655,1659,6524,29949,3268,10000,1659,6546,29949,3268,399,0
+14240,70000,female,2,3,42,0,0,0,0,-1,-1,69486,68650,65458,19087,10220,11913,3000,1604,1000,10220,11913,10000,0
+14241,230000,female,1,1,34,0,0,0,0,0,0,124824,102327,103506,100554,103929,107780,10001,5000,4500,5000,6500,4300,0
+14242,290000,female,2,1,37,0,0,0,0,0,0,277449,271080,280510,198869,222558,134187,52000,40504,20000,30003,15004,4012,0
+14243,240000,male,1,1,49,-1,-1,-2,-1,-1,-2,511,-5,-5,561,0,0,0,0,566,0,0,517,0
+14244,330000,male,1,2,32,-1,2,2,-1,-1,-1,2145,636,0,4009,0,2307,0,0,4009,0,2307,0,0
+14245,300000,male,1,1,38,0,0,0,0,0,-1,87118,56182,60039,52009,32862,3730,1691,10043,1065,164,3748,1132,0
+14246,160000,female,1,1,40,-1,-1,-1,-1,0,-1,326,326,326,652,326,476,326,326,652,0,476,326,1
+14247,360000,male,1,1,36,0,0,0,0,0,0,28291,31055,33788,36491,41179,45823,3000,3000,3000,5000,5000,5000,0
+14248,60000,female,2,3,49,0,0,2,2,0,0,59902,61336,61792,57619,12996,2054,3400,4500,17,500,1500,1000,1
+14249,200000,male,1,2,42,0,0,0,0,0,2,163340,168701,172074,173907,184067,180612,8000,8000,6500,13500,0,7000,0
+14250,220000,female,1,2,50,0,0,0,0,-2,-2,216194,222220,225648,-2,-2,-2,11000,10050,2,0,0,0,0
+14251,500000,female,2,1,42,0,0,0,0,0,0,431195,440304,341673,76519,77223,76684,17624,14783,3000,3000,2853,2385,0
+14252,10000,male,2,2,38,0,0,0,0,0,0,7955,7976,8985,9164,9356,9593,1140,1149,328,340,393,192,1
+14253,20000,female,2,3,47,1,2,2,0,0,0,17624,18342,17750,18102,18485,19175,1300,0,647,674,1000,582,0
+14254,50000,female,5,1,33,2,0,-1,2,0,0,24890,25440,26191,25193,25742,27171,1925,28293,0,1100,2030,0,1
+14255,220000,female,2,2,27,-1,-1,-1,-1,0,-1,1051,735,419,1470,1154,735,735,419,1470,0,735,2205,1
+14256,140000,male,3,1,38,2,2,2,2,2,2,110674,131306,127701,135551,135859,134687,22500,0,10000,2600,2300,5300,1
+14257,80000,female,1,2,27,0,0,0,0,2,2,42414,43770,44455,47825,48220,48884,2039,1724,4094,2300,1600,0,0
+14258,70000,female,1,2,24,0,0,0,0,0,0,69023,70601,70426,69013,58329,51271,3600,2500,2100,2128,3000,0,0
+14259,390000,female,1,1,32,-2,-1,-1,-1,-1,0,1714,52856,11914,14503,13407,52830,53367,11978,14572,13418,42121,709,0
+14260,10000,male,2,1,47,0,0,0,0,0,-1,8884,8689,9449,6376,6530,1506,1159,3001,350,3002,1606,6276,0
+14261,290000,male,1,2,36,0,0,-1,-1,0,-1,22681,25980,10409,118253,111765,13294,20246,10460,118299,2794,13358,14705,0
+14262,280000,male,3,1,47,-1,-1,-2,-2,-1,-1,2479,3554,4746,2377,2390,3504,3564,4792,2384,2393,3524,2851,0
+14263,250000,female,2,1,29,0,0,0,0,0,0,180056,179349,30349,29568,30188,30786,4077,1500,1917,1097,1101,1139,0
+14264,80000,female,2,1,45,3,2,2,0,0,0,34282,35006,34144,34820,35553,36258,1567,0,1243,1291,1297,1500,1
+14265,500000,female,2,1,37,0,0,0,0,0,0,207205,208827,203696,201655,202938,202136,9755,7414,6940,7299,8021,19384,0
+14266,50000,male,2,2,26,0,0,0,0,0,0,47974,48527,49381,9999,8793,9138,2500,2000,324,1000,1000,500,0
+14267,20000,male,3,2,23,-1,-1,-1,0,0,0,1706,6354,6849,4113,3910,2547,6394,6849,82,78,51,16522,0
+14268,50000,female,2,2,23,0,0,-1,-1,2,0,16621,8044,917,18353,35836,18320,1037,917,18436,0,699,580,1
+14269,160000,female,2,1,47,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+14270,20000,male,2,2,24,2,2,4,4,4,4,1650,1650,1650,1650,1650,1650,0,0,0,0,0,0,1
+14271,80000,female,3,1,25,-1,-1,2,-1,-1,-1,550,1606,1422,2685,1395,2896,1606,4,2693,1395,2906,0,0
+14272,290000,female,2,1,27,0,0,0,0,-1,0,284298,281970,276346,0,281225,288652,14013,16346,0,281225,11787,12020,0
+14273,20000,male,3,1,25,0,0,0,0,0,0,15706,16849,17285,18683,9121,14374,1700,1110,1500,500,300,150,0
+14274,30000,female,2,1,37,0,0,0,2,2,2,26168,27442,30165,29383,32739,33143,2000,3500,0,4000,1150,1000,0
+14275,170000,male,1,2,32,-1,2,0,0,0,0,69013,67397,69518,70616,79267,84140,0,3800,2800,10000,6129,0,0
+14276,700000,female,1,1,36,0,0,0,0,0,0,450827,389039,328316,325968,271596,286805,13000,11939,10312,20004,20000,20000,0
+14277,50000,male,3,3,58,0,0,0,0,0,0,46199,47179,47445,17945,18165,18557,2023,1289,789,659,694,623,0
+14278,200000,male,1,2,31,1,-2,-1,-1,-1,-1,0,0,50307,28281,42163,0,0,50307,28281,42163,5040,3036,0
+14279,20000,male,2,1,27,0,0,0,3,2,0,6599,9315,19067,18472,18037,18487,3000,10000,0,0,900,2000,0
+14280,60000,male,2,1,41,0,0,0,0,0,0,95648,56259,49425,16941,13349,14826,5000,4731,2000,10000,3000,5000,0
+14281,160000,male,3,1,42,1,-1,-1,-2,-1,0,0,1564,-436,-436,436,436,1564,0,0,872,0,0,0
+14282,370000,male,2,1,34,-1,-1,-1,-1,0,-1,13854,3366,2671,13780,20652,10876,3382,2684,13795,10103,11020,10684,0
+14283,500000,female,3,2,49,0,0,0,0,0,0,207406,207479,211508,223660,228014,223940,15000,10000,23660,20000,13940,26542,0
+14284,500000,female,2,1,40,-2,-2,-2,-2,-1,0,240927,18676,9390,-3772,282777,288937,1093,9429,3423,291227,9011,9030,0
+14285,50000,female,1,2,22,-1,0,0,0,0,0,45107,30617,22324,18587,20316,18271,2000,2000,1000,2000,1000,2950,1
+14286,140000,female,1,1,36,0,0,0,0,0,0,72462,75297,76441,78171,79757,81427,4000,3000,3000,3000,3000,7500,0
+14287,210000,female,2,1,50,-1,-1,-1,-1,-1,-1,390,390,390,390,390,150,390,390,390,390,150,780,1
+14288,300000,female,1,1,56,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+14289,60000,female,2,2,23,0,0,0,0,0,0,55765,56619,54636,18293,18107,18803,2600,1500,1000,1000,1000,3000,1
+14290,80000,male,2,1,60,2,2,2,2,2,2,48463,49484,50372,51246,52279,53069,2100,2000,2000,2000,1800,1000,1
+14291,50000,male,3,1,48,-1,0,0,0,0,0,50899,50527,50375,46952,50343,48831,2000,2000,2000,5001,5000,5021,0
+14292,240000,female,2,1,44,0,0,0,0,0,0,21468,15503,17812,14328,11110,7567,3000,3000,2880,306,2000,2000,0
+14293,360000,female,1,2,27,-1,-1,0,0,0,2,1994,5305,4960,5228,6552,3827,5317,1007,2006,2562,13,2989,0
+14294,140000,female,1,2,24,0,0,0,0,0,0,25118,18948,16923,12103,11519,11611,2000,2001,401,1000,1000,1000,0
+14295,310000,male,1,1,37,0,0,0,0,0,0,190704,194111,144855,149146,198027,202293,7787,6000,7000,75593,7000,7000,0
+14296,20000,female,2,2,22,0,0,2,0,0,0,14413,16474,16510,16566,17370,19905,3000,1000,1000,2000,3000,0,0
+14297,140000,female,2,2,29,0,0,0,0,0,0,46605,35797,36615,28354,18093,6723,2281,1683,929,1000,134,0,0
+14298,440000,male,1,1,62,0,0,0,-1,2,0,14721,5049,649,1108,150,1075,4909,499,959,0,925,1392,0
+14299,330000,male,2,1,34,0,0,0,0,0,0,17421,18769,17413,17769,18138,13788,1650,1200,510,524,668,300,0
+14300,60000,male,1,2,26,0,0,0,0,0,0,29860,30576,31962,32444,32971,33721,1500,1900,1310,1200,1300,1500,0
+14301,120000,female,2,2,23,0,0,0,0,0,0,38842,38973,37708,4293,4305,5128,2300,1200,1000,1000,888,60000,0
+14302,290000,female,2,2,34,-1,-1,-1,-1,-1,-1,8690,-204,3268,302,3586,2345,0,3600,800,5228,2345,9139,0
+14303,20000,male,2,2,26,1,2,2,2,2,2,14437,15509,15498,14952,15983,15576,1600,535,0,1272,0,1463,0
+14304,500000,female,2,1,64,1,-1,-1,-1,-1,-1,493,1086,731,561,618,991,1086,731,561,618,991,933,1
+14305,20000,male,2,2,25,2,2,2,2,2,2,150,150,150,1150,1000,0,0,0,1000,0,0,0,0
+14306,150000,female,3,1,46,2,2,2,2,2,0,11164,11713,11759,12453,12147,12254,1000,500,850,0,400,400,1
+14307,490000,female,2,1,42,-1,-1,-1,0,-1,-1,15838,11356,25409,15926,8604,8941,11404,25458,86,8711,5034,1345,0
+14308,170000,male,2,2,24,0,0,0,0,0,0,108717,69632,56537,113576,138419,101452,8092,20121,100071,50122,6468,278311,0
+14309,50000,female,1,2,27,1,2,2,0,-1,2,2238,3057,1879,889,2399,1225,2000,0,0,2500,0,1300,1
+14310,150000,male,2,1,40,0,0,0,0,0,0,106396,105332,82191,77262,49851,6666,7041,3000,3116,2500,5000,0,0
+14311,390000,male,1,2,41,-1,-1,-1,-1,-1,-1,6782,1466,3273,6965,4893,7777,1466,3273,6965,4893,7777,7271,0
+14312,380000,male,1,2,33,0,0,0,0,0,0,79099,80828,82583,84687,84832,84576,3000,3100,3500,3500,3200,3000,0
+14313,170000,female,2,1,34,1,-2,-1,-1,-2,-2,-270,-270,99730,-27,-27,-27,0,100000,0,0,0,0,0
+14314,170000,female,2,1,26,0,0,0,0,0,0,55658,48292,23264,12346,28910,13837,5000,1000,375,18785,757,259,0
+14315,390000,male,1,1,36,1,-1,-1,-1,-1,-1,0,250,79,79,290,106,250,79,0,290,106,66,1
+14316,30000,female,2,2,28,2,2,2,2,2,2,20218,19607,21778,22124,22622,23002,0,2500,1000,1000,900,900,0
+14317,300000,female,2,1,48,-1,-1,-1,-2,-1,-1,440,452,0,0,3427,1098,452,0,0,3427,1098,0,0
+14318,180000,female,1,2,25,-1,-1,-1,0,0,-1,23890,2181,21073,12159,8418,6896,2181,21100,0,0,6896,0,0
+14319,360000,female,2,1,27,0,0,0,0,0,0,241584,249687,250227,123146,101486,93700,124900,6850,4129,5000,2790,2000,0
+14320,230000,female,2,1,42,0,0,0,0,2,0,5838,6369,6790,8171,7396,7757,1300,1200,2000,0,1000,2000,0
+14321,30000,male,3,2,28,1,2,2,2,0,0,25554,28031,28345,27591,28218,29880,3204,1068,0,1068,2136,600,1
+14322,400000,female,2,1,45,-1,-1,-1,-1,-1,-1,9083,12641,15377,14757,44843,6622,12658,15384,14757,44843,6622,6309,0
+14323,20000,male,2,2,47,2,0,0,0,0,0,19401,19670,19839,20236,19807,19843,1331,2000,688,1000,1500,700,1
+14324,100000,female,2,2,26,-1,-1,-1,-1,-1,-1,1508,6186,2208,1823,1516,3378,6186,2208,1823,1516,3378,3431,0
+14325,340000,male,2,1,43,1,-2,-2,-2,-2,-2,-15,-15,-15,-15,-15,-15,0,0,0,0,0,0,1
+14326,30000,female,2,2,22,0,0,0,0,0,0,27849,29094,29352,29766,19933,10921,2000,1200,614,520,335,0,0
+14327,440000,male,3,1,38,2,-1,2,-1,-1,-1,775,1550,775,775,925,775,1551,1,776,926,776,776,1
+14328,100000,male,2,1,46,2,-1,-1,-1,-1,-1,390,390,370,-20,780,0,390,370,0,800,0,0,0
+14329,30000,female,3,2,28,0,0,0,0,-1,-1,25354,24826,25412,21658,980,55,1650,1200,1000,1000,55,0,0
+14330,20000,male,2,2,43,1,2,0,0,0,0,20251,19637,19539,20080,18855,20130,0,2000,841,696,1600,0,1
+14331,200000,male,2,1,40,1,2,2,0,-1,0,303719,268163,228720,234177,201490,190721,5133,0,5857,202076,6726,5346,0
+14332,180000,male,2,2,34,0,0,0,0,0,0,167604,162774,148961,78024,72989,75454,6949,6502,3022,3000,3022,2000,0
+14333,50000,female,2,2,34,-2,-1,-1,0,0,-2,23264,13573,13876,13789,725,0,13573,13876,276,725,0,0,0
+14334,210000,female,2,2,27,0,0,0,0,0,0,115583,130020,133963,115989,101628,104809,25000,15103,5000,4000,5000,5000,0
+14335,210000,female,2,2,24,0,0,0,0,0,0,94681,96920,98562,100329,103697,91408,3766,3507,3334,4723,3418,2682,0
+14336,220000,female,1,1,36,0,0,2,0,0,0,190691,206000,194930,130938,134664,140238,20000,0,5000,6000,8000,5000,0
+14337,240000,male,1,1,36,2,0,0,0,0,2,183360,187637,191846,194485,206747,203388,8600,8700,7200,15500,0,8000,0
+14338,200000,male,2,2,33,0,0,0,0,0,0,6195,2645,3416,3916,4248,5068,1300,1000,500,500,1000,1000,1
+14339,20000,male,2,2,46,0,0,0,-2,-2,-2,19401,20650,0,0,0,0,1650,0,0,0,0,0,1
+14340,180000,female,1,1,33,-1,-1,2,-1,-1,2,13999,17829,6608,17087,17993,8662,4176,65,17087,2013,23,32852,0
+14341,90000,female,1,2,26,2,0,0,0,0,0,89526,89149,85301,65463,65923,67269,3400,3325,2300,2400,2400,2400,1
+14342,130000,male,3,1,56,-1,-1,-1,0,-1,-1,582,0,582,291,441,441,0,582,0,441,441,291,1
+14343,100000,male,1,1,51,2,2,2,2,2,2,87603,93461,95022,95972,98283,97819,8200,4000,3400,4000,1600,2000,1
+14344,450000,female,1,2,54,1,-2,-2,-1,-1,-1,-237,-2400,-2400,3990,30050,9993,0,0,6390,30050,9993,0,0
+14345,210000,male,2,1,42,0,0,0,0,0,0,88498,168938,79989,69800,54256,48256,3555,2253,1404,1085,1652,5595,0
+14346,380000,female,2,2,28,0,0,0,0,0,0,123880,105184,69221,46858,33060,27047,7050,6018,3000,4000,4000,250400,0
+14347,20000,female,2,1,39,0,0,2,2,2,-1,20246,36350,18910,33500,-15306,20000,3000,3000,290,5000,35306,0,0
+14348,50000,female,1,2,27,0,0,0,0,0,2,51076,50816,47977,34783,20570,20047,2223,1572,1700,1739,0,225,0
+14349,50000,female,1,2,24,-1,-1,-1,-1,-1,-1,1354,1050,-1,7999,-66,6784,1054,0,8000,0,6850,11000,1
+14350,160000,male,3,2,42,0,0,2,2,2,2,43753,46869,45856,48818,49640,48737,4100,0,4000,1700,0,2000,0
+14351,450000,female,1,1,27,1,-1,-1,-1,-1,-1,-4,969,2226,1878,-25,5029,973,2243,2236,0,5054,392,0
+14352,30000,male,3,1,47,2,2,2,2,2,2,19150,19149,23888,24337,23725,0,600,5229,1000,0,0,0,0
+14353,310000,female,3,1,31,0,0,0,0,0,0,214190,178194,140681,104855,77242,74165,9000,6005,5017,3000,4000,3000,0
+14354,50000,male,3,2,26,2,0,0,2,2,2,41827,42650,45930,44891,47654,48721,1800,4000,0,3500,2000,0,1
+14355,160000,male,3,2,35,0,0,0,0,0,0,38486,39217,40537,41030,41891,43196,1652,1972,1465,1519,2000,1592,0
+14356,170000,male,1,2,31,-1,-1,-1,-1,0,-1,959,1898,850,6390,1958,1346,1911,850,6390,5,1358,202,0
+14357,230000,female,1,2,28,0,-1,0,0,-1,0,15714,13171,24589,31111,60562,9968,13171,20015,11000,60562,8000,6059,0
+14358,20000,male,3,2,25,0,0,-1,-1,-1,-1,3556,3271,798,798,798,408,1481,798,798,798,408,1188,0
+14359,50000,female,2,2,22,-2,-2,-2,-2,-1,0,64498,58261,401,43091,29842,30601,349,595,54061,32384,1234,1500,0
+14360,140000,female,3,1,25,-2,-2,-2,-2,-2,-2,76910,22972,28336,30281,38339,80792,1994,18002,3001,9004,45117,40158,0
+14361,50000,female,2,2,43,1,2,0,0,0,0,48777,47331,48010,24331,25553,26733,0,2000,1000,2000,2000,2000,0
+14362,280000,female,2,2,31,-2,-2,-2,-2,-2,-2,2419,10499,16243,0,0,0,10517,16494,0,0,0,0,0
+14363,360000,female,1,2,31,-2,-2,-2,-2,-2,-2,211,70,0,1600,0,1101,70,0,1600,0,1101,0,0
+14364,50000,male,3,2,22,0,0,0,0,0,0,45803,46696,15287,7694,7921,8041,2400,1123,500,500,400,500,0
+14365,20000,male,2,2,21,0,0,-1,0,0,0,19739,17875,19174,19158,18762,19223,1000,26299,673,680,772,851,0
+14366,310000,female,2,1,34,0,0,0,0,0,0,87842,42594,26198,26766,27341,28891,3021,1600,1000,1000,2000,3000,0
+14367,260000,female,3,2,33,0,0,-2,-2,-2,-1,7571,3563,2786,-14,-14,12074,1000,2786,14,0,12088,2021,0
+14368,80000,male,1,1,41,3,2,2,2,2,0,7866,8788,8498,9155,8864,9215,1200,0,800,0,500,900,1
+14369,30000,male,3,2,42,1,2,0,0,0,0,13347,12843,13850,14125,14423,14516,0,1227,502,522,521,521,1
+14370,340000,female,2,2,29,0,0,0,0,0,0,135538,113464,88629,71435,69725,69714,4093,3000,11115,2052,2500,1100,0
+14371,260000,female,1,2,27,-1,-1,-1,0,0,0,37003,1105,2490,17445,1795,278,1305,2690,15650,0,278,2500,0
+14372,420000,female,2,1,40,0,0,0,2,0,0,33561,38901,38710,38022,20256,22743,5900,900,101,3000,3000,5000,0
+14373,80000,female,1,1,54,2,2,2,0,0,0,12894,15449,14909,14915,15382,16374,3084,0,550,707,1400,200,1
+14374,400000,male,1,1,36,0,0,0,0,0,-1,44765,35776,67887,20356,12780,11625,10006,3072,72,62,11681,31071,0
+14375,460000,male,1,1,50,-1,-1,-1,-1,-1,-1,30765,13883,19146,27639,38586,-260,13953,19441,27778,38780,0,0,0
+14376,200000,male,2,2,39,0,0,0,0,0,0,31236,31996,32704,33351,34050,36184,1838,1546,1193,1236,2700,1022,0
+14377,160000,male,2,1,52,-1,-1,2,-1,2,-1,390,780,390,1080,540,390,780,0,1080,0,390,390,0
+14378,70000,male,1,2,26,0,0,0,0,0,0,6121,7064,8143,8507,8869,9220,1200,1200,500,500,500,500,1
+14379,290000,male,3,2,43,-2,-2,-1,0,0,0,170823,174650,123514,125973,128608,127976,8050,123514,4274,4426,4859,5407,0
+14380,120000,female,1,2,29,0,0,0,0,-2,-1,50150,44742,33231,-1320,-660,956,5069,2805,0,0,1616,0,0
+14381,100000,female,1,2,26,0,0,0,-1,-1,2,24459,26726,25669,881,57540,55038,3000,1016,2007,57500,2000,0,0
+14382,30000,female,3,1,55,0,0,0,0,0,0,27381,27803,28170,9515,780,0,1633,1000,1190,0,0,0,0
+14383,30000,female,1,2,23,2,0,0,0,0,0,14546,15570,16882,16911,17416,17608,1265,1577,606,778,630,653,1
+14384,50000,female,1,2,23,0,0,0,0,0,0,33959,35409,36120,36991,37744,39115,2000,1601,1472,1500,2000,5000,0
+14385,210000,female,1,1,39,-1,-1,-1,-1,-1,-1,4443,3569,1737,2433,3115,3899,3569,1737,2433,3115,3899,2460,1
+14386,10000,male,3,2,24,1,3,2,3,2,0,5530,5792,6050,5808,5569,5876,500,500,0,0,400,364,1
+14387,250000,female,1,1,50,-2,-2,-1,-1,-1,-2,18381,2749,5285,9138,1187,1235,2749,5674,9527,1187,1235,2678,0
+14388,230000,female,2,1,31,1,-1,0,0,0,0,0,2716,3648,6648,7982,9203,2716,1000,3000,4000,2000,1000,0
+14389,150000,male,1,2,26,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+14390,20000,female,1,2,22,1,2,2,0,0,-2,21672,22031,21247,7475,0,0,1000,18,300,0,0,0,1
+14391,150000,female,2,1,41,0,0,0,0,0,0,80435,74826,74485,71935,71757,71844,3349,3200,2700,2711,2800,1561,0
+14392,20000,male,3,2,48,0,0,0,0,2,0,5861,6728,7739,8339,8061,8221,1119,1130,730,0,294,305,0
+14393,400000,female,1,2,30,-1,-1,-1,-1,-1,-1,1919,7381,2691,1781,7123,1470,7389,2691,1781,7123,1470,37546,0
+14394,20000,female,2,1,40,2,2,4,3,2,0,17761,21152,20508,19933,19517,20235,4000,0,0,0,1000,3000,0
+14395,440000,female,2,1,45,-1,-1,-1,3,2,2,600,-420,417,2217,1321,8879,0,1937,1800,0,8480,0,1
+14396,20000,male,2,2,26,-1,-1,-1,-1,-1,-1,1439,1261,390,540,540,540,1261,390,540,540,540,780,0
+14397,320000,male,1,2,26,-1,-1,-1,-1,-1,-1,316,316,316,316,316,316,316,316,316,316,316,316,0
+14398,300000,male,1,1,37,0,0,-2,-2,-2,-2,41000,0,0,0,0,0,0,0,0,0,0,0,0
+14399,50000,female,3,1,24,-1,-1,2,0,-1,-1,18965,21647,20731,13555,2338,41191,3000,15,587,2338,41191,18957,0
+14400,210000,male,1,2,27,0,0,0,2,2,0,110757,113139,119812,120763,118722,121249,5650,10100,4400,0,4500,4500,0
+14401,350000,female,1,2,33,-1,-1,-1,-1,0,-1,2383,9911,12149,14774,2154,67081,9911,12149,16928,0,67081,103202,0
+14402,470000,male,1,1,33,-1,-1,-1,-1,0,0,1260,2516,181,3011,2891,3502,2530,181,3020,1804,1517,1958,0
+14403,300000,female,1,2,28,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+14404,30000,male,2,2,25,2,2,3,3,3,3,1050,1050,1050,1050,1050,1050,0,0,0,0,0,0,1
+14405,210000,male,2,2,28,0,0,0,0,0,0,180004,184401,171506,133206,98885,88101,9000,7500,5503,4185,4500,3875,0
+14406,30000,female,1,1,37,0,0,0,0,0,0,8301,9156,8983,8141,6422,5187,1191,1079,239,209,206,160,0
+14407,200000,female,2,2,27,0,0,0,0,0,0,127843,131352,130884,132142,118084,114281,6579,4734,4368,4183,4227,4066,0
+14408,140000,male,2,1,41,0,0,0,0,0,0,82309,92682,103265,117188,113368,119194,12682,13265,17188,10000,15000,0,0
+14409,50000,female,1,2,26,0,0,0,0,0,0,45431,45187,34250,30276,30894,0,1811,1400,606,618,0,0,0
+14410,10000,male,2,2,32,1,2,0,0,0,0,9001,8322,8630,8630,7850,8150,0,1400,0,0,1600,0,1
+14411,390000,female,2,2,28,0,0,0,0,0,0,116720,121588,121854,90634,84353,57677,7000,5000,4000,5000,10000,20000,0
+14412,50000,female,3,1,50,0,0,0,0,0,0,48173,28233,28610,28808,29403,20260,2235,1612,1200,1057,871,897,0
+14413,50000,female,2,1,25,0,0,0,0,0,0,16221,18965,19602,22156,22732,11378,3000,1500,4600,1000,600,258,1
+14414,30000,female,3,2,31,-1,-1,-1,-1,-1,-2,5477,7314,2970,2587,0,0,8011,2970,2587,0,0,0,0
+14415,50000,female,1,2,31,3,3,4,3,2,5,27166,30190,29421,28652,34032,32913,3769,0,0,6000,0,0,1
+14416,50000,female,1,2,33,1,-2,-1,0,0,-1,0,0,12493,28365,6300,999,0,12493,16000,0,999,0,0
+14417,260000,male,1,3,41,0,0,0,0,0,0,253795,253126,253218,249770,243277,240576,9269,9090,9034,8521,10067,8100,0
+14418,50000,female,1,2,34,1,-2,-2,-2,-2,-2,0,0,0,0,300,150,0,0,0,300,0,980,0
+14419,140000,male,1,2,28,-1,-1,-1,-1,-1,-1,639,8358,2620,2073,4732,1131,8358,2620,2077,4732,1131,2114,0
+14420,490000,male,1,2,28,0,0,0,0,0,0,422483,430538,392670,390031,396687,404885,15358,15049,14500,14000,15021,10664,0
+14421,60000,female,2,2,24,1,2,0,0,0,0,60425,57786,55272,55925,57063,48228,28,2500,2000,2030,2100,3500,1
+14422,80000,male,1,2,39,2,0,0,2,2,0,62281,63774,68204,69484,68247,71110,2500,5500,3000,0,4000,2500,1
+14423,80000,male,1,2,26,0,0,0,0,0,0,51533,45147,45921,46629,47655,48496,1800,1800,1690,1750,1887,1800,0
+14424,290000,male,1,2,28,0,0,0,0,0,0,162118,150366,148949,141711,122755,216138,6000,6000,5000,10000,100000,7681,0
+14425,280000,male,2,2,28,0,0,0,0,0,0,104451,105960,100542,103087,103983,105638,4470,4188,5000,3679,3703,3652,0
+14426,130000,male,2,2,29,0,0,0,0,0,2,111731,108635,108842,110236,114763,118884,6000,6000,5000,6800,6500,0,0
+14427,20000,male,3,1,52,-1,-1,-1,-1,-1,-1,2912,390,780,780,780,390,390,780,780,780,390,780,0
+14428,50000,male,2,2,31,0,0,0,0,2,0,48548,49579,27496,20414,19978,18547,2032,1304,1500,0,868,1000,1
+14429,330000,female,1,2,28,1,-1,2,2,2,2,963,11,11,11,11,11,504,0,0,0,0,0,0
+14430,150000,female,3,2,40,0,-1,-1,0,-1,0,95943,1473,1863,390,772,382,32153,1863,0,772,0,398,1
+14431,150000,female,2,2,26,0,0,0,0,0,0,96739,98351,100369,101035,101982,103970,4000,4500,4000,4000,5000,5000,0
+14432,210000,male,2,3,27,0,0,0,0,0,0,81387,82679,84014,84365,86517,87296,3883,4000,3008,3500,3139,3373,0
+14433,10000,male,2,3,28,0,0,0,0,0,0,5757,6805,7662,8034,8256,8957,1300,1128,500,500,1000,500,1
+14434,300000,female,3,1,32,0,0,0,0,0,-2,15003,14469,15200,18000,0,0,1469,1200,3000,0,0,0,0
+14435,140000,female,2,2,35,0,0,0,0,0,0,140387,129846,87849,84455,87287,81423,5509,7124,2866,4033,5954,3120,0
+14436,50000,female,2,2,26,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,9033,0
+14437,140000,male,1,2,30,-1,-1,-1,-1,-1,-1,1750,1003,0,440,1367,890,1003,0,440,1367,890,0,0
+14438,50000,female,2,1,32,0,0,0,0,0,0,46610,45005,43448,15075,16534,16809,2021,1500,700,1700,700,623,0
+14439,500000,male,1,2,35,-1,0,0,0,0,-1,1369,6138,20424,7840,846,790,4769,19629,157,0,790,860,0
+14440,500000,female,3,1,36,0,0,0,0,0,0,70016,70837,63488,32050,46393,35207,2568,2000,1285,15000,1520,6994,0
+14441,20000,male,2,2,38,2,-1,-1,-1,-1,-1,1442,1261,390,390,390,930,1261,390,390,390,930,0,0
+14442,420000,male,1,1,47,-1,-1,-1,-1,-1,-1,10517,15571,9090,9622,10223,3942,15585,9100,9628,10223,3942,3754,0
+14443,60000,male,2,1,37,1,2,3,4,4,3,22007,24360,26647,27912,26889,29140,3000,3000,2000,0,3000,3000,1
+14444,60000,male,2,1,37,0,0,0,0,0,2,30010,34169,38551,42922,47245,44208,5000,5000,5000,5000,0,10000,0
+14445,190000,female,2,2,35,0,0,0,0,0,0,158360,113702,95214,95713,97079,97659,4800,4300,3600,3700,4000,3600,0
+14446,220000,male,1,1,48,3,2,2,-2,-2,-2,2500,2500,0,0,0,0,0,0,0,0,0,0,1
+14447,110000,female,2,2,28,2,2,2,2,2,2,86774,88702,89655,90593,89025,94509,4200,3300,3300,0,7000,2300,1
+14448,290000,male,2,1,33,-1,-1,-1,-1,-1,-1,1300,0,500,1000,3441,2415,0,500,1000,3441,2415,1643,0
+14449,50000,female,2,1,25,2,0,0,0,0,0,50105,50802,49988,19287,19698,20228,2300,1305,1000,855,1000,1000,0
+14450,110000,female,2,2,39,0,0,0,0,0,0,210804,107572,100475,48409,47693,49018,5426,4244,1837,1713,2100,2020,0
+14451,230000,female,2,1,35,-2,-2,-2,-2,-2,-2,2132,1520,3543,3351,-4,3267,1531,3553,3351,4,3271,4649,0
+14452,250000,female,1,1,42,-1,-1,-2,-2,-2,-2,16240,0,0,0,0,0,0,0,0,0,0,0,0
+14453,100000,male,1,2,26,0,0,0,0,0,0,7136,8515,9749,14188,16602,19575,1500,1500,4500,5000,5000,5000,0
+14454,30000,female,1,2,23,0,0,0,2,2,2,29064,27368,30475,27808,31208,30582,2000,5026,0,4000,0,1500,0
+14455,230000,male,1,1,47,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+14456,50000,male,2,1,29,0,0,0,0,0,0,49660,47359,45517,29699,28877,29531,2000,1500,2000,1100,2000,12000,1
+14457,420000,male,1,2,33,1,-1,-1,-2,-2,-2,-190,6509,0,0,0,0,6699,0,0,0,0,0,0
+14458,30000,male,2,2,33,0,0,0,0,0,0,30247,29118,29997,30067,26709,13836,1590,1469,929,1265,886,66,0
+14459,20000,male,1,2,34,1,2,0,0,0,0,8834,7499,8147,7247,4617,0,1000,1000,1300,1500,1680,0,1
+14460,200000,female,1,1,43,0,0,0,0,0,0,200898,197438,200912,145658,146351,149667,10000,9000,6000,6000,6000,6000,0
+14461,90000,female,1,2,27,1,2,2,2,2,2,17374,16806,18768,18169,19682,19220,0,2251,0,1807,0,10000,0
+14462,110000,male,3,1,45,0,0,0,0,0,0,66820,36002,37484,38935,40633,41393,4400,3900,3900,4000,3100,1600,0
+14463,60000,female,2,2,26,0,0,0,0,0,2,58452,52445,52974,54589,59518,60491,2500,2000,2500,6000,2100,0,0
+14464,80000,male,1,2,35,0,0,0,0,-1,-1,37642,39947,43773,31830,7848,390,4000,5000,5500,7848,390,780,0
+14465,50000,male,3,1,41,1,2,2,0,0,0,85579,78993,69424,64201,58110,57337,3023,23,4023,2523,7926,102,0
+14466,180000,male,1,2,28,1,-2,-2,-2,-1,-1,0,0,0,0,383,2388,0,0,0,773,2395,847,0
+14467,110000,female,2,2,39,0,0,0,0,0,0,109221,111674,111867,111535,111870,110979,4230,4230,4200,4300,4150,4220,0
+14468,150000,female,1,1,33,0,0,0,0,0,0,50286,110884,113152,116097,118500,120896,61101,3210,3911,3354,3400,3500,0
+14469,120000,female,2,2,30,0,0,0,0,0,0,104801,100502,86478,81902,78616,80307,4000,2960,3833,2855,3000,3000,0
+14470,150000,male,1,2,40,0,0,0,0,0,0,152175,148872,145978,139791,142745,146872,5800,5245,5200,5200,6500,7200,0
+14471,360000,female,3,1,42,-1,-1,-1,-1,-1,-1,9152,6329,21830,5469,9057,312,6361,22236,5682,9147,313,6548,0
+14472,60000,male,2,1,56,0,0,0,0,0,0,26344,26382,27046,27187,27372,27549,1446,1500,960,1000,1027,860,1
+14473,480000,male,2,1,40,0,0,0,0,0,0,69011,69842,71857,66673,65200,65511,3000,3000,2096,2115,2089,2207,0
+14474,400000,female,2,2,25,0,0,0,0,0,0,393159,44917,52366,29995,22722,24479,2522,17213,1000,1000,2100,154700,0
+14475,60000,female,2,2,24,1,2,3,3,2,2,44238,47076,48871,47669,48135,50056,4000,3000,0,1500,3000,2750,0
+14476,240000,female,2,1,29,0,0,2,2,2,0,198128,211417,206386,219111,211373,211215,16500,0,16007,7,8229,7621,1
+14477,30000,female,1,2,27,0,0,0,-2,-2,-2,3415,4330,0,0,0,0,1000,1000,0,0,0,0,0
+14478,240000,female,1,2,38,0,0,0,0,0,-1,138151,111189,75880,46407,12697,215281,6021,3004,4006,5000,215281,8000,0
+14479,50000,female,2,2,23,0,0,0,2,0,0,16370,15373,12065,10199,9261,6816,1524,2588,0,284,1000,1000,1
+14480,130000,female,1,2,27,0,0,0,0,0,0,91467,68747,66372,64854,66432,46919,3247,3372,2354,2432,2919,1926,0
+14481,30000,female,2,1,49,2,0,0,0,2,2,23778,24507,25892,27366,26798,28321,1415,1800,2200,0,2500,0,0
+14482,10000,male,2,1,35,0,0,0,0,0,0,9159,10004,9722,10044,9856,10285,1160,1139,1241,345,580,180,0
+14483,180000,male,2,2,27,0,0,0,0,0,0,51826,6699,6529,104327,105867,106806,1500,2000,100000,4500,5041,2000,0
+14484,230000,female,3,2,26,0,0,0,0,0,0,14361,15491,16190,11849,11826,6248,1369,1068,306,457,348,500,0
+14485,30000,female,1,2,27,1,2,0,0,2,0,28686,27620,28164,30444,29887,29153,0,2000,3000,0,1000,1000,0
+14486,50000,male,3,1,52,1,2,2,0,0,2,7839,8761,8472,8641,9298,9000,1200,0,310,797,0,333,0
+14487,500000,male,1,2,30,-1,-1,-1,0,0,-1,1089,58665,168052,254571,59587,13398,58665,170119,156000,2000,13398,527143,0
+14488,360000,male,2,2,30,-2,-1,2,2,-2,-2,0,1000,1000,0,0,0,1000,0,0,0,0,0,0
+14489,460000,female,1,1,43,-2,-2,-1,0,0,0,323408,261444,309622,297039,258056,188083,5229,580464,80017,31017,27,38700,0
+14490,10000,female,2,2,32,0,0,0,0,0,0,8509,9228,9821,9495,9469,10191,1400,1300,350,500,1650,0,0
+14491,270000,female,1,2,32,0,0,0,0,0,0,48114,42573,55350,92141,57961,45282,20091,30128,60183,2071,2045,2791,0
+14492,80000,male,2,1,43,0,0,0,0,0,0,43749,46330,43134,38010,38510,38427,3356,3204,2017,3515,2506,2015,0
+14493,100000,male,1,2,32,0,0,0,0,0,0,87580,84140,86400,87275,89082,91030,3300,3881,2500,2519,2700,3004,0
+14494,20000,male,3,1,42,2,2,2,-2,-2,-2,13053,4078,0,0,0,0,16,0,0,0,0,0,1
+14495,300000,male,2,1,38,-1,-1,-1,0,0,-1,374,1685,1485,990,495,495,2000,1485,0,0,495,495,1
+14496,30000,female,2,2,44,-1,-1,0,0,0,-1,2436,11376,21354,28308,23346,10784,11378,11004,9003,3349,10785,8984,0
+14497,160000,male,1,2,33,1,-1,2,0,0,-1,-77,1598,1097,772,447,797,2000,0,0,0,1000,0,1
+14498,30000,female,2,2,25,0,0,0,0,0,2,7204,7453,7098,10148,22070,23182,1200,1114,4000,13000,2000,0,0
+14499,160000,female,1,2,31,-1,-1,-1,-1,-1,-1,4203,9739,15628,3666,4098,4237,9739,17751,3666,4098,4237,3007,0
+14500,380000,female,1,2,31,-2,-2,-2,-1,0,0,276,276,0,196050,202129,295891,276,0,202129,9500,98500,17000,0
+14501,180000,male,2,2,43,0,0,0,0,0,0,164222,169073,171820,160018,164717,151235,7500,5900,6000,7000,7000,5000,0
+14502,100000,male,1,1,45,0,0,0,0,0,0,99626,101446,21300,20091,19299,9346,4600,1429,600,600,1000,1000,0
+14503,260000,male,1,1,38,-1,-1,2,2,-1,2,263,511,248,-15,3526,263,512,1,1,3805,1,527,0
+14504,180000,female,3,2,25,0,0,0,0,0,0,120583,97341,87773,89547,91639,93991,3507,3201,3200,3500,4000,3704,0
+14505,240000,male,3,1,38,0,0,0,0,0,0,230131,216824,219487,151295,228276,233079,8500,6900,6000,80000,8600,9000,0
+14506,30000,male,2,3,44,0,0,0,0,0,0,6289,9331,12380,15158,15760,18985,3173,3222,3000,1000,3500,2000,1
+14507,50000,male,2,2,26,0,0,0,0,0,0,20329,14244,30580,15365,15587,15940,1600,1600,1000,1000,1000,1000,0
+14508,180000,female,2,1,43,-1,-1,-1,-1,-1,0,7823,9549,1968,1800,8198,511,9549,1968,1800,8198,0,844,0
+14509,20000,male,2,2,24,-1,0,0,0,0,-1,610,13222,13488,11818,12428,5965,13002,3000,0,1000,5965,0,0
+14510,130000,male,2,2,31,0,0,2,0,-1,-1,48628,52379,31247,40047,12450,2294,5207,0,9000,12450,2294,0,1
+14511,240000,male,1,1,36,-1,-1,-2,-1,-1,-1,229,-167,-563,254,-142,344,0,0,1213,0,1032,0,0
+14512,160000,female,5,1,35,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+14513,60000,male,3,2,29,0,0,0,0,0,0,4511,5529,6544,7093,7973,9038,1096,1111,660,1000,1200,0,1
+14514,100000,male,3,1,35,0,0,0,0,0,0,96521,98728,74239,75704,55704,56810,3938,2515,2516,4022,2032,2112,0
+14515,320000,female,2,2,28,1,-2,-1,-1,0,-1,0,0,2428,990,495,854,0,2428,990,0,854,495,0
+14516,110000,female,2,1,62,0,0,0,0,0,0,33536,30155,26054,22918,23216,14371,3000,2000,3000,6000,2340,111,0
+14517,50000,female,1,2,31,2,2,3,2,0,0,48903,53997,52298,50778,48055,45704,6500,0,0,3130,2532,1700,1
+14518,50000,male,2,1,38,2,0,0,2,2,2,27686,28436,31051,31542,32185,32900,1500,3100,1300,1300,1400,1300,1
+14519,140000,male,2,2,39,0,0,0,0,0,0,139079,143816,134472,130129,133031,136919,7000,4800,4659,5000,6100,6000,0
+14520,80000,male,2,1,46,0,0,0,0,0,0,81283,80390,79080,77850,80330,80000,2892,3000,5390,4106,3000,0,1
+14521,50000,male,2,2,23,0,0,0,0,0,0,47385,48790,19306,19857,20361,20051,2472,1234,785,900,2800,1500,0
+14522,140000,female,2,1,35,1,2,0,0,2,2,130215,126720,128116,136956,134665,142199,0,5000,11000,0,10000,0,1
+14523,210000,female,2,1,52,0,0,-1,0,-1,-1,5723,3386,8964,2241,2241,2241,1237,4482,0,2241,2241,2241,0
+14524,130000,male,2,1,35,0,0,0,0,-2,-2,8010,5932,4950,-2490,-37594,-21295,1500,1012,0,0,0,80000,0
+14525,200000,female,1,2,31,-1,-1,-1,-1,-1,-1,4138,790,1230,390,390,390,790,1230,390,390,390,390,1
+14526,110000,male,2,2,40,0,0,0,0,0,0,4202,5524,6144,7628,7111,7981,2000,2000,2000,1000,2000,0,0
+14527,140000,female,2,2,27,2,2,0,0,0,2,107257,104122,104742,107626,114633,116904,0,3842,4626,8933,4300,0,0
+14528,20000,male,2,2,43,-1,-1,-1,-1,-1,-1,390,390,390,390,540,930,390,390,390,540,780,0,0
+14529,450000,male,2,2,30,0,0,0,0,0,0,610723,555086,497132,514249,462666,472480,20200,18000,25135,432130,17000,20000,1
+14530,170000,male,2,1,36,0,0,0,0,0,0,87076,77902,54592,56128,57469,59669,3781,2104,3208,2998,3000,2208,0
+14531,170000,female,2,1,36,0,0,0,0,0,0,158651,143801,138145,125499,124205,123940,5428,4707,4400,4450,4650,4500,0
+14532,180000,male,2,2,29,0,0,0,0,0,0,175773,179866,173007,168743,172275,176861,6059,5653,6488,5138,6313,4754,0
+14533,200000,male,1,1,39,0,0,0,0,2,2,303347,171592,176615,185049,188375,183069,6500,8051,13000,6500,0,6700,0
+14534,80000,female,2,1,27,0,0,0,0,0,0,25424,24499,25181,5187,5524,5529,2000,2150,1000,2500,1000,1000,0
+14535,150000,female,2,2,41,0,0,0,0,0,0,15938,16128,17051,15109,13895,14236,1317,2008,1004,505,573,1003,0
+14536,160000,male,1,2,31,0,0,0,0,0,0,157303,161498,153226,78511,9808,8358,8055,5045,2280,305,2000,2000,1
+14537,60000,male,3,2,38,0,-1,-1,-1,-1,-1,3059,291,1131,441,443,732,291,1131,441,443,580,0,0
+14538,240000,female,2,1,39,4,3,2,2,2,2,47739,46712,45660,48905,47993,52015,0,0,4000,0,5000,2000,1
+14539,20000,male,2,2,24,0,0,2,0,0,-1,12549,11552,6622,6232,390,930,2319,0,0,0,930,0,1
+14540,500000,male,1,2,30,0,0,0,0,0,0,449733,425268,489942,437809,409337,406573,20120,120063,40000,12389,12000,10000,0
+14541,280000,female,2,2,50,-1,-1,-1,-1,-1,-1,9173,11564,6781,5725,3989,2599,11574,7104,5857,3989,2599,27192,0
+14542,200000,male,1,3,50,3,2,2,2,0,0,176077,179769,178358,177340,181281,191644,8000,3000,3400,6800,13600,5900,1
+14543,290000,female,1,2,29,-1,-1,-1,-1,-1,-1,6649,15819,10986,8184,14936,19573,15837,11584,8184,14936,19573,6309,0
+14544,80000,female,1,2,34,0,0,2,2,0,0,75517,77078,73783,68909,66308,60687,6000,2000,0,5065,6235,3000,1
+14545,20000,female,3,1,61,2,2,2,2,0,0,2730,5461,6218,5970,8945,9896,2800,1000,0,3100,1100,0,1
+14546,400000,female,1,2,41,-1,-1,-1,0,-1,-1,48938,27703,43775,10644,42195,12246,27703,43947,10183,42195,12246,13663,0
+14547,30000,female,3,1,53,0,0,0,0,-1,0,30587,29462,28068,23362,29837,30357,1700,1288,982,32000,2000,1436,0
+14548,130000,male,1,1,34,0,0,0,0,0,0,128846,130525,74745,68597,54774,53728,5170,2584,4000,2006,2000,2004,1
+14549,60000,male,2,1,33,-1,0,0,0,0,0,4843,8790,12420,14731,21508,7695,5000,5000,4000,4000,3500,3000,0
+14550,20000,male,3,1,37,0,-1,-1,-1,-1,-1,1439,1251,390,390,370,-20,1251,400,390,370,0,800,0
+14551,160000,male,2,1,43,1,-2,-2,-1,0,0,-3,-3,997,1798,800,0,0,1003,1804,202,0,50000,0
+14552,110000,female,2,2,25,1,2,2,0,0,0,104871,107422,101930,102111,101521,100240,8000,0,4000,4000,3600,3500,0
+14553,230000,male,1,1,40,0,0,0,0,0,0,87162,88801,87972,57846,57798,52071,4293,3000,1928,2000,2500,2000,0
+14554,20000,female,1,2,22,-1,-1,-2,-2,-2,-2,18356,0,0,0,0,0,0,0,0,0,0,0,0
+14555,140000,female,2,1,34,0,0,0,0,0,0,15550,17780,18226,19915,20891,21542,2500,1500,2000,1300,1000,1500,0
+14556,130000,female,3,1,48,0,0,0,0,0,0,46206,46396,43812,42132,44190,44636,3000,3000,3000,4000,4000,3000,0
+14557,130000,female,1,2,47,2,2,2,2,2,2,18454,21121,20484,22145,21652,23138,2976,0,2000,0,2000,0,1
+14558,200000,male,2,1,30,0,0,0,0,0,0,113676,116355,117802,116296,60792,30808,6000,5000,6000,3000,1611,55000,0
+14559,60000,female,3,1,43,2,2,-2,-2,-2,-1,4703,0,0,0,0,992,0,0,0,0,992,14000,1
+14560,20000,male,1,2,25,1,-1,-1,0,0,0,-431,569,1769,2582,3184,3974,1000,1769,1000,800,1000,4000,0
+14561,110000,female,1,2,32,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+14562,320000,female,1,2,27,1,-1,2,2,-2,-2,0,638,500,0,0,0,638,0,0,0,0,0,1
+14563,130000,male,3,3,40,2,0,0,0,0,0,88222,88288,84822,85970,86644,87576,3515,3107,5003,3203,3456,4000,0
+14564,280000,male,1,1,50,3,5,4,3,2,0,327918,321476,314931,176439,154010,134334,0,0,500,0,6267,2257,0
+14565,290000,male,1,2,34,-1,-1,-2,-1,-1,-1,1597,-2002,-1001,3999,0,4483,0,0,5000,0,4483,1209,0
+14566,30000,female,3,1,28,0,0,0,0,0,0,17897,18944,19698,17855,13784,6616,1342,1096,514,1021,151,1077,0
+14567,80000,male,2,2,28,0,-1,-1,-1,-1,-2,54475,3075,0,6150,0,0,6150,0,6150,0,0,0,0
+14568,70000,female,1,2,24,0,0,0,0,0,0,10916,12386,9864,5201,6950,7256,2000,2063,2000,2000,421,2000,0
+14569,80000,female,3,1,44,0,0,2,0,0,0,80808,81615,79075,79604,78567,79810,6926,0,3000,3000,3300,3200,0
+14570,200000,female,1,1,33,-1,-1,0,0,-2,-2,1853,5928,8789,0,0,0,5928,3000,0,0,0,0,0
+14571,50000,male,2,1,28,0,0,2,0,0,0,96393,100459,96051,18051,18767,19462,5800,300,18000,1000,1000,1000,0
+14572,120000,male,2,2,28,0,0,2,0,0,0,59946,49595,35786,32651,29972,27425,4000,0,1210,1000,1035,2000,0
+14573,80000,male,1,2,29,0,0,0,0,0,0,51630,54183,55685,58642,60533,61823,4000,3000,4500,3000,2300,6500,0
+14574,200000,female,2,1,35,2,0,0,0,0,0,51609,53165,55285,57370,59454,63461,3000,3000,3000,3000,5000,0,1
+14575,90000,female,2,1,34,-2,-2,-2,-2,-2,-2,1905,1924,11855,665,0,665,1924,11855,10655,0,665,0,0
+14576,30000,female,2,1,38,1,2,2,0,0,0,29803,30766,29918,29071,29527,30480,1734,0,1148,1034,2667,0,0
+14577,30000,female,3,1,29,-1,-1,-1,0,0,0,3489,14926,9937,8027,14709,7483,14969,9942,10,10022,384,0,0
+14578,50000,female,3,2,23,0,0,0,0,0,0,47486,47963,33499,19227,19334,19735,1703,1304,680,696,717,677,0
+14579,150000,male,2,2,31,0,0,0,0,0,0,148815,148090,133619,127043,112067,39901,5147,4900,4677,4707,1700,1000,0
+14580,280000,female,2,1,42,-1,0,0,0,0,0,256675,253682,260274,153516,156830,152045,13000,11000,8000,5866,8000,5616,0
+14581,10000,male,3,2,25,0,0,0,0,0,0,6892,7915,10086,18714,9781,9979,1294,2465,500,1000,500,0,0
+14582,160000,female,2,1,35,0,0,0,0,0,0,96515,139439,141416,112497,119511,119763,50439,6000,5000,9000,4000,4000,0
+14583,160000,female,2,1,30,0,0,-2,-2,-2,-2,51400,0,0,0,0,0,0,0,0,0,0,0,0
+14584,390000,male,1,1,46,-1,-1,-1,-1,-1,-1,6346,94921,53796,6009,9096,3267,94921,53796,6009,9096,3267,2901,0
+14585,50000,male,2,2,22,0,0,0,0,0,0,34033,34622,19993,18852,18020,18537,1342,1500,700,651,1000,1000,1
+14586,50000,male,2,2,26,0,0,-1,-1,-1,-1,18838,385,11500,2756,7000,12025,0,11615,2756,7000,12025,1880,0
+14587,150000,male,2,2,28,0,0,0,0,0,0,95322,96903,94682,89207,46259,50504,3216,2338,2653,2001,5012,2058,0
+14588,50000,male,3,2,23,0,0,0,0,0,0,47104,25555,16097,16337,16330,16708,2000,1500,800,700,650,700,0
+14589,190000,female,1,2,39,0,0,0,0,0,0,83369,81617,83351,82989,83760,85707,3853,4000,3000,3200,3500,3500,0
+14590,10000,male,3,2,29,2,2,6,6,6,6,142,142,142,142,142,142,0,0,0,0,0,0,1
+14591,210000,female,1,2,37,1,-2,-1,0,0,0,-200,-200,199672,199272,199272,0,0,199872,0,0,0,0,0
+14592,230000,male,1,2,32,-2,-2,-2,-2,-2,-2,1470,0,1470,735,419,316,0,1470,735,419,316,735,0
+14593,150000,female,1,1,52,-1,-1,0,-1,0,0,5094,29137,25772,48635,25907,7513,29148,25000,48635,13907,1513,46798,0
+14594,230000,female,1,1,34,-1,0,0,0,-1,0,4358,6020,9938,9865,6981,12157,3000,5000,5828,6981,6157,6342,0
+14595,80000,female,1,2,28,1,2,0,0,0,2,4885,3482,4251,4047,3547,221,0,1000,500,1000,0,1000,0
+14596,160000,female,5,2,31,-1,-1,-1,0,-1,-1,1790,0,31568,17638,1285,2705,0,31568,353,1285,2705,0,0
+14597,500000,female,1,2,27,-1,-1,-1,-2,-2,-1,33299,60857,26324,26091,9558,4242,60957,27056,26096,9605,4242,930,0
+14598,180000,female,1,2,34,0,0,0,0,0,0,43374,38842,37895,36002,31173,30832,2100,2000,5000,1500,1500,1500,0
+14599,30000,female,2,2,23,1,2,2,2,2,2,28850,28102,30324,27446,29329,29720,0,2700,0,2300,1000,0,1
+14600,130000,female,1,1,47,0,0,0,0,0,0,113470,110794,65715,67523,68131,68140,4000,3000,5500,3000,3000,1700,0
+14601,10000,female,3,1,46,0,0,-2,-2,-1,0,10400,0,0,0,1864,1720,0,0,0,1864,50,1500,0
+14602,20000,female,2,1,45,-1,-1,-1,-1,-1,-1,650,264,264,264,654,654,264,264,264,1044,654,264,0
+14603,30000,male,3,2,27,0,0,0,0,-1,-1,18556,20252,22419,22075,29466,28911,2000,3008,5066,29572,1911,1000,0
+14604,30000,male,2,2,38,0,0,0,0,0,0,20996,25607,26813,25868,25418,27572,5000,2000,1089,3000,5000,0,1
+14605,320000,female,1,1,39,0,0,0,0,0,0,206461,117168,128832,133329,53870,13185,5000,15000,5000,5000,3000,5000,0
+14606,10000,male,2,2,23,3,2,2,2,2,2,10034,9239,10025,10227,9933,9884,0,1600,500,0,1000,0,1
+14607,350000,female,0,2,53,-1,-1,-1,-1,-1,-1,5095,4815,61044,22611,1385,6043,4840,61349,22687,1389,6058,1153,0
+14608,20000,male,3,2,35,0,0,0,0,0,0,17365,19001,20269,18654,18914,20200,2618,2276,791,686,1600,0,0
+14609,50000,male,2,2,25,1,4,3,2,2,0,53086,51981,50805,51518,50713,51309,0,0,1800,108,2400,1926,0
+14610,310000,male,1,2,28,0,0,0,0,0,0,153620,147023,127390,129886,130676,127738,6603,4600,4507,4027,4025,4018,0
+14611,80000,male,2,2,34,0,0,0,0,0,0,66122,92131,47655,43182,44332,45440,2600,4300,2000,2000,2000,2000,0
+14612,170000,male,1,2,43,-1,-1,-1,-1,-1,-1,1866,5750,200,41467,1028,2643,5750,200,41467,1328,2643,126,0
+14613,10000,female,3,3,52,2,0,0,2,0,0,9970,9625,9622,7773,5968,5380,2001,1801,0,700,1300,3200,1
+14614,30000,male,3,2,41,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+14615,170000,female,3,2,46,-1,-1,-1,-1,-1,-1,1986,1050,170,2785,3128,505,1050,170,2785,3128,505,190,0
+14616,230000,female,1,1,32,-2,-2,-2,-2,-2,-2,700,1428,600,0,0,0,1428,600,0,0,0,0,0
+14617,50000,female,2,2,23,0,0,0,0,-1,2,16139,17261,14354,8713,1781,1615,1400,1000,500,1781,0,0,0
+14618,300000,female,1,1,52,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+14619,210000,male,2,1,37,1,-2,-2,-1,-1,-1,0,0,0,150,150,150,0,0,150,150,150,100,0
+14620,20000,female,3,1,36,0,0,2,0,0,0,21309,22693,20899,20014,19331,17176,3150,0,800,850,660,650,0
+14621,20000,female,2,1,32,0,0,0,-2,-2,-2,16434,17191,0,0,0,0,1500,0,0,0,0,8000,0
+14622,20000,female,2,2,25,2,2,2,0,0,0,16923,20319,19543,19534,19320,12442,4000,0,391,386,249,0,0
+14623,80000,male,1,2,29,0,0,0,0,0,0,31637,27137,25986,23496,23601,24650,1734,2000,2000,2000,2000,2000,0
+14624,30000,female,2,3,22,0,-1,0,0,0,0,7928,2318,22430,20457,13964,14872,2318,22000,1000,1000,1000,1000,0
+14625,200000,male,1,2,33,2,2,2,2,2,2,156558,167453,170010,172226,175918,179441,15000,6800,6500,6600,6600,5200,1
+14626,210000,male,1,2,31,2,-1,-1,0,-1,-1,1172,380,1552,776,776,1359,380,1552,0,776,1359,20302,0
+14627,330000,female,1,1,42,-1,-1,-1,-1,-1,-1,899,7445,0,3899,2707,8000,7448,0,3899,2707,8000,0,0
+14628,30000,male,2,2,25,2,2,2,2,2,2,14420,15390,14846,16098,15700,16784,1500,0,1500,0,1500,0,1
+14629,280000,male,1,1,39,-1,-1,-1,-2,-2,-1,17489,7542,2219,3008,849,1763,7614,2226,3008,1255,152446,0,0
+14630,300000,male,1,1,37,-1,-1,-2,-2,-2,-2,1943,0,0,0,0,0,0,0,0,0,0,0,0
+14631,10000,male,3,1,42,1,2,0,-1,0,0,6091,6837,7666,9270,7897,8763,1000,1000,9501,500,1000,1000,0
+14632,50000,female,2,2,24,0,0,0,0,0,0,27788,19742,20672,16336,16921,17489,2000,1600,1000,1000,1000,500,0
+14633,280000,male,2,1,49,-1,-1,-1,-1,-1,-1,390,390,390,390,390,150,390,390,390,390,150,780,0
+14634,20000,male,2,1,51,0,0,0,0,0,0,14681,14777,15025,16504,17950,19558,1562,1200,2000,2000,2000,3000,0
+14635,130000,male,2,2,32,-1,-1,-1,-1,-1,-1,1496,1496,1496,1496,1496,1496,1496,1496,1496,1496,1496,1496,0
+14636,20000,male,2,2,25,0,0,0,0,0,0,18193,18804,19324,18692,16035,12262,1800,1200,559,532,424,620,0
+14637,120000,female,2,2,26,-1,-1,-1,-1,-1,-1,5820,216,3858,6849,2616,2805,216,3858,6849,2616,2805,3926,0
+14638,400000,female,1,2,33,-1,-1,-1,-1,-1,-1,7768,31313,8744,11640,41432,20075,31330,8853,11816,41432,20974,44135,0
+14639,300000,female,2,2,39,-1,-1,-1,-1,-1,-1,6293,5483,990,990,990,990,5490,990,990,990,990,990,0
+14640,30000,female,2,2,23,0,0,0,0,0,0,12775,13864,14927,15378,15978,16560,1600,1600,1000,1000,1000,1000,0
+14641,20000,male,2,1,47,0,0,0,0,0,0,14835,16605,19160,14506,12839,8495,3000,3000,5000,5000,3000,511,1
+14642,320000,female,2,1,43,-1,-1,-1,-1,-1,-1,24685,27002,82271,5315,33059,908,30161,82271,5315,33059,908,6382,0
+14643,80000,male,2,1,57,0,0,0,0,0,0,54211,55348,56477,57601,58807,60300,2007,2047,2060,2133,2469,2493,0
+14644,160000,male,3,1,59,-2,-2,-2,-2,-2,-2,-220,390,170,-220,390,390,1000,170,0,1000,390,390,0
+14645,80000,female,3,2,50,0,0,0,0,0,0,46914,47918,47620,48571,48525,43987,2210,1700,1614,1600,1600,1600,0
+14646,280000,female,3,2,47,-1,-1,-1,-1,-1,-1,27572,38918,27000,27000,0,30460,39787,29000,27000,0,30460,5983,0
+14647,210000,female,1,2,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+14648,250000,female,1,2,27,0,-1,-1,-2,-2,-2,8769,990,0,0,955,8175,990,0,0,955,8200,2434,0
+14649,120000,female,1,2,27,-1,-1,-1,-1,-1,2,3215,700,700,10673,9671,9332,700,700,10673,2550,0,10000,0
+14650,20000,female,2,2,27,0,0,0,0,0,0,15685,16731,18048,18102,18491,19173,1300,1600,650,681,1000,1000,0
+14651,200000,female,2,2,35,0,0,0,0,0,0,72450,52795,41861,34531,1794,-345,5556,1000,2000,1000,0,0,0
+14652,100000,male,1,1,45,0,0,0,0,0,0,42049,43570,44601,45598,46752,48008,2200,2100,2000,2000,2010,2006,0
+14653,80000,female,2,1,53,0,0,0,0,0,0,48688,101878,20475,20325,20276,20662,2530,3990,850,800,1100,1100,0
+14654,450000,female,1,2,39,-1,-1,-1,-1,-1,-1,242,0,2343,2313,8295,699,0,2343,2313,8295,1806,1274,0
+14655,200000,female,1,1,38,-1,-1,-1,-1,-1,-1,5221,6875,5129,14997,2996,5525,6877,5129,17653,2996,6143,3538,0
+14656,50000,female,2,2,28,0,0,0,0,0,-2,47813,33463,29628,31230,0,0,1900,2000,2000,0,0,0,0
+14657,500000,female,2,2,31,0,0,0,0,0,0,43818,45021,49283,66144,75191,80619,5000,5040,17604,10000,10000,10200,0
+14658,50000,male,1,2,25,0,0,2,2,2,2,44663,48045,47306,49296,47220,49584,4100,400,3000,2,4005,6,0
+14659,450000,female,1,1,29,0,0,0,0,0,0,72622,6920,7700,9700,11700,0,2000,1000,2000,2000,0,0,0
+14660,130000,female,1,2,30,-1,-1,-1,-1,-1,-1,780,0,390,540,540,636,0,390,540,540,636,3636,0
+14661,220000,female,1,2,29,-2,-2,-2,-2,-2,-2,-37,5645,11731,-729,-5960,-5960,5682,11742,0,5231,0,0,0
+14662,210000,female,2,1,38,-2,-2,-2,-2,-2,-2,390,780,0,0,4853,5190,780,0,0,4853,5190,0,0
+14663,50000,male,1,2,57,0,0,0,0,0,0,50698,51030,49984,20155,19959,20194,2100,1320,704,716,733,702,0
+14664,260000,male,2,2,31,0,0,-1,-1,-1,0,260783,54254,24119,16887,149104,127342,1743,24145,16900,150241,5285,942,0
+14665,70000,female,2,2,26,0,0,0,0,0,0,35867,28496,28401,22587,24361,25424,3000,3005,3000,3000,1500,1008,0
+14666,50000,male,2,1,37,0,0,0,0,0,0,49045,50174,43647,19305,20025,18584,2000,2000,1000,1000,1000,1000,1
+14667,20000,male,2,2,28,2,2,2,2,2,2,12762,12272,14255,13729,14706,14320,0,2500,0,1200,0,1500,1
+14668,170000,male,2,1,34,1,2,2,2,2,0,91450,90486,86004,64363,55912,54500,3400,0,3957,0,2200,1300,1
+14669,100000,female,2,2,34,0,0,0,0,0,0,104660,104108,102066,99186,97140,95123,4589,4516,3645,3649,3724,3236,0
+14670,200000,female,2,2,30,-1,0,0,-1,-1,-1,11916,23694,26397,12674,14068,6468,12366,11000,12674,14445,6867,399,1
+14671,30000,female,3,1,59,1,2,2,2,2,0,28084,29299,28741,30467,29858,28898,1950,200,2492,0,580,0,1
+14672,300000,female,1,2,39,0,0,0,0,2,0,89792,91558,93741,99802,97711,99538,4500,5000,8000,0,4000,4200,0
+14673,360000,female,2,2,28,3,2,2,-2,-2,-2,2500,2500,0,0,0,0,0,0,0,0,0,0,1
+14674,140000,male,1,2,33,0,0,0,0,0,0,128891,103523,86543,68972,47268,2299,4637,2083,1503,1083,1121,67243,0
+14675,360000,female,2,2,28,-1,-1,-1,-1,-1,-1,220,2755,1380,0,1999,-1,2755,1380,0,1999,0,500,0
+14676,150000,female,2,1,43,0,-1,0,-1,-1,0,32283,18361,9160,13596,11457,29550,18361,1000,13596,11457,18550,0,0
+14677,280000,male,2,1,37,0,0,0,0,0,-1,149227,152331,153080,156000,160000,40485,5505,3258,3120,4000,100045,10000,0
+14678,230000,female,2,1,46,-1,-1,-1,0,-1,-1,1443,1443,2886,1443,1443,1443,1443,2886,0,1443,1443,1443,0
+14679,80000,female,3,1,46,0,0,0,0,0,0,70324,66864,32990,30059,28786,29371,3000,2003,1500,1200,1200,1500,0
+14680,50000,male,1,2,32,0,0,0,-1,0,0,20542,10858,0,777,793,26793,1411,0,777,16,26000,1000,0
+14681,180000,male,1,2,30,1,-1,-1,-2,-2,-2,0,1186,0,0,0,0,1186,0,0,0,0,0,1
+14682,100000,male,2,2,34,2,2,2,2,2,2,32685,36546,37152,36258,38512,37741,4400,1500,0,3000,0,4000,1
+14683,30000,male,1,2,30,1,2,2,2,0,0,21996,21356,23496,22820,23352,23963,0,2500,0,900,1000,1200,1
+14684,80000,male,1,1,37,2,2,2,2,2,2,57844,59038,57501,60424,61811,63142,2700,0,4500,2500,2500,2400,0
+14685,500000,female,1,1,39,-1,0,-1,-1,-1,-1,28852,112344,26834,33120,21771,52277,90668,26834,33452,21881,52539,57159,0
+14686,150000,female,2,2,33,-2,-2,-2,-2,-2,-2,6806,2774,0,500,399,0,2779,0,500,399,0,0,0
+14687,50000,female,2,2,22,1,2,0,0,2,0,8566,8287,9288,9990,9694,9879,0,1300,1000,0,500,500,0
+14688,260000,female,1,1,42,-2,-2,-2,-2,-2,-1,6000,4856,4328,15711,0,127395,4570,4353,17767,23209,127395,0,0
+14689,410000,female,2,1,35,0,-1,-1,0,-1,-1,11193,1831,13745,6033,8326,8926,1831,13745,121,8326,8926,26392,0
+14690,50000,female,3,1,33,0,0,0,0,0,0,39847,37561,36725,35346,33810,32788,1719,1783,1200,1200,1500,1000,0
+14691,100000,female,2,1,39,0,0,0,0,0,0,100549,94471,57529,58070,58615,58760,3711,3155,1696,1889,1764,1714,0
+14692,90000,female,3,1,37,0,0,0,0,0,0,62460,63354,64528,65815,67350,68605,2500,2300,2281,2519,2451,2300,0
+14693,50000,male,1,2,32,2,0,0,2,0,0,16434,17550,21414,20774,21177,21612,1688,4476,0,888,788,1088,0
+14694,200000,female,2,1,51,1,2,2,0,0,2,93215,95336,93114,94239,99428,101843,4300,0,3365,6700,4000,3500,0
+14695,240000,male,1,2,33,-1,-1,-1,-1,-1,-1,6785,57953,20367,6997,15607,44412,58243,20469,7032,15685,44513,20159,0
+14696,360000,male,1,2,29,-1,2,-1,0,0,-1,6167,3506,10845,8336,5878,12903,17,10859,380,187,12966,1038,1
+14697,170000,female,1,2,37,-1,-1,-1,-1,0,0,49699,32301,74152,38579,77819,47975,32305,74198,38804,66000,40970,25156,0
+14698,80000,female,3,1,30,2,2,2,2,2,2,41687,42719,43018,44013,45058,46068,2000,1300,2000,1900,1900,0,1
+14699,260000,male,3,1,49,-2,-2,-2,-1,-1,-2,8654,15260,6790,10070,585,435,15328,6914,10098,585,435,427,0
+14700,70000,female,2,2,55,0,0,0,0,0,0,53214,54571,42413,42946,43843,44714,2230,2004,1537,1589,1598,1654,0
+14701,30000,female,3,2,43,0,0,0,0,0,0,26828,25352,26553,26554,18869,12359,1588,1789,790,471,352,121,0
+14702,290000,female,2,1,35,0,0,0,2,0,0,260698,267453,278924,235368,232117,230763,11019,20326,44,10035,10034,10062,0
+14703,110000,female,2,1,46,0,0,0,0,0,0,110950,111750,111227,110849,110575,110394,4088,3912,3888,3975,4162,3945,1
+14704,110000,male,2,1,30,0,0,3,2,2,2,57503,66128,64477,65413,66520,68270,9600,0,2600,2300,3000,5200,1
+14705,200000,male,2,1,40,0,0,0,0,0,0,93700,95991,15040,14074,14758,15442,4512,2010,1000,1000,1000,0,0
+14706,70000,female,3,2,22,0,0,0,0,0,0,52899,45758,37858,29660,29519,29457,1726,3028,1026,1195,1060,1031,0
+14707,150000,female,2,2,29,0,0,0,0,0,0,84357,86398,64763,66093,62568,63828,2841,3000,1839,1773,1792,1846,0
+14708,340000,female,2,2,43,0,0,2,0,0,0,106867,117152,113312,114379,113627,112193,12002,0,4387,4634,4519,2402,0
+14709,30000,female,2,2,25,2,0,0,0,0,0,10343,11069,12082,12473,12623,27460,1200,1201,592,500,1500,0,1
+14710,200000,male,1,1,40,-1,-1,-1,-1,-1,-1,390,394,388,822,386,540,400,390,830,400,550,310,0
+14711,400000,female,2,2,44,-1,-1,-1,-1,-1,-1,4988,2986,96868,33745,5143,1601,3003,97353,33913,5168,1611,0,0
+14712,110000,female,2,1,41,0,0,0,0,0,0,52388,41742,43852,39840,32801,33174,1780,3306,1108,1126,1269,679,0
+14713,420000,male,2,1,36,0,0,0,0,0,0,56068,55115,19304,22304,28465,38182,15005,10013,10000,10000,20000,20000,0
+14714,150000,female,5,1,45,0,0,0,0,0,0,232587,259740,241615,139741,144692,124197,30032,25099,80000,120000,95000,30000,0
+14715,290000,female,1,1,36,0,0,0,0,0,0,97733,91270,79396,69925,71794,73597,3500,3000,3000,3000,3000,3000,0
+14716,160000,male,1,1,58,1,-2,-2,-2,-1,-1,0,0,0,0,4816,0,0,0,0,4816,0,0,0
+14717,50000,male,3,2,31,-1,-1,-1,-2,-2,-2,44461,8635,-2550,-3300,-3300,-3300,1000,0,0,0,0,0,1
+14718,150000,male,1,2,25,0,0,0,0,0,0,132684,128111,120509,74837,74391,66932,5713,12137,9005,2528,3119,2548,0
+14719,500000,female,1,2,29,0,0,-1,0,0,-1,82715,29004,104650,75583,26728,78226,7057,134011,8000,10000,78226,50000,0
+14720,140000,female,2,2,26,0,0,0,0,0,0,54868,56983,59152,67288,71674,31374,3000,4000,9500,5000,2000,1400,0
+14721,200000,male,1,1,44,-1,-1,-1,-2,-1,-1,1785,750,0,0,708,15500,757,0,0,708,15699,0,0
+14722,230000,male,1,1,46,-1,-1,-1,0,0,0,519,518,2784,2360,1908,97,518,2784,32,0,0,0,1
+14723,60000,female,2,2,26,0,0,0,0,0,0,53986,47413,36527,28170,28963,29456,2050,2011,1200,1400,1200,800,0
+14724,150000,male,2,1,38,-1,-1,-1,-1,-1,-1,509,14310,980,1000,1132,8774,14310,980,1000,1132,8774,10867,0
+14725,340000,female,1,2,29,-1,-1,-1,2,0,0,2688,11432,12411,9119,29280,23093,11486,12824,10,29047,6153,3523,0
+14726,140000,male,1,2,30,0,0,-2,-2,-1,-1,5600,0,0,0,5302,10251,0,0,0,5302,5251,0,0
+14727,20000,female,1,1,41,1,3,2,0,0,-1,6249,5965,2417,1616,1616,3067,0,0,0,0,3067,0,0
+14728,200000,female,1,2,26,0,-1,0,0,0,0,14513,84387,87121,87857,88766,90228,84387,5000,4000,4000,4000,3000,0
+14729,20000,male,3,1,44,-1,-1,-1,-1,0,0,2522,169,1261,1170,780,390,169,1261,1170,0,0,0,0
+14730,300000,female,1,1,29,0,0,0,0,0,0,64437,65905,67344,69268,70647,73044,2000,2000,2500,2100,3000,2000,0
+14731,200000,female,1,1,64,-1,-1,-1,0,0,-1,2035,1261,69048,3352,1992,1176,1261,69054,2000,0,1176,11099,1
+14732,180000,male,1,2,28,0,0,0,0,0,0,180387,182361,184097,177870,169767,175867,9000,8500,8500,8000,14250,8000,0
+14733,30000,female,3,1,24,2,0,0,0,0,0,27896,29938,30061,29621,27956,29484,2506,1748,1003,1022,2000,1000,0
+14734,350000,male,1,1,62,-1,-1,-1,-1,-1,-1,83393,10237,14580,61024,86809,177816,10237,14580,61024,86809,177816,82610,0
+14735,160000,male,1,2,28,-1,-1,-1,0,0,-1,3236,-524,3003,737,0,894,0,3740,0,0,894,0,0
+14736,20000,female,3,1,42,2,0,0,0,2,2,20205,16882,18094,19592,19930,20353,1500,1500,1800,800,900,36,1
+14737,130000,male,1,2,28,1,-1,-1,-2,-2,-2,0,3000,0,0,0,0,3000,0,0,0,0,1000,0
+14738,180000,female,1,1,43,0,0,0,0,0,0,166569,144637,137261,135904,127905,129465,6000,6382,5000,4649,5084,4564,0
+14739,220000,female,2,1,36,2,2,2,0,0,0,195725,197466,189149,187531,187856,186532,8200,0,7000,7000,7200,23700,1
+14740,120000,female,2,2,25,0,0,0,0,0,0,54628,55235,45025,43834,43449,44675,2200,2000,1700,2000,2100,1500,0
+14741,500000,female,2,1,33,0,0,0,0,0,-1,48415,50588,32091,19615,23084,4528,15021,1408,392,7000,4528,22021,0
+14742,150000,female,1,2,29,-2,-2,-2,-2,-2,-2,2889,3469,1791,570,0,0,3469,1791,570,0,0,399,1
+14743,180000,male,1,2,29,-1,-1,-1,-1,-1,-2,18213,4390,1016,4745,0,0,4390,1016,4745,0,0,1400,0
+14744,440000,male,1,2,30,-2,-2,-2,-2,-2,-2,390512,200426,170209,136020,101744,78482,10063,7784,4632,3458,2671,2027,0
+14745,190000,female,2,1,35,0,0,0,0,0,0,189420,192058,185995,188649,190700,185912,8900,6700,6699,7400,6900,7400,0
+14746,160000,female,2,1,40,-2,-2,-2,-2,-2,-2,766,766,766,766,0,27547,766,766,766,0,27547,20238,1
+14747,20000,male,2,1,37,0,0,0,0,-1,-1,6372,2818,3734,3826,2110,2054,1100,1000,500,2110,2054,2505,0
+14748,30000,male,3,1,44,0,0,0,0,0,0,10056,11387,12192,12986,13775,14393,1500,1300,1000,1000,1000,1000,0
+14749,420000,male,1,1,32,1,-2,-2,-2,-1,-1,8120,2205,-94,6300,1047,67631,1011,0,6394,1047,67643,2005,0
+14750,370000,female,1,2,28,0,0,0,0,0,0,68452,71014,72547,74501,76058,77572,3513,3046,3000,2589,2603,2695,0
+14751,60000,male,2,2,35,1,2,0,-1,-1,0,62522,60932,113580,673,28976,29719,0,1680,2752,59358,1231,1200,0
+14752,180000,male,2,2,43,0,0,0,0,0,0,106765,99297,69691,71234,72930,75734,10000,5000,2703,3000,4013,10000,0
+14753,90000,female,3,2,25,0,0,0,0,0,0,16977,19612,5613,5613,10113,10113,3000,3000,0,4500,0,3440,0
+14754,250000,female,2,2,24,2,0,0,0,0,0,69770,70954,70681,69497,41367,17004,3562,1914,1517,2000,8001,295,1
+14755,30000,female,1,2,25,0,0,0,0,0,-2,25115,26287,26602,21000,0,0,1886,1620,0,0,0,0,1
+14756,140000,male,1,1,41,-1,-1,-1,-2,-2,-1,4523,12171,0,0,0,10832,12171,0,0,0,10832,0,0
+14757,180000,female,1,2,26,0,0,0,0,0,0,51699,48469,49553,49772,50829,51234,2200,2200,2000,2000,2100,1600,0
+14758,70000,female,1,2,30,0,0,0,0,0,2,12196,13291,14563,14625,15589,15189,1300,1500,600,1200,0,600,0
+14759,320000,female,2,2,36,-2,-2,-2,-2,-2,-2,29862,33785,4900,15813,0,0,5000,4905,15873,0,0,21657,1
+14760,150000,male,1,2,28,1,-2,-2,-1,0,0,0,0,0,65696,67148,68460,0,0,65696,3000,3000,4000,0
+14761,20000,male,2,2,29,0,0,0,0,0,-2,3785,4871,7817,7977,0,0,1154,3100,160,0,0,0,1
+14762,30000,male,1,2,25,0,0,0,0,0,0,19041,20232,21293,22040,22786,23410,1500,1400,1100,1100,1003,2000,1
+14763,500000,male,1,2,31,0,0,-1,0,0,0,239824,226716,115610,89359,63609,123128,5614,118640,5841,6000,100000,5000,0
+14764,30000,female,2,2,22,2,2,2,-1,-1,2,200,200,200,29847,30089,27957,0,0,29847,340,0,0,0
+14765,50000,male,2,3,41,-1,-1,0,0,0,0,780,12667,6713,6452,6188,4048,12667,1055,184,182,153,100,0
+14766,20000,male,3,1,44,0,0,0,0,0,0,5855,6874,8037,8253,8427,9468,1122,1285,500,307,1182,0,0
+14767,10000,female,3,1,51,2,2,-2,-2,-2,-1,103,-677,-677,-1067,-747,71,0,0,0,1100,818,1418,1
+14768,500000,female,3,1,45,-2,-2,-2,-2,-2,-2,338,338,98,522,285,950,338,98,522,285,950,285,0
+14769,20000,male,1,2,25,2,2,4,4,3,2,2902,6888,7638,7388,6991,33327,4200,1000,0,0,27150,900,1
+14770,200000,female,1,1,28,0,0,0,0,0,0,40559,44565,46815,52978,53970,56064,5000,3000,7000,2000,3000,3000,0
+14771,10000,male,2,1,31,0,0,0,2,0,0,6106,7199,10215,9943,9758,9335,1200,4442,0,1200,1200,0,0
+14772,50000,female,3,1,43,2,2,2,2,2,2,44865,46760,47390,44520,45310,44430,2923,1700,0,3500,0,2000,1
+14773,320000,female,2,1,35,-1,0,0,0,0,0,177391,182132,101849,92474,95279,77536,8200,4364,18000,4000,2576,5000,0
+14774,50000,male,2,1,41,0,0,0,-2,-2,-1,48729,19598,0,0,0,402,1000,402,0,0,402,19603,0
+14775,30000,female,1,1,41,0,0,0,0,0,-2,15636,4542,4075,3668,0,0,2000,1000,1000,1000,1800,0,0
+14776,110000,male,3,2,36,-1,-1,-1,-2,-2,-2,2509,1260,0,0,0,0,1260,0,0,0,0,0,1
+14777,50000,female,1,1,35,1,-1,-1,0,0,-2,0,354,134,134,0,0,354,134,0,0,0,190,0
+14778,140000,female,1,2,29,1,2,0,0,0,0,112592,108669,110174,111079,113439,114983,0,5500,4900,5000,4112,4500,0
+14779,90000,female,1,1,44,-1,-1,-2,-2,-2,-2,539,0,0,0,0,0,0,0,0,0,0,0,0
+14780,60000,male,2,1,49,0,0,0,0,0,0,59578,66781,65508,17677,19481,19205,22000,2188,2501,2512,4005,2604,1
+14781,20000,male,2,2,24,2,2,2,2,2,2,16276,16715,18327,17735,19446,18988,1000,2200,0,2000,0,1200,0
+14782,340000,female,1,1,62,0,0,0,0,0,0,509365,522309,534137,466565,466774,471573,20309,20137,16565,16774,21573,21000,0
+14783,30000,male,2,2,29,1,3,2,0,0,0,31986,31189,29634,28174,27307,24449,0,4,1020,1110,989,982,0
+14784,170000,male,1,1,35,-1,-1,-1,-1,-1,-1,481,326,526,526,635,760,326,526,526,635,760,526,1
+14785,130000,male,1,1,45,2,0,0,2,2,2,53709,55244,58716,57174,61240,61284,3000,5000,0,5000,1200,3000,1
+14786,250000,female,2,1,44,0,0,2,2,2,0,6107,8837,8535,10647,10352,12788,3000,0,3000,0,3000,3000,0
+14787,200000,female,2,1,36,-1,-1,-1,-1,-1,-1,390,1308,1662,14490,34902,390,1308,1662,14987,34902,390,7500,0
+14788,10000,female,2,1,49,0,0,0,0,0,0,3100,4116,5280,5543,5605,5717,1073,1237,500,300,205,300,1
+14789,180000,female,2,2,29,-1,-1,-2,-2,-1,2,13936,0,0,0,1030,440,0,0,0,1030,0,0,0
+14790,230000,female,1,2,29,-1,-1,-1,-1,-1,-1,8916,318,725,2586,3198,4260,318,725,2592,3198,4260,4944,0
+14791,200000,female,3,1,45,-1,-1,-1,-1,-1,-1,11025,6959,887,1462,15195,17933,6959,887,1462,15195,17933,887,0
+14792,90000,female,3,2,33,0,0,0,0,0,-1,130765,98506,94475,39368,34884,424,4800,4000,1000,698,424,26979,0
+14793,130000,male,3,2,28,-1,-1,-1,-1,-1,-1,3964,600,0,631,0,427,600,0,631,0,427,1747,0
+14794,230000,male,1,2,26,-1,-1,-1,-1,-1,-1,1099,19686,3036,4806,-1,1699,19686,4000,4806,0,1700,3658,0
+14795,320000,male,2,2,36,0,0,2,0,0,0,289508,302561,283356,275361,268871,256974,21041,1514,9122,9518,9209,10213,0
+14796,30000,male,3,2,34,2,2,2,0,0,0,24367,28682,27922,28632,29075,30891,4723,0,1173,1056,2300,0,1
+14797,80000,female,2,2,25,0,0,2,-1,-1,-1,57994,17695,7987,2622,2449,-331,3327,44,2629,2457,0,0,0
+14798,80000,female,1,1,35,-1,-1,-2,-2,-1,-1,1000,0,0,0,490,707,0,0,0,490,707,450,1
+14799,260000,female,2,1,45,-1,-1,-1,-1,-1,-1,7893,5923,5601,5480,5911,5963,5923,5601,5482,5911,5963,5757,0
+14800,20000,male,3,2,26,2,0,0,0,0,0,14081,15835,16985,19985,9421,9764,2000,2000,3000,1000,500,1000,1
+14801,200000,female,2,1,34,-1,0,-1,-1,-1,-1,795,1795,3618,0,1496,0,1000,3618,0,1496,0,0,1
+14802,80000,female,2,2,23,0,0,2,0,0,0,54658,45978,32431,27674,23304,6586,5573,5,2000,1000,132,1998,0
+14803,100000,female,1,2,42,0,-1,-1,0,0,0,60380,58567,79527,18950,19667,18531,2200,22004,656,1000,396,300,0
+14804,150000,female,5,1,35,0,0,0,0,0,0,39708,37441,36143,33567,32447,32592,1608,1510,1170,1183,1140,1141,0
+14805,80000,female,1,2,27,0,0,0,0,0,0,76306,75970,77468,60167,57474,58815,3600,3574,2300,2300,2300,2200,0
+14806,20000,female,2,2,48,0,0,0,0,2,-1,7684,8565,4519,3520,1680,5285,1200,2008,1680,0,5285,0,0
+14807,200000,female,2,1,26,0,0,0,-1,-1,-1,15150,16311,16900,5000,0,282,1411,1000,5000,0,282,8423,0
+14808,120000,female,2,1,41,2,0,0,0,0,2,36850,40232,41256,44063,46686,48768,4000,2000,3500,3500,3000,0,1
+14809,30000,male,3,2,50,2,0,0,0,0,0,46868,42397,38569,33570,19895,30125,1800,2200,1400,2000,30000,997,1
+14810,200000,male,1,2,37,0,0,0,0,0,0,118134,126591,134110,139209,135902,138997,15034,20038,20019,5014,10047,10238,0
+14811,80000,female,3,2,38,0,0,0,0,0,0,77929,77711,74525,61360,49359,48253,3006,2747,2344,1756,1758,1717,0
+14812,280000,female,1,1,46,-1,-1,-1,-1,-1,-1,11967,183,1699,0,2722,0,183,1699,0,2722,0,1041,1
+14813,500000,male,1,2,40,0,0,0,0,0,0,353356,320704,321094,317546,279250,239172,17000,11684,15000,8995,9457,10000,0
+14814,120000,female,1,1,37,-1,-1,-1,-1,-1,-1,696,-4,1878,407,247,1817,0,1882,407,247,2000,0,0
+14815,220000,female,2,1,41,-1,0,0,-1,-1,-1,4016,3962,2908,3054,3054,0,3000,2000,3200,3054,0,0,0
+14816,360000,male,2,1,34,0,0,2,0,0,-1,6287,3580,2224,1206,-11,2216,2505,5,12,0,2227,0,0
+14817,210000,female,1,1,35,0,0,0,-2,-2,-2,142422,143650,0,0,0,0,6500,0,0,0,0,0,0
+14818,160000,female,1,1,28,1,3,2,0,0,0,4529,4269,1170,780,780,0,0,0,0,0,0,0,1
+14819,100000,female,1,2,29,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+14820,400000,female,1,2,31,-1,-1,-1,-1,0,0,4209,14858,28082,20188,68992,27613,14894,28222,20214,57060,16017,115710,0
+14821,110000,female,2,1,46,0,0,0,0,0,0,111301,69352,58442,55485,53539,41193,3075,3000,2000,2941,1512,2040,0
+14822,360000,male,1,1,37,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+14823,500000,female,2,1,48,0,0,0,0,0,0,39734,149570,137549,130893,108030,144938,117243,4500,4500,5000,50000,4578,0
+14824,130000,male,2,2,27,0,0,0,0,0,0,116646,113851,110317,108099,106028,104253,5578,4000,3863,3831,4136,5385,0
+14825,60000,female,1,2,26,-2,-2,-2,-2,-2,-2,17873,5959,2933,2933,4933,1983,3000,1000,0,2000,0,13072,0
+14826,240000,male,1,1,39,-1,-1,-1,-1,-1,-1,33984,2300,6904,15980,0,9060,3000,7104,15980,0,9060,3935,0
+14827,100000,female,2,1,40,-2,-2,-2,-2,-2,-2,-14,1452,4091,3011,5955,0,1466,4091,3020,5955,0,2835,0
+14828,150000,female,2,1,38,-1,-1,-1,-1,-1,-1,5195,4177,7444,19997,4095,52207,4185,7447,20013,4095,25869,0,0
+14829,290000,male,2,1,39,0,0,0,0,0,0,209265,215887,220787,223810,228043,234257,10000,10000,8165,9000,10000,7010,0
+14830,50000,male,2,2,43,0,0,0,-2,-2,-2,34110,3552,0,0,0,0,3505,0,0,0,0,0,0
+14831,30000,female,2,2,46,1,-1,0,0,0,0,8891,24501,24886,25014,29356,25515,28001,1245,763,5000,1164,9114,0
+14832,210000,female,2,1,35,-1,-1,-1,-1,-1,-1,1338,1508,1409,1549,2454,946,1508,1409,1549,2454,946,1525,0
+14833,100000,female,1,2,30,-1,2,0,0,-1,-1,14729,5691,11440,7470,44097,56328,0,6000,0,44097,15000,0,0
+14834,30000,female,3,2,40,-1,2,-1,0,-1,-1,780,390,650,260,370,-20,0,650,0,500,0,800,0
+14835,30000,female,3,2,34,-1,-1,-1,-1,-1,-2,9318,10621,15685,5476,0,0,10621,15685,5827,0,0,0,0
+14836,80000,female,3,1,34,2,3,2,2,2,0,78489,76697,74847,79620,78257,79953,0,0,6000,0,3200,3000,0
+14837,30000,female,2,2,24,2,2,7,7,7,7,2550,2550,2550,2550,2550,2550,0,0,0,0,0,0,1
+14838,70000,female,3,2,41,0,0,0,0,0,0,32581,32888,33481,33683,34227,34327,2000,1500,1138,1806,1383,1250,0
+14839,470000,female,1,2,27,-1,-1,-1,-1,-1,-1,2981,3182,1512,3657,6556,3772,3182,1512,3657,6556,3772,957,0
+14840,180000,female,1,1,39,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+14841,20000,male,2,1,32,0,0,0,0,0,0,17106,18282,19424,19208,19600,20000,1458,1600,384,392,400,0,1
+14842,420000,male,1,1,60,0,0,0,0,0,0,195379,198147,200431,200252,202789,205082,8003,7529,10005,8015,10018,7715,0
+14843,100000,female,2,2,29,0,0,2,0,0,2,95205,102039,99504,94453,99711,97944,9300,0,3400,6800,0,3500,1
+14844,130000,female,3,1,53,0,0,0,0,0,0,18614,20343,22386,24296,25436,27451,2343,2386,2296,1536,2451,2659,0
+14845,200000,male,1,1,34,-1,-1,-1,-1,-1,-1,780,0,390,3672,390,390,0,390,3672,390,390,390,0
+14846,150000,male,1,2,44,1,2,-1,-1,0,0,10710,4982,800,56800,54588,-7,137,15800,56800,0,7,79447,0
+14847,410000,female,1,2,30,0,-1,-1,0,0,-1,6972,3188,15106,15313,10959,8341,3188,15106,6000,0,8341,17331,0
+14848,30000,male,1,1,40,-1,-1,-1,-1,-1,-1,1047,447,318,258,0,318,447,318,258,0,318,1991,1
+14849,20000,male,2,2,23,1,2,0,0,0,-2,9352,9059,9823,10023,0,0,0,1000,200,0,0,0,1
+14850,130000,female,2,2,30,0,0,0,0,-2,-2,126834,128882,15621,0,0,0,5802,1000,0,0,0,0,0
+14851,180000,female,1,2,28,-2,-2,-2,-2,-2,-2,0,0,0,1430,0,0,0,0,1430,0,0,0,0
+14852,120000,male,1,2,32,0,0,0,0,0,0,45117,45607,46247,45974,45854,45191,3000,3000,2000,2000,1500,1500,0
+14853,190000,female,3,1,27,0,0,2,-1,-1,0,43903,53382,21811,2921,107441,108642,10882,0,2921,107441,4000,3700,0
+14854,30000,female,2,1,53,0,0,0,0,0,0,26891,28151,28827,29412,26199,27116,2000,1500,1000,1000,1351,1000,0
+14855,170000,male,1,2,28,0,0,0,0,0,0,73254,68005,63311,57304,51663,45795,2500,3000,2200,2000,1700,1500,0
+14856,120000,male,3,1,32,1,2,2,2,2,2,110826,113572,114719,115736,117729,120601,6000,4500,4400,4000,5000,4700,0
+14857,50000,male,2,2,34,1,2,2,2,0,0,35548,31713,50319,42805,39207,50155,0,21220,13,1510,15018,21,0
+14858,100000,male,2,2,50,1,-1,-1,0,0,-2,0,2976,44591,8910,0,0,2976,44591,0,0,0,0,0
+14859,20000,female,2,2,26,2,2,2,2,2,0,10372,12897,12393,14185,13817,14434,3000,0,2000,0,1000,3000,1
+14860,40000,male,1,2,25,-1,-1,-1,0,0,-1,511,513,1531,1017,506,499,513,1531,0,0,499,0,1
+14861,300000,male,1,1,45,-1,-1,-1,-1,-1,-2,1095,2930,2228,452,0,0,2941,2228,452,0,0,0,0
+14862,230000,female,3,1,37,1,-2,-2,-2,-1,-1,0,0,0,0,2533,0,0,0,0,2533,0,500,0
+14863,280000,female,1,1,38,-1,-1,2,0,0,-1,5165,8559,6455,544,0,4694,6455,11,5,0,4694,5292,1
+14864,450000,female,1,3,37,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+14865,260000,male,2,2,30,0,0,0,0,0,0,7426,6887,7757,8172,8407,8681,2000,1757,2000,2000,2000,2000,0
+14866,50000,female,3,1,39,0,0,0,0,-2,-2,43994,33508,37600,0,0,-5000,5000,5000,0,0,0,5000,0
+14867,50000,female,2,1,29,2,2,7,7,7,6,2550,2550,2550,2550,2550,1950,0,0,0,0,0,0,1
+14868,240000,female,2,1,36,0,0,0,0,0,0,227797,192920,185654,181350,186501,187457,10011,7722,9000,8000,7000,7000,0
+14869,70000,female,2,1,32,1,2,2,2,2,2,22914,23953,23275,24584,24051,26654,1700,0,2000,0,3000,600,0
+14870,60000,female,2,2,30,0,0,0,0,0,0,60922,59205,60850,40548,40580,40416,3205,2850,1578,1580,1416,2512,0
+14871,230000,female,2,1,31,0,0,0,0,0,0,160413,149267,126107,105831,82694,65983,6011,5012,2000,2300,2400,1500,0
+14872,30000,male,1,2,27,0,0,0,0,0,0,27159,27577,28838,28085,28428,29430,1500,1749,1200,1100,1465,1386,0
+14873,80000,female,3,1,29,1,2,0,0,0,0,80867,75615,77343,78883,79915,80296,0,3000,2744,3022,6000,2800,1
+14874,360000,female,2,1,40,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+14875,200000,female,1,1,49,0,0,0,0,0,0,51024,27254,36052,38440,40555,49699,10000,10021,5000,6000,10000,10000,0
+14876,150000,female,1,2,37,-1,2,2,-1,-1,-2,180,1582,1402,3244,-13,-13,1402,0,3244,0,0,0,0
+14877,260000,female,1,1,42,-2,-2,-2,-2,-2,-2,387,616,450,773,268,402,616,450,773,268,402,334,0
+14878,180000,female,2,2,24,0,0,0,0,0,0,126420,130905,136925,56669,24610,20476,6519,10000,3000,2000,2000,1000,0
+14879,220000,female,3,1,32,-1,0,0,0,0,0,8178,9509,9110,6401,7084,5625,9140,9046,6007,5030,5019,5018,0
+14880,180000,female,1,2,40,0,0,0,0,0,0,42790,43899,45172,46121,95432,50984,1800,2000,2000,2332,5000,1000,0
+14881,90000,female,6,3,46,0,0,0,0,0,0,77263,26691,21066,20422,20327,13619,8333,1494,600,1000,1000,257,0
+14882,20000,male,2,2,24,0,0,2,0,0,0,14558,17212,16635,16678,17268,17563,3200,0,600,1840,800,626,0
+14883,290000,female,2,2,31,0,0,0,0,0,0,172758,176718,181392,173856,172835,176710,8100,9000,6500,7000,6800,7000,0
+14884,210000,male,2,1,35,-1,-1,2,0,-1,-1,396,1188,792,396,396,396,1188,0,0,396,396,396,0
+14885,20000,male,1,2,31,0,0,0,0,0,0,18551,19595,20546,20250,19754,19833,1647,1598,692,697,777,797,0
+14886,310000,female,1,2,27,0,0,0,0,0,0,115126,105687,102306,93929,87681,73479,5222,5197,4000,5000,3980,3271,0
+14887,240000,male,2,1,42,0,0,-1,-1,-1,-1,66394,63650,7117,2898,5530,67010,1273,7117,2905,5530,46275,17446,0
+14888,330000,female,2,1,42,-2,-1,2,2,-2,-1,-4,8223,2996,207,-3,500,15450,0,209,3,503,0,1
+14889,310000,female,2,2,29,0,-1,-1,0,0,-1,1469,1340,9794,15792,8944,88643,1340,9794,7004,1000,89137,4150,1
+14890,30000,male,2,2,26,2,2,2,2,2,2,200,200,200,200,200,200,0,0,0,0,0,0,1
+14891,470000,male,1,1,37,0,0,0,0,0,0,134561,226498,165474,120644,119006,110780,150055,7046,10000,15029,15017,10023,0
+14892,280000,female,1,1,56,0,0,0,0,0,0,89739,73565,77944,81926,79277,78723,4000,6000,6000,7000,5000,5000,0
+14893,120000,female,1,1,34,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+14894,240000,male,2,2,28,-1,-1,-1,-1,-1,-1,4882,5205,2747,4594,4092,4361,5220,2773,4614,4104,4374,2443,1
+14895,800000,male,2,1,53,-1,-1,-1,0,0,-1,7639,5552,64535,40814,12590,9339,11145,64657,131,247,9366,63482,0
+14896,320000,female,1,2,30,-1,-1,-1,-2,-2,-1,1663,7025,1189,0,2701,2043,7025,1189,0,2701,2043,0,1
+14897,140000,female,1,1,34,0,0,0,0,0,0,103288,98632,93615,91282,88128,87812,4500,4126,3509,3500,4000,3500,0
+14898,20000,male,2,2,25,2,2,2,2,0,0,8880,9889,10087,9585,10082,10965,1500,700,0,1000,1400,0,0
+14899,160000,female,2,2,43,1,-2,-2,-2,-2,-1,0,0,0,0,0,695,0,0,0,0,695,0,0
+14900,280000,female,2,1,38,0,0,0,0,0,0,237821,223180,237301,201226,207802,219281,11000,20000,10000,10000,15000,10000,0
+14901,330000,female,2,2,33,0,0,0,0,0,0,166917,159118,149325,143242,138627,139977,7400,6600,4800,5000,5400,5100,0
+14902,230000,female,1,1,24,-1,-1,-1,0,0,-1,35000,35000,44884,10086,6905,237,35000,44884,202,405,237,3566,0
+14903,50000,male,2,2,25,-1,2,2,-2,-2,-2,1170,780,0,0,0,0,0,0,0,0,0,0,1
+14904,210000,female,2,2,33,1,0,0,0,0,0,21854,17376,18796,117846,118877,121476,2269,3000,100004,4000,3687,3500,0
+14905,170000,male,2,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+14906,220000,male,1,2,47,0,0,0,0,0,0,159351,162791,167631,169593,172967,183598,6000,7536,6231,6271,13500,0,0
+14907,90000,male,1,2,30,-1,-1,-1,-1,-1,-1,1166,1918,930,930,2250,930,1918,1194,930,2250,930,930,0
+14908,20000,male,2,1,26,1,2,2,2,2,2,11338,10870,12380,11884,12894,12540,0,2000,0,1203,0,1700,0
+14909,480000,female,2,1,31,0,0,0,0,0,0,20824,21960,20885,19949,23031,27176,5004,5000,795,5000,5000,10000,0
+14910,140000,male,1,1,36,0,0,0,0,0,0,40836,41878,42977,43960,45093,46342,2001,2100,2000,2000,2000,5000,0
+14911,160000,male,1,1,41,0,0,0,0,-2,-2,97266,99466,102650,0,0,0,3769,5000,0,0,0,0,0
+14912,80000,female,2,1,41,0,0,0,0,0,0,78337,77959,78206,72040,73733,75309,3500,3700,3000,3000,2793,3000,1
+14913,100000,female,1,2,22,2,0,0,0,0,0,72222,73859,75427,76587,78711,80510,3400,3400,3000,3500,3200,2000,0
+14914,310000,female,2,2,35,0,0,0,0,0,0,184404,180576,175348,139525,139156,115785,6225,5808,4312,4427,4524,4263,0
+14915,200000,female,2,1,36,-1,-1,-1,-1,-1,-1,371,37647,371,2977,3784,10579,37647,371,2977,3784,10579,10546,0
+14916,50000,male,2,1,55,0,0,0,0,0,0,25330,25894,26866,26673,26871,27009,1745,1717,914,1000,963,1112,0
+14917,100000,female,2,1,39,2,2,0,0,0,0,78353,77726,79151,80249,82405,77011,1200,3400,2900,3500,3000,6100,1
+14918,240000,female,1,2,26,1,-1,-1,-1,-1,-1,0,189,651,0,127,0,189,651,0,127,0,0,0
+14919,30000,male,2,1,53,0,0,0,0,0,0,18112,18456,19004,19030,24541,26305,1329,1267,683,8000,2731,0,0
+14920,180000,male,3,1,43,-1,-1,-1,-1,-1,-1,3690,15618,4685,238,218,6690,15682,4699,238,218,6710,11949,0
+14921,40000,female,1,2,24,0,0,0,0,2,0,38272,39159,40007,41973,40689,40640,2000,2000,3100,0,1500,1500,1
+14922,70000,female,2,1,31,0,0,0,0,0,0,71065,69311,70882,68678,69030,66791,2566,2775,2381,3000,2452,2608,0
+14923,50000,female,2,2,22,0,0,2,0,0,0,30631,30479,28301,26829,27173,26424,4809,0,1200,1500,943,1142,0
+14924,500000,male,2,2,30,1,0,0,0,0,0,2817,7682,47403,36067,46054,34290,5037,47221,5026,16005,2000,1000,0
+14925,200000,female,1,2,33,-1,-1,-1,-1,-2,-2,390,0,780,0,0,0,0,780,0,0,0,0,0
+14926,250000,male,1,1,51,2,2,2,2,2,2,2487,2487,2487,2487,2487,2487,0,0,0,0,0,0,1
+14927,50000,male,1,1,49,1,2,2,0,0,0,48518,49244,45385,17912,31278,14818,1800,82,1500,10000,1062,549,0
+14928,180000,male,2,1,33,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+14929,160000,female,1,1,42,-1,-1,-1,-1,-1,-1,3607,4417,1058,2146,2534,2242,4417,1058,2146,2534,2242,2254,0
+14930,20000,male,2,2,40,1,2,2,2,3,2,15476,16533,15975,17903,17336,16910,1600,0,2500,0,0,2000,0
+14931,50000,female,2,1,44,0,0,0,0,0,0,27321,24726,22581,20192,18813,17328,1415,1500,700,700,629,488,0
+14932,20000,female,1,2,23,0,0,0,0,0,0,17165,18387,19573,19504,19642,20128,1500,1600,700,1000,1000,1000,0
+14933,150000,female,1,2,24,-1,-1,-1,-1,-1,-1,291,291,291,658,441,1197,291,291,658,441,1197,8007,0
+14934,360000,male,2,2,48,0,0,0,0,0,0,29269,26763,23202,24979,26734,17956,1500,2000,2000,2000,2000,3000,0
+14935,20000,male,2,2,28,0,0,0,0,0,0,8814,10167,21774,10707,10539,10757,1500,1200,378,389,400,600,0
+14936,170000,female,2,2,32,0,0,0,0,0,0,71752,73282,74707,75626,75845,25140,2687,2671,3100,3286,1100,1000,0
+14937,30000,male,3,2,42,0,0,2,0,0,-1,27742,31130,29105,58840,28840,1319,4600,0,1060,1091,1319,565,0
+14938,80000,female,2,1,29,0,0,0,0,0,0,49528,44639,39720,34465,29488,32912,1730,1644,1222,1400,10000,1200,0
+14939,110000,female,2,2,25,0,0,0,0,0,0,111115,113515,111815,79375,78541,79731,6000,5000,3000,3100,3000,3000,0
+14940,140000,male,2,2,25,-1,-1,-1,-1,-1,-1,1198,4656,1516,-660,249,-427,4660,2000,0,2200,1500,1400,0
+14941,50000,male,2,2,34,0,0,0,0,-2,-2,50713,49402,44415,0,0,0,3000,1000,0,0,0,0,0
+14942,120000,female,2,1,34,0,0,0,0,0,0,88210,86473,86353,84327,82469,82491,3300,3022,3100,3000,3100,3000,0
+14943,10000,male,3,2,22,0,0,0,0,0,0,18289,9217,10203,9634,9857,9704,1317,1303,334,373,326,1359,0
+14944,20000,female,1,1,43,-1,-1,-1,0,0,-2,1716,4019,2500,1000,0,0,4027,2500,0,0,0,0,0
+14945,180000,female,1,2,31,-1,-1,-1,-1,0,0,4582,1359,316,3072,2756,2440,1359,316,3072,0,0,316,1
+14946,240000,female,2,2,24,0,0,0,0,0,-1,50787,51524,31783,33993,36783,37102,1601,1400,3000,3180,37102,904,0
+14947,120000,male,2,1,30,1,2,0,0,0,0,6305,7052,8786,8863,10763,7140,1000,2000,177,2000,1000,0,1
+14948,150000,female,1,2,28,0,0,-1,4,3,2,8982,0,1187,1182,882,441,0,1187,0,0,0,583,0
+14949,30000,male,3,1,55,2,2,7,7,7,7,2395,2395,2395,2395,2395,2395,0,0,0,0,0,0,1
+14950,80000,male,1,2,31,-1,-1,0,0,0,0,17873,65585,64047,48107,48620,45280,65592,2051,2002,2013,2004,2000,0
+14951,50000,male,1,1,28,0,0,-2,-2,-2,-2,4545,0,0,0,0,0,0,0,0,0,0,0,1
+14952,30000,female,3,1,58,2,2,2,2,2,2,26580,27652,27905,27158,29239,29791,1800,1000,0,2518,1185,1200,1
+14953,200000,male,1,1,29,-1,-1,-1,-1,-1,-1,9585,1686,820,1889,6617,3986,1735,824,1889,6617,3986,2460,0
+14954,480000,female,2,2,31,-1,-1,-1,-1,-1,-1,1759,1759,1759,1759,1759,1759,1759,1759,1759,1759,1759,1759,1
+14955,50000,male,2,2,55,2,0,0,0,0,0,21133,21793,19641,15848,16026,16359,1325,1506,713,582,600,607,1
+14956,30000,male,2,1,23,2,2,2,2,2,2,28224,29276,28635,30127,30525,29793,1800,150,2250,1000,0,700,1
+14957,300000,female,1,2,31,-1,-1,-1,-1,-1,-1,7834,1086,316,316,316,316,1093,316,316,316,316,316,1
+14958,500000,female,2,1,36,0,0,0,0,0,-1,4952,6607,8544,15351,5839,9192,3008,4005,8048,131,9213,111,0
+14959,350000,male,1,2,30,-1,0,-1,-1,-1,-1,18265,31619,2071,2915,1011,23620,16158,2081,2929,1016,23738,919,0
+14960,150000,male,1,1,41,-2,-2,-2,-2,-2,-1,6780,10633,3260,0,0,1081,10638,3260,0,0,1081,0,0
+14961,30000,male,2,1,46,0,0,0,0,-2,-2,20328,18944,3395,0,0,0,1582,1033,0,0,0,0,0
+14962,20000,female,1,2,25,1,2,0,0,0,0,20420,16592,14400,17000,17000,20000,2,2000,3000,0,3000,0,0
+14963,380000,female,2,2,41,0,0,0,0,0,0,302130,266160,236316,224029,224022,225978,10018,10000,15000,30000,30251,20000,0
+14964,70000,female,1,1,42,0,0,0,0,0,2,40466,41805,42520,43378,46664,47341,1994,1709,1567,4000,1600,2000,1
+14965,300000,female,2,1,40,-1,-1,-1,-1,-1,-1,2991,1278,4043,683,172,402,1278,4045,685,172,402,4080,0
+14966,160000,male,3,2,27,1,2,-1,0,0,0,80166,34775,34073,15676,99436,90927,0,142848,1800,90000,3300,3400,1
+14967,230000,female,2,2,32,1,-1,-1,0,-1,-1,328,1593,2015,1077,1479,3104,1621,2015,10,1479,3104,1152,0
+14968,260000,male,1,1,51,-1,-1,2,-1,-1,-1,229,674,476,2856,814,605,674,0,2880,814,605,1776,0
+14969,360000,male,2,1,37,-2,-2,-2,-2,-2,-1,194836,134296,128307,61650,0,87754,5180,5564,2850,0,87754,3159,0
+14970,50000,female,2,2,26,0,0,-1,0,-1,0,49028,49740,780,390,850,18460,2400,780,0,850,18000,1000,0
+14971,20000,male,2,2,24,-1,-1,-1,-2,-2,-2,2500,3068,-380,-380,-380,-380,3068,0,0,0,0,0,0
+14972,140000,female,2,2,29,0,0,0,0,0,0,116597,55208,47397,45860,46264,41870,3018,3000,1356,2000,2000,1500,0
+14973,50000,male,2,2,24,0,0,-1,0,0,0,44687,39137,39877,28471,29309,28409,2138,44447,2202,2004,1202,1051,0
+14974,50000,male,3,2,27,0,0,0,0,0,0,45002,46053,45120,45870,46975,49284,2100,2100,1800,2000,3100,1300,0
+14975,50000,male,2,2,28,0,0,0,0,0,0,39103,40142,41462,42130,43011,43863,1667,1987,1655,1710,1719,1616,0
+14976,50000,female,1,2,22,0,0,0,-1,-1,-2,24763,33542,30455,2000,0,0,10000,1175,2000,0,0,0,1
+14977,80000,female,1,2,24,-1,0,0,0,0,0,75356,78236,77700,58025,59527,60778,5000,4176,4000,3000,2141,3000,0
+14978,90000,female,2,1,28,0,0,0,0,0,0,24657,25743,26406,24364,19726,19166,1500,1500,1508,1000,1000,800,0
+14979,50000,female,2,1,27,-1,-1,-1,-1,-1,-1,492,492,492,492,492,470,493,493,493,493,471,7739,0
+14980,270000,female,2,1,32,0,0,0,0,0,0,116315,119103,122249,123905,105064,105600,6500,6843,6284,3617,3716,4035,0
+14981,60000,female,2,2,34,1,2,0,0,0,0,64684,63036,60031,27725,28282,30268,0,2459,1433,990,2419,0,0
+14982,240000,female,2,1,35,-2,-2,-2,-2,-2,-2,3862,1780,0,0,0,0,1783,0,0,0,0,2500,0
+14983,240000,male,1,2,36,0,0,0,0,0,0,131477,126941,62378,20156,157391,158991,6009,3017,1048,150004,5613,5809,0
+14984,30000,male,3,1,43,1,3,2,2,2,2,22494,21845,21207,23491,22818,24321,0,0,2645,0,2029,1027,1
+14985,50000,male,2,2,42,1,2,0,0,0,0,51047,47924,49053,50106,17756,18072,0,2200,2180,1000,1000,800,0
+14986,370000,male,2,2,33,0,0,0,2,0,0,72322,74758,78423,81017,81698,83562,4252,5500,4500,2926,3182,3043,0
+14987,50000,male,2,1,34,1,2,0,0,0,0,49372,47420,47992,49278,28086,30196,0,2500,3500,1000,3397,0,0
+14988,130000,male,2,2,35,0,0,-1,0,0,0,2541,0,7609,8217,9741,8308,0,7609,2500,1600,510,299,0
+14989,20000,male,2,2,40,1,4,3,2,2,2,17361,16803,16253,15695,16832,16420,0,0,0,1400,0,603,0
+14990,410000,male,2,2,39,0,0,0,0,0,0,335938,328323,321091,274957,268891,262570,14000,13014,30000,12000,10000,9040,0
+14991,50000,male,1,1,47,0,0,0,0,0,0,47695,49550,51636,53561,53283,53057,2657,2743,2668,1712,1762,1894,0
+14992,30000,male,1,2,42,1,2,2,2,0,0,31217,30406,31380,30277,30028,30198,0,3600,0,1100,1050,1000,0
+14993,20000,male,2,1,44,0,0,2,0,0,0,16401,9620,9264,11693,11826,13242,3000,1000,3000,1000,2000,1000,0
+14994,50000,male,1,1,41,0,0,0,2,2,2,34384,35503,38931,38006,44357,43516,2000,4000,0,7000,0,2000,0
+14995,360000,male,1,1,36,-2,-2,-2,-2,-2,-2,8162,3141,587,1647,1745,597,3144,590,1670,1748,600,11883,0
+14996,70000,male,2,2,45,1,2,2,2,2,0,9728,9423,12251,12358,11865,11975,0,3000,600,0,450,500,0
+14997,160000,male,3,2,38,0,0,0,0,0,0,47268,47269,45688,47690,48712,49525,2725,2767,2769,1791,1928,1960,0
+14998,20000,male,2,2,38,0,0,0,0,0,0,19817,19751,20242,20098,20059,20513,2000,1700,1300,1008,1700,1000,0
+14999,110000,male,2,1,39,0,0,0,0,0,0,64494,49464,40359,34533,36819,32467,4000,3007,3000,3000,3000,4000,0
+15000,50000,male,2,1,45,1,2,0,0,0,0,20530,15843,18256,19896,19874,19248,0,3000,2000,1000,2000,0,0
+15001,80000,male,2,1,32,0,0,0,0,0,0,75149,76786,72626,29012,28653,28398,4003,3003,2003,1146,1403,1503,0
+15002,150000,male,1,1,31,-1,-1,-1,-2,-2,-1,1600,1815,0,0,0,16877,1815,0,0,0,16877,25069,0
+15003,290000,male,2,2,42,0,0,0,0,0,0,76063,72418,65814,60861,60901,53023,4434,3814,2861,1901,2023,3719,0
+15004,340000,male,3,1,48,0,0,0,0,0,0,4726,5178,65826,63877,53845,51983,1379,61883,2147,1855,1774,1541,0
+15005,110000,male,3,1,43,0,0,0,0,0,0,103225,106004,108831,79455,54971,57257,4500,5000,3043,2000,3000,5000,0
+15006,150000,male,1,1,46,2,2,2,2,2,2,148364,150565,150254,64644,40150,41250,5400,5026,1722,1500,3000,108058,1
+15007,280000,male,2,1,38,-2,-2,-2,-2,-2,-2,3596,959,1067,3405,1805,2153,963,1072,3422,1814,2162,1757,0
+15008,20000,male,2,1,46,0,0,3,2,0,0,8168,12309,11834,11180,780,1170,4600,0,0,0,0,930,1
+15009,180000,male,2,1,36,2,2,2,2,2,2,114140,115764,117426,119000,120528,123451,5000,5000,5000,5000,5000,0,1
+15010,50000,male,1,2,39,0,0,0,2,0,0,33307,38730,50694,49483,17299,17959,6000,13000,0,1000,1000,2000,1
+15011,200000,male,1,1,38,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+15012,280000,male,2,2,35,-2,-2,-2,-2,-2,-2,117,1368,14027,-2,475,5038,1375,14111,0,477,5063,415,0
+15013,100000,male,1,1,35,0,0,0,2,2,0,65451,72277,78115,79244,77373,78973,8000,7000,3000,0,3000,6000,0
+15014,50000,male,2,2,33,0,0,0,0,0,0,8406,8418,8347,12321,6294,3333,3000,3000,7508,1000,1000,1500,0
+15015,210000,male,1,1,38,0,0,0,-2,-2,-2,81582,82768,654,628,302,476,4000,1584,300,0,500,476,0
+15016,280000,male,2,1,33,0,0,0,0,0,-1,22331,22341,23359,23647,-1353,93696,1371,1389,1175,0,95049,3308,0
+15017,350000,male,1,1,39,-2,-2,-2,-2,-2,-2,3948,4368,5339,0,0,0,2184,10678,0,0,0,0,0
+15018,230000,male,3,2,39,-1,-1,-1,2,-1,0,948,1156,1728,1156,1172,396,1156,1728,0,1172,0,776,0
+15019,100000,male,1,2,40,0,0,0,0,2,0,97582,99964,96270,97440,94518,24180,5000,5000,6000,0,484,0,0
+15020,390000,male,1,1,35,0,0,0,0,0,0,24297,28804,43996,47532,49414,51380,5000,20000,5006,5006,5008,3004,0
+15021,210000,male,2,1,40,-1,-1,-2,-2,-2,-2,3180,0,0,0,0,0,0,0,0,0,0,0,0
+15022,50000,male,3,2,47,0,0,0,0,0,0,29789,28699,29305,27595,27745,28086,1763,1759,1439,979,1164,1300,0
+15023,50000,male,3,1,44,0,0,0,0,0,0,15109,16117,17217,18005,18369,18888,1263,1363,1151,515,670,780,0
+15024,340000,male,1,1,42,0,-1,-1,-1,2,-1,13454,14544,-2429,10300,3630,3577,15074,528,15303,13,3615,6765,0
+15025,300000,male,2,2,38,1,-1,0,0,0,0,5256,2491,3523,6355,5055,-445,4000,2000,3000,0,0,0,0
+15026,150000,male,3,1,37,-1,-1,-1,-1,-1,-1,8027,7121,10292,3141,7522,3929,7129,11000,3141,7531,3929,0,0
+15027,200000,male,1,3,45,0,0,0,0,0,0,74416,75891,77516,79088,80141,81833,3061,3200,3196,2700,2714,8918,0
+15028,350000,male,1,2,34,1,2,0,0,2,0,334427,322808,254410,11423,8415,10230,332,81256,8441,6,8013,1006,1
+15029,20000,male,2,2,34,0,0,0,0,0,0,17809,15650,16691,17903,18318,19033,1300,1300,1500,1000,1000,1000,0
+15030,470000,male,2,1,35,0,0,0,0,0,0,170812,172332,177566,182074,183417,185608,6500,8000,9000,7000,8000,8000,1
+15031,200000,male,1,1,39,0,0,0,0,0,2,132589,135286,139725,142605,149894,153054,4900,6600,6700,11200,5700,5900,1
+15032,20000,male,3,2,40,1,3,2,0,0,0,9080,8790,8505,9557,10395,11227,0,0,1200,1000,1000,1000,0
+15033,230000,male,1,1,37,-2,-2,-2,-2,-2,-2,211,162,155,155,75,635,162,155,155,75,635,2336,0
+15034,200000,male,2,2,33,0,0,0,0,0,0,154000,155392,76667,151434,49407,51636,5000,5000,88300,5000,3000,2000,1
+15035,70000,male,3,1,34,0,0,0,0,0,0,63580,64688,66566,56942,58986,61031,3000,3002,2500,3000,3000,2502,0
+15036,20000,male,3,1,38,2,0,0,-1,-1,-1,19868,19805,19900,390,390,0,1515,1000,390,390,0,780,1
+15037,10000,male,2,2,34,0,0,0,0,0,0,9178,7692,9484,10004,10084,9936,1500,2257,1200,500,500,600,0
+15038,100000,male,3,2,35,2,2,2,2,2,2,67646,69237,70638,71680,72705,74195,3300,3100,2800,2800,2800,2800,1
+15039,130000,male,3,1,39,-2,-1,-1,-1,-1,-1,957,6214,1625,728,2464,1139,6220,1628,730,2466,1145,650,0
+15040,240000,male,1,1,46,-2,-2,-2,-2,-2,-2,7278,800,437,11624,9411,-3316,804,437,11705,9473,1405,164705,0
+15041,590000,male,1,2,33,0,0,-1,0,0,0,42337,90090,68573,61065,30510,25887,60092,68753,10000,15033,25965,20377,0
+15042,420000,male,1,2,39,0,0,0,0,0,0,403552,390237,368259,344875,338552,345971,13703,15581,13000,12000,13000,12013,0
+15043,360000,male,2,1,34,-1,-1,-1,-1,-1,-1,5375,0,7799,8506,0,4186,0,7799,8528,0,4186,0,0
+15044,280000,male,1,1,35,0,0,0,0,0,2,59188,146368,244092,210226,177595,153181,100000,101585,90762,50119,282,50436,0
+15045,400000,male,1,1,35,-2,-2,-2,-2,-2,-2,0,2720,98,44321,1699,0,2720,98,45869,1699,0,2024,0
+15046,10000,male,2,1,35,0,0,0,0,0,0,5828,7717,8830,9687,10025,10400,2000,1400,1162,500,600,0,0
+15047,110000,male,2,1,35,1,2,0,0,0,0,112829,108073,110313,108986,48641,46982,0,6307,5093,2008,2010,3000,1
+15048,220000,male,1,2,47,-1,2,-1,-1,-1,-1,628,314,290,5134,346,427,1,291,5159,347,428,14473,0
+15049,130000,male,2,1,46,0,0,0,0,0,0,89634,90999,94519,97939,101299,109615,5000,5000,5000,5000,10000,5000,0
+15050,50000,male,2,2,33,0,0,0,0,0,0,45853,44206,34713,19474,19508,19837,5435,2109,1576,1000,2000,1000,0
+15051,520000,male,1,2,34,0,0,0,0,0,0,203647,185853,178531,170915,162864,155297,6501,7001,5989,5701,6001,6001,0
+15052,30000,male,2,2,47,1,3,2,0,0,0,15783,15237,15693,16928,18299,20129,0,1000,1500,1659,2129,0,1
+15053,50000,male,6,1,45,0,0,0,0,-1,0,33634,34770,34948,-52,848,850,2000,1000,0,900,2,1749,0
+15054,260000,male,2,1,32,0,0,-1,-1,-1,0,29389,2981,12001,20325,43849,22820,2796,12173,20619,43968,3014,2021,0
+15055,210000,male,2,1,44,-2,-2,-2,-2,-2,-2,245,245,141,-104,-104,-104,245,141,88,0,0,0,0
+15056,500000,male,1,2,38,0,-1,-1,0,0,0,130700,15785,154653,450497,425957,298509,15785,154653,338394,16000,500,19999,0
+15057,120000,male,1,1,33,0,0,0,0,0,0,119684,121113,113997,117085,117945,109855,5000,4200,5000,5000,4200,4100,0
+15058,110000,male,2,2,32,0,0,0,0,0,0,97510,92152,94503,95571,91794,80365,3300,3838,3056,8000,3000,3200,0
+15059,420000,male,1,2,32,-2,-2,-2,-2,-2,-1,11728,8860,4829,12181,7597,17772,8904,4866,12241,7635,17858,10057,0
+15060,80000,male,3,1,41,0,0,0,0,0,-1,76015,77582,60311,62471,21071,2099,3008,3000,5000,10000,2099,0,1
+15061,300000,male,2,1,41,0,0,0,0,-1,0,39260,29318,16703,16000,10154,10154,2052,3012,2048,10154,0,4589,0
+15062,260000,male,1,2,35,2,2,2,0,0,2,139582,149124,145333,148332,160810,155683,13400,0,6910,16502,0,5847,1
+15063,500000,male,1,1,42,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+15064,20000,male,2,1,37,3,2,0,0,0,0,20334,18555,3455,4359,4448,4704,0,1096,1000,89,256,0,0
+15065,160000,male,1,2,36,0,0,0,0,0,0,156775,157941,146063,128318,96654,98694,5145,5187,5014,3000,3251,3104,0
+15066,290000,male,1,2,34,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+15067,360000,male,1,1,32,0,0,0,0,0,0,120533,124530,128518,134368,135626,134864,6000,6000,8000,4918,5000,3300,0
+15068,200000,male,4,1,35,-2,-2,-2,-1,0,0,3000,5752,5028,13784,14482,11836,5752,5028,13800,2900,3100,305,0
+15069,180000,male,1,2,41,0,0,0,0,0,0,105347,66897,49287,4130,238,0,6241,2324,1019,1,0,1452,0
+15070,100000,male,1,2,35,-1,2,0,0,-1,0,1818,1644,2449,-571,40342,41113,0,1020,0,41113,1000,1400,1
+15071,500000,male,1,3,38,-2,-2,-2,-2,-2,-2,1523,0,0,0,0,0,0,0,0,0,0,0,1
+15072,50000,male,2,1,38,0,0,0,0,0,0,13921,14800,16394,6198,7717,7722,1500,2000,1091,2000,500,500,0
+15073,290000,male,1,2,36,0,0,0,0,0,0,215472,222699,213253,126952,103575,56564,11000,9500,4000,3003,2000,2000,0
+15074,270000,male,1,2,32,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+15075,250000,male,1,2,33,-2,-2,-2,-2,-2,-2,5017,22469,-29,-29,-29,-29,22581,0,0,0,0,5821,0
+15076,80000,male,3,1,45,2,0,0,0,0,0,75222,131966,68466,68547,59339,32500,2379,6036,1763,1187,650,0,1
+15077,360000,male,1,1,35,-1,-1,-1,-1,-1,-1,1540,1099,6342,5077,1274,-6,1102,6353,5105,1277,0,2058,0
+15078,50000,male,1,2,40,1,2,0,0,0,0,25667,26441,27213,28521,28458,29053,1500,1500,1771,1500,1053,1093,0
+15079,420000,male,1,2,35,0,0,0,0,0,0,168182,163177,149406,136292,128344,120582,15000,6000,5000,10000,10000,10000,0
+15080,180000,male,1,1,39,0,0,0,-1,0,0,257579,274731,281713,242063,122295,-1005,20000,11000,145000,26000,0,101005,0
+15081,180000,male,1,2,36,-2,-2,-2,-2,-1,-1,0,0,0,0,680,34704,0,0,0,680,34704,700,0
+15082,220000,male,1,1,45,-1,-1,-1,-1,-1,-1,3455,11997,5874,416,416,416,12001,5874,416,416,416,416,0
+15083,210000,male,0,2,45,-2,-2,-2,-2,-2,-2,2563,5854,1032,788,3499,3372,5854,1032,788,3565,3372,15381,0
+15084,180000,male,2,1,47,0,0,0,0,0,0,179253,95170,97338,99694,65977,67415,3700,3700,4100,2360,2500,2618,0
+15085,210000,male,2,1,44,1,2,0,0,0,0,236136,220847,216703,206635,96240,88040,0,9400,5000,2000,1800,10000,0
+15086,20000,male,2,1,50,1,2,2,2,0,0,18206,18217,19930,780,780,0,1000,3000,0,0,0,0,0
+15087,50000,male,2,1,50,2,2,2,2,2,2,19786,19170,21864,21215,23494,22978,0,3008,0,2638,0,845,1
+15088,250000,male,3,1,51,-2,-2,-2,-2,-2,-2,-18,2482,-18,-18,-18,-18,2518,0,0,0,0,0,0
+15089,50000,male,1,2,51,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+15090,50000,male,2,1,56,0,0,0,0,0,0,46794,46836,48062,49242,18713,19456,1756,1982,2162,633,1007,627,0
+15091,50000,male,3,1,51,0,0,0,0,0,0,44147,45063,36421,18759,19131,19531,1785,1973,1311,683,707,735,1
+15092,50000,male,1,3,51,0,0,0,0,0,0,48600,49387,49259,30864,16016,13913,1986,1638,1130,449,418,416,0
+15093,50000,male,1,1,48,2,2,2,2,0,0,47009,49942,50382,49162,40973,39671,4000,1500,0,1275,1377,1882,0
+15094,370000,male,2,1,55,0,0,0,0,0,0,360546,369909,370605,366054,310869,311284,15901,13603,13500,11014,12024,16027,0
+15095,20000,male,3,1,56,1,2,2,2,2,0,9453,10143,10730,12241,11748,12456,1000,900,2000,0,900,3200,1
+15096,300000,male,3,1,61,0,0,0,0,0,0,269781,275773,282818,289012,123239,123812,10001,11001,12001,10001,5001,5001,0
+15097,50000,male,2,1,53,0,0,0,0,0,0,48120,47824,48954,46716,18685,19076,1818,1948,1835,669,692,707,0
+15098,200000,male,1,1,52,-1,-1,-1,-1,-1,-1,2343,3943,1443,1443,1443,1443,3943,1443,1443,1443,1443,1443,0
+15099,180000,male,2,1,53,-1,-1,-1,-1,-1,-1,316,316,316,316,316,316,316,316,316,316,316,466,1
+15100,490000,male,2,1,50,0,0,0,0,0,0,208353,205873,210880,215628,217883,223541,10000,10000,10000,10000,10000,8000,0
+15101,330000,male,1,2,65,0,0,0,0,0,0,20727,197441,184973,172124,158958,144889,194000,6710,6223,5671,5274,4657,0
+15102,160000,male,2,1,50,1,2,2,2,0,0,142779,146635,148953,144119,48552,49770,7700,6100,0,2000,2000,2000,1
+15103,80000,male,2,2,48,0,0,0,0,0,0,74040,74658,72885,47663,48350,47208,3500,2500,2000,2000,2000,2000,0
+15104,30000,male,3,2,52,1,2,0,0,0,0,18034,16604,16635,15413,14296,9090,6,1335,2000,0,0,939,0
+15105,150000,male,2,2,52,-2,-2,-2,-1,0,0,4966,-1390,-4661,129847,131969,134515,1406,133122,136320,5001,5000,5001,0
+15106,50000,male,1,2,50,0,0,0,0,0,0,22551,18975,18830,19425,19414,19427,1296,1318,1303,682,703,696,0
+15107,50000,male,2,1,52,0,0,2,0,0,0,43286,47744,46706,48066,49026,49755,5500,0,2500,2000,2000,2058,0
+15108,200000,male,3,1,50,-2,-2,-2,-2,-1,-1,17306,17380,20341,16223,17466,16613,17380,20341,16223,17466,16613,17935,0
+15109,240000,male,2,1,54,0,0,0,2,0,0,14332,16135,249258,243589,204754,201426,2000,234000,30,7046,7023,10005,0
+15110,50000,male,2,2,51,0,0,0,0,0,0,41700,42858,44131,14242,14525,14830,1853,2126,1237,520,539,542,0
+15111,150000,male,1,2,53,0,0,0,0,-2,-2,103720,103662,105000,0,0,0,5000,3000,0,0,0,0,0
+15112,190000,male,2,1,58,1,2,0,0,0,0,147335,135184,139664,142293,113086,115433,0,6586,5881,3292,3399,3469,0
+15113,450000,male,2,1,66,-2,-2,-2,-2,-2,-2,-81,15029,-1318,-9157,-20753,-22680,15110,40,258,9,23,27,0
+15114,30000,male,3,1,55,3,2,2,7,7,7,2395,2395,2395,2395,2395,2395,0,0,0,0,0,0,1
+15115,410000,male,2,1,63,0,0,0,0,0,0,429392,425895,411492,371539,308888,240970,15120,16284,16524,10320,8525,6739,1
+15116,50000,male,3,1,55,0,0,0,2,2,-2,50805,50690,51393,49949,21942,19826,1750,5600,34,10600,712,729,1
+15117,240000,male,2,2,57,-1,-1,-1,-1,0,0,1115,1211,2206,62507,63226,63517,1211,2455,64395,1917,4160,1710,0
+15118,20000,female,3,2,26,0,0,0,0,0,0,19026,19495,19417,19159,15574,0,2302,2004,1200,1000,0,0,0
+15119,290000,female,1,2,42,-2,-2,-2,-2,-2,-2,768,42863,2632,11767,4684,3685,42863,2632,11780,4684,3685,4352,0
+15120,330000,female,1,2,28,0,0,0,0,0,0,32316,33705,28743,28217,25432,19938,2000,2000,2000,800,687,812,0
+15121,170000,female,2,2,23,0,0,0,0,0,0,139172,140837,139639,146931,98827,100833,4970,5300,10000,3500,3500,4000,0
+15122,70000,female,1,2,23,2,2,0,0,0,0,72593,70828,74271,70467,50700,49329,0,7463,2200,2840,1781,1812,1
+15123,120000,female,1,2,24,-2,-2,-1,-1,0,0,14709,8158,3529,11050,15811,14774,9326,3538,11050,5313,516,6202,0
+15124,250000,male,1,1,53,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+15125,290000,female,3,2,29,0,0,0,0,0,0,279804,279377,283202,283401,285291,287510,10000,11000,10000,10000,11000,11000,0
+15126,20000,female,2,2,26,0,0,0,0,0,0,25451,24025,21148,17767,2692,-956,3000,1500,1035,54,24056,21000,0
+15127,80000,female,1,2,23,2,2,2,0,0,2,74860,80461,78259,66068,50748,51490,6865,37,2122,3600,1600,18,1
+15128,30000,female,2,2,22,1,2,0,0,0,0,27332,26600,27832,26897,27278,27851,0,2006,2000,1100,1137,1300,0
+15129,50000,female,2,2,23,2,0,0,-2,-1,-1,8730,4388,0,0,5412,6414,1000,0,0,5412,2000,0,1
+15130,30000,female,2,2,21,2,0,0,2,-1,-1,23243,24394,25693,25760,165,0,1704,2168,1000,165,0,0,1
+15131,200000,female,2,2,22,0,0,0,0,0,2,205736,199379,132963,145115,153040,155636,7758,5001,15000,10800,5600,0,1
+15132,70000,female,2,2,23,0,0,0,0,0,0,32244,33549,34308,35638,36046,36958,1841,1600,1900,1300,1489,1800,0
+15133,50000,female,2,1,26,0,0,0,0,0,0,50905,49796,50783,49776,50937,49956,2200,2100,2000,2000,2000,2300,0
+15134,30000,female,2,2,22,0,0,0,0,-1,0,14617,17363,20430,25130,7746,10583,3000,3376,5076,8009,6017,3023,0
+15135,70000,female,2,2,22,2,2,2,2,0,0,64838,69136,69422,65107,28736,29221,6000,2000,55,1170,1100,1170,0
+15136,80000,female,2,2,22,2,0,0,0,0,0,73954,77526,99205,74016,48043,48545,5400,3451,3577,2000,1800,1800,1
+15137,50000,female,2,2,25,0,0,0,0,0,0,33703,30857,28481,27634,26691,26329,1800,1800,1400,915,1500,1500,0
+15138,300000,female,2,2,26,0,0,0,-1,0,0,29300,18988,6893,49379,49161,50646,1214,2000,49379,1500,2000,15000,0
+15139,30000,female,2,2,22,-1,0,0,0,0,0,2006,3116,28844,25317,25885,25165,1157,25885,1500,2170,1000,1000,0
+15140,50000,female,2,2,30,0,0,0,0,0,0,49129,49102,49049,41876,29158,29493,1833,1804,1494,1031,1062,1092,0
+15141,50000,female,3,1,31,0,0,0,0,0,0,50734,43406,44333,44577,44501,11614,1700,2016,1600,2100,1000,47000,0
+15142,80000,female,2,2,22,-1,-1,-1,0,0,-1,3436,3473,10007,3584,2961,3831,3473,10020,2986,22,3835,5683,0
+15143,50000,female,2,2,23,0,0,0,0,0,0,40760,39660,23203,18983,13466,18878,1500,1500,1100,1466,5556,598,0
+15144,50000,female,2,1,23,0,0,0,0,0,0,50859,49808,49993,50025,29562,29786,1965,2150,2118,1045,1077,1070,0
+15145,40000,female,2,2,23,2,2,2,0,0,0,8160,9197,9895,11420,12723,14360,1327,1000,2000,1500,2000,0,1
+15146,160000,female,2,2,23,0,0,0,0,-1,-1,17920,17195,17164,7175,1942,100025,2000,3181,3012,1942,100025,3000,0
+15147,60000,female,1,2,23,0,0,0,0,0,0,21972,24612,16711,8549,7635,12258,3126,1392,5033,3601,5200,3647,0
+15148,30000,female,2,2,23,0,0,0,2,0,0,27186,27585,30398,29305,29408,28699,1451,3564,0,1174,1207,4302,1
+15149,30000,female,1,2,23,0,0,2,0,0,2,12936,15904,15364,16798,19203,18757,3200,0,2000,3000,0,2000,0
+15150,30000,female,2,2,23,0,0,0,0,0,0,34084,33476,32006,31672,31247,30673,1521,1573,1500,1300,1300,1329,0
+15151,90000,female,1,2,23,-1,-1,-1,0,0,0,5802,4657,10967,14644,12467,4155,4657,10967,10000,249,0,0,0
+15152,100000,female,2,2,24,0,0,0,0,0,0,85343,83855,78703,76544,75360,76507,2916,3000,3000,3000,3000,2700,0
+15153,50000,female,1,2,23,0,0,0,0,0,2,8400,9412,10433,11443,12268,11928,1160,1181,1191,1016,0,1499,0
+15154,90000,female,2,2,25,0,0,0,0,-1,-1,28276,29305,30336,28800,9852,2160,1505,1536,1000,9852,2160,400,0
+15155,90000,female,2,2,28,2,2,0,0,0,2,65521,63869,65212,66627,70652,69397,0,2368,2500,5140,0,2600,1
+15156,50000,female,2,2,23,2,0,0,0,0,0,48668,48554,45445,38551,28056,28310,4034,2000,5008,1000,2000,1000,1
+15157,80000,female,2,1,25,0,0,0,0,0,0,76117,76660,46137,48218,48286,48207,2300,2200,3207,2000,2000,2000,0
+15158,60000,female,2,2,25,0,0,0,0,0,0,6234,7402,8270,9287,10076,10612,1276,1144,1161,950,700,1000,0
+15159,80000,female,2,2,25,0,0,0,0,0,0,4418,7327,10190,13768,17748,10577,3000,3000,4000,5000,1000,1310,0
+15160,20000,female,2,2,25,2,2,2,2,2,2,14549,17144,16580,18366,18766,18324,2845,0,2067,1000,0,1664,0
+15161,30000,female,1,2,25,2,2,2,2,2,2,7593,9634,4476,8830,8153,6422,2379,7,7002,13,155,1,0
+15162,80000,female,2,2,24,0,0,0,0,0,-1,60423,55120,20407,18839,3810,23836,2007,2000,1014,0,23836,3000,0
+15163,160000,female,2,2,24,-1,2,-1,2,-1,-1,2227,316,632,316,316,632,0,632,0,316,632,0,0
+15164,460000,female,1,1,34,-1,0,0,0,0,0,11689,12911,15418,22465,25546,36452,2000,3000,8000,4000,16000,6000,0
+15165,90000,female,2,2,24,1,2,0,0,0,0,88550,78892,75808,63362,65300,67248,3000,3500,3000,3000,3000,5000,1
+15166,30000,female,2,2,24,3,2,2,7,7,7,300,300,300,300,300,300,0,0,0,0,0,0,0
+15167,220000,female,2,2,28,0,0,0,0,0,0,224166,219085,213888,215125,216543,217390,8200,7729,9207,7917,7911,8203,0
+15168,70000,female,3,2,22,0,0,0,0,0,0,53443,49938,39926,18648,5022,5935,3000,2500,2500,1000,1000,500,0
+15169,110000,female,2,2,24,2,2,2,2,2,2,107378,109604,111661,112299,113035,109678,5500,5300,4000,4000,0,4540,1
+15170,50000,female,2,1,25,0,0,0,-1,-1,0,16092,12352,-1618,-809,46976,47618,2352,809,928,48659,1400,2000,0
+15171,120000,female,1,2,26,-2,-2,-2,-2,-2,-2,316,316,316,316,316,316,316,316,316,316,316,1844,0
+15172,150000,female,2,2,26,0,0,0,0,0,0,127487,120586,118785,117406,106323,102179,6000,4500,5400,3900,4500,4000,0
+15173,140000,female,2,2,26,0,0,0,0,0,0,182424,115115,120176,101065,64570,51521,10207,9120,3000,2117,2000,2000,0
+15174,120000,female,1,2,26,0,0,0,0,0,0,102157,103182,91442,88476,72666,74561,5367,20000,3500,2512,7500,4000,0
+15175,40000,female,2,2,26,0,0,0,0,-1,-1,36835,37528,35964,34258,516,38432,2000,2000,5000,516,39235,2000,0
+15176,90000,female,2,2,30,2,0,0,0,0,2,75620,75382,73980,75036,77094,75708,3300,3350,3300,5500,1600,3950,1
+15177,50000,female,2,2,23,3,2,2,2,0,0,22613,21957,24482,24693,25283,27367,0,3200,910,1000,2500,0,1
+15178,130000,female,2,2,26,-2,-2,-1,2,-1,2,90833,2774,740,740,73758,72800,2788,740,0,73758,0,2342,0
+15179,180000,female,1,2,26,-2,-2,-2,-2,-2,-2,100,100,100,100,100,100,100,100,100,100,100,100,0
+15180,220000,female,1,2,26,0,0,-1,-1,-1,-1,4750,4909,3791,7982,5850,11304,2012,3791,8493,5850,11304,2067,0
+15181,160000,female,2,1,29,0,0,0,2,0,0,6252,5073,6854,3759,3164,3000,4000,2230,0,16,16,81,0
+15182,70000,female,3,2,29,0,-1,-1,2,0,0,20064,24336,25510,24726,25377,24818,24336,3010,0,875,600,1000,0
+15183,60000,female,1,2,27,0,0,2,2,0,0,4262,7169,8396,8113,8971,10824,3000,1500,0,1000,2000,1000,1
+15184,140000,female,2,2,27,0,0,0,0,2,2,120072,78166,72631,65517,59275,58208,2824,2508,4973,2300,0,3000,0
+15185,70000,female,2,1,27,0,0,2,2,2,2,68425,71783,72616,68201,50995,48822,6800,3100,15,3850,0,1800,0
+15186,320000,female,2,2,28,-1,-1,-1,-1,-1,-1,4114,390,944,473,1747,1193,390,944,473,5000,1200,980,0
+15187,60000,female,1,2,28,0,0,0,2,0,0,20217,8376,7139,4254,4855,5355,1116,2420,0,800,1000,0,0
+15188,360000,female,1,2,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+15189,500000,female,1,2,27,0,0,-1,-1,-2,-1,3715,2862,827,-4571,-4954,1566,2013,1044,163,5,8007,1282,0
+15190,200000,female,1,2,28,1,-2,-2,-1,-1,0,0,0,0,1545,1156,6099,0,0,1545,1156,5000,3000,0
+15191,160000,female,2,2,28,-1,-1,-1,0,0,0,1049,2058,2164,3975,3720,5668,2060,2164,2000,1500,2000,1737,0
+15192,80000,female,2,2,44,0,-1,-1,-2,-2,-2,7491,2900,0,0,0,0,2900,0,0,0,0,0,0
+15193,20000,female,2,2,39,0,0,0,0,0,0,19064,20356,18186,16524,19026,16309,2000,2000,2000,5000,1000,6000,0
+15194,110000,female,3,2,41,1,2,0,0,0,0,105152,97804,100364,91061,65582,67002,0,5200,5000,2500,2600,2702,0
+15195,30000,female,2,1,38,-1,-1,-2,-1,0,-1,2805,0,0,48514,49300,691,0,0,48514,986,691,4645,0
+15196,140000,female,2,1,31,1,-2,-1,-1,-2,-2,-53,-53,1117,0,0,0,0,1170,0,0,0,278,0
+15197,150000,female,2,1,32,0,0,0,0,0,-1,17594,14850,15919,10177,7954,8049,1609,2000,1000,0,8049,1000,0
+15198,140000,female,2,2,33,0,0,0,0,0,0,54279,55991,59465,62855,63670,67464,2615,5000,5000,2455,5000,5000,0
+15199,460000,female,2,2,35,0,0,0,0,0,0,442291,449790,450047,453770,396600,392879,16000,17610,17500,13810,14100,14520,1
+15200,60000,female,2,2,28,0,0,0,0,0,0,58204,56930,56616,56749,57504,58296,2030,2083,1983,2200,2500,2200,0
+15201,90000,female,3,1,40,1,2,2,3,2,2,78976,84566,89609,87282,88261,90029,7500,7300,0,3300,3300,0,1
+15202,130000,female,6,1,44,2,2,2,2,0,0,112570,109131,118539,115029,115793,118335,0,11323,0,4294,4700,4260,1
+15203,300000,female,2,2,28,0,0,0,0,0,0,25193,34242,35228,12512,12570,13022,10000,1377,1149,2000,615,9000,0
+15204,130000,female,2,1,29,1,2,2,2,2,2,85342,88063,89895,87577,93136,91551,5000,4100,0,7000,0,7200,0
+15205,160000,female,2,1,29,-1,-1,-1,-1,-1,-1,3617,2091,5816,5414,615,25072,2122,5822,5524,615,25139,2100,0
+15206,20000,female,2,2,36,0,0,0,0,0,2,12530,13518,14596,15550,16790,17175,1500,1600,1500,1500,800,0,0
+15207,20000,female,3,1,42,2,2,2,0,0,0,16478,19187,18592,19431,19993,-1000,2994,0,1238,800,0,1000,1
+15208,210000,female,1,2,34,-1,-1,-1,-1,-1,-1,5081,4053,3853,3942,2338,1767,4055,3856,3945,2338,1767,0,0
+15209,100000,female,2,1,38,0,0,0,2,2,2,89745,91659,96808,84528,67873,65503,3421,7728,0,5000,2600,0,0
+15210,120000,female,1,1,43,0,0,0,0,0,2,24484,26751,28999,30064,33732,5992,3000,3000,2000,5000,0,10000,1
+15211,60000,female,3,1,41,0,0,0,0,0,0,56261,55773,55953,55562,55063,54819,1993,2627,2700,2500,2300,3000,0
+15212,30000,female,2,2,26,2,2,2,2,0,0,30028,26208,28804,22335,17448,17448,0,3400,0,0,0,0,1
+15213,290000,female,1,1,30,0,0,0,0,0,0,53476,52089,49979,36439,33231,32131,2009,2569,1532,987,1002,1035,0
+15214,260000,female,2,2,34,0,0,0,0,0,0,40066,38115,38730,37947,40122,34751,2000,3030,5039,7000,3000,10000,0
+15215,130000,female,3,1,34,0,0,2,0,0,0,124777,133265,129713,129883,122349,101415,12000,0,5100,4820,3844,4500,0
+15216,180000,female,2,1,42,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+15217,80000,female,2,1,36,0,0,0,0,0,0,79407,66491,59040,49555,38185,32582,2491,2540,1566,1485,1258,3600,0
+15218,70000,female,2,1,38,0,0,0,0,0,0,59195,37953,34689,35700,36252,37008,2195,1881,1892,1444,1490,1344,0
+15219,290000,female,2,2,34,0,0,0,0,0,0,58481,41773,40597,38441,37454,35484,2000,2000,2000,2000,2000,2000,0
+15220,80000,female,2,1,37,-1,0,0,2,2,2,28652,29869,33071,33531,34184,33503,2000,4000,1300,1500,0,1300,0
+15221,300000,female,2,1,27,-2,-2,-2,-2,-2,-2,2200,1378,1109,0,474,337,1378,1422,0,474,337,1394,0
+15222,200000,female,1,1,28,0,0,0,0,0,0,148880,151913,155170,159089,160950,164691,7000,7200,8000,6000,6500,7000,0
+15223,30000,female,1,2,29,0,0,0,0,2,0,15982,12226,13565,15526,14979,15735,2226,1539,2500,0,1000,1000,0
+15224,240000,female,1,2,35,0,0,0,0,0,0,86508,86596,87475,89253,91128,127950,3583,2768,2817,2928,37950,4303,0
+15225,500000,female,1,1,35,-1,-1,-1,-1,0,0,416,258,1563,21557,14802,19552,258,1563,21557,1000,8000,23762,0
+15226,30000,female,2,1,45,2,0,0,0,0,0,31548,30226,31237,13511,13781,14070,1665,1676,1223,493,511,514,0
+15227,180000,female,1,2,28,2,2,2,2,0,0,2096,3775,5570,4722,8643,7783,1721,2005,31,5000,1000,5000,0
+15228,180000,female,2,1,31,-2,-2,-2,-2,-2,-2,384,0,0,0,503,2156,0,0,0,503,2343,1988,1
+15229,180000,female,1,2,37,0,0,0,0,0,0,34607,43623,46667,31931,33928,35235,10000,5000,15000,5000,2000,5000,0
+15230,260000,female,2,2,26,0,0,0,0,0,0,217735,222109,220219,206666,185282,167161,9553,7893,9241,7106,6506,6240,0
+15231,80000,female,2,2,33,-1,-1,-2,-1,0,0,1305,-789,-789,1042,1042,0,0,0,2000,0,0,193,0
+15232,400000,female,2,2,38,-2,-2,-2,-2,-1,0,0,0,0,0,45374,46306,0,0,0,45374,1113,1129,0
+15233,360000,female,3,2,27,-2,-2,-2,-2,-2,-1,0,750,-2,468,-8,2496,750,2,470,0,2504,1153,0
+15234,130000,female,1,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,1313,0
+15235,50000,female,2,2,35,0,0,0,0,0,0,48848,49988,45434,34688,24124,21072,2000,2000,1900,1032,3000,907,0
+15236,290000,female,2,2,29,-1,0,0,0,0,0,19315,30310,29312,31404,31004,29124,15000,2000,3000,0,0,4280,0
+15237,360000,female,1,1,38,-1,-1,-1,-1,-1,0,1873,13532,5757,28974,8093,3250,13537,5762,29000,8093,1500,3513,0
+15238,240000,female,2,2,29,0,0,0,0,0,0,238225,243044,239228,243318,195320,196664,9000,10500,10000,7000,7300,7439,0
+15239,80000,female,3,1,41,0,0,0,0,0,0,76095,78197,64065,54764,55868,57288,3500,2600,2000,2000,2303,2300,0
+15240,230000,female,2,2,32,1,-2,-2,-1,-1,-1,-46,-46,-46,4826,4829,1788,0,0,4872,4829,1788,1266,1
+15241,230000,female,1,1,39,0,0,0,0,0,0,219712,208532,229229,143168,145270,141874,30500,25000,10000,5000,5000,18000,0
+15242,330000,female,2,1,37,-1,-1,-1,-1,0,0,2202,2900,2335,7278,6646,5324,2911,2579,7278,6,26,2089,0
+15243,30000,female,2,1,34,1,2,2,0,0,0,22419,24932,23502,24603,24996,26426,3207,0,1800,1100,2000,1977,0
+15244,120000,female,2,1,33,0,0,0,0,0,0,42687,46640,50865,54401,57873,61917,5000,5000,5000,5000,5000,3000,0
+15245,60000,female,5,1,30,-2,-2,-2,-2,-2,-2,3591,-5,-5,0,1360,1180,0,0,5,1360,1180,3302,0
+15246,230000,female,2,1,42,-2,-2,-2,-2,-2,-2,430,430,430,430,430,430,430,430,430,430,430,430,1
+15247,330000,female,2,1,43,1,-1,-1,-2,-2,-2,-58,22301,0,0,0,0,22359,5895,0,0,0,0,0
+15248,380000,female,2,1,44,-1,-1,-2,-1,0,-1,1040,0,0,12500,37811,1500,0,0,12500,25311,1500,5680,0
+15249,150000,female,1,2,27,-1,-1,-1,-1,0,-1,8404,4493,11848,7435,3685,3545,4493,11848,7435,0,3545,5718,0
+15250,170000,female,3,2,29,0,0,0,0,0,0,116048,117485,119050,120225,122345,124302,4200,4300,4400,4518,4500,5000,1
+15251,200000,female,2,1,30,-1,2,-1,-1,-1,-1,1626,730,3049,700,2423,2210,233,3049,700,2423,2210,1233,0
+15252,200000,female,2,1,31,0,0,0,0,0,0,24605,25653,26750,24014,10885,7371,1462,1559,2000,390,328,180,0
+15253,260000,female,2,1,32,0,0,0,0,0,0,104717,102159,102369,80488,82150,84818,5300,3500,3000,3000,4000,4000,0
+15254,430000,female,2,1,47,-1,-1,-1,-1,-1,-1,1343,909,5271,757,157,157,909,5319,757,157,157,5989,0
+15255,20000,female,2,1,46,1,2,2,2,0,0,10935,11456,13169,13656,14430,14200,1000,1900,1000,1000,0,8119,1
+15256,200000,female,2,1,30,0,0,0,0,0,0,75014,77044,80096,82269,85093,86870,3190,4195,4300,5000,3196,3231,0
+15257,290000,female,1,2,31,-2,-2,-2,-2,-2,-2,5307,4739,11495,11214,4084,6348,4739,11527,15537,4873,26348,2306,0
+15258,240000,female,1,2,28,0,0,0,0,0,0,188956,189678,189471,191623,195624,199259,7200,7500,6300,6000,6100,6000,0
+15259,290000,female,1,1,34,-1,-1,-1,-1,-1,-1,3412,1573,11859,2483,1170,20328,1573,11886,2485,1170,20328,375,0
+15260,490000,female,1,2,41,0,0,0,0,0,0,250970,255009,248203,101770,63192,64720,10000,11547,4600,2000,2000,2000,0
+15261,230000,female,1,1,39,-2,-2,-2,-2,-2,-2,970,1475,1636,1149,334,459,1483,1640,1152,335,460,553,0
+15262,290000,female,2,2,26,0,0,0,0,0,0,81022,59327,102180,58554,59358,45266,2121,48345,1689,1516,1240,1211,0
+15263,20000,female,3,2,28,-1,2,2,2,-1,-1,5741,5155,5754,5150,858,0,0,2294,0,1056,0,935,0
+15264,300000,female,1,2,28,0,0,0,-1,-1,-2,9582,6803,7198,6975,9356,3697,1818,7217,7023,9383,3714,6546,0
+15265,130000,female,2,1,48,-1,-1,-1,2,0,-1,390,390,1170,780,390,390,390,1170,0,0,390,390,1
+15266,150000,female,2,1,37,0,0,0,0,0,0,119398,97435,98481,98101,97178,97249,3459,4913,3929,2390,3052,6300,0
+15267,50000,female,2,1,37,0,0,0,0,0,0,35874,32130,34602,35172,27568,28467,1600,3000,1477,2000,1500,2500,0
+15268,200000,female,2,1,45,-2,-2,-2,-2,-2,-2,1182,0,198,3532,0,0,0,198,3532,0,0,0,0
+15269,180000,female,2,1,47,-1,-1,-1,-1,-1,0,107,825,7609,825,1650,825,825,7609,825,1650,0,8214,0
+15270,300000,female,1,1,43,-1,-1,-2,-1,-1,-1,21670,-5,-5,1578,1307,0,0,0,1583,1307,0,179,0
+15271,30000,female,2,3,41,1,2,2,2,2,2,8055,9263,8973,10337,10022,10924,1500,0,1675,0,1065,0,1
+15272,420000,female,3,1,44,1,-1,0,0,0,-1,0,5526,7248,7303,0,932,5526,2000,2002,0,932,1861,0
+15273,320000,female,2,2,42,-1,-1,-1,-1,-1,0,2920,2610,9433,2490,2655,1070,2610,9439,2493,2655,0,5682,0
+15274,380000,female,1,2,31,0,0,2,0,0,0,66979,70289,69790,71506,74078,77088,5700,2500,3500,5000,5000,3400,0
+15275,270000,female,3,1,43,0,0,0,0,0,0,46107,42151,40546,36822,31700,29133,1700,1700,1500,1100,1200,1200,0
+15276,150000,female,2,1,40,0,0,0,0,0,0,213638,190709,168741,170544,146787,149759,7877,8069,6708,40502,5706,4860,0
+15277,180000,female,2,1,46,0,0,0,0,0,0,171768,164274,165923,169038,172388,165165,7400,6100,6200,6543,6251,14614,0
+15278,180000,female,2,2,29,-2,-2,-2,-2,-2,-2,2639,0,0,0,0,0,0,0,0,0,0,661,1
+15279,140000,female,3,1,41,0,0,0,0,0,0,114133,122191,128069,103319,105702,108619,10000,8000,5000,4000,4520,6000,1
+15280,90000,female,3,1,38,-1,0,0,0,0,0,85718,88476,90120,91124,65778,65866,4200,5000,4776,2400,3000,3000,0
+15281,100000,female,2,1,33,0,0,0,0,-2,-2,83013,89589,92887,0,0,0,8000,5000,0,0,0,0,0
+15282,60000,female,2,1,34,-1,2,2,2,2,-1,2084,145,145,145,145,1195,0,0,0,0,1200,0,1
+15283,140000,female,2,2,42,0,0,0,2,0,0,117460,110301,107289,63778,41334,42664,7000,16000,0,3000,2000,2000,0
+15284,50000,female,3,1,43,1,2,2,2,2,0,15214,14673,17621,17839,17257,17826,0,3200,800,0,1000,3800,0
+15285,140000,female,1,1,39,1,-1,-1,-1,-1,0,0,797,190,3260,32617,20506,797,190,3269,32617,5000,2774,0
+15286,230000,female,2,2,31,1,2,0,0,0,2,19451,13716,14718,13524,15529,12936,1017,5028,5003,3012,3,3898,0
+15287,240000,female,3,2,37,1,-2,-1,-1,-1,-1,-3,-3,2486,2500,580,490,0,2489,2500,580,490,177,0
+15288,180000,female,1,1,46,0,0,-2,-2,-2,-2,184650,0,0,0,0,0,0,0,0,0,0,0,0
+15289,80000,female,3,1,39,0,0,0,0,0,0,18787,19869,20897,21911,22545,23181,1400,1352,1366,1000,1000,1000,0
+15290,150000,female,1,1,37,0,0,0,0,0,0,61137,62350,63653,64955,66249,67637,2230,2306,2356,2372,2456,2631,0
+15291,300000,female,1,2,35,1,-2,-2,-2,-1,-1,0,0,0,0,150000,0,0,0,0,150000,0,267,0
+15292,420000,female,1,1,45,2,0,0,0,0,0,412289,414634,409078,412057,402926,373095,16272,17029,15514,15056,13707,14128,1
+15293,60000,female,1,2,31,-1,-1,-1,-1,-2,-2,7233,1596,1562,0,0,0,1596,1562,0,0,0,0,0
+15294,30000,female,3,1,48,0,0,0,0,0,0,29757,29059,26386,9370,7290,0,1720,1450,1010,500,0,0,0
+15295,210000,female,1,2,37,-1,-1,-1,-1,0,0,430,1570,17036,73158,46823,1427,1570,17036,73158,936,29,630,0
+15296,170000,female,2,2,38,-2,-2,-2,-2,-2,-2,0,0,0,0,0,330,0,0,0,0,330,1290,1
+15297,270000,female,2,1,44,0,0,-1,0,0,0,24775,18018,15896,32396,50411,60957,10203,15908,20000,29000,22000,1821,0
+15298,120000,female,1,2,39,-1,-1,-2,-2,-2,-2,28724,-72,-72,-72,-72,-72,0,0,0,0,0,0,0
+15299,150000,female,3,2,42,0,0,0,0,-1,-1,30643,31209,25977,30776,920,0,1237,1354,5153,924,0,0,0
+15300,150000,female,1,2,37,-1,-1,-1,-1,-1,-1,7591,5538,18987,0,1399,150,5538,18987,0,1399,150,203,1
+15301,240000,female,2,1,35,-2,-2,-2,-2,-2,-2,5391,7375,4908,5638,2582,4127,7375,4908,5638,2587,4127,4942,0
+15302,130000,female,3,3,43,-1,0,-1,-1,0,-1,15923,82292,396,1552,776,776,70000,792,1552,0,776,3676,0
+15303,150000,female,3,1,38,0,0,0,0,0,0,105911,109006,108761,79044,79350,80594,5530,4100,3150,2211,2270,2288,0
+15304,20000,female,1,1,37,0,0,0,0,0,0,19921,18100,19146,20098,20191,18216,1594,1640,1592,685,662,827,0
+15305,390000,female,1,2,33,-2,-2,-2,-2,-2,-2,2703,1017,0,0,1560,4386,1017,0,0,1560,4386,12000,0
+15306,270000,female,2,1,39,0,0,0,0,0,0,161039,164354,167788,339599,174797,180313,6000,6079,6213,12840,8500,8205,0
+15307,180000,female,1,1,45,-1,2,-1,-1,-1,-1,1560,316,316,316,316,316,0,316,316,316,316,316,1
+15308,200000,female,1,2,30,0,0,0,0,0,0,78866,74961,69702,63210,57098,46455,20000,2513,1656,5000,20000,15000,0
+15309,180000,female,2,2,37,-1,-1,-2,-2,-2,-2,491,0,0,0,0,0,0,0,0,0,0,3738,0
+15310,330000,female,1,2,39,0,0,0,0,0,0,118467,110930,100498,95072,94164,94043,4000,4600,4000,4190,6680,3500,0
+15311,140000,female,1,2,40,0,0,-1,0,0,-2,51270,54000,4117,6817,0,0,4500,4117,3000,0,0,0,0
+15312,220000,female,2,1,34,-1,-1,-1,-1,-1,-1,387,1083,1969,389,389,389,1086,2099,390,390,390,391,0
+15313,400000,female,1,1,40,-1,-1,-1,-1,-1,-1,6376,4925,4382,1240,167621,3284,5949,4403,1250,168459,3301,11168,0
+15314,150000,female,2,1,36,0,0,0,0,0,0,339351,133681,100683,147127,79942,71976,7000,3500,3000,5242,3009,4000,0
+15315,200000,female,2,1,36,2,2,-2,-2,-2,-2,2500,0,0,0,0,0,0,0,0,0,0,0,1
+15316,30000,female,2,1,43,-1,-1,0,0,0,0,661,25166,26195,27209,27924,30204,25166,1437,1451,1166,2900,600,0
+15317,170000,female,2,2,30,0,0,0,0,0,0,106667,103955,85601,82963,58547,57080,3458,3426,2711,1779,1940,2000,0
+15318,180000,female,2,1,30,1,2,-1,0,0,0,18435,1563,3842,7146,10480,13886,0,3842,5000,5000,10000,5000,0
+15319,300000,female,2,1,31,0,0,0,-1,-1,-1,5361,2700,3822,1103,1622,-1,1060,1182,1108,1630,0,0,0
+15320,100000,female,2,2,32,0,0,0,2,0,0,76112,77494,96445,92742,92644,95497,4500,25445,0,3500,6790,0,0
+15321,500000,female,1,1,38,-1,0,-1,0,0,0,5410,2760,36861,23200,34255,18554,2700,36861,10000,20055,1000,5622,0
+15322,80000,female,3,1,40,0,0,0,0,0,0,34965,35660,37082,38464,38922,40791,1578,2000,2000,1397,2500,3000,0
+15323,60000,female,2,2,40,0,0,0,0,0,0,61756,60800,55390,50221,22032,20710,2200,2100,8000,800,1000,1000,0
+15324,50000,female,2,1,37,0,0,0,0,0,-1,24380,23325,21940,20718,24048,5017,1366,1400,1200,5000,5017,71,0
+15325,500000,female,3,1,48,-1,-1,0,0,0,-1,485,6342,6390,5477,1060,23726,6342,1228,1000,1060,23726,1084,0
+15326,50000,female,3,3,37,2,2,2,2,2,2,47676,48896,49325,48033,27019,26450,2300,1500,0,3400,0,1200,1
+15327,160000,female,3,1,44,0,-1,-1,2,2,2,6061,1594,2904,2313,2753,2191,2000,3037,0,1000,0,5000,0
+15328,180000,female,2,1,46,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+15329,520000,female,1,1,46,1,2,2,0,0,2,133890,106928,37238,36293,55826,34989,5022,0,20000,40000,0,5000,0
+15330,160000,female,1,1,33,-1,-1,-1,-1,-1,-1,5459,20415,2141,2144,5816,2144,20415,2141,2144,5816,2144,1456,0
+15331,380000,female,1,1,35,-1,-1,-1,-1,-1,-1,472,14985,10472,39993,25356,39772,14985,10472,39993,25356,39772,54002,0
+15332,440000,female,2,1,33,0,0,0,2,0,0,411970,420142,443407,431200,440000,-6948,15003,30000,0,9000,788,0,0
+15333,280000,female,1,2,33,2,0,0,0,0,0,3192,4962,7860,10708,13516,16279,2000,3000,3000,3000,3000,3000,0
+15334,130000,female,2,1,35,0,0,0,0,0,0,63281,56889,60955,62038,62393,65439,10000,5000,2142,5000,4000,9500,0
+15335,250000,female,2,1,31,1,-2,-2,-1,-1,-1,0,0,0,1000,0,1013,0,0,1000,0,1013,0,0
+15336,360000,female,2,1,39,1,-1,-1,-1,-1,-1,0,791,173,1640,287,2418,791,173,1640,287,2426,507,0
+15337,470000,female,2,2,36,-1,-1,-1,-1,0,-1,9,89,0,157,157,205430,1960,0,157,0,205430,130,0
+15338,330000,female,2,1,29,0,0,0,0,0,0,132702,135972,137289,141844,143470,146596,6972,4989,6844,5470,5596,5577,0
+15339,240000,female,2,1,42,-1,-1,-1,-1,-1,-1,1986,1323,329,9228,7776,7500,1323,329,9228,7776,7500,635,0
+15340,360000,female,1,1,48,-1,-1,-2,-1,-1,-1,485,-15,-15,12588,1243,-6,0,0,12603,1250,0,420,0
+15341,80000,female,3,2,40,2,2,0,0,0,0,81428,78041,75945,61740,29089,28267,4,3716,2000,1000,1000,2000,1
+15342,280000,female,1,2,29,0,0,0,0,0,0,15801,9982,9909,10420,10142,10329,1200,1200,1200,1000,350,300,0
+15343,60000,female,1,1,38,1,-1,3,2,-1,-1,0,780,780,390,390,390,780,0,0,390,390,87,0
+15344,220000,female,1,1,44,2,2,0,0,0,2,34510,33661,34913,36334,38729,39062,0,2100,2000,3000,1100,1700,1
+15345,140000,female,2,1,45,0,0,0,0,2,2,53951,55444,57549,60971,61374,63243,3000,3000,5000,2000,3000,2500,0
+15346,230000,female,1,2,29,0,0,-1,-1,0,0,23586,6633,2525,146959,150080,153186,5576,2525,146959,4452,4586,5497,0
+15347,360000,female,1,1,30,1,-1,-1,-1,-1,-1,-6,1191,23812,3155,-140,27994,1197,23931,3171,0,28134,8402,0
+15348,390000,female,1,2,30,0,0,0,0,0,0,152535,153477,148629,141571,126583,154557,5153,10000,10000,5010,50000,5000,0
+15349,280000,female,2,1,32,0,0,0,0,0,0,11561,12662,13752,14815,15168,15523,1300,1300,1300,600,600,600,0
+15350,310000,female,3,2,32,0,0,0,0,0,0,41623,42465,32003,33885,29125,17227,3021,7000,5040,1000,7000,6000,0
+15351,500000,female,2,1,33,0,0,0,0,0,0,264479,275025,285034,290002,295756,302149,15000,14500,10370,11000,11000,13000,0
+15352,230000,female,2,2,39,0,0,0,0,0,0,72288,69680,66081,64495,60511,57450,2429,2579,2100,2000,2000,2100,0
+15353,30000,female,3,1,41,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+15354,120000,female,5,1,41,-2,-2,-2,-2,-2,-2,0,77,-1460,-1460,-1460,-1460,77,1460,0,0,0,0,0
+15355,200000,female,2,2,43,-2,-2,-2,-2,-2,-2,10000,10000,10000,10301,10000,10000,10000,10000,10301,10000,10000,10000,0
+15356,390000,female,1,2,30,0,0,0,0,0,0,60819,61300,59328,57852,55903,53516,5000,2506,3000,2500,2000,2000,0
+15357,200000,female,1,2,30,0,0,0,0,0,0,59891,60537,61592,59786,58172,59175,3000,2800,3000,2100,2070,1800,0
+15358,600000,female,2,1,38,1,2,0,0,0,0,485861,462675,464983,416550,416545,420232,33,15287,14069,15013,15003,15000,0
+15359,20000,female,3,1,45,2,2,3,2,2,0,21646,24390,23719,23936,23253,25871,3400,0,900,0,3000,2000,1
+15360,140000,female,2,1,48,0,0,0,0,0,0,41241,42548,44552,46503,48418,49277,1996,3000,3000,3000,1790,1965,0
+15361,90000,female,2,1,34,-1,2,-1,-1,-2,-2,336,168,432,0,0,0,0,432,0,0,0,0,1
+15362,20000,female,3,1,44,0,0,0,0,0,0,5636,6737,7832,8624,8800,9300,1200,1208,1000,176,500,0,0
+15363,30000,female,6,1,45,0,0,0,0,0,0,26958,26716,26679,22972,20152,11688,4000,5022,1232,820,286,237,0
+15364,250000,female,1,2,35,0,0,0,0,0,0,154878,152677,134445,136219,117625,107642,5200,5200,10000,4014,4057,4000,0
+15365,350000,female,2,2,33,0,0,0,0,0,0,187649,141353,142923,145149,132948,85677,5100,5400,6100,6000,3200,3100,0
+15366,150000,female,2,1,49,-1,-1,0,-1,-1,-1,4016,5115,3425,1334,2117,1098,5119,1002,1336,2119,1098,757,0
+15367,300000,female,2,2,42,0,0,0,0,0,0,113308,109901,108659,110781,107833,104466,5400,5800,6000,7000,5000,5000,0
+15368,50000,female,3,1,53,0,0,0,0,0,0,46778,47770,49009,50593,20218,20645,1770,2009,2593,1000,752,1017,1
+15369,390000,female,3,1,58,-2,-2,-2,-2,-2,-2,1186,15523,0,609,0,0,15657,0,609,0,0,0,0
+15370,120000,female,3,2,53,-1,2,-1,-1,0,-1,1743,316,316,632,316,316,0,316,632,0,316,816,0
+15371,140000,female,3,2,53,0,0,0,0,0,0,142270,144418,143728,125158,93998,91229,5357,5829,6240,3500,3500,4000,0
+15372,80000,female,3,1,51,0,0,0,0,0,0,80904,64144,54029,51497,28250,28073,2500,2200,1817,1200,1200,1100,0
+15373,50000,female,3,1,55,0,0,0,0,0,0,23593,24787,9145,12423,41956,45112,1831,1189,3467,30000,4000,0,0
+15374,140000,female,2,2,49,-2,-2,-2,-2,-2,-2,1282,367,0,3794,0,865,367,0,3794,0,865,825,1
+15375,330000,female,2,1,50,-2,-2,-2,-2,-2,-2,5600,0,98,0,0,318,0,98,0,0,318,452,0
+15376,280000,female,2,1,49,2,2,2,0,0,0,28788,31315,30529,33562,34557,35600,3315,0,3562,1557,1600,3175,0
+15377,470000,female,2,1,49,0,-1,-1,-1,-1,-1,3388,1359,7650,6682,1942,0,1359,7650,6682,1942,0,5870,1
+15378,100000,female,5,1,54,0,0,0,0,0,0,95980,99056,100415,102666,63913,65246,4057,3232,3275,2290,2365,2382,0
+15379,160000,female,3,1,53,0,0,0,0,0,0,123760,124218,124438,112113,96459,93449,6018,5810,4591,3524,3542,3426,0
+15380,320000,female,3,1,51,-1,-1,-1,-1,-1,0,8391,2855,1021,953,868,872,2869,1026,957,868,4,954,0
+15381,130000,female,3,1,49,0,0,-2,-2,-2,-2,132571,-829,-829,-829,-829,-829,0,0,0,0,0,0,0
+15382,50000,female,3,1,53,2,2,2,2,0,0,41174,42196,43327,42335,43326,46256,2000,2100,0,2000,3800,5783,0
+15383,540000,female,2,1,50,0,0,0,0,0,0,66637,66665,66513,67149,66880,67667,3100,3070,3100,2320,2796,3500,0
+15384,50000,female,5,2,48,0,0,0,0,0,0,47937,33816,60320,36249,780,0,2000,2000,3293,0,0,0,0
+15385,140000,female,2,1,48,0,0,0,0,0,0,248822,246595,249664,253418,258909,255232,10000,10200,9000,9000,10000,10000,0
+15386,50000,female,2,1,53,0,0,0,0,0,0,28509,29230,30356,31342,32644,32719,1500,1600,1498,2627,1400,1200,0
+15387,360000,female,2,1,69,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+15388,420000,female,1,1,45,1,-1,-1,-1,-1,0,0,23621,29042,35000,292962,247622,23621,29052,35000,292962,0,606,0
+15389,360000,female,1,1,51,-2,-2,-2,-2,-2,-2,1495,1117,7062,-3,1178,-2,1120,7065,0,1181,0,1758,0
+15390,110000,female,3,1,63,-1,-1,-1,-1,-1,-1,390,390,390,390,780,0,390,390,390,780,0,390,1
+15391,170000,female,1,1,52,-2,-1,0,0,-1,-1,416,2939,5447,416,7509,6387,2939,3000,5,7509,6387,1666,0
+15392,350000,female,1,3,53,1,-2,-2,-2,-2,-1,36138,7613,5875,4020,33127,6877,7619,5875,4020,33127,6877,0,0
+15393,240000,female,2,1,56,2,0,0,0,0,0,133954,138785,141894,143270,201082,215709,8500,6500,5000,60000,17464,6516,0
+15394,240000,female,2,2,51,-2,-2,-2,-2,-2,-2,489,4006,696,696,696,696,4006,696,696,696,696,1542,0
+15395,80000,female,2,1,57,1,-1,-1,-2,-2,-1,0,2412,0,0,0,1650,2412,0,0,0,1650,2500,0
+15396,60000,female,3,1,59,-1,-1,-1,-1,-1,-1,694,694,694,694,694,28948,694,694,694,694,28948,1044,0
+15397,220000,female,2,1,53,2,0,0,0,0,0,220389,223682,223193,215040,210884,210479,8490,8100,8000,7804,8254,6640,1
+15398,500000,female,1,2,54,0,0,0,0,0,0,260356,253580,239479,200081,185130,168868,18609,9800,6610,6000,6000,5000,0
+15399,20000,male,2,2,24,0,0,2,0,0,0,15886,16337,16470,10195,11195,11995,2500,800,1500,1000,800,6720,0
+15400,360000,male,2,1,27,3,2,2,0,0,0,245135,244583,156843,63861,64437,8844,8000,0,2700,3000,1000,1072,1
+15401,300000,female,2,1,53,0,0,0,0,0,-1,5551,6564,7954,8690,0,1420,1110,1500,1000,0,1420,0,0
+15402,60000,male,2,2,38,0,0,0,0,-2,-2,57775,51280,16299,-41,-41,-41,2000,1043,0,0,0,17500,1
+15403,360000,male,2,1,30,3,2,2,2,2,2,2500,2500,2500,2500,2500,0,0,0,0,0,0,0,1
+15404,50000,male,2,2,23,0,0,0,0,0,0,42284,31512,26097,27148,54991,28480,1800,1600,1500,1000,2400,1500,0
+15405,130000,male,2,1,24,0,0,2,0,0,0,46113,49520,47627,47262,46226,390,5000,0,1925,0,0,780,0
+15406,50000,male,1,1,24,0,0,0,0,0,0,47734,47025,48102,48612,49465,50299,1763,1840,1751,1717,1773,1845,0
+15407,150000,male,2,2,28,0,0,0,0,0,0,134218,118580,95916,82867,58995,59799,4465,10629,3500,1833,1886,1610,0
+15408,30000,male,1,2,24,0,0,0,0,0,0,28327,27406,28400,28115,28826,27745,1464,1458,1443,1154,1008,1018,0
+15409,350000,male,1,2,29,0,0,0,0,0,0,27916,24973,22752,21010,4470,6838,2001,2010,1082,10506,7034,4573,0
+15410,50000,male,2,2,25,0,0,-1,-1,0,0,48517,37071,5181,8548,50678,48220,5204,5196,8557,48011,2040,2121,0
+15411,20000,male,2,2,23,0,0,0,2,0,0,13284,13987,15958,16168,16268,16600,1229,2200,900,500,332,2000,0
+15412,20000,male,2,2,23,1,-2,-2,-2,-1,0,0,0,0,0,17330,16066,0,0,0,17330,738,1000,0
+15413,180000,male,1,2,26,-2,-2,-2,-2,-2,-1,-106,-200,-200,-200,0,4709,0,0,0,200,4709,0,0
+15414,50000,male,3,2,26,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+15415,150000,male,2,2,26,1,2,0,0,0,0,156387,148656,150963,152607,103113,96518,0,6000,10000,4000,4000,7000,1
+15416,120000,male,1,2,27,0,0,0,0,0,0,117324,91457,94478,74807,76952,0,3500,5390,3200,3500,3000,77233,0
+15417,20000,male,2,2,27,0,0,-1,-1,0,0,7320,7761,631,4481,6481,3465,2000,631,4481,2000,300,3332,1
+15418,60000,male,2,2,24,-1,-1,-1,0,0,-1,836,836,6842,4603,3884,760,836,6842,1000,117,760,10038,0
+15419,80000,male,3,2,28,1,2,2,0,0,0,38151,39227,38318,42614,86966,41950,2000,0,5000,1500,1500,7000,1
+15420,50000,male,3,2,30,0,0,0,0,-2,-2,49631,49641,50355,0,0,0,3000,2000,0,0,0,0,0
+15421,50000,male,1,2,25,0,0,2,2,2,0,44477,45425,48559,49065,48057,48942,2000,3134,1640,0,1968,1504,0
+15422,30000,male,2,2,22,0,0,0,0,0,0,30465,27943,14588,30158,29562,29818,1630,2231,16310,1051,1103,1003,0
+15423,20000,male,2,2,26,0,0,2,2,0,0,15481,18004,19121,18521,18615,19015,3100,1700,0,700,700,860,1
+15424,50000,male,2,2,27,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+15425,150000,male,1,2,25,0,0,0,0,0,0,51568,52952,95134,31578,26089,16624,3000,60086,2000,2000,5000,6000,0
+15426,50000,male,2,1,26,1,-2,-2,-1,-1,-1,0,0,0,2056,973,973,0,0,2056,973,973,27154,0
+15427,500000,male,1,2,28,0,0,0,0,0,0,59646,49412,48060,51132,49348,40652,43018,3030,10022,3064,3022,2018,0
+15428,120000,male,1,2,27,0,0,2,0,0,0,75896,77931,79384,81367,82321,84336,3900,3300,3900,3200,3500,3500,0
+15429,260000,male,1,2,27,0,0,0,0,0,0,256324,250666,245741,240132,234520,227149,10000,9000,10340,11500,8042,14000,0
+15430,20000,male,2,2,23,2,2,2,0,0,-2,7130,9455,9159,10000,0,0,2455,0,1000,0,0,0,1
+15431,20000,male,2,2,24,1,2,0,0,0,0,20036,19322,17619,10688,11346,0,0,2000,4000,2033,0,0,0
+15432,200000,male,1,2,29,-2,-2,-2,-2,-2,-2,33188,10293,55615,37643,47437,38640,11958,73912,37858,47675,38834,49403,0
+15433,80000,male,3,1,31,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+15434,160000,male,2,2,28,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+15435,200000,male,1,2,28,-1,2,2,-2,-2,-2,2006,1823,-2,-2,-90,-90,0,27,88,0,0,0,0
+15436,90000,male,2,2,29,0,0,0,0,0,0,85769,87877,89766,63793,24265,25713,3535,3703,2085,1026,2000,2000,0
+15437,20000,male,3,2,41,1,2,-1,-1,-1,-1,9913,3261,1491,390,390,390,50,1491,2500,390,390,0,0
+15438,120000,male,2,2,36,-1,-1,-1,-1,-1,-1,396,396,396,392,396,396,396,396,392,400,396,942,0
+15439,490000,male,1,2,35,0,0,0,0,0,0,156021,155635,156094,159376,158235,163963,8030,9071,18944,10000,8030,6059,0
+15440,290000,male,2,1,38,-1,-1,-1,-1,-1,0,3137,7999,2948,-6097,11037,17834,8042,2980,2777,17941,10002,10000,0
+15441,160000,male,3,2,30,0,0,0,0,-2,-2,275241,280903,272419,0,0,0,8365,9368,0,0,0,0,0
+15442,220000,male,1,2,30,2,0,0,0,0,0,84630,87604,89687,90889,91892,93815,5000,5000,4200,4000,4000,5000,0
+15443,290000,male,2,1,38,0,0,0,0,0,0,116625,118801,99370,84836,82168,80299,5000,3530,3019,2818,3000,3199,0
+15444,360000,male,1,1,37,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+15445,120000,male,2,2,40,2,2,2,2,2,2,58908,53306,50104,43957,43401,37371,1000,3000,0,5000,0,31000,1
+15446,360000,male,1,2,30,0,0,0,0,0,0,194001,197032,183154,143367,135751,138659,8000,10000,5500,5000,5100,7000,0
+15447,80000,male,3,1,33,-1,-1,-1,-1,-1,-1,390,390,390,1936,390,390,390,390,1936,390,390,390,1
+15448,420000,male,2,1,37,-1,-1,0,0,0,0,3823,149793,56611,77406,79316,73995,150298,10617,25000,3034,3012,5012,0
+15449,360000,male,1,1,39,0,0,-2,-2,-2,-2,12768,0,0,0,0,0,0,0,0,0,0,0,0
+15450,230000,male,2,1,45,0,0,0,0,0,0,41414,42420,44234,45684,46653,47779,2000,2500,2500,2000,2000,2000,0
+15451,50000,male,3,1,46,1,2,2,2,-2,-2,51814,53077,51400,0,0,0,2400,0,0,0,0,0,1
+15452,60000,male,2,1,48,0,0,0,0,0,-1,60924,60089,59828,58217,18527,40334,2400,2800,2000,1110,40621,1800,0
+15453,200000,male,2,2,30,0,0,0,0,0,0,179273,182624,188541,179380,41060,41258,6657,10000,8000,2000,2000,2000,0
+15454,480000,male,2,1,30,-1,-1,-1,-1,-1,-1,1309,662,645,32636,27552,1428,668,645,32641,27552,1428,11822,0
+15455,360000,male,3,1,32,-2,-2,-2,-2,-2,-2,33597,-1,-1,-1,-1,-1,0,0,0,0,0,0,0
+15456,100000,male,1,1,33,2,2,0,0,0,0,94257,78728,65747,67046,69938,74800,0,3100,3000,4000,6000,0,1
+15457,150000,male,1,1,37,-2,-2,-2,-2,-2,-2,22109,10876,10268,5872,3068,2181,10943,10273,5978,3068,2181,3242,1
+15458,20000,male,3,1,39,0,0,-1,0,0,0,19831,1391,19037,19939,15110,0,1300,20398,1300,694,0,0,0
+15459,500000,male,1,1,45,-1,-1,-2,-2,-2,-2,2900,0,0,0,0,0,0,0,0,0,0,0,0
+15460,180000,male,1,1,36,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+15461,230000,male,2,1,29,0,0,0,0,0,0,50845,48170,46987,45669,44510,43084,1768,1769,1635,1660,1544,1445,0
+15462,180000,male,2,2,43,-1,-1,-2,-2,-2,-2,5904,5715,2378,10396,2527,2173,5739,2385,10427,2534,2179,13903,0
+15463,60000,male,2,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,251,1
+15464,200000,male,1,1,42,1,-1,-1,-1,-1,-1,0,581,581,581,581,581,581,581,581,581,581,581,1
+15465,30000,male,3,1,28,-1,0,0,0,2,0,38390,20830,56262,59113,58016,30900,4200,36444,4360,4,2204,0,0
+15466,20000,male,1,1,31,0,0,0,2,-1,-1,4596,5675,8231,2717,4733,1099,1161,2717,0,4733,1099,0,1
+15467,110000,male,1,1,41,0,0,0,0,0,0,80959,80733,80984,80706,80580,77993,3486,2958,2803,2940,2821,2806,0
+15468,80000,male,3,1,41,0,0,0,0,0,0,90894,93167,81146,80674,63110,40376,4000,3200,2606,2431,1779,1000,1
+15469,160000,male,2,1,35,0,0,0,-2,-2,-2,160303,164150,0,0,0,0,8000,0,0,0,0,0,0
+15470,20000,male,2,2,35,0,0,0,0,0,0,19600,19694,19945,20051,19472,19830,1312,1363,1249,1000,2000,1000,1
+15471,30000,male,3,2,30,1,2,2,2,2,2,4318,5096,6353,7092,7972,7702,1000,1500,1000,1000,0,1000,0
+15472,30000,male,2,1,48,0,0,0,-1,-1,-1,29428,19950,24514,4083,6234,0,1402,10096,4083,6255,0,0,0
+15473,150000,male,2,1,34,1,2,2,2,2,2,52692,54229,55768,56266,54764,58862,3000,3000,2000,0,5000,3000,1
+15474,280000,male,2,1,31,0,0,0,0,0,0,235937,178376,183488,188165,99133,101547,7000,8000,8000,5000,4003,5000,0
+15475,50000,male,2,2,33,1,2,0,0,0,0,51210,47140,48478,48173,21134,20403,0,3518,3000,2352,2000,2000,0
+15476,50000,male,2,1,28,2,2,2,0,0,0,47237,50632,49546,49448,19887,38212,4500,0,1713,1003,699,800,1
+15477,280000,male,1,1,34,1,-1,-1,2,-1,-1,-2159,5777,7936,2932,6493,4867,7936,2980,29,6493,4867,240,0
+15478,200000,male,2,1,41,0,0,2,0,0,0,92272,69963,67223,69167,69289,70333,6582,0,2943,2301,2374,2500,0
+15479,210000,male,3,1,47,-2,-2,-2,-2,-2,-2,6460,3623,10325,8751,11920,8967,3623,10362,8751,11920,8967,7416,1
+15480,360000,male,3,1,27,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+15481,50000,male,3,1,29,1,2,2,2,0,0,47479,46415,50351,49038,28661,30398,0,4690,0,1000,2159,0,0
+15482,90000,male,2,2,33,0,0,0,0,0,0,60881,65215,66748,70101,80611,89870,5000,2200,4035,12200,10000,0,0
+15483,270000,male,2,1,35,0,0,0,0,0,0,48465,45898,46765,55438,54285,54198,1737,2000,10000,1461,1492,899,0
+15484,50000,male,3,1,44,-1,-1,-1,-1,-1,-1,1261,1261,0,1261,1261,1261,1261,0,2522,1261,1261,1432,0
+15485,80000,male,2,2,43,0,0,0,-2,-2,-2,70479,71900,0,0,0,0,3300,0,0,0,0,390,0
+15486,160000,male,3,1,38,0,0,0,0,0,0,25003,23621,24994,15778,9333,7083,2000,5060,5000,1500,0,0,0
+15487,200000,male,2,1,36,-1,-1,-1,-1,-1,-1,75,3707,697,0,2769,1382,3707,697,0,2769,1438,2411,0
+15488,30000,male,2,1,37,2,2,2,2,2,2,19177,20054,20930,21291,20651,22110,1500,1500,1000,0,1801,1000,1
+15489,260000,male,2,2,32,0,0,0,0,0,0,170276,164617,150188,138975,134225,128321,6200,6000,6000,5006,5006,6006,1
+15490,520000,male,2,1,34,-1,-1,-1,-1,-1,-1,10000,10000,10000,10317,10000,126247,10000,10000,10317,10000,126247,4666,0
+15491,140000,male,3,1,37,-1,-1,-1,-1,-1,-1,13806,1003,1170,1003,1003,1003,1003,1170,1003,1003,1003,1003,1
+15492,20000,male,2,2,34,0,0,0,0,0,0,18351,17706,18831,18334,17280,15582,1304,1429,1608,346,312,318,1
+15493,50000,male,3,1,41,2,2,2,2,-2,-2,20186,15773,13555,0,0,0,2700,103,0,0,0,0,1
+15494,50000,male,2,2,31,0,0,0,-1,0,0,8673,10957,17187,6377,6370,1910,5011,10000,10000,6000,0,3000,0
+15495,170000,male,3,1,42,0,0,0,0,0,0,191865,186841,183151,170838,80934,80821,7080,8271,5159,2700,2619,3500,0
+15496,180000,male,2,2,32,0,0,0,0,-1,0,45469,39368,9652,10775,1943,13243,5000,2000,3000,1943,13000,170000,0
+15497,360000,male,2,1,35,-2,-2,-1,2,2,-2,0,0,1300,300,0,598,0,1300,0,0,598,1352,0
+15498,220000,male,2,1,39,1,2,0,0,0,0,4949,4724,6478,7412,7886,8358,0,2000,1200,600,600,600,0
+15499,500000,male,1,1,48,0,0,0,0,0,0,107595,109605,113409,114191,117285,120388,5000,5571,4152,5000,5000,5000,0
+15500,80000,male,2,2,36,0,0,2,2,0,0,79673,79353,80107,78323,45985,45434,7100,2600,371,1904,1801,1801,0
+15501,150000,male,2,1,40,0,0,0,0,0,0,154432,106396,105332,82191,77262,49851,4000,7041,3000,3116,2500,5000,0
+15502,140000,male,3,1,47,-1,-1,-1,2,0,0,292,396,792,884,488,1092,500,792,488,0,1000,0,1
+15503,190000,male,2,2,39,0,0,0,0,0,0,146224,149289,152886,156273,159800,162570,5500,6000,6000,6000,6000,6000,0
+15504,200000,male,1,2,32,0,0,0,0,0,0,270160,275565,282023,286199,265201,271381,11000,12003,11010,15000,10004,11004,0
+15505,260000,male,1,2,33,0,0,0,0,0,0,93767,80944,67691,53334,76056,64968,3014,3017,2016,43000,2000,2000,0
+15506,210000,male,1,2,30,0,0,0,0,0,0,137825,140883,145675,149399,150796,88463,5346,7056,7656,5885,3345,3363,0
+15507,240000,male,2,1,38,2,2,-1,-1,0,0,7123,6848,836,2508,1672,836,836,836,2508,0,0,563,1
+15508,140000,male,1,1,39,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+15509,200000,male,1,1,34,-2,-2,-2,-2,-2,-2,7468,5023,618,605,3098,805,5048,621,608,3114,1003,2164,0
+15510,200000,male,2,2,35,0,0,0,0,0,0,27784,33877,35420,26609,25392,23367,10000,10000,2000,5000,5000,1000,0
+15511,500000,male,1,2,41,-1,-1,-2,-2,-2,-2,1296,0,0,0,0,2300,0,0,0,0,2300,0,0
+15512,50000,male,2,1,39,2,2,2,2,2,2,31476,30676,33261,32427,34579,35476,0,3400,0,2700,1600,1500,1
+15513,130000,male,2,2,38,1,-2,-2,-2,-1,-1,-470,-470,-470,-470,47296,0,0,0,0,47766,0,0,0
+15514,230000,male,2,2,31,0,0,0,0,0,0,100074,107085,115039,117144,117429,117560,9000,10000,6000,3405,3000,1286,0
+15515,260000,male,1,2,34,-2,-2,-1,-1,-2,-2,916,2615,1580,920,730,466,2615,1586,920,730,466,1455,0
+15516,260000,male,2,1,46,0,0,0,0,0,0,57963,262696,247462,252073,195628,199646,247562,9000,8300,6576,7000,7000,0
+15517,160000,male,2,2,30,-2,-2,-2,-2,-2,-2,750,370,-20,780,0,1470,400,0,800,0,1470,0,0
+15518,250000,male,2,1,40,1,2,0,0,0,0,65087,62216,39814,34374,34768,38830,0,2000,1871,1265,4643,3214,1
+15519,180000,male,1,2,30,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+15520,20000,male,1,1,32,2,0,0,0,0,2,12720,13451,14786,15532,16767,17104,1250,1554,1300,1500,750,0,1
+15521,270000,male,1,1,37,2,0,0,0,0,0,160069,156346,159223,165480,76144,77944,6000,7000,9000,5000,3000,3000,1
+15522,280000,male,1,1,47,-1,-1,-1,-1,-1,-1,3587,3187,3190,1982,3590,3590,3200,3203,1992,3608,3600,3602,0
+15523,30000,male,2,2,30,0,0,0,0,0,0,7038,8052,10153,9761,9960,4010,1291,2392,1000,199,80,949,0
+15524,450000,male,2,2,36,-2,-2,-2,-2,-2,-2,8012,4009,5226,4715,3275,6422,4021,5241,4729,3284,6441,4285,1
+15525,360000,male,1,1,33,0,0,0,0,0,0,21936,35331,30580,34985,39585,49735,14000,5000,5000,5000,10150,60000,0
+15526,20000,male,2,2,36,2,2,2,0,0,0,18458,17334,16768,17539,18775,18586,1450,0,1134,1370,1000,424,0
+15527,200000,male,3,2,40,-1,-1,-1,-1,-1,-1,316,316,316,316,316,316,316,316,316,316,316,316,1
+15528,500000,male,1,1,46,0,0,0,0,0,0,16347,20496,14509,16910,10854,16809,17029,8014,14030,7012,16016,14004,0
+15529,200000,male,1,1,42,-2,-2,-2,-2,-2,-2,-6028,10177,10229,7899,4553,4252,20405,10426,8008,4575,4273,9652,0
+15530,450000,male,3,1,39,0,0,0,-1,-1,0,28499,13119,9983,4904,45338,51646,1214,3109,4904,45338,7570,11729,0
+15531,20000,male,2,2,37,2,2,2,-1,0,-1,3254,2522,0,780,390,390,2000,0,780,0,390,1680,1
+15532,500000,male,1,1,42,0,-1,-1,0,0,0,9894,1500,14148,28190,7423,3588,1500,14148,20000,0,0,1715,0
+15533,260000,male,1,2,31,0,0,0,0,0,0,102350,96133,90183,89846,101034,84152,4033,4000,4005,14066,3017,2736,0
+15534,60000,male,1,1,38,2,2,2,0,0,2,46389,49808,48736,49525,57564,56517,4200,0,1900,8900,0,26000,1
+15535,10000,male,2,1,37,0,0,0,-1,-1,-1,8487,9003,0,390,4555,5165,2008,0,390,4555,1000,6810,0
+15536,240000,male,2,1,34,0,0,0,0,0,0,133272,133373,138006,136195,140860,138787,6000,9583,6000,10000,4974,4820,0
+15537,480000,male,1,1,43,0,0,0,0,0,0,377420,389573,400693,393892,348733,331930,20000,20000,20005,15000,15000,12000,0
+15538,520000,male,1,1,38,0,0,0,0,0,0,98615,102085,102762,104865,106947,109507,5102,3800,3803,3822,4277,4868,0
+15539,20000,male,2,1,42,2,0,0,0,0,0,20745,21431,19745,19943,19235,19245,1373,1386,1189,570,589,600,1
+15540,180000,male,1,2,33,0,0,0,2,0,0,3060,1854,3238,2106,1510,1746,1000,2500,0,1000,500,930,0
+15541,290000,male,2,1,43,-1,-1,2,0,0,0,172,1930,1752,3710,3848,4285,1930,0,2000,200,500,0,0
+15542,50000,male,3,2,40,0,0,0,0,0,0,43530,43344,46616,48872,19981,16554,2000,4000,4500,2000,1000,3000,1
+15543,500000,male,1,2,39,0,0,0,0,0,0,297309,290425,286959,278420,291642,286666,10322,13500,10000,30000,12000,10000,0
+15544,100000,male,2,2,40,0,0,0,0,0,0,95600,87442,60737,66077,68990,70724,15037,5003,8058,8000,3000,5000,0
+15545,300000,male,1,1,39,-1,-1,-1,-1,-1,-1,20938,21064,26041,18158,18147,45199,21169,26171,18249,18238,45301,120,0
+15546,130000,male,1,1,40,2,2,2,2,2,2,62177,60580,65489,66327,64665,68740,0,5900,2500,0,5300,2700,0
+15547,500000,male,1,1,50,-1,-1,-1,-1,0,0,2112,6000,2079,2710,2040,-55,6031,2509,2713,2010,0,4642,0
+15548,220000,male,2,1,55,-1,-1,-1,-1,-1,-1,757,757,3257,757,757,757,757,3257,757,757,757,907,0
+15549,260000,male,3,1,63,0,0,0,0,0,2,261326,264126,244115,248831,263528,258973,9166,9001,9061,19155,1,9858,0
+15550,50000,male,2,1,51,0,0,0,0,0,0,40197,41240,37093,32925,26640,22247,2044,2000,1547,2388,944,1000,1
+15551,110000,male,2,2,55,0,0,0,0,2,0,51716,113395,111693,115073,111811,111719,65668,4267,9455,0,3991,8071,1
+15552,350000,male,1,1,49,-2,-2,-2,-2,-2,-2,27506,4213,1518,4625,363,858,4213,1529,4713,363,858,566,0
+15553,180000,male,2,1,48,-1,-1,-1,-1,-1,-1,1294,1294,1466,1294,2324,264,1294,1466,1294,2324,264,264,0
+15554,120000,male,3,2,50,0,0,0,2,0,0,118506,118930,125089,122242,119996,122049,4500,9000,1609,5000,5000,5000,0
+15555,460000,male,2,1,51,-1,-1,-1,-1,0,-1,326,827,289,44517,36065,6591,831,290,44558,101,6621,9584,1
+15556,250000,male,2,1,52,2,2,2,2,0,0,29860,29086,33288,32459,34600,36539,0,5000,0,3000,2500,2500,1
+15557,50000,male,2,1,58,-1,0,0,0,0,0,60524,61627,56937,51506,45058,37598,2200,2297,1751,1086,3307,1142,0
+15558,350000,male,1,1,56,0,0,0,0,0,0,257463,256706,257944,149040,144639,139558,10023,7700,5162,5025,5041,5061,0
+15559,20000,male,3,1,52,0,0,3,2,0,0,16049,19967,19368,18759,19131,19533,4519,0,0,683,709,1027,1
+15560,290000,male,2,1,49,-2,-2,-2,-2,-2,-2,4040,5438,3116,13459,2685,2532,5457,3131,13526,2698,2544,1988,0
+15561,500000,male,1,1,50,2,2,2,2,2,2,70144,74850,76463,77611,78735,80430,6500,3400,3000,3000,3100,3110,1
+15562,240000,male,1,2,57,0,0,0,0,0,0,224041,238077,245387,248945,224776,11567,18800,12000,10000,20019,3000,9000,0
+15563,50000,male,2,2,52,0,0,0,-1,0,0,45840,47595,28491,3642,12291,16674,8000,8080,15012,10000,8000,2000,0
+15564,180000,male,1,1,50,0,0,0,0,0,0,62782,66114,69436,72560,76169,77988,5000,5000,5000,5000,3000,5000,0
+15565,500000,male,3,1,52,-1,-1,-1,-1,-1,-1,30561,38207,18008,29158,11484,103340,38219,18008,29248,11484,103340,28524,0
+15566,110000,male,2,2,51,0,0,0,0,0,0,110950,69564,51264,51584,49601,50485,2500,2500,1800,1800,2000,2000,0
+15567,500000,male,2,1,53,-2,-2,-2,-1,-1,0,-12,1270,4338,1080,2576,6200,1282,4338,1100,2576,1024,1000,0
+15568,30000,male,2,1,53,0,0,0,0,0,0,29557,30091,28247,28884,29523,30672,1427,2973,1500,1100,2000,1000,0
+15569,600000,male,1,1,53,2,2,2,0,0,0,458652,467150,458862,469703,447130,440982,17000,0,18000,16000,16000,21000,1
+15570,80000,male,1,1,60,0,0,0,0,0,-2,49246,53315,47740,50100,0,0,5000,3300,6267,0,0,0,0
+15571,270000,male,1,1,61,0,0,0,0,0,0,15194,16934,18533,8855,3140,5140,2000,2000,2000,1000,2000,2000,0
+15572,30000,male,3,2,56,0,0,0,0,0,0,32758,33720,32779,31557,30094,27223,1521,1580,1358,895,1217,1022,0
+15573,20000,female,2,2,22,1,2,0,0,2,2,9498,9202,10741,12326,11888,9351,0,2000,1800,0,900,0,1
+15574,20000,female,1,2,23,2,0,0,0,0,0,19175,19889,17703,18690,19065,19261,1575,1400,1300,643,862,2000,0
+15575,90000,male,3,1,56,2,0,0,2,2,0,48900,37039,36334,34214,30789,28994,2000,4000,1100,0,1050,1034,1
+15576,160000,male,2,1,59,-1,-1,-1,-1,-1,-1,1443,1443,1443,1443,1443,1443,1443,1443,1443,1443,1443,1443,0
+15577,90000,female,2,2,23,0,0,0,0,0,0,87727,89402,88118,87852,49042,49251,3160,3688,4559,1665,1707,1807,0
+15578,60000,female,2,2,24,1,-1,3,2,0,-1,0,948,948,632,316,316,948,0,0,0,316,782,1
+15579,20000,female,3,2,24,-1,-1,-2,-2,-1,0,12509,0,0,0,13398,7224,0,0,0,13398,0,0,0
+15580,120000,female,2,2,25,-1,-1,-1,-1,-1,0,827,827,827,827,1654,827,827,827,827,1654,0,0,0
+15581,20000,female,2,1,27,0,0,0,0,-1,0,19667,15,15,41,10522,12340,0,0,26,19700,2000,2000,0
+15582,130000,female,2,2,28,0,0,0,0,0,0,120208,111999,114413,116721,117795,120511,5500,5700,5692,4500,4850,3800,1
+15583,90000,female,2,2,27,0,0,0,0,0,0,18525,14242,25574,21948,19689,11026,10105,16776,19689,0,5000,15000,0
+15584,430000,female,1,2,27,-2,-2,-2,-2,-2,-2,389,389,389,383,1462,389,390,390,384,1469,390,390,0
+15585,360000,female,1,2,27,-2,-2,-2,-2,-2,-2,0,0,12063,6080,0,0,0,12063,6080,0,0,0,0
+15586,10000,female,1,2,22,0,0,0,0,0,-2,9791,7052,6816,5210,0,0,1275,2500,1000,0,0,0,0
+15587,210000,female,2,2,25,-1,-1,0,0,-1,-1,648,34601,30853,13774,3988,0,39637,1371,1000,11197,0,3223,0
+15588,120000,female,3,1,30,-2,-2,-2,-2,-2,-2,757,757,1549,757,757,1328,757,1549,757,757,1328,757,0
+15589,120000,female,2,1,30,0,0,0,0,0,0,121038,121211,119339,122334,121254,122094,4700,4400,5000,4600,5000,4500,0
+15590,100000,female,1,2,30,2,2,2,2,0,0,92162,93769,95163,74656,65718,78474,3800,3420,80,1800,17000,2000,0
+15591,60000,female,2,2,28,2,0,0,0,2,-1,5669,6328,8460,10146,9413,15997,2000,3000,2500,0,15997,3000,1
+15592,20000,female,1,2,25,-2,-2,-2,-1,-1,-1,0,0,0,6000,16321,286,0,0,6000,16321,286,0,0
+15593,200000,female,2,2,26,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+15594,90000,female,3,2,26,0,-1,0,0,0,-1,3268,6745,3402,8652,5381,7190,6745,1131,5381,4,7190,0,1
+15595,220000,female,1,2,28,0,0,-1,-1,-1,0,53342,56022,5806,5637,23054,10730,5000,5806,5637,23054,0,2406,0
+15596,180000,female,2,1,40,0,0,0,0,-2,-2,22523,20831,1537,-43,-43,-43,2045,1000,0,0,0,0,0
+15597,320000,female,1,2,31,0,0,0,0,0,0,77052,65457,62680,62597,60080,55314,3000,3000,3017,2100,3000,3000,0
+15598,280000,female,2,2,29,-1,-1,-1,-1,0,0,7545,2549,3266,10501,10131,8471,2709,3284,11001,8,6,666,0
+15599,130000,female,2,2,30,-1,-1,2,-1,0,-1,396,792,396,792,396,396,792,0,792,0,396,396,0
+15600,280000,female,1,2,30,1,-1,-1,-1,0,0,0,230,0,327,168,168,230,0,327,0,0,0,1
+15601,50000,female,2,1,30,0,0,0,0,-1,-1,86750,42968,43444,40616,2008,-1500,4000,4013,5000,5000,5000,5000,0
+15602,200000,female,2,2,33,-1,2,2,-2,-2,-1,10111,2900,0,0,0,4549,0,0,0,0,4549,0,0
+15603,320000,female,1,2,33,-2,-2,-2,-2,-2,-2,2722,11040,9422,0,1200,1150,11040,9422,0,1200,1150,0,0
+15604,90000,female,2,1,37,-1,2,-1,2,-1,-1,2330,1073,2323,1073,1073,9699,0,2323,0,1073,9699,10289,0
+15605,180000,female,2,1,34,2,-1,-1,-2,-2,-1,314,8000,0,0,0,600,8000,0,0,0,600,0,0
+15606,140000,female,2,1,35,0,0,0,0,0,0,62244,55125,48943,42337,35446,29383,2000,2200,2000,1300,2000,0,0
+15607,330000,female,1,2,36,0,0,0,0,0,0,43943,41738,37766,37117,30555,13420,5019,1952,2000,814,475,697,0
+15608,90000,female,2,2,25,1,-1,-1,-1,-1,2,0,840,420,0,1140,150,840,420,0,1140,0,570,1
+15609,180000,female,2,2,27,0,0,0,0,0,0,53490,54552,56300,56831,57958,59330,1952,2627,2063,2072,2303,2500,0
+15610,200000,female,1,1,38,-2,-2,-2,-2,-2,-2,5625,12125,13300,3450,13880,5147,12125,13416,3450,13880,5147,1050,0
+15611,270000,female,2,1,38,-1,0,0,0,-1,0,2974,3562,5061,5500,116681,119553,1071,2000,1000,116681,5000,4000,0
+15612,60000,female,1,2,23,0,0,0,0,0,0,51275,41950,40861,35638,32147,19796,2000,1718,3800,2000,2386,1000,0
+15613,80000,female,2,2,26,0,0,-1,-1,-2,-2,24986,23000,1000,0,0,0,2000,1000,0,0,0,0,0
+15614,250000,female,1,2,29,2,-1,-1,-1,-1,0,1381,1381,7014,1581,36022,34011,1381,7014,1581,36022,10000,10961,1
+15615,270000,female,2,1,32,2,0,0,0,0,0,276339,264141,270573,275560,243792,251098,11000,12000,11000,8700,11077,34000,0
+15616,170000,female,1,2,40,0,0,0,0,0,0,15442,16869,21014,18517,9058,5035,2000,5020,2000,3000,1000,464,0
+15617,250000,female,2,1,36,0,0,0,0,-1,0,253627,239250,245611,33017,182078,184036,10153,11000,4701,190071,8000,10014,0
+15618,360000,female,2,1,38,-1,-1,-1,0,-1,0,994,0,27566,28558,12495,18906,0,27566,2513,12495,8906,1841,0
+15619,310000,female,2,1,34,0,0,0,0,0,0,86769,87842,42594,26198,26766,27341,2800,3021,1600,1000,1000,2000,0
+15620,200000,female,2,1,39,1,-1,0,0,-1,-1,0,21801,62433,-82,16550,5239,21801,42745,0,16632,5265,0,0
+15621,130000,female,3,1,42,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,5000,0
+15622,310000,female,2,1,49,0,0,0,0,0,0,52439,44350,34608,21262,11944,-2571,2042,1562,1118,1139,2195,61526,0
+15623,200000,female,2,2,34,0,0,0,-2,-2,-2,19252,10000,0,0,0,0,1000,0,0,0,0,0,0
+15624,190000,female,2,1,35,0,0,0,0,0,0,187777,189420,192058,185995,188649,190700,8300,8900,6700,6699,7400,6900,0
+15625,210000,female,2,1,36,-1,-1,-1,-2,-2,-2,26656,2641,0,0,0,0,2641,0,0,0,0,0,0
+15626,100000,female,2,1,36,-1,0,-1,-1,-1,-1,5788,5802,14562,6930,5958,1448,1600,14562,6969,5958,1448,101434,0
+15627,90000,female,2,1,39,1,2,2,2,0,0,90880,87502,91442,89804,87213,90441,0,7300,1144,3265,6788,0,0
+15628,290000,female,2,2,41,0,0,0,0,0,0,268498,272517,275748,277300,209747,212027,10000,12000,8000,7000,7000,5000,0
+15629,200000,female,2,1,42,-1,-1,-1,-1,-2,-2,8050,0,1560,0,0,0,0,1560,0,0,0,0,0
+15630,120000,female,1,2,40,-1,-1,-1,-1,0,0,326,326,326,12055,11968,12968,326,326,12055,239,1000,652,0
+15631,130000,female,2,1,37,0,0,0,2,0,0,41200,42532,46413,45000,45800,0,2019,4900,0,1000,0,0,1
+15632,150000,female,3,1,46,0,0,0,0,0,0,38985,36466,31907,33300,34681,36060,10107,20000,10000,10000,10000,10000,0
+15633,220000,female,1,1,37,-2,-2,-2,-2,-2,-2,14298,100606,11202,21683,10860,12534,101405,11202,21778,10860,12534,7923,0
+15634,200000,female,2,1,37,0,0,0,-1,-1,0,97645,99894,97400,4283,145769,143712,3952,4500,4283,148192,5133,5108,0
+15635,120000,female,3,1,37,-2,-2,-2,-2,-2,-1,3140,448,0,0,0,10614,448,0,0,0,10614,0,0
+15636,200000,female,2,2,37,1,-1,-1,-2,-2,-2,-1,297,-2,-2,-2,-2,298,0,0,0,0,544,0
+15637,100000,female,2,1,41,-1,-1,-1,-1,-1,-1,1594,4612,2098,3494,2086,2379,4612,2099,3494,2086,2379,3219,0
+15638,130000,female,2,2,43,0,0,0,0,0,0,109464,106613,107700,103736,101414,100157,3835,5433,4431,6938,3467,3593,0
+15639,10000,female,2,2,55,1,2,0,0,0,0,9193,7653,8337,8356,8527,4694,0,1201,1000,171,94,80,1
+15640,150000,female,2,1,45,0,0,0,0,0,0,135260,144927,148990,70303,64749,66206,12000,7007,3000,3000,2500,5000,0
+15641,60000,female,3,1,42,0,0,0,0,-2,-1,29243,31093,26401,326,324,1126,3032,1454,326,324,1130,199,0
+15642,130000,male,3,2,27,1,2,0,0,0,0,133019,133178,132355,131797,131457,132202,6000,6000,5000,5000,5000,5200,0
+15643,50000,male,1,2,22,0,0,-1,0,0,0,45192,9920,16991,17727,18391,18490,5000,31991,1500,1200,10000,1000,0
+15644,410000,male,1,2,27,0,-1,-1,0,-1,-1,7189,15646,15678,40512,17884,34251,16090,16076,40203,17974,34518,369,0
+15645,210000,male,1,2,29,-2,-2,-2,-2,-2,-2,0,0,1865,-3,-3,3677,0,1865,0,0,3680,0,0
+15646,140000,male,2,2,30,-1,-1,-1,0,0,0,1288,-4925,136239,137748,81195,47338,0,143200,5200,2352,2000,2000,0
+15647,80000,male,3,1,31,2,0,0,2,0,0,28175,57433,61513,59769,61937,66088,30000,5000,0,3000,5000,5000,1
+15648,30000,male,2,2,31,1,2,2,2,2,2,10916,11940,11462,13263,12758,13545,1500,0,2300,0,1300,800,1
+15649,200000,male,1,1,32,-1,2,-1,2,-1,-1,760,380,760,380,380,0,0,760,0,380,0,154350,0
+15650,550000,male,1,2,31,1,2,2,-2,-1,-1,17516,1600,94,100,704,7480,0,94,112,704,7491,7000,0
+15651,80000,male,2,2,24,1,-2,-2,-1,2,2,-1461,-1461,-1458,16950,16475,19284,0,3,18950,0,5889,0,1
+15652,50000,male,1,2,25,0,0,0,0,0,0,49357,49983,50516,50987,48960,48691,2100,2000,2500,2000,1800,2000,0
+15653,30000,male,1,2,26,1,2,2,0,0,0,24599,23397,22721,22403,21972,22512,1700,0,1700,900,1000,900,0
+15654,100000,male,1,2,26,-1,0,0,0,0,0,2724,46286,46435,4398,3437,3476,45000,2300,1000,0,1000,100,0
+15655,70000,male,1,2,27,0,0,-2,-2,-2,-1,2219,0,0,0,0,1453,0,0,0,0,1453,0,0
+15656,220000,male,1,2,32,-1,-1,0,-1,-1,-1,13596,34661,29084,31770,3322,32528,34661,11000,31770,3322,32528,139961,0
+15657,30000,male,2,2,25,1,-1,2,2,-1,0,0,1170,390,0,9494,11473,1170,0,0,9494,3000,378,1
+15658,250000,male,2,2,28,-2,-2,-2,-2,-2,-2,22303,51749,186394,9458,6620,10040,51762,186398,9467,6620,10040,8960,0
+15659,20000,male,3,2,28,1,2,0,0,0,2,18953,14043,13266,14340,15301,14916,18,1600,1600,1500,0,1000,0
+15660,210000,male,2,2,29,0,0,0,0,0,0,118905,118620,78297,36137,33264,29493,5000,4000,2000,2000,2000,2000,0
+15661,360000,male,1,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+15662,170000,male,2,2,29,0,0,0,0,-1,0,23070,186183,164405,93983,2806,1732,164000,7000,5215,3500,2000,300,0
+15663,10000,male,2,2,29,0,0,0,-1,0,0,9363,9990,-10,6390,6682,7271,1000,0,6400,400,700,500,0
+15664,280000,male,2,2,30,0,0,0,0,0,0,31272,40688,139417,144087,147694,155284,10000,100000,7000,6000,10000,8000,1
+15665,30000,male,2,2,22,0,0,0,0,0,0,4921,3810,3890,2199,2209,1429,1500,2000,2000,400,0,500,1
+15666,20000,male,2,2,24,0,0,0,0,0,2,15110,16548,17443,16216,18027,12364,2000,1500,1500,2000,0,1000,0
+15667,10000,male,1,2,26,0,0,0,0,0,0,6376,7386,8581,9765,10066,10151,1121,1316,1500,450,500,800,1
+15668,80000,male,2,2,26,0,0,-1,-1,-1,-1,350,-40,70,180,-210,220,0,500,500,0,820,500,0
+15669,360000,male,1,2,29,0,0,0,0,0,0,109997,205119,209680,213527,174907,126309,100000,8270,8423,6753,5139,5000,0
+15670,250000,male,1,2,31,1,-2,-1,-1,-1,-1,-160,-550,450,330,-60,1540,0,1390,660,0,1600,3000,0
+15671,170000,male,2,2,33,-1,-1,-1,-1,-1,-1,2754,2754,2754,2754,2754,2754,2754,2754,2754,2754,2754,2754,0
+15672,80000,male,1,2,33,0,0,0,0,0,0,73983,75454,77738,77235,76835,34751,3300,4100,2000,0,0,0,1
+15673,130000,male,2,1,33,0,0,0,0,0,0,39251,40772,40437,9919,10295,7964,2500,3200,1200,500,447,1000,0
+15674,260000,male,2,2,34,0,0,0,0,0,0,32324,24103,20158,12619,176498,172274,1503,2260,3030,170039,6227,6052,0
+15675,20000,male,2,1,31,1,4,3,2,0,0,21676,21054,20442,19773,20238,18062,0,0,0,1000,1000,1000,0
+15676,400000,male,1,1,32,2,2,0,0,-2,-2,187698,190103,195498,0,0,0,7000,10000,0,0,0,4290,1
+15677,220000,male,1,1,33,-1,-1,-1,-1,-1,-1,586,-64,942,5378,126,3419,0,1006,6031,1003,4003,16,0
+15678,180000,male,3,2,27,0,0,0,0,0,0,172511,177587,175867,159053,126688,122947,8008,6528,6500,5000,5000,5000,0
+15679,10000,male,2,2,29,0,0,0,0,0,0,9893,8694,8365,9526,9711,9764,1125,1146,1307,492,357,901,0
+15680,500000,male,3,2,53,-1,-1,-1,-1,-1,2,17362,16666,16666,16666,33923,16666,16666,16666,16666,33923,0,16666,0
+15681,50000,male,2,2,35,0,0,0,0,0,0,47816,49694,48543,46366,9076,9812,3000,3000,3019,3000,1000,2000,0
+15682,180000,male,2,1,36,-2,-2,-2,-2,-2,-2,15315,0,0,0,500,2240,0,0,0,500,2240,1800,0
+15683,370000,male,2,1,39,1,2,-1,2,-1,-1,3633,1746,3677,1746,1746,1746,0,3677,0,1746,1746,1746,0
+15684,360000,male,1,1,37,0,0,0,0,0,0,68438,71287,73406,74397,75467,79841,4000,3009,3509,3500,5000,5019,0
+15685,230000,male,2,1,41,0,0,0,0,0,0,33842,35273,36693,37006,36519,31204,2000,2000,2000,2500,2000,2000,0
+15686,270000,male,1,1,45,1,-1,-1,-1,-1,-1,0,278,608,494,315,0,278,608,494,315,0,181,0
+15687,150000,male,1,1,35,-2,-2,-2,-2,-2,-2,5819,805,-48,8029,2188,9157,809,0,8077,2199,9202,2112,0
+15688,170000,male,2,1,37,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+15689,10000,male,2,1,41,-2,-2,-2,-2,-2,-2,3311,7244,3980,0,9263,3693,7244,4000,0,9263,3693,0,0
+15690,210000,male,1,1,47,-1,-1,-1,-1,-1,-1,8417,15271,12803,13984,9958,13066,15271,12831,13996,9958,13066,6151,0
+15691,270000,male,1,1,39,-2,-2,-2,-2,-1,-1,10648,0,15332,9094,225604,7443,0,3119,9124,225616,7443,69550,0
+15692,50000,male,2,2,44,0,0,0,0,0,0,15735,15681,35492,7988,8986,10463,1500,3100,3000,1500,2000,1500,0
+15693,250000,male,2,1,34,-1,-1,-1,-1,-1,0,6461,8117,2200,3772,8650,17650,8117,2200,3772,8650,10000,4646,0
+15694,50000,male,1,2,35,2,0,0,0,0,0,50481,48264,19142,18188,18397,18161,3183,1565,7240,795,1000,673,1
+15695,280000,male,2,1,35,0,0,0,0,0,0,202260,102097,104596,106950,87706,88396,4000,4000,4000,3000,3600,3100,0
+15696,210000,male,2,1,35,-1,-1,-2,-2,-1,-1,5811,0,0,0,1243,0,0,0,0,1243,0,0,0
+15697,360000,male,1,1,45,1,-1,-1,-2,-2,-2,0,709,0,0,0,0,709,0,0,0,0,0,0
+15698,250000,male,2,1,44,0,0,0,0,0,0,254933,244433,249882,248013,99071,98928,8754,10866,5592,2212,2565,2156,0
+15699,170000,male,5,1,40,0,0,0,0,0,-2,69072,153837,144225,111983,0,0,100467,50269,3567,0,0,0,0
+15700,140000,male,2,2,38,0,0,0,2,0,0,137611,135905,142477,140617,139353,140953,6010,12500,4009,5000,6000,5300,0
+15701,30000,female,2,2,21,0,0,0,0,0,0,28409,28530,29435,30841,29434,16565,2000,2000,2000,1765,331,0,0
+15702,20000,female,2,1,22,2,0,0,0,0,2,14414,15424,16448,17462,18305,17871,1554,1578,1592,1435,0,1663,1
+15703,50000,female,2,2,22,0,0,0,0,-1,0,50784,50670,50222,20013,39721,30526,2300,2000,1682,41803,1261,1200,0
+15704,50000,female,1,2,21,0,0,0,0,0,0,36809,33121,29672,22365,12702,4134,5143,5000,1021,0,3000,0,0
+15705,60000,female,2,2,22,0,0,0,0,0,0,60330,60382,60264,46149,28990,30067,2500,2501,1506,1000,1500,2000,1
+15706,170000,male,1,1,51,-1,-1,-1,-1,-1,-1,316,316,316,316,316,316,316,316,316,316,316,316,0
+15707,220000,male,1,1,42,-1,-1,-1,-1,0,-1,2358,156,0,50510,2202,4533,156,0,50510,0,5131,0,0
+15708,50000,female,2,1,30,1,2,0,0,-2,-2,27369,6425,4580,0,0,0,0,1050,0,0,0,0,0
+15709,20000,female,2,2,23,0,0,0,0,0,0,19242,15014,13484,7612,8612,5007,1500,1535,1000,1000,1000,0,0
+15710,20000,female,2,1,38,0,0,0,0,0,0,19520,16247,6687,5165,5060,2180,1623,1262,1101,2180,0,0,0
+15711,50000,female,2,2,30,1,2,0,0,0,0,49310,48210,48673,33270,7689,15529,0,2310,1900,400,8000,1000,1
+15712,160000,female,1,1,27,0,0,0,0,0,0,146643,151342,152714,141957,140605,143519,6645,4844,6368,3961,4086,4280,0
+15713,400000,female,2,2,27,-1,-1,-1,0,-1,-1,20030,3497,6725,6016,8985,14705,3513,6742,1435,9030,14778,25730,0
+15714,140000,female,2,2,27,0,0,0,0,0,0,134936,137328,138767,137231,128228,110803,6700,6704,5000,4155,4100,3600,0
+15715,80000,female,1,2,27,-1,-1,-1,-1,0,-1,993,1528,1138,4130,3740,1404,1528,1499,4130,0,1404,1621,0
+15716,140000,female,2,2,27,2,2,3,2,0,0,137582,145941,142243,138383,131645,123840,12100,0,0,6000,5000,6000,0
+15717,340000,female,1,1,27,0,0,-2,-1,-1,-1,307650,0,0,495,495,1528,0,0,495,495,1528,3254,0
+15718,70000,female,2,2,26,0,0,0,0,0,0,7053,9761,50926,48588,49323,50685,3000,45000,3000,2000,2500,2000,0
+15719,130000,female,1,2,26,-2,-2,-2,-1,-1,-2,0,365,894,6006,1385,1666,365,894,6006,1385,1666,0,0
+15720,30000,female,3,2,22,1,2,0,0,0,0,41867,38195,37026,34579,32477,32477,0,2145,1400,1000,0,30305,1
+15721,90000,female,2,2,23,0,0,0,0,0,0,23362,23255,23539,28986,27079,21966,9025,3539,9000,650,584,639,0
+15722,30000,female,2,1,23,1,2,0,0,0,-1,28108,27228,24921,25945,20634,1600,0,1500,5229,942,1704,0,0
+15723,100000,female,2,2,22,1,2,0,0,0,0,96491,94043,97522,97696,90605,85293,0,5000,3000,2113,2995,139,0
+15724,20000,female,2,1,23,1,2,0,0,0,2,15988,16219,17626,18398,19052,15429,794,1674,1446,1100,0,379,0
+15725,30000,female,1,2,24,-1,-1,2,-1,-1,-1,736,1472,736,736,736,1423,1472,0,736,736,1423,831,0
+15726,90000,female,1,2,23,0,0,0,0,2,0,60374,57829,59492,68365,66832,69248,3000,2600,10000,0,3500,4000,0
+15727,20000,female,1,2,23,2,0,0,0,0,0,17476,18807,15784,19062,19444,20004,2000,1500,4300,624,800,600,1
+15728,30000,female,2,2,22,3,2,2,2,-1,-1,200,200,200,200,29847,30089,0,0,0,29847,340,0,0
+15729,80000,female,1,2,22,0,-1,0,0,0,0,6518,65145,53655,50279,41166,28657,65145,2386,2000,2000,3000,1000,0
+15730,200000,female,3,2,25,0,0,0,0,-1,-1,7930,5790,9853,5334,5481,11344,1343,5033,3516,5497,11378,12774,0
+15731,60000,female,3,2,23,0,0,0,0,0,0,60465,60100,58795,47818,28357,29309,3000,2148,3049,3000,3002,1021,0
+15732,60000,female,2,2,22,0,0,0,0,2,2,60434,60935,56585,77520,29002,30274,2141,3085,3623,0,3158,0,0
+15733,80000,female,2,1,22,2,2,2,2,2,-2,79026,81521,83628,152452,0,0,4400,4001,12,0,0,0,1
+15734,20000,female,1,3,22,2,0,0,0,0,0,14033,14993,16244,18300,18100,-1900,1500,1800,2800,0,0,1900,1
+15735,130000,female,2,2,22,2,2,2,2,0,0,29929,27812,21213,15443,25371,4264,3412,1700,0,15571,4264,1000,0
+15736,20000,female,2,2,22,2,0,0,2,3,2,6655,9711,12450,13949,13437,13082,3200,2900,2000,0,0,4600,1
+15737,50000,female,1,2,23,0,-1,-1,-1,-1,0,1980,269,-721,-710,29114,27154,269,710,268,45171,1036,1000,0
+15738,60000,female,2,1,23,2,2,2,0,0,0,58032,61026,44438,35619,30210,1527,4800,0,1539,1500,1527,27887,1
+15739,100000,female,2,2,23,2,2,2,2,2,2,90680,93267,95189,96332,97560,95885,5000,4300,3600,3700,0,7300,0
+15740,70000,female,3,2,24,0,0,0,0,0,0,5633,6646,7665,8836,9532,9730,1114,1133,1304,1000,351,2523,0
+15741,30000,female,3,2,22,3,2,2,2,2,3,9340,10533,10221,16808,17738,17174,1500,0,6808,1502,0,0,1
+15742,10000,female,1,2,22,1,3,3,2,0,0,6251,6498,6744,6977,6593,7481,500,500,500,242,1000,273,0
+15743,10000,female,2,2,23,0,0,0,0,0,2,5403,6462,7479,8489,9007,9227,1300,1272,1282,800,500,0,0
+15744,50000,female,3,2,23,0,0,0,0,0,0,35158,34364,34212,33886,32929,34549,1544,1861,2004,1324,3768,1,1
+15745,30000,female,2,2,24,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+15746,30000,female,2,2,24,0,0,0,0,0,0,26581,27080,26759,27186,27208,27234,1500,1445,1425,1000,1000,2000,1
+15747,100000,female,3,2,24,0,0,0,0,0,2,54938,55621,56999,57748,62489,60984,1985,2664,2700,6700,0,2389,0
+15748,30000,female,3,2,24,2,2,0,0,2,2,31073,30279,30428,30485,31012,30402,0,1500,2700,1300,0,1117,1
+15749,90000,female,2,2,24,0,0,0,0,0,0,15985,11413,61879,56377,51068,51722,4000,55000,3750,2500,2500,2500,0
+15750,140000,female,2,2,24,2,2,2,2,2,2,50643,51916,52903,53652,52201,55497,2400,2400,2200,0,4300,2200,1
+15751,50000,female,2,1,24,0,0,0,-2,-2,-2,25207,25435,0,0,0,0,1000,0,0,0,0,0,0
+15752,70000,female,2,2,24,0,0,0,0,-2,-1,64927,58840,42859,0,0,2254,2177,5000,0,0,2254,24738,0
+15753,10000,female,2,2,25,1,2,2,2,0,0,8599,9695,10385,9987,9987,0,1400,1000,0,0,0,0,1
+15754,20000,female,2,2,24,2,3,2,2,2,2,12764,12267,13266,12756,13801,13439,0,1500,0,1259,0,1200,1
+15755,100000,female,2,2,44,-1,-1,-1,-1,0,0,12566,2421,3360,2845,2505,2158,3061,1390,6477,50,43,36,0
+15756,130000,female,1,2,27,0,0,0,0,0,0,116186,111703,105091,100046,96090,90359,5500,4500,3500,6011,3200,4000,0
+15757,130000,female,2,2,24,0,0,0,0,-1,-1,12163,21895,18885,19057,2511,10358,10095,7005,6013,2511,10358,5000,0
+15758,80000,female,2,2,23,0,0,0,0,0,0,77894,79427,79514,72712,42309,43227,2850,2874,2335,1600,1600,1700,0
+15759,50000,female,2,2,23,0,0,0,0,2,0,48409,39572,16922,19319,17644,18209,1605,1603,3000,0,1000,1000,0
+15760,50000,female,1,2,23,2,2,0,0,2,2,50668,46576,46225,46473,45099,45116,0,2120,2810,1000,2083,1500,1
+15761,150000,female,2,1,24,0,-1,-1,-1,-1,-1,1473,1473,3323,5953,2559,4509,1473,3323,5970,2571,4515,4019,0
+15762,50000,female,2,3,24,0,0,0,0,0,0,40901,37962,26566,9866,5386,5651,1600,6207,1465,2200,1000,3000,0
+15763,70000,female,2,2,26,0,0,0,0,0,0,105338,100820,96815,90968,86011,81276,3600,3990,2700,2300,2300,3000,0
+15764,30000,female,2,1,26,2,2,2,2,2,2,30372,30954,30670,29856,30584,27883,1805,2074,0,2304,0,2400,1
+15765,390000,female,1,2,25,0,0,0,0,0,0,21382,19133,19327,26992,33483,37465,4000,5000,11417,10000,10000,5000,0
+15766,80000,female,2,2,25,0,0,0,0,0,0,36808,38190,39571,40775,40592,20650,2000,2000,1867,1784,1050,0,0
+15767,70000,female,1,2,26,0,0,0,0,0,0,41614,43610,46581,47634,51305,52580,3000,4000,1829,4500,2100,2500,0
+15768,30000,female,2,2,23,0,0,0,2,0,0,10550,11670,13469,14045,14509,16962,1300,2000,1100,1000,2700,500,1
+15769,60000,female,2,2,23,0,0,0,0,0,0,45995,44955,20264,20614,20877,21535,2400,1700,1403,1000,1000,1000,0
+15770,20000,female,3,1,24,0,0,0,0,0,0,13506,14772,16520,17623,15237,13776,1500,2000,1500,506,803,1009,0
+15771,70000,female,2,2,25,0,0,0,0,2,2,73939,70488,51152,35122,28633,28039,3000,2000,4500,1200,0,1200,1
+15772,200000,female,2,2,25,0,0,0,0,0,0,195520,195884,194045,189557,177185,171010,7080,8000,7011,8500,6010,6000,0
+15773,50000,female,2,2,23,0,0,0,0,0,0,48227,48273,42670,49263,18296,34822,2000,2520,20000,1000,1000,1000,0
+15774,50000,female,2,1,27,1,2,0,0,0,0,52180,51009,49025,38697,18561,18952,0,2080,1600,657,683,838,0
+15775,20000,female,2,2,23,0,0,0,0,2,0,13858,15121,16472,18087,17499,17868,1500,1600,2200,0,650,1450,0
+15776,50000,female,1,2,23,1,2,0,0,0,0,34443,33590,34651,35677,36485,37300,0,1600,1600,1400,1400,1400,0
+15777,90000,female,2,2,24,0,0,0,0,0,0,35411,17417,26046,10689,12455,15181,10000,14790,5000,5249,9932,0,0
+15778,100000,female,2,2,24,2,0,0,0,0,0,177646,94299,96389,97571,86202,92282,7900,4500,3800,3500,7500,3500,0
+15779,70000,female,2,2,24,0,0,0,0,0,0,61094,62483,63882,64733,66680,71243,3000,3000,2500,3000,5800,0,0
+15780,90000,female,2,2,24,0,0,0,0,0,-2,87711,80699,68100,33434,0,0,3248,2991,2655,0,0,0,0
+15781,30000,female,3,1,23,0,0,2,0,0,0,27552,30686,29915,29994,27310,27778,3605,2,1731,1093,1026,1964,0
+15782,100000,female,1,2,27,0,0,0,0,0,0,81152,81912,83231,62421,63814,65164,3000,2700,2270,2433,2530,2400,0
+15783,280000,female,2,2,25,0,0,0,0,0,0,196909,176261,174573,174488,172747,126494,6285,5897,5895,7747,6509,11234,0
+15784,100000,female,2,2,28,1,2,2,2,0,0,101080,87572,92041,75461,74233,76543,0,7690,0,2800,5700,0,0
+15785,140000,female,2,1,28,0,0,0,0,0,0,62204,65280,56504,53528,42168,25742,7028,6000,5026,5000,3000,2000,0
+15786,10000,female,1,2,27,2,0,0,2,0,0,6100,7274,9596,9289,9593,9795,1281,2603,0,1000,500,421,1
+15787,50000,female,2,1,28,0,0,0,0,0,0,48198,45579,43670,16643,10021,9833,2195,1978,1144,341,345,510,0
+15788,120000,female,1,2,28,0,0,-2,-2,-1,0,2750,-650,-975,-1625,2561,4187,0,0,0,4186,2000,1000,0
+15789,20000,female,2,1,27,0,0,0,0,-1,-1,10489,8652,7143,6044,780,116,1222,1200,1004,780,116,806,1
+15790,30000,female,2,1,27,-1,-1,2,-1,0,-1,390,780,390,780,390,390,780,0,780,0,390,150,0
+15791,130000,female,2,2,26,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+15792,150000,female,1,2,27,-2,-2,-2,-2,-2,-2,5200,1689,-17,3996,2278,1132,1689,0,4013,2278,1132,4721,0
+15793,180000,female,2,1,27,0,0,0,0,0,0,114556,116155,120264,124203,125702,128734,5000,6000,6000,5000,5000,10000,0
+15794,400000,female,2,2,26,0,0,0,0,0,0,74465,68544,60763,53184,45776,38432,3600,2200,1700,1500,1315,800,0
+15795,300000,female,1,2,27,1,-2,-2,-1,-1,-2,-2,-2,0,876,0,0,874,876,876,0,0,0,0
+15796,30000,female,1,2,27,2,0,0,0,0,0,23575,24584,25885,26851,26808,27599,1400,1700,1900,557,1000,2000,0
+15797,130000,female,1,2,27,-2,-2,-2,-2,-2,-2,0,0,734,0,390,988,0,734,0,390,988,1990,0
+15798,20000,female,3,1,26,0,0,0,2,0,0,15271,16707,20601,19952,19586,18528,2000,4500,0,671,700,2000,1
+15799,50000,female,2,1,27,2,0,0,0,-1,0,50151,48945,36467,18890,30288,30003,1724,1819,2664,31057,1064,1073,0
+15800,80000,female,2,2,27,1,2,2,2,2,-2,4073,3863,8109,7849,0,0,0,4500,21,0,0,0,0
+15801,20000,female,2,2,26,0,0,0,0,0,0,16932,17938,18798,19347,8007,4890,1596,1456,1005,160,98,0,0
+15802,50000,female,2,2,27,2,2,2,2,2,0,48407,47760,45064,45744,43123,42343,2100,0,3400,0,1528,3038,1
+15803,80000,female,2,2,26,0,0,0,0,0,0,80919,77264,79332,80969,79144,79023,3000,3700,4000,3000,3300,3050,0
+15804,340000,female,1,2,26,-1,-1,-1,-1,-1,-1,4617,13054,15449,9610,4173,12929,13054,15449,9610,4373,12929,8000,0
+15805,30000,female,2,1,27,0,0,0,0,0,0,29083,27227,28327,27831,14215,32635,1500,1938,2000,505,25000,1229,0
+15806,120000,female,2,2,27,0,0,0,0,0,-1,57449,38254,23017,14440,4770,1595,1743,1640,1010,95,1595,0,0
+15807,50000,female,1,2,27,1,2,2,-2,-2,-2,4040,3800,0,0,0,0,0,0,0,0,0,0,1
+15808,50000,female,2,2,27,0,0,0,0,0,0,33944,29194,27862,21229,20178,19275,1513,2000,2000,1000,1000,1000,0
+15809,500000,female,1,2,28,0,-1,-1,0,0,-2,27250,20000,19501,20000,0,0,20000,19501,1000,0,0,0,0
+15810,360000,female,2,2,27,2,2,-2,-2,-2,-2,2500,0,0,0,0,0,0,0,0,0,0,0,1
+15811,60000,female,1,2,27,1,-1,2,0,0,0,0,3187,2816,3579,3400,4417,3366,0,1000,0,1017,0,0
+15812,50000,female,2,2,27,0,0,0,0,0,0,50686,49525,49603,49222,30421,30352,1779,3001,1558,1045,1074,1634,0
+15813,130000,female,1,2,27,0,-1,-1,0,0,0,15700,250,7671,12088,74088,63593,250,7671,5000,65000,3000,41803,0
+15814,360000,female,2,2,29,0,0,0,0,0,0,58653,56329,55957,52392,61700,42975,5886,4054,8412,15096,1208,3000,0
+15815,160000,female,2,2,27,1,2,0,0,0,0,156506,157177,157804,157478,156098,156659,7000,6000,7217,6000,6000,6000,0
+15816,360000,female,2,1,27,-2,-2,-2,-2,-2,-2,5146,15381,0,0,0,0,15381,0,0,0,0,0,0
+15817,210000,female,2,2,28,-2,-2,-2,-2,-2,-2,2316,2316,2836,2316,1446,131242,2316,2836,2316,1446,131242,5000,0
+15818,230000,female,2,2,28,2,0,0,2,2,2,183197,185399,198941,201358,204067,200720,6724,18150,7200,7500,0,15079,1
+15819,70000,female,2,2,27,2,2,2,0,0,0,34263,37375,36498,37516,38587,43924,4000,0,1929,2000,6000,3700,1
+15820,50000,female,2,1,25,0,-1,-1,-1,-1,-1,2126,1513,1246,1111,3018,5847,1513,1246,1111,3018,5847,1273,0
+15821,80000,female,2,2,25,-1,-1,0,0,-2,-2,2177,1677,7360,0,0,0,2000,5860,0,0,0,0,0
+15822,100000,female,2,2,26,0,-1,0,0,0,0,1734,6645,7725,11246,9755,8260,6649,2704,5250,4,0,24,1
+15823,200000,female,2,1,28,0,0,0,0,0,0,197142,198367,96731,67431,60690,60442,9197,3700,6478,2114,2337,2401,0
+15824,70000,female,2,2,28,0,0,0,0,0,0,68462,69205,70644,70759,70352,70659,3100,3160,3100,2500,2600,2800,0
+15825,110000,female,1,1,28,0,0,0,0,0,2,109474,110723,111125,106828,84729,82910,11602,4238,4316,11190,0,3000,0
+15826,50000,female,1,2,28,1,2,2,2,2,2,51943,50800,51967,50794,51911,50976,0,4156,0,4100,0,2000,1
+15827,50000,female,1,2,28,1,2,0,0,0,0,43810,44184,4273,4999,5726,1473,1500,1300,2390,2200,0,3283,0
+15828,70000,female,2,2,27,0,0,2,2,0,0,25105,27867,28125,28364,29586,30110,3500,1000,1000,2000,1000,1500,0
+15829,60000,female,2,2,27,3,2,2,2,4,3,56670,57252,55764,64522,62945,61700,2100,0,9700,0,0,0,1
+15830,130000,female,2,1,27,0,0,0,0,0,0,76885,79106,81231,81983,83773,85532,3500,4000,3000,3146,3260,3200,0
+15831,150000,female,2,2,25,2,2,2,2,2,2,114074,116313,118700,115328,121084,123473,5600,5700,0,9200,4500,0,1
+15832,30000,female,2,2,27,0,0,2,2,2,0,17845,20615,19962,18191,12134,6879,3384,0,1450,0,500,2417,0
+15833,200000,female,2,2,26,0,0,0,-1,0,0,12557,11443,4794,11720,12293,10798,1084,1024,11726,2608,344,253,0
+15834,50000,female,2,1,29,0,0,0,0,0,0,48712,98492,50095,49057,17426,17789,2128,2477,2409,769,792,659,0
+15835,260000,female,1,2,29,1,-1,-1,-1,-1,0,0,18488,17276,6165,9219,980,18488,17276,6179,9219,0,9012,0
+15836,360000,female,1,2,29,-1,0,0,0,0,-1,8805,10768,16659,25302,15147,5281,5001,6688,16251,394,5307,5389,0
+15837,30000,female,2,2,29,2,2,2,0,0,0,13519,16493,15545,16557,16857,18121,3211,0,1275,575,1539,700,1
+15838,100000,female,2,1,29,0,0,0,2,2,2,73742,75216,82006,84044,84532,80828,2700,8000,4304,3000,0,3000,1
+15839,80000,female,2,1,29,0,0,2,2,0,0,52533,56340,57022,55081,55350,55906,5120,2600,0,2200,2028,3000,0
+15840,30000,female,2,1,29,0,0,0,0,0,2,27030,23830,24943,27507,30767,29762,2379,1500,3000,3722,0,1543,0
+15841,400000,female,1,2,28,-1,-1,-1,-1,-1,2,1026,8968,1600,8799,6171,4921,9066,1608,9070,1001,3,2214,0
+15842,240000,female,1,2,29,-1,2,2,-2,-2,-2,3126,3126,626,626,776,783,626,626,626,776,783,1252,0
+15843,110000,female,2,2,30,2,2,2,2,2,0,124206,124679,126200,130540,127114,111429,4000,5000,8000,0,5000,5000,1
+15844,220000,female,1,2,28,0,0,0,-1,-1,-1,57739,42144,19270,1500,5520,0,2000,1000,1500,5520,0,0,0
+15845,200000,female,1,2,28,0,0,0,0,0,0,105051,99648,144932,134530,129395,124561,32000,60000,6305,4300,4500,4500,0
+15846,360000,female,2,2,28,0,0,0,0,0,0,264971,257086,253407,259551,265149,340930,9043,8847,10000,10000,80016,15000,0
+15847,30000,female,2,2,28,2,2,2,2,2,2,19334,20218,19607,21778,22124,22622,1500,0,2500,1000,1000,900,0
+15848,110000,female,1,2,28,0,0,0,0,0,0,107649,82139,74760,63520,62529,58228,3500,3899,3000,1800,3000,2000,0
+15849,80000,female,1,2,29,0,0,0,0,0,0,33947,37339,36601,40589,42675,44567,4000,2500,5000,3000,2500,10000,0
+15850,50000,female,2,2,35,0,0,0,0,0,0,13517,14536,15694,16431,17056,17581,1550,1700,1300,900,800,800,0
+15851,100000,female,1,2,22,1,2,0,0,0,0,74001,72222,73859,75427,76587,78711,0,3400,3400,3000,3500,3200,1
+15852,50000,female,2,2,23,0,0,0,0,0,0,26871,19785,10103,9763,9592,7797,1500,1500,1500,1500,1200,1300,0
+15853,350000,female,3,2,28,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+15854,80000,female,3,1,28,0,0,0,0,0,0,63900,65343,66171,58683,43421,44267,3000,2470,2228,1516,2000,1556,1
+15855,90000,female,1,1,29,0,0,0,0,0,0,45343,31228,29756,27751,20292,14937,2967,2007,1429,1092,412,263,0
+15856,120000,female,1,2,27,0,0,0,0,0,0,110994,29177,30212,31226,31844,32513,1471,1506,1520,1138,1180,1345,0
+15857,50000,female,1,2,25,0,0,0,0,0,0,3624,4487,4545,6249,6249,6249,1100,1600,2000,0,0,0,0
+15858,50000,female,2,2,23,0,0,0,0,0,0,19455,13675,10476,11197,11609,11922,1500,1500,1200,600,500,800,0
+15859,90000,female,2,2,24,0,0,0,0,0,2,10648,10951,11288,10852,10519,9235,1500,1529,1113,800,0,2000,0
+15860,70000,female,2,2,25,0,0,0,0,0,0,32486,33640,35286,36889,34152,36694,2000,2500,2519,5090,3100,0,0
+15861,10000,female,2,1,31,3,2,0,0,0,0,10243,9920,8894,8136,8449,8493,0,1281,1135,448,329,287,0
+15862,130000,female,2,2,29,-1,-1,-1,2,0,0,867,1110,1170,780,390,0,1200,1170,0,0,0,780,0
+15863,360000,female,1,2,27,0,0,0,0,0,0,130640,120058,110795,101668,78730,66682,4500,4100,4208,3000,2300,1800,0
+15864,80000,female,2,1,35,0,0,2,2,2,3,63706,66613,69602,70752,74183,72727,5660,4688,2900,5200,0,3000,0
+15865,70000,female,2,2,27,0,0,0,0,2,0,47938,49638,51005,54141,52676,53871,2500,2464,4600,0,2200,2180,0
+15866,30000,female,1,2,22,2,2,0,0,0,-1,29188,25908,19998,15675,8240,438,0,1441,1000,165,438,0,1
+15867,80000,female,2,2,24,0,0,0,0,0,0,68250,68817,71181,68997,70364,71842,3000,3500,3000,2503,2596,3000,0
+15868,80000,female,2,2,24,-2,-2,-1,-1,-1,-1,1138,800,179,1755,0,1190,804,179,1755,0,1190,0,0
+15869,150000,female,1,2,29,0,0,0,0,2,2,110018,47600,26219,17705,17920,17494,2400,1619,2550,800,0,700,0
+15870,260000,female,2,2,29,0,0,0,0,0,0,193000,149410,138021,98578,84967,83224,5072,4439,3079,3020,3036,4554,0
+15871,20000,female,2,1,29,0,0,0,2,3,3,14757,16196,17825,20234,20510,19897,2000,2200,3000,900,0,500,0
+15872,20000,female,2,2,25,0,0,0,0,0,0,7561,8576,9621,10485,10700,10922,1144,1189,1053,268,277,358,1
+15873,200000,female,2,2,27,1,2,-1,-1,-1,-1,18354,9000,9306,9306,9000,9000,0,9306,9306,9000,9000,9300,0
+15874,110000,female,2,1,25,-1,4,3,2,3,2,96343,93959,91624,96190,95233,97760,0,0,7000,1500,4200,3500,1
+15875,160000,female,1,1,24,-1,-1,0,0,-1,-1,2990,8619,4405,4445,2820,4970,8619,1000,4000,2820,4970,2825,0
+15876,20000,female,2,1,24,0,0,0,0,0,0,17191,18594,19489,20200,20000,0,2000,1500,1200,0,0,0,0
+15877,110000,female,2,2,26,0,0,0,0,0,0,63376,67293,67536,77697,82888,88048,5000,1317,11380,6508,6540,6671,0
+15878,200000,female,1,2,30,-1,-1,2,2,2,2,182967,194924,75635,94454,60875,41221,15349,10,32000,0,3000,0,1
+15879,50000,female,3,2,29,2,0,0,0,0,0,48259,48740,26953,27860,28420,29045,1726,1500,1376,936,1000,1100,1
+15880,340000,female,2,2,30,0,0,0,0,-1,0,257884,254863,24810,27502,3490,99514,13000,2000,5000,3490,99000,5000,0
+15881,220000,female,1,2,30,-2,-2,-2,-2,-2,-2,6391,2383,1496,5199,20718,12428,2402,1503,5233,20828,12490,1601,0
+15882,180000,female,2,2,30,0,0,0,0,0,0,148860,135814,138654,130773,121293,123947,6500,7000,6600,4700,5100,4700,0
+15883,110000,female,5,2,32,3,2,0,0,0,0,109655,98133,95391,79409,78014,77709,3500,3515,3307,3014,3009,4000,0
+15884,50000,female,2,1,32,0,0,0,0,0,0,49330,49547,49740,50275,20089,19964,2150,2100,2097,1289,712,713,0
+15885,50000,female,3,2,28,1,3,3,2,2,2,40527,42066,41126,40165,42683,43843,2500,0,0,3200,2000,1700,0
+15886,240000,female,2,2,29,0,0,0,0,0,0,17486,16262,6046,3774,889,5474,5005,3000,1000,18,5000,2500,0
+15887,200000,female,1,2,29,-2,-2,-2,-2,-2,-2,56555,0,0,3941,16405,-150,0,0,3941,16405,0,2477,0
+15888,90000,female,3,1,29,0,0,0,0,0,0,91116,89047,91595,88197,59822,55345,3500,4000,3002,1974,2000,5000,0
+15889,20000,female,2,1,29,0,0,0,-1,-1,-1,3138,4090,2060,780,1000,0,1030,1000,780,1000,0,0,1
+15890,300000,female,1,2,30,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+15891,290000,female,2,2,30,-1,-1,2,-1,-1,-2,4479,8025,3499,3264,-550,-550,15499,0,3302,0,0,1250,0
+15892,20000,female,2,1,30,0,0,0,-1,-1,-2,18354,16419,10419,780,0,0,1225,1015,780,0,0,0,1
+15893,200000,female,2,2,31,0,0,0,0,0,0,101431,102604,125731,120465,118759,119378,5000,30000,5809,4002,4500,4100,0
+15894,130000,female,1,1,31,0,0,0,0,0,0,128319,131825,127949,129357,126999,126719,6300,4800,5000,4700,5000,5000,0
+15895,10000,female,2,2,27,2,0,0,0,0,0,6694,7546,8345,8688,8865,9046,1124,1207,1000,177,181,0,0
+15896,210000,female,1,2,28,0,0,0,0,0,0,74235,74108,59594,51877,44293,38215,4000,5000,2000,2540,3000,3000,0
+15897,130000,female,2,1,28,0,0,0,0,0,0,115303,113502,111651,102622,96723,98827,4157,4168,5025,3223,4105,4000,0
+15898,80000,female,2,1,29,2,2,2,2,0,0,82074,79440,102872,49043,23962,23283,0,4300,0,1000,5000,1000,1
+15899,410000,female,1,1,37,0,0,0,0,0,-1,54326,23223,25865,21619,19336,1433,5000,15014,5034,10006,1433,371,0
+15900,60000,female,2,1,31,0,0,2,2,2,2,37549,40603,39676,42407,41428,45576,4000,0,3700,0,5000,2000,1
+15901,30000,female,2,2,31,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+15902,320000,female,2,1,32,0,0,0,0,0,0,101121,86781,74909,55472,53699,46313,5800,9805,5006,3704,12860,13201,0
+15903,80000,female,2,1,32,-1,-1,-1,0,0,-1,8592,4000,6881,7697,3333,3063,4000,6881,5003,3000,3063,0,0
+15904,210000,female,2,1,32,0,0,0,0,-1,-1,189307,194602,199963,205137,84877,83899,8438,10000,10000,84890,2948,3497,0
+15905,60000,female,2,1,32,2,2,2,2,2,2,20524,21584,22437,22771,23099,23583,1700,1500,1000,1000,1000,0,1
+15906,310000,female,2,1,29,-2,-2,-2,-2,-2,-2,13158,1062,8805,3024,0,0,1062,8805,3087,0,0,3240,0
+15907,130000,female,2,2,25,-2,-1,0,0,0,0,51734,77751,93696,79187,116374,120793,77817,79000,3382,103001,6000,4514,0
+15908,60000,female,2,2,26,0,0,0,0,0,0,58117,53986,47413,36527,28170,28963,2400,2050,2011,1200,1400,1200,0
+15909,30000,female,2,2,29,0,0,0,0,0,0,25167,25299,22912,14940,9365,1280,1414,1415,1002,200,104,0,0
+15910,150000,female,2,2,25,-1,-1,-1,-1,0,-1,1344,1041,2021,4495,15145,525,1041,2021,4495,10650,525,0,0
+15911,30000,female,2,1,25,2,2,2,2,2,2,28766,27183,30023,29243,31262,30327,0,3600,0,2800,0,1080,1
+15912,130000,female,2,2,42,0,0,0,-1,-1,-1,49363,47432,94050,21000,858,2160,5026,5000,21000,858,2160,200,0
+15913,50000,female,2,2,26,1,2,2,2,2,3,18253,20539,20616,20977,23287,22637,2900,700,1000,2970,0,0,0
+15914,170000,female,2,2,27,0,0,0,0,0,0,80848,83678,28461,13263,3637,4814,8000,2000,1000,1000,2000,1000,0
+15915,30000,female,2,1,32,1,3,2,0,0,2,27807,27078,26363,27379,28953,28354,0,0,1758,2332,0,1400,1
+15916,250000,female,3,1,32,-1,-1,-1,-1,-1,-1,860,860,860,860,440,1280,860,860,860,440,1280,440,0
+15917,110000,female,2,2,32,3,2,0,0,0,0,108087,103307,103749,78961,76180,76353,0,5100,3411,3003,3000,3001,0
+15918,160000,female,1,2,29,0,0,-1,0,0,0,14023,14224,101479,101454,102861,103921,1450,101505,3600,3700,3800,3500,0
+15919,340000,female,1,2,33,0,0,2,0,0,2,63201,68466,64478,67271,62269,56502,8100,0,5000,5000,0,10000,0
+15920,100000,female,3,1,36,0,0,0,0,0,0,102505,101554,101827,100055,80923,81249,3830,4100,4510,3186,2886,3020,0
+15921,230000,female,2,2,28,0,0,0,0,0,0,64992,56763,58020,59580,59224,61867,2500,2500,3000,2000,4000,2000,0
+15922,200000,female,1,1,31,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+15923,30000,female,2,1,30,3,2,2,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,1
+15924,120000,female,2,2,30,0,0,0,0,0,0,110612,114323,116835,118053,119047,119641,5555,5847,5800,4445,4700,4500,0
+15925,120000,female,2,2,28,0,0,0,0,0,0,67087,66665,67525,67091,67419,67711,2400,3040,2400,2500,2450,2500,0
+15926,50000,female,2,1,31,1,3,2,0,0,0,50701,49147,21163,19894,19758,19324,0,507,1300,1000,700,771,1
+15927,20000,female,3,2,31,0,0,0,0,0,0,5556,3684,4298,3882,3563,3242,1028,1032,1000,72,369,0,0
+15928,500000,female,2,2,30,0,0,0,0,0,0,98618,73464,84741,72510,69053,64841,25464,43095,7522,9065,8841,12000,0
+15929,100000,female,1,2,31,1,-2,-1,-1,0,0,0,-740,740,1480,1480,740,0,2220,1480,740,0,2931,0
+15930,50000,female,1,2,38,2,2,2,0,0,0,21534,22283,21638,22651,23275,24902,1400,0,1376,1000,2000,0,1
+15931,210000,female,1,2,30,0,0,0,0,0,0,7264,8816,10749,5125,5732,9297,2000,2500,2000,1000,4000,4000,0
+15932,50000,female,2,1,30,0,0,0,-2,-2,-2,50425,51400,0,0,0,0,2400,0,0,0,0,0,0
+15933,200000,female,3,1,29,2,2,2,2,0,0,128649,131059,132120,128669,131499,143020,6000,4600,0,4800,13700,500,1
+15934,150000,female,2,2,27,-1,-1,-1,-1,-1,0,1745,3384,1555,2126,60092,59831,3384,1555,2126,60092,3000,3000,0
+15935,50000,female,2,1,34,2,0,0,2,2,0,62643,59851,65545,62672,57755,55512,2151,10000,2100,0,2000,1861,1
+15936,300000,female,1,2,30,0,0,0,0,0,0,217329,206703,203164,164371,161331,154515,8000,20219,7500,6500,7500,6000,0
+15937,120000,female,1,2,31,-1,-1,-1,-1,-1,0,316,316,316,316,632,316,316,316,316,632,0,316,0
+15938,190000,female,2,2,36,0,0,0,0,0,0,187972,188542,190411,190197,180392,163922,8197,8400,6486,6046,6069,5626,0
+15939,70000,female,2,1,35,0,0,0,0,0,0,68445,67371,68263,68927,69176,70592,3001,3052,3348,2617,2840,2674,0
+15940,50000,female,2,1,39,2,2,2,2,0,0,78874,74268,66468,56847,50680,26729,4725,1400,0,1545,2022,51000,1
+15941,50000,female,2,2,38,0,0,0,0,0,2,31426,23712,18919,24227,25229,12150,1655,1675,15000,2610,0,2000,0
+15942,80000,female,3,1,38,0,0,0,2,0,0,82391,80977,88815,83153,50910,60012,2925,12265,9,1737,1760,1882,0
+15943,30000,female,2,3,35,0,0,0,0,0,0,25952,26657,27972,28628,29005,29817,1440,1750,1390,764,1000,850,1
+15944,140000,female,2,1,41,0,0,0,0,0,2,41814,43616,44710,45661,50880,49934,2500,2100,2000,6000,0,2000,0
+15945,20000,female,3,1,49,1,2,3,2,0,0,18769,21349,20732,19946,19546,19546,3186,0,0,0,0,0,1
+15946,30000,female,2,1,38,0,0,0,-2,-2,-2,6061,3656,0,0,0,0,1007,0,0,0,0,0,1
+15947,260000,female,3,1,44,0,0,0,0,0,0,148803,137561,130539,112300,105517,108011,5100,5300,4303,3600,4000,4000,0
+15948,30000,female,1,1,48,0,0,0,2,2,2,25265,26529,30090,28908,30472,29483,2000,4000,0,2400,0,1500,1
+15949,50000,female,2,2,41,1,2,0,0,0,0,49487,48282,39490,27835,23391,24507,0,2000,2537,1500,1500,1500,1
+15950,50000,female,2,1,35,0,0,0,0,0,0,16053,16024,25350,25738,25948,26163,2000,10000,1500,1000,1000,1500,0
+15951,60000,female,3,1,35,1,2,0,0,2,0,10722,10254,15043,19738,19195,19473,0,5000,5000,0,2000,1000,1
+15952,50000,female,2,1,48,1,2,0,0,0,0,18704,18106,19793,19378,18874,19361,0,2000,1500,1000,2000,1000,1
+15953,80000,female,2,1,38,0,0,0,0,0,0,72704,70907,59223,40128,41152,41527,3133,2132,1650,2000,1503,1505,0
+15954,80000,female,2,1,41,0,0,0,0,0,2,79958,81662,78899,78245,62234,60737,3452,4066,3469,4630,0,2500,1
+15955,100000,female,3,1,40,0,0,0,0,0,0,49328,44045,42373,37088,75672,31645,2038,1994,1457,1205,1162,1131,0
+15956,30000,female,3,1,37,1,2,2,2,0,0,28361,27227,29346,23548,11790,7276,0,3313,108,299,325,0,0
+15957,30000,female,2,1,49,0,0,0,0,2,2,23705,24709,25745,27949,27216,29138,1386,1422,2626,0,2351,1033,0
+15958,30000,female,3,1,46,0,0,0,0,0,2,9847,10857,11877,12891,13960,14082,1181,1201,1215,1284,490,0,0
+15959,50000,female,2,1,31,2,4,3,2,0,0,13815,13307,12755,8400,3150,0,0,3,17,0,0,0,1
+15960,240000,female,2,2,48,0,0,0,0,0,0,234312,231407,233781,220150,190170,194018,9454,10128,8012,6500,7000,7000,1
+15961,30000,female,3,1,44,1,-2,-2,-2,-2,-1,0,0,0,0,0,379,0,0,0,0,379,0,0
+15962,240000,female,2,2,35,0,0,0,-2,-2,-2,15750,12891,0,0,0,0,1005,0,0,0,0,0,0
+15963,50000,female,2,2,31,2,2,2,2,2,2,28947,30072,30895,31589,32071,32709,1900,1600,1500,1300,1300,1500,1
+15964,70000,female,1,2,23,0,0,0,0,0,0,7531,8545,9588,10900,46462,47599,1145,1188,1500,36000,2000,1668,1
+15965,80000,female,3,1,28,0,0,0,0,0,0,72561,62691,61652,54602,50011,49701,2300,2809,2104,1708,1768,1807,0
+15966,120000,female,2,2,30,0,0,0,2,2,0,98546,100675,104347,108258,104972,104638,5600,6800,7300,0,4600,3400,0
+15967,100000,female,3,1,32,0,0,2,2,2,2,32200,37211,36338,37698,38074,40295,5884,0,2270,1300,3000,1700,0
+15968,50000,female,2,1,44,0,0,-2,-2,-2,-2,49644,0,0,0,0,0,0,0,0,0,0,0,0
+15969,320000,female,2,1,39,-1,-1,-1,-1,-1,0,42442,3336,7210,6091,24641,30005,3336,7210,6091,24641,30000,5645,0
+15970,220000,female,1,1,36,0,0,0,0,0,0,215979,210475,216513,196219,200117,204312,7800,9639,7123,7162,7419,7462,0
+15971,140000,female,1,2,33,0,0,0,0,0,0,87713,88906,88736,91287,91057,91538,5000,5000,5000,5000,3500,3500,0
+15972,140000,female,1,1,37,0,0,0,0,0,0,136431,135134,139178,139900,109665,108129,4849,6703,6120,4015,4042,4057,1
+15973,50000,female,2,2,24,-2,-2,-1,2,2,0,0,0,37111,37516,36614,37537,0,37111,1307,0,1509,1388,0
+15974,60000,female,1,2,25,-1,2,-1,-1,-1,-1,538,269,269,269,0,1257,0,269,269,0,1526,0,1
+15975,90000,female,2,2,47,0,0,0,0,0,0,81902,71768,72163,27124,27724,28724,3274,2271,1400,1000,1000,1000,0
+15976,20000,female,2,3,44,3,2,2,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,1
+15977,130000,female,2,2,29,0,0,2,0,0,0,34529,52868,51457,60045,47696,43677,19000,0,10000,10000,10000,10000,0
+15978,80000,female,2,1,34,1,2,2,2,0,0,84720,86221,84062,79076,31984,29306,3808,2804,30,1108,1108,1133,1
+15979,230000,female,2,1,37,0,0,0,0,0,0,126251,128542,122493,124743,127507,121400,4500,4600,4389,4697,4800,4000,0
+15980,180000,female,2,1,29,0,0,0,0,0,0,25781,26000,26310,26662,26166,26176,1800,1800,1500,1056,950,1000,0
+15981,20000,female,2,2,34,0,-1,-1,-2,-2,-2,17489,3077,0,0,0,0,3077,19837,0,15846,2000,0,0
+15982,210000,female,2,1,34,0,0,0,0,2,0,4141,5347,25064,30684,29892,30516,1283,20000,6071,0,1107,1114,0
+15983,70000,female,2,2,22,2,2,2,2,0,0,69242,71007,72596,70467,48129,47751,3500,3300,0,2000,2000,2000,0
+15984,50000,female,1,2,22,0,0,0,0,0,0,15787,17486,17823,18495,18266,18631,2250,1587,1259,765,773,476,0
+15985,140000,female,2,1,30,0,0,0,0,0,2,106526,85019,82784,81458,86227,84646,4000,3000,4000,7000,0,4000,0
+15986,100000,female,2,1,32,0,0,0,0,0,0,29987,29219,27865,11166,32261,7961,2007,2049,1045,23610,4000,1000,0
+15987,80000,female,2,2,37,-2,-2,-2,-2,-2,-2,5583,3946,0,0,0,0,3946,0,0,0,0,0,0
+15988,300000,female,1,1,36,1,-2,-2,-2,-1,0,0,0,0,0,1894,2394,0,0,0,1894,500,4662,0
+15989,200000,female,3,2,26,-1,-1,0,0,-1,-1,0,2381,10,1010,2230,1191,0,15,1000,2000,1191,866,0
+15990,100000,female,2,2,29,-1,-1,-1,-2,-2,-2,600,600,0,0,0,0,600,0,0,0,0,0,0
+15991,50000,female,2,1,45,0,0,0,0,0,0,49375,45390,46210,46549,20084,20264,1721,2321,1660,3000,1004,1003,0
+15992,140000,female,3,1,47,6,5,4,3,2,0,151790,147998,144280,139701,90756,92935,0,0,0,0,3000,2000,0
+15993,50000,female,2,1,28,0,0,0,0,0,0,43206,42105,40591,31609,29662,24741,2100,2021,1500,1009,1000,1000,0
+15994,500000,female,1,2,28,0,0,0,0,0,0,229258,134264,134908,141358,121262,131147,10042,8048,20141,10000,12000,15000,0
+15995,360000,female,2,2,31,-2,-2,-2,-2,-2,-1,3000,2668,2668,-7,-7,3500,2668,3000,7,0,3507,2500,0
+15996,240000,female,2,2,34,1,-2,-2,-2,-2,-2,-10,-10,-10,-10,-10,-10,0,0,0,0,0,0,0
+15997,200000,female,1,1,35,-1,-1,2,-1,-1,-1,316,734,418,424,424,424,734,0,424,424,424,608,0
+15998,280000,female,1,1,35,0,0,0,0,0,0,281424,232826,195621,96843,99232,102620,9604,53459,4000,4000,5000,4000,0
+15999,330000,female,1,1,36,1,-2,-2,-1,-1,-1,0,0,0,469,150,3661,0,0,469,150,3661,3800,0
+16000,100000,female,3,2,32,0,0,0,0,0,0,79158,93667,58161,41414,28835,29423,23591,2116,1400,1165,588,639,0
+16001,30000,female,3,1,35,1,2,2,-2,-1,3,10211,6314,0,0,600,300,0,0,0,600,0,0,1
+16002,130000,female,2,2,37,2,0,0,0,0,0,129677,131798,98083,92317,87375,87634,5940,4700,4433,3100,3300,3200,1
+16003,30000,female,2,2,41,1,2,0,0,0,0,25562,23250,23217,21295,19076,9292,0,1600,1500,1000,1720,0,0
+16004,50000,female,3,3,43,1,2,2,0,0,0,17962,18766,18177,19147,17827,18389,1400,0,1289,800,1000,1000,1
+16005,80000,female,2,1,39,1,-1,-1,2,2,2,0,174,2071,2036,840,1081,174,2071,150,0,931,0,1
+16006,570000,female,1,2,30,0,0,0,-1,0,-1,323085,303794,243673,74003,57763,50852,50468,33372,74085,290,51107,41791,0
+16007,20000,female,2,1,32,1,2,2,2,0,0,17044,16478,19098,18397,18696,38282,0,3200,0,700,700,500,0
+16008,90000,female,2,2,35,0,0,0,0,0,0,30646,29919,29045,28025,26758,26012,1500,1509,1400,1000,1100,1000,0
+16009,150000,female,3,1,43,0,0,0,2,2,0,142811,139652,111868,107702,103112,103246,6000,10700,1600,0,2800,2500,1
+16010,110000,female,2,1,41,0,0,0,0,0,0,182235,185646,168171,129227,49830,50287,6071,5070,3362,1755,2000,2000,0
+16011,170000,female,3,1,37,1,2,0,0,0,0,33039,30336,30826,31996,33676,25301,3,2008,5000,2037,2029,2008,0
+16012,90000,female,2,2,26,0,0,0,0,0,0,61982,46323,43710,45474,46369,47623,2000,2100,2500,1650,2000,2000,0
+16013,110000,female,2,2,26,0,0,0,0,0,0,45028,46276,47527,48735,49925,50967,2000,2000,2000,2000,2000,2500,0
+16014,20000,female,2,1,28,-1,2,2,-2,-2,-2,2120,1760,0,0,0,0,0,0,0,0,0,0,0
+16015,200000,female,2,1,31,3,2,2,2,2,2,5000,5000,5000,5000,5000,5000,0,0,0,0,0,0,1
+16016,50000,female,2,1,34,0,0,0,0,0,0,51012,49882,50446,49910,29844,30524,2000,2200,2270,1204,1300,1238,0
+16017,50000,female,3,1,45,0,0,0,0,0,0,22352,23244,20791,22104,22237,22703,1324,1351,1664,797,825,1030,0
+16018,30000,female,3,1,46,-1,-1,-1,2,0,0,2572,8822,5786,2749,28241,26960,8848,5869,0,26965,1066,3196,0
+16019,50000,female,3,1,46,-1,-1,-1,-1,-1,-1,65,0,1271,940,110,0,0,1271,949,110,0,558,1
+16020,80000,female,3,1,26,0,0,0,2,2,0,6808,8686,11628,12008,11658,12603,2000,3100,1000,0,1000,2000,0
+16021,160000,female,1,2,26,-1,0,0,0,0,-2,157453,155081,137027,70845,0,0,5937,5000,1417,0,0,0,0
+16022,10000,female,2,2,40,-2,-2,-2,-1,-1,-1,-4,-4,-4,26,326,-87,0,0,30,300,1000,2000,1
+16023,20000,female,2,2,26,1,2,2,0,0,0,19725,17368,16801,17789,17419,17628,1293,0,1281,771,640,790,0
+16024,70000,female,1,1,34,0,0,0,0,0,0,40498,41192,42274,43596,44173,45309,1668,1750,2023,1600,1850,5800,0
+16025,110000,female,3,3,37,2,0,0,0,0,0,67930,64654,63389,60021,58660,59891,2293,2255,2139,2097,2174,2200,0
+16026,150000,female,2,1,45,-1,-1,-1,-2,-2,-2,16611,18540,18204,16132,-5880,-20544,18552,18267,16142,5880,13707,1088,0
+16027,500000,female,1,1,39,0,0,0,0,0,0,418958,439432,440324,440565,440050,438953,39432,20000,20000,20000,20000,20000,0
+16028,30000,female,2,1,48,2,2,2,2,2,0,28695,29824,29066,31236,29819,30058,1900,0,3000,0,1500,2000,1
+16029,160000,female,3,1,46,-1,-1,-1,0,-1,-1,24904,2338,4856,4127,3995,842,2343,4856,1000,3995,842,26313,0
+16030,300000,female,2,1,36,-1,-1,-2,-1,-1,-1,77765,1443,41071,58995,24713,28948,1443,41071,58995,24713,28948,7210,0
+16031,200000,female,3,1,46,-1,0,0,0,0,0,154875,140376,129962,124282,118956,121449,5216,8000,20000,15653,3793,10000,0
+16032,50000,female,2,2,35,0,-1,0,0,0,-2,2628,1000,2050,3000,0,0,1000,1050,1000,0,1000,0,0
+16033,80000,female,2,2,29,0,0,0,0,0,0,60857,46724,35074,32812,25930,26414,2000,2000,2000,1100,1000,1100,0
+16034,140000,female,2,2,29,0,0,2,0,0,0,122662,123536,104817,102161,85512,83028,6504,4000,4500,3500,4000,3500,0
+16035,60000,female,3,1,32,0,0,0,0,0,0,63354,65299,67087,27121,26316,26476,3000,3490,1794,1311,953,1390,1
+16036,50000,female,3,1,47,0,0,2,2,2,2,25347,29766,26283,28198,23159,23089,4881,0,4087,0,1798,0,0
+16037,30000,female,2,2,39,0,0,0,0,0,0,29758,30454,30221,29376,29564,28762,1500,1518,1439,1017,1032,1367,0
+16038,80000,female,2,1,45,0,0,0,0,0,0,28775,28951,26813,27383,27475,27823,1442,1459,1500,1000,1003,1100,0
+16039,50000,female,2,1,43,1,2,0,0,0,0,50738,49236,48608,48423,49023,49681,4,1939,2000,1700,1750,5430,0
+16040,90000,female,2,2,39,-1,2,-1,-1,0,0,2489,1242,1062,1062,1062,0,0,1062,1062,0,0,0,0
+16041,120000,female,2,1,46,0,0,0,0,0,0,80324,79071,76279,60939,61036,61359,3458,2519,2158,2151,2368,2197,0
+16042,50000,female,2,1,39,3,3,2,0,0,0,52714,51593,50492,47633,18283,18610,0,0,5000,3000,1000,2000,1
+16043,80000,female,2,2,31,0,0,2,2,0,0,75953,81055,81587,78103,78335,78678,7000,3000,0,3000,3100,5900,0
+16044,160000,female,1,1,31,-1,-1,-1,-1,-2,-2,3089,0,12548,0,0,0,0,12548,0,0,0,0,0
+16045,140000,female,2,2,33,-1,-1,-1,-1,-1,-1,316,316,13816,316,316,316,316,13816,316,316,316,316,0
+16046,50000,female,2,1,33,0,0,0,0,0,0,33441,20668,22926,21767,13806,5320,2659,2917,4600,1000,5200,0,0
+16047,50000,female,2,1,35,0,0,0,0,0,0,40506,41742,43157,14510,14963,16580,5000,3000,2000,500,2000,5000,0
+16048,50000,female,3,2,40,0,0,0,0,0,0,19824,29311,30862,26614,15571,14971,15000,10000,5000,1500,800,2000,0
+16049,360000,female,2,1,47,-1,-1,-1,-1,0,0,410,3620,7656,56397,43882,21818,3620,7656,56397,0,0,12117,0
+16050,120000,female,2,1,38,0,0,0,0,0,2,50721,25967,25949,25619,4456,2714,1667,1967,1650,500,0,1500,0
+16051,160000,female,3,1,38,2,2,2,2,0,0,113336,116136,118474,115127,111864,102418,6000,5500,0,3700,3200,3400,1
+16052,100000,female,2,1,42,0,0,0,0,0,0,8166,8783,9417,10002,9804,9626,1140,1164,1139,331,350,500,0
+16053,110000,female,2,1,46,0,0,0,0,0,2,105851,108187,108015,88618,71865,65629,5604,4661,3560,4915,0,3000,0
+16054,300000,female,3,2,30,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+16055,110000,female,2,2,31,0,0,0,0,0,0,98006,93978,93066,88823,78144,78169,4300,4295,3000,2887,3000,3034,0
+16056,220000,female,1,1,31,0,0,0,0,0,0,67722,74057,75767,77902,79505,82061,7500,3500,4000,3500,4000,3000,0
+16057,100000,female,2,2,31,0,0,0,0,0,0,71171,72613,74105,75617,77150,78953,1746,1792,1828,1855,2121,2100,0
+16058,50000,female,2,2,28,2,2,0,0,0,-2,16639,16041,12151,4963,0,0,14,1505,2000,0,0,0,0
+16059,140000,female,2,2,28,1,2,2,2,-2,-2,5420,3978,3723,0,0,0,2000,0,0,0,0,0,0
+16060,50000,female,2,1,43,-1,-1,-1,-1,0,0,7965,12717,11016,22263,18711,12712,12724,11022,22264,378,258,5380,0
+16061,30000,female,3,1,28,0,0,0,0,0,0,16162,13301,12930,13233,12595,12454,2000,1307,2000,252,249,100,1
+16062,170000,female,2,2,30,0,0,0,0,0,0,92626,90727,93345,93812,95613,95972,5000,5000,5000,5000,4400,3000,0
+16063,260000,female,2,1,32,-2,-2,-2,-2,-2,-2,1249,0,0,0,1178,1692,0,0,0,1178,1692,810,1
+16064,290000,female,2,1,33,-2,-2,-2,-2,-2,-2,2369,1298,2369,1298,1298,1623,1298,2369,1298,1298,1623,1275,1
+16065,80000,female,2,2,37,2,0,0,-2,-2,-2,52052,51407,0,0,0,0,2000,0,0,0,0,0,1
+16066,160000,female,2,1,35,2,-1,-1,-1,-1,-1,776,776,1172,380,776,1172,776,1172,380,776,1172,380,0
+16067,100000,female,1,1,40,2,2,0,0,2,0,97229,94777,95634,65828,61621,62756,0,2924,5226,0,2278,2292,1
+16068,40000,female,2,1,37,2,2,2,2,2,0,25561,26343,25635,28100,27352,27862,1500,0,2900,0,1100,2400,1
+16069,290000,female,1,2,35,0,0,0,0,0,0,190453,194303,197076,197488,196976,196579,8100,7000,8400,7000,7500,7500,0
+16070,160000,female,2,2,42,1,2,2,0,0,0,152699,152630,95758,97251,98010,99669,4462,0,4385,3639,3762,3800,1
+16071,140000,female,2,1,36,1,2,3,2,0,0,59379,63007,61459,59798,61287,8383,5200,0,0,3009,1000,94000,0
+16072,80000,female,2,2,45,1,-1,-1,-2,-2,-2,-1600,82150,0,0,0,0,83750,0,0,0,0,0,0
+16073,30000,female,2,1,42,1,2,2,2,4,3,16484,17709,17141,20730,20116,19512,1800,0,4200,0,0,0,1
+16074,70000,female,2,1,46,2,2,2,2,2,2,24036,25035,25930,26206,26477,27404,1700,1600,1000,1000,1500,0,1
+16075,30000,female,2,1,29,-1,-1,-1,-1,0,0,419,1173,1370,880,780,0,1173,1370,880,500,0,1500,1
+16076,50000,female,2,1,30,0,0,0,0,-2,-2,34811,30753,6680,0,0,0,2000,1000,0,0,0,0,1
+16077,570000,female,1,2,32,0,0,0,0,0,0,47758,33050,36283,36502,37669,39102,3000,4880,3000,3000,3000,3000,0
+16078,200000,female,5,1,33,0,0,0,0,0,0,92707,73970,122304,116674,89694,68256,3112,50000,6760,3486,2476,2500,0
+16079,10000,female,2,1,37,-1,4,3,2,2,2,3305,2870,2440,2510,2641,2222,0,0,500,400,0,36,0
+16080,60000,female,3,1,48,0,0,0,0,0,0,58653,59063,53377,37418,37543,35447,2500,2000,1900,1500,1300,1300,1
+16081,220000,female,2,2,46,0,0,0,2,2,0,86957,85577,91266,88051,81803,79286,4000,12000,3100,0,2900,3000,1
+16082,60000,female,2,2,42,0,0,0,0,0,0,60902,61078,61160,61055,60895,61587,2350,2532,2510,3250,2900,2630,1
+16083,280000,female,2,1,42,2,0,0,0,0,0,185147,132646,137109,135264,133046,126155,5000,10000,5000,5000,5000,5000,1
+16084,10000,female,2,2,31,0,0,0,0,0,0,10468,9138,10309,10299,10295,10306,1160,1331,1321,517,528,600,0
+16085,200000,female,1,2,31,0,0,0,0,0,0,191807,195618,200170,202965,155579,124488,8500,9200,8000,7000,5000,5000,0
+16086,200000,female,2,1,33,0,0,0,0,0,0,103876,66894,12475,14208,15270,14880,2034,3000,2083,10000,0,1286,1
+16087,220000,female,2,1,37,0,0,0,0,0,0,81191,78538,76747,67266,60896,160731,3000,3000,3520,3000,106200,5000,0
+16088,370000,female,2,1,45,0,0,0,0,0,2,155124,162526,168389,338660,221808,222304,10000,10000,10000,114000,10000,0,0
+16089,100000,female,2,1,36,0,0,0,0,0,0,25945,21237,16723,15868,8275,5954,4021,3013,4031,3012,2006,3121,0
+16090,290000,female,2,1,45,0,0,0,0,0,0,145023,115830,76453,59734,61238,63089,6000,4000,5500,2500,3000,3000,0
+16091,20000,female,3,1,43,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+16092,200000,female,2,2,36,0,0,0,0,0,0,199278,201725,203794,189024,191803,195044,7279,8679,6300,6000,6000,22001,1
+16093,110000,female,3,2,33,0,0,0,0,0,0,35370,30661,62708,52873,48240,41313,11000,40000,3526,4515,3000,0,0
+16094,80000,female,2,1,41,0,0,0,2,0,0,78032,59156,61063,56202,25775,24688,2130,5804,121,1003,853,1941,0
+16095,100000,female,2,1,36,0,0,0,0,0,0,100050,96652,97974,97486,95479,92817,4500,4600,4500,3500,3500,3500,0
+16096,50000,female,2,1,39,0,0,0,0,0,0,41598,35995,33059,32663,29608,28939,1825,1593,1458,1186,1198,1114,0
+16097,20000,female,2,3,30,1,2,2,2,0,0,17836,17246,19381,18772,19145,19545,0,2921,0,685,708,700,1
+16098,300000,female,1,2,33,0,-1,-1,-1,-1,-1,13713,14547,13328,20714,13054,12632,15003,13539,20714,13054,12636,12700,0
+16099,160000,female,2,2,41,0,0,-2,-2,-2,-2,71900,0,0,0,0,0,0,0,0,0,0,0,0
+16100,80000,female,3,1,40,2,0,0,0,0,0,16413,12171,11554,7830,4305,5427,2160,1500,1218,311,1351,1000,1
+16101,30000,female,2,1,34,2,2,0,0,0,2,16944,16374,17724,18473,19763,19306,0,1620,1350,1600,0,1630,1
+16102,30000,female,2,1,37,2,2,2,2,0,0,8229,11076,11787,11301,11677,11766,3000,1188,0,564,426,429,0
+16103,60000,female,2,1,36,0,0,0,0,0,0,60333,51838,45728,36441,37336,38138,2100,2000,1700,1500,1400,1500,0
+16104,200000,female,2,2,32,0,0,0,0,-1,0,24429,13060,13683,-3942,123250,125926,1500,1000,0,128000,4600,5000,1
+16105,50000,female,2,1,41,0,0,0,0,0,0,23064,17783,16315,12225,11184,10133,1281,1214,1155,375,364,354,0
+16106,50000,female,3,2,45,0,0,-1,0,-1,-1,10723,9872,658,1473,1473,1473,1000,658,1000,1473,1473,540,0
+16107,270000,female,2,1,42,1,-2,-2,-2,-2,-2,-330,-330,-330,-330,-330,-330,0,0,0,0,0,0,0
+16108,30000,female,3,1,40,2,0,0,0,0,0,27783,27584,28638,29584,30036,29404,1748,1802,1748,1200,1223,1100,1
+16109,60000,female,2,1,41,0,0,0,0,0,0,34632,35654,36991,37701,38452,39255,1600,1915,1625,1376,1422,1435,1
+16110,60000,female,2,2,28,1,-1,-1,2,-1,-1,0,1672,836,836,780,390,1672,836,0,780,390,0,1
+16111,50000,female,1,1,39,0,0,0,0,0,0,50465,51092,56266,39545,19856,19765,4000,3032,1668,1500,1805,23000,1
+16112,220000,female,2,1,37,1,2,2,2,2,-2,194640,189976,189665,171669,167294,172042,0,15510,0,5500,7250,6500,0
+16113,50000,female,3,1,36,-2,2,2,0,0,0,51741,96172,48827,38600,19541,19795,300,5222,2034,744,5200,790,1
+16114,30000,female,3,2,33,0,0,2,0,0,2,22463,25362,24672,25317,26516,26133,3278,0,1233,1432,0,566,1
+16115,280000,female,2,2,33,0,0,0,0,0,0,28928,24266,20209,20395,18969,18381,1634,1649,1304,703,701,705,0
+16116,120000,female,2,1,35,-1,-1,2,2,2,2,2415,11837,9754,24007,22299,31576,9886,0,20000,0,10000,0,0
+16117,120000,female,3,1,39,1,2,2,2,2,2,69830,68108,70415,74443,75527,77171,0,3400,5800,2900,3000,3100,0
+16118,70000,female,3,1,41,0,0,0,0,0,0,23546,23462,17548,15864,14937,12841,1573,1355,1203,516,500,500,0
+16119,550000,female,2,1,39,0,0,0,0,0,0,67886,67806,66328,26422,21386,17674,3688,2577,2169,1000,602,890,0
+16120,220000,female,2,2,36,0,0,0,0,0,0,124418,126695,106534,109884,106114,108202,6300,4000,5500,3775,4100,5000,0
+16121,340000,female,2,1,45,-2,-2,-2,-2,-2,-2,3253,15865,1946,546,546,590,15886,1946,546,546,590,550,0
+16122,110000,female,3,2,32,-1,-1,-1,-1,-1,0,9943,9267,4957,6037,7628,2746,9284,6960,6055,7651,8,5159,0
+16123,140000,female,3,1,34,0,0,0,0,0,0,131138,133452,136194,137490,106322,104583,6300,7000,5421,4000,4000,4200,0
+16124,360000,female,2,2,41,0,0,0,0,0,0,352538,360648,339204,282520,290521,27792,14152,15000,15000,15004,5071,5168,1
+16125,290000,female,1,2,30,-1,-1,-1,-1,-2,-2,1459,1029,2154,1492,229,943,1078,2154,1518,229,943,189,0
+16126,200000,female,2,1,48,0,0,-1,2,2,2,26465,20435,8475,8162,10962,7350,1000,8475,0,3000,0,7505,0
+16127,60000,female,2,1,38,0,0,-2,-1,-1,-1,21261,2522,0,1411,1455,4486,2522,0,1411,1455,4486,11961,0
+16128,40000,female,2,1,43,-2,-2,-2,-2,-2,-2,1858,220,960,960,960,1383,220,960,960,960,1383,960,0
+16129,120000,female,2,2,29,0,0,0,2,-1,0,9102,10626,15003,9270,46193,30774,2000,5000,0,49920,1500,4000,0
+16130,80000,female,2,1,38,2,0,0,0,2,0,62622,54613,43232,32361,22382,20509,3208,1964,3428,7,1000,2900,1
+16131,300000,female,2,1,43,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,520,1
+16132,20000,female,2,1,25,-1,-1,-1,-1,-1,-1,3454,6875,13936,2816,7419,165,6885,14523,2816,7419,0,16963,1
+16133,30000,female,2,1,46,2,2,2,2,2,-1,34713,32875,29088,26788,17014,3000,2000,4,2916,106,3000,0,1
+16134,180000,female,1,2,30,0,0,0,0,0,0,174869,173094,131039,132269,144990,152632,8328,7000,4900,15000,10000,6000,0
+16135,110000,female,2,2,39,0,0,0,0,0,0,111533,110367,112974,108390,107180,107309,5500,5900,5500,5000,5000,4300,0
+16136,250000,female,2,1,40,0,0,0,0,0,0,121558,126367,130658,79361,81196,83040,6500,7000,4000,3000,3000,4000,0
+16137,140000,female,2,2,32,0,0,0,0,0,0,137647,136497,135505,137629,120147,122247,5004,5000,5000,4300,5000,5158,0
+16138,80000,female,2,1,29,2,0,0,2,0,0,76362,77883,81811,80250,61467,10662,3392,5800,1000,600,400,1000,1
+16139,20000,female,3,1,32,0,0,0,2,0,0,18539,18800,21274,20109,19976,20143,1400,3300,0,1000,1000,1000,0
+16140,50000,female,3,2,47,0,0,0,0,0,0,11961,14259,16028,17760,19462,22141,2500,2000,2000,2000,3000,3000,0
+16141,90000,female,3,1,40,0,0,0,0,0,0,14028,11732,9940,11264,12774,13038,3090,1176,1500,2000,609,478,0
+16142,20000,female,2,1,33,0,0,0,0,0,0,17287,13864,14534,9662,8091,0,1572,1242,1020,2000,0,0,0
+16143,150000,female,2,2,34,0,0,0,0,-1,0,121764,150928,151428,111159,97154,98404,35837,8794,3454,98231,3486,2706,0
+16144,150000,female,1,1,34,-1,-1,-1,-1,-1,-1,3099,3102,3087,2887,2887,2887,3102,3087,2887,2887,2887,3103,0
+16145,50000,female,3,2,41,0,0,0,0,0,0,3048,4063,5081,6090,6211,6342,1074,1092,1101,222,231,231,1
+16146,90000,female,2,2,47,-1,-1,-1,-1,-2,-2,932,319,800,0,0,0,319,800,0,0,0,0,0
+16147,350000,female,2,2,40,-2,-2,-2,-2,-2,-2,26774,22062,38491,4683,3797,6677,22181,38683,4706,3816,6708,20105,0
+16148,30000,female,2,2,38,0,0,0,0,2,0,22070,23075,24124,27012,26279,26831,1676,1725,3613,0,975,980,0
+16149,150000,female,1,1,28,1,-2,-2,-2,-1,-1,0,0,522,0,3978,25590,0,522,0,3978,25590,0,0
+16150,190000,female,1,2,29,0,0,0,0,0,0,189417,95341,74959,76514,78047,79603,3318,2719,2800,2800,2900,3400,1
+16151,340000,female,2,1,36,0,0,0,0,0,0,3058,4087,5129,3142,3210,4153,1087,1129,1052,120,1000,1000,0
+16152,50000,female,2,1,47,0,0,0,0,0,0,49571,37680,31932,25300,18902,18920,2000,1812,2000,664,700,709,0
+16153,50000,female,2,2,29,2,2,2,2,2,2,30715,29923,32700,28768,29639,28629,0,3304,4,2230,0,2009,1
+16154,280000,female,2,2,30,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,150,0
+16155,230000,female,1,2,31,-1,-1,-1,-1,-1,-1,903,1711,1292,885,1292,795,1711,1292,885,1292,795,1035,1
+16156,400000,female,1,2,31,-1,-1,-1,-1,0,0,72551,8572,2190,12881,7497,11563,8657,2190,12881,0,4590,0,0
+16157,190000,female,3,1,37,-1,-1,-1,0,0,0,752,1302,18666,19623,21268,23038,1302,18666,2000,3000,3000,1200,1
+16158,170000,female,1,2,31,0,0,-1,0,0,0,18038,26669,11709,14168,9084,0,10047,11909,5000,16,0,0,0
+16159,150000,female,1,2,30,1,-2,-2,-2,-1,0,0,0,0,0,1883,1883,0,0,0,1883,0,0,1
+16160,140000,female,1,2,32,0,0,0,0,0,2,97528,99468,101863,105575,122173,116266,3562,4000,5445,20000,0,9010,1
+16161,110000,female,2,2,23,-1,0,0,0,0,0,37857,39117,34330,12207,71932,73769,2000,3000,1500,71392,3000,3500,0
+16162,260000,female,1,2,31,-1,-1,-2,-2,-2,-2,16083,759,-484,-484,3872,2,759,0,0,4356,0,3200,0
+16163,30000,female,2,2,37,2,0,0,0,0,0,25037,18486,19082,19145,15839,9335,2000,2000,2500,2000,2000,4000,0
+16164,130000,female,3,1,42,2,2,0,0,0,0,95564,92809,95477,95334,96066,97413,0,4500,3500,3400,4000,4000,1
+16165,190000,female,3,2,37,0,-1,0,0,0,0,44098,157205,91091,88145,90414,85083,164582,10056,10000,5000,10000,13000,0
+16166,10000,female,2,2,36,1,2,0,0,0,0,7081,6819,7996,9004,9180,9371,0,1290,1298,474,487,500,1
+16167,30000,female,2,1,42,2,0,0,0,0,0,5288,6310,8693,11541,13344,15118,1117,2500,3000,2000,2000,553,1
+16168,300000,female,1,2,45,0,0,0,0,0,0,122838,124057,125120,133997,118000,131067,10039,10048,20172,11034,20109,30428,0
+16169,200000,female,2,1,40,-1,-1,-1,-1,-1,-1,9798,14457,8916,12868,7818,12910,14499,8983,12908,7834,12919,13583,0
+16170,130000,female,3,1,36,0,0,0,0,0,0,140479,133540,126408,119174,111339,103492,5000,5000,4200,4000,3600,4542,0
+16171,400000,female,3,2,35,-2,-2,-2,-2,-2,-2,1432,8125,7017,10525,13295,11024,8132,7018,10542,13378,11045,6666,1
+16172,220000,female,2,2,32,0,0,0,0,0,0,93682,96466,99009,100462,102614,104806,4337,5000,4000,3824,4000,4000,0
+16173,100000,female,1,1,34,1,-2,-2,-2,-2,-1,0,0,0,0,0,315,0,0,0,0,315,165,0
+16174,80000,female,2,1,38,0,0,0,0,0,0,29249,28795,27006,23705,18275,18104,1800,1550,1244,751,612,667,0
+16175,50000,female,3,2,34,0,0,0,0,0,0,60170,48000,50192,50451,49086,34161,3000,3000,5000,3000,1000,711,0
+16176,200000,female,1,1,34,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+16177,400000,female,2,1,43,0,0,0,0,0,0,398711,407664,186081,189987,193824,201699,17000,7000,7000,7000,11000,10000,0
+16178,50000,female,2,2,48,-1,0,0,0,0,0,47295,30348,24446,25535,26109,26689,4000,1800,1500,1000,1000,1500,0
+16179,140000,female,3,1,37,-1,0,0,0,-1,-1,4637,4619,5538,2770,390,390,1141,1450,1000,390,390,390,0
+16180,10000,female,2,1,49,0,0,0,0,0,0,8671,6613,7648,8758,9410,4373,1265,1300,1400,1000,304,283,0
+16181,80000,female,3,1,41,0,0,-1,0,-1,-1,3482,2946,1524,2946,1473,0,1000,1524,1473,1473,0,390,0
+16182,220000,female,1,1,38,0,0,0,0,0,0,136269,138972,141900,144764,147657,150749,4967,5160,5233,5278,5464,6121,0
+16183,80000,female,2,2,45,0,0,0,0,0,0,78083,79829,80896,53052,91667,47160,3045,2545,2100,1700,3374,1740,0
+16184,360000,female,1,1,35,-2,-1,0,-1,-1,-1,94657,34529,106276,73331,7759,31840,45000,100000,73427,7759,31840,12577,1
+16185,20000,female,2,1,46,2,0,0,2,2,2,16371,17384,19954,19259,20139,19434,1289,2859,0,1044,0,528,1
+16186,20000,female,2,1,46,0,0,0,0,0,0,10640,11252,12277,12287,12140,11990,1185,1600,1000,243,240,619,0
+16187,20000,female,3,2,34,1,2,2,2,2,0,19381,20359,19360,20421,19832,18052,1600,300,1700,0,804,1000,0
+16188,70000,female,2,1,38,0,0,0,0,0,0,50416,51412,53109,53630,108596,55886,1835,2520,2000,2000,4058,2100,0
+16189,210000,female,2,1,33,0,0,0,-2,-2,-1,29672,31050,0,0,0,87045,2100,0,0,0,87045,4000,0
+16190,240000,female,2,1,32,0,0,0,0,-2,-2,153104,102049,105086,0,0,0,4500,5014,0,0,0,1418,0
+16191,50000,female,2,1,34,0,0,0,0,0,0,24636,25064,51224,26230,18755,19227,1500,2300,2800,1000,1150,1000,0
+16192,50000,female,2,1,31,0,0,0,0,0,0,17019,7412,45137,41168,5890,7000,2591,40693,3900,1000,1500,2360,0
+16193,230000,female,1,2,38,-2,-2,-2,-1,0,0,0,0,0,1158,1158,1158,0,0,1158,0,0,0,0
+16194,120000,female,1,2,45,0,0,0,0,0,2,90041,86140,87941,89737,95451,97379,3079,3185,3251,7200,3600,3900,0
+16195,180000,female,1,2,44,0,0,2,0,0,0,7668,10006,7996,8960,6310,4656,2489,0,1166,126,112,244,1
+16196,290000,female,1,1,38,-1,-1,-1,-1,-1,-1,3613,14708,7209,14912,45473,15095,14718,7420,15118,45473,15095,8908,0
+16197,160000,female,1,1,47,0,0,0,0,0,0,151400,155658,143564,130860,122188,79360,6960,6882,6307,4730,2874,3052,0
+16198,80000,female,3,1,43,2,2,2,3,3,2,66852,68152,71459,73690,71908,76294,3000,5000,4000,0,5700,0,1
+16199,50000,female,2,2,31,2,0,0,2,2,2,28133,29461,32067,31252,32633,33965,1800,3400,0,1900,2000,0,1
+16200,20000,female,3,1,33,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+16201,50000,female,2,3,34,-1,0,0,0,0,0,33436,31231,30994,20244,12135,12270,2005,2005,2716,1000,911,500,1
+16202,80000,female,2,1,34,2,2,2,2,2,0,63619,64484,62882,69109,67401,68863,2500,0,7282,0,2700,3000,1
+16203,30000,female,3,1,43,1,2,0,0,0,0,32577,29268,26897,23352,18738,15236,0,1468,1564,591,489,388,0
+16204,10000,female,2,1,37,3,2,0,0,2,0,7621,7368,8226,9834,9549,9774,0,1122,1730,0,508,425,1
+16205,200000,female,2,2,41,-2,-1,-1,-1,-1,0,15094,1717,988,1805,72551,90988,1727,991,1817,72836,30300,60000,0
+16206,50000,female,2,1,33,0,0,0,0,0,0,49450,50067,69594,46181,16770,19890,1743,2236,2807,629,3810,719,0
+16207,480000,female,2,2,34,0,0,0,0,0,0,489305,479927,471639,375196,285319,209218,18231,20010,13013,11209,9010,162510,1
+16208,260000,female,2,1,46,0,0,0,0,-1,-1,28700,29484,28592,16869,12713,10420,15000,10000,3000,12713,10420,12532,0
+16209,200000,female,1,2,34,0,0,0,0,0,0,129554,116490,119279,121782,125427,140460,5600,6000,4300,5500,17000,5300,0
+16210,210000,female,1,1,40,1,-2,-2,-1,-1,-1,0,0,0,4351,0,6200,0,0,4351,0,6200,5276,0
+16211,70000,female,2,1,41,2,3,3,3,3,2,50460,52331,53896,54426,52956,54459,3000,3000,2000,0,2500,2200,1
+16212,50000,female,2,1,43,2,2,2,0,0,0,49072,50559,49060,44908,29969,30230,4000,0,2000,1039,1100,1100,0
+16213,20000,female,2,2,45,2,0,0,0,0,2,13696,15156,16183,16893,18200,17769,2000,1574,1284,1591,0,644,1
+16214,80000,female,2,1,35,-2,-2,-2,-1,-1,0,390,0,1151,10312,12238,8279,0,1151,10312,12238,5000,3000,0
+16215,200000,female,3,1,37,-1,-1,-1,0,0,-1,10701,4251,5144,6807,51013,54416,4251,5144,2000,44406,54725,3000,0
+16216,210000,female,1,1,38,-1,-1,-2,-2,-1,-1,29504,0,0,0,1742,0,0,0,0,1742,0,22854,0
+16217,210000,female,3,1,35,0,0,0,0,0,0,79662,25442,26823,32032,37457,43814,3000,1791,6000,6000,7000,5000,0
+16218,360000,female,1,3,35,-2,-2,-2,-2,-2,-2,3555,2570,0,0,0,6920,2570,0,0,0,6920,0,0
+16219,80000,female,2,2,56,0,0,2,0,0,2,57730,64934,63325,67711,71984,73672,8198,0,5487,5429,3000,2621,1
+16220,50000,female,3,1,43,0,0,0,0,0,0,3238,4672,2865,3878,4809,5726,1500,1056,1069,1000,1000,255,0
+16221,20000,female,2,2,40,0,0,0,-1,-1,-1,3135,2643,2454,2250,2296,4315,2000,2296,2296,2342,4315,2796,0
+16222,40000,female,2,1,38,0,0,3,2,2,2,35183,39197,39477,39924,39004,41462,4600,1200,1400,0,3069,0,1
+16223,50000,female,2,1,38,2,0,0,2,2,2,29989,31184,33850,34495,35129,35918,2000,3500,1500,1500,1500,1500,1
+16224,170000,female,2,1,45,0,0,0,0,2,2,133341,133715,130591,138404,138733,137642,6804,6883,11600,5020,1200,4000,0
+16225,310000,female,1,1,37,-2,-2,-2,-2,-2,-2,123,123,0,123,0,0,123,0,123,0,0,0,0
+16226,50000,female,2,1,24,0,0,2,0,0,2,46108,49330,48263,49780,56396,55479,4000,0,2384,8000,0,1852,0
+16227,30000,female,1,2,25,0,0,3,2,2,2,24709,28970,28233,27481,29484,30157,5000,0,0,2471,1300,4800,0
+16228,200000,female,2,1,45,0,0,0,0,0,0,144249,144423,139978,126213,93788,94875,6097,8039,5112,5000,5008,4019,0
+16229,260000,female,2,1,38,0,0,0,0,0,0,191160,194522,190339,186688,177785,165789,8357,7200,6500,6000,6000,6400,0
+16230,80000,female,2,2,29,0,0,0,2,2,0,59520,60492,62160,64714,62420,62990,2753,3438,4400,0,2400,9974,1
+16231,180000,female,2,2,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+16232,130000,female,1,2,28,-1,-1,-1,-1,-1,-1,2936,1688,5890,1113,1283,3000,2464,5890,1113,1283,3000,883,0
+16233,190000,female,1,1,30,0,0,2,0,0,0,176699,188703,184403,90887,90097,90295,15000,3000,4100,3200,3264,3248,1
+16234,110000,female,2,1,33,0,0,0,2,2,2,105440,105852,111966,106068,109293,105804,5300,11000,0,8077,0,3947,0
+16235,60000,female,2,1,40,2,2,2,2,0,0,42922,45617,46549,32902,30677,31318,3700,2000,0,1059,1096,1114,1
+16236,40000,female,3,1,49,1,2,2,2,0,0,35771,34896,39322,38319,39531,40224,0,5000,0,2000,1400,2000,0
+16237,80000,female,2,1,32,-2,-2,-2,-2,-2,-2,1880,1261,1650,3176,3379,1807,1261,1650,3176,3379,1807,2241,0
+16238,100000,female,5,2,33,0,0,0,0,0,0,42622,46884,51103,52251,53480,54467,5000,5000,2000,2100,2000,5001,0
+16239,400000,female,2,1,34,0,0,0,0,0,0,95390,95654,97702,98972,101154,102371,2988,3780,3000,3004,2988,2827,0
+16240,70000,female,2,1,40,1,2,2,0,0,0,56922,60047,56884,57717,26342,26342,5500,0,2723,1062,936,943,1
+16241,500000,female,2,1,49,-2,-1,-1,-1,0,0,3645,2744,1000,16639,7081,0,2744,1005,16639,142,0,10220,0
+16242,190000,female,3,2,46,0,0,0,0,0,0,124245,126722,129376,132016,134632,137470,4536,4696,4791,4811,5000,5033,0
+16243,200000,female,2,2,35,0,0,0,0,0,0,4585,5859,7763,8525,6843,2865,1500,2000,1000,518,1000,296,0
+16244,210000,female,2,1,42,0,0,0,0,0,0,109919,92271,79445,27278,32509,41225,11488,10000,11990,17990,15000,15000,0
+16245,340000,female,2,2,47,0,0,0,0,0,0,196112,183453,167592,162628,142779,139548,6446,6207,5758,4853,4940,4600,0
+16246,180000,female,1,2,38,0,-1,0,0,0,0,16056,179490,180360,177460,140738,141830,180040,8200,9607,5103,5237,5000,0
+16247,110000,female,2,2,28,0,0,0,-1,-1,-1,10048,8311,3404,407,1250,88628,2000,3000,410,1250,89035,3491,0
+16248,80000,female,3,2,42,0,-1,-1,2,0,-1,11460,455,10843,9011,7560,7686,455,10843,0,22,7709,9398,0
+16249,30000,female,3,1,31,0,0,0,0,0,0,9388,10387,10624,11539,11771,9075,1162,1229,1144,376,329,345,0
+16250,200000,female,1,2,31,-1,2,-1,2,-1,-1,2905,1258,1863,390,390,390,0,2253,0,390,390,390,0
+16251,80000,female,2,1,31,0,0,0,0,0,0,51346,52955,54063,54608,55695,56786,3000,2500,2000,2500,2500,2500,0
+16252,300000,female,1,2,31,0,0,0,-1,-1,0,34515,60700,33843,5045,10288,12565,30000,5000,5045,10288,5000,5000,1
+16253,280000,female,1,2,32,-1,0,0,0,0,0,215052,191094,195204,199091,201581,206054,7000,7200,8800,7300,7700,16000,0
+16254,110000,female,2,2,32,1,-1,-1,-1,-1,0,-296,1733,-153,6540,632,316,2345,0,7009,632,0,36049,0
+16255,130000,female,2,2,33,0,0,0,0,0,0,108984,106533,104394,103798,82816,78727,3775,3988,6000,3784,3010,3200,0
+16256,500000,female,4,1,32,-2,-2,-2,-2,-2,-2,33647,482,9034,64346,5988,16890,486,9041,64988,6000,16899,14028,0
+16257,150000,female,2,1,32,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+16258,450000,female,2,2,36,-1,-1,-2,-2,-1,-1,12050,13500,6350,11670,1530,1232,13551,6364,11728,1532,1234,201,0
+16259,230000,female,2,1,34,0,0,0,0,0,0,167299,165568,140467,133479,122948,125519,8448,5785,5400,4397,4548,4670,0
+16260,80000,female,2,2,34,2,2,3,2,0,0,74860,84054,82194,78715,26681,0,11074,3,5,1075,0,0,0
+16261,260000,female,1,1,34,-1,-1,2,-1,-1,0,199,598,400,199,1117,922,599,2,200,1118,5,459,0
+16262,150000,female,2,1,34,2,2,2,2,0,0,140711,147833,148066,142163,135075,135309,12416,6130,27,4610,5000,5000,0
+16263,50000,female,2,1,35,0,0,-2,-2,-2,-2,23280,0,0,0,0,0,0,0,0,0,0,0,0
+16264,30000,female,3,1,35,0,0,0,0,0,0,27785,28786,26496,25098,26209,25325,1800,1500,1450,1500,1500,1500,1
+16265,100000,female,3,1,41,1,2,2,2,0,0,102250,97551,101882,98311,97546,101281,0,8900,0,3500,7570,0,1
+16266,190000,female,2,1,43,1,2,0,0,0,0,189697,185105,184180,156969,157856,158451,0,9021,6000,5489,5670,6000,1
+16267,130000,female,2,1,34,0,0,0,0,-1,-1,9383,9380,7350,3488,3991,3077,1317,1268,1010,4003,3086,2406,0
+16268,30000,female,2,1,38,0,0,0,-2,-2,-2,24380,15525,0,0,0,0,1600,0,0,0,0,292,1
+16269,30000,female,2,2,38,0,0,0,0,0,0,29632,30239,30526,29219,30012,28422,1492,1661,1238,1031,1083,0,0
+16270,110000,female,1,1,44,0,0,2,2,2,2,87418,93862,91505,98566,99700,97833,7900,0,8600,3800,0,3700,1
+16271,120000,female,3,1,39,0,0,0,0,2,2,116983,117616,74853,78692,78456,76140,5750,4000,6300,3000,0,3700,0
+16272,30000,female,3,1,41,0,0,2,0,0,0,30518,34984,30321,23610,20614,18873,5002,7,1511,5005,5183,5108,0
+16273,30000,female,3,1,36,2,0,0,0,0,0,7109,7963,9152,10282,10180,10394,1132,1321,1451,349,362,343,1
+16274,30000,female,2,2,42,0,0,0,-1,-1,-2,26504,28056,27987,1812,0,0,2000,2000,2000,0,0,0,0
+16275,10000,female,3,2,45,1,2,3,2,0,0,6925,10273,9964,9327,9512,9200,3647,0,0,332,333,564,1
+16276,400000,female,2,1,32,0,0,0,0,0,0,183339,179701,179979,89317,59413,65890,10016,7473,6151,2000,7015,45,0
+16277,20000,female,3,3,32,0,0,0,-2,-2,-1,19446,20650,0,0,0,1000,2000,0,0,0,1000,0,0
+16278,20000,female,2,1,36,2,0,0,0,0,0,18720,18932,19543,20002,19314,19320,1610,1374,1215,596,609,717,1
+16279,500000,female,1,2,33,0,-1,-1,-1,0,-1,30267,14773,18129,18934,21687,16438,14773,18129,18941,16687,16438,415,0
+16280,30000,female,2,1,33,4,3,2,0,0,2,31087,29545,26270,24966,23834,20859,0,0,2000,2000,0,1200,1
+16281,50000,female,2,1,33,1,2,0,0,-2,-2,7642,3273,4166,0,0,0,0,1000,0,0,0,0,1
+16282,30000,female,2,2,33,0,0,0,0,0,0,30336,29965,28048,29775,27736,26956,3005,2000,3000,3000,2000,2000,0
+16283,30000,female,2,2,33,2,0,0,0,0,-1,17011,15720,18443,7138,7638,5884,2000,3000,1000,500,5884,0,1
+16284,110000,female,2,2,33,0,0,0,0,-1,-1,36075,39442,41240,42380,380,96736,4000,2760,3000,380,96736,3600,0
+16285,100000,female,2,1,34,3,2,2,2,2,2,39192,39951,39030,43381,43771,44626,1700,0,5000,1400,1700,300,0
+16286,200000,female,2,1,36,0,0,0,0,0,0,175000,184057,189643,115046,24895,35410,12000,9427,5934,13000,11000,1320,0
+16287,110000,female,3,1,40,0,0,0,0,0,0,41629,42626,45666,84725,49757,46196,1688,3728,1726,1608,2169,1698,0
+16288,140000,female,2,2,38,0,0,0,0,0,0,139001,141453,132415,130305,79775,74462,4826,8000,3100,3000,5417,0,0
+16289,70000,female,2,3,45,0,0,0,0,0,0,70820,66163,67605,68855,70377,67818,2500,2507,2428,2594,2602,2500,0
+16290,130000,female,3,2,37,0,0,0,0,0,0,31280,32582,33328,34310,35059,44458,1813,1559,1541,1290,10000,1958,0
+16291,30000,female,2,1,45,-1,-1,2,2,-2,-2,390,780,780,0,0,0,780,0,0,0,0,0,0
+16292,160000,female,3,1,36,0,0,0,0,2,2,92816,87606,82218,79438,72451,39831,5000,10000,5018,127,10015,69,0
+16293,50000,female,5,2,36,0,0,0,0,0,0,46277,42207,20361,17527,17318,17738,2058,1265,5000,700,700,800,0
+16294,80000,female,2,1,36,1,-1,-1,-1,-1,-2,4749,6108,2861,3277,3319,1150,6120,2861,3279,3319,1150,1150,0
+16295,50000,female,3,1,44,0,0,2,0,0,0,46989,51036,48353,47264,29325,31100,5177,22,2154,1200,3450,0,0
+16296,50000,female,3,1,40,0,0,0,0,0,0,31297,30175,30140,29724,30316,29269,1476,1517,1451,1043,1048,1429,0
+16297,180000,female,2,2,44,-1,-1,-1,-1,2,-1,3481,757,9877,4383,3482,4479,761,9962,3485,2,4479,5392,0
+16298,130000,female,2,1,42,1,-2,-1,-1,-1,-2,0,0,441,305,0,0,0,441,305,0,0,0,1
+16299,420000,female,1,1,47,1,-1,-1,0,0,0,0,14165,53697,50081,44875,42691,14165,55732,1563,1594,1454,1535,0
+16300,140000,female,2,1,44,0,0,-2,-2,-2,-2,110575,0,0,0,0,0,0,0,0,0,0,0,1
+16301,20000,female,2,1,42,0,0,0,3,2,2,12029,13045,16024,15420,13929,11307,1224,3203,0,1000,0,2000,0
+16302,200000,female,2,3,40,0,0,0,-1,0,-1,118728,110699,61827,35902,326,1446,4895,3927,35955,0,5826,4706,1
+16303,180000,female,1,1,49,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+16304,120000,female,3,1,37,0,0,0,2,0,0,19821,20836,23562,22890,23189,23521,1651,3377,0,976,855,1011,0
+16305,210000,female,2,1,43,0,0,0,0,0,0,190693,169931,173389,154440,155592,116249,7000,7000,10005,6193,4231,5000,0
+16306,30000,female,2,1,45,1,2,2,2,2,2,23155,22490,26789,26065,27408,26831,0,5000,0,2084,0,2305,1
+16307,80000,female,2,2,43,0,0,0,0,0,0,72987,72055,70730,68487,57304,41345,2561,2745,2100,1684,4000,3000,0
+16308,110000,female,2,1,35,0,0,0,0,0,2,85958,83389,83734,82532,81032,79835,2968,4088,3677,5400,0,3618,0
+16309,60000,female,2,1,36,0,0,0,0,0,0,60299,44659,44291,41241,29534,29297,2000,3042,1433,1012,1029,1074,1
+16310,60000,female,2,1,36,0,0,0,0,0,-1,59945,57262,27275,22095,14293,12217,1805,5816,1000,5000,12217,8000,0
+16311,140000,female,1,2,37,1,-2,-2,-2,-2,-2,-18,-18,-18,-18,-18,-18,0,0,0,0,0,0,0
+16312,60000,female,2,1,35,0,0,0,0,0,0,57267,57225,47343,29164,27829,27574,3023,2245,2005,2000,1088,3000,0
+16313,500000,female,1,2,39,-1,-1,-2,-1,0,0,51,-8,-8,10362,21905,23717,0,0,10370,15000,10000,4311,1
+16314,420000,female,2,1,41,0,0,0,0,0,0,373978,389754,366938,361024,354813,344221,33808,14996,13209,12890,11081,16298,1
+16315,30000,female,2,1,43,2,2,2,2,2,2,15780,15246,17838,17272,18131,17711,0,3141,0,1434,0,1581,1
+16316,170000,female,3,1,38,0,0,0,-1,0,0,4202,5146,6494,1264,948,632,1336,2000,1264,0,0,0,0
+16317,200000,female,1,1,49,-1,-1,-1,-1,-1,-1,1248,0,94,1712,9549,1060,0,94,1712,9549,1060,0,0
+16318,160000,female,1,1,45,0,0,0,0,0,0,108799,110963,114975,115923,107621,110006,3972,5800,4431,3854,4121,4603,0
+16319,200000,female,1,1,35,1,2,0,0,0,0,205002,195441,192803,304997,188504,189527,41,8597,8583,6880,7235,6839,1
+16320,20000,female,2,1,43,0,0,0,0,0,2,19295,19639,18541,19059,19757,19913,1295,1309,1602,1300,600,400,0
+16321,190000,female,4,2,39,0,0,0,0,0,0,109023,99265,78430,77653,78395,70849,4000,3507,3003,3003,3510,3500,0
+16322,70000,female,1,1,45,1,2,-1,2,-1,-1,6369,390,3060,780,2079,0,0,3450,0,2079,0,0,1
+16323,220000,female,2,2,33,2,2,2,2,0,0,153664,156646,158994,154506,126399,129357,7000,6300,0,5000,5000,5000,0
+16324,500000,female,1,2,34,-2,-2,-2,-2,-2,-2,11765,6599,11421,-83,49699,3821,6648,11986,0,49947,3840,11939,0
+16325,210000,female,1,2,37,-1,-1,-1,-1,0,-1,349,10128,19631,23906,373,3073,10152,19631,23906,0,3073,7418,1
+16326,50000,female,2,1,31,2,0,0,2,0,0,43979,44970,48101,46993,47940,50903,1724,3855,0,1694,3713,2000,0
+16327,160000,female,5,1,38,0,0,0,0,0,0,141282,144433,152067,155527,157886,156241,5500,10000,6000,6100,6100,6000,0
+16328,20000,female,1,2,39,0,0,0,0,0,0,16690,17696,18878,19308,19498,0,1588,1770,1200,390,0,44334,1
+16329,70000,female,2,1,37,0,0,0,0,2,2,68886,60353,32488,35377,30159,29177,2850,1919,5154,1184,0,1213,1
+16330,220000,female,1,1,40,0,0,0,0,0,0,63386,64165,61655,61855,64966,66942,8000,3000,3000,5000,3000,3000,0
+16331,200000,female,2,1,48,0,0,-2,-1,-1,-2,1002,0,490,902,0,0,0,490,902,0,0,0,0
+16332,130000,female,3,1,44,0,0,0,0,0,0,129329,123615,107284,54656,22534,8754,4505,3577,1231,2534,5012,2531,0
+16333,30000,female,2,2,34,1,2,2,0,0,0,16935,17855,17280,18594,18806,19045,1500,0,1606,818,690,695,0
+16334,260000,female,1,1,45,1,-2,-1,-1,-1,-1,4856,1853,108,0,134,4950,1853,108,0,134,4950,500,0
+16335,230000,female,3,1,32,1,2,0,-1,0,-1,167419,16968,7226,1469,690,388,76,3742,1546,0,388,910,0
+16336,240000,female,1,2,33,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+16337,260000,female,1,1,32,-2,-2,-2,-2,-2,-2,2378,4884,329,2464,2673,12354,4884,329,2465,2673,12354,9583,0
+16338,360000,female,2,1,33,1,-1,2,2,-2,-2,-10,2635,590,-9,-9,-9,2645,2,0,0,0,0,0
+16339,260000,female,1,1,36,-1,-1,-1,-1,-1,-1,416,416,416,3541,416,416,416,416,3541,416,416,1644,0
+16340,230000,female,2,1,34,-1,-1,-1,-1,0,-1,3128,10998,1509,1390,1072,849,10998,1509,1390,0,849,3720,0
+16341,300000,female,1,2,35,-1,-1,-1,-1,-1,-1,103,344,891,889,889,739,344,891,889,889,739,1807,0
+16342,140000,female,1,1,45,-1,-1,-1,-1,0,0,2300,483,487,1011,524,1037,483,487,1011,0,1000,974,0
+16343,380000,female,3,1,38,0,0,0,0,0,0,379080,374137,371624,362191,322148,309689,13501,14152,12270,11031,10207,10910,1
+16344,190000,female,1,2,31,0,0,0,0,0,0,150183,129603,131661,137765,123616,125841,7000,7000,8500,5000,6000,5000,0
+16345,500000,female,1,2,31,0,0,0,0,0,0,67475,72191,64130,45766,45324,55011,6000,2332,1219,5000,54000,110000,0
+16346,200000,female,1,1,39,-1,-1,-1,-2,-1,-1,14510,7922,0,0,506,4408,7922,0,0,506,4408,0,0
+16347,310000,female,2,1,37,0,0,0,0,0,0,30691,27595,29616,29598,27589,28985,7595,5616,9598,5589,5985,9382,0
+16348,30000,female,3,1,49,0,0,0,0,0,0,24885,25886,26901,27907,28469,29058,1215,1230,1236,798,822,1079,0
+16349,280000,female,2,1,49,0,0,0,0,0,0,66749,67942,67908,63990,64050,64486,3001,2382,67867,2420,2338,2326,0
+16350,80000,female,1,1,42,2,2,2,2,2,2,18378,19377,20471,20638,21003,20529,1600,1700,800,1000,0,2000,1
+16351,150000,female,2,1,35,2,2,2,-1,-1,-1,1846,5466,3660,2415,5033,803,3672,0,2415,5033,803,2531,1
+16352,30000,female,2,1,48,2,2,3,2,2,2,10509,12727,12240,11747,12651,12305,2700,0,0,1100,0,1100,1
+16353,170000,female,1,1,41,0,0,0,0,0,0,118379,120087,121958,123629,123605,123794,4294,4428,4326,4154,4345,9098,0
+16354,110000,female,1,1,42,0,0,0,0,0,0,47021,48235,49455,51132,52183,53192,2000,2000,2500,2500,2000,3000,0
+16355,30000,female,3,1,46,1,2,2,2,2,2,29201,30406,31295,29929,27744,28117,2000,1700,954,0,2253,1106,1
+16356,90000,female,1,2,33,0,0,0,2,2,2,33035,34178,36133,38240,37325,39725,2000,2500,3000,0,3000,2000,1
+16357,50000,female,2,2,40,0,0,0,0,0,0,50531,50446,48763,35038,27839,27872,2504,1815,2389,3003,2800,2504,1
+16358,120000,female,1,1,36,-1,2,2,-2,-1,0,536,210,-116,-442,732,406,0,0,0,1500,0,0,1
+16359,20000,female,3,2,46,1,2,0,0,0,0,18505,17898,18067,18917,18717,17144,0,1800,1600,400,0,0,0
+16360,220000,female,1,1,42,-1,-1,-1,-1,-1,-1,316,316,396,316,32816,316,316,396,316,32816,316,316,0
+16361,230000,female,2,1,42,-2,-2,-2,-2,-2,-2,390,390,390,390,1240,4234,390,390,390,1240,4234,2970,0
+16362,160000,female,1,2,29,-1,-1,2,-1,0,-1,1116,2599,1302,1852,736,3542,2599,0,1852,0,3542,0,1
+16363,450000,female,2,1,38,0,0,0,0,0,0,87836,92361,96013,34079,35629,59829,6000,6000,10000,15000,35000,115000,0
+16364,390000,female,1,1,46,-1,-1,-1,-1,0,0,6570,2287,0,18692,10418,8590,2287,0,18692,1000,172,4801,0
+16365,90000,female,2,2,29,1,2,2,2,0,0,34954,34093,37539,36641,37061,38011,0,4000,0,1326,1547,3000,0
+16366,60000,female,2,1,33,0,0,0,0,0,0,56038,54660,49907,44057,27510,28086,1911,1879,1500,1000,1019,1500,1
+16367,180000,female,2,1,34,0,-1,-1,-1,-1,-1,3359,4060,-200,2000,0,19726,4060,0,2200,0,19726,0,1
+16368,80000,female,3,1,40,-1,0,0,0,0,0,7111,12774,16817,15274,20043,13318,6500,5000,4025,8000,5000,2000,0
+16369,180000,female,2,2,43,-1,-1,-1,-1,-1,0,543,-535,2145,12532,655,390,0,3212,12532,655,157,2063,0
+16370,320000,female,2,1,46,-1,-1,-1,-1,0,-1,545,5590,8477,18428,119,9416,5590,8489,18443,0,9416,2328,0
+16371,320000,female,1,2,36,0,0,0,0,0,0,29026,28179,28695,19370,10155,3788,5000,5018,1000,3000,0,7013,0
+16372,100000,female,2,1,39,2,0,0,0,0,0,95893,97040,65668,66046,66779,45833,3552,2617,2098,1916,1707,1732,0
+16373,20000,female,3,1,42,0,0,0,0,0,0,18650,15456,16504,17496,18219,18783,1300,1300,1280,1000,1000,1107,0
+16374,140000,female,3,2,34,-1,-1,-1,-1,-1,-1,316,0,2549,151,0,574,0,2549,151,0,574,918,0
+16375,100000,female,3,2,39,-1,-1,-1,-1,-1,-1,1130,600,0,660,2030,3170,600,0,660,2030,3170,1152,0
+16376,10000,female,3,2,44,2,2,2,2,2,2,10422,9775,10964,11153,10762,10126,0,2500,1000,400,0,672,1
+16377,30000,female,2,1,36,0,0,0,2,0,0,23309,24610,26404,27149,27634,28215,2000,2500,1500,1200,1142,1600,0
+16378,50000,female,3,1,39,0,0,0,0,0,0,38506,36749,32159,25145,17331,17901,2008,3000,2000,1000,1000,1000,0
+16379,20000,female,2,1,44,0,0,0,0,2,0,12346,13615,13674,27524,13490,15261,1500,2000,2500,500,2000,5000,0
+16380,200000,female,2,2,31,1,-2,-1,-1,-2,-2,0,0,500,0,0,0,0,500,0,0,0,0,0
+16381,320000,female,2,1,32,0,0,0,-2,-1,0,44312,23132,-2793,-2793,20381,25198,3000,23,0,23381,5000,5000,1
+16382,360000,female,2,2,37,-1,-1,-1,-1,-1,-1,1066,0,878,1142,926,1401,0,878,1142,926,1401,938,1
+16383,200000,female,1,1,33,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,1562,0
+16384,140000,female,3,1,34,0,0,0,0,0,0,138375,138796,142280,142002,89035,94006,5000,8000,6314,3200,6400,2100,0
+16385,420000,female,1,2,31,0,0,0,0,-1,0,127901,95981,65979,36614,208821,209508,3900,5000,5000,208821,9508,32258,0
+16386,150000,female,1,2,36,0,0,2,0,0,0,20755,25019,24335,24908,15339,0,4938,0,1200,507,0,0,0
+16387,200000,female,2,2,38,0,0,0,0,0,0,14956,9023,4963,5418,5131,5741,5000,1155,1000,103,1000,109,0
+16388,230000,female,2,1,42,-1,-1,-2,-2,-2,-2,3210,0,0,0,0,0,0,0,0,0,0,0,0
+16389,30000,female,2,1,38,0,0,0,0,0,2,18971,20344,21705,22537,24161,25128,2000,2000,1500,2000,1500,0,0
+16390,30000,female,2,1,41,0,0,0,0,0,0,39745,27393,26948,27379,22767,4721,1522,1800,1222,1500,1000,0,0
+16391,50000,female,1,2,36,1,2,2,2,2,2,18992,19881,20767,20136,21802,21315,1500,1500,0,2000,0,1000,0
+16392,410000,female,1,1,44,-2,-2,-2,-2,-2,-2,-1,1733,-2506,-2506,-2506,-2506,1734,2506,0,0,0,0,0
+16393,280000,female,2,2,43,0,0,0,0,0,0,273535,280598,141996,131471,134963,139471,12000,7300,5000,6000,7000,6000,0
+16394,200000,female,2,1,46,0,0,0,0,0,0,47403,37835,30212,26302,20465,12460,1550,1503,5000,3000,1000,5000,0
+16395,270000,female,1,1,45,-2,-2,-2,-2,-2,-2,1526,0,0,0,0,0,0,0,0,0,0,0,0
+16396,320000,female,1,2,32,-1,-1,-1,0,0,-1,20488,18607,41195,89714,64646,6103,18615,42067,30014,39515,6110,11611,0
+16397,60000,female,2,1,32,0,0,0,0,0,0,57199,57417,35875,36695,36837,37307,2491,1669,1805,1263,1439,1408,0
+16398,130000,female,2,1,35,0,0,0,0,0,0,125989,127884,128231,127677,125675,127318,6500,6500,6201,5000,5500,5100,0
+16399,30000,female,3,1,54,0,0,0,0,2,0,24285,25379,26964,29307,28537,30378,1500,2000,2800,0,2300,2500,1
+16400,200000,female,3,1,50,0,0,0,0,0,0,162296,169288,168430,100175,95267,87086,13000,6900,4200,3000,3200,6000,0
+16401,170000,female,2,1,51,-1,-1,-1,-1,-1,-1,3022,2742,4592,3798,8717,4362,2751,4592,3798,8774,4362,12114,0
+16402,80000,female,5,1,50,2,0,0,0,0,0,115027,118188,117725,118100,60745,54509,6000,5500,4356,3000,2100,5000,0
+16403,500000,female,1,2,50,-2,-2,-2,-2,-2,-2,0,0,0,0,0,706,0,0,0,0,706,18115,0
+16404,50000,female,3,1,47,0,-1,-1,-1,-1,0,1091,390,1554,390,780,390,390,1554,390,780,0,390,0
+16405,90000,female,2,1,50,0,0,-1,0,0,2,72840,0,13009,17405,20115,19655,0,13009,4627,3000,0,3000,0
+16406,350000,female,5,1,50,0,0,0,0,0,0,136293,139215,142695,98404,100367,102465,4846,5577,3488,3417,3536,3707,0
+16407,110000,female,3,2,52,2,2,2,0,0,0,32085,34601,31304,29291,26415,23170,3393,0,1600,1000,1000,1360,0
+16408,120000,female,3,2,50,2,0,-1,0,0,0,149301,149540,118675,120047,100637,79613,3000,125000,4065,4000,3000,3000,1
+16409,30000,female,3,1,55,0,0,0,0,0,0,10682,11399,12421,13507,13782,14159,1200,1214,1300,500,600,2900,1
+16410,30000,female,2,1,53,0,0,0,0,0,2,14495,15447,16390,17717,19420,18970,1500,1500,1600,2000,0,1500,1
+16411,250000,female,1,1,51,-2,-2,-2,-2,-2,-2,6811,0,0,0,0,0,0,0,0,0,0,0,0
+16412,50000,female,3,1,52,0,0,0,0,-1,2,22377,23380,24488,25775,1080,540,1380,1488,1775,1080,0,540,0
+16413,160000,female,3,1,53,0,0,0,0,0,0,95907,108036,110538,130873,134524,135264,15325,5731,24677,5753,5325,6000,0
+16414,140000,female,2,1,49,-1,-1,0,-1,-1,-1,8280,3147,2421,5021,2646,6117,3147,2000,5021,2646,5541,0,1
+16415,80000,female,3,1,51,1,2,0,0,0,0,52275,50838,51901,52959,54012,55147,0,1883,1920,1931,2003,2046,1
+16416,10000,female,3,2,53,0,-1,2,-1,-1,-2,1473,2095,622,149,-1324,-797,2095,0,1000,0,2000,0,1
+16417,300000,female,5,1,50,-1,2,-1,-1,-1,0,528,264,264,264,517,528,0,264,264,517,11,264,0
+16418,90000,female,2,1,50,0,0,0,2,0,0,43439,44512,47677,46615,47537,48616,2100,4200,0,2000,2000,2000,0
+16419,20000,female,2,2,51,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,930,0
+16420,30000,female,2,1,53,0,0,0,0,0,0,25627,26891,28151,28827,29412,26199,2000,2000,1500,1000,1000,1351,0
+16421,80000,female,3,2,50,0,0,0,0,0,0,46239,46914,47918,47620,48571,48525,1754,2210,1700,1614,1600,1600,0
+16422,20000,female,1,2,54,0,0,0,4,3,2,14034,15296,20035,19435,18835,18395,1500,5000,0,0,0,3000,1
+16423,20000,female,3,1,55,0,0,0,0,0,0,3580,4751,5813,7052,7779,8495,1238,1300,1500,1000,1000,2500,0
+16424,50000,female,2,1,53,0,0,0,0,0,0,36997,36927,34929,31874,28993,29409,1607,2010,1505,1001,2007,2007,1
+16425,120000,female,1,1,60,-2,-2,-2,-2,-2,-2,3956,0,2216,2550,9246,8307,0,2216,2557,9246,8307,10000,0
+16426,30000,female,2,1,47,0,0,0,0,0,0,30567,58722,30077,29841,20075,12250,3778,1900,1019,26,1131,1209,0
+16427,30000,female,2,1,56,2,2,2,2,2,2,14909,15565,16620,16056,17386,16968,1200,1600,0,1600,0,700,1
+16428,80000,female,3,1,55,0,0,0,0,0,0,46777,44628,43943,42913,43217,41662,5024,5014,5016,5017,5011,5014,0
+16429,50000,female,2,1,55,0,0,0,2,2,0,21371,22389,25327,25668,24959,25506,1376,3314,1050,0,1100,950,0
+16430,80000,female,2,1,56,3,2,2,2,2,2,63995,65347,66705,68506,69787,68844,3000,3000,3500,3000,300,5100,1
+16431,100000,female,2,1,52,2,2,2,2,0,0,94935,98462,100978,96606,92062,90228,6018,5000,0,6040,4000,15000,0
+16432,30000,female,3,1,62,0,0,0,0,0,0,18563,19647,20725,21774,22114,22607,1700,1700,1700,1000,1000,2000,1
+16433,130000,female,1,2,51,0,0,0,0,0,0,73903,74661,75593,78110,81793,86452,6000,5002,6000,5000,6000,4000,0
+16434,20000,female,3,1,54,1,2,2,2,0,0,7189,6925,8402,9111,9802,10508,0,1600,1000,1000,866,0,0
+16435,80000,female,2,1,57,2,2,-2,-2,-2,-2,82150,0,0,0,0,0,0,0,0,0,0,0,1
+16436,100000,female,1,1,51,0,0,0,0,0,0,94247,87079,89076,91143,77655,78518,3200,3400,3700,2800,2900,3100,0
+16437,20000,female,3,2,50,2,0,0,0,2,2,11545,12945,13972,15730,15183,16182,1600,1542,2300,0,1400,800,1
+16438,120000,female,2,1,51,0,0,0,0,0,0,138313,134057,130935,124458,78671,8730,5000,6000,3000,3000,2000,73000,0
+16439,50000,female,2,2,53,2,2,2,0,0,2,3914,7419,7156,8492,9515,9287,3591,0,1500,1100,0,300,1
+16440,80000,female,3,1,59,0,0,0,0,0,0,75662,70073,53169,50875,50372,49470,3212,2106,2000,1603,1903,2006,0
+16441,90000,female,3,1,54,0,0,0,0,0,0,18131,18219,36190,17754,11104,11234,2301,1354,2906,370,381,376,0
+16442,60000,female,3,2,47,0,0,0,0,0,0,50469,43093,37137,26015,18840,19183,3329,3429,2015,2000,2004,1000,0
+16443,100000,female,3,1,50,0,0,0,2,2,2,27666,28677,31516,30701,32392,32645,1473,3312,0,2578,1294,0,1
+16444,50000,female,2,1,50,0,0,0,0,0,0,51212,50658,48999,49388,48853,47765,2070,2357,1746,1628,1520,2202,0
+16445,30000,female,3,1,53,2,2,2,2,2,2,17585,18598,19379,19762,20141,19680,1600,1379,1000,1000,0,1700,1
+16446,240000,female,1,1,58,-1,-1,-1,-1,-1,-1,7217,8204,3001,6861,4681,2729,8210,3001,6866,4681,2729,3138,0
+16447,200000,female,1,1,47,0,0,0,0,0,0,101986,97680,94125,89550,98565,54370,4000,3455,5000,10000,2500,2231,0
+16448,130000,female,3,2,50,-1,-1,-1,-1,0,0,390,52180,206,3265,5661,7026,107767,206,3265,3000,2000,2000,0
+16449,110000,female,3,1,50,0,0,0,2,2,0,101084,103476,111998,112290,106721,107636,4700,11500,3925,0,5000,4100,0
+16450,50000,female,2,1,51,0,0,0,2,0,0,40268,27913,22733,15100,7080,8049,2000,3334,27,300,1092,400,0
+16451,20000,female,3,1,56,0,0,2,2,3,4,6949,8823,10523,12043,13542,14728,2000,2000,2000,2000,2000,2000,1
+16452,50000,female,3,1,69,0,0,0,0,0,0,12196,13985,15750,17434,19220,17822,2000,2000,2000,2000,605,1000,0
+16453,80000,female,2,1,54,2,2,2,2,2,2,48298,49402,50416,51293,50170,53391,2200,2100,2000,0,4200,2100,1
+16454,20000,female,3,1,52,2,0,0,0,0,0,18049,14361,15425,16460,17380,17650,1536,1600,1600,1500,700,2900,1
+16455,20000,female,3,1,56,1,2,0,0,2,2,11276,10803,11528,13524,13508,13149,0,1204,2200,500,0,700,1
+16456,30000,female,3,1,53,0,0,2,0,0,2,12466,15333,14802,15523,18470,18834,3086,0,1276,3223,805,0,1
+16457,240000,female,4,1,59,0,0,0,0,0,0,233918,235404,236564,241075,146440,132290,8357,10001,10000,10000,5000,20000,0
+16458,50000,female,3,2,56,1,-2,-2,-2,-1,-1,0,0,0,0,562,736,0,0,0,562,736,1269,1
+16459,80000,female,3,2,53,0,0,-1,-1,0,0,2315,1990,801,1030,2030,763,1400,801,1030,1000,0,0,0
+16460,180000,female,1,2,56,-2,-2,-2,-2,-2,-2,0,0,1829,-200,0,4208,0,1829,998,200,4208,0,1
+16461,240000,female,3,1,55,0,0,0,0,0,0,216170,218809,226013,229014,178852,182547,8000,11000,9000,7000,7000,7200,0
+16462,120000,female,2,1,54,0,0,0,0,0,0,89197,87088,85280,83873,78945,80597,3072,3074,2887,2774,2871,3000,0
+16463,20000,male,2,2,21,2,0,0,2,0,0,19820,19277,20997,20200,20000,0,2000,5000,0,0,0,0,1
+16464,100000,male,2,2,33,0,0,3,2,0,0,35169,39581,38678,37453,38013,0,5328,0,0,760,0,0,0
+16465,30000,male,2,2,22,3,2,2,3,3,3,1050,1050,1050,1050,1050,1050,0,0,0,0,0,0,1
+16466,30000,male,2,2,23,0,0,2,2,2,-1,19321,23985,23321,25809,24985,700,5320,0,3316,0,700,0,1
+16467,50000,male,2,2,22,0,0,2,0,0,0,51083,50043,98450,48689,19773,19931,3500,1000,2000,900,900,1000,0
+16468,100000,male,2,2,23,0,0,0,0,0,0,67873,49285,49992,35518,36426,37836,2000,1600,2000,1500,2000,2000,0
+16469,80000,male,1,2,23,0,0,0,0,0,2,59976,60130,59744,44031,48089,44789,2926,2550,1848,6084,38,4,0
+16470,60000,female,3,1,54,-1,-1,-1,0,0,0,892,21674,31632,13264,948,18002,21690,32264,12948,0,17370,0,0
+16471,120000,male,2,2,25,1,2,0,0,0,0,117160,92262,79889,66828,55511,21938,70,8000,2000,1346,3000,0,1
+16472,20000,male,3,2,32,0,0,0,0,0,2,3448,4460,5326,6574,7417,2246,1230,1096,1344,1187,285,66,0
+16473,20000,male,2,2,26,1,3,2,2,2,2,17077,17504,16940,19621,18646,19022,1000,0,3300,0,1200,700,0
+16474,50000,male,1,2,26,0,0,0,0,0,2,46415,38226,31924,19682,19989,20452,1672,1699,1600,901,1500,7,0
+16475,50000,male,2,2,23,-1,-1,-1,0,0,0,2680,-1045,44316,45361,46135,46029,0,45361,1800,1503,1735,1724,0
+16476,50000,male,2,1,24,0,0,0,0,0,0,15524,16558,17596,18589,18997,18705,1300,1310,1300,700,1000,800,1
+16477,10000,male,2,2,23,-1,0,0,0,0,-2,10078,8886,8815,9600,0,0,1300,1300,1000,0,0,0,0
+16478,20000,male,2,2,24,2,2,2,0,0,2,14195,15166,14638,15582,17809,17385,1500,0,1500,2500,0,1500,1
+16479,30000,male,2,2,25,0,0,0,0,0,0,6122,7160,8185,9286,9483,9780,1300,1300,1400,500,600,600,0
+16480,10000,male,3,2,25,0,0,0,0,0,-1,8525,5141,5239,7911,17890,10000,1500,5000,4000,2000,22400,0,0
+16481,10000,male,3,2,22,1,4,3,2,2,2,8357,8085,7817,7545,8268,7993,0,0,0,1000,0,750,1
+16482,150000,male,2,2,23,2,0,0,-1,0,0,17635,151686,147474,7474,8173,87500,135018,3000,120000,823,80000,3684,1
+16483,80000,male,2,2,24,2,0,0,2,0,0,44507,46486,51876,48962,48614,49792,3000,6107,0,1675,1895,2117,1
+16484,20000,male,2,2,24,0,0,0,0,0,-1,3843,4110,4560,4567,4060,1035,1073,1258,1000,228,1035,0,0
+16485,120000,male,1,2,24,2,-1,0,0,-2,-1,1330,2103,2473,1162,0,3443,2103,1170,1162,0,3443,0,1
+16486,40000,male,1,2,24,0,0,0,0,0,-1,37412,38485,39575,39247,9687,33625,2000,20000,1359,600,33625,615,0
+16487,20000,male,3,2,24,3,3,2,2,2,2,15846,16283,17325,17542,17756,18023,1000,1600,800,800,700,800,1
+16488,100000,male,2,1,24,2,2,2,2,2,2,10618,13233,13427,13609,14683,15001,2800,700,700,1300,700,700,1
+16489,160000,male,1,2,25,-1,0,0,-1,-1,-1,898,2686,170,1363,10484,12455,2000,0,1363,11422,12455,24262,0
+16490,20000,male,1,2,24,1,2,2,4,3,2,17375,16799,21408,20779,20170,19721,0,4893,0,0,0,1000,1
+16491,60000,male,2,2,24,1,2,3,2,0,0,58231,61671,59755,58194,38649,35361,5000,0,198,1500,1300,2000,1
+16492,150000,male,2,2,27,0,0,0,0,0,0,84034,81537,78407,73688,56995,52887,5065,20028,3152,2025,5211,10061,0
+16493,40000,male,2,2,24,4,3,2,3,2,2,38344,37433,38862,39125,39408,40925,0,2335,1200,1225,2300,1396,1
+16494,30000,male,2,2,26,0,0,0,0,0,0,25531,26301,27376,28359,24844,25364,1500,1500,1450,889,920,992,0
+16495,420000,male,2,2,26,1,2,2,0,0,0,390188,395881,382620,333210,324487,327615,14000,15,13175,11700,11900,12140,1
+16496,20000,male,2,2,26,2,3,2,0,0,2,14962,14438,13921,15276,17019,18099,0,0,1900,3000,1500,0,0
+16497,50000,male,2,2,25,2,2,0,0,0,-2,44630,44802,40686,7710,0,0,1200,1200,1000,0,0,0,1
+16498,20000,male,2,2,23,1,2,0,0,0,0,17845,17261,18976,19804,19204,18210,0,2000,1600,0,1150,2000,0
+16499,20000,male,3,2,24,0,0,0,0,0,0,16973,17984,18748,19627,19624,19652,1600,1357,1236,623,653,673,0
+16500,20000,male,2,1,28,0,0,0,2,2,3,15226,16658,19374,18766,20859,20247,2000,3300,0,2700,0,500,0
+16501,300000,male,1,2,26,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+16502,30000,male,1,2,25,2,2,2,2,2,0,22422,24334,26087,26184,25563,26099,2600,2441,820,0,851,1678,0
+16503,140000,male,1,2,27,0,-1,0,0,0,0,29751,143701,138062,86738,43417,37398,143713,5554,3619,3002,1940,2921,0
+16504,20000,male,2,1,27,0,0,0,0,0,0,20285,20256,20539,19725,19836,12559,1500,1800,1200,751,1000,0,0
+16505,390000,male,1,2,27,0,0,0,0,0,0,372743,377692,337892,298729,243169,133977,20008,15057,10100,10000,10000,15000,0
+16506,50000,male,2,2,27,0,0,0,0,0,0,39487,37777,36496,33512,29854,28144,1600,2000,6416,4406,1014,3006,0
+16507,50000,male,2,2,26,-1,0,0,0,0,0,6945,7185,3412,4158,6158,2133,2000,2000,1000,2000,2000,2000,0
+16508,50000,male,2,1,26,0,0,0,0,0,0,48019,48992,49689,31368,9454,6020,2072,1769,1003,189,120,100,0
+16509,320000,male,2,2,26,0,0,0,0,0,0,303703,308121,204879,143976,143142,145070,12167,8335,5113,5062,5221,5184,0
+16510,280000,male,1,1,26,0,0,0,0,0,0,277815,285477,253365,221167,195058,189623,12596,11320,7608,6628,7004,6902,0
+16511,50000,male,1,2,26,1,2,2,2,2,2,38160,40213,41167,41890,42605,41792,3000,1900,1700,1700,0,2500,1
+16512,500000,male,2,2,26,0,0,0,0,0,0,126725,128206,129327,130136,127699,124623,6005,6005,6094,4161,5021,4350,0
+16513,200000,male,1,2,28,-1,-1,-1,-1,-1,-1,2393,1726,1602,1040,3564,2031,1731,1606,1051,3574,2036,1703,0
+16514,50000,male,1,2,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+16515,300000,male,2,2,27,-2,-2,-2,-2,-1,-1,-158,-158,-158,-158,142,92,0,0,0,300,100,100,0
+16516,30000,male,2,2,27,1,2,0,0,2,2,22284,21637,22981,24996,24309,26980,0,1682,2697,0,3219,0,0
+16517,50000,male,2,2,27,2,2,0,0,0,0,49079,47992,48502,49170,49891,50570,0,1842,1770,1751,3894,0,1
+16518,10000,male,2,1,27,4,3,3,2,3,2,3462,4150,3940,4720,4500,4282,900,0,1000,0,0,433,1
+16519,20000,male,3,2,28,1,2,0,0,3,2,8055,7777,8805,12647,12173,11855,0,1158,4000,0,0,900,1
+16520,50000,male,3,2,27,0,0,0,0,0,0,49684,45435,37636,32034,28133,23860,1961,2075,1294,999,934,849,0
+16521,30000,male,2,2,26,0,0,0,0,0,2,27889,26990,24706,25022,26405,25861,2875,4900,2000,2100,0,2500,0
+16522,100000,male,1,2,30,0,0,0,0,0,0,100544,101167,101007,97862,79099,79812,4511,3711,3685,2797,2897,3046,1
+16523,130000,male,1,2,29,-1,-1,-1,0,0,-1,9619,6247,59904,81838,37422,15365,6247,59904,30000,10000,15365,10778,0
+16524,20000,male,2,2,30,1,2,2,2,2,2,16906,17328,19145,18397,20697,20547,1000,2400,0,2700,0,283,0
+16525,150000,male,1,2,29,2,0,0,0,0,0,7562,10609,14101,17523,18914,28516,3500,4000,4000,2000,10000,4000,0
+16526,220000,male,2,1,28,0,0,0,0,0,0,38074,43083,47051,65321,83882,72812,6000,5000,20012,23099,10029,30019,0
+16527,100000,male,2,2,29,1,-1,-1,-1,0,-1,0,4586,2476,7845,13164,671,4586,2863,7845,7000,671,671,0
+16528,130000,male,2,2,25,0,0,0,0,0,-2,119803,118737,113689,59473,-1518,-1518,5100,4600,3000,0,0,0,1
+16529,40000,male,2,2,29,0,0,2,0,0,2,20528,22973,22317,24047,26644,26079,3100,0,2100,3000,0,3000,0
+16530,10000,male,1,2,30,3,2,2,7,7,7,2300,2300,2300,2300,2300,2300,0,0,0,0,0,0,1
+16531,290000,male,1,1,30,1,-2,-2,-2,-1,-1,0,-291,-582,-1164,291,732,0,0,0,1455,732,291,0
+16532,180000,male,2,2,27,0,0,0,0,0,0,134168,120734,124730,120423,113901,114077,4345,5966,4250,4200,4200,4200,0
+16533,280000,male,2,2,27,-2,-2,-2,-2,-2,-2,1566,2872,1572,2437,1572,1572,2891,1586,2444,1586,1579,1579,0
+16534,30000,male,2,2,27,3,2,2,4,4,4,1650,1650,1650,1650,1650,1650,0,0,0,0,0,0,1
+16535,310000,male,1,1,29,1,2,0,0,0,0,191457,187341,70359,77884,87484,89633,651,15000,10000,10200,2149,299,1
+16536,70000,male,1,2,28,0,0,0,0,0,0,19728,16923,10076,33079,23188,20937,8000,2000,30000,5000,20000,25000,0
+16537,120000,male,1,2,28,0,0,0,2,2,0,7164,9383,16571,16607,16043,16379,2515,7703,600,0,595,599,1
+16538,240000,male,2,2,29,-1,-1,-1,-1,-1,-2,390,0,390,780,0,0,0,780,780,0,0,0,0
+16539,50000,male,2,1,27,0,0,0,0,0,0,46806,46176,47151,47251,20515,19404,2000,5300,1500,1100,1000,1000,0
+16540,320000,male,1,1,28,0,0,0,0,0,0,79819,64851,37762,16425,12177,45648,3524,2941,2013,270,42659,100002,0
+16541,80000,male,2,2,29,0,0,-2,-2,-2,-2,82150,0,0,0,0,0,0,0,0,0,0,0,0
+16542,20000,male,2,2,29,1,2,2,2,2,2,11586,11103,13913,13393,18152,17725,0,3000,0,5000,0,3000,1
+16543,80000,male,2,2,29,1,2,0,0,2,0,71795,62067,60949,71829,67567,62658,0,3000,15000,0,3000,3000,0
+16544,360000,male,2,1,28,-2,-1,2,2,-2,-2,0,2500,2500,0,0,0,2500,0,0,0,0,0,0
+16545,50000,male,2,2,29,0,0,0,0,0,0,44177,44820,46022,46903,47837,48383,2070,3000,2000,2000,2000,2000,0
+16546,20000,male,2,2,23,-1,-1,0,-1,0,-1,4584,4005,5677,688,1688,61,4005,4078,1237,1000,61,0,1
+16547,10000,male,2,2,25,4,3,3,2,0,0,5365,5731,6095,6351,6603,6855,600,600,500,500,500,500,0
+16548,100000,male,2,2,28,0,0,0,0,0,0,72610,72596,74331,75491,78244,77478,3500,3500,3000,4000,3000,3000,0
+16549,50000,male,2,3,30,0,0,0,0,0,0,47812,97538,49187,17518,17710,18079,2536,2454,1588,780,803,673,0
+16550,30000,male,2,2,24,2,-1,-1,-2,-2,-2,390,780,0,0,0,0,780,0,0,0,0,0,0
+16551,20000,male,2,2,24,0,0,0,0,0,0,15221,17847,18483,19079,19060,19061,3287,1313,1299,670,686,694,0
+16552,70000,male,2,2,28,3,2,2,0,0,0,91930,93363,91325,93195,52925,52990,3500,0,3204,2003,2013,2511,0
+16553,490000,male,1,2,29,-1,-1,-1,-2,-1,0,264,678,-571,-1796,137158,139345,678,571,1225,140597,6000,3900,0
+16554,30000,male,1,2,29,1,2,2,2,2,2,25264,24560,29128,29845,30257,30779,0,5000,1500,1200,1300,0,1
+16555,20000,male,1,2,29,0,0,0,0,0,0,15934,15028,16023,11631,12377,4830,1329,1324,1000,2000,1000,0,0
+16556,290000,male,1,2,29,-1,-1,-1,-1,0,0,783,2830,1357,14959,13459,115990,2838,1359,14968,2022,110142,205,0
+16557,180000,male,1,2,26,0,0,-2,-2,-2,-2,8516,0,0,0,0,0,0,0,0,0,0,0,1
+16558,100000,male,2,2,27,0,0,0,0,-2,-2,100591,101568,64480,0,0,1218,3749,2782,0,0,1218,102400,0
+16559,30000,male,2,2,26,0,0,0,0,0,0,24079,25848,22299,23615,23933,24901,2500,2000,2000,1000,1500,1500,1
+16560,470000,male,1,2,27,0,0,0,0,0,0,213495,183680,153743,146971,127546,129998,10005,9001,8001,5001,5001,6145,0
+16561,200000,male,2,2,29,0,0,0,0,0,0,60068,50636,41265,49072,11314,11816,2500,2626,9412,500,1000,500,0
+16562,400000,male,1,2,29,0,-1,0,0,0,0,1123,82556,67823,61918,61884,61911,82694,1939,1720,1712,1766,1907,0
+16563,400000,male,2,2,29,0,0,0,0,0,0,79435,75332,128630,69040,64657,54363,3803,2551,2735,2628,1574,1649,0
+16564,50000,male,2,2,25,0,0,0,0,0,0,48336,49377,48626,38587,19089,19485,1855,1804,1713,681,701,785,0
+16565,70000,male,2,2,25,1,3,2,0,0,0,12088,11601,12114,13597,15060,16653,0,1000,2000,2000,2000,2000,0
+16566,80000,male,3,1,31,1,2,0,0,0,0,27653,26703,26856,27844,27480,28061,0,1459,1447,983,1023,1042,0
+16567,70000,male,1,2,29,2,2,2,2,2,2,33786,34730,35878,36392,36990,37751,1800,2000,1400,1500,1500,1600,1
+16568,20000,male,2,2,28,3,2,2,2,2,-1,150,150,150,150,150,1150,0,0,0,0,1150,0,0
+16569,10000,male,2,2,28,-1,2,-1,2,3,2,619,619,8642,9151,8023,5475,0,8642,800,107,200,0,1
+16570,430000,male,2,2,30,-1,-1,2,0,0,0,28966,29957,29199,30267,49268,48241,5011,0,2000,20000,15000,5000,1
+16571,40000,male,2,2,30,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+16572,450000,male,2,1,29,0,0,0,0,0,0,179547,157945,118192,82644,17720,7068,8101,12029,35524,38,2015,7522,0
+16573,10000,male,3,1,30,1,2,0,0,0,0,9211,8119,7604,7637,6056,2852,0,1176,1000,121,57,5507,1
+16574,10000,male,2,2,29,0,0,0,0,0,0,9073,9036,7385,7665,7817,7981,1120,1117,1127,279,289,369,0
+16575,10000,male,2,1,29,2,0,0,2,2,2,2918,4204,5670,6416,7159,7904,1500,1700,1000,1000,1000,1500,0
+16576,80000,male,1,2,29,0,0,0,0,0,0,79048,80676,78311,80777,79306,79195,3000,3100,7000,3200,3500,3200,0
+16577,80000,male,3,1,29,2,2,0,0,2,4,69578,67871,68782,73955,79128,82275,0,2600,6332,7000,5000,0,1
+16578,240000,male,2,2,29,0,0,0,0,0,0,230979,222096,220129,217549,204008,202268,7347,6830,6700,6400,6412,6549,0
+16579,280000,male,2,2,31,0,0,0,0,-1,0,229780,31275,32868,34292,173487,177195,2000,2100,2500,185957,6500,6100,0
+16580,50000,male,2,2,31,-1,0,0,0,0,0,228,3183,5455,7629,6354,4655,2955,2500,2500,2526,2000,1500,0
+16581,80000,male,1,2,32,0,0,0,2,0,0,37639,38659,43427,42421,42344,43229,1650,5400,0,1662,1717,1600,0
+16582,20000,male,3,1,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+16583,90000,male,2,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+16584,200000,male,1,2,29,-2,-1,-1,-1,-1,-1,8099,3432,2249,3367,-33,11202,3447,2261,3377,0,11235,2795,0
+16585,360000,male,1,2,30,2,-1,-1,2,-1,-1,2024,428,5306,3603,604,14850,428,5306,0,604,14850,2403,0
+16586,50000,male,2,1,31,-1,-1,2,2,-2,-2,1450,2590,770,0,0,0,2590,0,0,0,0,0,0
+16587,130000,male,1,2,27,2,2,2,0,0,0,73561,70071,68392,69435,67790,69248,3500,0,2798,3500,2627,3000,1
+16588,80000,male,3,1,31,0,0,0,0,0,0,65088,65200,61969,40457,42875,44724,3000,4000,3000,3000,4000,3000,0
+16589,200000,male,2,2,29,-1,-1,-1,-2,-2,-2,8951,6595,0,0,0,0,9117,0,0,0,0,0,1
+16590,150000,male,2,1,39,1,2,0,0,0,0,9937,9629,10633,10649,10570,10481,0,1175,1135,1000,1000,1000,0
+16591,370000,male,1,1,34,0,0,0,0,0,0,379039,374221,279467,262511,248101,243899,14104,10107,9410,8398,8464,7826,0
+16592,310000,male,2,2,45,-1,-1,-1,-1,-1,-1,124793,1210,31635,1788,1927,553,1217,31967,1796,1936,556,15664,0
+16593,240000,male,1,2,41,0,0,0,0,0,0,24171,26474,28480,30247,30122,27437,3759,3500,3000,982,3437,2044,0
+16594,320000,male,1,1,35,0,0,2,2,2,2,106799,116015,117678,119245,120794,123796,11003,5000,5000,5000,5100,5300,0
+16595,50000,male,2,2,39,3,2,0,0,0,0,51998,50821,46892,33936,9225,9264,0,2343,1548,476,336,348,0
+16596,50000,male,2,1,41,0,0,0,0,0,0,48537,36394,28278,16983,8888,9218,2022,2016,1272,1000,1000,1000,0
+16597,50000,male,3,1,30,2,2,2,0,0,0,15397,17699,17127,18076,17061,17419,2882,0,1259,591,613,608,1
+16598,80000,male,1,2,31,0,0,0,0,0,0,72840,74631,77329,78147,79785,76766,9000,5000,3000,3000,2501,3000,0
+16599,420000,male,1,2,32,0,0,0,2,0,0,90875,91789,89489,87076,55508,57771,4118,14000,0,1837,3010,144204,0
+16600,50000,male,1,2,32,2,2,2,2,2,2,30559,31753,32847,33308,33755,34565,2000,1900,1300,1300,1500,1500,1
+16601,150000,male,2,2,32,2,2,-2,-2,-1,2,90476,0,0,0,138355,130666,0,0,0,138355,0,5200,1
+16602,130000,male,1,2,34,0,0,0,0,0,0,30190,31179,30569,28659,26952,15852,1818,2002,1400,600,1000,0,1
+16603,170000,male,2,1,34,0,0,0,0,2,2,47956,48854,50068,56691,57367,56322,2000,2000,7500,2200,0,3000,0
+16604,170000,male,3,1,45,0,0,0,0,0,0,165315,170562,170024,32898,34869,73932,8000,4000,3000,2500,5000,3000,0
+16605,120000,male,2,2,25,0,0,2,0,0,0,11147,9757,9423,3345,2929,2520,2446,438,1000,0,7,0,0
+16606,30000,male,3,2,35,1,2,2,0,0,0,29147,30268,29505,29916,14330,29000,1900,0,1300,884,780,0,1
+16607,220000,male,2,2,30,0,0,0,2,-1,-1,6229,3516,7413,3697,3703,3500,1000,7397,0,3703,3500,3697,0
+16608,50000,male,2,2,25,2,2,2,0,0,0,19775,21679,18566,19918,19584,18508,3800,0,2000,1500,1000,2000,1
+16609,30000,male,2,2,34,2,2,2,0,0,2,10522,10148,8587,8366,8528,7030,1200,0,1200,1500,0,460,1
+16610,250000,male,1,2,30,0,0,0,0,0,0,73936,106903,174837,81376,61474,27864,40000,85756,35153,4236,6080,88,0
+16611,20000,male,2,2,29,0,0,0,0,0,0,13229,14237,15580,16304,17059,18056,1233,1576,1300,1000,1400,0,1
+16612,10000,male,3,1,30,0,0,0,3,2,0,7470,8315,11267,10626,10160,10052,1141,3258,0,0,357,400,1
+16613,50000,male,2,2,41,0,0,0,0,-2,-1,50611,41732,41111,-39,-39,18056,2200,2200,0,0,20000,1000,0
+16614,30000,male,3,1,48,0,0,0,2,2,3,19650,20817,23860,24372,25776,25088,1500,3400,1200,2100,0,0,1
+16615,20000,male,2,2,31,2,2,2,2,0,0,13516,13996,14475,14936,15688,16435,1000,1000,1000,1000,1000,700,1
+16616,200000,male,2,2,32,0,0,0,0,0,0,196550,178609,180357,168935,88883,88973,8001,6500,6146,3300,2476,5749,0
+16617,50000,male,1,2,33,1,2,2,2,0,0,7148,6887,9602,9304,10835,11658,0,3000,0,2000,1000,1500,0
+16618,120000,male,1,2,35,-1,-1,-1,-1,-1,2,326,326,176,-150,952,476,326,176,0,1428,0,476,0
+16619,210000,male,1,2,40,-1,-1,-1,-1,-1,-1,325,325,325,325,325,325,325,325,325,325,325,325,1
+16620,180000,male,3,1,32,0,0,0,0,0,0,181293,177552,182492,180746,131166,114909,6400,8612,7534,5506,4850,5000,0
+16621,50000,male,2,1,32,0,0,0,0,0,0,19606,18516,16481,12518,7538,5854,5027,3053,5040,1000,1016,501,0
+16622,70000,male,3,1,40,0,0,0,0,0,-1,41986,31059,23283,11523,23516,1600,1455,1278,1000,235,1600,4316,0
+16623,200000,male,1,1,44,-2,-2,-2,-2,-2,-2,1640,0,0,0,0,0,0,0,0,0,0,0,0
+16624,50000,male,3,1,46,1,2,2,2,2,2,10960,10487,13108,12601,13391,14027,0,2800,0,1000,1000,0,1
+16625,230000,male,2,1,47,-1,-1,-1,-1,-1,-1,996,997,998,-1,999,0,1000,1000,0,1000,0,0,0
+16626,30000,male,1,1,42,1,2,2,2,0,0,20214,19596,21972,21321,21897,22395,0,3005,0,930,1000,2000,1
+16627,30000,male,2,2,32,0,0,0,0,0,0,20881,22224,23557,24764,25234,14852,2000,2000,2000,1000,1000,1000,0
+16628,150000,male,2,2,34,-1,0,0,0,-1,-1,204187,222314,5051,4408,1731,1960,20000,1093,1000,1731,2169,1408,0
+16629,10000,male,2,2,30,0,-1,0,-1,-1,-1,1473,3236,4790,390,0,780,3236,2000,390,0,780,0,1
+16630,150000,male,1,2,29,0,0,0,0,0,0,4614,6370,9243,10280,10637,10916,2000,3000,1500,527,600,1000,0
+16631,360000,male,1,2,34,1,-2,-2,-1,-1,-1,0,0,0,733,0,1307,0,0,733,0,1307,0,0
+16632,340000,male,1,2,38,0,0,0,-1,-1,-1,86057,89605,87780,1680,1920,9151,5000,7785,1699,1920,9151,187000,0
+16633,50000,male,2,2,34,0,0,0,0,0,0,48844,49335,49236,43524,27062,27923,1898,1996,2162,2000,1300,2000,0
+16634,30000,male,2,1,39,0,0,0,0,0,0,20893,22206,19273,16469,14670,11214,2007,2000,2000,417,1500,1500,0
+16635,360000,male,1,2,34,-2,-2,-2,-2,-2,-2,2739,1200,3118,0,162,4857,1206,3133,0,162,4881,445,0
+16636,150000,male,1,1,46,0,0,0,0,0,0,150838,152696,136915,139449,140851,142160,6000,5000,7000,5165,5500,6000,0
+16637,160000,male,3,2,28,2,2,2,2,2,0,152626,156752,152858,161801,114389,89684,8100,0,14025,0,5300,500,1
+16638,30000,male,2,1,39,0,0,0,0,0,0,28628,29160,21075,17257,15874,9514,2003,2400,1200,317,190,0,0
+16639,480000,male,1,1,47,-1,-1,-1,-1,0,0,10668,-2,454,150198,143388,157758,0,456,150244,2915,24550,100,0
+16640,200000,male,2,1,45,-1,0,-1,-1,0,-1,98974,36829,31707,44433,4155,2114,10000,31727,44626,18,2124,9844,0
+16641,50000,male,3,2,39,-1,-1,-1,0,0,0,238,-152,48257,48455,48195,48828,0,48799,1773,1711,1785,1745,1
+16642,20000,male,2,1,32,1,2,2,2,2,0,17913,17328,20353,19966,19056,19445,0,3309,381,0,389,890,1
+16643,60000,male,2,1,44,0,0,0,0,0,0,59331,54989,53898,54960,56054,55263,2000,2000,1962,1974,2159,2100,0
+16644,200000,male,1,2,26,0,0,-2,-2,-2,-1,16000,0,0,0,0,-1108,0,0,0,0,40,84628,0
+16645,20000,male,2,1,27,0,0,0,-2,-2,-2,16203,4550,0,0,0,0,2000,0,0,0,0,0,0
+16646,440000,male,3,1,35,0,0,0,0,0,-1,13754,12364,11613,12651,13211,23600,2017,3000,3019,5011,23748,13633,0
+16647,100000,male,1,2,34,-1,2,2,-1,-1,-2,772,772,-8,2562,0,0,0,8,2570,0,0,0,0
+16648,100000,male,2,2,38,0,0,0,0,0,0,95933,96772,97240,98159,97481,97574,4499,4578,4606,3817,3998,3695,0
+16649,100000,male,2,1,48,0,0,2,2,2,2,11574,14570,16045,16508,15969,17733,3500,2000,1000,0,2000,0,0
+16650,230000,male,3,1,46,-2,-2,-2,-2,-2,-2,1313,1414,1258,2565,-5,1100,1421,1264,2577,0,1105,0,0
+16651,50000,male,1,2,37,0,0,0,0,0,0,13191,14659,17097,18207,20580,22577,2000,3000,1700,3000,2500,5000,0
+16652,50000,male,2,1,32,0,0,0,0,0,0,42163,38252,27396,23584,17272,17634,1472,1500,1282,618,640,644,0
+16653,30000,male,2,1,41,1,2,0,0,0,0,14110,13591,14309,15320,15774,15950,0,1244,1255,709,578,741,0
+16654,140000,male,2,2,32,1,2,2,2,2,3,67923,69412,67734,73079,75255,75757,3200,0,6500,4000,2000,3000,1
+16655,60000,male,3,2,43,0,0,0,0,0,0,55800,53216,43077,36197,34283,20395,1782,1850,1318,5822,794,2000,0
+16656,50000,male,3,1,41,1,2,2,2,0,0,26915,26184,29261,28444,28878,27655,0,3500,0,1100,1100,2000,0
+16657,350000,male,2,2,36,0,0,0,0,0,0,249663,230738,232382,234254,211309,210897,8026,9503,9015,7511,8011,7361,0
+16658,20000,male,3,1,44,2,2,2,2,2,0,11623,12436,12943,15428,14883,15494,1300,1000,2700,0,850,850,1
+16659,20000,male,2,2,30,0,0,0,0,0,0,16320,28674,15491,16299,16428,0,1238,1392,1200,329,0,0,0
+16660,50000,male,2,2,36,0,0,2,2,-2,-2,46712,50932,49400,0,0,0,5000,0,2000,0,0,0,0
+16661,20000,male,2,1,41,1,2,2,2,0,0,19951,19314,20526,19360,19660,6000,0,2976,0,500,120,780,1
+16662,110000,male,3,1,34,0,0,0,0,0,0,23751,25068,26351,26996,27754,28597,1717,2000,2000,1500,2000,5000,0
+16663,200000,male,1,1,44,-1,2,2,-2,-2,-2,655,265,-125,-515,-905,-905,0,0,0,0,0,0,1
+16664,260000,male,2,1,46,2,2,2,2,2,2,82683,84424,86472,87157,88526,90355,4000,4300,3000,3700,3400,3600,1
+16665,150000,male,2,1,36,2,2,0,0,0,0,88655,86333,88931,92441,102903,105240,0,4000,5000,12000,4000,6000,1
+16666,50000,male,2,2,33,0,0,0,0,0,0,23142,28202,30610,30227,18413,17195,5494,3202,3502,3200,2500,3000,0
+16667,150000,male,2,2,35,-1,-1,-1,-1,-1,0,13059,11526,18301,15858,2744,2144,11526,18305,15861,2744,0,19682,0
+16668,250000,male,1,2,35,2,2,2,2,2,2,153798,164692,160658,180382,182914,186838,15000,0,24000,7000,7000,6700,1
+16669,50000,male,5,2,49,0,0,0,0,0,0,36869,31255,28040,20799,9584,9788,1615,2507,10814,344,359,401,0
+16670,50000,male,2,1,47,0,0,0,0,0,0,38830,35866,30260,19187,19324,19192,1600,8820,1293,820,700,689,0
+16671,50000,male,3,3,44,2,2,2,3,2,2,41755,40793,44084,44763,44939,46078,0,3949,1700,1200,2000,2000,0
+16672,80000,male,3,2,40,1,2,2,2,2,2,81053,79337,82698,81467,49150,51303,300,6200,2139,0,4000,0,0
+16673,20000,male,3,1,49,0,0,0,0,0,0,11572,27270,14375,15200,20000,16560,2820,4000,1200,5000,10000,0,0
+16674,220000,male,2,1,47,2,4,3,2,2,2,233756,216591,197022,198088,187000,179703,3000,0,6000,0,14004,0,1
+16675,120000,male,3,1,39,-1,2,2,0,0,3,12190,13091,12591,17366,22064,21432,1400,0,5000,5000,0,0,1
+16676,200000,male,3,2,39,0,0,0,0,0,0,84184,95791,94901,92866,93514,85659,16000,5013,5024,10000,5000,10000,0
+16677,30000,male,3,1,47,0,0,0,-1,0,0,118587,89271,91157,30420,30384,29774,6624,3000,31959,1052,1062,1114,0
+16678,50000,male,2,2,43,0,0,0,0,0,0,50756,50552,49465,40020,10407,9037,1934,1917,2500,500,500,1000,0
+16679,50000,male,3,2,42,2,0,0,0,0,2,4864,5876,6898,7910,8681,8397,1252,1274,1286,1057,0,306,0
+16680,230000,male,2,1,45,0,0,0,0,-1,-1,42770,22080,16740,14029,1439,2269,2000,1347,3078,1509,9000,8000,0
+16681,280000,male,2,2,33,0,0,0,0,0,0,265120,238661,223383,162196,165129,168295,9104,9401,6001,6001,6201,6201,0
+16682,70000,male,1,2,43,0,0,0,0,0,0,68228,65935,67454,67592,36515,37426,2378,2600,2613,1500,1500,1500,0
+16683,120000,male,2,1,40,-1,0,0,0,0,0,112123,114344,117684,117344,58800,0,4089,5179,2543,1176,0,0,0
+16684,170000,male,1,2,39,0,0,0,0,0,0,138811,136227,136893,122820,120550,102054,5505,4849,4614,4600,3704,4506,0
+16685,30000,male,3,1,41,1,2,2,0,0,0,17301,18015,17437,18448,18815,19210,1295,0,1306,673,698,1547,0
+16686,20000,male,2,1,33,0,0,0,2,2,-2,18706,17483,19509,18828,0,0,1275,3081,0,0,0,0,1
+16687,20000,male,3,2,35,0,0,0,0,0,0,16500,17012,18181,19331,19113,17996,1281,1450,1600,382,383,345,0
+16688,220000,male,1,2,39,3,2,0,0,0,2,184140,187089,189680,193561,205161,205477,7500,7100,7203,15000,3500,4500,1
+16689,50000,male,2,2,44,0,0,0,0,-1,-1,20995,21743,22300,4067,1290,0,3000,3007,1000,1290,0,0,0
+16690,300000,male,6,1,46,0,0,0,0,0,-1,289299,297003,300153,9250,6088,2497,15000,13274,1010,185,2497,2497,0
+16691,430000,male,2,2,29,-2,-2,-2,-2,-2,-2,1442,3058,0,980,0,0,3058,0,980,0,0,1030,0
+16692,30000,male,2,1,36,-1,2,-1,-1,-1,-1,1226,390,390,390,390,0,0,390,390,390,0,780,1
+16693,20000,male,3,3,46,0,0,0,0,0,0,14075,15523,17264,18325,15680,0,2000,2000,1500,500,0,0,0
+16694,210000,male,1,1,40,0,0,0,0,0,0,119752,114952,108857,103789,96250,95788,10030,6053,10036,6027,10028,10030,0
+16695,80000,male,2,1,31,0,0,0,0,0,0,47464,49665,50538,53314,27962,27873,3000,2000,29000,2004,2000,2000,1
+16696,30000,male,3,2,31,0,0,0,0,0,0,28275,29772,27821,28075,29682,28001,2000,2000,2000,2014,2000,2000,0
+16697,220000,male,1,1,47,2,2,2,0,0,0,165665,163494,162360,134989,124915,84959,2008,6000,6000,4000,2852,9000,1
+16698,80000,male,2,2,32,0,0,0,0,0,0,22753,25046,23466,25689,29820,22082,3000,3000,3000,4500,830,2000,0
+16699,480000,male,2,1,31,0,0,0,0,0,0,55346,58411,58883,59452,61168,56931,4000,3000,3000,3000,3000,3000,0
+16700,150000,male,1,2,33,0,0,0,0,0,0,94020,78038,63176,52807,34199,32061,3040,5000,10116,5000,6000,3000,0
+16701,60000,male,3,1,31,1,2,0,0,-2,-2,36243,35369,35320,0,0,0,0,1027,0,0,0,0,0
+16702,80000,male,2,2,33,2,2,0,0,0,0,24928,24229,25832,27394,29922,31879,0,2000,2000,3000,2600,0,1
+16703,50000,male,2,1,32,0,0,0,0,0,0,46827,48134,49550,48377,18727,19116,2084,2500,1135,497,514,335,0
+16704,50000,male,3,2,34,1,2,2,2,2,2,33776,34824,33988,36311,36918,36191,1900,0,3200,1500,0,3000,1
+16705,180000,male,3,1,42,0,0,0,0,0,0,177027,173635,172514,157768,126964,125456,7003,6500,7507,4500,5000,5000,0
+16706,100000,male,2,1,39,0,0,0,0,-2,-2,10603,11735,12460,0,0,0,1315,1040,0,0,0,0,1
+16707,240000,male,3,1,42,2,2,2,2,2,2,259511,258208,245397,245014,209834,195913,11000,0,12300,14288,0,6887,0
+16708,50000,male,3,1,49,0,0,0,0,0,0,49331,46429,47446,39516,17643,32230,2000,3030,4000,2000,2800,2936,1
+16709,20000,male,3,1,40,0,0,0,0,0,0,8151,9011,10858,12670,13157,13742,1153,2000,2000,1000,800,1000,0
+16710,50000,male,2,1,30,0,0,0,0,0,0,48591,37944,50135,49526,19686,19374,12000,13000,5000,4010,6000,3000,0
+16711,200000,male,2,1,31,-2,-2,-2,-2,-2,-2,6926,1747,642,0,0,0,1747,642,0,0,0,500,0
+16712,180000,male,2,2,32,0,0,0,0,-2,-2,22832,19517,11988,0,0,0,1429,1000,0,0,0,0,0
+16713,320000,male,1,2,33,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+16714,200000,male,3,2,48,0,0,0,0,-1,-1,87035,79529,67675,56519,11884,14343,2915,2646,2208,12503,14869,0,0
+16715,20000,male,2,2,41,0,0,0,2,2,0,10142,10869,13940,14755,14223,15337,1200,3250,1340,0,1500,5000,1
+16716,200000,male,1,2,38,-2,-2,-2,-2,-2,-2,5607,0,316,499,672,100,0,316,499,672,100,0,0
+16717,20000,male,3,2,40,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+16718,50000,male,2,2,39,1,3,2,2,2,2,50180,49089,48935,18243,20285,17175,0,1266,0,2301,0,748,0
+16719,50000,male,2,2,25,0,0,0,0,0,0,50479,48294,48735,45036,19246,18872,1649,11890,1367,668,675,673,1
+16720,80000,male,2,1,43,0,0,0,0,0,0,44620,33729,40350,38812,33459,31650,1582,15350,1491,3459,1650,9028,0
+16721,180000,male,1,2,33,0,0,0,-1,-1,-1,48252,39451,20027,15000,14958,-42,9024,1104,15000,14958,0,0,0
+16722,80000,male,3,1,42,-2,-2,-2,-2,-2,-2,-1590,-6256,-10922,-15588,-20254,-24920,4666,4666,4666,4666,266,0,0
+16723,150000,male,2,2,36,2,3,2,2,2,2,87021,86708,88909,90352,91355,93241,2000,4500,3800,3400,3500,3900,0
+16724,20000,male,2,2,37,-1,-1,0,0,0,0,830,17597,17840,16342,16428,18167,17597,1332,1134,1000,2000,0,0
+16725,300000,male,1,1,42,-1,-1,-1,-2,-2,-2,1653,1734,0,0,0,0,1734,0,0,0,0,0,0
+16726,30000,male,2,2,35,1,3,3,2,0,0,25601,26886,26185,25470,25751,27179,2000,0,0,1000,2000,1000,0
+16727,140000,male,2,1,49,0,0,0,0,0,0,35815,36800,37344,37933,38522,38519,1590,1926,1911,1500,1541,1559,0
+16728,80000,male,1,1,36,1,2,3,2,-1,-1,8415,10305,9979,1261,1261,1261,2181,0,0,1261,1261,1261,1
+16729,20000,male,2,1,45,0,0,0,0,-2,-2,13243,11699,12372,0,-800,0,1500,5017,0,0,800,0,0
+16730,70000,male,2,1,35,0,0,0,0,0,0,69388,70480,66646,69641,46458,50679,3439,3237,4938,1693,5000,2200,1
+16731,320000,male,2,2,36,0,0,0,0,0,0,318022,321560,150062,139555,116315,106541,10810,4746,4241,3275,3265,2865,0
+16732,80000,male,2,1,46,0,-1,-1,2,-1,0,31290,780,390,780,780,390,780,390,0,1560,0,390,0
+16733,50000,male,2,1,33,0,0,0,0,0,0,28086,29088,25692,24336,20243,18995,1500,2000,1410,1000,1000,1000,0
+16734,80000,male,2,1,41,0,0,0,0,0,0,15824,12781,9994,10704,9201,6275,2000,2000,4000,1000,1000,1000,0
+16735,110000,male,3,2,38,0,0,0,0,0,0,52708,51021,51166,42718,42183,40909,2469,2119,1857,1418,1390,1408,0
+16736,50000,male,2,1,45,0,0,0,0,0,0,49573,49417,49085,33156,19344,18930,2245,1652,1497,10580,685,704,0
+16737,50000,male,3,1,42,2,0,0,2,0,0,10343,12161,15061,14400,16000,18000,2000,3100,0,2000,2000,0,1
+16738,20000,male,2,1,38,0,0,0,0,0,0,14966,16278,17012,17992,18350,18738,1565,1299,1279,637,663,1469,0
+16739,120000,male,1,1,42,2,2,0,0,2,0,63598,61987,64373,69164,67453,72997,0,4000,6500,0,6639,4000,0
+16740,30000,male,2,2,37,0,0,0,0,0,0,23422,24425,25463,26453,26987,28760,1397,1435,1425,959,2201,1200,0
+16741,50000,male,2,3,34,0,0,0,0,0,0,8603,7757,8742,6041,5383,0,1200,1141,1006,0,0,0,0
+16742,100000,male,3,2,35,1,2,0,-1,-1,-1,23704,21774,21818,1261,1261,1261,0,2000,1261,1261,1261,1651,1
+16743,50000,male,2,2,35,3,2,2,2,2,-1,150,150,150,150,150,805,0,0,0,0,805,43340,0
+16744,30000,male,2,2,34,0,0,0,0,-2,-2,17803,19126,19500,0,0,0,1626,1000,0,0,0,0,0
+16745,40000,male,2,1,38,3,2,0,0,2,0,38291,37380,38180,40524,39720,39860,0,1706,3050,0,1565,1278,1
+16746,190000,male,2,1,39,2,2,2,2,0,0,166611,170196,172122,167858,171192,174937,7820,6100,0,6127,6503,6500,1
+16747,10000,male,3,1,39,1,2,0,0,0,0,10866,10094,9212,9633,9550,9334,0,1201,1062,254,288,365,1
+16748,50000,male,3,1,43,0,0,0,0,0,0,50444,49654,49921,50512,20071,20277,2000,2050,1641,1000,1000,1000,0
+16749,20000,male,2,2,34,0,0,0,2,0,0,17676,17650,18740,18373,18768,19315,2000,2500,1000,1000,1000,2000,0
+16750,120000,male,3,2,37,-2,-2,-2,-2,-2,-2,2284,2007,1371,4639,360,2650,2007,1371,4639,360,2650,1947,0
+16751,50000,male,3,2,43,0,0,0,0,-1,0,50517,48230,42674,4593,18007,18230,2015,1882,2119,45800,662,1000,0
+16752,310000,male,1,2,31,0,0,0,0,0,0,279711,266417,271746,260673,199746,182994,10143,24932,10440,6265,6275,5830,0
+16753,240000,male,3,2,45,1,2,0,0,0,0,221341,213264,207403,201331,195040,188968,7000,7500,7300,7000,7000,5869,0
+16754,50000,male,2,1,47,1,-1,2,2,-1,-1,-658,46342,25600,-400,40000,0,47000,0,0,20400,0,0,1
+16755,210000,male,1,2,40,-1,-1,-1,-1,-1,-1,1535,2652,179,1326,1326,1326,2652,179,1326,1326,1326,4182,1
+16756,60000,male,2,1,31,1,2,2,2,0,0,16253,15695,18440,17838,17417,22102,0,3000,0,1000,5000,1000,0
+16757,20000,male,2,2,31,0,0,0,0,2,2,13192,14202,15237,17164,17294,16110,1230,1265,2192,694,0,3134,1
+16758,50000,male,2,2,43,0,0,0,0,0,0,50785,48709,50981,45793,46555,38816,3000,4414,1500,1042,2000,0,1
+16759,30000,male,2,2,39,0,0,0,0,0,0,24065,25660,26257,27641,29335,10493,2005,2000,2000,2000,1000,1000,1
+16760,60000,male,1,2,29,1,2,2,0,0,2,43434,44522,43222,43588,46564,47369,2100,0,1708,4000,2000,1903,1
+16761,90000,male,2,2,29,0,0,0,-2,-2,-2,70559,51550,0,0,0,0,3000,0,0,0,0,0,0
+16762,30000,male,2,1,32,0,0,0,0,0,2,12452,13439,14420,15838,17331,16973,1500,1500,2000,2000,0,3600,1
+16763,30000,male,2,2,37,3,2,2,7,7,7,2379,2379,2379,2379,2379,2379,0,0,0,0,0,0,1
+16764,220000,male,3,1,39,2,2,2,2,2,2,175808,179399,183039,185541,187984,191837,8000,8000,7000,7000,7000,0,1
+16765,250000,male,5,1,39,-2,-2,-2,-2,-2,-2,14310,3697,0,0,0,0,3700,0,0,0,0,0,0
+16766,450000,male,1,1,42,-1,0,-1,-1,-1,-1,2549,20499,2499,2499,0,11071,20449,2499,2499,0,11071,780,0
+16767,30000,male,2,2,34,2,0,0,4,3,2,18402,19785,24633,23961,23289,22779,2000,5500,0,0,0,3400,0
+16768,220000,male,2,1,37,0,0,0,0,0,0,13429,15688,17922,20111,22261,24392,2500,2500,2500,2500,2500,2500,0
+16769,300000,male,1,2,30,-2,-2,-2,-2,-2,-2,901,901,901,1075,0,66,901,901,1075,0,66,66,0
+16770,500000,male,2,2,30,0,0,0,0,0,0,135634,135796,133712,136069,67837,69514,5034,6000,5355,3500,2513,5000,0
+16771,20000,male,2,2,34,1,2,0,0,0,0,15095,14459,12607,16430,19230,0,0,6000,5000,3000,0,0,0
+16772,110000,male,2,2,32,0,0,0,0,0,-2,42015,38897,29059,20799,-1961,-1961,1575,1377,1007,0,0,66296,0
+16773,10000,male,3,1,41,1,4,3,2,0,0,10711,10399,10092,9700,10000,9900,0,0,0,302,0,0,0
+16774,20000,male,2,2,47,1,2,2,2,0,0,8557,8271,11127,10657,11178,11840,0,3000,0,1000,1000,1900,1
+16775,230000,male,2,1,34,-1,-1,-1,-1,-1,-1,1344,-6,2190,3475,1791,2993,0,2196,3485,1796,3002,2601,0
+16776,20000,male,2,2,35,1,2,2,2,2,2,15668,15119,17976,19088,18500,20712,0,3108,1700,0,3500,0,1
+16777,50000,male,2,1,38,-1,-1,-1,-1,0,-1,1930,305,6270,6396,6596,3488,305,6270,6396,2200,3488,0,0
+16778,200000,male,1,2,40,0,0,0,0,0,0,66052,68994,70825,73902,74943,76996,3800,3300,4000,2600,3000,3000,0
+16779,80000,male,2,1,37,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,3000,0,0,0,0,0,0
+16780,50000,male,3,2,43,-1,-1,-1,0,-1,-1,4166,4166,4216,4166,4166,4166,4166,4216,4116,4166,4166,4166,0
+16781,50000,male,2,1,49,1,2,0,0,0,0,16747,16181,17912,19606,20969,25302,0,2000,2000,2000,5000,0,1
+16782,110000,male,1,2,29,0,0,0,0,0,0,110721,111242,105199,104587,49001,45093,3938,5720,3078,2000,2000,2000,1
+16783,110000,male,2,1,38,0,0,0,0,0,0,42617,42229,42214,41405,40846,40385,1678,2023,1574,1375,1468,1649,0
+16784,220000,male,2,1,36,0,0,0,0,0,0,87431,114959,110700,58674,50247,85500,50005,20010,2481,20000,55827,34675,0
+16785,140000,male,3,1,38,0,0,0,0,0,0,138329,138072,136377,106241,96986,94665,6806,4744,4546,3672,3602,4006,0
+16786,50000,male,2,2,43,0,0,0,0,-2,-2,34326,34110,3552,0,0,0,3000,3505,0,0,0,0,0
+16787,100000,male,2,1,40,2,2,2,2,2,0,70762,69025,74489,78660,76797,78404,0,6600,6000,0,3000,3100,1
+16788,20000,male,1,2,38,0,0,0,0,0,0,15255,16507,16842,15151,16741,20540,5006,4015,2006,7137,18000,202,1
+16789,50000,male,3,2,32,0,0,0,0,0,0,49760,51105,48516,19078,19220,19514,2189,1600,1600,700,700,857,1
+16790,40000,male,2,2,33,0,0,-2,-2,-2,-2,23330,0,0,0,0,0,0,0,0,0,0,0,0
+16791,180000,male,2,1,34,-1,-1,-1,-1,-1,-1,13067,6170,3439,1193,381,1516,6170,3444,1193,381,1516,542,0
+16792,80000,male,3,2,34,0,0,0,0,0,0,45876,46565,47967,48804,49624,50031,1752,2154,1991,1811,1742,2000,0
+16793,30000,male,2,2,34,0,0,0,0,0,0,26774,28014,29248,29254,19837,14793,2000,1694,1200,8697,2000,1000,0
+16794,230000,male,2,1,35,0,0,-1,-1,-1,0,30798,28806,2425,2425,3850,2425,1000,2425,2425,3850,1000,15244,0
+16795,20000,male,6,2,41,0,0,0,2,0,0,20101,20086,20221,19627,18948,0,1318,1973,1000,600,0,0,0
+16796,350000,male,3,1,44,-1,-1,-1,-1,-1,-2,2161,7230,3301,4301,15,684,7426,3306,4301,15,684,2713,0
+16797,20000,male,2,1,38,1,2,2,2,2,2,9599,9296,11813,11327,12137,11799,0,2676,0,1000,0,582,0
+16798,130000,male,2,2,36,0,0,0,0,0,-1,91016,36706,19802,11515,4261,45718,1848,1394,1015,99,47657,1681,0
+16799,50000,male,2,1,37,0,0,0,0,0,0,47832,49020,48272,49264,26206,27823,2000,3000,2000,1000,2000,2000,1
+16800,100000,male,2,2,44,0,0,0,-1,-1,0,20439,6882,2456,1537,1642,110,1068,1007,1741,1646,100,0,1
+16801,20000,male,2,1,40,0,0,0,2,0,0,12129,12919,14810,15267,15714,16308,1300,2100,1000,1000,1000,1000,1
+16802,150000,male,1,1,43,-2,-2,-2,-2,-1,-1,1000,0,0,1522,5014,1000,0,0,1522,5014,1406,0,0
+16803,230000,male,2,1,46,0,0,0,0,0,0,117255,109450,109794,109143,107996,109230,5400,5505,5505,4000,4500,5000,0
+16804,470000,male,1,1,38,0,0,0,0,0,0,33277,34292,38423,197773,202722,46980,1869,5000,162546,5783,1689,1977,1
+16805,50000,male,2,1,46,0,0,0,0,0,0,43719,44290,41245,42081,20328,20391,1700,1924,2015,1000,663,10000,0
+16806,120000,male,3,1,49,0,-1,-1,-1,-1,-1,119440,3844,2290,780,8190,4600,3844,2299,780,8190,4600,1081,1
+16807,20000,male,2,1,43,2,2,2,2,0,0,17233,18639,20035,19333,18135,14366,2000,2000,0,1000,500,1950,1
+16808,10000,male,2,1,45,1,2,2,2,2,0,7953,9164,8876,10009,7169,8842,1500,0,1500,0,3000,2000,0
+16809,50000,male,1,2,29,2,2,2,0,0,-2,7881,10415,3997,1047,0,0,3000,0,1000,0,0,0,1
+16810,360000,male,1,2,30,-2,-2,-2,-2,-2,-2,1246,17234,387,776,810,0,17328,388,779,814,0,0,0
+16811,100000,male,5,1,38,0,0,0,0,0,0,101330,100278,100733,96038,94646,96631,3824,4311,3648,3370,3492,3614,0
+16812,170000,male,1,2,36,-1,-1,-1,-1,-1,-1,8433,644,7567,0,499,576,644,7567,0,499,576,0,0
+16813,30000,male,2,2,43,2,2,2,2,2,2,14697,17332,16770,18483,17888,19097,3200,0,2300,0,1500,0,1
+16814,230000,male,1,1,37,1,-1,-1,2,-1,0,0,2062,5056,3050,3700,1900,2062,3050,0,3700,0,2436,1
+16815,150000,male,1,2,35,0,0,0,0,0,0,114997,118821,121362,124687,125223,98890,4884,5100,6000,3142,3300,3323,0
+16816,260000,male,2,2,37,-1,-1,-1,-1,-1,-2,3000,150,-850,300,-832,-832,150,0,1000,0,0,0,0
+16817,80000,male,3,1,48,0,0,0,0,0,0,76288,71659,67528,64035,60612,57532,3003,2403,3003,3001,2401,3109,0
+16818,20000,male,2,2,43,0,0,0,0,0,0,19656,30177,16263,17287,17699,18413,1300,2600,1300,700,1000,700,0
+16819,240000,male,1,1,36,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+16820,50000,male,2,1,40,1,2,0,0,0,0,49039,47949,49235,49577,17063,17634,0,2058,1400,762,1000,650,1
+16821,50000,male,1,2,45,0,0,0,0,0,0,42931,45556,43809,36493,20069,20210,6004,1805,1255,1003,1111,3002,0
+16822,100000,male,2,2,45,2,2,2,2,0,0,65781,60114,59478,54336,50640,49113,0,4817,6,1700,3650,0,1
+16823,20000,male,3,2,40,0,0,0,0,0,0,16884,17891,19078,19800,20000,0,1291,1478,1200,400,0,0,0
+16824,150000,male,1,1,41,2,2,2,2,0,0,116699,113358,124745,121249,124237,132252,0,14779,0,5000,10000,5000,1
+16825,230000,male,2,3,37,-1,0,0,0,0,-1,11770,16479,20474,26492,326,1056,10000,5000,16492,0,1056,326,0
+16826,20000,male,2,1,45,0,0,0,0,0,0,19473,19868,16749,17538,13840,7370,1896,1417,1206,284,147,4937,0
+16827,390000,male,2,2,33,0,0,0,0,0,0,30209,31193,31440,38001,48301,28131,1804,2561,8122,11000,20015,1002,0
+16828,80000,male,2,1,36,3,2,2,4,4,3,600,600,600,600,600,300,0,0,0,0,0,0,1
+16829,270000,male,1,2,35,1,-2,-2,-2,-2,-2,-12,-12,-12,-12,-12,-12,0,0,0,0,0,0,0
+16830,20000,male,2,1,37,0,0,0,0,0,0,15429,16436,17584,18166,8190,8190,1270,1418,1000,3144,0,0,0
+16831,150000,male,2,1,45,2,3,3,2,0,0,152180,157719,155368,123906,128597,105967,9500,2000,0,8000,9000,15000,0
+16832,50000,male,1,2,36,0,0,0,0,0,0,49750,48854,47892,49439,48630,49160,2100,2000,2500,2413,2000,1987,0
+16833,160000,male,1,1,47,1,2,2,2,2,3,58706,57384,59875,61518,65152,64074,0,3200,3000,5000,0,3000,1
+16834,360000,male,1,2,33,-2,-2,-2,-2,-2,-2,714,-68,-68,-68,4132,-2,7,0,0,4200,48,5500,0
+16835,150000,male,3,1,40,0,0,0,0,0,0,121544,123615,126733,130241,132466,134808,5000,4533,5000,3724,3829,3900,0
+16836,500000,male,1,1,46,0,0,0,0,0,0,11471,13270,14245,15199,20980,18255,2000,1500,1219,6000,1000,1000,0
+16837,220000,male,1,1,35,-1,-1,-1,-1,0,-1,753,6213,762,5106,700,1364,6220,762,5806,0,1364,500,1
+16838,280000,male,1,1,46,1,-2,-1,-1,-1,-1,0,0,26330,6880,797,4898,0,26330,6880,797,4898,3680,1
+16839,30000,male,1,2,38,1,2,0,0,0,0,96258,69707,71904,62630,57406,46231,0,4000,5000,8000,1460,40000,0
+16840,500000,male,3,2,36,0,-1,-1,-1,-1,0,9001,1687,1409,16200,19880,9110,1702,1422,16281,20062,500,25070,0
+16841,360000,male,2,1,40,-2,-2,-2,-2,-2,-2,0,256,0,425,1529,0,256,0,425,1529,0,590,0
+16842,400000,male,1,1,38,1,2,2,2,-1,0,36838,26214,16199,3320,111353,103569,65,3383,20,112679,3699,3567,0
+16843,350000,male,2,1,43,-2,-2,-2,-2,-2,-2,6088,3405,7763,20573,2367,11486,3436,7813,20604,2376,11493,13885,0
+16844,20000,male,2,2,36,1,4,3,3,2,3,15557,15015,16079,15528,16477,15930,0,1600,0,1500,0,0,1
+16845,110000,male,2,1,36,1,2,0,0,0,0,112875,108481,108418,105373,71733,61020,0,4308,3196,2536,2322,2001,0
+16846,30000,male,3,2,31,1,3,2,0,0,0,31405,30588,26860,21165,21281,22938,0,0,1646,762,2000,0,1
+16847,20000,male,2,2,45,0,0,0,0,0,0,19856,20007,20319,20638,20025,15463,1316,1458,1277,494,427,4000,1
+16848,180000,male,1,1,42,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+16849,140000,male,2,2,48,0,0,2,2,2,0,119965,124944,124901,129675,121292,121343,8506,4706,9463,16,5002,10006,0
+16850,300000,male,1,2,43,-1,-1,-1,-1,0,0,163,2508,8534,14378,16245,19047,2508,8534,14378,4000,6550,0,0
+16851,240000,male,3,2,41,0,0,0,0,0,0,218435,205981,187258,189435,145032,147370,5778,17020,5268,4179,4903,4236,0
+16852,160000,male,2,1,41,-1,-1,-1,-1,0,-1,326,1306,326,79652,326,49326,1306,652,79652,0,49326,326,1
+16853,500000,male,2,1,38,0,0,0,0,-1,0,49201,59372,49677,49515,42568,48268,30107,10026,7241,50091,25000,5078,0
+16854,50000,male,2,1,45,0,0,0,0,0,0,50297,49944,48030,32097,31450,29695,1939,1547,1464,1078,1225,1500,0
+16855,50000,male,2,1,39,1,2,2,3,2,0,26094,25376,29548,28786,28024,28772,0,4600,0,0,1200,1200,0
+16856,100000,male,0,2,37,0,0,-2,-2,-2,-2,7642,0,0,0,0,0,0,0,0,0,0,0,0
+16857,150000,male,2,2,38,-2,-2,-2,-2,-2,-2,6682,2659,2178,1536,626,621,2669,2184,1542,626,621,1591,0
+16858,290000,male,1,1,36,1,-2,-1,-1,0,0,0,0,568,16166,16726,17427,0,568,16166,1000,1000,1000,0
+16859,20000,male,2,2,37,0,0,0,0,0,0,15612,16927,17794,18550,18850,0,1577,1444,1200,500,0,0,1
+16860,50000,male,2,1,33,0,0,0,0,0,0,49916,50240,26443,30768,10778,10989,2000,2000,5000,1000,1000,0,0
+16861,80000,male,2,1,39,0,0,0,0,0,0,37712,38713,39750,40771,42087,43409,1626,1663,1684,2000,2000,2000,0
+16862,140000,male,2,1,42,0,0,0,0,0,0,139227,120780,123390,127557,117961,120570,4325,4558,6300,4221,4500,4600,0
+16863,260000,male,2,2,33,0,0,0,0,0,-1,19152,19934,21693,25492,29876,416,5000,5000,5000,5000,416,566,0
+16864,150000,male,1,2,37,2,2,2,2,2,2,36148,36858,35985,38687,37765,40352,1600,0,3300,0,3200,1700,1
+16865,300000,male,2,2,37,-2,-2,-1,-1,-1,-1,11669,27719,63037,1137,3916,4803,27963,63354,1140,3939,4817,5692,0
+16866,120000,male,1,2,33,1,-2,-2,-1,-1,-2,0,0,0,600,0,0,0,0,600,0,0,0,0
+16867,90000,male,2,2,38,0,0,0,0,0,0,17621,18718,19809,20874,21228,21736,1700,1700,1700,1000,1000,1000,0
+16868,200000,male,1,1,42,-2,-2,-2,-2,-2,-2,-200,-200,-200,-200,2472,0,0,0,0,2672,0,1862,0
+16869,140000,male,1,2,32,0,0,0,0,2,0,46134,50890,59395,73225,56999,61050,5890,9395,15000,0,5000,7086,1
+16870,50000,male,2,1,45,1,2,0,0,0,0,49436,48342,49140,49451,20921,20058,0,2065,1376,701,705,706,1
+16871,200000,male,0,2,40,1,-2,-1,-1,-1,-2,0,0,200,1000,0,0,0,200,1000,0,0,0,0
+16872,280000,male,1,2,33,0,0,0,0,0,0,167272,182401,196314,170380,187450,204331,18000,18000,10000,20000,20000,20000,0
+16873,430000,male,1,2,34,0,0,0,0,0,0,416678,424740,434836,378571,228568,232668,16005,18016,16005,9005,9013,8010,0
+16874,190000,male,3,1,34,0,0,0,0,0,0,187780,189924,192232,186472,190262,193403,6781,7071,6744,6866,7203,7182,0
+16875,50000,male,3,2,38,1,2,0,0,0,0,38811,33993,35365,15426,17157,21842,0,2077,2000,2000,5000,0,0
+16876,110000,male,2,2,40,0,0,0,0,0,0,106455,109191,110937,108869,43207,42954,6000,5000,3814,2000,1600,1600,0
+16877,20000,male,3,2,46,0,0,0,0,0,0,9784,11195,12542,13619,14415,15281,1885,1838,1300,1000,1074,183,0
+16878,100000,male,3,2,45,-1,-1,0,0,0,0,10380,71944,72486,73717,74402,73187,72024,4028,6006,3018,3000,3008,0
+16879,370000,male,1,2,37,-2,-2,-2,-2,-2,-2,12913,3409,2070,1895,2214,29613,3409,2070,1895,2214,29613,535,0
+16880,320000,male,4,2,36,-2,-2,-2,-2,-2,-2,2860,16021,0,0,0,0,16021,0,0,0,0,0,0
+16881,80000,male,1,1,33,0,0,0,0,0,0,45524,62969,36217,36386,41596,27635,2000,10000,2000,6500,8000,5000,0
+16882,100000,male,1,1,35,1,-2,-2,-2,-2,-1,0,0,0,0,0,970,0,0,0,0,970,830,1
+16883,180000,male,2,1,42,2,0,0,0,0,0,26883,27884,28958,29864,30632,31274,1452,1526,1432,1200,1072,1326,1
+16884,90000,male,3,1,46,0,0,0,0,0,0,91092,91229,66730,44850,29257,24755,4000,3000,2000,638,2000,500,0
+16885,170000,male,2,1,39,0,0,0,0,0,0,142509,143339,125864,112300,110371,113685,5000,20000,6000,5000,5000,3000,0
+16886,80000,male,2,1,50,0,0,0,0,0,0,72269,75007,67150,44374,48974,35396,4000,3000,5000,37000,2000,2000,0
+16887,20000,male,3,1,50,0,0,0,0,0,2,19657,20141,17703,18954,19582,19866,1273,1321,1572,1200,700,400,0
+16888,50000,male,2,2,60,0,0,0,0,0,0,51078,50649,36384,32913,9397,9755,2013,2505,2100,500,500,500,0
+16889,20000,male,2,2,50,1,2,3,2,2,3,10056,12571,12086,11595,13197,12700,3000,0,0,1800,0,0,1
+16890,390000,male,1,1,64,0,0,0,0,0,0,38383,38134,38679,39689,40472,41320,1608,1647,1657,1440,1496,1518,0
+16891,80000,male,3,1,59,0,0,0,0,0,0,78651,80199,82036,82031,81535,81586,3454,3725,3722,3228,3281,3374,0
+16892,350000,male,2,1,51,0,0,0,0,0,0,343842,107315,355925,353074,223209,207743,15000,340000,20000,9000,8000,14000,0
+16893,320000,male,1,1,51,0,0,0,0,0,0,483184,290784,277482,282869,253903,249866,20373,13000,11160,8418,8325,8602,0
+16894,50000,male,3,1,52,2,2,2,2,4,3,36428,37530,38630,41774,40806,41357,2000,2000,4086,0,1500,1000,0
+16895,260000,male,2,1,62,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,780,390,390,390,390,0
+16896,200000,male,2,1,55,0,0,0,0,0,0,169287,172655,178858,180101,173138,176920,6177,8982,6758,6257,6633,6115,0
+16897,30000,male,2,1,49,-1,-1,2,-1,-1,-2,390,1358,578,340,-50,-440,1936,0,340,0,0,0,1
+16898,20000,male,2,2,55,0,0,0,0,0,2,7357,8270,9301,10440,11193,10575,1290,1321,1460,1213,1,357,0
+16899,320000,male,2,1,50,0,0,0,0,0,0,277884,281848,288726,293969,247873,250870,10100,11422,11006,10011,9091,7026,0
+16900,30000,male,3,3,52,1,2,2,3,2,2,23819,23144,28066,27321,27571,29300,0,5637,0,1000,2332,0,1
+16901,90000,male,3,2,50,0,0,0,0,0,0,80926,76495,71616,60177,54440,45788,3451,3243,2390,1840,1690,1954,0
+16902,180000,male,2,1,52,-2,-2,-1,0,0,-2,360,345,139740,15631,2777,2160,345,139770,1000,2777,2160,3424,0
+16903,50000,male,1,2,50,0,0,0,-1,-1,-1,47155,23882,10054,3122,8471,6315,2000,4038,3129,8471,12508,19216,0
+16904,60000,male,2,1,52,0,0,0,0,0,0,58682,56893,58170,56539,29425,28013,3762,3000,2000,1000,1000,1500,0
+16905,50000,male,2,2,53,0,0,0,0,0,0,48353,48005,49115,48688,48927,49106,2000,2581,1900,1919,1887,1127,0
+16906,50000,male,3,1,55,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,390,0
+16907,20000,male,3,1,53,3,2,2,7,7,7,2255,2255,2255,2255,2255,2255,0,0,0,0,0,0,1
+16908,80000,male,3,1,53,1,2,0,0,0,0,9637,7251,8026,3878,3618,0,0,1088,1000,1000,958,1210,0
+16909,350000,male,1,1,58,-2,-2,-2,-2,-2,-2,500,4063,-25,-25,-25,-25,4063,0,0,25,0,0,0
+16910,200000,male,2,1,52,0,0,0,-2,-2,-2,150603,153900,0,0,0,0,7000,0,0,0,0,0,0
+16911,360000,male,2,1,50,-2,-2,-2,-2,-2,-2,28595,0,2500,0,0,0,0,2500,0,0,0,0,0
+16912,20000,male,3,2,59,2,2,2,2,4,3,16357,19074,18482,20329,19616,19303,3000,0,2300,0,0,0,1
+16913,90000,male,3,1,55,0,0,0,0,0,0,30789,31791,32827,33877,35311,36738,1514,1550,1600,2000,2000,2500,0
+16914,370000,male,3,2,66,0,0,0,0,0,0,258397,236235,204503,201259,157159,152357,9661,9599,8683,6970,56032,6025,0
+16915,180000,male,1,2,51,0,0,0,0,0,2,134327,123211,118587,118482,119952,110003,6015,6005,5702,7509,14,5011,1
+16916,20000,male,3,3,59,2,0,0,0,0,0,15281,16316,17347,18055,18755,20299,1596,1600,1300,1000,2000,0,1
+16917,30000,male,1,1,57,2,0,0,2,3,2,22957,23978,26749,28085,27344,26768,1707,3478,2073,0,0,1129,1
+16918,60000,male,3,1,54,0,0,0,0,0,-1,58432,58312,59388,29941,1341,1876,20000,3000,3000,1000,2000,25000,0
+16919,330000,male,2,1,52,0,0,0,0,0,0,120212,119507,118891,107722,96842,85015,5000,5000,5000,5000,3500,5000,0
+16920,230000,male,2,1,51,2,0,0,0,0,0,204643,197993,84076,77766,70066,62865,5805,2965,3500,2600,2500,1901,0
+16921,50000,male,3,1,57,2,0,0,0,0,0,18275,18494,16978,16282,17363,8833,1509,2003,1200,1281,1512,2308,0
+16922,30000,male,5,1,56,0,0,0,-1,-1,-1,29060,23546,0,1473,780,0,1030,0,1473,780,0,1320,0
+16923,80000,male,1,1,53,0,0,0,0,0,-1,39298,40061,40502,15948,15915,390,1809,2030,1476,833,390,390,0
+16924,50000,male,2,1,58,2,2,2,2,0,0,8728,10726,11257,11772,12574,13369,2152,1000,1000,1000,1000,1000,1
+16925,10000,male,2,1,50,1,2,0,0,0,0,10171,8150,8446,8067,8227,8400,2,1281,1134,294,305,1000,0
+16926,170000,male,5,1,56,0,0,0,0,0,0,86229,134760,132615,131213,129293,128379,55000,5012,5000,4516,5000,5000,0
+16927,50000,male,2,1,61,2,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,390,1
+16928,20000,male,3,2,57,2,0,0,2,3,2,9918,11442,15926,16668,16109,15709,2000,5000,1300,0,0,1000,0
+16929,20000,male,2,2,50,-1,-1,0,0,0,-2,1956,16568,15586,12800,0,0,16573,1551,5060,0,0,0,0
+16930,190000,male,3,1,50,0,0,0,0,2,0,102648,106410,108770,115325,112063,114484,5400,5491,9800,0,4300,8700,0
+16931,270000,male,1,1,50,2,4,3,3,2,2,213616,208784,212058,207226,202394,231339,0,8000,0,0,32236,3000,0
+16932,480000,male,2,2,51,-2,-2,-2,-2,-2,-2,2900,17646,0,15620,5200,1355,17646,0,15620,5200,1355,2750,0
+16933,380000,male,3,1,52,0,0,0,0,0,0,145445,144908,147940,151488,154975,159477,6000,5362,6000,6000,7000,10000,0
+16934,20000,male,3,1,49,0,0,0,-2,-2,-2,10823,11180,0,0,0,0,1400,0,0,0,0,0,1
+16935,50000,male,2,1,48,2,2,2,2,2,2,42807,44489,45470,46424,45377,48441,2700,2000,2000,0,3800,0,1
+16936,280000,male,3,1,52,0,0,0,0,0,0,247868,251246,258032,263163,267083,272706,9000,10842,10928,9700,10000,10125,1
+16937,240000,male,1,1,65,0,0,0,0,0,0,146696,149707,151780,152373,145763,148276,6930,6000,6000,6000,5500,6000,0
+16938,110000,male,2,1,54,2,2,2,2,2,2,55753,56839,58039,58792,59620,60819,2600,2700,2300,2400,2300,2400,1
+16939,200000,male,1,1,53,0,0,0,0,0,0,66012,68099,70387,71929,58133,40500,2500,2700,2242,2093,1300,0,0
+16940,140000,male,1,1,56,-1,-1,-1,-1,-1,-1,1862,7465,1744,1700,1700,4584,7465,1744,1700,1700,4584,1550,0
+16941,260000,male,1,1,53,0,0,0,0,0,0,73223,66672,64075,63922,60089,53326,2001,2048,2129,1660,1568,1997,0
+16942,130000,male,2,2,57,-1,2,2,2,0,-1,4820,3186,7924,6210,2560,7380,0,6210,0,0,7380,11720,0
+16943,50000,male,3,1,54,0,0,0,0,0,2,37238,38387,39589,19533,20535,19690,1771,1973,1307,1699,0,705,0
+16944,300000,male,1,2,55,-2,-2,-2,-2,-2,-2,390,601,4247,5484,5125,1752,601,4285,5500,5151,1757,12918,1
+16945,30000,male,3,1,54,3,3,3,2,0,0,29391,30224,29472,56952,28476,28296,1600,0,0,600,600,1000,1
+16946,50000,male,3,2,58,-1,0,0,0,0,0,14628,15638,16383,17837,15791,15988,1558,1303,1757,711,600,1500,0
+16947,450000,male,1,1,67,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+16948,170000,female,2,2,27,0,0,0,0,0,0,48947,35777,37589,29079,27134,27734,10000,3037,5018,5006,3024,3309,0
+16949,60000,female,2,2,29,2,2,2,2,0,0,40351,41387,42117,41140,42110,42988,2000,1685,0,1655,1707,1718,1
+16950,30000,female,3,2,26,0,0,0,0,0,0,30244,29640,30451,29391,30042,28436,1701,1600,1500,1095,1500,2000,0
+16951,200000,female,1,2,28,-1,-1,-1,-1,-1,-1,3494,2516,2228,6338,2290,3620,2516,2228,6338,2290,3620,6504,0
+16952,30000,female,2,1,30,1,3,2,2,2,2,28720,27977,27248,29281,28511,30952,0,0,2800,0,2900,0,0
+16953,100000,female,1,1,30,1,-1,-1,-1,-2,-1,0,851,1585,-1,-1,2994,851,1589,0,0,2995,0,1
+16954,30000,female,3,1,35,1,2,0,0,0,0,29622,28852,29777,29478,30290,27803,0,1700,1700,1500,1500,1500,0
+16955,150000,female,3,2,24,0,0,0,0,-1,-1,66347,15768,10874,4466,2125,4421,1827,1777,1175,2125,4421,21607,0
+16956,210000,female,1,2,25,-1,-1,-2,-1,0,0,100,0,0,5933,8698,11572,0,0,5933,3000,3000,7444,0
+16957,300000,female,1,2,28,-1,-1,-1,-1,0,0,788,736,736,1025,27289,28142,1000,736,1025,27000,2000,1100,0
+16958,50000,female,3,2,22,0,0,0,0,0,0,18108,18512,19468,16989,17326,17748,1400,1300,2800,619,700,1000,0
+16959,360000,female,2,1,33,-1,-1,-1,0,0,-2,21730,20000,8660,10013,-24,-24,20000,8660,1510,0,0,5189,0
+16960,240000,female,1,2,28,0,0,0,0,0,0,233441,236496,242446,207633,197644,193724,9000,10307,9014,6029,6014,6034,0
+16961,260000,female,1,2,30,-2,-2,-2,-2,-2,-2,893,2778,4052,977,977,452,2946,4052,977,977,452,2097,1
+16962,140000,female,1,1,33,2,0,0,0,0,0,55563,55222,54293,53294,51558,52800,2520,2510,2450,1676,1900,1826,1
+16963,10000,female,1,2,21,0,0,0,2,0,0,8278,7888,10084,9699,9699,0,1304,2500,6,0,0,0,0
+16964,50000,female,3,2,22,0,0,-1,0,-1,-1,46811,40458,50622,42132,15311,19387,1036,50622,1149,15311,19387,385,0
+16965,50000,female,2,2,22,0,0,2,2,2,0,37253,38075,32982,31857,29647,29585,5500,6194,1200,0,2000,2000,0
+16966,50000,female,2,2,22,2,2,2,2,2,2,36665,40362,39441,41318,13996,14974,4626,0,3003,0,1206,0,1
+16967,140000,female,1,2,23,0,0,2,0,0,0,90289,91739,89623,82030,84792,84794,10007,1038,3900,5000,4000,5000,1
+16968,20000,female,2,2,27,0,0,0,0,0,0,7486,7826,9574,12101,17128,13395,2000,4574,5101,5128,3395,5385,0
+16969,50000,female,2,2,24,2,0,0,0,0,0,48690,48384,49450,49706,9472,9671,2078,2144,1400,339,352,500,1
+16970,30000,female,3,2,23,4,4,3,2,0,0,15947,15410,14881,14124,14172,1270,0,0,0,48,0,0,0
+16971,50000,female,2,2,22,0,0,-1,-1,-1,-1,8585,0,880,0,150,528,0,880,0,150,528,25775,0
+16972,130000,female,2,2,23,-2,-2,-2,-2,-2,-2,-169,3464,7569,8130,544,148,4739,22271,8526,544,148,72392,0
+16973,80000,female,1,2,23,-1,-1,-1,-1,-1,-1,390,390,390,390,390,540,390,390,390,390,540,390,0
+16974,30000,female,2,2,21,0,0,0,0,0,0,28028,25278,23485,27339,25091,0,2019,2511,10000,502,0,0,0
+16975,50000,female,2,2,22,0,0,0,0,0,0,24775,25971,26666,27324,29596,26226,2001,1501,1501,3001,919,3501,0
+16976,20000,female,2,2,22,1,-1,-1,-2,-2,-2,3843,396,0,0,0,0,2000,0,0,0,0,0,1
+16977,90000,female,3,2,22,0,0,0,0,0,0,68663,65244,52452,35001,29675,28667,4341,2068,3315,1029,1334,1673,0
+16978,30000,female,1,2,22,0,0,0,0,0,0,29362,29819,30582,28983,27947,26630,1800,3000,1404,559,533,1000,0
+16979,50000,female,2,2,22,2,2,2,3,2,2,19091,18487,22219,21520,20108,18207,0,4042,0,648,0,921,0
+16980,150000,female,1,2,24,1,-1,-1,-1,-1,2,-200,200,200,200,550,550,600,200,200,550,200,0,0
+16981,20000,female,3,1,24,0,0,0,0,2,2,10994,12006,15967,17576,16996,18223,1500,4500,2187,0,1500,0,1
+16982,30000,female,1,2,24,0,-1,-1,0,0,0,30900,410,28883,24291,27503,28142,410,28883,1710,6000,1200,1175,1
+16983,50000,female,2,2,24,2,2,2,2,2,2,49397,50388,51450,47867,51045,51118,2100,2200,0,4300,2100,0,0
+16984,400000,female,1,2,30,0,0,0,0,0,0,153655,156309,137701,191514,121092,166173,26876,10134,85450,10140,88097,10086,0
+16985,20000,female,2,2,23,0,0,0,0,0,0,16027,16740,17451,18141,18239,18302,1600,1600,1600,1000,663,654,0
+16986,70000,female,2,2,23,1,2,0,0,0,-1,72306,70543,63061,61520,63080,2900,4,2407,2041,2387,2905,72697,0
+16987,20000,female,1,2,23,-1,-1,0,0,0,0,6916,13914,10130,6165,6165,6315,14000,1145,950,0,150,6000,0
+16988,30000,female,1,2,23,0,0,0,0,0,0,27013,26590,26249,22721,17650,25602,1470,1889,1400,384,1000,0,0
+16989,30000,female,2,2,23,0,0,0,0,0,2,28138,22517,24148,25437,28391,27801,2000,2000,2000,3700,0,1500,0
+16990,80000,female,1,2,24,2,2,0,0,0,0,48597,49259,46209,46574,47230,48282,1800,1800,1800,1800,1800,2000,1
+16991,80000,female,1,2,24,0,0,0,0,0,0,78862,71124,59692,58055,44578,45889,4000,3000,1844,1567,2000,2000,0
+16992,40000,female,2,2,24,0,0,0,2,2,0,33370,34413,37644,38026,36519,36724,1600,3800,1300,0,1400,1400,1
+16993,70000,female,2,2,23,0,0,0,0,0,0,44830,46185,47208,47241,48212,45849,2100,2079,2500,2000,2000,1700,0
+16994,10000,female,1,2,22,0,0,2,0,0,0,6967,9199,8908,9676,9680,8343,2523,0,1000,4,167,3535,1
+16995,60000,female,2,1,24,2,0,0,0,2,0,61434,59358,57781,62309,60435,55468,2850,2130,7050,0,3190,2100,1
+16996,50000,female,1,2,22,1,2,0,0,0,0,4434,4215,5241,6238,5979,7492,0,1103,1100,215,2000,1000,0
+16997,80000,female,2,2,23,0,0,0,0,0,0,6805,8449,10303,11737,10619,49872,2000,2000,2000,1000,40002,2009,0
+16998,70000,female,1,2,23,0,0,0,0,0,0,7668,8878,10077,11203,11320,11487,1500,1500,1600,600,500,600,1
+16999,30000,female,3,2,22,0,0,-1,0,0,-1,8922,6698,187,1187,0,1405,1275,187,1000,0,1405,623,0
+17000,30000,female,2,2,22,2,2,2,0,0,0,27201,27873,25406,23339,17869,15284,4000,0,2000,2000,1500,1000,1
+17001,20000,female,2,2,25,0,0,0,0,0,0,18825,18545,18606,18904,19433,18902,1300,1613,1301,830,698,822,1
+17002,50000,female,1,2,25,-1,-1,-1,-1,-1,-2,390,0,390,780,0,0,0,390,780,0,0,0,1
+17003,30000,female,2,2,29,0,0,0,0,0,0,26953,27412,27835,28215,28345,29055,1741,2000,1439,959,1500,1411,0
+17004,50000,female,2,2,24,0,0,0,0,0,0,50649,50607,49903,41083,29635,30261,1905,1801,1468,1043,1085,1193,0
+17005,50000,female,1,2,22,1,2,2,2,0,0,42611,41632,44069,37395,32284,32805,0,3509,0,1302,1191,1492,0
+17006,50000,female,3,2,23,2,2,2,2,2,2,41740,42755,43878,42877,45701,46720,2000,2100,0,3850,1900,1600,1
+17007,50000,female,1,2,23,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+17008,10000,female,1,2,23,3,2,2,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,1
+17009,10000,female,2,1,24,0,0,0,0,0,0,6902,7922,8939,9533,9692,9829,1142,1159,1140,692,829,1000,1
+17010,110000,female,2,2,24,-1,-1,-1,-1,-1,0,1183,1362,1352,1867,36986,40053,1362,1352,1867,36986,5000,3000,0
+17011,140000,female,2,2,24,0,0,0,0,0,0,34814,35806,36823,36285,36683,37150,1887,3000,1580,1294,1355,5000,0
+17012,20000,female,1,2,24,0,0,-1,-1,-1,2,19000,15114,5831,14784,961,311,1000,5831,14784,961,0,15735,0
+17013,30000,female,1,2,24,0,0,0,0,0,0,25288,27549,28784,28708,27916,30333,3000,2000,1800,2000,3000,2500,0
+17014,100000,female,2,2,24,2,2,2,2,2,3,93330,95285,96674,97983,102803,100960,4400,3800,3800,7300,0,679,1
+17015,20000,female,1,2,24,2,-1,-1,-1,-1,-1,1150,1661,-29,2992,3664,5364,1661,0,3021,3664,5364,0,0
+17016,190000,female,2,2,25,0,0,0,0,0,0,26023,24995,23130,28126,26104,18840,1615,1200,26703,2104,7000,11747,0
+17017,300000,female,2,2,24,0,0,0,-1,-1,-1,26158,25673,14290,7490,2962,0,5673,7000,7490,2962,0,0,0
+17018,50000,female,2,1,26,2,2,2,2,2,2,46800,47830,48868,49470,48003,50755,2100,2100,1701,1,3906,0,1
+17019,30000,female,3,2,26,0,0,2,0,0,0,30467,30403,30546,30255,30096,30353,2173,1613,1453,946,997,1118,0
+17020,20000,female,1,2,25,-1,-1,-1,-1,0,0,4541,0,724,18589,18985,19531,0,724,18589,1000,1000,1000,1
+17021,60000,female,2,2,25,0,-1,0,0,0,-1,3075,59808,58058,59679,5575,1733,61058,2186,5667,1200,2000,0,1
+17022,70000,female,2,1,25,0,0,0,0,0,0,67574,69876,56925,28421,8706,29275,3839,2000,3000,1100,28000,1180,0
+17023,60000,female,2,1,24,2,3,2,2,2,0,34708,33866,33041,35284,31602,32221,0,0,2900,0,1200,1409,1
+17024,60000,female,2,1,25,2,0,0,2,0,0,33598,34733,37460,36558,37945,38782,2000,3600,0,2000,1600,1600,1
+17025,30000,female,2,2,22,2,2,0,0,0,2,31331,24544,28267,30470,29284,25762,0,5600,3005,1200,0,5000,1
+17026,100000,female,2,1,24,2,0,0,0,-2,-1,68371,9015,3325,0,0,93737,1300,1000,0,0,94562,3700,1
+17027,70000,female,3,2,25,2,0,0,0,0,0,70963,71056,70850,70823,71006,70828,2527,2615,2500,3000,2600,3000,1
+17028,20000,female,2,2,22,0,0,0,0,0,-1,38391,20305,7992,13524,19320,8430,2608,2000,11200,9386,14500,10800,1
+17029,50000,female,2,2,22,0,0,2,0,0,0,38340,41362,34656,35004,35514,2582,3700,0,1200,710,52,1000,0
+17030,50000,female,3,1,22,2,2,2,2,2,2,40247,40189,43434,44316,45189,46214,900,3900,1900,1900,1900,3600,0
+17031,30000,female,2,1,22,0,0,0,0,0,0,14533,16534,17213,17723,17431,17882,3002,2002,1553,1002,2002,1000,0
+17032,30000,female,3,2,22,2,2,0,0,0,0,29793,29008,29047,29507,11609,11711,0,1687,1147,524,400,666,1
+17033,30000,female,2,2,22,0,0,0,0,0,0,25490,26494,27534,28177,28399,28655,1432,1472,1447,1001,1030,1059,1
+17034,60000,female,2,2,23,2,0,0,0,0,0,58900,60020,60195,60864,40512,39523,2717,2929,2429,1551,1567,1456,1
+17035,20000,female,2,1,22,0,0,0,-1,-1,0,19667,19974,5491,831,20088,19733,1500,1000,831,20500,1000,1100,1
+17036,50000,female,3,2,23,2,0,0,0,0,0,50653,49348,47995,40226,27828,28411,2190,2027,2204,996,1031,1047,0
+17037,30000,female,1,2,24,0,0,0,0,0,0,28049,27383,25728,26521,23593,21963,2000,1500,2000,1000,1000,1000,0
+17038,30000,female,1,2,23,0,0,0,2,2,0,29047,30062,29659,29274,18770,13960,1508,3016,1730,16,1001,1000,1
+17039,70000,female,1,2,24,1,2,0,0,0,0,19200,19079,17695,17791,15704,16257,500,1300,1240,600,1000,608,0
+17040,100000,female,2,2,24,0,0,0,0,-1,0,101614,99413,102252,89009,79853,80970,10000,17023,8942,86950,33000,7013,0
+17041,100000,female,2,2,24,0,0,0,0,-1,0,7094,8249,7911,17716,1002,1518,1439,2000,10070,1002,1000,500,0
+17042,250000,female,2,2,25,-1,-1,-1,-1,-1,-1,5211,5211,6282,4140,5211,5211,5211,6282,4140,5211,5211,5211,0
+17043,130000,female,2,1,25,0,0,0,0,0,0,127125,78165,79306,80974,83635,87287,4000,3000,3000,5000,5000,5000,0
+17044,50000,female,1,2,25,2,0,0,0,0,0,49052,48026,47361,44293,17807,18324,3006,2300,3064,1799,790,1100,1
+17045,250000,female,2,2,26,0,0,0,2,2,2,124353,132251,148597,135715,76113,26366,10000,19888,2500,10302,17500,3000,0
+17046,50000,female,2,1,26,0,0,0,0,0,0,50604,50913,43348,10122,9626,9828,1924,1461,1155,400,351,500,1
+17047,50000,female,1,2,25,0,0,0,0,0,0,38487,41186,41535,36973,39581,41817,5000,5000,3000,4000,5000,2000,0
+17048,230000,female,2,2,24,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+17049,200000,female,2,2,25,0,0,2,0,0,0,175435,195581,190716,132731,129960,66747,24720,0,6000,40450,13000,5000,0
+17050,50000,female,2,2,23,0,0,0,0,0,0,46968,36912,32616,29788,27562,26129,1600,1500,1500,1200,1078,951,0
+17051,100000,female,2,2,24,3,2,2,2,2,2,85016,86918,88624,89576,90614,89046,4200,4000,3300,3400,0,7000,1
+17052,140000,female,2,2,24,0,0,2,2,2,2,99012,106817,109646,106420,111130,113204,11000,6000,0,8000,4000,5000,0
+17053,20000,female,2,2,24,0,0,0,0,0,0,13542,14852,15571,16584,17067,34262,1543,1262,1275,758,638,1340,0
+17054,100000,female,2,2,25,0,0,0,0,0,0,87987,86380,88597,84861,69750,47394,4000,3900,3000,2000,2000,2000,0
+17055,240000,female,2,2,25,0,0,0,0,0,0,9030,9685,10996,13149,14655,17133,1144,3000,3000,2000,3000,2000,0
+17056,20000,female,2,2,25,0,0,0,0,0,0,18519,20195,19638,17198,14253,18475,2000,1376,1121,460,6000,624,0
+17057,50000,female,1,2,25,0,0,0,0,0,0,45342,44719,40002,38008,31898,20154,2000,5040,8034,3029,5000,49436,0
+17058,50000,female,1,2,25,0,0,2,2,2,2,25008,27790,27059,29505,29824,29209,3200,0,2900,1100,0,2400,0
+17059,60000,female,2,2,25,0,0,0,0,0,0,36081,37194,38116,39902,58737,56902,2500,2000,3000,20000,3000,2000,0
+17060,10000,female,2,2,22,0,0,2,2,2,0,6759,8925,8637,10277,9736,9704,2450,0,1800,0,500,600,1
+17061,30000,female,1,2,23,1,4,4,3,2,3,26185,29944,29399,28632,30363,29594,4518,206,0,2500,0,2000,0
+17062,30000,female,1,2,23,0,0,2,2,3,2,21077,23793,23130,28790,28038,27451,3383,0,6380,0,0,2300,1
+17063,60000,female,1,2,23,0,0,0,0,0,2,13233,12772,14555,15803,19217,18768,1500,2000,1500,3700,0,900,0
+17064,80000,female,2,2,25,1,2,0,0,0,0,78894,79989,79882,67946,51435,53113,3000,3500,5000,2500,2500,2000,0
+17065,130000,female,2,2,25,0,0,0,0,0,0,111587,112348,114734,117823,120854,123904,4100,4200,5000,5000,5000,10700,0
+17066,30000,female,2,2,25,1,2,3,2,2,0,17835,21220,20563,18676,18281,17261,4000,0,1000,0,2000,2000,0
+17067,60000,female,2,2,23,0,0,0,0,0,0,57097,58134,58647,59619,57068,57668,2659,2190,2078,2002,2062,2072,1
+17068,80000,female,2,1,24,0,0,0,0,0,0,74377,76137,78366,78400,80000,80000,3000,3455,1960,2000,0,0,0
+17069,230000,female,2,2,24,0,0,0,0,0,0,78737,63494,55284,42693,42541,34197,2300,2000,1535,1183,1500,2000,0
+17070,80000,female,1,2,25,0,0,0,0,0,0,72120,71702,71532,71222,47538,48879,2600,2700,2200,2000,3443,2000,0
+17071,70000,female,1,2,24,0,0,0,0,0,0,70888,63903,65248,62958,64209,59482,2900,3000,2190,2201,2181,2413,0
+17072,220000,female,2,1,25,0,0,0,0,0,0,142714,270596,52682,23243,18101,27036,7200,3200,1200,1000,25000,2000,0
+17073,50000,female,2,2,25,0,0,0,0,0,0,44894,43924,36549,32665,20246,19968,5003,5016,4000,2000,2000,2000,0
+17074,210000,female,2,2,24,0,0,0,0,0,0,45685,29287,19689,20629,21193,21484,1609,1362,1302,866,742,1000,0
+17075,60000,female,2,2,24,3,2,2,2,2,-1,150,150,150,150,150,150,0,0,0,0,150,44399,1
+17076,30000,female,2,1,25,1,2,0,0,0,0,29304,28534,29906,30524,28915,29524,0,1831,1449,1100,1051,1281,1
+17077,50000,female,2,2,24,0,0,0,0,2,0,43627,39981,40205,43024,39908,40731,3000,2001,3520,0,2000,2000,0
+17078,50000,female,2,1,24,0,0,2,0,0,0,23996,27087,26372,26992,27693,29237,3500,0,1400,1100,2100,0,0
+17079,80000,female,1,2,26,0,0,0,0,0,0,37329,38151,39229,40291,40902,42122,3700,2000,2000,3500,2000,4000,0
+17080,60000,female,3,1,25,0,0,0,0,0,0,60340,58556,57251,57826,22544,26675,2200,2600,2300,3000,5000,2000,1
+17081,20000,female,2,2,25,0,0,0,0,0,0,15389,16397,17195,17499,16236,10400,1270,1341,1160,556,600,0,1
+17082,50000,female,3,1,26,0,0,0,0,0,-2,47095,48085,49039,49662,0,0,2073,2027,1650,0,0,0,0
+17083,260000,female,1,2,27,0,0,0,0,0,0,23820,23873,14856,17022,20032,11144,10000,3000,4000,5000,3000,6000,0
+17084,170000,female,2,2,27,-1,-1,-1,0,0,0,414,-1020,25607,23922,24399,24919,0,27107,1500,863,903,3000,1
+17085,20000,female,2,2,27,0,0,0,0,0,0,15248,16255,17282,18293,18661,20157,1265,1292,1303,671,1800,0,0
+17086,20000,female,2,1,26,1,2,0,0,0,-2,20224,19210,19327,20000,0,0,0,1500,1000,0,0,0,0
+17087,130000,female,2,1,26,0,0,0,0,-2,-2,2783,131860,130000,0,0,0,130000,3000,0,0,0,0,0
+17088,70000,female,2,1,25,0,0,0,0,0,0,70940,70639,71230,68655,41679,29887,2533,3098,2811,1281,1069,1103,0
+17089,120000,female,1,2,26,-1,-1,-1,-1,-1,-1,594,1052,736,420,2189,1482,1052,736,420,2189,500,0,0
+17090,210000,female,1,2,26,0,-1,-1,-1,-1,-1,10401,18480,330,330,330,330,18480,330,330,330,330,480,0
+17091,50000,female,2,1,27,0,0,0,0,0,0,40491,41522,42725,40802,42422,47912,2003,2206,3000,3000,8000,0,0
+17092,30000,female,1,2,27,0,0,0,0,0,0,26951,27726,28561,18030,11467,12681,2000,1682,1500,1000,1408,800,0
+17093,150000,female,2,2,27,0,0,0,0,0,0,140947,121059,95250,55070,44425,7582,5000,3709,1101,2000,152,70181,0
+17094,300000,female,3,2,27,0,0,0,0,0,0,105786,113850,116918,119929,122914,125910,9000,4000,4000,4000,4000,4000,0
+17095,150000,female,2,2,27,1,-2,-2,-2,-1,-1,0,0,0,0,699,1170,0,0,0,699,1170,1173,0
+17096,30000,female,2,1,27,2,2,2,2,4,3,25557,26648,27536,28203,29048,29903,1800,1600,1400,1600,1600,1600,1
+17097,50000,female,2,2,27,0,0,0,0,0,0,48492,48356,32904,28864,29708,29921,1600,1715,2000,3010,2000,1100,0
+17098,80000,female,1,2,26,0,0,0,0,0,0,78025,80224,81619,80030,79434,81348,3500,3300,3100,2900,3200,3100,0
+17099,80000,female,2,1,26,0,0,-2,-2,-2,-2,13465,20577,10424,4898,847,1342,20587,10759,4995,847,1344,4774,0
+17100,60000,female,2,2,26,1,-2,-2,-1,-1,0,-25,-25,-25,1901,38746,39178,0,0,2306,40367,1416,1419,0
+17101,200000,female,1,1,27,-2,-2,-2,-2,-2,-2,-3,-3,-3,360,0,0,0,0,363,0,0,0,0
+17102,280000,female,2,2,31,0,0,0,0,0,0,147646,150703,156784,156230,159123,163152,7001,10000,6000,5200,6000,5400,0
+17103,50000,female,2,2,24,0,0,0,2,0,0,47608,48933,51415,48977,10082,9936,2118,3600,7,345,1000,400,0
+17104,80000,female,2,2,24,2,2,2,2,2,2,22453,23787,23124,26700,27064,27685,2000,0,4300,1100,1200,0,1
+17105,50000,female,2,2,23,0,0,0,0,-2,-2,33243,16290,12594,0,0,0,2000,2010,0,0,0,0,0
+17106,20000,female,1,2,24,0,0,0,0,0,0,18916,18556,19162,19293,19298,19198,1600,1805,1400,405,400,0,0
+17107,80000,female,1,2,24,0,0,2,0,0,0,39813,46375,43576,28468,25971,23686,9425,1,2012,1091,1006,2516,1
+17108,20000,female,3,1,27,3,2,0,0,0,0,16004,15450,16892,17396,14017,0,0,1696,1200,22,0,0,1
+17109,110000,female,2,2,28,0,0,0,0,0,0,106202,105080,107420,107325,108545,105341,5300,5540,5361,4500,4000,4500,0
+17110,50000,female,1,2,28,0,0,-2,-2,-2,-2,31392,-288,-144,-144,-144,6,0,0,0,144,150,0,0
+17111,130000,female,3,2,24,0,0,0,0,0,0,90141,91948,94067,96604,97706,121027,4200,4500,5000,3600,25000,5000,1
+17112,20000,female,1,2,25,-1,0,0,2,0,0,1828,2835,5270,5040,5304,5777,1200,2500,0,500,558,0,1
+17113,130000,female,2,2,25,2,-1,-1,-1,-1,-1,836,668,1017,1298,550,-286,668,1200,1300,964,1698,60549,1
+17114,50000,female,3,2,25,0,0,2,2,2,0,41641,44434,45916,46566,45516,46484,3500,2500,1700,0,1700,3900,1
+17115,50000,female,2,2,25,2,2,2,2,2,2,33586,34636,35683,36200,36808,37671,1900,1900,1400,1500,1600,1500,1
+17116,130000,female,2,2,26,0,0,0,0,0,0,187600,185945,183828,164667,132746,57989,6074,6037,4646,4230,1941,2151,0
+17117,80000,female,2,1,26,0,0,2,4,3,2,32183,34454,39559,38640,37721,39965,2820,6000,0,0,3000,0,1
+17118,230000,female,2,1,28,-1,-1,0,0,0,0,1736,67982,72938,54105,18744,5148,68000,7064,4106,5075,1000,4080,0
+17119,500000,female,1,2,28,0,-1,-1,-1,-1,0,6618,8984,9558,7426,11130,15382,8984,9570,7432,11130,10000,22212,0
+17120,160000,female,1,2,27,0,0,0,0,0,0,124573,122730,125319,125283,124170,125140,5800,5900,5900,4300,4600,4400,0
+17121,150000,female,2,1,27,-2,-2,-2,-2,-2,-2,5560,0,0,0,0,0,0,0,0,0,0,0,1
+17122,60000,female,2,2,27,0,0,2,0,0,0,45373,49363,48308,51616,56416,21680,4747,0,5000,5000,0,23999,0
+17123,50000,female,1,2,27,1,2,2,2,2,2,19096,18492,21186,22538,22274,22767,0,3000,2000,400,1000,0,0
+17124,10000,female,1,1,27,0,-1,-1,0,0,-1,6031,836,2032,2150,1490,390,836,2032,1000,1000,390,1632,0
+17125,140000,female,1,2,28,0,0,0,0,0,0,9598,10631,11349,12661,12606,12869,1500,1195,1507,452,467,470,0
+17126,180000,female,1,2,30,0,0,0,0,0,-1,112106,105872,107685,106060,2958,1079,3800,6000,3000,100,1100,800,0
+17127,260000,female,1,2,28,0,0,0,0,0,0,85666,92286,93742,93369,82476,73789,10005,4026,3481,141,20074,60308,0
+17128,90000,female,2,1,27,3,2,2,2,0,0,81701,85753,87510,85188,87112,169533,6000,4000,0,4200,3285,7787,1
+17129,20000,female,2,1,29,2,2,2,0,0,0,18985,20271,19658,20086,19630,19627,3100,0,1600,400,393,270,1
+17130,30000,female,3,1,26,3,2,2,2,2,2,8893,8601,10862,11485,11006,12270,0,2405,1100,0,1600,0,1
+17131,420000,female,2,2,26,-2,-2,-2,-2,-2,-2,62364,30165,106030,33694,49354,44744,30336,107382,33850,49587,47222,57258,0
+17132,230000,female,2,2,27,-2,-2,-2,-2,-2,-2,326,326,326,326,326,326,326,326,326,326,326,326,0
+17133,90000,female,2,1,28,0,0,0,0,0,0,59694,55282,60630,58919,47850,48034,2852,15678,7763,1686,1735,1518,0
+17134,210000,female,2,1,27,2,2,2,0,0,0,170646,174134,167095,161573,122362,116243,7800,16,6800,3800,5134,4000,1
+17135,230000,female,2,2,27,0,0,0,0,0,0,73521,75691,77867,80957,83695,86184,4000,4000,5000,5000,4000,8000,0
+17136,100000,female,2,2,30,0,0,0,0,0,0,85841,74564,78351,79030,56016,36210,4000,5000,3006,2023,3000,1500,0
+17137,20000,female,3,1,30,0,0,0,-2,-1,0,12304,17000,0,0,700,700,5170,0,0,700,0,0,0
+17138,20000,female,3,2,27,0,0,0,0,0,0,20288,20293,20196,19777,20130,19350,1500,1400,2000,3000,1000,1000,0
+17139,150000,female,3,2,28,-1,0,0,0,0,0,35199,36206,36343,45180,45694,45694,1588,1971,20000,914,0,1746,0
+17140,180000,female,1,2,29,-1,0,0,0,2,0,10265,11288,13093,14874,14339,19068,1200,2000,2000,0,5000,5000,0
+17141,20000,female,1,2,26,0,0,0,0,0,0,17921,18362,19669,16479,16694,17334,1333,1640,1506,721,1000,1000,0
+17142,280000,female,1,2,27,0,0,2,2,-2,-1,18641,21870,2173,-9,-9,3617,6630,10,0,0,3626,2511,0
+17143,50000,female,3,2,26,0,0,0,0,0,0,46879,48368,49284,7002,6991,7137,2569,2485,1203,192,199,163,0
+17144,50000,female,3,2,26,0,0,0,0,0,0,35988,26708,25230,26999,27748,28351,1700,2000,3000,1500,1200,1136,0
+17145,100000,female,2,2,26,0,0,0,0,2,0,6631,7643,8975,11032,10561,10779,1130,1462,2519,0,537,538,0
+17146,10000,female,2,2,27,1,2,0,0,0,0,5150,4922,5941,6984,7120,7267,0,1257,1300,400,410,420,0
+17147,90000,female,1,2,27,0,0,0,0,0,0,85822,83206,74030,70198,71330,65479,3327,3471,3199,2964,2718,2087,0
+17148,120000,female,1,2,29,-1,-1,-1,-1,-1,-1,1914,573,214,4479,980,690,573,219,4484,980,690,0,0
+17149,250000,female,2,2,29,2,2,2,0,0,0,252354,258503,252087,246649,177663,125960,11783,0,8065,5404,5000,5000,1
+17150,180000,female,1,2,29,-1,-1,-1,-1,-1,-1,9418,-897,2331,3596,3125,2702,0,5028,6411,3155,2702,10909,0
+17151,350000,female,2,2,29,0,0,0,0,0,0,209234,205458,200654,196308,192735,190735,7280,7360,8568,6600,6711,6883,0
+17152,250000,female,2,2,31,-2,-2,-2,-2,-1,2,1242,0,0,0,3394,3244,0,0,0,3394,0,37895,0
+17153,140000,female,2,1,29,0,0,0,0,0,0,100064,95224,104440,88467,71519,63150,6029,30000,7981,3000,3000,3000,0
+17154,50000,female,1,2,28,-1,-1,-1,-1,0,0,390,390,390,39685,40109,41303,390,780,39685,1337,5000,4696,1
+17155,150000,female,1,2,28,2,2,2,0,0,0,145096,147384,143225,147115,145015,110635,5000,0,6000,0,3000,23747,1
+17156,160000,female,1,2,28,0,-1,-1,-2,-2,-2,4122,1770,0,0,0,0,2000,0,0,0,0,0,0
+17157,130000,female,3,1,28,0,0,0,0,0,0,29974,28037,37414,42816,43089,37101,5026,15430,12015,8020,1060,5017,0
+17158,340000,female,2,1,26,0,0,0,0,0,0,95878,97594,99835,102801,106263,98797,4500,5000,6000,7000,6000,30000,0
+17159,260000,female,2,2,26,0,0,0,0,0,0,16150,17880,22248,26842,35997,55272,2000,5000,5000,10000,20000,15000,0
+17160,110000,female,1,2,26,0,0,0,0,0,0,38920,28276,25171,26200,26567,26990,1700,1800,1750,1100,1000,1000,0
+17161,400000,female,1,2,29,0,0,0,0,0,0,7191,8856,6181,7859,4899,1466,2000,1500,2000,1000,500,1000,0
+17162,70000,female,1,2,29,0,0,0,2,2,2,40048,40783,44205,44784,43763,46646,1700,4100,1600,0,3600,2000,0
+17163,20000,female,3,1,31,-1,5,4,3,2,0,14320,13815,13403,12888,12019,11500,0,86,0,0,435,480,1
+17164,60000,female,2,1,28,2,2,0,0,2,0,17942,17361,18081,20108,19487,35160,0,1304,2331,0,16000,2000,1
+17165,80000,female,1,2,29,2,2,2,2,2,0,54313,57988,59271,60013,58453,60155,4600,2800,2300,0,2800,6300,0
+17166,150000,female,2,1,31,2,0,0,0,0,0,101425,104014,108229,109374,111279,125353,3872,5500,4005,3241,15500,4000,0
+17167,200000,female,5,2,29,-1,-1,-1,0,-1,0,9383,37303,21244,7422,27761,21715,37465,21321,1200,27761,5548,30966,0
+17168,110000,female,1,2,29,-1,-1,-1,-1,-1,-1,316,31895,316,316,316,31775,31895,316,316,316,31775,1152,1
+17169,450000,female,2,2,29,0,0,0,0,0,0,371724,359672,56033,31126,18345,12836,10000,1500,2109,5000,1000,3020,0
+17170,160000,female,2,2,29,0,0,0,-1,-1,0,21898,23075,24010,400,16903,17248,5004,8004,400,16903,345,352,0
+17171,150000,female,2,2,28,0,0,0,0,2,2,49278,50156,51849,54659,55681,53878,2000,2500,4300,2500,0,2800,0
+17172,30000,female,1,1,28,0,0,0,0,0,0,30497,30665,30945,31070,30969,30620,1800,1900,1776,1500,1100,2504,0
+17173,160000,female,2,2,29,-1,-1,-1,-1,-1,-1,1194,2108,1086,1874,2920,0,2108,1086,1874,2920,0,1222,0
+17174,140000,female,1,2,29,0,0,0,0,0,0,51822,52960,57088,62868,65284,69663,2000,5000,6500,3000,5000,5000,0
+17175,50000,female,1,2,28,-1,-1,-1,-1,-1,-1,5953,1044,2450,248,198,0,1044,2450,248,198,0,2890,0
+17176,390000,female,1,2,27,2,2,0,0,0,2,393415,379486,375899,374302,395430,384825,0,16000,15000,29000,0,12000,1
+17177,300000,female,2,1,28,-1,-1,-1,-1,-2,-2,16666,1000,16666,0,0,0,1000,16666,0,0,0,0,0
+17178,50000,female,2,2,29,2,2,2,2,2,0,43629,46376,45354,49086,48027,49037,3790,0,4500,0,1751,1736,1
+17179,70000,male,2,2,29,-2,-2,-2,-2,-2,-2,-8187,-17810,-595,7462,9390,5183,0,100104,10000,15000,10000,20000,0
+17180,170000,female,2,2,28,0,0,0,2,0,0,44996,46045,48989,47900,51088,54256,2100,4000,0,4000,4000,4000,0
+17181,160000,female,3,1,45,-1,-1,-2,-2,-1,0,227,-385,-379,-1464,2110,1462,280,6,75,3574,5,246,0
+17182,50000,female,1,2,27,2,3,2,2,2,2,34044,33202,34370,34806,35433,36216,0,2000,1300,1500,1500,1500,1
+17183,50000,female,2,1,28,1,2,2,2,0,0,38612,37509,15377,12590,11209,7448,0,5000,0,3023,5000,4000,0
+17184,90000,female,1,2,28,-1,-1,-1,-1,-1,-1,2780,1950,7956,499,0,5990,1950,7956,499,0,5990,0,0
+17185,200000,female,1,2,25,-1,-1,-1,-1,-1,-1,8926,700,610,5130,12050,4970,700,610,5130,12050,4970,8888,0
+17186,20000,female,2,2,26,0,0,0,0,0,0,15700,16734,17549,17702,10400,0,1600,1400,1171,600,0,0,0
+17187,50000,female,2,1,30,0,0,0,2,0,-1,31079,30036,6845,4364,2185,2162,2280,2300,0,44,2200,3000,0
+17188,50000,female,2,1,24,1,2,0,0,2,2,12744,12243,16215,20490,19990,0,0,4200,4700,0,0,3390,1
+17189,60000,female,3,2,26,0,0,0,0,0,0,27402,26455,28017,25011,28143,24712,1500,4022,1500,3500,1000,1000,0
+17190,30000,female,2,1,33,0,0,0,0,0,0,11042,12051,13101,14413,14476,14792,1200,1250,1537,600,550,600,0
+17191,360000,female,3,2,30,-1,2,2,-1,-1,-1,780,780,390,3115,8069,390,390,0,3115,8069,390,5716,0
+17192,20000,female,2,2,22,0,0,0,0,0,0,15513,17908,18652,19156,19206,19948,3000,1666,1500,592,1284,0,0
+17193,30000,female,2,2,23,0,0,2,2,2,2,18497,21016,22178,21529,23863,22357,3153,1800,0,3000,0,4255,0
+17194,80000,female,2,2,25,0,0,2,2,0,0,47369,49524,48461,45943,46660,46118,4400,1500,1500,1742,1800,2100,1
+17195,20000,female,2,1,22,0,0,0,0,0,0,16366,17385,18142,17245,17657,18370,1600,1600,1600,1000,1000,1000,0
+17196,70000,female,2,2,25,0,0,0,0,0,0,69455,70300,70737,70324,55291,56648,2600,2620,2641,2000,2250,2100,0
+17197,120000,female,1,2,26,0,0,0,0,0,0,103452,104546,105326,111987,112652,114337,4000,4000,10000,4000,5000,4200,0
+17198,20000,female,1,2,26,1,2,0,0,0,0,17040,16474,17203,18411,18929,19171,0,1300,1500,824,696,1011,0
+17199,20000,female,2,2,22,0,0,0,2,0,0,9848,11192,15677,15133,15582,16677,1515,5000,0,1000,1500,0,0
+17200,170000,female,2,2,23,0,-1,0,0,0,0,8806,32192,32555,32292,32372,31202,32192,1608,2301,2379,2202,2688,0
+17201,130000,female,2,2,24,0,0,0,0,0,0,121720,115630,115939,109428,90359,89216,4155,5802,3487,2908,3013,3093,0
+17202,180000,female,3,2,32,0,0,0,0,0,0,183512,172194,176105,171475,134590,133146,7700,8254,9600,4712,4995,5000,0
+17203,240000,female,2,2,30,0,0,0,0,0,0,89009,71169,67528,64238,65521,65829,3071,2390,2311,2330,2392,2504,0
+17204,50000,female,2,1,27,0,0,0,0,0,0,50544,50792,50480,50372,50993,7957,2300,2000,2000,2500,289,1000,0
+17205,100000,female,1,1,39,2,2,2,2,2,2,94732,97284,99542,99898,99786,97670,5000,4700,2950,3100,5,6170,1
+17206,80000,female,1,2,33,0,0,3,2,0,0,73397,82151,80296,77848,76508,78396,10000,0,0,2788,3171,3000,0
+17207,10000,female,2,3,46,3,2,2,2,2,4,5997,5753,9629,9328,11411,10652,0,4000,0,2395,0,0,1
+17208,50000,female,2,2,35,0,0,0,0,0,0,48818,49796,50892,50769,48813,49874,2200,2200,1800,1900,2000,2000,0
+17209,80000,female,2,1,35,2,2,2,0,0,2,22001,23339,22677,23692,25406,26050,2000,0,1395,2109,1196,0,1
+17210,40000,female,3,1,39,2,2,2,2,2,2,22241,23273,24204,24510,24811,24274,1700,1600,1000,1000,0,2000,1
+17211,90000,female,2,1,40,2,2,0,0,0,0,96249,91839,90758,90537,90263,90268,0,3273,3267,3212,3440,6898,1
+17212,170000,female,3,1,40,0,0,0,0,0,0,69602,61493,58298,60343,61176,62092,2128,2729,4000,2169,2241,2258,0
+17213,50000,female,3,2,49,0,0,0,0,0,0,101590,50696,49894,49453,29824,29319,1800,1991,1670,1036,1050,1118,0
+17214,10000,female,2,1,41,3,2,2,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,1
+17215,70000,female,3,1,34,1,2,0,0,0,0,76023,73213,68034,68602,30252,47363,0,3000,3000,1508,20000,2500,0
+17216,20000,female,2,2,38,0,0,0,0,0,-1,15925,16883,17536,14810,9579,9940,1618,1661,1046,192,10476,2965,0
+17217,120000,female,2,2,36,0,0,0,0,0,2,3225,4592,5975,5409,5940,1770,3232,4615,4170,1770,0,7978,0
+17218,110000,female,2,1,38,0,0,0,0,0,0,105433,107065,103690,105447,97096,77197,4008,3920,4031,4000,3000,2810,0
+17219,50000,female,2,1,36,2,2,4,3,2,2,44897,50039,48981,47897,48811,48058,6200,0,0,2000,160,3525,1
+17220,110000,female,2,2,34,0,0,2,0,0,0,10827,11657,8428,9440,11863,10620,2500,0,1200,4000,500,500,0
+17221,50000,female,2,1,37,1,2,0,0,0,0,51377,50253,50047,43142,10677,10105,0,2424,2355,363,361,393,0
+17222,360000,female,1,2,31,3,2,2,2,2,2,2500,2500,2500,2500,2500,2500,0,0,0,0,0,0,1
+17223,20000,female,2,1,38,3,4,3,2,2,2,18666,18087,17517,16930,18043,17156,0,0,0,1381,0,1600,1
+17224,180000,female,1,1,42,0,0,0,0,0,0,79216,80905,82708,84433,86134,88251,3000,3100,3100,3100,3500,8400,1
+17225,100000,female,2,1,37,0,0,0,0,0,0,100253,101587,100095,98569,99534,100013,4500,4500,5000,4000,3500,3627,0
+17226,20000,female,3,1,37,1,2,0,0,2,0,15829,15283,16429,19764,19140,6420,0,1700,4000,0,1000,0,1
+17227,150000,female,3,1,39,2,2,2,0,0,0,151664,153994,147038,122498,75782,71306,6300,0,5000,3000,3000,3000,0
+17228,60000,female,2,1,27,0,0,0,0,0,-1,40831,34613,28178,23199,572,27425,1617,1616,1008,1036,28848,1100,0
+17229,80000,female,1,2,29,2,2,0,0,2,0,25248,24549,26823,29157,28389,29036,0,3000,2780,0,1100,1500,1
+17230,60000,female,3,1,47,2,3,2,2,2,2,20347,19727,20909,21168,21520,21805,0,1800,900,1000,774,0,1
+17231,20000,female,3,1,43,2,0,0,0,0,0,18310,18739,19411,20209,19880,4341,1300,1500,1257,456,149,191,1
+17232,110000,female,2,2,33,0,0,0,0,0,0,104151,106217,108884,112149,112507,114200,3791,4368,5500,3971,6280,10300,1
+17233,100000,female,3,1,41,1,2,0,0,0,0,77208,75377,77044,78333,78130,77761,0,3475,3263,2805,2888,2680,0
+17234,280000,female,2,1,37,0,0,0,-2,-2,-2,198823,206000,0,0,0,0,10000,0,0,0,0,0,0
+17235,130000,female,3,2,36,0,0,0,0,0,0,127544,126771,124824,123174,100585,97687,5963,6316,4845,3471,3673,3590,0
+17236,50000,female,3,2,29,0,0,0,0,0,0,47815,49216,51082,46983,19839,16389,2500,3009,4012,3000,2000,3000,0
+17237,60000,female,2,1,33,0,0,0,0,0,0,50696,54841,56444,53183,55288,55782,5000,2500,2000,3000,2700,2500,0
+17238,70000,female,3,1,34,0,0,0,0,0,0,43071,47338,51424,45121,5515,10424,5000,5000,5000,5000,5000,5000,0
+17239,240000,female,2,1,46,0,0,0,0,-2,-2,177221,169897,166064,0,0,0,7053,6520,0,0,0,0,1
+17240,310000,female,2,2,31,2,0,0,0,2,2,137171,141486,144515,154587,156565,153965,6600,6800,14000,6000,0,5800,1
+17241,20000,female,3,2,33,0,0,0,0,0,0,20023,20239,19164,19393,19725,20054,1300,1400,1300,1000,1000,1000,0
+17242,50000,female,2,1,37,0,0,0,0,0,-2,29969,17791,12592,5022,780,390,1281,1099,1009,10000,0,17458,0
+17243,50000,female,3,2,33,1,2,2,2,0,0,25922,25154,16820,15860,16179,16915,55,4500,800,582,1000,634,0
+17244,130000,female,2,1,34,0,0,0,0,0,0,99891,101032,104705,105478,107725,109994,3700,5300,4000,4000,4000,6100,0
+17245,230000,female,2,2,30,0,0,0,0,0,0,62988,63056,63741,64096,64473,64927,2847,2303,2284,2280,2345,2333,0
+17246,380000,female,2,1,31,1,-2,-1,-1,-2,-1,3491,3859,8796,7991,5310,14655,3878,8863,8007,5362,14695,24446,0
+17247,160000,female,3,2,32,0,0,0,0,0,0,56099,41085,35673,28880,27678,25518,3000,3030,2000,5000,4000,3018,0
+17248,20000,female,3,1,32,0,0,2,0,0,0,17930,20305,19308,20296,20302,20189,3000,0,1318,714,981,400,0
+17249,150000,female,1,2,33,0,0,0,0,0,0,1911,3079,4057,1920,1920,0,1189,1167,1000,0,0,0,1
+17250,90000,female,1,2,32,-1,-1,-1,-1,-1,-1,1560,23153,835,5225,736,736,23153,17395,5225,736,736,886,0
+17251,400000,female,1,1,33,-2,-2,-2,-2,-2,-2,-4,1054,1420,-20,-20,-20,1058,1427,0,0,0,0,0
+17252,70000,female,2,1,34,0,0,0,0,0,0,66946,67741,68790,68523,29163,29247,3007,3248,2661,1135,1160,1169,0
+17253,50000,female,2,1,34,2,2,2,2,2,2,43664,44654,45650,46320,45290,48322,2000,2000,1700,0,3760,1700,0
+17254,30000,female,2,1,35,1,-2,-1,0,-1,0,0,0,12403,17849,4935,6491,0,12403,8359,4935,3000,1000,0
+17255,20000,female,2,1,46,0,0,0,0,0,0,19113,20068,17481,15572,15902,35565,1292,1323,1111,441,2158,2400,0
+17256,20000,female,3,2,39,0,0,0,2,2,3,8720,12241,16020,16457,20906,20289,4000,4000,1000,4750,0,600,1
+17257,130000,female,3,1,37,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+17258,80000,female,1,1,41,0,0,0,0,0,0,73863,74970,75285,73654,75642,80984,3300,3300,3000,3500,9050,0,0
+17259,360000,female,1,1,41,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+17260,200000,female,3,1,41,0,0,0,0,0,0,184133,187386,191098,194671,177096,180388,6710,7125,7333,6325,6522,6569,0
+17261,150000,female,2,1,38,-2,-2,-2,-2,-2,-2,6829,6460,17154,2729,32550,8509,6719,27654,2729,32550,11467,6943,0
+17262,50000,female,2,2,44,0,0,0,0,-1,0,27200,10605,10355,9853,2917,1473,1172,1202,1000,2917,29,390,0
+17263,170000,female,3,1,40,1,2,0,0,0,0,179399,41265,20619,19520,5200,0,0,2000,1136,1000,0,36679,1
+17264,230000,female,2,1,34,0,-1,-1,-1,-1,-1,205530,380,380,2350,103030,380,380,380,2350,103030,380,1570,0
+17265,50000,female,2,2,46,0,0,0,0,0,0,25119,26258,27199,18810,18487,18874,1559,1500,1400,1000,684,716,1
+17266,280000,female,1,1,36,0,0,0,0,0,0,157424,161596,166680,170691,14988,16776,6000,6500,6000,1000,2000,2012,0
+17267,50000,female,2,1,44,0,0,0,0,-2,-2,13226,14470,15000,0,0,0,1470,1000,0,0,0,0,0
+17268,30000,female,3,1,31,2,3,2,2,2,0,30057,29280,30206,30496,29731,29047,0,1700,1100,3,1053,1303,0
+17269,360000,female,1,1,32,-2,-2,-2,-2,-1,0,-16,3194,430,1982,211250,215670,3210,436,1991,211250,7762,7823,0
+17270,400000,female,2,2,32,-2,-2,-2,-2,-2,-2,6464,-270,-770,-761,-2710,187552,1692,0,9,11,194541,7015,1
+17271,80000,female,3,2,33,0,0,0,0,0,0,107044,103077,98328,93376,87491,80156,5000,5000,5000,2000,8500,3000,0
+17272,150000,female,2,2,34,0,0,0,0,0,0,18631,18831,15729,11907,14103,14413,3000,3000,1353,5000,3000,5000,0
+17273,260000,female,2,1,36,0,0,0,0,0,0,59127,60344,61641,60715,57116,58318,2200,2300,2200,2060,2119,2293,0
+17274,110000,female,3,1,39,0,0,0,0,0,0,107441,106808,75540,75724,74785,76079,4023,2805,3406,2670,2751,2772,0
+17275,50000,female,1,1,41,0,0,0,0,0,0,47739,47481,47066,44367,27496,27677,2000,1817,2000,1500,1001,1010,0
+17276,300000,female,2,2,40,-1,-1,-1,-1,-1,-1,10626,10578,12963,989,12238,0,10582,13265,1087,12238,0,0,0
+17277,20000,female,2,1,37,2,0,0,2,0,0,16429,17450,20358,19722,19616,19228,1300,3200,0,830,750,1000,1
+17278,290000,female,2,2,37,2,0,0,0,0,0,140599,143963,152434,156413,156189,144318,13010,11430,6900,5320,5232,4980,1
+17279,120000,female,2,1,45,-1,-1,-1,-1,-1,-1,380,3175,380,380,2402,696,3175,380,380,2402,696,1093,0
+17280,20000,female,2,2,40,-1,-1,-1,-1,-1,-2,295,748,-2,221,0,0,748,0,223,0,0,2016,0
+17281,360000,female,2,2,36,-2,-2,-2,-1,-1,-2,-149,-149,-4,585,139,0,0,145,744,139,0,0,1
+17282,150000,female,1,1,41,-1,-1,-1,-1,-1,-1,7939,6610,6994,8102,25715,11350,6629,7034,8112,25715,11350,12595,0
+17283,100000,female,1,1,42,2,2,0,0,0,0,99184,99340,64054,59014,55249,47645,3000,3039,3315,3000,3000,3000,1
+17284,170000,female,1,1,45,0,0,0,0,0,0,73326,68712,60324,88057,89040,90716,3504,3500,30000,3300,3200,0,0
+17285,200000,female,3,2,49,1,-2,-1,-1,-1,-2,0,0,3614,714,0,0,0,3614,721,0,0,6728,1
+17286,60000,female,3,1,48,-1,-1,-1,-1,-1,-1,4823,5471,8422,4377,3910,2431,5491,9683,4377,3918,2431,2120,1
+17287,80000,female,2,1,29,0,0,0,0,0,0,19578,18231,17950,14699,12466,11445,1620,1600,1419,1000,1000,1000,0
+17288,40000,female,3,1,30,1,2,0,0,0,0,40672,39724,39475,39078,38339,38665,9,2143,1606,1500,1410,1507,0
+17289,50000,female,1,1,30,1,2,0,0,0,0,49061,46783,42977,36737,19865,16499,1406,2000,1317,700,599,604,1
+17290,50000,female,3,2,39,2,2,0,0,2,0,20039,19369,16586,18696,18100,18475,0,1280,2390,0,816,688,1
+17291,40000,female,2,1,39,-1,-1,-1,0,0,0,500,0,18583,19353,19440,20279,0,18583,1460,547,1000,500,0
+17292,120000,female,2,2,25,2,3,3,3,4,4,94635,97592,100536,103478,104886,107220,5400,5400,5500,4600,4600,5200,0
+17293,200000,female,1,2,25,1,2,3,2,3,2,133797,144095,140383,146531,142795,136981,14000,0,10000,0,0,5100,1
+17294,30000,female,2,2,29,0,0,2,0,0,-2,22501,20210,8762,6200,0,0,2429,5,1062,0,0,0,0
+17295,260000,female,5,1,33,0,0,-1,-1,0,0,2229,3140,2740,107139,105188,104418,1000,2740,107139,4000,4000,4696,0
+17296,390000,female,2,2,31,0,0,2,0,0,0,103061,106464,88653,82226,71559,72492,7600,20,3510,3349,3000,6000,0
+17297,140000,female,1,1,31,2,2,0,0,0,0,159164,154983,116592,89475,83630,87733,0,5012,5000,5000,5000,20000,1
+17298,150000,female,2,2,32,6,5,4,3,2,2,81341,79529,77757,75841,73678,77273,0,0,0,0,4874,1000,0
+17299,30000,female,3,1,32,0,0,0,0,0,0,30096,30287,28823,26799,25457,26143,1494,1445,1506,912,1097,1000,0
+17300,90000,female,2,3,36,0,0,0,0,0,0,91337,91458,91049,70101,28942,27508,4000,3137,5094,1106,1001,1201,0
+17301,150000,female,2,1,39,0,0,0,0,0,0,16878,7632,33019,31366,31709,42632,5000,30000,3000,5000,15000,6000,0
+17302,30000,female,2,1,39,0,-1,-1,2,0,0,22215,18243,29013,28256,28979,31369,18243,11500,0,1177,3000,0,0
+17303,200000,female,2,2,36,0,0,0,0,0,0,138636,140982,145038,146190,148989,130481,5048,6726,5451,5774,4739,5500,0
+17304,30000,female,1,2,38,-2,-2,-2,-2,-2,-2,1232,764,1909,544,390,954,764,1920,544,390,954,1913,0
+17305,30000,female,3,1,48,0,0,0,0,0,2,14834,15844,18883,17901,19241,18794,1261,3300,1301,1641,0,860,1
+17306,50000,female,2,1,29,0,0,0,0,0,0,20103,21466,23122,24654,26365,25844,2000,2000,2000,2000,2000,2000,0
+17307,310000,female,2,1,29,0,0,0,0,0,0,26597,27141,25567,21794,20911,14023,1732,1408,1209,622,600,748,0
+17308,500000,female,1,1,37,1,-1,-1,-1,-1,0,0,2529,2971,184,64356,33348,2529,2971,200,38144,0,8479,0
+17309,500000,female,3,1,36,-2,-2,-2,-2,-2,-2,27866,1062,27610,18133,2506,169233,1062,27648,25012,2506,169233,11952,0
+17310,300000,female,2,1,36,-1,0,0,0,0,0,6447,14383,15576,16524,17096,12144,10000,2000,1500,1000,1000,1000,0
+17311,430000,female,3,2,30,0,0,0,0,0,0,200364,147550,106901,81257,83264,62618,6215,3050,2511,5110,2005,5046,0
+17312,30000,female,1,1,30,0,0,-1,2,-1,-1,3836,4380,1169,779,566,1361,1016,1169,0,567,1365,1834,0
+17313,30000,female,3,2,31,0,0,0,2,2,0,26667,27675,30611,30647,28245,24357,1455,3391,949,0,745,584,0
+17314,200000,female,1,2,32,-2,-2,-2,-2,0,0,0,0,-10542,148287,146948,148772,0,1685,326974,5200,5500,6000,0
+17315,130000,female,3,1,32,0,0,0,0,0,0,126741,126889,125733,118394,96230,98583,6100,6103,4823,4000,4000,4000,0
+17316,120000,female,1,2,33,-1,-1,-1,-1,-1,-2,2446,326,0,28776,0,0,326,0,28776,0,0,0,0
+17317,170000,female,2,2,31,0,0,0,-1,-1,-2,20625,21386,0,522,0,0,1700,0,522,0,0,0,0
+17318,210000,female,1,1,34,-1,-1,-1,-1,-1,-1,8289,16585,9396,16992,9506,4837,16585,10455,16992,9509,4837,11899,0
+17319,130000,female,2,1,34,0,0,0,0,-2,-2,41379,24462,15720,0,0,0,3057,1047,0,0,0,0,0
+17320,420000,female,2,1,35,0,0,0,0,0,0,67877,68979,57706,55628,54797,52759,3527,3000,4000,2500,2000,2100,0
+17321,180000,female,2,1,39,0,0,0,0,0,0,130374,129889,114559,113759,94665,97134,5812,6000,6100,4000,4000,4000,0
+17322,240000,female,2,2,40,0,0,0,0,0,0,127919,93266,95837,49459,47631,37750,4000,4840,4000,1500,2000,2000,0
+17323,100000,female,2,1,44,1,2,0,0,3,2,76725,74901,76094,84457,82525,81086,0,3000,9657,0,0,3200,1
+17324,130000,female,3,2,45,0,0,0,0,0,0,38222,37939,37705,37391,38137,37647,1612,1639,1586,1332,1352,1382,0
+17325,20000,female,2,1,43,1,2,3,2,2,2,11501,12998,13492,12978,13962,13595,2000,1000,0,1200,0,3000,1
+17326,50000,female,2,2,46,0,0,0,0,0,0,46746,44808,44899,46346,47273,48357,2100,2100,2500,2000,2000,3000,0
+17327,70000,female,2,1,38,0,0,0,0,0,0,19500,19884,20567,21526,21499,21556,1400,1400,1700,1000,781,815,0
+17328,30000,female,3,1,41,-1,-1,-1,-1,-1,-1,1688,0,850,2158,0,1935,0,850,2158,0,1935,0,0
+17329,50000,female,3,1,48,0,0,0,0,0,0,41842,42422,43050,43650,45217,46044,1984,2019,2026,3000,2000,1500,1
+17330,500000,female,3,1,41,0,0,0,0,0,0,119455,120499,124836,37334,34944,24355,7012,10522,6133,24408,122,17398,0
+17331,200000,female,1,2,41,-1,-1,-1,-1,-1,-1,504,2502,21699,2914,3392,4343,2502,21699,3003,3392,4343,326,0
+17332,120000,female,2,1,42,2,2,3,2,2,3,25809,29366,28615,29347,30868,30099,4300,0,1500,2300,0,0,1
+17333,200000,female,2,1,49,-1,0,0,-1,0,0,75853,78983,133236,6574,2924,-626,6065,70538,6634,10,0,0,0
+17334,150000,female,2,2,36,1,2,0,0,2,0,93658,84029,77836,75277,66249,60021,0,3000,6000,0,2066,1837,1
+17335,100000,female,2,1,42,1,2,2,-2,-2,-2,3256,3020,0,0,0,0,0,0,0,0,0,0,0
+17336,50000,female,2,2,38,0,0,0,0,2,2,7980,10513,9922,8633,8385,7862,3000,1200,1800,0,1600,0,0
+17337,50000,female,2,1,36,3,2,2,2,3,2,47222,48142,48082,51969,50865,49611,2000,1000,5000,0,0,2500,1
+17338,50000,female,1,1,43,0,0,0,0,0,2,49819,49390,50612,29975,30559,29433,2227,2449,1778,2382,0,1251,1
+17339,550000,female,1,2,33,0,0,0,0,0,0,337733,261223,267274,273547,172198,176573,10000,11000,12300,6300,8000,8000,0
+17340,30000,female,2,1,35,1,-1,0,0,2,0,0,741,1775,3040,2843,3052,741,1034,1299,0,255,106,0
+17341,150000,female,3,1,39,-1,-1,-1,0,-1,-1,5211,33474,18488,45489,9069,20203,33522,18516,35701,9099,20226,20786,0
+17342,140000,female,2,2,27,0,0,0,2,2,2,119692,91710,91744,70832,70768,71755,5000,8000,0,8000,3000,0,0
+17343,50000,female,2,2,48,0,0,0,0,0,0,55329,51870,53164,46575,26609,27178,1902,2176,2064,1098,2134,1139,0
+17344,160000,female,3,2,39,0,0,0,0,0,0,156000,155866,159005,159248,118904,119243,5559,7677,6039,4176,4300,4576,0
+17345,50000,female,2,1,26,0,0,-1,0,0,0,1804,5195,15371,14163,15517,14685,4000,15387,1500,2000,1000,2000,0
+17346,50000,female,1,1,28,0,0,0,0,0,0,27888,18602,9795,32694,28899,28924,2000,4239,28000,1015,2000,1500,0
+17347,110000,female,1,2,33,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,766,0
+17348,50000,female,3,1,46,2,2,2,2,0,0,46677,48101,49060,47086,9306,8962,2500,2400,4,503,1109,703,1
+17349,350000,female,2,2,31,1,2,0,0,0,0,279767,253462,259137,264798,269673,275672,0,9754,10000,9396,10083,9439,0
+17350,70000,female,2,1,42,0,0,0,0,0,0,24133,24741,25074,25978,26341,26093,1702,1424,1717,1080,1094,969,0
+17351,210000,female,1,1,38,1,-2,-1,-1,-1,-1,0,0,517,-1,932,1066,0,517,0,933,1066,462,0
+17352,180000,female,2,1,36,0,0,0,0,-2,-1,20138,21494,25600,0,0,36565,2000,5000,0,0,36565,1548,0
+17353,30000,female,3,1,28,0,0,0,2,2,0,12430,13419,15897,16340,15780,16127,1200,2700,1000,0,600,1400,0
+17354,630000,female,1,1,31,0,0,0,0,0,0,447263,458762,470298,480587,385587,373910,20000,20000,20000,15000,15000,15000,0
+17355,220000,female,2,1,41,0,0,0,0,0,0,143660,126532,90013,91191,86139,83743,5005,4500,4006,3000,3000,3000,0
+17356,280000,female,1,1,44,0,0,0,0,0,0,230931,235635,197003,198808,187425,177340,8634,7665,6497,5555,5027,5065,0
+17357,340000,female,2,1,40,0,0,0,0,0,0,244451,230907,228760,229404,161551,164936,10000,10000,7100,5800,5915,6100,0
+17358,180000,female,1,2,33,2,-1,-1,-1,-1,-1,416,416,416,416,150,982,416,416,416,150,982,416,1
+17359,250000,female,2,1,35,-2,-2,-2,-2,-2,-1,7379,42849,24502,25016,33754,4418,45000,25000,15167,80000,5000,6000,0
+17360,20000,female,2,2,48,1,3,2,2,2,2,17100,16537,16283,17708,18121,17692,0,300,2000,1000,0,792,1
+17361,140000,female,2,1,40,0,0,0,0,0,0,102502,101164,99579,99004,88485,85218,5000,5000,5000,3000,3000,4000,0
+17362,130000,female,2,2,44,2,0,0,2,2,2,72181,73086,78411,79725,81311,83048,2700,6500,3200,3500,3200,3300,1
+17363,120000,female,1,1,38,0,0,0,0,0,0,65645,71406,29044,21889,14536,25636,15000,1462,1000,3000,14000,254,0
+17364,360000,female,1,1,42,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+17365,240000,female,2,1,43,0,0,0,0,0,0,50120,48502,49001,47026,45827,39527,1781,2200,1923,1682,2000,2000,0
+17366,310000,female,2,1,40,-2,-2,-2,-2,-2,-2,3268,206,589,1594,28252,15081,206,589,1594,28252,18381,4100,0
+17367,100000,female,3,1,46,2,2,2,2,2,2,43677,42674,45983,46927,47759,46865,0,4000,2000,1900,0,2000,1
+17368,200000,female,1,1,37,-2,-2,-2,-2,-2,-2,1324,0,0,0,0,0,0,0,0,0,0,0,0
+17369,80000,female,2,1,29,2,2,2,2,2,2,72674,74192,72464,76613,77908,76034,3300,0,6000,3100,0,4200,0
+17370,210000,female,1,2,32,-2,-2,-2,-2,-2,-2,19959,1592,-2,560,6190,243,1603,0,562,6196,243,4061,0
+17371,180000,female,1,2,31,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+17372,70000,female,2,1,33,0,0,0,0,0,0,66701,69907,67450,61902,19551,27831,53000,26017,40000,17000,24000,28000,0
+17373,60000,female,2,2,36,0,0,0,0,0,0,57724,56597,50766,47022,31606,30820,2000,5015,2000,3000,1300,1500,0
+17374,200000,female,1,1,49,-1,-1,-1,-1,-1,-1,950,950,950,950,0,1900,950,950,950,0,1900,950,0
+17375,50000,female,2,2,48,-1,-1,0,0,0,0,879,8061,8290,7838,7998,8161,8061,1398,1000,160,163,9217,0
+17376,50000,female,3,1,46,1,2,-1,3,2,0,8354,6024,116,116,9982,8143,0,116,0,10040,400,2272,1
+17377,70000,female,2,1,41,0,0,0,2,0,0,68953,68908,68799,65250,53934,54149,3000,3810,2010,2054,2000,1872,0
+17378,130000,female,2,1,48,0,0,0,0,-1,-1,23575,17719,12167,6500,6788,6887,1300,1200,1000,6788,6900,13041,0
+17379,140000,female,2,1,47,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+17380,350000,female,3,1,36,0,0,0,0,0,0,42548,41593,40375,37959,36416,34875,2000,2000,2000,1200,1200,1500,0
+17381,150000,female,1,2,30,0,-1,0,0,-2,-2,7674,432,2232,0,0,0,432,2000,0,0,0,5757,0
+17382,50000,female,2,1,39,0,0,0,0,0,0,32802,31002,32115,31824,32498,21757,1497,2000,1000,1064,1059,290,0
+17383,50000,female,3,1,47,0,0,0,-2,-2,-2,38909,14512,0,0,0,0,1000,0,0,0,0,0,0
+17384,30000,female,2,2,36,0,0,0,0,0,0,11896,12990,14073,15131,15579,16175,1600,1600,1600,1000,1000,1000,0
+17385,20000,female,3,1,38,0,0,0,0,0,0,15894,15354,14786,16457,15423,14837,1225,1329,2000,2000,700,1500,0
+17386,50000,female,2,2,33,0,0,0,0,0,0,26740,12498,16264,17918,16072,17041,2000,4000,2000,1000,2000,2396,0
+17387,30000,female,2,2,47,2,2,2,2,2,2,15089,16039,17080,17302,17521,17893,1500,1600,800,800,800,800,1
+17388,230000,female,0,2,47,-1,-1,-1,2,-1,-1,8394,5743,1336,255,5425,4838,5743,1598,0,5425,4838,3840,0
+17389,70000,female,3,1,43,2,2,0,-1,0,0,85863,78125,68899,69131,29289,29898,0,1378,70000,1185,1220,1119,1
+17390,30000,female,2,2,49,0,0,0,0,2,2,15013,15856,18083,20275,20445,20971,1400,2500,2500,800,1000,800,0
+17391,150000,female,3,1,33,0,0,2,0,0,0,147350,154848,151591,151549,146417,137835,11150,0,4845,8046,9200,5100,0
+17392,40000,female,2,1,38,-1,0,0,0,0,0,19537,20416,21151,21884,26213,30480,1500,1356,1380,5000,5000,1128,0
+17393,250000,female,2,1,31,0,0,0,0,0,0,142905,113367,93844,74441,74553,64640,4000,4100,3010,2205,2045,2200,0
+17394,200000,female,2,1,46,1,2,2,0,0,2,30783,33017,30413,32582,34727,36036,3058,0,3000,3000,2002,0,0
+17395,190000,female,2,1,31,1,-1,-1,2,-1,-1,-92,465,3022,1397,1554,1561,2000,4000,0,1600,1600,1700,0
+17396,390000,female,1,1,33,0,-1,0,0,0,0,5602,48329,45281,31219,24962,17002,48329,2287,1500,4962,815,10000,0
+17397,20000,female,3,1,36,0,0,2,0,0,0,14822,17216,17541,18300,19100,2200,3641,900,1200,1000,100,0,1
+17398,200000,female,2,1,47,0,0,0,0,0,0,193229,197253,158980,157837,127528,119550,9058,7260,7367,4303,4551,4411,0
+17399,60000,female,2,1,38,0,0,0,0,0,0,58890,59620,60039,58887,29050,26055,2620,2906,2588,1055,2058,1339,0
+17400,30000,female,2,2,39,0,0,0,2,0,0,28144,27470,30698,28981,27673,27826,2000,4000,0,1000,1000,0,0
+17401,230000,female,2,2,38,-2,-1,0,0,0,0,845,53006,50879,50660,51282,53162,53021,2280,2133,1138,3186,1179,0
+17402,130000,female,2,1,33,0,0,0,0,0,0,84963,83958,84906,85690,85892,87996,2980,4012,3885,3158,4704,3218,0
+17403,140000,female,2,1,44,0,0,0,0,0,0,127254,109717,81545,81454,60176,79728,6050,3700,2000,3000,20000,1500,1
+17404,360000,female,1,1,45,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+17405,20000,female,1,2,31,3,2,2,2,2,0,6186,5941,8541,8560,8274,9135,0,2869,305,0,1000,1000,1
+17406,100000,female,2,2,35,-1,-1,-1,-1,-1,0,1046,2700,2187,678,2040,944,2702,2187,678,2040,0,0,0
+17407,210000,female,2,2,45,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+17408,50000,female,3,1,32,-1,-1,-1,-1,-1,-1,1442,1444,1447,1261,1261,1261,1444,1447,1261,1261,1261,91,0
+17409,380000,female,1,1,44,0,0,0,0,0,0,365023,365445,350474,342569,307959,309709,14320,15065,13017,15026,12017,12031,0
+17410,50000,female,1,2,39,0,0,0,0,0,0,47381,48697,48322,45353,19426,19857,2116,2320,1300,1000,700,600,0
+17411,200000,female,2,2,30,-2,-2,-2,-2,-2,-2,4690,2026,4900,1508,2451,2966,2028,4942,1508,2467,2972,6317,0
+17412,50000,female,1,1,30,0,0,0,0,0,0,46791,42675,34256,30723,19766,20449,1593,1855,1341,706,1000,5454,0
+17413,150000,female,1,1,31,0,0,0,0,0,0,138121,145763,134887,105822,86341,88072,10001,6712,5500,3400,3201,3403,0
+17414,30000,female,2,1,32,0,0,0,0,-2,-2,17168,28655,29239,9435,724,724,12155,2000,1920,724,724,3294,1
+17415,30000,female,2,2,34,1,2,0,0,0,0,29678,28878,26758,27462,28014,29826,0,1751,1455,1007,2268,0,1
+17416,110000,female,2,1,39,0,0,0,0,0,0,132062,126641,120209,112912,85884,87764,5000,5000,3600,3200,4000,3000,0
+17417,30000,female,2,1,38,0,0,0,0,0,2,19707,21022,22080,22810,25772,26360,1650,1700,1400,3355,1146,0,0
+17418,130000,female,2,1,39,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+17419,260000,female,2,1,39,2,2,0,0,2,0,238601,228443,233958,252615,186443,190345,0,10698,24799,0,7035,7078,1
+17420,30000,female,2,1,43,2,2,2,2,2,2,28264,28703,26622,24022,24368,20859,2000,1300,2,1608,0,900,1
+17421,220000,female,2,2,47,0,0,0,0,0,0,137736,130527,127116,121336,121736,119164,5100,6540,5000,5000,5000,4600,0
+17422,120000,female,1,1,33,0,0,0,-1,-1,0,35563,25614,19747,1201,2333,2250,1426,6400,1500,2700,0,0,1
+17423,100000,female,2,2,43,0,0,0,2,2,0,51146,54716,58766,58950,56889,60255,5000,5500,2300,0,5000,5000,0
+17424,100000,female,2,1,38,0,0,0,0,0,0,88231,91090,95935,78939,28667,29549,4326,7400,2914,1500,1500,1500,1
+17425,70000,female,2,2,44,0,0,0,-1,0,0,79696,75167,75183,69385,30103,3752,3100,1600,94540,1124,100,3091,1
+17426,20000,female,2,1,46,1,2,0,0,0,0,13254,12749,13834,14894,15050,16251,0,1600,1600,700,1601,1620,1
+17427,320000,female,1,1,36,-1,2,0,0,0,0,7868,6728,13355,16876,20443,24101,0,8000,5000,5000,5000,11906,0
+17428,210000,female,2,1,45,0,0,0,0,0,0,209495,213691,214177,192223,125412,113281,8000,10730,7100,4052,4000,3300,0
+17429,90000,female,3,1,37,0,0,0,0,0,0,78159,82779,86905,88310,79842,81235,8000,7500,4000,3000,2700,17000,0
+17430,120000,female,3,1,36,0,0,0,0,0,2,91914,94638,96290,97913,102959,104872,4260,4371,4425,7900,4000,0,0
+17431,360000,female,2,1,35,0,0,0,0,0,-2,127548,61629,59194,59444,-2206,-2206,2145,3721,2839,1303,0,0,0
+17432,140000,female,3,1,30,0,0,0,0,2,0,93157,96304,98007,82227,65000,60848,4700,4505,12906,0,2210,2300,0
+17433,300000,female,1,1,32,-1,-1,-1,-1,0,0,3092,1589,2039,13926,13804,11600,1589,2039,13926,1304,0,5355,0
+17434,90000,female,2,1,43,2,-1,2,-1,0,-1,390,780,390,780,390,780,780,0,780,0,780,0,1
+17435,170000,female,3,2,44,1,-1,-1,-1,-1,-2,0,4142,2260,5053,0,0,4142,2260,5053,0,0,0,1
+17436,190000,female,2,1,46,0,0,0,0,0,0,140626,114690,110884,111200,87619,92418,8000,5000,12028,5000,10418,5000,0
+17437,140000,female,2,1,40,-1,-1,-1,-1,-1,0,815,8397,390,390,780,390,8419,390,390,780,0,390,1
+17438,200000,female,1,1,37,0,0,0,0,2,2,37958,40487,41590,43967,44722,46032,3023,1600,2900,1600,2000,0,0
+17439,500000,female,2,1,43,0,0,-2,-1,0,0,53477,0,0,113904,116168,117375,0,0,113904,4130,4356,4103,0
+17440,300000,female,1,1,38,-1,-1,-1,-1,-1,0,2884,3558,2778,2778,5367,2589,3558,2778,2778,5367,0,3661,0
+17441,180000,female,2,2,29,0,0,0,0,0,0,151652,146805,143134,136777,133938,133723,6000,7000,5000,5000,5000,4679,0
+17442,360000,female,3,1,44,-1,-1,-1,-1,-1,-1,2877,1852,2068,2185,9561,321,1861,2078,2361,9608,322,322,0
+17443,90000,female,2,1,32,0,0,0,0,0,0,68248,57751,45074,38489,28558,29245,2388,2000,2412,1200,1300,1200,0
+17444,150000,female,2,1,44,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+17445,500000,female,1,1,30,0,0,0,0,0,0,224387,165727,119760,72506,60548,57212,10100,7041,4123,5039,5071,3548,0
+17446,80000,female,2,2,29,0,0,0,0,0,0,24822,25824,26605,27920,28358,29000,1720,1500,1762,1200,1250,3200,0
+17447,10000,female,3,2,46,1,2,-1,2,0,0,4474,189,3510,3306,3551,5577,0,3510,0,300,2260,2000,1
+17448,180000,female,1,1,46,-1,-1,-1,-1,-1,-1,9509,15419,14188,11926,9718,34322,16359,14293,11949,9737,34449,25691,0
+17449,150000,female,5,2,36,0,0,0,0,0,0,144833,141559,80614,110343,64419,18536,6041,13013,64442,3000,2000,4000,0
+17450,80000,female,1,1,44,-1,-1,-1,-1,-1,-1,14686,3673,11285,500,500,6155,3673,11285,500,500,6155,1440,0
+17451,60000,female,2,1,30,1,2,0,0,2,2,14135,13616,16065,18092,17504,19216,0,3000,2300,0,2000,0,1
+17452,240000,female,1,1,35,-1,-1,-1,-1,-1,-1,380,380,380,380,0,380,380,380,380,0,380,760,0
+17453,50000,female,3,1,35,-1,-1,0,0,0,0,10458,37907,33604,25303,17841,6980,37907,1599,1200,0,0,3570,0
+17454,230000,female,1,2,33,0,0,0,0,0,0,19518,21735,22599,20600,24132,38793,3735,3599,3600,4132,15000,5865,0
+17455,40000,female,2,2,33,0,0,0,0,0,0,34253,34954,36093,36891,37019,40734,1567,2000,2000,1318,4610,0,0
+17456,250000,female,2,1,33,3,2,2,-2,-2,-2,2500,2500,0,0,0,0,0,0,0,0,0,0,1
+17457,50000,female,2,1,32,1,2,2,2,0,0,51132,49594,50292,48532,27308,27539,0,4800,0,1200,1200,1400,0
+17458,120000,female,3,1,39,2,2,2,2,4,3,49437,51505,53582,58310,57150,55961,3500,3500,6200,358,0,2100,1
+17459,50000,female,3,2,41,2,2,2,2,2,2,23043,24064,24981,25473,25857,26298,1700,1600,1200,1100,1000,0,1
+17460,60000,female,2,1,38,0,0,0,0,0,0,55120,47123,48367,48264,29144,27534,1735,1979,1443,988,974,2001,0
+17461,160000,female,3,2,35,0,0,0,0,0,0,92509,88281,80435,79969,77108,76579,3472,3604,2972,3000,2228,2201,0
+17462,50000,female,2,1,43,0,0,0,0,-2,-2,17870,9230,10000,0,0,0,1500,1000,0,0,0,0,1
+17463,400000,female,1,1,48,-1,2,2,-2,-1,0,1908,1442,8162,-1010,3332,331,0,8513,457,4903,313,4816,0
+17464,50000,female,2,3,39,0,0,0,0,0,0,49005,49407,45881,45784,50072,49112,6000,5000,5000,8000,4000,4000,0
+17465,100000,female,3,2,31,0,-1,-1,0,-1,-1,15856,510,2279,1796,466,466,510,2279,1730,466,466,468,0
+17466,100000,female,2,2,34,0,0,0,0,0,0,22173,22776,23837,24166,24216,24901,1372,1829,1554,1000,1000,586,0
+17467,360000,female,1,2,35,-1,0,0,-1,0,0,1555,6392,3773,17917,21057,0,6000,3000,18117,5371,0,0,0
+17468,30000,female,3,2,41,0,0,0,0,0,0,12001,12450,12040,12739,7610,7000,1485,1301,1000,152,140,780,0
+17469,50000,female,2,1,32,0,0,0,0,0,0,36062,36345,10529,8337,2475,0,1500,1847,1000,0,0,0,0
+17470,80000,female,2,1,28,2,0,0,0,0,0,52062,49884,22348,22063,8723,7254,2158,1708,1411,4,21,220,1
+17471,150000,female,2,2,28,-1,-1,-1,-1,-1,0,326,326,326,326,652,326,326,326,326,652,0,326,0
+17472,10000,female,3,1,33,2,2,2,0,0,0,7708,9912,9608,9639,9985,11084,2500,0,1200,500,1400,1,0
+17473,200000,female,2,1,35,0,0,0,0,0,0,3773,7677,14704,8000,10285,16285,4000,7240,2000,2285,6000,1500,0
+17474,30000,female,2,2,42,-1,-1,2,-1,-1,-1,836,1672,836,390,390,390,1672,0,390,390,390,0,0
+17475,220000,female,1,1,37,0,0,0,0,0,0,152197,154167,158981,162348,164162,168013,6000,7300,7500,6000,6500,7000,0
+17476,180000,female,1,2,28,0,0,0,0,0,0,161694,166198,168711,172263,174127,176335,7500,7000,7189,6000,5100,10000,0
+17477,220000,female,1,2,30,0,0,0,0,0,0,204491,176733,174680,61523,61415,61982,7000,7500,2369,2000,2078,2500,0
+17478,220000,female,1,2,29,-2,-2,-2,-1,-1,-1,0,799,0,5501,3816,15448,799,0,5501,3816,15448,4179,0
+17479,390000,female,2,2,33,0,0,0,0,0,0,45818,144656,148366,99008,69990,71935,100000,6000,3704,2741,3314,2556,0
+17480,350000,female,2,1,36,1,-2,-2,-2,-1,0,0,0,0,0,11525,11760,0,0,0,11525,235,2270,0
+17481,560000,female,2,1,45,0,0,0,0,0,0,374663,382010,379652,387706,334908,341884,13195,13510,14292,11553,12130,11703,1
+17482,240000,female,1,1,37,0,0,0,0,0,0,173677,176304,355496,176402,174440,172806,8000,9500,12448,6155,6453,6390,1
+17483,410000,female,2,1,43,0,0,0,0,0,0,6917,7548,8726,9760,9570,8935,1130,2000,2200,312,500,363,0
+17484,90000,female,2,2,36,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,3500,1
+17485,30000,female,1,2,31,0,0,0,2,0,0,28803,28635,30217,28919,29302,28603,1800,3600,0,1500,1500,3300,0
+17486,40000,female,2,1,33,1,2,2,2,2,2,23734,24644,25749,26127,26401,25839,1600,1800,1100,1000,0,2300,1
+17487,60000,female,2,2,46,0,0,0,0,0,0,39518,39558,41690,21151,30059,13046,1870,3002,1364,10000,474,490,0
+17488,390000,female,2,1,41,0,0,0,0,0,0,216622,214504,212726,210556,208317,205339,7244,7500,7228,7103,7214,7000,0
+17489,130000,female,2,1,35,0,0,0,0,0,0,80713,93349,68158,69208,54677,59601,28000,3500,3000,3000,10000,3500,0
+17490,90000,female,2,2,32,3,2,2,2,0,0,27565,28613,29364,28596,30120,31285,1800,1500,0,2000,1650,1000,1
+17491,300000,female,2,1,36,0,0,0,0,0,0,147051,138726,139649,104245,56788,57920,6700,5800,5000,2200,2200,2600,0
+17492,220000,female,1,1,33,0,0,0,0,0,0,204205,210183,212877,189161,180715,171449,20000,10000,8140,8000,7000,10000,0
+17493,20000,female,1,2,33,0,0,3,3,2,2,11391,16180,16635,16082,15529,16525,5000,1000,0,0,1400,0,0
+17494,140000,female,3,1,35,0,0,0,0,0,0,119184,130939,90894,85805,85907,88615,14113,5000,3000,4000,4000,10000,0
+17495,150000,female,6,1,47,0,0,0,0,0,0,89327,90666,91721,93063,92758,93876,4539,4218,4204,3296,3408,3416,0
+17496,120000,female,3,1,44,0,0,0,0,0,0,16735,18150,19528,19065,18617,21381,2000,2000,2000,1000,3000,2000,0
+17497,200000,female,2,1,37,1,2,0,0,0,0,7841,7569,9282,10155,12470,13571,0,2000,1155,2470,1265,0,0
+17498,20000,female,2,1,40,0,0,0,0,0,0,4314,5190,6554,6895,5844,6079,1500,2000,1032,155,1000,0,1
+17499,110000,female,2,1,41,2,2,2,2,2,2,23078,25883,25182,28945,28183,29869,3200,0,4200,0,2300,0,1
+17500,290000,female,2,2,34,0,0,0,0,0,0,305781,310403,315048,314085,317631,315820,12012,12012,12012,11016,11088,12031,0
+17501,210000,female,3,1,45,0,0,0,0,0,0,124147,81641,54971,37849,42240,32981,5000,5000,4000,5000,1500,4000,0
+17502,370000,female,2,2,40,-2,-1,0,0,0,2,11403,191438,189957,188960,195476,184094,191446,7002,6854,15960,0,122400,0
+17503,200000,female,3,1,42,-2,-2,-2,-2,-2,-2,1261,1261,1261,1261,1261,1256,1261,1261,1261,1261,1256,1880,0
+17504,180000,female,2,1,35,-1,-1,-1,-1,-2,-2,1264,176,1247,0,0,0,176,1247,0,0,0,1768,0
+17505,260000,female,2,2,35,0,0,0,0,0,0,131211,132175,133289,134642,137065,108328,4001,4215,4101,4000,3300,3300,0
+17506,50000,female,2,1,43,0,0,2,2,0,0,17102,19805,21188,20550,21209,21713,3000,2000,0,1000,1000,1000,1
+17507,150000,female,3,1,40,-1,-1,-1,-1,-1,-1,5916,5876,5956,5876,5496,5116,5876,5956,5876,5496,5116,5496,0
+17508,190000,female,3,1,45,0,0,0,0,0,0,76433,78472,80548,81778,83082,84811,3300,3331,3359,2663,2751,3000,0
+17509,160000,female,2,2,42,-1,-1,-1,-1,-1,-1,13849,40862,2239,552,19367,-1,40991,2252,553,19425,0,649,0
+17510,180000,female,2,1,37,0,0,0,0,0,0,107337,48433,46325,47354,48323,49416,2000,1771,1800,1750,1893,2000,0
+17511,130000,female,2,2,32,0,0,0,0,0,0,7469,8472,9143,9741,9713,9458,1138,1173,1138,477,400,600,0
+17512,30000,female,2,1,47,0,0,2,2,2,2,27119,29243,31037,30908,29969,29488,2894,2559,800,600,1000,0,0
+17513,100000,female,2,1,36,1,2,2,2,2,0,32196,31379,33862,35007,34147,35437,0,3000,2000,0,2000,3500,1
+17514,20000,female,2,2,37,1,2,0,0,0,2,16174,15617,16646,17648,18819,17992,0,1285,1287,1458,0,644,1
+17515,100000,female,2,1,43,-1,-1,-1,-1,-1,-1,1597,2491,1709,574,556,2306,2491,1709,574,556,2306,2562,0
+17516,20000,female,2,1,40,0,0,0,0,-1,-1,10470,10186,9936,10790,230,-160,1145,1546,1400,390,73,19371,0
+17517,20000,female,2,1,35,2,0,0,2,2,2,5890,7282,9455,9154,10001,10046,1500,2454,0,1000,350,0,1
+17518,20000,female,3,2,48,0,0,0,0,0,0,17332,18600,17947,18758,19292,19201,1580,1367,1178,712,742,2000,0
+17519,50000,female,3,1,42,2,0,0,0,2,2,31422,32420,33462,36199,36803,37566,1521,1563,3300,1500,1500,1600,1
+17520,110000,female,2,1,38,2,2,0,0,0,2,41619,40650,41744,42783,47476,45355,0,1750,1750,5400,700,1000,1
+17521,60000,female,2,1,48,0,0,0,0,0,0,50806,50980,51874,51808,16941,17295,2000,2100,1400,600,1000,1000,1
+17522,50000,female,2,2,35,1,2,0,0,-2,-2,50421,41408,35929,0,0,0,0,2180,0,0,0,0,0
+17523,200000,female,1,2,40,2,2,0,0,0,2,185696,181236,185410,189069,197736,183299,0,8600,8300,13257,917,7000,1
+17524,360000,female,2,1,48,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+17525,110000,female,2,1,35,0,0,0,0,0,0,46640,47686,48737,50157,51560,52965,1600,1600,2000,2000,2000,2000,0
+17526,230000,female,2,1,46,-1,-1,0,0,0,0,207,4090,5848,6849,9331,12687,4999,2655,1919,3400,3920,6655,0
+17527,180000,female,2,2,39,0,0,-1,-1,-2,-2,2875,0,2125,0,0,0,0,2125,0,0,0,0,0
+17528,180000,female,2,2,31,-2,-1,-1,-2,-2,-2,0,1152,3338,0,0,0,1152,3338,0,0,0,0,0
+17529,50000,female,2,2,42,0,0,0,0,0,0,48080,48062,48667,49311,24663,24854,1763,2112,1756,324,336,351,0
+17530,570000,female,1,1,39,-2,-2,-2,-2,-2,-2,2394,3872,3635,5130,7563,4889,3882,3653,5145,7573,4894,4232,0
+17531,30000,female,2,1,45,1,2,2,2,2,2,13440,13923,17194,16625,17442,18016,1000,3500,0,1400,1000,1000,0
+17532,140000,female,2,1,46,-1,-1,-1,-1,-1,-1,264,1024,264,1024,264,264,1024,528,1024,264,264,414,0
+17533,50000,female,2,1,44,0,0,0,0,0,0,3351,4368,5391,6401,6528,6664,1077,1100,1106,233,241,243,1
+17534,50000,female,1,1,35,0,0,2,2,2,0,44487,47438,46400,49276,48286,47915,4000,0,3700,0,2000,6000,1
+17535,120000,female,1,2,35,1,-2,-1,-1,-1,-1,0,0,234,4394,3164,5700,0,234,4394,3164,5700,300,1
+17536,120000,female,1,2,35,-1,-1,-1,-1,0,-1,2776,2549,2558,2577,249,1976,2549,2558,2577,0,1976,1000,1
+17537,50000,female,2,2,45,-2,-2,-2,-2,-2,-2,330,330,4975,4810,330,330,330,4975,4838,330,330,330,0
+17538,180000,female,2,1,40,-1,-1,-1,-1,-1,-2,899,2879,8750,9931,0,7760,2879,8750,9931,0,7760,3450,0
+17539,80000,female,3,1,42,0,0,-2,-2,-2,-2,71650,0,0,0,0,0,0,0,0,0,0,0,0
+17540,300000,female,1,1,43,-2,-2,-2,-2,-2,-2,-763,-754,-745,-1302,-527,-518,1000,1000,1100,1100,1000,2500,0
+17541,80000,female,1,1,37,-1,-1,-2,-2,-2,-2,1330,0,0,0,0,0,0,0,0,0,0,0,0
+17542,70000,female,2,2,34,2,0,0,0,0,0,71332,71122,70012,66541,31609,31259,2744,3239,3405,1085,1102,1155,1
+17543,320000,female,2,1,40,0,0,0,0,0,0,96225,99606,100704,208794,213025,217400,5000,2704,108794,5123,5255,5333,0
+17544,500000,female,1,2,35,0,0,0,0,0,0,12590,13598,14650,15559,14861,15173,1225,1277,1186,478,496,509,0
+17545,250000,female,1,2,35,-1,-1,-1,-1,0,0,4807,10446,17904,99464,86180,36038,10446,17911,99738,4055,0,0,0
+17546,230000,female,2,1,46,0,0,0,-1,-1,-1,8136,3590,2936,476,476,476,1500,1000,476,476,476,1685,0
+17547,80000,female,3,1,45,0,0,0,0,0,0,35401,36399,37689,38580,39104,39484,1587,1877,1768,1292,900,1365,0
+17548,170000,female,2,1,40,2,-1,2,-1,-1,-1,193,3760,3500,7190,9000,0,3760,0,7190,9000,0,0,1
+17549,240000,female,1,2,31,0,0,-2,-2,-2,-1,43601,-15,-15,-15,-15,1185,0,0,0,0,1200,0,0
+17550,150000,female,3,1,46,0,0,0,0,0,0,61510,62731,64047,65966,66671,68067,2240,2321,2980,2400,2468,2611,0
+17551,90000,female,3,1,37,0,0,0,0,0,0,91193,91078,86785,79894,50546,34427,7006,5026,7031,6000,1345,1500,0
+17552,100000,female,2,1,36,2,0,0,0,0,0,101483,101638,101461,101461,91752,91532,4500,5000,4000,3300,3400,15003,1
+17553,30000,female,2,1,42,2,2,0,0,0,0,30149,28117,27761,28053,28249,23580,0,2000,1507,3100,3100,3100,1
+17554,80000,female,2,1,40,2,0,0,-2,-2,-2,80934,82150,0,0,0,0,3800,0,0,0,0,0,1
+17555,260000,female,2,1,49,-1,-1,-1,0,0,0,8046,2184,15475,10981,8566,4741,2184,15482,2000,3000,1000,5125,1
+17556,200000,female,3,1,43,-1,-1,-1,-1,-1,-1,623,623,5477,623,623,773,623,5477,623,623,773,623,0
+17557,20000,female,3,1,39,2,3,2,2,3,2,15307,14769,15232,16677,16119,16548,0,1000,2000,0,1000,1000,1
+17558,160000,female,1,2,31,-1,2,-1,-1,-1,-1,1494,696,1395,898,894,2198,2,1399,903,896,2204,786,1
+17559,70000,female,2,2,38,1,2,2,2,2,2,21047,22102,22949,23275,23596,23078,1700,1500,1000,1000,0,2100,0
+17560,20000,female,2,1,43,0,0,0,0,0,0,6459,7470,8492,9547,20766,12197,1123,1145,1200,2000,3000,1000,0
+17561,200000,female,1,1,45,-1,-1,-1,-1,-2,-2,632,337,670,0,0,0,337,670,0,0,0,451,0
+17562,440000,female,3,1,49,0,0,0,0,0,0,386288,367400,347445,354373,307773,293357,14453,12611,13022,10572,10270,10722,0
+17563,20000,female,3,1,43,4,3,2,2,0,0,20461,19833,20502,19461,19244,20130,0,1700,0,800,1600,1000,0
+17564,110000,female,1,1,35,0,0,0,0,0,0,107905,101573,104079,104829,107400,105694,4000,5300,4000,4200,4000,3800,0
+17565,130000,female,3,1,44,0,0,0,0,0,0,122264,125756,129159,127727,130334,0,3541,3497,2875,2607,0,0,0
+17566,50000,female,2,1,33,0,0,0,0,2,2,40738,43923,45409,47718,46480,48756,4200,2500,3500,0,2800,1400,0
+17567,290000,female,1,1,35,-2,-2,-2,-1,0,0,0,0,0,2262,5205,8114,0,0,2262,3000,3000,0,1
+17568,480000,female,2,1,38,-1,0,0,-1,0,0,4658,10545,13258,51723,40511,37226,6000,3066,51800,5030,3039,3112,0
+17569,310000,female,1,2,29,-2,-2,-2,-2,-2,-2,976,-7,-7,-7,1440,3079,0,0,0,1447,3094,0,0
+17570,30000,female,2,1,30,0,0,0,0,2,0,24061,25156,25949,28478,27754,28186,1800,1500,3000,0,1001,2500,1
+17571,500000,female,4,1,39,1,-1,-1,-2,-2,-1,-397,227,-37,-37,-37,213,2200,0,0,0,250,0,0
+17572,80000,female,2,2,31,0,0,2,0,0,2,51160,54207,52775,53906,60099,61402,4500,0,2000,7100,2400,0,0
+17573,100000,female,2,1,32,0,0,0,0,0,0,74136,72052,71007,69470,65424,64349,3200,3300,2910,2400,2340,2400,0
+17574,70000,female,3,1,37,0,0,0,0,0,0,74117,72168,70177,65735,55468,53266,2589,2511,2254,2000,2000,1766,0
+17575,210000,female,2,1,43,0,0,0,0,0,0,91152,92917,90651,85295,80416,76946,3348,3381,3400,2684,2744,2892,0
+17576,180000,female,3,1,43,-1,-1,-1,-1,-1,-2,780,0,390,780,0,0,0,780,780,0,0,0,0
+17577,50000,female,2,1,43,0,0,0,2,0,0,51229,46954,51221,49759,49820,50525,2100,5896,0,2000,1988,2000,0
+17578,60000,female,1,2,34,0,0,0,0,-1,0,39505,43497,49449,57500,4749,9749,5000,7000,10000,4749,5000,10000,0
+17579,50000,female,2,1,40,-1,-1,-1,-1,-1,-1,4860,8389,22049,8110,3164,10148,8389,22049,8117,3164,10148,7949,0
+17580,70000,female,3,1,38,1,2,0,0,0,0,59020,57400,21868,13514,14303,14211,50,1379,1500,1000,1000,1000,0
+17581,50000,female,2,2,36,0,0,0,0,0,0,81793,84360,89215,93908,14308,14808,2682,5000,5000,1000,500,302,0
+17582,350000,female,1,1,42,-1,-1,-1,-1,-1,-1,360,360,360,360,510,510,360,360,360,510,510,360,0
+17583,170000,female,2,1,45,0,0,0,0,0,0,156993,159482,161921,165863,128038,130931,8000,6500,7000,5000,5000,5000,0
+17584,180000,female,2,1,32,1,2,2,0,0,2,146549,150151,142421,110713,84928,83307,7641,3,6003,5826,0,2855,0
+17585,220000,female,1,2,30,0,0,0,-1,0,0,213525,141764,53019,143408,136786,130596,6439,2261,143408,4754,4740,5190,0
+17586,80000,female,3,1,30,2,2,2,2,2,2,40654,41687,42719,43018,44013,45058,2000,2000,1300,2000,1900,1900,1
+17587,360000,female,2,1,33,0,0,0,0,0,0,30198,58332,66062,57374,40963,100369,30000,10043,20073,30000,90000,948,0
+17588,500000,female,1,2,31,-1,-1,-1,-1,-1,-1,1779,644,1138,643,628,905,644,1138,643,630,905,3111,0
+17589,410000,female,1,2,31,0,0,0,0,0,0,309531,313646,270317,209076,191671,192848,11270,15325,9099,7016,7703,100000,0
+17590,80000,female,1,1,32,-1,3,2,-1,0,0,4927,4693,3342,4844,3728,2612,0,0,4844,0,0,0,1
+17591,180000,female,1,2,33,2,2,2,2,2,2,118656,125175,126899,127336,125273,134210,10000,5200,4000,1500,11000,1000,1
+17592,280000,female,1,2,31,-1,-1,-1,-1,-1,-1,410,3977,1713,1430,6877,6479,3977,1726,1430,6877,6479,720,0
+17593,20000,female,1,2,31,-1,-1,-1,-1,-1,-1,416,416,0,416,416,416,416,416,832,416,416,416,0
+17594,30000,female,2,2,31,3,2,2,2,2,0,29078,28312,29733,29183,28082,27434,0,1900,2600,11,1500,1700,1
+17595,200000,female,1,1,31,-1,-1,-2,-2,-1,-1,1203,0,0,0,5032,0,0,0,0,5032,0,0,0
+17596,180000,female,1,2,32,-1,-1,2,2,0,0,10831,17816,18247,33230,5168,0,7201,1000,0,103,0,0,1
+17597,140000,female,1,2,33,2,0,0,0,0,0,130104,131356,136107,128738,126491,125213,4900,7005,7000,4762,5000,5000,0
+17598,130000,female,2,2,29,0,0,0,2,0,0,86584,88345,94597,92077,93272,96298,4100,8600,0,3500,7100,3600,0
+17599,20000,female,2,1,30,0,0,-2,-2,-1,0,3366,0,0,0,2105,2105,0,0,0,2105,0,0,0
+17600,120000,female,1,2,29,-1,2,-1,-1,0,-1,632,316,316,632,316,316,0,316,632,0,316,782,1
+17601,50000,female,2,2,30,0,0,0,0,0,0,35758,36664,30897,14693,247,0,3000,3000,5000,0,0,0,0
+17602,310000,female,2,1,30,-1,0,0,0,0,0,13768,17520,21218,40531,41630,51983,4000,4000,20003,3027,20006,10056,0
+17603,420000,female,1,2,30,0,0,0,0,0,0,46209,26552,15189,13787,9199,4405,1543,2005,5000,2000,1000,240,0
+17604,60000,female,2,2,30,0,0,0,0,0,0,10809,11160,10913,12469,6060,5382,3160,2604,2160,4060,3382,3751,0
+17605,140000,female,1,1,30,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+17606,80000,female,2,2,30,2,2,2,2,4,4,56761,58920,60385,64876,65245,63647,3700,3000,6100,2000,0,2000,1
+17607,220000,female,2,1,31,0,0,0,0,0,0,79226,78693,78297,78980,77817,77569,3900,3500,4000,2700,3000,10000,0
+17608,360000,female,2,1,33,0,0,0,-2,-2,-2,11596,11775,0,0,0,0,1058,0,0,0,0,0,0
+17609,290000,female,1,2,29,0,0,0,0,0,0,10370,5681,7124,8038,4029,6059,1400,1507,2580,2050,2030,0,0
+17610,260000,female,1,2,30,1,2,0,0,0,0,96549,94114,96689,101023,93738,96218,0,5000,6000,5000,4000,8000,0
+17611,170000,female,1,2,29,0,0,0,0,0,0,24717,26659,28592,29364,29096,29353,3000,3000,2000,1000,977,5000,0
+17612,200000,female,1,2,34,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+17613,140000,female,2,1,35,0,0,0,0,0,0,127794,120770,116399,112055,107364,107762,4317,4189,5411,3800,4024,4100,0
+17614,170000,female,2,2,39,0,0,0,0,0,0,161277,162706,166677,167049,38377,33668,5856,7424,7169,1241,1187,1396,0
+17615,220000,female,1,1,45,0,0,0,0,0,0,142389,143557,142698,145875,143254,145368,6200,7300,7510,5000,5000,5200,0
+17616,230000,female,1,1,44,-1,-1,-2,-1,0,0,756,0,0,11660,11898,14898,0,0,11660,238,3000,1252,1
+17617,360000,female,3,2,38,-1,-1,-1,-2,-1,-1,1638,3060,0,0,1444,-1382,3060,0,0,1444,1382,0,0
+17618,340000,female,1,1,36,0,0,0,0,0,0,242518,247338,252656,257535,262670,266351,8849,9300,9200,9226,9530,10139,0
+17619,360000,female,1,1,37,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+17620,90000,female,3,2,42,0,0,0,0,0,0,91240,92795,93557,47166,48406,49695,4895,4806,1547,3000,3000,1720,0
+17621,130000,female,2,1,47,2,2,2,2,2,2,123896,120452,129137,129956,130946,130814,0,12200,4500,4502,5000,0,1
+17622,80000,female,2,1,41,-1,-1,-1,-1,-2,-1,390,390,390,-390,0,1560,390,780,0,390,1780,0,1
+17623,400000,female,1,1,41,0,-1,-1,-1,0,0,104083,8,1274,19143,20305,22063,8,1274,19143,1305,2063,1695,0
+17624,240000,female,2,2,43,0,0,-1,-1,-1,-1,225159,216829,27620,24873,24511,24000,20000,27662,24873,24511,24000,37645,0
+17625,10000,female,2,1,46,1,2,2,2,2,2,7660,8689,8403,9505,8889,10263,1306,0,1735,0,2000,0,1
+17626,240000,female,1,1,41,-1,-1,0,0,0,0,3087,10839,16665,13039,9439,11378,10839,10000,3500,0,5000,5000,0
+17627,130000,female,1,1,40,-1,-1,-1,-1,-1,-1,989,989,989,989,990,702,991,991,991,992,703,992,0
+17628,20000,female,3,1,44,0,0,2,2,2,0,20313,20111,18057,18536,11532,19450,3030,0,2175,0,10000,931,0
+17629,80000,female,2,1,40,0,0,0,0,0,0,37123,38317,20896,21604,22035,22496,2072,1651,1359,790,817,821,0
+17630,250000,female,2,1,39,0,0,0,0,-1,-1,210262,58752,31707,13630,10000,10000,10073,10011,1000,10000,10000,10000,0
+17631,30000,female,2,1,44,1,4,4,3,2,2,28864,30108,29367,28605,27855,29649,2000,0,0,0,2400,1300,0
+17632,280000,female,2,1,42,0,-1,0,0,0,0,255527,256675,253682,260274,153516,156830,273844,13000,11000,8000,5866,8000,0
+17633,290000,female,2,1,49,-2,-2,-1,2,0,0,-236,-236,11764,11186,6863,6179,0,12000,0,0,0,0,0
+17634,500000,female,3,2,46,-1,0,-1,-1,0,0,24239,36674,1558,310852,301854,133761,15000,1558,310852,10000,5000,5000,0
+17635,80000,female,2,1,40,1,2,0,0,2,0,63340,53262,39422,33954,29070,27785,6,2006,4000,0,1118,3000,0
+17636,120000,female,2,1,47,0,0,0,0,0,0,97989,101458,103840,105646,86127,67269,5100,5500,5170,3543,3000,3238,0
+17637,80000,female,2,1,48,0,0,0,0,0,0,49526,48304,27864,27033,27617,26761,1740,1800,1500,1000,965,1500,0
+17638,210000,female,2,2,41,0,0,0,0,0,0,227271,211597,99865,77754,49529,30683,9000,4000,3018,2000,3000,3000,0
+17639,100000,female,2,2,30,2,2,2,2,0,0,96604,94153,102623,100090,101511,103503,0,10000,0,4000,7816,0,1
+17640,210000,female,1,1,41,1,-2,-1,-1,-2,-1,-28,-28,3330,0,0,300,0,3358,0,0,300,0,0
+17641,500000,female,2,1,44,0,0,0,0,0,0,193136,186610,180153,173454,166546,159651,6610,6480,6230,5900,5720,5420,0
+17642,230000,female,1,1,39,0,0,0,0,0,0,63370,64621,65380,66520,66343,63498,2305,2515,2370,2180,2500,2200,0
+17643,110000,female,2,1,40,0,0,0,0,0,0,23303,23978,22369,20608,20608,20606,1511,1772,1320,750,745,747,0
+17644,210000,female,1,1,46,0,0,0,0,0,0,112901,110089,108775,107090,104037,101337,4910,3939,3792,3657,3631,3500,0
+17645,320000,female,2,2,35,-1,0,0,0,0,0,61687,59130,121486,22337,23358,13536,3500,3300,6000,5000,2000,3000,0
+17646,140000,female,2,2,37,0,0,-1,-1,-1,-1,143118,140955,1876,1876,1876,3372,6400,1876,1876,1876,3372,104005,0
+17647,40000,female,1,1,48,0,0,0,0,0,0,38549,37924,37648,38804,39651,40794,2000,1700,2000,2000,2000,2000,0
+17648,280000,female,1,1,35,2,-1,0,0,0,0,47,97767,99036,96383,86060,62312,99007,5000,3027,6025,2001,1903,0
+17649,220000,female,1,1,47,0,0,0,0,0,0,210753,188270,177515,166282,100244,-607,6426,7160,6495,3993,0,176566,0
+17650,250000,female,2,1,37,0,0,0,-1,0,0,59023,102006,56412,37764,23876,16891,45000,2012,72791,16891,0,5617,0
+17651,70000,female,1,2,34,0,0,0,0,0,0,36467,40505,43333,36959,27296,23474,5000,5000,1500,546,1000,1746,0
+17652,70000,female,1,1,35,0,0,0,0,0,0,59795,60684,69521,45001,37214,23807,2479,10128,4086,1348,13032,10059,0
+17653,300000,female,1,1,47,-1,-1,-1,-1,-1,-1,514,2392,148,148,148,0,2392,148,148,148,0,747,1
+17654,50000,female,3,1,40,0,0,0,0,-1,0,117191,48729,49929,-596,28348,30530,2325,2525,283,29334,3000,2000,0
+17655,70000,female,1,2,36,0,0,0,0,0,0,79640,75021,71101,73831,46898,48686,3000,2893,4231,8000,2500,1675,0
+17656,50000,female,3,1,35,0,0,0,0,0,0,49930,48261,49027,49564,28609,28302,2300,3000,2503,1500,1204,2000,0
+17657,250000,female,2,1,35,2,0,0,0,0,0,92966,37341,38905,35356,34978,35822,1641,2205,2000,2000,1000,1000,1
+17658,120000,female,2,1,34,0,0,0,0,0,0,119287,116995,114061,116067,116294,118759,4400,4137,4400,4320,4500,4600,0
+17659,70000,female,1,1,35,2,2,2,2,2,2,51143,53185,55030,56530,55027,58461,3500,3300,3000,0,4500,2500,1
+17660,440000,female,1,1,40,0,0,0,0,0,0,416044,424528,434015,434419,393135,385578,16500,17500,17000,14500,14500,13500,0
+17661,280000,female,1,1,41,0,0,0,0,0,0,96590,99755,81244,81193,82470,49630,5000,3000,3007,5000,2000,1700,0
+17662,360000,female,1,1,42,0,0,0,0,0,0,174857,179851,186961,201703,189455,194373,10000,10005,20117,15018,10027,20057,0
+17663,150000,female,1,1,43,-2,-2,-2,-1,0,-1,885,-123,-123,240,123,123,123,0,363,0,123,123,0
+17664,300000,female,3,2,44,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+17665,20000,female,2,1,42,1,2,2,2,0,0,8395,8114,10293,9979,10329,10391,0,2479,0,515,377,617,0
+17666,380000,female,2,1,38,0,0,0,-2,-2,-2,12538,6666,0,0,0,0,1000,0,0,0,0,0,0
+17667,340000,female,2,1,44,0,0,0,-1,0,0,240851,171731,61404,114807,114560,85272,8297,4951,199726,4476,3257,3497,0
+17668,210000,female,2,2,41,0,0,0,0,0,0,165425,169174,171459,177590,180147,184084,8000,6500,9000,7000,7000,7000,0
+17669,60000,female,2,1,41,2,0,0,2,0,0,56483,55643,54941,50291,35829,36602,2203,4687,11,1500,1500,2000,1
+17670,130000,female,1,1,46,0,0,0,0,0,-1,15393,16624,18932,22001,3403,3859,1593,3000,4000,0,3860,249,0
+17671,340000,female,1,1,43,0,0,0,0,0,0,15928,18338,20035,24238,20315,16378,3000,2000,5000,1000,723,5000,0
+17672,170000,female,2,1,49,-1,0,0,0,0,0,12769,13557,20245,15429,16594,14035,3557,8245,5429,4500,5415,6000,0
+17673,360000,female,2,1,43,-1,-1,2,-1,2,-1,9011,4045,1780,2380,2230,2275,4045,0,4760,0,2275,2280,0
+17674,60000,female,2,1,35,2,2,2,2,2,2,3167,5601,5366,6772,6515,7906,2500,0,1500,0,1500,0,0
+17675,360000,female,1,1,37,-1,-1,-1,-1,-1,-2,5625,367,1726,396,-66,-66,368,1734,398,200000,0,150000,0
+17676,280000,female,2,1,41,0,0,0,0,0,0,9551,12848,15345,19211,22817,37323,5000,5000,5000,5000,16000,0,0
+17677,240000,female,1,1,34,-1,-1,2,-1,-1,-1,2799,855,858,1048,2695,0,855,3,1054,2695,0,0,0
+17678,120000,female,1,2,34,-1,-1,-2,-1,2,0,17067,0,0,7304,7154,9055,0,0,7304,0,5000,1857,0
+17679,90000,female,1,2,33,0,0,2,0,0,0,92725,94908,89711,91165,72263,72569,8500,0,4086,2600,3000,3000,0
+17680,100000,female,1,1,34,0,0,0,0,0,0,101620,101747,100750,98953,99114,101501,4000,3838,3563,3563,4000,3475,0
+17681,410000,female,1,1,34,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,3996,0
+17682,190000,female,1,1,43,2,0,0,0,0,0,191869,193660,174848,124776,92684,100151,7305,6099,4793,3684,12251,1265,0
+17683,220000,female,1,1,36,0,0,0,2,0,0,184765,190691,206000,194930,130938,134664,9000,20000,0,5000,6000,8000,0
+17684,90000,female,2,2,44,2,2,2,2,2,2,15089,17023,18451,17857,20256,20785,2500,2000,0,2700,1000,0,1
+17685,120000,female,1,2,30,0,0,0,0,0,0,170263,157881,160796,160168,156165,158850,5520,5700,5815,5500,5522,6000,0
+17686,10000,female,3,2,50,3,2,2,2,2,2,600,600,600,600,600,2050,0,0,0,0,1450,0,1
+17687,500000,female,1,1,50,0,0,0,0,0,0,378981,372392,353719,348365,306196,303114,20002,16023,13009,10008,10000,20004,0
+17688,120000,female,2,1,51,-1,-1,0,0,0,0,4777,60332,60702,58677,51549,46552,62462,2299,1919,1838,2200,90000,0
+17689,120000,female,2,1,50,0,0,2,0,0,0,38261,58084,33018,19172,14938,21290,23000,0,10076,10000,10000,10000,0
+17690,220000,female,1,1,51,-1,-1,-1,2,2,-2,2262,2255,8105,2224,150,1000,2276,8117,0,150,1000,2619,1
+17691,240000,female,2,1,50,-1,-1,-1,2,0,0,978,193,386,579,386,193,193,386,386,0,0,536,0
+17692,150000,female,1,2,36,1,-1,-1,-1,-1,-2,0,990,0,234,0,0,990,0,234,0,0,0,0
+17693,500000,female,1,1,50,-1,-1,-1,-1,-1,-1,21794,12574,12608,-134,22466,1969,12610,12694,0,22600,16837,0,0
+17694,150000,female,1,1,50,-1,-1,-2,-2,-2,-2,6350,0,0,0,0,0,0,0,0,0,0,0,0
+17695,60000,female,2,1,49,0,0,0,0,0,0,58928,59446,56761,41130,27097,27331,2500,2300,1547,1396,1200,2000,0
+17696,30000,female,3,1,50,2,2,2,2,-1,0,29468,29688,28919,28000,13393,10539,1000,159,28426,24682,12,0,1
+17697,320000,female,2,1,53,0,0,0,0,0,0,319711,33589,34608,38544,44486,52319,3000,3000,6000,8000,10000,1900,0
+17698,470000,female,1,1,61,-2,-2,-2,-2,-2,-2,228,5215,3161,762,3637,16847,5241,3176,766,3673,16906,1437,0
+17699,440000,female,1,2,51,0,-1,-1,-2,-1,0,26106,8999,0,0,10961,11349,8999,0,0,10961,503,448,0
+17700,50000,female,2,1,51,0,0,2,2,3,2,44664,48028,46985,50484,50404,50241,4110,0,4600,1000,2000,0,0
+17701,220000,female,2,1,51,0,0,0,0,0,-2,36022,12838,8605,5352,-5048,-5048,3010,3040,1000,0,0,0,0
+17702,360000,female,1,1,54,1,-2,-2,-1,0,-1,0,0,0,2580,2580,6941,0,0,2580,0,6941,0,0
+17703,90000,female,3,1,58,-2,-2,-2,-2,-2,-2,5563,0,0,0,0,0,0,0,0,0,0,5156,0
+17704,50000,female,3,2,60,2,2,2,0,0,0,46554,50774,49551,22673,17147,17505,5000,0,2300,1000,635,580,1
+17705,50000,female,2,1,56,0,0,0,0,0,0,50586,46993,33136,34475,19666,19128,2000,2000,2000,1000,1259,1000,0
+17706,290000,female,3,1,58,1,2,2,2,0,0,68445,66757,76983,74891,78100,83325,0,12000,0,5000,6000,0,0
+17707,350000,female,2,1,50,0,0,0,0,0,0,263390,267494,205636,203844,204114,207448,10532,9219,8797,8004,10012,10006,1
+17708,110000,female,3,1,52,1,2,0,0,0,2,23969,11137,16401,18670,19670,1187,0,6000,7000,1200,0,3000,0
+17709,40000,female,2,1,53,0,0,2,2,0,0,4621,6527,7776,7502,7651,7811,2150,1500,0,274,283,436,1
+17710,50000,female,3,1,59,1,-2,-2,-2,-2,-2,-639,-639,-1800,0,0,0,0,900,1800,0,0,0,1
+17711,110000,female,1,1,55,-1,2,2,-1,0,-1,632,316,0,632,316,632,0,0,948,0,632,0,0
+17712,360000,female,3,1,70,-1,-1,2,2,-2,-2,1960,732,735,-10,-10,-10,800,3,0,0,0,0,0
+17713,200000,female,3,2,63,-1,3,2,-1,-1,-1,632,632,316,316,316,316,0,0,316,316,316,316,1
+17714,140000,female,2,2,53,0,0,0,0,0,0,8068,9446,13271,11243,12091,12691,1535,5004,1451,1000,1000,3194,0
+17715,80000,female,2,2,61,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+17716,260000,female,2,1,56,0,0,-2,-2,-1,0,2338,0,0,0,58,1058,0,0,0,58,1000,1000,0
+17717,340000,female,1,1,56,-1,-1,-1,-1,0,0,5610,5399,12347,8612,5479,0,5399,12353,8619,0,0,0,1
+17718,30000,female,2,1,58,1,2,2,2,2,2,11223,10746,13545,13531,13017,14008,0,2993,500,0,1200,0,1
+17719,30000,female,3,1,54,2,2,2,2,4,3,22147,24770,26068,28842,28094,27361,3000,2000,3500,0,0,1000,0
+17720,440000,female,3,1,50,0,0,0,0,0,0,250825,167091,144804,67729,66077,60074,10043,8608,25031,25030,22053,20030,0
+17721,10000,female,3,1,52,-1,2,2,2,2,2,2465,3475,4366,4148,4579,4360,1200,1100,0,500,0,500,0
+17722,230000,female,2,1,55,0,0,0,0,0,0,7302,4561,5975,11072,10021,14431,2001,2001,6018,5007,5010,7053,0
+17723,50000,female,3,1,61,-1,-1,-2,-2,-2,-2,2020,0,0,0,0,0,0,0,0,0,0,202,0
+17724,150000,female,2,3,54,0,0,0,0,0,0,138765,135287,140600,142836,145714,148731,4772,6427,4951,4062,4188,4824,0
+17725,330000,female,3,1,55,0,0,0,0,0,0,21333,25915,25036,21804,19228,18799,5000,5200,6000,4300,5000,4000,0
+17726,370000,female,3,2,50,-1,0,-1,-1,-2,-2,48303,129317,1364,0,0,0,124174,2000,0,0,0,2463,0
+17727,130000,female,3,2,53,0,0,0,0,0,0,101156,100184,99001,88214,90167,90682,3615,4700,3200,3403,3300,3500,0
+17728,10000,female,3,1,51,3,2,2,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,1
+17729,360000,female,2,1,54,0,0,0,0,0,0,277688,271867,272796,279597,253333,253737,10450,10414,11330,9081,9500,9000,0
+17730,20000,female,3,1,61,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+17731,180000,female,3,2,52,0,0,0,0,0,0,173065,171015,162516,163447,134939,135815,5902,7693,5464,4893,5095,4862,0
+17732,80000,female,3,1,62,0,0,0,0,0,0,36088,37257,36288,37630,26424,27342,2100,2100,2400,1100,1500,1500,0
+17733,50000,female,2,1,55,2,0,0,0,0,0,41696,41768,42561,42871,7606,11267,1674,2079,2001,500,4423,4000,1
+17734,150000,female,1,2,64,1,2,0,0,0,0,157231,153171,148994,80196,74328,66806,3,6103,3220,3028,5052,15000,0
+17735,30000,female,3,1,56,1,3,2,2,2,2,25158,24466,24087,25890,25175,26870,0,300,2500,0,2100,0,0
+17736,50000,female,3,1,52,0,0,0,0,0,-1,5976,6405,6828,6229,390,390,2000,2000,1004,10,390,390,0
+17737,20000,female,2,3,56,0,0,0,0,-1,-1,17977,19194,18405,0,380,-400,3000,1000,400,380,0,1720,0
+17738,130000,female,3,2,55,0,0,0,0,0,0,116336,121544,128243,115204,101158,95895,10063,20000,10009,10000,5000,5000,0
+17739,320000,female,3,2,53,0,0,0,0,0,0,188373,281060,261698,265703,175925,188982,276698,11020,11000,9486,20000,10000,0
+17740,300000,female,3,1,62,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+17741,330000,female,1,1,53,0,0,0,0,0,0,304922,292517,211831,153841,156866,155679,14000,7507,6000,6171,6000,6000,0
+17742,50000,female,2,2,53,0,0,0,0,0,0,51320,50602,50095,34120,33235,32377,1952,1979,1495,1144,1165,946,0
+17743,70000,female,3,2,60,0,0,0,0,0,0,10083,11091,12117,13125,13407,13692,1184,1210,1218,500,500,543,0
+17744,70000,female,3,3,58,0,0,0,0,0,0,70012,67714,68412,69016,69701,70898,2418,2500,2456,2500,3000,2533,0
+17745,100000,female,3,1,58,0,0,0,0,0,0,96821,98389,97831,93937,78063,79707,3589,3656,3677,2763,2787,2881,0
+17746,110000,female,2,1,54,2,2,2,0,0,2,95090,94938,91453,92097,96509,93773,3400,0,3290,7000,0,3500,1
+17747,100000,female,2,1,58,2,2,2,0,0,0,86654,87851,85594,87095,88357,77155,3500,0,3300,2839,3000,4000,1
+17748,160000,female,3,1,53,1,-2,-1,2,2,-2,0,0,3613,2722,0,0,0,3613,0,0,0,0,0
+17749,70000,female,3,2,55,0,0,0,0,0,0,4664,5680,6703,7853,7316,7350,1100,1123,1273,407,300,300,0
+17750,60000,female,2,1,59,4,4,4,5,4,3,54506,56998,59111,59595,58079,56892,4000,3601,2000,0,0,0,0
+17751,80000,female,2,1,61,0,0,0,0,0,0,74156,73878,64656,60537,42610,42769,3000,2506,3008,3000,2000,3000,0
+17752,100000,female,3,1,60,-1,-1,3,2,-1,-1,2178,4944,4709,2234,2267,2168,7300,0,0,2300,2168,2300,0
+17753,230000,female,1,1,66,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,142,1
+17754,60000,female,3,3,64,0,0,-1,-1,0,0,15463,14046,218,12716,10686,10400,1410,218,12723,483,600,9132,0
+17755,160000,female,2,1,58,-1,-1,-1,-1,-1,-1,1443,1443,1443,1443,1443,1443,1443,1443,1443,1443,1443,1443,0
+17756,30000,female,2,1,55,0,0,0,0,-2,-2,13532,14647,15525,0,0,0,1647,1525,0,0,0,0,1
+17757,310000,female,1,1,62,2,2,2,2,2,2,327289,323125,308878,314524,308637,283200,12500,2100,22053,10654,0,10450,0
+17758,60000,male,2,1,46,0,0,0,0,0,0,57487,59228,60040,58722,19790,19250,2706,3004,1475,690,1000,1200,0
+17759,50000,male,2,1,64,2,3,2,2,0,0,28433,27682,28403,27648,28202,30008,0,1459,0,1013,2264,0,0
+17760,140000,male,3,1,58,2,0,0,0,0,0,98985,98702,96753,94310,92182,88818,4520,4034,5050,6034,3202,5000,0
+17761,20000,male,2,2,27,-1,2,-1,-1,-1,-1,780,390,390,0,780,0,0,390,0,780,0,0,0
+17762,10000,male,2,2,38,1,-2,-2,-1,0,0,-58,-58,-58,7242,8123,8993,0,0,7300,1000,1000,330,0
+17763,80000,male,2,2,29,-1,0,0,-1,0,0,10278,5991,4457,75743,76343,76567,1085,1000,75743,2667,3395,1772,0
+17764,50000,male,3,2,24,0,0,0,0,0,0,40751,30786,30285,14225,12668,10880,1627,3053,2005,550,400,1000,0
+17765,160000,female,2,1,51,2,0,0,0,2,0,65312,67610,69908,78087,75255,78593,4000,4000,10000,0,5000,3000,1
+17766,500000,female,1,2,51,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+17767,470000,female,2,1,54,1,2,0,0,0,0,358581,351295,358671,367492,374249,381132,0,13033,14800,14359,13897,14425,0
+17768,210000,female,1,1,54,-1,-1,-1,-1,-1,-1,1494,6545,11755,5808,3974,0,6555,11800,5818,4015,0,0,0
+17769,50000,male,3,2,23,-1,-1,2,0,0,-2,1789,4249,4038,5275,0,0,2500,0,1500,0,0,0,1
+17770,30000,male,1,2,24,2,0,0,0,0,0,29015,27080,25933,26319,28754,17491,1400,1800,1100,3000,500,1000,1
+17771,50000,male,1,2,23,0,0,0,0,0,0,18666,15554,17159,8402,6646,7534,2000,2000,1500,500,1000,2000,0
+17772,80000,male,1,2,24,0,0,0,0,0,0,77225,75429,71977,56023,47582,48039,3649,2502,2205,1702,1800,1908,0
+17773,30000,male,2,1,23,2,2,2,2,2,2,27172,28224,29276,28635,30127,30525,1800,1800,150,2250,1000,0,1
+17774,80000,male,5,2,24,0,0,0,0,0,0,52991,50195,44410,22649,20650,0,2121,2358,3123,1500,0,0,0
+17775,150000,male,1,2,28,-2,-2,-2,-2,-2,-2,5797,434,11021,6253,6257,4152,436,11086,6284,6288,4172,3207,0
+17776,170000,male,2,2,27,0,0,0,0,0,0,169106,141998,134212,133450,127020,123490,5000,5508,5915,3000,4000,4000,0
+17777,220000,male,2,2,30,-2,-2,-2,-2,-2,-2,15872,19053,19303,19867,12826,19847,20066,20063,20057,12863,20061,13191,0
+17778,30000,male,2,2,35,2,0,0,2,2,2,18915,20290,24727,24031,25579,25030,2000,5100,0,1949,0,912,1
+17779,100000,male,2,2,23,-1,-1,-1,-1,-1,-1,291,291,291,291,291,291,291,291,291,291,291,291,0
+17780,10000,male,2,2,24,3,2,2,3,3,3,1050,1050,1050,1050,1050,1050,0,0,0,0,0,0,1
+17781,140000,male,2,2,24,-1,-1,-1,-1,-1,-1,6312,-148,8431,11034,5040,7838,0,8579,11034,5040,7838,11737,1
+17782,50000,male,2,2,24,1,2,2,2,2,2,25932,24924,22599,24613,23922,25481,1800,0,2700,0,2100,0,0
+17783,20000,male,2,2,22,0,0,0,2,0,0,8785,8134,9992,10526,11049,11865,1142,2000,1000,1000,1000,1000,0
+17784,10000,male,2,2,22,1,2,2,2,2,2,6829,6571,8950,8658,9413,9117,0,2500,0,900,0,971,1
+17785,50000,male,2,2,24,0,0,0,0,0,0,49989,48512,43701,40429,9727,9606,1800,2000,1118,1000,500,1000,0
+17786,10000,male,3,2,22,1,-1,0,0,0,0,0,7492,8589,9365,7740,1000,7492,1224,1000,175,0,0,0
+17787,30000,male,2,2,23,0,0,0,0,0,0,30620,30432,30263,29418,30275,0,2000,2500,1200,1000,0,0,0
+17788,50000,male,2,2,23,0,0,0,0,0,0,49283,48570,49362,47907,18145,17495,1781,3264,1400,3000,350,133,0
+17789,100000,male,2,2,24,0,0,0,0,0,0,87478,88627,92187,95030,29470,3470,3500,5000,5000,4000,3000,5000,1
+17790,20000,male,3,2,24,0,0,0,0,0,-1,18661,17895,19598,19701,3486,199,1400,2000,1000,400,199,0,0
+17791,20000,male,2,2,25,0,0,0,-2,-2,-2,17584,20000,0,0,0,0,3000,0,0,0,0,0,0
+17792,100000,male,2,2,25,0,0,-1,-1,-1,-1,49199,48285,390,390,390,390,1000,390,390,390,390,390,0
+17793,50000,male,2,2,25,1,2,0,0,0,0,15491,15934,17168,18376,19068,19760,1000,1500,1500,1000,1000,2500,1
+17794,100000,male,1,2,24,-1,0,0,0,0,0,33921,34920,36030,37173,35875,36263,1563,1673,1816,1213,1248,1212,0
+17795,30000,male,3,2,25,2,0,0,0,0,2,23421,24228,25331,26347,27508,30118,1500,1500,1439,1600,3200,0,1
+17796,50000,male,2,1,25,0,0,0,0,0,0,42238,43259,35307,23096,18970,19514,1807,1405,1366,1000,1000,1000,1
+17797,50000,male,2,2,25,-2,-2,-2,-2,-2,-2,-1587,-5174,-2587,-2587,-2587,-2587,0,0,0,0,0,0,1
+17798,50000,male,1,2,25,0,0,0,0,0,0,60200,61600,71000,73000,78000,80000,2000,10000,2000,5000,2000,0,0
+17799,50000,male,5,2,23,0,0,0,0,0,0,42407,13244,48845,43129,28385,23876,7275,47166,12064,12176,780,6200,0
+17800,50000,male,1,2,25,0,0,0,0,0,0,48848,48208,48265,43451,19790,17790,1845,1967,1400,396,0,0,0
+17801,50000,male,2,2,25,0,0,0,0,0,0,50547,49480,50643,48123,18092,28728,1900,2000,2000,2000,11041,1056,0
+17802,380000,male,2,2,26,0,0,0,0,-1,0,64900,43514,10626,312,986,284729,2600,1626,312,1007,284069,11340,0
+17803,50000,male,1,2,24,2,0,0,2,0,0,5524,6474,8896,7088,7109,6898,1500,2700,0,500,500,500,1
+17804,30000,male,2,2,24,2,4,3,2,0,0,31529,30752,29991,29192,28210,28543,0,0,0,1100,1300,2000,0
+17805,150000,male,2,1,25,-1,-1,-1,-1,-1,-2,890,-180,101,480,0,0,0,281,600,0,0,0,0
+17806,180000,male,2,2,25,0,0,0,0,0,0,12891,14275,15737,16603,17395,17182,1600,2000,1500,1003,1003,1006,0
+17807,80000,male,3,2,26,0,0,0,0,0,0,79558,81906,76228,76841,9534,7371,3694,3470,3305,500,300,500,1
+17808,110000,male,2,2,24,2,2,2,2,2,2,98428,101402,104878,105325,102220,107970,5500,6600,3700,0,7500,0,1
+17809,30000,male,3,2,25,0,0,0,0,0,0,23075,23996,25407,27312,8810,6355,2000,2500,3000,178,1000,0,0
+17810,110000,male,2,2,25,0,0,2,0,0,2,23459,27157,26549,34222,44062,45036,4000,0,9000,10700,1700,0,1
+17811,280000,male,2,2,26,0,-1,-1,-1,-1,-2,51951,25360,6183,261,-91,-91,25486,6213,262,0,0,18342,0
+17812,10000,male,2,2,23,0,0,-1,0,0,0,5583,8959,4408,9071,9038,5005,5000,7000,5000,5000,1000,10000,1
+17813,10000,male,2,2,23,-1,-1,-1,-1,-1,-1,1473,1863,0,390,390,780,1863,0,390,390,780,0,0
+17814,20000,male,2,2,24,2,2,2,2,2,2,16239,16276,16715,18327,17735,19446,600,1000,2200,0,2000,0,0
+17815,170000,male,2,2,26,0,0,0,0,0,-1,85914,78411,57061,49734,14285,136394,10050,5050,6000,3561,139898,6000,0
+17816,20000,male,3,2,26,3,3,2,0,0,0,21667,21081,19661,26158,13560,15324,0,25,2000,1000,2000,1000,1
+17817,130000,male,2,2,22,0,0,0,0,0,0,120479,98341,132260,127335,51104,50536,5601,103012,3965,3508,3011,3033,0
+17818,200000,male,1,2,26,2,2,2,2,2,2,196979,200055,202494,162228,154294,147514,7800,7500,0,6700,5000,7000,1
+17819,250000,male,2,2,26,0,0,0,0,0,0,115497,114716,117212,112623,110178,108176,3835,4068,3859,3597,3822,3825,0
+17820,80000,male,2,2,27,0,0,0,0,0,2,48329,45920,47186,46882,49170,48269,5004,5013,5000,4000,0,2002,0
+17821,180000,male,1,2,27,-1,0,0,0,0,0,3210,13852,6482,3246,2016,2334,12000,5004,1000,1000,2300,3000,0
+17822,120000,male,2,2,28,0,0,0,0,0,0,70124,71355,72962,58163,33358,16829,3000,2830,1600,3600,300,1000,0
+17823,20000,male,2,2,26,1,2,2,2,0,0,16167,15615,18047,17322,17122,0,0,3000,0,0,0,0,0
+17824,150000,male,1,2,26,0,0,0,0,0,0,26443,27996,28963,8355,10355,12355,2000,2000,2000,2000,2000,2000,0
+17825,190000,male,2,2,26,-1,0,0,0,0,0,2204,3479,4886,6258,8969,9009,1800,1797,1785,3142,490,2000,0
+17826,210000,male,1,2,27,0,0,0,0,0,0,42585,43304,45622,47232,47583,53032,8000,5000,4000,3000,8000,3000,0
+17827,180000,male,2,2,27,0,0,0,0,0,0,147310,152047,143809,112323,112208,113887,7503,30018,4011,3802,4106,4006,0
+17828,50000,male,2,2,28,0,0,0,0,0,2,48431,45008,40226,41256,43962,44913,1700,2000,1700,3400,1800,0,0
+17829,140000,male,1,2,25,0,0,0,0,0,0,92465,93536,96820,97000,97467,79872,3500,4790,3092,3148,2981,3912,0
+17830,80000,male,2,2,26,-2,-2,-2,-2,-2,-2,2970,-10,-10,-10,16587,0,0,0,0,16597,0,0,0
+17831,80000,male,2,2,27,0,0,0,0,0,0,81752,80638,45240,43967,45302,49646,3069,2500,2000,2000,5012,2000,1
+17832,80000,male,2,2,25,2,0,0,0,0,-2,76915,78270,79693,20335,0,0,3149,3039,1550,0,0,0,0
+17833,20000,male,2,2,28,0,0,0,0,0,0,8723,10265,12086,13180,13660,14288,2000,2000,1600,1000,1000,1000,0
+17834,10000,male,2,1,26,3,2,2,7,7,6,2400,2400,2400,2400,2400,1800,0,0,0,0,0,0,1
+17835,30000,male,2,2,26,1,3,2,2,2,2,14773,14252,13738,15424,14881,15894,0,0,2226,0,1406,0,1
+17836,240000,male,1,2,27,-1,-1,-1,-1,-1,-1,19365,1928,4879,11650,12614,7922,5534,4879,11650,12614,7922,6980,0
+17837,50000,male,2,2,28,1,-1,0,0,0,0,-727,50268,50860,40580,44532,46442,53860,3000,5000,5000,3000,1784,0
+17838,90000,male,2,2,26,-1,2,-1,0,0,0,481,1149,39674,38968,39853,8064,1000,39674,1200,1217,1025,500,1
+17839,60000,male,1,2,28,-1,0,0,0,0,0,40784,41723,42665,43254,43757,44378,2001,2001,1690,1501,1617,1502,0
+17840,100000,male,2,2,28,0,0,0,0,0,0,9125,10664,12183,13670,15129,15732,2000,2000,2000,2000,1000,2000,1
+17841,120000,male,1,2,28,-1,-1,-1,-1,0,0,4660,5929,1774,76528,73164,72721,6074,1774,119366,3484,2600,3000,0
+17842,10000,male,2,1,28,0,0,0,0,0,0,1474,2641,3745,4642,5642,6342,1196,1300,1000,1000,700,1208,0
+17843,70000,male,2,2,28,1,2,2,2,2,2,26357,27223,27492,28738,27977,30022,1600,1000,2000,0,2500,0,1
+17844,60000,male,1,2,28,0,0,0,0,0,0,26129,30544,21712,23284,24945,25402,5000,2000,2000,2000,2000,2000,0
+17845,130000,male,1,2,29,0,0,-2,-2,-2,-2,120000,0,0,0,0,0,0,0,0,0,0,0,0
+17846,30000,male,3,1,30,3,2,2,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,1
+17847,360000,male,1,2,30,-1,-1,-1,-1,0,-1,2020,28057,6085,90872,81622,11576,28057,6179,90872,0,11576,8718,0
+17848,80000,male,2,2,30,0,0,-1,-1,-1,-1,31299,37446,539,16673,21473,10715,20000,539,16673,21473,10715,10000,0
+17849,20000,male,2,2,27,0,0,0,0,0,0,15993,17016,18356,19028,38688,19897,1600,1621,1293,830,1548,626,0
+17850,50000,male,2,2,28,0,0,0,2,0,0,8608,10300,12711,12210,12508,13306,2000,2900,0,500,1000,1000,0
+17851,80000,male,3,2,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+17852,150000,male,1,1,27,-1,-1,-1,-1,-2,-2,390,0,780,0,0,0,0,780,0,0,0,0,0
+17853,60000,male,2,2,27,0,0,0,0,2,0,26437,27741,28465,31040,29827,28254,1701,1425,3000,0,955,942,0
+17854,220000,male,2,2,28,0,0,0,0,0,0,59247,60200,60360,61168,57287,62208,6000,3037,4000,4000,15000,3000,0
+17855,10000,male,3,2,23,0,0,0,0,0,0,5807,6974,7838,9002,9182,9729,1270,1134,1298,478,847,0,0
+17856,50000,male,2,2,26,2,0,0,0,0,0,49586,49865,41132,31538,28896,28315,2268,2200,1917,1200,1030,1300,0
+17857,50000,male,1,2,26,0,0,0,0,0,0,48924,48593,49459,50160,49244,50531,2200,2200,1890,2000,2000,1800,0
+17858,220000,male,1,2,28,0,0,0,0,0,0,22399,24203,24081,25356,20952,18340,3000,2000,2000,1000,1200,900,0
+17859,450000,male,1,2,29,1,-2,-2,-2,-2,-2,1261,1261,1261,1261,1261,1261,1261,1261,1261,1261,1261,1261,0
+17860,240000,male,2,1,33,1,2,2,0,0,2,172618,174842,141471,39578,46489,45632,6765,0,2000,7592,0,140000,0
+17861,500000,male,2,2,29,0,0,0,0,0,0,39345,40382,40740,16316,10705,-42,2014,4135,3256,53,0,36368,0
+17862,170000,male,1,2,28,0,0,0,0,0,0,56061,57179,58450,58556,51671,51090,2051,2197,1934,1793,2500,2000,0
+17863,100000,male,2,2,29,2,0,0,0,0,2,43531,45103,45779,46912,49715,48791,2600,2200,2200,3900,0,6100,1
+17864,60000,male,1,2,29,-1,-1,2,0,-1,-1,816,2440,1444,1634,1335,1825,2440,0,1000,1335,888,150,0
+17865,200000,male,1,2,30,-1,-1,-1,-1,0,0,6589,3423,2785,54271,60326,63339,3449,2798,54271,7000,4000,6000,0
+17866,200000,male,2,2,27,2,0,0,0,0,0,189605,191628,180604,181273,180385,185370,14635,10019,8029,7010,10022,7049,1
+17867,20000,male,1,2,28,0,0,0,0,2,2,3202,4978,7720,9907,9627,11500,2000,3000,2500,0,2000,5,0
+17868,40000,male,2,2,27,1,3,2,0,0,0,41520,40568,39620,38464,38569,70659,0,7,2500,1500,1500,2976,1
+17869,110000,male,1,2,27,0,0,0,0,0,0,87487,90120,93661,96185,99667,102978,5000,5000,5000,5000,5000,4000,0
+17870,10000,male,2,1,27,0,0,0,0,0,0,10128,9859,9607,9818,10013,9824,1151,1160,1151,346,350,354,0
+17871,100000,male,2,2,28,0,0,0,0,0,0,32480,33237,34300,35623,35515,36413,1600,1600,1901,1275,1470,1400,0
+17872,50000,male,2,2,28,1,2,2,-2,-2,-2,52753,51400,0,0,0,0,0,0,0,0,0,0,0
+17873,30000,male,3,2,28,0,0,0,0,-1,-1,11064,10030,9019,7970,1479,1635,1159,1159,1000,1479,1635,780,0
+17874,30000,male,2,2,28,1,-2,-2,-2,-1,-1,0,0,0,0,2805,0,0,0,0,2805,0,0,0
+17875,50000,male,2,1,29,3,2,2,4,4,4,400,400,400,400,400,400,0,0,0,0,0,0,0
+17876,20000,male,3,2,29,1,2,0,0,0,0,5957,4909,5865,17935,19353,20094,0,2000,13500,2500,2000,1500,1
+17877,50000,male,2,2,30,0,0,0,0,0,-2,26666,21062,6495,2207,0,0,2000,2000,1000,0,0,0,0
+17878,60000,male,2,2,28,2,2,2,0,0,0,61743,62197,59892,60228,57969,55220,2800,0,3000,3000,3000,23000,1
+17879,50000,male,2,2,32,-1,-1,2,0,0,-1,1473,5486,3787,3246,1473,390,5486,0,1000,0,390,1090,1
+17880,130000,male,3,1,34,2,2,2,2,0,0,69388,70650,71933,70117,72014,73759,3000,3000,0,3000,3000,3111,1
+17881,20000,male,2,2,25,0,0,2,2,2,0,14193,16489,15936,18015,17431,18000,2850,0,2355,0,1000,900,1
+17882,100000,male,2,2,28,2,0,0,0,2,0,58566,56770,56300,54288,25759,25775,5100,2825,5000,0,2000,0,1
+17883,20000,male,2,1,38,0,0,0,0,0,0,8337,11191,12219,14009,15773,17515,3000,1210,2000,2000,2000,1200,1
+17884,150000,male,3,2,44,0,0,0,0,0,0,151009,148047,147851,151310,107033,109350,6913,5937,6500,4000,4000,4000,0
+17885,70000,male,1,2,33,0,0,0,0,0,0,62615,63845,65443,65169,64370,15082,2870,3224,1680,3000,142,142,0
+17886,250000,male,1,1,40,0,0,0,0,0,0,7351,6225,3645,3090,3700,1190,3039,2000,1000,1000,0,90403,0
+17887,50000,male,3,1,32,2,2,3,2,2,2,38023,39589,40160,40796,41526,42209,2500,1500,1600,1700,1500,3600,1
+17888,90000,male,2,1,34,0,0,0,0,0,0,86371,85679,87036,88742,49148,48396,3073,3700,3374,1543,1405,1500,1
+17889,90000,male,2,2,32,0,0,0,0,0,0,73814,73132,67854,53952,47277,35547,3700,4100,3900,3000,2200,1000,0
+17890,120000,male,1,2,33,2,2,2,2,2,2,87310,89273,91057,91981,89605,95245,4300,4100,3300,0,7100,0,1
+17891,240000,male,2,2,25,0,0,-2,-2,-2,-2,24640,0,0,0,0,0,1700,0,0,0,0,0,0
+17892,50000,male,2,2,25,0,0,0,0,0,0,43785,38971,34836,18488,19716,17932,1795,1660,1272,1500,644,704,1
+17893,100000,male,2,1,29,2,2,2,2,3,3,81839,82781,85536,90018,91151,89429,3200,5000,6800,3500,0,3400,1
+17894,390000,male,3,1,49,0,0,0,0,0,0,282849,281836,284397,284241,285615,282611,12000,13000,12000,12000,10266,9800,0
+17895,50000,male,3,1,36,2,0,0,0,0,0,47097,46006,36272,11521,2678,5468,1796,1284,1060,100,99,273,1
+17896,40000,male,2,1,44,2,2,2,2,2,2,24262,26640,25927,28184,28723,28125,3100,0,2700,1300,0,2500,1
+17897,190000,male,2,1,38,0,0,0,0,0,0,194670,194690,189950,194092,192638,189113,9000,8400,8800,7500,7100,7450,0
+17898,10000,male,2,1,40,3,2,2,3,3,3,1050,1050,1050,1050,1050,1050,0,0,0,0,0,0,1
+17899,10000,male,2,1,44,0,0,2,0,0,0,6696,9080,8794,9604,9604,9800,2668,0,1192,0,196,0,0
+17900,180000,male,1,2,30,-1,-1,-1,-1,-1,-1,4027,2130,25770,11475,69910,21949,2130,25770,11475,69910,21949,11600,0
+17901,230000,male,2,2,31,0,0,0,0,0,0,170041,174811,177733,182106,183965,186979,9800,6418,8000,7000,6618,11000,0
+17902,20000,male,2,2,31,0,0,0,2,0,0,12214,13694,16660,16100,17521,19237,2000,3200,0,2000,2000,0,0
+17903,230000,male,2,2,32,2,0,0,0,2,2,253935,237858,242378,235163,234032,225822,10183,10057,19000,9100,0,16500,1
+17904,200000,male,1,2,32,0,0,0,0,0,0,190530,194796,194205,195154,166778,167833,9000,9000,8000,6900,6000,6000,0
+17905,470000,male,1,2,34,0,0,0,0,0,0,57566,55340,43455,33039,18638,14202,5344,3457,1520,1659,2208,75938,0
+17906,150000,male,1,3,45,0,0,0,0,0,0,108434,111178,32220,33247,34164,34878,3000,1300,1300,1200,1200,0,0
+17907,70000,male,3,1,37,0,0,0,0,0,0,71742,70978,70949,68782,68100,68677,2721,2714,2632,2600,2800,2573,0
+17908,50000,male,2,2,37,0,0,0,0,0,0,49473,48970,46220,47459,27056,28452,2314,2261,2500,2000,2000,1500,0
+17909,80000,male,1,2,35,0,0,-1,0,0,0,75734,93507,78716,53109,28973,24705,20000,79239,2516,1023,2000,1000,0
+17910,330000,male,1,1,40,0,0,0,0,0,0,309055,314927,322077,166654,170008,174723,12500,13306,6000,6000,7333,8000,0
+17911,140000,male,2,2,33,0,0,0,0,0,0,133336,134483,131805,107950,88622,85165,5000,5000,4005,3500,3500,3000,0
+17912,70000,male,2,2,44,2,2,2,2,2,2,43314,44325,45375,44350,46996,47951,2025,2051,0,3697,1853,1910,1
+17913,280000,male,2,2,32,0,0,0,0,0,0,35038,36558,39070,40545,42995,46278,2000,3000,2000,3000,4000,7200,0
+17914,150000,male,3,2,30,0,0,0,0,0,0,80220,47272,141568,97990,96017,79743,3095,135332,2848,2330,2204,2100,0
+17915,80000,male,2,1,35,0,0,0,0,0,0,79875,77201,78535,79296,75274,78051,4000,3500,3322,3000,5007,3000,0
+17916,120000,male,1,1,42,0,0,2,2,2,0,7722,9591,10687,11905,11420,12081,2000,1400,1700,0,1000,700,1
+17917,50000,male,2,1,45,0,0,0,0,0,2,14488,15798,16867,17759,19354,17726,1558,1627,1519,2114,0,600,0
+17918,230000,male,2,1,43,0,0,0,0,0,2,3472,4053,4503,4964,4400,3979,1061,1275,1000,200,0,227,0
+17919,160000,male,2,2,36,1,-2,-2,-2,-2,-1,0,0,0,0,0,1000,0,0,0,0,1000,0,0
+17920,50000,male,3,2,37,0,0,0,0,0,0,28951,29631,29177,29544,19863,18812,1765,1653,1400,0,0,300,0
+17921,100000,male,3,1,49,0,0,0,0,0,0,82214,74983,71958,68808,68769,68955,2659,2656,2372,2360,2574,2759,0
+17922,200000,male,2,1,43,2,3,2,2,2,2,94529,92126,94772,92368,101837,103764,0,5000,0,12000,3700,0,1
+17923,170000,male,2,1,36,1,2,0,0,0,0,158954,139482,139869,139956,141431,149946,7,6513,6548,5300,11001,0,0
+17924,50000,male,2,1,43,0,0,0,0,0,0,25387,25435,23268,23365,19602,18462,1374,1418,1295,677,669,686,0
+17925,200000,male,3,1,46,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+17926,200000,male,2,1,39,-1,-1,-1,-1,-1,-2,1543,1109,1048,1294,0,0,1109,1048,1294,0,0,0,0
+17927,50000,male,3,2,41,0,0,0,0,0,0,43383,43397,43395,42334,12316,9997,1992,2251,1451,540,503,430,0
+17928,50000,male,3,2,45,0,0,0,0,0,0,35962,34725,33219,31688,29425,29747,1857,1851,1820,1057,3300,0,0
+17929,300000,male,2,1,39,-1,-1,-2,-2,-2,-2,29997,592,1049,-25,-25,-25,598,1057,0,0,0,0,0
+17930,130000,male,2,2,32,0,0,0,0,0,0,21395,31030,40523,54838,78769,82478,10000,10000,15000,25000,5000,5000,0
+17931,80000,male,1,2,33,2,2,2,2,2,2,67206,65537,69361,67647,72524,74068,0,5500,0,6000,3000,0,1
+17932,120000,male,1,2,34,0,0,0,2,0,0,32773,28002,32493,16258,8871,2000,1509,5000,7,0,2000,1666,0
+17933,140000,male,1,2,32,0,0,0,0,0,0,130134,131475,137236,121914,71210,72778,5000,8000,5485,5000,3000,2000,1
+17934,220000,male,1,2,48,0,0,0,0,2,0,113061,115294,117945,130365,126780,129570,5600,6000,16000,0,5000,6300,0
+17935,70000,male,2,2,32,0,0,0,0,0,0,71336,70393,131412,63823,52339,40836,3609,2523,2441,3038,2029,70004,1
+17936,20000,male,3,2,45,0,0,0,0,0,0,18416,13656,9022,5961,3970,780,1303,1518,1000,79,0,0,0
+17937,200000,male,1,1,49,1,-1,-1,-1,-1,-1,0,492,0,489,320,732,492,0,489,320,732,5335,0
+17938,20000,male,2,1,31,1,2,2,2,2,2,6313,6559,7789,8505,9212,8922,500,1500,1000,1000,0,400,1
+17939,510000,male,1,2,32,0,0,0,0,0,0,63573,62933,62320,61012,60519,58856,2900,3000,2400,2500,1800,1900,0
+17940,450000,male,1,2,34,-1,2,-1,2,-1,-1,42713,6496,9341,2857,83527,0,0,9511,20,84000,0,116,0
+17941,50000,male,2,1,34,0,0,0,0,0,0,45459,45695,45866,46165,10142,10825,2000,3000,2200,1200,1000,1000,0
+17942,120000,male,2,3,48,0,0,0,0,0,-2,61673,60679,61943,58744,-36156,-36156,2345,3419,5026,15651,0,0,0
+17943,50000,male,3,1,45,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+17944,280000,male,2,2,31,0,0,0,-2,-2,-2,4821,3469,0,0,0,1047,1017,0,0,0,1047,56970,0
+17945,30000,male,1,2,33,4,3,2,2,2,2,22303,21657,21022,23661,22983,25607,0,0,3000,0,3000,0,1
+17946,20000,male,2,1,35,1,2,0,0,0,2,5659,5422,6283,7454,8181,7905,0,1107,1278,1005,0,300,0
+17947,80000,male,2,1,42,0,0,0,0,0,0,78216,62890,52973,52328,49214,50245,2115,5004,1834,1562,1621,2196,0
+17948,120000,male,2,1,45,0,0,0,0,0,0,52574,47092,44208,32652,24115,20399,2000,2000,1256,1000,750,623,0
+17949,370000,male,2,1,38,0,0,0,0,0,0,189567,183292,187344,192213,193602,196470,8000,8000,9000,7000,7000,6500,0
+17950,50000,male,2,2,45,0,0,0,0,0,0,30359,28717,16177,15949,14319,17319,2000,2000,2000,1000,3000,2200,0
+17951,20000,male,3,2,39,0,0,0,0,0,0,30892,16348,13593,10236,17541,16322,5000,2015,3000,10005,3414,270,0
+17952,160000,male,2,1,36,0,0,0,0,0,0,59675,61085,62503,63867,65206,69584,3000,3000,3000,3000,5600,2600,0
+17953,170000,male,3,2,44,0,0,0,0,0,0,167077,170965,172541,159546,137410,136680,12275,10000,8009,6000,30000,5322,0
+17954,100000,male,2,2,36,0,0,0,0,-2,-2,2069,3521,5399,0,0,0,1500,2000,0,0,0,1700,0
+17955,210000,male,1,1,42,-1,-1,-1,-1,-1,-1,2827,3517,4412,2700,3578,4075,3527,4425,2708,3588,4087,1841,0
+17956,100000,male,3,2,32,0,0,0,0,-1,-1,54483,45433,40870,10726,1121,61067,2460,2220,1400,1121,61067,2210,0
+17957,230000,male,1,1,33,0,0,0,0,0,0,213859,218094,225070,227528,121751,219354,9285,12000,9100,4600,4200,4100,1
+17958,240000,male,1,1,38,-1,3,2,-1,-1,0,6333,3360,1291,2740,2241,1060,0,10,2740,2241,0,2731,0
+17959,240000,male,3,2,36,0,0,0,0,0,0,135053,141213,116710,93057,55419,59336,10000,10000,10000,5000,5000,5000,0
+17960,50000,male,2,3,48,2,2,2,2,2,0,42850,42850,45741,45694,45645,46457,1000,3900,1000,1000,1700,4500,1
+17961,80000,male,2,1,46,0,0,0,0,0,0,79707,79876,79919,64237,47890,48036,3542,3500,2500,2000,2500,2000,0
+17962,50000,male,3,2,41,0,0,0,0,0,0,94962,49032,50135,50269,29182,29096,4200,2200,3300,1200,1100,1100,0
+17963,50000,male,2,1,36,0,0,0,0,0,0,43900,42499,17494,18178,18541,18929,2268,1604,1288,651,674,734,0
+17964,440000,male,1,2,37,0,0,0,0,0,0,186061,232558,312398,222336,223882,130672,50000,100448,7015,6422,6086,4000,0
+17965,220000,male,3,2,42,0,0,0,0,0,0,26595,33330,36720,40729,44762,48914,9000,5000,5000,5000,5000,5000,0
+17966,70000,male,1,2,30,0,0,0,-1,0,0,16163,1050,0,21280,21625,22275,1000,0,21280,1000,1000,1200,0
+17967,240000,male,1,2,32,-2,-2,-2,-2,-2,-2,3162,3162,3124,3162,3162,3162,3162,3124,3200,3162,3162,3131,0
+17968,360000,male,3,2,42,0,0,0,0,0,0,52460,40764,31185,25603,20394,29138,3000,3000,5000,5000,19138,1000,0
+17969,360000,male,1,2,32,-2,-2,-2,-2,-2,-2,8971,2284,21669,-3,15866,-46,2303,21785,0,15869,0,0,0
+17970,80000,male,1,2,33,-2,-1,2,0,0,0,251594,264594,4374,5495,5902,6804,13000,0,1200,500,1000,1000,0
+17971,30000,male,2,2,36,1,2,2,2,0,0,13208,13692,14176,14642,15397,16147,1000,1000,1000,1000,1000,1000,1
+17972,160000,male,2,2,37,1,2,2,0,0,0,99793,101325,98706,90457,90588,92533,4300,0,4200,3238,3400,3550,1
+17973,150000,male,2,2,39,2,0,0,0,0,0,155896,159891,164830,95000,98000,100000,5500,7103,3000,3000,2000,0,1
+17974,100000,male,2,2,30,0,0,0,0,0,0,55776,44953,46922,48677,49496,51010,3000,3000,3000,2000,2000,2000,0
+17975,70000,male,2,2,33,1,2,8,7,7,6,26181,37611,37026,38922,38318,38133,12000,0,2500,0,1000,1500,0
+17976,300000,male,2,2,35,0,0,0,0,0,0,242168,276536,206885,169901,170540,152188,40006,26531,10017,9123,10259,5079,0
+17977,90000,male,2,1,39,2,2,2,2,2,2,26493,30034,29268,31776,32456,31800,4000,0,3000,1500,0,2600,1
+17978,800000,male,1,2,46,-2,-2,-2,-1,-1,-1,6229,4636,3810,6193,1957,3175,4644,3832,6219,1961,3183,27201,0
+17979,360000,male,2,2,40,-1,0,0,0,0,0,36560,34371,43052,43596,33762,33391,11028,15044,10115,14026,5104,20077,0
+17980,90000,male,2,1,41,1,2,0,0,0,2,86699,84423,86173,87942,92756,91146,0,4008,4100,7200,0,3271,1
+17981,300000,male,3,2,43,0,0,0,0,0,0,303747,299685,279613,286449,191187,194333,11500,14000,20000,6500,8000,7000,1
+17982,30000,male,3,1,46,1,2,0,0,0,0,19523,18917,20004,21063,21416,22667,0,1700,1700,1000,1749,0,1
+17983,50000,male,2,2,37,0,0,0,0,0,0,48566,48206,48659,47248,48241,49196,2088,2120,1750,1700,1800,2023,0
+17984,110000,male,2,1,30,2,0,0,3,2,2,54404,57503,66128,64477,65413,66520,4000,9600,0,2600,2300,3000,1
+17985,80000,male,1,2,37,0,0,0,0,0,0,155342,159672,163959,168187,171869,175524,6000,6000,6000,5500,5500,5500,0
+17986,140000,male,2,1,31,0,0,2,2,0,0,134039,143937,143649,118593,95257,93145,13650,4700,114,3500,3500,3400,0
+17987,50000,male,2,1,44,0,0,0,0,0,0,48659,34763,16158,11950,9903,10224,1345,1197,1152,495,1014,0,0
+17988,20000,male,3,2,40,0,0,0,2,2,0,13195,14197,15657,14418,13561,13291,1238,2959,580,0,435,518,0
+17989,50000,male,3,2,46,0,0,0,0,0,0,48060,48923,48924,33778,19492,19582,2326,2000,1235,622,1000,1000,0
+17990,50000,male,1,2,34,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+17991,130000,male,2,1,48,3,2,2,2,3,3,120326,121877,118491,131444,133248,131001,5000,0,15000,5327,22,10,1
+17992,90000,male,2,1,45,0,0,2,0,0,0,46608,49999,43996,44069,41317,36912,4500,0,1750,1425,1412,1231,0
+17993,30000,male,3,1,44,-2,-2,-2,-2,-2,-2,2180,0,0,0,0,0,0,0,0,0,0,0,0
+17994,50000,male,2,1,49,0,0,0,0,0,0,33346,33536,34923,37192,39341,27561,2000,3500,3000,3000,5000,5000,1
+17995,170000,male,1,1,39,-2,-2,-2,-2,-2,-2,0,0,905,0,0,0,0,905,0,0,0,0,0
+17996,290000,male,1,2,31,2,0,0,0,0,0,45021,44702,35181,28847,28131,3016,2700,1707,1800,0,0,2411,1
+17997,20000,male,3,1,47,0,0,0,0,0,0,16013,14334,9086,5096,5096,5200,1419,1270,1200,0,104,0,0
+17998,180000,male,1,2,38,2,2,2,0,0,0,114091,124233,125768,126202,127677,99764,12100,5000,4200,3000,5000,2000,1
+17999,360000,male,1,1,35,1,-2,-2,-2,-2,-2,396,396,396,396,396,396,396,396,396,396,396,396,0
+18000,20000,male,3,2,31,0,0,0,0,0,0,7222,13627,11974,11467,10469,9380,10009,2004,5013,3010,3690,4384,0
+18001,140000,male,2,2,33,0,0,0,0,0,0,279184,259478,25020,21629,18367,15161,7000,2000,2000,2000,2000,2000,0
+18002,90000,male,2,1,34,0,0,0,0,0,0,53105,54154,55683,56798,58508,63177,2525,3000,2637,3242,6783,0,0
+18003,120000,male,2,1,40,0,0,0,0,0,0,35671,37073,38472,39510,40873,42082,2000,2000,2000,2000,2000,3000,0
+18004,160000,male,1,1,31,-1,-1,-1,-1,-1,-1,24465,7747,17002,17170,14685,4328,7751,17016,17185,14685,4328,5827,0
+18005,280000,male,2,1,32,2,2,2,2,2,2,204057,199262,211391,214343,215633,210876,0,18000,8000,7500,0,8000,1
+18006,500000,male,1,1,46,-1,-1,-1,-1,-1,-2,991,4073,6738,2500,0,0,4082,6738,2510,0,0,1000,0
+18007,100000,male,2,2,38,2,0,0,0,0,-1,106989,98751,32099,18811,9960,10000,3910,1733,1000,1149,10000,0,1
+18008,160000,male,3,2,31,0,0,0,0,0,0,108963,105748,109050,112243,114513,114902,4500,5000,5000,4100,4192,6000,0
+18009,20000,male,2,1,42,0,0,0,0,0,0,14124,15132,16483,18391,18783,19176,1249,1600,2500,1000,696,862,0
+18010,400000,male,1,2,39,2,2,2,2,2,2,49354,50747,49666,52727,51286,55077,2500,0,4500,0,4800,1600,0
+18011,30000,male,2,1,45,2,4,4,3,2,2,28854,30467,29721,28961,29397,29988,2372,0,0,1200,1200,1163,0
+18012,50000,male,3,1,47,-1,0,-1,-1,0,0,2840,2522,5500,21709,21056,20061,1000,5500,21709,916,1161,1884,0
+18013,70000,male,2,2,40,1,2,0,0,0,0,79237,71627,73326,69645,19799,-1,0,2986,20150,500,0,0,0
+18014,110000,male,2,1,42,1,2,0,0,2,2,45461,44434,45395,50402,50217,48199,0,1980,5987,2000,1,3027,0
+18015,50000,male,2,2,44,0,0,0,0,0,0,50677,76727,78937,50205,30506,29860,4000,4695,2300,2500,2000,3000,0
+18016,170000,male,2,1,40,-1,-1,-1,-1,-1,-1,4599,3409,3790,2578,2100,2400,3409,6530,2578,2100,2400,6665,0
+18017,30000,male,1,1,33,0,0,0,0,0,0,28700,28639,30171,29322,28572,0,1800,2300,1508,1000,0,0,0
+18018,50000,male,3,1,29,0,0,0,-1,-1,-1,9527,9907,9660,880,990,780,2000,1092,880,990,780,0,0
+18019,50000,male,2,2,30,-1,2,2,-2,-2,-2,780,780,0,0,0,0,0,0,0,0,0,0,1
+18020,90000,male,3,1,44,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+18021,110000,male,2,1,40,0,0,2,0,0,0,31042,33971,33143,34157,34950,36175,3454,0,1568,1361,1900,0,0
+18022,240000,male,2,2,46,0,0,0,0,0,0,47379,49274,51171,52716,54229,56191,3000,3000,3000,3000,3000,3000,0
+18023,360000,male,3,1,42,-2,-2,-2,-2,-2,-2,0,4435,0,3666,2749,2921,4435,0,3666,2878,2921,5270,0
+18024,290000,male,2,2,45,0,0,0,0,0,0,212643,192933,174184,163792,120754,236402,6755,6900,6733,5632,235024,8700,0
+18025,180000,male,1,1,39,-1,-1,-1,-2,-2,-2,5086,5661,0,0,0,0,5668,0,0,0,0,0,0
+18026,180000,male,2,1,43,0,0,0,0,0,0,158843,152507,143489,146139,73718,137304,6029,7035,10007,20000,4000,10000,0
+18027,50000,male,2,2,43,0,0,0,0,0,0,47669,48102,45718,44142,40981,43634,2000,1731,1955,1454,3300,0,0
+18028,500000,male,1,2,47,-2,-2,-1,-1,0,-1,21376,20473,3581,18855,6783,5921,20473,3587,18860,146,5923,9464,0
+18029,50000,male,2,1,35,0,0,2,2,0,0,5219,7633,8562,8276,8638,8851,2500,1200,0,500,500,500,1
+18030,50000,male,3,1,37,5,4,3,2,0,0,54078,52946,51841,50306,49706,49706,0,0,0,0,0,0,0
+18031,400000,male,1,2,32,-1,-1,-1,-1,0,0,525,1610,566,21373,16663,7873,1610,285,22240,4200,905,4607,0
+18032,240000,male,2,1,34,0,0,0,0,0,0,225709,228893,232706,187325,129889,123680,8544,9257,8583,4292,5133,4257,0
+18033,150000,male,2,1,31,0,0,-1,-1,0,0,64276,64226,4254,145578,148012,126848,3500,4508,145578,5115,10000,7598,0
+18034,50000,male,3,2,31,3,2,2,2,2,2,15208,14667,21204,21363,20722,22384,0,6828,800,0,2000,0,1
+18035,150000,male,1,1,34,1,-1,-1,-1,-1,-1,0,347,-13,4085,4006,826,347,0,4098,4006,826,3146,0
+18036,50000,male,3,1,41,0,0,2,0,0,0,2602,12150,11670,12167,2210,2406,10000,0,1036,79,232,110,1
+18037,360000,male,1,2,40,-1,-1,-1,-1,-1,-1,3457,1997,5115,3295,222,2854,2020,5115,3295,222,2862,2129,0
+18038,100000,male,1,1,38,2,2,2,2,2,0,72437,74645,76063,77224,75385,78991,4000,3200,3000,0,5000,3200,1
+18039,30000,male,2,2,44,2,2,0,0,0,0,44072,39489,36794,33991,30820,29323,0,1820,1600,1012,2586,2656,0
+18040,260000,male,1,2,36,-2,-2,-2,-2,-2,-2,16751,5877,427,-73,-73,-73,10000,10000,0,0,0,0,0
+18041,140000,male,2,1,29,0,0,0,0,2,0,140933,140883,138087,141620,110532,111638,5503,7210,15128,0,4200,4300,0
+18042,30000,male,3,1,48,-1,-1,-1,-1,-1,-1,1261,1261,1261,1261,1261,1261,1261,1261,1261,1261,1261,1261,0
+18043,60000,male,2,2,36,2,2,2,2,2,2,48547,49446,49857,50737,52602,53613,2000,1500,2000,3000,2000,2000,1
+18044,10000,male,2,2,29,1,2,2,2,2,0,8393,9069,8019,5819,5626,5621,1000,2000,1000,0,2000,1000,0
+18045,110000,male,3,2,34,2,2,2,2,2,2,86345,88492,81753,84368,80262,80529,4504,30,7000,2600,3500,2,1
+18046,40000,male,1,2,34,0,0,2,0,0,2,38849,40315,38401,39224,40364,38391,3600,0,2100,3226,0,1531,1
+18047,50000,male,3,1,47,2,0,0,0,0,0,49386,49693,51136,20171,19286,19292,1818,2261,1296,672,688,834,1
+18048,50000,male,2,2,40,0,0,0,0,0,0,44310,45244,47922,46307,45983,50635,3003,5007,2008,3004,7019,12,0
+18049,350000,male,2,2,32,0,0,0,0,0,0,227873,228009,220450,190173,192649,197269,10156,9000,8700,7000,7600,7800,1
+18050,450000,male,1,2,34,0,0,0,0,0,0,260733,228515,232762,208005,194608,201044,20255,50171,7096,6604,10012,10000,0
+18051,50000,male,2,2,42,0,0,0,0,0,0,49495,50586,49200,49763,18373,19187,3000,3000,3003,5000,2000,1500,0
+18052,170000,male,3,1,39,0,0,0,0,0,0,54397,55501,56823,56269,48558,45690,2009,2239,2067,1594,1576,1503,0
+18053,100000,male,2,1,41,1,2,0,0,0,0,96310,78965,74289,70534,61450,65482,0,2600,6459,2500,5000,0,0
+18054,140000,male,1,1,36,0,0,0,0,0,0,39598,40836,41878,42977,43960,45093,2200,2001,2100,2000,2000,2000,0
+18055,250000,male,1,2,29,1,-1,2,2,-2,-1,0,5023,2460,0,0,3081,5023,0,0,0,3081,0,0
+18056,130000,male,1,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+18057,130000,male,2,2,33,2,2,2,-1,-1,-2,1183,2183,2000,700,0,0,2000,13,700,0,0,0,0
+18058,360000,male,3,1,36,-2,-2,-2,-2,-2,-2,222,1256,-9,1840,0,0,1256,0,1849,0,0,0,1
+18059,270000,male,2,1,39,-1,0,-1,-1,-1,-2,18232,24290,11452,2295,0,0,14341,14468,2295,0,0,0,0
+18060,140000,male,2,1,40,0,0,0,0,0,2,139934,132948,135695,121943,111348,107488,6500,6500,4322,12200,0,4200,0
+18061,150000,male,2,2,32,0,0,0,0,0,0,151594,139114,92720,86468,79600,80866,4523,3500,3500,3000,2776,4019,0
+18062,200000,male,1,2,33,-1,-1,-1,-1,-1,0,1431,1491,1000,9373,185994,188730,1491,1326,9373,192994,7000,7000,0
+18063,280000,male,1,1,34,0,0,0,0,0,0,188698,353481,152132,138990,136778,137641,6337,6000,4974,5041,5215,7000,0
+18064,80000,male,3,2,35,2,0,0,0,0,0,88027,85314,84147,59671,80941,27436,3264,4092,2400,43532,1511,1200,1
+18065,240000,male,3,2,40,0,0,0,0,0,0,245311,237034,242807,226872,233115,239229,8491,9600,8896,10690,223765,9395,0
+18066,20000,male,1,2,42,3,2,2,3,3,3,1050,1050,1050,1050,1050,1050,0,0,0,0,0,0,1
+18067,300000,male,1,1,38,0,0,0,0,0,0,113807,103759,90827,78887,57682,35493,4511,3300,4505,4200,2500,25151,0
+18068,250000,male,1,2,41,-1,3,2,2,2,-2,173,173,1573,1400,0,0,0,1400,0,0,0,0,1
+18069,50000,male,1,2,49,0,0,0,0,0,0,48135,15317,12579,29035,17878,18586,1314,1506,19300,1000,1000,700,1
+18070,50000,male,3,1,41,0,0,2,2,2,2,5620,46907,45880,48697,49504,50577,42100,0,3900,1900,2000,0,0
+18071,30000,male,2,2,39,2,4,3,2,2,4,25999,25305,24624,23930,28807,27781,0,0,0,5288,0,0,1
+18072,240000,male,1,1,38,2,2,-2,-2,-2,-2,2500,0,0,0,0,0,0,0,0,0,0,0,1
+18073,200000,male,2,1,40,0,0,3,2,2,2,154090,172516,168401,164199,174420,178485,21000,0,0,13000,7000,1170,1
+18074,50000,male,1,2,39,0,0,0,0,0,0,57436,58483,55825,54888,58115,57299,2055,2655,1862,4007,2517,37793,0
+18075,210000,male,1,2,38,-1,-1,-2,-2,-2,-1,280,0,0,0,0,14202,0,0,0,0,14202,2903,0
+18076,280000,male,1,1,42,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+18077,200000,male,3,2,33,0,0,0,0,0,-1,223147,211336,200691,136379,17000,36932,8376,8589,6137,2300,18649,616,0
+18078,300000,male,2,1,41,0,0,0,0,0,0,163033,140472,96234,64482,100558,76056,5505,5000,3000,95000,4000,3500,0
+18079,420000,male,1,2,36,-1,-1,-1,2,2,2,9464,37856,31429,22483,16437,-2474,40146,23040,63,104,23,50212,0
+18080,350000,male,1,2,34,0,0,0,0,0,0,259524,213822,220211,225601,105586,111276,8432,9000,9500,10000,7000,10000,0
+18081,120000,male,3,1,43,2,3,2,2,2,2,41439,42455,44872,45636,46388,47398,2000,3400,1800,1800,1900,2059,1
+18082,110000,male,2,1,48,2,2,2,0,0,2,65070,69480,67800,69182,73431,72132,5500,0,2512,5400,0,3000,1
+18083,20000,male,1,2,31,1,-1,-1,-2,-2,-2,0,150,0,0,0,0,150,0,0,0,0,0,0
+18084,100000,male,1,2,32,0,0,0,0,0,0,81210,78785,69138,69604,69448,69744,3019,2600,3100,3000,3000,3000,0
+18085,240000,male,1,1,36,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+18086,130000,male,5,2,37,0,0,0,0,0,0,22335,23040,20487,21497,21617,22268,1617,1644,1654,774,1000,1021,0
+18087,170000,male,1,2,48,0,0,0,-1,0,0,6203,9932,-157264,166969,164040,166416,5079,0,332809,6000,6000,6100,0
+18088,60000,male,2,1,42,2,2,2,2,2,0,4136,6355,7604,7603,7332,7712,2300,1500,270,0,500,500,1
+18089,200000,male,3,1,42,0,0,0,2,0,0,151392,148467,153409,145476,119025,115255,7000,14834,0,4575,4180,4634,0
+18090,210000,male,2,1,48,0,0,0,0,0,0,186004,169351,163576,115854,111606,120885,8100,7000,4000,5000,105015,4100,0
+18091,100000,male,2,2,35,0,0,0,0,0,0,95271,97243,99400,88037,59213,56651,3558,3803,3146,2514,3000,2500,0
+18092,380000,male,1,1,37,0,0,0,0,0,0,83852,88996,77202,70542,65765,58355,13014,5068,2100,1947,2000,1600,0
+18093,240000,male,1,2,38,0,0,0,0,-1,2,6865,2519,6646,-1776,3235,1612,2000,6500,0,5011,0,1834,0
+18094,150000,male,2,2,33,0,0,2,2,2,2,53224,57297,52714,56329,57311,56265,5000,0,4500,2500,0,2500,0
+18095,60000,male,2,2,35,0,0,0,0,2,0,34604,35625,36701,39048,37269,38000,1900,1953,3300,0,1430,1300,0
+18096,350000,male,2,1,37,0,0,0,0,0,0,219376,221056,224591,255247,259512,283724,7669,7957,35300,9247,29459,20000,0
+18097,300000,male,1,1,33,-1,-1,-1,-1,-1,-2,250,1280,0,320,0,0,1280,0,320,0,0,0,0
+18098,160000,male,3,1,42,-1,0,0,0,0,0,75847,89094,88956,62768,64410,82919,30000,4326,4000,3000,20000,3500,0
+18099,130000,male,1,2,37,0,0,0,0,0,0,91390,88381,89091,91212,29441,29683,5000,3424,4193,1042,1100,1080,0
+18100,50000,male,3,2,38,0,0,0,0,-2,-2,4269,5478,6190,0,0,0,1288,1000,0,0,0,0,0
+18101,270000,male,2,1,40,0,0,0,0,0,0,42598,44610,46666,48685,49574,50622,3036,3092,3111,2000,2000,2000,1
+18102,90000,male,1,2,36,0,0,0,2,0,0,87678,84296,53990,51752,50346,48811,3573,5100,0,200,20,1146,0
+18103,240000,male,1,1,37,-2,-2,-2,-2,-2,-2,4081,7608,154353,9617,11360,3842,7644,155142,9661,11489,3870,3539,0
+18104,450000,male,1,1,45,0,0,0,0,0,0,201015,177028,136434,126121,115050,105901,10000,6000,5087,5000,5000,5000,0
+18105,280000,male,1,2,36,-1,-1,-1,2,-1,-1,10831,4211,3057,1333,302,5419,4216,4585,0,302,5419,1005,1
+18106,270000,male,1,1,38,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+18107,10000,male,3,2,46,3,2,2,3,3,3,1050,1050,1050,1050,1050,1050,0,0,0,0,0,0,1
+18108,50000,male,1,3,37,0,0,2,0,0,0,45553,49457,47080,45833,45310,6313,6324,0,1200,1000,126,1000,0
+18109,100000,male,1,1,33,0,0,0,2,2,2,34139,38219,42604,44607,45576,46495,5000,5000,3000,2000,1800,1600,0
+18110,190000,male,1,2,32,0,0,0,0,0,0,183594,191367,192221,136916,99307,98753,15000,7171,5427,4000,3518,4758,1
+18111,240000,male,1,2,33,0,0,0,0,0,0,85603,63733,61710,50106,18874,18994,2500,3354,1800,1000,1200,2000,0
+18112,220000,male,1,1,33,0,0,0,0,0,2,171182,175334,179024,183050,207481,204082,7000,6500,7000,27640,0,16000,0
+18113,500000,male,1,1,42,0,0,0,-1,-1,0,47556,36675,9739,579,53599,25276,2016,1049,767,87150,931,1068,0
+18114,300000,male,1,2,32,0,0,2,2,-1,0,8077,10566,11293,12000,3458,56338,2800,1200,1200,9427,55000,2000,1
+18115,500000,male,1,2,30,-2,-2,-2,-1,-1,0,3317,22426,12762,11692,184515,168259,11393,25742,18076,184637,841,37384,0
+18116,200000,male,1,2,30,-1,-1,-2,-1,0,0,8985,247,6015,34314,23403,-1839,805,6144,34418,230,1839,0,0
+18117,260000,male,2,2,31,0,0,0,0,0,0,3113,3117,2924,2784,2413,902,1300,1100,1000,300,0,1261,0
+18118,160000,male,3,2,31,0,0,0,0,0,0,50901,53859,55814,59726,61615,65939,4000,3000,5000,3000,5000,2000,0
+18119,340000,male,1,2,31,0,0,0,0,0,0,85292,66486,62918,53322,50180,57000,17241,16000,13322,10005,9081,9080,0
+18120,500000,male,1,2,32,0,0,0,0,0,0,65736,65164,62901,49434,41254,28115,2425,2174,1605,890,995,681,0
+18121,310000,male,1,1,32,1,2,0,0,2,0,310392,301861,225003,234185,222139,224655,56,9950,17828,9,7951,8070,0
+18122,360000,male,2,1,30,-1,-1,-1,-1,-1,-1,1431,3914,-15,3041,21801,3837,3933,0,3056,21910,3856,31772,0
+18123,110000,male,1,1,36,2,0,0,0,0,0,36152,37246,38340,39018,40122,41069,2000,2000,1500,1500,1500,1135,1
+18124,390000,male,1,1,36,-2,-2,-2,-2,-2,-2,8040,7818,8051,-5,1965,3088,7857,8091,0,990,3108,8486,0
+18125,140000,male,1,2,31,-1,-1,-1,-1,-1,-2,4900,393,0,814,0,0,393,0,814,0,0,0,0
+18126,30000,male,3,2,32,0,0,0,0,0,0,27995,28977,29366,29553,27677,16364,1456,2000,1400,554,327,0,0
+18127,200000,male,1,2,33,1,-1,-1,-1,0,0,-168,416,83,667,251,-165,1000,499,1000,0,0,1000,0
+18128,110000,male,1,2,40,0,0,0,0,0,0,101781,101811,105848,103018,42298,43464,3700,5700,3100,2000,2000,1700,0
+18129,20000,male,1,1,35,2,2,2,-1,0,0,20547,17089,15824,17840,18140,0,1250,0,30000,500,0,0,1
+18130,210000,male,2,1,41,2,2,2,2,2,2,85639,87705,90376,90687,91888,93852,4200,4800,2500,3900,3400,3400,1
+18131,380000,male,2,1,42,-2,-2,-2,-2,-2,-2,2588,38981,6267,19774,12297,2700,39529,6930,19873,12361,2713,5291,0
+18132,70000,male,1,1,42,0,0,0,0,-2,-2,25317,24806,24100,0,0,0,2000,1010,0,0,0,0,0
+18133,20000,male,2,2,32,0,0,0,-1,0,-1,14549,11292,7120,8115,2594,1610,1306,3045,10000,0,1610,0,0
+18134,260000,male,1,2,32,-1,-1,-1,2,-1,0,2112,728,100,100,499,499,733,100,0,499,0,0,0
+18135,200000,male,1,1,46,0,0,0,0,0,0,53643,54300,55039,55712,56421,57203,1765,1828,1811,1816,1880,4123,0
+18136,190000,male,2,2,36,0,0,0,0,0,0,154456,142409,119290,99767,101761,105150,6176,5000,3815,3614,5000,5000,1
+18137,50000,male,2,2,42,0,0,0,0,0,0,47282,47535,46578,17029,10575,9478,2500,2000,2500,500,500,500,0
+18138,20000,male,2,2,35,0,0,0,0,0,0,17042,17544,15292,16509,12261,14550,1500,1500,1506,452,2500,691,0
+18139,400000,male,1,1,49,-2,-2,-2,-2,-2,-2,749,1503,33956,44258,56526,776,1530,34229,44258,56526,776,2131,0
+18140,280000,male,2,1,49,0,0,0,0,0,0,236168,242865,243515,215853,189911,161830,11000,10500,8010,7000,6000,4600,0
+18141,60000,male,3,1,38,2,2,2,2,0,0,33044,32232,25086,24404,25212,28147,0,4000,0,1500,3500,2600,1
+18142,250000,male,1,1,47,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+18143,400000,male,1,2,41,-1,-1,-1,-1,0,-1,11461,5864,5300,6534,5222,500,5877,5300,6534,0,500,360,0
+18144,180000,male,2,1,46,0,0,0,0,0,0,97660,95200,99380,77876,65494,66559,6000,7007,5000,3000,5000,2500,0
+18145,50000,male,2,1,45,0,0,0,0,-2,-2,51132,43020,30180,0,0,0,2800,1000,0,0,0,0,0
+18146,220000,male,2,2,39,0,0,0,0,0,0,103159,91253,81847,79489,77040,78892,5000,3000,4000,3000,3000,3000,0
+18147,50000,male,2,1,35,-1,-1,-1,-1,-1,0,3056,0,4091,0,6592,2728,0,4091,0,6592,0,1456,0
+18148,20000,male,3,2,61,3,2,2,-1,0,0,1930,1742,-780,1170,780,0,0,0,1950,0,0,1320,0
+18149,100000,male,2,1,44,0,0,0,2,0,0,11509,11119,12376,4419,2946,1473,1270,3000,0,0,0,3230,0
+18150,500000,male,1,1,44,0,0,0,0,0,0,48533,49623,50969,52182,52821,53927,2200,2447,2660,2100,2109,2000,0
+18151,120000,male,2,2,38,-1,-1,-2,-1,2,2,500,0,0,974,974,1624,0,0,974,0,650,0,0
+18152,360000,male,1,1,37,-2,-2,-2,-2,-2,-2,-40,8147,1564,4941,2666,588,8187,1571,4965,2679,590,529,0
+18153,440000,male,2,1,48,0,0,0,0,0,0,23424,24222,24077,23241,24600,16344,3000,3000,2000,5000,0,5000,0
+18154,240000,male,2,2,30,-2,-2,-2,-2,-2,-2,13989,7976,2088,7795,1335,2928,7976,2088,7795,1335,2928,4319,0
+18155,200000,male,1,1,45,-2,-2,-2,-2,-2,-2,3659,1710,5033,1125,1088,4469,1718,5069,1130,1093,4491,0,0
+18156,50000,male,2,1,46,-1,-1,-1,-1,-2,-1,4270,1600,3106,0,0,1370,1600,3106,0,0,1370,3930,0
+18157,260000,male,2,1,44,2,-1,2,-1,0,0,802,4541,3896,119498,109399,111203,4541,0,119498,3500,3983,3579,1
+18158,300000,male,2,1,35,0,0,0,2,0,0,142378,146621,153217,154879,156692,154911,8000,10800,6000,6000,6000,6000,1
+18159,130000,male,2,1,37,-1,-1,-1,-1,-1,-1,923,1632,545,1262,1019,530,1632,545,1262,1019,530,1518,0
+18160,50000,male,2,2,48,0,0,0,0,2,0,4975,6878,8106,9962,9656,11328,2000,1500,2000,0,2000,1000,1
+18161,20000,male,3,2,36,0,0,0,0,0,-1,18786,19015,20149,19870,-200,16636,1615,1749,1250,200,20901,1100,0
+18162,20000,male,1,1,36,0,0,0,2,0,0,16736,17834,20025,28806,14463,18668,1700,4000,300,10000,5000,1000,0
+18163,50000,male,3,1,45,0,0,0,0,0,0,43469,44462,45510,46501,47119,47321,2015,2063,2054,1672,1946,1700,0
+18164,70000,male,2,2,39,2,2,2,2,2,2,33521,36303,37424,38512,37596,39877,3350,2000,2000,0,3055,1700,1
+18165,70000,male,2,1,45,2,0,0,0,0,0,68722,69693,70206,70032,50973,48529,3100,3000,3100,2000,1800,1700,0
+18166,450000,male,3,2,38,0,0,0,0,0,0,322402,301522,290124,281667,289459,262269,15000,11000,10013,20000,30000,30000,0
+18167,70000,male,2,1,40,0,0,0,0,0,0,5481,6495,7514,8582,9038,9490,1113,1132,1200,600,600,600,0
+18168,120000,male,2,2,45,0,0,0,0,0,0,123772,121289,116645,119191,116549,119507,6000,5800,6000,4400,5000,4800,0
+18169,80000,male,2,2,33,-1,-1,-1,-1,-1,-1,32394,23160,31484,396,3832,3867,23185,31610,396,3832,3867,1500,0
+18170,20000,male,2,2,40,1,2,2,2,3,2,8545,10177,10467,11987,11503,11175,1923,600,2000,0,0,1000,1
+18171,230000,male,2,1,42,0,0,0,0,0,0,26644,27352,28121,33331,38459,42525,1440,1500,6000,6000,5000,1556,0
+18172,480000,male,1,2,49,0,0,0,0,0,0,449336,456668,424843,325772,320760,325841,17124,14706,15377,10481,11003,11303,0
+18173,490000,male,1,1,42,0,0,0,0,0,0,283484,245832,230346,215437,176688,170548,10000,9002,10000,7000,7000,7000,0
+18174,310000,male,2,1,42,0,0,0,0,0,0,286506,262830,210583,210982,126502,102999,9297,8311,6928,3539,2991,2672,0
+18175,100000,male,1,2,33,0,0,0,0,0,0,68073,64109,65302,73056,74034,44825,5000,3200,10000,10000,10000,10000,0
+18176,260000,male,1,2,39,0,0,0,0,0,0,248880,248758,245404,169632,165098,151157,10611,9708,5929,5622,5465,5474,0
+18177,360000,male,1,1,43,1,-1,-1,-1,-1,0,-985,7542,6169,2391,8539,10068,10000,30000,5000,10004,5000,0,0
+18178,500000,male,1,2,48,1,-2,-1,-1,0,0,-471,-471,157,20697,23906,23906,0,785,20697,3766,0,2040,0
+18179,160000,male,1,2,34,-2,-2,-2,-1,-1,-2,0,150,1397,690,0,0,150,1397,690,0,0,0,0
+18180,360000,male,3,2,34,0,0,0,0,0,0,304883,301286,258122,255309,233946,235916,15000,9221,9225,8112,8369,9000,0
+18181,320000,male,2,1,36,0,0,0,0,0,0,154188,14512,303265,310715,318340,268942,5000,300000,14000,15000,12000,10000,0
+18182,210000,male,2,1,42,-2,-2,-2,-2,-2,-2,0,1145,1000,2000,500,5305,1145,1005,2000,500,5305,3640,0
+18183,140000,male,1,1,41,0,0,0,0,0,0,44635,45891,48149,50341,51897,53058,2000,3000,3000,3000,2000,3000,0
+18184,20000,male,2,2,39,0,0,0,0,0,0,13231,14306,15370,16411,16839,17267,1300,1300,1300,700,700,700,1
+18185,300000,male,1,3,50,0,0,0,0,0,0,301731,230617,306116,291201,241557,193103,60000,80006,10523,8565,8700,3412,1
+18186,130000,male,2,1,50,0,0,2,0,0,2,122079,127725,129558,126907,99773,98086,7700,6000,5800,5800,2895,400,0
+18187,200000,male,3,1,50,0,0,2,2,2,2,119657,127855,128447,115045,117299,105456,11754,4100,0,14000,0,10365,0
+18188,120000,male,2,2,51,2,2,0,0,0,0,137965,128953,126516,123530,95921,88090,0,4940,4806,4107,4026,85750,1
+18189,50000,male,2,3,52,0,0,0,0,0,0,49854,51215,50144,10683,9953,9567,2500,1500,1300,800,1000,1500,0
+18190,180000,male,1,1,51,0,0,0,0,0,0,40310,41634,44959,50198,52361,55510,2000,4000,6000,3000,4000,3000,0
+18191,230000,male,1,1,53,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+18192,10000,male,3,1,50,0,0,0,3,2,2,4674,6422,9145,8854,8563,9918,2000,3000,0,0,1500,0,0
+18193,20000,male,2,1,49,2,2,2,2,0,0,13380,13264,19195,18497,18160,19067,400,6180,0,454,1000,400,1
+18194,200000,male,2,2,48,0,0,0,0,0,0,111664,113884,116545,120396,121486,121518,4080,4500,5800,4500,5000,5000,0
+18195,360000,male,2,1,49,1,2,-1,-1,0,-1,3295,1645,1656,1866,1473,1080,0,1656,1866,1080,1080,0,0
+18196,210000,male,2,1,53,0,0,0,0,0,0,170760,174141,177856,181002,184690,188813,7700,8000,7600,6700,7100,6900,0
+18197,80000,male,2,1,53,2,2,2,2,0,0,6469,8947,9853,9546,9890,10479,2600,1200,0,503,900,0,1
+18198,60000,male,2,2,51,0,0,0,0,0,0,27293,27898,28574,29059,29244,29462,1450,1516,1391,966,997,948,0
+18199,100000,male,3,1,56,1,2,2,2,2,2,51021,53878,54046,52193,55151,55873,4388,2000,0,4212,2126,0,0
+18200,20000,male,3,1,62,2,3,2,2,2,2,17072,16505,17242,16668,17972,18316,0,1300,0,1586,780,800,0
+18201,50000,male,2,1,54,2,2,2,3,2,2,35068,34205,39148,38233,37318,39757,0,5500,0,0,3036,2000,1
+18202,300000,male,3,1,56,0,0,0,0,0,-1,110350,102556,103834,99368,101600,560,4052,6122,1987,2232,560,0,0
+18203,140000,male,3,1,50,0,0,0,2,0,0,143090,139095,147204,139896,136922,130098,5411,16000,0,5341,4830,4621,0
+18204,120000,male,3,1,59,0,0,0,0,0,-2,68646,68784,49933,51400,0,0,2144,1933,2400,0,0,0,0
+18205,400000,male,3,1,57,-1,0,0,-1,0,0,17253,161057,192054,20660,18242,15609,160002,42263,20663,6020,3500,1003,0
+18206,50000,male,3,2,58,2,0,0,0,0,0,7831,7556,7312,6959,5813,3985,1123,1140,1048,163,135,151,0
+18207,90000,male,1,1,56,0,0,0,0,0,0,58438,60208,62000,60673,22196,29809,2572,3188,2661,1000,8000,1000,0
+18208,60000,male,2,1,57,0,0,0,0,0,0,59617,47807,35136,34163,27197,26528,3099,3000,5005,2000,4001,3016,0
+18209,260000,male,1,1,51,0,0,0,0,0,0,62635,67553,69466,71310,73124,74949,6000,3000,3000,3000,3000,2734,0
+18210,80000,male,3,1,52,0,0,2,2,0,0,27308,29536,31756,30946,31830,0,3000,3000,0,1700,0,0,0
+18211,160000,male,2,1,55,-2,-2,-1,0,0,0,-64,-64,140184,141992,143277,146438,0,140248,6600,5122,5464,5372,0
+18212,10000,male,3,2,51,0,0,0,2,0,0,7282,8311,10398,10000,10000,0,1311,2398,0,0,0,0,0
+18213,190000,male,2,1,50,1,2,2,2,2,2,19871,19259,21734,21087,22732,22228,0,3100,0,2000,0,1900,1
+18214,160000,male,1,1,51,0,0,0,2,2,2,131124,129673,135778,132505,124622,127646,5000,12501,4700,0,9500,0,0
+18215,20000,male,3,2,49,3,2,2,2,0,0,16066,15516,18047,17326,17326,17680,0,3100,0,400,354,2000,0
+18216,300000,male,3,1,57,1,-1,-1,-1,-1,-1,0,176,1269,11347,369,860,176,1269,11347,369,860,0,0
+18217,440000,male,1,1,79,0,0,0,0,0,0,429309,437906,447326,447112,438187,447543,15715,16519,16513,15800,16531,15677,0
+18218,50000,male,3,1,54,1,2,0,0,0,0,48679,47597,48503,49517,19592,19868,0,2100,2500,800,1000,900,0
+18219,350000,male,1,1,50,0,0,0,0,0,0,348938,326648,228830,198817,193859,154477,11000,8500,15022,7000,20000,20000,0
+18220,60000,male,3,1,50,0,0,0,0,0,0,59703,59837,48187,42658,40587,40605,2047,2168,1642,1563,1600,1486,0
+18221,50000,male,2,1,47,2,0,0,0,0,0,10492,11913,13012,13789,14560,15025,1600,1600,1300,1000,700,600,1
+18222,30000,male,2,2,52,2,2,0,0,0,0,30119,28682,29058,29320,29787,27599,0,1803,1733,1200,1200,2000,1
+18223,150000,male,1,2,52,0,0,0,0,0,0,227634,356216,247706,239805,242653,39496,18000,12370,6552,6936,395,0,0
+18224,100000,male,1,1,60,0,0,3,2,0,0,4814,8311,8031,5790,3860,2599,3591,0,0,0,0,2712,1
+18225,350000,male,1,1,55,-1,-1,-1,-1,-1,-1,3297,11634,12952,39274,5474,14837,11637,12991,39278,6000,14837,931,0
+18226,80000,male,2,1,52,0,0,0,0,0,0,75113,76860,77456,21118,22260,23396,3500,2202,1500,1500,1500,1500,0
+18227,80000,male,3,1,55,0,0,0,0,0,0,80037,79788,81571,75814,49784,51408,63000,25000,7704,8700,3000,12900,0
+18228,10000,male,3,1,54,4,3,2,2,2,2,7936,7662,8386,9069,9966,8410,0,1000,1000,1000,0,2000,1
+18229,210000,male,2,1,66,-1,2,-1,-1,-1,0,780,390,390,390,780,390,0,780,390,780,0,390,1
+18230,500000,male,1,1,62,1,-2,-2,-2,-1,-1,0,0,0,0,1981,1700,0,0,0,1981,1700,13969,0
+18231,20000,male,2,1,61,3,4,3,2,2,4,18618,18040,17471,16893,21318,20412,0,0,0,4726,0,0,1
+18232,330000,male,1,2,54,-2,-2,-2,-2,-2,-2,3027,2379,1803,909,3854,1509,2386,1894,911,3865,1513,0,0
+18233,250000,male,1,1,58,0,0,0,-1,0,0,1635,2491,-60,600,600,0,1025,0,660,0,0,0,0
+18234,420000,male,1,1,54,-2,-1,2,-1,0,0,1003,1632,629,13371,12383,8260,1632,0,13371,15,0,2512,0
+18235,90000,male,2,1,53,-1,0,0,0,0,0,24782,26302,27465,27943,26152,25941,3000,3000,2000,1000,936,1010,1
+18236,180000,male,3,2,52,0,0,0,0,0,0,77408,74156,75659,72046,70355,71208,3293,3350,3111,2615,2689,2766,0
+18237,50000,male,3,1,51,0,0,0,0,0,0,47877,48519,46538,45465,18654,19042,2516,2106,2048,783,806,652,0
+18238,200000,male,2,1,53,1,-1,-1,-2,-2,-1,0,2920,0,0,0,6753,2920,0,0,0,6753,0,1
+18239,100000,male,1,1,63,0,0,0,0,0,0,61228,59936,59038,52735,46667,49009,2810,2954,2307,1756,3181,0,0
+18240,150000,male,1,1,55,1,-1,-1,0,-1,-1,0,780,4639,100940,3284,2090,780,4639,100000,3284,2576,2576,0
+18241,360000,male,1,1,62,-1,-1,-1,-1,-1,-1,5875,7279,6894,7143,1787,19526,7289,6918,7148,1792,19541,3689,0
+18242,50000,male,2,2,57,0,0,0,0,2,0,51867,51136,51039,52079,49523,49128,2200,2500,4000,0,2000,2000,0
+18243,30000,male,2,3,58,3,2,0,0,0,2,23496,22820,23952,27052,28631,28037,0,1500,3500,2336,0,6900,0
+18244,330000,male,3,1,56,-1,-1,2,-1,-1,0,360,1499,360,360,7143,5725,1499,0,360,7143,3000,2383,0
+18245,70000,male,2,3,47,0,0,0,2,0,0,27847,29073,34578,33723,35156,37370,2000,6000,0,2000,2784,0,1
+18246,420000,male,1,1,51,0,-1,-1,-1,0,0,57815,1000,0,287921,291770,299232,1000,0,288921,10000,21100,0,0
+18247,130000,male,1,1,51,0,0,0,0,0,0,124108,126571,130870,132213,52755,53463,4530,6338,5530,1877,1937,1939,0
+18248,200000,male,2,1,55,0,0,0,0,0,2,184505,182475,180103,180647,76236,71415,8000,7512,8034,5600,0,2700,0
+18249,180000,male,3,1,58,2,2,2,2,2,2,36086,37196,36322,38808,39474,40297,2000,0,3405,1600,1600,1700,1
+18250,170000,male,2,1,59,2,2,2,2,2,2,44619,45386,46365,47304,47727,49315,1800,2000,2000,1500,2500,0,1
+18251,190000,male,1,1,54,0,0,0,0,0,0,187295,186189,186002,170873,98013,94600,7000,7962,7000,3417,3463,3357,0
+18252,200000,male,1,1,54,1,2,0,0,0,0,7111,4803,4629,14915,8523,5586,10,1215,12000,4000,4978,1000,0
+18253,30000,male,3,1,54,0,0,0,0,0,2,13693,14757,15815,16788,17787,17363,1600,1600,1540,1580,0,700,1
+18254,460000,male,2,1,55,0,0,-1,0,0,0,5352,8240,76653,75117,76616,78248,3000,76653,20000,2481,2600,2600,0
+18255,190000,male,1,1,54,0,0,0,0,0,0,205824,201269,197129,192803,161324,156576,7154,7385,7520,5593,6000,5516,0
+18256,10000,male,2,2,54,0,0,0,2,2,0,3697,5186,8225,8244,7963,8134,1561,3300,300,0,299,2000,0
+18257,90000,male,2,1,57,0,0,0,0,0,0,10635,10889,10953,11155,15210,19425,3007,3000,3000,5000,6000,8000,0
+18258,440000,male,1,1,54,-1,-1,-1,-1,0,0,8517,0,241,8544,1361,855,0,241,8598,857,4,2227,0
+18259,480000,male,2,1,58,0,0,0,0,0,0,470310,472072,475509,466730,469490,398335,16898,17546,15921,15981,14420,14230,0
+18260,360000,male,3,1,56,-1,-1,-1,-1,-1,-1,22000,7746,1198,2087,1026,1026,7772,1198,2097,1026,1026,1019,0
+18261,500000,male,1,1,69,-2,-2,-2,-2,-2,-2,1149,203,15183,3399,8311,-2,205,15259,3416,8353,0,0,0
+18262,30000,female,3,1,28,0,0,0,0,2,0,23176,23182,19083,19632,15252,14021,2867,2000,2000,0,1500,1353,0
+18263,80000,female,3,1,33,-1,2,-1,-1,-1,-1,780,390,814,390,390,390,0,814,390,390,390,1578,1
+18264,200000,male,2,1,66,-1,-1,2,-1,-1,-1,389,778,389,389,389,775,779,391,390,390,776,1,1
+18265,350000,male,1,1,57,-2,-2,-2,-2,-2,-2,1910,0,1638,0,0,0,0,1638,0,0,0,0,0
+18266,150000,male,2,1,55,0,-1,-1,-1,0,0,1540,780,0,580,780,0,780,0,580,200,0,0,0
+18267,360000,male,3,2,54,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+18268,20000,female,3,1,31,1,2,0,0,0,0,15903,15350,16438,17250,17601,17982,0,1343,1155,506,538,600,1
+18269,310000,female,2,1,47,0,0,0,0,0,0,290211,296743,303686,226605,224937,228912,10989,12100,8000,8000,9000,7670,0
+18270,200000,female,1,2,31,1,-2,-2,-1,-1,-1,3028,1431,1818,4192,6066,1616,1473,1818,4192,6066,1616,2512,0
+18271,210000,female,3,1,40,0,0,0,0,0,0,160292,144217,123657,112910,97400,9806,3720,3229,3165,1979,9806,390,0
+18272,30000,female,3,1,47,0,0,0,0,0,0,15979,17705,19107,20281,20941,21799,2000,2000,1500,1000,1200,2000,0
+18273,110000,female,1,2,31,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+18274,50000,female,3,2,27,2,0,0,-1,-1,-1,13979,11243,4396,3120,1805,16820,1261,1396,3125,1805,16820,3000,0
+18275,50000,female,1,2,26,0,-1,-1,-1,-2,-2,4197,934,252,-570,-570,-1000,1000,252,0,0,0,0,1
+18276,50000,female,2,1,33,0,0,0,0,0,0,32752,34202,35242,34776,35497,36325,2000,1600,1600,1300,1400,1600,0
+18277,20000,female,1,2,23,0,0,0,0,0,0,16931,17644,18679,18275,7953,8323,1300,1340,1207,300,500,500,0
+18278,80000,female,2,2,32,0,0,0,0,0,0,16007,19643,23213,27547,31151,37673,5000,5000,6000,5000,8000,10000,0
+18279,150000,female,2,1,53,-1,-1,-1,-1,-1,-1,2337,5335,508,9634,3822,1769,5336,509,9636,3822,1779,1017,0
+18280,240000,female,2,1,28,-1,-1,-1,-1,-2,-2,1444,2553,747,0,0,0,2553,747,0,0,0,1295,0
+18281,450000,female,1,1,36,-2,-2,-2,-2,-2,-2,3961,2483,74,-73,14590,-70,2495,100,0,14663,0,14121,0
+18282,180000,female,2,2,24,-1,-1,-1,-1,-1,-1,316,316,316,316,316,316,316,316,316,316,316,316,1
+18283,30000,female,2,2,22,0,0,0,0,0,0,24426,25429,26491,27132,27672,28253,1712,1774,1415,955,991,1358,0
+18284,50000,female,2,1,22,0,0,0,0,0,0,48560,49644,47247,42541,19716,20145,2000,2003,1298,1000,800,879,1
+18285,20000,female,2,1,31,2,2,2,2,2,0,17727,18840,18255,20129,19528,40068,1700,0,2500,0,800,792,0
+18286,150000,female,2,2,25,-2,-2,-2,-2,-2,-2,-19,-19,-19,-19,7962,0,0,0,0,7981,0,12220,0
+18287,20000,female,2,1,29,0,0,0,0,0,0,5586,6599,7615,8472,8640,8971,1268,1284,1141,309,470,321,1
+18288,40000,female,2,1,25,0,0,0,0,0,2,40633,40633,40311,39380,41389,40628,1950,4300,2000,2938,0,3700,1
+18289,180000,female,2,1,30,1,-1,-1,-1,0,0,1591,150,8834,19565,14170,9017,150,8857,19565,502,3000,2707,0
+18290,80000,female,2,2,29,0,0,0,0,0,0,78626,78262,80000,82025,78521,78947,3400,3600,4000,3500,3000,4000,0
+18291,50000,female,2,2,24,0,0,0,0,0,0,45397,47264,44090,36501,28493,24663,3015,3025,2029,2015,1001,2000,0
+18292,480000,female,1,2,32,-1,-1,-1,-1,-1,-1,3655,38022,5785,9233,4893,2168,38024,5785,9233,4893,2168,3625,0
+18293,20000,female,1,2,23,0,0,0,0,0,0,19422,17545,18163,19146,18331,18736,1300,1400,1300,700,700,1000,0
+18294,150000,female,1,2,24,-2,-2,-2,-2,-2,-2,1495,2053,0,0,0,0,2060,0,0,0,0,0,0
+18295,20000,female,2,2,22,0,0,0,0,0,0,15847,16885,18418,18915,17639,0,1300,1803,1300,1333,0,0,0
+18296,360000,female,1,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+18297,200000,female,1,2,33,0,-1,0,0,0,0,8819,8565,14567,157631,143678,159782,8656,14040,154888,12848,50000,10000,1
+18298,20000,female,1,2,28,0,-1,-1,2,0,0,4647,3567,20330,13463,9192,7315,5057,17000,0,0,0,1183,0
+18299,50000,female,2,2,23,1,-1,-1,-1,-1,0,18085,4120,0,261,28606,24041,7000,0,261,46506,2000,3000,0
+18300,70000,female,2,2,23,0,0,0,0,0,0,64882,63824,63352,28085,28487,27006,2782,2700,1732,1134,1128,1003,1
+18301,120000,female,2,2,23,0,0,0,0,0,0,116314,115653,108971,83592,22321,32150,6019,5000,5000,2000,20000,10000,0
+18302,50000,female,3,1,46,0,0,0,0,2,0,13406,15175,16227,17746,7496,7877,2000,1600,2100,1930,500,500,0
+18303,310000,female,1,1,36,0,0,0,0,0,0,157173,160555,170288,175252,177855,181846,6000,12398,7814,7000,7000,6597,0
+18304,60000,female,2,2,24,0,0,0,0,0,0,54216,55313,56127,57149,53721,54703,2000,2100,2000,2100,2000,2153,0
+18305,20000,female,1,2,22,0,0,0,0,0,0,23050,22101,20912,19480,19129,20014,1336,2502,1700,807,2002,1007,0
+18306,20000,female,2,2,22,2,2,0,0,0,3,6900,6643,7872,9077,10989,10529,0,1500,1500,2225,0,0,1
+18307,50000,female,1,2,22,0,0,0,2,0,-1,3560,4582,7692,12048,3750,95,1090,3200,0,2000,95,29355,1
+18308,80000,female,2,2,22,0,0,0,0,0,0,18429,19500,14366,15369,14595,14363,2015,1500,1252,330,1829,207,0
+18309,20000,female,2,2,22,0,0,0,0,0,0,16990,17960,18923,19706,19818,20006,3000,3001,3000,2000,1002,783,0
+18310,20000,female,6,2,22,0,0,0,0,0,0,19568,19420,15535,1434,500,0,4641,1019,900,0,1500,0,1
+18311,10000,female,1,1,23,0,0,0,0,0,0,7641,8557,9080,1410,9508,8997,1262,1000,1115,9329,331,1000,0
+18312,20000,female,2,1,21,-1,0,0,0,2,0,17617,17540,25816,12957,9602,9357,1489,2302,2400,0,2000,3000,0
+18313,20000,female,2,2,21,1,2,2,0,0,0,18455,13081,12582,14255,14138,16138,1327,0,2000,283,2000,859,0
+18314,30000,female,2,2,22,0,0,0,0,0,-1,18424,18905,15037,2986,4212,1161,1311,1065,1000,1226,1161,748,0
+18315,20000,female,1,2,21,0,0,-1,-1,-1,0,2798,3214,647,0,7273,6490,2000,647,489,7273,130,0,0
+18316,20000,female,1,2,22,0,-1,-1,0,-1,-1,18479,2005,7839,5386,10690,3413,2022,15210,1000,10690,3413,390,0
+18317,20000,female,2,2,22,1,2,0,0,0,3,15712,15162,16188,17212,19363,18771,0,1276,1300,2443,0,0,0
+18318,50000,female,2,2,22,1,2,0,0,0,0,51798,50497,30935,14010,19110,19500,0,1663,1544,5500,390,0,0
+18319,50000,female,1,2,23,0,0,0,0,0,0,8889,10234,13734,14754,16499,18223,1500,4000,1255,2000,2000,3000,0
+18320,50000,female,3,2,23,-1,-1,-1,-1,0,0,3237,5365,8263,14054,22071,20506,5389,8276,14075,15022,3012,3018,1
+18321,20000,female,2,2,22,0,-1,2,-1,-1,-2,10294,3203,199,2780,0,0,4000,0,2780,0,0,0,1
+18322,20000,female,2,2,22,2,4,3,2,0,0,8628,8350,8076,7798,8110,10194,0,0,0,441,2368,0,1
+18323,80000,female,1,2,23,-2,-2,-2,-2,-2,-2,390,390,390,390,740,552,390,780,390,740,552,4390,0
+18324,80000,female,2,2,23,0,0,0,0,0,0,43275,42504,42471,43302,40516,43487,1700,1800,1600,1500,3500,2000,0
+18325,130000,female,2,2,23,-1,-1,-2,-2,-2,-2,69,0,0,0,0,0,0,0,0,0,0,0,0
+18326,200000,female,1,2,24,-2,-2,-2,-2,-2,-2,675,1053,0,500,2057,23322,1053,0,500,2057,23322,4299,0
+18327,50000,female,1,2,24,0,0,0,-1,-1,-1,27320,50339,40791,13676,9457,390,27704,5000,13676,9457,14000,568,0
+18328,20000,female,1,2,22,0,0,2,2,2,2,12476,14951,14426,16471,15909,17151,3000,0,2600,0,1500,0,0
+18329,20000,female,2,2,22,1,2,2,0,0,0,15706,15757,15436,16331,10229,10250,1000,1000,1200,900,700,2300,1
+18330,50000,female,2,2,22,1,2,0,0,0,0,44980,41140,31888,28639,26737,24784,7,1580,1621,1020,2473,1079,1
+18331,60000,female,2,2,23,1,2,-1,0,0,0,9491,9094,43457,34481,28695,26040,0,43460,1700,1100,1000,1000,0
+18332,130000,female,2,2,22,0,-1,-1,0,-1,0,8570,527,11249,7816,16578,16129,527,11249,1200,16578,0,33232,0
+18333,80000,female,2,2,22,-1,-1,-1,-1,-2,-2,1247,0,32320,0,0,0,0,32320,0,0,0,0,1
+18334,170000,female,2,2,34,0,0,0,0,0,0,156526,160926,162960,165645,168386,129230,7500,6116,5600,5000,5000,5000,0
+18335,90000,female,1,2,23,0,0,0,0,0,0,18418,23068,24146,25692,27364,24521,5000,1454,2000,2000,1500,680,0
+18336,20000,female,2,1,23,-1,-1,-1,-1,0,-1,3426,11581,10713,4272,4285,16542,11615,10739,4272,13,16687,952,0
+18337,20000,female,1,2,23,-1,-1,-1,-1,-1,-1,1207,0,174,1200,1434,0,0,174,1200,1434,0,974,0
+18338,80000,female,2,2,23,0,0,0,0,-1,-1,38587,27558,23470,21539,14578,11766,5000,5000,10006,14614,11766,18000,0
+18339,30000,female,2,2,22,0,0,0,2,2,2,26568,27556,29963,28835,30174,28603,1762,3500,0,2297,40,1755,1
+18340,30000,female,1,2,22,0,0,2,2,2,2,18324,20986,20808,18908,19556,19148,3300,1300,0,2300,0,900,0
+18341,30000,female,3,1,23,2,2,2,0,0,2,15003,15955,15410,17149,18362,18919,1500,0,2000,1500,1000,700,1
+18342,150000,female,2,2,23,-2,-1,0,0,0,0,956,66470,66187,65419,61645,64189,66470,2451,2543,5000,4189,10000,0
+18343,50000,female,1,2,23,0,0,0,0,0,-1,40756,48482,47226,11151,-2897,48211,10000,2500,3002,1500,52000,1900,1
+18344,80000,female,2,2,23,1,-1,-1,2,0,-1,-1678,75061,3647,2173,390,780,78000,3647,0,0,780,0,0
+18345,30000,female,1,2,23,0,0,0,0,-1,-1,20958,12186,5754,5070,759,2480,1092,1109,1000,759,2480,0,1
+18346,60000,female,1,2,23,2,2,2,2,2,2,26596,29332,28577,30805,31601,32349,3500,0,2709,1600,1400,1300,1
+18347,100000,female,2,2,23,0,0,0,0,0,0,42409,43404,44446,45704,54916,56063,1700,1742,2000,10000,2025,2150,0
+18348,140000,female,1,2,23,0,0,0,0,0,0,35206,26200,27771,29261,20121,24263,2000,2000,2025,1300,4500,3500,0
+18349,140000,female,1,2,23,0,-1,-1,-1,-1,0,1217,866,390,0,2601,179,866,390,0,2601,0,1326,0
+18350,70000,female,5,1,23,0,0,0,0,0,0,30847,31849,33333,34344,35032,35807,1516,2000,1600,1215,1300,1500,0
+18351,70000,female,2,2,22,2,0,0,0,0,0,34970,19188,19998,22919,23128,23030,1313,1689,4000,958,1036,6000,0
+18352,30000,female,2,1,28,2,2,2,2,0,0,21588,20942,23691,23012,26105,30500,0,3100,0,3500,5000,1000,1
+18353,50000,female,3,2,22,2,-1,-1,2,0,0,1261,1261,2136,1560,1170,780,1261,2136,0,0,0,0,1
+18354,50000,female,2,2,22,2,2,2,0,0,0,49559,49548,50148,48910,29848,26159,1100,1700,1500,1000,1000,1300,1
+18355,30000,female,3,1,22,0,0,0,0,0,2,23185,24194,25529,26563,28120,28558,1400,1730,1760,2310,1033,0,0
+18356,30000,female,3,2,23,0,0,0,0,0,0,28371,28238,28963,29991,22876,22177,2000,2000,2000,2000,2000,2000,1
+18357,30000,female,1,2,24,-2,-2,-2,-2,-2,-2,0,0,0,745,0,0,0,0,745,0,0,930,0
+18358,20000,female,1,2,25,0,0,0,0,0,0,11629,11936,12643,13447,8199,8416,1193,1290,1094,1000,316,1000,0
+18359,60000,female,4,2,23,0,0,0,0,0,0,60876,60606,58227,60538,45018,38086,2523,2155,45088,1722,1523,2000,0
+18360,200000,female,1,2,23,0,0,0,0,0,0,72853,73688,56073,57790,58356,60135,2933,2100,2659,2100,2700,2599,0
+18361,80000,female,1,2,23,1,-2,-2,-2,-1,-1,0,0,0,0,826,1803,0,0,0,826,1803,0,1
+18362,170000,female,1,2,23,0,0,0,0,0,0,15639,14431,15437,13838,14915,10090,1265,3437,2115,2920,1500,1053,0
+18363,230000,female,2,2,24,-1,-1,-1,-1,-1,0,160,237,436,12488,932,317,237,586,12511,1249,0,0,1
+18364,90000,female,1,2,24,2,2,2,2,0,0,14085,13558,12193,12986,11831,12488,0,2000,1300,700,1000,3500,1
+18365,290000,female,2,2,24,0,0,0,0,0,0,262476,180959,162007,143679,375499,222575,8000,6500,6100,235075,10047,7500,1
+18366,60000,female,2,2,24,0,0,-1,2,0,0,8086,6936,4102,3891,4669,6083,3015,4102,0,1000,1500,1000,0
+18367,20000,female,1,2,24,-2,2,2,2,2,0,18252,19650,19054,20285,19563,17899,2000,0,2000,0,356,3431,1
+18368,50000,female,2,1,23,0,0,0,0,0,0,25526,26527,27577,28528,28689,29289,1431,1481,1432,992,1027,1038,0
+18369,210000,female,2,2,23,0,0,0,0,0,0,9987,14769,16658,21032,19497,3510,5000,5000,5000,8000,2000,4209,0
+18370,290000,female,2,2,29,-1,0,0,0,0,0,140809,130127,131218,124556,127300,129357,6201,5113,5006,6006,5501,15064,0
+18371,90000,female,2,2,23,0,0,0,0,0,0,29357,26003,27090,27767,28108,29848,1500,1500,1800,1100,2200,1500,0
+18372,50000,female,2,2,23,0,0,0,0,0,0,37259,32822,20669,4510,2893,2000,1750,1150,1000,300,400,800,0
+18373,50000,female,2,2,23,0,0,0,2,0,0,32206,65339,33329,20935,15809,16133,1630,6348,0,420,593,500,0
+18374,20000,female,3,2,24,0,-1,0,0,0,0,1360,1301,2257,2641,5041,248,1301,1267,1648,4041,0,3422,0
+18375,360000,female,2,2,23,0,0,-2,-2,-2,-2,37927,2047,3794,8521,7119,5725,2057,4294,8535,1535,5753,7792,0
+18376,230000,female,1,2,23,0,0,0,0,0,0,34975,35950,18661,12157,13104,13314,2000,1241,1157,1104,814,715,0
+18377,30000,female,1,2,24,-1,0,0,0,0,0,19998,21212,18127,14439,11026,10523,3001,2013,2001,2002,1500,20000,0
+18378,30000,female,1,2,23,0,0,0,0,0,0,17462,27086,28299,29585,27952,29790,10000,2013,3016,759,2042,3705,0
+18379,70000,female,2,2,23,0,0,0,0,0,0,45743,38365,38988,38192,28775,16497,1619,4000,1200,592,330,177,0
+18380,20000,female,2,2,25,2,0,0,0,0,-2,18696,20086,20285,16530,0,0,1705,1418,2011,0,0,0,1
+18381,80000,female,2,2,25,-1,-1,-2,-2,-2,-2,390,0,0,0,0,0,0,0,0,0,0,240,0
+18382,80000,female,2,2,24,0,0,0,0,0,0,80690,79451,80672,79681,78569,79817,2852,2906,2828,2790,2887,3100,0
+18383,50000,female,2,2,25,0,0,0,0,0,0,49173,50141,96860,48803,19324,19668,1800,2100,2600,1000,1000,1000,0
+18384,30000,female,5,2,22,0,0,0,0,0,0,13738,10455,19869,26173,26848,27266,4000,10001,7000,1107,1000,1010,0
+18385,30000,female,1,2,22,0,0,2,0,0,-1,28000,30463,29697,29760,21061,1894,3703,0,1000,421,1894,5514,0
+18386,70000,female,2,2,22,0,0,0,0,0,0,53399,49108,49674,44568,31156,30954,1841,2243,1467,1076,1096,1494,0
+18387,30000,female,2,2,24,0,0,0,0,0,0,30767,28818,30411,28805,26895,27162,1600,2517,4006,2000,1000,1500,0
+18388,110000,female,2,1,24,1,1,-1,0,0,0,9787,-1256,65064,66102,54275,51791,5,68500,3114,4016,2000,2000,0
+18389,160000,female,2,2,24,0,0,0,0,0,0,55559,51972,34983,26514,17602,9308,3010,3000,2000,1000,2000,0,0
+18390,30000,female,2,2,22,2,2,2,2,2,0,29412,27559,31090,31247,30493,31148,0,4000,1000,0,1100,1091,1
+18391,40000,female,2,2,24,2,0,0,0,0,0,19012,20018,21047,22360,22499,22969,1326,1355,1668,807,834,837,1
+18392,160000,female,2,2,25,1,-1,0,0,0,-2,0,1000,2043,3133,0,0,1000,1043,1133,0,0,7482,1
+18393,50000,female,2,2,23,2,0,0,0,0,0,33999,34997,36030,36740,37469,38254,1867,1900,1610,1339,1387,1395,1
+18394,160000,female,1,2,23,0,0,0,0,0,-1,77947,78960,79594,49777,327,222,4000,3000,1000,0,222,2682,1
+18395,30000,female,2,2,22,0,-1,-1,0,0,-1,3077,390,1946,2503,0,780,390,1946,1000,0,780,1160,0
+18396,70000,female,2,2,23,2,3,2,2,0,0,64655,63031,64440,62816,63473,65112,0,3000,0,2300,2661,2035,0
+18397,150000,female,2,1,24,-1,-1,-1,-1,-1,-1,12769,424,177,1596,405,0,902,177,1596,405,0,0,0
+18398,50000,female,2,1,24,0,0,0,0,0,2,46485,34462,26809,27809,29705,26856,1523,1609,1500,2305,0,1701,0
+18399,80000,female,1,1,24,0,0,0,0,0,2,79393,77400,78453,48027,52378,49750,3400,3000,5027,8500,0,4000,0
+18400,50000,female,2,2,24,2,0,0,0,0,2,35845,36449,37858,38924,41170,40379,1500,2000,2000,3200,0,1700,1
+18401,50000,female,2,2,24,0,0,0,0,0,0,54519,53638,53676,51786,34919,33571,2000,2880,1950,1050,1010,1220,0
+18402,30000,female,3,1,25,0,0,0,0,0,0,26277,25896,27460,27735,27711,28643,2000,2000,2000,2000,1500,1500,0
+18403,250000,female,3,1,27,2,3,2,2,0,0,324204,308506,294198,278964,270046,265787,5000,6000,5000,9600,14000,14000,0
+18404,70000,female,1,1,23,-1,-1,-2,-2,-2,-2,3000,0,0,0,0,0,0,0,0,0,0,0,0
+18405,150000,female,2,2,23,-1,-1,-1,0,0,0,330,330,63917,59865,59258,57924,330,63917,2100,2100,2200,2200,0
+18406,320000,female,1,2,25,0,0,0,0,0,0,179893,183466,187397,187999,191388,40940,6558,7254,4308,4274,1296,1017,0
+18407,80000,female,5,2,25,0,0,0,0,0,-2,11521,5219,4560,5450,0,0,1500,2000,1000,0,0,0,0
+18408,30000,female,3,2,26,1,2,2,2,2,2,11167,13281,13773,14647,14713,14337,2600,1000,1400,600,0,700,1
+18409,50000,female,1,2,23,0,0,0,0,-1,-1,47160,51034,50204,44580,4712,3914,5000,4000,1010,5504,5500,5000,0
+18410,30000,female,3,2,23,0,0,0,0,0,0,33171,32678,32218,31963,30942,29945,1524,1537,1755,1207,1076,1188,0
+18411,20000,female,2,2,23,0,0,0,-2,-2,-2,8936,9700,0,0,0,0,1000,0,0,0,0,0,0
+18412,200000,female,2,1,25,0,0,0,0,0,0,108174,111378,113751,110828,110592,103734,5000,4200,3820,4000,3760,4006,1
+18413,20000,female,2,2,22,0,0,0,0,2,2,12932,13940,14654,16712,16149,18112,1532,1246,2304,0,2390,634,1
+18414,100000,female,2,2,24,2,3,2,0,0,0,84098,83160,81265,83012,84933,94362,1000,0,3100,3300,11000,0,1
+18415,20000,female,1,2,26,1,2,2,2,2,2,18194,19043,18451,19961,19229,19694,1446,0,1956,0,651,0,1
+18416,130000,female,2,2,24,0,0,0,0,0,0,10071,50961,44362,43359,39010,36546,46034,1800,1659,1200,1150,1158,0
+18417,50000,female,5,2,24,0,0,0,0,0,0,42207,43517,44330,45404,46363,47630,2000,1800,1800,1700,2000,3700,0
+18418,200000,female,5,1,25,0,0,0,0,0,0,149886,140541,96253,76131,37282,24421,5388,3300,2124,912,1000,10847,1
+18419,20000,female,2,1,25,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+18420,20000,female,2,1,26,1,2,0,0,0,0,7072,1514,1898,2558,2498,4074,2,1198,1500,500,2000,0,0
+18421,100000,female,1,2,26,1,2,2,2,0,-1,3144,2949,4480,764,528,933,0,1795,0,13,933,3000,0
+18422,170000,female,2,2,24,0,0,0,0,0,0,64142,54347,55677,59096,50536,15851,3000,3000,5000,10000,5000,6000,0
+18423,80000,female,1,2,22,0,0,0,0,0,0,48305,48823,41495,36733,27692,27872,1739,1701,1439,980,1005,1216,0
+18424,130000,female,1,2,26,-2,-2,-2,-2,-2,-2,1815,3520,727,-173,-173,-173,3532,857,1000,0,0,0,1
+18425,50000,female,3,1,26,2,2,2,0,0,0,50002,51190,47959,49099,28540,29114,2330,0,2470,1215,1231,1000,1
+18426,280000,female,2,2,26,0,0,0,0,0,0,25989,27052,28111,29138,29852,30717,1800,1800,1800,1500,1500,1500,0
+18427,130000,female,2,2,27,-1,-1,-1,-1,0,0,3359,-191,191,2898,4728,5149,0,382,2898,1900,500,500,0
+18428,150000,female,2,1,27,-1,-1,-1,-1,-1,-2,9377,11908,-5132,20710,0,0,11908,3038,42429,0,0,53867,0
+18429,130000,female,1,2,23,-2,-2,-2,-2,-2,-2,0,0,0,0,0,1250,0,0,0,0,1250,0,0
+18430,30000,female,2,2,23,0,0,2,0,0,0,20194,24860,24180,25467,26241,30637,5000,0,2000,1500,5000,2528,0
+18431,50000,female,1,2,23,0,0,0,0,0,0,50933,50906,48560,49826,34318,19884,2400,2500,2608,700,3381,0,0
+18432,120000,female,2,2,24,0,0,0,0,0,0,89240,87970,82837,73297,73084,68697,8000,3500,3500,3000,3000,3000,0
+18433,30000,female,2,2,24,0,0,0,2,0,0,28218,28704,30428,28914,29357,29955,2000,3600,0,1200,1200,1300,0
+18434,80000,female,2,2,25,0,0,0,0,0,0,69816,71257,72812,74305,75872,77554,2600,2700,2700,2800,2900,4300,0
+18435,80000,female,1,2,23,-1,-1,-2,-2,-1,-1,1178,2550,182,-2194,2188,6424,2550,1026,1350,4382,6443,5438,0
+18436,20000,female,1,2,23,0,0,0,0,0,0,15781,20124,19423,20140,19991,20079,5000,2000,1500,1000,600,1000,1
+18437,80000,female,3,1,23,-1,-1,-1,-1,-1,-1,333,333,333,333,0,75,333,333,333,0,75,0,0
+18438,30000,female,2,1,27,2,0,0,2,0,0,25243,26261,29038,28289,28543,30544,1730,3500,0,1011,2450,0,0
+18439,120000,female,1,2,26,-1,-1,-1,-1,-1,-1,6500,4899,6500,6825,5635,2833,4899,6500,6825,5635,5497,7921,0
+18440,110000,female,1,2,26,0,0,0,0,-2,-2,104804,107979,93600,0,0,0,4988,1872,0,0,0,0,0
+18441,70000,female,1,2,25,0,0,0,0,0,0,64822,61851,62007,38391,38996,39819,2502,2075,2000,1541,1600,2000,0
+18442,300000,female,1,2,25,1,-1,-1,-1,-1,-1,0,9048,4040,0,1092,1681,9048,4040,0,1092,1681,0,0
+18443,160000,female,2,2,25,-1,-1,0,0,0,0,5536,15041,15877,12311,16270,7922,15046,4055,6000,7000,3000,1324,0
+18444,150000,female,2,2,25,0,0,0,0,0,0,44552,43702,44798,44280,38006,32978,2022,2118,1800,1300,1300,1300,0
+18445,210000,female,2,1,47,-1,-1,-1,-1,-1,-1,2295,561,2607,3586,3676,4095,566,2617,3591,3680,4095,8699,1
+18446,20000,female,2,2,26,0,0,0,0,0,0,16976,17687,18894,19693,19894,3473,1300,1500,1250,451,160,69,0
+18447,240000,female,2,2,26,0,0,0,0,0,0,150886,141315,128940,124226,113133,113966,6537,6349,5834,3870,4000,3825,0
+18448,60000,female,2,2,25,-1,-1,0,0,0,0,995,7348,7242,6682,6223,7007,7353,2007,2011,2005,3003,3005,0
+18449,20000,female,2,2,25,0,0,2,2,2,2,7712,14042,14371,17963,17185,16638,6742,1100,4100,6,2000,0,0
+18450,130000,female,2,2,25,1,2,0,0,0,0,136963,133293,133207,131578,101612,101650,0,6867,5660,3800,3677,3620,0
+18451,330000,female,2,1,25,0,-1,0,0,0,0,118053,197622,25664,9461,6407,15791,198842,25000,9004,6000,15000,6000,0
+18452,50000,female,1,1,25,0,0,0,0,0,-2,48294,48993,50702,49663,0,0,1805,2514,2475,0,0,0,1
+18453,110000,female,1,2,24,0,0,0,0,0,0,67729,64388,63447,65394,66810,68732,3000,3000,3000,2500,3000,4000,0
+18454,50000,female,3,1,24,0,0,0,0,0,0,44742,45737,46814,47978,48733,50241,1737,1814,1978,1733,2241,1700,0
+18455,90000,female,2,2,24,0,0,-2,-2,-2,-2,24179,0,0,0,0,0,0,0,0,0,0,0,0
+18456,130000,female,2,2,26,0,0,0,2,2,2,131336,123443,132517,133747,134230,131986,6000,12600,4900,5105,0,5050,0
+18457,150000,female,3,1,26,0,0,0,0,0,-2,92802,91166,99655,100000,0,0,7500,10000,2000,0,0,0,0
+18458,140000,female,2,2,27,-1,-1,-2,-2,-2,-2,515,0,0,0,0,0,0,0,0,0,0,0,0
+18459,150000,female,2,2,24,0,0,0,0,0,0,143212,137963,139520,99814,100810,103233,5500,5500,4500,3500,4000,4000,0
+18460,50000,female,2,2,26,2,0,0,0,-1,-1,48510,48217,25192,15741,3041,0,1800,3000,1000,3041,0,0,1
+18461,40000,female,1,2,26,0,0,0,0,-1,-1,6223,7944,8961,3090,390,795,2000,1196,1000,1950,795,1170,1
+18462,170000,female,2,2,27,0,0,0,0,0,0,164646,162671,166202,161973,167201,161327,7200,7500,6000,10000,7000,16000,0
+18463,60000,female,2,2,24,-1,2,-1,0,0,0,3485,2488,20956,22462,21476,23164,0,24419,2018,15000,2000,2000,0
+18464,200000,female,2,2,25,-2,-2,-2,-2,-2,-2,0,169,1192,1599,0,0,169,1192,1599,0,0,0,0
+18465,80000,female,1,2,25,1,-1,0,0,0,0,-51,68779,70239,72556,75372,75406,72500,2564,3500,4000,3000,3101,0
+18466,100000,female,1,2,25,0,0,0,0,2,0,13201,14671,16120,18588,13272,13549,2000,2000,2786,0,639,700,0
+18467,170000,female,2,2,25,0,0,0,0,0,0,65531,64149,46188,42793,30466,25583,2019,2006,2002,788,989,1000,0
+18468,140000,female,1,2,26,0,0,0,0,0,0,131863,136170,139270,137548,96340,94201,6500,6799,5100,3300,3400,7461,0
+18469,90000,female,2,2,26,0,0,0,0,0,0,70457,64479,31470,28996,26067,23292,2850,1900,1700,1000,1000,1200,0
+18470,70000,female,5,1,26,0,0,0,0,0,0,71993,71158,70557,37209,28905,28455,2851,3500,1500,1300,1100,1000,0
+18471,120000,female,1,2,26,0,0,0,0,0,0,80975,82069,83808,85414,84569,85771,4000,3061,3019,2987,3174,2996,0
+18472,60000,female,2,1,26,0,0,0,0,0,0,28768,29510,30389,24914,25408,25941,1524,1403,1500,908,941,946,0
+18473,150000,female,2,2,26,0,0,0,0,0,0,107506,108154,43027,4946,3460,4112,5109,1316,1004,104,2012,108008,0
+18474,50000,female,3,1,24,0,0,0,0,0,-2,27172,28078,21165,1515,0,0,1390,1650,1000,0,0,0,0
+18475,80000,female,3,1,26,0,0,0,0,0,0,78627,46314,75145,76846,58422,58131,3000,50000,4021,3300,2100,2100,0
+18476,310000,female,2,2,27,0,0,0,0,0,0,60692,63668,68612,73441,123966,127957,4000,6000,6000,52000,6000,5500,0
+18477,50000,female,1,2,23,0,0,0,0,0,0,22939,23966,24939,23962,24439,25044,1413,1386,1399,876,1000,959,0
+18478,20000,female,2,1,23,0,0,2,0,0,0,12483,15032,14506,15516,15561,15910,3071,0,1555,600,600,700,1
+18479,80000,female,1,2,24,0,0,0,2,0,0,4711,5737,8818,8471,8644,8820,1266,3347,0,173,176,180,1
+18480,180000,female,1,2,25,-1,-1,-2,-2,-2,-2,2654,-632,-632,-632,-632,-632,0,0,0,0,0,0,0
+18481,50000,female,2,1,23,0,0,0,0,0,0,40544,41098,28383,28937,29119,29334,2000,1500,1432,1004,1035,1178,0
+18482,70000,female,2,2,22,0,0,0,0,0,0,66505,67514,69038,69927,50579,49483,2501,3001,2608,1777,1792,1793,1
+18483,20000,female,2,1,25,0,0,3,2,0,0,17294,21821,21197,20400,20000,20000,4821,0,0,0,0,0,0
+18484,60000,female,2,1,24,2,2,0,0,0,0,28600,27073,27396,27499,28060,27472,0,1460,1439,1000,1014,1078,1
+18485,30000,female,2,2,25,2,2,2,0,0,0,25267,26353,25650,26416,27178,28332,1800,0,1500,1200,1750,1300,0
+18486,20000,female,2,2,24,2,0,0,0,0,3,2968,3980,5075,5979,6796,6463,1223,1318,1183,1000,0,0,1
+18487,280000,female,4,2,25,0,0,0,0,0,0,8574,10420,12211,12639,22439,18096,2000,2000,3000,10000,5096,12704,0
+18488,30000,female,2,2,25,-2,-2,-1,0,0,0,0,1232,27287,27874,28430,29093,1232,31484,1444,1000,1100,1491,0
+18489,40000,female,1,2,26,2,2,2,2,2,2,26487,27255,26532,29089,28522,28914,1500,0,3000,200,1000,1200,1
+18490,130000,female,2,2,25,0,0,0,0,0,0,14351,10473,9429,10413,7874,7158,2000,3000,3000,4000,1000,2000,0
+18491,90000,female,2,2,25,0,0,0,0,0,0,44727,42751,43421,45878,46054,47252,2000,1851,3500,1519,2000,2000,0
+18492,260000,female,2,2,25,0,-1,-1,0,0,0,5008,10698,3863,56173,15700,5049,10698,3863,56006,5712,1000,100,0
+18493,100000,female,1,2,26,-1,-1,-1,-1,-1,-1,123,123,123,123,123,123,123,123,123,123,123,396,1
+18494,50000,female,1,2,24,0,0,0,0,0,0,33879,35211,36263,37061,37943,42305,1900,1918,1700,1500,5000,0,1
+18495,190000,female,3,2,24,0,0,0,0,-1,0,54186,55466,57358,10890,287,49983,2000,2700,1100,287,49696,2000,0
+18496,70000,female,2,2,22,0,0,0,2,0,0,32845,31377,31420,30940,24765,25942,3100,6000,1125,1300,3000,2500,0
+18497,50000,female,2,1,26,0,0,0,0,0,0,49855,51099,51192,50895,19535,20093,4100,3000,3500,1000,1000,1100,0
+18498,40000,female,2,2,26,0,0,2,0,0,0,37423,40742,38582,39478,39620,38687,3967,0,1858,1500,5000,1605,0
+18499,200000,female,1,2,26,0,0,0,0,0,0,203025,201474,158869,145723,139960,142193,10010,10000,7000,6000,5500,6000,0
+18500,100000,female,1,2,26,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,150,0
+18501,220000,female,2,2,26,-1,-1,-1,-1,-1,-1,1534,3524,2130,7510,1117,916,3524,2130,7521,1117,916,2719,0
+18502,200000,female,2,1,27,-1,-1,-1,-1,-1,-1,14753,3670,5865,1303,4579,1107,3670,5865,1303,4579,1107,2109,0
+18503,50000,female,3,1,27,2,2,-2,-1,-1,-1,1884,570,180,2672,3101,5465,570,0,2672,3101,5465,0,0
+18504,360000,female,2,2,27,-2,-2,-2,-2,-2,-2,1189,-11,-11,-11,-11,2339,0,0,0,0,2350,766,0
+18505,170000,female,1,2,25,0,0,0,-1,0,0,8046,6130,3653,32511,24814,25293,1085,1000,32517,1023,10000,5000,0
+18506,80000,female,2,2,26,2,2,2,0,0,0,76540,81373,79496,78641,48837,50592,8000,0,3300,2000,3800,0,0
+18507,110000,female,2,2,23,0,0,0,0,0,0,19980,20683,21654,21998,23255,24527,2500,2000,1400,2000,1800,1100,0
+18508,20000,female,2,2,23,0,0,-1,0,0,0,10513,3367,444,20444,18976,19802,1000,444,20000,600,1000,1000,0
+18509,20000,female,2,1,25,2,2,2,2,0,0,11202,12228,12738,11207,6720,5071,1500,1005,0,511,1283,0,1
+18510,60000,female,2,2,24,0,0,0,0,0,0,29832,18628,15069,15761,5879,-2879,1538,1308,1000,118,1329,41378,0
+18511,170000,female,2,2,24,0,0,0,0,0,0,19103,14434,160153,160823,128646,124547,3000,157541,8020,5260,5000,6000,0
+18512,150000,female,2,2,24,0,0,0,0,-1,-1,66731,64787,38948,24707,304,635,3000,3125,2065,307,635,0,0
+18513,210000,female,2,2,24,-2,-2,-2,-1,-1,-1,973,4197,1772,7293,1508,2498,4224,2631,8132,1563,2506,2135,0
+18514,230000,female,2,2,25,0,0,-1,0,-1,-1,10379,7835,8926,13283,20060,3904,2255,8926,5291,20060,3904,13000,0
+18515,160000,female,2,2,25,-1,-1,-1,-1,0,0,1532,0,465,1791,1644,956,0,465,1792,33,0,2394,0
+18516,150000,female,2,2,25,0,0,0,0,0,0,38494,38667,32794,30786,24250,20052,1516,1693,2007,1007,1000,1000,0
+18517,210000,female,2,2,26,-1,-1,-1,-1,-1,-1,4341,402,11305,1368,2684,1397,402,11401,1368,2684,1397,0,0
+18518,300000,female,2,2,28,-1,-1,-1,-2,-2,-1,603,4728,0,0,0,279,4747,0,0,0,279,423,0
+18519,340000,female,1,2,27,-1,-1,-1,-1,0,-1,7453,2928,1564,7726,4536,4961,2942,1586,7742,1300,4985,5956,0
+18520,150000,female,1,2,24,-2,-2,-2,-2,-2,-2,2901,0,0,0,0,0,0,0,0,0,0,0,1
+18521,50000,female,2,2,25,0,0,-1,0,-1,0,8481,2158,3359,2158,2470,662,1000,3359,1000,2470,500,1500,0
+18522,160000,female,1,2,27,-2,-2,-2,-2,-2,-2,717,3265,5105,3326,5482,2698,3269,5109,3328,5494,2864,2367,1
+18523,50000,female,1,2,25,0,0,2,0,0,0,40067,43099,42133,43127,44210,45844,4000,0,2000,1800,2500,5500,1
+18524,70000,female,2,2,25,1,2,0,0,0,0,5412,5177,6291,9085,9270,6821,0,1206,3000,185,200,0,1
+18525,120000,female,2,1,25,0,0,0,0,0,-2,79108,46864,75624,42754,15927,2405,3000,30000,5200,15000,2405,0,0
+18526,200000,female,1,2,25,-2,-2,-2,-2,-2,-2,-3,773,0,1107,586,0,776,0,1107,586,0,0,0
+18527,50000,female,2,2,25,0,0,2,0,0,0,20123,19184,16834,15970,14502,12671,2880,0,1166,452,451,370,0
+18528,310000,female,1,2,26,0,0,0,0,0,0,27638,24020,25223,25555,24311,17992,1393,1596,1447,93,118,56,0
+18529,50000,female,2,2,24,0,0,0,0,0,0,27890,27788,19742,20672,16336,16921,2000,2000,1600,1000,1000,1000,0
+18530,300000,female,4,2,24,-1,-1,-1,-1,-1,-1,2892,4009,4725,2595,2110,20984,4039,4751,2600,2110,20984,4366,0
+18531,160000,female,2,2,25,0,0,0,0,0,0,156753,153392,143297,140984,120742,115637,10000,8000,7000,5000,5000,5000,0
+18532,90000,female,2,2,25,0,0,0,0,0,0,67004,65533,67475,69136,51217,50490,3000,3000,3000,2000,2000,2000,0
+18533,160000,female,2,1,25,0,0,0,0,0,0,116744,94894,97589,78487,78592,81326,4000,4500,3000,3000,4000,5000,0
+18534,500000,female,1,2,25,-1,0,0,0,0,0,119193,163856,170201,162212,145184,118467,70005,10051,6119,7303,15090,10191,0
+18535,390000,female,1,2,26,-2,-2,-2,-2,-2,-2,0,280,0,0,0,48425,280,0,0,0,48425,2000,0
+18536,320000,female,2,2,26,0,0,0,0,0,0,320983,319377,319368,305308,188120,192087,14000,14033,14008,7000,7000,7600,0
+18537,50000,female,1,2,26,-2,-2,-2,-2,-2,-2,3655,-1,-1,-1,-1,349,0,0,0,0,350,351,0
+18538,200000,female,4,2,27,1,-1,-1,-1,-1,0,777,14893,5635,7518,13226,13845,15103,5652,7529,13226,4906,4666,0
+18539,90000,female,2,2,27,0,0,-1,-1,-2,-2,4403,1995,300,0,0,0,1000,300,0,0,0,0,0
+18540,360000,female,2,2,27,0,0,-1,-1,-1,-2,12389,-5,1145,1169,-1,-1,0,1150,1174,0,0,0,0
+18541,180000,female,1,2,27,-1,-1,-1,-1,-1,-1,264,264,264,264,264,264,264,264,264,264,264,264,0
+18542,60000,female,2,2,24,-1,0,-1,0,0,0,9970,7699,9479,10213,10000,11832,1020,9479,1000,200,1832,5889,0
+18543,250000,female,2,2,24,-2,-2,-1,0,0,0,0,0,19449,20623,21283,21943,0,19449,1500,1000,1000,1000,1
+18544,20000,female,1,2,25,0,-1,-1,-2,-2,-2,15312,2846,0,0,0,0,3000,0,0,0,0,0,0
+18545,10000,female,1,2,24,0,0,0,0,0,2,5707,6728,7865,7105,8298,8020,1123,1260,1500,1470,0,1500,0
+18546,110000,female,1,2,24,0,0,2,2,0,0,9334,108868,96998,94480,90860,85529,100082,4200,0,3000,3140,4900,0
+18547,150000,female,2,2,25,-1,-1,-1,-1,0,0,69333,2299,5290,17205,27130,3801,3401,5294,17211,14635,1,32784,0
+18548,160000,female,2,2,25,0,0,0,0,-1,-1,154365,130024,153258,29975,65683,53856,7000,29000,1200,69364,1600,2000,0
+18549,30000,female,2,2,25,1,2,0,0,2,0,13785,13272,14310,16059,15506,15687,0,1560,2300,0,580,1000,0
+18550,30000,female,1,2,24,1,2,2,2,0,0,29492,29697,30737,27808,28204,28792,1000,3513,0,1155,1190,1502,0
+18551,280000,female,1,1,26,-2,-2,-2,-2,-2,-2,4664,1578,646,3689,560,-150,1578,646,3689,560,0,1605,0
+18552,120000,female,1,2,28,1,-1,2,2,-1,-1,0,780,390,0,762,-18,1170,0,0,762,0,0,0
+18553,360000,female,3,1,27,0,0,0,0,0,0,115730,102973,96363,85616,79033,72152,4371,5438,3415,2430,2568,3017,0
+18554,80000,female,2,1,27,0,0,0,0,0,0,42037,43134,44223,43032,43599,41557,2100,2100,2000,2293,1700,2000,0
+18555,310000,female,3,2,27,0,0,0,0,0,0,83756,86353,90960,89993,92229,94473,4000,6000,3000,3000,3000,3000,0
+18556,80000,female,2,1,27,-2,-2,-2,-2,-2,-2,390,390,390,390,390,930,390,390,390,390,930,0,0
+18557,180000,female,1,2,28,0,0,0,0,0,0,171237,172787,174667,176618,141697,143738,8000,7000,7000,5010,5200,6000,0
+18558,130000,female,1,2,26,-1,-1,-1,-1,-1,-1,11149,3150,8552,5459,2850,9611,3160,8591,5463,2855,9611,8901,0
+18559,70000,female,3,1,24,0,0,0,0,0,0,66380,68083,50822,31179,28686,10806,4000,3012,5000,2000,3000,3000,0
+18560,400000,female,2,2,24,0,0,-1,-1,-1,-1,14925,12559,3926,500,1236,11975,5000,3926,500,1236,11975,253,0
+18561,20000,female,1,2,22,1,2,0,0,0,0,19849,15995,16572,15556,18268,17319,0,4000,1238,4500,675,3000,1
+18562,30000,female,1,2,23,0,0,-2,-2,-2,-2,4242,3891,1005,5308,8430,0,3915,1005,5308,8443,0,1120,0
+18563,80000,female,2,2,25,1,-1,-1,-1,-2,-1,0,9000,380,0,0,363,9000,380,0,0,363,0,0
+18564,150000,female,2,2,26,0,0,0,0,0,0,11474,15023,17467,19789,20173,21696,5001,3000,2616,1000,2000,1000,0
+18565,20000,female,3,2,24,-1,-1,-1,-1,-1,-2,5103,3773,10132,4818,0,0,3773,10139,4830,0,0,1960,0
+18566,20000,female,1,2,25,-1,-1,-1,-1,-1,-1,1983,326,3242,1206,326,326,326,3242,1206,326,326,326,0
+18567,150000,female,1,2,26,-1,-1,-1,-1,-1,-1,15079,5018,6701,54574,983,25580,5018,6701,54579,983,25580,26738,0
+18568,60000,female,2,2,27,0,0,0,0,0,0,41546,45025,38840,31965,30297,29814,5845,2000,1812,1037,1218,1085,0
+18569,320000,female,1,2,27,0,0,0,0,0,0,120158,122307,112144,107318,105952,109626,6000,5000,5333,5000,5000,3000,0
+18570,80000,female,2,2,27,-1,-1,-1,-1,-1,-1,725,2959,1838,2899,1376,1320,2968,1838,2899,1376,1320,1107,0
+18571,130000,female,1,2,25,0,0,0,0,-2,-2,123945,127883,133400,0,0,0,6000,9000,0,0,0,0,0
+18572,400000,female,2,1,24,0,0,0,0,0,0,187790,176294,190256,89128,39276,23440,5519,44776,1502,2026,1015,52100,0
+18573,20000,female,1,2,25,0,0,0,0,0,0,15810,15947,6012,5689,4587,2293,1249,1125,1000,92,0,20505,0
+18574,60000,female,1,2,24,-1,-1,-1,-1,-1,-1,6686,1049,14020,4880,2034,978,1049,14020,4880,2233,2968,8067,0
+18575,80000,female,1,2,24,0,0,0,0,0,0,47952,45713,46752,46375,46893,47872,1732,1771,1714,1632,1687,1749,0
+18576,50000,female,1,1,24,0,0,2,0,0,0,14345,16927,16366,17380,17876,18097,2836,0,1289,785,657,720,1
+18577,20000,female,1,2,25,0,0,0,0,0,0,14785,15262,17650,19311,18650,20061,3000,2650,2000,1000,1561,1000,0
+18578,100000,female,2,1,25,0,0,0,0,0,0,99203,97294,99377,101577,99453,101879,3485,3654,3900,3729,4200,3702,0
+18579,80000,female,1,2,25,3,2,2,2,2,2,45031,47087,48833,47750,50950,51984,3100,2800,0,4000,2000,2000,1
+18580,140000,female,1,2,25,-1,0,0,0,0,0,2555,4502,6259,7115,8135,1459,2000,2000,1000,1020,100,2500,1
+18581,110000,female,1,2,25,0,0,0,0,0,0,103135,99731,101945,82873,68587,65648,4800,5000,4000,3000,2500,2600,0
+18582,350000,female,1,2,27,0,0,0,0,0,0,83415,76562,64995,61464,44664,51550,4000,3312,4050,1165,20055,20076,0
+18583,60000,female,1,2,27,1,-2,-2,-2,-1,0,-215,-215,-215,-215,13610,11132,0,0,0,13825,1132,378,0
+18584,50000,female,1,2,24,2,0,0,0,0,0,43878,42490,36540,16077,12134,12389,2068,2065,1246,450,451,475,1
+18585,210000,female,2,2,26,0,0,0,2,0,0,107948,107525,108971,96011,87644,82077,5407,9145,12,3004,3000,4370,0
+18586,50000,female,3,2,25,0,0,0,0,0,0,33831,34763,41674,15066,14066,17043,2000,10003,5001,10032,10001,10005,0
+18587,80000,female,5,1,25,0,0,0,0,0,0,74180,75296,74792,75825,77454,78862,3500,4000,3400,4000,3349,2784,0
+18588,30000,female,2,2,26,2,0,0,2,0,0,22364,23732,30699,29727,28834,16361,1753,8500,9,700,1179,138,1
+18589,150000,female,2,2,26,0,0,0,0,0,0,153070,149027,151632,151855,150713,148958,6000,6000,7000,5480,5400,5300,0
+18590,20000,female,1,2,26,-2,-2,-2,-2,-2,-2,1000,8930,0,0,0,790,8930,0,0,0,790,0,0
+18591,270000,female,1,2,26,1,-2,-1,-1,-2,-2,0,0,6336,0,0,0,0,6336,0,0,0,0,0
+18592,50000,female,2,2,27,2,2,2,2,2,2,41126,42244,43264,43751,44731,45770,2100,2000,1500,2000,1900,1900,1
+18593,380000,female,2,2,27,0,0,0,0,-2,-2,118624,118871,120550,550,100,550,3700,3011,550,100,1000,736,0
+18594,60000,female,1,2,28,0,0,0,0,0,0,23518,25542,27649,29718,30171,30678,2700,2800,2800,1200,1100,1200,0
+18595,50000,female,3,2,26,1,2,2,2,2,2,31336,32320,33408,32577,34329,33643,1800,1900,0,2600,0,1700,1
+18596,120000,female,2,1,26,-1,-1,-1,-1,-2,-1,9267,29600,1980,0,0,10853,29600,1980,0,0,42138,26341,0
+18597,260000,female,1,2,26,-1,-1,2,0,0,2,1608,19948,20330,21369,22728,21983,29447,1000,1700,2000,0,1500,0
+18598,190000,female,2,2,26,1,4,3,2,2,2,51799,50667,52175,51159,54225,54826,0,2500,0,4308,1500,2000,0
+18599,50000,female,1,2,26,0,0,0,0,0,0,16785,17801,18911,20090,20334,20856,1600,1700,1800,875,1000,4700,0
+18600,80000,female,1,2,26,0,0,-2,-1,-1,0,4301,0,0,2883,1856,2856,0,0,2883,1856,1000,2000,0
+18601,110000,female,2,2,26,-1,-1,-1,-1,-1,0,1687,400,300,922,3509,1979,400,300,922,3509,0,5192,1
+18602,50000,female,2,2,26,0,0,0,0,0,0,28795,28506,26868,27059,27503,27045,1500,1800,1400,1000,1000,1000,0
+18603,150000,female,1,2,27,-2,-2,-2,-2,-2,-2,35688,14736,36490,3125,7603,2995,14820,36672,3232,7641,3010,982,0
+18604,50000,female,2,1,27,-1,2,-1,-1,0,-1,780,390,390,780,390,390,0,390,780,0,390,0,1
+18605,80000,female,2,2,25,0,0,0,0,0,0,83931,82122,81028,81331,60614,63153,3500,3820,3220,4010,6700,7,0
+18606,20000,female,1,2,24,0,0,0,0,0,0,22515,24146,25374,19075,18907,18507,2000,2024,2000,1005,1188,2002,0
+18607,200000,female,2,2,24,0,0,0,0,0,0,225931,229787,233553,206398,145825,140249,8271,8182,6576,5073,5095,5172,0
+18608,80000,female,1,2,25,-1,-1,2,-1,-1,-2,746,4824,690,6097,0,0,4830,0,6097,0,0,2169,0
+18609,70000,female,2,2,25,0,0,2,2,2,4,33390,34832,35472,38369,42729,41496,2000,1500,3500,5300,0,0,1
+18610,280000,female,1,2,26,0,0,0,0,0,0,189748,192338,195598,188878,186790,180240,6300,5700,5620,5000,5014,5135,0
+18611,160000,female,3,2,26,0,0,0,0,-2,-2,2454,3488,4443,0,0,0,1083,1038,0,0,0,97502,0
+18612,90000,female,2,2,26,0,0,0,2,0,0,86183,87561,92996,89866,48574,41746,4100,8548,0,1527,1617,1490,0
+18613,200000,female,1,2,27,-1,-1,-1,2,2,2,10603,0,2500,2500,2500,2500,0,2500,0,0,0,0,0
+18614,150000,female,1,2,28,1,-1,-1,-2,-2,-1,0,382,0,0,0,904,382,0,0,0,904,0,0
+18615,80000,female,2,2,27,0,0,0,2,0,0,78933,78244,81584,78795,79402,80385,3400,6900,0,2800,3100,3000,0
+18616,390000,female,1,2,28,0,0,0,0,0,0,249265,253883,250654,253336,256281,257151,8903,9300,9402,10343,7000,6600,0
+18617,190000,female,2,1,28,0,0,0,0,0,0,4639,4718,5610,7300,4694,2250,1100,1610,2310,2000,1000,300,0
+18618,240000,female,1,2,28,-2,-2,-2,-2,-2,-2,8451,1419,37307,1086,1494,7724,1419,37307,1086,1494,7724,1101,0
+18619,200000,female,1,2,29,-1,0,-1,-1,0,0,5612,28352,6282,5906,8787,14988,25004,6282,5911,6000,10000,20000,0
+18620,130000,female,2,1,29,-2,-2,-2,-2,-2,-2,1451,1175,2751,2995,2018,938,1175,2751,2995,2018,938,0,0
+18621,100000,female,2,1,29,0,0,0,0,0,0,118008,116686,113939,111079,107257,105377,5614,5600,5500,4500,5000,6000,0
+18622,190000,female,2,2,29,-1,-1,-1,-1,0,0,4460,5531,20867,12895,9968,9968,5537,20879,12895,0,0,0,0
+18623,90000,female,1,2,29,0,0,0,0,0,0,84515,85777,86778,79424,78955,45916,4200,4000,3100,2000,3000,3000,0
+18624,20000,female,3,1,27,0,0,0,2,0,0,6294,2388,4087,4339,3288,3288,1500,1748,500,0,0,0,1
+18625,90000,female,2,2,26,1,2,2,2,2,2,50200,49092,53295,53826,54548,55525,0,5000,2000,2200,2000,2500,0
+18626,90000,female,2,2,26,1,2,2,2,2,2,86335,88520,90311,91431,92840,91205,4500,4100,3500,3800,0,3500,0
+18627,80000,female,2,2,27,1,2,2,2,2,0,74250,76895,79548,80280,53034,54027,4500,4500,3000,0,2000,4350,0
+18628,40000,female,2,1,28,2,2,3,2,2,2,31131,33815,33002,32173,34629,33940,3500,0,0,3000,0,2000,0
+18629,50000,female,2,1,22,0,0,2,0,0,0,25561,26951,26570,28085,27009,28142,2134,1000,2001,910,1510,500,0
+18630,150000,female,1,2,25,0,0,0,2,0,0,78823,80514,87096,84806,85822,87504,3000,7900,0,3300,3200,3300,0
+18631,200000,female,1,2,27,-2,-2,-2,-2,-2,-2,0,127,133,386,393,286,127,133,386,400,286,500,0
+18632,20000,female,2,1,27,0,0,0,-1,0,0,15939,17171,18005,1822,1316,1316,1500,1200,2000,0,0,0,0
+18633,160000,female,1,2,27,0,0,0,0,0,0,27058,28173,21159,20018,15761,12643,3173,1459,2018,1761,1643,503,0
+18634,80000,female,2,2,28,0,0,0,0,0,0,79688,78165,68579,50312,44277,44488,2800,2398,2000,2000,1700,2005,0
+18635,30000,female,2,2,22,0,0,0,0,0,0,28681,27862,27365,28038,28607,29234,1850,1700,1300,800,860,883,0
+18636,50000,female,1,2,23,-1,-1,-2,-2,-2,-2,2332,0,0,0,0,0,0,0,0,0,0,0,0
+18637,310000,female,2,1,25,0,0,0,0,0,0,191767,185445,188255,187384,184222,183544,6612,8321,7022,6021,6005,6042,0
+18638,50000,female,2,2,26,0,0,0,0,0,0,8056,5997,5602,6478,5453,2261,1500,1500,1011,1000,1000,1000,1
+18639,200000,female,2,2,26,-1,-1,-1,-1,-1,0,41906,17969,29789,11740,27004,4039,18089,30223,42749,27124,22,58869,0
+18640,20000,female,2,2,22,0,0,0,0,0,0,15499,16505,35110,19495,19019,18134,1270,1320,2260,784,1000,2000,1
+18641,30000,female,3,1,22,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+18642,20000,female,1,2,23,-1,-1,-1,-1,-1,-1,1174,1283,0,2616,600,0,1283,0,2616,600,780,1398,1
+18643,50000,female,2,2,22,0,0,0,0,0,0,28544,28681,23306,16282,9451,9408,1450,1400,1300,400,400,400,0
+18644,230000,female,2,2,28,0,0,-1,-1,-1,-2,24867,24437,3900,870,0,0,4300,3900,870,0,0,0,0
+18645,130000,female,1,2,29,-1,-1,-1,-1,-1,-1,430,430,230,630,430,14802,430,230,830,430,14802,430,0
+18646,500000,female,1,2,29,-1,0,0,0,0,0,14217,33651,33134,34571,36003,37416,20000,18000,20000,20000,20007,20007,0
+18647,200000,female,2,1,29,0,0,0,0,0,0,78201,80895,82692,86305,88961,92513,4000,4000,5000,5000,5000,5000,0
+18648,110000,female,1,2,29,-2,-2,-2,-2,-2,-2,7397,-18,-18,-18,-18,-18,2000,0,0,0,0,0,0
+18649,230000,female,1,1,30,1,2,2,2,0,0,6168,5951,8698,8398,10898,7299,0,3000,0,2500,0,11236,0
+18650,80000,female,2,1,30,-1,-1,-1,-2,-1,-1,36968,390,0,0,19688,5800,390,0,0,19688,5800,0,0
+18651,20000,female,1,2,27,-1,-1,-2,-2,-2,-2,4734,0,0,0,0,0,0,0,0,0,0,3187,1
+18652,120000,female,2,2,27,0,0,0,0,0,0,15234,8247,9624,20129,10388,13316,1137,1514,1069,278,3000,0,1
+18653,200000,female,1,2,27,1,-2,-2,-2,-1,0,0,0,0,0,3012,3021,0,0,0,3012,9,363,0
+18654,70000,female,2,1,28,0,0,0,2,0,0,16030,15502,12637,11204,10983,11901,1500,3000,0,2000,2000,0,0
+18655,230000,female,2,2,28,0,0,0,0,0,0,33057,33698,36652,38421,37459,54778,1500,4767,3000,3092,17411,5000,0
+18656,60000,female,3,1,28,1,2,2,0,0,0,60718,60791,46345,44425,17785,17796,2258,0,1573,800,800,800,0
+18657,60000,female,2,2,28,2,2,2,2,2,2,48322,51587,52664,53059,51468,54511,4692,2500,2000,0,4019,0,0
+18658,360000,female,2,1,28,-2,2,0,-1,-1,-1,9278,6198,5154,2453,570,0,6213,1025,2465,572,0,0,1
+18659,100000,female,2,2,25,0,0,0,0,0,0,62665,63694,65169,66501,66818,69335,2300,2500,2500,2500,3500,2602,0
+18660,240000,female,1,2,25,1,-1,-1,-1,-1,-2,0,587,0,2417,0,0,587,0,2417,0,0,7642,0
+18661,130000,female,1,2,25,2,2,-2,-2,-2,-2,1990,0,0,0,0,0,0,0,0,0,0,0,0
+18662,130000,female,2,3,25,-1,2,2,-2,-1,-1,3148,1574,0,0,12677,30582,5,0,0,12677,30582,0,1
+18663,50000,female,1,2,25,0,0,0,0,0,2,37014,36128,36317,37401,37177,37446,1900,2000,2000,2000,1000,1500,0
+18664,150000,female,1,1,26,2,2,2,2,2,0,69716,72156,70507,59123,39386,20561,5211,111,2371,0,702,341,1
+18665,300000,female,2,2,28,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+18666,200000,female,1,2,28,-1,-1,-1,-1,-1,-1,18134,18410,1213,9095,18393,612,18410,1297,9113,18393,612,54856,0
+18667,320000,female,1,2,28,-2,-2,-2,-2,-2,-2,4392,11684,1127,1943,13312,-5,11700,1135,1952,13375,5,0,0
+18668,160000,female,2,2,27,1,-2,-2,-2,-2,-2,0,0,0,980,0,0,0,0,980,0,0,0,0
+18669,210000,female,1,2,26,0,0,0,0,0,0,186544,188366,173694,163481,128216,113292,8102,7798,12246,5268,5000,10000,0
+18670,70000,female,1,2,25,0,0,2,2,2,0,37017,39980,39063,41592,39101,40310,3900,0,3500,0,2000,1813,1
+18671,250000,female,2,2,25,0,0,0,0,0,3,25823,26114,27446,28371,4715,4358,1500,1575,1500,1000,0,0,0
+18672,130000,female,1,2,27,0,0,0,-1,0,0,58811,44572,10348,104698,88251,90189,1500,2753,110094,3002,3200,3100,0
+18673,30000,female,1,2,27,0,0,2,2,2,2,10562,12873,14371,13843,15611,15221,2500,2000,0,2000,0,1000,0
+18674,210000,female,1,2,27,0,0,0,0,0,0,161055,156712,157087,177934,136807,139230,6000,7000,8000,6574,5500,5500,0
+18675,170000,female,2,2,27,2,0,0,0,0,0,173577,171480,171794,166637,169021,164531,6500,7100,6100,6000,5600,7700,1
+18676,100000,female,3,1,28,2,2,0,0,2,2,30884,29770,30485,32434,32592,33102,0,1825,3100,1300,1500,1771,0
+18677,50000,female,2,1,28,1,2,0,0,0,0,41468,40507,41464,35334,26875,23338,0,1970,1827,1044,993,1999,0
+18678,130000,female,1,2,27,0,0,0,-2,-2,-2,49964,50000,0,0,0,0,1000,0,0,0,0,0,0
+18679,30000,female,2,2,26,0,0,0,0,0,0,27110,27460,29710,29452,11124,0,1455,3623,2000,1038,0,0,1
+18680,130000,female,2,2,30,0,0,0,2,0,0,148234,144330,147035,136542,137586,141191,5200,11700,0,10000,12500,0,0
+18681,70000,female,1,2,26,0,0,0,0,0,0,46222,47650,48867,47808,43022,44077,2500,2300,2300,2000,1900,3000,0
+18682,210000,female,1,2,26,0,0,0,0,0,0,23245,8487,17950,18915,19359,21604,3487,10000,2000,1000,3000,1000,0
+18683,170000,female,1,2,25,0,0,0,0,0,0,70326,71919,68356,68724,68889,69712,3100,3626,2500,2450,2693,2602,0
+18684,420000,female,1,2,28,0,0,-1,0,0,0,7880,4623,64513,65592,57438,31029,1010,64513,2420,1473,1062,1022,0
+18685,80000,female,2,1,26,0,0,0,0,0,0,42972,44210,42418,43410,44684,45808,2000,2100,2000,2000,2000,2000,0
+18686,150000,female,2,2,26,-2,-2,-2,-2,-2,-2,37636,27448,29890,390,257,10700,27603,29890,21890,257,10833,212,0
+18687,200000,female,1,2,26,-1,0,0,0,0,0,73508,73303,71674,12701,8855,9133,3100,2548,2050,3006,2000,137,0
+18688,70000,female,2,2,26,2,2,0,0,2,2,42053,41087,42445,45020,44006,46905,0,2007,3582,0,3601,0,1
+18689,90000,female,2,2,26,2,2,2,0,0,0,87606,91430,88705,65632,49431,50864,7063,7,2054,1800,2864,3197,1
+18690,130000,female,2,1,27,2,2,0,0,2,0,60032,54921,55055,54804,52439,52609,0,2000,6844,0,2071,2115,0
+18691,360000,female,2,2,28,-1,-1,-1,0,0,-2,12393,3434,79795,49160,2847,-13,3445,80401,32083,2907,13,20303,0
+18692,260000,female,2,2,28,0,0,0,0,0,0,181121,167875,171913,169495,167944,166881,7013,10051,10026,7039,8057,10213,0
+18693,160000,female,2,2,28,0,0,0,0,-1,0,11832,100542,88118,65032,586,80270,100000,10000,6749,586,80000,30000,0
+18694,20000,female,2,1,28,-1,-1,0,0,0,0,1424,10094,15018,15991,18442,18827,10094,10000,1549,3000,790,1000,0
+18695,140000,female,3,1,28,2,2,2,2,2,2,96008,98017,99961,101123,97375,103044,4500,4400,3700,0,7800,0,1
+18696,200000,female,2,2,29,-1,-1,-1,-1,-2,-2,9283,0,780,2220,0,0,0,780,2220,0,0,8893,0
+18697,200000,female,2,1,29,0,0,0,0,0,-1,46139,59923,44974,30844,15833,15833,30000,1300,2000,1000,16332,15833,0
+18698,120000,female,2,2,28,0,0,0,0,0,0,120154,122674,123155,120267,121471,118656,6010,6108,5831,4700,4486,4871,0
+18699,210000,female,2,2,29,0,0,0,0,0,0,52143,53182,54331,55827,57295,58571,2500,2600,3000,3000,2200,2300,0
+18700,50000,female,2,1,23,0,0,0,0,0,0,37586,38866,19240,20256,20918,22081,2000,1322,1338,1000,1500,1000,1
+18701,80000,female,1,2,23,1,2,2,0,0,0,80457,82885,80495,78027,30052,30373,4350,0,2350,1048,1077,1154,1
+18702,60000,female,2,2,23,-1,0,0,0,0,0,56250,54971,55079,55525,56634,57052,2000,2100,2000,2000,2100,2050,0
+18703,50000,female,2,1,24,0,0,0,0,0,-2,44159,41904,46174,40675,0,0,5000,5000,2000,0,0,0,0
+18704,50000,female,2,2,25,0,0,0,2,2,2,26509,27521,30001,29187,31064,30487,1757,3237,0,2300,0,1100,0
+18705,70000,female,1,2,25,1,2,2,2,2,2,53742,52281,55981,54484,59080,59096,0,4545,0,5500,2090,0,0
+18706,80000,female,2,2,25,1,2,0,0,0,0,50120,49013,50051,51123,52175,53337,0,1828,1900,1900,2000,4300,1
+18707,50000,female,2,1,25,0,0,0,-1,-1,-1,9587,6583,3243,1691,-1889,2720,1200,1000,1700,0,5679,1600,1
+18708,30000,female,1,2,25,-1,2,-1,0,0,0,5285,4053,1405,3844,3427,417,0,1405,3427,0,0,984,1
+18709,300000,female,1,2,26,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+18710,240000,female,2,2,26,-1,-1,-1,-1,-1,-2,2335,2335,0,4670,0,0,2335,0,4670,0,0,0,0
+18711,140000,female,4,2,26,0,0,-2,-2,-1,0,75000,0,0,0,51571,55731,0,0,0,51571,5001,3001,0
+18712,30000,female,1,2,27,0,0,0,0,0,0,25552,26135,27407,29002,26806,25948,1800,2000,2500,1500,1000,2000,0
+18713,70000,female,2,1,29,0,0,0,0,0,-2,11502,11009,13997,6832,0,0,2000,4037,2000,0,0,0,0
+18714,220000,female,2,2,29,0,0,0,0,0,0,217345,100501,74430,64485,24609,23419,4030,4000,4492,1000,1000,0,0
+18715,230000,female,2,2,29,0,0,0,0,0,0,33511,34892,31917,33361,34056,32353,2000,1600,2000,1500,1500,2000,0
+18716,20000,female,2,1,29,0,0,0,0,0,0,13958,15016,16069,16776,17118,19835,1600,1600,1278,620,3000,900,0
+18717,130000,female,2,2,25,1,2,2,2,2,0,11446,12562,12075,15844,15295,16885,1600,0,4300,0,2000,2000,0
+18718,60000,female,2,2,26,2,2,2,2,2,2,60455,61417,60906,45734,40629,41137,3200,2400,12,3200,1619,0,1
+18719,200000,female,2,2,26,0,0,0,0,0,0,22737,12169,14328,16222,9915,11226,3000,6000,3000,2003,3101,530,0
+18720,310000,female,2,2,26,0,0,0,0,0,0,11566,9532,10687,12754,16105,18823,3010,5002,4008,5000,5000,912,0
+18721,240000,female,2,2,26,0,0,0,0,0,0,210437,212486,205728,205275,192059,195620,9016,10000,9000,6600,7100,7500,0
+18722,200000,female,1,2,26,-1,-1,-1,-2,-2,-1,2318,7298,0,0,0,980,7478,0,0,0,980,0,0
+18723,440000,female,2,2,27,0,0,0,0,0,0,197019,182336,182617,166031,148157,142034,6040,12538,5047,10522,6082,10018,0
+18724,180000,female,2,2,27,0,0,0,0,-1,-1,16996,9049,9744,8907,557,0,1249,1144,1907,557,0,0,0
+18725,300000,female,1,2,29,-2,-1,-1,0,0,0,25370,18078,21245,36737,37071,24930,21250,23005,35012,25000,24000,24000,0
+18726,160000,female,2,2,30,0,0,2,-1,0,0,17357,4747,4500,32468,22485,119853,2250,0,32468,2000,104465,4602,0
+18727,160000,female,1,2,30,1,2,2,2,2,0,151270,153276,155301,155152,144602,148199,6000,6085,12534,0,6000,6000,0
+18728,230000,female,2,2,30,-1,2,-1,0,0,-2,1855,187,6254,16549,6392,1828,0,6270,14085,6396,9,6172,0
+18729,160000,female,1,1,30,2,0,0,0,0,2,74286,75151,77346,78921,83303,81852,2700,3400,3458,6300,0,3200,1
+18730,200000,female,1,2,28,-1,-1,2,-1,-1,-1,38783,62793,1286,1117,1117,0,26286,0,1117,1117,0,1128,0
+18731,240000,female,2,2,29,0,0,0,0,0,0,66473,46296,36751,35625,33114,35473,8000,2002,1600,2000,3000,10000,0
+18732,420000,female,1,2,29,0,0,0,-2,-2,-2,52898,16200,0,0,0,0,3000,0,0,0,0,84363,0
+18733,210000,female,1,2,30,-1,-1,-1,-1,-1,0,390,390,390,390,980,590,390,390,390,980,0,1288,0
+18734,220000,female,1,2,28,0,0,0,0,0,0,157215,161006,165222,168145,169162,172041,6502,8100,8200,6000,6200,6200,0
+18735,200000,female,1,1,28,-1,-1,-1,-1,-1,-1,1878,576,4251,1358,300,0,576,4251,1358,300,8909,5670,0
+18736,230000,female,2,2,28,1,-2,-1,2,-1,-1,0,0,233,233,20,0,0,233,0,20,0,0,0
+18737,250000,female,1,2,28,0,0,0,-1,-1,-2,3731,4695,7604,2919,0,0,1000,3000,3000,0,0,0,0
+18738,80000,female,2,1,28,0,0,0,0,0,-2,58784,55209,56626,56387,15980,1134,1970,2300,1352,700,1134,48,0
+18739,80000,female,2,1,26,0,0,0,0,-1,0,26158,27041,27797,5958,11341,5259,1623,5879,1000,11360,486,478,0
+18740,50000,female,3,1,26,-1,2,0,0,0,0,6064,5432,6090,6626,6513,6097,0,1136,1062,339,187,364,1
+18741,20000,female,2,2,26,-1,-1,-1,-1,-1,-2,767,376,987,1119,-222,-222,376,987,1200,0,0,0,1
+18742,60000,female,2,1,27,0,0,0,0,0,0,54900,55948,55188,55960,56564,57464,1971,2000,2003,2003,2070,2140,1
+18743,50000,female,2,2,27,2,2,2,2,0,0,19410,22085,23435,22765,22990,23369,3000,2000,0,900,900,1006,1
+18744,310000,female,1,2,28,0,0,0,0,0,0,8193,43012,36780,31372,17308,35943,43003,2107,1246,346,30000,53000,0
+18745,140000,female,1,2,29,0,0,0,0,0,0,58971,18772,20354,23409,26440,28507,7062,2354,3409,3440,2507,4572,0
+18746,220000,female,1,2,27,0,0,0,0,0,0,67028,32546,29814,31488,8495,10170,5332,5000,10238,5000,5000,2000,0
+18747,130000,female,2,2,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+18748,300000,female,1,2,29,-1,-1,-1,-1,-1,-2,3438,28,342,25022,0,0,28,342,25081,0,0,0,0
+18749,140000,female,3,2,28,-1,-1,-1,-1,0,-1,800,7937,9920,7078,3936,1555,7937,10132,7084,4,1555,0,0
+18750,400000,female,1,2,29,-1,-1,-2,-2,-2,-2,1158,95,0,0,0,0,95,0,0,0,0,0,0
+18751,200000,female,1,1,30,1,2,2,2,-1,-1,38398,20693,27932,12585,45031,19836,0,15015,0,45031,20000,45010,0
+18752,150000,female,1,2,29,-1,-1,-2,-1,-1,-1,3305,0,0,1298,359,6100,0,0,1298,359,6100,0,0
+18753,420000,female,1,2,27,0,0,0,0,0,0,41354,45723,33124,31987,23703,22776,7004,9000,7000,5000,5000,10433,0
+18754,230000,female,2,2,26,-1,-1,0,0,0,-1,18612,90523,86813,35695,5555,15165,90523,10000,5170,5000,15165,8981,0
+18755,210000,female,1,2,27,0,0,0,0,0,0,16186,16914,18288,19301,19383,19940,1300,1650,1620,700,870,880,0
+18756,120000,female,1,2,27,-1,-1,-1,-1,-1,-1,22225,1118,490,1433,0,1096,1118,490,1433,0,1096,0,0
+18757,50000,female,1,2,28,0,0,0,0,0,0,36917,38098,36700,37319,37633,40307,2100,2000,1700,1307,3400,1500,0
+18758,200000,female,2,2,28,0,0,0,0,0,0,59373,55040,54414,53504,53670,45539,6002,3008,2006,2045,1346,1196,0
+18759,180000,female,2,2,28,0,0,0,-1,-1,-2,8689,6750,9893,2690,0,0,3000,3968,2690,0,0,5400,0
+18760,30000,female,2,1,28,0,0,0,0,0,0,25344,26614,27878,29103,29426,29907,2000,2000,2000,1100,1088,1124,0
+18761,110000,female,2,2,29,2,0,0,0,0,0,113394,108142,109325,111264,56311,58271,5314,4398,4196,1857,8271,1948,1
+18762,50000,female,2,1,29,0,0,0,0,0,0,82843,85305,86152,56250,57603,19336,4000,4000,2257,2000,2000,700,0
+18763,120000,female,2,2,29,1,2,0,0,0,0,103944,97248,99283,101935,102754,105924,0,4500,5200,4000,5000,7200,0
+18764,230000,female,1,2,29,0,0,0,0,0,0,33988,32803,32166,79780,58886,42295,2500,3007,51780,2025,1560,747,0
+18765,80000,female,2,1,29,-2,-2,-1,2,2,-2,2801,0,21197,20400,20000,20000,0,21197,0,0,0,0,1
+18766,320000,female,2,2,29,-2,-2,-2,-2,-2,-2,2391,1550,802,302,604,604,1561,906,302,604,302,825,0
+18767,50000,female,3,1,29,0,0,0,0,0,0,46375,47479,49002,39422,15349,15078,1876,2399,1819,472,477,472,0
+18768,110000,female,2,1,29,0,0,0,0,0,0,104163,92199,85868,74198,69783,66132,3400,3706,3009,2400,2300,2500,0
+18769,150000,female,1,2,25,1,-2,-1,2,-1,-1,0,0,330,330,990,0,0,330,0,990,0,0,0
+18770,30000,female,1,2,26,-1,-1,-1,-1,-1,-1,2089,780,1152,780,2678,1225,780,1152,780,2678,1544,1588,0
+18771,80000,female,2,2,26,0,0,0,0,0,0,35220,38215,38598,40560,40968,42321,4000,5390,3000,1453,2000,1677,0
+18772,150000,female,2,2,26,0,0,0,0,0,0,83446,75067,64432,54848,46098,47352,3500,3000,2000,2000,2000,2000,0
+18773,270000,female,1,2,26,0,0,0,0,0,0,134235,62483,62134,61797,57312,57582,6000,2500,3000,7475,3000,2500,0
+18774,160000,female,1,2,26,0,0,0,0,0,0,118204,121695,125724,129157,130567,144266,6000,5030,6000,4000,15000,5000,0
+18775,150000,female,1,2,29,0,0,-1,-1,-1,0,3737,4332,332,0,332,332,1000,332,0,664,0,1992,0
+18776,170000,female,3,2,31,1,-2,-2,-2,-1,-1,0,0,0,0,150,167,0,0,0,150,167,2578,0
+18777,70000,female,2,1,31,0,0,0,0,0,0,72286,71602,72457,71058,29672,28836,2600,3500,3000,1000,1500,478,0
+18778,210000,female,1,2,31,0,0,0,0,0,0,10968,12480,16919,11775,13275,24901,2000,6016,1000,1500,13000,500,0
+18779,50000,female,1,2,30,0,0,0,0,0,0,31205,23646,24418,25938,27067,28193,2000,2000,2000,1500,1500,1500,0
+18780,70000,female,1,2,27,-1,2,-1,-1,-1,-1,6851,2720,4885,11889,0,4280,0,4885,11889,0,4280,20600,0
+18781,180000,female,1,2,28,1,-1,-1,-1,-1,-1,0,652,0,326,2005,474,652,0,326,2005,474,326,0
+18782,260000,female,2,2,27,-1,-1,-1,-1,-1,-1,208,208,208,208,208,208,208,208,208,208,208,208,1
+18783,50000,female,2,1,27,0,0,0,0,0,0,45632,42750,39776,33164,34781,30231,1837,2500,1390,2007,2000,2000,0
+18784,140000,female,1,2,27,0,0,0,0,0,0,142027,143536,141849,131491,94362,85863,7000,5341,4000,3500,3000,13000,0
+18785,100000,female,2,1,30,0,0,0,0,0,2,100963,99679,101023,93514,79361,77373,3700,3700,4148,6000,0,3000,1
+18786,420000,female,2,2,29,0,0,0,0,-1,0,82235,67757,53524,-8318,96795,81523,3000,3000,182,123000,2740,2200,0
+18787,300000,female,2,2,30,1,-1,0,0,0,0,1943,105509,97979,94349,88213,78746,107000,5006,4500,3000,3000,3000,0
+18788,30000,female,2,2,25,0,0,0,0,0,0,28494,28139,27480,26960,27215,27977,1750,1804,1800,1000,1200,1500,1
+18789,150000,female,4,1,26,1,-2,-2,-2,-1,-1,0,0,0,0,741,0,0,0,0,741,0,1669,0
+18790,180000,female,2,1,26,0,0,0,0,-1,-1,182026,111563,78169,0,2354,9446,4500,10056,200,2354,9446,0,0
+18791,330000,female,1,2,26,2,0,0,0,0,0,179887,182366,176396,171553,162251,145931,5289,5496,4721,4132,3916,3550,1
+18792,360000,female,2,2,26,-1,-1,-1,-1,-2,-2,1968,459,2500,0,0,0,463,2500,0,0,0,0,0
+18793,210000,female,2,2,27,-2,-1,0,0,0,0,542,22366,23816,24303,16742,3187,22366,1816,1303,0,0,0,1
+18794,90000,female,1,2,27,0,0,0,0,0,0,83840,81111,83081,60210,61221,62636,3200,3500,3000,2600,2600,3000,0
+18795,250000,female,2,1,28,2,0,0,0,2,0,28245,29468,31488,34060,33213,34670,2000,2500,3100,0,2000,8000,1
+18796,80000,female,3,2,24,1,2,2,3,2,2,12098,11607,14814,14163,13770,15323,0,3412,0,0,1810,23,0
+18797,290000,female,1,2,27,0,0,0,0,0,0,109746,110359,108371,102628,100000,92238,4000,5000,6039,4000,4000,4000,0
+18798,280000,female,1,2,29,0,0,0,0,0,0,149312,152323,155568,158775,162035,165522,5500,5700,5800,5900,6100,6100,0
+18799,340000,female,1,1,29,-1,0,0,0,0,0,11806,13535,18784,26069,20007,15857,10000,6000,23000,400,5857,6500,0
+18800,120000,female,1,2,29,0,0,0,0,0,0,111625,110488,107488,97021,86283,87345,4012,4000,5000,3000,3300,3010,0
+18801,110000,female,3,2,31,0,0,-1,-1,-1,-1,4061,2705,2487,2500,2500,0,1205,2487,2700,2500,0,0,0
+18802,30000,female,2,2,22,0,0,0,0,0,0,20439,21664,18969,23317,17689,20013,1595,2000,5000,0,5400,300,0
+18803,70000,female,2,2,24,0,0,0,0,0,0,34201,49800,26194,27454,28159,25775,1800,2000,2000,1500,1500,0,0
+18804,20000,female,3,1,24,-1,-1,-2,-1,-1,-2,4983,-74,-74,749,0,0,0,0,823,0,0,519,0
+18805,80000,female,2,2,25,0,0,0,0,0,0,45109,44692,44308,43757,42830,44038,2100,2100,1954,1500,3324,0,0
+18806,120000,female,2,1,25,2,0,0,2,0,0,17488,19002,20805,18271,18128,16405,3000,3000,0,961,2000,2056,1
+18807,500000,female,1,2,26,0,0,0,0,0,0,32637,35863,37860,42572,47200,59843,15943,27878,22572,17200,19843,96632,0
+18808,320000,female,2,2,27,0,0,2,0,0,0,180137,192621,178390,180346,178832,182860,17100,0,8000,7000,7000,6000,0
+18809,150000,female,1,2,27,-1,-1,-1,-1,-2,-1,346,21191,1339,0,0,8777,21379,1339,0,0,8777,9495,0
+18810,190000,female,2,2,27,2,2,2,2,0,0,3902,4686,5459,6214,7104,8973,1000,1000,1000,1000,2000,2000,1
+18811,130000,female,2,1,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+18812,70000,female,2,1,34,0,0,0,0,0,0,50488,47018,46871,41821,41344,41376,2200,2015,2000,1500,1700,2000,0
+18813,350000,female,1,2,30,-2,-2,-2,-2,-2,-2,856,187,375,187,242,184,187,376,187,243,184,828,0
+18814,210000,female,1,2,27,0,0,0,0,0,0,18430,19809,21482,23118,23437,24900,2000,2000,2000,1000,2000,2000,1
+18815,120000,female,2,1,27,0,0,0,0,0,2,85492,83567,78276,78971,80907,79219,3500,4326,3000,9000,0,3000,1
+18816,130000,female,2,1,28,0,0,0,0,0,0,123943,126857,127706,121939,81506,83234,6500,6600,6000,3100,3200,3300,0
+18817,170000,female,2,2,27,0,0,0,0,0,0,43839,45502,46967,48872,51049,81018,2400,2200,3000,3000,31018,3000,0
+18818,100000,female,3,1,30,1,-2,-2,-2,-2,-2,-602,-602,-602,-602,-602,-602,0,0,0,0,0,0,0
+18819,200000,female,1,2,28,0,0,0,0,0,0,140407,142965,188990,188742,187267,190249,8031,55015,5327,5505,5525,6039,0
+18820,270000,female,1,2,28,-1,-1,-1,-1,0,-1,15167,841,9842,7931,3412,1035,845,9896,7977,17,1040,1848,0
+18821,30000,female,2,1,30,1,5,4,3,2,2,28534,27805,27090,26361,26831,27552,0,0,0,1200,1300,985,1
+18822,160000,female,2,2,24,0,0,0,0,0,0,37030,17303,14742,16617,17670,0,4060,6037,8528,7053,0,0,0
+18823,80000,female,3,1,26,0,0,0,2,0,0,69589,72802,77106,74420,76220,77877,5000,6100,0,3000,3000,3000,0
+18824,310000,female,1,2,26,0,0,0,0,0,0,27283,28286,29427,29548,29839,30532,1459,1600,1607,898,1000,918,0
+18825,20000,female,1,2,23,0,0,0,0,0,0,14302,15748,16986,18656,19101,20345,2000,1500,2000,1000,1500,3000,0
+18826,80000,female,1,2,27,0,0,0,0,0,0,52652,53774,54909,56035,57598,59164,2000,2000,2039,2500,2500,2500,1
+18827,180000,female,1,2,28,-1,-1,2,0,0,0,390,1345,955,1565,2175,2159,1345,0,1000,1000,400,1000,0
+18828,80000,female,1,2,29,0,0,0,0,0,0,64440,64685,64956,65183,65455,65683,3000,3000,3000,3000,2500,12500,0
+18829,140000,female,2,2,28,0,0,0,0,0,0,129925,131624,133763,133195,101298,101601,6200,6600,4225,3800,3816,4000,0
+18830,150000,female,5,2,26,0,0,0,0,0,-2,117209,102018,79511,39800,-1500,0,3700,25007,2300,0,1500,0,0
+18831,100000,female,2,2,27,0,0,2,0,0,0,21043,24372,23699,24794,26067,28630,4000,0,1794,2000,3000,1200,0
+18832,50000,female,1,2,27,1,-1,-1,-1,0,0,0,45000,1000,4874,5374,5874,45000,1000,4874,500,500,0,1
+18833,200000,female,1,2,28,0,0,0,0,0,0,106519,107255,111522,114171,115777,118749,4000,6000,6000,5000,5000,11500,0
+18834,130000,female,2,1,28,2,0,0,0,0,-2,98606,100143,50456,50000,0,0,4500,2500,1000,0,0,0,0
+18835,150000,female,1,1,29,2,2,-2,-2,-2,-2,6241,0,0,0,0,0,0,0,0,0,0,0,0
+18836,170000,female,2,1,30,0,0,0,0,0,0,165327,165627,165871,164606,121547,121118,7400,6328,5280,4300,4500,4300,0
+18837,180000,female,2,2,28,8,7,6,5,4,3,197231,194309,189981,185559,181137,184009,0,0,0,0,6000,0,1
+18838,320000,female,2,2,28,1,2,2,0,0,0,23595,23906,22035,22015,21163,25806,2000,0,2007,1000,5000,2000,1
+18839,50000,female,1,2,28,-1,2,2,2,0,0,4917,4693,6945,6651,4060,4060,0,2500,0,1000,0,0,0
+18840,50000,female,2,2,27,0,0,0,0,0,0,20762,22382,21343,14850,12315,10391,2000,1622,2013,500,500,500,0
+18841,80000,female,3,1,27,0,0,-1,0,0,0,18094,6942,26855,23287,20885,17595,1034,27318,1407,429,417,200,0
+18842,100000,female,1,2,27,1,-1,-1,-1,-1,-1,-6,995,896,697,-302,999,2000,900,800,0,2300,1838,0
+18843,80000,female,2,2,23,0,0,0,0,0,0,50456,30342,27591,28166,28330,28524,1432,1476,1441,995,1021,1138,0
+18844,120000,female,1,2,26,1,2,2,0,0,0,3730,5006,4782,6041,6784,6826,1500,0,1500,1000,300,406,0
+18845,230000,female,1,2,31,-2,-2,-2,-2,-2,-2,49279,4646,5419,4379,2455,34517,4674,5449,4407,2455,34517,8495,0
+18846,60000,female,2,1,31,-1,-1,-1,-1,-1,-1,44912,11409,-61506,3859,415,415,144047,365,73000,415,415,50136,1
+18847,220000,female,1,2,30,0,0,0,0,0,0,45346,42480,37160,29161,20209,22679,1947,2000,3776,606,10764,3217,0
+18848,80000,female,2,2,30,0,0,0,0,0,0,70540,66346,58421,47943,40092,44463,2485,2880,2269,1418,5000,2000,0
+18849,300000,female,1,2,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+18850,400000,female,1,2,30,-2,-2,-1,-1,0,0,2912,2668,3222,21755,15258,16002,2668,3222,21755,500,1000,475,0
+18851,50000,female,2,2,31,0,0,0,0,0,0,51036,50718,48853,48739,9372,9736,1762,2314,1200,1000,1000,500,0
+18852,200000,female,1,2,30,-1,-1,-1,-1,-1,-1,4800,2040,5961,1829,1652,584,2040,5961,1829,1652,584,5430,0
+18853,120000,female,1,2,32,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+18854,360000,female,1,1,31,0,0,0,0,0,0,15121,6656,6722,8605,28405,-105,5006,2000,4000,20000,5000,4000,0
+18855,220000,female,2,2,30,0,0,0,0,0,0,32357,30971,31277,23258,4546,6470,2000,1377,8011,165,2000,1000,0
+18856,280000,female,2,1,31,0,0,0,0,0,0,139998,140030,125214,126426,126333,109953,6084,5024,5020,5093,3219,4024,0
+18857,500000,female,2,2,31,-2,-2,-2,-2,-2,-2,-9,-9,-9,-9,1796,-90,0,0,0,1805,0,18268,0
+18858,240000,female,3,2,31,0,0,0,0,0,-2,167686,108246,111397,61650,0,0,3977,5000,3000,0,0,111200,0
+18859,310000,female,2,1,30,0,0,0,0,0,0,296942,302778,299162,305251,262368,254340,12401,13000,13208,10000,9506,10002,0
+18860,200000,female,1,2,28,1,2,0,0,0,0,205683,196807,191752,178560,170092,161850,0,9025,8030,5639,6054,5100,1
+18861,260000,female,2,2,28,-1,0,0,0,0,0,75841,69490,67107,28081,12767,4200,3008,2005,3036,5000,2200,1000,0
+18862,200000,female,2,2,28,1,2,2,2,2,2,171468,167214,180484,176111,184620,189518,0,16000,0,13000,8000,0,1
+18863,180000,female,1,2,27,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+18864,270000,female,2,1,27,0,0,0,2,0,0,24769,22546,21345,14852,18669,25175,4000,5000,0,10000,7000,2000,0
+18865,30000,female,2,2,28,-1,-1,-2,-2,-2,-2,6731,0,0,0,0,0,0,0,0,0,0,0,0
+18866,180000,female,2,2,28,-1,-1,-1,-1,-1,-1,300,340,-120,420,460,460,500,0,1000,500,460,610,0
+18867,340000,female,2,1,29,0,0,0,-1,0,-1,36533,33689,8108,19291,35882,18924,3000,3000,21000,20000,18924,22534,0
+18868,140000,female,5,2,28,0,0,-1,0,0,0,108018,6500,6327,138485,140492,141006,1000,6327,135000,4700,5000,5000,1
+18869,180000,female,1,2,28,1,2,2,2,0,0,5930,5689,8414,8062,5052,2806,0,3000,0,200,0,0,1
+18870,150000,female,2,2,27,0,0,0,2,0,0,89302,90745,96314,87862,79936,76971,4200,8000,14,3000,4500,3000,0
+18871,110000,female,1,2,27,0,0,0,0,0,0,112938,113331,108567,110772,111946,111853,6000,5500,5500,4500,4400,4400,0
+18872,50000,female,2,1,28,-1,-1,-1,2,-1,-1,1019,1672,836,836,836,1517,1672,836,0,836,1517,1394,0
+18873,140000,female,1,2,28,-1,-1,-1,-1,-1,-1,7588,15557,18886,9476,5040,6070,17015,19030,10000,10000,6100,22000,0
+18874,360000,female,1,2,28,-1,-1,-1,-1,0,0,9626,11684,18144,57687,49519,53478,15023,18500,57697,11000,15000,5000,0
+18875,280000,female,2,2,29,-2,-2,-2,-2,-2,-2,99,0,0,0,0,0,0,0,0,0,0,5017,0
+18876,310000,female,1,2,28,0,0,0,-1,-1,-1,37085,23506,12191,13775,12377,34458,3817,1000,13775,12377,34458,1269,0
+18877,290000,female,2,1,28,0,0,0,-1,-1,-2,24257,8723,6282,2440,0,0,2026,3814,2452,0,0,0,0
+18878,210000,female,1,2,28,-1,-1,-1,-1,-1,-1,5850,4388,3638,7489,2684,9448,4388,3638,7489,2684,9448,5841,0
+18879,210000,female,1,1,29,-1,-1,-1,-1,-1,-1,742,742,742,742,742,316,742,742,742,742,316,746,0
+18880,110000,female,2,2,29,3,2,2,4,4,3,600,600,600,600,600,300,0,0,0,0,0,0,1
+18881,50000,female,1,2,28,0,0,0,0,0,0,48211,41670,42710,43399,44261,45188,1971,2011,1700,1585,1641,4000,0
+18882,280000,female,1,2,28,-1,-1,-1,-1,-1,0,269,4160,3590,274,5274,8222,4166,3607,275,5275,3223,3335,0
+18883,50000,female,2,2,28,1,3,3,2,2,2,45472,47923,46898,45849,48258,48341,3500,0,0,3500,1000,3500,1
+18884,120000,female,2,1,28,1,2,0,0,0,0,60188,58467,59760,60990,61960,65233,0,3000,3000,3000,5000,0,1
+18885,80000,female,2,1,28,1,-2,-1,-1,-1,0,0,146,1000,2525,1498,499,146,1006,2525,1504,1,649,0
+18886,50000,female,1,2,29,0,-1,0,-1,-1,0,17250,8560,4725,8933,11784,9927,8560,1600,8933,11784,199,8287,0
+18887,60000,female,2,2,28,2,0,0,0,0,0,4114,5875,7612,8826,10113,11289,2000,2000,1500,1600,1500,1500,1
+18888,190000,female,1,2,28,2,2,2,2,2,2,155335,159438,163684,166163,168592,171923,8000,8150,6500,6500,6000,0,1
+18889,150000,female,1,2,28,2,0,0,0,0,0,65809,55997,46392,36172,25767,16791,1498,1614,1227,655,2000,5000,1
+18890,170000,female,1,2,28,0,0,-2,-2,-2,-1,2300,0,0,0,0,150,0,0,0,0,150,150,0
+18891,150000,female,2,2,28,0,0,0,0,0,0,62122,46576,43583,45569,46533,47653,2000,2500,3000,2000,2000,3000,0
+18892,390000,female,1,2,28,0,0,0,-2,-2,-2,202248,205150,0,0,0,0,10000,0,0,0,0,0,0
+18893,70000,female,2,2,29,0,0,0,0,0,0,20244,65072,61652,62788,57325,53415,50005,2312,2237,2038,2000,2127,0
+18894,120000,female,2,2,29,0,0,0,0,0,0,61470,63335,66278,68928,67963,67900,3000,3500,3500,1902,2091,3000,0
+18895,30000,female,2,1,29,2,2,2,2,2,2,26799,26002,27293,26551,30223,30592,5000,2000,0,4400,1600,0,0
+18896,200000,female,2,1,26,0,0,0,0,0,0,98822,95634,94933,96554,65905,1528,4300,3500,5000,5000,1000,0,0
+18897,300000,female,2,2,28,2,0,0,0,0,0,272399,258413,256033,245772,243818,245235,11232,11068,9035,9018,9018,9030,1
+18898,90000,female,1,2,29,2,2,2,0,0,0,7052,9370,9078,10267,10350,10564,2605,0,1500,550,529,531,1
+18899,200000,female,1,1,30,-2,-2,-2,-2,-2,-2,4833,6370,2342,810,9743,1000,6370,2342,810,10253,1000,7079,0
+18900,210000,female,1,2,31,-1,-1,-1,-1,-1,-1,326,326,326,326,326,326,326,326,326,326,326,326,0
+18901,230000,female,2,2,31,0,0,-2,-1,0,0,4908,0,0,51750,51295,53257,0,0,52066,2000,3000,3000,0
+18902,200000,female,1,2,31,1,-2,-2,-1,-1,-1,4035,4195,0,2907,2400,945,4210,0,2907,2400,945,0,0
+18903,420000,female,2,1,32,0,0,0,0,0,0,89863,16500,17493,17215,17248,17763,1782,1275,1281,617,793,1000,0
+18904,60000,female,3,1,28,1,2,2,0,0,0,32578,34742,33907,36032,38114,40332,3000,0,3000,3000,3000,5000,0
+18905,50000,female,2,1,34,0,0,0,2,0,0,42050,51328,51053,43611,19785,20104,10000,4100,0,900,2000,1000,0
+18906,60000,female,2,1,28,1,2,2,2,2,2,61474,59121,63389,60919,57800,58698,0,5229,18,3779,1764,0,0
+18907,210000,female,1,2,28,-1,-1,0,0,0,0,2568,52720,107861,112533,118699,41329,52720,57861,12533,8699,1329,13580,0
+18908,50000,female,2,1,28,0,0,0,2,2,2,43648,45919,50784,43238,30248,27447,3000,6000,0,3500,0,1100,0
+18909,390000,female,3,1,28,0,0,0,0,0,0,129002,130535,129888,133690,137720,140536,5000,5500,6000,10000,5000,5000,1
+18910,150000,female,1,2,28,1,-1,-1,-1,-1,0,-89,13894,24782,1927,8200,3867,13983,24831,2358,8210,19,0,0
+18911,200000,female,2,2,30,0,0,0,0,0,0,38616,40612,32801,14664,17092,18820,3040,1306,3400,3000,2000,0,0
+18912,150000,female,1,1,31,-1,-1,-2,-2,-2,-2,12420,0,0,0,0,0,0,0,0,0,0,0,0
+18913,470000,female,2,2,30,0,0,0,0,0,0,216031,203735,181531,52119,48386,35425,7513,5552,1781,3021,3008,3015,0
+18914,200000,female,1,1,30,0,0,0,2,0,0,18660,27871,55277,38259,8266,13200,27010,30300,179,5415,10000,10000,0
+18915,160000,female,1,2,31,-1,-1,-2,-1,0,0,214,-175,-175,3392,3567,0,0,0,3567,175,0,0,0
+18916,220000,female,2,2,30,1,2,0,0,0,0,5627,5391,6442,7458,8177,111816,0,1300,1281,1000,103860,4346,1
+18917,290000,female,2,1,32,1,2,0,0,0,0,146853,139756,136012,136466,136929,132179,1503,5400,5200,5000,4667,5000,0
+18918,290000,female,2,1,32,0,0,0,0,0,0,76383,78200,79726,80890,81615,75661,3400,3700,3600,3000,3000,3000,0
+18919,30000,female,2,2,23,1,2,0,0,0,0,33181,32359,33849,34522,33501,32129,0,2000,1389,1068,3000,2508,1
+18920,40000,female,3,1,23,2,3,2,2,2,0,8244,7966,9331,9729,9424,9621,0,1642,700,0,349,872,1
+18921,70000,female,1,2,26,0,0,0,0,0,0,64471,65577,53264,51464,96184,49104,2281,2888,1800,2000,1900,1760,0
+18922,100000,female,2,2,23,0,0,-1,-1,-1,-1,82323,45756,9187,5408,12920,9656,1000,9187,5408,12920,9656,4737,0
+18923,20000,female,1,2,23,0,0,0,0,0,0,16178,12662,13367,14046,14425,14024,1300,1300,1300,600,600,600,0
+18924,50000,female,2,2,23,0,0,0,0,0,0,51002,50974,50021,49353,30439,29890,1983,2456,3288,1230,1085,1252,1
+18925,130000,female,5,2,39,-1,-1,-1,-1,-1,-1,264,264,264,264,0,678,264,264,264,0,942,0,0
+18926,140000,female,2,1,28,2,2,2,2,2,2,115019,115647,121304,122331,125296,127788,4000,9000,4500,5000,4639,0,1
+18927,230000,female,1,1,30,0,0,0,0,-1,0,37719,30341,25981,24092,65840,56538,3025,5000,5000,65840,2000,2000,0
+18928,300000,female,2,2,30,-1,-1,-1,-1,-1,2,8805,2186,0,290,707,161,2186,0,290,1209,0,7705,0
+18929,200000,female,1,2,29,-2,-2,-2,-2,-2,-1,-792,-792,-792,-792,-792,69708,0,792,0,0,70500,1688,1
+18930,100000,female,1,2,29,1,2,2,2,2,2,63542,66567,67564,67443,65106,70258,5000,3200,2500,0,6918,3520,0
+18931,100000,female,2,2,30,0,0,0,0,0,0,92683,84278,86977,89575,91382,93320,3324,3428,3399,2546,2671,2939,0
+18932,80000,female,2,2,29,-1,-1,-1,2,0,-1,1443,1443,4545,2886,1443,3743,1443,4545,0,0,3743,3000,1
+18933,170000,female,2,2,29,0,0,0,0,0,0,51401,47742,45529,42805,38017,39239,2100,2105,2447,1200,3000,2000,0
+18934,420000,female,1,2,29,-2,-2,-1,0,0,0,392,396,47581,48070,47523,45834,400,47581,1715,1700,1850,2000,0
+18935,70000,female,1,2,29,0,0,0,0,2,0,17154,18550,20245,22904,22238,23870,2000,2000,3000,0,2000,2200,0
+18936,480000,female,2,2,30,0,0,-2,-2,-2,-1,470400,0,0,0,0,330982,0,0,0,0,330982,30000,1
+18937,250000,female,5,1,27,0,0,0,0,0,0,127786,60663,49181,34072,33419,33925,3729,1600,2000,1000,1100,900,0
+18938,180000,female,1,2,28,0,0,0,0,0,0,230740,30873,32033,51373,52553,53505,1500,1660,20000,2030,1951,3000,0
+18939,240000,female,1,2,28,-1,-1,-1,-1,-1,0,8590,6398,16271,27825,14489,37137,6398,16312,27829,14503,33633,10982,0
+18940,210000,female,1,2,28,0,-1,0,0,-1,0,9918,6942,24680,41291,10623,10765,6942,24000,22000,20000,5000,3000,0
+18941,100000,female,1,2,28,3,2,0,0,2,0,49961,48856,49899,53407,51951,53195,0,1831,4339,0,2083,1939,0
+18942,50000,female,1,2,28,0,0,0,0,0,0,48940,50149,45546,46587,47519,51346,2059,2100,2100,2000,4600,0,0
+18943,300000,female,1,2,28,0,0,0,0,0,0,28989,29909,40618,52288,70000,100000,1291,11000,12288,20000,30000,590,0
+18944,70000,female,1,2,28,0,0,0,0,0,0,21777,20335,21699,22460,20345,42123,2000,2000,1500,3000,721,1200,0
+18945,490000,female,1,2,29,0,0,0,0,-1,-1,20984,10863,5342,7395,367,13804,2000,2000,3500,367,16024,3500,0
+18946,170000,female,1,2,29,0,0,0,0,0,0,37350,38724,40096,41130,42144,43114,2000,2000,2000,2000,1800,1800,0
+18947,100000,female,1,2,29,0,0,0,0,0,0,51650,53294,53779,54166,55265,56425,2500,1941,2000,2000,2049,2222,0
+18948,200000,female,2,2,32,-1,-1,2,-1,0,-1,2261,298,298,13764,5290,924,298,0,13764,0,924,6635,0
+18949,80000,female,2,2,32,-2,-2,-2,-2,-2,-2,3459,3789,3459,528,6918,0,3789,3459,528,6918,0,0,0
+18950,220000,female,2,2,32,0,0,0,0,0,0,150393,48060,30490,44071,55405,63422,2349,3008,20000,20004,20000,2000,0
+18951,300000,female,3,2,33,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+18952,120000,female,2,1,33,0,0,0,0,0,0,90575,88443,88681,87364,87742,87943,3204,3214,4001,3254,3325,3500,0
+18953,240000,female,2,2,30,0,0,0,0,0,0,226315,231582,226909,135626,138520,141280,9100,9859,4147,3691,3700,3729,0
+18954,200000,female,1,2,30,0,0,0,0,0,0,96152,102512,116813,125616,115314,114153,8000,16020,13000,7012,5000,8000,0
+18955,40000,female,2,1,30,0,0,0,0,0,0,39940,40581,40543,39943,38895,37726,2000,2000,2000,1400,1300,2000,0
+18956,200000,female,1,2,30,0,0,2,2,0,0,195128,203187,209286,188243,188668,190192,13600,12200,0,7000,7000,7300,0
+18957,100000,female,1,2,30,3,3,2,2,2,2,95890,95434,97410,98611,100787,102261,2000,4400,3700,4700,3300,3700,0
+18958,50000,female,2,1,31,0,0,0,0,0,0,48509,50724,50453,19703,19345,20106,3310,2039,1237,634,5000,844,0
+18959,40000,female,2,1,32,0,0,0,0,0,0,40368,38623,67203,39764,39583,39839,1603,2000,2014,2503,2103,2221,0
+18960,70000,female,2,1,32,2,2,3,2,0,0,68321,73190,71489,68981,66577,71013,6600,0,0,2500,5500,0,0
+18961,210000,female,1,2,31,-2,-2,-2,-2,-2,-2,191,376,569,378,378,378,376,569,378,378,378,378,0
+18962,30000,female,2,2,28,0,0,0,0,0,0,25150,26253,27064,27884,29190,25789,3000,3000,2000,2000,1069,1074,0
+18963,100000,female,1,2,30,0,0,0,0,0,0,91844,90375,81572,71451,68530,66844,3200,3007,3200,3000,3500,2600,0
+18964,20000,female,2,1,30,0,0,0,0,0,0,16754,17763,18854,19972,18090,19842,1291,2382,1500,605,2000,2000,0
+18965,400000,female,2,1,36,0,-1,2,-1,0,0,20818,1079,799,1883,587,0,1878,0,1883,0,0,0,0
+18966,330000,female,2,1,28,0,0,0,0,0,2,221793,225079,229947,233122,246414,253338,10000,10000,8507,17215,11000,0,0
+18967,240000,female,2,2,30,-1,-1,0,-1,-1,-1,4684,18412,16580,416,416,416,18432,1416,16580,416,416,416,1
+18968,70000,female,1,2,29,0,0,2,2,2,2,71237,76632,74853,78789,77084,80572,6577,0,5816,0,5364,0,1
+18969,240000,female,1,2,29,-1,-1,-1,-1,-1,-1,358,176,0,540,100,2600,176,0,540,100,2600,704,0
+18970,200000,female,1,1,27,1,-2,-1,2,0,0,-896,2500,653,653,653,0,7052,653,0,0,0,1300,0
+18971,100000,female,1,2,27,-2,-2,-2,-2,-2,-2,904,2635,636,2538,1735,2054,3710,636,4001,1735,2054,2581,0
+18972,180000,female,1,2,29,0,0,0,0,0,0,44109,20896,18193,18652,14545,18545,8000,5000,3000,2000,2000,6000,0
+18973,360000,female,2,2,30,0,0,-1,-1,-1,-1,82195,99961,7968,1816,5549,1234,20500,8007,1825,5563,1240,0,0
+18974,130000,female,2,2,29,0,0,0,0,0,0,113203,114053,117602,119119,120030,122510,4200,5800,5800,4300,4500,4500,0
+18975,120000,female,2,2,30,-2,-2,-2,-2,-2,-2,2680,14770,7817,416,270,0,14770,7832,416,270,0,0,0
+18976,230000,female,1,2,30,-2,-2,-2,-2,-2,-2,0,0,846,846,0,846,0,846,846,0,846,500,0
+18977,340000,female,5,2,30,0,0,0,0,0,-1,47001,47664,38192,39234,20960,360,2000,2000,2000,3000,360,360,0
+18978,320000,female,1,2,29,0,0,0,0,0,0,198441,202806,207050,201114,190921,191781,10000,10000,10000,10000,7000,10000,0
+18979,330000,female,3,2,29,0,0,0,0,0,0,311577,319838,303679,271773,198604,149923,13110,10691,10373,7901,5328,5061,0
+18980,80000,female,3,2,30,2,0,0,-1,-1,-2,4794,4989,2065,1000,0,0,1074,1000,1000,0,0,0,1
+18981,150000,female,1,1,30,-1,-1,-1,-1,-1,0,4083,3534,6484,12287,21888,19960,3537,6484,12306,21888,0,134,0
+18982,160000,female,3,1,31,-2,-2,-2,-2,-2,-2,207,565,1990,0,0,0,565,2009,0,0,0,0,1
+18983,50000,female,3,1,37,0,0,0,0,0,0,39804,41106,41843,42839,43690,44232,1964,1701,1697,1548,1620,1774,0
+18984,300000,female,4,1,48,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+18985,190000,female,2,1,36,0,0,0,0,0,0,185788,185959,179458,162482,158137,157956,7483,5902,7061,4902,6057,5381,0
+18986,50000,female,2,2,27,0,0,0,0,0,0,25870,21511,20952,21873,22319,24371,1325,1392,1313,759,2371,3294,0
+18987,90000,female,1,2,28,-1,-1,-1,0,0,0,866,148,377,4229,6109,8832,148,377,4000,2109,2832,316,0
+18988,210000,female,1,2,28,-1,0,0,0,0,0,85672,68394,70305,65626,64638,67498,6009,5000,5000,5000,5000,5000,0
+18989,240000,female,1,2,28,0,0,0,0,0,0,246310,250252,250169,249495,192368,196585,10500,9900,10907,7000,8000,7535,0
+18990,60000,female,2,1,34,2,2,2,2,2,0,40511,44019,45020,45785,44750,45578,4200,2000,1800,0,1700,3600,1
+18991,440000,female,2,2,35,-1,0,0,-1,-1,-1,3091,3853,4012,821,821,821,1150,1084,821,821,821,821,0
+18992,30000,female,2,1,42,2,2,0,0,0,0,28485,27204,28234,28272,28494,28182,0,2000,2483,1003,969,1208,1
+18993,230000,female,2,2,26,0,0,-2,-2,-2,-2,23758,0,0,0,0,0,0,0,0,0,0,0,0
+18994,440000,female,2,2,28,1,2,2,0,0,0,209176,215231,204369,186201,183518,148169,11000,54,7530,7648,6310,3312,1
+18995,80000,female,2,1,29,0,0,0,0,0,0,63899,62048,49814,45292,43190,39457,2500,2500,2010,2000,2000,2000,1
+18996,30000,female,2,1,30,0,0,0,0,0,0,29265,28901,28883,29411,24602,22760,2000,1655,1513,499,688,0,0
+18997,250000,female,2,2,35,0,0,0,0,0,0,238855,241711,205944,210513,214696,219218,8517,7481,8000,7682,7979,13350,0
+18998,30000,female,1,1,45,2,0,0,0,0,0,26155,27196,28445,26766,27152,28355,1482,1731,1742,1128,1800,1200,1
+18999,50000,female,3,3,49,0,0,0,0,0,2,49402,50361,48762,49671,22895,19501,1800,2110,2010,1600,0,750,0
+19000,50000,female,2,2,34,0,0,0,0,0,0,47303,48427,48069,49081,48485,49484,2807,3008,2812,2000,2000,2000,0
+19001,30000,female,2,2,34,1,2,2,2,2,2,26330,25608,28781,28000,29779,27343,0,3600,0,2524,0,1139,0
+19002,30000,female,2,1,45,0,0,0,0,0,0,30788,30395,27294,27216,26432,30692,1759,1762,1717,966,5739,1577,1
+19003,500000,female,2,1,42,0,0,-2,-2,-2,-2,149838,0,0,0,0,0,0,0,0,0,0,0,0
+19004,50000,female,2,1,41,1,2,2,2,2,2,24540,25330,26620,26889,26158,27737,1500,2000,1000,0,2000,0,1
+19005,50000,female,2,1,36,0,0,0,0,0,0,49872,32918,33998,34852,14163,14362,1600,2500,2000,1000,1000,1000,0
+19006,50000,female,1,2,22,0,0,-2,-2,-2,-2,2416,0,0,0,0,0,0,0,0,0,0,0,0
+19007,90000,female,2,2,26,0,0,0,0,0,0,45069,43310,40275,37800,37323,34396,2000,2500,3000,3000,2000,3000,0
+19008,30000,female,1,2,26,1,2,2,2,0,0,13890,15374,16141,15593,15908,16757,2000,1300,0,564,1100,1000,1
+19009,150000,female,3,1,43,0,0,0,0,0,0,125403,110822,107782,84743,78804,76584,5018,5081,6041,3023,4049,6013,0
+19010,50000,female,2,1,23,0,-1,0,0,0,0,14465,48796,50206,50831,42731,43224,50295,2500,2031,1274,1500,1600,0
+19011,70000,female,2,2,23,2,2,2,0,0,2,14871,17461,16892,18013,19315,19859,2850,0,1400,1600,1000,0,1
+19012,80000,female,2,2,23,0,0,-2,-2,-2,-2,68850,0,0,0,0,0,0,0,0,0,0,0,0
+19013,280000,female,1,2,29,-2,-2,-2,-2,-1,-1,-11,-11,-11,-11,2572,9532,0,0,0,2583,9566,145007,0
+19014,90000,female,2,1,30,0,0,0,0,0,0,6480,6973,7235,8248,8412,8589,1106,1124,1137,301,312,373,0
+19015,330000,female,1,1,39,0,0,0,0,0,0,94384,46006,48123,50195,51942,55963,4000,3000,3000,3000,5000,2000,0
+19016,190000,female,2,1,46,0,0,0,0,0,0,80903,83900,86897,90399,85698,88400,5000,5000,5600,3000,4000,4500,0
+19017,210000,female,1,1,40,0,0,0,0,0,0,47109,47930,53615,55117,57192,63229,2000,6500,3000,3000,7000,2500,0
+19018,100000,female,1,1,30,3,4,4,4,4,3,98094,101614,101072,105252,102742,100884,6000,1900,6686,0,0,0,1
+19019,20000,female,2,2,30,3,2,0,0,0,0,20226,18702,18331,19111,15211,13562,0,2346,1400,304,271,0,1
+19020,260000,female,1,1,31,-1,-1,0,0,0,0,555,8078,27201,27879,28420,39206,8078,20000,2000,2000,12000,0,0
+19021,20000,female,2,1,26,1,2,2,2,2,4,15803,15252,18093,18499,20898,19999,0,3103,1000,3000,0,0,1
+19022,80000,female,3,1,37,0,0,0,0,0,0,77480,75329,64228,49103,48649,49701,3000,2500,1800,2000,1800,2000,1
+19023,50000,female,2,1,42,0,0,0,0,0,0,30640,31546,28405,27959,27785,28123,1746,1800,1729,945,1149,1200,0
+19024,70000,female,3,1,35,2,2,2,2,2,2,50834,52163,51060,54200,52734,55903,2460,0,4600,0,4200,2200,1
+19025,30000,female,2,1,38,0,0,2,2,0,0,26664,29803,30766,29918,29071,29527,3582,1734,0,1148,1034,2667,0
+19026,100000,female,1,2,25,1,2,0,0,0,0,97271,88596,89218,63243,42510,41221,0,4950,2400,1200,1400,1203,1
+19027,50000,female,1,2,25,0,0,0,2,0,0,50673,47278,44993,36782,30442,29636,2500,4000,0,1200,1250,1300,0
+19028,80000,female,2,1,27,2,0,0,0,2,0,63711,64961,66334,70312,68585,70027,2907,3014,5700,0,2700,2800,1
+19029,50000,female,2,1,27,0,0,-1,-1,-1,-1,7439,8280,3403,1999,500,0,1028,3423,2005,501,0,0,1
+19030,150000,female,5,1,28,0,0,0,0,0,0,152105,137472,118583,95094,50999,35383,6300,4500,2524,2000,2000,92000,0
+19031,140000,female,1,2,29,0,0,0,0,0,0,130261,95550,96273,91059,92609,95184,3474,4000,4000,3500,8000,5000,0
+19032,70000,female,1,1,31,0,0,0,0,0,0,63820,60697,61139,56609,47819,43471,5000,4000,3000,3000,3000,2000,0
+19033,30000,female,2,1,31,1,2,2,0,0,0,28933,30109,29349,29400,30000,0,1949,0,1000,600,0,0,0
+19034,80000,female,2,1,32,2,2,0,0,0,2,70381,68660,70081,70899,75331,74005,0,3126,2578,5616,0,3000,1
+19035,40000,female,2,1,41,0,0,0,0,0,0,21960,21484,7145,2424,822,0,1176,1049,1000,0,0,0,0
+19036,100000,female,2,1,37,0,0,0,0,0,0,34572,35173,35828,36126,36587,36957,1849,1894,1582,1433,1486,1327,0
+19037,50000,female,2,1,40,0,0,0,0,0,0,48050,47238,47722,32920,28471,28834,2000,1871,1800,1100,1200,1040,0
+19038,30000,female,3,1,35,2,2,2,2,2,2,26088,27160,26444,28694,27936,29930,1800,0,3000,0,2600,0,1
+19039,120000,female,1,1,35,0,0,0,0,0,0,9756,12092,15516,17373,17950,18363,2519,3643,2500,1000,689,1000,0
+19040,260000,female,3,1,39,0,0,0,0,0,0,152735,149672,140068,140367,141710,146578,6627,7000,7000,5000,7000,5000,0
+19041,90000,female,2,1,35,0,0,0,0,0,0,21093,14418,17217,16486,17390,19021,1256,3445,1099,1393,3045,1003,0
+19042,30000,female,2,1,33,0,0,-1,0,0,0,4101,157,30321,29225,29575,28850,172,33635,1368,1108,958,1353,0
+19043,260000,female,1,1,37,0,0,0,0,0,0,174971,161671,156296,156248,120518,122649,10000,8000,5028,5000,5000,10000,0
+19044,170000,female,1,1,39,1,2,0,0,0,2,161105,145908,119161,120662,127815,125098,0,6000,5000,9000,0,6000,0
+19045,150000,female,2,1,36,0,0,0,0,0,0,137664,140869,144954,101342,80819,81022,5500,6704,3712,3000,3890,3500,0
+19046,90000,female,3,1,40,1,2,2,2,2,2,40467,41495,42520,42997,41698,43976,2000,2000,1800,0,3434,1708,0
+19047,50000,female,3,2,45,0,0,0,0,0,0,3740,4382,5008,5627,6159,6677,1100,1091,1100,1000,1000,1000,0
+19048,70000,female,1,2,29,0,0,0,0,0,0,66867,66502,54263,47562,43735,43509,3020,5040,2000,2000,12000,5000,0
+19049,210000,female,1,2,29,0,0,0,0,0,0,217220,231500,197027,198293,197841,205864,7700,10292,8900,7200,14300,10000,0
+19050,450000,female,1,2,31,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+19051,70000,female,3,1,32,0,0,0,0,2,0,14180,10856,10822,13627,10852,12676,3000,2000,3000,0,2000,3000,1
+19052,70000,female,3,2,32,2,2,2,0,0,2,23741,26021,24419,23541,10576,6985,4000,0,2000,1000,0,4000,1
+19053,300000,female,3,2,34,-1,-1,2,0,0,-1,2344,7929,7667,26900,31500,33920,8000,0,20000,5000,33920,0,0
+19054,70000,female,1,1,29,0,0,0,0,0,0,68494,68532,69475,69582,69589,68728,3200,3300,3100,2800,2600,2940,0
+19055,180000,female,2,1,37,0,0,0,0,0,0,88275,78089,75159,76602,76896,78588,2800,3333,3310,2900,3040,3500,0
+19056,50000,female,3,1,29,2,2,0,0,0,0,59077,55607,54882,53894,52382,53947,0,2700,2450,1830,4300,6500,1
+19057,20000,female,2,2,27,-1,2,0,0,0,2,20556,19403,13536,17623,18662,10243,8,2072,15000,1500,0,10000,0
+19058,260000,female,1,2,31,0,0,0,0,0,0,229398,202429,206210,208752,209083,208463,8720,9000,8910,7570,7751,8200,0
+19059,70000,female,3,1,34,0,0,-1,0,0,0,5219,6747,19948,20231,20757,18357,3092,19948,3000,3002,1002,2102,0
+19060,50000,female,2,3,31,2,2,3,2,2,2,39193,42816,42838,43335,44220,45159,4600,1000,1500,1900,1800,1200,1
+19061,150000,female,2,1,34,0,0,0,0,0,0,146661,142118,139750,142730,144083,130791,6800,6600,6800,5600,4900,5100,0
+19062,150000,female,3,1,45,0,0,0,0,0,0,47372,42652,42306,41579,40669,39301,2000,2100,1837,1400,1486,1572,0
+19063,20000,female,2,1,37,0,0,0,0,0,0,19326,20240,17800,18699,17770,48321,1263,1630,1529,1200,2000,742,0
+19064,60000,female,2,2,45,0,0,0,0,0,0,57711,58760,49576,50802,11110,12543,2500,2384,3000,2000,2000,2000,0
+19065,50000,female,2,1,30,0,0,0,0,0,0,40596,41632,42687,40614,29356,29815,2000,2047,3246,1164,1048,1100,0
+19066,50000,female,1,2,25,0,0,0,0,0,2,26240,26996,28056,29584,31595,30952,1500,1500,2000,2500,0,3000,0
+19067,80000,female,1,1,27,3,2,0,0,0,3,71965,70232,71794,73125,82798,81336,0,3278,3211,11457,0,0,1
+19068,140000,female,1,2,27,0,0,0,0,-1,-1,10064,10551,11655,11377,735,1051,2000,2000,1000,735,1051,569,0
+19069,20000,female,3,2,28,1,2,2,2,2,0,6616,6364,7891,8913,8624,9628,0,1800,1300,0,1300,1900,1
+19070,10000,female,2,1,49,2,0,0,0,0,0,2240,3100,4116,5280,5543,5605,1057,1073,1237,500,300,205,1
+19071,120000,female,2,1,45,0,0,0,-2,-2,-2,11547,9836,0,0,0,0,5000,0,0,0,0,5562,0
+19072,50000,female,2,1,40,1,3,2,0,0,0,36291,35385,31558,31664,15700,0,0,0,1000,314,0,0,1
+19073,30000,female,2,1,39,2,0,0,2,2,0,11436,12439,14911,15819,15346,16666,1500,3000,1500,0,1500,2000,1
+19074,210000,female,2,1,49,2,0,0,0,0,0,114273,115302,111906,111423,92394,93321,6000,6000,5000,3000,3500,3000,1
+19075,150000,female,1,2,27,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+19076,180000,female,3,1,28,0,0,0,0,0,0,113125,67864,31613,25220,8654,4837,1923,1501,1000,0,0,49347,0
+19077,590000,female,2,1,29,-2,-2,-2,-1,0,0,0,0,0,1387,2206,3014,0,0,1387,1000,1000,1000,1
+19078,260000,female,1,1,30,0,0,0,0,0,0,25661,30196,69429,167640,169446,172989,5000,40000,100000,5720,5922,5958,0
+19079,90000,female,3,1,35,0,0,-1,0,0,0,13865,5128,6911,8774,9622,9824,2054,6911,2000,1000,357,1000,0
+19080,110000,female,2,1,28,0,0,0,0,0,0,20186,19678,18145,17729,17239,10231,1300,1500,1200,467,400,500,0
+19081,140000,female,1,2,28,0,-1,-1,-1,-1,-1,1756,2201,923,1751,573,873,2209,923,1751,573,873,984,0
+19082,210000,female,1,2,30,-1,-1,-1,-1,-1,-1,7631,5583,5583,5583,5583,5500,5583,5583,5583,5583,5500,5823,0
+19083,80000,female,2,1,31,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+19084,30000,female,3,1,36,1,2,-1,2,2,-1,8910,7438,6242,4789,3597,21234,22,6245,3,6,30006,1221,0
+19085,120000,female,3,1,28,0,0,0,0,0,0,93623,95472,93778,86416,53501,51931,3440,5017,5000,2000,1500,42800,0
+19086,20000,female,3,1,44,0,0,0,2,2,2,7661,8981,10860,12380,11400,0,1457,2600,2000,0,0,0,0
+19087,80000,female,3,2,42,0,0,0,0,0,0,50320,49816,49457,49071,48242,47746,1784,1898,1985,1629,1655,1687,0
+19088,110000,female,2,2,35,0,0,0,0,0,0,22514,23201,23914,24886,24903,25102,1378,1723,1695,1028,1056,907,0
+19089,240000,female,2,1,34,0,0,0,0,-1,0,77126,59832,45054,39245,75742,39389,5005,2116,1200,75742,0,62282,0
+19090,100000,female,2,1,49,0,-1,-1,-1,0,0,5532,5325,5423,29628,13252,3723,5325,5423,29628,0,0,3513,0
+19091,200000,female,2,2,32,0,0,0,0,0,0,150204,153189,156406,159650,163625,167790,5479,5682,5850,6625,6790,6235,0
+19092,450000,female,1,2,32,-2,-2,-2,-2,-2,-2,1249,142,5965,991,-9,1974,142,6001,996,0,1983,7228,0
+19093,150000,female,2,2,32,0,0,0,0,0,0,49760,39332,17563,10122,11622,8622,2538,2000,2000,1500,1000,64411,0
+19094,120000,female,2,1,39,-1,2,-1,-1,-1,-1,11277,5624,5333,5333,5333,21348,0,5333,5333,5333,21348,5333,0
+19095,70000,female,2,2,26,2,0,0,0,0,0,66087,67510,69007,61845,60184,66801,3120,3303,2800,2200,7600,0,1
+19096,190000,female,1,2,31,0,0,0,0,0,0,132946,136809,140664,144395,147642,151410,6000,6000,6000,5500,6000,5500,0
+19097,50000,female,3,1,45,0,0,0,0,0,0,49212,42376,20009,20877,19642,18769,1611,1700,1547,785,1000,888,0
+19098,60000,female,3,1,44,1,2,0,0,0,0,39466,32202,29503,29538,29971,29798,0,1802,1737,1170,1189,1230,0
+19099,90000,female,1,2,30,2,2,2,2,2,2,15979,17414,16846,20559,19933,21454,2000,0,4000,0,2000,0,1
+19100,300000,female,2,1,33,0,0,0,0,0,0,62951,64491,65692,64969,67771,66428,4007,5000,5000,6000,6000,6000,0
+19101,210000,female,3,1,32,0,0,-1,0,0,0,1406,0,712,1025,4584,0,0,712,1000,4000,0,821,0
+19102,50000,female,2,1,34,2,2,2,0,0,0,46843,49378,48052,48573,28902,28205,4310,0,2033,1119,985,2000,0
+19103,350000,female,1,1,34,-1,0,0,0,0,0,37129,107295,108299,103487,90880,84387,75000,30000,4000,4000,5000,5000,0
+19104,30000,female,2,1,34,0,0,0,0,0,0,26253,27256,28472,29212,29400,30000,1444,1660,1400,588,600,0,0
+19105,280000,female,3,1,34,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+19106,380000,female,3,1,35,0,0,0,0,0,0,18341,16681,16678,16650,17380,17074,2000,3000,2000,2000,2000,2000,0
+19107,360000,female,2,2,34,-2,-2,-2,-2,-2,-2,724,1232,291,776,0,312,1232,291,776,0,312,576,0
+19108,260000,female,2,1,37,1,1,-2,-2,-1,0,5917,-15910,-15910,-15910,24090,13977,0,0,0,40000,507,656,0
+19109,160000,female,2,1,37,0,0,0,0,0,-1,27720,14413,13484,6714,-319,3583,5000,5017,5000,0,6774,0,0
+19110,250000,female,3,1,43,-2,-2,-2,-1,-1,-1,8443,13782,22997,24209,23122,4000,13829,22997,25071,23122,4000,28650,0
+19111,320000,female,1,2,27,-1,0,0,0,-1,0,19950,24544,31236,66091,5800,5800,5000,10000,36091,5800,0,464,0
+19112,140000,female,2,2,31,0,0,0,0,0,0,137326,138119,137950,140254,139679,141748,6400,6600,6500,5100,5300,6000,0
+19113,80000,female,3,1,32,0,0,0,0,0,0,58091,58247,59495,58832,57677,58066,2700,2800,2100,2181,2500,2300,0
+19114,100000,female,1,1,40,2,2,2,2,2,2,63422,64785,63179,67467,65784,69309,3000,0,5346,0,4600,3000,1
+19115,210000,female,5,1,41,-2,-2,-2,-2,-2,-2,1662,13877,7600,5546,1241,1801,13934,7735,5551,1241,1801,1359,0
+19116,200000,female,3,2,29,-1,-1,-1,-1,0,0,5555,7485,12555,882,882,0,7485,12625,882,0,0,0,0
+19117,110000,female,3,1,37,0,0,0,0,0,0,104691,103655,85761,87336,39025,40242,5000,5000,4000,3700,2000,2000,0
+19118,70000,female,1,1,36,1,2,2,0,0,2,18514,19913,19310,20021,22175,21680,2000,0,1339,2493,0,792,1
+19119,240000,female,2,1,46,0,0,0,0,-2,-2,233438,240715,246000,-150,-150,-150,11250,10950,0,0,0,672,0
+19120,80000,female,2,1,38,0,0,0,0,0,0,70613,71421,72932,74422,75920,77490,2006,2100,2109,2131,2195,2458,0
+19121,150000,female,3,2,47,0,0,0,0,0,0,132093,129831,126485,124547,117364,117368,5000,5000,5000,5000,5000,5000,0
+19122,50000,female,2,2,42,0,0,0,0,0,0,46566,47792,49322,50618,13842,14217,2000,2300,2500,500,600,600,0
+19123,230000,female,2,1,37,0,0,0,0,-1,0,53327,52513,43726,22738,29019,20328,1973,1890,1595,29019,567,506,0
+19124,290000,female,1,1,43,-1,-1,-1,-1,0,-1,1457,1799,5029,3103,1838,690,1808,5054,3109,9,693,3579,0
+19125,350000,female,1,2,36,-2,-2,-2,-2,-2,-2,3272,6968,0,0,0,0,7008,0,0,0,0,0,0
+19126,100000,female,3,2,39,0,0,0,0,0,0,86453,84526,82078,25991,28071,28611,5000,5000,1300,5000,6000,5000,0
+19127,50000,female,3,1,46,0,0,0,0,0,-2,48796,48797,49115,47991,0,0,2000,2000,1018,0,0,0,0
+19128,360000,female,2,1,43,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+19129,210000,female,2,2,38,-1,-1,-1,-1,-1,-1,1026,3751,4366,5602,21034,1026,3751,4366,5602,21034,1026,1026,0
+19130,500000,female,2,1,39,-2,-2,-2,-2,-2,-2,1948,599,552,6360,0,6054,599,552,6360,0,6054,0,0
+19131,290000,female,2,1,47,0,0,0,0,0,0,244377,244394,244535,244518,243689,241125,10000,10000,10000,9009,9031,9000,0
+19132,350000,female,3,1,36,0,0,2,0,0,0,255751,275156,260963,261263,255566,254941,33010,0,11021,9200,8500,8300,0
+19133,190000,female,2,1,33,-2,-2,-2,-2,-2,-2,2125,3405,2131,2131,2131,0,3411,2131,2131,2131,0,5354,0
+19134,180000,female,1,2,34,0,0,0,0,0,0,108016,180959,169362,163957,138409,132864,150000,8000,5500,5000,5500,6000,0
+19135,110000,female,2,1,35,0,0,0,0,0,0,6137,7040,3861,4869,4966,5070,1053,1073,1081,178,184,185,1
+19136,200000,female,3,2,33,1,2,2,2,2,2,51979,51016,54736,55424,56101,57137,0,5000,2000,2000,1900,2200,1
+19137,210000,female,2,1,40,-1,-1,-1,-1,-1,-1,10240,-660,117,4890,-356,4644,0,5000,5000,0,5000,1000,0
+19138,100000,female,3,1,36,-1,-1,-1,-1,-1,-1,476,476,476,476,476,1075,476,476,476,476,1075,876,0
+19139,130000,female,2,1,43,0,0,0,0,0,0,135390,134974,132242,122832,55232,78266,6329,5472,5701,2211,38663,2350,0
+19140,70000,female,3,2,38,0,0,0,0,0,0,70621,69821,68683,68771,55168,49674,2506,3500,2104,2015,2001,2102,0
+19141,100000,female,2,1,33,0,0,0,0,0,0,92189,88832,89762,77986,71031,66983,3252,3215,2792,1881,1945,2184,0
+19142,150000,female,3,1,35,-2,-1,2,-1,-1,-1,600,660,330,330,330,740,660,0,330,330,740,0,0
+19143,160000,female,3,1,39,0,0,-1,-1,-1,-1,102358,103698,1048,1048,1048,1221,4671,1048,1048,1048,1221,1048,0
+19144,30000,female,3,1,48,1,-1,-1,-2,-2,-2,-100,100,0,0,0,0,200,0,0,0,0,0,0
+19145,80000,female,2,1,36,-1,-1,-1,-1,-1,-1,816,1419,1845,1799,599,-1,1423,1856,1804,600,0,0,0
+19146,200000,female,2,1,44,-2,-2,-2,-2,-2,-2,7096,1323,8457,48757,4200,7312,1336,8457,48757,4200,7312,21740,0
+19147,180000,female,3,1,41,2,2,2,2,0,0,96093,100094,101204,98680,100644,102750,6500,3582,0,3605,3731,3752,1
+19148,180000,female,2,1,34,0,0,0,0,0,0,47517,26137,18177,16866,15067,7615,1526,3006,5020,5000,2000,935,0
+19149,170000,female,2,1,35,0,0,0,0,0,0,144606,136269,139337,141018,119039,88833,5007,7004,7008,5005,4009,3807,0
+19150,50000,female,1,2,35,0,0,0,0,0,0,4309,10834,15251,12159,9581,15222,7000,8000,9400,1000,6000,3000,0
+19151,160000,female,3,1,40,0,0,0,0,0,0,93287,91031,89764,87919,86279,84794,3230,3500,3000,2956,3100,3400,0
+19152,160000,female,2,1,40,-2,-2,-2,-2,-2,-2,390,390,390,390,390,390,390,780,390,390,390,390,1
+19153,20000,female,1,2,22,0,0,0,0,0,0,18390,19760,18570,17604,11973,9517,2000,1376,1383,1000,455,1500,0
+19154,70000,female,2,1,24,0,0,0,0,0,-1,33602,41574,30777,30155,14298,1579,10096,3000,1005,2000,1579,2882,0
+19155,240000,female,2,2,38,-2,-2,-2,-2,-2,-2,34752,30073,24315,3724,28347,11280,30073,24315,3724,28347,11280,31266,0
+19156,300000,female,2,1,45,0,0,0,0,0,0,343205,335000,322462,312973,262255,251413,12429,11254,10956,8587,8638,9284,0
+19157,420000,female,2,1,37,-2,-2,-2,-2,-2,-2,4904,5248,5344,5058,2019,2443,5332,5348,5065,2019,2443,4697,0
+19158,200000,female,3,1,43,1,2,0,0,0,0,119432,116014,119576,123551,129486,133262,0,5000,5000,7000,5000,5000,1
+19159,50000,female,2,1,47,0,0,0,0,0,0,27121,53680,20476,21781,17792,16657,2000,1700,2000,1000,702,600,0
+19160,50000,female,2,1,38,0,0,0,-1,0,0,20606,18750,0,31288,27335,30626,2000,0,95000,1000,3700,16,0
+19161,200000,female,1,1,38,-2,-2,-2,-2,-2,-2,2571,2772,2571,2571,2571,2571,2772,2571,2571,2571,2571,2571,0
+19162,200000,female,1,2,32,0,0,0,0,0,0,118532,121068,119122,121402,115419,116749,6000,4500,4300,6000,4400,4500,0
+19163,380000,female,2,1,33,1,1,2,2,2,2,363944,385726,368318,354443,354765,354579,29540,74,14301,13000,12800,12800,0
+19164,50000,female,1,2,27,-1,0,0,0,-1,-1,17626,16789,12946,20650,20650,2529,1547,8000,8000,20650,2529,0,0
+19165,50000,female,1,2,28,-1,-1,-1,-1,-1,0,1460,1625,3505,12931,2972,1589,1625,3556,14010,3000,0,691,0
+19166,500000,female,2,2,35,-2,-2,-2,-2,-2,-2,35757,22370,7303,19436,45604,25996,22372,7364,19445,45604,25996,4420,0
+19167,300000,female,2,1,40,-1,-1,-2,-2,-2,-2,2470,0,0,0,0,0,0,0,0,0,0,0,0
+19168,170000,female,2,2,32,0,0,0,0,-1,0,10928,8400,5654,6285,4417,740,6151,4110,6920,6637,0,16744,1
+19169,20000,female,2,1,46,3,2,2,2,3,5,11698,13189,14663,16109,19525,18646,2000,2000,2000,4000,0,1000,1
+19170,20000,female,2,1,43,-1,-1,-1,-1,-1,-1,1475,1291,3898,1681,901,0,1291,3898,1681,901,0,0,0
+19171,280000,female,2,2,36,0,0,0,0,0,0,183797,168402,161474,152092,145229,148602,6083,5913,5293,5126,5640,5119,0
+19172,80000,female,2,2,22,-1,0,0,0,0,0,858,1468,1724,2884,2994,28788,1000,1036,1196,306,26045,1513,0
+19173,20000,female,2,2,24,0,0,0,2,0,0,17372,17859,20567,19928,18711,19408,1500,3000,0,1000,1000,1500,0
+19174,70000,female,1,2,24,0,0,0,0,0,0,110176,56378,57572,58130,59289,61331,2700,2700,2110,2125,3000,2300,0
+19175,30000,female,2,1,25,2,2,2,2,2,2,23888,26966,27640,26897,27949,29645,3800,1400,0,1500,2300,1114,1
+19176,170000,female,2,2,37,0,0,0,0,0,0,117527,120998,120582,112819,113932,107776,5837,4278,4021,3828,3843,3879,0
+19177,320000,female,2,2,30,0,0,0,0,0,0,97541,99815,103701,106195,106946,109228,3900,5500,5700,4000,4000,4000,0
+19178,210000,female,1,2,30,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+19179,310000,female,2,2,31,0,0,0,0,0,0,14015,15377,16393,14855,12662,9628,2000,1300,1461,1000,2000,2000,0
+19180,230000,female,1,2,29,1,-1,-1,-1,0,0,0,162,1129,1130,1130,1130,162,1140,1130,0,0,0,0
+19181,90000,female,2,1,31,2,2,0,0,0,0,90089,91196,89779,89214,88847,88724,3500,4400,5013,4000,4000,4000,1
+19182,200000,female,1,2,31,-2,-2,-2,-2,-2,-2,6024,2180,2750,0,1060,2000,2180,2750,0,1060,2000,1060,0
+19183,150000,female,2,2,34,3,3,4,4,5,5,103389,108189,112968,117613,122161,129616,8000,8000,8000,8000,10000,5000,0
+19184,60000,female,1,2,27,0,0,0,0,0,0,23690,22413,17399,16553,14259,14134,1283,1584,1217,496,662,489,0
+19185,50000,female,2,2,38,-1,-1,0,0,0,0,1496,35007,32672,34087,37114,45043,35007,2000,2000,5000,10000,2000,0
+19186,200000,female,1,2,40,0,0,0,0,0,0,132563,135202,137111,137121,139343,141859,4841,5047,4922,4926,5105,5500,0
+19187,220000,female,2,1,35,0,0,0,0,0,0,41259,37465,39494,16842,0,8419,2000,3000,1160,1000,0,1000,0
+19188,300000,female,3,1,34,-2,-2,-2,-2,-2,-2,-75,29014,21180,-20,-20,4045,29089,21286,0,0,4065,0,0
+19189,30000,female,2,1,47,2,2,2,0,0,0,25893,30628,29368,27769,25999,26924,5501,22,2000,1000,2000,2039,1
+19190,330000,female,5,1,36,0,-1,-1,0,0,0,18768,3736,119340,134194,76865,78760,3744,119356,20062,10189,30032,4005,0
+19191,280000,female,1,1,42,0,0,0,0,0,0,172886,175152,172505,175967,178548,176939,6232,12104,7002,6302,6417,6502,0
+19192,330000,female,1,2,38,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+19193,390000,female,3,2,45,0,-1,-1,-1,-1,0,94373,2230,609,-3261,36635,38396,2230,609,0,40396,3000,105100,0
+19194,200000,female,2,1,38,-1,-1,-1,-1,-1,0,788,165,1520,413,150,150,165,1520,413,300,0,1638,0
+19195,20000,female,3,2,45,0,0,0,0,0,0,12670,13682,14399,15408,15728,17082,1520,1234,1243,563,1609,1500,0
+19196,140000,female,2,1,32,0,0,0,0,0,0,52825,52711,50440,47945,17990,15735,3000,5007,10000,5011,5000,10000,0
+19197,30000,female,1,1,32,-1,-1,-1,-2,-2,-2,3684,2911,5831,2083,2903,3874,2911,5842,2088,2903,3874,3201,0
+19198,210000,female,2,1,41,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+19199,100000,female,3,1,44,-2,-2,-2,-2,-2,-2,1010,0,0,0,0,2947,0,0,0,0,2947,4193,0
+19200,50000,female,2,1,38,-1,-1,-1,-1,-1,-1,1121,-13,2254,1338,0,757,0,2267,1338,0,757,0,0
+19201,30000,female,3,2,42,0,0,0,0,0,0,26012,27175,27822,28481,28265,28852,2000,1577,1626,800,814,629,1
+19202,30000,female,5,2,45,2,0,0,0,0,0,29278,30488,30900,30480,31124,29333,2000,1600,1500,1100,1053,1320,1
+19203,150000,female,1,2,37,1,-2,-1,-1,-1,-2,0,0,689,2943,-6159,-6159,0,689,2943,0,0,16007,0
+19204,180000,female,1,2,39,-2,-2,-2,-2,-2,-2,11732,6653,-6674,18084,16481,19359,6653,330,36550,16481,21264,16253,0
+19205,230000,female,2,1,49,1,-2,-2,-2,-2,-1,0,0,0,0,0,6946,0,0,0,0,6946,0,0
+19206,220000,female,1,2,36,-2,-2,-2,-2,-2,-2,122,104,2635,2460,859,2784,104,2653,2472,859,2784,2287,0
+19207,200000,female,1,2,35,-2,-2,-2,-2,-2,-2,5956,7690,1530,3107,1683,5784,10402,1530,4000,1683,6031,4512,0
+19208,80000,female,2,1,35,-2,-2,-2,-2,-2,-2,17087,1617,8140,7258,20171,5483,1617,8179,7285,20171,5483,42081,0
+19209,380000,female,3,1,44,0,0,0,0,-1,-1,7234,4772,4519,3818,4096,4058,1500,2000,2023,4102,4448,7274,0
+19210,30000,female,2,1,42,2,0,0,0,0,2,9985,10688,11710,13030,13776,13415,1176,1198,1518,1264,0,1308,1
+19211,160000,female,2,1,41,-1,-1,-1,-1,-1,-1,8091,5344,5117,4730,6634,3477,5344,5124,4730,6635,3477,2979,0
+19212,60000,female,2,1,47,0,0,0,2,-1,2,27970,28004,31688,30448,452,302,1456,4140,0,904,0,12985,1
+19213,100000,female,3,1,42,-1,2,2,-2,-2,-2,7689,2052,1281,3770,2056,5628,0,1281,3786,2056,5634,6013,0
+19214,150000,female,2,1,37,-2,-1,-1,-2,-2,-1,0,1771,0,730,626,2718,1771,0,730,626,2718,0,0
+19215,100000,female,2,1,38,2,2,2,2,0,0,36414,37516,38622,37706,38148,40630,2000,2000,0,1369,3100,0,0
+19216,30000,female,2,2,44,-2,-2,-2,-2,-2,-2,0,1330,2988,0,30000,0,1330,2988,0,30000,0,1219,0
+19217,220000,female,1,1,36,1,2,-1,2,-1,3,4086,3855,3055,1375,3338,3032,0,4000,0,3338,0,0,1
+19218,220000,female,1,2,38,-1,2,2,2,2,2,2650,2650,150,150,150,150,0,0,0,0,0,0,0
+19219,400000,female,2,2,30,-2,-2,-2,-2,-2,-2,-38,9465,4991,466,-1381,3122,10446,5002,504,499,5056,2152,1
+19220,680000,female,1,2,30,0,0,-1,-1,-1,0,39639,-45,10251,25094,7327,167520,0,10296,25219,7341,163123,7267,1
+19221,280000,female,1,2,30,0,0,0,0,0,0,36269,39229,48190,48758,49219,58412,10300,10018,10026,5000,10000,2401,0
+19222,70000,female,2,1,44,0,0,0,0,0,0,34135,27683,28311,24094,21317,9736,2020,5000,3011,1500,1000,1000,0
+19223,300000,female,2,1,39,-1,-1,-1,-1,-1,-1,6192,4784,6462,456,-2056,5251,4790,6462,456,0,14447,9196,1
+19224,250000,female,2,2,41,-1,-1,-1,-1,-1,-1,312,-18,3600,-10,2022,3809,0,3618,0,2032,3827,3710,0
+19225,200000,female,1,2,31,-1,-1,-2,-2,-2,-2,1570,0,0,0,0,0,0,0,0,0,0,0,0
+19226,450000,female,1,2,31,-1,-1,-1,-1,0,0,12818,17522,35727,82517,91873,41628,17577,35758,90018,41340,20000,15000,0
+19227,30000,female,1,2,33,3,2,2,2,0,0,21167,20529,24191,23510,24813,25264,0,4000,0,2000,1000,2000,1
+19228,210000,female,2,2,29,-1,-1,-1,-1,-1,-1,1778,224,2018,0,1118,1858,226,2031,0,1118,1858,620,0
+19229,250000,female,1,2,29,2,2,2,2,2,2,124780,127168,125721,122209,126129,127847,5900,4500,0,5954,3900,4826,1
+19230,70000,female,2,2,31,0,0,0,0,0,0,64888,64454,103298,50978,51374,52453,2127,2151,2500,1836,1904,1915,0
+19231,230000,female,1,2,31,1,-2,-1,-1,-2,-1,-9,-9,986,0,0,900,0,995,0,0,900,0,0
+19232,150000,female,2,1,37,-2,-2,-2,-2,-2,-2,0,0,0,283,0,0,0,0,283,0,0,0,0
+19233,70000,female,3,1,47,1,2,2,2,2,2,29386,31596,32492,33163,32334,34647,3000,1700,1500,0,3000,1402,0
+19234,150000,female,2,1,35,0,0,0,0,0,0,102007,93116,84302,74986,67369,60434,5000,5045,2563,3006,3000,2218,1
+19235,200000,female,2,1,37,-1,-1,-1,-1,-1,-1,313,0,313,152,148,498,0,313,152,148,498,148,0
+19236,200000,female,4,2,42,-1,0,0,-2,-1,-1,5433,7328,0,0,2621,-72,2000,0,0,2621,0,0,0
+19237,300000,female,3,1,42,-1,-1,-2,-2,-1,-1,885,0,0,0,494,0,0,0,0,494,0,138,0
+19238,80000,female,3,1,39,-1,-1,-1,0,-1,-1,2921,390,6837,7309,2568,2199,780,6837,1000,2568,2199,4067,1
+19239,30000,female,2,2,43,5,4,3,2,0,0,31273,30499,29740,28736,28336,28336,0,0,0,0,0,18,1
+19240,100000,female,2,1,40,0,0,0,0,0,0,89236,90828,83479,73749,68512,72518,3162,3523,3025,2344,5000,3000,0
+19241,360000,female,1,2,32,0,0,0,0,0,0,290543,118479,112746,102611,92290,51489,7288,6079,6091,6227,5055,27486,0
+19242,150000,female,2,2,32,0,0,0,0,0,0,32428,32136,28151,27697,18981,6155,2000,1650,1500,1004,500,1000,0
+19243,180000,female,1,2,32,1,-2,-2,-1,-1,-2,-10,-10,-10,5650,-10,-10,0,0,5660,0,0,0,0
+19244,210000,female,1,1,33,-2,-2,-2,-2,-2,-2,1345,6087,947,500,1283,500,6087,947,500,1283,500,500,0
+19245,110000,female,3,1,41,0,0,0,0,0,0,101316,104930,106053,108641,48519,33448,5300,4300,4800,2500,2000,2000,0
+19246,80000,female,2,1,41,-1,-1,-1,-1,0,0,2727,1679,566,61664,58281,58281,1679,566,61664,0,0,4480,0
+19247,50000,female,2,2,39,-1,-1,3,2,-1,2,263,1209,946,576,18611,17721,1209,0,0,18611,0,920,0
+19248,150000,female,2,1,32,-2,-2,-2,-2,-2,-2,0,0,0,3564,0,0,0,0,3564,0,0,0,0
+19249,260000,female,1,2,40,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+19250,200000,female,1,2,33,-2,-2,-2,-2,-2,-2,6421,846,4292,0,0,0,1064,4974,0,0,0,0,0
+19251,230000,female,2,2,29,-1,-1,-1,-1,-1,-1,2624,1149,2140,3313,3750,2491,1149,2140,3313,3750,2491,9785,0
+19252,70000,female,1,1,32,0,0,0,0,0,0,70178,71312,71314,71595,70040,68927,2900,2766,3648,2700,2487,2600,1
+19253,70000,female,1,2,32,2,0,0,0,0,0,34640,35757,37175,38254,39017,39834,2000,2000,1700,1400,1446,1500,1
+19254,160000,female,2,2,32,0,0,0,0,0,0,2812,3826,4751,6604,8604,7072,1222,1147,2000,2000,0,766,1
+19255,200000,female,3,2,34,0,0,0,0,0,0,195380,199642,188169,191549,195163,194101,7632,6839,6518,6356,6441,6763,0
+19256,270000,female,2,2,35,-1,-1,-1,-1,-2,-2,1636,37,2845,-1000,-1000,-1000,37,3000,1000,0,0,0,0
+19257,100000,female,2,1,36,0,0,0,0,0,0,97026,96109,97647,91998,69915,72044,5000,5000,3500,3000,3000,5049,0
+19258,410000,female,1,1,42,-1,-1,-1,2,-1,-1,12327,2306,4054,3830,3160,49828,2324,4204,0,3160,49828,1647,0
+19259,160000,female,2,1,33,-1,-1,-1,-1,-1,-1,1655,4271,3711,2121,2275,2895,4271,3711,2121,2275,2895,8429,0
+19260,120000,female,2,2,39,-2,-2,-2,-2,-2,-2,326,3756,326,326,326,476,3756,652,326,326,476,326,1
+19261,50000,female,2,1,37,0,0,0,0,-1,-1,12246,11901,11631,11035,1335,90,1196,1261,1000,1335,90,1335,0
+19262,450000,female,1,1,38,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+19263,200000,female,2,2,36,0,0,0,0,0,0,193083,195259,196120,168814,163509,172037,9000,8993,7503,6000,11300,6103,0
+19264,360000,female,2,2,41,-1,-1,-1,-1,-1,-1,3640,1436,1114,1917,19588,16666,1436,1114,1917,19588,16666,707,0
+19265,340000,female,2,1,40,0,0,0,0,0,0,40681,43171,45465,46708,49912,52102,3171,3000,2000,4000,3000,2100,0
+19266,300000,female,3,1,40,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+19267,220000,female,3,2,40,0,0,0,0,0,0,220091,203554,207953,156699,157883,161208,7797,8201,7302,5437,5651,5683,0
+19268,370000,female,1,2,37,0,0,0,0,0,0,308011,302783,297700,298224,338565,288924,10404,10015,16502,60003,15008,20000,0
+19269,170000,female,2,1,39,-1,-1,-1,2,-1,-1,2947,4132,3967,592,864,1738,4134,3967,0,864,1738,1788,0
+19270,500000,female,2,2,39,0,0,0,0,0,0,491395,464318,477183,496400,505473,474459,25799,35530,31376,70000,17670,20000,0
+19271,100000,female,1,1,36,2,0,0,0,-2,-2,94796,51713,25272,0,0,0,2624,1000,0,0,0,0,0
+19272,110000,female,1,2,31,-1,-1,-2,-2,-2,-2,223,0,0,0,0,0,0,0,0,0,0,0,0
+19273,230000,female,1,1,31,0,0,-1,2,0,0,23526,12187,3239,3029,3029,800,7005,3239,0,0,0,0,0
+19274,230000,female,1,2,31,0,0,0,-1,0,-1,33109,29830,11750,5194,15450,9368,5000,5000,15897,12000,9368,6000,0
+19275,150000,female,2,1,33,0,0,0,0,0,0,25849,26852,27882,28894,29313,29924,1735,1765,1777,1196,1233,1238,0
+19276,210000,female,1,1,32,-1,0,-1,-1,-1,-1,7544,5525,6876,2692,5560,2866,5255,7067,2696,5560,2866,8680,0
+19277,100000,female,3,1,32,-1,-1,2,-1,0,-1,24002,22329,2781,32231,2781,21651,2781,0,32231,0,21651,26748,0
+19278,230000,female,1,1,42,0,0,0,0,0,0,147396,151030,145550,135626,103789,108348,10000,7000,5065,5000,10000,5000,0
+19279,360000,female,1,2,33,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+19280,360000,female,2,1,34,0,0,0,0,0,0,80540,83715,70881,53344,47058,8674,3933,2001,1318,1134,216,0,0
+19281,200000,female,1,2,34,1,-2,-2,-2,-2,-2,-2113,-2113,-2113,-2113,-2113,-2113,0,0,0,0,0,423,1
+19282,200000,female,1,1,34,-2,-1,-1,-2,-2,-1,16024,18168,10274,4726,4484,4745,18184,10274,4726,4490,4745,1283,0
+19283,150000,female,2,2,33,-1,-1,-1,-1,-1,-1,508,1155,1868,874,1735,1940,1166,1873,876,1741,2245,0,0
+19284,110000,female,1,1,41,3,2,2,7,7,7,150,150,150,150,150,150,0,0,0,0,0,0,0
+19285,320000,female,2,1,38,-2,-2,-2,-2,-2,-2,0,0,0,111,0,288,0,0,111,0,288,1200,0
+19286,50000,female,3,1,44,2,2,2,2,2,2,19178,20088,19499,21578,20940,22605,1500,0,2385,0,2000,0,1
+19287,160000,female,2,2,39,0,0,0,0,0,0,32930,20090,49448,38415,59138,77579,14000,40015,1625,32044,27248,3650,0
+19288,80000,female,2,1,42,0,0,0,-1,-1,0,43045,43024,9821,600,53900,55000,1301,5098,600,53900,1100,10000,1
+19289,100000,female,2,1,35,0,0,0,0,-2,-2,28428,29753,30900,0,0,0,1800,1900,0,0,0,0,0
+19290,150000,female,2,1,36,0,0,0,0,0,0,289463,296846,301634,314201,84135,90500,8245,7143,13700,15000,7500,0,0
+19291,60000,female,2,1,38,7,6,5,4,3,2,126220,76247,72225,67850,63073,61761,0,880,528,0,0,2380,0
+19292,200000,female,1,2,39,-2,-2,-2,-2,-2,-2,345,355,0,0,907,0,355,0,0,907,0,0,0
+19293,160000,female,3,1,38,-2,-2,-2,-2,-2,-2,5207,207,207,207,207,207,207,207,207,207,207,207,0
+19294,230000,female,2,1,38,-1,-1,-1,0,0,0,4549,0,24962,34372,32630,33334,0,24962,10000,943,1000,1058,0
+19295,230000,female,2,1,40,1,-2,-1,-1,-1,-1,0,0,3504,4272,2977,1900,0,3504,4272,2977,1900,0,0
+19296,90000,female,3,1,39,1,-2,-2,-1,0,0,0,0,0,873,873,0,0,0,873,0,0,0,0
+19297,140000,female,3,1,40,2,0,0,0,2,2,30755,31757,32808,35342,35965,36741,1815,1866,3400,1500,1500,1484,1
+19298,30000,female,3,2,41,0,0,0,0,0,2,24217,24216,25254,27099,30297,28817,2000,3000,3000,5000,0,1500,0
+19299,320000,female,1,1,41,0,0,0,0,0,0,59807,68080,67745,91798,90936,92588,10000,4200,30000,7,3000,0,0
+19300,20000,female,3,1,35,0,0,0,-1,-1,-1,17008,17922,18421,7032,0,1000,1501,1000,7200,0,1000,2017,0
+19301,50000,female,3,2,35,-1,-1,-1,-1,-1,-1,3123,1326,2866,4406,2821,1854,1326,2866,4406,2821,1854,1688,0
+19302,30000,female,3,1,38,0,0,0,0,0,0,24505,25592,26628,27678,28084,30068,1800,1750,1800,1165,2600,1200,0
+19303,160000,female,3,2,36,-1,-1,-1,-1,0,-1,27204,897,1066,1760,880,5510,897,1066,1760,0,5510,0,0
+19304,280000,female,2,1,48,-1,-1,0,0,-1,-1,79536,31251,37071,16757,9509,10861,31280,26757,5076,9539,10861,56137,0
+19305,390000,female,2,2,35,0,0,0,0,0,0,42286,30038,27402,28352,28066,28215,2389,2414,2378,892,925,938,0
+19306,100000,female,3,1,44,0,0,0,0,0,0,41803,73882,75609,77265,78973,81665,33882,4000,4000,4000,5000,5900,1
+19307,200000,female,5,2,48,0,0,-2,-2,-2,-2,198540,0,0,0,0,0,0,0,0,0,0,0,0
+19308,110000,female,3,1,43,0,0,0,0,0,0,48796,49371,19413,20204,16627,14980,2350,1392,1183,511,1151,482,0
+19309,50000,female,2,1,45,0,0,0,0,0,0,48875,50103,46641,31459,28901,29523,2080,1690,1458,1100,1076,1094,0
+19310,100000,female,2,1,41,0,0,0,0,0,0,111925,107224,107126,101859,79519,74368,4000,7000,3533,2673,3500,4303,0
+19311,250000,female,1,1,34,2,0,0,2,0,0,138380,141223,156858,151841,152803,155997,5136,17994,0,5469,5656,6811,0
+19312,20000,female,3,1,48,2,2,2,2,2,2,13836,14805,15865,16062,15509,16558,1500,1595,750,0,1452,0,1
+19313,260000,female,2,1,35,-2,-2,-2,-2,-2,-2,3439,10034,256,274,388,766,10127,258,274,388,766,1185,0
+19314,20000,female,3,1,31,1,2,0,0,0,0,15043,14509,19092,19113,19483,14523,0,5166,2963,833,812,0,1
+19315,320000,female,2,1,44,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+19316,30000,female,1,1,37,0,0,0,0,0,0,7979,8301,9156,8983,8141,6422,1149,1191,1079,239,209,206,0
+19317,50000,female,2,2,41,0,0,0,0,0,0,39859,38781,26823,26799,26536,27093,1501,2003,1420,937,972,1007,0
+19318,80000,female,2,2,36,2,0,0,-2,-2,-2,19671,20650,0,0,0,0,1700,0,0,0,0,0,1
+19319,120000,female,2,1,40,1,2,3,2,3,2,57816,62139,60584,63871,62251,63443,5900,0,4900,0,2500,2500,1
+19320,290000,female,2,1,49,-1,0,0,0,0,0,37246,36927,39769,35058,36965,38863,3000,3500,2500,2500,2500,2000,0
+19321,50000,female,2,1,43,0,0,0,0,0,-2,30530,41460,21897,23404,0,0,2000,2000,2000,0,0,0,0
+19322,30000,female,3,1,39,0,0,0,2,0,0,21173,22513,23826,20613,21269,22761,2000,2000,1000,1000,2000,2000,1
+19323,580000,female,2,2,33,0,0,0,0,-1,-1,18812,15408,20629,10682,6788,10413,2000,10053,8017,6788,10413,10519,0
+19324,270000,female,1,1,41,-1,-1,-1,-1,-1,-1,1278,-4,3564,1280,1898,0,0,3568,1280,1898,0,2605,0
+19325,30000,female,3,1,42,2,-1,-1,-1,0,-1,836,836,836,1672,836,390,836,836,1672,0,390,930,0
+19326,160000,female,1,1,31,2,2,2,0,0,0,147710,151368,147184,149053,136809,140678,7501,0,5790,4825,6000,5354,0
+19327,180000,female,2,2,31,-1,-1,-1,-1,-1,-1,416,416,416,416,416,416,416,416,416,416,416,416,0
+19328,20000,female,2,1,34,0,0,2,-1,-1,-1,3223,3176,220,632,0,316,1220,0,632,0,316,782,1
+19329,210000,female,2,1,33,-1,-1,-1,-1,-1,-1,7655,1644,2258,8241,428,3537,1644,2261,11008,428,3537,0,0
+19330,200000,female,3,1,43,0,0,0,0,0,0,113570,113974,117248,104889,103668,105467,4149,5571,5221,4001,4001,4001,0
+19331,130000,female,3,1,43,0,0,0,0,0,0,32667,33822,34975,35943,36447,37259,2000,2000,1850,1400,1400,1400,0
+19332,30000,female,5,1,36,-2,-2,-2,-2,-2,-2,8839,0,4342,690,0,99,0,4342,690,0,99,0,0
+19333,130000,female,2,1,40,-1,-1,-1,-1,-1,-1,4176,11806,1984,4649,6727,473,11839,3000,4649,6727,473,1669,0
+19334,180000,female,3,1,43,-1,-1,-1,-1,-1,0,3122,-26214,98834,34677,55634,44325,16,130000,40057,56000,10000,66000,0
+19335,110000,female,2,1,39,0,0,0,0,0,0,93111,91198,85136,80491,78967,80628,3226,3050,2765,2304,2400,1885,0
+19336,20000,female,2,1,39,0,0,2,2,0,-1,15299,14112,11221,10656,7928,580,1883,3520,0,1000,580,0,0
+19337,150000,female,2,2,35,0,0,0,0,0,0,97268,71876,50043,55182,48983,50136,3500,2000,20000,2000,2000,2000,0
+19338,210000,female,3,2,37,1,-1,0,0,0,0,0,202,4202,5152,5444,5786,202,4000,1208,500,400,5380,0
+19339,90000,female,2,2,42,0,0,0,-1,-1,-1,92837,95413,94460,10031,11243,3343,4500,2000,10061,11277,3808,14741,0
+19340,500000,female,2,1,42,0,0,0,0,0,0,62112,60246,74832,126778,82611,71338,20025,40000,85000,139,20000,29761,0
+19341,300000,female,2,1,37,-1,-1,-1,-1,-1,-1,15695,11551,6224,14959,6885,22107,11551,6252,14959,6885,22107,6741,0
+19342,370000,female,3,1,33,0,0,0,0,0,0,18082,18339,19031,17345,18245,23200,1628,1320,1100,1000,10000,1000,0
+19343,200000,female,2,2,35,0,0,0,0,2,0,104393,108956,109339,113799,75536,66643,6300,4588,6910,30,2375,9577,0
+19344,500000,female,4,2,38,-2,-2,-2,-2,-2,-2,2252,2265,24667,40626,9255,8659,2265,24905,40827,30844,8695,3532,0
+19345,50000,female,2,2,41,0,0,0,0,-2,-2,43885,45408,36025,0,0,0,2408,2025,0,0,0,0,1
+19346,120000,female,2,1,36,0,0,-2,-2,-1,-1,106609,380,0,970,5576,0,380,0,970,5576,0,2785,0
+19347,270000,female,2,1,38,0,0,0,0,0,0,62263,60654,59464,54715,51796,53256,3000,3000,3019,5000,5000,10000,0
+19348,300000,female,1,1,43,-1,-1,-1,-1,-1,-1,21953,32905,14458,18061,8016,5768,32905,14458,18061,8016,5768,7229,0
+19349,90000,female,2,1,37,1,2,2,2,0,0,18255,17664,20667,20042,20408,22073,0,3300,0,1000,2000,0,0
+19350,120000,female,2,1,48,-1,-1,-1,-1,0,-1,626,0,1252,1252,1252,626,0,1252,1252,0,626,0,0
+19351,90000,female,2,1,47,1,2,2,2,0,0,6681,6426,10289,10816,11333,11997,0,4000,1000,1000,1000,1000,0
+19352,350000,female,1,2,41,0,0,0,0,0,0,122017,121505,119522,119947,117328,118400,6000,5900,5800,4100,4500,5000,0
+19353,180000,female,2,1,29,1,4,3,2,2,-2,20867,20168,14464,3455,0,0,0,0,0,0,0,0,0
+19354,240000,female,2,2,29,-1,-1,-1,-1,-1,-1,2638,1526,2276,1486,1776,2308,1526,2276,1486,1776,2308,776,1
+19355,80000,female,2,1,38,1,2,0,0,0,0,84372,77773,78499,79943,77354,78655,0,2900,3102,3000,3010,3400,0
+19356,50000,female,2,1,37,0,0,0,2,0,0,46239,47469,51145,45624,29172,27291,2000,4500,0,1153,1000,1065,1
+19357,370000,female,1,1,42,0,0,0,0,0,0,291006,271452,256269,200761,125646,111185,12100,11295,8300,5000,4600,10000,0
+19358,150000,female,2,1,43,-2,-2,-2,-2,-2,-2,5446,6671,4839,807,28023,7613,6682,6095,807,28023,7613,4331,0
+19359,410000,female,1,2,31,0,0,0,0,0,0,400967,365398,367247,304903,310333,317330,14158,13000,13000,12000,12000,15000,0
+19360,230000,female,2,1,32,-1,-1,-1,-1,-1,-1,1680,1535,1836,2274,0,21166,1535,1836,2283,0,21166,1000,0
+19361,80000,female,3,2,32,-2,-2,-2,-2,-2,-2,4965,51932,0,2165,39881,14691,51932,0,2165,39881,14691,10500,0
+19362,140000,female,1,2,32,0,-1,0,0,0,0,10281,32163,20421,19573,11611,0,32172,1476,2140,1000,0,0,0
+19363,180000,female,2,1,32,0,0,0,0,0,-2,5244,8135,12621,17987,-99,-99,3000,5000,15000,0,0,0,0
+19364,240000,female,1,1,33,0,0,0,0,0,0,95835,90385,85011,77329,50673,48723,4060,3181,3000,1500,3042,1377,0
+19365,160000,female,2,2,30,-2,-2,-2,-2,-2,-2,-38,-38,-38,-38,-38,-38,0,0,0,0,0,0,0
+19366,320000,female,1,2,31,-1,-1,-1,-1,-1,0,11910,4401,3345,1104,82434,82319,4445,3398,1104,82434,0,20895,0
+19367,80000,female,2,1,35,2,2,-1,-1,-1,-1,252,-1624,2072,1752,1876,1876,0,5572,1752,2000,1876,2071,0
+19368,230000,female,2,1,36,0,0,0,2,0,0,3745,4632,4979,631,1635,10244,3000,2023,0,1004,10019,1141,0
+19369,230000,female,2,1,40,-2,-2,-2,-2,-2,-2,273,273,2418,1428,4398,5748,273,3588,1428,4398,5748,3768,0
+19370,20000,female,2,1,38,0,0,0,0,0,0,11904,13193,12236,13041,13641,14251,1500,1400,1500,1000,1000,0,0
+19371,220000,female,2,1,37,0,0,0,0,0,0,158494,156004,149677,152724,142064,142649,7000,7000,7100,5000,5400,5600,0
+19372,180000,female,1,1,42,-2,-2,-2,-2,-2,-1,626,0,1290,0,0,1200,0,1290,0,0,1200,0,0
+19373,260000,female,2,1,36,0,0,-1,0,-1,0,7258,7935,4979,3976,6623,24426,2037,4979,1019,6623,18119,1382,0
+19374,360000,female,2,1,37,-1,-1,0,-1,-1,-1,10000,17444,17165,10000,10000,10000,17444,10035,10000,10000,10000,0,0
+19375,210000,female,2,1,36,1,2,0,0,0,0,167970,161852,163600,162303,162799,161912,0,8000,8000,6000,6000,6000,1
+19376,200000,female,1,2,32,-2,-2,-2,-2,-2,-2,261,1715,281,1105,354,-2,1723,282,1110,390,0,0,0
+19377,350000,female,1,2,35,-2,-2,-2,-2,-2,-1,8526,10892,9218,9834,1458,5225,10951,9274,4711,1472,5251,68361,0
+19378,360000,female,1,1,35,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,558,0
+19379,60000,female,2,2,27,0,0,0,3,2,2,30641,33787,42025,41067,40109,42695,3987,8825,0,0,3400,1800,0
+19380,190000,female,1,2,47,-1,-1,-1,-1,-1,-1,314,3031,597,1640,306,39506,3031,597,1648,306,39506,697,0
+19381,180000,female,1,2,35,0,0,0,0,0,0,24414,22479,21802,20100,16629,15628,2483,2808,2101,3,2000,0,0
+19382,230000,female,1,1,37,-2,-2,-2,-2,-2,-2,312,2984,1786,363,437,843,3186,1786,363,437,843,500,1
+19383,270000,female,1,1,45,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+19384,220000,female,3,1,45,0,0,0,0,0,0,176879,182100,184900,170611,125433,83709,10150,10000,10000,10053,4000,3000,0
+19385,80000,female,1,1,36,-1,-1,-2,-2,-2,-1,78780,0,0,0,0,59349,0,0,0,0,59349,0,0
+19386,90000,female,1,2,29,0,0,0,0,0,0,79063,64135,46678,85156,43269,44181,3687,1997,1995,1686,1749,1840,0
+19387,500000,female,1,1,35,-2,-1,0,-1,-1,-1,5799,36189,23338,7896,8970,215305,36277,6112,10014,9018,215518,20018,0
+19388,210000,female,2,1,35,-1,-1,-1,-1,0,-1,188,971,2871,5087,1943,3392,971,2871,5087,0,3392,4000,1
+19389,110000,female,1,2,27,0,0,0,0,2,0,89603,88232,85362,74552,59902,42254,4113,3500,4005,0,1500,1999,0
+19390,150000,female,1,2,31,0,0,0,-1,0,0,10778,6798,6221,4711,6711,6711,6000,3039,9050,2000,0,4000,0
+19391,90000,female,1,2,33,-1,-1,-1,-1,-1,-1,3000,6000,0,3000,3000,3000,6000,0,3000,3000,3000,3000,0
+19392,190000,female,2,1,34,0,0,0,2,2,2,84031,86730,93705,91317,96079,94428,5000,9310,0,7200,0,8000,0
+19393,180000,female,2,2,43,0,0,0,0,0,-2,152122,98901,101689,102925,0,0,10000,6500,5000,0,0,0,0
+19394,240000,female,2,1,37,0,0,0,0,-1,0,51277,51999,52613,21696,22807,22877,10006,10000,10000,22807,10000,11109,0
+19395,200000,female,2,2,28,-1,-1,-1,2,2,-2,4571,0,2983,2780,0,0,0,2983,0,0,0,3125,0
+19396,200000,female,3,1,49,1,-2,-1,-1,-1,-1,0,0,2317,7588,7606,14053,0,2317,7588,7614,14053,0,0
+19397,160000,female,2,2,38,-2,-2,-2,-1,0,0,0,0,0,68600,70000,0,0,0,68600,1400,0,0,0
+19398,240000,female,1,2,27,1,2,0,0,0,-1,7029,3932,2105,2487,777,5300,0,1057,1000,0,5300,1800,0
+19399,80000,female,2,1,25,0,0,0,0,0,0,76358,77433,74050,73361,56966,59130,3000,3000,2700,2000,5000,2200,0
+19400,180000,female,2,1,39,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+19401,80000,female,2,2,26,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+19402,70000,female,2,2,26,0,0,0,0,0,0,70805,70087,62750,53600,45215,46486,2600,2231,1800,1700,2000,2000,0
+19403,160000,female,2,1,38,0,0,0,-1,-1,-1,73902,119408,134243,12670,6349,10775,50000,20000,30037,6349,11000,4000,0
+19404,200000,female,1,2,30,0,0,0,0,0,0,148646,132606,136183,127438,124816,92037,5000,8500,3500,3000,25000,70000,0
+19405,20000,female,1,2,34,-2,-2,-2,-2,-2,-2,1789,16745,1464,1466,1691,4565,16745,1464,1466,1691,4565,4570,0
+19406,300000,female,2,1,35,0,0,0,0,-1,0,155493,179071,42404,71493,13547,27710,50706,30028,60300,27054,25003,10,0
+19407,150000,female,1,1,42,0,0,0,2,2,2,107968,109234,37424,36446,39193,38297,5023,6086,0,5200,0,2769,0
+19408,30000,female,1,2,45,1,2,-1,-1,-1,-1,5830,1330,909,390,29570,940,0,909,390,29570,940,3482,0
+19409,360000,female,2,2,37,-1,-1,-1,-1,-1,-1,333,333,5043,333,0,333,333,5043,333,0,333,210,1
+19410,280000,female,1,1,39,0,0,0,0,0,0,97694,89690,86812,87813,88267,89676,4014,4300,4153,2900,2500,2600,0
+19411,30000,female,3,2,23,1,2,0,0,0,0,30335,29546,29826,29997,29789,29967,0,2000,1500,1000,2000,0,0
+19412,50000,female,1,2,24,0,0,0,0,0,0,48712,49587,21604,14772,9238,9588,2269,1286,1200,332,500,1000,0
+19413,160000,female,4,1,28,-1,-1,-1,-1,-1,-1,819,162,165,165,165,165,162,168,165,165,165,165,0
+19414,80000,female,1,2,28,0,0,0,2,2,0,36736,38079,40805,35740,32684,32605,1955,3681,1300,0,1500,1200,0
+19415,100000,female,1,2,29,0,0,0,0,0,2,92929,95471,98569,48695,54444,4948,5000,5000,1251,6000,0,1500,0
+19416,60000,female,2,1,47,0,0,0,0,0,0,54532,54203,58199,59152,76006,19604,1970,6000,3000,1000,1000,1000,0
+19417,420000,female,1,2,27,0,0,0,0,0,0,198604,202935,207548,211990,216362,220728,7518,7763,7768,7768,7877,7934,0
+19418,140000,female,2,2,27,-2,-2,-2,-2,-2,-2,0,0,0,0,0,1079,0,0,0,0,1079,88654,0
+19419,270000,female,1,2,32,2,2,2,0,0,0,9220,14050,13539,15005,16438,17021,5000,0,2000,2000,1000,1000,1
+19420,160000,female,1,1,35,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,1404,1
+19421,230000,female,1,2,31,-1,-1,-1,-1,-1,0,2850,1940,8508,-853,13909,29160,1940,8508,0,19000,19160,0,0
+19422,100000,female,1,3,47,0,0,0,0,0,0,43175,42669,42238,41646,40976,40503,1680,1722,1603,1406,1598,1502,0
+19423,260000,female,1,2,36,-2,-2,-2,-2,-2,-2,0,132,1109,1181,-18,3791,132,1119,1186,18,3809,1917,0
+19424,200000,female,1,2,37,0,0,0,0,0,0,191876,121296,121473,123943,127552,130380,4305,4408,4489,5660,6000,0,0
+19425,380000,female,2,1,44,0,0,0,0,0,0,268755,270405,258979,261213,264550,163860,11035,10009,11003,10500,7500,7505,0
+19426,130000,female,2,1,33,-1,-1,-1,0,0,-2,41573,0,13853,14277,0,0,0,13853,1000,0,0,0,0
+19427,70000,female,2,2,33,1,2,2,2,2,2,67967,66276,71307,71977,70306,71161,0,6124,2500,0,5300,2600,0
+19428,270000,female,2,1,33,-1,-1,-1,-1,-1,-1,10148,625,14430,7320,5500,500,625,14430,7325,5500,500,6921,0
+19429,30000,female,2,1,49,0,0,0,0,0,0,27922,25214,26755,23235,25008,26761,2000,2000,2000,2000,2000,822,1
+19430,290000,female,1,1,37,-1,-1,-1,-1,-1,-1,20565,8741,24250,97542,16950,0,8741,24257,97542,16950,0,21830,0
+19431,50000,female,2,2,40,0,0,2,0,0,0,46319,49518,48188,49966,19294,18971,4000,1000,3800,820,900,695,0
+19432,30000,female,2,1,40,1,2,2,0,0,0,31230,31348,28034,26251,24133,22527,2007,8,2007,1005,782,2009,1
+19433,210000,female,3,1,38,-1,-1,-1,-1,-1,-1,2569,3920,2529,3087,2811,3204,3920,2529,3087,2811,3204,4173,0
+19434,220000,female,3,2,43,0,0,0,0,0,0,223022,215787,220680,219459,177765,175238,7750,8397,7349,6518,7000,7000,0
+19435,340000,female,2,1,32,0,0,0,0,0,0,61605,64250,66293,57657,53035,54693,3500,3049,2706,1870,3000,4000,0
+19436,500000,female,1,1,41,-2,-2,-2,-2,-2,-2,4513,4342,3321,6760,5788,12633,4375,3337,6789,5816,12696,4348,0
+19437,30000,female,2,1,31,1,2,0,0,2,0,20494,19867,21045,24681,23985,25099,0,1500,4000,0,1500,6000,0
+19438,180000,female,2,1,32,2,2,2,2,2,0,13286,15548,15009,17752,17172,18732,2800,0,3000,0,2000,5000,1
+19439,60000,female,2,2,24,0,0,0,0,0,0,53910,55028,56449,56273,28316,30763,2600,2900,2034,2000,3000,1000,0
+19440,100000,female,1,2,32,0,-1,0,0,0,0,41531,6120,104346,91025,91120,1777,6157,100000,2017,1822,1777,7748,0
+19441,270000,female,2,1,33,-1,-1,2,-1,0,0,7780,7365,3097,48546,47250,46649,2228,0,48546,2000,3000,3000,1
+19442,200000,female,2,1,47,-2,-2,-2,-2,-2,-2,8800,0,5738,0,2244,66000,0,5738,1626,2244,66000,30000,0
+19443,240000,female,2,1,38,0,0,0,0,0,0,234304,229519,229676,234928,160765,158184,7888,8522,9260,5700,5475,5520,0
+19444,110000,female,2,1,40,0,0,0,0,0,0,107035,110156,8871,66482,59578,57961,4000,2500,58000,2000,3000,3500,0
+19445,360000,female,1,2,32,0,0,0,0,0,0,167232,166848,149903,138091,138123,140324,6121,7294,6135,4504,4669,4060,0
+19446,50000,female,3,2,35,0,0,-1,0,-1,0,54731,51080,45536,38745,37395,19247,1730,52014,1200,19959,1402,811,0
+19447,60000,female,2,1,39,0,0,0,-1,0,0,50615,50200,19567,29035,27762,27740,1619,1429,31426,969,998,1545,0
+19448,50000,female,2,1,38,0,0,0,2,0,0,5764,6786,9095,8803,8975,9008,1278,2587,0,467,326,329,0
+19449,120000,female,1,2,28,-1,-1,-1,-1,-1,0,3564,2063,768,3096,2677,2592,2063,768,3146,2677,0,0,0
+19450,140000,female,2,1,48,0,0,0,0,0,0,121096,123064,126749,127244,129495,126663,4407,6100,4518,4694,4745,4876,0
+19451,100000,female,2,1,46,1,2,2,0,0,0,97515,99028,96592,99801,27930,27377,4000,0,5000,2000,1116,1500,0
+19452,280000,female,3,1,46,2,2,0,0,0,0,506515,491801,62236,54813,38669,18010,0,1803,1475,1105,534,318,1
+19453,180000,female,1,1,28,0,0,0,0,0,0,176793,173034,171772,172344,134321,131191,8000,8206,6500,5000,5000,5000,0
+19454,180000,female,1,2,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+19455,150000,female,2,1,37,2,2,2,2,0,0,100390,108784,110405,106317,30906,31457,11600,4800,0,1240,1200,1200,0
+19456,180000,female,1,2,42,2,2,2,2,2,2,130304,140191,142477,141674,146312,149133,13600,6000,3000,8500,5300,300,1
+19457,180000,female,1,2,35,-1,-1,-1,-1,0,0,19369,7123,4569,29635,6489,0,7123,4569,36124,0,0,0,0
+19458,30000,female,2,1,41,0,0,0,0,0,0,25735,27001,28261,29337,26189,21715,2000,2000,2000,500,1000,500,0
+19459,380000,female,2,1,48,0,0,0,0,0,0,64001,60427,58603,58359,59527,58482,5000,7000,7359,10000,7000,10000,0
+19460,130000,female,3,2,36,-1,-1,-1,-1,-1,-1,1738,1738,1738,1738,1738,1738,1738,1738,1738,1738,1738,1938,0
+19461,170000,female,1,2,28,-1,-1,-1,-1,-1,-1,1311,3008,4244,1718,0,1125,3008,4244,1718,0,1125,0,0
+19462,220000,female,1,1,43,-1,-1,-1,2,-1,0,941,911,9743,7480,22880,880,920,9752,0,22880,0,7270,1
+19463,150000,female,1,1,49,1,-2,-2,-1,-1,-1,0,0,0,12200,16961,3000,0,0,12200,16961,3000,493,0
+19464,180000,female,5,2,34,1,-1,-1,-2,-2,-2,0,149,0,0,0,0,149,0,0,0,0,0,0
+19465,180000,female,1,2,46,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+19466,360000,female,1,2,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+19467,150000,female,1,1,30,-1,-1,0,0,0,0,107799,16332,13837,15855,9049,3244,16363,10149,10000,7000,0,0,0
+19468,170000,female,5,1,39,-1,-1,-1,-1,0,0,1803,217,10121,12180,15667,9224,218,10121,12180,5011,0,265,0
+19469,50000,female,1,2,44,0,0,0,0,0,0,10012,11039,12549,16995,17490,18253,1500,2000,5000,778,1200,752,0
+19470,300000,female,1,2,39,0,0,0,0,0,2,87540,89792,91558,93741,99802,97711,5000,4500,5000,8000,0,4000,0
+19471,450000,female,1,2,40,-2,-2,-2,-2,-2,-2,799,0,0,0,0,0,0,0,0,0,0,0,0
+19472,210000,female,2,1,29,0,0,0,-1,-1,0,145499,107712,-564,4270,143607,144505,4751,0,6000,143754,5000,5314,0
+19473,80000,female,2,1,30,2,2,-2,-2,-1,-1,15304,0,0,0,1005,5,0,0,0,1005,0,0,0
+19474,240000,female,2,1,32,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+19475,110000,female,2,2,32,0,0,0,0,0,0,68014,68788,70880,72403,73600,75261,2500,3200,3300,3000,3000,2746,0
+19476,400000,female,3,1,40,-1,-1,0,-1,-1,-2,27035,28119,31166,35238,1408,4869,28204,33716,37400,1408,4869,5539,0
+19477,90000,female,2,1,49,1,-2,-2,-1,-1,-1,0,0,0,2146,2452,6990,0,0,2146,2452,6990,3550,1
+19478,210000,female,1,2,29,0,0,0,0,0,0,199251,205143,192260,168511,144980,153706,9025,8507,5740,5128,11000,0,0
+19479,260000,female,1,2,31,0,0,0,0,0,0,69343,70585,71430,73837,73271,74266,4000,4000,4007,13990,2056,2623,0
+19480,170000,female,1,2,27,0,0,0,0,-1,0,89909,61785,17848,14000,124208,122955,8941,3848,4000,124208,5000,5000,0
+19481,210000,female,2,2,30,1,-2,-1,-1,2,0,0,0,474,17171,16625,17030,0,474,17171,0,800,5000,0
+19482,200000,female,1,1,38,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+19483,560000,female,1,1,45,0,0,0,0,0,0,34669,150228,151425,143343,127225,130479,150000,60052,10268,27225,15000,20000,0
+19484,540000,female,1,2,34,-1,-1,-1,-1,-1,-1,1128,1784,892,946,946,946,1784,892,1000,946,946,946,0
+19485,100000,female,2,1,29,-1,-1,-2,-2,-2,-2,500,0,0,0,0,0,0,0,0,0,0,0,0
+19486,80000,female,2,1,26,0,0,0,0,-2,-2,77758,80468,82150,0,0,0,4000,4000,0,0,0,0,1
+19487,30000,female,2,1,35,2,2,2,2,2,0,23785,20946,23785,24422,23688,19626,0,3500,1319,0,800,1610,1
+19488,80000,female,2,1,28,0,0,0,0,0,0,77856,76079,78410,55417,50733,50441,3670,4520,3311,50441,1800,2100,1
+19489,50000,female,1,2,28,2,2,0,0,0,0,19930,19316,20347,21354,21630,23123,0,1646,1653,929,2000,0,1
+19490,120000,female,1,2,26,0,0,0,0,0,0,43629,56933,54724,32400,9207,5828,25000,45000,5151,2000,5000,9115,0
+19491,240000,female,2,1,32,0,0,0,-2,-2,-2,24615,27500,0,0,0,0,5000,0,0,0,0,0,0
+19492,260000,female,2,1,33,-2,-2,-2,-2,-2,-2,3342,8978,4331,13860,1987,5626,9023,4353,13929,1997,5654,3964,0
+19493,280000,female,2,2,33,0,0,0,0,0,-1,71174,66228,39379,13409,40854,2930,2290,1304,1000,29485,2930,0,0
+19494,30000,female,2,1,35,0,0,0,0,0,0,31955,30429,27286,21919,19015,2732,1800,1388,1501,1001,2732,3280,1
+19495,150000,female,3,2,38,1,-2,-1,2,2,2,1589,1335,9447,4887,11181,6692,1339,9460,0,6702,16,8242,0
+19496,350000,female,2,1,36,0,0,0,0,0,0,21026,35588,38002,40357,43663,52735,15000,3000,3000,4000,10000,25000,1
+19497,100000,female,2,2,34,-1,-1,-1,-1,-1,-2,1919,1831,163,1028,0,0,1831,163,1028,0,0,0,0
+19498,320000,female,1,1,46,-1,-1,-1,-1,-1,-1,57593,534,2709,0,7779,0,534,2709,0,7779,0,417,0
+19499,380000,female,2,1,41,3,3,2,0,0,0,415735,400246,384705,383332,381423,377466,0,0,15135,13212,13529,15212,1
+19500,40000,female,2,2,43,1,3,2,2,3,2,9268,8974,8885,10583,10269,9960,0,200,2000,0,0,1200,0
+19501,100000,female,3,1,43,0,0,0,0,0,0,5719,6633,3461,4471,4560,4656,1043,1064,1074,163,169,169,0
+19502,270000,female,1,2,30,0,0,0,0,0,0,81488,76257,70685,66539,61069,56211,3000,5000,3000,2200,2100,3879,0
+19503,30000,female,3,1,44,2,0,0,0,0,0,26627,27631,29179,30146,26371,27567,1452,2000,1500,933,2000,3000,1
+19504,50000,female,2,2,40,0,-1,-1,-1,-2,-2,19869,15584,4377,0,0,0,15584,4377,0,0,0,0,0
+19505,180000,female,1,2,30,0,0,0,0,0,0,44478,40311,43847,50763,69026,32030,8000,10000,10000,23000,5000,4000,0
+19506,150000,female,1,2,31,-2,-2,-2,-2,-2,-2,5596,2569,0,0,0,302,2573,0,0,0,302,176,0
+19507,360000,female,1,1,32,0,0,0,0,0,0,16039,20396,19382,13874,9398,10773,5000,2000,5019,2000,2500,5000,0
+19508,170000,female,1,1,38,-1,-1,-2,-2,-2,-1,5910,0,0,0,0,3001,0,0,0,0,3001,9436,0
+19509,140000,female,2,2,37,0,0,0,0,0,0,86858,89509,91476,92591,95887,97739,5000,4300,3600,5000,3310,3400,0
+19510,90000,female,2,1,41,0,0,0,0,0,0,25388,26460,26711,27722,28116,28552,1800,1747,1758,1152,1038,1073,0
+19511,20000,female,3,2,46,-1,-1,-1,-1,-1,-1,942,942,9849,3870,6630,1170,942,9849,3870,6700,4780,150,0
+19512,160000,female,3,1,28,2,2,2,2,0,0,132528,135846,136732,101473,100895,103107,7000,5000,0,3770,4000,4000,0
+19513,30000,female,2,2,36,0,0,0,0,0,0,26535,27131,27294,27853,28033,28756,1433,1481,1430,1000,1543,1200,0
+19514,300000,female,2,1,38,1,-2,-2,-1,0,-1,0,0,0,1000,890,390,0,0,1000,390,390,540,1
+19515,80000,female,2,2,24,2,0,0,0,0,0,81228,76590,73327,69760,50642,48690,3400,2800,3038,2000,2000,2000,1
+19516,360000,female,1,2,32,0,0,0,0,0,0,11358,17580,17416,14789,11800,21831,7079,7000,5000,0,11831,13000,1
+19517,460000,female,1,2,41,0,-1,-1,-2,-2,-1,6302,31293,0,0,0,18165,31321,0,0,0,18165,2008,0
+19518,30000,female,3,2,46,2,2,-1,2,0,0,19830,15915,1736,1170,780,780,0,1736,0,0,0,0,0
+19519,80000,female,2,1,37,-1,-1,-1,-1,-1,-1,2000,2000,2000,2000,2000,2000,2000,2000,2000,2000,2000,4206,1
+19520,140000,female,5,2,25,0,0,0,0,0,0,91485,78704,79449,45514,42155,42812,3009,3411,1523,1352,1526,1505,0
+19521,280000,female,2,1,43,2,-1,-1,-1,-1,-1,644,499,1641,5280,6913,-741,499,1641,5280,6915,0,0,0
+19522,300000,female,2,1,28,0,0,0,-1,0,0,30631,14623,9728,28960,26589,18171,1373,1010,42348,0,0,173,0
+19523,30000,female,2,1,29,2,2,2,0,0,2,15361,18274,17697,18416,20099,21631,3175,0,1317,2000,2000,0,1
+19524,500000,female,1,1,37,0,0,0,0,0,0,208068,188873,170225,170407,196150,167748,30072,10093,20031,60030,15008,8008,0
+19525,180000,female,2,1,42,0,0,0,0,0,2,258662,265416,279551,285045,298652,296036,11056,20000,12000,18000,0,5651,0
+19526,160000,female,3,1,37,0,0,0,0,0,0,17500,15933,19536,7550,6977,7811,10000,10000,3006,3000,3000,0,0
+19527,200000,female,1,1,40,-2,-2,-2,-2,-2,-2,0,0,2479,0,0,0,0,2479,0,0,0,0,0
+19528,130000,female,2,1,37,0,0,0,0,0,0,110434,108740,122873,122870,120373,134146,4100,20000,6000,5000,20000,6000,0
+19529,230000,female,3,2,30,-1,-1,-2,-2,-2,-1,2380,0,0,0,0,31868,0,0,0,0,31868,13216,0
+19530,230000,female,1,2,34,-1,-1,-1,-1,-1,-1,3251,4342,2557,4440,4832,6059,4347,2557,4443,4832,6314,7897,1
+19531,60000,female,3,1,48,-1,-1,-1,-1,-1,-1,316,316,316,316,316,316,316,316,316,316,316,316,1
+19532,80000,female,2,1,47,-1,2,2,-1,-1,-1,4166,3908,0,3521,0,14206,0,0,3521,0,14206,7500,0
+19533,240000,female,2,1,47,-2,-1,-1,-2,-1,-1,27884,23222,0,0,13143,27383,23610,0,0,13143,27383,21718,0
+19534,240000,female,2,2,30,0,-1,0,0,0,0,35380,64013,51380,25438,19376,12889,64013,1651,1705,564,2093,144734,0
+19535,220000,female,3,1,33,-2,-2,-2,-2,-2,-2,1037,1062,0,0,0,0,1062,0,0,0,0,0,0
+19536,50000,female,2,1,44,0,0,0,0,0,0,10950,5662,6797,7565,9565,11357,1097,1232,1000,2000,2000,4000,1
+19537,50000,female,3,1,42,0,0,0,0,0,0,50562,50906,48888,47037,12187,9962,2000,2009,1180,1000,1000,348,0
+19538,50000,female,2,1,38,-1,-1,-1,-1,-1,-1,588,588,588,926,643,643,588,588,926,643,643,643,0
+19539,90000,female,2,1,39,-2,-2,-2,-2,-2,-2,1330,950,1330,950,950,11786,950,1330,950,950,11786,1250,1
+19540,80000,female,2,2,46,0,0,0,2,0,0,79812,80717,80366,74782,47767,49278,2854,7014,44,1693,4000,0,0
+19541,190000,female,3,1,43,0,0,0,0,0,0,93359,95376,98954,101512,106708,109639,3404,4954,4512,6708,4639,4793,0
+19542,210000,female,1,1,31,0,0,0,0,0,0,157544,160437,129247,119579,120318,107122,7505,7072,4009,8000,10000,12000,0
+19543,370000,female,2,1,45,0,0,0,-1,-1,-1,137250,141167,103000,41200,1109,99723,5927,5000,41200,1109,99723,5000,0
+19544,80000,female,2,1,45,1,2,2,2,2,2,53916,52462,55327,56804,57469,58505,0,4327,3000,2200,2100,0,1
+19545,220000,female,2,1,32,0,0,0,0,0,0,28853,29145,27171,22067,17831,15671,2000,4000,1420,2000,3000,30789,0
+19546,230000,female,2,1,44,-1,-1,-1,-1,0,-1,899,1000,1685,3207,1941,329,1000,1685,3207,0,329,2208,0
+19547,200000,female,2,1,39,-1,-1,-1,-1,-1,-1,13145,15549,21375,9312,23958,10825,15571,21488,9312,23958,10825,10773,0
+19548,400000,female,1,2,31,-1,-1,-1,0,0,0,5974,2600,110958,164959,130737,128312,2600,110958,110000,20000,58312,9031,0
+19549,80000,female,2,2,44,0,0,0,0,-1,-1,22771,17047,11885,8254,5144,15365,1239,1435,1350,5144,15365,2250,0
+19550,360000,female,2,1,36,0,0,0,0,0,0,16557,18369,20067,48307,12918,12375,3000,2000,29079,1066,1000,1000,0
+19551,310000,female,1,2,35,0,0,0,0,0,0,308105,303679,278488,256962,262381,278117,13088,9834,9500,9700,20200,11000,1
+19552,150000,female,1,2,29,0,0,0,0,0,0,80299,81963,84641,86330,88885,97402,3000,4000,4000,4000,10000,4000,0
+19553,80000,female,2,2,30,0,0,0,-1,0,0,90562,85919,83023,79031,41149,30244,3340,2000,83731,2000,2000,1000,0
+19554,40000,female,2,1,30,2,2,2,2,2,2,14408,15370,16320,16456,16492,16086,1500,1500,700,600,0,1600,1
+19555,320000,female,1,2,30,0,0,0,0,0,0,2419,3193,5127,6871,7751,8623,2000,2000,2000,1000,1000,1000,0
+19556,170000,female,2,2,38,0,0,0,0,0,0,153123,151050,148362,142223,126060,123978,7000,6000,5012,5000,5000,5000,0
+19557,80000,female,2,2,36,0,0,0,0,0,0,23347,29927,53599,52038,53175,55751,10000,24369,2500,2500,5000,2700,0
+19558,420000,female,1,1,33,2,-1,0,-1,-1,0,8117,20837,21610,10654,4427,1800,20837,1118,10658,6341,0,3,0
+19559,170000,female,2,1,45,0,0,0,0,0,0,169625,169944,169829,162988,125969,127643,6081,6336,5205,4452,4592,4677,0
+19560,230000,female,1,1,40,-1,-1,-2,-1,-1,-2,1163,0,1487,826,-4,-4,0,1487,830,0,0,1342,0
+19561,200000,female,1,1,35,0,0,0,0,-2,-2,20375,12588,9571,0,0,0,1089,1526,0,0,0,0,0
+19562,430000,female,2,1,42,2,2,2,2,2,2,282880,289358,296219,300873,294527,308523,12700,13000,11000,0,19000,15000,1
+19563,100000,female,2,1,32,0,0,0,2,0,0,18641,23380,33045,32346,36597,46121,5000,10000,0,5000,10000,0,0
+19564,210000,female,1,2,32,1,-1,-1,-1,-1,-1,15207,16529,16915,16266,571,18827,16529,16920,16266,0,19136,0,0
+19565,50000,female,1,1,40,-2,-2,-2,-2,-2,-2,0,1470,0,0,591,426,1470,0,0,591,426,595,0
+19566,290000,female,1,2,36,0,0,0,0,0,0,57721,57256,57094,55293,54738,55435,2514,3007,2004,2101,2503,2503,0
+19567,200000,female,1,2,32,-2,-2,-2,-2,-2,-2,0,0,2090,0,0,2820,0,2090,0,0,2820,10540,0
+19568,170000,female,1,2,37,-2,-2,-2,-2,-2,-2,7365,255,4884,4442,1800,0,255,4892,4478,1800,0,150,0
+19569,30000,female,2,2,38,0,0,-2,-2,-2,-2,9730,0,0,0,0,0,0,0,0,0,0,0,0
+19570,360000,female,2,1,48,-2,-2,-2,-2,-2,-2,2500,0,0,0,0,0,0,0,0,0,0,0,1
+19571,110000,female,1,2,31,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+19572,180000,female,1,1,31,0,0,0,2,2,2,151776,157050,167293,168074,167235,179461,9300,14300,5000,3400,15000,6017,0
+19573,220000,female,2,2,34,0,0,0,0,0,0,93815,96121,56148,35642,33516,30177,4300,2407,2000,2000,1100,1000,0
+19574,190000,female,2,2,34,0,0,0,0,0,0,90945,77668,79321,80401,80872,77377,3500,3500,3000,3083,3000,3000,0
+19575,150000,female,4,2,29,0,0,-1,-1,0,0,17196,12991,3305,11164,18803,22891,2012,3310,11164,18800,10000,16910,0
+19576,350000,female,2,1,38,0,0,0,0,0,0,62862,79927,76057,65139,56984,55038,24000,6000,5000,3000,6000,5000,0
+19577,240000,female,2,1,47,0,0,0,0,0,0,121386,123877,127344,125050,126479,130266,6000,7000,6500,5000,6000,6000,0
+19578,230000,female,2,2,30,-2,-1,0,0,0,0,0,63508,59835,60963,59337,71089,63508,2300,2200,2200,25000,2400,0
+19579,500000,female,1,1,29,-2,-2,-2,-2,-2,-2,6887,2926,2546,5495,180,-486,2940,2569,6360,3,0,3012,0
+19580,160000,female,2,1,30,-1,-1,-1,-1,-1,2,33712,14116,-2985,1472,2985,1513,14116,0,4457,1513,0,1328,0
+19581,290000,female,1,2,30,0,0,0,0,0,0,41626,8341,17333,34539,35288,35438,5004,10000,18000,1200,3000,2000,0
+19582,50000,male,2,2,30,0,0,0,0,0,0,22459,48535,49350,26499,21071,18713,26499,2248,1332,544,713,3703,0
+19583,270000,female,1,2,30,2,2,2,0,0,0,172933,184761,164009,161843,151862,0,19028,0,3451,5004,0,0,1
+19584,260000,female,2,2,30,-2,-2,-2,-2,-2,-2,4456,177,1406,1006,436,5860,177,1406,1006,440,5860,1306,0
+19585,180000,female,3,1,31,-2,-1,-1,-1,-1,0,10790,7239,30418,31370,13496,23943,7239,30418,31370,13496,12000,22593,0
+19586,180000,female,2,2,32,-2,-2,-2,-2,-2,-2,0,0,1980,0,0,858,0,1980,0,0,858,0,0
+19587,50000,female,5,1,33,0,0,0,0,0,0,43268,39605,39702,39200,40000,0,2011,2000,1000,800,0,0,0
+19588,50000,female,2,1,34,2,0,0,0,0,0,47993,49051,39945,40254,20040,3563,2010,1904,2214,1000,129,131,1
+19589,80000,female,1,1,37,-1,0,-1,-1,-1,-1,27695,15372,25919,18449,2655,20808,10000,25919,18449,2655,20808,0,1
+19590,250000,female,2,1,37,0,0,0,0,0,0,212954,215928,221963,224949,229577,234221,8000,9510,8160,8364,8493,8625,0
+19591,80000,female,2,1,45,0,0,0,-2,-2,-2,81328,82150,0,0,0,0,3750,0,0,0,0,0,0
+19592,160000,female,2,1,37,0,-1,-1,-1,0,-1,13307,22887,16846,2150,1033,8264,22887,16890,2150,0,8264,8799,0
+19593,30000,female,2,2,42,0,0,0,0,0,0,27855,30787,30128,25178,21060,16893,5000,5137,2189,2007,1009,655,0
+19594,100000,female,2,1,44,0,-1,-1,-1,-1,-1,1603,1440,1440,1440,1440,6059,1440,1440,1440,1440,6059,1440,0
+19595,100000,female,2,1,46,1,-1,-1,-1,-2,-2,0,766,305,0,0,0,766,305,0,0,0,0,0
+19596,130000,female,2,1,45,-1,2,-1,-1,-1,-1,1980,990,990,990,990,1130,0,990,990,990,1130,1000,0
+19597,80000,female,2,1,35,0,0,0,0,0,0,81513,82816,74170,73609,46443,47231,3612,2830,2194,1797,2000,2000,0
+19598,170000,female,1,1,41,0,0,0,0,0,0,93095,95044,98505,99970,102303,104654,3500,5000,4000,4000,4000,4000,0
+19599,280000,female,1,1,42,-2,-2,-2,-2,-2,-2,6425,3746,3863,5740,0,1170,3746,3863,5740,0,1170,4198,0
+19600,500000,female,3,1,44,2,-1,0,0,0,-1,1273,79108,329774,328950,336073,1257,79113,255005,6780,8401,1262,2120,1
+19601,300000,female,2,2,41,-1,-1,-1,-1,-1,-1,1215,43909,27785,5221,1278,3245,43943,27863,5234,1278,3245,22,0
+19602,310000,female,2,1,42,0,-1,-1,2,-1,-1,21692,19697,17257,7900,17161,14585,19697,2270,4,17161,7030,0,0
+19603,120000,female,1,2,29,-1,2,-1,-1,2,0,8318,2730,3647,10730,1835,5843,0,3647,10752,0,5658,6928,0
+19604,50000,female,3,1,49,2,0,0,0,-2,-2,48297,50487,51400,0,0,0,3000,2400,0,0,0,0,1
+19605,340000,female,4,2,29,0,0,0,0,0,0,262621,167331,169625,104501,102700,103824,24298,7068,8015,10053,15000,9507,0
+19606,90000,female,1,2,31,2,2,3,3,3,2,20052,79532,79872,80662,80740,83275,59872,2200,2700,2000,4000,2200,0
+19607,60000,female,1,2,32,1,2,0,0,0,2,17992,17405,18619,19636,20326,21534,0,1500,1328,1018,1687,778,1
+19608,380000,female,1,2,29,0,0,0,0,0,0,384979,276655,174060,172167,142135,152135,20000,9500,4180,0,10000,5000,0
+19609,200000,female,1,2,29,-2,-2,-2,-2,-2,-2,2692,4399,5555,5818,3686,2014,4403,5573,5947,3686,2041,2540,0
+19610,460000,female,1,2,29,0,0,0,0,0,0,82315,170894,160223,160894,165246,169983,90150,7018,7000,7002,8007,8038,0
+19611,300000,female,2,1,30,-1,2,-1,-1,-1,-1,10940,10104,1610,2749,155,3167,0,1610,2768,155,3167,435,0
+19612,360000,female,1,2,30,-2,-2,-2,-2,-2,-2,4765,3415,1539,6501,3458,2786,3434,1546,6541,3475,2788,5710,0
+19613,120000,female,2,1,30,0,0,-1,-1,0,0,25657,27877,1150,29225,25893,11707,3000,2000,29225,2000,2000,20000,0
+19614,500000,female,2,1,31,1,-1,-1,-1,0,0,0,5377,4131,44588,44388,5085,5377,4131,44588,0,0,3148,0
+19615,210000,female,1,1,33,0,0,0,0,0,0,199851,190551,192717,195700,150525,137565,7000,7791,7000,5254,5400,5380,1
+19616,180000,female,2,1,33,2,2,2,2,2,2,115166,122519,123087,126564,123040,129098,10800,4000,7000,0,8200,1500,1
+19617,200000,female,2,1,32,0,0,0,0,0,0,47550,51427,52672,53682,51841,52921,5000,2672,2492,2006,2069,2258,0
+19618,240000,female,2,1,32,0,0,-2,-2,-2,-2,12000,0,0,0,0,0,0,0,0,0,0,0,0
+19619,50000,female,2,1,32,-2,-2,-2,-2,-2,-2,943,0,0,0,20650,0,10528,0,0,20650,0,0,0
+19620,240000,female,1,2,32,-1,0,0,0,0,0,89988,27329,21061,27585,18019,18116,18063,18008,27067,18046,10018,17038,0
+19621,160000,female,3,1,33,-1,2,-1,-1,-2,-2,2364,1095,2190,0,0,0,0,2190,0,0,0,0,1
+19622,150000,female,1,2,33,0,0,0,0,0,0,11529,6745,6177,7215,7644,8367,2000,1262,1300,700,1000,950,0
+19623,100000,female,1,2,33,-1,2,2,-1,0,0,5640,1570,0,3198,3198,5198,0,0,3198,0,2000,3348,0
+19624,50000,female,2,2,33,1,2,0,0,0,0,49633,48475,41848,40136,40626,41970,24,2039,1965,1455,2000,1877,0
+19625,180000,female,1,2,33,-1,0,0,0,0,0,31689,30210,39634,42625,44935,48436,10000,10000,5000,3000,10000,30000,0
+19626,50000,female,2,1,33,1,2,0,0,2,0,23250,22578,23611,25825,25111,25708,0,1397,2611,0,1000,1092,1
+19627,20000,female,3,3,44,0,0,2,2,0,0,18126,20771,20434,19874,19546,0,3599,1200,1000,400,0,0,1
+19628,120000,female,2,2,39,-1,-1,-1,2,-1,-1,2753,0,390,390,780,1206,0,780,0,780,1206,0,0
+19629,320000,female,1,2,44,-1,-1,-1,-1,-1,-1,29227,49177,143588,82261,44242,22999,49619,143588,82691,44242,24010,128424,0
+19630,370000,female,2,1,36,0,0,0,0,0,0,219386,181046,169132,128553,88817,83763,10500,14045,8553,8817,10763,2526,0
+19631,210000,female,2,2,37,0,0,0,0,0,0,26557,31090,58054,44624,43339,44245,5000,28008,15000,1552,1605,1615,0
+19632,220000,female,3,2,40,0,0,0,2,0,0,197139,166221,178594,174330,179525,184562,6500,15000,0,8000,8000,15000,0
+19633,220000,female,2,2,41,0,0,0,0,0,0,119951,122336,126415,127447,129983,132727,4375,6047,4622,4652,4838,4838,0
+19634,210000,female,3,2,36,2,0,0,0,0,0,420522,203447,206683,99411,63322,73433,16000,6549,4500,2407,12700,3200,0
+19635,200000,female,2,1,34,0,0,0,0,0,0,5481,6430,4494,4771,9454,8595,1068,1140,1000,5000,3000,3000,0
+19636,180000,female,2,1,41,0,0,0,0,0,0,9309,7596,9086,11477,4817,7121,1119,1609,3000,2500,5000,5000,0
+19637,60000,female,2,1,44,1,2,0,0,0,0,61049,57244,47551,36795,30596,28354,0,2400,2100,1300,1300,1300,0
+19638,430000,female,2,1,37,0,0,0,0,0,0,17800,18175,11153,11073,2853,3177,2003,2000,1030,2350,2000,1150,0
+19639,20000,female,2,1,34,0,0,0,0,0,-1,5185,6547,8879,10926,17536,2090,2000,3000,3000,7000,2090,0,0
+19640,50000,female,2,1,35,0,0,0,0,0,0,48658,50709,36114,23706,20166,19930,3000,2000,3005,700,1000,1000,0
+19641,500000,female,1,2,38,-2,-2,-2,-2,-2,-2,2937,5242,17840,11303,6943,16409,5242,17840,11642,6943,16409,3362,0
+19642,340000,female,1,2,37,0,0,0,0,0,0,334125,335778,343792,301895,198944,197439,13562,15000,12000,8120,7720,4000,0
+19643,80000,female,3,1,40,-1,2,-1,-1,-1,-1,780,390,390,25190,390,390,0,390,25190,390,390,9278,1
+19644,230000,female,1,1,41,0,0,0,0,0,0,54598,48568,43140,34039,26622,11891,1528,1538,1777,1160,1500,1000,0
+19645,170000,female,2,2,37,0,0,0,0,0,0,170687,29570,31776,34228,36645,38885,3000,3000,3000,3000,3000,3000,0
+19646,260000,female,2,1,40,-1,-1,-1,-1,-1,0,411,209,217,613,2339,1474,209,217,613,2339,0,1254,0
+19647,120000,female,2,1,34,0,-1,-1,-1,-1,-1,8505,4086,6389,4520,8708,1520,4086,6389,4520,8708,1520,1520,0
+19648,110000,female,2,1,39,0,0,0,0,0,0,102801,104907,108107,96213,68003,52684,3818,4955,3446,3000,3000,4000,0
+19649,200000,female,2,1,46,0,0,0,0,0,0,106651,103173,104137,103422,95206,65108,3692,5000,3300,2500,2930,1500,0
+19650,80000,female,3,1,46,0,0,-1,2,-1,-1,25505,14696,1278,1107,16634,2136,1000,2278,0,17000,2500,0,1
+19651,420000,female,3,2,35,0,0,0,0,0,0,65958,63715,62201,56125,49114,47563,3500,3002,2200,1700,1800,1700,0
+19652,50000,female,1,1,38,0,0,0,2,0,0,10379,11200,14568,14008,14827,19297,1000,3560,0,1000,4656,712,1
+19653,30000,female,2,1,39,2,2,0,0,0,0,31207,30399,30147,29366,29555,29793,0,2000,1500,1010,1055,1089,1
+19654,210000,female,3,1,40,0,-1,-1,-1,-1,-1,2616,7537,6730,3447,16220,5566,7537,6730,3447,16220,7564,2632,0
+19655,240000,female,1,1,33,0,0,0,0,0,0,214361,218626,223329,227820,227154,231935,7830,8231,8332,8187,8500,8029,0
+19656,240000,female,1,1,45,-1,-1,-1,-1,-1,-1,8732,5286,5596,3328,3763,9529,5286,5596,3328,3763,9529,4895,0
+19657,390000,female,2,1,37,0,0,0,0,0,0,175363,164292,144731,145140,130727,131619,5551,5358,5500,5000,20000,10000,0
+19658,30000,female,2,2,33,-2,-2,-2,-2,-2,-2,498,4831,477,8560,1550,955,4831,477,8561,1550,955,570,0
+19659,50000,female,3,1,37,-1,2,0,0,0,0,2564,2378,4167,5438,6193,6939,0,2000,1500,1000,1000,1000,0
+19660,70000,female,2,1,49,0,0,0,0,0,0,64049,66079,67488,58246,48859,46688,3700,3100,2200,1600,1850,1800,1
+19661,180000,female,2,1,38,0,0,0,0,0,2,36479,38813,40611,42641,45287,44577,2810,2600,2568,3214,0,1630,0
+19662,180000,female,3,1,49,0,0,0,0,0,0,92140,92517,94808,89137,88637,84966,3892,5002,3153,5000,3037,3200,0
+19663,470000,female,1,1,37,0,0,0,0,0,0,163000,160298,135683,128719,116173,104283,10047,5001,6010,4512,4012,3522,0
+19664,120000,female,2,1,38,2,2,2,2,2,2,63700,65069,66450,67373,68186,68959,3000,3000,2600,2500,2000,3000,1
+19665,390000,female,2,1,33,-1,-1,-1,-1,-1,-1,8243,4610,7599,2947,86790,3628,4644,7677,2947,87476,3639,7769,0
+19666,50000,female,3,1,48,1,2,0,0,0,0,49621,46863,46153,45284,23653,20733,0,2010,1807,812,743,844,1
+19667,50000,female,3,1,39,0,0,0,0,0,0,48694,46514,47771,43739,29090,24317,1803,2060,2025,1375,1035,900,0
+19668,140000,female,1,2,32,0,0,0,0,0,0,112933,114564,118713,121248,123232,126242,5000,6000,6000,5500,5000,6000,0
+19669,160000,female,1,1,40,-2,-2,-2,-2,-2,-2,0,3843,1876,4493,5929,2973,3843,1891,4520,5950,2979,5188,0
+19670,30000,female,3,1,37,0,-1,-1,0,0,0,3860,780,27557,28433,29477,28910,780,27557,2000,1500,1100,1500,0
+19671,20000,female,2,1,31,0,0,0,0,-2,-2,5500,8360,6000,0,0,0,3000,1000,0,0,0,0,0
+19672,100000,female,2,1,47,-1,-1,-1,-1,-1,-2,6666,6666,0,6270,-396,-396,6666,0,6270,0,0,0,1
+19673,80000,female,2,1,47,0,0,0,0,0,0,2795,3807,4595,5172,5278,3206,1067,1121,1000,106,64,1000,0
+19674,40000,female,2,2,24,1,3,2,2,0,0,24171,23498,24235,23557,24025,24528,0,1400,0,850,880,884,1
+19675,180000,female,1,2,28,0,0,0,0,0,0,131007,131632,136239,138116,135246,130436,5000,7000,6500,5000,5000,5000,0
+19676,80000,female,2,1,34,0,0,-1,-1,0,0,8413,4942,989,2799,2818,3638,1029,1225,2799,2000,2000,2000,0
+19677,300000,female,4,1,41,-1,-1,-1,-1,0,-1,3399,0,4358,862,862,287,0,4358,862,0,287,5159,0
+19678,220000,female,1,2,29,3,3,2,2,2,0,4695,4488,4283,5807,5568,5827,0,0,1587,0,500,586,1
+19679,80000,female,1,2,27,0,0,0,0,0,0,35303,36215,37330,38407,39168,40037,1800,2000,2000,1700,1650,3200,0
+19680,290000,female,1,2,27,-2,-2,-2,-2,-2,-2,-4,-4,853,0,71,-73,0,857,0,71,0,14688,0
+19681,360000,female,1,2,28,0,0,-2,-1,0,-1,5446,-8,-8,4635,3875,1034,0,0,4643,1019,1039,984,0
+19682,500000,female,2,1,32,-1,0,0,-1,-1,-2,26455,12229,989,2008,-59,11835,7060,1003,2018,59,11894,2,0
+19683,430000,female,1,2,34,1,2,0,0,2,0,14965,11576,14099,15128,14647,16317,0,3000,3500,0,2000,2000,0
+19684,280000,female,3,2,35,0,0,-1,0,0,0,5716,0,105082,105908,98380,93649,0,105082,4172,3408,3489,5295,0
+19685,150000,female,1,1,28,0,-1,-1,-1,-1,-1,58322,36865,32311,12791,390,1508,36865,32311,12956,390,1508,2224,0
+19686,200000,female,1,1,32,0,0,0,0,0,0,101685,100328,151733,147327,59949,39197,4000,59949,6000,2000,2000,2000,0
+19687,110000,female,3,2,27,0,0,0,0,0,0,105979,108403,109172,111940,108594,111239,5340,4000,4600,4000,4450,4100,0
+19688,150000,female,3,2,30,0,0,0,0,0,0,24523,22224,20880,17305,16094,18516,2029,3030,3118,3003,3040,2050,0
+19689,120000,female,1,1,39,-1,0,0,0,0,0,32598,51662,30285,24879,29479,27553,20092,10000,6000,5000,7553,14587,0
+19690,500000,female,1,1,44,0,-1,-1,0,0,0,329570,71921,367979,294969,189612,128459,72001,368199,6486,234,90,167116,0
+19691,270000,female,2,2,28,0,0,0,0,0,0,38875,38589,27846,21787,16429,5488,6000,2000,1200,330,2000,8258,0
+19692,50000,female,2,2,29,0,0,0,0,0,0,24399,23495,22611,14174,10809,9004,4000,5000,4000,3000,1000,3000,0
+19693,300000,female,3,2,30,2,2,2,2,2,2,131957,134790,137637,138886,140116,147715,6500,6500,5000,5000,10000,7000,0
+19694,140000,female,2,2,30,0,0,0,0,0,0,97288,98068,98098,97055,97035,101525,4400,4500,3500,3500,8000,500,1
+19695,170000,female,1,2,32,-1,-1,-1,-1,-1,-1,6699,2999,4896,68,2761,2673,2999,4904,68,2761,2673,1861,0
+19696,320000,female,2,1,35,0,0,0,0,0,0,158942,155925,126767,114110,109637,95850,5057,4606,5800,3375,3324,2500,0
+19697,200000,female,3,1,39,-1,0,0,0,0,0,145687,146519,144315,130807,124688,122518,7627,4631,5066,5033,5007,5125,0
+19698,50000,female,2,1,31,-2,-2,-2,-2,-2,-2,0,323,0,0,0,0,323,0,0,0,0,0,0
+19699,120000,female,2,1,32,0,0,0,0,0,0,37981,36149,37179,38500,38955,39926,1586,1616,1937,1392,1596,1684,0
+19700,170000,female,2,2,38,-1,-1,-1,-1,-1,-1,13451,10539,2087,6720,23000,0,10539,2087,6720,23000,0,44400,0
+19701,150000,female,1,2,40,-2,-1,-1,-1,-1,-1,798,2305,1036,5022,3938,316,2309,1036,5048,3946,316,314,0
+19702,200000,female,1,2,27,0,0,0,0,0,0,62574,63814,65265,66234,62356,55080,2278,2473,2161,2075,1973,2000,0
+19703,110000,female,1,1,30,0,0,0,0,0,0,49069,14241,15205,16267,53869,54138,1600,1500,1400,38002,1415,1010,0
+19704,50000,female,2,1,35,3,2,0,0,0,0,50437,49317,42052,22679,19099,19648,0,2000,1500,1000,1000,1000,0
+19705,50000,female,3,1,42,0,0,0,0,0,0,13562,14821,16657,17863,16811,16802,1500,2500,1518,1000,2000,1000,0
+19706,50000,female,2,1,46,2,3,3,2,0,0,64350,63192,57205,54371,19946,17406,5000,0,0,613,573,593,1
+19707,110000,female,2,1,30,0,0,0,0,0,0,101706,102946,104260,104162,104754,105707,3687,3850,3670,3662,4000,3795,0
+19708,160000,female,1,2,32,-2,-2,-2,-2,-2,-2,6919,2384,3642,9889,4473,5375,2389,3642,9889,4473,5591,4951,0
+19709,20000,female,2,2,43,-1,2,0,0,0,0,6483,6233,7254,8106,8418,8440,0,1283,1135,447,306,307,1
+19710,200000,female,2,1,48,0,0,0,0,0,0,93713,59223,50290,49771,92192,90772,1866,1762,1827,53248,3293,3314,0
+19711,460000,female,1,1,45,-1,-1,-1,-1,-1,-1,184,1899,1819,1572,237,1572,1904,1819,1572,237,1572,230,0
+19712,50000,female,3,2,43,2,-1,-1,-1,-1,-1,344,5036,1780,5808,390,780,5128,1780,5808,390,780,0,0
+19713,80000,female,2,2,35,0,0,0,0,0,0,28590,27635,26808,27680,26658,27324,1500,1600,3400,1300,3000,2000,0
+19714,180000,female,1,1,40,-1,-1,-1,-1,-1,-1,15118,6041,1459,2178,2634,968,6047,3262,2178,2634,968,2432,0
+19715,440000,female,2,2,39,0,0,0,0,0,0,431557,743970,423621,385873,364175,376228,18174,20341,13005,15410,72000,14500,0
+19716,300000,female,2,2,31,-2,-2,-2,-2,-2,-2,188,188,585,207,0,0,188,585,207,0,0,378,0
+19717,180000,female,2,2,33,-1,-1,-1,-1,-1,-1,437,0,437,0,4013,0,0,437,0,4013,0,1518,1
+19718,80000,female,2,2,47,-1,2,-1,-1,0,-1,3598,2464,7156,2099,915,915,2,7156,2099,0,915,1065,0
+19719,20000,female,2,1,41,1,2,2,0,0,0,10774,11596,11119,12429,12370,12659,1300,0,1502,443,489,2961,1
+19720,310000,female,1,1,36,0,0,0,0,0,0,101941,71874,70459,72958,55547,30970,3016,3031,10091,1429,1500,10207,0
+19721,180000,female,1,1,41,1,-2,-2,-1,-1,-2,1520,-10,-10,3844,0,0,10,0,3854,0,0,0,0
+19722,20000,female,2,1,42,2,0,0,0,0,0,15552,16560,17278,18289,18653,19195,1575,1293,1304,668,843,853,1
+19723,480000,female,1,1,38,0,0,0,0,0,0,29414,33482,37501,41399,35489,33081,5002,5002,5031,1006,986,986,0
+19724,90000,female,2,1,33,0,0,0,0,2,2,75451,76395,79168,84904,87914,90043,2800,4000,8000,5348,3700,3128,0
+19725,310000,female,1,2,35,-1,0,0,0,-1,-1,27089,37919,40136,31242,18962,9950,20000,21890,15000,9481,19900,0,0
+19726,310000,female,1,1,35,0,0,0,0,0,0,143072,153378,176904,174117,125526,108107,30000,30000,10054,10000,10000,5000,0
+19727,200000,female,2,1,34,0,-1,-1,2,-1,-1,7026,3815,4864,1958,805,3046,6599,5748,1958,805,3100,1311,0
+19728,100000,female,2,1,34,-1,2,2,-1,-1,-1,246,246,123,7286,123,123,123,0,7286,123,123,123,1
+19729,100000,female,3,1,35,0,0,0,0,0,0,79277,80928,81284,71748,67577,68217,3580,3439,2474,2400,2500,2523,0
+19730,370000,female,2,1,35,0,0,0,0,0,0,201666,200757,192231,187486,191019,186529,7094,8500,6983,6500,7150,7000,0
+19731,60000,female,3,1,46,0,0,0,0,0,0,58584,59250,52413,44436,28098,26749,2700,2219,1727,1120,1500,1100,0
+19732,50000,female,2,2,39,2,2,0,0,0,0,50932,49799,47652,49336,28390,28985,0,2098,2782,936,971,874,0
+19733,280000,female,1,2,35,0,0,0,0,0,0,92095,173354,193994,195250,204850,86279,83959,28869,13000,10000,5279,6160,0
+19734,90000,female,3,1,46,0,0,0,0,0,0,5965,6978,8152,9009,9359,9460,1120,1293,1150,500,400,400,1
+19735,360000,female,3,2,45,-2,-2,-2,-2,-2,-2,0,700,0,0,1526,0,700,0,0,1526,0,0,0
+19736,100000,female,3,1,47,0,0,0,0,0,0,139550,70620,70000,70298,69677,69672,3500,2600,3000,2500,2500,2500,0
+19737,30000,female,3,1,37,2,2,2,2,2,2,21368,22194,18098,14542,15758,13149,1500,1400,0,1527,0,524,1
+19738,230000,female,5,2,40,-2,-2,-1,-1,0,0,0,0,150,1528,3028,4117,0,150,1528,1500,1500,4000,0
+19739,180000,female,2,1,44,-1,-1,-1,-1,-1,-2,108,131,550,99,0,0,131,550,99,0,0,0,0
+19740,150000,female,3,1,48,0,0,-1,-1,-1,-1,9730,0,1366,1388,3118,1148,0,1366,1388,3118,1148,496,0
+19741,240000,female,1,1,37,0,0,0,0,0,0,86701,90251,92900,93876,91678,94280,5000,5000,3511,4000,4000,4000,0
+19742,110000,female,2,1,42,0,0,0,2,2,0,5174,6184,8383,8394,7709,8084,1106,2393,300,0,500,500,0
+19743,180000,female,1,2,36,-1,-1,-1,0,0,0,980,960,20924,65041,50983,48533,960,20964,50988,110,971,1677,0
+19744,50000,female,2,1,42,0,0,0,0,0,0,41836,26598,14487,16233,18543,20240,6000,2000,2000,3000,2000,2000,0
+19745,170000,female,3,2,44,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+19746,120000,female,1,1,42,0,0,0,0,0,0,112237,114467,116900,119228,121805,115463,4097,4278,4308,11540,5685,4390,0
+19747,400000,female,2,1,45,-2,-2,-1,-1,-1,-1,10985,2441,16046,2483,10719,1722,2441,16046,2483,10719,1722,2836,0
+19748,240000,female,2,1,40,-1,-1,-1,-1,-1,-1,390,390,390,390,232,540,390,390,390,232,698,390,0
+19749,50000,female,2,2,37,1,2,2,2,0,0,47071,40218,24587,14999,13410,7378,148,3115,3,1000,415,565,1
+19750,290000,female,2,1,35,1,-1,-1,-1,0,0,0,1839,1750,19117,12693,28468,1839,1750,19117,400,2000,3496,0
+19751,150000,female,2,2,36,0,0,0,0,0,0,134797,138269,144163,146171,136004,138903,5600,8000,5775,5000,5200,3320,1
+19752,170000,female,1,2,40,-2,-2,-1,0,0,0,-3549,-8964,157499,160946,50228,53525,4557,168499,12008,3000,4000,10000,0
+19753,230000,female,1,1,46,-2,-2,-2,-2,-2,-2,4957,9463,7697,5308,2048,6283,9467,7697,5308,2048,6283,18157,0
+19754,180000,female,1,2,38,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+19755,260000,female,1,1,41,1,-1,-1,-1,-1,-1,0,5848,0,8839,62140,6647,5848,0,8839,62140,6647,7573,0
+19756,90000,female,2,1,41,0,0,0,0,0,0,61287,62678,63198,61633,62837,69422,3021,4236,3000,2000,7000,0,0
+19757,520000,female,1,2,35,0,0,0,0,0,0,57536,60912,56728,55758,57911,54152,5000,7000,5000,5004,5000,5000,0
+19758,50000,female,3,1,40,0,0,0,0,0,0,48489,49495,50866,48390,17953,23,1813,2184,1248,359,0,20706,1
+19759,320000,female,1,1,45,1,-2,-2,-1,-1,-1,0,0,0,370,9301,0,0,0,370,9301,0,0,0
+19760,60000,female,3,1,42,0,0,2,2,2,0,26536,26443,18486,19077,18487,18429,5000,0,3000,2,1000,1000,0
+19761,180000,female,2,1,39,-1,-1,0,-1,0,0,2569,11662,11867,8111,6312,3739,11662,6003,8111,273,3739,6547,0
+19762,290000,female,2,2,43,-1,0,0,0,0,0,170373,168738,103299,104583,106447,104045,5007,3500,3500,4000,4000,5000,0
+19763,300000,female,2,1,40,-2,-2,-2,-2,-2,-2,0,0,2454,217960,0,0,0,2454,218000,0,0,179999,0
+19764,220000,female,1,1,47,-1,-1,-1,-1,-1,-1,3148,4206,30770,949,3359,619,4206,30775,949,3359,619,6641,0
+19765,70000,female,2,1,32,0,0,2,2,2,2,15623,18370,19281,18674,21361,21872,3009,1500,0,3000,1000,0,1
+19766,150000,female,3,1,40,-2,-2,-2,-2,-2,-2,0,0,0,0,0,4095,0,0,0,0,4095,0,0
+19767,80000,female,2,1,40,-1,-1,0,-1,-1,-1,3463,5143,8351,3234,1819,1909,5143,6458,3917,1819,2299,1909,0
+19768,10000,female,3,1,41,-1,2,-1,-1,2,2,1838,1651,172,2034,2069,1891,0,179,2034,214,0,283,1
+19769,280000,female,2,1,46,0,0,0,0,0,0,34433,34763,25048,24116,50483,47056,1383,1647,1004,41551,2056,1670,0
+19770,450000,female,2,1,43,-1,-1,-1,-1,-1,-1,1448,6018,10402,6110,7848,14279,6018,10426,6110,7848,14279,20723,0
+19771,230000,female,2,2,34,-2,-2,-2,-2,-2,-2,1716,1518,909,-1307,-3237,-5459,1518,1000,0,0,0,0,0
+19772,320000,female,1,2,35,-2,-2,-2,-2,-2,-2,0,0,2500,0,0,0,0,2500,0,0,0,0,1
+19773,200000,female,2,1,42,0,0,0,0,0,0,25897,33587,46126,63720,80736,93354,10000,15000,20000,20000,15000,20000,0
+19774,60000,female,2,1,37,0,0,0,0,0,0,38670,37606,35189,31373,28455,26598,1606,1674,1420,937,1006,1039,0
+19775,50000,female,3,1,31,0,0,0,0,0,0,29731,30329,26823,27454,27286,27858,1500,1500,1500,1000,956,1000,0
+19776,30000,female,3,1,47,1,2,2,2,0,0,13012,13502,13892,14369,15333,16289,1000,900,1000,1200,1200,1200,0
+19777,260000,female,1,2,36,-1,-1,-1,0,0,0,5160,0,15362,21068,27669,32202,0,15362,10000,7000,5000,5000,0
+19778,210000,female,2,1,42,-2,-2,-2,-2,-2,-2,7065,1459,1835,2396,0,0,1459,1835,2396,0,0,0,0
+19779,290000,female,2,2,41,-1,0,0,0,0,0,32192,32595,14688,17105,18875,21304,2500,13500,3000,3000,3000,2000,0
+19780,20000,female,3,1,41,0,0,2,0,0,0,6667,8989,8685,7698,8425,7900,2600,0,1300,1000,286,505,0
+19781,100000,female,3,1,45,3,2,2,2,-1,-1,94471,92058,97624,94316,2065,0,0,8806,0,2065,0,0,1
+19782,230000,female,2,1,40,0,0,0,0,0,0,33907,35038,36574,36985,37701,30735,2000,2100,1500,1000,1000,1000,0
+19783,300000,female,1,1,36,0,0,0,0,0,-1,28292,28686,29052,16662,9187,3617,1583,1364,1042,402,3631,7796,0
+19784,20000,female,2,2,33,2,0,0,0,0,0,19946,18694,17228,16923,10467,10526,1593,1340,1171,402,600,538,1
+19785,30000,female,3,1,42,0,0,0,2,2,2,21969,23306,27851,27098,29866,29276,1706,5251,0,3519,0,1368,1
+19786,170000,female,2,2,43,1,-1,-1,-1,-1,-1,0,1010,970,290,590,1222,1010,970,290,590,1222,0,0
+19787,200000,female,2,1,46,-1,2,2,-1,-1,2,2893,2881,1436,1261,2849,1438,1436,0,1261,2849,0,1261,1
+19788,50000,female,3,2,46,0,0,0,0,0,0,47788,48885,49273,40385,36901,29263,2201,2250,1509,1329,1300,1200,0
+19789,20000,female,2,1,41,0,0,0,0,0,0,20441,20245,20070,20621,20347,20389,1700,1700,1600,700,710,1001,0
+19790,60000,female,2,1,32,0,0,0,0,0,0,59274,59240,59631,58105,57194,60650,2131,2133,2050,2191,5300,0,0
+19791,20000,female,2,1,46,3,3,2,0,0,0,10145,9836,10525,18930,19320,19861,0,1000,9000,1000,1000,400,1
+19792,220000,female,2,2,35,-2,-2,-2,-2,-2,-2,3327,-17,2706,0,0,92472,0,2723,0,0,92472,10000,0
+19793,20000,female,3,1,43,0,0,0,0,0,0,14959,32006,17139,17979,18518,15243,1600,1700,1500,1000,1000,1780,0
+19794,70000,female,2,2,33,0,-1,0,0,0,0,9286,2748,4689,6569,4909,0,2748,2000,2009,2000,0,0,0
+19795,380000,female,1,1,43,0,0,0,0,0,0,121868,114627,102551,101323,84087,86661,6000,5000,5000,5000,5000,5000,0
+19796,30000,female,3,1,48,0,0,0,2,0,0,36956,35422,35714,32193,29979,28191,1553,3345,0,1000,1000,1000,0
+19797,200000,female,2,2,35,1,-1,2,-1,0,0,-3258,7244,3498,10494,6996,3498,14000,0,10494,0,0,16248,0
+19798,80000,female,2,2,36,1,2,2,2,0,0,81606,154026,82385,79795,48999,48161,0,7600,5,2000,2000,2000,1
+19799,150000,female,2,2,38,0,0,0,0,0,0,26495,24906,6763,6581,6733,6882,1291,1101,1098,250,247,300,0
+19800,210000,female,2,1,40,0,0,0,0,0,0,111508,113753,116845,113571,105052,104167,4100,5000,4009,3500,4000,5000,0
+19801,70000,female,3,1,43,2,0,0,0,0,0,46092,40094,39610,31047,27431,16693,1700,1700,1243,1000,500,1000,0
+19802,280000,female,2,2,38,0,0,0,0,0,0,92579,94451,96041,98301,74624,75173,4300,4000,4033,3000,3300,3500,0
+19803,140000,female,2,1,35,-1,-1,-1,-1,-1,-1,326,326,6410,4246,326,326,326,6736,4246,326,326,502,0
+19804,200000,female,4,1,44,-2,-2,-2,-2,-2,-2,0,1904,0,0,0,2206,1904,0,0,0,2206,686,0
+19805,170000,female,2,2,40,0,0,0,0,0,0,117338,116936,115762,101581,100182,99565,4211,4002,4006,3412,3486,4000,0
+19806,50000,female,2,1,49,1,2,2,2,0,0,19208,19608,22608,21951,22287,22778,1000,3321,0,1000,1000,1001,0
+19807,90000,female,2,1,32,0,0,-2,-1,-1,-2,4857,-43,-43,968,4385,17889,0,0,1011,4385,17889,9455,0
+19808,130000,female,1,1,33,0,0,0,0,0,0,63505,64121,66351,73399,71007,71253,5000,5000,10000,3000,3000,3228,0
+19809,250000,female,1,1,40,2,2,2,0,0,0,170489,181700,177530,181147,184784,195574,13926,0,6408,6478,13629,0,0
+19810,120000,female,1,2,35,2,2,2,2,0,0,110581,104687,112279,108089,88594,87630,0,10800,0,3500,3400,3500,1
+19811,490000,female,1,1,37,1,2,0,0,0,0,18961,11232,19173,20400,27979,27622,0,9173,5400,7979,7622,0,0
+19812,200000,female,1,1,43,1,-1,-1,-2,-2,-1,0,601,0,0,0,259,601,0,0,0,259,150,1
+19813,200000,female,2,1,42,0,0,0,0,0,0,192821,196113,202774,176737,147151,148866,8000,10120,6500,5500,7000,6000,0
+19814,100000,female,2,1,30,2,-1,-1,0,0,0,736,1237,40476,41408,36362,34213,1237,43757,2005,1500,2000,2000,0
+19815,280000,female,1,2,31,-1,-1,-1,-1,-1,-1,14697,4492,1415,15251,316,316,4501,2343,15289,316,316,3179,0
+19816,290000,female,1,2,34,0,0,0,0,0,0,21849,9318,7964,10335,12000,13463,1500,2016,5000,2000,1463,3365,0
+19817,160000,female,5,1,45,0,0,0,0,0,0,151214,154669,154102,149903,148435,158498,6000,5500,7000,6000,12500,6500,0
+19818,230000,female,2,1,45,0,0,0,0,0,0,71149,71922,77500,72851,72860,48758,3000,11261,10000,2100,5000,5000,0
+19819,130000,female,2,1,49,0,0,0,0,0,0,53714,55404,56566,57139,58300,59523,2570,2650,2100,2100,2150,3000,0
+19820,420000,female,1,1,42,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+19821,20000,female,2,2,46,0,0,0,0,0,0,15717,16724,18051,18759,19132,19684,1276,1603,1311,684,860,874,0
+19822,70000,female,2,1,38,1,2,0,0,2,0,73688,70254,71281,73229,71426,68911,0,2800,6500,0,2821,5500,1
+19823,230000,female,1,1,47,-2,-2,-2,-2,-2,-2,-96,2935,2889,17978,9462,8134,3031,2889,17993,9468,8949,3915,0
+19824,340000,female,1,2,38,0,0,0,0,0,0,250475,244597,241509,275045,268429,262575,11000,11060,50008,8400,10000,10000,0
+19825,420000,female,1,2,34,0,0,0,0,-1,-1,19406,17791,11796,3089,4624,210,6000,1600,1000,4641,210,3523,0
+19826,140000,female,1,1,34,0,0,0,0,0,0,22848,24459,26254,27728,28047,29315,2000,2000,2000,1000,1500,2000,0
+19827,30000,female,3,1,26,0,0,0,-1,0,0,27217,24346,9237,5881,29083,23795,1179,1361,5921,23665,566,213,0
+19828,50000,female,2,2,27,1,2,0,0,2,2,51176,48900,48854,50243,51187,47551,0,2200,3700,2000,0,2000,1
+19829,430000,female,2,2,27,0,0,0,0,0,0,401298,433835,399755,357082,363968,346718,40000,15140,15000,12565,15000,13000,0
+19830,260000,female,3,1,41,0,-1,-1,0,0,0,2472,8160,4549,5502,3487,5416,8160,4549,1056,139,2000,381,1
+19831,180000,female,1,2,34,-2,-2,-2,-2,-2,-2,-20,50664,3200,2990,12280,56020,50684,3200,2990,12280,56020,5450,0
+19832,100000,female,2,1,33,1,2,2,2,2,2,12560,16103,11166,10099,10861,9932,0,4250,0,1209,0,1000,0
+19833,160000,female,2,1,39,0,0,-2,-2,-1,-1,106260,0,0,0,390,86188,0,0,0,390,86188,3272,0
+19834,260000,female,1,1,38,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+19835,200000,female,2,1,33,0,0,0,0,0,0,23870,25168,26451,27437,29401,31939,2000,2000,1437,2401,3000,6000,0
+19836,450000,female,1,2,34,-2,-2,-2,-2,-2,-2,1494,538,3218,0,429,168,538,3218,0,429,168,168,0
+19837,390000,female,2,1,34,0,-1,-1,-1,-2,-2,1162,759,695,-448,-1228,-1228,759,699,115,712,0,235,0
+19838,390000,female,1,1,35,-1,0,-1,-1,-1,-1,43098,55068,15216,16659,35241,14216,42000,15224,16659,35241,14216,72944,0
+19839,40000,female,2,1,38,0,0,0,2,0,0,37539,38132,41217,40255,39135,37235,2000,4000,0,1700,3000,0,1
+19840,500000,female,2,1,46,0,0,2,2,0,0,198342,212155,185142,115640,78082,80588,19000,5000,0,5000,10000,50000,0
+19841,180000,female,2,1,39,-1,-1,-1,-1,-1,-1,5360,6176,398,629,0,978,6207,398,629,0,978,2198,0
+19842,100000,female,3,1,39,1,-1,-1,-1,-1,-1,-5,580,2207,630,540,0,585,2207,630,540,0,0,0
+19843,50000,female,2,2,42,0,0,-1,0,0,0,37606,17971,10812,12237,13057,15057,3000,15000,2000,2000,2000,0,0
+19844,40000,female,2,1,38,0,0,0,0,0,0,40125,38809,36485,28152,22161,19789,2006,2002,1603,1000,2000,0,0
+19845,350000,female,1,2,46,-1,-1,-1,-2,-2,-2,5372,12179,0,0,0,0,12277,0,0,0,0,0,0
+19846,360000,female,1,1,37,-1,-1,-1,-2,-2,-2,1568,2500,0,0,0,0,2500,0,0,0,0,0,0
+19847,200000,female,2,2,36,0,0,0,0,0,0,9738,10749,11773,12784,13039,13314,1177,1201,1212,467,485,1147,1
+19848,230000,female,1,2,38,-2,-2,-2,-2,-1,0,2581,2929,6966,1935,6665,11254,2929,6966,1935,6665,8000,15941,0
+19849,200000,female,2,2,39,-2,-2,-2,-2,-2,-2,2880,0,0,0,2894,210,0,0,0,2894,210,2595,0
+19850,230000,female,2,1,42,-2,-2,-2,-2,-2,-1,7906,2131,5733,4292,4694,4709,2138,5756,4303,4711,4741,6037,0
+19851,500000,female,1,2,31,1,-1,-1,-1,-1,0,29091,5763,15673,9393,69526,37940,5763,15691,9393,69526,5000,20000,0
+19852,230000,female,2,1,32,0,0,0,0,0,0,198704,202217,204255,207347,51134,50222,10000,10000,10000,50000,2000,2000,0
+19853,340000,female,1,2,34,0,0,0,0,0,0,332916,340159,73004,72338,58935,123936,14600,3035,1958,2819,100000,3000,0
+19854,20000,female,1,1,47,0,0,0,2,0,0,13963,15227,17968,17382,18094,19399,1500,3000,0,1000,1600,0,1
+19855,20000,female,3,1,48,0,0,0,0,0,0,14203,15215,16544,17250,17604,19993,1252,1581,1287,641,2684,0,0
+19856,310000,female,3,1,35,0,0,0,0,0,0,83719,81138,87523,77902,82165,97298,5000,18088,5500,6300,17300,25500,0
+19857,160000,female,2,1,36,-1,-1,-1,-1,-1,-1,2054,1949,2562,8582,2758,0,1950,2562,8582,2758,0,4163,0
+19858,230000,female,3,1,41,-2,-2,-2,-2,-2,-2,34578,495,502,944,5814,965,495,502,950,5820,965,1028,0
+19859,200000,female,1,2,40,-1,-1,-2,-2,-1,0,7277,-6,-6,3044,4412,3412,6,0,3050,4412,0,0,0
+19860,120000,female,2,1,42,0,0,0,0,0,0,114740,113994,113989,115225,116511,112823,4038,5000,4000,5000,4000,5000,0
+19861,350000,female,2,2,37,0,0,0,0,0,0,336061,343205,351794,357090,342253,276516,12701,14100,12109,11482,11841,115165,0
+19862,170000,female,2,1,32,1,2,-1,-1,0,0,9990,4647,1399,6548,1399,0,0,1399,6548,0,0,0,1
+19863,240000,female,3,2,35,0,0,0,0,0,-1,18086,11226,7899,8072,728,24511,1133,1124,2000,728,24709,1972,0
+19864,100000,female,2,1,49,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+19865,130000,female,1,2,33,2,2,0,0,0,0,73250,71473,73892,74400,62134,63430,0,3572,2645,1813,1878,2210,1
+19866,410000,female,2,1,41,2,0,0,0,0,0,348559,354506,363666,369776,368779,369358,13000,14600,15500,14000,13580,14000,1
+19867,200000,female,3,1,42,-1,-1,-1,2,-1,0,390,742,4352,390,780,390,742,4000,0,780,0,1757,0
+19868,60000,female,2,1,45,0,0,0,0,0,0,59998,59702,61188,57459,26551,24901,2152,2464,1462,847,1007,3004,0
+19869,400000,female,2,1,44,-2,-2,-2,-2,-2,-2,0,804,11192,0,0,0,804,11242,0,0,0,0,0
+19870,380000,female,1,1,40,-2,-2,-2,-2,-2,-2,12839,11097,10933,62602,6408,16791,11212,10933,62602,150000,16791,5777,0
+19871,210000,female,2,2,43,-2,-2,-2,-2,-2,-2,3577,1003,0,0,0,0,1003,0,0,0,0,150,0
+19872,500000,female,1,2,45,-1,-1,-1,0,-1,-1,290,5640,52858,151479,29343,2355,5692,52858,100756,29488,2365,8762,0
+19873,100000,female,2,1,42,2,2,0,0,0,0,91534,88637,90169,84714,69482,70226,0,4458,2973,2606,2696,2695,1
+19874,80000,female,2,1,44,-1,0,-1,-1,-1,-1,3995,2045,824,0,1000,0,1000,824,0,1000,0,0,0
+19875,80000,female,2,2,31,-1,-1,-1,-1,-1,-1,1068,0,100,0,1050,-150,0,100,0,1050,0,0,1
+19876,200000,female,1,2,33,0,0,0,0,0,0,77670,80051,80906,82088,81564,87241,6782,5000,4000,3000,9000,4000,0
+19877,260000,female,2,2,31,0,0,0,0,0,0,69957,72727,73562,65954,30948,0,3945,2764,5431,633,0,0,0
+19878,310000,female,2,2,31,0,0,0,0,0,0,309080,314220,288581,294745,301286,306515,11900,12000,12500,12930,12000,13500,0
+19879,30000,female,2,2,32,0,0,0,0,0,0,29480,30394,28072,28885,29287,23012,1431,1579,1402,804,732,1820,1
+19880,50000,female,3,1,33,0,0,0,0,0,0,40757,39847,37561,36725,35346,33810,2000,1719,1783,1200,1200,1500,0
+19881,310000,female,2,1,46,0,0,0,0,0,0,43990,45872,47135,46944,49121,51337,3000,3000,2000,3000,3000,1000,0
+19882,500000,female,3,2,40,0,0,0,0,0,0,212961,264961,237006,139311,128095,181304,63000,20078,30141,30000,60000,50000,0
+19883,30000,female,1,1,49,-2,-2,-2,-2,-2,-2,3340,0,1220,480,0,174,0,1220,480,0,174,1162,0
+19884,160000,female,2,1,45,-1,-1,-1,-1,-1,-1,3650,1650,5650,3300,1650,1650,1650,5650,3300,1650,1650,1650,0
+19885,350000,female,2,1,44,0,-1,-1,-1,-1,-1,110472,100849,5800,369718,2000,5910,100957,5800,371718,2180,5910,6000,0
+19886,350000,female,1,1,44,-1,-1,-1,-1,-1,0,4025,2820,3094,0,330,330,2820,3094,0,330,0,1240,1
+19887,50000,female,0,1,40,0,0,0,0,0,0,44749,46229,46798,47647,40500,41921,2229,2298,2100,2500,1921,8432,0
+19888,30000,female,2,2,44,0,0,0,0,0,0,9725,10766,12070,11973,10166,7966,1200,1500,2000,1166,3500,1500,0
+19889,110000,female,2,2,31,0,0,0,0,0,0,98531,99593,100093,90437,75701,77013,3577,3680,3030,2701,2674,2669,1
+19890,50000,female,2,1,31,0,0,0,0,0,0,22716,19198,19462,14841,11088,10301,2000,1510,4000,1000,600,500,0
+19891,320000,female,2,1,34,0,0,0,0,0,0,3825,3835,6746,9472,11777,14282,3000,3000,3000,3000,3000,4000,0
+19892,80000,female,1,2,34,-1,2,-1,-1,-1,-1,652,326,326,326,326,326,0,326,326,326,326,326,1
+19893,40000,female,3,1,42,0,0,0,0,0,0,40285,40024,39706,36431,37154,37306,1658,1601,1587,1310,1510,2000,1
+19894,330000,female,2,1,39,1,-1,-1,-1,2,-1,0,1380,0,404,404,24420,1380,0,404,0,24420,480,0
+19895,160000,female,3,1,36,-2,-2,-2,-2,-2,-2,170,1062,0,0,0,0,1062,0,0,0,0,0,0
+19896,210000,female,2,1,49,-1,-1,-1,-1,-1,-1,11790,2230,390,3470,390,2140,2230,390,3470,390,2140,780,0
+19897,50000,female,2,1,36,0,0,0,0,0,0,26277,25371,22790,23372,22216,19586,1700,1800,1300,1000,1000,900,0
+19898,50000,female,3,2,49,0,0,2,0,0,0,46468,50669,48701,49066,30177,29274,5000,0,2500,1151,1156,1052,1
+19899,120000,female,1,2,36,0,0,0,0,0,0,71199,71993,73652,75482,76686,47781,2574,2816,3200,2911,1800,2000,0
+19900,150000,female,1,1,45,-2,-2,-1,2,2,-2,882,258,629,349,2825,2240,258,629,3,2825,0,2011,0
+19901,100000,female,2,2,31,-1,-1,0,0,0,0,960,4348,73689,76148,77254,78967,4348,70000,4000,3000,3000,3000,0
+19902,50000,female,2,2,31,2,2,2,2,-2,-1,50539,50017,48310,420,560,29793,1000,0,420,560,29793,0,0
+19903,240000,female,1,2,36,0,0,2,0,0,2,176035,196664,192140,194357,205637,202417,25228,0,6947,14402,33,7167,0
+19904,230000,female,1,1,39,1,-2,-1,-1,-1,-2,0,0,181,2680,0,0,0,181,2680,0,0,0,1
+19905,290000,female,2,1,45,0,0,0,0,0,0,36335,36085,35225,35711,35381,34468,1564,1594,1840,1378,1245,1388,0
+19906,230000,female,1,1,42,-1,-1,-1,-1,-2,-2,7338,-15,4685,1925,2347,0,15,4700,1925,2347,0,0,0
+19907,360000,female,1,1,39,1,-2,-2,-1,0,-1,-390,-390,-390,10872,10540,2203,0,0,11652,358,2203,390,0
+19908,320000,female,2,1,38,0,0,0,0,0,0,129416,129575,125866,130067,131128,124469,4836,4919,6246,4395,4524,4850,0
+19909,360000,female,2,1,45,0,0,-2,-2,-1,-1,12040,0,0,0,150,1728,0,0,0,150,1728,0,0
+19910,90000,female,1,1,38,0,0,0,0,0,2,85376,86326,88122,62706,53612,40963,4326,4322,2706,3575,0,1670,0
+19911,500000,female,1,2,34,-1,-1,-1,-1,0,-1,4677,6187,4775,31188,5827,3637,6187,4775,31188,0,4119,7390,0
+19912,210000,female,2,1,36,0,0,0,0,0,0,91801,93039,101393,89894,75652,54329,4000,10023,3047,2007,2086,2011,0
+19913,90000,female,2,1,39,0,0,0,0,0,0,45406,47337,48575,49667,51119,23344,3000,2000,2000,2000,2000,1087,0
+19914,80000,female,3,1,44,2,0,-1,-1,-1,0,31023,30390,390,390,780,780,1000,390,390,780,0,0,0
+19915,390000,female,2,2,39,0,-1,-1,0,0,0,27918,3115,278505,288000,264214,266704,3145,278505,15000,9310,10000,9702,0
+19916,170000,female,2,2,33,1,-2,-2,-2,-2,-2,-189,-189,-189,-189,-189,-189,0,0,0,0,0,0,0
+19917,300000,female,3,1,37,0,0,0,0,0,0,85405,84922,84870,69725,54744,9234,3479,3319,2210,1095,1594,126463,0
+19918,30000,female,3,1,38,-2,-2,-2,-2,-2,-2,1535,835,8927,5371,0,1996,835,8939,5480,0,1996,0,0
+19919,260000,female,2,1,39,-2,-2,-2,-1,-1,-1,0,2399,1647,502,597,4222,2399,1647,502,597,4222,2117,0
+19920,500000,female,1,1,44,-2,-2,-2,-2,-2,-2,2128,635,13258,4562,893,2030,635,13337,4562,893,2030,0,0
+19921,240000,female,2,2,35,0,0,0,0,0,0,238887,222691,27627,161492,128496,197209,10000,3000,135050,5000,80000,8000,0
+19922,100000,female,2,1,35,1,-2,-2,-2,-1,-1,0,0,0,0,4323,2000,0,0,0,4323,2000,0,0
+19923,180000,female,1,1,45,0,0,0,0,2,0,16452,18472,20546,24956,24262,24782,2616,2690,5100,0,1058,2000,0
+19924,50000,female,2,1,45,0,0,2,-1,0,0,3487,3159,213,3336,1863,390,1213,0,3336,0,0,390,0
+19925,200000,female,2,1,35,0,0,0,0,-1,-1,27561,17365,9889,0,9002,728,5000,1015,0,9002,728,10000,0
+19926,20000,female,3,1,45,0,0,0,2,0,0,17235,18253,20858,20202,18950,17709,1610,3215,0,780,640,1400,0
+19927,20000,female,2,1,46,1,2,2,-1,0,-1,4426,2735,-211,1863,390,390,0,0,2253,0,390,1735,1
+19928,60000,female,2,1,35,0,0,0,0,0,3,20163,21517,22860,25154,29387,30607,2000,2000,3000,5000,2000,6000,0
+19929,260000,female,1,1,42,0,0,-1,-1,0,-1,16827,8606,3856,12996,8788,15104,1500,3856,13000,0,15104,16764,0
+19930,180000,female,3,1,41,0,0,2,2,-2,-2,10324,10471,6566,2375,1911,1080,3744,0,2911,9,1080,990,0
+19931,210000,female,1,2,44,-1,-1,-1,-1,-1,-1,4925,32767,6273,5651,9103,8660,32930,6975,5661,9109,8664,8917,0
+19932,270000,female,2,1,36,0,0,0,0,0,0,73953,68207,55382,46629,28115,12847,5168,5010,2005,2000,2000,2000,0
+19933,370000,female,1,1,36,-2,-2,-2,-2,-2,-2,2788,25790,3007,4246,3737,2290,25794,3007,4305,3737,2290,22259,0
+19934,200000,female,1,2,35,-1,-1,-1,-1,-1,-1,467,2628,287,9471,985,4489,2700,1000,9500,1000,4500,1301,0
+19935,270000,female,1,1,31,-2,-2,-2,-2,-2,-2,6181,12110,26069,36630,37390,19816,12140,26134,36650,37390,19816,5272,0
+19936,350000,female,1,2,32,-1,-1,-1,-1,-1,0,11942,3236,7241,6800,5163,942,3252,7289,8495,5184,1,2,0
+19937,230000,female,2,2,37,2,-1,2,2,-1,0,535,3881,2297,-3,3044,2424,3888,16,0,3047,12,0,0
+19938,130000,female,2,1,41,0,0,0,0,0,0,8920,9538,10174,11036,10552,9934,1161,1187,1439,345,346,487,0
+19939,260000,female,1,1,31,0,0,0,0,0,0,263688,257381,260497,261593,264184,264598,8993,9501,9577,9584,10006,9269,0
+19940,400000,female,1,1,32,-2,-2,-2,-2,-2,-2,3616,0,3328,3328,3828,4893,0,6656,3328,3828,4893,4687,0
+19941,180000,female,2,2,36,-2,-1,-1,-1,-2,-2,0,1290,2985,0,0,0,1290,2985,0,0,0,0,0
+19942,220000,female,1,1,41,0,0,2,0,0,0,138657,156689,150748,154481,156487,154870,22000,0,8000,7000,6500,5000,0
+19943,210000,female,1,2,32,1,-2,-1,-1,-1,-1,-974,-974,20363,770,0,6138,0,21337,770,0,6138,0,0
+19944,240000,female,2,1,32,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+19945,240000,female,2,2,35,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+19946,150000,female,2,1,45,0,0,0,0,0,-1,60236,51815,39051,25960,12889,12890,6007,1566,1441,259,12891,12497,0
+19947,300000,female,1,2,31,0,0,0,0,0,0,123306,126251,131968,113866,10811,158664,5000,8000,5000,1342,150000,6800,0
+19948,180000,female,2,3,43,0,0,0,0,0,0,81147,172920,176711,127004,114179,129622,101522,10264,4598,9600,20000,5000,0
+19949,300000,female,1,1,47,3,2,2,2,2,2,5000,5000,5000,5000,5000,5000,0,0,0,0,0,0,1
+19950,70000,female,2,1,34,-2,-2,-2,-2,-2,-2,1533,3921,6389,0,0,0,3921,6405,0,0,0,0,0
+19951,60000,female,3,2,43,0,0,0,0,-1,0,65349,61322,56414,47643,28208,27570,2300,2507,1000,28512,994,999,1
+19952,260000,female,1,2,33,-2,-2,-1,-1,-1,0,1900,0,204,-810,2190,810,0,204,0,3000,0,0,0
+19953,400000,female,2,1,37,-2,-2,-2,-1,0,0,2218,13181,4039,10692,18692,19565,13256,4039,10692,8000,9000,1000,0
+19954,490000,female,1,1,48,1,-1,-1,-1,-1,0,500,7081,1460,6213,6040,1155,7081,1460,6213,7195,0,878,0
+19955,50000,female,1,2,42,2,0,0,2,2,2,34218,35539,38246,37332,39702,38932,1893,3600,0,3000,0,3500,1
+19956,130000,female,1,2,32,0,0,0,0,0,0,58776,53702,43760,31540,23675,15841,2010,2037,1218,2182,1003,1001,0
+19957,150000,female,2,1,32,-1,2,-1,0,0,0,3204,430,29425,30437,31123,28997,0,29425,2000,1528,1518,2000,0
+19958,70000,female,2,1,33,1,2,0,0,0,0,51900,49307,48214,27572,26810,20541,0,1500,1300,1505,1000,1000,0
+19959,240000,female,2,1,34,-1,-1,0,0,-1,-1,626,1921,20740,21274,888,360,1921,19000,2624,888,360,360,0
+19960,250000,female,1,1,49,-1,-1,-2,-2,-1,0,1104,0,0,0,3000,1500,0,0,0,3000,0,3212,0
+19961,440000,female,2,1,41,0,0,0,0,0,0,348397,356586,366049,262697,267922,274502,14006,19077,9518,9576,11083,12010,0
+19962,130000,female,2,1,40,0,0,0,0,0,0,133559,129869,118032,95953,73970,107785,5400,6950,4600,4000,2000,2300,0
+19963,60000,female,2,1,37,0,0,0,0,0,0,59462,60866,54007,52089,29397,29110,3000,2570,2202,1200,1100,1100,1
+19964,290000,female,2,1,41,-1,-1,-2,-1,0,-1,2025,0,0,9194,9194,399,0,0,9194,0,399,9290,0
+19965,150000,female,2,1,41,0,0,-1,-1,-1,-1,4474,3881,1207,1617,0,620,3000,2306,2610,0,620,0,0
+19966,240000,female,2,1,37,-1,2,-1,-1,-1,0,1769,842,14015,0,1317,566,0,14015,0,1317,0,0,0
+19967,220000,female,1,1,43,-1,-1,-1,-1,-1,-1,4009,1689,12370,12095,1832,4691,1689,12373,12099,1832,5001,10311,1
+19968,100000,female,1,2,38,3,2,-1,-1,0,0,2156,1151,1151,35499,33051,36627,0,1151,35499,10000,6627,7000,0
+19969,200000,female,1,1,39,-2,-2,-2,-2,-2,-2,5553,2294,359,0,353,342,2294,359,0,353,342,0,0
+19970,400000,female,1,1,37,-1,0,-1,0,0,0,10677,31405,26717,25434,6973,9899,31008,26862,3000,2000,3000,0,0
+19971,500000,female,1,1,47,-2,-2,-2,-2,-2,-2,3634,296,966,6675,-10,2055,299,1169,6708,0,2065,1133,0
+19972,230000,female,1,1,45,-1,-1,-1,-1,-1,-1,6348,0,967,0,699,499,0,967,0,699,499,0,1
+19973,50000,female,2,2,43,0,0,0,0,0,0,48474,48388,38972,47584,28055,28571,2334,1918,12530,1001,1035,1198,0
+19974,180000,female,2,1,46,-1,-1,-1,-1,-1,-1,578,911,578,578,578,438,911,578,578,578,438,280,0
+19975,200000,female,1,2,31,0,0,0,0,0,0,90708,58787,104382,91888,88267,85471,2768,48617,3243,3000,3233,3000,0
+19976,230000,female,1,2,37,-2,-2,-2,-2,-2,-2,1985,7150,20123,1671,1244,0,8075,20200,1671,1244,0,809,0
+19977,210000,female,2,1,34,0,0,2,0,0,0,201223,214479,193598,178416,143879,125004,17580,0,7193,3500,4881,3679,1
+19978,170000,female,3,2,33,2,0,0,0,0,0,170348,166348,162319,165592,167482,171106,7622,7354,7464,6127,6550,6100,0
+19979,200000,female,1,2,41,-1,-1,-1,-1,-1,-1,2615,9855,11162,45607,23359,25713,9855,21162,45614,23359,25713,9884,0
+19980,350000,female,1,1,42,-1,2,-1,-1,-1,-1,3931,2570,27036,1559,1962,3683,0,27036,1559,1962,3683,3074,0
+19981,360000,female,3,2,41,-2,-2,-2,-2,-2,-2,3578,3658,3578,3578,3578,4268,3658,3578,3578,3578,4268,3578,0
+19982,160000,female,1,2,35,-1,-1,-1,-1,-1,-2,3027,1116,2179,5468,80,1314,1116,2183,5468,80,1314,0,0
+19983,230000,female,1,1,36,-2,-2,-2,-2,-2,-2,0,1663,4777,1755,2442,2724,1663,4777,1763,2445,2727,17136,0
+19984,110000,female,2,1,44,0,0,0,0,0,0,42214,43195,43699,45662,47592,48674,2000,3000,3000,3000,2000,2000,0
+19985,520000,female,2,2,42,0,0,0,0,0,0,437492,405442,381086,353074,330171,324386,14710,14200,12300,11200,11200,11200,0
+19986,280000,female,1,2,30,0,0,0,0,0,0,192045,195162,198105,202919,197380,201927,9300,9500,9509,7100,7800,8200,0
+19987,240000,female,1,2,30,-1,-1,-1,-1,-1,0,3376,0,4649,1528,7378,682,0,4649,1533,7378,0,0,0
+19988,20000,female,3,2,31,1,-1,3,2,2,-2,-363,204,204,204,-14,-2400,567,0,0,0,20,3800,0
+19989,210000,female,2,2,30,0,0,0,0,0,0,184705,188235,193694,178664,149612,151226,7000,9057,6507,9808,6000,5500,0
+19990,250000,female,1,2,30,0,0,0,0,0,0,144807,162326,168186,175369,178156,189259,20000,10000,10000,7200,14000,7200,0
+19991,90000,female,3,1,44,-1,-1,-1,-1,-1,-1,1473,1473,1473,1473,1473,1473,1473,1473,1473,1473,1473,34619,0
+19992,70000,female,2,2,30,-1,0,0,0,0,0,2429,3878,4957,6209,6338,6587,1500,1300,1500,380,500,500,1
+19993,90000,female,1,2,36,0,0,0,0,0,-1,39317,28491,20367,16680,10320,7601,1808,1657,1000,206,7601,286,1
+19994,180000,female,1,1,39,-1,-1,-1,0,-1,0,547,547,759,1042,796,547,547,759,1000,796,0,249,0
+19995,210000,female,1,1,43,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+19996,250000,female,2,2,30,0,0,0,0,0,0,197436,201831,206282,210963,215711,218692,7500,7527,8000,8000,8000,8500,0
+19997,200000,female,0,2,30,-1,-1,2,-1,-1,-1,17160,7289,2868,9470,5816,7809,2880,0,9470,5834,7809,2886,0
+19998,240000,female,2,2,36,2,2,0,0,0,0,247477,241976,242629,239438,203445,203585,11,10949,9419,7461,7601,7501,0
+19999,500000,female,3,2,32,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+20000,20000,female,2,1,32,1,2,0,0,0,0,18931,18329,19441,20113,19864,15424,0,1414,1146,729,970,0,0
+20001,160000,female,3,1,44,-2,-2,-2,-2,-2,-2,-18,-18,-18,-18,-18,-18,0,0,0,0,0,0,0
+20002,250000,female,1,1,32,-2,-2,-2,-2,-2,-2,3829,4360,4420,18311,2887,4768,4374,4423,18311,2887,4768,591,0
+20003,360000,female,2,1,44,-2,-2,-2,-2,-2,-2,1715,3662,12595,223,222,490,3680,12657,224,223,492,494,0
+20004,300000,female,2,1,44,0,-1,-1,-1,-1,-1,7948,576,2660,2319,1905,257,576,2684,2319,1905,257,3743,0
+20005,500000,female,2,1,45,0,0,0,0,0,-1,494140,274198,214481,112222,33958,9684,14515,10815,5874,2729,9784,279706,0
+20006,420000,female,2,1,40,-1,0,0,0,2,0,101873,99516,99873,100361,90052,89112,3517,3537,6810,0,2764,3500,0
+20007,30000,female,2,2,36,0,-1,-1,0,0,0,2114,490,30452,29667,28596,29180,490,33299,1400,572,584,400,0
+20008,260000,female,2,1,48,0,0,0,0,0,0,85378,71870,72994,57382,58522,59748,2664,2376,2084,2095,2169,2182,0
+20009,360000,female,2,1,45,0,-1,-1,-1,-1,-1,20137,3332,3542,6487,3437,4875,3332,3752,6487,3437,4875,24181,0
+20010,220000,female,2,2,32,-1,-1,-1,-1,-1,-1,18477,16341,11125,10000,10000,10000,16370,11125,10000,10000,10000,301,0
+20011,20000,female,3,1,35,0,0,0,0,0,0,19792,19995,20269,18268,19478,19885,1339,1500,1290,1500,704,882,0
+20012,230000,female,1,2,37,-2,-2,-2,-2,-2,-2,-18,-18,-18,-18,-18,-18,18,0,0,0,0,0,1
+20013,100000,female,2,1,41,-1,2,2,-1,0,0,2427,1225,935,5362,4082,-75,935,0,5362,0,0,0,0
+20014,180000,female,1,1,44,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+20015,300000,female,2,1,45,0,0,0,0,0,0,12975,13149,13408,12714,12437,11166,1520,2000,1452,1000,649,344,0
+20016,160000,female,3,1,46,-1,-1,-1,-2,-2,-2,960,485,0,0,0,0,485,0,0,0,0,0,0
+20017,10000,female,2,3,43,0,0,0,0,0,2,6110,6302,5972,6985,7845,7574,1240,1200,1120,980,0,268,0
+20018,300000,female,1,1,39,-2,-2,-2,-2,-2,-2,2973,2694,7270,2970,2359,8492,2702,7286,2978,2369,10011,7259,0
+20019,80000,female,1,1,37,0,0,0,0,0,0,104989,100150,94413,89400,84271,79502,4369,3343,3137,2914,3151,3320,0
+20020,440000,female,1,1,39,0,0,0,0,0,0,388357,390101,387948,354871,238196,200777,14193,14740,9655,6453,5478,4919,1
+20021,80000,female,2,2,33,0,0,0,0,2,0,12554,13564,14608,17441,16866,17443,1523,1567,3400,0,1000,1000,0
+20022,230000,female,1,1,45,-2,-2,-2,-2,-2,-2,0,0,0,0,0,136,0,0,0,0,136,1233,0
+20023,340000,female,2,1,47,-1,-1,-1,-1,-1,-1,507,892,5221,7627,580,999,892,5269,8193,596,999,176340,0
+20024,50000,female,2,2,48,0,0,0,0,0,0,50099,17402,19111,20784,23428,25040,1291,2000,2000,3000,2000,2000,0
+20025,80000,female,1,1,37,-1,-1,-1,-1,-1,-1,2028,286,14255,10056,317,728,286,14255,10071,317,728,16312,0
+20026,150000,female,1,1,47,-2,-2,-2,-2,-2,-2,39139,15269,12853,12531,5325,2086,15374,12904,12541,5330,2086,2627,0
+20027,160000,female,1,1,43,-1,-1,-1,-1,-1,-1,2980,2817,0,450,748,5054,2817,0,450,748,5054,4711,1
+20028,390000,female,4,1,40,0,0,0,0,0,0,195688,199033,197961,195958,196019,199014,7636,5653,5545,5532,5859,6818,0
+20029,500000,female,1,1,37,-2,-2,-2,-2,-2,-2,16801,14782,23095,49379,35313,23024,14805,23111,49397,35313,23856,27740,0
+20030,100000,female,2,1,32,-1,0,0,0,0,0,29222,29378,25409,23072,22745,22492,1432,1452,1226,675,748,569,0
+20031,310000,female,1,1,41,-1,0,0,0,0,0,30680,126866,129449,106382,98892,92599,100000,16036,5000,3000,3000,3000,0
+20032,30000,female,1,2,43,0,0,0,0,0,0,29327,30487,29417,30379,30452,0,1659,1589,1551,1124,0,0,0
+20033,20000,female,2,2,45,0,0,0,0,-2,-2,7221,8329,8840,-1560,-1560,-1560,1245,1400,0,0,0,0,0
+20034,500000,female,1,2,45,0,0,0,0,0,0,87206,90487,19892,20377,32177,41677,5303,10000,1200,12000,10000,0,0
+20035,150000,female,1,2,37,-2,-2,-2,-2,-2,-2,702,0,0,0,0,0,0,0,0,0,0,0,0
+20036,360000,female,1,2,38,1,2,0,0,0,0,4741,4534,6491,8422,8665,0,0,2000,2000,243,0,0,1
+20037,200000,female,1,2,31,0,0,0,0,0,0,68244,65243,61590,47301,47232,25231,6018,2507,2011,4140,5072,500,0
+20038,270000,female,1,2,36,0,0,0,0,0,0,16699,17908,19114,20341,20617,16223,1800,1500,1600,830,1000,1000,0
+20039,230000,female,2,2,32,0,0,0,0,0,0,17957,18063,20755,23278,24083,25145,3000,3000,3000,4000,4000,3000,0
+20040,150000,female,1,1,40,-1,-1,-1,-2,-2,-2,1221,176,0,0,0,0,176,0,0,0,0,0,0
+20041,240000,female,1,1,41,0,0,0,0,0,0,129776,126395,129371,132218,136003,139798,5000,5000,5000,6000,6000,5098,0
+20042,250000,female,2,1,49,0,0,0,0,0,0,41075,31898,103675,91487,83374,67445,5000,94000,3000,7000,20006,30034,0
+20043,240000,female,1,1,35,-1,-1,-1,0,-1,0,3664,5770,10412,4578,5928,5619,5770,10420,1150,5928,3619,13227,1
+20044,340000,female,1,2,34,-1,-1,-1,0,0,0,1780,28620,66633,182856,166943,126445,28763,66652,123267,26207,948,52876,0
+20045,160000,female,1,2,35,-2,-2,2,2,0,0,52010,4792,194,1900,1900,1150,4792,150,3800,0,0,0,0
+20046,180000,female,2,1,33,0,0,0,0,0,0,44806,47050,49282,50159,51336,54332,3000,3000,2000,2011,4000,3000,0
+20047,240000,female,2,1,41,-2,-1,-1,-1,-2,-2,852,1738,186673,5517,2660,1480,1746,187473,5517,2660,1480,0,0
+20048,120000,female,2,2,43,0,0,0,-1,0,0,121427,60163,61723,25638,26092,14586,77225,21903,25646,5080,0,5052,0
+20049,150000,female,5,1,40,0,0,0,0,0,0,21001,12406,14587,59974,51049,47079,4000,2500,55000,1115,1000,0,0
+20050,210000,female,1,2,31,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+20051,500000,female,2,1,31,0,0,0,0,0,0,348526,345128,337816,316739,167616,364940,15210,15022,20121,5925,35069,35110,0
+20052,80000,female,3,1,49,0,0,0,0,0,0,79967,75920,73968,71919,59894,59405,2700,2875,3000,3000,4000,2500,0
+20053,30000,female,3,2,45,-2,-2,-2,-2,-2,-2,0,0,0,0,300,390,0,0,0,300,390,930,0
+20054,60000,female,2,1,33,0,0,0,0,0,0,56379,23161,21106,22345,25720,23467,3000,1386,1625,4000,3000,3000,0
+20055,370000,female,2,2,35,-2,-2,-2,-2,-2,-2,20108,13976,12939,11367,17049,27337,13994,12939,11380,17049,27337,14146,0
+20056,30000,female,2,1,33,-1,-1,-1,-1,-1,-1,390,390,390,390,390,0,390,390,390,390,0,780,0
+20057,150000,female,1,1,30,0,0,-2,-2,-2,-2,6154,0,0,0,0,0,0,0,0,0,0,26286,1
+20058,100000,female,1,2,42,0,0,0,0,0,-2,61618,60380,58567,79527,18950,19667,2406,2200,22004,656,1000,396,0
+20059,80000,female,2,1,39,0,0,0,0,0,0,48784,46401,39456,30712,29629,28241,2194,1560,1421,1001,1000,1008,0
+20060,200000,female,1,2,32,-1,-1,-1,-1,-1,-1,8479,2021,1050,0,400,976,2021,1050,0,400,976,1123,0
+20061,80000,female,2,1,33,2,3,2,2,0,0,51016,51081,52059,47912,48646,49341,1200,2100,0,1800,2000,2000,1
+20062,140000,female,2,1,42,0,0,0,0,0,0,156062,158495,160681,144194,144802,147311,5750,5530,6600,5100,5460,5460,0
+20063,290000,female,2,2,40,0,0,0,0,0,0,258360,263820,265115,264323,221070,219295,12025,10000,9883,7738,7813,10000,0
+20064,350000,female,1,1,36,-1,-1,-1,-1,0,0,28489,28934,20558,29866,37587,15307,28950,20565,29880,27697,5330,31990,0
+20065,310000,female,1,1,39,-2,-2,-2,-2,-2,-2,12080,1989,4566,5329,5724,1518,1989,4566,5433,5724,1336,0,0
+20066,80000,female,2,1,42,0,0,0,0,0,2,18172,19559,20437,26591,28350,27758,2000,1500,6500,2200,0,1100,1
+20067,30000,female,3,1,37,0,0,0,0,0,0,25689,26455,27525,28545,29388,30133,1500,1500,1500,1300,1200,1500,1
+20068,230000,female,2,2,47,-2,-2,-2,-1,0,0,0,0,0,1360,680,600,0,0,1360,0,600,0,0
+20069,150000,female,1,1,37,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+20070,110000,female,2,1,29,0,0,0,0,0,0,60101,61589,60822,62306,63768,65239,2505,2500,2500,2500,2500,2640,0
+20071,170000,female,2,1,29,0,0,0,0,0,0,50104,32978,11779,79862,39617,34091,2000,2009,78417,8000,3000,3000,0
+20072,200000,female,1,2,30,1,-1,2,-1,0,0,0,1186,1024,990,1000,0,1186,0,990,10,0,840,0
+20073,260000,female,2,1,30,0,0,0,0,0,0,147565,149777,151583,155493,158624,161902,7129,5179,5276,4537,4670,4717,0
+20074,50000,female,2,2,47,0,0,0,0,0,0,39296,40638,41741,45982,43041,42957,2000,1759,5000,1525,1569,3000,0
+20075,50000,female,2,3,42,0,0,0,0,0,0,49699,49446,50694,44858,19298,19514,1857,2295,1572,5000,1000,813,0
+20076,420000,female,1,1,46,-2,-2,-2,-2,-2,-2,19629,8705,18653,36076,27823,0,8765,18728,36430,27906,0,9268,0
+20077,220000,female,1,2,36,-2,-2,-2,-1,2,0,637,0,0,300,300,728,0,0,365,0,578,198,1
+20078,230000,female,1,1,36,-2,-2,-2,-2,-2,-2,928,282,282,2427,282,282,282,282,2427,282,282,1886,0
+20079,280000,female,2,2,49,0,0,0,0,0,0,278569,277306,225732,229877,219267,225421,11005,12000,12100,12000,10000,10000,0
+20080,20000,female,2,1,45,0,0,2,0,0,0,25102,27906,26153,26745,26359,25974,3550,0,2400,1000,1000,8000,1
+20081,200000,female,1,2,44,0,0,0,0,0,0,35210,34606,34800,33275,33435,32778,1858,2100,2000,3435,3000,3277,0
+20082,280000,female,1,1,37,-1,-1,-2,-1,-1,-1,8909,3173,13947,7676,6155,3695,3571,14080,7742,6178,3711,6056,0
+20083,170000,female,2,1,45,0,0,0,0,0,2,130668,121100,123414,114180,122332,120270,5900,5800,6000,11600,0,9400,1
+20084,50000,female,2,1,42,0,0,0,0,0,0,49624,49357,49366,49221,48848,47545,2100,2150,2200,2000,2000,3000,0
+20085,240000,female,1,2,33,0,0,0,0,0,0,103100,106908,109419,111838,112727,115479,5295,5500,5500,4000,4500,4000,0
+20086,100000,female,2,2,42,0,0,0,0,0,0,117464,81625,81815,78927,77418,74657,2962,2986,2807,2686,2767,2909,1
+20087,230000,female,1,2,30,0,0,0,0,0,0,185129,185099,186698,181156,129441,135383,10024,8638,6500,50000,8008,4789,0
+20088,240000,female,2,1,32,0,0,0,0,0,0,199789,203156,201267,182484,182478,175394,9000,9319,6200,5894,5100,6300,0
+20089,240000,female,2,2,32,0,0,0,0,0,0,132252,135069,136408,139192,142111,145165,6500,5000,5057,5239,5500,5000,0
+20090,80000,female,2,1,36,0,0,0,0,0,0,22657,19940,19870,18155,11119,5203,1320,1540,1005,222,1000,2000,0
+20091,80000,female,2,2,30,0,-1,-1,-1,0,-1,21072,2520,-3990,22193,21546,1922,2620,0,27194,1381,1922,2781,0
+20092,50000,female,3,1,48,-1,-1,2,-1,-1,0,2896,1360,812,4012,28672,28875,1500,500,4100,28800,1011,1041,0
+20093,180000,female,2,1,38,0,0,0,0,0,0,150345,145797,147825,145482,141846,132687,5300,6840,6700,5100,5000,4800,1
+20094,150000,female,1,2,31,-2,-2,-2,-2,-2,-2,4847,4268,0,1193,-127,-127,4268,0,1193,0,0,1956,0
+20095,140000,female,1,1,42,2,2,2,0,0,0,141321,141836,139070,134168,135678,136494,4300,1003,4854,5500,5200,5100,1
+20096,80000,female,2,1,43,2,0,0,0,0,0,68612,69971,71846,72372,73475,74842,3100,3600,2720,2400,2224,3990,0
+20097,300000,female,2,1,43,-2,-2,-2,-2,-2,-2,5972,1854,2105,835,1761,2849,1857,2109,835,1761,2853,6282,0
+20098,350000,female,2,2,34,0,0,0,0,0,0,19202,16576,16801,15238,10267,9578,1300,2000,1500,1000,1500,2500,0
+20099,110000,female,3,2,46,0,0,0,0,0,0,44590,45846,47104,48325,0,49461,2000,2000,2000,2000,0,2000,1
+20100,130000,female,2,1,37,0,0,0,0,0,0,33346,37902,42496,45954,51419,55919,5448,5542,4500,5465,4500,5662,0
+20101,130000,female,2,1,45,0,0,0,0,-2,-2,126840,116746,59839,0,0,0,5298,2606,0,0,0,0,0
+20102,170000,female,2,2,48,0,0,0,0,0,0,99728,97889,99902,100128,101531,102770,4500,5000,4000,4000,4000,7000,0
+20103,310000,female,1,1,43,0,0,-1,0,0,0,112343,25349,21033,19033,9588,5222,3023,21033,1000,192,104,87268,0
+20104,500000,female,3,2,36,-2,-2,-2,-2,-2,-2,51132,8830,7570,1576,0,13295,8830,7570,1576,0,13295,38090,0
+20105,230000,female,1,2,35,-1,-1,-1,-1,-2,-2,1890,533,267,0,0,0,533,267,0,0,0,0,0
+20106,50000,female,2,1,35,1,2,2,2,2,2,8917,8625,11475,10999,12311,11973,0,3000,0,1800,0,1950,1
+20107,390000,female,3,1,44,-1,0,-1,-1,0,0,35369,22238,7809,97774,100912,152955,15000,7809,97874,32494,100000,31000,0
+20108,200000,female,3,2,43,0,0,0,-1,-1,-1,5853,5512,492,2038,316,1226,1024,492,2038,0,1226,1582,0
+20109,380000,female,1,2,34,-1,0,0,0,0,0,25079,119811,22384,115548,164296,72084,100000,12384,100000,50000,20000,52500,0
+20110,140000,female,2,2,41,0,0,0,0,0,0,130439,108411,107113,120327,62855,67243,5000,5000,20000,10000,10000,10000,0
+20111,420000,female,2,2,49,0,0,0,0,0,0,115505,113724,112976,111344,100648,94891,4044,4297,4773,3203,2951,2837,0
+20112,50000,female,2,1,42,3,3,2,2,0,0,24225,24046,24574,24348,16130,16467,500,1200,516,566,585,608,1
+20113,100000,female,3,2,46,-1,-1,-1,2,2,-1,3780,0,203,203,0,7856,0,203,0,0,7856,10000,0
+20114,50000,female,2,2,36,2,2,2,2,0,0,50817,50523,51921,50767,48488,49503,2000,2500,0,1721,1782,1806,1
+20115,140000,female,2,1,37,0,0,0,0,0,0,58075,59504,61544,62925,64280,67079,3000,3000,3000,3000,4000,4000,0
+20116,50000,female,1,1,40,0,0,0,0,0,0,48519,35968,29453,26660,26235,27647,1800,1755,1500,1101,2000,1135,0
+20117,20000,female,2,1,48,1,-2,-2,-2,-2,-1,0,0,0,0,0,1473,0,0,0,0,1473,930,1
+20118,260000,female,2,1,45,0,0,0,0,0,0,243952,224426,193708,163477,139993,133197,15521,10005,7000,5500,5000,4000,0
+20119,240000,female,2,1,37,-2,-2,-2,-2,-2,-2,-150,-150,-150,-150,-150,-150,0,0,0,0,0,0,1
+20120,20000,female,3,1,49,0,0,0,0,0,0,12165,13171,14054,14900,15000,0,1517,1400,1200,300,0,0,0
+20121,200000,female,2,2,38,0,0,0,2,-1,0,18703,9733,7078,1195,43115,43869,1533,2395,0,45000,1600,2000,0
+20122,150000,female,2,1,40,0,0,0,0,0,0,87105,82772,75928,66245,61833,62375,3000,3504,2300,2199,2414,2500,0
+20123,280000,female,1,2,35,-1,-1,-2,-2,-2,-2,3072,0,0,0,0,0,0,0,0,0,0,0,0
+20124,280000,female,1,2,34,-2,-2,-2,-2,-2,-2,2793,1356,19497,10164,1089,26218,1356,19497,10173,1089,28217,0,0
+20125,120000,female,1,1,34,1,-2,-1,-1,-1,0,0,0,1471,3094,12623,10446,0,1471,3103,12623,0,1446,1
+20126,160000,female,2,2,47,-1,-1,-1,-1,-2,-2,1961,5495,13029,0,0,0,5495,13036,0,0,0,0,0
+20127,80000,female,2,1,37,0,0,0,0,0,0,63558,59812,68636,40659,32436,36658,2500,10000,3000,3000,5000,5000,0
+20128,500000,female,2,1,43,0,0,0,-1,-1,-1,42081,46495,39489,12421,11345,11968,16495,15720,12421,11345,11968,11824,0
+20129,50000,female,2,2,42,5,4,3,2,0,0,20235,19635,19045,18300,17900,17900,0,0,0,0,0,0,1
+20130,120000,female,1,1,36,-1,-1,-1,-1,0,-1,2779,6375,1086,1230,1230,2806,6428,1086,1230,0,2806,1750,1
+20131,150000,female,1,1,34,-2,-2,-2,-2,-2,-2,5712,14539,8796,20359,17329,20087,14539,8796,20375,17329,20087,0,0
+20132,150000,female,2,1,34,0,0,0,0,0,0,150294,147979,147235,147997,145405,146502,6750,6900,6690,5300,5500,5500,0
+20133,200000,female,2,2,31,-2,-2,-2,-2,-2,-2,1507,0,218,4360,0,0,0,218,4360,0,0,0,0
+20134,160000,female,1,2,31,-2,-2,-2,-2,-2,-2,0,2036,796,5740,0,447,2036,796,5768,0,447,0,0
+20135,200000,female,2,1,33,0,0,0,0,0,0,84064,85935,55548,134719,152290,152470,5935,5548,84719,23050,7470,5624,0
+20136,280000,female,2,1,43,1,-1,-1,-1,-1,-1,0,4051,1196,19875,599,850,4051,1245,19875,599,850,185,1
+20137,120000,female,2,2,39,0,0,0,2,0,0,20693,22033,24067,24372,24670,25617,2000,2400,1000,1000,1500,1500,1
+20138,360000,female,1,1,42,-1,-1,2,2,2,-1,10000,893,1224,331,0,2757,893,331,0,0,2757,2056,0
+20139,150000,female,2,1,49,1,-1,-1,-1,-1,-1,0,1870,669,0,13453,5773,1870,669,0,13453,5773,100,0
+20140,390000,female,1,1,39,0,0,-1,-1,-1,-1,42721,22836,24266,6088,2500,828,12041,24353,6118,2550,828,0,0
+20141,200000,female,2,1,34,-1,0,0,0,0,0,7271,9133,10972,12757,13069,13334,2000,2000,2003,1008,2029,1000,0
+20142,200000,female,2,2,37,1,2,0,0,0,0,226365,214261,210315,206563,202896,173111,0,8000,9000,8000,7000,7200,0
+20143,60000,female,2,1,43,0,0,0,0,0,0,60788,61005,60164,31211,30374,30432,2500,3001,3003,2000,2001,2000,0
+20144,300000,female,1,1,30,-2,-2,-2,-2,-2,-2,0,0,811,1128,1750,819,0,811,1128,1760,819,753,0
+20145,420000,female,2,2,32,0,0,0,0,0,0,211688,205003,203118,198925,175684,164037,7300,8839,8000,5900,6000,6000,0
+20146,170000,female,1,1,33,1,-2,-2,-2,-1,0,0,0,0,0,185,185,0,0,0,185,0,4578,0
+20147,170000,female,1,2,28,0,0,0,0,0,0,56766,59811,61987,63849,66276,68207,4000,3638,3500,3500,3000,3000,0
+20148,160000,female,1,2,28,-1,-1,-1,-1,-1,-1,15525,34585,37439,47340,2473,4120,34604,37836,47340,2473,4120,6302,0
+20149,210000,female,1,2,28,-1,-1,-1,-1,-1,0,2670,262,3771,5474,69536,76188,262,3771,5474,69536,10000,4000,0
+20150,200000,female,5,2,29,-2,-2,-2,-2,-2,-2,2618,784,611,0,0,150,784,611,0,0,150,478,0
+20151,200000,female,2,2,30,0,0,0,0,0,0,154030,151604,146128,138919,132778,136272,5370,5217,4894,4800,5900,5074,0
+20152,60000,female,1,2,32,0,0,0,0,0,0,59166,39328,38313,28660,31398,9966,2000,2300,1700,10000,1200,20000,0
+20153,500000,female,1,2,33,-1,-1,-1,-1,-1,-2,249,2655,249,99,-150,-150,2655,249,99,150,0,0,0
+20154,150000,female,1,1,33,-1,2,-1,-1,-1,-1,3389,1600,1782,1600,0,11665,0,1782,1600,0,11665,0,0
+20155,310000,female,2,2,42,-2,-1,0,0,0,0,-2123,246407,250249,254254,259960,265702,260000,10000,10000,10000,10000,10000,0
+20156,350000,female,1,2,31,0,0,0,0,0,0,35420,38632,42499,46590,52606,59537,4000,5000,5000,7000,8000,10000,0
+20157,140000,female,1,2,35,-1,-1,-1,-1,-1,-1,7921,9268,3943,7737,2456,15507,9268,3953,7737,2456,15507,0,1
+20158,320000,female,1,2,30,-1,-1,-1,-1,-1,-2,9646,13438,14833,1920,10516,10350,13442,14838,1920,10516,10350,43982,0
+20159,330000,female,1,2,32,0,0,0,0,0,0,12118,11176,9369,7061,23421,21240,2000,1114,1493,20000,1000,700,0
+20160,200000,female,2,2,36,0,0,0,0,0,0,10890,11902,12907,15369,15863,16059,1500,1500,3000,750,600,1490,0
+20161,430000,female,5,2,41,-2,-2,-2,-2,-2,-2,2663,20679,6698,2104,888,888,20679,6698,2104,888,888,4232,0
+20162,170000,female,3,2,30,0,0,0,0,0,0,173922,164939,165597,163424,163204,159257,7400,7600,7800,6348,6200,6500,0
+20163,300000,female,1,1,30,-2,-2,-2,-2,-2,-2,15575,22187,1970,1687,248,600,10810,1979,1695,249,600,585,0
+20164,450000,female,2,2,39,-1,0,0,0,0,-1,217126,43647,39827,43978,389,389,10329,3001,5217,1,390,390,0
+20165,250000,female,2,2,44,-1,-1,-1,-1,-1,0,23438,0,3850,0,32690,37141,0,3850,0,32690,5000,5000,0
+20166,300000,female,1,2,29,0,0,-2,-1,-1,-2,11500,0,0,1780,0,0,0,0,1780,0,0,0,0
+20167,230000,female,2,2,30,0,0,0,0,0,0,149775,107052,231164,120523,117102,116718,10000,130223,9953,4014,3307,4100,0
+20168,230000,female,1,1,35,-2,-2,-2,-2,-2,-2,9000,0,0,0,0,0,0,0,0,0,0,0,0
+20169,100000,female,2,2,37,-2,-2,-2,-2,-2,-2,14394,35392,20000,0,0,0,36291,20000,0,0,0,0,0
+20170,20000,female,3,2,52,0,0,0,0,0,2,18603,15208,16153,18175,19876,19419,1555,1500,2300,2000,0,1000,0
+20171,50000,female,1,1,54,0,0,0,0,0,0,45777,46816,47862,49064,66819,17288,1800,1800,2000,2300,2000,629,0
+20172,70000,female,1,2,50,2,0,0,0,0,0,62049,64315,58564,56741,25172,29186,4000,3000,10032,8000,5139,1000,1
+20173,170000,female,2,1,52,0,0,0,0,0,0,170133,168945,160660,163652,131396,130402,7620,6200,10000,5100,5500,5000,1
+20174,110000,female,3,1,53,0,0,0,0,0,0,105435,107599,108555,106692,103971,104140,5400,4200,5200,3800,3900,3700,0
+20175,30000,female,3,2,50,0,0,2,0,0,0,17891,19087,20078,20935,17228,17606,1800,1600,1600,1000,734,481,0
+20176,60000,female,2,1,50,2,0,0,0,0,0,60199,60742,60841,58902,19352,19523,2800,2600,2107,1000,1000,705,1
+20177,70000,female,2,1,59,0,0,0,0,0,2,67088,64376,62004,62985,69380,70498,2244,2301,2254,7600,2500,2422,0
+20178,20000,female,3,1,50,-1,-1,-1,-1,-2,-2,5141,3455,6906,0,0,0,3754,6906,290,0,0,0,1
+20179,30000,female,3,1,51,0,0,0,0,0,0,15126,13327,13829,10898,9217,9048,1236,1518,1074,500,300,1000,0
+20180,30000,female,2,1,52,2,2,2,0,0,0,7033,10431,10120,11145,11368,12186,3700,0,1200,408,1002,0,1
+20181,490000,female,3,1,54,-1,-1,-1,-1,-1,-1,396,396,361,7530,396,396,396,361,7600,396,396,396,0
+20182,280000,female,2,1,53,-1,-1,2,2,-1,-1,1890,2846,920,390,7531,1240,2846,390,390,7531,1240,390,0
+20183,150000,female,1,1,51,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+20184,240000,female,2,1,52,1,-2,-2,-2,-1,-1,0,0,0,0,2780,20034,0,0,0,2780,20034,0,0
+20185,230000,female,2,2,53,0,0,0,0,0,0,9358,13482,17874,26743,26431,35153,5000,5000,10000,5000,10018,6850,0
+20186,100000,female,1,2,52,1,2,2,2,2,2,13687,14007,14236,12924,12467,10950,1600,1500,0,700,0,1150,1
+20187,60000,female,2,1,51,0,0,0,0,0,0,57252,57771,47778,37858,36467,34419,2501,2032,2005,1507,1501,1502,0
+20188,50000,female,3,1,51,0,0,0,0,0,0,38306,39338,40378,39067,25481,25861,1661,1701,2006,1041,922,1000,0
+20189,70000,female,2,2,52,1,2,0,0,2,0,38527,37608,39369,43627,15251,16285,0,2369,5178,0,1285,2308,0
+20190,50000,female,3,1,52,3,2,0,0,0,0,49534,48061,48807,49347,17524,17497,0,2200,2100,606,624,622,0
+20191,110000,female,2,2,52,0,0,0,0,0,0,38298,39295,40331,41346,42013,42890,1935,1971,1986,1653,1706,1714,0
+20192,200000,female,6,2,51,2,0,0,0,0,0,455293,441048,433541,425538,419080,98840,10688,10688,10278,11567,98843,156961,0
+20193,220000,female,3,1,51,0,0,0,0,0,0,44076,40353,36314,32320,27803,25370,2000,1600,1600,1000,3000,1000,0
+20194,30000,female,3,2,50,0,0,-1,-1,-2,-1,25648,25524,3737,0,0,22525,1000,3836,0,0,22525,0,0
+20195,20000,female,2,1,50,0,0,0,0,2,0,13779,14788,15815,17891,17308,17521,1245,1272,2348,0,640,1615,1
+20196,20000,female,2,1,51,1,2,0,0,0,0,14710,14166,14040,13796,12909,12015,0,1253,2232,402,393,357,0
+20197,20000,female,3,1,51,0,0,0,-1,0,0,18768,19684,11580,780,780,0,1714,1000,780,0,0,0,0
+20198,280000,female,1,1,51,-2,-1,-1,-2,-1,-1,390,11223,15225,4951,2408,8360,11223,15262,4951,2408,8360,6202,1
+20199,100000,female,3,1,54,0,0,0,0,0,0,40112,40981,41963,43012,33270,33967,1661,1766,1942,1200,1233,1241,0
+20200,300000,female,2,1,56,0,0,0,0,0,0,129234,127932,124793,123572,116832,115064,10060,10864,10078,10512,10020,10157,0
+20201,200000,female,3,1,54,-1,2,-1,-1,-1,-1,2841,1709,1312,2404,3786,1916,0,1312,2404,3786,1916,2299,0
+20202,50000,female,3,1,52,2,0,0,0,0,0,48970,49366,49803,49830,49539,50418,2100,2128,2079,1896,1803,1954,0
+20203,20000,female,2,2,52,0,0,0,0,0,0,18652,18506,18849,19917,19087,19588,1300,1500,1500,500,1380,385,0
+20204,30000,female,3,3,61,2,2,0,0,0,0,24453,23212,23964,24434,21340,5624,0,1522,1200,428,112,0,0
+20205,430000,female,2,2,50,0,0,0,0,0,0,268537,207118,202412,207496,250337,255277,10000,8000,12000,50000,28000,60000,0
+20206,90000,female,2,1,55,-2,-2,-2,-2,-2,-2,3388,0,0,0,0,7707,0,0,0,0,7707,0,0
+20207,280000,female,2,1,50,-1,-1,-1,-1,-1,0,8740,4919,176823,117686,36708,18126,4919,176823,117686,36708,363,853,0
+20208,20000,female,3,2,50,-1,0,0,0,0,0,19681,19968,19261,20184,17016,15725,1313,1481,1404,0,0,822,0
+20209,150000,female,3,2,52,0,0,0,0,0,0,139733,138723,132441,94493,84936,77988,7000,6000,5000,5000,5000,5000,0
+20210,300000,female,1,2,50,-2,-2,-2,-2,-2,-2,22443,31175,26476,27782,23325,49146,31175,26476,27782,23325,49146,13164,0
+20211,80000,female,5,1,52,2,0,0,0,0,0,79822,77747,77733,78017,29599,26927,2773,3236,2000,2000,1000,1500,0
+20212,280000,female,1,1,50,-1,-1,-1,-1,-1,-1,2712,4450,9754,0,8142,6997,4494,9754,0,8142,6997,0,0
+20213,120000,female,3,1,50,0,0,0,-2,-2,-2,121018,123150,0,0,0,0,5550,0,0,0,0,0,0
+20214,210000,female,3,2,51,2,0,0,0,0,2,42795,43787,44826,45544,48497,47591,2007,2046,1764,3717,0,1885,1
+20215,40000,female,2,1,52,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,3500,0,0,0,0,0,0
+20216,100000,female,2,1,52,0,0,0,0,0,0,39555,40550,41587,42602,43327,47950,1955,1992,2007,1732,5506,0,0
+20217,90000,female,3,1,54,-2,-2,-2,-2,-2,-2,0,0,0,0,1805,0,0,0,0,1805,0,0,1
+20218,80000,female,2,2,49,-1,-1,-1,-1,-1,0,390,390,390,390,780,390,390,390,390,780,0,390,1
+20219,170000,female,2,1,51,0,-1,-1,-1,0,0,9773,4101,3866,14894,6833,6972,4146,3866,14894,137,139,3029,0
+20220,350000,female,1,1,52,3,2,2,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,1
+20221,80000,female,3,2,55,2,0,0,0,0,0,76414,78009,78616,49662,48867,48278,3100,2420,2000,1656,1693,1767,0
+20222,30000,female,3,2,58,0,0,0,0,0,0,24874,25961,27534,27670,28717,28786,1500,2000,1500,1500,1100,1300,0
+20223,500000,female,1,1,54,-1,-1,-1,-1,0,0,6259,2937,10410,30016,8014,2630,2962,10457,30026,26,13,2283,1
+20224,180000,female,2,1,53,-2,-2,-2,-2,-2,-2,0,533,2329,1778,2510,184,533,2329,1778,2514,184,1103,0
+20225,80000,female,3,1,57,0,0,-2,-1,0,0,33600,0,0,9618,10455,11131,0,0,9618,1000,1000,1000,0
+20226,150000,female,2,2,51,0,-1,-1,-2,-2,-1,13219,1179,0,0,0,35752,1179,0,0,0,35752,1448,0
+20227,600000,female,3,2,51,0,0,0,0,0,0,95286,78404,147559,323129,310042,311840,10448,85113,217035,11032,15019,10033,0
+20228,50000,female,2,2,51,0,0,0,0,0,0,24202,23664,21780,22722,21907,2917,1340,1402,1344,1002,58,29,0
+20229,20000,female,2,1,51,0,0,0,2,0,0,5411,6279,8163,8874,9722,12386,1116,2000,1000,1000,3000,0,0
+20230,150000,female,3,1,72,-2,-2,-2,-2,-2,-2,0,1250,0,3871,6200,336,1250,0,3871,6200,336,0,0
+20231,100000,female,3,1,50,0,0,0,0,0,0,47895,48889,50099,52259,53389,55519,1790,2000,3000,2000,3000,2041,0
+20232,20000,female,3,1,58,2,2,2,2,0,0,8287,10978,11207,11227,12042,12850,3000,700,500,1000,1000,1000,1
+20233,80000,female,3,1,55,0,0,0,2,0,0,67671,61346,59100,53133,48598,48882,2141,6433,0,2000,2000,2000,0
+20234,50000,female,3,1,52,1,2,0,0,0,0,19371,18761,19469,20412,19755,20320,0,1700,1600,700,840,700,0
+20235,150000,female,2,1,52,0,0,2,0,0,0,85404,91457,89151,90071,92565,98291,8400,0,3300,4000,7400,0,0
+20236,90000,female,3,1,52,0,0,0,0,-2,-2,49115,50477,51400,0,0,0,2477,2400,0,0,0,0,0
+20237,80000,female,1,1,50,0,0,0,0,-2,-1,30711,28729,7605,0,0,3011,1957,1000,0,0,3011,2000,0
+20238,190000,female,2,1,48,2,2,2,2,0,0,90128,92367,94227,91943,93546,95759,4500,4100,0,3500,3600,3500,1
+20239,320000,female,1,2,50,-1,-1,-1,-1,0,0,1999,729,2462,12360,10943,9597,730,2472,12360,0,237,3417,0
+20240,500000,female,2,2,50,-1,-1,-1,-1,-1,-1,10061,20587,9984,7461,8093,7342,20631,10009,7488,8129,7369,6027,0
+20241,50000,female,3,1,57,0,0,0,0,0,0,50990,49123,50820,50706,30636,30501,2100,2500,3820,1636,1501,1700,1
+20242,60000,female,1,2,62,0,0,0,0,0,2,57918,59878,51466,50506,56373,55341,3028,2006,1862,6729,0,2911,0
+20243,100000,female,3,1,53,0,0,0,0,0,0,98026,99768,100098,75296,73774,75603,3773,3919,3010,3000,6000,3500,0
+20244,150000,female,1,1,54,-2,-2,-2,-2,-2,-2,-1,262,329,39919,263,263,263,331,40118,264,264,790,1
+20245,280000,female,4,1,50,0,-1,-1,2,2,-2,5380,390,1843,1663,-147,-147,400,1843,0,0,0,1647,0
+20246,100000,female,3,1,50,0,0,0,0,0,0,49032,48477,46605,48795,48968,49752,1736,1810,3000,1734,1944,2420,0
+20247,30000,female,2,1,50,2,2,2,2,3,2,21993,22634,23057,24506,24711,24178,1300,1082,2131,900,0,2200,1
+20248,50000,female,1,1,50,2,2,2,2,2,2,38483,39511,40582,41316,41998,42674,1960,2000,1700,1662,1493,0,1
+20249,60000,female,2,1,50,0,0,0,0,0,0,33290,32867,32638,29743,26909,24955,1558,1571,1344,877,875,3000,0
+20250,40000,female,3,2,55,1,2,2,2,2,2,27849,29093,28347,30561,29770,31666,2000,0,3000,0,2382,0,0
+20251,160000,female,3,1,51,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+20252,150000,female,2,2,50,-2,-2,-2,-2,-2,-2,8478,7890,8958,780,7500,0,7890,8958,780,7500,0,0,0
+20253,200000,female,2,1,50,-2,-2,-1,-1,-1,-1,0,0,1350,0,1265,0,0,1350,0,1265,0,0,1
+20254,60000,female,3,1,51,0,0,0,0,0,0,60350,61112,60557,35555,30214,30170,2435,2575,1404,990,1347,1316,0
+20255,210000,female,1,1,51,-1,-1,-1,2,-1,-1,3490,3611,13920,10284,3813,1154,3611,12797,0,3829,1154,2766,0
+20256,50000,female,1,2,52,2,0,0,0,-2,-1,6379,3257,4166,0,0,318,1091,1000,0,0,318,0,0
+20257,360000,female,1,1,52,-2,-2,-2,-2,-2,-2,6658,2598,1138,6730,3595,2915,2610,1240,6763,3613,2930,47183,0
+20258,80000,female,3,3,52,0,0,0,0,0,0,77086,77411,78686,66217,56167,53190,3000,5086,1750,2012,1630,2165,0
+20259,360000,female,1,1,52,-2,-2,-2,-1,-1,-2,-3,-3,-3,1000,0,0,0,0,1003,0,0,0,1
+20260,140000,female,2,1,52,-1,-1,-1,-1,-1,-1,850,12340,14910,44967,11669,5169,12340,14910,44967,11669,5169,17953,0
+20261,260000,female,3,1,52,1,2,0,0,0,0,9979,9371,18488,27022,28402,800,0,10000,11264,1580,2,1098,1
+20262,180000,female,2,1,52,0,0,0,0,0,0,76538,71888,65832,51621,51191,49918,3200,2200,1800,2000,1800,1500,0
+20263,300000,female,1,2,55,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,951,0
+20264,200000,female,3,1,53,0,0,0,2,0,0,88895,79074,47318,21594,19067,13814,2600,3224,0,8000,8000,8000,0
+20265,390000,female,1,2,53,0,0,0,0,0,0,30400,34756,29530,27620,32364,34041,5000,5000,5000,5000,5000,1161,0
+20266,130000,female,3,1,59,-1,-1,-1,-1,-1,0,390,2356,1373,390,2746,390,2356,1373,390,2746,0,1570,0
+20267,130000,female,3,1,56,0,0,0,0,0,0,30218,31706,34130,36245,38624,40989,2000,3000,3000,3000,3000,3000,0
+20268,240000,female,2,1,53,-2,-2,-2,-2,-2,-2,890,236,0,2194,439,1085,236,0,2194,441,1085,858,0
+20269,80000,female,3,1,54,0,0,0,0,0,0,12158,13956,14382,15631,16080,17327,2000,1500,1500,1000,1500,2005,0
+20270,350000,female,1,1,56,-2,-2,-2,-2,-2,-2,8451,36099,5117,6714,18801,13604,36108,5136,6735,18801,13604,7326,0
+20271,110000,female,2,1,62,0,0,0,0,0,2,65932,66740,68170,69634,73981,72676,2500,2500,2600,5519,0,3000,0
+20272,30000,female,2,1,56,0,0,0,2,0,0,10232,11564,14099,13580,13657,16356,1510,3042,0,600,2942,600,1
+20273,130000,female,2,1,53,1,2,2,2,2,2,112363,109067,117301,113926,120846,118804,0,10000,0,8800,0,8000,0
+20274,80000,female,3,1,54,0,0,0,0,0,0,75267,54889,56949,35684,10400,0,3000,4000,3000,1000,0,0,0
+20275,60000,female,2,2,55,1,2,0,0,0,0,61278,59106,54647,56071,29199,29815,17,2249,2604,983,1023,1003,0
+20276,180000,female,3,1,70,0,0,0,0,0,0,162647,157533,153351,144086,118645,104652,5644,5962,4374,3895,3691,3694,0
+20277,50000,female,3,1,54,0,0,0,0,0,0,42326,43815,45156,46206,46968,47876,2200,2050,2100,1828,1815,3400,0
+20278,70000,female,3,1,57,0,0,0,0,0,0,10042,10577,11129,11650,12997,14322,1176,1196,1185,2000,2000,2000,0
+20279,270000,female,1,1,60,-1,-1,-1,-1,-1,2,836,836,836,836,1972,986,836,836,836,1972,0,836,1
+20280,110000,female,3,1,55,-1,2,0,0,2,2,4924,4305,4770,5819,4807,5579,0,1087,1532,0,1000,0,1
+20281,150000,female,2,1,53,-1,-1,-1,-1,-1,0,11589,28910,34731,18845,25745,13396,29190,34733,18857,25752,3396,8000,0
+20282,150000,female,3,1,53,0,0,0,0,0,0,29076,14131,15112,13652,86575,82377,1200,1500,3795,80000,1700,0,0
+20283,170000,female,3,2,56,-1,-1,-1,-1,-1,-1,390,17450,13366,17446,17056,16666,17450,13366,20894,17056,16666,34256,0
+20284,70000,female,2,1,62,2,0,0,0,0,0,48367,49358,50396,51462,52609,53708,1796,1834,1900,2000,1945,2000,1
+20285,360000,female,1,1,57,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,1422,0,0,0,0,1424,0,6624,0
+20286,200000,female,1,1,59,0,0,0,0,0,0,92215,94085,96174,98116,99490,101412,4300,4500,4438,3900,3800,3500,0
+20287,200000,female,2,1,69,0,0,0,0,0,0,45870,46907,47952,49052,49936,50977,2100,2100,2200,2000,2000,2011,0
+20288,140000,female,3,2,61,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+20289,360000,female,2,1,58,-2,-1,-1,-2,-2,-2,0,600,0,0,0,1459,600,0,0,0,1459,0,0
+20290,180000,female,5,1,54,0,0,0,0,0,0,87695,88545,90403,92245,94082,96050,3200,3279,3343,3366,3483,3507,0
+20291,80000,female,2,1,55,0,0,0,0,0,0,79816,29536,28870,25049,23881,23668,1600,1514,1505,1005,2026,2000,0
+20292,390000,female,1,1,53,-1,-1,-2,-2,-1,0,611,0,0,0,343,1343,0,0,0,343,1000,1076,0
+20293,440000,female,1,1,53,0,0,0,0,0,0,295180,284145,255143,234395,216318,202530,13007,9102,10003,5000,5000,6000,0
+20294,50000,female,2,1,55,-1,-1,-2,-2,-2,-2,1100,0,0,0,0,0,0,0,0,0,0,0,0
+20295,80000,female,2,2,60,-2,-2,-2,-2,-2,-2,577,494,438,387,246,939,500,438,387,246,939,350,0
+20296,230000,female,2,1,54,-1,-1,2,2,-2,-2,187,3327,3100,0,0,0,3327,0,0,0,0,0,0
+20297,90000,female,3,1,53,0,0,0,0,0,0,60769,61943,62082,61436,27507,29218,2207,2500,1479,1000,3473,2500,0
+20298,80000,female,3,2,54,0,0,2,0,0,0,16613,19828,19227,20593,20951,21460,3500,0,2000,1000,1000,1000,0
+20299,350000,female,3,1,64,0,0,0,0,0,0,30726,27639,28890,31090,32265,33737,3000,2000,3000,2000,2000,2000,0
+20300,440000,female,5,1,64,0,0,0,0,0,0,133996,136606,136771,141131,147251,150332,6319,5000,6625,10000,5443,5501,0
+20301,90000,female,3,1,54,3,2,2,2,2,0,86228,85437,90635,91745,87466,85662,1500,7500,3500,0,3300,3500,1
+20302,40000,female,2,1,56,0,0,0,0,0,0,30048,31049,32144,33157,33657,34359,1805,1900,1851,1351,1394,1464,1
+20303,50000,female,2,1,61,3,2,0,0,0,0,52659,51213,51696,50422,30145,30203,4,2346,2155,1046,1073,1246,1
+20304,50000,female,3,1,58,1,3,2,2,2,2,39649,40194,41150,41670,42188,43360,1500,1900,1500,1500,2000,1500,0
+20305,100000,female,3,1,55,-2,-2,-2,-2,-2,-2,390,390,390,390,390,390,390,390,390,390,390,390,1
+20306,200000,female,3,1,56,0,0,0,0,0,0,193392,159546,158486,160375,163444,0,5039,8000,3500,3269,0,0,0
+20307,180000,female,3,2,55,-1,0,0,0,0,0,52824,53165,54842,54868,56286,56621,2000,3002,3000,2300,2345,2000,0
+20308,180000,female,2,1,62,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+20309,20000,female,2,1,58,-1,-1,-1,-1,-2,-1,17895,13576,18286,-200,0,18486,13605,19352,0,200,18486,5656,0
+20310,120000,female,3,1,63,0,0,0,0,0,0,49394,51261,51333,51174,44680,43760,3000,2000,2000,2000,2000,2000,0
+20311,80000,female,3,2,65,2,0,0,0,0,0,85882,84985,84247,81619,30095,20639,3900,4000,2048,1300,1700,401,0
+20312,60000,female,3,1,66,0,0,2,2,4,4,47350,51230,54784,58232,61670,65120,5000,5000,5000,5000,5000,1000,0
+20313,140000,female,2,1,55,0,0,0,0,0,0,108038,110216,84516,72391,61298,62193,4200,2822,2336,2588,2250,2491,0
+20314,220000,male,2,1,39,-2,-2,-2,-2,-2,-2,1557,4445,4292,1803,2970,6348,4478,4323,1812,2985,6379,1860,0
+20315,80000,male,1,2,25,2,2,-2,-2,-2,-2,79000,0,0,0,0,0,0,0,0,0,0,0,0
+20316,360000,male,2,2,29,0,0,0,0,-1,0,67273,47110,39017,0,6835,5562,10000,5000,0,6835,0,2009,0
+20317,60000,male,3,2,26,0,0,0,0,0,0,56387,57648,59521,58637,38490,38492,2200,2805,1764,1356,1500,1523,0
+20318,50000,male,1,2,29,-1,-1,-2,-2,-2,-2,1528,0,0,0,0,0,0,0,0,0,0,0,0
+20319,20000,male,2,2,28,0,0,0,0,0,0,17027,34235,18478,19215,15915,0,1500,3000,1200,400,0,0,0
+20320,50000,male,2,2,22,1,-1,-1,-1,-1,-2,0,1054,1448,2535,0,0,1054,1448,2535,0,0,0,0
+20321,360000,male,1,2,29,-1,-1,-1,-1,-1,-1,390,390,390,390,390,690,390,390,390,390,690,4224,0
+20322,50000,male,2,2,34,0,0,0,0,0,-1,44168,44727,26135,26730,12180,18179,1410,2000,1167,1017,18179,651,0
+20323,130000,male,3,1,27,-1,-1,-1,-1,-2,-1,500,2000,1354,0,0,2699,2000,1354,0,0,2699,3766,1
+20324,20000,male,2,2,22,1,2,2,0,0,0,17336,17751,18113,14885,14975,15311,1000,1003,1300,900,700,4700,1
+20325,20000,male,2,2,22,3,2,2,2,3,2,16132,16562,19279,20663,20043,19584,1000,3000,2000,0,0,1803,1
+20326,300000,male,1,1,35,0,0,0,0,0,0,91282,45885,35329,29368,18833,93329,3260,2240,1505,1250,80934,2700,0
+20327,250000,male,1,1,36,-1,-1,-1,-1,0,0,5992,0,1400,79181,29172,14816,0,1400,79181,10000,0,4176,1
+20328,100000,male,1,1,37,0,0,0,0,0,0,99516,87274,96414,74161,45585,40178,10184,20000,5150,5000,10000,10000,1
+20329,80000,male,1,1,37,2,0,0,0,0,0,81970,78754,74789,45883,29616,28916,3000,3139,2001,2081,1200,1500,1
+20330,20000,male,2,2,22,1,2,2,2,2,0,9422,10106,14127,14598,14069,14690,1000,4211,1000,0,1000,1000,1
+20331,50000,male,1,2,23,0,0,0,0,0,0,34376,35300,32106,32994,18220,18755,1806,1612,1500,652,828,957,0
+20332,50000,male,2,2,23,2,0,0,0,0,0,49301,50660,50036,60770,10598,10122,2500,2142,2254,680,491,340,1
+20333,20000,male,2,2,23,1,2,4,3,2,2,11113,14110,13609,13102,12595,14287,3500,0,0,0,1900,0,1
+20334,50000,male,2,1,23,0,0,-2,-2,-2,-2,9156,0,0,0,0,0,0,0,0,0,0,0,1
+20335,180000,male,1,2,23,0,0,0,0,-2,-2,177736,157096,33700,0,0,0,6849,1500,0,0,0,0,0
+20336,50000,male,1,2,23,0,0,0,-1,-1,0,11306,6657,3565,3820,1275,1275,1069,1240,3840,1275,0,0,1
+20337,20000,male,3,2,23,0,0,0,0,0,0,8038,9060,11600,12307,12703,12970,1161,2701,1204,600,620,622,1
+20338,20000,male,2,2,22,1,2,2,0,0,0,15471,16211,16752,17471,17830,19230,1300,1100,1300,649,1698,861,0
+20339,10000,male,2,2,22,1,2,2,2,0,0,7019,6760,8882,8520,8694,8871,0,2400,0,174,177,181,1
+20340,10000,male,2,2,21,0,0,0,0,0,0,7327,8244,9259,9757,9887,9987,1500,1300,1000,206,2094,0,0
+20341,20000,male,5,2,22,0,0,0,0,0,0,19614,19844,19929,18775,13854,10718,11630,1369,1162,524,606,0,0
+20342,150000,male,2,1,24,0,0,-1,-1,-1,0,139125,0,435,0,81824,83101,0,870,0,82259,3018,3102,0
+20343,10000,male,2,2,21,2,0,0,0,0,0,8999,9042,10038,9784,9984,9780,1400,1305,1000,200,196,0,1
+20344,20000,male,1,2,23,0,0,3,2,0,0,3286,6341,6097,6339,5143,5126,3300,0,511,300,300,1500,0
+20345,20000,male,2,2,24,2,3,2,2,3,2,21034,19839,18663,20394,19228,19615,0,0,2616,0,1400,0,0
+20346,50000,male,3,1,23,0,0,0,0,0,0,43087,44468,46653,43143,19003,-317,2100,3260,1200,1000,0,16628,1
+20347,10000,male,2,2,24,1,2,2,0,0,3,5570,7327,7065,8058,9433,9008,2000,0,1125,1500,0,0,1
+20348,50000,male,2,2,23,0,0,-2,-2,-2,-2,49276,0,0,0,0,0,0,0,0,0,0,0,0
+20349,20000,male,2,2,23,0,0,0,0,0,0,15932,16965,17993,18698,19075,20498,1605,1605,1310,687,1735,0,0
+20350,90000,male,3,2,23,3,2,0,0,0,0,92154,87700,61110,14223,9784,5155,0,2200,1000,477,103,0,1
+20351,30000,male,3,2,23,1,2,0,0,0,0,30391,29144,30419,30097,25887,25707,0,2033,1420,0,92,0,0
+20352,110000,male,1,2,25,0,0,0,0,0,0,89687,89434,91389,92003,95614,93399,4100,4304,4004,6007,4003,5017,0
+20353,10000,male,1,2,23,-1,2,-1,-1,-1,-1,780,390,390,0,780,0,0,390,0,780,0,0,1
+20354,20000,male,2,2,23,2,2,2,0,0,0,16771,19403,18541,19254,19456,19323,2919,0,1298,1000,692,766,1
+20355,10000,male,2,2,24,1,2,0,0,0,2,5378,5146,6205,7139,7918,7646,0,1300,1200,900,0,700,0
+20356,80000,male,2,2,25,-2,-2,-2,-2,-2,-2,302,-62,1958,-101,15932,950,0,2020,0,16033,11220,0,0
+20357,20000,male,2,2,24,0,0,0,0,0,0,6814,7670,8690,9699,10138,10400,1132,1152,1161,600,600,0,0
+20358,240000,male,2,2,25,0,0,0,0,0,0,62946,61940,61412,62771,65038,67266,2212,2237,5000,5000,5000,3413,0
+20359,170000,male,4,1,40,0,0,0,0,0,0,171650,171841,171014,168142,169821,173014,6384,7540,7540,6301,6517,6035,0
+20360,80000,male,2,2,23,0,0,0,0,-2,-2,78542,48563,20790,0,0,0,1750,1650,0,0,0,0,0
+20361,20000,male,2,2,22,2,2,2,2,0,0,20433,19302,19276,19451,19641,20188,0,2100,1000,1000,1000,1000,0
+20362,20000,male,2,2,22,0,0,0,0,0,-1,9493,10531,11557,12546,9900,1000,1500,1500,1500,800,1500,0,0
+20363,480000,male,1,1,37,-1,-1,-1,-1,0,0,2849,30999,53425,76538,106032,66535,45205,55328,77000,30048,30015,15056,0
+20364,20000,male,2,2,23,3,3,2,0,0,2,11859,11385,10916,12419,13904,13538,0,0,2000,2000,0,1400,1
+20365,20000,male,2,2,24,0,0,0,0,0,0,17924,18475,19539,19396,11643,11578,1400,1380,1181,1000,500,500,0
+20366,100000,male,2,2,22,0,0,0,0,0,0,35986,36663,36218,38044,37222,37740,2548,2625,2451,890,1056,912,0
+20367,50000,male,2,2,23,0,0,0,0,-2,-2,48784,50371,51400,0,0,0,2400,2400,0,0,0,0,0
+20368,80000,male,2,2,24,2,2,-2,-1,0,0,1430,0,0,872,22872,20641,0,0,872,22000,2002,2001,0
+20369,200000,male,1,2,24,-1,-1,-1,-1,0,0,9167,200,198,18154,13677,2018,200,198,18156,0,1150,0,0
+20370,150000,male,4,2,32,0,0,0,-1,0,0,159919,68686,161192,150464,143375,146411,4019,146896,157436,4600,4709,5600,0
+20371,30000,male,2,2,34,-1,-1,-1,-1,-2,-2,390,0,780,0,0,0,0,780,0,0,0,0,0
+20372,140000,male,2,2,25,0,0,0,0,0,2,17172,18695,20880,23515,25122,24581,1815,3000,3000,2000,0,2500,0
+20373,10000,male,2,2,21,0,0,0,0,0,0,7427,8057,8749,9413,10534,10210,1200,1165,1079,1200,754,0,0
+20374,20000,male,3,2,24,2,0,0,0,0,0,11179,12188,12904,14217,14360,16140,1504,1220,1533,676,2177,559,1
+20375,50000,male,1,2,26,0,0,0,0,0,0,12571,13656,15407,17127,17569,18162,1600,2280,2000,1000,1000,2000,0
+20376,130000,male,2,2,25,0,0,0,0,0,0,101281,129217,128302,125300,4125,4210,31200,4268,89527,107,500,1000,0
+20377,50000,male,1,2,26,0,0,0,0,0,0,6905,7574,7652,7161,7531,7033,2000,2000,1000,1500,0,3000,0
+20378,160000,male,1,2,26,-1,-1,-1,-1,-1,0,5417,15134,15193,10845,46397,32334,15134,15199,10845,46397,1280,15000,0
+20379,30000,male,2,2,26,0,0,0,0,0,0,29160,30640,23583,24195,24546,-354,2015,1800,1200,551,0,28983,0
+20380,80000,male,2,2,27,0,0,0,0,0,0,60829,57556,59083,60051,41757,42641,2061,2455,2667,2002,2055,1000,0
+20381,20000,male,3,2,25,0,0,2,3,2,2,9248,11859,14264,13746,13228,14333,3100,2900,0,0,1325,670,0
+20382,20000,male,3,2,24,0,0,0,0,0,0,15570,16996,18414,19843,19643,3300,2000,2000,2200,0,100,0,0
+20383,10000,male,3,2,24,1,-1,0,-1,0,0,-372,4253,1777,780,780,0,5253,1500,780,0,0,0,0
+20384,110000,male,3,2,26,0,0,0,0,0,0,10183,11971,8164,10895,13503,16227,2000,2000,3000,3000,3000,2000,0
+20385,50000,male,1,2,24,-1,0,0,0,0,0,47796,49045,45506,41471,18298,19001,2100,1900,2000,1000,1000,1000,0
+20386,40000,male,1,2,25,-1,0,0,2,2,0,977,1787,2566,3174,2634,1547,1190,1349,1200,0,547,231,0
+20387,120000,male,2,2,26,-2,-2,-2,-2,-2,-2,316,316,316,316,316,316,316,316,316,316,316,316,0
+20388,50000,male,2,2,26,0,0,0,0,0,0,49458,50135,49889,20459,19727,19354,2200,1500,1933,600,461,350,0
+20389,270000,male,1,2,27,0,0,0,0,0,0,176380,188744,194534,199524,203514,208396,15000,10000,7841,6930,7800,7730,0
+20390,200000,male,1,1,27,2,2,2,2,0,0,177998,174350,158632,154522,135375,142526,14600,7000,0,6000,11500,24,1
+20391,20000,male,2,2,24,1,2,2,0,0,2,7733,8754,8469,9481,10324,10017,1300,0,1157,1000,0,1210,0
+20392,30000,male,2,2,24,0,0,0,0,0,0,27880,29342,22974,24586,25675,30765,2000,1388,2000,1500,5541,0,0
+20393,20000,male,3,2,26,3,2,2,2,2,-1,150,150,150,150,150,1150,0,0,0,0,1150,0,1
+20394,20000,male,2,2,24,0,0,0,0,4,3,5212,6462,7846,10715,10406,9953,1500,1500,3000,0,0,0,1
+20395,10000,male,1,2,24,2,2,0,0,0,0,8837,7554,8287,9580,9267,10096,0,1500,2000,700,1500,0,1
+20396,50000,male,2,2,24,2,0,0,0,0,0,47121,46623,46693,31040,30669,30218,1950,1949,1482,1040,913,779,0
+20397,60000,male,2,1,25,0,0,0,0,0,0,45648,42596,39829,39324,32460,31735,2000,2500,2000,1100,1200,1200,0
+20398,200000,male,1,2,26,0,0,-1,0,0,-2,14335,12452,4467,3285,0,0,1213,4467,1000,0,0,0,0
+20399,110000,male,2,2,26,0,0,0,0,0,0,36770,7611,9275,5751,10592,9701,2000,2000,2000,5000,3470,0,0
+20400,210000,male,4,2,27,0,0,0,0,0,0,196963,201741,219122,223267,227841,228377,7000,20000,8200,7100,6800,7000,0
+20401,20000,male,2,2,27,-1,-1,-1,-1,-1,-1,1663,1662,1473,1623,1623,1663,1662,1473,1623,1623,1663,1623,0
+20402,300000,male,2,1,27,0,0,0,0,0,0,11645,13450,11671,12888,17915,18923,3513,2012,3902,7924,2932,2077,0
+20403,30000,male,2,2,22,3,2,2,2,2,3,26061,25349,27826,27080,30525,29764,0,3200,0,3900,0,0,1
+20404,50000,male,3,1,24,0,0,2,0,0,0,29341,27139,13295,14126,12185,8419,1806,1000,1112,366,503,500,0
+20405,80000,male,2,2,24,1,2,2,2,0,0,178541,174189,183197,177641,149806,141706,0,11900,6500,6500,5800,6500,1
+20406,50000,male,2,2,26,1,2,2,2,2,2,31392,32976,34154,33311,35246,34548,2400,2000,0,2800,0,3100,1
+20407,230000,male,2,2,27,0,0,0,0,0,0,147530,150313,146464,144227,133638,136605,6800,6707,10038,4782,5119,5632,0
+20408,110000,male,3,2,27,0,0,0,0,0,0,71048,74242,78032,81392,48022,48068,5000,5000,5000,5000,3709,0,0
+20409,140000,male,2,2,27,0,0,0,0,0,0,80210,67746,76230,77954,78953,81848,10000,10000,3393,3260,5000,3000,0
+20410,140000,male,2,2,28,0,0,0,0,-1,0,218318,135085,122762,76564,139508,142253,5000,6614,2198,140000,5413,4689,0
+20411,360000,male,1,2,28,-1,-1,2,-1,-1,-1,2711,780,390,390,390,540,780,0,390,390,540,390,0
+20412,90000,male,3,2,25,1,3,2,2,2,2,25179,24496,23325,24336,24817,25338,0,0,1405,886,919,1104,1
+20413,10000,male,1,2,26,0,0,0,0,0,0,4457,5622,6673,7890,8628,9360,1400,1300,1500,1000,1000,0,0
+20414,180000,male,1,2,26,-1,-1,-1,-1,-1,0,14565,9500,10122,770,4159,4159,9500,10122,770,4159,0,5243,0
+20415,130000,male,2,2,25,2,0,0,0,0,-1,128947,126454,128179,75525,76862,6131,5006,4252,3000,1537,10000,21300,0
+20416,90000,male,2,2,25,0,0,-1,-1,0,-1,2381,2908,1051,2422,1051,1051,1800,1052,2422,0,1051,83573,0
+20417,170000,male,2,2,26,0,0,0,0,0,0,164408,153323,152429,154704,96724,73916,5700,7400,5600,4500,3000,3500,1
+20418,50000,male,2,2,23,0,0,2,0,0,0,47378,50555,45532,47086,19045,19554,4000,0,2430,1000,800,700,0
+20419,400000,male,1,2,26,0,0,0,0,0,0,98580,67946,161585,146093,129047,75427,8006,123692,7002,8167,3996,2000,0
+20420,10000,male,3,2,24,0,-1,-1,0,0,0,9285,273,8327,9379,9566,9766,273,8327,1200,342,354,438,0
+20421,360000,male,1,2,27,-2,-2,-2,-2,-2,-2,4614,6777,14101,11959,3184,7252,6813,14171,12023,3200,7288,1892,0
+20422,100000,male,1,2,25,-1,-1,-1,-1,-1,-1,1522,291,1791,2367,4589,291,291,1791,2367,4613,291,291,0
+20423,80000,male,1,2,25,-1,-1,2,-1,-1,-1,825,1650,825,825,825,825,1650,0,825,825,825,0,0
+20424,20000,male,2,2,25,-1,-1,-1,-1,-1,-2,390,390,1128,19780,0,0,390,1128,19780,0,0,0,0
+20425,50000,male,1,2,25,0,0,0,0,0,-1,15639,10504,11824,13018,12303,18584,1200,1500,1500,281,18584,1000,0
+20426,50000,male,1,2,24,-1,2,-1,-1,-1,0,1959,662,1655,0,1250,1000,0,1655,0,1250,0,0,0
+20427,50000,male,1,2,24,0,0,0,0,0,0,12570,11659,8312,11451,9312,7239,6000,6000,8000,186,0,0,0
+20428,100000,male,2,2,26,0,0,0,0,0,0,30928,32186,32949,33680,34419,37782,2500,2000,2000,2000,4500,40000,1
+20429,150000,male,1,2,26,2,2,2,2,2,0,164576,160500,170405,176048,161874,144124,0,14000,10048,0,5118,4517,1
+20430,190000,male,1,2,25,0,0,2,0,0,0,3173,5270,5040,6050,6447,7339,2323,0,1103,500,1000,400,0
+20431,80000,male,1,2,26,0,0,0,0,0,0,75755,77397,77839,69534,60747,52280,3500,3328,2811,1192,1516,2316,0
+20432,10000,male,2,2,26,0,0,0,0,0,0,9861,15147,6641,15318,8610,8790,1099,2234,1135,1086,319,319,0
+20433,50000,male,1,2,26,0,0,0,0,0,0,29021,28408,29117,28764,28390,29443,1768,1477,1444,1100,1500,1100,0
+20434,140000,male,5,2,26,0,0,0,0,0,0,136013,136953,133265,82163,83238,85383,5300,6350,2900,2950,4000,3576,0
+20435,80000,male,2,2,25,1,-2,-1,-1,-2,-2,0,0,431,0,0,0,0,431,0,0,0,0,0
+20436,50000,male,2,2,26,0,0,0,0,0,2,42695,43679,44757,45703,48476,47603,2000,1781,1727,3500,0,3600,0
+20437,80000,male,3,1,34,1,2,2,2,2,2,71104,72737,73987,72199,76621,78451,3400,3000,0,5637,3200,0,1
+20438,20000,male,3,2,27,0,0,-2,-2,-2,-2,36908,0,0,0,0,0,0,0,0,0,0,0,0
+20439,170000,male,2,2,27,0,0,0,0,0,0,156411,143042,126395,119365,112801,108241,7100,5500,5000,5000,5000,5000,1
+20440,210000,male,1,2,27,1,-1,-1,-1,-1,-1,0,582,0,582,291,1027,582,0,582,291,1027,291,1
+20441,230000,male,2,2,27,0,0,0,0,0,0,5504,4782,3864,3242,1428,2358,2000,2000,2000,300,2000,1400,0
+20442,50000,male,1,2,28,0,0,-1,-1,-1,-2,23266,16093,19906,11132,0,0,5224,19906,11132,0,0,0,0
+20443,30000,male,2,2,28,2,0,0,0,0,0,24104,25198,25988,27107,27450,29193,1800,1500,1600,1000,2100,1400,0
+20444,50000,male,2,2,25,0,0,0,0,0,0,48424,50340,48395,49604,48397,49847,2710,2760,2750,1507,2000,1500,0
+20445,50000,male,2,2,28,2,0,0,2,0,0,14091,14752,18460,17749,18936,5925,1200,3972,0,1448,492,10000,1
+20446,20000,male,2,2,26,0,0,0,2,0,0,17961,17091,14120,12266,10783,5131,1513,4932,9,286,1000,15000,0
+20447,160000,male,2,2,26,-2,-2,-2,-2,-2,-2,1987,0,99500,-500,-500,-500,0,99500,0,0,0,0,0
+20448,70000,male,3,2,26,0,0,2,0,0,0,64494,69272,62196,62809,48047,49110,5916,0,2315,1718,2000,2000,1
+20449,290000,male,1,2,28,0,0,0,0,0,0,18359,18985,17742,17530,8135,7559,1500,1500,1021,185,387,2000,0
+20450,120000,male,3,2,26,0,0,0,0,0,0,88143,83432,78471,77711,79250,55860,6000,4100,3000,3000,2000,0,0
+20451,50000,male,2,2,27,0,0,0,0,0,0,45586,46573,47332,47382,47370,46200,3000,2200,1600,978,2000,1000,0
+20452,110000,male,1,2,26,0,0,0,0,0,0,101860,99782,98236,92879,75216,76778,3577,4416,2972,2756,2839,2472,0
+20453,160000,male,4,2,26,0,0,0,0,0,0,11152,11354,11486,12176,8044,0,5398,5676,8874,161,0,0,0
+20454,30000,male,3,2,27,0,0,0,0,0,0,29584,25645,24564,25823,26269,26335,3000,2000,2000,2500,3000,2500,0
+20455,210000,male,2,2,27,1,-2,-1,2,-1,0,0,0,709,397,1026,1026,0,709,0,1026,0,0,0
+20456,150000,male,3,2,27,0,0,0,0,0,0,85993,81682,83467,86076,87829,58213,2922,3100,4000,3536,2200,2123,0
+20457,120000,male,1,2,28,0,0,0,0,-1,-1,117303,15504,15748,15480,998,980,1256,1500,2000,998,980,0,1
+20458,100000,male,2,1,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+20459,120000,male,1,2,28,2,2,0,0,2,2,114127,110826,113559,118784,118967,108887,0,6000,9000,3425,45,3500,1
+20460,220000,male,5,2,23,-1,0,0,0,0,0,181870,186428,190995,165452,170786,174213,7500,7500,7000,8000,8000,158956,0
+20461,140000,male,2,2,26,2,2,2,2,2,2,119424,116014,133567,129953,136283,139961,0,19500,0,10000,6000,5000,1
+20462,20000,male,2,2,24,1,2,2,0,0,0,6962,7898,7626,8692,9541,9885,1200,0,1200,1000,500,500,1
+20463,330000,male,2,2,25,0,0,0,0,0,0,229229,227017,222040,218852,203312,196266,9520,8100,8500,7400,7200,7900,0
+20464,210000,male,1,2,29,0,0,0,0,0,0,183214,167757,170663,169291,140384,138574,6000,8000,5556,5100,5016,5200,0
+20465,430000,male,1,2,29,-2,-2,-2,-2,-2,-2,325,325,325,0,325,650,325,325,0,325,650,150,0
+20466,150000,male,2,2,28,0,0,0,0,0,0,129151,101260,94545,93810,82668,64924,3501,3516,3003,2578,2300,2300,0
+20467,210000,male,3,2,28,0,0,0,0,0,0,58340,58644,59855,61013,61097,65089,2107,3000,3000,2500,6000,8000,0
+20468,240000,male,2,2,29,0,0,0,0,0,0,243774,242529,242079,243114,213930,219009,8891,12350,15969,7968,8700,17500,0
+20469,140000,male,2,2,30,2,0,0,0,0,0,138421,137456,139977,136207,50464,49430,5000,6003,4771,2103,2000,43557,1
+20470,50000,male,2,2,28,0,0,0,0,0,0,45622,47061,48264,27806,24901,25441,2500,2500,2000,2000,941,3113,1
+20471,400000,male,1,2,28,-1,0,-1,0,0,0,21012,10107,240244,287499,86684,6796,5056,241366,278006,425,34,2966,0
+20472,160000,male,5,1,28,0,0,0,0,0,0,154412,157364,157834,159877,155545,147330,7028,5823,4764,4251,4348,5000,0
+20473,130000,male,1,2,28,0,0,0,0,0,-2,91092,94581,94580,30000,0,0,5000,3000,4000,0,0,0,0
+20474,160000,male,2,2,26,-2,-2,-2,-2,-2,-2,3720,396,396,396,396,1353,396,396,396,396,1353,2423,0
+20475,30000,male,2,2,27,0,0,0,2,0,0,25081,26358,29319,28510,29813,30179,2000,3700,0,2000,910,917,0
+20476,20000,male,3,2,27,0,0,0,0,0,0,13384,14153,15417,16944,18992,15888,1300,1500,2000,2048,0,4500,1
+20477,200000,male,2,2,27,0,0,0,0,0,0,202591,202924,204693,195319,193566,182175,7565,9593,6919,5666,4686,4500,0
+20478,20000,male,2,2,27,1,-1,0,0,0,0,0,18965,20042,20115,20000,16433,18965,1391,1207,602,707,672,0
+20479,130000,male,1,2,27,-1,0,0,-2,-2,-2,2219,4141,0,0,0,0,2000,0,0,0,0,0,0
+20480,100000,male,2,1,30,-1,-1,-1,-1,-1,-1,416,416,589,1416,416,416,416,1005,1416,416,416,0,0
+20481,150000,male,5,2,24,0,0,-1,0,0,0,10459,11445,122175,111847,76628,64200,2516,122685,3328,2230,2062,1891,0
+20482,100000,male,2,2,25,0,0,0,0,0,0,83749,85463,87189,89539,91258,93343,4000,4000,4100,4000,3241,5000,0
+20483,40000,male,1,2,27,2,0,0,0,0,0,10181,11058,11471,11776,12660,12660,2500,2000,1500,2330,2300,1000,1
+20484,50000,male,1,2,26,0,0,0,0,0,0,43226,19278,18403,19369,20094,17934,1300,1300,1300,1000,1000,1000,0
+20485,150000,male,2,2,32,1,2,0,0,0,0,127399,124835,127259,129115,131820,124322,0,5000,3500,3557,5929,23,1
+20486,50000,male,2,2,29,2,2,2,0,0,0,46346,49612,48546,49157,49890,48941,4355,0,1900,1333,0,999,0
+20487,50000,male,2,2,24,0,0,0,0,0,0,51112,51086,51365,50579,20413,20452,2109,2388,1602,900,838,707,0
+20488,60000,male,2,2,29,2,2,2,2,2,2,35932,35060,38176,38452,39423,38660,0,4000,1200,1900,0,2900,1
+20489,320000,male,1,2,30,-2,-2,-2,-2,-2,-2,5562,6061,3829,933,5446,8523,6091,3848,937,5473,8565,0,0
+20490,90000,male,2,2,30,2,2,2,2,2,0,91562,67878,72323,71631,68427,69532,0,6500,2600,0,2700,3000,1
+20491,160000,male,2,2,30,0,0,0,0,0,0,155967,151161,132051,93367,84622,87255,7541,5500,4200,3032,4000,2609,0
+20492,30000,male,2,2,25,1,2,-1,0,-1,0,3997,2522,261,1261,772,390,0,261,1000,772,8,390,1
+20493,50000,male,2,2,26,0,0,0,0,0,0,41375,35398,27906,23043,19167,19478,1515,1424,1315,1000,1000,1000,0
+20494,20000,male,2,2,27,0,0,0,0,0,0,19812,17678,19068,19642,27988,1280,1291,1681,1255,672,52,0,0
+20495,150000,male,2,2,27,0,0,2,0,0,2,58795,62799,61233,61915,69079,67852,5600,0,2300,8219,0,9000,0
+20496,70000,male,1,2,28,-1,-1,-1,-1,-1,-1,5154,5835,5960,11780,1360,468,5860,5979,11780,1360,468,4615,0
+20497,180000,male,1,2,28,0,0,0,0,0,0,40675,36126,30820,23852,17902,7784,1560,1735,1385,30,23,5411,0
+20498,320000,male,1,2,29,-2,-2,-2,-2,-2,-2,9161,26156,13185,17439,66408,14333,28524,13270,17562,66751,14405,52677,0
+20499,90000,male,2,1,29,0,0,0,0,0,0,84844,65217,63943,62327,55800,56800,2277,3489,1639,1136,1000,0,0
+20500,210000,male,2,2,29,0,0,0,0,0,0,62590,61942,118652,8757,8936,9118,3815,93575,1000,179,182,0,0
+20501,180000,male,2,2,26,0,0,0,0,0,0,67276,65363,68877,48958,45255,41870,3000,10000,2000,1500,1500,1600,0
+20502,360000,male,2,2,28,-1,-1,-1,-1,-1,-1,7156,9780,6672,11201,9718,8781,9849,6712,11244,9747,8806,11872,0
+20503,100000,male,4,2,28,-2,-2,-2,-2,-2,-2,1000,0,0,0,0,0,0,0,0,0,0,0,0
+20504,300000,male,1,2,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+20505,160000,male,2,2,27,-1,-1,-1,-1,-1,0,390,390,390,0,780,390,390,390,0,1170,0,540,0
+20506,50000,male,2,2,27,2,2,0,0,0,0,43063,41932,38411,30659,30963,30505,0,1600,1712,1016,2500,0,1
+20507,50000,male,1,2,29,0,0,0,0,0,0,27179,27878,28908,29922,30517,31164,1454,1484,1498,1093,1139,2039,1
+20508,160000,male,5,2,33,-2,-2,-2,-2,-2,-2,144,6130,0,0,0,0,6636,0,0,0,0,0,0
+20509,160000,male,1,2,30,-1,0,-1,-1,-1,-1,11170,6393,11845,5431,6683,22285,1007,11907,5437,6693,22296,23500,0
+20510,20000,male,2,1,30,4,3,2,2,2,3,19379,18775,19612,18864,20556,20211,0,1433,0,2125,0,0,0
+20511,250000,male,1,2,27,0,0,0,0,0,0,144525,183569,186020,186465,113336,0,43089,6959,110000,0,0,132818,0
+20512,50000,male,1,2,27,-1,0,0,0,-1,-1,33567,0,28971,30437,14106,794,2034,0,2500,1024,397,21885,0
+20513,30000,male,2,2,26,3,2,2,0,0,0,30311,31213,30425,30062,30270,29176,1700,0,1310,908,915,1052,0
+20514,50000,male,2,2,31,0,0,2,0,0,0,23051,18190,12521,14308,14769,15925,2719,0,2000,1000,1542,764,0
+20515,50000,male,1,2,28,0,0,0,0,0,0,42046,47356,47445,49701,49068,0,11000,5000,5000,31507,0,0,0
+20516,50000,male,3,2,28,0,0,0,0,0,0,57207,58211,48160,48398,17942,16334,2000,2100,1300,650,600,1652,0
+20517,200000,male,1,2,28,-2,-2,-2,-2,-2,-2,2626,15912,1677,315,3042,374,15954,1677,315,3042,374,4500,0
+20518,80000,male,1,2,28,0,0,0,0,0,0,75923,57259,50845,36207,32515,15128,2500,2548,2500,1100,1000,1000,0
+20519,220000,male,1,2,29,0,0,0,0,0,0,146022,145114,121369,100807,104432,107209,7000,5433,6000,5000,6000,5000,0
+20520,60000,male,1,2,28,0,0,2,2,0,0,59059,50579,24193,23511,24019,24481,3800,1900,0,1200,1000,3500,0
+20521,230000,male,1,2,29,-2,-2,-2,-2,-2,-2,4649,3985,2234,-1,-1,-1,4004,2245,0,0,0,279,0
+20522,210000,male,2,2,31,0,0,0,0,0,0,30785,29242,29883,30447,30803,29820,1472,1509,1469,1221,1100,1252,0
+20523,50000,male,2,2,32,0,0,0,0,0,0,49292,48536,41045,41532,18646,19183,2661,3030,2124,646,828,1097,0
+20524,20000,male,3,1,26,2,3,2,3,2,0,10449,10135,11926,11448,10970,11636,0,2100,0,0,1000,1000,1
+20525,320000,male,2,2,28,0,0,0,0,0,0,46385,47439,48858,50893,52352,53480,2000,2000,3000,3000,1667,2019,0
+20526,180000,male,2,2,28,1,2,2,2,2,2,29484,30309,28313,942,1038,492,2000,942,0,492,0,600,0
+20527,140000,male,2,2,30,-1,-1,0,0,2,2,188,6229,7936,13194,5692,8410,6229,2000,5600,0,3002,2,0
+20528,30000,male,3,2,25,0,0,-2,-2,-2,-2,1211,-50,-440,-830,-1220,-1220,0,0,0,0,0,2000,0
+20529,50000,male,3,2,25,0,0,0,0,0,0,35227,36236,21068,18132,18405,16754,2011,2000,2000,1000,1000,1000,0
+20530,170000,male,4,2,30,-1,-1,-1,-1,-1,-1,297,1093,2633,1291,3117,1267,1096,2640,1294,3126,1270,1002,0
+20531,80000,male,2,2,29,2,0,0,2,0,0,9928,11446,13150,13233,13663,13994,2000,2200,600,650,700,1449,1
+20532,290000,male,2,1,30,-1,-1,-1,0,0,0,8452,7718,237648,236463,146420,148600,7728,237648,8900,5300,5541,4700,0
+20533,20000,male,2,2,28,2,2,0,0,0,0,17429,16849,17187,8585,8760,12000,0,1202,1000,175,3240,0,1
+20534,20000,male,2,1,27,-1,-1,-1,-1,-1,-1,690,665,1164,1523,1228,500,665,1164,1523,1228,500,0,0
+20535,100000,male,1,2,26,0,0,0,-1,0,0,1847,3614,3252,42058,33171,18379,2000,2000,42058,500,2000,2000,0
+20536,10000,male,3,2,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+20537,30000,male,3,2,28,0,0,0,0,2,2,22634,23638,24689,28809,30052,29057,1385,1440,4560,2001,1,1228,1
+20538,180000,male,1,2,29,0,0,0,0,0,2,183887,93962,95955,98354,105327,107500,4000,3500,4000,8600,4000,0,0
+20539,160000,male,1,1,31,1,2,0,0,-2,-2,3310,2250,1698,-51,-51,-51,0,1005,7,0,0,2821,0
+20540,390000,male,2,2,29,0,0,0,0,0,0,65354,70758,70791,66495,52055,68567,20000,14000,10000,12000,30000,13000,0
+20541,90000,male,2,2,28,0,0,0,0,0,0,42322,43314,44354,45372,46317,51292,1997,2037,2055,2000,5913,0,0
+20542,310000,male,2,2,29,3,2,2,2,-1,2,400,400,400,400,20334,19050,0,0,0,20334,0,21573,0
+20543,100000,male,2,1,29,0,0,0,0,0,0,66195,62771,63533,57079,16634,26438,2303,3000,3000,1000,10022,3065,0
+20544,50000,male,3,2,27,-1,-1,-1,-1,-1,-1,3150,9375,725,21423,6308,12651,9375,730,21423,6308,12651,6243,0
+20545,500000,male,2,2,30,0,0,2,2,0,0,20544,25756,26176,18124,8133,4051,5835,1055,23,9,20,15099,0
+20546,120000,male,2,1,30,1,2,2,2,0,0,80226,81812,82922,80989,82761,84766,3500,3000,0,3120,3500,3100,0
+20547,80000,male,3,1,29,0,0,0,0,0,0,52175,45429,46595,47224,46903,46973,2034,2200,1738,1796,1832,1842,0
+20548,140000,male,1,2,27,0,0,0,0,0,0,88588,86625,89226,91680,93220,94456,3200,4000,4003,4003,4006,4000,0
+20549,50000,male,2,2,31,1,2,0,0,0,-1,51086,49804,28662,29476,4011,1000,0,2000,1500,1000,1000,0,0
+20550,400000,male,1,2,30,0,0,0,0,0,0,162540,155319,171087,172732,156830,139816,10000,32000,18000,5000,4000,10000,0
+20551,380000,male,1,2,29,0,-1,-1,-1,-1,-1,24469,30689,19947,22529,3885,23616,30690,10007,24012,3906,24018,13024,0
+20552,100000,male,1,2,29,0,0,0,0,0,0,57757,60367,62959,61796,62602,64983,5003,5003,1723,3115,3000,3000,0
+20553,110000,male,1,2,29,0,0,0,0,0,0,104216,104343,142622,73702,75513,77111,7316,3000,6000,3000,2935,3011,0
+20554,130000,male,2,2,29,1,-1,-1,-1,-1,0,-4,1198,101424,-1175,111715,52337,1202,101726,1228,114488,2000,2007,0
+20555,200000,male,2,1,29,-2,-2,-2,-2,-2,-2,1418,3052,3538,17091,2413,1301,3066,3555,17175,2435,1307,5839,0
+20556,170000,male,1,2,25,-2,-1,0,0,0,0,-1028,58324,57657,58832,60002,61260,60751,2100,2135,2148,2225,2396,0
+20557,50000,male,2,2,27,0,0,0,0,0,0,17831,18139,18777,19662,19348,19355,1295,1323,1598,674,690,855,0
+20558,140000,male,3,2,29,0,0,0,0,0,0,7307,11718,5280,8166,18002,22262,5000,3000,3000,10000,5000,2500,0
+20559,50000,male,2,1,32,0,0,0,0,0,0,41266,50669,48942,27836,40346,38668,27004,1613,1484,3675,698,1000,1
+20560,100000,male,4,2,29,0,0,0,0,0,0,92086,93153,96642,99362,100571,102680,3500,5000,4400,3669,3800,4000,0
+20561,200000,male,2,1,32,2,2,2,2,2,0,110419,112518,114247,115896,112545,115565,5400,5000,5000,0,5000,4235,1
+20562,70000,male,3,1,33,0,0,0,0,0,0,70011,67411,65867,55969,41298,0,15000,3068,2410,0,0,0,1
+20563,320000,male,2,2,29,0,0,0,0,0,0,146515,131130,123226,111975,95510,79385,4697,5920,4000,3012,3000,3000,0
+20564,90000,male,1,2,31,0,0,2,0,0,0,32581,36525,35660,36436,33548,32061,4500,0,3000,10000,2000,2000,0
+20565,220000,male,2,2,31,0,0,0,0,0,0,167390,123981,250982,129905,131248,139420,6000,5000,6500,5000,10500,5200,1
+20566,170000,male,4,2,28,0,0,0,0,0,0,169763,166286,162330,110034,97018,96056,6300,8138,4206,3366,3421,3642,0
+20567,150000,male,2,2,28,1,2,0,0,0,0,155963,148095,143845,132677,86265,88390,12,8000,5300,3500,5000,4000,0
+20568,180000,male,1,2,29,-2,-1,-1,-1,-2,-2,0,300,740,0,0,0,300,740,0,0,0,0,1
+20569,110000,male,2,2,29,0,0,0,0,0,0,104968,107221,109494,111954,111771,111703,4000,4000,4300,4164,4500,4200,0
+20570,200000,male,1,2,30,1,2,2,2,2,2,182499,184632,180260,192260,187714,195702,6600,0,15000,0,11013,5549,1
+20571,150000,male,1,2,30,-2,-2,-2,-2,-2,-2,989,1023,7542,1200,0,0,1023,7542,1200,0,0,689,0
+20572,260000,male,1,2,30,-2,-2,-2,-2,-2,-2,2322,1233,3302,6592,5008,3386,1233,3302,6592,5008,3386,2547,0
+20573,360000,male,1,2,30,0,0,0,0,0,0,365290,362533,358716,353426,299403,260620,13000,14000,12080,10000,9500,6000,0
+20574,130000,male,2,2,29,2,2,2,0,0,0,47272,47984,47113,48218,49408,50648,1600,0,1700,1800,2000,1800,0
+20575,500000,male,1,2,29,0,0,0,0,0,-1,29378,20154,11963,8839,2678,3028,5000,8000,3000,1000,3028,8878,0
+20576,340000,male,1,2,29,0,0,0,0,0,0,277140,272579,271986,227152,221218,159462,10000,13012,8008,8343,9463,196000,1
+20577,70000,male,1,2,26,0,0,0,0,0,2,51897,51961,51435,51512,54709,52462,2230,2009,2397,5912,0,2448,0
+20578,90000,male,2,1,29,-1,-1,-1,0,0,-1,500,715,26854,28146,0,2000,715,26854,3000,0,2000,0,0
+20579,50000,male,2,1,30,4,3,2,0,0,0,49926,48840,46958,47796,48800,50108,0,0,2000,2000,2000,6000,1
+20580,170000,male,2,2,30,-2,-1,0,0,0,0,352,14540,14315,15535,14453,16518,14547,1500,1542,1456,3521,1881,0
+20581,50000,male,3,2,30,0,0,0,0,0,0,43702,44979,46755,47412,47703,49495,2000,2501,2000,2000,2500,2000,0
+20582,90000,male,1,2,29,0,0,0,0,0,2,47585,48575,49922,51290,56608,55576,1782,2129,2497,6815,0,4275,0
+20583,200000,male,2,2,29,0,0,0,0,0,0,69182,69862,44150,43874,41378,832,3000,3500,1500,500,1000,109586,0
+20584,20000,male,2,2,32,0,0,-1,0,0,0,18472,19968,17199,18367,18130,18500,2000,17199,1600,363,370,1500,0
+20585,280000,male,3,1,32,0,0,0,0,0,0,158798,163164,168543,172083,173850,177469,6000,7000,6762,4880,5050,5100,1
+20586,200000,male,3,1,33,-1,-1,-1,-1,-1,0,5868,8654,3408,12019,22169,7416,8697,3439,12079,22219,185,12019,0
+20587,50000,male,2,2,32,0,0,0,0,0,2,50240,50149,50021,44924,49669,42689,6000,8000,3000,9000,0,10000,1
+20588,100000,male,1,2,32,0,0,0,-2,-1,-1,13565,8130,-332,-732,-1782,-2250,1000,0,1732,1268,2000,3500,0
+20589,120000,male,2,1,32,-1,-1,-1,-1,-1,-1,1166,1491,995,1318,1322,2826,2000,1000,2000,1500,3000,0,0
+20590,30000,male,3,2,32,0,0,0,0,0,0,5981,7369,8542,9552,9743,10085,1500,1300,1159,350,500,370,0
+20591,160000,male,2,2,32,0,0,0,0,0,-1,38254,38919,17243,18478,3541,6459,1907,2000,2000,300,6459,3000,0
+20592,360000,male,1,2,29,-1,2,-1,-1,-1,-1,6902,1950,2618,2868,425,29879,141,2618,2868,425,29879,18780,0
+20593,200000,male,2,2,33,-1,-1,-1,-1,-1,-1,18044,390,20718,390,390,390,390,20718,390,390,390,540,1
+20594,220000,male,1,2,29,0,0,0,0,0,0,26012,25916,24998,23965,23865,23667,1410,1417,1333,731,1019,1045,0
+20595,80000,male,1,2,30,-1,0,-1,0,0,0,5504,6187,100,600,1438,1919,1004,504,500,1000,500,3500,0
+20596,160000,male,1,1,30,-1,0,0,0,0,0,16754,44946,40453,40951,40709,35569,40453,2002,1500,2000,1000,6443,0
+20597,260000,male,2,2,30,0,0,0,2,0,0,4640,5891,8840,8464,10068,10977,1500,4000,0,2000,1500,1000,0
+20598,120000,male,2,2,31,0,0,0,0,0,0,120619,118983,109786,104000,121427,116652,5326,5059,4000,120203,5000,5000,0
+20599,80000,male,2,2,30,0,0,2,-1,-1,-2,53627,64913,19476,61302,0,0,33000,56,62877,0,41150,81000,0
+20600,20000,male,1,2,30,-1,0,0,0,0,0,82812,85352,91161,92910,98710,150,2697,6000,3000,6000,150,1832,0
+20601,100000,male,3,2,30,0,0,0,0,0,0,92218,78066,77240,87919,75386,69410,3435,4608,25140,2566,2375,4621,0
+20602,50000,male,2,2,31,0,0,3,2,0,0,10426,14466,13952,13418,13686,13456,4231,0,0,451,456,449,0
+20603,50000,male,2,2,29,0,0,-2,-2,-2,-2,30900,0,0,0,0,0,0,0,0,1500,0,0,0
+20604,260000,male,1,1,37,0,0,3,2,2,2,163553,192724,188441,191134,193673,197104,32000,0,7100,7000,6500,7000,1
+20605,50000,male,2,1,38,0,0,0,0,0,0,16486,17800,18546,19476,18694,19427,1592,1338,1268,636,1000,722,0
+20606,190000,male,2,2,28,0,0,0,0,0,0,359280,362680,161193,123203,85510,83704,10367,6596,4831,2806,2870,10017,0
+20607,200000,male,1,2,33,0,0,0,0,0,0,48950,47766,42798,42142,37580,4831,2374,2355,1550,1000,500,461,0
+20608,140000,male,2,1,48,0,0,0,0,0,0,131959,117153,109570,100086,76125,77720,4153,3965,3211,2772,2817,3211,0
+20609,130000,male,1,1,42,-1,2,-1,-1,0,0,390,390,955,1170,1170,780,0,955,1170,0,0,0,1
+20610,50000,male,3,1,26,1,2,2,0,0,0,14655,15688,13400,13596,13861,14255,1600,0,2000,2000,2000,2000,1
+20611,100000,male,2,2,31,1,2,2,0,0,2,36204,37412,36537,37474,38732,39234,2100,0,2000,2000,1000,0,0
+20612,200000,male,3,2,37,0,0,0,0,0,0,103715,104025,97749,99168,58256,59313,3942,4949,4800,2256,2313,2194,0
+20613,10000,male,3,2,23,0,0,0,0,0,0,7787,8412,9450,9414,5354,5275,1299,1337,1081,191,375,0,0
+20614,20000,male,2,2,24,0,0,0,0,0,0,15408,17146,18856,18265,18123,18732,2000,2011,1650,600,900,900,0
+20615,20000,male,2,2,25,0,0,-1,0,0,0,5347,-1077,3347,4426,1906,942,5006,5000,2000,0,900,0,0
+20616,30000,male,2,1,22,1,2,5,4,3,2,25147,28747,28029,27120,26154,25940,4311,0,0,0,0,0,1
+20617,30000,male,2,1,27,4,4,3,2,2,3,10846,10533,10225,9912,11444,10975,0,0,0,1700,0,0,1
+20618,310000,male,2,2,30,0,0,0,0,0,0,253549,259711,265931,245884,200380,221201,10400,11200,10840,9361,5300,8205,0
+20619,50000,male,2,2,31,0,0,0,0,0,-1,49024,48778,96487,43639,5290,41302,1813,2079,2650,106,41302,2000,1
+20620,320000,male,5,1,47,0,0,-1,-1,-1,-1,8748,5517,4980,7774,2582,3762,1285,4995,7834,2589,3773,0,0
+20621,160000,male,2,1,45,0,0,0,0,0,0,155842,158665,132275,57318,42978,0,6139,4026,1492,860,0,0,1
+20622,50000,male,3,2,31,0,0,0,0,0,2,45194,22298,16055,17281,18996,18553,1500,1500,1500,2000,0,1000,0
+20623,20000,male,2,1,31,0,0,0,0,0,0,3769,4782,5797,6654,6786,7077,1239,1254,1111,243,400,252,1
+20624,330000,male,2,1,32,2,2,2,2,0,0,60804,65779,66545,64877,66398,72113,6000,2400,0,2600,8758,2700,0
+20625,10000,male,3,2,36,-1,-1,-1,-1,0,0,576,3100,3629,6260,5990,6520,4009,4011,6260,120,2000,2000,1
+20626,100000,male,1,1,41,1,2,0,0,2,0,89137,86040,71910,65693,63835,18660,0,3515,6300,13,765,0,0
+20627,130000,male,1,1,42,0,0,0,0,0,0,23970,23181,18912,19960,81985,80189,1288,1700,2000,63000,2885,3000,0
+20628,20000,male,3,3,44,1,4,3,2,0,0,11027,10710,10398,10000,10000,10000,0,0,0,0,0,0,1
+20629,370000,male,2,2,39,1,2,0,0,0,0,343248,334394,337272,340152,345904,322168,5,14005,12004,12362,12006,9555,1
+20630,190000,male,3,1,41,0,-1,-1,-1,2,2,82926,326,176,804,478,952,326,176,954,0,950,0,0
+20631,50000,male,2,1,35,0,0,0,0,0,0,20274,44996,21147,21964,21405,20297,2600,1800,1500,1000,1000,1000,0
+20632,180000,male,1,2,28,0,0,0,0,0,0,26730,27757,28178,29055,59849,29840,1800,1500,2000,1400,1100,1400,0
+20633,60000,male,2,1,30,1,2,2,2,2,0,46138,44832,47830,48458,47176,47461,0,4000,2000,0,2000,1700,1
+20634,170000,male,1,2,29,0,0,0,0,0,0,175349,165527,147798,120811,117680,118907,5800,6520,5700,4300,4500,4500,0
+20635,70000,male,1,2,49,1,2,0,0,2,2,38228,37318,38061,42545,43346,44105,0,1649,5133,1800,1600,1900,1
+20636,150000,male,2,2,32,0,0,0,0,0,0,146785,92750,73822,35706,28178,20782,3300,3114,2000,2000,2000,3700,1
+20637,100000,male,2,2,32,0,0,0,2,2,2,34904,37007,42076,41105,44090,48914,3000,6000,0,4000,5700,2000,1
+20638,20000,male,2,2,35,0,0,0,3,7,6,6855,11392,15863,20581,20298,19424,5000,5000,5000,0,0,1000,1
+20639,330000,male,2,1,38,0,0,0,0,0,0,144729,124279,119672,95699,98424,101167,10000,4026,3507,5000,5000,5000,0
+20640,20000,male,3,2,31,3,2,2,2,0,0,11358,10884,13109,12602,13093,13433,0,2716,0,700,700,500,1
+20641,200000,male,3,2,32,-1,-1,0,-1,0,-1,4881,6685,34484,13361,5540,12495,6691,30088,13378,127,12502,109,0
+20642,90000,male,3,3,40,0,0,0,0,0,0,53256,53695,55426,56544,57048,58421,1923,2597,2637,2041,2291,4824,1
+20643,90000,male,2,1,47,0,0,-1,-1,-2,-1,54268,52500,2888,0,0,300,2425,2888,0,0,300,0,1
+20644,150000,male,3,1,39,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+20645,20000,male,3,2,47,1,2,0,0,0,2,17629,17053,17796,18729,19049,17300,0,1325,1258,1373,0,602,1
+20646,50000,male,2,2,28,0,0,0,0,0,0,16889,17868,18028,38126,18690,19082,1271,1711,20809,668,692,740,0
+20647,20000,male,2,1,32,0,0,0,0,-1,-1,7162,8229,8290,0,390,780,1200,1000,0,390,780,0,0
+20648,180000,male,1,1,48,0,0,0,0,0,0,64788,66092,65236,65912,66523,67020,3000,2370,3000,3000,2588,2500,0
+20649,50000,male,2,2,29,2,2,2,2,2,0,35488,36606,37526,38214,37302,38546,2000,1800,1600,0,2000,1600,1
+20650,180000,male,2,1,37,0,0,0,0,-2,-2,175287,180811,184389,-261,-261,-261,8440,8500,174,0,0,0,0
+20651,200000,male,2,1,40,2,2,0,0,0,0,208012,199367,202668,111486,118951,89077,0,8756,5003,10053,10066,10027,1
+20652,180000,male,1,2,28,2,2,2,2,2,2,175154,175790,153515,130864,131569,128983,5100,50,14500,4500,296,4500,0
+20653,440000,male,1,2,31,0,0,-1,-1,0,0,37547,29349,23713,25427,21187,26486,20016,29748,25448,10015,14501,11501,0
+20654,30000,male,2,2,40,3,3,2,0,0,0,26129,25422,24728,26041,26511,27034,0,0,1730,1200,1100,1151,1
+20655,270000,male,1,2,36,-1,0,-1,-1,-1,-1,109611,64202,33846,42278,36841,57844,6285,33894,42399,36841,57844,35862,0
+20656,130000,male,3,2,28,0,0,0,0,0,0,132703,132258,133781,133834,132336,132614,5000,6900,7000,7000,6000,5500,0
+20657,50000,male,2,2,29,0,0,0,0,0,0,13200,12930,12684,12050,11005,9952,1506,1521,1148,364,355,390,0
+20658,130000,male,2,1,42,-1,-1,-1,-1,-1,-1,396,396,396,396,396,396,396,396,396,396,396,396,0
+20659,190000,male,2,1,41,2,2,0,0,0,0,127370,117487,117568,103011,101336,91215,0,6000,5000,3300,5000,4000,1
+20660,50000,male,2,2,34,1,2,2,2,0,0,53916,55036,56075,54515,52250,52433,2600,2500,0,2000,4000,0,1
+20661,50000,male,2,2,35,0,0,0,0,0,0,49878,46785,41728,41163,29408,30047,1718,2070,1505,1500,1242,1300,0
+20662,50000,male,3,1,42,0,0,0,0,0,0,42238,29224,23807,17623,17974,18350,1425,2000,1293,644,666,676,0
+20663,80000,male,3,2,44,0,0,0,0,-1,-1,55297,56677,57687,4500,4500,0,2300,2200,1005,4500,0,0,1
+20664,70000,male,2,1,36,0,0,0,0,0,0,33050,34100,21351,19837,19273,13900,5000,2000,3000,4000,10000,10000,0
+20665,50000,male,3,2,49,0,0,0,0,0,0,48245,27656,23168,20245,20251,19970,1286,21578,1310,706,806,656,0
+20666,30000,male,1,2,33,1,2,2,2,2,2,25826,27274,25744,27504,26987,26927,3000,0,3000,1000,1300,0,0
+20667,310000,male,2,2,34,0,0,2,0,0,0,200328,48481,47426,48621,49743,50824,3860,0,2000,1895,2000,2000,0
+20668,120000,male,2,2,35,0,0,0,2,2,0,49485,52108,56950,58419,56885,57920,3458,6300,3000,0,2103,2300,1
+20669,280000,male,2,1,47,0,0,0,0,0,0,191759,189888,185018,182224,184859,185412,10051,10025,10009,10022,10049,7005,0
+20670,90000,male,2,1,39,0,0,0,0,0,0,36703,38089,40162,41422,42172,34477,2000,3000,2000,1600,1500,2000,0
+20671,280000,male,1,1,42,-2,-2,-2,-2,-2,-2,-26,-26,-26,-26,5294,-4,0,0,0,5320,0,919,0
+20672,10000,male,2,1,44,0,0,0,0,0,0,6436,6398,5295,5635,8735,6745,3012,2000,3009,4000,0,0,1
+20673,340000,male,1,1,43,-2,-2,-2,-2,-2,-2,185,4418,0,3931,2295,0,4418,0,3931,2295,0,2254,0
+20674,70000,male,2,1,44,1,2,2,2,2,2,54297,52837,56581,55084,56071,59008,0,5200,0,2500,4000,0,1
+20675,560000,male,2,1,49,0,0,2,2,-1,-1,13432,12762,7077,3416,3416,416,3300,1416,0,3416,416,3416,0
+20676,360000,male,2,1,40,-1,-1,2,-1,-1,-1,1473,3125,1473,1473,1473,1473,3125,0,1473,1473,1473,1473,0
+20677,70000,male,3,2,47,0,0,0,0,0,0,40862,38910,25151,25433,25544,24573,1421,2524,1584,695,686,525,0
+20678,220000,male,2,1,45,0,0,0,0,0,0,165583,168400,171249,173455,88063,90240,6500,6000,4500,3000,3000,3000,0
+20679,200000,male,1,1,40,-2,-2,-2,-2,-2,-2,820,820,820,820,590,2099,820,820,820,590,2099,820,0
+20680,180000,male,3,1,39,0,0,0,0,0,0,24068,25071,26103,27113,27495,27914,1706,1738,1748,1130,1011,1016,0
+20681,210000,male,2,3,39,0,0,0,0,0,0,173187,96550,82810,78255,77816,81392,4000,5000,5000,5000,5000,5000,0
+20682,100000,male,2,1,39,0,0,0,0,0,0,74053,75040,76231,78392,79485,81397,3274,3000,3431,2994,3345,3233,0
+20683,50000,male,3,1,44,0,0,2,0,0,0,5789,46897,43134,12909,8797,9934,43134,0,1219,257,2000,2000,0
+20684,50000,male,3,2,34,0,0,0,0,0,0,44036,35498,33043,25556,24389,25436,4500,4000,3000,2500,4000,2500,0
+20685,210000,male,1,1,34,0,0,0,0,0,-1,42617,67734,66612,65799,-41,8208,30020,4043,10329,0,8249,2572,0
+20686,20000,male,2,2,37,3,2,2,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,1
+20687,170000,male,1,2,36,2,2,0,0,0,0,177116,172711,167796,168915,121713,120909,0,6700,6000,4500,6000,4100,0
+20688,180000,male,3,1,37,-2,-2,-2,-2,-2,-2,11368,3595,3837,5760,0,925,3595,3842,5760,0,925,2755,0
+20689,270000,male,3,2,38,2,2,2,2,2,2,258442,263195,268769,263144,273783,239278,10350,11000,0,16002,111,8100,1
+20690,450000,male,2,1,41,-2,-2,-2,-2,-2,-2,1068,1281,907,882,968,1243,1287,911,886,972,1249,1416,0
+20691,60000,male,2,1,41,0,0,2,-1,-1,-1,27130,32932,31938,1236,720,16884,6300,0,1236,720,17000,0,1
+20692,30000,male,2,1,36,0,0,4,3,2,2,22261,28083,27371,26645,25919,27535,6200,0,0,0,2038,1268,0
+20693,50000,male,2,2,41,0,0,0,0,0,0,39369,40710,42736,43751,44619,45900,2000,3000,1729,1597,2000,1709,0
+20694,280000,male,3,1,46,-1,-1,-1,0,0,0,14186,2752,41673,33715,16955,13500,2836,41721,2090,356,67,8162,0
+20695,420000,male,1,2,33,1,2,2,-2,-2,-2,170146,9771,0,24683,23702,46093,0,20,24683,752,30002,1056,0
+20696,50000,male,3,1,45,0,0,0,0,0,0,29287,29875,15028,5639,6389,7130,1600,1700,1250,1000,1000,1000,0
+20697,120000,male,2,1,45,0,0,0,2,-1,-1,22573,22506,12440,10218,3516,4321,5000,10218,0,4500,4321,3000,0
+20698,50000,male,2,1,41,1,4,3,2,2,2,32141,31350,30575,29784,31288,32634,0,0,0,2000,2000,0,1
+20699,120000,male,1,1,49,0,0,0,0,0,0,10105,114804,117262,117427,116637,115794,106000,5800,5700,4400,8421,0,0
+20700,100000,male,2,1,43,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,390,0
+20701,20000,male,1,2,22,1,2,0,0,0,0,10591,10277,11304,12311,12410,13358,0,1500,1500,600,1300,0,0
+20702,20000,male,3,2,24,5,4,3,2,2,-2,21151,20537,19933,19167,18767,18767,0,0,0,0,0,0,0
+20703,30000,male,2,2,30,1,3,2,2,3,2,25907,25209,24524,29397,28628,32009,0,0,5621,0,4000,1500,1
+20704,240000,male,1,2,30,-1,0,0,0,0,0,178911,182510,186450,190523,194405,182630,6581,6881,7181,7281,6638,6881,0
+20705,360000,male,3,2,33,0,0,0,0,0,0,32290,33747,39840,46130,50534,53897,2000,7000,7000,5000,4000,4287,0
+20706,50000,male,2,1,44,2,-1,2,0,0,0,1473,2423,950,1560,1170,780,2423,0,1000,0,0,0,1
+20707,180000,male,2,1,46,-2,-2,-2,-2,-2,-2,390,3182,780,0,0,0,3182,780,0,0,0,0,1
+20708,220000,male,1,1,39,0,0,0,0,0,0,96473,97887,94776,72842,46747,44236,10000,4000,5063,2000,1605,1697,0
+20709,450000,male,1,1,45,-1,-1,-1,0,0,0,26773,700,46727,46367,46191,20019,700,46727,1400,924,400,16608,1
+20710,30000,male,2,2,42,-1,-1,-1,-1,-1,-1,2782,2975,2230,1390,4040,3080,2975,2230,1390,4040,3080,2190,0
+20711,50000,male,2,3,41,0,0,0,0,0,0,31197,24486,24777,24521,16773,16524,4590,3000,3005,3014,3632,4006,0
+20712,360000,male,2,1,36,-2,-2,-2,-2,-2,-2,4671,928,5384,499,596,2338,929,5405,500,597,2340,2649,0
+20713,360000,male,2,1,34,0,0,0,0,0,0,49792,52399,52950,44625,21906,16190,3444,3053,3122,1030,610,519,0
+20714,20000,male,2,1,40,0,0,0,0,0,0,14353,16580,16730,17930,18267,18604,3000,1800,2000,1000,1000,1000,0
+20715,230000,male,2,1,36,-2,-2,-2,-1,0,-1,0,0,2800,346,346,999,0,2800,346,0,999,0,0
+20716,50000,male,2,2,40,0,0,0,0,0,0,47060,48117,49161,50173,18279,18266,2154,2588,2600,1000,653,1000,1
+20717,420000,male,1,1,42,-1,-1,-1,-1,0,-1,13218,24671,19725,23933,24648,18610,24671,21417,23941,8000,18610,8631,0
+20718,20000,male,3,1,40,0,0,0,0,0,0,18987,19909,16623,17634,17985,18362,1258,1282,1293,644,667,743,1
+20719,20000,male,3,1,40,0,0,2,3,2,2,13370,16326,17963,17386,16809,18137,3200,2200,0,0,1600,900,1
+20720,70000,male,2,1,37,0,0,0,0,0,0,57981,66858,65303,63066,28291,25258,15000,3247,3500,837,1000,2500,0
+20721,40000,male,2,1,46,2,2,2,3,2,3,27324,30108,32515,31698,33581,32772,3573,3206,0,2700,0,0,1
+20722,20000,male,2,2,34,1,2,2,0,0,3,16456,17382,16814,18229,20314,19704,1500,0,1700,2700,0,600,1
+20723,140000,male,1,2,30,-1,0,0,-2,-2,-1,13468,5600,0,0,0,5302,1000,0,0,0,5302,5251,0
+20724,130000,male,2,1,33,-1,-1,-1,-1,-1,-1,99,99,99,99,99,98,99,99,99,99,98,894,0
+20725,240000,male,1,1,35,-1,-1,-1,-1,-1,0,18079,6315,37046,0,1894,1894,6315,37046,0,1894,0,0,0
+20726,20000,male,2,2,30,0,0,0,0,0,0,15070,16384,17413,18117,18632,19180,1568,1597,1301,816,1000,779,1
+20727,230000,male,2,2,34,-2,-2,-2,-2,-2,-2,27178,0,856,6147,7387,13492,0,856,6147,7387,13492,6701,0
+20728,500000,male,2,1,44,-2,-1,-1,0,0,0,77009,92353,223085,278999,207007,66516,94064,223792,85184,4803,1189,222429,0
+20729,20000,male,2,1,46,0,0,0,0,0,0,17483,18552,19442,14678,16791,10361,1363,1256,1178,311,2264,0,1
+20730,50000,male,2,1,42,0,0,0,0,0,0,44637,40976,40134,16764,15215,16733,1880,1299,3007,1450,3000,3000,0
+20731,130000,male,1,2,38,0,0,0,-2,-2,-2,131197,133400,0,0,0,0,7000,0,0,0,0,0,0
+20732,400000,male,2,1,42,0,-1,-1,0,0,-1,2984,3353,8372,7743,4984,3027,3369,8379,1074,124,3042,2891,1
+20733,50000,male,3,1,40,2,0,0,0,0,0,37245,38324,39405,40748,41273,42206,1700,1700,2000,1500,1600,1600,0
+20734,360000,male,1,2,30,-1,-1,-1,-1,-1,0,8195,99996,795,1000,6398,9418,100496,799,1005,6398,3020,3040,0
+20735,50000,male,3,2,34,2,2,2,2,3,2,44951,45906,46872,49974,50023,53367,2000,2000,4200,1170,4300,0,1
+20736,20000,male,2,2,44,0,0,0,0,0,0,8843,9262,7102,5035,5152,2150,1115,1202,1000,117,246,0,0
+20737,160000,male,1,1,40,-1,-1,-1,-1,-2,-2,500,1000,1000,0,0,0,1000,1000,0,0,0,720,1
+20738,420000,male,3,1,32,-1,-1,-1,0,0,0,1875,2499,86074,73930,57807,51014,2499,86113,10000,2256,1529,30281,0
+20739,150000,male,1,2,34,2,3,2,0,0,0,32355,31549,30759,32764,36229,79827,0,0,2535,5000,5000,3000,1
+20740,190000,male,1,2,37,0,0,0,0,0,0,98588,80559,81481,75853,68074,64941,4007,4051,5013,3000,3000,3500,0
+20741,20000,male,3,2,31,2,2,2,0,0,0,16509,19116,18028,18200,16844,18082,2906,0,1250,594,3000,819,1
+20742,410000,male,1,2,32,-1,0,-1,-1,-1,-1,3339,13047,7764,623,4695,4133,10000,7764,623,4695,5973,4421,0
+20743,270000,male,1,2,32,0,0,0,0,0,0,47116,47771,51414,52993,54962,56523,2000,5000,3000,4000,3000,3000,0
+20744,120000,male,1,1,32,0,0,0,0,-2,-2,106552,110787,112900,0,0,0,6000,5500,0,0,0,0,0
+20745,30000,male,2,1,33,0,0,0,0,0,0,30258,30539,29860,30350,59936,29962,2300,1009,30000,604,1500,2500,0
+20746,240000,male,3,1,33,0,0,0,2,0,0,64853,67948,197032,169878,164926,160600,8000,157500,0,5759,5775,6407,0
+20747,300000,male,1,1,33,0,0,0,0,0,0,31808,22743,22396,21055,14714,7323,1514,1216,3127,3046,2011,142,0
+20748,500000,male,1,1,34,0,0,0,0,0,0,104638,104176,70726,45435,49408,53372,3780,3030,10327,10031,10255,115270,0
+20749,700000,male,1,1,34,-2,-2,-2,-2,-2,-2,3609,6109,5810,7684,168,5836,6168,7105,7721,168,5836,52924,0
+20750,110000,male,1,2,33,0,0,0,0,0,0,92575,86147,87889,61123,59395,52189,4000,5009,4000,3027,3000,2500,0
+20751,490000,male,2,1,34,0,0,0,0,-1,0,25015,20912,18817,13424,162851,151961,1340,1397,3193,162856,5461,5010,0
+20752,500000,male,1,2,34,0,0,0,0,0,0,32282,32307,7403,12225,16702,21253,5000,5000,5000,5000,5000,8000,0
+20753,50000,male,2,2,43,-1,-1,-1,-1,0,-1,396,396,396,792,396,396,396,396,792,0,396,792,1
+20754,430000,male,1,1,42,-2,-2,-2,-2,-2,-2,11362,11461,5741,8897,1350,10184,11461,5745,8935,1350,10184,4190,0
+20755,200000,male,2,1,37,-1,-1,0,-1,-1,0,29312,19203,9544,15296,7045,10712,19313,9455,15306,7055,10700,12389,0
+20756,270000,male,3,2,38,0,0,0,0,0,0,263842,179711,185948,184252,183601,187003,11021,12041,8028,7001,5454,6001,0
+20757,220000,male,2,1,49,-1,-1,-1,0,0,0,540,1148,20752,19397,19581,25071,1158,20752,1051,7120,14928,1177,0
+20758,20000,male,2,2,34,-1,-1,-1,2,2,-2,390,390,780,780,0,0,390,780,0,0,0,0,0
+20759,280000,male,1,2,35,1,-2,-2,-1,-1,-2,-2,399,182,4411,976,4968,401,183,4429,981,4992,4517,0
+20760,70000,male,2,1,49,0,0,0,0,0,0,59156,54472,51258,48564,47512,48164,2020,2011,2013,2001,2000,2201,0
+20761,420000,male,1,1,43,-2,-2,-2,-2,-2,-2,8100,14270,7324,2846,3027,5946,14274,8232,2853,3027,5946,32053,0
+20762,90000,male,2,1,44,2,0,0,0,0,0,58395,59559,61640,62793,63493,67204,2134,3043,3000,2300,4506,15490,1
+20763,10000,male,2,1,37,0,0,0,0,-1,-1,6930,6399,4634,5388,780,0,1065,1246,1000,780,0,390,0
+20764,120000,male,2,2,41,1,2,0,0,-1,-1,121988,90063,27941,11990,390,390,0,1600,1000,390,390,0,1
+20765,340000,male,2,1,49,0,0,0,0,0,0,317686,302986,263928,260916,257001,210033,17000,18000,13000,12000,12000,8000,0
+20766,350000,male,2,1,49,0,0,0,0,0,0,213236,207648,212177,200000,197544,201886,7600,8008,7200,7200,7500,7500,0
+20767,100000,male,2,1,34,2,2,2,0,0,2,84196,74621,64930,58433,50859,40005,2300,2000,4500,3300,0,3500,1
+20768,60000,male,1,1,37,2,0,0,0,0,0,21962,23592,25702,26961,28509,29546,2000,2500,2000,2000,1500,2000,1
+20769,290000,male,2,1,42,-2,-2,-2,-2,-1,-1,0,0,0,0,1855,3940,0,0,0,1855,3940,2490,1
+20770,30000,male,2,1,37,0,0,0,0,0,0,15054,15104,15428,16273,16305,780,1551,1265,1500,841,0,0,1
+20771,180000,male,2,2,31,0,0,-1,-1,-1,-1,6221,3571,4333,3334,3334,3334,1000,4337,3334,3334,3334,3334,1
+20772,50000,male,2,2,49,0,0,0,0,0,0,59236,53689,48551,34656,18077,18815,2000,2124,2047,5618,1000,2000,1
+20773,160000,male,2,1,39,0,0,0,2,2,0,34171,34939,38038,38683,37764,39053,1639,3683,1564,0,2053,3228,1
+20774,30000,male,6,2,49,0,0,0,0,0,0,29429,29959,29467,28292,28819,28787,3000,1800,2000,2590,10000,1452,0
+20775,240000,male,1,2,47,2,2,-2,-2,-2,-2,2500,0,0,0,0,0,0,0,0,0,0,0,1
+20776,260000,male,3,2,43,0,0,0,0,0,0,154386,151549,158888,144169,151679,143995,10000,10000,10000,10000,8000,10000,0
+20777,20000,male,2,2,42,1,2,0,0,2,0,11063,10594,11714,13923,13405,13683,0,1600,2726,0,643,646,1
+20778,50000,male,3,2,39,2,0,0,0,0,-1,42245,42022,45811,48192,9498,6733,30003,13000,9036,6190,10135,16000,0
+20779,180000,male,1,2,37,-1,-1,-1,-1,0,0,49531,45612,0,245863,250472,251024,45612,0,245863,5009,5040,0,0
+20780,110000,male,3,1,43,-1,-1,-1,-1,0,0,390,390,5050,63032,33228,31073,390,5050,63032,1100,1100,1000,0
+20781,130000,male,2,1,33,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,390,0
+20782,30000,male,2,1,45,-1,-1,-1,-1,-1,-1,390,390,390,390,0,780,390,390,390,0,780,0,0
+20783,130000,male,2,1,48,-2,-2,-2,-2,-2,-2,1115,1897,1020,3640,948,9071,1902,1023,3650,950,9093,4,0
+20784,170000,male,2,1,38,-1,0,-1,-1,-1,0,16480,21770,11507,715,3282,715,15067,11572,3282,3282,0,3122,1
+20785,240000,male,2,2,38,0,0,0,0,0,0,167544,168609,172591,145144,141134,127242,8400,10000,7500,5600,5500,4600,0
+20786,360000,male,1,2,38,-1,-1,-1,-1,-1,-1,1800,2410,2722,2961,2669,2054,2413,2738,2969,2677,2060,2071,0
+20787,150000,male,1,2,37,-1,-1,0,-1,0,0,305,87920,17991,101553,95786,82645,89524,19406,102989,2608,7845,0,0
+20788,70000,male,3,2,38,0,0,0,0,0,0,68370,69911,69970,57118,27510,27176,2682,2563,1568,970,1000,2000,1
+20789,220000,male,2,2,30,0,0,0,0,0,0,226613,217800,189016,137788,106713,96588,7667,7261,5170,4054,4500,1225,0
+20790,80000,male,2,1,31,0,0,0,0,0,0,78356,70664,62223,26400,27201,27363,2600,2036,1500,1201,1500,2000,0
+20791,180000,male,1,2,31,0,0,0,0,0,0,17426,29047,30572,38043,39441,42652,12000,2000,8043,2000,4000,12500,0
+20792,390000,male,1,1,32,0,0,0,0,0,0,26214,25100,34131,31120,15768,30831,6000,10778,7063,7060,30009,10025,0
+20793,20000,male,3,1,48,0,0,0,0,0,0,19195,20089,16739,17486,9392,9587,1257,1368,1115,301,310,352,1
+20794,100000,male,1,1,44,0,0,0,0,2,0,81786,84489,86298,90857,89208,91119,3400,3400,6200,0,2800,2800,0
+20795,10000,male,2,2,37,0,0,0,0,0,0,17018,13789,8236,9130,7302,7981,1117,2800,1200,265,800,500,0
+20796,80000,male,3,1,42,-2,-2,-2,-2,-2,-2,390,1780,120,0,0,0,1780,360,0,0,0,0,0
+20797,330000,male,1,1,48,-2,-2,-1,-1,-1,-1,0,12089,28933,14553,12400,20805,12089,28933,14553,12400,20805,0,0
+20798,20000,male,2,1,47,0,0,0,2,2,2,10628,11650,14252,13678,15041,14751,1200,2800,0,1500,0,1000,1
+20799,270000,male,1,2,33,-1,-1,0,-1,0,0,288,765,1277,42402,33855,32349,765,1004,42522,1026,10000,1041,0
+20800,280000,male,2,2,33,-2,-2,-2,-2,-2,-2,0,2650,3294,3640,2720,7598,2650,3294,3640,2720,7598,4434,0
+20801,180000,male,2,2,33,0,0,0,0,0,0,103956,103230,105945,111065,122028,125069,4100,4400,10000,12900,5000,5000,0
+20802,350000,male,3,1,44,-1,-1,-1,-1,-1,-1,266692,3551,33112,2341,63698,38355,3569,33276,2353,64017,38546,435,0
+20803,200000,male,3,1,44,2,0,0,0,0,0,147817,121668,67240,69798,72243,75277,11000,11000,5000,5000,5000,3000,1
+20804,50000,male,2,1,41,0,0,0,0,0,0,49401,50079,50463,49407,29708,29308,1803,1988,1514,1041,1056,1078,1
+20805,500000,male,1,1,41,0,0,2,2,-1,2,62289,63485,2015,-121,679,529,2608,0,0,800,0,1500,0
+20806,140000,male,1,1,43,-1,-1,-1,-1,-1,-1,1453,1872,1249,1872,1453,1453,1872,1249,1872,1453,1453,1034,0
+20807,180000,male,1,1,40,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+20808,540000,male,6,2,49,0,0,0,0,0,0,83722,86030,82860,20879,3698,209167,3538,4380,2067,564,207019,6716,0
+20809,30000,male,1,2,28,-1,-1,-1,-1,-2,-2,598,0,950,0,0,0,0,950,0,0,0,0,0
+20810,270000,male,1,1,42,-1,-1,-1,-1,-1,-1,6532,3904,8537,5048,7507,24170,3923,8537,5056,7507,24170,3840,0
+20811,210000,male,1,2,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+20812,160000,male,4,1,45,1,-1,-1,-2,-1,0,0,10427,0,0,1817,1817,10427,0,0,1817,0,4700,0
+20813,50000,male,3,2,39,0,0,-1,-1,2,0,34617,34390,810,19009,18035,18364,1000,810,51000,0,1000,1000,0
+20814,50000,male,2,2,29,-1,-1,0,-1,-1,-1,5140,9377,5140,5140,5140,5140,9377,1000,5140,5140,5140,2600,0
+20815,200000,male,2,1,33,0,0,0,2,-1,-1,57579,50612,10537,5552,2506,9443,5250,10023,27,2614,9454,5019,0
+20816,240000,male,1,2,35,-1,-1,2,-1,0,-1,325,650,325,2250,1925,1925,650,0,2250,0,1925,1925,1
+20817,50000,male,1,2,32,1,2,2,2,2,2,45997,47003,46468,47198,49634,48708,2064,500,1800,3528,0,3000,1
+20818,80000,male,2,2,28,0,0,0,0,-2,-2,10677,9478,4603,0,0,0,2017,1033,0,0,0,1820,0
+20819,80000,male,2,1,34,2,2,2,0,0,0,81882,81814,78353,78814,49062,48764,3650,0,3328,1888,1787,1960,1
+20820,80000,male,2,1,30,2,0,0,0,0,3,13708,22668,31456,40111,48633,56740,9200,9200,9200,9200,9200,0,1
+20821,200000,male,2,1,38,0,0,0,-2,-2,-2,7400,2872,212,2387,0,-2620,1005,220,2387,0,0,3380,0
+20822,200000,male,3,1,41,0,0,0,0,0,0,171929,157860,145044,137480,6320,780,7000,8080,6000,0,0,0,1
+20823,290000,male,1,2,38,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+20824,80000,male,2,1,39,0,0,0,0,0,0,145905,147860,78545,19212,36800,18900,5107,3269,1400,368,1000,0,0
+20825,250000,male,1,1,40,0,-1,-1,-1,-1,2,307321,4696,5579,8537,2500,2500,4730,5607,8634,2500,0,0,0
+20826,50000,male,2,1,37,1,-1,-1,-1,-1,-2,0,780,390,780,0,0,780,390,780,0,0,0,0
+20827,240000,male,2,1,45,0,0,0,0,0,0,228278,232449,223853,225623,221130,225446,10000,9000,10000,8301,9000,13000,0
+20828,130000,male,2,1,43,0,0,0,-1,-1,-1,59762,61877,60390,390,390,390,3496,1208,390,390,390,390,0
+20829,190000,male,2,1,45,0,0,0,0,0,0,82764,63105,55282,50864,48782,49241,5000,2600,2000,3000,5000,2000,0
+20830,20000,male,2,2,40,-1,-1,0,0,0,0,1261,11839,9610,7004,10614,10433,11839,1266,1000,5000,209,0,0
+20831,60000,male,2,2,32,1,2,2,2,2,2,47908,49823,48757,52312,52960,51985,3000,0,5000,2100,0,4600,0
+20832,170000,male,2,1,35,1,2,2,2,2,0,17920,19229,18642,19743,19422,3644,1900,0,2000,0,500,500,0
+20833,50000,male,3,1,46,1,2,0,0,2,0,35556,34685,36121,38135,37416,38503,0,2000,2800,0,1500,2500,0
+20834,240000,male,2,1,31,0,0,0,0,0,0,230234,224376,230666,219162,189589,193546,8200,10000,8000,10000,6531,5543,0
+20835,200000,male,1,2,31,1,2,2,3,2,2,182307,186128,197509,193046,194368,182903,8300,15900,200,6100,7000,0,1
+20836,130000,male,1,2,31,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+20837,360000,male,5,1,31,0,0,0,0,0,0,270955,275178,280535,82455,83359,85171,8000,7500,3500,2500,2500,2600,0
+20838,200000,male,1,2,33,0,0,0,2,0,0,54713,58184,62286,61305,62846,42634,5000,5700,2000,3000,2000,1000,0
+20839,160000,male,3,2,38,0,0,0,0,0,0,138937,152723,138767,131237,76104,56237,120000,10000,10000,5000,3000,5000,0
+20840,230000,male,1,1,39,-1,-1,-1,-1,-1,-1,660,660,660,660,660,660,660,660,660,660,660,660,0
+20841,280000,male,1,1,38,1,-1,-1,-1,-1,-1,4608,5393,2369,3700,5024,5188,5410,2380,3709,5849,5606,5299,0
+20842,210000,male,1,1,40,0,0,0,0,2,0,23764,21911,23204,19709,14418,13366,1367,1777,1577,0,1366,3130,0
+20843,380000,male,3,1,39,0,0,0,0,0,0,37096,45148,60615,65016,69286,67455,10012,20012,10014,10048,10022,20153,0
+20844,270000,male,2,1,36,1,2,0,0,0,0,5714,3548,11419,20787,23471,25987,0,11000,10000,5000,5000,3000,1
+20845,150000,male,2,2,34,-1,-1,-1,2,2,-2,917,167,1371,1200,0,0,2000,1371,0,0,0,0,0
+20846,110000,male,1,2,30,1,2,2,2,2,2,88312,90163,92035,93231,94309,96258,4200,4200,3600,3500,3600,0,0
+20847,500000,male,1,2,32,-1,0,0,0,-1,-1,27318,46364,30327,16314,1151,3074,40019,16107,3325,1151,3074,4984,0
+20848,100000,male,2,2,41,-1,2,2,2,2,2,1941,3255,3056,4998,4769,9691,1500,0,2000,0,5000,0,1
+20849,130000,male,1,2,30,0,0,0,0,0,0,80528,77939,78524,63421,60269,59984,3700,3916,3000,3000,3000,1000,0
+20850,200000,male,1,2,34,2,0,0,0,2,2,150493,156449,162377,174501,155355,129942,10000,10000,15000,0,10000,0,1
+20851,280000,male,2,2,47,0,0,0,0,0,0,229281,233992,186321,180598,20596,15311,20213,8003,9002,5000,5000,5000,0
+20852,420000,male,1,1,39,0,0,0,0,0,0,100333,102906,105030,107146,107896,110149,5138,5267,5347,4019,4152,4173,0
+20853,380000,male,1,2,29,-1,-1,-1,-1,-1,0,388,388,388,388,775,387,389,389,389,776,1,435,0
+20854,220000,male,1,2,33,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+20855,310000,male,2,1,35,-2,-2,-2,-2,-2,-2,-354,-354,-354,-354,-354,-354,0,0,0,0,0,352,0
+20856,310000,male,2,1,48,0,0,0,0,0,0,102646,101640,102740,97791,86200,83017,5200,4700,4250,3100,3100,3100,0
+20857,550000,male,1,2,35,2,2,2,2,2,0,539092,552234,565550,572805,823540,501370,23000,23000,18000,0,18373,18159,0
+20858,170000,male,1,2,36,-1,-1,-1,-1,-1,-1,37830,11160,4336,947,316,3797,11376,4346,947,316,3797,316,0
+20859,50000,male,1,2,35,0,0,0,0,-1,0,49241,26539,53920,0,47566,48393,1600,1000,2500,47566,1700,2000,0
+20860,390000,male,1,1,41,-2,-2,-2,-2,-2,-2,7015,500,321,4411,1069,448,500,321,4412,1069,448,2661,0
+20861,20000,male,2,2,24,0,0,0,-2,-2,-2,18196,19495,-280,-280,-280,-670,1775,0,0,390,0,1600,0
+20862,80000,male,1,2,26,0,0,0,0,0,0,18229,27416,25253,5549,4549,4549,10000,2000,2000,0,0,3000,0
+20863,200000,male,2,2,25,-1,0,0,0,0,0,88569,101979,143982,146700,149339,162121,15000,43982,5150,6000,15027,463,0
+20864,80000,male,2,2,27,1,-2,-2,-1,-1,-2,0,0,0,200,0,0,0,0,200,0,0,698,0
+20865,200000,male,1,2,28,0,0,0,0,0,0,87390,115312,142912,161874,176431,180153,30002,30002,21876,16433,5661,5349,0
+20866,130000,male,2,2,30,0,0,0,0,-1,0,70142,10724,3995,7556,125682,128453,1100,2000,5000,128000,4700,4600,0
+20867,200000,male,2,1,28,3,2,2,7,7,7,2443,2443,2443,2443,2443,2443,0,0,0,0,0,0,1
+20868,20000,male,3,2,48,3,2,2,7,7,7,250,250,250,250,250,250,0,0,0,0,0,0,1
+20869,310000,male,2,2,35,-2,-2,-2,-2,-2,-2,2186,1528,22217,-5,1116,374,1532,22328,0,1121,401,0,0
+20870,160000,male,3,1,40,0,0,0,0,0,0,150451,152384,155976,157793,158652,157163,7000,7500,6008,5516,6011,6009,0
+20871,190000,male,2,2,40,2,2,2,2,2,2,149411,145613,156765,159386,161870,165725,0,15000,6600,6500,6500,7000,1
+20872,110000,male,2,1,49,0,0,0,0,0,0,51395,51803,52888,54570,55368,56623,1855,1921,2563,2300,2300,1704,0
+20873,150000,male,2,2,49,0,0,0,0,0,0,86035,86414,87852,88692,90211,91543,3090,3218,3196,3360,3310,3573,0
+20874,90000,male,1,1,37,0,0,0,0,0,0,51438,40028,38704,37135,35141,33502,1950,2000,1800,1150,1200,1150,0
+20875,150000,male,1,2,34,0,0,0,0,0,0,56142,60855,53256,60945,60720,57407,10115,15010,10015,3022,1522,2013,0
+20876,160000,male,1,1,41,-1,-1,-1,-1,-1,2,776,230,1350,1310,2374,1444,230,1500,1310,1444,0,1000,1
+20877,180000,male,1,2,34,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+20878,20000,male,2,2,26,1,2,2,0,0,2,8476,10187,9885,11398,12208,11869,2000,0,2000,1000,0,1200,1
+20879,50000,male,2,1,32,0,0,0,0,0,0,50805,51088,50810,50814,50927,50438,2284,2006,2010,2123,2138,2442,1
+20880,420000,male,2,1,41,0,0,0,0,0,0,193370,198053,202618,197985,200163,2559,4988,4976,6019,5065,1035,182778,0
+20881,30000,male,2,1,30,0,0,0,0,0,-1,29202,30695,29342,23572,21381,28609,2001,10019,1219,1032,28609,1269,0
+20882,20000,male,3,1,46,-1,2,2,-1,-1,0,1836,1651,0,390,1170,780,0,0,390,1170,0,0,1
+20883,200000,male,1,2,38,2,-1,-1,-1,-1,-1,1810,3388,-12,1081,1884,2089,3405,0,1093,1893,2097,7132,0
+20884,50000,male,1,2,36,2,2,0,0,0,0,45960,44883,40820,33545,46832,24101,0,1973,1784,845,1750,1010,1
+20885,500000,male,1,1,39,2,0,0,2,2,2,15776,17467,120972,117088,121283,117583,3004,106000,0,8008,78,10549,1
+20886,30000,male,3,1,42,1,2,0,0,0,0,14655,12731,13225,16952,11920,0,14,3000,5000,1000,0,0,0
+20887,360000,male,2,1,46,-2,-2,-2,-2,-2,-2,8746,3093,1935,1205,1320,1068,3108,1952,1219,1326,1073,191,1
+20888,130000,male,2,1,38,0,0,0,0,-2,-2,233617,115431,35400,0,0,0,10000,5000,0,0,0,0,0
+20889,20000,male,2,1,45,-2,-2,2,2,2,2,-2044,1961,2983,2790,3589,3388,5966,1201,0,1000,0,1000,0
+20890,200000,male,1,2,34,-2,-2,-2,-2,-2,-2,1740,10108,291,2515,1133,-363,10108,291,2515,1133,0,0,0
+20891,340000,male,1,1,39,0,0,2,2,0,0,177237,188765,193224,192578,195073,206924,16100,9000,4000,7200,15200,0,0
+20892,50000,male,1,1,33,0,0,2,0,0,0,40505,46745,45727,45515,45470,4220,6930,0,1200,155,3000,0,0
+20893,360000,male,1,2,33,-2,-2,-2,-2,-2,-2,780,286,0,0,390,-200,286,0,0,390,0,0,0
+20894,200000,male,2,2,35,-1,-1,-1,-2,-1,-1,1121,4621,4318,1640,6614,707,4621,4351,1654,6614,707,0,0
+20895,50000,male,2,2,33,0,0,0,0,0,0,47364,48355,49715,49736,17599,16753,1780,2140,1161,510,503,500,1
+20896,560000,male,2,1,36,-2,-2,-2,-2,-2,-2,4286,3273,2300,4930,2043,1019,3282,2306,4930,2049,1019,2580,0
+20897,130000,male,3,2,39,2,2,2,2,2,2,66548,71034,69329,74175,72383,77217,5600,0,6000,0,6000,0,1
+20898,20000,male,3,2,38,0,0,0,0,0,0,12248,15023,16773,18394,19268,14850,3000,2000,2000,2000,1003,904,0
+20899,360000,male,1,1,42,0,-1,-1,-1,-1,-1,30860,20180,21908,1780,47307,0,20204,21908,1780,47307,0,0,0
+20900,50000,male,3,1,39,0,0,0,0,0,0,23257,22938,21583,22453,21618,19525,1333,1500,1274,700,700,688,0
+20901,70000,male,2,2,35,1,2,2,0,0,0,44193,46168,45166,36283,20861,21374,3000,102,2400,894,1000,1000,1
+20902,280000,male,2,1,49,0,0,0,2,0,0,32311,32812,34943,33892,28005,22011,1429,2950,0,792,633,434,0
+20903,280000,male,2,2,39,-2,-2,-2,-2,-2,-2,6251,12501,4873,4071,-30,-30,12577,4897,4176,0,0,0,0
+20904,50000,male,3,1,37,0,0,0,0,0,0,44320,45211,45559,46164,46685,47272,2021,3259,1754,1665,1723,2099,0
+20905,160000,male,2,1,40,0,0,0,0,0,0,101782,102308,103620,98888,94288,97504,3710,4000,4000,3500,7200,0,0
+20906,240000,male,3,1,40,0,-1,-1,-1,-1,0,8936,1649,2999,2840,4114,5923,1658,3010,2840,4114,3923,3673,0
+20907,300000,male,2,1,48,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+20908,280000,male,2,1,39,2,0,0,0,0,0,130549,131955,134910,139280,139188,271388,5000,5000,6585,6409,6046,3053,1
+20909,530000,male,1,2,30,0,0,0,0,0,0,205848,214022,393664,235392,232640,239004,13000,20000,10000,10000,10000,9000,0
+20910,120000,male,2,2,32,-1,-1,-1,-1,-1,-1,7111,5894,7670,20440,4260,15308,6000,7680,20440,4260,15308,7000,0
+20911,130000,male,3,2,33,0,0,0,0,0,0,126592,123377,59064,46825,46730,47775,5264,2188,2500,1122,1500,1200,0
+20912,500000,male,1,1,35,-1,-1,-1,-2,-1,-1,6257,10445,7009,12515,8037,7944,10492,7114,12587,8071,7978,13896,0
+20913,70000,male,2,1,31,0,0,0,0,0,0,3588,3204,2330,1499,1327,671,1505,1005,1002,503,502,0,0
+20914,10000,male,2,2,31,-1,-1,-1,-1,-1,-2,390,390,0,780,0,0,390,0,780,0,0,0,0
+20915,500000,male,1,1,41,-1,-1,-1,-1,-1,-1,11060,6860,27243,2487,6269,10744,6895,27398,3104,6300,10797,4882,0
+20916,340000,male,1,1,41,-2,-2,-2,-2,-2,-2,11379,11086,3112,3351,1259,19271,11258,3112,3351,1259,19271,16992,0
+20917,10000,male,3,2,37,0,0,0,0,0,0,4950,5963,6983,7993,8151,8322,1103,1123,1133,291,302,1000,1
+20918,140000,male,2,2,41,0,0,0,0,0,2,185948,170133,155737,140586,136641,117308,6088,5677,4797,15414,0,2330,0
+20919,50000,male,2,2,36,-1,-1,-1,-1,-1,-1,1261,1261,1665,1261,1261,390,1261,1665,1261,1261,390,390,0
+20920,270000,male,2,1,44,2,0,0,0,0,0,187352,179247,180535,187524,185895,190396,8000,6700,10027,6700,7500,7000,1
+20921,290000,male,2,2,30,0,0,0,0,0,0,65369,67270,65357,66893,69740,56411,3360,3000,3000,4000,2500,8000,0
+20922,50000,male,1,2,33,-1,2,2,2,0,0,36363,35483,48256,47098,46898,150,0,13500,0,0,0,0,0
+20923,30000,male,2,1,33,0,0,0,0,0,-1,6390,5454,5540,4605,2880,2516,1102,1128,1000,58,2516,3553,0
+20924,290000,male,1,2,41,0,0,0,0,0,0,275367,255049,247090,242309,238609,238712,10580,9006,8507,10902,8600,8671,0
+20925,200000,male,1,2,31,0,-1,-1,0,0,0,9080,14280,13918,22836,20105,4415,14280,13918,12836,8000,1000,0,0
+20926,50000,male,1,2,31,2,0,0,0,0,0,56251,50758,49517,49528,44768,40295,8705,2501,2005,1312,1614,1706,0
+20927,290000,male,1,2,32,-1,3,2,0,0,0,3739,3738,3737,179546,182148,185484,0,0,179460,6900,6600,7800,1
+20928,130000,male,1,2,36,1,2,2,2,0,0,128190,131094,132549,128646,100845,101545,6500,5000,0,3512,3606,3699,0
+20929,220000,male,2,1,47,-1,-1,-1,-1,-1,-1,3489,6246,29390,8460,19000,13550,6261,29390,8489,19000,13550,2969,0
+20930,250000,male,1,2,33,0,0,0,0,0,0,76412,80024,83952,87147,91191,94220,5000,5000,5000,5000,4000,5000,0
+20931,360000,male,1,1,44,0,0,0,0,0,0,162773,158557,158098,153896,152053,128253,5676,6019,5315,4975,4701,4516,0
+20932,150000,male,1,1,38,5,4,3,2,2,-2,288585,282677,159283,148309,143972,139650,0,0,0,5000,5000,0,1
+20933,160000,male,2,2,37,0,0,0,0,0,0,140266,133372,129619,116388,114022,111743,5019,5000,4156,4500,4500,4000,0
+20934,360000,male,1,1,34,-2,-2,-2,-2,-2,-2,2433,1218,505,843,-4,2237,1230,505,843,4,2241,56,0
+20935,210000,male,2,2,42,0,0,0,0,0,0,197204,201218,205477,209754,212737,209083,8800,9000,9200,8000,8000,9000,0
+20936,60000,male,3,1,43,0,0,0,0,0,0,44057,42706,42345,42849,17490,15633,1669,2000,1870,1000,586,619,0
+20937,20000,male,2,3,48,0,0,0,2,0,0,16537,16192,16926,17333,16820,17175,1500,3500,1000,1000,1000,1000,0
+20938,50000,male,3,1,45,0,-1,-1,2,-1,-1,10522,261,1305,1134,1073,1312,261,2305,0,1200,1500,0,1
+20939,60000,male,3,1,41,0,0,0,0,0,0,58563,58344,57920,58064,55928,57108,2826,2269,2277,2002,2081,2395,0
+20940,460000,male,1,2,39,0,0,0,0,0,0,290372,287696,197014,179698,167727,136894,15495,10089,8077,6184,8047,6035,0
+20941,240000,male,5,1,40,-2,-2,-2,-2,-2,-2,19295,2054,6984,0,0,0,2054,6984,0,0,0,0,0
+20942,30000,male,2,2,44,2,0,0,0,0,0,17766,18771,19965,20865,23465,24465,1306,1500,1400,3000,1000,0,1
+20943,50000,male,2,1,41,0,0,0,0,0,0,43607,45375,46836,48635,19373,20129,2500,2500,3000,1500,2000,3000,0
+20944,120000,male,2,1,41,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+20945,120000,male,2,2,32,0,0,0,0,0,-1,114476,113995,116574,117041,50980,51285,4100,6000,5000,5000,58895,5000,0
+20946,230000,male,1,2,40,-2,-2,-2,-2,-2,-2,6514,7882,162,-868,-868,-868,7882,162,0,0,0,0,1
+20947,80000,male,1,2,39,0,0,0,0,-1,-1,48491,55637,60163,0,780,390,8000,6000,0,390,390,540,0
+20948,20000,male,2,2,34,2,2,2,0,0,0,17497,20690,20075,19492,19859,19232,3500,0,1500,805,7000,542,1
+20949,360000,male,2,1,33,-1,-1,-1,-1,0,0,15299,44439,22637,101497,68960,28399,44730,22751,101691,2233,6138,16113,0
+20950,500000,male,1,1,30,0,0,0,0,0,0,74797,75753,78031,78946,76689,77968,2800,3500,2818,2743,3000,10000,0
+20951,30000,male,2,1,45,1,2,2,2,2,2,14728,15777,17224,18241,18446,18009,1600,2000,1600,800,0,1600,1
+20952,170000,male,1,2,29,-1,2,-1,2,-1,-1,14479,27045,19041,12769,6283,3093,70,19136,64,6314,3107,3494,0
+20953,240000,male,2,2,41,0,0,0,0,0,0,226047,230787,236518,232756,214781,219313,10000,11000,10300,7700,8000,8100,0
+20954,230000,male,1,1,40,-2,-2,-2,-2,-2,-2,169,2008,3587,2663,2660,2997,2018,3605,2681,2673,3012,2583,0
+20955,180000,male,1,2,31,1,2,2,2,2,2,172505,166692,176869,347813,171041,181637,0,16000,6000,0,15000,7000,0
+20956,210000,male,3,1,38,2,2,2,2,2,2,122157,130309,116004,78564,37154,0,12301,16,5812,218,0,0,1
+20957,460000,male,1,2,44,2,2,2,2,2,2,282944,288729,295114,299739,304319,299400,12000,12500,11000,11000,0,27000,1
+20958,200000,male,1,1,47,1,2,2,0,0,0,198663,201996,194396,166515,163673,145683,8013,13,8684,5500,7437,4600,1
+20959,80000,male,2,1,40,0,0,0,0,0,0,71578,71896,73744,73572,73025,73087,3007,5012,3119,3007,3110,3101,0
+20960,50000,male,2,1,49,1,2,2,0,0,0,50435,50936,49463,50046,19858,19278,2400,0,2300,1000,1000,1000,1
+20961,230000,male,2,2,38,2,2,2,2,2,0,177917,181465,185074,187053,176805,180826,8000,8000,6500,0,7000,6500,0
+20962,80000,male,2,1,38,0,0,0,0,0,-1,40356,25023,16392,7467,6727,994,1631,1432,1000,520,1097,2236,0
+20963,200000,male,2,1,32,-1,-1,0,0,-1,-1,80,89691,91517,72739,389,389,90001,3935,3759,390,390,390,0
+20964,50000,male,3,1,40,-1,-1,-1,-1,-1,-1,1261,2522,170,1261,390,390,2522,170,1261,390,390,390,0
+20965,30000,male,2,1,36,1,-1,-1,-1,0,0,0,780,0,1170,780,0,780,0,1170,0,0,0,0
+20966,280000,male,3,1,40,2,0,0,0,0,0,178220,184848,188411,191291,189029,192023,10000,9000,8000,6738,6974,7600,1
+20967,260000,male,2,1,37,0,0,0,0,0,0,128602,118109,21557,23186,14117,15797,3203,6015,5055,2011,4078,4522,0
+20968,200000,male,2,2,32,2,0,0,0,-2,-2,160106,162743,81890,0,0,0,7600,4000,0,0,0,0,1
+20969,80000,male,2,2,32,2,0,0,0,0,2,79237,65301,67253,67352,74448,72928,3000,4005,2500,10000,0,5000,1
+20970,200000,male,1,2,45,0,0,0,0,0,0,14027,16016,16905,11791,7983,6327,5006,3024,2017,173,1002,3197,0
+20971,20000,male,5,1,28,0,0,0,-2,-2,-2,9278,10400,0,0,0,0,1400,0,0,0,0,0,0
+20972,200000,male,2,1,47,-1,-1,0,0,0,0,42114,227075,217016,200316,169815,88071,235728,10000,5210,4009,3186,55152,1
+20973,60000,male,3,2,41,-1,-1,-1,-1,-1,-1,866,29123,26766,-1644,6398,5556,29687,30000,0,20009,10000,10000,0
+20974,50000,male,2,1,38,0,0,0,0,0,0,46509,47072,47637,44429,27279,27318,2000,2000,2000,944,1118,1000,0
+20975,50000,male,2,1,42,0,0,0,-1,0,0,1345,1545,-306,18394,18760,19166,1000,0,18700,663,700,820,0
+20976,50000,male,2,2,41,0,0,0,0,0,0,50516,44187,20314,19707,19566,19916,2721,1750,1200,1000,1000,1000,0
+20977,200000,male,3,2,43,3,2,2,2,2,2,2500,2500,2500,2500,2500,2500,0,0,0,0,0,0,1
+20978,130000,male,3,2,38,2,2,0,0,0,0,114726,107602,106907,94152,96365,97413,20,4544,3200,3500,3585,2519,1
+20979,130000,male,2,2,41,0,0,0,0,0,0,131762,106130,66523,55678,20290,14802,3466,2781,1702,602,492,515,1
+20980,50000,male,2,2,32,-1,2,2,-1,-1,-2,780,390,0,780,0,0,0,0,780,0,0,0,1
+20981,160000,male,1,2,33,2,2,2,0,0,0,146129,158066,156898,154725,115841,111615,15000,4000,8000,4000,4000,4000,1
+20982,50000,male,2,2,32,1,2,2,0,0,0,48793,50194,49101,47549,48817,45928,2500,0,1800,2000,2000,2000,1
+20983,10000,male,2,2,46,0,0,0,0,0,0,8866,9844,9319,18202,9287,0,1143,1218,1000,372,0,0,0
+20984,200000,male,2,2,35,0,0,0,0,0,0,87750,89618,91499,93317,96110,98906,3000,3000,3000,4000,4000,5000,0
+20985,360000,male,1,2,38,-2,-2,-2,-2,-2,-2,12325,14118,38645,5235,4710,6392,14123,38722,5235,4710,6392,12576,0
+20986,230000,male,1,1,37,-2,-2,-2,-2,-2,-2,1464,1742,3267,800,2458,1880,1742,3267,800,2458,1880,2414,0
+20987,200000,male,1,2,34,-1,-1,-2,-2,-1,-1,3253,3969,-8,2315,4255,2010,4005,326,2323,4264,2028,1857,0
+20988,50000,male,3,1,43,0,0,0,0,0,0,27620,28923,29955,30666,31275,31940,1767,1799,1510,1119,1169,2000,1
+20989,90000,male,2,1,34,0,0,0,0,0,0,106053,101023,97045,102372,100794,98277,3547,3580,13000,7000,6000,7000,0
+20990,270000,male,1,2,36,-2,-2,-2,-2,-2,-2,11464,1879,6896,8583,880,4861,1879,6909,8587,880,4861,3212,0
+20991,50000,male,2,1,41,0,0,0,0,-2,-2,49999,51043,51400,0,0,0,2263,2400,0,0,0,0,0
+20992,50000,male,2,1,39,2,3,2,0,0,0,17150,16582,17014,17721,18184,20008,0,1000,1592,1055,2421,0,1
+20993,20000,male,2,1,39,0,0,0,0,0,0,16621,7309,17120,18130,18491,18893,1200,10000,1301,662,700,1000,0
+20994,50000,male,3,1,35,0,0,0,0,0,0,50500,50181,49630,50153,30914,29200,2000,2200,1968,1106,1040,1069,1
+20995,390000,male,2,1,39,-1,2,-1,-1,0,0,7831,3844,5797,7657,4086,5795,8,5806,7667,95,5804,4721,0
+20996,50000,male,2,2,36,4,3,2,0,0,0,51689,50567,48454,49843,51355,29276,3,0,2183,2695,29276,4,0
+20997,160000,male,3,2,38,1,-2,-2,-1,0,0,0,0,0,700,700,0,0,0,700,0,0,0,0
+20998,20000,male,2,1,36,3,2,2,2,2,2,17500,16926,19260,18653,20041,19582,0,2921,0,1702,0,1594,1
+20999,230000,male,2,2,36,-2,-2,-2,-2,-2,-2,3245,1855,2577,8001,2970,-1,1864,2590,8039,2984,0,381,0
+21000,50000,male,1,2,46,0,0,0,0,0,0,49386,49487,50401,49148,30036,29873,2000,2500,2040,2000,1037,2000,0
+21001,50000,male,3,2,40,0,0,0,0,2,2,55397,55877,57335,59595,55949,51225,2000,2356,3494,2000,0,1725,0
+21002,80000,male,3,1,37,0,0,0,0,0,0,51925,51544,49430,46864,46473,48191,3018,2113,3007,2000,3000,20000,0
+21003,240000,male,2,1,42,-1,-1,-1,-1,0,0,795,1916,1530,2961,5962,7336,1921,1534,2961,3001,2024,1000,0
+21004,90000,male,3,1,39,0,0,0,0,0,0,93757,91359,88616,56887,46700,47272,4000,2625,2511,1501,1391,1393,1
+21005,260000,male,3,1,44,0,0,0,0,0,0,250416,257987,260104,253488,145630,148720,11000,7100,135546,4500,4590,4501,0
+21006,50000,male,2,2,47,0,0,0,0,0,0,48017,47913,49225,18858,19166,19834,2488,2800,1610,918,1214,468,0
+21007,350000,male,1,1,41,0,0,0,0,0,0,24297,25299,26329,27343,27886,28470,1411,1441,1455,998,1033,1038,0
+21008,20000,male,2,2,42,0,0,0,0,0,0,15717,16724,18051,18759,19132,19684,1276,1603,1311,684,860,874,0
+21009,110000,male,3,1,41,0,0,0,0,0,0,53497,51110,48995,46772,33220,31858,2510,2509,2031,1507,2032,1521,0
+21010,80000,male,3,1,34,-1,-1,0,0,-1,0,5173,10809,8673,11590,5973,5878,10826,3683,5034,5981,2895,3789,0
+21011,230000,male,2,1,34,1,-2,-1,2,2,0,0,0,33,33,33,1133,0,33,0,0,1100,704,1
+21012,370000,male,2,2,39,0,0,0,0,0,0,377259,310284,278781,256794,156583,17909,15198,14177,15118,15020,10000,308000,0
+21013,100000,male,2,1,38,-1,-1,-1,2,0,0,7798,864,3302,2430,805,3415,864,2438,821,1,3110,2206,1
+21014,490000,male,2,2,35,2,2,0,0,0,0,427020,370428,337432,286247,256618,188154,0,13932,11771,10187,8013,7014,1
+21015,50000,male,2,2,42,2,2,2,2,-1,0,22591,21523,24538,22402,9528,8447,0,3701,554,10026,421,6106,0
+21016,200000,male,3,2,41,-2,-2,-2,-2,-2,-2,20950,182,3150,0,0,0,182,3165,0,0,0,94,0
+21017,70000,male,2,1,37,2,2,2,2,2,2,60514,61923,62740,63090,64470,65828,3000,2400,2000,3000,2508,0,1
+21018,210000,male,2,1,38,-1,-1,-1,-1,-1,-1,326,0,2684,0,10652,326,0,2684,0,10652,326,0,0
+21019,50000,male,3,2,33,0,0,0,0,0,0,47834,47821,48442,42550,16324,17556,1866,2007,1915,589,1500,1000,0
+21020,50000,male,3,2,34,0,0,0,0,0,0,49454,49157,49773,48398,32584,33322,1792,2208,1513,1149,1245,1271,0
+21021,100000,male,1,2,34,0,0,2,2,2,2,18185,24932,24246,26839,26109,27686,7100,0,3000,0,2000,0,1
+21022,160000,male,2,2,38,4,3,2,2,3,2,99340,96860,99911,103928,101540,99587,0,5500,6700,0,27,2800,1
+21023,30000,male,2,1,32,-2,-2,-2,-2,-2,-2,5066,6367,2109,5930,4192,0,6367,2115,5933,4192,0,0,0
+21024,220000,male,1,2,34,0,0,2,2,0,0,170352,182711,183825,142216,118269,14960,15206,6000,0,5193,546,1485,1
+21025,150000,male,3,2,29,-1,-1,2,-1,-1,-1,820,3191,1965,1300,936,901,3431,0,1300,936,901,911,0
+21026,300000,male,2,2,31,0,0,0,0,0,0,281829,285038,291480,298378,131103,128742,10208,12507,15056,5027,5007,5063,0
+21027,390000,male,2,1,36,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+21028,180000,male,1,1,36,-1,0,0,0,0,0,170619,172057,177813,178907,139825,118621,6063,8431,6845,4465,4287,4060,0
+21029,300000,male,1,2,40,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+21030,150000,male,1,1,37,0,0,0,0,0,2,112695,97907,100826,103297,111784,108887,3515,5002,5189,14002,8,4009,0
+21031,80000,male,2,1,36,0,0,0,0,0,0,77870,79472,81757,77200,77669,79667,2900,3900,2750,2800,3200,2964,1
+21032,250000,male,2,2,31,1,-2,-2,-2,-2,-1,0,0,0,0,0,1026,0,0,0,0,1026,1026,0
+21033,350000,male,1,1,37,-2,-2,-2,-2,-2,-2,916,1123,604,4523,617,1902,1133,607,4545,620,1911,4690,0
+21034,380000,male,1,1,40,0,0,0,0,0,0,231759,233357,236292,237176,236379,239221,10000,9000,10021,10000,10000,10000,0
+21035,450000,male,1,2,34,-1,-1,-1,-1,-1,-1,583,-16,2312,192,1630,14099,0,2328,192,1638,14169,1122,0
+21036,340000,male,1,2,35,0,-1,-1,-1,0,-1,62896,16480,27050,29103,58997,12518,16591,27283,29255,58276,12565,13507,0
+21037,70000,male,2,1,44,0,0,0,0,0,0,14202,15149,15481,15266,13489,11837,1500,1585,1500,1000,600,1500,0
+21038,320000,male,2,1,37,0,0,0,0,0,0,367670,374631,348144,311004,254598,227869,13200,13006,11500,9000,10000,8000,1
+21039,180000,male,1,1,48,-1,-1,-1,-1,-1,0,325,1260,325,1000,1100,1100,1260,325,1000,1100,0,0,0
+21040,360000,male,1,1,43,0,-1,-1,-1,-2,-2,38324,3374,3620,0,0,0,3390,3638,0,0,0,0,0
+21041,230000,male,1,1,46,1,2,2,2,2,2,189724,193112,197039,200300,203018,199689,8000,8500,8000,7500,0,6622,1
+21042,280000,male,1,2,36,1,2,0,0,0,0,314318,307569,286773,275447,245409,211351,0,13500,14500,10000,9000,12000,0
+21043,50000,male,2,2,34,0,0,2,0,0,0,46413,50056,49072,49724,19801,14301,4729,86,2198,1198,600,1000,0
+21044,260000,male,2,1,34,0,0,0,0,0,0,186189,176135,130369,68014,68529,69741,6203,5704,2411,2412,3100,3600,1
+21045,230000,male,2,2,41,-1,0,0,0,0,0,23216,25548,23769,17270,13903,1953,10014,1602,1017,332,9,3626,0
+21046,240000,male,1,2,41,-2,-2,-2,-2,-2,-2,-317,63435,697,-3,635,1269,63752,700,0,638,1275,421,0
+21047,140000,male,1,1,44,0,0,0,2,0,0,90547,92536,96535,98041,100504,103874,3500,5500,4000,5000,5000,5000,0
+21048,360000,male,1,1,43,0,-1,-1,-1,0,0,30769,13532,840,68110,55905,42239,13952,864,124037,1679,1163,1126,0
+21049,320000,male,1,1,44,-1,-1,-1,-1,-1,-1,1329,4526,11906,14202,6956,4839,4526,11911,14425,7063,4839,6271,0
+21050,310000,male,1,1,36,-1,-1,-1,-1,-1,-1,8517,6734,6031,14884,5467,12510,6765,6076,14972,5512,12570,9215,0
+21051,60000,male,2,2,42,0,0,0,-1,0,0,78291,70154,69940,60170,29261,30233,3000,1405,60941,1056,2100,1101,0
+21052,380000,male,2,1,38,0,0,0,0,0,0,365427,363267,372261,375423,359527,361201,14008,17000,13070,15000,13000,14000,0
+21053,40000,male,5,2,37,0,0,0,0,-1,0,36712,37403,18688,-620,32760,12500,1596,1006,0,17000,2000,780,0
+21054,150000,male,2,1,40,0,0,0,0,0,-2,74985,76745,19472,20650,0,0,3400,1600,1700,0,0,0,0
+21055,360000,male,3,2,40,-1,-1,-1,0,0,0,2569,316,4919,5559,5353,5401,316,4919,1000,110,1025,2684,0
+21056,200000,male,1,1,36,-1,-1,-1,0,0,0,4585,33282,16175,104872,22897,29339,33485,16254,100551,12077,20182,21104,0
+21057,260000,male,5,1,42,0,0,0,0,0,0,204017,182048,63074,262317,201344,191829,8000,7100,200140,6500,6000,6500,0
+21058,430000,male,3,2,38,-2,-2,-2,-2,-2,-2,37693,3390,5930,33736,23558,8118,3507,5960,39507,11838,8158,8509,0
+21059,200000,male,2,1,36,0,0,0,-2,-1,0,5440,7268,0,0,42362,43094,2000,0,0,87000,1566,1830,0
+21060,380000,male,1,1,40,0,0,2,0,0,0,95972,123558,114785,161444,163071,160076,30027,0,50005,20042,20000,20000,0
+21061,110000,male,2,2,37,0,0,0,0,0,0,112091,112380,86544,77131,60895,60936,4625,3112,2467,2182,2190,2182,0
+21062,200000,male,1,1,42,2,2,2,2,2,2,168289,172001,175281,177895,180078,184048,8000,7500,7000,6600,7000,7100,0
+21063,270000,male,1,2,34,1,2,0,0,2,0,20979,17228,20924,22448,15490,17343,0,4000,2000,0,2000,2000,0
+21064,120000,male,1,1,31,-1,-1,-1,-1,-1,-1,1216,416,416,416,416,416,416,416,416,416,416,566,0
+21065,420000,male,1,1,47,0,0,0,0,0,0,54799,53507,54678,55403,56260,57598,5000,5000,3000,3000,3000,3000,0
+21066,20000,male,3,2,34,0,0,2,0,0,-2,6569,6939,4679,2960,0,0,2449,0,1000,0,0,0,0
+21067,200000,male,2,2,40,1,2,2,0,0,0,193773,196323,181932,132127,132245,138104,7350,261,6206,5006,9406,6,1
+21068,80000,male,2,1,45,0,0,0,0,0,0,34905,35923,37339,38419,39316,35902,1600,2000,1703,1600,1400,10350,0
+21069,270000,male,2,2,45,1,-2,-1,-1,-1,-1,0,0,7304,3076,0,16191,0,7304,3076,0,16191,277,0
+21070,30000,male,2,1,45,3,2,2,2,0,0,12751,12256,15002,13914,11093,9508,0,2955,0,436,423,341,1
+21071,80000,male,3,1,45,0,0,0,0,0,0,55385,52801,50209,43323,40275,38690,2019,2031,2013,2016,2002,3000,0
+21072,30000,male,2,1,39,2,0,0,0,0,2,18557,19643,20721,21867,24291,23766,1700,1700,1800,3100,0,565,1
+21073,20000,male,1,1,36,0,0,0,0,0,0,18958,19427,19021,19449,19162,0,1500,2000,1200,413,0,0,1
+21074,20000,male,2,1,33,2,0,0,0,0,0,17999,19090,19472,18629,12683,0,1700,3243,1200,254,0,0,1
+21075,320000,male,2,1,35,0,0,0,0,0,0,274599,280021,286011,292636,298492,200098,11500,12000,12873,13020,8800,5650,1
+21076,120000,male,3,1,36,-2,-2,-2,-2,-2,-2,326,326,326,326,326,652,326,326,326,326,652,0,0
+21077,290000,male,2,1,38,1,2,0,0,0,0,296437,192441,194158,197590,187134,180887,25,10013,9526,6549,6373,6781,0
+21078,380000,male,2,1,39,-2,-2,-2,-2,-2,-2,3074,-18618,-9415,-9415,-9415,-9415,9203,0,0,0,0,8000,0
+21079,480000,male,1,1,49,0,0,0,0,0,0,376186,389822,401982,410694,407436,407809,20000,18000,15000,15000,14000,13000,0
+21080,350000,male,2,2,47,0,0,0,0,0,0,190211,191582,163154,299409,250584,249412,8239,8902,213103,9036,10022,9027,0
+21081,220000,male,1,2,36,-1,2,-1,-1,-1,-1,792,396,396,396,396,546,0,396,396,396,546,396,0
+21082,360000,male,1,1,44,-2,-2,-2,-2,-2,-2,188,1610,1088,7870,5988,342,1610,1088,7870,5988,342,7159,1
+21083,420000,male,2,1,39,-1,0,-1,-1,0,0,22219,22423,4889,14373,12881,3690,7573,4913,14415,6930,709,104259,0
+21084,160000,male,1,1,40,0,0,2,2,-1,2,4024,6484,3503,-473,3757,3286,3000,0,0,4700,0,3000,1
+21085,30000,male,1,2,47,2,2,0,0,0,2,26413,25690,26719,27774,28809,30399,0,1445,1500,1500,2200,0,0
+21086,170000,male,2,2,31,0,0,0,0,0,0,8024,9338,11673,12770,12971,13312,1610,2500,1600,711,700,700,0
+21087,710000,male,2,1,38,0,0,0,0,0,0,67061,64374,62858,69207,73333,121892,10045,10008,10019,10202,70001,10030,0
+21088,350000,male,2,2,34,-2,-2,-2,-2,-2,-2,2184,1445,2424,4582,5600,2927,1445,2424,4584,5610,2927,1298,0
+21089,230000,male,2,1,36,0,0,0,0,0,0,4761,5786,7676,9877,10181,12472,1110,2000,2500,1000,2472,1000,0
+21090,30000,male,2,3,40,2,0,0,0,0,2,2922,3869,4890,5975,6474,6225,1000,1090,1175,600,0,1000,0
+21091,360000,male,1,1,38,-1,-1,-1,-1,-1,-2,475,-25,4993,498,-2,-2,0,5018,505,0,0,553,0
+21092,500000,male,1,1,41,-1,-1,2,2,-1,2,390,780,390,0,3280,2500,780,0,0,3280,0,0,0
+21093,380000,male,1,1,34,0,0,0,0,0,0,124486,106065,97979,100599,81087,82793,3563,3385,4074,2592,2696,3569,0
+21094,240000,male,2,1,37,1,2,0,0,0,0,211808,208892,213637,216754,219276,223920,2000,9600,8500,6500,6500,7520,0
+21095,100000,male,1,2,41,0,0,0,0,0,0,31452,32453,33490,34926,35771,36366,1527,1564,2000,1426,1320,1333,1
+21096,200000,male,2,2,38,0,0,0,0,0,0,176579,180233,184262,178674,181318,179477,6589,7074,7870,7028,6768,5906,1
+21097,500000,male,1,2,35,-2,-2,-2,-2,-2,-2,5925,11175,21176,5086,9552,14389,11194,21193,5094,9563,14403,5233,0
+21098,220000,male,3,1,48,-2,-2,-1,0,0,0,0,0,2128,4071,5640,7078,0,2128,2000,2000,2000,1500,1
+21099,640000,male,1,2,33,-1,-1,-1,0,0,0,21189,4242,32110,62649,63218,53151,4258,32120,34000,5037,0,13855,0
+21100,340000,male,3,2,34,0,0,0,0,0,0,334628,328749,285399,248984,251047,255303,16040,14000,11000,9200,10000,9500,1
+21101,400000,male,1,2,48,0,0,0,0,0,0,112789,115910,120657,122338,124145,113477,5000,6624,5200,3826,3363,3398,0
+21102,200000,male,1,1,39,-2,-2,-2,-2,-2,-2,8852,3103,2005,15776,2696,6147,5585,2015,15854,2709,6178,16961,0
+21103,20000,male,2,1,41,0,0,0,0,0,0,9632,10676,13702,14713,15068,15425,1208,3234,1245,600,600,600,0
+21104,210000,male,1,1,35,-1,-1,-1,-1,-2,-1,205,0,775,0,0,635,0,775,0,0,635,0,0
+21105,280000,male,3,2,35,0,0,0,0,0,0,275659,265870,269140,272665,159017,88321,10932,12011,10807,4306,4023,5387,0
+21106,150000,male,2,2,36,0,0,0,0,0,0,149931,152915,149867,144731,147661,149949,5500,5513,5200,5200,5400,6000,0
+21107,50000,male,1,2,36,0,0,0,0,0,0,45010,45785,36131,29374,27059,27627,1919,1789,1442,967,1003,1030,0
+21108,60000,male,2,1,36,0,0,0,0,0,0,37129,37593,37841,38634,28811,28907,1602,1989,1782,1169,1196,1152,1
+21109,60000,male,3,1,36,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+21110,200000,male,2,1,45,0,0,0,0,0,0,197600,200378,162374,154234,143953,147834,10265,6061,7048,5016,10294,5136,0
+21111,30000,male,2,2,35,0,0,0,2,2,-2,21708,22583,25067,23237,0,0,1542,3026,0,0,0,0,1
+21112,130000,male,2,1,42,1,-2,-2,-2,-2,-2,-52,-52,-52,-52,-52,-52,0,0,0,0,0,1000,1
+21113,140000,male,2,1,39,0,0,0,0,0,0,136032,139118,134651,135350,129135,132035,5400,5000,6000,4700,5000,5400,0
+21114,280000,male,2,2,39,0,0,0,0,0,0,273651,279296,282851,251648,255697,261691,11128,11234,11002,10000,10000,10000,0
+21115,110000,male,3,2,44,0,0,0,0,0,0,102274,103275,105225,83722,78894,74659,3734,3653,2914,2627,2624,4138,0
+21116,130000,male,1,2,42,-1,-1,-1,-1,-1,-1,836,836,836,836,836,836,836,836,836,836,836,836,0
+21117,110000,male,2,1,48,0,0,0,0,0,0,92806,91217,89757,136859,60276,48652,5000,4087,64142,2038,1763,2500,0
+21118,320000,male,1,1,38,0,0,0,0,0,0,18924,21589,23926,31161,32234,35688,3000,3000,8000,1900,4000,1600,0
+21119,490000,male,1,2,41,0,0,0,0,0,0,345075,354273,57454,59860,29377,30478,10000,4000,3500,978,1500,3500,0
+21120,360000,male,1,2,45,-1,-1,-1,-1,-1,-2,287,29646,9251,18860,-40,-40,29794,9297,18954,0,0,0,0
+21121,280000,male,1,1,37,2,-1,-1,-1,-2,-1,1405,1549,1504,0,0,2949,1549,1504,0,0,2949,2838,0
+21122,290000,male,1,1,36,2,0,0,0,0,0,170953,170747,171002,170795,170795,171003,546,1002,795,795,1003,998,0
+21123,180000,male,2,2,39,0,0,0,0,0,0,119466,120491,124553,127096,128992,131660,4500,6000,6100,5500,4900,5500,0
+21124,150000,male,2,2,36,0,0,0,0,0,-1,32263,26283,17897,10945,5174,1910,3000,1305,1637,350,1910,0,0
+21125,260000,male,2,1,44,-1,-1,-1,-1,-1,-2,11506,973,1183,2270,0,0,975,1186,2287,0,0,2580,0
+21126,90000,male,3,2,34,0,0,0,0,0,0,74012,76777,78594,39209,40057,40744,4600,4300,2700,1500,1400,2000,0
+21127,20000,male,3,2,35,0,0,0,0,0,0,16958,17028,15421,13895,11592,11433,1699,1600,2000,1000,1500,1000,0
+21128,180000,male,1,2,34,-1,-1,-1,-1,-1,-1,4400,2990,3762,5231,2092,3395,3018,3772,5254,2098,3403,215,0
+21129,230000,male,2,2,36,-1,-1,-1,-1,0,0,182,1407,0,2458,2458,2458,1407,0,2458,0,0,0,0
+21130,260000,male,1,1,38,3,2,2,-2,-2,-2,2500,2500,0,0,0,0,0,0,0,0,0,0,1
+21131,150000,male,1,2,31,3,2,2,0,0,-1,125086,121521,67164,54078,9778,389,4967,65,1346,5051,8601,4435,1
+21132,480000,male,1,1,44,-1,-1,-1,-1,-1,-1,634,144,213,2133,3086,0,144,213,2133,3086,0,930,0
+21133,110000,male,2,1,45,0,0,2,0,0,0,112987,110899,111642,109584,50281,49373,7000,4000,2975,22000,1726,6000,1
+21134,150000,male,1,1,49,0,0,0,2,0,0,20604,21614,24535,23778,24255,24630,1359,3280,0,1000,750,681,0
+21135,170000,male,1,2,42,0,0,0,0,0,0,166708,85607,88228,91719,97759,99905,4000,4000,5000,7500,4000,5000,0
+21136,50000,male,2,2,44,0,0,0,0,0,0,49699,49685,28637,38137,27128,29992,2300,1487,21704,3000,15000,18300,0
+21137,400000,male,5,2,40,0,0,0,0,0,0,178069,181613,186905,188959,183659,96385,6496,8214,6621,3400,3541,6000,0
+21138,430000,male,3,2,47,1,-1,-1,-1,-1,-1,-18,6390,8833,9906,14239,9562,6408,8840,9954,14285,9584,26023,0
+21139,300000,male,1,1,40,-1,-1,-2,-2,-2,-2,4950,-337,-337,-337,-337,-337,0,0,0,0,0,2000,0
+21140,40000,male,1,1,33,0,0,2,2,2,3,21107,23837,23173,24476,26775,26069,3400,0,2000,3000,0,0,0
+21141,180000,male,2,1,45,0,0,0,0,0,0,130950,119109,119166,121661,122244,119536,6000,6000,6000,5000,4200,3862,0
+21142,300000,male,3,2,31,0,0,0,0,0,0,80928,82690,84462,86263,87238,89176,4000,4000,4100,3300,3500,3500,0
+21143,20000,male,2,3,49,0,0,0,0,0,0,16336,17354,18376,18253,18458,19197,1294,2316,1256,1000,1000,800,1
+21144,230000,male,3,2,32,-1,-1,-1,-1,-1,0,326,326,326,326,677,351,326,326,326,677,0,514,0
+21145,180000,male,1,1,46,0,0,0,0,0,0,178517,130975,135592,107315,56274,57608,5000,7000,5200,2000,2060,2000,0
+21146,50000,male,2,2,36,1,2,2,2,2,2,19649,20526,19909,22096,22438,21941,1500,0,2531,1000,0,2000,1
+21147,160000,male,1,1,37,0,0,0,0,0,0,16750,9715,5140,5379,3183,5120,1100,1500,1500,1000,2000,4000,0
+21148,100000,male,2,2,43,-1,0,0,0,0,0,6768,13054,10489,16146,25053,27671,10015,3018,10002,10007,5018,3438,0
+21149,140000,male,2,1,35,0,0,0,0,0,0,135227,134215,102002,101046,98880,96884,5304,5033,4000,5017,5041,4003,0
+21150,70000,male,3,1,30,0,0,0,2,0,0,67730,67021,67328,60962,61146,56066,3000,6006,0,1900,2000,2000,0
+21151,400000,male,1,2,32,0,0,0,0,0,0,55773,55917,51389,48272,49478,51242,3028,3023,3000,3000,3000,38662,0
+21152,330000,male,1,1,35,-1,-1,-1,-1,-1,-1,3888,14704,2533,10664,1560,34847,14782,2544,10715,1566,34865,7273,0
+21153,130000,male,2,1,39,0,0,0,0,0,0,103566,105797,102729,104761,87660,92123,3969,3823,3836,3345,9116,0,1
+21154,410000,male,1,1,46,-2,-2,-2,-2,-2,-2,8756,1237,11912,4922,766,640,1237,11912,4922,766,640,6171,0
+21155,350000,male,2,2,36,0,0,0,0,0,0,15061,23719,36582,40452,15203,20596,10000,16000,6000,314,10000,7000,0
+21156,360000,male,1,2,35,0,0,0,0,0,0,41327,47751,48521,79788,63835,44164,20059,13043,40528,10157,12068,8060,0
+21157,90000,male,2,1,41,-2,-2,-2,-2,-2,-2,188,188,188,1708,1783,3933,188,188,1708,1783,3933,10754,0
+21158,100000,male,2,1,46,-1,-1,0,-1,-1,-1,390,3505,5695,3480,2949,477,3505,2695,3480,2949,477,1753,0
+21159,200000,male,2,2,36,0,0,0,0,-2,-2,193097,199873,205150,0,0,0,10000,10000,0,0,0,0,0
+21160,20000,male,2,1,38,0,0,0,0,0,2,5705,6715,7736,8745,9394,9101,1266,1287,1296,945,0,481,1
+21161,230000,male,2,1,35,0,0,0,0,0,0,170413,166858,170323,172136,175550,179291,5976,6158,6247,6276,6562,7769,0
+21162,20000,male,2,1,31,0,0,0,0,0,0,18764,19750,19848,20570,19980,19990,1610,1488,1600,400,400,400,0
+21163,130000,male,2,2,31,3,2,2,3,3,2,300,300,300,300,300,150,0,0,0,0,0,1000,1
+21164,150000,male,3,2,32,0,0,0,0,0,0,150201,125858,105266,51456,35288,29818,5039,4030,1500,706,1000,0,0
+21165,160000,male,1,2,31,-2,-2,-1,0,0,0,2930,459,2613,22315,26911,35239,466,4171,22137,20000,12198,0,0
+21166,20000,male,2,2,30,3,2,3,3,5,4,15556,16987,18406,20795,20175,21265,2000,2000,3000,0,2000,0,0
+21167,130000,male,1,2,48,0,0,0,0,0,0,102771,104003,102744,31384,30057,29206,4843,2608,2005,1180,1100,1234,0
+21168,490000,male,1,1,43,2,-1,-1,-2,-1,-1,3956,3081,0,0,2236,3052,3081,0,0,2236,3052,3159,1
+21169,360000,male,1,1,45,-1,-1,-1,-1,0,-1,2369,1367,8570,5625,3684,2804,1367,8570,5625,0,2804,2473,0
+21170,150000,male,2,1,40,0,0,0,0,0,0,172935,46462,42407,28265,25402,21514,35749,3016,1201,601,2002,1020,0
+21171,70000,male,1,1,44,1,2,2,2,0,0,14960,11080,12695,11482,8896,10074,0,3116,0,1000,2000,0,1
+21172,360000,male,2,3,32,-2,-2,-2,-2,-2,-2,10591,-326,56337,10959,7056,0,326,56663,11013,7091,0,0,0
+21173,500000,male,1,1,37,1,-1,-1,-1,0,0,271115,15074,16205,21770,60827,18524,15873,16205,21976,50000,7000,21769,0
+21174,250000,male,2,2,38,-1,-1,-1,-1,-1,-1,2395,29636,23850,8220,0,8420,29658,23938,8220,0,8420,0,0
+21175,50000,male,2,2,38,0,0,0,0,0,0,46005,46234,17266,18253,18618,37495,1266,1298,1285,650,825,1582,0
+21176,250000,male,2,1,45,0,0,0,0,0,0,142001,135291,138084,100574,40066,38765,5084,6399,5000,2000,1615,2000,0
+21177,20000,male,1,2,40,2,2,2,0,0,2,15563,16995,16433,17443,19254,18804,2000,0,1289,2100,0,2000,0
+21178,360000,male,3,2,33,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+21179,80000,male,2,2,41,0,0,0,0,0,0,80920,80956,73875,75949,44167,45362,3500,4000,3900,2000,2000,1500,0
+21180,140000,male,1,2,44,0,0,0,0,2,0,72763,75064,76892,79522,79623,80895,3905,4025,4924,2381,2926,3108,0
+21181,140000,male,2,2,36,0,0,0,0,0,0,123474,125565,120847,121040,107310,105958,4409,4505,4100,3800,4000,3900,1
+21182,50000,male,2,2,37,2,2,2,2,0,0,72034,75711,75322,71640,71114,67519,7300,3200,0,3000,5400,5000,1
+21183,160000,male,2,2,34,0,0,0,0,0,0,144953,112501,115108,104295,61950,0,6000,5950,5128,3500,0,0,0
+21184,50000,male,2,2,49,0,0,0,0,0,0,41638,28145,24569,26244,11540,13348,2000,2000,2500,1000,2000,1014,0
+21185,200000,male,2,1,41,2,2,2,2,2,2,1075,11201,1383,976,1126,563,11000,980,0,563,0,413,0
+21186,80000,male,1,2,38,1,2,2,2,2,2,67046,68439,69258,70526,71774,70503,3100,2500,3000,3000,0,2800,1
+21187,140000,male,2,2,33,-2,-2,-2,-2,-2,-2,0,935,1490,0,3938,0,935,1490,0,3938,1160,0,0
+21188,90000,male,2,2,34,0,0,2,0,-1,-1,77846,50281,14033,12628,20172,73512,5700,0,2000,20172,73512,3000,0
+21189,40000,male,2,1,47,0,0,2,2,3,2,34664,37611,36726,40985,40085,39354,3524,0,4898,0,0,1800,0
+21190,10000,male,2,1,38,1,2,2,0,0,0,4437,5355,6113,8012,8873,9229,1150,1000,2000,1000,500,500,0
+21191,500000,male,2,1,33,0,0,0,0,0,-1,26597,16573,19080,13860,15904,134584,3357,3010,2000,2044,131438,4504,0
+21192,410000,male,1,1,41,0,0,0,0,0,0,396975,409780,383225,396283,274224,321787,30000,20000,20000,50000,30000,43312,0
+21193,20000,male,2,2,49,0,0,0,0,-1,-1,19111,18936,18588,19260,1500,0,1286,1328,1000,1500,0,0,0
+21194,200000,male,1,1,37,1,-2,-1,-1,0,0,0,0,250,4188,1399,1196,0,250,4188,0,0,0,0
+21195,50000,male,1,2,32,0,0,0,0,0,0,49571,48765,49453,49827,48930,48748,1773,2110,2324,2000,1920,2000,0
+21196,150000,male,1,1,44,-1,-1,-1,-1,-1,0,4825,3003,6164,3370,7279,4445,3018,6201,3386,7299,1166,5,0
+21197,180000,male,1,1,49,-1,-1,2,2,-2,-2,1092,1733,1405,-434,-434,-434,1733,0,0,0,0,0,1
+21198,80000,male,3,2,33,1,-1,-1,-1,-2,-2,0,3495,500,0,0,0,3495,765,0,0,0,0,0
+21199,300000,male,2,2,34,0,0,0,0,0,0,50281,51441,54107,55111,56688,58272,2000,3500,3000,2500,2500,2500,0
+21200,150000,male,1,2,36,2,2,2,-2,-2,-2,167094,86193,-25443,-46627,-46627,-46627,5068,9,0,0,0,0,1
+21201,220000,male,3,1,48,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+21202,120000,male,2,2,35,0,0,0,0,0,0,90972,93452,95943,99340,101783,104929,4000,4000,5000,5000,5000,3400,0
+21203,360000,male,1,2,43,-1,-1,-1,-1,-1,-1,59,4465,300,966,1730,0,4465,300,966,1730,0,969,0
+21204,550000,male,5,1,37,0,0,0,0,0,0,452600,364447,318029,91903,91010,70045,16025,14407,3512,3506,2512,125020,1
+21205,260000,male,1,2,39,3,2,0,0,0,0,235799,124838,116164,106976,96938,98502,13,4276,3716,3600,3604,105642,0
+21206,80000,male,3,1,45,0,0,2,0,0,0,8133,10978,10511,11529,12332,13128,3000,0,1200,1000,1000,1000,1
+21207,160000,male,1,1,48,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+21208,190000,male,2,1,48,0,-1,0,0,0,0,6450,189102,189018,175871,157218,151618,189717,7779,6092,5018,6168,1218,0
+21209,250000,male,1,1,44,-1,-1,-1,2,-1,0,3893,54673,8402,2765,6037,3561,54946,8433,13,6049,17,4980,0
+21210,30000,male,3,2,37,0,0,0,0,0,0,22629,11332,12471,7985,13619,17997,5002,5003,7983,10000,10103,10106,0
+21211,100000,male,2,2,37,2,2,2,2,2,2,24927,27689,26960,29504,30020,29995,3185,0,3000,1300,600,2000,1
+21212,350000,male,1,1,35,0,0,0,2,-1,2,15193,19734,5338,3042,2418,2233,5197,3000,0,2500,0,5000,0
+21213,120000,male,3,1,45,0,0,-1,-1,0,0,24591,16160,225,3550,3550,3550,3000,225,3550,0,0,0,0
+21214,350000,male,1,1,43,-2,-2,-2,-2,-2,-1,2878,0,850,7980,22703,2093,0,850,3990,45406,2093,2090,0
+21215,340000,male,2,1,49,0,-1,-1,0,0,0,9983,43418,388126,358617,333690,302528,43418,388126,12500,11000,11000,11180,0
+21216,360000,male,1,2,39,-1,-1,-1,-1,-2,-2,2758,1448,3740,0,0,0,1448,3740,0,0,0,3942,0
+21217,410000,male,2,1,47,-1,-1,-1,-1,-1,-1,40390,9760,9712,11756,4128,12424,9760,9712,11771,4128,12424,8702,0
+21218,170000,male,2,1,42,0,0,0,0,0,0,162880,164824,132485,120267,117453,115778,8000,6107,6000,4500,4500,4500,0
+21219,110000,male,2,2,38,0,0,0,0,0,0,95925,98331,100751,102496,80116,69391,4000,4000,3500,2500,2290,2060,0
+21220,30000,male,3,2,51,0,0,0,0,0,2,24070,25358,26447,26946,28957,29408,2000,1800,1300,2400,1000,1000,0
+21221,200000,male,2,1,54,0,0,0,0,-2,-2,41190,40921,17702,-2540,-6491,-7741,2138,5101,19,6,11,1,0
+21222,250000,male,3,1,50,0,0,0,0,0,2,254893,258013,263493,268861,274444,290235,9316,9637,9765,10021,20300,10023,0
+21223,240000,male,1,1,50,-1,-1,-1,-2,-1,-1,35117,17330,58422,54755,43605,26293,11051,116904,54762,43705,26293,13011,0
+21224,210000,male,1,1,50,1,-2,-2,-2,-2,-1,0,0,0,0,0,484,0,0,0,0,484,0,0
+21225,30000,male,3,1,52,0,0,0,0,0,0,28541,28889,30050,29797,18464,12235,1502,2002,1025,1230,1042,0,0
+21226,30000,male,3,1,51,0,0,0,0,0,-2,13386,13218,14453,15525,0,0,1218,1453,1525,0,0,0,0
+21227,40000,male,3,1,56,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+21228,50000,male,3,3,55,0,0,0,0,0,0,23498,22625,20197,19528,19520,17420,1336,1348,1257,639,622,638,0
+21229,50000,male,2,1,50,0,0,0,0,0,0,47053,11165,12186,13280,14055,14428,1200,1206,1300,1000,600,530,1
+21230,20000,male,2,1,50,0,0,2,2,2,2,14123,16758,17494,16916,18135,17703,3200,1300,0,1500,0,1200,0
+21231,20000,male,3,1,52,2,2,2,2,-2,-2,8145,10474,10000,0,0,0,2474,0,0,0,0,0,1
+21232,240000,male,2,1,51,0,0,0,0,0,0,98588,100545,102651,104749,106832,109062,3592,3719,3798,3821,3949,3976,1
+21233,110000,male,3,2,52,0,0,0,2,0,0,56327,57106,58489,57800,57312,57188,2700,3300,2044,2100,2000,2266,0
+21234,90000,male,2,2,52,0,0,0,0,0,0,86826,87186,87526,88924,88735,87521,4000,3505,3962,2909,3107,3127,0
+21235,110000,male,1,1,52,0,0,0,0,0,0,82390,84024,84485,81057,43113,40805,4000,4015,4012,3000,2164,2000,0
+21236,500000,male,1,1,50,0,0,0,0,0,0,350340,359289,366475,248288,253283,258707,12884,13000,7029,7100,7500,7399,0
+21237,20000,male,2,1,54,0,0,0,0,0,0,18398,19014,17836,19410,18512,14483,2000,1500,2900,1500,1000,0,0
+21238,70000,male,3,1,50,2,2,2,2,2,2,41087,42109,43135,43924,44700,45634,2000,2000,1800,1800,1800,1700,1
+21239,50000,male,3,2,51,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+21240,120000,male,3,1,53,0,0,2,2,2,2,88702,101498,104480,105280,106149,108381,14357,5500,4000,4100,4100,4200,1
+21241,50000,male,2,1,60,0,0,0,0,0,0,46344,41162,25245,25955,26470,27025,1389,1722,1432,947,981,985,0
+21242,20000,male,2,1,50,0,0,0,0,0,2,5519,6620,7556,8570,10020,9715,1200,1200,1300,1600,0,600,0
+21243,30000,male,2,2,51,0,0,0,0,0,0,29628,29253,28342,28282,30118,24584,1460,1560,2000,3077,804,761,0
+21244,290000,male,3,1,61,0,0,0,0,0,0,281967,288456,296084,218399,200461,204637,10492,12447,8973,6761,6983,5980,0
+21245,80000,male,2,1,61,0,0,0,0,0,0,81647,65470,73855,41003,29690,27596,5500,10000,7003,4700,3600,3500,1
+21246,110000,male,2,1,50,0,0,0,0,0,0,110406,109550,109921,67212,49120,49772,4600,3348,2444,3869,1808,1751,0
+21247,190000,male,3,2,54,0,0,0,0,0,0,142032,40883,42835,31982,36329,26964,5883,2835,5982,33329,1964,11849,0
+21248,50000,male,1,2,48,0,0,0,-1,0,0,56672,53540,53321,49263,29063,26644,2500,1066,50045,992,1000,1000,0
+21249,50000,male,3,1,51,0,0,0,0,2,2,38302,39299,40703,44350,43517,46821,1634,2038,4685,0,3982,0,0
+21250,20000,male,3,1,52,2,0,0,0,0,0,16290,17301,19012,19959,19962,19988,1289,2000,1300,658,680,1000,0
+21251,110000,male,3,1,57,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,390,0
+21252,350000,male,2,1,50,0,0,0,0,0,0,83134,84087,86492,91898,189555,192627,3969,4131,7261,103801,6007,6008,0
+21253,60000,male,3,1,52,0,0,0,0,0,0,57470,58713,60251,57251,27896,28499,2200,2500,31000,981,1035,1059,1
+21254,20000,male,3,2,59,2,2,2,2,0,0,7451,5119,5546,6302,7193,8075,2000,1500,1000,1000,1000,1000,0
+21255,430000,male,1,1,51,0,-1,-1,-1,0,-1,4704,9714,13247,27555,17389,2919,9723,13298,27570,0,2919,96117,0
+21256,260000,male,2,1,51,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+21257,140000,male,2,1,52,1,2,0,0,2,0,31511,30705,31809,34374,33522,34481,0,1600,3100,0,1500,1500,1
+21258,360000,male,1,1,50,-1,-1,-2,-1,-1,-2,1858,0,0,3000,0,0,0,0,3000,0,0,1033,0
+21259,280000,male,2,1,50,-2,-2,-2,-2,-2,-2,5622,4554,4373,7774,3355,16441,4573,4396,8055,3417,16557,41,0
+21260,10000,male,2,1,50,0,0,0,0,0,-1,3664,4526,6880,8830,5550,6195,1300,3000,2509,0,6195,0,0
+21261,280000,male,2,1,49,0,0,0,0,0,0,94916,96838,98878,100899,102900,105057,3500,3600,3666,3683,3815,3900,0
+21262,50000,male,1,1,63,-1,-1,2,-1,-1,-1,264,528,264,264,264,264,528,0,264,264,264,264,0
+21263,50000,male,2,2,56,0,0,0,-1,-1,0,37624,44915,46665,390,430,390,8000,26390,390,430,350,3581,0
+21264,280000,male,2,1,53,0,0,0,0,0,-1,278127,42518,31900,21342,11500,2000,1700,1500,1400,2000,2000,2900,1
+21265,20000,male,2,1,50,0,0,0,0,0,-1,18865,36059,18757,15521,13086,7688,1500,2580,1279,654,7688,0,0
+21266,80000,male,2,1,51,2,-1,2,-1,0,0,1041,780,390,992,602,-178,1000,0,992,0,0,0,1
+21267,50000,male,2,1,51,0,0,0,0,0,0,46094,47157,48669,42360,19840,19840,1831,2343,1611,200,0,0,0
+21268,360000,male,1,1,51,0,0,0,0,0,0,346225,353200,337593,341528,350949,355869,14562,13806,12303,15005,13729,7700,1
+21269,260000,male,1,1,50,-2,-2,-2,-2,-2,-2,390,7516,553,1080,1780,0,7516,553,1080,1780,0,0,0
+21270,20000,male,3,1,60,1,2,0,0,0,0,17495,16917,17922,18201,18566,19284,0,1287,2000,648,1000,1000,0
+21271,110000,male,2,1,51,0,0,0,0,0,0,45012,45964,46922,48140,49339,50542,2000,2000,2000,2000,2000,3000,0
+21272,20000,male,2,2,52,0,0,0,0,0,0,19626,20002,19916,18970,19790,18990,1311,3005,2000,2000,5000,0,1
+21273,20000,male,5,2,55,0,0,0,2,0,0,69257,70055,18997,10404,11170,380,2400,1833,1100,2300,0,400,1
+21274,70000,male,1,1,60,0,0,0,0,0,0,69956,70688,68912,70652,50686,47093,2500,3300,3700,2100,2000,2300,0
+21275,30000,male,3,1,52,1,2,2,-1,0,0,3997,2522,0,1919,2658,2497,0,0,1919,2000,1100,201,1
+21276,230000,male,3,1,61,2,2,-2,-2,-2,-2,2500,0,0,0,0,0,0,0,0,0,0,0,1
+21277,160000,male,3,1,57,-1,-1,-2,-2,-1,-1,759,-660,-660,-660,340,596,209,0,0,1000,596,1436,1
+21278,30000,male,3,1,50,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,2109,0
+21279,50000,male,3,3,52,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+21280,210000,male,3,1,47,-1,-1,-2,-2,-2,-2,1772,-55,-55,-55,-55,-55,0,0,0,0,0,0,0
+21281,50000,male,3,2,60,0,0,0,0,0,0,46362,47393,48631,49143,27709,27549,1800,2000,1500,1000,1200,1100,0
+21282,150000,male,1,1,55,3,3,3,3,2,2,97719,99733,97297,98496,99683,101430,4500,0,3700,3700,3500,3000,1
+21283,660000,male,1,2,55,-1,0,0,0,0,-2,284334,288120,325889,342408,19903,20843,6486,38507,20000,2000,1000,345,0
+21284,100000,male,2,1,47,1,2,0,0,0,0,99823,96932,96924,96122,97432,95062,0,3579,3472,3287,3590,10179,0
+21285,700000,male,2,1,50,0,0,0,0,0,0,280809,273492,224238,174189,121717,124040,10000,8500,7093,4500,4100,4100,0
+21286,300000,male,1,1,50,2,2,2,2,2,2,245193,250672,256178,260434,264114,269733,11000,11000,10000,9500,10000,1300,1
+21287,320000,male,1,1,50,-2,-2,-2,-2,-2,-2,18831,1809,1294,2310,50720,51736,1809,2588,2310,50720,51736,0,0
+21288,250000,male,1,1,50,1,-2,-1,-1,-1,-1,0,0,191,2160,0,900,0,191,2160,0,900,2000,0
+21289,150000,male,1,2,50,-1,-1,-1,-1,-1,2,829,18311,3023,2914,3529,2989,18400,3500,3025,3600,0,1600,0
+21290,200000,male,1,2,50,1,-1,0,-1,-1,-1,-6676,5953,2870,390,1210,2551,16374,2392,500,1210,2551,0,1
+21291,50000,male,3,2,52,0,0,0,0,-2,-2,50717,36507,14890,0,0,0,1357,1000,0,0,0,0,1
+21292,320000,male,1,1,52,0,0,0,0,0,0,293481,249201,232645,212184,204791,125974,10104,7216,10050,6313,4075,4033,0
+21293,20000,male,3,1,51,0,0,0,0,0,0,14962,17580,19748,19290,21000,0,2890,2458,1000,210,0,0,0
+21294,170000,male,2,1,64,-1,-1,-1,-1,0,-1,1922,1788,1,2739,1158,685,1788,9,3897,0,685,0,0
+21295,50000,male,2,1,52,1,2,2,2,0,0,50757,78196,43733,85652,29775,30243,0,5607,16,1167,1051,1165,1
+21296,130000,male,2,1,52,-1,2,-1,-1,0,0,6954,4110,1030,357,357,370,12,1034,727,0,13,1330,0
+21297,150000,male,1,1,59,-2,-2,-2,-2,-2,-2,5066,2616,3766,3289,8356,10916,2616,4097,3371,8923,13919,8227,0
+21298,500000,male,1,1,53,-2,-2,-2,-2,-2,-2,13331,13307,15734,-101,27145,1479,13941,16392,470,27916,1994,12670,0
+21299,410000,male,2,1,54,-1,-1,-1,2,-1,-1,1413,1701,6566,5206,986,986,1710,7064,430,990,990,990,0
+21300,50000,male,2,1,53,0,0,0,0,0,0,70820,50813,51131,49099,19739,19905,1998,2374,1130,523,537,633,0
+21301,200000,male,6,1,66,0,0,0,0,0,0,143994,102211,54762,55858,56338,57360,4767,2573,2604,1997,2228,2094,0
+21302,230000,male,3,1,55,0,0,0,0,0,0,208273,214423,214585,170063,176893,183699,10012,10000,10000,10000,10000,10000,0
+21303,20000,male,3,2,53,0,0,0,0,0,0,19165,16851,14431,9150,10100,0,3000,3000,5000,6000,0,0,1
+21304,300000,male,3,1,53,-2,-2,-2,-2,-2,-2,-3,-3,-3,580,992,1205,0,0,583,992,1205,96,0
+21305,20000,male,3,3,57,0,0,2,0,0,0,19071,20442,20141,19888,20318,20364,2000,1200,1300,1000,1000,1000,0
+21306,380000,male,1,1,55,0,0,0,0,0,0,59881,61070,62350,63623,64846,66204,2185,2263,2310,2282,2363,2380,0
+21307,150000,male,2,1,57,2,2,2,2,2,2,14496,15546,16303,15744,16582,17166,1600,1300,0,1100,1000,1000,1
+21308,20000,male,2,1,53,1,2,2,-1,-1,-1,5397,6153,5914,13385,5490,0,1000,99,13401,5490,0,0,0
+21309,130000,male,3,2,56,0,0,0,0,0,0,33928,35356,36782,31309,32480,33953,2000,2000,2000,2000,2000,3000,0
+21310,350000,male,1,1,57,0,0,0,0,0,0,262719,269742,263086,269832,271763,276224,11500,18000,11000,11500,14000,12000,0
+21311,440000,male,1,1,64,0,0,0,0,0,0,427038,431540,413605,355274,361170,338732,20000,18000,18003,15000,13000,17000,0
+21312,170000,male,2,1,54,-1,-1,-1,-2,-2,-1,186,116,0,0,0,275,116,0,0,0,275,0,0
+21313,70000,male,1,1,67,1,-1,-1,2,2,2,275,400,2,2,2,2,10400,10002,0,0,0,0,0
+21314,270000,male,1,1,58,-2,-2,-2,-1,-1,-2,9211,8913,3255,9052,13615,14743,9012,3286,9097,13683,14774,14512,0
+21315,500000,male,2,1,59,0,0,0,0,0,0,197792,201418,205895,212010,214287,218266,7200,8000,10010,7500,7266,6218,0
+21316,200000,male,3,1,60,0,0,0,2,2,2,135775,136946,142735,149574,151108,142190,4916,8011,10800,5411,0,4959,0
+21317,290000,male,3,1,55,0,0,0,0,0,0,21372,25278,29127,32901,36634,40460,5000,5000,5000,5000,5000,5000,0
+21318,50000,male,1,2,54,0,0,0,0,0,0,48092,35513,35230,32888,19624,20112,2500,2500,3000,2000,2000,2500,0
+21319,20000,male,3,1,57,1,2,2,-2,-2,-1,1472,211,-1050,-1440,-1830,780,0,0,0,0,3000,0,1
+21320,80000,male,3,1,56,0,0,0,0,0,0,49897,50892,52472,53674,7886,16432,1822,2401,2581,1238,1816,3746,0
+21321,70000,male,2,2,55,0,0,0,0,0,0,31081,23839,24717,19754,22032,25070,1474,1352,3722,2500,3292,663,0
+21322,50000,male,3,1,53,0,0,0,0,0,0,48684,49466,50544,25381,9652,9464,1974,2442,1669,330,1342,330,0
+21323,160000,male,2,1,55,0,0,0,0,0,0,155389,152162,154715,155026,79051,81089,6911,6500,4270,2518,2994,0,0
+21324,70000,male,1,3,57,0,0,0,0,0,0,70051,69398,70352,69936,68118,65942,3567,2667,2321,2391,2316,2466,0
+21325,230000,male,1,2,59,1,-2,-2,-2,-1,-1,0,0,0,0,1715,0,0,0,0,1715,0,0,0
+21326,180000,male,2,1,70,0,0,0,0,0,0,12216,13724,15495,16232,16958,17685,1724,2000,1300,1000,1000,792,0
+21327,20000,male,2,2,56,5,4,3,2,2,-2,19977,19375,18405,17680,18000,19000,0,0,0,1500,1000,1000,0
+21328,350000,male,1,1,70,0,0,0,0,0,0,106813,100895,70244,64839,57583,45554,4000,3371,2089,3008,1300,1500,0
+21329,70000,male,2,1,54,-1,0,0,0,0,0,20706,21410,22437,23448,23914,24415,1351,1378,1389,855,885,1132,0
+21330,20000,male,2,2,54,0,0,0,0,0,0,37720,12266,8999,8810,10167,11710,1200,1200,1600,1500,1700,1000,0
+21331,180000,male,2,2,56,0,0,0,0,0,0,89560,90940,92868,94243,94888,95819,3460,4000,3501,2690,3000,2603,0
+21332,320000,male,3,1,56,0,0,0,0,0,0,274210,262737,199761,187759,68920,62702,9441,7821,7361,2227,2046,1892,0
+21333,50000,male,2,1,53,2,0,0,2,0,0,17946,18946,21904,21243,20225,19850,1306,3264,0,846,856,804,0
+21334,50000,male,2,1,56,0,0,0,0,0,0,48895,49455,49245,48657,20050,17376,1775,2070,1232,625,585,560,0
+21335,180000,male,2,1,55,-1,-1,-1,-1,-1,0,6854,560,10600,0,9510,9510,560,10600,0,9510,0,4600,1
+21336,130000,male,2,1,55,-1,2,2,-1,-1,2,780,780,390,390,1080,540,390,0,390,1080,0,390,0
+21337,20000,male,3,2,57,-1,-1,-2,-1,-1,-1,170,-220,-610,18990,390,930,0,0,19990,390,930,0,0
+21338,500000,male,2,1,54,0,0,0,0,0,0,108075,106532,102315,90435,91924,81378,5014,4500,4000,4052,3007,4013,0
+21339,50000,male,2,1,58,-1,-1,-1,2,2,-2,382,-286,954,1154,-572,-962,0,1908,764,0,0,0,0
+21340,760000,male,3,1,54,0,0,0,0,0,0,447670,455970,462497,469931,474421,480598,20011,19500,19019,18003,20000,22000,0
+21341,20000,male,2,1,55,3,2,2,2,0,0,13139,12636,15212,14675,14835,15047,0,3100,0,700,600,2000,1
+21342,200000,male,1,1,54,-1,-1,-1,-1,-1,-1,22413,890,1649,2121,0,51110,890,1649,2121,0,51110,1053,0
+21343,500000,male,2,1,59,-2,-2,-2,-2,-2,-2,-3182,-3885,1474,555,1096,1349,0,5359,555,1096,1349,2358,0
+21344,70000,male,1,1,54,-1,-1,-1,-1,0,0,1261,1261,390,780,390,0,1261,390,780,0,0,780,0
+21345,50000,male,2,1,54,2,2,2,2,2,2,48556,49240,48647,36411,32087,22909,1804,2045,1314,1268,0,2436,1
+21346,680000,male,2,2,64,0,0,0,0,0,0,568532,577681,577015,565669,524315,476846,22000,23000,21300,20000,17500,17000,0
+21347,290000,male,2,1,53,-1,0,0,0,-1,-1,4975,3688,3164,2277,1497,1887,1027,1000,1000,1497,1887,2277,0
+21348,450000,male,1,1,53,-1,-1,-1,-1,-1,-1,17530,3873,3119,8970,1323,11990,3885,3128,9008,1323,12008,214,0
+21349,370000,male,1,1,68,0,0,0,0,0,0,8207,11054,15840,20542,25255,30034,3000,5000,5000,5000,5000,5000,0
+21350,80000,male,1,1,53,0,-1,0,0,0,2,9527,42908,42108,30610,32396,31743,42908,2400,1900,2600,0,2700,0
+21351,40000,male,1,1,57,0,0,0,0,0,2,87313,88918,92387,94078,101340,20650,2729,3692,2846,7540,0,0,0
+21352,60000,male,1,1,54,1,2,0,0,0,0,60500,58926,58625,58822,56661,40700,0,2500,2500,3000,4500,3000,0
+21353,300000,male,1,1,58,-1,-1,-1,-2,-1,0,13620,5779,-1921,-1921,1912,1921,5823,0,0,3833,9,0,0
+21354,430000,male,1,1,69,0,-1,-1,-1,-1,0,3658,1962,6591,854,44275,32731,1962,6591,1026,50000,0,3000,0
+21355,190000,male,3,1,67,2,2,2,2,0,0,186797,191210,195681,190545,191478,187875,9000,9000,0,7033,7348,10000,0
+21356,200000,male,2,1,65,-1,-1,-1,-1,-1,-1,1269,3784,5755,2255,8014,3635,3789,5860,2282,8042,3640,4850,0
+21357,150000,male,1,1,54,1,2,2,2,2,2,23959,23276,25294,26780,27143,27563,0,2400,2201,1100,1000,0,1
+21358,200000,male,1,1,58,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+21359,50000,male,1,1,58,0,0,0,0,0,0,55262,53057,50447,34608,22658,18503,2000,1703,1406,721,645,658,0
+21360,300000,male,1,1,55,-2,-2,-2,-1,-1,-1,14202,0,0,11940,17693,2402,0,0,11940,17693,2402,0,0
+21361,480000,male,2,1,53,1,-1,-1,-1,-1,-1,-11,11349,13461,9327,1368,1538,11360,13469,9327,1368,1538,15605,0
+21362,290000,male,3,1,53,0,0,0,0,0,0,271508,261713,267792,273208,277225,284010,11000,11800,11500,10000,11000,9000,0
+21363,360000,male,1,1,54,1,-1,-1,-1,-1,0,-281,2520,7508,434,2139,993,3011,7545,502,2205,5,1799,1
+21364,110000,male,2,1,56,0,0,0,0,0,0,93983,88777,82501,54458,45943,44724,3371,2636,1883,1584,1604,2008,0
+21365,220000,female,1,2,27,-1,-1,2,-1,-1,0,375,750,375,375,750,375,750,0,375,750,0,420,0
+21366,120000,female,2,3,59,2,2,2,2,2,2,82172,80266,85919,86910,87893,86370,0,7898,3300,3300,0,3149,1
+21367,50000,female,3,2,26,0,0,0,-2,-2,-1,6450,10744,0,0,0,239,4500,0,0,0,239,3363,1
+21368,70000,female,2,1,37,0,0,2,0,0,0,67374,70890,66782,67266,66431,67046,6044,0,2975,2505,2590,2610,0
+21369,30000,female,2,2,35,0,0,0,0,-2,-2,29728,30479,13052,0,0,0,1779,3345,0,0,0,0,0
+21370,60000,female,2,1,32,0,0,0,0,0,0,13070,14542,15998,16706,17188,17394,2000,2000,1278,760,631,786,0
+21371,110000,female,2,2,28,0,0,0,0,0,0,35208,36619,38026,40332,41772,43052,2000,2000,3000,2000,2000,2000,1
+21372,30000,female,3,1,30,-1,-1,-1,-1,0,0,1483,1378,2381,2967,1746,780,1378,2781,3067,35,780,3308,0
+21373,60000,female,3,1,34,0,0,0,0,0,0,53748,41668,29306,27800,27552,29545,1778,2000,1748,1500,2600,1000,0
+21374,60000,female,1,2,26,-1,-1,-1,-1,-1,-1,959,0,849,1120,327,531,0,849,1120,327,531,188,0
+21375,30000,female,2,2,24,1,2,2,2,2,0,16704,18121,19030,19424,18818,23307,2000,1500,1000,0,5000,2000,0
+21376,60000,female,3,1,49,0,0,0,0,0,0,60335,52211,48293,49311,50290,51346,6751,6803,1821,1800,1866,1896,0
+21377,180000,female,4,2,26,0,0,0,0,0,0,42086,96998,133743,135900,159631,160881,90402,100028,20000,26000,7000,6654,0
+21378,240000,female,2,1,34,0,0,0,0,0,0,65883,66386,67444,68461,69423,70843,3000,3038,3057,3000,3000,3500,0
+21379,220000,female,1,2,30,-1,-1,-1,-1,-1,-1,8939,316,541,4188,3473,7653,316,541,4188,3473,7653,2280,0
+21380,100000,female,3,1,35,-1,-1,-1,-1,-1,-2,390,390,0,780,0,0,390,0,780,0,0,0,0
+21381,180000,female,1,2,27,-1,0,0,0,2,0,4676,5764,6837,9367,8758,8800,1500,1500,2989,0,500,500,0
+21382,140000,female,2,1,26,0,0,0,0,0,0,128720,129996,132004,127275,48724,48875,6450,7000,5000,2000,2000,2000,0
+21383,60000,female,2,1,27,1,2,2,2,2,2,25547,24838,27725,26981,28921,29506,0,3300,0,2400,1200,1300,1
+21384,90000,female,3,1,56,0,0,0,0,0,0,59524,57898,57739,55499,48246,47850,2670,2690,3041,3790,2000,2000,0
+21385,50000,female,2,2,27,2,0,0,0,2,2,16557,17975,20366,22710,23541,23027,2000,3000,3000,1500,0,1000,1
+21386,290000,female,1,2,28,0,0,0,0,0,0,125679,113486,116427,103550,64527,64030,4315,6000,4000,3000,2500,3000,0
+21387,400000,female,1,2,47,-2,-2,-2,-2,-2,-2,6573,8155,11724,10570,15120,11453,8195,11755,10617,15189,11495,18506,0
+21388,60000,female,2,2,35,0,0,0,-1,0,0,42174,40510,20513,22123,17094,18668,3090,10709,22154,1000,2000,700,0
+21389,60000,female,2,2,29,0,0,0,0,-1,0,10450,3388,11722,10937,21528,20835,1011,11000,1220,21528,780,17,0
+21390,180000,female,2,2,29,-2,-2,-2,-2,-2,-2,0,0,4690,0,150,193,0,4690,0,150,193,3403,1
+21391,130000,female,2,2,24,0,0,0,0,0,0,128499,131370,123434,122806,125287,127992,5100,4500,4400,4500,4700,6400,0
+21392,110000,female,1,2,24,2,0,0,0,0,2,85123,40882,35428,39680,44097,42543,2000,2000,5000,5000,0,2000,1
+21393,160000,female,2,2,35,0,0,0,2,0,0,24306,25590,29169,28406,28836,30208,2000,4000,0,1200,2000,1300,0
+21394,500000,female,1,2,25,1,-1,-1,-1,-1,0,-46,9412,1260,0,1121,6566,9458,1260,0,1121,6000,3000,0
+21395,160000,female,1,2,26,-1,-1,-1,-1,-1,-1,5323,1714,2003,2580,0,380,1726,2235,2605,0,380,1488,0
+21396,80000,female,1,2,29,1,-1,-1,-1,-1,-1,0,416,832,28940,832,0,416,832,28940,832,0,416,0
+21397,70000,female,1,2,28,0,-1,-1,-1,-1,-1,12018,39270,603,2288,1380,2028,39270,603,2288,1380,2028,390,0
+21398,130000,female,5,2,27,0,0,0,0,0,0,106852,107599,109902,112635,114472,117556,4000,4030,4600,4200,5000,5000,0
+21399,20000,female,3,1,23,0,0,0,0,0,0,5373,7286,8311,11179,10400,3782,2000,1132,3000,1000,3782,3000,0
+21400,90000,female,3,2,27,1,2,0,0,0,0,94699,92290,90719,39902,39200,38531,0,4183,1600,1280,1310,1432,1
+21401,30000,female,1,2,24,0,0,0,0,0,0,4848,6524,6290,4440,4531,1300,3000,1108,1000,91,26,0,0
+21402,360000,female,2,2,25,0,0,0,0,0,0,354626,356006,351383,335323,332865,333404,14000,14000,12000,12000,12000,12000,1
+21403,150000,female,2,2,30,0,0,0,0,0,0,106911,105889,96548,87085,52323,51260,4000,4500,5000,2000,1700,2300,0
+21404,360000,female,2,1,26,0,0,0,0,0,0,358897,357100,362900,293597,249345,228470,14245,14061,11028,8813,7900,8100,1
+21405,160000,female,1,2,29,-1,0,-1,0,0,0,3462,4673,12741,10023,11023,8922,4000,12841,1000,1000,178,4000,0
+21406,120000,female,3,1,51,0,0,0,2,2,2,26496,28586,33828,34236,34734,35292,2800,6000,1200,1300,1200,0,0
+21407,160000,female,2,1,25,0,0,0,0,0,0,83005,84023,81765,84265,84437,81265,3900,3300,3906,3000,3100,3120,0
+21408,190000,female,1,2,27,0,0,0,0,0,0,14671,15141,17574,18943,20405,42921,2000,3000,2000,2000,25921,1400,0
+21409,110000,female,1,2,28,0,0,0,0,0,0,65024,61848,57944,53857,35036,31973,2500,2900,2000,2000,2000,2000,0
+21410,290000,female,2,2,26,0,0,0,0,0,0,291861,254619,226755,155527,125986,107792,9596,7700,4402,3300,3100,4000,0
+21411,20000,female,1,2,24,1,-1,-1,-1,-2,-1,0,1516,500,0,0,1500,1516,500,0,0,1500,0,0
+21412,200000,female,1,2,28,1,-1,3,2,2,-2,0,344,344,344,0,0,344,0,0,0,0,250,0
+21413,440000,female,1,2,30,-1,-1,-1,0,0,0,777,612,87426,171244,150897,117870,612,87426,130007,3018,15000,51663,0
+21414,70000,female,1,2,27,2,2,2,2,2,2,43616,44597,45784,46528,47458,48347,2000,2200,1800,2000,1800,2000,1
+21415,160000,female,2,2,24,0,0,0,0,0,0,39604,24023,21323,18933,12763,0,1378,1533,1000,255,0,0,0
+21416,120000,female,2,2,30,-1,-1,-1,-1,-1,-1,140,3230,3011,1964,1883,1538,3230,3011,1964,1883,1538,1911,0
+21417,20000,female,3,1,22,2,0,0,0,0,0,16358,17063,18406,18992,16564,16944,1282,1625,1209,1000,570,411,0
+21418,310000,female,1,2,27,-2,-2,-2,-2,-2,-2,1000,304,1852,2587,8441,14761,152,1868,2587,8441,14761,3418,0
+21419,80000,female,3,1,29,0,0,0,0,0,0,15008,17434,19145,21807,24442,27038,3000,2000,3000,3000,3000,1000,0
+21420,180000,female,2,2,29,1,2,0,0,0,2,77494,75658,76942,80419,90715,37376,0,3100,5000,11000,1000,1000,0
+21421,250000,female,1,2,28,0,0,0,0,0,0,176925,179079,186166,189786,195130,198147,7000,10000,10000,10000,7300,8000,1
+21422,180000,female,2,2,24,0,0,0,0,-1,0,8031,9269,9029,11186,23320,6666,2009,2626,3000,23320,1000,1000,1
+21423,130000,female,2,2,29,2,0,0,0,0,0,120844,123333,126347,129249,132093,129155,4500,5000,5000,5000,4700,5000,1
+21424,330000,female,3,1,27,-1,-1,-1,-1,0,0,7098,4863,906,46353,2175,30824,4885,906,46789,10,30824,6269,0
+21425,310000,female,2,2,29,0,0,0,0,0,-1,135195,78756,44127,44782,2108,1983,3500,2500,2150,1000,2000,119943,0
+21426,70000,female,1,2,25,0,0,0,0,0,0,27990,24526,25532,25971,14859,14930,1394,1790,1229,519,687,557,0
+21427,30000,female,2,2,29,2,2,2,2,2,0,18872,21734,21103,22939,22273,22814,3500,0,2500,0,900,1000,1
+21428,290000,female,2,1,29,2,0,0,0,0,0,112676,113924,116828,119857,122243,124885,4500,4630,4857,4251,4485,4493,1
+21429,260000,female,1,2,29,2,0,0,-1,-1,-1,19006,19113,16376,2590,390,390,6005,1525,2590,390,390,390,1
+21430,250000,female,1,2,26,0,0,0,0,0,0,187336,184608,188570,188585,205272,208778,10000,10065,10000,20000,10000,20000,0
+21431,120000,female,2,2,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+21432,230000,female,1,2,26,0,0,0,0,0,0,166511,159766,142435,136502,122572,110839,6722,6500,6020,4056,4000,4500,0
+21433,390000,female,1,2,27,0,0,0,0,0,0,375023,376767,359292,348513,272077,225079,13313,13705,15454,144206,9000,10000,0
+21434,30000,female,2,1,28,-2,-2,-2,-2,-2,-2,435,0,0,295,-5,-5,0,0,295,5,0,0,0
+21435,50000,female,2,2,26,1,2,2,2,2,-2,49119,44419,42521,38517,19221,19774,0,3213,1331,1000,1000,1100,1
+21436,180000,female,1,2,28,0,0,0,0,0,0,49550,43015,50238,49461,43877,32411,3006,10017,2018,1022,2322,23023,0
+21437,500000,female,2,2,34,0,0,0,0,0,0,367463,287148,262173,90450,9685,-39046,10584,30232,3018,1335,30000,10000,0
+21438,50000,female,1,2,29,-1,-1,-2,-1,-1,-1,2463,0,0,536,326,652,0,0,536,326,652,0,0
+21439,80000,female,2,1,28,0,-1,-1,-1,-1,-1,8432,928,3602,5495,10059,5700,928,3602,5495,10109,5700,3502,0
+21440,460000,female,2,1,28,0,0,0,-1,-1,-1,25537,23314,16098,3316,3316,3316,1335,10000,3316,3316,3316,3316,0
+21441,150000,female,3,1,28,0,0,0,0,0,-2,3558,4725,2980,3234,0,0,2000,1000,2234,0,0,0,0
+21442,50000,female,2,1,27,0,0,0,0,0,0,48292,47171,37779,28424,29133,27509,2300,1900,1500,1194,1000,1000,0
+21443,20000,female,1,2,27,-1,-1,-1,0,-1,-1,5888,4088,6597,9333,4133,8456,4813,6597,5000,4431,8500,8032,0
+21444,350000,female,1,2,33,0,0,-1,-1,0,0,14118,4278,8621,970,1345,2267,3922,8621,970,1000,1917,454,0
+21445,20000,female,2,1,24,-1,4,4,3,4,3,19915,19902,19299,20686,20073,19470,600,0,2000,0,0,0,1
+21446,400000,female,1,2,29,-1,-1,-1,-1,-1,-1,3807,3168,372,20031,916,30979,3168,372,20231,916,30979,1984,0
+21447,490000,female,2,2,35,0,0,0,0,-1,0,48108,45281,46705,41125,20205,6483,3000,5015,5007,20205,3000,1181,0
+21448,280000,female,1,2,30,-1,-1,-1,-1,-1,-1,596,645,2550,349,1148,785,645,2550,349,1148,785,175,0
+21449,50000,female,2,2,23,-1,0,0,0,0,0,48570,48599,49124,48930,50316,62794,1773,2246,2000,3000,1725,6120,0
+21450,20000,female,2,1,24,2,2,0,0,0,0,19891,15895,17140,18457,21381,18914,0,1500,1600,1646,678,1000,1
+21451,90000,female,1,2,27,0,0,2,0,0,0,46588,49496,48425,50611,52764,55898,4000,0,3000,3000,4000,2043,0
+21452,150000,female,1,2,29,-1,-1,-1,-1,-1,-1,1639,592,3784,2340,5920,5400,592,3791,2340,5920,5400,0,0
+21453,70000,female,1,2,28,0,0,0,0,0,0,37325,38402,39476,40818,41833,45165,2000,2000,2000,2000,4000,0,0
+21454,230000,female,1,2,30,-1,-1,-1,-1,-1,-1,1432,1094,665,582,472,746,1094,665,582,472,746,633,0
+21455,200000,female,2,2,29,-1,0,0,0,0,0,3334,4772,7675,10519,6980,8702,1500,3000,3000,1000,2000,2000,0
+21456,500000,female,2,2,28,0,0,0,0,0,0,182416,150298,88448,58009,47336,7112,5000,3850,3248,13736,14256,220371,0
+21457,160000,female,2,2,28,-2,-2,-1,2,-1,-1,968,708,1841,441,3438,3046,710,1913,0,3456,3054,1224,0
+21458,250000,female,2,1,29,-1,-1,-1,0,0,0,390,0,49140,32699,32949,34150,0,49140,1596,5000,2000,1800,1
+21459,60000,female,2,2,27,0,0,0,0,0,0,57697,48934,44653,44056,42210,41796,2200,5000,2000,1500,2000,1600,1
+21460,180000,female,2,2,25,-1,-1,-2,-2,-1,0,3887,0,0,0,2454,4710,0,0,0,2454,3000,0,0
+21461,500000,female,1,1,34,0,0,0,0,0,0,30376,32715,60927,76088,110294,108964,15000,30007,30000,50000,5000,5000,0
+21462,50000,female,2,1,25,1,3,2,2,0,0,52207,51067,51278,49425,30113,29644,0,2536,13,1199,1058,1073,0
+21463,140000,female,2,1,30,-2,-2,-2,-2,-2,-2,0,0,0,0,0,1122,0,0,0,0,1122,0,0
+21464,460000,female,1,2,28,0,0,0,0,-1,0,21333,16560,12570,19403,10063,8628,4560,2500,9456,10063,0,0,0
+21465,160000,female,2,2,39,0,0,2,2,2,0,30633,37119,36263,43481,43515,49619,7000,0,7847,1026,7000,7968,1
+21466,50000,female,1,2,29,1,-2,-2,-2,-2,-1,0,0,0,0,0,429,0,0,0,0,429,250,0
+21467,110000,female,1,2,26,0,0,0,0,0,0,103705,94786,94708,83765,73122,74366,3500,3500,3000,3700,12488,100,0
+21468,100000,female,2,2,24,0,0,0,0,0,0,65744,67050,68456,69849,71240,72736,2398,2485,2532,2549,2643,3000,0
+21469,80000,female,1,2,29,0,0,0,0,0,2,19833,21192,22842,24147,29133,28532,2000,2000,2000,5394,0,5000,0
+21470,230000,female,1,2,27,-2,-2,-2,-2,-2,-2,2978,6666,1951,67101,5136,10316,7000,1951,67101,5142,10316,5720,0
+21471,280000,female,2,1,38,0,0,0,0,0,-1,8868,14766,16272,10496,6876,34574,10006,10018,7011,6000,37000,10000,0
+21472,20000,female,2,2,22,3,4,3,2,0,0,22353,21720,21098,20334,19943,19956,0,0,0,458,463,235,1
+21473,30000,female,2,2,22,2,0,0,0,0,0,30324,30123,30299,27758,22720,19136,1900,1600,2000,2000,614,924,1
+21474,30000,female,2,1,23,6,5,4,4,3,2,40439,37936,36489,33971,31632,28677,0,1011,0,0,0,2405,1
+21475,30000,female,1,2,23,0,0,0,-1,0,0,10210,13754,-191,24149,25452,25104,6000,250,25000,2000,1000,1100,0
+21476,30000,female,2,2,23,2,-1,-1,-1,0,0,729,479,859,755,755,220,483,859,755,0,0,0,1
+21477,110000,female,2,2,24,-1,0,0,0,0,0,90929,92303,92114,70057,28492,107453,3550,3200,2500,1600,80000,4000,0
+21478,30000,female,2,2,25,2,2,0,0,0,0,28518,27774,28987,24960,14358,16123,0,2027,2000,1000,2000,2000,0
+21479,220000,female,2,2,25,0,0,0,0,0,0,215036,216083,217461,212995,182534,169250,7800,8200,7039,6528,6100,6200,0
+21480,20000,female,2,2,26,1,-2,-1,0,0,0,0,0,1568,1398,920,0,0,1568,1000,302,0,192,0
+21481,60000,female,2,2,26,2,2,2,2,2,2,55892,56685,55208,59175,60218,55447,2300,0,5000,2511,6,3000,0
+21482,90000,female,3,1,48,-1,-1,-1,2,-1,0,1102,-14,21816,316,632,316,0,22146,0,632,0,7816,0
+21483,100000,female,1,2,30,0,0,2,0,0,0,92909,96454,98010,99633,88708,93474,6000,4000,4507,2983,6000,4800,0
+21484,70000,female,2,1,33,0,0,0,0,0,0,52901,43981,33439,24926,10681,7431,2011,1683,3160,3000,3000,5060,0
+21485,210000,female,2,2,28,0,0,0,0,0,0,40236,29230,24717,26563,22812,13620,2200,1854,2700,0,0,0,0
+21486,50000,female,2,2,22,0,0,0,0,0,0,51417,48260,43889,35324,24146,22914,2054,1981,1344,810,828,824,0
+21487,50000,female,1,2,22,1,2,0,0,0,0,4112,3900,7737,3406,1470,1500,0,4019,2500,0,30,0,0
+21488,20000,female,2,2,22,-1,3,2,2,0,0,18021,17439,17466,17846,18310,18923,0,600,1000,1000,1000,700,1
+21489,130000,female,3,2,23,2,-1,0,0,0,0,1330,5719,15578,19887,11659,11735,5719,10000,5000,2000,2000,2000,1
+21490,360000,female,1,1,44,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+21491,200000,female,1,2,26,0,0,0,0,0,0,134780,138349,141821,145144,148268,151604,6000,6000,6000,6000,6000,6200,0
+21492,130000,female,1,1,35,0,0,0,0,0,0,23693,27228,30795,38637,39259,72981,4257,4338,8399,1260,34721,5202,0
+21493,100000,female,2,1,23,0,0,0,0,0,0,6584,7560,4470,1490,542,679,2500,1193,1000,0,400,842,0
+21494,80000,female,2,2,22,0,0,0,0,0,0,77408,78363,72602,72525,56951,21952,2677,3341,1850,1499,933,32000,0
+21495,60000,female,2,2,22,3,2,2,2,2,2,61558,59967,59693,39686,30077,30761,10,3616,301,2501,1300,0,1
+21496,50000,female,2,2,23,0,0,0,0,0,0,50614,48702,47770,37239,20526,19771,2500,1700,2151,687,2000,669,0
+21497,10000,female,2,2,23,1,2,3,3,2,0,5699,7434,8164,7889,7614,7990,2000,1000,0,0,500,900,1
+21498,30000,female,3,2,23,2,2,2,0,0,2,27588,30354,29150,26731,29273,29887,3540,73,1418,4499,1200,0,1
+21499,50000,female,2,2,23,0,0,0,2,2,-2,26001,16982,19313,18700,0,0,1282,2613,0,0,0,0,0
+21500,50000,female,1,2,22,2,2,-2,-2,-2,-2,4536,0,0,0,0,0,0,0,0,0,0,0,1
+21501,30000,female,2,2,22,-1,2,2,2,2,2,11222,11738,13255,14380,14081,10796,1000,2000,1670,551,0,500,1
+21502,50000,female,2,2,22,0,0,0,0,2,0,11970,14445,16391,17804,10868,12151,3000,2500,2050,0,2000,3000,0
+21503,70000,female,2,2,22,0,0,0,0,0,0,68969,67682,68448,69316,29083,28140,3200,3600,3075,1204,1200,1046,0
+21504,20000,female,1,2,22,-1,2,2,2,0,0,12831,12328,15195,14659,14642,15102,0,3077,0,524,696,300,1
+21505,30000,female,2,2,22,0,0,0,0,0,0,19502,8999,11797,11972,16482,9082,3000,3000,4000,5000,5000,5000,0
+21506,30000,female,2,2,24,0,0,0,0,0,-2,24835,23527,20701,8263,0,0,1485,1138,1000,0,0,0,0
+21507,80000,female,2,2,24,0,0,0,0,0,0,17220,14844,12718,8808,7952,7925,1400,1600,1088,245,636,0,0
+21508,130000,female,1,2,24,0,0,0,2,2,-1,3621,4530,6627,3300,0,18300,1130,2227,200,0,18300,0,0
+21509,10000,female,2,2,23,-1,-1,-1,0,0,0,9438,1985,9436,8057,8891,-873,1985,9436,1000,1500,0,11571,0
+21510,70000,female,3,2,23,0,0,0,-1,0,0,14816,8237,-2601,69823,30446,29585,1000,695,73820,1042,1054,1024,0
+21511,20000,female,2,2,21,0,0,0,0,0,0,19039,19684,18825,19876,20040,17755,1286,1416,1467,631,730,0,0
+21512,20000,female,2,2,22,1,-1,2,-1,0,0,0,6594,4840,780,390,0,6594,0,780,0,0,11000,0
+21513,30000,female,2,2,22,2,2,2,2,2,2,24874,26163,26449,27915,27170,29071,2000,1000,2201,0,2500,1001,0
+21514,50000,female,3,2,22,-2,-2,-2,-2,-2,-2,2498,-2,1697,0,0,5000,0,1699,0,0,5000,0,0
+21515,20000,female,2,2,24,-1,-1,-1,2,0,0,396,1301,12056,11151,11219,18120,1301,11151,0,600,8120,1500,0
+21516,60000,female,2,2,22,2,0,0,0,0,0,46403,34438,30920,27817,26281,26830,1544,1759,1500,940,972,976,1
+21517,50000,female,2,2,23,-1,-1,-1,-1,-1,-1,900,2757,4893,390,390,1670,3147,4893,390,390,1670,1890,0
+21518,20000,female,1,2,22,0,0,0,0,0,0,19458,18786,16249,16478,10735,3274,1552,1381,1000,215,65,0,0
+21519,30000,female,2,2,22,0,0,0,0,0,0,19759,19973,22058,24598,26564,27521,3000,3500,3000,2500,2000,3000,0
+21520,20000,female,2,2,23,1,2,0,0,0,2,15596,15053,15773,17102,18704,18263,0,1269,1598,2200,0,3700,1
+21521,10000,female,1,2,23,2,0,0,0,0,2,3413,5188,6937,7946,8714,8432,2000,2000,1132,900,0,500,0
+21522,50000,female,1,2,22,0,0,0,0,0,0,50813,50558,50455,49443,20405,19494,1972,2369,3592,1029,723,874,0
+21523,70000,female,1,1,22,0,0,0,0,2,0,64525,66548,67344,62083,29914,29406,3093,2594,4512,0,1070,1065,0
+21524,50000,female,2,2,23,1,-1,0,0,0,0,14191,5896,6175,10000,1952,406,5896,2006,5074,1300,406,0,0
+21525,30000,female,2,1,23,2,0,0,0,0,0,27997,26049,27222,27729,28437,25336,1800,1900,1330,1038,1128,5000,0
+21526,50000,female,2,2,22,0,0,0,0,0,0,49619,50629,50778,48261,28768,29370,1836,1985,1468,1175,1214,1232,0
+21527,30000,female,3,2,23,3,2,0,0,0,0,30051,29274,30498,29713,29819,30342,0,2000,1500,2000,1100,2000,0
+21528,80000,female,2,2,23,1,2,2,2,2,2,68594,66893,72307,70556,74021,75675,0,6507,0,5260,3000,4584,0
+21529,50000,female,3,2,23,0,0,0,0,0,0,32644,34096,34941,34243,28014,28528,2000,1700,1502,1000,1200,1200,0
+21530,20000,female,1,2,24,-1,0,0,0,0,0,16582,17721,18762,19729,20134,19590,1422,1333,1300,700,1000,1000,0
+21531,30000,female,1,2,25,0,0,0,0,0,0,26376,27483,28242,16498,16923,17649,1550,1308,1300,700,1000,2000,0
+21532,80000,female,1,2,25,2,0,0,0,0,0,69614,68836,69714,57318,46921,41072,3238,3103,3000,1800,1500,1700,1
+21533,140000,female,1,2,25,-1,-1,-1,-1,-1,-1,30077,2809,7541,10661,2214,6020,2809,7541,10661,2214,6020,0,0
+21534,210000,female,2,2,26,-1,0,0,0,0,0,119269,60133,56076,39135,25396,18553,2345,1915,5028,3200,371,25140,0
+21535,200000,female,1,2,26,0,0,0,0,0,0,200849,146340,146660,145623,144166,145141,80000,4600,6000,4700,4800,5000,0
+21536,20000,female,2,2,22,1,2,2,2,0,0,14645,14113,18550,17867,18072,17899,0,4675,0,701,563,1000,0
+21537,30000,female,2,1,22,2,2,2,0,0,0,30525,28574,14220,14188,7058,7976,1725,0,1230,1000,1000,0,1
+21538,150000,female,3,2,23,0,0,0,0,0,0,11329,10775,11829,7031,7172,5833,1219,1273,1069,1683,202,299,0
+21539,60000,female,1,2,24,0,0,0,0,0,0,35138,35776,34783,32158,28991,28434,1553,2000,1508,1080,1003,1000,0
+21540,20000,female,2,2,21,0,0,0,0,0,0,10109,11153,11841,4725,9135,18355,3000,2000,1200,5000,10000,8906,0
+21541,150000,female,1,2,25,0,0,0,0,0,0,119788,112824,92456,80532,59866,49472,4728,3610,2377,1714,828,846,0
+21542,70000,female,1,2,25,-1,-1,-1,-1,-2,-1,1288,0,1999,0,0,842,0,1999,0,0,842,0,0
+21543,60000,female,2,1,30,0,0,0,0,0,0,65460,64128,62736,59133,57662,53059,2299,2232,2152,2226,1908,1933,1
+21544,30000,female,3,1,23,1,2,0,0,0,2,30380,25839,25963,27030,29079,29865,1,1433,1500,2500,1400,1400,1
+21545,330000,female,2,2,31,0,0,0,0,0,0,30532,33814,38243,39603,40542,41239,3814,5000,2000,1598,1500,2000,0
+21546,20000,female,3,2,22,3,2,2,4,4,4,1650,1650,1650,1650,1650,1650,0,0,0,0,0,0,1
+21547,180000,female,2,1,35,-1,-1,0,0,0,0,1175,5317,8388,8529,7739,3803,5317,3200,2700,2000,76,0,0
+21548,20000,female,1,2,23,0,0,0,0,2,0,23809,24798,24258,24172,21959,20898,1700,1800,2350,0,1000,2700,0
+21549,130000,female,2,2,24,0,0,0,-1,-1,-2,14518,15000,0,1207,0,0,1150,0,1207,0,0,0,0
+21550,30000,female,2,2,25,0,0,0,0,0,0,28709,28649,29619,30224,27326,30297,1462,1589,1351,2500,4000,1500,1
+21551,30000,female,2,2,22,0,0,2,0,0,0,27762,30392,27688,28134,29591,28883,5000,0,3000,2000,1300,1500,0
+21552,500000,female,1,2,37,-2,-2,-2,-2,-2,-2,315,2579,3824,813,0,4443,2579,3824,813,0,4443,330,0
+21553,450000,female,1,1,38,0,0,0,0,0,0,108390,96704,84033,72279,55757,37161,4300,3073,3000,2000,1500,2000,0
+21554,50000,female,2,2,22,0,0,0,0,-1,0,44593,33019,13552,0,28105,29684,5000,3000,0,28105,2000,2000,0
+21555,60000,female,2,2,24,0,0,0,-1,-1,-1,58692,61225,54673,2193,8258,0,5000,1098,2193,8258,0,0,0
+21556,130000,female,2,2,22,1,-2,-1,2,2,-2,0,0,1485,299,0,0,0,1485,0,0,0,0,0
+21557,280000,female,2,2,25,0,0,0,0,0,0,139019,141146,129252,103317,101085,104181,4074,4232,4022,3000,4010,100022,0
+21558,100000,female,2,1,26,0,0,0,0,0,0,7086,7644,8197,9203,3815,5493,1500,1500,2000,1000,2493,2443,0
+21559,60000,female,1,2,24,0,0,0,0,0,0,57802,58960,60862,59279,59176,58128,2960,2866,2279,2276,2128,2237,0
+21560,80000,female,1,2,25,-1,-1,-1,-2,-1,-1,177,1200,0,0,7240,0,1200,0,0,7240,0,0,0
+21561,130000,female,1,2,27,1,-1,0,-1,-1,0,0,1386,5275,198,3992,8893,1386,4000,198,3992,5000,40000,0
+21562,30000,female,2,2,21,0,0,0,0,0,0,9696,10406,5068,2023,1163,0,2000,1000,1002,23,0,0,0
+21563,50000,female,2,2,22,1,2,2,2,0,0,38633,36378,33533,28591,28390,28739,500,2231,1500,1300,1700,800,0
+21564,50000,female,2,2,23,0,0,-2,-2,-2,-2,43634,0,0,0,0,0,0,0,0,0,0,0,1
+21565,50000,female,3,2,23,2,2,0,0,0,2,7285,7022,7887,8898,9565,9267,0,1138,1149,816,0,1710,1
+21566,90000,female,2,2,23,0,0,0,0,0,0,90508,89618,75342,71668,49358,50296,3432,3615,3511,2500,2000,1850,1
+21567,70000,female,1,2,23,-2,-2,-1,0,0,0,-22,-11,5173,6345,7083,8961,0,69900,1262,1000,2000,1000,0
+21568,110000,female,2,2,25,0,0,0,0,0,0,80374,81652,47291,43857,45684,40994,3000,3000,2173,3000,3500,1538,0
+21569,80000,female,2,2,25,0,0,0,0,0,0,81477,81058,80510,81565,81232,81422,3100,2931,3600,2908,3117,3071,0
+21570,50000,female,3,2,23,0,0,0,0,0,0,49971,51132,50608,37700,11325,9814,2303,2252,2498,372,500,365,0
+21571,130000,female,2,2,23,-1,0,-1,-1,-1,-1,13429,2984,9811,5136,19040,2940,1000,10363,5177,19040,2940,1332,0
+21572,130000,female,1,2,24,-1,-1,-1,-2,-2,-1,7353,3700,0,0,0,297,3727,0,0,0,297,0,0
+21573,60000,female,2,2,24,0,0,0,0,0,0,28277,27295,27403,23837,23078,22618,1450,1724,1600,1000,1000,2500,1
+21574,140000,female,3,2,24,-2,-2,-2,-2,-2,-2,0,580,2298,299,3330,0,580,2500,502,3531,0,0,0
+21575,110000,female,2,2,24,1,2,0,0,0,0,72184,69650,70172,48720,48540,43692,0,3200,2478,2000,1900,2000,0
+21576,100000,female,2,2,24,1,2,0,0,0,2,7127,6867,8095,9296,10241,9936,0,1500,1500,1100,0,3000,1
+21577,20000,female,2,1,24,0,0,0,0,-1,0,17599,18920,19000,0,80,540,1920,1000,0,40,1000,844,0
+21578,90000,female,2,2,24,0,0,0,0,0,0,89608,87743,87363,74329,48451,48715,4507,4000,2500,2000,2000,2000,0
+21579,50000,female,2,1,24,0,0,0,0,0,0,46437,40703,20215,21116,20036,18952,1912,1370,1271,664,658,638,0
+21580,30000,female,2,2,24,-1,0,0,0,0,0,1513,27350,28561,29684,32650,34299,26500,2048,2000,3769,5007,2007,0
+21581,130000,female,2,1,23,-1,-1,-1,-1,-1,-1,579,1186,0,497,0,186,1186,0,497,0,186,0,1
+21582,50000,female,2,2,26,-1,-1,-1,-1,-1,-1,390,2078,390,390,0,780,2078,390,390,0,780,0,0
+21583,80000,female,2,1,23,0,0,0,0,0,0,79874,60000,47160,32382,8706,3876,2100,2026,4360,2000,1000,2057,0
+21584,50000,female,2,2,23,0,0,0,0,0,-1,21699,33109,32856,27438,4786,768,11877,1660,1600,624,768,173,0
+21585,130000,female,1,2,24,0,0,0,0,0,0,78744,74511,81315,75538,77172,79442,3500,10000,4000,3500,3500,3500,0
+21586,20000,female,1,2,24,-1,-1,-1,-1,0,-1,390,390,390,1052,662,1202,390,390,1052,0,2030,5485,0
+21587,120000,female,1,2,24,-2,-2,-2,-2,-2,-2,0,0,0,0,1000,0,0,0,0,1000,0,0,0
+21588,20000,female,2,2,24,1,2,3,2,-1,0,9739,12322,3023,2748,12351,13927,3023,0,0,12351,4000,2000,0
+21589,80000,female,2,2,24,0,0,0,0,0,-1,13118,11622,12011,3210,1651,2256,1500,1511,1000,1000,2256,924,0
+21590,50000,female,1,2,24,0,0,0,0,0,0,35871,36312,35827,32834,29052,28288,5000,5000,5716,3000,2000,1500,0
+21591,100000,female,1,2,24,0,0,0,0,0,0,76025,68016,63520,64825,65725,67183,3000,3600,3000,2500,2600,3000,0
+21592,70000,female,2,2,24,0,0,0,0,2,0,12954,14425,18171,20861,20231,22831,2000,4000,3000,0,3100,3000,0
+21593,90000,female,2,1,25,-1,-1,0,0,0,0,7766,13788,15459,43380,46632,14177,93788,10000,33000,5300,5000,2913,0
+21594,280000,female,2,2,25,1,2,-1,-1,-1,-1,6714,4526,3868,389,389,384,22,4277,390,390,385,166196,0
+21595,400000,female,1,2,26,-1,0,0,0,0,0,2871,6260,6651,6542,7093,9134,4016,4020,4066,4009,4021,3507,0
+21596,130000,female,3,2,26,0,0,0,0,0,0,113707,115323,120461,121177,4623,5402,5000,7000,5000,2000,2000,5000,0
+21597,30000,female,5,2,22,0,0,0,0,0,-2,24979,26418,26791,14500,0,0,1859,1232,1040,0,0,0,1
+21598,50000,female,3,2,23,2,0,0,2,0,0,25046,25174,27850,27038,27465,20943,1724,3400,0,1000,900,790,1
+21599,80000,female,2,2,23,1,2,2,2,2,2,21775,21127,23772,23092,24806,24272,0,3000,0,2100,0,1500,1
+21600,50000,female,3,2,22,2,2,2,0,0,0,24729,22719,18408,19330,19561,19815,1651,0,1573,804,675,738,0
+21601,10000,female,1,2,23,1,2,2,-1,-1,-2,8356,7864,6171,1681,0,0,1200,0,1681,0,0,1250,0
+21602,90000,female,2,2,24,0,0,0,0,0,2,83590,84960,85744,79963,70021,70853,3200,3110,4677,3200,2500,2500,0
+21603,50000,female,1,2,24,3,2,2,2,0,0,8506,10194,10928,10456,11279,12095,2000,1200,0,1000,1000,1000,1
+21604,100000,female,2,2,24,-1,-1,-2,-2,-1,-1,3587,660,6010,2789,2973,3611,660,6010,2789,2973,3611,11880,0
+21605,90000,female,2,1,25,2,0,0,0,0,0,90371,87525,89052,85807,68186,69011,4100,4200,3000,3000,3000,2600,1
+21606,100000,female,1,2,25,0,0,0,0,0,0,40083,44385,45117,25845,7141,9141,5000,2000,2030,3000,2000,2000,0
+21607,310000,female,1,2,26,-2,-2,-2,-2,-2,-2,297,0,0,0,0,0,0,0,0,0,0,0,0
+21608,210000,female,1,2,26,1,2,0,0,0,0,7271,4951,1815,3789,4721,5641,6,1600,2000,1000,1000,0,0
+21609,340000,female,2,2,25,-2,-2,-2,-2,-2,-2,-2,-2,466,-3,1292,586,0,468,0,649,1178,0,0
+21610,30000,female,2,1,25,2,0,0,0,0,0,27458,21203,18394,19560,13035,13836,1267,1342,1508,500,1000,1102,1
+21611,70000,female,2,2,25,2,2,2,2,2,2,67588,68983,70691,71692,67740,68470,3100,3400,2752,0,5156,0,1
+21612,450000,female,1,2,25,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+21613,110000,female,1,2,26,0,0,0,0,0,0,111306,111038,87820,67259,50007,51202,3931,2885,2212,1789,2000,2000,0
+21614,30000,female,2,1,26,-1,-1,-1,-1,-1,-1,3761,7215,2730,1770,0,11242,7231,2732,1770,0,11242,2000,0
+21615,10000,female,2,2,26,1,2,2,2,2,2,6220,5975,8104,7807,8329,6613,0,2400,0,615,0,539,1
+21616,50000,female,1,2,26,0,0,0,0,0,0,49392,50350,50154,49766,24492,22974,1786,2162,1724,600,1000,47438,0
+21617,120000,female,1,2,27,-1,-1,0,0,0,0,13060,23008,119558,93652,23862,0,23008,100000,3500,1000,0,122350,0
+21618,210000,female,1,2,27,0,0,0,0,0,0,21275,18405,76779,67518,66364,65038,2079,67000,2300,2365,2000,2000,0
+21619,260000,female,2,2,27,-2,-2,-2,-2,-2,-2,895,0,0,0,0,0,0,0,0,0,0,0,0
+21620,300000,female,1,2,27,0,0,0,0,0,0,183468,180149,168098,181257,175362,179536,10000,6500,20000,7000,7000,7000,0
+21621,160000,female,1,2,27,0,0,0,0,0,0,96441,98353,99864,101900,103924,106101,4406,4000,3699,3719,3851,3880,0
+21622,30000,female,2,2,27,0,0,0,0,2,2,8476,9677,10715,13218,12709,17463,1500,1500,3000,0,5000,0,0
+21623,120000,female,2,1,22,2,2,0,0,0,0,121522,120084,122250,70901,40860,39553,2000,5700,2964,1527,1407,1873,0
+21624,70000,female,2,2,23,0,0,0,0,0,0,68410,67449,66767,65528,47888,44198,2413,2605,2013,2003,1607,1606,0
+21625,90000,female,1,2,23,-1,-1,-2,-1,-1,-1,3030,0,0,4220,1130,212,0,0,4220,1130,212,298,0
+21626,60000,female,2,2,24,0,0,0,0,0,0,57674,59213,60764,60070,40479,39871,2500,2505,2000,3003,1500,2100,0
+21627,60000,female,1,2,24,0,0,0,0,0,0,22504,23547,24877,21465,21218,21300,1420,1750,1338,761,925,887,0
+21628,50000,female,1,2,22,0,0,0,0,0,0,49772,50537,49556,49902,38391,29427,1778,2110,1456,1360,1057,1069,0
+21629,100000,female,1,2,23,-1,-1,-1,0,-1,-1,4357,1897,4153,2972,1990,1861,1901,4153,1000,1990,1861,0,0
+21630,50000,female,2,1,24,0,0,0,0,0,0,34983,34922,37248,30640,16158,0,1700,3000,1200,2000,0,0,0
+21631,20000,female,2,2,24,3,2,2,2,2,2,322,322,322,322,322,322,0,0,0,0,0,0,1
+21632,80000,female,1,2,24,0,0,0,0,0,0,34106,33045,32318,30171,32950,30899,3000,3000,2000,5000,3000,6000,0
+21633,300000,female,5,2,26,0,0,0,0,-2,-2,293880,242669,76777,34072,11632,15429,11128,47009,34044,11677,15483,6098,0
+21634,100000,female,2,2,23,-1,-1,-1,0,-1,-1,892,2180,10876,11714,7177,10455,2180,10876,3000,7177,10455,2819,0
+21635,140000,female,2,2,25,0,0,-1,-1,-1,0,140286,143649,435,556,92556,94567,6500,436,621,94500,3500,3500,1
+21636,80000,female,2,2,23,2,0,0,0,0,0,71975,64153,47680,33336,24439,26187,3139,4000,3000,2000,2000,0,1
+21637,60000,female,3,2,23,0,0,0,0,0,0,30660,30286,29757,30122,30498,28647,1800,1630,3000,2000,2000,2000,0
+21638,230000,female,2,2,23,1,-1,-1,-1,-1,-1,-15,6179,1502,708,2882,1939,6194,1502,708,2896,1939,365,0
+21639,120000,female,2,2,25,0,0,2,0,0,2,46953,48670,49587,50961,53597,55094,2500,2000,2500,4100,2500,0,0
+21640,50000,female,1,2,23,0,0,0,2,0,0,48771,50062,51016,48133,47822,48126,2106,4206,391,1700,1806,1700,0
+21641,60000,female,1,2,24,0,0,0,0,0,0,59267,60042,59225,59947,60107,57338,2694,2800,2300,2250,2081,2120,0
+21642,50000,female,2,2,24,-2,-2,-2,-1,0,0,50096,49917,0,24415,25305,25775,1000,0,24415,1295,1275,0,0
+21643,210000,female,2,1,25,0,0,0,0,0,0,7788,8801,9825,10838,12652,13060,1149,1173,1186,2000,1000,1000,0
+21644,90000,female,2,2,23,0,0,0,0,0,0,13107,13740,14770,13306,10465,9704,1251,1281,1173,500,1000,1000,0
+21645,20000,female,1,2,24,0,0,0,0,0,0,19403,18989,18914,19883,19293,19993,1300,1332,1301,700,1000,900,0
+21646,130000,female,2,2,22,0,0,0,0,0,0,34970,14867,10341,9788,7193,9006,2012,2000,2290,1005,4078,713,0
+21647,20000,female,2,2,22,0,0,0,0,0,0,16653,18062,18374,19222,18014,18627,2000,1700,1500,1000,1000,1000,0
+21648,90000,female,2,2,24,0,0,0,0,0,0,14329,14520,14747,4753,5152,4664,3000,1240,1220,1000,500,800,0
+21649,30000,female,1,2,23,-1,-1,-1,-1,-1,0,23225,29801,10008,9336,24339,16710,30043,10024,9340,24363,5714,4,0
+21650,30000,female,2,1,23,0,0,0,0,0,0,27222,27630,28618,28833,9895,12155,1450,1638,1053,2000,5155,4145,0
+21651,150000,female,2,2,24,1,-2,-2,-2,-1,-1,0,0,0,0,2000,2000,0,0,0,2000,2000,2000,0
+21652,20000,female,1,2,24,0,0,0,0,0,0,20933,22202,21867,21813,21228,21614,2700,1400,1400,800,1783,1000,1
+21653,80000,female,3,1,25,0,0,0,0,0,0,63214,61943,61458,57045,50652,48476,2300,2215,1900,1800,1920,2300,0
+21654,40000,female,2,2,25,0,0,0,2,0,0,34084,35169,37940,36824,37242,37900,1861,3755,0,1290,1337,1339,0
+21655,240000,female,1,2,27,-2,-1,-1,-1,-1,-2,5886,5055,8774,1854,-9584,-15483,5055,8774,1854,0,0,66971,0
+21656,100000,female,5,2,27,0,0,0,0,0,0,152330,66107,60734,48816,28679,30231,3000,2231,1617,1000,2000,590,0
+21657,100000,female,1,2,30,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+21658,150000,female,3,2,25,-2,-2,-2,-2,-2,-2,0,1145,2580,0,0,0,1145,2580,0,0,0,0,0
+21659,270000,female,2,2,25,0,0,0,0,0,0,22579,23579,24613,25617,25434,25966,1380,1419,1423,910,942,951,0
+21660,400000,female,2,2,24,0,0,0,0,0,0,35660,37065,38142,38870,30059,27656,2000,1673,1401,990,964,975,0
+21661,50000,female,1,2,25,0,0,0,0,0,0,38153,34476,25857,26621,27178,28038,1700,2000,1500,1000,1300,1300,0
+21662,80000,female,1,2,25,-1,2,2,-2,-2,-2,259,259,0,0,0,0,0,0,0,0,0,0,0
+21663,20000,female,2,2,25,0,0,0,0,0,0,4120,5387,6440,7373,8246,11095,1500,1300,1200,1000,3000,406,0
+21664,240000,female,3,2,25,0,-1,-1,-1,-1,-1,198768,2986,191142,98080,19380,100000,2986,191142,98080,79380,100000,50254,0
+21665,70000,female,2,2,25,2,0,0,0,2,2,19112,20115,20837,22986,22319,23952,1629,1351,2500,0,2000,0,1
+21666,50000,female,2,2,26,2,0,0,0,0,0,47510,32952,22289,22752,9325,9270,1744,1537,1000,187,185,0,0
+21667,70000,female,1,2,23,0,0,0,0,0,0,45707,40238,36620,32163,29620,23384,1931,1626,1760,841,1000,1000,0
+21668,170000,female,5,2,24,-2,-2,-1,-1,0,0,85663,-37,1740,97961,66257,12106,0,1777,114593,5823,439,497,0
+21669,110000,female,3,2,26,1,3,2,0,0,0,117274,116911,112706,108302,46774,48300,3000,0,4400,2000,3000,4000,0
+21670,100000,female,1,1,26,0,0,0,0,0,0,98530,95849,97235,93531,43975,45512,4301,4615,2729,1275,47052,1680,0
+21671,10000,female,1,2,23,3,2,2,0,0,0,7067,8092,7820,8824,8996,9182,1291,0,1295,467,479,480,1
+21672,230000,female,2,2,23,1,3,2,2,2,2,5263,5021,3579,31053,30334,38203,3,8,30334,0,8507,14,0
+21673,230000,female,2,2,23,-1,-1,-1,-1,-1,0,5049,1444,14019,1045,12525,12219,1444,14019,1045,12525,244,725,0
+21674,60000,female,2,1,23,0,0,0,-1,-1,-1,43714,47653,51400,399,500,10400,5000,5000,399,500,10400,0,0
+21675,50000,female,3,2,23,0,0,0,0,0,2,17976,18254,16428,16986,18579,17317,1564,1589,2000,3000,0,3000,0
+21676,110000,female,1,2,23,0,0,0,0,0,0,50346,54489,58602,62001,65334,69097,5000,5000,5000,5000,5000,2707,0
+21677,180000,female,3,2,42,0,0,0,0,0,0,102826,102646,82849,78064,73437,108072,5011,5006,5000,5005,42500,3000,0
+21678,80000,female,2,2,24,-1,-1,0,-1,-1,-1,390,2463,3409,12091,3371,3558,2463,1789,12091,3371,4682,500,0
+21679,30000,female,2,2,24,1,2,2,2,2,2,25193,24490,27474,27926,27189,28604,0,3400,1200,0,2500,1000,1
+21680,50000,female,3,2,24,1,2,0,0,0,0,50162,48982,43579,43825,28396,27437,0,2207,2300,1006,1000,1100,0
+21681,190000,female,1,2,26,1,-1,0,0,0,0,0,2236,5265,5034,1091,0,2236,3265,3060,22,0,0,0
+21682,120000,female,2,2,26,0,0,0,0,0,2,87151,88304,89657,41720,29022,28422,3500,3103,1800,2381,0,1100,0
+21683,30000,female,2,1,21,0,0,0,0,0,0,28404,29009,29831,29992,21754,18519,1467,1679,1230,827,1000,1000,0
+21684,20000,female,2,2,21,0,0,0,0,0,0,19382,20040,17850,13560,11748,10632,1318,1499,1099,333,2000,2000,0
+21685,60000,female,1,2,22,0,0,0,0,0,0,57484,59521,59674,56018,36350,18203,3000,3000,1500,790,1000,1000,0
+21686,20000,female,1,2,22,0,0,0,0,0,0,16936,18139,18024,18500,18067,17640,2684,2000,1600,361,353,360,0
+21687,50000,female,2,2,23,0,0,0,0,-1,0,97259,50017,48560,46978,19640,18937,3608,2110,2558,19640,683,699,1
+21688,30000,female,3,2,26,2,3,2,0,0,0,26412,25700,24989,25068,26145,27219,0,0,1500,1500,1500,1050,0
+21689,150000,female,2,2,27,0,0,0,0,0,0,58751,60163,62142,57777,51110,52284,3000,3000,2010,2000,2000,2000,0
+21690,50000,female,1,2,22,2,2,0,0,0,0,50345,49245,50061,37766,29433,27537,0,1728,1730,1015,1000,1001,1
+21691,210000,female,2,2,26,0,0,0,0,0,0,177492,179951,171135,166199,144060,132326,10000,10000,10000,10000,10000,10000,0
+21692,130000,female,3,1,25,0,0,0,0,0,-1,24885,26196,25476,22394,17907,1739,1740,2000,1209,1120,1739,35,0
+21693,50000,female,2,1,26,1,-2,-2,-2,-2,-2,0,-69777,0,0,0,0,0,70000,0,0,0,0,0
+21694,200000,female,1,2,26,-1,0,0,0,0,0,32938,25985,19496,16104,28666,18215,3000,1241,5000,16831,1000,1000,0
+21695,180000,female,1,1,26,-1,-1,-1,-1,-1,-1,4745,5865,6059,5537,17366,16971,5865,6091,5537,17366,16971,2785,0
+21696,190000,female,1,2,26,0,0,0,0,0,0,174519,179122,182680,154753,90540,92248,9000,8382,10221,10000,3000,10490,1
+21697,160000,female,3,2,24,0,0,0,0,0,0,133268,133059,135452,136804,116042,118202,4753,5142,4450,4178,5000,5000,0
+21698,130000,female,1,2,23,-1,-1,-1,-1,-1,0,4459,13453,3656,5008,13734,14976,13485,3656,5024,13734,3000,822,0
+21699,50000,female,1,2,23,-2,-2,-2,-2,-2,-2,307,0,0,0,0,0,0,0,0,0,0,0,0
+21700,30000,female,3,1,21,0,0,0,0,2,0,28884,25277,25289,25971,25350,5082,2091,1600,1600,301,102,40,0
+21701,20000,female,1,2,23,-1,0,0,0,0,0,4456,7339,9662,9708,4779,6968,3000,4029,5514,3000,3000,8000,0
+21702,110000,female,2,2,23,0,0,0,0,0,0,37129,32761,26428,23043,20338,7680,1800,1554,1212,0,0,74458,0
+21703,50000,female,3,2,24,2,0,0,0,0,0,57396,58941,60630,53662,20229,19044,2500,3000,5064,1000,840,1000,1
+21704,50000,female,1,2,24,2,2,2,2,0,0,45049,43379,46097,44187,43165,37967,0,3628,8,1500,1490,1303,1
+21705,80000,female,2,2,23,0,0,-1,0,0,0,80715,82687,80613,80671,72785,74313,5000,81000,2776,2600,2696,2812,0
+21706,20000,female,2,1,24,0,0,2,0,0,2,16505,18817,18227,19632,20298,20337,2905,0,1720,1754,893,0,1
+21707,20000,female,2,1,24,0,0,0,-1,-1,-1,16393,8118,5463,1379,2668,390,1688,1463,1379,2668,390,390,0
+21708,150000,female,1,2,23,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+21709,50000,female,1,2,23,0,0,0,0,0,0,45345,46403,38343,32214,17292,7501,2010,2046,1866,310,300,483,0
+21710,20000,female,1,2,24,0,0,2,-1,-1,0,5275,5487,2778,6572,5016,2508,2778,0,6572,5016,0,0,0
+21711,130000,female,1,1,23,1,2,-1,-1,-1,-1,126885,62717,29615,22110,15352,10452,239,29615,22135,15352,10452,4623,0
+21712,130000,female,2,2,25,-1,-1,-1,-1,-1,-1,3639,396,396,396,396,396,396,396,396,396,396,396,0
+21713,60000,female,2,2,24,0,0,0,0,0,0,52676,41956,29626,29804,28045,28629,1778,1794,1772,1200,1186,1513,0
+21714,110000,female,2,2,24,0,0,-1,-1,-1,-1,6071,0,3308,2527,1076,1164,0,3308,2527,1079,1167,1974,0
+21715,80000,female,2,2,22,1,2,2,-2,-2,-2,7369,7000,0,0,0,0,0,0,0,0,0,0,0
+21716,50000,female,1,2,24,0,0,0,0,0,0,40246,41679,41688,32806,18609,19793,2128,3000,6000,1000,1500,705,0
+21717,80000,female,2,2,24,0,0,0,0,0,0,75125,77353,78321,73731,39643,39457,3503,5001,2092,1218,1445,878,0
+21718,150000,female,1,2,24,-2,-2,-2,-2,-2,-2,4244,9830,7588,13896,528,0,9830,7588,13907,528,0,6093,0
+21719,50000,female,1,2,24,1,2,2,0,0,2,50789,52158,51051,50959,51121,49344,2500,0,2100,3500,0,2000,0
+21720,270000,female,2,1,25,0,0,0,0,0,0,184560,178592,170225,156719,151716,153519,6061,6081,5072,5009,5254,4069,0
+21721,180000,female,1,2,23,0,0,0,0,0,0,6825,4094,4268,5423,6423,7404,2015,3000,3000,1000,1814,3000,0
+21722,80000,female,1,2,24,-2,-2,-2,-2,-2,-2,0,698,4949,967,5762,0,698,4949,967,5775,0,0,0
+21723,50000,female,2,2,24,0,0,0,0,0,0,48393,49405,50934,7728,8390,48679,1814,2343,1137,799,41933,1943,1
+21724,210000,female,2,2,24,-1,-1,-1,-1,-1,-2,1077,7882,816,300,0,0,7960,816,300,0,0,0,1
+21725,90000,female,2,2,24,0,0,0,0,0,2,12750,15359,16404,17424,18925,18483,3155,1600,1600,2100,0,1500,0
+21726,130000,female,1,2,24,0,-1,-1,2,0,0,9920,5500,670,670,670,670,5555,670,0,0,0,0,0
+21727,60000,female,2,2,24,-2,-2,-2,-2,-2,-2,5648,12270,0,0,479,27485,12270,0,0,479,27485,0,0
+21728,320000,female,1,2,24,0,0,0,0,0,0,64232,67516,70774,70089,71994,57805,4000,4002,3000,15000,5000,5000,0
+21729,130000,female,1,2,25,1,-1,-1,-1,-1,-1,0,2178,604,700,0,1440,2178,604,700,0,1440,412,0
+21730,180000,female,2,2,25,0,0,0,0,0,0,109030,177633,139415,136942,114632,117808,78266,5203,30023,10024,10000,4458,0
+21731,100000,female,3,2,25,0,0,0,0,0,0,97997,97018,94247,62919,10492,4809,4000,4046,4752,4000,4500,3000,0
+21732,80000,female,2,2,25,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+21733,90000,female,4,2,25,-1,-1,-1,-1,-2,-2,1407,4989,998,0,0,0,5000,998,0,0,0,0,1
+21734,310000,female,1,2,25,0,0,0,0,0,0,140483,141796,145125,148388,152132,155887,4000,4500,4500,5000,5000,5000,0
+21735,360000,female,2,2,25,2,2,-2,-2,-2,-2,1614,-40,-40,-40,-40,1153,40,0,0,0,1193,17,0
+21736,180000,female,1,2,26,0,0,0,0,0,0,60258,51699,48469,49553,49772,50829,2130,2200,2200,2000,2000,2100,0
+21737,40000,female,1,2,24,-2,-2,-2,-2,-2,-2,5247,7196,6597,5552,4081,3232,7196,6597,5552,4081,3232,8390,0
+21738,20000,female,1,2,24,2,-1,2,0,0,0,1015,19214,15703,9914,8200,11876,19214,0,1000,0,5000,5400,1
+21739,90000,female,2,1,24,0,0,0,0,0,2,86422,89710,70681,73595,90755,53692,5000,3300,22837,3300,0,1650,0
+21740,210000,female,2,2,25,-1,-1,-1,0,0,0,2785,461,6472,83589,73689,64854,461,13966,80000,2326,2272,3661,0
+21741,180000,female,2,2,25,0,0,0,-2,-1,0,11393,2963,0,0,351,1351,2000,0,0,351,1000,0,0
+21742,220000,female,2,2,25,0,0,0,0,0,2,47588,47721,31027,31807,33966,33288,1479,1820,1600,2688,0,1500,1
+21743,150000,female,1,2,25,0,0,0,0,0,0,151160,152127,154652,157819,155982,154158,5526,5877,5804,5763,5669,5596,0
+21744,50000,female,2,2,25,0,0,0,0,-2,-2,18734,19340,10000,0,0,0,1340,1000,0,0,0,0,0
+21745,20000,female,1,2,25,1,-1,-1,-2,-1,0,2521,17360,0,200,17976,17980,17388,0,200,17976,4,2170,1
+21746,130000,female,1,2,25,0,0,0,0,0,0,55368,58035,47313,44568,48560,51529,5000,5000,5000,5000,5000,5000,0
+21747,200000,female,1,2,25,0,-1,-1,-1,-2,-2,136435,105,99230,92388,18758,0,105,99230,10038,18758,0,0,0
+21748,320000,female,3,2,25,0,0,0,0,0,0,66497,68327,68759,69746,70040,71076,3084,3007,3031,2367,2450,2432,0
+21749,90000,female,2,2,25,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+21750,160000,female,2,1,25,-1,-1,-1,-1,0,0,8030,8030,8030,19069,15359,10846,8030,8030,19069,5359,377,5877,1
+21751,210000,female,1,1,26,1,2,-1,-1,-1,2,5589,2687,3746,5000,5618,3618,14,4062,5005,5618,0,1354,0
+21752,360000,female,1,2,26,-2,-2,-2,-2,-2,-2,2741,-59,-59,11868,-2,450,0,0,11927,0,452,3818,0
+21753,220000,female,2,2,26,2,2,2,2,0,0,80055,82646,81229,80175,79563,82371,4500,450,2000,300,3310,16,1
+21754,200000,female,1,2,25,1,-2,-2,-2,-2,-1,2396,1823,1630,2203,1443,1823,1823,1630,2203,1443,1823,1027,0
+21755,60000,female,4,2,27,0,0,0,0,0,0,170536,175143,180162,190202,209923,55491,5143,5162,10202,19923,1591,5500,0
+21756,30000,female,2,2,24,0,0,0,0,0,0,27690,28543,8536,9497,29046,29873,1578,1239,1200,25000,1200,0,0
+21757,50000,female,3,1,24,0,0,0,0,0,0,48789,49755,49551,49800,20000,0,1775,2221,1470,400,0,0,0
+21758,90000,female,1,2,25,0,0,0,0,0,0,14550,15205,15523,15850,15849,17309,2000,2000,5000,2000,2000,5000,0
+21759,110000,female,2,2,25,0,0,0,0,0,0,38152,39214,39981,41312,42028,42899,2000,1700,2000,1700,1700,2300,0
+21760,140000,female,2,2,25,0,0,0,0,0,0,133714,137585,131666,114989,81475,82812,6560,6200,4246,5000,3000,3000,0
+21761,200000,female,2,2,25,-1,-1,-1,-1,-1,-1,2298,1490,1669,142,1100,6861,1490,1669,144,1100,6861,1110,0
+21762,30000,female,2,2,25,0,0,0,0,0,0,26815,27990,29224,26692,18466,29824,2000,2000,1527,1600,1000,1000,0
+21763,50000,female,1,2,25,-1,-1,-1,-1,-1,-1,3195,3548,23231,2881,3048,2739,3557,23501,2889,3057,2746,47651,0
+21764,50000,female,1,2,25,2,2,3,2,2,2,40959,43870,42891,43582,44561,45592,3900,0,1700,2000,1900,1800,1
+21765,50000,female,1,2,25,0,0,-1,0,0,0,4705,9557,7861,8984,10664,7292,5000,7861,1320,2000,6000,10000,0
+21766,80000,female,3,1,24,-1,-1,-1,2,-1,-1,754,-69,3330,2699,1853,184,0,3399,0,1853,184,1350,0
+21767,240000,female,4,2,25,0,0,0,0,0,0,26501,26869,27488,17891,6696,4129,5000,6000,3000,0,0,3585,0
+21768,120000,female,3,2,25,0,0,0,0,0,0,106621,105893,107838,103273,101353,87934,4000,5013,4000,3199,3130,4000,1
+21769,200000,female,1,2,26,-2,-2,-2,-2,-2,-2,5337,2322,7458,1086,25643,35237,2322,7471,1086,25643,35237,7678,0
+21770,140000,female,1,2,26,0,0,-2,-2,-2,-2,21688,0,0,0,0,0,0,0,0,0,0,0,0
+21771,360000,female,2,2,26,0,0,0,0,0,0,22233,22935,23816,13800,11000,0,1287,1152,1000,1000,0,179,0
+21772,70000,female,2,1,26,0,0,0,0,0,0,41659,42652,43705,45965,46900,47884,1687,1740,3000,1700,1739,1770,0
+21773,170000,female,2,2,26,2,0,0,0,2,0,111170,113387,115807,119857,117100,118079,4065,5727,7500,2000,4200,5000,1
+21774,140000,female,3,2,26,2,0,0,0,0,0,144010,142724,142802,140103,142750,142855,5301,5400,5100,5300,5500,5400,1
+21775,20000,female,2,2,24,3,2,3,2,3,2,17690,19102,19502,20881,20266,20511,2000,1000,2000,0,700,0,1
+21776,50000,female,1,2,24,0,0,0,0,0,2,12986,13994,15020,16335,17040,16625,1230,1256,1571,1276,0,624,0
+21777,110000,female,1,2,25,0,0,0,0,0,0,92332,77807,75559,74371,75126,73799,2800,3703,2700,2200,1810,3000,0
+21778,180000,female,2,2,26,1,-2,-1,-1,-2,-2,0,0,1000,0,0,0,0,1000,0,0,0,0,0
+21779,90000,female,2,2,25,2,0,0,0,0,0,77651,78651,79972,81415,81878,83206,3300,3600,3805,3100,3200,4100,1
+21780,120000,female,1,2,26,0,0,0,0,0,0,115520,98551,84797,66398,44428,31738,5001,5076,5000,3042,2110,600,0
+21781,140000,female,1,2,26,0,0,0,0,0,0,63119,64240,64992,52809,51406,50328,2450,2226,2367,1740,1754,1818,0
+21782,290000,female,2,1,26,0,0,0,0,0,0,262518,180499,138326,128721,95657,90210,6500,5300,4000,5000,3000,2974,1
+21783,310000,female,1,2,26,0,0,2,2,-1,2,11683,9624,9022,-422,6214,2360,3000,0,0,6900,0,1300,0
+21784,30000,female,1,2,27,0,0,0,0,0,0,3812,5744,8642,11492,14285,17056,2000,3000,3000,3000,3000,1000,0
+21785,200000,female,1,1,25,-1,-1,-2,-2,-2,-2,776,0,0,151,0,0,0,0,151,0,0,0,0
+21786,180000,female,3,2,26,-1,2,-1,2,2,-2,1728,1539,2703,1650,0,0,0,2703,0,0,0,0,0
+21787,120000,female,2,1,24,0,0,0,0,0,0,56324,28542,13590,11501,10151,11171,3000,5007,3200,2000,3000,0,0
+21788,290000,female,1,2,25,-1,-1,-1,0,0,0,11102,9327,22149,23737,13449,17963,9358,22149,20000,3449,7000,11041,0
+21789,90000,female,3,2,26,0,0,0,0,0,0,91564,43201,42219,1769,2269,3269,3000,3000,1000,500,1000,86500,0
+21790,260000,female,1,2,26,0,0,0,0,0,0,145165,149173,142730,148307,152375,158435,6500,7000,8000,6500,8500,5600,0
+21791,230000,female,1,2,26,-2,-1,-1,0,0,0,865,221,16601,17833,15708,10013,221,16601,1513,1000,350,500,0
+21792,270000,female,1,2,27,-1,-1,2,2,-1,-1,9112,6035,3687,0,887,690,6035,0,0,887,690,6331,0
+21793,280000,female,2,2,29,-1,-1,-1,-1,-1,0,11536,3408,8220,2287,10969,5395,3419,8283,2287,10969,0,0,0
+21794,110000,female,2,2,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+21795,60000,female,1,2,27,-1,-1,2,0,0,0,1130,7,7,11965,11958,12069,7,0,11958,0,611,0,0
+21796,70000,female,1,2,27,0,0,0,0,0,0,70844,64697,65455,66247,65230,66685,3000,2400,3000,2400,2500,2500,0
+21797,100000,female,2,1,27,2,0,0,0,0,2,101429,79254,80910,83072,87774,90579,2833,2929,3500,6100,4367,0,1
+21798,140000,female,2,1,27,0,0,0,0,0,0,125792,126771,132730,124689,105447,106704,5000,10000,5000,5000,5000,5000,0
+21799,50000,female,2,1,22,0,0,0,0,0,0,34250,34833,35625,36754,16943,16234,1550,1750,2270,603,713,1000,1
+21800,80000,female,1,2,23,0,0,0,0,0,0,74464,69584,66342,60514,48965,29648,3117,2519,1838,1434,1015,1505,0
+21801,40000,female,5,1,24,0,0,0,0,0,0,40848,39270,40929,40528,39575,40526,1650,2300,1600,1330,1500,1500,0
+21802,140000,female,2,2,24,0,0,0,0,0,0,135432,136312,131559,111859,98815,97443,6500,4733,4015,4000,4000,3800,1
+21803,200000,female,2,2,24,0,0,0,0,0,-2,19326,20330,21362,22000,2000,950,1330,1362,1000,2000,950,0,0
+21804,50000,female,2,2,24,1,2,3,2,2,2,16455,17885,18305,18708,19105,19653,2000,1000,1000,1000,1000,1000,0
+21805,80000,female,2,2,24,0,0,0,0,-1,-1,41444,14262,14631,8592,1425,88516,1306,1500,1500,1425,88516,3300,0
+21806,270000,female,2,1,26,0,0,0,0,0,-1,22804,11496,12273,12014,10597,31182,1496,2273,2014,597,31182,82615,0
+21807,70000,female,2,1,27,0,0,0,0,0,0,69762,68914,69252,70415,69212,70514,2450,2600,2700,2500,2800,2500,1
+21808,200000,female,1,2,25,0,0,0,-1,0,0,11740,7221,1341,25068,52486,45047,2012,1025,32994,37042,2004,2502,0
+21809,170000,female,2,2,25,0,0,0,0,0,0,26151,24019,26013,24471,23496,25333,3000,5000,2000,2000,5000,895,1
+21810,420000,female,2,2,25,0,0,0,0,0,0,23191,24541,24813,25893,26397,26557,2267,2034,1500,1467,1267,1767,0
+21811,50000,female,1,2,26,2,0,0,2,2,2,25875,27132,29695,30908,30112,32123,2000,3000,2000,0,2500,0,1
+21812,140000,female,2,2,27,0,0,0,0,0,0,124753,101551,93649,89574,90413,90596,3626,4324,3207,4000,3500,3390,0
+21813,130000,female,1,2,27,-1,0,0,0,0,0,19486,52960,26491,19038,22297,25986,35000,10048,8000,5000,6000,8000,0
+21814,270000,female,1,2,27,-1,-1,-1,0,0,0,1390,363,14770,14367,14388,47441,363,14841,1200,1288,41437,1335,0
+21815,80000,female,5,2,27,0,0,0,0,0,0,81787,77845,60159,54151,45108,44490,2600,3009,2200,2000,2000,2832,0
+21816,160000,female,2,1,26,1,2,0,0,0,2,46835,45781,47040,47807,50711,40166,0,2000,1700,3550,0,2000,0
+21817,130000,female,2,2,26,0,0,0,0,-1,0,130318,131351,131352,121931,61755,61453,4700,5108,3860,82367,3041,2000,1
+21818,160000,female,2,2,27,0,0,0,0,0,0,100613,78592,80240,39835,41150,0,3600,3700,1700,2000,0,0,0
+21819,180000,female,2,2,27,0,0,0,0,0,0,173098,172494,172060,166204,145146,142961,8000,8100,8000,5600,5500,15000,0
+21820,180000,female,1,2,27,1,-1,-1,-1,-1,-1,0,2039,2000,3918,710,6761,2039,2000,3918,710,6761,3077,0
+21821,210000,female,3,1,27,0,0,-2,-1,-1,-2,4700,0,0,1008,0,0,0,0,1008,0,0,0,0
+21822,150000,female,3,2,26,0,0,0,0,0,0,21081,7985,7315,11295,10413,16745,2200,2500,6023,5000,6745,2155,0
+21823,360000,female,1,1,26,-2,-2,-2,-2,-2,-2,1517,2742,2317,2482,1415,2095,2749,2322,2482,1417,2095,3228,0
+21824,470000,female,2,2,26,0,0,0,0,0,0,27134,26594,26805,24808,21101,17906,1500,1502,3696,1008,1006,1001,0
+21825,40000,female,1,2,27,0,0,0,-1,0,0,33563,20539,2360,38639,8899,0,1204,1000,38639,178,0,0,0
+21826,200000,female,1,2,27,0,0,0,0,0,0,201202,202252,195276,167209,144232,137271,15200,9600,9503,5148,4968,4930,0
+21827,150000,female,1,2,27,0,-1,0,-1,-1,-1,8000,13024,9809,8000,800,1072,13024,3000,8100,800,2524,24902,0
+21828,90000,female,2,2,25,0,0,0,0,0,2,65924,58210,60050,61448,73852,72551,3000,2771,3000,13500,0,3000,1
+21829,60000,female,2,2,26,1,2,0,0,-2,-2,47963,36871,3800,0,0,0,0,1038,0,0,0,0,0
+21830,80000,female,1,2,26,-1,-1,-1,-1,-2,-1,4620,2991,1441,1608,1453,4287,2991,1500,1608,1453,4287,6000,0
+21831,160000,female,1,2,26,0,0,2,0,0,0,13122,14011,12276,7457,7267,5529,4000,1000,2000,2000,2000,500,0
+21832,130000,female,1,2,27,1,-2,-1,2,2,-1,0,0,98,98,98,2500,0,98,0,0,2500,0,0
+21833,70000,female,3,2,26,0,0,0,0,0,0,70251,29481,8948,9006,10570,11421,2000,1200,1500,2000,1000,2000,0
+21834,170000,female,2,2,24,-1,-1,-1,-1,0,-1,1471,6040,1471,3398,1929,11966,6040,1471,3398,2,11966,10051,0
+21835,50000,female,2,2,25,0,0,0,-1,0,-1,4406,3732,0,4249,4865,2157,3000,0,4249,2065,2157,0,0
+21836,100000,female,1,1,25,0,0,-1,0,0,0,7565,460,98796,52079,40183,35796,28,103350,1722,1100,1300,2000,0
+21837,130000,female,1,2,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,623,0
+21838,60000,female,2,2,23,0,0,0,0,0,0,56397,57112,58057,59006,39578,38973,2039,2250,2060,1506,1500,1500,0
+21839,290000,female,2,2,25,0,0,0,0,0,0,140615,142201,145676,144305,140375,142119,7003,7037,7019,6005,6006,6011,0
+21840,50000,female,2,1,26,1,-1,2,2,-2,-2,0,1000,2000,0,0,0,1000,0,0,0,0,0,0
+21841,140000,female,1,2,24,0,0,0,0,0,0,28872,30083,31119,32597,33257,35061,2000,1522,2000,1500,2500,2000,0
+21842,120000,female,1,2,24,0,0,0,0,-1,-1,3377,4644,8528,8200,3488,1161,2500,5000,1000,3488,1161,5036,0
+21843,190000,female,2,2,26,0,0,2,0,0,0,115608,138097,130898,130950,115342,115657,26500,0,7000,4550,4600,4170,0
+21844,30000,female,2,2,22,2,-1,-1,-1,-1,-1,174,1995,3530,0,5960,0,1995,3530,0,5960,0,1778,0
+21845,160000,female,3,2,26,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,390,0
+21846,230000,female,4,2,26,1,-1,2,-1,-1,-1,0,500,500,624,1090,2952,500,0,624,1090,2952,1505,0
+21847,130000,female,3,2,27,0,0,0,0,0,0,124769,127966,119008,46659,47588,47698,5400,3941,1742,1671,1712,1730,0
+21848,340000,female,1,2,27,0,0,0,0,0,0,195524,196119,197690,182112,166822,143166,7524,9809,7852,6525,6002,6007,0
+21849,230000,female,1,2,28,2,0,0,0,0,0,101347,95956,87294,85336,81640,82462,4179,4231,4061,2846,2800,2909,1
+21850,90000,female,1,2,25,0,0,0,0,0,0,33336,39009,47657,52372,52112,56257,10000,10000,6000,1570,5000,1363,0
+21851,300000,female,2,2,26,0,0,0,0,0,0,63425,50294,38235,29944,26259,26288,3005,2691,2400,1000,1000,859,0
+21852,110000,female,2,2,25,0,0,0,0,0,0,52059,49709,8504,7277,7774,8261,1150,1330,2500,1000,1000,1000,1
+21853,140000,female,1,2,25,0,0,0,0,0,0,38199,38810,39811,41133,41730,42026,2000,2000,2000,2000,2000,2000,0
+21854,180000,female,2,2,26,0,0,0,0,0,0,3739,4889,7768,7156,6956,29402,3889,4739,2289,4289,26735,3972,1
+21855,70000,female,1,2,26,1,2,2,2,2,2,52204,53250,53799,52330,55666,56839,2500,1983,0,4206,2200,0,1
+21856,180000,female,2,1,27,0,0,0,0,0,0,117703,116372,115445,112938,109306,104106,4171,4200,4000,3789,3959,3300,0
+21857,150000,female,2,2,27,-1,-1,-1,-1,-1,0,7815,4914,6237,3280,11167,15915,4933,6237,3280,11167,10000,686,0
+21858,30000,female,2,1,27,0,0,2,0,0,0,27347,31402,30047,30869,29403,29831,5500,0,3000,998,3000,3000,0
+21859,230000,female,2,2,25,0,-1,2,0,0,0,14330,222761,197630,172058,174123,178052,232557,0,7556,6219,6721,7074,0
+21860,180000,female,2,1,27,1,-1,-1,-1,-1,-1,0,376,0,390,698,636,376,0,390,698,636,456,0
+21861,150000,female,2,2,27,0,0,0,0,0,0,61162,50928,47542,46644,31595,24473,3000,5000,5065,5000,2000,5000,0
+21862,40000,female,1,2,27,0,0,0,0,0,0,30923,26175,27251,29397,19650,23202,5000,1522,10000,10000,15000,841,0
+21863,40000,female,1,2,27,0,0,0,2,2,2,37005,38084,41156,39986,40465,36745,2000,4000,0,1000,0,0,1
+21864,120000,female,2,2,27,2,2,2,2,0,0,113354,115503,121861,117485,118381,115604,6200,10900,0,5000,4800,4505,1
+21865,140000,female,1,2,27,0,0,0,0,0,0,14997,16437,18848,21209,25503,27918,2000,3000,3000,5000,3000,10000,0
+21866,80000,female,1,1,27,-1,-1,-1,-1,-2,-2,494,329,4724,0,1054,0,329,4750,0,1054,0,4252,0
+21867,420000,female,1,2,27,-1,-1,-1,-1,0,0,15629,5402,1237,24712,11912,12647,5402,1237,24712,0,2647,22019,0
+21868,180000,female,3,2,27,-1,-1,-1,-1,-1,-1,3578,3898,0,715,4079,0,3898,0,715,6942,0,213,0
+21869,90000,female,2,1,27,0,0,0,0,0,0,73849,70549,49858,43303,29888,24973,2900,2012,1603,1208,1000,707,0
+21870,330000,female,2,1,27,-2,-2,-2,-2,-2,-1,0,0,0,0,0,2234,0,0,0,0,2234,1000,0
+21871,260000,female,2,1,27,0,0,0,0,0,0,71865,75459,77240,78856,80350,84040,5000,3000,3000,3000,5000,5000,0
+21872,200000,female,2,2,27,-1,-1,-1,-1,-1,-1,1126,390,390,390,540,770,390,390,390,540,770,13993,0
+21873,30000,female,2,2,23,0,0,0,0,2,0,19769,24285,26143,26929,19610,20591,5896,3002,2130,2,3004,8013,0
+21874,300000,female,2,2,24,0,0,0,0,0,0,16463,11537,9265,7263,14145,11535,1500,1500,1500,9433,2000,3000,0
+21875,130000,female,1,2,24,0,0,2,0,-1,-1,16078,16055,13371,4405,1292,390,4176,0,1000,1292,390,2165,0
+21876,30000,female,2,2,22,-1,0,-1,-1,-1,-1,2293,3158,5547,3312,3145,3022,1009,5572,3321,3154,3031,3339,0
+21877,30000,female,2,2,23,1,2,2,2,2,2,11174,11989,12997,12491,13374,13017,1300,1500,0,1090,0,2000,1
+21878,130000,female,1,2,23,0,0,0,0,0,0,102087,101079,93977,94427,89041,89833,4500,4363,3300,3178,3178,3424,0
+21879,190000,female,2,2,28,0,0,0,0,0,2,188370,188550,187521,190448,195492,190598,8700,8500,9270,14100,0,7200,0
+21880,230000,female,2,2,23,3,2,2,-1,-1,-2,1090,490,0,878,0,0,0,0,878,0,0,0,1
+21881,50000,female,2,2,24,-1,0,-1,2,2,-2,18625,19956,5177,2071,0,0,2071,5191,6,0,0,10450,0
+21882,70000,female,2,1,24,0,0,0,0,0,0,8193,7569,8127,8838,8736,10753,1122,2127,2000,1736,2753,2177,0
+21883,50000,female,2,1,25,0,0,0,0,0,0,59010,57593,56203,54794,53509,52021,2039,2015,2000,2100,2000,2100,1
+21884,60000,female,1,2,24,0,-1,0,0,-1,-1,47386,4807,3434,2386,2837,3358,4807,1048,1000,2837,3358,5093,1
+21885,150000,female,2,2,25,-2,-2,-2,-2,-2,-2,36215,6105,1076,0,3113,0,6105,1084,0,3113,0,0,0
+21886,240000,female,2,1,27,0,0,0,0,0,0,240428,235782,129479,125584,128752,130651,7227,4486,3557,4235,3593,349,0
+21887,110000,female,2,2,25,0,0,0,0,0,0,50406,45099,46002,44701,42706,43513,1800,1800,1700,1500,1600,2000,0
+21888,110000,female,2,1,26,0,0,0,0,0,0,108001,90128,92103,87049,66820,65823,3500,3500,3000,2342,2390,3000,0
+21889,50000,female,2,2,25,0,0,0,0,0,0,47858,40506,40110,41070,40731,40440,1949,1685,2777,1423,1462,1463,0
+21890,210000,female,1,2,29,-2,-2,-2,-2,-2,-2,10692,-3,-3,-3,650,1850,0,0,0,653,1859,1411,0
+21891,160000,female,1,2,28,-1,-1,-1,-1,-1,-1,3849,6393,6969,9044,2325,3998,6458,6980,9044,2325,4997,9947,0
+21892,120000,female,1,2,29,0,0,0,0,0,0,3706,101833,103108,100953,83739,51424,100000,5369,4014,1000,1000,1000,0
+21893,130000,female,5,1,27,0,0,0,0,0,0,131041,133792,127622,129795,122416,124653,6500,5000,5000,5000,5000,5000,0
+21894,170000,female,2,2,27,0,0,0,0,0,2,168858,171530,164509,128279,139968,127502,7000,6500,8000,15462,2163,4300,0
+21895,120000,female,1,2,27,0,0,0,0,0,0,35238,35907,31513,31659,30069,8005,1777,2254,1400,800,400,6262,0
+21896,170000,female,1,2,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+21897,290000,female,2,2,27,0,0,0,0,0,0,240506,235475,240584,212024,216379,209440,8601,9300,8000,7612,8015,7008,0
+21898,70000,female,1,2,27,-1,-1,-1,-1,-1,-1,157,157,157,157,157,307,157,157,157,157,307,507,0
+21899,140000,female,2,2,27,0,0,0,0,0,0,136276,139504,140262,138958,136898,141634,7000,6000,7000,5000,10700,4600,0
+21900,180000,female,1,2,27,1,2,2,2,0,0,5892,4824,3784,3089,2715,1821,0,3089,0,1521,0,347,1
+21901,200000,female,1,2,27,-1,-1,-2,-1,-1,-2,1171,0,0,680,0,0,0,0,680,0,0,442,0
+21902,90000,female,2,2,27,0,0,2,0,0,0,97973,100442,89242,82784,53609,49048,12500,2,5085,5000,3000,1004,1
+21903,80000,female,2,2,27,0,0,0,-1,-1,-1,52934,54217,52394,2131,744,758,3000,1064,2500,1000,1000,1000,0
+21904,130000,female,1,1,27,-1,-1,-1,-1,-1,-1,3363,8305,15253,7338,3666,7856,8319,15253,7338,3669,7856,7836,0
+21905,20000,female,2,1,27,-1,-1,2,0,0,0,191,20391,19292,19545,18945,19494,20200,0,1310,678,854,767,0
+21906,200000,female,1,2,27,-2,-2,-2,-2,-2,-2,4257,3690,4460,3190,5238,950,3690,4460,3190,5238,950,250,1
+21907,200000,female,2,2,27,-1,-1,-1,0,-1,-1,13285,2150,14122,27413,35377,29922,2155,14122,23007,7212,29922,37790,0
+21908,120000,female,2,2,27,1,-2,-1,-1,-2,-2,0,0,2382,0,0,0,0,2382,0,0,0,0,1
+21909,60000,female,3,1,28,0,-1,-1,-1,-1,0,7207,12625,6244,13615,25475,26237,12625,6244,13615,25478,5000,5000,0
+21910,340000,female,3,2,28,0,0,0,0,0,0,1830,4777,7681,12519,15299,15905,3000,3000,5000,3000,1000,10000,0
+21911,150000,female,1,2,28,-1,2,-1,2,0,-1,1040,148,9173,296,148,446,0,9173,0,0,446,0,1
+21912,160000,female,3,2,28,-1,-1,-1,-1,-1,-1,408,99,99,398,99,569,99,99,398,99,569,751,0
+21913,200000,female,1,2,28,0,0,0,0,0,0,52935,51971,51341,49090,50009,51076,2500,2200,2500,3500,3000,3000,0
+21914,50000,female,3,1,28,0,0,2,2,0,0,43165,49091,50453,49037,28589,29392,6987,2433,0,1145,3167,0,1
+21915,170000,female,1,2,27,-2,-2,-2,-2,-2,-2,106,18719,30000,0,0,1532,18719,30000,0,0,1532,0,1
+21916,280000,female,2,1,27,0,0,2,2,2,2,109392,128447,131053,132418,134038,136939,21000,6150,5000,5300,5200,5250,0
+21917,270000,female,1,2,26,0,0,0,0,0,0,209164,201798,186008,173810,159418,139200,6429,5959,6863,3762,3907,4207,0
+21918,120000,female,2,2,27,-1,-1,-1,2,-1,-1,1184,1066,5079,2528,4007,7457,1066,5079,0,4007,7457,2819,0
+21919,280000,female,1,2,27,-1,-1,-1,-1,-1,-1,6585,4308,0,1265,1627,204,4308,0,1265,1638,204,3908,0
+21920,50000,female,1,2,27,0,0,0,0,0,0,30951,28622,11656,5435,6337,7227,1600,1542,1100,1000,1000,284,0
+21921,200000,female,1,2,28,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,510,0
+21922,50000,female,2,1,27,0,0,0,0,0,0,47254,43583,35245,27520,25928,26470,1720,3100,1723,1100,1111,1200,1
+21923,150000,female,1,2,28,0,-1,-1,0,0,0,6121,4391,6269,8992,4314,11131,4391,6269,8914,4300,11100,52900,0
+21924,50000,female,3,2,28,3,2,2,7,7,7,2350,2400,2400,2400,2400,2400,50,0,0,0,0,0,1
+21925,150000,female,2,2,27,-1,-1,-1,-1,0,0,1518,1798,5699,4644,70337,67902,1798,5699,4644,70331,3000,3000,0
+21926,150000,female,1,2,27,-2,-2,-2,-1,0,0,-3706,-6108,32662,59350,41136,28596,3449,46128,60260,30218,17000,20133,0
+21927,90000,female,2,2,27,-1,-1,0,0,0,0,18674,88907,90659,82827,79359,81401,92858,4100,3200,3100,3500,3500,0
+21928,500000,female,1,2,28,0,0,0,0,0,0,93625,101723,95390,102203,47388,73230,11723,15390,12239,6000,30000,6000,0
+21929,300000,female,2,2,28,0,0,0,0,0,0,327724,325970,325020,319750,265136,262378,11250,11877,10487,7831,8092,7634,0
+21930,240000,female,2,2,28,0,0,0,0,0,0,234053,132007,234638,239790,132697,135561,5000,120000,10000,5000,4100,4000,0
+21931,120000,female,2,2,28,0,0,0,0,-2,-2,48499,48684,6344,0,0,0,1621,1000,1326,0,0,0,0
+21932,120000,female,2,1,28,-2,-2,-2,-2,-2,-2,1613,136,0,0,0,0,136,0,0,0,0,0,0
+21933,390000,female,1,2,28,0,0,0,0,0,0,125863,131249,119175,115922,101725,90334,10053,5028,5045,3012,3000,5572,0
+21934,200000,female,2,1,28,0,0,0,-1,0,0,5733,4426,3559,22458,20888,17875,2023,2018,22491,7521,2000,3000,0
+21935,80000,female,2,2,24,0,0,2,2,2,2,70411,75874,76710,74792,79636,77757,6657,2629,0,6000,0,3000,0
+21936,20000,female,2,2,23,2,2,0,0,0,0,12492,11995,13324,14029,14308,14625,0,1528,1233,512,547,3880,1
+21937,50000,female,2,2,24,0,0,0,0,0,0,26735,26994,28331,27138,26499,27301,1500,1798,1605,966,1247,1500,0
+21938,70000,female,2,2,25,2,0,0,0,0,0,46526,47820,48750,49936,51102,52276,2070,2000,2000,2000,2000,2100,1
+21939,170000,female,2,2,24,0,0,0,0,0,0,169398,143539,125642,48926,23381,24492,5679,6642,8926,3381,4000,2983,0
+21940,80000,female,2,2,25,2,2,2,0,0,0,77096,83189,81308,81847,81077,79885,8000,0,2800,3000,3390,7950,0
+21941,310000,female,2,2,27,0,0,0,0,0,0,122127,110388,119365,113435,140988,145161,10000,10124,20000,30125,30137,20171,0
+21942,230000,female,1,2,27,0,0,0,0,0,0,145959,94798,70299,40299,33112,18009,3551,3000,1284,1000,1000,1000,0
+21943,20000,female,2,2,27,0,0,0,0,0,0,18833,19404,18699,19324,16234,16609,1290,2000,2000,1000,1000,3000,0
+21944,270000,female,2,1,27,1,2,0,0,0,0,253072,247521,253024,258109,243331,247504,0,11000,11000,8900,9000,9200,0
+21945,230000,female,3,2,27,-1,2,-1,-1,0,-1,6155,5650,3004,4200,1400,4222,500,3004,4200,0,4222,4649,1
+21946,230000,female,2,2,28,0,0,0,0,0,-1,7865,12377,12543,13713,17960,650,5000,2000,1500,5000,650,0,0
+21947,200000,female,1,2,28,0,0,0,0,2,2,58833,61991,7357,9471,8538,7685,4100,3000,3000,0,1000,0,0
+21948,30000,female,3,2,28,-1,-1,-1,-1,-1,2,8432,25460,557,1299,600,450,25460,1000,1306,600,0,11961,0
+21949,300000,female,2,2,28,0,0,2,2,2,2,275855,286812,280337,318248,316147,303666,15000,7000,50000,12000,0,13000,1
+21950,500000,female,1,2,29,-1,-1,-1,-1,0,0,16090,36635,75434,928,56705,81334,37039,78079,1708,25000,106260,20000,0
+21951,170000,female,1,2,29,1,-1,-1,-1,-2,-2,0,6390,1690,0,0,0,6390,1690,0,0,0,0,0
+21952,200000,female,2,2,29,-1,-1,-1,-1,0,0,18568,-49,980,3682,3682,0,0,1029,3682,0,0,590,0
+21953,500000,female,1,2,29,0,0,0,0,0,0,33107,34773,35426,28479,15729,7905,7000,6664,1500,501,5000,3000,0
+21954,50000,female,2,2,29,0,0,0,0,0,0,50029,48347,49268,50437,37302,38302,2100,2000,2100,1400,1600,1600,0
+21955,150000,female,1,2,29,-1,2,-1,-1,0,0,2599,1530,390,1366,780,0,0,390,1366,0,0,431,0
+21956,100000,female,2,2,29,0,0,0,0,-1,0,47107,60800,68095,64339,15522,51336,18000,10000,2635,15522,41136,2000,0
+21957,150000,female,1,2,26,0,0,0,0,0,0,24848,22726,11145,15690,17875,24590,14000,5000,5000,7875,13000,2000,0
+21958,170000,female,1,2,26,0,0,0,0,0,0,22680,13827,9522,10254,5520,6212,2000,2000,2000,0,2000,1320,0
+21959,100000,female,2,2,27,0,0,0,0,0,0,42713,50270,22576,18247,22029,19540,10000,10000,1500,4000,5000,5000,0
+21960,160000,female,1,2,27,-2,-2,-2,-2,-2,-2,1040,1188,1276,372,372,372,1320,1276,372,372,372,372,0
+21961,90000,female,1,2,27,0,0,0,2,0,0,37026,40641,42142,35349,29790,26414,5000,3611,199,208,0,2000,0
+21962,190000,female,2,2,27,0,0,0,0,0,0,97136,98767,101452,103471,104083,106359,4418,5452,5471,4083,4359,3697,0
+21963,200000,female,2,2,28,0,0,0,0,0,0,61940,63314,64699,66029,66836,68390,3000,3000,3000,2500,2632,2700,0
+21964,50000,female,2,1,28,0,0,2,2,0,0,56701,57421,54587,49571,50028,17159,5000,2000,0,1809,35082,2000,0
+21965,260000,female,1,2,28,-2,-2,-2,-2,-2,-2,-28,5735,693,1557,685,11625,5763,703,1564,688,11683,6997,0
+21966,250000,female,2,2,29,0,-1,-1,-2,-1,-1,20687,14082,-38,-38,7581,5625,14158,0,0,7619,5653,652,0
+21967,230000,female,1,2,29,-2,-1,2,-1,-1,-1,3764,10943,6588,4571,2526,5375,11142,1430,4571,2526,5375,3133,0
+21968,240000,female,1,2,26,-1,0,-1,-1,-1,-1,28700,21944,12450,27255,6280,7619,1639,12450,28969,6280,7619,3000,0
+21969,110000,female,1,2,27,0,0,0,0,0,0,110553,108387,111427,111697,111956,111325,4000,4800,4300,4300,4400,3874,1
+21970,60000,female,1,2,27,1,-2,-2,-1,-1,-1,0,0,0,150,1179,778,0,0,150,1179,778,496,0
+21971,80000,female,1,2,24,0,0,0,-1,-1,0,42377,32482,20782,11632,64989,62392,2008,1000,11632,64989,1470,5027,0
+21972,230000,female,2,2,28,0,0,0,0,0,0,111295,112425,95155,72983,70329,69340,4473,5000,2624,2360,3100,1600,0
+21973,210000,female,1,2,28,0,-1,-1,-1,-1,-1,7457,1512,8475,5499,2960,670,1512,8475,5499,2960,670,25594,0
+21974,100000,female,2,2,28,2,2,2,2,2,0,72464,70710,72432,74322,74496,76058,0,3462,3700,2000,2760,2776,1
+21975,50000,female,2,2,29,2,2,2,2,0,0,48286,49286,50006,48846,45944,46925,2100,1800,0,1624,1700,3000,1
+21976,50000,female,2,2,27,0,0,0,2,0,0,42391,44689,48172,46937,48570,50144,3000,4200,0,3000,3800,0,0
+21977,40000,female,1,2,27,-1,0,0,-1,-1,0,27025,32228,38904,4235,87230,72647,6000,8040,4235,87230,3000,10000,1
+21978,90000,female,2,2,24,0,0,-2,-1,-1,-2,3386,-63,0,1176,0,0,0,780,1176,0,0,0,0
+21979,70000,female,1,2,25,0,0,0,0,2,2,35871,37174,37904,40651,39697,42253,1902,1632,3379,0,3200,0,0
+21980,30000,female,2,1,26,0,0,0,0,2,0,20105,21419,22278,24423,19985,15021,1650,1506,2651,0,2044,550,0
+21981,170000,female,1,2,27,-1,-1,-1,-1,-1,-1,272,272,272,755,759,602,272,272,755,759,602,2581,0
+21982,80000,female,2,2,27,0,0,0,0,0,0,83120,51347,44878,42108,28316,29523,1764,1906,2000,2000,2000,2000,0
+21983,140000,female,2,2,27,0,0,0,-1,-1,-1,16037,17066,21199,390,0,390,2000,5000,390,0,390,780,0
+21984,30000,female,2,2,25,0,0,2,0,0,0,5293,8107,7738,10179,11902,13109,3000,0,3000,2000,1500,1000,0
+21985,40000,female,2,2,25,0,0,0,0,0,0,26133,26896,27961,28995,29612,30434,1500,1500,1500,1100,1300,1200,1
+21986,50000,female,1,2,26,1,-2,-2,-1,-1,-1,0,0,0,1363,0,1624,0,0,1363,0,1624,2349,0
+21987,230000,female,2,2,26,0,0,0,0,0,0,2656,3678,4650,3234,4174,5100,1074,1046,1060,1000,1000,5000,0
+21988,60000,female,1,2,27,1,-1,-1,-1,0,0,0,3947,5691,21001,17931,2439,3947,5691,21028,0,0,841,0
+21989,60000,female,1,2,27,0,0,0,0,0,0,62321,61015,58160,51237,29999,28972,3000,3016,5011,1005,1000,14000,0
+21990,250000,female,2,2,29,0,0,0,0,0,0,46948,46351,33227,33732,32245,37589,2500,10000,3000,3000,8000,0,0
+21991,240000,female,1,1,29,0,0,0,-1,0,0,41923,21409,17833,194043,194991,192800,1779,1000,194043,6530,7000,7000,0
+21992,310000,female,1,2,28,0,0,0,0,0,0,176565,152037,166900,154297,146844,146883,25532,50120,30000,20000,5807,5800,0
+21993,320000,female,1,2,28,0,0,0,0,0,0,293073,293210,290057,25922,22982,20553,13300,12756,1295,10312,8394,8242,0
+21994,20000,female,1,2,28,0,0,0,-2,-2,-2,12031,13446,0,0,0,0,5000,0,0,0,0,612,0
+21995,300000,female,1,2,28,0,0,0,0,-1,-1,10291,19617,19326,10662,10162,10250,19326,10000,1940,10200,10500,10000,0
+21996,50000,female,2,2,28,0,0,0,0,0,0,10051,14149,21514,25359,30400,39678,5000,10000,5000,5780,10000,10000,0
+21997,570000,female,1,2,28,0,0,0,0,0,0,33675,29865,33337,32646,30465,31126,3000,5000,3016,3000,4000,4000,0
+21998,160000,female,1,2,28,0,0,0,0,0,0,118695,125186,131648,137902,145046,152551,10000,10000,10000,10000,10000,6000,0
+21999,230000,female,2,2,28,-1,-1,-1,-1,-1,-1,7539,6500,6500,45914,1465,600,6500,6500,45914,1465,600,958,0
+22000,250000,female,1,2,28,0,0,0,0,-1,0,45687,31114,21867,13190,27817,22001,5000,1585,3028,27817,0,0,0
+22001,80000,female,2,2,28,0,0,0,0,0,0,77391,78198,78840,79855,79488,80001,2784,2887,3402,2790,2867,2894,0
+22002,60000,female,3,2,28,-1,-1,0,0,0,0,396,43902,44802,42984,38495,39038,87804,2000,1567,1320,1500,2000,0
+22003,90000,female,5,2,24,0,0,0,0,0,-1,17584,18377,18496,11716,3163,30483,2000,1300,2000,67,30483,2905,0
+22004,150000,female,1,1,25,-1,-1,-1,-1,-1,-1,8319,5056,2441,4471,2441,0,5056,2441,4471,2441,0,3987,0
+22005,90000,female,3,1,25,0,0,0,0,0,0,25806,16919,17566,8718,6432,2655,1619,1266,1048,1032,1655,0,0
+22006,150000,female,1,2,25,1,-2,-2,-2,-2,-1,0,0,0,0,0,9240,0,0,0,0,9240,0,0
+22007,150000,female,1,2,24,0,0,0,0,0,0,52824,15214,16452,17281,18576,18783,4000,2000,2000,2000,2000,3000,0
+22008,400000,female,3,1,25,0,-1,-1,-1,-1,-1,12570,958,4465,14272,1965,958,958,4465,14272,1965,958,6405,0
+22009,200000,female,1,2,25,0,0,0,0,0,0,198890,200299,181617,181994,150013,150283,8058,6900,7022,5300,5368,5520,0
+22010,210000,female,1,2,25,0,0,0,0,0,0,66517,63828,60713,61949,61908,59914,3000,2500,6259,5000,3000,5000,0
+22011,140000,female,2,1,28,-1,2,-1,-1,-1,-1,1953,1366,464,337,548,395,0,464,337,548,395,681,1
+22012,220000,female,2,2,28,-1,-1,-1,-1,-1,-1,7468,5045,4944,7083,2495,8365,5045,4949,7083,2495,8365,5574,0
+22013,250000,female,2,1,29,0,0,0,-1,-1,-1,227762,191424,18016,15353,325,325,35018,1000,20000,325,325,318,0
+22014,120000,female,1,2,29,-1,-1,-1,-1,-1,-1,328,413,3007,1927,1838,2472,417,3012,1927,1838,2472,2341,0
+22015,200000,female,2,1,28,1,-1,-1,-1,-1,-1,0,2658,150,3570,2853,0,2658,150,3570,2853,0,0,0
+22016,50000,female,2,2,29,1,2,2,2,0,0,22021,22334,21047,19925,20638,18803,1000,2000,1000,1000,1000,1000,0
+22017,50000,female,3,2,29,0,0,0,0,-1,0,50148,50761,35777,7464,42705,43662,1840,1311,2000,42705,1569,2822,0
+22018,230000,female,1,2,29,-2,-2,-1,-1,-2,-2,20517,12883,10867,10100,3068,21064,12903,10880,10125,3076,21162,3224,0
+22019,100000,female,1,1,29,2,2,-2,-2,-2,-2,1526,0,0,0,0,0,0,0,0,0,0,0,0
+22020,50000,female,2,1,29,1,2,0,0,0,0,26293,25492,19680,19271,19659,19915,0,1609,2000,1000,715,883,0
+22021,330000,female,1,2,27,0,0,0,0,0,0,37587,39183,39305,40251,41683,38978,2000,2000,3000,3000,3000,1500,0
+22022,90000,female,1,2,27,-1,-1,-2,-2,-2,-2,3000,0,0,0,0,0,0,0,0,0,0,0,0
+22023,150000,female,2,1,27,0,0,0,0,0,0,5877,6640,7408,8147,8054,7819,1268,1284,1271,426,283,484,0
+22024,70000,female,3,2,28,2,2,2,2,2,2,24799,24102,26305,27570,28021,27436,0,2600,2000,1200,0,1500,0
+22025,80000,female,1,2,28,0,0,0,0,0,0,71126,71009,69504,68262,70547,73040,4000,5002,4500,3000,3000,10000,0
+22026,130000,female,2,2,28,0,0,-1,0,0,0,131630,65325,2315,101035,82288,86788,3600,2315,100000,3500,8000,4000,0
+22027,130000,female,1,2,29,0,0,0,3,3,2,101650,106271,119728,121140,117767,115640,4621,15107,5000,0,0,4200,0
+22028,140000,female,2,2,29,-1,-1,-1,-2,-2,-2,389,403,0,0,0,0,407,0,0,0,0,1260,1
+22029,240000,female,3,1,27,-1,-1,-1,-1,-1,-1,2400,152,3250,2391,1182,321,152,3250,2391,1182,321,118,1
+22030,160000,female,1,2,26,-1,-1,-1,0,0,0,2659,3859,10709,8677,4318,2659,3859,10709,1000,100,1000,2856,0
+22031,50000,female,1,2,26,-1,-1,-1,-1,-1,-1,651,651,1072,1713,651,646,651,1072,1713,651,646,651,1
+22032,500000,female,1,2,27,-1,0,-1,-1,-1,-2,17531,27016,10627,680,0,0,26588,10663,680,0,0,2360,0
+22033,260000,female,2,1,28,0,0,0,0,0,0,238896,244419,250051,247271,250327,253355,11000,11065,9500,9000,9100,9500,0
+22034,100000,female,2,2,23,0,0,0,0,0,0,10693,26226,18726,19225,18299,20056,22622,2326,1600,0,4000,0,0
+22035,130000,female,2,2,23,0,0,0,0,0,0,111388,113900,109062,105252,103969,104254,6000,5000,6000,10000,10000,5000,0
+22036,80000,female,1,2,26,0,0,0,0,0,0,124224,124762,125778,128293,127839,128714,4574,4737,5753,5000,4330,4341,0
+22037,400000,female,2,2,29,0,-1,-1,-1,0,-1,52875,55544,994,5030,4568,500,55544,994,5030,0,500,150,0
+22038,360000,female,2,2,27,0,0,0,0,0,0,44179,37697,29686,23724,5576,2273,1498,1799,1008,120,2289,5302,0
+22039,190000,female,1,2,28,0,0,2,0,0,0,7188,9521,9224,10262,13083,13372,2459,0,1200,3000,500,510,0
+22040,90000,female,2,2,28,0,0,0,0,0,0,41138,38755,38448,37612,36174,33769,2000,1866,1347,1065,1041,1500,0
+22041,50000,female,1,2,29,0,0,0,0,0,0,8838,7662,40125,37552,22960,14735,6540,37130,2858,3000,1000,5000,0
+22042,80000,female,2,2,29,0,0,2,2,2,2,49196,54033,52595,56709,55201,69270,6292,0,5000,0,15000,2600,0
+22043,120000,female,2,2,29,-1,-1,-2,-1,0,0,1450,0,0,1187,1187,1187,0,0,1187,0,0,0,0
+22044,100000,female,2,2,28,2,0,0,2,2,2,21117,22163,26789,26065,27615,28122,1400,5000,0,2300,1100,1300,1
+22045,170000,female,1,1,28,1,-1,-1,-1,-1,-1,0,1295,0,376,0,376,1295,0,376,0,376,0,0
+22046,90000,female,1,2,28,0,0,0,2,2,2,38355,39413,41181,41701,44000,45651,1700,2404,1500,3000,2500,600,0
+22047,400000,female,1,2,27,-2,-2,-2,-2,-2,-2,0,0,0,0,18014,0,0,0,0,18014,3710,0,1
+22048,230000,female,1,2,27,0,0,0,2,0,0,79108,70757,76049,68989,54450,39862,3187,7100,0,2700,2000,1572,0
+22049,260000,female,1,2,28,0,0,0,0,0,0,207593,205105,209805,203532,199611,94363,7011,11932,4709,6087,0,1600,0
+22050,110000,female,2,2,29,0,0,0,0,0,0,56073,59635,63179,66637,68037,70448,4500,4500,4500,2500,3500,5800,0
+22051,500000,female,2,2,28,-1,0,0,0,0,0,319082,0,300165,281019,44528,40325,8752,0,21420,1002,935,967,0
+22052,90000,female,2,2,28,-1,-1,-1,-1,-1,-1,2943,906,669,0,400,182,906,669,0,400,182,5634,0
+22053,60000,female,1,2,28,0,0,2,2,-1,-1,20729,14486,12163,8891,1723,40276,3016,1000,0,1723,40276,3000,0
+22054,320000,female,2,1,28,0,0,2,0,0,0,320635,313060,293055,269585,248093,239025,12500,22,11155,9100,8700,9183,1
+22055,320000,female,2,1,29,0,0,0,0,0,0,34818,22718,9398,10222,13791,13498,1690,1500,1000,3628,1041,1006,0
+22056,190000,female,1,2,28,0,0,0,0,0,0,112039,114347,102229,83779,72666,63714,4600,4500,4000,2900,2800,3000,0
+22057,80000,female,1,2,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+22058,230000,female,2,1,28,2,2,2,2,2,2,35610,38701,35043,35678,36730,35994,3706,0,1513,1730,2000,9000,1
+22059,310000,female,1,1,29,-2,-2,-2,-2,-2,-2,594,235,5641,0,0,0,477,5648,0,0,0,2287,0
+22060,260000,female,2,2,29,0,0,0,0,0,0,150709,151527,155081,156138,145251,139784,6911,7514,6756,5176,5200,5700,0
+22061,200000,female,1,2,29,1,-1,0,0,-1,-1,0,928,1280,1675,97,138,928,1000,1000,97,138,0,0
+22062,200000,female,1,2,29,0,0,0,-1,0,-1,65199,21489,0,1762,1768,860,6532,0,1762,6,1257,8308,0
+22063,200000,female,2,2,28,0,0,0,0,0,0,50925,51519,53693,55506,63261,52979,2455,2629,2442,10000,1502,1517,0
+22064,50000,female,2,2,28,0,0,0,0,0,0,28157,28409,27589,27875,28539,29202,1430,1770,1446,1500,1500,1073,0
+22065,50000,female,3,2,28,0,0,0,0,0,0,52775,54397,55328,42511,31032,34510,2500,2000,2000,5000,4000,3000,1
+22066,50000,female,1,2,29,0,0,0,0,0,0,44498,41897,17304,16544,14787,15975,4000,4000,2000,3000,3000,3000,0
+22067,240000,female,2,1,29,0,0,0,0,0,0,187431,186968,187967,187731,188603,185252,8200,8000,8000,7025,6500,7000,0
+22068,100000,female,2,2,29,0,0,0,-1,-1,-1,7815,11139,3708,2180,1949,717,5000,1000,2180,1949,717,39000,0
+22069,230000,female,2,2,28,-1,-1,-1,-1,-1,-1,2454,1197,4556,4316,4316,4316,1197,4566,4316,4316,4316,4316,0
+22070,230000,female,1,2,29,0,0,0,0,0,0,4827,5605,7719,7601,12140,16145,2000,3050,5000,5000,5000,5000,0
+22071,240000,female,2,1,28,2,2,2,2,2,0,191137,210333,206332,214981,194817,186895,24000,0,12014,0,5307,5001,1
+22072,150000,female,2,1,30,-1,-1,0,0,-1,-1,35213,115041,135090,80085,35940,38460,115041,66066,2031,35940,38460,41154,0
+22073,150000,female,2,1,30,0,-1,-1,-1,-1,-1,1499,1231,0,1872,0,113,1231,0,1872,0,113,0,0
+22074,200000,female,1,2,29,-1,-1,-1,-1,0,0,27869,5531,6781,12162,12410,12410,5531,6781,12162,248,0,1703,0
+22075,60000,female,2,2,29,2,0,0,0,0,0,58501,54932,85672,41483,19394,18893,2000,1900,1572,1000,700,668,1
+22076,50000,female,2,2,31,0,0,0,0,0,0,19889,20451,20426,19894,20294,20145,1500,1600,1600,1000,900,1000,0
+22077,140000,female,2,2,31,-1,-1,-1,-1,0,-1,277,19983,17685,36603,27886,7659,19983,17725,36621,0,7847,43467,0
+22078,220000,female,1,1,30,2,2,0,0,0,0,150682,139629,136020,115942,54611,42363,0,6824,2726,1239,2953,112742,0
+22079,300000,female,1,2,28,-2,-2,-2,-2,-2,-2,936,0,744,2826,0,18525,0,744,3000,0,18525,3078,0
+22080,300000,female,1,2,29,-2,-2,-2,-2,-2,-2,-5478,-8584,-14998,10980,1123,4665,1220,33,30044,12,11493,4983,0
+22081,200000,female,1,2,29,0,0,0,0,0,0,118296,94899,71050,68967,47951,45519,3900,3000,3015,1600,1600,1400,0
+22082,80000,female,2,3,29,-1,-1,2,-1,-1,-1,6441,14342,6187,7757,8451,6625,14349,5,7761,8460,6630,6218,0
+22083,430000,female,2,2,29,2,0,0,0,0,0,75249,77754,79822,81859,83844,86082,3754,3322,3359,3344,3582,3623,1
+22084,60000,female,2,3,29,0,0,0,-1,-1,-1,4134,3596,3801,694,531,531,1200,1000,2694,531,531,681,0
+22085,170000,female,2,2,29,-1,-1,-1,-1,-1,-1,1333,1359,886,1042,1577,1574,1359,886,1051,1577,1574,287,0
+22086,50000,female,2,2,29,0,0,0,0,0,0,26159,27222,27954,26702,26993,25758,1800,1500,1800,1000,1200,1200,0
+22087,420000,female,2,2,26,0,0,0,0,0,0,24434,22586,36569,28994,15159,9379,1500,28000,1210,303,2000,0,0
+22088,80000,female,2,2,26,3,2,2,2,2,2,45088,46040,46998,47929,46860,51931,2000,2000,2000,0,6000,0,1
+22089,230000,female,1,2,27,-1,-1,-1,-1,-1,-2,17077,22420,57255,34289,0,0,22437,57326,34311,0,0,0,1
+22090,270000,female,2,2,29,0,0,0,0,0,0,62516,48770,47846,39772,35143,44371,1854,1952,1418,5000,14000,2500,0
+22091,500000,female,1,2,28,0,0,0,0,0,0,56437,58076,59534,51006,44360,34229,2357,2001,6620,6015,10001,4137,0
+22092,220000,female,2,2,28,0,0,0,2,0,0,94311,95967,97995,97577,98583,99708,4319,5419,3000,3501,3629,7442,0
+22093,180000,female,3,2,24,0,0,0,0,0,0,100772,85185,77698,67459,52777,46337,3034,4031,2495,1556,1431,1293,0
+22094,50000,female,2,2,23,0,0,0,0,2,2,34448,35545,36620,40767,41495,42377,1975,1950,5100,1700,1700,700,0
+22095,20000,female,5,2,22,1,2,0,0,0,0,11871,11375,10620,11355,11209,11299,0,1265,1000,244,500,500,0
+22096,20000,female,1,2,24,1,-1,-1,-1,-1,-1,0,890,467,500,0,647,890,467,500,0,647,0,0
+22097,80000,female,1,2,22,1,2,2,-1,-1,-1,6261,6170,4258,7032,6348,1606,1000,0,7032,6348,1606,0,0
+22098,120000,female,2,1,23,0,0,0,0,0,0,64049,65984,66825,68820,69776,71297,3000,2500,3100,2700,2800,2800,0
+22099,40000,female,1,2,23,0,0,0,0,0,0,10389,11410,12970,13246,11024,9798,1200,1751,1027,250,385,1000,0
+22100,100000,female,2,1,42,-2,-2,-2,-2,-2,-2,2811,1055,8090,5524,4973,1000,1055,8090,5549,4973,1000,1000,0
+22101,90000,female,2,2,25,1,2,0,0,0,0,91830,89448,83949,47118,44942,45886,0,2549,1583,1444,1500,1511,0
+22102,160000,female,2,2,24,0,0,0,0,0,0,160553,162449,157395,159178,121642,124347,6050,7771,7300,4163,4470,4609,0
+22103,100000,female,1,2,24,0,0,0,-1,-1,-1,27753,28306,14320,180,2500,12411,1632,1000,180,2500,10000,0,0
+22104,230000,female,1,2,25,0,0,0,0,0,0,50757,52906,54454,53457,55128,52788,3000,3000,2000,2500,2500,2000,0
+22105,60000,female,1,2,28,0,0,0,0,0,0,37878,35511,28894,21556,21494,21838,3000,2000,1600,3000,2800,0,0
+22106,300000,female,1,1,26,2,-1,-1,0,0,-1,800,1946,2612,3408,1908,1108,1946,2612,1914,0,1108,530,0
+22107,140000,female,2,1,29,0,0,0,0,0,0,129289,90352,85052,65758,46847,39777,3713,3546,2589,1960,1733,1379,0
+22108,300000,female,1,2,29,-2,-2,-2,-2,-2,-2,1049,205,4962,13634,41510,-1087,205,4962,13634,41510,0,3940,1
+22109,60000,female,1,2,29,0,0,0,0,0,0,23304,20517,20261,22832,24234,24928,3000,3000,3000,2000,2000,2000,0
+22110,360000,female,2,2,29,-2,-2,-2,-2,-1,-1,0,1307,747,1707,792,1346,1307,747,1707,850,1346,0,0
+22111,100000,female,1,2,29,1,2,0,-1,0,0,3788,1263,2394,2839,32934,31056,0,2000,3000,31000,2000,5000,0
+22112,100000,female,2,2,29,-1,-1,-1,-1,-1,-1,3262,3262,326,6198,326,326,3262,326,6198,326,326,326,0
+22113,320000,female,1,2,29,-2,-1,2,-1,-1,-1,0,192,192,2518,255,1945,192,0,2518,255,1945,301,0
+22114,500000,female,2,2,29,-2,-2,-2,-2,-2,-2,902,0,0,0,0,0,0,0,0,0,0,19440,0
+22115,180000,female,1,2,30,-2,-2,-2,-2,-2,-2,405,4445,5047,200,745,0,4445,5047,200,745,0,0,0
+22116,280000,female,2,1,30,2,0,0,0,0,0,18925,20223,15883,15547,14472,15086,1976,2000,1600,1000,1000,1100,1
+22117,140000,female,2,1,30,0,0,0,0,0,0,13859,16229,16459,14753,13437,14745,5000,1286,1476,423,3000,1000,0
+22118,200000,female,2,1,30,-1,2,-1,2,0,0,1877,1690,6314,6034,6034,2493,0,6314,0,0,0,0,0
+22119,270000,female,1,2,30,0,0,0,2,0,0,25628,27880,35387,34524,36630,38871,3000,8000,0,3000,3000,2000,0
+22120,230000,female,1,1,30,0,0,0,0,0,0,5442,5142,5305,5661,3935,4460,1210,3116,1000,2000,2000,2000,0
+22121,210000,female,1,2,29,1,-1,-1,-2,-1,-1,-12,2425,-12,-12,5884,0,2437,0,0,5896,0,89886,0
+22122,170000,female,1,2,29,-1,-1,0,-1,-1,-2,1380,9493,8794,2301,0,0,9533,5004,2301,0,0,7800,0
+22123,230000,female,1,2,29,-2,-2,-2,-2,-2,-2,360,0,0,0,100,900,0,0,0,100,900,715,0
+22124,300000,female,2,2,29,0,0,0,0,0,0,164437,140536,124802,80088,25283,12358,5100,6001,3500,705,3000,2300,0
+22125,150000,female,3,2,29,-1,-1,-1,-2,-2,-1,3850,227,0,0,0,1500,227,0,0,0,1500,1606,0
+22126,360000,female,1,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+22127,110000,female,2,2,29,2,0,0,0,0,0,99876,72548,74379,75878,78503,80451,3000,3000,3000,3500,3000,3000,1
+22128,150000,female,1,3,30,1,-1,2,-1,-1,-1,6043,50,6527,2168,-7,1373,0,8589,2500,0,1380,0,0
+22129,50000,female,1,2,27,0,0,0,0,0,0,49959,47675,48349,46192,45272,46230,2100,2426,2100,1600,2000,1900,0
+22130,170000,female,1,2,27,-1,-1,2,-1,-1,-1,356,1472,736,736,736,736,1536,0,736,736,736,736,0
+22131,210000,female,2,2,27,0,0,0,0,0,0,26311,24805,25810,27071,27817,28401,2000,1800,2000,1500,1031,1191,0
+22132,50000,female,2,2,28,2,2,2,0,0,0,45004,48119,42958,37812,15617,9625,3880,10,8656,1044,349,414,1
+22133,200000,female,2,2,30,0,0,0,2,0,0,4644,5670,8107,7523,8345,19030,1263,2700,0,1000,11000,707,0
+22134,100000,female,1,2,28,0,0,0,0,0,0,29086,19091,17916,12233,6741,-24,1400,1506,1209,0,0,0,0
+22135,180000,female,2,2,31,0,0,-1,0,0,0,112900,0,178143,181625,164914,145052,0,181625,8350,5005,5000,6800,0
+22136,80000,female,2,1,33,0,0,0,0,0,0,75564,77708,78888,80466,28186,28445,3406,3518,3558,1200,1100,1500,0
+22137,80000,female,2,1,27,0,-1,-1,-2,-2,-2,56720,5958,4303,3850,0,0,5958,4321,3869,0,0,0,1
+22138,50000,female,3,1,29,0,0,0,0,0,0,47425,48171,46466,47226,46917,47571,2100,2100,2105,2000,1800,3500,0
+22139,560000,female,2,1,28,-2,-2,-2,-2,-2,-2,2740,2740,2740,2740,1703,27802,2740,2740,2740,1703,27802,1500,0
+22140,150000,female,2,2,28,2,0,0,0,0,0,89336,90337,84905,86814,73827,60284,4027,4004,5016,5004,3000,5005,1
+22141,310000,female,2,2,27,-1,-1,-1,-1,0,-1,1261,1261,1261,1651,390,390,1261,1261,1651,0,390,390,1
+22142,210000,female,2,2,27,-1,-1,-1,-1,-1,-1,1856,8657,10371,0,2700,2278,8657,10427,0,2700,2278,2900,0
+22143,200000,female,1,2,27,-2,-2,-2,-2,-2,-2,4941,5555,15546,1665,3370,-36,5610,15616,1673,3385,0,95456,0
+22144,100000,female,1,2,28,0,0,0,-1,-1,-1,14309,11226,13142,12280,938,796,1268,2184,38500,938,796,0,0
+22145,200000,female,2,1,28,-2,-2,-2,-2,-2,-2,34819,165,1850,1538,165,165,165,1850,1538,165,165,165,0
+22146,40000,female,2,1,28,0,0,2,0,0,0,29195,32043,31250,31962,32752,33571,3650,0,1533,1322,1500,1221,0
+22147,80000,female,3,1,29,-2,-2,-2,-2,-2,-2,456,3351,9452,1584,2200,7042,3366,9481,1588,2206,7073,4186,0
+22148,360000,female,3,2,29,-2,-2,-2,-2,-2,-2,3307,0,0,0,0,1131,0,0,0,0,1131,3409,0
+22149,290000,female,2,2,28,0,0,0,0,0,-1,15042,28827,45913,44656,24692,7208,15000,20000,37092,20000,7208,34000,0
+22150,90000,female,1,2,28,-2,-2,-2,-2,-2,-2,1944,0,0,0,0,0,0,0,0,0,0,0,0
+22151,280000,female,1,2,29,-1,-1,-1,-1,-1,0,33210,526,9252,21254,1608,407,726,9298,21360,1614,2,4069,0
+22152,50000,female,1,2,29,0,0,0,0,-1,0,22120,14577,16275,23790,2250,2100,4000,3096,12000,2250,500,0,0
+22153,200000,female,3,1,29,0,0,0,0,0,0,203621,203424,199728,195609,131981,131294,7464,7889,6600,4602,4900,4726,0
+22154,400000,female,2,2,30,0,0,0,0,0,0,438569,446484,454826,411587,368563,252669,16718,16289,14100,12958,7807,6667,0
+22155,210000,female,1,2,31,-2,-2,-2,-2,-2,-2,0,0,4811,2994,14321,5193,0,4811,2994,14327,5193,2723,0
+22156,50000,female,2,1,31,0,0,0,0,0,-2,47800,50725,53518,4199,0,0,3725,2364,2398,0,0,17324,1
+22157,150000,female,1,2,30,-1,-1,-1,-1,-1,-1,4205,1264,10830,2501,4461,1240,1264,10830,2501,4461,1240,165,0
+22158,230000,female,1,2,29,1,-2,-1,-1,-1,-1,0,0,249,0,449,1530,0,249,0,449,1530,0,0
+22159,70000,female,1,2,29,0,0,0,0,0,0,75040,75705,69514,69312,69412,68692,3000,3000,3100,3000,3000,2700,0
+22160,450000,female,1,1,29,0,0,0,0,0,0,104457,68877,62223,65522,61413,63547,2489,2528,10179,10013,5183,5000,0
+22161,80000,female,2,2,29,0,0,0,0,0,0,70810,72231,73953,69366,57435,39322,3200,3501,2500,2000,2000,1000,0
+22162,380000,female,2,2,30,0,0,0,0,0,0,305489,299641,256345,258936,228387,203931,11687,12160,12434,8651,8531,6974,0
+22163,100000,female,2,1,31,0,0,0,0,0,-1,91192,91305,103216,88782,35146,39849,4000,15074,16197,13112,43122,43000,0
+22164,30000,female,2,1,31,0,0,0,0,0,0,24358,23798,23071,23496,26562,27346,3000,4000,3000,5000,5000,3000,0
+22165,140000,female,1,2,31,0,0,0,0,0,0,3886,4906,5233,6206,7140,8161,1100,1500,1100,1000,1100,1000,0
+22166,320000,female,1,2,27,1,2,2,2,2,2,43243,42537,41370,40694,39606,38680,2000,1500,2000,1500,1500,0,1
+22167,20000,female,2,1,24,0,0,0,0,0,0,18919,16743,17857,18310,18000,17294,1600,1687,1140,1800,1000,0,0
+22168,350000,female,2,2,25,0,0,2,0,0,0,327915,342405,344459,351335,143291,98042,20000,9000,15076,5000,4000,4000,1
+22169,180000,female,2,2,25,0,0,0,0,0,0,175063,126801,96043,85554,77007,72461,5000,5015,4000,3000,3000,3000,0
+22170,30000,female,2,2,23,0,0,0,0,0,0,28347,28296,25819,26409,26401,26448,2300,2390,1718,1100,1000,2000,0
+22171,110000,female,1,2,24,0,0,2,0,0,0,111863,111569,110768,110480,48708,47060,6001,5000,5060,2000,3000,5000,0
+22172,50000,female,2,2,24,0,0,0,0,0,-2,2568,3589,4608,4919,0,0,1070,1089,1000,0,0,0,0
+22173,200000,female,2,2,31,-1,-1,-1,-1,-1,-1,2718,590,8971,8509,29645,7300,591,8981,8525,29713,7305,20914,0
+22174,100000,female,2,2,29,0,0,0,0,0,0,87018,75666,74709,76143,73327,147496,3267,3324,4220,2728,2800,2825,0
+22175,100000,female,1,2,27,-1,-1,-2,-2,-1,-1,4829,0,0,0,5330,0,0,0,0,5330,1274,2100,0
+22176,150000,female,1,2,29,-1,0,-1,-1,2,0,1148,3019,100,802,802,702,2000,100,702,0,0,0,1
+22177,60000,female,2,1,27,0,0,0,0,0,0,60915,54738,47023,57554,27412,27829,2255,2469,25000,1200,1008,1057,0
+22178,80000,female,2,1,27,0,-1,-1,-1,-1,-1,20417,3061,7920,2830,3092,2315,3082,7932,2838,3112,2333,0,0
+22179,150000,female,1,2,26,0,-1,-1,-1,-1,-1,7448,2089,174,640,2414,500,2089,174,640,2414,500,3158,0
+22180,30000,female,1,2,27,0,0,0,0,0,0,30342,29337,29956,29782,27290,27865,1500,1485,2000,1000,1014,4413,1
+22181,150000,female,1,2,26,0,0,0,0,0,0,205467,195764,197085,202517,56898,58262,6000,6000,6000,5000,2000,2000,0
+22182,250000,female,1,2,26,0,0,0,0,0,0,50122,44742,43194,41381,33246,32948,2027,2020,1510,1000,1000,7000,0
+22183,500000,female,1,2,29,0,0,0,0,0,0,36051,30912,33740,15272,17015,18740,2065,25099,2000,2000,2000,2000,0
+22184,230000,female,1,2,28,0,0,0,0,0,0,65862,61532,37214,37680,33708,565,5000,1954,1420,3708,565,0,0
+22185,160000,female,1,2,29,-2,-2,-2,-2,-2,-2,386,4194,196,7730,3113,3484,4194,196,7741,3113,3484,2475,0
+22186,360000,female,1,1,31,-2,-2,-2,-2,-2,-2,9315,58319,48179,14702,20444,30833,58617,48426,14775,20559,30954,14905,0
+22187,400000,female,2,1,30,0,0,0,0,0,0,30667,31160,23054,8453,10387,9222,5034,2086,2025,5006,543,1711,0
+22188,130000,female,1,2,29,0,0,2,0,0,0,93761,100172,97727,98588,97129,98016,8901,0,3401,3509,3671,3240,0
+22189,80000,female,1,2,28,0,0,0,0,0,0,70723,72151,73888,75345,75040,75211,3200,3500,3300,2800,2900,2900,0
+22190,160000,female,1,2,28,-2,-2,-2,-2,-2,-2,316,1599,2328,1798,1000,1442,1617,2378,1798,1000,1442,0,0
+22191,390000,female,1,1,28,0,0,0,0,0,0,60697,64440,67503,68566,65411,66597,5000,5000,5007,5000,5000,5000,0
+22192,200000,female,2,2,31,-1,2,2,-1,-1,-1,3707,3347,0,665,2846,6586,0,16550,665,2846,6586,3807,1
+22193,30000,female,2,1,30,0,0,0,0,0,0,9211,9133,10165,11441,11479,11719,1154,1186,1462,500,400,434,0
+22194,50000,female,3,2,31,-1,3,2,-1,2,0,780,780,390,2724,2183,2638,0,0,2724,0,1004,2032,0
+22195,180000,female,2,2,31,0,0,0,0,0,0,69502,69878,71866,72140,60885,32397,2500,3300,2140,1885,4000,95000,0
+22196,200000,female,3,2,32,0,0,0,0,0,0,148959,152810,159907,168200,148987,152224,6700,10000,10000,4183,4465,4352,0
+22197,180000,female,2,1,32,0,0,0,0,2,0,151307,143025,140984,85948,80069,77462,6000,6000,8009,0,3000,3000,0
+22198,250000,female,1,2,31,-1,0,0,0,0,-1,36439,30161,24326,13198,6686,9423,5000,1298,1000,134,9423,19346,0
+22199,180000,female,1,2,29,-1,-1,-1,-1,0,-1,3900,222,906,6101,50372,1203,222,908,6101,48251,1207,4545,0
+22200,50000,female,2,1,32,0,0,0,0,0,0,48971,38736,26945,27541,27689,28868,1754,1500,3038,976,2000,1077,0
+22201,220000,female,1,1,33,0,0,0,0,0,0,199040,182158,143895,147039,152384,159631,10032,7000,7500,10000,10000,7000,0
+22202,360000,female,2,1,31,-2,-2,-2,-2,-2,-2,990,990,990,990,990,990,990,990,990,990,990,4970,0
+22203,500000,female,1,2,29,0,0,0,0,0,0,33252,39078,33086,18304,16604,9505,10000,2014,3030,8006,1000,1000,0
+22204,50000,female,3,1,30,-1,-1,-1,-1,-1,-1,1032,1464,1722,316,2615,2104,1464,1722,316,2615,2104,3379,0
+22205,150000,female,2,2,30,-1,-1,-2,-2,-1,-1,55,-94,-208,-208,993,0,0,239,0,1201,0,2184,0
+22206,150000,female,2,2,31,-1,-1,-1,-1,0,-1,13701,12009,11985,24310,17280,36986,12013,12005,24322,6000,37000,25017,0
+22207,300000,female,1,2,31,-1,-1,-1,-1,-1,-1,720,0,69190,0,686,2927,0,69190,0,686,2927,2995,0
+22208,130000,female,1,2,24,0,0,0,2,0,0,76582,86333,91715,89245,90827,87779,12000,7700,0,3001,3011,2816,0
+22209,30000,female,3,2,22,2,0,0,2,2,2,15048,16795,18524,19923,19305,20994,2000,2000,2000,0,2000,0,0
+22210,90000,female,2,2,25,0,-1,-1,-1,-1,-1,27658,11865,4602,28426,8978,5104,6708,8853,28990,9028,5119,428,0
+22211,90000,female,2,2,25,0,0,0,-1,-1,2,88822,76400,0,2757,3060,2864,1588,0,2757,500,0,475,1
+22212,70000,female,3,2,25,0,0,0,0,0,0,31337,34439,25170,20921,18229,20915,4000,3069,3000,2000,3000,3000,0
+22213,80000,female,2,1,25,0,0,0,0,0,0,73267,74425,76347,51150,43193,44230,2971,3435,1750,1593,1730,1972,1
+22214,60000,female,2,2,25,0,0,0,0,0,0,7885,9244,11082,12133,16891,17615,1500,2000,1242,5000,1000,700,1
+22215,60000,female,3,2,26,-1,2,-1,-1,0,0,4837,3642,6232,6444,3783,3219,0,6472,6444,3219,0,0,0
+22216,420000,female,2,2,27,-2,-2,-2,-2,-2,-2,15000,15000,15000,15000,15000,15000,15000,15000,15000,15000,15000,14996,0
+22217,200000,female,1,2,27,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+22218,220000,female,1,2,29,-2,-2,-2,-1,0,0,2848,7146,4690,16331,77894,2576,7181,4714,16493,97910,0,4862,0
+22219,170000,female,1,2,29,-1,0,0,-2,-2,-2,1000,6000,0,0,0,0,5000,0,0,0,0,0,0
+22220,500000,female,3,2,29,-2,-2,-2,-2,-2,-2,5024,798,5921,2381,823,801,802,5950,2392,827,805,30435,1
+22221,60000,female,1,2,29,1,-1,2,-1,-1,-1,0,351,199,3697,0,532,351,0,3697,0,532,0,1
+22222,140000,female,2,2,30,-2,-2,-2,-2,-2,-2,107,232,107,107,107,107,232,107,107,107,107,107,0
+22223,100000,female,2,1,31,0,0,0,-2,-1,-1,95160,94327,0,0,2743,1782,2000,0,0,2743,1782,0,0
+22224,180000,female,1,2,31,-2,-2,-2,-2,-2,-2,-23,5631,2771,390,0,0,5654,2771,390,0,0,999,0
+22225,360000,female,1,2,31,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+22226,420000,female,1,2,31,0,0,0,0,0,0,233413,241503,277447,287781,294010,319257,12000,40000,15000,11000,30000,15000,1
+22227,200000,female,2,2,29,-1,-1,-1,-1,-1,-1,779,860,496,2755,2048,2318,860,496,2763,2048,2318,3311,0
+22228,260000,female,2,1,31,0,0,0,0,0,0,82156,83083,85346,87620,89566,91502,3611,3712,3800,3500,3400,3100,0
+22229,300000,female,2,2,30,-2,-2,-2,-2,-2,-2,19333,19333,19333,19333,20333,20333,19333,19333,19333,20333,20333,1000,0
+22230,400000,female,1,2,29,0,0,2,0,0,0,74829,77970,70557,71867,72137,72955,7017,0,3200,2750,3000,5800,1
+22231,220000,female,1,2,30,0,0,0,0,-1,-1,22959,37955,25741,17875,14639,27042,20066,1318,1102,14710,28087,1174,0
+22232,130000,female,1,2,30,-1,-1,-1,-1,-1,0,1493,1492,1310,1310,2046,1574,1492,1310,1310,2046,574,1995,1
+22233,150000,female,1,2,29,-1,-1,-1,-1,-1,-1,962,5868,15218,15965,9275,25321,5868,15283,15972,9275,25321,7350,0
+22234,280000,female,1,2,33,0,0,0,0,0,0,266030,264176,267668,262905,260296,254023,12000,12001,12000,9510,10002,10000,0
+22235,230000,female,1,2,33,0,0,0,0,0,0,181532,187639,193252,200648,203103,207573,9000,10000,12000,7130,7600,8100,0
+22236,180000,female,2,1,28,0,0,0,0,0,0,54972,42329,42071,39649,39221,40731,2000,2002,2000,2000,2000,2000,0
+22237,270000,female,2,2,29,0,0,0,0,0,0,39004,28963,23021,17934,13650,12864,1520,1719,1200,1000,2000,3022,0
+22238,190000,female,4,2,30,0,0,0,0,-1,0,198098,194576,202868,198936,28950,28666,4515,15466,4700,47450,16666,17549,0
+22239,150000,female,3,2,30,0,0,0,0,0,0,69235,69407,69232,71089,65793,66651,2500,3000,3067,2344,2419,2500,0
+22240,230000,female,1,2,28,-2,-2,-2,-2,-2,-1,355,0,916,0,0,8878,0,916,0,0,8878,800,1
+22241,70000,female,3,1,29,0,0,0,0,0,0,22438,24055,25359,26434,26993,28551,2000,2000,1500,1000,2000,1500,0
+22242,500000,female,2,2,29,-2,-2,-2,-2,-2,-2,2140,3919,3572,2749,2140,3109,3919,3763,2749,2140,3109,2140,0
+22243,50000,female,2,1,30,0,0,0,0,0,0,46800,37395,38591,40037,32260,27649,1604,1800,2200,1400,1100,1300,1
+22244,220000,female,1,2,29,0,0,0,0,0,0,206879,211037,215139,218513,131660,134346,9100,9000,7887,4800,4900,6000,1
+22245,210000,female,2,1,30,-1,-1,-2,-2,-2,-2,2818,0,0,0,0,0,0,0,0,0,0,0,0
+22246,260000,female,2,1,30,0,0,0,0,0,0,66433,67134,67768,69033,70166,71377,2400,2496,2429,2599,2827,2050,0
+22247,280000,female,1,2,29,-1,-1,-1,-1,0,-1,1939,333,779,8029,8040,2979,333,779,8029,11,3129,138,0
+22248,180000,female,1,2,30,-1,-1,-1,-1,-1,-1,360,120,360,360,450,90,120,600,360,450,0,0,0
+22249,30000,female,3,1,29,1,2,2,2,2,2,27705,28452,29693,30206,30309,28218,1500,2000,1500,1044,0,2000,1
+22250,20000,female,2,1,30,1,-2,-1,2,2,-2,0,0,780,780,0,0,0,780,0,0,0,0,1
+22251,200000,female,2,1,32,1,-1,2,-1,2,2,-400,163,163,2231,2048,4732,563,0,2250,0,2732,0,0
+22252,80000,female,1,2,30,3,2,0,0,0,0,82523,80586,80783,75115,49420,50677,0,4000,3000,1800,2000,2000,1
+22253,90000,female,2,2,31,0,0,0,0,2,2,22259,23418,24443,26695,25967,26946,1838,1408,2660,0,1400,2000,1
+22254,20000,female,2,1,32,2,0,0,0,2,2,15073,15431,16176,18204,17614,18826,1600,1300,2300,0,1500,0,1
+22255,30000,female,3,1,32,0,0,0,2,0,0,27395,25947,30473,27940,28397,29009,2000,5303,0,1200,1200,1200,0
+22256,70000,female,1,2,29,0,0,0,0,0,0,61217,62601,63990,64355,56195,43803,3000,3000,3000,1900,1600,2600,0
+22257,200000,female,2,1,29,0,0,0,0,0,0,74566,73700,73624,73928,72060,72393,3213,3304,3815,3004,3006,4012,0
+22258,420000,female,2,2,29,0,0,-1,0,-1,0,326239,318143,15926,4169,158062,156341,7108,17570,1000,158556,5000,5080,0
+22259,130000,female,2,1,29,0,0,0,0,0,0,130927,133658,132026,122804,121663,122032,7000,5306,5000,5000,6000,10000,0
+22260,160000,female,1,2,30,0,0,0,0,0,0,78623,65315,52890,50275,51337,53349,3000,4000,2500,2500,3000,2800,0
+22261,320000,female,1,1,29,-1,0,0,-2,-2,-2,2799,7932,0,0,0,0,7329,0,0,0,0,0,0
+22262,130000,female,1,2,29,-1,-1,-1,0,0,0,790,390,99235,98080,97224,97940,390,99235,4368,3449,3713,3610,0
+22263,200000,female,1,2,29,1,-2,-1,-1,-2,-1,0,0,35063,0,0,5799,0,35063,16720,0,5799,0,1
+22264,320000,female,1,2,30,-2,-2,-2,-2,-2,-2,1259,5152,4257,-3,-3,670,5177,4278,0,0,673,11288,0
+22265,400000,female,2,1,30,0,0,0,0,0,0,68835,60549,63047,65508,66954,68411,2600,3000,3000,2000,2002,3020,0
+22266,390000,female,2,2,30,0,0,0,-1,-1,0,35169,17147,3350,4710,80474,80330,1070,1226,4710,83756,3100,3100,0
+22267,100000,female,1,1,29,0,0,0,0,-2,-1,27304,28537,32498,0,0,21648,2000,4652,0,0,21648,9600,0
+22268,100000,female,2,1,30,-1,0,0,0,0,0,98048,97585,84514,85496,69656,61532,3903,8000,5000,4000,3000,2300,0
+22269,400000,female,2,2,31,0,0,0,0,0,0,9123,7496,7558,6877,4880,6728,1500,1500,1000,1000,3000,3000,0
+22270,100000,female,2,1,27,-1,2,-1,2,0,0,667,667,6637,6300,12300,0,0,6637,0,6000,0,3022,1
+22271,300000,female,3,1,27,-1,-1,-1,-1,-1,-1,1890,1570,390,390,390,390,1570,390,390,390,390,1890,0
+22272,20000,female,2,2,27,0,0,0,0,0,0,14248,15703,17140,18127,18605,16351,2000,2000,1600,1030,1000,1000,0
+22273,50000,female,2,2,27,0,0,0,0,0,-2,27314,28353,30299,33760,0,0,1500,3000,4000,0,0,0,0
+22274,100000,female,1,2,30,2,2,2,2,2,2,29668,32463,33350,34003,34647,35348,3600,1700,1500,1500,1400,0,0
+22275,200000,female,2,1,30,0,0,0,0,0,0,194747,197031,196787,194632,198839,196550,9000,7100,7100,7400,7200,7300,0
+22276,300000,female,2,2,30,0,0,0,0,2,0,251986,231773,225295,236540,168519,172674,11000,11000,17000,0,7000,12000,0
+22277,240000,female,3,1,30,-1,-1,-1,-1,-1,-1,7075,15732,9285,1617,188,98,17003,9343,1617,188,98,0,0
+22278,240000,female,2,1,30,-1,-1,-1,-1,-1,-1,17047,15188,11366,14231,11135,7774,15188,11366,14231,11135,7774,7785,0
+22279,120000,female,3,1,30,1,2,0,0,0,0,119511,116086,117580,120041,80578,82280,3,4351,5000,3000,3000,3200,1
+22280,350000,female,1,2,31,-1,2,-1,-1,-1,-1,403,403,1351,4656,0,1190,0,1351,4677,0,1190,150,0
+22281,590000,female,1,2,31,1,-1,-1,-1,-1,0,-154,240,244,-1469,925,3319,1000,1026,0,3000,3000,2271,0
+22282,240000,female,1,2,30,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+22283,200000,female,4,2,27,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+22284,300000,female,1,2,27,0,0,0,0,0,0,131760,132770,130595,132683,128557,125900,4700,4995,4516,4034,4088,3886,0
+22285,240000,female,2,1,28,-1,0,0,0,-1,-1,5740,5639,3428,4634,4590,9675,1215,2000,2000,4590,9675,15000,0
+22286,170000,female,1,2,28,-1,-1,-1,-1,-1,-1,3497,17920,2863,0,949,0,17920,2863,0,949,0,1069,0
+22287,470000,female,2,2,30,0,0,0,0,0,0,26549,25247,28019,27139,26923,28350,1420,5000,1408,2000,2000,10000,0
+22288,110000,female,1,2,30,0,0,0,0,0,0,51276,52064,53160,54331,53024,51317,3000,3031,3000,3000,2000,3000,0
+22289,30000,female,3,2,24,0,0,0,0,0,0,27276,26937,26679,27779,28691,29726,2000,2500,2000,2000,2000,2000,1
+22290,80000,female,2,2,24,1,1,-1,-1,-1,-1,62550,0,10000,18150,7490,7490,10000,10000,18150,7490,7490,7490,0
+22291,100000,female,1,2,24,1,-2,-2,-2,-2,-2,-78,-78,-78,-78,-78,-78,0,0,0,0,0,0,0
+22292,160000,female,2,2,25,0,0,0,0,0,0,45835,45474,42601,33581,29827,19056,2000,2000,1400,600,0,0,0
+22293,110000,female,1,2,27,0,0,0,0,0,0,52426,45107,44310,34820,36005,25976,1772,1900,1815,2000,1500,2000,0
+22294,150000,female,3,2,28,2,0,0,0,0,0,107603,109835,110255,110247,110955,105145,5500,5500,5300,3853,4000,4000,0
+22295,390000,female,1,2,30,0,0,0,0,0,0,7650,8500,4090,8342,7611,8018,3031,2010,6500,2000,1000,1000,0
+22296,180000,female,2,1,30,-2,-2,-2,-2,-2,-2,5100,9861,11021,16883,150,4661,9861,11021,16883,150,4661,873,1
+22297,300000,female,1,2,29,0,0,0,0,0,0,45117,43460,14291,7331,10018,6213,1281,1093,1000,5014,2000,1000,0
+22298,400000,female,1,1,29,0,0,0,0,0,0,5074,4097,7716,12538,17305,22499,1097,3716,5000,5000,5668,7000,0
+22299,110000,female,1,2,29,1,2,0,0,0,0,113093,106321,107630,106354,79154,69988,3,4334,4250,2946,2506,2458,0
+22300,120000,female,1,2,28,0,0,0,0,0,0,20578,21742,23384,24268,24665,21833,2000,2000,1312,1009,1000,1000,0
+22301,200000,female,2,2,28,-1,-1,-1,-1,0,0,8837,9491,3632,7673,5830,6890,9690,3632,7673,2530,6000,6925,0
+22302,120000,female,2,1,25,0,0,0,0,0,0,70282,71463,60364,70420,62549,47683,4000,3000,11299,1943,2000,1684,0
+22303,270000,female,2,2,25,0,0,0,0,0,0,162905,156151,127423,126824,115961,112929,5085,4795,4470,3847,3943,5000,0
+22304,250000,female,1,2,25,0,0,0,0,0,0,18761,10656,7099,11758,17047,16483,4662,2101,7227,7865,8485,5777,0
+22305,130000,female,2,1,25,0,-1,-1,-1,0,0,61223,4003,3223,23264,20582,18182,4003,3223,43264,2000,1000,2000,0
+22306,290000,female,1,2,26,-1,-1,-2,-1,-1,-1,32126,10823,5248,32307,28492,1799,10884,5275,32563,29143,1809,11384,0
+22307,210000,female,2,2,26,0,0,0,0,0,0,78632,49707,37998,32062,27056,15955,2000,2200,2008,2000,5000,5000,0
+22308,200000,female,2,2,26,1,-1,2,-1,0,0,-1544,8510,4141,15305,10368,5642,12651,0,15305,0,0,16335,0
+22309,240000,female,1,2,28,1,2,2,2,0,-1,17868,188,2288,2100,405,1665,0,2100,405,0,1665,0,0
+22310,170000,female,1,1,30,-2,-2,-2,-1,-1,-1,5280,5020,996,35490,6000,5350,5020,996,35490,6000,5350,12500,0
+22311,180000,female,1,2,28,-1,-1,-1,-1,-1,-1,26000,5480,5960,600,6800,12627,5488,5960,600,6800,12627,0,0
+22312,280000,female,1,2,28,-2,-2,-2,-2,-2,-2,40683,1888,1592,1312,486,886,1888,1592,1312,486,1036,438,0
+22313,490000,female,2,2,28,0,0,0,0,0,0,128821,93626,52074,118595,93461,86682,3047,2647,88595,3203,3142,3166,0
+22314,240000,female,2,2,31,-1,-1,-1,-1,-1,-1,7414,2020,-9032,13756,0,3138,2020,1000,23724,0,3138,367,0
+22315,150000,female,1,1,31,0,0,0,0,0,0,67852,68312,70203,71321,72235,73611,2500,3300,3200,3000,3000,3000,0
+22316,350000,female,1,2,32,0,0,0,0,2,0,260076,265242,271726,295642,283684,282575,9501,10766,29060,55,10104,9324,0
+22317,80000,female,2,1,30,0,0,0,0,0,0,22113,21507,13207,13997,10914,10685,1600,1700,1400,200,1000,0,0
+22318,330000,female,1,2,31,-1,-1,-1,-1,-1,-1,3437,7525,32096,1665,166,0,7565,32096,1665,166,0,16705,0
+22319,20000,female,2,1,31,1,-1,-1,-1,-1,-1,-19,3350,883,470,240,0,4540,883,470,240,0,0,0
+22320,210000,female,2,2,32,0,0,0,0,0,0,44304,46255,50486,54019,58091,61630,3000,5000,5000,5000,4500,5000,0
+22321,400000,female,2,2,32,-2,-2,-2,-2,-2,-2,0,626,118,10349,2817,2410,626,118,10349,2817,2410,10715,0
+22322,230000,female,2,1,28,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+22323,200000,female,1,2,29,-2,-2,-2,-2,-2,-2,8695,14323,44326,9353,11156,17725,14329,44452,9355,11156,17725,9289,0
+22324,180000,female,2,2,31,-2,-2,-2,-2,-2,-2,0,2813,12937,50500,0,0,2813,12937,50500,0,0,0,0
+22325,200000,female,2,1,30,0,0,2,0,0,0,33604,35706,34064,30519,26166,28097,3000,1500,2547,2500,2500,3500,0
+22326,50000,female,2,2,26,0,0,0,0,0,0,48057,48457,44932,20024,18830,18087,2007,1351,1561,628,775,1602,0
+22327,290000,female,1,2,27,-1,-1,0,0,0,0,168,569,1401,1503,834,931,569,1000,1000,200,265,500,0
+22328,100000,female,2,1,31,0,0,0,0,0,0,75818,76887,78178,79858,74785,54849,2745,2939,3500,3000,1989,1987,0
+22329,150000,female,2,2,32,0,0,0,2,2,2,9545,14350,17118,16546,20052,20385,5000,3000,0,3800,800,0,1
+22330,20000,female,2,2,32,-1,-1,-1,-1,-1,0,9763,925,4033,897,2147,1359,925,4033,1136,2147,407,700,0
+22331,200000,female,1,1,32,0,0,-1,-1,-2,-2,12367,13732,1513,0,0,0,2000,1513,0,0,0,0,0
+22332,80000,female,2,2,32,0,0,0,0,0,0,77535,78579,67097,50214,48738,3860,3010,3061,2000,1000,3860,0,0
+22333,290000,female,1,2,29,0,0,0,0,0,0,78928,73380,67146,68063,63910,73553,8000,10000,5005,8000,15000,10000,0
+22334,200000,female,2,1,29,0,0,0,0,0,0,118729,121398,125899,128933,129427,132338,4874,6690,7000,4500,5000,4682,0
+22335,150000,female,2,2,29,-1,-1,-1,-1,-1,-1,933,598,1062,0,1810,0,598,1062,0,1810,0,3163,0
+22336,180000,female,1,2,27,0,0,0,0,0,0,101489,78738,78639,44295,44113,37805,10006,8000,1610,10000,1333,8818,0
+22337,420000,female,2,1,32,0,0,0,0,0,0,546485,228070,184810,131304,110930,84193,18546,8931,4940,1796,3100,133131,0
+22338,30000,female,3,1,29,0,0,2,2,2,2,10456,13164,12668,15038,14502,15501,3200,0,2905,0,1386,0,1
+22339,230000,female,1,2,31,-1,-1,2,-1,-1,0,2155,2010,165,5908,283,283,2010,0,5908,283,133,0,0
+22340,60000,female,2,2,27,1,2,2,2,2,2,5087,7236,8104,7825,8580,8300,2410,1131,0,886,0,332,0
+22341,220000,female,2,2,28,0,0,0,0,0,0,43436,46883,44179,44704,44997,45199,5012,2500,2000,2000,3000,3000,0
+22342,240000,female,1,2,29,0,0,0,0,0,0,186969,167474,168081,166589,165981,165951,5510,6000,8808,6006,6000,6000,0
+22343,140000,female,2,2,31,-2,-2,-2,-2,-2,-2,518,518,518,518,518,668,518,518,518,518,668,518,0
+22344,200000,female,1,2,32,-2,-2,-2,-2,-2,-2,6890,11002,517,11212,19090,24949,11002,517,11214,19116,24949,10904,0
+22345,410000,female,1,2,30,-2,-2,-2,-2,-2,-2,0,8417,0,2830,0,0,8417,0,2830,0,0,500,0
+22346,140000,female,2,1,34,0,0,0,0,0,0,47922,49930,51980,54606,55220,56527,2710,2760,3386,2000,2082,2000,0
+22347,80000,female,2,2,30,0,0,0,0,0,0,127580,91812,96599,93389,29716,27283,13000,6000,5122,5012,13000,18000,0
+22348,340000,female,2,2,29,0,0,0,0,0,0,246245,250923,256428,233608,171349,158565,8730,9680,8613,6101,5725,5524,0
+22349,140000,female,1,2,29,-1,-1,-2,-1,-1,-1,4880,0,0,6560,3617,0,0,0,6560,3617,0,2770,1
+22350,170000,female,1,2,30,2,2,2,2,2,2,155910,158819,161487,157577,168094,170922,6800,6500,0,13000,5500,1000,1
+22351,290000,female,1,2,30,0,0,0,0,0,-1,288033,260683,190012,36223,-4724,225276,10784,10295,2082,4724,230000,10000,0
+22352,360000,female,2,2,31,0,-1,-1,-1,-2,-2,3386,5964,1340,1650,4350,4792,5964,1340,1650,4350,4792,40682,0
+22353,310000,female,1,1,32,0,-1,0,0,0,0,4762,26943,7488,10276,96059,6434,26943,5000,6000,93000,3000,5000,1
+22354,500000,female,2,2,32,-1,-1,-1,-1,0,0,9609,5609,967,16638,15721,17349,5637,972,16671,5749,7376,10723,0
+22355,250000,female,1,2,33,2,0,0,0,0,2,243262,238599,198588,203286,215882,214320,7991,9000,8000,16000,2000,6200,1
+22356,500000,female,1,2,33,-2,-2,-2,-2,-2,-2,10361,263,8050,8234,835,87878,263,8050,8234,835,87878,5000,0
+22357,80000,female,2,1,33,0,0,0,0,0,0,74973,66613,66437,54631,49219,50094,3113,2627,1850,1870,1773,1800,0
+22358,180000,female,2,2,30,0,0,0,0,0,0,23398,14445,15404,19885,22355,22902,1541,1500,4911,10355,10902,3500,0
+22359,320000,female,1,2,30,0,0,0,0,0,0,60947,62660,22693,23705,24012,24703,2868,1681,1693,1000,1077,1336,0
+22360,130000,female,2,1,30,0,0,0,0,0,-1,106796,108673,104535,105349,105254,120756,4000,4000,6500,5400,124582,10000,0
+22361,250000,female,3,2,30,-1,-1,-1,-1,-1,-1,1962,82,82,82,82,82,82,82,82,82,82,4099,0
+22362,380000,female,1,2,27,-1,0,0,0,0,0,119628,36965,32932,37368,35543,36756,3250,6200,5000,1543,1776,1483,0
+22363,200000,female,1,2,27,0,0,-2,-2,-2,-2,24635,0,0,0,0,0,0,0,0,0,0,0,0
+22364,260000,female,5,1,28,0,0,0,0,0,0,237212,228643,231156,223415,158739,159210,8006,7550,8080,4645,5047,4528,0
+22365,150000,female,2,2,28,2,2,2,2,2,2,137564,137327,146648,147865,149356,145262,3500,13000,5200,5300,400,5000,1
+22366,100000,female,1,2,28,1,-2,-2,-2,-2,-2,-4894,-4894,-4894,-4894,-4894,-4894,0,0,0,0,0,0,0
+22367,180000,female,2,1,28,0,0,0,0,0,0,85557,73121,68650,67895,68442,70131,3200,2500,3000,2500,3000,5000,0
+22368,150000,female,1,2,26,0,0,0,0,0,0,136736,125651,116684,101581,77741,77264,4486,4235,3161,2647,2669,2669,0
+22369,230000,female,2,2,27,0,0,0,0,0,0,175050,164054,127369,108702,77703,79123,10000,10000,4000,3000,5000,5000,0
+22370,160000,female,2,2,29,0,0,0,0,0,0,36370,35996,35275,34873,35677,34942,4002,5390,6000,5000,5000,4000,0
+22371,360000,female,2,1,30,0,0,0,0,0,0,20992,40125,44454,48382,51951,55957,20000,5000,5000,5000,5000,3000,0
+22372,150000,female,3,1,28,0,0,0,0,0,0,146325,140902,131798,115350,105770,111850,5125,10104,10017,4000,15000,8000,0
+22373,360000,female,1,1,34,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+22374,10000,female,2,2,37,-1,-1,-1,-1,0,0,6993,4165,5794,9576,7818,7580,6495,5794,9585,7580,152,390,0
+22375,20000,female,2,2,35,0,0,0,0,0,0,15852,16861,17884,18590,18959,19347,1579,1602,1308,677,692,1577,1
+22376,50000,female,2,1,35,0,0,0,0,0,0,34265,34175,33392,28340,24384,22643,2000,2000,2000,2000,1000,1000,0
+22377,50000,female,2,2,37,1,2,0,0,0,0,26305,25583,26649,27584,28135,28878,0,1481,1416,967,1156,1000,0
+22378,60000,female,2,1,37,1,2,2,2,2,2,49335,48241,52222,52777,51332,55489,0,4763,2000,0,5000,2000,1
+22379,20000,female,3,2,37,2,2,2,2,0,0,12443,13947,14331,12495,12787,13583,2000,902,500,500,1000,700,0
+22380,130000,female,2,2,39,2,2,2,0,0,2,108879,111115,107185,108569,112541,114885,5500,0,5399,8000,5000,0,0
+22381,50000,female,3,2,36,0,0,0,0,0,0,48831,46763,44302,42942,20103,20163,2002,4228,1603,900,700,810,0
+22382,350000,female,2,1,36,0,0,0,0,0,0,50889,45881,36578,37717,58311,58467,10000,9000,10000,30000,9000,1800,0
+22383,210000,female,2,1,40,0,0,0,0,0,0,41826,42820,44156,44864,45768,48204,1520,1856,1564,1468,3000,2000,0
+22384,10000,female,2,2,23,0,0,0,0,2,0,8536,8617,7902,9166,8885,9185,1117,1302,1566,0,429,182,0
+22385,20000,female,2,1,34,1,2,2,2,0,0,17970,17389,20491,19803,19734,19613,0,3700,0,1000,2000,710,0
+22386,80000,female,1,1,33,0,0,0,0,0,0,65484,66798,68120,70088,71345,72314,3000,3000,3109,3000,3000,3000,0
+22387,110000,female,2,2,33,0,0,0,0,0,0,83762,84677,87748,99201,78281,77772,3200,4521,20000,2710,2800,2700,1
+22388,180000,female,1,2,40,-2,-2,-2,-2,-2,-2,0,0,1040,258,0,0,0,1040,258,0,0,0,0
+22389,360000,female,3,2,37,-1,-1,-1,-1,-1,-1,646,0,740,871,1980,0,0,740,871,1980,0,0,0
+22390,250000,female,2,1,33,-1,-1,-1,-1,-1,-1,484,0,242,28932,0,100000,0,242,28932,0,100000,0,0
+22391,180000,female,2,1,34,0,-1,-1,-1,-1,-2,13954,5589,4312,2490,0,0,5589,4312,2490,0,0,150,0
+22392,190000,female,2,2,35,0,0,0,0,0,0,66859,68204,70009,65845,67347,70096,3054,3529,3000,2600,4000,3000,0
+22393,150000,female,1,2,35,-1,2,2,2,2,2,15349,12834,25740,20995,21353,14453,0,15600,0,758,0,2580,0
+22394,90000,female,2,1,35,0,0,0,2,2,2,37003,38082,41150,41677,42191,43371,2000,4000,1500,1500,2000,2000,0
+22395,230000,female,1,2,39,-1,-1,-1,-1,-1,0,4612,2906,23777,78287,8986,11666,2906,23820,78287,35890,11000,10180,0
+22396,120000,female,3,1,47,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+22397,100000,female,3,1,36,2,0,0,2,0,0,99298,101972,115335,112016,112906,120101,5220,16608,0,4233,9200,21000,1
+22398,60000,female,3,2,45,0,0,0,0,0,0,26350,23908,24215,17728,18087,17730,1413,1500,1173,532,597,469,0
+22399,360000,female,1,2,38,0,0,0,2,0,0,254900,259974,268459,271691,277226,283210,9300,14200,9200,10000,10403,11900,0
+22400,310000,female,2,1,38,0,0,0,0,0,0,302623,310142,308006,239008,245493,250797,12000,12000,8500,10000,9000,8500,0
+22401,280000,female,2,2,37,-1,-1,-1,-1,-1,-1,12693,13214,13466,12619,13985,12603,13214,13466,12619,13985,12603,16921,0
+22402,30000,female,3,2,38,2,2,2,2,2,-1,11403,8151,8892,8563,-510,390,0,2500,0,0,1290,930,0
+22403,260000,female,2,1,38,0,0,0,0,0,0,81745,83371,85128,86910,88637,90682,2984,3100,3200,3172,3473,6994,0
+22404,180000,female,2,1,36,-1,-1,-1,-2,-2,-2,1252,23,-820,-1140,0,0,23,3,0,2000,0,150,0
+22405,330000,female,2,2,36,0,0,0,0,0,0,257156,257576,256014,245244,239441,242025,10037,10109,10053,10014,9001,9001,0
+22406,400000,female,3,1,46,-1,-1,2,0,0,-1,260,58257,42948,25962,15316,6813,60064,42,1202,9,6813,4682,1
+22407,90000,female,2,1,36,0,0,2,0,0,0,86155,92406,90049,86984,67076,66533,8600,0,4100,5000,5000,5000,0
+22408,200000,female,1,2,36,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+22409,280000,female,3,2,38,-1,-1,-1,-1,0,0,6491,-1277,8413,19825,22085,12316,4041,16830,19862,12098,19,7428,0
+22410,350000,female,1,1,37,-2,-2,-2,-2,-2,-2,1140,0,4100,0,0,0,0,4100,0,0,0,0,0
+22411,50000,female,2,1,42,0,0,0,0,0,0,47867,40937,28868,44751,27557,29125,2083,1840,31000,977,2003,1214,0
+22412,50000,female,2,2,44,-1,-1,-1,-1,0,0,390,390,390,18015,17150,17102,390,390,18015,400,342,3334,0
+22413,120000,female,2,1,41,-1,-1,-1,-1,0,0,4591,0,28466,21455,15685,6737,0,28466,21455,0,0,200,0
+22414,80000,female,2,2,38,0,0,0,0,0,0,17816,18095,17374,14298,12259,10498,3000,2000,1000,2000,2000,2000,0
+22415,90000,female,2,3,36,0,0,0,0,0,0,91552,88751,54704,37660,32074,18372,55000,5023,5030,11000,9765,10000,0
+22416,50000,female,2,3,44,0,0,0,0,0,0,42941,44002,43378,28048,28477,29056,1800,2122,1600,1000,1000,1000,0
+22417,180000,female,1,1,44,0,0,0,2,0,0,123100,125674,145212,141409,142861,166960,6102,23200,0,5295,26550,6045,0
+22418,200000,female,3,1,31,0,0,0,0,0,0,202139,202431,201911,201971,201351,201933,7000,7000,7000,7000,7000,7000,0
+22419,420000,female,2,1,31,0,0,0,0,0,0,147344,116483,90368,85616,81461,77925,4153,4031,3040,3026,3017,3079,0
+22420,270000,female,2,1,31,-1,-1,0,0,0,0,6894,14246,43615,33336,36045,28725,14305,43000,1740,16045,2000,5000,0
+22421,50000,female,3,1,49,0,0,0,0,0,0,46970,36260,29311,27932,28274,27605,3005,2000,2000,2000,1000,2000,0
+22422,30000,female,1,1,41,0,0,0,0,0,0,26300,27308,28425,29233,21575,22029,1450,1560,1350,1000,801,1000,0
+22423,170000,female,2,1,36,2,2,2,2,2,2,15570,15031,16784,17711,17131,18197,0,2500,1500,0,1500,1000,0
+22424,170000,female,2,1,42,0,0,0,0,-2,-2,52262,36518,20533,-919,-919,-919,1985,1000,16000,16000,16000,24288,0
+22425,150000,female,6,2,40,0,0,0,0,0,-2,157548,164305,156201,149975,0,0,160812,3173,3749,0,0,0,1
+22426,20000,female,2,2,38,1,4,3,2,0,0,21769,21139,20521,19817,14932,10812,0,0,0,448,380,345,0
+22427,120000,female,2,1,40,0,0,0,0,0,0,105124,109399,109397,36850,37739,38381,6020,3900,1700,1500,1400,1400,0
+22428,50000,female,2,1,41,2,2,2,2,2,0,17028,20543,21919,20828,20272,18816,3828,2000,600,0,637,700,1
+22429,500000,female,3,2,44,0,0,0,0,0,0,206766,196931,190584,124514,211301,200525,20077,20972,5045,100055,10018,10197,0
+22430,40000,female,2,1,36,2,2,2,2,0,0,7129,8850,9733,9375,6003,2435,3147,1172,0,500,1015,1000,1
+22431,70000,female,2,1,48,-1,-1,-1,-1,0,-1,3838,1930,6384,4286,2333,930,1930,6384,4292,0,930,1422,0
+22432,30000,female,2,1,44,0,0,0,0,0,0,28467,29792,29739,24950,25248,25109,1814,1459,1373,871,890,1375,1
+22433,70000,female,3,1,48,1,2,0,0,0,0,9518,9217,10557,11576,12383,13180,0,1500,1200,1000,1000,500,1
+22434,20000,female,3,1,49,0,0,0,0,0,0,17543,17888,18577,18111,19114,17038,2100,1700,3500,2000,1000,1000,1
+22435,140000,female,3,1,45,-1,-1,-1,-1,-1,-1,1352,381,2281,437,1320,300,381,2290,437,1320,300,0,0
+22436,200000,female,2,1,39,3,2,2,2,2,0,117868,114483,118855,125357,121853,124731,0,6216,10000,0,5000,4552,1
+22437,90000,female,3,1,42,0,0,0,0,0,0,34672,35270,36150,36528,37128,37348,1562,1832,1600,1000,1000,0,0
+22438,30000,female,3,2,44,1,2,2,-2,-2,-2,3213,3000,0,0,0,0,0,0,0,0,0,0,0
+22439,260000,female,2,1,41,-2,-2,-2,-2,-2,-2,8154,1365,717,717,2325,1117,1365,717,717,2325,1117,891,0
+22440,100000,female,2,1,36,1,-2,-1,0,0,0,0,0,19928,23255,23968,24531,0,19928,4000,1100,1100,1400,0
+22441,150000,female,5,2,36,1,-2,-2,-2,-1,-1,0,0,0,0,1966,500,0,0,0,1966,500,754,0
+22442,50000,female,3,2,44,2,0,0,2,2,2,23268,24377,27164,26429,28291,27702,1500,3500,0,2300,0,1500,1
+22443,200000,female,2,1,31,-1,2,-1,2,2,-1,2480,150,206,56,56,440,0,206,0,0,880,440,0
+22444,480000,female,1,2,34,-1,-1,-1,0,-1,-1,19810,3478,7782,4720,4440,96628,3495,8037,4523,4462,96665,6865,0
+22445,150000,female,4,1,36,-2,-2,-2,-2,-2,-2,7160,5253,0,0,0,0,5279,0,0,0,0,0,0
+22446,80000,female,1,1,38,-1,-1,-1,-1,-1,-1,2226,6259,1393,1627,5189,10747,6259,1393,1627,5189,10747,4412,0
+22447,310000,female,3,1,39,-1,0,0,0,0,0,11819,14300,18731,23078,27354,31725,3000,5000,5000,5000,5000,5000,0
+22448,200000,female,3,1,46,-1,-1,-1,-1,-1,-1,14617,1261,8187,1261,1261,1261,1261,8187,1261,1261,1261,1261,0
+22449,20000,female,2,1,43,0,0,0,0,0,0,11511,12521,13851,14558,14847,15157,1205,1535,1242,531,549,552,0
+22450,480000,female,3,1,41,0,0,0,0,0,0,44018,74152,107675,110289,100520,37080,35176,45000,12022,14000,14000,10000,0
+22451,200000,female,2,2,35,0,0,0,-1,-1,-1,6512,4312,0,2412,1396,0,2000,0,2412,1396,0,396,0
+22452,20000,female,3,1,45,-1,0,0,0,-1,-1,1649,2301,2840,0,1740,0,1071,1000,0,1740,0,0,0
+22453,300000,female,1,2,30,-1,-1,-1,-1,0,0,515,200,208,2609,2040,1341,200,208,2610,0,0,0,0
+22454,230000,female,2,1,34,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+22455,50000,female,2,1,35,0,0,0,0,0,0,7378,7543,7754,7825,7132,7319,1121,1168,1075,218,1100,0,1
+22456,50000,female,3,1,39,0,0,0,0,0,0,49575,48208,47619,19929,15693,13766,2067,3000,1171,2000,2000,2500,0
+22457,110000,female,3,1,40,0,0,0,0,0,0,105055,105886,108819,79027,80709,82406,4058,4913,3000,3000,3000,3100,0
+22458,70000,female,3,1,49,2,2,2,0,0,0,16127,20035,19416,17153,17866,19413,4500,0,2000,1000,2000,691,1
+22459,50000,female,3,3,46,-2,-1,0,0,0,0,-1494,2590,3506,19792,19422,19830,7084,1000,19286,664,689,761,0
+22460,50000,female,3,1,32,0,0,0,0,0,0,33231,34544,35976,15996,32714,16720,1868,2300,1239,600,600,600,1
+22461,440000,female,2,1,46,0,0,0,0,0,0,177425,180641,181557,149944,113135,105280,7700,8610,6907,3727,3800,4001,0
+22462,150000,female,2,2,38,-1,-1,-2,-2,-2,-2,1242,0,0,0,0,0,0,0,0,0,0,0,0
+22463,420000,female,2,1,37,0,0,0,-1,0,0,36032,41932,9778,158901,161876,165378,7022,1846,163862,6000,6000,6000,0
+22464,180000,female,2,1,33,-1,-1,-1,-1,-1,-1,3490,0,1112,10383,1980,2672,0,1112,10383,1980,2672,2197,0
+22465,230000,female,1,2,33,0,0,0,0,0,0,38646,40000,41354,42368,43161,45056,2000,2000,2000,1800,2600,2000,0
+22466,50000,female,2,2,44,0,0,2,3,2,0,16094,18961,20857,20229,19623,19878,3155,2500,0,0,707,713,1
+22467,260000,female,2,2,32,0,0,0,0,0,0,251330,256988,234260,227884,202178,198467,10000,9014,11002,7503,7502,7500,1
+22468,260000,female,2,2,33,-1,-1,-1,-1,-1,0,5188,12357,28656,7497,7685,15434,13000,29022,7500,27769,12000,6200,1
+22469,310000,female,1,1,33,-2,-2,-2,-2,-2,-2,2729,0,0,0,0,343,0,0,0,0,343,410,1
+22470,60000,female,2,1,37,2,2,2,2,2,2,42101,43594,44700,45465,46215,47125,2500,2100,1800,1800,1800,2000,1
+22471,120000,female,2,2,40,-1,-1,-1,-1,-1,-1,32130,3610,3790,18508,20737,-28,3613,3818,18564,20988,0,0,0
+22472,400000,female,2,1,41,0,0,0,0,0,0,10928,12730,14486,13419,14313,14524,2000,2002,2000,2000,3000,5000,0
+22473,80000,female,3,1,45,-2,-2,-2,-2,-2,-2,640,23699,2676,-4,-4,-4,23699,22670,0,0,0,0,0
+22474,60000,female,2,1,40,0,0,0,0,0,0,31168,32649,34117,35243,36350,37113,2000,2000,2000,2000,1500,2000,0
+22475,160000,female,2,1,40,0,0,0,2,0,0,137930,137695,146193,139323,140719,143638,6574,12121,0,5100,10251,5205,0
+22476,220000,female,2,1,34,0,0,0,0,0,0,208009,212271,166288,168146,172345,177151,8200,8000,6108,7000,7743,7700,0
+22477,300000,female,2,1,46,0,0,-1,0,-1,0,5287,5750,2977,4796,2367,7367,3000,3000,2500,2367,5000,3000,0
+22478,100000,female,2,2,32,0,0,0,0,0,0,101556,98734,98858,98259,80849,81151,3481,6006,3246,2994,2903,2849,0
+22479,60000,female,2,1,37,0,0,0,0,0,0,55233,54898,52890,49066,34105,32778,1940,2019,2236,1351,1326,1454,0
+22480,80000,female,2,1,43,0,0,0,0,0,0,71100,72066,71751,72034,73261,74479,10000,9000,9000,9000,9000,9500,0
+22481,10000,female,3,2,43,-1,-1,-1,0,0,-2,1593,1928,5797,7727,4196,0,2006,5805,4013,4217,4,12700,0
+22482,30000,female,3,3,40,-1,-1,-1,-1,-1,-1,29896,11158,18245,9714,28103,9207,11158,18245,9714,28112,9207,14379,0
+22483,500000,female,1,1,36,-2,-2,-2,-2,-2,-2,9241,10786,12376,12660,8000,20514,10786,12390,12692,8016,20514,16625,0
+22484,40000,female,3,1,40,1,-1,2,2,2,-2,-531,2661,3871,1488,0,0,3383,2000,0,0,0,431,1
+22485,300000,female,2,2,35,0,0,-1,-1,0,-1,48926,22580,300,5107,5107,3028,1006,350,5107,0,3028,60,0
+22486,20000,female,2,1,34,2,2,2,2,2,2,13552,16513,17549,18907,19114,19186,3188,1600,3570,801,901,1,0
+22487,280000,female,1,2,37,-1,2,-1,-1,-1,-1,2560,2343,4689,2289,1700,803,0,4689,2300,1725,803,129,1
+22488,190000,female,1,2,38,0,0,0,0,0,0,39468,33983,35042,35699,36410,38067,2151,1910,1558,1269,2209,123347,0
+22489,500000,female,2,1,33,-1,-1,-1,-1,-1,-1,9511,1468,3766,580,8120,1821,1468,3766,580,8120,1821,979,0
+22490,250000,female,4,1,43,-2,-2,-2,-2,-2,-2,-6,1298,826,2044,-16,-16,1304,830,2054,0,0,0,0
+22491,120000,female,3,2,47,-1,0,0,-1,-1,-1,7301,4542,3390,460,338,679,2327,1083,500,350,700,500,0
+22492,20000,female,3,2,35,-2,-2,-2,-2,-2,-2,0,1492,0,0,0,0,1492,0,0,0,0,0,0
+22493,210000,female,1,1,40,1,2,2,2,0,0,66635,56729,73783,58144,27617,14695,0,20012,24,33,0,223,0
+22494,220000,female,5,2,46,0,0,0,0,0,0,104603,107850,112108,113520,101164,88354,5000,6000,5000,3649,3580,4000,0
+22495,30000,female,3,1,49,0,0,0,0,0,0,28806,13406,14485,15936,16370,17105,1600,1600,2000,1000,1000,1000,0
+22496,340000,female,2,1,45,0,0,0,0,-1,-1,284099,286067,290374,5329,5029,7079,11000,10005,5336,5036,38592,4448,0
+22497,180000,female,1,1,36,0,0,0,0,0,0,4911,6688,8432,9977,10030,10836,2000,2000,2000,500,1100,0,0
+22498,40000,female,1,1,40,-1,-1,-1,-1,-1,0,776,776,776,776,1552,776,776,776,776,1552,0,1459,1
+22499,20000,female,2,1,37,0,0,0,0,0,0,19969,19568,19189,13708,11467,10614,1400,2000,1500,1000,1000,2000,0
+22500,130000,female,2,1,48,2,2,2,2,2,2,105500,107761,109965,110797,107529,114104,5500,5400,4100,0,8500,0,1
+22501,50000,female,2,1,41,0,0,0,0,0,0,47406,48332,44295,43638,18788,15468,2200,2100,2228,1000,500,1150,1
+22502,300000,female,1,1,31,-1,-1,-1,2,-1,-1,17641,2749,27838,4184,856,6781,2765,28773,0,856,6781,8462,0
+22503,140000,female,2,2,33,0,0,0,0,0,0,62063,56426,41717,42823,25224,26855,22400,2000,2000,900,2000,10000,0
+22504,260000,female,2,1,46,0,0,0,2,2,2,16170,18256,19556,18136,24018,21490,3000,2934,0,8000,0,2000,0
+22505,100000,female,2,1,45,0,0,0,0,0,0,90483,91893,91531,82398,73011,73711,3315,3664,3157,2572,3048,2680,0
+22506,130000,female,2,2,40,2,0,0,2,0,0,8539,9559,12394,11883,9826,10167,1165,3000,0,500,500,2700,1
+22507,200000,female,2,2,47,1,-2,-2,-2,-2,-1,0,0,0,0,0,665,0,0,0,0,665,0,1
+22508,200000,female,1,1,48,-1,-1,-1,-1,-1,-1,657,0,2080,3567,0,1731,0,2080,3567,0,1731,1081,1
+22509,200000,female,1,2,31,1,-1,-1,-1,-1,-1,0,6372,2180,6605,970,0,6372,2182,6605,970,0,0,0
+22510,180000,female,1,2,32,0,0,0,0,0,-1,17332,14579,17814,8260,9090,4441,4579,5000,2000,4110,4441,3549,0
+22511,360000,female,2,1,33,-2,-2,-2,-2,-2,-2,0,0,3240,1943,0,0,0,3240,1943,0,0,0,1
+22512,420000,female,1,2,34,-1,-1,-1,0,0,-1,26232,8955,33661,12957,10221,40060,8967,33661,3005,3000,40060,5000,0
+22513,180000,female,1,1,35,-1,-1,-1,2,-1,-1,3544,-36,163,163,1772,148,0,1000,0,2000,0,5000,0
+22514,50000,female,3,1,35,3,2,2,2,0,0,34440,32823,34699,30869,29890,29719,0,3511,0,1045,1066,1134,0
+22515,120000,female,1,1,34,-2,-2,-2,-2,-2,-2,3755,0,0,0,0,0,0,0,0,0,0,0,1
+22516,80000,female,3,1,35,0,0,0,0,0,0,54986,55111,55239,54892,45862,45086,1966,2055,1720,1458,1475,1587,0
+22517,180000,female,1,1,38,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+22518,20000,female,2,1,32,0,0,2,0,0,2,15547,18186,17606,18708,20093,20721,2900,0,1400,1700,1100,600,1
+22519,180000,female,4,1,32,0,0,0,0,0,0,136055,136095,136201,136857,130839,131059,6400,6400,7000,5000,5000,5000,0
+22520,230000,female,2,1,34,-2,-1,-1,-1,-1,-1,3256,1401,1624,4180,2665,3915,1401,1635,4180,2667,3915,2091,0
+22521,80000,female,2,1,43,0,0,0,0,-2,-2,78374,80472,82150,0,0,0,4000,4000,0,0,0,0,0
+22522,90000,female,2,1,42,-1,-1,-1,-1,-1,-1,1367,2086,2987,5850,2720,4541,2086,2987,5856,2720,4541,11387,0
+22523,300000,female,3,1,30,0,0,0,0,0,0,25936,26008,26324,27249,46007,46764,1500,1800,2000,20000,2160,2400,0
+22524,160000,female,1,2,36,1,-2,-2,-2,-2,-1,0,0,0,0,0,300,0,0,0,0,300,0,1
+22525,180000,female,2,2,47,-1,-1,-1,-1,-1,-1,4164,701,411,955,416,2408,701,411,960,416,2408,1609,0
+22526,160000,female,2,2,30,0,0,-1,0,0,0,13680,6729,119200,115893,113309,110073,2019,120377,3612,3100,3200,2558,0
+22527,230000,female,1,2,30,0,0,0,0,0,0,246101,261430,237267,212105,186149,159683,38172,9000,7800,6650,5496,5145,0
+22528,360000,female,1,2,31,-2,-2,-2,-2,-2,-2,3429,33535,2441,5681,65816,17577,33702,2453,5710,66145,17589,8050,0
+22529,500000,male,1,2,31,-2,-2,-2,-2,-2,-2,26760,747,2652,-11,-213,-213,750,2676,1,0,0,0,0
+22530,120000,male,2,2,30,2,2,2,2,2,2,69443,70896,72381,70629,74827,76470,3200,3200,0,6000,3000,3000,0
+22531,280000,male,1,2,31,-2,-2,-2,-2,-2,-2,0,0,0,787,1233,0,0,0,787,1233,0,0,1
+22532,200000,male,2,1,32,1,2,0,0,0,0,134625,98699,74015,54472,50540,46486,341,8024,5000,8000,1821,5000,0
+22533,180000,male,1,2,31,0,0,0,0,0,0,89903,66236,59932,52382,40661,32385,3073,3010,2010,1200,1000,1000,0
+22534,240000,female,1,1,34,0,-1,-1,-1,-1,-1,1670,1479,1479,1479,1479,1240,1479,1479,1479,1479,1240,1655,1
+22535,500000,female,1,1,44,0,0,0,0,0,0,322849,331476,339278,85500,87192,92581,14000,15000,4000,4000,6784,0,0
+22536,180000,female,2,1,48,-1,-1,-1,-1,-2,-2,4498,-2,760,0,0,245,0,762,0,0,245,884,0
+22537,330000,female,2,1,43,0,0,0,0,0,0,15018,17365,19114,14093,16005,4935,3000,2500,3000,3000,170,2000,0
+22538,420000,female,1,2,37,0,0,0,0,0,0,433837,426169,411637,340947,267641,214445,15500,17000,13541,10008,7705,7246,0
+22539,220000,female,2,1,33,0,0,0,0,0,0,41352,43757,46012,47543,48489,49506,3100,3269,2800,1736,1799,1964,0
+22540,170000,female,2,2,34,-1,-1,-2,-2,-2,-2,2435,0,0,0,0,0,0,0,0,0,0,0,0
+22541,140000,female,1,1,48,-1,-1,-1,-1,-1,-1,907,19830,11639,14362,0,46514,19891,11639,14362,0,46514,2400,0
+22542,200000,female,3,2,31,0,0,0,0,0,0,187864,191756,194283,191693,188261,155159,8500,7500,7000,5000,7000,2000,0
+22543,230000,female,2,1,32,0,0,0,0,0,0,55623,59913,60991,37289,37368,37357,5855,3000,1848,1457,4443,0,0
+22544,150000,female,4,2,31,-2,-2,-2,-2,-1,2,9846,5345,0,0,1493,159,5345,0,0,1493,0,1119,0
+22545,240000,female,1,2,37,-2,-2,-2,-2,-2,-2,660,31187,1280,7623,0,11353,31187,1280,7643,0,11353,2576,0
+22546,210000,female,2,1,49,-2,-2,-1,-1,-1,-1,21639,8455,18062,3019,5587,28210,8455,18145,3019,5587,28210,2706,0
+22547,500000,female,1,2,35,0,0,0,0,0,0,113466,116857,116402,95244,68182,60153,12197,15263,4672,0,1296,54,0
+22548,180000,female,3,1,39,1,-2,-2,-1,3,2,0,0,0,300,300,150,0,0,300,0,0,645,0
+22549,60000,female,2,2,31,0,0,0,0,0,2,59426,59643,61279,61017,30117,29526,2800,3200,2535,2331,0,1073,0
+22550,290000,female,1,1,34,0,0,0,0,0,0,276365,199540,191188,145089,137942,116689,9263,9041,7027,10088,8027,10025,0
+22551,80000,female,3,3,48,0,0,0,0,0,0,36320,29106,15290,4456,33661,34275,2030,2000,2000,30000,12000,0,0
+22552,180000,female,1,1,46,0,0,0,0,0,0,182283,167160,173685,179213,182271,156029,15000,11080,10000,10000,7000,10000,0
+22553,350000,female,3,1,33,-1,0,-1,-1,-1,-1,61937,65343,1355,7069,0,180,5343,1359,14615,0,180,1340,0
+22554,210000,female,3,2,36,0,0,0,0,0,0,57605,58727,59854,61330,62394,63912,3000,3000,2804,3000,3000,2468,0
+22555,160000,female,1,1,35,1,-2,-2,-2,-1,-1,0,0,0,0,1240,0,0,0,0,1240,0,0,0
+22556,350000,female,1,1,40,-2,-2,-2,-2,-2,-2,3286,-114,20482,0,0,0,0,20596,0,0,0,0,0
+22557,130000,female,2,1,41,0,0,0,0,0,0,104898,103920,102270,96440,85065,85105,4714,4553,4203,3000,3100,3500,0
+22558,240000,female,2,1,49,-2,-1,2,-1,-1,-1,0,2353,2135,3305,0,5370,2421,0,3305,0,5370,4605,0
+22559,330000,female,3,1,40,0,0,0,0,0,0,81084,82838,84470,80923,82580,84330,3100,3026,3000,3000,3078,3238,0
+22560,500000,female,2,1,45,1,-1,-1,-1,-2,-2,0,1376,3719,-200,-200,-200,1376,3723,1319,0,0,0,1
+22561,170000,female,3,1,41,-1,-1,-1,-1,-1,-1,1000,0,978,1009,1101,0,0,978,1009,1101,0,912,0
+22562,240000,female,4,1,43,-2,-2,-2,-2,-2,-2,4522,1868,7182,6398,2498,3466,1868,7208,6450,2498,3466,2156,0
+22563,180000,female,6,2,47,0,0,0,0,0,0,167915,163279,166994,150812,123957,55778,6028,7758,5188,4570,1876,1701,1
+22564,260000,female,2,2,36,-1,-1,-1,-1,-1,-1,17631,13184,1700,5190,8455,1462,13184,1700,5190,8455,1462,3641,0
+22565,130000,female,2,1,43,-1,-1,-1,-1,-1,-1,2292,6776,2811,3589,11151,1543,6776,2811,3589,11351,1543,1109,0
+22566,30000,female,2,2,38,-1,0,-1,-1,-1,-2,497,1169,220,1705,0,0,1001,220,1705,0,0,0,0
+22567,440000,female,2,2,42,1,-2,-2,-1,-1,-1,0,0,0,17297,0,13497,0,0,17297,0,13497,0,0
+22568,260000,female,2,1,43,-1,-1,-1,-2,-1,-1,684,1726,0,0,5055,5996,1742,0,0,5055,5996,5648,0
+22569,30000,female,1,1,38,2,0,0,0,0,0,25080,26460,27042,27617,28546,13487,1800,2000,1400,1300,700,1000,0
+22570,390000,female,2,1,37,0,0,0,0,0,0,200927,200612,202794,191419,81360,66864,17843,8315,6839,3000,2348,2401,0
+22571,260000,female,2,1,45,0,0,0,0,0,0,113872,118281,119564,68707,39517,33842,6302,5300,2600,2500,5000,15000,0
+22572,70000,female,2,1,46,0,0,0,0,0,0,65906,67271,25323,25829,26589,16776,3500,2000,2000,1500,1000,1000,0
+22573,200000,female,3,1,30,2,2,2,2,2,2,140327,143137,145374,147273,149244,151973,6600,6000,5860,6000,5000,0,0
+22574,150000,female,2,1,32,0,0,0,-2,-2,-2,21274,22704,0,0,0,0,11540,0,0,0,0,0,0
+22575,460000,female,1,2,32,-2,-2,-2,-2,-2,-2,13377,12776,8364,20465,13714,38090,12840,8403,20552,13778,38266,25005,0
+22576,180000,female,3,1,33,-1,-1,-1,-1,-1,-1,478,478,2272,3970,330,0,478,2272,3970,420,0,0,0
+22577,70000,female,1,2,37,0,0,0,0,0,0,64860,64533,48493,48824,19000,39000,2200,3000,1400,500,20000,0,0
+22578,250000,female,2,1,40,-2,-2,-2,-2,-2,-2,1385,4843,2942,1054,1708,3014,4843,2942,1057,1708,3014,3037,0
+22579,170000,female,2,1,39,0,0,0,0,0,0,22870,20653,21577,20334,19161,18613,2000,1685,1231,608,650,547,0
+22580,160000,female,2,2,34,-1,-1,-1,-1,-1,0,149,1100,240,236,4022,4245,1100,240,236,4026,1000,1000,0
+22581,80000,female,1,2,36,2,0,0,2,0,0,12639,13419,18171,17582,19281,19968,1300,5000,0,2000,1000,10000,1
+22582,400000,female,3,2,49,1,-1,-1,-1,-1,-1,0,877,33508,9506,8967,4326,877,33508,9506,8967,4326,5420,0
+22583,20000,female,2,1,43,4,4,3,2,2,2,28447,27721,27009,27170,26295,34171,0,0,924,0,9648,2000,1
+22584,130000,female,2,2,44,0,0,0,0,0,0,128854,111896,116183,115034,88163,87388,4000,6097,4085,3007,3028,3000,0
+22585,60000,female,1,1,36,0,0,0,2,2,2,4373,5428,9754,7795,8258,8370,1131,4457,37,500,300,0,0
+22586,90000,female,3,1,41,0,0,0,0,0,0,87240,88519,84573,78617,64344,63417,10000,3519,5014,2679,4600,1000,0
+22587,210000,female,2,2,44,0,0,0,0,0,0,84298,85379,87469,90380,91355,92565,3379,3469,4380,3355,3565,3607,0
+22588,380000,female,1,2,34,2,2,2,2,2,2,315912,322199,331518,337703,343612,351089,13000,16001,13150,13000,13150,13300,0
+22589,200000,female,2,1,35,0,0,0,0,0,0,29327,30536,31740,32909,34058,35056,2000,2000,2000,2000,1700,1600,0
+22590,180000,female,1,1,37,2,-1,-1,-1,-1,0,326,326,326,480,1011,2685,326,326,480,1011,2000,3000,1
+22591,20000,female,2,1,42,1,3,2,0,0,0,21001,20372,19376,20295,19505,19964,0,0,1400,390,459,241,0
+22592,350000,female,3,1,38,-2,-2,-2,-2,-2,-2,1316,3033,2168,7951,4986,3641,3061,2181,8071,5002,3654,5820,0
+22593,200000,female,5,1,41,1,-2,-1,-1,-2,-1,0,0,650,0,0,89,0,650,0,0,89,0,0
+22594,400000,female,3,2,34,-2,-2,-2,-2,-2,-2,10150,5869,5750,132866,21780,41050,5869,5750,132872,21780,20525,74984,0
+22595,230000,female,1,1,38,1,-1,-1,-1,-2,-2,828,1533,7234,824,4690,1408,1547,7247,828,4713,1415,1820,0
+22596,230000,female,1,1,43,-1,-1,-1,-1,-1,-2,390,390,0,780,0,0,390,0,780,0,0,0,1
+22597,50000,female,2,1,38,0,0,0,0,0,0,25184,26261,27334,28374,28804,29488,1800,1800,1800,1200,1300,1300,0
+22598,300000,female,2,2,47,0,0,0,0,0,0,225542,212958,195533,98158,66438,68863,7055,5536,5052,1794,5000,2000,0
+22599,230000,female,3,1,45,0,0,0,0,0,0,15160,14513,15221,16501,10283,9086,1500,3000,3000,1000,1000,2140,0
+22600,50000,female,3,1,44,0,0,0,0,0,0,47569,48768,49234,21067,15007,31043,1986,1452,1200,300,27000,1412,0
+22601,150000,female,1,2,34,-1,0,0,0,0,0,7249,4090,36897,35755,16251,7392,1070,35755,2000,0,2000,2931,0
+22602,260000,female,1,2,33,-2,-2,-2,-2,-2,-2,2537,2587,3727,1885,2013,3001,2606,3749,1900,2025,3019,2680,0
+22603,320000,female,2,1,33,-1,-1,-1,-1,-1,-1,3077,1651,1060,4070,2695,7544,1661,1060,4070,2700,7544,3563,1
+22604,100000,female,2,1,49,0,0,0,0,0,0,55084,49358,89406,77924,78683,77357,2500,43075,2750,2750,2800,2853,0
+22605,60000,female,3,1,37,1,-2,-2,-2,-2,-1,0,0,0,0,0,150,0,0,0,0,150,499,0
+22606,420000,female,3,1,42,-2,-2,-2,-2,-2,-2,87263,20793,34676,48823,74475,47108,20803,34682,48919,74481,47108,219844,0
+22607,500000,female,2,1,38,0,0,0,0,0,0,80460,79689,74664,70270,66053,63924,3527,3030,3028,2513,2100,2524,0
+22608,450000,female,2,1,34,0,0,0,0,0,0,372188,383052,74835,87584,95161,103398,20000,3703,15000,10000,10000,25000,0
+22609,30000,female,3,1,42,0,0,0,0,0,0,75112,24530,13375,2592,30094,29147,1371,1210,1000,30000,1046,1390,1
+22610,60000,female,2,1,47,2,2,2,2,0,0,26782,29104,30027,28928,29346,29717,3400,2000,0,1500,1300,3500,1
+22611,180000,female,2,1,43,-1,-1,-1,-1,-1,-1,316,316,316,396,396,3306,316,316,396,396,3306,3306,0
+22612,320000,female,2,2,35,-1,-1,-1,-1,0,0,1302,3571,311,8088,10881,11600,3571,311,8088,5000,1600,1810,0
+22613,250000,female,1,2,37,0,0,0,0,0,0,116861,97569,90937,87445,84268,80762,3424,3317,3023,2937,2931,3022,0
+22614,30000,female,2,2,34,0,0,0,0,0,0,23336,24642,25382,26351,25165,25536,1700,1440,1409,1048,927,932,0
+22615,360000,female,2,1,34,-1,0,0,-1,-1,-2,4874,9561,5866,1297,0,0,5000,1166,1297,0,0,0,0
+22616,360000,female,3,1,43,-2,-2,-2,-2,-2,-2,4435,799,1071,15584,3195,4261,805,1071,15604,3195,4269,3525,0
+22617,150000,female,1,1,36,-2,-2,-2,-2,-2,-2,32440,13447,17877,25172,4694,6292,13447,17914,25349,4694,6324,14433,0
+22618,400000,female,2,1,39,-1,2,-1,-1,-1,-1,58126,10446,5299,8841,18612,6115,31,5316,8858,18769,6115,11000,0
+22619,350000,female,1,2,44,2,3,2,2,2,2,309250,314607,322032,327193,333278,340791,12000,14000,12000,13000,13000,13000,1
+22620,80000,female,3,1,45,-2,-2,-2,-2,-2,-2,3473,3329,2939,3627,3868,2193,3329,2939,3627,3991,2299,3031,0
+22621,140000,female,3,1,37,-1,-1,-1,-1,-1,-1,1208,4411,3957,5241,3943,3933,4411,3957,5241,3943,3933,0,0
+22622,150000,female,3,2,48,0,0,0,0,0,0,175095,175522,173918,174074,178671,178869,10011,6200,5874,10000,6054,7108,0
+22623,480000,female,3,1,40,-2,-2,-2,-2,-2,-2,5664,12781,7169,6749,2436,14155,12871,7169,6749,2436,14155,9286,0
+22624,200000,female,3,1,41,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,504,0
+22625,180000,female,1,2,29,-1,-1,-1,-1,-1,-2,9862,2896,2458,305,0,0,2903,2458,305,0,0,0,0
+22626,260000,female,1,2,30,-2,-2,-2,-2,-2,-2,0,3459,0,0,200,0,3459,0,0,200,0,950,0
+22627,450000,female,1,1,33,1,-1,2,0,0,-1,621,11368,2370,2823,2243,4322,11420,0,2243,0,4322,0,0
+22628,140000,female,3,1,33,0,0,0,0,0,0,136302,127178,78950,80457,41150,-10193,6000,5000,4000,2000,0,71000,0
+22629,220000,female,3,1,43,0,0,0,0,0,0,242526,228858,218878,193596,167149,157817,8100,8100,7000,5900,5600,5000,1
+22630,100000,female,3,1,39,-1,-1,0,-1,-1,-1,380,1357,1977,380,380,1253,1357,1000,380,380,1253,2434,0
+22631,160000,female,2,1,41,-2,-2,-2,-2,-2,-2,550,550,550,550,550,550,550,550,550,550,550,550,0
+22632,140000,female,2,1,36,0,0,0,0,0,0,74500,64615,59862,42040,32591,21090,3508,10027,5008,5013,5008,2004,0
+22633,200000,female,2,2,39,-1,-1,-2,-2,-2,-1,1017,0,0,0,0,11700,0,0,0,0,11700,121513,0
+22634,460000,female,1,2,30,-2,-2,-2,-2,-2,-2,0,0,0,0,630,0,0,0,0,630,0,0,0
+22635,50000,female,3,2,31,0,0,0,0,0,-1,41124,38634,75580,17014,-1963,7671,1750,3016,1000,0,10400,5000,0
+22636,100000,female,1,1,31,-1,-1,0,-1,-1,-1,6033,19922,40000,1133,22579,2834,19922,21000,1133,22579,2834,0,0
+22637,150000,female,2,2,31,0,0,0,0,0,0,138363,138979,37713,35592,35808,36730,6000,2000,2000,1300,1500,1500,0
+22638,460000,female,1,1,32,0,0,-1,-1,-1,-1,5085,3883,5115,5714,1530,1868,3282,6000,5714,1530,1868,9250,0
+22639,360000,female,2,2,32,-2,-2,-2,-2,-2,-2,171,1058,3494,6339,2131,535,1058,3494,6339,2131,535,82000,0
+22640,180000,female,1,2,33,-1,-1,-1,-1,-1,-1,4019,1550,4278,331,3456,11964,1550,4278,334,3456,11964,5690,0
+22641,470000,female,1,1,42,0,0,0,0,0,-1,10360,7450,5719,1730,-7,24672,2474,1751,1012,0,24679,2600,0
+22642,320000,female,3,1,44,1,-1,2,2,-1,-1,-1,507,507,-900,3750,3216,508,0,0,5330,3216,2041,0
+22643,360000,female,2,2,47,-2,-2,-2,-2,-2,-2,3899,6571,7486,24472,5935,4999,7148,8063,25217,6487,5000,0,0
+22644,60000,female,2,1,36,-1,-1,-1,-1,-1,-1,2079,6964,1013,5254,2932,2248,6964,1013,5254,2932,2248,3000,0
+22645,310000,female,1,1,39,-2,-2,-2,-2,-2,-2,4934,1275,1572,240,-1226,-2074,1275,1572,240,970,0,6585,0
+22646,140000,female,2,1,36,0,0,0,0,0,0,50663,50847,50768,50629,49974,49897,1788,2182,2041,1715,1982,30000,0
+22647,450000,female,2,1,43,-2,-2,-2,-2,-2,-2,7361,8670,6982,15945,7841,7676,8692,7010,15998,7871,7696,6957,0
+22648,210000,female,2,1,30,-1,2,-1,-1,-1,-1,857,1030,380,705,705,705,725,380,705,705,705,705,0
+22649,180000,female,1,2,33,-1,-1,-1,-1,-1,-1,2196,1634,1586,1758,480,1918,1640,1586,1758,480,1918,2799,1
+22650,360000,female,2,2,38,-1,-1,-2,-2,-2,-2,1659,0,0,0,0,0,0,0,0,0,0,0,0
+22651,50000,female,1,1,33,2,2,2,2,2,2,40669,43102,44313,45286,44256,47549,3424,2200,2000,0,4000,2300,1
+22652,340000,female,2,2,34,0,0,0,0,-1,-1,16462,12927,10814,7880,2338,0,1310,3011,5000,2338,0,0,0
+22653,140000,female,3,1,38,2,2,2,0,0,2,119715,122283,118913,120435,139795,142950,6000,0,5000,21500,5500,0,0
+22654,120000,female,1,2,32,0,0,0,0,2,0,32051,39861,42957,43876,27231,249,10000,5000,3132,0,0,115660,0
+22655,180000,female,2,1,32,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,800,1
+22656,360000,female,1,2,32,0,0,0,0,-1,0,192160,197204,119028,103046,15863,10503,20104,4816,2061,15863,21,5016,0
+22657,340000,female,1,1,34,0,0,0,0,0,0,254219,252984,252180,250359,203580,192415,9500,9780,9425,7500,6800,7200,0
+22658,200000,female,2,1,35,0,0,0,0,0,0,136264,138994,142744,146363,149920,153107,5000,6000,6000,6000,6000,6000,0
+22659,80000,female,2,2,36,-2,-2,-2,-2,-2,-2,3966,0,0,0,0,0,0,0,0,0,0,0,0
+22660,500000,female,2,1,35,0,0,0,0,0,0,286595,292813,302966,300000,400000,0,11000,14846,6000,100000,0,279260,0
+22661,150000,female,2,1,31,-2,-2,-2,-2,-1,0,416,416,416,416,37911,38299,416,416,416,37911,1400,1400,0
+22662,20000,female,1,2,46,1,2,2,2,0,0,14231,14893,16160,15603,15943,16286,1200,1800,0,600,600,751,1
+22663,500000,female,2,1,41,0,0,0,0,0,0,275956,277193,284198,285419,261073,233343,15000,13000,10000,10000,10000,10000,0
+22664,340000,female,3,1,47,0,0,0,2,0,0,169842,158469,154170,135951,123353,110723,7000,14000,0,4000,4000,5000,0
+22665,500000,female,2,2,34,-1,-1,-1,0,0,-1,2730,3926,17501,17194,9030,2180,5606,17501,2194,1030,2180,2012,0
+22666,240000,female,2,2,31,0,0,0,0,2,2,173628,177556,179549,225556,219642,232652,8000,7000,50000,0,16302,0,0
+22667,80000,female,2,2,34,0,0,0,-1,-1,-1,7437,8906,7718,1388,0,6951,4000,1000,1388,0,6951,1980,0
+22668,200000,female,1,1,37,1,-2,-1,-1,-2,-2,-58,-58,2786,0,116,0,0,2844,0,116,0,0,0
+22669,230000,female,2,2,31,-2,-2,-2,-2,-2,-2,-18,3919,6164,3612,7756,4906,3937,6164,3612,7761,4906,3632,0
+22670,300000,female,3,1,36,-2,-2,-2,-2,-2,-2,4035,0,0,0,379,0,0,0,0,379,0,0,0
+22671,140000,female,2,1,36,-1,-1,-1,-1,0,-1,165,341,165,1031,487,863,341,165,1031,0,863,487,1
+22672,300000,female,1,2,33,-1,-1,-1,-2,-2,-2,3854,142,0,0,0,0,142,0,0,0,0,0,0
+22673,360000,female,3,2,34,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+22674,320000,female,3,1,35,0,0,0,0,0,0,157249,148123,142852,133583,129049,128325,6000,6048,6000,5000,5000,5000,1
+22675,380000,female,2,1,30,0,0,0,0,0,-1,384846,359926,349753,296465,193342,311009,13291,15287,8532,4334,317077,11892,0
+22676,170000,female,3,1,30,0,0,0,0,0,0,136639,138223,140964,138064,131845,128827,7200,7405,6022,4606,5006,4809,0
+22677,300000,female,1,1,41,-1,-1,-1,-1,-1,-2,66132,6917,3050,1760,0,0,6983,3331,1760,0,0,891,0
+22678,60000,female,3,2,44,-1,-1,-2,-2,-2,-2,2802,0,0,0,0,0,0,0,0,0,0,0,0
+22679,240000,female,2,1,36,0,0,0,0,0,0,214122,217850,212593,180867,173780,168880,19000,10000,7000,10000,8000,10000,0
+22680,500000,female,3,2,44,-2,-2,-2,-2,-2,-2,0,1275,0,0,1300,0,1275,0,0,1300,0,0,0
+22681,230000,female,2,1,45,-1,-1,-1,-1,-1,0,12047,17091,8743,31886,14893,8343,17094,8786,32467,14893,0,8968,0
+22682,290000,female,5,2,35,0,0,0,0,0,0,33278,33694,32453,27981,14096,10240,1600,1700,2015,2000,1000,1000,0
+22683,60000,female,2,1,35,0,0,0,0,0,0,59449,58548,53054,47933,29254,29981,2300,2600,2000,1200,1200,1500,0
+22684,100000,female,2,2,35,0,0,0,0,0,0,98118,99577,95736,98679,67007,67485,3500,4000,5700,2507,2500,3000,0
+22685,270000,female,2,2,36,-2,-2,-2,-1,-1,-1,-33,-33,24646,1585,15376,497,0,24679,4893,15376,497,5373,0
+22686,280000,female,2,2,35,0,0,0,0,0,0,259637,259593,261595,267359,236734,231064,10028,12500,13106,231064,15004,8004,0
+22687,100000,female,2,1,38,3,2,2,3,3,3,750,750,750,750,750,750,0,0,0,0,0,1500,0
+22688,100000,female,1,2,32,-1,-1,2,-1,-1,-1,1876,9814,6690,1196,416,620,9814,443,1196,2080,620,928,0
+22689,90000,female,1,2,31,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+22690,280000,female,4,1,44,-2,-2,-2,-2,-2,-2,5374,12360,20721,0,0,17131,12360,20721,0,0,17131,2681,1
+22691,150000,female,5,1,38,-2,-2,-2,-2,-2,-2,0,0,1597,-3,1764,718,0,1597,0,1767,718,0,0
+22692,70000,female,2,1,40,-1,-1,2,-1,-1,-1,390,780,390,390,780,0,780,0,390,780,0,0,0
+22693,180000,female,1,2,32,-1,-1,-1,-1,0,-1,1160,2884,1165,4685,1165,3472,2889,1165,4685,0,3472,799,0
+22694,190000,female,1,2,33,0,0,0,0,0,0,153962,161376,162437,117364,100765,112095,10000,6000,30000,5000,13000,34000,0
+22695,500000,female,2,1,38,0,0,0,0,0,0,15050,20852,26741,27854,30961,54017,7000,7000,2000,5000,25002,3000,0
+22696,190000,female,3,1,47,1,2,0,0,0,0,194487,189894,185512,169728,143260,136901,92,7791,4000,2865,40000,0,0
+22697,210000,female,1,2,32,-2,-2,-2,-2,-2,-2,524,4581,248,1448,398,150,4581,300,1448,398,150,2043,0
+22698,60000,female,1,1,38,-1,-1,-1,-1,-1,-1,6842,15772,23011,9941,12688,8719,15772,23011,9941,12688,8958,6484,0
+22699,200000,female,3,1,34,0,0,0,0,0,0,198482,182115,154994,153386,144067,110946,5014,4699,7543,3970,3146,6941,0
+22700,470000,female,1,2,32,1,-2,-2,-1,-1,0,0,0,0,200,34325,37325,0,0,200,34325,3000,77412,0
+22701,260000,female,1,2,30,0,0,0,0,0,0,235961,222409,215056,212791,177159,143920,7988,7979,6807,5247,5240,5000,0
+22702,140000,female,1,2,30,-1,0,0,0,0,0,13626,21399,27923,32330,33374,38588,8399,6923,5330,2074,5588,20290,0
+22703,190000,female,2,1,33,-2,-2,-2,-2,-2,-1,-2650,-2650,-2650,-5036,-5036,93493,0,1941,0,0,98529,3188,1
+22704,80000,female,2,1,36,0,0,0,0,0,0,73873,61134,49746,49033,48553,48377,2006,8199,2000,1700,2000,2000,0
+22705,310000,female,2,2,37,0,0,0,-1,-1,-2,68430,72280,77097,7636,0,0,5000,7097,7636,0,0,2039,0
+22706,150000,female,1,2,40,0,0,0,2,0,0,16986,18693,20885,21738,22080,23558,2000,2500,1500,1000,2000,2000,0
+22707,340000,female,2,1,30,0,0,0,0,0,0,338624,338272,339191,325675,285417,284834,15000,15000,15000,15000,12000,12500,1
+22708,360000,female,2,2,31,0,0,0,0,0,0,49011,62438,77461,79025,75556,63097,15000,20000,3500,2300,5000,5000,0
+22709,250000,female,2,1,38,2,0,0,0,0,0,236546,232795,189111,189558,185565,189003,8007,7000,8200,7000,7000,8000,0
+22710,220000,female,2,1,34,-1,-1,-1,-1,-1,-1,3410,1619,1756,1986,4772,1115,1623,1756,2075,4774,1115,7160,0
+22711,30000,female,3,1,46,1,-2,-2,-1,0,0,0,0,0,14071,14350,14650,0,0,14071,514,532,543,0
+22712,210000,female,3,1,41,-2,-2,-2,-2,-2,-2,16486,15725,18210,10784,41477,6879,15728,18213,10784,41477,6879,9498,0
+22713,350000,female,1,1,32,-1,-1,-2,-2,-2,-2,30625,60003,7147,9950,22117,4874,60396,7147,9950,22117,4874,0,1
+22714,270000,female,2,1,33,-1,-1,0,0,0,0,1481,3952,25237,44395,44741,45209,3952,22438,20000,1587,2000,4000,0
+22715,200000,female,2,2,34,0,0,0,-1,-1,-1,205362,177755,3455,1078,1598,171700,5504,1526,1078,1598,173026,6000,0
+22716,70000,female,2,2,40,2,0,0,0,0,0,64744,66030,67450,68587,57710,58918,2361,2482,2293,2063,2135,2188,1
+22717,220000,female,3,1,45,-1,-1,2,-1,0,0,1196,8087,3606,4656,8960,13264,8087,13,4656,5000,5000,0,0
+22718,230000,female,2,1,39,0,-1,0,0,-1,0,5650,3798,6701,10382,4842,5792,3798,3000,5000,4842,3000,3000,1
+22719,120000,female,2,1,35,0,0,0,0,-2,-2,22148,21120,4746,0,0,0,1550,1000,0,0,0,0,0
+22720,360000,female,2,1,30,0,0,0,-2,-2,-2,17602,5986,-29,-1671,87329,89608,1030,37,1642,89000,3000,3000,0
+22721,210000,female,3,2,37,-1,-1,-1,-1,-1,-1,13438,9241,7924,13416,2228,4490,9315,7924,13421,2240,4490,10834,0
+22722,460000,female,1,1,40,3,2,2,3,3,3,2650,2650,2650,2650,2650,2650,0,0,0,0,0,200,1
+22723,500000,female,1,1,34,-2,-2,-2,-2,-2,-2,13000,13000,13000,13000,13000,13000,13000,13000,13000,13000,13000,13000,0
+22724,180000,female,2,2,35,-2,-2,-2,-2,-2,-2,3010,1679,2027,1764,11383,330,1679,2027,1774,11383,330,300,0
+22725,180000,female,3,1,36,-2,-2,-2,-1,-1,-1,11540,633,606,20972,940,1383,633,606,20999,940,1383,0,0
+22726,220000,female,2,1,26,0,0,0,0,0,0,68090,58218,47679,37788,23293,7288,4039,3021,1400,3000,2000,100000,0
+22727,600000,female,2,2,30,0,0,0,0,0,0,501499,510470,520492,525749,480722,460068,19500,20462,19445,17348,16536,16845,0
+22728,180000,female,2,2,36,-1,-1,-1,-1,-1,-2,360,2240,6071,1554,0,0,2240,6071,1554,0,0,0,1
+22729,360000,female,2,1,39,-1,-1,-1,-1,-1,-1,26680,22312,19181,16155,5936,15330,22434,19286,16243,5966,15407,43019,0
+22730,620000,female,1,2,38,-1,-1,-1,-2,-1,0,1966,35703,1241,-119,23969,5567,35703,1241,119,24088,0,0,0
+22731,60000,female,3,1,44,-1,0,0,0,0,0,63236,64683,66510,58622,47317,48726,2500,3000,2292,1526,2000,2000,1
+22732,100000,female,1,2,32,0,-1,0,0,0,0,11273,694,1694,2096,2143,1723,694,1000,1000,47,0,3354,0
+22733,200000,female,1,2,31,-1,-1,-1,-1,0,0,7773,3426,2000,1000,3000,2000,3643,2000,1000,2000,0,1249,0
+22734,50000,female,3,2,36,0,0,0,0,0,0,49889,50326,50687,37200,29838,30062,1952,1703,1444,1027,1053,1077,0
+22735,200000,female,2,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,246,1
+22736,10000,female,2,1,43,0,0,0,0,0,0,4834,1803,2819,3828,3905,4023,1038,1054,1063,140,181,80,1
+22737,280000,female,2,2,36,0,0,0,0,-2,-2,93982,105695,77704,0,0,0,15000,40000,0,0,0,336,0
+22738,450000,female,2,1,46,-2,-2,-2,-2,-2,-2,30535,83371,17471,10342,51786,45747,84267,17566,10401,52045,45812,169,0
+22739,260000,female,1,2,29,0,0,0,0,0,0,267336,264929,234214,169096,117873,79782,11000,9800,6000,4088,3000,3000,1
+22740,140000,female,2,3,30,0,0,0,0,0,0,124288,123172,130095,122342,77536,80783,10000,18000,10000,10000,20000,15000,0
+22741,390000,female,1,2,33,0,0,0,0,0,0,84100,85538,79875,82853,82747,44143,5000,3500,4502,3518,2003,3001,0
+22742,350000,female,1,1,41,-2,-2,-2,-2,-2,-2,5037,14994,3101,17321,-22,4443,15069,3116,17414,0,4465,9434,0
+22743,50000,female,3,1,44,0,0,0,0,0,0,47497,47122,46789,37465,27450,28025,2306,2400,2000,983,1018,1030,0
+22744,120000,female,2,2,46,0,0,0,0,0,0,68168,69187,68466,42941,40718,41613,2650,2884,2018,1411,1504,1500,0
+22745,80000,female,2,1,45,0,0,0,0,0,0,17613,19009,20361,18722,12514,8905,2000,2000,1009,0,2000,0,0
+22746,160000,female,3,3,36,-1,-1,0,-1,-1,-1,9330,31745,22829,6000,6000,0,31745,1049,6000,6000,0,4345,0
+22747,90000,female,3,1,46,-2,-2,-2,-2,-2,-2,316,10758,10613,316,316,316,10758,10613,316,316,316,316,0
+22748,190000,female,2,1,39,0,0,0,0,-1,0,180201,181443,155045,95145,86025,87836,7000,7000,3100,92101,3200,4300,1
+22749,100000,female,3,1,40,2,2,0,0,0,0,13278,12773,16179,17597,18499,20531,0,3950,2000,1500,2500,4800,1
+22750,210000,female,2,2,35,0,0,0,0,0,0,147812,135624,125469,103409,75498,72020,5000,7000,5000,4000,2447,3000,0
+22751,160000,female,2,2,33,2,2,3,2,0,0,161771,172632,168541,164310,162681,163005,15000,0,0,6100,12300,6100,0
+22752,240000,female,3,1,35,0,0,0,0,0,0,238166,236686,186613,189470,119525,121178,8522,9100,8244,5000,5000,4011,1
+22753,20000,female,1,2,36,-2,-2,-2,-2,-2,-2,223,0,0,0,0,0,0,0,0,0,0,0,0
+22754,220000,female,2,1,36,2,2,2,2,0,0,192654,195725,197466,189149,187531,187856,8500,8200,0,7000,7000,7200,1
+22755,260000,female,1,2,44,0,0,0,0,0,0,279670,286796,295631,299692,164332,183033,11778,15000,8526,20000,20000,20092,0
+22756,500000,female,1,1,34,0,0,0,0,0,0,250263,247516,245012,243417,233968,209220,29000,29000,30000,30000,6110,6200,0
+22757,200000,female,2,2,34,-2,-2,-2,-2,-2,-2,0,0,0,445,2309,-10,0,0,445,2332,10,0,0
+22758,260000,female,2,1,33,0,0,0,0,0,0,151123,134736,135593,120909,102524,40157,4002,6067,10000,3000,40157,1466,1
+22759,170000,female,1,2,30,0,0,0,0,0,0,171992,168531,171440,174643,165584,169230,6027,6300,8451,6000,6320,6700,0
+22760,150000,female,2,1,38,-1,-1,0,0,-1,-1,5584,1106,2199,2997,735,1104,1106,1208,1006,50000,1104,0,0
+22761,360000,female,2,1,37,-2,-2,-2,-2,-2,-2,-5,-5,-5,-5,-5,-5,0,0,0,0,0,0,0
+22762,260000,female,1,1,44,0,0,0,0,0,0,296349,300155,305798,306082,304048,14982,6891,8668,6907,6088,14982,12588,0
+22763,170000,female,1,2,30,0,-1,-1,-1,0,0,15220,8404,16835,2200,7510,12510,8404,16835,2200,5510,5000,8100,0
+22764,230000,female,1,2,33,0,0,0,0,0,0,10765,11107,11748,12269,12102,12414,1300,1300,1200,500,500,500,0
+22765,620000,female,1,2,38,-1,-1,-1,-1,-1,-1,12136,7938,620,16022,2581,2867,8638,620,16032,2856,4197,920,0
+22766,180000,female,1,1,35,0,0,0,0,0,0,68488,47603,48705,50140,60607,67976,3603,5705,3003,10607,7976,5412,0
+22767,180000,female,1,1,33,-1,-1,-1,-1,-1,-1,7017,14824,19692,13115,24623,485,14824,19713,13117,24630,485,33283,0
+22768,30000,female,2,3,45,-1,2,2,2,-1,2,5239,3434,4845,3048,8314,5080,0,3048,0,8314,0,4132,1
+22769,300000,female,1,2,31,0,0,0,0,-1,-1,31827,11158,1616,3658,658,662,1009,1000,2700,658,662,0,0
+22770,370000,female,2,1,35,0,0,0,0,0,0,236242,240804,243293,226471,217901,195244,10301,11000,9004,6930,6000,6100,0
+22771,80000,female,2,2,31,0,0,0,-1,-1,-1,28788,27620,26352,939,2202,1369,8000,1000,939,2202,1369,4827,0
+22772,200000,female,4,2,40,0,0,0,0,0,0,201598,198373,152601,105588,73886,198487,10100,6700,5500,4500,127600,7500,0
+22773,150000,female,3,1,42,-1,-1,-1,-1,-1,0,11070,5947,6152,7306,18726,13839,6151,6427,7306,18738,0,7154,0
+22774,210000,female,2,1,33,0,0,0,2,2,2,159715,163060,168218,169726,173687,176510,6000,8000,6000,7000,6000,20000,0
+22775,70000,female,1,1,35,1,2,2,2,2,0,41730,40764,46281,47026,45971,47573,0,6500,1800,0,2500,2000,0
+22776,80000,female,2,1,38,-1,-1,-1,0,0,-1,4404,5096,11473,21086,2034,17678,5096,11476,16037,0,17678,6000,0
+22777,50000,female,2,3,44,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,390,0
+22778,210000,female,1,2,33,0,0,0,0,2,-1,14682,1220,4048,1871,1320,257,1075,3923,1723,5,257,10843,1
+22779,260000,female,2,1,33,0,0,0,0,0,0,112501,110395,112288,113388,114128,117005,4000,5550,5600,4100,4700,11002,0
+22780,170000,female,1,1,36,-2,-2,-2,-2,-2,-2,7346,26797,3824,22709,0,0,27183,3824,22865,0,0,3809,0
+22781,360000,female,3,2,35,-1,2,2,-2,-2,-2,2500,2500,0,0,0,0,0,0,0,0,0,0,0
+22782,500000,female,1,2,37,0,0,0,0,0,0,43643,46586,48832,49568,46939,49147,4000,3000,2000,2000,3000,7000,0
+22783,290000,female,1,2,46,0,0,-1,-1,-1,-1,113618,289002,1332,21429,2228,156721,34507,1343,21542,2239,156733,7219,0
+22784,200000,female,3,1,35,0,0,0,0,0,0,215090,208556,214321,134517,54711,23611,7700,9300,6500,3000,856,1152,0
+22785,90000,female,2,1,47,0,0,0,0,0,0,28240,28477,28718,28847,28747,29177,2000,2000,2000,2000,2000,2000,0
+22786,100000,female,2,2,41,-1,-1,-2,-1,0,0,1023,0,0,50063,22767,23399,0,0,50063,900,1000,1000,0
+22787,290000,female,1,2,31,0,0,0,0,0,0,82939,82814,71541,59493,67821,71546,5017,4033,2828,10000,5000,3000,0
+22788,50000,female,1,2,31,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+22789,150000,female,1,1,32,0,0,0,-2,-2,-2,75918,77025,0,0,0,0,3525,0,0,0,0,0,0
+22790,400000,female,3,1,42,-1,-1,-1,-1,-1,-1,44198,10132,16932,13088,28540,11860,10132,16932,13088,28540,11860,3978,0
+22791,50000,female,3,1,37,0,0,0,0,0,0,49080,49240,48751,30250,29570,26969,2228,2000,1370,949,922,2500,0
+22792,400000,female,1,1,42,-1,2,-1,-1,-1,-1,80,80,3710,33605,47029,39400,0,3828,33627,47029,40000,0,0
+22793,50000,female,2,1,37,2,2,2,2,2,3,19068,19947,21124,21480,22822,22171,1500,1800,1000,2000,0,1000,1
+22794,50000,female,1,2,29,3,3,2,3,2,2,49624,48530,50255,49104,51044,50933,0,2800,0,3000,800,3000,1
+22795,100000,female,1,2,34,0,0,0,0,0,2,66193,63155,50385,31371,54713,28347,3413,5010,10005,30326,0,20000,0
+22796,170000,female,2,1,39,0,0,-1,0,0,0,100849,100000,10274,16446,16578,20487,2000,10274,6446,332,10487,5000,0
+22797,150000,female,1,2,30,-2,-2,-2,-2,-1,-1,52806,12871,4876,9128,10460,5157,13497,4372,18853,10975,5157,15182,0
+22798,360000,female,1,2,30,0,-1,-1,-1,-1,-2,37012,4810,3969,6657,642,6204,4924,3969,6657,642,6204,7052,0
+22799,50000,female,2,1,31,0,0,0,0,0,0,46993,48208,49598,46363,9283,9632,2000,2200,1150,500,500,393,1
+22800,180000,female,1,1,35,-1,-1,-1,-1,0,0,37701,32003,32254,47186,54286,112040,32005,32270,47186,44286,86000,148225,0
+22801,350000,female,2,2,35,0,0,0,0,0,0,314309,313673,322806,328616,278858,281692,13000,15074,20353,10040,15000,10000,0
+22802,120000,female,3,1,38,0,0,0,0,0,0,111098,114863,118038,118805,59210,61267,5600,6500,5000,3000,3000,3000,0
+22803,140000,female,2,1,33,-1,-1,-1,-1,0,0,1750,397,13126,3454,1747,1240,397,13126,3456,89,156,2813,0
+22804,150000,female,3,1,34,0,0,0,-1,-1,-1,28210,19130,10000,8000,0,10000,1130,1000,8000,2000,10000,0,0
+22805,260000,female,3,2,42,-1,-1,-2,-2,-2,-2,6783,0,0,0,0,0,0,0,0,0,0,0,1
+22806,50000,female,2,1,28,0,0,0,0,0,0,45797,47226,48065,49158,50646,12927,2500,1900,1898,2386,629,792,1
+22807,180000,female,2,1,36,-1,-1,-1,-1,-1,-1,1000,92,92,603,1760,826,92,92,603,1760,826,826,0
+22808,290000,female,3,1,44,-1,-1,-1,-1,-1,0,2615,0,679,3390,5784,5784,0,679,3390,5784,0,150,0
+22809,40000,female,2,1,49,0,0,0,0,0,0,36159,38241,39121,40400,40000,40000,3000,1800,2000,0,0,0,0
+22810,310000,female,1,2,36,0,0,0,0,0,0,67940,45746,46979,42045,40334,49542,2000,2000,2000,2000,13000,2000,0
+22811,70000,female,2,2,46,0,0,0,0,0,0,86919,83200,80389,75854,33563,34563,3000,3815,3064,1000,1000,34000,1
+22812,180000,female,1,1,39,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+22813,570000,female,2,1,46,0,0,0,0,0,0,563892,569577,577957,563543,451401,108890,19534,25100,15159,11732,42880,422000,0
+22814,150000,female,3,2,41,2,0,0,0,0,0,102629,85817,78898,70886,65869,67805,3100,3160,2505,2500,3000,5000,1
+22815,20000,female,2,2,30,1,2,0,0,0,0,16560,15997,17336,18345,18643,19094,0,1600,1602,900,900,636,0
+22816,180000,female,3,1,32,-1,-1,0,0,0,0,166,1484,2526,3452,3522,4909,1484,1074,1000,70,1387,28,0
+22817,100000,female,3,1,34,0,0,0,0,0,-1,9728,11099,8761,8289,6980,5571,5000,1333,3000,3000,5571,5149,0
+22818,90000,female,1,2,31,0,0,2,2,2,2,77278,83357,85229,85939,83680,89319,8000,4100,3000,0,7000,3100,1
+22819,150000,female,3,2,47,0,0,0,0,0,0,153412,153720,150540,153103,152060,151470,7000,7000,7000,5200,5500,6300,0
+22820,490000,female,2,1,31,0,0,0,0,0,0,245566,238208,226020,212422,201680,164989,10095,9861,7055,6189,5046,5089,0
+22821,30000,female,3,1,33,0,0,2,2,2,0,39577,39995,38049,35435,31976,29704,3800,1700,1100,0,1030,1000,1
+22822,300000,female,2,1,33,-1,-1,-1,-1,-1,0,996,1496,1496,1496,2490,1996,1500,1500,1500,2494,1006,1498,0
+22823,140000,female,2,1,32,-1,2,2,-1,-1,0,739,739,-200,8700,1367,1367,0,0,8900,1367,0,0,1
+22824,50000,female,2,2,32,0,0,0,0,0,0,12513,13595,14570,15523,15964,16554,1600,1500,1500,1000,1000,1000,0
+22825,150000,female,1,2,31,2,2,2,2,2,0,17893,20669,20050,24701,24006,26599,3400,0,5000,0,3000,3000,1
+22826,350000,female,1,2,32,0,0,0,0,0,0,87611,87325,90539,92941,99930,108411,3300,5116,5000,10000,10000,10000,0
+22827,140000,female,2,2,32,-1,0,0,0,-1,0,15497,15073,11755,7453,38415,31685,1231,1262,1000,38415,4000,4000,0
+22828,80000,female,3,1,43,-1,-1,-1,-1,0,0,1520,23190,0,19465,19454,19851,23190,0,19465,389,397,0,0
+22829,80000,female,2,1,40,-1,-1,-1,-1,-1,-1,390,390,390,390,390,540,390,390,390,390,540,390,0
+22830,210000,female,3,1,34,-2,-2,-2,-2,-2,-2,11848,5677,8173,6855,2200,1500,5687,8177,6860,2200,1500,2390,0
+22831,110000,female,2,1,34,0,0,0,2,0,0,45302,44980,46987,45165,44636,45094,2100,4100,0,1800,2000,2000,0
+22832,120000,female,2,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+22833,180000,female,2,2,28,-1,-1,-1,-1,-1,-1,3840,18588,1557,2540,3058,16030,18588,1562,2540,3058,16030,330,0
+22834,340000,female,3,1,44,3,3,2,0,0,0,160596,155508,149627,150733,140171,134203,6,8,5117,5008,5021,6026,1
+22835,220000,female,1,2,29,-2,-2,-1,-1,-1,-2,-12,-12,88,2207,1577,-963,0,100,2300,3083,732,231,0
+22836,230000,female,5,1,39,-1,-1,0,0,-2,-2,7479,31280,120000,0,0,0,31280,90000,0,0,0,0,0
+22837,170000,female,1,2,27,0,0,0,0,0,0,10596,13410,15788,4853,5697,47830,3000,3000,1156,1000,46793,1760,0
+22838,70000,female,1,2,28,0,0,0,0,0,0,44397,44923,46189,39327,38618,38404,3000,3000,3000,2000,2000,1800,0
+22839,50000,female,3,1,31,0,0,0,0,0,0,10184,12204,13239,15254,16394,18124,2204,1239,2254,1394,2000,1019,0
+22840,200000,female,3,2,30,0,0,0,0,0,0,192743,196031,196143,189524,167163,146975,9003,7300,7108,7680,6200,5000,0
+22841,290000,female,2,2,34,2,2,2,2,2,2,219757,214747,227698,232468,227226,241556,0,18000,10000,0,18000,0,1
+22842,80000,female,5,2,30,-1,-1,-1,0,0,0,2994,16709,29459,30472,36317,21671,16709,29469,5000,10000,2000,3000,0
+22843,30000,female,3,1,39,1,2,2,2,2,2,25574,22897,25647,24937,26938,26374,0,3128,0,2419,0,700,0
+22844,280000,female,1,2,37,0,0,0,0,0,0,280323,284176,283680,273446,279458,269333,10505,10424,10047,10683,10073,9084,1
+22845,100000,female,1,2,29,0,0,0,-1,0,0,85268,65279,33077,43593,40782,37949,5000,5024,43593,1700,1500,1500,0
+22846,50000,female,1,1,35,-1,0,0,0,0,0,50202,39765,14565,15421,16061,4344,1200,5000,1500,1000,500,2000,0
+22847,240000,female,2,1,43,-1,2,0,-1,0,0,2077,1588,41513,10657,7893,5347,0,41000,10657,0,5041,9190,1
+22848,240000,female,1,1,31,0,0,0,0,0,0,3371,2880,6809,29324,30924,35770,2000,4015,25000,2000,5000,2000,0
+22849,100000,female,1,1,31,1,-2,-2,-2,-2,-1,0,0,0,0,0,6179,0,0,0,0,6179,0,0
+22850,210000,female,1,2,36,-2,-2,-2,-1,-1,-1,14516,4895,5292,8866,16809,5794,4915,5292,8872,16876,5794,2415,0
+22851,400000,female,1,1,37,0,0,0,0,0,0,49447,59781,86070,100620,133307,117194,30000,50000,50006,38000,10000,12000,0
+22852,280000,female,2,1,42,-2,-2,-2,-2,-2,-2,396,396,396,396,10948,61123,396,396,396,10948,61123,54802,0
+22853,180000,female,2,2,36,-1,-1,-1,-2,-2,-1,802,2240,0,0,0,7322,2240,0,0,0,7322,2208,0
+22854,500000,female,1,1,36,0,0,0,0,0,0,238847,242326,248425,242854,226764,210947,10000,10146,10103,7108,7396,5000,0
+22855,200000,female,2,1,45,0,0,0,0,0,0,144314,147532,147911,57903,60117,61828,7008,8000,5000,3000,3000,3000,0
+22856,500000,female,1,2,27,0,-1,0,0,0,0,8328,24491,26085,27644,28884,32930,25450,2000,2000,2000,5000,5000,1
+22857,200000,female,2,2,30,-2,-1,-1,-2,-2,-2,389,5889,389,389,389,389,5890,390,390,390,390,1168,0
+22858,110000,female,2,1,27,1,2,2,0,0,0,110593,111679,108455,109392,78524,75745,4363,0,4012,3120,2800,3000,0
+22859,280000,female,2,2,30,0,0,-1,0,0,0,21489,-86,4414,64183,61001,60601,5,4500,60000,1244,2000,4000,0
+22860,100000,female,2,2,31,2,2,2,2,2,2,41052,42081,41131,43637,42635,45440,2000,0,3500,0,3500,2000,1
+22861,70000,female,2,1,33,0,0,0,0,0,0,31130,16171,16373,16945,21462,11128,10171,3000,1260,6138,1128,500,0
+22862,130000,female,3,1,47,-1,2,2,-1,0,-1,5027,4151,1622,5032,1749,3645,1622,16,5377,829,3645,4213,0
+22863,30000,female,2,1,35,2,2,2,2,2,2,17880,19288,20313,19696,20670,20200,2000,1626,0,1600,0,1126,1
+22864,30000,female,2,1,43,0,0,0,2,2,2,13135,14150,17210,16636,17908,17482,1240,3300,0,1548,0,637,0
+22865,180000,female,1,2,27,-1,-1,0,0,0,0,2381,28048,25900,22964,21878,13715,28100,1743,1200,2000,2000,0,0
+22866,100000,female,2,2,27,0,0,0,0,0,0,48051,49247,48799,49508,50686,51815,2000,2200,1822,2000,2100,2100,0
+22867,150000,female,2,2,30,1,-2,-2,-2,-1,2,0,0,0,0,268,118,0,0,0,268,0,7800,0
+22868,140000,female,2,1,32,0,0,0,0,0,0,142357,141236,133779,135943,111264,111785,5300,5300,5000,5000,4500,4500,0
+22869,240000,female,1,2,45,-2,-2,-2,-2,-2,-2,103344,0,0,0,0,0,0,0,0,0,0,73826,0
+22870,180000,female,1,1,48,-2,-2,-2,-2,-2,-2,8308,437,21645,5800,24283,11545,440,21849,5829,24404,11602,5819,0
+22871,340000,female,2,1,37,-2,-2,-2,-2,-2,-2,7200,0,0,0,0,0,0,0,0,0,0,0,0
+22872,200000,female,2,1,37,0,0,0,0,0,0,114480,117791,123108,124327,127011,134519,5000,7000,4500,4500,9500,5000,0
+22873,360000,female,2,1,39,-2,-2,-2,-2,-2,-2,4201,0,0,0,0,0,0,0,0,0,0,0,1
+22874,500000,female,1,1,37,1,-1,-1,-1,-1,0,0,17250,2287,96501,12143,50143,17250,3037,96501,12500,38000,0,0
+22875,270000,female,4,1,33,-2,-2,-2,-2,-2,-2,0,0,1205,0,0,0,0,1205,0,0,0,0,0
+22876,140000,female,3,1,33,-1,-1,-1,-1,-1,-1,1247,1654,840,2153,827,-8808,1654,840,2153,827,827,9635,0
+22877,120000,female,2,2,33,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+22878,210000,female,2,1,34,0,0,0,0,0,0,205475,206616,212391,208931,146005,145343,9500,9207,8500,5200,5200,5000,0
+22879,300000,female,1,1,35,-1,-1,-2,-2,-2,-1,5345,0,0,0,0,477,0,0,0,0,477,348,0
+22880,360000,female,2,1,41,0,0,0,0,0,0,4528,6365,2991,4919,12792,20981,2000,2000,2000,8000,10000,10000,0
+22881,120000,female,2,1,27,-1,-1,-1,-1,0,0,1164,1844,-7809,120680,63530,63552,1671,380,131062,2000,3000,3000,0
+22882,430000,female,1,2,29,0,0,0,-1,0,0,42130,34785,0,18518,16574,12215,1000,0,18518,5,244,1038,0
+22883,250000,female,2,2,27,0,0,0,-1,0,0,4883,3090,1404,5208,59006,12072,2500,1000,5208,54000,5000,10000,0
+22884,180000,female,1,2,29,-1,-1,-1,-1,-1,-1,326,326,546,546,546,1225,326,546,546,546,1225,2225,1
+22885,170000,female,2,1,29,0,0,0,0,0,0,56980,55889,51328,31541,47406,23062,3000,2236,2478,904,2546,2000,0
+22886,500000,female,1,1,36,0,0,0,-1,-1,-1,64266,47971,25581,15406,6196,45045,26000,11725,15406,6903,45045,10000,0
+22887,20000,female,2,1,37,-1,-1,-1,-1,-1,0,425,1626,460,360,1520,1160,1629,460,360,1520,0,2233,0
+22888,200000,female,5,1,43,0,0,0,0,0,0,132823,132700,182868,166755,111450,53049,71998,116000,3771,2229,37609,40000,0
+22889,50000,female,2,1,48,0,0,0,0,0,-1,46589,48009,48942,36545,5107,4640,2500,2174,2117,117,4853,0,0
+22890,120000,female,1,2,34,-1,-1,-1,0,-1,-1,515,882,6531,6313,1100,1330,882,6900,5037,1100,1330,3800,0
+22891,340000,female,2,1,31,0,0,0,0,0,0,192860,189272,137255,137180,135783,135201,7332,5008,6367,4800,4941,4696,0
+22892,80000,female,1,2,32,-1,-1,-1,-1,-1,-1,5566,5783,6011,5783,2257,8257,6000,6011,5783,2257,6000,0,0
+22893,90000,female,2,1,33,0,0,0,0,0,-2,3817,8545,8961,11676,1189,0,5000,1285,3000,1189,0,8832,0
+22894,90000,female,2,1,32,0,0,0,0,0,0,39664,24589,22677,20842,20545,20989,1657,1676,1554,805,846,651,0
+22895,80000,female,1,1,32,-1,-1,-2,-2,-1,-1,1784,871,3179,3344,3552,0,871,3381,3384,3958,0,0,0
+22896,170000,female,2,2,46,0,0,0,0,0,0,162110,156444,151504,151377,148530,149628,6000,6000,7000,6000,7000,6000,0
+22897,230000,female,1,2,29,-1,-1,-1,-1,-1,-1,33147,1672,3677,18346,3900,4167,1672,3677,18346,3900,4167,399,0
+22898,290000,female,2,2,30,-2,-2,-2,-2,-2,-2,4603,2698,6401,1864,5156,3277,2699,6491,1864,5157,3277,4883,0
+22899,360000,female,2,1,44,1,2,0,0,0,0,48114,47044,47887,49158,49834,46034,0,1900,2100,1707,2000,2000,0
+22900,270000,female,2,1,43,-1,-1,-1,-1,-1,-1,94125,1321,806,629,686,834,1326,920,629,686,834,5112,0
+22901,60000,female,3,1,43,0,0,0,0,0,0,49340,49116,48220,39595,29899,28722,4570,5348,4035,8804,3000,3000,0
+22902,360000,female,2,2,33,0,0,0,0,0,0,7157,8446,9034,8340,3144,0,2000,1501,1000,900,0,0,0
+22903,100000,female,1,2,28,0,0,0,0,0,0,20068,21226,22573,23596,24068,24679,1800,2000,1400,863,1000,2000,0
+22904,180000,female,5,1,44,0,0,-1,-1,-1,-1,20916,0,850,0,6881,10340,0,850,0,6881,10340,182,0
+22905,80000,female,2,1,31,-2,-2,-2,-2,-2,-2,3506,2372,2988,273,0,1542,2372,2988,273,0,1542,3200,0
+22906,80000,female,2,1,34,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+22907,220000,female,2,1,35,0,0,0,0,0,0,45739,46975,48211,47418,48657,48129,2000,2000,2000,2000,2000,2000,0
+22908,240000,female,2,1,43,1,-2,-2,-1,0,0,0,0,0,12700,12500,26225,0,0,12700,0,13725,0,0
+22909,210000,female,2,2,44,0,0,0,0,0,0,308361,314507,320167,327871,34285,30900,9408,10300,11642,1602,1500,0,1
+22910,270000,female,2,1,34,0,0,0,0,0,0,106600,109383,113480,114432,112124,114885,4500,5800,4300,5000,4500,4500,0
+22911,170000,female,2,2,44,0,-1,-1,-1,-1,-1,2376,2870,390,590,30490,4300,2870,390,590,30490,4300,0,1
+22912,190000,female,3,2,29,0,0,0,0,0,-2,132669,134605,136202,9207,0,0,6000,6000,1000,0,0,0,0
+22913,200000,female,1,2,31,-1,2,2,-2,-2,-2,2500,2500,0,0,0,0,0,0,0,0,0,0,1
+22914,240000,female,2,1,32,0,0,0,0,0,0,234774,231155,236914,241351,244202,115036,10000,11000,11000,10000,5000,5000,0
+22915,150000,female,2,1,34,0,0,-1,-1,-2,-2,23900,22164,3096,-1076,0,0,1329,3107,0,10382,0,2817,0
+22916,90000,female,3,1,44,-1,-1,3,2,-1,-1,421,9522,9223,8480,2181,2983,9422,0,79,2181,2991,2453,0
+22917,400000,female,3,1,44,0,0,0,0,0,0,35504,36680,35670,30364,28085,28708,5025,5044,2514,988,2004,5000,0
+22918,420000,female,2,1,46,0,0,0,0,0,0,347531,345620,344364,202241,196082,189064,13503,15031,7011,7010,7013,7015,0
+22919,140000,female,1,2,25,0,0,0,0,0,0,52196,16982,20199,20746,2260,4180,2000,5000,1000,1260,3000,439,0
+22920,50000,female,3,1,48,0,0,0,0,0,0,50411,48409,42248,33855,28064,29660,5000,2000,2500,2500,2000,2500,0
+22921,210000,female,2,1,46,0,0,0,0,0,0,134700,132799,111335,114037,67224,69177,6149,4100,4547,2500,3000,2500,0
+22922,210000,female,1,2,30,0,0,0,0,0,0,87292,89534,89173,91489,93463,95021,4600,3789,3811,3465,3186,4389,0
+22923,180000,female,2,1,41,-1,-1,-1,-1,-1,-1,4351,11953,9380,3070,8263,12663,12069,9443,3262,8302,12668,5502,0
+22924,100000,female,1,2,30,-1,-1,-1,-1,-2,-2,430,35993,2772,0,0,0,35993,2772,0,0,0,0,0
+22925,300000,female,1,1,34,-1,-1,-1,-1,-2,-2,56,0,849,0,0,112,0,849,0,0,112,550,0
+22926,250000,female,2,2,36,-1,-1,-1,-1,-1,-1,396,396,396,3160,396,396,396,396,3160,396,396,396,0
+22927,200000,female,1,2,33,0,0,0,0,0,0,19572,28858,52512,71923,19923,-77,10000,25000,20400,0,0,77,0
+22928,380000,female,1,1,33,0,0,0,0,0,0,372926,354068,327342,247528,128386,128820,13248,9543,6106,3013,3398,6067,0
+22929,30000,female,1,2,25,0,0,0,0,0,0,26417,27421,28573,29222,28451,27270,1448,1600,1500,1000,1000,1200,0
+22930,80000,female,2,1,31,0,0,0,0,0,0,70492,68652,67881,38465,27773,29132,2806,4006,1804,2003,3004,1502,1
+22931,300000,female,2,1,27,1,2,0,0,0,0,311987,305417,296009,92553,94259,96868,0,12500,3200,3000,3000,3000,0
+22932,240000,female,1,1,38,1,-1,-1,-1,0,0,-25,4078,2223,31136,4367,3632,4103,2223,31136,100,0,1101,0
+22933,80000,female,1,2,23,0,0,0,0,0,0,25084,20685,30688,23674,23636,22426,1500,12000,2000,1000,1000,1100,0
+22934,280000,female,2,2,27,0,0,0,0,0,0,272507,219510,217637,177535,178337,180885,8533,8888,8006,6406,6606,7006,0
+22935,50000,female,2,2,36,0,0,2,0,0,0,23368,27050,27086,28525,30895,33003,4400,761,2200,2862,2770,2200,1
+22936,200000,female,2,1,36,2,0,0,0,0,0,197810,201362,164183,136199,139209,135742,9051,7000,5000,5000,5000,5000,1
+22937,210000,female,2,2,32,-2,-2,-2,-2,-2,-2,355,975,410,0,0,0,979,412,0,0,0,0,0
+22938,160000,female,2,2,31,0,0,0,0,0,2,112878,118601,115874,111346,111553,108434,8000,5014,4500,11781,0,4000,0
+22939,130000,female,1,1,43,-2,-2,-2,-2,-2,-2,2798,2732,8072,5723,6232,8873,3228,8141,5744,6232,8873,3982,0
+22940,300000,female,2,1,39,0,0,0,-2,-2,-2,301945,307650,0,0,0,0,13700,0,0,0,0,0,0
+22941,50000,female,2,1,41,1,3,2,0,0,0,21638,21008,20388,21092,21511,21964,0,0,1350,769,799,1000,1
+22942,150000,female,2,1,40,-1,-1,-1,-1,-1,-1,16019,0,7937,3307,2894,0,0,7937,3307,2894,0,0,0
+22943,500000,female,2,1,43,-2,-2,-2,-2,-2,-2,10330,12320,12209,16727,17738,14117,12320,12209,16727,17744,14117,11691,0
+22944,270000,female,2,1,34,0,0,0,0,0,0,203657,194792,181341,170107,158889,147344,10015,6538,7744,7068,5350,10077,0
+22945,500000,female,1,1,43,-2,-2,-2,-2,-2,-2,270,9390,0,14153,5254,11676,9483,0,14153,5274,11676,2276,0
+22946,200000,female,2,1,40,0,0,0,0,0,0,21464,22065,23382,21522,8815,4280,2000,2000,1128,4280,0,0,0
+22947,300000,female,1,2,33,-1,-1,-1,-1,-1,-1,13889,1465,2095,1215,340,1424,1465,2095,1215,340,1424,0,0
+22948,230000,female,2,2,40,0,0,-1,-1,-1,-1,164208,161207,1665,1228,8599,3890,7105,1762,1228,8599,3890,6999,0
+22949,500000,female,1,2,37,-1,-1,0,0,0,0,5946,132696,141204,160275,138067,117049,140000,25012,40022,3024,0,90000,0
+22950,80000,female,1,2,38,-2,-2,-2,-2,-2,-2,2431,29426,5288,1823,19879,1974,31386,5296,1823,19884,1974,9686,0
+22951,500000,female,1,2,42,0,0,0,0,0,0,237066,171440,177859,159518,186563,168083,20000,50000,10000,50000,20000,50000,0
+22952,30000,female,3,1,44,0,0,0,0,0,0,29263,27516,28133,28780,28756,29566,1441,1597,1634,1000,1124,1223,0
+22953,170000,female,2,1,41,-2,-2,-2,-2,-2,-2,736,736,1156,316,316,316,736,1156,316,316,316,316,0
+22954,70000,female,2,2,37,0,0,0,0,0,0,69099,69684,64801,64863,123234,60733,3018,3400,2200,2500,2500,2510,0
+22955,310000,female,2,1,46,-1,-1,-1,-1,-1,-2,12479,423,430,843,857,-777,423,430,845,857,628,0,0
+22956,50000,female,1,1,41,1,2,2,3,3,2,45313,46262,49188,50084,48980,50050,2000,4000,2000,0,2000,3000,0
+22957,180000,female,2,2,44,0,0,0,0,-2,-1,25706,30251,30900,0,0,5386,5000,1900,0,0,5386,1103,0
+22958,310000,female,1,2,35,0,0,0,0,0,0,192454,196708,189210,181491,176661,173532,9088,7044,9072,11210,6116,5362,0
+22959,500000,female,1,1,39,-2,-2,-2,-2,-2,-2,4419,2584,4524,3518,2208,2550,2584,4524,3518,2208,2550,5953,0
+22960,330000,female,2,2,41,0,0,0,0,0,0,76279,79179,82293,86458,91512,100433,4179,5000,6458,6512,10433,5442,0
+22961,150000,female,4,3,49,1,-2,-1,-1,0,-1,-260,-2835,3960,10410,2361,2868,4,7920,10426,0,2868,4384,0
+22962,110000,female,2,2,42,0,0,0,0,0,0,106478,107517,103609,79421,78286,65875,3951,4276,2666,2811,2500,465,0
+22963,230000,female,2,1,46,-1,-1,-1,-1,-1,-1,782,316,0,632,316,2398,316,0,632,316,2398,1783,1
+22964,50000,female,1,1,46,1,-2,-1,-1,0,0,10372,-110,1684,3697,1397,0,110,1794,3697,1392,0,0,0
+22965,60000,female,3,2,40,-1,-1,-2,-2,-2,-2,728,0,0,0,0,0,22,10785,0,0,0,0,0
+22966,250000,female,1,1,32,1,-1,0,0,0,0,-154973,59514,220765,180488,173140,170233,225066,198031,6069,4310,5752,4638,0
+22967,450000,female,1,2,46,-2,-2,-2,-2,-2,-2,2656,1861,-30,3332,873,1110,1861,0,3362,873,1110,4688,0
+22968,260000,female,2,2,33,2,2,2,0,0,0,258150,265961,258903,131150,214180,153755,20485,27,2914,159658,5592,5837,1
+22969,380000,female,2,1,45,0,0,0,0,0,0,220208,225537,230898,237118,240452,245499,9000,9000,10068,8768,9087,9133,0
+22970,240000,female,1,2,38,-2,-2,-2,-2,-2,-2,3816,3816,3816,3816,816,3816,3816,3816,3816,816,3816,816,0
+22971,30000,female,3,1,34,-2,-1,-1,-1,-1,-1,14840,8435,6991,17176,8053,10363,10483,6998,17186,8054,10375,6929,1
+22972,90000,female,2,1,43,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+22973,230000,female,2,1,43,0,0,0,0,0,0,226319,230825,234832,217987,169529,172143,9309,8795,8337,6015,6292,6080,1
+22974,60000,female,2,1,45,0,0,-1,0,0,0,57966,3751,72334,73396,12271,24278,1900,72334,4000,2000,14000,2000,0
+22975,170000,female,2,1,38,0,0,0,-2,-2,-2,9550,5556,0,0,0,0,1055,0,0,0,0,0,0
+22976,440000,female,1,1,41,-1,-1,-1,0,0,0,3982,12516,15869,20849,331985,185315,16282,16031,23613,320008,5721,5376,0
+22977,120000,female,2,1,37,-1,-1,2,0,-1,0,15591,17156,17227,18560,10067,15594,7227,683,8560,10067,10000,7223,0
+22978,240000,female,1,1,37,0,0,0,0,0,0,180517,175125,176674,160551,150735,154200,8022,6161,5730,5486,5987,5568,0
+22979,260000,female,1,1,42,-1,-1,-1,-1,-1,-1,2788,4046,2800,2800,2979,8247,4058,2800,2800,2979,8247,0,0
+22980,300000,female,2,2,43,0,0,0,0,0,2,36062,37055,38354,39634,21597,481,1897,2196,2476,3439,0,1248,0
+22981,190000,female,4,1,34,-1,-1,-1,-1,-1,-1,7251,11990,39360,5090,2787,23405,11996,39382,5090,2787,23405,978,0
+22982,110000,female,1,1,43,0,0,0,-2,-2,-2,33794,10570,-28,-28,-28,-28,6725,0,0,0,0,0,1
+22983,280000,female,2,1,38,0,0,0,0,0,0,242864,237821,223180,237301,201226,207802,11000,11000,20000,10000,10000,15000,0
+22984,220000,female,2,1,40,-1,-1,-1,-1,0,0,1129,227,0,13137,13637,9744,227,0,13137,1500,214,0,0
+22985,280000,female,1,2,36,-1,-1,-1,-1,-1,-1,4126,7001,12984,-5,1411,5654,7065,13046,5,1416,5654,6055,0
+22986,70000,female,2,1,39,3,2,2,2,2,2,20392,19772,22234,21579,22720,23704,0,3100,0,1500,1500,0,1
+22987,500000,female,2,1,36,0,0,0,0,0,0,352986,352870,350017,347410,337015,332360,13016,13172,15200,12000,13617,13000,0
+22988,130000,female,2,2,36,0,0,0,0,0,0,118410,87199,90782,94261,96694,98982,5001,5001,5000,4000,4000,10001,0
+22989,610000,female,1,2,43,0,0,2,0,0,0,403546,418882,413942,420120,427886,437131,25002,8000,16385,16000,16000,34000,0
+22990,210000,female,1,2,35,-2,-2,-2,-1,-1,-1,6518,14265,9718,11285,8115,27977,14272,9890,11297,8115,27977,8013,0
+22991,210000,female,2,1,45,0,0,0,0,0,0,203273,188955,183774,152509,136376,131656,6515,7113,6011,4471,4513,4261,0
+22992,150000,female,1,1,33,2,2,2,2,2,2,105610,106885,108706,105470,111687,113747,4500,5000,0,8000,4000,4700,1
+22993,160000,female,1,1,33,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+22994,150000,female,5,1,34,0,0,0,0,0,0,14967,17705,19394,18956,20684,22237,3000,2000,2000,2000,2000,1000,0
+22995,130000,female,3,1,45,-1,-1,-1,2,-1,-1,780,0,780,390,540,11040,0,780,0,540,11040,953,0
+22996,210000,female,2,1,40,-2,-2,-1,-1,-2,-2,2245,1789,4292,2388,4090,2375,1794,4326,2395,4102,2382,2614,0
+22997,360000,female,2,1,42,-1,0,0,0,0,-1,64268,45659,18875,7742,5572,131869,2339,4564,2200,1000,131869,3862,0
+22998,500000,female,2,1,45,-2,-2,-2,-2,-2,-2,443118,155322,67515,68639,70302,40721,155484,67533,72049,70430,40721,133611,0
+22999,220000,female,1,2,33,-1,2,-1,-1,-1,-1,652,326,1070,1163,2044,204,0,1070,1163,2049,204,4953,0
+23000,320000,female,2,1,46,-2,-2,-2,-1,-1,-1,15176,24845,12680,5522,44743,18931,24969,12743,5542,44956,19011,8138,0
+23001,220000,female,1,1,41,8,7,6,5,4,3,246915,243234,238172,232446,227800,225044,0,0,0,0,0,0,1
+23002,80000,female,2,2,32,0,0,0,0,0,0,50189,57701,66736,74626,74092,59274,10000,10000,10104,5000,5000,5000,0
+23003,210000,female,5,2,32,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+23004,160000,female,1,1,32,0,0,0,0,0,0,111907,106109,89231,67134,55773,46485,3805,2993,2293,1838,1687,2735,0
+23005,160000,female,1,2,33,-1,-1,-2,-2,-2,-2,699,0,26808,0,0,0,0,26808,0,0,0,0,1
+23006,440000,female,1,1,36,0,-1,-1,-1,0,0,14234,11061,19669,18613,13669,24849,11066,19669,33152,0,20000,7046,0
+23007,90000,female,2,1,36,1,-1,-1,-1,-1,-1,0,950,628,284,1055,2607,950,628,284,1055,2607,0,0
+23008,230000,female,3,1,37,0,0,0,0,0,0,225800,228342,189966,142377,143828,143698,8440,6100,7000,5356,5400,5200,0
+23009,180000,female,1,2,33,1,-1,-1,-1,-2,-1,0,4163,7683,0,0,9500,4163,7683,200,0,9500,0,0
+23010,440000,female,2,1,32,2,0,0,0,0,0,339410,324469,324109,287932,287892,276902,11500,11129,10300,11098,11200,12000,0
+23011,200000,female,1,1,41,1,-1,0,-1,2,0,2217,61328,2877,160944,156864,160066,61634,2877,160944,0,5900,13000,1
+23012,220000,female,2,1,41,-2,-2,-2,-2,-2,-2,24435,2131,36010,1050,9522,2340,2142,36204,1055,9569,6995,492,0
+23013,360000,female,2,1,39,-1,2,2,-1,-1,-1,1220,330,165,5773,3598,3598,170,0,5773,3598,3598,6208,0
+23014,120000,female,1,2,27,-1,-1,-2,-2,-2,-2,934,0,0,0,0,0,0,0,0,0,0,0,1
+23015,20000,female,1,2,27,0,0,0,0,0,0,5635,5735,4941,4236,3200,1375,1186,1300,1246,264,375,700,0
+23016,230000,female,1,2,28,-1,2,0,0,0,0,2376,2178,27460,22515,20109,13700,0,27446,1400,0,274,0,0
+23017,30000,female,2,2,29,-2,-2,-2,-2,-2,-2,647,1222,249,5051,1188,375,1222,249,5051,2202,375,264,0
+23018,160000,female,1,2,29,0,0,0,0,0,2,157067,155760,153047,122831,124794,116746,5708,7424,4251,6010,5000,4000,1
+23019,170000,female,2,2,29,0,0,0,0,0,0,69314,65083,67062,68188,56454,58453,2330,3028,2847,2600,3400,2045,0
+23020,140000,female,1,2,29,1,-1,-1,-1,-1,-1,0,1216,2677,2985,3739,1242,1216,2698,6069,3889,1242,3061,0
+23021,160000,female,1,1,33,-1,2,2,-2,-2,-1,7845,2956,3161,600,65000,2206,0,3161,0,65000,2206,339,1
+23022,500000,female,1,2,36,0,-1,-1,-1,-2,-2,13302,1040,3662,0,1770,3384,1051,3722,0,1770,3384,206,0
+23023,80000,female,3,1,31,0,0,0,-1,0,0,62636,61808,22227,48215,45618,37799,5000,4000,50012,10000,10000,7177,1
+23024,150000,female,1,1,32,0,0,0,0,0,0,23364,22846,25779,22303,16981,16837,1450,5779,1300,700,1000,1000,0
+23025,30000,female,1,2,46,0,0,0,0,2,0,18910,20592,21949,24116,23430,25044,2000,2000,2535,0,2000,2300,0
+23026,180000,female,2,1,47,-1,-1,-2,-2,-2,-2,11900,4256,4000,4000,4000,4000,4256,4000,4000,4000,4000,4000,0
+23027,150000,female,2,1,41,2,2,2,2,2,2,68571,69845,71434,72365,73377,75052,3000,3300,2700,2800,3000,2800,1
+23028,320000,female,1,2,32,-1,0,-1,-1,-1,-1,13122,6796,7788,6751,8354,12271,1500,8000,7000,8500,13000,15000,0
+23029,440000,female,1,2,33,0,0,0,0,0,0,164269,160608,150150,139178,123627,48175,5666,5802,3577,2955,12000,1025,0
+23030,200000,female,2,1,38,-2,-2,-2,-2,-2,-2,1430,6002,2400,2185,6718,2298,6002,2400,2185,6718,2298,2851,0
+23031,200000,female,2,1,45,-1,2,2,2,0,0,8934,5264,6769,2487,1857,0,0,2491,0,0,0,4313,0
+23032,230000,female,1,1,35,0,0,-1,-1,-1,-1,6012,0,1897,0,89,2398,78,1897,0,89,2398,671,1
+23033,350000,female,1,2,38,-2,-2,-2,-2,-2,-2,10354,29812,15209,9260,2120,2459,29916,15217,9280,2128,2459,11409,0
+23034,100000,female,1,2,31,-2,-2,-2,-2,-2,-2,1500,3794,-1678,-1478,1058,5556,3794,0,200,4058,5738,21173,0
+23035,360000,female,3,2,45,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+23036,210000,female,1,2,31,0,0,0,0,0,0,202064,206107,174581,176527,181127,172851,6000,6000,4000,5000,4000,0,0
+23037,360000,female,1,1,32,0,0,0,0,0,0,317024,313710,299059,281436,274358,270877,11200,12112,11500,9600,10005,9651,0
+23038,200000,female,1,2,32,-1,-1,-1,0,0,-1,14279,3904,24274,5196,4996,16890,3904,24277,4996,0,16890,6077,0
+23039,230000,female,1,1,34,-2,-2,-2,-2,-2,-2,711,-1,-1,-1,-1,-1,0,0,0,0,0,0,0
+23040,180000,female,5,1,41,-1,-1,-1,-1,-1,-1,22777,20311,20726,22111,25560,2461,20328,20789,22169,25560,2461,10947,0
+23041,170000,female,2,2,47,0,0,0,0,0,0,34804,35525,36948,38031,38698,39524,1600,2000,2000,1600,1600,1700,0
+23042,50000,female,2,1,40,0,0,2,0,0,0,6732,9052,8763,9924,9967,10176,2441,0,1313,356,369,508,0
+23043,180000,female,2,2,37,1,2,0,0,0,0,37095,32881,33627,128051,106834,105551,0,3042,109470,4000,4000,7028,0
+23044,100000,female,1,1,47,1,-2,-1,2,2,2,-84,-474,800,410,20,-370,0,3000,0,0,0,2500,1
+23045,150000,female,1,2,28,0,0,0,0,0,0,82559,84681,87308,89316,91458,89063,3500,4000,3500,3500,3500,3500,0
+23046,180000,female,1,2,33,-2,-2,-2,-2,-2,-2,8492,5199,9973,10069,13190,20127,5199,9973,10083,13279,20127,9422,0
+23047,280000,female,2,2,33,0,0,0,0,0,0,55709,51834,41426,35212,40052,46510,9441,2691,3001,6010,10000,6655,0
+23048,150000,female,2,2,40,-2,-2,-2,-2,-2,-2,8482,3493,4724,5749,345,349,3514,4724,5749,345,349,24026,0
+23049,100000,female,2,1,36,2,2,2,2,2,2,78063,79346,77977,79071,76918,81713,3500,3300,3000,0,6500,3000,1
+23050,70000,female,2,1,37,0,0,0,0,2,0,66447,66759,68200,72972,71248,50610,2391,2518,5950,0,1782,1985,1
+23051,220000,female,2,1,38,2,0,0,0,0,0,166513,163731,167204,169009,169554,178683,7400,7600,6100,6205,12000,7500,0
+23052,240000,female,2,1,41,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+23053,710000,female,4,2,32,0,0,0,0,0,0,377249,382116,391305,195642,189101,182062,11000,12000,8000,7000,7000,6500,0
+23054,470000,female,2,2,33,-2,-2,-2,-2,-1,-1,0,0,0,0,779,0,0,0,0,779,0,0,1
+23055,80000,female,2,1,46,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,390,1
+23056,180000,female,3,1,49,0,0,0,0,0,0,162567,163900,145992,124841,125596,113105,5821,5000,5935,4263,4200,4283,1
+23057,250000,female,2,1,32,0,0,0,0,2,2,195044,198294,202571,226423,221296,234762,8000,7478,27349,0,17000,0,0
+23058,690000,female,3,2,34,0,0,0,0,0,-1,390757,397292,390166,360568,331674,160287,14724,19118,7415,20348,160671,91323,0
+23059,340000,female,1,2,45,0,0,0,0,0,0,68288,70573,69808,66670,63277,62027,15000,13500,13000,13000,13000,13000,0
+23060,220000,female,2,2,47,0,0,0,0,0,0,103078,111729,115173,116513,119370,121516,10000,6500,5000,5000,5000,5000,0
+23061,60000,female,3,2,44,2,2,2,2,2,2,11847,62478,55887,70562,71322,58821,55887,0,20783,2500,0,3000,1
+23062,80000,female,2,2,30,-1,-1,-1,-1,-1,0,5919,5545,2154,583,11381,9508,5548,2154,583,11381,190,74,0
+23063,290000,female,1,1,36,-2,-2,-2,-2,-2,-2,3602,6107,4536,6074,0,817,6107,4538,6074,0,817,1662,0
+23064,170000,female,3,2,41,0,0,0,0,0,0,76704,50301,50896,52554,53084,54197,2405,2000,2500,2000,1968,2000,0
+23065,130000,female,1,2,31,0,0,0,0,0,0,133845,126804,130264,133603,132215,131848,7000,7000,7000,5500,5100,5500,0
+23066,200000,female,3,1,32,-2,-2,-2,-2,-2,-2,1380,3706,18145,14163,7909,1485,3706,18458,14170,7909,1485,1302,0
+23067,360000,female,2,2,35,0,0,0,0,0,0,35327,42032,35665,37071,38680,42352,10000,2453,5000,5000,10000,10017,0
+23068,240000,female,1,1,37,0,0,0,0,0,0,157668,165762,173429,176943,176843,177183,10762,10429,10423,6843,7183,6398,0
+23069,60000,female,1,1,28,0,0,0,0,0,2,46233,47263,48696,50385,52045,52661,2100,2500,2500,2500,1600,1500,0
+23070,130000,female,2,2,42,1,2,2,2,2,2,117391,119378,121993,123503,124578,127434,5400,6000,5000,4600,5000,5100,0
+23071,310000,female,2,2,32,0,0,0,0,0,0,325056,327591,322273,272890,208257,206609,13294,12131,8543,10185,8290,7500,0
+23072,80000,female,2,2,28,2,2,-1,-1,-1,-1,260,130,130,130,130,130,0,130,130,130,130,130,1
+23073,70000,female,2,2,30,0,0,2,0,0,0,10705,58825,53080,49153,47139,37610,50071,0,2000,2000,2000,2000,0
+23074,180000,female,2,1,31,0,0,0,0,0,0,115400,26721,8581,2475,2654,2676,2006,1407,1000,1000,1000,1107,0
+23075,110000,female,2,1,45,0,0,0,0,0,0,36267,37234,37341,38208,39121,39785,1587,1694,1561,1474,1370,1514,0
+23076,30000,female,3,2,47,0,0,0,0,0,0,29851,30451,28115,23092,24829,10400,1500,1695,2000,2000,2000,0,0
+23077,200000,female,2,2,27,0,0,0,0,0,0,125854,127843,131352,130884,132142,118084,4775,6579,4734,4368,4183,4227,0
+23078,30000,female,5,1,33,0,0,0,0,0,0,25083,25244,26286,26458,26668,28195,1406,1838,1400,1000,2342,1000,0
+23079,210000,female,1,2,27,-1,2,-1,-1,-1,-1,780,390,390,1554,5705,6386,0,390,1554,5705,2000,0,1
+23080,80000,female,5,1,30,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+23081,120000,female,3,1,40,0,0,0,0,0,0,97886,74638,70864,64193,61733,59717,3003,2823,2514,1732,1756,1689,0
+23082,30000,female,2,1,43,-1,-1,-1,-1,-2,-1,10443,4503,9000,0,0,5394,4503,9000,0,0,5394,6171,0
+23083,490000,female,2,2,33,0,0,0,0,0,0,58308,64927,60011,49409,39945,49932,10000,8160,7000,2000,37000,3000,0
+23084,260000,female,5,1,41,-1,-1,-1,-1,-1,-1,2398,2289,3593,5332,1994,5782,2294,3601,5348,2802,5801,2013,0
+23085,230000,female,2,2,30,-1,-1,-1,2,-1,-1,3948,5899,4080,1935,1656,2351,5899,4080,0,1656,2351,3312,1
+23086,110000,female,2,1,46,0,-1,-1,-1,-1,-1,2359,2410,2151,2161,1719,107591,2410,2151,2161,1719,107591,5000,1
+23087,150000,female,2,2,40,0,0,0,0,0,0,76282,78800,67443,68720,70572,72275,3705,4000,3000,3000,3000,4000,0
+23088,170000,female,2,1,29,0,0,0,0,0,0,79091,62575,63317,63903,43505,43995,2235,2493,2585,1683,1901,2111,0
+23089,90000,female,2,1,35,0,0,2,0,0,0,35232,38329,37433,38507,39468,40183,4000,0,1700,1600,1500,4000,0
+23090,70000,female,3,1,40,0,0,-2,-2,-2,-2,14896,0,0,0,0,0,0,0,0,0,0,5704,0
+23091,100000,female,1,2,28,1,2,0,0,0,0,102122,96193,82342,81967,82177,78840,322,3600,3800,3000,3000,3023,0
+23092,50000,female,3,1,34,0,0,0,0,0,0,24203,23708,23609,22675,21628,20576,1367,1741,1280,706,700,776,0
+23093,30000,female,2,1,35,0,0,0,0,0,0,30471,30578,29846,28631,27359,21750,1472,2000,1064,1000,1223,0,0
+23094,280000,female,2,1,37,0,0,0,0,0,0,252814,255974,110389,114874,118273,114204,10610,10018,10000,5038,5039,5010,1
+23095,210000,female,3,1,41,0,0,-1,-1,-2,-2,59071,58830,364,-649,-649,-649,2000,17864,569,0,0,1000,0
+23096,250000,female,5,1,33,0,0,0,0,0,0,211084,211577,202346,203132,201230,199820,6934,7000,8975,7043,8000,10000,0
+23097,70000,female,2,1,34,0,0,0,0,0,0,43662,44733,45775,46911,48128,51182,1800,1764,1900,2000,4000,2000,1
+23098,120000,female,1,2,34,0,0,0,-1,-1,-1,8113,8796,12210,3095,0,2873,2000,5312,3095,0,2873,0,0
+23099,300000,female,1,2,36,-2,-2,-2,-2,-2,-2,230,469,899,0,0,0,469,899,0,0,0,1051,0
+23100,310000,female,2,1,39,-2,-2,-2,-2,-2,-2,360,360,360,360,360,360,360,360,360,360,360,360,0
+23101,20000,female,3,2,34,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+23102,50000,female,2,2,37,0,-1,-1,2,0,0,16090,38710,43085,42093,44393,45682,38710,5000,0,3000,2000,5000,0
+23103,100000,female,2,1,32,0,0,0,0,0,0,98908,60868,60652,58338,56849,45744,2749,4800,2000,2000,2000,2000,0
+23104,280000,female,2,1,44,-1,-1,-1,-1,-1,-1,9713,264,252,2632,5410,5834,264,252,2656,5410,5834,0,0
+23105,210000,female,2,1,37,-2,-2,-2,-2,-2,-2,2978,1798,379,768,2308,1026,1798,379,768,2308,1026,1208,0
+23106,290000,female,3,2,47,-1,-1,-1,-1,0,0,1163,6619,0,28974,7524,0,6650,0,28974,0,0,0,0
+23107,160000,female,1,1,36,-2,-2,-2,-2,-2,-1,25386,2542,2916,4257,629,6267,2549,2916,4321,700,6267,1727,0
+23108,100000,female,2,1,41,2,-1,0,0,0,0,155351,159591,163665,170257,57747,16998,105200,6035,9410,1000,2000,3093,1
+23109,280000,female,2,2,37,-1,-1,-1,-1,-1,-1,1876,2716,1876,1876,1876,1870,2716,1876,1876,1876,1870,10267,0
+23110,200000,female,2,1,32,-2,-2,-2,-2,-2,-2,899,-1,-1,228,1374,380,0,0,229,1380,381,3880,0
+23111,180000,female,2,2,33,-1,-1,-1,-1,0,0,3316,3385,6186,6695,7173,5094,3446,6186,6695,4000,955,2401,0
+23112,240000,female,1,2,34,1,-2,-1,-1,-1,-1,-25,-25,2062,-1,311,2005,0,2087,0,312,2015,224,0
+23113,180000,female,2,2,35,0,0,0,0,0,0,174068,160979,165896,145300,152877,156074,10000,10092,10000,10000,10000,5000,0
+23114,180000,female,2,1,36,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+23115,50000,female,2,2,35,1,2,2,2,0,0,18544,17954,21678,21032,21465,24103,0,4351,0,784,3000,0,0
+23116,30000,female,3,2,38,2,0,0,2,0,0,24524,25546,28820,28538,28208,29326,1426,3700,718,1500,1500,3000,1
+23117,180000,female,2,1,40,0,-1,-1,-1,-1,-1,144481,1620,334,9379,1100,43505,1620,337,9379,1100,43505,0,0
+23118,50000,female,1,1,38,2,3,2,0,0,0,64760,60747,54902,54280,18595,18838,2000,0,1200,15000,2000,1000,0
+23119,230000,female,3,1,47,0,0,0,0,0,0,182787,173108,163937,90980,91180,90260,7000,5665,4154,3300,3418,3600,0
+23120,60000,female,2,1,31,0,0,0,0,0,0,49581,35465,29732,29411,28859,28309,1500,1600,1394,1000,1000,1500,0
+23121,50000,female,3,2,32,0,0,0,0,0,0,48237,49097,43763,37657,38530,39409,1755,1614,1627,1500,1500,1822,0
+23122,280000,female,1,1,32,0,0,0,0,0,0,137630,116209,117118,116689,117757,118432,6000,6000,5000,5000,4012,4779,0
+23123,170000,female,2,1,45,-1,-1,0,0,0,0,12847,9807,8101,6208,10460,11143,9807,5000,3749,6711,4432,0,0
+23124,110000,female,2,1,36,-1,-1,-1,-1,-1,-1,2002,1056,4680,880,880,880,1056,4756,880,880,880,880,1
+23125,70000,female,3,1,35,2,-1,0,0,0,0,1183,41263,40206,42184,43182,42674,41263,2500,2468,1466,1328,1501,1
+23126,90000,female,3,1,47,2,2,2,0,0,0,92454,94156,91710,79884,49810,51012,4100,0,3424,1790,2012,1814,1
+23127,260000,female,1,1,36,0,0,-1,-1,0,0,10942,7045,246,7156,7164,3677,3000,246,7178,5164,1209,1209,0
+23128,60000,female,2,1,33,0,0,0,0,0,0,57810,56189,58283,59385,57792,59010,2100,3000,2800,2000,2000,2200,0
+23129,320000,female,2,1,37,2,2,2,2,2,2,289260,297888,304025,308421,315291,310339,14500,12001,10500,13000,1,120021,0
+23130,160000,female,2,2,39,-1,-1,-1,-1,-1,-1,2828,1473,8404,8875,8509,4630,1473,8404,8875,8509,4630,2038,0
+23131,230000,female,1,2,33,1,-1,-1,-1,0,0,-3,4532,0,6264,6392,2538,4535,0,6264,128,0,407,0
+23132,50000,female,2,2,48,-1,0,-1,-1,-1,-1,1309,2158,1787,860,896,1087,1000,1787,860,900,1087,3123,0
+23133,180000,female,2,2,36,-1,-1,-1,-1,0,-1,25359,28432,1535,14470,14270,4529,28703,1535,15000,0,5793,36702,0
+23134,390000,female,2,2,45,0,0,0,0,0,0,60082,58694,61735,63337,59693,62776,5000,5000,5000,4000,4000,4000,0
+23135,290000,female,2,2,41,0,0,0,0,0,0,286391,140960,112394,113459,123967,131735,10000,5620,10000,20000,10000,10000,0
+23136,290000,female,2,1,35,0,0,-1,-1,-1,0,32485,21080,430,430,12715,16895,10000,430,430,12715,5000,15000,0
+23137,30000,female,3,1,46,0,0,0,0,0,0,29003,28544,27177,28630,25087,25342,1500,2000,2390,1000,1000,2000,0
+23138,100000,female,1,1,38,1,-2,-2,-1,-1,2,0,0,0,53,4009,316,0,0,53,4328,0,10401,0
+23139,190000,female,2,1,34,1,-2,-2,-2,-2,-2,-18,-18,-18,-18,-18,-18,0,0,0,0,0,0,0
+23140,200000,female,1,2,35,-2,-2,-2,-2,-2,-2,441,0,3514,4042,8606,1870,0,3514,4042,8606,1870,10332,0
+23141,180000,female,3,2,32,0,0,0,0,0,0,4480,7354,6930,6090,2435,2074,3000,3000,2018,1200,1500,3000,0
+23142,250000,female,2,1,45,-1,0,0,0,-1,-1,3233,13244,12462,8977,1503,96834,12716,12158,8777,1503,96834,2204,0
+23143,80000,female,2,1,39,0,0,0,0,0,0,41753,42956,43850,38112,38876,39697,2200,2000,2000,1700,1600,1700,0
+23144,140000,female,2,1,37,0,0,0,0,0,0,137545,136820,128445,125049,119402,123055,6206,6100,6330,4400,8700,0,0
+23145,260000,female,2,1,40,0,0,-1,-1,0,-1,35211,43944,46957,45114,26114,46750,40000,48058,46000,26000,48000,33000,0
+23146,360000,female,1,2,39,-1,-1,-2,-2,-1,-1,1070,0,0,0,906,0,0,0,0,906,0,4341,1
+23147,250000,female,2,1,45,-2,-2,-2,-2,-2,-2,2218,4912,412,6264,5880,0,4940,416,6303,5880,0,230,0
+23148,320000,female,1,1,36,-1,-1,2,2,-2,-2,7225,9336,945,-37,-37,-37,9386,13,0,0,0,7445,0
+23149,100000,female,2,1,42,0,0,0,0,0,0,63984,65917,67673,66292,67793,67182,3000,4000,3000,2500,3000,2500,0
+23150,340000,female,1,1,36,0,0,0,0,0,0,183898,185268,326074,276519,251815,218706,60075,160444,10143,7190,6283,5208,0
+23151,230000,female,2,2,41,-2,-2,-2,-2,-2,-2,24477,23722,4791,3516,7475,5352,23722,4791,3516,7475,5352,2120,0
+23152,150000,female,3,1,43,0,0,0,0,0,0,18308,19973,21000,22013,22449,22922,1973,1353,1366,802,833,837,1
+23153,60000,female,3,1,48,0,0,0,0,0,0,49890,51060,52236,54362,55458,56767,2000,2000,3000,2000,2200,2500,0
+23154,500000,female,3,2,48,-2,-2,-2,-2,-2,-2,83948,25321,14364,123903,71463,54924,25325,14364,124081,71541,54924,47148,0
+23155,10000,female,2,2,48,1,2,-1,0,0,0,3133,1473,9196,8518,8690,7472,0,9196,1106,278,258,268,0
+23156,140000,female,3,1,39,0,0,0,0,0,0,73166,66565,76412,70091,63279,56854,3112,20000,3043,2359,2187,1706,0
+23157,90000,female,2,2,33,0,0,0,0,0,0,89129,89543,84447,78238,68234,69684,3308,3014,3203,3000,3000,3000,0
+23158,390000,female,2,2,39,0,0,0,0,0,0,53386,52746,55535,57154,58774,62372,2000,5000,3000,3000,5000,3000,0
+23159,150000,female,1,1,38,-1,-1,-2,-2,-2,-2,9474,0,0,0,0,0,0,0,0,0,0,0,0
+23160,170000,female,2,2,48,0,0,0,0,0,0,24953,24334,25558,24580,24855,26123,2000,2000,1400,1000,2000,2000,0
+23161,400000,female,2,1,34,-1,-1,-1,-1,0,0,41305,206028,21153,15631,14417,12228,206032,21153,15948,10000,10000,22934,0
+23162,180000,female,2,1,38,0,0,0,0,0,0,151031,152510,151651,159019,123022,126075,7011,5657,10372,5000,5000,5000,0
+23163,440000,female,2,1,44,0,0,0,-2,-2,-2,70548,42651,0,27549,77349,10456,20000,0,27549,50000,18956,9307,0
+23164,340000,female,1,2,36,-1,-1,-1,-1,-1,0,3474,1974,2774,43824,11308,3540,1974,2774,43831,11308,0,824,0
+23165,170000,female,2,1,45,1,2,2,0,0,0,110970,117076,113778,117989,118803,121434,9460,0,6100,4210,4500,4500,1
+23166,280000,female,1,2,46,-1,-1,-1,-1,-1,-1,2475,1236,2726,10898,1050,812,1236,2726,10916,1056,812,9109,0
+23167,320000,female,5,1,46,-2,-2,-2,-2,-2,-2,17849,5149,16615,2914,696,740,5149,16654,2914,696,740,6498,0
+23168,190000,female,5,1,40,0,0,0,0,0,0,58783,59881,136994,118268,110476,111802,3100,80000,5000,4000,4100,5000,0
+23169,210000,female,2,1,42,-1,-1,-1,-2,-1,-1,1708,2928,-2,-2,918,-164,2928,0,0,920,0,0,0
+23170,110000,female,2,1,43,1,2,2,2,2,2,100987,101941,98364,103189,99578,104412,4600,0,8500,0,7700,3900,0
+23171,90000,female,2,2,34,0,0,0,0,0,0,30026,29239,14027,13559,14331,14948,2000,1518,1500,1000,1000,1000,0
+23172,500000,female,1,1,44,-1,-1,-1,-1,-1,-1,29178,26963,33166,48858,66050,43769,26963,33169,48858,66050,43769,37509,0
+23173,50000,female,2,2,36,0,0,0,0,0,0,29647,30845,32821,34855,11776,12088,2000,2800,3732,750,500,1000,1
+23174,210000,female,1,2,39,-1,-1,-1,-1,0,-1,5119,20927,3702,3673,1883,384,20965,3702,3673,0,384,0,0
+23175,80000,female,2,1,37,2,2,2,2,2,-2,1662,3347,4140,3920,0,0,2427,1000,0,0,0,0,1
+23176,320000,female,2,1,42,-1,-1,-1,-1,-1,-1,2862,18729,23405,16662,38459,2836,18729,23421,16683,38459,2836,1286,0
+23177,50000,female,3,1,45,0,0,0,0,0,0,48169,48163,49302,16522,15175,16371,2400,2500,1318,700,1600,600,0
+23178,270000,female,2,2,34,-2,-2,-2,-2,-2,-2,128620,2222,9076,5424,9577,8130,2222,9076,5424,9577,8130,20177,0
+23179,30000,female,3,2,39,0,0,0,0,0,0,28467,22308,48376,26013,27089,28161,2000,3000,3000,1500,1500,2280,0
+23180,150000,female,3,2,35,-1,2,-1,2,-1,-1,1877,709,2264,1143,163,2036,0,2264,0,163,2036,0,0
+23181,140000,female,2,1,41,0,0,0,0,0,0,56379,51993,52678,53753,54821,56145,1855,1913,1952,1963,2208,2084,0
+23182,120000,female,3,1,42,-1,-1,-1,-1,-1,-1,2386,780,2158,6968,2552,626,1000,2826,7026,2620,1000,26187,0
+23183,300000,female,1,1,31,0,0,0,0,0,0,147277,149893,152529,152882,113347,114554,7000,7000,6000,4084,4056,4300,0
+23184,480000,female,1,1,43,0,0,0,0,0,0,276681,282328,288120,294000,300000,3493,5647,5792,5880,6000,3493,21308,0
+23185,460000,female,1,1,37,1,2,0,0,0,0,268775,262956,268463,273066,278594,284423,0,9737,9060,9200,9480,9627,1
+23186,280000,female,2,1,39,0,0,0,0,0,0,269472,253792,276979,238527,239280,238926,8229,150062,50000,4786,4779,4876,0
+23187,50000,female,3,1,31,0,0,0,0,0,-2,44115,44619,38604,33570,0,0,1652,1906,1000,0,0,0,0
+23188,350000,female,1,2,32,-2,-2,-2,-2,-2,-2,384,717,409,0,944,534,717,409,0,944,534,2281,0
+23189,300000,female,2,2,32,0,0,0,0,0,0,114690,117682,120777,123835,127830,130931,4682,4777,4835,5830,4931,5079,0
+23190,380000,female,1,2,33,-2,-2,-2,-2,-2,-2,11924,16615,3273,9833,6580,6080,16615,3273,9833,6580,6080,4697,0
+23191,190000,female,1,2,33,-2,-2,-2,-2,-2,-2,211,4031,6036,4238,2907,3122,4031,6045,4247,2907,3122,12419,0
+23192,230000,female,2,2,35,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+23193,390000,female,2,1,35,2,2,2,0,0,0,62474,62878,59601,60422,59094,59862,2757,0,2734,2254,2178,2174,0
+23194,220000,female,0,1,35,-2,-2,-2,-2,-2,-2,0,319,10567,319,319,319,319,10567,319,319,319,2420,0
+23195,120000,female,2,1,41,0,0,0,0,0,0,118131,116607,108720,92649,89533,89204,4211,3710,3184,3200,3200,3133,1
+23196,300000,female,2,2,49,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+23197,210000,female,1,2,42,-1,-1,-1,-1,-1,-2,4131,24255,7838,7139,-320,-320,24255,7862,7146,0,0,32000,0
+23198,50000,female,2,1,37,0,0,0,0,0,0,50664,49163,49811,49978,20062,20259,3000,2500,2000,1102,2000,2900,0
+23199,330000,female,1,2,44,2,0,0,2,0,0,238795,243621,259517,253863,257535,262753,10300,21400,0,9400,9542,9766,1
+23200,110000,female,3,1,42,0,0,0,0,0,0,110191,110736,63652,62738,50687,49850,3200,2450,2027,1710,1800,1700,0
+23201,20000,female,1,2,37,1,-2,-2,-1,-1,-2,0,0,0,1004,0,0,0,0,1004,0,0,0,0
+23202,150000,female,2,1,40,0,-1,-1,-1,0,0,6369,5215,4090,51893,52033,51188,5215,4090,51893,2000,3000,2202,0
+23203,140000,female,3,1,39,0,0,0,0,0,0,127896,131764,134654,138303,119845,122457,7500,6500,7500,5000,4700,5228,0
+23204,160000,female,1,1,40,-1,-1,-1,-1,-1,-1,661,2881,362,20680,7429,527,2881,362,20680,7429,527,0,0
+23205,260000,female,3,1,38,-1,-1,-1,-1,-1,-1,1973,1973,1973,6746,1973,1973,1973,1973,6746,1973,1973,3733,0
+23206,150000,female,3,1,45,1,-2,-2,-2,-2,-1,0,0,0,0,0,10640,0,0,0,0,10640,0,0
+23207,50000,female,2,1,33,0,0,0,0,0,0,34065,35422,32612,31842,27438,26127,3000,2011,1402,3089,3482,5000,0
+23208,80000,female,3,1,36,0,0,0,0,0,0,65205,72922,74943,75399,53373,55554,20000,5000,3000,5000,3000,3000,0
+23209,270000,female,2,1,37,-1,-1,-2,-1,-1,-1,304,-22,-348,326,326,304,0,0,1000,326,304,0,0
+23210,60000,female,2,1,40,0,0,0,0,0,0,58127,59345,58196,47007,32834,29116,2800,2200,1500,1200,1100,1200,0
+23211,50000,female,2,1,45,0,0,0,0,0,0,15240,16252,17678,18658,18784,18779,1574,2000,1290,806,824,697,0
+23212,290000,female,1,1,33,2,0,0,2,2,2,88176,21956,24815,24120,25218,24855,1354,3213,0,1616,0,724,1
+23213,180000,female,2,2,39,-1,-1,-1,-1,-1,-1,671,671,671,671,671,671,671,671,671,671,671,671,1
+23214,360000,female,1,1,43,-1,0,0,0,0,-2,17412,18455,19245,18370,0,0,1328,1637,5000,0,0,0,0
+23215,260000,female,3,2,40,0,-1,-1,-2,-2,-2,260,3000,0,0,0,0,3000,0,0,0,0,0,0
+23216,200000,female,2,2,46,-2,-2,-2,-2,-2,-2,430,430,430,5241,430,59415,430,430,5241,439,59415,1999,0
+23217,290000,female,2,2,38,-2,-2,-2,-1,0,0,0,130,0,24756,25147,25685,130,0,24756,899,942,927,0
+23218,50000,female,2,1,36,1,3,3,2,0,0,17292,18705,18125,17530,18251,19965,2000,0,0,1000,2002,0,0
+23219,10000,female,2,1,37,-1,-1,-1,-1,-1,0,5050,3704,6222,974,8834,6010,5011,6222,984,8834,0,6481,0
+23220,180000,female,1,1,39,2,-1,-1,-1,-1,-1,1343,437,2297,4428,985,4028,438,2308,4446,987,4040,600,1
+23221,150000,female,2,2,39,0,0,2,2,0,0,22724,21019,19890,19271,19037,20448,3221,1602,0,1000,1709,0,0
+23222,250000,female,1,2,44,-1,-1,-2,-2,-1,-1,891,-33,-33,-33,267,144,0,0,0,300,144,0,0
+23223,130000,female,2,2,37,2,2,2,2,0,0,82640,85505,87587,85428,86251,88094,5000,4200,0,3000,3100,3100,1
+23224,540000,female,1,2,37,0,0,-1,-1,-1,0,4696,6579,1464,-2800,13916,12517,2033,1485,16,20016,2016,2019,0
+23225,320000,female,1,1,42,0,0,0,0,0,0,212883,197352,201913,103278,62891,64948,9000,9000,6000,3000,3000,3000,0
+23226,440000,female,2,1,39,0,0,0,0,0,0,58639,66698,43399,44534,25341,20000,30000,2000,24534,5000,20000,20839,0
+23227,80000,female,2,2,40,0,0,0,0,0,0,79390,79835,81229,82456,82854,80868,3200,4300,3340,3500,2999,3300,0
+23228,120000,female,2,1,36,1,-2,-1,-1,-2,-2,0,0,1100,0,0,0,0,1100,0,0,0,0,1
+23229,230000,female,2,1,35,0,0,0,0,0,-2,68755,35137,34305,22752,5123,0,1607,4305,1000,5123,0,2810,0
+23230,60000,female,3,2,37,0,0,0,0,0,0,53867,54971,57284,58562,29121,27003,2000,3200,3300,1000,1100,1000,0
+23231,290000,female,4,1,49,-1,-1,-2,-2,-2,-1,3950,0,0,1085,445,145,0,0,1085,447,145,247,0
+23232,130000,female,2,1,49,1,-2,-1,-1,-2,-1,0,-390,390,0,-390,390,0,1560,0,0,1170,1170,0
+23233,180000,female,2,2,46,-2,-2,-2,-2,-2,-2,1905,2453,6997,3064,2158,9331,2453,6997,3064,2158,9331,0,0
+23234,140000,female,3,1,42,0,0,0,0,0,0,138391,135476,135956,137143,137195,136300,6300,6500,6265,5000,5006,5000,1
+23235,500000,female,1,2,44,0,0,0,0,0,0,120452,190135,212134,201014,222520,208271,100000,50000,10012,50000,10000,10000,0
+23236,300000,female,2,1,42,0,0,0,0,0,0,168796,165430,147077,127270,129397,132142,7010,6000,5006,5000,5000,6000,0
+23237,210000,female,2,1,42,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+23238,150000,female,2,1,49,-1,-1,-1,-1,-1,-1,575,25622,4992,1578,1216,4475,25622,4992,1578,1216,4475,15964,0
+23239,360000,female,2,1,37,-2,-2,-2,-2,-2,-2,10072,7728,2344,9536,9043,0,7728,2344,9536,9043,0,2909,0
+23240,250000,female,2,1,36,0,0,0,0,0,0,107476,87000,48162,48803,41207,34792,5143,10025,10074,10049,10076,10012,0
+23241,30000,female,3,2,44,0,0,3,2,2,2,21007,27506,26784,28123,27994,27029,7200,0,2100,1000,0,3000,0
+23242,200000,female,1,1,42,-1,-1,2,-1,-1,-1,796,770,770,5259,1329,3609,770,0,5269,1329,2280,0,0
+23243,130000,female,2,1,35,0,0,0,0,0,0,128649,100902,127102,65517,66925,68344,5500,7328,5000,2500,2500,3000,0
+23244,290000,female,3,1,49,0,0,-2,-1,0,-1,52894,0,0,44777,26201,2780,21560,0,44777,0,5560,6420,0
+23245,100000,female,3,1,35,-1,0,0,0,0,0,50327,51326,52403,53410,54030,55157,1835,1902,1878,1446,1500,30000,0
+23246,40000,female,3,1,43,-1,-1,-1,2,0,0,780,177,1583,1020,630,240,177,1583,0,0,0,1080,0
+23247,130000,female,3,1,39,0,0,2,0,0,0,91982,99328,96898,97990,100160,102190,8900,0,3600,3800,3800,5000,1
+23248,160000,female,3,1,34,-2,-2,-2,-2,-2,-2,717,594,1217,697,650,691,597,1223,700,653,691,17,0
+23249,150000,female,1,2,35,-2,-2,-2,-2,-2,-2,0,26660,858,0,3600,0,26660,858,0,3600,0,458,0
+23250,130000,female,2,2,45,-1,0,0,0,0,0,131221,128161,128884,124514,67739,69614,10006,5069,3634,2476,3019,2394,0
+23251,180000,female,2,1,39,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,289,1
+23252,150000,female,2,2,30,0,0,0,2,2,2,61785,63150,68125,66432,73312,72015,3000,6000,0,8023,0,5700,0
+23253,100000,female,2,2,31,-2,-2,-2,-2,-2,-2,4576,1872,2511,3333,2765,900,1872,2517,3339,2765,900,2575,1
+23254,30000,female,2,2,31,0,0,0,-2,-2,-2,26830,30900,0,0,0,0,5000,0,0,0,0,0,0
+23255,160000,female,1,2,25,-1,0,-1,-1,0,0,6087,1934,11376,2199,10856,0,1000,11426,2199,10000,0,9867,0
+23256,50000,female,2,2,28,-1,3,2,-1,0,0,1876,1690,429,4836,1170,780,0,0,4836,0,0,0,1
+23257,130000,female,2,1,29,0,0,0,0,0,0,67260,69269,72276,74347,77259,78403,4000,5000,4347,5000,3038,2135,0
+23258,140000,female,3,2,31,0,0,0,0,0,0,137254,92636,94641,96667,98883,79972,3320,3500,3600,3900,3000,3000,0
+23259,340000,female,3,1,32,0,-1,0,0,0,0,11049,57301,59375,60216,59842,46882,57301,3000,2600,1000,1817,11022,0
+23260,340000,female,2,1,33,-2,-1,0,-1,0,0,1632,3121,44092,31292,17391,21678,2027,39774,43325,5000,10000,10079,0
+23261,90000,female,2,2,35,2,2,2,2,2,2,89282,91247,68552,67324,39573,28610,6201,0,25000,0,2235,0,0
+23262,300000,female,2,1,42,0,0,0,0,0,0,281000,291482,297425,296884,241037,247383,15000,12039,13000,9000,10059,10000,0
+23263,50000,female,2,2,25,0,0,0,0,0,0,37034,37698,37252,38254,38445,39273,1586,1624,1626,1377,1448,1399,0
+23264,50000,female,2,1,37,0,0,0,0,0,0,48890,49083,48102,91452,9551,9746,1787,2247,1900,382,195,199,0
+23265,100000,female,2,1,42,-2,-2,-2,-2,-2,-2,0,0,3168,0,0,550,0,3168,0,0,550,0,0
+23266,20000,female,3,2,40,3,3,2,0,0,0,18244,17670,17105,18335,10415,8526,0,0,2001,3000,3000,3000,0
+23267,160000,female,1,2,30,0,0,0,0,0,0,86454,61510,62921,64274,66198,68126,3000,3000,3000,3000,3000,3000,1
+23268,390000,female,2,1,32,-1,-1,-1,-1,-1,0,2075,0,682,10943,9942,11168,0,682,11130,9942,6600,1000,0
+23269,30000,female,3,1,39,-1,2,-1,-1,-2,-2,1937,640,1751,0,0,0,0,1751,0,0,0,0,1
+23270,20000,female,2,1,46,1,2,0,0,-2,-2,3098,2901,3800,0,0,0,0,1000,0,0,0,0,1
+23271,210000,female,2,2,31,0,0,0,0,0,0,168161,133113,130769,95962,49839,46824,5000,5032,3783,2021,3000,0,0
+23272,300000,female,4,1,31,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+23273,220000,female,1,2,31,-1,-1,-2,-2,-2,-1,232,0,0,0,0,500,0,0,0,0,500,0,0
+23274,270000,female,1,2,33,0,0,0,0,0,0,68589,58751,53401,51401,36177,29209,6000,2028,5010,5000,5000,3000,0
+23275,90000,female,2,1,40,2,2,2,2,2,0,4918,4694,6547,7481,7212,7595,0,2100,1200,0,500,1000,1
+23276,360000,female,2,2,27,0,0,0,0,0,0,214711,179651,139310,143215,168839,171153,10440,13360,6123,28002,6116,10056,0
+23277,300000,female,1,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+23278,310000,female,2,2,31,0,0,0,0,0,0,313956,314859,307371,299501,217763,217659,11000,12500,11000,6600,7000,7493,1
+23279,130000,female,2,2,31,0,0,0,0,0,0,95292,97544,99208,102946,103750,105818,4600,4000,5300,3700,3600,3700,0
+23280,80000,female,1,1,29,-1,-1,-1,-1,0,-1,2175,358,1872,746,746,4424,358,1872,746,0,4424,0,0
+23281,280000,female,2,1,34,-2,-2,-2,-2,-2,-2,6398,8321,12798,3581,10310,11717,8331,12805,3587,10361,11734,8800,0
+23282,80000,female,3,2,44,0,0,0,2,0,0,45412,32091,36633,35749,36353,37115,1900,5400,0,1500,1500,1600,1
+23283,130000,female,3,2,39,1,2,2,2,0,-1,4867,3189,4634,2946,1473,780,0,2946,0,0,780,0,0
+23284,270000,female,1,1,42,-1,-1,-1,0,0,0,1870,0,8091,8350,8350,0,0,8091,1000,0,0,0,0
+23285,20000,female,2,1,41,-1,-1,-1,-1,0,0,958,1546,1156,9646,6510,2514,1546,1156,9646,130,50,0,0
+23286,260000,female,1,1,36,0,0,0,0,0,-1,122825,88273,91908,90857,-81334,142645,5000,6000,5020,81569,331788,10002,0
+23287,170000,female,2,2,47,0,0,0,0,0,0,62927,36885,34289,31518,31338,31838,1566,1606,1325,1015,10000,1111,0
+23288,160000,female,1,2,35,-1,-1,-1,-1,-1,-1,19082,2815,27380,10028,2824,9940,2815,27380,10050,3000,9940,12498,0
+23289,240000,female,1,2,35,-2,-2,-2,-2,-2,-2,5757,2904,24671,2249,4505,11859,3242,24685,3535,4505,11859,12000,0
+23290,170000,female,2,2,36,-2,-2,-2,-2,-2,-2,2848,1941,0,0,0,0,1941,0,0,0,0,0,0
+23291,500000,female,2,1,40,0,0,0,0,0,0,215508,214460,220047,217920,159393,149626,10004,10025,10294,6046,5076,5000,0
+23292,260000,female,1,1,38,-2,-2,-1,-1,-2,-2,629,622,3074,0,688,2605,625,3084,691,0,2613,378,1
+23293,150000,female,1,2,36,0,0,0,0,0,0,43544,47751,49096,49848,52007,54161,5000,5000,3000,3000,3000,3500,0
+23294,500000,female,1,1,36,-2,-2,-2,-2,-2,-2,8561,682,15714,5390,43386,0,1364,15714,5390,43386,0,0,1
+23295,320000,female,2,2,34,0,0,-1,-1,-1,-1,1800,0,312,311,311,8571,0,312,311,311,8571,4204,0
+23296,90000,female,2,1,34,0,0,0,0,0,0,18358,14764,8374,29525,28333,27879,1300,1300,22000,1000,1012,1400,0
+23297,300000,female,2,2,43,-2,-2,-2,-2,-2,-2,2936,1669,743,3040,1927,14713,1676,743,3047,1927,14713,159,0
+23298,200000,female,2,2,36,1,2,2,2,2,2,73459,76308,78669,75995,79781,81533,4500,4000,0,5500,3000,0,0
+23299,160000,female,3,1,44,2,2,-2,-2,-2,-2,1500,0,0,0,0,0,0,0,0,0,0,0,1
+23300,120000,female,1,2,29,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+23301,120000,female,1,2,30,2,-1,-1,-1,-1,-1,416,416,416,416,0,832,416,416,416,0,832,416,1
+23302,90000,female,2,2,30,1,2,0,0,0,2,88093,85730,54727,55506,58529,57157,0,1984,2004,4251,0,2083,1
+23303,170000,female,2,1,31,-2,-2,-2,-2,-2,-2,6015,7810,2760,3474,7680,7860,7820,26058,3474,7680,7860,9333,1
+23304,170000,female,1,2,33,0,0,0,2,0,0,144031,147135,158528,138030,139444,148093,5500,14000,0,5200,11100,0,0
+23305,500000,female,1,1,33,-2,-2,-2,-2,-2,-2,10486,32539,10644,7780,19099,4281,32648,11000,7823,19215,4281,8190,0
+23306,240000,female,1,2,33,0,0,0,0,0,0,239278,237018,238641,230758,196830,201112,9582,9963,8013,6658,7059,6609,0
+23307,230000,female,2,1,30,0,-1,0,-1,0,0,4942,2554,1249,2959,7079,1880,2554,1000,2959,5000,1000,0,0
+23308,210000,female,2,1,32,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+23309,400000,female,1,1,33,-1,-1,-1,2,-1,-1,10858,15892,18182,12205,941,6346,16000,2600,24,1000,7053,5000,0
+23310,150000,female,3,1,41,0,0,0,0,0,0,88818,90585,92485,94373,96245,98263,3241,3358,3427,3443,3567,3585,1
+23311,50000,female,1,2,27,-1,-1,-2,-1,0,0,6018,0,0,6085,6085,5605,0,0,6085,0,0,6690,0
+23312,150000,female,2,1,28,0,-1,-1,-1,-1,-1,12780,850,850,430,840,430,850,850,430,840,430,860,1
+23313,230000,female,2,2,28,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+23314,470000,female,1,1,28,0,0,0,0,0,0,178262,177644,171997,165014,158839,148035,6100,6000,7100,5100,5200,4900,0
+23315,30000,female,2,2,28,3,2,2,5,5,4,1200,1200,1200,1200,1200,600,0,0,0,0,0,0,1
+23316,100000,female,3,1,29,1,-2,-2,-1,-1,-1,0,0,0,338,9448,1183,0,0,4838,9448,4183,1485,0
+23317,30000,female,3,1,34,0,0,-1,2,-1,0,8090,0,3398,2855,2115,521,0,6253,0,2115,0,2000,1
+23318,110000,female,2,2,40,0,0,0,0,0,0,96950,93571,86595,81077,77747,78913,3255,3056,2802,2813,4000,3500,0
+23319,300000,female,3,1,39,2,0,0,2,2,2,36656,37672,40743,41226,40263,42788,1929,4000,1446,0,3179,0,0
+23320,350000,female,2,2,28,1,2,0,0,0,0,358895,346575,345088,341811,265953,93300,0,14579,13557,12000,5000,11000,1
+23321,220000,female,1,2,28,-2,-2,-2,-2,-2,-2,2956,2968,3054,4701,2869,3654,2968,3054,4701,2869,3654,2754,0
+23322,400000,female,1,2,35,-2,-2,-2,-2,-2,-2,26930,11187,16593,18569,16947,28590,11187,16596,18572,16947,28590,159259,0
+23323,500000,female,2,1,40,0,0,0,0,0,0,26102,33012,56116,31924,33255,27668,33009,50018,30023,30013,18019,40018,0
+23324,280000,female,3,2,48,0,0,0,0,0,0,166473,167864,140466,142417,126321,117613,7750,5195,5098,4319,4209,4127,0
+23325,30000,female,2,1,37,-2,-2,-2,-2,-2,-2,108,709,11726,2628,2659,4483,709,11726,2713,2659,4483,3676,0
+23326,20000,female,1,2,49,0,0,0,0,0,0,16715,16719,34196,18760,19132,19533,1271,1300,2612,684,709,875,0
+23327,270000,female,4,2,29,1,-1,-1,-1,-2,-1,-9,3265,6125,0,0,29961,3274,6129,0,0,29961,6216,0
+23328,270000,female,1,2,34,0,0,0,0,0,0,126642,127741,132405,131241,127080,122213,4500,7028,4728,5037,4530,5000,0
+23329,400000,female,2,1,34,0,0,0,0,0,0,45514,42620,28584,40673,38068,24418,4854,5005,14218,1722,1438,3381,0
+23330,320000,female,1,2,39,0,0,0,0,0,0,91224,93025,99433,107659,110567,99935,10000,10000,10000,10000,5000,5000,0
+23331,430000,female,1,2,30,0,0,0,0,0,0,62774,68284,74806,82241,80298,53289,10284,10806,12241,1606,1119,52319,0
+23332,140000,female,2,2,31,1,-2,-2,-1,-1,-1,0,0,0,76,76,76,0,0,76,0,0,0,1
+23333,70000,female,2,1,31,0,-1,0,0,-1,0,9319,3652,5284,5950,5296,5713,3652,2284,3000,5296,2000,2625,0
+23334,110000,female,2,2,31,0,0,0,0,0,0,7398,2009,1651,1823,1208,0,1500,1177,1000,550,0,790,0
+23335,30000,female,5,1,31,0,0,0,0,0,0,28731,27927,27601,26921,15525,0,1656,1545,1300,825,0,0,0
+23336,550000,female,2,1,32,2,0,0,0,0,0,548551,546741,535509,548020,530672,155083,21094,22863,167622,14000,4300,158064,1
+23337,310000,female,1,1,47,-1,0,0,0,0,0,2257,5202,6495,5781,7754,12315,3000,3000,1000,4000,5000,5000,0
+23338,130000,female,1,2,32,0,0,0,0,0,0,126164,126080,129104,130745,127344,127809,6500,7000,8000,5000,4500,4500,0
+23339,130000,female,2,1,32,0,0,0,0,0,0,119720,120066,121587,119784,117605,120307,6000,5000,4531,5000,4596,10000,0
+23340,220000,female,2,1,34,0,0,0,0,0,0,154029,153012,154508,152829,152842,152747,5700,6000,6814,5500,5800,5700,0
+23341,300000,female,1,1,35,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+23342,110000,female,2,1,35,-1,-1,-1,0,0,-1,1245,1245,1490,2490,1245,2675,1245,1490,2245,0,2675,0,0
+23343,50000,female,2,1,44,1,2,2,2,2,2,24622,26999,28071,27326,28769,28170,3100,1800,0,2200,0,2700,1
+23344,300000,female,1,2,40,-1,3,2,2,2,2,5130,4903,4679,6596,6344,9067,0,0,2000,0,3000,0,1
+23345,200000,female,2,1,36,-2,-2,-2,-2,-2,-2,3131,207,3578,0,0,0,207,3599,0,0,0,3832,0
+23346,360000,female,3,2,38,-1,-1,-1,-1,0,0,6904,-507,751,15369,7845,6786,0,1502,15369,200,0,0,1
+23347,500000,female,1,2,34,0,0,0,0,0,0,80630,80112,81726,74297,66132,67695,3000,3006,2600,3000,2600,2800,0
+23348,290000,female,2,1,42,0,0,0,0,0,0,19281,21654,20073,25966,22347,12572,6654,1476,10002,447,251,16338,0
+23349,430000,female,1,1,37,-2,-2,-2,-2,-2,-2,1013,0,2320,0,4139,0,0,2320,0,4139,1015,0,1
+23350,180000,female,3,2,34,1,-2,-2,-2,-1,-1,3700,4696,3763,-3,3667,1598,4696,3763,3,3670,1799,0,0
+23351,90000,female,3,1,35,0,0,0,0,0,0,35872,35687,35538,34780,34468,30520,1578,1583,1773,1294,1248,1276,0
+23352,280000,female,2,1,43,-2,-2,-2,-2,-2,-2,14633,5600,13397,20004,10571,8430,5600,13397,20004,10571,8430,13561,0
+23353,230000,female,2,2,37,0,0,2,0,0,0,29087,30589,20958,21637,19846,12770,2100,1000,1252,500,1000,1000,0
+23354,70000,female,2,1,39,0,0,0,0,0,-2,54801,52714,18596,9760,0,0,5336,1268,1052,0,0,0,0
+23355,110000,female,2,1,38,-2,-2,-2,-2,-2,-2,4976,2532,3102,1979,690,1042,2532,3102,1979,690,1042,8420,0
+23356,70000,female,3,1,32,0,0,0,0,0,0,70122,69080,68530,69753,70111,70212,2431,3112,3000,2438,2500,2554,0
+23357,180000,female,2,1,32,-1,2,-1,-1,-1,-1,3305,1649,1473,1473,2705,1473,0,1473,1473,2705,1473,1473,0
+23358,240000,female,3,2,35,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+23359,210000,female,1,1,40,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+23360,20000,female,2,2,46,-1,-1,-1,-1,-2,-2,390,0,780,0,0,0,0,780,0,0,0,0,1
+23361,80000,female,3,1,48,0,-1,0,0,0,0,3188,6239,7304,5050,5357,5466,6239,1185,1000,307,109,112,0
+23362,50000,female,1,2,33,0,0,0,0,0,0,13452,14524,15586,16622,17344,17864,1300,1300,1300,1000,800,1000,0
+23363,80000,female,3,2,33,-1,-1,-1,-1,0,0,6607,6205,-1573,12481,4104,2052,6205,675,14956,0,0,3274,0
+23364,80000,female,1,2,34,-1,-1,-1,2,0,0,34827,27881,16801,12532,12059,1242,27881,12532,1,0,0,717,0
+23365,60000,female,2,3,34,1,-1,0,0,-2,-1,0,60559,56317,0,0,567,60559,1126,0,0,567,1222,0
+23366,360000,female,2,2,35,1,-2,-1,-1,0,-1,0,0,22190,21416,6854,357,0,22190,21416,1545,357,357,0
+23367,50000,female,2,2,48,1,4,3,2,2,2,10024,9723,9427,9075,10037,12503,0,0,0,1000,0,264,0
+23368,200000,female,6,1,43,0,0,0,0,0,0,198595,194734,190447,187224,183641,178239,7003,7000,7000,6510,6550,6001,0
+23369,140000,female,2,1,42,1,-2,-1,-1,-1,-1,0,0,1497,1039,1139,0,0,1497,1039,1139,0,5023,0
+23370,180000,female,2,2,30,0,0,0,0,0,0,174104,171889,172288,175557,178010,178976,7000,8000,8000,7001,6600,7000,0
+23371,160000,female,2,1,32,0,0,0,0,0,0,18400,18699,26919,29801,40433,51329,10000,10018,15021,15000,20000,20000,0
+23372,200000,female,2,1,34,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+23373,600000,female,2,1,38,1,2,2,2,0,0,51072,49889,39635,35130,33229,32171,0,4000,0,1500,2000,3000,0
+23374,20000,female,2,1,46,4,3,2,3,2,0,15833,15286,17021,16461,15901,16294,0,2277,0,0,800,1400,1
+23375,220000,female,1,1,44,0,0,0,0,0,0,215191,215969,216849,214030,213678,190469,10000,10000,7000,6568,6000,5000,0
+23376,140000,female,1,1,40,2,2,0,0,0,2,34359,33521,34685,35399,36616,36893,0,2000,1583,1800,1000,3000,1
+23377,240000,female,2,2,38,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+23378,150000,female,2,1,32,1,-1,0,0,0,0,-1474,137049,145900,146168,149712,-288,140916,10000,3119,3744,0,57916,0
+23379,20000,female,1,2,32,-1,-1,-1,-2,-1,-1,2095,7733,0,0,4076,1911,7733,0,0,4076,1911,0,1
+23380,310000,female,2,1,32,0,0,0,0,0,0,69886,70950,71403,69478,53786,52791,2177,2216,1879,1563,2000,1539,0
+23381,230000,female,3,1,39,1,2,-1,2,-1,0,6499,4791,4858,316,316,316,0,4858,0,632,0,2468,0
+23382,130000,female,1,2,34,-2,-2,-2,-2,-2,-2,0,0,388,0,418,0,0,388,0,418,0,238,0
+23383,300000,female,1,2,31,-1,-1,-1,-1,-1,0,16612,19099,17865,9215,154926,126482,19099,17865,9243,154975,0,29390,0
+23384,300000,female,2,1,34,-1,-1,-1,-1,-1,-1,37505,57210,36667,34252,25583,28676,57210,36679,34263,25583,28676,37173,0
+23385,20000,female,2,1,29,2,2,2,0,0,0,19098,19953,18756,19968,15333,10056,1474,0,2403,0,6000,0,0
+23386,200000,female,3,2,33,1,2,0,0,0,0,18021,17374,15463,17314,14245,0,0,3027,6223,0,0,0,0
+23387,200000,female,2,1,40,-2,-2,-2,-2,-2,-2,531,0,2358,2477,958,11312,0,2358,2477,958,11312,0,0
+23388,500000,female,1,2,28,-2,-2,-2,-2,-2,-1,4428,-31,-31,3963,3418,858,0,0,3994,3435,860,0,0
+23389,80000,female,2,1,37,0,0,0,-1,0,-1,10559,11991,14286,1554,6554,2615,1621,5000,1554,5000,2615,5308,0
+23390,360000,female,1,2,29,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+23391,30000,female,2,1,33,0,0,0,0,0,0,28938,30246,30485,30274,29967,23477,1800,1574,1300,886,1000,686,0
+23392,190000,female,2,2,44,0,0,0,0,0,0,162051,168517,169675,171908,153857,153988,17917,7601,7602,6010,6010,6001,0
+23393,350000,female,1,1,36,-2,-2,-2,-2,-2,-2,1133,0,1342,2195,0,37800,0,1342,2195,0,37800,1000,0
+23394,260000,female,2,1,31,-1,-1,-1,-1,-1,-1,2224,1996,1497,-3,2138,900,2007,1501,0,2141,902,197,0
+23395,190000,female,2,1,37,0,0,2,2,2,2,105679,115049,117856,119570,116284,123528,11000,6000,5000,0,9000,4000,0
+23396,230000,female,2,1,34,-2,-2,-2,-2,-2,-2,0,0,615,0,0,0,0,615,0,0,0,0,0
+23397,650000,female,3,2,39,0,0,-1,-1,-2,-1,5865,0,1904,-61,-261,13050,0,1904,0,0,13311,64731,0
+23398,250000,female,1,2,32,-1,-1,-1,-1,-1,0,10495,2150,46975,10880,8974,36805,2150,46975,10890,8974,30000,65325,0
+23399,700000,female,2,2,34,-2,-2,-2,-2,-2,-2,1878,4343,804,778,1913,200,4354,804,778,1916,200,628,0
+23400,270000,female,1,1,40,-1,-1,-1,0,0,0,9658,8714,6425,10116,15953,19556,8781,6425,6000,8000,6000,6000,0
+23401,100000,female,2,1,43,0,0,0,0,0,-2,94713,97503,100138,99000,0,0,4366,5100,2000,0,0,0,0
+23402,260000,female,2,1,38,0,0,0,0,0,0,163550,166795,171803,175248,175157,178850,5966,7692,7788,6267,6513,10000,0
+23403,410000,female,2,2,33,-2,-2,-2,-2,-2,-2,4720,25488,7022,3321,2745,500,25488,7022,3326,2745,500,1543,0
+23404,520000,female,2,1,47,-2,-2,-2,-2,-2,-2,76762,107039,19046,7359,16336,20040,107124,19058,7387,16475,20040,98205,0
+23405,80000,female,2,1,39,0,0,0,0,0,0,77020,76246,49428,34024,46073,47038,3179,1699,1712,22965,1706,1727,1
+23406,450000,female,3,1,36,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+23407,30000,female,6,2,45,0,0,0,0,0,0,25298,26866,27662,28474,28494,0,2000,2000,1500,1000,0,0,0
+23408,600000,female,3,2,44,0,0,0,-1,0,0,140179,112498,82803,380337,368527,390197,5000,8340,380478,12625,60000,7000,0
+23409,200000,female,1,2,34,-1,-1,-1,-1,0,0,692,-6,890,14137,18067,24306,0,896,14337,7022,12000,16045,0
+23410,60000,female,2,2,34,2,0,0,0,0,-1,60707,59675,59690,59513,28494,29149,2102,2922,1586,570,31110,1212,0
+23411,280000,female,2,1,34,-2,-2,-2,-2,-2,-2,9103,6419,11966,5844,8994,14631,6439,12042,5844,4672,14724,4429,0
+23412,230000,female,1,1,36,-1,-1,-1,-1,-1,-1,1240,2078,380,2100,530,2282,2078,380,2100,530,2282,1390,0
+23413,210000,female,2,2,31,-1,-1,-1,-1,-1,-1,1154,1368,1080,1567,788,0,1368,1080,1567,788,0,1638,1
+23414,60000,female,1,2,33,1,-2,-1,0,0,0,1242,0,4028,59334,54526,58575,0,4028,56626,2100,5000,2000,0
+23415,270000,female,1,2,37,-2,-2,-2,-2,-2,-2,7842,6380,16098,1350,558,0,6380,16098,1350,558,0,128934,0
+23416,80000,female,3,1,41,-1,-1,-1,-1,-1,-1,3526,10129,6100,6420,606,7228,10129,6100,6434,606,7228,14387,0
+23417,80000,female,2,1,44,-2,-2,-2,-1,4,3,0,0,0,600,600,300,0,0,600,0,0,0,0
+23418,360000,female,2,1,40,-1,-1,-1,-1,-1,0,4343,725,4268,2085,26896,18455,725,4268,2085,13448,7455,4759,0
+23419,300000,female,1,2,38,0,0,2,-1,-1,-1,15001,12751,2318,3792,11977,29127,2318,0,3792,11977,29127,16600,1
+23420,270000,female,1,1,44,-2,-2,-2,-2,-2,-2,-106,2894,25417,3839,1794,2459,3000,25500,4000,2000,2459,10000,0
+23421,200000,female,1,2,46,-2,-2,-2,-2,-2,-2,2263,3441,2124,6041,2975,3441,3448,2124,6063,2975,3441,1841,0
+23422,20000,female,2,2,46,-1,-1,-1,0,0,-2,189,2249,3551,6180,0,0,2249,3551,5000,0,0,0,1
+23423,20000,female,2,1,32,0,0,0,2,2,2,8217,9910,12146,11954,14750,14371,2000,2400,600,3000,0,600,1
+23424,30000,female,2,1,33,2,2,0,0,0,0,29498,28718,29761,30203,29803,29803,1,2000,1400,0,0,67,1
+23425,50000,female,1,1,35,0,0,0,0,-1,0,45822,47173,48592,-22108,45709,39188,2413,2832,39,91983,1570,1445,0
+23426,230000,female,4,2,30,0,0,0,0,0,0,168708,161074,151884,146113,147650,43703,10699,5080,10000,3560,45000,86000,0
+23427,50000,female,2,1,39,1,2,2,2,2,2,16983,16413,21128,20492,30079,29460,0,5000,0,10000,0,10000,1
+23428,70000,female,3,1,31,0,0,0,2,2,0,9633,11462,14259,15525,14772,15380,2000,3000,2000,0,1000,1000,0
+23429,100000,female,1,2,31,1,2,-1,-1,-1,-1,9311,5107,1647,3348,1458,1458,0,1647,3348,1458,1458,1677,0
+23430,100000,female,3,1,30,1,2,2,0,0,0,46809,47121,45239,44712,43654,44678,2000,0,1900,1600,3200,0,0
+23431,210000,female,1,2,31,-1,-1,-1,-1,0,0,12618,6313,16488,12900,20108,18378,6344,16560,13024,12541,7091,11414,0
+23432,450000,female,1,2,31,-1,-1,-2,-2,-1,0,2609,0,0,0,17855,3430,0,0,0,17855,0,2500,0
+23433,300000,female,3,2,31,0,0,0,0,0,0,92235,67283,65059,147613,236687,237105,4505,6039,100000,100000,8600,8500,0
+23434,140000,female,1,2,31,-2,-2,-2,-2,-2,-2,1399,1519,1404,540,0,0,1519,1404,540,0,0,0,0
+23435,480000,female,1,2,32,-2,-2,-2,-2,-2,-2,11872,38933,23479,52177,54005,53853,40000,23479,52209,54005,54500,42321,0
+23436,100000,female,2,2,30,1,2,0,0,2,2,31708,30904,31953,34308,34951,34261,0,1850,3200,1500,0,1500,1
+23437,110000,female,1,2,32,-1,0,0,0,0,0,3610,15427,19563,21994,21994,8391,12000,5000,3000,3000,2000,1000,0
+23438,100000,female,2,2,31,0,0,0,0,0,0,91344,92309,94421,97486,97604,97241,3309,4421,5486,3400,3541,3894,1
+23439,200000,female,1,2,31,-2,-2,-2,-2,-2,-2,0,950,0,1782,669,0,950,0,2422,669,0,0,0
+23440,100000,female,1,2,30,0,0,2,2,2,2,7384,10253,9945,14269,13743,16011,3000,0,4500,0,2500,0,0
+23441,50000,female,2,1,30,-1,-1,-2,-2,-2,-2,1500,0,0,0,0,0,0,0,0,0,0,0,1
+23442,20000,female,2,1,31,0,0,0,0,0,0,13080,10911,18890,11026,5863,3273,1500,2000,2000,1000,1000,0,0
+23443,490000,female,2,1,31,0,0,0,0,0,0,470579,482733,492718,282450,287363,272578,19469,20000,12000,11000,10000,10000,0
+23444,90000,female,1,2,32,-1,-1,-2,-1,-1,-1,7563,-12,-12,3230,387,1642,0,0,3242,387,1642,0,0
+23445,310000,female,1,1,32,0,0,0,0,0,0,141203,84594,66624,48213,144758,601,7000,5500,4000,100000,601,360,0
+23446,240000,female,1,2,33,-2,-2,-2,-2,-2,-2,5000,0,5000,0,254,9366,0,5000,0,254,9366,1150,0
+23447,390000,female,1,2,32,0,0,0,0,0,0,16566,20213,15204,13529,14139,14496,9076,8000,1500,1500,519,7000,0
+23448,140000,female,2,2,33,0,0,0,0,0,2,59097,59655,60992,62253,69594,68262,2137,2300,2278,9300,0,3000,0
+23449,120000,female,1,2,33,-1,-1,-1,-1,-1,2,332,332,538,3160,2928,2596,332,538,3160,100,0,2959,1
+23450,30000,female,3,1,33,0,0,0,0,0,0,29666,29033,29345,29125,29859,29016,1763,1676,1456,1190,1056,1592,0
+23451,230000,female,2,1,32,-1,-1,0,0,0,0,399,1560,1766,2720,3720,0,1560,1046,1000,1000,0,0,0
+23452,320000,female,1,2,32,0,0,0,-1,-1,-1,13720,20219,18087,5639,-41,5613,8015,1140,5639,0,5654,0,0
+23453,110000,female,1,2,32,0,0,0,-2,-2,-2,60558,30900,0,0,0,0,1900,0,0,0,0,0,0
+23454,60000,female,2,2,31,0,0,0,2,2,2,36434,39925,43350,42057,26877,26493,4100,4073,0,1600,0,1100,1
+23455,180000,female,1,2,32,-2,-2,-2,-2,-2,-2,-30,2200,5643,2285,1498,3092,2230,5643,2298,1502,3101,2959,0
+23456,430000,female,1,2,33,0,0,0,0,0,0,345053,336467,321019,272838,206081,163130,13206,36000,30000,30000,30000,104000,0
+23457,230000,female,1,2,33,0,-1,-1,-1,-1,-1,7990,13450,56729,-1310,6734,87161,13450,56729,0,8044,87161,5000,0
+23458,140000,female,2,1,33,1,-1,-1,-1,-1,-1,-23,5742,0,1920,1180,0,5765,0,1920,1180,0,60000,0
+23459,180000,female,1,2,31,-1,-1,-1,-1,-1,-1,766,243,243,243,4889,243,243,243,243,4889,243,13868,0
+23460,60000,female,2,2,31,1,2,0,0,0,2,20544,19921,20993,21736,23172,22661,0,1700,1400,1800,0,1800,0
+23461,310000,female,2,2,31,0,0,0,2,2,0,86082,78328,78380,77102,66828,58520,3550,6000,2559,45,3033,3000,0
+23462,320000,female,2,1,33,0,0,0,0,0,0,324160,295866,226752,222278,224190,226836,10067,11000,5000,4519,2646,21457,0
+23463,100000,female,1,2,33,-2,-2,-2,-2,-2,-2,3417,7366,12146,752,5931,7855,7400,12146,752,5931,7855,3966,0
+23464,120000,female,2,2,33,1,2,2,2,2,2,68493,70275,68592,72525,73741,72440,3500,0,5700,3000,0,3000,1
+23465,260000,female,1,2,33,-2,-2,-2,-2,-2,-2,18480,3958,-86,-86,17315,14961,3978,0,0,17401,15036,18207,1
+23466,170000,female,1,2,32,-1,-1,-1,-1,-1,-1,13880,6367,9351,22222,20437,8744,6593,9361,22222,20437,8744,3620,0
+23467,200000,female,1,2,31,-1,2,2,-2,-2,-2,450,450,0,0,0,0,0,0,0,0,0,0,0
+23468,110000,female,1,1,31,1,2,5,4,4,4,76817,89765,87486,90126,94687,97585,15200,0,5000,7000,5000,5000,0
+23469,50000,female,1,2,32,0,0,0,0,0,0,5458,5175,12950,11188,12167,14873,1500,7956,3188,2200,7000,2810,0
+23470,350000,female,2,2,32,-1,-1,-1,-1,-1,0,10362,42541,10723,1310,7796,5225,42541,10723,1310,7796,0,0,0
+23471,110000,female,1,2,31,0,-1,-1,-2,-2,-2,14268,2491,0,0,0,0,2491,0,0,0,0,0,0
+23472,240000,female,1,1,30,0,0,0,0,0,0,236823,241067,240998,244836,233036,237938,10279,10500,10581,8000,8500,9400,0
+23473,120000,female,2,1,30,2,-1,3,2,0,-1,1248,1701,1551,1410,479,3158,1701,0,9,0,3158,0,0
+23474,150000,female,1,2,32,0,0,0,0,0,0,18519,19926,18600,13551,20759,21200,3000,4003,2551,15579,11200,3575,0
+23475,180000,female,2,1,34,-2,-2,-2,-2,-2,-2,10485,274,9333,26656,274,1624,274,9333,26656,274,1624,274,1
+23476,200000,female,2,2,34,0,-1,-1,-1,-2,-2,13112,13011,12000,0,0,0,13011,12000,0,0,0,107918,0
+23477,250000,female,1,2,33,-1,-1,-2,-1,0,0,16317,0,0,188841,194321,198156,0,0,188841,8500,8000,7080,0
+23478,350000,female,1,1,36,-1,-1,-1,2,-1,-1,326,326,652,326,3817,2802,326,652,0,3817,2802,0,0
+23479,200000,female,2,1,36,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+23480,30000,female,2,1,35,0,0,0,0,0,0,25239,26847,26319,26868,25345,26781,3000,3000,2000,3304,2000,3000,0
+23481,150000,female,2,1,45,0,0,0,0,0,0,141292,131970,136267,138934,140315,139258,4719,6419,6436,5113,5210,5549,0
+23482,380000,female,3,1,46,1,-2,-1,-1,-1,-1,0,0,224,4034,0,2062,0,224,4034,0,2062,0,0
+23483,180000,female,2,1,47,0,0,0,0,0,0,176424,164745,168208,171667,175219,173597,5896,6117,6268,6445,6379,6300,0
+23484,20000,female,2,1,35,1,2,2,2,0,0,16335,15780,18411,17809,18009,16595,0,3200,0,765,700,774,1
+23485,100000,female,1,1,49,1,2,0,0,0,2,103307,97590,99560,95952,98744,97896,0,4700,4400,6000,2000,4000,1
+23486,300000,female,2,2,36,-1,-1,-1,0,0,0,8310,2592,77000,78718,80908,90495,2592,77000,3000,3500,11100,0,0
+23487,450000,female,1,2,36,1,-2,-1,-1,-1,-2,5909,964,613,1797,679,10643,968,615,1834,682,10697,30451,0
+23488,220000,female,2,1,35,2,2,2,2,0,0,29202,30420,32222,32983,34031,36321,2000,2600,1600,1600,3000,0,1
+23489,500000,female,2,1,37,0,0,0,0,0,0,58448,60182,67153,64079,64120,61295,5000,10000,5169,2322,5174,0,0
+23490,200000,female,3,2,45,-2,-2,-2,-2,-2,-2,0,10221,1356,0,984,134,10221,1356,0,984,134,81,0
+23491,80000,female,2,1,35,1,2,2,2,0,0,78959,76699,81477,79035,28503,29711,0,6800,0,1000,2000,1500,1
+23492,430000,female,1,1,46,-2,-2,-2,-2,-2,-2,9270,43717,4153,4196,447,0,43717,4153,4196,447,0,3566,0
+23493,200000,female,2,1,40,-2,-2,-2,-2,-2,-2,1521,-5,-5,-5,-5,1028,0,0,0,0,1033,12857,0
+23494,90000,female,1,1,36,-1,-1,-1,-1,-1,-1,3860,1770,2135,316,3491,1716,1826,2150,316,3491,1716,2706,0
+23495,200000,female,1,1,38,-1,-1,-1,-1,-1,-1,4891,28258,14712,5216,6317,6207,28258,14712,5229,6317,6207,5464,0
+23496,60000,female,2,1,47,0,0,0,0,0,0,9253,56120,57614,58699,57302,51812,50000,3000,2700,3000,3000,3000,0
+23497,250000,female,1,2,36,-2,-2,-2,-1,-1,-1,2200,0,0,124832,7984,1500,0,0,124832,7984,1500,12674,0
+23498,200000,female,1,1,40,0,0,0,0,0,0,9141,9046,9635,10197,10118,10535,1138,1157,1149,500,1000,1000,0
+23499,360000,female,2,2,45,-2,-1,2,2,-2,-2,0,2500,2500,0,0,0,2500,0,0,0,0,0,0
+23500,200000,female,1,2,33,0,0,0,0,0,0,196304,195766,195191,182027,139901,135720,9000,8939,8099,5000,5000,5000,0
+23501,500000,female,2,2,41,-2,-2,-2,-2,-2,-2,6305,5692,1556,2080,4403,3405,6332,1742,2080,4409,3405,0,0
+23502,200000,female,1,1,38,0,0,0,0,0,0,185155,180069,179899,170716,164553,165326,6500,8000,7520,6000,6100,7500,0
+23503,230000,female,1,2,44,0,0,0,0,0,0,230101,224517,223544,147971,61570,80279,10125,12966,5506,1623,80000,105451,0
+23504,50000,female,3,1,37,-1,-1,0,0,0,0,389,25352,25998,26579,26710,26871,25742,1435,1406,927,952,966,0
+23505,260000,female,1,1,38,0,0,-1,0,-1,-1,16995,12947,31394,26254,6522,0,3087,33000,2000,6522,0,5320,0
+23506,140000,female,1,1,39,0,0,0,0,0,0,27942,29472,30579,31227,34898,35528,2000,1600,2000,5000,2000,30000,0
+23507,320000,female,2,2,35,0,0,0,0,0,0,125567,125782,118294,119014,120567,128642,6831,12000,6700,5000,10000,0,0
+23508,50000,female,2,1,39,0,0,0,0,0,0,48651,48939,49204,46415,28453,29094,2200,1739,9500,1500,1210,1000,0
+23509,150000,female,2,1,35,-2,-2,-2,-2,-2,-2,-10,8846,6731,0,1800,0,8856,6731,0,1800,0,0,1
+23510,160000,female,1,1,36,-1,-1,0,-1,-1,-1,1714,2845,3342,171,1770,837,2845,1000,171,1770,837,299,0
+23511,500000,female,2,1,43,0,0,0,0,0,0,374802,355323,352868,353297,377371,365278,14000,14500,13000,13000,15000,15000,0
+23512,350000,female,1,1,44,-2,-2,-2,-2,-2,-2,8544,0,0,0,8631,277,0,0,0,8631,277,7545,0
+23513,230000,female,3,2,48,-1,-1,-1,-1,-1,-1,3096,518,4988,3528,3642,14073,518,5003,3528,3642,14073,1485,1
+23514,200000,female,2,1,39,-1,-1,-1,-1,-1,-1,2485,3788,5512,1986,2504,13484,3798,5512,1996,2504,13484,10075,0
+23515,500000,female,2,2,39,0,0,0,0,0,-1,229332,161360,117606,18343,15737,203291,7400,6000,1889,3781,208122,6084,0
+23516,130000,female,1,2,34,0,0,0,0,0,0,76589,77387,78995,80190,79920,80972,3400,4200,4500,3000,3200,3000,0
+23517,290000,female,2,2,34,0,0,0,0,0,0,25530,37737,29636,24104,33814,32530,15035,1539,1290,10000,5000,3000,0
+23518,210000,female,2,2,34,0,0,0,0,0,0,73415,76188,78276,81246,78971,80359,4002,4000,4323,3501,3000,2700,0
+23519,240000,female,1,2,36,-1,-1,-1,-1,-1,-1,330,3152,5400,3799,574,4899,3152,5416,3799,577,4899,1450,0
+23520,80000,female,2,1,36,-2,-2,-2,-2,-2,-2,6746,556,556,2904,556,4226,556,556,2904,556,4226,3683,0
+23521,150000,female,1,2,36,0,0,0,0,0,2,127204,247984,125502,129589,133145,139322,5900,5000,6163,7200,10500,4900,1
+23522,200000,female,5,1,39,-2,-2,-2,-2,-2,-2,500,0,0,0,0,0,0,0,0,0,0,0,0
+23523,110000,female,2,2,36,2,2,-2,-2,-2,-2,112900,0,0,0,0,0,0,0,0,0,0,0,1
+23524,320000,female,3,1,33,0,0,0,0,0,2,71047,19161,19829,17692,15648,15255,2000,1300,1600,2500,0,1000,0
+23525,340000,female,1,2,37,-1,0,-1,0,0,0,20624,20651,16308,21065,20581,15936,8641,16400,15000,15000,10000,10000,0
+23526,380000,female,2,1,43,1,-2,-2,-1,-1,-1,0,0,0,2039,0,4481,0,0,2039,0,4481,312,0
+23527,150000,female,1,1,43,-1,-1,-1,-1,-1,-1,6940,6200,6962,9301,9266,6441,6200,6962,9301,9266,6441,6706,0
+23528,500000,female,1,2,37,-2,-2,-2,-2,-2,-2,747,0,0,989,0,0,0,0,989,0,0,880,0
+23529,500000,female,2,1,49,-2,-2,-2,-2,-2,-2,12871,5177,4199,7507,4696,58292,5177,4199,7507,4696,58292,36000,0
+23530,370000,female,2,1,44,-2,-2,-2,-2,-2,-2,0,1742,0,0,0,0,1742,0,0,0,0,0,0
+23531,360000,female,2,1,40,-2,-2,-2,-2,-2,-2,8736,969,6083,9852,27210,1765,974,6120,9901,27352,1768,2111,0
+23532,300000,female,2,1,39,-2,-2,-2,-2,-2,-2,2022,537,142,656,620,502,537,142,656,620,502,142,0
+23533,150000,female,2,2,37,-2,-2,-2,-2,-2,-2,0,0,596,22131,0,1596,0,596,22131,1980,1596,4617,0
+23534,210000,female,1,1,38,-2,-2,-2,-2,-2,-2,-81,-81,-81,-81,-81,-81,0,0,0,0,0,0,0
+23535,280000,female,1,1,39,-2,-2,-2,-2,-2,-2,1397,0,136,0,0,350,0,136,0,0,350,297,0
+23536,230000,female,2,1,44,-2,-2,-2,-2,-1,0,14029,9035,11979,6667,11972,8654,9140,12039,6700,11988,22,8910,0
+23537,360000,female,2,2,37,0,0,0,0,0,0,292725,296679,301181,303398,289602,289457,10638,11115,10700,9820,9902,9910,0
+23538,230000,female,2,1,40,-1,-1,-1,0,0,0,1215,225,5703,6560,11560,0,525,5703,1000,5000,0,7790,0
+23539,450000,female,2,1,44,-2,-2,-2,-2,-2,-2,8521,15934,7266,8331,8188,10455,16080,7299,8364,8266,10505,7268,0
+23540,240000,female,1,2,34,2,0,0,0,0,0,5488,1788,2840,3750,4750,-10,1700,1090,1000,1000,0,0,1
+23541,300000,female,1,2,41,-1,-1,-2,-2,-2,-2,5770,0,0,0,0,0,0,0,0,0,0,0,0
+23542,240000,female,2,1,38,0,0,0,0,0,0,197231,185901,189190,193018,188593,179309,6702,7000,7000,6500,6600,6230,0
+23543,230000,female,2,1,37,-1,0,0,0,0,0,1054,2869,5567,2622,5550,7446,2000,3000,2000,3000,2000,3000,1
+23544,230000,female,1,2,41,-1,-1,-1,-1,0,0,12731,6684,10834,28540,56660,46213,7000,15000,29000,30000,0,5000,0
+23545,240000,female,2,1,40,-1,-1,-1,-1,-1,-1,3204,4888,0,1197,46834,0,4888,0,1197,46834,0,5252,1
+23546,160000,female,1,2,39,-2,-2,-2,-2,-2,-2,0,300,0,0,821,0,300,0,0,821,0,0,0
+23547,360000,female,5,1,39,-1,-1,-1,-1,0,-1,3102,552,31029,7731,1154,799,552,31051,7731,0,799,3238,0
+23548,160000,female,1,1,41,0,0,-1,0,0,0,169867,126973,88072,88783,79684,78656,3360,92532,2859,2638,3000,2584,0
+23549,10000,female,2,1,42,0,0,0,0,0,0,8710,9601,8810,7637,6307,4877,1200,1172,1000,500,400,3000,0
+23550,430000,female,1,2,38,-1,-1,-1,-1,-1,-1,590,590,590,590,590,590,590,590,590,590,590,590,0
+23551,80000,female,1,1,39,1,2,2,2,0,0,21340,22389,23017,22349,22791,23331,1700,1280,0,814,905,30331,0
+23552,310000,female,1,1,39,-1,-1,-1,-1,0,0,3803,678,3050,9080,4990,4940,681,3072,9100,23,4964,1676,0
+23553,150000,female,3,1,41,0,0,0,0,0,-2,20934,21364,21196,21715,0,0,1500,1500,1000,0,0,0,0
+23554,200000,female,2,1,43,0,0,-2,-1,-1,-2,2893,0,230,2059,0,0,0,230,2059,0,0,0,0
+23555,210000,female,1,1,44,-1,-1,-1,-1,-1,0,360,360,1234,722,1326,360,360,1234,722,1326,0,2388,0
+23556,400000,female,2,2,43,-2,-2,-2,-2,-2,-2,15000,18400,15000,492,14926,7626,18400,15000,492,15000,7725,3000,0
+23557,80000,female,2,1,40,-1,-1,-1,-1,-1,-1,2667,2035,32194,1729,590,9628,2035,32194,1729,590,9628,16059,0
+23558,160000,female,2,1,42,-1,0,0,0,0,0,34186,35186,36512,36382,37105,38034,1569,1895,1606,1329,1528,1600,0
+23559,170000,female,2,1,40,-1,-1,-1,-1,-1,-1,17914,1253,4427,1459,24511,1163,1253,4427,1459,24511,1163,2821,0
+23560,240000,female,2,1,41,-2,-2,-2,-2,-2,-2,5366,-34,6911,611,2631,4583,0,6945,614,2634,4606,6242,0
+23561,300000,female,2,1,33,2,2,0,0,0,0,279065,273067,278910,283920,253113,246560,0,10638,10569,8809,8883,9960,1
+23562,90000,female,2,1,44,2,2,-1,-1,-1,-1,1654,827,827,2040,1279,1292,0,827,2040,1279,1292,1378,0
+23563,180000,female,2,1,35,-1,-1,-1,-1,-1,-1,11285,11781,13613,8401,1859,429,11798,13694,8401,1859,429,946,0
+23564,210000,female,2,1,48,-1,-1,-1,-1,-1,-1,1417,-3,355,12816,0,102,0,358,12816,0,102,210,0
+23565,300000,female,1,1,42,1,-2,-2,-2,-1,3,-694,-694,0,0,694,394,0,694,0,694,0,0,0
+23566,240000,female,1,2,37,3,2,2,2,2,2,164691,167489,170329,173033,175678,179707,7000,7000,7000,7000,7000,7000,1
+23567,170000,female,1,1,44,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+23568,50000,female,1,2,37,0,0,0,-1,0,0,43886,50411,9688,857,3810,4741,2500,7026,1000,3000,1000,1000,0
+23569,50000,female,2,1,39,0,0,0,0,0,0,45989,47302,48330,47763,48578,49015,2081,2109,2049,1864,1923,1882,0
+23570,230000,female,1,2,39,-1,-1,-1,-2,-2,-2,900,1945,0,0,0,0,1945,0,0,0,0,1720,0
+23571,310000,female,1,1,34,0,0,0,0,0,0,270776,263983,215686,186680,82775,107595,11080,8054,7037,2010,50186,2011,0
+23572,150000,female,3,2,35,1,-1,-1,-1,-1,-2,0,200,708,1201,0,0,200,708,1201,0,0,0,0
+23573,200000,female,1,2,35,-2,-1,-1,-1,-1,-1,0,185,1916,0,150,1348,185,1916,0,150,1348,1000,0
+23574,80000,female,2,2,39,2,2,2,0,0,0,129966,123747,106582,94318,113474,57324,9685,0,3659,13500,2078,2152,1
+23575,500000,female,1,1,37,-2,-2,-2,-2,-2,-2,6757,9505,12171,11345,28731,67206,9505,12176,11564,29321,67206,8602,0
+23576,20000,female,2,1,42,0,0,2,2,2,2,15379,17802,19212,18608,19604,19155,3000,2000,0,1600,0,1600,1
+23577,20000,female,3,1,46,0,0,2,2,2,2,11691,14179,13662,15518,14972,16925,3000,0,2088,0,2200,0,1
+23578,150000,female,1,2,34,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+23579,100000,female,5,2,34,0,0,0,0,0,-1,91674,91348,87244,23181,7721,3219,5004,3811,3002,4000,3219,1864,0
+23580,210000,female,3,1,44,-2,-2,-2,-2,-2,-2,11771,13462,17706,0,5646,14793,13462,17706,0,5646,14793,7376,1
+23581,300000,female,2,1,40,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+23582,80000,female,2,2,32,1,2,-1,2,2,2,7604,7320,150,150,800,650,0,150,0,650,0,500,1
+23583,410000,female,1,2,31,0,0,0,0,0,0,134072,133604,133882,135954,134250,129971,15003,15877,30000,14250,9971,27380,0
+23584,90000,female,3,1,36,0,0,-1,0,0,0,79642,79001,18318,18982,19371,19608,1580,19789,1295,1000,849,1000,0
+23585,270000,female,2,1,43,0,0,0,0,0,0,135068,102743,100360,97583,91849,94824,5000,7000,4049,1000,5003,0,0
+23586,360000,female,2,1,41,0,0,0,0,0,0,270553,255348,262153,260025,169474,130705,10900,12500,12500,7000,5000,5200,0
+23587,230000,female,3,1,38,0,0,0,0,0,0,67810,61602,48294,49242,48831,51125,1980,1823,1771,1896,3232,2026,0
+23588,150000,female,2,2,42,0,0,0,-2,-2,-1,97066,95040,0,0,0,217,2000,0,0,0,217,2972,0
+23589,150000,female,2,2,44,2,2,0,0,0,0,168179,159008,157164,155109,153033,156636,0,5684,5538,5410,11000,0,1
+23590,350000,female,2,1,43,-2,-2,-2,-2,-2,-1,2124,3027,2448,4590,0,430,3048,2460,4616,0,430,430,0
+23591,210000,female,3,2,43,-1,-1,-1,-2,-2,-2,7605,1170,0,0,0,0,1170,0,0,0,0,3015,0
+23592,130000,female,3,1,44,0,0,0,0,0,0,40331,43929,45816,47018,48550,49737,5000,3390,3000,3000,1955,3000,0
+23593,500000,female,1,1,49,-2,-2,-2,-2,-2,-2,27936,2305,9073,5714,31868,3663,2305,9083,6105,31868,3663,8110,0
+23594,280000,female,2,1,48,2,-1,0,0,0,0,9511,35852,36875,75016,38304,27383,35852,1467,1200,1792,15137,0,1
+23595,450000,female,1,1,39,-2,-2,-2,-2,-2,-2,8494,24178,5307,118852,11489,26518,25128,5318,118877,11489,26518,3575,0
+23596,200000,female,2,2,46,0,0,0,0,0,0,120343,121198,123834,136629,139504,142269,4342,4593,14955,5143,5166,5349,0
+23597,290000,female,2,1,34,0,0,0,0,-1,0,53437,44037,5441,7371,38832,41955,1274,1200,2033,38832,3900,188423,0
+23598,170000,female,2,1,35,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+23599,380000,female,2,1,39,0,0,0,0,0,0,307388,280090,249018,252496,253331,238051,12936,9190,9000,8100,8100,8000,0
+23600,180000,female,1,2,35,1,-2,-2,-2,-2,-2,-18,-18,-18,-18,-18,-18,0,0,0,0,0,0,1
+23601,280000,female,1,2,35,-1,-1,-1,-1,-1,-1,6494,28723,9432,3472,3472,10237,28723,9432,3472,3472,10237,12129,0
+23602,200000,female,2,1,31,-2,-2,-2,-2,-2,-2,2167,9003,1301,7066,3486,12191,9003,1301,7070,3688,12191,4760,0
+23603,220000,female,2,1,40,1,-2,-2,-2,-2,-2,8359,14447,6791,6495,5093,5503,14518,6835,6535,5118,5529,10026,0
+23604,240000,female,1,1,38,2,2,2,2,2,2,107425,109678,111948,112626,113988,116315,5500,5500,4000,4700,4300,4500,1
+23605,470000,female,2,2,43,-2,-2,-2,-2,-2,-2,5631,404,-3,-3,352,0,404,0,0,355,0,2090,0
+23606,280000,female,1,2,35,0,-1,-1,-1,-1,-1,10089,38936,7444,4858,2309,8925,40000,8069,5005,2400,9000,7678,0
+23607,200000,female,1,2,43,-2,-2,-2,-2,-2,-2,-109,-109,-109,-109,-109,-109,0,0,0,0,0,0,1
+23608,20000,female,3,1,46,1,2,2,0,0,2,8131,9042,8753,9916,10793,10400,1200,0,1316,1193,0,0,0
+23609,20000,female,2,2,34,0,0,0,0,0,0,18649,19727,20330,20199,19609,19957,1700,2000,1200,0,348,0,0
+23610,290000,female,1,2,34,-1,-1,-1,-1,0,-1,1915,6136,0,28642,4098,19024,6151,0,28642,0,19426,0,0
+23611,20000,female,1,1,37,1,-2,-1,2,2,-2,-113,-113,10887,10413,-245,-245,1575,11000,0,0,0,5100,1
+23612,150000,female,1,1,38,-2,-2,-2,-2,-2,-2,1544,463,1481,21640,2636,4346,463,1481,21643,2636,4346,0,0
+23613,160000,female,2,1,36,-2,-2,-2,-2,-2,-2,-20,-20,3640,2935,1603,14129,0,3660,3135,1650,14200,1500,1
+23614,360000,female,1,1,36,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+23615,160000,female,2,1,41,1,2,0,0,0,0,99496,97013,98427,102250,102734,104901,0,3879,5459,3675,3821,8256,0
+23616,400000,female,1,1,37,0,0,0,0,0,0,229714,222726,162828,131433,126929,122492,11477,8000,4553,3600,3546,3864,0
+23617,180000,female,2,2,36,0,0,0,2,2,-1,14222,14701,17322,13137,0,2293,1300,2902,3047,0,2293,2000,0
+23618,120000,female,2,1,32,0,0,0,0,0,0,111441,113869,116110,111978,112822,114969,5596,5498,5500,4000,4300,5012,0
+23619,200000,female,2,2,33,-2,-2,-2,-2,-2,-2,1502,3806,0,4573,1242,0,3836,0,4573,1242,0,3239,0
+23620,210000,female,1,1,39,-1,-1,-1,-1,-1,-1,5907,2615,1220,5357,4160,0,2637,1220,5357,4160,0,0,0
+23621,70000,female,3,1,48,2,2,2,2,2,2,62775,64139,65516,65945,66267,68549,3000,3000,2100,2000,3500,800,1
+23622,110000,female,2,1,38,0,0,0,0,0,0,195437,176420,63142,39854,9293,-1288,5000,10000,5048,2000,39958,52000,1
+23623,30000,female,3,2,47,2,2,2,0,0,2,11652,12461,11970,12981,14077,14367,1300,0,1214,1310,660,0,1
+23624,40000,female,3,1,46,-1,-1,2,0,-1,-1,50,1850,1056,1875,299,0,1800,0,1000,299,0,0,0
+23625,310000,female,1,1,41,-1,2,-1,-1,-1,0,3640,1094,9445,5202,14589,11673,0,9453,5206,14589,0,16563,0
+23626,200000,female,2,1,41,-1,-1,-1,-1,-1,-1,5592,0,1306,1623,620,849,0,1306,1679,620,849,1264,0
+23627,230000,female,2,1,39,0,0,-2,-2,-2,-2,24510,0,0,0,0,0,0,0,0,0,0,0,0
+23628,450000,female,1,1,33,-2,-2,-2,-2,-2,-2,3485,2989,2278,4714,768,1069,3004,2289,4737,771,1074,370,0
+23629,80000,female,2,2,34,0,0,0,2,0,0,40570,41873,88361,43671,44541,47421,1983,4100,0,1596,3600,0,0
+23630,210000,female,2,2,43,0,0,0,0,0,0,209781,180962,181870,159975,138349,112371,6500,6601,5085,4087,4220,27704,0
+23631,130000,female,2,3,48,-1,-1,-1,2,0,0,1778,0,109,109,109,0,0,109,0,0,0,0,0
+23632,500000,female,1,1,49,-2,-1,-1,-1,-1,-1,1088,4007,9933,14557,53328,58052,4031,10021,14576,53850,58332,37616,0
+23633,180000,female,2,1,38,-1,2,2,-1,0,0,7098,4089,0,8941,5181,5181,0,0,8941,0,0,0,1
+23634,340000,female,1,1,36,1,-1,-1,-1,-1,-1,0,544,4881,717,3785,10911,544,4881,717,3785,10911,10226,0
+23635,450000,female,1,2,37,0,-1,-1,-1,-1,-1,37070,17596,24965,0,1649,5212,17596,24965,0,1649,5212,535,0
+23636,80000,female,3,1,49,0,0,0,0,0,0,61267,61300,61001,58759,58212,56534,2179,2226,2004,2132,2030,2057,0
+23637,150000,female,3,2,47,-1,-1,-1,-1,-1,-1,2934,2843,1445,2130,796,2470,2843,1445,2288,938,2470,1073,0
+23638,210000,female,1,1,43,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+23639,380000,female,2,2,38,0,0,0,0,0,0,250755,212839,173199,165476,122496,117726,8339,7032,7986,4170,4205,9335,0
+23640,400000,female,2,1,46,0,0,0,0,0,0,43405,39802,37115,39907,35061,35969,15000,15000,10000,15000,20000,20000,0
+23641,80000,female,3,1,52,-2,-2,-2,-2,-2,-2,210,-2,926,-1,401,0,0,928,0,402,0,0,0
+23642,240000,female,1,1,44,-2,-2,-2,-2,-2,-2,2771,4756,3496,4708,1522,2407,4756,3496,4708,1522,2407,1576,0
+23643,120000,female,2,1,50,0,0,0,0,0,0,118492,119637,102228,75558,47536,44749,6141,4474,2647,1367,1322,1500,0
+23644,60000,female,3,1,63,0,0,0,0,0,0,59471,59021,49580,38140,29843,27719,2400,1940,1477,1025,1006,1261,0
+23645,360000,female,1,2,54,0,-1,-1,0,0,-1,132387,11590,70460,67357,71713,27399,11606,70579,10022,20000,27399,71429,0
+23646,50000,female,2,1,50,2,2,2,2,2,2,27525,28669,28569,30097,29858,31229,1900,650,2300,550,2000,0,1
+23647,360000,female,3,1,50,-1,-1,-1,-1,-1,-1,846,1831,2776,0,44110,0,1831,2776,0,44110,0,2103,1
+23648,30000,female,3,1,51,0,0,2,2,2,0,22373,25363,23582,21422,18302,16527,3400,1400,1000,700,1000,488,0
+23649,500000,female,1,1,53,-2,-2,-1,-1,-1,-1,1200,0,3609,4053,0,4487,0,3609,4053,0,4487,638,0
+23650,20000,female,2,1,54,3,2,3,2,2,2,6329,8488,8212,7931,8797,8514,2415,0,0,1000,0,500,1
+23651,90000,female,2,1,56,-1,-1,-1,-1,-1,-1,1160,4701,13878,6556,2947,4808,4701,13882,6556,2947,4808,3131,0
+23652,80000,female,3,1,55,0,0,0,0,0,0,59838,63860,59515,48444,44372,45412,10000,5000,4000,4851,3000,2200,0
+23653,100000,female,3,2,54,1,2,2,2,0,0,66212,64021,66362,61417,57893,58212,0,6700,60,2200,2500,2300,0
+23654,120000,female,1,1,51,0,0,0,-1,0,0,82865,82741,62914,60584,61412,55572,3652,1258,60584,1228,0,0,0
+23655,100000,female,3,3,51,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+23656,150000,female,2,1,51,0,0,0,0,0,0,146018,147598,148393,149709,107862,108623,7000,7600,6000,4000,4100,4300,0
+23657,10000,female,2,1,51,1,2,0,0,0,0,9151,8855,9828,8637,8808,8995,0,1133,1144,315,329,363,0
+23658,50000,female,3,1,52,1,-2,-2,-1,-1,-1,0,0,0,831,138,658,0,0,831,138,658,0,0
+23659,490000,female,1,1,53,-2,-2,-2,-2,-2,-2,1700,8913,0,400,4186,6205,8913,0,400,4186,6205,2025,0
+23660,50000,female,3,2,52,0,0,0,0,0,0,47670,48447,49493,48497,18930,19329,1954,2000,20567,1000,664,1000,0
+23661,340000,female,2,1,57,-1,-1,-1,-1,-1,-1,16729,8942,10301,20793,14817,4614,8942,10321,20793,14817,4614,7005,0
+23662,240000,female,3,1,51,0,0,0,0,0,0,225614,232072,204121,171051,175416,179754,10473,8000,30000,6000,6000,20000,0
+23663,50000,female,3,1,53,2,2,2,2,2,2,40926,43236,45250,46003,44193,44838,3000,3000,1800,0,1500,2300,1
+23664,500000,female,2,1,50,0,0,0,2,0,0,290301,296479,306661,306438,298068,293489,11000,15000,10000,10003,10000,11000,0
+23665,410000,female,2,1,50,0,0,0,0,0,0,249152,246659,248934,246011,240845,213767,9000,11000,10000,7500,8000,8000,0
+23666,280000,female,2,1,64,0,0,2,0,0,0,22715,37818,35497,30164,7164,7164,15506,17,3364,0,0,0,0
+23667,240000,female,2,2,59,0,0,0,0,0,0,230026,239796,231230,196471,190004,161867,20000,12000,7000,8000,6000,6205,0
+23668,20000,female,1,2,54,0,0,0,0,0,0,17016,17909,18298,18761,17781,10674,1568,1737,1200,0,0,0,0
+23669,100000,female,2,1,55,2,2,2,2,2,2,44400,47439,48385,49285,50176,51228,4100,2000,2000,2000,2000,0,1
+23670,290000,female,2,1,52,0,0,0,0,0,0,276377,282814,288983,203517,208435,212674,12880,13000,8000,8600,9000,4000,0
+23671,100000,female,3,2,50,0,0,0,2,0,0,82397,84027,88734,86369,89994,89681,3004,7500,0,5001,3390,4000,0
+23672,270000,female,2,1,65,-1,-1,-1,-1,-1,-1,157,0,2521,5145,8422,6374,0,2521,5184,8422,6374,0,0
+23673,80000,female,3,2,57,0,0,0,0,0,0,78312,77359,76081,76526,27571,28783,3459,3500,1959,982,2000,1482,0
+23674,280000,female,1,1,47,4,3,2,2,2,2,127928,127530,130168,131222,132758,135654,3000,6000,4500,5000,5000,5000,1
+23675,30000,female,3,1,52,1,-2,-2,-2,-1,0,-190,-760,-760,-760,760,760,0,0,0,1520,0,0,0
+23676,90000,female,3,1,53,0,0,0,0,0,0,88363,87235,88338,78994,50095,48987,3200,4000,2602,2000,3000,2000,1
+23677,600000,female,1,1,53,-2,-2,-2,-2,-2,-2,84300,27446,0,0,6677,83034,27446,0,0,6677,83034,0,0
+23678,70000,female,3,1,54,0,0,0,0,0,0,37717,38744,40538,39489,11590,11835,1655,2449,2400,414,431,500,0
+23679,270000,female,3,1,58,-2,-2,-2,-2,-2,-2,936,1188,2078,795,828,1251,1188,2078,795,828,1251,2267,0
+23680,260000,female,3,1,59,0,0,0,0,0,0,258885,261183,262546,238614,195149,195771,10000,11000,13067,10003,8000,11488,0
+23681,50000,female,3,1,59,0,0,-2,-2,-2,-2,25775,0,0,0,0,0,0,0,0,0,0,0,0
+23682,50000,female,3,1,53,0,0,0,0,0,0,48549,49180,48521,8731,8777,9261,2277,2290,1500,1000,1000,2000,1
+23683,70000,female,3,2,52,0,0,0,0,0,0,103570,105991,67243,67533,28653,29253,3500,2777,1751,969,1004,938,0
+23684,210000,female,3,1,55,-1,-1,-2,-1,0,0,3857,0,0,95438,96317,98400,0,0,95438,3393,3580,3998,0
+23685,330000,female,3,1,50,-1,-1,-2,-2,-2,-1,2064,0,0,0,0,324,0,0,0,0,324,0,0
+23686,200000,female,2,1,51,0,0,0,0,0,0,288015,148160,98651,251331,255017,54705,4470,9746,155858,5869,1964,1938,0
+23687,220000,female,1,1,51,-2,-2,-2,-2,-2,-2,3315,2625,4863,1917,809,709,2625,4863,1917,809,709,1195,0
+23688,50000,female,3,1,52,0,0,0,0,0,0,11463,12763,14149,15162,15463,15788,1500,1600,1252,553,574,747,0
+23689,20000,female,2,1,53,0,0,0,0,0,0,19594,19502,19431,20290,20293,19665,2000,1700,1500,700,750,1000,0
+23690,30000,female,2,2,53,-1,-1,0,0,0,0,356,15666,16863,7380,8580,10000,15700,2000,2000,1200,2200,0,1
+23691,280000,female,2,1,56,2,0,0,0,0,0,284128,284204,284041,283396,213294,213384,9970,10261,17003,7657,7750,7861,1
+23692,60000,female,3,1,60,0,0,0,0,0,0,57974,57637,56594,57097,56854,58325,2810,2648,2050,2084,2437,1968,0
+23693,200000,female,3,1,50,0,0,0,0,0,0,8413,8611,15818,21813,20890,29890,5000,8000,10000,10000,10000,4686,0
+23694,230000,female,2,2,51,0,0,0,0,0,0,213457,226037,213682,219016,172407,163690,17000,10000,10000,10000,10000,10000,0
+23695,230000,female,1,1,51,-2,-2,-2,-2,-2,-1,0,0,0,0,0,496,0,0,0,0,496,496,1
+23696,100000,female,3,1,49,0,0,0,0,0,0,62049,58158,57952,58627,46055,43176,2247,2900,2408,1689,1820,2040,0
+23697,80000,female,2,1,49,0,0,0,0,0,0,83888,83503,82265,81974,81253,78343,3900,3000,3500,3200,3800,3300,0
+23698,80000,female,2,2,51,0,0,0,0,0,-1,80106,43289,21017,12883,-217,45966,1400,1500,1000,0,46700,1700,1
+23699,70000,female,2,1,57,0,0,0,0,0,0,18379,19571,22729,24346,24940,25539,1500,3500,2000,1000,1000,1500,0
+23700,200000,female,1,1,54,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+23701,20000,female,2,1,51,2,2,2,2,0,0,17612,18820,19717,18701,18726,18501,1800,1500,0,1000,1000,1000,0
+23702,200000,female,2,1,50,-2,-1,0,0,-1,0,3414,6640,7428,10234,5380,7532,6640,1025,10249,5380,5000,2261,0
+23703,50000,female,2,1,55,0,0,0,0,0,0,23605,27856,16386,15511,15664,19761,5856,3386,5411,5664,5761,3866,0
+23704,360000,female,2,1,52,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,207,0
+23705,200000,female,3,2,49,-1,-1,-1,-1,-1,-1,1801,181,4095,5711,21420,6719,181,4126,5711,21520,6719,150,0
+23706,90000,female,2,1,55,2,2,2,0,0,0,83040,81998,83674,80890,31565,33049,900,4003,3000,3000,3000,2000,1
+23707,50000,female,3,2,59,0,0,0,0,2,2,50761,50185,59509,31495,30552,29556,2500,2600,6000,1300,0,1300,0
+23708,400000,female,2,1,48,0,0,0,0,0,0,352730,335226,317661,319004,316611,314106,12370,15012,13000,12055,13368,12000,0
+23709,110000,female,3,1,51,0,0,0,0,0,0,105476,109153,109501,105290,78812,78503,5436,5007,5290,8812,8503,8200,0
+23710,50000,female,3,1,58,1,2,2,2,0,0,24135,23454,26755,26026,27310,29729,0,4000,0,2000,3000,0,1
+23711,500000,female,1,1,58,1,-1,0,-1,0,0,-1,33982,37844,9441,12700,19267,35436,37311,9442,5001,10001,95478,1
+23712,150000,female,3,1,65,-2,-2,-2,-2,-2,-2,0,0,500,0,0,0,0,500,0,0,0,0,0
+23713,300000,female,4,1,54,1,-2,-2,-2,-2,-2,0,0,1702,0,0,0,0,1702,0,0,0,0,0
+23714,50000,female,2,1,56,0,0,0,0,0,0,48703,48836,48049,47060,19171,18624,2000,2000,2000,1000,1000,1000,0
+23715,300000,female,1,1,59,-1,-1,-1,-1,-1,-1,12982,10114,10195,34010,20854,64741,11138,10217,34039,20854,64741,39441,0
+23716,290000,female,2,1,49,0,0,0,0,0,0,282538,281749,238490,86202,83155,84927,10711,12915,2962,2863,2996,3257,1
+23717,500000,female,2,1,52,0,0,0,0,0,0,588000,277559,288835,281810,273700,269552,17559,36500,20000,36000,20000,80013,0
+23718,140000,female,3,1,50,-1,2,-1,-1,-1,-1,845,845,1690,0,1690,0,0,1690,0,1690,0,845,1
+23719,350000,female,5,1,49,1,-2,-2,-2,-2,-2,0,36011,8978,11925,8574,5417,36011,8978,11975,8574,5417,1828,0
+23720,180000,female,2,2,49,0,0,0,0,0,0,56677,35062,32721,32627,28272,26984,1600,1600,1500,1000,968,1000,0
+23721,390000,female,1,1,48,1,-1,-1,-1,-1,-1,0,5660,3730,9526,0,2680,5660,3730,9526,0,2680,200,0
+23722,50000,female,1,2,52,-1,0,0,0,0,-1,28594,33080,29233,23340,-300,31031,5000,3000,1000,0,31331,0,0
+23723,50000,female,1,2,51,0,0,0,0,0,0,43273,44652,46331,47896,47266,48002,2800,2795,2750,1130,1314,1159,0
+23724,150000,female,1,2,52,0,0,0,0,0,0,126810,58955,29332,36796,19912,23126,5000,13003,15000,11000,10000,3000,0
+23725,200000,female,1,1,49,-1,-1,-1,-1,-2,-2,413,0,103,0,0,0,0,103,0,0,0,225,0
+23726,180000,female,1,2,53,-2,-2,-2,-2,-2,-2,-1580,-1580,-1580,-1580,-1580,-1580,0,0,0,0,0,0,0
+23727,50000,female,2,1,50,0,0,0,2,0,0,12699,13734,17634,17053,17394,18563,1247,4147,0,624,1451,0,0
+23728,110000,female,1,1,51,0,0,0,0,0,0,103701,102318,92724,94573,65034,66241,3771,3656,3687,2476,2406,2427,0
+23729,310000,female,2,1,62,0,0,0,0,0,0,113529,116101,119953,119583,120837,99114,5000,6000,5005,5000,4000,3000,0
+23730,80000,female,3,2,60,0,0,0,0,0,0,37298,19025,12720,14169,13828,1664,3000,3000,2030,3000,1000,839,0
+23731,80000,female,3,1,54,0,0,0,0,0,0,55498,56368,42486,24500,28900,29400,2000,2000,1600,5000,1000,600,0
+23732,240000,female,1,1,53,-2,-2,-1,-1,-2,-2,0,0,2007,-40,-40,8091,0,2007,40,0,8131,0,0
+23733,210000,female,2,1,54,-2,-2,-2,-2,-2,-2,0,0,0,225,760,0,0,0,225,760,0,0,0
+23734,30000,female,2,2,50,0,0,0,0,0,0,25416,26260,24084,23631,29863,29369,1389,1602,1563,8500,1100,500,0
+23735,80000,female,1,1,52,0,0,0,0,0,0,34243,35240,36275,37290,38030,38838,1570,1605,1620,1360,1420,1500,0
+23736,70000,female,3,1,49,2,2,2,2,2,2,19954,21024,21790,21142,23772,24930,1700,1400,0,3000,1700,1340,1
+23737,50000,female,3,2,50,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+23738,180000,female,3,1,64,-2,-2,-2,-2,-2,-2,18084,1703,3681,21325,2228,856,1703,3697,21330,2228,1531,16934,0
+23739,160000,female,2,1,60,-2,-2,-2,-2,-2,-2,16060,1605,4200,2461,0,0,1605,4200,2461,0,0,230,0
+23740,20000,female,3,1,50,2,0,0,0,0,0,15887,16895,18379,19020,18620,19000,1275,1759,1400,0,380,0,1
+23741,180000,female,1,1,53,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+23742,30000,female,2,3,54,0,0,0,0,0,0,26302,26873,28138,27074,13275,12500,2000,1719,1613,271,2250,0,0
+23743,210000,female,2,1,56,-1,-1,-1,-1,-1,-1,25487,6655,6355,18543,6022,1334,6655,6359,18543,6022,1334,3864,0
+23744,120000,female,3,1,55,1,-2,-1,2,0,0,-150,-150,7342,7029,7172,7338,0,7492,0,143,166,16000,0
+23745,20000,female,3,1,51,1,2,0,0,0,0,15399,14859,15913,17033,17466,19635,0,1600,1700,1000,2600,0,1
+23746,30000,female,2,1,49,1,2,-1,-1,-1,2,10440,9972,16073,6342,8073,1731,0,16101,6342,1731,0,5517,0
+23747,50000,female,3,1,53,1,2,0,0,0,0,51254,49852,28379,15988,16718,17446,0,6200,2000,1000,1000,1000,0
+23748,20000,female,3,1,51,1,-1,-1,-1,-2,-2,0,780,340,-50,-830,-1660,780,340,0,0,0,0,0
+23749,120000,female,2,1,57,-2,-2,-2,-2,-2,-2,0,644,377,0,0,0,644,377,0,0,0,0,0
+23750,70000,female,2,1,62,2,2,2,0,0,0,70457,73562,71818,70579,33946,34701,6454,0,3075,1214,1301,1626,1
+23751,50000,female,2,1,58,0,0,0,0,0,0,50182,41207,19129,18538,17494,17833,1500,1700,1500,700,1000,1000,0
+23752,20000,female,2,1,49,1,2,0,0,0,0,19127,16943,18359,19000,19600,19600,0,2000,1400,1000,0,0,0
+23753,310000,female,3,1,53,-2,-2,-2,-2,-2,-2,1126,2603,-6,1184,7883,193,2635,0,1190,7909,193,3189,0
+23754,120000,female,2,1,40,0,0,0,0,0,0,123270,122736,123394,123123,121499,121296,6000,6500,6500,5000,5000,5000,0
+23755,360000,female,3,1,47,0,0,0,0,0,0,366484,365469,364081,365927,363629,303097,14463,15861,13600,12057,9340,9515,0
+23756,240000,female,3,2,49,-1,0,0,0,2,0,1271,4241,7164,10041,9731,13540,3000,3000,3000,0,4000,3000,0
+23757,500000,female,3,2,53,-2,-2,-2,-2,-2,-2,0,0,0,0,0,1150,0,0,0,0,1150,0,1
+23758,500000,female,2,1,53,-1,-1,-1,-1,-1,0,10789,7855,17481,12021,132906,122256,7919,17512,12021,132906,0,37380,0
+23759,240000,female,1,1,55,-1,0,0,-2,-2,-1,80199,82300,0,0,0,21585,3900,0,0,0,21585,0,0
+23760,200000,female,2,1,56,-2,-2,-2,-2,-2,-2,2155,0,1750,4990,1200,676,0,1750,4990,1369,676,2158,0
+23761,30000,female,3,1,67,2,2,0,0,0,0,26590,25869,26947,27529,24909,24576,0,1800,1370,1264,2078,836,1
+23762,130000,female,3,1,49,0,0,0,0,0,0,108711,107996,87817,47175,48126,49234,6000,4542,2200,2000,2000,2000,0
+23763,80000,female,3,1,50,0,0,0,-1,-1,-1,55070,57863,54382,773,-5857,57071,5012,7450,5000,1630,69794,15000,0
+23764,150000,female,2,1,51,0,0,0,0,0,0,71776,72909,74722,77865,78819,80607,2046,2413,3776,2224,2448,2500,0
+23765,530000,female,1,1,54,-2,-2,-2,-2,-2,-2,6458,5598,36532,3288,1415,448,5600,36532,3293,1415,448,1687,0
+23766,210000,female,1,1,53,0,0,0,0,0,0,180227,186423,169614,172297,177427,182399,11000,8000,7000,8000,8000,9000,0
+23767,30000,female,2,3,54,1,-2,-2,-2,-1,0,0,0,0,0,20363,20819,0,0,0,20363,784,4000,0
+23768,410000,female,2,1,50,0,0,0,0,0,0,358896,361330,360396,367893,375268,383121,13000,13100,13500,13500,13900,15000,0
+23769,240000,female,2,1,50,-2,-2,-2,-2,-2,-2,664,1086,7041,12208,790,2009,1086,7041,12208,1109,2009,1077,0
+23770,50000,female,1,2,61,3,2,0,0,-2,-2,60458,54438,53605,0,0,0,0,1100,0,0,0,0,1
+23771,200000,female,3,1,67,0,0,0,0,0,0,187610,188072,166668,159513,150852,151996,10000,17014,15019,15000,15000,10000,0
+23772,70000,female,2,2,55,0,0,0,0,0,0,57867,53214,54571,42413,42946,43843,1920,2230,2004,1537,1589,1598,0
+23773,140000,female,3,2,53,0,0,0,0,0,0,68889,68662,65581,56271,54586,54247,3075,3014,2606,2005,2404,2629,0
+23774,320000,female,3,2,54,-1,-1,0,0,0,0,54661,183429,303849,299996,307016,308110,183429,203849,22080,10000,10000,0,0
+23775,50000,female,3,1,53,0,0,0,0,0,-2,46138,47164,47602,37280,18678,18602,2182,2400,1000,18678,600,500,0
+23776,500000,female,2,2,50,-1,-1,-1,0,0,0,588,2393,5306,5453,3221,1269,2393,5308,1000,0,0,1557,1
+23777,300000,female,2,1,51,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+23778,400000,female,1,1,51,1,-2,-2,-2,-2,-2,-9,1084,3884,0,27703,0,1093,3884,0,27703,0,56677,0
+23779,170000,female,2,2,51,0,-1,-1,-1,-1,-1,1606,1420,1420,1420,1420,3464,1420,1420,1420,1420,3464,1420,0
+23780,60000,female,3,1,50,2,0,0,0,0,0,61349,61600,61952,60661,29095,17636,2900,3300,2000,900,889,21500,1
+23781,120000,female,1,1,47,-1,-1,3,2,0,0,632,948,948,632,632,316,948,0,0,316,0,466,1
+23782,210000,female,1,2,50,-1,-1,-2,-1,-1,-1,1561,0,0,806,1945,0,0,0,806,1945,0,1315,0
+23783,50000,female,3,1,51,0,0,0,0,0,0,45096,28907,29691,29104,28968,29440,1500,1508,1502,1100,1032,4500,0
+23784,30000,female,2,2,51,0,0,2,2,2,2,22473,25293,24602,27964,27232,29800,3200,1,3801,0,3001,0,0
+23785,130000,female,2,1,51,0,0,0,0,0,0,124619,128845,131045,94390,91111,93112,6301,6000,5000,4000,3500,4000,0
+23786,280000,female,2,1,50,2,2,2,2,0,0,106341,108711,111510,108253,109065,111447,5600,6000,0,4100,4300,4300,1
+23787,240000,female,1,1,51,-2,-2,-2,-1,-1,-1,4302,542,3934,6630,6817,7658,546,3953,6646,6865,7673,4208,0
+23788,240000,female,3,1,50,0,0,0,0,0,0,242152,237635,242191,212879,185490,188850,8000,8000,7000,6000,6000,7000,0
+23789,270000,female,2,1,51,-1,-1,-1,0,-1,-1,7582,10392,11088,6045,750,4003,10392,11586,6013,750,4003,5000,0
+23790,500000,female,1,1,52,-2,-2,-2,-2,-2,-2,9534,9164,9285,20348,10893,9697,9267,9961,20390,10925,9718,13021,0
+23791,170000,female,3,2,53,0,0,0,0,0,0,161858,162402,159863,159700,77043,77047,5800,6500,5000,3000,3000,2500,0
+23792,80000,female,3,1,50,2,3,2,2,2,0,2684,2502,2321,4247,3914,3242,0,0,2001,4,1073,23076,0
+23793,280000,female,3,1,53,0,0,0,2,0,0,4866,4405,7322,7043,8932,9654,1200,3000,0,2000,1000,2000,0
+23794,110000,female,1,1,52,-1,-1,-2,-1,-1,-2,1865,0,0,1930,-170,-170,0,0,1930,0,0,0,0
+23795,250000,female,1,1,54,-1,-1,-1,-1,0,-1,390,1090,390,2855,390,2950,1090,390,2855,0,2950,0,0
+23796,360000,female,2,2,54,0,0,0,0,0,0,217936,202845,177252,165622,167824,156851,8880,7992,5627,5554,5456,5445,0
+23797,50000,female,3,3,53,0,0,0,0,0,0,49326,50302,50036,48816,19587,18406,1803,2100,1500,1000,700,600,1
+23798,280000,female,2,1,57,-1,-1,-1,-1,0,-1,7640,9369,12261,12610,3160,9380,9369,12277,12610,0,9380,2098,0
+23799,500000,female,2,1,54,0,0,0,0,0,0,455977,397418,392278,375931,364134,354019,13455,13691,12692,11883,11922,10032,0
+23800,260000,female,3,1,65,0,0,0,0,0,0,225028,188891,174617,178214,182251,186144,8165,6500,6500,7000,7000,7500,0
+23801,250000,female,2,1,52,-2,-2,-2,-2,-2,-1,1376,4038,313,316,657,993,4038,313,316,657,993,3039,1
+23802,140000,female,3,1,56,0,0,0,0,0,0,141342,137996,139888,126590,111187,111414,5025,5962,4878,4100,4200,4003,0
+23803,180000,female,1,1,55,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+23804,190000,female,2,1,52,-2,-2,-1,-1,-1,-1,175,1547,6101,4803,5039,0,1547,6101,4803,5039,0,0,0
+23805,290000,female,1,1,52,0,0,0,2,2,2,85532,69025,85735,79698,71981,63168,12000,20000,0,5500,0,10000,0
+23806,230000,female,1,2,53,-2,-2,-2,-2,-2,-2,0,742,0,0,596,4870,742,0,0,596,4870,0,0
+23807,220000,female,2,1,54,-1,-1,-1,-1,-1,-1,265,4786,2367,2873,11768,7484,4786,2367,2888,11768,7484,13062,0
+23808,30000,female,2,1,60,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+23809,300000,female,2,2,57,-1,-1,-1,2,-1,0,2890,390,1380,390,1170,390,390,1380,0,1170,0,0,0
+23810,260000,female,3,1,57,-1,2,-1,2,-1,-1,1148,123,1668,446,123,35722,0,1668,0,490,35722,0,0
+23811,140000,female,2,1,58,2,2,2,2,2,2,68859,70428,71902,72924,72335,75508,3300,3200,2800,1200,4500,3000,1
+23812,350000,female,1,1,57,-2,-2,-2,-2,-2,-2,7617,2554,44293,66525,7502,15268,2558,44538,67211,7502,15268,228300,0
+23813,70000,male,2,1,40,0,0,0,0,0,0,30346,27040,23756,18897,10873,10707,1681,1635,1463,525,535,570,0
+23814,200000,male,2,2,30,0,0,0,0,0,0,183464,184391,169311,165686,162639,165627,7197,7035,7032,6008,7002,6523,0
+23815,90000,male,1,2,31,2,0,0,0,0,0,90226,90378,27831,28790,29087,28941,2500,1500,1443,1100,1042,2000,1
+23816,30000,male,2,2,49,1,2,2,0,0,-1,24597,26852,23117,24800,29410,23905,3000,0,3000,5000,23905,23771,0
+23817,80000,male,1,2,25,0,0,0,0,0,0,67751,68484,54926,55241,56560,57881,2500,3000,2000,2000,2000,3000,0
+23818,150000,male,1,2,26,-1,0,0,0,0,0,29997,31171,30356,30545,31257,33762,2000,2000,2000,1200,3000,2000,0
+23819,360000,male,1,2,29,1,-1,-1,-1,-1,-1,-4316,60054,187734,17328,10658,77898,65000,188000,17384,20000,78000,46677,0
+23820,400000,male,2,1,30,-1,0,0,0,-1,-1,11633,12294,13038,13751,5765,21784,1200,1287,1000,5819,26957,507,0
+23821,300000,male,1,2,30,-1,-1,2,0,0,-1,121,2175,774,2774,2774,14190,3204,0,2000,0,15000,2043,0
+23822,50000,male,2,2,30,2,2,2,2,2,2,21839,22771,23700,24016,23332,24849,1600,1600,1000,0,1896,0,1
+23823,20000,male,1,2,27,1,2,2,2,0,0,15678,15129,17973,31269,11401,8311,0,3100,0,2000,1000,2000,0
+23824,90000,male,2,2,28,2,2,0,0,2,0,82671,78750,66605,63795,61061,54646,0,3324,5380,0,2000,1800,1
+23825,180000,male,2,1,28,0,0,0,0,2,0,148735,150771,156334,165696,165582,168952,6000,8000,13500,4110,6200,13600,0
+23826,230000,male,2,2,29,-1,-1,0,0,0,0,566,5477,7996,6406,6040,6446,5480,4001,3000,3000,2000,5000,0
+23827,160000,male,2,1,28,1,-2,-2,-2,-2,-1,0,0,0,0,0,1300,0,0,0,0,1300,1244,0
+23828,200000,male,2,2,25,1,2,0,0,0,0,124652,109401,63518,14607,16399,18026,6,5000,2000,2000,2000,20000,0
+23829,300000,male,2,2,27,0,0,-1,-1,0,-1,1726,-9,1974,17648,36732,1000,2800,1983,17652,36183,1002,0,0
+23830,360000,male,1,2,29,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+23831,230000,male,2,2,30,-1,0,-1,0,0,0,9125,7795,191795,192255,187755,187740,4000,191795,10000,8000,8000,8000,0
+23832,80000,male,1,2,27,0,0,0,0,0,-1,74413,76817,74554,43727,16307,1755,7000,3000,1400,326,1755,0,0
+23833,90000,male,2,2,27,2,0,0,0,-2,-2,2542,3556,4490,0,0,0,1066,1000,0,0,0,0,1
+23834,80000,male,1,2,25,0,0,0,0,0,0,37325,38503,39429,24600,10000,0,2100,2000,1000,700,0,0,0
+23835,160000,male,1,2,29,1,-1,-1,-2,-2,-2,0,6285,0,0,0,0,6285,0,0,0,0,0,0
+23836,200000,male,1,2,30,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+23837,60000,male,2,2,25,0,0,0,0,0,0,15614,16231,17074,17684,20003,21040,1267,1500,1291,3000,2000,390,0
+23838,360000,male,1,2,27,-2,-2,-2,-2,-2,-2,2807,894,5939,1390,-5,-5,898,5970,1396,0,0,0,0
+23839,360000,male,3,2,30,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+23840,220000,male,1,2,28,-1,-1,-1,-1,-1,-1,184,1709,919,47545,2398,3338,1709,919,47545,2398,5178,12448,0
+23841,120000,male,1,2,27,0,0,0,0,0,0,21812,20874,21930,22165,20502,19030,1700,1700,1500,700,1000,1000,0
+23842,50000,male,2,2,23,-1,-1,2,0,0,0,45708,48316,44070,45021,45145,46470,6000,0,2000,2000,3000,3600,0
+23843,300000,male,2,2,29,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+23844,400000,male,1,2,36,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+23845,260000,male,3,2,35,0,0,0,0,0,0,33078,42056,43986,45879,54264,59872,10000,10000,10390,10009,10000,10000,0
+23846,80000,male,2,1,27,0,0,0,0,2,0,58777,60201,61633,69160,26000,25000,3000,3000,9160,0,0,0,0
+23847,50000,male,1,2,30,0,0,0,-1,-1,-2,50457,51400,0,3794,0,0,2400,0,3794,0,0,9551,0
+23848,20000,male,2,2,27,-1,-1,-2,-2,-2,-2,1200,0,0,0,0,0,0,0,0,0,0,0,0
+23849,50000,male,2,1,29,0,0,0,0,0,0,47555,47531,46604,47982,29667,30449,1932,2005,2383,1068,1266,1045,0
+23850,20000,male,3,2,23,1,2,-1,-1,0,0,19901,19105,572,19206,18595,19135,0,572,20502,1000,840,705,0
+23851,150000,male,1,2,30,0,0,0,0,0,0,84777,81530,78940,73785,70787,59526,2881,3073,2584,1260,1357,1736,0
+23852,620000,male,2,2,29,0,0,0,0,0,0,524191,524555,445543,443199,451040,431316,19306,15669,16011,16000,15500,17002,0
+23853,270000,male,3,2,36,0,0,0,0,0,0,276192,271773,262623,268735,273709,273139,11000,11100,12000,11000,10200,10500,0
+23854,130000,male,2,2,29,1,2,2,2,2,2,88766,91466,93182,90851,96576,98452,5000,4000,0,7200,3500,3600,1
+23855,150000,male,2,2,22,-1,0,0,0,0,0,82791,82533,77002,45340,36352,36499,3187,2381,1579,1265,1584,597,0
+23856,50000,male,2,1,26,0,0,0,0,0,0,38189,28440,23228,21482,18029,18705,3000,1436,1162,2184,871,500,0
+23857,50000,male,2,1,26,1,4,3,2,2,3,13294,12799,12311,11816,14014,13506,0,0,0,2394,0,0,1
+23858,20000,male,2,2,23,2,0,0,2,2,-2,15021,17452,19853,19437,0,0,6000,3000,295,0,0,0,1
+23859,50000,male,2,2,22,-1,-1,-2,-2,-2,-2,2454,0,0,0,0,0,0,0,0,0,0,0,0
+23860,170000,male,1,2,25,0,0,0,0,0,0,112367,106345,91409,90720,83208,83956,5451,4456,2992,3000,3200,3200,0
+23861,50000,male,2,2,29,0,0,0,0,0,0,51232,50732,50962,49908,32361,21138,1900,2300,1500,1500,900,900,0
+23862,20000,male,3,2,22,0,0,0,0,0,2,18306,18977,19328,19035,19262,12308,1287,1462,1522,1165,0,1000,0
+23863,20000,male,2,2,22,1,2,2,2,0,0,14542,14011,16899,16335,16509,17590,0,3132,0,742,1501,0,1
+23864,20000,male,2,2,21,0,0,0,-1,0,0,23675,20297,17054,2333,1300,0,1800,1240,2333,0,0,0,0
+23865,20000,male,2,2,21,0,0,0,0,0,0,18671,18497,19633,18347,9347,0,1614,1750,1000,1000,0,0,0
+23866,20000,male,1,2,22,0,0,0,0,0,0,19231,20235,21579,22231,22301,21687,1331,1675,1327,800,783,777,1
+23867,90000,male,2,2,25,0,0,0,0,0,0,79938,67857,66929,67797,47739,48163,3000,3000,3000,3000,2000,2000,0
+23868,80000,male,2,1,26,-1,3,2,-1,2,2,495,330,165,481,316,151,0,0,481,0,0,0,0
+23869,50000,male,1,2,22,0,0,0,0,0,0,28725,28424,30965,28612,25498,24866,2000,5000,1500,1000,2000,5000,1
+23870,60000,male,1,2,23,0,0,0,0,0,0,31348,50778,53407,19443,16597,18423,20109,5000,2000,1000,2000,1000,0
+23871,50000,male,2,2,22,0,0,0,0,0,2,49718,50362,49904,50405,29795,28383,1786,2000,1500,2200,0,1100,0
+23872,20000,male,1,2,22,0,0,2,0,0,0,17875,20524,17478,18224,18926,19627,3300,0,1500,1000,1000,1000,0
+23873,20000,male,3,2,23,0,0,0,0,0,0,19812,20388,19145,20124,20127,20150,1300,1330,1309,702,719,1000,0
+23874,50000,male,2,2,24,-1,-1,0,0,0,0,90,6560,7029,1734,916,18864,7396,1459,1000,18,18784,1000,0
+23875,80000,male,1,2,24,0,0,0,0,0,0,50781,29297,78589,78806,50663,50214,4400,50000,3034,1800,1817,1750,0
+23876,50000,male,1,2,22,0,0,0,0,0,0,38251,34489,32252,6182,17118,8922,4000,1500,1500,2500,500,400,0
+23877,20000,male,2,2,22,1,4,3,2,0,0,17456,16896,16345,15785,17018,18736,0,0,0,1500,2000,2000,1
+23878,20000,male,2,2,22,2,3,2,2,2,0,15662,16004,17046,16676,16704,16984,900,1600,200,600,700,2100,0
+23879,50000,male,3,1,22,0,0,0,0,0,0,45458,46450,47599,48456,44546,43256,2051,2200,2016,2009,2092,1020,1
+23880,50000,male,3,2,23,0,0,-2,-2,-2,-2,4332,0,0,0,0,0,0,0,0,0,0,0,0
+23881,50000,male,2,2,23,0,0,0,0,-2,-2,35176,30250,12625,0,0,0,2007,5000,0,0,0,0,0
+23882,20000,male,2,2,23,1,2,0,0,0,0,16830,14566,10100,9238,6902,5813,50,5000,1200,500,500,1000,0
+23883,420000,male,2,1,24,0,0,0,0,0,0,392639,397332,376317,214062,164003,162836,16117,20516,7092,6019,4636,5570,0
+23884,50000,male,2,2,25,0,0,0,2,0,0,17826,18620,19722,19305,19409,20221,1400,2200,806,1000,2000,1000,0
+23885,110000,male,2,2,26,1,2,2,3,2,2,83796,86713,93436,91075,88714,94316,5200,9000,0,0,7062,3424,0
+23886,20000,male,6,2,21,0,0,0,0,0,-2,13203,4443,3259,2969,0,0,1036,1132,2000,0,0,0,0
+23887,20000,male,2,2,22,0,0,0,0,0,0,16439,17140,18269,38082,19923,6825,1279,1408,1180,1000,500,500,0
+23888,50000,male,3,2,23,0,0,0,0,0,0,9168,10178,11200,12214,12608,12718,1166,1188,1202,596,461,462,0
+23889,180000,male,2,2,23,0,0,0,0,0,0,96709,99673,100951,104625,106498,115632,4485,3682,5253,5000,11000,10000,0
+23890,20000,male,2,2,22,0,0,2,2,2,2,18690,12289,5560,6310,7204,6943,3500,1000,1000,1000,0,1000,0
+23891,20000,male,2,2,21,0,0,0,0,0,0,22291,15999,12874,8350,7500,8500,1700,1174,4000,150,1000,0,0
+23892,20000,male,2,2,21,0,0,0,0,-1,-1,20070,19278,3346,-780,780,2130,1072,1000,0,1560,2130,3680,0
+23893,20000,male,2,2,22,2,3,2,2,3,2,18292,17710,17137,19830,19240,18419,0,0,3000,0,0,2000,1
+23894,50000,male,2,2,22,0,0,0,0,0,0,38311,52702,50639,53052,47335,32489,20052,16216,8734,1018,9421,10055,0
+23895,50000,male,3,2,26,2,0,0,0,0,0,31708,32439,28302,13881,14376,15261,1700,2000,1500,1100,1500,2000,0
+23896,150000,male,4,3,27,-1,-1,0,0,-2,-2,3462,1147,7002,0,0,0,1147,6000,0,0,0,0,0
+23897,70000,male,2,2,27,2,2,2,2,2,2,29193,30214,31130,31622,32102,32742,1800,1700,1300,1300,1300,1300,1
+23898,50000,male,2,2,27,1,2,0,0,0,0,47568,46482,44546,40745,19910,17786,0,2000,1241,633,616,2500,1
+23899,150000,male,1,1,32,0,0,-2,-1,-1,-2,15000,0,0,1662,0,0,0,0,1662,0,0,0,0
+23900,100000,male,2,2,26,0,-1,-1,-1,2,-1,44053,2206,1953,3053,853,48280,2206,1953,3100,0,48280,0,0
+23901,20000,male,2,2,24,0,0,0,0,0,0,15730,16776,35036,14694,16914,14074,1313,2110,4000,6000,4000,174,0
+23902,20000,male,2,2,24,0,0,2,3,2,2,14068,16706,18342,17755,17967,17538,3200,2200,0,800,0,1401,0
+23903,20000,male,3,2,24,0,0,0,0,0,0,3724,5646,6808,14046,13924,16924,2000,1262,7500,278,3000,0,0
+23904,20000,male,2,2,22,0,0,-1,0,0,0,20813,19666,20076,19875,19659,19310,1000,20700,2000,800,465,1000,0
+23905,100000,male,3,2,25,0,0,0,0,0,0,76068,69334,54883,55383,36095,31322,2895,2088,1511,1124,1053,1009,0
+23906,190000,male,2,2,29,0,0,0,0,0,0,185222,163336,157158,149423,115038,97756,5836,6358,5487,4038,3803,3042,0
+23907,50000,male,2,2,22,0,0,0,0,0,-1,47871,44546,28628,19502,1971,7538,1546,1519,1035,296,20300,1000,0
+23908,20000,male,3,2,24,1,3,2,0,0,3,14665,14146,13634,14401,16257,15713,0,0,1300,2101,0,0,1
+23909,70000,male,2,1,26,1,2,0,0,0,0,8587,9386,9456,9528,7481,7794,1100,1178,1250,300,400,250,0
+23910,50000,male,2,2,24,0,0,0,-1,0,0,52359,51158,3957,52522,31921,29265,2064,1053,53874,1009,934,719,0
+23911,20000,male,2,2,25,1,2,0,0,-1,0,20873,20240,20365,19565,9928,12758,4,1378,1203,15460,3000,2000,1
+23912,20000,male,1,2,24,-1,-1,-1,-1,0,-1,720,100,1192,7804,6200,3982,100,1192,7807,124,3982,1156,1
+23913,20000,male,2,2,24,0,0,0,0,0,0,10768,12087,13115,14190,14328,14629,1502,1530,1600,670,680,686,0
+23914,50000,male,2,2,24,-1,0,0,0,2,0,48846,48136,72898,36103,29384,29356,1904,3700,5396,6,1003,1449,0
+23915,20000,male,1,2,23,0,0,0,0,0,0,10242,18778,19065,18025,17414,17068,10000,1300,1300,609,700,1809,0
+23916,50000,male,2,2,23,1,-2,-2,-1,-1,-2,0,0,0,1000,0,0,0,0,1000,0,0,0,0
+23917,50000,male,2,2,24,1,2,0,0,-1,-1,5784,3392,2182,0,2092,-2272,0,1000,0,2092,0,0,0
+23918,20000,male,1,2,24,1,-1,-1,-2,-1,-1,255,541,275,329,544,190,541,275,329,544,190,241,0
+23919,20000,male,2,2,25,1,2,-1,-1,0,0,12589,716,243,19853,20157,20182,0,1000,20000,1000,720,1800,0
+23920,50000,male,2,2,25,0,0,0,0,0,0,46980,47809,49040,29662,28360,28831,1910,2141,1763,1161,1077,1167,1
+23921,70000,male,1,2,25,0,-1,0,0,0,0,23799,9000,11818,12889,9043,26713,9000,7000,5000,4043,5000,0,0
+23922,20000,male,2,2,27,0,0,0,0,0,0,12546,13830,14599,15650,15964,17204,1500,1300,1300,574,1500,0,1
+23923,20000,male,2,1,24,1,4,3,2,2,2,17611,18038,17473,16900,17690,18255,1000,0,0,1376,1000,649,0
+23924,20000,male,2,2,23,0,0,0,0,0,0,20432,16941,18066,19259,20071,19800,1280,1405,1598,1410,1021,0,0
+23925,20000,male,2,2,25,0,0,0,0,0,0,17286,18199,18559,19068,19053,16500,1594,1344,1243,618,579,778,1
+23926,220000,male,1,2,26,0,0,0,0,0,0,44432,128967,96750,71616,65415,57914,100000,18720,37800,7096,12000,25000,0
+23927,120000,male,2,2,25,1,2,2,2,2,0,63119,61304,54675,52206,10325,8992,2200,1828,500,0,500,1000,1
+23928,140000,male,1,2,26,0,0,-2,-2,-1,-1,17376,4879,6266,4379,420,0,4907,6284,4392,420,0,245,0
+23929,50000,male,1,2,27,0,0,2,0,0,2,48215,44175,83132,42079,44781,45619,4007,0,1706,3408,1700,0,0
+23930,50000,male,2,2,25,0,0,0,0,0,0,47034,48442,49173,49290,48910,48910,2500,2200,1700,1000,0,0,0
+23931,10000,male,2,2,26,1,-1,0,0,0,0,7140,8489,9488,9129,9479,9523,11153,1152,1150,500,345,387,0
+23932,50000,male,1,2,25,0,0,0,0,0,0,18164,19456,20486,21241,21788,23281,1900,1645,1400,900,2000,0,0
+23933,50000,male,2,2,26,0,0,0,0,0,0,25126,26697,28222,27180,27979,28926,2000,2000,2000,1500,1500,1000,0
+23934,20000,male,1,2,25,0,0,0,0,0,0,26694,10298,9768,8798,9404,6864,1200,2000,2000,1000,1000,1000,0
+23935,200000,male,1,2,26,-2,-2,-2,-2,-2,-2,-4,909,6737,6012,5167,3132,913,6737,6031,5167,3132,2290,0
+23936,40000,male,1,2,26,0,0,0,0,0,0,21651,19279,19076,15838,17616,11081,5009,5000,1560,7000,497,2000,0
+23937,30000,male,2,2,23,0,0,2,2,0,0,14404,32852,17113,4818,4818,0,3196,2000,0,0,0,0,0
+23938,20000,male,2,2,23,2,0,0,2,0,0,15789,16831,20404,19621,14051,0,1610,4183,0,281,0,0,1
+23939,50000,male,2,2,23,0,0,0,-1,0,0,51274,50474,49724,48437,18712,19129,4175,41000,51705,700,718,700,0
+23940,20000,male,3,2,24,-1,2,-1,-1,-1,-1,546,48,498,449,1651,1114,0,948,449,1700,1114,0,0
+23941,130000,male,2,2,25,0,0,0,0,0,2,72850,74937,75900,74982,79701,81282,3300,2800,3000,6000,3000,0,0
+23942,160000,male,2,2,25,0,0,0,0,0,0,4071,4554,4770,5494,4586,4686,1060,1276,1000,92,100,1000,0
+23943,110000,male,2,2,25,0,-1,0,0,-1,-1,54165,88490,99595,99055,30328,24564,88490,30000,40000,30328,24564,42000,0
+23944,50000,male,2,2,37,0,0,0,0,0,0,16029,17039,18064,19076,19453,19862,1281,1306,1318,695,721,1018,1
+23945,50000,male,2,2,25,0,0,4,3,2,2,29206,53086,51981,50805,51518,50713,25000,0,0,1800,108,2400,0
+23946,240000,male,2,2,26,0,0,0,0,0,0,27967,28707,27970,187880,169261,148519,10016,2081,169267,5062,4608,5096,0
+23947,20000,male,2,2,27,0,0,0,0,-2,-2,2003,2948,3372,0,0,0,1086,1000,0,0,0,0,0
+23948,500000,male,3,2,30,-1,0,0,0,-1,-1,1092,5227,5453,5540,6263,1831,4303,1096,1020,6315,1833,9649,0
+23949,60000,male,2,2,26,0,0,0,0,0,0,59487,59199,59326,58938,30101,29735,2113,2500,3000,2500,1500,1100,0
+23950,50000,male,3,2,25,0,0,0,0,2,2,47727,45926,47095,49485,49083,45187,2100,2200,3500,2000,0,5151,0
+23951,50000,male,2,2,24,0,0,0,0,0,0,46521,47597,48799,41286,16764,16960,2150,2352,1239,717,585,589,0
+23952,20000,male,2,2,25,-1,-1,-1,-1,-1,0,390,390,390,390,390,780,390,390,390,390,390,0,0
+23953,30000,male,2,2,25,0,0,0,0,0,0,30274,30517,30485,30533,29148,29782,1932,3900,1700,1200,1180,2500,0
+23954,80000,male,2,1,25,1,2,2,0,0,0,80906,82789,80903,80215,63296,49854,3800,6,3636,2646,2000,1830,0
+23955,20000,male,2,1,25,0,0,0,0,0,0,14447,15455,17562,17322,17119,17350,1552,2659,1419,606,500,1000,0
+23956,10000,male,2,2,26,0,0,0,0,0,0,8882,9933,9825,17506,16608,9176,1300,2200,1300,320,1820,1000,0
+23957,20000,male,5,2,26,0,0,0,0,0,-2,20564,20284,19394,39950,0,0,3055,1467,1096,1000,0,0,0
+23958,100000,male,1,2,26,0,-1,0,0,-1,0,1544,1049,2067,1944,389,1221,1100,1200,1000,500,1000,1000,1
+23959,50000,male,2,2,23,2,2,0,0,0,0,51246,49758,48456,44116,21247,20066,8,2401,2254,2004,704,707,0
+23960,60000,male,2,2,26,0,0,0,0,0,0,58072,59040,57416,55736,26958,28847,2282,2324,2049,2000,3000,1120,1
+23961,400000,male,2,2,27,0,0,0,0,0,0,15330,8626,11470,10745,20737,9545,2501,10009,1437,1105,510,959,0
+23962,20000,male,5,2,27,5,4,3,2,2,2,21673,21051,20440,19709,20113,19840,0,0,0,900,0,0,0
+23963,50000,male,3,2,27,0,0,-2,-2,-1,-1,32590,-100,0,0,70,120,0,100,0,70,200,100,0
+23964,110000,male,2,2,27,0,0,0,0,0,0,102551,103550,105089,107164,105988,108617,5500,6000,6000,4000,5000,4000,0
+23965,30000,male,3,2,23,0,0,-2,-1,0,0,4443,370,380,590,7704,20204,430,400,601,7504,15005,5674,0
+23966,230000,male,2,2,27,0,0,0,0,0,0,34592,23689,27652,8430,9811,9865,1816,5105,1293,2000,528,3000,0
+23967,20000,male,3,3,23,0,0,0,0,0,0,18455,19990,20215,19298,19807,12294,2000,20000,1612,1121,702,1000,0
+23968,30000,male,1,2,24,0,0,0,2,0,0,6003,4912,6214,3311,4430,906,1440,2259,0,1500,425,895,0
+23969,90000,male,2,2,25,0,0,0,0,0,0,91151,88937,91097,52285,46430,47404,3453,3868,1960,1658,1718,2200,0
+23970,30000,male,2,2,25,2,0,0,0,0,0,24279,25281,26568,29872,23504,25724,1713,2000,4000,0,3000,1000,1
+23971,20000,male,3,2,24,4,3,2,0,0,0,20569,19927,16371,17291,18001,18706,0,0,1500,1000,1000,836,1
+23972,20000,male,2,2,24,2,2,2,0,0,-1,17996,19102,19117,19664,10000,4060,2100,1000,1000,1100,4060,0,1
+23973,50000,male,2,2,24,0,0,0,0,0,0,12236,13324,14403,15460,15804,16549,1300,1300,1300,600,1000,602,0
+23974,80000,male,2,2,25,-1,-1,-1,-1,-1,-1,416,416,416,416,416,416,416,416,416,416,416,416,0
+23975,120000,male,1,2,28,-1,-1,-1,-1,-1,-1,231,6665,880,0,4440,4440,6673,880,0,4440,4440,4440,0
+23976,50000,male,2,2,25,-1,-1,-1,-1,0,0,5814,-73,11427,191,7391,6554,0,11500,191,7200,2000,7000,0
+23977,200000,male,1,2,26,0,0,0,0,0,0,50124,51122,52533,52772,53441,22246,1830,2235,1447,1069,445,9332,0
+23978,150000,male,2,2,25,0,0,0,0,0,0,140662,144334,148016,150128,94834,97487,6000,6000,5176,5000,4002,3628,0
+23979,360000,male,1,2,24,2,0,0,-2,-2,-2,1188,1803,777,-3,-3,-3,1003,783,0,0,0,0,1
+23980,60000,male,1,2,25,0,0,2,2,2,0,56918,61210,52757,29209,26403,26969,5914,17,3106,0,1104,1134,0
+23981,80000,male,2,2,25,3,2,0,0,-1,-1,79977,78091,80288,82150,319,85,0,3456,3750,319,85,322,0
+23982,320000,male,1,2,25,0,0,0,0,0,0,146183,148703,169920,174315,173032,176016,6206,25006,10025,6506,7006,8006,0
+23983,140000,male,2,2,25,2,0,0,0,0,0,142697,137269,133767,120287,117183,119575,5010,6377,5604,4160,8239,0,1
+23984,20000,male,2,1,26,3,2,2,3,3,3,1050,1050,1050,1050,1050,1050,0,0,0,0,0,0,1
+23985,110000,male,2,2,26,0,-1,-1,2,0,0,60808,196,3290,3089,3601,3396,196,3290,0,563,296,200,0
+23986,190000,male,2,2,26,0,0,0,2,2,2,45694,52361,43563,40909,50758,36922,9000,8000,0,12000,3000,0,0
+23987,130000,male,2,2,25,0,0,0,2,2,2,113290,112561,119435,105382,49643,46812,5650,12421,0,7000,0,2000,0
+23988,160000,male,1,2,26,0,0,0,0,-1,-1,138825,135233,130038,79027,6666,6666,6800,5600,3715,6666,6666,6666,1
+23989,260000,male,1,2,26,0,0,0,0,0,0,250303,198350,189510,178738,182973,187233,7065,7054,6500,7000,7001,10000,0
+23990,80000,male,1,2,26,-1,-1,-1,-1,-1,-1,7412,945,1096,162,6600,1780,945,1096,163,6600,1780,0,0
+23991,50000,male,2,2,25,0,0,2,2,4,3,28651,41897,43032,47242,46212,45205,14200,2100,5215,0,0,0,1
+23992,100000,male,1,2,26,0,0,0,0,0,0,91189,93383,96301,90858,92724,96030,3500,4300,4400,4000,4700,5000,0
+23993,20000,male,2,2,27,1,2,0,0,2,2,7326,7060,8240,9582,9279,9971,0,1296,1638,0,844,0,1
+23994,210000,male,2,2,27,1,-1,2,0,0,-2,0,628,232,1067,-27,-27,628,0,1000,0,0,0,0
+23995,160000,male,2,2,28,0,0,0,0,0,-1,84879,59607,38512,19129,15525,11146,2593,2000,1604,2000,11146,2006,0
+23996,340000,male,1,2,26,0,0,0,0,0,0,241720,221836,206485,196137,196447,195114,8000,10000,10000,8032,8000,8500,0
+23997,70000,male,3,2,27,2,2,2,3,3,2,58009,56479,63633,64500,62867,64210,0,8100,2500,0,2500,2455,1
+23998,50000,male,1,2,27,2,2,0,0,0,0,51042,48878,47884,29506,3672,8346,0,2354,1410,1500,4900,700,1
+23999,60000,male,1,2,26,-1,-1,0,0,0,0,1870,32603,32432,27976,25862,24571,32607,2119,3008,1006,1042,1001,0
+24000,20000,male,3,2,27,3,2,2,5,5,4,1200,1200,1200,1200,1200,600,0,0,0,0,0,0,1
+24001,50000,male,1,2,27,0,0,0,2,2,0,35215,36227,37876,39984,39041,40110,1600,2234,3042,0,1700,2000,0
+24002,240000,male,1,2,26,-1,-1,-2,-1,-1,-1,5010,1188,3513,11380,1777,190,1188,3513,11794,1785,190,0,0
+24003,20000,male,2,2,23,0,0,0,0,0,0,9550,10867,11585,12899,13087,13327,1480,1198,1512,700,600,2700,0
+24004,50000,male,2,2,25,0,0,0,0,0,0,29827,30863,31897,29652,20483,19909,1536,1570,1316,1680,722,822,0
+24005,130000,male,2,2,25,0,0,0,0,0,0,39074,39767,38680,5654,1938,522,1766,1521,3100,0,10,0,0
+24006,50000,male,2,2,25,0,0,0,0,0,0,49899,35200,29447,19980,10400,0,1679,2438,1700,1000,0,0,0
+24007,130000,male,2,2,27,-1,-1,-1,-1,-1,-1,6136,9258,3397,2435,1570,1467,9272,3397,2435,1570,1467,550,0
+24008,20000,male,1,2,27,0,0,0,0,0,0,19483,18956,18742,19738,15627,15753,1258,1404,1400,399,604,2500,0
+24009,370000,male,6,1,28,0,-1,-1,-1,-1,-1,64268,2868,3788,9424,2468,2468,2868,100332,9456,2468,2468,2468,0
+24010,110000,male,3,1,27,0,0,0,0,0,-2,108435,109572,45907,5130,2889,78834,3509,1102,1014,2889,82718,3100,0
+24011,200000,male,3,2,28,0,0,0,0,0,0,203357,201115,192220,180090,184603,189340,7064,7048,6000,6500,7430,0,0
+24012,160000,male,3,2,26,0,0,0,0,0,0,58929,60950,61292,16623,33393,34220,3000,2000,15000,33000,3000,1100,0
+24013,310000,male,2,2,26,0,0,0,0,0,0,304091,309627,315544,309272,240119,235799,12805,13567,13203,8765,9643,9035,0
+24014,90000,male,1,2,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+24015,20000,male,2,2,22,4,3,2,0,0,2,16226,15682,15146,15856,17090,16677,0,0,1266,1500,0,1915,1
+24016,30000,male,5,2,23,0,0,-2,-2,-2,-2,30830,0,0,0,0,0,0,0,0,0,0,0,0
+24017,90000,male,4,2,24,0,0,0,0,0,-2,35865,32764,25348,9580,0,0,1546,1176,1000,0,0,0,0
+24018,240000,male,2,2,28,0,0,-2,-2,-1,-1,44996,-4,-4,-4,801,192850,0,0,0,805,192869,7012,0
+24019,260000,male,2,2,32,0,0,-2,-1,-1,-1,60587,-83,-83,458,-7941,156600,0,0,541,4538,166000,6000,0
+24020,120000,male,2,2,27,0,0,0,0,0,0,29344,33474,29029,26523,20554,19348,5053,1789,2037,659,802,640,0
+24021,80000,male,2,2,27,1,2,0,0,-2,-2,83062,81150,82150,0,0,0,0,3800,0,0,0,0,0
+24022,160000,male,1,2,27,-1,-1,-1,-1,-1,-1,5574,3327,5958,55914,23285,29170,3353,7916,56116,23302,11580,9976,0
+24023,130000,male,2,2,27,0,0,0,-1,0,0,7100,4007,4900,1235,3946,2817,1100,1000,1235,3011,1008,966,0
+24024,20000,male,1,2,23,-1,-1,-1,-1,-1,-1,14697,11983,4098,14899,10170,7151,12483,4098,14899,10170,427,0,0
+24025,170000,male,2,1,26,0,0,0,0,0,-2,30779,30751,23602,16633,0,51269,1675,1500,1007,0,51269,1865,0
+24026,110000,male,3,2,27,0,0,0,0,0,0,45443,55567,65753,65379,65467,64596,15567,15753,5379,5467,4596,3405,0
+24027,50000,male,2,1,25,0,0,0,0,0,0,26339,27699,28513,29341,29928,29533,1800,1565,1393,980,994,1024,0
+24028,70000,male,2,2,26,0,0,0,0,0,2,65329,64584,63600,60540,26890,18923,3000,4000,2000,4030,0,1000,0
+24029,80000,male,2,2,25,0,0,0,0,-2,-2,77901,79605,79207,0,0,0,3600,2407,0,0,0,0,0
+24030,50000,male,1,2,25,0,0,0,-1,-1,-2,13886,14958,15726,1148,0,0,3000,5000,1148,0,0,0,0
+24031,60000,male,1,2,27,0,0,-1,-1,0,0,20567,11937,1536,59038,54586,56375,4000,1536,59038,1300,3000,2000,0
+24032,100000,male,2,1,28,0,0,0,0,0,0,74269,59948,56323,48985,23894,23402,2812,2081,2077,1003,1015,1000,0
+24033,50000,male,1,2,27,0,0,0,2,2,2,17468,48675,36287,30691,29901,49293,32400,4000,1200,0,20000,2000,0
+24034,180000,male,1,1,28,2,3,2,0,0,0,187205,182435,131327,131288,100116,86644,5,0,7326,4124,8693,0,0
+24035,250000,male,1,2,27,-1,-1,-1,-1,-1,0,73,2244,3119,1860,10094,4896,2265,3119,1943,10094,2896,5074,0
+24036,140000,male,2,2,27,0,-1,-1,0,0,0,24048,1999,109104,110336,67197,67910,2014,110330,5012,5000,3000,5000,0
+24037,200000,male,1,2,28,-2,-2,-1,-1,0,0,6905,8674,6449,14392,14792,8016,4628,6454,14392,600,164,0,0
+24038,70000,male,1,2,29,0,0,0,2,0,0,32938,33635,35287,36002,37096,37999,1548,2200,1600,2000,1500,3000,0
+24039,160000,male,2,2,28,0,0,-2,-2,-2,-2,7169,581,0,972,-1,-1,581,0,972,1,0,0,0
+24040,50000,male,1,2,28,1,-2,-1,0,0,0,0,0,16248,17105,16842,21842,0,16248,1600,337,5000,5000,0
+24041,30000,male,2,2,28,1,2,2,0,0,0,26026,27300,26577,28120,29659,30394,2000,0,2000,2000,1200,1000,0
+24042,110000,male,1,2,28,0,0,0,0,0,0,102282,104196,105922,108820,66883,68083,5200,5000,5000,2100,2000,2000,0
+24043,180000,male,1,2,27,0,0,0,0,0,0,20793,18795,23194,44070,39003,26424,10053,12057,30035,863,72,37,0
+24044,150000,male,1,2,28,0,0,0,0,0,0,24942,83333,75249,61949,67280,64374,80284,6254,6119,33333,4374,6814,0
+24045,110000,male,2,2,28,0,0,0,0,0,0,111425,95724,97712,99687,100937,103138,4300,4422,4493,3800,3975,3773,0
+24046,90000,male,1,2,27,0,0,0,2,0,0,84404,86109,92140,88296,88357,85506,3100,8100,0,3200,3000,3500,0
+24047,110000,male,1,2,28,0,0,0,0,0,0,107800,105820,104780,98139,72176,74011,4000,4000,4100,3000,3000,3000,0
+24048,40000,male,2,2,28,-1,-1,-2,-2,-2,-2,3333,-167,-5187,-187,-187,113,167,4982,5000,0,3335,27000,0
+24049,130000,male,6,1,37,-1,-1,-1,-1,-1,-1,1390,2196,7533,4656,840,390,2196,7533,4689,840,390,390,0
+24050,40000,male,1,2,28,0,0,0,0,0,0,38941,39039,24501,15143,15731,9728,2002,1607,1580,2500,1500,33000,0
+24051,180000,male,1,2,27,2,0,0,2,0,0,10070,11392,14688,14040,13440,13440,1500,3500,0,0,0,0,0
+24052,210000,male,2,2,28,2,0,0,-1,0,0,209479,211302,-4244,205759,151849,150221,10000,2572,213509,6022,5817,4048,1
+24053,200000,male,4,2,28,-1,-1,-1,-1,-1,0,1707,1106,2628,7502,38584,16990,1109,2807,26316,50108,85,1746,0
+24054,260000,male,2,2,28,0,0,0,0,0,0,251829,234867,237497,215343,205576,207688,10000,10500,9150,7500,8000,7500,0
+24055,20000,male,2,2,25,-1,-1,-1,-1,0,0,769,1011,628,2198,365,-34,1500,700,2500,0,0,2000,0
+24056,150000,male,2,1,29,0,0,-2,-2,-2,-2,14075,0,0,0,0,0,0,0,0,0,0,0,0
+24057,250000,male,2,2,26,0,0,0,0,0,0,123148,135439,42090,61558,80894,93938,15447,12004,21558,20894,15000,20000,0
+24058,80000,male,1,2,27,0,0,0,0,0,0,74640,72565,63342,51529,41484,34097,20024,10000,4000,2000,3000,2500,0
+24059,30000,male,2,2,24,0,0,0,2,0,0,14597,15614,18246,17660,17768,18151,1568,3200,0,700,670,1500,1
+24060,20000,male,3,1,27,-2,-2,-2,-2,-2,-2,-2000,780,0,-1000,0,1222,2780,2000,1000,1000,1222,1800,0
+24061,50000,male,2,1,29,1,2,0,0,0,2,23451,22781,24108,25203,26681,26117,0,2000,1800,2200,0,2250,1
+24062,460000,male,1,2,29,0,0,0,0,0,0,428369,436349,449078,457587,240651,245605,16833,21000,20000,8000,8000,8100,0
+24063,340000,male,2,1,30,-2,-1,0,0,0,0,326,7132,16684,25749,30085,30406,7132,10000,10000,5000,1007,6000,0
+24064,10000,male,2,2,23,0,0,0,0,0,0,4304,5324,6509,7313,6469,6988,1100,1279,1083,500,1000,1000,0
+24065,50000,male,2,2,24,0,0,0,0,2,0,11772,13014,11199,12693,10764,10031,1469,1600,2000,0,350,509,0
+24066,110000,male,2,2,24,0,0,0,0,0,0,74349,70338,71796,73253,74138,75691,3101,3187,3244,2700,2748,3331,0
+24067,50000,male,2,2,22,2,2,2,0,0,0,45614,50781,45429,28927,19896,19475,5991,41,1617,816,1003,1004,0
+24068,100000,male,1,2,27,-1,-1,-1,2,-1,0,194,678,1032,516,998,482,1000,1032,0,998,0,800,1
+24069,80000,male,1,2,27,-1,-1,-1,-1,-1,-1,400,600,600,100,900,2934,600,600,100,900,2934,0,0
+24070,500000,male,2,2,28,0,0,0,0,0,0,33758,33048,45422,46483,39598,40622,1626,13000,2100,37000,1234,3512,0
+24071,360000,male,1,2,28,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+24072,280000,male,2,1,29,-2,-2,-1,2,2,-2,-650,-650,2057,650,3072,3330,0,2707,3,3072,3330,499,0
+24073,300000,male,2,1,29,0,0,0,0,0,-2,8857,8102,12214,27299,0,0,3000,5000,21312,0,0,0,0
+24074,20000,male,3,2,27,-1,-1,-1,-1,-2,-2,390,0,780,0,0,0,0,780,0,0,0,0,0
+24075,460000,male,4,2,28,-1,-1,0,-1,-1,-1,1358,55022,50394,3917,1695,22231,55071,1263,3934,1702,22238,513,0
+24076,500000,male,1,2,28,0,0,0,0,0,0,92442,96905,111219,251573,300336,269964,7036,20042,150122,75182,11486,11162,0
+24077,500000,male,1,2,27,0,0,0,0,0,0,252881,224633,486367,616836,250600,296217,30032,271636,30876,60044,50539,100562,0
+24078,360000,male,1,2,28,-1,-1,0,0,0,0,9179,10977,14190,16328,17383,17194,10977,8500,4000,1700,371,1150,0
+24079,50000,male,2,2,27,-2,-2,-2,-2,-2,-2,3043,2432,3754,11985,19332,0,2446,3754,12053,19332,0,0,0
+24080,30000,male,1,2,29,0,0,-2,-1,0,0,27720,0,0,22015,22649,24583,0,0,22015,1000,2300,1200,0
+24081,140000,male,1,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+24082,50000,male,1,2,29,-1,-1,-1,-1,-1,-1,759,360,360,360,360,360,360,360,360,360,360,360,0
+24083,20000,male,1,2,29,0,0,0,0,0,0,22819,19296,20183,20036,19965,20061,1700,2000,1600,1000,1500,1000,0
+24084,20000,male,3,1,29,0,0,0,0,-2,-2,14171,11136,20649,-1001,-1,-1,2000,10000,0,1000,0,0,0
+24085,80000,male,2,2,27,2,2,0,0,0,0,58324,56789,58276,60102,61423,72197,0,2400,3000,2500,11576,39,1
+24086,230000,male,2,1,28,0,0,0,-1,0,0,231357,233543,99033,237008,184695,185116,10000,7000,237008,6488,6605,6800,0
+24087,110000,male,2,2,27,0,0,0,0,0,0,107339,109029,106974,97327,60454,59062,3873,5051,3645,1984,3000,2356,0
+24088,90000,male,2,2,27,0,0,0,0,0,0,64497,49929,41498,36492,24636,5298,2297,2406,1400,493,106,0,0
+24089,200000,male,1,2,28,2,-1,3,2,-1,-1,833,932,662,311,355,1266,932,0,0,355,1200,0,0
+24090,60000,male,1,2,25,0,0,0,0,0,0,55656,58740,59257,56229,46624,36594,4041,2227,14682,1634,2024,978,0
+24091,50000,male,2,2,29,1,2,2,2,2,2,38916,37990,42382,43190,42198,46572,0,5000,1800,0,5232,1800,1
+24092,130000,male,1,2,29,0,0,0,0,0,0,78337,81029,83032,83362,84592,86027,4000,4200,2912,2500,2300,2500,0
+24093,260000,male,2,1,29,-1,0,-1,-1,-1,-1,30903,1520,1593,149,1959,1255,1200,1758,152,1960,1255,4460,0
+24094,180000,female,4,2,29,-2,-2,-2,-2,-2,-2,0,0,0,0,0,2150,0,0,0,0,2150,0,1
+24095,240000,male,2,2,29,0,0,0,0,0,0,90440,92433,94548,96375,98453,100549,3500,3600,3500,3500,3500,3500,0
+24096,150000,male,0,2,28,0,0,0,0,-1,-1,15855,27241,20818,9864,3957,2205,18056,4065,1058,3976,2216,0,0
+24097,260000,male,1,2,28,-2,-2,-2,-2,-2,-2,825,650,825,644,819,1294,650,1000,644,1000,1300,825,0
+24098,100000,male,1,2,29,-1,0,-1,-1,0,-1,711,1141,210,780,390,930,1000,780,1930,0,930,0,1
+24099,50000,male,2,2,29,0,0,2,0,0,0,13778,15837,16285,17009,18223,18778,2600,1000,1300,1500,1000,1000,0
+24100,150000,male,1,2,27,0,0,0,0,0,0,149340,152460,141196,105802,106478,107096,10000,6040,5750,3000,5000,35000,0
+24101,40000,male,1,2,27,0,0,0,0,0,0,33077,34055,32644,29645,22930,0,1554,3071,1384,1047,0,0,0
+24102,20000,male,2,2,24,0,0,0,0,0,0,17172,18179,19061,20182,19982,19482,1597,1479,1600,400,0,298,0
+24103,30000,male,1,2,28,0,0,0,0,0,0,29234,29383,29851,29978,29378,29230,2000,2000,2000,1200,1500,3000,0
+24104,280000,male,1,2,28,-2,-2,-2,-2,-2,-2,10296,1820,0,5970,8628,2036,3543,1195,5970,8628,2306,768,0
+24105,430000,male,1,2,29,0,0,0,0,0,0,402396,384100,375827,330644,353036,355121,14000,13400,30696,53036,12752,15980,0
+24106,70000,male,2,2,29,0,0,0,0,0,2,17103,18312,19516,20685,22142,23340,1500,1500,1500,1800,1700,0,1
+24107,30000,male,3,2,29,0,0,0,0,0,0,27904,28547,29398,29864,30115,15818,1500,1700,1500,1010,1000,1000,0
+24108,30000,male,2,2,27,0,0,0,-2,-2,-2,7956,10529,28870,29391,29724,30400,5000,28872,1500,1000,1078,1000,0
+24109,80000,male,1,2,29,-1,-1,0,0,0,0,2170,17562,17709,15631,13402,13197,17568,3015,2008,1009,2005,507,0
+24110,50000,male,1,2,27,0,0,0,0,0,0,47189,48182,49479,49704,19380,18653,1778,2075,1300,700,677,691,0
+24111,230000,male,1,2,27,0,0,0,0,0,0,24874,19500,11717,7540,9941,6113,2000,2000,3540,5000,3113,90417,0
+24112,230000,male,1,2,29,0,0,2,2,0,0,41154,44121,43286,39215,39814,40437,4000,2500,0,3000,3000,5000,0
+24113,110000,male,2,2,29,2,2,2,2,0,0,55700,58362,56598,51908,48647,47862,5000,2500,0,2000,2000,1854,1
+24114,200000,male,2,2,29,3,2,2,4,4,4,2500,2500,2500,2500,2500,2500,0,0,0,0,0,0,1
+24115,50000,male,1,2,28,0,0,0,0,0,0,44619,44645,44841,44950,44577,44816,2150,2300,2250,1700,2000,1700,0
+24116,60000,male,1,2,28,0,0,0,2,2,2,30567,31274,34455,35094,34233,36521,1519,3700,1500,0,3000,0,0
+24117,20000,male,5,2,28,-1,-1,-1,-1,-1,-2,780,1180,0,410,0,-2000,1180,0,410,1000,2000,2000,0
+24118,320000,male,2,2,29,2,0,0,0,0,0,172655,168256,165530,161152,158468,145399,10000,10000,10000,10000,20000,0,0
+24119,220000,male,1,2,28,0,0,0,0,0,0,150544,155328,156136,158416,161212,156790,12000,6000,6000,6000,6000,12000,0
+24120,470000,male,1,2,29,-1,0,0,0,0,0,215666,209106,207970,212373,193628,184908,7395,8037,9048,10000,6115,5750,0
+24121,60000,male,1,2,29,0,0,0,0,0,0,11976,13462,15231,16966,17878,19085,2000,2000,2000,1500,1500,1500,0
+24122,330000,male,2,1,29,0,0,0,0,0,0,25131,16610,17586,12580,16254,8213,1200,1157,1331,4005,299,701,0
+24123,110000,male,2,2,28,2,2,2,2,2,0,109241,111541,113676,114223,110876,107710,5600,5400,4000,0,4000,3700,1
+24124,80000,male,2,1,29,4,3,2,2,2,2,12237,11756,11281,12785,12283,13184,0,0,2000,0,1100,0,1
+24125,290000,male,1,2,30,0,0,0,0,0,0,243992,241283,243722,235297,243312,242827,11091,12000,9000,12000,11000,10050,0
+24126,20000,male,2,2,22,3,2,2,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,1
+24127,30000,male,1,2,28,2,2,2,2,0,0,9799,10056,9815,7576,5746,3900,2350,2000,0,144,128,39,0
+24128,80000,male,3,2,27,0,0,0,0,0,0,58323,60741,62813,65151,66568,70168,4000,3662,4000,2500,4509,2309,0
+24129,50000,male,2,1,28,0,0,0,0,-2,-1,28249,19304,5742,0,-30481,58,1196,2000,8,0,40058,49163,1
+24130,150000,male,2,2,28,-2,-1,-1,-1,-2,-2,88609,4635,2160,-2,-2,-2,4660,2166,0,0,0,901,0
+24131,20000,male,3,2,28,1,2,2,2,0,0,18534,17944,20199,19492,19888,14087,0,2860,0,549,441,502,0
+24132,140000,male,2,2,24,0,0,0,0,0,0,103884,105697,101636,97298,77081,72592,4000,4000,3800,3000,3300,2300,0
+24133,260000,male,1,2,30,-1,0,0,0,0,0,182329,181133,177351,175130,182154,188264,10000,10000,10000,10000,10000,17000,0
+24134,120000,male,2,2,30,-1,-1,-1,-1,-1,-1,2494,1991,1497,998,697,-103,1997,1506,1001,699,0,897,0
+24135,110000,male,2,1,30,0,0,0,-1,2,2,35283,26000,9000,63853,59308,60576,1500,1500,63853,1500,2062,0,0
+24136,140000,male,1,2,30,0,0,0,0,0,0,132970,136435,138696,139673,141573,140474,6334,6600,5500,4821,5188,5600,0
+24137,100000,male,1,2,27,1,2,0,0,0,0,108762,101941,99264,90972,100306,100536,25,4902,4118,30018,5060,3663,0
+24138,360000,male,1,2,30,-1,-1,-1,-1,0,0,9939,14212,44803,118712,34244,21269,14226,46012,129567,685,425,4137,0
+24139,70000,male,2,1,30,0,0,0,0,0,0,68671,60808,62648,46342,46904,48558,2500,3182,1800,1300,2000,2000,0
+24140,210000,male,1,1,30,0,0,0,0,0,0,129890,135229,106382,79423,78981,81884,12112,4513,3400,5000,5000,10000,0
+24141,200000,male,2,2,30,-1,-1,-1,-1,-1,-1,15140,18028,16456,15370,14966,16230,18044,16474,15392,14972,16240,14960,0
+24142,200000,male,2,2,28,0,0,0,0,0,0,162439,92626,73816,79033,79539,80584,4000,3000,6500,3013,5000,3000,0
+24143,160000,male,1,2,28,0,0,0,0,0,0,157921,144659,154012,151403,115731,113635,6000,25409,30000,5000,5000,4500,0
+24144,120000,male,1,2,31,1,-2,-2,-2,-1,-1,-190,-620,-1050,-1910,240,1010,0,0,0,2150,1200,551,1
+24145,180000,male,2,2,32,1,2,0,0,0,0,173179,168499,170856,177544,172432,173940,0,7326,10000,7000,8000,10000,0
+24146,240000,male,2,2,29,0,0,0,0,0,0,210522,224877,208870,107964,227939,232618,20000,8403,4978,220000,8638,8584,0
+24147,120000,male,2,2,27,0,0,0,0,0,0,113556,114844,117777,119086,70013,102991,4200,4773,3776,3200,1882,4000,1
+24148,200000,male,2,2,28,0,0,0,-1,-1,-1,99216,100142,34162,712,712,862,5300,3000,8712,712,862,704,0
+24149,280000,male,1,1,30,0,0,0,0,0,0,166037,166291,162992,134154,161057,167490,12126,39102,5000,30000,10000,10000,0
+24150,20000,male,3,1,30,0,0,-1,-1,-1,-2,16925,12216,1179,1536,-301,-301,1000,1179,1536,0,0,0,1
+24151,20000,male,2,1,30,1,2,2,2,2,2,17005,15451,18067,17469,19905,19763,0,2874,0,2712,1566,818,1
+24152,260000,male,2,2,29,-1,2,2,-2,-1,2,8832,1528,0,0,5987,5837,15,0,0,5987,0,27887,1
+24153,220000,male,2,2,29,-1,-1,-1,-1,-1,-1,326,326,326,326,326,322,326,326,326,326,322,646,0
+24154,30000,male,2,1,30,-2,-1,-1,-2,-2,-2,5678,20762,2462,13019,4679,0,20774,2476,13263,4793,0,0,0
+24155,80000,male,2,1,29,0,0,-1,-1,-1,0,80832,40283,317,401,34985,37004,2000,450,500,35000,3000,2000,0
+24156,80000,male,2,2,30,2,2,2,2,2,2,66995,67794,69607,70864,71902,73407,2500,3500,3000,2800,2800,0,1
+24157,140000,male,1,2,30,-1,-1,-1,2,2,-1,1800,1885,4158,2021,-372,628,1885,4158,0,0,2000,0,0
+24158,220000,male,3,1,30,2,-1,-1,-1,-1,-1,780,390,0,780,0,780,390,0,780,0,780,390,1
+24159,110000,male,1,2,30,0,0,0,0,0,0,57040,51123,47251,46630,52889,53907,5000,4000,4000,10000,5000,5000,0
+24160,240000,male,2,1,31,0,0,0,0,0,0,168376,172809,176012,179175,180809,184383,7648,7900,8000,6500,6900,7000,0
+24161,170000,male,1,2,28,0,0,0,0,0,0,145584,125746,127407,146833,64268,58970,6500,5609,70000,2700,2200,2200,0
+24162,210000,male,1,1,31,0,0,0,0,0,0,140994,140224,141553,143811,144587,146802,5100,5201,5160,5200,5300,6150,0
+24163,300000,male,1,2,29,-2,-2,-2,-2,-2,-2,1898,2570,4576,3567,2180,644,2572,4599,3585,2180,644,1,1
+24164,190000,male,3,2,26,0,0,0,2,0,0,124896,100078,102801,98753,98727,99484,4633,8858,12,3588,3543,3700,0
+24165,200000,male,3,2,27,-1,-1,0,0,0,0,4484,192047,191248,191678,182676,181568,195316,7019,7493,5275,5786,20031,0
+24166,150000,male,2,2,25,0,0,0,0,0,0,141242,71740,146608,148658,135768,138681,4000,77000,6000,5000,5100,5100,0
+24167,50000,male,2,2,23,0,0,0,0,0,2,16252,17275,18392,19170,20555,20102,1600,1700,1400,1689,0,900,0
+24168,10000,male,1,2,24,-2,-2,-2,-1,0,0,-2,-391,-781,9211,9422,8853,0,0,10500,500,500,1000,0
+24169,70000,male,1,2,31,-2,-2,-2,-2,-2,-2,25856,13737,7716,25732,46671,26516,13737,7716,25740,46684,26516,56017,0
+24170,470000,male,1,2,30,-2,-2,-2,-2,-2,-2,9884,3285,5103,9258,4305,10001,3301,5127,9304,4326,10051,7661,0
+24171,250000,male,1,2,28,-2,-1,-1,-2,-2,-2,4003,2527,1652,7734,3337,7866,2549,1715,8042,4023,9167,3036,0
+24172,70000,male,3,2,28,0,0,0,0,0,0,71199,49042,47087,28596,4465,3204,2507,3024,2122,0,0,48459,0
+24173,80000,male,1,2,28,1,-1,-1,-1,-2,-2,0,47,207,0,0,0,47,207,0,0,0,0,0
+24174,270000,male,1,2,29,-1,-1,0,0,0,0,1576,199973,192008,166364,141918,141984,199973,8000,7800,5000,5500,5000,0
+24175,230000,male,1,2,29,2,-1,-1,-2,-2,-1,481,12381,0,0,0,376,12381,0,0,0,376,0,0
+24176,80000,male,3,2,30,2,0,0,0,0,0,79629,78010,5976,5812,4788,3758,1691,1106,1060,154,147,127,1
+24177,290000,male,2,2,30,-1,-1,3,2,-1,-1,792,264,264,264,260,4738,264,0,0,260,4746,53902,0
+24178,230000,male,1,2,30,0,-1,0,0,0,0,33400,36348,36163,32653,30821,29827,36348,3010,20000,1200,2000,1000,0
+24179,130000,male,2,1,31,0,0,0,0,0,0,132242,117873,120889,118293,121312,121162,5000,5000,5000,5000,5000,5000,0
+24180,500000,male,2,2,32,0,0,0,0,0,-1,331751,254846,162969,142735,76989,106476,10558,7410,3068,94,106476,152,0
+24181,580000,male,1,2,32,-1,0,0,0,0,0,49193,46367,38111,33497,26800,22202,11686,8348,6593,7197,10097,133081,0
+24182,180000,male,2,2,30,0,0,0,0,0,0,42198,43192,47493,48401,50096,51238,2000,5000,2000,2500,2100,1623,0
+24183,460000,male,1,2,31,0,0,2,0,0,0,4533,9023,8317,12338,12744,12397,5002,1,5002,1001,3,733,0
+24184,70000,male,2,1,30,1,2,0,0,0,0,72576,70775,68184,67172,50596,48876,0,3047,2849,1800,2000,1944,1
+24185,310000,male,1,2,32,0,0,0,0,0,0,217464,217951,222465,142935,147857,150442,8500,9100,5200,7300,7000,3939,0
+24186,50000,male,1,2,30,1,2,0,0,2,0,49233,48146,50029,50921,48809,49639,0,3000,5000,0,1815,2000,1
+24187,200000,male,2,2,32,2,2,2,2,2,2,88808,86484,92504,90120,93629,96980,0,7421,0,5000,5000,5000,1
+24188,300000,male,1,2,31,-1,-1,-2,-2,-2,-2,4370,0,0,0,0,0,0,0,0,0,0,0,0
+24189,110000,male,1,2,31,-1,-1,-1,-1,0,0,7300,593,11801,11312,11312,11312,593,11801,11312,0,0,0,0
+24190,50000,male,1,2,27,1,-1,2,-1,-1,-1,-45,559,163,267,-129,325,1000,0,500,0,1000,500,1
+24191,360000,male,3,1,31,-2,-2,-1,-1,0,0,0,392,827,136198,138722,141629,392,827,137101,5000,5119,5376,0
+24192,220000,male,2,2,31,0,0,0,0,-2,-2,38386,40726,38597,0,0,0,3000,1000,0,0,0,0,0
+24193,190000,male,1,2,31,0,0,0,2,2,0,104503,106773,114791,106414,96980,90700,4000,9844,3283,24,3297,3325,0
+24194,20000,male,3,2,23,2,0,0,0,0,-2,18337,19317,19645,19935,0,0,1602,1710,1000,0,0,0,1
+24195,80000,male,1,2,31,-1,-1,-1,-1,-1,-1,6887,171,1125,1613,0,4811,171,1125,1613,0,4811,0,0
+24196,50000,male,1,2,29,0,0,0,0,0,0,51234,51227,50936,49823,50990,50998,2300,2100,2000,2000,2100,3000,0
+24197,50000,male,2,2,30,1,1,-1,2,2,0,13745,-4338,46881,47832,46783,47890,125,52000,2000,0,2000,3700,0
+24198,360000,male,2,2,31,0,0,0,0,0,0,34831,29791,19013,17929,20759,3436,5059,1383,2000,3030,2009,2018,0
+24199,90000,male,1,2,30,0,0,0,0,0,0,40768,41789,42913,44388,45348,48454,2000,2100,2500,2000,4000,0,0
+24200,200000,male,3,2,30,-2,-2,-2,-2,-2,-2,0,680,1100,1500,1402,0,680,1100,1500,1402,0,0,0
+24201,410000,male,2,2,30,-2,-2,-2,-2,-2,-2,7011,9173,7259,8430,5130,5064,9222,8036,8542,5155,5089,18270,0
+24202,330000,male,1,2,31,0,0,0,-1,-1,0,165042,163406,137664,3381,40635,40490,9000,7558,5000,42054,3000,2000,0
+24203,100000,male,1,2,30,0,0,0,0,-2,-2,96846,98364,21255,0,0,0,5055,1049,0,0,0,0,0
+24204,200000,male,2,1,31,-1,-1,-1,-1,-1,-2,6961,3848,4581,610,0,0,3853,4581,612,0,0,0,0
+24205,110000,male,2,1,30,0,0,0,-2,-1,0,47755,15484,-41,0,67942,53947,1525,0,41,109332,2400,2000,0
+24206,90000,male,1,2,31,1,2,2,0,0,0,33868,34614,33776,34767,35504,36249,1600,0,1563,1300,1300,1438,1
+24207,320000,male,2,2,30,0,0,0,-1,0,0,26310,28236,29368,160578,129187,124967,2728,2240,160578,4600,5000,4500,0
+24208,70000,male,1,2,30,-1,2,-1,2,-1,-1,832,416,832,416,416,1132,0,832,0,416,1132,0,0
+24209,220000,male,2,2,30,0,0,0,0,0,0,91210,91093,76832,66879,55495,43369,4000,3000,2271,2009,1469,2000,0
+24210,180000,male,1,2,32,2,2,0,0,0,0,220901,207382,201883,196524,192243,186537,0,7820,7000,7000,5000,6000,1
+24211,180000,male,1,2,31,0,0,0,0,0,0,12805,11784,13589,15301,3169,5106,2000,2000,2000,1000,2000,1000,0
+24212,240000,male,2,2,31,0,0,0,0,0,0,231467,231619,234261,231597,42209,26348,8500,9358,5104,864,527,0,1
+24213,140000,male,2,2,30,0,0,0,0,0,0,70568,58294,59571,60793,62797,64298,2100,2200,2200,3000,2500,2800,1
+24214,280000,male,2,2,30,2,2,2,2,2,2,106907,110550,113877,115223,116930,112607,6900,6600,4700,5100,0,4200,0
+24215,30000,male,1,1,31,1,2,2,2,2,2,14107,14779,14252,16205,15647,17091,1200,0,2200,0,1700,0,1
+24216,20000,male,2,2,31,-1,-1,-1,2,0,0,5380,0,184,184,5932,7725,0,184,0,5924,2000,2451,0
+24217,80000,male,1,2,29,0,0,0,-2,-2,-2,58246,61650,0,0,0,0,5000,0,0,0,0,0,0
+24218,230000,male,2,2,30,0,0,0,0,0,0,171861,157389,161622,162501,163329,161560,10000,10000,8000,10000,7000,7000,0
+24219,200000,male,2,1,30,0,0,0,0,0,0,143266,113676,116355,117802,116296,60792,6000,6000,5000,6000,3000,1611,1
+24220,520000,male,1,2,29,0,0,0,0,0,0,464541,388685,280101,184081,108330,89199,15521,10423,7215,4012,3017,3028,0
+24221,400000,male,2,2,29,0,0,0,0,0,0,237425,242225,246475,252429,257510,262931,8600,8000,9000,8200,8500,8500,1
+24222,30000,male,2,2,25,-2,-2,-2,-2,-2,-2,836,836,836,390,390,390,836,836,390,390,390,0,0
+24223,370000,male,1,2,31,0,0,0,0,0,0,35605,39837,41576,44178,47838,54341,5000,3000,5000,5000,8000,10000,0
+24224,150000,male,2,1,31,-2,-2,-2,-2,-2,-2,500,15338,0,0,650,1430,15338,0,0,650,1430,1200,0
+24225,80000,male,2,2,26,1,2,0,0,0,-1,27897,24833,23331,21964,19664,2544,0,1527,1500,540,2544,2789,1
+24226,430000,male,3,2,26,0,0,0,0,0,0,438795,438691,437284,435832,345499,228818,18000,18000,16570,11803,10563,10000,0
+24227,20000,male,2,2,24,0,0,0,0,0,0,19498,13056,14092,10474,11198,12198,2000,1254,1000,724,1000,1000,1
+24228,50000,male,2,2,27,0,0,0,0,0,0,49321,47912,39421,40165,41198,43766,1700,2000,1700,1700,3400,1000,0
+24229,60000,male,2,2,24,2,2,2,0,0,0,48945,52362,51255,52119,52866,53969,4549,0,2313,2044,2110,2500,1
+24230,360000,male,1,2,28,-2,-2,-2,-2,-1,-1,2988,2766,2766,2766,3373,5042,2766,2766,2766,3373,5042,1000,0
+24231,280000,male,1,2,31,-2,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,219,0,0,82150,0,220,1124,0
+24232,360000,male,2,1,29,0,0,0,-1,0,0,18454,16419,12932,91329,82929,70047,6028,6032,99578,2507,5376,2000,0
+24233,420000,male,1,1,32,0,0,0,0,0,0,60825,45060,25056,24751,24984,24983,1407,1407,1332,963,877,1000,0
+24234,320000,male,1,2,31,-2,-2,-2,-2,-2,-2,4445,4959,4000,3992,1590,-10,4984,4121,4012,1598,0,0,0
+24235,90000,male,2,1,31,0,0,0,0,-2,-2,5287,7525,10360,0,0,0,2500,3000,0,0,0,0,0
+24236,360000,male,1,2,33,-1,-1,-1,-1,0,-1,5484,4307,12004,21810,13807,2960,4317,12006,21810,0,2960,1810,1
+24237,70000,male,2,2,30,0,0,0,0,0,0,68668,65750,67879,69161,68264,61757,2347,3182,3144,2600,2360,1300,0
+24238,50000,male,2,2,26,0,0,-1,-1,0,0,46008,3756,195,4226,8956,9361,1007,1000,4226,5000,700,600,0
+24239,200000,male,3,1,30,0,0,0,0,0,0,141785,144933,148103,148137,151505,154728,7000,7000,4000,4000,4000,4000,0
+24240,250000,male,1,2,31,-2,-2,-2,-2,-2,-2,0,0,7066,0,0,0,0,7066,145,0,0,2758,0
+24241,150000,male,1,2,33,-1,-1,-1,-1,-1,-1,1340,1805,4290,-10,1999,10559,1815,4354,0,2009,10610,9855,0
+24242,350000,male,2,1,33,-1,-1,-1,-1,-1,0,694,10436,10857,12688,6344,5376,10524,10916,12745,6344,22,7186,0
+24243,30000,male,2,1,32,0,0,0,0,-1,0,28729,28305,16084,4432,24621,25073,2000,2000,2000,26100,1000,1100,0
+24244,200000,male,1,2,30,2,4,4,4,4,4,173639,176605,179754,182763,184570,184091,7310,7459,7468,6275,3000,0,0
+24245,200000,male,1,2,32,0,0,0,-2,-2,-2,78284,10532,0,0,0,0,5005,0,0,0,0,2842,0
+24246,150000,male,2,2,29,0,0,-1,-1,0,0,102802,112174,6263,6824,10824,14631,12186,6263,6824,10000,10000,10000,0
+24247,190000,male,1,2,30,0,0,0,0,0,0,138429,141192,144484,148760,48776,49853,4555,5058,6489,1602,1716,2286,0
+24248,340000,male,2,2,30,0,0,-1,-1,0,0,20865,2611,3255,57920,23207,22659,2000,3255,57920,22659,2000,1000,0
+24249,360000,male,1,2,31,1,-1,-1,-1,-1,-2,0,951,3760,752,0,0,951,3760,752,0,0,0,0
+24250,280000,male,1,2,30,-1,-1,-1,-1,-1,-1,17913,380,5118,380,380,380,380,5118,380,380,380,380,0
+24251,30000,male,2,2,47,0,0,0,0,0,0,29119,29827,29583,29166,29066,29008,1500,2019,1400,600,580,0,0
+24252,300000,male,3,1,35,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+24253,220000,male,5,2,37,2,0,0,0,0,0,217638,213843,211233,194579,96213,27540,7506,23007,7991,4191,719,409,0
+24254,80000,male,3,1,41,0,0,0,0,0,0,81070,63610,58099,52599,52519,46945,2385,5028,21595,5541,1507,3062,0
+24255,30000,male,2,1,40,2,2,2,0,0,0,20801,23534,22875,24155,23739,22124,3400,0,2000,1500,900,1038,1
+24256,40000,male,2,1,37,0,0,2,0,0,0,9608,12127,11647,13138,14903,17664,3000,0,2000,2000,3000,2000,0
+24257,200000,male,2,2,29,0,0,2,2,2,2,145090,151564,115836,122359,122588,119266,12000,0,10000,5000,0,6000,0
+24258,200000,male,2,2,30,0,0,0,0,0,2,83149,94976,106808,115702,122236,134013,13550,13590,12356,12500,14013,4900,0
+24259,110000,male,1,2,29,-1,-1,0,0,0,0,750,71015,72517,72537,55600,72442,71022,5000,5000,5000,22000,5000,0
+24260,100000,male,1,2,31,2,2,2,2,2,2,93975,95030,96611,97947,95602,77323,3500,4000,4005,600,2400,2900,1
+24261,20000,male,2,1,34,2,-1,0,0,0,0,390,18864,19499,19780,780,0,18864,1329,1000,0,0,0,1
+24262,120000,male,3,1,46,0,0,0,0,0,0,104153,98955,96298,90570,89442,92756,4500,4400,4040,3100,6600,3500,0
+24263,280000,male,2,1,37,0,0,0,0,0,0,85029,71353,67680,65173,62564,59638,2625,2497,2914,1921,2001,1270,0
+24264,280000,male,2,2,30,0,0,0,0,0,0,29161,14908,237367,233819,198890,189064,1282,233836,6935,5931,19157,5905,0
+24265,300000,male,2,2,42,1,-1,-1,2,2,-2,0,159,803,486,-712,-1037,159,803,8,387,0,0,0
+24266,420000,male,1,1,43,-2,-2,-2,-2,-2,-2,3542,2967,2977,2987,3624,3165,3010,3035,3029,3637,3222,3025,0
+24267,80000,male,1,1,41,-1,-1,-1,-1,-1,-1,11688,8739,10926,3355,6127,25675,8739,10926,3362,6127,25675,7606,0
+24268,360000,male,1,1,49,-1,-1,-1,-1,-1,0,1050,390,390,750,930,540,390,390,750,930,150,540,1
+24269,260000,male,5,1,37,0,0,0,0,0,0,9801,11115,11930,12954,14246,15733,1485,1300,1229,1521,1728,1610,0
+24270,260000,male,2,1,32,-1,0,0,0,0,0,5227,10100,14909,19623,20012,20466,5000,5000,5000,716,776,5000,0
+24271,110000,male,2,2,32,0,0,0,0,0,0,64651,65920,67290,68652,69552,71008,2941,3026,3076,2638,2728,2742,0
+24272,400000,male,2,1,32,0,0,0,0,0,0,271974,337765,138235,136102,33340,63684,100000,10007,3601,22000,35802,2013,0
+24273,20000,male,3,1,32,1,3,2,2,0,0,15598,15055,16511,15953,16190,16777,0,2000,0,800,1000,1000,1
+24274,170000,male,1,1,35,0,0,0,0,0,2,136460,139216,143695,145550,154113,151786,4800,6500,5500,10774,0,5500,0
+24275,70000,male,3,1,35,0,0,2,2,2,2,27915,31009,31914,32394,31574,34053,3577,1700,1300,0,3000,1385,0
+24276,210000,male,1,1,39,-1,-1,-1,-1,-2,-2,840,1665,610,0,0,0,1665,610,0,0,0,3514,0
+24277,10000,male,2,1,38,0,0,2,0,0,2,6798,8055,7803,8623,9527,9780,1500,0,1100,1000,504,0,1
+24278,780000,male,1,1,48,0,0,0,0,0,0,171459,178587,190663,195124,184872,191090,10000,15004,10000,8000,10028,7003,0
+24279,420000,male,1,2,35,0,0,0,0,0,0,413076,414013,417086,348345,287150,261219,15048,16078,12638,50700,20014,10127,0
+24280,280000,male,3,1,44,0,0,0,0,0,0,295786,305529,311081,313242,151292,152318,15000,10472,11334,10010,6000,200000,0
+24281,50000,male,3,2,46,-1,-1,-1,2,-1,-1,390,170,780,390,780,40418,170,1000,0,780,40418,3170,0
+24282,50000,male,3,1,49,1,2,2,2,2,2,49206,51097,50011,53469,50337,46903,3000,0,5000,2005,0,4000,1
+24283,60000,male,2,2,33,0,0,0,0,0,0,32961,31379,31328,30905,30237,28461,1799,3000,1420,2000,1164,2000,0
+24284,20000,male,2,2,33,0,0,0,0,0,0,18330,17797,18731,19610,18980,38766,1291,1324,1302,672,701,788,0
+24285,170000,male,2,1,35,2,2,2,2,2,2,148655,150727,154850,150893,165924,163176,6000,8000,0,19172,0,12210,1
+24286,330000,male,2,1,48,-2,-2,-2,-2,-2,-2,6051,8346,8952,2732,2732,2732,8387,8996,2745,2745,2745,2734,0
+24287,30000,male,1,1,37,1,2,2,0,0,2,20829,22689,22043,23367,24983,25437,2500,0,2000,2000,1000,0,1
+24288,350000,male,1,1,42,2,-1,-1,-1,-1,-1,671,671,671,671,671,30727,671,671,671,671,30727,821,1
+24289,290000,male,2,1,49,0,0,0,0,0,0,193650,127336,125088,123694,123518,124246,4126,4304,4000,5000,4100,4500,0
+24290,50000,male,2,1,49,2,2,0,0,0,0,49943,47585,47582,21391,21867,19774,0,2500,1300,2000,700,1000,1
+24291,20000,male,3,2,45,1,-1,-1,-1,-1,-2,0,390,0,780,0,0,780,0,780,0,0,0,0
+24292,30000,male,2,1,38,0,0,-1,-1,-1,-1,18526,12529,5937,5880,1680,0,1500,5937,5888,1680,0,0,1
+24293,50000,male,2,3,37,0,0,0,0,0,-1,50239,49642,48381,44113,8522,17948,1799,2060,1014,170,17948,188,0
+24294,70000,male,3,2,39,0,0,0,0,0,0,63330,62711,57774,47326,50910,55059,5024,5043,5000,5000,5000,5000,0
+24295,310000,male,1,1,33,1,2,0,0,0,0,232244,157098,84865,70995,45838,36252,40,3959,2807,2000,3000,2000,0
+24296,220000,male,2,1,48,0,0,-1,0,0,2,2858,1929,10417,9363,7898,5758,1000,10417,1061,525,0,313,0
+24297,360000,male,3,2,34,-1,-1,-1,-1,-1,-1,686,3821,1937,944,1219,2216,3821,1937,944,1219,2216,2000,0
+24298,140000,male,1,1,38,-1,-1,0,-1,-1,-1,1110,24629,22984,4456,3351,9038,24633,10066,4457,3353,9038,0,0
+24299,200000,male,2,1,38,2,2,2,2,0,0,102272,104978,105924,102663,97090,98045,5000,4500,0,3500,3500,9000,1
+24300,20000,male,2,1,42,0,0,0,0,2,2,14310,15665,16706,18214,18626,18196,1600,1600,2100,1000,0,1500,1
+24301,290000,male,2,1,36,0,0,0,0,0,0,154923,159186,323836,112929,62375,63637,6507,6400,4490,2000,2306,2912,0
+24302,300000,male,2,1,36,0,0,0,0,0,0,76382,166051,167541,167905,167974,170428,115718,7905,6509,5874,6116,6300,0
+24303,200000,male,2,1,45,3,2,2,2,2,2,2500,2500,2500,2500,2500,2500,0,0,0,0,0,0,1
+24304,150000,male,1,2,32,0,0,0,0,0,0,76215,72149,58228,38495,35807,24871,22365,10000,3993,15838,10000,7780,0
+24305,240000,male,2,2,39,0,0,0,0,0,0,177795,167091,161691,165177,132478,138979,8576,8200,9009,5000,10500,0,0
+24306,450000,male,2,2,32,0,0,0,0,0,0,166295,147549,234421,240020,240016,223545,5771,90000,10517,8801,8265,9000,0
+24307,20000,male,2,2,32,0,0,0,0,0,0,15121,15424,15468,11082,11303,10768,1700,1488,1172,393,415,616,0
+24308,50000,male,3,1,45,4,3,2,0,0,0,50419,49331,48268,49075,49475,48575,0,0,2000,1000,1000,2000,1
+24309,190000,male,2,1,33,0,0,0,0,0,-2,98814,102174,105230,17907,-93,-483,5000,5361,1000,0,0,0,1
+24310,390000,male,1,1,41,0,0,0,0,0,0,250490,248886,204333,201825,199355,197036,9506,8000,7500,7500,7500,7100,0
+24311,90000,male,1,2,36,-1,0,0,0,0,0,91111,81784,97541,90102,78285,70224,9400,27000,3000,2680,52930,3400,0
+24312,120000,male,2,1,39,0,0,0,2,2,2,93673,95590,101562,94307,89867,81617,4375,8485,524,6004,5,3073,0
+24313,210000,male,1,2,33,-1,-1,-1,-1,-1,-1,396,396,396,396,1911,396,396,396,396,1911,396,396,0
+24314,500000,male,2,1,41,0,0,0,0,0,0,478623,466444,239921,184874,47774,34617,14000,12800,4300,3063,3600,3100,0
+24315,320000,male,1,1,40,-1,-1,-1,-1,-1,0,22155,10853,33968,86024,232017,15622,10908,34151,86466,232242,3199,7500,0
+24316,210000,male,1,2,39,-1,-1,-1,0,0,0,22861,6437,61813,59024,63483,58991,6536,72037,5015,12000,5000,5000,0
+24317,90000,male,2,2,38,2,0,0,0,0,0,89094,83036,86181,86311,66572,68119,3000,4500,3500,2500,3500,3000,1
+24318,100000,male,2,2,34,1,-2,-2,-2,-1,-1,-342,-342,-342,-342,1158,2485,0,0,0,1500,1500,0,0
+24319,360000,male,2,1,37,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+24320,40000,male,2,3,37,0,0,0,0,2,0,20774,21778,22807,24993,24292,24800,1355,1384,2570,0,899,2006,0
+24321,80000,male,1,1,41,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+24322,300000,male,1,2,34,1,-1,-1,-1,-1,0,2915,1813,3397,4024,5363,3572,1813,3555,4024,5363,0,500,0
+24323,130000,male,3,1,43,-1,-1,-1,-1,-1,-1,1261,1705,0,1261,13161,390,1705,817,1261,13161,390,390,0
+24324,480000,male,1,1,41,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+24325,320000,male,2,1,39,0,0,-1,-1,0,0,310243,0,189018,131916,258800,96900,0,189018,132846,130400,193800,45313,0
+24326,330000,male,3,1,37,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+24327,70000,female,1,2,38,0,0,0,0,0,0,63455,54722,56062,82305,42308,40507,2057,2322,1631,2942,1783,1723,0
+24328,240000,male,2,2,46,0,0,0,0,0,0,262206,257969,256740,246364,127177,33622,9200,12000,5700,3200,1200,1000,1
+24329,210000,male,3,2,32,0,0,0,0,0,0,204157,211065,206043,181945,52712,3574,10059,10120,8256,5000,4036,153904,0
+24330,50000,male,2,1,47,-1,-1,-1,2,0,-1,390,390,780,780,390,390,390,780,390,0,390,0,0
+24331,50000,male,1,1,39,-1,-1,-1,-1,-1,-1,8086,20993,16653,9346,3424,13176,21012,16653,9354,3424,13176,10868,0
+24332,30000,male,2,1,38,0,0,0,0,0,0,17085,19702,22978,23078,24994,25330,5000,5200,3078,5000,3000,5000,0
+24333,310000,male,2,1,38,-1,-1,-1,-1,-1,-1,23285,1058,0,1312,4836,11795,1058,142,1312,4836,11795,0,0
+24334,230000,male,5,2,40,2,2,2,0,0,0,119730,120912,111819,93007,92122,61583,5000,0,3700,3986,2900,1057,0
+24335,170000,male,2,1,39,0,0,0,0,0,0,91289,74457,64374,63936,60750,54248,2486,2430,2224,1957,1917,3000,0
+24336,180000,male,2,1,39,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+24337,330000,male,1,1,49,-2,-2,-2,-2,-2,-2,5813,65,3775,1590,0,2130,65,3775,1590,0,2130,7700,0
+24338,170000,male,1,1,34,0,0,0,0,0,0,53145,52131,45987,35377,29141,21955,2005,2000,1514,1006,1000,220,0
+24339,160000,male,1,2,33,2,2,2,2,2,2,101430,103870,106719,107485,108326,110635,5000,6000,4000,4100,4200,4200,0
+24340,50000,male,2,2,32,0,0,3,2,2,2,15276,19797,19205,18600,19697,20243,4800,0,0,1700,1000,0,1
+24341,60000,male,2,2,33,0,0,0,0,0,-1,56221,58271,58446,53368,-632,15368,3000,3000,3000,0,16000,1000,0
+24342,500000,male,3,1,49,-1,-1,-1,-1,-1,-1,12536,27882,35031,42145,7347,152769,28023,35477,42360,7387,153532,15603,0
+24343,230000,male,1,1,44,1,-1,-1,0,-1,-1,-213,2302,22049,20756,8035,10766,5000,22068,2014,9000,10766,7721,0
+24344,180000,male,1,1,38,1,-2,-1,-1,-2,-1,-47,-47,470,0,0,800,0,517,0,0,800,0,0
+24345,320000,male,1,1,40,-1,-1,-1,-1,-1,-1,8240,8240,8240,8240,15273,16106,8240,8240,8240,15273,16106,9690,0
+24346,490000,male,1,1,39,0,0,-1,-1,0,0,189460,16769,2310,48409,296319,181627,16405,2324,25053,280695,17398,160111,0
+24347,210000,male,5,1,43,0,0,0,0,0,0,197743,201949,208690,211925,48724,49743,7500,10000,9085,1744,1804,1816,0
+24348,50000,male,2,1,33,0,0,0,0,0,0,22384,13538,9199,6879,6753,5440,1320,2000,1284,264,109,390,1
+24349,160000,male,3,1,33,0,0,0,0,-2,-2,25058,20624,16280,0,0,0,1344,1000,0,0,0,0,0
+24350,80000,male,6,1,41,0,0,0,0,0,-1,165578,153033,133017,19164,3272,11766,4351,3520,1000,3272,11766,1740,1
+24351,220000,male,1,1,49,-1,-1,-1,-1,-1,-1,1410,580,1386,-14,6160,1307,580,1386,0,6174,1307,1341,0
+24352,20000,male,2,1,46,-1,2,0,0,0,0,7544,7277,8215,9200,10280,16130,0,1215,1200,1280,6000,0,1
+24353,200000,male,1,1,49,2,-1,-1,-1,-1,0,416,416,416,0,832,416,416,416,0,1248,0,416,0
+24354,300000,male,3,1,31,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+24355,20000,male,3,1,36,3,2,2,3,3,3,1050,1050,1050,1050,1050,1050,0,0,0,0,0,0,1
+24356,180000,male,1,2,32,1,-1,-1,-2,-2,-2,0,144,-35,-35,-335,-335,144,0,0,0,0,0,0
+24357,200000,male,3,2,33,-2,-2,-2,-2,-1,-1,2810,7114,1981,3959,5382,0,7149,2059,3978,5403,0,0,0
+24358,140000,male,2,1,38,2,2,2,2,2,2,53797,55007,56128,56713,55796,56251,2700,2600,2100,600,1500,4545,1
+24359,150000,male,1,2,36,-1,-1,-1,-1,-1,0,5856,2629,99,45,2928,519,4914,99,45,2982,0,993,0
+24360,160000,male,4,1,40,0,0,0,0,0,0,19978,27563,28350,25186,36100,21707,10000,5002,5000,14400,10000,4000,0
+24361,160000,male,2,2,32,0,0,0,0,-1,0,163695,153009,115096,76037,152837,156042,7000,5400,4082,163107,5668,5958,0
+24362,200000,male,1,1,34,-2,-2,-2,-2,-2,-2,466,1242,4006,941,2357,2945,1242,4034,945,2366,2947,1143,0
+24363,20000,male,3,2,49,1,2,2,-1,0,0,19481,18756,-3744,17105,17250,0,0,0,21200,345,0,0,1
+24364,260000,male,2,2,32,1,-2,-2,-2,-1,-1,3581,-9,-9,1935,999,0,0,0,1944,999,0,0,0
+24365,260000,male,2,2,32,-1,-1,-1,-1,-1,-1,1198,1198,1198,1198,1198,1198,1198,1198,1198,1198,1198,1198,1
+24366,620000,male,2,1,42,0,0,0,0,0,0,75509,65572,59306,60479,61467,63159,3500,2500,2500,2300,3000,2500,0
+24367,50000,male,1,1,37,0,0,0,0,0,0,37603,38672,39949,40225,25517,20655,2000,2200,1400,1000,1000,1000,1
+24368,20000,male,2,1,32,-1,-1,-1,-1,-1,-1,390,390,390,0,780,0,390,390,0,780,0,0,0
+24369,190000,male,2,2,32,0,0,0,2,0,0,6415,8169,10060,10633,11197,11907,2000,2000,1000,1000,1000,1000,0
+24370,30000,male,2,1,38,1,2,0,0,0,2,24305,23621,24346,25359,26987,26416,0,1410,1423,2051,0,2000,1
+24371,160000,male,3,1,38,-1,-1,-1,-1,0,-1,6763,1651,3107,4187,2474,192,1651,3107,4187,0,192,5510,0
+24372,360000,male,2,1,40,-1,-1,-2,-1,-1,-1,12663,0,0,2455,6447,0,0,0,2455,6447,0,0,0
+24373,20000,male,2,2,44,0,0,0,-1,-1,-1,19157,20011,18768,1261,390,390,1500,1768,1261,390,390,390,0
+24374,150000,male,3,2,42,0,0,0,0,0,0,49728,47784,47449,47987,48051,48410,5000,6000,3000,1700,2000,2000,0
+24375,400000,male,1,1,38,-1,-1,-1,-1,-1,-1,1751,7046,2026,8686,8526,4041,7046,2026,8686,8526,4041,9511,0
+24376,80000,male,3,1,43,1,-2,-2,-2,-2,-1,0,0,0,0,0,2060,0,0,0,0,2060,0,0
+24377,260000,male,1,1,34,-2,-2,-2,-2,-2,-2,-40,-40,-40,8117,-8,-8,0,0,8157,0,0,1673,0
+24378,500000,male,2,1,38,-1,-1,-1,-1,0,-1,6178,825,2122,34159,3340,24752,829,2133,34313,17,24875,839,0
+24379,240000,male,2,1,34,0,0,0,0,0,0,242805,237854,240535,242770,191520,173461,10000,11000,9248,8005,8000,8000,0
+24380,50000,male,2,1,37,2,0,0,0,0,0,49444,50621,49326,29584,19665,19799,2306,2155,1086,19001,906,1500,0
+24381,10000,male,2,1,36,2,0,0,0,0,0,9075,8593,9582,8986,9691,9889,2000,1300,1200,1000,1000,569,0
+24382,50000,male,1,1,47,1,-2,-1,-1,-2,-2,0,0,1708,0,0,0,0,1708,0,0,0,0,0
+24383,150000,male,2,1,41,0,0,0,0,0,0,140172,141528,141411,143748,147159,151185,5507,4007,5001,5003,6001,5000,0
+24384,150000,male,1,1,40,-2,-1,-1,-1,0,0,0,1003,1003,35206,36003,16854,1003,1003,35206,2000,18158,189000,0
+24385,130000,male,3,2,30,0,0,0,-1,-1,-1,29344,3268,6186,700,1680,0,1107,3025,707,1680,0,0,0
+24386,120000,male,2,2,37,1,2,0,0,0,0,21786,22126,23763,25059,25641,26228,1000,2000,2000,1000,1000,1000,0
+24387,50000,male,3,2,39,0,0,0,0,0,0,39753,40701,41342,41424,41182,41187,2000,2000,2000,1600,2000,2000,1
+24388,160000,male,1,1,41,1,2,0,0,0,0,63446,63501,65439,66761,67628,68983,1699,2960,3007,2573,2600,3008,0
+24389,70000,male,2,2,39,0,0,0,0,0,0,120766,55164,41549,31966,31071,30476,4000,2000,1500,1200,1500,1500,1
+24390,380000,male,1,2,40,0,0,0,0,0,0,245069,251731,257028,266487,269786,265312,12000,10600,15000,9800,10000,10000,0
+24391,280000,male,1,2,47,-2,-2,-2,-2,-2,-2,2180,251,4250,1000,5507,5348,251,4250,1000,5507,5348,433,0
+24392,50000,male,3,1,39,0,0,-2,-2,-2,-2,51400,0,0,0,0,0,0,0,0,0,0,0,1
+24393,30000,male,2,1,35,0,0,0,2,0,0,8348,9678,12702,12206,12701,13839,1476,3500,0,1000,1500,0,1
+24394,260000,male,1,2,37,-2,-2,-2,-2,-2,-2,256,188,188,198,217,1825,188,188,198,217,1825,198,0
+24395,210000,male,2,2,35,0,0,0,0,0,0,131956,134755,139089,140488,143649,146834,5000,6507,5200,5500,5500,5510,0
+24396,320000,male,1,2,32,-1,-1,-1,0,-1,-1,1043,0,20012,34438,1082,8807,0,20012,15000,1082,8807,787,0
+24397,480000,male,1,1,41,0,0,0,-1,-1,-1,76750,103618,127402,7302,5155,10492,30000,30000,9398,5155,4101,14254,0
+24398,80000,male,1,1,42,1,2,2,2,2,2,45619,46567,47522,48373,47442,50501,2000,2000,2000,0,4000,0,0
+24399,100000,male,2,2,43,0,0,0,2,0,0,42529,43526,46628,45578,46486,47457,1703,3805,0,1663,1719,1728,0
+24400,70000,male,1,2,31,0,0,0,0,0,0,47873,52440,55961,63341,64694,67905,6000,5000,10000,3000,5000,3000,0
+24401,150000,male,1,2,48,0,0,0,-1,-1,-1,104320,82478,73465,10000,10000,10000,2433,1786,10000,10000,10000,0,0
+24402,140000,male,1,3,41,0,0,0,0,0,0,130138,132726,135494,136679,130812,67349,4756,4912,3781,2500,3000,2700,1
+24403,360000,male,1,1,39,-1,-1,-1,-1,-1,0,30956,30814,42791,31830,30693,596,30818,42887,31839,30693,3,30899,0
+24404,500000,male,3,1,47,-1,-1,-1,-1,-1,-1,18033,8783,13202,16546,12585,14287,8783,13357,16600,12585,14287,25793,0
+24405,320000,male,2,2,36,2,0,0,2,0,0,283743,289508,302561,283356,275361,268871,12013,21041,1514,9122,9518,9209,1
+24406,190000,male,1,1,44,-1,-1,2,2,-2,-2,231,3421,3190,0,0,0,3190,0,0,0,0,0,0
+24407,50000,male,3,1,49,0,0,0,0,-2,-2,18139,9198,10000,0,0,0,1198,1000,0,0,0,0,1
+24408,50000,male,2,2,38,0,0,0,0,0,0,52711,47302,48540,48355,18184,18591,1769,2007,1822,651,700,1000,1
+24409,290000,male,1,2,31,0,0,0,0,0,0,124626,115239,113494,100847,80295,82085,3900,4864,5000,2792,3000,2642,0
+24410,110000,male,5,1,36,0,0,0,0,0,0,58949,60131,61329,62402,63112,64325,3000,3000,3000,2500,3000,2500,0
+24411,210000,male,2,2,31,0,0,0,0,0,0,189650,127111,93208,88223,84175,80305,5000,4200,3100,3000,3100,3000,0
+24412,20000,male,3,2,32,1,2,0,0,0,0,20450,17861,18967,19633,18187,18568,0,1700,1300,651,674,756,1
+24413,90000,male,3,1,35,0,0,0,0,0,0,86821,71263,73515,74100,23500,23500,4000,4000,3000,0,0,0,0
+24414,120000,male,2,2,36,-1,-1,2,2,-2,-2,66,584,259,-66,-391,-716,843,0,66,325,325,325,0
+24415,20000,male,2,1,46,3,2,2,2,0,0,7283,7021,11208,8818,6704,7364,0,4500,0,1000,2000,3000,1
+24416,270000,male,2,2,31,0,0,2,2,2,2,21129,16616,16911,14692,13907,10660,1697,2500,0,1000,0,2000,0
+24417,190000,male,2,2,41,0,0,0,0,0,0,33798,34931,36064,37160,38237,39464,2000,2000,2000,2000,2000,2000,0
+24418,200000,male,3,2,33,-2,-2,-2,-2,-2,-2,655,270,880,0,0,0,270,880,0,0,0,0,0
+24419,340000,male,2,1,35,0,0,0,0,0,0,38214,39229,40747,41930,43397,44710,1500,2000,2000,2000,2000,2000,0
+24420,310000,male,1,2,33,-1,-1,-1,-1,-1,-1,10878,12910,990,0,1715,11936,12910,990,0,1715,11936,277,0
+24421,180000,male,3,1,30,-1,0,0,0,0,0,56951,57941,58994,60047,61389,63048,2100,2150,2200,2500,3000,1000,0
+24422,80000,male,2,2,32,0,0,0,0,0,0,78239,80426,81767,78340,36895,39079,4500,5009,5000,2000,4000,1500,1
+24423,510000,male,3,2,31,1,-1,0,0,0,0,0,14370,17023,9706,7271,9551,14370,3500,2500,1380,2380,3000,1
+24424,200000,male,1,1,44,0,0,0,0,0,0,75811,77554,79418,80608,81297,83602,4001,3501,3501,3001,4001,4001,0
+24425,100000,male,1,2,36,0,0,0,-1,-1,2,15585,12430,8186,1127,10880,10143,5000,5000,1127,10143,0,7000,0
+24426,150000,male,2,2,35,0,0,0,-1,-1,-1,4301,8246,12865,817,1095,1393,4000,5064,821,1100,1393,3796,1
+24427,400000,male,2,1,35,0,0,0,0,-1,0,212647,148816,129580,50790,49106,40591,6000,9353,10000,49106,2000,2000,0
+24428,130000,male,2,1,44,1,2,2,2,2,2,5230,4998,7898,7021,46431,45891,0,3000,0,40200,0,780,1
+24429,420000,male,2,1,35,-1,-1,-1,-1,-1,-1,9288,16880,28690,13310,3539,2926,17095,28824,13367,3547,2936,9580,0
+24430,340000,male,1,2,49,-1,-1,-1,-1,-1,-1,1190,2988,390,1489,2140,1190,2988,390,1489,2140,1190,1190,0
+24431,200000,male,1,1,36,-1,-1,-1,-1,-1,-1,1990,1186,4078,3000,3849,4479,1186,4092,3000,3849,4479,8120,0
+24432,420000,male,2,1,32,0,0,2,2,-2,-2,203843,21400,800,0,0,0,3200,0,0,0,0,0,0
+24433,50000,male,1,2,34,-1,-1,-1,0,0,0,27465,24125,47444,43028,43719,0,24125,60003,5000,30000,34000,0,0
+24434,280000,male,1,2,31,0,0,0,0,0,0,148186,150724,153762,155242,143679,145615,5000,5006,4408,4117,4600,4600,0
+24435,280000,male,1,2,31,2,0,0,-1,0,0,278510,279845,0,189841,193313,192742,6996,0,189841,6022,6078,5300,1
+24436,60000,male,3,1,46,0,0,0,0,0,0,56869,57976,54398,46937,19085,19506,2110,2131,2010,1000,1000,1000,0
+24437,360000,male,1,1,33,-1,-1,-1,-1,-1,-1,2040,894,1228,746,2153,307,897,1234,749,2163,308,298,0
+24438,220000,male,2,2,31,1,2,0,0,0,0,224244,210290,179645,166753,82058,20650,0,6800,6640,4100,1100,0,1
+24439,20000,male,2,2,38,0,0,0,0,0,0,16465,18470,18877,19604,19800,0,3000,1473,1200,396,0,0,0
+24440,160000,male,1,1,41,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+24441,20000,male,3,2,48,-1,-1,-2,-1,-1,-1,170,-220,-610,390,0,19993,0,0,1390,0,20773,400,0
+24442,180000,male,2,1,33,-2,-2,-2,-2,-2,-2,3187,3198,264,7352,1385,7880,3198,264,7373,1385,7880,0,0
+24443,500000,male,1,2,33,0,0,0,0,0,0,28498,26117,29717,36485,6174,7148,5000,5000,8006,2,2021,7726,0
+24444,20000,male,2,1,34,0,0,0,0,0,2,9662,10673,11998,13010,13750,13389,1180,1505,1517,1257,0,900,1
+24445,20000,male,2,2,34,-2,-2,-2,-2,-2,-2,2216,2199,1530,750,2280,1500,2199,1530,750,1140,3000,780,0
+24446,250000,male,3,2,45,-1,0,0,0,0,0,98015,100706,35960,26244,26690,31222,4541,1820,1500,1000,5000,3000,0
+24447,320000,male,2,1,38,0,0,0,0,0,0,208207,9222,10244,11255,11478,11720,1154,1176,1187,410,426,428,0
+24448,470000,male,2,2,32,-1,-1,-1,-1,0,0,19419,11006,15171,27319,31029,19211,11070,15202,27329,30203,33,16506,0
+24449,180000,male,3,2,39,0,0,0,0,0,0,51496,51588,51869,52999,52096,52704,1838,2000,2468,1850,1909,1902,0
+24450,170000,male,2,2,32,1,-2,-1,2,2,-2,-1000,-1000,1000,1000,0,0,0,2000,0,0,0,0,0
+24451,20000,male,3,1,45,0,-1,2,0,0,2,8541,5577,5346,9984,19089,18356,5577,0,5000,10089,0,2000,0
+24452,280000,male,2,1,48,0,0,0,0,0,0,127636,128334,116879,117912,118998,116067,4300,5000,4300,3729,3800,4500,0
+24453,290000,male,2,1,36,0,0,0,0,0,0,42512,23991,22416,17016,12567,17199,3000,2010,3000,3000,5000,5000,0
+24454,60000,male,1,2,36,-1,2,2,-1,-1,-2,780,390,-2750,360,-30,-420,0,0,5500,0,0,0,1
+24455,130000,male,1,2,27,-1,-1,-1,-1,-1,0,2881,670,1919,3671,13861,21782,670,1919,3671,13861,10000,5235,0
+24456,100000,male,3,1,42,7,6,5,4,3,2,33816,33024,32308,31399,30448,29933,0,60,0,0,0,118,0
+24457,60000,male,1,2,36,1,2,0,0,2,0,104492,53348,52817,57954,56556,55220,5200,3000,8500,0,4000,7000,0
+24458,100000,male,2,2,32,-1,2,-1,-1,-1,-1,4080,2271,4100,7980,0,9487,0,4107,7980,0,9487,8333,0
+24459,50000,male,1,2,34,1,2,2,2,2,2,48212,49207,49914,48382,50693,50364,2500,2200,0,3800,1000,1500,0
+24460,550000,male,1,1,44,-2,-2,-2,-2,-2,-2,21788,0,1091,2291,1000,150,0,1091,2309,1000,150,750,0
+24461,100000,male,2,1,46,1,2,2,0,0,0,22648,23978,23312,24617,25109,25654,2000,0,2000,1200,1100,1200,1
+24462,280000,male,2,1,38,-1,-1,-2,-2,-2,-2,3300,0,0,0,0,0,0,0,0,0,0,0,0
+24463,30000,male,2,2,32,-1,2,2,2,2,2,17578,17988,20374,20738,22253,24748,1000,3000,1000,2170,3000,0,0
+24464,230000,male,1,2,45,-2,-2,-2,-2,-2,-2,50500,22771,2652,12097,30096,8961,22771,2652,12097,30096,8961,38591,0
+24465,80000,male,2,1,44,-1,-1,0,-1,0,0,1798,2302,1604,3612,2608,1604,2310,1100,3612,600,600,1631,0
+24466,80000,male,1,2,33,0,0,0,0,0,0,59991,63371,65616,36159,36712,38194,5000,4000,2500,2500,2000,1000,0
+24467,50000,male,2,2,31,0,0,0,0,0,0,50275,45673,48833,31769,9713,9521,2000,5000,2500,500,317,1000,0
+24468,50000,male,2,1,46,-1,0,0,0,-1,0,1853,3656,4400,0,1704,3715,2000,1000,0,1704,2011,0,0
+24469,280000,male,1,2,36,-2,-2,-2,-2,-2,-2,198,1979,500,55176,5950,289,1979,500,55176,5950,289,6757,0
+24470,290000,male,1,1,40,0,0,0,0,0,0,97193,98441,95169,93718,89712,82809,6000,4000,4250,5000,3241,3500,0
+24471,50000,male,3,2,47,0,0,0,0,0,0,44681,45736,46658,44441,18559,17781,2100,2009,2013,700,1000,1000,0
+24472,140000,male,2,2,41,-2,-2,-1,-1,-2,-2,-10,-10,1066,0,0,0,0,1076,0,0,0,0,0
+24473,80000,male,2,1,43,-1,-1,0,0,0,0,435,4495,5333,7136,7599,7554,4495,1500,2500,1000,500,1000,0
+24474,280000,male,1,2,32,0,0,0,0,0,0,4524,2625,4401,5039,6913,7350,2000,3000,3000,3000,3000,3000,0
+24475,20000,male,3,2,46,0,0,0,2,3,5,7790,9985,12001,13978,15932,17572,2500,2500,2500,2500,2500,2500,0
+24476,470000,male,2,1,40,-1,-1,-1,-1,-2,-2,20614,37791,29581,25482,-2764,-11049,37978,29734,25630,297,28,29942,0
+24477,350000,male,2,2,33,0,0,0,2,0,0,25507,26580,31802,30895,27158,27927,1800,6000,0,1000,1000,668,0
+24478,170000,male,2,1,34,0,0,0,0,0,0,35923,37323,38420,40468,41793,43952,2000,2000,3000,2000,3000,2000,0
+24479,200000,male,1,1,31,-1,-1,-1,-1,-1,-1,990,1000,6855,1500,9181,7443,1010,6855,1500,9181,7443,2009,0
+24480,360000,male,3,1,35,1,-1,-1,-1,-2,-2,0,4359,328,3721,3150,150,4359,328,3721,3150,150,999,0
+24481,140000,male,2,2,41,0,0,0,0,0,0,144904,143827,141805,26141,7373,81185,10000,10000,5000,6000,76000,3000,1
+24482,240000,male,2,1,41,0,0,0,0,0,0,238902,241717,240041,231036,194520,195392,8135,8685,10252,7016,7033,7019,1
+24483,500000,male,1,1,32,0,0,0,0,0,0,305575,231984,228765,185694,179853,178763,9824,10910,7239,5576,6717,6128,0
+24484,190000,male,1,2,34,2,2,2,2,0,0,154258,166118,170001,165797,167654,178044,14500,8000,0,6100,13100,0,1
+24485,200000,male,2,1,32,0,0,0,0,0,0,74150,66378,60722,53769,45928,38238,3000,5000,3000,2000,2000,3000,0
+24486,210000,male,1,2,41,-1,-1,-1,-1,-1,-1,326,326,326,326,326,326,326,326,326,326,326,326,1
+24487,30000,male,1,2,36,-1,-1,-1,-2,-2,-2,1772,9619,-6,-6,-6,-6,9647,0,0,0,0,2011,0
+24488,50000,male,2,1,36,0,0,0,0,0,0,47599,48542,49691,49172,9957,10044,2000,2200,1148,500,500,376,1
+24489,360000,male,1,1,47,-1,-1,-1,-1,-2,-2,229,4240,2500,0,0,0,4261,2500,0,0,0,0,0
+24490,280000,male,2,1,43,0,0,0,0,0,0,149803,131171,132165,133948,133070,135089,6150,6256,6275,5012,5363,4000,0
+24491,360000,male,1,1,38,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+24492,50000,male,2,2,39,0,0,0,0,0,2,47990,43288,44569,47291,50398,23675,1997,2278,4000,4000,0,0,0
+24493,270000,male,3,1,47,0,0,0,0,0,0,161999,165303,168837,172281,175705,179582,6000,6200,6254,6290,6710,8250,0
+24494,20000,male,2,1,37,0,0,0,0,0,-2,17622,19996,15467,15863,0,0,3000,2000,1000,0,0,0,0
+24495,200000,male,2,1,37,0,0,0,0,0,0,4757,6170,7408,8250,9250,9750,1500,1500,1000,1000,500,1500,0
+24496,320000,male,2,1,39,0,0,0,0,0,0,103918,93768,91523,91579,91193,92837,9203,3317,3506,4218,5000,6080,0
+24497,230000,male,2,1,37,0,0,0,0,0,0,21374,23695,25996,28240,30450,31798,3000,3000,3000,3000,2000,3000,0
+24498,350000,male,3,1,35,0,0,0,0,0,0,218605,166310,166106,100151,50340,51400,6222,7174,4200,2400,2400,2500,0
+24499,220000,male,1,2,33,-2,-2,-2,-2,-2,-2,1172,2917,170,5758,792,2538,2917,170,5789,792,2538,4031,1
+24500,50000,male,2,1,35,0,0,0,0,0,0,22188,20501,22161,24784,26750,29632,2000,2000,3000,2700,3500,1000,0
+24501,20000,male,3,2,48,0,0,2,2,0,0,13543,16434,17452,16879,17059,17263,3132,1577,0,757,628,700,1
+24502,390000,male,1,2,32,-1,-1,-1,-1,-1,0,35745,12935,20868,14411,18969,8637,13000,20971,14487,19020,43,14753,0
+24503,120000,male,2,1,39,-1,-1,-1,-1,-1,-1,30000,0,10780,0,12000,0,0,10780,0,12000,0,1000,0
+24504,490000,male,1,1,41,0,0,0,0,0,0,79712,81707,85703,87725,88727,91483,3000,5000,4000,3000,4000,5000,0
+24505,190000,male,2,2,37,0,0,0,2,2,2,79838,81523,83530,87126,84165,89017,4000,5000,6000,0,6500,574,0
+24506,150000,male,5,1,40,-1,-1,-1,-1,0,-1,291,291,291,432,441,882,291,291,432,300,882,0,0
+24507,150000,male,5,1,42,2,0,0,0,0,0,143947,147394,142991,146745,149526,147034,4742,4847,4997,4120,4133,3993,0
+24508,270000,male,1,1,37,0,0,0,0,0,0,174532,167536,171865,176167,105523,45258,6900,7900,8800,4700,2100,60000,1
+24509,150000,male,2,1,34,0,0,2,2,2,2,122375,132631,129099,136717,133030,141193,12300,0,11300,0,10500,5200,0
+24510,600000,male,1,1,36,0,0,0,0,0,0,372396,416438,459749,455910,463611,466570,50000,50000,15000,20000,15000,7000,0
+24511,240000,male,1,2,30,0,0,0,0,0,0,213483,216856,220514,217068,5886,11841,8008,10038,10029,1038,7000,0,0
+24512,100000,male,1,1,31,0,0,0,0,0,0,91176,95664,99226,99838,21435,0,6000,6000,4000,5000,0,0,0
+24513,260000,male,1,2,31,-1,-1,-1,-1,-1,-1,500,0,832,0,284,463,0,832,0,284,463,0,1
+24514,80000,male,3,1,42,0,0,0,-2,-1,0,6959,3959,-41,-41,1759,4703,3000,0,0,1800,3000,3000,0
+24515,20000,male,3,2,46,2,3,2,2,2,2,9417,9119,10015,9705,10540,10825,0,1200,0,1000,600,0,1
+24516,260000,male,2,1,42,0,0,0,0,0,0,225844,219261,206742,255079,208755,196701,10030,10000,65500,10000,8000,10000,0
+24517,370000,male,1,1,41,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+24518,70000,male,2,2,31,0,0,0,0,0,0,101284,71451,66937,38521,34149,38819,2864,2501,1417,1500,5050,1279,0
+24519,270000,male,3,2,31,0,0,0,0,0,0,188929,191179,171057,163865,167289,167928,10089,7009,7506,10007,6007,6504,0
+24520,250000,male,2,2,44,0,0,0,0,0,0,175070,175494,175711,153130,153859,103593,8000,6018,6887,6000,4001,12000,0
+24521,70000,male,3,2,39,0,0,0,0,0,0,18219,19606,20980,22320,22650,23136,2000,2000,2000,1000,1000,2100,0
+24522,160000,male,2,1,42,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,2535,0
+24523,300000,male,1,2,35,0,0,0,0,0,0,17975,14032,13145,11890,12695,13763,1510,1519,2000,1005,2068,0,0
+24524,280000,male,3,1,39,-1,-1,-1,0,0,0,1466,1466,25482,24942,23944,23068,1473,25489,1348,816,934,20007,0
+24525,210000,male,1,1,34,-1,-1,-1,2,-1,0,330,330,660,330,660,330,330,660,0,660,0,330,0
+24526,200000,male,1,2,33,2,2,-1,-1,-1,-1,234069,8206,1892,8484,4602,67037,16412,1892,8484,4602,67037,9541,0
+24527,50000,male,1,2,31,3,2,2,3,3,3,1050,1050,1050,1050,1050,1050,0,0,0,0,0,0,1
+24528,60000,male,2,1,45,0,0,0,0,0,0,6471,7487,9356,10392,11214,12028,1131,2000,1200,1000,1000,1000,0
+24529,50000,male,2,2,36,0,0,0,0,0,0,52045,49714,50908,49756,27702,27429,2000,2005,1432,1008,3007,2003,0
+24530,50000,male,2,1,35,1,2,0,0,0,-1,48047,46593,46945,21260,70,29575,0,2052,1800,0,29935,1200,1
+24531,140000,male,2,1,39,0,0,0,0,0,0,92861,87249,87188,86973,85854,85839,3992,4100,4000,3162,3500,3210,0
+24532,150000,male,1,1,31,-1,-1,-2,-2,-2,-1,15000,0,0,0,0,11694,0,0,0,0,11694,30000,0
+24533,230000,male,1,2,33,0,0,0,0,0,0,56754,57171,56150,57074,50670,50652,3000,2100,2300,2000,2000,2000,0
+24534,310000,male,1,1,40,-2,-2,-2,-2,-2,-2,-150,-150,-150,-150,-150,-150,0,0,0,0,0,0,0
+24535,500000,male,1,1,47,1,-1,-1,-1,-1,-1,0,1200,163,1131,150,165,1200,163,1142,150,165,8530,0
+24536,170000,male,1,2,36,-2,-2,-2,-2,-2,-2,5470,1701,18406,-979,-1304,2371,2000,19000,0,0,4000,15000,0
+24537,230000,male,1,1,41,1,-1,-1,-1,-1,-1,0,1482,2140,2360,2620,0,1482,2140,2560,2620,0,0,1
+24538,50000,male,2,2,47,0,0,0,0,0,0,19949,19356,19849,20301,17951,17254,2000,2000,2000,1000,1000,1000,0
+24539,170000,male,2,1,33,-1,2,2,-1,-1,-2,917,917,0,2038,0,0,0,0,2038,0,0,0,0
+24540,340000,male,2,1,34,-1,0,0,0,0,0,335002,319219,271435,267100,263741,267488,12510,12101,10045,10010,10000,9800,1
+24541,220000,male,2,2,35,0,0,0,0,0,0,237976,232993,229896,226036,222487,210628,8300,8500,8000,7900,7800,8000,0
+24542,60000,male,2,1,45,0,0,0,0,0,0,25513,13941,13265,13645,14538,14923,1300,1600,1300,1500,1000,2000,0
+24543,200000,male,1,2,33,-1,-1,-1,-1,-1,-1,1201,0,973,0,161,1174,0,973,0,161,1174,598,0
+24544,350000,male,2,2,34,0,0,0,0,0,0,38021,29493,31838,32369,33478,83304,3000,3000,3000,1500,52000,3000,0
+24545,60000,male,2,2,42,0,0,0,0,0,0,99114,97895,94204,95986,13529,16099,3700,3000,4000,1500,3250,1000,0
+24546,100000,male,2,2,28,-2,-2,-2,-2,-1,-1,0,0,0,0,60,210,0,0,0,60,300,3700,0
+24547,70000,male,1,2,32,1,2,2,2,2,2,67065,68358,69670,70918,72165,70755,3000,3000,3000,3000,0,8300,1
+24548,360000,male,1,1,35,-1,-1,-1,-1,-1,0,3738,2019,4979,0,4974,4974,2019,4979,0,4974,0,72322,0
+24549,100000,male,2,1,29,-1,-1,-1,-2,-2,-2,1200,2100,0,0,0,0,2100,0,0,0,0,4332,1
+24550,290000,male,1,2,47,-2,-2,-2,-2,-2,-2,822,836,12,-824,-3830,-4220,850,12,0,2170,0,5000,0
+24551,380000,male,2,1,47,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+24552,380000,male,1,2,33,0,0,0,0,0,0,77994,79099,80828,82583,84687,84832,3000,3000,3100,3500,3500,3200,0
+24553,60000,male,2,1,45,0,0,0,0,0,0,60035,60776,49802,50965,19275,17976,2380,2262,3000,1500,1000,1500,1
+24554,320000,male,3,2,28,-1,0,0,-1,-1,0,67264,67207,0,2615,221073,225361,3231,0,2615,228975,8176,8226,0
+24555,80000,male,2,1,45,2,2,2,2,2,0,35169,39069,38166,40642,39689,41043,4500,0,3427,0,2000,3000,1
+24556,280000,male,1,1,37,-1,0,0,0,0,0,33687,21575,23926,23102,22734,29434,5000,3000,10000,10000,16934,10234,0
+24557,110000,male,2,1,38,2,2,2,2,0,0,103202,69917,68917,69141,135478,71875,2500,2494,2477,2500,3003,3000,1
+24558,310000,male,2,2,46,2,0,0,0,0,0,102064,104072,105063,107113,109263,120347,5030,4000,3633,3671,12600,0,1
+24559,230000,male,1,2,28,0,0,0,0,0,0,28534,27104,24415,29002,12415,10607,15222,10016,10083,5030,5003,5043,0
+24560,200000,male,3,2,28,1,-1,-1,-2,-1,-1,0,1500,0,0,1000,1000,1500,0,0,1000,1000,0,1
+24561,70000,male,2,2,29,0,0,0,0,-1,-1,58305,61710,64114,66775,161,5746,5000,4000,5000,161,5800,1500,0
+24562,210000,male,2,1,35,0,0,0,0,0,0,62809,64781,65847,46992,47073,47283,3018,2824,1757,1674,1717,1741,0
+24563,290000,male,3,1,41,-1,-1,-1,-1,0,0,7488,5795,9562,21312,16875,13881,5807,9569,21336,5020,3013,12278,0
+24564,460000,male,1,1,37,2,0,0,0,0,0,7121,7953,8642,9151,9702,9752,1273,1288,1123,1000,502,3000,0
+24565,360000,male,1,1,39,-1,-1,2,-1,-1,0,264,1139,264,2193,528,264,1139,0,2193,528,0,264,0
+24566,200000,male,1,2,32,-2,-2,-2,-2,-2,-2,1100,740,4908,740,5221,740,740,4908,740,5221,740,890,0
+24567,230000,male,1,1,37,0,0,0,0,0,0,30769,30792,30140,31067,31091,28223,1500,1600,1500,1000,1000,1200,0
+24568,80000,male,2,2,32,-1,-1,-1,-1,-1,-1,2976,13384,2255,1830,2647,11083,13424,2267,1835,2655,11116,4020,0
+24569,80000,male,3,1,36,0,0,0,0,0,0,81066,80873,81244,80391,75589,77373,3000,2929,3000,5522,3000,6200,0
+24570,150000,male,1,2,33,0,0,0,0,0,0,27221,27897,25304,21894,18452,28191,5000,1715,1200,625,10000,1000,0
+24571,290000,male,2,1,36,0,0,0,0,0,0,72774,67311,66183,61332,62445,59213,3500,3000,3000,3000,3000,3000,0
+24572,90000,male,3,1,31,0,0,0,0,0,0,67776,68476,68485,67000,45837,49959,4023,4017,4000,4000,5000,4000,0
+24573,360000,male,2,1,40,-1,-1,-1,-1,0,-1,250,1088,3189,3093,4019,2407,1088,3215,3104,2026,2414,8089,1
+24574,190000,male,1,2,36,1,2,2,2,2,2,105418,107689,109678,110887,111871,114223,5500,5200,4500,4300,4300,4400,1
+24575,20000,male,2,1,41,0,0,0,0,0,0,7472,9304,9369,5873,5990,6231,2000,2002,3098,215,338,2164,0
+24576,150000,male,3,1,47,0,0,0,-1,-1,-2,250475,123543,52598,3218,0,0,5772,2424,3218,0,0,0,0
+24577,50000,male,2,1,32,0,0,0,0,0,0,11030,12048,13145,14160,14441,14743,1203,1300,1235,516,534,537,0
+24578,310000,male,1,2,38,-2,-2,-2,-2,-2,-2,995,988,993,993,1495,995,993,1005,1000,1502,1000,1000,0
+24579,260000,male,1,1,38,0,0,0,0,0,0,94152,91774,89485,85906,83619,81260,4150,4153,2913,3012,3088,3033,0
+24580,190000,male,2,1,42,0,0,0,0,0,0,31323,28890,26793,27304,25845,22796,1500,1500,2000,1500,898,1000,0
+24581,30000,male,1,2,31,-1,-1,0,0,-1,-1,6456,4390,3016,4504,5755,3560,4398,3000,3009,5767,3566,26444,1
+24582,280000,male,1,2,32,-2,-2,-2,-2,-2,-2,19668,1000,3186,44932,2100,0,1000,3186,45028,2100,0,0,0
+24583,60000,male,2,2,40,0,0,0,0,0,0,58123,53604,54851,55742,27333,27615,2000,2500,2500,1000,1100,1100,1
+24584,20000,male,2,2,32,2,0,0,0,0,0,18996,19316,20330,20515,20424,19996,1325,1339,1609,823,723,1705,0
+24585,140000,male,2,2,29,0,0,0,0,-2,-2,132629,55185,56000,0,0,0,5000,2000,0,0,0,0,0
+24586,80000,male,1,1,47,-1,-1,-1,-1,-1,-1,2001,2338,5655,1670,3096,4590,2338,5655,1676,3096,4590,5598,1
+24587,200000,male,3,1,43,0,-1,-1,-1,0,0,1243,1435,1270,3783,2522,1261,1453,1270,4000,0,0,1436,0
+24588,170000,male,1,1,42,-1,-1,-1,-1,-1,-1,610,995,2429,2202,598,1801,995,2429,2202,598,1801,1157,0
+24589,210000,male,2,2,48,-1,-1,-1,-1,-1,0,2776,2776,2776,526,4880,1315,2776,2776,526,4880,0,1315,0
+24590,500000,male,2,1,46,0,0,-1,-1,-1,-1,157046,82603,37528,83629,20894,27217,1652,37550,83642,20894,24038,59021,0
+24591,60000,male,2,2,36,-1,-1,0,0,2,-1,39212,45987,42778,25163,7784,12332,45994,20052,20007,7,12332,500,0
+24592,410000,male,1,2,32,0,0,0,0,2,2,35868,18762,18557,31003,30065,52726,3762,1557,13000,0,24897,0,1
+24593,220000,male,2,1,35,0,0,0,0,0,0,210200,213208,219611,204740,97722,89971,8000,10098,5828,3000,3000,5000,1
+24594,420000,male,2,2,30,0,0,0,0,0,0,122418,113122,89586,83713,55375,54291,4816,4128,3147,2018,3130,3006,0
+24595,250000,male,2,2,28,0,0,0,2,2,0,149678,152704,163101,164953,160805,164411,7000,14400,6000,0,6200,6200,0
+24596,80000,male,1,2,26,0,0,0,0,0,0,84488,83593,72883,67337,60807,59088,2871,2727,3170,1940,2200,1700,0
+24597,80000,male,2,2,27,0,0,0,0,0,0,40612,41934,43261,44537,45794,47893,2000,2000,2000,2000,3000,4000,0
+24598,20000,male,1,2,28,0,0,0,0,0,0,3608,7032,14244,14065,16161,11106,5000,12500,3000,4000,2000,2000,0
+24599,300000,male,2,2,30,-1,-1,0,0,0,-1,18468,60489,63982,124493,16367,41338,61200,45153,102749,186,45079,40000,0
+24600,50000,male,1,2,44,0,0,0,0,0,0,54332,51671,50272,49293,47154,50069,3000,1928,1595,1526,13000,1569,1
+24601,360000,male,3,1,46,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+24602,140000,male,1,1,36,0,0,0,0,0,0,127496,128675,131640,134183,91772,94290,5000,5041,5000,4000,4000,4000,0
+24603,70000,male,2,1,31,0,0,0,0,0,0,61177,62076,63806,126005,66451,20200,5300,3500,2154,7800,555,1000,1
+24604,70000,male,2,2,34,0,0,0,0,0,0,69368,69259,71488,64601,32099,26626,4000,4000,2013,1500,1000,4000,0
+24605,430000,male,1,1,39,0,0,0,-1,-1,0,41428,32303,20739,12925,17566,14067,17800,15023,12925,17566,11000,10349,0
+24606,170000,male,2,1,39,-2,-2,-2,-2,-2,-2,0,582,0,582,291,90,582,0,582,291,90,750,0
+24607,210000,male,2,1,44,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+24608,150000,male,1,1,36,-2,-2,-2,-2,-2,-2,2750,2424,27498,1213,26636,2547,2424,27498,1213,26636,2704,1800,0
+24609,260000,male,2,1,42,0,0,0,0,0,0,252107,222195,209496,215317,220727,218750,12004,15000,15000,12000,10000,10000,0
+24610,500000,male,2,1,40,-2,-2,-2,-2,-2,-2,22520,1110,79243,0,4580,0,1110,79243,0,4580,0,1380,0
+24611,160000,male,1,1,39,-2,-2,-2,-2,-2,-2,4138,0,0,0,2920,0,35,0,0,2920,0,12140,0
+24612,210000,male,2,1,45,0,0,0,0,0,0,56024,57148,58338,59529,60720,61980,1836,1897,1936,1952,2013,9062,1
+24613,230000,male,2,1,33,1,2,2,0,0,0,203218,208414,203466,150365,119512,87434,10000,0,8000,5000,5000,4243,0
+24614,180000,male,2,1,43,-1,-1,-1,-1,-1,-1,2745,3873,3275,2347,3020,2193,3884,3284,2354,3029,2199,12553,0
+24615,20000,male,2,2,37,0,0,0,-2,-1,0,7440,15960,0,-1953,5985,6893,10050,0,18047,7985,1000,2000,0
+24616,310000,male,1,1,41,0,0,0,0,0,0,247202,233712,197450,194834,185943,183624,8213,8668,8247,6729,6639,6764,0
+24617,180000,male,1,2,39,-2,-2,-2,-2,-2,-2,0,444,182,0,0,0,444,182,0,0,0,540,0
+24618,80000,male,1,1,46,0,0,0,0,0,0,48967,49850,50767,45721,49006,56275,2000,1771,1715,4000,8697,0,0
+24619,230000,male,1,1,47,0,0,0,0,0,0,143083,130011,83545,82638,26332,25425,6500,4579,4500,3000,1000,3000,0
+24620,210000,male,2,2,41,0,0,0,2,0,0,114953,88428,96993,94537,97968,100387,5000,10000,0,5000,4000,5000,1
+24621,90000,male,2,1,37,1,2,2,0,0,-2,61584,62983,61107,61976,326,476,3000,0,3000,326,476,476,1
+24622,30000,male,1,1,45,1,2,2,2,3,2,25829,25121,27988,30515,29738,29126,0,3600,3300,0,0,1100,0
+24623,430000,male,1,1,34,2,2,-2,-2,-2,-2,435,-183,-525,-868,-1211,-1840,183,0,0,0,290,2512,0
+24624,200000,male,1,1,41,-2,-2,-2,-2,-2,-2,10799,1208,1585,1470,1273,1000,1213,1585,1470,1273,1000,1555,0
+24625,220000,male,1,2,34,-2,-2,-2,-2,-2,-2,416,416,416,416,416,416,416,832,416,416,416,416,1
+24626,480000,male,1,1,37,1,-1,-1,-1,0,0,6071,7994,8313,25714,25710,20110,8023,8351,25753,14012,10021,12462,0
+24627,360000,male,2,1,36,0,0,0,-1,0,0,33051,13614,-5386,250214,255296,261401,1000,2544,261000,9000,10000,10000,0
+24628,390000,male,2,1,34,-2,-2,-2,-2,-2,-2,-702,-808,-1141,-1247,-1353,-1459,0,0,0,0,0,0,0
+24629,20000,male,2,2,43,0,0,2,0,0,0,13817,15398,15852,16862,17197,17558,1815,1000,1279,614,637,2350,1
+24630,200000,male,3,1,37,0,0,0,0,0,0,65927,59688,53084,46363,39843,33004,2700,2200,1700,1489,1200,1100,0
+24631,30000,male,2,2,35,2,2,-2,-2,-2,-2,3462,-334,-1170,-1560,-1950,-1620,0,0,0,0,1620,900,1
+24632,410000,male,1,1,40,-1,-1,-1,2,-1,-1,34405,18612,19975,8906,10491,9347,18612,8944,7,10491,9347,9727,0
+24633,40000,male,1,1,47,2,0,0,0,0,2,38741,36840,37868,36139,39114,38429,2000,1942,1600,3500,0,2818,0
+24634,50000,female,3,1,47,1,2,0,0,0,0,50574,48968,50151,50496,2759,-442,0,2463,2300,55,0,37459,1
+24635,230000,female,1,2,28,-1,0,0,0,0,0,48144,51966,44477,39998,23278,27775,12000,2353,5000,0,8000,643,0
+24636,130000,female,1,2,33,2,2,-2,-2,-2,-2,1022,0,0,0,0,0,0,0,0,0,0,0,1
+24637,100000,female,2,1,33,-1,-1,-1,-1,-1,0,7067,-418,7064,15229,9689,2669,0,7482,15315,9705,0,4600,0
+24638,400000,male,1,2,34,0,0,0,0,0,0,26912,24967,13810,18230,25050,10209,10016,6000,10000,10000,5000,4000,0
+24639,330000,male,1,2,42,0,0,0,0,0,0,73214,76599,78274,80102,60729,56411,10000,4000,8000,10000,15000,8000,0
+24640,590000,male,1,1,41,-2,-2,-2,-2,-2,-2,617,1304,35498,0,0,0,1304,35552,0,0,0,0,0
+24641,50000,male,1,2,34,2,0,0,0,0,0,13731,13974,7891,4600,5554,5481,1530,2004,1000,1008,1400,600,1
+24642,140000,male,2,2,36,0,0,0,0,0,0,58165,59693,61732,62411,64372,70015,2500,3000,2300,3000,6700,0,1
+24643,730000,male,2,1,37,0,0,0,0,-1,0,70309,61991,49082,26873,514114,499100,20000,14023,9035,528897,22005,15000,0
+24644,110000,male,2,2,34,0,0,0,0,0,2,107430,109660,111387,111631,111657,109756,5500,5000,4300,12700,0,4500,1
+24645,500000,male,3,1,46,-1,-1,-1,-1,-1,-1,4031,3684,7544,14459,9736,9123,3709,7594,14484,9762,9142,17241,0
+24646,200000,male,3,2,40,-1,-1,-1,-1,-2,-1,6154,6000,5762,0,0,3117,6000,5762,0,0,3117,2000,0
+24647,180000,male,3,2,41,0,0,0,0,0,0,183047,182506,183363,183013,142048,142570,6704,6973,7023,7000,6000,5357,0
+24648,70000,male,2,1,45,0,0,0,0,0,0,67062,68622,28236,30750,35205,37466,3000,1500,3000,5000,3000,5000,0
+24649,170000,male,1,1,45,0,0,-1,2,-1,2,2610,0,1565,965,6265,2445,0,1565,0,6500,0,3115,0
+24650,420000,male,2,2,44,0,0,0,0,0,0,13620,13002,9180,13965,10245,20199,2000,5000,5000,5000,10000,10000,0
+24651,60000,male,2,1,29,0,0,0,0,0,0,58634,59541,58604,59427,38472,39528,3000,31404,3000,2000,2000,2000,0
+24652,280000,male,2,1,31,0,0,0,0,0,0,266511,269245,268332,271904,157565,150665,9557,10001,8585,4761,5082,5008,0
+24653,30000,male,2,2,40,0,0,0,0,0,0,21617,24133,25239,26314,27074,28723,3200,1800,1800,1500,2250,600,0
+24654,90000,male,1,1,38,2,0,0,0,0,0,88937,87866,87343,89786,67803,69324,3103,3500,4200,2426,2613,3000,1
+24655,200000,male,1,1,36,-2,-1,-1,-1,-1,0,239,2925,3421,301,9585,8374,2925,3421,301,10217,0,0,0
+24656,220000,male,3,2,33,0,0,0,0,0,0,62770,86968,57675,75892,49548,35530,40000,25000,25000,10000,10000,10000,0
+24657,280000,male,2,2,47,0,0,0,0,0,0,92288,77428,78544,63106,63465,64031,4004,3504,3204,2304,2504,2304,0
+24658,280000,male,1,2,38,0,0,0,0,0,0,138984,140300,145127,145571,115765,118190,4900,6918,7100,4388,4500,4300,0
+24659,430000,male,1,2,40,-2,-2,-2,-2,-2,-2,2099,8256,4353,471,5779,4468,8297,4391,473,5808,4489,3934,0
+24660,180000,male,1,1,37,1,-2,-2,-2,-1,0,0,0,0,0,2201,2201,0,0,0,2201,0,0,0
+24661,50000,male,1,1,49,1,2,0,0,0,0,27231,26500,27533,28569,28901,31095,0,1764,3400,1100,2660,0,1
+24662,500000,male,1,1,46,-2,-2,-2,-2,-2,-1,18664,67646,-214,-214,42772,45282,68013,0,0,42986,45508,9055,0
+24663,50000,male,3,2,35,0,0,0,0,0,0,38536,39891,41945,44064,45182,47408,2000,2381,2500,1500,3000,0,0
+24664,200000,male,1,1,43,-2,-2,-2,-2,-2,-2,3005,4709,7544,9409,57023,2770,4709,7574,9497,57023,2770,1904,0
+24665,100000,male,1,1,42,2,0,0,0,0,0,95926,98437,98480,63372,39138,39857,5000,3100,2000,1600,1500,2000,0
+24666,60000,male,2,1,31,0,0,2,0,0,0,55831,60430,58906,59210,44521,31497,8660,0,2150,800,1000,1781,0
+24667,30000,male,3,2,33,0,0,0,0,0,0,30384,30134,30646,29657,30232,28415,3010,3000,3000,3000,1083,0,1
+24668,180000,male,3,1,41,2,0,0,0,2,0,111786,115921,117428,104153,100148,98165,6000,5000,9000,0,5000,7130,0
+24669,20000,male,2,1,40,1,2,0,0,0,2,8201,8912,10110,10817,11637,11307,1000,1500,1180,1000,0,1000,1
+24670,350000,male,2,1,39,0,0,0,0,0,0,179189,173622,171127,173283,169815,163058,6695,6958,6669,5596,5676,5487,0
+24671,20000,male,2,2,43,0,0,2,2,2,2,5909,8134,7859,9518,9216,10067,2500,0,1800,0,1000,0,0
+24672,100000,male,2,1,38,0,0,0,0,-1,0,100600,94367,96504,22850,91081,92986,4090,4385,1850,103300,3370,3670,0
+24673,20000,male,2,1,43,2,0,0,2,0,0,11573,12372,14946,14409,16659,17887,1300,2787,0,2500,1500,0,1
+24674,30000,male,3,2,29,0,0,0,0,2,2,10305,11327,12354,13840,13320,14501,1500,1514,2000,0,1400,0,0
+24675,30000,male,2,2,31,-1,-1,-1,-1,-1,0,7130,2639,1429,2652,12235,8184,2654,1437,2853,12247,119,0,0
+24676,180000,male,5,1,40,0,0,0,0,0,0,78170,80559,82947,84379,85789,94088,4000,4000,3100,3100,10000,6000,0
+24677,300000,male,2,2,29,0,0,0,0,0,0,49917,49833,49831,51818,50244,49484,5000,5000,5000,5000,5000,5000,0
+24678,210000,male,1,2,36,-1,-1,2,-1,-1,-1,931,2562,736,270,-466,1798,2570,0,270,0,3000,0,0
+24679,30000,male,1,1,35,1,2,2,2,-1,0,18829,19223,20599,15642,23789,20562,1000,2014,6,25700,800,1989,1
+24680,150000,male,2,1,31,0,0,0,0,0,0,146805,148293,146245,141593,133721,138524,5300,7000,6600,4700,13500,0,0
+24681,150000,male,2,2,31,-2,-1,-1,-1,-1,-2,0,648,0,1448,0,0,648,0,1448,0,0,3632,0
+24682,150000,male,3,2,42,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+24683,470000,male,1,1,40,1,2,0,0,0,0,276880,241153,204223,151253,138087,109094,5014,10000,5214,4500,5000,4200,0
+24684,200000,male,2,1,38,0,0,0,0,0,0,105729,106296,110031,112410,128894,131588,3806,5449,5694,20000,4774,5101,0
+24685,80000,male,3,1,49,0,0,0,0,-2,-2,77985,80886,82150,0,0,0,4200,3800,0,0,0,0,0
+24686,250000,male,1,1,37,1,2,0,0,0,0,206430,210029,214868,218593,159789,163454,8300,9500,9000,5500,6000,13000,0
+24687,500000,male,1,2,30,-2,-2,-2,-2,-2,-1,24349,9543,53947,84388,26154,175790,9605,54218,84839,26283,175857,4914,0
+24688,200000,male,1,1,36,1,2,0,0,0,0,14460,12825,13810,14815,16347,17531,0,1502,2000,2000,1513,1504,0
+24689,90000,male,1,1,34,0,0,0,-2,-2,-2,106339,90500,0,0,0,0,20585,0,0,0,0,0,0
+24690,400000,male,1,1,47,0,0,0,0,0,0,105610,107495,111150,112444,97523,84858,3904,5646,5000,3000,5000,5000,0
+24691,180000,male,2,2,38,-1,-1,-1,-1,-1,-1,9409,10395,5382,3155,1877,4673,10423,5393,3159,1881,4678,1353,0
+24692,160000,male,2,1,47,-1,-1,-1,-1,-1,0,988,779,637,2667,16746,23591,779,638,2670,16746,7069,7000,0
+24693,130000,male,2,1,38,0,0,0,0,0,0,123044,122981,102151,90917,92729,93359,4949,4000,3250,3231,3324,3242,0
+24694,60000,male,2,1,45,0,0,0,0,0,0,67719,69501,58536,56705,18352,18195,3000,12423,2000,2000,1000,1000,0
+24695,240000,male,2,1,39,0,0,0,0,0,0,215013,220938,213460,217816,222214,227174,9600,7800,7907,8021,8610,8084,0
+24696,160000,male,2,1,33,0,0,2,2,0,0,82535,84300,86091,83839,85552,88028,4000,4000,0,4000,4000,4000,1
+24697,50000,male,2,1,43,0,0,0,0,0,0,48919,48775,48731,48934,29116,28999,1800,2200,1400,582,580,30000,0
+24698,280000,male,1,2,34,0,0,0,0,0,0,251267,258944,262562,164059,131807,180524,15000,10565,20253,20518,155067,11007,0
+24699,30000,male,2,1,40,0,0,0,0,0,0,25328,22520,21554,22280,18330,780,2000,2000,2000,1000,0,0,0
+24700,130000,male,2,1,46,0,0,0,0,0,0,46849,44861,46405,44342,45641,40945,1802,3005,1603,3022,1005,3308,0
+24701,160000,male,1,1,43,-1,-1,-1,-1,-1,2,238,0,237,-300,300,150,0,237,0,600,0,234,0
+24702,420000,male,4,2,36,1,-2,-1,-1,0,0,944,1819,1133,10415,7792,-3,1819,1143,10429,194,556,0,0
+24703,210000,male,2,1,37,1,-1,-1,-1,-1,-1,0,650,325,325,325,325,650,325,325,325,325,325,1
+24704,70000,male,1,1,39,0,0,0,0,0,0,60412,67474,68750,59186,48178,46197,8137,3100,7172,10000,1662,3000,0
+24705,50000,male,2,2,44,0,0,0,2,0,0,47674,45472,51447,49895,20317,19460,1764,6739,29,700,704,705,0
+24706,50000,male,3,1,38,2,0,0,2,2,0,37501,34942,37502,34653,31352,29605,2000,3455,1007,8,2002,2029,1
+24707,330000,male,1,1,38,-1,-1,-1,-1,-1,-1,1051,671,291,1051,1011,1051,671,291,1051,1011,1051,821,0
+24708,70000,male,2,2,40,2,2,2,0,0,0,69164,70938,69248,69366,48998,27863,3500,0,2109,1500,3769,0,1
+24709,170000,male,2,2,36,-2,-2,-2,-2,-2,-2,600,1598,0,1340,0,0,1598,0,1340,0,0,3200,0
+24710,50000,male,2,3,41,0,0,0,0,0,0,51449,52260,40893,81308,41463,40045,1700,1679,1640,1449,1454,1466,1
+24711,250000,male,1,1,39,-1,-1,-2,-1,-1,-1,1852,0,0,2576,20552,0,0,0,2576,20739,0,2231,0
+24712,200000,male,3,1,49,0,0,0,0,0,0,51437,52580,53732,54837,56025,59511,2000,2000,2000,2100,4400,0,0
+24713,460000,male,2,1,37,0,0,0,0,0,0,66935,76719,74537,70481,85204,93194,13039,5036,5015,20005,10007,28004,0
+24714,100000,male,3,1,40,2,0,0,2,2,0,77617,80324,86016,87715,85411,87870,4000,7000,4000,0,4000,4000,0
+24715,220000,male,1,2,35,1,2,0,0,2,2,190105,185836,187220,199542,202036,200956,0,6600,15200,7000,2000,15000,1
+24716,30000,male,2,2,35,-1,2,2,-1,-1,-2,780,390,0,780,0,0,0,0,780,0,0,0,1
+24717,80000,male,2,2,34,0,0,0,0,0,0,73414,66122,92131,47655,43182,44332,3558,2600,4300,2000,2000,2000,0
+24718,320000,male,2,1,34,0,0,0,0,0,0,117983,111695,112030,152291,138731,132197,10009,15000,50551,10000,10000,8000,0
+24719,110000,male,5,1,36,-1,0,0,0,0,0,3385,31169,50526,51816,34262,23366,28000,20000,3000,3000,3000,3000,0
+24720,20000,male,2,2,35,0,0,0,-2,-1,0,17809,18325,-1675,-1675,16554,17359,1000,0,0,18359,1000,1000,0
+24721,50000,male,2,1,44,2,2,0,0,3,2,127510,123969,128267,139912,136604,134705,0,6300,15300,0,0,9500,1
+24722,430000,male,2,1,38,-2,-2,-2,-2,-2,-2,18517,23565,34028,28407,33608,52015,23565,34028,28418,33651,52015,21000,0
+24723,80000,male,2,1,39,2,0,0,0,0,0,59999,61205,62620,63870,64114,65932,2800,3000,2901,2500,3000,5202,1
+24724,40000,male,1,2,35,1,2,2,2,2,3,11074,10600,20406,20774,22132,21497,0,10000,1000,2000,0,0,1
+24725,150000,male,2,1,42,0,0,0,0,0,0,98965,100714,100645,103006,52251,46581,3360,3630,4337,1894,1522,1521,0
+24726,330000,male,4,1,33,0,0,0,0,0,0,26586,23818,24164,25042,25665,24059,1700,1522,1400,1000,820,770,0
+24727,20000,male,2,2,40,0,0,0,2,0,0,29035,16391,18920,18180,19000,20000,4000,3500,0,2000,1000,0,0
+24728,20000,male,2,2,45,0,0,0,2,0,0,17369,28513,27836,23480,19469,16310,15000,3273,0,389,326,813,0
+24729,500000,male,1,1,40,0,0,-2,-2,-2,-2,18110,0,0,0,0,0,0,0,0,0,0,0,0
+24730,200000,male,1,2,42,0,0,0,0,0,0,161514,163340,168701,172074,173907,184067,6000,8000,8000,6500,13500,0,1
+24731,20000,male,2,2,46,0,0,0,0,2,0,11027,12038,13064,14888,14352,14652,1199,1225,2049,0,531,537,0
+24732,210000,male,1,1,44,0,0,0,0,0,0,126113,107216,88039,83304,77605,70260,5002,5030,10008,10017,10000,10000,0
+24733,500000,male,2,1,41,1,2,0,0,0,0,169117,163094,161768,164438,162050,163456,0,7400,10000,6000,5907,6000,0
+24734,300000,male,1,2,42,-2,-2,-2,-2,-2,-2,161772,111664,123854,0,0,0,114402,127180,0,0,0,0,0
+24735,110000,male,2,1,35,0,0,0,0,0,0,103750,102437,97005,83998,79376,79816,3759,3409,2905,2778,2862,3500,0
+24736,500000,male,1,1,39,0,0,0,0,0,0,74213,74890,74767,74383,74251,61124,4006,4002,3002,3018,3352,3018,0
+24737,120000,male,1,1,44,1,2,2,2,2,2,75294,76465,74675,79629,77748,82497,3000,0,6200,0,6000,0,1
+24738,360000,male,2,1,44,-2,-2,-2,-2,-2,-2,1824,1740,0,0,1499,4001,1740,0,0,1499,4001,203,0
+24739,350000,male,3,2,36,-1,-1,-1,-1,-1,-1,9189,6080,12622,18103,13547,38868,6088,12635,18119,13547,38868,4650,0
+24740,80000,male,1,2,35,1,-1,2,-1,-1,-1,0,4117,3370,5018,950,-3827,4117,0,5018,0,0,7654,1
+24741,320000,male,1,1,46,-2,-2,-2,-2,-2,-2,2790,3266,12186,1403,24305,7463,3349,12253,3290,11465,7537,1966,0
+24742,230000,male,1,1,38,-1,-1,-1,-1,-1,-1,1088,2444,2905,4868,2870,3085,2451,2911,4882,2878,3085,950,0
+24743,110000,male,2,1,44,0,0,0,0,0,0,82503,84214,90877,92986,49901,49649,3083,9563,4000,1800,2000,2000,0
+24744,60000,male,2,1,32,0,0,0,0,0,0,22357,23663,24779,25322,19248,18061,1684,1800,1287,813,700,681,0
+24745,20000,male,1,2,34,0,0,0,0,0,0,15415,16423,17594,18552,18522,18900,1271,1442,1400,370,378,0,0
+24746,320000,male,2,1,35,0,0,0,0,0,0,10125,11475,12549,10853,11755,7559,1526,1600,1098,1000,272,300,0
+24747,90000,male,1,1,41,0,0,0,0,0,0,88805,86939,86360,67145,30834,50585,3500,4000,3000,2500,42200,1900,0
+24748,200000,male,2,1,49,-2,-2,-2,-2,-2,-2,390,390,390,390,386,1376,390,390,390,386,1380,5186,0
+24749,240000,male,1,2,46,1,2,-1,-1,-1,-1,102318,94453,5411,8513,4626,5329,468,5784,8548,4630,5334,27898,1
+24750,240000,male,1,1,43,0,0,0,0,0,0,223151,226688,230690,213633,176135,179027,7766,8300,7200,6200,6550,6107,1
+24751,120000,male,2,1,48,-1,-1,-1,-1,-1,-1,13544,2671,14940,41990,1493,36186,3000,15928,43000,1493,36200,27277,0
+24752,70000,male,3,1,46,0,0,0,0,2,2,24345,25349,26694,28935,28174,30061,1414,1759,3000,0,2500,0,0
+24753,20000,male,2,1,33,1,2,0,0,2,2,4481,4261,5272,6685,6429,7225,0,1087,1500,0,900,0,0
+24754,140000,male,2,1,35,1,2,2,0,0,0,147946,150934,136222,124871,118141,111716,7000,10,6015,4000,4000,5000,0
+24755,240000,male,3,1,41,1,2,2,2,2,-2,101060,104498,106628,102650,0,0,6000,4650,0,0,0,0,0
+24756,50000,male,3,2,44,0,0,0,0,0,0,48322,49057,48059,48097,8107,6934,3000,3000,3000,3000,3600,4800,0
+24757,100000,male,2,2,26,2,2,2,2,2,0,89799,87459,94009,95577,93145,95489,0,8000,4000,0,4000,4000,0
+24758,140000,male,2,2,26,0,0,0,0,0,0,21513,23147,24766,25782,27348,30820,2000,2000,1434,2000,4100,0,0
+24759,260000,male,2,1,31,-1,2,-1,-1,-1,-1,7559,4860,1350,4645,4625,12209,0,1350,4645,4625,12209,4365,0
+24760,230000,male,1,2,35,-2,-2,-2,-2,-2,-2,0,13371,9420,16639,600,0,13371,9420,16688,606,0,0,0
+24761,20000,male,3,2,36,-1,-1,-1,-1,-1,-1,416,0,832,0,832,1486,0,832,0,832,1486,0,0
+24762,110000,male,2,2,38,0,0,0,0,-2,-2,106113,57228,10018,0,0,0,1635,1000,0,0,0,0,0
+24763,460000,male,1,1,40,0,0,0,0,0,0,235388,213905,217909,195811,199712,203895,8000,7500,7100,7100,7342,8000,0
+24764,120000,male,2,2,36,0,0,2,0,0,2,26490,23333,16721,17400,26087,19577,3246,0,7313,15000,0,7000,0
+24765,60000,male,2,1,31,0,-1,-1,-2,-2,-2,22219,140,0,0,0,0,140,0,0,0,0,0,1
+24766,50000,male,3,1,31,0,-1,-1,-1,-1,-1,1473,390,390,390,0,780,390,390,390,0,780,0,1
+24767,50000,male,3,2,41,0,0,0,0,0,0,48619,48647,49859,50700,46174,47430,2100,2300,2025,1800,2000,2100,0
+24768,30000,male,3,1,42,0,0,-1,-1,-1,-1,1946,1473,390,390,390,0,1000,390,390,390,0,780,0
+24769,20000,male,3,2,45,0,0,0,0,0,0,18011,18083,18500,19014,19019,17484,1500,1400,1243,638,2000,480,0
+24770,20000,male,2,2,47,0,0,0,0,0,0,17059,36219,15431,16260,15770,15880,1500,4000,1600,500,500,400,0
+24771,350000,male,2,2,32,0,0,0,0,0,0,262576,237656,222586,205845,174438,157061,10013,10029,10009,5609,6000,10000,0
+24772,240000,male,2,1,36,0,0,0,0,0,0,239003,227962,231284,239410,184094,101776,9700,8500,12036,8300,5000,5000,0
+24773,120000,male,2,1,37,2,2,0,0,0,0,45902,44868,45943,46976,47891,51036,0,2100,2100,2000,4100,3000,1
+24774,200000,male,3,1,47,-2,-2,-2,-2,-2,-2,0,9661,0,23648,575,847,9661,218,23648,575,847,249,0
+24775,150000,male,1,2,31,-1,-1,-1,-1,-1,-2,3056,834,5487,2003,-222,-222,834,5487,2020,51,0,6000,0
+24776,180000,male,2,1,37,-2,-2,-2,-2,-2,-2,0,0,621,3762,0,0,0,621,3762,0,0,0,0
+24777,260000,male,1,1,30,-1,-1,-1,-1,-1,-1,232,91,85,105,80,95,91,85,105,80,95,80,0
+24778,180000,male,1,2,31,-2,-2,-2,-2,-2,-2,3580,0,0,0,7108,1300,0,0,0,7108,1300,0,0
+24779,130000,male,1,1,31,0,0,0,0,-2,-2,26528,22567,23167,0,0,0,1400,1000,0,0,0,0,0
+24780,250000,male,1,2,34,0,0,0,0,0,0,119310,132243,140069,292404,175050,181766,15000,10000,10000,60000,15000,6000,0
+24781,460000,male,4,1,35,-2,-1,-1,-1,-1,-2,0,737,4856,6696,1327,0,737,4872,6696,1327,0,1782,0
+24782,40000,male,1,1,35,0,0,0,0,0,0,30927,18228,19256,20429,32279,32940,1300,1327,1500,12279,1350,2000,0
+24783,20000,male,2,1,36,2,2,2,0,0,0,9735,12564,12077,12779,13033,13308,3000,0,1212,466,485,900,1
+24784,310000,male,2,1,41,-2,-2,-2,-2,-2,-2,34682,23594,-26,5333,-56,-56,23712,0,5359,0,0,0,0
+24785,90000,male,2,1,40,0,0,0,0,0,0,87190,86135,87247,88943,90961,44522,3068,3335,3319,3590,1368,1121,0
+24786,20000,male,3,2,43,0,0,0,0,0,0,12648,14126,15162,17891,18590,19286,2000,1271,3000,1000,1000,1000,0
+24787,270000,male,2,1,39,0,0,0,0,0,0,18205,15984,17723,18634,19997,18948,1500,2000,1145,1508,900,2000,0
+24788,170000,male,3,1,45,0,0,0,0,0,0,114625,117364,119552,111404,113635,98411,6305,6000,6000,3854,5000,8000,0
+24789,300000,male,2,1,41,0,0,0,0,0,0,66132,67445,68856,69392,70798,72252,2412,2496,1678,1702,1746,1772,0
+24790,350000,male,1,2,30,2,2,-1,2,0,0,832,0,1844,1248,832,416,0,1844,0,0,0,832,1
+24791,360000,male,1,1,39,-1,-1,-1,-1,-1,-1,396,396,396,396,396,846,396,396,396,396,846,396,0
+24792,260000,male,2,1,37,0,0,0,0,0,0,131472,134283,130398,134075,130448,134477,5036,5000,5035,5000,5097,5008,0
+24793,100000,male,1,2,28,0,0,0,0,0,0,12332,12832,8564,7241,7364,7542,1296,1123,1000,223,1500,0,0
+24794,200000,male,1,2,28,0,0,0,0,0,2,42215,44597,51023,56627,60693,59596,3092,7518,7122,5627,0,2741,0
+24795,30000,male,2,2,38,0,0,0,0,0,0,21697,22834,24459,25361,27011,27655,1500,2000,1350,2000,1000,1500,0
+24796,160000,male,1,2,46,-1,-1,-1,-1,-1,-1,1338,711,1941,1052,2004,931,711,1945,1052,2004,931,1499,0
+24797,370000,male,2,2,36,0,0,0,0,2,0,47269,43531,59801,53925,30534,23618,2000,20000,8000,0,1000,0,0
+24798,380000,male,2,1,43,0,-1,-1,0,0,0,112118,96297,243301,259176,47494,129274,96778,243301,21066,2137,110000,50110,0
+24799,210000,male,3,2,37,-1,-1,-1,-1,-1,-1,53748,98002,10347,20198,2960,976,99737,11188,20564,3486,976,1060,0
+24800,90000,male,2,2,44,1,2,2,2,2,0,36835,35949,40567,41604,40637,41824,0,5539,2000,0,2000,3000,0
+24801,210000,male,2,1,42,-1,-1,-1,-1,-1,-1,3096,5260,3298,2972,975,3441,5260,3298,2972,975,3441,1666,0
+24802,120000,male,1,2,30,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+24803,500000,male,1,1,46,-1,-1,-1,0,0,0,46178,56570,117102,159284,112078,136341,57498,120899,101500,30418,80668,50384,0
+24804,390000,male,2,1,48,0,0,0,0,0,0,32708,34849,34370,4968,5595,5318,3000,1500,1000,1004,2003,5407,0
+24805,310000,male,1,2,32,-2,-2,-2,-2,-2,-2,8242,32447,17314,8639,12862,4553,32617,17417,8702,12926,4575,1990,0
+24806,280000,male,1,1,32,0,0,0,0,0,0,284556,265099,270705,278771,283434,259699,9500,10750,12500,11000,9600,9200,0
+24807,200000,male,1,1,41,-1,-1,-1,2,0,-1,1980,1802,5647,3604,1802,1802,1802,5647,0,0,1802,3829,0
+24808,50000,male,2,1,38,0,0,2,0,0,2,32669,35917,35063,36176,38269,37521,3800,0,2000,3000,0,3200,0
+24809,500000,male,2,1,42,-1,-1,-1,-1,-1,-1,17360,13170,10697,19757,5158,43859,13222,10758,19883,5180,44064,41450,0
+24810,30000,male,2,2,49,0,0,0,0,0,0,29893,28289,24572,23448,21919,20756,1697,1505,1305,1000,1000,819,0
+24811,50000,male,2,2,35,0,0,0,0,0,0,49986,46720,48166,49167,26032,26235,23800,2200,2150,1000,1000,1000,1
+24812,210000,male,2,2,47,-2,-2,-2,-2,-2,-2,-163,-163,-163,-65167,-168,2999,0,0,5530,84332,21500,30000,1
+24813,150000,male,1,1,41,-2,-2,-1,2,-1,-1,0,0,6785,6572,1800,0,0,6785,0,1808,0,0,0
+24814,230000,male,2,1,36,0,0,0,0,0,0,218205,217665,201440,192978,110055,100857,7859,7750,6246,2500,2600,1300,0
+24815,200000,male,1,2,38,-1,-1,-1,-1,-2,-2,1488,4242,8235,0,0,0,4246,8511,0,0,0,2401,0
+24816,200000,male,1,2,38,-1,-1,-1,-1,-1,2,3810,3056,8519,776,5335,4536,3063,8568,776,5335,0,664,0
+24817,330000,male,2,1,38,0,0,0,0,0,0,179935,177959,175259,153562,157072,158516,8000,6000,5600,6000,6000,6000,1
+24818,70000,male,2,1,37,0,0,0,0,0,0,68144,69548,70985,64905,48542,48525,2538,2607,2137,1714,1751,2153,0
+24819,100000,male,2,1,41,-1,-1,-1,-1,0,0,91,949,3079,6427,6558,0,957,3079,6427,131,0,0,1
+24820,130000,male,2,1,34,0,0,0,0,0,0,129998,132880,128615,130553,100976,96560,6543,6700,6050,4040,3700,3562,0
+24821,90000,male,2,2,35,-1,-1,3,2,-1,-1,941,3008,1882,941,266,-675,3008,200,0,266,0,3264,1
+24822,150000,male,1,1,36,1,-2,-2,-2,-1,-1,0,-316,-632,-1264,316,782,0,0,0,1580,782,638,0
+24823,230000,male,2,1,35,0,0,0,0,0,-1,22472,20911,24408,8747,-1231,4771,1330,5000,3060,91,6002,0,0
+24824,80000,male,1,2,38,-1,0,0,0,0,0,21788,32562,23346,18361,10434,7387,16445,1482,1011,8,111,3509,0
+24825,100000,male,2,1,36,0,0,0,0,0,0,66470,36825,76561,39434,48351,20800,2000,3000,4200,22000,1200,0,0
+24826,170000,male,1,1,37,0,0,0,0,0,0,187146,175347,181490,169608,163255,168395,6500,9000,7000,3500,7000,5000,1
+24827,310000,male,1,1,43,-1,2,-1,-1,-1,-1,2432,261,2745,-626,110,-154,0,4000,0,1000,0,0,0
+24828,160000,male,2,2,36,-1,-1,-1,-1,-1,-1,735,735,735,735,735,735,735,735,735,735,735,735,0
+24829,70000,male,2,1,36,2,2,2,2,2,2,30809,30015,32928,32100,34557,35357,0,3400,0,3000,1500,1500,1
+24830,500000,male,1,1,37,0,0,0,0,0,0,62053,46888,50783,53204,56946,58394,75840,5000,5012,10000,5000,10000,0
+24831,50000,male,2,1,46,0,0,-2,-2,-1,0,51400,0,0,0,50108,50765,0,0,0,50108,2363,390,0
+24832,410000,male,2,1,46,2,2,2,2,2,0,71532,73643,72083,76603,74964,76370,3700,0,6147,0,2577,2747,1
+24833,120000,male,1,2,32,0,0,0,0,2,0,120792,87675,122177,120667,47880,49629,20137,50053,29377,0,30000,984,0
+24834,20000,male,1,2,30,-1,-1,3,2,0,0,323,24910,22469,21780,20363,20199,26703,0,0,1000,800,1000,1
+24835,310000,male,2,1,40,-1,0,0,0,0,0,12295,13440,30944,31594,30454,29246,2000,20000,2000,2000,2000,210759,0
+24836,90000,male,2,1,36,0,0,0,-2,-2,-2,24489,23303,12957,4755,9176,10376,1527,12957,4755,9296,1200,0,0
+24837,200000,male,1,1,43,0,0,0,0,0,0,145901,144678,140804,136437,135253,134629,5216,5090,5014,5009,4844,5002,0
+24838,360000,male,1,2,30,-1,-1,-1,0,0,0,10821,5559,3272,13756,12852,20893,5586,3364,13132,10034,16104,14348,0
+24839,350000,male,1,2,29,0,0,0,0,-2,-2,16476,21256,25750,0,0,0,5000,5000,0,0,0,0,0
+24840,20000,male,2,1,34,0,0,2,3,2,0,14950,16446,19844,19162,18704,19226,2065,3398,0,0,780,18010,0
+24841,260000,male,1,1,37,-2,-2,-2,-2,-2,-2,5275,-200,-200,2515,0,20532,0,0,2715,0,20532,0,0
+24842,110000,male,2,1,42,0,0,0,0,0,-1,108227,107529,108483,73177,51043,60581,4200,4306,1662,1170,60604,5000,1
+24843,140000,male,1,2,32,0,0,0,0,2,0,90590,97047,102468,114718,111387,116399,8000,7000,15500,0,7000,7000,0
+24844,310000,male,3,2,34,0,0,0,0,0,0,263685,190484,178753,166942,140659,145379,8000,6650,6000,6000,7000,6000,0
+24845,170000,male,2,1,40,0,0,0,2,2,2,148211,149659,155442,162471,158294,166836,5400,8200,11400,0,10800,0,0
+24846,80000,male,1,2,30,0,0,2,2,2,2,76539,21644,17427,67659,63815,48670,3510,41,65007,53,3228,0,0
+24847,410000,male,2,1,46,-1,-1,-1,-1,-1,-1,5135,2916,13379,5165,5034,3089,2916,13379,5180,5851,3089,6271,0
+24848,130000,male,2,2,38,0,0,0,0,2,0,16657,17874,18776,20858,20225,21396,1500,1500,2400,0,1500,1500,0
+24849,260000,male,1,1,39,0,0,0,0,0,0,5992,7000,8024,9185,9384,9426,1116,1140,1301,500,341,343,0
+24850,500000,male,1,2,40,-1,-1,-1,0,-1,-1,2594,1184,17740,36657,2631,26231,1190,17840,36639,2644,26363,35908,0
+24851,160000,male,2,1,43,-2,-2,-2,-2,-2,-2,390,780,0,780,390,930,780,0,780,390,930,0,0
+24852,180000,male,2,1,33,0,0,0,0,0,0,37565,36877,36862,34337,33524,35223,3006,3007,3002,3000,3000,2003,0
+24853,70000,male,3,2,34,0,0,0,0,0,0,53972,23149,23968,25559,26134,26715,1700,1500,2000,1000,1000,2000,0
+24854,50000,male,2,2,35,-1,-1,-1,-1,-1,-1,1000,14300,17820,3800,2241,12241,14300,17820,3800,2241,12500,0,0
+24855,90000,male,1,2,32,2,0,0,0,0,0,63632,131132,66940,68332,70169,66709,3000,2431,2506,3000,2950,4000,1
+24856,210000,male,2,2,32,0,0,0,0,0,0,137264,102545,94692,70484,36308,33201,3664,3900,2868,3000,2000,2000,1
+24857,210000,male,5,1,31,2,0,0,0,0,-1,195615,199825,124788,126946,93925,-285,9234,5185,4900,4526,21787,152951,0
+24858,360000,male,2,1,32,-1,-1,-1,0,0,-1,942,3670,33148,33829,16555,7090,3678,33148,1287,413,7127,1193,0
+24859,280000,male,1,2,30,0,0,0,0,0,0,100740,104055,106380,112596,114235,117232,5000,4000,8000,5000,5000,18000,0
+24860,160000,male,1,2,31,0,0,0,0,0,0,108179,110217,107420,111123,111795,114136,3866,3899,5489,4005,4145,4161,0
+24861,200000,male,2,1,32,-1,-1,-1,-1,-1,-1,3254,1988,2780,3107,6687,24524,1998,2795,3117,6700,24538,2797,0
+24862,50000,male,2,2,32,5,4,3,2,0,0,46750,45734,44741,43562,44039,45008,0,0,0,1262,1358,1275,0
+24863,400000,male,3,1,33,0,0,2,0,0,0,2487,4708,2192,11111,5675,5071,4009,6,10248,4721,4114,1855,1
+24864,210000,male,1,2,32,-2,-2,-2,-2,-2,-1,918,1144,3977,5365,789,1086,1146,3988,5381,791,1088,948,0
+24865,440000,male,1,2,33,-2,-2,-2,-2,-2,-2,2380,1750,4697,7502,2249,4532,1750,4697,7502,2249,4532,101750,0
+24866,380000,male,3,1,34,-1,-1,-1,-1,-1,-1,4539,4119,4686,2363,2416,4718,4131,4700,2382,2423,4732,2353,0
+24867,120000,male,1,2,33,0,0,0,0,0,0,8578,6492,8268,6672,11724,4642,5502,7921,5700,10834,4000,3500,0
+24868,110000,male,1,1,33,0,0,0,-2,-2,-2,47460,51200,-200,-200,-200,-200,5000,0,0,0,0,1000,1
+24869,110000,male,2,1,34,1,2,3,2,0,0,53524,58646,57156,54984,57437,59204,6600,0,0,4000,3500,2200,1
+24870,360000,male,1,1,34,-1,-1,-1,-1,-1,-1,6878,49190,38497,14342,17098,4546,49190,38610,14350,17098,4546,6229,0
+24871,200000,male,1,3,47,0,0,0,0,0,0,202967,203188,198576,186981,137486,140473,7208,7282,5835,5000,5500,4954,1
+24872,200000,male,2,2,36,0,0,0,0,0,0,175353,150969,153856,156401,159300,160571,25001,5701,5576,6009,5811,6156,1
+24873,50000,male,2,2,35,0,0,0,0,0,0,50471,48538,49484,46077,23536,24045,3000,1755,1500,842,888,1914,0
+24874,400000,male,1,1,38,-2,-2,-2,-2,-2,-2,23052,7754,13052,12639,12315,7831,8025,13972,13046,13040,7923,14533,0
+24875,150000,male,1,2,41,-1,2,-1,-1,-1,-1,1980,990,990,990,990,1980,0,990,990,990,1980,0,0
+24876,430000,male,1,1,39,-1,-1,0,0,-1,-1,43970,46127,336073,325463,38290,21800,50942,325470,20003,39068,21800,351282,0
+24877,170000,male,1,1,35,-2,-2,-2,-2,-2,-2,-21,-21,-21,-21,-21,-21,0,0,0,0,0,0,0
+24878,300000,male,1,1,42,0,0,0,0,0,0,23742,29184,27048,24113,21683,12680,10000,1976,1200,12689,0,11223,0
+24879,500000,male,1,2,36,0,0,0,0,0,0,34639,41481,25747,5749,10370,14161,10010,8078,2000,5000,6000,15000,0
+24880,230000,male,2,1,34,0,0,0,0,0,0,165090,135706,122232,82007,80811,81914,6500,6000,3400,2500,2000,1800,0
+24881,50000,male,2,1,47,0,0,0,0,0,0,50593,50420,49695,47862,18371,18601,1798,2198,1296,805,676,695,0
+24882,50000,male,2,2,44,1,2,0,0,0,0,15323,14780,15889,16650,18535,18924,0,1354,1115,2000,520,600,1
+24883,220000,male,1,2,35,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+24884,500000,male,2,1,39,-2,-2,-2,-2,-2,-2,2082,800,1440,600,8170,600,803,1440,600,8170,600,1389,0
+24885,350000,male,2,1,38,1,2,0,0,2,0,70845,69318,71301,75129,71313,68046,0,3500,5500,0,2500,2000,0
+24886,200000,male,1,1,44,-1,-1,-1,-1,-2,-2,3983,4884,3165,0,0,0,4884,3165,0,0,0,0,0
+24887,30000,male,3,2,35,0,0,0,0,0,0,27224,28359,27458,26539,28556,28621,2001,5101,2002,3031,3095,2175,0
+24888,180000,male,3,1,36,-1,-1,-1,-1,-1,-1,1321,590,584,1196,3040,8009,590,584,1202,3049,8009,7820,0
+24889,50000,male,2,1,42,2,2,2,0,0,0,8971,9287,9600,10537,11008,11472,1000,1000,1500,1000,1000,1000,0
+24890,80000,male,1,1,44,-1,-1,-1,-1,0,-1,1049,0,152,9587,692,706,0,152,9587,6,706,697,0
+24891,270000,male,1,1,39,0,0,0,-1,0,0,18221,5973,6511,49873,44658,40703,3005,3027,49935,5021,2004,5008,0
+24892,310000,male,1,1,39,-1,-1,-1,-1,-1,-1,16577,1361,2716,824,757,842,1361,3146,824,757,842,13436,0
+24893,450000,male,1,1,37,1,2,0,0,0,0,387192,379442,387398,395655,403568,418182,0,14062,14700,14500,21077,12575,1
+24894,210000,male,1,1,40,2,2,2,2,2,0,151258,141669,134301,124218,110114,101559,5000,7000,4200,0,4000,6500,1
+24895,300000,male,2,1,39,0,0,0,0,0,0,127237,114506,115420,118149,110223,110449,4100,4600,7384,3500,3900,4500,0
+24896,60000,male,2,1,38,0,0,2,0,0,0,72930,71123,67405,63559,60048,56458,5000,3000,3000,3000,2000,3000,0
+24897,360000,male,1,2,36,-1,-1,-1,-1,-1,-1,415,-350,325,765,24851,414,0,1000,765,24851,414,30664,0
+24898,280000,male,1,1,34,1,-2,-2,-1,-1,-1,0,0,0,17535,9119,18960,0,0,17535,9119,18960,1200,0
+24899,150000,male,1,1,40,0,0,0,0,0,-1,133013,123548,94995,52874,64269,73351,4159,4221,3094,30454,100049,5098,1
+24900,260000,male,2,1,42,-2,-2,-2,-2,-2,-2,246,246,246,246,246,246,246,246,246,246,246,246,0
+24901,150000,male,1,2,39,-2,-1,-1,-1,-2,-2,8766,5890,1000,0,0,0,5950,1010,0,0,0,0,0
+24902,180000,male,2,2,37,0,0,0,0,0,0,62140,65729,68709,70465,72335,74807,5311,4657,3500,3650,3800,3500,0
+24903,120000,male,1,1,43,-1,-1,-1,-1,-2,-1,165,0,788,0,0,495,0,788,0,0,495,0,0
+24904,200000,male,1,1,42,0,0,2,0,0,0,125722,134514,130952,132290,159160,162928,12400,0,5000,29160,6500,15044,0
+24905,130000,male,1,2,43,0,0,0,0,0,0,121816,124223,62318,64214,44840,45969,6000,6000,3000,2000,2000,2000,0
+24906,50000,male,2,1,35,1,2,0,0,2,0,45442,44411,45596,48089,46790,46982,0,1900,3300,0,1558,1833,0
+24907,430000,male,1,1,35,-2,-2,-2,-2,-2,-2,0,0,0,0,0,2178,0,0,0,0,2178,2125,0
+24908,30000,male,2,2,30,0,-1,0,0,0,0,30210,27826,28672,29622,30271,24536,28000,1600,1500,1000,1000,1000,1
+24909,60000,male,2,2,30,0,0,0,0,0,0,4419,5683,6733,7662,8529,9884,1500,1300,1200,1000,1500,800,1
+24910,180000,male,1,2,29,-1,-1,-1,-1,-1,-1,1430,1785,435,2145,3090,4165,1785,435,2145,3090,4165,16828,0
+24911,360000,male,3,2,31,1,-1,2,-1,0,0,0,238,238,3730,3930,3930,238,0,3730,200,0,0,0
+24912,60000,male,2,2,31,0,0,0,0,-1,0,53954,57469,37861,60993,2343,6707,5000,5000,25500,3000,6000,5000,0
+24913,100000,male,1,2,31,-1,-1,-1,-1,-1,-1,3746,11973,13139,7170,386,1617,12077,13210,7192,386,1621,4366,0
+24914,80000,male,2,2,48,0,0,0,0,0,0,74349,75524,77448,48108,39104,39526,3400,4000,2000,2000,1423,2200,0
+24915,240000,male,1,2,34,0,0,2,-1,-1,0,30851,40286,38008,9497,9124,7128,10000,14,9497,9124,2000,1200,0
+24916,40000,male,1,2,35,-2,-2,-2,-2,-2,-2,0,2277,1521,0,2483,1396,2277,1521,0,2483,1396,1350,0
+24917,80000,male,2,2,35,0,0,0,0,0,0,77298,71051,71239,75710,63977,43385,2515,3000,6000,3008,2000,0,0
+24918,120000,male,1,1,48,2,-1,-1,-1,-1,-1,360,360,360,360,150,870,360,360,360,150,870,510,1
+24919,280000,male,4,1,42,-1,-1,-1,0,-1,-1,11847,10232,13454,5549,1260,26271,10252,13488,5572,1263,26398,5823,0
+24920,210000,male,1,1,41,-2,-2,-2,-2,-2,-2,2361,652,401,63,684,0,652,401,63,684,0,0,0
+24921,70000,male,2,2,38,0,0,0,0,0,0,48421,49620,49976,20882,16401,16903,2006,1362,1268,587,766,1000,0
+24922,160000,male,1,2,37,2,2,2,2,0,0,63043,67460,68554,66841,74763,87692,6079,3064,0,10000,15000,0,1
+24923,260000,male,5,1,47,-1,-1,-1,-1,-1,-1,3469,1579,879,697,396,3635,1579,879,697,396,3635,5964,0
+24924,100000,male,1,2,37,2,2,0,0,2,2,38604,37688,38780,43592,44117,45165,0,2000,5800,1540,1900,1700,1
+24925,80000,male,2,2,36,2,2,2,0,0,0,48751,49853,48781,50170,51237,52360,2200,0,2500,2500,2100,2000,1
+24926,140000,male,2,1,44,1,-1,-1,-1,0,-1,0,1384,-12,1900,664,1085,1384,0,1912,0,1085,0,0
+24927,100000,male,2,2,40,-2,-2,-2,-2,-2,-2,8853,-1000,389,10049,1049,1049,0,10389,10051,1051,1051,1051,0
+24928,50000,male,1,1,37,0,0,0,-2,-2,-2,29294,30400,0,0,0,0,2000,500,0,0,0,0,0
+24929,20000,male,2,2,35,2,2,3,2,0,0,15087,16133,17174,16605,17029,17305,1600,1600,0,1000,700,1000,0
+24930,240000,male,1,1,35,0,0,0,0,0,0,188964,183744,168683,155064,148969,148619,8000,6017,6900,5250,5400,6200,0
+24931,90000,male,2,1,44,0,0,0,0,0,0,16420,17441,18467,19554,20028,20704,1300,1313,1400,800,1000,800,0
+24932,420000,male,2,1,38,0,0,0,0,0,0,293402,297672,304702,311889,182087,185152,10433,12000,13302,7002,6500,7000,0
+24933,500000,male,2,2,33,0,0,0,0,0,0,134558,134503,114682,124240,131006,137911,5185,20031,20029,20058,20127,10000,0
+24934,350000,male,1,2,33,-2,-2,-2,-1,0,0,6015,8751,686,430667,161089,119339,8797,691,238241,1009,596,10356,0
+24935,50000,male,2,1,43,0,0,0,0,0,0,39722,40759,43096,44151,3361,3593,1700,3000,2350,1000,286,1000,0
+24936,80000,male,1,2,40,-1,-1,0,0,0,0,1068,37102,38112,40079,41040,42994,37200,2000,3000,2000,3000,2000,0
+24937,200000,male,1,1,42,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+24938,240000,male,1,1,43,0,0,0,0,0,2,67120,68473,69899,71946,75425,74377,2200,2263,2930,5000,0,3000,0
+24939,30000,male,2,2,44,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+24940,290000,male,2,1,46,0,0,-1,0,0,-1,31824,20578,13505,13386,12536,5850,1529,13505,6000,5000,6000,0,0
+24941,20000,male,3,1,38,0,0,-1,0,0,0,17860,11627,19648,18459,18824,19220,1400,19648,1307,672,698,718,0
+24942,330000,male,2,1,45,0,0,0,0,0,0,86916,87548,89421,91115,92935,91584,3135,3285,3221,3247,3317,3555,0
+24943,10000,male,1,2,36,1,2,3,2,0,0,8803,10926,10425,9919,9825,10581,2620,0,0,400,1100,0,1
+24944,370000,male,1,1,45,0,0,0,0,0,0,123485,129885,134782,141002,145637,149281,10000,7000,10000,7000,6000,6000,0
+24945,80000,male,1,2,43,0,0,0,0,0,0,84437,85065,77727,73713,74328,75649,3093,8000,3000,3000,3000,4000,0
+24946,340000,male,2,1,40,0,0,0,0,0,0,147943,144543,146603,149519,151697,154499,5169,5333,5366,5550,7000,915,0
+24947,500000,male,1,1,31,1,-2,-2,-2,-1,0,0,0,0,0,881,881,0,0,0,881,0,0,1
+24948,460000,male,1,1,49,0,0,0,0,0,0,293429,295998,295807,291616,289529,289449,13200,14000,11500,10500,10500,10000,0
+24949,50000,male,2,2,43,0,0,0,0,0,0,46594,47585,48887,49097,17203,17562,1768,2070,1280,616,636,640,1
+24950,160000,male,6,1,44,0,0,0,0,0,0,151394,153702,156778,148292,115841,116972,5500,7054,6511,4500,4500,4500,0
+24951,80000,male,2,1,47,2,2,2,0,0,2,68250,73424,71691,72507,76841,74336,6325,0,2612,5520,0,2998,1
+24952,210000,male,3,2,48,0,0,0,0,-1,-1,200822,206893,94347,-342,658,1758,11477,3658,0,1000,1800,14015,0
+24953,30000,male,3,1,35,0,0,0,0,0,0,28486,28182,26168,23119,23268,29327,2000,3000,5000,3000,7000,1156,0
+24954,30000,male,2,2,37,0,0,0,0,-1,0,31404,32302,27951,28475,29085,26810,1500,1476,1000,31000,1000,995,1
+24955,410000,male,1,1,38,-1,-1,-1,-1,-2,-2,499,0,35509,0,0,0,0,35509,0,0,0,0,0
+24956,260000,male,2,2,35,0,0,0,0,0,0,493411,400108,297313,276948,2378,-2709,12325,6633,6889,1025,2047,194102,1
+24957,50000,male,2,1,40,0,0,0,0,0,0,50536,9853,11353,12143,11753,11922,1200,4000,2000,2000,1000,1000,0
+24958,360000,male,3,1,37,-1,-1,-1,-2,-2,-2,1090,303,0,0,0,0,303,0,0,0,0,860,0
+24959,50000,male,3,1,49,0,0,0,0,0,0,48584,49070,50076,48995,19780,15102,2000,5000,2305,3000,559,3000,0
+24960,220000,male,1,1,40,-1,2,-1,-1,2,0,1208,534,212,2886,3794,4673,0,538,3089,1630,2000,2000,0
+24961,30000,male,3,2,50,2,2,0,0,0,0,53237,46868,42397,38569,33570,19895,0,1800,2200,1400,2000,30000,1
+24962,230000,male,2,2,50,1,2,0,0,0,0,23674,23027,24185,25238,29803,34312,0,2000,1435,5000,5000,6000,1
+24963,20000,male,3,1,50,1,5,4,5,4,3,18378,17797,19225,18644,18063,17491,0,2000,0,0,0,0,0
+24964,500000,male,2,1,45,-1,-1,-1,-1,-1,-1,102690,15518,18909,31449,8253,25707,15599,19001,31603,8289,25832,2357,0
+24965,50000,male,1,2,34,0,0,2,0,0,2,33499,36742,35875,36501,21764,1723,3800,0,1500,300,0,150,0
+24966,440000,male,2,1,49,-2,-2,-2,-2,-2,-2,942,2002,2942,2948,0,942,2002,2942,2948,0,942,1000,0
+24967,140000,male,1,1,50,0,0,0,0,0,0,83957,87160,89365,91005,94651,97132,5000,4000,3618,5481,5000,5000,0
+24968,480000,male,1,1,49,-2,-2,-2,-2,-2,-2,63701,-220,38929,339176,33146,37337,0,39149,344261,33312,37511,31383,0
+24969,20000,male,2,2,53,0,0,0,0,0,0,17053,18952,15732,17330,17150,18150,2219,2000,2000,1000,1000,0,1
+24970,170000,male,2,1,52,3,2,2,-2,-1,-1,2184,1990,0,0,3955,1278,0,0,0,3955,1278,1316,0
+24971,260000,male,2,1,54,0,0,0,0,0,0,212197,212185,212584,213851,215362,214879,7534,8201,7633,7436,7879,8727,0
+24972,140000,male,1,2,50,-1,2,-1,-1,-1,-1,780,780,390,0,780,390,0,390,0,780,390,0,1
+24973,100000,male,3,1,49,0,0,-2,-2,-2,-2,33333,0,0,0,0,0,0,0,0,0,0,0,0
+24974,220000,male,3,1,65,-1,-1,-1,-1,-1,-1,1193,1525,3067,1771,2326,390,1525,3470,1771,2333,390,2361,0
+24975,160000,male,3,1,61,-1,-1,-1,-1,0,-1,390,390,390,780,390,390,390,390,780,0,390,390,0
+24976,20000,male,2,1,50,0,0,-1,-1,-1,-1,17020,13161,3851,6061,7058,5680,1000,3851,6061,7058,2840,6380,0
+24977,210000,male,3,1,50,-1,-1,-1,-1,-1,-1,4137,390,390,4962,0,780,390,390,4962,0,780,6668,1
+24978,60000,male,3,1,50,-2,-2,-2,-1,-1,-2,1400,373,1299,1170,600,510,373,1299,1172,600,510,600,0
+24979,190000,male,1,1,50,2,2,2,2,2,2,36137,37143,38051,38827,39488,40208,1900,1800,1700,1600,1500,1600,1
+24980,500000,male,1,2,51,0,0,0,0,0,0,79461,75952,77726,79494,83150,85805,3000,3000,4000,5000,4000,4000,0
+24981,20000,male,2,2,50,0,0,2,0,0,0,8639,10483,11016,12027,12030,12535,2000,1000,1500,500,700,700,0
+24982,460000,male,1,1,51,1,2,0,0,0,0,179442,158458,145081,130967,118659,15322,4,7506,5024,2572,2005,21559,0
+24983,460000,male,3,1,61,0,-1,-1,-1,-1,-1,10643,1547,1670,6425,4897,8401,1600,1800,6500,5000,5000,4500,0
+24984,300000,male,3,1,56,0,0,0,0,0,0,282506,281606,261216,156521,120769,110093,20024,20035,6610,20000,4000,4200,0
+24985,490000,male,2,1,57,0,0,0,0,0,0,59056,60236,62268,63264,62928,66334,2153,3000,2112,2124,6004,3024,0
+24986,90000,male,2,1,58,0,0,0,0,0,0,93737,85818,88988,50780,50929,48735,3600,5100,2200,2200,1944,2200,0
+24987,70000,male,3,1,55,2,2,2,2,2,2,20205,22856,22202,24326,23636,25350,3000,0,2500,0,2100,1100,1
+24988,20000,male,2,1,55,0,0,0,0,0,0,16734,17748,18384,18976,18955,18983,1300,1314,1296,665,710,693,1
+24989,20000,male,2,1,61,-1,2,-1,-1,-2,-1,1480,390,780,0,390,390,0,780,0,2000,1170,1320,0
+24990,10000,male,3,2,61,0,0,0,0,0,0,7700,8595,9273,9774,9973,9638,1293,1235,1000,199,193,197,1
+24991,420000,male,1,1,53,-1,-1,-1,-1,-1,-1,1936,3473,12230,13682,1695,712,3489,12290,13749,1706,714,584,0
+24992,200000,male,2,1,54,-1,-1,-1,-1,-1,-1,10755,9981,7843,6335,4616,7956,10120,7852,6336,4622,7956,5499,0
+24993,500000,male,1,2,58,0,0,0,0,0,0,201013,197982,137786,129575,135483,118851,8366,12063,8031,16114,10091,15123,0
+24994,150000,male,1,1,55,0,0,0,0,0,0,142904,144527,149386,149031,78284,76500,5200,7200,4800,2730,2750,2800,0
+24995,50000,male,3,2,58,0,0,0,0,0,0,46190,44450,50266,19729,20149,19593,2000,20266,1300,700,700,700,0
+24996,180000,male,2,1,63,0,0,0,0,0,0,47932,48922,50035,50749,51903,52991,2087,2200,1846,2000,1923,2000,0
+24997,20000,male,2,2,52,0,0,0,2,2,-2,13874,14488,16029,15470,0,0,1238,2559,0,0,0,0,0
+24998,150000,male,2,1,52,2,2,2,2,2,0,131953,136386,140830,146050,142241,145559,8100,8100,9000,0,5578,5304,1
+24999,50000,male,3,1,60,1,2,0,0,0,0,52198,50062,50284,50740,30175,30407,0,2310,1766,1201,1232,1199,0
+25000,130000,male,2,1,54,0,0,0,0,0,0,129049,63099,57700,53308,48722,48831,3000,2100,2500,2100,2100,1500,0
+25001,370000,male,1,2,52,0,0,0,0,0,0,242132,130404,65225,41922,37565,28830,5600,3000,2000,3000,500,4019,0
+25002,360000,male,2,1,58,-1,-1,-1,-1,-2,-1,30155,10508,7575,3026,1133,3408,10541,7600,3049,1138,3414,24952,1
+25003,100000,male,3,1,54,0,0,0,0,5,4,37082,46041,59526,72823,71105,69424,10000,15000,15000,0,0,0,1
+25004,50000,male,3,2,54,0,0,0,0,0,0,75804,76799,78692,79543,19738,19759,2785,3068,2309,694,716,808,0
+25005,200000,male,3,2,61,0,0,-1,-1,-1,-1,3030,7277,6655,3455,0,1930,7007,6655,3455,0,1930,5450,1
+25006,400000,male,3,1,53,0,0,0,0,-1,0,15090,17934,21264,29811,58472,101092,4004,5002,10004,70001,84003,20000,0
+25007,20000,male,2,1,56,0,0,0,0,0,0,17768,18378,19077,19467,19155,19098,1600,1689,1469,547,500,547,0
+25008,500000,male,1,1,55,3,2,2,2,2,2,4957,4957,4957,4957,4957,4957,0,0,0,0,0,0,1
+25009,20000,male,2,2,49,0,0,0,0,-1,-1,18260,19080,18871,17700,390,1320,1621,1292,1166,390,1320,0,1
+25010,240000,male,5,1,50,0,0,0,0,0,0,236470,242059,235353,240001,190904,193710,9560,9000,8790,8013,8125,8000,0
+25011,210000,male,2,2,52,-2,-2,-2,-2,-2,-1,5649,5398,435,18950,6804,59999,5425,437,19053,6838,59999,214,0
+25012,130000,male,2,2,54,0,0,0,0,0,0,89913,90555,93576,95121,64712,66016,3300,5000,4500,2400,2600,2600,0
+25013,130000,male,3,2,49,0,0,0,0,0,-1,20678,18956,16172,16898,11236,6944,1610,1808,7014,27,7011,4408,0
+25014,360000,male,1,1,49,-1,-1,-2,-2,-1,2,4698,-200,-200,0,5084,2500,0,0,200,5084,0,0,1
+25015,50000,male,1,2,55,0,-1,-1,-1,-1,0,11045,3115,7161,5351,791,47774,3115,7161,5351,791,46983,2025,0
+25016,500000,male,1,1,54,-1,-1,2,-1,-1,-1,10287,15123,9957,2253,4402,10340,5084,49,2270,4422,10360,3912,0
+25017,130000,male,3,2,54,2,0,0,0,0,0,98285,94075,92857,95351,95525,96980,4300,4300,7400,3600,4000,4000,0
+25018,20000,male,3,2,55,0,0,0,0,0,0,19978,18910,18962,19886,18978,17124,1594,1476,1400,380,342,672,1
+25019,480000,male,1,1,50,-2,-2,-2,-2,-2,-2,0,8389,6375,1114,0,0,8389,6375,1114,0,0,0,0
+25020,240000,male,3,1,50,0,0,0,0,0,0,140233,134223,130372,128921,120048,121292,4754,4873,5033,4204,4509,5009,0
+25021,60000,male,2,1,51,0,0,0,0,0,0,60114,54902,46956,40671,38188,38652,1902,1650,3200,1500,1500,1500,0
+25022,450000,male,1,1,61,-1,0,0,0,0,0,156875,154853,152936,150996,149094,147297,11000,11000,11000,11000,11000,11000,1
+25023,350000,male,3,1,65,-1,-1,-1,-1,-1,-1,188,188,187,698,188,183,188,187,700,188,183,1305,0
+25024,130000,male,2,1,48,2,0,0,0,0,0,121409,123106,125614,125451,84103,84436,6000,6592,4000,3000,3062,4000,1
+25025,240000,male,1,1,48,0,0,0,0,0,0,234984,234559,240896,135900,135853,127777,9500,11217,4855,4000,3200,3000,0
+25026,50000,male,2,2,54,2,0,0,0,0,0,46431,47028,48063,48667,17875,17699,1756,2181,2175,773,638,694,0
+25027,60000,male,2,2,53,0,0,0,0,0,0,62038,34845,33598,20904,18705,19345,1579,1998,1304,771,1045,433,0
+25028,20000,male,1,2,50,0,0,0,0,0,0,17820,18626,18980,7674,5708,4899,1435,1179,1000,114,98,1874,0
+25029,30000,male,2,1,48,0,0,0,0,0,0,26846,27879,28870,27806,25142,25667,1783,1774,1710,1046,1079,1089,0
+25030,400000,male,1,1,48,-2,-2,-2,-2,-2,-2,3173,4265,8403,9096,28896,52196,4265,8427,9096,28896,52196,396,0
+25031,400000,male,1,1,50,0,0,0,0,0,0,16241,14697,12762,13043,10137,8249,1217,1302,1052,510,305,512,0
+25032,200000,male,1,1,48,-1,-1,-1,-1,0,-1,419,419,392,423,404,415,419,392,450,400,430,430,0
+25033,260000,male,2,1,50,0,0,0,0,0,0,133208,122199,113462,98146,86452,58846,6400,5744,3756,2600,2500,2000,0
+25034,30000,male,1,1,59,-1,-1,-1,-1,-1,0,390,390,390,1389,3684,2744,390,390,1389,3684,0,4794,0
+25035,30000,male,1,1,52,0,0,0,0,0,-2,14476,15297,8531,8020,-620,-620,1129,1152,1081,0,0,0,1
+25036,270000,male,1,1,54,-1,-1,-1,-1,-1,-1,931,31838,11013,1188,14989,2609,31838,11013,1196,14989,2609,1269,0
+25037,260000,male,3,1,48,0,0,0,0,0,0,154927,158848,160654,155059,141570,134143,8000,6000,7100,5300,5000,5000,0
+25038,210000,male,2,1,47,1,-1,-1,-2,-2,-2,0,296,-204,-204,-204,-204,296,0,0,0,0,0,0
+25039,500000,male,1,1,51,1,2,2,0,0,0,231300,235865,230713,235401,238828,243477,9838,0,10018,8845,8800,9000,0
+25040,50000,male,2,1,49,0,0,0,0,0,0,48321,48890,30272,31080,15315,15238,1839,1640,1901,526,537,577,1
+25041,160000,male,1,1,53,0,0,0,0,0,0,205134,46181,47242,48355,49552,50655,1800,1800,1900,2000,1900,2000,0
+25042,550000,male,1,1,53,0,0,0,0,0,0,201417,205430,209720,214030,218096,210264,7110,7353,7534,7385,7253,15000,0
+25043,330000,male,1,1,54,-2,-2,-2,-2,-2,-2,0,41219,374,0,15900,8601,41219,374,0,15900,8601,38000,0
+25044,280000,male,1,1,60,-1,2,2,-2,-1,-1,495,109,-780,-1170,1473,558,4,390,0,3033,558,1320,1
+25045,400000,male,1,1,66,0,0,0,0,0,0,279579,258070,77910,61440,44590,12270,10700,47000,1500,0,0,0,0
+25046,300000,male,1,1,55,0,0,0,0,0,0,127480,130168,134080,126996,127820,130325,4810,6164,6069,4425,4412,4123,0
+25047,20000,male,2,1,56,0,0,0,0,0,0,20180,19798,53069,17025,18372,19696,1500,1300,2513,2000,2000,1000,0
+25048,280000,male,1,1,39,-1,-1,-1,-1,-1,-1,1585,6416,16387,2967,1087,2644,6416,16387,2981,2644,2644,820,0
+25049,400000,male,3,2,63,-1,-1,-1,-1,0,0,52332,42898,26096,396988,348029,173170,42898,26099,397092,7864,3785,0,0
+25050,230000,male,3,1,58,-2,-2,-2,-2,-2,-2,-11,-11,2163,-40,-40,8083,0,2174,0,0,8123,4133,0
+25051,20000,male,3,2,53,-1,0,-1,-1,-1,-1,13561,13050,390,18280,2880,1600,1105,390,18280,2880,1600,0,1
+25052,50000,male,3,1,55,0,0,-2,-2,-2,-2,30900,0,0,0,0,0,0,0,0,0,0,0,1
+25053,480000,male,1,1,66,-1,-1,-1,-1,-1,-1,3820,4665,5367,21222,9083,84804,4665,5473,21284,9088,84804,6285,0
+25054,360000,male,5,1,50,1,-2,-2,-2,-2,-2,4767,-233,-233,-233,-233,-233,0,0,0,0,0,0,0
+25055,110000,male,3,1,51,-1,-1,-1,0,0,0,2132,1946,27162,26693,25243,23783,1946,27162,2000,812,799,933,0
+25056,150000,male,1,1,51,0,0,0,0,0,0,149640,146178,133811,122606,107726,1200,6000,3857,12000,20000,0,14500,0
+25057,50000,male,2,1,54,2,2,2,2,0,0,49264,50310,50782,49335,50133,51071,2500,1900,0,1937,2224,2148,1
+25058,200000,male,1,1,54,0,0,-2,-2,-2,-2,205150,0,0,0,0,0,0,0,0,0,0,0,0
+25059,110000,male,2,1,49,0,0,0,0,0,0,106264,107417,108803,82231,25687,27266,4400,3600,4138,1000,2000,2000,0
+25060,100000,male,1,1,55,0,0,0,0,0,0,10712,18135,31498,17158,18758,17168,8000,2000,4000,2000,3000,0,0
+25061,20000,male,1,2,50,0,0,0,-1,-1,-1,11462,9804,1436,363,363,-417,1212,1000,400,0,0,2000,0
+25062,30000,male,2,1,50,0,0,0,0,0,0,28796,25881,28654,29049,27256,27864,1609,5000,3000,3000,3198,2000,0
+25063,230000,male,2,1,60,0,0,0,0,0,0,131550,132114,133281,123958,124474,120570,6057,4845,4291,4115,4274,4054,0
+25064,50000,male,3,1,50,2,0,0,0,0,0,8917,10080,11106,12109,12206,13915,1468,1494,1497,594,2066,0,1
+25065,30000,male,3,2,53,0,0,0,-2,-2,-2,24181,16829,0,0,0,0,3000,0,0,0,0,0,0
+25066,50000,male,3,1,55,-1,-1,-1,0,0,0,1344,780,13032,14292,16698,15436,1200,13032,1500,3000,554,2000,0
+25067,130000,male,3,1,51,0,0,0,0,0,0,124626,121645,125789,128159,123121,123323,4500,6100,6000,5000,4600,5000,0
+25068,50000,male,2,1,57,0,0,0,0,0,0,46540,48520,47875,48110,18576,15339,2770,2100,1300,700,1000,1000,0
+25069,360000,male,1,1,58,-1,-1,2,2,-2,-2,1,612,223,-166,-555,-944,1001,1,1,1,1,1,1
+25070,50000,male,2,1,56,0,0,0,0,0,0,28358,25278,24713,22379,18943,15464,1416,1471,1147,531,464,451,0
+25071,150000,male,1,1,54,-2,-1,-1,-2,-2,-2,4015,499,-948,-1580,316,316,501,632,0,1896,316,782,1
+25072,240000,male,2,1,56,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,780,390,390,390,540,0
+25073,500000,male,1,1,51,-1,-1,-1,-1,-1,0,8030,13156,12724,12873,24010,27089,13156,12724,12873,24010,15000,20000,0
+25074,170000,male,3,1,61,0,0,0,0,0,0,167535,166521,168824,164597,94094,92177,6000,7000,5000,4000,3500,3600,0
+25075,350000,male,1,1,50,0,0,0,0,0,0,93676,91832,88719,87968,84596,82785,3240,5006,4014,3010,3043,5003,0
+25076,160000,male,1,1,51,2,0,0,0,2,2,150,1380,1481,2623,2457,4912,1230,1331,2473,0,2500,0,1
+25077,220000,male,2,1,50,-2,-2,-2,2,2,-1,0,200,200,200,11326,43100,200,0,0,11326,43100,4257,0
+25078,500000,male,5,1,53,0,0,0,0,0,0,431243,415022,421996,426103,125218,126650,11000,12602,11000,4711,6000,11000,0
+25079,460000,male,1,1,51,-1,-1,-1,-1,0,-1,1637,-196,4594,1517,1517,1306,0,4790,1517,0,1306,0,0
+25080,50000,male,1,1,50,-1,2,-1,-1,-1,-1,780,390,390,390,390,780,0,390,390,390,780,0,0
+25081,740000,male,1,1,50,0,0,0,0,0,0,321279,316083,317219,296560,285912,268257,13000,13200,11000,10000,10000,15000,0
+25082,50000,male,3,1,50,-1,-1,-1,-1,-1,-1,7056,2840,1413,2890,4715,1262,2840,1413,2890,4715,1262,5483,0
+25083,290000,male,1,1,51,0,0,0,0,0,0,225478,225603,216488,152892,150051,146287,10026,10006,7000,5000,5200,5500,0
+25084,320000,male,1,2,57,0,0,0,0,0,0,234704,242324,241384,156047,153955,133407,11000,12000,7500,6200,4600,5000,0
+25085,420000,male,1,1,52,-1,-1,-1,-1,-1,-1,11097,16106,10703,14534,20631,17641,16106,10703,14540,20631,17641,11748,0
+25086,500000,male,3,1,50,-1,-1,-1,-1,-1,-1,339,2744,4402,339,339,339,2744,4402,339,339,339,0,0
+25087,450000,male,1,1,52,0,0,0,0,0,0,388009,393535,403891,415193,145198,138389,15000,16701,20101,7000,5750,10000,0
+25088,120000,male,1,1,54,-2,-2,-2,-2,-2,-2,0,0,0,7000,0,0,0,0,7000,0,0,0,0
+25089,80000,male,2,1,56,0,0,0,0,0,0,65186,62938,54748,49857,46429,46247,2800,2340,2009,1793,1700,1812,0
+25090,250000,male,3,1,56,-1,-1,-1,-1,-1,-1,6297,8636,17038,5169,12818,2328,8657,23744,5169,14008,2328,17285,0
+25091,180000,male,1,1,75,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+25092,260000,male,3,2,52,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,4012,0
+25093,20000,male,2,1,52,0,-1,-1,-1,-1,-1,1912,2760,2430,850,2430,2530,2768,2430,850,2430,2530,1570,0
+25094,220000,male,3,1,63,-2,-2,-2,-2,-2,-2,1293,494,1379,-1,272,1628,496,1385,0,273,1636,531,0
+25095,90000,male,1,1,61,0,0,0,0,0,0,46441,46896,47463,45812,41367,40278,1762,1875,1500,1400,1500,1258,0
+25096,210000,male,2,1,75,0,0,0,0,0,0,205601,203957,199882,203776,205901,210006,9700,8810,9000,7300,7500,7600,0
+25097,300000,male,3,1,72,-1,-1,-1,-1,-1,2,4984,752,3737,1433,5522,3233,756,3753,1433,5522,0,27232,0
+25098,30000,male,3,1,56,1,7,6,5,4,3,30826,30384,29656,28914,28172,27444,0,0,0,0,0,0,1
+25099,90000,male,2,1,55,0,0,0,0,0,0,15019,19740,25382,27132,31675,37900,5000,6000,5000,5000,8000,2000,0
+25100,300000,male,3,1,56,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+25101,500000,male,1,1,54,2,2,2,0,0,0,518950,539418,519267,518741,516139,514975,39000,0,19000,19000,18000,15000,1
+25102,170000,female,2,2,37,-1,-1,0,0,0,0,1499,53705,110465,110503,110776,111080,53705,60000,3908,4000,4010,5510,0
+25103,150000,female,3,2,28,0,0,0,0,0,0,100623,101593,101886,101441,100829,101913,4700,4000,4032,3410,4000,3665,0
+25104,360000,female,2,2,25,-1,-1,-1,-1,-1,-1,20952,12590,3479,3435,8870,2020,12590,3479,3446,8870,2020,27043,0
+25105,70000,female,2,1,46,0,0,0,0,0,0,70349,70068,71318,59665,29510,26738,2600,3700,2600,1200,1200,1000,0
+25106,350000,female,1,1,33,-2,-2,-2,-2,-2,-2,6016,4322,5568,9571,6370,9674,4348,5596,9632,6402,9722,24086,0
+25107,50000,female,3,1,27,0,0,0,0,0,0,29875,30336,26635,20367,15640,12269,4506,2000,2066,611,500,370,0
+25108,50000,female,2,1,27,1,2,2,2,2,2,20293,21657,23012,23338,23658,23139,2000,2000,1000,1000,0,1500,1
+25109,70000,female,2,2,26,2,2,2,0,0,0,71862,73594,71851,68539,49027,48969,3500,0,3100,1900,2000,1865,1
+25110,30000,female,2,1,24,1,2,2,2,2,2,29654,28570,31085,29945,30373,29476,0,3300,0,2158,0,1100,0
+25111,30000,female,3,1,23,0,0,0,0,0,0,26117,27028,27510,27817,28130,27141,1737,1609,1306,1455,857,1087,0
+25112,260000,female,2,1,37,1,-1,-1,-1,0,-1,0,312,920,37686,36523,574,312,920,37686,0,574,348,0
+25113,30000,female,2,2,22,1,2,2,-1,2,2,22623,3019,-341,1129,1470,339,10,0,1470,341,0,12324,1
+25114,240000,female,2,1,34,-2,-1,0,0,0,0,0,2712,92496,95057,96974,98977,2712,90000,3346,2717,2796,2826,0
+25115,80000,female,1,2,29,2,2,2,2,2,2,41355,40395,43231,42236,44924,44072,0,3800,0,3400,0,3816,1
+25116,40000,female,1,2,27,0,0,0,0,0,0,9663,10696,11855,13424,14018,14493,1200,1337,1906,1500,475,0,0
+25117,130000,female,1,2,30,2,3,2,2,0,0,9123,8830,9533,10220,10353,10636,0,1000,1000,600,600,400,1
+25118,60000,female,3,2,41,0,0,0,0,0,0,56309,58369,59237,59851,32002,32388,3000,2400,1812,3200,2000,4000,0
+25119,250000,female,2,2,28,-1,-1,-1,0,-1,-1,500,3344,2255,3183,2324,1657,3344,2255,1000,2324,1657,1416,0
+25120,60000,female,2,2,25,0,0,0,0,0,0,50791,49748,49735,36840,30119,32446,1832,2500,2000,3000,3000,1200,0
+25121,390000,female,1,2,27,1,-2,-1,-1,-1,0,0,0,6757,0,3339,3339,0,6757,0,3339,0,0,0
+25122,110000,female,3,2,29,1,2,0,0,0,0,23258,22591,23920,25217,25600,26036,0,2000,2000,1100,1000,3000,0
+25123,30000,female,2,2,22,0,0,2,0,0,0,27219,28987,27849,27451,24358,21192,3600,0,1400,487,424,0,0
+25124,50000,female,3,2,23,0,0,4,3,2,2,44027,52067,50977,49839,50546,49628,8800,0,0,1800,0,3800,0
+25125,10000,female,2,2,21,-1,-1,2,0,0,0,8126,8830,8898,9517,8505,4557,1668,1000,1000,170,0,0,0
+25126,50000,female,1,2,22,0,0,0,0,0,0,8000,6881,8127,8763,8956,4224,1118,1364,1000,193,89,54,0
+25127,80000,female,2,2,22,1,-1,-1,-1,-1,-1,0,2388,164,1369,830,132,2388,164,1369,830,132,428,0
+25128,30000,female,2,1,21,0,0,0,0,0,0,28640,29133,30022,30068,28829,24935,1400,1819,1328,709,1101,1102,0
+25129,30000,female,1,2,21,1,2,0,0,0,0,33300,30920,31889,30278,26220,29968,0,2326,11406,524,6284,598,1
+25130,50000,female,2,1,22,1,1,2,2,2,2,44531,50863,49555,34644,28867,28983,7178,0,1656,944,967,1112,0
+25131,50000,female,2,2,22,2,2,2,2,0,0,50583,50974,51688,50024,29381,28957,2300,3000,0,800,808,1200,0
+25132,50000,female,3,1,22,1,4,3,2,0,0,20065,21044,20433,19799,19262,19124,1600,0,0,900,700,700,0
+25133,10000,female,1,2,22,0,0,0,0,0,0,7302,7857,8827,5622,5877,7036,1330,1300,1250,500,1255,315,0
+25134,50000,female,3,2,23,0,0,0,0,0,-1,32789,7006,8880,15088,-574,27529,1500,2000,6700,5000,28103,1032,0
+25135,50000,female,2,2,23,1,3,2,0,0,0,7181,6908,5187,4643,3385,1839,0,0,1022,237,100,50,0
+25136,10000,female,2,2,22,0,0,-1,-1,0,0,7828,8507,511,7696,8696,7660,1009,511,7696,1000,0,0,0
+25137,10000,female,2,2,21,2,0,0,0,-1,-1,9917,8660,9756,8560,780,0,1400,1800,1300,800,0,1900,1
+25138,70000,female,2,2,22,0,0,0,0,0,0,66007,57354,58204,58171,47135,44585,2057,2168,2000,2007,2000,2000,0
+25139,20000,female,2,2,22,0,0,0,0,0,0,17377,18439,19117,11983,11626,1970,1360,1286,1000,987,39,0,0
+25140,30000,female,2,2,22,2,2,2,2,2,0,26243,25523,28609,28945,28181,29329,0,3500,1100,0,1600,2500,0
+25141,30000,female,1,2,22,0,0,0,0,0,0,22271,23273,23268,23100,23286,24804,1379,1454,1276,1286,1804,2000,0
+25142,50000,female,3,2,23,0,0,0,0,0,0,29496,30504,30785,29405,26594,26732,1503,1493,1393,912,940,1000,0
+25143,100000,female,2,1,22,0,0,0,0,0,0,100192,93394,43004,50196,79217,78771,3000,3000,8000,30000,3000,4000,0
+25144,30000,female,2,2,23,0,0,0,0,0,0,22756,27348,28285,14729,12935,13333,5000,2000,2000,500,500,0,0
+25145,20000,female,2,2,22,0,0,2,2,2,2,4400,4883,2829,3920,1997,1317,4500,0,1700,0,100,0,1
+25146,50000,female,1,2,23,2,2,2,2,2,2,44609,44579,46573,47510,48425,49502,1000,3000,2000,2000,2000,0,1
+25147,30000,female,2,1,25,4,3,2,2,3,2,37695,35146,34637,34127,31641,31344,0,2000,2000,0,2000,0,0
+25148,30000,female,2,2,23,2,0,0,0,0,0,27216,28420,27929,28920,27997,28378,3003,1482,1703,1001,1500,1845,1
+25149,30000,female,2,2,23,0,0,0,0,0,0,23237,23874,26985,29497,29290,28693,10000,5000,3000,2000,3150,0,0
+25150,20000,female,2,2,23,1,-1,2,0,0,0,16674,19162,18534,18304,18473,0,22362,0,8200,369,0,0,0
+25151,30000,female,2,2,23,2,2,2,2,2,2,12376,13475,12973,15144,14603,15767,1600,0,2700,0,1400,0,1
+25152,50000,female,1,2,23,0,0,0,0,0,0,39787,28570,7545,8560,8730,8791,1600,1300,1300,460,350,480,0
+25153,80000,female,2,1,23,0,0,0,0,0,-2,54600,56379,55875,7552,0,0,3300,2640,1056,0,0,0,0
+25154,30000,female,2,2,24,1,-1,-1,-2,-2,-1,-5,565,-25,-25,4897,6685,570,25,0,4922,6788,0,0
+25155,10000,female,2,2,22,2,0,0,0,0,0,7568,8580,8944,8985,9301,9365,1300,1300,1300,602,350,500,0
+25156,30000,female,2,2,23,0,0,0,0,0,0,20059,21061,22092,23104,23420,24045,1641,1672,1684,1000,1000,1000,1
+25157,20000,female,1,2,24,-1,-1,-1,-2,-2,-2,1908,1278,0,0,0,0,1405,0,0,0,0,0,0
+25158,30000,female,2,1,22,0,-1,-1,-1,-1,-1,3118,2411,1260,1179,-101,890,2414,1260,1181,101,991,579,0
+25159,120000,female,1,2,23,0,0,0,0,0,0,117035,115624,117204,116835,77926,76993,6000,6000,4000,4000,3000,3500,0
+25160,30000,female,1,1,23,0,0,0,0,0,0,20340,21400,22428,23747,24154,25808,1400,1374,1693,1100,2200,0,0
+25161,110000,female,2,2,23,-1,-1,-1,-1,-1,0,541,541,541,941,6993,37264,541,541,941,6993,31229,8426,0
+25162,30000,female,2,2,23,0,0,0,0,0,2,11284,12294,13320,14031,15593,15201,1503,1529,1240,1802,0,707,0
+25163,80000,female,2,2,23,0,0,0,0,0,0,51980,36668,39291,43476,46115,42129,6670,5000,5002,4003,3000,3002,0
+25164,20000,female,1,2,23,0,0,0,0,0,0,17849,15356,17146,16319,15687,16948,2000,2080,2000,600,1500,1000,0
+25165,170000,female,3,1,23,0,0,0,0,0,0,28615,26410,27654,25211,22682,21787,1446,1690,1208,462,1787,497,0
+25166,120000,female,1,2,24,0,0,0,0,0,0,11245,12554,13325,14185,13329,10237,1500,1265,1125,1329,500,3020,0
+25167,30000,female,2,2,23,-1,-1,2,-1,0,0,1434,4925,390,15736,15525,0,6021,0,15736,1000,0,0,0
+25168,50000,female,1,2,23,0,0,0,0,0,0,49711,50820,41981,2888,2640,2140,2019,2564,1000,0,500,6859,0
+25169,200000,female,2,1,29,1,-2,-1,-1,-1,-1,0,0,900,900,900,900,0,900,900,900,900,900,0
+25170,30000,female,1,2,23,0,0,0,0,0,0,14544,15597,16641,17659,18066,18775,1300,1300,1300,700,1000,1000,1
+25171,90000,female,2,2,23,0,0,0,0,0,0,11333,11944,7832,7204,6724,7965,4234,6000,3000,3010,5000,3000,0
+25172,50000,female,2,2,24,0,0,0,0,0,0,53159,50465,50744,41232,14459,17225,2000,2097,2224,1000,3000,633,0
+25173,50000,female,1,2,23,0,0,0,0,0,0,40111,41380,25865,26568,27249,27665,2252,1737,1440,1121,1004,1013,0
+25174,150000,female,2,2,24,1,2,0,0,0,0,65542,28311,23978,17853,34527,28277,0,2145,10000,22000,3000,5093,0
+25175,10000,female,1,2,24,1,2,0,0,2,2,6779,6524,7559,9564,9264,9862,0,1300,2300,0,900,500,0
+25176,130000,female,3,2,24,0,0,0,0,0,0,114466,106911,106971,57434,58593,60504,4600,4500,2802,2050,2800,2300,1
+25177,70000,female,2,2,23,-1,-1,-1,-1,0,0,312,1823,326,6598,6405,7248,1837,326,6598,227,1270,1296,0
+25178,40000,female,1,2,23,-1,2,2,2,2,2,14310,13788,16345,16531,16467,16061,0,3100,750,500,0,1500,0
+25179,200000,female,2,2,24,0,0,0,0,0,0,52143,53186,55929,194441,146190,141550,1910,3600,141000,5100,5200,5100,0
+25180,110000,female,2,2,25,1,2,0,0,0,0,113385,109924,111805,108207,75808,78490,3900,6000,4380,3000,5000,10000,0
+25181,80000,female,2,2,25,0,0,2,2,2,2,26855,28789,31026,31401,31986,32468,2386,2998,1183,1400,1139,0,0
+25182,90000,female,1,2,24,0,0,0,0,0,0,53173,19825,20840,21023,20776,21055,1324,1339,1638,890,763,769,0
+25183,30000,female,2,2,24,0,0,0,0,0,0,27170,27448,27238,27012,26762,25900,2500,2000,2000,1916,1000,1100,0
+25184,20000,female,3,2,22,0,0,0,0,0,0,16063,14928,14012,11965,11867,12850,1565,2006,2011,7000,2000,4000,0
+25185,30000,female,1,2,24,0,0,0,0,0,0,21540,22236,23574,24583,24915,25280,1358,1696,1705,1037,915,929,0
+25186,230000,female,2,2,24,-1,-1,-1,-2,-1,0,1993,2360,0,0,4135,814,2360,0,0,4135,0,2294,1
+25187,50000,female,2,2,24,-1,-1,-1,-1,0,-1,1572,1572,1572,6561,5091,353,1572,1572,6561,102,353,27000,0
+25188,80000,female,2,2,25,0,0,2,2,2,0,36841,39645,40713,41153,40036,40778,3900,2000,1575,0,1700,3700,1
+25189,130000,female,2,2,25,0,0,0,0,0,0,128976,131763,128300,89007,90126,98665,7100,6000,4200,3500,10000,0,0
+25190,150000,female,1,2,25,-1,-1,-1,2,2,-2,2784,0,594,594,0,0,0,594,0,0,0,0,1
+25191,80000,female,3,1,25,-2,-2,-1,-1,-2,-2,3377,3377,3476,3377,3377,5062,3377,3476,3377,3377,5062,3387,0
+25192,140000,female,2,2,26,0,0,0,0,0,2,131335,128760,118310,120719,126470,124342,5864,5756,5868,9275,0,4712,0
+25193,150000,female,1,2,26,0,0,0,0,-1,-1,38580,38168,37775,36390,390,390,2000,3473,1000,390,390,390,0
+25194,50000,female,2,2,24,0,0,0,0,0,0,50870,49831,47162,47696,36476,32654,1985,2316,1850,1500,1200,5196,0
+25195,80000,female,1,2,26,0,0,0,0,0,0,62536,61478,55760,15029,13809,13597,3000,2000,5000,3000,1000,44000,0
+25196,130000,female,2,2,25,0,0,2,0,0,0,45134,52180,49874,52000,53590,54606,9000,0,5000,4000,3000,3500,0
+25197,40000,female,1,2,26,-1,-1,-1,0,0,-1,1216,776,4059,13522,16416,807,776,4385,10000,5000,807,657,0
+25198,140000,female,2,2,24,2,2,2,0,0,0,38661,42699,41739,43730,45687,46796,5000,0,3000,3000,2000,4093,1
+25199,30000,female,1,2,25,-1,-1,0,0,0,0,640,29013,27731,28177,20722,0,30013,2000,1232,1000,0,0,0
+25200,500000,female,2,2,25,0,0,0,0,0,0,37797,35510,26463,23503,23918,23937,3050,1543,1215,3717,14014,12042,0
+25201,270000,female,2,2,25,0,0,0,0,0,0,38525,39492,33898,35272,37201,31447,2000,2000,2000,2408,1500,2013,0
+25202,60000,female,2,2,23,1,2,0,0,0,0,59866,58114,25127,21111,15892,16762,0,3761,1600,881,900,852,0
+25203,120000,female,2,2,23,3,2,2,5,5,4,1250,1250,1250,1250,1250,650,0,0,0,0,0,0,0
+25204,130000,female,2,2,24,0,0,0,0,0,0,35871,36873,37927,38993,39628,42136,1900,1950,2000,1580,3310,0,0
+25205,30000,female,2,2,25,1,2,2,0,0,-1,30937,32627,31827,32080,30890,990,2500,0,1200,0,990,8721,0
+25206,290000,female,2,2,25,0,0,0,0,0,0,57445,57025,46484,36232,32149,24004,2000,1800,1400,1000,1000,1000,0
+25207,30000,female,1,2,24,2,2,0,0,0,0,23905,23244,23578,25871,26143,26724,0,2000,3000,1000,1000,3500,1
+25208,50000,female,2,2,26,0,0,0,0,0,0,50952,50836,50055,50641,40672,39960,2700,2000,2700,1700,1600,1800,0
+25209,210000,female,3,2,25,0,0,0,0,0,0,118408,120176,118191,104908,95946,118796,8600,5000,4000,3000,29066,5000,1
+25210,30000,female,1,2,23,2,0,0,0,0,0,25366,26554,27435,28270,28632,30193,2000,2000,2000,1500,2400,1100,1
+25211,60000,female,2,2,23,0,0,0,2,0,0,22241,22719,25585,24053,17154,19316,2000,4000,0,2000,3000,0,0
+25212,50000,female,3,1,23,2,0,0,0,0,0,32847,29705,15445,16782,16960,17208,1941,1263,1600,754,671,831,1
+25213,80000,female,1,2,23,-1,-1,-1,-1,-1,-1,740,8956,836,836,836,836,9052,836,836,836,836,3590,0
+25214,50000,female,2,2,24,2,2,2,2,2,2,41500,39938,41688,45625,45907,44662,0,2700,4960,1700,0,3000,1
+25215,90000,female,2,2,23,1,3,2,0,0,0,39772,38836,36654,32747,33091,33291,0,15,1831,1175,1338,1216,0
+25216,50000,female,1,2,23,1,-1,2,0,0,0,-69,7721,3079,7095,7237,6446,7790,0,4095,245,234,266,1
+25217,50000,female,1,2,23,2,0,0,0,0,0,49316,49061,47209,47471,21571,19005,4044,2138,1400,431,380,772,1
+25218,20000,female,2,2,23,0,0,0,0,0,0,13291,14366,15430,16367,16794,17323,1600,1600,1500,700,800,1000,0
+25219,150000,female,2,2,23,0,0,0,0,0,0,167317,166596,165990,161285,156749,151863,10000,10000,6000,6000,5500,5500,0
+25220,110000,female,2,2,24,0,0,0,0,0,0,98843,92820,78232,69426,70987,75835,3200,3500,3000,3500,7000,3000,0
+25221,140000,female,2,2,24,-1,-1,-1,-2,-1,0,22732,6624,-514,-1334,2125,1606,6624,0,0,3731,0,0,0
+25222,30000,female,2,2,25,0,0,0,0,0,0,30523,30554,30593,30619,29146,29823,2000,2000,1700,1200,1300,1300,0
+25223,120000,female,2,1,25,0,0,0,0,0,0,52109,43007,33481,28563,24065,2802,1565,3194,1200,6206,0,310,0
+25224,80000,female,2,2,25,0,0,0,0,0,0,77440,78418,78015,79571,80121,77304,3500,3000,3500,3000,3000,3000,0
+25225,80000,female,2,2,26,0,0,-1,0,0,-1,42933,34555,35476,24657,12139,9038,1000,35476,1000,243,9038,250,0
+25226,80000,female,2,2,25,0,0,0,0,0,0,80115,77427,77657,70105,39751,14765,75004,3096,1887,1081,2044,0,0
+25227,50000,female,2,1,25,0,-1,-1,-1,0,0,7444,326,326,15493,8210,8133,326,326,15493,284,371,652,0
+25228,30000,female,2,2,22,0,0,0,0,0,0,29449,30308,26186,27698,28987,29568,1402,2000,2000,2000,2500,2000,0
+25229,80000,female,3,2,22,0,0,0,-1,-1,0,23023,23480,0,780,23818,23917,2100,0,780,23818,1011,1000,0
+25230,30000,female,2,2,23,0,0,0,0,0,0,28767,27567,28638,28818,29439,17685,1749,1820,1000,621,354,0,1
+25231,50000,female,3,2,23,0,0,0,0,0,0,13385,11493,10236,7896,6211,23315,1200,1800,1000,1211,20000,3754,0
+25232,170000,female,1,2,27,-1,0,0,0,0,0,41977,38895,39698,38330,39602,39922,1650,4500,4000,4000,3000,3000,0
+25233,80000,female,3,2,27,0,0,0,0,0,0,54184,24393,25924,16558,17280,17652,1500,2000,1300,1000,650,1000,1
+25234,210000,female,2,2,26,0,0,0,0,0,-1,15599,11684,2821,2935,1895,1078,1059,1069,1000,38,1078,1078,0
+25235,160000,female,1,2,26,1,2,0,0,2,0,100364,97863,100535,104382,100535,101621,0,6497,8001,0,4000,3801,0
+25236,150000,female,2,2,26,-1,-1,0,0,-1,-1,242,3180,4900,5207,5313,6340,3180,1747,1000,9119,1027,4,0
+25237,70000,female,3,2,24,0,0,0,0,0,0,69039,68609,69217,69327,68582,68677,3000,4000,3200,3000,3000,3000,0
+25238,60000,female,3,1,23,2,0,0,0,0,0,60406,57491,59137,59345,29399,29339,2055,2570,1620,1020,1050,1080,0
+25239,50000,female,2,2,22,0,0,0,0,0,0,45417,45009,44639,52198,43181,31473,2000,2000,10052,2000,1136,2000,0
+25240,140000,female,2,2,26,2,2,2,2,2,2,118425,120970,123141,124622,125865,128479,6000,5600,5000,4800,4800,4700,1
+25241,80000,female,2,1,26,2,0,0,0,0,0,78768,79611,80770,53142,55064,28750,3500,4450,2249,1200,2400,1100,0
+25242,80000,female,2,1,26,0,0,-1,-1,-1,-2,40216,10400,10935,2318,-711,-708,1400,10935,2324,707,3,45906,0
+25243,60000,female,1,2,26,0,0,0,0,0,0,36604,35777,29836,30818,31314,30852,1765,1812,1794,1290,1268,1273,0
+25244,200000,female,1,2,27,0,0,0,0,0,0,86192,67483,58112,23949,9270,4496,15186,10188,1074,209,112,2797,0
+25245,100000,female,1,2,27,0,0,0,0,0,-1,19164,23828,25138,26499,26799,1150,5000,2000,2000,500,1150,0,0
+25246,100000,female,1,2,26,0,0,0,0,0,0,81463,83098,63848,64692,66114,67396,4000,3000,2500,2500,2500,2600,0
+25247,80000,female,2,2,26,0,0,0,0,0,0,77760,79248,120697,60989,41023,42663,3100,4700,4800,1200,3260,2000,1
+25248,70000,female,2,2,22,0,0,0,0,0,0,72473,72189,71867,64534,33683,32857,3500,3427,3100,1200,1700,1307,0
+25249,80000,female,2,2,24,0,0,0,-1,0,-1,19167,10192,7241,3261,6264,891,3000,2005,3261,3003,891,2070,0
+25250,60000,female,2,2,24,0,0,0,0,0,0,50840,49592,44412,45402,35704,36524,2100,1847,1837,1139,1254,1387,0
+25251,80000,female,2,2,24,0,0,0,0,0,0,72383,73620,53728,31989,20058,196,3500,2354,2027,800,196,184,0
+25252,50000,female,2,1,24,0,0,0,0,0,0,48700,47544,47612,48713,49295,49916,2401,2440,2396,1368,1401,1807,0
+25253,80000,female,1,2,24,2,0,0,0,0,0,79434,80246,80167,60201,47850,48698,3100,2650,2065,1850,1756,2100,1
+25254,30000,female,2,2,23,0,0,0,0,0,0,24607,24430,23881,24234,24853,7814,1700,1600,1287,1296,500,1550,0
+25255,50000,female,1,2,25,0,0,0,0,0,0,9162,9818,7161,8377,8789,8813,1500,2000,1500,1000,500,500,0
+25256,80000,female,3,2,25,0,0,0,0,0,0,88786,86391,84871,81813,45094,38121,3200,4000,3000,1500,1500,1300,0
+25257,20000,female,2,1,21,0,0,0,2,0,0,14326,15334,18206,17482,34862,14860,1252,3124,0,349,297,0,0
+25258,80000,female,2,1,25,0,0,0,0,0,0,79029,76009,74908,41646,29297,30057,4000,3200,2230,1300,1410,1000,0
+25259,100000,female,1,2,25,0,0,0,0,0,0,90976,93443,94192,95535,97945,93412,4000,3503,4000,4003,3500,3400,0
+25260,30000,female,1,2,25,1,3,2,0,0,0,14717,14190,12900,11006,5584,5268,0,0,2046,0,0,0,1
+25261,200000,female,1,2,25,0,0,0,0,0,-2,183516,179534,134572,61450,-200,-200,6700,7000,3000,0,0,0,0
+25262,60000,female,2,2,25,0,0,0,0,0,0,34992,36106,37220,38253,39369,36592,2000,2000,2000,2000,1400,1400,1
+25263,20000,female,1,2,24,0,0,0,0,2,0,15451,16789,18203,19602,16121,15321,1600,2000,4000,0,1500,2000,1
+25264,230000,female,1,2,25,0,0,0,0,0,0,35101,35695,11657,13258,12459,6886,5000,5000,3000,669,5000,19000,0
+25265,50000,female,2,2,25,3,2,0,0,0,0,66881,65115,51010,50342,36025,36778,0,2092,1460,1167,1209,1645,0
+25266,90000,female,2,2,25,0,0,0,2,0,0,103541,100190,99522,89674,10874,0,5000,8500,0,217,0,10610,1
+25267,70000,female,1,2,25,0,-1,-1,-1,-2,-2,5328,212,41069,-367,-367,-367,212,42000,0,0,0,0,0
+25268,50000,female,1,2,25,0,0,0,0,0,0,44984,47217,47748,46987,47462,48104,3000,3000,2000,2000,1859,3000,0
+25269,120000,female,2,2,26,0,0,0,0,0,0,34183,22431,12399,4199,3059,674,1700,1500,1000,682,0,0,0
+25270,50000,female,3,2,26,2,2,2,2,2,2,33457,34504,35447,36061,36571,35850,1900,1800,1500,1400,0,3000,1
+25271,380000,female,1,2,27,-2,-2,-2,-2,-2,-2,0,292,7352,3401,1042,4000,292,7352,3401,1042,4000,5000,0
+25272,140000,female,1,2,27,1,-1,-1,-1,-2,-2,0,2051,446,0,0,0,2051,446,0,0,0,1593,1
+25273,200000,female,2,2,27,0,0,0,0,0,0,157768,108932,110405,90226,88789,92188,6000,5000,10000,5000,5000,5000,0
+25274,60000,female,2,2,26,0,0,0,0,0,-2,23911,25181,26513,7028,-1073,-1073,1668,2000,1500,0,0,22000,0
+25275,80000,female,3,2,25,0,0,0,0,0,0,80804,81390,81700,79080,59873,60520,3000,3058,9013,2200,2200,2500,0
+25276,270000,female,1,2,28,0,0,0,0,0,0,70587,70279,69339,67497,68446,69799,3015,3000,2500,2435,3000,4000,0
+25277,150000,female,2,2,28,0,0,0,0,0,0,25639,16213,18075,19902,5331,9281,2000,2000,2000,1000,3950,0,0
+25278,260000,female,3,2,27,0,0,0,0,0,0,106164,105133,100606,93022,61746,47819,3834,4523,3154,2025,1709,2011,0
+25279,200000,female,5,1,27,0,0,0,0,0,0,185143,188678,191500,187835,139070,140171,7000,7512,7500,5100,5100,5500,0
+25280,90000,female,1,2,27,0,0,0,0,0,0,61799,62561,63069,62643,59265,59046,2400,2518,2514,2100,2500,2500,0
+25281,200000,female,2,1,29,1,2,0,0,0,2,57982,55005,54742,54401,42923,40365,0,2200,1671,3000,0,4600,0
+25282,200000,female,3,2,29,-1,-1,-1,-1,-1,-1,326,326,326,326,326,326,326,326,326,326,326,326,0
+25283,30000,female,2,2,25,0,0,2,2,2,2,23657,26568,27456,27915,27185,28806,3300,1600,1200,0,2200,0,1
+25284,180000,female,1,2,27,0,0,0,0,0,0,101395,101607,98186,59451,49956,50133,5000,3371,6940,2800,2000,2000,0
+25285,30000,female,2,1,28,0,0,0,0,0,0,8704,9698,11022,12032,12134,12439,1300,1488,1498,600,500,750,0
+25286,520000,female,1,2,28,-1,0,0,-1,0,0,34167,53319,25689,146903,150656,132050,40054,8011,151509,50263,59491,48326,0
+25287,80000,female,3,2,28,-1,-1,-1,-1,-1,-1,1646,4830,4655,15403,5849,2046,4830,4655,17663,5852,2254,1467,0
+25288,120000,female,3,1,28,0,0,0,0,0,0,57863,59456,57868,60790,50091,51113,5000,3588,10000,5000,5000,3000,0
+25289,360000,female,1,2,27,-1,-1,-1,-1,-1,0,660,660,658,1095,4948,3861,663,661,1100,4953,19,1264,0
+25290,50000,female,1,2,27,0,0,0,0,0,0,44402,44977,46546,46033,48656,41674,2000,3000,2400,3023,5000,0,0
+25291,200000,female,2,2,27,0,0,0,0,0,0,108422,106437,109068,112286,77062,0,3900,4345,6000,3950,0,0,0
+25292,30000,female,2,2,24,0,0,0,0,0,0,23729,27889,29500,29639,27546,6718,10000,2061,1200,551,0,0,1
+25293,50000,female,2,2,24,0,0,2,0,-1,0,16691,15412,12420,13156,28315,28908,3500,0,1329,29328,1049,1186,0
+25294,80000,female,1,2,25,-2,-2,-2,-2,-2,-2,4932,2638,2940,2946,9606,2946,2638,2940,2946,9606,2946,3345,0
+25295,50000,female,2,2,25,0,0,-1,-1,0,0,40114,22701,390,26898,26911,26926,1000,390,26898,1000,1000,1000,0
+25296,120000,female,2,2,26,-1,-1,-1,-1,-1,-1,1682,1929,1682,1682,1682,1682,1929,1682,1682,1682,1682,1674,0
+25297,210000,female,5,2,27,1,-2,-1,-1,-2,-2,0,0,780,0,0,0,0,780,0,0,0,0,0
+25298,80000,female,2,2,22,0,0,0,0,0,0,76405,77043,79524,75773,29126,8671,2780,3745,1628,596,173,2114,0
+25299,50000,female,1,2,25,0,0,0,0,0,0,48408,47563,41319,25110,20478,20258,1774,2100,1609,1000,1000,1000,0
+25300,300000,female,2,2,25,-2,-2,-1,-1,-2,-2,1800,1800,2148,1800,0,2635,1800,2148,1800,0,2635,750,0
+25301,100000,female,1,2,26,0,0,0,0,0,2,2405,3420,4286,5302,6829,6574,1214,1080,1096,1623,0,394,0
+25302,80000,female,2,2,26,-1,-1,-1,-1,-1,-1,390,390,390,0,780,0,390,390,0,780,0,0,1
+25303,130000,female,1,2,26,-1,-1,-1,-1,-1,-1,1094,1271,1205,1798,299,1280,1293,1205,1798,299,1280,3368,0
+25304,80000,female,2,2,27,0,0,0,0,0,0,20540,8985,8941,8564,6281,6965,1985,2287,2287,281,965,18000,0
+25305,160000,female,1,2,27,1,-1,0,0,0,0,0,11700,12829,10801,10351,3366,11700,12014,8000,5000,0,1263,1
+25306,130000,female,1,2,27,0,0,0,0,0,0,128137,109868,108167,102584,91030,82634,4000,4019,4017,3100,4500,5380,0
+25307,30000,female,1,1,23,-1,-1,3,2,0,0,6630,3842,3631,1950,1170,1170,3842,0,0,0,0,0,0
+25308,50000,female,1,2,23,0,0,-1,0,0,0,9861,6486,2636,4652,6390,8880,1000,2636,2500,2128,2880,390,0
+25309,20000,female,2,2,22,0,0,0,0,0,0,19583,16810,17941,19327,19155,19422,1300,1409,1795,623,512,185,0
+25310,140000,female,2,2,23,0,0,0,0,0,0,21001,16400,20729,15583,7218,7365,4000,5000,2000,0,147,1000,0
+25311,180000,female,1,2,25,-1,0,0,0,0,0,62798,51923,51935,47383,32876,28915,1867,2501,1271,926,876,3004,0
+25312,400000,female,3,2,26,0,0,0,0,0,0,18256,18245,18447,13574,8805,10501,1300,1229,1120,292,2784,270,0
+25313,260000,female,2,2,26,-1,-1,-2,-2,-2,-2,28,-288,-604,-920,-1236,-1552,288,1236,316,316,316,316,0
+25314,260000,female,2,2,26,0,0,0,0,0,0,264249,264434,263847,262723,222464,222837,9800,9800,9413,7114,7532,8427,0
+25315,180000,female,2,1,26,-1,-1,-1,-1,-1,-1,2406,2410,2057,2392,1483,2161,2410,2057,2392,1483,2161,2181,0
+25316,160000,female,1,2,27,1,-2,-2,-2,-2,-2,0,0,0,1900,0,2018,0,0,1900,0,2018,0,0
+25317,20000,female,2,2,25,2,2,2,2,0,0,17496,16923,20319,19543,19534,19320,0,4000,0,391,386,249,0
+25318,30000,female,2,1,25,0,0,0,0,0,0,28848,27932,27474,28351,26389,26992,2000,1524,1401,917,1000,2000,0
+25319,250000,female,2,1,25,0,0,0,0,0,0,13358,19102,23681,20869,25490,31258,6000,5000,4000,5000,6000,5000,0
+25320,80000,female,1,2,25,0,0,0,0,0,0,40764,41765,42251,46475,48156,50419,2000,1776,5000,3000,5000,2500,0
+25321,90000,female,1,2,24,0,0,0,-2,-2,-2,77860,76387,0,0,0,0,3292,0,0,0,0,0,0
+25322,50000,female,1,2,28,-2,-2,-2,-2,-2,-2,0,0,0,0,0,-2000,0,0,0,0,0,2000,0
+25323,210000,female,1,2,27,-1,0,0,0,2,-1,39397,38683,39210,38986,689,2040,2000,1985,1300,0,2040,4081,0
+25324,200000,female,1,2,27,0,0,0,0,0,0,8666,9737,16013,28720,23607,24135,1224,6500,15000,3607,684,5000,0
+25325,320000,female,2,2,28,0,-1,0,0,0,0,10668,44197,36538,34603,31596,30155,44462,12000,2000,1000,1000,5098,0
+25326,200000,female,1,1,32,-2,-2,-2,-2,-2,-2,14202,0,505,0,0,0,0,505,0,0,0,4950,0
+25327,80000,female,2,1,27,1,2,2,2,2,-1,3970,1603,3740,2000,0,2096,0,2191,0,0,2096,0,1
+25328,140000,female,3,2,26,0,0,0,0,0,0,33236,32971,31206,31730,30535,28301,1785,2012,1536,837,989,782,0
+25329,80000,female,1,2,27,0,0,0,0,0,0,78178,77637,73966,71447,66994,66813,3437,3300,3050,5000,2700,2300,0
+25330,200000,female,1,2,29,0,0,-1,-1,-1,0,11347,30478,7892,1961,1357,1357,25000,8082,2580,1357,0,0,0
+25331,230000,female,2,2,30,-1,2,-1,-1,-1,-1,2374,2165,2154,1966,1966,1966,0,2154,1966,1966,1966,177,1
+25332,230000,female,1,2,28,0,0,0,-2,-2,-1,231591,102650,0,0,0,915,4650,0,0,0,915,4306,0
+25333,20000,female,3,1,26,0,0,0,0,0,0,13548,14919,17057,13450,7944,780,1605,3130,1275,159,0,0,0
+25334,90000,female,2,1,27,0,0,0,0,0,0,91367,64482,32037,14589,10237,10066,2121,1357,1037,243,244,226,0
+25335,130000,female,2,1,26,2,2,2,2,0,0,5169,6228,6065,3489,3489,1163,1300,1250,0,0,0,0,1
+25336,320000,female,2,2,29,-2,-2,-2,-2,-2,-2,5118,3743,7997,3115,1852,1347,6783,8063,3115,1852,1347,5158,0
+25337,30000,female,2,2,29,2,2,0,0,0,0,36328,35291,36775,36914,33305,33688,0,2206,1500,2000,6000,6000,0
+25338,240000,female,1,2,29,2,0,0,2,0,0,32870,34015,38257,37607,40924,43546,2000,5000,0,4000,3000,10000,1
+25339,360000,female,1,2,29,-1,-1,-1,-1,-1,-1,885,10553,1943,2640,1741,4120,10553,2000,2700,2000,4120,4118,0
+25340,30000,female,1,2,28,0,-1,-1,-1,-2,-2,13568,3166,821,0,0,0,3166,821,0,0,0,0,0
+25341,240000,female,3,2,28,2,2,2,0,0,0,242837,246989,204769,62670,10408,10848,10000,0,2806,500,562,303,1
+25342,320000,female,1,2,28,-2,-2,-2,-2,-2,-2,0,0,0,0,1999,1999,0,0,0,1999,1999,1999,0
+25343,410000,female,1,2,28,0,0,0,0,-2,-1,210866,109320,11546,858,0,1117,2444,3056,968,0,1117,0,0
+25344,220000,female,2,2,29,0,0,2,0,0,0,43596,45765,41308,39770,31840,33173,6000,2,3006,2000,2000,1500,0
+25345,240000,female,1,2,26,-2,-2,-2,-2,-2,-2,0,0,343,315,6000,0,0,343,315,6000,0,188,0
+25346,200000,female,1,2,26,-2,-2,-2,-2,-2,-2,2232,3967,1348,20836,1321,561,3967,1348,20836,1321,561,2905,0
+25347,80000,female,5,2,25,0,0,0,0,0,0,72732,74120,74071,41008,32152,32748,3201,4016,2109,1151,1685,1342,0
+25348,20000,female,1,2,25,0,0,0,0,0,0,17977,17776,18886,19551,18964,19676,2000,1700,1300,662,1000,747,0
+25349,20000,female,1,2,24,-1,-1,-1,-1,-1,0,4687,9060,5064,14745,6805,6805,15000,6004,14776,10000,0,7436,0
+25350,300000,female,2,2,26,-1,-1,-1,-1,-1,-1,1121,699,3131,5180,1780,0,699,3152,5180,1780,0,6200,0
+25351,340000,female,1,2,26,1,2,2,2,2,0,17211,19262,20012,19728,19042,11728,2637,1353,531,14,235,1400,0
+25352,300000,female,2,2,27,0,0,0,0,0,-1,15024,12128,9775,7347,4026,4851,1200,1164,1069,81,4851,3333,0
+25353,350000,female,1,2,26,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+25354,20000,female,1,2,24,2,0,0,0,0,0,18466,15946,16327,17970,18819,16642,1500,1500,2000,1000,1000,1000,1
+25355,90000,female,1,2,24,0,0,0,0,0,0,69542,64610,62725,57716,43970,36415,2366,4000,3000,2000,3480,15000,0
+25356,80000,female,2,1,27,0,0,0,0,0,0,77039,78746,79757,40498,29212,29621,2984,2449,1612,798,1307,359,1
+25357,20000,female,2,1,28,0,0,0,0,0,0,6064,7076,8169,8956,8956,0,1120,1213,1000,0,0,0,0
+25358,240000,female,1,2,28,0,0,0,0,0,0,203850,203979,204712,205344,152992,140128,7500,8000,8400,6000,5200,5000,0
+25359,150000,female,1,2,27,-1,3,2,-1,-1,-1,942,616,290,326,740,17481,0,0,362,740,17481,1000,1
+25360,100000,female,1,2,27,0,0,0,0,0,0,40576,41876,42699,44020,44588,45521,1977,1800,2032,1600,1652,1734,1
+25361,150000,female,2,1,24,1,-1,-1,-1,-1,-1,-122,16711,8004,521,3776,165,16924,8004,521,3776,165,356,0
+25362,50000,female,1,2,27,0,0,0,0,-2,-2,45190,45277,44941,0,0,0,5277,4941,0,0,0,0,0
+25363,260000,female,1,2,27,0,0,0,0,0,0,109588,111132,112014,107404,46866,11950,5000,5000,3000,2000,433,1000,0
+25364,140000,female,1,2,27,0,0,0,0,0,0,128656,126785,129752,132554,268084,137061,6000,6500,6500,5000,5000,5568,0
+25365,30000,female,1,2,24,-1,-1,0,0,0,-1,25616,27526,11458,7500,7000,5192,31348,1328,1000,7000,5192,0,0
+25366,90000,female,2,2,23,0,0,0,0,0,0,11989,18746,19670,14039,14218,9427,7000,1326,1095,377,288,342,0
+25367,50000,female,2,1,23,0,0,0,0,0,0,5215,6232,7251,8326,9184,10031,1106,1125,1200,1000,1000,1000,1
+25368,230000,female,2,2,31,-1,-1,0,0,0,0,10190,49777,49159,43668,42352,43099,49777,3002,1388,1511,5000,1600,0
+25369,70000,female,3,1,30,2,2,2,2,2,2,55352,56448,57550,58008,58957,60367,2600,2600,2000,2500,2500,2400,1
+25370,300000,female,1,2,30,0,0,0,0,0,0,53377,54984,56738,57282,58575,59653,2500,2640,2080,2246,2174,3000,0
+25371,300000,female,1,2,27,-1,-1,-1,-1,0,0,4850,42189,83754,120927,105303,82475,42198,83754,120927,0,716,25213,0
+25372,110000,female,1,2,29,0,0,0,0,0,0,105102,107388,106805,107608,108643,109689,5289,3875,3830,4000,4000,5000,1
+25373,30000,female,2,2,27,0,0,0,0,0,0,4512,6628,9222,6368,1000,3070,2205,2111,2376,0,2070,1683,0
+25374,20000,female,2,2,27,2,2,-2,-2,-1,-1,17311,0,0,0,4599,4779,0,0,0,4599,700,0,1
+25375,30000,female,1,2,22,-1,-1,-1,-1,-1,-2,846,3173,1972,182,0,0,3173,1972,183,0,0,440,0
+25376,350000,female,1,2,31,0,-1,0,0,0,0,49184,20738,47631,51451,35104,0,20738,27689,21451,2000,0,20602,0
+25377,200000,female,1,2,30,-1,-1,-1,-1,-1,-1,10225,9468,30250,5215,90,5690,9468,30250,5215,90,6198,2440,0
+25378,200000,female,1,2,31,-2,-2,-2,-2,-2,-2,10742,165,1295,0,0,0,165,1295,0,0,0,0,0
+25379,50000,female,2,1,26,0,0,0,0,0,0,41891,33849,30220,30235,28979,23593,1781,2016,1450,1314,814,978,0
+25380,100000,female,2,2,26,2,2,0,0,0,0,88728,86405,88636,83516,39871,39626,0,3639,2347,3901,1327,530,1
+25381,140000,female,2,2,26,0,0,0,-1,-1,-1,22844,8178,3776,3776,3776,4173,1119,1000,3776,3776,4173,1000,0
+25382,50000,female,3,2,22,0,0,0,2,2,0,46476,47703,51922,51563,50677,48556,2000,5000,1200,0,1853,0,0
+25383,50000,female,1,2,22,0,0,0,0,0,0,38393,36240,31675,31849,31323,32620,2000,2000,2000,1500,3023,0,0
+25384,160000,female,1,2,27,0,0,0,2,2,0,97375,112373,119017,104417,62975,53299,20000,10000,3017,0,3000,2000,0
+25385,170000,female,2,2,28,0,-1,0,0,0,0,30860,167941,171459,173310,240738,135722,304815,8000,8127,4810,5000,5400,0
+25386,160000,female,1,2,28,0,0,0,0,0,0,40854,41849,42889,43904,44777,45866,1676,1716,1731,1604,1812,1667,0
+25387,100000,female,3,2,28,3,2,2,5,5,4,1250,1250,1250,1250,1250,650,0,0,0,0,0,0,0
+25388,100000,female,1,2,29,0,0,0,0,0,0,94378,95809,93076,91241,62242,9565,6000,5000,4000,4000,1000,1000,0
+25389,200000,female,2,2,23,0,0,-2,-2,-2,-2,61650,0,0,0,0,0,0,0,0,0,0,0,1
+25390,360000,female,1,2,27,0,0,0,0,0,0,297275,307394,314534,289355,274484,247998,20000,15000,19355,10000,10000,10000,0
+25391,160000,female,1,2,27,0,0,0,0,0,-1,159460,148691,118082,112802,61178,98960,10000,10000,5022,8000,99822,5000,0
+25392,500000,female,1,2,30,0,0,0,0,0,0,137243,129722,128006,125294,92276,96112,5000,5116,5000,5000,5000,5000,0
+25393,50000,female,1,2,30,0,0,0,0,0,0,45977,45931,45344,36789,28918,23095,1823,1818,1312,879,781,800,0
+25394,90000,female,2,2,25,0,0,2,0,0,0,86830,94016,88477,87820,88444,91198,9000,0,4100,3000,4000,4500,0
+25395,300000,female,2,2,25,-2,-2,-2,-2,-2,-2,780,390,334,780,2590,1490,390,334,780,2590,1490,11813,0
+25396,120000,female,1,2,28,0,0,0,0,0,0,50477,52632,55282,56878,57948,59179,3500,4000,3500,2500,2200,2200,1
+25397,300000,female,1,2,28,-1,-1,-1,-1,-2,-1,14033,6500,1477,0,0,1346,6520,1477,0,0,1346,0,1
+25398,500000,female,1,2,28,0,0,-1,0,0,0,19543,21788,19323,33146,39741,53516,5110,19623,15000,7000,14122,20000,0
+25399,50000,female,2,1,28,0,0,0,0,0,0,15314,16327,17366,18325,17365,17964,1269,1308,1267,605,862,1000,0
+25400,20000,female,2,1,26,0,0,0,0,0,0,18141,17718,18058,18623,15692,15215,1600,1700,1509,1000,670,740,0
+25401,240000,female,1,2,27,0,0,-2,-2,-2,-2,118175,0,0,0,0,0,0,0,0,0,0,0,0
+25402,210000,female,2,2,27,0,0,0,0,0,0,46066,38952,29735,15381,12475,10535,1951,3034,3000,3000,3000,92,0
+25403,50000,female,3,1,24,1,-2,-1,0,0,0,-1037,-1037,49024,49806,30212,30419,0,52806,1872,1200,1100,1250,0
+25404,50000,female,2,2,25,0,0,0,0,0,-2,42684,40407,31811,13898,0,0,2000,1814,1000,0,0,0,0
+25405,60000,female,1,2,25,-1,-1,-1,-1,-2,-1,1507,0,11305,0,0,300,0,11305,0,0,300,0,0
+25406,310000,female,2,2,28,0,0,0,0,0,0,311380,314131,301646,292673,253269,256259,11264,10979,10950,9281,9304,9885,0
+25407,140000,female,1,2,28,0,0,3,2,2,0,47547,55621,54174,54599,53124,54393,9532,0,1900,0,2124,2427,1
+25408,320000,female,2,1,27,-2,-2,-2,-2,-2,-2,1175,0,0,0,5210,0,0,0,0,5210,0,0,0
+25409,90000,female,2,1,27,0,0,0,0,0,0,20461,21465,22495,23504,23815,24311,1649,1679,1688,999,1029,1040,0
+25410,280000,female,2,1,27,0,0,0,0,0,0,280913,283222,273160,257689,193231,191143,11052,9563,15017,5374,5420,6021,0
+25411,80000,female,3,1,25,0,-1,-1,-1,-1,-1,3525,1504,0,2332,4320,0,1654,0,2332,4320,0,0,1
+25412,170000,female,1,2,25,0,0,0,0,0,0,170950,166243,165816,166023,96415,127480,6014,7103,5451,6000,80000,4000,0
+25413,240000,female,2,1,30,1,-2,-1,2,-1,-1,0,0,7124,6860,2959,6000,0,7124,21,2959,6000,0,1
+25414,30000,female,1,1,23,2,0,0,0,0,0,25665,26669,28080,28836,28812,29400,1433,1844,1600,576,588,600,1
+25415,120000,female,2,2,24,0,0,0,0,0,0,69725,66918,65838,61527,59620,60767,3008,2319,2151,2200,2300,2100,0
+25416,50000,female,2,2,23,0,0,0,-2,-2,-2,48424,45300,-100,-100,-100,650,1500,100,0,0,750,247,0
+25417,10000,female,2,2,23,0,0,0,0,0,0,6969,7992,9106,9719,9917,0,1300,1400,1000,198,0,0,0
+25418,80000,female,1,2,24,0,0,0,0,0,0,56222,52268,29402,20983,21096,22252,2000,1800,1700,759,1500,1100,0
+25419,170000,female,1,2,28,0,0,0,0,0,2,42062,43170,44283,46352,51384,50568,2000,2000,3000,6000,0,2000,0
+25420,360000,female,2,2,28,-2,-2,-2,-2,-2,-2,-307,-307,-307,-307,-307,-307,0,0,0,0,307,0,1
+25421,110000,female,1,1,33,2,2,2,2,2,2,24178,25270,24669,26738,27201,26723,1700,0,2700,1100,0,875,1
+25422,210000,female,2,1,34,0,0,0,0,0,0,14724,16465,17694,18892,20566,23226,2000,1500,1500,2000,3000,2000,0
+25423,150000,female,5,1,34,0,0,0,0,0,0,83000,88000,93000,98000,100000,0,5000,5000,5000,2000,0,0,0
+25424,200000,female,2,1,34,-2,-2,-2,-2,-2,-2,17822,19741,18718,15033,12785,8426,19855,18914,15112,12849,8468,27378,0
+25425,140000,female,2,2,26,0,0,0,0,0,2,271896,141057,144306,141949,141345,136379,14000,7200,19000,10400,0,4931,1
+25426,80000,female,2,2,27,-1,0,0,0,0,0,45198,45572,40910,40969,41275,41637,2000,2000,1600,1500,1550,1600,1
+25427,240000,female,3,1,24,0,0,0,0,0,0,136760,193321,189572,194799,52599,51487,90000,7170,9000,3000,3000,2367,0
+25428,50000,female,2,1,29,0,0,0,0,0,0,48529,42955,50543,49032,19830,18299,3000,9000,2000,2000,700,4000,0
+25429,80000,female,1,2,28,0,0,0,0,0,0,39663,40664,42742,43730,44721,45764,1664,2742,2000,1720,1764,1762,0
+25430,70000,female,4,1,24,0,0,0,-2,-2,-2,47663,47470,0,0,0,0,1000,0,0,0,0,0,0
+25431,50000,female,1,2,24,-1,-1,-1,-1,-1,-1,3258,-37,18356,1851,8362,810,0,9252,1859,8362,810,1469,0
+25432,180000,female,1,2,28,0,0,0,0,0,0,6396,12595,18704,24410,29184,7325,7000,7000,7000,7000,5000,326,0
+25433,110000,female,1,2,29,0,0,0,2,0,0,107336,107195,109443,106637,106665,92417,5320,7845,4000,4000,3500,9500,0
+25434,300000,female,2,1,29,0,0,0,0,0,0,321155,317259,313600,309670,305660,301693,11369,11380,11216,11069,11090,10028,1
+25435,210000,female,5,2,29,0,0,0,0,0,0,43933,45197,46468,47394,48604,49669,2000,2000,2000,2000,2000,2000,0
+25436,200000,female,1,2,29,0,0,-1,0,0,0,7298,1467,439,2257,43720,43968,1000,439,2000,42000,1700,2000,0
+25437,100000,female,2,1,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+25438,70000,female,3,2,31,2,0,0,0,0,0,68174,68973,69835,66216,30000,30096,3200,3013,2141,1200,1300,1300,1
+25439,250000,female,1,2,31,0,0,0,0,0,0,67492,67875,67448,68165,68787,70111,3500,2658,3000,4000,3000,2500,0
+25440,600000,female,1,2,31,-2,-2,-2,-2,-2,-2,-84,115,349,-9,-9,-9,700,349,9,0,0,0,0
+25441,320000,female,2,1,31,0,0,0,0,0,0,2437,3490,4529,5548,6450,7342,1100,1100,1100,1000,1000,8000,0
+25442,180000,female,2,2,31,0,0,0,0,0,0,180754,85936,88542,92055,94038,95849,3085,4000,5000,3514,3478,3517,0
+25443,110000,female,1,2,27,0,0,0,0,0,0,69970,66423,61951,59428,53678,52254,4009,5083,5002,4000,3000,5050,0
+25444,20000,female,1,2,22,1,2,0,0,0,0,18761,18167,19202,20178,20281,20293,0,1634,1610,710,717,722,0
+25445,60000,female,3,2,22,-1,-1,-1,-1,0,0,4049,1808,3496,11548,14519,5861,1815,3496,11548,3500,200,1100,0
+25446,320000,female,2,2,30,-1,-1,-1,-1,-1,0,3690,3720,4206,15610,10556,11863,3720,4206,15610,10556,8000,5600,0
+25447,320000,female,1,2,29,0,0,0,0,0,0,42596,43548,33674,34259,62546,106857,1955,2020,1605,30039,65000,5000,0
+25448,110000,female,2,2,29,0,0,0,0,0,0,113003,113269,110078,112466,111094,109243,5837,5454,5707,4156,4123,4368,0
+25449,80000,female,3,2,28,0,0,0,0,0,0,71834,70194,71912,69776,70985,72444,3200,3500,3000,2500,2500,2500,0
+25450,500000,female,3,2,29,0,0,0,0,0,0,110651,94609,95607,95276,90310,91229,3005,3027,6024,3003,2334,4087,0
+25451,190000,female,3,2,31,-1,-1,-1,-2,-2,-2,1568,87,0,0,0,0,87,0,0,0,0,35520,0
+25452,80000,female,2,2,27,0,0,0,0,0,0,23424,20510,20330,17050,10926,10068,5000,3500,3000,0,1000,10000,0
+25453,90000,female,1,1,29,0,0,0,0,0,0,4034,11387,4387,35670,41995,35912,10400,3400,36139,618,3200,8500,0
+25454,140000,female,3,2,29,0,0,2,0,0,0,177535,170477,149237,132330,122464,54494,14500,0,5000,8000,10000,9472,0
+25455,200000,female,1,2,31,1,-1,-1,-2,-2,-2,0,896,0,0,0,0,896,0,0,0,0,0,0
+25456,250000,female,1,1,31,-1,-1,-1,-1,-1,-1,2198,7404,3186,5161,0,13714,7404,3186,5161,0,13714,3224,0
+25457,260000,female,1,1,32,1,-2,-2,-2,-1,-1,0,0,0,0,238,0,0,0,0,238,0,0,0
+25458,220000,female,2,2,28,-1,-1,-2,-2,-2,-2,3700,0,0,0,0,0,0,0,0,0,0,0,1
+25459,110000,female,2,2,29,0,0,0,0,0,0,50268,24243,25349,26265,27045,27572,1400,1500,1400,1100,1000,1000,0
+25460,210000,female,2,2,27,0,0,0,0,0,0,83381,85097,86928,89471,91282,93309,3100,3200,4000,3300,3500,3500,0
+25461,380000,female,2,1,30,0,0,0,0,0,0,295618,232987,105800,52296,196448,168405,13437,6068,2462,168159,5248,5540,0
+25462,120000,female,1,2,26,1,-1,-1,-1,-1,-2,-93,936,0,680,0,0,1029,0,680,0,0,1381,0
+25463,60000,female,1,2,25,0,0,0,0,0,0,56136,57280,56969,58695,57453,61153,2100,2100,2685,2300,4800,3400,0
+25464,100000,female,2,2,24,3,2,2,2,2,2,81601,79689,85389,83121,88304,90746,0,7000,0,6600,4000,3200,1
+25465,20000,female,1,2,24,0,0,0,0,0,0,19167,18925,18340,18317,18747,19328,1585,1700,1570,1000,1000,1000,0
+25466,30000,female,2,2,25,0,0,0,0,0,0,19309,20009,21034,22050,22490,22961,1325,1350,1366,806,834,836,1
+25467,50000,female,1,2,26,0,0,0,0,0,0,48338,48283,40989,26695,18884,20131,3008,2024,3000,1000,5000,1500,0
+25468,200000,female,1,2,26,0,0,0,0,2,2,71574,74755,76945,82914,83733,80498,5000,4000,8000,2900,0,5700,1
+25469,210000,female,1,2,25,-1,-1,-1,-1,-1,-1,390,390,390,390,390,780,390,390,390,390,780,1473,0
+25470,240000,female,2,2,25,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+25471,150000,female,3,2,33,0,0,0,0,0,0,9516,9998,8336,6462,5872,1242,1100,1074,1000,1000,1000,0,0
+25472,330000,female,1,2,34,-2,-2,-2,-2,-2,-2,4577,8400,626,626,1348,5879,8400,626,626,1348,5879,8954,0
+25473,280000,female,2,2,34,-1,-1,2,-1,-1,-1,38,34163,32800,131200,3950,0,34163,0,131200,3950,0,716,0
+25474,210000,female,1,2,33,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+25475,400000,female,1,1,34,-2,-2,-2,-2,-2,-2,10000,9791,-209,13796,0,0,10000,0,14005,2000,0,0,0
+25476,200000,female,1,2,33,0,0,0,0,0,0,147178,150573,140844,144245,135946,135736,7300,6550,7200,5300,5400,5240,0
+25477,60000,female,2,1,32,0,0,0,0,0,0,59738,59389,57656,58290,58213,57076,2700,2100,2100,2200,2100,3000,0
+25478,50000,female,2,1,34,0,0,0,0,-2,-2,2791,4563,5000,0,0,0,2000,1200,0,0,0,0,0
+25479,360000,female,1,2,31,-2,-2,-2,-2,-2,-2,304,8288,21865,44440,3904,0,8288,21888,44640,3904,0,0,0
+25480,300000,female,1,2,31,-2,-2,-2,-2,-2,-2,1555,1599,900,11019,3452,57848,1603,902,11117,3462,58418,16994,0
+25481,10000,female,2,2,33,-2,-1,0,0,2,2,-216,2784,5723,8607,8336,10209,3000,3000,3000,0,2000,0,0
+25482,420000,female,1,1,32,-1,-1,-2,-2,-2,-2,8871,358,0,0,20,0,358,0,0,20,0,0,0
+25483,220000,female,3,2,32,0,0,0,0,0,0,209259,192365,184198,171391,178742,164793,7000,15000,6000,10000,10000,7000,0
+25484,130000,female,2,1,34,2,2,2,2,2,2,28967,30776,33071,32336,34186,34588,2500,3000,0,2600,1000,1500,1
+25485,200000,female,1,1,34,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+25486,50000,female,1,2,33,2,2,2,2,2,2,31652,34207,35666,34798,36208,37466,3400,2301,0,2300,2000,2000,0
+25487,300000,female,2,1,33,0,0,0,0,0,0,248832,255686,262075,276110,279623,285719,11000,12000,20002,10002,11002,26002,0
+25488,120000,female,2,1,44,-1,-1,-1,-1,-1,-1,390,0,780,337,1234,0,0,780,337,1234,0,0,1
+25489,360000,female,1,2,35,-1,-1,-1,-1,0,0,1475,13466,17584,17354,37703,22490,14200,17631,17741,25203,10000,216,0
+25490,50000,female,3,1,35,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+25491,230000,female,1,2,37,1,-2,-2,-2,-1,2,-152,-152,-152,-152,42668,130,0,0,0,42820,0,1000,0
+25492,50000,female,2,1,37,0,0,0,0,0,0,48596,39623,28964,9522,2650,-581,2152,2091,1034,500,17,26500,0
+25493,30000,female,2,1,38,0,0,0,0,0,0,28751,23819,15367,10159,9859,8360,2588,1553,1033,381,384,404,0
+25494,150000,female,3,1,45,2,2,2,0,0,0,179441,169947,153522,150779,49198,50277,7333,4,4104,15000,2000,2200,1
+25495,70000,female,3,1,44,0,0,0,0,0,0,9195,2301,3344,4303,4243,5248,1041,1084,1043,1000,2000,2000,0
+25496,320000,female,1,2,35,0,0,0,0,0,0,44566,41007,41733,34534,36170,31775,2054,4027,3002,3008,1059,551,0
+25497,330000,female,1,1,41,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+25498,120000,female,2,1,37,0,0,0,0,0,0,106469,108606,107945,111622,115301,117873,5400,4000,5500,5500,5500,1000,0
+25499,360000,female,1,1,36,-2,-2,-2,-2,-2,-2,13686,1992,604,0,3960,0,1992,604,0,3960,0,2313,0
+25500,30000,female,2,1,40,1,2,0,0,0,0,29002,28236,28395,29409,25267,25800,0,1812,1826,904,940,1143,0
+25501,150000,female,3,2,39,0,0,0,0,0,-1,60115,48412,37033,25032,12500,12500,1662,1783,1282,250,12500,12500,0
+25502,30000,female,2,2,49,2,2,2,2,2,2,17667,18577,17991,20182,19560,21241,1500,0,2500,0,2000,0,1
+25503,150000,female,2,1,46,0,0,0,0,0,0,77066,68414,41692,30936,31021,-1514,2094,1558,1005,1162,1408,113260,0
+25504,470000,female,1,1,37,-1,0,0,0,0,0,12572,5363,5660,42003,39994,41816,5305,3500,38007,3000,3507,2500,0
+25505,410000,female,2,1,42,0,0,0,0,0,0,407873,412650,415917,389659,342329,344974,18026,18026,14095,12037,15026,13026,0
+25506,390000,female,3,2,43,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,498,1
+25507,320000,female,2,1,37,0,0,0,0,0,0,202442,187475,164694,148160,132230,121191,8211,6100,6094,5035,4446,5028,0
+25508,450000,female,3,2,40,-1,0,0,-1,-1,0,10815,4603,5266,4425,15091,6341,4000,5000,4425,15091,0,2277,0
+25509,70000,female,2,2,42,1,2,0,0,0,0,70803,67344,59018,48033,48833,49736,10,2200,2100,1900,1841,1945,0
+25510,50000,female,2,1,44,0,0,0,0,0,0,5358,6221,7241,8249,8414,8590,1109,1129,1137,302,312,313,0
+25511,100000,female,3,1,46,0,0,2,2,0,0,80402,86137,84998,85627,78245,79929,8000,1100,3000,3000,3100,3100,0
+25512,110000,female,1,2,28,0,0,0,0,0,0,91286,91850,84849,84362,59391,59129,8080,14298,2519,6616,1953,5300,0
+25513,280000,female,2,2,28,0,0,0,0,0,0,119587,122015,130286,130705,132964,136400,4411,10282,3006,2659,3436,1000,0
+25514,500000,female,1,2,28,0,0,0,0,0,0,302089,279409,258310,221792,201215,183739,10049,10106,9021,7029,9093,10018,0
+25515,360000,female,1,2,30,0,0,0,0,0,0,146277,102869,102283,86370,86432,73607,6029,5487,5043,10084,5059,5040,0
+25516,180000,female,2,1,30,-1,2,2,-2,-1,0,2759,2414,0,0,1245,546,13,0,0,1245,0,0,0
+25517,480000,female,2,2,31,0,0,0,0,0,0,241989,217460,242500,185344,164256,168433,9960,30902,7410,6368,7323,5837,0
+25518,450000,female,1,1,39,-1,-1,-1,-1,-1,0,3664,4587,4562,5001,39243,25512,4595,4562,5001,39292,0,62597,0
+25519,80000,female,1,2,26,0,0,0,0,0,0,76157,79874,80171,80136,79151,78465,5000,3500,3000,2800,3000,3000,0
+25520,290000,female,2,2,25,0,0,0,0,0,0,78719,71559,66658,68627,61578,59274,2510,2500,3000,3000,3000,3000,0
+25521,500000,female,2,2,27,0,0,-1,0,0,0,195140,190529,135943,128438,106591,85215,11613,176596,6506,5178,3031,3466,0
+25522,200000,female,1,1,37,-1,-1,-1,-1,0,0,9212,0,261,8203,13203,9691,0,261,8203,5000,0,13185,0
+25523,130000,female,3,1,43,2,3,2,2,2,2,19690,19085,18491,20579,19950,21625,0,0,2400,0,2000,0,1
+25524,360000,female,2,2,34,0,0,0,0,0,0,282674,277569,246380,236139,241056,246297,12200,10500,8500,8750,9200,9800,0
+25525,300000,female,2,1,34,0,0,0,0,0,0,59900,62391,66156,66621,68030,70101,3500,5017,5000,2000,2500,8128,0
+25526,70000,female,2,2,41,0,0,0,0,0,0,72593,72526,70138,51781,29117,29264,4000,36500,2300,1500,2000,3000,1
+25527,80000,female,3,1,44,-1,-1,-1,-1,-1,-1,817,1131,817,1907,1962,1865,1131,1000,1907,2000,2000,700,0
+25528,30000,female,1,2,36,2,2,2,0,0,0,23338,25747,25048,26060,26578,27133,3120,0,1433,951,983,1099,1
+25529,280000,female,2,2,30,0,0,0,0,0,0,237345,195808,369761,197666,152084,149887,12873,135477,6480,4026,4153,3014,0
+25530,210000,male,3,2,46,0,0,0,0,0,0,46743,50936,53107,53717,53255,55160,5000,4000,2350,2000,3000,3000,0
+25531,80000,female,3,1,41,0,0,0,0,0,0,59184,58316,56942,58004,59187,61950,2665,2108,2051,2092,3690,2371,0
+25532,260000,female,1,2,37,-2,-1,-1,-1,-1,-1,3821,1316,2609,1017,1012,959,1316,2609,1017,1012,959,935,0
+25533,120000,female,3,1,36,0,0,0,0,0,0,9826,10838,11876,12853,13109,13015,1181,1219,1196,452,460,463,1
+25534,150000,female,1,2,32,2,0,0,0,0,2,35099,35601,36488,35729,38117,37259,1887,2003,2000,3419,13,2088,0
+25535,180000,female,2,1,31,1,-1,2,-1,0,0,0,200,100,300,200,499,200,0,300,0,399,100,0
+25536,140000,female,2,1,34,-1,0,0,0,0,0,56702,53584,54794,55951,57103,58210,3000,3000,3000,3000,2500,2500,0
+25537,370000,female,3,1,34,0,0,0,0,0,0,104114,233130,222640,184330,169078,167940,210000,9413,7900,6000,6000,7000,0
+25538,30000,female,2,1,35,2,3,2,2,2,2,27223,26474,25344,25634,24924,26546,0,2000,1000,0,2026,0,1
+25539,160000,female,2,2,33,0,0,0,0,0,0,140122,140225,140745,139923,140815,139935,6500,5211,5000,5000,5000,5000,0
+25540,60000,female,2,3,33,-1,-1,-1,2,-1,-1,4260,780,390,390,390,390,780,390,0,390,390,2405,1
+25541,230000,female,1,1,34,2,2,2,2,2,2,186163,190784,195724,198707,201634,205949,9000,9300,7500,7500,7500,7500,1
+25542,80000,female,2,1,37,0,0,0,0,0,0,69767,73197,44195,45458,48679,49895,5000,3000,2000,4000,2000,2000,0
+25543,360000,female,2,1,37,-1,2,2,-2,-2,-2,5748,550,0,0,0,0,0,0,0,0,0,0,0
+25544,130000,female,2,1,42,2,2,2,0,0,0,130623,131926,128380,126792,103497,96991,6400,0,4535,3900,4300,3700,1
+25545,500000,female,1,2,35,-1,-1,-1,-1,0,-1,2398,4583,13519,43251,34279,8657,4583,13519,43251,0,8657,10649,0
+25546,360000,female,2,1,47,0,0,0,0,0,0,93431,93784,93753,87660,78206,70147,3389,3357,2973,2819,2468,2503,0
+25547,120000,female,3,1,38,0,0,0,0,0,0,118016,117738,120127,119719,118042,120682,5720,5820,5670,4250,4450,4470,0
+25548,150000,female,2,2,36,0,0,0,0,0,0,80321,82038,83734,80569,56672,65196,3052,3136,8046,2300,9621,0,0
+25549,120000,female,2,1,37,-1,-1,-2,-2,-2,-2,18486,0,0,0,0,0,0,0,0,0,0,0,0
+25550,190000,female,1,3,35,0,0,0,-1,-1,2,111776,107177,61892,191260,144062,140871,21238,2000,191260,6000,0,20400,0
+25551,230000,female,3,1,43,-2,-2,-2,-2,-2,-2,416,1099,2508,976,416,416,1099,2508,976,416,416,416,0
+25552,50000,female,3,3,43,0,0,0,0,0,0,45807,46847,48090,48125,4080,0,1800,2000,1000,1000,0,0,0
+25553,20000,female,3,2,45,-1,-1,-1,-1,-1,0,390,350,360,370,780,390,350,400,400,800,0,390,0
+25554,100000,female,3,1,38,0,0,-1,0,0,0,16618,-14115,51235,67368,68141,64167,13514,69370,20001,3000,3000,3000,0
+25555,200000,female,5,3,40,0,0,0,0,0,-1,225480,211608,197824,201940,98496,3480,7263,8857,9117,29420,3484,1998,0
+25556,160000,female,2,2,38,0,0,0,0,0,0,133017,125321,122044,111799,92039,89536,7008,6300,5000,3000,2606,4006,0
+25557,160000,female,1,2,32,-2,-2,-2,-2,-2,-2,162,-2,-2,499,284,1248,0,0,501,285,1254,99,0
+25558,50000,female,3,1,39,2,2,2,2,2,0,31063,32051,33239,33571,32732,33416,1800,2000,1171,0,1211,1221,1
+25559,100000,female,1,2,26,1,-1,-1,-1,-1,-1,0,632,0,316,632,0,632,0,316,632,0,316,0
+25560,420000,female,1,1,44,1,2,0,0,0,0,35545,34332,35097,33025,36945,37276,6,3016,1846,5005,2005,1462,0
+25561,500000,female,2,1,38,-1,-1,0,0,0,0,250,1384,6324,7353,5536,8321,1384,5000,1224,3003,3506,3552,0
+25562,360000,female,1,1,41,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+25563,190000,female,1,2,28,-2,-2,-2,-2,-2,-2,0,2278,918,859,1300,514,2278,918,864,1300,514,175,0
+25564,120000,female,2,2,32,0,0,-2,-2,-2,-2,40420,0,0,0,0,0,0,0,0,0,0,0,0
+25565,300000,female,2,1,33,0,0,0,0,0,0,16260,11613,12893,10841,11900,0,1500,1513,1000,1059,0,0,0
+25566,50000,female,2,2,31,0,0,0,0,0,0,44325,45861,47667,48119,8257,8037,3000,3687,5000,1000,309,2000,0
+25567,290000,female,1,2,29,0,0,0,0,0,0,98709,106341,107325,108805,105375,105710,10000,3286,3133,2822,3212,3073,0
+25568,240000,female,2,2,29,0,0,0,0,0,0,92076,84598,90102,90198,89822,95856,5006,9002,7000,5049,21862,5529,0
+25569,120000,female,2,1,28,0,0,0,0,0,0,103676,96833,78920,74310,75710,77503,3283,3000,5000,3000,3000,4000,0
+25570,150000,female,2,2,30,-1,0,0,0,0,0,146432,149044,148839,147746,116537,36404,5301,6112,6023,4626,1035,1046,0
+25571,270000,female,1,2,31,-1,-1,0,-1,-1,0,173,2254,3679,4065,3975,8195,2254,1522,4065,4056,81,83,0
+25572,310000,female,1,2,31,-2,-2,-2,-2,-2,-2,9108,24480,6864,0,150,150,24485,6864,0,150,150,271,0
+25573,20000,female,2,1,42,0,0,0,0,0,3,6336,7350,8370,9380,10078,10072,1125,1145,1154,852,150,0,1
+25574,70000,female,1,2,29,0,0,0,0,0,0,66330,68278,69181,69494,63275,57430,3049,2621,3032,2074,2000,1800,0
+25575,290000,female,2,1,29,0,0,0,0,0,0,20593,20187,19130,14793,15442,14381,2002,3001,2000,1502,1000,1002,0
+25576,120000,female,2,2,38,-1,2,2,-1,-1,0,652,652,0,326,652,326,0,0,326,652,0,326,0
+25577,140000,female,3,1,48,0,0,-1,0,0,0,143650,0,139067,93325,94256,97009,0,139067,4263,3376,4274,4635,0
+25578,220000,female,1,1,43,0,0,0,0,0,0,64792,65463,66834,68221,69576,71035,2344,2427,2500,2490,2580,2593,0
+25579,240000,female,1,2,28,0,0,0,0,0,0,192551,236772,201463,187916,149293,150614,100050,10000,7000,10040,7000,6000,0
+25580,320000,female,2,1,30,0,0,0,0,0,0,91029,84644,87765,83094,66463,63977,5005,15055,16752,10012,10071,10039,0
+25581,50000,female,2,1,30,0,0,0,0,0,2,25422,26456,27835,29070,30891,54741,1450,1800,2000,2600,0,2020,1
+25582,100000,female,1,1,30,0,0,0,0,0,-1,43717,29954,24551,16333,9776,58408,3000,2500,2000,1000,58408,5800,0
+25583,70000,female,2,2,30,2,2,2,0,0,2,14232,15398,14866,15611,16753,16343,1700,0,1300,1400,0,1400,1
+25584,230000,female,1,2,30,0,0,0,0,0,0,64062,56716,30038,22872,22567,21973,5000,3000,3616,3000,2000,0,0
+25585,120000,female,2,2,30,-1,2,2,-1,-1,-2,5713,1492,0,6407,0,0,0,0,6407,0,0,3000,0
+25586,350000,female,1,2,31,0,0,0,0,0,0,314747,322981,326921,210500,201775,171242,15000,12127,9557,8000,6500,7000,0
+25587,70000,female,1,2,34,2,2,2,2,2,2,43357,44347,43357,46626,47562,48651,2000,0,4000,2000,2000,2000,1
+25588,50000,female,3,1,31,0,0,0,0,0,0,39072,40283,37269,27880,27935,26314,1914,1900,1478,1172,2005,1000,0
+25589,150000,female,1,2,32,-2,-2,-2,-2,-2,-2,1999,3769,1999,1999,1500,1500,3769,1999,1999,1500,1500,1500,0
+25590,410000,female,3,1,34,-2,-2,-2,-2,-2,-2,2347,4234,23591,224,193,6441,4252,23785,225,194,6473,22906,0
+25591,410000,female,1,2,34,0,0,0,0,0,0,43719,44624,40881,39008,47638,27519,2626,2616,2617,20000,1012,511,0
+25592,400000,female,1,2,35,-2,-2,-2,-2,-2,-2,4238,4329,6888,3519,77,927,5000,7013,3600,1500,1000,1000,0
+25593,50000,female,2,1,34,0,0,0,0,0,0,26149,26660,27637,22521,20533,14659,2000,1718,1210,1018,539,5001,0
+25594,390000,female,1,1,39,0,0,0,0,0,-1,40439,30808,27235,9895,3707,62320,2013,1329,1025,1010,67842,2530,0
+25595,360000,female,1,2,36,-1,-1,-1,-1,0,0,4279,9398,26510,50810,20800,0,9398,26510,51109,2080,0,10080,0
+25596,30000,female,2,1,36,-1,-1,-1,-1,-1,-1,326,326,833,326,802,802,326,833,326,802,326,0,0
+25597,300000,female,2,2,42,-2,-2,-1,0,0,0,-904,1096,928,2264,3090,5056,2000,1072,1500,1000,2000,1000,0
+25598,170000,female,1,1,44,-2,-2,-2,-2,-2,-2,754,0,0,0,1903,0,0,0,0,1903,0,0,0
+25599,40000,female,2,2,44,2,2,2,2,2,2,35515,36176,37490,38726,39795,40230,1550,2200,2170,2001,1601,1602,1
+25600,430000,female,1,2,38,0,0,0,0,0,0,41092,43095,44692,45648,47884,136701,3000,2300,2000,3000,90000,4000,0
+25601,130000,female,2,1,47,-1,-1,-1,-1,-1,-2,2317,29,2595,1030,-1121,-2452,3000,3000,1000,897,0,2003,1
+25602,450000,female,2,1,42,0,0,0,0,0,0,7669,13267,18748,24711,33111,50885,7272,8764,9823,11123,20274,5374,0
+25603,90000,female,1,2,29,0,0,0,0,0,0,91643,90717,89053,82623,70740,69237,3338,3096,4000,3000,2829,2500,0
+25604,190000,female,1,1,43,-2,-2,-2,-2,-2,-2,1675,4873,3468,27395,0,148120,4873,3472,27403,0,148120,6546,0
+25605,210000,female,1,2,38,0,0,0,0,0,0,13744,14565,13173,13258,8155,2838,5000,3397,3000,2000,2300,5230,0
+25606,20000,female,2,1,43,0,0,0,0,0,0,16510,17770,16432,16174,16499,12882,1558,1286,1204,529,467,544,1
+25607,200000,female,1,1,36,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+25608,160000,female,1,2,29,-2,-2,-2,-2,-2,-2,0,368,0,850,763,0,368,0,850,763,0,1381,0
+25609,220000,female,2,2,30,0,0,0,0,0,2,152514,150742,142633,137337,144570,140881,7149,8000,5000,10800,0,5600,0
+25610,230000,female,1,2,31,-1,-1,-1,-1,-1,-1,2274,7398,5537,1247,0,1000,7398,5537,1259,0,1000,4134,0
+25611,290000,female,1,2,32,-2,-2,-2,-2,-2,-2,1485,299,0,0,440,0,299,0,0,440,0,0,0
+25612,360000,female,1,2,33,0,0,0,0,0,0,20376,17726,18797,15816,16112,10793,1500,2016,1095,1024,350,1323,0
+25613,160000,female,2,1,33,0,-1,-1,-1,0,0,9765,2836,824,948,632,316,2836,824,948,0,0,316,0
+25614,240000,female,2,1,34,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+25615,260000,female,2,1,35,-2,-2,-2,-2,-2,-2,4539,10417,7364,8144,8422,7740,10417,7364,8144,8422,7740,26318,0
+25616,100000,female,2,1,34,0,0,0,0,0,0,14815,10108,8022,9733,17284,8540,2010,1149,3094,1003,1004,406,0
+25617,70000,female,3,1,42,0,0,0,0,0,0,22068,30307,30570,31367,32163,32975,29500,2000,2000,2000,2000,1780,0
+25618,170000,female,2,2,25,0,0,2,0,0,0,57198,59379,28679,29215,19415,19531,3200,2000,3000,10000,2000,0,0
+25619,40000,female,2,2,26,-1,0,0,0,-1,0,28991,24391,13600,0,44024,18697,1300,1000,0,22373,680,10000,0
+25620,80000,female,2,1,47,0,0,0,0,0,0,78849,27733,28009,28977,28756,28962,1433,1489,1457,1016,1046,1211,0
+25621,30000,female,1,2,25,0,0,0,0,0,0,29668,28732,29752,28627,29467,29634,1500,1505,1500,2200,2300,3000,0
+25622,140000,female,1,2,25,1,-2,-2,-1,-1,-1,-74,-770,-1466,522,142,-554,0,0,3000,0,0,0,1
+25623,230000,female,2,1,27,0,0,0,0,0,0,24739,19712,18175,12109,11616,10134,2000,1928,1014,1000,203,34096,0
+25624,200000,female,2,1,39,0,0,0,0,0,0,35465,36480,37893,39266,40120,40961,1600,2000,2000,1500,1479,1504,0
+25625,400000,female,1,1,35,-2,-2,-2,-2,-2,-2,4689,10043,17883,9322,15693,5588,10097,18057,9368,15771,5616,10173,0
+25626,170000,female,2,1,38,0,0,0,0,0,2,136768,133840,138172,140265,112529,110318,5000,6800,6500,8300,0,4200,0
+25627,270000,female,3,1,43,-1,-1,-2,-1,-1,0,2769,0,0,1074,3292,2106,0,0,1074,3292,0,508,0
+25628,30000,female,2,1,39,-1,-1,-1,-1,-1,-1,4042,5060,2300,0,780,0,5327,2300,0,780,0,0,0
+25629,200000,female,2,2,46,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,600,0
+25630,280000,female,1,2,31,2,-1,-1,-2,-2,-2,103,168,0,0,0,0,168,0,0,0,0,0,0
+25631,420000,female,2,2,32,0,0,0,0,0,0,476396,470185,481811,473498,368338,348300,16007,19031,17014,12121,20014,11014,0
+25632,30000,female,3,1,43,2,0,0,0,0,0,30346,29885,20453,16076,15844,15785,1702,1531,1544,702,724,557,1
+25633,180000,female,2,1,41,0,0,0,0,0,0,110856,99925,102359,96462,96846,95549,5000,5024,4300,3500,4000,4000,0
+25634,290000,female,2,1,31,0,0,0,0,0,0,284583,274119,275169,189354,193163,197303,10000,10490,6620,6700,7000,7150,0
+25635,20000,female,2,2,32,0,0,0,2,0,0,11389,12389,15175,14634,30772,17135,1500,3000,0,1000,2000,1000,0
+25636,500000,female,3,1,38,-2,-2,-2,-2,-2,-2,-40,-40,-40,-40,7980,20603,0,0,0,8020,20706,36759,0
+25637,340000,female,2,1,42,0,0,0,0,0,0,226644,225033,219702,132852,124168,119568,8000,9222,5000,4500,4500,3834,0
+25638,270000,female,2,1,39,0,0,0,0,0,0,85827,87664,90515,91903,93864,96118,3000,4000,3403,3200,3479,4000,0
+25639,150000,female,3,1,41,1,-1,0,0,-2,-2,-1203,49909,46824,-2176,143824,151500,51772,2300,2176,146000,9500,0,0
+25640,40000,female,2,2,33,-1,-1,-1,2,-1,-1,1860,1979,4167,1979,1979,1979,2279,4167,0,1979,1979,1775,0
+25641,360000,female,1,2,34,-2,-2,-2,-2,-2,-2,6276,16062,8539,8665,2132,745,16142,8630,8710,2142,748,3030,0
+25642,500000,female,2,1,34,0,0,0,0,0,0,144774,130097,134810,145182,141062,135358,20053,19000,15000,10040,15000,20000,0
+25643,280000,female,2,2,47,-2,-2,-1,0,0,0,12477,13915,67119,53044,66668,61466,13987,69805,1711,26743,10057,54318,0
+25644,50000,female,2,2,43,0,0,0,0,0,0,43051,43729,27008,28324,8044,8414,1500,1500,1800,500,500,500,0
+25645,330000,female,1,2,42,-2,-2,-2,-2,-2,-2,565,20650,15360,0,12923,1816,20650,15360,0,12923,1816,17050,1
+25646,360000,female,3,2,46,-1,-1,-1,-1,-1,-1,15219,26544,36301,45883,16789,6159,26796,36582,46112,16873,6190,22167,0
+25647,340000,female,3,1,40,0,0,0,0,0,0,194380,183139,179156,170491,158370,151685,7000,9000,9000,7000,6000,5400,0
+25648,500000,female,1,2,26,-1,-1,-1,-1,-1,0,1419,1293,1111,1175,3162,1638,1293,1111,1175,3162,33,2000,0
+25649,270000,female,1,2,34,0,0,2,0,0,0,67544,54523,18865,44908,19508,15860,4025,5,34000,0,0,0,0
+25650,120000,female,3,1,40,0,0,0,0,0,0,102400,108300,108538,94833,49078,40643,7500,5000,4121,2000,2000,2000,0
+25651,140000,female,2,1,39,-1,-1,-1,-1,-1,-1,567,1498,1139,380,2340,837,1498,1139,380,2340,837,380,0
+25652,200000,female,2,2,27,-1,-1,-1,-1,-1,-1,6369,5830,7254,7164,4576,5792,5830,7254,7164,4675,5792,5196,0
+25653,50000,female,3,1,45,0,0,0,0,0,0,20080,18866,21549,26163,26684,27753,1317,3000,5000,956,1500,3000,0
+25654,220000,female,1,2,28,0,0,0,0,0,0,55477,44109,32978,30415,28038,25669,3000,5000,13500,14000,13500,13500,0
+25655,80000,female,1,2,43,0,0,0,-2,-1,-1,80958,77783,-478,-1739,1261,1261,1556,0,0,4261,1261,540,0
+25656,20000,female,1,2,29,1,-1,-1,-1,-1,-1,0,2494,3967,1364,600,0,2494,3967,1370,600,0,0,0
+25657,260000,female,1,2,29,2,2,-1,-1,-1,0,792,396,396,396,792,396,0,396,396,792,0,396,1
+25658,430000,female,1,2,29,0,0,0,0,0,0,111409,114071,116749,118319,121351,125225,6000,6000,5000,5000,6000,5000,0
+25659,360000,female,1,1,39,-1,-1,-1,-1,-1,-1,21421,31104,17918,19259,26924,19049,31110,17918,19459,26924,19049,7648,0
+25660,500000,female,1,2,30,-1,-1,-1,-1,0,0,16558,10998,4405,9274,10642,11986,11075,4405,9274,4000,5000,53918,0
+25661,50000,female,3,1,45,1,2,0,0,0,0,49768,47191,49422,49586,30023,28373,0,3000,1500,5000,2000,2000,0
+25662,50000,female,2,1,47,0,0,0,0,0,0,46170,47155,48052,49491,28618,29217,1755,2000,2295,1000,1048,1058,0
+25663,360000,female,1,2,35,-2,-2,-2,-2,-2,-2,-3,-3,-3,-3,-3,597,0,0,0,0,600,590,0
+25664,10000,female,3,2,36,-1,0,0,0,0,0,3671,4945,6157,7172,8048,8318,1500,1300,1124,1000,400,500,0
+25665,220000,female,1,2,32,1,-1,-1,-1,0,-1,0,4048,4925,12554,1036,522,4048,4925,12606,0,572,7656,0
+25666,110000,female,2,2,33,0,0,0,0,0,0,103195,102713,103034,103112,94403,96072,5200,3804,4500,3400,3500,7700,1
+25667,290000,female,2,2,34,0,0,0,0,0,0,284150,288493,295333,285867,240773,242655,12000,12500,11000,8000,9300,9000,0
+25668,110000,female,2,1,35,0,0,0,0,0,0,28969,29568,30379,84257,84762,86139,1500,1706,55000,3200,3300,3300,0
+25669,120000,female,2,2,40,1,-2,-2,-2,-2,-2,-200,-200,-200,-200,0,8360,0,0,0,200,8360,0,0
+25670,140000,female,2,1,46,0,0,0,0,0,0,82497,83206,85862,86676,88948,54312,2978,3997,3140,3707,2104,1946,0
+25671,500000,female,2,1,38,0,0,0,0,0,0,242546,184601,189136,172674,20253,29576,7000,8000,9000,791,10000,7000,0
+25672,360000,female,1,1,45,-2,-2,-2,-2,-2,-2,3401,2655,1064,530,822,2222,2655,1064,530,822,2222,788,0
+25673,280000,female,2,1,44,0,0,-1,-1,-2,-2,390,0,780,0,0,0,0,780,0,0,0,0,1
+25674,220000,female,2,2,38,-1,-1,-1,-1,-1,-1,22145,5529,4688,1621,8522,4149,5575,4716,1632,8559,4164,10626,1
+25675,210000,female,2,1,30,0,0,0,0,0,0,158805,159093,153056,140518,70901,72539,5404,6230,5696,2328,2567,2531,0
+25676,170000,female,1,2,38,-1,-1,-1,-1,-2,-2,822,-3,1243,0,0,0,0,1246,0,0,0,0,0
+25677,50000,female,1,2,23,0,0,0,0,0,0,15213,16253,17289,18396,19089,19629,1300,1300,1400,1000,1000,1043,0
+25678,300000,female,1,1,34,2,0,0,2,0,0,74917,70878,68463,52987,46867,16335,3028,4560,78,3171,5015,5047,1
+25679,160000,female,1,2,30,-2,-2,-2,-2,-1,-1,2000,1000,1000,1000,12234,11960,1000,1000,1000,12234,1200,65157,1
+25680,320000,female,2,2,26,1,3,2,2,2,0,303926,305625,299382,316898,310361,312581,8100,0,24100,0,11700,12000,1
+25681,280000,female,3,1,37,0,0,0,0,0,0,199046,184586,185067,177878,140710,81033,8200,7500,9000,6500,5000,2000,0
+25682,290000,female,1,2,31,0,0,0,0,0,0,41879,42882,43992,45061,46998,51046,2000,2100,2100,3000,5000,2050,0
+25683,20000,female,3,2,41,0,0,2,0,0,0,19080,20303,19302,19897,19895,20313,3000,0,1311,699,725,711,0
+25684,80000,female,3,1,37,0,0,-2,-2,-2,-1,47751,-215,855086,632,632,124542,215,1024516,632,632,124542,14770,0
+25685,200000,female,3,1,47,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+25686,270000,female,1,2,29,-2,-2,-2,-2,-2,-2,990,5850,0,0,0,0,5850,0,0,0,0,0,0
+25687,200000,female,1,1,46,-1,-1,-1,-1,-1,-1,10687,18021,3275,5430,6683,7790,18031,3275,5430,6871,7790,8901,0
+25688,130000,female,2,1,39,0,0,0,0,0,0,125816,125804,124030,119966,89588,91178,7166,7501,6621,3501,3501,3612,0
+25689,30000,female,2,2,35,2,2,0,0,0,0,25368,24662,26001,27012,27241,27812,0,1739,1750,975,1010,3226,1
+25690,60000,female,2,1,29,-1,-1,-1,-1,-1,-1,1033,2076,26,3742,3352,3570,2081,26,4822,3352,3570,1799,0
+25691,180000,female,1,2,34,0,0,0,0,0,2,85129,88701,91356,94820,100740,99015,5000,5000,5000,7500,0,6000,1
+25692,90000,female,2,1,45,2,2,2,2,2,2,45820,46770,45741,48729,49628,50680,2000,0,3755,2000,2000,2100,1
+25693,430000,female,1,1,43,0,-1,-1,-1,-1,-1,30000,28490,33490,30636,30240,0,28647,35000,30636,30241,0,179,0
+25694,30000,female,2,1,37,3,3,3,2,0,0,27672,28911,29163,28380,28636,30290,2000,1000,0,1000,2100,1500,1
+25695,190000,female,2,2,40,0,0,0,0,0,0,182923,183436,162537,157497,155297,153594,8059,7741,7201,4815,4927,5380,1
+25696,240000,female,1,2,31,2,0,0,0,0,0,179483,183151,185490,189351,193115,197445,8151,6790,6951,6915,7445,7248,1
+25697,240000,female,1,1,33,-1,-1,-2,-2,-2,-2,2193,0,0,0,2500,0,0,0,0,2500,0,880,0
+25698,240000,female,2,1,38,0,0,2,0,0,2,32981,47320,46392,51652,54969,42373,15000,0,6000,4059,14,10022,0
+25699,160000,female,2,1,41,1,-1,-1,-1,-1,-1,0,1496,1496,1496,1496,1496,1496,1496,1496,1496,1496,1496,0
+25700,110000,female,2,1,28,0,0,2,0,0,0,96131,106932,103381,75794,76947,79105,14000,27,4000,3000,3000,10000,0
+25701,360000,female,1,2,30,-1,-1,-1,0,0,0,13861,7795,4489,10218,6509,15156,7884,4808,10044,4006,10046,12087,0
+25702,130000,female,3,1,43,0,0,0,0,0,0,126965,130067,129385,96775,98071,97743,6739,5540,4403,3814,3562,4021,1
+25703,30000,female,2,1,38,0,0,2,0,0,2,2433,4772,2897,3236,3575,1764,4000,0,2000,2000,0,1900,1
+25704,370000,female,1,2,30,-1,-1,-1,-1,0,0,17004,19254,342,18295,14386,11961,19254,432,19584,0,0,1569,0
+25705,120000,female,3,2,31,1,2,0,0,0,0,122806,119325,112976,63658,38495,38226,15,3500,2000,1500,1500,5000,0
+25706,100000,female,2,2,31,1,-2,-1,-1,-1,-2,0,0,680,837,0,0,0,680,837,0,0,0,0
+25707,80000,female,5,2,33,-2,-2,-1,0,0,0,5833,0,15728,9265,10400,0,0,15728,1500,1400,0,0,0
+25708,120000,female,2,1,30,0,0,0,0,0,0,101596,102860,104694,103058,71095,47379,3706,5502,4204,3017,2005,1702,0
+25709,290000,female,2,1,33,0,0,0,0,0,0,149495,117275,110481,107735,100195,84268,3721,3700,4005,4000,3000,2928,0
+25710,150000,female,3,2,35,0,0,0,0,0,0,145063,134701,133145,120821,107280,105510,5000,5000,4030,4000,4000,4000,0
+25711,270000,female,2,1,28,0,0,0,0,0,0,322249,298700,308133,263516,94062,92618,10000,13000,12000,5000,4000,5000,0
+25712,20000,female,2,2,29,0,0,0,0,0,0,17648,13580,14204,15345,17764,20049,3000,5007,3000,3000,3000,3000,0
+25713,360000,female,1,1,31,-2,-1,-1,-2,-2,-2,-4,434,0,0,0,0,438,0,0,0,0,0,1
+25714,320000,female,1,2,30,-2,-2,-2,-2,-2,-2,633,8226,12664,1316,326,598,8226,12850,1316,326,598,8615,0
+25715,260000,female,1,1,31,0,0,-1,0,0,0,33142,34048,55117,57782,184810,171006,2000,56714,4100,160000,7000,7000,0
+25716,320000,female,1,1,38,2,2,-2,-2,-2,-2,2500,0,0,0,0,0,0,0,0,0,0,0,1
+25717,360000,female,1,2,32,0,0,0,0,0,0,272112,272444,256974,241226,241673,233157,10130,12649,8916,7725,8900,6956,0
+25718,190000,female,1,2,40,-1,-1,-1,-1,-1,-1,991,991,991,666,991,1316,991,991,666,991,1316,816,0
+25719,330000,female,1,1,31,0,0,0,0,0,0,132514,137347,391478,142842,143257,144783,10000,65042,12000,5000,6000,6000,0
+25720,90000,female,2,1,33,0,0,0,2,0,0,27180,26772,70398,56266,47804,44230,1405,56388,112,1779,1786,5414,1
+25721,240000,female,1,1,41,0,0,0,2,3,3,102488,105785,109082,119221,118144,118029,6500,6500,13500,2300,2002,0,0
+25722,280000,female,1,2,30,-1,-1,-1,-1,-1,-1,8010,-11,25351,17900,3529,892,3375,25362,18684,3529,892,958,0
+25723,360000,female,1,2,31,-2,-2,-2,-2,-2,-2,19847,15979,6450,13166,23964,5470,16059,6482,13242,24011,5497,5415,0
+25724,350000,female,1,1,33,0,-1,-1,-1,-1,-1,82964,68532,17926,17966,30741,31088,68940,18018,18058,30897,31244,88461,1
+25725,420000,female,2,1,33,0,0,0,0,0,0,52018,60519,67083,69424,63523,60630,10000,10083,10094,10000,2500,5000,0
+25726,280000,female,2,2,42,0,0,0,0,0,0,272190,266459,228907,234179,180684,184319,9910,9000,9329,7000,6511,5500,0
+25727,70000,female,2,1,44,0,0,0,0,0,0,79346,75146,76717,70281,30343,29782,2794,2888,26850,1047,1088,996,0
+25728,140000,female,1,2,32,0,0,0,0,0,0,131540,135062,138303,67695,69068,70512,5701,6302,3000,2500,2555,3000,0
+25729,60000,female,2,2,31,0,0,0,0,0,0,57092,58173,59626,55775,28187,28978,3000,3400,2300,1200,1200,1500,0
+25730,110000,female,2,1,33,0,0,2,2,2,2,84880,90834,92696,93794,91392,97029,8300,4200,3500,0,7300,3800,0
+25731,300000,female,2,1,46,1,-2,-1,0,-1,-1,0,0,194,1375,13970,1672,0,194,1181,14039,1679,4156,0
+25732,80000,female,3,2,41,0,0,0,0,0,0,78069,54955,27911,11687,11926,11926,1576,1589,1000,239,0,1696,0
+25733,200000,female,2,1,32,0,0,-2,-2,-2,-2,10701,0,0,0,0,0,0,0,0,0,0,0,0
+25734,450000,female,2,2,42,-1,-1,-1,-1,0,-1,182,885,1099,2998,2757,623,889,1104,2999,68,626,688,0
+25735,140000,female,3,2,43,0,0,0,0,0,0,141036,141558,132406,120046,92820,90525,4504,6213,5423,3400,4000,4000,0
+25736,150000,female,1,2,37,-1,-1,-1,-1,0,0,20224,24837,4159,15089,2233,0,24840,4159,17589,0,0,500,0
+25737,80000,female,2,1,31,0,0,0,0,0,0,115293,75861,32282,32869,31988,48431,2006,2000,1520,888,16696,1700,0
+25738,200000,female,2,1,35,-2,-2,-2,-2,-2,-2,3023,3965,6843,1320,5983,1922,3965,6880,1320,5983,1922,12652,0
+25739,360000,female,2,1,44,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+25740,160000,female,2,1,37,0,0,2,0,0,0,45966,48783,47681,46039,47197,46683,3900,0,1742,1900,1703,3612,0
+25741,200000,female,1,2,33,-2,-2,-2,-2,-2,-2,9099,3771,664,0,641,5506,3775,664,0,641,5506,1847,0
+25742,150000,female,1,1,35,-1,-1,-1,-2,-1,-1,3003,2688,3125,9643,4383,2225,2698,3137,9643,4395,2229,3041,0
+25743,50000,female,2,2,38,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,390,0
+25744,360000,female,2,1,45,0,0,0,0,0,0,222505,199464,182886,109556,111286,90580,8000,7565,4100,4027,3445,2000,0
+25745,500000,female,1,1,32,-1,-1,-1,-1,0,0,93174,45860,28362,41489,44158,37880,45979,28435,41503,31748,25449,22999,0
+25746,220000,female,1,1,31,0,0,0,0,0,0,218796,178554,126132,120827,119823,119460,5539,7449,3005,2400,21577,10000,0
+25747,220000,female,2,2,37,-2,-2,-2,-2,-2,-2,2662,1918,4626,5602,769,5595,1918,4626,5602,769,5595,2538,0
+25748,80000,female,2,1,45,0,0,0,0,0,0,77995,79552,81392,80966,79295,81142,2855,3130,3107,2847,3134,3072,0
+25749,200000,female,2,2,38,-2,-2,-2,-2,-2,-2,3000,3000,3000,3000,3000,3000,3000,3000,3000,3000,3000,3000,0
+25750,100000,female,1,2,38,2,2,2,2,2,2,37566,37160,39750,40298,40835,41529,500,3500,1500,1500,1500,2000,1
+25751,260000,female,1,1,32,-2,-2,-2,-2,-2,-2,0,0,0,0,0,1150,0,0,0,0,1150,0,1
+25752,300000,female,5,2,37,-2,-2,-1,-1,0,0,-1244,3751,54478,10424,13762,11428,6425,54478,10424,3762,229,1423,0
+25753,160000,female,3,1,44,-2,-2,-2,-2,-2,-2,390,0,780,0,0,0,0,780,0,0,0,3072,0
+25754,50000,female,2,2,35,0,0,-1,0,0,0,50521,50466,49821,43945,29669,28469,1649,51869,1884,1023,1173,1193,0
+25755,150000,female,3,2,38,0,0,-1,2,2,2,3060,0,530,530,1696,1166,150,530,0,1166,0,0,0
+25756,70000,female,1,2,27,0,0,2,0,0,0,72227,68097,65636,66114,66142,68380,6000,0,3000,2500,4100,4100,0
+25757,80000,female,2,2,27,0,0,0,0,2,0,66203,67995,70489,74146,72375,70811,3500,4200,5500,0,2500,8652,0
+25758,100000,female,1,2,28,-2,-2,-2,-2,-2,-2,-177,-207,1050,0,0,0,0,1257,0,0,0,0,0
+25759,150000,female,2,2,30,0,0,0,0,0,0,69955,59380,57431,52754,52430,41770,1873,1897,1552,1649,2005,11064,0
+25760,340000,female,2,3,35,-2,-2,-2,-2,-2,-1,132,132,132,132,132,112847,132,132,132,132,112847,5005,0
+25761,210000,female,3,1,39,1,2,2,2,0,0,26624,25903,28719,27964,28364,28855,0,3550,0,1164,1100,1118,0
+25762,240000,female,1,2,28,-2,-2,-2,-2,-1,0,5623,181,1133,0,39344,40264,181,1133,0,39344,1500,1540,0
+25763,250000,female,1,2,35,-1,-1,0,0,0,0,964,69000,63462,45710,43537,38367,69032,2138,1566,1582,1318,1630,0
+25764,200000,female,1,1,38,-2,-2,-2,-2,-2,-2,15099,6370,5991,7298,9225,4072,6370,5991,7298,2105,10249,0,0
+25765,50000,female,1,1,36,0,0,0,2,0,0,47317,49212,49243,5112,48455,48456,3000,5450,0,45554,2100,1900,0
+25766,450000,female,1,2,35,-1,-1,-1,-1,-1,-1,7256,812,17563,12483,26081,22985,816,17651,12554,26212,23114,2512,0
+25767,200000,female,1,1,38,0,0,0,0,0,0,13311,10781,9592,9585,8177,7136,1711,1411,2531,5007,507,506,0
+25768,350000,female,2,1,47,0,0,0,0,0,0,97500,84202,82933,80501,79038,80694,3010,2970,2886,2824,2925,2987,1
+25769,200000,female,1,2,45,-1,-1,-1,-2,-2,-2,2377,221,0,0,0,0,221,0,0,0,0,0,0
+25770,530000,female,2,1,44,0,0,0,0,0,0,562326,532374,537543,541019,468571,478034,20010,25022,21003,18003,20000,20004,1
+25771,60000,female,3,1,45,0,0,0,0,0,0,62396,36034,30534,28442,24544,24998,1500,1500,1404,1100,1000,1000,0
+25772,280000,female,1,2,30,-2,-2,-2,-2,-2,-2,2946,3326,132,-20,-20,680,3326,150,0,0,700,0,0
+25773,210000,female,1,1,34,0,0,0,0,0,0,157907,201324,207222,209189,106090,108300,50000,10646,8601,3601,3719,3300,0
+25774,210000,female,1,2,34,1,2,2,-1,-1,-2,3824,2045,0,322,150,546,0,0,322,150,546,0,1
+25775,420000,female,2,1,46,0,0,0,0,0,0,254275,249677,232028,233055,191518,192313,10004,11020,10238,10022,7000,6000,0
+25776,80000,female,2,2,45,-1,-1,-1,-1,0,-1,2574,390,3889,780,390,390,390,3889,780,0,390,390,0
+25777,170000,female,1,1,31,0,0,-2,-2,-2,-2,6832,0,0,0,0,0,0,0,0,0,0,0,0
+25778,80000,female,2,2,35,0,0,0,-1,-1,-1,48725,53095,56858,4849,4849,4849,10000,10000,4849,4849,4849,4849,0
+25779,510000,female,2,1,38,0,0,0,0,0,0,95589,35224,37361,39437,40292,41153,2000,2700,2700,1500,1500,10000,0
+25780,110000,female,2,1,31,0,0,0,0,0,0,109814,110215,40084,41101,41834,42874,4665,1670,1977,2000,2000,2000,0
+25781,10000,female,2,2,31,0,0,0,-2,-2,-2,10154,10400,0,0,0,0,1400,0,0,0,0,0,1
+25782,300000,female,1,2,32,-2,-2,-2,-2,-2,-2,-3,-3,-3,329,0,0,0,0,332,0,0,0,0
+25783,60000,female,2,1,32,1,2,0,0,0,0,61291,57946,59534,60615,30592,28656,0,3120,3050,1136,1200,1206,1
+25784,200000,female,2,2,33,0,0,0,0,0,0,194283,196485,197597,152670,134645,141557,7520,6700,5130,4800,9000,5150,0
+25785,230000,female,2,1,35,-1,-1,-1,-1,-1,0,7035,2954,13375,-10,8808,6632,2969,13441,0,8818,4,28,0
+25786,500000,female,1,2,45,-2,-2,-2,-2,-2,-2,0,0,1742,27291,0,0,0,1742,27291,0,0,6386,0
+25787,50000,female,2,2,47,2,2,2,2,2,2,43439,44769,43781,45021,28660,27807,2341,0,2554,0,1800,0,1
+25788,280000,female,2,1,45,0,0,0,0,0,0,159633,149747,138933,128216,216598,103119,7000,6500,6500,3994,4000,3500,0
+25789,170000,female,2,1,31,0,0,0,0,0,0,102477,104499,106657,108804,109584,111881,5210,5323,5402,4071,4215,4081,0
+25790,60000,female,2,2,31,2,2,2,2,0,-1,57880,56355,59327,35305,17655,77775,0,4058,34,3000,40793,4952,1
+25791,210000,female,1,2,32,1,-1,2,2,-1,-1,0,92,4,0,45,23,92,0,0,45,23,0,1
+25792,70000,female,3,2,42,0,0,2,0,0,0,69362,71775,70050,70415,48405,46514,6000,0,3000,1000,1500,2000,1
+25793,300000,female,3,1,37,1,-2,-1,-1,0,0,43459,26115,26283,16624,6316,8394,26137,26443,16624,6166,8078,25763,0
+25794,330000,female,1,2,31,0,0,0,0,0,0,37426,40497,63646,39894,39860,39392,5000,3300,3195,3000,1120,3000,0
+25795,200000,female,2,2,49,0,0,0,0,0,0,80528,83190,85944,87539,90231,86284,4000,5000,4000,4000,5000,4000,0
+25796,170000,female,5,1,33,0,0,0,0,0,0,143805,143737,129898,124370,112589,26958,10000,6247,6375,4468,1000,1306,0
+25797,20000,female,2,1,48,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+25798,230000,female,2,1,45,-1,-1,-1,-1,-1,-1,416,416,416,416,416,416,416,416,416,416,416,572,1
+25799,80000,female,2,1,27,0,0,0,0,0,0,80658,70963,73411,75331,55011,56271,3800,3600,3200,2000,2100,3001,0
+25800,320000,female,4,3,32,-1,-1,-1,-1,0,0,1145,4133,2488,21222,15115,27279,4135,2488,21238,5000,15000,545,0
+25801,230000,female,2,1,35,0,0,0,0,0,0,160560,158782,150844,151623,148261,153161,10012,10010,10000,7000,10000,10000,0
+25802,80000,female,2,2,38,-1,-1,-1,0,0,0,390,390,3529,13207,13110,13116,390,3529,10207,500,600,3000,0
+25803,300000,female,3,1,32,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+25804,100000,female,3,1,43,2,2,0,0,0,0,100304,97814,100337,100585,52041,70731,0,5000,2623,2500,32000,2567,1
+25805,370000,female,2,1,47,-2,-2,-2,-2,-2,-2,1289,2408,395,12074,744,4040,2432,397,12133,747,4060,3059,0
+25806,200000,female,2,2,37,-1,-1,-1,-1,0,-1,4037,3913,6336,5361,4950,2413,3913,6336,5361,3000,2502,3603,0
+25807,130000,female,1,2,30,-1,-1,-1,-1,-1,-1,5002,2437,2448,5457,3855,4684,2437,2774,5457,3855,4684,843,0
+25808,50000,female,2,1,42,0,0,0,0,0,0,38516,28604,28089,27864,27173,27457,1754,1500,1500,1000,1100,1208,0
+25809,300000,female,2,2,35,0,0,0,0,0,0,86574,86821,88072,76722,69922,23926,3219,3417,1926,1545,797,9190,0
+25810,500000,female,1,1,44,0,0,0,0,0,0,111937,104203,96617,97437,185322,179697,4000,4009,17446,100000,10000,20000,0
+25811,140000,female,2,1,37,-1,-1,-1,-1,-1,-1,326,326,326,1516,326,1439,326,326,1516,326,1439,326,1
+25812,20000,female,2,1,44,0,0,0,0,0,0,16231,14791,14453,15320,11796,9766,1600,1300,1156,387,354,438,0
+25813,270000,female,1,1,44,-2,-2,-2,-2,-2,-2,-1404,73596,49800,1514,41072,23500,75000,49800,1514,41072,23500,29702,0
+25814,150000,female,2,1,35,0,0,0,0,0,0,216793,198866,193870,188045,178892,167419,4818,5024,4051,3788,3622,1215,0
+25815,70000,female,1,1,45,1,1,-1,0,0,0,116630,-67526,71562,68709,28528,29171,0,140043,1830,1021,1103,1011,0
+25816,120000,female,1,1,46,0,0,0,0,0,0,28675,29392,30424,31437,32062,32734,1500,1509,1522,1147,1188,1194,0
+25817,20000,female,2,2,39,0,0,0,0,0,0,20885,20373,19391,20085,19938,0,2157,1660,1300,541,0,0,0
+25818,260000,female,1,1,34,0,0,0,0,0,0,136914,139380,140836,153026,156108,158893,7000,5188,15000,7500,7000,3000,0
+25819,160000,female,1,1,35,1,-2,-1,-1,-2,-2,0,0,6371,0,0,0,0,6371,0,0,0,8399,0
+25820,50000,female,2,1,45,0,0,0,0,0,0,48153,49073,12630,9215,9215,8011,2000,2022,2000,0,1000,1904,0
+25821,350000,female,2,1,39,1,-2,-2,-2,-2,-2,0,0,0,0,590,0,0,0,0,590,0,0,0
+25822,510000,female,1,2,40,8,7,6,5,4,3,477094,469882,461402,452405,443657,437305,0,0,0,0,0,14000,1
+25823,250000,female,1,1,38,-1,-1,0,-1,-1,0,6352,6790,10418,7720,37543,31337,6790,5418,7720,37604,0,0,0
+25824,80000,female,2,1,36,1,-2,-2,-2,-2,-2,4233,14233,15854,10000,10000,10000,14233,15854,10000,10000,10000,10000,0
+25825,180000,female,2,2,33,-1,-1,-1,-1,-1,-1,4160,7817,2358,18572,11560,4298,7817,2358,18577,11560,4298,12330,0
+25826,60000,female,2,3,39,1,1,-2,-2,-2,-2,58574,-1540,-1930,-2320,-1220,0,0,0,0,2000,2000,0,1
+25827,170000,female,1,1,35,2,2,2,2,2,2,131909,133178,131711,139143,140987,144187,4800,2000,11000,5500,5500,5400,1
+25828,200000,female,1,1,39,-1,-1,-1,-1,-1,-1,100239,81596,114770,70175,69180,44376,81596,114770,70175,69180,44376,37638,0
+25829,210000,female,1,1,31,-2,-2,-2,-2,-2,-2,31808,9283,7846,38141,9461,33978,9283,7846,38218,10000,33978,0,1
+25830,200000,female,1,2,47,-1,-1,-1,-1,-1,-1,30177,2039,174406,133073,45373,973,2061,175000,133100,46000,1000,0,0
+25831,200000,female,2,2,34,2,2,2,2,2,2,71817,73376,71672,76004,74225,78193,3300,0,6100,0,5300,3500,1
+25832,200000,female,2,1,32,-1,0,0,0,0,-1,11191,15940,20281,24540,24928,1532,6002,5000,4552,3131,1539,1027,0
+25833,240000,female,2,1,29,0,0,0,0,0,0,21909,15420,40861,34146,30937,27164,2420,34000,2500,5937,5164,5387,0
+25834,450000,female,2,2,34,-2,-2,-2,-2,-2,-2,3752,513,0,4376,0,0,513,0,4376,0,0,0,0
+25835,80000,female,2,1,26,0,0,0,0,0,0,78872,80301,74349,75443,57735,58139,2800,2800,2400,2100,2100,2100,0
+25836,430000,female,2,2,33,0,0,0,0,0,0,191520,185187,173041,147383,135848,133591,8266,7666,6590,4711,4746,4421,0
+25837,30000,female,3,1,40,2,2,2,0,0,0,16457,19145,18547,18645,17847,15465,3280,0,1511,609,500,800,1
+25838,290000,female,2,1,30,0,0,0,0,0,0,284054,283149,284434,275889,218834,220695,10222,11019,9019,8010,8002,8001,0
+25839,40000,female,2,2,37,1,2,2,2,2,2,7613,7343,15184,14643,18385,17950,0,8000,0,4000,0,6000,1
+25840,170000,female,3,1,37,0,0,0,0,0,0,155379,155990,46870,43584,34760,35467,7000,1900,2014,2500,2000,2000,0
+25841,130000,female,1,2,26,0,0,0,-1,0,0,13700,18670,21362,1469,7370,12554,10008,6196,1470,6501,5784,6030,0
+25842,360000,female,2,2,27,0,-1,-1,-1,-1,0,13102,5628,1480,2330,2286,4385,5655,1480,2330,2550,3000,3000,0
+25843,360000,female,3,1,30,1,-1,-1,-1,-1,0,-16,1621,458,0,282,282,1637,458,0,282,0,0,0
+25844,180000,female,3,1,45,-2,-2,-2,-2,-2,-2,396,396,396,396,396,396,396,396,396,396,396,396,0
+25845,210000,female,2,2,28,0,0,0,0,2,2,26770,28001,31202,36968,32141,35018,2000,5000,8000,0,5000,0,0
+25846,260000,female,2,2,35,-2,-2,-2,-2,-2,-2,-7,-7,2493,2290,432,0,0,2507,2297,432,0,649,0
+25847,200000,female,2,1,33,1,-1,0,0,0,0,-7082,12270,29787,32040,7773,12681,21179,20000,3000,1000,5000,500,0
+25848,340000,female,1,2,31,0,0,0,0,0,0,112119,119230,259489,328507,283758,273018,25000,150000,90168,25001,10000,11000,0
+25849,200000,female,1,1,37,-1,-1,-2,-2,-2,-2,3135,0,0,0,0,0,0,0,0,0,0,0,0
+25850,360000,female,2,1,35,2,2,2,2,0,0,360996,370722,380523,372735,290210,290551,16500,16500,6,10306,10876,10323,1
+25851,90000,female,2,2,32,0,0,0,0,0,0,86076,87567,78646,79212,54659,55902,3012,3100,3116,2000,2100,2100,0
+25852,40000,female,3,1,34,0,0,0,0,0,2,32052,34697,36824,38764,36411,31931,3500,3000,3000,3029,1000,2000,0
+25853,500000,female,2,2,28,0,0,0,0,0,0,234957,215459,201715,141177,130352,126422,8086,7412,4721,3854,3622,3433,0
+25854,240000,female,2,1,36,0,0,0,0,0,0,232031,226221,222929,215858,210887,205828,8193,9000,6600,6400,6382,5994,0
+25855,440000,female,1,2,33,-1,-1,-1,-1,-1,-1,304,301,850,10799,746,600,301,850,10819,746,600,4238,0
+25856,50000,female,2,1,33,0,0,0,0,0,0,44052,32030,31041,26197,25739,27659,2000,1451,3000,862,5000,10000,0
+25857,180000,female,2,2,28,1,2,2,0,0,0,172850,182810,169529,153501,136920,139506,14400,402,5166,5000,5030,5391,1
+25858,30000,female,2,1,35,0,0,0,0,0,0,25485,26503,27486,25663,26979,24306,1447,1430,1684,2000,892,2000,0
+25859,60000,female,1,2,29,0,0,0,0,0,0,39553,40855,40870,39703,38600,40230,1969,1668,1609,1506,2379,0,0
+25860,150000,female,3,1,29,0,0,0,0,0,0,8902,9231,9124,9356,8572,9541,1200,1300,1000,1572,1000,1000,0
+25861,80000,female,2,1,32,0,0,-2,-2,-2,-2,5988,0,0,0,0,0,0,0,0,0,0,0,0
+25862,290000,female,1,1,34,-2,-2,-2,-2,-2,-2,0,0,1100,6000,3533,880,0,1100,6000,3533,880,193,0
+25863,220000,female,2,1,40,0,0,-2,-1,0,0,21920,0,0,5752,8478,9336,0,0,5752,3000,1000,2000,0
+25864,50000,female,1,2,34,-1,-1,-1,-1,-1,-1,1884,1077,4886,3682,3190,2451,1077,5693,4255,3190,2451,4425,0
+25865,80000,female,3,1,48,2,2,2,2,0,0,66321,63695,33283,22442,15553,5593,0,6056,652,517,0,27,0
+25866,400000,female,1,2,37,1,-1,-1,-1,-1,-1,6914,72574,42176,75513,57104,53542,73036,42386,75865,57379,53787,13833,0
+25867,150000,female,1,1,33,-2,-2,-2,-2,-2,-2,-3,-3,-3,-3,-3,-3,0,0,0,0,0,698,0
+25868,250000,female,1,2,34,2,0,0,0,0,0,212681,193296,194659,196481,196256,195370,9917,7350,7231,6603,6797,7557,0
+25869,120000,female,2,1,34,-1,-1,-2,-2,-2,-2,1800,0,0,0,0,0,0,0,0,0,0,0,0
+25870,300000,female,1,2,28,-1,-1,-1,-1,0,0,16094,2259,0,12880,14895,9386,2259,0,12880,2500,200,280,0
+25871,500000,female,2,2,39,0,0,0,0,0,0,24893,12569,7652,7187,10861,15893,12260,7016,3007,5009,7028,6755,0
+25872,240000,female,2,2,36,-1,-1,-2,-2,-2,-2,1000,0,0,0,0,0,0,0,0,0,0,0,0
+25873,240000,female,2,2,29,0,0,0,0,0,-2,17570,159228,150359,62242,0,0,150359,4199,1322,2480,0,0,0
+25874,30000,female,2,2,39,-2,-2,-2,-2,-2,-2,2416,2226,2230,561,2230,565,2230,2238,561,2238,565,564,1
+25875,90000,female,1,2,29,-2,-2,-2,-2,-2,-2,-240,-240,-240,-240,-240,-240,0,0,0,0,0,0,0
+25876,60000,female,1,2,31,-1,0,-1,2,2,2,2631,3610,855,111,411,261,2000,900,0,300,0,6500,1
+25877,60000,female,2,2,41,0,0,0,0,0,0,16194,17120,14232,14676,1976,2976,1518,1556,1000,300,1000,0,0
+25878,230000,female,1,2,41,-1,-1,-1,-1,-1,0,177,0,376,47992,3099,2389,0,376,48042,3099,0,0,0
+25879,290000,female,1,1,40,0,0,0,0,0,0,192432,192512,193999,157500,147150,146936,8000,9008,6000,5000,5200,5100,0
+25880,430000,female,1,2,42,-2,-2,-2,-2,-2,-2,9777,75276,5999,38845,0,1111,75276,6008,48845,0,1111,1140,0
+25881,230000,female,2,1,39,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+25882,140000,female,3,1,48,1,-2,-2,-2,-1,-1,0,0,0,0,959,0,0,0,0,959,0,0,0
+25883,210000,female,2,2,30,0,0,0,0,0,0,215842,220042,214545,215635,163741,162253,9500,9100,9900,6100,6100,6300,0
+25884,390000,female,2,2,36,0,0,0,0,0,0,112528,102596,91761,76756,65520,52904,3669,3277,3220,2236,2007,1600,0
+25885,320000,female,1,1,35,-1,2,-1,-1,-1,-1,6793,3659,232702,3529,14212,1166,5,232702,3529,14212,1200,8200,0
+25886,50000,female,2,1,44,2,2,2,0,0,0,26587,29730,28565,26601,26391,27165,3600,0,1500,1000,1200,1200,1
+25887,100000,female,1,2,30,0,0,-2,-1,0,0,41150,0,0,74550,75731,75975,0,0,74550,3000,3000,3500,0
+25888,260000,female,3,1,40,-2,-2,-2,-2,-2,-2,-6,-6,1302,2752,1114,2212,0,1308,2765,1119,2218,625,0
+25889,260000,female,1,1,30,1,-2,-2,-2,-2,-2,0,0,0,0,0,36150,0,0,0,0,36150,0,0
+25890,100000,female,1,2,30,0,0,0,0,0,0,77388,78502,81233,82990,84210,85987,3000,4000,4000,3500,3287,4000,0
+25891,340000,female,2,1,37,0,0,0,0,0,0,36006,12144,17164,15821,12317,14850,5000,10326,5000,10000,5000,5000,0
+25892,150000,female,2,1,36,0,0,0,0,0,-1,113368,70001,45813,44309,27428,2013,2354,2500,1200,2618,2013,4724,0
+25893,360000,female,2,2,30,0,0,0,0,0,-1,7410,6783,7672,8380,4581,3853,1115,1161,1026,1523,3872,2626,0
+25894,210000,female,2,1,34,-1,-1,-1,0,0,0,25650,1360,31793,32943,30019,30657,1360,31793,1943,819,763,2280,0
+25895,200000,female,1,1,33,2,-1,-1,-1,-1,-1,1076,696,316,1076,316,1226,696,316,1076,316,1226,696,0
+25896,310000,female,1,1,41,0,0,0,0,0,0,20876,21999,7426,6092,5074,3865,2016,1200,1100,1000,300,1000,0
+25897,260000,female,1,1,32,-2,-2,-2,-2,-2,-2,1009,2403,1880,0,1000,0,2403,1880,0,1000,0,189,0
+25898,210000,female,2,2,41,-2,-2,-2,-2,-2,-2,0,0,769,771,0,695,0,769,771,0,695,1892,0
+25899,330000,female,2,2,39,-1,0,0,0,0,0,8872,15284,20467,25200,35000,0,8284,5467,5200,10000,0,0,0
+25900,430000,female,2,2,29,-2,-2,-2,-2,-2,-2,2548,12020,2539,2250,0,2580,12082,2539,2250,0,2580,171,0
+25901,450000,female,1,2,32,0,-1,-1,-1,0,0,46437,7875,0,1000,17446,11062,7875,0,1000,16446,0,0,0
+25902,150000,female,2,1,32,-1,0,0,0,0,0,3000,187000,193500,196000,200000,0,184000,6500,4000,4000,0,0,0
+25903,410000,female,3,1,32,-2,-2,-2,-2,-1,0,388,388,388,388,110345,116128,388,388,388,110345,8000,4200,0
+25904,90000,female,2,1,48,0,0,0,0,0,0,43810,44504,46174,47193,48105,49327,1723,2393,2090,2000,2000,1803,0
+25905,280000,female,1,1,36,-1,0,-1,-1,-1,-1,17951,18915,7926,17965,24432,10805,6094,7966,18059,24554,18860,17313,0
+25906,150000,female,1,1,45,-2,-2,-2,-2,-2,-2,5423,4133,14279,5985,8333,8241,4133,14296,5990,8342,8241,17817,0
+25907,200000,female,1,1,42,-1,-1,-2,-1,-1,-1,2374,0,0,5144,0,931,0,0,5144,0,931,0,0
+25908,150000,female,2,1,42,0,0,0,0,2,0,15878,10389,6067,4823,6208,4824,1300,1040,1378,1560,128,239,0
+25909,140000,female,1,2,40,1,2,0,0,0,0,143478,135633,128285,123074,97382,99364,0,6601,5522,3200,3300,3500,0
+25910,260000,female,1,1,29,0,0,0,-2,-2,-2,71864,54050,0,0,0,0,3090,0,0,0,0,141516,0
+25911,160000,female,2,2,30,0,0,0,0,0,0,151620,150984,152705,102160,102969,105149,7300,6004,5170,4000,4000,4200,0
+25912,310000,female,1,1,45,0,0,0,0,0,0,91532,93351,96218,97722,101082,103202,3340,4370,4000,5000,3899,3761,0
+25913,80000,female,3,1,47,-1,-1,2,-1,-1,-1,390,780,390,390,390,390,780,390,390,390,390,2379,1
+25914,150000,female,3,1,38,2,0,0,0,0,0,146057,142325,143548,146332,145993,146600,6527,6714,6705,5181,5437,5700,0
+25915,330000,female,1,1,31,0,0,0,0,0,0,22285,23111,23622,23253,22525,22419,1700,1700,1700,1000,1000,1211,0
+25916,180000,female,1,2,30,-2,-2,-2,-2,-2,-1,1490,3687,1352,960,4921,3031,3687,1352,960,4921,3031,2718,0
+25917,120000,female,1,2,29,0,0,0,2,0,0,6385,9262,11793,11307,14102,15871,3000,2691,0,3000,2000,0,1
+25918,150000,female,4,2,30,-1,-1,-1,-1,-1,-1,3826,2970,4015,3693,7850,2423,2978,4026,3704,7873,2429,5720,0
+25919,200000,female,1,2,35,0,0,0,0,0,0,65503,66805,68726,70586,72409,73926,2394,3000,3000,3000,2685,2100,0
+25920,170000,female,2,2,37,1,-1,-1,-1,0,0,0,213,2592,13199,3685,986,213,2592,13204,0,986,0,0
+25921,50000,female,2,3,45,0,0,0,0,0,0,44797,50215,49420,46434,45349,40755,46012,3000,1590,1285,1544,1761,0
+25922,80000,female,2,1,41,-1,-1,-1,-1,-1,-1,264,264,264,264,264,414,264,264,264,264,414,264,0
+25923,20000,female,3,2,31,-1,-1,-1,-1,-1,-1,1550,1550,1826,6497,8185,3755,1550,1826,6497,8185,3755,3220,0
+25924,360000,female,2,1,31,0,0,0,0,0,0,350752,354823,358920,363999,292332,294752,13016,13016,13625,11019,9439,8651,0
+25925,200000,female,1,2,31,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+25926,50000,female,2,1,33,0,0,0,0,-1,0,39554,38600,23711,8663,19596,20082,5000,5038,3000,20130,1000,1000,0
+25927,70000,female,2,1,33,0,0,5,4,3,3,56778,75037,73326,71568,72540,71148,20000,0,0,2700,0,0,0
+25928,300000,female,2,2,34,0,0,0,0,0,0,297890,216495,221737,224774,182544,92014,7800,8705,8500,6820,2700,3200,0
+25929,20000,female,3,2,45,0,0,0,0,0,0,14381,15701,17137,18541,18909,19464,1564,2000,2000,677,860,1000,1
+25930,170000,female,1,2,40,-2,-2,-2,-2,-2,-2,0,0,1980,0,280,280,0,1980,0,280,280,1111,1
+25931,180000,female,4,1,44,0,0,0,0,0,2,151538,133924,136707,139438,143513,141119,6256,6434,6506,10813,0,5557,0
+25932,200000,female,1,2,38,-2,-2,-1,0,0,0,0,0,69084,71857,72755,34125,0,69084,3450,2348,1486,30000,0
+25933,320000,female,2,1,44,-2,-2,-2,-2,-2,-2,-6,650,2849,1060,3667,1627,656,2849,1060,3667,1627,1102,0
+25934,180000,female,3,2,45,0,0,0,2,0,0,76942,77952,80269,66855,67128,67257,4003,5603,3,2504,2511,3021,0
+25935,60000,female,2,1,40,2,0,0,0,0,0,60211,55996,54178,44518,28636,28957,3000,2000,2000,3000,1300,1100,0
+25936,360000,female,3,1,40,0,0,0,0,0,0,44518,46285,37917,36502,31715,4857,8061,5043,8160,10069,2023,8669,0
+25937,30000,female,2,2,46,0,0,2,2,2,0,19495,22254,21616,26695,25970,26402,3400,0,5800,0,1000,1400,1
+25938,130000,female,2,1,35,0,0,0,0,0,0,105976,108127,110356,111070,113441,115649,5400,5460,4033,4220,4199,4427,0
+25939,80000,female,2,1,35,1,-1,3,2,0,-1,0,964,964,964,964,5953,964,0,0,0,5953,0,0
+25940,230000,female,2,1,40,0,0,0,0,0,0,44948,45198,46244,47595,38367,35098,1728,3000,3040,3012,3000,3000,0
+25941,210000,female,2,1,36,0,0,0,0,-1,0,4879,5373,6811,10161,2922,1461,3000,3000,5000,2922,0,1461,0
+25942,270000,female,3,1,35,0,0,0,-2,-1,0,60227,61650,0,248,163248,163412,3000,0,248,163000,5925,4782,0
+25943,280000,female,2,2,37,0,0,0,0,0,0,213581,197238,193638,161264,148863,155006,9000,10000,8000,5500,8500,5500,0
+25944,50000,female,2,1,36,0,0,0,0,0,0,30803,30578,30362,30764,30065,30179,1477,1546,1453,1039,1066,1421,0
+25945,360000,female,2,1,38,-2,-1,-1,-1,-1,-1,0,212,3748,-2,666,919,212,3759,0,668,921,0,0
+25946,470000,female,1,1,37,-2,-2,-2,-2,-2,-1,0,0,0,0,0,924,0,0,0,0,924,32673,0
+25947,230000,female,1,1,42,1,-2,-2,-2,-2,-2,6087,16041,29977,5608,0,0,16050,29989,5608,0,0,0,0
+25948,80000,female,2,1,47,2,0,0,0,0,0,80019,81145,79171,63448,46989,47867,3111,3667,3063,2000,2000,2428,1
+25949,200000,female,1,2,29,-1,-1,-1,-1,-1,-1,3215,78,2012,6577,551,2130,676,2012,6577,551,2130,1887,0
+25950,200000,female,2,1,32,0,0,0,0,0,0,166428,157908,150977,140358,130373,131885,6026,6007,5000,5000,5000,6000,0
+25951,50000,female,3,2,30,0,0,0,0,0,0,48134,52136,19758,5520,5204,4703,5261,1132,2138,172,200,168,0
+25952,20000,female,2,1,33,0,0,0,0,0,0,10001,20844,5760,3343,1510,0,2000,1500,1007,7,0,0,0
+25953,50000,female,2,1,41,0,0,0,0,0,0,22824,22664,5631,5933,6433,6828,1100,1100,1100,600,500,300,0
+25954,110000,female,2,1,31,-1,2,2,-1,-1,-1,832,832,416,416,416,416,416,0,416,416,416,416,1
+25955,280000,female,2,2,46,0,0,2,2,0,0,29523,154398,151984,47851,49374,50198,126000,3000,0,3000,2000,2000,0
+25956,160000,female,1,2,32,-1,-1,-1,-1,-1,-1,9441,5714,5030,3181,4998,1250,5726,5037,3182,5000,1252,749,0
+25957,320000,female,2,1,35,-1,-1,-1,-1,0,0,2276,6626,11131,13824,17992,15250,6626,12446,17746,6000,5749,928,1
+25958,300000,female,1,2,30,-1,-1,-1,2,-1,-1,452,-6,835,665,2386,456,3,1466,70,2397,457,1003,1
+25959,300000,female,2,2,30,0,0,0,-2,-2,-1,133115,41300,0,0,0,2538,2300,0,0,0,2538,47473,1
+25960,100000,female,2,2,31,0,0,0,0,0,2,99259,76288,77919,79597,88685,87773,2750,2854,3000,10400,600,4254,0
+25961,100000,female,2,1,39,-2,-2,-2,-2,-2,-2,1884,0,0,0,0,0,0,0,0,0,0,0,0
+25962,110000,female,2,1,33,0,0,0,0,0,0,15605,20649,22397,23305,25341,30584,5649,2397,1305,2341,5584,1388,0
+25963,400000,female,2,1,39,-2,-2,-2,-2,-2,-2,52306,3638,11649,24140,5803,5937,3656,11713,24265,7832,5966,9363,0
+25964,20000,female,2,1,35,0,0,0,0,0,0,15284,15303,14724,15055,13389,11924,6230,1500,1500,500,1200,454,0
+25965,50000,female,1,2,27,2,3,2,2,2,2,12250,11761,12476,11979,12880,12531,0,1200,0,1100,0,1200,1
+25966,310000,female,1,2,28,0,0,0,0,0,0,269832,261818,234621,242570,246073,248376,15327,10000,12000,9019,10024,15040,0
+25967,80000,female,2,2,44,0,0,0,0,0,0,75901,74911,72172,73674,73532,75192,3500,3205,3300,3000,3000,3300,0
+25968,120000,female,3,1,43,0,0,0,0,0,0,116032,114987,117491,118513,75278,77070,4201,5001,4134,2700,3000,5030,0
+25969,200000,female,1,1,39,-1,-1,-1,-1,0,0,11399,395,5094,9204,9403,4602,400,9500,9250,5000,0,5000,0
+25970,100000,female,2,1,44,-1,-1,-1,-1,-1,-1,9242,181,1782,1338,768,2643,181,1794,1338,768,2643,0,0
+25971,210000,female,2,2,37,0,0,0,0,0,0,206157,212566,190867,195323,156651,135493,10000,20000,8000,10000,4416,10000,0
+25972,60000,female,1,1,33,-1,0,-1,-1,-1,0,14932,12840,390,390,780,390,5000,10390,390,780,0,390,0
+25973,130000,female,2,1,38,-1,-1,-1,-1,-1,-1,929,2876,423,2149,463,2218,2876,423,2149,463,2218,10346,0
+25974,150000,female,3,2,33,-2,-1,-1,-1,-1,-1,1879,69842,2777,945,-5,1951,69842,2785,947,0,1956,900,0
+25975,220000,female,2,1,44,2,2,0,0,0,0,195375,185993,184568,168683,158742,161499,10,8304,7356,5300,5550,5050,0
+25976,140000,female,2,1,40,0,0,0,0,0,0,98221,97548,98457,102811,104605,106917,3600,5000,6000,5000,4000,10000,0
+25977,50000,female,2,2,31,0,0,0,0,0,0,77962,48095,50383,48987,48793,48328,3000,3387,1637,1231,3356,636,0
+25978,90000,female,3,1,41,0,0,0,0,0,0,2833,6003,7598,5036,4750,3007,5000,3500,4500,4300,0,1500,0
+25979,500000,female,1,2,37,0,0,0,0,0,0,20181,21197,23839,24869,27437,31957,1358,3000,1432,3000,5000,5000,0
+25980,300000,female,3,1,28,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,390,1
+25981,260000,female,1,1,40,-1,-1,-1,-1,-1,-1,63273,49857,75036,96787,16576,6844,49857,75038,96793,16576,6844,8954,0
+25982,130000,female,3,1,42,-1,-1,-1,0,0,-2,2551,0,59892,60000,0,0,0,59892,1200,0,0,0,1
+25983,200000,female,1,2,28,-1,-1,-1,-1,-1,-1,6023,3621,2659,1708,1629,13037,3632,2659,1708,1629,13037,450,0
+25984,290000,female,2,2,29,0,0,0,0,0,0,7324,8174,8389,8770,9145,10016,1130,1502,1300,500,1000,1001,0
+25985,650000,female,1,2,29,1,-1,-1,-1,0,0,21289,518,216,2482,5178,5506,3000,1000,2500,3500,4000,3000,0
+25986,230000,female,1,2,27,0,0,0,0,-1,-1,11406,10097,4600,3234,4696,7062,5097,1060,1000,4696,7062,10898,0
+25987,230000,female,1,1,30,2,0,0,0,0,0,63064,62725,61465,57637,58172,57560,2800,2158,2610,2022,2064,2038,1
+25988,200000,female,2,2,31,0,0,0,0,0,0,203265,203147,203017,203109,203494,203920,7471,7848,8957,8000,7775,7341,0
+25989,400000,female,2,2,32,0,0,0,0,0,0,234779,240496,247813,253726,258120,10002,5784,7395,7506,6000,2000,2000,0
+25990,490000,female,2,1,30,0,0,0,0,0,0,195330,200768,206026,203938,198453,200496,8683,10021,8017,16270,6599,6024,0
+25991,360000,female,1,2,30,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+25992,230000,female,1,2,33,-2,-2,-2,-2,-2,-2,5869,11556,156,2403,1546,7915,11556,156,2403,1546,7915,0,0
+25993,290000,female,2,2,34,0,0,0,0,0,0,285484,286091,286785,285345,239389,231420,10220,11231,10269,8500,10000,10000,0
+25994,200000,female,1,2,34,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,17000,0
+25995,360000,female,2,1,34,-1,0,0,0,0,0,42720,22303,17959,11933,8371,11196,1430,4987,3966,5081,6605,1511,0
+25996,10000,female,3,1,42,2,2,2,2,0,0,7587,7920,10153,8999,9999,0,1000,2374,0,1000,0,0,1
+25997,180000,female,2,2,33,-2,-2,-2,-2,-2,-2,11281,3405,22630,7777,3089,8429,3411,22657,7777,3089,8429,6706,0
+25998,230000,female,3,1,47,-1,-1,-1,-1,-1,-1,6200,5482,15900,1678,0,764,5482,15900,1678,0,764,0,0
+25999,340000,female,1,2,35,-2,-2,-2,-2,-2,-2,732,1604,-1294,12797,890,2313,1618,27,20072,903,2313,156590,0
+26000,170000,female,3,1,44,0,0,0,0,0,-1,150692,152861,156393,147611,28697,107142,6936,8266,5792,662,108927,4154,0
+26001,50000,female,3,2,42,0,0,0,0,0,0,48926,49759,48803,46472,19766,19761,2019,2063,2217,705,725,927,0
+26002,170000,female,2,1,37,-1,0,0,0,0,0,168719,166207,158403,146324,118981,113666,7000,7000,6011,5000,6000,9000,0
+26003,160000,female,2,1,49,-1,-1,2,0,0,2,16982,21353,20723,21873,25999,26377,4980,0,1500,4520,939,0,0
+26004,280000,female,3,1,46,0,0,0,0,0,0,100858,107768,111858,83428,73908,81908,7768,5000,10000,0,8000,0,0
+26005,140000,female,2,2,38,0,0,0,0,0,0,135034,133283,132765,123208,97154,97687,4729,5434,4751,3500,3500,3800,0
+26006,520000,female,1,1,43,0,0,0,0,0,0,146124,145785,147972,157115,196804,21550,6024,18069,30000,46805,21550,1287,0
+26007,140000,female,2,2,29,0,0,0,0,0,0,25973,53098,54760,55568,27922,46108,30000,24000,11200,10000,34762,26447,0
+26008,130000,female,1,2,26,-2,-2,-2,-2,-2,-2,1016,0,0,0,402,0,0,0,0,402,0,2054,0
+26009,100000,female,1,2,27,0,0,0,0,0,0,58127,60155,61685,70611,70198,72075,3000,2500,10000,2505,3000,3420,0
+26010,50000,female,3,1,27,2,0,0,0,2,0,11275,37651,38498,40644,39731,35657,27234,1754,2900,0,1265,832,1
+26011,130000,female,2,2,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+26012,200000,female,1,1,39,-1,-1,-1,-1,-1,-1,25149,14963,9308,3060,6016,3480,15084,9354,3082,6046,3497,3514,0
+26013,280000,female,1,2,28,-1,2,-1,-1,-1,2,5432,2146,1688,1226,6394,1626,0,1688,1226,7000,0,3146,0
+26014,240000,female,1,2,29,-2,-2,-2,-2,-2,-2,28438,29923,7655,23918,265852,2225,29923,7655,23925,265852,2225,13478,0
+26015,90000,female,1,1,29,2,2,2,2,2,2,42815,41826,45136,46098,45059,79127,0,4000,2000,0,35000,3000,0
+26016,250000,female,1,2,29,0,0,0,0,0,0,98925,103213,87836,90577,65268,63019,9000,7000,9000,8000,8000,8000,0
+26017,210000,female,1,2,29,-1,-1,-1,-1,0,0,1383,484,971,3764,2221,266,484,980,4000,266,0,1913,0
+26018,90000,female,2,1,30,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+26019,180000,female,5,2,30,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+26020,500000,female,5,1,32,0,0,0,0,-1,-1,139255,52757,24273,9508,23294,2235,2040,1292,9555,23310,2244,2156,0
+26021,240000,female,1,1,32,-2,-2,-2,-2,-2,-2,6101,1202,3227,4039,1776,1513,1205,3236,4051,1781,1517,3630,0
+26022,50000,female,2,2,31,0,0,0,0,0,2,21704,22741,23867,25464,27348,26774,1400,1500,2000,2620,0,1164,0
+26023,400000,female,1,2,32,0,0,0,0,0,0,46782,48075,48815,49831,50821,51884,2036,1776,1792,1782,1844,1856,0
+26024,230000,female,1,2,33,1,2,-1,0,-1,0,4213,1922,5346,6971,10707,15392,0,5500,4000,11000,5000,5000,1
+26025,400000,female,3,2,31,1,2,0,0,0,0,79403,55340,62303,63928,52882,48387,3,10000,10023,20000,5000,20000,0
+26026,80000,female,2,1,35,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+26027,160000,female,2,2,37,-2,-1,-1,-1,-1,-1,7596,898,850,1729,5696,0,920,852,1759,5707,0,0,0
+26028,430000,female,1,1,38,1,-1,-1,-2,-2,-1,-469,215,-101,-1217,-2333,2351,1000,0,0,0,5000,12000,0
+26029,90000,female,2,1,34,1,2,2,-1,-1,-1,8021,7780,0,9281,0,340,77,0,9281,0,340,0,0
+26030,80000,female,3,1,35,0,0,0,0,0,0,63436,49544,50418,51810,28964,13059,2096,1970,2355,1500,1000,646,0
+26031,210000,female,2,2,36,1,-2,-2,-2,-1,0,0,0,212,3066,13206,10583,0,212,3066,13206,212,0,0
+26032,310000,female,2,1,46,-2,-2,-2,-2,-2,-2,53474,11913,6629,34342,1900,5807,11919,6629,17171,3800,5807,1380,0
+26033,500000,female,2,1,39,0,-1,-1,-1,-2,-2,11712,523,1543,0,0,0,523,1543,0,0,0,0,0
+26034,70000,female,3,2,38,0,0,0,0,0,0,34240,34913,26583,23593,15114,11222,2000,2000,1000,500,500,2000,0
+26035,20000,female,2,1,36,1,2,2,2,2,2,16161,17596,17031,19715,19806,18747,2000,0,3300,700,0,1200,0
+26036,210000,female,2,1,44,-2,-2,-2,-2,-2,-2,0,4098,0,0,0,0,4098,0,0,0,0,0,1
+26037,170000,female,3,1,40,0,0,0,0,0,0,166305,169764,168441,171664,112130,114561,7800,8100,8000,4300,4400,4500,0
+26038,390000,female,1,2,38,-1,-1,-1,-1,0,0,4989,2056,8886,16396,12761,6707,2076,8926,16413,30,33,5900,0
+26039,320000,female,2,1,43,2,0,0,0,0,0,520651,383123,391741,400196,408503,156881,10000,11000,11000,10800,5992,4967,1
+26040,50000,female,2,1,37,0,0,0,0,0,0,38418,47709,48923,39210,30515,27861,10000,2131,1910,1410,1159,1050,0
+26041,100000,female,3,1,36,2,0,0,0,0,0,100281,100433,99744,101882,101116,97283,5000,5000,7900,4000,4000,30300,0
+26042,220000,female,1,1,39,-1,-1,-1,-1,-1,-1,2342,1120,5707,2021,15441,7661,1122,5738,2041,15516,7697,2916,0
+26043,300000,female,1,1,38,-1,0,0,0,0,0,15230,16212,17239,18237,18600,17939,1222,1249,1247,610,611,616,0
+26044,160000,female,2,1,40,-1,-1,-2,-2,-2,-2,6102,0,0,0,0,0,0,0,0,0,0,0,0
+26045,200000,female,3,1,45,0,0,0,0,0,-1,54721,52285,48615,41322,0,4300,2209,2109,10006,0,4300,1191,0
+26046,240000,female,1,1,43,-1,-1,-1,-1,-1,-1,7994,20487,27770,22920,4779,7640,20487,27783,22920,4952,7640,14003,0
+26047,90000,female,1,2,27,2,2,0,0,0,0,28206,27459,28514,29733,30138,33248,0,1800,2000,1200,3600,0,1
+26048,50000,female,2,1,46,-2,-1,-1,0,-1,-1,4640,2720,26461,11882,280,290,2720,26461,1034,280,300,1535,0
+26049,210000,female,1,1,46,-2,-2,-2,-2,-2,-2,0,477,971,0,386,0,477,972,0,386,0,0,0
+26050,290000,female,2,1,33,-2,-1,0,0,0,0,11303,17493,21036,17391,16348,-209051,17654,11068,7600,3352,6104,261883,0
+26051,160000,female,2,2,37,2,2,2,2,2,2,144255,147333,143786,151842,147962,156921,6900,200,12000,0,11500,5811,0
+26052,200000,female,1,1,31,-1,-1,-1,0,0,-1,11715,5209,10634,10982,1966,4883,5289,10641,2011,9,4890,15,0
+26053,260000,female,2,1,37,0,0,0,0,0,0,182249,181433,180660,179052,177072,175285,6107,6501,6005,5805,5909,6106,0
+26054,30000,female,3,1,47,2,0,0,0,0,0,27380,27384,28944,29850,29523,28925,1440,2000,1741,1164,1027,1500,0
+26055,230000,female,2,2,36,-2,-2,-2,-2,-2,-2,140,358,285,219,415,142,358,285,219,416,142,3000,0
+26056,220000,female,3,2,39,0,0,0,0,0,0,209596,160515,141917,144811,147685,150780,6888,5155,5258,5284,5473,5505,0
+26057,140000,female,1,2,27,-1,-1,-1,0,-1,-1,2116,11028,9778,6417,1831,7126,11033,9803,1004,1831,7126,2121,0
+26058,80000,female,2,1,38,0,0,0,0,0,0,43170,44151,45505,43485,44830,43229,2000,2100,2000,2000,2000,2000,0
+26059,450000,female,1,1,49,1,-1,-1,-1,-1,0,0,557,0,2481,13716,19584,557,0,2481,13716,7100,812,0
+26060,160000,female,2,1,45,0,0,0,0,0,0,106643,89397,90348,8274,75286,76618,3700,6353,1200,70000,3000,3300,0
+26061,100000,female,1,1,27,1,2,0,0,0,0,77346,75513,77147,78200,78393,72214,0,3451,3000,2841,2620,2500,1
+26062,250000,female,2,1,39,-1,-1,-1,-1,-1,-1,9690,0,1222,7337,0,2752,0,1222,7409,0,2752,1549,0
+26063,80000,female,2,1,38,-2,-2,-2,-2,-2,-1,0,0,0,0,0,390,0,0,0,0,390,0,0
+26064,180000,female,1,2,35,-2,-2,-2,-2,-2,-2,7210,370,8479,792,3826,1997,370,8875,792,3826,1997,396,0
+26065,720000,female,2,2,38,1,-2,-2,-2,-2,-2,5065,2184,1744,7323,711,970,2184,1744,7323,711,970,491,0
+26066,180000,female,2,1,27,0,0,0,0,0,0,3063,4083,4634,3652,1973,689,1084,1084,1005,46,16,0,0
+26067,230000,female,1,1,32,-2,-2,-2,-2,-2,-2,2774,0,0,0,0,5347,0,0,0,0,5347,0,0
+26068,200000,female,2,2,32,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+26069,80000,female,2,1,36,0,0,0,0,0,0,77998,77452,74773,76908,77068,78434,3700,3500,4000,3200,4000,2700,0
+26070,100000,female,2,1,30,-1,0,0,0,-1,-1,100037,101163,102712,99925,836,79013,3607,4001,2449,2836,79263,2442,0
+26071,200000,female,1,2,30,0,0,0,0,0,0,38540,38898,39669,40167,37162,36557,1928,1699,1557,1279,962,2178,0
+26072,200000,female,3,1,32,0,0,0,0,0,0,132436,133530,137837,140609,141896,151082,4780,6459,6550,5106,11500,0,1
+26073,50000,female,2,1,30,0,0,0,0,0,-1,42326,19067,7690,8322,5522,1522,1500,1500,1000,200,2000,50000,0
+26074,380000,female,1,1,36,-2,-1,-1,-1,-1,2,3744,20334,8499,53235,101439,34579,20498,8549,53471,101785,117,32347,1
+26075,250000,female,2,1,41,0,0,0,0,0,0,214301,211762,214629,204093,150752,150863,8972,9700,8960,5630,5777,5459,0
+26076,220000,female,2,2,47,-2,-2,-2,-1,-1,-1,1526,1122,-11,12597,44375,0,1122,0,12608,44375,0,0,0
+26077,70000,female,2,2,33,0,0,0,0,2,0,62209,64072,64802,66647,50690,50806,2900,2379,4466,2,1836,1846,0
+26078,10000,female,2,1,40,0,0,-1,0,0,0,9135,0,1912,3071,4012,9882,0,1912,1200,1000,1000,1000,0
+26079,60000,female,2,2,35,0,0,-1,-1,0,0,21770,11506,1024,16453,4131,4006,1400,1024,16469,131,322,40000,0
+26080,200000,female,3,1,44,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+26081,200000,female,2,1,30,0,0,0,-2,-2,-2,25874,16298,0,0,0,0,1048,0,0,0,0,0,0
+26082,300000,female,1,2,48,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+26083,260000,female,3,2,36,0,0,0,0,0,0,146033,108405,108396,110249,112119,114136,4160,4000,3984,4001,4128,4200,0
+26084,130000,female,3,1,44,-1,-1,-1,-1,-1,-1,994,3693,1098,2912,2910,4122,3693,1098,2912,2910,4122,1887,0
+26085,30000,female,2,1,29,2,2,2,0,0,0,26844,26414,27189,28235,28669,29355,300,1500,1800,1200,1300,1200,0
+26086,170000,female,1,1,30,0,0,2,2,0,0,165637,173637,173490,165645,165605,163432,15600,7666,0,7792,6248,5910,1
+26087,210000,female,2,1,29,-2,-2,-2,-2,-2,-2,3814,-6,6456,0,2746,11613,0,6462,0,2746,11613,11753,0
+26088,50000,female,3,2,44,0,0,0,0,0,0,43828,40684,37338,31278,31811,28656,1947,1829,1644,4405,1104,2504,0
+26089,600000,female,1,2,36,-2,-2,-2,-2,-2,-2,53838,528,1191,11390,8680,38018,530,3000,11500,8680,38020,56700,0
+26090,180000,female,3,1,37,0,0,0,0,0,0,165369,125084,119946,114977,88757,84936,4402,4971,4750,2997,3133,3180,0
+26091,100000,female,1,2,29,2,2,2,2,2,2,57214,58666,58643,58589,62586,64519,3000,1500,1500,5600,3100,2000,1
+26092,210000,female,1,1,46,-2,-2,-2,-2,-2,-2,4065,0,4160,2540,1055,0,0,4160,2540,1055,0,408,0
+26093,150000,female,2,1,37,-1,-1,-1,-1,-1,-1,2897,2486,-4,1494,-6,8047,2489,0,1498,0,8053,0,0
+26094,360000,female,3,2,30,-1,0,0,-1,0,0,11816,19726,26374,9781,8719,18076,10000,13021,9781,0,10000,8752,0
+26095,330000,female,1,1,32,0,0,0,0,0,0,155927,141523,134480,126316,125396,128081,5388,5079,4876,4400,4600,5000,0
+26096,300000,female,2,2,43,1,-2,-2,-1,-1,-1,499,0,0,507,0,629,0,0,507,0,629,0,0
+26097,250000,female,1,2,42,-1,-1,0,0,0,0,30471,39968,98808,78366,10668,390,39968,89000,10668,0,0,540,0
+26098,230000,female,2,1,48,0,0,0,0,0,0,344458,320215,298031,272103,205797,179247,11000,12500,11000,7000,36700,6650,0
+26099,20000,female,3,2,47,1,2,-1,-1,-1,-1,3133,1473,390,390,390,0,0,390,390,390,0,780,0
+26100,210000,female,1,1,35,-2,-2,-2,-2,-2,-2,2020,4055,0,0,0,0,4055,0,0,0,0,150,0
+26101,80000,female,2,2,36,2,2,2,0,0,0,82177,89893,80774,80082,78545,76742,10096,0,3800,3125,2783,3000,1
+26102,250000,female,1,2,39,-1,-1,-1,2,2,2,12368,1742,40292,39600,21304,1185,1742,39600,7,1185,0,54416,0
+26103,50000,female,2,1,34,3,3,2,2,2,2,47904,48240,48602,46289,44837,44535,2000,2001,499,2000,2000,1500,1
+26104,200000,female,5,1,42,0,0,0,0,0,0,149351,108152,87537,67974,35003,35736,3925,3683,2947,1253,1297,1305,0
+26105,290000,female,3,2,35,0,0,0,0,0,0,159165,167485,167930,171146,174889,179149,11000,5600,5500,5500,6000,5500,0
+26106,310000,female,3,1,43,0,0,0,0,0,0,6974,7294,7114,5642,5881,5611,1137,1247,1065,1000,500,500,0
+26107,270000,female,1,2,28,1,2,0,0,0,0,118198,86065,77359,63243,51636,31407,0,10004,10000,10000,10000,5000,0
+26108,200000,female,1,2,33,-2,-2,-2,-2,-2,-2,285,0,0,0,292,77,0,0,0,292,77,0,0
+26109,290000,female,2,1,32,0,0,0,0,0,0,169108,170419,142264,101952,103174,105464,7118,5800,3792,4010,4276,3655,0
+26110,220000,female,2,2,29,0,0,0,0,0,0,131598,132727,135509,139774,141099,155763,4800,4920,6520,5120,17001,0,0
+26111,500000,female,1,1,35,-1,-1,-1,-1,-1,-1,3290,10881,2517,2957,889,40855,11000,2517,2957,1000,41000,170,1
+26112,370000,female,3,2,31,-1,-1,-1,2,-1,-1,2804,1674,39811,35194,3728,2241,1674,42921,0,3728,2300,43183,0
+26113,100000,female,2,1,44,1,-2,-2,-2,-1,2,-1651,-5469,-7292,-10938,5887,3882,0,0,0,16825,0,1823,0
+26114,210000,female,1,1,44,0,0,0,0,0,0,112817,113349,113725,113779,114594,103205,5000,6000,5000,4000,4000,3500,0
+26115,310000,female,3,2,38,-2,-2,-2,-1,0,0,-41,8198,342,41726,15051,8663,8239,344,41884,5025,40,3,0
+26116,200000,female,2,1,27,0,0,0,0,0,0,157222,160320,162140,165431,168726,172430,7200,5888,5990,6031,6415,6301,0
+26117,110000,female,1,2,28,0,0,2,2,-2,-2,101138,69449,34983,-18,-18,-18,3400,0,0,0,0,0,1
+26118,130000,female,2,1,30,0,0,0,0,0,0,38967,40320,41324,25629,26961,28360,2000,1700,2000,2000,1500,2000,0
+26119,130000,female,1,2,34,0,0,0,0,0,0,66803,27910,24976,27648,29962,27422,3000,3000,3000,3000,5000,3000,0
+26120,80000,female,2,1,35,3,2,0,0,0,0,78317,71421,59564,56592,52766,48208,9,2203,3006,3005,2005,2000,1
+26121,30000,female,1,1,47,0,0,0,2,2,2,24895,26476,28047,29767,30498,29890,2000,2000,2500,1500,0,1200,1
+26122,50000,female,1,1,39,1,-1,-1,-1,-1,-2,0,13030,0,4402,0,0,13030,0,4402,0,0,0,0
+26123,160000,female,2,1,30,2,2,0,0,0,0,164082,157663,159094,132809,100693,97181,17,7342,3675,2910,3904,2900,1
+26124,80000,female,2,1,45,0,0,0,0,0,0,67142,68052,68690,70042,70626,71700,2420,2511,2512,2510,2590,2711,0
+26125,100000,female,2,2,37,-1,-1,-1,-1,-2,-2,390,0,780,0,0,0,0,780,0,0,0,0,0
+26126,10000,female,2,2,46,2,0,0,2,2,3,1526,2496,4245,4525,5450,5073,1000,1800,500,1000,0,0,1
+26127,90000,female,2,1,30,-1,-1,-1,-1,0,0,414,414,414,6936,7272,7595,414,414,6936,1000,1000,1000,0
+26128,360000,female,2,1,38,0,0,0,0,0,0,41922,42916,43956,44972,45866,49327,1692,1732,1748,1642,4200,1709,0
+26129,670000,female,1,1,43,0,0,0,0,0,0,55893,59131,61900,58225,61329,49369,10075,10063,10060,10028,10042,10055,0
+26130,150000,female,3,2,28,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+26131,150000,female,1,2,28,0,0,0,0,0,0,12799,13726,14648,12115,12613,15225,1600,1500,1600,1000,3000,2200,0
+26132,230000,female,1,1,35,0,0,-2,-2,-2,-2,22909,0,0,0,0,0,0,0,0,0,0,0,0
+26133,230000,female,2,1,30,-1,-1,-1,-1,0,-1,6294,1935,-74,926,426,926,1945,0,1500,0,1000,0,0
+26134,120000,female,2,2,33,0,0,0,0,0,0,135770,136901,115299,117498,89417,91370,5000,5000,4620,3200,3300,5000,0
+26135,170000,female,1,1,33,-1,-1,-1,-1,0,0,1554,360,1562,844,484,0,360,1562,844,0,0,720,0
+26136,200000,female,2,1,35,1,-1,-1,2,0,0,59466,2970,1085,769,453,137,7970,1100,0,0,0,0,0
+26137,450000,female,2,1,38,-2,-2,-2,-2,-2,-2,390,390,390,390,390,390,390,780,390,390,390,390,1
+26138,200000,female,1,2,32,-1,-1,-1,-1,0,-1,4640,17950,13056,2500,500,500,18116,13113,2522,0,500,500,0
+26139,310000,female,2,1,33,0,0,0,0,0,0,73095,72437,71851,71120,70463,69876,2573,2594,2483,2458,2516,2461,0
+26140,50000,female,1,2,30,-2,-2,-2,-2,-2,-2,0,2070,0,0,0,0,2070,0,0,0,0,0,0
+26141,140000,female,2,1,36,-1,-1,-1,2,-1,2,430,303,8934,580,9071,6317,303,9061,0,9071,0,656,1
+26142,250000,female,1,2,37,-1,-1,-1,-1,-1,-1,1291,1391,3498,8963,0,14660,1391,3498,8963,0,14660,62832,0
+26143,310000,female,1,2,31,0,0,0,0,0,0,175357,168933,163384,164700,142767,125972,6006,7006,10000,9000,5000,4500,0
+26144,80000,female,1,2,31,0,0,0,0,0,0,68613,69744,70313,71636,52471,53316,2600,3000,3000,2000,2000,2454,0
+26145,200000,female,2,1,29,-2,-2,-2,-2,-2,-2,8350,14139,3580,6386,868,10415,14185,7425,6386,868,10647,4320,1
+26146,90000,female,3,1,47,0,0,0,0,0,0,84195,86795,88884,82163,22601,22029,4001,4400,3566,7694,1000,1000,0
+26147,160000,female,3,1,45,-2,-2,-2,-2,-2,-2,2869,2357,5608,1851,2801,3268,2361,5608,1851,2801,3268,2096,0
+26148,180000,female,1,2,27,1,-1,-1,-1,-1,-2,0,1530,0,1610,0,0,1530,0,1610,0,0,0,0
+26149,310000,female,2,1,33,0,0,0,0,0,0,86513,82406,81964,74927,71636,66409,4000,3505,3500,2000,2200,3000,0
+26150,280000,female,4,2,29,0,0,0,0,-2,-2,4567,5724,7184,0,0,0,2500,3000,0,0,0,0,0
+26151,90000,female,2,2,43,0,0,2,0,0,0,17503,20898,20263,20145,24845,23745,4000,0,3000,8000,5000,5000,0
+26152,210000,female,2,2,39,0,0,0,0,0,0,193976,196361,200590,204494,208990,214031,7100,7400,7300,7700,8600,5816,0
+26153,200000,female,1,2,27,-1,-1,-2,-2,-1,-1,134,0,0,0,101,0,0,0,0,101,0,0,0
+26154,70000,female,2,1,48,0,0,0,0,0,0,20744,22093,23432,24217,19108,19649,2000,2000,1500,1000,1000,1000,0
+26155,320000,female,2,2,31,-2,-2,-2,-2,-2,-2,3615,3707,5406,3144,1644,1925,3707,5406,3157,1644,1925,0,0
+26156,210000,female,1,2,33,-2,-2,-2,-2,-2,-2,1723,0,0,0,0,0,0,0,0,0,0,0,0
+26157,130000,female,1,2,27,0,0,0,0,0,0,36487,37029,35595,36200,34081,31542,3000,3000,3000,2000,3000,3000,0
+26158,80000,female,2,1,27,-1,-1,-1,-1,-1,-2,390,390,0,780,0,0,390,390,780,0,0,0,0
+26159,370000,female,2,1,47,-2,-2,-2,-2,-2,-1,1859,2232,4556,4333,2504,3431,2243,4578,4354,2516,3438,37467,0
+26160,180000,female,3,1,36,0,0,0,-1,0,0,8911,5838,-2,120442,90430,92325,1034,2,120444,3236,3352,3897,0
+26161,310000,female,1,1,43,0,0,0,0,0,0,66140,66637,68131,68585,68657,55457,6000,10000,3018,4000,3000,3000,0
+26162,280000,female,2,2,27,1,-2,-2,-1,-1,-1,0,0,0,479,2463,1457,0,0,479,2477,1467,574,0
+26163,150000,female,2,1,27,-1,-1,0,0,0,0,1108,143813,149350,149984,130610,121793,147314,7752,6046,2753,5583,6700,0
+26164,180000,female,1,1,29,1,2,0,0,0,0,36537,35655,37767,39065,41967,43189,0,3000,2000,3500,3500,5900,0
+26165,140000,female,1,2,31,-1,-1,-1,-1,-1,-1,7695,1680,1771,5500,3615,700,1680,1771,5500,3615,700,1404,0
+26166,430000,female,1,2,34,-1,-1,-1,2,-1,-1,180,1654,15718,7370,4423,2544,1662,15783,52,4445,2556,3321,0
+26167,360000,female,1,2,37,-2,-2,-2,-2,-2,-2,268,257074,66458,0,0,0,260416,72200,0,0,0,0,0
+26168,240000,female,1,1,42,-1,2,-1,-1,0,-1,2108,1386,17601,1410,705,705,0,17601,2115,0,705,4000,0
+26169,140000,female,2,2,30,3,2,2,2,-1,-1,3043,4168,1420,0,49,49,1423,2,0,49,0,0,1
+26170,200000,female,1,1,34,-1,2,-1,0,0,0,860,430,3130,7585,11056,97451,0,3130,5000,4000,90000,15000,0
+26171,80000,female,2,1,37,0,0,0,0,0,0,81218,74073,68763,69192,70574,70470,2527,3691,2337,2512,2743,2463,1
+26172,100000,female,2,2,38,0,0,0,0,0,0,96707,89842,82669,70018,57847,43618,4070,4025,2511,1523,1292,1236,0
+26173,210000,female,1,1,40,-1,-1,-1,-1,-1,-1,316,316,316,316,316,876,316,316,316,316,876,1026,0
+26174,250000,female,2,1,37,1,-2,-1,-1,-1,-1,0,0,9737,790,20750,0,0,9737,790,20750,0,0,0
+26175,50000,female,3,1,38,0,0,0,0,0,0,50312,50145,49386,19818,18540,19109,6000,3120,4300,1000,1000,1000,0
+26176,400000,female,1,1,28,-1,-1,-1,-1,-1,0,8716,211,4168,4049,4566,2578,211,4188,4061,4586,12,3837,0
+26177,150000,female,2,2,37,0,0,0,0,0,0,6039,5837,8770,8740,2323,5307,3000,3014,3086,2000,3003,3000,0
+26178,280000,female,2,2,39,0,0,0,0,0,0,123997,126272,126953,106551,99592,100607,5600,5400,5006,3250,3400,3500,0
+26179,100000,female,2,1,29,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+26180,610000,female,1,2,38,0,0,0,0,0,0,608594,624475,632041,516575,454845,456596,26868,22375,17221,15300,16000,18000,0
+26181,120000,female,2,2,30,0,0,0,0,0,0,121280,123176,121907,123949,112430,114322,6026,6000,6300,4000,4300,4322,0
+26182,180000,female,2,2,44,0,0,0,0,0,0,23611,24651,25631,23609,24529,25095,1436,1416,2150,1500,1000,1000,0
+26183,270000,female,3,1,47,-1,-1,-1,2,2,-2,123,123,123,123,0,0,123,123,0,0,0,0,1
+26184,110000,female,3,1,36,0,0,0,0,0,0,114097,109609,87374,49525,49225,48968,5620,9860,1741,1702,1736,1894,0
+26185,90000,female,3,1,40,0,0,0,0,0,0,90483,90944,90720,82735,50185,50563,4000,3700,3534,2000,1820,2200,0
+26186,120000,female,1,2,48,0,0,0,0,-2,-1,96183,99575,102650,0,0,30900,5000,5000,0,0,30900,30900,0
+26187,50000,female,3,1,35,2,2,4,3,2,0,48115,53019,51924,50794,49376,50185,6000,0,1,1,1915,2000,1
+26188,160000,female,3,2,32,-1,-1,-1,-1,-1,-1,1375,3503,2688,2142,7139,1872,3645,2688,2142,7139,1872,10573,1
+26189,500000,female,2,1,48,0,0,0,0,0,0,79640,75362,73547,47274,46454,41906,3017,3020,2010,2035,3014,3045,0
+26190,440000,female,2,2,28,0,0,0,0,0,0,412962,409812,393255,370202,258387,255740,15000,20000,15305,10070,15037,10052,0
+26191,330000,female,2,1,31,-1,0,-1,-1,-1,-1,1732,1349,1366,1383,1383,1383,1000,1400,1400,1383,1383,851,0
+26192,200000,female,2,2,33,0,0,0,0,0,0,64932,66223,68261,69133,70689,72201,2365,3100,2600,2700,2800,2700,0
+26193,250000,female,2,2,33,0,0,0,0,0,0,147934,149485,152678,157337,159719,163649,5500,5600,7200,6500,6500,6000,0
+26194,140000,female,2,1,37,0,0,0,0,0,0,58081,51013,54343,27537,9751,12569,5000,5000,5000,3000,3000,5000,0
+26195,260000,female,1,1,36,0,0,0,0,0,0,203755,210668,182863,166437,184000,146518,15000,10000,15000,20000,5000,20000,0
+26196,60000,female,1,1,45,1,2,0,0,2,0,58360,56834,58322,59781,8177,7757,0,3000,3100,0,1000,500,1
+26197,500000,female,1,1,37,0,0,0,0,0,0,501369,505753,395522,312315,265742,248866,17204,13173,10143,7519,8866,7154,0
+26198,130000,female,2,2,30,0,0,0,0,0,0,114838,111226,104301,84132,79043,78205,4224,4415,3600,5800,2000,2005,0
+26199,80000,female,2,1,30,1,2,2,2,0,0,69942,68219,75688,73563,43255,35852,0,8600,0,1600,1300,1300,1
+26200,150000,female,2,2,44,0,0,0,0,0,0,37050,39471,41515,43879,44446,45394,3000,2636,3000,1528,1600,2000,0
+26201,120000,female,1,1,31,-1,-1,-1,-1,-1,-1,1680,17749,4748,7002,202,345,17749,4748,7020,559,500,1660,0
+26202,90000,female,1,2,31,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+26203,280000,female,1,1,45,-2,-2,-2,-2,-2,-2,26573,17597,22284,20232,17567,20027,18388,22302,20274,17567,20027,17025,0
+26204,240000,female,1,2,28,-2,-2,-2,-2,-2,-2,1981,-2076,-2076,-2076,-2076,-253,0,0,0,0,1823,0,0
+26205,230000,female,2,2,29,-2,-1,-1,-1,-1,-1,0,4375,1225,401,2460,804,4375,1225,401,2460,804,708,0
+26206,30000,female,2,1,29,0,0,0,0,0,-1,28620,28276,28841,28547,11581,17943,1453,1700,1000,232,17943,0,0
+26207,60000,female,2,1,29,0,0,0,0,0,0,63578,61347,57138,51026,24213,5295,2188,2285,1429,169,426,29350,0
+26208,360000,female,1,1,30,-1,0,-1,-1,-1,-1,13395,28327,6257,2967,1550,0,20460,6257,2967,1550,0,1550,0
+26209,90000,female,1,2,33,0,0,0,0,0,0,55937,57107,59753,61755,63629,54423,2100,4000,3000,3000,2323,2000,0
+26210,180000,female,1,1,33,-1,-1,-1,-1,-1,-1,4520,1449,1730,2215,1525,1050,1453,1731,2215,1525,1050,1440,0
+26211,10000,female,3,1,33,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+26212,210000,female,1,1,34,-1,-1,-1,-1,-2,-2,2501,639,699,0,0,0,639,699,0,0,0,0,1
+26213,30000,female,1,1,34,-2,-2,-2,-2,-2,-2,3275,5000,5235,5000,2100,1970,5000,5235,5000,2100,1970,2000,0
+26214,200000,female,1,2,34,-1,-1,-1,-1,0,0,8177,1989,382,10383,7030,0,2453,382,10383,0,3036,0,0
+26215,90000,female,2,1,32,0,0,0,0,0,0,88729,88533,91001,90661,51620,52668,3500,3908,4328,2100,2500,1308,0
+26216,50000,female,3,1,44,0,0,0,0,0,0,45858,46315,47435,48290,49257,49345,2000,1865,1720,1687,1732,2007,0
+26217,30000,female,2,1,46,1,2,0,0,0,0,26840,25311,25906,25494,24986,24915,0,1804,1200,500,737,0,0
+26218,220000,female,1,2,35,-1,-1,-1,-1,-1,-1,5564,7443,5572,5572,5572,5774,7479,5600,5600,5600,5802,3279,0
+26219,500000,female,2,1,46,0,0,-1,-1,0,0,16400,886,21803,90182,79310,68380,886,21831,90182,2500,2380,2772,0
+26220,60000,female,3,1,47,0,0,0,0,0,0,33867,35303,36032,37431,37863,38954,2000,1601,2000,1354,1700,1010,0
+26221,110000,female,2,1,41,0,0,0,0,0,0,104740,102165,98160,57257,54863,53510,5000,5045,7021,7000,5000,3000,0
+26222,360000,female,3,1,43,-2,-2,-1,-1,-2,-2,4392,0,2050,754,0,0,0,2050,754,0,0,1738,1
+26223,30000,female,3,2,42,0,0,0,2,0,0,26300,26295,26167,25413,25122,20448,1700,3102,1000,1015,700,1000,0
+26224,300000,female,2,1,38,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+26225,490000,female,1,1,36,-2,-2,-2,-2,-2,-2,1886,9444,3180,7715,6507,3424,9480,3182,7779,6517,3434,5132,0
+26226,210000,female,1,1,36,-1,-1,0,0,-1,-1,1630,25903,21313,0,1515,556,25903,1000,0,1515,556,19964,0
+26227,280000,female,1,1,37,-1,-1,-1,-1,0,0,733,168,786,1028,889,698,168,786,1028,698,0,0,0
+26228,60000,female,2,1,36,-1,2,2,2,2,2,1577,2498,3309,3606,3400,3844,1100,1000,500,0,500,0,0
+26229,490000,female,2,1,38,-2,-2,-2,-2,-2,-2,0,0,0,0,163,1256,0,0,0,163,1256,1000,0
+26230,50000,female,3,1,45,0,0,0,0,0,0,4151,5162,6184,7194,7336,7490,1088,1110,1120,262,272,273,1
+26231,200000,female,2,1,35,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,2865,0
+26232,70000,female,1,2,43,3,2,2,2,0,0,56994,57964,59452,57771,44043,45175,2500,3000,17,2000,2000,2000,0
+26233,260000,female,2,2,29,0,0,0,0,0,0,16496,15610,7486,5692,5206,6159,8027,3000,3000,3000,1000,2000,0
+26234,460000,female,2,1,40,0,0,0,0,0,0,133102,126956,126758,121857,122830,90219,5015,5032,4407,4040,3001,3109,0
+26235,200000,female,3,1,41,-1,-1,-1,-1,-1,2,3000,187,1306,3142,3332,1686,187,1306,3332,1686,0,1496,0
+26236,320000,female,2,1,42,-1,-1,-2,-2,-2,-2,8144,0,0,0,0,0,0,0,0,0,0,0,1
+26237,230000,female,3,3,48,0,0,0,0,0,0,41134,50379,54556,58624,59848,68828,10000,5000,5000,2197,10000,5000,0
+26238,350000,female,1,1,30,0,0,0,0,0,0,43548,39873,52449,53581,45320,43421,15000,15000,6000,1013,1445,5000,0
+26239,230000,female,1,1,31,0,0,0,0,0,0,15704,11952,13442,16164,9908,9592,2000,2000,3418,0,0,0,0
+26240,20000,female,3,2,47,1,2,0,0,0,0,16289,15735,18164,19143,20143,20446,0,3000,1600,1600,1800,1000,1
+26241,230000,female,2,1,43,0,0,0,0,0,0,41435,42106,43532,44504,44267,45564,1674,3000,2011,1574,2000,2000,0
+26242,80000,female,2,1,35,0,0,-1,-1,-1,-1,15234,15372,2783,2501,0,194,3000,2783,2501,0,194,756,0
+26243,110000,female,2,1,40,0,0,0,0,0,0,93466,87748,109517,107403,81794,78463,4438,76000,5000,4000,3000,5000,0
+26244,360000,female,1,1,30,-2,-2,-1,-1,-1,-1,323,1986,196,2855,0,463,1986,196,2855,0,463,430,0
+26245,80000,female,2,2,34,1,-2,-1,-1,-1,0,-3,-3,1266,1347,2495,1248,0,1269,1351,2498,3,0,0
+26246,350000,female,2,1,35,-1,-1,2,-1,-1,-1,439,884,421,267,575,932,884,0,267,575,932,0,1
+26247,70000,female,2,1,47,0,0,0,0,0,-2,136809,118811,52953,53696,11790,12045,3158,10000,2446,11790,430,423,0
+26248,360000,female,3,2,29,-1,-1,-1,-1,0,0,4887,4982,4851,3255,8255,8411,5005,4851,4784,5000,3000,2000,0
+26249,240000,female,1,1,32,2,2,2,2,2,2,209368,204501,223137,226470,229706,234889,0,22000,8500,8500,9000,0,1
+26250,80000,female,2,2,34,0,0,0,0,0,0,64553,52484,41048,31786,29105,28294,1784,1874,2000,1011,1100,1154,0
+26251,140000,female,2,2,29,0,0,0,2,0,0,62023,61729,67891,65861,64848,64936,3000,8600,6,2500,2500,2500,0
+26252,50000,female,1,2,33,2,2,0,0,-1,0,60679,54947,54425,48313,19399,19804,0,4500,1200,71941,619,563,1
+26253,130000,female,3,2,35,0,0,0,0,0,0,3929,4857,5771,8659,10503,11329,1000,1000,3000,2000,1000,1000,0
+26254,160000,female,2,2,44,0,0,0,0,0,0,118809,125323,170449,96739,126139,154884,10000,50000,20000,30000,30000,5000,0
+26255,160000,female,2,1,42,2,2,-2,-2,-2,-2,346,0,0,0,0,0,0,0,0,0,0,0,0
+26256,90000,female,1,2,29,0,0,0,0,0,0,8927,9124,10220,12044,27847,8251,8000,10000,10016,25000,8000,26000,0
+26257,50000,female,2,1,42,0,0,0,0,0,0,41077,42072,43414,44126,45004,46100,1681,2023,1735,1613,1823,2053,0
+26258,210000,female,1,2,29,-1,-1,-1,-1,-1,2,871,27371,871,871,2042,1021,27371,871,871,2042,0,1666,0
+26259,20000,female,1,2,29,2,0,0,0,0,0,15037,16078,17210,18098,18843,19586,1600,1700,1500,1000,1000,500,1
+26260,200000,female,1,2,29,-1,-1,-1,-1,-1,-1,3540,2914,3601,1717,30616,22849,3028,3919,1726,30802,22963,1335,0
+26261,230000,female,1,1,31,-1,-1,-2,-1,-1,-1,623,0,0,1100,0,1383,0,0,1100,0,1383,905,0
+26262,150000,female,3,1,43,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+26263,210000,female,2,2,28,-2,-2,-2,-2,-2,-2,0,0,0,1577,0,0,0,0,1577,0,0,0,0
+26264,290000,female,1,1,33,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+26265,260000,female,3,1,34,2,2,0,0,2,2,118706,115308,123069,129060,131682,135656,0,9670,9561,6250,6250,6250,1
+26266,20000,female,2,1,29,0,0,2,2,2,2,9665,12186,11700,13474,13006,13743,2700,0,2000,0,1055,0,1
+26267,180000,female,3,1,47,-1,-1,-1,-2,-2,-2,3735,3404,7141,1304,1534,2395,3404,7141,1304,1534,2395,6090,1
+26268,100000,female,6,1,29,0,0,0,0,0,0,99302,83403,58083,88344,49443,23159,5712,3503,59000,1600,1000,1000,0
+26269,280000,female,2,1,38,0,0,0,0,0,0,236583,230990,173668,177475,171566,175500,10000,6000,6000,6000,6000,5000,0
+26270,100000,female,2,1,41,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+26271,100000,female,2,1,35,-2,-2,-2,-2,-2,-2,3835,1891,1799,1728,6000,0,1891,1799,1728,6000,0,330,0
+26272,30000,female,1,2,30,0,0,0,0,0,0,4480,8381,12085,16788,18388,23228,4000,5000,5000,2000,5000,500,0
+26273,160000,female,2,1,44,-1,-1,-2,-2,-2,-2,1224,0,0,0,0,0,0,0,0,0,0,0,1
+26274,360000,female,1,2,36,0,0,0,0,0,2,308711,305594,306176,304645,315118,315782,11000,13000,11019,23000,13300,3,0
+26275,450000,female,1,2,36,-1,-1,-1,-2,-2,-2,1866,4575,0,0,0,0,4579,0,0,0,0,0,0
+26276,380000,female,1,2,40,0,-1,-1,-1,-1,0,4366,2566,4174,-192,15011,12990,2566,4174,192,16350,2000,55500,1
+26277,120000,female,2,1,42,-2,-2,-2,-2,-2,-2,0,338,488,137,324,471,338,488,137,324,471,0,0
+26278,160000,female,1,1,47,1,2,0,0,2,0,89006,86694,88898,94289,91875,94405,0,4500,7800,0,4000,3700,1
+26279,50000,female,1,2,33,0,0,2,2,2,2,25123,27773,28627,32708,31886,33808,3400,1600,4900,0,2600,1500,1
+26280,170000,female,2,2,34,0,0,0,0,-1,0,85235,81462,59800,20650,127601,121774,5000,3400,3000,127601,4600,5100,0
+26281,350000,female,2,2,34,1,-1,2,-1,0,-1,-20,630,630,15722,2003,7264,650,0,15788,10,7299,13980,0
+26282,180000,female,2,1,48,-2,-1,-1,-1,-1,-1,-15,2116,1494,7780,8416,0,2131,1494,7780,8416,0,1316,0
+26283,100000,female,1,1,38,0,0,0,0,0,0,68916,66762,68566,65132,48738,51020,3000,5000,2436,3000,3000,2000,0
+26284,50000,female,1,2,26,0,0,-1,0,0,-1,4041,1343,2174,3479,3006,810,1200,2500,3000,1000,900,48578,0
+26285,180000,female,1,2,30,-2,-2,-2,-2,-2,-2,50055,5320,9758,6494,32830,3267,5320,10008,6500,32830,3267,2650,0
+26286,150000,female,1,2,31,1,-2,-2,-2,-2,-2,-512,-512,-512,-512,-508,-913,0,0,0,4,0,0,0
+26287,300000,female,1,2,32,-2,-2,-2,-2,-2,-2,880,788,10742,1349,10522,0,788,10774,1353,10522,0,3376,1
+26288,350000,female,1,2,33,0,0,0,0,0,0,303949,298421,247125,228229,202220,181860,10000,9205,6810,5706,6000,4511,0
+26289,260000,female,2,1,42,0,0,0,0,0,0,35215,31889,26299,27804,25809,27052,2500,3000,3000,2500,2500,2000,0
+26290,200000,female,2,2,27,0,0,0,-1,-1,0,7886,7101,5378,5501,9402,9221,4500,3378,5501,9402,6000,5683,0
+26291,240000,female,2,1,27,0,0,0,0,0,0,133348,136296,139430,142608,145437,148492,5160,5328,5500,5199,5392,5417,1
+26292,150000,female,1,2,26,0,0,2,0,0,0,65421,69087,63156,57147,53383,48556,4850,2000,2000,2000,2000,1500,0
+26293,290000,female,2,2,26,0,0,0,0,-1,-1,18125,20807,99860,100000,3015,23473,3000,80000,3000,3015,23473,1148,0
+26294,140000,female,2,2,27,0,0,0,0,0,0,127464,119346,89977,92381,83641,86316,6000,4000,4000,3000,4000,4000,0
+26295,130000,female,1,2,29,-2,-2,-2,-2,-2,-1,0,0,0,0,0,62043,0,0,0,0,62043,16533,0
+26296,180000,female,1,1,29,-2,-1,0,0,-2,-2,0,287,5264,1521,0,0,287,5293,1523,0,0,0,0
+26297,200000,female,1,2,29,-1,-1,-1,0,0,-1,2116,0,9781,29313,49113,732,0,9781,20000,20000,732,1005,0
+26298,230000,female,1,1,28,1,2,0,0,0,0,207128,195825,199659,157434,160009,155825,6300,9264,6116,6128,5765,5956,1
+26299,240000,female,2,2,28,2,2,2,2,0,0,294180,276968,276585,253679,232300,212749,0,22550,0,8450,7800,6975,0
+26300,170000,female,1,2,31,-2,-2,-2,-2,-2,-2,757,4319,1489,362,451,620,4319,1499,362,451,620,1400,0
+26301,120000,female,3,2,31,-1,-1,-1,-1,-1,-1,396,396,396,396,396,1100,396,396,396,396,1100,396,0
+26302,240000,female,1,2,31,-2,-2,-2,-2,-2,-2,6887,1926,2178,2254,4219,2489,1926,2178,2406,4219,2489,6323,0
+26303,90000,female,2,1,31,0,0,0,0,-1,0,12045,9720,7391,4238,18003,16128,1500,1200,1000,21000,1500,2000,0
+26304,300000,female,2,2,30,-2,-2,-2,-2,-2,-1,850,850,850,850,850,3688,850,850,850,850,4384,9480,1
+26305,70000,female,3,2,30,-1,2,0,0,0,0,71521,68041,68607,27870,28219,28810,0,2332,1751,1100,1034,1272,0
+26306,100000,female,2,2,30,0,0,2,-1,0,0,2419,3123,177,1170,390,0,2177,0,1170,0,0,19760,0
+26307,110000,female,3,1,31,0,0,2,0,0,0,22396,24758,22546,22204,22107,21745,4604,0,1314,2000,1500,810,0
+26308,180000,female,2,1,33,0,0,0,0,0,0,165839,153828,158050,149023,135798,112666,20064,30032,20027,40000,10000,0,0
+26309,500000,female,1,2,32,0,0,0,0,0,0,422713,406204,415664,423392,399250,362627,15000,16000,15000,14000,13180,14000,0
+26310,80000,female,3,1,32,2,0,0,0,2,0,26856,24758,23044,22919,21890,22003,1700,1400,2400,0,1000,1500,0
+26311,280000,female,1,2,32,-2,-2,-2,-2,-2,-2,5855,13645,9127,9656,41434,21732,13713,9171,9705,41641,21838,5659,0
+26312,280000,female,1,2,33,-2,-2,-2,-2,-2,-2,2533,2997,14059,2693,697,5776,2997,14059,2693,697,5776,2671,0
+26313,120000,female,1,1,35,-1,-1,-1,-1,-1,-1,525,2458,8067,802,2706,3597,2458,8152,802,2706,3597,1400,0
+26314,90000,female,2,1,35,-1,0,0,-1,-1,-1,5488,2380,0,1700,1700,0,1000,0,1700,1700,0,1664,0
+26315,170000,female,2,2,34,-1,-1,-1,-1,-1,-1,3105,1599,1122,1692,648,0,1599,1122,1692,648,0,631,0
+26316,50000,female,2,2,34,0,0,0,0,0,0,31673,27572,29022,29368,16930,17284,1449,1899,1245,576,596,578,0
+26317,50000,female,3,1,34,-1,-1,-1,-1,0,0,390,390,390,11779,11615,11466,390,390,11779,403,415,406,0
+26318,230000,female,1,2,38,0,0,0,0,0,0,217578,224020,227311,184500,128190,130883,9840,8750,7470,4540,4710,4750,0
+26319,180000,female,2,3,48,-1,-1,-1,-1,-2,-1,860,102,851,0,346,1592,102,851,0,346,1592,1098,1
+26320,40000,female,3,2,43,0,0,0,0,0,-2,26449,22072,19085,17550,0,0,1303,1665,1000,0,0,0,0
+26321,360000,female,2,2,42,-1,0,-1,-1,-1,-1,24081,14231,23040,5651,7017,6495,6068,23154,5679,7052,6527,4601,0
+26322,360000,female,2,1,47,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+26323,170000,female,1,1,45,0,0,0,0,0,0,166388,165243,156688,151405,127090,126388,7300,7067,6443,4617,4711,4673,0
+26324,20000,female,3,1,35,-1,2,2,2,2,0,17056,18803,18055,20578,19813,20197,2500,0,3000,0,1001,1700,0
+26325,240000,female,2,1,43,-1,-1,-2,-1,-1,-1,54,0,0,177,199,559,0,0,177,200,559,0,0
+26326,100000,female,1,1,39,0,0,0,2,2,2,2998,3885,7298,7032,7913,7642,1100,3500,0,1000,0,5000,1
+26327,100000,female,1,1,43,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+26328,110000,female,2,2,40,0,0,0,0,0,0,111720,86877,133187,65025,62777,62105,3406,2357,2239,3617,2247,2500,1
+26329,420000,female,2,1,37,0,0,0,0,0,0,101987,96544,94199,90395,89513,92792,6000,6045,5000,6000,5000,4000,0
+26330,180000,female,2,1,34,2,2,2,2,2,2,93155,95008,97088,98093,99578,101828,4300,4500,3500,4000,4000,4000,1
+26331,240000,female,2,1,37,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+26332,210000,female,2,1,41,-1,0,-1,-1,-1,-1,13340,42862,9584,7978,6728,6728,42000,9600,7978,6728,6728,6728,0
+26333,30000,female,3,1,43,-1,3,2,2,0,0,10330,10040,10903,10533,10132,10343,0,1149,101,348,359,364,0
+26334,210000,female,2,1,44,0,0,0,0,0,0,36612,40534,42889,42936,44936,47166,4534,3000,1000,2000,2230,1026,0
+26335,320000,female,1,2,30,-1,-1,-1,-1,-1,-1,10283,2488,5187,11735,2280,9404,2488,5209,11735,2280,9404,3660,0
+26336,220000,female,3,1,38,0,0,0,0,0,0,120622,111593,99170,98437,91222,94061,4803,4604,3497,4000,4214,3404,0
+26337,240000,female,1,2,29,-1,-1,-1,-1,0,-1,1530,696,696,18334,27638,696,700,696,18334,10000,696,696,0
+26338,450000,female,1,2,35,1,2,2,0,0,0,131351,132453,128901,132982,141298,137347,4723,0,6270,12000,16309,5000,0
+26339,500000,female,2,1,36,0,0,0,0,0,0,261502,286708,311641,326298,270968,315889,30000,30000,20507,50000,50047,20413,0
+26340,180000,female,2,1,44,0,0,0,0,0,0,174830,178917,182777,171239,119060,121981,7000,6800,6800,4500,5000,5000,0
+26341,80000,female,1,1,38,-2,-2,-2,-2,-2,-2,0,0,517,0,0,0,339,517,0,0,0,0,0
+26342,50000,female,2,2,41,2,-1,2,2,-2,-2,390,780,780,0,0,0,780,0,0,0,0,0,1
+26343,450000,female,2,1,41,0,-1,0,-1,-1,-1,104624,28114,19758,12518,18328,14879,28114,1424,12518,18328,14879,34744,0
+26344,380000,female,1,1,43,-1,-1,-1,-1,-1,-1,18866,20840,188,2172,5173,5446,20884,188,2172,5173,5446,2045,0
+26345,50000,female,1,2,29,-2,-2,-2,-2,-2,-2,-101,-101,-101,-101,-101,1100,0,0,0,0,1201,0,0
+26346,30000,female,3,1,30,3,2,2,0,0,0,29508,30634,29827,28661,28608,30647,1900,0,4455,1047,2500,1060,0
+26347,300000,female,1,1,37,-1,-1,-1,-1,-1,-1,5771,3217,19615,11123,10266,12467,3217,19615,11123,10266,12467,5041,0
+26348,340000,female,2,1,45,-2,-2,-2,-2,-2,-2,5754,480,2532,-36,105668,5490,482,2544,2,106196,5517,433,0
+26349,190000,female,2,2,44,0,0,0,0,0,0,137394,140899,144636,148173,151853,155031,5774,5987,5948,6000,5481,5500,0
+26350,120000,female,3,1,41,0,0,0,0,0,0,108264,109427,111238,113465,114759,117165,3906,4040,4079,4093,4240,4766,0
+26351,210000,female,1,2,40,0,0,0,0,0,0,160161,156015,150349,147788,145958,145667,5500,7000,6693,5307,5441,5463,0
+26352,360000,female,1,1,46,0,0,-1,0,0,0,58389,42094,10594,31532,46342,56571,20000,10600,30000,20000,15000,10000,0
+26353,330000,female,1,2,35,-1,-1,-1,-1,-1,0,117,0,23,776,334,303,0,222,975,334,0,9,0
+26354,100000,female,1,1,37,0,0,0,0,0,0,68760,70113,71567,72410,73846,75556,3095,3181,2628,2640,2897,3600,0
+26355,250000,female,1,2,38,-1,-1,-1,-1,-1,-1,14766,990,8150,15410,1276,0,990,8150,15410,1276,0,0,0
+26356,120000,female,2,1,46,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+26357,200000,female,1,2,43,1,-1,-1,-1,2,-1,0,2112,723,150,150,2478,2112,981,150,0,2478,5377,0
+26358,280000,female,1,2,30,1,2,0,-1,-1,-1,25903,19262,10660,4191,1671,105726,50,2053,4211,2001,105747,100055,0
+26359,480000,female,2,1,46,-1,-1,-1,-2,-1,0,993,1317,0,0,4415,1978,1317,0,0,4415,0,0,0
+26360,240000,female,2,2,36,-1,-1,-1,-1,-2,-2,3922,2947,297,0,0,0,2947,297,0,0,0,0,1
+26361,120000,female,2,1,39,-2,-2,-2,-2,-2,-2,280,6192,2134,0,0,0,6192,2142,0,0,0,0,0
+26362,110000,female,2,2,40,0,0,0,0,0,0,96155,96752,98884,98501,34250,35874,5000,5000,3000,3000,3000,3000,0
+26363,390000,female,1,1,41,0,0,2,0,0,-2,48378,52279,51176,52286,0,0,4705,0,2712,0,0,0,0
+26364,20000,female,2,2,38,1,2,2,4,3,2,10683,12729,14734,14190,13721,13848,2500,2501,0,0,441,1,0
+26365,140000,female,1,2,35,0,0,0,0,0,0,111941,114389,116956,119334,120661,123256,5800,5900,5800,4800,4700,5000,0
+26366,160000,female,2,1,41,0,0,0,0,0,0,39962,45640,38988,19825,22654,16158,10000,10000,5000,5000,5000,10000,0
+26367,210000,female,1,1,30,1,-1,-1,-1,-1,-1,0,820,718,424,631,843,820,718,424,631,843,0,0
+26368,210000,female,1,1,47,0,0,0,0,0,0,202503,173232,117125,212656,107808,63049,7082,6000,6000,5000,3000,6000,0
+26369,240000,female,1,2,39,0,-1,0,0,0,0,52595,238861,198351,195242,187710,171828,238861,6678,7537,10555,5223,5829,0
+26370,150000,female,2,1,36,-2,-2,-1,-1,2,-1,11085,2500,190,3173,673,38100,2507,190,3180,0,38100,5000,0
+26371,60000,female,2,1,48,0,0,0,0,0,0,56899,58032,59624,58124,58852,58872,2080,2530,1865,1445,293,1545,0
+26372,180000,female,2,1,40,-1,-1,-1,-1,-1,-1,1552,776,0,1752,70000,10552,776,0,1752,70000,10552,9776,1
+26373,120000,female,2,2,37,0,-1,-1,-1,-1,-1,3014,380,380,380,380,380,760,380,380,380,380,530,0
+26374,210000,female,1,2,40,0,0,0,0,0,0,54904,46662,46162,46039,32903,34534,2000,2100,2000,1500,2000,2000,0
+26375,420000,female,1,2,36,0,0,0,0,0,-1,20326,21629,22354,23150,0,15235,1479,1204,1000,0,15235,242,0
+26376,110000,female,2,1,43,0,0,0,0,0,0,92244,93815,97307,99666,102082,105500,4500,5000,4000,4000,5000,6804,0
+26377,180000,female,2,2,31,0,0,0,0,0,0,112164,50838,51753,53619,53881,54760,1821,2000,3000,2000,2000,2100,0
+26378,200000,female,1,1,42,-2,-2,-2,-2,-1,-1,0,0,0,0,1830,0,0,0,0,1830,0,0,1
+26379,220000,female,1,2,32,0,0,0,0,0,0,217636,221834,222830,195121,169396,173875,8000,18000,7000,6000,7000,6100,0
+26380,250000,female,1,1,36,-2,-2,-2,-2,-2,-2,2508,3978,6560,4438,4309,816,3978,6560,4438,4311,816,9165,0
+26381,250000,female,1,2,39,-2,-2,-2,-2,-2,-2,0,632,316,0,316,632,632,316,0,316,632,150,0
+26382,400000,female,3,1,47,-2,-2,-2,-2,-2,-2,1698,365,3213,2578,9660,24355,365,3224,2580,9660,24355,0,0
+26383,50000,female,2,2,38,0,0,0,0,0,0,38945,39498,38272,29810,18674,19391,2511,2000,3000,4000,1000,1000,0
+26384,480000,female,1,2,48,-2,-2,-2,-2,-2,-2,1087,188,257,1697,188,22507,188,257,1697,188,22507,370,0
+26385,470000,female,1,1,39,-1,0,0,0,0,0,235490,125853,143646,113422,96921,94405,25853,20745,13422,6921,5645,6114,0
+26386,300000,female,1,1,36,0,0,0,0,0,0,30153,28384,26700,22554,11858,13838,2000,2000,2552,2000,3000,8000,0
+26387,160000,female,2,2,44,1,-2,-1,-1,-1,-1,-4,-4,3454,0,3312,0,0,3458,0,3312,0,0,0
+26388,160000,female,1,1,42,-1,-1,-1,-1,-1,0,3346,4420,3062,6117,4781,1450,4420,3062,6119,4781,0,6058,0
+26389,230000,female,1,2,33,-1,-1,-1,-1,-1,-1,2227,3496,4006,411,1511,1334,3496,4091,411,1511,1334,1157,0
+26390,50000,female,3,2,49,0,0,0,0,0,0,39803,37595,23250,26293,21508,20971,5007,1602,10002,5000,2000,2000,0
+26391,150000,female,3,1,48,0,0,0,2,0,0,36717,37800,40874,39922,40953,42136,2000,4000,0,2000,2000,2000,0
+26392,130000,female,2,1,50,2,2,2,2,2,2,73621,76104,77795,78584,79736,78405,4300,3500,2700,2970,0,3870,0
+26393,360000,female,1,2,49,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+26394,150000,female,2,1,50,0,0,0,0,0,0,145268,111500,101996,56503,38650,28775,6005,4450,3243,2000,2000,1000,1
+26395,70000,female,2,1,50,0,0,0,0,0,0,12857,13867,14897,15941,16376,16959,1530,1560,1600,1000,1000,2400,0
+26396,450000,female,1,1,49,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+26397,200000,female,2,1,49,1,-2,-2,-2,-2,-2,-5,728,0,0,0,0,733,0,0,0,0,0,1
+26398,80000,female,2,1,50,2,0,-1,0,0,0,89901,85406,75789,77870,73601,76751,6000,81789,3870,4601,4751,4718,1
+26399,340000,female,2,1,48,0,0,0,0,0,0,310866,320685,320614,21768,22405,24545,15000,7000,1500,1000,2500,112500,0
+26400,50000,female,2,2,52,0,0,0,0,0,0,33743,22989,15843,16825,14637,15397,2000,1400,2000,5000,1000,1000,1
+26401,200000,female,1,1,50,-1,-1,-1,-1,0,0,2119,1662,2482,19272,22388,21105,1662,2482,19272,10004,10000,3471,0
+26402,210000,female,3,1,48,0,0,0,0,0,0,119530,111730,107150,102418,97653,92653,3998,3885,3712,3599,3346,2920,0
+26403,360000,female,2,1,49,-1,-1,-1,-1,-1,-1,801,908,1081,1538,0,804,913,1081,1538,0,804,200,0
+26404,230000,female,3,1,50,-2,-2,-2,-2,-2,-2,2789,2942,2520,2936,3493,3160,2942,2520,2936,3493,3160,2784,0
+26405,50000,female,3,1,48,0,0,0,0,0,-2,73302,65931,58773,58918,0,0,2500,2428,1423,0,0,0,1
+26406,120000,female,2,1,50,2,0,0,0,2,2,81979,82726,85390,91549,92754,94722,3000,4000,7600,3600,3600,3600,1
+26407,340000,female,1,2,50,1,-2,-2,-2,-2,-2,2728,15650,11550,11058,6912,4125,15650,11554,11058,6917,4125,4850,0
+26408,50000,female,3,1,49,0,0,0,0,0,-2,49195,48496,49412,49590,0,0,47000,2000,1000,0,0,0,1
+26409,70000,female,3,1,49,1,2,2,2,2,0,9915,9607,11913,12518,12022,12179,0,2468,1100,0,500,600,0
+26410,100000,female,2,1,50,0,0,0,0,0,0,94745,96838,95732,91556,93403,95661,4600,4600,3500,3372,3793,4000,0
+26411,20000,female,2,1,49,0,0,0,0,0,0,13561,14573,15290,16300,16624,16974,1543,1260,1270,594,617,1425,1
+26412,80000,female,2,1,49,0,0,0,0,0,0,77347,61998,47941,47851,48804,50033,2384,5000,2000,1732,2000,3003,0
+26413,280000,female,3,2,49,-2,-2,-2,-1,-1,0,795,1020,0,1075,141246,146349,1025,0,1075,141246,6349,9192,0
+26414,300000,female,2,1,50,-2,-2,-2,-2,-2,-2,882,0,0,0,0,0,0,0,0,0,0,0,0
+26415,500000,female,3,1,49,-1,-1,-1,2,-1,0,396,396,5792,396,792,396,396,5792,0,792,0,5857,1
+26416,50000,female,3,2,51,0,0,0,0,0,0,46880,25577,26352,16846,17562,18275,1500,1269,1284,1000,1000,740,0
+26417,140000,female,2,2,50,0,0,0,0,0,0,128949,133778,131241,25994,25769,24552,7000,6000,3000,5000,4000,6000,1
+26418,210000,female,2,2,49,-1,-1,-1,-1,0,0,991,4045,4056,65825,60803,56578,6035,4056,65825,1420,1132,5000,1
+26419,100000,female,3,1,49,0,0,0,0,0,0,41088,41807,43348,42782,40779,40618,2000,3000,1900,1550,1430,3143,0
+26420,50000,female,2,1,50,0,0,0,0,0,0,14592,16335,18061,18955,19933,21605,2000,2000,1500,1300,2000,1000,0
+26421,20000,female,3,1,51,0,0,0,0,0,0,13184,14200,16958,19651,37332,19225,1242,3000,3000,3772,1420,729,0
+26422,200000,female,2,1,50,0,0,0,0,0,0,4701,3146,4486,13390,8009,5010,2310,3518,12537,45,514,2811,0
+26423,100000,female,3,1,51,-1,-1,-1,-1,-1,-1,200,100,197,245,3210,318,100,197,245,3210,318,797,0
+26424,50000,female,3,1,50,0,0,0,0,0,0,36149,38078,36766,30490,26934,28118,3000,10000,5000,1500,2000,2000,1
+26425,230000,female,3,1,53,0,0,0,0,0,0,38723,39347,37571,38924,40027,41277,2001,2000,2000,2000,2000,2000,0
+26426,260000,female,2,1,50,0,0,0,0,0,0,263320,171626,175869,180891,184952,182328,7000,7000,8000,7032,13603,5000,0
+26427,120000,female,2,1,52,1,2,0,0,0,0,123184,117849,120471,117218,116871,122192,0,6100,5700,4500,9000,4700,1
+26428,380000,female,3,2,51,-1,-1,0,-1,0,-1,43715,60718,21814,47964,33405,2981,60718,2200,48000,0,2981,35500,0
+26429,80000,female,3,1,65,0,0,0,0,0,0,82074,80260,82116,80299,81416,81617,3470,3750,3520,3069,3271,3262,0
+26430,240000,female,1,1,50,-2,-2,-2,-2,-2,-2,498,-2,497,-3,-3,-3,0,499,0,0,0,0,0
+26431,30000,female,2,1,54,0,0,0,0,0,-1,33494,32978,32415,30324,31124,25502,2506,2430,1300,1000,34436,950,1
+26432,30000,female,2,1,59,0,0,0,0,0,0,27620,27921,28585,29007,29195,21335,1449,1503,1315,893,1000,513,0
+26433,80000,female,3,2,55,1,-1,0,0,0,0,78910,80362,77986,78803,50140,47757,84361,3837,3141,2000,2000,2000,0
+26434,50000,female,2,1,54,0,0,0,0,0,0,50566,49717,49661,49581,49550,48871,2102,2013,1747,2012,2000,5900,0
+26435,10000,female,1,2,56,1,2,2,2,0,0,12006,6367,9839,6998,3183,1151,1000,4000,0,0,0,0,0
+26436,100000,female,3,1,50,2,2,2,2,-1,0,117517,110537,99734,99973,71008,66735,4700,0,3000,103000,2500,3000,1
+26437,280000,female,3,1,50,-2,-2,-2,-2,-2,-2,0,0,0,679,3047,5742,0,0,679,3047,5742,440,0
+26438,30000,female,3,1,55,1,2,0,0,0,0,30724,29278,30393,29785,30377,30155,0,1600,1585,1377,1155,2600,1
+26439,80000,female,3,1,50,-1,-1,-2,-2,-2,-2,7506,0,0,0,0,0,0,0,0,0,0,3106,0
+26440,30000,female,3,2,51,0,0,0,0,0,-1,14417,17261,20543,18180,7200,18183,9000,5000,8180,2200,18183,8975,0
+26441,170000,female,2,2,51,0,0,0,0,0,0,154278,161679,165068,166227,109682,112906,10000,7500,6778,4000,5000,5000,0
+26442,60000,female,2,1,52,1,2,0,0,0,0,28934,27122,27774,28347,28515,28715,0,1481,1444,1002,1030,1081,0
+26443,100000,female,3,1,50,0,0,0,0,0,0,92956,96180,97701,100113,102120,73630,4333,3518,3567,3183,2674,2836,0
+26444,160000,female,1,1,58,-2,-2,-2,-2,-2,-2,749,3883,3584,1830,390,390,3894,3594,2246,390,390,390,1
+26445,50000,female,2,2,55,0,0,0,0,0,0,40623,40088,38706,38034,23675,22888,1616,2180,2004,1000,1002,1004,0
+26446,360000,female,1,1,59,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+26447,210000,female,1,1,52,-1,-1,-1,-2,-1,-1,262,738,0,0,1858,45,738,0,0,1858,45,3667,0
+26448,190000,female,2,1,55,-1,-1,-1,-1,-1,-1,6637,6476,14501,1190,3705,1049,6476,14915,1190,3705,1049,10160,0
+26449,90000,female,3,1,52,0,0,0,0,0,0,42567,43578,44881,43906,43767,43619,2022,2325,1510,1199,2380,1204,0
+26450,50000,female,3,1,52,0,0,0,0,-1,-1,48195,49024,38085,0,10400,0,2035,1650,0,10400,0,0,0
+26451,30000,female,3,2,55,-2,-2,-2,-1,-1,-2,-330,340,-220,780,0,0,500,0,1000,0,0,0,0
+26452,30000,female,3,1,54,2,2,2,2,0,0,24180,23498,26400,25682,26155,27972,0,3600,0,1200,2400,0,1
+26453,180000,female,3,1,61,0,0,0,0,0,0,20554,21560,22587,23599,24069,24573,1353,1380,1392,862,892,1000,1
+26454,120000,female,3,1,58,1,2,2,2,2,2,79400,81490,83496,84333,85444,87323,4000,3900,3100,3400,3400,3400,1
+26455,80000,female,3,1,55,0,0,0,-2,-2,-2,72462,41300,0,0,0,0,3000,0,0,0,0,0,0
+26456,400000,female,2,1,49,-2,-2,-2,-2,-2,-2,389,389,389,320,14185,389,390,390,321,14255,390,390,0
+26457,120000,female,3,2,53,0,0,0,0,0,0,118676,119177,118068,120457,90843,91267,4210,4435,4592,3171,3256,3260,0
+26458,100000,female,1,1,52,2,2,2,2,2,2,40938,43036,45127,44183,47211,46401,3000,3000,0,4000,0,3000,1
+26459,300000,female,1,2,52,-1,-1,0,-1,0,0,583,111383,111665,14325,11416,10523,111665,3000,14325,0,0,9927,0
+26460,80000,female,3,1,69,0,0,0,0,0,0,79862,80921,79627,80610,62447,60850,3000,3000,3000,2324,2500,3000,0
+26461,500000,female,3,1,53,-1,-1,-1,-1,-1,-1,1453,961,159,720,3157,2336,961,159,720,3160,2336,1033,0
+26462,10000,female,3,1,51,0,0,2,0,0,2,4416,6733,6480,7495,8735,8453,2400,0,1131,1371,0,1794,0
+26463,100000,female,3,1,55,2,3,2,-1,3,2,1520,1349,959,1623,1470,930,0,0,1623,0,0,780,0
+26464,240000,female,2,1,53,0,0,0,0,2,0,135322,100522,84626,76205,46771,35207,4531,3728,3612,0,1100,2000,0
+26465,280000,female,1,1,63,-2,-2,-2,-2,-2,-2,-200,-200,-200,-200,-200,-200,0,0,0,0,0,200,1
+26466,20000,female,2,2,55,0,0,0,0,0,0,16503,17512,18481,15495,15938,16680,1289,1258,1260,700,1000,2100,0
+26467,110000,female,2,1,59,0,0,0,0,0,0,100800,40387,37689,37750,33281,30968,1914,2000,2000,1300,1500,5000,0
+26468,290000,female,2,1,60,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+26469,80000,female,1,1,48,-1,-1,-1,-2,-2,-1,1198,1150,0,0,0,7685,1150,0,0,0,7685,0,1
+26470,30000,female,3,1,51,1,2,2,0,0,0,30128,31325,29953,30332,29871,28977,2000,0,1962,1395,1000,2000,0
+26471,30000,female,1,1,52,-1,2,-1,2,-1,0,4743,390,1000,543,18127,23563,390,1000,3,20077,10000,1854,0
+26472,60000,female,2,2,57,0,0,2,0,0,0,44041,46810,45781,48814,49802,51034,3810,0,3814,1802,2034,4459,1
+26473,70000,female,3,1,52,-1,-1,-1,0,0,0,1000,1098,28229,28046,24446,22151,1098,30005,1350,800,750,780,0
+26474,140000,female,3,1,52,0,0,0,0,0,0,76902,70841,61422,52576,51301,48202,3000,2200,2400,2000,2050,2150,0
+26475,150000,female,2,2,53,0,-1,-1,-1,-1,-1,11467,11052,10252,20618,10457,9624,11053,10253,11000,11500,10000,24000,0
+26476,90000,female,2,1,58,1,2,2,2,2,0,25941,25722,28015,28262,27509,28082,500,3000,1000,0,1017,2433,1
+26477,30000,female,2,1,51,0,0,-1,-1,-1,-1,11860,6846,7090,2680,390,0,1000,7090,2680,390,0,780,0
+26478,60000,female,3,2,52,0,0,0,0,2,0,60250,60585,61257,62697,60816,61685,2167,2483,6084,0,1936,1850,0
+26479,490000,female,2,1,52,-1,-1,-1,-1,-1,-1,7357,2779,22595,755,7000,0,2779,22595,762,7000,0,4341,0
+26480,230000,female,2,1,56,-2,-2,-2,-2,-2,-2,10511,2381,2580,48310,6390,7194,2381,2580,48342,6390,7194,13250,1
+26481,70000,female,2,1,53,0,0,0,0,0,0,71219,71110,69843,70834,70405,71004,2900,3200,2800,2458,2800,2901,0
+26482,60000,female,3,1,55,3,2,0,0,0,0,74786,71575,63821,63719,63807,57482,0,9400,2271,2425,2087,2142,1
+26483,30000,female,6,1,59,0,0,0,0,0,0,30419,28221,29016,7946,8114,8382,1481,1276,1132,300,400,370,0
+26484,70000,female,2,1,62,0,0,0,0,0,0,57271,56269,56333,29288,29524,29764,2857,2702,1500,1100,1100,1150,0
+26485,450000,female,3,1,56,1,-1,-1,-1,-1,-1,-4,831,-3,646,-2,418,835,0,649,0,420,1204,1
+26486,20000,female,3,2,54,0,0,0,0,0,0,16120,17160,18083,15096,15396,15720,1308,1231,1244,544,565,1500,1
+26487,30000,female,2,1,51,1,2,3,2,2,0,16490,18908,18321,19618,19008,19301,3000,0,1900,0,750,750,1
+26488,80000,female,3,1,54,0,0,0,0,0,0,78929,78177,63914,54382,48834,49756,3200,3002,2202,2000,2000,2000,0
+26489,390000,female,1,2,53,-2,-2,-1,-1,-2,-2,450,1540,690,0,0,0,1540,690,0,0,0,717,0
+26490,30000,female,2,2,50,0,0,0,0,0,0,10741,12057,12778,14090,14063,14357,1498,1219,1531,504,521,523,0
+26491,200000,female,3,1,51,1,-1,-1,-2,-2,-2,0,1221,0,0,0,0,1221,0,0,0,0,0,0
+26492,140000,female,3,2,59,1,2,0,0,0,0,63654,62042,63445,63729,63751,65421,0,3000,2000,2000,2000,3000,0
+26493,30000,female,2,1,51,-2,-2,-2,-2,-2,-2,1724,1222,4952,6693,22761,10044,1222,4972,7629,22817,10056,298,1
+26494,290000,female,2,1,51,-2,-2,-2,-2,-2,-2,6859,11210,2436,266,0,3412,11210,2436,266,0,3412,0,0
+26495,200000,female,2,1,51,-1,-1,-2,-1,-1,-1,2433,735,735,2301,3139,316,735,735,2301,3139,316,6635,0
+26496,180000,female,3,1,64,0,0,0,0,0,0,120070,123963,125022,129079,130109,133714,5876,4525,6123,4644,5688,5699,0
+26497,200000,female,2,1,50,-2,-2,-2,-2,-2,-2,411,453,348,359,672,1620,453,348,359,672,1620,384,0
+26498,500000,female,5,1,54,0,0,0,0,0,0,355251,354394,359522,362412,362550,359481,12680,13464,12821,15033,12788,13000,0
+26499,520000,female,3,1,54,0,0,0,0,0,0,653062,671563,689627,706864,383160,294641,28500,30500,30000,15000,15000,0,0
+26500,90000,female,3,1,53,-2,-2,-2,-2,-2,-2,827,0,2469,827,0,1654,0,2469,827,0,1654,827,0
+26501,260000,female,2,1,54,-1,-1,0,0,0,0,16570,7934,20258,52574,19463,20226,8234,20034,52045,7000,8073,30113,0
+26502,50000,female,3,1,51,0,0,0,0,0,0,22000,20454,21899,20895,11241,-861,2000,2100,2000,1000,0,39500,1
+26503,80000,female,2,3,59,0,0,0,0,0,0,80893,79175,78713,80684,50400,50058,2799,3300,3600,1568,1625,1649,1
+26504,210000,female,2,2,54,0,0,0,0,0,0,197324,201977,205800,205590,98572,90521,8000,11000,6000,4098,3500,3000,0
+26505,300000,female,1,1,51,0,0,0,0,-2,-2,143121,147527,148925,0,0,0,8269,6825,0,0,0,0,0
+26506,20000,female,1,1,53,1,2,2,2,0,0,8992,8313,10179,9394,11462,11410,0,2400,0,2458,2228,780,0
+26507,50000,female,3,2,51,0,0,0,0,0,0,25436,27445,28585,29736,21356,23403,2445,1585,1736,2356,2403,2414,0
+26508,20000,female,3,1,52,2,2,2,2,0,0,5682,6437,7181,7908,8781,9645,1000,1000,1000,1000,1000,0,1
+26509,150000,female,1,1,53,-1,-1,2,-1,-1,0,8706,2484,70,90000,9068,2349,2508,0,90000,9068,0,1985,0
+26510,50000,female,3,3,51,0,0,0,0,0,0,44788,45471,46394,47865,47455,48426,2352,2275,2398,1336,1366,1444,1
+26511,50000,female,2,2,51,0,0,0,0,0,0,50566,50050,37005,20145,19620,18872,1738,1746,1289,1684,684,702,0
+26512,50000,female,3,2,51,2,2,2,2,2,0,32215,33384,34554,35690,34817,36252,2000,2000,2000,0,2000,2000,0
+26513,200000,female,3,1,51,1,-1,-1,-1,-1,-1,-186,846,1350,13524,570,2622,1032,1350,13534,570,2622,1050,0
+26514,80000,female,3,2,52,0,0,0,0,0,-1,42635,39508,36060,30470,18306,7432,1623,1740,1200,366,7432,0,0
+26515,50000,female,3,2,56,0,0,0,0,0,0,48155,49157,50417,48371,15417,16194,1798,2058,1683,600,1017,20698,0
+26516,200000,female,3,1,55,2,2,3,2,2,2,159017,162697,163143,161906,165807,169599,9159,4842,3000,8000,7000,3000,0
+26517,210000,female,3,1,54,0,0,0,0,0,0,94343,96278,98213,99763,99793,101879,3500,3500,4500,3600,3694,3728,0
+26518,80000,female,3,1,55,0,0,0,0,0,0,78573,69116,64325,59653,55159,56277,3001,2500,2000,2000,2000,2000,0
+26519,200000,female,3,1,50,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,390,0
+26520,200000,female,3,1,51,0,0,0,0,0,0,99036,99625,99016,101661,103011,103384,3520,4500,5200,4500,3950,4300,0
+26521,220000,female,3,1,52,2,0,0,0,0,0,220053,222857,196510,120570,121664,122971,9000,6100,6000,4600,5500,3000,1
+26522,280000,female,1,1,56,-2,-1,2,-1,-1,-1,-5,4609,1351,1108,1288,3552,4614,1,1109,1290,3561,3279,0
+26523,250000,female,3,1,53,1,-1,-1,-1,-1,-1,-13,3823,839,0,1762,0,3836,839,0,1762,0,0,0
+26524,90000,female,3,1,55,0,0,0,0,0,0,39731,38272,36858,35447,33465,31680,2000,2000,2000,1400,1400,1712,0
+26525,320000,female,1,1,58,-2,-2,-2,-2,-2,-2,1100,0,0,0,0,0,0,0,0,0,0,434,0
+26526,130000,female,2,1,53,0,0,0,0,0,0,210628,215308,219970,221119,21904,22052,6800,6794,5315,2000,1000,1000,0
+26527,50000,female,3,2,51,-1,-1,2,-1,-1,-1,390,780,390,390,390,1320,780,0,390,390,1320,0,0
+26528,80000,female,3,1,51,0,0,0,0,0,-1,6203,6133,4802,3086,1726,1015,1094,1075,1000,35,1015,390,0
+26529,430000,female,2,2,51,0,0,0,0,0,0,416090,422898,409626,417113,363553,357476,17107,20015,18027,14015,13010,14006,0
+26530,250000,female,1,1,51,1,-1,-1,-1,-1,-1,0,645,3490,0,4789,0,645,3490,0,4789,0,0,0
+26531,50000,female,2,1,51,2,2,2,2,3,2,15902,17328,18746,20623,20019,19227,2000,2000,2500,0,0,1000,0
+26532,360000,female,3,3,58,0,0,0,-2,-2,-2,35673,35817,-1,-1,-1,-1,1179,0,0,0,0,139,0
+26533,450000,female,2,1,53,-2,-2,-1,-1,-1,-1,0,0,1215,5772,2150,670,0,1215,5780,2150,670,3625,0
+26534,110000,male,2,2,22,0,0,0,0,0,0,99209,54218,40110,41362,41296,41225,1766,2000,2000,2000,2000,2000,1
+26535,360000,male,1,1,34,0,0,0,-1,-1,-1,3187,3758,-1360,113091,114251,117922,1025,1361,116380,4001,5001,4001,0
+26536,10000,male,2,2,24,0,0,0,0,2,0,9035,5845,6793,8668,8382,8595,1300,1200,2000,0,500,396,1
+26537,200000,male,1,2,27,0,0,2,0,0,0,186778,206582,201714,177469,184502,191529,23000,157,10000,10000,10000,17000,1
+26538,20000,male,2,2,24,0,0,0,0,0,0,6215,7252,8473,9769,10057,10346,1300,1500,1600,600,600,700,1
+26539,70000,male,1,2,28,1,-1,-1,2,2,2,-47,653,3455,3245,1686,1681,700,3000,0,0,0,4000,1
+26540,80000,female,3,1,55,2,2,0,0,0,0,71905,70150,72017,73816,75584,77365,0,3000,3000,3000,3000,3000,1
+26541,250000,female,2,2,55,-2,-2,-1,-1,0,0,603,1867,2470,3887,4731,8710,1867,2661,3887,1000,4000,1000,0
+26542,90000,male,2,2,34,0,0,0,0,0,0,86275,87848,88065,90032,50802,50821,4004,4000,4003,2000,2000,2000,0
+26543,100000,male,2,1,42,0,0,0,0,0,0,98430,99998,16138,17758,18774,20272,5000,2000,2000,2000,2000,2000,0
+26544,230000,male,3,1,39,0,0,0,0,-1,-1,53672,75305,56484,38363,4867,2736,25000,5000,5000,4867,2736,0,0
+26545,380000,male,1,2,32,0,0,0,0,0,0,387851,349973,689643,334456,329981,292421,13070,13000,26000,20095,11000,11000,0
+26546,390000,male,2,2,29,-1,-1,0,0,0,0,1246,1476,3436,4868,5781,6681,2000,2000,1500,1000,1000,1000,0
+26547,120000,male,1,2,30,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+26548,20000,male,2,1,27,0,0,0,0,-1,0,19339,20187,17592,14588,624,19945,1500,1295,1200,624,19563,628,0
+26549,20000,male,2,1,41,1,-1,-1,-1,0,0,0,3793,1100,17982,18166,0,3793,1103,17982,384,8,17839,0
+26550,160000,male,1,2,25,1,-1,2,2,-2,-2,0,10139,7858,0,0,0,10139,0,0,0,0,0,1
+26551,240000,male,3,2,35,-1,-1,-1,-1,-1,0,11119,10361,10000,10200,30000,24000,10722,10000,10200,30000,4000,21245,0
+26552,30000,male,2,2,23,0,0,-2,-2,-2,-2,41300,0,0,0,0,0,0,0,0,0,0,0,0
+26553,50000,male,2,2,24,0,0,0,0,0,0,5599,6696,7783,8843,9209,10070,1200,1200,1200,500,1000,500,0
+26554,30000,male,2,2,23,1,2,0,0,0,-1,29772,28707,29235,14040,500,22292,0,1600,1000,0,22292,1000,0
+26555,20000,male,1,2,23,0,0,0,0,0,0,19247,18055,2059,2576,1834,1092,2500,1100,1500,200,200,942,0
+26556,80000,male,1,2,23,-1,-1,-1,-1,-1,0,9183,9606,3158,2941,2313,1367,9643,3167,2953,3753,4,7949,0
+26557,20000,male,2,2,23,3,2,2,7,7,6,2400,2400,2400,2400,2400,1800,0,0,0,0,0,0,1
+26558,50000,male,2,2,23,0,0,0,0,0,0,40698,42018,43344,16951,16989,17230,2000,2230,1600,600,500,19742,0
+26559,90000,male,1,2,23,0,0,0,0,0,-1,90888,85293,69482,60244,22640,3270,6000,4008,30055,15050,3270,16488,0
+26560,50000,male,2,2,24,-1,-1,-1,-1,-1,-1,999,593,-7,2636,-39,13000,594,0,2643,0,13039,128,0
+26561,20000,male,2,2,23,0,0,2,2,4,3,10208,14972,17432,19548,18948,18358,4972,3000,2700,0,0,1000,1
+26562,30000,male,2,2,24,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+26563,50000,male,2,2,23,1,2,0,0,-1,0,52319,51185,51334,49312,8027,8603,0,3200,3110,32356,700,1700,0
+26564,20000,male,2,2,23,0,0,0,0,0,0,19178,18852,16648,19395,20271,20445,2000,1500,4000,2000,2000,2900,0
+26565,20000,male,2,2,22,1,2,0,0,0,0,19512,17692,19136,20080,17366,17128,0,1736,1618,902,1000,869,0
+26566,20000,male,2,2,23,3,2,2,-1,2,2,18781,13255,0,20358,18044,20325,0,0,20358,0,2577,0,0
+26567,50000,male,3,2,22,2,0,0,-1,0,0,47021,48423,44450,956,976,1976,2543,2150,956,20,1000,1000,1
+26568,20000,male,2,2,22,0,0,0,2,0,0,19555,17152,19637,18671,20116,17617,2000,3100,1000,2000,1000,1100,0
+26569,20000,male,2,2,23,0,0,0,2,0,0,14784,15483,18109,17521,18026,19082,1253,2879,0,796,1500,0,0
+26570,50000,male,2,2,23,0,0,0,0,0,0,48241,49445,51060,50033,9298,7877,2000,2412,5178,5500,500,500,1
+26571,10000,male,2,2,23,2,0,0,2,2,2,5232,6410,8717,8431,9079,9110,1273,2580,0,942,321,0,1
+26572,10000,male,2,2,23,-2,-1,-1,-1,0,0,998,780,390,3622,3695,3126,780,390,3622,108,246,98,1
+26573,20000,male,1,2,22,0,0,0,0,0,0,16620,17446,18534,19145,19547,19947,2000,2000,1278,1000,1000,764,0
+26574,10000,male,2,2,22,0,0,0,0,0,0,8780,4060,2774,3764,4001,5134,1100,1300,1200,300,1200,0,0
+26575,50000,male,2,2,25,0,0,0,0,0,0,11669,12665,12905,13498,13993,13854,1502,1522,1505,1000,1000,1000,0
+26576,30000,male,2,2,25,0,0,0,0,0,0,7653,8864,10062,11581,12580,13716,1500,1500,2000,1500,1500,1500,1
+26577,170000,male,1,2,26,0,0,0,0,0,0,118084,112312,107396,96064,96984,93711,3800,13000,3593,3020,3090,2916,0
+26578,50000,male,2,2,23,0,0,-2,-2,-1,2,51550,0,0,0,15239,14853,0,0,0,15239,0,540,1
+26579,60000,male,2,2,24,2,0,0,0,0,0,27019,25100,21023,16973,12410,11944,1686,2000,1000,1000,6000,5000,1
+26580,50000,male,3,2,26,0,0,0,0,0,0,50316,48987,49299,48103,48669,48507,3000,3000,2200,2000,2000,2300,0
+26581,50000,male,2,2,22,0,0,0,-1,0,0,46831,47233,22469,28197,18784,17263,4000,2442,28197,634,799,3200,0
+26582,50000,male,2,2,24,0,0,0,0,0,-1,49907,49355,34833,28614,29133,29340,1963,1539,1200,719,43945,1001,0
+26583,100000,male,3,2,24,1,2,0,0,0,0,100364,97551,66365,62913,9389,6076,107,2893,2104,312,207,2004,0
+26584,10000,male,1,2,25,0,0,0,0,0,0,5642,6652,7683,9040,9222,9580,1112,1143,1500,324,500,377,0
+26585,80000,male,1,2,26,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+26586,300000,male,2,2,26,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+26587,10000,male,1,2,23,1,2,0,0,0,2,9020,8707,8519,9505,10127,9677,0,1391,1300,900,0,500,1
+26588,30000,male,1,2,24,-1,-1,2,-1,3,2,5857,20190,18794,6650,6118,2235,18794,0,6650,0,0,13000,0
+26589,50000,male,1,2,24,0,0,0,0,0,0,20472,19077,20094,19559,16795,17233,1700,1641,1600,600,1000,1300,0
+26590,30000,male,1,2,24,-1,0,0,0,0,0,1426,2539,3437,5365,6275,7172,1300,1100,2000,1000,1000,2000,0
+26591,90000,male,1,2,26,1,-2,-1,-1,0,0,0,0,403,33982,30738,29018,0,403,33982,1000,1000,1000,0
+26592,20000,male,1,2,23,2,2,2,2,2,2,5996,7040,7897,7622,8294,8016,1300,1128,0,800,0,1500,1
+26593,80000,male,1,2,23,-1,-1,-1,-1,0,0,444,444,444,888,888,444,444,444,888,444,0,1038,0
+26594,90000,male,2,2,24,0,0,0,0,0,0,86724,91394,78767,74007,29480,27941,7016,3800,2406,595,570,67,0
+26595,20000,male,3,2,24,2,0,0,2,2,2,8295,9310,12130,11644,12250,11910,1160,2980,0,1100,0,1000,1
+26596,30000,male,2,2,24,-1,-1,-1,-1,-1,-1,1473,390,390,390,0,780,390,390,390,0,780,0,1
+26597,10000,male,2,2,23,0,0,0,0,0,0,9984,9974,9900,9941,9250,9403,1300,1300,1041,1000,2000,464,1
+26598,70000,male,1,2,25,0,0,0,0,0,0,31011,28034,26363,22587,21770,19525,2002,1435,1294,1000,1000,1001,0
+26599,40000,male,1,2,26,2,0,0,2,2,0,36460,37549,40527,41036,39103,38945,2000,3900,1500,0,1600,1600,1
+26600,170000,male,2,2,26,0,0,0,0,0,0,145354,143279,87885,84534,74758,78633,8000,3500,4000,4000,6000,0,1
+26601,10000,male,2,2,24,1,2,2,-2,-2,-2,9774,10400,0,0,0,0,1000,0,0,0,0,0,0
+26602,30000,male,2,2,25,2,0,0,0,0,0,29608,27471,29075,26011,13900,0,1600,3000,1200,139,0,0,0
+26603,10000,male,2,2,24,1,2,2,2,2,2,6496,6246,8965,8672,9525,9228,0,3000,0,1000,0,800,1
+26604,50000,male,1,2,24,0,0,0,0,0,0,48061,47003,13063,25224,14197,13872,2000,2000,2000,2000,2000,2000,0
+26605,30000,male,5,2,24,0,0,0,0,2,2,21652,22656,23804,25668,24887,0,1369,1517,2381,0,0,0,0
+26606,50000,male,1,2,24,0,0,2,0,0,0,30011,35743,34435,30859,27429,24222,7000,416,3000,3000,3000,3000,0
+26607,20000,male,3,2,24,1,2,0,0,0,0,20464,19322,19004,19558,19176,19441,4,1640,1589,1000,1001,1004,0
+26608,10000,male,2,2,25,0,0,0,0,0,0,3684,4715,5785,7134,3535,4323,1100,1155,1500,1000,1000,1000,1
+26609,50000,male,2,2,24,1,-2,-2,-2,-2,-2,-1000,0,0,0,0,0,1000,0,0,0,2000,0,0
+26610,50000,male,2,2,24,1,2,2,0,-1,0,59197,55551,54083,50000,10135,9952,2000,0,1000,10135,358,403,1
+26611,50000,male,2,2,25,0,0,2,2,-1,-1,47077,48872,16012,14228,19546,19473,2800,0,1644,63965,705,798,0
+26612,160000,male,2,2,25,0,0,0,0,0,0,60905,62905,71405,82926,84278,93641,2000,8500,13000,2668,11259,2043,0
+26613,50000,male,2,2,24,0,0,0,0,2,0,50140,15519,19520,21103,20101,20402,3000,5000,2300,0,1000,2000,0
+26614,30000,male,1,2,24,0,0,0,0,0,0,14857,16302,17333,18735,18952,19195,2000,1598,2000,825,698,701,0
+26615,60000,male,2,2,27,5,4,3,2,-1,0,67940,65957,64005,61769,51722,44956,0,0,0,51722,16000,1100,1
+26616,150000,male,2,2,25,0,0,0,0,0,0,153932,153573,153309,152357,153133,0,5500,5509,5672,6787,0,832,0
+26617,30000,male,3,2,26,0,0,2,0,0,0,25535,28738,27999,28097,28670,7770,3641,0,1000,573,1000,0,0
+26618,20000,male,1,2,26,-1,-1,0,-1,0,0,587,2195,1758,3720,3820,0,2195,1500,3720,100,0,0,0
+26619,20000,male,2,2,26,0,0,0,-2,-2,-1,18838,15349,0,0,0,19125,1200,0,0,0,19125,1000,0
+26620,50000,male,2,1,24,0,0,0,0,0,0,17331,17961,18689,19284,19517,19193,1600,1700,1600,1200,1000,1000,0
+26621,200000,male,1,2,33,0,0,0,0,0,0,66471,67010,67627,68085,69445,71242,2387,2485,2414,2434,2863,3000,0
+26622,70000,male,2,2,25,0,0,0,0,0,-2,60719,61607,68091,69028,-61372,79256,2500,7500,3182,25200,102000,12152,0
+26623,150000,male,1,1,28,0,0,0,0,0,0,145728,145240,148755,133414,101284,73255,5002,6009,3259,149,1866,0,0
+26624,130000,male,5,2,27,1,2,0,0,0,0,136378,129545,131045,128104,121641,123470,0,5115,4527,4500,8908,5,0
+26625,20000,male,3,2,27,0,0,0,0,2,2,13621,14984,16431,18835,18235,19535,1596,2000,3000,0,1600,0,0
+26626,60000,male,1,2,27,-1,-1,0,0,0,0,2165,18214,13172,8717,8552,9902,18214,13000,2000,3000,2000,0,0
+26627,50000,male,2,2,24,0,0,0,0,0,0,50603,50116,48063,43787,9226,9628,2500,2505,2531,530,2000,1000,0
+26628,210000,male,2,2,27,0,0,0,0,0,0,65795,54166,73077,62288,66309,66393,2151,20000,2205,5000,1982,1982,0
+26629,150000,male,1,2,26,-2,-2,-2,-2,0,0,13707,12119,121170,27949,23158,67745,16408,96373,28005,5021,50000,4004,0
+26630,50000,male,2,2,25,0,0,0,0,0,0,47034,47521,47633,47482,48162,48926,2100,2500,2000,2000,1685,2000,0
+26631,40000,male,1,2,26,1,-2,-2,-2,-1,0,0,0,0,0,2605,3554,0,0,0,2605,1000,2000,0
+26632,90000,male,3,2,27,2,2,2,2,2,0,88072,90221,91898,91334,59253,58519,4500,4000,2090,0,2078,2900,1
+26633,70000,male,1,2,27,0,0,0,0,-2,-1,64317,59944,30206,0,0,5000,2500,1000,0,0,5000,5862,0
+26634,20000,male,1,2,27,0,0,0,0,0,0,39628,20571,19089,19658,19453,19108,1610,1323,1600,830,700,674,0
+26635,30000,male,1,2,24,0,0,0,2,0,0,28436,28845,31071,30248,30354,29088,1800,3300,0,1500,1500,1300,0
+26636,20000,male,2,2,25,1,2,0,0,0,0,19099,18114,18437,19267,19696,16876,0,1370,1200,1000,5000,1500,0
+26637,60000,male,2,2,25,2,0,0,0,0,0,60760,60011,61333,60082,38897,39422,2740,2893,2210,938,1188,0,1
+26638,50000,male,2,2,26,1,2,0,0,2,2,16412,15851,16889,19909,19291,20675,0,1294,3314,0,1700,0,0
+26639,50000,male,1,2,25,2,0,0,0,0,0,48966,49985,50760,49535,30358,30302,2130,1905,1811,1100,1100,1200,0
+26640,10000,male,2,2,25,0,0,0,0,0,0,7806,8615,7851,8704,8877,9063,1114,1292,1145,318,329,331,1
+26641,20000,male,3,2,22,1,4,3,2,0,0,21425,21410,20786,19994,10700,0,620,0,4,0,0,0,1
+26642,110000,male,1,2,26,0,0,0,0,0,0,58301,57861,47409,47743,45654,26525,2179,2191,1525,18236,1500,2000,0
+26643,30000,male,2,2,26,1,2,0,0,0,0,21871,21222,22555,23874,14500,16500,0,1681,2000,2000,2000,2000,0
+26644,200000,male,1,2,27,-1,-1,-1,0,0,0,3592,3622,7990,10392,7042,5692,3622,7990,6000,0,2000,5000,1
+26645,70000,male,2,2,27,0,0,0,0,0,0,17058,59481,50890,50981,54122,58227,52896,2047,1861,4000,5000,3044,0
+26646,80000,male,3,2,27,0,0,2,2,2,0,10100,59714,62163,62756,61149,62464,50000,4000,2200,0,2300,5108,0
+26647,80000,male,2,1,28,0,0,0,0,0,0,81099,81449,79887,76067,73077,76894,10000,5000,10000,6500,5000,5000,0
+26648,20000,male,2,2,24,0,0,0,0,0,0,4091,5316,6467,7500,7497,8170,1300,1400,1300,270,795,0,0
+26649,10000,male,2,2,23,0,0,0,0,0,0,8579,3714,4158,4654,3080,0,1060,1104,1000,31,0,0,0
+26650,60000,male,3,2,25,0,0,0,0,0,0,56753,57530,59869,59942,28934,27461,2700,3869,2742,1200,1461,1504,0
+26651,50000,male,2,2,27,0,0,0,0,0,0,47452,48663,50297,36164,37616,39062,2000,2500,2000,2000,2000,2000,1
+26652,110000,male,1,2,28,0,0,0,0,0,0,107560,100395,79889,70062,70901,72754,4024,3008,3200,2600,3000,3000,1
+26653,210000,male,1,1,29,1,2,0,0,0,0,26845,23283,11896,8097,7902,7917,66,2524,1311,1000,291,1000,0
+26654,40000,male,1,2,29,1,2,2,2,2,2,37681,36775,39982,38979,39479,39329,0,3800,0,1200,0,0,0
+26655,360000,male,1,2,29,-2,-2,-2,-2,-2,-2,6001,5868,-1,592,-8,-8,5874,1,593,0,0,0,0
+26656,320000,male,2,1,29,0,0,0,0,0,0,48998,33175,16784,9558,11022,11953,6105,3394,2100,1580,1016,1078,0
+26657,130000,male,1,2,27,-1,-1,0,-1,-1,-1,1439,3548,1958,1462,2573,2402,3555,1010,1466,2581,2509,3013,0
+26658,130000,male,2,2,26,2,2,2,0,0,0,137204,139189,133521,133182,103161,103031,7000,0,5133,5000,5000,5000,1
+26659,50000,male,2,2,26,0,0,0,0,0,0,47661,43914,38734,23152,19860,19486,1789,1549,1611,800,802,760,0
+26660,50000,male,1,2,25,-1,0,0,0,0,0,45626,16533,10745,9994,16829,13051,3000,9537,5000,10000,5000,2000,0
+26661,360000,male,3,1,27,-2,-2,-2,-2,-2,-2,1097,778,2999,-1,-1,-1,780,3021,0,0,0,0,0
+26662,160000,male,3,2,27,2,2,2,-1,0,0,70373,80166,34775,34073,15676,99436,11450,0,142848,1800,90000,3300,1
+26663,200000,male,1,2,26,0,-1,0,0,-2,-2,26230,2829,6721,-780,-780,-780,2829,4000,780,0,0,0,0
+26664,30000,male,3,2,26,2,2,2,2,2,2,14598,13998,15467,14913,17692,16302,2000,2000,0,3009,0,2000,0
+26665,360000,male,1,2,26,0,0,0,0,0,0,50536,28219,24996,17509,5486,5295,1527,2670,1062,514,113,245,0
+26666,20000,male,1,2,28,0,0,0,0,0,0,19262,34729,18808,18302,18995,19400,1310,3190,1500,1000,860,900,0
+26667,80000,male,2,2,27,1,2,2,2,2,2,63467,66811,68247,68531,69808,70544,5000,3100,2000,3000,2000,4000,1
+26668,490000,male,1,2,28,0,0,0,0,0,0,325669,206515,144853,132268,118899,79223,10041,7415,7025,44324,3119,2780,0
+26669,10000,male,1,2,22,0,-1,-1,-1,-1,-1,1483,46,915,352,105,0,46,915,352,105,0,1000,0
+26670,20000,male,2,2,23,0,0,0,0,0,0,13422,14886,15927,11939,10782,12599,2000,1667,2309,2000,2000,2000,0
+26671,30000,male,2,2,25,1,2,0,0,2,2,12925,13411,14190,16218,15663,17250,1000,1300,2273,0,2000,0,1
+26672,50000,male,2,2,26,0,0,0,0,0,0,47052,47874,40933,16603,16932,17287,1728,2856,1276,605,627,633,0
+26673,340000,male,2,2,25,0,0,0,0,0,0,170717,174026,177359,173334,176605,180205,6401,6501,6101,6201,6501,6601,0
+26674,180000,male,1,2,26,-1,-1,-2,-1,0,0,189,-2811,-2811,126884,129020,131708,0,0,131453,4209,4350,4099,0
+26675,40000,male,1,2,26,0,0,0,2,0,0,38131,35382,38744,38807,39933,38646,1600,4950,1400,2000,1400,1500,0
+26676,140000,male,1,2,27,-1,0,-1,-1,-2,-2,24602,12526,9032,0,0,0,5063,9032,0,0,0,0,0
+26677,210000,male,1,2,27,0,0,0,0,0,0,36017,32205,29104,29447,12411,5555,3015,3004,3058,1000,5000,4002,0
+26678,150000,male,1,2,26,-2,-1,0,0,-1,-1,600,360,1401,2360,70,420,360,1041,1000,70,660,0,0
+26679,160000,male,2,2,24,0,0,0,0,0,0,77838,76054,73992,73246,71321,141494,3300,3275,3000,3000,3000,3500,0
+26680,50000,male,3,2,24,1,2,2,0,0,0,52354,52651,51056,49515,42189,19938,2211,0,2174,2000,6473,0,1
+26681,50000,male,1,2,24,0,0,0,0,0,0,31292,32766,34426,34725,18049,19593,2000,2500,1353,1500,2000,1501,0
+26682,40000,male,1,2,24,0,0,0,0,0,0,39868,25714,17351,21567,18388,18353,1259,1700,6000,800,800,800,0
+26683,70000,male,1,2,24,0,0,0,0,0,0,16861,7553,8670,9764,9954,10144,1300,1400,1400,500,500,1000,0
+26684,310000,male,2,2,27,0,0,0,0,0,0,22936,255040,241092,242850,237818,237762,240101,9012,8549,8324,8524,9052,0
+26685,40000,male,1,2,28,2,-1,-1,-1,-1,2,1892,1889,1716,41710,42219,39774,1889,1716,41710,2800,0,1500,1
+26686,50000,male,1,2,27,-1,-1,-1,-1,-1,-1,658,4160,3225,656,176,0,4179,3225,656,176,0,476,0
+26687,140000,male,1,2,27,0,0,0,0,0,0,130905,122390,122024,112367,67820,66595,6067,6723,4069,5000,3200,3000,0
+26688,80000,male,2,2,27,1,2,2,2,2,2,53576,52128,56657,57340,55823,58260,0,6000,2200,0,3500,3500,1
+26689,230000,male,1,1,27,-1,-1,-1,0,0,0,1727,0,8879,8034,8585,7708,0,8879,1100,1000,1000,1000,0
+26690,50000,male,2,2,23,1,2,2,2,2,2,6283,6034,7925,8631,8855,8585,0,2000,1000,500,2,500,1
+26691,160000,male,1,2,27,-1,-1,2,-1,0,0,701,3442,2551,4217,1255,1554,3442,18,4217,0,1000,888,1
+26692,200000,male,3,2,26,2,0,0,0,0,0,72763,53839,34228,26418,22196,15973,5041,14031,15021,15007,14004,14012,1
+26693,130000,male,3,2,27,2,-1,-1,-1,-1,-2,1985,1666,1306,2049,0,0,1671,1306,2049,0,0,1497,0
+26694,130000,male,3,2,29,0,0,0,0,0,0,65861,67857,69945,74082,75653,77259,3698,3786,5923,2796,2815,2929,0
+26695,100000,male,2,2,28,1,2,2,2,0,0,96469,99750,100783,89898,58404,35078,7000,4000,49,5000,4000,10000,0
+26696,160000,male,2,2,30,-1,-1,-1,-1,-1,-2,3197,1936,2329,2332,-4,-4,1941,2645,2339,0,0,0,0
+26697,60000,male,1,2,29,0,0,0,0,0,0,31235,31462,31499,16773,11568,9727,6050,6037,5084,6000,4000,3832,0
+26698,220000,male,1,2,29,1,2,2,2,2,2,31012,30215,33117,32286,34320,33634,0,3400,0,2576,0,2671,1
+26699,50000,male,1,2,29,-1,-1,-1,-1,-1,-1,2159,1956,5592,10676,671,9826,1961,5608,11906,673,9855,7627,1
+26700,160000,male,2,2,27,-2,-2,-2,-2,-2,-2,2161,1672,2579,2313,2287,3442,1681,2717,2324,2298,3462,2637,0
+26701,60000,male,2,2,27,2,0,0,2,0,0,58598,56486,60877,56138,56806,57935,2632,5924,0,2200,2200,2290,1
+26702,210000,male,1,2,28,-2,-2,-2,-2,-2,-2,15648,2008,-4291,-4291,-4291,-4291,2500,0,0,0,0,0,0
+26703,360000,male,1,2,27,0,0,0,0,0,0,375392,373004,371567,375352,316076,314588,13290,14012,20000,16000,16000,290000,0
+26704,120000,male,1,2,28,0,0,0,0,0,0,59688,57627,58417,49050,49722,48898,3000,3000,2000,2000,2000,3000,0
+26705,250000,male,3,1,28,0,0,0,0,0,0,149499,119726,111690,114776,110902,114018,15000,10000,10000,10000,5000,5000,0
+26706,210000,male,2,2,28,-1,0,0,0,-2,-2,4432,5373,6200,0,0,0,1173,1000,0,0,0,0,0
+26707,380000,male,1,2,28,-2,-2,-2,-2,-2,-2,1294,1058,359,359,359,509,1058,359,359,359,509,359,0
+26708,240000,male,2,2,27,0,0,0,0,0,0,81861,81446,82907,84832,87123,85363,15000,4000,4000,4000,3000,3000,0
+26709,20000,male,3,2,27,1,2,0,0,0,0,20079,18696,19872,20100,19704,18004,0,1782,1400,394,0,226,0
+26710,50000,male,2,2,27,0,0,0,0,0,0,19657,20723,21784,22794,23115,23752,1700,1700,1679,1000,1010,1400,0
+26711,200000,male,2,2,29,-1,0,0,2,0,0,10538,16201,20926,20260,24754,29383,6201,5000,0,5000,5054,5054,1
+26712,470000,male,1,2,31,0,0,0,0,0,0,99931,95096,80388,75631,71464,65915,5070,4019,2019,2120,2096,1744,0
+26713,50000,male,2,2,25,0,0,0,2,2,0,18894,21258,23590,24896,24200,26630,3000,3000,2000,0,3000,1500,0
+26714,180000,male,1,2,29,1,-2,-1,-1,-2,-2,-366,-366,834,-96,-96,-96,0,1200,0,0,0,0,0
+26715,180000,male,1,2,26,0,0,0,0,0,0,131653,132462,130598,98336,86862,88618,5002,5004,3416,3074,3500,3179,0
+26716,190000,male,1,2,27,2,2,2,0,0,2,114355,124449,121093,123126,131120,134135,13500,0,5500,10000,5200,5000,1
+26717,180000,male,1,2,26,-1,-1,-1,-1,-1,-1,758,0,1022,2004,0,2051,0,1022,2016,0,2051,0,1
+26718,50000,male,2,2,25,0,0,0,0,0,0,48065,48355,49009,49949,50479,50702,1800,1844,2200,2000,1800,2038,0
+26719,20000,male,1,2,25,0,0,0,0,0,0,18069,17905,18712,19682,18384,18768,2180,1400,1300,1000,680,1100,0
+26720,80000,male,2,2,25,0,0,0,-1,0,0,8852,1946,1473,48029,47525,47181,1000,1000,48029,2000,2000,2000,1
+26721,160000,male,1,2,28,-1,-1,-1,-1,0,0,498,498,493,16931,18913,19272,498,493,16936,8030,7000,500,0
+26722,200000,male,1,2,29,-1,-1,-1,-1,-1,-1,3773,3990,9048,4700,800,4082,4029,9048,4700,800,4082,0,0
+26723,180000,male,1,1,30,1,1,-2,-2,-2,-2,143900,0,0,0,0,0,10000,0,0,0,0,0,0
+26724,360000,male,2,2,30,0,0,0,-1,-1,-1,282222,154050,0,18,18,18,7100,0,18,0,0,2034,0
+26725,50000,male,2,2,25,2,2,2,2,2,-2,61143,58394,52805,52546,8959,9812,3000,0,1489,51285,1000,368,1
+26726,30000,male,2,2,32,2,3,2,2,2,0,32704,31895,31091,31002,29879,29382,0,0,2300,0,996,1000,0
+26727,30000,male,1,2,25,-1,0,0,0,0,0,1581,2282,2964,3360,5038,4833,1046,1044,1072,1750,182,2000,0
+26728,100000,male,2,2,28,0,0,2,0,0,0,82238,100753,93209,89813,55359,32227,20000,0,3501,3021,5011,53408,0
+26729,260000,male,1,2,29,-1,-1,-1,-1,-1,-1,396,792,4970,4012,3651,5600,792,4970,4012,3651,5600,396,1
+26730,240000,male,1,2,29,0,-1,-1,-1,-1,-1,13980,9969,1276,0,8621,0,9969,1276,0,8621,0,1300,0
+26731,50000,male,2,2,29,1,2,2,0,0,2,12460,13489,12987,13699,15868,15474,1530,0,1234,2403,0,711,0
+26732,400000,male,1,1,30,0,0,0,0,0,-2,12820,15463,50040,22072,6712,5286,5427,37505,10077,233,5312,6991,0
+26733,70000,male,1,2,27,0,0,2,4,3,3,51923,55699,61285,59727,60669,59442,5265,7064,0,2500,0,0,1
+26734,280000,male,3,2,30,0,0,0,0,0,0,104252,107034,109958,112850,115092,117496,4510,4654,4730,4119,4258,4292,0
+26735,80000,male,1,2,30,-1,0,0,0,0,0,40276,41897,45535,45954,47706,49235,5000,7000,4000,5000,5000,2029,0
+26736,160000,male,2,2,26,4,3,3,3,2,2,152924,152142,155201,157202,153311,162973,3200,7000,6000,0,12000,0,1
+26737,130000,male,2,2,28,2,2,2,2,0,0,132968,134505,135624,129959,93360,90040,6700,6200,0,3500,3238,3216,0
+26738,180000,male,1,2,29,-1,-1,-1,-1,-1,-1,3810,6406,629,11542,2348,122,6406,629,11545,2348,122,0,0
+26739,360000,male,1,2,28,-2,-2,-2,-2,-2,-2,8840,4951,-17,1815,1035,460,4951,0,1832,1035,460,635,0
+26740,260000,male,1,2,29,0,0,0,0,0,0,256503,254732,244860,245165,236120,237705,9248,9021,8767,8317,8736,10025,1
+26741,50000,male,3,2,29,1,-1,-1,-1,-1,-1,0,1899,832,0,1662,4537,1899,832,0,1662,4537,2943,0
+26742,80000,male,2,1,27,-1,0,0,0,0,0,79690,80976,57827,46390,45354,43112,3181,2050,1684,1564,1558,2000,0
+26743,230000,male,1,2,26,0,0,0,0,0,0,42314,37735,32358,114443,111520,105779,1804,2713,106028,3827,5060,30000,0
+26744,70000,male,2,2,26,1,2,2,2,0,0,71160,67381,72192,70444,71900,0,0,6516,0,3300,0,500,0
+26745,270000,male,2,2,27,0,0,0,0,0,0,24689,29520,29722,36276,19065,17937,10058,10339,10034,54,10088,6368,0
+26746,220000,male,1,2,27,0,0,-1,-1,-1,-1,34686,8,1744,55164,49967,7839,8,2178,55200,50148,10107,0,0
+26747,260000,male,2,1,28,0,0,0,0,0,0,226244,230647,211483,153072,156149,144646,8304,10044,6000,5576,6000,6200,0
+26748,160000,male,1,2,28,-2,-2,-2,-2,-2,-2,2235,13695,390,4080,3390,390,13695,390,4080,3390,390,390,0
+26749,280000,male,1,1,34,-1,-1,-1,-2,-1,0,441,76,-21,-21,15237,7345,76,0,0,15258,36,0,0
+26750,230000,male,1,2,27,0,0,0,0,0,0,8786,9865,10644,12414,15982,13324,2500,2000,2000,4000,2300,3000,0
+26751,40000,male,1,2,31,0,0,-1,-1,0,0,8368,1884,200,2601,1759,-125,1000,200,2601,100,0,2412,0
+26752,170000,male,1,2,31,0,0,0,0,0,0,166701,164561,166894,170102,165015,165571,5887,6894,6102,5807,6241,7000,0
+26753,200000,male,1,1,30,3,2,2,2,2,2,2500,2500,2500,2500,2500,2500,0,0,0,0,0,0,1
+26754,230000,male,2,2,28,0,0,2,2,0,0,11343,17143,17150,15298,18378,18281,7000,1249,0,4000,1000,3000,0
+26755,50000,male,1,2,27,2,2,-2,-1,2,2,1893,0,0,71,71,3871,0,0,71,0,3800,0,1
+26756,150000,male,2,1,27,-1,0,0,0,0,-1,42055,36366,37093,41300,0,345,2000,1413,1650,0,345,0,0
+26757,300000,male,1,2,27,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+26758,360000,male,1,2,31,0,0,0,0,0,0,81740,81980,90216,86410,94668,93275,8000,10055,10000,10049,10053,9006,0
+26759,390000,male,1,1,31,0,0,-1,-1,-1,-1,54007,62761,10373,6803,2601,2979,49188,10411,6830,2608,2987,2236,0
+26760,50000,male,1,2,31,0,0,0,0,0,0,49139,49281,42472,44810,45699,46675,1707,1948,11746,1635,1712,4000,1
+26761,220000,male,1,2,32,0,0,0,0,0,0,100226,102103,103701,103673,99429,93487,5200,5500,4700,4000,4000,4000,0
+26762,60000,male,2,2,27,0,0,0,0,0,0,48307,48602,48750,48916,27743,28646,1768,1967,1424,972,2000,1300,0
+26763,100000,male,2,2,28,-1,-1,-1,-1,-1,-1,942,390,390,390,0,780,390,390,390,0,780,0,0
+26764,290000,male,2,2,30,0,0,0,-2,-2,-1,10823,13226,652,0,652,92775,3000,978,0,652,92775,4000,0
+26765,130000,male,2,2,31,0,0,0,0,0,0,122486,116437,112881,96191,88934,90633,6013,4911,3533,3301,3607,5516,1
+26766,400000,male,1,3,31,1,-1,-1,-1,-1,-1,0,1731,499,1487,499,499,1731,499,1487,499,499,36983,0
+26767,30000,male,2,1,32,0,0,0,2,0,0,22503,24802,29367,28108,26717,11693,3000,5000,0,1003,1000,1000,0
+26768,260000,male,1,2,29,-1,-1,-1,-1,-1,0,2335,1432,718,500,5306,2091,1432,718,500,5306,0,770,0
+26769,70000,male,2,2,29,0,0,0,0,0,0,53700,53938,47852,48538,49034,49689,2200,8808,2200,2000,2000,2300,0
+26770,160000,male,1,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+26771,280000,male,1,2,30,-2,-2,-2,-2,-2,-2,3310,-6,4759,996,0,1199,0,4765,996,0,1199,909,0
+26772,500000,male,1,2,30,-1,0,-1,-1,0,0,33269,19084,2601,112075,163165,214575,1248,2601,112212,100000,64575,67810,0
+26773,110000,male,1,2,29,0,0,0,0,0,0,106698,104546,100272,92615,92657,93364,6000,4800,4300,3600,3500,3600,0
+26774,120000,male,2,1,29,-1,-1,2,-1,0,0,579,2718,1280,3783,2522,1261,3580,0,3822,0,0,1261,0
+26775,50000,male,1,2,32,0,0,0,0,0,0,18741,12724,13804,15331,15159,10188,1724,1804,2721,1159,1188,733,0
+26776,100000,male,1,2,27,0,0,0,0,0,0,100751,99777,99479,94028,14578,33254,3592,4252,2620,408,26130,653,0
+26777,360000,male,1,2,29,-2,-2,-2,-2,-2,-2,6906,4893,508,0,4861,2547,4893,508,0,4861,2547,0,0
+26778,20000,male,1,2,27,1,2,3,2,3,2,4473,7216,6958,7496,7231,7269,3000,0,800,0,300,0,1
+26779,50000,male,3,2,29,0,0,0,0,0,0,46803,47796,49024,50192,49515,48038,1772,2000,2100,5400,8174,1687,0
+26780,500000,male,1,2,30,0,0,0,0,0,0,309558,315956,307896,241206,242481,230232,13749,11360,9572,7110,14470,7610,0
+26781,50000,male,1,1,32,0,0,0,0,0,0,25411,26989,28245,29176,28696,29321,2000,2000,1500,1000,913,1800,1
+26782,250000,male,3,1,34,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+26783,260000,male,2,2,34,0,0,0,0,0,0,54448,55559,59635,63624,67563,69812,2017,5000,5000,5000,5000,10000,0
+26784,150000,male,1,2,34,0,0,0,0,0,0,62854,50558,52738,53747,55271,57250,5000,3000,2500,3000,3000,4870,0
+26785,80000,male,1,2,33,0,0,0,0,-2,-1,59796,60722,31023,-2639,-2787,34732,5000,14016,0,2000,38000,6000,0
+26786,180000,male,3,2,34,-2,-2,-2,-2,-2,-2,9531,13558,14270,11878,12920,10190,13606,14396,11936,12965,10220,10100,0
+26787,170000,male,1,1,40,0,0,0,0,2,0,158326,119426,109136,106882,99917,97133,6043,4037,10019,9,3480,4635,0
+26788,300000,male,1,1,40,-2,-2,-2,-2,-2,-2,5649,5649,5649,5699,5466,19878,5649,5649,5699,5616,20272,0,0
+26789,230000,male,1,1,39,1,-1,-1,-2,-2,-2,-17,1786,0,0,0,0,1803,0,0,0,0,0,0
+26790,470000,male,2,2,35,0,0,0,-1,-1,-2,262980,204078,78325,119866,-6187,-8822,10929,4177,126307,36,26,27232,0
+26791,20000,male,3,1,37,0,-1,0,0,0,0,18629,19202,20459,19493,17289,17684,21473,1576,2000,600,1000,700,0
+26792,70000,male,1,2,38,2,-1,-1,-1,-1,-1,2700,2108,2253,17743,8210,0,2108,2253,17804,8210,0,0,0
+26793,320000,male,1,2,41,0,0,0,0,0,0,309805,237915,235917,227714,154939,102338,15818,10049,10015,14939,4338,5267,0
+26794,500000,male,1,1,39,-2,-2,-2,-2,-2,-2,2514,810,8041,68595,72011,77931,810,8081,68595,72011,77931,3608,0
+26795,360000,male,2,1,47,-2,-2,-2,-2,-2,-2,1730,2500,0,0,0,0,2500,0,0,0,0,0,0
+26796,180000,male,1,1,42,-1,-1,-1,-1,-1,0,326,326,326,326,652,326,326,326,326,652,0,326,0
+26797,100000,male,1,1,40,2,2,0,0,0,0,27002,26274,27045,28598,30131,32356,0,1500,2000,2000,2700,1300,1
+26798,10000,male,1,1,40,2,-1,-1,-2,-2,-2,3567,1000,0,0,0,0,5000,0,0,0,0,0,1
+26799,20000,male,2,2,41,0,0,0,-1,0,-1,16808,16741,14450,8796,5419,2377,1301,1000,8796,108,2377,15742,0
+26800,70000,male,3,1,46,1,2,2,2,2,2,30040,29258,31137,32855,33316,34137,0,2352,2531,1300,1500,0,0
+26801,20000,male,2,2,26,2,0,0,0,2,2,6078,7015,8036,9597,9294,10242,1200,1140,1700,0,1100,0,1
+26802,500000,male,1,1,46,-2,-2,-2,-2,-2,-2,11100,16966,10000,14218,62208,83611,16966,10000,14218,62500,83611,61880,0
+26803,140000,male,1,2,32,0,0,2,2,2,2,32678,37303,37114,38687,41338,40645,5400,600,2400,3500,0,1539,0
+26804,360000,male,2,1,39,-1,-1,-1,-1,-1,-1,1261,1261,1261,1261,1261,1261,1261,1261,1261,1261,1261,1261,0
+26805,160000,male,2,1,32,1,2,0,0,0,0,5525,4039,3656,3801,2540,2279,0,1094,1500,0,1000,0,1
+26806,200000,male,1,1,34,-1,-1,-1,-1,-2,-2,165,165,165,0,0,0,165,165,0,0,0,0,0
+26807,230000,male,3,1,48,0,0,2,0,0,0,20271,21979,20924,20881,21262,21469,5034,0,2000,2000,2000,2000,0
+26808,360000,male,1,2,38,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+26809,260000,male,1,1,40,0,0,-1,-1,-1,-1,22325,27508,3923,9059,3360,3657,7590,3945,31086,3377,3667,493,0
+26810,50000,male,2,1,35,2,2,2,0,0,0,58175,56749,52792,50167,31778,32427,2600,0,1400,0,649,32100,1
+26811,500000,male,3,1,39,0,0,0,0,0,0,41597,50849,54927,57972,60224,71198,10000,4927,3972,3224,11980,5765,0
+26812,230000,male,1,1,38,-2,-2,-2,-2,-2,-2,7904,860,-3,-3,-3,-3,864,0,0,0,0,0,0
+26813,340000,male,2,1,39,0,0,0,0,0,0,148624,109990,112515,114951,117849,120739,4000,4000,4000,4500,5000,1500,0
+26814,130000,male,3,1,38,0,0,0,0,-1,0,6360,5375,5476,6931,99416,99702,1088,1189,2646,104590,3358,3314,0
+26815,80000,male,3,1,47,0,0,0,0,0,0,70062,19669,20696,21709,22348,22988,1321,1348,1361,1000,1000,2000,0
+26816,250000,male,1,1,40,-1,-1,-1,-1,-1,-1,396,396,396,396,396,396,396,396,396,396,396,109,0
+26817,140000,male,2,1,48,1,2,2,2,2,2,86114,87896,89397,90514,91661,90100,4100,3800,3500,3500,0,6900,1
+26818,390000,male,1,2,37,-2,-2,-2,-2,-2,-2,73,10925,0,0,0,0,10952,0,0,0,0,0,1
+26819,260000,male,1,1,37,0,0,0,0,0,0,257456,261189,264520,249571,202144,197643,10621,9948,8914,6986,41000,7222,0
+26820,160000,male,2,1,43,0,0,0,0,0,0,69554,72390,75521,78987,80891,62113,4000,5000,10000,4000,3000,6000,0
+26821,210000,male,2,2,38,0,0,-1,-1,-1,-2,101776,14260,40236,19011,-1031,-4873,1032,40252,19011,0,0,0,0
+26822,90000,male,2,1,48,2,2,-2,-2,-2,-2,71900,0,0,0,0,0,0,0,0,0,0,0,1
+26823,290000,male,1,1,45,-2,-2,-2,-2,-2,-2,2316,2131,2476,9746,7092,5449,2143,2485,9793,7123,5460,300,0
+26824,560000,male,1,2,40,0,0,0,0,0,0,487816,471138,454471,432132,285868,291140,15933,17065,14878,8505,9027,8527,0
+26825,110000,male,2,1,37,0,0,2,2,0,0,111864,112112,114367,111064,112123,111575,11000,5500,0,4400,4500,4200,0
+26826,350000,male,3,1,37,0,0,0,0,0,0,70257,73151,47298,25692,24542,23697,20001,5045,3000,2005,3001,4,0
+26827,280000,male,1,2,35,0,0,0,0,0,0,210465,200959,146652,132527,70421,60235,10299,7200,5886,3000,5000,5000,0
+26828,260000,male,1,1,40,0,0,-2,-2,-2,-2,34471,0,0,0,0,0,0,0,0,0,0,0,0
+26829,440000,male,2,1,34,0,0,0,0,0,0,267475,237324,186359,119829,87068,23533,10506,8833,5456,2519,875,1018,0
+26830,200000,male,4,1,49,0,0,0,0,0,0,49221,49599,50942,50146,50235,48984,1689,2164,2500,3480,2500,3000,0
+26831,150000,male,2,2,32,1,2,2,2,2,2,133401,135703,142275,144427,146702,150647,6000,10275,6000,6000,6100,0,0
+26832,50000,male,1,2,39,3,3,2,2,2,-2,65766,59702,55899,54275,20280,20038,0,2100,0,62013,858,869,0
+26833,500000,male,1,2,29,-1,-1,-1,-1,-1,-1,29276,7934,635,12416,4022,259,7972,637,12553,4070,259,11675,0
+26834,320000,male,1,1,29,0,0,0,0,0,0,40271,91965,86047,82233,72175,77831,60043,5036,5075,5017,10077,3062,0
+26835,500000,male,1,1,34,1,-1,-1,2,-1,-1,0,198,198,198,115397,120250,198,0,0,115399,6211,2054,1
+26836,500000,male,1,1,45,-1,-1,-1,-1,-1,0,1302,5230,3373,14071,2915,157,5308,3527,14133,2928,2,343,1
+26837,260000,male,5,2,35,0,0,0,0,0,0,138834,143518,146714,148787,152306,155690,7000,7000,6000,6001,6000,6000,0
+26838,330000,male,3,1,39,-2,-2,-2,-2,-2,-2,2184,2184,2184,2184,2184,2184,2184,2184,2184,2184,2184,2184,0
+26839,360000,male,2,1,36,0,0,0,0,0,0,338992,339254,348485,346028,338981,348032,15348,20013,20018,15000,20000,20000,0
+26840,360000,male,1,2,33,0,0,0,0,-1,-1,206597,211687,198245,217320,2500,0,10022,25045,33124,5180,0,0,0
+26841,130000,male,2,2,33,2,2,3,2,0,0,20091,21459,20832,21386,22227,23466,2000,0,1200,1200,1600,1500,1
+26842,320000,male,2,2,32,0,0,0,-1,0,0,281017,187071,150441,167983,142305,153555,10454,80003,174169,10000,15013,1770,0
+26843,350000,male,2,2,42,0,0,0,0,0,0,347790,352600,299797,218973,146326,107205,13000,11000,8232,7000,6000,7000,1
+26844,20000,male,2,2,38,1,3,2,2,0,0,26288,23822,22922,22140,19170,17170,0,1500,18,2383,0,0,0
+26845,200000,male,1,2,29,0,0,0,2,-1,-1,9228,7532,7246,3506,2376,123687,2100,3320,0,2400,127187,2187,0
+26846,240000,male,3,1,33,0,0,2,0,0,2,45971,49321,48370,49660,53090,48215,4000,0,2000,4000,0,2000,0
+26847,50000,male,2,1,29,0,0,0,0,0,0,39124,40474,41220,42332,43227,44530,2000,1700,1800,1600,2000,2000,0
+26848,10000,male,3,1,35,0,0,0,0,0,0,7536,8152,8779,9379,9565,9062,1136,1153,1143,329,418,180,1
+26849,360000,male,1,2,31,1,-1,-1,-1,0,0,0,4260,3278,580,580,0,4260,3278,580,0,0,0,0
+26850,20000,male,3,1,30,0,0,-1,0,0,-2,19522,23249,16668,18389,17898,18462,4358,16730,3395,1898,1000,4674,0
+26851,460000,male,1,1,47,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+26852,180000,male,1,1,49,0,0,0,0,0,0,62087,63444,65420,67722,70970,72670,3000,3000,4000,5000,3000,5000,0
+26853,50000,male,2,1,35,0,0,0,0,0,0,48792,50083,50323,48902,20012,19915,2105,1845,1746,691,1000,800,0
+26854,70000,male,2,2,32,0,0,0,0,0,0,69921,71198,70660,67975,65805,66058,2708,2532,2569,2324,2541,2295,0
+26855,140000,male,2,2,39,1,-1,0,-1,0,0,10091,18324,8808,27319,19278,11505,18539,1000,27329,386,1000,16215,0
+26856,500000,male,2,1,41,0,0,0,0,0,0,155820,171565,184782,152365,139757,153348,20000,20241,20154,20019,20151,20037,0
+26857,280000,male,2,1,44,0,0,0,0,0,0,159967,164197,122611,119023,113754,115029,7822,4529,4238,4305,4208,4003,0
+26858,110000,male,2,2,37,0,0,0,0,0,0,68773,69527,76273,76409,76166,76384,3500,10000,3500,3000,3000,4000,0
+26859,90000,male,1,1,37,0,0,0,0,0,0,91641,85906,87138,87141,66964,65898,3100,4300,3900,2313,2378,2647,0
+26860,170000,male,1,1,38,-1,-1,-1,-1,-1,-1,2430,2430,2430,2430,2430,2430,2430,2430,2430,2430,2430,2599,0
+26861,290000,male,1,2,40,0,0,0,0,0,0,135527,134414,140607,131933,135606,132906,8000,10000,5000,6000,4700,5000,0
+26862,80000,male,2,1,46,1,2,0,0,2,2,1548,1378,3182,5124,4893,5810,0,2000,2000,0,1000,0,0
+26863,150000,male,2,1,43,0,0,0,0,0,0,88812,89488,89951,86961,79284,74531,3309,5016,5050,3026,5000,5012,0
+26864,80000,male,3,1,38,0,0,0,0,0,0,79135,75786,76280,71790,49835,48880,3006,4009,3006,1879,2000,2144,0
+26865,20000,male,1,1,44,0,0,0,0,0,0,18091,17237,16419,17144,17855,18567,1600,1600,1300,1000,1000,950,1
+26866,150000,male,2,1,36,2,2,2,2,2,2,47529,40605,39394,37686,38810,31548,17,3105,2,2020,36,1048,1
+26867,300000,male,1,1,48,-1,-1,-1,-1,-1,-1,5036,32897,6493,23292,1254,7808,32898,6493,23324,1254,7808,3023,0
+26868,130000,male,2,1,39,3,2,-1,-1,-1,0,130819,124946,10212,2486,5170,6823,0,10252,2486,5170,3039,2386,0
+26869,490000,male,1,1,41,1,2,0,0,0,0,230090,224913,227998,217660,194641,199344,0,12000,12000,8000,8000,8000,0
+26870,120000,male,2,2,34,0,0,0,2,2,2,49206,50386,54656,54963,55865,54842,2000,5100,1800,2400,0,5500,0
+26871,50000,male,3,1,34,0,0,0,2,0,0,15750,16472,15530,8440,1000,0,1300,2410,0,0,0,0,1
+26872,150000,male,1,2,28,0,0,0,0,0,0,88506,58699,60252,62245,64202,66167,2200,2500,3000,3000,3000,3000,0
+26873,720000,male,1,1,40,0,0,0,0,0,0,308274,209976,158694,148956,135217,85300,8500,6000,6000,5237,3000,8961,1
+26874,20000,male,2,1,48,-1,0,0,-2,-2,-2,10222,11400,0,0,0,0,1400,0,0,0,0,0,0
+26875,260000,male,1,1,35,0,0,0,0,0,0,163327,165557,152856,142605,144240,144213,8200,6243,7000,5500,5500,5411,0
+26876,240000,male,1,1,33,0,0,0,0,0,0,167835,170978,172217,163786,81611,79817,7200,8400,7000,3000,2900,3100,0
+26877,130000,male,2,3,34,2,2,2,0,0,0,126749,135867,132249,132416,131959,128375,11243,0,5600,5150,5100,4512,1
+26878,200000,male,3,2,38,0,0,0,0,0,0,101254,105254,121893,109647,56157,37293,16002,30039,15019,10000,10000,8000,0
+26879,140000,male,2,1,37,0,0,0,0,0,0,64372,64937,59133,53193,47352,41627,2300,2200,2000,2000,2000,1500,0
+26880,10000,male,3,1,41,0,0,0,0,0,3,6270,7303,8375,9268,10630,10188,1300,1350,1200,1500,0,0,0
+26881,140000,male,2,1,38,1,2,2,2,2,2,129497,131877,135309,131671,138771,141146,6000,7000,0,10800,4800,0,1
+26882,20000,male,3,2,45,0,0,0,0,0,0,5250,7151,9024,10865,12677,14309,2000,2000,2000,2000,2000,2000,1
+26883,200000,male,1,1,38,-2,-2,-2,-2,-2,-2,3528,1190,1958,-5,1013,2350,1196,1968,200,1018,2361,2500,0
+26884,130000,male,2,1,44,0,0,0,-1,-1,-2,139892,131365,9910,12909,0,0,6179,1969,131000,0,0,1700,1
+26885,360000,male,1,2,35,0,0,0,0,0,0,10424,10197,85777,81919,75332,47622,1104,81970,3261,1886,3035,2068,0
+26886,210000,male,2,1,38,2,0,0,0,0,0,196426,194724,193397,195027,199236,203241,8405,8495,7800,7378,7800,6900,1
+26887,230000,male,1,1,38,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+26888,210000,male,2,1,44,1,2,0,0,2,0,89567,85552,86595,89689,85764,85830,0,4100,7200,0,3220,3300,1
+26889,200000,male,2,1,35,-1,-1,-1,-1,-1,0,8028,3729,-19,3920,4452,685,3747,0,3939,4470,3,1064,0
+26890,20000,male,3,2,27,0,0,0,0,0,0,11849,13144,14429,15659,16959,-41,1500,1500,1500,1500,3000,13500,1
+26891,410000,male,1,2,28,0,0,0,0,0,0,82735,90847,74122,72363,68703,66710,10000,6000,4000,5000,6000,3000,0
+26892,280000,male,5,1,39,0,0,0,0,0,0,227604,218526,196479,196034,378323,192115,7670,7221,7091,8013,14923,7068,0
+26893,360000,male,2,1,39,0,0,0,0,0,-1,29814,22699,16866,13618,5000,8000,1333,2500,5000,2000,8000,5000,0
+26894,10000,male,2,2,28,1,2,2,2,2,2,3717,3659,5640,5401,6811,6567,150,2200,0,1500,0,6000,1
+26895,20000,male,2,2,37,1,2,0,0,0,0,14440,13916,15376,18075,18830,20423,0,2000,3000,1000,2000,0,1
+26896,370000,male,1,2,30,0,0,0,0,0,0,333930,280727,285705,295747,250158,255956,13000,11000,15000,10000,10000,12000,0
+26897,180000,male,1,1,48,0,0,0,0,0,0,163461,167140,160707,162477,166861,171083,8000,8000,6000,7000,7000,7000,0
+26898,60000,male,1,1,38,1,-2,-2,-2,-1,-1,0,0,0,0,1040,0,0,0,0,1040,0,0,0
+26899,80000,male,1,1,46,2,2,2,2,0,0,57477,58539,59722,58174,59204,61092,2600,2700,0,2600,3000,2500,1
+26900,70000,male,2,1,47,0,0,0,0,0,0,53239,54351,56480,57253,59150,0,2000,3000,2500,3000,0,0,0
+26901,400000,male,1,2,32,-1,-1,-1,0,0,0,3919,-8477,247784,258900,225614,228219,0,258900,20170,17000,10000,10000,0
+26902,150000,male,1,2,31,-2,-2,-2,-2,-2,-2,13877,8190,6203,9808,3267,6662,8422,6234,9904,4016,6695,6433,0
+26903,50000,male,2,1,42,1,2,0,0,0,0,50179,49056,48714,38653,19439,14711,0,4000,2000,1000,521,700,0
+26904,310000,male,2,1,41,0,0,0,0,0,0,324628,305869,312567,291153,159545,97438,12000,12124,10300,8168,5500,3081,0
+26905,200000,male,2,1,44,0,0,0,0,0,0,71656,63331,54977,45849,32706,23542,1714,1602,1144,786,471,2300,0
+26906,430000,male,1,1,34,-1,-1,-1,-1,-1,-1,11873,8275,13817,7977,3417,2476,8299,13858,8000,3427,2483,8277,0
+26907,240000,male,2,1,40,0,0,0,0,0,0,11671,10030,8132,8402,4585,3551,1810,1151,2029,1003,112,173,0
+26908,360000,male,2,2,44,0,0,0,0,0,0,189003,154847,122037,119366,86285,83589,6050,5033,5055,3021,2363,3000,0
+26909,380000,male,2,1,35,0,0,0,0,0,0,27268,75331,72950,70022,70861,70897,50042,3017,3000,3016,3000,4010,0
+26910,190000,male,3,1,41,0,0,0,0,0,0,30425,31419,32450,33458,34122,34833,1467,1498,1506,1170,1209,1215,0
+26911,350000,male,1,1,34,0,0,0,0,0,0,120198,122480,82329,85252,76222,67243,5900,3300,4089,3000,2400,2551,0
+26912,110000,male,3,1,37,0,0,0,0,0,0,107793,102676,103276,67886,39457,39424,4010,4431,2700,1500,1500,1600,0
+26913,180000,male,2,1,32,-2,-2,-2,-2,-2,-2,2196,396,392,1592,1304,8,396,392,1596,1308,0,2218,0
+26914,400000,male,1,1,35,-2,-2,-2,-2,-2,-2,2240,12165,7062,8833,7659,5676,12245,7135,8891,7704,5728,4070,0
+26915,500000,male,1,2,35,-1,-1,0,0,0,0,3938,82385,88195,52253,38743,27833,82392,10339,20089,5105,10138,28426,0
+26916,170000,male,2,1,48,-1,-1,-1,-1,0,0,390,390,390,780,780,0,390,390,780,0,0,0,0
+26917,360000,male,3,1,41,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+26918,60000,male,2,1,44,0,0,0,0,0,0,58216,60193,57815,50054,27535,22962,3000,2488,2000,1000,2000,3000,0
+26919,350000,male,1,2,32,0,0,0,0,0,0,43356,14236,16991,18541,20075,20491,2000,3000,2000,2001,580,677,0
+26920,500000,male,2,1,31,0,0,0,0,0,-2,12988,7289,3823,4444,-232,-2701,1122,1077,3023,54,13,168816,0
+26921,230000,male,1,2,32,0,0,0,0,0,0,48418,44734,47178,29582,38426,42500,5019,10120,20000,10000,5000,5000,0
+26922,20000,male,2,1,35,0,0,0,0,2,2,11043,11770,13188,18318,18419,18978,1200,1600,5700,700,1000,0,1
+26923,240000,male,2,1,37,0,0,0,0,0,0,11278,14070,15535,17734,19734,8561,3000,2000,3000,2000,2000,0,0
+26924,440000,male,2,2,42,0,0,0,0,0,0,64786,45923,47256,50727,50064,59017,5000,3000,5000,5000,10000,8000,0
+26925,250000,male,3,2,31,0,0,0,0,0,0,73215,70284,70375,65085,54986,50848,7009,5023,5069,10037,5184,15011,0
+26926,300000,male,1,1,38,-1,-1,-1,-1,-2,-2,706,195,504,-627,-918,-1209,200,600,0,0,0,1791,1
+26927,180000,male,2,2,28,1,1,-2,-2,-2,-1,23638,-46,-46,-46,-46,1154,3000,0,0,0,1200,44338,0
+26928,360000,male,1,1,39,0,-1,-1,-1,0,-1,167685,3288,75244,6468,3169,3130,3304,75260,6484,24,3144,3458,0
+26929,260000,male,1,1,38,0,0,0,0,0,0,162820,153457,143580,133477,122545,120772,6024,6012,6000,5000,5000,4000,0
+26930,80000,male,1,2,42,5,4,3,2,0,0,74477,68633,62890,56788,52287,52287,0,0,0,0,0,50771,0
+26931,390000,male,1,1,47,-1,-1,-1,-1,-1,-1,5768,8843,18982,11700,0,2978,8875,19051,11754,0,2978,0,0
+26932,250000,male,3,1,42,0,0,-2,-2,-2,-2,41300,0,0,0,0,0,0,0,0,0,0,0,0
+26933,100000,male,2,2,43,0,0,0,0,0,0,104028,103601,105282,83616,67825,66756,6000,5088,3098,5010,3038,4031,0
+26934,170000,male,3,1,44,0,0,0,0,0,0,159094,161938,166062,170023,173854,179390,6000,7000,7000,7000,8000,7000,0
+26935,500000,male,1,1,45,-1,-1,-1,-1,-1,-1,1366,9489,51322,12150,12463,11872,9543,51322,12176,12463,11872,22547,0
+26936,410000,male,2,1,36,0,0,0,0,0,0,421227,416160,419988,359736,358471,360557,15050,16000,13100,12700,13000,13100,0
+26937,360000,male,1,1,32,-1,-1,-2,-2,-2,-2,2500,0,0,0,0,0,0,0,0,0,0,0,0
+26938,290000,male,2,1,38,-2,-2,-2,-2,-2,-2,24709,291,6161,6200,3892,4072,291,6170,6216,3892,4072,4382,0
+26939,80000,male,2,1,44,0,-1,0,0,0,0,1245,26343,22120,21365,20967,48250,27279,3200,1200,1000,29000,1500,0
+26940,280000,male,1,2,31,-2,-2,-2,-2,-2,-2,8383,8797,8741,8178,-4,-4,9044,8844,8247,0,0,0,0
+26941,360000,male,2,1,40,0,0,0,-1,0,0,69464,55638,43429,45895,27851,25408,10034,15011,45919,5036,5022,6010,0
+26942,100000,male,2,1,44,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,390,0
+26943,80000,male,2,2,31,0,0,0,0,0,0,42188,40033,31106,28890,28613,49036,1577,1511,1415,1138,22000,1746,0
+26944,80000,male,1,2,46,0,0,0,0,0,0,52674,58068,28116,30656,24750,25543,9000,7000,5004,3000,4000,5000,0
+26945,180000,male,1,1,45,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+26946,400000,male,1,1,34,-1,-1,-2,-1,-1,-1,43711,37077,70369,15283,17668,4841,37954,71577,15973,18285,4875,647,0
+26947,450000,male,2,1,48,-2,-2,-2,-2,-2,-2,18659,388,481,29646,10163,10163,389,483,29707,10214,10214,10184,0
+26948,80000,male,1,2,34,2,2,2,2,2,2,61231,62423,63827,64682,65614,67007,2800,3000,2500,2600,2600,2600,1
+26949,210000,male,2,1,37,0,0,0,0,0,0,41030,40120,51591,67772,71846,68876,3012,15065,30002,5023,2149,3041,0
+26950,300000,male,2,1,45,-1,-1,-1,-1,-1,-1,360,360,360,360,1440,360,360,360,360,1440,360,360,0
+26951,340000,male,2,2,41,-2,-2,-2,-2,-2,-2,186,3823,-20,4016,6209,2081,3842,0,4036,6254,2091,1917,0
+26952,110000,male,1,2,30,0,0,0,0,2,2,60290,61688,63100,70391,68661,77511,3000,3000,9000,0,10000,3000,0
+26953,50000,male,2,1,41,0,0,0,0,0,0,8988,6849,7471,8043,19526,7564,1200,2000,2000,3000,1000,10640,0
+26954,20000,male,2,1,40,0,0,0,0,0,0,10288,9276,5622,19263,18433,26132,3010,2010,15000,4000,2000,2000,0
+26955,16000,male,5,1,46,0,0,0,0,0,2,22058,24367,26965,29521,32032,31385,3000,3000,3000,3000,0,2000,0
+26956,60000,male,1,2,31,0,0,0,0,-2,-2,57937,49740,51400,0,0,0,3000,3000,0,0,0,0,0
+26957,70000,male,1,2,31,1,2,2,2,0,0,23633,22955,26574,25804,27454,25447,0,4000,0,2000,1000,1000,1
+26958,70000,male,2,1,34,0,0,0,0,2,0,27202,29424,31941,35087,34226,35514,3000,3000,4000,0,2000,8200,0
+26959,430000,male,1,2,35,-1,-1,-1,-1,-1,0,5454,2316,12457,26522,28951,11057,2328,12799,27888,29023,12,2929,0
+26960,60000,male,2,2,39,0,0,2,0,0,0,58538,61359,58147,59399,37746,37794,6000,0,2500,1316,1401,3000,0
+26961,200000,male,1,1,46,-1,-1,-1,-1,-1,-1,28910,6581,1894,8604,3547,43097,6593,1894,8615,3563,43097,0,0
+26962,160000,male,2,1,39,1,3,2,2,2,2,47675,47243,48328,49183,48237,51937,500,2000,1800,0,4500,0,0
+26963,200000,male,3,1,40,0,0,-1,0,0,-2,205277,127,3627,6303,73,-63,269,3700,3000,390,128,90000,0
+26964,500000,male,1,1,43,0,0,0,0,0,0,124362,126860,129576,129863,120781,98163,4567,4787,4745,4256,3321,3326,0
+26965,50000,male,2,1,43,-1,2,-1,-1,2,-1,780,390,390,650,260,520,0,390,650,0,800,800,1
+26966,220000,male,1,2,38,0,0,0,0,0,0,209044,211453,217237,198681,202479,206221,7705,9656,7189,7404,7490,7517,0
+26967,180000,male,2,1,48,0,0,0,0,0,0,178440,176624,76565,82825,81763,66120,8000,10000,10000,10000,10000,3000,0
+26968,310000,male,2,2,35,0,0,0,0,0,0,124617,126982,125072,126416,132772,137519,6015,5006,5006,10004,8007,5017,0
+26969,80000,male,3,1,41,0,0,0,0,0,0,35646,38040,39562,40427,43417,46878,3000,2135,2000,3500,4000,3000,0
+26970,50000,male,2,2,37,0,0,0,0,0,0,44756,45746,47010,47277,17410,17002,1736,2000,1267,1000,620,1000,0
+26971,400000,male,1,1,43,-2,-2,-1,-1,-1,-1,-5,-5,5498,3259,5949,1111,0,5503,3262,5966,1111,2420,0
+26972,280000,male,1,2,32,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+26973,100000,male,1,2,32,0,0,0,0,2,0,99573,159480,56267,11788,11400,11419,2787,1353,1739,0,1000,1147,0
+26974,350000,male,2,1,42,0,0,0,0,0,0,195639,196554,177597,181702,176253,179190,7200,7000,7007,7000,6500,6500,0
+26975,10000,male,3,2,41,0,0,0,0,0,0,4520,3483,6862,8727,8148,8640,2000,4946,2000,1000,1000,1000,0
+26976,100000,male,2,2,35,2,0,0,0,0,0,92590,93354,69674,71097,72913,74738,3251,2600,2582,3000,3000,3000,0
+26977,240000,male,1,1,38,-1,-1,-1,-1,-1,-1,3833,4890,4157,14342,11411,3006,4890,4164,14371,11411,3006,13336,0
+26978,500000,male,1,1,46,-2,-2,-2,-2,-2,-2,0,0,1656,1400,0,0,0,1656,1400,0,0,0,0
+26979,50000,male,3,1,36,3,2,2,2,2,-1,150,150,150,150,150,930,0,0,0,0,930,0,1
+26980,30000,male,2,1,33,0,0,0,0,0,0,59867,28357,29312,26404,25806,26325,1500,1433,1500,920,929,0,1
+26981,360000,male,1,1,41,-2,-2,-2,-2,-2,-2,2988,0,668,0,686,7149,0,668,0,686,7149,150,0
+26982,250000,male,1,1,49,0,0,0,0,0,0,236430,243445,246357,250942,205081,209309,11000,11500,11000,7500,7500,8000,0
+26983,260000,male,2,2,29,0,0,0,0,0,2,190074,193244,182514,185491,197985,315366,6847,6846,8186,20000,0,10000,0
+26984,50000,male,3,1,40,0,0,0,0,0,0,46850,31923,47574,7613,7613,7756,2068,18135,2000,1000,1000,2000,0
+26985,550000,male,2,2,33,-2,-2,-2,-2,-2,-2,-509,-1925,4532,13069,5071,8276,15,10014,20000,10000,10000,7548,0
+26986,420000,male,1,1,46,2,2,2,0,0,0,426429,436968,428712,425345,354852,353113,19000,0,16100,13000,14064,111170,1
+26987,130000,male,2,1,35,0,0,0,-2,-2,-2,129902,134400,0,0,0,0,7000,0,0,0,0,0,0
+26988,320000,male,2,1,46,0,0,0,0,0,0,345408,340055,332945,327229,320032,290003,15004,13004,13004,11120,11004,11010,0
+26989,50000,male,3,2,47,0,0,0,0,0,0,15019,16026,17257,41868,23201,18623,1263,1494,25105,728,651,624,0
+26990,310000,male,1,1,45,-2,-2,-2,-2,-2,-2,8918,13813,6099,6255,5512,5451,14000,6129,6286,5539,5478,3613,0
+26991,340000,male,1,1,49,-2,-2,-2,-2,-2,-2,1689,655,361,301,457,297,655,361,301,457,297,366,1
+26992,280000,male,1,1,37,-1,-1,-1,-1,-1,-1,22398,30002,1715,4408,2517,29987,30422,1721,4428,2528,30135,8302,0
+26993,250000,male,1,1,32,-1,-1,0,0,0,0,207,4907,6833,8766,9539,9779,4907,2000,2000,1000,319,247,0
+26994,80000,male,2,3,40,0,0,0,0,0,0,72185,76854,72408,72832,46473,50329,12660,4573,3500,2000,5000,2000,0
+26995,230000,male,3,2,29,1,-1,-1,-1,-1,-1,-4,1496,4872,0,1241,-383,1500,5000,0,1241,0,2000,1
+26996,330000,male,2,2,37,0,-1,-1,-1,-1,-1,16270,140,500,1226,-1121,1879,140,1500,1226,0,3000,3000,0
+26997,350000,male,3,2,41,-2,-2,-2,-2,-2,-2,-331,1656,1440,27000,872,12600,2155,1440,27000,872,12600,0,0
+26998,280000,male,1,2,35,1,-1,-1,-1,-1,-1,0,416,832,0,832,416,416,832,0,832,416,0,0
+26999,140000,male,1,2,36,2,0,0,0,0,0,75384,74177,65336,53578,49288,43870,4000,4000,3500,2000,2500,1800,1
+27000,130000,male,3,1,43,2,2,2,2,2,2,55544,57428,58917,60352,61167,63042,3400,3000,3000,2400,3000,2400,0
+27001,200000,male,2,1,35,0,0,2,0,0,2,187487,200774,196933,187887,101278,99382,16000,0,6451,9000,0,4000,1
+27002,280000,male,1,2,37,-1,-1,-1,-1,-1,-1,1695,5827,10190,2355,3612,586,6644,10200,2355,3612,4248,0,0
+27003,20000,male,3,2,36,-1,0,-1,-1,0,0,16842,16300,390,14536,7446,0,1000,390,14536,149,0,8346,0
+27004,50000,male,3,1,47,0,0,0,0,0,0,12975,13982,15315,16019,16336,16678,1230,1563,1267,584,605,609,0
+27005,30000,male,3,1,28,2,2,2,2,2,2,23027,23848,23873,24182,26022,27462,1500,700,1000,2550,2013,1108,1
+27006,60000,male,5,2,32,0,0,0,0,0,0,57505,51934,40855,37742,29450,8850,1800,2000,2000,1400,200,600,0
+27007,50000,male,2,1,32,0,0,0,0,0,0,47842,48752,39937,25864,6990,9990,2097,1650,1500,2000,3000,0,0
+27008,20000,male,3,1,46,1,2,0,0,0,0,19450,18844,19853,19894,19993,20030,0,1626,1615,710,720,1587,0
+27009,100000,male,1,1,38,0,0,0,0,0,-2,46717,48435,49854,51400,0,0,2500,2500,3000,0,0,0,1
+27010,100000,male,2,2,34,0,0,0,0,-1,-1,19138,6630,4958,5314,390,390,1100,1254,1000,390,390,390,0
+27011,210000,male,2,1,39,-1,-1,-1,-1,0,0,600,169,497,15433,8500,10500,169,497,15436,170,2000,2822,1
+27012,20000,male,3,1,45,0,0,0,0,0,0,26400,27400,28400,29400,30000,0,1000,1000,1000,600,0,0,0
+27013,130000,male,2,2,33,1,-1,0,-1,0,0,0,870,390,11,1011,381,870,300,11,1000,300,500,0
+27014,290000,male,3,2,41,0,0,0,0,0,0,293281,268030,157691,158720,144085,143663,7948,22429,5530,4442,5887,5890,0
+27015,40000,male,1,2,45,-1,-1,-1,-1,-1,0,10567,264,3430,-147,672,5408,264,3430,0,24672,5000,3020,0
+27016,10000,male,2,1,33,0,0,0,0,0,0,10146,9352,9919,10400,10123,19813,1158,1200,1137,335,351,1000,0
+27017,360000,male,2,2,39,-1,-1,-1,-1,-1,-1,10027,8929,34635,26645,18088,8703,8975,34825,26674,18112,8719,4861,0
+27018,210000,male,3,1,44,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+27019,230000,male,1,2,39,-1,-1,-1,-1,2,-1,260,834,-150,517,53,603,1000,0,667,0,700,10200,0
+27020,60000,male,2,1,35,2,0,0,0,2,2,9501,10560,11312,13050,12578,14008,1500,1200,1900,0,1600,0,1
+27021,150000,male,1,2,35,0,0,0,0,0,0,150359,147471,151713,130107,78623,79743,15000,20000,5000,2000,7000,15000,0
+27022,230000,male,1,2,44,0,0,0,0,0,0,25949,27214,28472,29696,31393,33222,2000,2000,2000,2500,2500,3000,0
+27023,110000,male,1,2,35,3,2,2,3,3,2,450,450,450,450,450,300,0,0,0,0,0,288,1
+27024,150000,male,3,2,39,-2,-2,-2,-2,-2,-2,1580,2925,-551,-1944,-4430,-5813,2935,4,7,4,7,10004,0
+27025,350000,male,1,1,38,-1,-1,-1,-1,-1,-1,17999,38899,24620,22381,13115,5167,38933,24692,22388,13115,5167,11325,0
+27026,100000,male,3,2,44,0,0,0,0,0,0,90128,91542,92686,94122,53720,54866,4200,3900,3854,2000,2000,2000,1
+27027,200000,male,2,2,30,0,0,0,0,0,0,65342,63218,64594,65070,20478,13737,2856,3000,1367,475,344,581,0
+27028,200000,male,2,2,34,-2,-2,-1,0,-1,-1,541,-59,6817,7756,8835,13129,59,6876,1009,8837,13129,12184,0
+27029,10000,male,2,1,35,2,0,0,0,0,0,9242,9159,10004,9722,10044,9856,1315,1160,1139,1241,345,580,0
+27030,200000,male,1,2,30,0,0,0,0,0,0,46288,48205,49352,49682,50588,42629,3000,2300,2000,2000,1500,1189,0
+27031,240000,male,2,1,34,0,0,0,0,0,0,194548,198522,206312,205804,122740,137740,7200,11000,6000,3000,15000,45,0
+27032,290000,male,1,2,38,-2,-2,-2,-2,-2,-2,2318,1818,2057,2278,1224,-57060,1827,2066,2287,1242,1827,60860,0
+27033,80000,male,2,2,31,0,0,0,0,0,0,73414,69998,72368,77505,78845,74182,3000,3500,7000,3100,3000,3000,0
+27034,80000,male,2,1,39,2,2,2,2,2,2,51193,50954,55132,56629,57405,58742,1200,5000,3000,2300,2400,0,1
+27035,320000,male,1,2,29,0,0,0,-1,-1,-1,46758,31422,33619,23553,9398,4296,2563,9842,24709,6022,4318,4522,0
+27036,140000,male,3,1,39,1,2,2,2,0,0,89592,92225,93890,91013,91535,93065,5000,4000,0,3000,7893,2660,1
+27037,60000,male,2,2,32,-1,2,-1,2,0,0,2178,1755,58197,50485,37710,38073,0,58197,0,2000,1366,2000,0
+27038,150000,male,5,1,34,0,0,0,0,0,0,92000,94000,96000,98000,100000,0,2000,2000,2000,2000,0,0,0
+27039,20000,male,3,1,39,-1,2,2,2,-1,-1,780,780,390,0,780,0,390,0,0,780,0,0,0
+27040,50000,male,2,1,44,0,0,-1,-1,-2,-2,3201,0,5701,0,0,0,0,5701,0,0,0,0,1
+27041,150000,male,2,2,35,0,0,0,0,0,0,66662,61331,56523,56737,51005,47471,2116,2549,2406,2000,1655,2111,0
+27042,20000,male,2,2,36,0,0,0,2,0,0,16419,17139,20159,19533,19928,19695,1300,3300,0,1000,1000,900,0
+27043,80000,male,3,2,46,2,0,0,0,0,0,77142,78255,79425,70583,48308,46049,3000,3055,3047,1663,1692,1618,1
+27044,50000,male,2,1,36,-1,-1,-1,-1,0,0,630,815,1104,9182,8989,8443,1000,1104,9182,275,801,184,0
+27045,190000,male,1,1,48,0,0,0,0,-2,-2,189158,150621,153900,0,0,0,6561,6900,0,0,0,0,0
+27046,190000,male,3,2,35,0,0,0,0,0,0,170928,170290,175630,171572,161319,151119,6500,8031,7510,5500,6000,5500,0
+27047,140000,male,2,2,30,-1,-1,-1,-1,-1,-1,44300,54700,34050,3000,3000,49128,54700,34050,3000,3000,49128,5000,0
+27048,160000,male,2,2,33,0,0,0,0,0,0,78859,81539,84216,86812,87679,90264,4000,4000,4000,3200,4000,4000,0
+27049,580000,male,1,1,35,-2,-2,-1,0,-1,0,9238,0,1758,2886,3733,3040,0,1758,2014,3793,7,2138,0
+27050,500000,male,1,1,43,1,-2,-2,-2,-1,-1,0,0,0,0,177,4716,0,0,0,177,4716,1000,0
+27051,130000,male,2,1,38,0,0,0,0,0,0,61105,61386,62681,64743,45288,48449,3000,4000,5000,3000,5000,2000,0
+27052,300000,male,3,1,44,-1,-1,-1,-1,-1,-1,530,25576,1561,2106,2656,4274,25576,1561,2106,2656,4274,4310,0
+27053,300000,male,2,1,45,1,-1,0,0,0,0,114324,238058,236220,233586,234661,233304,244500,8613,8000,11000,8093,6399,1
+27054,120000,male,2,2,34,-1,-1,-1,-1,-1,-1,1236,856,856,856,856,856,856,856,856,856,856,856,0
+27055,220000,male,1,2,30,-2,-2,-2,-2,-2,-2,2895,-1,-1,300,90,2194,0,0,301,90,2204,547,0
+27056,10000,male,2,1,44,-1,-1,-1,-1,-1,-2,390,390,0,780,0,0,390,0,780,0,0,0,0
+27057,60000,male,2,1,47,0,0,0,0,0,2,29324,30333,31835,33602,38127,37382,1500,2000,2300,5100,0,2000,1
+27058,150000,male,3,2,32,-1,-1,-1,-1,-1,-1,1437,162,116,162,530,367,162,116,162,530,367,111,0
+27059,130000,male,2,2,41,0,0,0,0,0,0,124391,126032,123746,123107,42897,39378,4442,5200,5012,2500,5000,2000,0
+27060,210000,male,3,1,49,0,0,0,0,0,0,27984,27686,29209,28326,26198,25020,1500,2000,1500,1000,1500,1300,0
+27061,70000,male,2,2,36,0,0,0,0,0,0,20857,22199,23834,25353,27075,28092,2000,2000,2000,2000,3000,830,0
+27062,130000,male,2,1,37,0,0,0,2,2,2,25991,28053,30891,30096,32169,31520,2500,3300,0,2578,0,3225,1
+27063,70000,male,3,1,46,1,2,2,2,2,2,11300,10822,13633,13117,14096,13727,0,3000,0,1200,0,1500,1
+27064,260000,male,6,1,48,0,0,0,0,0,0,135437,65892,60762,52402,51391,43070,19020,19002,19001,20002,18063,119660,1
+27065,60000,male,2,2,29,0,0,0,0,0,0,50901,54050,54555,15177,16610,16821,4000,2500,2000,2000,628,3525,0
+27066,110000,male,1,2,33,0,0,0,0,0,0,9495,12633,88334,53978,23687,26567,4018,80004,1500,12013,7000,2000,0
+27067,230000,male,2,1,33,1,-1,-1,-1,-1,-1,0,1427,0,198,0,525,1427,0,198,0,525,0,0
+27068,100000,male,3,2,33,1,-2,-1,2,-1,0,0,0,1991,1991,93536,95373,0,1991,0,93536,3500,8000,0
+27069,360000,male,3,1,42,0,0,0,0,0,0,226988,217735,207215,197096,187693,177338,8006,7506,7006,7006,6103,5506,0
+27070,120000,male,1,1,43,-1,-1,-1,-1,-1,-1,3131,4176,2541,5648,4122,0,5126,2557,5667,4144,0,3463,0
+27071,230000,male,3,2,41,0,0,0,0,0,0,9552,11376,13185,14648,15419,15423,2000,2000,2000,1000,562,2000,1
+27072,150000,male,2,2,31,0,0,0,0,0,0,19057,20091,21423,23927,25718,136667,1500,1500,3000,2000,111338,4000,0
+27073,450000,male,1,2,31,1,2,2,2,-2,-2,153246,151659,10199,0,0,0,4009,2000,0,0,0,0,1
+27074,150000,male,1,2,31,2,2,2,2,2,3,57504,58590,64813,63048,120660,122762,2500,7628,0,61923,4500,3900,1
+27075,170000,male,1,1,41,0,0,0,0,0,0,70317,56742,49176,41969,37409,36214,2579,5019,10041,5012,5024,5012,0
+27076,270000,male,1,1,40,0,0,0,0,0,0,3686,4699,5718,6727,6861,7005,1084,1103,1112,246,255,651,0
+27077,500000,male,1,2,38,-2,-2,-2,-2,-2,-2,0,0,0,8086,0,0,0,0,8086,0,0,0,0
+27078,300000,male,1,1,35,-1,-1,-1,-1,-2,-2,1246,1217,338,0,0,0,1217,338,0,0,0,0,0
+27079,150000,male,1,1,35,-1,-1,-1,-1,-1,-1,18786,6879,16643,4869,9157,9624,6879,16701,4883,9199,9652,443,0
+27080,360000,male,1,2,34,0,0,0,0,0,0,350178,359050,366591,331833,288709,290583,15000,15502,13801,9852,10224,10010,0
+27081,110000,male,2,1,42,0,0,0,0,2,2,70265,74102,77901,84592,82350,87186,5000,5000,8000,0,7000,0,1
+27082,360000,male,1,1,38,0,0,0,-1,0,0,47026,88355,54913,25407,22179,337,48564,10072,25821,609,1,10425,0
+27083,220000,male,1,2,37,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+27084,230000,male,1,2,45,0,0,0,0,0,0,92129,92690,93596,79320,64268,65193,3510,3998,2431,1697,1971,2046,0
+27085,500000,male,3,1,47,-1,-1,-1,-1,-1,0,1665,1665,1665,1665,8805,8764,1666,1666,1666,8806,1625,2808,0
+27086,210000,male,2,1,43,0,0,0,0,0,0,48540,38410,40291,31869,32186,25554,4000,5013,4000,5000,5000,5000,0
+27087,500000,male,2,1,47,-1,-1,-1,-1,-1,-1,18463,17849,12818,5674,11416,36000,18011,12818,5674,11416,36018,14537,0
+27088,30000,male,3,1,33,3,2,2,0,0,2,19932,20708,20089,22717,26073,25583,1400,0,3000,5000,0,800,1
+27089,490000,male,3,1,45,0,0,2,0,0,0,56294,57088,55597,55040,51938,60606,8000,0,5000,3000,10000,3000,0
+27090,240000,male,2,1,48,0,0,0,0,0,0,236767,236769,238769,235603,233374,230897,8622,8922,8519,8499,8418,8420,0
+27091,200000,male,1,1,46,2,2,2,2,2,2,64158,65506,66872,65199,79104,80692,3000,3000,0,15000,3000,3000,1
+27092,490000,male,2,2,42,0,0,0,0,0,0,455520,464727,477884,488808,427064,436172,16100,20000,19000,16000,16000,15000,0
+27093,240000,male,2,1,47,0,0,0,0,-1,-1,205495,236484,243567,44351,193283,21682,34700,11005,8006,202000,8505,377000,0
+27094,160000,male,1,2,29,-1,-1,-2,-1,0,0,4908,0,0,3166,3166,0,0,0,3166,0,0,4493,0
+27095,60000,male,2,2,30,-1,-1,2,-1,-1,-1,921,1498,749,749,58852,6295,1498,0,749,58852,6295,0,0
+27096,160000,male,5,2,40,0,0,0,0,0,0,152240,152159,154523,156121,118248,119911,7650,6300,4800,3800,4600,4300,0
+27097,400000,male,3,1,42,0,0,0,0,0,0,95014,97074,98274,84698,58612,55610,5000,3532,4005,1482,1452,3000,1
+27098,320000,male,2,1,33,0,0,0,0,0,0,254065,136709,81130,103543,105623,107549,68000,12000,25000,3208,4031,94390,0
+27099,340000,male,1,2,38,-1,-1,-2,-2,-2,-2,9054,1868,1135,0,0,0,1868,1144,0,0,0,0,0
+27100,240000,male,3,1,45,0,0,0,0,0,0,135367,135091,133047,132264,130372,133170,6300,4800,4737,4667,4900,4849,0
+27101,100000,male,1,2,30,2,2,2,0,0,2,33217,34372,33543,34260,36580,37347,2000,0,1580,2900,1500,1600,1
+27102,50000,male,1,1,46,0,0,0,0,2,2,13176,15945,17180,18811,18380,19086,3000,1500,2000,0,2000,0,0
+27103,200000,male,1,1,36,1,-2,-2,-1,0,-1,-95,-95,-95,5,1005,21,0,0,100,1000,500,0,0
+27104,280000,male,3,1,44,0,0,0,0,0,0,38242,41083,55444,57115,54076,58155,4000,15000,3026,3000,8043,2000,0
+27105,360000,male,2,1,37,-2,-2,-2,-2,-2,-2,346,9138,-1,377,2899,376,9182,0,378,2912,377,3208,0
+27106,20000,male,2,1,43,2,2,2,2,4,3,14301,17069,17818,20251,19657,19072,3000,1300,3000,0,0,0,1
+27107,160000,male,0,1,47,-1,-1,-1,-1,0,-1,386,907,3707,6987,3853,4613,907,3707,6991,77,4613,4099,0
+27108,30000,male,2,2,29,7,6,5,4,3,2,33666,32875,32101,31071,30136,28496,0,0,0,0,0,1642,1
+27109,90000,male,1,2,29,2,2,2,2,2,2,11512,12524,13523,13704,13882,14015,1500,1500,700,700,500,0,1
+27110,20000,male,2,1,43,0,0,0,0,0,0,12721,14102,14870,16116,16436,16781,1600,1300,1500,588,610,611,1
+27111,100000,male,3,2,30,0,0,0,0,2,2,37709,39588,42455,45173,46134,45263,2500,3500,3420,2000,0,6000,1
+27112,20000,male,3,1,40,3,2,2,2,2,2,300,300,300,300,300,300,0,0,0,0,0,0,1
+27113,300000,male,3,1,40,0,0,0,0,0,0,39883,42349,44095,46502,47578,48959,3000,2600,3000,2000,2000,2000,0
+27114,70000,male,2,2,31,0,0,0,0,0,0,67958,66157,67569,67127,66483,65251,2500,2486,2700,2700,2500,3000,0
+27115,10000,male,1,1,42,4,3,2,2,2,0,6744,6494,6247,7975,7701,7787,0,0,2000,0,359,331,0
+27116,50000,male,2,2,42,0,0,0,0,0,0,7217,8291,9649,10975,11292,11610,1200,1500,1500,500,500,500,0
+27117,280000,male,2,1,40,1,2,0,0,0,0,238094,228523,191098,160149,154421,156022,0,8000,6000,5000,10000,5000,0
+27118,10000,male,3,2,44,1,2,0,0,0,0,7816,7542,8561,9571,9761,10106,0,1149,1159,349,502,200,0
+27119,10000,male,2,1,29,0,0,0,0,0,0,8275,8409,8600,9470,6690,9690,2800,2000,1500,900,3000,0,1
+27120,20000,male,1,2,29,0,0,0,2,0,0,13835,14897,17512,16926,17368,17959,1600,3170,0,1000,1000,3000,0
+27121,200000,male,1,2,30,0,0,0,0,0,-1,70185,71417,73534,74785,79985,3065,3000,3000,2000,5400,3080,998,0
+27122,140000,male,2,1,34,0,0,0,0,0,0,70649,72069,74140,76421,82223,84296,3100,3140,3421,7000,3296,3283,0
+27123,100000,male,1,2,32,0,0,0,0,0,0,83845,87580,84140,86400,87275,89082,4500,3300,3881,2500,2519,2700,0
+27124,170000,male,1,2,33,-1,-1,-1,-1,-1,-1,2371,316,316,316,316,316,316,316,316,316,316,1316,0
+27125,160000,male,3,1,33,-1,-1,-1,-1,-1,-1,326,326,326,326,326,326,326,326,326,326,326,326,0
+27126,190000,male,2,2,38,0,0,0,0,-1,-1,3816,4575,5029,6494,678,11928,1100,1300,2000,678,11514,0,0
+27127,180000,male,2,2,36,0,0,0,0,0,0,134496,136613,133557,129909,133043,133835,6600,6600,6000,6000,6000,5000,0
+27128,500000,male,1,1,36,1,-2,-2,-2,-2,-2,-44,-44,-44,-44,-44,-44,0,0,0,0,0,0,0
+27129,340000,male,1,1,42,-2,-2,-2,-2,-2,-2,6888,2913,340,2823,13045,14006,2913,340,2823,13062,14016,4513,0
+27130,120000,male,3,1,42,2,2,-2,-2,-2,-2,61650,0,0,0,0,0,0,0,0,0,0,0,1
+27131,180000,male,1,1,38,0,0,0,0,0,0,21336,22376,23412,25013,25899,26680,1400,1400,2000,1300,1200,1000,0
+27132,200000,male,3,1,48,-2,-2,-2,-2,-2,-2,2772,3831,8640,433,14398,3475,4127,8683,436,14595,3516,7651,0
+27133,230000,male,1,1,45,0,0,0,0,0,0,24901,26071,27937,28774,29202,29683,1500,2200,2000,1100,1000,980,0
+27134,120000,male,1,2,27,0,0,0,0,0,0,45375,52437,50473,45087,35424,31760,12000,5024,5000,5000,4000,5000,0
+27135,150000,male,1,2,46,0,0,0,0,0,0,69627,49082,50170,46725,100503,54798,5000,3000,3000,5000,10000,5000,0
+27136,80000,male,2,2,27,1,2,-1,-1,-1,-1,3751,832,2696,1457,990,3356,2,2704,1461,993,3366,5012,1
+27137,90000,male,2,2,27,0,0,2,0,0,0,49271,51425,47756,45977,43936,37142,3011,1207,1619,1576,1600,2000,0
+27138,200000,male,1,2,28,-1,-1,-1,-1,-1,-1,5838,2256,9552,4215,3400,3286,2256,9588,5135,3487,3295,7791,0
+27139,240000,male,3,2,28,0,0,-1,-1,-2,-2,22334,13842,1425,10591,1793,1509,3851,1467,10594,1802,1516,1193,0
+27140,120000,male,1,2,28,0,0,0,0,0,0,120942,118576,118240,116142,115087,117647,4585,5923,4533,4200,4433,4241,0
+27141,120000,male,2,2,29,1,-1,-1,-1,0,-1,0,326,326,652,326,326,652,326,652,0,326,326,1
+27142,230000,male,1,1,29,2,0,0,0,0,0,306836,295324,303082,307038,116506,19085,9062,10978,10361,2507,490,308,0
+27143,230000,male,1,2,34,-1,-1,-1,-1,-1,-1,476,476,476,476,476,4145,476,476,476,476,4145,476,0
+27144,250000,male,1,2,32,3,2,2,2,2,2,2500,2500,2500,2500,2500,2500,0,0,0,0,0,0,1
+27145,330000,male,1,2,32,0,0,-2,-2,-2,-2,16352,0,0,0,0,0,0,0,0,0,0,0,1
+27146,470000,male,2,1,32,0,0,0,0,0,0,176838,181224,143173,145293,148871,152309,9000,7000,6000,6000,6000,6000,0
+27147,310000,male,1,1,33,2,2,-2,-2,-2,-2,2500,0,0,0,0,0,0,0,0,0,0,0,1
+27148,20000,male,3,1,48,-1,0,-1,-1,2,0,1522,1261,1261,2126,1573,1170,1000,1261,2126,0,0,150,1
+27149,150000,male,3,2,45,-1,-1,-1,-1,-1,0,6129,6051,5901,671,37082,34725,6051,5901,671,37082,5000,5000,0
+27150,30000,male,2,1,35,1,-1,-1,2,0,0,0,26232,29093,28319,29064,28658,26232,3300,0,1200,1100,1500,1
+27151,330000,male,1,1,37,-1,-1,-1,-1,-1,-1,694,0,2023,-22,2870,860,0,2023,0,2892,1059,1727,0
+27152,180000,male,1,1,42,-1,-1,-1,-2,-2,-2,1568,1550,-18,-18,-18,-18,1550,0,0,0,0,0,0
+27153,360000,male,2,1,38,-2,-2,-2,-2,-2,-2,1288,2508,2500,0,0,0,2520,2500,0,0,0,0,0
+27154,150000,male,2,1,43,0,0,0,0,0,0,122084,126042,128706,131333,133974,136907,5000,3700,3719,3756,4031,3914,0
+27155,280000,male,3,3,42,1,-2,-1,0,0,0,-191,-191,5612,6917,10247,11822,0,6100,4000,3500,2500,2000,0
+27156,130000,male,3,1,39,0,-1,-1,-1,-1,-1,51790,390,390,390,390,390,390,390,390,390,390,390,0
+27157,240000,male,2,1,47,0,0,2,2,0,0,125055,133825,136232,132569,135007,34036,12400,6000,0,5806,2198,1207,0
+27158,90000,male,2,1,41,0,0,-1,0,0,0,3014,-1750,76674,77974,80064,81747,1757,79786,2836,3657,2972,6228,0
+27159,190000,male,2,1,41,0,0,0,2,0,0,66506,67540,116043,107533,89331,91477,3000,50030,130,5000,4000,5000,0
+27160,20000,male,1,1,41,0,0,0,0,0,0,19796,18510,16077,16389,11286,12833,1507,4011,5066,1003,7000,3000,0
+27161,50000,male,2,1,40,0,0,2,2,2,2,42511,46526,46831,50799,50540,48700,5000,2175,5520,2000,302,2000,1
+27162,160000,male,1,2,27,-1,-1,-1,-1,-1,-2,1111,1111,0,6795,0,0,1111,0,6795,0,0,0,0
+27163,60000,male,3,2,31,2,2,2,2,0,0,31649,30841,34336,33489,35615,38027,0,4000,0,3000,3000,2000,1
+27164,150000,male,1,2,27,0,0,0,0,0,0,56918,58368,59830,60134,26607,0,3000,3000,2000,0,0,0,0
+27165,100000,male,1,2,27,2,0,0,2,2,2,34694,36014,39321,39145,39494,39896,1900,4200,900,1400,900,6440,1
+27166,60000,male,2,1,35,2,2,2,2,2,2,20195,21267,21332,21680,23011,23498,1700,700,1000,2000,1000,0,0
+27167,220000,male,1,1,37,-1,-1,-1,0,-1,-1,8821,17039,7113,9574,1727,4201,20059,7540,9571,1739,4918,0,0
+27168,130000,male,1,2,49,2,2,2,2,2,2,68739,70024,68345,72487,73591,75161,3000,0,5900,2900,2900,2900,1
+27169,10000,male,3,2,42,1,2,2,2,0,0,8090,6339,8623,5885,4417,5190,0,2586,0,1000,1000,345,1
+27170,200000,male,3,2,31,0,0,0,-2,-1,0,6492,6069,-202,1201,1200,0,1050,0,1302,100,0,0,0
+27171,150000,male,3,1,42,0,0,0,0,0,0,148826,148568,151864,147485,106607,98109,6000,6012,5012,5000,4000,4000,0
+27172,100000,male,1,2,32,0,0,0,0,0,0,26650,26127,26608,24689,25699,26809,2000,2000,2000,1700,1500,1500,0
+27173,300000,male,2,2,36,2,2,2,2,2,2,285177,291282,293497,293046,291883,297169,13003,9003,8114,4403,8838,604,1
+27174,160000,male,1,2,30,1,-1,-1,-1,0,-1,0,650,0,650,325,325,650,0,650,0,325,325,1
+27175,500000,male,1,2,31,0,0,-1,-1,-1,-1,30056,18415,1697,-107,2693,5393,6000,1697,0,2800,5400,8300,0
+27176,80000,male,3,2,34,0,0,0,0,0,2,72463,77862,78520,69750,48707,47418,7000,3000,3000,3600,0,2000,1
+27177,90000,male,2,1,31,0,0,2,0,0,0,77107,93894,91508,86167,49479,50704,20000,0,3752,1726,2003,2000,0
+27178,320000,male,1,1,33,-2,-2,-2,-2,-2,-2,1877,4094,4664,3878,22483,4097,4114,4687,3985,22595,4117,5838,0
+27179,390000,male,1,1,35,-1,-1,0,0,0,0,14673,83728,67892,65246,68949,52724,83728,2637,2576,5000,2724,2000,0
+27180,30000,male,2,1,40,1,4,3,2,2,3,14557,14039,13528,13810,14488,13971,0,0,800,1200,0,0,1
+27181,170000,male,2,1,34,1,-2,-1,-1,0,0,-8,-8,2698,6951,12753,12023,0,2706,6954,7002,241,13074,0
+27182,200000,male,1,2,36,2,2,2,0,0,0,89082,91055,89064,90019,92850,98666,4000,0,3000,4000,7000,4000,1
+27183,380000,male,5,1,48,-1,-1,-1,-1,0,-1,17670,10179,11824,23991,13944,20962,10233,13826,24071,4065,21061,28484,0
+27184,260000,male,1,1,43,-1,-1,-2,-2,-1,-1,1350,0,0,0,760,0,0,0,0,760,0,935,0
+27185,360000,male,1,1,32,-1,-1,-1,-1,-1,-1,7462,2708,5562,3906,8413,3079,2721,5588,3924,8454,3093,4095,0
+27186,240000,male,1,1,35,-1,-1,-1,0,-1,-1,2024,2007,21790,17102,13367,22659,2017,21817,1120,13434,22772,22820,0
+27187,100000,male,1,2,31,1,2,2,0,0,2,20505,22553,21904,23531,24636,25592,2700,0,2000,1500,1500,0,0
+27188,90000,male,2,1,39,0,0,0,0,0,0,88081,83960,84963,56089,57355,58394,3244,2600,2037,2200,2110,7000,1
+27189,290000,male,2,2,38,-1,-1,-1,-1,-1,-1,72607,1995,2791,4644,2936,2245,2003,2803,4680,2956,2254,1811,0
+27190,80000,male,3,2,42,0,0,2,0,0,0,11204,17587,17405,20207,23308,26406,6922,441,3450,3541,3545,3649,0
+27191,240000,male,1,1,39,-1,-1,-1,-1,-1,-1,14719,3192,4389,10179,5413,1899,3192,4397,10179,5413,1899,21986,0
+27192,30000,male,1,2,29,0,0,0,0,0,-1,17960,18968,19958,21448,15567,22,1610,1600,2050,341,22,5000,0
+27193,30000,male,2,1,42,2,0,0,0,0,0,29492,29329,30720,29204,28219,28501,1488,1879,1624,900,900,900,0
+27194,50000,male,2,2,33,0,0,0,0,0,0,18844,20039,21076,20578,19046,18998,1500,1371,2000,2000,1000,1000,1
+27195,180000,male,3,1,37,-1,-1,-1,0,-1,-1,1170,420,2745,3053,1012,1312,420,2745,1000,1392,1312,1110,1
+27196,310000,male,2,1,32,0,0,0,0,0,2,11416,15864,18599,21277,25896,25354,5000,3000,3000,5000,0,1000,0
+27197,80000,male,1,2,35,0,0,0,0,0,0,52132,52568,54108,55310,48198,43536,3000,3000,3000,2000,2000,2000,0
+27198,50000,male,2,1,42,1,2,0,0,-1,2,49559,48019,45368,-500,7907,7258,0,2200,0,8407,0,1000,0
+27199,390000,male,3,2,35,0,0,0,0,0,0,55213,59122,72930,76543,78143,77763,10000,20000,10000,8000,6000,5000,0
+27200,440000,male,1,2,39,0,0,0,0,0,0,120448,115977,104887,86807,71641,12420,3939,3506,3589,3061,1031,1044,0
+27201,50000,male,2,2,30,1,-1,-1,-1,0,0,0,676,-104,9732,9927,9339,676,0,10500,337,333,407,0
+27202,210000,male,1,1,33,0,0,0,0,0,0,154714,150011,139854,138054,136674,136196,4830,4700,4515,4426,4436,4765,0
+27203,230000,male,3,2,34,0,0,0,0,0,0,137122,138268,127797,130490,110153,112253,6700,6500,6513,4601,5000,5000,0
+27204,50000,male,2,1,43,0,0,0,0,0,0,27681,28287,28924,29521,29876,30201,1458,1485,1472,1217,1347,558,0
+27205,100000,male,3,2,48,-1,-1,2,2,-1,-1,390,780,390,0,780,0,780,0,0,780,0,0,1
+27206,80000,male,1,1,46,2,2,2,2,2,2,40509,40551,42592,43296,43892,43060,1000,3000,1700,1600,0,3500,0
+27207,250000,male,3,1,28,0,0,0,0,0,0,249827,191305,90497,92278,93354,95309,8500,3899,3913,3186,3301,3525,0
+27208,150000,male,3,1,45,-2,-2,-2,-2,-2,-2,389,349,8362,882,1594,1385,350,8403,886,1602,1391,1156,0
+27209,140000,male,3,1,42,0,0,0,0,0,0,137952,141168,143215,61586,70626,72723,7000,6110,5000,10014,5011,5005,0
+27210,530000,male,1,1,35,0,0,0,0,0,0,339912,335081,333120,304353,282876,288945,12188,12639,11123,9600,10028,16947,0
+27211,20000,male,1,2,30,2,2,2,2,0,0,16855,17272,19820,19104,19646,20527,1000,2832,0,658,1151,0,1
+27212,130000,male,1,1,29,0,0,0,0,0,0,71051,67664,66258,62697,48210,46255,3000,3000,6000,2000,2000,2000,0
+27213,20000,male,3,2,34,1,4,3,2,2,2,15526,14996,14474,13944,15073,14692,0,0,0,1363,0,2000,0
+27214,50000,male,2,1,38,3,2,3,2,2,2,33759,36388,35527,36247,35367,37537,3500,0,1600,0,2900,0,1
+27215,470000,male,3,2,37,2,2,0,0,0,0,519901,499024,494290,470617,398523,389927,0,20600,19000,14000,13600,13600,1
+27216,310000,male,2,2,41,0,0,0,0,0,0,369398,342174,298536,168389,151755,73083,10250,9278,7000,7000,5000,188000,0
+27217,180000,male,2,1,49,-2,-2,-2,-2,-2,-2,0,0,0,0,45,0,0,0,0,45,0,2380,0
+27218,310000,male,1,1,45,-2,-2,-2,-2,-2,-2,8964,1168,6495,-16,-16,-16,1174,6527,0,0,0,0,0
+27219,160000,male,1,1,42,2,2,0,0,2,2,14137,13613,14634,16532,15969,17701,0,1247,2145,0,2000,0,1
+27220,500000,male,2,2,32,0,0,0,2,0,0,126599,132527,138945,142235,144959,148697,8000,8500,7000,7000,6000,15000,0
+27221,380000,male,2,1,37,0,0,0,0,0,0,288908,288614,245375,249931,209711,185920,12036,11483,9578,6884,6549,6520,0
+27222,250000,male,0,1,35,-2,-2,-2,-2,-2,-2,22839,7745,12035,33604,0,1190,7783,12046,33718,0,1190,590,0
+27223,500000,male,1,2,39,-1,-1,-1,-1,-1,0,22204,83528,-24702,23804,92715,6655,83643,472,113935,108041,33,3984,0
+27224,210000,male,1,2,33,-1,-1,-1,-1,-1,-1,10635,9921,2570,14722,11220,14800,10046,2570,14722,11220,14800,7250,0
+27225,250000,male,1,1,46,-2,-2,-2,-2,-2,-2,0,0,500,0,0,0,0,500,0,0,0,0,1
+27226,60000,male,1,2,28,0,0,0,2,0,0,59114,59350,62130,56391,39083,39122,2800,4905,10,1600,1600,1600,0
+27227,200000,male,2,1,44,-1,-1,-1,-1,-1,-1,4735,3668,21602,3760,2925,16751,3679,21666,4971,2933,16759,5010,0
+27228,200000,male,1,1,30,2,2,2,2,2,2,44411,45379,45858,45781,47401,40536,2000,1500,1000,2540,2000,0,1
+27229,20000,male,2,2,44,1,2,2,2,0,0,18330,17743,20346,19597,19086,16755,0,3208,0,600,453,138,0
+27230,360000,male,1,1,41,-2,-2,-2,-2,-2,-2,316,736,2178,316,1812,1510,736,2178,316,1812,1510,485,1
+27231,100000,male,2,1,39,0,0,-2,-2,-2,-2,91300,0,0,0,0,0,0,0,0,0,0,0,0
+27232,180000,male,2,1,37,0,0,0,0,0,0,102937,104598,85805,87462,89162,91609,5000,4100,4010,4000,4000,4000,0
+27233,380000,male,1,1,46,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+27234,50000,male,3,1,28,0,0,0,0,0,0,49468,49896,51057,49496,50688,50517,1900,2004,1900,2001,2200,2001,0
+27235,200000,male,1,2,32,0,0,0,0,0,0,141634,145060,148817,154033,155435,151806,5700,6000,7600,5421,5400,5316,0
+27236,200000,male,1,1,41,-1,-1,-1,-1,-1,-1,580,580,580,580,580,580,580,580,580,580,580,699,1
+27237,280000,male,1,2,32,0,0,0,0,0,0,217798,202676,199490,181857,183324,177920,10050,10123,10001,6244,6315,7037,0
+27238,200000,male,1,1,34,1,-2,-2,-1,0,0,0,0,0,41673,42312,36171,0,0,41673,1206,1444,618,0
+27239,150000,male,1,2,30,0,0,0,0,0,0,201864,121338,146685,137993,90715,92759,13230,31280,5979,7760,6000,260000,0
+27240,360000,male,2,1,31,0,0,0,0,0,0,359491,354962,276310,196654,186281,177587,14108,11100,6992,7000,6372,5845,1
+27241,230000,male,1,1,35,-2,-2,-2,-2,-2,-2,392,4106,2562,6245,394,987,4114,2566,6286,394,989,3129,0
+27242,240000,male,2,3,35,0,0,0,0,0,0,18392,16427,16475,14648,9384,8171,1505,1327,1500,500,500,2000,0
+27243,420000,male,1,1,40,-1,-1,-1,2,2,-2,4110,-150,6254,6023,0,0,0,6404,20,0,0,0,0
+27244,450000,male,1,1,37,-2,-2,-2,-2,-2,-2,16666,16662,19428,2994,23787,41175,16662,19432,3005,23788,41214,36472,0
+27245,10000,male,3,2,34,0,0,0,0,0,0,8820,8813,8464,9474,9716,9960,1100,2148,1158,400,400,400,0
+27246,100000,male,2,1,30,0,0,0,0,0,-2,37218,33720,24666,10550,0,0,1641,1200,1000,0,0,0,0
+27247,180000,male,1,1,45,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+27248,10000,male,3,2,43,0,0,0,0,0,0,9545,10443,7329,8343,8508,8686,1117,1125,2139,304,315,345,0
+27249,20000,male,3,2,43,0,0,0,0,0,0,15921,16930,17954,18966,19404,19962,1280,1304,1316,754,931,463,1
+27250,50000,male,1,2,32,0,0,2,3,2,2,15068,18303,20107,19496,18885,20581,3500,2400,0,0,2000,0,1
+27251,250000,male,1,2,32,-1,-1,-1,-1,-1,-1,55741,74048,29381,56372,34020,4575,74081,29403,56692,34055,4575,0,0
+27252,150000,male,2,1,48,0,0,0,0,0,0,118610,121098,123460,66902,68230,69661,4955,4947,3818,2442,2530,2538,0
+27253,30000,male,2,2,30,0,0,0,0,-1,0,29993,29890,28561,-229,23930,26655,1856,1000,1698,24860,3500,3000,0
+27254,500000,male,1,1,31,0,0,0,0,0,0,400780,408982,373137,316654,324049,294926,30000,25025,20000,15010,20000,0,0
+27255,120000,male,1,2,31,0,0,0,0,0,0,64670,68574,71849,74974,83137,51377,5000,5000,5000,10000,5000,5000,0
+27256,200000,male,1,2,31,-2,-2,-2,-2,-1,0,15321,1199,933,21227,55272,58587,5006,938,21380,58007,51413,7738,0
+27257,340000,male,3,1,44,0,0,0,0,0,0,109424,111606,111704,110578,109932,111127,4032,4117,4199,4103,3900,3382,0
+27258,20000,male,2,2,44,0,-1,-1,0,0,0,19696,203,19378,19961,19962,19981,203,20710,1305,696,712,860,0
+27259,20000,male,2,1,37,0,0,0,0,0,0,11551,9181,7266,11282,3303,2350,1102,2100,1000,132,47,0,0
+27260,20000,male,3,2,33,1,2,2,2,2,2,16247,15689,18417,17802,19543,18442,0,3000,0,2000,0,1000,0
+27261,220000,male,1,2,34,0,0,-1,-1,-1,0,14588,6689,4664,9530,118206,112206,5021,4674,9530,120000,0,0,0
+27262,20000,male,2,1,34,0,0,0,0,0,0,2799,2164,1854,3296,3435,4435,2005,1200,1500,300,1000,95,0
+27263,280000,male,2,1,30,-1,3,2,-1,-1,-1,652,652,326,476,2482,-101,0,0,476,2482,101,326,0
+27264,400000,male,1,1,49,-1,-1,-1,-1,-2,-2,38810,58265,49415,0,0,0,58265,49415,0,0,0,0,0
+27265,310000,male,1,2,45,0,0,0,0,0,0,313268,278821,283847,290135,293350,300623,10010,11500,11015,11000,12000,23035,0
+27266,30000,male,1,1,37,0,0,0,0,0,0,29104,30606,30416,28165,28654,29083,2000,2000,2003,2000,1000,402,1
+27267,80000,male,2,2,38,0,0,0,0,0,0,73171,76815,64814,66796,41622,46002,5000,4000,4000,2000,5000,1588,0
+27268,10000,male,5,2,44,0,0,0,0,0,0,8958,8774,9461,9457,9650,7500,1147,1224,1000,193,150,0,0
+27269,70000,male,3,3,47,0,0,0,0,0,0,67938,64248,59258,47176,46157,44981,2314,2060,1800,1700,1634,2000,0
+27270,390000,male,1,2,37,-2,-2,-2,-2,-2,-2,0,0,0,0,0,4792,0,0,0,0,4792,490,0
+27271,340000,male,3,1,43,0,0,2,2,0,0,251135,268949,283400,277335,282890,304280,22000,20251,0,10176,26000,12000,0
+27272,180000,male,1,1,41,1,2,2,2,2,0,114952,117567,119314,120882,117450,120398,6000,5100,5000,0,5000,5000,1
+27273,100000,male,1,1,31,0,0,0,0,0,0,30505,31509,32597,33520,28930,30478,1509,1597,1520,1500,2000,26715,1
+27274,360000,male,2,2,37,-2,-2,-2,-2,-2,-2,880,22311,-447,-6146,13461,0,22311,26,0,25461,0,0,0
+27275,50000,male,3,2,44,0,0,0,2,0,0,49911,50525,51463,49952,19584,19080,1762,4800,0,837,700,1000,0
+27276,360000,male,2,2,33,0,0,-1,-1,0,0,60219,45680,30878,66017,83049,16775,22694,36063,67000,36545,0,0,0
+27277,50000,male,2,2,39,0,0,0,0,0,0,26842,23540,16980,16908,17327,17895,2500,2010,1500,1000,1000,900,0
+27278,150000,male,2,1,35,0,0,0,0,0,0,129564,125063,118843,137751,141330,146389,10076,10050,30000,5000,6088,5150,0
+27279,20000,male,3,1,30,0,0,0,0,-1,0,19131,17834,18790,-27490,20001,17985,1500,1400,0,47700,700,1000,0
+27280,150000,male,1,1,44,0,0,0,0,0,0,152375,122540,129558,131476,133223,136004,5005,10002,5018,10006,7007,6000,1
+27281,50000,male,3,1,42,0,0,0,0,0,0,45220,46272,47330,48337,49298,50510,1800,1800,1800,1748,1990,2500,0
+27282,500000,male,2,1,40,-1,-1,0,0,0,-1,1010,4682,8570,12072,9832,984,4682,5000,5000,5000,1000,600,0
+27283,280000,male,2,1,39,-2,-2,-2,-2,-2,-2,1525,7391,5234,3316,2970,3978,7430,5234,3316,2970,3978,3258,0
+27284,270000,male,2,1,49,0,0,0,2,0,0,157713,154413,166550,162244,126877,129903,7100,16000,7,5000,5000,5000,0
+27285,110000,male,2,2,42,0,0,2,2,0,0,53113,57376,57876,56309,58359,109312,5150,2000,0,2800,54000,0,0
+27286,280000,male,2,2,31,0,0,0,0,0,0,136798,129735,118249,115422,114694,113047,4528,4340,3994,3968,4068,3966,0
+27287,200000,male,2,1,33,-1,-1,-1,-1,0,0,2104,998,846,12319,19206,17034,1003,848,12323,8026,3083,6424,0
+27288,30000,male,2,2,37,2,2,2,0,0,0,25811,29066,28322,29251,15525,0,3700,0,1800,3925,0,0,1
+27289,130000,male,3,1,44,0,0,0,0,0,0,124716,128924,131790,126031,99489,94722,6789,12206,6259,5105,3474,6002,0
+27290,440000,male,1,2,33,-1,-1,-1,-1,0,-1,2976,16911,5945,17165,1176,18377,16911,5945,17165,0,18377,1759,0
+27291,170000,male,2,1,37,1,2,0,0,0,0,77959,76115,79274,82034,85664,89272,0,5000,5000,5000,5000,5000,0
+27292,50000,male,1,2,38,0,0,0,0,0,0,50620,47164,48004,49307,19218,19465,3000,3014,6047,1000,2320,3000,0
+27293,120000,male,3,1,40,-1,-1,0,0,0,0,32161,64308,65015,66571,67632,57798,64308,3000,4000,4000,4000,4000,0
+27294,500000,male,1,2,37,0,0,0,0,0,0,50140,45984,44584,25402,21140,16072,1862,1593,1538,835,451,553,0
+27295,120000,male,1,2,31,-1,-1,-1,-1,-1,-2,15665,2647,10293,3600,0,0,2647,10363,3600,0,0,0,0
+27296,180000,male,2,1,33,0,0,0,0,0,0,65226,71031,74866,78534,82246,84014,10000,5000,5000,5000,3787,4391,0
+27297,350000,male,1,2,33,-2,-2,-2,-2,-2,-2,2394,1685,563,7535,0,1522,1685,569,7572,0,1522,700,1
+27298,20000,male,2,2,30,0,0,-1,0,0,0,7534,4704,15226,16528,16128,19800,2000,15300,2000,0,4200,0,0
+27299,160000,male,2,1,39,0,0,0,0,0,2,14658,15666,16694,17697,19023,18584,1258,1286,1289,1615,0,1000,1
+27300,290000,male,1,1,37,-2,-2,-2,-2,-2,-2,-17,3465,10069,4225,-4,871,3482,10194,4276,0,875,3852,0
+27301,180000,male,2,2,30,-1,-1,-1,2,-1,-1,3229,0,6709,6366,1950,1931,0,6709,0,1950,1931,16486,0
+27302,200000,male,1,2,32,-1,-1,-1,-2,-2,-2,1125,2182,0,0,0,0,2182,0,0,0,0,0,1
+27303,210000,male,2,1,39,-1,-1,-1,-1,-1,-1,1443,1443,1443,1443,1443,1443,1443,1443,1443,1443,1443,1443,0
+27304,70000,male,2,2,30,1,-1,0,0,0,0,0,11609,13411,14470,18070,15000,11609,2000,1400,5000,300,4220,0
+27305,280000,male,2,2,38,2,2,2,2,0,0,163675,168581,170775,166749,168739,166757,9000,6000,5,5858,5741,5608,1
+27306,120000,male,3,2,31,1,-2,-2,-2,-2,-2,-94,-2090,-2390,-2390,-2390,-2390,3,0,0,0,0,0,1
+27307,260000,male,1,2,45,-1,-1,-2,-1,0,-1,6062,-900,-900,1905,897,4641,0,0,2805,2,4654,3661,0
+27308,340000,male,1,2,31,0,0,0,0,0,0,342299,339883,335659,336498,321941,315006,14000,13000,13000,12000,12000,12000,0
+27309,260000,male,1,2,29,0,0,0,0,0,0,56050,52079,52083,46703,47500,45030,6000,6000,5000,5000,4000,5000,0
+27310,140000,male,1,2,29,0,0,0,0,0,0,34052,34677,35065,35668,36143,37064,1553,1601,1564,1399,2000,2000,0
+27311,140000,male,2,1,36,1,-1,0,0,0,0,119279,6771,13380,18415,20135,27390,10000,10000,8000,5000,22000,42000,0
+27312,200000,male,2,1,38,1,2,2,2,0,0,185471,189921,193731,189136,191335,202780,9000,8300,0,6800,14500,0,0
+27313,50000,male,2,2,43,0,0,0,0,0,0,29308,20491,20846,20247,19551,18617,2000,1340,1298,827,676,707,1
+27314,130000,male,2,2,27,0,0,0,-2,-2,-2,21920,12390,0,0,0,0,1400,0,0,0,0,0,0
+27315,130000,male,1,2,27,0,0,0,-2,-2,-2,71668,47836,0,0,0,0,2000,0,0,0,0,0,0
+27316,50000,male,2,2,28,0,0,0,2,0,0,26538,27592,30627,28999,29607,29285,1500,3500,0,1051,1100,1040,0
+27317,20000,male,3,1,28,0,0,0,2,0,0,19794,19519,20464,19756,19978,11680,1304,2900,0,773,626,8554,0
+27318,390000,male,1,2,28,0,0,0,0,0,0,18891,19521,28868,29661,21907,8205,6000,10000,2000,15000,5000,2000,0
+27319,50000,male,2,2,28,2,2,2,2,2,0,45769,47213,48162,48576,43700,44853,2500,2000,1523,200,2000,3388,0
+27320,30000,male,2,2,29,1,2,0,0,0,0,24180,23498,24532,25517,25896,26282,0,1715,1700,1100,952,958,0
+27321,240000,male,2,1,33,-2,-1,0,0,0,0,15220,7549,127494,102825,99867,99410,7575,125335,3358,2784,2833,2806,0
+27322,180000,male,1,2,31,-1,-1,-1,-1,-1,-1,6383,3166,13346,4195,9934,3317,3200,13500,4195,10000,3500,5912,0
+27323,420000,male,1,2,31,-2,-2,-2,-2,-2,-2,7712,72910,18030,11831,11562,46623,35527,18442,11943,11620,46856,21802,0
+27324,120000,male,1,2,33,2,0,0,0,0,0,52053,52592,53748,54858,56445,58032,2000,2000,2000,2500,2500,2500,1
+27325,450000,male,1,2,34,-1,-1,-1,-1,-1,-1,12712,1830,1183,1745,0,7519,1830,1188,1745,0,7519,0,0
+27326,20000,male,1,2,34,0,0,0,-2,-2,-2,19569,2700,0,0,0,0,1000,0,0,0,0,0,1
+27327,360000,male,2,1,35,-2,-2,-2,-2,-2,-2,-9,-9,-9,-9,1943,2500,0,0,0,1952,2500,0,1
+27328,350000,male,2,2,40,0,0,0,0,-1,-1,28194,29334,30900,0,223,223,1500,2000,0,223,223,223,0
+27329,180000,male,3,2,44,0,0,0,0,0,0,172064,175287,119687,131725,134122,133961,8000,5018,21000,6000,6000,6000,0
+27330,410000,male,2,1,41,0,0,0,0,-1,0,392906,400864,410877,419454,1356,1362,16000,17986,18545,1362,6,0,0
+27331,50000,male,3,1,36,0,0,0,0,0,0,44917,46230,49319,50401,18919,19469,2061,4150,2232,750,929,611,0
+27332,430000,male,3,1,36,0,0,0,0,0,0,35488,39897,48916,52021,27796,29340,5000,10000,4000,1500,2000,2000,0
+27333,200000,male,3,3,48,-1,-1,-1,-1,0,0,7331,4760,3529,11711,38079,0,4780,3529,11726,35000,0,0,0
+27334,180000,male,1,2,35,0,0,0,0,0,0,52160,46545,43604,43571,19360,20650,3022,3005,3002,3004,3000,0,0
+27335,200000,male,1,1,35,0,0,0,0,-1,0,29675,28425,20289,43432,149388,136192,9000,2000,31162,157142,10418,69238,0
+27336,160000,male,2,1,35,2,2,2,0,0,0,155327,159293,154957,157788,160282,100213,8000,0,7300,7000,4400,1200,1
+27337,100000,male,2,1,47,0,0,0,0,0,0,72703,74147,76305,77855,78961,80452,2653,3352,3413,3000,2919,2944,0
+27338,140000,male,2,2,44,2,0,0,0,0,0,84371,85119,86901,89583,90432,92332,3046,3153,4126,3231,3351,3400,1
+27339,120000,male,2,1,43,-1,-1,-2,-1,-1,-1,3972,2809,1021,2311,3868,2980,2816,1021,2321,3868,2980,0,0
+27340,360000,male,1,2,37,1,-1,-1,-1,-1,-1,-2,513,1070,-10,2107,627,515,1075,0,2117,630,375,0
+27341,120000,male,1,1,41,0,0,0,0,0,-1,115467,54921,56542,58023,17421,105771,2000,2500,2800,1000,109000,4200,1
+27342,310000,male,1,1,37,-1,-1,-1,-1,-1,-1,46916,5545,17152,6540,6834,6890,5545,17248,6559,10000,6890,5593,0
+27343,180000,male,1,1,44,-2,-2,-2,-2,-2,-2,14787,12222,16564,15047,17884,13630,12898,17266,15053,17884,13630,15463,0
+27344,160000,male,2,1,46,0,0,0,0,0,0,116988,114956,114531,106467,106967,109245,4200,5555,4000,4000,4000,4200,0
+27345,50000,male,2,1,48,2,0,0,0,0,0,79262,40931,40892,41612,18825,18019,3278,1880,1650,10000,1000,700,1
+27346,300000,male,2,1,40,0,0,0,0,0,0,25492,28048,30582,33059,35498,39902,3000,3000,3000,3000,5000,5000,0
+27347,500000,male,3,1,43,0,0,0,0,0,0,57313,54997,44226,40712,37311,27068,4060,5014,5005,4000,5000,0,0
+27348,230000,male,2,1,39,1,-1,2,0,0,-1,-430,16659,1982,1982,991,5400,18675,0,991,0,5400,0,0
+27349,300000,male,3,1,45,-1,-1,-1,2,-1,0,836,390,780,390,780,780,390,780,0,780,0,0,0
+27350,180000,male,2,2,41,-2,-2,-2,-2,-2,-2,0,900,910,0,0,0,900,910,0,0,0,0,0
+27351,280000,male,2,1,45,-1,-1,-1,-1,-1,-1,1207,1207,1207,1207,1207,1207,1207,1207,1207,1207,1207,1207,0
+27352,20000,male,3,2,47,-1,0,0,-2,-2,-1,3897,4774,-10,-10,-10,3990,1004,0,0,0,4000,2000,0
+27353,360000,male,1,1,37,-1,-1,-1,0,0,0,5225,-1900,14838,15987,13438,16935,6,18022,6036,5005,4514,1075,0
+27354,20000,male,2,3,37,0,0,0,0,0,0,19701,20302,19200,17085,17953,19299,2000,1500,2000,2000,2000,1000,0
+27355,250000,male,1,1,35,0,0,0,0,-1,0,70767,78906,84078,70507,2841,12606,10000,10000,10000,3000,10000,5000,0
+27356,120000,male,1,1,45,0,0,0,0,0,0,118287,117775,117106,118207,116885,123040,5700,5700,6000,5000,10000,0,0
+27357,100000,male,5,3,44,2,2,0,0,0,0,40199,39218,35464,30456,29420,27102,0,2005,1700,976,2000,3000,0
+27358,50000,male,3,1,47,0,0,0,2,0,0,11752,13244,14722,15181,15928,16671,2000,2000,1000,1000,1000,1000,0
+27359,470000,male,3,2,31,-1,-1,2,-1,-1,-1,8748,2442,2272,6040,6655,1200,3500,11,6080,6688,1206,0,0
+27360,80000,male,2,1,45,-1,-1,-1,-1,-1,-1,10290,40000,0,2303,71637,7893,40000,0,2303,71637,1796,0,0
+27361,110000,male,2,2,29,0,0,0,0,0,0,31327,31495,27682,28418,29442,30213,2000,1800,1500,1500,1400,5002,0
+27362,280000,male,2,2,30,0,0,0,0,0,0,261602,267238,273951,262720,130384,102181,10000,11075,8972,5182,10000,4000,0
+27363,200000,male,1,1,37,-2,-2,-2,-2,-2,-2,3509,-8,1898,0,6062,0,0,1906,0,6062,0,1534,0
+27364,170000,male,3,1,45,-1,0,0,0,0,0,34778,40441,40937,34090,34894,36829,10000,5000,2000,2000,3000,2000,0
+27365,60000,male,2,1,41,1,-1,0,0,0,0,-1582,56557,55839,47797,8062,8284,59852,5011,5000,2500,1000,5000,0
+27366,180000,male,2,1,36,0,0,0,0,0,0,184661,183112,183172,183117,179277,183394,7000,7000,7000,6411,7000,7000,0
+27367,300000,male,2,1,43,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+27368,150000,male,2,1,40,0,0,0,0,0,-2,142326,145231,150145,150500,0,0,4500,6114,3500,0,0,0,1
+27369,210000,male,1,2,39,-2,-2,-2,-2,-2,-2,28435,7615,0,0,0,0,7637,0,0,0,0,14263,0
+27370,50000,male,3,2,37,-1,0,0,0,0,0,20248,50797,53340,45661,20180,21155,45535,3500,1424,2000,1300,754,0
+27371,50000,male,1,1,45,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,390,1
+27372,300000,male,2,1,35,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+27373,80000,male,2,1,43,0,0,0,0,0,0,78726,78837,76792,61435,26516,27215,3000,3000,3000,1500,1500,1500,0
+27374,170000,male,2,2,31,0,-1,0,0,0,0,172012,167929,116189,192082,120077,92593,168019,5000,6000,7125,5000,4500,0
+27375,50000,male,3,1,44,0,0,0,0,0,0,19951,17221,15816,13983,13638,10657,1282,1253,1170,535,387,405,0
+27376,140000,male,2,1,40,0,0,0,0,0,0,139282,138095,140725,139401,103929,101148,4945,5254,4861,3649,3653,3700,1
+27377,350000,male,2,1,36,0,0,-1,0,-1,-1,32596,16666,32597,16666,16666,32809,1000,32597,1000,16666,32809,526,1
+27378,20000,male,2,1,45,-1,-1,-1,-1,-2,-2,836,836,2006,-2830,-7220,-11610,836,2006,1441,0,0,0,0
+27379,170000,male,1,2,32,2,2,-2,-2,-2,-1,2097,0,0,0,0,6271,0,0,0,0,6271,0,1
+27380,20000,male,3,2,40,0,0,0,0,0,-1,17613,18897,34964,9376,9620,780,1590,1208,1276,520,1560,0,1
+27381,240000,male,2,1,44,0,0,0,0,0,0,23904,21643,19743,20298,15475,15852,1400,1400,1300,1000,1000,1000,0
+27382,50000,male,2,1,40,0,0,0,0,0,0,31852,28526,60032,25443,19600,19405,1600,2018,1500,1000,1500,1000,1
+27383,230000,male,2,1,41,0,0,0,0,0,0,301038,305327,213058,216260,215968,174195,9405,7769,7757,8030,6549,5226,1
+27384,100000,male,1,1,35,1,2,-1,-1,0,0,3515,2975,2342,12016,10203,5323,10,3141,12021,135,507,6,0
+27385,300000,male,1,2,45,-1,-1,-1,0,0,0,3016,-2659,40996,41513,38303,36352,0,43655,1752,937,916,1122,0
+27386,90000,male,2,1,42,0,0,0,0,-2,-2,87104,90651,92400,0,0,0,5000,4500,0,0,0,0,1
+27387,210000,male,1,2,32,0,0,0,0,0,0,218742,218317,73874,73219,96844,94731,10000,5000,5000,30000,4500,15000,0
+27388,50000,male,2,2,44,0,0,0,0,0,0,10101,6295,7333,8349,8362,8727,1300,1300,1300,300,500,500,0
+27389,400000,male,2,1,46,0,0,0,0,0,0,113125,98056,141712,123382,125687,128018,8000,128000,5000,5000,5000,5000,0
+27390,300000,male,1,1,37,-2,-2,-2,-1,-1,-2,19954,22492,20477,27206,37191,7543,23348,20477,27206,177202,7543,13719,0
+27391,150000,male,1,2,32,2,2,2,2,2,2,126115,128860,131426,132703,129080,136996,6300,6100,4900,0,10200,5100,0
+27392,500000,male,1,1,35,2,0,0,-1,0,0,510367,473584,167682,501496,508213,496801,24913,5872,508229,18089,14070,15009,1
+27393,300000,male,2,2,38,1,-1,3,2,-1,-1,0,780,780,390,390,390,1560,0,0,390,390,540,1
+27394,300000,male,1,1,45,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+27395,150000,male,1,2,33,-1,2,-1,-1,0,-1,6146,891,8969,6027,5132,1461,0,8969,6027,0,1461,50289,0
+27396,410000,male,1,2,32,0,0,0,0,0,0,198954,202511,199348,201941,101962,104837,7000,9000,9000,5000,5000,5000,0
+27397,80000,male,1,2,33,0,0,0,0,0,0,77244,78259,79286,69708,49743,48969,3492,3593,3006,1729,2000,1900,0
+27398,50000,male,3,2,33,0,0,-1,0,-1,0,8949,9745,30739,30266,14581,12930,1030,31117,2000,14840,259,0,0
+27399,140000,male,3,2,33,-2,-2,-2,-2,-2,-2,500,473,-27,3788,0,9386,473,0,3815,0,9386,722,0
+27400,150000,male,2,1,33,2,-1,-1,-2,-2,-2,1033,1533,0,0,0,0,1550,0,0,0,0,0,1
+27401,20000,male,1,1,33,0,0,0,0,0,0,20276,20134,20298,19269,19254,19484,1326,1326,1287,662,903,500,0
+27402,200000,male,1,2,33,-1,-1,-1,0,-1,-1,12202,1964,12181,5908,1114,8314,4994,12181,2000,1114,8314,1114,0
+27403,110000,male,2,2,42,0,0,0,0,0,0,80338,83483,74258,66409,69895,72234,5000,10000,3000,6000,3300,5000,0
+27404,230000,male,2,2,41,2,0,0,0,0,0,225043,229701,229250,229572,213420,218809,10000,11000,9000,9000,9000,9000,1
+27405,50000,male,2,1,49,1,2,2,2,2,2,17371,17789,18209,18595,20323,19218,1000,1000,1000,2000,0,1000,1
+27406,50000,male,2,2,49,1,2,0,0,0,0,47360,45915,46686,47084,14253,15479,0,2200,2000,1000,2000,2000,0
+27407,50000,male,1,1,49,-1,-1,-1,2,-1,0,25801,-1032,6910,6314,18544,12894,0,9000,88,18596,5023,5028,0
+27408,310000,male,1,1,50,-1,-1,-1,-1,-1,-1,396,396,0,942,1645,1287,396,0,942,1645,1287,2077,0
+27409,10000,male,2,1,49,1,-1,-1,-1,-1,-2,-20,780,0,780,0,0,800,0,780,0,0,0,1
+27410,100000,male,3,1,50,2,3,2,2,3,2,66204,64551,66924,72209,70451,72179,0,4000,7000,0,3000,3000,0
+27411,700000,male,2,1,50,-2,-2,-2,-2,-2,-2,3528,2018,2131,5746,733,2913,2024,2131,5750,733,2917,2131,0
+27412,330000,male,1,1,50,-2,-2,-2,-2,-2,-2,-17,-17,-17,988,-12,138,0,0,1005,12,150,13,0
+27413,300000,male,2,1,46,-1,-1,-1,-2,-1,0,1413,15393,-10,-10,7805,5738,15480,0,0,7815,28,6554,0
+27414,500000,male,3,1,49,0,0,0,0,0,0,260991,214726,230250,188805,192229,2786,7890,20132,20004,7714,3000,1543,0
+27415,10000,male,3,1,51,1,-1,2,2,0,0,0,950,1170,780,780,0,950,1000,0,0,0,0,0
+27416,70000,male,3,1,50,0,0,0,0,0,0,68725,70413,70004,38102,28931,29143,3220,2220,28931,1000,1050,1052,0
+27417,110000,male,2,1,50,1,-1,0,0,0,0,-10682,50928,54711,55926,18030,18367,62000,5000,3000,2000,1000,2000,0
+27418,250000,male,2,1,50,0,0,0,0,-2,-1,238215,182156,121786,-329,-494,1541,9000,5000,0,0,2200,0,0
+27419,550000,male,3,1,50,2,2,2,0,0,2,491810,534289,494690,504929,501474,446605,51500,0,19067,35696,0,18169,1
+27420,390000,male,1,2,47,-1,-1,-2,-1,-1,-1,898,0,0,2582,128,6273,0,0,2582,128,6273,0,0
+27421,100000,male,6,2,51,2,2,0,0,0,0,104264,101658,97937,98893,101044,96045,0,4134,3952,3611,3298,3401,0
+27422,20000,male,2,1,47,2,0,0,0,0,0,17305,17917,18600,19034,19022,19046,1295,1368,1192,570,606,600,1
+27423,360000,male,2,1,50,0,0,0,-1,0,0,221855,256171,-229,10527,9564,0,46000,0,10756,5035,0,0,0
+27424,60000,male,2,1,50,-1,-1,-1,-1,0,0,7888,13989,9588,18041,14458,12710,14026,9700,18064,4016,5029,2828,0
+27425,150000,male,2,1,51,2,2,0,0,2,2,17307,16736,17491,24882,25229,24688,0,1329,7720,1051,0,1987,1
+27426,360000,male,3,1,49,0,0,0,0,0,0,170792,153458,136109,114908,111274,110141,5729,5365,4664,3890,3899,4724,0
+27427,50000,male,1,2,49,0,0,0,0,0,0,48960,49686,50723,9182,10025,10400,2255,2292,1157,1000,600,0,0
+27428,170000,male,1,1,50,1,2,2,2,2,2,152495,155698,159029,160628,162808,163364,7200,7300,5700,6300,3300,9300,0
+27429,300000,male,2,1,51,1,2,0,0,0,2,198235,193548,198422,204116,214691,218101,0,8000,9000,15500,7000,10000,0
+27430,150000,male,3,2,51,-1,-1,-1,-1,-1,-1,3958,3146,2651,2465,4108,4703,3146,2659,2472,4116,4703,4708,0
+27431,300000,male,3,1,51,-2,-2,-2,-2,-2,-2,1236,-13,-13,2155,2402,-10,0,0,2168,2421,0,0,0
+27432,500000,male,1,1,57,-2,-2,-2,-2,-2,-2,18726,29914,8340,16561,15662,28935,29914,8340,16561,15701,28935,10000,0
+27433,160000,male,2,2,57,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,600,0,0,0,0,601,0,1
+27434,50000,male,1,2,54,2,0,0,0,0,0,9159,10474,10184,6279,7693,15083,1500,1508,1000,1500,1000,2000,0
+27435,10000,male,3,2,56,2,2,0,0,0,0,10156,8570,6101,6711,7258,7777,0,1500,2000,2000,2000,2000,0
+27436,100000,male,3,1,54,2,2,2,3,2,2,81507,83154,88223,85924,86803,88745,3900,7300,0,3200,3500,3420,1
+27437,300000,male,1,1,58,2,2,2,2,2,2,148265,158230,160242,156171,165556,169250,14000,6000,0,12000,6500,6500,1
+27438,30000,male,2,1,57,0,0,0,0,0,0,24911,26241,27512,27831,28795,29285,1750,2000,1240,1200,1100,0,1
+27439,90000,male,1,2,52,0,0,0,0,0,0,91671,91656,87106,48730,27535,27751,4508,5110,2000,3000,1000,3000,0
+27440,30000,male,3,2,53,0,0,0,0,0,0,29683,26328,27422,28307,28902,29506,1426,1520,1405,1000,1006,1451,0
+27441,140000,male,3,1,53,0,0,0,0,0,0,133167,135889,81607,83927,84861,86556,5400,3000,4000,3500,3504,3500,0
+27442,50000,male,1,2,53,0,0,0,0,0,0,49512,50463,49793,50032,18336,18720,1771,2061,1300,643,666,686,0
+27443,100000,male,5,1,53,0,0,0,0,0,0,184438,188238,192080,196000,200000,0,3800,3842,3920,4000,0,0,0
+27444,30000,male,2,1,49,0,0,0,0,0,0,29707,28853,30107,29923,29472,27729,2000,3000,4000,2000,4000,2000,0
+27445,160000,male,3,1,51,0,0,0,-2,-1,-1,4042,4338,-1801,-5513,743,1012,1000,0,0,6256,1050,1000,1
+27446,10000,male,3,1,57,0,0,0,2,2,0,7525,6952,9356,9533,9233,9295,1276,2680,477,0,360,1000,0
+27447,170000,male,2,1,57,-1,-1,-1,-1,0,-1,792,-2604,396,792,396,396,0,3396,792,0,396,396,1
+27448,50000,male,1,1,48,0,0,0,0,0,0,48096,49267,48078,25869,22647,2875,2300,2000,1600,100,250,104,0
+27449,500000,male,3,1,53,-1,2,2,-2,-1,-1,5008,546,-4,-4,1319,2977,1,0,0,1323,3000,8,0
+27450,500000,male,3,1,55,2,0,0,0,0,0,613860,512526,334227,145482,125936,91382,37300,11000,4500,4000,4000,100000,1
+27451,20000,male,2,1,59,3,2,3,3,2,2,6015,7759,8486,8208,7930,8650,2000,1000,0,0,1000,0,1
+27452,20000,male,2,1,52,0,0,0,0,0,0,16361,17368,18546,19283,14821,0,1285,1463,1200,296,0,0,0
+27453,80000,male,6,1,54,0,0,0,0,0,0,61454,61808,62290,29296,26210,17643,2545,2208,1336,2232,542,348,1
+27454,500000,male,1,1,58,1,2,0,0,-1,-1,65005,63099,64610,64133,264,264,0,2787,1312,264,264,4709,0
+27455,20000,male,3,2,62,0,0,0,0,0,0,16303,17314,18343,19331,18541,18929,1286,1315,1303,663,686,744,0
+27456,190000,male,2,2,56,0,0,0,0,0,0,105046,85715,66984,67864,68156,67958,2777,2458,2411,2405,2595,3000,0
+27457,160000,male,2,2,59,0,0,0,0,0,0,86249,85764,83764,75088,69753,66574,5000,4214,4014,2500,3000,3000,0
+27458,170000,male,1,2,51,0,0,0,0,0,0,201851,195038,189067,180389,137030,129222,6873,7509,5573,4309,4239,5142,1
+27459,80000,male,2,1,54,0,0,0,0,0,0,80449,77652,77980,79938,50209,49762,2779,3075,5000,1750,1810,3000,1
+27460,180000,male,2,1,57,0,0,0,0,0,0,182329,177183,177694,127051,128562,129128,9000,7000,5000,5000,10000,5000,0
+27461,50000,male,3,2,51,2,2,0,0,0,0,51264,48695,32617,18834,15810,15786,68,1510,1724,0,366,1455,1
+27462,70000,male,2,2,62,6,5,4,3,2,0,112202,103834,95609,86494,79359,74937,0,0,0,0,2150,2511,0
+27463,20000,male,2,1,55,0,0,2,0,0,2,10301,12871,12374,13392,14938,14557,2750,0,1231,1777,0,4859,1
+27464,330000,male,2,1,48,-1,-1,-1,-1,0,0,933,12663,10151,60841,41945,21183,12701,10183,62619,1945,1183,115647,0
+27465,330000,male,3,1,57,-2,-2,-2,-2,-2,-2,3524,262,248,784,220,256,300,250,800,300,300,200,0
+27466,320000,male,1,1,51,-2,-2,-2,-2,-2,-2,1834,556,1622,7728,5781,3896,556,1622,7762,5781,3896,2182,0
+27467,140000,male,3,1,59,-1,-1,-1,-1,-1,-1,2859,3447,0,2061,0,3035,3447,0,2061,0,3035,2302,0
+27468,20000,male,2,1,55,0,0,0,0,0,0,15793,16823,17848,27843,19352,19938,1300,1302,1320,1137,1000,510,0
+27469,70000,male,3,1,53,-1,-1,-1,2,0,0,712,712,862,862,862,862,712,862,712,712,712,712,0
+27470,240000,male,2,2,67,0,0,0,0,0,0,542827,508581,471796,468202,442401,419209,20225,17389,80167,15167,16000,13133,0
+27471,460000,male,2,1,52,0,0,0,0,0,0,177520,174746,168279,171579,163450,160547,8000,9000,8154,6000,6000,6000,0
+27472,80000,male,1,2,56,0,0,0,0,0,0,89088,83558,84848,63373,20324,23749,3400,2983,1501,5000,5000,5000,1
+27473,20000,male,2,2,56,0,0,2,2,2,0,15397,17819,18239,19094,12393,13037,3000,1000,1500,0,1000,1000,0
+27474,200000,male,3,1,54,0,0,0,2,0,0,1749,3939,7856,3640,3656,6273,3000,4031,5,16,6005,733,1
+27475,200000,male,2,1,51,2,-1,-1,-1,-1,-1,206,2522,1261,0,1261,-1261,2522,1261,0,1261,0,5242,1
+27476,420000,male,3,1,53,-1,-1,-2,-2,-2,-2,3717,-2953,-2953,-2953,-2953,-2953,5,0,0,0,0,0,0
+27477,130000,male,2,2,54,0,0,0,0,-2,-2,30184,31795,31467,-440,-240,-240,2419,1000,0,200,0,0,0
+27478,30000,male,2,3,53,1,-2,-1,2,0,0,0,0,4070,3825,3825,0,0,4070,0,0,0,0,1
+27479,110000,male,2,1,51,0,0,0,0,0,0,54051,55126,57239,104353,48308,49693,1972,3000,49000,1569,2000,2000,1
+27480,360000,male,2,1,51,-1,-1,-1,-1,0,0,14093,10575,7675,18602,20461,33404,10575,7685,18610,8000,21004,0,0
+27481,50000,male,2,1,56,1,2,2,0,0,0,48141,50783,49581,36828,19361,19780,3739,28,1502,670,708,681,0
+27482,70000,male,3,1,54,0,0,0,0,0,0,64527,59996,57417,54558,58968,63456,2519,5015,4000,5950,6000,2507,0
+27483,420000,male,3,1,59,0,0,0,0,0,0,24389,21232,24524,21318,21496,19704,1733,10026,1606,2006,707,1037,0
+27484,50000,male,3,1,57,0,0,0,0,0,0,49543,41465,24091,20071,19221,19622,1500,1328,1600,700,696,707,0
+27485,450000,male,2,1,55,2,2,-2,-2,-2,-2,2500,0,0,0,0,0,0,0,0,0,0,0,1
+27486,50000,male,2,1,56,0,0,0,-1,0,0,38111,37934,16816,602,712,822,2966,1000,602,500,500,500,0
+27487,20000,male,3,1,53,3,4,3,2,3,2,15507,14974,14449,15116,14582,14206,0,0,1200,0,0,2230,1
+27488,250000,male,1,1,51,3,2,2,2,2,2,2487,2487,2487,2487,2487,2487,0,0,0,0,0,0,1
+27489,20000,male,2,3,53,0,0,0,0,0,0,18856,19840,18588,17650,18003,18390,1318,1298,1260,613,645,732,0
+27490,240000,male,3,1,57,0,0,0,0,0,0,224736,230814,234047,164960,167934,171113,9573,7893,6151,5527,5708,5738,0
+27491,50000,male,3,1,52,0,0,0,0,0,-1,47594,48611,49063,16908,13112,2280,2200,2343,1178,654,2280,390,1
+27492,180000,male,3,1,65,0,-1,0,0,0,0,191309,174775,174702,176816,180911,123229,175100,7000,5000,5309,5288,3000,1
+27493,250000,male,1,1,71,0,0,0,0,0,0,173907,177484,177946,159849,145461,141487,6504,6243,5446,4721,4385,7805,0
+27494,30000,male,3,2,52,0,0,0,2,2,0,25686,27449,30286,29993,58134,28910,2500,3600,1390,0,1000,1500,0
+27495,50000,male,3,1,55,0,0,0,0,0,2,40247,41382,49943,50412,30970,30362,1800,9331,1500,4549,0,1092,1
+27496,20000,male,2,1,62,1,2,2,0,0,0,17539,18563,17982,18659,19035,20236,1612,0,1289,665,1491,0,0
+27497,260000,male,3,1,52,0,0,0,0,0,0,187581,184144,140829,117445,114581,111726,7299,5375,4227,4052,3941,3626,1
+27498,130000,male,3,1,54,-1,-1,-1,-2,-1,-1,193,2499,0,0,428,150,2520,0,0,428,150,285,0
+27499,490000,male,2,1,51,1,-2,-1,2,0,0,-16,-16,5498,282,28688,26302,0,7504,0,28606,0,2499,1
+27500,150000,male,3,1,52,2,2,2,2,2,-2,142903,152574,150080,47214,144862,148153,13312,2305,0,98828,4241,3625,1
+27501,30000,male,3,1,53,1,2,2,2,2,2,18361,20250,19637,21705,21059,23716,2500,0,2403,0,3000,0,1
+27502,50000,male,2,2,54,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+27503,330000,male,3,1,53,0,0,0,0,0,0,141061,144526,148420,152341,149998,-2,3856,3926,3966,3000,2,0,0
+27504,330000,male,2,1,52,0,0,0,0,0,0,171004,173360,175958,178468,181544,184338,6199,6386,6435,7000,6688,6688,0
+27505,140000,male,3,1,56,2,0,0,0,0,0,90462,93167,94370,95894,91600,93347,4212,3600,3258,3313,3258,3223,1
+27506,40000,male,2,1,55,1,-2,-2,-2,-2,-2,-150,-540,-930,-1320,-1710,-2100,0,0,0,0,0,0,1
+27507,360000,male,3,2,54,-2,-2,-2,-2,-2,-2,390,390,390,390,390,390,390,390,390,390,390,96702,0
+27508,80000,male,2,2,59,2,2,2,2,2,0,24756,29818,29060,31133,24135,22970,5500,13,4000,5,2005,2005,1
+27509,730000,male,3,1,56,0,0,0,0,0,0,746814,374028,351588,86927,66111,38491,20500,16500,3000,2000,2000,5000,0
+27510,180000,male,1,1,63,0,0,0,0,0,0,157932,156847,130572,120464,109129,112273,7000,5500,4218,4500,5000,4000,0
+27511,190000,male,3,1,64,0,0,0,2,0,0,65666,67379,72878,70731,71285,72403,3800,7600,0,2700,2800,2800,0
+27512,50000,male,3,2,57,-1,-1,-1,-1,-1,-1,390,1726,390,390,390,390,1726,390,390,390,390,540,0
+27513,230000,male,1,1,56,0,0,0,0,0,0,38349,39154,39921,40828,37934,38889,1933,1700,1600,1340,1548,1844,0
+27514,20000,male,3,1,53,0,0,0,0,0,0,19084,19224,18545,19405,19358,19413,1300,1400,1300,700,700,646,0
+27515,130000,male,2,2,56,0,0,0,0,0,0,121165,109805,111780,116357,96936,98173,4000,5000,8000,4000,4000,5000,0
+27516,30000,male,6,1,53,-2,-2,-2,-2,-2,-2,1780,0,0,0,0,0,24437,0,0,0,0,0,1
+27517,360000,male,1,1,57,1,-2,-1,-1,-1,-2,0,0,860,246,-46,-46,0,860,246,0,0,0,0
+27518,100000,male,2,1,52,1,2,2,2,2,2,15420,16927,16432,18019,17501,18786,2000,0,2100,0,1500,0,0
+27519,180000,male,3,2,55,0,0,0,0,0,0,193095,186835,182287,159992,145387,137632,6900,7100,5659,5100,4900,4400,0
+27520,210000,male,2,1,53,1,-1,2,-1,-1,-1,-197,3195,1821,1683,0,1986,3392,2,1683,0,1986,1188,0
+27521,340000,male,2,1,53,0,0,0,0,0,0,342617,346067,350031,304706,250216,253526,12604,14000,11000,9000,10000,30000,1
+27522,20000,male,1,1,52,0,0,-1,-1,-1,0,21192,19965,390,390,780,780,1600,390,390,780,0,10400,0
+27523,20000,male,2,1,52,-2,-2,-2,-2,-2,-2,990,2990,790,1590,2359,2780,2990,790,1590,2359,2780,1200,0
+27524,500000,male,1,1,54,0,0,0,0,0,0,493251,496315,480411,489978,493062,474301,18725,18000,17534,17649,18007,20000,0
+27525,360000,male,1,1,53,-2,-2,-2,-2,-2,-2,826,4741,6336,937,766,1065,4765,6395,941,769,1070,1088,0
+27526,50000,male,3,1,54,0,0,0,0,0,0,47722,47080,48813,49107,18000,17538,2100,3000,2000,1200,1000,3000,0
+27527,530000,male,2,1,54,-2,-2,-2,-2,-1,0,-30,-420,390,390,166210,129716,0,1200,390,166210,6000,3000,0
+27528,260000,male,1,1,59,-1,-1,-1,-1,-1,-1,1929,-627,4134,792,1309,2557,627,7388,792,1312,2564,804,0
+27529,40000,male,3,1,50,1,2,0,-1,-1,-2,35879,34625,36757,20650,0,0,0,3078,21650,0,0,0,1
+27530,30000,male,2,2,60,0,0,0,0,0,0,23575,24582,25711,26614,26948,14648,1398,1527,1430,764,530,655,0
+27531,240000,male,1,1,55,1,4,3,2,2,2,99259,96819,94429,95475,96603,98699,0,0,3500,3600,3800,3700,1
+27532,320000,male,1,2,55,2,2,2,2,0,0,200545,205973,211323,202240,122963,125465,9600,9500,0,4253,4332,4300,1
+27533,70000,male,3,3,61,3,2,2,0,0,0,8909,9812,9511,10828,11346,11589,1200,0,1482,1000,426,1000,0
+27534,200000,male,2,1,58,-1,2,2,-2,-2,-1,1877,1830,200,200,18370,53276,151,200,0,18370,53276,30000,0
+27535,360000,male,1,1,51,-1,-1,-1,-1,-1,-1,2782,5608,923,12886,489,172,5636,927,12950,491,173,7144,0
+27536,110000,male,2,2,51,0,0,0,0,0,0,25707,26740,27871,28858,29541,27977,1400,1500,1400,1000,1000,760,1
+27537,80000,male,3,1,52,1,2,2,2,0,0,77185,80311,81558,78761,71352,19674,5000,3100,0,2000,713,1500,1
+27538,200000,male,1,1,52,1,-2,-2,-2,-2,-2,-768,-768,-768,-768,-768,-768,0,0,0,0,0,1536,0
+27539,100000,male,3,1,56,-1,-1,-1,-1,-1,-2,390,390,0,780,0,0,390,0,780,0,0,0,1
+27540,160000,male,3,2,53,-1,-1,-1,-1,-1,-1,791,9164,4791,2999,961,994,9173,4805,3008,1742,998,1101,0
+27541,140000,male,1,1,55,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+27542,300000,male,2,1,55,0,0,0,0,0,0,69994,71388,72886,74371,75854,77440,2552,2645,2696,2716,2809,2826,0
+27543,50000,male,3,1,59,1,2,0,0,0,0,48504,46768,47976,39703,19777,19162,0,2100,2000,1000,1000,1000,0
+27544,50000,female,2,1,29,0,0,0,0,0,0,49895,48434,47827,28935,28224,27547,1867,1521,1419,969,997,952,1
+27545,50000,female,1,1,29,0,0,0,0,0,0,50737,50486,50035,49388,10275,9598,1818,2200,1192,1000,2000,1000,0
+27546,50000,female,2,1,34,0,0,0,2,0,0,11340,11367,10982,10243,10826,11699,3200,3000,1000,1000,1000,2000,0
+27547,50000,female,2,1,38,0,0,-2,-2,-2,-2,51400,0,0,0,0,0,0,0,0,0,0,0,1
+27548,210000,female,1,2,29,-1,-1,-1,-1,-1,-1,2783,1080,2855,20787,8307,1747,1088,2855,20787,8314,1747,309,0
+27549,150000,female,1,2,26,0,0,0,0,0,0,24242,20263,21332,22371,22700,23184,1700,1700,1700,1000,1000,1000,0
+27550,190000,female,2,1,29,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+27551,80000,female,1,2,26,2,0,0,2,2,2,37097,38174,40550,41577,41595,43264,2000,3000,2000,1000,2500,1000,1
+27552,100000,female,1,2,28,0,0,0,0,-1,0,4864,9089,13534,16158,6700,7730,5800,6000,4375,6700,3000,0,0
+27553,20000,female,2,2,27,0,0,0,0,0,-1,18854,19116,15030,13025,12223,15975,1292,1509,1522,3111,20000,1121,0
+27554,400000,female,1,2,29,-2,-2,-2,-2,-2,-2,7622,38849,13586,19502,3809,4512,39097,13653,19617,3930,7021,24987,0
+27555,100000,female,2,2,28,0,0,0,0,0,0,50697,51813,53416,32422,33177,42560,1959,2545,1513,1268,10000,10000,0
+27556,30000,female,2,2,22,0,0,2,0,0,0,30028,30566,30560,30194,30113,23212,2634,1000,1377,1211,1000,3690,0
+27557,150000,female,2,1,26,0,0,0,0,2,2,81638,70605,70647,77659,15525,0,2481,4263,8900,0,0,0,0
+27558,60000,female,2,1,24,0,0,0,0,0,0,62786,61764,62254,59586,33190,32243,2212,3100,2000,1111,1122,1208,1
+27559,140000,female,3,2,26,0,0,0,0,0,0,93384,93443,57219,57621,48323,45082,3514,3000,2000,2000,1636,1686,0
+27560,80000,female,1,2,25,0,0,0,0,0,0,53685,15291,20694,25435,30510,36101,3291,5694,5435,5510,6101,6742,0
+27561,200000,female,2,2,26,0,0,-2,-2,-1,0,153900,0,0,0,3533,4053,0,0,0,3533,1000,1500,0
+27562,410000,female,1,2,28,-2,-2,-2,-2,-2,-2,5184,3449,2300,0,150,150,3476,2300,0,150,150,989,0
+27563,50000,female,2,1,26,0,0,0,0,0,0,43800,44335,44626,40928,29367,29156,2043,2126,2104,990,1200,1654,0
+27564,50000,female,2,2,25,2,2,2,2,2,2,33995,34937,34394,36509,37105,37866,1800,300,3000,1500,1500,0,1
+27565,100000,female,2,2,26,1,2,0,0,2,2,6056,5810,6860,8337,8054,8921,0,1150,1600,0,1000,0,1
+27566,190000,female,2,2,24,0,-1,0,0,0,0,15740,106602,100177,102308,104614,106847,106602,3700,3800,4000,4075,10000,0
+27567,120000,female,2,2,27,2,2,2,2,2,2,120649,123203,119820,124755,99423,101718,6000,0,8500,0,11345,3700,1
+27568,20000,female,1,2,22,0,0,0,0,0,0,16917,17904,20030,18475,17631,3950,3500,2450,2000,376,79,2350,0
+27569,30000,female,2,2,22,1,2,0,0,0,0,16549,17085,17003,7150,6508,8459,1500,1396,2000,178,2000,2000,0
+27570,20000,female,3,2,22,2,2,0,0,0,2,16381,13837,14907,15853,17776,17352,0,1600,1500,2500,0,1000,1
+27571,20000,female,2,2,22,0,0,0,0,0,0,15247,16561,17280,18431,18341,19569,1575,1294,1596,655,1669,0,1
+27572,80000,female,2,2,22,0,0,0,0,0,0,1742,2524,5097,6107,7141,7355,1200,3000,1500,1500,700,500,0
+27573,80000,female,2,2,23,-1,0,0,0,0,0,78379,78589,77461,59228,46766,47630,3015,2810,2000,2000,2000,1800,0
+27574,50000,female,1,2,23,-1,-1,-1,-1,-1,-1,3430,2478,2299,4800,9810,660,2548,2321,4800,9810,660,2980,0
+27575,80000,female,1,2,23,2,2,2,0,0,0,84052,84787,77572,77123,49823,50680,7100,0,3500,2500,2000,2000,1
+27576,50000,female,1,2,23,0,0,0,0,0,2,49593,49918,51402,49020,50679,51568,2200,2600,2500,3800,2200,0,0
+27577,50000,female,2,2,24,-1,-1,-2,-1,-1,0,594,0,0,51400,11330,12144,0,0,51400,11330,1000,1000,0
+27578,80000,female,2,2,24,-1,-1,-1,-1,-1,-1,386,1392,18634,5433,2053,5781,1396,18754,5449,2059,5798,3098,0
+27579,20000,female,2,1,24,1,2,3,2,0,0,19242,21821,21197,20400,20000,20000,3200,0,0,0,0,0,1
+27580,70000,female,3,2,24,0,0,0,-1,0,0,8391,10242,11026,2342,2390,0,2000,1000,2342,48,0,0,0
+27581,130000,female,2,2,23,0,0,0,-2,-2,-2,8690,9500,0,0,0,0,1000,0,0,0,0,0,0
+27582,10000,female,2,2,21,2,2,3,2,0,0,6795,10398,10094,9768,8430,20735,3905,0,0,300,2165,2666,1
+27583,50000,female,2,1,23,2,2,0,0,0,0,54866,51520,41711,22775,4215,3016,1000,1860,1600,452,100,114,1
+27584,50000,female,1,2,23,0,0,2,0,0,0,9978,12493,10447,12247,9195,4995,3000,0,2020,0,100,2000,0
+27585,20000,female,2,2,22,0,0,0,0,0,0,15090,15199,17111,18422,18234,18217,1500,3000,2000,779,796,788,0
+27586,80000,female,1,2,22,-1,-1,-1,-1,-1,0,1807,133,5395,1182,266,366,133,5395,1182,266,233,0,0
+27587,70000,female,2,1,23,0,0,0,0,0,0,69951,70722,70815,63183,31633,31275,3200,3202,2989,1081,1099,1143,1
+27588,10000,female,2,2,22,1,-2,-2,-2,-2,-2,0,0,0,-400,0,0,0,0,0,400,0,0,0
+27589,120000,female,2,2,23,0,0,2,0,0,0,39517,42543,41583,42736,43806,44623,4000,0,2000,1600,1500,1557,0
+27590,20000,female,2,2,23,0,0,0,2,0,0,15071,16082,17952,18216,17816,19697,1266,2136,1000,0,1881,0,0
+27591,50000,female,2,2,23,-1,0,0,2,2,2,865,1893,3991,3748,3748,-3148,1202,2300,0,0,4999,0,0
+27592,20000,female,1,2,24,0,0,0,0,0,0,14273,13327,11789,11200,13244,13539,1183,2000,1200,2244,506,561,0
+27593,40000,female,2,2,23,0,0,0,0,0,0,39402,39321,38246,39289,39882,39650,2000,2000,2000,1500,1500,2000,0
+27594,80000,female,1,2,23,0,0,0,0,0,0,78366,67801,68034,55674,48649,47041,2540,2442,1810,1661,1668,1663,0
+27595,20000,female,2,2,24,1,2,2,2,2,-2,4697,3800,5989,5761,0,0,0,2266,38,0,0,0,1
+27596,130000,female,2,1,24,0,0,0,0,0,0,66072,68223,70638,72955,74877,76334,3000,3001,3000,2500,2200,2200,0
+27597,100000,female,2,1,24,-1,-1,0,-1,-1,-1,53309,7500,15477,23472,12500,14666,7500,10035,23500,12500,14666,79053,0
+27598,120000,female,2,2,24,0,0,0,0,0,0,93338,91207,89890,88030,88579,89566,3261,4793,3013,3014,3522,3007,0
+27599,50000,female,3,2,24,0,0,0,0,0,0,48658,46749,42190,30683,29140,28986,1900,1613,1504,1200,1100,1100,0
+27600,190000,female,2,2,24,0,0,0,0,0,0,183821,186084,184426,104154,106014,109014,9000,6621,2083,2500,3000,9076,0
+27601,50000,female,1,2,25,0,0,0,-1,-1,-2,20916,14500,0,790,3696,6696,5000,0,790,3696,3000,5724,0
+27602,20000,female,3,1,54,2,0,0,2,2,2,14381,16174,18210,19335,19715,20249,2350,2300,1721,1000,1000,1000,0
+27603,50000,female,1,2,23,1,-1,-1,-2,-2,-2,-697,11361,0,0,0,0,12058,0,0,0,0,0,0
+27604,50000,female,1,2,23,0,0,0,2,2,2,15252,16885,18500,18864,19807,19407,2200,2200,1000,1500,0,3000,0
+27605,80000,female,2,2,22,2,2,0,0,0,0,53023,76708,39701,41021,41525,42394,0,3320,1980,1484,1536,1548,1
+27606,10000,female,3,2,22,2,0,0,0,-1,0,7720,10063,9272,-8758,8989,9202,2500,1000,0,30000,500,953,1
+27607,50000,female,2,2,22,0,0,0,0,0,0,18293,19301,20338,22486,22932,23413,1315,1352,2500,820,850,855,0
+27608,50000,female,2,2,22,0,0,0,0,0,0,50635,49488,48099,50021,50352,50740,1760,1888,3464,1717,1766,2500,1
+27609,50000,female,2,2,23,2,0,0,0,0,0,49441,45880,42621,21734,18775,19590,1998,2198,1300,655,1100,654,0
+27610,20000,female,2,2,22,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+27611,60000,female,1,2,27,2,2,0,0,0,2,19341,19625,20347,21669,23005,22499,900,1342,1664,2000,0,900,1
+27612,50000,female,2,2,23,-1,0,0,2,0,0,9101,10446,12595,11449,9914,9875,1502,2651,500,500,500,500,0
+27613,50000,female,2,2,23,0,0,0,0,0,0,47559,48549,50076,50205,19985,20650,1784,2701,2220,1000,1050,14951,1
+27614,20000,female,2,2,21,-1,-1,2,2,-2,-2,390,780,780,0,0,0,780,0,0,0,0,0,0
+27615,20000,female,2,2,23,0,0,3,2,0,0,14418,18829,18248,17657,18007,18385,5000,0,0,644,668,670,1
+27616,80000,female,3,1,23,2,2,2,2,2,2,22852,25371,26111,25393,29053,28450,3200,1440,0,4100,0,1037,1
+27617,50000,female,3,2,24,0,-1,-1,2,2,-1,10901,16877,9673,7755,6701,15567,22514,4000,8,3000,19000,3500,1
+27618,120000,female,2,2,24,0,0,0,-2,-2,-2,27491,20707,-1843,45041,45453,42065,3000,1843,46884,1296,7000,0,0
+27619,50000,female,1,2,24,0,0,0,0,0,0,43219,35137,25862,12468,12381,12683,2400,1900,2400,250,500,0,0
+27620,110000,female,1,2,24,1,2,0,0,0,0,115527,109871,110565,216850,110952,109169,0,4000,7000,7766,3982,5000,1
+27621,30000,female,2,2,24,1,2,2,0,0,0,26690,27954,27226,28427,28752,28447,2000,0,2000,1000,1100,1500,0
+27622,110000,female,2,2,23,2,0,0,-1,0,0,1587,2399,0,980,35305,36065,1000,0,980,35000,1327,1500,1
+27623,20000,female,2,2,23,0,0,2,0,0,0,15675,17462,16895,17470,7500,7500,4492,0,1000,150,0,0,0
+27624,50000,female,2,2,23,0,0,0,0,0,0,47654,48529,44669,45684,46592,47568,2000,1743,1758,1666,1725,2128,0
+27625,50000,female,1,2,24,0,0,2,0,0,0,48483,52167,51052,50116,20181,19702,4500,0,2000,19000,1000,800,1
+27626,50000,female,2,2,24,0,0,0,0,0,0,43638,42146,30026,29857,30619,30376,2200,1700,2000,1261,1419,1400,0
+27627,20000,female,2,2,22,2,0,0,0,0,0,20549,21301,22251,18040,18402,19118,1400,1300,1284,646,1000,836,0
+27628,200000,female,2,1,36,0,0,0,0,0,0,184697,186660,77221,110294,68214,72103,8001,5000,35000,6000,5000,5000,0
+27629,30000,female,1,2,24,-1,0,0,0,0,0,1991,2621,4211,4709,4805,2848,2000,2000,1000,96,0,3000,0
+27630,130000,female,3,1,23,0,0,0,0,0,0,109592,113508,115633,96898,46425,0,5733,5659,4680,2325,0,0,0
+27631,20000,female,2,2,24,0,-1,-1,0,-1,-1,4261,7830,17213,4781,3178,15834,7830,17221,1203,3178,15834,0,0
+27632,20000,female,1,2,23,-1,0,0,0,0,0,19364,19082,19286,19637,18826,19522,1358,1321,1400,1000,1000,2583,0
+27633,60000,female,2,1,23,0,0,0,0,2,2,59408,58844,43427,30408,30632,30021,2230,2000,4300,1000,0,2000,0
+27634,30000,female,1,2,24,0,0,2,2,-2,-2,27660,28780,780,0,0,0,2000,0,0,0,0,0,0
+27635,30000,female,2,2,22,2,0,0,0,0,0,27987,25690,27032,28070,29402,29854,1420,1762,1800,2089,1059,1123,1
+27636,120000,female,2,2,24,0,0,0,0,0,0,55829,53799,53021,53216,49194,48487,2000,2600,4241,1700,2500,1500,0
+27637,30000,female,2,2,24,0,0,0,0,2,2,20367,21882,22929,25433,26228,25679,2000,1696,3200,1500,0,4306,0
+27638,30000,female,1,2,24,0,0,0,0,0,0,26094,27095,28158,29385,29665,30446,1440,1503,1730,1010,1206,1949,0
+27639,60000,female,2,1,24,0,0,0,0,0,2,23851,24404,21849,18474,15488,11348,1700,2000,1200,1000,0,3500,1
+27640,50000,female,2,2,25,0,0,0,0,0,0,45688,47122,48888,37264,17486,18348,2500,3000,2000,1000,1000,1000,1
+27641,30000,female,2,2,25,0,0,0,0,0,0,8935,9948,10971,11982,12219,12475,1165,1188,1199,436,452,458,0
+27642,270000,female,1,2,25,-1,-1,-1,-1,-1,-1,4999,5588,3366,0,2192,0,5588,3366,0,2192,0,18192,0
+27643,360000,female,1,2,25,0,0,0,0,0,0,160411,163079,166445,168301,171870,175458,6200,6200,4768,5000,5000,5023,0
+27644,450000,female,3,2,26,0,0,0,0,0,0,28765,24672,23095,20776,6189,2396,1714,2012,1107,21,512,81081,0
+27645,50000,female,1,2,25,-1,2,-1,-1,-1,-1,9040,3020,2262,2185,0,5918,0,2262,2185,0,5918,0,0
+27646,50000,female,3,2,25,0,0,0,0,0,0,27232,26777,27129,26613,26057,25924,1439,1464,1401,908,935,924,0
+27647,120000,female,1,2,25,0,0,0,0,0,0,58106,53974,51786,43180,41469,42004,2000,3000,3000,4000,4000,2000,0
+27648,40000,female,1,2,26,1,2,2,2,0,0,7904,7628,10270,9961,10495,12161,0,2775,0,1000,2000,1800,1
+27649,140000,female,2,1,24,0,0,0,0,0,0,62755,64001,65341,66674,68003,69424,2285,2365,2413,2431,2514,3000,0
+27650,200000,female,2,1,25,-2,-2,-2,-2,-2,-2,0,0,1257,0,0,0,0,1257,0,0,0,0,0
+27651,30000,female,2,2,25,-1,-1,0,0,0,0,415,150,150,150,150,150,150,0,0,0,0,0,0
+27652,30000,female,2,2,25,0,0,0,0,0,-2,15493,16427,17379,23100,0,0,1500,1279,10000,0,0,0,0
+27653,30000,female,1,2,25,2,2,2,2,2,0,29335,29869,26425,28034,27375,23466,4000,0,4400,0,2000,2000,1
+27654,30000,female,2,1,25,0,0,0,2,0,0,25530,26600,29765,28933,29205,29630,1500,3600,0,978,2300,0,0
+27655,110000,female,1,2,25,2,2,2,-1,-1,0,2729,4382,1972,1426,5660,5660,4340,5,1426,5660,0,0,1
+27656,50000,female,1,2,24,1,2,2,2,2,0,33385,35538,34686,39097,38171,39396,3000,0,5000,0,2000,5000,0
+27657,130000,female,2,2,24,0,0,-1,0,0,0,135466,126091,128636,103400,40638,11104,4139,137549,3519,1180,0,0,0
+27658,50000,female,2,2,25,0,0,0,0,0,0,47431,48306,35150,25104,20560,8614,2000,1542,1475,1000,350,386,1
+27659,150000,female,1,2,25,0,0,0,0,0,0,87822,83850,56931,96867,95085,69199,2575,2569,45000,5000,3312,1598,0
+27660,30000,female,2,2,25,0,0,0,0,0,0,21020,21207,21403,21074,21289,21425,2000,2000,1500,2000,1000,1000,1
+27661,50000,female,2,2,23,0,0,0,0,0,0,15167,16393,14195,14859,9446,7246,1523,1353,1017,1000,1000,0,0
+27662,20000,female,2,1,23,0,0,0,0,0,0,17049,16178,17218,18630,19029,19579,15000,1600,2000,1000,1000,531,0
+27663,230000,female,2,2,24,0,0,2,0,0,0,64929,65093,59349,56418,52950,49439,6000,0,3000,2000,1500,3000,0
+27664,280000,female,1,2,25,-2,-2,-2,-2,-2,-2,985,500,500,0,500,4778,505,500,0,500,4778,4898,0
+27665,50000,female,2,2,24,0,0,0,0,0,0,5819,8044,3469,2121,821,3821,2555,1200,1000,0,3000,0,0
+27666,130000,female,2,2,23,0,0,0,0,0,0,44930,40688,40880,37851,37816,39849,6000,6000,4000,10000,5000,8002,0
+27667,20000,female,1,2,25,1,-1,-1,-1,-1,-1,0,891,789,0,728,169,891,789,0,728,169,0,0
+27668,80000,female,3,1,26,0,0,0,0,0,0,69489,70336,71755,66175,67573,69083,2600,2571,2500,2500,2600,3000,0
+27669,100000,female,1,2,24,0,0,0,0,0,0,84895,71271,71053,70405,71109,73905,3513,3169,3002,2022,3907,7145,0
+27670,90000,female,2,2,24,2,0,0,2,0,0,89346,89466,93755,89706,89221,91596,4100,8245,0,3450,7200,0,1
+27671,20000,female,1,2,24,-1,-1,-1,-1,-1,-1,440,4023,440,440,440,440,4023,440,440,440,440,440,0
+27672,140000,female,2,1,24,2,-1,-1,-1,-1,-1,1536,696,696,696,696,696,696,696,696,696,696,696,1
+27673,150000,female,1,2,24,-1,-1,-1,-1,-1,-1,291,291,291,291,658,441,291,291,291,658,441,1197,1
+27674,140000,female,1,2,24,2,0,0,0,2,0,778,982,1206,5430,4460,8429,980,1000,5000,0,5000,10000,0
+27675,50000,female,2,2,24,2,0,0,0,0,0,23497,24197,25226,26238,26760,27318,1395,1424,1436,958,989,1128,0
+27676,30000,female,3,2,24,1,-2,-1,0,0,0,0,0,1469,2432,827,0,0,1469,1008,300,0,0,0
+27677,110000,female,2,2,22,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,2990,0
+27678,80000,female,1,2,23,-1,-1,-2,-1,-1,-1,326,-326,0,652,0,326,0,652,652,0,326,652,0
+27679,30000,female,2,1,23,0,0,0,0,2,0,21710,23021,23851,26067,25357,25887,1670,1500,2609,0,930,946,1
+27680,90000,female,2,2,23,0,0,0,-2,-1,0,28120,32429,0,0,2522,2575,5000,0,0,2522,94,111,0
+27681,80000,female,2,2,25,0,0,0,0,0,0,47836,49038,53158,48269,48019,46908,2000,5000,2000,2000,2000,2000,0
+27682,30000,female,2,2,25,3,2,2,2,2,2,9095,10297,9988,11708,11223,12079,1500,0,1892,0,1042,700,1
+27683,20000,female,1,2,24,0,0,0,2,0,0,19335,20094,19495,18845,19023,17928,1415,3600,0,700,4500,1900,0
+27684,30000,female,2,1,24,0,0,0,0,0,0,3740,4616,5837,6778,6912,7057,1100,1300,1200,247,256,258,0
+27685,80000,female,1,2,24,1,2,0,0,0,0,2254,620,4220,8540,8540,8540,0,3600,4500,0,0,4932,0
+27686,90000,female,2,2,23,0,0,0,0,-1,-1,88015,69701,52046,42541,8571,4653,5640,16021,13280,8571,19653,12000,0
+27687,50000,female,2,2,25,0,0,0,0,0,0,46895,45929,44709,28179,28877,29217,2000,1740,1400,1000,1000,1100,0
+27688,20000,female,1,2,22,2,0,0,0,0,2,13718,15033,15751,17068,17891,17463,1550,1268,1585,1408,0,1700,1
+27689,10000,female,2,2,22,0,0,0,0,0,0,6488,7502,8519,9376,9562,9762,1282,1299,1156,342,354,793,0
+27690,80000,female,3,2,23,0,0,0,0,0,0,66909,67465,65470,57187,29058,26790,2451,3017,1557,1500,1000,1239,0
+27691,60000,female,2,2,25,0,0,0,0,0,0,75932,60693,50324,58688,30099,16810,3121,3000,12000,30000,12000,28618,1
+27692,50000,female,1,2,25,0,0,0,0,0,0,50051,46768,48124,48171,19401,19412,1754,2500,1781,2000,695,1000,0
+27693,30000,female,3,2,22,0,0,0,0,0,0,30136,20741,21906,23183,13273,3027,1335,1500,1700,750,200,200,0
+27694,30000,female,2,2,23,2,2,2,2,2,2,34048,33053,33506,41931,38638,35343,0,1800,9851,0,1183,5132,0
+27695,10000,female,1,2,24,0,0,0,0,0,0,6632,7095,7565,8854,9229,8376,2000,2000,2000,1000,1000,1000,0
+27696,50000,female,1,2,26,-1,-1,-2,-2,-1,0,5052,0,0,0,4400,9318,0,0,0,4400,5000,7000,0
+27697,290000,female,1,2,24,0,0,-2,-2,-1,0,11157,0,0,0,2700,1350,0,0,0,2700,0,1350,0
+27698,100000,female,1,1,24,0,0,0,0,0,0,10376,36404,37813,38881,39634,40493,26404,2000,2001,1700,1650,1800,0
+27699,40000,female,3,1,26,2,2,2,2,2,0,33811,34654,35597,36211,35334,36170,1700,1800,1500,0,1500,1500,1
+27700,130000,female,2,2,26,2,0,0,0,0,0,130535,127155,126264,128318,96428,98156,6000,5200,5000,3500,3622,3920,1
+27701,100000,female,2,1,26,0,0,0,0,0,0,1962,4911,5933,6942,7102,9966,3000,1106,1115,275,3000,412,0
+27702,360000,female,1,2,27,-2,-2,-2,-2,-2,-2,0,0,0,0,0,300,0,0,0,0,300,0,0
+27703,110000,female,1,2,23,0,0,0,0,0,0,78793,79182,76460,60136,41872,38158,3400,4000,2951,1600,1540,1400,0
+27704,150000,female,2,2,23,0,0,0,0,0,0,58757,59555,59684,59501,59075,59171,2714,2812,2599,2143,2208,2112,0
+27705,100000,female,1,2,23,-1,-1,-1,-1,-1,-1,4802,4802,4714,11642,4897,3722,4806,4718,11734,4901,3723,3723,0
+27706,50000,female,1,2,23,1,2,0,0,0,0,50638,49484,45095,9299,3054,0,0,2155,1000,1500,0,3294,1
+27707,50000,female,2,2,22,0,0,0,0,-2,-2,50180,38404,29775,0,0,0,2100,1800,0,0,0,0,0
+27708,50000,female,2,1,22,0,0,0,0,0,0,47718,48719,47725,46467,14767,15085,2106,2200,2000,1000,700,800,0
+27709,60000,female,2,2,23,0,0,0,0,0,0,48413,52587,54733,55618,56827,58040,5000,3000,1888,2000,2000,3000,1
+27710,40000,female,2,2,23,0,0,0,0,2,2,18653,20035,21406,24735,24050,43317,2000,2000,4000,0,20000,2000,0
+27711,50000,female,3,1,25,2,2,0,0,0,0,51243,49805,50654,41776,17083,9412,0,2025,2062,2016,1022,1388,1
+27712,80000,female,3,2,25,0,0,0,0,0,0,79986,80012,78748,76722,70370,64510,3000,3010,2700,2300,2500,2000,0
+27713,50000,female,2,1,24,0,0,0,-1,0,0,20173,15509,7085,10358,8606,2740,1500,2008,10358,1000,1000,4438,0
+27714,10000,female,2,2,22,-1,-1,2,0,0,2,3646,7374,6714,4432,6652,6095,4000,0,2000,3000,0,3870,0
+27715,50000,female,2,2,24,0,0,0,0,-2,-2,30344,47000,33034,0,0,0,20002,1000,0,0,0,0,0
+27716,180000,female,2,1,24,0,0,-2,-1,-1,-2,6272,0,0,1000,2190,0,0,0,1000,2190,0,384,0
+27717,80000,female,2,2,25,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+27718,50000,female,1,2,25,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+27719,50000,female,2,1,25,-1,-1,-1,2,0,-1,8731,2463,8514,5797,2413,33353,2463,8514,0,0,33353,5868,0
+27720,30000,female,1,2,22,-2,-2,-2,-2,-2,-2,8066,4869,3781,1991,3951,2612,4869,4000,1991,3951,2612,2668,0
+27721,50000,female,5,2,23,0,0,0,0,0,0,48473,49454,47893,30707,50741,49663,2100,2021,1562,26004,1800,2000,0
+27722,80000,female,2,2,24,0,0,0,0,0,0,77883,78749,77025,66725,21604,9352,3500,4000,2784,1882,1000,457,0
+27723,150000,female,2,2,26,0,0,0,0,0,0,69169,67855,74494,74204,75678,74235,3083,10000,2554,2566,2600,3016,0
+27724,120000,female,1,2,24,-1,-1,-1,-1,-1,-1,2946,384,1914,390,0,780,384,1920,390,0,780,0,1
+27725,80000,female,2,1,24,2,2,-1,0,0,0,3177,-13,4229,4161,4042,6807,0,4242,1032,1000,2812,2248,1
+27726,240000,female,2,2,24,0,0,0,0,0,0,75830,50787,51524,31783,33993,36783,1480,1601,1400,3000,3180,37102,0
+27727,30000,female,2,2,24,0,0,2,2,0,0,27465,30386,31105,30270,29963,29661,3700,1500,0,1050,1250,2200,0
+27728,150000,female,1,2,25,0,0,0,0,0,0,30305,40190,39743,48971,38291,569,10190,10000,10003,0,0,0,0
+27729,50000,female,1,2,25,0,0,0,0,0,0,41892,43875,45052,44938,40655,40930,3000,2200,2000,2000,2000,3000,0
+27730,50000,female,2,1,24,0,0,0,0,0,2,25562,33879,33441,32697,33693,33029,10000,2000,1500,3000,1500,9,0
+27731,230000,female,1,2,24,-1,0,0,0,-1,-1,5883,7923,5418,0,2000,987,7000,1000,0,2000,987,1951,0
+27732,90000,female,2,2,24,0,0,0,0,0,0,84137,85684,87396,67761,65602,65902,3210,3503,2420,2400,2400,2694,0
+27733,230000,female,1,2,25,-2,-2,-2,-2,-2,-2,264,264,264,264,264,264,264,264,264,264,264,264,0
+27734,90000,female,1,2,25,0,0,0,0,0,0,6090,7477,8848,10135,11731,8138,1500,1500,1500,2000,1500,1000,0
+27735,230000,female,2,1,25,0,0,0,0,0,0,9167,10468,10722,11543,10058,20158,1392,2000,1000,0,10100,2253,0
+27736,230000,female,2,2,25,0,0,0,0,0,0,95544,95311,94489,93143,87654,90172,4200,4500,4114,3500,4000,3000,0
+27737,420000,female,2,2,25,0,-1,0,0,0,0,17685,28206,122212,117835,112705,111357,30553,100000,4013,3822,4086,3800,0
+27738,50000,female,1,2,25,0,0,0,0,0,0,30587,30440,30367,30621,30150,30246,1800,1900,1800,1500,1450,1500,0
+27739,70000,female,2,2,24,0,0,0,0,0,0,67897,62826,62595,40327,48673,46158,3000,2916,2004,15006,3000,2200,0
+27740,200000,female,4,2,25,-2,-2,-2,-2,-2,-2,3302,0,0,-5,-5,-5,0,0,0,0,0,0,0
+27741,30000,female,1,2,25,0,0,0,0,0,0,27396,27994,28631,28935,28954,29155,1753,1786,1486,1170,1200,1205,0
+27742,60000,female,2,2,24,2,2,0,0,2,2,47210,46155,46838,50044,50923,52158,0,1725,4000,2000,2200,2100,1
+27743,230000,female,1,2,25,-2,-2,-2,-2,-2,-2,248,248,248,248,248,248,248,248,248,248,248,248,0
+27744,100000,female,2,2,25,0,0,0,0,0,0,100778,98987,101368,100466,97117,99252,4000,4000,4000,3500,3700,4000,0
+27745,420000,female,3,2,25,2,2,2,0,0,0,68394,72874,71035,57503,56467,53995,5620,0,2000,1892,1979,2226,0
+27746,100000,female,2,2,25,-2,-2,-1,0,0,0,880,880,2926,60540,60929,64121,880,2926,58801,2200,5000,3000,0
+27747,160000,female,3,2,26,0,0,2,-1,-1,-1,19542,24035,17561,17094,4353,4906,10000,0,17098,4353,2500,0,0
+27748,260000,female,1,2,26,0,0,0,0,0,0,238110,244368,245186,254614,176211,180845,10368,15186,14614,7211,7850,6912,0
+27749,280000,female,2,1,26,0,-1,-1,-1,-1,-1,6056,804,4712,1728,2076,1709,1200,4720,1728,2076,1709,7508,0
+27750,70000,female,2,2,24,0,0,-2,-1,-1,0,36175,0,0,680,69257,68557,0,0,680,71867,9812,2900,0
+27751,50000,female,1,2,26,2,2,2,2,2,0,47068,46010,49333,49708,45112,42063,0,4070,1551,0,1528,3273,1
+27752,100000,female,2,2,26,2,2,2,2,2,2,30067,36705,35847,37939,38619,37868,7500,0,3500,1600,0,1600,1
+27753,100000,female,1,1,28,1,2,-1,-1,0,0,11059,10105,388,90907,91550,92907,0,388,90907,3413,3359,4824,0
+27754,290000,female,1,2,26,-1,0,0,-1,0,0,55758,7970,7106,8901,16813,15723,5029,5035,8925,11030,5077,3425,0
+27755,180000,female,1,2,26,-1,-1,-2,-2,-2,-2,3000,0,0,0,0,0,0,0,0,0,0,0,0
+27756,300000,female,2,1,25,1,2,0,0,0,0,237155,231932,238917,230083,13862,8210,102,11672,9700,1053,2010,13,1
+27757,80000,female,2,2,25,0,0,0,0,0,0,34984,37853,36230,37235,38575,39590,3015,1155,1940,1500,1174,1300,0
+27758,90000,female,2,1,25,0,0,0,0,0,0,58502,57846,50663,45515,42599,38559,3043,2018,2033,2016,2010,2010,0
+27759,500000,female,2,2,29,0,0,0,0,0,0,433792,396009,335873,320755,316650,318228,13678,12021,11428,10871,11736,10699,1
+27760,40000,female,1,2,25,-1,-1,-1,-1,-1,-1,20216,8851,17940,31308,12009,32846,8851,18220,31319,12009,33482,13785,0
+27761,170000,female,3,2,26,2,2,2,0,0,0,63977,63630,51986,90196,50464,48282,2550,0,3500,3000,2001,3000,0
+27762,30000,female,2,2,25,0,0,0,0,0,0,14045,15363,16108,17888,16505,16511,1555,1300,4894,1000,800,2200,0
+27763,120000,female,2,2,23,-2,-2,-2,-2,-2,-2,436,1476,475,804,245,100,1480,478,804,245,144,0,0
+27764,100000,female,2,2,28,0,-1,2,2,-1,-1,1506,89,89,0,356,16213,89,0,0,356,16213,0,1
+27765,50000,female,2,2,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+27766,360000,female,2,1,26,-1,-1,-1,-1,0,-1,4183,6469,465,4251,1668,2284,6501,467,5452,41,2286,3656,0
+27767,220000,female,1,2,26,0,0,0,0,0,0,29452,33967,41422,44738,51479,56653,5000,8000,4000,7500,6000,4494,0
+27768,110000,female,2,2,25,-2,-2,-2,-2,-2,-2,-2628,-5118,31503,-2880,-5000,0,165,36621,1496,10000,5000,0,0
+27769,110000,female,1,2,26,0,0,0,0,0,0,113284,110062,100659,93909,78589,52644,5200,4628,4878,3000,2055,1908,0
+27770,310000,female,2,2,26,0,0,0,0,0,0,219155,223308,225574,224001,230902,105844,10000,10000,6000,10000,39000,4000,0
+27771,50000,female,2,2,27,-1,-1,-1,-1,-1,-1,45750,1655,8425,10408,53327,318,1655,8425,10424,53327,318,3770,0
+27772,50000,female,1,2,26,1,-2,-2,-2,-2,-2,-18,-18,-18,-18,-18,-18,0,0,0,0,0,0,0
+27773,200000,female,1,2,26,0,0,0,0,0,0,29339,21624,22409,11671,5493,3288,2000,1770,2003,900,1800,1569,0
+27774,120000,female,2,1,27,0,0,-1,-1,-2,-2,50620,15000,100,0,0,0,1000,100,0,0,0,0,0
+27775,80000,female,2,1,27,1,2,0,0,0,0,81841,79062,74722,40151,28424,29059,15,2876,2052,625,693,84,1
+27776,320000,female,2,2,27,0,0,0,0,0,0,228129,324028,295760,151783,125860,137856,100741,15993,57149,5136,40275,10013,0
+27777,210000,female,1,2,27,-1,-1,-1,-1,-1,-2,4426,0,1349,10368,0,0,0,1349,10368,0,0,0,0
+27778,90000,female,2,2,26,2,2,2,2,0,0,88103,90951,92226,89817,87296,89130,8300,3600,0,3300,3400,4000,1
+27779,170000,female,1,2,26,0,0,0,0,0,0,172523,164962,169636,152603,114885,105735,8000,9000,5800,3505,3500,3300,0
+27780,310000,female,2,2,25,-2,-2,-2,-2,-2,-2,2548,10304,12497,8568,1787,498,10317,12497,8580,1787,498,3019,0
+27781,360000,female,2,2,26,2,0,-1,0,-1,-1,2143,3060,3548,3408,5995,10136,1000,3548,1000,5995,10136,5882,0
+27782,200000,female,1,2,26,-2,-2,-2,-2,-2,-2,2364,442,33442,2140,964,2075,442,33448,2140,964,2075,7511,0
+27783,500000,female,3,2,26,0,0,0,0,0,0,16162,18581,19321,21986,22440,25070,3000,1335,3000,811,3000,3500,0
+27784,300000,female,2,2,26,0,0,0,0,0,0,212323,216844,220004,18715,18675,18693,8420,7117,1285,702,810,542,0
+27785,130000,female,2,2,26,1,2,0,0,0,0,99290,96811,99330,94501,91503,91064,0,5000,3358,3500,6000,3500,1
+27786,260000,female,1,2,26,0,0,0,0,0,0,144112,144619,142380,141746,112938,110346,5033,5046,4573,4000,3800,4000,0
+27787,100000,female,3,2,27,0,0,0,0,0,0,89312,141034,61119,58535,54224,51204,3000,2208,2700,2000,1844,1709,0
+27788,70000,female,2,2,26,0,0,0,0,0,0,65229,66348,67292,67091,49303,49350,3000,3100,2400,2000,2000,2000,0
+27789,100000,female,2,1,26,0,0,0,2,0,0,95087,87380,87083,82653,72867,74140,3965,7138,0,2448,2674,2672,1
+27790,80000,female,1,2,26,0,-1,-1,2,2,2,1238,376,2281,1356,355,-520,376,2281,0,0,0,35893,0
+27791,100000,female,1,2,25,2,0,0,2,0,0,97570,87923,91078,86433,65149,64810,4100,5514,2500,3000,4000,3000,1
+27792,70000,female,1,2,24,0,0,0,2,2,2,47220,48432,52650,53099,51648,55409,2000,5000,1900,0,4600,0,0
+27793,170000,female,1,2,27,2,2,2,0,0,0,169057,170609,164777,166227,166199,169533,7500,0,7400,5978,6251,5872,0
+27794,30000,female,1,2,26,-1,2,2,2,0,0,9600,8805,10534,8240,7027,7034,0,2399,0,388,260,478,0
+27795,20000,female,3,2,26,1,2,0,0,0,0,18025,17443,18117,17040,17763,17666,0,1277,1300,1000,799,2000,0
+27796,180000,female,1,2,26,-1,-1,-1,-1,-1,-1,17517,27856,16285,9632,15025,53941,28000,16370,9676,15098,54207,87358,0
+27797,30000,female,2,1,27,2,0,0,2,2,2,20581,21632,24267,24572,24872,25427,1700,3300,1000,1000,1100,1000,1
+27798,80000,female,1,2,27,0,0,0,0,0,0,82150,80163,81296,81624,81614,78268,3463,3600,3624,3200,3100,6200,0
+27799,60000,female,2,2,27,0,0,0,2,2,2,27921,29954,33166,33528,32690,34661,2500,3700,1200,0,2500,2500,0
+27800,150000,female,1,2,26,0,0,0,0,0,0,151812,145411,132560,121003,69091,55543,7005,6612,4540,2426,1854,2424,0
+27801,50000,female,3,2,23,2,0,0,0,0,0,46913,47486,47963,33499,19227,19334,1938,1703,1304,680,696,717,0
+27802,360000,female,1,1,27,1,-2,-1,-1,0,0,0,0,9000,3002,3063,3063,0,9000,3002,61,0,0,0
+27803,70000,female,3,1,26,2,0,0,0,0,0,71832,71147,72227,71078,50777,50841,3275,3800,3200,1950,2000,1828,0
+27804,50000,female,1,2,27,2,0,0,0,2,0,48064,47691,49140,49423,48377,48158,3000,2525,3900,0,2000,4500,1
+27805,90000,female,1,2,28,1,2,0,0,0,2,52061,50472,46226,40920,29863,19674,79,5000,10009,10000,0,7000,1
+27806,60000,female,3,2,27,0,0,0,0,0,0,39325,40668,42009,43804,44473,45752,2000,2000,2500,1700,2000,1700,0
+27807,360000,female,1,2,27,-2,-2,-2,-2,-2,-2,2434,3881,2394,2441,2441,2441,3900,2406,2453,2453,2453,2453,0
+27808,70000,female,2,2,22,0,0,0,0,0,0,66748,52642,40934,34685,30166,29299,2049,1700,1446,1000,1044,1176,0
+27809,20000,female,2,2,23,3,2,2,2,2,2,12508,12015,14459,14498,14029,15179,0,2955,597,0,1473,0,1
+27810,110000,female,2,1,25,2,0,0,0,0,0,30079,29349,27630,22017,20517,18534,1494,1402,1534,800,700,616,1
+27811,30000,female,2,2,25,0,0,0,0,-2,-2,15767,16083,6115,0,0,0,1488,1000,0,0,0,0,0
+27812,90000,female,3,2,25,0,0,0,-2,-2,-2,74814,71859,0,0,0,0,5000,0,0,0,0,0,0
+27813,210000,female,2,1,25,0,0,0,0,0,0,142848,94018,96926,100399,101472,103834,5000,4415,6000,3635,4000,5000,0
+27814,270000,female,1,2,27,0,0,0,0,0,0,196192,200750,204418,197854,173743,149095,9000,9500,8929,7265,5400,5300,0
+27815,60000,female,1,2,27,2,-1,-1,-1,-1,-1,322,530,8004,692,0,191,563,8004,692,0,191,0,0
+27816,280000,female,2,2,24,-1,-1,-1,-1,-1,0,316,316,3861,316,10800,9099,316,3861,316,10800,382,5000,0
+27817,50000,female,3,2,25,0,0,0,0,-2,-2,8298,5841,3750,0,0,0,1250,1000,0,0,0,40277,0
+27818,70000,female,1,1,25,0,0,0,0,0,-1,69334,66987,58055,44593,-1380,48757,3000,2213,1565,0,50137,1800,0
+27819,140000,female,2,2,26,-1,-1,-1,-1,0,0,10066,6465,13524,94419,93295,94599,6483,13566,94422,3100,3600,3621,0
+27820,30000,female,3,2,26,0,0,0,0,0,-1,27818,27594,29717,28812,28762,10404,3000,2595,1200,1020,10404,51000,1
+27821,70000,female,1,2,26,0,0,0,0,0,0,69754,71377,71225,64644,68427,69893,2791,2939,2364,4876,2557,3599,0
+27822,140000,female,1,2,27,-2,-2,-2,-2,-2,-2,0,0,3544,0,0,0,0,3544,0,0,0,0,0
+27823,300000,female,4,2,30,-1,-1,-1,-1,0,-1,10915,3469,2316,58284,6877,5970,3480,3016,58438,20,5987,2795,0
+27824,80000,female,2,2,26,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,3100,0,0,0,0,0
+27825,340000,female,2,2,27,0,0,0,0,-1,0,59322,70886,81480,13580,22474,70590,20063,20385,6157,22533,60052,30059,0
+27826,310000,female,1,2,27,0,0,0,0,0,0,134525,115126,105687,102306,93929,87681,6200,5222,5197,4000,5000,3980,0
+27827,110000,female,2,2,27,1,2,0,0,0,0,59580,54255,55474,45467,46285,47334,0,2230,2100,2010,2150,1200,1
+27828,130000,female,1,2,27,0,0,0,0,0,0,68251,66221,67061,64154,15903,16493,3000,2500,2000,1500,1000,1000,0
+27829,280000,female,2,2,29,-2,-2,-2,-2,-2,-2,190601,4987,651,3126,3707,11225,4987,651,3126,3707,11225,10482,0
+27830,100000,female,1,2,29,1,2,2,2,0,-1,6266,2366,7042,780,390,390,0,5000,0,0,390,1320,0
+27831,150000,female,1,2,29,0,0,0,0,0,0,94062,65825,64041,60948,51510,46917,3183,3023,2549,2000,2000,2000,0
+27832,130000,female,3,1,26,0,0,2,2,2,0,121329,128791,127881,133130,127159,131069,11000,2600,9000,0,6000,5000,0
+27833,250000,female,1,1,27,0,0,0,0,0,0,85238,87797,75436,58695,41211,34987,20004,2893,2201,1215,10040,10041,0
+27834,200000,female,1,2,28,0,0,0,0,0,0,7484,8273,13249,22319,17279,9853,2000,13000,10000,5000,5000,4000,0
+27835,110000,female,2,2,28,2,2,2,0,0,0,105014,104574,94521,88833,82585,75992,9000,10,3917,2730,2770,2800,0
+27836,160000,female,2,3,27,0,0,-1,0,0,0,11442,7257,15770,27024,14490,8190,1000,15793,11000,6000,1000,10312,0
+27837,80000,female,3,1,27,0,0,0,0,0,0,24003,21887,14799,6402,4950,4661,3028,1241,3010,2025,3500,26028,1
+27838,220000,female,1,2,27,0,0,0,-1,-1,-1,66620,56611,37504,9499,3679,13232,16008,12000,15030,10000,15000,5000,0
+27839,20000,female,2,2,27,0,0,0,2,0,0,16679,14921,9470,9640,6110,5775,1554,2360,500,1000,3200,2000,0
+27840,160000,female,2,2,26,1,2,2,2,-1,-1,5654,796,398,0,398,0,398,0,0,398,0,0,0
+27841,170000,female,1,2,26,-1,-1,-1,-1,-1,-1,3732,3732,3732,3732,4239,3910,3732,3732,3732,4239,3910,4146,0
+27842,360000,female,2,2,26,0,0,0,0,0,0,17084,17896,67507,68884,70406,71769,1400,50000,2502,2669,2650,2800,0
+27843,50000,female,2,1,26,0,0,0,0,0,-1,49378,49744,40859,20706,-1166,19133,2500,1500,1206,0,20689,697,0
+27844,100000,female,1,2,27,0,0,0,0,0,0,43599,45865,54424,56032,59475,47491,3000,10000,2647,5000,2000,4000,0
+27845,150000,female,1,2,29,0,0,0,0,0,0,146465,147331,146999,146277,147946,145846,7000,6740,6850,5664,5660,5480,0
+27846,150000,female,2,1,29,0,-1,0,0,0,0,8139,151691,143248,109930,80987,80938,151691,6502,4333,2810,3100,3187,0
+27847,100000,female,1,2,29,0,0,0,0,0,0,167410,85536,77303,60178,56436,51773,70001,3769,2008,1950,2001,18000,0
+27848,200000,female,1,2,29,-1,-1,-1,-1,0,0,5967,1892,26995,7601,6481,1610,1897,26995,7606,380,0,0,0
+27849,300000,female,3,2,27,0,0,0,0,0,0,17376,17538,16425,11976,3012,0,1294,11236,1032,9,0,0,0
+27850,130000,female,3,2,28,1,-1,-1,-1,-1,-1,0,14051,0,1358,1039,164,14051,0,1358,1039,164,167,0
+27851,150000,female,2,1,28,0,0,0,0,0,0,97069,100743,103528,105623,106583,108909,5300,5300,5300,4200,4200,4200,0
+27852,110000,female,1,2,28,0,0,0,0,0,0,53152,45002,42051,30803,28377,29053,1725,1774,1526,1100,1200,1081,0
+27853,340000,female,3,1,28,-1,-1,-1,0,0,-1,6780,3629,29052,50832,30272,11253,3629,29052,30000,5034,11253,86069,0
+27854,60000,female,1,2,25,0,0,0,0,0,0,59228,59961,59824,47655,27298,28303,2300,3572,2169,6000,4000,4000,0
+27855,90000,female,3,2,23,0,0,-1,-1,0,-1,94806,119836,21836,11036,29836,986,30000,30000,11036,19836,986,21615,0
+27856,230000,female,2,1,29,1,2,0,0,0,0,113218,114665,115898,112930,115743,118933,4800,4600,4300,4700,5124,4110,0
+27857,200000,female,1,2,29,-1,-1,-1,-1,0,0,3655,3036,3423,7403,4896,3185,3084,3475,7417,108,18,8424,0
+27858,310000,female,1,2,28,-1,-1,2,-1,-1,-1,18877,18379,10327,17252,9917,33776,18417,48,17337,9965,33826,116,0
+27859,150000,female,2,1,29,0,0,0,-1,-1,0,80625,37645,43747,700,64758,92966,8002,7601,701,64758,29008,30000,0
+27860,390000,female,2,1,29,-2,-2,-2,-2,-2,-2,10598,1446,2041,4582,2070,0,1571,2041,4582,2070,0,3100,0
+27861,210000,female,1,2,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+27862,290000,female,1,2,27,1,2,0,0,0,2,236258,232523,243753,253145,267412,273095,1500,16500,15000,20000,10000,9701,0
+27863,180000,female,2,1,26,-1,0,0,2,-1,-1,31540,5080,9227,3235,2655,7251,5000,9000,0,2668,7251,13365,0
+27864,140000,female,1,2,26,0,0,0,0,0,0,137789,135240,211542,132019,101731,108687,5000,7027,6032,4000,8700,0,1
+27865,10000,female,2,1,26,2,2,2,2,2,0,2742,5015,4789,6199,5951,6255,2500,0,1500,0,400,400,0
+27866,80000,female,1,2,27,0,0,0,0,0,0,36959,38042,38925,40274,41598,42926,2000,1800,2000,2000,2000,3000,0
+27867,50000,female,1,2,27,3,2,2,7,7,7,300,300,300,300,300,300,0,0,0,0,0,0,1
+27868,110000,female,1,2,28,0,0,0,0,0,0,52693,54148,73596,76938,47942,40963,5064,42000,5091,2026,3033,2510,0
+27869,180000,female,1,2,29,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+27870,230000,female,3,1,27,0,0,0,0,0,0,67615,19870,19649,17969,10888,8657,1323,1500,1000,2000,1023,2004,0
+27871,80000,female,1,2,27,-1,3,2,2,2,0,2127,1948,1770,3104,2946,2844,0,0,1400,0,57,816,0
+27872,50000,female,1,1,27,1,2,0,0,2,0,19029,18431,22782,32304,31519,23724,0,5000,10000,0,6724,13385,0
+27873,220000,female,1,2,28,0,0,0,0,0,0,215779,196299,202596,198845,194885,92905,8600,11000,6000,10082,3400,3825,0
+27874,30000,female,1,2,28,1,2,2,2,2,0,24307,23618,26733,27016,24972,25425,0,3500,1028,0,1000,3300,1
+27875,200000,female,1,2,26,0,0,0,0,-2,-2,196168,201190,200662,-1528,-1528,-1504,8800,10183,1504,0,24,204395,0
+27876,130000,female,2,1,26,0,0,0,0,0,0,45563,46607,47329,45854,46822,47567,2100,1807,1800,1701,2002,1853,0
+27877,360000,female,1,2,26,2,2,-2,-2,-2,-2,2500,0,0,0,0,0,0,0,0,0,0,0,0
+27878,140000,female,1,2,27,0,0,0,0,0,0,27750,28797,29840,31349,35687,36983,1500,1500,2000,5000,2000,5000,0
+27879,130000,female,1,2,27,-2,-2,-2,-2,-2,-2,8508,27049,0,0,0,0,27049,0,0,0,0,0,0
+27880,150000,female,1,2,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+27881,20000,female,2,1,28,2,2,2,0,0,0,17023,18432,17848,19103,19229,18856,2000,0,1574,700,688,687,1
+27882,130000,female,2,2,28,2,0,0,0,0,0,7964,8976,9998,11007,11226,11460,1152,1174,1183,402,415,418,0
+27883,190000,female,1,2,29,0,0,0,0,0,0,28096,29322,30144,31243,32719,33540,2000,1600,1600,2000,1500,1300,0
+27884,140000,female,1,2,25,2,0,0,0,0,0,26623,28863,34049,36061,40003,45423,3000,6000,3000,5000,6000,5000,1
+27885,180000,female,2,2,25,0,0,0,0,0,0,177607,177498,176081,175540,142015,139162,6500,7000,7200,5018,5200,5300,0
+27886,180000,female,1,2,28,-1,-1,-1,0,-1,-1,2393,5428,5683,39351,3241,2614,5461,5834,39000,3241,2614,3506,0
+27887,50000,female,2,2,28,0,0,0,0,2,0,23318,24327,25360,27929,27184,27752,1398,1431,3000,0,1155,1025,0
+27888,80000,female,2,1,27,-1,-1,-1,-1,-1,-1,2805,1995,0,680,2862,5539,1995,0,680,2862,5539,0,0
+27889,120000,female,2,2,27,1,1,-2,-2,-2,-2,11238,0,0,0,0,0,0,0,0,0,0,0,1
+27890,420000,female,2,2,28,0,0,0,0,0,0,89829,82251,78830,76521,78049,79792,5126,3019,2777,2800,3000,3000,0
+27891,90000,female,2,1,27,1,-1,-1,-1,-1,-1,0,1191,-21,2130,3486,1495,1191,0,2151,3486,1495,0,0
+27892,70000,female,1,2,27,0,0,0,0,0,0,42825,47047,62703,28945,16345,21163,5000,20000,10000,6000,5000,8000,0
+27893,200000,female,2,2,27,0,0,-1,-1,-2,-2,37076,18382,18834,0,0,0,5000,18834,60000,0,0,0,0
+27894,240000,female,1,2,28,0,0,0,0,0,0,30173,29109,16704,13934,2020,4520,5009,4000,3506,0,2500,4000,0
+27895,360000,female,1,2,28,-1,-1,-1,-1,-1,-1,276,0,502,0,1017,0,0,502,0,1017,0,359,0
+27896,180000,female,1,2,28,0,0,0,0,0,0,20098,22063,11705,14900,7180,-10,3000,4000,4000,3000,0,550,0
+27897,160000,female,1,2,27,-1,-1,-1,-1,0,-1,288,451,1665,330,165,794,451,1680,330,0,794,2349,0
+27898,20000,female,2,2,29,0,0,0,0,0,0,12742,8438,9792,10990,13990,10000,1500,1500,1500,3000,2000,0,0
+27899,30000,female,3,2,28,2,0,0,-1,-1,0,1946,1473,0,157,24767,24991,1000,0,3160,25000,1000,2000,0
+27900,230000,female,1,2,28,0,0,0,0,0,0,45405,41630,38940,37150,36306,33563,2500,3013,4000,5006,3000,3000,0
+27901,240000,female,1,2,29,0,-1,0,0,0,0,10747,30380,15579,20496,15296,24332,30439,10023,10000,5000,15000,15000,0
+27902,200000,female,1,2,27,0,0,2,2,2,2,159215,172029,167856,179126,174748,179337,15500,0,14100,0,7400,13000,1
+27903,280000,female,2,2,28,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+27904,340000,female,2,1,29,0,0,-1,-1,-1,0,20816,11706,600,-470,50813,50271,1005,600,0,51283,1193,5000,0
+27905,50000,female,1,2,25,0,0,0,0,0,0,44641,45769,47397,40345,31003,29693,1870,2500,3017,1060,1300,2000,0
+27906,200000,female,3,1,26,0,0,0,0,0,0,201642,202486,197888,145078,137272,131447,7671,6210,4500,4200,6200,4200,1
+27907,140000,female,2,1,27,2,-1,-1,-1,0,0,776,752,776,1580,804,728,752,800,1580,0,700,700,0
+27908,160000,female,1,2,29,-1,-1,0,0,0,0,20193,3250,9244,8344,5607,1289,3250,6152,1000,1401,0,0,0
+27909,50000,female,1,2,26,2,2,2,2,2,0,29164,28396,31533,31833,31022,31681,0,3600,1111,0,1160,1160,0
+27910,20000,female,1,2,28,2,2,2,2,2,2,15522,18442,17862,19756,19143,21671,3186,0,2500,0,3000,0,1
+27911,170000,female,2,1,29,-2,-2,-2,-2,-2,-2,-807,-807,-807,-807,-1169,-1531,0,0,0,0,0,0,0
+27912,140000,female,2,2,27,-1,-1,-1,-1,-1,-1,1186,3713,390,390,6580,0,4000,390,390,6580,0,780,0
+27913,150000,female,1,1,29,1,-1,-1,-2,-2,-2,0,231,0,0,0,0,231,0,0,0,0,685,0
+27914,70000,female,2,2,25,1,2,0,0,0,0,73167,70238,70640,71298,70930,72491,0,2600,3000,3000,6000,0,0
+27915,50000,female,3,2,28,0,0,0,0,0,0,51422,50525,49691,49308,30284,30554,2100,2500,28400,1100,2000,1500,1
+27916,80000,female,2,1,28,0,0,0,0,-1,0,150651,52233,81162,71470,28718,27813,3905,81000,1513,47921,10000,2001,0
+27917,360000,female,2,1,29,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+27918,360000,female,1,2,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+27919,130000,female,1,2,27,0,0,0,0,-1,-1,37319,38252,46741,42881,367,46265,2031,10000,1000,367,61170,1200,0
+27920,120000,female,1,2,28,-1,-1,-1,-1,-1,-1,2494,1394,780,470,-170,180,2000,780,470,0,500,1335,0
+27921,110000,female,2,2,28,0,0,0,0,0,0,79573,81449,83241,84960,86045,88060,3800,4000,4000,3400,3400,7000,0
+27922,230000,female,2,2,28,0,0,0,0,0,-1,29500,4828,7633,9202,2553,6015,4800,7021,8008,0,6015,3053,0
+27923,110000,female,2,2,29,0,0,2,2,2,2,18817,21068,16412,16809,8682,8861,2600,1102,1000,0,602,0,1
+27924,200000,female,1,2,28,-1,-1,-1,-1,-1,-1,1860,4464,29705,25854,510,1470,4464,29705,25854,510,1470,5822,0
+27925,60000,female,1,1,28,-1,-1,-1,-1,-1,-1,2848,1469,1647,1355,1458,1631,1469,1675,1355,1458,1631,1931,0
+27926,310000,female,3,2,28,0,0,0,0,0,0,240846,220845,179260,116798,109647,114745,10500,7809,10000,10000,10334,10000,0
+27927,160000,female,3,2,27,1,-1,-1,-1,-1,-1,-10,3382,7726,12290,1280,0,3392,7749,14529,1283,0,0,0
+27928,180000,female,1,1,27,0,0,0,0,0,0,152158,155181,158437,161664,164873,168344,5539,5741,5852,5881,7607,6135,0
+27929,170000,female,1,1,30,-1,-1,-1,-2,-1,-1,364,14662,0,0,1861,-167,14662,0,0,1861,0,334,0
+27930,240000,female,1,2,29,-1,-1,-1,-2,-1,-1,3647,2530,464,1316,1102,3381,2535,464,1316,1104,3384,5200,0
+27931,160000,female,1,2,28,-1,-1,-2,-2,-2,-2,160,0,0,0,0,0,0,0,0,0,0,0,0
+27932,200000,female,1,2,28,-2,-2,-2,-2,-2,-2,7618,7961,1452,6248,4112,0,7961,1452,6248,4112,0,3428,0
+27933,60000,female,3,2,28,0,0,0,0,0,0,59650,51176,42368,35730,28670,27979,3376,1900,1908,1133,1015,1153,0
+27934,100000,female,2,1,28,0,0,0,0,0,0,94245,95268,96620,97938,78126,65680,3500,3800,3900,3000,2300,2300,0
+27935,60000,female,1,2,28,0,0,2,0,0,0,6393,10540,10232,11237,11427,20973,4278,0,1483,673,10000,11540,1
+27936,50000,female,1,2,31,-1,0,-1,-1,-1,-2,12725,34526,12787,3995,0,0,30018,12787,3995,0,0,0,0
+27937,120000,female,2,2,29,0,0,0,0,0,0,96342,97724,99131,100464,100380,101445,4500,4500,4500,3700,3679,4100,0
+27938,250000,female,1,2,30,-1,0,0,0,0,-1,18751,21550,23932,37329,26339,4836,5000,3500,15054,7885,4836,9655,0
+27939,180000,female,1,1,30,-1,-1,-1,-1,-1,-1,1863,1863,2886,840,2052,1443,1863,2886,840,2052,1443,1443,1
+27940,210000,female,2,1,30,0,0,0,0,0,0,107539,103234,47363,45810,42093,36587,3000,3018,2000,1500,1500,2000,0
+27941,360000,female,2,1,30,0,0,-2,-2,-2,-2,19918,-182,-6877,-5377,-2377,-377,500,0,2000,3000,2000,3000,0
+27942,210000,female,1,2,26,0,0,0,0,0,0,132909,135210,140056,143584,147832,150953,7000,7003,8000,8000,5500,7000,0
+27943,110000,female,2,1,29,0,0,0,-2,-1,2,27340,17353,0,0,3161,2996,10000,0,0,3161,0,30000,0
+27944,270000,female,2,2,29,-1,-1,-1,-1,0,0,88996,17142,18118,147189,170268,170268,17142,18118,147500,60000,15000,58354,0
+27945,50000,female,1,2,29,0,0,2,0,0,0,6161,8998,8319,8672,9390,9861,3500,0,1282,1000,1000,3000,0
+27946,220000,female,2,1,29,0,0,0,0,0,0,142818,141540,131810,118866,115256,97161,5042,5042,3687,3660,3528,3314,0
+27947,80000,female,2,2,30,-1,-1,0,-1,0,0,4161,1819,6845,1813,8362,-783,2000,6689,1817,8100,0,4000,0
+27948,180000,female,1,2,31,-2,-2,-2,-2,-2,-2,4522,1763,1571,0,4775,0,1771,1571,0,4775,0,0,0
+27949,400000,female,1,1,31,-1,-1,-1,-1,-1,-1,325,5581,2833,1162,325,325,5581,2833,1162,325,325,325,0
+27950,230000,female,2,1,30,0,0,0,0,0,0,234521,228486,216287,215927,174259,174486,9800,8502,8350,6200,6500,6500,0
+27951,90000,female,5,2,31,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+27952,30000,female,2,1,29,1,2,2,2,0,0,27371,26632,29703,28700,28300,25520,0,3500,0,0,1000,0,1
+27953,150000,female,1,2,29,0,0,0,0,0,0,145138,140210,136196,105989,98836,94504,5200,7982,4500,4048,3800,3818,0
+27954,230000,female,1,2,29,2,-1,-1,-1,-1,-1,711,711,711,711,711,291,711,711,711,711,291,1131,0
+27955,510000,female,1,2,30,-1,-1,-1,-1,0,0,71121,481382,559712,163628,117475,116656,493358,1227082,164577,510,6239,4550,0
+27956,20000,female,2,2,30,1,2,0,0,0,0,20128,17842,18979,7886,19786,20025,0,7027,1000,19000,6000,1000,1
+27957,150000,female,1,2,27,0,0,0,0,0,0,51032,69242,65366,62283,60942,55878,30000,20142,3759,7022,20000,10000,0
+27958,110000,female,2,2,24,0,0,0,0,0,0,6217,7947,9649,11472,13267,15048,2000,2000,2000,2000,2000,0,0
+27959,250000,female,2,1,25,0,0,0,0,0,0,24920,26456,24196,22408,20610,17978,2000,1790,1250,700,644,1000,0
+27960,240000,female,1,3,29,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+27961,150000,female,1,2,28,-1,-1,-2,-2,-2,-2,3470,0,0,0,0,0,0,0,0,0,0,0,0
+27962,420000,female,2,2,29,0,0,0,0,0,0,267050,272606,278407,284777,301438,308571,10000,10200,11000,21500,12000,15000,0
+27963,170000,female,5,2,30,0,0,0,0,0,0,66805,51351,38816,32475,24606,21988,5148,3000,1978,4700,1000,2000,0
+27964,220000,female,1,2,28,-1,0,-1,0,-1,-1,6601,8312,2102,4707,7216,6565,5026,2102,4000,7216,6565,4757,0
+27965,160000,female,2,2,28,-2,-2,-2,-2,-2,-2,2191,645,2102,5477,2258,1849,645,2118,5477,2276,1851,5543,0
+27966,150000,female,2,1,28,0,-1,-1,-1,0,0,5527,614,12515,10749,7549,5749,1000,13000,12006,7000,0,0,0
+27967,150000,female,2,2,29,1,2,2,2,0,0,4577,4356,6643,2831,1745,3212,0,2400,0,1500,1500,1000,1
+27968,140000,female,2,1,27,-2,-2,-2,-2,-2,-2,444,0,1650,0,2226,0,0,1650,0,2226,0,656,1
+27969,240000,female,2,2,27,0,-1,0,-1,0,-1,30589,2225,3708,20694,19771,38603,2239,3700,20739,10003,40115,8756,0
+27970,20000,female,2,2,28,0,0,2,0,0,0,2937,5696,4144,8168,6894,11424,3353,3,5101,6,6530,8103,1
+27971,30000,female,2,2,29,2,0,0,0,-2,-2,28541,16436,18146,0,0,0,1385,5000,0,0,0,0,1
+27972,80000,female,2,1,29,2,0,0,0,0,0,80100,79368,81130,49407,49067,50234,3500,3700,1800,1900,3000,2000,0
+27973,400000,female,1,2,29,-1,-1,0,0,0,0,5567,13011,22396,26359,41627,16709,13011,10001,5023,20150,5082,4134,0
+27974,150000,female,2,2,27,0,0,0,0,0,0,88957,92548,82169,67958,69310,70819,5500,2730,2468,2483,2628,10000,0
+27975,180000,female,2,1,32,0,0,0,0,0,0,95917,85902,77013,69551,62960,59487,2986,3000,2367,3000,3554,5495,0
+27976,360000,female,3,1,32,0,0,0,0,0,0,227689,206249,182985,186047,188389,191907,7142,8200,7600,6200,6000,7000,0
+27977,160000,female,1,1,30,-1,-1,-1,0,-1,-1,960,3597,3633,2707,6087,4852,3597,3633,2702,6087,4852,9425,1
+27978,80000,female,2,2,30,0,0,2,0,0,0,80681,84064,79988,79291,53876,49513,6900,0,4382,1822,2000,2000,0
+27979,240000,female,2,1,32,1,-2,-2,-1,-1,-1,0,0,0,262,0,1389,0,0,262,0,1389,0,0
+27980,50000,female,2,1,33,0,0,0,-1,0,0,34485,28251,7114,28042,28479,29066,1815,1700,30042,1200,1200,1300,1
+27981,50000,female,2,1,34,-2,-1,0,0,0,0,50680,50655,50710,50503,40140,-21364,50702,2033,1776,2000,29000,59901,0
+27982,50000,female,3,1,29,0,0,0,0,0,0,47194,48381,46777,39420,8824,9009,2002,2000,1530,1000,327,329,1
+27983,200000,female,2,1,30,-2,-2,-2,-2,-2,-2,42488,0,0,0,7637,21186,0,0,0,7637,21186,0,0
+27984,50000,female,1,2,29,2,0,0,2,0,0,50461,48340,51113,48114,19400,19240,2100,4900,0,3000,2500,1000,0
+27985,140000,female,1,2,30,0,0,2,0,0,2,78095,84781,82558,80376,85281,84688,8000,0,3500,5900,0,3000,0
+27986,310000,female,1,2,29,0,-1,0,-1,-1,-1,8454,14570,21897,4316,771,2888,14581,11139,15347,793,7390,1436,0
+27987,430000,female,3,2,30,0,0,0,0,0,0,308741,304476,277823,251443,236975,203526,12000,11000,11000,10000,8000,8000,0
+27988,100000,female,1,2,30,0,0,0,0,0,0,89242,91067,93409,95056,75688,77330,4200,4700,4500,3000,2900,2901,0
+27989,500000,female,1,2,29,0,0,0,0,-1,-1,28555,33055,42392,36641,12149,426518,5000,10000,5132,12159,426529,20016,0
+27990,200000,female,2,2,29,0,0,0,0,0,0,204134,194949,153646,137087,134995,135953,8000,5542,5308,4587,4750,4935,1
+27991,140000,female,1,2,29,0,0,2,0,0,0,135436,144922,141289,137377,93261,95368,13102,17,5547,3242,3512,3333,0
+27992,200000,female,2,1,30,-2,-1,2,-1,-1,-2,0,1541,811,2754,17557,1144,1541,4,3071,17557,1144,1252,0
+27993,200000,female,1,2,28,-2,-1,0,0,0,0,466,161746,153377,134027,135120,136512,161844,5228,5005,5004,5151,5253,0
+27994,100000,female,1,2,28,0,0,0,2,0,0,10886,11697,14479,10775,10998,12655,1300,3005,0,700,2000,1500,0
+27995,180000,female,4,1,28,2,0,0,0,0,0,117328,115140,73730,64600,2500,0,4117,3504,3000,0,0,0,0
+27996,190000,female,1,2,28,0,0,0,0,0,0,141693,143464,146943,151905,153538,156664,5618,5795,7408,5645,5753,6370,0
+27997,50000,female,1,2,28,0,0,0,0,0,0,48782,47708,49846,49303,29722,29624,2100,3600,2146,1004,1100,1294,0
+27998,440000,female,1,1,31,0,-1,-1,-1,-1,-2,232526,1025,0,26549,0,1000,1025,0,26549,0,1000,150,0
+27999,30000,female,2,1,30,-1,2,-1,-1,-1,-1,4994,886,937,0,1083,3395,0,1000,398,1083,3395,7383,0
+28000,180000,female,2,2,29,-1,-1,-2,-2,-2,-2,4184,0,0,0,0,0,0,0,0,0,0,0,0
+28001,150000,female,1,2,29,-2,-2,-2,-2,-2,-1,0,5067,131,987,0,14001,5067,131,987,400,14001,0,1
+28002,390000,female,1,2,29,0,0,0,0,0,0,89953,107947,60313,55769,65835,72177,25000,35127,20000,12000,7500,15000,0
+28003,30000,female,2,1,31,0,0,0,0,0,0,16207,16735,18253,19646,21238,23843,4000,5000,5000,5000,5000,5006,0
+28004,10000,female,2,2,32,-1,-1,0,0,0,0,77,7417,8459,9493,9678,9634,7417,1166,1200,300,1000,500,1
+28005,270000,female,2,2,32,0,0,0,0,0,0,59710,49986,104390,94856,86461,83650,1808,69563,2891,2689,3012,2771,0
+28006,20000,female,2,1,32,3,2,2,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,1
+28007,50000,female,2,1,34,0,0,0,2,2,2,45974,47504,45206,35892,22989,22483,2374,4656,25,2869,0,814,0
+28008,60000,female,1,2,33,1,2,0,0,0,0,11776,11295,12799,14272,15225,16320,0,2000,2000,1500,1500,1500,0
+28009,50000,female,3,1,34,2,2,2,2,2,2,28289,32783,33714,32250,34245,19719,5000,3000,0,5000,0,3000,1
+28010,20000,female,3,2,40,0,0,0,0,0,-1,19088,13828,9290,6636,2941,642,1248,1200,1156,1000,700,4600,0
+28011,80000,female,3,1,35,1,2,2,2,2,2,68423,70002,71389,73788,74463,72834,3300,3100,4204,2790,0,3043,1
+28012,50000,female,2,1,47,0,0,0,0,0,0,48433,49664,49405,47522,28711,28060,3500,2013,1863,1006,1300,2500,0
+28013,140000,female,1,1,40,2,2,2,2,2,2,21952,27540,31785,30980,33162,32497,6300,5000,0,3000,0,3000,1
+28014,400000,female,1,2,36,-1,-1,-1,-1,0,-1,845,1423,6649,3051,1926,51669,1428,6676,3051,5,51965,5038,0
+28015,50000,female,3,1,44,0,0,2,0,0,0,13881,11494,5847,4871,3007,2136,3483,0,1000,0,993,0,0
+28016,80000,female,2,1,36,0,0,0,0,0,0,74652,76506,78173,79220,81351,48056,3700,3500,3000,3368,1023,1500,0
+28017,380000,female,2,1,30,2,0,0,0,0,0,225995,231382,224420,136324,137929,114249,10382,8420,46777,4929,4249,5528,1
+28018,230000,female,3,1,33,0,0,0,0,0,0,233314,222220,210778,211132,179564,176949,8005,10002,15037,6500,16002,8002,0
+28019,210000,female,1,2,31,0,0,0,-1,0,0,9604,10970,1230,24531,24287,22683,5056,1230,24531,1003,479,8080,0
+28020,100000,female,2,2,40,0,0,0,0,0,0,92393,85345,76109,77068,77868,75954,3500,3500,3300,3000,3000,3000,0
+28021,210000,female,2,1,44,0,0,0,0,0,0,124146,127341,92812,89878,80812,139202,6000,6000,6000,5000,60000,7000,0
+28022,140000,female,1,1,35,0,0,0,0,0,0,92924,88331,83421,79088,73360,67700,4691,4251,4500,3000,2500,2300,0
+28023,150000,female,2,1,47,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+28024,40000,female,5,1,48,0,0,0,0,0,0,36581,37896,40262,40370,39970,39970,1926,3292,1400,0,0,0,0
+28025,120000,female,3,2,26,1,-1,2,-1,0,-1,0,1302,651,1302,651,651,1953,0,1302,0,651,651,1
+28026,50000,female,2,2,26,0,0,0,0,0,0,49296,39427,35674,31113,31734,32488,1614,1546,1461,1082,1210,1203,0
+28027,360000,female,1,2,26,-1,-1,-1,-1,-1,-1,273,3558,1489,-356,9824,2010,3558,1489,0,10560,2010,1491,0
+28028,80000,female,3,1,42,2,2,2,2,0,0,17511,20503,25917,19081,15200,13039,3600,6142,0,0,0,6439,1
+28029,230000,female,1,2,46,-1,-1,-1,-1,-1,-1,699,699,699,999,1149,849,699,699,999,1149,849,999,0
+28030,50000,female,2,1,38,0,0,0,0,-2,-2,6350,3239,4166,0,0,0,1100,1000,0,0,0,0,1
+28031,150000,female,2,3,48,0,0,0,0,0,-2,3611,5153,6158,4626,0,0,2000,1523,2000,0,0,0,0
+28032,20000,female,3,1,35,0,0,0,0,0,2,7196,6780,7399,8574,7833,6342,1120,2000,2580,600,0,1000,0
+28033,10000,female,3,1,44,5,4,3,2,2,2,8678,8401,8128,7841,8579,8317,0,0,0,1000,0,1000,1
+28034,140000,female,1,1,41,0,0,0,0,0,0,80603,80193,73318,70523,55318,50236,3000,3336,2372,1453,1536,1300,0
+28035,150000,female,2,1,41,-1,-1,-2,-1,0,0,1650,0,0,6784,6923,14116,0,0,6784,159,167,760,0
+28036,290000,female,2,2,36,0,0,0,0,2,0,110695,108583,70642,71008,65455,63421,3260,5000,4706,0,2007,2482,0
+28037,170000,female,2,1,36,-1,-1,-1,-1,-1,-1,813,2080,5425,115,505,1012,2085,5425,115,505,1012,1560,0
+28038,420000,female,3,1,39,-2,-2,-2,-2,-2,-2,2476,3570,11343,5216,23001,2439,3634,11353,5255,23001,2439,0,0
+28039,120000,female,2,2,33,-1,-1,-1,-1,-1,-1,508,607,611,593,653,587,700,611,593,653,587,916,0
+28040,150000,female,2,1,40,-2,-2,-2,-2,-2,-2,3042,41036,16465,40215,5024,19924,41243,16548,40442,5049,20023,6035,0
+28041,80000,female,1,1,45,0,0,0,0,0,0,77402,78997,79821,79308,52172,50266,2900,3600,10002,1754,1765,3795,0
+28042,100000,female,2,1,48,0,0,0,0,0,0,109033,97041,80993,72751,67146,68490,3641,3782,5000,5000,3000,3000,0
+28043,40000,female,3,2,41,0,0,0,0,-2,-2,72892,37781,35647,0,0,0,1971,1000,0,0,0,0,1
+28044,130000,female,3,2,46,0,0,0,0,0,0,131996,132177,132927,131866,130707,129174,5000,5000,4600,5000,4614,5139,0
+28045,100000,female,2,2,41,0,0,0,0,0,0,96509,97042,98054,92466,67337,67093,4500,5000,4000,5000,3000,4000,0
+28046,300000,female,3,1,46,0,0,0,-1,0,0,147289,150201,-3699,4142,1700,0,10000,0,10005,0,0,0,0
+28047,150000,female,2,2,41,-1,-1,-1,-1,-1,-1,316,316,316,316,466,8057,316,316,316,466,8057,316,0
+28048,50000,female,2,1,39,1,2,2,2,0,0,27094,26365,29124,28357,28984,30012,0,3500,0,1100,1500,1100,1
+28049,350000,female,1,1,37,-2,-2,-2,-2,-2,-2,6185,27821,36140,34022,26366,67650,27821,36532,34022,20000,117650,74086,0
+28050,170000,female,2,2,45,-1,-1,-1,-1,0,-1,1638,1638,1638,3276,1638,1638,1638,1638,3276,0,1638,1638,0
+28051,220000,female,2,2,31,2,2,2,2,0,0,182176,176797,187033,171021,167789,168417,0,14179,0,7000,10000,12000,1
+28052,210000,female,1,2,29,-1,-1,-1,-1,-1,-1,18662,6220,199,0,10024,-18,6224,199,200,10024,0,0,0
+28053,200000,female,1,2,30,0,0,0,0,2,0,89874,92567,96064,103511,100951,103364,4200,5000,9054,0,4200,4000,0
+28054,180000,female,1,2,30,2,2,2,2,0,0,14038,16980,16915,17532,18429,20126,3500,500,1200,1500,2000,0,1
+28055,50000,female,1,1,31,1,2,2,0,0,0,50883,51184,50092,50332,29690,30246,2200,4,2300,1100,1400,1200,1
+28056,50000,female,2,2,35,1,2,0,0,-1,0,31507,30705,33467,12870,3325,5103,0,3467,1229,3325,2000,2167,0
+28057,180000,female,1,1,39,-1,-1,-1,-1,-1,-1,892,6809,18390,13999,933,933,6846,18399,13999,933,933,993,0
+28058,500000,female,1,2,44,-2,-2,-2,-2,-2,-2,29996,10625,14567,0,3808,6751,10625,14573,0,3808,6751,0,0
+28059,160000,female,2,2,45,1,-2,-2,-2,-2,-1,0,0,0,0,0,388,0,0,0,0,388,3099,0
+28060,120000,female,1,2,37,2,2,2,2,2,2,744,744,744,744,1188,594,444,444,444,888,0,888,1
+28061,60000,female,2,1,39,-1,-1,-1,-2,-2,-1,12545,1217,0,0,0,465,1217,0,0,0,465,0,1
+28062,220000,female,4,1,35,-1,-1,-1,-1,-1,-1,1849,326,12681,84674,35326,1026,326,12681,84674,35326,1026,3088,0
+28063,210000,female,2,1,36,0,0,0,0,0,0,13460,14765,14939,15748,16069,13780,1534,1307,1116,437,399,276,0
+28064,480000,female,2,2,38,-2,-2,-1,0,0,0,5619,7600,123988,177054,273429,293157,7600,123988,60000,100000,24250,12735,0
+28065,140000,female,3,2,43,0,0,0,0,0,0,140832,131883,123504,126441,129345,137539,5006,4500,5000,5000,10490,5000,0
+28066,150000,female,2,1,38,0,0,0,0,0,0,149957,152224,152208,116763,72325,73273,6000,5440,4000,3000,3000,3000,0
+28067,110000,female,3,2,43,2,2,0,0,0,0,114614,111306,112173,93675,59095,60336,0,5000,3000,2100,2500,2100,1
+28068,350000,female,1,1,41,0,0,0,0,0,0,15407,17826,23489,29037,36213,38163,3000,6000,6000,8027,8000,8000,0
+28069,150000,female,2,2,43,0,0,0,0,0,0,111024,111486,12596,13610,14381,15147,2720,1500,1229,1000,1000,1000,0
+28070,420000,female,1,1,39,0,0,0,0,0,0,298753,304964,312224,315822,275393,278745,13000,14000,11230,10000,8091,6965,1
+28071,80000,female,1,1,41,0,0,0,0,-2,-2,11987,13007,3537,0,0,0,1325,1000,0,0,0,0,0
+28072,180000,female,1,1,44,0,0,0,0,0,0,138701,140009,143053,145695,143705,133883,5100,5297,5128,4869,4960,5177,0
+28073,290000,female,2,1,39,1,-2,-2,-2,-2,-2,-70,9540,390,3184,390,390,10000,800,3184,390,390,6617,0
+28074,300000,female,1,1,37,0,-1,-1,-1,-2,-1,4476,2521,3529,-5364,-8943,4057,3017,4506,0,0,14000,12000,0
+28075,80000,female,2,1,41,0,0,0,2,0,0,78480,77063,76720,74651,57109,46703,3100,6300,0,1743,1588,1628,1
+28076,230000,female,2,1,39,-2,-2,-2,-2,-2,-2,0,0,1052,0,1931,0,0,1052,0,1931,0,3915,0
+28077,20000,female,2,1,43,1,2,0,0,0,0,17188,16619,17341,18352,18716,19109,0,1294,1305,669,694,697,0
+28078,20000,female,2,2,39,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+28079,200000,female,1,1,40,-2,-2,-2,-2,-2,-2,-50,-50,-50,-50,-50,-50,0,0,0,0,0,2877,0
+28080,500000,female,1,2,35,-1,-1,-1,-1,0,0,33214,18521,22802,22518,25733,19715,18694,22948,22571,14067,7598,4042,0
+28081,10000,female,3,1,49,0,0,0,0,0,0,9807,9976,7538,9322,9567,9766,2114,1131,2155,1400,1354,428,0
+28082,100000,female,3,1,42,0,0,0,0,0,0,58543,54902,54590,53037,54100,53889,2004,1966,1884,1903,1940,2000,0
+28083,250000,female,2,1,28,-2,-2,-2,-2,-2,-2,0,0,0,0,4501,282,0,0,0,4501,282,10351,0
+28084,540000,female,3,2,38,1,-2,-2,-2,-2,-2,736,736,736,736,0,-736,736,736,736,0,0,2965,0
+28085,50000,female,2,1,39,0,0,0,0,0,0,37503,33505,25626,26444,19422,19438,1399,1480,1298,677,700,1000,0
+28086,550000,female,1,2,44,0,-1,-1,0,0,-1,27093,30805,7451,16111,22819,80846,30820,7851,19751,29700,80987,36158,0
+28087,200000,female,3,1,42,-1,-1,-1,-1,-1,-1,2213,5283,1863,9323,1612,1619,5286,1863,9323,1612,2054,5808,0
+28088,50000,female,3,1,44,0,0,0,0,0,0,46363,47356,48905,49794,8820,9000,1762,2311,2200,176,180,9769,0
+28089,230000,female,3,1,36,1,2,0,0,0,0,232115,225086,222286,222884,220876,221496,22,9005,9037,7519,8018,8100,0
+28090,330000,female,3,1,45,0,0,0,0,0,0,33369,34509,35406,34770,35468,36211,2000,1470,1374,1072,1113,2000,0
+28091,520000,female,1,1,37,-2,-2,-2,-2,-2,-2,4439,3487,7491,2310,12000,0,3913,7494,2310,12000,0,0,0
+28092,180000,female,1,2,44,-2,-2,-2,-2,-2,-2,16891,0,521,0,0,0,0,521,0,0,0,10622,0
+28093,200000,female,3,1,36,0,0,0,0,0,0,167385,171476,175956,171340,177236,181978,8000,8045,8000,8000,7000,18000,0
+28094,430000,female,5,2,44,0,0,0,0,0,0,626648,586825,547667,504474,462640,420585,20659,20421,16943,15634,14933,15131,0
+28095,220000,female,1,1,46,3,2,2,0,0,0,249449,243517,228368,224414,196229,190050,9501,0,10000,7200,7001,6900,0
+28096,210000,female,2,2,41,-2,-2,-2,-2,-2,-2,0,8333,0,0,0,0,8333,0,0,0,0,0,0
+28097,360000,female,2,1,47,-1,0,0,-1,-1,-1,71006,37066,49018,32760,31489,22316,36448,48833,32928,31646,22428,37984,0
+28098,200000,female,2,1,48,-2,-2,-1,-1,0,0,2233,6731,1374,24836,23348,7058,6734,1374,74836,0,250,55892,0
+28099,150000,female,1,1,36,0,0,0,0,0,0,38298,39292,40357,41284,42105,43146,1635,1700,1600,1507,1719,2000,0
+28100,170000,female,3,2,47,-1,-1,-1,-1,-1,-1,16089,5454,8846,920,380,4765,5455,8866,921,381,4801,1632,0
+28101,50000,female,3,1,49,2,2,2,0,0,0,47934,48950,47891,98284,19950,20007,2100,0,5400,1000,900,1000,0
+28102,20000,female,3,2,48,1,3,2,4,5,4,18038,18445,21556,22824,22192,21271,1000,3700,1900,0,0,0,1
+28103,300000,female,1,2,32,0,0,0,0,0,0,169223,179223,199223,202486,200935,-6,10000,20000,11022,4935,6,2844,0
+28104,200000,female,1,1,40,1,-2,-2,-2,-2,-2,2418,0,0,0,0,0,0,0,0,0,0,0,0
+28105,210000,female,1,1,34,0,0,0,0,0,0,73329,74261,75602,76062,76287,76971,2700,3500,3300,3000,3000,3000,0
+28106,100000,female,1,2,42,0,0,2,0,0,0,93256,99710,97051,98342,56639,57388,8300,0,4100,3000,2500,2233,0
+28107,210000,female,2,1,43,-1,-1,-1,-1,-1,-1,3088,5045,8024,1292,1000,3340,5056,8042,1292,1000,3340,7941,0
+28108,80000,female,2,1,32,0,0,0,0,0,0,77808,77180,79147,81159,69573,70306,3000,4000,4000,5000,8000,2800,0
+28109,130000,female,3,1,31,0,-1,-1,-1,-1,0,62518,4049,6690,-1018,89445,90179,4065,6704,21018,92610,3272,3332,1
+28110,320000,female,2,2,35,0,0,0,0,0,0,94561,96683,78479,71121,44698,53230,6085,3632,5010,7059,30018,59518,0
+28111,350000,female,5,1,45,0,0,0,0,0,0,355310,337523,342288,336750,341376,348730,13671,12678,13601,12136,12771,12900,0
+28112,260000,female,1,2,29,0,0,-1,0,0,0,78341,44155,27779,27738,27923,28143,10000,30150,2000,3000,2000,2000,0
+28113,230000,female,3,2,46,0,0,0,0,0,0,273094,341657,344026,160377,85681,-371,135034,10806,20266,15120,343,100014,0
+28114,210000,female,1,1,44,-1,-1,-1,-2,-2,-2,14993,1938,0,0,0,0,1938,0,0,0,0,0,0
+28115,160000,female,3,1,41,1,2,2,2,0,0,45057,46017,47188,46134,47063,50034,2000,2200,0,2000,3900,2000,0
+28116,210000,female,1,1,30,0,0,0,0,0,0,187191,140417,107768,84505,81796,52453,4700,4500,3100,3016,2000,2000,0
+28117,120000,female,1,2,32,1,-2,-2,-2,-1,-1,0,0,0,0,9310,0,0,0,0,9310,0,0,0
+28118,30000,female,1,1,32,0,0,0,0,0,0,27764,29276,28637,29325,30004,30506,2000,2000,1500,1100,1300,1000,1
+28119,70000,female,2,1,31,0,0,0,0,0,0,38579,43891,33798,25993,26263,26812,8958,1500,2000,1000,972,982,0
+28120,270000,female,2,1,31,0,0,0,0,0,0,177003,175642,198983,190085,177102,176033,6235,30067,8399,5623,5669,6207,0
+28121,350000,female,1,2,30,-2,-2,-2,-2,-2,-2,951,601,714,263,900,1271,605,716,263,900,1271,1218,0
+28122,50000,female,2,2,45,1,3,2,3,2,2,23751,23076,25004,24315,23626,25370,0,2600,0,0,2129,0,1
+28123,110000,female,2,1,48,0,0,0,0,0,0,108668,111162,107172,107629,106628,106903,4322,5369,4003,3806,4050,3672,0
+28124,150000,female,2,1,44,0,0,0,0,0,0,49716,50198,50543,50774,51074,50425,2000,1845,1772,1768,1808,1764,0
+28125,280000,female,1,2,29,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+28126,300000,female,2,1,30,-1,0,0,0,0,0,10746,13267,11915,8813,8292,13546,7006,6416,5800,6000,8900,4000,0
+28127,20000,female,2,1,32,0,0,0,0,0,0,18377,18353,19103,19471,19225,19106,1288,1305,1277,656,1106,602,1
+28128,50000,female,2,1,31,2,0,0,0,0,0,44105,33089,22829,13216,16100,16696,2000,2506,3000,3000,1070,5203,0
+28129,200000,female,1,2,31,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+28130,50000,female,3,1,31,1,-2,-2,-2,-1,-1,0,0,0,0,414,0,0,0,0,414,0,0,0
+28131,150000,female,1,1,46,0,0,0,0,0,0,135748,136681,140019,143237,140658,143344,5000,5000,5000,5000,5000,5000,0
+28132,200000,female,2,2,32,-1,-1,-1,-2,-1,-1,13467,4345,0,0,171,1557,4366,0,0,171,1386,6,0
+28133,100000,female,2,1,32,1,-2,-2,-2,-1,-1,-350,-740,-1130,-1520,780,0,0,0,0,2300,0,0,0
+28134,360000,female,1,2,33,-1,0,0,0,0,0,5334,6849,68133,71708,58551,54678,3017,65009,6784,3041,5044,3042,1
+28135,50000,female,2,1,33,0,0,0,0,0,0,37541,36504,26901,26021,19438,12198,1434,1555,1148,1000,422,372,0
+28136,220000,female,2,1,33,0,0,0,0,0,0,204144,175748,172758,175030,174122,175472,6500,6300,7700,6300,6300,6150,0
+28137,80000,female,1,2,33,1,2,0,0,0,0,83367,81409,78790,80567,78047,82942,0,2873,3101,3000,6328,0,1
+28138,150000,female,1,1,33,-1,0,-1,-1,-1,-1,20441,26417,1091,5933,1517,1787,6549,1096,5962,1524,1795,1525,0
+28139,210000,female,1,1,34,-1,-1,-1,-1,-1,-1,326,983,1297,326,326,326,983,1297,326,326,326,326,1
+28140,70000,female,2,2,34,0,0,0,0,0,0,67655,68525,68038,55193,27099,28298,3200,2518,1525,1000,2000,2000,0
+28141,50000,female,2,1,48,0,0,0,0,0,0,44324,43053,44016,15386,31401,16573,2000,1880,2000,1000,2000,1500,0
+28142,80000,female,3,3,43,0,0,-2,-2,-1,-1,3408,-11,-11,-11,2429,905,0,0,0,2440,905,9213,0
+28143,110000,female,2,2,34,-2,-2,-2,-2,-2,-2,0,576,0,0,0,0,576,0,0,0,0,0,0
+28144,170000,female,1,2,34,-2,-2,-1,0,0,-2,1088,1088,5425,5223,1084,1084,1088,5425,1000,2172,1084,1189,0
+28145,160000,female,3,1,46,-2,-2,-2,-2,-2,-2,-510,-520,0,-390,780,0,380,2000,0,101170,0,0,0
+28146,130000,female,3,1,49,0,0,0,0,0,0,25339,26342,27376,28415,28980,29738,1427,1461,1500,1037,1225,1080,0
+28147,200000,female,3,1,48,-2,-2,-2,-2,-2,-2,119139,5844,3666,37005,47376,1292,5844,3694,37177,47376,1292,46626,0
+28148,360000,female,2,1,40,-1,-1,-1,-1,-1,-1,29540,27930,692,41301,10889,2017,27930,692,41303,10893,2017,13894,0
+28149,160000,female,2,1,42,0,0,0,0,0,0,25338,27601,31818,34270,35698,37122,3000,5000,3000,2000,2000,2000,0
+28150,310000,female,2,1,42,-2,-2,-2,-2,-2,-2,2851,4609,2109,14109,2109,2218,7869,2109,14109,2109,2218,1809,0
+28151,500000,female,1,1,40,0,-1,0,0,0,-1,18436,2574,1390,3186,1649,2507,3001,1320,2007,1651,2517,4180,0
+28152,430000,female,1,2,36,0,0,0,0,0,0,258212,232225,237297,240682,245337,242481,10500,10300,9000,8541,9054,8543,1
+28153,300000,female,3,2,48,1,3,2,-1,0,-1,-2,779,390,769,772,1722,781,1,769,3,1730,0,1
+28154,50000,female,1,2,46,-1,-1,-1,-1,-1,-1,3737,0,7752,596,18396,5769,0,7752,596,18396,5769,5769,0
+28155,300000,female,2,1,38,0,-1,0,0,0,0,1250,940,11240,12137,15937,16437,940,10300,1200,4000,500,6000,0
+28156,300000,female,2,2,39,-2,-2,-2,-2,-2,-2,1028,0,0,0,0,0,0,0,0,0,0,0,1
+28157,20000,female,3,1,39,0,0,0,0,0,0,19078,19929,16912,12698,11939,12346,1509,1321,1500,500,600,1500,1
+28158,400000,female,1,2,39,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+28159,310000,female,2,1,48,-2,-2,-2,-2,-2,-2,0,99,0,110,0,0,99,0,110,0,0,0,0
+28160,370000,female,2,2,38,0,0,0,0,0,0,75823,63617,65585,67223,62201,64356,5000,3000,3003,3000,3500,60000,0
+28161,230000,female,2,1,36,-1,-1,-1,-1,-1,-1,4390,1402,3665,929,4167,115126,1402,3665,929,4167,115126,5000,0
+28162,300000,female,2,1,40,0,0,0,0,0,0,11704,10196,8900,7099,5437,3958,1139,1322,1000,2000,1000,1000,0
+28163,250000,female,1,1,40,-1,-1,-1,-1,0,-1,2971,1737,3989,11577,11377,500,1737,3989,11577,0,500,25841,0
+28164,320000,female,1,1,41,0,0,0,0,0,0,95155,97797,99672,101953,102284,104090,4400,4520,5050,3590,3700,3750,0
+28165,310000,female,3,1,45,0,0,0,0,0,0,311401,218298,222424,220058,199376,189840,21084,20000,12000,15000,8000,15000,0
+28166,500000,female,1,1,39,-2,-2,-1,2,2,-2,3625,0,501,501,902,544,398,501,0,544,544,0,0
+28167,80000,female,3,1,37,0,0,0,0,0,2,24941,25945,27297,27969,29857,28872,1423,1775,1447,2335,0,1050,0
+28168,200000,female,3,2,45,0,0,0,0,0,0,69817,71272,76740,67480,68843,70266,2049,6104,1839,1862,1918,2149,0
+28169,160000,female,3,1,38,0,0,0,0,0,0,151963,141884,143428,146289,128133,124606,5100,7100,7500,4500,5000,4800,0
+28170,20000,female,2,2,47,0,0,0,-1,-1,-2,20151,19419,19864,4723,0,0,2000,2013,4731,0,0,0,0
+28171,20000,female,2,2,33,0,0,0,0,0,0,11635,12604,12870,12726,13336,2496,2000,1308,1000,1000,50,0,0
+28172,30000,female,2,1,33,3,2,2,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,1
+28173,500000,female,1,2,30,1,-2,-2,-1,-1,-1,943,5664,-33,6454,842,8031,5692,0,6487,842,8111,7029,0
+28174,180000,female,1,2,30,-1,-1,-1,-1,-2,-1,1650,196,2500,0,0,3650,196,2500,0,0,3650,3859,0
+28175,180000,female,3,2,31,-2,-2,-2,-2,-2,-2,2941,1436,12900,3026,2168,487,1443,12964,3041,2178,489,2638,0
+28176,450000,female,1,1,33,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+28177,180000,female,2,1,33,0,0,0,0,0,0,70472,72518,73422,72687,68167,69746,3218,2708,3071,2500,2615,2500,0
+28178,290000,female,3,1,46,-1,-1,-1,-1,-1,-1,30365,32571,36918,37063,11566,32057,32575,36982,37063,11566,32057,1501,0
+28179,200000,female,2,1,37,0,0,0,0,0,-1,4942,3554,3152,2732,1380,1380,1068,1046,1006,34,1386,1386,0
+28180,200000,female,1,1,34,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+28181,400000,female,2,2,35,2,0,0,0,0,0,61245,109943,222085,223350,213831,210563,50016,120018,10071,8037,8018,8809,1
+28182,210000,female,2,2,32,-2,-2,-2,-2,-2,-2,0,0,980,0,0,0,0,980,0,0,0,238,0
+28183,30000,female,3,2,42,1,2,2,2,0,0,30445,27794,30603,29802,30134,30410,0,3569,0,1100,1100,1127,1
+28184,340000,female,2,2,39,0,0,0,0,0,0,332319,308286,315601,318616,243586,248766,12500,13775,10631,8900,9200,9525,0
+28185,50000,female,2,1,41,0,0,0,0,0,0,74903,49413,50812,50261,29720,30233,2120,2500,1905,1500,1200,1200,0
+28186,220000,female,3,1,43,0,0,0,0,0,0,215050,211239,207821,209795,144729,148139,9029,10000,9084,10042,10000,10000,0
+28187,100000,female,1,1,37,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,150,1
+28188,400000,female,3,1,40,0,-1,-1,-1,-1,-1,30179,35550,71671,-329,65691,23657,35729,72031,0,66020,23776,32948,0
+28189,360000,female,2,2,43,-2,-2,-2,-2,-2,-2,6088,17980,4890,3008,3920,19282,17980,4897,3008,3920,19282,52087,0
+28190,30000,female,3,2,47,-1,-1,-1,-1,0,0,3220,390,0,5780,11611,0,390,0,5780,6611,0,0,0
+28191,10000,female,3,1,34,0,0,0,0,-1,-1,7101,8131,9024,6292,2530,6727,1307,1200,1012,2530,6727,56,1
+28192,330000,female,1,1,37,-2,-2,-2,-2,-2,-2,726,-20,10756,0,442,0,0,10776,0,442,0,297,0
+28193,110000,female,2,1,46,0,0,2,0,0,0,102726,110179,105137,105467,94294,86381,10700,0,5000,4000,4000,5000,0
+28194,30000,female,2,1,44,2,0,0,0,0,0,21003,22309,23343,24336,24475,24643,1662,1696,1689,1016,893,1100,1
+28195,110000,female,2,1,37,0,0,0,0,0,0,95986,189688,93984,91983,90129,89925,4300,5000,4109,3100,3322,3472,0
+28196,150000,female,2,2,42,0,0,0,0,0,0,255207,249205,245393,29526,6990,0,6301,8000,5000,6800,0,0,0
+28197,80000,female,2,2,32,1,2,0,0,0,0,113740,97093,85266,85871,47367,47812,0,3448,2383,1609,2000,2000,1
+28198,160000,female,1,1,41,-1,-1,-1,-1,-1,-1,24411,7944,1080,0,40100,18899,7944,1080,0,40100,18899,4180,0
+28199,30000,female,2,1,32,0,0,-2,-2,-2,-2,3454,-2,-2,-2,708,940,0,0,0,710,1042,0,0
+28200,200000,female,1,2,33,-2,-2,-2,-2,-2,-2,4510,7430,4144,57836,1810,0,7430,4144,57836,1810,0,3018,0
+28201,150000,female,1,1,33,1,-1,-1,-1,0,0,-3,350,0,863,863,0,353,0,863,0,0,0,0
+28202,140000,female,2,1,34,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+28203,120000,female,1,1,37,0,0,0,0,-1,-1,21128,16121,12027,5870,2994,-175,5020,5000,1000,2994,0,0,0
+28204,100000,female,3,1,48,-1,-1,-1,-1,-1,-1,390,5333,15798,390,2265,1823,5333,15798,390,2265,1823,780,0
+28205,50000,female,2,1,38,0,0,0,0,0,0,51023,51019,50951,50818,40453,37862,2300,2210,3300,1910,1530,1600,0
+28206,80000,female,3,1,42,-1,-1,-1,-1,-1,-1,4571,4905,9764,3829,4248,3747,4905,9764,3829,4248,3747,3569,0
+28207,140000,female,3,2,41,0,0,0,0,0,0,85698,24993,26021,28684,29273,30900,1400,1337,3000,951,2000,21604,0
+28208,270000,female,1,1,45,0,0,0,0,0,0,218116,207533,204532,196061,180142,185838,10041,10064,9238,6000,8044,7030,0
+28209,210000,female,3,1,36,-1,-1,-1,-1,-1,-1,1168,1511,0,1783,1000,150,1511,0,1783,1000,150,14780,0
+28210,230000,female,2,1,48,-2,-2,-2,-2,-2,-2,0,0,1611,1498,1301,309,0,1611,1498,1301,309,823,0
+28211,30000,female,2,1,43,0,0,2,0,0,2,26806,30035,29274,31460,33890,31224,4000,0,3000,2900,0,1091,0
+28212,260000,female,3,1,44,0,0,0,0,0,0,259346,234428,176632,129022,131447,135699,9428,6729,5022,4447,5699,5498,1
+28213,20000,female,2,1,42,2,3,2,2,2,2,18162,18464,19465,19649,19978,20512,900,1600,800,950,1000,800,1
+28214,160000,female,2,1,34,-2,-2,-2,-2,-2,-2,390,390,390,390,390,584,390,390,390,390,584,91,0
+28215,50000,female,2,1,43,0,0,0,0,0,0,46882,49737,50361,50152,28119,28238,5100,2600,2011,2000,3510,2000,0
+28216,50000,female,3,1,41,0,0,0,0,-1,0,46857,48080,49705,51400,16087,16827,2000,2400,3000,16087,1000,800,0
+28217,160000,female,1,1,38,-1,-1,-1,-1,-1,-1,316,873,1392,0,696,696,873,1392,0,696,696,696,1
+28218,140000,female,3,1,44,1,-1,-1,-1,-1,-1,-9,900,311,7867,1031,1117,909,311,7867,1031,1117,0,0
+28219,230000,female,2,1,43,0,0,0,0,0,0,7075,7806,8392,8967,8729,10816,1279,1295,1300,468,2816,5893,0
+28220,120000,female,2,1,34,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+28221,20000,female,2,1,49,0,0,2,2,0,0,9589,11627,12145,12648,13438,14222,2200,1000,1000,1000,1000,1000,1
+28222,90000,female,2,1,44,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,390,1
+28223,130000,female,3,1,38,0,0,0,0,0,0,64517,64254,66103,61549,62389,58782,3000,3500,3000,2500,2000,2000,0
+28224,20000,female,3,2,31,-2,-2,-1,0,0,-1,-885,-885,18354,19064,19422,4390,20,21431,2300,558,4403,0,0
+28225,230000,female,1,2,31,-2,-2,-2,-2,-2,-2,-7,6785,0,147,0,0,6792,0,147,0,0,176,0
+28226,430000,female,2,1,42,0,0,0,0,0,0,89756,89395,90052,90604,91200,92134,3169,3243,3200,3185,3500,3500,0
+28227,110000,female,2,1,40,0,0,0,0,0,0,5457,6660,7590,8657,9013,9367,1300,1200,1200,500,500,1000,0
+28228,210000,female,5,1,40,0,0,0,0,0,-1,206446,202462,173236,84302,25876,140066,8139,10007,5609,2000,151139,6000,1
+28229,260000,female,3,2,49,-2,-2,-2,-2,-2,-2,-5684,211466,200304,2735,316,305,217773,200304,2759,316,305,2596,0
+28230,280000,female,3,1,45,0,0,0,0,0,0,294995,316345,334612,262625,172344,182776,26345,24612,22625,12344,12776,11852,0
+28231,230000,female,2,2,36,-2,-1,-1,-1,-1,-1,858,885,669,656,827,2360,885,669,656,827,2376,943,0
+28232,50000,female,3,2,46,0,0,0,0,0,0,36165,15054,15414,16349,15800,14719,1600,1300,2000,600,1000,700,0
+28233,320000,female,2,2,36,-1,-1,-1,-1,-1,-1,396,396,396,596,13386,396,396,396,596,13386,396,396,0
+28234,110000,female,2,1,41,0,0,0,0,0,0,104133,106135,45766,46864,50935,49538,4500,2000,2000,5000,2023,806,1
+28235,180000,female,2,1,42,-1,-1,-1,-1,0,0,390,390,390,17475,17425,17396,390,390,17475,611,629,625,0
+28236,180000,female,3,2,41,0,0,0,0,0,0,130979,133062,124014,125279,115315,117740,5739,4700,4316,4090,4245,5000,0
+28237,10000,female,2,2,32,0,-1,0,0,0,-2,5250,1223,2264,3230,0,0,1223,1066,1032,0,0,0,1
+28238,30000,female,2,1,32,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+28239,70000,female,2,2,32,2,0,0,0,0,0,67955,58404,50036,36908,29439,19494,3007,1794,2000,967,1000,870,1
+28240,20000,female,2,2,44,0,0,0,0,0,0,18578,19928,18677,18503,17231,15410,2000,2000,2000,1100,1586,506,0
+28241,50000,female,2,2,36,2,0,0,0,0,0,39125,40169,41461,36901,18499,18244,2000,2000,2090,1000,648,2000,1
+28242,180000,female,2,1,38,-1,-1,0,-1,-1,-1,390,10426,21430,21040,2234,12485,10426,11820,21040,2234,10641,0,0
+28243,220000,female,3,2,46,0,0,0,0,0,0,214274,214207,211733,80965,78992,77537,11000,10000,10000,6000,6000,5000,0
+28244,180000,female,1,2,29,-1,-1,-1,-1,-1,-1,15991,1473,26876,53390,35292,61910,1473,26876,53390,35292,61910,23913,0
+28245,170000,female,1,2,29,0,0,0,2,0,0,106146,115333,128440,124909,127393,130243,11021,15000,0,6059,5068,5123,0
+28246,100000,female,2,2,30,0,0,0,0,0,0,96636,95169,97303,99339,77082,77677,3402,3663,3788,2695,2772,2903,0
+28247,280000,female,2,2,30,-1,-1,-1,-1,-1,-1,13182,5290,2711,4464,4069,5161,5290,2711,4476,4069,5161,8026,0
+28248,290000,female,1,2,31,-1,-1,-1,-1,-1,-1,21720,1240,3682,4694,5258,1248,1240,3682,4704,5258,1248,9600,0
+28249,30000,female,2,1,31,3,3,2,2,2,2,25320,24620,25522,26008,25294,26928,0,1600,1200,0,2200,0,1
+28250,30000,female,2,2,31,0,0,0,0,0,0,28651,28716,26570,26829,26839,27449,1800,2000,1600,1000,1000,1000,0
+28251,80000,female,2,1,46,0,0,0,0,0,0,74745,76314,77344,49168,48243,47810,2815,2345,1763,1854,1737,1774,0
+28252,50000,female,2,1,42,0,0,0,0,0,0,48706,49704,50851,50868,12003,9679,1809,1956,2234,369,330,343,0
+28253,60000,female,3,1,34,2,2,2,4,3,3,6731,7777,9502,9217,9722,9291,1300,2000,0,800,0,0,0
+28254,260000,female,2,1,34,0,0,0,0,0,0,198788,195154,191504,168983,160592,156826,6105,6345,7027,6000,5000,7000,0
+28255,60000,female,2,1,41,0,0,0,0,0,0,19813,20064,23213,20383,18431,18702,5000,5000,2000,1000,2000,1000,0
+28256,80000,female,2,1,29,1,2,2,2,2,2,85738,80445,82639,83357,78188,79492,0,7400,3000,0,5700,3000,0
+28257,360000,female,3,1,40,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+28258,180000,female,2,1,30,0,0,0,0,0,0,8531,9432,10771,11965,11903,12769,1200,1500,1431,369,1000,1000,0
+28259,80000,female,2,2,31,2,0,0,0,0,0,30911,28190,27045,22843,20578,19049,2009,1751,1500,1000,779,545,1
+28260,70000,female,2,1,44,0,0,0,0,0,0,66301,68105,68287,28163,27220,28124,3500,3000,1500,1000,2000,2000,0
+28261,360000,female,1,1,36,-1,-1,-1,-1,-1,-1,18641,7174,11044,15887,8607,8843,7174,11044,15895,8607,8843,3000,0
+28262,300000,female,3,2,36,-2,-2,-2,-2,-1,-1,0,3958,0,0,6536,1400,1979,0,0,6536,1400,50000,0
+28263,100000,female,3,1,38,0,0,0,2,0,0,87181,84668,83898,77260,68173,66682,4017,7121,94,2408,2513,2716,0
+28264,100000,female,1,2,29,0,0,0,0,0,0,70205,64898,62715,61465,55501,57892,4000,5030,10000,5000,10000,10000,0
+28265,120000,female,3,1,34,-2,-1,-1,-1,-1,-2,0,360,389,978,0,2358,360,389,978,0,2358,0,0
+28266,200000,female,2,1,48,-2,-1,2,-1,0,0,22111,32938,10902,6309,4979,2978,11257,0,6309,0,2986,0,1
+28267,180000,female,1,1,37,-2,-2,-2,-2,-1,-1,8592,8468,1300,0,2000,0,8478,1300,0,2000,0,1659,0
+28268,60000,female,2,2,27,0,-1,-1,0,0,0,7301,11482,39511,39654,38168,36526,11512,39511,1866,1400,2000,1300,0
+28269,10000,female,2,1,29,0,0,0,0,0,0,6176,6512,7447,8777,8956,9731,1265,1200,1500,400,1000,273,0
+28270,230000,female,4,1,35,-2,-1,-1,-1,-2,-2,4793,6277,3433,11449,2433,23832,6336,3447,11449,2433,23832,742,0
+28271,50000,female,2,2,27,1,2,2,2,2,2,11966,12967,13962,13440,14416,14043,1500,1500,0,1200,0,1500,0
+28272,350000,female,2,2,28,-2,-2,-2,-2,-2,-2,3738,7555,36553,8997,13074,5107,7555,36698,9124,13074,5107,18830,0
+28273,200000,female,3,1,28,-2,-2,-2,-2,-2,-2,86,7024,1466,1466,479,2448,7066,1473,1473,486,3442,12,1
+28274,150000,female,3,2,28,-2,-2,-2,-2,-2,-2,1666,802,1793,0,0,0,806,1801,0,0,0,0,0
+28275,180000,female,2,1,29,2,2,2,2,2,2,113331,113436,109439,111108,108476,104655,5500,1308,7623,3900,11,7700,1
+28276,30000,female,1,2,30,0,0,0,0,0,0,29009,28432,18191,9745,9545,13964,1315,1522,1200,0,6000,10655,0
+28277,70000,female,2,2,30,-1,0,0,0,0,0,69494,112821,70305,71017,66218,66854,2716,2570,2720,2350,2500,2660,1
+28278,460000,female,2,2,32,0,0,0,0,0,0,30506,26595,16712,15635,6965,7107,1568,1714,1000,1000,142,5000,0
+28279,110000,female,2,1,42,-1,-1,-1,-1,-1,-1,776,776,776,776,776,926,776,776,776,776,926,776,0
+28280,240000,female,1,2,31,0,0,-1,0,0,-1,31759,40286,9015,10476,20237,2011,10000,9015,2000,10000,2512,67826,0
+28281,210000,female,2,1,31,0,0,0,0,0,0,205243,209502,203831,178410,130619,115700,7736,7100,8300,4800,4396,4200,0
+28282,300000,female,3,2,32,1,-1,0,0,-2,-2,-27,72044,10000,0,0,0,72071,2050,0,0,0,1188,0
+28283,170000,female,1,2,34,1,-1,0,0,0,0,0,5010,7912,12517,14151,12157,5010,3000,5000,3020,5000,5000,0
+28284,420000,female,2,1,34,0,0,0,0,-1,-1,49256,48264,45983,41494,41065,40666,4000,2650,1043,42000,40666,48424,0
+28285,230000,female,4,2,34,0,0,0,-1,-1,-1,2223,2233,159,1772,28704,19474,1000,159,1778,28704,19474,650,0
+28286,260000,female,1,2,33,-1,-1,-1,-1,-1,6,465,460,0,3600,2250,1650,460,0,3600,2250,0,0,0
+28287,50000,female,3,1,41,0,0,0,0,0,0,46456,47445,48847,50065,17304,17824,1760,2162,2380,619,798,1000,0
+28288,80000,female,2,2,43,0,0,0,0,0,0,77479,77057,78102,58501,51042,19036,3631,3177,2600,3000,1691,695,0
+28289,200000,female,1,1,45,-1,-1,-1,-1,-1,-1,69288,0,1800,1795,58932,29331,0,1800,2000,60000,29331,0,0
+28290,80000,female,3,1,40,0,0,0,0,0,0,18608,19583,19098,14269,14612,16945,2000,2000,1090,2300,4500,1050,0
+28291,290000,female,2,1,36,0,0,0,0,0,0,8413,9852,8890,13338,10542,20076,2006,1529,5063,5000,10010,10135,0
+28292,20000,female,3,3,40,-1,-1,-1,2,-1,0,390,390,2974,2376,5262,4401,390,2974,0,5262,88,1612,1
+28293,50000,female,2,1,42,-1,-1,2,-1,-1,2,565,5481,2874,759,5328,2885,5481,0,759,5328,1,2932,0
+28294,450000,female,2,1,36,-1,-1,-1,-1,-1,-1,3087,2081,198,9532,3420,130,2081,198,9532,3420,130,878,0
+28295,250000,female,2,1,38,1,-2,-1,-1,-1,-2,-163,-553,212,49924,-918,-1567,0,2000,51002,2,0,2000,0
+28296,50000,female,3,1,40,0,0,2,2,-2,-2,48747,53239,51400,0,0,0,5300,0,0,0,0,0,0
+28297,280000,female,2,3,40,0,0,0,0,0,0,291952,275948,240627,228230,209987,196997,8562,7071,6574,5938,5867,7704,0
+28298,20000,female,3,1,41,0,0,0,0,0,0,8777,10461,11583,13079,14546,16149,2000,1600,2000,2000,2000,2000,0
+28299,310000,female,3,1,37,-2,-2,-2,-2,-2,-2,4052,6514,-3484,-3484,-3484,13833,6514,0,0,0,17317,0,0
+28300,250000,female,1,2,36,0,0,0,0,0,0,111204,114954,116608,120564,121477,124115,5600,5000,5900,4400,4600,5100,0
+28301,180000,female,2,1,36,2,2,2,2,2,0,172360,176867,179020,180773,128078,119632,9000,6600,7000,0,4500,4410,1
+28302,500000,female,3,2,35,1,-2,-1,0,0,0,458863,16818,37596,62845,80212,20494,16918,37596,31802,30615,21346,10678,0
+28303,30000,female,3,1,44,0,0,2,2,2,2,25957,28914,29754,28583,29739,28412,3400,1600,0,2220,0,1100,0
+28304,250000,female,2,2,36,0,0,0,0,0,0,71012,60816,59328,57692,52811,49067,2200,3003,2800,1834,1850,3000,0
+28305,170000,female,1,2,39,0,0,0,0,0,-1,60514,33711,21660,23307,15135,3527,5011,5000,6538,4167,3527,7521,0
+28306,100000,female,2,1,39,-2,-2,-2,-2,-2,-2,518,0,0,0,0,0,0,0,0,0,0,0,0
+28307,430000,female,2,1,42,-1,-1,-1,-1,0,-1,38495,11935,32878,115683,84049,37210,11935,32887,115683,0,37210,29559,0
+28308,170000,female,2,2,43,0,0,0,0,0,0,136113,137722,139384,141314,139252,139205,7000,7000,7000,5100,5300,5030,0
+28309,210000,female,2,2,32,-1,-1,2,0,-1,-1,576,3578,34,10734,30367,8193,3578,0,10700,30367,19644,4431,0
+28310,280000,female,2,2,32,-2,-2,-2,-2,-2,-2,6562,54318,4245,6969,29236,8865,54318,4281,6985,29264,8873,14394,0
+28311,160000,female,3,2,47,-2,-2,-2,-2,-2,-2,396,396,5345,396,396,6396,396,5345,396,396,6396,396,0
+28312,210000,female,1,1,40,-2,-2,-2,-2,-2,-2,7542,-78,15611,502,781,754,0,15689,504,784,757,2005,0
+28313,200000,female,1,1,40,-1,-1,-1,-1,-1,-1,3827,8030,5020,5451,2619,5188,8030,5020,5451,2619,5188,8794,0
+28314,400000,female,1,2,30,-1,-1,0,0,0,0,634,5939,6624,8004,10390,21325,5939,2624,3004,3090,11325,3282,0
+28315,80000,female,3,2,35,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+28316,80000,female,2,1,35,1,2,2,2,2,2,30997,32043,31250,34109,34802,34108,1852,0,3711,1550,0,1400,1
+28317,30000,female,2,1,38,-1,-1,2,-1,0,0,2828,4868,3963,4514,3129,675,3963,16,4527,675,0,1015,0
+28318,20000,female,3,1,39,1,2,2,2,2,0,8562,9478,8198,9752,9447,10290,1200,0,1700,0,1000,1500,1
+28319,300000,female,1,1,37,-2,-2,-1,0,0,0,8756,26,19999,17139,10304,16062,26,20018,1072,206,6003,0,0
+28320,460000,female,2,1,39,-1,-1,-1,-1,-1,-1,11403,14015,2978,11402,12072,7090,14029,2978,11402,12802,7090,793,0
+28321,80000,female,2,2,42,0,0,0,0,0,0,42656,39657,30297,30633,31190,30905,1519,2000,2000,1312,3200,1200,0
+28322,80000,female,3,1,36,-1,-1,-1,2,0,-1,808,808,1672,1672,836,836,836,1700,836,0,836,390,0
+28323,100000,female,3,1,40,-2,-1,2,2,-2,-1,3234,6163,3786,3789,2195,3691,6163,0,3809,0,3691,1328,0
+28324,100000,female,1,1,41,2,2,2,2,2,2,31786,34629,34189,36309,36916,36192,3680,400,3000,1500,0,3100,1
+28325,50000,female,2,1,36,0,0,0,0,0,0,46714,47404,48786,49768,27838,84810,1766,2148,2130,1200,1012,2034,0
+28326,80000,female,2,1,36,1,2,2,0,0,0,74328,75515,73741,75200,76959,78556,3000,0,2700,2950,3000,2600,1
+28327,130000,female,2,2,37,0,0,0,0,0,0,81731,84383,87518,89360,90481,92858,4000,4500,4190,3500,4000,4000,0
+28328,50000,female,2,1,36,2,2,2,2,0,0,46203,45159,49125,47956,43578,35126,0,4700,0,2004,3500,0,0
+28329,210000,female,2,1,44,0,0,0,0,0,0,88309,89755,90031,70660,71172,71844,4500,3600,3100,2900,2600,2700,0
+28330,260000,female,5,2,39,0,0,0,0,0,0,174591,175093,176088,155624,141976,141305,10000,10000,7619,7000,8000,7000,0
+28331,50000,female,2,1,32,0,0,0,0,0,0,45271,44751,43952,29136,19048,17946,2000,1500,1239,612,607,2593,0
+28332,460000,female,2,2,33,0,0,-1,-1,-1,-1,8316,11672,1110,1927,5621,1703,6018,1110,1927,5649,1703,2009,0
+28333,150000,female,3,1,34,0,0,0,0,0,0,115227,112391,98583,95810,87216,88201,10000,5000,4000,4000,3290,3200,0
+28334,80000,female,3,1,31,0,0,2,0,0,0,56195,60067,58535,59730,61236,70617,4808,0,2169,2500,10400,0,0
+28335,80000,female,2,1,42,0,0,0,0,-2,-2,46911,31748,16000,0,0,0,1748,1000,0,0,0,0,0
+28336,180000,female,3,1,46,-1,2,-1,0,0,0,10456,7326,8469,6591,5244,2174,357,8510,5244,2174,0,3371,1
+28337,100000,female,3,1,35,1,-2,-2,-2,-1,-1,0,0,0,0,249,317,0,0,0,249,317,0,0
+28338,60000,female,2,1,40,0,0,0,-1,-1,-1,28738,30216,23720,1569,5580,2211,4000,1010,1569,5580,2211,0,1
+28339,50000,female,3,2,34,0,0,0,0,0,0,51037,47669,48940,50545,29523,28960,2100,2329,2943,990,1168,975,0
+28340,390000,female,1,1,42,0,0,0,0,0,0,310075,184647,90383,55212,29701,-1429,10021,4000,15046,20000,0,10090,0
+28341,210000,female,1,1,38,0,0,-1,-1,0,0,8420,8106,4168,23067,19972,45864,3000,4521,24000,10000,30000,6432,0
+28342,160000,female,2,2,39,0,0,0,0,0,0,163058,161485,161076,156478,122441,120574,6001,6401,6384,4600,4800,4400,0
+28343,50000,female,3,1,42,0,0,2,0,0,0,28693,31854,31065,31976,29300,31151,3644,0,1766,1036,2700,0,0
+28344,50000,female,2,2,31,0,0,0,0,2,2,10682,11694,12819,36424,37029,36303,1194,1319,23924,1500,0,1500,0
+28345,160000,female,2,1,37,0,0,0,0,0,0,138594,134736,97629,100398,102606,104864,3755,3676,3637,3000,3040,2938,0
+28346,220000,female,2,1,40,-2,-2,-2,-2,-2,-2,5785,4164,8553,11652,14968,7898,4183,8603,11709,15823,7937,5302,0
+28347,80000,female,3,1,43,0,0,0,0,0,0,71604,73316,75039,76597,78712,81365,3500,3500,3400,4000,4000,3000,0
+28348,170000,female,2,1,31,-1,0,0,0,0,-2,60644,63948,62090,63000,0,0,5000,5000,4000,0,0,3300,0
+28349,60000,female,3,1,33,1,2,0,0,2,0,56326,54833,56105,59338,57870,57884,0,2750,4850,0,2180,2400,0
+28350,200000,female,1,1,36,-2,-2,-2,-2,-2,-2,588,608,4695,2008,164,3383,608,4695,2008,164,3383,4331,0
+28351,320000,female,1,2,41,-2,-2,-2,-2,-2,-2,2197,1376,3342,11970,9700,38473,1376,3343,11973,9700,38473,29757,0
+28352,160000,female,1,1,47,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+28353,20000,female,2,1,45,0,0,0,0,-1,-1,9779,9368,4494,5405,1000,3383,1063,1089,1000,3899,3383,0,0
+28354,80000,female,1,2,27,-1,-1,2,-1,-1,-1,988,12922,12261,2393,407,2888,12961,0,2403,407,3176,7336,1
+28355,210000,female,2,2,29,-1,0,0,0,0,0,103591,104103,70449,66311,26802,25029,3831,3357,2098,610,763,1131,0
+28356,50000,female,1,2,27,0,0,0,0,0,0,4950,5924,4766,5652,5772,4392,1068,1114,1000,120,0,0,1
+28357,500000,female,1,2,28,0,0,2,0,0,0,390393,374105,467911,355531,587067,323821,26085,13566,18975,11096,35204,10121,0
+28358,120000,female,2,2,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+28359,20000,female,2,2,28,1,2,0,0,0,0,20583,19942,16614,15941,13205,6009,0,1358,1065,327,187,325,0
+28360,250000,female,1,2,28,0,0,0,0,0,0,116861,109714,101494,92258,71472,77800,5000,5000,3000,3000,11500,10000,0
+28361,80000,female,3,1,34,-1,-1,-1,-1,-1,-1,3500,9295,2500,3045,1451,6541,9295,2500,3045,1456,6541,0,0
+28362,240000,female,2,2,28,-2,-2,-2,-2,-2,-2,1154,1154,0,1954,0,0,1154,0,1954,0,0,0,0
+28363,150000,female,2,2,28,0,0,0,0,0,0,22943,18989,19961,16549,14227,15380,1335,1307,1178,1500,1500,1000,0
+28364,340000,female,2,2,29,0,-1,-1,-1,0,0,43733,16584,16498,100928,26083,20214,16787,16514,100940,20229,25,8,0
+28365,80000,female,1,1,28,0,0,0,0,0,-1,73606,81876,71029,67915,69190,53606,10200,4000,10000,11700,53606,5000,0
+28366,130000,female,3,2,29,0,0,-1,-1,-1,-1,12939,10000,2277,1132,1289,0,1000,2277,1132,1289,0,2080,0
+28367,100000,female,2,2,29,0,0,0,0,0,0,87133,79469,75452,69257,62005,60882,3400,3350,3000,2400,2500,2382,0
+28368,230000,female,1,2,29,0,0,-1,-1,0,0,12394,12105,2439,5185,9893,11567,2102,3000,6000,5000,2000,2000,0
+28369,160000,female,1,2,30,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+28370,220000,female,2,2,29,2,0,0,0,0,0,28992,36106,33494,29518,29569,28587,8000,3000,3000,6000,5000,1136,0
+28371,80000,female,1,2,29,0,0,0,0,0,2,14227,15185,16236,16960,17777,18042,1500,1600,1300,1100,700,700,1
+28372,420000,female,2,1,29,0,0,0,0,0,0,48455,34993,35340,54763,59037,60290,2011,3000,20000,5000,2000,3000,0
+28373,130000,female,2,2,32,-2,-2,-2,-2,-2,-2,11175,14181,70042,20739,7469,5963,14181,70505,20749,7469,5997,1978,0
+28374,80000,female,1,2,32,0,0,0,0,0,0,40478,38533,22243,8524,819,-181,5225,5091,3528,0,0,6740,0
+28375,210000,female,1,2,31,0,0,0,0,0,0,77830,68850,42884,23547,18574,12466,2555,2027,1045,1000,500,10000,0
+28376,220000,female,1,2,31,0,0,0,0,0,0,124281,84575,93180,99097,106391,97337,10000,10000,8000,10000,10000,12097,0
+28377,170000,female,2,2,30,0,0,0,2,0,0,132283,121009,136552,132655,134140,115892,6000,19078,0,5000,5000,4500,1
+28378,50000,female,1,2,30,1,2,2,2,2,2,41934,43041,44048,44824,46469,47579,2100,2000,1800,2700,2000,1700,0
+28379,80000,female,2,2,31,-2,-2,-2,-2,-2,-2,4771,4771,538,15664,150,1150,4771,538,15664,150,1150,791,0
+28380,300000,female,1,2,33,0,0,0,0,0,0,58719,60142,61577,62169,63374,59865,3000,3000,2300,2203,1858,1815,0
+28381,140000,female,2,1,33,1,-1,0,0,0,0,0,7933,7283,8577,9452,11153,7933,2000,2000,1000,2000,1000,0
+28382,290000,female,2,2,33,0,0,0,0,0,0,242422,221004,211610,214300,213834,217758,7757,7697,7657,7771,7870,7889,0
+28383,80000,female,1,2,33,-2,-2,-2,-2,-1,0,0,747,0,0,3937,2359,747,0,0,3937,0,0,0
+28384,500000,female,1,1,33,-1,-1,-1,0,0,-1,3994,7222,33823,130689,77736,151,8022,34000,100028,0,151,2682,0
+28385,40000,female,3,1,44,1,2,2,0,0,0,35544,36664,35800,36839,35967,36586,2000,0,2000,2000,3000,0,1
+28386,50000,female,2,1,45,0,0,0,0,0,0,39944,41180,41870,8469,8411,8361,2124,2037,1130,295,302,296,0
+28387,260000,female,2,1,34,-2,-2,-2,-2,-2,-2,0,0,0,167,-810,-810,0,0,167,810,0,3310,0
+28388,80000,female,3,1,45,-1,0,0,0,0,-1,19989,11904,10787,6226,1936,37201,1228,1156,1200,8,37201,591,0
+28389,280000,female,1,1,35,-1,-1,-2,-2,-2,-2,7147,2500,0,0,0,0,2500,0,0,0,0,0,0
+28390,270000,female,1,1,37,-2,-2,-2,-2,-2,-2,264,217,253,189,-75,525,217,300,200,0,600,200,0
+28391,80000,female,3,1,48,0,-1,-1,-1,-1,-1,33058,1945,2587,2108,1921,2071,1945,2587,2108,1936,2071,0,0
+28392,120000,female,2,1,34,0,0,0,0,0,0,119884,105631,73143,75919,77059,78820,4545,2700,4000,3000,3000,4000,0
+28393,300000,female,1,1,40,0,0,0,0,0,0,121603,125098,94769,112777,100323,87009,30000,25000,50007,10000,20000,30363,0
+28394,120000,female,2,2,37,2,2,2,0,0,0,38757,41302,39247,44412,23344,22892,4300,0,9076,8788,1000,2000,0
+28395,80000,female,2,3,36,0,0,0,0,0,0,63908,55028,44654,42464,38320,40586,10051,5013,3044,5006,5012,5046,0
+28396,50000,female,2,1,42,0,0,0,0,0,0,12106,10946,11968,12978,13236,13664,1184,1206,1216,474,642,492,0
+28397,100000,female,2,1,47,0,0,0,0,0,0,24735,27555,29798,31028,33544,35328,3555,3000,2028,3354,2328,7300,0
+28398,180000,female,2,1,44,-2,-2,-2,-2,-2,-2,6529,6622,6572,3179,11875,7633,6626,6583,3179,18462,7633,6007,0
+28399,160000,female,2,1,45,0,0,0,0,0,0,63198,36236,37847,37837,37637,0,7000,2500,1300,0,0,0,0
+28400,350000,female,2,1,49,-2,-2,-2,-2,-2,-2,16173,9122,12228,19850,8800,4260,9122,12228,19850,8800,4260,17660,0
+28401,50000,female,3,1,33,0,0,-2,-2,-2,-2,23500,0,0,0,0,0,0,0,0,0,0,0,0
+28402,320000,female,2,2,37,-2,-2,-2,-2,-2,-2,-5700,-5700,-5700,197300,-2300,227835,0,0,203000,400,310135,1000,0
+28403,170000,female,2,2,35,0,0,0,0,0,0,121231,124208,118111,92592,96114,99628,5000,5000,10000,5000,5000,5000,0
+28404,50000,female,2,1,37,0,0,0,0,0,2,47832,45646,32668,25738,30192,27912,3010,5004,10000,5200,0,1181,0
+28405,360000,female,1,1,40,2,2,2,2,0,0,108399,105167,115468,112157,114690,117845,0,12000,0,5900,5000,4500,1
+28406,70000,female,2,2,36,0,0,0,0,0,0,68028,67864,59165,29314,28844,29443,3340,2044,1773,1181,1215,1297,1
+28407,20000,female,3,1,45,-1,-1,-1,-1,-1,-1,1403,6920,10785,390,6210,1040,6990,10785,390,6210,1040,9113,0
+28408,100000,female,3,1,46,0,0,2,0,0,0,33699,32450,30160,22934,21876,22910,4500,0,1600,1000,2800,0,0
+28409,160000,female,3,1,42,-2,-2,-2,-2,-1,0,0,1473,1863,0,112978,115357,1473,1863,0,119001,5000,4500,0
+28410,230000,female,2,1,35,2,2,2,2,-1,-1,1214,964,1214,464,214,-536,500,1000,0,500,0,0,1
+28411,20000,female,2,1,38,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+28412,180000,female,2,1,39,1,2,0,0,0,0,101526,101957,104317,106583,108811,111160,3000,4000,4000,4000,4100,4100,0
+28413,180000,female,1,2,45,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+28414,20000,female,2,1,34,0,0,0,-1,0,-1,17625,14841,492,23150,17883,7729,1019,990,23965,371,7738,3638,0
+28415,150000,female,2,1,49,1,-1,-1,-1,-1,-1,0,970,8867,0,600,0,970,8867,0,600,0,0,0
+28416,240000,female,1,1,40,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+28417,360000,female,3,1,37,-2,-2,-2,-2,-2,-2,0,0,0,0,0,239,0,0,0,0,239,0,0
+28418,260000,female,2,1,35,-1,-1,-1,-1,-1,0,5656,591,6574,3551,3634,2440,869,6574,3551,3700,0,1047,0
+28419,500000,female,2,1,34,-2,-2,-2,-2,-2,-2,17172,34674,6229,11534,12482,18192,35454,6229,11534,12564,18192,32550,0
+28420,200000,female,2,1,41,-2,-2,-1,-1,-1,2,-60,-60,1590,8188,428,278,0,1650,8188,428,0,5500,0
+28421,230000,female,3,2,45,0,0,-1,-1,-2,-2,30099,20069,1000,0,0,0,1000,1000,0,0,0,62130,0
+28422,200000,female,2,2,32,0,0,0,2,0,0,127132,126380,124413,118419,121047,123719,5058,11518,0,4600,4800,4300,0
+28423,70000,female,3,1,37,0,0,0,0,0,0,48684,49628,53163,49953,32535,27715,1785,7320,1700,1200,1400,2,0
+28424,160000,female,3,1,36,1,-1,-1,-1,-1,-1,0,17029,1283,4404,0,535,17029,1283,4404,0,535,0,0
+28425,80000,female,2,2,33,0,0,0,0,0,-2,25211,14863,15816,12710,0,0,1300,1210,1000,0,0,56990,0
+28426,100000,female,2,1,30,0,0,0,0,0,0,47423,49978,52520,54877,57484,59095,3000,3000,3000,3000,2000,3000,0
+28427,20000,female,2,1,38,1,-1,-1,-2,-2,-2,0,2000,0,0,0,0,2000,0,0,0,0,0,1
+28428,110000,female,3,1,47,0,0,0,0,0,0,109461,109473,81439,81425,81039,81162,3477,2972,2853,2739,2852,2873,0
+28429,100000,female,2,2,35,-1,-1,-1,-1,-1,0,326,2691,326,326,652,326,2691,326,326,652,0,326,1
+28430,240000,female,2,1,39,0,0,0,0,0,0,233161,238187,243554,211924,216395,231767,8900,9500,8000,8000,19000,10000,0
+28431,170000,female,1,1,31,1,-2,-2,-2,-2,-1,1564,0,0,0,0,1800,0,0,0,0,1800,1167,0
+28432,110000,female,1,2,31,2,2,2,2,2,2,91773,93892,94652,97097,98097,100361,4550,3150,4900,3500,4000,3900,1
+28433,50000,female,2,2,44,-1,-1,-1,-1,-1,-1,501,1463,1276,827,105,270,1463,1276,827,105,270,573,0
+28434,390000,female,2,2,41,0,0,-2,-2,-2,-2,10496,-23,-349,-675,-1001,-1327,0,0,0,0,0,2000,0
+28435,40000,female,3,1,44,0,0,0,0,0,0,13033,14041,15065,16077,16396,16739,1232,1256,1268,587,607,611,0
+28436,160000,female,3,1,39,-2,-2,-2,-2,-2,-2,6089,2376,0,0,0,0,2400,0,0,0,0,0,0
+28437,20000,female,3,1,41,1,2,3,2,0,0,18548,21046,20296,10245,6635,6877,3100,3,0,700,500,3000,0
+28438,180000,female,2,2,36,1,-2,-2,-2,-2,-1,0,0,0,0,0,10970,0,0,0,0,10970,0,0
+28439,50000,female,2,1,41,1,2,2,2,0,0,23165,21974,20544,17210,15754,10860,2000,2101,0,2201,1000,0,1
+28440,110000,female,2,1,37,0,0,0,0,0,0,20733,21738,22760,23466,24085,24584,1602,1624,1330,949,976,988,0
+28441,20000,female,3,2,39,0,0,0,2,0,0,15969,16685,19008,18710,20235,19483,1285,2608,310,1835,707,873,1
+28442,40000,female,3,1,36,0,0,2,0,0,2,15861,18580,17994,20671,22328,21830,3000,0,3000,2000,0,2000,0
+28443,50000,female,3,1,47,2,0,0,0,0,0,46666,47606,48350,48786,49277,50151,2100,2200,2000,2000,1755,1804,1
+28444,200000,female,1,2,30,-1,-1,-1,-1,0,0,200,200,200,959,759,1317,200,200,959,0,931,0,0
+28445,90000,female,2,1,31,0,0,0,0,-2,-2,19929,17671,7870,0,0,0,1500,1000,0,0,3000,40000,0
+28446,300000,female,1,2,34,-2,-2,-2,-2,-2,-2,0,0,0,0,0,1280,0,0,0,0,1280,0,0
+28447,310000,female,2,1,36,0,0,0,0,0,0,294180,295875,302438,293473,297926,280967,11000,11300,10500,10100,10000,9600,0
+28448,330000,female,2,1,37,0,0,0,0,0,0,46348,37052,36228,37833,37694,41269,1574,1640,3000,3000,4016,2049,0
+28449,210000,female,3,2,30,-1,-1,-1,-1,-1,-1,1661,5793,1181,1031,1430,1031,5793,1181,1031,1430,1031,1031,0
+28450,260000,female,2,2,34,-2,-2,-2,-1,0,0,8383,2976,11237,27500,27500,33880,2985,11247,27500,0,21380,0,0
+28451,290000,female,1,2,35,-2,-2,-1,-1,0,0,2348,10421,566,12008,19820,17135,10421,566,12008,8012,343,2630,0
+28452,20000,female,2,1,39,1,2,2,0,0,0,17751,18963,18378,20000,19600,20000,1800,0,2400,0,400,1000,0
+28453,140000,female,2,1,31,0,0,0,0,0,0,98250,100319,102231,95852,94005,93177,4600,4523,4300,3300,3400,3600,0
+28454,150000,female,2,1,36,2,2,2,2,2,2,100247,109909,112453,113318,114268,116688,12924,5800,4200,4300,4400,4700,1
+28455,50000,female,3,3,46,-1,-1,-1,-1,-1,-1,390,390,390,390,1200,1869,390,390,390,1200,1869,3610,0
+28456,50000,female,2,1,37,-1,-1,-1,-1,-1,-1,7390,2157,4204,390,390,540,2157,4204,390,390,540,540,0
+28457,270000,female,2,1,28,-2,-2,-2,-1,0,0,1459,-702,1900,7518,57765,59377,12,5011,8049,53008,5004,7000,0
+28458,240000,female,2,1,28,0,0,0,0,0,0,175976,149257,93689,81226,71547,72794,6600,3711,3100,2500,3019,45200,0
+28459,150000,female,1,2,29,0,0,0,0,0,0,78044,43437,45132,39180,31422,32410,2000,2500,3300,2150,1500,6200,0
+28460,260000,female,2,2,40,0,0,0,0,0,0,120108,107696,103745,90818,92640,94338,4224,3650,5000,3640,3500,3500,0
+28461,470000,female,3,1,42,0,0,0,0,0,0,219081,285141,408974,361703,318251,310982,70000,140000,13000,11000,20000,8000,0
+28462,190000,female,1,1,47,0,0,0,0,0,0,192493,193297,193400,193278,192956,193039,7200,7222,7300,7100,7380,7200,0
+28463,160000,female,2,2,28,-1,-1,-1,-1,-1,-1,5171,3634,4436,1978,3781,1732,3634,4436,1978,3781,1732,715,0
+28464,320000,female,1,2,31,-1,-1,-1,0,-1,-1,66604,9293,19905,15645,11388,28017,9293,19905,15452,11388,28017,19364,0
+28465,30000,female,2,2,30,0,0,0,0,0,0,24482,25571,26294,27308,27853,28504,1800,1441,1455,1000,1100,2500,1
+28466,150000,female,1,2,33,-2,-2,-2,-2,-2,-2,24393,26847,32702,33459,27800,2261,27007,32715,33475,27808,2261,169465,0
+28467,200000,female,2,2,34,0,0,2,2,0,0,189490,204278,207559,202518,164682,168224,18000,8000,0,6000,6200,7000,1
+28468,150000,female,2,2,34,0,0,0,0,0,0,39883,34983,23772,20410,14818,7565,2068,1331,1029,353,208,20711,0
+28469,50000,female,3,1,30,0,0,0,0,0,0,48549,49256,50338,48848,46709,47688,1813,1895,2200,1595,1653,1709,0
+28470,80000,female,2,2,24,0,0,0,0,0,0,19188,18774,12339,11312,8324,7079,1374,1235,1101,270,1000,1000,0
+28471,50000,female,2,1,47,0,0,3,2,2,0,9532,14023,13513,14388,13862,14149,5000,0,1400,0,659,664,0
+28472,80000,female,3,1,37,2,2,2,2,0,0,93050,99396,100495,97982,100261,102147,8840,3560,0,3912,3832,3508,1
+28473,280000,female,2,2,34,0,0,0,-1,-1,-2,7215,28794,-5,1175,-23,-23,24143,0,1180,0,0,0,0
+28474,160000,female,1,1,38,0,0,0,0,0,0,132932,134384,131724,131767,133195,126064,8005,15000,10000,7000,5000,8000,0
+28475,80000,female,1,2,29,0,0,0,0,0,0,28491,26524,23224,23141,22160,21478,1710,1500,1700,1000,1000,1000,0
+28476,160000,female,2,2,30,0,0,0,0,0,0,136053,86746,86019,87990,87186,84373,3528,3500,3500,4000,3500,3500,0
+28477,90000,female,2,1,32,-1,2,-1,-1,-2,-1,3682,3472,33784,0,0,256,0,33812,0,0,256,3500,0
+28478,360000,female,2,2,32,0,0,0,0,0,0,11646,14124,23497,13128,13485,0,5000,10000,5000,3500,0,0,0
+28479,80000,female,2,1,34,0,0,0,0,0,0,71435,72886,74678,74080,75251,77040,2642,3000,3274,3000,3000,3100,0
+28480,20000,female,3,1,36,-1,-1,-1,2,-1,-1,626,626,1252,626,626,776,626,1252,0,626,776,626,1
+28481,50000,female,2,1,48,0,0,0,0,0,0,48572,45067,46492,47368,7988,8011,2028,2453,2329,431,300,500,0
+28482,200000,female,1,1,40,2,2,2,2,2,2,80468,82874,84900,85758,87003,89112,4200,4100,3000,3400,3500,0,1
+28483,50000,female,3,1,44,1,2,3,2,4,3,13112,14679,15143,16892,16341,15798,2100,1000,2300,0,0,0,1
+28484,120000,female,2,1,31,1,2,2,2,0,0,21134,20502,24832,24135,28723,31258,0,5000,0,5000,3000,0,1
+28485,60000,female,2,1,31,2,2,-1,0,0,0,63201,56600,54952,32094,31232,30384,1132,60994,1436,1047,1056,1053,1
+28486,120000,female,3,2,32,-1,0,0,0,0,0,66551,67876,69903,71446,79589,81354,2429,3120,3300,10000,3200,3200,0
+28487,80000,female,1,1,32,1,-2,-1,-1,-1,-1,0,0,1900,7411,1900,0,0,1900,7411,1900,0,0,0
+28488,140000,female,2,2,32,2,0,0,2,2,2,103181,107446,125702,124182,124155,137176,6000,20000,2000,3500,15000,6000,0
+28489,300000,female,1,1,33,-1,-1,-1,-1,-1,0,3890,4002,1438,5322,6814,2956,4008,1438,5328,6814,114,1740,0
+28490,230000,female,2,1,30,0,-1,-1,-1,0,0,8685,1079,2923,25916,4219,7903,1079,3000,25916,2219,4000,6000,0
+28491,310000,female,3,2,30,1,-1,0,0,0,0,5931,118109,131107,97009,51757,50009,120000,18008,20000,12000,5000,3000,0
+28492,330000,female,1,2,31,-1,0,0,0,0,0,4054,4661,5731,5186,6522,8995,1091,2000,1222,2400,3000,2000,0
+28493,210000,female,1,1,35,0,0,0,0,0,2,67374,55004,56221,57181,61327,60227,2500,2700,2500,5100,0,3000,0
+28494,120000,female,2,1,35,0,0,0,0,0,0,115600,113690,114609,118232,119052,119232,5521,4232,5602,4123,4330,13245,0
+28495,170000,female,2,1,35,0,0,0,0,0,0,96565,62524,88390,63470,55890,51650,30580,50000,24517,14243,7852,4835,0
+28496,50000,female,2,2,39,0,0,-1,-1,0,0,25254,26366,510,16121,17539,19088,2000,510,16121,2000,2000,998,0
+28497,100000,female,3,1,44,2,2,0,0,0,2,12724,12228,13255,13959,14921,14539,0,1529,1233,1195,0,1300,1
+28498,140000,female,1,2,33,-1,-1,-1,0,0,-1,10174,8651,19404,19498,9771,1106,8651,19404,10000,2000,1106,3675,0
+28499,210000,female,2,2,33,0,0,0,-2,-2,-2,43047,9378,0,0,0,0,1000,0,0,0,0,0,0
+28500,360000,female,1,2,34,0,0,0,0,0,0,96169,96586,98927,98750,96045,93456,4000,4223,4004,4000,3500,3400,0
+28501,50000,female,2,3,34,0,0,0,0,0,0,50854,17429,17728,17886,18043,19134,1314,2000,1300,1000,1500,1000,0
+28502,340000,female,2,2,34,-2,-2,-2,-2,-2,-2,0,2630,0,0,0,0,2630,0,0,0,0,1980,0
+28503,260000,female,1,2,37,-1,-1,-1,2,-1,-1,1050,1050,2287,1050,1050,1050,1050,2287,0,1050,1050,2174,1
+28504,500000,female,3,2,37,1,2,0,0,0,0,5186,3985,3935,4861,4523,4637,0,1101,1027,117,141,72,0
+28505,60000,female,2,1,40,1,2,2,0,0,0,57388,58381,56363,47940,30134,31144,2522,0,3000,1083,1500,1500,0
+28506,420000,female,2,1,38,0,-1,-1,-1,-1,-1,56107,53309,-11,51555,2093,5773,53400,0,51566,2093,5773,2984,0
+28507,30000,female,3,1,41,1,2,0,0,0,0,28041,23367,22843,23044,25082,25648,13,2003,2008,5000,1005,3016,0
+28508,370000,female,2,1,41,-2,-2,-2,-2,-2,-2,1442,9750,0,30100,0,0,9750,0,30100,0,0,0,0
+28509,450000,female,1,1,35,-2,-2,-2,-2,-2,-2,7240,1251,0,1620,0,4155,1251,0,1620,0,4155,11089,0
+28510,400000,female,1,1,39,0,-1,-1,-1,0,-1,1991,2920,1721,2018,446,1068,2920,2500,2018,0,1068,0,1
+28511,400000,female,1,2,46,0,-1,2,-1,0,0,2030,10520,6073,8591,6611,17080,10540,18,8591,0,10990,0,1
+28512,640000,female,2,2,39,0,0,0,0,0,0,119887,123223,119211,118722,105197,93921,10000,10000,10535,15000,5000,13627,0
+28513,210000,female,2,1,38,-1,-1,-1,0,0,-1,4991,551,33658,42551,51800,2295,551,33658,10551,10000,2295,2295,0
+28514,30000,female,3,2,35,0,0,0,0,0,0,27873,27326,27648,27859,27084,27133,1441,1479,1406,1097,2031,0,0
+28515,100000,female,1,1,36,-2,-2,-2,-2,-2,-2,16155,3514,3400,15156,13920,2099,3514,3400,15156,13920,2099,15638,0
+28516,250000,female,1,1,41,-1,2,-1,-1,-1,-2,22423,16296,32631,43399,2323,46895,60,32812,43932,2323,47356,5480,0
+28517,190000,female,1,2,40,0,0,0,0,0,0,122308,124332,126944,130606,131120,133774,4445,5000,6171,4536,5150,5000,0
+28518,20000,female,3,1,43,0,0,0,0,0,0,9540,11788,14137,16283,17108,18005,2422,2560,2426,1038,1116,1332,0
+28519,180000,female,3,1,40,0,0,0,-2,-2,-2,20909,24262,2079,792,1645,1645,4262,2083,792,1645,0,811,0
+28520,200000,female,1,1,29,-1,-1,-1,-1,-1,-1,188,2210,2451,3043,1542,0,2215,2451,3043,1542,0,0,0
+28521,80000,female,1,2,29,1,-2,-1,-1,-1,-2,0,0,1612,16388,0,0,0,1612,16415,0,0,1800,0
+28522,120000,female,2,2,29,0,0,0,0,-1,-1,96686,77817,29166,7403,3095,9641,3508,2003,2772,3095,9641,2803,0
+28523,50000,female,2,2,29,0,0,2,0,0,0,30517,31866,29647,29539,31384,31924,4000,0,3000,4000,3000,4000,0
+28524,260000,female,4,2,30,-2,-2,-2,-2,-2,-2,5106,280,6158,9439,5492,397,280,6160,9439,5492,397,1790,0
+28525,180000,female,1,2,30,1,-1,0,0,-1,-1,0,3095,7843,13084,926,711,3095,5000,6022,2566,711,2419,0
+28526,130000,female,2,1,30,-1,-1,-1,-1,-1,-1,1650,1650,1650,1650,1650,1650,1650,1650,1650,1650,1650,1650,1
+28527,110000,female,2,1,30,1,2,2,2,2,0,68910,70382,71866,72698,70930,72439,3200,3200,2600,0,2650,3100,0
+28528,50000,female,2,1,44,0,0,0,0,0,0,50496,47955,48751,37140,19535,19492,2007,10109,1514,1000,1000,1000,0
+28529,500000,female,1,1,46,0,0,0,0,0,-1,196606,64144,49722,67909,61613,16932,10000,10000,20025,10000,20000,18000,0
+28530,360000,female,1,2,32,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+28531,80000,female,2,1,34,-1,-1,-1,-1,0,-1,1383,5030,1964,7541,3201,5026,5030,1964,7568,0,5026,2371,0
+28532,10000,female,1,2,33,2,2,2,0,0,0,7486,9354,7183,7814,7814,7190,3000,0,1000,0,0,0,0
+28533,320000,female,1,1,34,-2,-2,-1,0,0,0,5159,967,14331,16591,9433,398,967,14331,9433,0,0,3090,0
+28534,30000,female,3,1,32,0,-1,-1,-1,0,-1,28701,26108,17595,24715,22136,22738,27078,17648,25008,509,22806,10035,0
+28535,80000,female,3,1,32,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+28536,160000,female,2,1,34,1,2,2,2,0,0,79727,77290,72681,66526,66893,66637,0,4500,2500,3000,3000,4000,0
+28537,490000,female,1,2,34,0,0,-1,-1,-1,-1,19036,14474,3404,14445,7672,2295,5038,3404,14445,7672,2295,9004,0
+28538,220000,female,1,1,35,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+28539,450000,female,1,1,35,-1,-1,-2,2,-1,-1,403,0,0,390,390,390,0,0,390,390,390,390,0
+28540,370000,female,3,1,35,-1,-1,0,-1,0,0,5886,4821,6823,26501,32774,32645,8190,6000,27011,15004,10000,10000,0
+28541,80000,female,3,1,34,0,0,2,2,2,0,43321,47586,48525,49423,46132,47233,5000,2000,2000,0,2000,2000,1
+28542,360000,female,1,1,47,2,2,-2,-2,-2,-2,2500,0,0,0,0,0,0,0,0,0,0,0,1
+28543,60000,female,2,1,42,0,0,0,0,0,0,58899,55834,55993,56675,57550,57545,2579,2047,2024,2180,2321,2500,0
+28544,50000,female,1,1,45,-1,-1,-1,-1,-1,-1,7963,1664,5408,2734,7976,0,1669,5413,2734,7976,0,7000,0
+28545,160000,female,2,1,49,-1,-1,-1,-2,-2,-2,347,2389,0,0,0,0,2389,0,0,0,0,0,0
+28546,260000,female,3,1,41,0,0,0,0,0,0,264549,227021,233426,230319,127897,118868,10000,12007,9170,4853,4531,3909,0
+28547,220000,female,2,2,45,-1,-1,-1,-1,-1,0,990,990,990,990,5538,5687,990,990,990,5538,1206,1204,0
+28548,60000,female,3,1,46,2,3,3,3,2,2,44030,44509,44999,45463,45918,47863,1500,1500,1500,1500,3000,5300,1
+28549,220000,female,1,1,38,1,2,2,0,0,0,171784,177468,173233,176859,182393,187446,10000,0,8000,10000,8000,12000,0
+28550,290000,female,1,1,39,-1,-1,-1,-1,-1,-1,264,264,264,264,264,264,264,264,264,264,264,264,0
+28551,130000,female,3,2,40,0,0,0,0,-2,-2,98874,99363,101618,-32,-32,-32,5000,5000,3000,0,0,1000,0
+28552,200000,female,2,1,41,0,-1,-1,-1,0,0,6981,678,1287,54531,55229,56836,1000,1350,54531,2200,2500,2300,0
+28553,30000,female,3,1,45,2,-1,-1,2,0,0,15667,12110,14904,14340,15131,16909,12110,3000,0,1000,2000,0,1
+28554,30000,female,2,1,42,0,0,0,0,0,0,22943,47912,25023,25768,26410,27960,1700,1755,1500,1000,1909,1000,0
+28555,100000,female,2,1,41,-1,-1,-1,-1,-1,0,621,0,368,0,1900,1900,0,368,0,1900,0,1145,0
+28556,360000,female,2,1,44,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+28557,140000,female,2,1,38,0,0,2,0,0,0,84539,96604,90785,95736,95912,97070,18000,0,10000,5000,6000,6000,0
+28558,50000,female,3,1,47,0,0,0,0,0,0,34740,9769,9899,11017,13460,15529,4000,2000,2000,3000,4000,846,0
+28559,70000,female,3,1,35,-1,-1,-1,-1,-1,-1,1473,1473,390,390,1311,1933,1473,390,390,1311,1933,0,0
+28560,60000,female,3,2,48,2,2,0,0,0,0,48094,43533,39252,38051,37988,38725,0,1700,1700,2000,1500,1600,0
+28561,360000,female,3,2,39,1,-2,-2,-2,-2,-2,0,0,271,-1,560,0,0,271,0,561,0,0,0
+28562,240000,female,1,1,40,1,-1,-1,-1,-1,-1,0,9965,4100,4100,4100,4100,9965,4100,4100,4100,4100,4732,0
+28563,200000,female,1,2,30,-2,-2,-2,-2,-2,-2,896,896,670,6220,8536,23040,900,674,6450,8579,23155,16072,0
+28564,100000,female,3,1,35,0,0,0,0,0,0,91518,76621,78265,82808,83869,85191,3000,4000,8000,4000,3500,3600,0
+28565,50000,female,2,1,41,0,0,0,0,0,0,9172,10184,11204,12214,12458,12719,1172,1192,1202,446,462,464,0
+28566,100000,female,2,2,41,0,0,0,0,0,0,98075,96813,85590,79747,70468,63235,3600,3289,2632,2449,2300,2539,0
+28567,270000,female,4,2,42,-2,-2,-2,-2,-2,-2,14352,1843,9190,2072,637,238,1859,9190,2072,637,238,0,0
+28568,50000,female,3,1,48,0,0,0,0,0,0,47945,35712,23177,8550,6373,5848,4100,1150,1200,1000,1000,1500,0
+28569,300000,female,2,1,41,-1,-1,-1,-1,-1,-1,5511,1982,2263,7412,5113,4121,1982,2267,7523,5113,4121,6532,0
+28570,50000,female,2,1,40,0,0,0,0,0,0,31934,32711,34061,32672,32479,33431,2000,3000,3000,3000,2000,1000,1
+28571,80000,female,3,1,41,0,-1,-1,-1,-1,-1,42124,1833,2446,834,1596,855,1835,2458,834,1600,855,0,0
+28572,200000,female,1,1,31,0,0,2,2,0,0,76621,82105,80662,75942,74090,72679,6808,3300,0,2720,2700,2700,0
+28573,340000,female,2,2,31,5,4,4,3,2,0,589654,581775,572677,384060,304508,247178,3000,0,0,1000,4320,287982,1
+28574,310000,female,1,1,31,-2,-2,-2,-2,-2,-2,0,0,24480,0,0,1635,0,24480,0,0,1635,3008,0
+28575,80000,female,2,2,31,0,0,0,0,-1,-1,15633,17536,17495,13198,10287,3275,2302,1774,1000,10287,3295,4122,0
+28576,210000,female,1,2,31,-1,-1,-1,-1,-1,-1,1983,422,815,191,-174,472,422,815,191,0,646,1125,0
+28577,80000,female,1,2,32,0,0,0,0,0,0,70163,72984,74807,76363,78091,79829,4000,3000,2800,3000,3000,3000,0
+28578,500000,female,2,1,32,0,0,0,0,0,0,405490,417191,429469,431426,440026,449026,20000,19000,12000,9000,9000,443001,0
+28579,260000,female,2,1,35,0,0,-1,0,0,0,9286,7926,33379,35877,21946,32150,2036,33393,6094,3530,12357,20060,0
+28580,120000,female,2,1,41,-1,-1,-1,-1,-1,0,919,8209,421,4502,6013,5094,8209,421,5000,6013,0,7600,0
+28581,100000,female,3,1,41,0,0,0,0,0,0,70202,70978,70814,69786,68116,62652,2548,2687,2997,2147,2369,2434,0
+28582,60000,female,2,1,35,2,0,0,2,2,2,49825,45436,42240,38884,34488,28838,1700,2500,2600,1500,0,1500,1
+28583,190000,female,1,1,36,-1,-1,-1,-1,0,0,6915,4923,-2,6381,6383,817,4923,0,6383,2,0,1809,0
+28584,100000,female,3,1,35,2,2,2,2,2,2,93983,97002,102698,97997,103384,97266,5500,8200,0,8000,0,8600,1
+28585,380000,female,2,1,37,0,0,0,0,0,2,13415,14381,13277,14291,15949,15556,1204,1300,1242,1900,0,3000,0
+28586,350000,female,1,2,44,1,2,2,2,2,-1,8651,8890,1772,1957,1807,11811,1871,7,1807,0,11811,5628,1
+28587,100000,female,3,1,39,0,0,0,0,0,0,97944,99580,92297,184134,70400,0,4296,4068,2037,1408,0,0,0
+28588,100000,female,1,2,31,0,0,0,0,0,0,100296,97239,98386,69324,53183,53559,3703,4091,3403,2001,2004,2000,0
+28589,150000,female,2,1,32,-1,-1,-1,-1,-1,-1,3267,3782,316,5469,3360,2399,3782,316,5469,3360,2399,4358,0
+28590,150000,female,2,1,33,1,2,2,2,2,2,5607,6565,6334,9058,8823,7458,1200,0,2823,0,3530,0,1
+28591,150000,female,1,1,38,0,0,0,0,-1,-1,109244,96560,86565,85069,508,0,3506,5000,5003,508,0,0,0
+28592,460000,female,1,2,35,1,-1,-1,0,0,0,-14,693,224526,227242,228126,143697,707,224850,5000,4593,23584,0,0
+28593,100000,female,2,2,44,2,2,2,2,2,2,105373,107001,108350,107457,105598,105751,5700,5400,3700,4000,3600,4500,1
+28594,230000,female,2,2,38,0,0,0,0,0,0,75459,76607,78868,80343,82564,74531,3000,3500,3000,3500,3000,3000,0
+28595,10000,female,2,1,38,1,3,2,0,-1,0,3980,3771,3564,4500,5039,5275,0,0,1000,5039,375,0,1
+28596,200000,female,3,1,44,-2,-2,-2,-2,-2,-2,390,390,390,390,390,390,390,390,390,390,390,540,0
+28597,140000,female,2,1,34,0,0,0,0,0,0,141066,129173,116858,105786,93273,91207,4873,4691,4000,4000,4000,4000,0
+28598,370000,female,3,1,46,-2,-2,-2,-2,-2,-2,6370,2110,10086,804,4577,-10,2120,10136,808,4599,0,2150,0
+28599,50000,female,3,1,49,0,0,-2,-2,-2,-2,36325,0,0,0,0,0,0,0,0,0,0,0,0
+28600,160000,female,2,1,36,-1,-1,-1,-1,-1,-1,2447,206,805,666,740,539,206,886,679,740,539,0,0
+28601,80000,female,3,2,43,0,0,0,0,0,0,80707,77532,77492,78362,50001,50035,3332,3051,2600,1877,1767,1797,0
+28602,240000,female,1,2,33,0,0,0,0,0,0,61180,57174,73008,61310,39694,45301,23222,50192,10078,24694,28407,7458,0
+28603,160000,female,3,2,33,-1,2,2,2,2,-2,18195,755,44255,43228,-772,-772,0,43500,0,0,0,3000,0
+28604,50000,female,3,1,44,0,0,-1,0,0,0,48592,38491,900,1900,2900,3000,1063,900,1000,1000,100,0,1
+28605,180000,female,2,2,38,0,0,0,0,0,0,179307,183613,182709,149997,142612,140493,7294,6792,5490,5156,5232,6288,0
+28606,50000,female,3,1,46,0,0,0,0,2,-1,58141,58544,56850,4359,816,766,2200,3000,1218,0,1000,2934,0
+28607,500000,female,1,2,32,0,0,0,0,0,0,253767,222365,207026,203513,202853,202404,10000,10000,7000,7000,6799,7000,0
+28608,200000,female,1,1,34,-2,-2,-2,-2,-2,-2,2955,5895,15146,11575,11564,13744,5938,15682,11633,11622,13813,22699,0
+28609,60000,female,3,2,44,0,0,0,0,0,0,56403,57765,59198,31437,32113,33591,2300,2600,1600,1200,2000,1300,0
+28610,50000,female,2,2,46,1,3,2,0,0,0,52308,51194,50101,49527,10147,9965,0,0,1200,400,400,400,0
+28611,50000,female,3,2,44,2,2,2,2,2,2,40985,42115,41164,43658,44644,43798,2100,0,3500,2000,0,2000,1
+28612,210000,female,2,2,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+28613,60000,female,2,1,27,1,2,0,0,2,0,10415,10099,11545,12928,12581,10787,0,1617,2000,0,270,1000,0
+28614,140000,female,1,2,28,-1,-1,-1,-1,-1,0,31,1272,1446,2880,1914,968,2000,1500,3000,1914,0,3287,1
+28615,260000,female,1,1,35,-2,-2,-2,-2,-1,-1,-124,-124,-124,1599,360,882,0,0,1723,366,882,0,1
+28616,300000,female,1,1,40,-2,-2,-2,-2,-2,-2,1529,3717,4541,5620,25,25,3717,4541,5620,25,0,7140,0
+28617,500000,female,2,1,36,-2,-2,-2,-2,-2,-2,-1,229,504,24125,19611,3100,230,625,24246,19709,3117,62754,0
+28618,140000,female,1,1,34,-1,-1,-2,-2,-2,-1,2574,0,0,0,0,840,0,0,0,0,840,1380,0
+28619,290000,female,3,1,49,2,2,2,0,0,0,301651,329277,275075,280512,202300,207510,34905,0,10951,7238,8467,10188,1
+28620,360000,female,1,2,27,0,0,0,0,0,0,91282,85875,87400,87343,71180,64500,3967,4213,3741,2353,2471,2327,0
+28621,20000,female,2,2,27,0,0,0,0,2,0,8879,10222,10940,12825,12331,12984,1500,1188,2073,0,1000,3390,0
+28622,190000,female,2,2,27,0,0,0,0,0,0,125739,126184,127189,122034,124837,128442,6000,6000,4000,5000,5000,7000,0
+28623,150000,female,1,2,28,0,0,0,0,0,0,41387,40310,42652,42711,43311,48311,2000,3000,1500,1000,5000,176,0
+28624,100000,female,1,2,28,2,0,0,0,0,0,4523,7267,9967,19706,20378,22038,3000,3000,10000,1000,2000,4000,1
+28625,310000,female,1,2,29,0,0,0,0,0,0,29906,14780,18261,41540,50803,59927,14750,5000,24000,10000,10000,30000,0
+28626,500000,female,1,2,29,0,0,0,0,0,0,70287,73487,77282,80977,84609,88073,5000,5000,5000,5000,5000,5000,0
+28627,120000,female,2,2,28,-1,-1,-1,-1,-1,-1,792,0,792,0,396,396,0,792,0,396,396,396,0
+28628,200000,female,2,1,28,0,0,0,0,0,0,135841,127109,102712,79902,59253,59826,4449,3555,3524,2300,2000,1800,0
+28629,180000,female,1,2,30,0,0,0,0,0,-2,7808,4511,3435,5345,2018,164,1198,1099,2009,2024,164,2159,0
+28630,50000,female,2,2,30,0,0,0,0,0,0,46795,46285,43282,14713,19583,14959,2169,1966,1130,5000,1000,441,1
+28631,210000,female,1,2,30,0,0,0,0,0,0,52514,52053,52558,52515,52108,51758,2449,3000,2500,2000,2000,2000,0
+28632,230000,female,1,2,30,2,2,2,2,2,2,212400,216409,221419,224753,228022,232724,9000,10000,8500,8500,8500,32000,1
+28633,200000,female,1,2,30,-2,-2,-2,-2,-2,-2,1028,1025,1613,2193,2698,3812,1030,1621,2213,2711,3831,2213,0
+28634,100000,female,2,2,31,0,0,0,0,0,0,101458,101207,101421,101111,101384,101358,3800,4000,3602,3719,3700,7800,1
+28635,250000,female,2,2,31,0,0,0,0,0,0,171006,167192,46332,40974,26683,26887,5004,3330,2000,2000,2000,3000,0
+28636,200000,female,2,1,31,-1,2,-1,-1,-1,-1,3850,2025,1926,3263,1580,16874,6,1931,3267,7,17894,2508,0
+28637,50000,female,2,1,31,0,0,-2,-2,-1,0,4468,0,0,0,3251,3484,0,0,0,3251,274,500,0
+28638,170000,female,2,1,31,1,-1,2,-1,0,0,0,427,427,23321,23475,25218,427,0,23500,840,2121,0,0
+28639,70000,female,2,1,32,0,0,0,0,0,0,57550,22049,17349,14654,23808,24852,3000,2000,4000,10000,2000,1400,0
+28640,260000,female,1,1,31,0,0,0,0,0,0,50312,128072,55359,39189,49909,20782,85387,33061,5039,20154,2854,29,0
+28641,60000,female,3,2,32,0,0,0,0,0,0,59143,58612,59017,59220,26607,29719,2100,3000,3008,6000,4000,1000,0
+28642,120000,female,2,2,31,-2,-2,-2,-2,-2,-2,140,140,4836,3780,7501,3300,140,4836,4034,7501,3300,0,1
+28643,100000,female,3,2,33,0,0,0,0,0,0,74847,70663,63794,60651,54664,51776,3000,3000,2700,2000,2000,2000,0
+28644,500000,female,1,2,34,0,0,0,0,0,0,161716,143382,123316,142773,107136,95915,6018,5198,46047,10039,30027,60038,0
+28645,230000,female,2,1,34,2,-1,-1,-1,-1,-1,566,2329,1894,2528,1865,1496,2329,1894,2532,1865,1496,1873,0
+28646,330000,female,5,1,34,0,0,0,0,0,0,252755,272262,281220,121814,11383,13090,25000,15000,7000,3000,2000,90000,0
+28647,360000,female,1,1,35,-2,-2,-2,-2,-2,-2,3925,5320,1016,7173,10763,4857,5352,1022,7408,10817,5044,27696,0
+28648,180000,female,2,1,44,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+28649,180000,female,3,1,35,0,0,0,0,0,2,175200,175285,60790,50479,28739,18037,7002,1807,2000,4000,0,33000,1
+28650,140000,female,2,2,35,0,0,0,0,0,0,84873,82471,84235,82432,81465,83160,4000,4010,3800,3200,3100,3000,0
+28651,260000,female,1,1,37,1,2,2,2,0,0,58261,59706,60969,59400,60315,63230,3000,2800,0,2500,4000,4000,0
+28652,220000,female,1,1,36,-2,-2,-2,-2,-2,-2,0,0,2337,-602,-1184,-2047,0,2337,58,0,0,3500,0
+28653,100000,female,3,1,42,-1,-1,-1,-1,-1,-1,1651,631,3611,631,631,0,631,3611,631,631,0,2113,0
+28654,280000,female,1,1,39,-1,-1,-1,-1,-1,-2,1451,9152,335,2300,0,0,9152,335,2322,0,0,9436,0
+28655,100000,female,2,2,40,-1,-1,-2,-2,-1,-1,1573,-28,-28,-28,2816,2118,0,0,0,2844,2118,0,0
+28656,290000,female,3,1,46,-1,0,0,-1,-1,0,73612,44236,3253,766,168322,169676,2207,1000,766,168342,7000,5100,0
+28657,360000,female,1,1,48,0,0,0,0,0,0,202783,202036,202918,202197,199002,197781,10000,10000,10000,7500,8000,8000,0
+28658,290000,female,3,1,46,0,0,0,0,0,-1,7874,9236,10326,11000,11000,11417,1500,1400,1000,0,11417,500,0
+28659,60000,female,2,1,39,0,0,0,0,0,0,32734,32234,32136,31204,30330,29934,1506,1881,1422,1021,1500,1056,0
+28660,80000,female,1,2,44,0,0,2,2,3,2,41630,48893,47831,57000,55489,57450,8000,0,10000,0,3000,2500,1
+28661,180000,female,2,1,42,0,0,0,0,0,0,132986,126825,109319,111343,91966,82280,6167,5800,5700,3600,3000,3234,0
+28662,200000,female,1,2,37,-1,-1,-1,-1,-1,-1,454,2015,3603,16158,0,836,2500,3700,16200,0,836,1589,0
+28663,170000,female,1,2,44,-1,-1,-1,-1,-1,-1,2500,804,2016,3957,4956,482,804,5991,3957,5444,482,626,0
+28664,780000,female,2,2,41,-2,-2,-2,-2,-2,-2,101957,61715,38686,21482,72628,182792,62819,39558,22204,82097,184322,25695,0
+28665,340000,female,1,3,42,-1,-1,-1,-1,-1,0,139808,176743,34402,205931,265431,270237,873552,1215471,889043,621000,20000,145000,0
+28666,200000,female,5,1,39,-2,-2,-2,-2,-2,-2,20218,25242,3930,0,0,0,25267,3930,0,0,0,0,0
+28667,350000,female,1,1,45,-1,-1,-1,-1,-1,-1,291,291,291,291,291,291,291,291,291,291,291,291,0
+28668,360000,female,2,1,39,0,0,-2,-1,0,0,366965,-17710,-17706,301085,307035,63451,12709,1393,319494,13079,2438,2599,1
+28669,130000,female,2,1,41,-1,0,-1,-1,-1,-1,2538,1866,1349,1609,635,849,1177,1349,1609,635,849,2893,0
+28670,310000,female,2,1,44,-1,0,0,0,0,0,67423,67729,113788,106919,100656,93846,10000,56000,5000,4000,3300,5000,0
+28671,110000,female,2,1,46,0,0,0,0,0,0,107281,109551,48942,49959,50951,52019,4560,1808,1825,1817,1882,1893,0
+28672,260000,female,2,1,44,1,-1,-1,-1,-1,-1,-6,1100,2527,1698,0,5062,1106,2527,1698,0,5062,0,0
+28673,290000,female,1,1,44,-2,-2,-2,-2,-2,-2,7886,9636,10060,3946,7388,4482,9636,10060,3948,7388,4482,8106,0
+28674,200000,female,1,1,37,-1,-1,0,-1,0,0,1382,23942,18143,11770,22155,13235,23994,10112,11770,12155,3000,30075,0
+28675,130000,female,2,1,40,0,0,0,2,0,0,54137,28019,29927,24555,24873,26583,2600,3500,498,3000,3300,3000,1
+28676,60000,female,1,2,28,0,0,0,-1,-1,0,38991,13115,2958,4556,19213,18825,10008,2950,4556,19938,800,900,0
+28677,20000,female,2,2,30,0,0,0,0,0,0,21302,18842,19370,19355,17155,18660,1300,1800,1106,435,1599,1000,0
+28678,300000,female,2,1,31,0,-1,-1,-1,0,0,3565,316,316,17597,15257,9482,316,316,17597,2000,2690,2000,0
+28679,70000,female,3,1,39,0,0,0,0,0,2,124493,125680,129498,131216,136744,133413,4800,5900,6000,9200,0,4859,0
+28680,240000,female,2,1,35,-1,2,-1,-1,-1,-1,528,264,264,264,264,414,0,264,264,264,414,264,1
+28681,60000,female,1,2,29,-1,-1,-1,-1,0,-1,5557,7587,7058,8127,4557,2992,7587,8028,8127,15,2992,7695,0
+28682,240000,female,1,2,28,1,-2,-1,-1,-1,-1,0,0,1522,2141,590,176,0,1522,2141,590,176,1720,0
+28683,200000,female,3,1,29,-1,-1,-2,-2,-2,-1,161,0,0,0,0,1063,0,0,0,0,1063,1089,0
+28684,500000,female,1,2,31,0,0,0,0,0,0,47177,55947,57052,62051,70198,72924,10000,3000,6000,10000,10000,4313,0
+28685,140000,female,2,3,28,0,0,0,0,0,0,138901,140732,140661,100656,49783,49310,5600,5500,2650,36000,1000,620,1
+28686,210000,female,2,1,29,0,0,0,0,0,0,42140,31938,45502,41704,40509,41305,2000,20020,1672,1600,1600,2000,0
+28687,240000,female,2,1,31,-1,-1,-1,-1,-1,-1,184,0,2500,12500,749,2829,0,2500,12500,749,2829,2900,0
+28688,240000,female,1,2,30,-2,-2,-2,-2,-2,-2,0,0,2999,0,0,0,0,2999,0,0,0,0,0
+28689,160000,female,1,2,28,-2,2,0,0,0,0,4145,3930,5859,10299,11825,13121,0,2000,5008,3007,2000,2000,0
+28690,50000,female,1,2,29,0,0,0,0,0,0,28889,21803,20990,16236,9759,8789,1368,1330,1160,330,314,364,0
+28691,400000,female,1,2,29,-1,-1,0,0,0,0,16666,62545,98214,84142,70732,68674,62545,53704,4142,5010,66676,66660,0
+28692,440000,female,2,2,29,-1,-1,-1,-1,0,0,23147,88848,42045,400321,229680,265404,70554,45213,400972,5456,100267,7530,0
+28693,150000,female,1,1,30,0,0,0,0,0,2,114797,117393,120002,122013,131426,134676,4500,4500,4000,11000,5000,3500,0
+28694,100000,female,2,1,27,1,-2,-2,-2,-2,-1,0,0,0,0,0,4747,0,0,0,0,4747,1198,1
+28695,120000,female,1,1,32,-1,-1,-1,-1,-1,0,497,0,1085,193,1549,1549,0,1085,193,1549,0,787,0
+28696,50000,female,2,1,28,3,2,2,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,0
+28697,150000,female,1,2,32,2,2,2,2,0,0,118348,120800,123379,122881,123954,131543,5900,6000,3000,4600,9800,5100,1
+28698,360000,female,1,2,30,-2,-2,-2,-2,-2,-2,2500,0,0,0,0,0,0,0,0,0,0,0,0
+28699,260000,female,2,1,29,0,0,0,0,0,0,246509,251197,243167,231463,105518,93193,7012,6310,5871,3130,2966,3230,0
+28700,240000,female,2,1,43,0,0,0,0,0,0,244103,240733,236553,241215,230480,234610,9102,8602,9013,8195,8202,7902,1
+28701,180000,female,2,3,41,0,0,0,0,0,0,141137,130282,109327,77752,66202,58557,5481,4399,3008,2150,2147,2120,0
+28702,210000,female,2,1,42,-1,-1,-1,-1,-1,-1,2201,3571,987,2467,3319,5387,3571,987,2469,3319,5387,1607,0
+28703,70000,female,2,2,34,-1,-1,-1,-1,0,0,2226,1245,-1000,11019,11632,7864,1245,0,12019,1000,157,7851,0
+28704,500000,female,1,2,35,0,0,0,0,0,0,3994,11230,10925,11795,14384,15806,11160,1244,1114,2703,3435,402,0
+28705,500000,female,2,2,48,-1,0,0,0,0,0,30252,47506,28171,26498,45212,35223,38009,28005,22000,33000,22000,10000,0
+28706,180000,female,1,2,28,0,0,0,0,0,0,51085,48531,55352,63055,75046,65184,5014,10000,10000,15057,10010,10036,0
+28707,120000,female,2,1,31,0,0,0,0,0,0,45716,44610,45428,34401,34360,35523,2000,1732,2041,1000,1500,1000,0
+28708,200000,female,2,1,33,0,0,0,0,0,0,15126,14633,14918,16992,8967,8494,3000,2000,5000,2000,1000,2000,0
+28709,140000,female,2,1,33,0,0,0,-2,-1,0,89226,90212,-1037,-1037,66441,68365,3133,0,0,68383,3000,3096,0
+28710,20000,female,3,2,34,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+28711,220000,female,1,1,39,-1,-1,-1,-1,-1,-1,419,419,419,419,419,419,419,419,419,419,419,419,0
+28712,290000,female,1,1,32,-2,-2,-2,-2,-2,-2,4340,3686,3094,8164,1509,8262,3686,3112,8164,1509,8262,2032,1
+28713,260000,female,2,2,37,-1,-1,-1,-1,-1,-1,188,188,189,192,188,0,188,189,192,188,0,526,0
+28714,220000,female,1,2,34,0,0,0,0,0,0,135132,136108,133534,27484,23728,21039,7245,6121,1551,875,1800,300,0
+28715,160000,female,2,1,41,0,0,0,0,0,0,13512,13453,13420,13873,13833,13818,1206,1329,1098,374,400,364,0
+28716,500000,female,1,2,37,0,0,0,0,0,0,80846,74776,73558,71055,61248,40737,3032,3200,1946,1734,2000,4128,0
+28717,230000,female,2,1,42,-2,-2,-1,-1,-1,0,-138,-69,231,4749,33389,34928,0,300,4749,38000,5000,3000,0
+28718,120000,female,3,1,39,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+28719,360000,female,1,1,38,-2,-2,-2,-2,-2,-2,2410,7830,4024,6643,1947,2066,7954,4044,6715,1956,2076,2003,0
+28720,220000,female,1,2,39,-1,-1,-2,-1,-1,-1,300,-200,-200,4040,4040,-1269,0,0,4240,0,0,0,0
+28721,120000,female,1,2,32,-1,2,0,-1,-1,-1,1192,696,1210,1799,1594,1255,0,1179,1799,1594,1255,1133,0
+28722,360000,female,2,2,33,-1,-1,0,0,0,0,3231,9523,11357,12123,9743,9567,9666,2000,1000,0,0,536,0
+28723,120000,female,1,1,42,-1,-1,-1,-1,-1,-1,344,881,1778,1885,607,687,881,1781,1885,607,687,1203,1
+28724,50000,female,1,1,32,0,0,0,0,0,2,27447,28187,29220,30547,32329,31677,1500,1491,1818,2600,0,1400,0
+28725,290000,female,2,1,35,0,0,0,0,0,0,285679,277275,199437,154369,110016,27774,10050,8007,4005,2500,13000,2060,0
+28726,230000,female,2,1,38,-1,0,0,0,0,0,1129,2117,2283,3227,4227,4616,1029,1056,1000,1000,389,215,0
+28727,200000,female,1,1,36,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+28728,370000,female,6,1,48,0,0,0,0,0,0,250264,252955,254111,257816,255491,255320,10004,9498,10827,9002,9040,9004,0
+28729,50000,male,2,2,40,0,0,0,0,0,0,60131,49486,41463,39577,32474,32303,3000,2000,2174,2000,2000,1500,0
+28730,50000,female,5,1,32,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+28731,20000,female,3,2,44,0,0,0,0,0,0,18783,19660,14561,15017,15119,4077,1230,1354,1200,302,82,83,0
+28732,260000,female,1,1,36,0,0,2,0,0,0,131971,139305,89200,79702,79025,79997,10000,0,3012,3000,3000,4000,0
+28733,230000,female,5,1,42,-1,-1,-1,-1,-1,-1,390,390,390,390,240,930,390,390,390,240,1080,0,0
+28734,200000,female,2,1,36,-1,-1,-1,-1,0,-1,8812,15189,6205,37658,696,1430,15234,6225,38150,2,1434,2265,0
+28735,340000,female,1,1,36,0,0,0,0,2,0,29879,26968,31051,34917,32110,33984,1459,4674,5032,360,6360,4116,0
+28736,220000,female,5,1,32,0,0,0,0,0,0,84942,56366,4252,6129,6423,7208,2500,1500,2000,500,1000,1000,0
+28737,340000,female,1,1,36,-1,-1,-1,-1,-1,0,4490,4834,17716,12010,14111,6995,4834,17716,12636,14111,0,5666,0
+28738,200000,female,3,1,42,-1,-1,-1,-2,-1,0,535,10468,0,0,400,400,10468,0,0,400,0,0,0
+28739,180000,female,3,1,44,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+28740,50000,female,2,2,43,0,0,0,0,0,0,24847,26043,26724,20903,19225,19536,2000,2000,2020,2000,1000,800,0
+28741,80000,female,1,2,38,0,0,0,0,0,0,77204,73940,47627,48482,49153,46995,2938,1853,1708,1824,1704,1641,0
+28742,160000,female,2,1,31,-1,-1,0,0,-2,-2,1133,31964,24805,0,0,0,31964,1003,0,0,0,0,0
+28743,80000,female,2,1,48,0,0,0,0,0,0,77627,80712,48428,52391,23359,24597,5000,5000,5000,3000,2000,3000,0
+28744,30000,female,1,2,37,-1,-1,-1,-1,-1,-1,264,264,264,0,528,0,264,264,0,528,0,0,1
+28745,230000,female,1,2,42,-2,-2,-2,-2,-2,-2,107,529,135,108,830,2536,529,135,108,830,2536,0,0
+28746,400000,female,2,2,42,-1,-1,-1,-1,0,0,3608,4032,9885,65207,59247,53752,4052,9939,65243,1239,5366,10435,0
+28747,200000,female,3,2,42,1,-1,-1,-1,-1,2,-105,5237,2297,-3903,11989,11839,10000,2509,0,24000,0,27000,0
+28748,20000,female,2,1,46,2,0,0,0,0,0,5437,6602,7622,8479,8647,8829,1264,1284,1141,309,321,322,1
+28749,200000,female,1,1,38,-1,-1,-1,-1,-1,-1,3824,6115,11950,7311,18517,6787,6115,11950,7311,18567,6787,6653,0
+28750,140000,female,1,2,34,-1,-1,-2,-2,-1,0,1500,0,0,0,6400,11400,0,0,0,6400,5000,1000,0
+28751,360000,female,1,2,29,0,0,0,0,0,0,270528,267435,193910,167029,134294,154290,10256,12000,15273,15000,25000,12000,0
+28752,360000,female,1,1,36,1,-2,-2,-2,-2,-2,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0
+28753,390000,female,5,2,45,0,0,0,0,0,0,184547,179819,162571,167832,205750,212634,6645,5782,7782,42393,10414,7422,0
+28754,390000,female,1,2,41,-2,-2,-2,-2,-2,-2,-13,-13,-13,-13,-13,-13,0,0,0,0,0,13,1
+28755,160000,female,3,1,35,-1,-1,-1,-1,0,0,335,0,312,7736,7278,7278,0,312,7736,0,0,1470,0
+28756,340000,female,1,2,44,-2,-2,-2,-2,-2,-2,2732,2183,4103,12950,11372,2434,2183,4142,12950,11372,2434,2222,0
+28757,280000,female,1,1,36,-1,2,-1,-1,-1,0,832,416,416,416,59211,416,0,416,416,59211,0,378,0
+28758,500000,female,1,2,42,-1,-1,-1,-1,-1,0,21179,51124,21138,49305,39095,15826,51304,21138,49775,39095,0,0,0
+28759,60000,female,1,2,46,0,0,0,0,0,0,16017,30073,18385,20732,21196,23175,22000,3000,3000,1000,3000,0,0
+28760,420000,female,2,2,37,0,0,0,0,0,0,14823,16367,17709,18801,20328,25065,1800,1608,1700,2500,5065,1500,0
+28761,160000,female,1,1,38,0,0,-2,-2,-2,-2,6555,0,0,0,0,0,0,0,0,0,0,0,0
+28762,230000,female,2,2,34,-1,-1,-1,-1,-1,-1,316,316,316,316,316,466,316,316,316,316,466,466,0
+28763,230000,female,1,2,31,2,0,0,0,0,0,125270,129588,115066,87021,82460,64818,6531,5091,3307,3316,2316,2500,1
+28764,280000,female,2,1,36,-2,-2,-2,-2,-2,-2,2874,2874,2874,2874,2874,2854,2888,2888,2888,2888,2868,7029,0
+28765,180000,female,2,2,31,0,0,0,-1,-1,-1,6903,11489,5488,1635,1680,782,8000,3003,1635,1680,782,4374,0
+28766,100000,female,1,1,40,-2,-2,-2,-2,-2,-2,1895,0,0,0,150,167,0,0,0,1323,167,1424,1
+28767,180000,female,1,2,33,0,-1,-1,-2,-2,-2,3302,1295,0,0,0,0,1295,0,0,0,0,1640,0
+28768,30000,female,5,2,46,0,0,2,0,0,-2,29213,17064,16465,16977,0,0,5064,0,5047,0,0,0,0
+28769,320000,female,2,1,39,0,0,0,-2,-1,-1,46383,111937,0,0,589,-4543,68800,0,0,589,0,0,0
+28770,590000,female,3,1,39,0,0,0,0,0,0,128659,128715,127961,128112,128798,128467,5025,5693,6007,5013,4701,4944,0
+28771,130000,female,2,1,38,-1,-1,-1,0,0,0,5636,8485,6263,24571,18817,13481,8510,6279,24516,16,34,6,0
+28772,130000,female,1,1,33,-1,-1,-1,-1,-1,-1,1365,84118,44404,27113,801,28027,84118,44404,27309,801,28027,0,0
+28773,280000,female,2,1,41,1,-1,-1,-1,-1,-2,268,509,0,121,0,0,509,0,121,0,0,0,0
+28774,90000,female,2,1,40,0,0,2,0,0,0,89789,88337,85248,86483,87765,85855,7069,0,3500,3500,3500,3200,0
+28775,320000,female,2,1,30,-2,-2,-2,-2,-2,-2,1031,1886,2913,-27,-27,5399,1895,2927,0,0,5426,3700,0
+28776,160000,female,2,1,31,0,0,0,0,0,0,63780,64675,56561,52338,31133,27590,3518,3015,2128,2000,1000,2473,0
+28777,150000,female,2,1,37,-1,0,0,0,0,0,104460,101914,103297,100603,98188,101441,6000,4573,5000,5000,5000,4100,0
+28778,40000,female,2,1,48,-1,0,0,0,0,0,27273,27207,28055,15199,17331,19428,2000,3000,3000,3000,3000,5000,0
+28779,180000,female,3,1,31,0,0,0,0,0,0,68450,69818,71298,72729,73627,75086,3100,3200,3210,2700,2800,3000,0
+28780,550000,female,2,2,39,0,0,0,0,0,0,336722,276725,260932,267917,217738,167245,11007,10507,13035,9511,6114,6207,0
+28781,50000,female,1,1,45,1,2,-1,0,0,0,6805,532,17453,18444,18855,18886,0,17453,1290,701,901,1000,0
+28782,220000,female,1,2,36,0,0,0,0,0,0,222598,222168,217900,221193,181859,184605,10000,8018,10121,6006,10987,143779,1
+28783,360000,female,2,2,40,-1,-1,-1,-1,0,0,9325,10741,45619,37459,31747,26899,10741,46378,46347,0,0,19607,0
+28784,250000,female,2,2,35,0,0,0,0,0,0,277822,255167,233029,279256,46144,85984,6150,6235,80000,923,70069,12500,0
+28785,340000,female,1,1,46,0,0,0,0,0,0,94915,92955,89689,81996,83439,71239,3224,4000,3504,4349,3000,3098,0
+28786,180000,female,1,1,44,-1,-1,-1,-1,-1,-1,1210,1071,6554,0,21398,298,1071,6557,0,21398,298,0,0
+28787,30000,female,3,2,48,2,2,0,0,0,0,26950,23655,25131,29148,12134,12976,0,3200,5000,1000,1000,1000,1
+28788,300000,female,3,2,33,-1,-1,-2,-2,-2,-2,76922,-694,-694,-694,-694,-694,0,0,0,0,0,5000,1
+28789,40000,female,2,1,37,0,0,0,0,2,0,5366,6541,16390,9891,9594,9798,1273,2000,3538,0,500,500,0
+28790,500000,female,1,1,47,0,0,-1,-1,0,0,26110,12943,4814,18365,8728,28521,2064,5025,18571,5000,20000,0,0
+28791,180000,female,1,1,41,0,0,0,0,0,-1,55193,48257,42128,39654,42954,22543,5000,6000,10000,15000,23000,5445,0
+28792,350000,female,1,1,44,0,0,0,0,-1,-1,110819,115058,76156,51500,150,500,6000,4000,2500,150,500,0,0
+28793,90000,female,2,2,48,-2,-2,-2,-2,-2,-2,6224,8150,0,0,9167,0,8150,0,0,9167,0,526,0
+28794,240000,female,2,2,31,0,0,0,0,0,0,245553,244958,245148,240343,211449,215874,10178,10577,8302,7300,7505,7700,0
+28795,50000,female,3,3,46,0,0,0,0,0,0,44835,45989,47167,25142,4716,4840,1900,2050,2000,300,200,500,0
+28796,220000,female,1,2,33,-1,2,2,0,0,0,1379,1205,825,1783,1205,1205,705,325,1283,507,705,705,0
+28797,180000,female,2,2,38,0,0,0,0,0,0,25895,26173,26260,26805,8992,10906,2000,2000,2000,1000,2000,2000,0
+28798,400000,female,4,1,37,-2,-2,-2,-2,-2,-2,14889,929,1191,11930,11286,5766,929,1191,11930,11286,5766,16520,0
+28799,220000,female,1,1,42,3,2,2,2,2,2,2500,2500,2500,2500,2500,2500,0,0,0,0,0,0,1
+28800,180000,female,6,1,48,-1,-1,-1,-1,-1,-2,872,3345,2962,6139,1842,1115,3347,2962,6366,1842,1115,2240,0
+28801,80000,female,3,1,38,0,0,0,-2,-2,-2,39604,10635,0,0,0,0,1000,0,0,0,0,0,1
+28802,360000,female,1,2,37,0,0,0,0,0,0,198839,187955,163120,140383,121771,102568,7000,8071,7029,3011,4000,9000,0
+28803,170000,female,1,2,49,0,0,0,0,0,0,163951,136825,140450,116293,118759,108766,5100,6000,4000,4000,3200,2200,0
+28804,130000,female,2,1,48,-2,-2,-2,-2,-2,-2,0,1240,1487,1279,749,440,1240,1487,1279,749,440,849,0
+28805,290000,female,1,1,30,0,0,0,0,0,0,216328,218435,218783,158215,69234,71560,8000,8600,6700,2600,3500,0,0
+28806,90000,female,2,1,32,0,0,2,2,2,2,79105,85997,83779,88577,86365,91105,8200,0,7200,0,6200,24,0
+28807,130000,female,3,2,32,0,0,0,0,0,0,12535,14317,15656,4918,6918,8944,2000,2040,3000,2000,2026,6561,0
+28808,140000,female,1,3,48,1,-1,-1,-1,-1,-1,0,780,1176,0,780,642,780,1176,0,780,642,0,0
+28809,510000,female,2,2,48,0,0,0,0,0,-1,113616,96756,72730,64746,24040,23791,9019,8000,20000,24040,23791,22503,0
+28810,50000,female,1,1,39,-1,-1,-2,-2,-1,-1,2080,-60,-60,-60,6000,228,0,0,0,6060,228,1911,0
+28811,200000,female,1,2,40,-1,-1,-1,-1,-1,-1,1489,9973,2457,0,948,0,9973,2457,0,948,0,1302,0
+28812,200000,female,1,2,37,0,0,0,0,0,0,83000,62084,64610,60567,52122,50610,2500,5000,2509,2000,2000,2000,0
+28813,400000,female,2,2,36,0,0,0,0,0,0,69376,61204,50773,39676,30680,27761,2255,1421,1381,770,731,600,0
+28814,310000,female,1,1,35,-1,-1,-1,-1,-1,-1,1815,3689,20524,7986,1100,9622,3689,20658,7986,1100,9622,0,0
+28815,210000,female,1,1,46,0,0,0,0,0,0,50720,52174,48957,49848,59060,60420,3111,2109,2000,10000,6032,5030,0
+28816,90000,female,2,1,33,0,0,0,0,0,0,77379,67092,61071,44821,24653,25254,2500,3908,2100,884,1000,1000,0
+28817,270000,female,1,2,31,-1,0,0,0,0,0,9213,2283,3203,1144,1144,1144,1080,1000,1121,0,0,0,0
+28818,30000,female,3,1,39,0,0,0,0,0,0,30238,30166,29745,27468,27436,27613,2000,1635,1438,796,5000,1000,1
+28819,30000,female,2,1,41,0,0,0,0,0,0,20061,17435,14452,13050,11083,9249,1542,2002,2000,900,1500,1500,0
+28820,210000,female,2,1,36,-1,-1,0,-1,-1,-1,2853,8028,10827,5385,1187,1552,8037,6018,5388,1191,1554,1870,0
+28821,110000,female,1,1,43,0,0,0,0,0,0,104622,103639,105714,105998,105080,105638,4000,5500,5300,4000,4100,12700,0
+28822,160000,female,2,1,42,1,-2,-1,-1,-1,-1,0,0,369,0,522,0,0,369,0,522,0,978,0
+28823,380000,female,1,2,30,0,0,2,2,0,0,27015,31684,33442,32361,32518,32308,5700,2800,0,1205,1226,1332,0
+28824,140000,female,1,2,33,-2,-2,-1,-1,-1,-1,954,1015,310,2361,854,565,1015,310,2361,854,565,673,0
+28825,250000,female,3,1,44,0,0,0,0,0,0,166325,165081,169492,172936,136182,139362,6686,7037,6358,4918,5420,4466,0
+28826,150000,female,1,2,39,-1,-1,-1,-1,-1,-1,1709,14674,771,1365,10965,1488,14674,771,1375,10965,1488,4328,0
+28827,230000,female,2,2,43,2,2,2,2,2,3,206245,215936,221001,220886,239299,237297,13126,10000,5000,23700,2000,3,1
+28828,220000,female,1,1,49,-2,-2,-2,-2,-2,-2,0,0,0,0,4488,540,0,0,0,4488,540,0,1
+28829,60000,female,3,1,39,1,2,0,0,2,0,31011,29565,31123,34134,23552,24020,0,3000,3638,0,1000,3000,0
+28830,50000,female,5,1,41,0,0,0,0,0,0,46148,47711,47645,47552,48512,49622,4000,5000,3000,2000,2000,2000,1
+28831,300000,female,2,1,40,1,-2,-2,-2,-1,-1,0,0,0,0,280,0,0,0,0,280,0,0,0
+28832,320000,female,2,1,41,-2,-2,-2,-2,-2,-2,2555,7065,648,2258,722,15937,7100,651,2269,725,16014,3088,0
+28833,250000,female,1,1,43,-2,-2,-2,-2,-2,-2,331,0,0,0,0,0,0,0,0,0,0,0,0
+28834,200000,female,3,1,42,-1,-1,-1,-1,-1,-1,858,1406,3673,0,150,609,1406,3673,0,150,609,939,0
+28835,110000,female,3,1,36,-1,-1,-1,-1,-1,0,3681,6026,1555,2043,1037,4718,6026,1555,2045,1037,4000,6233,0
+28836,50000,female,3,2,46,0,0,0,0,0,0,36259,37669,8770,7251,15948,8838,2500,2127,1500,1000,1000,1000,0
+28837,300000,female,4,2,45,1,-1,-1,-2,-2,-2,0,1669,0,0,0,0,1669,0,0,0,0,289,0
+28838,50000,female,5,1,33,1,2,0,-1,2,0,26358,24890,25440,26191,25193,25742,4,1925,28293,0,1100,2030,0
+28839,230000,female,3,1,42,-1,-1,0,0,0,0,170,2217,5167,8552,12552,10596,2217,3167,3552,5000,3000,2518,0
+28840,30000,female,2,1,36,-1,-1,-2,-2,-2,-1,528,-120,-120,-120,-120,6675,0,0,0,0,6795,21947,1
+28841,30000,female,2,1,41,3,2,2,-1,-1,-1,1660,856,428,428,13749,659,428,0,428,13749,659,5548,0
+28842,290000,female,2,1,41,0,0,2,0,0,0,4783,7239,6957,4954,7221,6988,2552,0,1000,5000,2500,3659,0
+28843,210000,female,1,1,47,-2,-2,-2,-2,-2,-2,234,0,0,0,0,0,0,0,0,0,0,2197,0
+28844,200000,female,2,1,46,-1,-1,2,-1,-1,-1,827,1654,827,827,827,827,1654,0,827,827,827,827,0
+28845,150000,female,2,1,41,-2,-2,-2,-2,-2,-2,11026,9459,9929,1595,3630,3516,9640,9976,1595,3647,3516,11071,0
+28846,110000,female,1,1,45,0,0,0,0,0,-1,21842,15843,10466,3537,1378,316,3000,2007,1000,0,316,825,0
+28847,20000,female,2,1,43,2,0,0,2,0,0,13139,13915,18667,18072,18120,19329,1300,5000,0,640,1497,0,1
+28848,360000,female,1,2,28,0,0,0,0,0,0,79161,81260,83055,85662,87458,86393,4000,4000,4000,4000,3300,5199,0
+28849,230000,female,1,1,35,0,0,0,0,0,0,165405,168697,172990,177963,77076,78848,6027,7000,8000,3000,3000,3226,0
+28850,60000,female,2,1,38,0,0,0,0,0,2,27527,31715,35850,37165,39490,25854,5000,5000,2000,2898,0,3000,0
+28851,470000,female,2,1,45,0,0,0,0,0,0,212948,188435,182687,153366,114451,122489,30000,15000,5052,5000,10000,15000,0
+28852,120000,female,1,2,29,0,0,0,0,0,-2,59538,50150,44742,33231,-1320,-660,4000,5069,2805,0,0,1616,0
+28853,50000,female,2,2,35,0,0,0,0,0,-1,41657,47969,49131,38884,8144,8643,10000,11000,5000,1005,15000,7000,0
+28854,140000,female,1,1,40,1,-1,-1,-1,-1,-1,0,1220,0,584,0,190,1220,0,584,0,190,0,0
+28855,500000,female,1,1,39,-1,-1,-1,-1,-1,-1,10840,1108,2111,920,920,920,1108,2111,920,920,920,0,0
+28856,400000,female,2,2,41,-2,-2,-2,-2,-2,-2,43672,678,330,330,330,330,678,330,330,330,330,330,1
+28857,310000,female,2,2,34,0,0,0,0,0,0,87559,74929,76404,76133,53065,17529,3000,3022,5208,15734,1607,140994,0
+28858,320000,female,1,1,42,0,0,2,2,0,0,304057,318844,324589,320622,252323,253557,20000,10000,450,7025,7161,8000,1
+28859,330000,female,1,1,41,-1,-1,-1,-1,0,-1,11006,4160,48549,16942,1610,26842,4160,48549,18562,0,26842,11938,0
+28860,240000,female,2,1,38,0,0,0,0,0,0,231990,202714,199711,203767,208015,220109,10028,7711,7767,8015,15829,9000,0
+28861,290000,female,2,1,36,-2,-2,-2,-2,-2,-2,8909,8199,972,445,3589,6939,8300,972,455,3589,6939,10919,0
+28862,150000,female,1,1,39,-1,-1,-1,-1,-1,-1,10147,0,1351,2942,384,504,0,1351,2942,384,504,280,0
+28863,50000,female,2,1,34,0,0,0,0,0,0,5745,4266,3047,3606,2390,1655,1023,1051,1000,50,10050,734,0
+28864,210000,female,1,1,37,0,0,-2,-2,-1,-1,2960,0,0,0,198,0,0,0,0,198,0,0,0
+28865,150000,female,1,1,38,-2,-2,-2,-2,-2,-1,14391,1213,4952,1040,3617,540,1213,4952,1040,3617,540,17120,0
+28866,210000,female,2,1,46,-1,2,-1,-1,-2,-2,594,594,21445,0,0,0,0,21451,0,0,0,0,0
+28867,180000,female,1,1,40,0,-1,0,0,0,0,34483,21142,11279,5698,5993,-73895,22864,1133,1000,1000,0,159000,0
+28868,360000,female,1,2,33,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+28869,220000,female,3,2,33,-1,0,0,0,0,0,179430,177387,175378,178367,177657,180346,7041,6921,6858,6219,6409,6659,0
+28870,160000,female,2,1,40,1,-1,-1,-2,-2,-1,0,3685,0,0,0,660,3685,0,0,0,660,660,0
+28871,500000,female,3,1,40,0,0,0,0,0,-1,38322,38913,27489,27053,-9,14863,1284,1231,1154,0,14872,121,0
+28872,100000,female,3,1,43,2,2,0,0,0,0,100792,91738,88883,90710,92471,79318,0,4107,4204,4200,3071,3106,0
+28873,80000,female,2,1,47,-2,-2,-2,-2,-2,-1,966,0,647,1988,1049,1466,0,647,1990,1049,1466,6309,1
+28874,360000,female,2,2,35,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+28875,230000,female,3,1,49,0,0,0,0,0,0,224985,188593,162143,165345,151047,147564,10000,8000,7000,10000,10000,8000,0
+28876,180000,female,1,2,33,-2,-2,-1,-1,-1,-1,4500,2580,178,1500,0,1118,2580,178,1500,0,1118,1331,0
+28877,200000,female,1,2,44,0,0,0,0,0,0,203045,140347,139282,138462,134497,126617,4501,4916,4505,4205,4145,3100,1
+28878,60000,female,2,1,45,0,0,0,0,-1,-1,60244,59868,58221,16305,3124,29484,3000,2577,1525,3124,29484,1326,0
+28879,280000,female,1,1,35,0,0,0,0,0,0,171057,173712,177913,182942,186892,197661,7000,7000,8000,7000,14000,8000,0
+28880,80000,female,3,1,48,-1,-1,2,-1,-1,-1,396,792,396,792,0,396,792,0,792,0,396,546,1
+28881,200000,female,1,1,40,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+28882,50000,female,2,2,37,0,0,0,-1,0,0,4793,3594,0,5369,3746,9408,3000,0,5369,0,9000,10000,0
+28883,460000,female,1,2,34,-1,-1,-1,-1,-1,-1,14460,8869,21494,12657,5739,10184,8869,23664,12659,5752,10192,7419,0
+28884,220000,female,1,1,34,-1,-1,-1,-1,0,0,2774,5152,6615,15799,13526,8726,5162,6615,15799,1526,0,2287,0
+28885,170000,female,1,1,37,-1,0,-1,-1,-1,0,397,396,396,596,25081,25189,395,396,596,25081,504,396,0
+28886,50000,female,2,1,41,0,0,-1,0,0,0,10400,0,23425,19040,19624,20152,0,23425,1500,900,993,1100,0
+28887,210000,female,1,1,44,0,0,0,0,0,0,89519,50144,52148,50723,43200,17556,20033,10000,5012,1251,2007,10125,0
+28888,20000,female,2,1,31,1,2,2,2,0,0,9701,9401,11903,11420,11342,12157,0,2969,0,408,1000,0,0
+28889,230000,female,1,1,46,-2,-2,-2,-2,-2,-2,266,0,0,0,0,300,0,0,0,0,300,0,0
+28890,390000,female,1,2,32,-1,0,0,0,0,0,46895,45435,47678,47753,38671,50795,7518,12006,13006,4006,25011,14009,0
+28891,180000,female,2,2,34,0,0,0,0,0,0,18314,18630,19126,12939,6939,3439,2000,2000,1042,0,0,191,0
+28892,130000,female,3,1,33,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+28893,250000,female,3,1,43,-2,-2,-2,-2,-2,-2,278,278,278,278,278,428,278,278,278,278,428,278,0
+28894,500000,female,1,1,37,-1,-1,-1,-1,-1,0,6694,17470,15091,1587,61385,56252,17470,15091,1587,61385,0,56733,1
+28895,240000,female,1,2,40,0,0,0,0,0,0,338294,79849,81563,83224,84878,86665,2857,3000,3016,3033,3150,4000,0
+28896,270000,female,2,2,39,-2,-2,-2,-2,-2,-2,3073,1816,1163,1582,0,1320,1816,1163,1582,0,1320,717,0
+28897,450000,female,3,2,44,-2,-2,-2,-2,-1,-1,11150,4281,0,2442,14234,-2988,4281,0,2442,14234,452,0,0
+28898,280000,female,3,1,33,0,0,2,2,2,2,75953,84005,86472,87457,88281,86749,9348,4700,3300,3150,0,3328,1
+28899,170000,female,1,2,42,-1,-1,-1,-1,-1,0,3480,316,316,316,948,632,316,316,316,948,0,0,0
+28900,280000,female,1,2,30,-1,-1,-1,-2,-2,-2,26679,52223,25088,9427,2829,198,52223,25100,9427,2838,198,4139,0
+28901,170000,female,2,1,43,0,0,0,0,0,0,38137,39135,39872,40693,41334,42118,1934,1671,1657,1463,1666,1529,0
+28902,200000,female,1,2,37,0,0,0,0,0,0,19149,20103,21543,22765,23374,24134,1500,2000,1500,1200,1200,1200,0
+28903,380000,female,1,2,33,0,0,0,0,0,0,89842,88898,63203,44889,44276,31799,8000,8009,7000,6000,10500,8500,0
+28904,500000,female,1,2,44,-2,-2,-2,-2,-2,-2,522,17643,1462,6224,0,0,20007,5000,7000,0,0,0,0
+28905,40000,female,1,2,29,0,0,0,0,-2,-2,35735,29772,23602,0,0,0,2017,1206,0,0,0,0,0
+28906,150000,female,2,1,29,2,0,0,0,2,2,123248,126311,130388,138246,140513,118464,5000,6000,10500,5015,173,102,1
+28907,220000,female,2,1,34,0,0,0,0,0,0,36242,38320,39700,40737,42743,44052,3000,2000,2000,3000,2000,3000,0
+28908,200000,female,1,2,29,0,0,0,0,0,0,181821,185506,190977,193800,190936,186183,6000,7000,6000,6000,5400,5400,0
+28909,360000,female,1,1,43,-2,-2,-2,-2,-2,-2,0,0,0,0,0,3078,0,0,0,0,3078,0,0
+28910,100000,female,1,1,36,-1,-1,-1,-1,-1,-1,905,3450,1195,2775,890,2117,3450,1195,2775,890,2117,1072,0
+28911,420000,female,2,1,34,0,0,0,0,0,-1,158471,44131,32423,18824,0,21082,1644,1436,1000,0,21082,228548,1
+28912,200000,female,1,1,39,1,-2,-2,-1,-1,-1,0,0,0,522,0,1073,0,0,522,0,1073,0,0
+28913,310000,female,2,2,36,0,0,0,0,0,0,298221,303251,270591,252989,225814,231165,10500,9672,8826,8100,9000,8619,1
+28914,180000,female,2,2,34,0,0,0,0,0,0,41699,42812,44132,24594,25686,26780,1800,2100,1500,1500,1500,1200,0
+28915,500000,female,5,1,32,-1,-1,-1,-1,0,0,5353,5739,5578,57722,55468,55026,6081,5588,58476,1910,1974,2254,0
+28916,230000,female,1,2,35,-2,-2,-2,-2,-2,-1,0,0,0,0,0,150,0,0,0,0,150,150,0
+28917,50000,female,1,2,40,0,0,0,0,0,0,52841,52016,51990,50570,21095,19999,1860,2619,2000,500,714,20702,0
+28918,250000,female,1,1,40,1,2,0,0,0,0,16503,13894,14669,14265,8887,6679,0,1400,1090,246,402,200,0
+28919,150000,female,2,2,31,1,2,2,2,0,0,22723,22060,25195,24497,24791,25462,0,3500,0,1000,1071,950,0
+28920,50000,female,2,1,34,0,0,-1,-1,-1,-1,2435,0,197,2995,19515,0,0,197,2995,19515,0,3734,0
+28921,100000,female,2,1,35,0,0,0,0,0,0,77394,76081,61898,53035,15785,7762,2640,3007,2300,200,290,50000,1
+28922,110000,female,2,2,42,2,2,2,2,2,0,39635,40580,41631,42352,41373,42156,1900,2000,1700,0,1600,1600,1
+28923,210000,female,2,2,38,0,0,0,0,0,0,76418,78798,82525,84353,87835,79481,5000,5000,3200,5000,3000,2500,0
+28924,150000,female,1,2,45,-2,-2,-2,-2,-2,-2,1923,101,0,0,0,399,101,0,0,0,399,0,0
+28925,80000,female,1,1,44,1,-1,-1,-1,-1,-1,-60,2400,595,1810,737,2555,2460,595,1815,737,2555,4290,0
+28926,200000,female,2,1,48,-2,-1,2,2,-1,-1,-1123,2711,3030,1695,10569,9777,4165,1700,5,10624,9816,9208,1
+28927,150000,female,1,2,35,2,2,0,0,0,0,55337,53851,53710,48797,49928,51106,0,2503,2000,1804,2000,2000,1
+28928,100000,female,3,1,39,-2,-1,-1,-1,-1,-2,10135,1646,1635,884,0,0,1646,5635,884,0,0,0,0
+28929,110000,female,1,2,32,0,0,0,0,0,0,46603,48351,51815,47225,34975,43725,2536,5000,1653,1500,10000,1495,0
+28930,240000,female,1,2,33,0,0,0,0,0,0,99938,92104,85194,83021,78556,78495,3500,4200,3600,3000,3000,3000,0
+28931,80000,female,3,1,42,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+28932,180000,female,1,2,35,0,0,0,0,0,0,5450,150,150,150,150,150,0,0,0,0,0,0,1
+28933,180000,female,2,2,35,1,-2,-2,-1,-1,-2,0,0,0,900,0,0,0,0,900,0,0,0,0
+28934,400000,female,1,2,31,-2,-2,-2,-2,-2,-2,-287,-287,5439,5747,687,19898,0,5726,5753,687,19934,40024,0
+28935,260000,female,2,1,41,0,0,0,0,2,0,195465,199338,203651,223837,218383,222960,8400,8800,25000,0,8000,21000,0
+28936,160000,female,2,1,47,-1,3,2,-1,-1,-1,1857,1672,836,836,836,836,0,0,836,836,836,836,1
+28937,240000,female,2,1,34,0,0,0,0,0,0,7806,10142,12211,13828,11337,11577,2481,2550,2167,1000,389,1000,0
+28938,260000,female,1,1,35,-2,-2,-2,-2,-2,-2,0,0,0,0,0,5181,0,0,0,0,5181,0,0
+28939,160000,female,2,2,38,0,0,0,0,0,0,159637,155003,158156,153699,127366,117812,5580,5680,4950,4350,4300,4360,0
+28940,80000,female,3,2,43,0,0,0,0,0,0,66047,59910,55122,54006,50779,50257,2071,2063,1779,2087,1743,1800,0
+28941,480000,female,1,1,39,0,0,0,-1,0,0,98569,106660,400000,66270,80274,82160,10620,302000,66270,15000,3044,30042,1
+28942,270000,female,3,1,41,0,0,0,0,0,0,48872,43688,35638,41704,43869,45160,3688,2638,6704,2869,2000,1686,0
+28943,100000,female,2,2,40,2,0,0,2,2,2,40626,41945,45247,45208,46160,48268,2000,4000,1000,2000,3000,0,1
+28944,300000,female,3,2,40,-1,-1,-1,-1,-1,-1,390,390,390,390,390,390,390,390,390,390,390,390,0
+28945,450000,female,3,2,40,-1,-1,-1,-1,0,0,5453,25948,53938,14602,18065,19239,26731,55367,15174,10528,10037,48551,0
+28946,360000,female,1,1,43,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+28947,170000,female,2,1,40,0,0,0,0,0,0,134496,143242,124103,115638,116430,118950,17400,5921,5700,4200,4400,4611,0
+28948,50000,female,3,1,36,0,0,0,0,0,0,48032,48175,48691,49108,19809,11314,1771,2123,2675,552,1000,1000,0
+28949,50000,female,3,2,30,0,0,0,2,-1,-1,16986,6929,8743,1000,5557,5027,1186,2000,0,5557,470,0,1
+28950,240000,female,2,1,31,1,2,2,2,0,0,6900,6641,10495,2813,3805,5730,0,4000,1000,1200,2000,0,1
+28951,440000,female,2,2,34,0,0,-1,0,0,0,6480,7265,444912,218064,222734,227445,1000,226848,8300,8300,8300,8300,0
+28952,180000,female,2,2,35,2,0,0,0,0,0,168090,150482,154063,158494,161855,171055,5500,6001,7000,6000,12000,7500,0
+28953,140000,female,2,2,40,-2,-2,-2,-2,-2,-2,0,1887,0,0,0,0,1887,0,0,0,0,0,0
+28954,150000,female,1,2,34,1,-1,-1,-2,-2,-2,0,53,0,0,0,0,53,0,0,0,0,0,0
+28955,100000,female,2,2,35,0,0,0,0,0,0,100207,94080,75428,76450,77503,64119,4026,3100,3050,3000,2300,2700,0
+28956,190000,female,2,1,40,0,0,0,0,0,0,124082,125032,129167,130331,132958,135814,4500,6147,4800,4800,5000,10600,0
+28957,200000,female,1,1,40,1,-1,-1,-1,-1,-1,0,114558,1898,849,-171,14686,114558,3796,849,0,14857,0,0
+28958,260000,female,1,1,41,0,0,0,2,0,0,157551,160759,351026,170671,169689,159066,7312,18934,23,3729,4226,514,0
+28959,580000,female,2,1,34,1,2,0,0,0,0,420115,405932,437254,477809,486721,498316,0,38001,50000,16881,18887,16846,1
+28960,100000,female,2,2,36,0,0,0,0,0,0,101513,98736,99072,91809,77499,76997,3600,5006,2910,2755,5000,5000,0
+28961,400000,female,1,1,40,-1,-1,-1,-2,-2,-2,3716,4318,273,743,516,200,4318,273,743,516,200,422,0
+28962,350000,female,1,2,32,-2,-1,-1,-1,0,0,24522,18876,5571,10978,9326,13255,18970,5594,11024,9317,13321,4019,0
+28963,140000,female,2,1,43,2,2,0,0,0,0,90632,88637,90859,92734,48461,49067,0,4200,4261,2182,1844,1652,1
+28964,90000,female,2,1,46,-1,-1,-1,-1,-1,-1,1829,2793,696,546,846,846,2793,696,546,996,846,696,0
+28965,180000,female,1,1,40,1,-1,-1,-2,-2,-2,0,319,0,0,0,0,319,0,0,0,0,207,1
+28966,150000,female,1,1,41,-2,-2,-2,-2,-2,-2,3275,1105,0,0,0,300,1105,0,0,0,300,0,0
+28967,200000,female,1,2,40,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+28968,390000,female,2,1,39,0,0,0,0,0,0,359641,283210,240876,190709,191162,195336,11100,13163,8349,6840,7252,7800,0
+28969,180000,female,2,2,28,-1,-1,-1,-1,-1,-1,416,416,416,416,416,832,416,416,416,416,832,0,1
+28970,90000,female,1,2,28,1,2,0,0,0,2,5799,3095,5257,6649,8680,7844,0,3000,2000,3000,0,20000,0
+28971,240000,female,2,1,29,0,0,0,0,0,0,81274,83030,84945,65601,66901,68086,3101,3385,2377,2387,2472,2475,0
+28972,320000,female,1,2,28,-1,-1,-1,0,0,0,331,1081,6144,14977,9473,8002,1085,6146,9473,0,5,1386,1
+28973,90000,female,1,2,28,2,3,2,0,0,2,88627,86357,84131,85225,90347,85725,0,0,3400,6500,0,3301,1
+28974,200000,female,1,1,40,-1,-1,-1,0,0,-1,5853,6549,9389,18475,1016,4934,6567,9421,14068,3,4948,7770,0
+28975,210000,female,1,2,41,-1,-1,-1,-2,-1,-1,194,6479,-200,-200,23560,0,6479,0,0,23760,0,0,1
+28976,160000,female,2,1,31,3,2,2,0,0,2,166573,158760,140777,136066,143005,129960,2000,5000,4600,14650,0,5100,1
+28977,100000,female,1,2,28,0,0,0,0,0,0,77007,80708,84401,85786,65345,67205,5000,5000,4200,3000,3000,3000,0
+28978,240000,female,1,2,29,0,0,0,0,0,0,236883,241574,244010,239778,191762,196015,8636,9303,8159,5449,5900,5323,0
+28979,50000,female,3,1,50,0,0,0,0,0,0,12164,13475,14197,15207,15509,15834,1521,1243,1253,555,575,579,0
+28980,50000,female,2,1,50,0,0,0,0,0,0,21956,20439,20691,17081,16234,16330,2000,1306,1206,1000,697,532,0
+28981,20000,female,3,1,52,0,0,0,2,0,0,10248,11271,13513,12999,14456,16313,1501,2743,0,1686,2089,0,1
+28982,320000,female,1,1,50,-1,-1,-1,-1,-2,-2,885,2116,11481,0,0,0,2116,11481,0,0,0,240,0
+28983,60000,female,3,1,50,-1,-1,-1,-1,-1,-1,2811,297,734,399,670,0,297,737,399,670,0,9398,1
+28984,230000,female,1,1,49,-2,-2,-2,-2,-2,-2,1034,299,8994,1796,3970,7214,299,8997,1808,3970,7214,3684,0
+28985,170000,female,1,1,50,-1,-1,-1,-1,-1,-1,1978,2191,3185,0,582,3779,2191,3185,0,582,3779,75,0
+28986,400000,female,1,1,49,1,2,2,-2,-2,-2,9279,7419,0,3378,0,590,0,0,3378,0,590,2951,0
+28987,200000,female,3,2,50,-1,-1,-1,-1,-1,-1,3943,1443,2203,2189,5475,5506,1443,2583,2189,5475,5506,15837,0
+28988,250000,female,3,1,50,-2,-2,-2,-2,-2,-2,193355,8173,-11,-11,39618,20380,8173,0,0,39629,20380,32701,0
+28989,460000,female,2,1,50,0,0,0,0,0,0,581319,552144,523423,493548,429966,427216,19141,19141,20141,14642,31549,15522,1
+28990,10000,female,3,2,54,0,-1,-1,2,2,-1,1083,390,390,390,0,780,780,780,0,0,780,0,0
+28991,50000,female,2,1,50,0,0,0,0,0,0,32570,34713,39803,41790,44351,46194,3000,6000,3000,3500,3500,1600,0
+28992,150000,female,2,1,50,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+28993,290000,female,2,1,50,0,0,0,0,0,0,272799,261286,246740,224260,233251,226100,10109,10126,7095,30227,40213,40211,0
+28994,50000,female,3,1,58,0,0,0,0,0,0,7308,7987,8582,9719,9692,9663,1200,1500,1300,500,500,500,0
+28995,120000,female,3,1,65,0,0,0,0,0,0,58436,60202,61042,61253,57695,2530,2740,2407,1421,0,0,840,0
+28996,250000,female,1,1,53,-1,-1,-1,-1,-1,0,440,439,440,440,880,440,439,441,440,880,0,590,0
+28997,500000,female,3,1,54,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+28998,160000,female,2,1,55,0,0,0,0,0,0,86179,83960,61589,58702,56853,56002,4000,3000,2000,2000,3000,5000,0
+28999,60000,female,3,1,58,1,2,0,0,0,0,26259,25544,26578,27828,28271,28868,0,1750,2000,1200,1200,1131,0
+29000,10000,female,2,3,52,1,4,3,2,2,0,8546,8267,7992,8610,8325,8441,0,0,900,0,400,900,1
+29001,20000,female,2,1,50,1,-1,-1,-1,2,-1,0,390,181,891,501,1051,780,181,1100,0,1100,4030,0
+29002,80000,female,2,1,51,0,0,0,0,0,0,42731,23086,23661,24678,25766,26351,1365,1500,1412,1500,1000,1100,1
+29003,100000,female,3,1,57,0,0,0,0,0,0,101890,100403,101350,101324,101475,100558,4000,4000,4000,4000,4000,4000,0
+29004,30000,female,3,1,53,2,2,0,0,0,0,35647,34775,35946,37685,33305,28305,0,1733,2452,1072,1089,3101,0
+29005,230000,female,2,2,53,0,0,0,0,0,0,148058,161291,136908,118358,115497,118539,20074,6246,8836,5955,8984,4507,0
+29006,360000,female,3,1,53,-2,-2,-2,-2,-2,-2,0,208,2489,786,0,486,208,2489,786,0,486,150,1
+29007,30000,female,3,1,52,0,0,0,0,0,0,27964,25817,27097,27930,16288,17023,1720,2000,1700,1000,1000,1000,0
+29008,300000,female,3,1,52,0,0,0,0,0,0,293174,268652,285524,235773,221123,221269,15000,25000,8000,22000,10060,9000,0
+29009,110000,female,3,1,64,0,0,0,0,0,0,83050,85550,76793,13062,12609,12638,4000,3275,3028,3000,2000,2000,0
+29010,450000,female,1,1,54,-2,-2,-2,-2,-2,-2,2500,0,0,0,0,0,0,0,0,0,0,0,0
+29011,330000,female,3,1,53,0,0,0,0,0,0,287021,191065,290451,192123,196860,-3140,6802,102428,4100,4937,3140,184036,0
+29012,240000,female,2,1,55,2,0,0,0,2,0,72188,74270,75959,80473,78883,80625,3000,3200,6100,0,2900,3000,0
+29013,100000,female,3,1,55,0,0,0,0,0,0,17048,26593,50330,7495,9584,0,10000,35000,2000,2089,0,0,0
+29014,30000,female,3,1,56,0,0,0,0,0,0,29261,29960,28316,28966,29542,30163,1500,1790,1440,1016,1055,1188,0
+29015,120000,female,3,1,50,0,0,0,0,0,0,109372,111564,112482,115046,80987,85921,5500,4200,4552,3100,6416,0,0
+29016,310000,female,2,1,50,-1,-1,-1,0,-1,-1,316,316,6464,7016,4351,17016,316,6464,1000,4351,17016,1206,0
+29017,290000,female,1,1,51,-2,-2,-2,-2,-2,-2,0,22888,783,40720,4352,504,22888,783,40720,4352,504,720,0
+29018,230000,female,3,1,52,-2,-2,-2,-2,-2,-2,986,3915,2233,1410,0,0,3939,2244,1421,0,0,236,0
+29019,270000,female,2,1,52,0,0,0,0,0,0,43210,45670,47625,49332,22950,25561,3500,3000,3000,3000,3000,4000,0
+29020,160000,female,5,2,52,0,0,0,0,0,0,157018,135516,117895,86943,23433,20000,5000,5000,2200,500,1000,0,0
+29021,280000,female,2,1,51,2,2,2,2,0,0,258764,279451,280882,218619,201679,195934,25000,7500,0,6500,7000,6000,0
+29022,20000,female,2,1,54,1,2,0,0,0,0,14930,14404,15558,16166,8824,0,11,1392,1000,176,0,0,1
+29023,400000,female,1,1,55,-1,-1,-1,-1,0,0,153951,193159,72201,199209,179290,9780,193358,72356,199209,411,0,126743,0
+29024,50000,female,3,2,56,0,-1,-1,2,0,0,26242,2946,6152,4419,4419,1473,3006,6152,0,0,0,0,0
+29025,130000,female,2,1,52,0,0,2,0,0,0,50662,51562,47928,45456,42704,2552,4600,0,1500,0,2000,0,0
+29026,400000,female,2,1,55,-1,-1,2,0,-1,0,530,5332,5101,6201,2173,2803,5101,6,2000,2173,2000,4500,0
+29027,120000,female,2,1,54,1,-2,-2,-2,-1,-1,-200,-200,-200,0,700,1935,0,0,200,700,1935,0,1
+29028,200000,female,1,1,58,1,2,2,0,0,0,203108,206084,187747,159746,140632,143092,7500,0,6014,5000,6000,5000,1
+29029,260000,female,1,1,55,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+29030,110000,female,1,1,56,0,0,0,0,0,0,34102,30442,25656,22049,22456,18326,2000,1700,1800,1000,800,800,0
+29031,260000,female,3,1,65,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+29032,220000,female,1,1,56,1,-2,-2,-2,-1,-1,0,0,0,0,5889,300,0,0,0,5889,300,165,0
+29033,60000,female,3,1,61,0,0,0,0,0,0,28208,29230,30739,30841,28069,27941,1495,2004,2009,1211,2000,1201,0
+29034,140000,female,3,1,56,-1,-1,3,2,2,5,11106,13627,13125,14600,16066,17521,3000,0,2000,2000,2000,3000,0
+29035,100000,female,3,1,50,0,0,0,0,0,0,16469,17885,19587,21256,22895,24514,2000,2000,2000,2000,2000,2000,0
+29036,360000,female,2,2,51,1,-1,-1,-1,-1,-1,-28,15500,2145,9944,4540,8024,15528,2145,9944,4540,8024,4421,0
+29037,160000,female,2,1,52,-1,-1,2,-1,-1,-1,465,10451,9385,2260,1313,947,10451,0,4560,2626,1894,7428,0
+29038,30000,female,2,1,52,1,2,0,0,0,0,34104,31600,30199,30010,24660,22042,0,2000,2000,1500,2000,3000,1
+29039,200000,female,2,1,52,0,0,0,0,0,0,290122,274868,280828,286702,293038,299317,7100,7500,7500,8000,8000,4500,0
+29040,330000,female,2,2,59,0,0,0,0,0,0,130797,112383,79505,80589,76180,61693,20000,3500,19000,15000,3000,2139,0
+29041,80000,female,3,1,56,-1,0,0,0,-2,-2,1407,2445,3377,-6,2188,5808,1068,1000,6,2194,5825,0,0
+29042,140000,female,1,1,56,0,0,0,0,0,0,136084,138468,93802,94531,96264,98135,6500,4300,3500,3600,3881,4200,1
+29043,270000,female,3,1,55,-2,-1,-1,-1,-1,-1,2039,7918,4246,4875,836,5949,7922,4246,4875,836,5949,1258,0
+29044,90000,female,3,1,50,0,0,0,0,0,0,91123,90056,88330,83948,82168,82304,3614,3223,3172,2743,3051,3081,0
+29045,120000,female,3,2,50,-1,-1,-1,0,0,0,6574,1374,45802,53231,25888,27114,1374,45812,10000,900,3000,3000,0
+29046,50000,female,2,1,50,0,0,0,0,0,0,49068,47947,49293,41941,39643,39273,1848,2194,1842,1544,1396,1420,0
+29047,320000,female,3,1,52,-2,-2,-2,-2,-2,-2,650,2080,218,0,2355,0,2080,218,0,2355,0,0,0
+29048,80000,female,2,2,56,0,0,0,0,0,0,49350,49533,49339,50415,45859,43152,2000,2000,2000,2007,1600,1900,0
+29049,180000,female,2,1,58,-2,-2,-2,-2,-2,-2,0,0,750,1576,1504,0,0,750,1576,1504,0,1000,0
+29050,60000,female,2,2,51,0,0,0,0,0,0,38788,18251,19289,19033,20793,23530,2065,2000,2000,2000,3000,3000,0
+29051,440000,female,1,1,54,0,0,0,0,0,0,293717,254498,169622,169140,152404,138447,9700,6323,5700,4800,4000,4500,0
+29052,50000,female,3,1,50,1,-1,3,2,2,-1,0,1381,1214,1494,457,5523,1381,0,457,0,5523,10379,1
+29053,160000,female,1,2,50,-2,-2,-2,-2,-2,-2,1902,14706,706,706,316,1096,14846,1096,706,316,1096,316,0
+29054,50000,female,2,1,51,1,2,2,-2,-2,-2,4746,4496,0,0,0,0,0,0,0,0,0,0,0
+29055,50000,female,3,2,57,2,2,-2,-2,-2,-2,50525,0,0,0,0,0,0,0,0,0,0,0,1
+29056,140000,female,1,2,54,1,3,2,2,2,2,17962,17381,18104,17516,18721,18280,0,1300,0,1500,0,1900,1
+29057,80000,female,3,1,57,0,0,0,0,0,0,80297,65002,62321,43303,40866,40573,3410,13800,3557,1620,1520,1805,0
+29058,40000,female,3,1,60,0,0,0,0,0,0,14019,15780,18519,21058,8204,9899,2000,3000,3000,6000,2000,2000,0
+29059,30000,female,2,1,54,0,0,0,0,0,0,38866,29432,33364,30149,27028,29261,2000,4501,2396,4000,3076,1068,1
+29060,300000,female,3,1,50,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,4886,1
+29061,20000,female,2,1,59,3,2,3,2,2,4,8803,11137,10672,11201,12721,11946,2800,0,1000,2000,0,0,1
+29062,20000,female,3,2,54,0,0,0,0,0,0,13543,14308,16856,18073,18773,19166,1300,2800,1500,1000,695,1000,0
+29063,140000,female,2,1,56,0,0,0,0,-1,-1,123460,85778,89255,82800,16800,5367,5000,5000,4132,16800,5367,2000,0
+29064,200000,female,3,1,49,2,-1,2,2,2,0,570,52439,51040,56205,54723,58657,52439,0,6000,0,5000,2286,1
+29065,200000,female,1,1,50,-1,2,2,-1,0,-1,2070,3250,0,1500,750,750,2500,0,2250,0,750,845,0
+29066,400000,female,2,2,50,-1,-1,2,-1,-1,-1,15986,4359,1783,129,3170,657,4359,0,129,3170,657,1160,0
+29067,290000,female,3,1,50,1,2,2,2,2,0,173564,176233,171993,183510,179061,182891,7000,0,14367,0,6700,7000,0
+29068,210000,female,3,1,53,0,0,2,0,0,0,88680,86225,84144,86894,88779,90641,7350,0,4000,3153,3268,3202,0
+29069,50000,female,2,1,54,0,0,0,0,0,0,46137,46975,47500,47921,17125,16686,2000,2045,1466,600,604,608,0
+29070,20000,female,3,2,56,0,0,0,2,0,0,11471,12188,15074,14426,14526,15026,1214,3100,0,500,500,0,0
+29071,360000,female,1,2,54,-1,-1,-1,-2,-1,-1,4463,3270,0,0,621,0,3270,0,0,621,0,0,0
+29072,70000,female,3,1,53,2,0,0,0,0,0,70659,61100,62497,47581,48805,50018,3000,3200,2000,2000,2000,2000,1
+29073,80000,female,2,1,52,1,2,2,2,2,0,82904,80954,80070,74172,68002,58032,0,7000,4007,0,3000,3000,0
+29074,230000,female,3,1,66,-2,-2,-2,-2,-2,-2,0,5580,500,1614,0,2800,5580,500,1614,0,2800,0,0
+29075,30000,female,2,2,52,0,0,0,0,2,0,19629,20639,22302,23208,21822,16624,1340,2000,1800,0,641,463,0
+29076,500000,female,1,1,52,0,0,0,0,0,0,76701,71680,67260,76145,74831,111826,2540,3334,15012,2822,40025,20067,0
+29077,260000,female,1,1,51,1,-1,-1,-1,-1,-2,0,2000,558,218,0,0,2000,558,218,0,0,0,0
+29078,330000,female,1,1,58,-2,-2,-2,-2,-2,-2,880,2304,0,440,0,115,2304,0,440,0,115,0,1
+29079,350000,female,1,1,59,-2,-2,-2,-2,-2,-2,0,0,0,0,0,42800,0,0,0,0,42800,0,0
+29080,200000,female,5,1,50,-2,-2,-2,-2,-2,-2,0,1882,1312,0,0,0,1882,1325,0,0,0,0,0
+29081,130000,female,2,2,52,0,0,0,0,0,0,124007,124919,119553,116530,113962,113972,6000,5000,4214,4500,5000,4200,0
+29082,610000,female,3,1,50,-1,-1,-1,-1,-1,0,10579,11299,7380,3755,20515,11497,11299,9710,3769,20515,0,1070,0
+29083,330000,female,2,1,51,0,0,0,2,0,0,208263,200865,194176,184986,173688,164579,10000,10500,8000,6000,6000,6000,0
+29084,70000,female,2,1,51,2,2,2,2,2,2,42815,43913,44911,45772,46611,47508,2100,2000,1900,1900,1800,1900,1
+29085,110000,female,3,2,51,0,0,0,0,0,0,111255,110615,112071,89274,91413,95541,4112,4519,4000,4000,6000,4000,0
+29086,120000,female,1,1,51,0,0,0,0,0,0,117287,120290,116082,118405,99081,106300,6500,6000,6000,4000,9000,0,0
+29087,480000,female,1,1,52,-2,-2,-2,-2,-2,-2,105286,86619,18802,34863,73914,47938,87170,18802,34874,73921,47938,56447,0
+29088,80000,female,2,2,52,0,0,0,0,0,0,88819,77304,79545,55119,45630,45630,2990,3714,1500,1000,0,0,0
+29089,200000,female,1,1,52,-1,-1,-1,-1,-1,-1,16964,317,1169,3175,153,0,317,1169,3178,153,0,0,0
+29090,20000,female,2,1,51,0,0,0,0,0,0,11156,13263,13357,14427,14894,15112,2300,1300,1300,700,600,600,0
+29091,230000,female,3,1,70,-1,0,0,0,0,0,183500,147525,147391,149904,151816,103443,7000,5500,7000,6066,4000,5000,1
+29092,40000,female,3,2,52,0,0,0,0,0,0,31960,33429,34887,35607,36514,37921,2000,2000,1600,1500,2000,3200,0
+29093,350000,female,2,1,56,-2,-2,-2,-2,-2,-2,1966,14440,13176,9399,10477,10775,14515,13316,9446,10529,10829,12876,0
+29094,360000,female,2,1,56,-1,-1,-1,-2,-2,-2,919,2374,-7,-7,-7,-7,2385,0,0,0,0,0,0
+29095,30000,female,3,1,67,2,2,2,0,0,0,27943,30734,28092,29112,29555,28536,3580,0,1800,1200,1083,1200,0
+29096,360000,female,2,1,61,2,0,0,0,0,0,353176,353782,303494,260113,263229,268446,13869,11644,12307,9474,9662,9794,1
+29097,30000,female,3,1,60,3,2,2,7,7,7,1950,1950,1950,1950,1950,1950,0,0,0,0,0,0,1
+29098,120000,female,3,1,61,1,2,0,0,0,0,121709,78369,61849,57737,59174,60651,99,8800,2700,3000,2600,2200,1
+29099,20000,female,3,1,56,0,0,0,0,0,0,19774,14990,14071,15512,17081,21108,2009,2000,2000,2000,5016,11,0
+29100,140000,female,1,1,56,3,2,2,3,3,3,450,450,450,450,1450,1150,0,0,0,1000,0,0,1
+29101,20000,female,2,1,59,1,2,0,0,0,-2,19328,18711,17657,20000,0,0,0,1700,3000,0,0,0,1
+29102,80000,female,3,1,54,0,0,0,0,-1,-1,68519,69493,70656,72290,390,390,2500,2671,3308,390,390,390,0
+29103,360000,female,3,1,56,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,253,0
+29104,50000,female,3,1,56,0,0,0,0,0,-1,45652,44037,40517,29734,16198,16669,1734,5000,1000,10160,16669,692,0
+29105,150000,female,1,1,55,-1,-1,-1,-1,0,-1,14149,18734,17822,32353,25007,16708,18734,18040,32353,25000,16708,168381,0
+29106,20000,female,2,2,53,2,4,4,3,3,2,17474,18396,17826,18547,19118,18679,1500,0,1300,1170,0,1600,0
+29107,10000,female,3,2,53,2,2,2,2,0,0,9917,6615,8355,8000,9000,10000,3400,2000,0,1000,1000,9000,1
+29108,100000,female,2,2,56,-2,-1,2,-1,-1,-1,390,780,390,390,3863,390,780,0,390,3863,390,390,0
+29109,360000,female,3,1,73,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+29110,170000,female,2,2,53,-2,-2,-2,-2,-2,-2,784,605,826,500,0,487,605,826,550,0,487,0,0
+29111,70000,female,3,1,55,0,0,0,0,0,0,68467,64657,55201,26213,26734,27304,2249,1519,1435,956,1000,1060,0
+29112,30000,female,3,1,53,0,0,0,0,0,0,8615,9960,11492,12391,12891,9069,1500,1700,1500,500,1000,0,0
+29113,80000,female,1,2,54,0,0,0,0,0,0,78294,79247,74954,79356,48981,46848,3500,5608,8000,1205,1500,2000,1
+29114,100000,female,3,2,58,0,0,0,0,0,0,98067,96802,97177,99043,74453,76252,4600,5000,4600,3000,3000,3000,0
+29115,20000,female,3,1,56,1,3,2,2,0,0,9061,8769,9680,9376,9720,10962,0,1200,0,500,1400,0,1
+29116,60000,female,2,2,53,1,2,0,0,0,2,8735,8448,9156,10226,12041,11704,0,1000,1226,2000,0,1100,1
+29117,510000,female,3,1,61,0,0,0,2,0,0,187070,181733,192903,181801,178179,223100,8500,17000,0,6508,50000,7000,0
+29118,260000,female,3,1,54,-1,-1,-2,-2,-2,-2,9760,5465,2504,15809,3756,9560,5484,2504,16593,3764,11092,963,0
+29119,360000,female,1,1,64,-2,-2,-2,-2,-1,-1,0,4900,0,0,5640,0,4900,0,0,5640,0,0,0
+29120,300000,female,2,1,53,-2,-2,-2,-2,-2,-2,7733,7424,8042,7733,7733,7733,7424,8351,7733,7733,7733,7733,0
+29121,160000,female,3,1,74,0,0,0,-1,-1,-1,79201,69376,66192,16905,0,19789,3783,2268,16905,0,19789,26442,0
+29122,240000,female,2,1,56,3,2,2,-2,-2,-2,2500,2500,0,0,0,0,0,0,0,0,0,0,1
+29123,150000,female,3,2,58,2,0,0,0,0,0,152767,152319,120458,98302,69424,70906,6251,5000,3903,2500,2600,2600,0
+29124,90000,female,3,2,60,-1,-1,-1,0,0,0,1933,63201,5322,27878,27243,27799,63201,5322,26400,545,556,1274,0
+29125,500000,female,2,1,73,-2,-2,-2,-2,-2,-2,0,2826,2652,2835,8896,3850,2826,2652,2835,8896,3850,711,1
+29126,140000,female,2,1,60,2,2,0,0,0,0,113079,109796,112144,114789,115590,118221,0,5600,6000,4200,4500,4600,1
+29127,170000,female,3,1,57,0,0,0,0,0,0,163452,163148,161315,164366,124387,120529,7300,8000,7800,4600,5000,5100,0
+29128,280000,female,1,1,56,-2,-2,-2,-2,-2,-2,4320,4789,9957,12492,3464,3936,4811,9957,12492,3469,3936,3845,0
+29129,30000,male,1,2,30,0,0,0,0,0,0,26061,27104,28076,25991,25429,26234,1780,1752,1666,800,1161,3128,0
+29130,120000,male,1,2,34,-1,-1,2,-1,-1,-2,646,1278,639,621,-18,-18,1271,0,621,0,0,0,1
+29131,50000,female,3,2,55,2,0,0,0,0,0,13741,14750,15774,17087,17119,17602,1243,1267,1580,612,758,700,0
+29132,80000,male,2,2,41,0,0,0,2,0,0,60588,61369,44810,43766,44636,93074,2505,3745,0,1571,2627,1662,0
+29133,180000,male,2,2,29,0,0,0,0,0,0,177554,175969,174812,177252,129190,130431,6500,7000,7100,5000,5000,5000,0
+29134,400000,male,2,2,26,1,-1,-1,-1,-1,-1,938,348,292,12677,1650,1516,350,292,12677,1650,1516,12017,0
+29135,50000,male,1,2,28,0,0,3,2,2,0,13258,18647,18064,19462,18854,20380,5635,0,2000,0,2000,2000,1
+29136,60000,male,3,2,24,0,0,0,0,0,0,17054,16963,17298,17889,17847,17827,1600,1300,1277,625,644,639,0
+29137,200000,male,2,2,29,-2,-2,-2,-2,-2,-2,13765,14304,29399,15817,6155,9955,14304,29404,15825,6155,9955,19773,0
+29138,50000,male,1,2,29,0,-1,-1,2,0,0,50085,2127,6093,5850,9558,15371,3000,4000,0,4000,6000,0,1
+29139,20000,male,3,1,28,0,0,0,0,0,0,16066,17477,17041,18239,17919,17398,2000,1400,1500,1000,1000,1000,1
+29140,130000,male,2,3,22,0,0,-2,-2,-1,-1,25200,0,0,0,500,0,0,0,0,500,0,0,0
+29141,10000,male,2,2,22,-1,5,4,3,2,5,10160,9860,9565,9265,11951,12189,0,0,0,3000,1000,0,0
+29142,50000,male,3,2,26,0,0,0,0,0,0,50343,24132,20109,19932,19762,10708,1319,1902,1200,30,1031,20201,0
+29143,10000,male,2,2,24,0,0,0,0,0,-2,7521,8519,8142,8235,0,0,1145,1148,1021,0,0,0,0
+29144,200000,male,3,2,27,-1,0,0,0,0,0,3179,3844,5117,6877,7504,8148,1844,2117,1877,1504,1148,2599,0
+29145,10000,male,2,2,27,0,0,0,0,0,0,9457,9554,7335,9025,7886,8382,1107,1310,2000,269,1000,1100,0
+29146,50000,male,3,2,25,0,0,2,2,0,0,39686,43685,44694,43673,44659,49512,5000,2000,0,2000,6000,300,0
+29147,20000,male,2,2,23,1,2,2,0,0,2,17081,16809,17541,18250,19463,19010,300,1305,1305,1518,0,1861,1
+29148,10000,male,3,3,22,0,0,0,0,0,0,9473,9661,9001,9768,9233,9154,1288,1400,1200,300,800,500,1
+29149,100000,male,3,1,35,0,0,0,0,0,0,94467,96521,98728,74239,75704,55704,3627,3938,2515,2516,4022,2032,0
+29150,50000,male,2,2,23,0,0,0,0,0,0,49842,49830,50116,49184,19184,18021,2000,2100,1500,1000,1000,1000,0
+29151,50000,male,2,2,23,0,0,0,2,2,2,46926,18385,11097,10596,12421,12129,1387,4200,0,1958,0,1000,0
+29152,50000,male,2,2,23,0,0,0,0,0,0,11148,13637,14959,16204,16536,17118,3000,1850,1800,900,1000,1000,0
+29153,160000,male,1,2,23,-1,0,0,0,-1,0,6760,7043,9499,2814,2174,26053,4000,3000,1000,2274,25456,4000,0
+29154,10000,male,1,2,23,0,0,0,0,0,0,6927,5313,6264,5970,7175,6032,1500,3500,1000,2000,2500,1000,0
+29155,20000,male,2,2,23,0,-1,-1,-1,0,0,6321,4813,595,18628,19324,19208,6000,597,21722,1000,697,860,0
+29156,20000,male,2,2,22,1,2,2,2,0,0,19698,20305,20602,19850,20277,17525,2000,1300,0,702,620,0,1
+29157,50000,male,2,2,22,0,0,0,0,-1,0,51159,51699,50584,20480,9413,9712,3000,2650,2100,10000,600,500,0
+29158,90000,male,2,2,24,0,0,0,0,0,0,37985,36664,22265,30504,26909,25685,2010,2000,10004,1010,2000,2000,0
+29159,20000,male,2,2,24,2,2,2,2,0,0,5266,6026,15855,16295,17023,17388,1000,10000,1000,1000,639,2822,1
+29160,20000,male,1,2,24,1,2,2,2,0,0,6696,7437,8810,9470,18315,19237,1000,1495,1000,9000,1800,900,1
+29161,50000,male,2,2,23,0,0,0,0,0,0,50175,49798,50795,50150,9658,10011,1796,2193,2040,330,492,332,0
+29162,10000,male,3,2,23,0,0,0,0,0,0,8604,8594,9259,9733,9528,9513,1600,1351,1215,400,200,166,0
+29163,150000,male,2,2,24,-1,-1,-1,-1,-1,-1,9514,14961,3337,1012,4944,1016,15046,3367,1020,5392,1016,0,0
+29164,60000,male,2,2,24,0,0,0,0,0,0,58197,47537,46576,41376,36959,35508,3000,3010,3004,3000,3000,3000,0
+29165,20000,male,2,3,25,0,0,0,0,0,-1,3855,3150,2862,3247,2857,2467,1040,1225,1000,0,2500,491,0
+29166,10000,male,1,2,23,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+29167,20000,male,2,2,24,0,0,0,0,0,0,18836,19147,20223,19788,19927,20045,1318,1394,1159,678,793,138,0
+29168,10000,male,1,2,24,0,0,2,0,0,0,7760,8928,8386,7512,7615,7621,1471,1100,1107,600,264,544,0
+29169,10000,male,2,2,23,0,0,0,0,0,0,10041,9804,10034,6599,6713,3940,2000,1503,1000,2134,79,0,0
+29170,20000,male,2,2,24,2,0,0,0,0,0,16794,17496,18981,19608,19600,20000,1288,1773,1400,392,400,0,0
+29171,50000,male,1,2,23,-1,-1,-1,-1,-1,-1,980,3413,1068,1386,2800,3696,3500,11000,2000,2000,6396,3000,0
+29172,20000,male,2,2,22,0,0,0,0,0,0,4341,5356,6376,7382,7375,7531,1245,1265,1271,264,275,900,0
+29173,50000,male,2,2,24,-1,0,0,0,0,0,6701,8770,11312,13112,13394,14176,2200,2700,2000,500,1000,700,0
+29174,10000,male,2,2,23,0,0,0,0,0,0,7545,7510,8583,9156,9727,8706,1500,1588,1274,1235,303,300,0
+29175,50000,male,2,2,24,0,0,0,0,0,0,18684,19690,21021,22067,22896,23873,1323,1654,1700,1500,1500,1000,0
+29176,30000,male,1,2,24,0,0,-2,-2,-2,-1,11080,-202,-202,-202,-202,7571,0,0,0,0,7844,235,0
+29177,250000,male,2,2,24,1,-2,-1,-1,-1,0,0,0,1859,3582,18717,20213,0,1859,2628,41000,3000,2000,0
+29178,50000,male,2,2,24,0,0,0,0,0,-1,49411,50385,50207,48974,19090,780,2100,2183,1211,1362,390,780,0
+29179,50000,male,2,2,23,0,0,0,0,0,2,22643,23758,24870,18740,17861,17433,1497,1609,1279,1500,0,637,1
+29180,10000,male,2,2,23,0,0,2,0,0,0,2427,6109,2736,3654,3729,9446,3775,0,1000,75,994,0,1
+29181,20000,male,2,2,23,0,0,0,0,0,0,16994,18105,19504,19974,11548,10784,1700,2000,1011,300,216,0,0
+29182,20000,male,2,2,23,0,0,0,0,0,0,18963,19904,18038,19032,17372,17893,1300,1400,1300,700,800,1000,1
+29183,50000,male,2,2,23,0,0,0,0,0,0,50511,50478,50146,49685,50252,9958,1785,2341,2128,344,359,800,0
+29184,50000,male,3,2,24,1,2,0,0,-1,-1,50645,48259,45079,30783,1727,150,0,2177,1702,2000,350,0,0
+29185,20000,male,2,2,24,0,0,0,0,-2,-2,15940,19222,20650,0,0,0,3572,2000,0,0,0,0,0
+29186,110000,male,2,2,24,-2,-2,-2,-2,-2,-2,326,326,176,-150,150,952,326,176,0,952,952,0,1
+29187,20000,male,1,2,23,0,0,0,2,2,2,11819,12840,15416,15567,15022,16855,1524,3100,696,0,2237,0,0
+29188,50000,male,2,2,24,-1,-1,-1,-1,-1,0,390,390,390,390,780,390,390,390,390,780,0,390,1
+29189,50000,male,2,2,25,0,0,0,0,-2,-2,43793,41739,20650,0,0,0,1651,1650,0,0,0,0,0
+29190,140000,male,2,2,25,1,-1,-1,-1,0,0,0,850,2620,66397,62967,44226,850,2620,66397,2038,2000,15000,0
+29191,50000,male,1,1,25,0,0,0,2,0,0,47053,5472,5891,6595,8400,4041,2000,1500,1000,2000,1000,1000,0
+29192,10000,male,2,2,25,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+29193,70000,male,3,2,25,1,2,0,0,0,0,69447,67209,56580,24991,16036,16667,0,4000,1500,3000,2500,5000,1
+29194,20000,male,2,2,25,0,0,0,0,0,2,14989,15999,17043,18236,19376,18958,1263,1307,1500,1408,0,674,1
+29195,20000,male,3,2,25,3,2,2,4,4,4,1650,1650,1650,1650,1650,1650,0,0,0,0,0,0,1
+29196,20000,male,2,2,25,1,2,3,2,0,0,18885,21563,20943,20152,19754,19204,3300,0,0,2,384,2488,1
+29197,20000,male,2,2,25,0,0,0,0,0,2,17927,17384,13648,13924,15685,15292,1500,1500,1400,2000,0,2500,0
+29198,60000,male,2,2,26,0,0,0,0,0,0,38815,40171,37274,30203,30809,33323,2023,1491,2000,1092,3000,1353,0
+29199,50000,male,2,1,25,0,0,0,0,0,0,47410,48705,46776,48218,41037,9288,2100,2000,2300,2100,470,350,0
+29200,50000,male,2,1,25,0,0,0,0,0,0,49007,48847,47241,47683,46844,47537,1922,2200,2000,1400,2000,2270,1
+29201,30000,male,2,1,25,0,0,0,0,0,0,11355,12670,13383,14699,14688,16749,1512,1225,1541,530,2302,0,1
+29202,20000,male,3,2,24,0,0,0,0,0,0,19438,16944,17990,19671,19244,19443,1273,1319,2000,674,693,693,0
+29203,50000,male,2,2,25,0,0,0,0,0,2,20636,17792,17422,17273,18827,16996,1604,1702,1500,2004,16,607,1
+29204,70000,male,2,2,24,1,2,0,0,0,2,32536,26351,45870,46918,53153,52174,0,20000,1807,7042,0,1925,0
+29205,70000,male,1,2,24,0,0,0,0,0,-1,12109,15328,16854,16741,15154,6060,5328,4000,3000,3007,6060,5133,0
+29206,20000,male,2,2,25,0,0,0,0,0,0,13429,14502,15564,16600,17025,17381,1300,1300,1300,700,630,650,0
+29207,10000,male,2,2,23,-1,0,-1,-1,-1,0,4812,3072,2529,390,9478,8170,1196,2535,390,9478,0,953,1
+29208,10000,male,3,2,24,0,0,0,0,0,0,2736,4050,5426,6743,8544,9858,3000,2000,2000,2000,2000,1000,0
+29209,80000,male,3,2,23,-1,2,-1,-1,-1,-2,1053,193,9387,125,-68,-261,0,9387,125,0,0,0,0
+29210,60000,male,1,2,25,-1,0,0,0,0,0,1193,49461,51024,32215,31088,33581,48967,2530,1525,1200,3000,1400,0
+29211,180000,male,2,1,26,-1,-1,-1,-1,-1,-1,396,396,396,396,396,396,396,396,396,396,396,396,0
+29212,300000,male,2,2,27,-1,-1,-1,-1,0,-1,1386,25051,9505,91527,80780,2694,25125,9565,91559,252,2694,1000,0
+29213,70000,male,2,1,26,0,0,0,0,0,0,64691,65259,66673,62278,64268,65264,2500,2500,2500,3000,3000,2500,0
+29214,50000,male,2,2,26,3,3,2,2,3,4,29373,28607,29843,32257,35421,36265,0,2000,3200,4000,2000,1500,1
+29215,120000,male,2,1,26,0,0,0,0,0,0,16068,14775,7982,6289,7319,6958,1134,1163,1000,2000,1000,1000,0
+29216,50000,male,3,2,26,0,0,0,-2,-2,-2,50419,40200,0,0,0,0,1000,0,0,0,0,0,1
+29217,170000,male,2,1,27,-1,-1,-1,-1,0,-1,2697,0,1409,1337,1337,53885,0,1409,1337,0,53885,2000,0
+29218,170000,male,2,2,27,-1,-1,-1,-1,0,0,711,176,465,1422,582,291,176,1000,1422,291,0,291,0
+29219,50000,male,2,2,27,1,2,0,0,0,2,35905,35028,36373,37165,39539,40454,0,1908,1700,3000,1700,1700,0
+29220,180000,male,1,2,23,0,0,0,0,0,0,177998,167021,148713,129518,125868,121823,7000,6000,5000,5000,4416,4577,0
+29221,80000,male,2,1,26,2,0,0,0,0,0,31740,74415,56435,40620,37356,35091,50000,1796,2126,1539,1807,1715,0
+29222,50000,male,3,2,26,0,0,0,0,0,0,49006,48814,49180,44941,20056,19783,2000,2000,2005,700,856,1000,0
+29223,290000,male,2,2,27,0,0,0,0,0,0,98861,89638,50453,193665,188075,162106,3221,3104,160045,4959,5201,4582,0
+29224,160000,male,2,1,27,0,0,0,0,0,-2,112022,85788,67093,30166,0,0,4342,4017,2190,3990,0,0,1
+29225,160000,male,1,2,27,-1,-1,-1,-1,-1,-1,316,316,2968,19656,4056,7496,316,2968,19666,4056,7496,4836,0
+29226,390000,male,1,2,27,0,0,0,0,0,0,59917,73806,75614,77358,86007,88601,15000,3000,3000,10000,4000,4000,0
+29227,10000,male,3,2,25,1,2,2,2,0,0,9737,9947,9802,8450,4060,0,1352,1000,0,1000,900,0,1
+29228,80000,female,1,3,25,0,-1,-1,-1,-1,-1,8900,1136,720,478,219,0,1136,727,478,219,0,0,0
+29229,160000,male,1,2,25,0,0,0,0,0,0,85748,86473,89120,88854,84598,86309,4000,5000,3096,3100,4000,5000,0
+29230,80000,male,1,2,26,0,0,0,0,0,0,56808,55901,57030,56576,53819,48604,3000,3010,4000,5000,3000,2200,0
+29231,360000,male,2,2,26,0,0,0,0,0,0,94672,96585,102837,110891,53827,14589,3485,7837,10185,5126,2898,350,0
+29232,200000,male,2,2,26,1,2,2,2,2,2,58050,2500,2500,2500,2500,2500,0,0,0,0,0,0,1
+29233,60000,male,2,2,25,0,0,2,2,0,0,56473,61514,61748,58583,28301,29301,6000,1800,0,600,1000,300,0
+29234,110000,male,2,2,26,0,0,0,0,0,0,61167,60549,55400,10711,10868,11079,2721,2422,1132,289,341,327,0
+29235,90000,male,1,2,26,0,0,0,0,0,0,61212,57315,5710,12959,9140,9333,2497,1154,8000,288,300,347,0
+29236,50000,male,3,2,26,2,0,0,0,0,0,49644,94883,42097,32394,16658,17006,2047,5728,1300,1194,617,650,1
+29237,180000,male,1,2,27,0,0,0,0,-1,0,212751,205797,206670,31546,141189,138880,40000,37000,3270,194989,5753,5000,0
+29238,30000,male,2,2,25,2,3,2,2,0,0,21403,20766,21637,22473,23312,23419,0,1500,1500,1500,1500,1500,1
+29239,50000,male,1,2,25,-1,-1,-1,-1,-1,-1,9716,25045,15180,6964,7604,2173,25045,15522,6964,7604,2173,6586,1
+29240,50000,male,2,2,24,0,0,0,0,0,0,19267,23553,21507,17827,7655,7881,5000,1700,2000,500,500,500,0
+29241,120000,male,2,2,26,2,2,2,2,0,0,109110,105891,113662,110349,112036,114584,0,11000,0,5000,4332,9404,0
+29242,60000,male,1,2,25,0,0,0,0,0,0,58479,58839,53235,38533,39639,39619,3000,2018,1900,2000,1500,1900,0
+29243,70000,male,2,2,25,0,-1,-1,-1,-2,-2,34700,21597,3340,0,0,0,21597,3340,0,0,0,8535,0
+29244,50000,male,2,2,25,0,0,0,0,0,2,29425,30932,32128,33588,38106,37364,2000,2000,2000,5100,0,4000,0
+29245,240000,male,2,2,26,0,0,0,0,0,0,24779,28630,29095,28883,28372,24033,5000,1700,1500,755,3000,120000,0
+29246,200000,male,2,2,25,2,2,2,2,2,2,147660,148603,143647,152605,155981,158508,5500,0,12000,8000,5800,80,1
+29247,50000,male,1,2,25,0,0,0,2,2,2,41761,44689,47613,48174,48731,49655,4000,4000,2000,2000,2200,1700,0
+29248,290000,male,1,2,26,0,0,0,0,0,0,196780,198682,144672,146116,109672,60439,10144,7443,35215,5011,5079,3067,0
+29249,30000,male,2,2,26,1,-1,-1,2,0,0,-185,27478,30642,29361,29022,28409,28924,4000,0,1000,900,800,0
+29250,290000,male,2,2,26,0,0,0,0,0,0,46041,47039,48047,51395,52332,416,2000,2300,5000,2600,0,416,0
+29251,50000,male,3,2,25,0,0,0,0,0,0,50184,50664,50633,48724,19208,19917,2000,1925,5006,2000,1016,725,0
+29252,50000,male,2,2,26,-1,-1,-1,-1,-1,-1,581,581,581,581,581,581,581,581,581,581,581,581,0
+29253,310000,male,1,2,26,-1,0,0,0,0,0,47330,48947,49738,53602,40510,43742,4000,5000,5052,9950,5000,5000,0
+29254,120000,male,2,1,26,0,0,0,0,0,0,101215,100685,15452,12491,3550,2729,5006,2000,3010,1000,2000,1391,0
+29255,140000,male,2,2,26,1,3,2,0,0,0,146023,141873,137057,135046,136131,135292,6,233,6342,4800,5100,5000,1
+29256,50000,male,3,2,26,0,0,0,0,0,0,24003,25597,26237,19296,19127,18997,2000,1425,1598,819,705,819,0
+29257,10000,male,2,1,26,0,0,-2,-2,-2,-2,1198,0,0,0,0,0,0,0,0,0,0,0,1
+29258,110000,male,2,1,30,2,2,2,2,2,2,88168,90585,89555,87410,85576,84021,7300,3800,3000,3100,3000,3000,1
+29259,20000,male,3,1,29,0,0,0,0,0,0,14576,16318,17388,17850,17737,27240,2000,1354,2113,1000,1000,1000,0
+29260,50000,male,2,2,26,0,0,0,0,0,0,44781,46033,47289,47462,18204,18322,2000,2000,2000,2000,3314,1000,0
+29261,230000,male,2,2,26,-2,-2,-1,-1,0,0,-8,-8,3243,20172,26446,58598,0,3251,20174,12000,46100,65000,0
+29262,80000,male,3,2,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+29263,30000,male,3,2,26,0,0,0,0,0,0,28337,27203,25791,18972,28051,20782,2000,2000,1600,10000,2140,0,0
+29264,100000,male,2,2,28,0,0,0,0,0,-2,188853,180765,64653,10388,3762,1434,5003,3018,1400,3786,1774,12714,0
+29265,280000,male,4,2,26,-1,-1,-1,-1,-1,0,688,2384,696,696,1392,696,2400,696,696,1392,0,696,0
+29266,110000,male,1,2,26,0,0,0,0,0,0,65215,130746,69834,71245,72199,73711,2375,10000,3170,2735,2829,3138,0
+29267,110000,male,2,1,26,0,0,0,0,0,0,52489,53615,54803,55729,57001,58036,2000,2050,1895,2068,1982,1995,0
+29268,40000,male,2,2,27,1,3,2,2,3,2,40933,39630,40340,42332,41023,42722,0,2000,3304,0,3000,1200,0
+29269,180000,male,1,2,26,0,0,0,0,2,0,23758,31278,124718,133102,124279,123748,9000,100000,12000,0,4800,6500,0
+29270,50000,male,3,2,26,0,0,0,0,0,0,50632,49654,49746,50365,35157,19796,1808,2084,1703,975,683,657,0
+29271,50000,male,2,2,27,0,0,0,0,0,-1,50580,48956,49252,28838,2102,19366,3000,4063,1700,600,20000,1000,0
+29272,50000,male,3,2,27,0,0,0,0,0,0,48534,48429,49884,43799,20191,19096,1824,2279,1194,594,599,566,0
+29273,90000,male,1,2,27,0,0,0,0,0,0,21506,18304,15783,16815,17236,17807,1600,2000,1600,1000,1000,1000,0
+29274,80000,male,1,2,26,0,0,0,0,0,0,67090,67229,24772,20000,20000,20000,2500,2089,6000,200,0,0,0
+29275,90000,male,4,2,26,-2,-2,-2,-2,-2,-2,2862,0,0,1000,326,326,0,0,1000,326,326,1178,1
+29276,50000,male,1,2,26,0,0,0,0,0,0,14577,15329,16575,17496,17907,18375,1300,1500,1500,1000,1000,1600,0
+29277,100000,male,1,2,26,-1,-1,-1,-1,-1,-1,1872,4490,4056,10782,3187,18515,4503,4066,10900,3196,18543,3215,0
+29278,390000,male,2,2,41,0,0,0,0,-1,-1,22309,21921,18357,17376,835,835,1325,1283,1092,14836,837,4904,0
+29279,70000,male,2,1,26,0,0,0,0,0,0,18757,19764,20539,23066,23684,24182,1625,1400,2882,1000,879,1033,0
+29280,100000,male,1,2,27,0,0,0,0,0,0,9228,10240,11372,12092,12429,22315,1171,1303,1023,360,10000,442,0
+29281,210000,male,2,2,27,0,0,0,0,0,0,90675,19357,18885,20258,21610,23025,1607,1700,2000,2000,2000,1000,0
+29282,10000,male,2,2,27,-1,0,0,0,0,0,5002,6014,7111,8120,9120,0,1103,1200,1200,1000,0,0,0
+29283,310000,male,2,2,26,-2,-2,-2,-2,-2,-2,2154,359,256,2513,795,250,360,257,2537,798,251,2064,0
+29284,30000,male,2,2,26,6,5,4,3,2,0,33181,32391,31624,30683,29215,29900,0,8,0,0,1015,1000,1
+29285,130000,male,1,2,27,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+29286,20000,male,6,2,27,-1,-1,-1,-1,-1,-1,543,2070,370,-20,780,0,1100,5193,0,800,0,0,0
+29287,50000,male,2,2,28,0,0,2,2,0,0,5281,7025,7758,8459,8635,7473,2000,1000,1000,282,1000,500,0
+29288,30000,male,2,2,24,1,2,2,2,2,2,21788,22832,23473,22798,24420,23889,1700,1300,0,2000,0,2001,1
+29289,140000,male,2,2,26,0,0,0,0,0,0,80351,166526,83514,72387,67261,68670,4000,2890,3118,3000,2493,2564,0
+29290,70000,male,1,2,27,0,0,0,0,0,0,43214,44196,45181,46426,47380,46923,2000,2000,2000,2000,2000,2000,0
+29291,20000,male,2,2,27,1,2,2,2,2,0,17569,18478,19884,20218,19687,20307,1500,2000,1000,0,1000,1000,1
+29292,400000,male,1,2,27,0,0,-1,-1,0,-1,3359,6790,7010,4111,24808,1839,6034,7060,4113,24838,1848,6546,0
+29293,20000,male,2,2,27,1,6,5,4,4,3,19388,18807,18235,18654,18073,17501,0,0,1000,0,0,0,0
+29294,10000,male,1,2,27,0,0,0,0,0,0,8907,6599,7736,8492,8138,4990,1500,1400,1000,1009,1000,1598,0
+29295,60000,male,1,2,27,0,0,0,0,0,0,5370,7268,10131,11644,14430,17180,2000,3000,2000,3000,3000,2000,0
+29296,180000,male,1,2,28,-2,-2,-2,-2,-2,-2,2566,7255,24974,25256,29627,17765,7255,25043,25256,29627,17765,6932,0
+29297,50000,male,2,1,28,0,0,0,-2,-2,-2,49139,50125,0,0,0,0,2500,0,0,0,0,0,0
+29298,90000,male,3,2,28,0,0,2,0,0,0,15940,19742,19137,20212,20874,21387,4400,0,1400,1000,1000,1000,1
+29299,390000,male,2,2,28,0,0,0,0,-1,0,198132,192975,68855,-1391,249742,253914,9124,3181,895,253009,10009,9509,0
+29300,30000,male,2,2,29,0,0,0,2,2,2,19363,20723,22492,22819,24441,23910,2000,2100,1000,2000,0,1000,1
+29301,200000,male,1,2,29,1,2,0,0,0,0,7885,7613,9318,10297,17321,21263,0,2003,2063,8000,4033,2199,1
+29302,20000,male,1,2,28,1,2,0,0,2,2,8469,8187,9097,10935,10463,11295,0,1200,2000,0,1000,0,1
+29303,70000,male,1,2,28,1,3,2,2,0,0,72605,70859,71946,69337,29949,29380,0,2800,0,1200,1200,1200,0
+29304,80000,male,1,2,27,0,0,0,0,0,0,63132,61397,70223,53429,28689,24827,2378,10000,23000,5000,10000,6000,0
+29305,80000,male,1,1,27,-1,-1,0,-1,-1,0,2197,3613,4820,867,1154,2473,3613,1500,867,1500,1500,3700,0
+29306,110000,male,2,2,28,0,0,2,0,0,2,10817,10988,8033,7262,9612,6747,3000,0,2000,5000,0,1646,1
+29307,310000,male,3,2,28,-1,2,-1,-1,-1,0,186,186,3550,653,14353,15932,0,3567,654,14428,15018,20000,0
+29308,80000,male,1,2,28,0,0,0,0,0,0,80849,79422,76834,76333,49942,50191,3200,9000,3365,2000,2200,1700,0
+29309,390000,male,2,2,29,-1,-1,-1,0,0,-2,6664,6931,5985,7151,-200,-200,6931,5985,7000,0,0,0,0
+29310,20000,male,1,2,22,-2,-2,-2,-2,-2,-2,-7,-7,730,1000,300,0,0,737,1060,300,0,0,0
+29311,50000,male,2,2,24,0,0,0,0,0,0,10912,10401,20916,20658,9426,8215,2152,1209,1080,438,434,390,0
+29312,20000,male,2,2,26,3,2,2,2,2,2,300,300,300,300,300,300,0,0,0,0,0,0,1
+29313,30000,male,2,2,26,0,0,0,0,0,-2,25993,6296,17223,18305,0,0,1183,11500,2000,0,0,0,0
+29314,170000,male,2,2,26,0,0,0,-1,-1,-1,7228,6238,6265,5430,4898,3240,1200,2367,5430,4898,3240,7838,0
+29315,320000,male,2,2,28,0,-1,-1,2,0,0,5799,70891,76755,74838,72402,71847,70891,7001,21,3012,3015,2713,0
+29316,200000,male,2,2,27,0,0,0,0,0,0,137266,137888,136545,116549,109622,111113,5212,5065,4005,3900,4003,4306,0
+29317,50000,male,3,2,27,0,0,-2,-2,-2,-2,17500,0,0,0,0,0,0,0,0,0,0,0,0
+29318,180000,male,1,2,29,0,0,0,0,0,-2,115191,117488,118504,119034,-966,-966,5700,4400,2500,937,0,0,0
+29319,290000,male,2,2,29,0,0,0,0,0,-2,42065,10800,9653,4374,179758,180125,1100,1087,1002,179768,5800,6258,0
+29320,260000,male,2,2,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+29321,170000,male,1,2,27,-2,-2,-2,-2,-2,-2,2190,264,1408,1434,264,264,264,1408,1434,264,264,264,0
+29322,290000,male,1,2,28,-2,-2,-2,-2,-2,-2,346,0,2765,6116,10462,1052,0,2765,6200,10479,1052,1481,1
+29323,120000,male,2,2,28,0,0,0,0,0,0,92677,92809,93392,93609,95055,96761,4516,5005,5006,5014,5008,4008,0
+29324,290000,male,1,2,28,0,0,0,2,2,2,6395,7330,8711,9409,10153,9846,1200,1500,1000,900,0,800,1
+29325,10000,male,1,2,27,0,0,0,0,0,0,5703,6734,8833,9604,9800,10000,1130,2229,1000,196,200,0,0
+29326,160000,male,2,2,28,-1,2,2,-2,-1,-1,530,530,-102,-418,-418,1647,0,102,316,123,2847,2,0
+29327,20000,male,2,1,28,0,0,0,0,0,0,18941,16568,17222,18045,18083,18123,1500,1300,1500,700,700,2600,0
+29328,200000,male,1,1,29,1,2,0,0,0,0,199417,188778,195335,194775,197105,204122,0,8278,4100,180000,202317,0,0
+29329,200000,male,3,2,30,0,0,0,0,0,0,24853,24065,19153,20606,21032,89162,3158,3007,3014,2007,70012,4037,0
+29330,130000,male,2,2,27,0,0,0,0,0,0,84579,86256,88093,89837,91625,92822,3084,3224,3236,3257,3509,3428,0
+29331,230000,male,2,2,28,0,0,-2,-2,-2,-2,26574,-26,-26,90624,92624,-89,26,0,90650,2000,89,0,0
+29332,140000,male,1,2,28,-2,-2,-2,-2,-2,-2,933,1768,3169,5041,389,3065,1768,3169,5041,389,3065,1112,0
+29333,280000,male,1,2,27,-1,-1,-1,-1,0,0,1284,842,1212,3244,2134,1270,846,1216,3249,4,6,3412,0
+29334,50000,male,1,2,27,0,0,0,0,0,0,14614,15622,16342,17653,17697,18068,1558,1278,1589,633,656,783,0
+29335,20000,male,2,2,28,0,0,0,0,0,0,12234,11762,13007,13590,13476,15009,1192,1827,1500,482,1750,1000,0
+29336,150000,male,5,2,27,0,0,0,0,0,-2,133374,40283,49746,51500,0,0,10000,10000,2900,10000,0,0,0
+29337,200000,male,1,2,29,1,-2,-1,2,0,-1,0,0,2348,1790,1790,350,0,2348,0,0,350,2570,1
+29338,420000,male,1,2,29,0,0,-1,0,0,0,16127,12074,85269,86388,87153,88957,1322,90499,3122,2915,3000,3150,0
+29339,10000,male,3,2,29,0,0,0,0,0,0,2944,4877,6287,7521,8389,9252,2000,1500,1500,1000,1000,1000,0
+29340,500000,male,2,1,28,0,0,0,0,0,0,257603,217964,171462,99495,168313,233306,10234,10753,20134,110167,105000,20018,0
+29341,150000,male,2,2,28,0,0,0,-2,-2,-2,157051,161665,0,0,0,0,8566,1500,0,0,0,0,0
+29342,240000,male,1,2,28,0,0,0,0,0,0,227346,231891,240146,245552,91382,93177,8308,12000,10373,3403,4000,4000,0
+29343,70000,male,1,2,28,-1,-1,-1,-2,-2,-2,4638,323,0,0,0,0,323,0,0,0,0,0,0
+29344,70000,male,2,1,29,0,0,0,0,2,2,57779,59016,60263,65348,63699,67667,2200,2200,6100,0,5000,2790,0
+29345,230000,male,2,2,28,-2,-2,-2,-2,-2,-2,-73,-73,-73,-73,7723,0,0,0,0,7796,0,0,0
+29346,200000,male,1,2,28,-1,-1,2,-1,-1,-1,5765,12386,2662,6023,8303,171059,12453,12,6053,8337,171074,5036,0
+29347,50000,male,1,2,29,0,0,0,0,-1,-1,46489,48210,49493,20650,1000,0,2500,2493,1650,1000,0,0,0
+29348,300000,male,1,2,29,-2,-2,-2,-2,-2,-1,2163,345,2541,730,1350,2100,345,2541,730,1350,2100,0,0
+29349,130000,male,2,2,29,0,0,0,0,0,0,58299,59352,51420,48140,34893,33986,2626,8585,1620,698,725,843,0
+29350,610000,male,3,2,29,0,0,-1,-1,-1,0,8965,7988,3428,6384,65809,62950,7062,4017,6434,68290,2045,8007,0
+29351,120000,male,2,2,29,0,0,0,0,0,0,115698,118277,121004,118774,91369,88015,6000,6513,3740,3215,3300,3405,0
+29352,60000,male,2,2,27,0,0,0,0,0,0,58982,59063,58440,59593,59642,60165,2097,2141,3000,2064,2672,2000,0
+29353,50000,male,2,2,29,0,0,0,-2,-2,-2,28818,26000,0,0,0,0,2000,300,0,0,0,0,0
+29354,50000,male,3,2,29,1,2,2,2,0,0,43933,42927,46324,45283,48042,50834,0,4100,0,3780,3515,1800,1
+29355,20000,male,2,2,30,0,0,0,0,0,0,19082,19691,19932,19904,19549,19920,1314,1405,1157,802,790,0,0
+29356,300000,male,2,1,30,-2,-1,-1,-1,-2,-1,900,195,1442,1740,3871,606,195,1542,1748,3890,608,4059,0
+29357,50000,male,3,1,31,1,1,-2,-2,-2,-2,43200,0,0,0,0,0,6000,0,0,0,0,0,0
+29358,130000,male,1,1,29,1,2,0,0,0,0,118723,117323,38765,33349,33463,33795,3001,3000,2000,1000,666,2000,0
+29359,100000,male,2,2,30,2,4,4,4,3,2,89898,92422,95979,93580,91181,93563,4900,5900,0,0,4000,3200,1
+29360,130000,male,2,2,28,0,0,0,0,0,0,101546,88549,74624,76133,77648,79370,3000,2709,2750,2767,2961,2913,0
+29361,30000,male,2,2,29,-1,-1,-1,-1,-1,0,390,390,390,390,1438,719,390,390,390,1438,0,1588,0
+29362,10000,male,2,1,29,0,0,0,0,0,0,8099,9727,5732,6576,7472,8359,2000,3000,1104,1000,1000,2000,0
+29363,50000,male,2,2,28,0,0,0,0,0,0,48591,48896,48587,37211,28248,28430,2300,2000,1432,988,1600,1600,0
+29364,10000,male,2,1,30,3,2,2,3,3,3,1050,1050,1050,1050,1050,1050,0,0,0,0,0,0,1
+29365,230000,male,2,2,30,0,0,0,0,0,0,115141,101832,92396,84297,49681,46224,5028,5000,4000,2029,2000,2500,0
+29366,210000,male,2,1,30,-1,-1,-1,-1,-1,-1,820,820,820,820,820,820,820,820,820,820,820,970,0
+29367,140000,male,5,2,30,-2,-2,-2,-1,-1,0,2663,1823,1823,1769,84042,89381,1823,1823,1769,85096,9000,4000,0
+29368,50000,male,2,2,31,0,0,0,0,0,-1,47533,48640,49483,40850,0,800,2200,2000,3000,0,400,20000,0
+29369,310000,male,1,2,30,-1,0,0,0,0,0,48931,207890,24113,65010,67144,60592,207000,20000,60126,20000,25000,6000,0
+29370,80000,male,2,2,30,0,0,0,0,0,0,64330,65813,66282,67285,68309,71830,2934,2500,2500,2500,5000,3000,0
+29371,500000,male,1,1,30,-1,-1,-1,-2,-2,-2,6049,2500,0,0,0,0,2500,0,0,0,0,0,0
+29372,80000,male,2,2,26,0,0,0,0,0,0,50442,51397,49991,47681,46900,45161,1816,1920,2063,1543,1400,1557,0
+29373,120000,male,3,2,28,-1,3,2,-1,-1,-1,1835,1651,390,390,282,-108,0,0,390,282,0,3087,1
+29374,50000,male,2,2,26,0,0,0,0,0,0,45253,44840,45880,46893,47827,48829,1724,1764,1777,1711,1772,2043,0
+29375,50000,male,2,2,30,0,0,0,0,0,0,16397,17378,17523,18467,17865,18234,1572,1617,1561,759,779,908,0
+29376,200000,male,1,1,30,-2,-2,-2,-2,-2,-2,3207,4347,2897,1432,1200,-41,4360,2902,1432,1517,0,0,0
+29377,50000,male,2,2,30,-1,0,0,2,0,0,1382,2496,4533,4279,4592,0,1300,2254,0,313,0,0,0
+29378,130000,male,2,2,30,-1,2,2,2,-1,-1,780,780,390,0,780,0,390,0,0,780,0,0,0
+29379,240000,male,1,2,28,0,0,0,0,0,0,181569,182916,186885,187756,188520,189908,6606,8246,6806,5112,5291,6004,0
+29380,180000,male,1,2,28,0,-1,-1,0,-1,-1,9796,500,3866,6019,7602,7622,500,3866,3300,7602,7622,0,0
+29381,20000,male,2,2,28,0,0,0,2,0,0,10926,12899,18394,16806,36070,19257,2500,9000,0,2000,2000,1500,0
+29382,140000,male,1,2,28,1,2,2,2,0,0,31529,30844,33961,33250,34524,38098,0,3500,0,2000,4000,0,1
+29383,160000,male,1,1,29,-1,-1,-1,-1,0,0,498,680,0,362,9464,6087,682,0,362,9102,0,514,0
+29384,280000,male,1,2,29,-2,-2,-2,-2,-2,-2,10660,5123,8467,2510,591,14994,5123,8467,2510,591,14994,5000,0
+29385,80000,male,1,2,28,-1,-1,0,0,0,0,198,734,1580,2338,3140,3907,734,1044,1000,2000,1500,800,0
+29386,140000,male,2,1,29,0,0,0,0,0,0,14544,22376,28746,36395,46358,49946,8376,7000,8395,10546,4400,7892,0
+29387,300000,male,1,2,30,0,0,0,0,0,0,237372,243409,250477,254808,260562,266200,10000,11000,10000,10000,10000,10000,0
+29388,150000,male,2,1,27,0,0,0,0,0,0,118533,119911,123914,126447,128773,134930,3375,5000,3583,3402,7226,5000,0
+29389,240000,male,5,1,27,-2,-2,-2,-2,-2,-2,0,249,913,0,0,0,249,913,0,0,0,0,0
+29390,100000,male,1,2,29,-2,-2,-2,-2,-2,-2,390,390,390,780,0,599,390,390,780,0,599,0,1
+29391,100000,male,2,2,30,0,0,0,0,0,0,27869,29329,30294,31734,32323,33648,3500,3000,3500,1500,2000,2300,0
+29392,220000,male,2,1,30,0,0,0,0,0,2,15746,17537,14856,35705,25649,5018,16780,14469,35278,4647,19,8438,0
+29393,50000,male,3,2,30,0,0,0,0,-1,-1,9610,9132,8681,8039,4952,390,1147,1169,1000,4986,390,390,1
+29394,120000,male,1,2,30,-1,2,2,-1,-1,-1,1500,3010,1700,1125,909,786,1700,0,1125,909,786,1433,0
+29395,280000,male,1,1,31,-2,-2,-2,-2,-2,-2,-6,-6,1345,-5,-5,985,0,1351,0,0,990,3090,0
+29396,200000,male,1,2,30,1,-1,-1,-1,-1,-1,0,1870,1000,0,1275,543,1870,1000,0,1275,543,0,0
+29397,10000,male,2,2,29,2,2,0,0,2,2,5948,5716,7132,8477,8292,9861,0,1500,1500,0,1604,212,1
+29398,10000,male,2,2,30,0,0,0,0,0,2,8107,8724,9191,9800,10072,9766,1298,1155,1154,1206,0,399,1
+29399,50000,male,1,2,29,0,0,0,2,0,0,5249,14427,19819,18567,23535,28620,10000,6000,0,5630,6000,5000,0
+29400,70000,male,1,2,30,0,0,0,2,0,0,2329,55664,59529,57571,57871,60872,55000,5800,0,2250,4500,0,1
+29401,20000,male,2,2,30,1,-2,-2,-2,-2,-2,-300,-690,-1080,-1470,-1860,-2250,0,0,0,0,0,4000,0
+29402,140000,male,1,2,30,0,0,2,0,0,-2,90313,103560,78842,67003,0,0,15037,5,2007,0,0,0,0
+29403,200000,male,4,1,46,0,0,0,0,0,0,103138,94638,88227,82087,75285,78872,3929,4000,4000,3000,13000,13000,0
+29404,280000,male,2,2,42,-1,0,-1,0,0,0,22821,23169,82073,61638,44868,29804,1118,82267,1528,997,1049,13004,0
+29405,70000,male,1,2,45,1,2,0,0,0,0,73958,72097,46445,46759,21265,14379,67,3006,4659,1000,1000,0,0
+29406,210000,male,2,2,26,0,0,-2,-2,-1,2,9358,-27,-27,-27,3073,2878,0,0,0,3100,0,2003,0
+29407,50000,male,5,2,27,0,0,0,0,0,-2,47830,47863,34725,15735,0,0,6143,2354,4147,0,0,0,0
+29408,150000,male,1,2,27,0,0,0,0,0,0,85500,86009,86108,89006,89775,87725,3956,4031,10006,3266,4040,1698,0
+29409,120000,male,2,2,28,0,0,0,0,0,0,8022,9493,11612,12438,13099,15926,2000,3000,3000,3000,3000,3000,0
+29410,200000,male,1,1,28,-1,-1,-1,-1,-1,-1,1867,994,2058,1546,2215,1828,997,2064,1550,2229,1833,808,1
+29411,420000,male,1,2,31,-1,0,0,0,-1,-1,31065,25918,20899,14966,5676,134038,2004,3000,1041,5676,135687,4192,0
+29412,50000,male,1,2,29,1,2,2,2,2,2,5931,5690,8023,7748,8269,7992,0,2600,0,800,0,800,0
+29413,270000,male,1,2,31,0,0,0,0,0,0,9526,10418,6436,7196,7137,5587,1116,1500,2000,1000,194,1005,0
+29414,130000,male,2,1,31,-1,-1,-1,-1,-1,-1,2280,1725,3895,1500,450,5289,1725,3895,1500,450,5289,0,0
+29415,210000,male,1,2,31,0,0,0,0,0,2,82940,84583,86357,88149,93654,82166,3024,3134,3228,7000,0,3000,0
+29416,240000,male,2,2,31,1,-1,-1,-1,-1,-1,0,780,0,390,780,0,780,0,390,780,0,390,0
+29417,260000,male,1,2,30,0,0,0,0,0,0,27855,28307,27842,25366,19533,14214,1259,1305,1113,528,406,211,0
+29418,250000,male,2,1,32,-1,-1,-2,-1,0,0,79319,0,0,174749,171541,175042,0,0,174749,0,3501,146794,0
+29419,150000,male,2,1,31,-1,-1,-1,0,-1,2,530,530,957,1817,714,424,530,957,1000,800,0,9000,0
+29420,140000,male,1,2,31,0,0,0,0,0,0,128036,106657,45887,137487,111602,111552,4180,2800,100005,3800,3990,4285,0
+29421,60000,male,3,1,34,0,0,0,0,0,0,43293,28305,22298,22161,18667,19381,1368,1396,1287,654,1000,644,0
+29422,500000,male,1,1,39,0,0,0,0,0,0,133598,167378,171106,174500,137406,204975,54209,4607,4603,5224,207440,7509,0
+29423,50000,male,2,2,37,3,2,3,2,2,2,21153,23507,22838,20411,16016,15242,3000,0,57,2000,0,1000,1
+29424,50000,male,3,1,42,0,0,2,2,0,0,18838,22834,23553,22876,23328,24955,4650,1380,0,832,2000,0,0
+29425,140000,male,1,2,33,0,0,0,0,0,0,128213,133080,136412,136481,135012,133324,7000,7000,7000,5500,6000,4624,0
+29426,20000,male,2,1,32,0,0,0,2,0,0,16354,17776,21158,20511,20316,20474,1700,4000,0,800,1000,800,0
+29427,360000,male,1,1,38,-1,-1,-1,-1,-1,-1,2513,5023,6664,11358,15479,20934,5066,6704,11415,15556,21039,19073,0
+29428,10000,male,3,2,41,0,0,-2,-2,-1,-1,10400,0,0,0,400,0,5275,0,0,400,0,2400,0
+29429,200000,male,2,1,41,0,0,0,0,0,0,51995,52442,46472,48692,50571,51756,4000,2000,3000,3000,2000,2000,1
+29430,400000,male,2,1,38,-1,-1,-1,0,-1,-1,3380,3395,5856,6401,389,21447,3411,8863,1032,390,21448,1001,0
+29431,180000,male,1,1,32,0,0,0,-1,-1,-1,6687,4919,2644,1300,2644,0,1227,1000,1300,2644,0,55176,1
+29432,220000,male,3,2,41,0,0,0,0,0,0,193903,176755,147558,102365,63842,43252,8000,7000,3500,1500,2000,1000,0
+29433,50000,male,3,1,45,0,-1,-1,-2,-2,-2,5339,1189,0,0,0,0,1189,300,0,0,0,0,0
+29434,100000,male,5,1,45,0,0,0,0,0,0,94502,95697,98222,90500,82586,22620,5000,5000,3203,2103,50000,0,0
+29435,50000,male,2,2,47,0,0,0,0,-1,0,51129,50378,48282,0,2068,30135,2096,1000,0,2068,30067,1051,0
+29436,320000,male,1,2,28,-2,-2,-2,-2,-2,-2,26149,3860,360,360,0,720,3894,360,360,0,720,334,0
+29437,320000,male,1,2,31,1,-2,-2,-2,-2,-2,-6029,-9119,-46127,-50616,-53007,-94625,185,28,12,208,8,14,1
+29438,310000,male,2,1,31,-1,2,-1,-1,-1,-1,4673,3851,547,3913,670,2489,0,547,3913,670,2489,656,0
+29439,100000,male,2,1,33,2,4,3,2,2,2,60286,58753,57250,58014,58761,60061,0,0,2300,2300,2400,2300,0
+29440,320000,male,1,2,34,0,0,0,0,0,0,71944,88243,96574,104795,113156,121465,19246,11550,11688,12122,12156,2437,0
+29441,280000,male,2,1,34,0,0,0,0,0,0,55237,55664,51436,34260,36564,33331,2625,1795,1372,3931,3047,671,0
+29442,80000,male,2,1,35,-1,-1,-1,-1,-1,0,1692,2694,1130,397,42857,41864,2702,1246,397,42860,7,118,0
+29443,200000,male,1,1,41,1,2,0,0,2,2,150406,151415,156476,163330,162163,170867,5000,7500,11000,3000,11365,7000,1
+29444,70000,male,2,1,37,0,0,2,0,0,2,23546,26630,25922,27177,28930,28329,3800,0,2000,2200,0,2100,0
+29445,50000,male,1,1,40,0,0,0,0,0,0,47695,48879,44765,31240,20343,12349,2017,3000,2000,3007,1003,1500,0
+29446,10000,male,2,1,42,2,2,3,2,2,2,4770,9182,8893,8928,9586,9294,4505,0,334,801,0,1487,1
+29447,300000,male,1,1,43,-1,-1,-1,2,0,0,1920,410,5015,2334,3334,3350,412,5459,0,1000,16,2418,0
+29448,210000,male,3,1,39,-2,-2,-2,-2,-2,-2,13024,726,-632,-632,-632,-632,726,632,0,0,0,0,0
+29449,60000,male,1,2,36,1,2,2,2,2,2,28504,27747,32577,31754,34228,35128,0,5300,0,3000,1600,1000,1
+29450,20000,male,2,1,40,1,2,3,2,3,3,14829,17267,16706,18694,19049,18459,3000,0,2560,955,0,661,0
+29451,50000,male,2,1,42,0,0,0,0,0,2,35892,32546,30660,31320,36227,35569,2007,2000,1500,5400,0,3000,0
+29452,100000,male,2,1,39,0,0,0,0,0,0,66177,70177,80914,86403,88972,91554,4000,10737,6849,4000,4000,2138,0
+29453,200000,male,1,1,43,-1,0,-1,-1,-2,-2,18422,13546,3820,0,0,0,1127,3820,0,0,0,0,0
+29454,240000,male,1,1,34,0,0,-2,-1,0,0,102650,0,0,4557,7557,9275,0,0,4557,3000,4000,2282,0
+29455,200000,male,2,3,41,0,0,0,2,2,2,106576,107178,119691,116278,128087,125931,3864,14269,0,13808,0,4600,0
+29456,130000,male,2,1,39,0,0,0,0,-2,-2,19698,10058,10833,0,0,0,1500,1000,0,0,0,0,0
+29457,130000,male,1,2,28,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+29458,50000,male,2,1,45,-1,-1,-1,-1,-1,-1,942,942,942,390,390,390,942,942,390,390,390,0,1
+29459,30000,male,2,2,32,0,0,2,2,0,0,26742,29095,30819,29214,29478,23384,2800,2500,0,910,1000,1000,0
+29460,130000,male,3,2,29,0,0,0,0,0,0,129602,130079,122267,96800,58170,57483,5437,5088,4180,2035,3009,2000,0
+29461,10000,male,3,2,46,0,0,0,0,0,0,9592,8844,7560,7134,7280,0,1150,1166,2000,146,0,0,1
+29462,70000,male,2,1,33,-1,-1,0,0,0,0,390,4924,5566,6139,5868,6399,4924,1113,1076,195,1000,235,1
+29463,150000,male,2,1,37,0,0,0,0,0,0,100894,103001,104416,86597,88276,90398,4700,4099,4000,3000,3000,5187,0
+29464,120000,male,2,2,38,0,0,0,0,0,0,116399,117514,111003,84840,86954,83448,5000,5000,3000,3500,3000,82000,1
+29465,100000,male,3,2,48,0,0,0,0,0,0,58430,36846,35538,34958,34039,33650,2000,2000,2000,2000,2000,20000,0
+29466,50000,male,3,2,34,0,0,0,0,-2,-2,49093,50375,51400,0,0,0,2400,2400,0,0,0,0,1
+29467,210000,male,1,1,40,-2,-1,-1,-1,-1,-1,5411,5922,2174,6522,1532,9327,5956,2180,6568,1532,9373,8090,0
+29468,50000,male,2,2,29,0,0,2,0,0,0,48632,52100,50611,50411,19722,19682,4600,0,2200,900,800,800,0
+29469,50000,male,2,1,36,3,2,2,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,1
+29470,30000,male,3,1,42,1,2,2,2,2,2,24335,23651,26346,26920,26194,27854,0,3401,1300,0,2400,2000,1
+29471,500000,male,2,1,33,-1,-1,0,-1,0,0,680,1094,1508,1862,3676,4961,1101,1100,2103,2500,2000,2000,0
+29472,60000,male,3,2,46,0,0,0,0,0,0,61548,63020,16982,37318,18352,17869,2700,1500,2000,1000,824,333,0
+29473,180000,male,2,2,39,-1,-1,-1,-1,-1,-1,715,4637,969,21365,9707,3837,4637,1595,21365,9707,3837,5328,0
+29474,20000,male,2,1,47,0,0,0,0,0,0,14186,14960,16102,18926,18125,18714,1000,1376,3200,1399,1102,369,0
+29475,50000,male,2,1,42,1,-1,-1,-1,0,-1,0,3095,5850,4300,2800,3000,3095,5855,4300,2500,3000,500,0
+29476,100000,male,2,1,38,0,-1,-1,-1,0,0,1473,390,390,1170,780,780,390,390,1170,0,0,0,0
+29477,240000,male,1,1,34,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,150,1
+29478,170000,male,2,1,34,-1,-1,-1,-1,-1,-1,7950,6691,7332,2716,4200,7708,6691,7332,2716,4200,7708,12897,0
+29479,50000,male,1,2,36,1,2,0,0,-2,-2,49395,50058,50753,0,0,0,1776,2374,0,0,0,0,0
+29480,150000,male,1,2,30,0,0,0,0,0,0,147112,122159,125470,119007,101928,103989,4518,6000,4055,13980,4000,3950,0
+29481,20000,male,2,1,34,1,2,2,0,0,0,16112,16851,16292,18010,18411,19455,1300,0,2000,1000,1500,1010,0
+29482,210000,male,1,2,35,0,0,-2,-2,-2,-2,103632,-36,-18,-18,-18,-18,0,0,0,0,0,0,0
+29483,50000,male,2,1,49,0,0,0,0,0,-1,48481,48526,50056,49735,14240,890,2313,2313,2082,677,890,14441,1
+29484,120000,male,2,1,34,2,2,2,2,2,2,115040,117371,119044,120086,120662,118345,6000,5600,4500,4300,0,4800,0
+29485,70000,male,3,1,45,0,0,0,0,0,0,65824,51634,52567,42743,43894,45051,3067,3000,3000,2000,2000,2000,0
+29486,10000,male,2,2,40,0,0,0,0,0,0,9649,10084,9421,9997,9799,10163,1500,1200,1137,329,500,251,1
+29487,20000,male,2,1,47,1,2,2,0,0,0,8198,6465,5450,4427,2661,895,300,1000,1000,0,0,3386,0
+29488,150000,male,4,1,36,0,0,0,0,0,0,181335,188576,188864,188547,193087,196559,14000,7000,5000,8000,7000,5000,0
+29489,190000,male,2,1,35,1,-2,-1,-1,-2,-2,0,0,100104,0,0,0,0,100104,0,0,0,0,0
+29490,50000,male,2,2,40,0,0,0,0,0,0,49224,50222,50921,49415,8862,9711,1821,2200,2000,500,9000,331,0
+29491,50000,male,3,1,30,0,0,0,0,0,0,37208,38204,39243,40255,41057,41914,1615,1654,1666,1468,1517,1528,1
+29492,50000,male,1,2,30,0,0,0,0,0,0,49194,50036,47855,48894,50258,48276,1978,1797,1836,2200,2000,2500,0
+29493,250000,male,2,2,31,0,0,0,0,0,0,206199,206822,194318,181608,172922,175302,8006,7606,7200,6000,6303,7013,0
+29494,220000,male,1,2,31,0,0,2,2,2,2,119810,129821,126311,151588,147656,157276,12000,0,27500,0,12000,0,1
+29495,490000,male,1,2,33,-1,2,-1,0,0,0,59016,16355,24307,21136,24758,21817,0,24307,12396,13000,10000,88,0
+29496,20000,male,2,2,30,2,2,2,2,0,0,13269,12391,12326,10621,10400,0,33,3317,0,1000,0,0,0
+29497,70000,male,1,2,29,1,-1,-1,0,-1,2,10449,2343,14336,13155,3929,1953,6000,15000,4000,4000,0,1000,0
+29498,290000,male,1,2,32,0,0,0,0,0,2,23561,52005,49188,68168,67465,44593,30020,2002,19982,1799,7,8210,0
+29499,450000,male,1,2,32,-1,-1,-1,-2,-2,-1,1270,1570,0,0,0,144,1580,0,0,0,144,236,0
+29500,20000,male,2,1,32,0,0,0,0,0,0,23055,24070,25183,25961,27491,40106,1400,1500,1275,1805,2000,2728,1
+29501,100000,male,1,1,33,0,0,0,0,0,0,49415,50851,49528,50604,40966,40308,2284,1961,2037,1434,1469,1483,0
+29502,80000,male,1,2,33,2,2,2,2,2,2,98677,89056,87525,78266,74967,66512,0,8000,0,5000,0,2428,1
+29503,70000,male,3,1,44,-1,0,-1,-1,2,-1,5484,5221,340,1430,930,4110,1000,340,1480,0,4110,0,1
+29504,200000,male,2,1,45,1,-1,0,0,0,0,-7,34137,33749,28355,29465,30885,34144,1492,1402,2002,2007,6163,0
+29505,20000,male,2,1,38,0,0,0,0,0,-1,9269,10585,11608,12313,12848,800,1477,1500,1000,1500,800,800,0
+29506,220000,male,1,1,38,-1,-1,3,2,2,-2,1815,743,743,43,-657,-1357,1486,0,0,0,0,0,0
+29507,10000,male,2,2,45,1,2,0,0,0,0,9298,9093,8528,9319,9477,9736,1000,1200,1142,300,400,340,0
+29508,290000,male,3,1,35,0,0,0,0,0,0,80748,78241,76401,76435,77434,79223,2755,2824,2456,2245,2500,1200,0
+29509,20000,male,3,2,38,1,-1,0,0,0,0,-2086,16116,17151,18161,18521,18911,18451,1300,1302,662,688,800,0
+29510,200000,male,2,1,37,-1,-1,-1,-1,-1,-1,3506,4713,2519,3960,6797,4414,4727,2526,3971,6827,4427,5603,0
+29511,50000,male,3,1,47,1,-2,-1,0,0,0,-2012,-2012,47714,48685,18139,18519,0,50224,2195,649,672,749,0
+29512,50000,male,2,1,41,0,0,0,0,0,0,45422,46291,16118,14237,14381,16026,1916,1243,1492,636,2000,2000,0
+29513,60000,male,2,1,41,0,0,0,0,0,0,47963,81071,41153,42268,32692,30892,2308,3980,2000,2000,2000,2000,0
+29514,50000,male,3,1,48,1,-2,-2,-2,-2,-1,6300,0,0,0,0,5275,0,0,0,0,5275,0,0
+29515,290000,male,1,1,38,2,0,0,0,0,0,97531,99413,96194,96089,92505,74760,4429,5000,2928,3097,2033,1051,1
+29516,140000,male,2,1,41,2,2,2,2,2,2,73259,75063,73305,78454,79571,78176,3600,0,7000,3000,0,8000,1
+29517,570000,male,1,2,33,0,0,0,0,0,-2,388897,253793,261176,266800,0,0,9083,11472,12000,0,0,0,0
+29518,210000,male,1,1,40,-1,-1,-1,-1,-1,-1,1582,326,3632,1967,3952,10330,326,3632,1967,3985,10330,8000,1
+29519,270000,male,3,2,32,1,2,2,2,0,0,157318,153388,164866,160821,164010,167446,0,13900,0,5760,5967,7488,0
+29520,50000,male,2,1,33,0,0,0,0,0,0,47048,24058,25042,21947,19198,19610,1445,1429,1294,1000,705,699,0
+29521,60000,male,2,2,38,2,0,0,0,0,0,58190,59615,60379,56921,18050,18385,3000,3100,1409,631,1000,664,1
+29522,120000,male,2,2,45,1,2,2,2,2,2,63911,62286,67259,67659,68937,70674,0,6000,2100,3000,3000,2500,1
+29523,450000,male,1,1,42,-1,2,-1,-1,-1,-2,3566,240,1718,2284,-561,-1477,0,2000,2300,0,590,0,1
+29524,60000,male,2,1,39,-2,2,-1,-1,-1,-1,50210,2846,18862,18145,20934,22146,60054,19061,20089,23019,22181,16711,0
+29525,20000,male,2,2,36,3,2,2,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,1
+29526,180000,male,1,1,36,0,0,0,0,0,0,85703,84298,62201,81859,78566,77491,3614,2400,23500,3800,3700,500,0
+29527,380000,male,2,2,37,-1,-1,-1,-1,-1,0,2302,7281,2686,2281,5760,9239,7500,2700,2300,6000,6000,3000,0
+29528,20000,male,2,1,48,0,0,0,0,-2,-2,18401,19784,20650,0,0,0,2000,1650,0,0,0,0,0
+29529,120000,male,1,2,26,-1,-1,-1,-2,-1,-1,2382,884,0,0,10446,0,884,0,0,10446,0,0,0
+29530,500000,male,3,1,39,0,-1,-1,-1,-1,-1,32647,1832,1920,21734,1837,96,1832,1920,21734,1837,0,19637,1
+29531,20000,male,2,2,39,-1,0,0,2,0,0,18646,17746,19953,19183,17703,12100,2000,3200,0,0,1100,0,1
+29532,260000,male,3,1,43,0,0,0,0,0,0,205599,151040,150917,152447,123771,126472,6000,7500,6000,4300,4500,4500,0
+29533,20000,male,2,2,33,0,0,0,0,0,0,13479,14944,16392,17789,18238,17638,2000,2000,2000,1000,800,700,0
+29534,230000,male,2,1,35,0,0,0,0,0,0,149697,155697,165978,170563,173697,179697,6000,10281,8866,6000,6000,6000,0
+29535,120000,male,2,1,33,-1,-1,-1,-1,-1,-1,1336,-5,500,500,150,150,0,505,500,150,150,941,0
+29536,130000,male,1,1,40,2,2,0,0,0,0,80987,79085,82799,86407,88959,97487,0,5000,5000,4000,10000,3724,1
+29537,200000,male,1,1,40,-1,-1,-1,-1,-1,-1,840,770,386,0,475,390,800,396,4,475,1170,930,0
+29538,30000,male,1,2,49,0,0,0,2,0,0,25144,25831,29122,28277,20390,20555,1500,4500,0,900,1000,2000,0
+29539,230000,male,3,1,39,-1,-1,0,-1,-1,-2,2606,2986,2608,797,-3,-3,2990,1020,799,0,0,0,0
+29540,210000,male,1,1,44,-1,-1,-1,-1,-1,-1,396,396,396,396,396,396,396,396,396,396,396,396,1
+29541,260000,male,5,1,40,0,0,0,0,0,0,18503,19616,20725,21807,21216,22331,3000,3000,3000,1000,2000,5000,0
+29542,160000,male,2,1,36,-2,-2,-2,-2,-2,-2,8700,5159,10550,3566,2453,2673,5183,10670,3576,2460,2680,2484,0
+29543,140000,male,2,2,44,0,0,0,0,0,0,129301,129885,131886,133105,78607,78773,6104,7000,5518,2933,3100,3502,0
+29544,70000,male,2,1,39,0,0,0,0,0,0,71059,71998,71229,70747,68154,69815,5000,4792,3000,3019,8010,7000,1
+29545,100000,male,2,1,38,0,0,0,0,0,0,15788,8242,10095,11636,6649,8649,2000,2000,2007,2000,2000,5000,0
+29546,150000,male,1,2,32,-2,-2,-2,-2,-2,-2,833,1601,9253,33062,2328,4121,1606,9297,33243,2336,4140,10859,0
+29547,290000,male,2,2,34,0,0,0,0,0,0,14543,12190,14483,16589,18306,22204,2000,3000,3000,3000,5000,3000,0
+29548,60000,male,2,1,37,0,0,0,-1,-1,-1,6742,9582,-27,15273,14766,14687,3000,18,15300,5000,15132,6500,0
+29549,50000,male,2,2,37,5,4,3,2,0,0,19859,19268,18687,17956,17710,18710,0,0,0,354,1000,1000,0
+29550,20000,male,3,1,38,0,0,0,0,0,0,17224,16533,17557,18666,19037,19434,1267,1291,1400,681,703,600,0
+29551,500000,male,1,1,37,0,0,2,0,0,0,474934,507062,491956,430637,376657,356636,40024,325,15296,12137,12312,14113,0
+29552,90000,male,2,1,45,-1,3,2,2,-1,-1,3664,3449,1776,-1170,390,390,0,0,0,1560,390,930,1
+29553,280000,male,1,2,37,-2,-2,-2,-2,-2,-2,7523,1567,-8,-8,1680,0,1574,0,0,1688,0,198,0
+29554,40000,male,2,1,40,1,2,0,0,0,0,34364,33512,34549,35572,36481,37889,0,1577,1600,1500,2000,2000,1
+29555,220000,male,1,1,39,-1,-1,0,-1,-1,-1,875,1093,3572,7330,0,3995,1093,2518,7409,0,3995,2028,1
+29556,220000,male,5,1,37,-2,-2,-1,-1,-1,0,44253,1966,6189,1850,6938,5034,1966,6203,1850,6938,101,2932,0
+29557,50000,male,2,1,33,0,0,0,0,0,0,97190,48290,49633,48707,19623,13673,1787,2130,1184,13604,496,523,1
+29558,20000,male,2,3,47,-1,-1,2,2,-1,-1,390,780,390,0,780,0,780,0,0,780,0,0,1
+29559,200000,male,1,1,39,0,0,0,0,0,0,192257,192560,198501,194782,191172,193267,7004,10061,7071,6514,7081,10121,0
+29560,20000,male,2,1,32,2,0,0,2,0,0,18390,19468,20844,19362,19402,19607,2000,3000,0,850,920,750,1
+29561,60000,male,1,2,39,1,2,0,0,0,0,60037,50524,58025,59724,28575,39402,0,9000,3000,1200,11500,3000,1
+29562,280000,male,3,1,45,-2,-2,-2,-2,-2,-2,14493,1589,-7,1420,8036,12863,1596,0,1427,8076,12927,0,0
+29563,50000,male,2,2,48,0,0,0,0,0,0,44385,45637,46815,16927,17263,17628,1992,2170,1282,618,643,1000,0
+29564,420000,male,1,1,32,0,0,0,0,0,0,387143,24830,25419,10951,8126,8313,1585,1174,1133,291,318,277,0
+29565,30000,male,3,1,44,1,2,2,2,0,0,19397,18659,22544,21889,22721,23401,1500,4500,0,1500,1200,2000,1
+29566,50000,male,3,2,36,0,0,2,2,2,2,22312,25349,26075,25358,27123,27509,3416,1425,0,2190,965,0,0
+29567,20000,male,3,1,43,0,0,0,2,0,-1,18100,17926,19485,19503,19566,1320,2000,3000,1200,1000,1400,0,0
+29568,110000,male,2,1,39,2,3,2,2,2,2,39733,38862,40995,40106,42492,43197,0,3000,0,3300,1463,0,1
+29569,230000,male,2,1,39,0,0,0,0,0,0,20307,19864,17789,14416,14445,14452,2000,2263,2000,2000,2000,2000,0
+29570,60000,male,2,1,45,0,0,0,0,0,0,20959,20822,17973,18403,17898,17388,1500,1500,2000,1000,1000,1000,0
+29571,360000,male,1,1,36,-2,-2,-2,-2,-2,-2,1814,6545,0,0,0,0,6545,0,0,0,0,259,0
+29572,50000,male,2,2,42,0,0,0,0,0,0,49165,46466,47145,47658,48209,48579,1800,1814,1717,1658,1858,2000,0
+29573,110000,male,2,2,35,0,0,0,0,0,0,106612,110828,109937,47250,48543,47848,6100,3000,2000,2000,2000,2000,0
+29574,150000,male,2,2,29,0,0,0,0,0,0,104165,93850,94944,100940,100339,102567,5000,4380,8528,5000,4000,5000,0
+29575,180000,male,1,2,29,-1,-1,-1,-1,-1,-1,1124,18213,4390,1016,4745,0,18213,4390,1016,4745,0,0,0
+29576,80000,male,2,2,30,-1,-1,-1,-1,-1,-1,5092,4623,1944,15361,13286,5848,4623,1963,15361,13286,5848,0,0
+29577,50000,male,2,2,30,0,0,0,0,0,0,46652,45235,23299,22672,21440,19304,2014,1600,1400,429,386,57,0
+29578,170000,male,2,2,31,-1,0,0,0,0,0,6336,7505,8522,9380,9566,9917,1281,1298,1156,342,505,610,0
+29579,200000,male,2,2,31,-1,-1,2,-1,-1,-1,5433,20516,7973,6202,8549,6251,20710,23,6228,8574,6269,6411,0
+29580,210000,male,1,2,31,0,0,0,0,0,0,36042,37141,38179,39243,39740,40574,2000,1936,2000,1450,1472,3500,0
+29581,20000,male,2,2,32,0,0,0,0,0,-2,19435,19790,19294,14092,6826,10090,2003,1448,1328,500,10986,600,0
+29582,160000,male,1,2,35,-1,2,2,-2,-2,-1,348,22,-304,-630,-956,476,0,0,0,0,1908,326,0
+29583,50000,male,3,2,45,0,0,0,0,-2,-2,46842,48356,41150,0,0,0,2356,2150,0,0,0,0,0
+29584,340000,male,2,2,30,0,0,0,0,0,0,233770,216978,181217,172862,171353,170048,8100,8000,6102,6628,6517,4500,1
+29585,220000,male,1,2,32,-1,-1,-1,-1,-1,-1,5359,4217,2900,3392,1421,915,4217,2907,3397,1421,915,906,0
+29586,200000,male,2,1,37,-2,-1,-1,-1,0,0,500,598,1946,11900,6344,4747,598,1950,11921,4,3,1201,1
+29587,320000,male,1,2,29,0,0,0,0,0,0,225892,209493,170336,173806,177425,181003,9429,6189,6309,6510,6600,6395,0
+29588,110000,male,1,2,29,2,0,0,0,2,0,77831,79365,81485,86309,84028,86114,3430,4000,7100,0,3600,3142,1
+29589,200000,male,1,2,30,3,2,2,-1,-1,0,1130,566,0,560,558,558,0,0,560,558,0,0,1
+29590,160000,male,1,2,31,1,2,0,0,0,0,56432,55371,56316,59331,60227,61778,0,2000,3500,2000,2200,3000,0
+29591,310000,male,2,1,34,0,0,0,0,0,0,89600,83373,80533,70343,58365,51454,3100,3604,2366,2018,2000,1700,0
+29592,70000,male,2,1,29,0,0,0,0,0,0,78244,19275,11231,10694,27908,11192,2009,1404,3016,20001,2000,5002,0
+29593,80000,male,2,2,29,-1,-1,-1,0,0,0,28175,0,68227,68040,69840,69840,0,68227,2000,2000,0,0,0
+29594,320000,male,1,2,34,-2,-2,-2,-2,-2,-2,5250,-3,988,6420,7174,-19,0,991,6452,9757,0,3995,0
+29595,230000,male,1,2,34,0,-1,0,0,0,0,56449,219192,226596,225791,226638,226265,231788,11621,9027,9015,9000,9014,0
+29596,260000,male,2,2,36,2,0,0,0,0,0,334214,310546,288566,291597,214353,216238,12000,11000,11000,8000,8500,8300,1
+29597,50000,male,3,1,41,5,4,3,2,0,0,54090,52955,51847,50307,27707,28479,0,0,0,0,974,31100,1
+29598,210000,male,3,2,48,0,0,0,0,-1,-1,85107,83658,73664,38405,38395,5062,33658,30003,1000,38395,5062,13061,0
+29599,60000,male,3,1,42,0,0,0,0,0,0,19489,20496,21702,22360,19760,0,1336,1542,1200,500,0,0,0
+29600,30000,male,2,1,48,0,0,0,0,0,0,26393,28622,29846,25571,40188,27544,3006,3000,2000,3000,8150,2000,1
+29601,480000,male,2,1,44,-2,-2,-2,-2,-2,-2,29112,43015,17223,10127,8416,14658,43111,17223,10135,8416,14658,27350,0
+29602,240000,male,2,2,43,0,0,0,0,0,0,236238,225318,202513,198720,192574,195682,8763,7539,8267,7012,8010,8499,0
+29603,20000,male,2,1,44,0,0,0,0,0,0,18015,18344,19672,19652,780,0,1400,1630,1000,0,0,0,1
+29604,50000,male,3,1,41,0,0,0,0,0,0,49782,50741,48468,39203,28913,26636,1816,1753,1433,990,967,1071,0
+29605,50000,male,2,1,37,0,0,0,0,0,0,44270,42398,44346,44098,48698,26955,5000,3000,5000,5000,5000,6000,0
+29606,50000,male,1,1,35,-1,-1,-1,-1,-2,-2,6290,3770,10060,0,0,0,3770,10060,0,0,0,0,0
+29607,500000,male,1,1,37,-1,-1,-1,-1,-1,-1,14817,2480,122750,4599,10094,43150,3904,123000,10052,10105,43168,16915,0
+29608,70000,male,2,2,31,0,0,0,0,0,0,35515,36619,37725,38792,39447,40361,2000,2000,2000,1600,1700,1700,0
+29609,40000,male,1,2,31,0,0,0,0,0,0,33075,34221,35866,36691,31672,27945,2000,2500,2014,250,2000,500,0
+29610,420000,male,1,2,32,-1,-1,-1,-1,-2,-2,1100,1183,2736,0,0,0,1183,2736,0,0,0,0,0
+29611,20000,male,2,1,36,2,2,2,2,2,2,25238,25274,25026,23073,22857,21143,2000,1700,0,1653,0,1940,0
+29612,300000,male,3,1,41,-1,-1,-1,-1,-1,-1,1556,118157,11409,11907,3965,18327,118816,11488,11967,3983,18416,6260,0
+29613,110000,male,2,2,38,3,2,2,0,0,0,78480,80604,78326,44890,41394,42727,4000,0,2000,1500,2000,2000,1
+29614,70000,male,2,1,42,4,4,4,4,4,4,59130,59831,61873,63359,64221,65706,2272,3614,3100,2500,3100,1000,1
+29615,110000,male,1,2,39,0,0,0,0,-2,-2,18310,19327,20650,0,0,0,1327,1650,0,0,0,0,0
+29616,220000,male,2,1,40,2,2,0,0,0,0,222418,206473,208464,175407,175170,174726,4,8027,6218,6220,6316,6504,0
+29617,20000,male,1,2,37,0,0,0,0,0,0,14320,14595,16350,17322,18319,19297,2000,2000,2000,2000,2000,2000,0
+29618,120000,male,3,1,39,-1,-1,-1,-1,-1,-1,326,326,326,326,326,326,326,326,326,326,326,326,0
+29619,150000,male,3,2,44,0,0,0,0,0,0,65903,35916,34409,93241,67549,62479,5011,3045,70092,2521,3000,3000,0
+29620,110000,male,3,1,40,0,0,0,0,0,0,91275,93357,94938,79368,74778,75996,4500,4100,2612,2666,2700,2659,0
+29621,320000,male,3,1,36,-2,-2,-2,-2,-2,-2,5360,726,6992,3741,10138,15745,726,6992,3755,10138,15745,16740,0
+29622,50000,male,2,1,28,-1,-1,-1,0,-1,-1,430,0,46257,45975,1300,43987,0,46257,2200,1300,43987,1386,0
+29623,20000,male,2,2,34,0,0,-2,-2,-1,0,16912,-2,-1,-1,309,9525,0,0,0,310,9500,800,0
+29624,180000,male,3,1,35,2,0,0,0,0,0,57991,58587,59497,60356,60209,60522,2700,3000,3000,2500,2500,3000,1
+29625,200000,male,2,1,37,0,0,0,0,0,0,208835,202673,193898,180759,160482,132870,7313,7157,11609,5609,5059,5014,0
+29626,50000,male,3,1,47,1,2,0,0,0,2,16217,15664,16693,17407,18660,19115,0,1586,1300,1546,900,0,0
+29627,360000,male,1,2,40,-1,3,2,-1,-1,2,499,499,499,13136,9160,2752,0,0,13169,2784,12,14293,1
+29628,30000,male,2,1,30,0,0,0,0,0,0,28130,27836,28998,29480,29500,0,1750,2000,1200,1000,0,1500,0
+29629,230000,male,1,2,31,-2,-2,-2,-2,-2,-2,0,0,0,0,100,2405,0,0,0,100,2405,0,0
+29630,280000,male,1,2,32,-2,-2,-2,-2,-2,-2,3981,1350,3735,13956,5911,1356,1355,3754,14025,12820,1362,5274,0
+29631,50000,male,3,1,32,0,0,0,0,0,-1,47974,43680,22133,12882,8131,3983,3000,2871,1000,163,3983,3771,1
+29632,360000,male,1,2,33,-1,-1,-1,-1,-1,-1,57709,23707,11850,12533,7477,7718,23718,11850,13898,7477,7718,168350,0
+29633,240000,male,2,2,37,2,2,2,0,0,2,45070,46111,45268,46295,48903,49763,1900,0,1900,3500,1600,0,1
+29634,180000,male,3,1,43,2,2,2,2,0,0,176911,172605,182641,135892,135411,126808,0,15000,0,4500,5000,5000,0
+29635,200000,male,1,2,36,-1,-1,-1,-1,-1,-1,396,396,396,396,396,396,396,396,396,396,396,396,0
+29636,390000,male,1,1,29,-2,-2,-2,-2,-2,-2,570,2681,1186,1944,4966,2973,2691,1191,1948,4987,2982,15546,0
+29637,110000,male,1,2,29,0,0,0,0,0,0,47982,43735,41840,40199,39612,27926,1809,2012,1504,1502,1514,1007,0
+29638,250000,male,1,2,29,0,0,0,0,0,0,240725,200603,150035,145876,100971,50333,10022,7004,5414,2500,1010,48440,0
+29639,380000,male,2,2,30,0,0,0,0,0,0,47765,47945,135167,95527,91541,92808,3000,90527,5000,3000,4000,3000,0
+29640,300000,male,2,1,30,-1,-1,-1,-1,-1,-1,165,165,165,165,1759,1394,165,165,165,1759,1394,1790,0
+29641,300000,male,2,1,44,0,0,2,2,0,0,223211,239061,239874,233894,169520,160385,21000,6000,3662,6000,6000,6000,0
+29642,320000,male,1,1,40,-2,-2,-2,-2,-2,-2,968,6444,23384,4310,5980,13522,6476,23507,4336,6010,13589,3574,0
+29643,160000,male,2,1,48,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+29644,310000,male,1,1,47,-2,-2,-2,-2,-2,-2,-1874,-2474,-2474,-74,2226,-484,0,0,2400,2300,0,0,0
+29645,50000,male,2,2,32,0,0,0,0,0,-1,50962,50212,3800,50535,50525,1473,2264,1000,50042,2505,1473,12023,0
+29646,20000,male,2,1,32,0,0,0,0,2,2,8768,9622,10974,14963,15123,14741,1159,1511,4500,700,0,1000,1
+29647,240000,male,2,1,31,2,0,-1,2,2,-1,60511,41296,2181,1175,-13,2487,2300,2185,4,0,2500,0,1
+29648,250000,male,1,2,31,-1,0,0,0,0,0,377399,78416,64479,33404,11259,11007,10045,3194,1104,10015,5005,2033,0
+29649,200000,male,1,2,31,0,0,0,-2,-2,-1,162018,121934,0,0,0,590,6000,0,0,0,590,61935,0
+29650,240000,male,1,2,35,1,-2,-2,-2,-1,0,0,0,0,0,27670,28252,0,0,0,27670,920,920,0
+29651,150000,male,3,1,43,-1,2,-1,-1,-1,-1,1280,390,390,780,1746,0,0,390,780,1746,0,0,0
+29652,420000,male,2,1,43,0,0,0,0,0,0,36590,44670,60376,30099,66049,61043,42063,30253,20016,40015,30004,3000,0
+29653,10000,male,3,1,36,0,0,0,2,2,2,5104,6133,8432,8150,8945,8657,1274,2573,0,1086,0,353,0
+29654,30000,male,2,1,44,1,2,2,0,0,0,12351,13068,12568,13880,13849,14816,1216,0,1528,497,1192,0,0
+29655,250000,male,1,2,33,-1,3,2,-1,-1,-1,441,441,81,1540,3088,5680,0,0,5000,3088,3000,0,1
+29656,500000,male,2,1,33,0,0,0,0,0,0,5322,5920,6061,7289,8313,6490,1125,1280,1791,1528,1512,1370,0
+29657,30000,male,2,2,38,0,0,2,2,2,2,29770,27400,28935,28934,30313,30330,6000,2273,780,2635,1033,611,0
+29658,120000,male,2,2,48,0,0,0,0,0,0,116757,120600,106464,92788,29989,31215,10717,10000,20014,0,6000,2534,0
+29659,200000,male,2,1,34,-1,-1,-1,-1,-2,-2,2498,2670,2967,0,0,0,2670,2996,0,0,0,0,0
+29660,20000,male,2,2,36,0,0,0,0,0,0,11179,11985,14372,15619,16376,16738,1300,2600,1500,1000,1000,2000,0
+29661,50000,male,2,2,38,1,2,2,2,0,0,15116,14876,17325,16754,17175,17588,300,3000,0,1000,690,650,1
+29662,50000,male,3,1,47,2,2,2,0,0,0,39892,42704,34909,33528,16205,16593,3600,5,1309,800,800,750,1
+29663,50000,male,3,2,40,0,0,0,0,0,-1,46185,47570,38984,23566,21652,3612,3000,4022,3034,5000,3700,20775,1
+29664,140000,male,3,1,39,0,0,0,0,0,0,138317,142082,136034,137524,88752,89409,6047,6405,6452,3228,3140,3157,0
+29665,20000,male,3,1,34,0,0,0,0,0,0,17692,17293,16803,16525,16185,-2623,2000,2004,1500,1500,0,19500,0
+29666,150000,male,3,2,39,0,0,0,0,0,0,42029,42678,11413,12418,12415,13211,2100,1500,1500,500,1000,2300,0
+29667,230000,male,2,1,35,0,0,0,0,0,0,174274,176853,180639,180117,179717,124117,7004,10000,5000,0,5000,189600,0
+29668,240000,male,2,1,36,0,0,0,0,-2,-2,230523,237022,235890,0,0,0,11828,6100,0,0,0,0,0
+29669,150000,male,1,1,41,3,2,2,0,0,2,111056,113467,110235,111376,154802,152304,5700,0,4500,45500,0,5400,1
+29670,140000,male,1,1,38,0,0,0,0,0,0,52684,46479,39949,30051,31124,32375,1692,2438,1464,2124,2375,1547,0
+29671,310000,male,2,1,37,-2,-2,-2,-2,-2,-2,1619,1443,1443,1443,1443,2886,1443,1443,1443,1443,2886,0,0
+29672,60000,male,2,1,36,3,2,2,7,7,6,2400,2400,2400,2400,2400,1800,0,0,0,0,0,0,1
+29673,200000,male,1,2,34,-2,-2,-2,-2,-2,-2,485,1313,1144,933,1207,3149,1316,1147,935,1210,3158,2350,0
+29674,160000,male,1,1,46,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+29675,360000,male,1,1,35,-1,-1,-1,-1,-1,-2,12895,3546,4371,6365,2987,2979,3552,4377,6400,3002,2994,2233,0
+29676,30000,male,2,1,49,0,0,0,0,0,0,12922,14199,15461,16497,16923,17649,1500,1500,1300,700,1000,1000,0
+29677,100000,male,3,1,41,1,-1,-1,-2,-1,0,0,840,0,0,63562,66520,840,0,0,63562,4000,3000,1
+29678,10000,male,2,1,45,1,2,2,2,2,-2,6321,6075,10062,6267,-610,-220,0,4312,0,0,780,1150,0
+29679,300000,male,2,1,37,-2,-2,-1,-1,0,0,3016,24038,6221,33999,24985,25743,12165,6252,34042,66,14062,3081,0
+29680,500000,male,2,1,49,-1,-1,2,-1,-1,-1,1460,5594,5334,1911,1774,5351,5334,25,1920,1783,5377,237,1
+29681,50000,male,3,1,40,2,0,0,0,0,0,48785,49762,49861,48660,7698,7463,2090,2450,1510,409,415,406,1
+29682,500000,male,2,1,48,-2,-2,-2,-2,-2,-2,1900,5441,0,1535,1100,800,5441,0,1535,1100,800,1297,0
+29683,100000,male,2,1,46,2,0,0,0,0,0,100000,99774,102237,98452,99423,101548,4500,5000,4500,3800,3900,4000,1
+29684,240000,male,1,2,35,0,0,0,0,0,0,241499,236556,229622,202296,165639,159245,8500,10200,8366,6070,10000,6043,0
+29685,450000,male,2,1,43,0,0,0,0,0,0,104485,92993,80647,67875,58328,252696,6000,4000,4000,7000,215000,3000,0
+29686,620000,male,2,2,31,-2,-2,-2,-2,-2,-2,5712,11598,21049,13846,3565,7076,11881,21171,13915,3583,7111,1971,0
+29687,100000,male,2,1,32,0,0,0,0,0,0,60121,61575,63028,43360,41906,42831,2454,2700,1712,1500,1600,1600,0
+29688,230000,male,1,2,32,0,0,0,0,0,0,246764,239685,135520,102518,129195,101717,8316,10084,5091,70063,4037,5122,0
+29689,50000,male,2,2,34,0,0,-1,-1,-2,-2,4166,0,4166,0,0,0,0,4166,0,0,0,0,0
+29690,30000,male,2,2,38,4,3,4,4,4,3,17628,20024,20424,20601,19992,19392,3000,1000,786,0,0,0,1
+29691,20000,male,2,3,40,0,0,0,-1,-1,-1,16149,17373,18000,20000,0,780,1500,1000,20000,0,390,0,0
+29692,180000,male,1,2,32,-1,-1,2,-1,-1,-1,291,582,291,291,291,291,582,0,291,291,291,291,1
+29693,90000,male,1,2,31,2,2,2,0,0,2,90322,92257,89939,91176,91331,87588,4300,0,3656,7100,0,7200,1
+29694,170000,male,1,2,32,0,0,0,0,0,0,166470,159880,161445,152549,122948,120277,5809,7334,6699,4315,4410,4309,0
+29695,180000,male,2,2,34,-2,-2,-2,-2,-2,-2,-16,-16,-16,850,0,0,0,0,866,0,0,0,0
+29696,50000,male,3,2,40,0,0,0,0,-1,0,50693,50019,36939,29500,19655,20067,1747,1515,3076,20693,679,653,0
+29697,100000,male,3,1,30,0,0,0,2,0,0,50512,49374,51644,45920,21659,10861,2000,5138,75,1032,32,15127,0
+29698,200000,male,1,2,39,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+29699,200000,male,1,2,37,-2,-2,-2,-2,-2,-2,4279,3774,706,5177,3792,12035,3856,706,5192,3808,12035,33436,0
+29700,220000,male,1,1,39,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+29701,80000,male,3,1,43,2,-1,-1,2,-1,-1,1473,1473,3133,1473,1473,390,1473,3133,0,1473,390,390,0
+29702,30000,male,3,2,37,1,2,2,0,0,0,24095,24796,23722,24630,24934,25264,1398,0,1696,1000,1500,500,0
+29703,50000,male,3,2,30,0,0,0,0,0,0,46860,48581,48968,18949,19181,20245,2500,1700,1600,811,2000,0,0
+29704,210000,male,1,2,40,1,2,0,0,0,0,65568,67501,52620,7379,9083,10766,3700,2700,1300,2000,2000,16000,0
+29705,10000,male,1,1,48,1,2,0,0,0,0,8594,7421,8145,9000,9000,0,0,2000,2000,0,0,0,0
+29706,300000,male,1,1,38,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+29707,470000,male,2,1,31,0,0,0,0,0,0,12281,13323,13149,15824,19424,27522,2014,3000,3000,4000,8098,3000,0
+29708,200000,male,1,1,44,0,0,0,0,-2,-2,196770,202515,205150,0,0,0,10500,9200,0,0,0,0,0
+29709,80000,male,2,1,32,0,0,0,0,0,0,81249,81117,81140,80567,59560,40390,3000,3300,2602,1800,1432,1520,0
+29710,10000,male,3,2,36,0,0,0,0,0,0,6728,8050,9531,9904,9310,19000,1446,2017,1000,186,190,0,0
+29711,10000,male,3,2,49,1,-1,0,0,0,0,2365,9148,7264,9084,4422,1735,10008,5000,5019,1009,1000,9000,0
+29712,20000,male,3,2,37,0,0,2,2,-2,-2,18623,21501,20650,0,0,0,3501,0,0,0,0,0,0
+29713,240000,male,2,1,39,1,2,0,0,0,0,245338,234661,234364,235982,239281,244329,0,10200,10200,8725,9068,9068,0
+29714,30000,male,2,2,29,0,0,0,-1,-1,0,13172,7965,3101,3126,7365,3245,1082,1000,3126,7365,0,828,0
+29715,160000,male,2,1,31,0,0,0,0,0,2,94041,54835,46575,7169,9036,8749,3579,3500,2000,2000,0,1000,0
+29716,20000,male,1,2,31,3,2,2,7,7,7,2400,2400,2400,2400,2400,2400,0,0,0,0,0,0,1
+29717,10000,male,2,1,37,-1,4,3,2,2,2,7501,7243,6988,6730,7463,7199,0,0,0,1000,0,3000,1
+29718,250000,male,3,1,39,0,0,0,0,0,0,209263,199834,200957,205454,205710,210115,7127,7335,8871,8055,8426,5208,0
+29719,260000,male,1,2,34,0,0,0,0,0,-2,251267,254332,257628,161545,0,0,12021,11710,7503,0,0,0,0
+29720,100000,male,2,2,34,0,0,0,0,0,0,47908,48909,49954,50974,52021,53186,1800,1830,1850,1894,2000,2000,1
+29721,210000,male,1,2,35,-1,2,2,-2,-2,-2,1527,1350,0,0,0,0,0,0,0,0,0,0,0
+29722,290000,male,1,2,33,0,0,0,0,0,0,277227,279189,265077,241284,102450,104544,10681,15089,8801,7450,4544,4028,0
+29723,150000,male,4,2,29,0,0,0,0,0,0,200442,206334,206221,69995,60000,0,8500,8000,2500,1500,0,0,1
+29724,300000,male,1,2,32,2,0,0,0,0,0,255299,255607,258394,261024,260672,263894,9106,11000,11009,10000,10000,10000,1
+29725,50000,male,2,1,32,1,-2,-1,-1,-1,0,-11545,-1935,7321,2850,6340,3110,10000,10000,7867,6340,3000,2218,0
+29726,100000,male,2,2,29,0,0,-1,-1,-1,-1,51183,-1478,1261,1044,-217,522,0,4000,1044,0,2000,2000,0
+29727,210000,male,1,2,32,1,2,0,0,0,0,161444,160177,151914,148432,150935,154284,6000,8000,6200,6000,5700,5700,0
+29728,300000,male,3,1,32,-1,-1,-1,0,0,-1,590,2635,1461,3242,-80,720,2635,1461,2000,0,800,15,0
+29729,90000,male,2,1,30,1,2,0,0,0,2,45271,44247,45287,46332,49715,48788,0,2055,2100,4476,0,3800,0
+29730,210000,male,2,1,31,-1,-1,2,-1,-1,-1,1748,2488,740,2048,740,740,2488,0,2048,740,740,740,0
+29731,10000,male,2,2,47,2,0,0,0,0,0,8640,9043,9489,9237,9422,9619,1145,1136,1144,329,340,418,1
+29732,90000,male,2,1,36,0,0,0,-2,-2,-2,53234,38645,0,0,0,0,2100,0,0,0,0,0,0
+29733,50000,male,3,2,35,1,2,0,0,0,2,51350,50214,50035,50495,52073,51120,0,2160,2000,4300,0,2061,0
+29734,140000,male,3,1,41,-1,-1,-1,-1,0,-1,1476,2139,0,1686,1686,205,2139,0,1686,0,205,6689,0
+29735,310000,male,2,2,35,0,0,0,0,0,0,259636,263812,269351,276873,281764,299161,10000,9775,12000,11000,22000,9905,0
+29736,250000,male,1,1,44,-1,-1,-1,-1,-1,0,3704,5303,25959,6354,2994,5360,5319,26036,6373,3000,4376,3609,0
+29737,200000,male,1,1,37,-2,-2,-2,-2,-2,-2,11572,52799,19583,20632,3142,21253,55291,25120,25118,36,27107,43215,0
+29738,360000,male,1,1,35,-1,-1,-1,-2,-2,-2,3771,900,0,0,0,0,900,0,0,0,0,0,0
+29739,50000,male,2,2,43,0,0,0,0,0,0,12661,13743,14777,12404,10777,16597,1600,1605,2000,500,6000,6000,1
+29740,500000,male,2,1,39,-2,-2,-2,-2,-2,-2,1777,23800,297,9342,3518,5597,23800,297,9342,3518,5597,717,0
+29741,50000,male,2,1,43,0,0,0,0,0,0,50562,55032,50688,49739,18888,19290,6500,2112,1400,700,700,800,0
+29742,20000,male,1,2,31,-2,-2,-2,-1,-1,-1,668,355,0,600,5275,841,355,0,600,5275,841,763,0
+29743,90000,male,2,1,31,0,0,0,0,0,0,70329,69073,70561,72021,73912,58301,2471,2600,2633,3108,2052,1858,0
+29744,240000,male,2,1,36,0,0,2,2,0,0,216923,242282,245657,240040,231790,221683,30700,8700,0,8207,9000,8000,0
+29745,20000,male,2,2,33,3,2,8,7,6,5,14513,22232,21936,21631,21026,20130,8000,0,0,0,0,0,1
+29746,210000,male,2,2,33,0,0,0,0,0,0,155847,156084,177865,89227,90027,93076,6000,5896,4800,3500,5000,4000,0
+29747,260000,male,1,2,33,2,2,2,2,2,2,128352,131768,128251,142480,145630,150147,7000,0,18000,7000,7000,5500,0
+29748,50000,male,2,2,32,0,0,0,0,0,0,52475,53600,55739,55957,29238,6119,2000,3000,1591,72,1134,73421,0
+29749,90000,male,2,2,32,0,0,0,-2,-2,-2,88903,34000,0,0,0,0,7000,0,0,0,0,0,0
+29750,20000,male,3,1,45,1,3,2,2,0,0,18838,18243,18849,17724,17524,0,0,1200,0,0,0,0,1
+29751,60000,male,2,1,40,0,0,0,0,0,0,53896,53640,51608,52642,52806,53530,2500,2500,2500,2000,2100,2200,0
+29752,200000,male,2,2,34,0,0,0,0,2,0,176642,180421,185722,196732,188930,192647,7000,8500,16000,0,7500,15000,0
+29753,50000,male,2,1,34,0,0,0,0,0,0,43389,44381,45942,45943,20276,19515,1717,2278,1279,3475,676,648,0
+29754,250000,male,1,1,34,0,0,0,0,0,0,6035,11782,7241,7277,4972,2609,1131,4000,3000,99,1000,6000,1
+29755,20000,male,3,1,48,0,0,3,2,5,4,10805,15270,14740,18188,17630,16780,5000,0,4000,0,0,0,1
+29756,200000,male,3,2,42,-1,0,0,0,0,0,2753,4520,7151,9641,14927,17345,3006,5019,5013,10007,5006,10003,0
+29757,50000,male,5,2,46,0,0,0,-1,0,0,49336,49623,19900,19183,19563,19157,1423,1000,19183,687,696,776,0
+29758,200000,male,2,1,37,0,0,0,0,0,0,149303,156632,136685,137432,138059,126615,30000,30000,4148,15100,8029,15004,0
+29759,250000,male,3,2,35,-1,-1,-1,-1,-1,-1,29363,4501,27548,1800,11942,4680,4501,27548,1800,11942,4680,0,0
+29760,50000,male,2,2,49,5,4,3,2,0,0,52321,51210,50125,48640,17450,60,0,0,0,2000,1003,1076,0
+29761,210000,male,1,2,35,-1,-1,-1,-1,-1,-1,326,326,326,326,326,326,326,326,326,326,326,326,0
+29762,80000,male,2,2,42,1,4,3,2,0,0,97841,94992,87801,81545,51338,50826,0,639,0,50918,2000,2000,0
+29763,50000,male,2,2,40,2,0,0,2,0,0,11058,12479,13876,13444,13367,13282,2000,2000,1000,1000,1000,2000,1
+29764,50000,male,2,2,48,0,0,0,0,0,0,23694,22500,20279,19816,18711,17598,1635,1360,1233,601,591,736,0
+29765,20000,male,2,2,36,0,0,0,0,-2,-2,20528,16287,7415,0,0,0,1300,1000,0,0,0,1180,1
+29766,400000,male,2,2,37,1,-1,0,0,0,0,396343,394858,395716,385947,305542,271385,423903,15100,14600,13000,9500,9500,0
+29767,500000,male,1,1,44,-1,-1,-1,-1,0,-1,100862,367,15272,12925,75667,67609,367,16652,76146,67697,67609,71946,0
+29768,100000,male,2,1,46,0,0,-1,-1,-1,-2,60799,10095,1494,2200,0,0,2036,1504,2506,0,0,0,0
+29769,220000,male,1,1,42,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+29770,40000,male,1,1,47,2,2,2,2,2,2,10555,11084,12605,13102,12595,14386,1000,2000,1000,0,2000,0,1
+29771,50000,male,2,1,41,0,0,0,0,0,0,43474,48921,34879,31820,9965,10017,40003,1636,1800,344,400,400,0
+29772,100000,male,3,1,49,0,0,0,0,0,0,99721,86232,83745,79107,63811,48863,3500,5000,3000,3000,1732,4700,0
+29773,150000,male,1,1,35,2,0,0,0,0,0,165441,160292,153981,129725,103050,54447,7300,6100,5100,4200,1900,1600,1
+29774,80000,male,2,2,37,0,0,0,2,2,2,47765,49651,53850,52388,55589,54570,3000,5000,0,4078,0,2500,1
+29775,100000,male,2,2,32,0,0,0,0,0,0,85366,87064,89401,90470,44610,45806,3114,3738,3059,1450,1765,1473,0
+29776,340000,male,1,2,33,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+29777,120000,male,2,2,30,0,0,0,0,0,0,98440,100802,104378,106651,108362,96168,4000,5200,5500,5000,5000,5000,0
+29778,20000,male,2,2,30,0,0,0,0,0,0,19027,19656,18781,20632,20042,20090,1279,3000,6668,468,507,5582,0
+29779,20000,male,2,2,31,-1,-1,-1,2,-1,-1,390,390,780,390,806,19103,390,780,0,806,19103,1000,1
+29780,30000,male,2,2,34,0,0,0,0,0,0,24380,17858,19563,20929,21280,21724,2000,2000,2000,1000,787,1133,0
+29781,130000,male,3,2,34,0,0,0,0,0,0,10557,12069,14849,17585,17990,20682,2000,3000,3000,1000,3000,3000,0
+29782,180000,male,6,1,34,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+29783,500000,male,1,2,34,0,0,0,0,0,0,494356,488578,488166,485249,441981,424592,17438,18852,16673,15244,15216,16037,0
+29784,190000,male,2,1,43,0,0,0,0,0,0,83399,86010,87736,90373,91980,94502,4000,4000,5000,4000,4000,5000,1
+29785,150000,male,5,1,36,0,0,0,0,0,0,216482,220889,133616,136378,139219,142172,5500,3800,3900,4000,4100,4100,0
+29786,320000,male,1,1,48,2,2,2,2,2,2,206732,201932,215392,218370,220977,225021,0,18300,8000,7700,7700,0,1
+29787,320000,male,1,1,47,0,0,0,0,0,0,162701,132087,120285,124565,89699,62805,20000,15000,10000,22500,20000,20000,0
+29788,490000,male,1,1,49,-1,-1,-1,-1,-1,-1,19107,10190,10149,76760,8879,16705,10238,10191,77163,8921,16786,27662,0
+29789,10000,male,3,1,42,2,2,0,0,2,0,9013,8714,9121,9926,8898,7667,0,1200,1500,0,1000,3000,1
+29790,400000,male,1,1,39,0,0,-1,0,0,0,10260,17794,6402,20772,12406,10945,12201,6430,20118,5037,5054,3104,0
+29791,10000,male,2,1,37,1,-2,-1,3,2,0,-265,-265,5235,5007,4779,7680,0,5500,0,0,3000,2000,1
+29792,300000,male,2,2,47,0,0,0,0,0,0,109274,110453,115453,118522,118586,118179,3000,5000,5013,4514,4220,4008,0
+29793,310000,male,4,1,46,-1,-1,-1,-1,-1,-1,15431,10414,21209,91238,18293,14332,10414,21229,91254,18293,14332,15785,0
+29794,100000,male,2,2,44,2,2,2,2,2,2,80358,81344,84133,84873,82613,87461,2900,5000,3000,0,6200,4000,1
+29795,80000,male,2,2,36,0,0,0,0,0,0,33457,34197,35641,36742,38127,39509,1600,2000,2000,2000,2000,5000,0
+29796,50000,male,3,1,46,0,0,0,0,0,0,62315,60180,58108,55774,53589,51345,2200,2200,2000,1967,2002,1727,0
+29797,270000,male,2,2,36,1,-1,-1,-2,-1,0,-16,3326,-54,-54,19315,8388,3342,0,0,19369,996,3,0
+29798,500000,male,2,1,44,-1,-1,-1,-1,-1,-1,2445,12988,2544,949,86362,-8,13053,2556,955,86793,0,1793,0
+29799,50000,male,2,2,39,0,0,0,0,2,2,25637,28371,29913,32417,31597,33575,3500,2000,3000,0,2500,3000,1
+29800,460000,male,2,1,39,-2,-2,-2,-2,-2,-2,700,9916,9906,7586,4706,4328,9916,9906,7596,4706,4328,7008,0
+29801,80000,male,3,2,44,1,2,0,0,0,2,58606,57076,58358,58992,62696,64148,0,2800,2200,4700,2600,0,0
+29802,260000,male,3,1,39,0,0,0,0,0,0,30498,31500,31619,22020,22040,23061,1894,1403,1642,1053,2000,425,0
+29803,50000,male,2,1,47,0,0,0,0,0,0,11325,12335,13431,14439,14602,14918,1504,1600,1537,700,700,600,0
+29804,30000,male,3,1,41,0,0,0,0,0,2,19904,21267,22120,23746,25346,24801,2000,1510,3000,2000,0,3000,0
+29805,190000,male,2,1,42,0,0,0,0,0,0,3747,3313,4085,4742,5875,7037,1000,1004,1500,1500,1267,1500,1
+29806,290000,male,1,2,40,0,0,0,0,0,0,83607,83618,86768,87767,87813,71014,3000,4500,4001,3094,3000,3045,0
+29807,650000,male,1,1,44,-2,-2,-2,-2,-2,-2,2119,5094,5158,7139,1034,2127,5115,5180,7201,1035,2139,3463,0
+29808,50000,male,2,1,38,0,0,0,0,0,-2,1529,5404,3853,4768,-52,-52,1200,1200,1020,0,0,7000,1
+29809,80000,male,1,2,44,0,0,0,0,0,0,77156,77494,77438,67054,60270,56138,3000,2734,2215,4000,2036,2121,0
+29810,200000,male,2,1,42,0,0,0,0,0,0,76929,74701,69669,13877,9789,116868,5000,4070,3000,2078,115000,6000,0
+29811,150000,male,1,1,43,-1,3,2,-1,-1,-1,832,832,416,416,416,416,0,416,416,416,416,0,1
+29812,290000,male,2,2,30,2,2,0,0,0,2,270131,213484,197238,202680,133478,131024,0,9000,10500,17000,0,3500,1
+29813,340000,male,1,2,29,-1,0,0,0,0,0,44855,331641,331334,286660,263505,268256,300039,13214,12005,13005,10011,12005,0
+29814,320000,male,1,2,30,0,0,0,0,0,0,95526,97737,101151,104203,108867,40411,5000,5000,5000,5364,5010,5013,0
+29815,80000,male,2,2,31,0,0,0,0,3,2,50244,51243,52319,58245,56728,55691,1835,1903,6800,0,0,2100,0
+29816,10000,male,2,2,30,0,0,0,0,0,0,9018,10015,10067,10105,9471,9669,1158,1210,1200,339,351,394,1
+29817,420000,male,2,2,31,0,0,0,0,0,0,405274,411980,287733,293951,305011,312087,14302,10500,11000,16000,12000,16000,0
+29818,230000,male,2,1,41,0,0,0,0,0,0,226467,231187,231272,228653,225471,224853,10000,10500,10000,9000,8200,9000,0
+29819,100000,male,2,2,35,0,0,0,0,0,0,61378,62756,64147,65910,61018,62878,3000,3000,3500,3000,3000,3000,0
+29820,100000,male,1,1,35,0,0,0,0,0,0,98803,101103,93566,90339,66222,66871,4035,4098,4213,3106,4000,4000,1
+29821,280000,male,1,1,31,0,0,0,0,0,0,235461,196894,168463,149816,128721,130406,8900,8100,7200,5000,5000,4700,0
+29822,220000,male,1,1,34,-2,-2,-2,-2,-2,-2,6433,6286,4903,9078,3583,4682,6307,4927,9123,3587,4698,13774,0
+29823,340000,male,2,2,36,-2,-2,-2,-2,-2,-2,19628,14586,15018,12062,3894,7957,14594,15047,12064,3894,7957,18191,0
+29824,340000,male,3,1,36,0,0,0,0,0,0,362178,303611,92112,75710,63870,52671,10116,3300,5000,10000,10000,30000,1
+29825,210000,male,2,2,37,0,0,0,0,0,0,18896,19777,20803,21816,22250,22716,1500,1350,1363,797,825,829,0
+29826,140000,male,2,1,38,0,0,0,0,0,0,135261,137999,141532,75815,65099,66445,4494,5303,2806,1825,1880,1901,1
+29827,390000,male,2,1,37,0,0,0,0,0,0,174603,178087,185212,187648,192538,198828,6379,10000,7001,8001,10000,10000,0
+29828,20000,male,3,2,49,0,0,0,-2,-2,-2,16787,18464,0,0,0,0,2074,0,0,0,0,0,0
+29829,420000,male,1,1,34,0,0,0,0,0,0,454391,466810,483277,479800,489200,489200,20000,24000,11000,10000,0,11000,0
+29830,350000,male,3,1,31,1,2,2,0,0,0,225434,214620,170451,156922,143062,224387,11000,0,5500,5000,100000,0,0
+29831,50000,male,3,1,39,0,0,0,0,0,0,43127,44413,45697,46873,47188,48532,2000,2000,2000,2000,2000,2000,1
+29832,630000,male,2,1,46,0,0,0,0,0,0,125975,91247,81317,146005,146207,106467,3416,4300,84700,4211,4470,3600,0
+29833,140000,male,2,1,34,0,0,0,0,0,0,32538,36002,40422,44433,28029,32386,4000,5000,5000,5000,5000,10000,0
+29834,180000,male,3,1,40,0,0,0,-1,0,0,105918,81091,-1659,111077,112738,115746,4400,0,112736,5000,5300,5000,0
+29835,340000,male,2,1,37,0,0,0,0,0,0,71934,78695,80831,81589,83546,85362,8000,4000,3000,3300,3300,4000,0
+29836,210000,male,1,1,49,-1,-1,-1,-1,-1,-1,291,291,291,291,291,291,291,582,291,291,291,291,0
+29837,100000,male,3,2,47,0,0,0,0,0,-2,94667,97088,99520,102650,0,0,4000,4000,5000,0,0,0,0
+29838,180000,male,1,1,37,1,-1,-1,-1,-1,-1,1660,2701,1832,919,500,7068,2701,1832,919,500,7068,9268,0
+29839,300000,male,1,1,46,-1,-1,-1,-1,-1,-1,132760,1968,4436,839,5792,7053,1977,4458,862,5821,7088,9647,0
+29840,210000,male,2,1,45,-1,-1,-1,-1,-1,-1,1792,4339,4049,345,650,3217,4369,4049,348,650,3217,3912,1
+29841,230000,male,1,1,46,-1,-1,-1,-1,-1,-2,39900,1200,0,11211,0,0,1200,0,11211,0,0,0,0
+29842,70000,male,3,1,45,2,2,2,2,2,2,71586,71623,71020,67338,70769,68957,3100,3008,0,5100,2600,0,1
+29843,120000,male,3,1,47,0,0,0,0,0,0,71777,73282,75499,77739,78666,80399,2700,3400,3500,2815,3000,3000,1
+29844,20000,male,2,2,34,1,2,0,0,0,0,14498,13968,15739,17168,17580,18295,0,2000,2000,1000,1000,1000,0
+29845,140000,male,1,2,29,0,0,0,0,0,0,142044,142087,255846,140057,100177,100873,6100,5528,4500,3500,4000,4000,1
+29846,20000,male,2,2,29,0,0,-2,-2,-2,-2,16809,0,0,0,0,0,0,0,0,0,0,0,1
+29847,50000,male,2,2,29,1,2,0,0,0,0,50845,48750,103486,50590,50248,49387,0,6556,3250,1563,1208,781,0
+29848,170000,male,3,2,30,0,-1,0,0,0,0,10392,168088,168955,161351,126198,124746,168096,6409,7335,4448,4519,5003,0
+29849,260000,male,1,1,30,-1,0,-1,-1,-1,-1,27378,17082,13333,99,99,172104,10018,13333,99,99,172104,30013,0
+29850,60000,male,3,2,30,0,0,0,0,0,0,54952,56021,54126,58732,59306,59728,2600,4553,5800,2000,1000,1462,1
+29851,50000,male,3,1,30,1,2,2,0,0,0,17479,18195,17614,18630,19000,19421,1300,0,1310,680,727,6000,1
+29852,150000,male,3,2,29,0,0,-1,-1,0,-1,106556,108706,26068,20546,27228,3270,46060,81620,184133,17322,3279,6222,0
+29853,240000,male,1,2,29,0,0,2,2,2,0,64826,72951,62848,60645,57554,57375,10589,34,4400,0,2000,1900,1
+29854,140000,male,1,2,29,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+29855,360000,male,1,2,32,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+29856,310000,male,2,2,30,-2,-2,-2,-2,-2,-2,167,-223,780,0,0,291,0,1003,0,0,291,173,0
+29857,210000,male,2,1,31,-1,-1,-1,-1,-1,0,326,326,326,326,652,326,326,326,326,652,0,326,1
+29858,450000,male,1,2,31,-1,-1,-1,-1,-2,-2,5000,5000,5000,0,0,0,5000,5000,0,0,0,0,0
+29859,230000,male,1,2,34,-1,-1,0,0,0,0,23396,25723,49223,66006,47412,29290,25748,30029,27417,1016,640,260,0
+29860,390000,male,1,2,32,0,0,0,0,-1,-1,60425,49480,46201,38770,3914,6568,1781,2188,1000,8572,6568,11416,0
+29861,10000,male,2,2,32,2,0,0,0,0,0,9299,9576,9028,9644,9790,9990,1132,1384,1000,196,200,0,0
+29862,330000,male,2,2,33,0,0,0,0,0,0,50999,50055,47398,40334,34443,33898,2000,2007,2000,2000,2000,2000,0
+29863,30000,male,1,2,33,-1,3,2,-1,0,0,31724,30923,29928,29498,27025,0,0,0,31200,541,0,0,1
+29864,190000,male,1,2,33,0,0,0,0,0,0,144706,137502,127014,120826,112211,110396,6388,6112,4202,4200,4200,5000,0
+29865,50000,male,3,1,37,-1,-1,2,2,-1,-1,3057,3427,3207,0,1250,5245,3000,0,0,1250,5245,0,1
+29866,50000,male,5,1,45,2,0,0,0,0,0,71927,73514,75373,50947,51020,0,3000,3428,2002,1023,0,0,1
+29867,410000,male,1,2,34,0,0,0,-1,-1,-1,468749,411016,420393,1467,1421,-15,17259,18600,1474,1428,0,0,1
+29868,150000,male,2,1,35,1,-2,-2,-2,-2,-2,-18,-18,-18,-18,-18,-18,0,0,0,0,0,0,0
+29869,360000,male,1,2,35,-1,-1,-1,-1,-1,-1,200,317,12349,0,326,105,317,12357,0,326,105,200,0
+29870,50000,male,2,1,40,0,0,0,0,0,0,49073,49531,44002,44356,19344,19354,1691,1942,1296,674,693,1000,0
+29871,210000,male,1,2,36,0,0,0,0,-1,-1,97826,20384,31294,43790,510,20188,5000,11294,13790,1000,20188,16666,0
+29872,50000,male,3,1,46,3,3,2,0,0,0,53418,52281,51173,50033,9779,9924,0,7,1104,445,400,204,0
+29873,220000,male,1,2,38,0,0,0,0,0,0,159322,164176,167028,170480,173818,177556,7500,7000,6500,6000,6000,10000,0
+29874,20000,male,2,2,42,0,0,2,0,0,0,10690,15027,14503,15238,14838,15141,4854,0,1400,0,303,0,0
+29875,170000,male,3,1,46,-1,-1,-1,-1,-1,0,1804,1804,1804,1804,3608,1804,1804,1804,1804,3608,0,1804,1
+29876,20000,male,2,1,43,1,2,2,2,2,0,6216,7268,7009,8102,7136,5243,1307,0,1400,0,182,400,0
+29877,60000,male,2,3,41,0,0,0,0,0,0,61118,50643,44004,26940,9971,-11798,2200,2000,1200,0,0,28000,0
+29878,160000,male,3,1,42,2,0,0,0,0,0,139983,125833,127815,130023,98604,101650,6000,5500,5000,3000,4000,3000,1
+29879,190000,male,3,1,44,-1,2,-1,2,-1,0,291,291,582,291,582,291,0,582,0,582,0,291,0
+29880,360000,male,2,1,45,-1,-1,-1,-1,-1,-1,18552,836,836,836,986,986,836,836,836,986,986,611,0
+29881,50000,male,2,1,48,0,0,0,-1,0,-1,48187,48344,46895,49161,6690,5665,46895,1775,51209,428,5665,8745,1
+29882,130000,male,3,2,40,0,0,0,0,0,0,129548,129438,129388,127628,64345,62373,6000,6000,5161,2239,3000,2291,0
+29883,320000,male,1,1,44,-2,-2,-2,-2,-2,-2,14075,6813,13482,2975,2029,888,6818,13482,2975,2029,888,1332,0
+29884,30000,male,2,2,38,2,2,2,2,0,0,19992,21055,22120,21471,21598,23241,1700,1700,0,782,2000,1100,0
+29885,100000,male,3,1,37,0,0,0,0,0,-1,31647,32935,32689,17246,3175,35311,2129,1686,1043,409,62380,945,0
+29886,20000,male,2,1,48,1,2,0,0,0,0,20733,20109,20126,18928,18761,18787,2,2019,11309,2000,700,1002,0
+29887,50000,male,2,2,45,0,0,0,0,2,0,20638,19834,19387,22574,20483,20121,1314,1340,5000,0,729,793,0
+29888,130000,male,3,1,45,-1,-1,-1,-1,-1,-1,1475,1826,2831,2756,1585,1215,1826,2831,2756,1585,1215,2402,1
+29889,500000,male,2,2,38,0,0,0,0,-1,0,31504,27546,20189,12058,14692,8274,12160,6056,3063,14725,206,9363,0
+29890,80000,male,2,2,39,3,2,0,0,0,0,75635,73830,74968,23867,23130,0,0,2968,1867,463,0,0,1
+29891,30000,male,2,1,42,0,0,0,0,0,0,28658,28281,29826,28572,9072,0,1656,3000,1000,500,0,0,0
+29892,230000,male,1,2,44,-2,-1,-1,-1,-1,-1,5419,3288,806,1467,9192,4388,3306,806,1500,9216,4388,0,0
+29893,50000,male,3,1,46,0,0,0,2,0,0,11401,12506,14774,14233,14744,15252,1300,3000,0,1000,1000,3000,0
+29894,290000,male,1,1,32,-1,-1,-1,-1,0,0,31933,38752,200,1956,910,0,39032,201,1961,4,0,0,0
+29895,280000,male,1,1,39,0,0,0,0,0,0,55050,51417,47069,40939,44290,70573,1652,2144,1666,5015,32013,12,0
+29896,220000,male,1,1,32,-1,2,-1,-1,0,0,528,264,264,292,528,264,0,264,292,500,0,264,0
+29897,160000,male,1,2,30,0,0,0,0,0,0,143457,134345,77045,69659,70186,75249,5237,3034,3010,5011,10006,8070,0
+29898,210000,male,2,2,30,-1,-1,-1,-1,0,-1,4206,3980,7509,1252,626,626,3980,7509,1252,0,626,626,0
+29899,170000,male,1,2,30,0,0,0,0,-2,-2,129848,89684,31050,0,0,0,5115,2500,0,0,0,0,0
+29900,180000,male,2,2,30,0,0,0,0,2,-1,51323,44638,28674,14834,1415,47417,2124,1588,1526,66,57317,70052,0
+29901,410000,male,1,2,32,-1,2,-1,-1,0,-1,380,190,190,380,190,1539,0,190,380,0,1539,0,0
+29902,150000,male,1,2,30,0,0,0,-1,0,-1,2384,4176,5877,1610,1180,2980,2000,2000,2000,1000,3000,0,0
+29903,500000,male,2,2,31,0,0,-1,0,0,0,29566,25560,294257,278725,89161,87863,6025,294318,10254,7524,5009,2333,0
+29904,230000,male,3,2,31,0,-1,-1,-1,-1,-1,4261,25,221,417,613,-191,1000,1000,1000,1000,0,0,0
+29905,290000,male,1,2,32,-1,-1,-1,-1,-1,0,23234,1571,108157,35379,18711,3110,1575,108168,35811,18711,0,157,0
+29906,10000,male,2,1,29,0,0,0,0,0,0,9406,9968,9385,5163,780,0,3009,2000,2009,0,0,0,0
+29907,260000,male,1,2,33,-2,-2,-2,-2,-2,-2,0,263,0,1368,101,955,263,0,1368,101,955,0,0
+29908,50000,male,2,2,30,1,-1,2,-1,-1,-2,-264,264,264,7300,0,0,528,0,7300,0,0,0,0
+29909,610000,male,1,2,31,0,-1,2,-1,-1,-1,348392,322228,319014,347303,248893,269528,323014,1605,349395,250144,271099,220076,0
+29910,360000,male,1,2,31,-1,-1,-1,0,0,-1,735,51,20007,18498,18422,1842,51,20007,1590,1000,1842,390,0
+29911,140000,male,2,1,32,0,0,0,0,0,0,134236,134663,137485,137450,135638,136375,6300,6500,6300,6000,5200,5000,0
+29912,150000,male,5,2,31,2,0,0,0,-2,-2,134866,136692,91815,0,0,0,4633,2000,0,0,0,0,1
+29913,50000,male,2,1,32,0,0,0,-1,2,0,50564,49710,0,50551,40590,39384,2686,0,50551,0,1600,1500,0
+29914,20000,male,2,2,34,0,0,0,0,0,-1,13730,15170,15277,13478,16978,12914,2000,2000,1000,5000,12914,600,0
+29915,200000,male,2,1,33,0,0,0,0,0,0,110006,76950,63834,56768,58826,67577,5000,2183,2059,3000,9751,3000,0
+29916,360000,male,1,1,34,-1,-1,-1,0,0,-1,33654,52686,64069,49005,8676,19487,52951,64535,8907,53,19584,16080,0
+29917,80000,male,3,1,36,0,0,0,0,0,0,65554,66858,68279,69674,71070,73612,2395,2500,2530,2556,3700,3000,0
+29918,190000,male,1,1,37,0,0,0,0,0,-1,21628,20893,5869,29223,19616,148482,2000,3869,25128,10115,148482,4800,0
+29919,230000,male,2,1,35,1,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1
+29920,50000,male,2,1,37,1,2,2,2,0,0,10904,9316,4328,2846,1585,1324,0,3000,0,0,1000,1000,1
+29921,220000,male,2,1,41,0,0,-1,-1,-2,-2,45075,8840,1369,5924,1759,1824,8840,6643,5924,1759,1824,7022,0
+29922,40000,male,2,2,47,2,2,3,2,2,2,52358,54892,53415,51259,47151,46934,4000,0,2000,0,3520,0,1
+29923,420000,male,1,2,34,0,0,0,0,0,0,131939,136721,140011,141695,144839,147954,7000,7000,5500,5500,5600,5000,0
+29924,310000,male,2,1,39,0,0,0,0,0,0,238973,237196,233854,219409,216540,210675,10029,9218,10029,8049,8040,10059,0
+29925,180000,male,1,1,32,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+29926,50000,male,3,2,42,0,0,0,0,0,0,43998,49123,49397,50360,19971,19694,10000,4000,5000,3000,4500,2000,0
+29927,50000,male,2,1,44,1,2,2,2,0,0,38671,36772,33101,28192,22676,14647,2300,1700,0,517,503,585,0
+29928,90000,male,2,1,36,0,0,0,0,0,0,7752,9112,10306,11328,12036,14329,1500,1500,1500,1200,2500,0,1
+29929,20000,male,2,1,44,-2,-2,-2,-2,-2,-2,1822,2872,2712,2882,9235,1719,2890,2720,2890,9263,1824,1701,0
+29930,30000,male,2,2,38,-1,-1,-2,-1,-1,-1,315,923,2939,1993,1907,3319,923,2977,1999,3057,3319,1000,0
+29931,240000,male,1,2,30,-2,-2,-2,-2,-2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0
+29932,360000,male,1,2,35,-1,-1,-2,-2,-2,-2,2220,0,0,0,0,0,0,0,0,0,0,0,0
+29933,130000,male,1,2,34,0,0,0,0,0,0,23292,14077,15546,108047,93708,97353,3000,2000,93000,4000,5027,4005,0
+29934,250000,male,1,1,34,0,0,0,0,0,0,279640,252913,243075,245750,175005,179687,65000,8800,9011,6000,7000,6009,0
+29935,150000,male,1,2,35,-1,-1,-1,-1,-1,-2,3425,9009,-3,780,0,0,9054,0,783,0,0,0,0
+29936,140000,male,2,1,41,0,0,0,0,0,0,138325,137142,139110,138262,49675,46121,6000,7000,4228,1505,2000,2000,0
+29937,210000,male,2,1,34,3,2,2,2,2,2,2500,2500,2500,2500,2500,2500,0,0,0,0,0,0,1
+29938,10000,male,3,1,43,0,0,0,-2,-2,-2,8802,10400,0,0,0,0,2000,0,0,0,0,0,0
+29939,100000,male,1,2,38,0,-1,-1,0,0,0,3042,1427,102996,70626,69473,55004,2000,111784,4000,3000,2000,2000,0
+29940,80000,male,2,2,34,2,2,2,2,2,2,72557,77708,79384,77519,82607,81158,7000,3500,0,7000,0,4000,1
+29941,220000,male,3,1,39,0,0,0,0,0,0,188948,192815,208365,88004,31237,15980,8500,20000,5003,3047,5000,1000,0
+29942,150000,male,3,2,43,-1,-1,-1,-1,0,0,1683,1828,3502,8979,5190,0,1837,3526,8998,129,0,0,0
+29943,30000,male,2,2,37,4,3,2,-1,0,0,3565,3356,2758,20878,20582,19357,0,0,22000,4200,2000,3100,1
+29944,80000,male,3,1,41,1,-1,0,0,0,-1,-1645,78379,76304,52774,11855,48944,85900,3409,1178,1926,52964,1804,1
+29945,50000,male,2,1,46,0,0,0,0,0,0,47929,48905,49764,36535,32428,15313,2078,1800,1430,1000,1000,1000,1
diff --git a/virny/datasets/data_loaders.py b/virny/datasets/data_loaders.py
index 015880c7..e336a796 100644
--- a/virny/datasets/data_loaders.py
+++ b/virny/datasets/data_loaders.py
@@ -8,6 +8,36 @@
from virny.datasets.base import BaseDataLoader
+class CreditCardDefaultDataset(BaseDataLoader):
+
+ def __init__(self, dataset_path: str = None):
+ if dataset_path is None:
+ filename = 'credit_card_default_clean.csv'
+ dataset_path = pathlib.Path(__file__).parent.joinpath(filename)
+
+ df = pd.read_csv(dataset_path)
+ target = 'default_payment'
+ numerical_columns = [
+ "limit_bal", "age",
+ "bill_amt1", "bill_amt2", "bill_amt3",
+ "bill_amt4", "bill_amt5", "bill_amt6",
+ "pay_amt1", "pay_amt2", "pay_amt3",
+ "pay_amt4", "pay_amt5", "pay_amt6"
+ ]
+ categorical_columns = [
+ "sex", "education", "marriage",
+ "pay_0", "pay_2", "pay_3",
+ "pay_4", "pay_5", "pay_6"
+ ]
+
+ super().__init__(
+ full_df=df,
+ target=target,
+ numerical_columns=numerical_columns,
+ categorical_columns=categorical_columns,
+ )
+
+
class CreditDataset(BaseDataLoader):
"""
Dataset class for the Credit dataset that contains sensitive attributes among feature columns.
From 09155c048fdf68f6310e362aa1ae07f5220d482b Mon Sep 17 00:00:00 2001
From: proc1v
Date: Mon, 6 Nov 2023 22:20:29 +0200
Subject: [PATCH 042/148] Updated requirements
---
requirements.txt | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/requirements.txt b/requirements.txt
index 0b5c8ab7..96d90e01 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,6 +1,6 @@
wheel~=0.38.4
twine~=4.0.2
-numpy~=1.24.2
+numpy~=1.23
matplotlib~=3.6.2
pandas~=1.5.2
altair~=4.2.0
From c6006b23dea7e6e8730937288952e0ea6c24f7df Mon Sep 17 00:00:00 2001
From: proc1v
Date: Mon, 6 Nov 2023 23:01:20 +0200
Subject: [PATCH 043/148] Fixed with_predict_proba parameter to variance
analyzers
---
.../abstract_overall_variance_analyzer.py | 5 +++--
.../batch_overall_variance_analyzer.py | 4 +++-
...verall_variance_analyzer_postprocessing.py | 4 +++-
virny/analyzers/subgroup_variance_analyzer.py | 1 +
virny/datasets/__init__.py | 3 ++-
virny/datasets/data_loaders.py | 2 +-
.../metrics_computation_interfaces.py | 22 ++++++++++---------
7 files changed, 25 insertions(+), 16 deletions(-)
diff --git a/virny/analyzers/abstract_overall_variance_analyzer.py b/virny/analyzers/abstract_overall_variance_analyzer.py
index 67edffb5..18edc79b 100644
--- a/virny/analyzers/abstract_overall_variance_analyzer.py
+++ b/virny/analyzers/abstract_overall_variance_analyzer.py
@@ -43,7 +43,7 @@ class AbstractOverallVarianceAnalyzer(metaclass=ABCMeta):
def __init__(self, base_model, base_model_name: str, bootstrap_fraction: float,
X_train: pd.DataFrame, y_train: pd.DataFrame, X_test: pd.DataFrame, y_test: pd.DataFrame,
- dataset_name: str, n_estimators: int, verbose: int = 0):
+ dataset_name: str, n_estimators: int, with_predict_proba: bool = True, verbose: int = 0):
self.base_model = base_model
self.base_model_name = base_model_name
self.bootstrap_fraction = bootstrap_fraction
@@ -52,6 +52,7 @@ def __init__(self, base_model, base_model_name: str, bootstrap_fraction: float,
self.models_lst = [deepcopy(base_model) for _ in range(n_estimators)]
self.models_predictions = None
self.prediction_metrics = None
+ self.with_predict_proba = with_predict_proba
self._verbose = verbose
self.__logger = get_logger(verbose)
@@ -90,7 +91,7 @@ def compute_metrics(self, save_results: bool = True, with_fit: bool = True):
self.models_predictions = self.UQ_by_boostrap(boostrap_size, with_replacement=True, with_fit=with_fit)
# Count metrics based on prediction proba results
- y_preds, self.prediction_metrics = count_prediction_metrics(self.y_test.values, self.models_predictions)
+ y_preds, self.prediction_metrics = count_prediction_metrics(self.y_test.values, self.models_predictions, self.with_predict_proba)
self.__logger.info(f'Successfully computed predict proba metrics')
if save_results:
diff --git a/virny/analyzers/batch_overall_variance_analyzer.py b/virny/analyzers/batch_overall_variance_analyzer.py
index 3ddcc69e..4326a90b 100644
--- a/virny/analyzers/batch_overall_variance_analyzer.py
+++ b/virny/analyzers/batch_overall_variance_analyzer.py
@@ -37,7 +37,8 @@ class BatchOverallVarianceAnalyzer(AbstractOverallVarianceAnalyzer):
"""
def __init__(self, base_model, base_model_name: str, bootstrap_fraction: float,
X_train: pd.DataFrame, y_train: pd.DataFrame, X_test: pd.DataFrame, y_test: pd.DataFrame,
- target_column: str, dataset_name: str, n_estimators: int, verbose: int = 0):
+ target_column: str, dataset_name: str, n_estimators: int,
+ with_predict_proba: bool = True, verbose: int = 0):
super().__init__(base_model=base_model,
base_model_name=base_model_name,
bootstrap_fraction=bootstrap_fraction,
@@ -47,6 +48,7 @@ def __init__(self, base_model, base_model_name: str, bootstrap_fraction: float,
y_test=y_test,
dataset_name=dataset_name,
n_estimators=n_estimators,
+ with_predict_proba=with_predict_proba,
verbose=verbose)
self.target_column = target_column
diff --git a/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py b/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py
index c712a91a..8aac6e4b 100644
--- a/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py
+++ b/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py
@@ -12,7 +12,8 @@ class BatchOverallVarianceAnalyzerPostProcessing(BatchOverallVarianceAnalyzer):
def __init__(self, postprocessor, sensitive_attribute: str,
base_model, base_model_name: str, bootstrap_fraction: float,
X_train: pd.DataFrame, y_train: pd.DataFrame, X_test: pd.DataFrame, y_test: pd.DataFrame,
- target_column: str, dataset_name: str, n_estimators: int, verbose: int = 0):
+ target_column: str, dataset_name: str, n_estimators: int,
+ with_predict_proba: bool = True, verbose: int = 0):
super().__init__(base_model=base_model,
base_model_name=base_model_name,
bootstrap_fraction=bootstrap_fraction,
@@ -23,6 +24,7 @@ def __init__(self, postprocessor, sensitive_attribute: str,
target_column=target_column,
dataset_name=dataset_name,
n_estimators=n_estimators,
+ with_predict_proba=with_predict_proba,
verbose=verbose)
self.postprocessor = postprocessor
diff --git a/virny/analyzers/subgroup_variance_analyzer.py b/virny/analyzers/subgroup_variance_analyzer.py
index 6bf821e7..0625d685 100644
--- a/virny/analyzers/subgroup_variance_analyzer.py
+++ b/virny/analyzers/subgroup_variance_analyzer.py
@@ -59,6 +59,7 @@ def __init__(self, model_setting: ModelSetting, n_estimators: int, base_model, b
dataset_name=dataset_name,
target_column=dataset.target,
n_estimators=n_estimators,
+ with_predict_proba=False,
verbose=verbose)
else:
overall_variance_analyzer = BatchOverallVarianceAnalyzer(base_model=base_model,
diff --git a/virny/datasets/__init__.py b/virny/datasets/__init__.py
index 038005a6..2e858c23 100644
--- a/virny/datasets/__init__.py
+++ b/virny/datasets/__init__.py
@@ -4,12 +4,13 @@
"""
from .data_loaders import CompasWithoutSensitiveAttrsDataset, DiabetesDataset, CompasDataset, \
ACSIncomeDataset, ACSEmploymentDataset, ACSMobilityDataset, ACSTravelTimeDataset, ACSPublicCoverageDataset, \
- RicciDataset, LawSchoolDataset
+ RicciDataset, LawSchoolDataset, CreditCardDefaultDataset
__all__ = [
"CompasWithoutSensitiveAttrsDataset",
"CompasDataset",
+ "CreditCardDefaultDataset",
"DiabetesDataset",
"RicciDataset",
"LawSchoolDataset",
diff --git a/virny/datasets/data_loaders.py b/virny/datasets/data_loaders.py
index e336a796..895bd433 100644
--- a/virny/datasets/data_loaders.py
+++ b/virny/datasets/data_loaders.py
@@ -36,7 +36,7 @@ def __init__(self, dataset_path: str = None):
numerical_columns=numerical_columns,
categorical_columns=categorical_columns,
)
-
+
class CreditDataset(BaseDataLoader):
"""
diff --git a/virny/user_interfaces/metrics_computation_interfaces.py b/virny/user_interfaces/metrics_computation_interfaces.py
index 61ec2ab8..a7d336e6 100644
--- a/virny/user_interfaces/metrics_computation_interfaces.py
+++ b/virny/user_interfaces/metrics_computation_interfaces.py
@@ -82,10 +82,9 @@ def compute_model_metrics(base_model, n_estimators: int, dataset: BaseFlowDatase
base_model_name
Model name to name a result file with metrics
postprocessor
- [Optional] Postprocessor object with fit and predict methods
- to apply postprocessing intervention for the base model after training.
+ [Optional] Postprocessor object to apply to model predictions before metrics computation
postprocessing_sensitive_attribute
- [Optional] Sensitive attribute name to apply postprocessing intervention for the base model after training.
+ [Optional] Sensitive attribute name to apply postprocessor only to this attribute predictions
save_results
[Optional] If to save result metrics in a file
model_setting
@@ -107,6 +106,8 @@ def compute_model_metrics(base_model, n_estimators: int, dataset: BaseFlowDatase
for g in test_protected_groups.keys():
print(g, test_protected_groups[g].shape)
+ print("postprocessing_sensitive_attribute: ", postprocessing_sensitive_attribute)
+
# Compute stability metrics for subgroups
subgroup_variance_analyzer = SubgroupVarianceAnalyzer(model_setting=model_setting,
n_estimators=n_estimators,
@@ -186,10 +187,9 @@ def run_metrics_computation(dataset: BaseFlowDataset, bootstrap_fraction: float,
computation_mode
[Optional] A non-default mode for metrics computation. Should be included in the ComputationMode enum.
postprocessor
- [Optional] Postprocessor object with fit and predict methods
- to apply postprocessing intervention for the base model after training.
+ [Optional] Postprocessor object to apply to model predictions before metrics computation
postprocessing_sensitive_attribute
- [Optional] Sensitive attribute name to apply postprocessing intervention for the base model after training.
+ [Optional] Sensitive attribute name to apply postprocessor only to this attribute predictions
save_results
[Optional] If to save result metrics in a file
save_results_dir_path
@@ -223,6 +223,7 @@ def run_metrics_computation(dataset: BaseFlowDataset, bootstrap_fraction: float,
save_results=save_results,
save_results_dir_path=save_results_dir_path,
verbose=verbose)
+ print("metrics_computation_interfaces.py: model_metrics_df: ", model_metrics_df)
models_metrics_dct[model_name] = model_metrics_df
if verbose >= 2:
print(f'\n[{model_name}] Metrics matrix:')
@@ -287,7 +288,7 @@ def compute_metrics_with_config(dataset: BaseFlowDataset, config, models_config:
def compute_metrics_multiple_runs_with_db_writer(dataset: BaseFlowDataset, config, models_config: dict,
- custom_tbl_fields_dct: dict, db_writer_func,
+ custom_tbl_fields_dct: dict, db_writer_func,
postprocessor=None, postprocessing_sensitive_attribute: str = None,
verbose: int = 0) -> dict:
"""
@@ -309,10 +310,9 @@ def compute_metrics_multiple_runs_with_db_writer(dataset: BaseFlowDataset, confi
db_writer_func
Python function object has one argument (run_models_metrics_df) and save this metrics df to a target database
postprocessor
- [Optional] Postprocessor object with fit and predict methods
- to apply postprocessing intervention for the base model after training.
+ [Optional] Postprocessor object to apply to model predictions before metrics computation
postprocessing_sensitive_attribute
- [Optional] Sensitive attribute name to apply postprocessing intervention for the base model after training.
+ [Optional] Sensitive attribute name to apply postprocessor only to this attribute predictions
verbose
[Optional] Level of logs printing. The greater level provides more logs.
As for now, 0, 1, 2 levels are supported.
@@ -332,6 +332,7 @@ def compute_metrics_multiple_runs_with_db_writer(dataset: BaseFlowDataset, confi
postprocessing_sensitive_attribute=postprocessing_sensitive_attribute,
save_results=False,
verbose=verbose)
+ #print(models_metrics_dct)
# Concatenate current run metrics with previous results and
# create melted_model_metrics_df to save it in a database
@@ -360,6 +361,7 @@ def compute_metrics_multiple_runs_with_db_writer(dataset: BaseFlowDataset, confi
value_name="Metric_Value")
run_models_metrics_df = pd.concat([run_models_metrics_df, melted_model_metrics_df])
+ #print(run_models_metrics_df)
# Save results for this run in a database
db_writer_func(run_models_metrics_df)
From eea74b4ec21c879f427c9e0621a56ba8c11dd31c Mon Sep 17 00:00:00 2001
From: proc1v
Date: Wed, 8 Nov 2023 20:08:03 +0200
Subject: [PATCH 044/148] Fixed numpy version
---
requirements.txt | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/requirements.txt b/requirements.txt
index 96d90e01..6f68ab56 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,6 +1,6 @@
wheel~=0.38.4
twine~=4.0.2
-numpy~=1.23
+numpy~=1.23.5
matplotlib~=3.6.2
pandas~=1.5.2
altair~=4.2.0
From 438368857cc5476ad1e325deef5883608e5ffd76 Mon Sep 17 00:00:00 2001
From: proc1v
Date: Sun, 12 Nov 2023 17:09:46 +0200
Subject: [PATCH 045/148] Added garbage collector
---
.../batch_overall_variance_analyzer_postprocessing.py | 6 ++++++
1 file changed, 6 insertions(+)
diff --git a/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py b/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py
index 8aac6e4b..10d05f2b 100644
--- a/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py
+++ b/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py
@@ -1,3 +1,5 @@
+import gc
+
import numpy as np
import pandas as pd
@@ -65,6 +67,10 @@ def UQ_by_boostrap(self, boostrap_size: int, with_replacement: bool, with_fit: b
if with_fit:
X_sample, y_sample = generate_bootstrap(self.X_train, self.y_train, boostrap_size, with_replacement)
classifier = self._fit_model(classifier, X_sample, y_sample)
+
+ # Force garbage collection to avoid out of memory error
+ if with_fit and ((idx + 1) % 10 == 0 or (idx + 1) == self.n_estimators):
+ gc.collect()
train_binary_label_dataset_sample = construct_binary_label_dataset_from_samples(X_sample, y_sample, self.X_train.columns, self.target_column, self.sensitive_attribute)
train_binary_label_dataset_sample_pred = predict_on_binary_label_dataset(classifier, train_binary_label_dataset_sample)
From 1ffc39d3c714d16b107c3d60c4074f9536462732 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Mon, 20 Nov 2023 23:15:55 +0200
Subject: [PATCH 046/148] Added Label_Stability_Difference
---
virny/custom_classes/metrics_composer.py | 1 +
1 file changed, 1 insertion(+)
diff --git a/virny/custom_classes/metrics_composer.py b/virny/custom_classes/metrics_composer.py
index b18f3866..a7dbb412 100644
--- a/virny/custom_classes/metrics_composer.py
+++ b/virny/custom_classes/metrics_composer.py
@@ -55,6 +55,7 @@ def compose_metrics(self):
'Accuracy_Parity': cfm[dis_group]['Accuracy'] - cfm[priv_group]['Accuracy'],
# Stability disparity metrics
'Label_Stability_Ratio': cfm[dis_group]['Label_Stability'] / cfm[priv_group]['Label_Stability'],
+ 'Label_Stability_Difference': cfm[dis_group]['Label_Stability'] - cfm[priv_group]['Label_Stability'],
'IQR_Parity': cfm[dis_group]['IQR'] - cfm[priv_group]['IQR'],
'Std_Parity': cfm[dis_group]['Std'] - cfm[priv_group]['Std'],
'Std_Ratio': cfm[dis_group]['Std'] / cfm[priv_group]['Std'],
From 3b2a222a241d47163bba51cd95248ef2c4364d61 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Mon, 20 Nov 2023 23:20:00 +0200
Subject: [PATCH 047/148] Added Label_Stability_Difference
---
virny/configs/constants.py | 1 +
virny/custom_classes/metrics_composer.py | 3 ++-
2 files changed, 3 insertions(+), 1 deletion(-)
diff --git a/virny/configs/constants.py b/virny/configs/constants.py
index 81d145b2..fff71dab 100644
--- a/virny/configs/constants.py
+++ b/virny/configs/constants.py
@@ -54,6 +54,7 @@ class ReportType(Enum):
# Stability disparity metrics
LABEL_STABILITY_RATIO = 'Label_Stability_Ratio'
+LABEL_STABILITY_DIFFERENCE = 'Label_Stability_Difference'
IQR_PARITY = 'IQR_Parity'
STD_PARITY = 'Std_Parity'
STD_RATIO = 'Std_Ratio'
diff --git a/virny/custom_classes/metrics_composer.py b/virny/custom_classes/metrics_composer.py
index cbd58c4c..1aae0c97 100644
--- a/virny/custom_classes/metrics_composer.py
+++ b/virny/custom_classes/metrics_composer.py
@@ -32,7 +32,8 @@ def __init__(self, models_metrics_dct: dict, sensitive_attributes_dct: dict):
POSITIVE_RATE: [(STATISTICAL_PARITY_DIFFERENCE, self._difference_operation),
(DISPARATE_IMPACT, self._ratio_operation)],
# Stability disparity metrics
- LABEL_STABILITY: [(LABEL_STABILITY_RATIO, self._ratio_operation)],
+ LABEL_STABILITY: [(LABEL_STABILITY_RATIO, self._ratio_operation),
+ (LABEL_STABILITY_DIFFERENCE, self._difference_operation)],
JITTER: [(JITTER_PARITY, self._difference_operation)],
IQR: [(IQR_PARITY, self._difference_operation)],
STD: [(STD_PARITY, self._difference_operation),
From 620f36f0ba7ea0e5f497e523f0c3e689ba5792ad Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Tue, 28 Nov 2023 02:08:24 +0200
Subject: [PATCH 048/148] Added model performance summary
---
...Multiple_Models_Interface_Vis_Income.ipynb | 102 +++++----
virny/configs/constants.py | 1 +
virny/custom_classes/metrics_composer.py | 3 +-
.../metrics_interactive_visualizer.py | 205 ++++++++++++++++--
virny/utils/data_viz_utils.py | 26 +++
5 files changed, 278 insertions(+), 59 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
index e19f415f..a37d4449 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
@@ -6,8 +6,8 @@
"id": "248cbed8",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-13T20:20:09.765631Z",
- "start_time": "2023-10-13T20:20:09.381209Z"
+ "end_time": "2023-11-27T23:09:00.744106Z",
+ "start_time": "2023-11-27T23:09:00.258137Z"
}
},
"outputs": [],
@@ -23,8 +23,8 @@
"id": "7ec6cd08",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-13T20:20:09.774183Z",
- "start_time": "2023-10-13T20:20:09.765873Z"
+ "end_time": "2023-11-27T23:09:00.753238Z",
+ "start_time": "2023-11-27T23:09:00.743899Z"
}
},
"outputs": [],
@@ -37,12 +37,12 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 4,
"id": "b8cb69f2",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-13T20:20:09.783681Z",
- "start_time": "2023-10-13T20:20:09.774750Z"
+ "end_time": "2023-11-27T23:09:14.159592Z",
+ "start_time": "2023-11-27T23:09:14.145555Z"
}
},
"outputs": [
@@ -72,12 +72,12 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 5,
"id": "7a9241de",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-13T20:20:11.549308Z",
- "start_time": "2023-10-13T20:20:09.784822Z"
+ "end_time": "2023-11-27T23:09:16.946143Z",
+ "start_time": "2023-11-27T23:09:15.322037Z"
}
},
"outputs": [],
@@ -86,12 +86,13 @@
"import pandas as pd\n",
"\n",
"from virny.datasets import ACSIncomeDataset\n",
+ "from virny.custom_classes.metrics_composer import MetricsComposer\n",
"from virny.custom_classes.metrics_interactive_visualizer import MetricsInteractiveVisualizer"
]
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 6,
"outputs": [],
"source": [
"data_loader = ACSIncomeDataset(state=['GA'], year=2018, with_nulls=False, subsample_size=15_000, subsample_seed=42)\n",
@@ -100,52 +101,67 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-13T20:20:12.860282Z",
- "start_time": "2023-10-13T20:20:11.551544Z"
+ "end_time": "2023-11-27T23:09:18.236763Z",
+ "start_time": "2023-11-27T23:09:16.949112Z"
}
},
"id": "d3c53c7b72ecbcd0"
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 7,
"outputs": [],
"source": [
"ROOT_DIR = os.path.join('docs', 'examples')\n",
"subgroup_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'income_subgroup_metrics.csv'), header=0)\n",
- "models_composed_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'income_group_metrics.csv'), header=0)"
+ "subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
+ " subgroup_metrics_df['Intervention_Param'].astype(str))"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-13T20:20:12.888990Z",
- "start_time": "2023-10-13T20:20:12.860786Z"
+ "end_time": "2023-11-27T23:09:18.781790Z",
+ "start_time": "2023-11-27T23:09:18.747739Z"
}
},
"id": "2aab7c79ecdee914"
},
{
"cell_type": "code",
- "execution_count": 7,
- "outputs": [],
+ "execution_count": 8,
+ "outputs": [
+ {
+ "data": {
+ "text/plain": " Metric SEX RAC1P SEX&RAC1P \\\n0 Accuracy_Parity 0.047756 0.074977 0.065217 \n1 Aleatoric_Uncertainty_Parity -0.039005 -0.011947 -0.009222 \n2 Aleatoric_Uncertainty_Ratio 0.935159 0.979638 0.984220 \n3 Equalized_Odds_FNR 0.030793 -0.110745 -0.052498 \n4 Equalized_Odds_FPR -0.021317 0.000952 -0.007008 \n\n Model_Name \n0 LGBMClassifier__alpha=0.7 \n1 LGBMClassifier__alpha=0.7 \n2 LGBMClassifier__alpha=0.7 \n3 LGBMClassifier__alpha=0.7 \n4 LGBMClassifier__alpha=0.7 ",
+ "text/html": "\n\n
\n \n \n | \n Metric | \n SEX | \n RAC1P | \n SEX&RAC1P | \n Model_Name | \n
\n \n \n \n 0 | \n Accuracy_Parity | \n 0.047756 | \n 0.074977 | \n 0.065217 | \n LGBMClassifier__alpha=0.7 | \n
\n \n 1 | \n Aleatoric_Uncertainty_Parity | \n -0.039005 | \n -0.011947 | \n -0.009222 | \n LGBMClassifier__alpha=0.7 | \n
\n \n 2 | \n Aleatoric_Uncertainty_Ratio | \n 0.935159 | \n 0.979638 | \n 0.984220 | \n LGBMClassifier__alpha=0.7 | \n
\n \n 3 | \n Equalized_Odds_FNR | \n 0.030793 | \n -0.110745 | \n -0.052498 | \n LGBMClassifier__alpha=0.7 | \n
\n \n 4 | \n Equalized_Odds_FPR | \n -0.021317 | \n 0.000952 | \n -0.007008 | \n LGBMClassifier__alpha=0.7 | \n
\n \n
\n
"
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
- "subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
- " subgroup_metrics_df['Intervention_Param'].astype(str))\n",
- "models_composed_metrics_df['Model_Name'] = (models_composed_metrics_df['Model_Name'] + '__alpha=' \n",
- " + models_composed_metrics_df['Intervention_Param'].astype(str))"
+ "model_names = subgroup_metrics_df['Model_Name'].unique()\n",
+ "models_metrics_dct = dict()\n",
+ "for model_name in model_names:\n",
+ " models_metrics_dct[model_name] = subgroup_metrics_df[subgroup_metrics_df['Model_Name'] == model_name]\n",
+ "\n",
+ "metrics_composer = MetricsComposer(models_metrics_dct, sensitive_attributes_dct)\n",
+ "models_composed_metrics_df = metrics_composer.compose_metrics()\n",
+ "models_composed_metrics_df.head()"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-13T20:20:12.911932Z",
- "start_time": "2023-10-13T20:20:12.888583Z"
+ "end_time": "2023-11-27T23:09:18.905842Z",
+ "start_time": "2023-11-27T23:09:18.850548Z"
}
},
- "id": "2d922003e752a4b4"
+ "id": "44ee5eff6054ce04"
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 10,
"outputs": [],
"source": [
"models_metrics_dct = dict()\n",
@@ -155,21 +171,21 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-13T20:20:12.937376Z",
- "start_time": "2023-10-13T20:20:12.912368Z"
+ "end_time": "2023-11-27T23:10:14.375071Z",
+ "start_time": "2023-11-27T23:10:14.339164Z"
}
},
"id": "833484748ed512e8"
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 11,
"outputs": [
{
"data": {
"text/plain": "dict_keys(['LGBMClassifier__alpha=0.7', 'LGBMClassifier__alpha=0.0', 'LGBMClassifier__alpha=0.4', 'LogisticRegression__alpha=0.0', 'LogisticRegression__alpha=0.7', 'LogisticRegression__alpha=0.4', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.7', 'MLPClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.7', 'RandomForestClassifier__alpha=0.0'])"
},
- "execution_count": 9,
+ "execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
@@ -180,8 +196,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-13T20:20:12.963217Z",
- "start_time": "2023-10-13T20:20:12.935698Z"
+ "end_time": "2023-11-27T23:10:15.006243Z",
+ "start_time": "2023-11-27T23:10:14.979880Z"
}
},
"id": "15ed7d1ba1f22317"
@@ -196,12 +212,12 @@
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": 58,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-13T20:49:19.030436Z",
- "start_time": "2023-10-13T20:49:18.977199Z"
+ "end_time": "2023-11-27T23:59:15.016940Z",
+ "start_time": "2023-11-27T23:59:14.968372Z"
}
},
"outputs": [],
@@ -213,7 +229,7 @@
},
{
"cell_type": "code",
- "execution_count": 24,
+ "execution_count": 59,
"outputs": [
{
"name": "stdout",
@@ -232,8 +248,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-13T20:50:05.536644Z",
- "start_time": "2023-10-13T20:49:19.061199Z"
+ "end_time": "2023-11-28T00:08:09.433964Z",
+ "start_time": "2023-11-27T23:59:15.062378Z"
}
},
"id": "678a9dc8d51243f4"
@@ -256,8 +272,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-13T20:23:04.989037Z",
- "start_time": "2023-10-13T20:23:04.937593Z"
+ "end_time": "2023-11-27T22:52:53.559673Z",
+ "start_time": "2023-11-27T22:52:53.432952Z"
}
},
"id": "277b6d1de837dab7"
@@ -270,8 +286,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-13T20:23:04.991061Z",
- "start_time": "2023-10-13T20:23:04.988926Z"
+ "end_time": "2023-11-27T22:52:53.561907Z",
+ "start_time": "2023-11-27T22:52:53.559309Z"
}
},
"id": "c207d4345ddca1db"
diff --git a/virny/configs/constants.py b/virny/configs/constants.py
index 81d145b2..fff71dab 100644
--- a/virny/configs/constants.py
+++ b/virny/configs/constants.py
@@ -54,6 +54,7 @@ class ReportType(Enum):
# Stability disparity metrics
LABEL_STABILITY_RATIO = 'Label_Stability_Ratio'
+LABEL_STABILITY_DIFFERENCE = 'Label_Stability_Difference'
IQR_PARITY = 'IQR_Parity'
STD_PARITY = 'Std_Parity'
STD_RATIO = 'Std_Ratio'
diff --git a/virny/custom_classes/metrics_composer.py b/virny/custom_classes/metrics_composer.py
index cbd58c4c..1aae0c97 100644
--- a/virny/custom_classes/metrics_composer.py
+++ b/virny/custom_classes/metrics_composer.py
@@ -32,7 +32,8 @@ def __init__(self, models_metrics_dct: dict, sensitive_attributes_dct: dict):
POSITIVE_RATE: [(STATISTICAL_PARITY_DIFFERENCE, self._difference_operation),
(DISPARATE_IMPACT, self._ratio_operation)],
# Stability disparity metrics
- LABEL_STABILITY: [(LABEL_STABILITY_RATIO, self._ratio_operation)],
+ LABEL_STABILITY: [(LABEL_STABILITY_RATIO, self._ratio_operation),
+ (LABEL_STABILITY_DIFFERENCE, self._difference_operation)],
JITTER: [(JITTER_PARITY, self._difference_operation)],
IQR: [(IQR_PARITY, self._difference_operation)],
STD: [(STD_PARITY, self._difference_operation),
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index 54588226..69857337 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -1,12 +1,15 @@
import pandas as pd
import gradio as gr
import altair as alt
+from pprint import pprint
+from virny.configs.constants import *
from virny.utils.common_helpers import str_to_float
from virny.utils.protected_groups_partitioning import create_test_protected_groups
from virny.utils.data_viz_utils import (create_model_rank_heatmap_visualization, create_sorted_matrix_by_rank,
create_subgroup_sorted_matrix_by_rank, create_bar_plot_for_model_selection,
- compute_proportions, compute_base_rates, create_col_facet_bar_chart)
+ compute_proportions, compute_base_rates, create_col_facet_bar_chart,
+ create_model_performance_summary_visualization)
class MetricsInteractiveVisualizer:
@@ -40,6 +43,14 @@ def __init__(self, X_data: pd.DataFrame, y_data: pd.DataFrame, model_metrics_dct
self.demo = None
self.max_groups = 8
+ # Metric names
+ self.all_accuracy_metrics = [STATISTICAL_BIAS, TPR, TNR, PPV, FNR, FPR, F1, ACCURACY, POSITIVE_RATE]
+ self.all_stability_metrics = [STD, IQR, JITTER, LABEL_STABILITY]
+ self.all_uncertainty_metrics = [ALEATORIC_UNCERTAINTY, OVERALL_UNCERTAINTY]
+ self.all_error_disparity_metrics = [EQUALIZED_ODDS_TPR, EQUALIZED_ODDS_TNR, EQUALIZED_ODDS_FPR, EQUALIZED_ODDS_FNR, DISPARATE_IMPACT, STATISTICAL_PARITY_DIFFERENCE, ACCURACY_PARITY]
+ self.all_stability_disparity_metrics = [LABEL_STABILITY_RATIO, LABEL_STABILITY_DIFFERENCE, IQR_PARITY, STD_PARITY, STD_RATIO, JITTER_PARITY]
+ self.all_uncertainty_disparity_metrics = [OVERALL_UNCERTAINTY_PARITY, OVERALL_UNCERTAINTY_RATIO, ALEATORIC_UNCERTAINTY_PARITY, ALEATORIC_UNCERTAINTY_RATIO]
+
# Create one metrics df with all model_dfs
models_metrics_df = pd.DataFrame()
for model_name in model_metrics_dct.keys():
@@ -123,7 +134,7 @@ def start_web_app(self):
)
with gr.Row():
accuracy_metric = gr.Dropdown(
- sorted(['Statistical_Bias', 'TPR', 'TNR', 'PPV', 'FNR', 'FPR', 'Accuracy', 'F1']),
+ sorted(self.all_accuracy_metrics),
value='Accuracy', multiselect=False, label="Constraint 1 (C1)",
scale=2
)
@@ -131,7 +142,7 @@ def start_web_app(self):
acc_max_val = gr.Text(value="1.0", label="Max value", scale=1)
with gr.Row():
fairness_metric = gr.Dropdown(
- sorted(['Equalized_Odds_TPR', 'Equalized_Odds_FPR', 'Disparate_Impact', 'Statistical_Parity_Difference', 'Accuracy_Parity']),
+ sorted(self.all_error_disparity_metrics),
value='Equalized_Odds_FPR', multiselect=False, label="Constraint 2 (C2)",
scale=2
)
@@ -139,7 +150,7 @@ def start_web_app(self):
fairness_max_val = gr.Text(value="1.0", label="Max value", scale=1)
with gr.Row():
subgroup_stability_metric = gr.Dropdown(
- sorted(['Std', 'IQR', 'Jitter', 'Label_Stability']),
+ sorted(self.all_stability_metrics),
value='Label_Stability', multiselect=False, label="Constraint 3 (C3)",
scale=2
)
@@ -147,7 +158,7 @@ def start_web_app(self):
subgroup_stab_max_val = gr.Text(value="1.0", label="Max value", scale=1)
with gr.Row():
group_stability_metrics = gr.Dropdown(
- sorted(['Label_Stability_Ratio', 'IQR_Parity', 'Std_Parity', 'Std_Ratio', 'Jitter_Parity']),
+ sorted(self.all_stability_disparity_metrics),
value='Label_Stability_Ratio', multiselect=False, label="Constraint 4 (C4)",
scale=2
)
@@ -179,15 +190,15 @@ def start_web_app(self):
)
subgroup_tolerance = gr.Text(value="0.005", label="Tolerance", info="Define an acceptable tolerance for metric dense ranking.")
accuracy_metrics = gr.Dropdown(
- sorted(['Statistical_Bias', 'TPR', 'TNR', 'PPV', 'FNR', 'FPR', 'Accuracy', 'F1']),
+ sorted(self.all_accuracy_metrics),
value=['Accuracy', 'F1'], multiselect=True, label="Accuracy Metrics", info="Select accuracy metrics to display on the heatmap:",
)
uncertainty_metrics = gr.Dropdown(
- sorted(['Aleatoric_Uncertainty', 'Overall_Uncertainty']),
+ sorted(self.all_uncertainty_metrics),
value=['Aleatoric_Uncertainty', 'Overall_Uncertainty'], multiselect=True, label="Uncertainty Metrics", info="Select uncertainty metrics to display on the heatmap:",
)
subgroup_stability_metrics = gr.Dropdown(
- sorted(['Std', 'IQR', 'Jitter', 'Label_Stability']),
+ sorted(self.all_stability_metrics),
value=['Jitter', 'Label_Stability'], multiselect=True, label="Stability Metrics", info="Select stability metrics to display on the heatmap:",
)
subgroup_btn_view2 = gr.Button("Submit")
@@ -211,11 +222,11 @@ def start_web_app(self):
)
group_tolerance = gr.Text(value="0.005", label="Tolerance", info="Define an acceptable tolerance for metric dense ranking.")
fairness_metrics = gr.Dropdown(
- sorted(['Equalized_Odds_TPR', 'Equalized_Odds_FPR', 'Disparate_Impact', 'Statistical_Parity_Difference', 'Accuracy_Parity']),
+ sorted(self.all_error_disparity_metrics),
value=['Equalized_Odds_FPR', 'Equalized_Odds_TPR'], multiselect=True, label="Error Disparity Metrics", info="Select error disparity metrics to display on the heatmap:",
)
group_stability_metrics = gr.Dropdown(
- sorted(['Label_Stability_Ratio', 'IQR_Parity', 'Std_Parity', 'Std_Ratio', 'Jitter_Parity']),
+ sorted(self.all_stability_disparity_metrics),
value=['Label_Stability_Ratio', 'Std_Parity'], multiselect=True, label="Stability Disparity Metrics", info="Select stability disparity metrics to display on the heatmap:",
)
group_btn_view2 = gr.Button("Submit")
@@ -246,15 +257,15 @@ def start_web_app(self):
### Group Specific Metrics
""")
accuracy_metrics = gr.Dropdown(
- sorted(['Statistical_Bias', 'TPR', 'TNR', 'PPV', 'FNR', 'FPR', 'Accuracy', 'F1']),
+ sorted(self.all_accuracy_metrics),
value=['Accuracy', 'F1'], multiselect=True, label="Accuracy Metrics", info="Select accuracy metrics to display on the heatmap:",
)
uncertainty_metrics = gr.Dropdown(
- sorted(['Aleatoric_Uncertainty', 'Overall_Uncertainty']),
+ sorted(self.all_uncertainty_metrics),
value=['Aleatoric_Uncertainty', 'Overall_Uncertainty'], multiselect=True, label="Uncertainty Metrics", info="Select uncertainty metrics to display on the heatmap:",
)
subgroup_stability_metrics = gr.Dropdown(
- sorted(['Std', 'IQR', 'Jitter', 'Label_Stability']),
+ sorted(self.all_stability_metrics),
value=['Jitter', 'Label_Stability'], multiselect=True, label="Stability Metrics", info="Select stability metrics to display on the heatmap:",
)
btn_view3 = gr.Button("Submit")
@@ -264,11 +275,11 @@ def start_web_app(self):
### Disparity Metrics
""")
fairness_metrics = gr.Dropdown(
- sorted(['Equalized_Odds_TPR', 'Equalized_Odds_FPR', 'Disparate_Impact', 'Statistical_Parity_Difference', 'Accuracy_Parity']),
+ sorted(self.all_error_disparity_metrics),
value=['Equalized_Odds_FPR', 'Equalized_Odds_TPR'], multiselect=True, label="Error Disparity Metrics", info="Select error disparity metrics to display on the heatmap:",
)
group_stability_metrics = gr.Dropdown(
- sorted(['Label_Stability_Ratio', 'IQR_Parity', 'Std_Parity', 'Std_Ratio', 'Jitter_Parity']),
+ sorted(self.all_stability_disparity_metrics),
value=['Label_Stability_Ratio', 'Std_Parity'], multiselect=True, label="Stability Disparity Metrics", info="Select stability disparity metrics to display on the heatmap:",
)
with gr.Row():
@@ -283,6 +294,90 @@ def start_web_app(self):
btn_view3.click(self._create_group_metrics_bar_chart_per_one_model,
inputs=[model_name_vw3, fairness_metrics, group_stability_metrics],
outputs=[group_metrics_bar_chart])
+ # ============================ Model Performance Summary ============================
+ with gr.Row():
+ # Scale column 1 to a half of a screen
+ with gr.Column():
+ gr.Markdown(
+ """
+ ## Model Performance Summary
+ """)
+ model_name_vw4 = gr.Dropdown(
+ sorted(self.model_names), value=sorted(self.model_names)[0], multiselect=False, scale=1,
+ label="Model Name", info="Select one model to generate a performance summary:",
+ )
+ with gr.Column():
+ pass
+ with gr.Row():
+ with gr.Column():
+ gr.Markdown(
+ """
+ ### Group Specific Metrics
+ """)
+ with gr.Row():
+ accuracy_metric_vw4 = gr.Dropdown(
+ sorted(self.all_accuracy_metrics),
+ value=ACCURACY, multiselect=False, label="Accuracy Metric",
+ scale=3
+ )
+ acc_threshold_vw4 = gr.Text(value="0.0", label="Threshold", scale=2)
+ with gr.Row():
+ subgroup_stability_metric_vw4 = gr.Dropdown(
+ sorted(self.all_stability_metrics),
+ value=LABEL_STABILITY, multiselect=False, label="Stability Metric",
+ scale=3
+ )
+ subgroup_stab_threshold_vw4 = gr.Text(value="0.0", label="Threshold", scale=2)
+ with gr.Row():
+ subgroup_uncertainty_metric_vw4 = gr.Dropdown(
+ sorted(self.all_uncertainty_metrics),
+ value=ALEATORIC_UNCERTAINTY, multiselect=False, label="Uncertainty Metric",
+ scale=3
+ )
+ subgroup_uncertainty_threshold_vw4 = gr.Text(value="0.0", label="Threshold", scale=2)
+
+ btn_view4 = gr.Button("Submit")
+ with gr.Column():
+ gr.Markdown(
+ """
+ ### Disparity Metrics
+ """)
+ with gr.Row():
+ fairness_metric_vw4 = gr.Dropdown(
+ sorted(self.all_error_disparity_metrics),
+ value=EQUALIZED_ODDS_FPR, multiselect=False, label="Error Disparity Metric",
+ scale=2
+ )
+ fairness_min_val_vw4 = gr.Text(value="-1.0", label="Min value", scale=1)
+ fairness_max_val_vw4 = gr.Text(value="1.0", label="Max value", scale=1)
+ with gr.Row():
+ group_stability_metrics_vw4 = gr.Dropdown(
+ sorted(self.all_stability_disparity_metrics),
+ value=LABEL_STABILITY_RATIO, multiselect=False, label="Stability Disparity Metric",
+ scale=2
+ )
+ group_stab_min_val_vw4 = gr.Text(value="0.7", label="Min value", scale=1)
+ group_stab_max_val_vw4 = gr.Text(value="1.5", label="Max value", scale=1)
+ with gr.Row():
+ group_uncertainty_metrics_vw4 = gr.Dropdown(
+ sorted(self.all_uncertainty_disparity_metrics),
+ value=ALEATORIC_UNCERTAINTY_PARITY, multiselect=False, label="Uncertainty Disparity Metric",
+ scale=2
+ )
+ group_uncertainty_min_val_vw4 = gr.Text(value="-1.0", label="Min value", scale=1)
+ group_uncertainty_max_val_vw4 = gr.Text(value="1.0", label="Max value", scale=1)
+ with gr.Row():
+ model_performance_summary = gr.Plot(label="Model Performance Summary")
+
+ btn_view4.click(self._create_model_performance_summary,
+ inputs=[model_name_vw4,
+ accuracy_metric_vw4, acc_threshold_vw4,
+ subgroup_stability_metric_vw4, subgroup_stab_threshold_vw4,
+ subgroup_uncertainty_metric_vw4, subgroup_uncertainty_threshold_vw4,
+ fairness_metric_vw4, fairness_min_val_vw4, fairness_max_val_vw4,
+ group_stability_metrics_vw4, group_stab_min_val_vw4, group_stab_max_val_vw4,
+ group_uncertainty_metrics_vw4, group_uncertainty_min_val_vw4, group_uncertainty_max_val_vw4],
+ outputs=[model_performance_summary])
self.demo = demo
self.demo.launch(inline=False, debug=True, show_error=True)
@@ -313,6 +408,24 @@ def __filter_subgroup_metrics_df(self, results: dict, subgroup_metric: str,
return results
+ def __check_metric_constraints(self, model_performance_dct, input_constraint_dct):
+ model_metrics_constraints_check_dct = dict()
+ for metric_dim in model_performance_dct.keys():
+ model_metrics_constraints_check_dct[metric_dim] = dict()
+ for group in model_performance_dct[metric_dim]:
+ if group == 'Overall':
+ constraint_type = 'overall'
+ threshold = input_constraint_dct[metric_dim][constraint_type][1]
+ check = 1 if model_performance_dct[metric_dim][group] >= threshold else 0
+ model_metrics_constraints_check_dct[metric_dim][group] = check
+ else:
+ constraint_type = 'disparity'
+ min_val, max_val = input_constraint_dct[metric_dim][constraint_type][1]
+ check = 1 if model_performance_dct[metric_dim][group] >= min_val and model_performance_dct[metric_dim][group] <= max_val else 0
+ model_metrics_constraints_check_dct[metric_dim][group] = check
+
+ return model_metrics_constraints_check_dct
+
def _create_dataset_proportions_bar_chart(self, grp_name1, grp_name2, grp_name3, grp_name4, grp_name5, grp_name6, grp_name7, grp_name8,
grp_dis_val1, grp_dis_val2, grp_dis_val3, grp_dis_val4, grp_dis_val5, grp_dis_val6, grp_dis_val7, grp_dis_val8):
grp_names = [grp_name1, grp_name2, grp_name3, grp_name4, grp_name5, grp_name6, grp_name7, grp_name8]
@@ -490,6 +603,68 @@ def _create_group_model_rank_heatmap(self, model_names: list, group_fairness_met
return model_rank_heatmap
+ def _create_model_performance_summary(self, model_name: str, accuracy_metric, acc_threshold,
+ stability_metric, stability_threshold,
+ uncertainty_metric, uncertainty_threshold,
+ fairness_metric, fairness_min_val, fairness_max_val,
+ group_stability_metrics, group_stab_min_val, group_stab_max_val,
+ group_uncertainty_metrics, group_uncertainty_min_val, group_uncertainty_max_val):
+ accuracy_constraint = (accuracy_metric, str_to_float(acc_threshold, 'Accuracy threshold'))
+ stability_constraint = (stability_metric, str_to_float(stability_threshold, 'Stability threshold'))
+ uncertainty_constraint = (uncertainty_metric, str_to_float(uncertainty_threshold, 'Uncertainty threshold'))
+ fairness_constraint = (fairness_metric, [str_to_float(fairness_min_val, 'Error disparity metric min value'),
+ str_to_float(fairness_max_val, 'Error disparity metric max value')])
+ group_stability_constraint = (group_stability_metrics, [str_to_float(group_stab_min_val, 'Stability disparity min value'),
+ str_to_float(group_stab_max_val, 'Stability disparity max value')])
+ group_uncertainty_constraint = (group_uncertainty_metrics, [str_to_float(group_uncertainty_min_val, 'Uncertainty disparity min value'),
+ str_to_float(group_uncertainty_max_val, 'Uncertainty disparity max value')])
+
+ input_constraints_dct = {
+ 'Accuracy': {
+ 'overall': accuracy_constraint,
+ 'disparity': fairness_constraint,
+ },
+ 'Stability': {
+ 'overall': stability_constraint,
+ 'disparity': group_stability_constraint,
+ },
+ 'Uncertainty': {
+ 'overall': uncertainty_constraint,
+ 'disparity': group_uncertainty_constraint,
+ },
+ }
+
+ # Extract overall and disparity metrics from metrics dfs.
+ # Add the values to a results dict.
+ model_performance_dct = {}
+ for metric_dim in input_constraints_dct.keys():
+ model_performance_dct[metric_dim] = dict()
+ subgroup_metric = input_constraints_dct[metric_dim]['overall'][0]
+ model_performance_dct[metric_dim]['Overall'] = self.sorted_model_metrics_df[
+ (self.sorted_model_metrics_df.Metric == subgroup_metric) &
+ (self.sorted_model_metrics_df.Subgroup == 'overall') &
+ (self.sorted_model_metrics_df.Model_Name == model_name)
+ ]['Value'].values[0]
+
+ group_metric = input_constraints_dct[metric_dim]['disparity'][0]
+ for group_name in self.group_names:
+ model_performance_dct[metric_dim]['Disparity: ' + group_name] = self.sorted_model_composed_metrics_df[
+ (self.sorted_model_composed_metrics_df.Metric == group_metric) &
+ (self.sorted_model_composed_metrics_df.Subgroup == group_name) &
+ (self.sorted_model_composed_metrics_df.Model_Name == model_name)
+ ]['Value'].values[0]
+
+ metric_constraints_check_dct = self.__check_metric_constraints(model_performance_dct, input_constraints_dct)
+
+ model_metrics_matrix = pd.DataFrame(model_performance_dct).T
+ aligned_column_names = ['Overall'] + [col for col in model_metrics_matrix.columns if col != 'Overall']
+ model_metrics_matrix = model_metrics_matrix[aligned_column_names]
+ metric_constraints_check_matrix = pd.DataFrame(metric_constraints_check_dct).T
+ metric_constraints_check_matrix = metric_constraints_check_matrix[aligned_column_names]
+
+ model_performance_summary, _ = create_model_performance_summary_visualization(model_metrics_matrix, metric_constraints_check_matrix)
+ return model_performance_summary
+
def _create_subgroup_metrics_bar_chart_per_one_model(self, model_name: str, subgroup_accuracy_metrics_lst: list,
subgroup_uncertainty_metrics: list, subgroup_stability_metrics_lst: list):
metrics_names = subgroup_accuracy_metrics_lst + subgroup_uncertainty_metrics + subgroup_stability_metrics_lst
diff --git a/virny/utils/data_viz_utils.py b/virny/utils/data_viz_utils.py
index e8b6aba9..84512ae4 100644
--- a/virny/utils/data_viz_utils.py
+++ b/virny/utils/data_viz_utils.py
@@ -266,6 +266,32 @@ def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_
return fig, ax
+def create_model_performance_summary_visualization(main_matrix, matrix_for_colors):
+ font_increase = 6
+ matrix_width = 20
+ matrix_height = main_matrix.shape[0] if main_matrix.shape[0] >= 3 else main_matrix.shape[0] * 2.5
+
+ fig = plt.figure(figsize=(matrix_width, matrix_height))
+ ax = sns.heatmap(matrix_for_colors, annot=main_matrix.round(3),
+ cmap=["#EE8367", "#58D68D"], # [red, green]
+ fmt='', linewidths=1.0,
+ vmin=0, vmax=1,
+ cbar_kws={"ticks":[0, 1]},
+ annot_kws={'color': 'black', 'alpha': 0.7, 'fontsize': 10 + font_increase})
+ ax.set(xlabel="", ylabel="")
+ ax.xaxis.tick_top()
+ ax.tick_params(axis='y', rotation=0)
+ ax.tick_params(labelsize=10 + font_increase)
+ fig.subplots_adjust(left=0.2, top=0.7)
+
+ cbar = ax.collections[0].colorbar
+ tick_labels = ['Failed', 'Passed']
+ cbar.set_ticks([0.25,0.75])
+ cbar.set_ticklabels(tick_labels, fontsize=10 + font_increase)
+
+ return fig, ax
+
+
def create_bar_plot_for_model_selection(all_subgroup_metrics_per_model_dct: dict, all_group_metrics_per_model_dct: dict,
metrics_value_range_dct: dict, group: str):
# Compute the number of models that satisfy the conditions
From 7d2e55724123e22a9936e062bce0ea4e50804b7a Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Thu, 30 Nov 2023 00:00:54 +0200
Subject: [PATCH 049/148] Added Positive-Rate to a model performance summary
plot
---
...Multiple_Models_Interface_Vis_Income.ipynb | 77 ++++++++--------
.../metrics_interactive_visualizer.py | 91 ++++++++++++-------
virny/utils/data_viz_utils.py | 5 +-
3 files changed, 99 insertions(+), 74 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
index a37d4449..ca36b470 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
@@ -6,8 +6,8 @@
"id": "248cbed8",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-11-27T23:09:00.744106Z",
- "start_time": "2023-11-27T23:09:00.258137Z"
+ "end_time": "2023-11-29T21:02:04.386021Z",
+ "start_time": "2023-11-29T21:02:03.727098Z"
}
},
"outputs": [],
@@ -23,8 +23,8 @@
"id": "7ec6cd08",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-11-27T23:09:00.753238Z",
- "start_time": "2023-11-27T23:09:00.743899Z"
+ "end_time": "2023-11-29T21:02:04.394975Z",
+ "start_time": "2023-11-29T21:02:04.386298Z"
}
},
"outputs": [],
@@ -37,12 +37,12 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 3,
"id": "b8cb69f2",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-11-27T23:09:14.159592Z",
- "start_time": "2023-11-27T23:09:14.145555Z"
+ "end_time": "2023-11-29T21:02:04.405571Z",
+ "start_time": "2023-11-29T21:02:04.395579Z"
}
},
"outputs": [
@@ -72,12 +72,12 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 4,
"id": "7a9241de",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-11-27T23:09:16.946143Z",
- "start_time": "2023-11-27T23:09:15.322037Z"
+ "end_time": "2023-11-29T21:02:08.026244Z",
+ "start_time": "2023-11-29T21:02:04.404686Z"
}
},
"outputs": [],
@@ -92,7 +92,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 5,
"outputs": [],
"source": [
"data_loader = ACSIncomeDataset(state=['GA'], year=2018, with_nulls=False, subsample_size=15_000, subsample_seed=42)\n",
@@ -101,15 +101,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-11-27T23:09:18.236763Z",
- "start_time": "2023-11-27T23:09:16.949112Z"
+ "end_time": "2023-11-29T21:02:09.305496Z",
+ "start_time": "2023-11-29T21:02:08.029615Z"
}
},
"id": "d3c53c7b72ecbcd0"
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 6,
"outputs": [],
"source": [
"ROOT_DIR = os.path.join('docs', 'examples')\n",
@@ -120,22 +120,22 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-11-27T23:09:18.781790Z",
- "start_time": "2023-11-27T23:09:18.747739Z"
+ "end_time": "2023-11-29T21:02:09.332604Z",
+ "start_time": "2023-11-29T21:02:09.305881Z"
}
},
"id": "2aab7c79ecdee914"
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 7,
"outputs": [
{
"data": {
"text/plain": " Metric SEX RAC1P SEX&RAC1P \\\n0 Accuracy_Parity 0.047756 0.074977 0.065217 \n1 Aleatoric_Uncertainty_Parity -0.039005 -0.011947 -0.009222 \n2 Aleatoric_Uncertainty_Ratio 0.935159 0.979638 0.984220 \n3 Equalized_Odds_FNR 0.030793 -0.110745 -0.052498 \n4 Equalized_Odds_FPR -0.021317 0.000952 -0.007008 \n\n Model_Name \n0 LGBMClassifier__alpha=0.7 \n1 LGBMClassifier__alpha=0.7 \n2 LGBMClassifier__alpha=0.7 \n3 LGBMClassifier__alpha=0.7 \n4 LGBMClassifier__alpha=0.7 ",
"text/html": "\n\n
\n \n \n | \n Metric | \n SEX | \n RAC1P | \n SEX&RAC1P | \n Model_Name | \n
\n \n \n \n 0 | \n Accuracy_Parity | \n 0.047756 | \n 0.074977 | \n 0.065217 | \n LGBMClassifier__alpha=0.7 | \n
\n \n 1 | \n Aleatoric_Uncertainty_Parity | \n -0.039005 | \n -0.011947 | \n -0.009222 | \n LGBMClassifier__alpha=0.7 | \n
\n \n 2 | \n Aleatoric_Uncertainty_Ratio | \n 0.935159 | \n 0.979638 | \n 0.984220 | \n LGBMClassifier__alpha=0.7 | \n
\n \n 3 | \n Equalized_Odds_FNR | \n 0.030793 | \n -0.110745 | \n -0.052498 | \n LGBMClassifier__alpha=0.7 | \n
\n \n 4 | \n Equalized_Odds_FPR | \n -0.021317 | \n 0.000952 | \n -0.007008 | \n LGBMClassifier__alpha=0.7 | \n
\n \n
\n
"
},
- "execution_count": 8,
+ "execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
@@ -153,15 +153,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-11-27T23:09:18.905842Z",
- "start_time": "2023-11-27T23:09:18.850548Z"
+ "end_time": "2023-11-29T21:02:09.385835Z",
+ "start_time": "2023-11-29T21:02:09.332537Z"
}
},
"id": "44ee5eff6054ce04"
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 8,
"outputs": [],
"source": [
"models_metrics_dct = dict()\n",
@@ -171,21 +171,21 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-11-27T23:10:14.375071Z",
- "start_time": "2023-11-27T23:10:14.339164Z"
+ "end_time": "2023-11-29T21:02:09.407603Z",
+ "start_time": "2023-11-29T21:02:09.385768Z"
}
},
"id": "833484748ed512e8"
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 9,
"outputs": [
{
"data": {
"text/plain": "dict_keys(['LGBMClassifier__alpha=0.7', 'LGBMClassifier__alpha=0.0', 'LGBMClassifier__alpha=0.4', 'LogisticRegression__alpha=0.0', 'LogisticRegression__alpha=0.7', 'LogisticRegression__alpha=0.4', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.7', 'MLPClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.7', 'RandomForestClassifier__alpha=0.0'])"
},
- "execution_count": 11,
+ "execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
@@ -196,8 +196,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-11-27T23:10:15.006243Z",
- "start_time": "2023-11-27T23:10:14.979880Z"
+ "end_time": "2023-11-29T21:02:09.456986Z",
+ "start_time": "2023-11-29T21:02:09.407709Z"
}
},
"id": "15ed7d1ba1f22317"
@@ -212,12 +212,12 @@
},
{
"cell_type": "code",
- "execution_count": 58,
+ "execution_count": 19,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-11-27T23:59:15.016940Z",
- "start_time": "2023-11-27T23:59:14.968372Z"
+ "end_time": "2023-11-29T21:56:28.048524Z",
+ "start_time": "2023-11-29T21:56:27.922421Z"
}
},
"outputs": [],
@@ -229,7 +229,7 @@
},
{
"cell_type": "code",
- "execution_count": 59,
+ "execution_count": null,
"outputs": [
{
"name": "stdout",
@@ -237,8 +237,7 @@
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
- "To create a public link, set `share=True` in `launch()`.\n",
- "Keyboard interruption in main thread... closing server.\n"
+ "To create a public link, set `share=True` in `launch()`.\n"
]
}
],
@@ -247,9 +246,9 @@
],
"metadata": {
"collapsed": false,
+ "is_executing": true,
"ExecuteTime": {
- "end_time": "2023-11-28T00:08:09.433964Z",
- "start_time": "2023-11-27T23:59:15.062378Z"
+ "start_time": "2023-11-29T21:56:28.049665Z"
}
},
"id": "678a9dc8d51243f4"
@@ -272,8 +271,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-11-27T22:52:53.559673Z",
- "start_time": "2023-11-27T22:52:53.432952Z"
+ "end_time": "2023-11-29T21:12:46.494378Z",
+ "start_time": "2023-11-29T21:12:46.442750Z"
}
},
"id": "277b6d1de837dab7"
@@ -286,8 +285,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-11-27T22:52:53.561907Z",
- "start_time": "2023-11-27T22:52:53.559309Z"
+ "end_time": "2023-11-29T21:12:46.501645Z",
+ "start_time": "2023-11-29T21:12:46.483631Z"
}
},
"id": "c207d4345ddca1db"
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index 69857337..5333ca08 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -316,25 +316,32 @@ def start_web_app(self):
""")
with gr.Row():
accuracy_metric_vw4 = gr.Dropdown(
- sorted(self.all_accuracy_metrics),
+ sorted([metric for metric in self.all_accuracy_metrics if metric != POSITIVE_RATE]),
value=ACCURACY, multiselect=False, label="Accuracy Metric",
- scale=3
+ scale=2
)
- acc_threshold_vw4 = gr.Text(value="0.0", label="Threshold", scale=2)
+ accuracy_min_val_vw4 = gr.Text(value="0.0", label="Min value", scale=1)
+ accuracy_max_val_vw4 = gr.Text(value="1.0", label="Max value", scale=1)
with gr.Row():
subgroup_stability_metric_vw4 = gr.Dropdown(
sorted(self.all_stability_metrics),
value=LABEL_STABILITY, multiselect=False, label="Stability Metric",
- scale=3
+ scale=2
)
- subgroup_stab_threshold_vw4 = gr.Text(value="0.0", label="Threshold", scale=2)
+ subgroup_stab_min_val_vw4 = gr.Text(value="0.0", label="Min value", scale=1)
+ subgroup_stab_max_val_vw4 = gr.Text(value="1.0", label="Max value", scale=1)
with gr.Row():
subgroup_uncertainty_metric_vw4 = gr.Dropdown(
sorted(self.all_uncertainty_metrics),
value=ALEATORIC_UNCERTAINTY, multiselect=False, label="Uncertainty Metric",
- scale=3
+ scale=2
)
- subgroup_uncertainty_threshold_vw4 = gr.Text(value="0.0", label="Threshold", scale=2)
+ subgroup_uncertainty_min_val_vw4 = gr.Text(value="0.0", label="Min value", scale=1)
+ subgroup_uncertainty_max_val_vw4 = gr.Text(value="1.0", label="Max value", scale=1)
+ with gr.Row():
+ positive_rate_metric_vw4 = gr.Text(value=POSITIVE_RATE, label="Positive-Rate Metric", scale=2)
+ positive_rate_min_val_vw4 = gr.Text(value="0.0", label="Min value", scale=1)
+ positive_rate_max_val_vw4 = gr.Text(value="1.0", label="Max value", scale=1)
btn_view4 = gr.Button("Submit")
with gr.Column():
@@ -366,17 +373,27 @@ def start_web_app(self):
)
group_uncertainty_min_val_vw4 = gr.Text(value="-1.0", label="Min value", scale=1)
group_uncertainty_max_val_vw4 = gr.Text(value="1.0", label="Max value", scale=1)
+ with gr.Row():
+ group_positive_rate_metrics_vw4 = gr.Dropdown(
+ sorted([DISPARATE_IMPACT, STATISTICAL_PARITY_DIFFERENCE]),
+ value=DISPARATE_IMPACT, multiselect=False, label="Positive-Rate Disparity Metric",
+ scale=2
+ )
+ group_positive_rate_min_val_vw4 = gr.Text(value="0.7", label="Min value", scale=1)
+ group_positive_rate_max_val_vw4 = gr.Text(value="1.5", label="Max value", scale=1)
with gr.Row():
model_performance_summary = gr.Plot(label="Model Performance Summary")
btn_view4.click(self._create_model_performance_summary,
inputs=[model_name_vw4,
- accuracy_metric_vw4, acc_threshold_vw4,
- subgroup_stability_metric_vw4, subgroup_stab_threshold_vw4,
- subgroup_uncertainty_metric_vw4, subgroup_uncertainty_threshold_vw4,
+ accuracy_metric_vw4, accuracy_min_val_vw4, accuracy_max_val_vw4,
+ subgroup_stability_metric_vw4, subgroup_stab_min_val_vw4, subgroup_stab_max_val_vw4,
+ subgroup_uncertainty_metric_vw4, subgroup_uncertainty_min_val_vw4, subgroup_uncertainty_max_val_vw4,
+ positive_rate_metric_vw4, positive_rate_min_val_vw4, positive_rate_max_val_vw4,
fairness_metric_vw4, fairness_min_val_vw4, fairness_max_val_vw4,
group_stability_metrics_vw4, group_stab_min_val_vw4, group_stab_max_val_vw4,
- group_uncertainty_metrics_vw4, group_uncertainty_min_val_vw4, group_uncertainty_max_val_vw4],
+ group_uncertainty_metrics_vw4, group_uncertainty_min_val_vw4, group_uncertainty_max_val_vw4,
+ group_positive_rate_metrics_vw4, group_positive_rate_min_val_vw4, group_positive_rate_max_val_vw4],
outputs=[model_performance_summary])
self.demo = demo
@@ -413,16 +430,10 @@ def __check_metric_constraints(self, model_performance_dct, input_constraint_dct
for metric_dim in model_performance_dct.keys():
model_metrics_constraints_check_dct[metric_dim] = dict()
for group in model_performance_dct[metric_dim]:
- if group == 'Overall':
- constraint_type = 'overall'
- threshold = input_constraint_dct[metric_dim][constraint_type][1]
- check = 1 if model_performance_dct[metric_dim][group] >= threshold else 0
- model_metrics_constraints_check_dct[metric_dim][group] = check
- else:
- constraint_type = 'disparity'
- min_val, max_val = input_constraint_dct[metric_dim][constraint_type][1]
- check = 1 if model_performance_dct[metric_dim][group] >= min_val and model_performance_dct[metric_dim][group] <= max_val else 0
- model_metrics_constraints_check_dct[metric_dim][group] = check
+ constraint_type = 'overall' if group == 'Overall' else 'disparity'
+ min_val, max_val = input_constraint_dct[metric_dim][constraint_type][1]
+ check = 1 if model_performance_dct[metric_dim][group] >= min_val and model_performance_dct[metric_dim][group] <= max_val else 0
+ model_metrics_constraints_check_dct[metric_dim][group] = check
return model_metrics_constraints_check_dct
@@ -603,21 +614,31 @@ def _create_group_model_rank_heatmap(self, model_names: list, group_fairness_met
return model_rank_heatmap
- def _create_model_performance_summary(self, model_name: str, accuracy_metric, acc_threshold,
- stability_metric, stability_threshold,
- uncertainty_metric, uncertainty_threshold,
+ def _create_model_performance_summary(self, model_name: str, accuracy_metric, accuracy_min_val, accuracy_max_val,
+ stability_metric, stability_min_val, stability_max_val,
+ uncertainty_metric, uncertainty_min_val, uncertainty_max_val,
+ positive_rate_metric, positive_rate_min_val, positive_rate_max_val,
fairness_metric, fairness_min_val, fairness_max_val,
- group_stability_metrics, group_stab_min_val, group_stab_max_val,
- group_uncertainty_metrics, group_uncertainty_min_val, group_uncertainty_max_val):
- accuracy_constraint = (accuracy_metric, str_to_float(acc_threshold, 'Accuracy threshold'))
- stability_constraint = (stability_metric, str_to_float(stability_threshold, 'Stability threshold'))
- uncertainty_constraint = (uncertainty_metric, str_to_float(uncertainty_threshold, 'Uncertainty threshold'))
+ group_stability_metric, group_stab_min_val, group_stab_max_val,
+ group_uncertainty_metric, group_uncertainty_min_val, group_uncertainty_max_val,
+ group_positive_rate_metric, group_positive_rate_min_val, group_positive_rate_max_val):
+ accuracy_constraint = (accuracy_metric, [str_to_float(accuracy_min_val, 'Accuracy min value'),
+ str_to_float(accuracy_max_val, 'Accuracy max value')])
+ stability_constraint = (stability_metric, [str_to_float(stability_min_val, 'Stability min value'),
+ str_to_float(stability_max_val, 'Stability max value')])
+ uncertainty_constraint = (uncertainty_metric, [str_to_float(uncertainty_min_val, 'Uncertainty min value'),
+ str_to_float(uncertainty_max_val, 'Uncertainty max value')])
+ positive_rate_constraint = (positive_rate_metric, [str_to_float(positive_rate_min_val, 'Positive-Rate min value'),
+ str_to_float(positive_rate_max_val, 'Positive-Rate max value')])
+
fairness_constraint = (fairness_metric, [str_to_float(fairness_min_val, 'Error disparity metric min value'),
str_to_float(fairness_max_val, 'Error disparity metric max value')])
- group_stability_constraint = (group_stability_metrics, [str_to_float(group_stab_min_val, 'Stability disparity min value'),
- str_to_float(group_stab_max_val, 'Stability disparity max value')])
- group_uncertainty_constraint = (group_uncertainty_metrics, [str_to_float(group_uncertainty_min_val, 'Uncertainty disparity min value'),
- str_to_float(group_uncertainty_max_val, 'Uncertainty disparity max value')])
+ group_stability_constraint = (group_stability_metric, [str_to_float(group_stab_min_val, 'Stability disparity min value'),
+ str_to_float(group_stab_max_val, 'Stability disparity max value')])
+ group_uncertainty_constraint = (group_uncertainty_metric, [str_to_float(group_uncertainty_min_val, 'Uncertainty disparity min value'),
+ str_to_float(group_uncertainty_max_val, 'Uncertainty disparity max value')])
+ group_positive_rate_constraint = (group_positive_rate_metric, [str_to_float(group_positive_rate_min_val, 'Positive-Rate disparity min value'),
+ str_to_float(group_positive_rate_max_val, 'Positive-Rate disparity max value')])
input_constraints_dct = {
'Accuracy': {
@@ -632,6 +653,10 @@ def _create_model_performance_summary(self, model_name: str, accuracy_metric, ac
'overall': uncertainty_constraint,
'disparity': group_uncertainty_constraint,
},
+ 'Positive-Rate': {
+ 'overall': positive_rate_constraint,
+ 'disparity': group_positive_rate_constraint,
+ },
}
# Extract overall and disparity metrics from metrics dfs.
diff --git a/virny/utils/data_viz_utils.py b/virny/utils/data_viz_utils.py
index 84512ae4..96e1a945 100644
--- a/virny/utils/data_viz_utils.py
+++ b/virny/utils/data_viz_utils.py
@@ -77,8 +77,8 @@ def create_subgroup_sorted_matrix_by_rank(model_metrics_matrix, tolerance) -> np
models_distances_matrix = model_metrics_matrix.copy(deep=True).T
metric_names = models_distances_matrix.columns
for metric_name in metric_names:
- if check_substring_in_list(metric_name, ['TPR', 'TNR', 'PPV', 'Accuracy', 'F1', 'Label_Stability']):
- # Cast a metric to a case when the closer value to zero is the better
+ if check_substring_in_list(metric_name, ['TPR', 'TNR', 'PPV', 'Accuracy', 'F1', 'Label_Stability', 'Positive-Rate']):
+ # Cast a metric to a case when the closer value to one is the better
models_distances_matrix[metric_name] = 1 - models_distances_matrix[metric_name]
models_distances_matrix[metric_name] = models_distances_matrix[metric_name].abs()
@@ -308,6 +308,7 @@ def create_bar_plot_for_model_selection(all_subgroup_metrics_per_model_dct: dict
'PPV': 'C1',
'Accuracy': 'C1',
'F1': 'C1',
+ 'Positive-Rate': 'C1',
# C2
'Equalized_Odds_TPR': 'C2',
'Equalized_Odds_FPR': 'C2',
From a773815fd7ef365f2f7a83fb2c0876f6066af5cd Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Thu, 30 Nov 2023 00:19:00 +0200
Subject: [PATCH 050/148] Improved dataset stats plot
---
.../Multiple_Models_Interface_Vis_Income.ipynb | 8 ++++----
.../metrics_interactive_visualizer.py | 16 +++++++++++++---
2 files changed, 17 insertions(+), 7 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
index ca36b470..561ddd14 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
@@ -212,12 +212,12 @@
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": 25,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-11-29T21:56:28.048524Z",
- "start_time": "2023-11-29T21:56:27.922421Z"
+ "end_time": "2023-11-29T22:15:44.175233Z",
+ "start_time": "2023-11-29T22:15:43.997200Z"
}
},
"outputs": [],
@@ -248,7 +248,7 @@
"collapsed": false,
"is_executing": true,
"ExecuteTime": {
- "start_time": "2023-11-29T21:56:28.049665Z"
+ "start_time": "2023-11-29T22:15:44.176046Z"
}
},
"id": "678a9dc8d51243f4"
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index 5333ca08..f3fcdbac 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -102,11 +102,21 @@ def start_web_app(self):
s = gr.Slider(1, self.max_groups, value=default_val, step=1, label="How many groups to show:")
grp_names = []
grp_dis_values = []
+ sensitive_attr_items = list(self.sensitive_attributes_dct.items())
for i in range(self.max_groups):
visibility = True if i + 1 <= default_val else False
with gr.Row():
- grp_name = gr.Text(label=f"Group {i + 1}", interactive=True, visible=visibility)
- grp_dis_value = gr.Text(label="Disadvantage value", interactive=True, visible=visibility)
+ if visibility and i + 1 <= len(sensitive_attr_items):
+ grp, dis_value = sensitive_attr_items[i]
+ if dis_value is None:
+ dis_value = '-'
+ elif isinstance(dis_value, str):
+ dis_value = f"'{dis_value}'"
+ grp_name = gr.Text(label=f"Group {i + 1}", value=grp, interactive=True, visible=visibility)
+ grp_dis_value = gr.Text(label="Disadvantage value", value=dis_value, interactive=True, visible=visibility)
+ else:
+ grp_name = gr.Text(label=f"Group {i + 1}", interactive=True, visible=visibility)
+ grp_dis_value = gr.Text(label="Disadvantage value", interactive=True, visible=visibility)
grp_names.append(grp_name)
grp_dis_values.append(grp_dis_value)
@@ -450,7 +460,7 @@ def _create_dataset_proportions_bar_chart(self, grp_name1, grp_name2, grp_name3,
if '&' in grp_name:
input_sensitive_attrs_dct[grp_name] = None
else:
- converted_grp_dis_val = eval(grp_dis_val) if '[' in grp_dis_val else grp_dis_val
+ converted_grp_dis_val = eval(grp_dis_val)
input_sensitive_attrs_dct[grp_name] = converted_grp_dis_val
# Partition on protected groups
From 1d5ad3aacfcfad69cad634a81a02f00bdb8b779e Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Thu, 30 Nov 2023 01:22:05 +0200
Subject: [PATCH 051/148] Added overall and disparity constraints to a model
selection bar chart
---
...Multiple_Models_Interface_Vis_Income.ipynb | 8 +-
.../metrics_interactive_visualizer.py | 97 +++++++++++--------
virny/utils/data_viz_utils.py | 53 ++++++++++
3 files changed, 111 insertions(+), 47 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
index 561ddd14..b5faed57 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
@@ -212,12 +212,12 @@
},
{
"cell_type": "code",
- "execution_count": 25,
+ "execution_count": 27,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-11-29T22:15:44.175233Z",
- "start_time": "2023-11-29T22:15:43.997200Z"
+ "end_time": "2023-11-29T23:17:11.979632Z",
+ "start_time": "2023-11-29T23:17:11.761681Z"
}
},
"outputs": [],
@@ -248,7 +248,7 @@
"collapsed": false,
"is_executing": true,
"ExecuteTime": {
- "start_time": "2023-11-29T22:15:44.176046Z"
+ "start_time": "2023-11-29T23:17:11.980148Z"
}
},
"id": "678a9dc8d51243f4"
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index f3fcdbac..375866a4 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -7,7 +7,7 @@
from virny.utils.common_helpers import str_to_float
from virny.utils.protected_groups_partitioning import create_test_protected_groups
from virny.utils.data_viz_utils import (create_model_rank_heatmap_visualization, create_sorted_matrix_by_rank,
- create_subgroup_sorted_matrix_by_rank, create_bar_plot_for_model_selection,
+ create_subgroup_sorted_matrix_by_rank, create_flexible_bar_plot_for_model_selection,
compute_proportions, compute_base_rates, create_col_facet_bar_chart,
create_model_performance_summary_visualization)
@@ -51,6 +51,9 @@ def __init__(self, X_data: pd.DataFrame, y_data: pd.DataFrame, model_metrics_dct
self.all_stability_disparity_metrics = [LABEL_STABILITY_RATIO, LABEL_STABILITY_DIFFERENCE, IQR_PARITY, STD_PARITY, STD_RATIO, JITTER_PARITY]
self.all_uncertainty_disparity_metrics = [OVERALL_UNCERTAINTY_PARITY, OVERALL_UNCERTAINTY_RATIO, ALEATORIC_UNCERTAINTY_PARITY, ALEATORIC_UNCERTAINTY_RATIO]
+ self.all_overall_metrics = self.all_accuracy_metrics + self.all_stability_metrics + self.all_uncertainty_metrics
+ self.all_disparity_metrics = self.all_error_disparity_metrics + self.all_stability_disparity_metrics + self.all_uncertainty_disparity_metrics
+
# Create one metrics df with all model_dfs
models_metrics_df = pd.DataFrame()
for model_name in model_metrics_dct.keys():
@@ -143,37 +146,38 @@ def start_web_app(self):
value=self.group_names[0], multiselect=False, label="Group Name for Disparity Metrics",
)
with gr.Row():
- accuracy_metric = gr.Dropdown(
- sorted(self.all_accuracy_metrics),
- value='Accuracy', multiselect=False, label="Constraint 1 (C1)",
+ overall_metric1 = gr.Dropdown(
+ sorted(self.all_overall_metrics),
+ value='Accuracy', multiselect=False, label="Overall Constraint (C1)",
scale=2
)
- acc_min_val = gr.Text(value="0.0", label="Min value", scale=1)
- acc_max_val = gr.Text(value="1.0", label="Max value", scale=1)
+ overall_metric_min_val1 = gr.Text(value="0.0", label="Min value", scale=1)
+ overall_metric_max_val1 = gr.Text(value="1.0", label="Max value", scale=1)
with gr.Row():
- fairness_metric = gr.Dropdown(
- sorted(self.all_error_disparity_metrics),
- value='Equalized_Odds_FPR', multiselect=False, label="Constraint 2 (C2)",
+ disparity_metric1 = gr.Dropdown(
+ sorted(self.all_disparity_metrics),
+ value='Equalized_Odds_FPR', multiselect=False, label="Disparity Constraint (C2)",
scale=2
)
- fairness_min_val = gr.Text(value="-1.0", label="Min value", scale=1)
- fairness_max_val = gr.Text(value="1.0", label="Max value", scale=1)
+ disparity_metric_min_val1 = gr.Text(value="-1.0", label="Min value", scale=1)
+ disparity_metric_max_val1 = gr.Text(value="1.0", label="Max value", scale=1)
with gr.Row():
- subgroup_stability_metric = gr.Dropdown(
- sorted(self.all_stability_metrics),
- value='Label_Stability', multiselect=False, label="Constraint 3 (C3)",
+ overall_metric2 = gr.Dropdown(
+ sorted(self.all_overall_metrics),
+ value='Label_Stability', multiselect=False, label="Overall Constraint (C3)",
scale=2
)
- subgroup_stab_min_val = gr.Text(value="0.0", label="Min value", scale=1)
- subgroup_stab_max_val = gr.Text(value="1.0", label="Max value", scale=1)
+ overall_metric_min_val2 = gr.Text(value="0.0", label="Min value", scale=1)
+ overall_metric_max_val2 = gr.Text(value="1.0", label="Max value", scale=1)
with gr.Row():
- group_stability_metrics = gr.Dropdown(
- sorted(self.all_stability_disparity_metrics),
- value='Label_Stability_Ratio', multiselect=False, label="Constraint 4 (C4)",
+ disparity_metric2 = gr.Dropdown(
+ sorted(self.all_disparity_metrics),
+ value='Label_Stability_Ratio', multiselect=False, label="Disparity Constraint (C4)",
scale=2
)
- group_stab_min_val = gr.Text(value="0.7", label="Min value", scale=1)
- group_stab_max_val = gr.Text(value="1.5", label="Max value", scale=1)
+ disparity_metric_min_val2 = gr.Text(value="0.7", label="Min value", scale=1)
+ disparity_metric_max_val2 = gr.Text(value="1.5", label="Max value", scale=1)
+
btn_view1 = gr.Button("Submit")
with gr.Column(scale=3):
bar_plot_for_model_selection = gr.Plot(label="Bar Chart")
@@ -181,10 +185,10 @@ def start_web_app(self):
btn_view1.click(self._create_bar_plot_for_model_selection,
inputs=[group_name,
- accuracy_metric, acc_min_val, acc_max_val,
- fairness_metric, fairness_min_val, fairness_max_val,
- subgroup_stability_metric, subgroup_stab_min_val, subgroup_stab_max_val,
- group_stability_metrics, group_stab_min_val, group_stab_max_val],
+ overall_metric1, overall_metric_min_val1, overall_metric_max_val1,
+ disparity_metric1, disparity_metric_min_val1, disparity_metric_max_val1,
+ overall_metric2, overall_metric_min_val2, overall_metric_max_val2,
+ disparity_metric2, disparity_metric_min_val2, disparity_metric_max_val2],
outputs=[bar_plot_for_model_selection, df_with_models_satisfied_all_constraints])
# ======================================= Overall Metrics Heatmap =======================================
gr.Markdown(
@@ -495,25 +499,31 @@ def _create_dataset_proportions_bar_chart(self, grp_name1, grp_name2, grp_name3,
return col_facet_bar_chart
- def _create_bar_plot_for_model_selection(self, group_name, accuracy_metric, acc_min_val, acc_max_val,
- fairness_metric, fairness_min_val, fairness_max_val,
- subgroup_stability_metric, subgroup_stab_min_val, subgroup_stab_max_val,
- group_stability_metrics, group_stab_min_val, group_stab_max_val):
- accuracy_constraint = (accuracy_metric, str_to_float(acc_min_val, 'C1 min value'), str_to_float(acc_max_val, 'C2 max value'))
- fairness_constraint = (fairness_metric, str_to_float(fairness_min_val, 'C2 min value'), str_to_float(fairness_max_val, 'C2 max value'))
- subgroup_stability_constraint = (subgroup_stability_metric, str_to_float(subgroup_stab_min_val, 'C3 min value'), str_to_float(subgroup_stab_max_val, 'C3 max value'))
- group_stability_constraint = (group_stability_metrics, str_to_float(group_stab_min_val, 'C4 min value'), str_to_float(group_stab_max_val, 'C4 max value'))
+ def _create_bar_plot_for_model_selection(self, group_name, overall_metric1, overall_metric_min_val1, overall_metric_max_val1,
+ disparity_metric1, disparity_metric_min_val1, disparity_metric_max_val1,
+ overall_metric2, overall_metric_min_val2, overall_metric_max_val2,
+ disparity_metric2, disparity_metric_min_val2, disparity_metric_max_val2):
+ metric_name_to_alias_dct = {
+ overall_metric1: 'C1',
+ disparity_metric1: 'C2',
+ overall_metric2: 'C3',
+ disparity_metric2: 'C4',
+ }
+ overall_constraint1 = (overall_metric1, str_to_float(overall_metric_min_val1, 'C1 min value'), str_to_float(overall_metric_max_val1, 'C2 max value'))
+ disparity_constraint1 = (disparity_metric1, str_to_float(disparity_metric_min_val1, 'C2 min value'), str_to_float(disparity_metric_max_val1, 'C2 max value'))
+ overall_constraint2 = (overall_metric2, str_to_float(overall_metric_min_val2, 'C3 min value'), str_to_float(overall_metric_max_val2, 'C3 max value'))
+ disparity_constraint2 = (disparity_metric2, str_to_float(disparity_metric_min_val2, 'C4 min value'), str_to_float(disparity_metric_max_val2, 'C4 max value'))
# Create individual constraints
metrics_value_range_dct = dict()
- for constraint in [accuracy_constraint, fairness_constraint, subgroup_stability_constraint, group_stability_constraint]:
+ for constraint in [overall_constraint1, disparity_constraint1, overall_constraint2, disparity_constraint2]:
metrics_value_range_dct[constraint[0]] = [constraint[1], constraint[2]]
# Create intersectional constraints
- metrics_value_range_dct[f'{accuracy_constraint[0]}&{fairness_constraint[0]}'] = None
- metrics_value_range_dct[f'{accuracy_constraint[0]}&{subgroup_stability_constraint[0]}'] = None
- metrics_value_range_dct[f'{accuracy_constraint[0]}&{group_stability_constraint[0]}'] = None
- metrics_value_range_dct[(f'{accuracy_constraint[0]}&{fairness_constraint[0]}'
- f'&{subgroup_stability_constraint[0]}&{group_stability_constraint[0]}')] = None
+ metrics_value_range_dct[f'{overall_constraint1[0]}&{disparity_constraint1[0]}'] = None
+ metrics_value_range_dct[f'{overall_constraint1[0]}&{overall_constraint2[0]}'] = None
+ metrics_value_range_dct[f'{overall_constraint1[0]}&{disparity_constraint2[0]}'] = None
+ metrics_value_range_dct[(f'{overall_constraint1[0]}&{disparity_constraint1[0]}'
+ f'&{overall_constraint2[0]}&{disparity_constraint2[0]}')] = None
melted_all_subgroup_metrics_per_model_dct = dict()
for model_name in self.melted_model_metrics_df['Model_Name'].unique():
@@ -525,10 +535,11 @@ def _create_bar_plot_for_model_selection(self, group_name, accuracy_metric, acc_
melted_all_group_metrics_per_model_dct[model_name] = (
self.melted_model_composed_metrics_df)[self.melted_model_composed_metrics_df.Model_Name == model_name]
- return create_bar_plot_for_model_selection(melted_all_subgroup_metrics_per_model_dct,
- melted_all_group_metrics_per_model_dct,
- metrics_value_range_dct,
- group=group_name)
+ return create_flexible_bar_plot_for_model_selection(melted_all_subgroup_metrics_per_model_dct,
+ melted_all_group_metrics_per_model_dct,
+ metrics_value_range_dct,
+ group=group_name,
+ metric_name_to_alias_dct=metric_name_to_alias_dct)
def _create_subgroup_model_rank_heatmap(self, model_names: list, subgroup_accuracy_metrics_lst: list,
subgroup_uncertainty_metrics: list, subgroup_stability_metrics_lst: list,
diff --git a/virny/utils/data_viz_utils.py b/virny/utils/data_viz_utils.py
index 96e1a945..ab4534bd 100644
--- a/virny/utils/data_viz_utils.py
+++ b/virny/utils/data_viz_utils.py
@@ -292,6 +292,58 @@ def create_model_performance_summary_visualization(main_matrix, matrix_for_color
return fig, ax
+def create_flexible_bar_plot_for_model_selection(all_subgroup_metrics_per_model_dct: dict, all_group_metrics_per_model_dct: dict,
+ metrics_value_range_dct: dict, group: str, metric_name_to_alias_dct: dict):
+ # Compute the number of models that satisfy the conditions
+ models_in_range_df, df_with_models_satisfied_all_constraints = (
+ create_models_in_range_dct(all_subgroup_metrics_per_model_dct, all_group_metrics_per_model_dct,
+ metrics_value_range_dct, group))
+
+ def get_column_alias(metric_group):
+ if '&' not in metric_group:
+ alias = metric_name_to_alias_dct[metric_group]
+ else:
+ metrics = metric_group.split('&')
+ alias = None
+ for idx, metric in enumerate(metrics):
+ if idx == 0:
+ alias = metric_name_to_alias_dct[metric]
+ else:
+ alias += ' & ' + metric_name_to_alias_dct[metric]
+
+ return alias
+
+ # Replace metric groups on their aliases
+ models_in_range_df['Alias'] = models_in_range_df['Metric_Group'].apply(get_column_alias)
+ models_in_range_df['Title'] = models_in_range_df['Alias']
+
+ base_font_size = 14
+ bar_plot = alt.Chart(models_in_range_df).mark_bar().encode(
+ x=alt.X("Title", type="nominal", title='Metric Group', axis=alt.Axis(labelAngle=-30),
+ sort=alt.Sort(order='ascending')),
+ y=alt.Y("Number_of_Models", title="Number of Models", type="quantitative"),
+ color=alt.Color('Model_Type', legend=alt.Legend(title='Model Type'))
+ ).configure(padding={'top': 33}
+ ).configure_axis(
+ labelFontSize=base_font_size + 2,
+ titleFontSize=base_font_size + 4,
+ labelFontWeight='normal',
+ titleFontWeight='normal',
+ labelLimit=300,
+ tickMinStep=1,
+ ).configure_title(
+ fontSize=base_font_size + 2
+ ).configure_legend(
+ titleFontSize=base_font_size + 4,
+ labelFontSize=base_font_size + 2,
+ symbolStrokeWidth=4,
+ labelLimit=300,
+ titleLimit=220,
+ ).properties(width=650, height=450)
+
+ return bar_plot, df_with_models_satisfied_all_constraints
+
+
def create_bar_plot_for_model_selection(all_subgroup_metrics_per_model_dct: dict, all_group_metrics_per_model_dct: dict,
metrics_value_range_dct: dict, group: str):
# Compute the number of models that satisfy the conditions
@@ -323,6 +375,7 @@ def create_bar_plot_for_model_selection(all_subgroup_metrics_per_model_dct: dict
# C4
'IQR_Parity': 'C4',
'Label_Stability_Ratio': 'C4',
+ 'Label_Stability_Difference': 'C4',
'Std_Parity': 'C4',
'Std_Ratio': 'C4',
'Jitter_Parity': 'C4',
From 2a6e71ee8b4e6986a016c1ca693913c7a016e509 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Thu, 30 Nov 2023 01:51:28 +0200
Subject: [PATCH 052/148] Added uncertainty disparity bar charts
---
...Multiple_Models_Interface_Vis_Income.ipynb | 8 ++--
.../metrics_interactive_visualizer.py | 37 +++++++++++++------
2 files changed, 30 insertions(+), 15 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
index b5faed57..18bcc88c 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
@@ -212,12 +212,12 @@
},
{
"cell_type": "code",
- "execution_count": 27,
+ "execution_count": 35,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-11-29T23:17:11.979632Z",
- "start_time": "2023-11-29T23:17:11.761681Z"
+ "end_time": "2023-11-29T23:48:34.526173Z",
+ "start_time": "2023-11-29T23:48:34.278833Z"
}
},
"outputs": [],
@@ -248,7 +248,7 @@
"collapsed": false,
"is_executing": true,
"ExecuteTime": {
- "start_time": "2023-11-29T23:17:11.980148Z"
+ "start_time": "2023-11-29T23:48:34.526950Z"
}
},
"id": "678a9dc8d51243f4"
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index 375866a4..1b399eb5 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -133,6 +133,7 @@ def start_web_app(self):
inputs=[grp_names[0], grp_names[1], grp_names[2], grp_names[3], grp_names[4], grp_names[5], grp_names[6], grp_names[7],
grp_dis_values[0], grp_dis_values[1], grp_dis_values[2], grp_dis_values[3], grp_dis_values[4], grp_dis_values[5], grp_dis_values[6], grp_dis_values[7]],
outputs=[dataset_proportions_bar_chart])
+
# ==================================== Bar Chart for Model Selection ====================================
gr.Markdown(
"""
@@ -190,6 +191,7 @@ def start_web_app(self):
overall_metric2, overall_metric_min_val2, overall_metric_max_val2,
disparity_metric2, disparity_metric_min_val2, disparity_metric_max_val2],
outputs=[bar_plot_for_model_selection, df_with_models_satisfied_all_constraints])
+
# ======================================= Overall Metrics Heatmap =======================================
gr.Markdown(
"""
@@ -222,6 +224,7 @@ def start_web_app(self):
subgroup_btn_view2.click(self._create_subgroup_model_rank_heatmap,
inputs=[model_names, accuracy_metrics, uncertainty_metrics, subgroup_stability_metrics, subgroup_tolerance],
outputs=[subgroup_model_ranking_heatmap])
+
# ======================================== Disparity Metrics Heatmap ========================================
gr.Markdown(
"""
@@ -235,11 +238,15 @@ def start_web_app(self):
label="Model Names", info="Select model names to display on the heatmap:",
)
group_tolerance = gr.Text(value="0.005", label="Tolerance", info="Define an acceptable tolerance for metric dense ranking.")
- fairness_metrics = gr.Dropdown(
+ fairness_metrics_vw2 = gr.Dropdown(
sorted(self.all_error_disparity_metrics),
value=['Equalized_Odds_FPR', 'Equalized_Odds_TPR'], multiselect=True, label="Error Disparity Metrics", info="Select error disparity metrics to display on the heatmap:",
)
- group_stability_metrics = gr.Dropdown(
+ group_uncertainty_metrics_vw2 = gr.Dropdown(
+ sorted(self.all_uncertainty_disparity_metrics),
+ value=['Overall_Uncertainty_Parity'], multiselect=True, label="Uncertainty Disparity Metrics", info="Select uncertainty disparity metrics to display on the heatmap:",
+ )
+ group_stability_metrics_vw2 = gr.Dropdown(
sorted(self.all_stability_disparity_metrics),
value=['Label_Stability_Ratio', 'Std_Parity'], multiselect=True, label="Stability Disparity Metrics", info="Select stability disparity metrics to display on the heatmap:",
)
@@ -248,8 +255,9 @@ def start_web_app(self):
group_model_ranking_heatmap = gr.Plot(label="Heatmap")
group_btn_view2.click(self._create_group_model_rank_heatmap,
- inputs=[model_names, fairness_metrics, group_stability_metrics, group_tolerance],
+ inputs=[model_names, fairness_metrics_vw2, group_uncertainty_metrics_vw2, group_stability_metrics_vw2, group_tolerance],
outputs=[group_model_ranking_heatmap])
+
# ============================ Group Specific and Disparity Metrics Bar Charts ============================
with gr.Row():
# Scale column 1 to a half of a screen
@@ -288,11 +296,15 @@ def start_web_app(self):
"""
### Disparity Metrics
""")
- fairness_metrics = gr.Dropdown(
+ fairness_metrics_vw3 = gr.Dropdown(
sorted(self.all_error_disparity_metrics),
value=['Equalized_Odds_FPR', 'Equalized_Odds_TPR'], multiselect=True, label="Error Disparity Metrics", info="Select error disparity metrics to display on the heatmap:",
)
- group_stability_metrics = gr.Dropdown(
+ group_uncertainty_metrics_vw3 = gr.Dropdown(
+ sorted(self.all_uncertainty_disparity_metrics),
+ value=['Aleatoric_Uncertainty_Ratio', 'Overall_Uncertainty_Parity'], multiselect=True, label="Uncertainty Disparity Metrics", info="Select uncertainty disparity metrics to display on the heatmap:",
+ )
+ group_stability_metrics_vw3 = gr.Dropdown(
sorted(self.all_stability_disparity_metrics),
value=['Label_Stability_Ratio', 'Std_Parity'], multiselect=True, label="Stability Disparity Metrics", info="Select stability disparity metrics to display on the heatmap:",
)
@@ -306,8 +318,9 @@ def start_web_app(self):
inputs=[model_name_vw3, accuracy_metrics, uncertainty_metrics, subgroup_stability_metrics],
outputs=[subgroup_metrics_bar_chart])
btn_view3.click(self._create_group_metrics_bar_chart_per_one_model,
- inputs=[model_name_vw3, fairness_metrics, group_stability_metrics],
+ inputs=[model_name_vw3, fairness_metrics_vw3, group_uncertainty_metrics_vw3, group_stability_metrics_vw3],
outputs=[group_metrics_bar_chart])
+
# ============================ Model Performance Summary ============================
with gr.Row():
# Scale column 1 to a half of a screen
@@ -326,7 +339,7 @@ def start_web_app(self):
with gr.Column():
gr.Markdown(
"""
- ### Group Specific Metrics
+ ### Overall Metrics
""")
with gr.Row():
accuracy_metric_vw4 = gr.Dropdown(
@@ -581,7 +594,7 @@ def _create_subgroup_model_rank_heatmap(self, model_names: list, subgroup_accura
return model_rank_heatmap
def _create_group_model_rank_heatmap(self, model_names: list, group_fairness_metrics_lst: list,
- group_stability_metrics_lst: list, tolerance: str):
+ group_uncertainty_metrics: list, group_stability_metrics_lst: list, tolerance: str):
"""
Create a group model rank heatmap.
@@ -591,6 +604,8 @@ def _create_group_model_rank_heatmap(self, model_names: list, group_fairness_met
A list of selected model names to display on the heatmap
group_fairness_metrics_lst
A list of group fairness metrics to visualize
+ group_uncertainty_metrics
+ A list of group uncertainty metrics to visualize
group_stability_metrics_lst
A list of group stability metrics to visualize
tolerance
@@ -600,12 +615,11 @@ def _create_group_model_rank_heatmap(self, model_names: list, group_fairness_met
tolerance = str_to_float(tolerance, 'Tolerance')
groups_lst = self.sensitive_attributes_dct.keys()
- metrics_lst = group_fairness_metrics_lst + group_stability_metrics_lst
+ metrics_lst = group_fairness_metrics_lst + group_uncertainty_metrics + group_stability_metrics_lst
# Find metric values for each model based on metric, group, and model names.
# Add the values to a results dict.
results = {}
- num_models = len(model_names)
for metric in metrics_lst:
for group in groups_lst:
group_metric = metric + '_' + group
@@ -717,8 +731,9 @@ def _create_subgroup_metrics_bar_chart_per_one_model(self, model_name: str, subg
return self._create_metrics_bar_chart_per_one_model(model_name, metrics_names, metrics_type='subgroup')
def _create_group_metrics_bar_chart_per_one_model(self, model_name: str, group_fairness_metrics_lst: list,
+ group_uncertainty_metrics_lst: list,
group_stability_metrics_lst: list):
- metrics_names = group_fairness_metrics_lst + group_stability_metrics_lst
+ metrics_names = group_fairness_metrics_lst + group_uncertainty_metrics_lst + group_stability_metrics_lst
return self._create_metrics_bar_chart_per_one_model(model_name, metrics_names, metrics_type='group')
def _create_metrics_bar_chart_per_one_model(self, model_name: str, metrics_names: list, metrics_type: str):
From ae533db9489def237c44fb8f81714a08a8323f49 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Thu, 30 Nov 2023 14:19:38 +0200
Subject: [PATCH 053/148] Set red-green color palette
---
...Multiple_Models_Interface_Vis_Income.ipynb | 197 +++++++++++++++---
.../metrics_interactive_visualizer.py | 16 +-
virny/utils/data_viz_utils.py | 3 +-
3 files changed, 184 insertions(+), 32 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
index 18bcc88c..a7f8a5b4 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
@@ -6,8 +6,8 @@
"id": "248cbed8",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-11-29T21:02:04.386021Z",
- "start_time": "2023-11-29T21:02:03.727098Z"
+ "end_time": "2023-11-30T10:14:44.773220Z",
+ "start_time": "2023-11-30T10:14:44.118473Z"
}
},
"outputs": [],
@@ -23,8 +23,8 @@
"id": "7ec6cd08",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-11-29T21:02:04.394975Z",
- "start_time": "2023-11-29T21:02:04.386298Z"
+ "end_time": "2023-11-30T10:14:44.781386Z",
+ "start_time": "2023-11-30T10:14:44.773120Z"
}
},
"outputs": [],
@@ -41,8 +41,8 @@
"id": "b8cb69f2",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-11-29T21:02:04.405571Z",
- "start_time": "2023-11-29T21:02:04.395579Z"
+ "end_time": "2023-11-30T10:14:44.791947Z",
+ "start_time": "2023-11-30T10:14:44.781906Z"
}
},
"outputs": [
@@ -76,8 +76,8 @@
"id": "7a9241de",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-11-29T21:02:08.026244Z",
- "start_time": "2023-11-29T21:02:04.404686Z"
+ "end_time": "2023-11-30T10:14:46.531174Z",
+ "start_time": "2023-11-30T10:14:44.792591Z"
}
},
"outputs": [],
@@ -101,8 +101,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-11-29T21:02:09.305496Z",
- "start_time": "2023-11-29T21:02:08.029615Z"
+ "end_time": "2023-11-30T10:14:47.863288Z",
+ "start_time": "2023-11-30T10:14:46.532997Z"
}
},
"id": "d3c53c7b72ecbcd0"
@@ -120,8 +120,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-11-29T21:02:09.332604Z",
- "start_time": "2023-11-29T21:02:09.305881Z"
+ "end_time": "2023-11-30T10:14:47.892811Z",
+ "start_time": "2023-11-30T10:14:47.863607Z"
}
},
"id": "2aab7c79ecdee914"
@@ -153,8 +153,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-11-29T21:02:09.385835Z",
- "start_time": "2023-11-29T21:02:09.332537Z"
+ "end_time": "2023-11-30T10:14:47.944316Z",
+ "start_time": "2023-11-30T10:14:47.890948Z"
}
},
"id": "44ee5eff6054ce04"
@@ -171,8 +171,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-11-29T21:02:09.407603Z",
- "start_time": "2023-11-29T21:02:09.385768Z"
+ "end_time": "2023-11-30T10:14:47.966498Z",
+ "start_time": "2023-11-30T10:14:47.944256Z"
}
},
"id": "833484748ed512e8"
@@ -196,8 +196,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-11-29T21:02:09.456986Z",
- "start_time": "2023-11-29T21:02:09.407709Z"
+ "end_time": "2023-11-30T10:14:48.034503Z",
+ "start_time": "2023-11-30T10:14:47.966623Z"
}
},
"id": "15ed7d1ba1f22317"
@@ -212,12 +212,12 @@
},
{
"cell_type": "code",
- "execution_count": 35,
+ "execution_count": 73,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-11-29T23:48:34.526173Z",
- "start_time": "2023-11-29T23:48:34.278833Z"
+ "end_time": "2023-11-30T12:18:02.265521Z",
+ "start_time": "2023-11-30T12:18:02.001588Z"
}
},
"outputs": [],
@@ -239,6 +239,54 @@
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Traceback (most recent call last):\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
+ " output = await route_utils.call_process_api(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
+ " output = await app.get_blocks().process_api(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
+ " result = await self.call_function(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
+ " prediction = await anyio.to_thread.run_sync(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
+ " return await get_asynclib().run_sync_in_worker_thread(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
+ " return await future\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
+ " result = context.run(func, *args)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
+ " response = f(*args, **kwargs)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 622, in _create_group_model_rank_heatmap\n",
+ " tolerance = str_to_float(tolerance, 'Tolerance')\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/utils/common_helpers.py\", line 86, in str_to_float\n",
+ " raise ValueError(f\"{var_name} must be a float number with a '.' separator.\")\n",
+ "ValueError: Tolerance must be a float number with a '.' separator.\n",
+ "Traceback (most recent call last):\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
+ " output = await route_utils.call_process_api(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
+ " output = await app.get_blocks().process_api(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
+ " result = await self.call_function(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
+ " prediction = await anyio.to_thread.run_sync(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
+ " return await get_asynclib().run_sync_in_worker_thread(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
+ " return await future\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
+ " result = context.run(func, *args)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
+ " response = f(*args, **kwargs)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 624, in _create_group_model_rank_heatmap\n",
+ " raise ValueError('Tolerance cannot be smaller than 0.001')\n",
+ "ValueError: Tolerance cannot be smaller than 0.001\n"
+ ]
}
],
"source": [
@@ -248,7 +296,7 @@
"collapsed": false,
"is_executing": true,
"ExecuteTime": {
- "start_time": "2023-11-29T23:48:34.526950Z"
+ "start_time": "2023-11-30T12:18:02.266315Z"
}
},
"id": "678a9dc8d51243f4"
@@ -271,25 +319,118 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-11-29T21:12:46.494378Z",
- "start_time": "2023-11-29T21:12:46.442750Z"
+ "end_time": "2023-11-30T10:20:01.084744Z",
+ "start_time": "2023-11-30T10:20:01.041733Z"
}
},
"id": "277b6d1de837dab7"
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": null,
"outputs": [],
"source": [],
+ "metadata": {
+ "collapsed": false
+ },
+ "id": "21c0ad91536f0af5"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 63,
+ "outputs": [],
+ "source": [
+ "def rank_with_tolerance(pd_series: pd.Series, tolerance: float = 0.01, method: str = 'dense'):\n",
+ " \"\"\"\n",
+ " Rank a pandas series with defined tolerance.\n",
+ " Ref: https://stackoverflow.com/questions/72956450/pandas-ranking-with-tolerance\n",
+ "\n",
+ " Parameters\n",
+ " ----------\n",
+ " pd_series\n",
+ " A pandas series to rank\n",
+ " tolerance\n",
+ " A float value for ranking\n",
+ " method\n",
+ " Ranking methods for numpy.rank()\n",
+ "\n",
+ " Returns\n",
+ " -------\n",
+ " A pandas series with dense ranks for the input pd series.\n",
+ "\n",
+ " \"\"\"\n",
+ " tolerance += 1e-10 # Add 0.0000000001 for correct comparison of float numbers\n",
+ " vals = pd.Series(pd_series.unique()).sort_values()\n",
+ " vals.index = vals\n",
+ " print('vals1 -- ', vals)\n",
+ " vals = vals.mask(vals - vals.shift(1) < tolerance, vals.shift(1))\n",
+ " print('vals2 -- ', vals)\n",
+ "\n",
+ " return pd_series.map(vals).fillna(pd_series).rank(method=method)"
+ ],
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-11-29T21:12:46.501645Z",
- "start_time": "2023-11-29T21:12:46.483631Z"
+ "end_time": "2023-11-30T11:49:03.109586Z",
+ "start_time": "2023-11-30T11:49:03.043461Z"
}
},
- "id": "c207d4345ddca1db"
+ "id": "58f9830c22542b19"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 70,
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "vals1 -- 0.002102 0.002102\n",
+ "0.002214 0.002214\n",
+ "0.003088 0.003088\n",
+ "0.004906 0.004906\n",
+ "dtype: float64\n",
+ "vals2 -- 0.002102 0.002102\n",
+ "0.002214 0.002102\n",
+ "0.003088 0.002214\n",
+ "0.004906 0.003088\n",
+ "dtype: float64\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": "0 1.0\n1 2.0\n2 1.0\n3 3.0\ndtype: float64"
+ },
+ "execution_count": 70,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "\n",
+ "# df = pd.Series([0.002, 0.003, 0.002, 0.005])\n",
+ "df = pd.Series([0.002102,0.003088,0.002214,0.004906])\n",
+ "rank_with_tolerance(df, tolerance=0.005)"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-11-30T11:58:02.372653Z",
+ "start_time": "2023-11-30T11:58:02.323106Z"
+ }
+ },
+ "id": "1a8bdd34f4e1b2a2"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "outputs": [],
+ "source": [],
+ "metadata": {
+ "collapsed": false
+ },
+ "id": "ec5d1085c5fc393a"
}
],
"metadata": {
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index 1b399eb5..4fc38399 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -339,7 +339,7 @@ def start_web_app(self):
with gr.Column():
gr.Markdown(
"""
- ### Overall Metrics
+ ### Overall Metric Constraints
""")
with gr.Row():
accuracy_metric_vw4 = gr.Dropdown(
@@ -366,7 +366,11 @@ def start_web_app(self):
subgroup_uncertainty_min_val_vw4 = gr.Text(value="0.0", label="Min value", scale=1)
subgroup_uncertainty_max_val_vw4 = gr.Text(value="1.0", label="Max value", scale=1)
with gr.Row():
- positive_rate_metric_vw4 = gr.Text(value=POSITIVE_RATE, label="Positive-Rate Metric", scale=2)
+ positive_rate_metric_vw4 = gr.Dropdown(
+ [POSITIVE_RATE],
+ value=POSITIVE_RATE, multiselect=False, label="Positive-Rate Metric",
+ scale=2
+ )
positive_rate_min_val_vw4 = gr.Text(value="0.0", label="Min value", scale=1)
positive_rate_max_val_vw4 = gr.Text(value="1.0", label="Max value", scale=1)
@@ -374,7 +378,7 @@ def start_web_app(self):
with gr.Column():
gr.Markdown(
"""
- ### Disparity Metrics
+ ### Disparity Metric Constraints
""")
with gr.Row():
fairness_metric_vw4 = gr.Dropdown(
@@ -575,6 +579,8 @@ def _create_subgroup_model_rank_heatmap(self, model_names: list, subgroup_accura
"""
tolerance = str_to_float(tolerance, 'Tolerance')
+ if tolerance < 0.001:
+ raise ValueError('Tolerance cannot be smaller than 0.001')
metrics_lst = subgroup_accuracy_metrics_lst + subgroup_uncertainty_metrics + subgroup_stability_metrics_lst
# Find metric values for each model based on metric, subgroup, and model names.
@@ -588,6 +594,7 @@ def _create_subgroup_model_rank_heatmap(self, model_names: list, subgroup_accura
model_metrics_matrix = pd.DataFrame(results).T
model_metrics_matrix = model_metrics_matrix[sorted(model_metrics_matrix.columns)]
+ model_metrics_matrix = model_metrics_matrix.round(3) # round to make tolerance more precise
sorted_matrix_by_rank = create_subgroup_sorted_matrix_by_rank(model_metrics_matrix, tolerance)
model_rank_heatmap, _ = create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_by_rank)
@@ -613,6 +620,8 @@ def _create_group_model_rank_heatmap(self, model_names: list, group_fairness_met
"""
tolerance = str_to_float(tolerance, 'Tolerance')
+ if tolerance < 0.001:
+ raise ValueError('Tolerance cannot be smaller than 0.001')
groups_lst = self.sensitive_attributes_dct.keys()
metrics_lst = group_fairness_metrics_lst + group_uncertainty_metrics + group_stability_metrics_lst
@@ -644,6 +653,7 @@ def _create_group_model_rank_heatmap(self, model_names: list, group_fairness_met
model_metrics_matrix = pd.DataFrame(results).T
model_metrics_matrix = model_metrics_matrix[sorted(model_metrics_matrix.columns)]
+ model_metrics_matrix = model_metrics_matrix.round(3) # round to make tolerance more precise
sorted_matrix_by_rank = create_sorted_matrix_by_rank(model_metrics_matrix, tolerance)
model_rank_heatmap, _ = create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_by_rank)
diff --git a/virny/utils/data_viz_utils.py b/virny/utils/data_viz_utils.py
index ab4534bd..bbc4b900 100644
--- a/virny/utils/data_viz_utils.py
+++ b/virny/utils/data_viz_utils.py
@@ -7,6 +7,7 @@
from altair.utils.schemapi import Undefined
from virny.utils.common_helpers import check_substring_in_list
+from IPython.display import display
def rank_with_tolerance(pd_series: pd.Series, tolerance: float = 0.01, method: str = 'dense'):
@@ -243,7 +244,7 @@ def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_
num_ranks = int(sorted_matrix_by_rank.values.max())
fig = plt.figure(figsize=(matrix_width, matrix_height))
- rank_colors = sns.color_palette("coolwarm_r", n_colors=num_ranks).as_hex()
+ rank_colors = sns.diverging_palette(13, 145, s=75, l=70, n=num_ranks).as_hex()
# Convert ranks to minus ranks (1 --> -1; 4 --> -4) to align rank positions with a coolwarm color scheme
reversed_sorted_matrix_by_rank = sorted_matrix_by_rank * -1
ax = sns.heatmap(reversed_sorted_matrix_by_rank, annot=model_metrics_matrix.round(3), cmap=rank_colors,
From c185456d4ebf45199bb41bafd2c9c92e8938f3f3 Mon Sep 17 00:00:00 2001
From: dmytro
Date: Sun, 3 Dec 2023 11:05:37 +0200
Subject: [PATCH 054/148] Add labels
---
virny/utils/common_helpers.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/virny/utils/common_helpers.py b/virny/utils/common_helpers.py
index dbaac29f..8b3c2a35 100644
--- a/virny/utils/common_helpers.py
+++ b/virny/utils/common_helpers.py
@@ -95,7 +95,7 @@ def save_metrics_to_file(metrics_df, result_filename, save_dir_path):
def confusion_matrix_metrics(y_true, y_preds):
metrics = {}
- TN, FP, FN, TP = confusion_matrix(y_true, y_preds).ravel()
+ TN, FP, FN, TP = confusion_matrix(y_true, y_preds, labels=[0, 1]).ravel()
metrics['TPR'] = TP/(TP+FN)
metrics['TNR'] = TN/(TN+FP)
From c4c0c8c3d1b6f62bcac4e1147cc8c6b5f502cd07 Mon Sep 17 00:00:00 2001
From: proc1v
Date: Wed, 6 Dec 2023 20:18:39 +0200
Subject: [PATCH 055/148] Added saving of eqodss fitted params
---
requirements.txt | 2 +-
virny/analyzers/abstract_overall_variance_analyzer.py | 2 +-
.../batch_overall_variance_analyzer_postprocessing.py | 5 ++++-
virny/user_interfaces/metrics_computation_interfaces.py | 9 +++++++++
4 files changed, 15 insertions(+), 3 deletions(-)
diff --git a/requirements.txt b/requirements.txt
index 6f68ab56..867757b7 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,6 +1,6 @@
wheel~=0.38.4
twine~=4.0.2
-numpy~=1.23.5
+numpy==1.23.5
matplotlib~=3.6.2
pandas~=1.5.2
altair~=4.2.0
diff --git a/virny/analyzers/abstract_overall_variance_analyzer.py b/virny/analyzers/abstract_overall_variance_analyzer.py
index 18edc79b..054cf67d 100644
--- a/virny/analyzers/abstract_overall_variance_analyzer.py
+++ b/virny/analyzers/abstract_overall_variance_analyzer.py
@@ -3,7 +3,7 @@
import pandas as pd
from copy import deepcopy
-from tqdm.notebook import tqdm
+from tqdm import tqdm
from abc import ABCMeta, abstractmethod
from virny.custom_classes.custom_logger import get_logger
diff --git a/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py b/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py
index 10d05f2b..597ee663 100644
--- a/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py
+++ b/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py
@@ -3,7 +3,7 @@
import numpy as np
import pandas as pd
-from tqdm.notebook import tqdm
+from tqdm import tqdm
from virny.analyzers.batch_overall_variance_analyzer import BatchOverallVarianceAnalyzer
from virny.utils.postprocessing_intervention_utils import contruct_binary_label_dataset_from_df, construct_binary_label_dataset_from_samples, predict_on_binary_label_dataset
@@ -80,6 +80,9 @@ def UQ_by_boostrap(self, boostrap_size: int, with_replacement: bool, with_fit: b
models_predictions[idx] = postprocessor_fitted.predict(test_binary_label_dataset_pred).labels.ravel()
self.models_lst[idx] = classifier
+ print("Postprocessor fitted params: ", postprocessor_fitted.model_params.x)
+ postprocessor_fitted.saved_params.append(postprocessor_fitted.model_params.x)
+
if self._verbose >= 1:
print('\n', flush=True)
self._AbstractOverallVarianceAnalyzer__logger.info('Successfully tested classifiers by bootstrap')
diff --git a/virny/user_interfaces/metrics_computation_interfaces.py b/virny/user_interfaces/metrics_computation_interfaces.py
index a7d336e6..5fac8338 100644
--- a/virny/user_interfaces/metrics_computation_interfaces.py
+++ b/virny/user_interfaces/metrics_computation_interfaces.py
@@ -1,5 +1,6 @@
import os
import traceback
+import numpy as np
import pandas as pd
from river import base
from tqdm.notebook import tqdm
@@ -351,6 +352,14 @@ def compute_metrics_multiple_runs_with_db_writer(dataset: BaseFlowDataset, confi
# Extend df with technical columns
model_metrics_df['Tag'] = 'OK'
model_metrics_df['Record_Create_Date_Time'] = datetime.now(timezone.utc)
+
+ if postprocessor:
+ postprocessor_params = np.array(postprocessor.saved_params)
+ params_means = np.mean(postprocessor_params, axis=0)
+ params_stds = np.std(postprocessor_params, axis=0)
+ model_metrics_df['Postprocessor_coefs_means'] = [params_means.tolist()] * len(model_metrics_df)
+ model_metrics_df['Postprocessor_coefs_stds'] = [params_stds.tolist()] * len(model_metrics_df)
+
for column, value in custom_tbl_fields_dct.items():
model_metrics_df[column] = value
From 466d81ac079de03277c024121f58a31f216c9a41 Mon Sep 17 00:00:00 2001
From: proc1v
Date: Wed, 6 Dec 2023 21:02:24 +0200
Subject: [PATCH 056/148] dubug
---
.../batch_overall_variance_analyzer_postprocessing.py | 4 +++-
1 file changed, 3 insertions(+), 1 deletion(-)
diff --git a/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py b/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py
index 597ee663..6da2edce 100644
--- a/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py
+++ b/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py
@@ -80,8 +80,10 @@ def UQ_by_boostrap(self, boostrap_size: int, with_replacement: bool, with_fit: b
models_predictions[idx] = postprocessor_fitted.predict(test_binary_label_dataset_pred).labels.ravel()
self.models_lst[idx] = classifier
- print("Postprocessor fitted params: ", postprocessor_fitted.model_params.x)
+ print("Postprocessor fitted params: ", postprocessor_fitted.model_params.x, flush=True)
postprocessor_fitted.saved_params.append(postprocessor_fitted.model_params.x)
+
+ print("Postprocessor fitted params: ", postprocessor_fitted.saved_params, flush=True)
if self._verbose >= 1:
print('\n', flush=True)
From c1feaf941bf116b9ae4e331548ea5fa00b8c1b93 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Thu, 7 Dec 2023 20:00:38 +0200
Subject: [PATCH 057/148] Added test metrics for ACS Public Coverage
---
...Multiple_Models_Interface_Vis_Income.ipynb | 218 ++-----------
...iple_Models_Interface_Vis_Law_School.ipynb | 132 ++++----
...ultiple_Models_Interface_Vis_Pub_Cov.ipynb | 308 ++++++++++++++++++
docs/examples/pub_cov_subgroup_metrics.csv | 153 +++++++++
4 files changed, 553 insertions(+), 258 deletions(-)
create mode 100644 docs/examples/Multiple_Models_Interface_Vis_Pub_Cov.ipynb
create mode 100644 docs/examples/pub_cov_subgroup_metrics.csv
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
index a7f8a5b4..aac2e942 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
@@ -6,8 +6,8 @@
"id": "248cbed8",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-11-30T10:14:44.773220Z",
- "start_time": "2023-11-30T10:14:44.118473Z"
+ "end_time": "2023-12-03T22:09:30.506501Z",
+ "start_time": "2023-12-03T22:09:29.758579Z"
}
},
"outputs": [],
@@ -23,8 +23,8 @@
"id": "7ec6cd08",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-11-30T10:14:44.781386Z",
- "start_time": "2023-11-30T10:14:44.773120Z"
+ "end_time": "2023-12-03T22:09:30.515379Z",
+ "start_time": "2023-12-03T22:09:30.506765Z"
}
},
"outputs": [],
@@ -41,8 +41,8 @@
"id": "b8cb69f2",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-11-30T10:14:44.791947Z",
- "start_time": "2023-11-30T10:14:44.781906Z"
+ "end_time": "2023-12-03T22:09:30.525236Z",
+ "start_time": "2023-12-03T22:09:30.515761Z"
}
},
"outputs": [
@@ -76,8 +76,8 @@
"id": "7a9241de",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-11-30T10:14:46.531174Z",
- "start_time": "2023-11-30T10:14:44.792591Z"
+ "end_time": "2023-12-03T22:09:33.037405Z",
+ "start_time": "2023-12-03T22:09:30.526188Z"
}
},
"outputs": [],
@@ -101,8 +101,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-11-30T10:14:47.863288Z",
- "start_time": "2023-11-30T10:14:46.532997Z"
+ "end_time": "2023-12-03T22:09:34.393655Z",
+ "start_time": "2023-12-03T22:09:33.038803Z"
}
},
"id": "d3c53c7b72ecbcd0"
@@ -120,8 +120,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-11-30T10:14:47.892811Z",
- "start_time": "2023-11-30T10:14:47.863607Z"
+ "end_time": "2023-12-03T22:09:34.420850Z",
+ "start_time": "2023-12-03T22:09:34.393834Z"
}
},
"id": "2aab7c79ecdee914"
@@ -153,30 +153,12 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-11-30T10:14:47.944316Z",
- "start_time": "2023-11-30T10:14:47.890948Z"
+ "end_time": "2023-12-03T22:09:34.476159Z",
+ "start_time": "2023-12-03T22:09:34.421313Z"
}
},
"id": "44ee5eff6054ce04"
},
- {
- "cell_type": "code",
- "execution_count": 8,
- "outputs": [],
- "source": [
- "models_metrics_dct = dict()\n",
- "for model_name in subgroup_metrics_df['Model_Name'].unique():\n",
- " models_metrics_dct[model_name] = subgroup_metrics_df[subgroup_metrics_df['Model_Name'] == model_name]"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-11-30T10:14:47.966498Z",
- "start_time": "2023-11-30T10:14:47.944256Z"
- }
- },
- "id": "833484748ed512e8"
- },
{
"cell_type": "code",
"execution_count": 9,
@@ -196,8 +178,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-11-30T10:14:48.034503Z",
- "start_time": "2023-11-30T10:14:47.966623Z"
+ "end_time": "2023-12-03T22:09:34.566417Z",
+ "start_time": "2023-12-03T22:09:34.499412Z"
}
},
"id": "15ed7d1ba1f22317"
@@ -212,12 +194,12 @@
},
{
"cell_type": "code",
- "execution_count": 73,
+ "execution_count": 10,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-11-30T12:18:02.265521Z",
- "start_time": "2023-11-30T12:18:02.001588Z"
+ "end_time": "2023-12-03T22:09:34.588762Z",
+ "start_time": "2023-12-03T22:09:34.523515Z"
}
},
"outputs": [],
@@ -229,7 +211,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 11,
"outputs": [
{
"name": "stdout",
@@ -237,55 +219,8 @@
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
- "To create a public link, set `share=True` in `launch()`.\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Traceback (most recent call last):\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
- " output = await route_utils.call_process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
- " output = await app.get_blocks().process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
- " result = await self.call_function(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
- " prediction = await anyio.to_thread.run_sync(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
- " return await get_asynclib().run_sync_in_worker_thread(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
- " return await future\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
- " result = context.run(func, *args)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
- " response = f(*args, **kwargs)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 622, in _create_group_model_rank_heatmap\n",
- " tolerance = str_to_float(tolerance, 'Tolerance')\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/utils/common_helpers.py\", line 86, in str_to_float\n",
- " raise ValueError(f\"{var_name} must be a float number with a '.' separator.\")\n",
- "ValueError: Tolerance must be a float number with a '.' separator.\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
- " output = await route_utils.call_process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
- " output = await app.get_blocks().process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
- " result = await self.call_function(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
- " prediction = await anyio.to_thread.run_sync(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
- " return await get_asynclib().run_sync_in_worker_thread(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
- " return await future\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
- " result = context.run(func, *args)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
- " response = f(*args, **kwargs)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 624, in _create_group_model_rank_heatmap\n",
- " raise ValueError('Tolerance cannot be smaller than 0.001')\n",
- "ValueError: Tolerance cannot be smaller than 0.001\n"
+ "To create a public link, set `share=True` in `launch()`.\n",
+ "Keyboard interruption in main thread... closing server.\n"
]
}
],
@@ -294,9 +229,9 @@
],
"metadata": {
"collapsed": false,
- "is_executing": true,
"ExecuteTime": {
- "start_time": "2023-11-30T12:18:02.266315Z"
+ "end_time": "2023-12-03T23:42:27.309199Z",
+ "start_time": "2023-12-03T22:09:34.550444Z"
}
},
"id": "678a9dc8d51243f4"
@@ -319,118 +254,25 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-11-30T10:20:01.084744Z",
- "start_time": "2023-11-30T10:20:01.041733Z"
+ "end_time": "2023-12-03T23:42:27.346512Z",
+ "start_time": "2023-12-03T23:42:27.314034Z"
}
},
"id": "277b6d1de837dab7"
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 12,
"outputs": [],
"source": [],
- "metadata": {
- "collapsed": false
- },
- "id": "21c0ad91536f0af5"
- },
- {
- "cell_type": "code",
- "execution_count": 63,
- "outputs": [],
- "source": [
- "def rank_with_tolerance(pd_series: pd.Series, tolerance: float = 0.01, method: str = 'dense'):\n",
- " \"\"\"\n",
- " Rank a pandas series with defined tolerance.\n",
- " Ref: https://stackoverflow.com/questions/72956450/pandas-ranking-with-tolerance\n",
- "\n",
- " Parameters\n",
- " ----------\n",
- " pd_series\n",
- " A pandas series to rank\n",
- " tolerance\n",
- " A float value for ranking\n",
- " method\n",
- " Ranking methods for numpy.rank()\n",
- "\n",
- " Returns\n",
- " -------\n",
- " A pandas series with dense ranks for the input pd series.\n",
- "\n",
- " \"\"\"\n",
- " tolerance += 1e-10 # Add 0.0000000001 for correct comparison of float numbers\n",
- " vals = pd.Series(pd_series.unique()).sort_values()\n",
- " vals.index = vals\n",
- " print('vals1 -- ', vals)\n",
- " vals = vals.mask(vals - vals.shift(1) < tolerance, vals.shift(1))\n",
- " print('vals2 -- ', vals)\n",
- "\n",
- " return pd_series.map(vals).fillna(pd_series).rank(method=method)"
- ],
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-11-30T11:49:03.109586Z",
- "start_time": "2023-11-30T11:49:03.043461Z"
+ "end_time": "2023-12-03T23:42:27.349708Z",
+ "start_time": "2023-12-03T23:42:27.345872Z"
}
},
- "id": "58f9830c22542b19"
- },
- {
- "cell_type": "code",
- "execution_count": 70,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "vals1 -- 0.002102 0.002102\n",
- "0.002214 0.002214\n",
- "0.003088 0.003088\n",
- "0.004906 0.004906\n",
- "dtype: float64\n",
- "vals2 -- 0.002102 0.002102\n",
- "0.002214 0.002102\n",
- "0.003088 0.002214\n",
- "0.004906 0.003088\n",
- "dtype: float64\n"
- ]
- },
- {
- "data": {
- "text/plain": "0 1.0\n1 2.0\n2 1.0\n3 3.0\ndtype: float64"
- },
- "execution_count": 70,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "import pandas as pd\n",
- "\n",
- "# df = pd.Series([0.002, 0.003, 0.002, 0.005])\n",
- "df = pd.Series([0.002102,0.003088,0.002214,0.004906])\n",
- "rank_with_tolerance(df, tolerance=0.005)"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-11-30T11:58:02.372653Z",
- "start_time": "2023-11-30T11:58:02.323106Z"
- }
- },
- "id": "1a8bdd34f4e1b2a2"
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [],
- "metadata": {
- "collapsed": false
- },
- "id": "ec5d1085c5fc393a"
+ "id": "21c0ad91536f0af5"
}
],
"metadata": {
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
index a2a5a603..e9af1c88 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
@@ -2,24 +2,15 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 55,
+ "execution_count": 1,
"id": "248cbed8",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-07T13:37:09.385430Z",
- "start_time": "2023-10-07T13:37:09.127608Z"
+ "end_time": "2023-12-06T15:49:13.844713Z",
+ "start_time": "2023-12-06T15:49:13.202938Z"
}
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The autoreload extension is already loaded. To reload it, use:\n",
- " %reload_ext autoreload\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"%matplotlib inline\n",
"%load_ext autoreload\n",
@@ -28,12 +19,12 @@
},
{
"cell_type": "code",
- "execution_count": 56,
+ "execution_count": 2,
"id": "7ec6cd08",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-07T13:37:09.409539Z",
- "start_time": "2023-10-07T13:37:09.385249Z"
+ "end_time": "2023-12-06T15:49:13.852965Z",
+ "start_time": "2023-12-06T15:49:13.844443Z"
}
},
"outputs": [],
@@ -46,12 +37,12 @@
},
{
"cell_type": "code",
- "execution_count": 57,
+ "execution_count": 3,
"id": "b8cb69f2",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-07T13:37:09.430322Z",
- "start_time": "2023-10-07T13:37:09.408329Z"
+ "end_time": "2023-12-06T15:49:13.862149Z",
+ "start_time": "2023-12-06T15:49:13.853366Z"
}
},
"outputs": [
@@ -81,12 +72,12 @@
},
{
"cell_type": "code",
- "execution_count": 58,
+ "execution_count": 4,
"id": "7a9241de",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-07T13:37:09.451279Z",
- "start_time": "2023-10-07T13:37:09.431063Z"
+ "end_time": "2023-12-06T15:49:16.237279Z",
+ "start_time": "2023-12-06T15:49:13.862719Z"
}
},
"outputs": [],
@@ -94,89 +85,89 @@
"import os\n",
"import pandas as pd\n",
"\n",
+ "from virny.datasets import LawSchoolDataset\n",
+ "from virny.custom_classes.metrics_composer import MetricsComposer\n",
"from virny.custom_classes.metrics_interactive_visualizer import MetricsInteractiveVisualizer"
]
},
{
"cell_type": "code",
- "execution_count": 59,
+ "execution_count": 5,
"outputs": [],
"source": [
+ "data_loader = LawSchoolDataset()\n",
"sensitive_attributes_dct = {'male': '0.0', 'race': 'Non-White', 'male&race': None}"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-07T13:37:09.475696Z",
- "start_time": "2023-10-07T13:37:09.453496Z"
+ "end_time": "2023-12-06T15:49:16.300788Z",
+ "start_time": "2023-12-06T15:49:16.238957Z"
}
},
"id": "d3c53c7b72ecbcd0"
},
{
"cell_type": "code",
- "execution_count": 60,
+ "execution_count": 6,
"outputs": [],
"source": [
"ROOT_DIR = os.path.join('docs', 'examples')\n",
"subgroup_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'law_school_subgroup_metrics.csv'), header=0)\n",
- "models_composed_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'law_school_group_metrics.csv'), header=0)"
+ "subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
+ " subgroup_metrics_df['Intervention_Param'].astype(str))"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-07T13:37:09.500877Z",
- "start_time": "2023-10-07T13:37:09.474723Z"
+ "end_time": "2023-12-06T15:49:16.328190Z",
+ "start_time": "2023-12-06T15:49:16.301062Z"
}
},
"id": "2aab7c79ecdee914"
},
{
"cell_type": "code",
- "execution_count": 61,
- "outputs": [],
- "source": [
- "subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
- " subgroup_metrics_df['Intervention_Param'].astype(str))\n",
- "models_composed_metrics_df['Model_Name'] = (models_composed_metrics_df['Model_Name'] + '__alpha=' \n",
- " + models_composed_metrics_df['Intervention_Param'].astype(str))"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-10-07T13:37:09.520270Z",
- "start_time": "2023-10-07T13:37:09.500217Z"
+ "execution_count": 7,
+ "outputs": [
+ {
+ "data": {
+ "text/plain": " Metric male race male&race \\\n0 Accuracy_Parity -0.024413 -0.158856 -0.162998 \n1 Aleatoric_Uncertainty_Parity -0.016769 0.317464 0.274695 \n2 Aleatoric_Uncertainty_Ratio 0.951019 2.126816 1.880052 \n3 Equalized_Odds_FNR 0.006853 0.089260 0.092334 \n4 Equalized_Odds_FPR 0.027311 -0.289259 -0.156572 \n\n Model_Name \n0 LGBMClassifier__alpha=0.6 \n1 LGBMClassifier__alpha=0.6 \n2 LGBMClassifier__alpha=0.6 \n3 LGBMClassifier__alpha=0.6 \n4 LGBMClassifier__alpha=0.6 ",
+ "text/html": "\n\n
\n \n \n | \n Metric | \n male | \n race | \n male&race | \n Model_Name | \n
\n \n \n \n 0 | \n Accuracy_Parity | \n -0.024413 | \n -0.158856 | \n -0.162998 | \n LGBMClassifier__alpha=0.6 | \n
\n \n 1 | \n Aleatoric_Uncertainty_Parity | \n -0.016769 | \n 0.317464 | \n 0.274695 | \n LGBMClassifier__alpha=0.6 | \n
\n \n 2 | \n Aleatoric_Uncertainty_Ratio | \n 0.951019 | \n 2.126816 | \n 1.880052 | \n LGBMClassifier__alpha=0.6 | \n
\n \n 3 | \n Equalized_Odds_FNR | \n 0.006853 | \n 0.089260 | \n 0.092334 | \n LGBMClassifier__alpha=0.6 | \n
\n \n 4 | \n Equalized_Odds_FPR | \n 0.027311 | \n -0.289259 | \n -0.156572 | \n LGBMClassifier__alpha=0.6 | \n
\n \n
\n
"
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
}
- },
- "id": "2d922003e752a4b4"
- },
- {
- "cell_type": "code",
- "execution_count": 62,
- "outputs": [],
+ ],
"source": [
+ "model_names = subgroup_metrics_df['Model_Name'].unique()\n",
"models_metrics_dct = dict()\n",
- "for model_name in subgroup_metrics_df['Model_Name'].unique():\n",
- " models_metrics_dct[model_name] = subgroup_metrics_df[subgroup_metrics_df['Model_Name'] == model_name]"
+ "for model_name in model_names:\n",
+ " models_metrics_dct[model_name] = subgroup_metrics_df[subgroup_metrics_df['Model_Name'] == model_name]\n",
+ "\n",
+ "metrics_composer = MetricsComposer(models_metrics_dct, sensitive_attributes_dct)\n",
+ "models_composed_metrics_df = metrics_composer.compose_metrics()\n",
+ "models_composed_metrics_df.head()"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-07T13:37:09.543689Z",
- "start_time": "2023-10-07T13:37:09.521274Z"
+ "end_time": "2023-12-06T15:49:16.379226Z",
+ "start_time": "2023-12-06T15:49:16.327124Z"
}
},
"id": "833484748ed512e8"
},
{
"cell_type": "code",
- "execution_count": 63,
+ "execution_count": 8,
"outputs": [
{
"data": {
"text/plain": "dict_keys(['LGBMClassifier__alpha=0.6', 'LGBMClassifier__alpha=0.0', 'LogisticRegression__alpha=0.6', 'LogisticRegression__alpha=0.0', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.6', 'RandomForestClassifier__alpha=0.6', 'RandomForestClassifier__alpha=0.0'])"
},
- "execution_count": 63,
+ "execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -187,8 +178,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-07T13:37:09.565841Z",
- "start_time": "2023-10-07T13:37:09.543823Z"
+ "end_time": "2023-12-06T15:49:16.400186Z",
+ "start_time": "2023-12-06T15:49:16.376928Z"
}
},
"id": "15ed7d1ba1f22317"
@@ -203,23 +194,24 @@
},
{
"cell_type": "code",
- "execution_count": 64,
+ "execution_count": 9,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-07T13:37:09.593512Z",
- "start_time": "2023-10-07T13:37:09.565293Z"
+ "end_time": "2023-12-06T15:49:16.482456Z",
+ "start_time": "2023-12-06T15:49:16.398934Z"
}
},
"outputs": [],
"source": [
- "visualizer = MetricsInteractiveVisualizer(models_metrics_dct, models_composed_metrics_df,\n",
+ "visualizer = MetricsInteractiveVisualizer(data_loader.X_data, data_loader.y_data,\n",
+ " models_metrics_dct, models_composed_metrics_df,\n",
" sensitive_attributes_dct=sensitive_attributes_dct)"
]
},
{
"cell_type": "code",
- "execution_count": 65,
+ "execution_count": 10,
"outputs": [
{
"name": "stdout",
@@ -238,15 +230,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-07T13:42:17.431036Z",
- "start_time": "2023-10-07T13:37:09.593677Z"
+ "end_time": "2023-12-06T23:49:32.410119Z",
+ "start_time": "2023-12-06T15:49:16.428590Z"
}
},
"id": "678a9dc8d51243f4"
},
{
"cell_type": "code",
- "execution_count": 66,
+ "execution_count": 11,
"outputs": [
{
"name": "stdout",
@@ -262,20 +254,20 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-10-07T13:42:17.479914Z",
- "start_time": "2023-10-07T13:42:17.432456Z"
+ "end_time": "2023-12-06T23:49:32.447145Z",
+ "start_time": "2023-12-06T23:49:32.406866Z"
}
},
"id": "277b6d1de837dab7"
},
{
"cell_type": "code",
- "execution_count": 66,
+ "execution_count": 11,
"id": "2326c129",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-10-07T13:42:17.482254Z",
- "start_time": "2023-10-07T13:42:17.478725Z"
+ "end_time": "2023-12-06T23:49:32.450211Z",
+ "start_time": "2023-12-06T23:49:32.446290Z"
}
},
"outputs": [],
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Pub_Cov.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Pub_Cov.ipynb
new file mode 100644
index 00000000..6caf5b8b
--- /dev/null
+++ b/docs/examples/Multiple_Models_Interface_Vis_Pub_Cov.ipynb
@@ -0,0 +1,308 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "248cbed8",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-12-07T00:13:42.978064Z",
+ "start_time": "2023-12-07T00:13:42.914700Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The autoreload extension is already loaded. To reload it, use:\n",
+ " %reload_ext autoreload\n"
+ ]
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "%load_ext autoreload\n",
+ "%autoreload 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "id": "7ec6cd08",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-12-07T00:13:42.983725Z",
+ "start_time": "2023-12-07T00:13:42.954698Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "os.environ[\"PYTHONWARNINGS\"] = \"ignore\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "id": "b8cb69f2",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-12-07T00:13:43.018895Z",
+ "start_time": "2023-12-07T00:13:42.982387Z"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Current location: /Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny\n"
+ ]
+ }
+ ],
+ "source": [
+ "cur_folder_name = os.getcwd().split('/')[-1]\n",
+ "if cur_folder_name != \"Virny\":\n",
+ " os.chdir(\"../..\")\n",
+ "\n",
+ "print('Current location: ', os.getcwd())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a578f2ab",
+ "metadata": {},
+ "source": [
+ "# Multiple Models Interface Usage"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "id": "7a9241de",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-12-07T00:13:43.027909Z",
+ "start_time": "2023-12-07T00:13:43.006390Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "import pandas as pd\n",
+ "\n",
+ "from virny.datasets import ACSPublicCoverageDataset\n",
+ "from virny.custom_classes.metrics_composer import MetricsComposer\n",
+ "from virny.custom_classes.metrics_interactive_visualizer import MetricsInteractiveVisualizer"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "outputs": [],
+ "source": [
+ "data_loader = ACSPublicCoverageDataset(state=['CA'], year=2018, with_nulls=False,\n",
+ " subsample_size=15_000, subsample_seed=42)\n",
+ "sensitive_attributes_dct = {'SEX': '2', 'RAC1P': ['2', '3', '4', '5', '6', '7', '8', '9'], 'SEX&RAC1P': None}"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-12-07T00:13:48.771709Z",
+ "start_time": "2023-12-07T00:13:43.029632Z"
+ }
+ },
+ "id": "d3c53c7b72ecbcd0"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "outputs": [],
+ "source": [
+ "ROOT_DIR = os.path.join('docs', 'examples')\n",
+ "subgroup_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'pub_cov_subgroup_metrics.csv'), header=0)\n",
+ "subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
+ " subgroup_metrics_df['Intervention_Param'].astype(str))"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-12-07T00:13:48.805639Z",
+ "start_time": "2023-12-07T00:13:48.768740Z"
+ }
+ },
+ "id": "2aab7c79ecdee914"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "outputs": [
+ {
+ "data": {
+ "text/plain": " Metric SEX RAC1P SEX&RAC1P \\\n0 Accuracy_Parity 0.026847 0.016299 0.040212 \n1 Aleatoric_Uncertainty_Parity -0.013240 0.027276 0.007235 \n2 Aleatoric_Uncertainty_Ratio 0.983584 1.034689 1.009077 \n3 Equalized_Odds_FNR 0.004275 -0.000359 -0.008617 \n4 Equalized_Odds_FPR -0.012072 -0.024172 -0.040481 \n\n Model_Name \n0 LGBMClassifier__alpha=0.6 \n1 LGBMClassifier__alpha=0.6 \n2 LGBMClassifier__alpha=0.6 \n3 LGBMClassifier__alpha=0.6 \n4 LGBMClassifier__alpha=0.6 ",
+ "text/html": "\n\n
\n \n \n | \n Metric | \n SEX | \n RAC1P | \n SEX&RAC1P | \n Model_Name | \n
\n \n \n \n 0 | \n Accuracy_Parity | \n 0.026847 | \n 0.016299 | \n 0.040212 | \n LGBMClassifier__alpha=0.6 | \n
\n \n 1 | \n Aleatoric_Uncertainty_Parity | \n -0.013240 | \n 0.027276 | \n 0.007235 | \n LGBMClassifier__alpha=0.6 | \n
\n \n 2 | \n Aleatoric_Uncertainty_Ratio | \n 0.983584 | \n 1.034689 | \n 1.009077 | \n LGBMClassifier__alpha=0.6 | \n
\n \n 3 | \n Equalized_Odds_FNR | \n 0.004275 | \n -0.000359 | \n -0.008617 | \n LGBMClassifier__alpha=0.6 | \n
\n \n 4 | \n Equalized_Odds_FPR | \n -0.012072 | \n -0.024172 | \n -0.040481 | \n LGBMClassifier__alpha=0.6 | \n
\n \n
\n
"
+ },
+ "execution_count": 25,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "model_names = subgroup_metrics_df['Model_Name'].unique()\n",
+ "models_metrics_dct = dict()\n",
+ "for model_name in model_names:\n",
+ " models_metrics_dct[model_name] = subgroup_metrics_df[subgroup_metrics_df['Model_Name'] == model_name]\n",
+ "\n",
+ "metrics_composer = MetricsComposer(models_metrics_dct, sensitive_attributes_dct)\n",
+ "models_composed_metrics_df = metrics_composer.compose_metrics()\n",
+ "models_composed_metrics_df.head()"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-12-07T00:13:48.849022Z",
+ "start_time": "2023-12-07T00:13:48.802693Z"
+ }
+ },
+ "id": "833484748ed512e8"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "outputs": [
+ {
+ "data": {
+ "text/plain": "dict_keys(['LGBMClassifier__alpha=0.6', 'LGBMClassifier__alpha=0.0', 'LogisticRegression__alpha=0.0', 'LogisticRegression__alpha=0.6', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.6', 'RandomForestClassifier__alpha=0.0', 'RandomForestClassifier__alpha=0.6'])"
+ },
+ "execution_count": 26,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "models_metrics_dct.keys()"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-12-07T00:13:48.873723Z",
+ "start_time": "2023-12-07T00:13:48.848261Z"
+ }
+ },
+ "id": "15ed7d1ba1f22317"
+ },
+ {
+ "cell_type": "markdown",
+ "id": "deb45226",
+ "metadata": {},
+ "source": [
+ "## Metrics Visualization and Reporting"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "id": "435b9d98",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-12-07T00:13:48.959344Z",
+ "start_time": "2023-12-07T00:13:48.871083Z"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "visualizer = MetricsInteractiveVisualizer(data_loader.X_data, data_loader.y_data,\n",
+ " models_metrics_dct, models_composed_metrics_df,\n",
+ " sensitive_attributes_dct=sensitive_attributes_dct)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Running on local URL: http://127.0.0.1:7860\n",
+ "\n",
+ "To create a public link, set `share=True` in `launch()`.\n",
+ "Keyboard interruption in main thread... closing server.\n"
+ ]
+ }
+ ],
+ "source": [
+ "visualizer.start_web_app()"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-12-07T00:15:48.056146Z",
+ "start_time": "2023-12-07T00:13:48.898642Z"
+ }
+ },
+ "id": "678a9dc8d51243f4"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Closing server running on port: 7860\n"
+ ]
+ }
+ ],
+ "source": [
+ "visualizer.stop_web_app()"
+ ],
+ "metadata": {
+ "collapsed": false,
+ "ExecuteTime": {
+ "end_time": "2023-12-07T00:15:48.092702Z",
+ "start_time": "2023-12-07T00:15:48.056394Z"
+ }
+ },
+ "id": "277b6d1de837dab7"
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "id": "2326c129",
+ "metadata": {
+ "ExecuteTime": {
+ "end_time": "2023-12-07T00:15:48.095103Z",
+ "start_time": "2023-12-07T00:15:48.092153Z"
+ }
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.10"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/docs/examples/pub_cov_subgroup_metrics.csv b/docs/examples/pub_cov_subgroup_metrics.csv
new file mode 100644
index 00000000..788e1430
--- /dev/null
+++ b/docs/examples/pub_cov_subgroup_metrics.csv
@@ -0,0 +1,153 @@
+Metric,Bootstrap_Model_Seed,Model_Name,Model_Params,Run_Number,Dataset_Name,Num_Estimators,Test_Set_Index,Tag,Record_Create_Date_Time,Session_Uuid,Experiment_Iteration,Dataset_Split_Seed,Model_Init_Seed,Fair_Intervention_Params_Lst,Intervention_Param,RAC1P_dis,RAC1P_dis_correct,RAC1P_dis_incorrect,RAC1P_priv,RAC1P_priv_correct,RAC1P_priv_incorrect,SEX&RAC1P_dis,SEX&RAC1P_dis_correct,SEX&RAC1P_dis_incorrect,SEX&RAC1P_priv,SEX&RAC1P_priv_correct,SEX&RAC1P_priv_incorrect,SEX_dis,SEX_dis_correct,SEX_dis_incorrect,SEX_priv,SEX_priv_correct,SEX_priv_incorrect,overall
+Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.7106382978723405,1.0,0.0,0.6943396226415094,1.0,0.0,0.7309523809523809,1.0,0.0,0.6907407407407408,1.0,0.0,0.7137767220902613,1.0,0.0,0.6869300911854104,1.0,0.0,0.702
+Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.7078014184397163,1.0,0.0,0.7069182389937106,1.0,0.0,0.7261904761904762,1.0,0.0,0.7,1.0,0.0,0.7173396674584323,1.0,0.0,0.6945288753799392,1.0,0.0,0.7073333333333334
+Aleatoric_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.8135845655489112,0.7866469125149843,0.8797402722645846,0.7863084864764371,0.7565593407316595,0.8538867928596355,0.8043374515789166,0.7763233060898863,0.8804466787039809,0.7971024405533379,0.768632177324783,0.860691711117715,0.79332014755367,0.7625311455668369,0.8701010197283034,0.8065604881771425,0.7819682317880847,0.8605201963706094,0.7991282436405
+Aleatoric_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.8148785905804831,0.7881025075981596,0.8797391022706743,0.7900820491165612,0.7635308789915832,0.8541239272720874,0.8053079922995199,0.7766991635658756,0.8811835815496201,0.8003474802232484,0.774436852377195,0.8608056118640398,0.7956992195010564,0.7657742495399613,0.871643260914928,0.8094618428374122,0.7873957517781504,0.8596320100716537,0.8017364236046045
+F1,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.5363636363636364,1.0,0.0,0.5244618395303327,1.0,0.0,0.5461847389558233,1.0,0.0,0.5242165242165242,1.0,0.0,0.52465483234714,1.0,0.0,0.536036036036036,1.0,0.0,0.5299684542586751
+F1,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.5275229357798165,1.0,0.0,0.5458089668615984,1.0,0.0,0.5344129554655871,1.0,0.0,0.5384615384615384,1.0,0.0,0.5258964143426295,1.0,0.0,0.5503355704697986,1.0,0.0,0.5374077976817703
+FNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.5645756457564576,0.0,1.0,0.564935064935065,0.0,1.0,0.5584415584415584,0.0,1.0,0.5670588235294117,0.0,1.0,0.5667752442996743,0.0,1.0,0.5625,0.0,1.0,0.5647668393782384
+FNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.5756457564575646,0.0,1.0,0.5454545454545454,0.0,1.0,0.5714285714285714,0.0,1.0,0.5552941176470588,0.0,1.0,0.5700325732899023,0.0,1.0,0.5477941176470589,0.0,1.0,0.5595854922279793
+FPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.1175115207373272,0.0,1.0,0.14168377823408623,0.0,1.0,0.10150375939849623,0.0,1.0,0.14198473282442747,0.0,1.0,0.1252336448598131,0.0,1.0,0.13730569948186527,0.0,1.0,0.13029315960912052
+FPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.1152073732718894,0.0,1.0,0.13347022587268995,0.0,1.0,0.10150375939849623,0.0,1.0,0.13435114503816795,0.0,1.0,0.11775700934579439,0.0,1.0,0.13471502590673576,0.0,1.0,0.1248642779587405
+IQR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.08182418362009894,0.07839051166541347,0.09025687797940002,0.07926075106534702,0.07627944599108963,0.0860330983945243,0.08132420456867172,0.07721459907427747,0.09248923896494633,0.08013164873173936,0.07731235739363329,0.0864286287863116,0.07966814664427953,0.07606107596458073,0.08866337269614244,0.08148596819853691,0.07890972096624026,0.08713870484415868,0.08046556436608042
+IQR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.0773868546726484,0.07399641405350874,0.08559962102677801,0.07475981335012077,0.07219855164645576,0.08093762054951874,0.07639056726578859,0.0723454923738037,0.08711880937061808,0.0758405054684555,0.07332595431745884,0.0817077914874477,0.07522697625213055,0.07182547366190477,0.08385936097690525,0.0769767023605915,0.07465472767225059,0.0822560179455258,0.07599452277170875
+Jitter,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.10372621975123697,0.08655623426514021,0.14589368410681852,0.10018779431750162,0.07782472143325488,0.15098786111627707,0.09357406078008795,0.07452310411997025,0.14533196958241826,0.10506960729573904,0.08504735473614684,0.14978996780308892,0.09908915121927978,0.07721034456809772,0.15364999270209795,0.10538482686991034,0.08831969582425019,0.14282870663999295,0.10185085427135611
+Jitter,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.09982073488007233,0.08075044561485044,0.14601527052738977,0.09032824499857926,0.07421404173894527,0.12919597989949616,0.09085343383584372,0.07117472608946632,0.14304478916322408,0.09632049134561811,0.07975459307117581,0.13497425398597693,0.09284283651034325,0.07357382941196199,0.14174401418858906,0.09728100991278386,0.08219731040322947,0.1315757893947365,0.09478971524288303
+Label_Stability,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.85022695035461,0.8754291417165668,0.7883333333333333,0.8580754716981133,0.8917572463768116,0.7815637860082304,0.8659523809523809,0.8943973941368077,0.7886725663716815,0.849888888888889,0.8797050938337801,0.7832934131736528,0.8592636579572447,0.8914475873544093,0.7790041493775934,0.8481458966565351,0.874070796460177,0.7912621359223301,0.8543866666666666
+Label_Stability,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.8559290780141845,0.8847695390781564,0.7860679611650486,0.8760251572327045,0.898914590747331,0.8208154506437768,0.8690238095238095,0.8987868852459017,0.7900869565217392,0.8656296296296296,0.8896296296296295,0.8096296296296298,0.8692161520190025,0.896887417218543,0.7989915966386556,0.8632066869300912,0.886148796498906,0.8110447761194031,0.8665799999999999
+Mean,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6264553066342766,0.6350224175892961,0.6054154900241553,0.6280926825239275,0.6391419380456405,0.6029931391165794,0.6328264669792415,0.6414983469204215,0.6092665807673632,0.6251829237522277,0.6354056146231387,0.6023502070166001,0.6309943982951967,0.6428417639960218,0.6014497228338032,0.6226252134029358,0.6296563735659773,0.607197619258786,0.6273231158557915
+Mean,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6286012173714474,0.6365736957866985,0.6092892429578048,0.6296421676798395,0.6373699060606255,0.6110027300403467,0.6346636366829191,0.6436055319289313,0.6109481753782781,0.6270098649495525,0.6343286695308334,0.609932654259897,0.6331384161126694,0.6434338032235482,0.6070106269741369,0.6240529410113603,0.6284860924652322,0.6139735867107661,0.6291529210348952
+Overall_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.8274442448734235,0.8000071226934146,0.8948265890507979,0.7999419940216349,0.7698496376961211,0.868299939254901,0.8182029164174677,0.7895586229561058,0.896024138476212,0.8107933823959507,0.7819920525873124,0.8751221010703346,0.8068965450963882,0.775618304922437,0.8848974676878604,0.8205094026015264,0.7956061221665376,0.8751515519054823,0.8128680519219754
+Overall_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.8271963320338425,0.7998580167111532,0.8934187560436576,0.8021624647050382,0.7753173398547557,0.8669133667044315,0.8175326721439048,0.7882031667287702,0.8953196212883927,0.8125267140962261,0.7863168379430732,0.8736830917869162,0.8077521965089973,0.7773050213920191,0.8850214980663708,0.8218316475133565,0.7994863510206975,0.8726366251110933,0.8139283823495762
+PPV,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6982248520710059,1.0,0.0,0.6600985221674877,1.0,0.0,0.7157894736842105,1.0,0.0,0.6642599277978339,1.0,0.0,0.665,1.0,0.0,0.6918604651162791,1.0,0.0,0.6774193548387096
+PPV,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.696969696969697,1.0,0.0,0.6829268292682927,1.0,0.0,0.7096774193548387,1.0,0.0,0.6823104693140795,1.0,0.0,0.676923076923077,1.0,0.0,0.7028571428571428,1.0,0.0,0.6891891891891891
+Per_Sample_Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6969716312056737,0.9376347305389221,0.1059313725490196,0.6898930817610063,0.9452445652173914,0.10983539094650205,0.7206904761904762,0.9470684039087948,0.1056637168141593,0.682537037037037,0.9393833780160857,0.10886227544910179,0.7064964370546318,0.9453743760399336,0.1107883817427386,0.6762310030395138,0.9366371681415928,0.10485436893203884,0.69322
+Per_Sample_Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.698418439716312,0.942304609218437,0.10764563106796117,0.6974465408805032,0.9494395017793595,0.08963519313304721,0.7180833333333334,0.9492622950819674,0.10495652173913043,0.6900555555555555,0.9448015873015873,0.09564814814814815,0.7087173396674584,0.9483609271523178,0.10054621848739495,0.6840653495440729,0.9430743982494529,0.09517412935323383,0.6979033333333333
+Positive-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6236162361623616,1.0,0.3333333333333333,0.6590909090909091,1.0,0.39655172413793105,0.6168831168831169,1.0,0.313953488372093,0.6517647058823529,1.0,0.38589211618257263,0.6514657980456026,1.0,0.3850574712643678,0.6323529411764706,1.0,0.3464052287581699,0.6424870466321243
+Positive-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6088560885608856,1.0,0.32051282051282054,0.6655844155844156,1.0,0.3869047619047619,0.6038961038961039,1.0,0.3068181818181818,0.6517647058823529,1.0,0.3728813559322034,0.6351791530944625,1.0,0.36,0.6433823529411765,1.0,0.348993288590604,0.6390328151986183
+Sample_Size,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,705.0,501.0,204.0,795.0,552.0,243.0,420.0,307.0,113.0,1080.0,746.0,334.0,842.0,601.0,241.0,658.0,452.0,206.0,1500.0
+Sample_Size,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,705.0,499.0,206.0,795.0,562.0,233.0,420.0,305.0,115.0,1080.0,756.0,324.0,842.0,604.0,238.0,658.0,457.0,201.0,1500.0
+Selection-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.2397163120567376,0.23552894211576847,0.25,0.25534591194968553,0.2427536231884058,0.2839506172839506,0.2261904761904762,0.22149837133550487,0.23893805309734514,0.2564814814814815,0.24664879356568364,0.27844311377245506,0.2375296912114014,0.22129783693843594,0.27800829875518673,0.2613981762917933,0.26327433628318586,0.25728155339805825,0.248
+Selection-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.23404255319148937,0.23046092184368738,0.24271844660194175,0.2578616352201258,0.2491103202846975,0.27896995708154504,0.22142857142857142,0.21639344262295082,0.23478260869565218,0.2564814814814815,0.25,0.2716049382716049,0.23159144893111638,0.2185430463576159,0.2647058823529412,0.26595744680851063,0.26914660831509846,0.25870646766169153,0.24666666666666667
+Statistical_Bias,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.38804196536167723,0.27890668733283297,0.6560653687560446,0.38599008865027307,0.2618247960764881,0.6680445804228218,0.3742132501958383,0.27018099381110705,0.6568495573649756,0.3919093897913865,0.26985787223587254,0.6645154739123851,0.37782562371741985,0.2650796811075449,0.6589887420100957,0.39863606517763234,0.2764306403591511,0.6667761235172126,0.3869544707046331
+Statistical_Bias,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.3885559433466212,0.27831558860610534,0.6555944725481619,0.38442822435245805,0.26520669854078754,0.6719925913316805,0.375213865977643,0.2692348260487328,0.6562887110064918,0.3907060691749649,0.27223415522421385,0.6671405350600507,0.37724518776147836,0.2658507318554373,0.6599437229179861,0.3980424473015309,0.27866914935160836,0.6694533784613047,0.3863682522797147
+Std,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.06074480598098658,0.05844502290559612,0.06639280265143079,0.05888889877355031,0.056772735070150515,0.06369598669238441,0.06031208764363007,0.05766774070193739,0.06749628685690134,0.05954693141781796,0.05752749308167824,0.06405741345003427,0.059162182534331226,0.05669577574866198,0.06531284841892547,0.06052766724568562,0.058728639401506376,0.06447504872903037,0.059761175161045364
+Std,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.05724953332096407,0.05479888693824584,0.06318580781114079,0.05557350053362412,0.053752796291960545,0.059965070421241856,0.05658861834255801,0.053703144311385224,0.06424139729479886,0.056272809455218974,0.05446330302023016,0.06049499113685953,0.05578663878039028,0.053308143239740924,0.06207660225329872,0.0570965107331645,0.05548270805571768,0.06076570388536947,0.056361235943673905
+TNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.8824884792626728,1.0,0.0,0.8583162217659137,1.0,0.0,0.8984962406015038,1.0,0.0,0.8580152671755725,1.0,0.0,0.874766355140187,1.0,0.0,0.8626943005181347,1.0,0.0,0.8697068403908795
+TNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.8847926267281107,1.0,0.0,0.86652977412731,1.0,0.0,0.8984962406015038,1.0,0.0,0.8656488549618321,1.0,0.0,0.8822429906542056,1.0,0.0,0.8652849740932642,1.0,0.0,0.8751357220412594
+TPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.4354243542435424,1.0,0.0,0.43506493506493504,1.0,0.0,0.44155844155844154,1.0,0.0,0.4329411764705882,1.0,0.0,0.43322475570032576,1.0,0.0,0.4375,1.0,0.0,0.43523316062176165
+TPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.42435424354243545,1.0,0.0,0.45454545454545453,1.0,0.0,0.42857142857142855,1.0,0.0,0.4447058823529412,1.0,0.0,0.42996742671009774,1.0,0.0,0.4522058823529412,1.0,0.0,0.44041450777202074
+Accuracy,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6936170212765957,1.0,0.0,0.6641509433962264,1.0,0.0,0.7095238095238096,1.0,0.0,0.6657407407407407,1.0,0.0,0.6805225653206651,1.0,0.0,0.6747720364741642,1.0,0.0,0.678
+Accuracy,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6936170212765957,1.0,0.0,0.6591194968553459,1.0,0.0,0.7095238095238096,1.0,0.0,0.6620370370370371,1.0,0.0,0.6781472684085511,1.0,0.0,0.6717325227963525,1.0,0.0,0.6753333333333333
+Aleatoric_Uncertainty,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.8515697157623061,0.830273708447981,0.8997815100989034,0.8348278134330117,0.8088630094213481,0.8861739427145041,0.8509770547299633,0.8296747971442832,0.903010438013018,0.8394762947269311,0.8147989191328764,0.8886259707715997,0.8467183943701027,0.8218368971854656,0.8997187582615417,0.8375499593192154,0.8157003835996907,0.882882723896173,0.84269650752778
+Aleatoric_Uncertainty,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.8504975521910515,0.8291507966101547,0.8988242349644708,0.8339844357109005,0.8065692616739931,0.886993849715843,0.8502673199637264,0.828748814196903,0.9028289160171146,0.8384315984260112,0.8127690713690363,0.8887020281403594,0.8463033278714274,0.820803400214462,0.9000319577316752,0.8359133717585339,0.8131635546087789,0.882466238333496,0.8417456004565714
+F1,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.47058823529411764,1.0,0.0,0.4517453798767967,1.0,0.0,0.47863247863247865,1.0,0.0,0.45385779122541603,1.0,0.0,0.4407484407484408,1.0,0.0,0.4830917874396135,1.0,0.0,0.46033519553072627
+F1,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.46798029556650245,1.0,0.0,0.4458077709611452,1.0,0.0,0.47413793103448276,1.0,0.0,0.4494720965309201,1.0,0.0,0.4342379958246347,1.0,0.0,0.4807692307692308,1.0,0.0,0.4558659217877095
+FNR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6457564575645757,0.0,1.0,0.6428571428571429,0.0,1.0,0.6363636363636364,0.0,1.0,0.6470588235294118,0.0,1.0,0.6547231270358306,0.0,1.0,0.6323529411764706,0.0,1.0,0.6442141623488774
+FNR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6494464944649446,0.0,1.0,0.6461038961038961,0.0,1.0,0.6428571428571429,0.0,1.0,0.6494117647058824,0.0,1.0,0.6612377850162866,0.0,1.0,0.6323529411764706,0.0,1.0,0.6476683937823834
+FPR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.0944700460829493,0.0,1.0,0.14168377823408623,0.0,1.0,0.09022556390977443,0.0,1.0,0.13129770992366413,0.0,1.0,0.12710280373831775,0.0,1.0,0.10880829015544041,0.0,1.0,0.11943539630836048
+FPR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.09216589861751152,0.0,1.0,0.14784394250513347,0.0,1.0,0.08646616541353383,0.0,1.0,0.13587786259541984,0.0,1.0,0.12710280373831775,0.0,1.0,0.11398963730569948,0.0,1.0,0.12160694896851248
+IQR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.038117359330767035,0.03679087601014397,0.041120370181622026,0.038256580190871976,0.037163104731888705,0.04041895862661418,0.03836409203429037,0.03681656696640721,0.04214411228207054,0.03812388974586299,0.037053575398342545,0.040255623861838605,0.038572413945265886,0.03672344915452171,0.04251091515380274,0.03770326297571445,0.03732054347265023,0.03849731652412807,0.03819114638662266
+IQR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.03716673753970955,0.03576627382150582,0.040337231790643045,0.03698256008895322,0.035666982878341184,0.03952633299803333,0.03723794966665782,0.03533935692747032,0.04187549586565682,0.037003468866867374,0.035871438549064286,0.039221007708591216,0.037240538881360766,0.03516629474978872,0.041610994228695235,0.03684977431323295,0.03642364847248363,0.03772175404291444,0.0370691234908087
+Jitter,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.04138087601126203,0.03137610342099107,0.06403056951423793,0.05556632217692276,0.04481488883812897,0.07682758361095354,0.03823342905001187,0.02805065596438884,0.06310610429195429,0.053046947701470705,0.042623199446464845,0.07380782026475709,0.049878967282970914,0.03660755785910355,0.07814854943864306,0.047645369705670494,0.040605957716508496,0.062250504860748915,0.04889916247906253
+Jitter,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.04132036066859113,0.031948906084616084,0.0625362925739811,0.05358616984292591,0.04110169166442774,0.07772589886702996,0.03834194783441002,0.02836126943442296,0.06272098195897755,0.05150763074632467,0.04015194855395816,0.07375232326013738,0.048660344477733555,0.03495208089484144,0.07754380759888109,0.04674749125566955,0.038920052752451396,0.0627647496742977,0.04782123953098891
+Label_Stability,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.9414042553191491,0.9575051124744377,0.9049537037037039,0.9201886792452829,0.9338825757575757,0.8931086142322098,0.9462142857142857,0.9622818791946308,0.9069672131147541,0.9239166666666666,0.9381780250347704,0.8955124653739611,0.9289073634204276,0.9478010471204187,0.8886617100371748,0.9317629179331306,0.9419369369369369,0.9106542056074766,0.93016
+Label_Stability,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.9424113475177305,0.9570961145194273,0.9091666666666667,0.9237484276729558,0.9414885496183206,0.8894464944649447,0.9469523809523809,0.9626845637583893,0.9085245901639346,0.9269074074074074,0.9433286713286714,0.8947397260273973,0.9312232779097388,0.9517863397548162,0.8878966789667897,0.9341793313069908,0.9454524886877828,0.9111111111111112,0.9325200000000001
+Mean,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6288360246290604,0.6363864744460471,0.6117426451822714,0.6288371788481966,0.642370058834907,0.6020755285373985,0.6315260899769207,0.641783083975156,0.6064721210304114,0.6277907377384233,0.638543835944856,0.6063739022524816,0.6310346148789993,0.6477686092195549,0.5953893406888936,0.6260240255618337,0.6288129819507721,0.6202375926801105,0.6288366363652027
+Mean,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6290729831079517,0.6366689361605433,0.6118765893916679,0.6295174814626796,0.6439561029507577,0.60159926131599,0.6314645318987215,0.6419338237273378,0.6058919993993149,0.6284701365337714,0.6398151444167217,0.6062463539685401,0.6311814330382298,0.6484439317366778,0.5948091571828287,0.6269119821211955,0.6300964314639359,0.6203956552254026,0.6293085672359575
+Overall_Uncertainty,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.8549267929668882,0.8335009110820216,0.9034326089006838,0.8384033957460167,0.8124002416253632,0.8898253634452867,0.8542986584559523,0.832829242890242,0.9067403456574414,0.843008011211333,0.8182839481446567,0.8922506742167075,0.8501800590830288,0.8250999645455408,0.9036034574844435,0.8410372019936616,0.8192499851637508,0.8862405864445042,0.8461693924398265
+Overall_Uncertainty,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.8538325680863391,0.832312730832533,0.9025510885359282,0.8373037289546026,0.8098620981517936,0.8903642992153846,0.853563330438458,0.8318124083351024,0.9066926319696058,0.8417702094774311,0.8160679260486544,0.8921185181118844,0.8495869644310914,0.8238903019608642,0.9037301167207586,0.8392951382504544,0.8165776072149208,0.8857819378694636,0.8450722833465186
+PPV,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.7007299270072993,1.0,0.0,0.6145251396648045,1.0,0.0,0.7,1.0,0.0,0.635593220338983,1.0,0.0,0.6091954022988506,1.0,0.0,0.704225352112676,1.0,0.0,0.6518987341772152
+PPV,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.7037037037037037,1.0,0.0,0.6022099447513812,1.0,0.0,0.7051282051282052,1.0,0.0,0.6260504201680672,1.0,0.0,0.6046511627906976,1.0,0.0,0.6944444444444444,1.0,0.0,0.6455696202531646
+Per_Sample_Accuracy,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6934397163120567,0.9787525562372188,0.04752314814814816,0.6601949685534592,0.9667897727272727,0.05389513108614232,0.7096547619047617,0.9811409395973154,0.04651639344262295,0.662662037037037,0.9689777468706536,0.05257617728531856,0.680688836104513,0.9739005235602095,0.05611524163568773,0.6695896656534955,0.9707882882882882,0.044672897196261684,0.67582
+Per_Sample_Accuracy,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6927801418439716,0.9785480572597137,0.04583333333333334,0.6587169811320756,0.9707251908396946,0.05542435424354243,0.7097857142857144,0.9813422818791946,0.04647540983606558,0.6610925925925926,0.9716503496503497,0.05273972602739726,0.6799940617577198,0.975893169877408,0.056531365313653145,0.6679863221884498,0.9727036199095023,0.04444444444444445,0.6747266666666667
+Positive-Rate,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.5055350553505535,1.0,0.2342857142857143,0.5811688311688312,1.0,0.3484848484848485,0.5194805194805194,1.0,0.24489795918367346,0.5552941176470588,1.0,0.31272727272727274,0.5667752442996743,1.0,0.3383084577114428,0.5220588235294118,1.0,0.2441860465116279,0.5457685664939551
+Positive-Rate,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.4981549815498155,1.0,0.22727272727272727,0.5876623376623377,1.0,0.36180904522613067,0.5064935064935064,1.0,0.23232323232323232,0.56,1.0,0.322463768115942,0.5602605863192183,1.0,0.33497536945812806,0.5294117647058824,1.0,0.2558139534883721,0.5457685664939551
+Sample_Size,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,705.0,489.0,216.0,795.0,528.0,267.0,420.0,298.0,122.0,1080.0,719.0,361.0,842.0,573.0,269.0,658.0,444.0,214.0,1500.0
+Sample_Size,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,705.0,489.0,216.0,795.0,524.0,271.0,420.0,298.0,122.0,1080.0,715.0,365.0,842.0,571.0,271.0,658.0,442.0,216.0,1500.0
+Selection-Rate,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.19432624113475178,0.19631901840490798,0.18981481481481483,0.22515723270440252,0.20833333333333334,0.25842696629213485,0.19047619047619047,0.18791946308724833,0.19672131147540983,0.21851851851851853,0.2086230876216968,0.23822714681440443,0.20665083135391923,0.1849912739965096,0.2527881040892193,0.21580547112462006,0.22522522522522523,0.19626168224299065,0.21066666666666667
+Selection-Rate,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.19148936170212766,0.19427402862985685,0.18518518518518517,0.22767295597484277,0.20801526717557253,0.2656826568265683,0.18571428571428572,0.18456375838926176,0.1885245901639344,0.22037037037037038,0.2083916083916084,0.24383561643835616,0.2042755344418052,0.18213660245183888,0.25092250922509224,0.2188449848024316,0.22624434389140272,0.2037037037037037,0.21066666666666667
+Statistical_Bias,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.4039291937726283,0.29349073469117737,0.6539495941931354,0.4087428626725564,0.28275627983019525,0.6578848691922816,0.3960629764865914,0.29149180749724696,0.6514909138540066,0.41053167343520086,0.28643633710730076,0.6576910829082206,0.40351857941126507,0.2883183735394532,0.6489078655248269,0.41027053734057767,0.2874005787752751,0.6651969934293362,0.4064804382895902
+Statistical_Bias,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.4036191387901632,0.2926940987099507,0.6547411045273106,0.40883293669159354,0.280566544015709,0.6568461830464403,0.39555014263916305,0.29080184109709023,0.65141074804521,0.41059501630410494,0.284594873687363,0.6574172134848459,0.4035569797393647,0.2872536582475763,0.6486093656132066,0.4099980251920011,0.285344897000071,0.6650752597328954,0.40638245167792125
+Std,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.028175265359520384,0.02722587397867902,0.030324581957814022,0.028620160323482583,0.02767576962960001,0.030487719448463856,0.02825427030311296,0.027118207992728415,0.03102924217601947,0.028472033341039888,0.027600880053087314,0.030207100415937122,0.02860264326558721,0.027150130097744484,0.031696658303408336,0.02816590259271443,0.027858635572061394,0.02880340986920951,0.02841105969042035
+Std,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.02798776425030242,0.026920845190441814,0.030403150455264618,0.027768179514933208,0.026766427576262006,0.02970514636313878,0.028044448850024377,0.026679762461346936,0.03137786314367912,0.027804081475763767,0.026908156831616716,0.02955911194306552,0.027963585810352985,0.026459865881110697,0.031131940347612554,0.027753400088932973,0.027333298484102108,0.028613052446966505,0.027871384340556738
+TNR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.9055299539170507,1.0,0.0,0.8583162217659137,1.0,0.0,0.9097744360902256,1.0,0.0,0.8687022900763359,1.0,0.0,0.8728971962616823,1.0,0.0,0.8911917098445595,1.0,0.0,0.8805646036916395
+TNR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.9078341013824884,1.0,0.0,0.8521560574948666,1.0,0.0,0.9135338345864662,1.0,0.0,0.8641221374045801,1.0,0.0,0.8728971962616823,1.0,0.0,0.8860103626943006,1.0,0.0,0.8783930510314875
+TPR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.35424354243542433,1.0,0.0,0.35714285714285715,1.0,0.0,0.36363636363636365,1.0,0.0,0.35294117647058826,1.0,0.0,0.34527687296416937,1.0,0.0,0.36764705882352944,1.0,0.0,0.35578583765112265
+TPR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.3505535055350554,1.0,0.0,0.3538961038961039,1.0,0.0,0.35714285714285715,1.0,0.0,0.35058823529411764,1.0,0.0,0.33876221498371334,1.0,0.0,0.36764705882352944,1.0,0.0,0.35233160621761656
+Accuracy,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6836879432624113,1.0,0.0,0.6716981132075471,1.0,0.0,0.7166666666666667,1.0,0.0,0.6620370370370371,1.0,0.0,0.6971496437054632,1.0,0.0,0.6519756838905775,1.0,0.0,0.6773333333333333
+Accuracy,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.699290780141844,1.0,0.0,0.6880503144654088,1.0,0.0,0.7428571428571429,1.0,0.0,0.674074074074074,1.0,0.0,0.7197149643705463,1.0,0.0,0.6595744680851063,1.0,0.0,0.6933333333333334
+Aleatoric_Uncertainty,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6734669507897533,0.6358225553074892,0.754832863894916,0.6432666301876696,0.612212372928401,0.7068029266491616,0.6638838015619872,0.6284473587534197,0.7535171569013045,0.6549629394906842,0.6212940193247506,0.7209171255691568,0.6482803086577847,0.6134498917246337,0.7284585625391954,0.6692084368026119,0.6370461360364009,0.7294600832161686,0.657460780870649
+Aleatoric_Uncertainty,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.781055339814094,0.7465782157257179,0.8612309161139501,0.7608481153169574,0.7275322647798578,0.8343310598483826,0.7740517435189649,0.7463522578190568,0.8540724799853656,0.7689041981184743,0.7323644295986477,0.8444750830117523,0.7670183928660977,0.7366964718963996,0.8448789187459159,0.7746030082867222,0.7363713069542466,0.8486769296183935,0.7703455108306116
+F1,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.5098901098901099,1.0,0.0,0.5175600739371534,1.0,0.0,0.5576208178438662,1.0,0.0,0.49793672627235214,1.0,0.0,0.5372050816696915,1.0,0.0,0.4853932584269663,1.0,0.0,0.5140562248995983
+F1,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.5023474178403756,1.0,0.0,0.5303030303030303,1.0,0.0,0.5609756097560976,1.0,0.0,0.5028248587570622,1.0,0.0,0.5408560311284046,1.0,0.0,0.4909090909090909,1.0,0.0,0.5178197064989518
+FNR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.5719557195571956,0.0,1.0,0.5454545454545454,0.0,1.0,0.512987012987013,0.0,1.0,0.5741176470588235,0.0,1.0,0.5179153094462541,0.0,1.0,0.6029411764705882,0.0,1.0,0.5578583765112263
+FNR,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6051660516605166,0.0,1.0,0.5454545454545454,0.0,1.0,0.551948051948052,0.0,1.0,0.5811764705882353,0.0,1.0,0.5472312703583062,0.0,1.0,0.6029411764705882,0.0,1.0,0.5734024179620034
+FPR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.15668202764976957,0.0,1.0,0.19096509240246407,0.0,1.0,0.15037593984962405,0.0,1.0,0.18473282442748093,0.0,1.0,0.17943925233644858,0.0,1.0,0.16839378238341968,0.0,1.0,0.1748099891422367
+FPR,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.11059907834101383,0.0,1.0,0.16427104722792607,0.0,1.0,0.08646616541353383,0.0,1.0,0.16030534351145037,0.0,1.0,0.12710280373831775,0.0,1.0,0.15544041450777202,0.0,1.0,0.13897937024972856
+IQR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.19740234097160045,0.18280456630925876,0.2289544817215946,0.19257741575077017,0.1760082627737494,0.22647752184168618,0.19849937390022518,0.18435556703849623,0.23427488537401006,0.19342403598957966,0.1770757868582623,0.22544868839750273,0.19394541103344892,0.1777863421140638,0.23114295399689616,0.19599644349039003,0.18121125981652556,0.22369445133356838,0.19484513060456038
+IQR,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.10239573721699301,0.09750872100302697,0.11376035511079136,0.10043012416393095,0.09447631316527576,0.11356211858435185,0.10255748865820903,0.09838706200739884,0.11460538787166065,0.1008859242702383,0.09485381787031551,0.1133614170518968,0.10159505122177855,0.0961041737336831,0.11569450782256598,0.10104545641271674,0.0956479573117193,0.11150311092089933,0.1013539622988701
+Jitter,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.1980338572294045,0.16986884630621635,0.25891069698266933,0.19071742359596736,0.1619660098244067,0.24954215522057213,0.20184733189757914,0.17530993839631456,0.26897132722435835,0.19116513121161505,0.1616760023895709,0.24893150684932258,0.19871190871220515,0.16821244210832387,0.2689204847768004,0.18832643460463006,0.1622982043082556,0.23708674376245972,0.19415614740368436
+Jitter,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.11943169749456542,0.0952585442425127,0.17564568123636615,0.11473910432666616,0.08781044160473164,0.1741341789593184,0.11531347212251827,0.09872197526092326,0.16324446305602197,0.11757895961287973,0.08817790877464315,0.17838567839195912,0.11802844388211825,0.09649178234406798,0.1733302103739032,0.115557727848972,0.08414920223236413,0.1764117462311557,0.11694462311557688
+Label_Stability,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.7214751773049645,0.7664315352697095,0.624304932735426,0.7278364779874216,0.7740823970037454,0.6332183908045976,0.7129523809523809,0.7563787375415283,0.6031092436974789,0.7294722222222222,0.7763776223776222,0.6375890410958903,0.7150712589073633,0.765587734241908,0.5987843137254902,0.737355623100304,0.7771095571095571,0.6628820960698688,0.7248466666666666
+Label_Stability,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.8313617021276596,0.8675659229208924,0.7471698113207547,0.8394213836477988,0.879689213893967,0.7506048387096774,0.8380952380952381,0.8632371794871796,0.765462962962963,0.8346759259259259,0.8785302197802197,0.7439772727272728,0.8336698337292162,0.865990099009901,0.750677966101695,0.8381458966565349,0.8850460829493088,0.7472767857142858,0.8356333333333333
+Mean,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6268832189161339,0.6394571057183438,0.5997055801777249,0.6271454467968993,0.6472972060306217,0.5859154106635361,0.6283275463763558,0.640526254786101,0.5974719898105297,0.6265145648716111,0.6448624199803878,0.5905728760968838,0.6285165494945291,0.6493207302624522,0.5806261412169961,0.6251099769985043,0.6357197303322476,0.6052340635479547,0.6270221996929396
+Mean,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6337148095287487,0.6441222519584647,0.6095125967087016,0.6213376553073015,0.6383457444284133,0.5838238458345264,0.6404188502095424,0.6456805156072316,0.6252184835051068,0.6219967218509859,0.6391141092697925,0.5865948524166357,0.6322827035174826,0.6467312742012516,0.5951817126939056,0.6205932223789548,0.6331987102578495,0.5961700896135964,0.6271549177913817
+Overall_Uncertainty,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.7630064139306723,0.7195558682829732,0.8569219430884788,0.7328423894325358,0.6945848579793925,0.8111164193021854,0.7547546468681712,0.7135321397827071,0.8590233412608156,0.7440113608660721,0.7034420539843271,0.8234827428399017,0.7381459941360415,0.6963443701786747,0.8343716932065294,0.7583743075341077,0.7202333272226261,0.8298261876809441,0.7470194809466599
+Overall_Uncertainty,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.8056917329887449,0.770104683231916,0.8884484100175968,0.7850945949368143,0.7505783337391364,0.8612252194333054,0.7989648483866314,0.7702179135518367,0.8820115490204833,0.7931459614902291,0.7553845719237215,0.8712433808209603,0.7915628332087555,0.7598973487276575,0.8728733569186939,0.7988859713830705,0.759746921796502,0.874717879957047,0.7947752498212217
+PPV,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6304347826086957,1.0,0.0,0.6008583690987125,1.0,0.0,0.6521739130434783,1.0,0.0,0.5993377483443708,1.0,0.0,0.6065573770491803,1.0,0.0,0.6242774566473989,1.0,0.0,0.6139088729016786
+PPV,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6903225806451613,1.0,0.0,0.6363636363636364,1.0,0.0,0.75,1.0,0.0,0.6289752650176679,1.0,0.0,0.6714975845410628,1.0,0.0,0.6428571428571429,1.0,0.0,0.6586666666666666
+Per_Sample_Accuracy,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6633333333333333,0.8832157676348549,0.18807174887892375,0.6560691823899372,0.8870411985018727,0.18350574712643677,0.6855952380952383,0.878189368770764,0.19844537815126048,0.6493287037037037,0.8881888111888113,0.18142465753424658,0.676229216152019,0.8827938671209541,0.20072549019607844,0.6380547112462006,0.8885547785547787,0.16877729257641919,0.6594833333333333
+Per_Sample_Accuracy,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6909007092198582,0.9336409736308315,0.12641509433962264,0.6855849056603773,0.9397349177330895,0.1250201612903226,0.722047619047619,0.9313942307692309,0.11726851851851851,0.674875,0.9391826923076921,0.12823863636363636,0.7062767220902613,0.9327805280528051,0.12466101694915253,0.6648024316109422,0.9425230414746544,0.12671875,0.6880833333333334
+Positive-Rate,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6789667896678967,1.0,0.43870967741935485,0.7564935064935064,1.0,0.5535714285714286,0.7467532467532467,1.0,0.5063291139240507,0.7105882352941176,1.0,0.4959016393442623,0.7947882736156352,1.0,0.6037735849056604,0.6360294117647058,1.0,0.39634146341463417,0.7202072538860104
+Positive-Rate,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.5719557195571956,1.0,0.2926829268292683,0.7142857142857143,1.0,0.47619047619047616,0.5974025974025974,1.0,0.27058823529411763,0.6658823529411765,1.0,0.4251012145748988,0.6742671009771987,1.0,0.40476190476190477,0.6176470588235294,1.0,0.36585365853658536,0.6476683937823834
+Sample_Size,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,705.0,482.0,223.0,795.0,534.0,261.0,420.0,301.0,119.0,1080.0,715.0,365.0,842.0,587.0,255.0,658.0,429.0,229.0,1500.0
+Sample_Size,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,705.0,493.0,212.0,795.0,547.0,248.0,420.0,312.0,108.0,1080.0,728.0,352.0,842.0,606.0,236.0,658.0,434.0,224.0,1500.0
+Selection-Rate,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.26099290780141843,0.24066390041493776,0.30493273542600896,0.2930817610062893,0.26217228464419473,0.3563218390804598,0.27380952380952384,0.24916943521594684,0.33613445378151263,0.2796296296296296,0.25314685314685315,0.3315068493150685,0.28978622327790976,0.252129471890971,0.3764705882352941,0.2629179331306991,0.2517482517482518,0.2838427947598253,0.278
+Selection-Rate,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.2198581560283688,0.21703853955375255,0.22641509433962265,0.27672955974842767,0.25594149908592323,0.3225806451612903,0.21904761904761905,0.22115384615384615,0.21296296296296297,0.262037037037037,0.2445054945054945,0.29829545454545453,0.24584323040380046,0.22937293729372937,0.288135593220339,0.2553191489361702,0.2488479262672811,0.26785714285714285,0.25
+Statistical_Bias,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.3807297343465652,0.24043401327901134,0.6839698130665696,0.38502426159287184,0.22966931237853958,0.702876916307253,0.36421403247177536,0.23949117075643667,0.6796895062223379,0.3903137565208481,0.23279127945865197,0.6988851841906295,0.3698416524788147,0.23153238656439104,0.6882241587210368,0.39985118433662564,0.2392146766837437,0.7007815851361293,0.38300583378710773
+Statistical_Bias,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.38266821347089364,0.26278602092236697,0.6614508593502505,0.38427330220947087,0.25266759895435514,0.674548784792327,0.3669845276107789,0.2629394621083681,0.6675591612844096,0.38994894829350213,0.2551175450067971,0.6688048050910056,0.3738418003464737,0.2587440196602731,0.6693894914305313,0.3959020818568063,0.255676979328649,0.6675882180051109,0.3835189105023396
+Std,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.14326876020416268,0.13488905680934812,0.16138094422344795,0.14038936167965027,0.13102049914123828,0.1595578390570909,0.1435257016110795,0.1354974257399826,0.1638325170497363,0.1410492812987067,0.13174370178432485,0.15927801925153698,0.14147619336093312,0.13223476255983316,0.16274960465601418,0.1420836833880714,0.13370551585292537,0.15777902780980788,0.14174267898617107
+Std,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.07717572599192868,0.0735985901671812,0.0854942541126858,0.0754735976902358,0.07139093512785967,0.08447850261612189,0.07739913936048744,0.0743956555491502,0.08607587037101722,0.07583588745985413,0.07159821694508889,0.08460016056993681,0.0764659167428356,0.07263366650877591,0.08630635590317527,0.07602750013765901,0.07216346673511836,0.08351406485508149,0.07627359799203146
+TNR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.8433179723502304,1.0,0.0,0.8090349075975359,1.0,0.0,0.849624060150376,1.0,0.0,0.815267175572519,1.0,0.0,0.8205607476635514,1.0,0.0,0.8316062176165803,1.0,0.0,0.8251900108577633
+TNR,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.8894009216589862,1.0,0.0,0.8357289527720739,1.0,0.0,0.9135338345864662,1.0,0.0,0.8396946564885496,1.0,0.0,0.8728971962616823,1.0,0.0,0.844559585492228,1.0,0.0,0.8610206297502715
+TPR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.4280442804428044,1.0,0.0,0.45454545454545453,1.0,0.0,0.487012987012987,1.0,0.0,0.4258823529411765,1.0,0.0,0.4820846905537459,1.0,0.0,0.39705882352941174,1.0,0.0,0.4421416234887737
+TPR,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.3948339483394834,1.0,0.0,0.45454545454545453,1.0,0.0,0.44805194805194803,1.0,0.0,0.4188235294117647,1.0,0.0,0.4527687296416938,1.0,0.0,0.39705882352941174,1.0,0.0,0.4265975820379965
+Accuracy,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6893617021276596,1.0,0.0,0.6930817610062893,1.0,0.0,0.7214285714285714,1.0,0.0,0.6796296296296296,1.0,0.0,0.7078384798099763,1.0,0.0,0.6702127659574468,1.0,0.0,0.6913333333333334
+Accuracy,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6964539007092199,1.0,0.0,0.7094339622641509,1.0,0.0,0.7309523809523809,1.0,0.0,0.6925925925925925,1.0,0.0,0.7173396674584323,1.0,0.0,0.6854103343465046,1.0,0.0,0.7033333333333334
+Aleatoric_Uncertainty,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.8265278046565147,0.7975502828170815,0.8908340859988187,0.8052374105955816,0.7779358296129241,0.8668897512572382,0.8200500638136052,0.7920365756256592,0.8925978152746957,0.8133748304672369,0.7851021759553788,0.8733520802120462,0.8115114985349681,0.7818886797601712,0.8832806041844763,0.8200200029481567,0.7942095837386864,0.8724734355351442,0.8152438958042203
+Aleatoric_Uncertainty,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.8059884095781719,0.7779248233370963,0.87037729202849,0.7802950117382066,0.7587581699545302,0.8328784695996504,0.7990200554270445,0.7700997239821913,0.87759122138784,0.7897851294491914,0.7666846000672949,0.8418309004662357,0.7867516757360068,0.7589139142914507,0.8573987678053848,0.7995614773780664,0.7794161682501841,0.843452947990022,0.7923709087229902
+F1,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.47980997624703087,1.0,0.0,0.5196850393700787,1.0,0.0,0.5185185185185185,1.0,0.0,0.4956268221574344,1.0,0.0,0.508,1.0,0.0,0.49417249417249415,1.0,0.0,0.5016146393972013
+F1,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.5180180180180181,1.0,0.0,0.5583173996175909,1.0,0.0,0.5637065637065637,1.0,0.0,0.5310734463276836,1.0,0.0,0.5475285171102662,1.0,0.0,0.5306122448979592,1.0,0.0,0.5398138572905895
+FNR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6273062730627307,0.0,1.0,0.5714285714285714,0.0,1.0,0.5909090909090909,0.0,1.0,0.6,0.0,1.0,0.5863192182410424,0.0,1.0,0.6102941176470589,0.0,1.0,0.5975820379965457
+FNR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.5756457564575646,0.0,1.0,0.525974025974026,0.0,1.0,0.525974025974026,0.0,1.0,0.5576470588235294,0.0,1.0,0.5309446254071661,0.0,1.0,0.5698529411764706,0.0,1.0,0.5492227979274611
+FPR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.11290322580645161,0.0,1.0,0.13963039014373715,0.0,1.0,0.09774436090225563,0.0,1.0,0.13893129770992366,0.0,1.0,0.1233644859813084,0.0,1.0,0.13212435233160622,0.0,1.0,0.1270358306188925
+FPR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.1336405529953917,0.0,1.0,0.14168377823408623,0.0,1.0,0.12030075187969924,0.0,1.0,0.1450381679389313,0.0,1.0,0.14018691588785046,0.0,1.0,0.13471502590673576,0.0,1.0,0.13789359391965256
+IQR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.09776421660070099,0.0940498348150208,0.10600709124837483,0.09374550306009548,0.08961279492790766,0.10307797101433933,0.09797245970902345,0.09470073514538789,0.1064453874251052,0.09472501348007432,0.0904503364800064,0.10379325890796408,0.0962010005902325,0.09220329877879334,0.10588648953176803,0.09490912635151116,0.09100159558552472,0.10285023726303202,0.09563429842418009
+IQR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.1207941869859492,0.11635802082019236,0.1309724934690642,0.11358428015227655,0.11017298061722683,0.12191316732876158,0.12011261720412818,0.1163947162741175,0.13021346309362625,0.11575194937075944,0.1116793735222945,0.12492751182452982,0.11636081196523013,0.11196666001228317,0.12751235725758284,0.11775623232740162,0.11450440497430449,0.12484113153632342,0.11697293636410268
+Jitter,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.12010812929897735,0.09040459499141575,0.18602556159794617,0.11619348313896595,0.09408539977564596,0.16611788450448553,0.11975604211533854,0.09335671758130959,0.18812352360090467,0.11736343755816346,0.09194905042925952,0.1712771952246759,0.12165184592797744,0.09428644902364411,0.18795175062297384,0.11340303340410304,0.08975728985059661,0.1614572864321672,0.11803336683416711
+Jitter,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.14798210912719284,0.11922627393587004,0.2139592823932739,0.13750804336145894,0.12304750703873996,0.17281428788966008,0.14480043072505172,0.11917453718104416,0.2144212211499789,0.1415093523171437,0.12212875876709137,0.18517406308653261,0.14332965301567188,0.1187002063296616,0.20583463536168317,0.1412807197079603,0.12470946751493756,0.17738523535552456,0.14243085427135782
+Label_Stability,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.8327517730496454,0.8777572016460906,0.7328767123287672,0.8358364779874214,0.8700725952813068,0.7585245901639344,0.8298333333333333,0.8703300330033005,0.7249572649572651,0.8361574074074074,0.8750544959128065,0.7536416184971098,0.8261995249406177,0.8687751677852349,0.7230487804878049,0.8448632218844986,0.8802947845804989,0.7728571428571428,0.8343866666666666
+Label_Stability,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.7915886524822696,0.8361303462321793,0.689392523364486,0.8065408805031448,0.8279432624113476,0.7542857142857143,0.7948095238095237,0.8357328990228015,0.6836283185840707,0.8013425925925927,0.830120320855615,0.7365060240963854,0.797375296912114,0.8357450331125827,0.7000000000000001,0.8022492401215805,0.8264079822616409,0.7496135265700484,0.7995133333333333
+Mean,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6310213290382105,0.6425665246743147,0.6054004839279516,0.6302442873839554,0.6420513559569972,0.6035816038440128,0.634175393028981,0.644039514658144,0.6086298472714047,0.6292227596018621,0.6415717373060011,0.6030257953393243,0.6343332491371193,0.6478028111088064,0.6016996762301046,0.625844452384086,0.6348461512543622,0.6075506772606214,0.6306094969614554
+Mean,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6266304518626915,0.6381430994381714,0.6002159193413799,0.6268039975505542,0.6354801705539582,0.6056206141136714,0.6308651962489352,0.641309833563162,0.6024890577049739,0.6251113557327179,0.6348355068351389,0.6032027261405161,0.6305354175828034,0.643579740023169,0.5974313387845647,0.6218431991051179,0.6275319624004004,0.6094488404279563,0.6267224310772587
+Overall_Uncertainty,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.8456335234676194,0.8161565751515625,0.9110481211005133,0.823353932162184,0.7953033351622403,0.8866976983382863,0.8393379321639337,0.8109307300219629,0.9129053018136535,0.8316815542636626,0.8026597029991811,0.8932481404721296,0.8302834439049512,0.8000792359062137,0.9034611185685593,0.8383576752973237,0.8118299514692753,0.8922688559801324,0.8338253400757388
+Overall_Uncertainty,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.8358419462127025,0.8069680384892964,0.9020900242136015,0.807959798268302,0.7857410536201801,0.8622081618247559,0.8289040384477072,0.7995476067218015,0.9086600078269381,0.8180156625511282,0.7940082164123436,0.8721047279481486,0.8153565585646567,0.7866877715809292,0.8881126398174781,0.8283683729358883,0.8075828095457759,0.8736547936554084,0.8210644078021703
+PPV,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6733333333333333,1.0,0.0,0.66,1.0,0.0,0.7078651685393258,1.0,0.0,0.6513409961685823,1.0,0.0,0.6580310880829016,1.0,0.0,0.6751592356687898,1.0,0.0,0.6657142857142857
+PPV,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6647398843930635,1.0,0.0,0.6790697674418604,1.0,0.0,0.6952380952380952,1.0,0.0,0.6643109540636042,1.0,0.0,0.6575342465753424,1.0,0.0,0.6923076923076923,1.0,0.0,0.6726804123711341
+Per_Sample_Accuracy,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6889432624113476,0.9388374485596709,0.1343835616438356,0.685125786163522,0.9348729582577132,0.12114754098360656,0.713202380952381,0.9350990099009903,0.13854700854700852,0.676699074074074,0.9374046321525885,0.12364161849710983,0.7020902612826603,0.9343540268456376,0.13936991869918697,0.6675075987841945,0.9399433106575963,0.1138479262672811,0.68692
+Per_Sample_Accuracy,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6865460992907801,0.9179429735234217,0.1556308411214953,0.6840880503144653,0.9139539007092199,0.12285714285714286,0.7134047619047619,0.917671009771987,0.15845132743362833,0.6742916666666667,0.9150467914438504,0.13186746987951808,0.7007779097387175,0.9177566225165563,0.15012605042016808,0.6653647416413374,0.9132039911308204,0.12538647342995168,0.6852433333333333
+Positive-Rate,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.5535055350553506,1.0,0.28823529411764703,0.6493506493506493,1.0,0.38636363636363635,0.577922077922078,1.0,0.2857142857142857,0.6141176470588235,1.0,0.3568627450980392,0.6286644951140065,1.0,0.36666666666666664,0.5772058823529411,1.0,0.3072289156626506,0.6044905008635578
+Positive-Rate,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6383763837638377,1.0,0.3717948717948718,0.698051948051948,1.0,0.42592592592592593,0.6818181818181818,1.0,0.3950617283950617,0.6658823529411765,1.0,0.4008438818565401,0.7133550488599348,1.0,0.4601226993865031,0.6213235294117647,1.0,0.33548387096774196,0.6701208981001727
+Sample_Size,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,705.0,486.0,219.0,795.0,551.0,244.0,420.0,303.0,117.0,1080.0,734.0,346.0,842.0,596.0,246.0,658.0,441.0,217.0,1500.0
+Sample_Size,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,705.0,491.0,214.0,795.0,564.0,231.0,420.0,307.0,113.0,1080.0,748.0,332.0,842.0,604.0,238.0,658.0,451.0,207.0,1500.0
+Selection-Rate,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.2127659574468085,0.20781893004115226,0.2237442922374429,0.25157232704402516,0.2395644283121597,0.2786885245901639,0.2119047619047619,0.2079207920792079,0.2222222222222222,0.24166666666666667,0.23160762942779292,0.2630057803468208,0.22921615201900236,0.21308724832214765,0.2682926829268293,0.23860182370820668,0.24036281179138322,0.2350230414746544,0.23333333333333334
+Selection-Rate,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.2453900709219858,0.23421588594704684,0.27102803738317754,0.27044025157232704,0.25886524822695034,0.2987012987012987,0.25,0.23778501628664495,0.2831858407079646,0.262037037037037,0.25133689839572193,0.286144578313253,0.26009501187648454,0.23841059602649006,0.31512605042016806,0.256838905775076,0.25942350332594233,0.25120772946859904,0.25866666666666666
+Statistical_Bias,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.39568703604637867,0.28458620508216764,0.6422395650354499,0.3942061322411184,0.2773123586040772,0.6581752686100107,0.38163450778574454,0.2817164153175404,0.6403967472546834,0.4000617984021977,0.28031053326916255,0.6541006094069601,0.38515223218103145,0.27803639883682396,0.644668641421469,0.4073785046321545,0.28434991282093636,0.6574043525065658,0.39490215702959086
+Statistical_Bias,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.3930658275524083,0.28263691861975415,0.6464330905707877,0.3932696577871171,0.27761160212138475,0.675655559932022,0.3760299855503612,0.2779786792735978,0.6424171627801519,0.3998409189204206,0.280759647194874,0.6681324588321943,0.3819627206936393,0.27447714280776647,0.654741246084678,0.40752002361878664,0.28728043543873466,0.6694913002816052,0.3931738575768039
+Std,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.07138170520710842,0.06883232555967064,0.07703923264388815,0.0685578124754467,0.06568594637599239,0.07504305108528007,0.0713728152178547,0.06906699981411775,0.07734428587881452,0.06930646360878946,0.06637352279495103,0.07552836695375303,0.07010424381613034,0.06735623463028029,0.07676202216884026,0.06960454376262892,0.06689603364064554,0.07510893530085318,0.06988504205932772
+Std,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.08719113374979333,0.08411282120286062,0.09425399104205477,0.08246286338476243,0.08000786245602967,0.08845689162634371,0.08669444508147052,0.08406093977471062,0.09384918958744656,0.08390375810210444,0.08103893198525286,0.09035824585934837,0.08422602181233907,0.0810713362549355,0.09223203053785067,0.08527266765729623,0.08305264420803606,0.09010953034143314,0.08468515045632696
+TNR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.8870967741935484,1.0,0.0,0.8603696098562629,1.0,0.0,0.9022556390977443,1.0,0.0,0.8610687022900764,1.0,0.0,0.8766355140186916,1.0,0.0,0.8678756476683938,1.0,0.0,0.8729641693811075
+TNR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.8663594470046083,1.0,0.0,0.8583162217659137,1.0,0.0,0.8796992481203008,1.0,0.0,0.8549618320610687,1.0,0.0,0.8598130841121495,1.0,0.0,0.8652849740932642,1.0,0.0,0.8621064060803475
+TPR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.3726937269372694,1.0,0.0,0.42857142857142855,1.0,0.0,0.4090909090909091,1.0,0.0,0.4,1.0,0.0,0.41368078175895767,1.0,0.0,0.3897058823529412,1.0,0.0,0.40241796200345425
+TPR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.42435424354243545,1.0,0.0,0.474025974025974,1.0,0.0,0.474025974025974,1.0,0.0,0.4423529411764706,1.0,0.0,0.46905537459283386,1.0,0.0,0.43014705882352944,1.0,0.0,0.45077720207253885
From 612b0253abeef54e4e90b972fd0c4e0e2604af50 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Sun, 10 Dec 2023 18:38:25 +0200
Subject: [PATCH 058/148] Save current version of tolerance
---
...iple_Models_Interface_Vis_Law_School.ipynb | 78 ++++++++++++-------
.../metrics_interactive_visualizer.py | 12 +--
virny/utils/data_viz_utils.py | 52 +++++++++----
3 files changed, 96 insertions(+), 46 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
index e9af1c88..034d205e 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
@@ -6,8 +6,8 @@
"id": "248cbed8",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-06T15:49:13.844713Z",
- "start_time": "2023-12-06T15:49:13.202938Z"
+ "end_time": "2023-12-10T13:46:04.887856Z",
+ "start_time": "2023-12-10T13:46:04.026304Z"
}
},
"outputs": [],
@@ -23,8 +23,8 @@
"id": "7ec6cd08",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-06T15:49:13.852965Z",
- "start_time": "2023-12-06T15:49:13.844443Z"
+ "end_time": "2023-12-10T13:46:04.897038Z",
+ "start_time": "2023-12-10T13:46:04.888481Z"
}
},
"outputs": [],
@@ -41,8 +41,8 @@
"id": "b8cb69f2",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-06T15:49:13.862149Z",
- "start_time": "2023-12-06T15:49:13.853366Z"
+ "end_time": "2023-12-10T13:46:04.906348Z",
+ "start_time": "2023-12-10T13:46:04.897731Z"
}
},
"outputs": [
@@ -76,8 +76,8 @@
"id": "7a9241de",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-06T15:49:16.237279Z",
- "start_time": "2023-12-06T15:49:13.862719Z"
+ "end_time": "2023-12-10T13:46:09.457388Z",
+ "start_time": "2023-12-10T13:46:04.907162Z"
}
},
"outputs": [],
@@ -101,8 +101,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-06T15:49:16.300788Z",
- "start_time": "2023-12-06T15:49:16.238957Z"
+ "end_time": "2023-12-10T13:46:09.518413Z",
+ "start_time": "2023-12-10T13:46:09.456301Z"
}
},
"id": "d3c53c7b72ecbcd0"
@@ -120,8 +120,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-06T15:49:16.328190Z",
- "start_time": "2023-12-06T15:49:16.301062Z"
+ "end_time": "2023-12-10T13:46:09.544781Z",
+ "start_time": "2023-12-10T13:46:09.518981Z"
}
},
"id": "2aab7c79ecdee914"
@@ -153,8 +153,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-06T15:49:16.379226Z",
- "start_time": "2023-12-06T15:49:16.327124Z"
+ "end_time": "2023-12-10T13:46:09.592998Z",
+ "start_time": "2023-12-10T13:46:09.545292Z"
}
},
"id": "833484748ed512e8"
@@ -178,8 +178,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-06T15:49:16.400186Z",
- "start_time": "2023-12-06T15:49:16.376928Z"
+ "end_time": "2023-12-10T13:46:09.615874Z",
+ "start_time": "2023-12-10T13:46:09.592514Z"
}
},
"id": "15ed7d1ba1f22317"
@@ -194,12 +194,12 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 48,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-06T15:49:16.482456Z",
- "start_time": "2023-12-06T15:49:16.398934Z"
+ "end_time": "2023-12-10T16:04:29.715738Z",
+ "start_time": "2023-12-10T16:04:29.547860Z"
}
},
"outputs": [],
@@ -211,7 +211,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": null,
"outputs": [
{
"name": "stdout",
@@ -219,9 +219,33 @@
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
+ "Thanks for being a Gradio user! If you have questions or feedback, please join our Discord server and chat with us: https://discord.gg/feTf9x3ZSB\n",
+ "\n",
"To create a public link, set `share=True` in `launch()`.\n",
- "Keyboard interruption in main thread... closing server.\n"
+ "{1: [0.001, 0.0075], 2: [0.0075, 0.013999999999999999], 3: [0.013999999999999999, 0.020499999999999997], 4: [0.020499999999999997, 0.027]}\n",
+ "{1: [0.259, 0.3015], 2: [0.3015, 0.344], 3: [0.344, 0.38649999999999995], 4: [0.38649999999999995, 0.429]}\n",
+ "{1: [0.147, 0.1885], 2: [0.1885, 0.23], 3: [0.23, 0.2715], 4: [0.2715, 0.313]}\n",
+ "{1: [0.0, 0.0035], 2: [0.0035, 0.007]}\n",
+ "{1: [0.077, 0.08524999999999999], 2: [0.08524999999999999, 0.0935], 3: [0.0935, 0.10175000000000001], 4: [0.10175000000000001, 0.11]}\n",
+ "{1: [0.075, 0.081], 2: [0.081, 0.08700000000000001], 3: [0.08700000000000001, 0.09300000000000001], 4: [0.09300000000000001, 0.099]}\n",
+ "{1: [0.008, 0.0125], 2: [0.0125, 0.017]}\n",
+ "{1: [0.296, 0.30474999999999997], 2: [0.30474999999999997, 0.3135], 3: [0.3135, 0.32225000000000004], 4: [0.32225000000000004, 0.331]}\n",
+ "{1: [0.268, 0.27425], 2: [0.27425, 0.28049999999999997], 3: [0.28049999999999997, 0.28674999999999995], 4: [0.28674999999999995, 0.293]}\n",
+ "{1: [0.0009999999999998899, 0.0040000000000000036]}\n",
+ "{1: [0.041000000000000036, 0.05275000000000002], 2: [0.05275000000000002, 0.0645], 3: [0.0645, 0.07624999999999998], 4: [0.07624999999999998, 0.08799999999999997]}\n",
+ "{1: [0.031000000000000028, 0.04300000000000001], 2: [0.04300000000000001, 0.05499999999999999], 3: [0.05499999999999999, 0.06699999999999998], 4: [0.06699999999999998, 0.07899999999999996]}\n",
+ "{1: [0.0, 0.001]}\n",
+ "{1: [0.011, 0.015], 2: [0.015, 0.019], 3: [0.019, 0.023]}\n",
+ "{1: [0.01, 0.014499999999999999], 2: [0.014499999999999999, 0.019]}\n"
]
+ },
+ {
+ "data": {
+ "text/plain": " LGBMClassifier__alpha=0.0 \\\nEqualized_Odds_FPR_male 2.0 \nEqualized_Odds_FPR_race 3.0 \nEqualized_Odds_FPR_male&race 2.0 \nEqualized_Odds_TPR_male 2.0 \nEqualized_Odds_TPR_race 4.0 \nEqualized_Odds_TPR_male&race 4.0 \nOverall_Uncertainty_Parity_male 2.0 \nOverall_Uncertainty_Parity_race 3.0 \nOverall_Uncertainty_Parity_male&race 3.0 \nLabel_Stability_Ratio_male 1.0 \nLabel_Stability_Ratio_race 2.0 \nLabel_Stability_Ratio_male&race 3.0 \nStd_Parity_male 1.0 \nStd_Parity_race 2.0 \nStd_Parity_male&race 2.0 \n\n LGBMClassifier__alpha=0.6 \\\nEqualized_Odds_FPR_male 2.0 \nEqualized_Odds_FPR_race 1.0 \nEqualized_Odds_FPR_male&race 1.0 \nEqualized_Odds_TPR_male 2.0 \nEqualized_Odds_TPR_race 2.0 \nEqualized_Odds_TPR_male&race 3.0 \nOverall_Uncertainty_Parity_male 2.0 \nOverall_Uncertainty_Parity_race 2.0 \nOverall_Uncertainty_Parity_male&race 2.0 \nLabel_Stability_Ratio_male 1.0 \nLabel_Stability_Ratio_race 2.0 \nLabel_Stability_Ratio_male&race 2.0 \nStd_Parity_male 1.0 \nStd_Parity_race 2.0 \nStd_Parity_male&race 2.0 \n\n LogisticRegression__alpha=0.0 \\\nEqualized_Odds_FPR_male 1.0 \nEqualized_Odds_FPR_race 2.0 \nEqualized_Odds_FPR_male&race 2.0 \nEqualized_Odds_TPR_male 1.0 \nEqualized_Odds_TPR_race 3.0 \nEqualized_Odds_TPR_male&race 1.0 \nOverall_Uncertainty_Parity_male 1.0 \nOverall_Uncertainty_Parity_race 3.0 \nOverall_Uncertainty_Parity_male&race 3.0 \nLabel_Stability_Ratio_male 1.0 \nLabel_Stability_Ratio_race 1.0 \nLabel_Stability_Ratio_male&race 1.0 \nStd_Parity_male 1.0 \nStd_Parity_race 1.0 \nStd_Parity_male&race 1.0 \n\n LogisticRegression__alpha=0.6 \nEqualized_Odds_FPR_male 1.0 \nEqualized_Odds_FPR_race 1.0 \nEqualized_Odds_FPR_male&race 1.0 \nEqualized_Odds_TPR_male 2.0 \nEqualized_Odds_TPR_race 1.0 \nEqualized_Odds_TPR_male&race 2.0 \nOverall_Uncertainty_Parity_male 1.0 \nOverall_Uncertainty_Parity_race 1.0 \nOverall_Uncertainty_Parity_male&race 1.0 \nLabel_Stability_Ratio_male 1.0 \nLabel_Stability_Ratio_race 1.0 \nLabel_Stability_Ratio_male&race 1.0 \nStd_Parity_male 1.0 \nStd_Parity_race 1.0 \nStd_Parity_male&race 1.0 ",
+ "text/html": "\n\n
\n \n \n | \n LGBMClassifier__alpha=0.0 | \n LGBMClassifier__alpha=0.6 | \n LogisticRegression__alpha=0.0 | \n LogisticRegression__alpha=0.6 | \n
\n \n \n \n Equalized_Odds_FPR_male | \n 2.0 | \n 2.0 | \n 1.0 | \n 1.0 | \n
\n \n Equalized_Odds_FPR_race | \n 3.0 | \n 1.0 | \n 2.0 | \n 1.0 | \n
\n \n Equalized_Odds_FPR_male&race | \n 2.0 | \n 1.0 | \n 2.0 | \n 1.0 | \n
\n \n Equalized_Odds_TPR_male | \n 2.0 | \n 2.0 | \n 1.0 | \n 2.0 | \n
\n \n Equalized_Odds_TPR_race | \n 4.0 | \n 2.0 | \n 3.0 | \n 1.0 | \n
\n \n Equalized_Odds_TPR_male&race | \n 4.0 | \n 3.0 | \n 1.0 | \n 2.0 | \n
\n \n Overall_Uncertainty_Parity_male | \n 2.0 | \n 2.0 | \n 1.0 | \n 1.0 | \n
\n \n Overall_Uncertainty_Parity_race | \n 3.0 | \n 2.0 | \n 3.0 | \n 1.0 | \n
\n \n Overall_Uncertainty_Parity_male&race | \n 3.0 | \n 2.0 | \n 3.0 | \n 1.0 | \n
\n \n Label_Stability_Ratio_male | \n 1.0 | \n 1.0 | \n 1.0 | \n 1.0 | \n
\n \n Label_Stability_Ratio_race | \n 2.0 | \n 2.0 | \n 1.0 | \n 1.0 | \n
\n \n Label_Stability_Ratio_male&race | \n 3.0 | \n 2.0 | \n 1.0 | \n 1.0 | \n
\n \n Std_Parity_male | \n 1.0 | \n 1.0 | \n 1.0 | \n 1.0 | \n
\n \n Std_Parity_race | \n 2.0 | \n 2.0 | \n 1.0 | \n 1.0 | \n
\n \n Std_Parity_male&race | \n 2.0 | \n 2.0 | \n 1.0 | \n 1.0 | \n
\n \n
\n
"
+ },
+ "metadata": {},
+ "output_type": "display_data"
}
],
"source": [
@@ -229,9 +253,9 @@
],
"metadata": {
"collapsed": false,
+ "is_executing": true,
"ExecuteTime": {
- "end_time": "2023-12-06T23:49:32.410119Z",
- "start_time": "2023-12-06T15:49:16.428590Z"
+ "start_time": "2023-12-10T16:04:29.716786Z"
}
},
"id": "678a9dc8d51243f4"
@@ -254,8 +278,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-06T23:49:32.447145Z",
- "start_time": "2023-12-06T23:49:32.406866Z"
+ "end_time": "2023-12-10T14:45:32.225285Z",
+ "start_time": "2023-12-10T14:45:32.184623Z"
}
},
"id": "277b6d1de837dab7"
@@ -266,8 +290,8 @@
"id": "2326c129",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-06T23:49:32.450211Z",
- "start_time": "2023-12-06T23:49:32.446290Z"
+ "end_time": "2023-12-10T14:45:32.227687Z",
+ "start_time": "2023-12-10T14:45:32.224834Z"
}
},
"outputs": [],
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index 4fc38399..ebc91aa2 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -215,7 +215,7 @@ def start_web_app(self):
)
subgroup_stability_metrics = gr.Dropdown(
sorted(self.all_stability_metrics),
- value=['Jitter', 'Label_Stability'], multiselect=True, label="Stability Metrics", info="Select stability metrics to display on the heatmap:",
+ value=['Std', 'Label_Stability'], multiselect=True, label="Stability Metrics", info="Select stability metrics to display on the heatmap:",
)
subgroup_btn_view2 = gr.Button("Submit")
with gr.Column(scale=2):
@@ -288,7 +288,7 @@ def start_web_app(self):
)
subgroup_stability_metrics = gr.Dropdown(
sorted(self.all_stability_metrics),
- value=['Jitter', 'Label_Stability'], multiselect=True, label="Stability Metrics", info="Select stability metrics to display on the heatmap:",
+ value=['Std', 'Label_Stability'], multiselect=True, label="Stability Metrics", info="Select stability metrics to display on the heatmap:",
)
btn_view3 = gr.Button("Submit")
with gr.Column():
@@ -579,8 +579,8 @@ def _create_subgroup_model_rank_heatmap(self, model_names: list, subgroup_accura
"""
tolerance = str_to_float(tolerance, 'Tolerance')
- if tolerance < 0.001:
- raise ValueError('Tolerance cannot be smaller than 0.001')
+ if tolerance < 0.001 or tolerance > 0.2:
+ raise ValueError('Tolerance should be in the [0.001, 0.2] range')
metrics_lst = subgroup_accuracy_metrics_lst + subgroup_uncertainty_metrics + subgroup_stability_metrics_lst
# Find metric values for each model based on metric, subgroup, and model names.
@@ -620,8 +620,8 @@ def _create_group_model_rank_heatmap(self, model_names: list, group_fairness_met
"""
tolerance = str_to_float(tolerance, 'Tolerance')
- if tolerance < 0.001:
- raise ValueError('Tolerance cannot be smaller than 0.001')
+ if tolerance < 0.001 or tolerance > 0.2:
+ raise ValueError('Tolerance should be in the [0.001, 0.2] range')
groups_lst = self.sensitive_attributes_dct.keys()
metrics_lst = group_fairness_metrics_lst + group_uncertainty_metrics + group_stability_metrics_lst
diff --git a/virny/utils/data_viz_utils.py b/virny/utils/data_viz_utils.py
index bbc4b900..28b6d7cd 100644
--- a/virny/utils/data_viz_utils.py
+++ b/virny/utils/data_viz_utils.py
@@ -1,3 +1,4 @@
+import math
import numpy as np
import pandas as pd
import altair as alt
@@ -10,7 +11,7 @@
from IPython.display import display
-def rank_with_tolerance(pd_series: pd.Series, tolerance: float = 0.01, method: str = 'dense'):
+def rank_with_tolerance(pd_series: pd.Series, tolerance: float = 0.001):
"""
Rank a pandas series with defined tolerance.
Ref: https://stackoverflow.com/questions/72956450/pandas-ranking-with-tolerance
@@ -21,20 +22,41 @@ def rank_with_tolerance(pd_series: pd.Series, tolerance: float = 0.01, method: s
A pandas series to rank
tolerance
A float value for ranking
- method
- Ranking methods for numpy.rank()
Returns
-------
A pandas series with dense ranks for the input pd series.
"""
- tolerance += 1e-10 # Add 0.0000000001 for correct comparison of float numbers
- vals = pd.Series(pd_series.unique()).sort_values()
- vals.index = vals
- vals = vals.mask(vals - vals.shift(1) < tolerance, vals.shift(1))
-
- return pd_series.map(vals).fillna(pd_series).rank(method=method)
+ min_val, max_val = pd_series.min(), pd_series.max()
+ num_ranks = len(pd_series)
+ num_bins = math.ceil((max_val - min_val) / tolerance)
+ # The number of ranks cannot be smaller than 1 and greater than the number of compared models
+ if num_bins == 0:
+ num_bins = 1
+ elif num_bins > num_ranks:
+ num_bins = num_ranks
+
+ # Create a dictionary with bin constraints
+ bin_size = (max_val - min_val) / num_bins
+ bin_constraints_dct = dict()
+ min_bin_limit = min_val
+ for n_bin in range(num_bins):
+ rank = n_bin + 1
+ max_bin_limit = min_bin_limit + bin_size if n_bin + 1 < num_bins else max_val
+ bin_constraints_dct[rank] = [min_bin_limit, max_bin_limit]
+ min_bin_limit = max_bin_limit
+
+ print(bin_constraints_dct)
+
+ def get_rank_with_tolerance(val):
+ for n_bin in range(num_bins):
+ rank = n_bin + 1
+ min_constrain, max_constraint = bin_constraints_dct[rank]
+ if min_constrain <= val <= max_constraint:
+ return rank
+
+ return pd_series.apply(get_rank_with_tolerance).rank(method='dense')
def compute_proportions(protected_groups, X_data):
@@ -68,7 +90,7 @@ def create_sorted_matrix_by_rank(model_metrics_matrix, tolerance) -> np.array:
models_distances_matrix = models_distances_matrix.T
models_distances_df = pd.DataFrame(models_distances_matrix)
sorted_matrix_by_rank = models_distances_df.apply(
- lambda row : rank_with_tolerance(row, tolerance, method='dense'), axis = 1
+ lambda row : rank_with_tolerance(row, tolerance), axis = 1
)
return sorted_matrix_by_rank
@@ -86,7 +108,7 @@ def create_subgroup_sorted_matrix_by_rank(model_metrics_matrix, tolerance) -> np
models_distances_matrix = models_distances_matrix.T
models_distances_df = pd.DataFrame(models_distances_matrix)
sorted_matrix_by_rank = models_distances_df.apply(
- lambda row : rank_with_tolerance(row, tolerance, method='dense'), axis = 1
+ lambda row : rank_with_tolerance(row, tolerance), axis = 1
)
return sorted_matrix_by_rank
@@ -244,8 +266,12 @@ def create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_
num_ranks = int(sorted_matrix_by_rank.values.max())
fig = plt.figure(figsize=(matrix_width, matrix_height))
- rank_colors = sns.diverging_palette(13, 145, s=75, l=70, n=num_ranks).as_hex()
- # Convert ranks to minus ranks (1 --> -1; 4 --> -4) to align rank positions with a coolwarm color scheme
+ # Set a green color when there is only one rank
+ if num_ranks == 1:
+ rank_colors = sns.diverging_palette(145, 13, s=75, l=70, n=num_ranks).as_hex()
+ else:
+ rank_colors = sns.diverging_palette(13, 145, s=75, l=70, n=num_ranks).as_hex()
+ # Convert ranks to minus ranks (1 --> -1; 4 --> -4) to align rank positions with a color scheme
reversed_sorted_matrix_by_rank = sorted_matrix_by_rank * -1
ax = sns.heatmap(reversed_sorted_matrix_by_rank, annot=model_metrics_matrix.round(3), cmap=rank_colors,
fmt='', annot_kws={'color': 'black', 'alpha': 0.7, 'fontsize': 16 + font_increase})
From 8259f793b34f5deeb8eb5d36f8a64cbd7a41c664 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Sun, 10 Dec 2023 18:59:52 +0200
Subject: [PATCH 059/148] Added dynamic tolerance
---
...iple_Models_Interface_Vis_Law_School.ipynb | 48 ++++++++-----------
virny/utils/data_viz_utils.py | 45 ++++++++---------
2 files changed, 42 insertions(+), 51 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
index 034d205e..b629e5c5 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
@@ -194,12 +194,12 @@
},
{
"cell_type": "code",
- "execution_count": 48,
+ "execution_count": 50,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-10T16:04:29.715738Z",
- "start_time": "2023-12-10T16:04:29.547860Z"
+ "end_time": "2023-12-10T16:57:44.803014Z",
+ "start_time": "2023-12-10T16:57:44.583738Z"
}
},
"outputs": [],
@@ -219,33 +219,23 @@
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
- "Thanks for being a Gradio user! If you have questions or feedback, please join our Discord server and chat with us: https://discord.gg/feTf9x3ZSB\n",
- "\n",
"To create a public link, set `share=True` in `launch()`.\n",
- "{1: [0.001, 0.0075], 2: [0.0075, 0.013999999999999999], 3: [0.013999999999999999, 0.020499999999999997], 4: [0.020499999999999997, 0.027]}\n",
- "{1: [0.259, 0.3015], 2: [0.3015, 0.344], 3: [0.344, 0.38649999999999995], 4: [0.38649999999999995, 0.429]}\n",
- "{1: [0.147, 0.1885], 2: [0.1885, 0.23], 3: [0.23, 0.2715], 4: [0.2715, 0.313]}\n",
- "{1: [0.0, 0.0035], 2: [0.0035, 0.007]}\n",
- "{1: [0.077, 0.08524999999999999], 2: [0.08524999999999999, 0.0935], 3: [0.0935, 0.10175000000000001], 4: [0.10175000000000001, 0.11]}\n",
- "{1: [0.075, 0.081], 2: [0.081, 0.08700000000000001], 3: [0.08700000000000001, 0.09300000000000001], 4: [0.09300000000000001, 0.099]}\n",
- "{1: [0.008, 0.0125], 2: [0.0125, 0.017]}\n",
- "{1: [0.296, 0.30474999999999997], 2: [0.30474999999999997, 0.3135], 3: [0.3135, 0.32225000000000004], 4: [0.32225000000000004, 0.331]}\n",
- "{1: [0.268, 0.27425], 2: [0.27425, 0.28049999999999997], 3: [0.28049999999999997, 0.28674999999999995], 4: [0.28674999999999995, 0.293]}\n",
- "{1: [0.0009999999999998899, 0.0040000000000000036]}\n",
- "{1: [0.041000000000000036, 0.05275000000000002], 2: [0.05275000000000002, 0.0645], 3: [0.0645, 0.07624999999999998], 4: [0.07624999999999998, 0.08799999999999997]}\n",
- "{1: [0.031000000000000028, 0.04300000000000001], 2: [0.04300000000000001, 0.05499999999999999], 3: [0.05499999999999999, 0.06699999999999998], 4: [0.06699999999999998, 0.07899999999999996]}\n",
- "{1: [0.0, 0.001]}\n",
- "{1: [0.011, 0.015], 2: [0.015, 0.019], 3: [0.019, 0.023]}\n",
- "{1: [0.01, 0.014499999999999999], 2: [0.014499999999999999, 0.019]}\n"
+ "{'0.001': 1, '0.002': 1, '0.025': 3, '0.027': 3}\n",
+ "{'0.259': 1, '0.289': 2, '0.377': 3, '0.429': 4}\n",
+ "{'0.147': 1, '0.157': 2, '0.274': 3, '0.313': 4}\n",
+ "{'0.0': 1, '0.005': 1, '0.007': 4}\n",
+ "{'0.077': 1, '0.089': 2, '0.099': 3, '0.11': 4}\n",
+ "{'0.075': 1, '0.085': 2, '0.092': 3, '0.099': 4}\n",
+ "{'0.008': 1, '0.011': 1, '0.015': 3, '0.017': 3}\n",
+ "{'0.296': 1, '0.322': 2, '0.323': 2, '0.331': 4}\n",
+ "{'0.268': 1, '0.279': 2, '0.287': 3, '0.293': 4}\n",
+ "{'0.001': 1, '0.002': 1, '0.004': 1}\n",
+ "{'0.041': 1, '0.045': 1, '0.078': 3, '0.088': 4}\n",
+ "{'0.031': 1, '0.033': 1, '0.055': 3, '0.079': 4}\n",
+ "{'0.0': 1, '0.001': 1}\n",
+ "{'0.011': 1, '0.013': 1, '0.022': 3, '0.023': 3}\n",
+ "{'0.01': 1, '0.011': 1, '0.019': 3}\n"
]
- },
- {
- "data": {
- "text/plain": " LGBMClassifier__alpha=0.0 \\\nEqualized_Odds_FPR_male 2.0 \nEqualized_Odds_FPR_race 3.0 \nEqualized_Odds_FPR_male&race 2.0 \nEqualized_Odds_TPR_male 2.0 \nEqualized_Odds_TPR_race 4.0 \nEqualized_Odds_TPR_male&race 4.0 \nOverall_Uncertainty_Parity_male 2.0 \nOverall_Uncertainty_Parity_race 3.0 \nOverall_Uncertainty_Parity_male&race 3.0 \nLabel_Stability_Ratio_male 1.0 \nLabel_Stability_Ratio_race 2.0 \nLabel_Stability_Ratio_male&race 3.0 \nStd_Parity_male 1.0 \nStd_Parity_race 2.0 \nStd_Parity_male&race 2.0 \n\n LGBMClassifier__alpha=0.6 \\\nEqualized_Odds_FPR_male 2.0 \nEqualized_Odds_FPR_race 1.0 \nEqualized_Odds_FPR_male&race 1.0 \nEqualized_Odds_TPR_male 2.0 \nEqualized_Odds_TPR_race 2.0 \nEqualized_Odds_TPR_male&race 3.0 \nOverall_Uncertainty_Parity_male 2.0 \nOverall_Uncertainty_Parity_race 2.0 \nOverall_Uncertainty_Parity_male&race 2.0 \nLabel_Stability_Ratio_male 1.0 \nLabel_Stability_Ratio_race 2.0 \nLabel_Stability_Ratio_male&race 2.0 \nStd_Parity_male 1.0 \nStd_Parity_race 2.0 \nStd_Parity_male&race 2.0 \n\n LogisticRegression__alpha=0.0 \\\nEqualized_Odds_FPR_male 1.0 \nEqualized_Odds_FPR_race 2.0 \nEqualized_Odds_FPR_male&race 2.0 \nEqualized_Odds_TPR_male 1.0 \nEqualized_Odds_TPR_race 3.0 \nEqualized_Odds_TPR_male&race 1.0 \nOverall_Uncertainty_Parity_male 1.0 \nOverall_Uncertainty_Parity_race 3.0 \nOverall_Uncertainty_Parity_male&race 3.0 \nLabel_Stability_Ratio_male 1.0 \nLabel_Stability_Ratio_race 1.0 \nLabel_Stability_Ratio_male&race 1.0 \nStd_Parity_male 1.0 \nStd_Parity_race 1.0 \nStd_Parity_male&race 1.0 \n\n LogisticRegression__alpha=0.6 \nEqualized_Odds_FPR_male 1.0 \nEqualized_Odds_FPR_race 1.0 \nEqualized_Odds_FPR_male&race 1.0 \nEqualized_Odds_TPR_male 2.0 \nEqualized_Odds_TPR_race 1.0 \nEqualized_Odds_TPR_male&race 2.0 \nOverall_Uncertainty_Parity_male 1.0 \nOverall_Uncertainty_Parity_race 1.0 \nOverall_Uncertainty_Parity_male&race 1.0 \nLabel_Stability_Ratio_male 1.0 \nLabel_Stability_Ratio_race 1.0 \nLabel_Stability_Ratio_male&race 1.0 \nStd_Parity_male 1.0 \nStd_Parity_race 1.0 \nStd_Parity_male&race 1.0 ",
- "text/html": "\n\n
\n \n \n | \n LGBMClassifier__alpha=0.0 | \n LGBMClassifier__alpha=0.6 | \n LogisticRegression__alpha=0.0 | \n LogisticRegression__alpha=0.6 | \n
\n \n \n \n Equalized_Odds_FPR_male | \n 2.0 | \n 2.0 | \n 1.0 | \n 1.0 | \n
\n \n Equalized_Odds_FPR_race | \n 3.0 | \n 1.0 | \n 2.0 | \n 1.0 | \n
\n \n Equalized_Odds_FPR_male&race | \n 2.0 | \n 1.0 | \n 2.0 | \n 1.0 | \n
\n \n Equalized_Odds_TPR_male | \n 2.0 | \n 2.0 | \n 1.0 | \n 2.0 | \n
\n \n Equalized_Odds_TPR_race | \n 4.0 | \n 2.0 | \n 3.0 | \n 1.0 | \n
\n \n Equalized_Odds_TPR_male&race | \n 4.0 | \n 3.0 | \n 1.0 | \n 2.0 | \n
\n \n Overall_Uncertainty_Parity_male | \n 2.0 | \n 2.0 | \n 1.0 | \n 1.0 | \n
\n \n Overall_Uncertainty_Parity_race | \n 3.0 | \n 2.0 | \n 3.0 | \n 1.0 | \n
\n \n Overall_Uncertainty_Parity_male&race | \n 3.0 | \n 2.0 | \n 3.0 | \n 1.0 | \n
\n \n Label_Stability_Ratio_male | \n 1.0 | \n 1.0 | \n 1.0 | \n 1.0 | \n
\n \n Label_Stability_Ratio_race | \n 2.0 | \n 2.0 | \n 1.0 | \n 1.0 | \n
\n \n Label_Stability_Ratio_male&race | \n 3.0 | \n 2.0 | \n 1.0 | \n 1.0 | \n
\n \n Std_Parity_male | \n 1.0 | \n 1.0 | \n 1.0 | \n 1.0 | \n
\n \n Std_Parity_race | \n 2.0 | \n 2.0 | \n 1.0 | \n 1.0 | \n
\n \n Std_Parity_male&race | \n 2.0 | \n 2.0 | \n 1.0 | \n 1.0 | \n
\n \n
\n
"
- },
- "metadata": {},
- "output_type": "display_data"
}
],
"source": [
@@ -255,7 +245,7 @@
"collapsed": false,
"is_executing": true,
"ExecuteTime": {
- "start_time": "2023-12-10T16:04:29.716786Z"
+ "start_time": "2023-12-10T16:57:44.803707Z"
}
},
"id": "678a9dc8d51243f4"
diff --git a/virny/utils/data_viz_utils.py b/virny/utils/data_viz_utils.py
index 28b6d7cd..41307f44 100644
--- a/virny/utils/data_viz_utils.py
+++ b/virny/utils/data_viz_utils.py
@@ -28,33 +28,34 @@ def rank_with_tolerance(pd_series: pd.Series, tolerance: float = 0.001):
A pandas series with dense ranks for the input pd series.
"""
- min_val, max_val = pd_series.min(), pd_series.max()
- num_ranks = len(pd_series)
- num_bins = math.ceil((max_val - min_val) / tolerance)
- # The number of ranks cannot be smaller than 1 and greater than the number of compared models
- if num_bins == 0:
- num_bins = 1
- elif num_bins > num_ranks:
- num_bins = num_ranks
+ sorted_vals = sorted(pd_series.tolist())
# Create a dictionary with bin constraints
- bin_size = (max_val - min_val) / num_bins
bin_constraints_dct = dict()
- min_bin_limit = min_val
- for n_bin in range(num_bins):
- rank = n_bin + 1
- max_bin_limit = min_bin_limit + bin_size if n_bin + 1 < num_bins else max_val
- bin_constraints_dct[rank] = [min_bin_limit, max_bin_limit]
- min_bin_limit = max_bin_limit
-
- print(bin_constraints_dct)
+ for i in range(len(sorted_vals)):
+ val = sorted_vals[i]
+ rank = i + 1
+ bin_constraints_dct[rank] = [val - tolerance, val + tolerance]
+
+ # Assign ranks for each pandas series value
+ assigned_ranks_dct = dict()
+ for i in range(len(sorted_vals)):
+ val = sorted_vals[i]
+ max_rank = i + 1
+ actual_rank = None
+ for rank in bin_constraints_dct.keys():
+ min_limit, max_limit = bin_constraints_dct[rank]
+ if min_limit <= val <= max_limit:
+ actual_rank = rank
+ break
+
+ assigned_ranks_dct[str(round(val, 3))] = actual_rank
+ # Dynamically delete constraints from bin_constraints_dct to keep values in the same bin with tolerance
+ if actual_rank != max_rank:
+ del bin_constraints_dct[max_rank]
def get_rank_with_tolerance(val):
- for n_bin in range(num_bins):
- rank = n_bin + 1
- min_constrain, max_constraint = bin_constraints_dct[rank]
- if min_constrain <= val <= max_constraint:
- return rank
+ return assigned_ranks_dct[str(round(val, 3))]
return pd_series.apply(get_rank_with_tolerance).rank(method='dense')
From 87318fd3a45cd5d2c08551178ec6bad719d7a361 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Sun, 10 Dec 2023 19:24:50 +0200
Subject: [PATCH 060/148] Added tests for tolerance
---
...iple_Models_Interface_Vis_Law_School.ipynb | 89 +++++++++++++++----
tests/utils/test_data_viz_utils.py | 43 +++++++++
virny/utils/data_viz_utils.py | 4 +-
3 files changed, 116 insertions(+), 20 deletions(-)
create mode 100644 tests/utils/test_data_viz_utils.py
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
index b629e5c5..0533721d 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
@@ -194,12 +194,12 @@
},
{
"cell_type": "code",
- "execution_count": 50,
+ "execution_count": 56,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-10T16:57:44.803014Z",
- "start_time": "2023-12-10T16:57:44.583738Z"
+ "end_time": "2023-12-10T17:18:16.810646Z",
+ "start_time": "2023-12-10T17:18:16.756447Z"
}
},
"outputs": [],
@@ -220,21 +220,72 @@
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n",
- "{'0.001': 1, '0.002': 1, '0.025': 3, '0.027': 3}\n",
- "{'0.259': 1, '0.289': 2, '0.377': 3, '0.429': 4}\n",
- "{'0.147': 1, '0.157': 2, '0.274': 3, '0.313': 4}\n",
- "{'0.0': 1, '0.005': 1, '0.007': 4}\n",
- "{'0.077': 1, '0.089': 2, '0.099': 3, '0.11': 4}\n",
- "{'0.075': 1, '0.085': 2, '0.092': 3, '0.099': 4}\n",
- "{'0.008': 1, '0.011': 1, '0.015': 3, '0.017': 3}\n",
- "{'0.296': 1, '0.322': 2, '0.323': 2, '0.331': 4}\n",
- "{'0.268': 1, '0.279': 2, '0.287': 3, '0.293': 4}\n",
- "{'0.001': 1, '0.002': 1, '0.004': 1}\n",
- "{'0.041': 1, '0.045': 1, '0.078': 3, '0.088': 4}\n",
- "{'0.031': 1, '0.033': 1, '0.055': 3, '0.079': 4}\n",
- "{'0.0': 1, '0.001': 1}\n",
- "{'0.011': 1, '0.013': 1, '0.022': 3, '0.023': 3}\n",
- "{'0.01': 1, '0.011': 1, '0.019': 3}\n"
+ "{1: [-0.009, 0.011], 2: [-0.008, 0.012], 3: [0.015, 0.035], 4: [0.017, 0.037]}\n",
+ "{1: [0.249, 0.269], 2: [0.279, 0.299], 3: [0.367, 0.387], 4: [0.419, 0.439]}\n",
+ "{1: [0.137, 0.157], 2: [0.147, 0.167], 3: [0.264, 0.284], 4: [0.303, 0.323]}\n",
+ "{1: [-0.01, 0.01], 2: [-0.005, 0.015], 3: [-0.005, 0.015], 4: [-0.003, 0.017]}\n",
+ "{1: [0.067, 0.087], 2: [0.079, 0.099], 3: [0.089, 0.109], 4: [0.1, 0.12]}\n",
+ "{1: [0.065, 0.085], 2: [0.075, 0.095], 3: [0.082, 0.102], 4: [0.089, 0.109]}\n",
+ "{1: [-0.002, 0.018], 2: [0.001, 0.021], 3: [0.005, 0.025], 4: [0.007, 0.027]}\n",
+ "{1: [0.286, 0.306], 2: [0.312, 0.332], 3: [0.313, 0.333], 4: [0.321, 0.341]}\n",
+ "{1: [0.258, 0.278], 2: [0.269, 0.289], 3: [0.277, 0.297], 4: [0.283, 0.303]}\n",
+ "{1: [-0.009, 0.011], 2: [-0.009, 0.011], 3: [-0.008, 0.012], 4: [-0.006, 0.014]}\n",
+ "{1: [0.031, 0.051], 2: [0.035, 0.055], 3: [0.068, 0.088], 4: [0.078, 0.098]}\n",
+ "{1: [0.021, 0.041], 2: [0.023, 0.043], 3: [0.045, 0.065], 4: [0.069, 0.089]}\n",
+ "{1: [-0.01, 0.01], 2: [-0.01, 0.01], 3: [-0.009, 0.011], 4: [-0.009, 0.011]}\n",
+ "{1: [0.001, 0.021], 2: [0.003, 0.023], 3: [0.012, 0.032], 4: [0.013, 0.033]}\n",
+ "{1: [0.0, 0.02], 2: [0.001, 0.021], 3: [0.009, 0.029], 4: [0.009, 0.029]}\n",
+ "{1: [0.086, 0.106], 2: [0.087, 0.107], 3: [0.09, 0.11], 4: [0.09, 0.11]}\n",
+ "{1: [0.042, 0.062], 2: [0.043, 0.063], 3: [0.045, 0.065], 4: [0.045, 0.065]}\n",
+ "{1: [0.323, 0.343], 2: [0.325, 0.345], 3: [0.334, 0.354], 4: [0.334, 0.354]}\n",
+ "{1: [0.33, 0.35], 2: [0.33, 0.35], 3: [0.335, 0.355], 4: [0.335, 0.355]}\n",
+ "{1: [-0.001, 0.019], 2: [-0.001, 0.019], 3: [0.013, 0.033], 4: [0.016, 0.036]}\n",
+ "{1: [0.003, 0.023], 2: [0.005, 0.025], 3: [0.018, 0.038], 4: [0.022, 0.042]}\n",
+ "{1: [0.091, 0.101], 2: [0.092, 0.102], 3: [0.095, 0.105], 4: [0.095, 0.105]}\n",
+ "{1: [0.047, 0.057], 2: [0.048, 0.058], 3: [0.05, 0.06], 4: [0.05, 0.06]}\n",
+ "{1: [0.328, 0.338], 2: [0.33, 0.34], 3: [0.339, 0.349], 4: [0.339, 0.349]}\n",
+ "{1: [0.335, 0.345], 2: [0.335, 0.345], 3: [0.34, 0.35], 4: [0.34, 0.35]}\n",
+ "{1: [0.004, 0.014], 2: [0.004, 0.014], 3: [0.018, 0.028], 4: [0.021, 0.031]}\n",
+ "{1: [0.008, 0.018], 2: [0.01, 0.02], 3: [0.023, 0.033], 4: [0.027, 0.037]}\n",
+ "{1: [0.092, 0.102], 2: [0.095, 0.105], 3: [0.095, 0.105], 4: [0.105, 0.115]}\n",
+ "{1: [0.048, 0.058], 2: [0.05, 0.06], 3: [0.05, 0.06], 4: [0.055, 0.065]}\n",
+ "{1: [0.048, 0.058], 2: [0.33, 0.34], 3: [0.339, 0.349], 4: [0.339, 0.349]}\n",
+ "{1: [0.315, 0.325], 2: [0.335, 0.345], 3: [0.34, 0.35], 4: [0.34, 0.35]}\n",
+ "{1: [0.004, 0.014], 2: [0.004, 0.014], 3: [0.018, 0.028], 4: [0.172, 0.182]}\n",
+ "{1: [0.008, 0.018], 2: [0.01, 0.02], 3: [0.023, 0.033], 4: [0.183, 0.193]}\n",
+ "{1: [0.087, 0.107], 2: [0.09, 0.11], 3: [0.09, 0.11], 4: [0.1, 0.12]}\n",
+ "{1: [0.043, 0.063], 2: [0.045, 0.065], 3: [0.045, 0.065], 4: [0.05, 0.07]}\n",
+ "{1: [0.043, 0.063], 2: [0.325, 0.345], 3: [0.334, 0.354], 4: [0.334, 0.354]}\n",
+ "{1: [0.31, 0.33], 2: [0.33, 0.35], 3: [0.335, 0.355], 4: [0.335, 0.355]}\n",
+ "{1: [-0.001, 0.019], 2: [-0.001, 0.019], 3: [0.013, 0.033], 4: [0.167, 0.187]}\n",
+ "{1: [0.003, 0.023], 2: [0.005, 0.025], 3: [0.018, 0.038], 4: [0.178, 0.198]}\n",
+ "{1: [0.09, 0.11], 2: [0.1, 0.12]}\n",
+ "{1: [0.045, 0.065], 2: [0.05, 0.07]}\n",
+ "{1: [0.043, 0.063], 2: [0.334, 0.354]}\n",
+ "{1: [0.31, 0.33], 2: [0.335, 0.355]}\n",
+ "{1: [-0.001, 0.019], 2: [0.167, 0.187]}\n",
+ "{1: [0.005, 0.025], 2: [0.178, 0.198]}\n",
+ "{1: [0.091, 0.101], 2: [0.092, 0.102], 3: [0.095, 0.105], 4: [0.095, 0.105]}\n",
+ "{1: [0.047, 0.057], 2: [0.048, 0.058], 3: [0.05, 0.06], 4: [0.05, 0.06]}\n",
+ "{1: [0.328, 0.338], 2: [0.33, 0.34], 3: [0.339, 0.349], 4: [0.339, 0.349]}\n",
+ "{1: [0.335, 0.345], 2: [0.335, 0.345], 3: [0.34, 0.35], 4: [0.34, 0.35]}\n",
+ "{1: [0.004, 0.014], 2: [0.004, 0.014], 3: [0.018, 0.028], 4: [0.021, 0.031]}\n",
+ "{1: [0.008, 0.018], 2: [0.01, 0.02], 3: [0.023, 0.033], 4: [0.027, 0.037]}\n",
+ "{1: [-0.004, 0.006], 2: [-0.003, 0.007], 3: [0.02, 0.03], 4: [0.022, 0.032]}\n",
+ "{1: [0.254, 0.264], 2: [0.284, 0.294], 3: [0.372, 0.382], 4: [0.424, 0.434]}\n",
+ "{1: [0.142, 0.152], 2: [0.152, 0.162], 3: [0.269, 0.279], 4: [0.308, 0.318]}\n",
+ "{1: [-0.005, 0.005], 2: [0.0, 0.01], 3: [0.0, 0.01], 4: [0.002, 0.012]}\n",
+ "{1: [0.072, 0.082], 2: [0.084, 0.094], 3: [0.094, 0.104], 4: [0.105, 0.115]}\n",
+ "{1: [0.07, 0.08], 2: [0.08, 0.09], 3: [0.087, 0.097], 4: [0.094, 0.104]}\n",
+ "{1: [0.003, 0.013], 2: [0.006, 0.016], 3: [0.01, 0.02], 4: [0.012, 0.022]}\n",
+ "{1: [0.291, 0.301], 2: [0.317, 0.327], 3: [0.318, 0.328], 4: [0.326, 0.336]}\n",
+ "{1: [0.263, 0.273], 2: [0.274, 0.284], 3: [0.282, 0.292], 4: [0.288, 0.298]}\n",
+ "{1: [-0.004, 0.006], 2: [-0.004, 0.006], 3: [-0.003, 0.007], 4: [-0.001, 0.009]}\n",
+ "{1: [0.036, 0.046], 2: [0.04, 0.05], 3: [0.073, 0.083], 4: [0.083, 0.093]}\n",
+ "{1: [0.026, 0.036], 2: [0.028, 0.038], 3: [0.05, 0.06], 4: [0.074, 0.084]}\n",
+ "{1: [-0.005, 0.005], 2: [-0.005, 0.005], 3: [-0.004, 0.006], 4: [-0.004, 0.006]}\n",
+ "{1: [0.006, 0.016], 2: [0.008, 0.018], 3: [0.017, 0.027], 4: [0.018, 0.028]}\n",
+ "{1: [0.005, 0.015], 2: [0.006, 0.016], 3: [0.014, 0.024], 4: [0.014, 0.024]}\n"
]
}
],
@@ -245,7 +296,7 @@
"collapsed": false,
"is_executing": true,
"ExecuteTime": {
- "start_time": "2023-12-10T16:57:44.803707Z"
+ "start_time": "2023-12-10T17:18:16.842929Z"
}
},
"id": "678a9dc8d51243f4"
diff --git a/tests/utils/test_data_viz_utils.py b/tests/utils/test_data_viz_utils.py
new file mode 100644
index 00000000..6595c281
--- /dev/null
+++ b/tests/utils/test_data_viz_utils.py
@@ -0,0 +1,43 @@
+import pandas as pd
+
+from virny.utils.data_viz_utils import rank_with_tolerance
+
+
+def test_rank_with_tolerance_true1():
+ tolerance = 0.005
+ pd_series = pd.Series([0.025, 0.027, 0.001, 0.002]) # should be only positive numbers
+ expected_ranks = [2, 2, 1, 1]
+ actual_ranks = rank_with_tolerance(pd_series, tolerance)
+ assert actual_ranks.tolist() == expected_ranks
+
+
+def test_rank_with_tolerance_true2():
+ tolerance = 0.005
+ pd_series = pd.Series([0.429, 0.289, 0.377, 0.259]) # should be only positive numbers
+ expected_ranks = [4, 2, 3, 1]
+ actual_ranks = rank_with_tolerance(pd_series, tolerance)
+ assert actual_ranks.tolist() == expected_ranks
+
+
+def test_rank_with_tolerance_true3():
+ tolerance = 0.005
+ pd_series = pd.Series([0.313, 0.157, 0.274, 0.147]) # should be only positive numbers
+ expected_ranks = [4, 2, 3, 1]
+ actual_ranks = rank_with_tolerance(pd_series, tolerance)
+ assert actual_ranks.tolist() == expected_ranks
+
+
+def test_rank_with_tolerance_true4():
+ tolerance = 0.005
+ pd_series = pd.Series([0.001, 0.001, 0.0, 0.0]) # should be only positive numbers
+ expected_ranks = [1, 1, 1, 1]
+ actual_ranks = rank_with_tolerance(pd_series, tolerance)
+ assert actual_ranks.tolist() == expected_ranks
+
+
+def test_rank_with_tolerance_true5():
+ tolerance = 0.01
+ pd_series = pd.Series([0.099, 0.092, 0.075, 0.085]) # should be only positive numbers
+ expected_ranks = [2, 2, 1, 1]
+ actual_ranks = rank_with_tolerance(pd_series, tolerance)
+ assert actual_ranks.tolist() == expected_ranks
diff --git a/virny/utils/data_viz_utils.py b/virny/utils/data_viz_utils.py
index 41307f44..c208adfa 100644
--- a/virny/utils/data_viz_utils.py
+++ b/virny/utils/data_viz_utils.py
@@ -35,7 +35,9 @@ def rank_with_tolerance(pd_series: pd.Series, tolerance: float = 0.001):
for i in range(len(sorted_vals)):
val = sorted_vals[i]
rank = i + 1
- bin_constraints_dct[rank] = [val - tolerance, val + tolerance]
+ bin_constraints_dct[rank] = [round(val - tolerance, 3), round(val + tolerance, 3)]
+
+ print(bin_constraints_dct)
# Assign ranks for each pandas series value
assigned_ranks_dct = dict()
From 52ea84346baca512f20328a95316188e0755a609 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Sun, 10 Dec 2023 19:25:51 +0200
Subject: [PATCH 061/148] Added tests for tolerance
---
virny/utils/data_viz_utils.py | 2 --
1 file changed, 2 deletions(-)
diff --git a/virny/utils/data_viz_utils.py b/virny/utils/data_viz_utils.py
index c208adfa..41dba3cc 100644
--- a/virny/utils/data_viz_utils.py
+++ b/virny/utils/data_viz_utils.py
@@ -37,8 +37,6 @@ def rank_with_tolerance(pd_series: pd.Series, tolerance: float = 0.001):
rank = i + 1
bin_constraints_dct[rank] = [round(val - tolerance, 3), round(val + tolerance, 3)]
- print(bin_constraints_dct)
-
# Assign ranks for each pandas series value
assigned_ranks_dct = dict()
for i in range(len(sorted_vals)):
From 1d2cc3cc5dfa4957b4a24c45f8bde3f3c33b99bd Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Sun, 17 Dec 2023 23:45:17 +0200
Subject: [PATCH 062/148] wip
---
...Multiple_Models_Interface_Vis_Income.ipynb | 60 ++++----
...iple_Models_Interface_Vis_Law_School.ipynb | 132 ++++--------------
2 files changed, 56 insertions(+), 136 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
index aac2e942..ecd29b0e 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
@@ -6,8 +6,8 @@
"id": "248cbed8",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-03T22:09:30.506501Z",
- "start_time": "2023-12-03T22:09:29.758579Z"
+ "end_time": "2023-12-10T22:37:44.370856Z",
+ "start_time": "2023-12-10T22:37:43.972175Z"
}
},
"outputs": [],
@@ -23,8 +23,8 @@
"id": "7ec6cd08",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-03T22:09:30.515379Z",
- "start_time": "2023-12-03T22:09:30.506765Z"
+ "end_time": "2023-12-10T22:37:44.380242Z",
+ "start_time": "2023-12-10T22:37:44.371542Z"
}
},
"outputs": [],
@@ -41,8 +41,8 @@
"id": "b8cb69f2",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-03T22:09:30.525236Z",
- "start_time": "2023-12-03T22:09:30.515761Z"
+ "end_time": "2023-12-10T22:37:44.391659Z",
+ "start_time": "2023-12-10T22:37:44.380644Z"
}
},
"outputs": [
@@ -76,8 +76,8 @@
"id": "7a9241de",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-03T22:09:33.037405Z",
- "start_time": "2023-12-03T22:09:30.526188Z"
+ "end_time": "2023-12-10T22:37:45.918385Z",
+ "start_time": "2023-12-10T22:37:44.390547Z"
}
},
"outputs": [],
@@ -101,8 +101,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-03T22:09:34.393655Z",
- "start_time": "2023-12-03T22:09:33.038803Z"
+ "end_time": "2023-12-10T22:37:47.214487Z",
+ "start_time": "2023-12-10T22:37:45.921391Z"
}
},
"id": "d3c53c7b72ecbcd0"
@@ -120,8 +120,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-03T22:09:34.420850Z",
- "start_time": "2023-12-03T22:09:34.393834Z"
+ "end_time": "2023-12-10T22:37:47.242581Z",
+ "start_time": "2023-12-10T22:37:47.214727Z"
}
},
"id": "2aab7c79ecdee914"
@@ -153,21 +153,21 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-03T22:09:34.476159Z",
- "start_time": "2023-12-03T22:09:34.421313Z"
+ "end_time": "2023-12-10T22:37:47.297089Z",
+ "start_time": "2023-12-10T22:37:47.240439Z"
}
},
"id": "44ee5eff6054ce04"
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 8,
"outputs": [
{
"data": {
"text/plain": "dict_keys(['LGBMClassifier__alpha=0.7', 'LGBMClassifier__alpha=0.0', 'LGBMClassifier__alpha=0.4', 'LogisticRegression__alpha=0.0', 'LogisticRegression__alpha=0.7', 'LogisticRegression__alpha=0.4', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.7', 'MLPClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.7', 'RandomForestClassifier__alpha=0.0'])"
},
- "execution_count": 9,
+ "execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
@@ -178,8 +178,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-03T22:09:34.566417Z",
- "start_time": "2023-12-03T22:09:34.499412Z"
+ "end_time": "2023-12-10T22:37:47.328697Z",
+ "start_time": "2023-12-10T22:37:47.295950Z"
}
},
"id": "15ed7d1ba1f22317"
@@ -194,12 +194,12 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 9,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-03T22:09:34.588762Z",
- "start_time": "2023-12-03T22:09:34.523515Z"
+ "end_time": "2023-12-10T22:37:47.374721Z",
+ "start_time": "2023-12-10T22:37:47.317882Z"
}
},
"outputs": [],
@@ -211,7 +211,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 10,
"outputs": [
{
"name": "stdout",
@@ -230,15 +230,15 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-03T23:42:27.309199Z",
- "start_time": "2023-12-03T22:09:34.550444Z"
+ "end_time": "2023-12-11T00:26:17.429094Z",
+ "start_time": "2023-12-10T22:37:47.343749Z"
}
},
"id": "678a9dc8d51243f4"
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 11,
"outputs": [
{
"name": "stdout",
@@ -254,22 +254,22 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-03T23:42:27.346512Z",
- "start_time": "2023-12-03T23:42:27.314034Z"
+ "end_time": "2023-12-11T00:26:17.482944Z",
+ "start_time": "2023-12-11T00:26:17.438287Z"
}
},
"id": "277b6d1de837dab7"
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 11,
"outputs": [],
"source": [],
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-03T23:42:27.349708Z",
- "start_time": "2023-12-03T23:42:27.345872Z"
+ "end_time": "2023-12-11T00:26:17.483195Z",
+ "start_time": "2023-12-11T00:26:17.479725Z"
}
},
"id": "21c0ad91536f0af5"
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
index 0533721d..1826cdfe 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
@@ -6,8 +6,8 @@
"id": "248cbed8",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-10T13:46:04.887856Z",
- "start_time": "2023-12-10T13:46:04.026304Z"
+ "end_time": "2023-12-16T22:10:21.409266Z",
+ "start_time": "2023-12-16T22:10:20.679843Z"
}
},
"outputs": [],
@@ -23,8 +23,8 @@
"id": "7ec6cd08",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-10T13:46:04.897038Z",
- "start_time": "2023-12-10T13:46:04.888481Z"
+ "end_time": "2023-12-16T22:10:21.418422Z",
+ "start_time": "2023-12-16T22:10:21.408919Z"
}
},
"outputs": [],
@@ -41,8 +41,8 @@
"id": "b8cb69f2",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-10T13:46:04.906348Z",
- "start_time": "2023-12-10T13:46:04.897731Z"
+ "end_time": "2023-12-16T22:10:21.429731Z",
+ "start_time": "2023-12-16T22:10:21.418780Z"
}
},
"outputs": [
@@ -76,8 +76,8 @@
"id": "7a9241de",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-10T13:46:09.457388Z",
- "start_time": "2023-12-10T13:46:04.907162Z"
+ "end_time": "2023-12-16T22:10:25.046057Z",
+ "start_time": "2023-12-16T22:10:21.428148Z"
}
},
"outputs": [],
@@ -101,8 +101,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-10T13:46:09.518413Z",
- "start_time": "2023-12-10T13:46:09.456301Z"
+ "end_time": "2023-12-16T22:10:25.116829Z",
+ "start_time": "2023-12-16T22:10:25.048929Z"
}
},
"id": "d3c53c7b72ecbcd0"
@@ -120,8 +120,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-10T13:46:09.544781Z",
- "start_time": "2023-12-10T13:46:09.518981Z"
+ "end_time": "2023-12-16T22:10:25.144265Z",
+ "start_time": "2023-12-16T22:10:25.117061Z"
}
},
"id": "2aab7c79ecdee914"
@@ -153,8 +153,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-10T13:46:09.592998Z",
- "start_time": "2023-12-10T13:46:09.545292Z"
+ "end_time": "2023-12-16T22:10:25.193827Z",
+ "start_time": "2023-12-16T22:10:25.143225Z"
}
},
"id": "833484748ed512e8"
@@ -178,8 +178,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-10T13:46:09.615874Z",
- "start_time": "2023-12-10T13:46:09.592514Z"
+ "end_time": "2023-12-16T22:10:25.218033Z",
+ "start_time": "2023-12-16T22:10:25.193714Z"
}
},
"id": "15ed7d1ba1f22317"
@@ -194,12 +194,12 @@
},
{
"cell_type": "code",
- "execution_count": 56,
+ "execution_count": 9,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-10T17:18:16.810646Z",
- "start_time": "2023-12-10T17:18:16.756447Z"
+ "end_time": "2023-12-16T22:10:25.293585Z",
+ "start_time": "2023-12-16T22:10:25.217304Z"
}
},
"outputs": [],
@@ -219,73 +219,7 @@
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
- "To create a public link, set `share=True` in `launch()`.\n",
- "{1: [-0.009, 0.011], 2: [-0.008, 0.012], 3: [0.015, 0.035], 4: [0.017, 0.037]}\n",
- "{1: [0.249, 0.269], 2: [0.279, 0.299], 3: [0.367, 0.387], 4: [0.419, 0.439]}\n",
- "{1: [0.137, 0.157], 2: [0.147, 0.167], 3: [0.264, 0.284], 4: [0.303, 0.323]}\n",
- "{1: [-0.01, 0.01], 2: [-0.005, 0.015], 3: [-0.005, 0.015], 4: [-0.003, 0.017]}\n",
- "{1: [0.067, 0.087], 2: [0.079, 0.099], 3: [0.089, 0.109], 4: [0.1, 0.12]}\n",
- "{1: [0.065, 0.085], 2: [0.075, 0.095], 3: [0.082, 0.102], 4: [0.089, 0.109]}\n",
- "{1: [-0.002, 0.018], 2: [0.001, 0.021], 3: [0.005, 0.025], 4: [0.007, 0.027]}\n",
- "{1: [0.286, 0.306], 2: [0.312, 0.332], 3: [0.313, 0.333], 4: [0.321, 0.341]}\n",
- "{1: [0.258, 0.278], 2: [0.269, 0.289], 3: [0.277, 0.297], 4: [0.283, 0.303]}\n",
- "{1: [-0.009, 0.011], 2: [-0.009, 0.011], 3: [-0.008, 0.012], 4: [-0.006, 0.014]}\n",
- "{1: [0.031, 0.051], 2: [0.035, 0.055], 3: [0.068, 0.088], 4: [0.078, 0.098]}\n",
- "{1: [0.021, 0.041], 2: [0.023, 0.043], 3: [0.045, 0.065], 4: [0.069, 0.089]}\n",
- "{1: [-0.01, 0.01], 2: [-0.01, 0.01], 3: [-0.009, 0.011], 4: [-0.009, 0.011]}\n",
- "{1: [0.001, 0.021], 2: [0.003, 0.023], 3: [0.012, 0.032], 4: [0.013, 0.033]}\n",
- "{1: [0.0, 0.02], 2: [0.001, 0.021], 3: [0.009, 0.029], 4: [0.009, 0.029]}\n",
- "{1: [0.086, 0.106], 2: [0.087, 0.107], 3: [0.09, 0.11], 4: [0.09, 0.11]}\n",
- "{1: [0.042, 0.062], 2: [0.043, 0.063], 3: [0.045, 0.065], 4: [0.045, 0.065]}\n",
- "{1: [0.323, 0.343], 2: [0.325, 0.345], 3: [0.334, 0.354], 4: [0.334, 0.354]}\n",
- "{1: [0.33, 0.35], 2: [0.33, 0.35], 3: [0.335, 0.355], 4: [0.335, 0.355]}\n",
- "{1: [-0.001, 0.019], 2: [-0.001, 0.019], 3: [0.013, 0.033], 4: [0.016, 0.036]}\n",
- "{1: [0.003, 0.023], 2: [0.005, 0.025], 3: [0.018, 0.038], 4: [0.022, 0.042]}\n",
- "{1: [0.091, 0.101], 2: [0.092, 0.102], 3: [0.095, 0.105], 4: [0.095, 0.105]}\n",
- "{1: [0.047, 0.057], 2: [0.048, 0.058], 3: [0.05, 0.06], 4: [0.05, 0.06]}\n",
- "{1: [0.328, 0.338], 2: [0.33, 0.34], 3: [0.339, 0.349], 4: [0.339, 0.349]}\n",
- "{1: [0.335, 0.345], 2: [0.335, 0.345], 3: [0.34, 0.35], 4: [0.34, 0.35]}\n",
- "{1: [0.004, 0.014], 2: [0.004, 0.014], 3: [0.018, 0.028], 4: [0.021, 0.031]}\n",
- "{1: [0.008, 0.018], 2: [0.01, 0.02], 3: [0.023, 0.033], 4: [0.027, 0.037]}\n",
- "{1: [0.092, 0.102], 2: [0.095, 0.105], 3: [0.095, 0.105], 4: [0.105, 0.115]}\n",
- "{1: [0.048, 0.058], 2: [0.05, 0.06], 3: [0.05, 0.06], 4: [0.055, 0.065]}\n",
- "{1: [0.048, 0.058], 2: [0.33, 0.34], 3: [0.339, 0.349], 4: [0.339, 0.349]}\n",
- "{1: [0.315, 0.325], 2: [0.335, 0.345], 3: [0.34, 0.35], 4: [0.34, 0.35]}\n",
- "{1: [0.004, 0.014], 2: [0.004, 0.014], 3: [0.018, 0.028], 4: [0.172, 0.182]}\n",
- "{1: [0.008, 0.018], 2: [0.01, 0.02], 3: [0.023, 0.033], 4: [0.183, 0.193]}\n",
- "{1: [0.087, 0.107], 2: [0.09, 0.11], 3: [0.09, 0.11], 4: [0.1, 0.12]}\n",
- "{1: [0.043, 0.063], 2: [0.045, 0.065], 3: [0.045, 0.065], 4: [0.05, 0.07]}\n",
- "{1: [0.043, 0.063], 2: [0.325, 0.345], 3: [0.334, 0.354], 4: [0.334, 0.354]}\n",
- "{1: [0.31, 0.33], 2: [0.33, 0.35], 3: [0.335, 0.355], 4: [0.335, 0.355]}\n",
- "{1: [-0.001, 0.019], 2: [-0.001, 0.019], 3: [0.013, 0.033], 4: [0.167, 0.187]}\n",
- "{1: [0.003, 0.023], 2: [0.005, 0.025], 3: [0.018, 0.038], 4: [0.178, 0.198]}\n",
- "{1: [0.09, 0.11], 2: [0.1, 0.12]}\n",
- "{1: [0.045, 0.065], 2: [0.05, 0.07]}\n",
- "{1: [0.043, 0.063], 2: [0.334, 0.354]}\n",
- "{1: [0.31, 0.33], 2: [0.335, 0.355]}\n",
- "{1: [-0.001, 0.019], 2: [0.167, 0.187]}\n",
- "{1: [0.005, 0.025], 2: [0.178, 0.198]}\n",
- "{1: [0.091, 0.101], 2: [0.092, 0.102], 3: [0.095, 0.105], 4: [0.095, 0.105]}\n",
- "{1: [0.047, 0.057], 2: [0.048, 0.058], 3: [0.05, 0.06], 4: [0.05, 0.06]}\n",
- "{1: [0.328, 0.338], 2: [0.33, 0.34], 3: [0.339, 0.349], 4: [0.339, 0.349]}\n",
- "{1: [0.335, 0.345], 2: [0.335, 0.345], 3: [0.34, 0.35], 4: [0.34, 0.35]}\n",
- "{1: [0.004, 0.014], 2: [0.004, 0.014], 3: [0.018, 0.028], 4: [0.021, 0.031]}\n",
- "{1: [0.008, 0.018], 2: [0.01, 0.02], 3: [0.023, 0.033], 4: [0.027, 0.037]}\n",
- "{1: [-0.004, 0.006], 2: [-0.003, 0.007], 3: [0.02, 0.03], 4: [0.022, 0.032]}\n",
- "{1: [0.254, 0.264], 2: [0.284, 0.294], 3: [0.372, 0.382], 4: [0.424, 0.434]}\n",
- "{1: [0.142, 0.152], 2: [0.152, 0.162], 3: [0.269, 0.279], 4: [0.308, 0.318]}\n",
- "{1: [-0.005, 0.005], 2: [0.0, 0.01], 3: [0.0, 0.01], 4: [0.002, 0.012]}\n",
- "{1: [0.072, 0.082], 2: [0.084, 0.094], 3: [0.094, 0.104], 4: [0.105, 0.115]}\n",
- "{1: [0.07, 0.08], 2: [0.08, 0.09], 3: [0.087, 0.097], 4: [0.094, 0.104]}\n",
- "{1: [0.003, 0.013], 2: [0.006, 0.016], 3: [0.01, 0.02], 4: [0.012, 0.022]}\n",
- "{1: [0.291, 0.301], 2: [0.317, 0.327], 3: [0.318, 0.328], 4: [0.326, 0.336]}\n",
- "{1: [0.263, 0.273], 2: [0.274, 0.284], 3: [0.282, 0.292], 4: [0.288, 0.298]}\n",
- "{1: [-0.004, 0.006], 2: [-0.004, 0.006], 3: [-0.003, 0.007], 4: [-0.001, 0.009]}\n",
- "{1: [0.036, 0.046], 2: [0.04, 0.05], 3: [0.073, 0.083], 4: [0.083, 0.093]}\n",
- "{1: [0.026, 0.036], 2: [0.028, 0.038], 3: [0.05, 0.06], 4: [0.074, 0.084]}\n",
- "{1: [-0.005, 0.005], 2: [-0.005, 0.005], 3: [-0.004, 0.006], 4: [-0.004, 0.006]}\n",
- "{1: [0.006, 0.016], 2: [0.008, 0.018], 3: [0.017, 0.027], 4: [0.018, 0.028]}\n",
- "{1: [0.005, 0.015], 2: [0.006, 0.016], 3: [0.014, 0.024], 4: [0.014, 0.024]}\n"
+ "To create a public link, set `share=True` in `launch()`.\n"
]
}
],
@@ -296,44 +230,30 @@
"collapsed": false,
"is_executing": true,
"ExecuteTime": {
- "start_time": "2023-12-10T17:18:16.842929Z"
+ "start_time": "2023-12-16T22:10:25.247210Z"
}
},
"id": "678a9dc8d51243f4"
},
{
"cell_type": "code",
- "execution_count": 11,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Closing server running on port: 7860\n"
- ]
- }
- ],
+ "execution_count": null,
+ "outputs": [],
"source": [
"visualizer.stop_web_app()"
],
"metadata": {
"collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-10T14:45:32.225285Z",
- "start_time": "2023-12-10T14:45:32.184623Z"
- }
+ "is_executing": true
},
"id": "277b6d1de837dab7"
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": null,
"id": "2326c129",
"metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-10T14:45:32.227687Z",
- "start_time": "2023-12-10T14:45:32.224834Z"
- }
+ "is_executing": true
},
"outputs": [],
"source": []
From 06c60fc1f84eceaa709dc8422854fbcd976e2e57 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Mon, 18 Dec 2023 01:37:30 +0200
Subject: [PATCH 063/148] Added error handling for a dataset stats screen
---
...iple_Models_Interface_Vis_Law_School.ipynb | 150 +++++++++++++++---
.../metrics_interactive_visualizer.py | 15 +-
virny/utils/protected_groups_partitioning.py | 10 +-
3 files changed, 145 insertions(+), 30 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
index 1826cdfe..83931cbb 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
@@ -6,8 +6,8 @@
"id": "248cbed8",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-16T22:10:21.409266Z",
- "start_time": "2023-12-16T22:10:20.679843Z"
+ "end_time": "2023-12-17T21:47:39.813777Z",
+ "start_time": "2023-12-17T21:47:39.261544Z"
}
},
"outputs": [],
@@ -23,8 +23,8 @@
"id": "7ec6cd08",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-16T22:10:21.418422Z",
- "start_time": "2023-12-16T22:10:21.408919Z"
+ "end_time": "2023-12-17T21:47:39.822610Z",
+ "start_time": "2023-12-17T21:47:39.813658Z"
}
},
"outputs": [],
@@ -41,8 +41,8 @@
"id": "b8cb69f2",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-16T22:10:21.429731Z",
- "start_time": "2023-12-16T22:10:21.418780Z"
+ "end_time": "2023-12-17T21:47:39.832179Z",
+ "start_time": "2023-12-17T21:47:39.823116Z"
}
},
"outputs": [
@@ -76,8 +76,8 @@
"id": "7a9241de",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-16T22:10:25.046057Z",
- "start_time": "2023-12-16T22:10:21.428148Z"
+ "end_time": "2023-12-17T21:47:42.380425Z",
+ "start_time": "2023-12-17T21:47:39.833097Z"
}
},
"outputs": [],
@@ -101,8 +101,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-16T22:10:25.116829Z",
- "start_time": "2023-12-16T22:10:25.048929Z"
+ "end_time": "2023-12-17T21:47:42.452856Z",
+ "start_time": "2023-12-17T21:47:42.383371Z"
}
},
"id": "d3c53c7b72ecbcd0"
@@ -120,8 +120,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-16T22:10:25.144265Z",
- "start_time": "2023-12-16T22:10:25.117061Z"
+ "end_time": "2023-12-17T21:47:42.480240Z",
+ "start_time": "2023-12-17T21:47:42.453731Z"
}
},
"id": "2aab7c79ecdee914"
@@ -153,8 +153,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-16T22:10:25.193827Z",
- "start_time": "2023-12-16T22:10:25.143225Z"
+ "end_time": "2023-12-17T21:47:42.525340Z",
+ "start_time": "2023-12-17T21:47:42.478528Z"
}
},
"id": "833484748ed512e8"
@@ -178,8 +178,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-16T22:10:25.218033Z",
- "start_time": "2023-12-16T22:10:25.193714Z"
+ "end_time": "2023-12-17T21:47:42.548956Z",
+ "start_time": "2023-12-17T21:47:42.525477Z"
}
},
"id": "15ed7d1ba1f22317"
@@ -194,12 +194,12 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 18,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-16T22:10:25.293585Z",
- "start_time": "2023-12-16T22:10:25.217304Z"
+ "end_time": "2023-12-17T23:34:25.339529Z",
+ "start_time": "2023-12-17T23:34:25.210287Z"
}
},
"outputs": [],
@@ -221,6 +221,92 @@
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Traceback (most recent call last):\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 489, in _create_dataset_proportions_bar_chart\n",
+ " converted_grp_dis_val = eval(grp_dis_val)\n",
+ " File \"\", line 1, in \n",
+ "NameError: name 'Non' is not defined\n",
+ "\n",
+ "During handling of the above exception, another exception occurred:\n",
+ "\n",
+ "Traceback (most recent call last):\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
+ " output = await route_utils.call_process_api(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
+ " output = await app.get_blocks().process_api(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
+ " result = await self.call_function(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
+ " prediction = await anyio.to_thread.run_sync(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
+ " return await get_asynclib().run_sync_in_worker_thread(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
+ " return await future\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
+ " result = context.run(func, *args)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
+ " response = f(*args, **kwargs)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 492, in _create_dataset_proportions_bar_chart\n",
+ " raise ValueError(f\"Type casting error with the {grp_dis_val} value. Use quotes for string disavantaged values.\")\n",
+ "ValueError: Type casting error with the Non-White value. Use quotes for string disavantaged values.\n",
+ "Traceback (most recent call last):\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 489, in _create_dataset_proportions_bar_chart\n",
+ " converted_grp_dis_val = eval(grp_dis_val)\n",
+ " File \"\", line 1\n",
+ " 'Non-White\"\n",
+ " ^\n",
+ "SyntaxError: EOL while scanning string literal\n",
+ "\n",
+ "During handling of the above exception, another exception occurred:\n",
+ "\n",
+ "Traceback (most recent call last):\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
+ " output = await route_utils.call_process_api(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
+ " output = await app.get_blocks().process_api(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
+ " result = await self.call_function(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
+ " prediction = await anyio.to_thread.run_sync(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
+ " return await get_asynclib().run_sync_in_worker_thread(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
+ " return await future\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
+ " result = context.run(func, *args)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
+ " response = f(*args, **kwargs)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 492, in _create_dataset_proportions_bar_chart\n",
+ " raise ValueError(f\"Type casting error with the {grp_dis_val} value. Use quotes for string disavantaged values.\")\n",
+ "ValueError: Type casting error with the 'Non-White\" value. Use quotes for string disavantaged values.\n",
+ "Traceback (most recent call last):\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
+ " output = await route_utils.call_process_api(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
+ " output = await app.get_blocks().process_api(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
+ " result = await self.call_function(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
+ " prediction = await anyio.to_thread.run_sync(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
+ " return await get_asynclib().run_sync_in_worker_thread(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
+ " return await future\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
+ " result = context.run(func, *args)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
+ " response = f(*args, **kwargs)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 495, in _create_dataset_proportions_bar_chart\n",
+ " protected_groups = create_test_protected_groups(self.X_data, self.X_data, input_sensitive_attrs_dct)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/utils/protected_groups_partitioning.py\", line 104, in create_test_protected_groups\n",
+ " raise ValueError(f\"Protected group ({dis_grp_name}) from X_test is empty. \"\n",
+ "ValueError: Protected group (race_dis) from X_test is empty. Please check types of sensitive attributes in config or replace the sensitive attribute\n"
+ ]
}
],
"source": [
@@ -230,30 +316,44 @@
"collapsed": false,
"is_executing": true,
"ExecuteTime": {
- "start_time": "2023-12-16T22:10:25.247210Z"
+ "start_time": "2023-12-17T23:34:25.340065Z"
}
},
"id": "678a9dc8d51243f4"
},
{
"cell_type": "code",
- "execution_count": null,
- "outputs": [],
+ "execution_count": 11,
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Closing server running on port: 7860\n"
+ ]
+ }
+ ],
"source": [
"visualizer.stop_web_app()"
],
"metadata": {
"collapsed": false,
- "is_executing": true
+ "ExecuteTime": {
+ "end_time": "2023-12-17T23:11:31.184662Z",
+ "start_time": "2023-12-17T23:11:31.135723Z"
+ }
},
"id": "277b6d1de837dab7"
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 11,
"id": "2326c129",
"metadata": {
- "is_executing": true
+ "ExecuteTime": {
+ "end_time": "2023-12-17T23:11:31.184935Z",
+ "start_time": "2023-12-17T23:11:31.183840Z"
+ }
},
"outputs": [],
"source": []
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index ebc91aa2..cbe4908d 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -471,9 +471,13 @@ def __check_metric_constraints(self, model_performance_dct, input_constraint_dct
def _create_dataset_proportions_bar_chart(self, grp_name1, grp_name2, grp_name3, grp_name4, grp_name5, grp_name6, grp_name7, grp_name8,
grp_dis_val1, grp_dis_val2, grp_dis_val3, grp_dis_val4, grp_dis_val5, grp_dis_val6, grp_dis_val7, grp_dis_val8):
grp_names = [grp_name1, grp_name2, grp_name3, grp_name4, grp_name5, grp_name6, grp_name7, grp_name8]
- grp_names = [grp for grp in grp_names if grp != '' and grp is not None]
+ grp_names = [grp.strip() for grp in grp_names if grp != '' and grp is not None]
grp_dis_values = [grp_dis_val1, grp_dis_val2, grp_dis_val3, grp_dis_val4, grp_dis_val5, grp_dis_val6, grp_dis_val7, grp_dis_val8]
- grp_dis_values = [grp for grp in grp_dis_values if grp != '' and grp is not None]
+ grp_dis_values = [grp.strip() for grp in grp_dis_values if grp != '' and grp is not None]
+
+ if len(grp_names) != len(grp_dis_values):
+ raise ValueError("Numbers of sensitive attributes and their disadvantaged groups are different."
+ "Please, put '-' as a disadvantaged value for intersectional sensitive attributes.")
# Create a sensitive attrs dict
input_sensitive_attrs_dct = dict()
@@ -481,8 +485,11 @@ def _create_dataset_proportions_bar_chart(self, grp_name1, grp_name2, grp_name3,
if '&' in grp_name:
input_sensitive_attrs_dct[grp_name] = None
else:
- converted_grp_dis_val = eval(grp_dis_val)
- input_sensitive_attrs_dct[grp_name] = converted_grp_dis_val
+ try:
+ converted_grp_dis_val = eval(grp_dis_val)
+ input_sensitive_attrs_dct[grp_name] = converted_grp_dis_val
+ except Exception as _:
+ raise ValueError(f"Type casting error with the {grp_dis_val} value. Use quotes for string disavantaged values.")
# Partition on protected groups
protected_groups = create_test_protected_groups(self.X_data, self.X_data, input_sensitive_attrs_dct)
diff --git a/virny/utils/protected_groups_partitioning.py b/virny/utils/protected_groups_partitioning.py
index 658198d7..e13a20b6 100644
--- a/virny/utils/protected_groups_partitioning.py
+++ b/virny/utils/protected_groups_partitioning.py
@@ -70,8 +70,16 @@ def create_test_protected_groups(X_test: pd.DataFrame, init_features_df: pd.Data
"""
plain_sensitive_attributes = [attr for attr in sensitive_attributes_dct.keys() if INTERSECTION_SIGN not in attr]
- X_test_with_sensitive_attrs = init_features_df[plain_sensitive_attributes].loc[X_test.index]
+ # Check spelling of sensitive attributes
+ attrs_with_errors = []
+ for attr in plain_sensitive_attributes:
+ if attr not in init_features_df.columns:
+ attrs_with_errors.append(attr)
+ if len(attrs_with_errors) > 0:
+ raise ValueError(f"At least one of sensitive attributes is not in dataset columns. Check spelling of {attrs_with_errors} attributes.")
+
+ X_test_with_sensitive_attrs = init_features_df[plain_sensitive_attributes].loc[X_test.index]
groups = dict()
for attr in sensitive_attributes_dct.keys():
attr = attr.strip()
From f06cc9ff6d1a743e24d62bd5bb888057e7868143 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Mon, 18 Dec 2023 18:02:20 +0200
Subject: [PATCH 064/148] Added all error handling
---
...iple_Models_Interface_Vis_Law_School.ipynb | 141 +++++++++++-------
.../metrics_interactive_visualizer.py | 11 +-
virny/utils/data_viz_utils.py | 4 +-
3 files changed, 97 insertions(+), 59 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
index 83931cbb..90a3a0df 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
@@ -6,8 +6,8 @@
"id": "248cbed8",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-17T21:47:39.813777Z",
- "start_time": "2023-12-17T21:47:39.261544Z"
+ "end_time": "2023-12-18T15:30:30.826849Z",
+ "start_time": "2023-12-18T15:30:30.355864Z"
}
},
"outputs": [],
@@ -23,8 +23,8 @@
"id": "7ec6cd08",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-17T21:47:39.822610Z",
- "start_time": "2023-12-17T21:47:39.813658Z"
+ "end_time": "2023-12-18T15:30:30.836146Z",
+ "start_time": "2023-12-18T15:30:30.826225Z"
}
},
"outputs": [],
@@ -41,8 +41,8 @@
"id": "b8cb69f2",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-17T21:47:39.832179Z",
- "start_time": "2023-12-17T21:47:39.823116Z"
+ "end_time": "2023-12-18T15:30:30.848252Z",
+ "start_time": "2023-12-18T15:30:30.836766Z"
}
},
"outputs": [
@@ -76,8 +76,8 @@
"id": "7a9241de",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-17T21:47:42.380425Z",
- "start_time": "2023-12-17T21:47:39.833097Z"
+ "end_time": "2023-12-18T15:30:32.569645Z",
+ "start_time": "2023-12-18T15:30:30.847803Z"
}
},
"outputs": [],
@@ -101,8 +101,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-17T21:47:42.452856Z",
- "start_time": "2023-12-17T21:47:42.383371Z"
+ "end_time": "2023-12-18T15:30:32.635886Z",
+ "start_time": "2023-12-18T15:30:32.573395Z"
}
},
"id": "d3c53c7b72ecbcd0"
@@ -120,8 +120,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-17T21:47:42.480240Z",
- "start_time": "2023-12-17T21:47:42.453731Z"
+ "end_time": "2023-12-18T15:30:32.664462Z",
+ "start_time": "2023-12-18T15:30:32.635793Z"
}
},
"id": "2aab7c79ecdee914"
@@ -153,8 +153,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-17T21:47:42.525340Z",
- "start_time": "2023-12-17T21:47:42.478528Z"
+ "end_time": "2023-12-18T15:30:32.712298Z",
+ "start_time": "2023-12-18T15:30:32.663822Z"
}
},
"id": "833484748ed512e8"
@@ -178,8 +178,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-17T21:47:42.548956Z",
- "start_time": "2023-12-17T21:47:42.525477Z"
+ "end_time": "2023-12-18T15:30:32.759812Z",
+ "start_time": "2023-12-18T15:30:32.712204Z"
}
},
"id": "15ed7d1ba1f22317"
@@ -194,12 +194,12 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 9,
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-17T23:34:25.339529Z",
- "start_time": "2023-12-17T23:34:25.210287Z"
+ "end_time": "2023-12-18T15:30:32.808353Z",
+ "start_time": "2023-12-18T15:30:32.738229Z"
}
},
"outputs": [],
@@ -211,7 +211,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 10,
"outputs": [
{
"name": "stdout",
@@ -227,13 +227,29 @@
"output_type": "stream",
"text": [
"Traceback (most recent call last):\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 489, in _create_dataset_proportions_bar_chart\n",
- " converted_grp_dis_val = eval(grp_dis_val)\n",
- " File \"\", line 1, in \n",
- "NameError: name 'Non' is not defined\n",
- "\n",
- "During handling of the above exception, another exception occurred:\n",
- "\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
+ " output = await route_utils.call_process_api(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
+ " output = await app.get_blocks().process_api(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
+ " result = await self.call_function(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
+ " prediction = await anyio.to_thread.run_sync(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
+ " return await get_asynclib().run_sync_in_worker_thread(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
+ " return await future\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
+ " result = context.run(func, *args)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
+ " response = f(*args, **kwargs)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 609, in _create_subgroup_model_rank_heatmap\n",
+ " model_rank_heatmap, _ = create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_by_rank)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/utils/data_viz_utils.py\", line 267, in create_model_rank_heatmap_visualization\n",
+ " num_ranks = int(sorted_matrix_by_rank.values.max())\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/numpy/core/_methods.py\", line 41, in _amax\n",
+ " return umr_maximum(a, axis, None, out, keepdims, initial, where)\n",
+ "ValueError: zero-size array to reduction operation maximum which has no identity\n",
"Traceback (most recent call last):\n",
" File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
" output = await route_utils.call_process_api(\n",
@@ -251,19 +267,29 @@
" result = context.run(func, *args)\n",
" File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
" response = f(*args, **kwargs)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 492, in _create_dataset_proportions_bar_chart\n",
- " raise ValueError(f\"Type casting error with the {grp_dis_val} value. Use quotes for string disavantaged values.\")\n",
- "ValueError: Type casting error with the Non-White value. Use quotes for string disavantaged values.\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 593, in _create_subgroup_model_rank_heatmap\n",
+ " raise ValueError('Tolerance should be in the [0.001, 0.2] range')\n",
+ "ValueError: Tolerance should be in the [0.001, 0.2] range\n",
"Traceback (most recent call last):\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 489, in _create_dataset_proportions_bar_chart\n",
- " converted_grp_dis_val = eval(grp_dis_val)\n",
- " File \"\", line 1\n",
- " 'Non-White\"\n",
- " ^\n",
- "SyntaxError: EOL while scanning string literal\n",
- "\n",
- "During handling of the above exception, another exception occurred:\n",
- "\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
+ " output = await route_utils.call_process_api(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
+ " output = await app.get_blocks().process_api(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
+ " result = await self.call_function(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
+ " prediction = await anyio.to_thread.run_sync(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
+ " return await get_asynclib().run_sync_in_worker_thread(\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
+ " return await future\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
+ " result = context.run(func, *args)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
+ " response = f(*args, **kwargs)\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 593, in _create_subgroup_model_rank_heatmap\n",
+ " raise ValueError('Tolerance should be in the [0.001, 0.2] range')\n",
+ "ValueError: Tolerance should be in the [0.001, 0.2] range\n",
"Traceback (most recent call last):\n",
" File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
" output = await route_utils.call_process_api(\n",
@@ -281,9 +307,11 @@
" result = context.run(func, *args)\n",
" File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
" response = f(*args, **kwargs)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 492, in _create_dataset_proportions_bar_chart\n",
- " raise ValueError(f\"Type casting error with the {grp_dis_val} value. Use quotes for string disavantaged values.\")\n",
- "ValueError: Type casting error with the 'Non-White\" value. Use quotes for string disavantaged values.\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 591, in _create_subgroup_model_rank_heatmap\n",
+ " tolerance = str_to_float(tolerance, 'Tolerance')\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/utils/common_helpers.py\", line 86, in str_to_float\n",
+ " raise ValueError(f\"{var_name} must be a float number with a '.' separator.\")\n",
+ "ValueError: Tolerance must be a float number with a '.' separator.\n",
"Traceback (most recent call last):\n",
" File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
" output = await route_utils.call_process_api(\n",
@@ -301,11 +329,18 @@
" result = context.run(func, *args)\n",
" File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
" response = f(*args, **kwargs)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 495, in _create_dataset_proportions_bar_chart\n",
- " protected_groups = create_test_protected_groups(self.X_data, self.X_data, input_sensitive_attrs_dct)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/utils/protected_groups_partitioning.py\", line 104, in create_test_protected_groups\n",
- " raise ValueError(f\"Protected group ({dis_grp_name}) from X_test is empty. \"\n",
- "ValueError: Protected group (race_dis) from X_test is empty. Please check types of sensitive attributes in config or replace the sensitive attribute\n"
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 591, in _create_subgroup_model_rank_heatmap\n",
+ " tolerance = str_to_float(tolerance, 'Tolerance')\n",
+ " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/utils/common_helpers.py\", line 86, in str_to_float\n",
+ " raise ValueError(f\"{var_name} must be a float number with a '.' separator.\")\n",
+ "ValueError: Tolerance must be a float number with a '.' separator.\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Keyboard interruption in main thread... closing server.\n"
]
}
],
@@ -314,9 +349,9 @@
],
"metadata": {
"collapsed": false,
- "is_executing": true,
"ExecuteTime": {
- "start_time": "2023-12-17T23:34:25.340065Z"
+ "end_time": "2023-12-18T16:02:02.572226Z",
+ "start_time": "2023-12-18T15:30:32.768235Z"
}
},
"id": "678a9dc8d51243f4"
@@ -339,8 +374,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-17T23:11:31.184662Z",
- "start_time": "2023-12-17T23:11:31.135723Z"
+ "end_time": "2023-12-18T16:02:02.620717Z",
+ "start_time": "2023-12-18T16:02:02.578812Z"
}
},
"id": "277b6d1de837dab7"
@@ -351,8 +386,8 @@
"id": "2326c129",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-17T23:11:31.184935Z",
- "start_time": "2023-12-17T23:11:31.183840Z"
+ "end_time": "2023-12-18T16:02:02.623767Z",
+ "start_time": "2023-12-18T16:02:02.619001Z"
}
},
"outputs": [],
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index cbe4908d..18fee7da 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -463,6 +463,9 @@ def __check_metric_constraints(self, model_performance_dct, input_constraint_dct
for group in model_performance_dct[metric_dim]:
constraint_type = 'overall' if group == 'Overall' else 'disparity'
min_val, max_val = input_constraint_dct[metric_dim][constraint_type][1]
+ if min_val > max_val:
+ raise ValueError(f'Max value for the {metric_dim} {constraint_type} dimension should be greater than min value.')
+
check = 1 if model_performance_dct[metric_dim][group] >= min_val and model_performance_dct[metric_dim][group] <= max_val else 0
model_metrics_constraints_check_dct[metric_dim][group] = check
@@ -533,10 +536,10 @@ def _create_bar_plot_for_model_selection(self, group_name, overall_metric1, over
overall_metric2: 'C3',
disparity_metric2: 'C4',
}
- overall_constraint1 = (overall_metric1, str_to_float(overall_metric_min_val1, 'C1 min value'), str_to_float(overall_metric_max_val1, 'C2 max value'))
- disparity_constraint1 = (disparity_metric1, str_to_float(disparity_metric_min_val1, 'C2 min value'), str_to_float(disparity_metric_max_val1, 'C2 max value'))
- overall_constraint2 = (overall_metric2, str_to_float(overall_metric_min_val2, 'C3 min value'), str_to_float(overall_metric_max_val2, 'C3 max value'))
- disparity_constraint2 = (disparity_metric2, str_to_float(disparity_metric_min_val2, 'C4 min value'), str_to_float(disparity_metric_max_val2, 'C4 max value'))
+ overall_constraint1 = (overall_metric1, str_to_float(overall_metric_min_val1, 'Overall Constraint (C1) min value'), str_to_float(overall_metric_max_val1, 'Overall Constraint (C1) max value'))
+ disparity_constraint1 = (disparity_metric1, str_to_float(disparity_metric_min_val1, 'Disparity Constraint (C2) min value'), str_to_float(disparity_metric_max_val1, 'Disparity Constraint (C2) max value'))
+ overall_constraint2 = (overall_metric2, str_to_float(overall_metric_min_val2, 'Overall Constraint (C3) min value'), str_to_float(overall_metric_max_val2, 'Overall Constraint (C3) max value'))
+ disparity_constraint2 = (disparity_metric2, str_to_float(disparity_metric_min_val2, 'Disparity Constraint (C4) min value'), str_to_float(disparity_metric_max_val2, 'Disparity Constraint (C4) max value'))
# Create individual constraints
metrics_value_range_dct = dict()
diff --git a/virny/utils/data_viz_utils.py b/virny/utils/data_viz_utils.py
index 41dba3cc..8cae6f28 100644
--- a/virny/utils/data_viz_utils.py
+++ b/virny/utils/data_viz_utils.py
@@ -489,7 +489,7 @@ def create_models_in_range_dct(all_subgroup_metrics_per_model_dct: dict, all_gro
if '&' not in metric_group:
min_range_val, max_range_val = value_range
if max_range_val < min_range_val:
- raise ValueError('The second element in the input range must be greater than the first element, '
+ raise ValueError('The second value in the input range must be greater than the first value, '
'so to be in the following format -- (min_range_val, max_range_val)')
metric = metric_group
pd_condition = (pivoted_model_metrics_df[metric] >= min_range_val) & (pivoted_model_metrics_df[metric] <= max_range_val)
@@ -498,7 +498,7 @@ def create_models_in_range_dct(all_subgroup_metrics_per_model_dct: dict, all_gro
for idx, metric in enumerate(metrics):
min_range_val, max_range_val = metrics_value_range_dct[metric]
if max_range_val < min_range_val:
- raise ValueError('The second element in the input range must be greater than the first element, '
+ raise ValueError('The second value in the input range must be greater than the first value, '
'so to be in the following format -- (min_range_val, max_range_val)')
if idx == 0:
pd_condition = (pivoted_model_metrics_df[metric] >= min_range_val) & (pivoted_model_metrics_df[metric] <= max_range_val)
From b3c88f2a19dae401d50857081b111a7d64fe2d4c Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Mon, 18 Dec 2023 22:23:06 +0200
Subject: [PATCH 065/148] wip
---
...iple_Models_Interface_Vis_Law_School.ipynb | 170 +++---------------
1 file changed, 25 insertions(+), 145 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
index 90a3a0df..3b630e94 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
@@ -6,8 +6,8 @@
"id": "248cbed8",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-18T15:30:30.826849Z",
- "start_time": "2023-12-18T15:30:30.355864Z"
+ "end_time": "2023-12-18T17:11:51.087426Z",
+ "start_time": "2023-12-18T17:11:50.720930Z"
}
},
"outputs": [],
@@ -23,8 +23,8 @@
"id": "7ec6cd08",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-18T15:30:30.836146Z",
- "start_time": "2023-12-18T15:30:30.826225Z"
+ "end_time": "2023-12-18T17:11:51.096433Z",
+ "start_time": "2023-12-18T17:11:51.087934Z"
}
},
"outputs": [],
@@ -41,8 +41,8 @@
"id": "b8cb69f2",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-18T15:30:30.848252Z",
- "start_time": "2023-12-18T15:30:30.836766Z"
+ "end_time": "2023-12-18T17:11:51.105608Z",
+ "start_time": "2023-12-18T17:11:51.096820Z"
}
},
"outputs": [
@@ -76,8 +76,8 @@
"id": "7a9241de",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-18T15:30:32.569645Z",
- "start_time": "2023-12-18T15:30:30.847803Z"
+ "end_time": "2023-12-18T17:11:52.701377Z",
+ "start_time": "2023-12-18T17:11:51.106232Z"
}
},
"outputs": [],
@@ -101,8 +101,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-18T15:30:32.635886Z",
- "start_time": "2023-12-18T15:30:32.573395Z"
+ "end_time": "2023-12-18T17:11:52.766489Z",
+ "start_time": "2023-12-18T17:11:52.704609Z"
}
},
"id": "d3c53c7b72ecbcd0"
@@ -120,8 +120,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-18T15:30:32.664462Z",
- "start_time": "2023-12-18T15:30:32.635793Z"
+ "end_time": "2023-12-18T17:11:52.791981Z",
+ "start_time": "2023-12-18T17:11:52.767057Z"
}
},
"id": "2aab7c79ecdee914"
@@ -153,8 +153,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-18T15:30:32.712298Z",
- "start_time": "2023-12-18T15:30:32.663822Z"
+ "end_time": "2023-12-18T17:11:52.842306Z",
+ "start_time": "2023-12-18T17:11:52.792667Z"
}
},
"id": "833484748ed512e8"
@@ -178,8 +178,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-18T15:30:32.759812Z",
- "start_time": "2023-12-18T15:30:32.712204Z"
+ "end_time": "2023-12-18T17:11:52.877906Z",
+ "start_time": "2023-12-18T17:11:52.842425Z"
}
},
"id": "15ed7d1ba1f22317"
@@ -198,8 +198,8 @@
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-18T15:30:32.808353Z",
- "start_time": "2023-12-18T15:30:32.738229Z"
+ "end_time": "2023-12-18T17:11:52.959909Z",
+ "start_time": "2023-12-18T17:11:52.864927Z"
}
},
"outputs": [],
@@ -219,127 +219,7 @@
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
- "To create a public link, set `share=True` in `launch()`.\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Traceback (most recent call last):\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
- " output = await route_utils.call_process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
- " output = await app.get_blocks().process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
- " result = await self.call_function(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
- " prediction = await anyio.to_thread.run_sync(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
- " return await get_asynclib().run_sync_in_worker_thread(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
- " return await future\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
- " result = context.run(func, *args)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
- " response = f(*args, **kwargs)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 609, in _create_subgroup_model_rank_heatmap\n",
- " model_rank_heatmap, _ = create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_by_rank)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/utils/data_viz_utils.py\", line 267, in create_model_rank_heatmap_visualization\n",
- " num_ranks = int(sorted_matrix_by_rank.values.max())\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/numpy/core/_methods.py\", line 41, in _amax\n",
- " return umr_maximum(a, axis, None, out, keepdims, initial, where)\n",
- "ValueError: zero-size array to reduction operation maximum which has no identity\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
- " output = await route_utils.call_process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
- " output = await app.get_blocks().process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
- " result = await self.call_function(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
- " prediction = await anyio.to_thread.run_sync(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
- " return await get_asynclib().run_sync_in_worker_thread(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
- " return await future\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
- " result = context.run(func, *args)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
- " response = f(*args, **kwargs)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 593, in _create_subgroup_model_rank_heatmap\n",
- " raise ValueError('Tolerance should be in the [0.001, 0.2] range')\n",
- "ValueError: Tolerance should be in the [0.001, 0.2] range\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
- " output = await route_utils.call_process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
- " output = await app.get_blocks().process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
- " result = await self.call_function(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
- " prediction = await anyio.to_thread.run_sync(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
- " return await get_asynclib().run_sync_in_worker_thread(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
- " return await future\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
- " result = context.run(func, *args)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
- " response = f(*args, **kwargs)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 593, in _create_subgroup_model_rank_heatmap\n",
- " raise ValueError('Tolerance should be in the [0.001, 0.2] range')\n",
- "ValueError: Tolerance should be in the [0.001, 0.2] range\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
- " output = await route_utils.call_process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
- " output = await app.get_blocks().process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
- " result = await self.call_function(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
- " prediction = await anyio.to_thread.run_sync(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
- " return await get_asynclib().run_sync_in_worker_thread(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
- " return await future\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
- " result = context.run(func, *args)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
- " response = f(*args, **kwargs)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 591, in _create_subgroup_model_rank_heatmap\n",
- " tolerance = str_to_float(tolerance, 'Tolerance')\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/utils/common_helpers.py\", line 86, in str_to_float\n",
- " raise ValueError(f\"{var_name} must be a float number with a '.' separator.\")\n",
- "ValueError: Tolerance must be a float number with a '.' separator.\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
- " output = await route_utils.call_process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
- " output = await app.get_blocks().process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
- " result = await self.call_function(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
- " prediction = await anyio.to_thread.run_sync(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
- " return await get_asynclib().run_sync_in_worker_thread(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
- " return await future\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
- " result = context.run(func, *args)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
- " response = f(*args, **kwargs)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 591, in _create_subgroup_model_rank_heatmap\n",
- " tolerance = str_to_float(tolerance, 'Tolerance')\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/utils/common_helpers.py\", line 86, in str_to_float\n",
- " raise ValueError(f\"{var_name} must be a float number with a '.' separator.\")\n",
- "ValueError: Tolerance must be a float number with a '.' separator.\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
+ "To create a public link, set `share=True` in `launch()`.\n",
"Keyboard interruption in main thread... closing server.\n"
]
}
@@ -350,8 +230,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-18T16:02:02.572226Z",
- "start_time": "2023-12-18T15:30:32.768235Z"
+ "end_time": "2023-12-18T17:14:45.540473Z",
+ "start_time": "2023-12-18T17:11:52.892884Z"
}
},
"id": "678a9dc8d51243f4"
@@ -374,8 +254,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-18T16:02:02.620717Z",
- "start_time": "2023-12-18T16:02:02.578812Z"
+ "end_time": "2023-12-18T17:14:45.583530Z",
+ "start_time": "2023-12-18T17:14:45.541605Z"
}
},
"id": "277b6d1de837dab7"
@@ -386,8 +266,8 @@
"id": "2326c129",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-18T16:02:02.623767Z",
- "start_time": "2023-12-18T16:02:02.619001Z"
+ "end_time": "2023-12-18T17:14:45.584046Z",
+ "start_time": "2023-12-18T17:14:45.581453Z"
}
},
"outputs": [],
From 901e1a61c64d27554b36236264269b18e85d237c Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Mon, 18 Dec 2023 23:20:30 +0200
Subject: [PATCH 066/148] Fixed tests
---
lib_base_packages.txt | 1 +
requirements.txt | 1 +
tests/custom_classes/test_metrics_composer.py | 12 ++++----
...verall_variance_analyzer_postprocessing.py | 7 +++--
.../metrics_computation_interfaces.py | 5 ----
.../postprocessing_intervention_utils.py | 28 +++++++++----------
6 files changed, 26 insertions(+), 28 deletions(-)
diff --git a/lib_base_packages.txt b/lib_base_packages.txt
index 10cbab0f..d11d6eba 100644
--- a/lib_base_packages.txt
+++ b/lib_base_packages.txt
@@ -6,6 +6,7 @@ scikit-learn~=1.2.0
tqdm~=4.64.1
sklearn-utils
seaborn~=0.12.1
+aif360~=0.5.0
folktables~=0.0.11
munch~=2.5.0
PyYAML~=6.0
diff --git a/requirements.txt b/requirements.txt
index 867757b7..1f846049 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -10,6 +10,7 @@ sklearn-utils
seaborn~=0.12.1
folktables~=0.0.11
xgboost~=1.7.2
+aif360~=0.5.0
munch~=2.5.0
PyYAML~=6.0
river==0.15.0
diff --git a/tests/custom_classes/test_metrics_composer.py b/tests/custom_classes/test_metrics_composer.py
index fb9cc9b0..29dc06b8 100644
--- a/tests/custom_classes/test_metrics_composer.py
+++ b/tests/custom_classes/test_metrics_composer.py
@@ -31,7 +31,7 @@ def test_compose_metrics_true1(models_metrics_dct1, config_params):
models_composed_metrics_df = metrics_composer.compose_metrics()
# Check shape
- assert models_composed_metrics_df.shape == (24, 5)
+ assert models_composed_metrics_df.shape == (26, 5)
# Check column names
assert sorted(models_composed_metrics_df.columns.tolist()) == sorted(['Metric', 'Model_Name', 'sex', 'race', 'sex&race'])
@@ -42,7 +42,7 @@ def test_compose_metrics_true1(models_metrics_dct1, config_params):
# Check all metrics presence
assert sorted(models_composed_metrics_df['Metric'].unique().tolist()) == (
sorted([EQUALIZED_ODDS_TPR, EQUALIZED_ODDS_TNR, EQUALIZED_ODDS_FPR, EQUALIZED_ODDS_FNR,
- DISPARATE_IMPACT, STATISTICAL_PARITY_DIFFERENCE, ACCURACY_PARITY,
+ DISPARATE_IMPACT, STATISTICAL_PARITY_DIFFERENCE, ACCURACY_PARITY, LABEL_STABILITY_DIFFERENCE,
LABEL_STABILITY_RATIO, IQR_PARITY, STD_PARITY, STD_RATIO, JITTER_PARITY])
)
@@ -52,7 +52,7 @@ def test_compose_metrics_true2(models_metrics_dct1, config_params):
models_composed_metrics_df = metrics_composer.compose_metrics()
# Check shape
- assert models_composed_metrics_df.shape == (24, 4)
+ assert models_composed_metrics_df.shape == (26, 4)
# Check column names
assert sorted(models_composed_metrics_df.columns.tolist()) == sorted(['Metric', 'Model_Name', 'sex', 'race'])
@@ -63,7 +63,7 @@ def test_compose_metrics_true2(models_metrics_dct1, config_params):
# Check all metrics presence
assert sorted(models_composed_metrics_df['Metric'].unique().tolist()) == (
sorted([EQUALIZED_ODDS_TPR, EQUALIZED_ODDS_TNR, EQUALIZED_ODDS_FPR, EQUALIZED_ODDS_FNR,
- DISPARATE_IMPACT, STATISTICAL_PARITY_DIFFERENCE, ACCURACY_PARITY,
+ DISPARATE_IMPACT, STATISTICAL_PARITY_DIFFERENCE, ACCURACY_PARITY, LABEL_STABILITY_DIFFERENCE,
LABEL_STABILITY_RATIO, IQR_PARITY, STD_PARITY, STD_RATIO, JITTER_PARITY])
)
@@ -73,7 +73,7 @@ def test_compose_metrics_true3(models_metrics_dct2, config_params):
models_composed_metrics_df = metrics_composer.compose_metrics()
# Check shape
- assert models_composed_metrics_df.shape == (32, 5)
+ assert models_composed_metrics_df.shape == (34, 5)
# Check column names
assert sorted(models_composed_metrics_df.columns.tolist()) == sorted(['Metric', 'Model_Name', 'sex', 'race', 'sex&race'])
@@ -84,7 +84,7 @@ def test_compose_metrics_true3(models_metrics_dct2, config_params):
# Check all metrics presence
assert sorted(models_composed_metrics_df['Metric'].unique().tolist()) == (
sorted([EQUALIZED_ODDS_TPR, EQUALIZED_ODDS_TNR, EQUALIZED_ODDS_FPR, EQUALIZED_ODDS_FNR,
- DISPARATE_IMPACT, STATISTICAL_PARITY_DIFFERENCE, ACCURACY_PARITY,
+ DISPARATE_IMPACT, STATISTICAL_PARITY_DIFFERENCE, ACCURACY_PARITY, LABEL_STABILITY_DIFFERENCE,
LABEL_STABILITY_RATIO, IQR_PARITY, STD_PARITY, STD_RATIO, JITTER_PARITY,
ALEATORIC_UNCERTAINTY_PARITY, ALEATORIC_UNCERTAINTY_RATIO,
OVERALL_UNCERTAINTY_PARITY, OVERALL_UNCERTAINTY_RATIO])
diff --git a/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py b/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py
index 6da2edce..fa5d50af 100644
--- a/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py
+++ b/virny/analyzers/batch_overall_variance_analyzer_postprocessing.py
@@ -6,7 +6,9 @@
from tqdm import tqdm
from virny.analyzers.batch_overall_variance_analyzer import BatchOverallVarianceAnalyzer
-from virny.utils.postprocessing_intervention_utils import contruct_binary_label_dataset_from_df, construct_binary_label_dataset_from_samples, predict_on_binary_label_dataset
+from virny.utils.postprocessing_intervention_utils import (contruct_binary_label_dataset_from_df,
+ construct_binary_label_dataset_from_samples,
+ predict_on_binary_label_dataset)
from virny.utils.stability_utils import generate_bootstrap
@@ -55,12 +57,14 @@ def UQ_by_boostrap(self, boostrap_size: int, with_replacement: bool, with_fit: b
if self._verbose >= 1:
print('\n', flush=True)
self._AbstractOverallVarianceAnalyzer__logger.info('Start classifiers testing by bootstrap')
+
# Remove a progress bar for UQ without estimators fitting
cycle_range = range(self.n_estimators) if with_fit is False else \
tqdm(range(self.n_estimators),
desc="Classifiers testing by bootstrap",
colour="blue",
mininterval=10)
+
# Train and test each estimator in models_predictions
for idx in cycle_range:
classifier = self.models_lst[idx]
@@ -90,4 +94,3 @@ def UQ_by_boostrap(self, boostrap_size: int, with_replacement: bool, with_fit: b
self._AbstractOverallVarianceAnalyzer__logger.info('Successfully tested classifiers by bootstrap')
return models_predictions
-
\ No newline at end of file
diff --git a/virny/user_interfaces/metrics_computation_interfaces.py b/virny/user_interfaces/metrics_computation_interfaces.py
index 5fac8338..9682b3f7 100644
--- a/virny/user_interfaces/metrics_computation_interfaces.py
+++ b/virny/user_interfaces/metrics_computation_interfaces.py
@@ -107,8 +107,6 @@ def compute_model_metrics(base_model, n_estimators: int, dataset: BaseFlowDatase
for g in test_protected_groups.keys():
print(g, test_protected_groups[g].shape)
- print("postprocessing_sensitive_attribute: ", postprocessing_sensitive_attribute)
-
# Compute stability metrics for subgroups
subgroup_variance_analyzer = SubgroupVarianceAnalyzer(model_setting=model_setting,
n_estimators=n_estimators,
@@ -224,7 +222,6 @@ def run_metrics_computation(dataset: BaseFlowDataset, bootstrap_fraction: float,
save_results=save_results,
save_results_dir_path=save_results_dir_path,
verbose=verbose)
- print("metrics_computation_interfaces.py: model_metrics_df: ", model_metrics_df)
models_metrics_dct[model_name] = model_metrics_df
if verbose >= 2:
print(f'\n[{model_name}] Metrics matrix:')
@@ -333,7 +330,6 @@ def compute_metrics_multiple_runs_with_db_writer(dataset: BaseFlowDataset, confi
postprocessing_sensitive_attribute=postprocessing_sensitive_attribute,
save_results=False,
verbose=verbose)
- #print(models_metrics_dct)
# Concatenate current run metrics with previous results and
# create melted_model_metrics_df to save it in a database
@@ -370,7 +366,6 @@ def compute_metrics_multiple_runs_with_db_writer(dataset: BaseFlowDataset, confi
value_name="Metric_Value")
run_models_metrics_df = pd.concat([run_models_metrics_df, melted_model_metrics_df])
- #print(run_models_metrics_df)
# Save results for this run in a database
db_writer_func(run_models_metrics_df)
diff --git a/virny/utils/postprocessing_intervention_utils.py b/virny/utils/postprocessing_intervention_utils.py
index 564a346d..3f899fc1 100644
--- a/virny/utils/postprocessing_intervention_utils.py
+++ b/virny/utils/postprocessing_intervention_utils.py
@@ -9,13 +9,12 @@ def construct_binary_label_dataset_from_samples(X_sample, y_sample, column_names
df = pd.DataFrame(X_sample, columns=column_names)
df[target_column] = y_sample
- binary_label_dataset = BinaryLabelDataset(
- df=df,
- label_names=[target_column],
- protected_attribute_names=[sensitive_attribute],
- favorable_label=1,
- unfavorable_label=0)
-
+ binary_label_dataset = BinaryLabelDataset(df=df,
+ label_names=[target_column],
+ protected_attribute_names=[sensitive_attribute],
+ favorable_label=1,
+ unfavorable_label=0)
+
return binary_label_dataset
@@ -23,19 +22,18 @@ def contruct_binary_label_dataset_from_df(X_sample, y_sample, target_column, sen
df = X_sample
df[target_column] = y_sample
- binary_label_dataset = BinaryLabelDataset(
- df=df,
- label_names=[target_column],
- protected_attribute_names=[sensitive_attribute],
- favorable_label=1,
- unfavorable_label=0)
-
+ binary_label_dataset = BinaryLabelDataset(df=df,
+ label_names=[target_column],
+ protected_attribute_names=[sensitive_attribute],
+ favorable_label=1,
+ unfavorable_label=0)
+
return binary_label_dataset
def predict_on_binary_label_dataset(model, orig_dataset, threshold=0.5):
orig_dataset_pred = copy.deepcopy(orig_dataset)
-
+
fav_idx = np.where(model.classes_ == orig_dataset.favorable_label)[0][0]
y_pred_prob = model.predict_proba(orig_dataset.features)[:, fav_idx]
orig_dataset.scores = y_pred_prob.reshape(-1, 1)
From 6bd58d5d219fd8e65b63071b369d824107738713 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Tue, 19 Dec 2023 01:50:43 +0200
Subject: [PATCH 067/148] wip
---
...iple_Models_Interface_Vis_Law_School.ipynb | 48 +++++++++----------
1 file changed, 24 insertions(+), 24 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
index 3b630e94..abf5f339 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
@@ -6,8 +6,8 @@
"id": "248cbed8",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-18T17:11:51.087426Z",
- "start_time": "2023-12-18T17:11:50.720930Z"
+ "end_time": "2023-12-18T21:27:13.678820Z",
+ "start_time": "2023-12-18T21:27:13.369461Z"
}
},
"outputs": [],
@@ -23,8 +23,8 @@
"id": "7ec6cd08",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-18T17:11:51.096433Z",
- "start_time": "2023-12-18T17:11:51.087934Z"
+ "end_time": "2023-12-18T21:27:13.687293Z",
+ "start_time": "2023-12-18T21:27:13.679001Z"
}
},
"outputs": [],
@@ -41,8 +41,8 @@
"id": "b8cb69f2",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-18T17:11:51.105608Z",
- "start_time": "2023-12-18T17:11:51.096820Z"
+ "end_time": "2023-12-18T21:27:13.698600Z",
+ "start_time": "2023-12-18T21:27:13.687813Z"
}
},
"outputs": [
@@ -76,8 +76,8 @@
"id": "7a9241de",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-18T17:11:52.701377Z",
- "start_time": "2023-12-18T17:11:51.106232Z"
+ "end_time": "2023-12-18T21:27:15.048016Z",
+ "start_time": "2023-12-18T21:27:13.697484Z"
}
},
"outputs": [],
@@ -101,8 +101,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-18T17:11:52.766489Z",
- "start_time": "2023-12-18T17:11:52.704609Z"
+ "end_time": "2023-12-18T21:27:15.106638Z",
+ "start_time": "2023-12-18T21:27:15.051611Z"
}
},
"id": "d3c53c7b72ecbcd0"
@@ -120,8 +120,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-18T17:11:52.791981Z",
- "start_time": "2023-12-18T17:11:52.767057Z"
+ "end_time": "2023-12-18T21:27:15.133650Z",
+ "start_time": "2023-12-18T21:27:15.106939Z"
}
},
"id": "2aab7c79ecdee914"
@@ -153,8 +153,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-18T17:11:52.842306Z",
- "start_time": "2023-12-18T17:11:52.792667Z"
+ "end_time": "2023-12-18T21:27:15.178725Z",
+ "start_time": "2023-12-18T21:27:15.134576Z"
}
},
"id": "833484748ed512e8"
@@ -178,8 +178,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-18T17:11:52.877906Z",
- "start_time": "2023-12-18T17:11:52.842425Z"
+ "end_time": "2023-12-18T21:27:15.201295Z",
+ "start_time": "2023-12-18T21:27:15.179038Z"
}
},
"id": "15ed7d1ba1f22317"
@@ -198,8 +198,8 @@
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-18T17:11:52.959909Z",
- "start_time": "2023-12-18T17:11:52.864927Z"
+ "end_time": "2023-12-18T21:27:15.252561Z",
+ "start_time": "2023-12-18T21:27:15.200692Z"
}
},
"outputs": [],
@@ -230,8 +230,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-18T17:14:45.540473Z",
- "start_time": "2023-12-18T17:11:52.892884Z"
+ "end_time": "2023-12-18T23:50:34.705984Z",
+ "start_time": "2023-12-18T21:27:15.229300Z"
}
},
"id": "678a9dc8d51243f4"
@@ -254,8 +254,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-18T17:14:45.583530Z",
- "start_time": "2023-12-18T17:14:45.541605Z"
+ "end_time": "2023-12-18T23:50:34.802916Z",
+ "start_time": "2023-12-18T23:50:34.710443Z"
}
},
"id": "277b6d1de837dab7"
@@ -266,8 +266,8 @@
"id": "2326c129",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-18T17:14:45.584046Z",
- "start_time": "2023-12-18T17:14:45.581453Z"
+ "end_time": "2023-12-18T23:50:34.805260Z",
+ "start_time": "2023-12-18T23:50:34.803259Z"
}
},
"outputs": [],
From d5893afba660e8370b9da9a45492cc77a434bdf5 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Tue, 19 Dec 2023 14:25:59 +0200
Subject: [PATCH 068/148] Cleaned unnecessary files
---
docs/examples/income_group_metrics.csv | 133 ----------
docs/examples/income_subgroup_metrics.csv | 221 -----------------
docs/examples/law_school_group_metrics.csv | 89 -------
docs/examples/law_school_subgroup_metrics.csv | 153 ------------
docs/examples/pub_cov_subgroup_metrics.csv | 153 ------------
docs/examples/ricci_group_metrics.csv | 133 ----------
docs/examples/ricci_subgroup_metrics.csv | 229 ------------------
7 files changed, 1111 deletions(-)
delete mode 100644 docs/examples/income_group_metrics.csv
delete mode 100644 docs/examples/income_subgroup_metrics.csv
delete mode 100644 docs/examples/law_school_group_metrics.csv
delete mode 100644 docs/examples/law_school_subgroup_metrics.csv
delete mode 100644 docs/examples/pub_cov_subgroup_metrics.csv
delete mode 100644 docs/examples/ricci_group_metrics.csv
delete mode 100644 docs/examples/ricci_subgroup_metrics.csv
diff --git a/docs/examples/income_group_metrics.csv b/docs/examples/income_group_metrics.csv
deleted file mode 100644
index 25b06763..00000000
--- a/docs/examples/income_group_metrics.csv
+++ /dev/null
@@ -1,133 +0,0 @@
-Metric,SEX,RAC1P,SEX&RAC1P,Model_Name,Intervention_Param
-Equalized_Odds_TPR,-0.03079268292682924,0.11074514666563329,0.05249773566501781,LGBMClassifier,0.7
-Equalized_Odds_FPR,-0.02131701139721401,0.0009518370454978109,-0.00700793796337533,LGBMClassifier,0.7
-Equalized_Odds_FNR,0.030792682926829296,-0.11074514666563334,-0.05249773566501781,LGBMClassifier,0.7
-Disparate_Impact,1.0451749734888653,1.3342133960856337,1.248406706539857,LGBMClassifier,0.7
-Statistical_Parity_Difference,0.03246951219512195,0.22563645522532638,0.17651362084581623,LGBMClassifier,0.7
-Accuracy_Parity,0.04775641025641031,0.07497732132443469,0.0652173913043479,LGBMClassifier,0.7
-Label_Stability_Ratio,1.0095819811577007,1.0301209785116932,1.012842085178694,LGBMClassifier,0.7
-IQR_Parity,-0.0026551143311698278,-0.00967660527132716,-0.005313076583927184,LGBMClassifier,0.7
-Std_Parity,-0.002214117425894342,-0.00706110127509476,-0.004207550960833459,LGBMClassifier,0.7
-Std_Ratio,0.9581473862978338,0.8695701641666075,0.9199532195084829,LGBMClassifier,0.7
-Jitter_Parity,-0.007536566378903806,-0.019030010009223178,-0.009410112766584558,LGBMClassifier,0.7
-Equalized_Odds_TPR,-0.01097560975609757,-0.00598674778160968,-0.05549362502612687,LGBMClassifier,0.0
-Equalized_Odds_FPR,-0.025116082735331363,-0.014481520763645256,-0.019877655812003875,LGBMClassifier,0.0
-Equalized_Odds_FNR,0.01097560975609757,0.005986747781609625,0.055493625026126925,LGBMClassifier,0.0
-Disparate_Impact,1.0739042728773152,1.1095233662260287,1.0641057210867602,LGBMClassifier,0.0
-Statistical_Parity_Difference,0.061432926829268264,0.09117681249273446,0.05441371141921547,LGBMClassifier,0.0
-Accuracy_Parity,0.04294871794871791,0.037355018466921575,0.032355915065722995,LGBMClassifier,0.0
-Label_Stability_Ratio,1.013086132198451,1.0203793128013074,1.0132200761605896,LGBMClassifier,0.0
-IQR_Parity,-0.0030377716953829265,-0.007959024854970922,-0.005539567672418727,LGBMClassifier,0.0
-Std_Parity,-0.0021021596178428525,-0.005701112525753914,-0.0038189830524456084,LGBMClassifier,0.0
-Std_Ratio,0.9643024235570372,0.9045579272645509,0.9347582189106831,LGBMClassifier,0.0
-Jitter_Parity,-0.008137675557275542,-0.013465396867056778,-0.009009568683773159,LGBMClassifier,0.0
-Equalized_Odds_TPR,-0.039253048780487854,-0.031483705971248166,-0.11670034139204344,LGBMClassifier,0.4
-Equalized_Odds_FPR,-0.00873786407766991,-0.013488890701911838,-0.010826281732205081,LGBMClassifier,0.4
-Equalized_Odds_FNR,0.039253048780487854,0.03148370597124811,0.1167003413920435,LGBMClassifier,0.4
-Disparate_Impact,1.0594573415613675,1.0609451814521111,0.9916513681265844,LGBMClassifier,0.4
-Statistical_Parity_Difference,0.046265243902439024,0.04779710931142722,-0.00665366125548672,LGBMClassifier,0.4
-Accuracy_Parity,0.02841880341880343,0.034390591589451236,0.015897090214582632,LGBMClassifier,0.4
-Label_Stability_Ratio,1.0214945785801577,1.021203066210909,1.0204956799007319,LGBMClassifier,0.4
-IQR_Parity,-0.004103223054099589,-0.008620361682032895,-0.006324316490461224,LGBMClassifier,0.4
-Std_Parity,-0.0030876402128535846,-0.006194968170589871,-0.004796370058731313,LGBMClassifier,0.4
-Std_Ratio,0.9493557726215703,0.8992698436233884,0.9204716301184785,LGBMClassifier,0.4
-Jitter_Parity,-0.01200876712622645,-0.015122226339372366,-0.012784745357312319,LGBMClassifier,0.4
-Equalized_Odds_TPR,-0.06996951219512193,-0.01604215910411899,-0.10732947815787641,LogisticRegression,0.0
-Equalized_Odds_FPR,-0.023723089911355008,-0.04367572271627097,-0.042787718424982316,LogisticRegression,0.0
-Equalized_Odds_FNR,0.06996951219512193,0.01604215910411899,0.10732947815787636,LogisticRegression,0.0
-Disparate_Impact,0.9908320359799343,0.9996470017208666,0.9084844203751667,LogisticRegression,0.0
-Statistical_Parity_Difference,-0.008079268292682906,-0.00030999341263993063,-0.08123737197798375,LogisticRegression,0.0
-Accuracy_Parity,0.01816239316239321,0.05037905786302077,0.031457139647230625,LogisticRegression,0.0
-Label_Stability_Ratio,1.009100642398287,1.023801267627326,1.0076597165218943,LogisticRegression,0.0
-IQR_Parity,-0.006097632012806539,-0.006310527017404574,-0.0065692439650302525,LogisticRegression,0.0
-Std_Parity,-0.004906109963734577,-0.004854434742104861,-0.005207661750716387,LogisticRegression,0.0
-Std_Ratio,0.9086406912235572,0.9082781978742059,0.9003166552931693,LogisticRegression,0.0
-Jitter_Parity,-0.0055498432332622555,-0.01576926661754173,-0.006298770939673112,LogisticRegression,0.0
-Equalized_Odds_TPR,-0.04298780487804876,0.08555818188863484,0.017661812861422654,LogisticRegression,0.7
-Equalized_Odds_FPR,-0.003925707049387925,-0.030295613390987464,-0.022281313038694295,LogisticRegression,0.7
-Equalized_Odds_FNR,0.04298780487804876,-0.0855581818886349,-0.01766181286142271,LogisticRegression,0.7
-Disparate_Impact,1.0570386018820819,1.15227520571032,1.1070776454221372,LogisticRegression,0.7
-Statistical_Parity_Difference,0.04527439024390245,0.11903747045375279,0.08580087786525459,LogisticRegression,0.7
-Accuracy_Parity,0.02147435897435901,0.07841152076718727,0.05596749428903114,LogisticRegression,0.7
-Label_Stability_Ratio,0.9984503821387735,1.0050781309776278,0.9984788609152078,LogisticRegression,0.7
-IQR_Parity,-0.0030463198184801366,-0.0007317941412861503,-0.0023944641804607703,LogisticRegression,0.7
-Std_Parity,-0.002576978265789877,-0.00016051358574650093,-0.0019729774914916606,LogisticRegression,0.7
-Std_Ratio,0.9398193735885796,0.9961448364837571,0.9529382123765405,LogisticRegression,0.7
-Jitter_Parity,0.0017610005153971056,-0.0049119190685485425,0.0009849212357710413,LogisticRegression,0.7
-Equalized_Odds_TPR,-0.062347560975609784,-0.0033518037741697704,-0.09653034208876188,LogisticRegression,0.4
-Equalized_Odds_FPR,-0.019607429295061207,-0.030417992439694327,-0.030016242697335674,LogisticRegression,0.4
-Equalized_Odds_FNR,0.06234756097560973,0.0033518037741697704,0.09653034208876193,LogisticRegression,0.4
-Disparate_Impact,1.0087170907810161,1.050002258457925,0.961194506547429,LogisticRegression,0.4
-Statistical_Parity_Difference,0.007545731707317094,0.042895338474057354,-0.0338605169650944,LogisticRegression,0.4
-Accuracy_Parity,0.019230769230769273,0.046207801464394516,0.026120660599932566,LogisticRegression,0.4
-Label_Stability_Ratio,1.0072028640298956,1.0153655245856517,1.000428717824364,LogisticRegression,0.4
-IQR_Parity,-0.0068586087713478905,-0.005069227313861113,-0.005323993156258602,LogisticRegression,0.4
-Std_Parity,-0.005429382866877996,-0.004096338358900525,-0.004725493931369902,LogisticRegression,0.4
-Std_Ratio,0.8999072809699203,0.9226669785897548,0.909905157452225,LogisticRegression,0.4
-Jitter_Parity,-0.004078888029894576,-0.01278422827543911,-0.003752072160978573,LogisticRegression,0.4
-Equalized_Odds_TPR,-0.019435975609756184,-0.03632735304374779,-0.07838082630808896,MLPClassifier,0.0
-Equalized_Odds_FPR,-0.0587378640776699,-0.05070571918087624,-0.06589426527992455,MLPClassifier,0.0
-Equalized_Odds_FNR,0.019435975609756073,0.036327353043747845,0.0783808263080889,MLPClassifier,0.0
-Disparate_Impact,0.9938211382113822,0.9835774706003713,0.9036308734717926,MLPClassifier,0.0
-Statistical_Parity_Difference,-0.005792682926829218,-0.01542217227883913,-0.09116560997700829,MLPClassifier,0.0
-Accuracy_Parity,0.05256410256410249,0.04415862113652558,0.05033142343556907,MLPClassifier,0.0
-Label_Stability_Ratio,1.0400222540384076,1.052024430659532,1.0377142721189696,MLPClassifier,0.0
-IQR_Parity,-0.023103483282492315,-0.02199865172956933,-0.021084662231184464,MLPClassifier,0.0
-Std_Parity,-0.017047311682108574,-0.014482498155605067,-0.015528142059770114,MLPClassifier,0.0
-Std_Ratio,0.8378767214807724,0.8575668018548829,0.8441550952374669,MLPClassifier,0.0
-Jitter_Parity,-0.024276623502126712,-0.02999195460552799,-0.02431443345626763,MLPClassifier,0.0
-Equalized_Odds_TPR,-0.018978658536585313,0.05504320533188678,-0.03720476555423957,MLPClassifier,0.7
-Equalized_Odds_FPR,-0.04624314056563952,-0.015542139185771395,-0.04150402137748552,MLPClassifier,0.7
-Equalized_Odds_FNR,0.01897865853658537,-0.05504320533188667,0.037204765554239516,MLPClassifier,0.7
-Disparate_Impact,0.9976159911975059,1.1685710118150436,0.9892333472978635,MLPClassifier,0.7
-Statistical_Parity_Difference,-0.0019817073170732558,0.134343395202852,-0.008952832160523894,MLPClassifier,0.7
-Accuracy_Parity,0.05566239316239319,0.05791971748849867,0.05465678013706321,MLPClassifier,0.7
-Label_Stability_Ratio,1.0116825655056816,1.0147414387548623,1.0142450823394442,MLPClassifier,0.7
-IQR_Parity,-0.015967185873185546,-0.007739632168905608,-0.010375957070957897,MLPClassifier,0.7
-Std_Parity,-0.011280373369031718,-0.0052215839220306065,-0.00846586522301801,MLPClassifier,0.7
-Std_Ratio,0.8633086261228244,0.9337434540716136,0.8922451079710022,MLPClassifier,0.7
-Jitter_Parity,-0.011206411330150795,-0.010024072689631416,-0.009159063489553684,MLPClassifier,0.7
-Equalized_Odds_TPR,-0.018064024390243905,-0.018541480993528814,-0.07190134466662024,MLPClassifier,0.4
-Equalized_Odds_FPR,-0.0478682988602786,-0.03377661744309374,-0.04670430431479396,MLPClassifier,0.4
-Equalized_Odds_FNR,0.018064024390243905,0.01854148099352887,0.07190134466662024,MLPClassifier,0.4
-Disparate_Impact,1.0122367435278448,1.0388483701545854,0.9596397347000302,MLPClassifier,0.4
-Statistical_Parity_Difference,0.01120426829268295,0.03539737280582789,-0.03730927332265033,MLPClassifier,0.4
-Accuracy_Parity,0.04732905982905977,0.03914501393118641,0.039358873534808825,MLPClassifier,0.4
-Label_Stability_Ratio,1.0380533656761675,1.050281055097938,1.039143933855558,MLPClassifier,0.4
-IQR_Parity,-0.021800317105360498,-0.01979599811428892,-0.019109923987836203,MLPClassifier,0.4
-Std_Parity,-0.016632398891789663,-0.013618988897571183,-0.014615438426665558,MLPClassifier,0.4
-Std_Ratio,0.8411837472975571,0.8653910518588449,0.8527524702482466,MLPClassifier,0.4
-Jitter_Parity,-0.023205391272604736,-0.028007441470945263,-0.022731439845363424,MLPClassifier,0.4
-Equalized_Odds_TPR,-0.013109756097560932,0.03212306738481807,-0.022085975057479224,RandomForestClassifier,0.4
-Equalized_Odds_FPR,-0.01192486281131279,-0.004963150308667147,-0.006942443216054084,RandomForestClassifier,0.4
-Equalized_Odds_FNR,0.013109756097560987,-0.03212306738481807,0.02208597505747928,RandomForestClassifier,0.4
-Disparate_Impact,1.0743556828280834,1.1590880271867312,1.1109037589976007,RandomForestClassifier,0.4
-Statistical_Parity_Difference,0.05739329268292681,0.12153679234316273,0.08695046331777334,RandomForestClassifier,0.4
-Accuracy_Parity,0.03856837606837615,0.04690436078533011,0.036587649327790794,RandomForestClassifier,0.4
-Label_Stability_Ratio,1.0010830866898295,1.0245213649857032,1.0016860934867435,RandomForestClassifier,0.4
-IQR_Parity,-0.0024315475130579356,-0.007422421027040563,-0.006348073239051066,RandomForestClassifier,0.4
-Std_Parity,-0.001890817887290966,-0.006005398383778858,-0.005054462180121233,RandomForestClassifier,0.4
-Std_Ratio,0.9693944783088382,0.9044128961451383,0.9181358364959677,RandomForestClassifier,0.4
-Jitter_Parity,-0.0029367081132166684,-0.015830939834926464,-0.004035590076358689,RandomForestClassifier,0.4
-Equalized_Odds_TPR,-0.013262195121951259,0.09049870190258458,0.0275900508604473,RandomForestClassifier,0.7
-Equalized_Odds_FPR,-0.004706627268889818,0.005180713061923803,0.004610830211417033,RandomForestClassifier,0.7
-Equalized_Odds_FNR,0.013262195121951204,-0.09049870190258458,-0.0275900508604473,RandomForestClassifier,0.7
-Disparate_Impact,1.086494036746535,1.2810291207237774,1.2183023097164019,RandomForestClassifier,0.7
-Statistical_Parity_Difference,0.06135670731707321,0.19258340760258852,0.15606493416010592,RandomForestClassifier,0.7
-Accuracy_Parity,0.04049145299145296,0.06377567550055074,0.04785979103471516,RandomForestClassifier,0.7
-Label_Stability_Ratio,1.0042931659613945,1.0158033089241028,0.997701913713356,RandomForestClassifier,0.7
-IQR_Parity,-0.0021576183268891685,-0.0011512403501528212,-0.00012869147334378106,RandomForestClassifier,0.7
-Std_Parity,-0.002107574597948185,-0.0019021823908419097,-0.001451921355860343,RandomForestClassifier,0.7
-Std_Ratio,0.962673667602888,0.9660752793094682,0.9739339258916726,RandomForestClassifier,0.7
-Jitter_Parity,-0.004579489326979741,-0.010039410100458009,-0.0014495632866055874,RandomForestClassifier,0.7
-Equalized_Odds_TPR,-0.006478658536585358,0.034680513039097915,-0.010276597227060535,RandomForestClassifier,0.0
-Equalized_Odds_FPR,-0.018446601941747576,-0.00981751924070598,-0.010793534358544452,RandomForestClassifier,0.0
-Equalized_Odds_FNR,0.006478658536585358,-0.034680513039097915,0.010276597227060535,RandomForestClassifier,0.0
-Disparate_Impact,1.0696725293946165,1.149977548271217,1.1161027349228612,RandomForestClassifier,0.0
-Statistical_Parity_Difference,0.05464939024390236,0.11648002479947306,0.09228035950672331,RandomForestClassifier,0.0
-Accuracy_Parity,0.043910256410256476,0.04994168340568905,0.04126877129910489,RandomForestClassifier,0.0
-Label_Stability_Ratio,1.0018200544605445,1.031331519636685,1.0152022947420831,RandomForestClassifier,0.0
-IQR_Parity,-0.0014266839924084312,-0.005259735864872772,-0.003978617177466615,RandomForestClassifier,0.0
-Std_Parity,-0.0014799865759114808,-0.0045115073360025085,-0.003718279422753004,RandomForestClassifier,0.0
-Std_Ratio,0.9712188827286748,0.913538681205104,0.9275913116942456,RandomForestClassifier,0.0
-Jitter_Parity,-0.0018609822617384336,-0.017820314313740024,-0.008520772043575799,RandomForestClassifier,0.0
diff --git a/docs/examples/income_subgroup_metrics.csv b/docs/examples/income_subgroup_metrics.csv
deleted file mode 100644
index f9e45d09..00000000
--- a/docs/examples/income_subgroup_metrics.csv
+++ /dev/null
@@ -1,221 +0,0 @@
-Metric,Model_Name,Model_Params,Dataset_Name,Intervention_Param,RAC1P_dis,RAC1P_priv,SEX&RAC1P_dis,SEX&RAC1P_priv,SEX_dis,SEX_priv,overall
-Accuracy,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.8299180327868853,0.7549407114624506,0.8333333333333334,0.7681159420289855,0.8041666666666667,0.7564102564102564,0.7793333333333333
-Aleatoric_Uncertainty,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.574768407248688,0.5867152963701037,0.5751925521025802,0.5844148021106594,0.5625457885372674,0.6015511473295796,0.5828285751092698
-F1,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.6666666666666666,0.6242424242424243,0.6324786324786325,0.6363636363636364,0.6072423398328691,0.6545454545454545,0.6358635863586358
-FNR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.366412213740458,0.47715736040609136,0.4032258064516129,0.4557235421166307,0.4682926829268293,0.4375,0.44952380952380955
-FPR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.09803921568627451,0.0970873786407767,0.09183673469387756,0.09884467265725289,0.08737864077669903,0.10869565217391304,0.09743589743589744
-IQR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.06280707944938806,0.07248368472071522,0.06493633506095174,0.07024941164487893,0.06795490302023513,0.07061001735140496,0.06933556247244345
-Jitter,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.05725214185682598,0.07628215186604916,0.062299481905650766,0.07170959467223532,0.0661720407593532,0.07370860713825701,0.07009105527638122
-Label_Stability,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.9190368852459017,0.8921640316205534,0.9104651162790697,0.8989210950080515,0.905375,0.8967820512820512,0.9009066666666667
-Mean,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.7085616306769631,0.6862178585472839,0.7245281799737864,0.6870388713260648,0.7252005764269102,0.6642129917856846,0.6934870324134728
-Overall_Uncertainty,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.5874845827200873,0.6027417432630668,0.5884432399246448,0.5997172018108436,0.5773910073017967,0.616596917041452,0.5977780803664176
-PPV,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.7033898305084746,0.7744360902255639,0.6727272727272727,0.7659574468085106,0.7077922077922078,0.782608695652174,0.7526041666666666
-Per_Sample_Accuracy,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.828125,0.7573962450592885,0.8262015503875969,0.7708937198067634,0.8038958333333333,0.7587243589743589,0.7804066666666668
-Positive-Rate,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.9007633587786259,0.6751269035532995,0.8870967741935484,0.7105831533477321,0.751219512195122,0.71875,0.7314285714285714
-Sample_Size,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,488.0,1012.0,258.0,1242.0,720.0,780.0,1500.0
-Selection-Rate,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.24180327868852458,0.2628458498023715,0.2131782945736434,0.2648953301127214,0.21388888888888888,0.2948717948717949,0.256
-Std,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.04707606166754985,0.05413716294264461,0.04835609913224369,0.05256365009307715,0.05068861026634873,0.05290272769224307,0.051839951327813785
-TNR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.9019607843137255,0.9029126213592233,0.9081632653061225,0.9011553273427471,0.912621359223301,0.8913043478260869,0.9025641025641026
-TPR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 10, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.7,0.6335877862595419,0.5228426395939086,0.5967741935483871,0.5442764578833693,0.5317073170731708,0.5625,0.5504761904761905
-Accuracy,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.8278688524590164,0.7905138339920948,0.8294573643410853,0.7971014492753623,0.825,0.782051282051282,0.8026666666666666
-Aleatoric_Uncertainty,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.5633808779503379,0.6053039361523177,0.5635466006397141,0.5975059813694559,0.5732441010754783,0.6086688449379051,0.5916649678839402
-F1,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.6666666666666666,0.7063711911357341,0.6271186440677966,0.705607476635514,0.6752577319587629,0.7098976109215017,0.6960985626283368
-FNR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.35877862595419846,0.35279187817258884,0.4032258064516129,0.34773218142548595,0.36097560975609755,0.35,0.35428571428571426
-FPR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.10364145658263306,0.11812297734627832,0.09693877551020408,0.11681643132220795,0.10097087378640776,0.12608695652173912,0.11282051282051282
-IQR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.0717782678051346,0.07973729266010553,0.0725611945411923,0.07810076221361102,0.07556831529235587,0.0786060869877388,0.077147956573955
-Jitter,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.06448780789191826,0.07795320475897503,0.06611253944139346,0.07512210812516662,0.06934087102177533,0.07747854657905087,0.07357246231155734
-Label_Stability,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.9095491803278689,0.8913833992094861,0.907093023255814,0.895257648953301,0.9033611111111111,0.8916923076923077,0.8972933333333334
-Mean,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.6957755997986098,0.6346221249287431,0.7150553202294089,0.6419418764174092,0.689198775103901,0.6225038013523088,0.6545173887530731
-Overall_Uncertainty,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.5802610784913662,0.6241481189584432,0.5806878176395618,0.6159322429458329,0.5913806977913604,0.6269374362563485,0.6098702017931542
-PPV,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.6942148760330579,0.7774390243902439,0.6607142857142857,0.7684478371501272,0.7158469945355191,0.7819548872180451,0.755011135857461
-Per_Sample_Accuracy,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.82547131147541,0.7838833992094861,0.8217635658914728,0.7923550724637681,0.8145833333333333,0.7815641025641025,0.7974133333333333
-Positive-Rate,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.9236641221374046,0.8324873096446701,0.9032258064516129,0.8488120950323974,0.8926829268292683,0.83125,0.8552380952380952
-Sample_Size,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,488.0,1012.0,258.0,1242.0,720.0,780.0,1500.0
-Selection-Rate,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.24795081967213115,0.3241106719367589,0.21705426356589147,0.3164251207729469,0.25416666666666665,0.34102564102564104,0.29933333333333334
-Std,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.05403263342459364,0.059733745950347555,0.05471686604121065,0.05853584909365626,0.05678586100735733,0.05888802062520018,0.057878984008635614
-TNR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.896358543417367,0.8818770226537217,0.9030612244897959,0.883183568677792,0.8990291262135922,0.8739130434782608,0.8871794871794871
-TPR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.0,0.6412213740458015,0.6472081218274112,0.5967741935483871,0.652267818574514,0.6390243902439025,0.65,0.6457142857142857
-Accuracy,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.8278688524590164,0.7934782608695652,0.8178294573643411,0.8019323671497585,0.8194444444444444,0.791025641025641,0.8046666666666666
-Aleatoric_Uncertainty,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.5551920500099683,0.6160978769562332,0.5546274648036941,0.6049363010992105,0.5746912318145948,0.6162142115103388,0.5962831812563817
-F1,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.65,0.7027027027027027,0.5765765765765766,0.7043269230769231,0.6524064171122995,0.7135325131810193,0.689289501590668
-FNR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.40458015267175573,0.3730964467005076,0.4838709677419355,0.367170626349892,0.40487804878048783,0.365625,0.38095238095238093
-FPR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.08683473389355742,0.10032362459546926,0.08673469387755102,0.0975609756097561,0.0912621359223301,0.1,0.09538461538461539
-IQR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.07359398945751415,0.08221435113954705,0.07417332608489044,0.08049764257535166,0.07727618415086056,0.08137940720496015,0.07940986013899233
-Jitter,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.06965174231814622,0.08477396865751859,0.06926843519925442,0.08205318055656674,0.07360964544947027,0.08561841257569672,0.07985420435511108
-Label_Stability,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.8993852459016393,0.8807114624505928,0.9017829457364341,0.883671497584541,0.8965972222222222,0.8777307692307692,0.8867866666666667
-Mean,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.7141488205426961,0.6441152206909166,0.7326595827361654,0.6532391750548413,0.6999423689094346,0.6363983617298083,0.6668994851760289
-Overall_Uncertainty,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.5729327590451901,0.6355678274191867,0.5723997447559693,0.624079463458317,0.5933199449151484,0.6353788043889269,0.6151905518415132
-PPV,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.7155963302752294,0.7993527508090615,0.6530612244897959,0.7940379403794038,0.7218934911242604,0.8152610441767069,0.777511961722488
-Per_Sample_Accuracy,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.8241188524590164,0.7855237154150199,0.8176744186046511,0.7940096618357488,0.8138402777777777,0.7835320512820513,0.7980799999999999
-Positive-Rate,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.8320610687022901,0.7842639593908629,0.7903225806451613,0.796976241900648,0.824390243902439,0.778125,0.7961904761904762
-Sample_Size,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,488.0,1012.0,258.0,1242.0,720.0,780.0,1500.0
-Selection-Rate,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.22336065573770492,0.30533596837944665,0.18992248062015504,0.2971014492753623,0.23472222222222222,0.3192307692307692,0.2786666666666667
-Statistical_Bias,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.2485877124816216,0.2850127848791134,0.2544548274710566,0.2770486284228354,0.25981461969725383,0.28548361000855305,0.2731624946591294
-Std,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.05530566275693515,0.06150063092752502,0.055513806874063584,0.0603101769327949,0.05787962837200925,0.06096726858486284,0.05948520128269312
-TNR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.9131652661064426,0.8996763754045307,0.9132653061224489,0.9024390243902439,0.9087378640776699,0.9,0.9046153846153846
-TPR,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Folktables_GA_2018_Income,0.4,0.5954198473282443,0.6269035532994924,0.5161290322580645,0.6328293736501079,0.5951219512195122,0.634375,0.6190476190476191
-Accuracy,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.860655737704918,0.8102766798418972,0.8527131782945736,0.821256038647343,0.8361111111111111,0.8179487179487179,0.8266666666666667
-Aleatoric_Uncertainty,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.518266140432632,0.5917375980647225,0.5207079123887619,0.5776245445864114,0.5540758647380297,0.5805355168733874,0.5678348838484157
-F1,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.7235772357723578,0.7405405405405405,0.6607142857142857,0.7459954233409611,0.6927083333333334,0.7641196013289037,0.7363083164300203
-FNR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.32061068702290074,0.30456852791878175,0.4032258064516129,0.2958963282937365,0.35121951219512193,0.28125,0.30857142857142855
-FPR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.07282913165266107,0.11650485436893204,0.0663265306122449,0.10911424903722722,0.08932038834951456,0.11304347826086956,0.10051282051282051
-IQR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.06428228921309113,0.07059281623049571,0.06310045743778836,0.06966970140281861,0.06536902279417402,0.07146665480698056,0.06853979144083341
-Jitter,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.05826478705000547,0.0740340536675472,0.06368840325659207,0.06998717419626518,0.06601786711334494,0.0715677103466072,0.06890378559463906
-Label_Stability,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.9163729508196721,0.8950691699604743,0.9077131782945737,0.9008132045088566,0.90625,0.8980769230769231,0.902
-Mean,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.7140798765562879,0.6258004703369449,0.7406686084265409,0.6366252453835822,0.6994177145075693,0.6130773093525728,0.654520703826971
-Overall_Uncertainty,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.5333777792973274,0.607740896173706,0.5350959529476597,0.5936130333046618,0.5686451777300188,0.5973046349477854,0.5835480954832574
-PPV,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.7739130434782608,0.791907514450867,0.74,0.7931873479318735,0.7430167597765364,0.8156028368794326,0.7874186550976139
-Per_Sample_Accuracy,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.8478176229508196,0.804540513833992,0.8466472868217054,0.8127979066022545,0.8295694444444444,0.8085128205128205,0.81862
-Positive-Rate,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.8778625954198473,0.8781725888324873,0.8064516129032258,0.8876889848812095,0.8731707317073171,0.88125,0.878095238095238
-Sample_Size,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,488.0,1012.0,258.0,1242.0,720.0,780.0,1500.0
-Selection-Rate,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.23565573770491804,0.34189723320158105,0.1937984496124031,0.3309178743961353,0.24861111111111112,0.36153846153846153,0.30733333333333335
-Std,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.04807120157985848,0.05292563632196334,0.047034382956272054,0.05224204470698844,0.04879514970472325,0.053701259668457825,0.051346326885865226
-TNR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.927170868347339,0.883495145631068,0.9336734693877551,0.8908857509627728,0.9106796116504854,0.8869565217391304,0.8994871794871795
-TPR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.6793893129770993,0.6954314720812182,0.5967741935483871,0.7041036717062635,0.6487804878048781,0.71875,0.6914285714285714
-Accuracy,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.8709016393442623,0.7924901185770751,0.8643410852713178,0.8083735909822867,0.8291666666666667,0.8076923076923077,0.818
-Aleatoric_Uncertainty,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.5415753343739413,0.6007282744387772,0.5437012248461627,0.5893324161805281,0.5656097473407158,0.5961368702836032,0.5814838512710172
-F1,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.7469879518072289,0.7008547008547008,0.7008547008547008,0.7146282973621103,0.6737400530503979,0.7386759581881533,0.7129337539432177
-FNR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.2900763358778626,0.3756345177664975,0.3387096774193548,0.3563714902807775,0.3804878048780488,0.3375,0.35428571428571426
-FPR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.0700280112044818,0.10032362459546926,0.07142857142857142,0.09370988446726572,0.08737864077669903,0.09130434782608696,0.08923076923076922
-IQR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.05486730610239798,0.05559910024368413,0.05337840687496418,0.05577287105542495,0.05377693691077603,0.056823256729256165,0.055361023216385696
-Jitter,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.05049252409589009,0.055404443164438634,0.05462194694401552,0.05363702570824448,0.05472215242881082,0.05296115191341372,0.05380643216080322
-Label_Stability,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.9256352459016393,0.9209584980237154,0.9213178294573643,0.9227214170692432,0.9217361111111111,0.9231666666666667,0.9224799999999999
-Mean,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.7008671012376522,0.6500786578096867,0.7283286228997712,0.6537793578093689,0.7076286288499484,0.6287309414556592,0.666601831404918
-Overall_Uncertainty,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.5529470303791272,0.6110197586776697,0.5542760168748085,0.5999894800749719,0.5757934710934558,0.6072036505378559,0.5921267644045438
-PPV,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.788135593220339,0.7987012987012987,0.7454545454545455,0.8032345013477089,0.7383720930232558,0.8346456692913385,0.795774647887324
-Per_Sample_Accuracy,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.8547438524590164,0.7916353754940711,0.8563953488372092,0.8029790660225442,0.8271319444444443,0.7983525641025639,0.8121666666666667
-Positive-Rate,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.9007633587786259,0.7817258883248731,0.8870967741935484,0.8012958963282938,0.8390243902439024,0.79375,0.8114285714285714
-Sample_Size,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,488.0,1012.0,258.0,1242.0,720.0,780.0,1500.0
-Selection-Rate,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.24180327868852458,0.30434782608695654,0.2131782945736434,0.29871175523349436,0.2388888888888889,0.32564102564102565,0.284
-Std,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.04147548578761579,0.04163599937336229,0.03995015359051101,0.04192313108200267,0.04024375025525536,0.04282072852104524,0.0415837789534661
-TNR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.9299719887955182,0.8996763754045307,0.9285714285714286,0.9062901155327343,0.912621359223301,0.908695652173913,0.9107692307692308
-TPR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.7099236641221374,0.6243654822335025,0.6612903225806451,0.6436285097192225,0.6195121951219512,0.6625,0.6457142857142857
-Accuracy,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.8545081967213115,0.808300395256917,0.8449612403100775,0.8188405797101449,0.8333333333333334,0.8141025641025641,0.8233333333333334
-Aleatoric_Uncertainty,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.5211199002202518,0.591006808034145,0.5246724201167261,0.577326824998327,0.5541771891449122,0.5812792626329496,0.5682702673586917
-F1,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.714859437751004,0.7349726775956285,0.6491228070175439,0.740484429065744,0.6875,0.7571189279731994,0.7298674821610601
-FNR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.32061068702290074,0.31725888324873097,0.4032258064516129,0.30669546436285094,0.35609756097560974,0.29375,0.3180952380952381
-FPR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.08123249299719888,0.11165048543689321,0.07653061224489796,0.10654685494223363,0.0912621359223301,0.1108695652173913,0.10051282051282051
-IQR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.0656607376158629,0.07072996492972401,0.06467250997689906,0.06999650313315767,0.06551429974918029,0.07237290852052818,0.06908077631028119
-Jitter,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.060156314358679144,0.07294054263411826,0.06567469128588728,0.06942676344686585,0.06666038525963189,0.07073927328952646,0.06878140703517488
-Label_Stability,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.9112704918032787,0.8974802371541502,0.9022868217054263,0.9019001610305957,0.9053333333333333,0.8988589743589742,0.9019666666666666
-Mean,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.7086695659799582,0.6312971446946812,0.7346452859100321,0.6402294483610698,0.7007860045694052,0.6155609427426478,0.6564689724194913
-Overall_Uncertainty,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.5366496138386901,0.6070662579052819,0.5393764919119384,0.5934596857006005,0.568778825833585,0.598352961478519,0.5841573763689507
-PPV,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.7542372881355932,0.7958579881656804,0.7115384615384616,0.7945544554455446,0.7374301675977654,0.8158844765342961,0.7850877192982456
-Per_Sample_Accuracy,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.8464549180327868,0.8029891304347826,0.8463372093023257,0.8110628019323671,0.8285833333333332,0.8065576923076924,0.8171299999999999
-Positive-Rate,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.9007633587786259,0.8578680203045685,0.8387096774193549,0.8725701943844493,0.8731707317073171,0.865625,0.8685714285714285
-Sample_Size,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,488.0,1012.0,258.0,1242.0,720.0,780.0,1500.0
-Selection-Rate,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.24180327868852458,0.3339920948616601,0.20155038759689922,0.3252818035426731,0.24861111111111112,0.35512820512820514,0.304
-Statistical_Bias,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.2274504031385729,0.266491924606308,0.2318676501443367,0.25834442085021614,0.24554145806397867,0.26140483926556757,0.2537904162888049
-Std,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.048873767867387855,0.05297010622628838,0.0477247218383518,0.052450215769721704,0.04881415172274951,0.05424353458962751,0.051637430813526085
-TNR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.9187675070028011,0.8883495145631068,0.923469387755102,0.8934531450577664,0.9087378640776699,0.8891304347826087,0.8994871794871795
-TPR,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.6793893129770993,0.682741116751269,0.5967741935483871,0.693304535637149,0.6439024390243903,0.70625,0.6819047619047619
-Accuracy,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.8524590163934426,0.808300395256917,0.8643410852713178,0.8140096618357487,0.85,0.7974358974358975,0.8226666666666667
-Aleatoric_Uncertainty,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.3816002128122633,0.4663978258721248,0.38038775507957207,0.4509464273948834,0.4122843567010865,0.4632958548848621,0.43881033575664985
-F1,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.7142857142857143,0.7460732984293194,0.6956521739130435,0.7436182019977803,0.7272727272727273,0.7451612903225806,0.7381889763779528
-FNR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.31297709923664124,0.2766497461928934,0.3548387096774194,0.27645788336933047,0.2975609756097561,0.278125,0.2857142857142857
-FPR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.08683473389355742,0.13754045307443366,0.0663265306122449,0.13222079589216945,0.0912621359223301,0.15,0.11897435897435897
-IQR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.11256027555478235,0.13455892728435168,0.10994393226091104,0.1310285944920955,0.11538822128143578,0.1384917045639281,0.12740203258833177
-Jitter,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.09333336765796346,0.12332532226349145,0.09343558879670463,0.11775002225297226,0.10094409547738649,0.1252207189795132,0.11356793969848812
-Label_Stability,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.8686270491803278,0.8256719367588932,0.8656976744186047,0.8342351046698874,0.8567916666666666,0.8238205128205128,0.8396466666666665
-Mean,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.7252847058872565,0.6240034562362897,0.7607214461032801,0.6353979879947343,0.7097566779513825,0.6082123411014243,0.6569536227894043
-Overall_Uncertainty,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.4414172929888588,0.533748861417282,0.4365092913234669,0.5176699593972609,0.4698661654226279,0.5349510867032824,0.5037103244885683
-PPV,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.743801652892562,0.7702702702702703,0.7547169811320755,0.7648401826484018,0.7539267015706806,0.77,0.7637474541751528
-Per_Sample_Accuracy,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.8301741803278688,0.7933498023715414,0.8309496124031007,0.8000080515297907,0.8233958333333333,0.7886538461538463,0.8053299999999999
-Positive-Rate,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.9236641221374046,0.9390862944162437,0.8548387096774194,0.9460043196544277,0.9317073170731708,0.9375,0.9352380952380952
-Sample_Size,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,488.0,1012.0,258.0,1242.0,720.0,780.0,1500.0
-Selection-Rate,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.24795081967213115,0.36561264822134387,0.2054263565891473,0.3526570048309179,0.2652777777777778,0.38461538461538464,0.3273333333333333
-Std,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.08719673354183723,0.1016792316974423,0.08411029067199578,0.0996384327317659,0.08810299022278899,0.10515030190489756,0.09696759229748543
-TNR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.9131652661064426,0.8624595469255664,0.9336734693877551,0.8677792041078306,0.9087378640776699,0.85,0.8810256410256411
-TPR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.6870229007633588,0.7233502538071066,0.6451612903225806,0.7235421166306696,0.7024390243902439,0.721875,0.7142857142857143
-Accuracy,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.8504098360655737,0.7924901185770751,0.8565891472868217,0.8019323671497585,0.8402777777777778,0.7846153846153846,0.8113333333333334
-Aleatoric_Uncertainty,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.43531743350320395,0.5012712154730118,0.43338857927395535,0.4894582320093163,0.4473101514451836,0.509818036625281,0.47981425173883424
-F1,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.7114624505928854,0.7033898305084746,0.672566371681416,0.7099056603773585,0.6933333333333334,0.7133105802047781,0.7055150884495317
-FNR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.31297709923664124,0.3680203045685279,0.3870967741935484,0.34989200863930886,0.36585365853658536,0.346875,0.35428571428571426
-FPR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.0896358543417367,0.10517799352750809,0.0663265306122449,0.10783055198973042,0.07766990291262135,0.12391304347826088,0.09948717948717949
-IQR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.0956195011615199,0.10335913333042551,0.09224988054338842,0.10262583761434632,0.09253823634408508,0.10850542221727062,0.10084117299814155
-Jitter,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.08606114589339989,0.0960852185830313,0.08524034903198867,0.09439941252154235,0.08699671970966057,0.09820313103981136,0.0928240536013427
-Label_Stability,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.8803483606557377,0.8675592885375495,0.8819767441860465,0.8695893719806763,0.8769861111111112,0.8668589743589745,0.8717199999999999
-Mean,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.7102203181759992,0.6607804033163299,0.7506239522883105,0.6615429176615372,0.7249338287368677,0.6324934958147033,0.6768648556173422
-Overall_Uncertainty,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.47514726487681236,0.5407137095576833,0.46988110140488026,0.5296657126971022,0.4835119894611495,0.5524942396413235,0.51938275955484
-PPV,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.7377049180327869,0.7929936305732485,0.7450980392156863,0.7818181818181819,0.7647058823529411,0.7857142857142857,0.7775229357798165
-Per_Sample_Accuracy,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.8392110655737706,0.7809337944664032,0.8399806201550388,0.7915660225442834,0.8214791666666665,0.7799679487179487,0.7998933333333332
-Positive-Rate,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.9312977099236641,0.7969543147208121,0.8225806451612904,0.8315334773218143,0.8292682926829268,0.83125,0.8304761904761905
-Sample_Size,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,488.0,1012.0,258.0,1242.0,720.0,780.0,1500.0
-Selection-Rate,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.25,0.3102766798418972,0.19767441860465115,0.30998389694041867,0.2361111111111111,0.34102564102564104,0.2906666666666667
-Std,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.07358699036849117,0.07880857429052178,0.07010008258322892,0.07856594780624693,0.07124402483599133,0.08252439820502305,0.07710981898788782
-TNR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.9103641456582633,0.8948220064724919,0.9336734693877551,0.8921694480102695,0.9223300970873787,0.8760869565217392,0.9005128205128206
-TPR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.6870229007633588,0.631979695431472,0.6129032258064516,0.6501079913606912,0.6341463414634146,0.653125,0.6457142857142857
-Accuracy,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.8504098360655737,0.8112648221343873,0.8565891472868217,0.8172302737520128,0.8486111111111111,0.8012820512820513,0.824
-Aleatoric_Uncertainty,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.38774782756218923,0.4664257591545982,0.3884650538497881,0.45170678278708243,0.4137217228511366,0.46585149700254275,0.4408292054098678
-F1,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.7137254901960784,0.7463479415670651,0.6837606837606838,0.745230078563412,0.7240506329113924,0.7471451876019576,0.7380952380952381
-FNR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.3053435114503817,0.2868020304568528,0.3548387096774194,0.28293736501079914,0.3024390243902439,0.284375,0.2914285714285714
-FPR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.09243697478991597,0.1262135922330097,0.07653061224489796,0.12323491655969192,0.0912621359223301,0.1391304347826087,0.11384615384615385
-IQR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.1132850208605515,0.13308101897484043,0.11081770385973005,0.12992762784756626,0.11530455602687097,0.13710487313223146,0.12664072092165843
-Jitter,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.0948879644122274,0.12289540588317266,0.09496201939933013,0.11769345924469356,0.10171684812953474,0.12492223940213948,0.11378365159128628
-Label_Stability,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.8675819672131148,0.8260474308300394,0.8665891472868218,0.8339452495974236,0.855875,0.8244999999999999,0.8395600000000001
-Mean,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.7195732758438664,0.6309284279798154,0.7540229300478088,0.6401879321860268,0.7110902530342773,0.6123927506957696,0.6597675518182533
-Overall_Uncertainty,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.44726996535917407,0.5332731746116136,0.44436157850128466,0.5179508120361502,0.4712478646062651,0.5367201708791272,0.5052934638681533
-PPV,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.7338709677419355,0.7827298050139275,0.7272727272727273,0.7757009345794392,0.7526315789473684,0.7815699658703071,0.7701863354037267
-Per_Sample_Accuracy,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.8290163934426229,0.7911758893280633,0.8308527131782947,0.7978019323671498,0.8213263888888889,0.7870192307692307,0.8034866666666667
-Positive-Rate,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.9465648854961832,0.9111675126903553,0.8870967741935484,0.9244060475161987,0.926829268292683,0.915625,0.92
-Sample_Size,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,488.0,1012.0,258.0,1242.0,720.0,780.0,1500.0
-Selection-Rate,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.2540983606557377,0.3547430830039526,0.2131782945736434,0.3446054750402576,0.2638888888888889,0.37564102564102564,0.322
-Statistical_Bias,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.21005937889821227,0.24850722840440323,0.21231194725259486,0.24091933144638822,0.2216758094116745,0.24922014009125384,0.23599886136505574
-Std,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.08755548044966635,0.10117446934723753,0.08464217527528196,0.09925761370194752,0.08809491086883042,0.10472730976062009,0.09674375829256104
-TNR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.907563025210084,0.8737864077669902,0.923469387755102,0.8767650834403081,0.9087378640776699,0.8608695652173913,0.8861538461538462
-TPR,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.6946564885496184,0.7131979695431472,0.6451612903225806,0.7170626349892009,0.697560975609756,0.715625,0.7085714285714285
-Accuracy,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.8463114754098361,0.799407114624506,0.8449612403100775,0.8083735909822867,0.8347222222222223,0.7961538461538461,0.8146666666666667
-Aleatoric_Uncertainty,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.578901881115347,0.6427220196011102,0.5776986374569397,0.631153424602836,0.6096726402021011,0.633300642147564,0.6219592012137418
-F1,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.6963562753036437,0.7079136690647482,0.6551724137931034,0.711864406779661,0.6826666666666666,0.7195767195767195,0.7048832271762208
-FNR,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.3435114503816794,0.3756345177664975,0.3870967741935484,0.3650107991360691,0.375609756097561,0.3625,0.3676190476190476
-FPR,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.08403361344537816,0.0889967637540453,0.08163265306122448,0.08857509627727857,0.08155339805825243,0.09347826086956522,0.08717948717948718
-IQR,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.07993080357142858,0.08735322459846914,0.07968225898240433,0.0860303322214554,0.08367405891754848,0.08610560643060641,0.0849384636243386
-Jitter,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.0632354394925448,0.07906637932747126,0.07057457831794871,0.0746101683943074,0.07238895868230105,0.07532566679551772,0.07391604690117412
-Label_Stability,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.911844262295082,0.8900197628458498,0.8983720930232557,0.8968599033816426,0.8976249999999999,0.8966538461538462,0.8971199999999999
-Mean,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.707915635896435,0.645445064778217,0.7366042713332103,0.6510542140652557,0.7011054430941357,0.6331504062118437,0.6657688239153439
-Overall_Uncertainty,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.5980926620208493,0.6629771995525174,0.5967855512878455,0.6512330698720273,0.6293954388029462,0.6533813193271806,0.6418680966755481
-PPV,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.7413793103448276,0.8172757475083057,0.7037037037037037,0.8099173553719008,0.7529411764705882,0.8259109311740891,0.7961630695443646
-Per_Sample_Accuracy,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.8352459016393443,0.7941007905138341,0.8271317829457364,0.8034057971014492,0.8267013888888889,0.78975,0.8074866666666667
-Positive-Rate,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.8854961832061069,0.7639593908629442,0.8709677419354839,0.7840172786177105,0.8292682926829268,0.771875,0.7942857142857143
-Sample_Size,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,488.0,1012.0,258.0,1242.0,720.0,780.0,1500.0
-Selection-Rate,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.23770491803278687,0.2974308300395257,0.20930232558139536,0.2922705314009662,0.2361111111111111,0.31666666666666665,0.278
-Statistical_Bias,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.24958265027322407,0.2865677506822887,0.2556659200043067,0.2784549836253611,0.26328724655533514,0.28491805064611314,0.2745352646825397
-Std,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.056821051436244836,0.0628264498200237,0.05668759886069393,0.061742061040815165,0.059889468244443,0.06178028613173397,0.06087269354583431
-TNR,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.9159663865546218,0.9110032362459547,0.9183673469387755,0.9114249037227214,0.9184466019417475,0.9065217391304348,0.9128205128205128
-TPR,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.4,0.6564885496183206,0.6243654822335025,0.6129032258064516,0.6349892008639308,0.624390243902439,0.6375,0.6323809523809524
-Accuracy,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.8483606557377049,0.7845849802371542,0.8449612403100775,0.7971014492753623,0.8263888888888888,0.7858974358974359,0.8053333333333333
-Aleatoric_Uncertainty,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.5809271419254739,0.632326188134487,0.5804399996415808,0.6229090400516942,0.6027107443059488,0.627506168912114,0.6156043651011547
-F1,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.6991869918699187,0.6716867469879518,0.6551724137931034,0.6826196473551638,0.6556473829201102,0.6946983546617916,0.6791208791208792
-FNR,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.3435114503816794,0.434010152284264,0.3870967741935484,0.4146868250539957,0.4195121951219512,0.40625,0.4114285714285714
-FPR,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.08123249299719888,0.07605177993527508,0.08163265306122448,0.07702182284980745,0.07572815533980583,0.08043478260869565,0.07794871794871795
-IQR,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.07655375947339318,0.077704999823546,0.07722390642303431,0.07735259789637809,0.0762085014329806,0.07836611975986976,0.07733046296296296
-Jitter,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.06152195403245778,0.07156136413291579,0.06709497097892671,0.0685445342655323,0.06591387493020666,0.0704933642571864,0.06829520938023337
-Label_Stability,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.9143032786885246,0.9000790513833993,0.902984496124031,0.9050644122383253,0.9067222222222221,0.9028461538461539,0.9047066666666667
-Mean,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.7055323232175382,0.6729498837168265,0.7335200550633689,0.6731697921459243,0.715874007895172,0.6537125261116199,0.6835500373677248
-Overall_Uncertainty,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.5984611689436439,0.6487402421227054,0.5980162595875916,0.6395217234292089,0.6192559619409344,0.6444998498400043,0.6323827836484507
-PPV,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.7478260869565218,0.825925925925926,0.7037037037037037,0.8187311178247734,0.7531645569620253,0.8370044052863436,0.8025974025974026
-Per_Sample_Accuracy,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.8360450819672132,0.7759980237154149,0.8300193798449612,0.7883695652173913,0.8178750000000001,0.7749102564102565,0.7955333333333334
-Positive-Rate,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.8778625954198473,0.6852791878172588,0.8709677419354839,0.714902807775378,0.7707317073170732,0.709375,0.7333333333333333
-Sample_Size,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,488.0,1012.0,258.0,1242.0,720.0,780.0,1500.0
-Selection-Rate,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.23565573770491804,0.26679841897233203,0.20930232558139536,0.2665056360708535,0.21944444444444444,0.29102564102564105,0.25666666666666665
-Std,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.05416850447476281,0.05607068686560472,0.05424965264513179,0.055701574000992134,0.054355904736851104,0.05646347933479929,0.05545184352778415
-TNR,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.9187675070028011,0.9239482200647249,0.9183673469387755,0.9229781771501926,0.9242718446601942,0.9195652173913044,0.9220512820512821
-TPR,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.7,0.6564885496183206,0.565989847715736,0.6129032258064516,0.5853131749460043,0.5804878048780487,0.59375,0.5885714285714285
-Accuracy,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.8483606557377049,0.7984189723320159,0.8488372093023255,0.8075684380032206,0.8375,0.7935897435897435,0.8146666666666667
-Aleatoric_Uncertainty,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.6034386214355544,0.667663044490748,0.6022916533054496,0.6560078918940269,0.6353339918546749,0.6573238130125916,0.6467686988567917
-F1,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.7016129032258065,0.7085714285714285,0.6666666666666666,0.7123947051744886,0.6896551724137931,0.7180385288966725,0.7067510548523207
-FNR,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.33587786259541985,0.37055837563451777,0.3709677419354839,0.36069114470842334,0.36585365853658536,0.359375,0.3619047619047619
-FPR,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.08403361344537816,0.09385113268608414,0.08163265306122448,0.09242618741976893,0.08155339805825243,0.1,0.09025641025641026
-IQR,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.06625906669162206,0.07151880255649483,0.06651334013218053,0.07049195730964715,0.06906575947907051,0.07049244347147894,0.0698076351551229
-Jitter,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.05250175055605957,0.0703220648697996,0.05746932336098636,0.06599009540456216,0.0635568118369625,0.06541779409870094,0.06452452261306409
-Label_Stability,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.9285040983606557,0.900296442687747,0.9208914728682169,0.9071014492753622,0.9103333333333334,0.9086794871794872,0.9094733333333334
-Mean,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.7044707097166929,0.6383597499240815,0.7315249192761425,0.6449825636808952,0.6940397580188165,0.6283245480658572,0.6598678488432778
-Overall_Uncertainty,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.6163162753250673,0.6810105385909122,0.6151568145209929,0.6692709736442993,0.6484095577353082,0.670628366465659,0.6599633382750907
-PPV,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.7435897435897436,0.8104575163398693,0.7090909090909091,0.8043478260869565,0.7558139534883721,0.8167330677290837,0.7919621749408984
-Per_Sample_Accuracy,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.8393954918032787,0.7940316205533596,0.8337403100775194,0.8036070853462158,0.8301944444444445,0.7890320512820512,0.80879
-Positive-Rate,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.8931297709923665,0.7766497461928934,0.8870967741935484,0.7948164146868251,0.8390243902439024,0.784375,0.8057142857142857
-Sample_Size,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,488.0,1012.0,258.0,1242.0,720.0,780.0,1500.0
-Selection-Rate,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.23975409836065573,0.30237154150197626,0.2131782945736434,0.2962962962962963,0.2388888888888889,0.3217948717948718,0.282
-Std,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.047667980542325225,0.052179487878327734,0.04763300879630876,0.051351288219061764,0.04994215113887428,0.05142213771478576,0.05071174415834825
-TNR,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.9159663865546218,0.9061488673139159,0.9183673469387755,0.9075738125802311,0.9184466019417475,0.9,0.9097435897435897
-TPR,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 90, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 200, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Folktables_GA_2018_Income,0.0,0.6641221374045801,0.6294416243654822,0.6290322580645161,0.6393088552915767,0.6341463414634146,0.640625,0.638095238095238
diff --git a/docs/examples/law_school_group_metrics.csv b/docs/examples/law_school_group_metrics.csv
deleted file mode 100644
index f39a023c..00000000
--- a/docs/examples/law_school_group_metrics.csv
+++ /dev/null
@@ -1,89 +0,0 @@
-Metric,male,race,male&race,Model_Name,Experiment_Iteration,Intervention_Param,Test_Set_Index
-Equalized_Odds_TPR,-0.006852677560728049,-0.08926010463166822,-0.09233449477351918,LGBMClassifier,Exp_iter_1,0.6,0
-Equalized_Odds_FPR,0.027310924369747913,-0.2892592592592593,-0.15657230634189157,LGBMClassifier,Exp_iter_1,0.6,0
-Equalized_Odds_FNR,0.006852677560727997,0.08926010463166825,0.09233449477351917,LGBMClassifier,Exp_iter_1,0.6,0
-Disparate_Impact,1.0155706946616037,1.0637883787525366,1.064060803474484,LGBMClassifier,Exp_iter_1,0.6,0
-Statistical_Parity_Difference,0.01661276831014935,0.06794241218413566,0.06852497096399524,LGBMClassifier,Exp_iter_1,0.6,0
-Accuracy_Parity,-0.02441327723235165,-0.15885561838018636,-0.16299790356394128,LGBMClassifier,Exp_iter_1,0.6,0
-Label_Stability_Ratio,1.0022336520605963,0.9215110409144575,0.9448800911879143,LGBMClassifier,Exp_iter_1,0.6,0
-IQR_Parity,-0.0019234170135528535,0.030752485425003136,0.026171410156253943,LGBMClassifier,Exp_iter_1,0.6,0
-Std_Parity,-0.0014947483480208142,0.022654697553924172,0.019420397675297765,LGBMClassifier,Exp_iter_1,0.6,0
-Std_Ratio,0.9362288387603354,2.1935697988767453,1.91757091989168,LGBMClassifier,Exp_iter_1,0.6,0
-Jitter_Parity,-0.0009008483276642908,0.05605017735541579,0.04049042442969653,LGBMClassifier,Exp_iter_1,0.6,0
-Equalized_Odds_TPR,-0.005171382474971176,-0.11004756903064217,-0.0987224157955865,LGBMClassifier,Exp_iter_1,0.0,0
-Equalized_Odds_FPR,-0.025282526803824923,-0.4292592592592593,-0.3133640552995392,LGBMClassifier,Exp_iter_1,0.0,0
-Equalized_Odds_FNR,0.005171382474971221,0.11004756903064213,0.09872241579558652,LGBMClassifier,Exp_iter_1,0.0,0
-Disparate_Impact,1.0093278423562047,0.9912768659262348,0.9923664122137406,LGBMClassifier,Exp_iter_1,0.0,0
-Statistical_Parity_Difference,0.009888779529904745,-0.009296665118064151,-0.008130081300812941,LGBMClassifier,Exp_iter_1,0.0,0
-Accuracy_Parity,-0.015605423094904092,-0.1335709166202118,-0.11753449368631463,LGBMClassifier,Exp_iter_1,0.0,0
-Label_Stability_Ratio,0.998577907316844,0.911696818570683,0.920586307756427,LGBMClassifier,Exp_iter_1,0.0,0
-IQR_Parity,-0.0018418992707291484,0.03070162807008311,0.02640029144412168,LGBMClassifier,Exp_iter_1,0.0,0
-Std_Parity,-0.001380608364266945,0.022270950149824872,0.01912573180911198,LGBMClassifier,Exp_iter_1,0.0,0
-Std_Ratio,0.9474740574271133,2.0150416987665265,1.7940775240850562,LGBMClassifier,Exp_iter_1,0.0,0
-Jitter_Parity,0.0009153720918688296,0.06001277824710762,0.05223850775990582,LGBMClassifier,Exp_iter_1,0.0,0
-Equalized_Odds_TPR,-0.005365607208478229,-0.07716333043811985,-0.08536585365853655,LogisticRegression,Exp_iter_1,0.6,0
-Equalized_Odds_FPR,0.0021008403361344463,-0.2592592592592593,-0.14691683124862842,LogisticRegression,Exp_iter_1,0.6,0
-Equalized_Odds_FNR,0.005365607208478207,0.07716333043811986,0.08536585365853659,LogisticRegression,Exp_iter_1,0.6,0
-Disparate_Impact,1.014185628316063,1.0865027213593523,1.0769230769230769,LogisticRegression,Exp_iter_1,0.6,0
-Statistical_Parity_Difference,0.015190042348141253,0.09213596057123241,0.0824622531939605,LogisticRegression,Exp_iter_1,0.6,0
-Accuracy_Parity,-0.020523609163160317,-0.15885561838018636,-0.16299790356394128,LogisticRegression,Exp_iter_1,0.6,0
-Label_Stability_Ratio,1.004335707649427,0.9552448804260418,0.9689971045213348,LogisticRegression,Exp_iter_1,0.6,0
-IQR_Parity,-0.0004394323534326547,0.015022317395668628,0.013321803169827343,LogisticRegression,Exp_iter_1,0.6,0
-Std_Parity,-0.00037752191542240673,0.011290698242018816,0.010010789402424683,LogisticRegression,Exp_iter_1,0.6,0
-Std_Ratio,0.9574177968749634,2.658469055430207,2.2721629361081668,LogisticRegression,Exp_iter_1,0.6,0
-Jitter_Parity,-0.002206018404318751,0.03092054469475277,0.022461201723108764,LogisticRegression,Exp_iter_1,0.6,0
-Equalized_Odds_TPR,-0.000257377560966332,-0.098576968913487,-0.07491289198606277,LogisticRegression,Exp_iter_1,0.0,0
-Equalized_Odds_FPR,0.001014198782961384,-0.3766666666666667,-0.2736449418477068,LogisticRegression,Exp_iter_1,0.0,0
-Equalized_Odds_FNR,0.00025737756096630773,0.09857696891348698,0.07491289198606271,LogisticRegression,Exp_iter_1,0.0,0
-Disparate_Impact,1.0178946069357029,1.024124924276844,1.0353452963567156,LogisticRegression,Exp_iter_1,0.0,0
-Statistical_Parity_Difference,0.019005426376910384,0.02574130930979468,0.03774680603948899,LogisticRegression,Exp_iter_1,0.0,0
-Accuracy_Parity,-0.014941561477325838,-0.1421916062753843,-0.11596216664228953,LogisticRegression,Exp_iter_1,0.0,0
-Label_Stability_Ratio,1.000802025127658,0.9591320645489642,0.9674653511862815,LogisticRegression,Exp_iter_1,0.0,0
-IQR_Parity,-0.0004508970638314215,0.01656430213503716,0.014545259937867398,LogisticRegression,Exp_iter_1,0.0,0
-Std_Parity,-0.000250712698052144,0.012597874744057873,0.011208249522494669,LogisticRegression,Exp_iter_1,0.0,0
-Std_Ratio,0.971192962518509,2.943109990424136,2.4624081283525006,LogisticRegression,Exp_iter_1,0.0,0
-Jitter_Parity,-0.0005955631359242288,0.029270523731717988,0.02275483751946553,LogisticRegression,Exp_iter_1,0.0,0
-Equalized_Odds_TPR,-0.00542995159871984,-0.10879522087785565,-0.08885017421602792,MLPClassifier,Exp_iter_1,0.0,0
-Equalized_Odds_FPR,0.05143436685018832,-0.3496296296296296,-0.21560236998025017,MLPClassifier,Exp_iter_1,0.0,0
-Equalized_Odds_FNR,0.005429951598719784,0.10879522087785565,0.08885017421602788,MLPClassifier,Exp_iter_1,0.0,0
-Disparate_Impact,1.0186228591559474,1.0137681641813756,1.0339168490153174,MLPClassifier,Exp_iter_1,0.0,0
-Statistical_Parity_Difference,0.019652444967672933,0.014621669662876036,0.03600464576074347,MLPClassifier,Exp_iter_1,0.0,0
-Accuracy_Parity,-0.024665731650303835,-0.14909346712325133,-0.13497635415143083,MLPClassifier,Exp_iter_1,0.0,0
-Label_Stability_Ratio,1.001836062082041,0.8553840569742932,0.8648947072020089,MLPClassifier,Exp_iter_1,0.0,0
-IQR_Parity,-0.0020205977060946817,0.09889952827181274,0.08378658970964548,MLPClassifier,Exp_iter_1,0.0,0
-Std_Parity,-0.0033869150678196153,0.10496476391153896,0.09394292815043398,MLPClassifier,Exp_iter_1,0.0,0
-Std_Ratio,0.9706692880546564,2.088873447566327,1.884663033993635,MLPClassifier,Exp_iter_1,0.0,0
-Jitter_Parity,-0.0014995576292047702,0.10470271374925606,0.09636066589101067,MLPClassifier,Exp_iter_1,0.0,0
-Equalized_Odds_TPR,0.004399249792072291,-0.12046528773708765,-0.10859465737514518,MLPClassifier,Exp_iter_1,0.6,0
-Equalized_Odds_FPR,0.03441031585047816,-0.24518518518518517,-0.18981786262892253,MLPClassifier,Exp_iter_1,0.6,0
-Equalized_Odds_FNR,-0.0043992497920722975,0.1204652877370877,0.10859465737514518,MLPClassifier,Exp_iter_1,0.6,0
-Disparate_Impact,1.0262887781579368,1.0295513811087504,1.0238227146814405,MLPClassifier,Exp_iter_1,0.6,0
-Statistical_Parity_Difference,0.027283213025210973,0.03090219564910024,0.024970963995354367,MLPClassifier,Exp_iter_1,0.6,0
-Accuracy_Parity,-0.01372604020570356,-0.17549308486634285,-0.1530398322851153,MLPClassifier,Exp_iter_1,0.6,0
-Label_Stability_Ratio,1.0106622176454783,0.7347549972966689,0.7588685481341745,MLPClassifier,Exp_iter_1,0.6,0
-IQR_Parity,-0.014337453917789456,0.239717291325784,0.20712778100148252,MLPClassifier,Exp_iter_1,0.6,0
-Std_Parity,-0.0043530382426541225,0.14139945806041038,0.12248067260767251,MLPClassifier,Exp_iter_1,0.6,0
-Std_Ratio,0.9757227989415077,1.9199580092412873,1.7324037388625755,MLPClassifier,Exp_iter_1,0.6,0
-Jitter_Parity,-0.005143773566298637,0.14638050323022922,0.12861240469325352,MLPClassifier,Exp_iter_1,0.6,0
-Equalized_Odds_TPR,-0.001291654055960545,-0.09822600844325047,-0.07026713124274109,RandomForestClassifier,Exp_iter_1,0.6,0
-Equalized_Odds_FPR,0.05252100840336138,-0.23222222222222222,-0.11465876673249942,RandomForestClassifier,Exp_iter_1,0.6,0
-Equalized_Odds_FNR,0.0012916540559605519,0.09822600844325045,0.070267131242741,RandomForestClassifier,Exp_iter_1,0.6,0
-Disparate_Impact,1.023725852624935,1.0662711508746496,1.0951859956236325,RandomForestClassifier,Exp_iter_1,0.6,0
-Statistical_Parity_Difference,0.025083588129174883,0.07017189488355191,0.10104529616724744,RandomForestClassifier,Exp_iter_1,0.6,0
-Accuracy_Parity,-0.022010285179990707,-0.1732234344721404,-0.15403929598751886,RandomForestClassifier,Exp_iter_1,0.6,0
-Label_Stability_Ratio,1.001176387259295,0.8802415712253702,0.8891938218753054,RandomForestClassifier,Exp_iter_1,0.6,0
-IQR_Parity,-0.0035096712918958883,0.04988279067634181,0.0462411893925246,RandomForestClassifier,Exp_iter_1,0.6,0
-Std_Parity,-0.0023313579149804586,0.03429320329971825,0.031556199509573314,RandomForestClassifier,Exp_iter_1,0.6,0
-Std_Ratio,0.9518148424379955,1.8242881288324113,1.7054584360968619,RandomForestClassifier,Exp_iter_1,0.6,0
-Jitter_Parity,-4.495690233047994e-05,0.07727229028260862,0.07378751418836879,RandomForestClassifier,Exp_iter_1,0.6,0
-Equalized_Odds_TPR,-0.0020673614272062046,-0.11776112468943789,-0.10162601626016254,RandomForestClassifier,Exp_iter_1,0.0,0
-Equalized_Odds_FPR,0.04303100550565053,-0.39185185185185184,-0.2725477287689269,RandomForestClassifier,Exp_iter_1,0.0,0
-Equalized_Odds_FNR,0.0020673614272062393,0.11776112468943785,0.1016260162601626,RandomForestClassifier,Exp_iter_1,0.0,0
-Disparate_Impact,1.0209866123993547,0.9959582206649654,1.004931506849315,RandomForestClassifier,Exp_iter_1,0.0,0
-Statistical_Parity_Difference,0.022045103034433744,-0.004287272506918294,0.00522648083623678,RandomForestClassifier,Exp_iter_1,0.0,0
-Accuracy_Parity,-0.020729312762973406,-0.14734809269730031,-0.13025937301935542,RandomForestClassifier,Exp_iter_1,0.0,0
-Label_Stability_Ratio,0.9930186851041846,0.8737383149825507,0.8708797513120977,RandomForestClassifier,Exp_iter_1,0.0,0
-IQR_Parity,-0.001739345488546054,0.055151728119773834,0.04682910389547073,RandomForestClassifier,Exp_iter_1,0.0,0
-Std_Parity,-0.0009731829505101527,0.03857636987638614,0.03338260860983806,RandomForestClassifier,Exp_iter_1,0.0,0
-Std_Ratio,0.9772979817363154,2.072208090053585,1.8414636557441237,RandomForestClassifier,Exp_iter_1,0.0,0
-Jitter_Parity,0.0032763339840793312,0.0841594483260172,0.08485739726863116,RandomForestClassifier,Exp_iter_1,0.0,0
diff --git a/docs/examples/law_school_subgroup_metrics.csv b/docs/examples/law_school_subgroup_metrics.csv
deleted file mode 100644
index 3648b11d..00000000
--- a/docs/examples/law_school_subgroup_metrics.csv
+++ /dev/null
@@ -1,153 +0,0 @@
-Metric,Bootstrap_Model_Seed,Model_Name,Model_Params,Run_Number,Dataset_Name,Num_Estimators,Tag,Record_Create_Date_Time,Session_Uuid,Experiment_Iteration,Dataset_Split_Seed,Model_Init_Seed,Fair_Intervention_Params_Lst,Intervention_Param,male&race_dis,male&race_dis_correct,male&race_dis_incorrect,male&race_priv,male&race_priv_correct,male&race_priv_incorrect,male_dis,male_dis_correct,male_dis_incorrect,male_priv,male_priv_correct,male_priv_incorrect,overall,race_dis,race_dis_correct,race_dis_incorrect,race_priv,race_priv_correct,race_priv_incorrect,Test_Set_Index
-Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.75,1.0,0.0,0.9129979035639413,1.0,0.0,0.886021505376344,1.0,0.0,0.9104347826086957,1.0,0.0,0.8995192307692308,0.7672413793103449,1.0,0.0,0.9260969976905312,1.0,0.0,0
-Aleatoric_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.5868292198900119,0.4895028089709125,0.8788084526473101,0.31213451114412527,0.2746251249709554,0.7057571058047387,0.32557852040339047,0.27641138563249196,0.7077834171130161,0.34234717313819124,0.29969421995747725,0.7759165127518567,0.334849650521189,0.5991994902774432,0.5141883196970904,0.8794214970052727,0.28173547948471295,0.25202902038499314,0.6539945450780771,0
-F1,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.8365019011406845,1.0,0.0,0.9534231200897868,1.0,0.0,0.9375,1.0,0.0,0.9516658845612389,1.0,0.0,0.9453880324013587,0.8468809073724007,1.0,0.0,0.9611885991510006,1.0,0.0,0
-FNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.10569105691056911,0.0,1.0,0.013356562137049941,0.0,1.0,0.02334152334152334,0.0,1.0,0.016488845780795344,0.0,1.0,0.01951219512195122,0.0967741935483871,0.0,1.0,0.007514088916718848,0.0,1.0,0
-FPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.6122448979591837,0.0,1.0,0.7688172043010753,0.0,1.0,0.75,0.0,1.0,0.7226890756302521,0.0,1.0,0.7361702127659574,0.57,0.0,1.0,0.8592592592592593,0.0,1.0,0
-IQR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.053677237009712865,0.04423043496352387,0.08201764314827989,0.027505826853458922,0.023814295627974335,0.06624466658113452,0.028606573479079064,0.023741376201889028,0.0664265975961035,0.030529990492631918,0.02638713954524289,0.07264227148211065,0.02967000115484146,0.055277359210661375,0.04736805932154612,0.0813487551414487,0.02452487378565824,0.02153550951083108,0.06198534485458611,0
-Jitter,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.05720170620545171,0.028317556776123513,0.1438541544934052,0.016711281775755177,0.008955396961846785,0.09810135012414363,0.019561463230124726,0.008734144021076752,0.10372854840239312,0.020462311557789017,0.011515120972579035,0.1114109381860803,0.02005952841128785,0.06673207993993159,0.03564809064047434,0.16919411874184762,0.010681902584515802,0.006069342974223462,0.06848304020100503,0
-Label_Stability,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.922674418604651,0.9623255813953489,0.8037209302325582,0.9764989517819705,0.9878645235361653,0.8572289156626507,0.973247311827957,0.9883373786407766,0.8559433962264151,0.9710782608695653,0.9843457497612227,0.8362135922330096,0.9720480769230768,0.9076724137931035,0.9531460674157304,0.7577777777777778,0.9849826789838337,0.9915897755610973,0.9021875,0
-Mean,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.25366066560450123,0.19218317287414302,0.43809314379557607,0.09430034646818729,0.07687616230366145,0.27714931523086195,0.10592175970495323,0.08043902837613173,0.30401393531767884,0.10873692088666873,0.08827903023095526,0.3166923725034843,0.10747821901215171,0.2623223387707427,0.2132171520025776,0.4241875840435831,0.07636635199368194,0.0634544416764679,0.2381687281562705,0
-Overall_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.59599798281351,0.4973836190946347,0.8918410739701361,0.3172760636629066,0.2792196178051038,0.716639489471898,0.3308123858516533,0.2809034869135636,0.7187834492949164,0.3480164031919235,0.3047742004421416,0.7875754932795126,0.34032422236189885,0.6086383785857439,0.5226537972216503,0.892069035674793,0.2864135258457914,0.256243452133116,0.6644822620577554,0
-PPV,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.7857142857142857,1.0,0.0,0.9223669923995657,1.0,0.0,0.9013605442176871,1.0,0.0,0.9218181818181819,1.0,0.0,0.9127144298688193,0.797153024911032,1.0,0.0,0.9318048206937096,1.0,0.0,0
-Per_Sample_Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.760406976744186,0.9811627906976744,0.09813953488372094,0.9136582809224318,0.9939207807118255,0.0713855421686747,0.8890645161290323,0.9941686893203884,0.07202830188679245,0.9106260869565218,0.9921537726838585,0.08189320388349515,0.9009855769230769,0.777456896551724,0.9765730337078652,0.12111111111111111,0.9258054272517321,0.9957824189526184,0.048906250000000005,0
-Positive-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,1.1382113821138211,1.0,2.3076923076923075,1.0696864111498259,1.0,6.217391304347826,1.0835380835380835,1.0,4.578947368421052,1.066925315227934,1.0,5.0588235294117645,1.0742547425474254,1.1330645161290323,1.0,2.375,1.0651221039448966,1.0,9.666666666666666,0
-Sample_Size,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,172.0,129.0,43.0,1908.0,1742.0,166.0,930.0,824.0,106.0,1150.0,1047.0,103.0,2080.0,348.0,267.0,81.0,1732.0,1604.0,128.0,0
-Selection-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.813953488372093,0.8527131782945736,0.6976744186046512,0.9654088050314465,0.9753157290470723,0.8614457831325302,0.9483870967741935,0.9648058252427184,0.8207547169811321,0.9565217391304348,0.9684813753581661,0.8349514563106796,0.9528846153846153,0.8074712643678161,0.8389513108614233,0.7037037037037037,0.9821016166281755,0.9881546134663342,0.90625,0
-Statistical_Bias,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.27685883580701437,0.15177998477621654,0.6520953888994078,0.12810491537979324,0.06947590409695573,0.7433563470346304,0.14717405086035498,0.07096334887945019,0.7396044134288979,0.13493220087245378,0.07844588681600942,0.7091183253102911,0.1404057203381981,0.2752245486786175,0.1630144388115851,0.6451023182403169,0.11331741071783666,0.06052480536803965,0.7748747465074804,0
-Std,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.040585407653589534,0.03364597649472218,0.061403701130191564,0.02116500997829177,0.018455696617986055,0.04959647909668067,0.02194450411287219,0.01834402689967414,0.049933119430562715,0.023439252460893005,0.020415163620839904,0.05417926232046194,0.02277092747836447,0.04163531986461287,0.03584538374530121,0.06072066485049203,0.0189806223106887,0.01678269140670539,0.04652344395122948,0
-TNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.3877551020408163,1.0,0.0,0.23118279569892472,1.0,0.0,0.25,1.0,0.0,0.2773109243697479,1.0,0.0,0.26382978723404255,0.43,1.0,0.0,0.14074074074074075,1.0,0.0,0
-TPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 5, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 600}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.630,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.8943089430894309,1.0,0.0,0.9866434378629501,1.0,0.0,0.9766584766584766,1.0,0.0,0.9835111542192047,1.0,0.0,0.9804878048780488,0.9032258064516129,1.0,0.0,0.9924859110832811,1.0,0.0,0
-Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.7965116279069767,1.0,0.0,0.9140461215932913,1.0,0.0,0.8956989247311828,1.0,0.0,0.9113043478260869,1.0,0.0,0.9043269230769231,0.7931034482758621,1.0,0.0,0.9266743648960739,1.0,0.0,0
-Aleatoric_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.592922294584175,0.5276964598004423,0.8482348478805002,0.3098682100253761,0.2728221999884231,0.7038209021256567,0.3250495496308344,0.28328770350714166,0.6836847848992476,0.3399261723827997,0.29782220873189075,0.7725237596980217,0.3332746054792768,0.6057061382348319,0.5378938497098285,0.8656532442473446,0.2785366300757357,0.24899540763399236,0.6518725514851685,0
-F1,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.8616600790513834,1.0,0.0,0.953880764904387,1.0,0.0,0.942433234421365,1.0,0.0,0.9519774011299436,1.0,0.0,0.947755316355999,0.8588235294117647,1.0,0.0,0.9615034859048196,1.0,0.0,0
-FNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.11382113821138211,0.0,1.0,0.015098722415795587,0.0,1.0,0.02457002457002457,0.0,1.0,0.019398642095053348,0.0,1.0,0.02168021680216802,0.11693548387096774,0.0,1.0,0.0068879148403256105,0.0,1.0,0
-FPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.42857142857142855,0.0,1.0,0.7419354838709677,0.0,1.0,0.6637931034482759,0.0,1.0,0.6890756302521008,0.0,1.0,0.676595744680851,0.43,0.0,1.0,0.8592592592592593,0.0,1.0,0
-IQR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.05740452837709349,0.051346443480558994,0.08111760354352847,0.031004236932971812,0.027189497507483208,0.07157073423816773,0.03216898018636143,0.027970534528632626,0.06822367330891912,0.03401087945709058,0.029726613690397245,0.07802961007958674,0.03318733795623572,0.05875234748382416,0.05243974897608184,0.08295064176350304,0.028050719413741047,0.02490939295482162,0.06775016009536051,0
-Jitter,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.07016127147365255,0.05538752154935482,0.12798994974874758,0.017922763713746726,0.010617421972246736,0.09560883686723742,0.0227485816177594,0.01584127118183958,0.08206600010360975,0.02183320952589057,0.012317839195979677,0.11959897526848352,0.022242486470816773,0.07221466528042612,0.04855800742845045,0.16289852037967506,0.012201887033318502,0.00791455720972512,0.0663842836228268,0
-Label_Stability,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.8973255813953487,0.9191970802919709,0.8117142857142857,0.9747327044025157,0.9849770642201836,0.8657926829268292,0.9675698924731184,0.9772629051620647,0.8843298969072166,0.9689478260869565,0.982509541984733,0.8296078431372548,0.9683317307692308,0.8960632183908046,0.931086956521739,0.7618055555555556,0.982852193995381,0.9886292834890966,0.9098425196850394,0
-Mean,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.2739440845404644,0.22641911612137364,0.45997038949519153,0.09660964567395051,0.07937119259295998,0.2799258784376546,0.1103025082631652,0.08837411961679525,0.2986153715871464,0.11205935113227285,0.09143810796751904,0.32393251619758684,0.111273839657143,0.28224317965873474,0.2386743578529879,0.4492569965807643,0.07692203231271234,0.06452875764693192,0.23354570033300814,0
-Overall_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.6031762387252277,0.5373269440801166,0.8609291920503771,0.31654586441614585,0.27891570509178676,0.7167104855239652,0.3317985958463931,0.2893980625214335,0.6959186397607364,0.3470809810692174,0.30436468982700193,0.7859699342245303,0.3402479915224738,0.6161858681467297,0.547773037264914,0.87843505319369,0.2848055082284548,0.25473982724855815,0.6647694292736047,0
-PPV,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.8384615384615385,1.0,0.0,0.9247546346782988,1.0,0.0,0.9115958668197475,1.0,0.0,0.9249771271729186,1.0,0.0,0.9190427698574338,0.8358778625954199,1.0,0.0,0.9318448883666275,1.0,0.0,0
-Per_Sample_Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.7834883720930234,0.9595985401459854,0.09414285714285714,0.9129481132075472,0.9924885321100918,0.06710365853658537,0.8915483870967743,0.9886314525810325,0.05783505154639175,0.9108913043478262,0.9912547709923665,0.08519607843137256,0.9022427884615385,0.7904166666666665,0.9655434782608696,0.11909722222222222,0.9247113163972287,0.9943146417445483,0.04507874015748031,0
-Positive-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,1.056910569105691,1.0,1.5,1.065040650406504,1.0,5.3076923076923075,1.07002457002457,1.0,3.85,1.0601357904946653,1.0,4.1,1.06449864498645,1.0564516129032258,1.0,1.4827586206896552,1.06574827802129,1.0,10.545454545454545,0
-Sample_Size,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,172.0,137.0,35.0,1908.0,1744.0,164.0,930.0,833.0,97.0,1150.0,1048.0,102.0,2080.0,348.0,276.0,72.0,1732.0,1605.0,127.0,0
-Selection-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.7558139534883721,0.7956204379562044,0.6,0.9612159329140462,0.9724770642201835,0.8414634146341463,0.9365591397849462,0.9531812725090036,0.7938144329896907,0.9504347826086956,0.9646946564885496,0.803921568627451,0.9442307692307692,0.7528735632183908,0.7934782608695652,0.5972222222222222,0.9826789838337182,0.9881619937694704,0.9133858267716536,0
-Statistical_Bias,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.276128644034887,0.17380209140127534,0.6766640072007386,0.1289059558239749,0.07090503005124324,0.7456962884315602,0.14780473189310347,0.07679580415445281,0.7576030494837839,0.13564199115265949,0.07967400197584328,0.7106856446556344,0.1410801396568003,0.27502703770599213,0.1756101522346261,0.6561250986795618,0.1141670215730135,0.061682776893823135,0.7774521610226242,0
-Std,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.043211203603756757,0.039001217929493896,0.05969029038587135,0.024085471794644778,0.021311889128880726,0.053580155752525914,0.02490370556976991,0.021819603134675115,0.051388832667027276,0.026284313934036855,0.023220774891149123,0.057760675864883336,0.02566702269424442,0.04421187156900244,0.03990185592553161,0.060733598202307316,0.02194092141917757,0.019625040038418647,0.05120855619176078,0
-TNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.5714285714285714,1.0,0.0,0.25806451612903225,1.0,0.0,0.33620689655172414,1.0,0.0,0.31092436974789917,1.0,0.0,0.32340425531914896,0.57,1.0,0.0,0.14074074074074075,1.0,0.0,0
-TPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 700}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.649,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.8861788617886179,1.0,0.0,0.9849012775842044,1.0,0.0,0.9754299754299754,1.0,0.0,0.9806013579049466,1.0,0.0,0.978319783197832,0.8830645161290323,1.0,0.0,0.9931120851596744,1.0,0.0,0
-Accuracy,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.75,1.0,0.0,0.9129979035639413,1.0,0.0,0.8881720430107527,1.0,0.0,0.908695652173913,1.0,0.0,0.8995192307692308,0.7672413793103449,1.0,0.0,0.9260969976905312,1.0,0.0,0
-Aleatoric_Uncertainty,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.5891215644365289,0.48927546327099836,0.8886598679331205,0.32188174290524896,0.28410771416827957,0.718281490253446,0.33816043498710907,0.28987378572144484,0.7216678608855572,0.34868701739851005,0.30487696252362523,0.7847013730580786,0.343980420454951,0.5894883168279874,0.5015844215216906,0.8792456013561508,0.29465204404743556,0.26440718971122845,0.6736578749480313,0
-F1,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.8377358490566038,1.0,0.0,0.95347533632287,1.0,0.0,0.9387514723203769,1.0,0.0,0.9508196721311475,1.0,0.0,0.9454735194364727,0.8485981308411215,1.0,0.0,0.9611885991510006,1.0,0.0,0
-FNR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.0975609756097561,0.0,1.0,0.012195121951219513,0.0,1.0,0.020884520884520884,0.0,1.0,0.015518913676042677,0.0,1.0,0.01788617886178862,0.0846774193548387,0.0,1.0,0.007514088916718848,0.0,1.0,0
-FPR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.6326530612244898,0.0,1.0,0.7795698924731183,0.0,1.0,0.75,0.0,1.0,0.7478991596638656,0.0,1.0,0.7489361702127659,0.6,0.0,1.0,0.8592592592592593,0.0,1.0,0
-IQR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.023912502324325242,0.019156958789008097,0.0381791329302767,0.0105906991544979,0.00899457929829072,0.027340342464816637,0.011449354413518452,0.009318891051395165,0.028370149962689946,0.011888786766951107,0.009992728050671836,0.030759085419444807,0.011692309801233623,0.024201277940319232,0.019911003053478166,0.03834329515990644,0.009178960544650604,0.007994742522522323,0.02401869263444561,0
-Jitter,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.031174184877876737,0.013566281017488057,0.0839978964590242,0.008712983154767973,0.004615990399760046,0.05170672640311374,0.009350678121789593,0.005163894533198856,0.04260340162350032,0.011556696526108344,0.00528777860594856,0.07394735582675098,0.01057035175879348,0.036317651475770714,0.01897653059303909,0.0934791240151367,0.005397106781017945,0.002945368989586808,0.036120445979899496,0
-Label_Stability,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.9565697674418605,0.9824806201550388,0.8788372093023257,0.9871750524109015,0.9929793340987371,0.9262650602409638,0.987,0.9929176755447942,0.94,0.9827391304347827,0.9917320574162678,0.8932380952380953,0.9846442307692307,0.9476724137931033,0.9722846441947567,0.8665432098765432,0.9920727482678984,0.995579800498753,0.948125,0
-Mean,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.247355085785541,0.1906855690445673,0.41736363600846205,0.0969206653426322,0.07952414752913668,0.2794793040842538,0.10726019236204597,0.08341812655626832,0.29662121501177996,0.11105889159317614,0.09016854628423701,0.3189675663345226,0.1093604347254112,0.25966118353256934,0.21385445860289146,0.41065372126372957,0.07916143900665194,0.06610371755332499,0.2427910109686555,0
-Overall_Uncertainty,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.5909635668938957,0.49076897425279215,0.8915473448172062,0.32261979024028553,0.2847299722958807,0.7202346267412091,0.33896081277435763,0.2905226309331388,0.7236717570132695,0.3495397716557064,0.3055857571935519,0.7869868679695292,0.3448097563866418,0.5913754408802875,0.503139152384341,0.8822283918484076,0.2952688451835305,0.26494429908442346,0.6752733134879653,0
-PPV,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.7816901408450704,1.0,0.0,0.9214517876489707,1.0,0.0,0.9015837104072398,1.0,0.0,0.9193840579710145,1.0,0.0,0.9114688128772636,0.7909407665505227,1.0,0.0,0.9318048206937096,1.0,0.0,0
-Per_Sample_Accuracy,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.7585755813953488,0.9912403100775193,0.06058139534883721,0.9130110062893082,0.9964896670493686,0.036987951807228914,0.8883817204301075,0.9964588377723972,0.030000000000000002,0.9098304347826087,0.9958660287081338,0.05357142857142857,0.9002403846153846,0.7721982758620689,0.9861423220973783,0.06697530864197532,0.9259670900692841,0.9977899002493766,0.025937500000000002,0
-Positive-Rate,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,1.1544715447154472,1.0,2.5833333333333335,1.0720092915214867,1.0,6.904761904761905,1.085995085995086,1.0,5.117647058823529,1.0708050436469447,1.0,5.5625,1.0775067750677507,1.157258064516129,1.0,2.857142857142857,1.0651221039448966,1.0,9.666666666666666,0
-Sample_Size,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,172.0,129.0,43.0,1908.0,1742.0,166.0,930.0,826.0,104.0,1150.0,1045.0,105.0,2080.0,348.0,267.0,81.0,1732.0,1604.0,128.0,0
-Selection-Rate,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.8255813953488372,0.8604651162790697,0.7209302325581395,0.9675052410901468,0.9764638346727899,0.8734939759036144,0.9505376344086022,0.9648910411622276,0.8365384615384616,0.96,0.9712918660287081,0.8476190476190476,0.9557692307692308,0.8247126436781609,0.850187265917603,0.7407407407407407,0.9821016166281755,0.9881546134663342,0.90625,0
-Statistical_Bias,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.27504711670850107,0.1506133016514677,0.6483485618796012,0.1289834655119916,0.07031450212142086,0.7446541536226798,0.14859124342882396,0.07421384124811968,0.7393194569024943,0.1349727825060312,0.07714482845704078,0.7104986108983646,0.14106180589939527,0.27006616933129063,0.1543447765772945,0.6515181676685371,0.11514176059090822,0.06278486487681847,0.7712391100080953,0
-Std,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.01787989886811148,0.014373745163374837,0.028398359982321417,0.007869109465686797,0.006678257158356828,0.020365884883571175,0.008488198684187412,0.006924835756316542,0.020904908092084895,0.008865720599609819,0.007433323216474148,0.02312148503176959,0.008696924743194993,0.018098602317799122,0.014907720127373635,0.02861669546401646,0.006807904075780305,0.005927291659553734,0.01784307841661955,0
-TNR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.3673469387755102,1.0,0.0,0.22043010752688172,1.0,0.0,0.25,1.0,0.0,0.25210084033613445,1.0,0.0,0.251063829787234,0.4,1.0,0.0,0.14074074074074075,1.0,0.0,0
-TPR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.641,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.9024390243902439,1.0,0.0,0.9878048780487805,1.0,0.0,0.9791154791154791,1.0,0.0,0.9844810863239574,1.0,0.0,0.9821138211382113,0.9153225806451613,1.0,0.0,0.9924859110832811,1.0,0.0,0
-Accuracy,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.7965116279069767,1.0,0.0,0.9124737945492662,1.0,0.0,0.8946236559139785,1.0,0.0,0.9095652173913044,1.0,0.0,0.9028846153846154,0.7844827586206896,1.0,0.0,0.9266743648960739,1.0,0.0,0
-Aleatoric_Uncertainty,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.6115836953497042,0.5445957245167313,0.8737937526101981,0.31998663134588556,0.2817476539461111,0.7186336951363496,0.3395684737082231,0.2964984178968526,0.7052244577394499,0.3477636588343056,0.3044412964519983,0.7834866497178965,0.3440994654846629,0.611982495927394,0.5377857770264783,0.882058552726727,0.2902753923933983,0.2606334969786561,0.6648835982253761,0
-F1,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.8648648648648649,1.0,0.0,0.9531030609379387,1.0,0.0,0.9421487603305785,1.0,0.0,0.9510818438381938,1.0,0.0,0.9471204188481676,0.8554913294797688,1.0,0.0,0.9615268100575584,1.0,0.0,0
-FNR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.08943089430894309,0.0,1.0,0.014518002322880372,0.0,1.0,0.019656019656019656,0.0,1.0,0.019398642095053348,0.0,1.0,0.01951219512195122,0.10483870967741936,0.0,1.0,0.006261740763932373,0.0,1.0,0
-FPR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.4897959183673469,0.0,1.0,0.7634408602150538,0.0,1.0,0.7068965517241379,0.0,1.0,0.7058823529411765,0.0,1.0,0.7063829787234043,0.49,0.0,1.0,0.8666666666666667,0.0,1.0,0
-IQR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.024815218199418322,0.021806889229005432,0.03659067731217739,0.010269958261550924,0.008581377613600439,0.027873664297968836,0.011223445322083164,0.009369705301001008,0.02696131978678064,0.011674342385914586,0.00968654630900504,0.03166698369790868,0.011472739371797653,0.025265706341934365,0.02147089571666985,0.03907881701789719,0.008701404206897204,0.007517861507165882,0.02365877454602139,0
-Jitter,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.030009349070934097,0.025189817701649676,0.04887437185929909,0.007254511551468568,0.002381984592693784,0.05805133451689412,0.0088068838817726,0.005149425009663387,0.03985796328580953,0.00940244701769683,0.0031679910066586894,0.07210668728256929,0.009136161577115758,0.03350950153064315,0.016894177848956526,0.09398927973197556,0.0042389777989251635,0.0018603923042000519,0.034299054326745924,0
-Label_Stability,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.9577906976744187,0.9631386861313868,0.9368571428571428,0.99,0.9969902354968408,0.9171257485029938,0.9877741935483872,0.9928365384615384,0.944795918367347,0.9869826086956519,0.9958604206500957,0.8976923076923077,0.9873365384615383,0.9535057471264368,0.9763003663003662,0.8705333333333334,0.994133949191686,0.9976199376947041,0.9500787401574803,0
-Mean,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.27990861449265425,0.23687207410087685,0.4483659297404686,0.09764045847136385,0.07943268391798641,0.28745923390507744,0.1115736628080759,0.0894819945281686,0.2991274180007584,0.1136337130822506,0.09205999751969234,0.3306155061441347,0.11271263291158595,0.2910565701228048,0.24731175503180208,0.45028769705405447,0.07687909356429717,0.0643163038812165,0.23564505766937208,0
-Overall_Uncertainty,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.6136094522005411,0.5463904551386578,0.8767238121284847,0.32069789872723925,0.2823317997970399,0.7206702235025518,0.34037042780630966,0.2971631788415554,0.7071911537111623,0.3485981901653893,0.3051198766773121,0.7858896892858577,0.3449194310336854,0.6140499172446062,0.5395372672119887,0.8852759633633344,0.29084471440470133,0.2611224185992334,0.6664690039147482,0
-PPV,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.8235294117647058,1.0,0.0,0.922784121805329,1.0,0.0,0.9068181818181819,1.0,0.0,0.9232876712328767,1.0,0.0,0.9159493670886076,0.8191881918819188,1.0,0.0,0.9313380281690141,1.0,0.0,0
-Per_Sample_Accuracy,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.7882558139534883,0.9815693430656934,0.03157142857142858,0.914727463312369,0.9984951177484205,0.041437125748502994,0.8943279569892472,0.9964182692307693,0.027602040816326532,0.9123086956521739,0.9979302103250478,0.051153846153846154,0.9042692307692308,0.7891379310344828,0.9881501831501831,0.06473333333333334,0.9274018475750577,0.9988099688473521,0.024960629921259844,0
-Positive-Rate,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,1.1056910569105691,1.0,2.1818181818181817,1.0679442508710801,1.0,5.68,1.0810810810810811,1.0,5.125,1.0620756547041708,1.0,4.2,1.070460704607046,1.092741935483871,1.0,1.8846153846153846,1.0670006261740763,1.0,11.7,0
-Sample_Size,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,172.0,137.0,35.0,1908.0,1741.0,167.0,930.0,832.0,98.0,1150.0,1046.0,104.0,2080.0,348.0,273.0,75.0,1732.0,1605.0,127.0,0
-Selection-Rate,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.7906976744186046,0.8175182481751825,0.6857142857142857,0.9638364779874213,0.9747271682940839,0.8502994011976048,0.946236559139785,0.9591346153846154,0.8367346938775511,0.9521739130434783,0.9665391969407265,0.8076923076923077,0.9495192307692307,0.7787356321839081,0.8131868131868132,0.6533333333333333,0.9838337182448037,0.9887850467289719,0.9212598425196851,0
-Statistical_Bias,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.2758597442084151,0.17583238687974592,0.6673954000377772,0.12760814856082148,0.06867265133679296,0.7420195298005438,0.14761280273512567,0.07672551110543081,0.7494314418770248,0.13360375383845904,0.07630257910149453,0.7099213382121593,0.13986741512398787,0.2715719704816224,0.16753202078607243,0.6502773873734242,0.1134048370267264,0.06100428741762241,0.7756322553150093,0
-Std,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.01887249133378814,0.016512447630630023,0.028110376686149914,0.007664241811293473,0.006403741772299821,0.02080514341541292,0.008452462635865162,0.007046440163211389,0.020389306485333932,0.008703175333917306,0.007216521544147636,0.02365548171948537,0.008591077829499763,0.019081231222147953,0.01617745777272049,0.02965096657806392,0.00648335647809008,0.005604158117767979,0.01759448536247567,0
-TNR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.5102040816326531,1.0,0.0,0.23655913978494625,1.0,0.0,0.29310344827586204,1.0,0.0,0.29411764705882354,1.0,0.0,0.2936170212765957,0.51,1.0,0.0,0.13333333333333333,1.0,0.0,0
-TPR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.661,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.9105691056910569,1.0,0.0,0.9854819976771196,1.0,0.0,0.9803439803439803,1.0,0.0,0.9806013579049466,1.0,0.0,0.9804878048780488,0.8951612903225806,1.0,0.0,0.9937382592360676,1.0,0.0,0
-Accuracy,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.7790697674418605,1.0,0.0,0.9140461215932913,1.0,0.0,0.889247311827957,1.0,0.0,0.9139130434782609,1.0,0.0,0.9028846153846154,0.7787356321839081,1.0,0.0,0.9278290993071594,1.0,0.0,0
-Aleatoric_Uncertainty,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.39592839083088177,0.345805679425671,0.5726768994703095,0.2021904318614913,0.17798363293063837,0.45960907415056135,0.21502472358467864,0.18395882725444804,0.46445672615847194,0.22078785589642255,0.19467884560860582,0.49796532874991134,0.2182110707762678,0.39722758461153446,0.3478601176522983,0.5709754228706647,0.18224239478627194,0.16333000932812722,0.4253800222361812,0
-F1,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.8527131782945736,1.0,0.0,0.9538028169014084,1.0,0.0,0.9390171699230314,1.0,0.0,0.9532798489853704,1.0,0.0,0.946953781512605,0.8504854368932039,1.0,0.0,0.962040692377771,1.0,0.0,0
-FNR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.10569105691056911,0.0,1.0,0.01684088269454123,0.0,1.0,0.025798525798525797,0.0,1.0,0.020368574199806012,0.0,1.0,0.022764227642276424,0.11693548387096774,0.0,1.0,0.008140262993112084,0.0,1.0,0
-FPR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.5102040816326531,0.0,1.0,0.7258064516129032,0.0,1.0,0.7068965517241379,0.0,1.0,0.6554621848739496,0.0,1.0,0.6808510638297872,0.48,0.0,1.0,0.8296296296296296,0.0,1.0,0
-IQR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.15908351589457667,0.13563815722483819,0.2417592543615492,0.0752969261849312,0.0616189297021114,0.2207507424412589,0.08110827525610916,0.0655472027261666,0.20605009061788096,0.08312887296220384,0.0679651663311806,0.24410923325720804,0.08222543264169034,0.16457830906802673,0.1342343043150902,0.27137344267901103,0.06567878079621399,0.05554538270019985,0.19595374671857185,0
-Jitter,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.1598913170503697,0.1342638565964109,0.25026183549325454,0.06353065115935905,0.05185160319948576,0.1877273562936732,0.07066985464958188,0.054346581760067667,0.20173147289846627,0.07216941227878665,0.060395746573017474,0.19716055022586562,0.07149893699265836,0.15868408132617043,0.1312162287452149,0.25535665339685243,0.053981367576914366,0.04533973539133085,0.16507819095476403,0
-Label_Stability,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.7993023255813955,0.837910447761194,0.6631578947368421,0.92416142557652,0.9394667431192661,0.7614024390243903,0.9147634408602151,0.937049576783555,0.7358252427184465,0.9130869565217393,0.9284205518553759,0.7503030303030301,0.9138365384615386,0.8010632183908045,0.841180811808118,0.6598701298701299,0.9364953810623557,0.9475731176104543,0.79408,0
-Mean,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.27959745200299124,0.23440985530667052,0.43894318772159613,0.09741696798948628,0.07959864389316311,0.2868996339894108,0.11061309223206439,0.08615939047496757,0.3069549500293369,0.11399318338489951,0.09417425274783266,0.3243941540874982,0.11248189262906458,0.2900997099779303,0.24581031439858966,0.4459753749389861,0.07679424803471975,0.06447813339063628,0.2351302178990567,0
-Overall_Uncertainty,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.6177290090183984,0.5434985783687246,0.8794889486777746,0.3111113491891901,0.2735805366044171,0.7102195025297032,0.331049351633622,0.28209369702908565,0.7241204813224725,0.34084691024771374,0.3012956973325011,0.7607289786708292,0.33646627105968235,0.6202617329292858,0.5466346669149742,0.8793907574731609,0.2794450119773371,0.25004061643158343,0.6574679211135468,0
-PPV,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.8148148148148148,1.0,0.0,0.9261487964989059,1.0,0.0,0.9062857142857143,1.0,0.0,0.9283088235294118,1.0,0.0,0.9184921039225675,0.8202247191011236,1.0,0.0,0.9339622641509434,1.0,0.0,0
-Per_Sample_Accuracy,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.7522674418604652,0.9130597014925372,0.18526315789473685,0.8967767295597484,0.967858371559633,0.14088414634146343,0.8762311827956989,0.9662756952841596,0.15325242718446602,0.8917782608695651,0.9621170313986679,0.14505050505050507,0.8848269230769231,0.7546120689655172,0.9138007380073802,0.19435064935064936,0.9109901847575058,0.9724051026757934,0.12143999999999999,0
-Positive-Rate,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,1.0975609756097562,1.0,1.9230769230769231,1.0615563298490127,1.0,4.655172413793103,1.074938574938575,1.0,3.9047619047619047,1.055286129970902,1.0,3.7142857142857144,1.0639566395663957,1.0766129032258065,1.0,1.6551724137931034,1.0619912335629305,1.0,8.615384615384615,0
-Sample_Size,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,172.0,134.0,38.0,1908.0,1744.0,164.0,930.0,827.0,103.0,1150.0,1051.0,99.0,2080.0,348.0,271.0,77.0,1732.0,1607.0,125.0,0
-Selection-Rate,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.7848837209302325,0.8208955223880597,0.6578947368421053,0.9580712788259959,0.970756880733945,0.823170731707317,0.9408602150537635,0.9588875453446191,0.7961165048543689,0.9460869565217391,0.9609895337773549,0.7878787878787878,0.94375,0.7672413793103449,0.8081180811808119,0.6233766233766234,0.9792147806004619,0.985687616677038,0.896,0
-Statistical_Bias,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.2845342482087718,0.17736885006743314,0.6624332837598085,0.12869735666532595,0.07001678768213461,0.7527151146329215,0.14820267026425304,0.07440029968425345,0.740771218513376,0.13623127292486545,0.08025466773339789,0.7304879603615568,0.14158386885064936,0.28265475158042863,0.1746623813286797,0.6627317949339865,0.11323937278254127,0.0613212185977639,0.7806991629820391,0
-Std,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.20013356180486322,0.1809615358266966,0.2677401797278716,0.10619063365442924,0.09506844753352973,0.2244655885010679,0.11208641793994946,0.09733071059836869,0.23056185455633124,0.11547333300776907,0.10423950583672913,0.234733457823557,0.11395899117456128,0.2013623426624389,0.18221828729093412,0.2687394726063065,0.09639757875089995,0.08753395298283138,0.21034835162518925,0
-TNR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.4897959183673469,1.0,0.0,0.27419354838709675,1.0,0.0,0.29310344827586204,1.0,0.0,0.3445378151260504,1.0,0.0,0.3191489361702128,0.52,1.0,0.0,0.17037037037037037,1.0,0.0,0
-TPR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 04:03:36.539,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.8943089430894309,1.0,0.0,0.9831591173054588,1.0,0.0,0.9742014742014742,1.0,0.0,0.979631425800194,1.0,0.0,0.9772357723577236,0.8830645161290323,1.0,0.0,0.9918597370068879,1.0,0.0,0
-Accuracy,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.75,1.0,0.0,0.9030398322851153,1.0,0.0,0.8827956989247312,1.0,0.0,0.8965217391304348,1.0,0.0,0.8903846153846153,0.7442528735632183,1.0,0.0,0.9197459584295612,1.0,0.0,0
-Aleatoric_Uncertainty,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.0902220830630179,0.0777709581699652,0.12757545774217605,0.05008348843835426,0.04246982495090536,0.12099344621605407,0.0537261105967286,0.045174973756671045,0.11813421468560242,0.05314105336718383,0.044732598002045106,0.12599078010212525,0.05340264145539376,0.08700416833707765,0.07218328173309448,0.13013461362282647,0.04665129540757274,0.04049748400845197,0.11717663036296411,0
-F1,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.8313725490196079,1.0,0.0,0.94754749078537,1.0,0.0,0.9351576442593694,1.0,0.0,0.9433603046168492,1.0,0.0,0.9397144368059228,0.8271844660194175,1.0,0.0,0.9574533210896847,1.0,0.0,0
-FNR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.13821138211382114,0.0,1.0,0.029616724738675958,0.0,1.0,0.0343980343980344,0.0,1.0,0.038797284190106696,0.0,1.0,0.03685636856368564,0.14112903225806453,0.0,1.0,0.020663744520976832,0.0,1.0,0
-FPR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.5306122448979592,0.0,1.0,0.7204301075268817,0.0,1.0,0.6982758620689655,0.0,1.0,0.6638655462184874,0.0,1.0,0.6808510638297872,0.54,0.0,1.0,0.7851851851851852,0.0,1.0,0
-IQR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.34062075328581615,0.2789005545988675,0.5257813493466622,0.13349297228433363,0.09549155619061678,0.48741967460581553,0.14269388878760147,0.10675316355847014,0.4134033879905081,0.15703134270539093,0.10947213926108885,0.5690778868320754,0.15062084648253313,0.35023159099034945,0.26444547604213864,0.5998788243789629,0.11051429966456544,0.08287429037336642,0.4272807370809687,0
-Jitter,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.25363415916793314,0.2160305402984102,0.36644501577656896,0.12502175447467961,0.10389352450003994,0.3217998098601097,0.13281309774678782,0.10903071998237104,0.311944585311888,0.13795687131308645,0.11383342512758028,0.34695916557577816,0.13565701101661398,0.2575469300525594,0.21568169030481296,0.37937948167805524,0.11116642682233019,0.09479907383748722,0.2987433570731236,0
-Label_Stability,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.6287790697674419,0.6868217054263567,0.45465116279069767,0.8285744234800839,0.8627045850261172,0.5107027027027027,0.8168172043010754,0.853020706455542,0.5441284403669724,0.8081999999999999,0.8484093113482056,0.45983193277310924,0.8120528846153847,0.624367816091954,0.6946332046332047,0.41988764044943816,0.8497632794457275,0.8757878217200252,0.5515107913669065,0
-Mean,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.2757055884327329,0.2224482133830747,0.4354777135817077,0.1070713278231359,0.08393719946367835,0.32253134492229985,0.11785572340173939,0.09016463193295457,0.3264280729051552,0.12357185385509192,0.09630887622248181,0.35977462645358804,0.12101608398892949,0.2865110924704483,0.23561680084289205,0.4346191995663705,0.08776420006770055,0.07049269477967696,0.2857031059944743,0
-Overall_Uncertainty,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.5609886482288307,0.485641189258622,0.7870310251394568,0.29782837866809003,0.2550663626549219,0.6960929926718127,0.3142107017181388,0.26519856058900737,0.6833755445348073,0.3239396881706136,0.27584775754143315,0.7406017089998991,0.3195897086509974,0.5692849608539868,0.488061902284981,0.8056531874761502,0.2694199928503968,0.2358562608769508,0.6540748492079469,0
-PPV,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.803030303030303,1.0,0.0,0.9257617728531856,1.0,0.0,0.9065743944636678,1.0,0.0,0.9261682242990654,1.0,0.0,0.9173980382034074,0.797752808988764,1.0,0.0,0.9365269461077844,1.0,0.0,0
-Per_Sample_Accuracy,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.7007267441860465,0.8434108527131783,0.27267441860465114,0.864769392033543,0.9313464886825303,0.24470270270270267,0.8446236559139785,0.9264981729598051,0.22793577981651378,0.8565260869565217,0.9242046556741028,0.27016806722689074,0.851204326923077,0.7048275862068965,0.8473166023166022,0.29016853932584274,0.880614896073903,0.9378876333961079,0.22424460431654675,0
-Positive-Rate,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,1.0731707317073171,1.0,1.5294117647058822,1.0481997677119628,1.0,2.627450980392157,1.065110565110565,1.0,2.892857142857143,1.037827352085354,1.0,1.975,1.0498644986449865,1.0766129032258065,1.0,1.542857142857143,1.0457107075767063,1.0,3.212121212121212,0
-Sample_Size,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,172.0,129.0,43.0,1908.0,1723.0,185.0,930.0,821.0,109.0,1150.0,1031.0,119.0,2080.0,348.0,259.0,89.0,1732.0,1593.0,139.0,0
-Selection-Rate,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.7674418604651163,0.8217054263565892,0.6046511627906976,0.9460167714884696,0.9698200812536274,0.7243243243243244,0.932258064516129,0.9573690621193667,0.7431192660550459,0.9304347826086956,0.9612027158098934,0.6638655462184874,0.93125,0.7672413793103449,0.8223938223938224,0.6067415730337079,0.964203233256351,0.9817953546767106,0.762589928057554,0
-Statistical_Bias,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.30023287755938216,0.15850182916013472,0.7254260227571246,0.13624653180061283,0.07006346390199378,0.7526434290401838,0.15643967626815544,0.07503362310404371,0.7695990308345385,0.14444307711860732,0.07717117332334895,0.7272778066388711,0.14980694116143414,0.29583679367405696,0.15426341447734093,0.7078312342577586,0.12046607010231593,0.06353537973330908,0.7729163561298551,0
-Std,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.2897117585629207,0.25628674703868176,0.3899867931356377,0.1672310859552482,0.14799797156173605,0.3463589567661744,0.17495256754633828,0.1526346346354529,0.34305369525126406,0.1793056057889924,0.1578549566761924,0.3651511455814026,0.1773592954208826,0.29510153645964743,0.2605411335951489,0.39567619198667137,0.15370207839923705,0.13846914109712344,0.3282781152500787,0
-TNR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.46938775510204084,1.0,0.0,0.27956989247311825,1.0,0.0,0.3017241379310345,1.0,0.0,0.33613445378151263,1.0,0.0,0.3191489361702128,0.46,1.0,0.0,0.21481481481481482,1.0,0.0,0
-TPR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 12:24:33.463,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.8617886178861789,1.0,0.0,0.9703832752613241,1.0,0.0,0.9656019656019657,1.0,0.0,0.9612027158098934,1.0,0.0,0.9631436314363143,0.8588709677419355,1.0,0.0,0.9793362554790231,1.0,0.0,0
-Accuracy,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.7558139534883721,1.0,0.0,0.909853249475891,1.0,0.0,0.8849462365591397,1.0,0.0,0.9069565217391304,1.0,0.0,0.8971153846153846,0.7528735632183908,1.0,0.0,0.9260969976905312,1.0,0.0,0
-Aleatoric_Uncertainty,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.6022044189316094,0.521108979184154,0.8532141133880186,0.3484698387738183,0.3113603451578628,0.7230168208511367,0.3593688390726835,0.3118207994808255,0.7250888071483762,0.3776057322600752,0.3371401807433082,0.7720503138674396,0.36945173674840487,0.6077561988772564,0.5270982962140403,0.8534814372233336,0.3215707016324462,0.2931209307231367,0.6780818933397313,0
-F1,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.8421052631578947,1.0,0.0,0.9515492957746479,1.0,0.0,0.9368731563421829,1.0,0.0,0.9495520980669495,1.0,0.0,0.9439203354297694,0.8371212121212122,1.0,0.0,0.9610705596107056,1.0,0.0,0
-FNR,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.08943089430894309,0.0,1.0,0.01916376306620209,0.0,1.0,0.02457002457002457,0.0,1.0,0.023278370514064017,0.0,1.0,0.023848238482384824,0.10887096774193548,0.0,1.0,0.010644959298685034,0.0,1.0,0
-FPR,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.6326530612244898,0.0,1.0,0.7473118279569892,0.0,1.0,0.75,0.0,1.0,0.6974789915966386,0.0,1.0,0.723404255319149,0.59,0.0,1.0,0.8222222222222222,0.0,1.0,0
-IQR,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.10810431150236569,0.09817118814664716,0.13884969331768487,0.06186312210984109,0.05491215880115068,0.1320193564347627,0.06374646950879972,0.055144941252334996,0.1299058877804863,0.06725614080069561,0.06012030248052735,0.13681389190289645,0.065686912771146,0.1072239288535614,0.0967748695253259,0.13905710959772075,0.057341138177219586,0.051580265786924165,0.12953207031810915,0
-Jitter,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.10813719761598818,0.07441824507150736,0.21250538406317626,0.0343496834276194,0.0218388312530406,0.1606220053757105,0.040426487275076285,0.025153043467641915,0.15790353637345347,0.040471444177406765,0.025777208188593134,0.18370591274127906,0.0404513432547338,0.10479538497082974,0.06564808776707973,0.22405808110319125,0.02752309468822112,0.018944379002243484,0.1350251256281407,0
-Label_Stability,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.8451162790697675,0.8938461538461538,0.6942857142857143,0.9504297693920336,0.9690725806451612,0.7622674418604652,0.9423333333333334,0.964872417982989,0.7689719626168224,0.9412260869565218,0.9630105465004795,0.7288785046728972,0.941721153846154,0.8458908045977012,0.9035877862595421,0.6701162790697673,0.9609757505773673,0.9736720698254364,0.801875,0
-Mean,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.2639932810395895,0.2156748853161827,0.4135502201834677,0.11544993393956768,0.09579796323675911,0.31379773126558924,0.12353172826168819,0.09803073880801871,0.31967485275112717,0.1311311400105518,0.10897766177480168,0.34707579234594743,0.12773332610360796,0.2764247232556483,0.2277661833560042,0.42466353085688957,0.09785768741486083,0.0839577676002771,0.2720410575913631,0
-Overall_Uncertainty,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.6342606919828047,0.5519313100613914,0.8890897312633693,0.3691633946573703,0.3303803236436642,0.7606018323305902,0.3805203914808457,0.3308344787712595,0.7626840004527105,0.39962837560879855,0.3576361803687779,0.808954166593299,0.39108490193620427,0.6390378279056512,0.5570925808174096,0.8886849760116896,0.34126526092155784,0.3113048977426562,0.7167060620071696,0
-PPV,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.7832167832167832,1.0,0.0,0.9239606126914661,1.0,0.0,0.9012485811577753,1.0,0.0,0.9238532110091743,1.0,0.0,0.9137493658041603,0.7892857142857143,1.0,0.0,0.9343583678296866,1.0,0.0,0
-Per_Sample_Accuracy,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.7526744186046512,0.9460000000000001,0.15428571428571428,0.9065041928721174,0.9844902073732718,0.11938953488372094,0.8826612903225807,0.9822904009720534,0.11635514018691591,0.9027782608695654,0.9814285714285715,0.13612149532710283,0.8937836538461538,0.7573132183908047,0.9512977099236641,0.16633720930232557,0.9212038106235566,0.9867923940149624,0.09929687499999999,0
-Positive-Rate,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,1.1626016260162602,1.0,2.8181818181818183,1.0615563298490127,1.0,4.212121212121212,1.0823095823095823,1.0,4.35,1.0572259941804074,1.0,3.4583333333333335,1.0682926829268293,1.1290322580645162,1.0,2.185185185185185,1.0588603631809643,1.0,6.529411764705882,0
-Sample_Size,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,172.0,130.0,42.0,1908.0,1736.0,172.0,930.0,823.0,107.0,1150.0,1043.0,107.0,2080.0,348.0,262.0,86.0,1732.0,1604.0,128.0,0
-Selection-Rate,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.8313953488372093,0.8615384615384616,0.7380952380952381,0.9580712788259959,0.972926267281106,0.8081395348837209,0.9473118279569892,0.9647630619684082,0.8130841121495327,0.9478260869565217,0.965484180249281,0.7757009345794392,0.9475961538461538,0.8045977011494253,0.8435114503816794,0.686046511627907,0.9763279445727483,0.9850374064837906,0.8671875,0
-Statistical_Bias,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.293494907787834,0.17606795947696244,0.656959271607198,0.14457423380311982,0.08718443511365298,0.7238108066223895,0.16163778851367724,0.08867080060776031,0.7228698543694679,0.15304836427664367,0.09709007208928086,0.6985109694300957,0.15688882799800963,0.2929014432168847,0.17455731305732203,0.6534382118425291,0.12956065819652662,0.0801165823368381,0.7491567338132484,0
-Std,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.07628767892055953,0.06843666044048978,0.10058845040648969,0.044731479410986215,0.0400094305644904,0.09239122823375792,0.046051962446283845,0.04008535734770087,0.09194463530734737,0.048383320361264304,0.043492702032656934,0.09605542238684825,0.0473409343704317,0.07589662096423555,0.06797453264662726,0.10003135514113522,0.0416034176645173,0.0377455173091039,0.08994773149329141,0
-TNR,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.3673469387755102,1.0,0.0,0.25268817204301075,1.0,0.0,0.25,1.0,0.0,0.3025210084033613,1.0,0.0,0.2765957446808511,0.41,1.0,0.0,0.17777777777777778,1.0,0.0,0
-TPR,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 20, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:12:17.651,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.6,0.9105691056910569,1.0,0.0,0.980836236933798,1.0,0.0,0.9754299754299754,1.0,0.0,0.976721629485936,1.0,0.0,0.9761517615176152,0.8911290322580645,1.0,0.0,0.989355040701315,1.0,0.0,0
-Accuracy,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.7790697674418605,1.0,0.0,0.9093291404612159,1.0,0.0,0.8870967741935484,1.0,0.0,0.9078260869565218,1.0,0.0,0.8985576923076923,0.7758620689655172,1.0,0.0,0.9232101616628176,1.0,0.0,0
-Aleatoric_Uncertainty,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.5977444702201369,0.52641213059897,0.8492848257263567,0.29759453661457524,0.25859598606787126,0.6887071678199601,0.31924208301884716,0.27054726006554647,0.70184426336621,0.32498025002690895,0.28352660131603713,0.7332595826132319,0.32241462727811215,0.5992651412379819,0.5297867342600268,0.8397673192385964,0.2667887734339812,0.2352475566465362,0.6459948309010837,0
-F1,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.8503937007874016,1.0,0.0,0.9512263884973217,1.0,0.0,0.9377593360995851,1.0,0.0,0.9498580889309366,1.0,0.0,0.9444882925545909,0.8470588235294118,1.0,0.0,0.9595867517471893,1.0,0.0,0
-FNR,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.12195121951219512,0.0,1.0,0.02032520325203252,0.0,1.0,0.028255528255528257,0.0,1.0,0.026188166828322017,0.0,1.0,0.02710027100271003,0.12903225806451613,0.0,1.0,0.011271133375078271,0.0,1.0,0
-FPR,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.46938775510204084,0.0,1.0,0.7419354838709677,0.0,1.0,0.7068965517241379,0.0,1.0,0.6638655462184874,0.0,1.0,0.6851063829787234,0.46,0.0,1.0,0.8518518518518519,0.0,1.0,0
-IQR,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.10380813953488373,0.09394402985074626,0.13859210526315788,0.056979035639413,0.04992334293948126,0.1277398843930636,0.05988978494623656,0.05135878787878788,0.12691904761904763,0.06162913043478262,0.05443917624521073,0.1324433962264151,0.060851442307692315,0.10677586206896553,0.09695555555555556,0.14076923076923079,0.05162413394919169,0.04567073170731707,0.12319924812030075,0
-Jitter,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.1159217599626041,0.08694292357309338,0.21811028828352702,0.031064362693972943,0.01954261219642836,0.14661486623870681,0.03989285135353373,0.02438769605603032,0.16171907154821602,0.0366165173694544,0.024364879955332142,0.15728358775007056,0.03808141669887758,0.10816034193958138,0.07854624976735551,0.21067066099729817,0.024000893613564184,0.015227827693816219,0.12947557335550425,0
-Label_Stability,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.8321511627906977,0.874179104477612,0.6839473684210527,0.9555293501048219,0.9727723342939483,0.7826011560693641,0.9416666666666667,0.9650545454545454,0.7579047619047617,0.9482869565217393,0.9662164750957855,0.7716981132075471,0.9453269230769231,0.8437931034482758,0.8851481481481481,0.7006410256410256,0.9657274826789839,0.9793058161350844,0.8024812030075189,0
-Mean,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.2773600581395349,0.23318694029850748,0.4331284210526316,0.10159428197064989,0.08175657060518729,0.30054473988439306,0.11440239784946236,0.08902919999999998,0.31376323809523804,0.1175248608695652,0.0954459865900383,0.33498094339622636,0.1161287596153846,0.2894466379310345,0.24440133333333333,0.4453726923076924,0.08130507505773671,0.06698332707942463,0.2534890977443609,0
-Overall_Uncertainty,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.6271478237767765,0.554350830750133,0.8838530097128348,0.31693254608433247,0.27626780032206755,0.7247552853764114,0.33925436466949827,0.2886223410419027,0.7370774074577492,0.34527840389206826,0.3021975225284821,0.7695844429824833,0.34258496327813076,0.6299433518283812,0.5589486724792085,0.8756941649601331,0.2848478274724222,0.2518395893120192,0.6816912321226806,0
-PPV,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.8244274809160306,1.0,0.0,0.9243835616438356,1.0,0.0,0.9060710194730813,1.0,0.0,0.9270544783010157,1.0,0.0,0.9176891615541922,0.8244274809160306,1.0,0.0,0.9321133412042503,1.0,0.0,0
-Per_Sample_Accuracy,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.7649709302325582,0.9370149253731344,0.15828947368421054,0.9068684486373165,0.986328530259366,0.10997109826589595,0.8853172043010753,0.9824909090909092,0.1218095238095238,0.9030739130434783,0.9830316091954021,0.11556603773584906,0.8951346153846155,0.7650574712643678,0.9422407407407407,0.15173076923076925,0.921270207852194,0.9896404002501563,0.09928571428571428,0
-Positive-Rate,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,1.065040650406504,1.0,1.5333333333333334,1.0598141695702672,1.0,3.942857142857143,1.0724815724815724,1.0,3.5652173913043477,1.0504364694471386,1.0,2.925925925925926,1.0601626016260162,1.0564516129032258,1.0,1.4375,1.060738885410144,1.0,6.388888888888889,0
-Sample_Size,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,172.0,134.0,38.0,1908.0,1735.0,173.0,930.0,825.0,105.0,1150.0,1044.0,106.0,2080.0,348.0,270.0,78.0,1732.0,1599.0,133.0,0
-Selection-Rate,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.7616279069767442,0.8059701492537313,0.6052631578947368,0.9564989517819706,0.9723342939481268,0.7976878612716763,0.9387096774193548,0.9587878787878787,0.780952380952381,0.9417391304347826,0.9616858237547893,0.7452830188679245,0.9403846153846154,0.7528735632183908,0.8,0.5897435897435898,0.9780600461893765,0.9874921826141339,0.8646616541353384,0
-Statistical_Bias,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.2877847093023256,0.18303380597014923,0.6571694736842105,0.13291773060796644,0.07233455331412102,0.7405004624277457,0.15161317204301075,0.07806539393939393,0.7294885714285714,0.14096152173913043,0.08201439655172413,0.7215350943396226,0.14572403846153845,0.2892299712643678,0.18118155555555554,0.6632437179487178,0.1168902829099307,0.06323199499687303,0.7620000751879699,0
-Std,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.07305468283664128,0.06585784196897422,0.09843301642262514,0.03967207422680322,0.03487349564038114,0.08779654733340607,0.041894501288248155,0.03603838511536694,0.08790684264660058,0.04286768423875831,0.03792988317981428,0.09150036636647116,0.04243255916953982,0.07455480562429982,0.06745286046536986,0.09913846194367282,0.03597843574791368,0.031968851428551576,0.08418388933182348,0
-TNR,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.5306122448979592,1.0,0.0,0.25806451612903225,1.0,0.0,0.29310344827586204,1.0,0.0,0.33613445378151263,1.0,0.0,0.3148936170212766,0.54,1.0,0.0,0.14814814814814814,1.0,0.0,0
-TPR,101,RandomForestClassifier,"{'bootstrap': False, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 500, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Law_School,200,OK,2023-08-07 01:00:06.671,adaeac61-1e2d-4f1c-ad7e-6a164a02d732,Exp_iter_1,100,100,"[0.0, 0.6]",0.0,0.8780487804878049,1.0,0.0,0.9796747967479674,1.0,0.0,0.9717444717444718,1.0,0.0,0.973811833171678,1.0,0.0,0.9728997289972899,0.8709677419354839,1.0,0.0,0.9887288666249218,1.0,0.0,0
diff --git a/docs/examples/pub_cov_subgroup_metrics.csv b/docs/examples/pub_cov_subgroup_metrics.csv
deleted file mode 100644
index 788e1430..00000000
--- a/docs/examples/pub_cov_subgroup_metrics.csv
+++ /dev/null
@@ -1,153 +0,0 @@
-Metric,Bootstrap_Model_Seed,Model_Name,Model_Params,Run_Number,Dataset_Name,Num_Estimators,Test_Set_Index,Tag,Record_Create_Date_Time,Session_Uuid,Experiment_Iteration,Dataset_Split_Seed,Model_Init_Seed,Fair_Intervention_Params_Lst,Intervention_Param,RAC1P_dis,RAC1P_dis_correct,RAC1P_dis_incorrect,RAC1P_priv,RAC1P_priv_correct,RAC1P_priv_incorrect,SEX&RAC1P_dis,SEX&RAC1P_dis_correct,SEX&RAC1P_dis_incorrect,SEX&RAC1P_priv,SEX&RAC1P_priv_correct,SEX&RAC1P_priv_incorrect,SEX_dis,SEX_dis_correct,SEX_dis_incorrect,SEX_priv,SEX_priv_correct,SEX_priv_incorrect,overall
-Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.7106382978723405,1.0,0.0,0.6943396226415094,1.0,0.0,0.7309523809523809,1.0,0.0,0.6907407407407408,1.0,0.0,0.7137767220902613,1.0,0.0,0.6869300911854104,1.0,0.0,0.702
-Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.7078014184397163,1.0,0.0,0.7069182389937106,1.0,0.0,0.7261904761904762,1.0,0.0,0.7,1.0,0.0,0.7173396674584323,1.0,0.0,0.6945288753799392,1.0,0.0,0.7073333333333334
-Aleatoric_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.8135845655489112,0.7866469125149843,0.8797402722645846,0.7863084864764371,0.7565593407316595,0.8538867928596355,0.8043374515789166,0.7763233060898863,0.8804466787039809,0.7971024405533379,0.768632177324783,0.860691711117715,0.79332014755367,0.7625311455668369,0.8701010197283034,0.8065604881771425,0.7819682317880847,0.8605201963706094,0.7991282436405
-Aleatoric_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.8148785905804831,0.7881025075981596,0.8797391022706743,0.7900820491165612,0.7635308789915832,0.8541239272720874,0.8053079922995199,0.7766991635658756,0.8811835815496201,0.8003474802232484,0.774436852377195,0.8608056118640398,0.7956992195010564,0.7657742495399613,0.871643260914928,0.8094618428374122,0.7873957517781504,0.8596320100716537,0.8017364236046045
-F1,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.5363636363636364,1.0,0.0,0.5244618395303327,1.0,0.0,0.5461847389558233,1.0,0.0,0.5242165242165242,1.0,0.0,0.52465483234714,1.0,0.0,0.536036036036036,1.0,0.0,0.5299684542586751
-F1,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.5275229357798165,1.0,0.0,0.5458089668615984,1.0,0.0,0.5344129554655871,1.0,0.0,0.5384615384615384,1.0,0.0,0.5258964143426295,1.0,0.0,0.5503355704697986,1.0,0.0,0.5374077976817703
-FNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.5645756457564576,0.0,1.0,0.564935064935065,0.0,1.0,0.5584415584415584,0.0,1.0,0.5670588235294117,0.0,1.0,0.5667752442996743,0.0,1.0,0.5625,0.0,1.0,0.5647668393782384
-FNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.5756457564575646,0.0,1.0,0.5454545454545454,0.0,1.0,0.5714285714285714,0.0,1.0,0.5552941176470588,0.0,1.0,0.5700325732899023,0.0,1.0,0.5477941176470589,0.0,1.0,0.5595854922279793
-FPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.1175115207373272,0.0,1.0,0.14168377823408623,0.0,1.0,0.10150375939849623,0.0,1.0,0.14198473282442747,0.0,1.0,0.1252336448598131,0.0,1.0,0.13730569948186527,0.0,1.0,0.13029315960912052
-FPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.1152073732718894,0.0,1.0,0.13347022587268995,0.0,1.0,0.10150375939849623,0.0,1.0,0.13435114503816795,0.0,1.0,0.11775700934579439,0.0,1.0,0.13471502590673576,0.0,1.0,0.1248642779587405
-IQR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.08182418362009894,0.07839051166541347,0.09025687797940002,0.07926075106534702,0.07627944599108963,0.0860330983945243,0.08132420456867172,0.07721459907427747,0.09248923896494633,0.08013164873173936,0.07731235739363329,0.0864286287863116,0.07966814664427953,0.07606107596458073,0.08866337269614244,0.08148596819853691,0.07890972096624026,0.08713870484415868,0.08046556436608042
-IQR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.0773868546726484,0.07399641405350874,0.08559962102677801,0.07475981335012077,0.07219855164645576,0.08093762054951874,0.07639056726578859,0.0723454923738037,0.08711880937061808,0.0758405054684555,0.07332595431745884,0.0817077914874477,0.07522697625213055,0.07182547366190477,0.08385936097690525,0.0769767023605915,0.07465472767225059,0.0822560179455258,0.07599452277170875
-Jitter,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.10372621975123697,0.08655623426514021,0.14589368410681852,0.10018779431750162,0.07782472143325488,0.15098786111627707,0.09357406078008795,0.07452310411997025,0.14533196958241826,0.10506960729573904,0.08504735473614684,0.14978996780308892,0.09908915121927978,0.07721034456809772,0.15364999270209795,0.10538482686991034,0.08831969582425019,0.14282870663999295,0.10185085427135611
-Jitter,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.09982073488007233,0.08075044561485044,0.14601527052738977,0.09032824499857926,0.07421404173894527,0.12919597989949616,0.09085343383584372,0.07117472608946632,0.14304478916322408,0.09632049134561811,0.07975459307117581,0.13497425398597693,0.09284283651034325,0.07357382941196199,0.14174401418858906,0.09728100991278386,0.08219731040322947,0.1315757893947365,0.09478971524288303
-Label_Stability,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.85022695035461,0.8754291417165668,0.7883333333333333,0.8580754716981133,0.8917572463768116,0.7815637860082304,0.8659523809523809,0.8943973941368077,0.7886725663716815,0.849888888888889,0.8797050938337801,0.7832934131736528,0.8592636579572447,0.8914475873544093,0.7790041493775934,0.8481458966565351,0.874070796460177,0.7912621359223301,0.8543866666666666
-Label_Stability,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.8559290780141845,0.8847695390781564,0.7860679611650486,0.8760251572327045,0.898914590747331,0.8208154506437768,0.8690238095238095,0.8987868852459017,0.7900869565217392,0.8656296296296296,0.8896296296296295,0.8096296296296298,0.8692161520190025,0.896887417218543,0.7989915966386556,0.8632066869300912,0.886148796498906,0.8110447761194031,0.8665799999999999
-Mean,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6264553066342766,0.6350224175892961,0.6054154900241553,0.6280926825239275,0.6391419380456405,0.6029931391165794,0.6328264669792415,0.6414983469204215,0.6092665807673632,0.6251829237522277,0.6354056146231387,0.6023502070166001,0.6309943982951967,0.6428417639960218,0.6014497228338032,0.6226252134029358,0.6296563735659773,0.607197619258786,0.6273231158557915
-Mean,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6286012173714474,0.6365736957866985,0.6092892429578048,0.6296421676798395,0.6373699060606255,0.6110027300403467,0.6346636366829191,0.6436055319289313,0.6109481753782781,0.6270098649495525,0.6343286695308334,0.609932654259897,0.6331384161126694,0.6434338032235482,0.6070106269741369,0.6240529410113603,0.6284860924652322,0.6139735867107661,0.6291529210348952
-Overall_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.8274442448734235,0.8000071226934146,0.8948265890507979,0.7999419940216349,0.7698496376961211,0.868299939254901,0.8182029164174677,0.7895586229561058,0.896024138476212,0.8107933823959507,0.7819920525873124,0.8751221010703346,0.8068965450963882,0.775618304922437,0.8848974676878604,0.8205094026015264,0.7956061221665376,0.8751515519054823,0.8128680519219754
-Overall_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.8271963320338425,0.7998580167111532,0.8934187560436576,0.8021624647050382,0.7753173398547557,0.8669133667044315,0.8175326721439048,0.7882031667287702,0.8953196212883927,0.8125267140962261,0.7863168379430732,0.8736830917869162,0.8077521965089973,0.7773050213920191,0.8850214980663708,0.8218316475133565,0.7994863510206975,0.8726366251110933,0.8139283823495762
-PPV,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6982248520710059,1.0,0.0,0.6600985221674877,1.0,0.0,0.7157894736842105,1.0,0.0,0.6642599277978339,1.0,0.0,0.665,1.0,0.0,0.6918604651162791,1.0,0.0,0.6774193548387096
-PPV,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.696969696969697,1.0,0.0,0.6829268292682927,1.0,0.0,0.7096774193548387,1.0,0.0,0.6823104693140795,1.0,0.0,0.676923076923077,1.0,0.0,0.7028571428571428,1.0,0.0,0.6891891891891891
-Per_Sample_Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6969716312056737,0.9376347305389221,0.1059313725490196,0.6898930817610063,0.9452445652173914,0.10983539094650205,0.7206904761904762,0.9470684039087948,0.1056637168141593,0.682537037037037,0.9393833780160857,0.10886227544910179,0.7064964370546318,0.9453743760399336,0.1107883817427386,0.6762310030395138,0.9366371681415928,0.10485436893203884,0.69322
-Per_Sample_Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.698418439716312,0.942304609218437,0.10764563106796117,0.6974465408805032,0.9494395017793595,0.08963519313304721,0.7180833333333334,0.9492622950819674,0.10495652173913043,0.6900555555555555,0.9448015873015873,0.09564814814814815,0.7087173396674584,0.9483609271523178,0.10054621848739495,0.6840653495440729,0.9430743982494529,0.09517412935323383,0.6979033333333333
-Positive-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6236162361623616,1.0,0.3333333333333333,0.6590909090909091,1.0,0.39655172413793105,0.6168831168831169,1.0,0.313953488372093,0.6517647058823529,1.0,0.38589211618257263,0.6514657980456026,1.0,0.3850574712643678,0.6323529411764706,1.0,0.3464052287581699,0.6424870466321243
-Positive-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6088560885608856,1.0,0.32051282051282054,0.6655844155844156,1.0,0.3869047619047619,0.6038961038961039,1.0,0.3068181818181818,0.6517647058823529,1.0,0.3728813559322034,0.6351791530944625,1.0,0.36,0.6433823529411765,1.0,0.348993288590604,0.6390328151986183
-Sample_Size,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,705.0,501.0,204.0,795.0,552.0,243.0,420.0,307.0,113.0,1080.0,746.0,334.0,842.0,601.0,241.0,658.0,452.0,206.0,1500.0
-Sample_Size,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,705.0,499.0,206.0,795.0,562.0,233.0,420.0,305.0,115.0,1080.0,756.0,324.0,842.0,604.0,238.0,658.0,457.0,201.0,1500.0
-Selection-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.2397163120567376,0.23552894211576847,0.25,0.25534591194968553,0.2427536231884058,0.2839506172839506,0.2261904761904762,0.22149837133550487,0.23893805309734514,0.2564814814814815,0.24664879356568364,0.27844311377245506,0.2375296912114014,0.22129783693843594,0.27800829875518673,0.2613981762917933,0.26327433628318586,0.25728155339805825,0.248
-Selection-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.23404255319148937,0.23046092184368738,0.24271844660194175,0.2578616352201258,0.2491103202846975,0.27896995708154504,0.22142857142857142,0.21639344262295082,0.23478260869565218,0.2564814814814815,0.25,0.2716049382716049,0.23159144893111638,0.2185430463576159,0.2647058823529412,0.26595744680851063,0.26914660831509846,0.25870646766169153,0.24666666666666667
-Statistical_Bias,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.38804196536167723,0.27890668733283297,0.6560653687560446,0.38599008865027307,0.2618247960764881,0.6680445804228218,0.3742132501958383,0.27018099381110705,0.6568495573649756,0.3919093897913865,0.26985787223587254,0.6645154739123851,0.37782562371741985,0.2650796811075449,0.6589887420100957,0.39863606517763234,0.2764306403591511,0.6667761235172126,0.3869544707046331
-Statistical_Bias,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.3885559433466212,0.27831558860610534,0.6555944725481619,0.38442822435245805,0.26520669854078754,0.6719925913316805,0.375213865977643,0.2692348260487328,0.6562887110064918,0.3907060691749649,0.27223415522421385,0.6671405350600507,0.37724518776147836,0.2658507318554373,0.6599437229179861,0.3980424473015309,0.27866914935160836,0.6694533784613047,0.3863682522797147
-Std,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.06074480598098658,0.05844502290559612,0.06639280265143079,0.05888889877355031,0.056772735070150515,0.06369598669238441,0.06031208764363007,0.05766774070193739,0.06749628685690134,0.05954693141781796,0.05752749308167824,0.06405741345003427,0.059162182534331226,0.05669577574866198,0.06531284841892547,0.06052766724568562,0.058728639401506376,0.06447504872903037,0.059761175161045364
-Std,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.05724953332096407,0.05479888693824584,0.06318580781114079,0.05557350053362412,0.053752796291960545,0.059965070421241856,0.05658861834255801,0.053703144311385224,0.06424139729479886,0.056272809455218974,0.05446330302023016,0.06049499113685953,0.05578663878039028,0.053308143239740924,0.06207660225329872,0.0570965107331645,0.05548270805571768,0.06076570388536947,0.056361235943673905
-TNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.8824884792626728,1.0,0.0,0.8583162217659137,1.0,0.0,0.8984962406015038,1.0,0.0,0.8580152671755725,1.0,0.0,0.874766355140187,1.0,0.0,0.8626943005181347,1.0,0.0,0.8697068403908795
-TNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.8847926267281107,1.0,0.0,0.86652977412731,1.0,0.0,0.8984962406015038,1.0,0.0,0.8656488549618321,1.0,0.0,0.8822429906542056,1.0,0.0,0.8652849740932642,1.0,0.0,0.8751357220412594
-TPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 11, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 200}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.469,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.4354243542435424,1.0,0.0,0.43506493506493504,1.0,0.0,0.44155844155844154,1.0,0.0,0.4329411764705882,1.0,0.0,0.43322475570032576,1.0,0.0,0.4375,1.0,0.0,0.43523316062176165
-TPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 9, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 351, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 300}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.855,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.42435424354243545,1.0,0.0,0.45454545454545453,1.0,0.0,0.42857142857142855,1.0,0.0,0.4447058823529412,1.0,0.0,0.42996742671009774,1.0,0.0,0.4522058823529412,1.0,0.0,0.44041450777202074
-Accuracy,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6936170212765957,1.0,0.0,0.6641509433962264,1.0,0.0,0.7095238095238096,1.0,0.0,0.6657407407407407,1.0,0.0,0.6805225653206651,1.0,0.0,0.6747720364741642,1.0,0.0,0.678
-Accuracy,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6936170212765957,1.0,0.0,0.6591194968553459,1.0,0.0,0.7095238095238096,1.0,0.0,0.6620370370370371,1.0,0.0,0.6781472684085511,1.0,0.0,0.6717325227963525,1.0,0.0,0.6753333333333333
-Aleatoric_Uncertainty,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.8515697157623061,0.830273708447981,0.8997815100989034,0.8348278134330117,0.8088630094213481,0.8861739427145041,0.8509770547299633,0.8296747971442832,0.903010438013018,0.8394762947269311,0.8147989191328764,0.8886259707715997,0.8467183943701027,0.8218368971854656,0.8997187582615417,0.8375499593192154,0.8157003835996907,0.882882723896173,0.84269650752778
-Aleatoric_Uncertainty,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.8504975521910515,0.8291507966101547,0.8988242349644708,0.8339844357109005,0.8065692616739931,0.886993849715843,0.8502673199637264,0.828748814196903,0.9028289160171146,0.8384315984260112,0.8127690713690363,0.8887020281403594,0.8463033278714274,0.820803400214462,0.9000319577316752,0.8359133717585339,0.8131635546087789,0.882466238333496,0.8417456004565714
-F1,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.47058823529411764,1.0,0.0,0.4517453798767967,1.0,0.0,0.47863247863247865,1.0,0.0,0.45385779122541603,1.0,0.0,0.4407484407484408,1.0,0.0,0.4830917874396135,1.0,0.0,0.46033519553072627
-F1,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.46798029556650245,1.0,0.0,0.4458077709611452,1.0,0.0,0.47413793103448276,1.0,0.0,0.4494720965309201,1.0,0.0,0.4342379958246347,1.0,0.0,0.4807692307692308,1.0,0.0,0.4558659217877095
-FNR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6457564575645757,0.0,1.0,0.6428571428571429,0.0,1.0,0.6363636363636364,0.0,1.0,0.6470588235294118,0.0,1.0,0.6547231270358306,0.0,1.0,0.6323529411764706,0.0,1.0,0.6442141623488774
-FNR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6494464944649446,0.0,1.0,0.6461038961038961,0.0,1.0,0.6428571428571429,0.0,1.0,0.6494117647058824,0.0,1.0,0.6612377850162866,0.0,1.0,0.6323529411764706,0.0,1.0,0.6476683937823834
-FPR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.0944700460829493,0.0,1.0,0.14168377823408623,0.0,1.0,0.09022556390977443,0.0,1.0,0.13129770992366413,0.0,1.0,0.12710280373831775,0.0,1.0,0.10880829015544041,0.0,1.0,0.11943539630836048
-FPR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.09216589861751152,0.0,1.0,0.14784394250513347,0.0,1.0,0.08646616541353383,0.0,1.0,0.13587786259541984,0.0,1.0,0.12710280373831775,0.0,1.0,0.11398963730569948,0.0,1.0,0.12160694896851248
-IQR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.038117359330767035,0.03679087601014397,0.041120370181622026,0.038256580190871976,0.037163104731888705,0.04041895862661418,0.03836409203429037,0.03681656696640721,0.04214411228207054,0.03812388974586299,0.037053575398342545,0.040255623861838605,0.038572413945265886,0.03672344915452171,0.04251091515380274,0.03770326297571445,0.03732054347265023,0.03849731652412807,0.03819114638662266
-IQR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.03716673753970955,0.03576627382150582,0.040337231790643045,0.03698256008895322,0.035666982878341184,0.03952633299803333,0.03723794966665782,0.03533935692747032,0.04187549586565682,0.037003468866867374,0.035871438549064286,0.039221007708591216,0.037240538881360766,0.03516629474978872,0.041610994228695235,0.03684977431323295,0.03642364847248363,0.03772175404291444,0.0370691234908087
-Jitter,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.04138087601126203,0.03137610342099107,0.06403056951423793,0.05556632217692276,0.04481488883812897,0.07682758361095354,0.03823342905001187,0.02805065596438884,0.06310610429195429,0.053046947701470705,0.042623199446464845,0.07380782026475709,0.049878967282970914,0.03660755785910355,0.07814854943864306,0.047645369705670494,0.040605957716508496,0.062250504860748915,0.04889916247906253
-Jitter,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.04132036066859113,0.031948906084616084,0.0625362925739811,0.05358616984292591,0.04110169166442774,0.07772589886702996,0.03834194783441002,0.02836126943442296,0.06272098195897755,0.05150763074632467,0.04015194855395816,0.07375232326013738,0.048660344477733555,0.03495208089484144,0.07754380759888109,0.04674749125566955,0.038920052752451396,0.0627647496742977,0.04782123953098891
-Label_Stability,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.9414042553191491,0.9575051124744377,0.9049537037037039,0.9201886792452829,0.9338825757575757,0.8931086142322098,0.9462142857142857,0.9622818791946308,0.9069672131147541,0.9239166666666666,0.9381780250347704,0.8955124653739611,0.9289073634204276,0.9478010471204187,0.8886617100371748,0.9317629179331306,0.9419369369369369,0.9106542056074766,0.93016
-Label_Stability,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.9424113475177305,0.9570961145194273,0.9091666666666667,0.9237484276729558,0.9414885496183206,0.8894464944649447,0.9469523809523809,0.9626845637583893,0.9085245901639346,0.9269074074074074,0.9433286713286714,0.8947397260273973,0.9312232779097388,0.9517863397548162,0.8878966789667897,0.9341793313069908,0.9454524886877828,0.9111111111111112,0.9325200000000001
-Mean,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6288360246290604,0.6363864744460471,0.6117426451822714,0.6288371788481966,0.642370058834907,0.6020755285373985,0.6315260899769207,0.641783083975156,0.6064721210304114,0.6277907377384233,0.638543835944856,0.6063739022524816,0.6310346148789993,0.6477686092195549,0.5953893406888936,0.6260240255618337,0.6288129819507721,0.6202375926801105,0.6288366363652027
-Mean,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6290729831079517,0.6366689361605433,0.6118765893916679,0.6295174814626796,0.6439561029507577,0.60159926131599,0.6314645318987215,0.6419338237273378,0.6058919993993149,0.6284701365337714,0.6398151444167217,0.6062463539685401,0.6311814330382298,0.6484439317366778,0.5948091571828287,0.6269119821211955,0.6300964314639359,0.6203956552254026,0.6293085672359575
-Overall_Uncertainty,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.8549267929668882,0.8335009110820216,0.9034326089006838,0.8384033957460167,0.8124002416253632,0.8898253634452867,0.8542986584559523,0.832829242890242,0.9067403456574414,0.843008011211333,0.8182839481446567,0.8922506742167075,0.8501800590830288,0.8250999645455408,0.9036034574844435,0.8410372019936616,0.8192499851637508,0.8862405864445042,0.8461693924398265
-Overall_Uncertainty,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.8538325680863391,0.832312730832533,0.9025510885359282,0.8373037289546026,0.8098620981517936,0.8903642992153846,0.853563330438458,0.8318124083351024,0.9066926319696058,0.8417702094774311,0.8160679260486544,0.8921185181118844,0.8495869644310914,0.8238903019608642,0.9037301167207586,0.8392951382504544,0.8165776072149208,0.8857819378694636,0.8450722833465186
-PPV,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.7007299270072993,1.0,0.0,0.6145251396648045,1.0,0.0,0.7,1.0,0.0,0.635593220338983,1.0,0.0,0.6091954022988506,1.0,0.0,0.704225352112676,1.0,0.0,0.6518987341772152
-PPV,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.7037037037037037,1.0,0.0,0.6022099447513812,1.0,0.0,0.7051282051282052,1.0,0.0,0.6260504201680672,1.0,0.0,0.6046511627906976,1.0,0.0,0.6944444444444444,1.0,0.0,0.6455696202531646
-Per_Sample_Accuracy,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6934397163120567,0.9787525562372188,0.04752314814814816,0.6601949685534592,0.9667897727272727,0.05389513108614232,0.7096547619047617,0.9811409395973154,0.04651639344262295,0.662662037037037,0.9689777468706536,0.05257617728531856,0.680688836104513,0.9739005235602095,0.05611524163568773,0.6695896656534955,0.9707882882882882,0.044672897196261684,0.67582
-Per_Sample_Accuracy,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6927801418439716,0.9785480572597137,0.04583333333333334,0.6587169811320756,0.9707251908396946,0.05542435424354243,0.7097857142857144,0.9813422818791946,0.04647540983606558,0.6610925925925926,0.9716503496503497,0.05273972602739726,0.6799940617577198,0.975893169877408,0.056531365313653145,0.6679863221884498,0.9727036199095023,0.04444444444444445,0.6747266666666667
-Positive-Rate,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.5055350553505535,1.0,0.2342857142857143,0.5811688311688312,1.0,0.3484848484848485,0.5194805194805194,1.0,0.24489795918367346,0.5552941176470588,1.0,0.31272727272727274,0.5667752442996743,1.0,0.3383084577114428,0.5220588235294118,1.0,0.2441860465116279,0.5457685664939551
-Positive-Rate,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.4981549815498155,1.0,0.22727272727272727,0.5876623376623377,1.0,0.36180904522613067,0.5064935064935064,1.0,0.23232323232323232,0.56,1.0,0.322463768115942,0.5602605863192183,1.0,0.33497536945812806,0.5294117647058824,1.0,0.2558139534883721,0.5457685664939551
-Sample_Size,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,705.0,489.0,216.0,795.0,528.0,267.0,420.0,298.0,122.0,1080.0,719.0,361.0,842.0,573.0,269.0,658.0,444.0,214.0,1500.0
-Sample_Size,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,705.0,489.0,216.0,795.0,524.0,271.0,420.0,298.0,122.0,1080.0,715.0,365.0,842.0,571.0,271.0,658.0,442.0,216.0,1500.0
-Selection-Rate,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.19432624113475178,0.19631901840490798,0.18981481481481483,0.22515723270440252,0.20833333333333334,0.25842696629213485,0.19047619047619047,0.18791946308724833,0.19672131147540983,0.21851851851851853,0.2086230876216968,0.23822714681440443,0.20665083135391923,0.1849912739965096,0.2527881040892193,0.21580547112462006,0.22522522522522523,0.19626168224299065,0.21066666666666667
-Selection-Rate,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.19148936170212766,0.19427402862985685,0.18518518518518517,0.22767295597484277,0.20801526717557253,0.2656826568265683,0.18571428571428572,0.18456375838926176,0.1885245901639344,0.22037037037037038,0.2083916083916084,0.24383561643835616,0.2042755344418052,0.18213660245183888,0.25092250922509224,0.2188449848024316,0.22624434389140272,0.2037037037037037,0.21066666666666667
-Statistical_Bias,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.4039291937726283,0.29349073469117737,0.6539495941931354,0.4087428626725564,0.28275627983019525,0.6578848691922816,0.3960629764865914,0.29149180749724696,0.6514909138540066,0.41053167343520086,0.28643633710730076,0.6576910829082206,0.40351857941126507,0.2883183735394532,0.6489078655248269,0.41027053734057767,0.2874005787752751,0.6651969934293362,0.4064804382895902
-Statistical_Bias,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.4036191387901632,0.2926940987099507,0.6547411045273106,0.40883293669159354,0.280566544015709,0.6568461830464403,0.39555014263916305,0.29080184109709023,0.65141074804521,0.41059501630410494,0.284594873687363,0.6574172134848459,0.4035569797393647,0.2872536582475763,0.6486093656132066,0.4099980251920011,0.285344897000071,0.6650752597328954,0.40638245167792125
-Std,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.028175265359520384,0.02722587397867902,0.030324581957814022,0.028620160323482583,0.02767576962960001,0.030487719448463856,0.02825427030311296,0.027118207992728415,0.03102924217601947,0.028472033341039888,0.027600880053087314,0.030207100415937122,0.02860264326558721,0.027150130097744484,0.031696658303408336,0.02816590259271443,0.027858635572061394,0.02880340986920951,0.02841105969042035
-Std,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.02798776425030242,0.026920845190441814,0.030403150455264618,0.027768179514933208,0.026766427576262006,0.02970514636313878,0.028044448850024377,0.026679762461346936,0.03137786314367912,0.027804081475763767,0.026908156831616716,0.02955911194306552,0.027963585810352985,0.026459865881110697,0.031131940347612554,0.027753400088932973,0.027333298484102108,0.028613052446966505,0.027871384340556738
-TNR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.9055299539170507,1.0,0.0,0.8583162217659137,1.0,0.0,0.9097744360902256,1.0,0.0,0.8687022900763359,1.0,0.0,0.8728971962616823,1.0,0.0,0.8911917098445595,1.0,0.0,0.8805646036916395
-TNR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.9078341013824884,1.0,0.0,0.8521560574948666,1.0,0.0,0.9135338345864662,1.0,0.0,0.8641221374045801,1.0,0.0,0.8728971962616823,1.0,0.0,0.8860103626943006,1.0,0.0,0.8783930510314875
-TPR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.908,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.35424354243542433,1.0,0.0,0.35714285714285715,1.0,0.0,0.36363636363636365,1.0,0.0,0.35294117647058826,1.0,0.0,0.34527687296416937,1.0,0.0,0.36764705882352944,1.0,0.0,0.35578583765112265
-TPR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.517,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.3505535055350554,1.0,0.0,0.3538961038961039,1.0,0.0,0.35714285714285715,1.0,0.0,0.35058823529411764,1.0,0.0,0.33876221498371334,1.0,0.0,0.36764705882352944,1.0,0.0,0.35233160621761656
-Accuracy,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6836879432624113,1.0,0.0,0.6716981132075471,1.0,0.0,0.7166666666666667,1.0,0.0,0.6620370370370371,1.0,0.0,0.6971496437054632,1.0,0.0,0.6519756838905775,1.0,0.0,0.6773333333333333
-Accuracy,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.699290780141844,1.0,0.0,0.6880503144654088,1.0,0.0,0.7428571428571429,1.0,0.0,0.674074074074074,1.0,0.0,0.7197149643705463,1.0,0.0,0.6595744680851063,1.0,0.0,0.6933333333333334
-Aleatoric_Uncertainty,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6734669507897533,0.6358225553074892,0.754832863894916,0.6432666301876696,0.612212372928401,0.7068029266491616,0.6638838015619872,0.6284473587534197,0.7535171569013045,0.6549629394906842,0.6212940193247506,0.7209171255691568,0.6482803086577847,0.6134498917246337,0.7284585625391954,0.6692084368026119,0.6370461360364009,0.7294600832161686,0.657460780870649
-Aleatoric_Uncertainty,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.781055339814094,0.7465782157257179,0.8612309161139501,0.7608481153169574,0.7275322647798578,0.8343310598483826,0.7740517435189649,0.7463522578190568,0.8540724799853656,0.7689041981184743,0.7323644295986477,0.8444750830117523,0.7670183928660977,0.7366964718963996,0.8448789187459159,0.7746030082867222,0.7363713069542466,0.8486769296183935,0.7703455108306116
-F1,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.5098901098901099,1.0,0.0,0.5175600739371534,1.0,0.0,0.5576208178438662,1.0,0.0,0.49793672627235214,1.0,0.0,0.5372050816696915,1.0,0.0,0.4853932584269663,1.0,0.0,0.5140562248995983
-F1,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.5023474178403756,1.0,0.0,0.5303030303030303,1.0,0.0,0.5609756097560976,1.0,0.0,0.5028248587570622,1.0,0.0,0.5408560311284046,1.0,0.0,0.4909090909090909,1.0,0.0,0.5178197064989518
-FNR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.5719557195571956,0.0,1.0,0.5454545454545454,0.0,1.0,0.512987012987013,0.0,1.0,0.5741176470588235,0.0,1.0,0.5179153094462541,0.0,1.0,0.6029411764705882,0.0,1.0,0.5578583765112263
-FNR,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6051660516605166,0.0,1.0,0.5454545454545454,0.0,1.0,0.551948051948052,0.0,1.0,0.5811764705882353,0.0,1.0,0.5472312703583062,0.0,1.0,0.6029411764705882,0.0,1.0,0.5734024179620034
-FPR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.15668202764976957,0.0,1.0,0.19096509240246407,0.0,1.0,0.15037593984962405,0.0,1.0,0.18473282442748093,0.0,1.0,0.17943925233644858,0.0,1.0,0.16839378238341968,0.0,1.0,0.1748099891422367
-FPR,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.11059907834101383,0.0,1.0,0.16427104722792607,0.0,1.0,0.08646616541353383,0.0,1.0,0.16030534351145037,0.0,1.0,0.12710280373831775,0.0,1.0,0.15544041450777202,0.0,1.0,0.13897937024972856
-IQR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.19740234097160045,0.18280456630925876,0.2289544817215946,0.19257741575077017,0.1760082627737494,0.22647752184168618,0.19849937390022518,0.18435556703849623,0.23427488537401006,0.19342403598957966,0.1770757868582623,0.22544868839750273,0.19394541103344892,0.1777863421140638,0.23114295399689616,0.19599644349039003,0.18121125981652556,0.22369445133356838,0.19484513060456038
-IQR,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.10239573721699301,0.09750872100302697,0.11376035511079136,0.10043012416393095,0.09447631316527576,0.11356211858435185,0.10255748865820903,0.09838706200739884,0.11460538787166065,0.1008859242702383,0.09485381787031551,0.1133614170518968,0.10159505122177855,0.0961041737336831,0.11569450782256598,0.10104545641271674,0.0956479573117193,0.11150311092089933,0.1013539622988701
-Jitter,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.1980338572294045,0.16986884630621635,0.25891069698266933,0.19071742359596736,0.1619660098244067,0.24954215522057213,0.20184733189757914,0.17530993839631456,0.26897132722435835,0.19116513121161505,0.1616760023895709,0.24893150684932258,0.19871190871220515,0.16821244210832387,0.2689204847768004,0.18832643460463006,0.1622982043082556,0.23708674376245972,0.19415614740368436
-Jitter,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.11943169749456542,0.0952585442425127,0.17564568123636615,0.11473910432666616,0.08781044160473164,0.1741341789593184,0.11531347212251827,0.09872197526092326,0.16324446305602197,0.11757895961287973,0.08817790877464315,0.17838567839195912,0.11802844388211825,0.09649178234406798,0.1733302103739032,0.115557727848972,0.08414920223236413,0.1764117462311557,0.11694462311557688
-Label_Stability,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.7214751773049645,0.7664315352697095,0.624304932735426,0.7278364779874216,0.7740823970037454,0.6332183908045976,0.7129523809523809,0.7563787375415283,0.6031092436974789,0.7294722222222222,0.7763776223776222,0.6375890410958903,0.7150712589073633,0.765587734241908,0.5987843137254902,0.737355623100304,0.7771095571095571,0.6628820960698688,0.7248466666666666
-Label_Stability,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.8313617021276596,0.8675659229208924,0.7471698113207547,0.8394213836477988,0.879689213893967,0.7506048387096774,0.8380952380952381,0.8632371794871796,0.765462962962963,0.8346759259259259,0.8785302197802197,0.7439772727272728,0.8336698337292162,0.865990099009901,0.750677966101695,0.8381458966565349,0.8850460829493088,0.7472767857142858,0.8356333333333333
-Mean,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6268832189161339,0.6394571057183438,0.5997055801777249,0.6271454467968993,0.6472972060306217,0.5859154106635361,0.6283275463763558,0.640526254786101,0.5974719898105297,0.6265145648716111,0.6448624199803878,0.5905728760968838,0.6285165494945291,0.6493207302624522,0.5806261412169961,0.6251099769985043,0.6357197303322476,0.6052340635479547,0.6270221996929396
-Mean,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6337148095287487,0.6441222519584647,0.6095125967087016,0.6213376553073015,0.6383457444284133,0.5838238458345264,0.6404188502095424,0.6456805156072316,0.6252184835051068,0.6219967218509859,0.6391141092697925,0.5865948524166357,0.6322827035174826,0.6467312742012516,0.5951817126939056,0.6205932223789548,0.6331987102578495,0.5961700896135964,0.6271549177913817
-Overall_Uncertainty,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.7630064139306723,0.7195558682829732,0.8569219430884788,0.7328423894325358,0.6945848579793925,0.8111164193021854,0.7547546468681712,0.7135321397827071,0.8590233412608156,0.7440113608660721,0.7034420539843271,0.8234827428399017,0.7381459941360415,0.6963443701786747,0.8343716932065294,0.7583743075341077,0.7202333272226261,0.8298261876809441,0.7470194809466599
-Overall_Uncertainty,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.8056917329887449,0.770104683231916,0.8884484100175968,0.7850945949368143,0.7505783337391364,0.8612252194333054,0.7989648483866314,0.7702179135518367,0.8820115490204833,0.7931459614902291,0.7553845719237215,0.8712433808209603,0.7915628332087555,0.7598973487276575,0.8728733569186939,0.7988859713830705,0.759746921796502,0.874717879957047,0.7947752498212217
-PPV,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6304347826086957,1.0,0.0,0.6008583690987125,1.0,0.0,0.6521739130434783,1.0,0.0,0.5993377483443708,1.0,0.0,0.6065573770491803,1.0,0.0,0.6242774566473989,1.0,0.0,0.6139088729016786
-PPV,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6903225806451613,1.0,0.0,0.6363636363636364,1.0,0.0,0.75,1.0,0.0,0.6289752650176679,1.0,0.0,0.6714975845410628,1.0,0.0,0.6428571428571429,1.0,0.0,0.6586666666666666
-Per_Sample_Accuracy,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6633333333333333,0.8832157676348549,0.18807174887892375,0.6560691823899372,0.8870411985018727,0.18350574712643677,0.6855952380952383,0.878189368770764,0.19844537815126048,0.6493287037037037,0.8881888111888113,0.18142465753424658,0.676229216152019,0.8827938671209541,0.20072549019607844,0.6380547112462006,0.8885547785547787,0.16877729257641919,0.6594833333333333
-Per_Sample_Accuracy,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6909007092198582,0.9336409736308315,0.12641509433962264,0.6855849056603773,0.9397349177330895,0.1250201612903226,0.722047619047619,0.9313942307692309,0.11726851851851851,0.674875,0.9391826923076921,0.12823863636363636,0.7062767220902613,0.9327805280528051,0.12466101694915253,0.6648024316109422,0.9425230414746544,0.12671875,0.6880833333333334
-Positive-Rate,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6789667896678967,1.0,0.43870967741935485,0.7564935064935064,1.0,0.5535714285714286,0.7467532467532467,1.0,0.5063291139240507,0.7105882352941176,1.0,0.4959016393442623,0.7947882736156352,1.0,0.6037735849056604,0.6360294117647058,1.0,0.39634146341463417,0.7202072538860104
-Positive-Rate,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.5719557195571956,1.0,0.2926829268292683,0.7142857142857143,1.0,0.47619047619047616,0.5974025974025974,1.0,0.27058823529411763,0.6658823529411765,1.0,0.4251012145748988,0.6742671009771987,1.0,0.40476190476190477,0.6176470588235294,1.0,0.36585365853658536,0.6476683937823834
-Sample_Size,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,705.0,482.0,223.0,795.0,534.0,261.0,420.0,301.0,119.0,1080.0,715.0,365.0,842.0,587.0,255.0,658.0,429.0,229.0,1500.0
-Sample_Size,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,705.0,493.0,212.0,795.0,547.0,248.0,420.0,312.0,108.0,1080.0,728.0,352.0,842.0,606.0,236.0,658.0,434.0,224.0,1500.0
-Selection-Rate,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.26099290780141843,0.24066390041493776,0.30493273542600896,0.2930817610062893,0.26217228464419473,0.3563218390804598,0.27380952380952384,0.24916943521594684,0.33613445378151263,0.2796296296296296,0.25314685314685315,0.3315068493150685,0.28978622327790976,0.252129471890971,0.3764705882352941,0.2629179331306991,0.2517482517482518,0.2838427947598253,0.278
-Selection-Rate,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.2198581560283688,0.21703853955375255,0.22641509433962265,0.27672955974842767,0.25594149908592323,0.3225806451612903,0.21904761904761905,0.22115384615384615,0.21296296296296297,0.262037037037037,0.2445054945054945,0.29829545454545453,0.24584323040380046,0.22937293729372937,0.288135593220339,0.2553191489361702,0.2488479262672811,0.26785714285714285,0.25
-Statistical_Bias,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.3807297343465652,0.24043401327901134,0.6839698130665696,0.38502426159287184,0.22966931237853958,0.702876916307253,0.36421403247177536,0.23949117075643667,0.6796895062223379,0.3903137565208481,0.23279127945865197,0.6988851841906295,0.3698416524788147,0.23153238656439104,0.6882241587210368,0.39985118433662564,0.2392146766837437,0.7007815851361293,0.38300583378710773
-Statistical_Bias,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.38266821347089364,0.26278602092236697,0.6614508593502505,0.38427330220947087,0.25266759895435514,0.674548784792327,0.3669845276107789,0.2629394621083681,0.6675591612844096,0.38994894829350213,0.2551175450067971,0.6688048050910056,0.3738418003464737,0.2587440196602731,0.6693894914305313,0.3959020818568063,0.255676979328649,0.6675882180051109,0.3835189105023396
-Std,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.14326876020416268,0.13488905680934812,0.16138094422344795,0.14038936167965027,0.13102049914123828,0.1595578390570909,0.1435257016110795,0.1354974257399826,0.1638325170497363,0.1410492812987067,0.13174370178432485,0.15927801925153698,0.14147619336093312,0.13223476255983316,0.16274960465601418,0.1420836833880714,0.13370551585292537,0.15777902780980788,0.14174267898617107
-Std,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.07717572599192868,0.0735985901671812,0.0854942541126858,0.0754735976902358,0.07139093512785967,0.08447850261612189,0.07739913936048744,0.0743956555491502,0.08607587037101722,0.07583588745985413,0.07159821694508889,0.08460016056993681,0.0764659167428356,0.07263366650877591,0.08630635590317527,0.07602750013765901,0.07216346673511836,0.08351406485508149,0.07627359799203146
-TNR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.8433179723502304,1.0,0.0,0.8090349075975359,1.0,0.0,0.849624060150376,1.0,0.0,0.815267175572519,1.0,0.0,0.8205607476635514,1.0,0.0,0.8316062176165803,1.0,0.0,0.8251900108577633
-TNR,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.8894009216589862,1.0,0.0,0.8357289527720739,1.0,0.0,0.9135338345864662,1.0,0.0,0.8396946564885496,1.0,0.0,0.8728971962616823,1.0,0.0,0.844559585492228,1.0,0.0,0.8610206297502715
-TPR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:07:47.064,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.4280442804428044,1.0,0.0,0.45454545454545453,1.0,0.0,0.487012987012987,1.0,0.0,0.4258823529411765,1.0,0.0,0.4820846905537459,1.0,0.0,0.39705882352941174,1.0,0.0,0.4421416234887737
-TPR,101,MLPClassifier,"{'activation': 'tanh', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'adaptive', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'sgd', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-02 03:29:51.795,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.3948339483394834,1.0,0.0,0.45454545454545453,1.0,0.0,0.44805194805194803,1.0,0.0,0.4188235294117647,1.0,0.0,0.4527687296416938,1.0,0.0,0.39705882352941174,1.0,0.0,0.4265975820379965
-Accuracy,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6893617021276596,1.0,0.0,0.6930817610062893,1.0,0.0,0.7214285714285714,1.0,0.0,0.6796296296296296,1.0,0.0,0.7078384798099763,1.0,0.0,0.6702127659574468,1.0,0.0,0.6913333333333334
-Accuracy,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6964539007092199,1.0,0.0,0.7094339622641509,1.0,0.0,0.7309523809523809,1.0,0.0,0.6925925925925925,1.0,0.0,0.7173396674584323,1.0,0.0,0.6854103343465046,1.0,0.0,0.7033333333333334
-Aleatoric_Uncertainty,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.8265278046565147,0.7975502828170815,0.8908340859988187,0.8052374105955816,0.7779358296129241,0.8668897512572382,0.8200500638136052,0.7920365756256592,0.8925978152746957,0.8133748304672369,0.7851021759553788,0.8733520802120462,0.8115114985349681,0.7818886797601712,0.8832806041844763,0.8200200029481567,0.7942095837386864,0.8724734355351442,0.8152438958042203
-Aleatoric_Uncertainty,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.8059884095781719,0.7779248233370963,0.87037729202849,0.7802950117382066,0.7587581699545302,0.8328784695996504,0.7990200554270445,0.7700997239821913,0.87759122138784,0.7897851294491914,0.7666846000672949,0.8418309004662357,0.7867516757360068,0.7589139142914507,0.8573987678053848,0.7995614773780664,0.7794161682501841,0.843452947990022,0.7923709087229902
-F1,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.47980997624703087,1.0,0.0,0.5196850393700787,1.0,0.0,0.5185185185185185,1.0,0.0,0.4956268221574344,1.0,0.0,0.508,1.0,0.0,0.49417249417249415,1.0,0.0,0.5016146393972013
-F1,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.5180180180180181,1.0,0.0,0.5583173996175909,1.0,0.0,0.5637065637065637,1.0,0.0,0.5310734463276836,1.0,0.0,0.5475285171102662,1.0,0.0,0.5306122448979592,1.0,0.0,0.5398138572905895
-FNR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6273062730627307,0.0,1.0,0.5714285714285714,0.0,1.0,0.5909090909090909,0.0,1.0,0.6,0.0,1.0,0.5863192182410424,0.0,1.0,0.6102941176470589,0.0,1.0,0.5975820379965457
-FNR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.5756457564575646,0.0,1.0,0.525974025974026,0.0,1.0,0.525974025974026,0.0,1.0,0.5576470588235294,0.0,1.0,0.5309446254071661,0.0,1.0,0.5698529411764706,0.0,1.0,0.5492227979274611
-FPR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.11290322580645161,0.0,1.0,0.13963039014373715,0.0,1.0,0.09774436090225563,0.0,1.0,0.13893129770992366,0.0,1.0,0.1233644859813084,0.0,1.0,0.13212435233160622,0.0,1.0,0.1270358306188925
-FPR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.1336405529953917,0.0,1.0,0.14168377823408623,0.0,1.0,0.12030075187969924,0.0,1.0,0.1450381679389313,0.0,1.0,0.14018691588785046,0.0,1.0,0.13471502590673576,0.0,1.0,0.13789359391965256
-IQR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.09776421660070099,0.0940498348150208,0.10600709124837483,0.09374550306009548,0.08961279492790766,0.10307797101433933,0.09797245970902345,0.09470073514538789,0.1064453874251052,0.09472501348007432,0.0904503364800064,0.10379325890796408,0.0962010005902325,0.09220329877879334,0.10588648953176803,0.09490912635151116,0.09100159558552472,0.10285023726303202,0.09563429842418009
-IQR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.1207941869859492,0.11635802082019236,0.1309724934690642,0.11358428015227655,0.11017298061722683,0.12191316732876158,0.12011261720412818,0.1163947162741175,0.13021346309362625,0.11575194937075944,0.1116793735222945,0.12492751182452982,0.11636081196523013,0.11196666001228317,0.12751235725758284,0.11775623232740162,0.11450440497430449,0.12484113153632342,0.11697293636410268
-Jitter,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.12010812929897735,0.09040459499141575,0.18602556159794617,0.11619348313896595,0.09408539977564596,0.16611788450448553,0.11975604211533854,0.09335671758130959,0.18812352360090467,0.11736343755816346,0.09194905042925952,0.1712771952246759,0.12165184592797744,0.09428644902364411,0.18795175062297384,0.11340303340410304,0.08975728985059661,0.1614572864321672,0.11803336683416711
-Jitter,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.14798210912719284,0.11922627393587004,0.2139592823932739,0.13750804336145894,0.12304750703873996,0.17281428788966008,0.14480043072505172,0.11917453718104416,0.2144212211499789,0.1415093523171437,0.12212875876709137,0.18517406308653261,0.14332965301567188,0.1187002063296616,0.20583463536168317,0.1412807197079603,0.12470946751493756,0.17738523535552456,0.14243085427135782
-Label_Stability,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.8327517730496454,0.8777572016460906,0.7328767123287672,0.8358364779874214,0.8700725952813068,0.7585245901639344,0.8298333333333333,0.8703300330033005,0.7249572649572651,0.8361574074074074,0.8750544959128065,0.7536416184971098,0.8261995249406177,0.8687751677852349,0.7230487804878049,0.8448632218844986,0.8802947845804989,0.7728571428571428,0.8343866666666666
-Label_Stability,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.7915886524822696,0.8361303462321793,0.689392523364486,0.8065408805031448,0.8279432624113476,0.7542857142857143,0.7948095238095237,0.8357328990228015,0.6836283185840707,0.8013425925925927,0.830120320855615,0.7365060240963854,0.797375296912114,0.8357450331125827,0.7000000000000001,0.8022492401215805,0.8264079822616409,0.7496135265700484,0.7995133333333333
-Mean,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6310213290382105,0.6425665246743147,0.6054004839279516,0.6302442873839554,0.6420513559569972,0.6035816038440128,0.634175393028981,0.644039514658144,0.6086298472714047,0.6292227596018621,0.6415717373060011,0.6030257953393243,0.6343332491371193,0.6478028111088064,0.6016996762301046,0.625844452384086,0.6348461512543622,0.6075506772606214,0.6306094969614554
-Mean,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6266304518626915,0.6381430994381714,0.6002159193413799,0.6268039975505542,0.6354801705539582,0.6056206141136714,0.6308651962489352,0.641309833563162,0.6024890577049739,0.6251113557327179,0.6348355068351389,0.6032027261405161,0.6305354175828034,0.643579740023169,0.5974313387845647,0.6218431991051179,0.6275319624004004,0.6094488404279563,0.6267224310772587
-Overall_Uncertainty,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.8456335234676194,0.8161565751515625,0.9110481211005133,0.823353932162184,0.7953033351622403,0.8866976983382863,0.8393379321639337,0.8109307300219629,0.9129053018136535,0.8316815542636626,0.8026597029991811,0.8932481404721296,0.8302834439049512,0.8000792359062137,0.9034611185685593,0.8383576752973237,0.8118299514692753,0.8922688559801324,0.8338253400757388
-Overall_Uncertainty,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.8358419462127025,0.8069680384892964,0.9020900242136015,0.807959798268302,0.7857410536201801,0.8622081618247559,0.8289040384477072,0.7995476067218015,0.9086600078269381,0.8180156625511282,0.7940082164123436,0.8721047279481486,0.8153565585646567,0.7866877715809292,0.8881126398174781,0.8283683729358883,0.8075828095457759,0.8736547936554084,0.8210644078021703
-PPV,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6733333333333333,1.0,0.0,0.66,1.0,0.0,0.7078651685393258,1.0,0.0,0.6513409961685823,1.0,0.0,0.6580310880829016,1.0,0.0,0.6751592356687898,1.0,0.0,0.6657142857142857
-PPV,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6647398843930635,1.0,0.0,0.6790697674418604,1.0,0.0,0.6952380952380952,1.0,0.0,0.6643109540636042,1.0,0.0,0.6575342465753424,1.0,0.0,0.6923076923076923,1.0,0.0,0.6726804123711341
-Per_Sample_Accuracy,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.6889432624113476,0.9388374485596709,0.1343835616438356,0.685125786163522,0.9348729582577132,0.12114754098360656,0.713202380952381,0.9350990099009903,0.13854700854700852,0.676699074074074,0.9374046321525885,0.12364161849710983,0.7020902612826603,0.9343540268456376,0.13936991869918697,0.6675075987841945,0.9399433106575963,0.1138479262672811,0.68692
-Per_Sample_Accuracy,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6865460992907801,0.9179429735234217,0.1556308411214953,0.6840880503144653,0.9139539007092199,0.12285714285714286,0.7134047619047619,0.917671009771987,0.15845132743362833,0.6742916666666667,0.9150467914438504,0.13186746987951808,0.7007779097387175,0.9177566225165563,0.15012605042016808,0.6653647416413374,0.9132039911308204,0.12538647342995168,0.6852433333333333
-Positive-Rate,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.5535055350553506,1.0,0.28823529411764703,0.6493506493506493,1.0,0.38636363636363635,0.577922077922078,1.0,0.2857142857142857,0.6141176470588235,1.0,0.3568627450980392,0.6286644951140065,1.0,0.36666666666666664,0.5772058823529411,1.0,0.3072289156626506,0.6044905008635578
-Positive-Rate,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.6383763837638377,1.0,0.3717948717948718,0.698051948051948,1.0,0.42592592592592593,0.6818181818181818,1.0,0.3950617283950617,0.6658823529411765,1.0,0.4008438818565401,0.7133550488599348,1.0,0.4601226993865031,0.6213235294117647,1.0,0.33548387096774196,0.6701208981001727
-Sample_Size,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,705.0,486.0,219.0,795.0,551.0,244.0,420.0,303.0,117.0,1080.0,734.0,346.0,842.0,596.0,246.0,658.0,441.0,217.0,1500.0
-Sample_Size,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,705.0,491.0,214.0,795.0,564.0,231.0,420.0,307.0,113.0,1080.0,748.0,332.0,842.0,604.0,238.0,658.0,451.0,207.0,1500.0
-Selection-Rate,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.2127659574468085,0.20781893004115226,0.2237442922374429,0.25157232704402516,0.2395644283121597,0.2786885245901639,0.2119047619047619,0.2079207920792079,0.2222222222222222,0.24166666666666667,0.23160762942779292,0.2630057803468208,0.22921615201900236,0.21308724832214765,0.2682926829268293,0.23860182370820668,0.24036281179138322,0.2350230414746544,0.23333333333333334
-Selection-Rate,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.2453900709219858,0.23421588594704684,0.27102803738317754,0.27044025157232704,0.25886524822695034,0.2987012987012987,0.25,0.23778501628664495,0.2831858407079646,0.262037037037037,0.25133689839572193,0.286144578313253,0.26009501187648454,0.23841059602649006,0.31512605042016806,0.256838905775076,0.25942350332594233,0.25120772946859904,0.25866666666666666
-Statistical_Bias,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.39568703604637867,0.28458620508216764,0.6422395650354499,0.3942061322411184,0.2773123586040772,0.6581752686100107,0.38163450778574454,0.2817164153175404,0.6403967472546834,0.4000617984021977,0.28031053326916255,0.6541006094069601,0.38515223218103145,0.27803639883682396,0.644668641421469,0.4073785046321545,0.28434991282093636,0.6574043525065658,0.39490215702959086
-Statistical_Bias,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.3930658275524083,0.28263691861975415,0.6464330905707877,0.3932696577871171,0.27761160212138475,0.675655559932022,0.3760299855503612,0.2779786792735978,0.6424171627801519,0.3998409189204206,0.280759647194874,0.6681324588321943,0.3819627206936393,0.27447714280776647,0.654741246084678,0.40752002361878664,0.28728043543873466,0.6694913002816052,0.3931738575768039
-Std,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.07138170520710842,0.06883232555967064,0.07703923264388815,0.0685578124754467,0.06568594637599239,0.07504305108528007,0.0713728152178547,0.06906699981411775,0.07734428587881452,0.06930646360878946,0.06637352279495103,0.07552836695375303,0.07010424381613034,0.06735623463028029,0.07676202216884026,0.06960454376262892,0.06689603364064554,0.07510893530085318,0.06988504205932772
-Std,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.08719113374979333,0.08411282120286062,0.09425399104205477,0.08246286338476243,0.08000786245602967,0.08845689162634371,0.08669444508147052,0.08406093977471062,0.09384918958744656,0.08390375810210444,0.08103893198525286,0.09035824585934837,0.08422602181233907,0.0810713362549355,0.09223203053785067,0.08527266765729623,0.08305264420803606,0.09010953034143314,0.08468515045632696
-TNR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.8870967741935484,1.0,0.0,0.8603696098562629,1.0,0.0,0.9022556390977443,1.0,0.0,0.8610687022900764,1.0,0.0,0.8766355140186916,1.0,0.0,0.8678756476683938,1.0,0.0,0.8729641693811075
-TNR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.8663594470046083,1.0,0.0,0.8583162217659137,1.0,0.0,0.8796992481203008,1.0,0.0,0.8549618320610687,1.0,0.0,0.8598130841121495,1.0,0.0,0.8652849740932642,1.0,0.0,0.8621064060803475
-TPR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 30, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 2, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:06:10.960,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.0],0.0,0.3726937269372694,1.0,0.0,0.42857142857142855,1.0,0.0,0.4090909090909091,1.0,0.0,0.4,1.0,0.0,0.41368078175895767,1.0,0.0,0.3897058823529412,1.0,0.0,0.40241796200345425
-TPR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 50, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 10, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Folktables_CA_2018_Public_Coverage,200,0,OK,2023-08-01 23:13:20.565,c42fae24-694f-408e-98df-ce099940a961,Exp_iter_1,100,100,[0.6],0.6,0.42435424354243545,1.0,0.0,0.474025974025974,1.0,0.0,0.474025974025974,1.0,0.0,0.4423529411764706,1.0,0.0,0.46905537459283386,1.0,0.0,0.43014705882352944,1.0,0.0,0.45077720207253885
diff --git a/docs/examples/ricci_group_metrics.csv b/docs/examples/ricci_group_metrics.csv
deleted file mode 100644
index 31cfbb3f..00000000
--- a/docs/examples/ricci_group_metrics.csv
+++ /dev/null
@@ -1,133 +0,0 @@
-Metric,Race,Model_Name,Experiment_Iteration,Intervention_Param,Test_Set_Index
-Accuracy_Parity,-0.2299465240641711,LGBMClassifier,Exp_iter_1,0.0,0
-Disparate_Impact,2.2647058823529416,LGBMClassifier,Exp_iter_1,0.0,0
-Equalized_Odds_FNR,0.0,LGBMClassifier,Exp_iter_1,0.0,0
-Equalized_Odds_FPR,0.0,LGBMClassifier,Exp_iter_1,0.0,0
-Equalized_Odds_TPR,0.0,LGBMClassifier,Exp_iter_1,0.0,0
-IQR_Parity,2.7755575615628914e-17,LGBMClassifier,Exp_iter_1,0.0,0
-Jitter_Parity,0.0,LGBMClassifier,Exp_iter_1,0.0,0
-Label_Stability_Ratio,1.0,LGBMClassifier,Exp_iter_1,0.0,0
-Statistical_Parity_Difference,3.0714285714285716,LGBMClassifier,Exp_iter_1,0.0,0
-Std_Parity,-1.3877787807814457e-17,LGBMClassifier,Exp_iter_1,0.0,0
-Std_Ratio,0.9999999999999998,LGBMClassifier,Exp_iter_1,0.0,0
-Accuracy_Parity,-0.2299465240641711,LGBMClassifier,Exp_iter_1,0.4,0
-Disparate_Impact,2.2647058823529416,LGBMClassifier,Exp_iter_1,0.4,0
-Equalized_Odds_FNR,0.0,LGBMClassifier,Exp_iter_1,0.4,0
-Equalized_Odds_FPR,0.0,LGBMClassifier,Exp_iter_1,0.4,0
-Equalized_Odds_TPR,0.0,LGBMClassifier,Exp_iter_1,0.4,0
-IQR_Parity,2.7755575615628914e-17,LGBMClassifier,Exp_iter_1,0.4,0
-Jitter_Parity,0.0,LGBMClassifier,Exp_iter_1,0.4,0
-Label_Stability_Ratio,1.0,LGBMClassifier,Exp_iter_1,0.4,0
-Statistical_Parity_Difference,3.0714285714285716,LGBMClassifier,Exp_iter_1,0.4,0
-Std_Parity,0.0,LGBMClassifier,Exp_iter_1,0.4,0
-Std_Ratio,1.0,LGBMClassifier,Exp_iter_1,0.4,0
-Accuracy_Parity,-0.2299465240641711,LGBMClassifier,Exp_iter_1,0.7,0
-Disparate_Impact,2.2647058823529416,LGBMClassifier,Exp_iter_1,0.7,0
-Equalized_Odds_FNR,0.0,LGBMClassifier,Exp_iter_1,0.7,0
-Equalized_Odds_FPR,0.0,LGBMClassifier,Exp_iter_1,0.7,0
-Equalized_Odds_TPR,0.0,LGBMClassifier,Exp_iter_1,0.7,0
-IQR_Parity,0.0,LGBMClassifier,Exp_iter_1,0.7,0
-Jitter_Parity,0.0,LGBMClassifier,Exp_iter_1,0.7,0
-Label_Stability_Ratio,1.0000000000000002,LGBMClassifier,Exp_iter_1,0.7,0
-Statistical_Parity_Difference,3.0714285714285716,LGBMClassifier,Exp_iter_1,0.7,0
-Std_Parity,-1.3877787807814457e-17,LGBMClassifier,Exp_iter_1,0.7,0
-Std_Ratio,0.9999999999999998,LGBMClassifier,Exp_iter_1,0.7,0
-Accuracy_Parity,0.3529411764705882,LogisticRegression,Exp_iter_1,0.0,0
-Disparate_Impact,0.5384615384615384,LogisticRegression,Exp_iter_1,0.0,0
-Equalized_Odds_FNR,0.0,LogisticRegression,Exp_iter_1,0.0,0
-Equalized_Odds_FPR,-0.6,LogisticRegression,Exp_iter_1,0.0,0
-Equalized_Odds_TPR,0.0,LogisticRegression,Exp_iter_1,0.0,0
-IQR_Parity,-0.004259721871489895,LogisticRegression,Exp_iter_1,0.0,0
-Jitter_Parity,-0.0640968210033926,LogisticRegression,Exp_iter_1,0.0,0
-Label_Stability_Ratio,1.0935446085768203,LogisticRegression,Exp_iter_1,0.0,0
-Statistical_Parity_Difference,-0.8571428571428572,LogisticRegression,Exp_iter_1,0.0,0
-Std_Parity,-0.0011073640847593519,LogisticRegression,Exp_iter_1,0.0,0
-Std_Ratio,0.9758617440249395,LogisticRegression,Exp_iter_1,0.0,0
-Accuracy_Parity,0.0267379679144385,LogisticRegression,Exp_iter_1,0.4,0
-Disparate_Impact,1.1666666666666665,LogisticRegression,Exp_iter_1,0.4,0
-Equalized_Odds_FNR,0.0,LogisticRegression,Exp_iter_1,0.4,0
-Equalized_Odds_FPR,-0.0888888888888889,LogisticRegression,Exp_iter_1,0.4,0
-Equalized_Odds_TPR,0.0,LogisticRegression,Exp_iter_1,0.4,0
-IQR_Parity,-0.02897288592163355,LogisticRegression,Exp_iter_1,0.4,0
-Jitter_Parity,-0.057898718189863724,LogisticRegression,Exp_iter_1,0.4,0
-Label_Stability_Ratio,1.1116523646686882,LogisticRegression,Exp_iter_1,0.4,0
-Statistical_Parity_Difference,0.2142857142857142,LogisticRegression,Exp_iter_1,0.4,0
-Std_Parity,-0.02372510499403515,LogisticRegression,Exp_iter_1,0.4,0
-Std_Ratio,0.6205686094932984,LogisticRegression,Exp_iter_1,0.4,0
-Accuracy_Parity,-0.06417112299465233,LogisticRegression,Exp_iter_1,0.7,0
-Disparate_Impact,1.5555555555555554,LogisticRegression,Exp_iter_1,0.7,0
-Equalized_Odds_FNR,0.0,LogisticRegression,Exp_iter_1,0.7,0
-Equalized_Odds_FPR,0.0222222222222222,LogisticRegression,Exp_iter_1,0.7,0
-Equalized_Odds_TPR,0.0,LogisticRegression,Exp_iter_1,0.7,0
-IQR_Parity,-0.026239708082403335,LogisticRegression,Exp_iter_1,0.7,0
-Jitter_Parity,-0.005885577620717217,LogisticRegression,Exp_iter_1,0.7,0
-Label_Stability_Ratio,0.9885615043717811,LogisticRegression,Exp_iter_1,0.7,0
-Statistical_Parity_Difference,0.7142857142857142,LogisticRegression,Exp_iter_1,0.7,0
-Std_Parity,-0.01916160626108921,LogisticRegression,Exp_iter_1,0.7,0
-Std_Ratio,0.749870952094999,LogisticRegression,Exp_iter_1,0.7,0
-Accuracy_Parity,-0.06417112299465233,MLPClassifier,Exp_iter_1,0.7,0
-Disparate_Impact,2.0,MLPClassifier,Exp_iter_1,0.7,0
-Equalized_Odds_FNR,-0.14285714285714285,MLPClassifier,Exp_iter_1,0.7,0
-Equalized_Odds_FPR,0.1222222222222222,MLPClassifier,Exp_iter_1,0.7,0
-Equalized_Odds_TPR,0.1428571428571429,MLPClassifier,Exp_iter_1,0.7,0
-IQR_Parity,-0.05854261516211538,MLPClassifier,Exp_iter_1,0.7,0
-Jitter_Parity,-0.006295515008201247,MLPClassifier,Exp_iter_1,0.7,0
-Label_Stability_Ratio,1.0171217205613179,MLPClassifier,Exp_iter_1,0.7,0
-Statistical_Parity_Difference,1.0,MLPClassifier,Exp_iter_1,0.7,0
-Std_Parity,0.004367751375921741,MLPClassifier,Exp_iter_1,0.7,0
-Std_Ratio,1.021641746544735,MLPClassifier,Exp_iter_1,0.7,0
-Accuracy_Parity,0.0,MLPClassifier,Exp_iter_1,0.0,0
-Disparate_Impact,1.0,MLPClassifier,Exp_iter_1,0.0,0
-Equalized_Odds_FNR,0.0,MLPClassifier,Exp_iter_1,0.0,0
-Equalized_Odds_FPR,0.0,MLPClassifier,Exp_iter_1,0.0,0
-Equalized_Odds_TPR,0.0,MLPClassifier,Exp_iter_1,0.0,0
-IQR_Parity,-0.14246344136147643,MLPClassifier,Exp_iter_1,0.0,0
-Jitter_Parity,-0.11034584688143848,MLPClassifier,Exp_iter_1,0.0,0
-Label_Stability_Ratio,1.1957288401253918,MLPClassifier,Exp_iter_1,0.0,0
-Statistical_Parity_Difference,0.0,MLPClassifier,Exp_iter_1,0.0,0
-Std_Parity,-0.12317270176886641,MLPClassifier,Exp_iter_1,0.0,0
-Std_Ratio,0.11675594996318969,MLPClassifier,Exp_iter_1,0.0,0
-Accuracy_Parity,0.07219251336898402,MLPClassifier,Exp_iter_1,0.4,0
-Disparate_Impact,1.25,MLPClassifier,Exp_iter_1,0.4,0
-Equalized_Odds_FNR,-0.14285714285714285,MLPClassifier,Exp_iter_1,0.4,0
-Equalized_Odds_FPR,-0.04444444444444445,MLPClassifier,Exp_iter_1,0.4,0
-Equalized_Odds_TPR,0.1428571428571429,MLPClassifier,Exp_iter_1,0.4,0
-IQR_Parity,-0.1782305060524368,MLPClassifier,Exp_iter_1,0.4,0
-Jitter_Parity,-0.09088436836585866,MLPClassifier,Exp_iter_1,0.4,0
-Label_Stability_Ratio,1.1823216340621405,MLPClassifier,Exp_iter_1,0.4,0
-Statistical_Parity_Difference,0.25,MLPClassifier,Exp_iter_1,0.4,0
-Std_Parity,-0.08577780370352184,MLPClassifier,Exp_iter_1,0.4,0
-Std_Ratio,0.6190997914544973,MLPClassifier,Exp_iter_1,0.4,0
-Accuracy_Parity,0.11764705882352944,RandomForestClassifier,Exp_iter_1,0.0,0
-Disparate_Impact,0.7777777777777777,RandomForestClassifier,Exp_iter_1,0.0,0
-Equalized_Odds_FNR,0.0,RandomForestClassifier,Exp_iter_1,0.0,0
-Equalized_Odds_FPR,-0.2,RandomForestClassifier,Exp_iter_1,0.0,0
-Equalized_Odds_TPR,0.0,RandomForestClassifier,Exp_iter_1,0.0,0
-IQR_Parity,-0.07018048128342244,RandomForestClassifier,Exp_iter_1,0.0,0
-Jitter_Parity,-0.08421653723159321,RandomForestClassifier,Exp_iter_1,0.0,0
-Label_Stability_Ratio,1.1554112554112557,RandomForestClassifier,Exp_iter_1,0.0,0
-Statistical_Parity_Difference,-0.2857142857142858,RandomForestClassifier,Exp_iter_1,0.0,0
-Std_Parity,-0.04209583589618668,RandomForestClassifier,Exp_iter_1,0.0,0
-Std_Ratio,0.4548023847532704,RandomForestClassifier,Exp_iter_1,0.0,0
-Accuracy_Parity,0.14438502673796794,RandomForestClassifier,Exp_iter_1,0.4,0
-Disparate_Impact,0.9545454545454546,RandomForestClassifier,Exp_iter_1,0.4,0
-Equalized_Odds_FNR,0.0,RandomForestClassifier,Exp_iter_1,0.4,0
-Equalized_Odds_FPR,-0.2888888888888889,RandomForestClassifier,Exp_iter_1,0.4,0
-Equalized_Odds_TPR,0.0,RandomForestClassifier,Exp_iter_1,0.4,0
-IQR_Parity,-0.07059491978609625,RandomForestClassifier,Exp_iter_1,0.4,0
-Jitter_Parity,-0.10266600381584051,RandomForestClassifier,Exp_iter_1,0.4,0
-Label_Stability_Ratio,1.229393468118196,RandomForestClassifier,Exp_iter_1,0.4,0
-Statistical_Parity_Difference,-0.0714285714285714,RandomForestClassifier,Exp_iter_1,0.4,0
-Std_Parity,-0.04122312272769589,RandomForestClassifier,Exp_iter_1,0.4,0
-Std_Ratio,0.607473282709729,RandomForestClassifier,Exp_iter_1,0.4,0
-Accuracy_Parity,-0.06417112299465233,RandomForestClassifier,Exp_iter_1,0.7,0
-Disparate_Impact,1.5555555555555554,RandomForestClassifier,Exp_iter_1,0.7,0
-Equalized_Odds_FNR,0.0,RandomForestClassifier,Exp_iter_1,0.7,0
-Equalized_Odds_FPR,0.0222222222222222,RandomForestClassifier,Exp_iter_1,0.7,0
-Equalized_Odds_TPR,0.0,RandomForestClassifier,Exp_iter_1,0.7,0
-IQR_Parity,-0.03575165472525095,RandomForestClassifier,Exp_iter_1,0.7,0
-Jitter_Parity,-0.04552387606479004,RandomForestClassifier,Exp_iter_1,0.7,0
-Label_Stability_Ratio,1.071062271062271,RandomForestClassifier,Exp_iter_1,0.7,0
-Statistical_Parity_Difference,0.7142857142857142,RandomForestClassifier,Exp_iter_1,0.7,0
-Std_Parity,-0.016581787315341434,RandomForestClassifier,Exp_iter_1,0.7,0
-Std_Ratio,0.8265703729361945,RandomForestClassifier,Exp_iter_1,0.7,0
diff --git a/docs/examples/ricci_subgroup_metrics.csv b/docs/examples/ricci_subgroup_metrics.csv
deleted file mode 100644
index 42f9fdfd..00000000
--- a/docs/examples/ricci_subgroup_metrics.csv
+++ /dev/null
@@ -1,229 +0,0 @@
-Metric,Bootstrap_Model_Seed,Model_Name,Model_Params,Run_Number,Dataset_Name,Num_Estimators,Tag,Record_Create_Date_Time,Session_Uuid,Experiment_Iteration,Dataset_Split_Seed,Model_Init_Seed,Fair_Intervention_Params_Lst,Intervention_Param,Race_dis,Race_priv,overall,Test_Set_Index
-Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.18181818181818182,0.4117647058823529,0.28205128205128205,0
-Aleatoric_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.9735094905965549,0.9735094905965547,0.9735094905965548,0
-F1,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.3076923076923077,0.5833333333333334,0.44,0
-FNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.0,0.0,0.0,0
-FPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,1.0,1.0,0
-IQR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.07936507936507944,0.07936507936507942,0.07936507936507943,0
-Jitter,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.19678391959798994,0.19678391959798994,0.19678391959798994,0
-Label_Stability,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.78,0.78,0.7800000000000002,0
-Mean,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.42777777777777765,0.42777777777777765,0.4277777777777776,0
-Overall_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.984896885588681,0.9848968855886807,0.9848968855886809,0
-PPV,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.18181818181818182,0.4117647058823529,0.28205128205128205,0
-Per_Sample_Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.2518181818181819,0.43117647058823527,0.32999999999999996,0
-Positive-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,5.5,2.4285714285714284,3.5454545454545454,0
-Sample_Size,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,,,39.0,0
-Selection-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,1.0,1.0,0
-Statistical_Bias,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.5459595959595962,0.5127450980392156,0.5314814814814816,0
-Std,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.06205500611410902,0.06205500611410903,0.06205500611410905,0
-TNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.0,0.0,0.0,0
-TPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.322,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,1.0,1.0,0
-Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.18181818181818182,0.4117647058823529,0.28205128205128205,0
-Aleatoric_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.9729961395248143,0.9729961395248147,0.972996139524815,0
-F1,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.3076923076923077,0.5833333333333334,0.44,0
-FNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.0,0.0,0.0,0
-FPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,1.0,1.0,1.0,0
-IQR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.0833333333333334,0.08333333333333337,0.08333333333333338,0
-Jitter,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.2198492462311558,0.2198492462311558,0.2198492462311558,0
-Label_Stability,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.75,0.75,0.75,0
-Mean,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.42634920634920626,0.42634920634920626,0.4263492063492062,0
-Overall_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.984291278451344,0.9842912784513438,0.9842912784513439,0
-PPV,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.18181818181818182,0.4117647058823529,0.28205128205128205,0
-Per_Sample_Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.26136363636363635,0.4338235294117647,0.33653846153846156,0
-Positive-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,5.5,2.4285714285714284,3.5454545454545454,0
-Sample_Size,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,,,39.0,0
-Selection-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,1.0,1.0,1.0,0
-Statistical_Bias,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.546868686868687,0.5129971988795519,0.5321041921041921,0
-Std,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.061795142880967324,0.061795142880967324,0.061795142880967366,0
-TNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.0,0.0,0.0,0
-TPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.429,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,1.0,1.0,1.0,0
-Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.18181818181818182,0.4117647058823529,0.28205128205128205,0
-Aleatoric_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.9778290634912143,0.9778290634912146,0.9778290634912145,0
-F1,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.3076923076923077,0.5833333333333334,0.44,0
-FNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.0,0.0,0.0,0
-FPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,1.0,1.0,1.0,0
-IQR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.0793650793650793,0.0793650793650793,0.07936507936507926,0
-Jitter,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.24201005025125627,0.24201005025125627,0.24201005025125627,0
-Label_Stability,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.7200000000000002,0.72,0.7199999999999998,0
-Mean,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.43650793650793657,0.43650793650793657,0.43650793650793657,0
-Overall_Uncertainty,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.9883368304150857,0.9883368304150855,0.9883368304150856,0
-PPV,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.18181818181818182,0.4117647058823529,0.28205128205128205,0
-Per_Sample_Accuracy,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.2709090909090909,0.43647058823529417,0.34307692307692317,0
-Positive-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,5.5,2.4285714285714284,3.5454545454545454,0
-Sample_Size,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,,,39.0,0
-Selection-Rate,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,1.0,1.0,1.0,0
-Statistical_Bias,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.5404040404040404,0.511204481792717,0.5276760276760276,0
-Std,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.05981622360177657,0.05981622360177658,0.0598162236017766,0
-TNR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.0,0.0,0.0,0
-TPR,101,LGBMClassifier,"{'boosting_type': 'gbdt', 'class_weight': None, 'colsample_bytree': 1.0, 'importance_type': 'split', 'learning_rate': 0.1, 'max_depth': 3, 'min_child_samples': 20, 'min_child_weight': 0.001, 'min_split_gain': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'num_leaves': 20, 'objective': None, 'random_state': 101, 'reg_alpha': 0.0, 'reg_lambda': 0.0, 'silent': 'warn', 'subsample': 1.0, 'subsample_for_bin': 200000, 'subsample_freq': 0, 'min_data_in_leaf': 100}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.954,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,1.0,1.0,1.0,0
-Accuracy,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,0.6470588235294118,0.8461538461538461,0
-Aleatoric_Uncertainty,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.7472529086918805,0.7597234964713788,0.7526888059290976,0
-F1,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,0.7,0.7857142857142857,0
-FNR,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.0,0.0,0.0,0
-FPR,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.0,0.6,0.21428571428571427,0
-IQR,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.05725677658190709,0.06151649845339698,0.059113578423325756,0
-Jitter,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.06359753312013754,0.12769435412353014,0.09153717304471629,0
-Label_Stability,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.8986363636363636,0.821764705882353,0.8651282051282052,0
-Mean,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.6503900112904303,0.40269780293629553,0.5424216127770896,0
-Overall_Uncertainty,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.7555819673244829,0.7681733503787629,0.7610705189122459,0
-PPV,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,0.5384615384615384,0.6470588235294118,0
-Per_Sample_Accuracy,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.9493181818181817,0.6932352941176471,0.8376923076923077,0
-Positive-Rate,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,1.8571428571428572,1.5454545454545454,0
-Sample_Size,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,,,39.0,0
-Selection-Rate,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.18181818181818182,0.7647058823529411,0.4358974358974359,0
-Statistical_Bias,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.25104388666709493,0.3344348371334379,0.2873937881524239,0
-Std,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.044768530424913335,0.045875894509672686,0.04525122759006484,0
-TNR,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,0.4,0.7857142857142857,0
-TPR,101,LogisticRegression,"{'C': 0.1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l2', 'random_state': 101, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.332,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,1.0,1.0,0
-Accuracy,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.9090909090909091,0.8823529411764706,0.8974358974358975,0
-Aleatoric_Uncertainty,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.33699756729590336,0.5035116995466515,0.40958065058469106,0
-F1,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.8,0.875,0.8461538461538461,0
-FNR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.0,0.0,0.0,0
-FPR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.1111111111111111,0.2,0.14285714285714285,0
-IQR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.049224329992308594,0.07819721591394214,0.06185353667609759,0
-Jitter,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.05599132023754254,0.11389003842740626,0.08122922303827448,0
-Label_Stability,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.9213636363636364,0.8288235294117647,0.881025641025641,0
-Mean,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.7137223908000645,0.48094828601103157,0.612256755379204,0
-Overall_Uncertainty,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.351337129636055,0.5273659328929439,0.428067633619827,0
-PPV,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.6666666666666666,0.7777777777777778,0.7333333333333333,0
-Per_Sample_Accuracy,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.9161363636363635,0.8497058823529411,0.887179487179487,0
-Positive-Rate,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,1.5,1.2857142857142858,1.3636363636363635,0
-Sample_Size,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,,,39.0,0
-Selection-Rate,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.2727272727272727,0.5294117647058824,0.38461538461538464,0
-Statistical_Bias,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.12525504730734802,0.2086898556253517,0.16162406631775988,0
-Std,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.03880294510311703,0.06252805009715218,0.04914465753641441,0
-TNR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.8888888888888888,0.8,0.8571428571428571,0
-TPR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.440,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,1.0,1.0,1.0,0
-Accuracy,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.8181818181818182,0.8823529411764706,0.8461538461538461,0
-Aleatoric_Uncertainty,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.45960170285488827,0.515835456487896,0.4841138518744044,0
-F1,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.6666666666666666,0.875,0.7857142857142857,0
-FNR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.0,0.0,0.0,0
-FPR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.2222222222222222,0.2,0.21428571428571427,0
-IQR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.07245045517540533,0.09869016325780866,0.08388827664722218,0
-Jitter,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.08059387848331959,0.0864794561040368,0.08315938667697897,0
-Label_Stability,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.8827272727272728,0.8929411764705882,0.8871794871794872,0
-Mean,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.6309915748840796,0.5065300807166099,0.5767391287085157,0
-Overall_Uncertainty,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.48335706694628494,0.5525283470435187,0.5135086505784126,0
-PPV,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.5,0.7777777777777778,0.6470588235294118,0
-Per_Sample_Accuracy,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.829090909090909,0.8741176470588236,0.8487179487179486,0
-Positive-Rate,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,2.0,1.2857142857142858,1.5454545454545454,0
-Sample_Size,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,,,39.0,0
-Selection-Rate,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.36363636363636365,0.5294117647058824,0.4358974358974359,0
-Statistical_Bias,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.20254440955805553,0.19969393286530776,0.20130189407660135,0
-Std,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.05744527495315021,0.07660688121423942,0.06579776999003524,0
-TNR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.7777777777777778,0.8,0.7857142857142857,0
-TPR,101,LogisticRegression,"{'C': 1, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 1000, 'multi_class': 'auto', 'n_jobs': None, 'penalty': 'l1', 'random_state': 101, 'solver': 'saga', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.965,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,1.0,1.0,1.0,0
-Accuracy,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.8181818181818182,0.8823529411764706,0.8461538461538461,0
-Aleatoric_Uncertainty,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.33204203980971764,0.3854737955308596,0.35533280512406157,0
-F1,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.6666666666666666,0.8571428571428571,0.7692307692307693,0
-FNR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.0,0.14285714285714285,0.09090909090909091,0
-FPR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.2222222222222222,0.1,0.17857142857142858,0
-IQR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.12271396231956185,0.18125657748167723,0.14823253815945828,0
-Jitter,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.21190726359063833,0.21820277859883958,0.21465146244040528,0
-Label_Stability,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.7131818181818181,0.7011764705882353,0.7079487179487179,0
-Mean,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.6064185916157215,0.4971536915233828,0.5587903018318816,0
-Overall_Uncertainty,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.5584392043601321,0.5998500696890698,0.5764900943753102,0
-PPV,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.5,0.8571428571428571,0.6666666666666666,0
-Per_Sample_Accuracy,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.7584090909090908,0.7999999999999999,0.7765384615384614,0
-Positive-Rate,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,2.0,1.0,1.3636363636363635,0
-Sample_Size,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,,,39.0,0
-Selection-Rate,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.36363636363636365,0.4117647058823529,0.38461538461538464,0
-Statistical_Bias,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.23337856339350196,0.22727548039448447,0.23071824516316097,0
-Std,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.20618840235218705,0.2018206509762653,0.20428451072678522,0
-TNR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.7777777777777778,0.9,0.8214285714285714,0
-TPR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'adam', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.986,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,1.0,0.8571428571428571,0.9090909090909091,0
-Accuracy,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,1.0,1.0,0
-Aleatoric_Uncertainty,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.017886152509533817,0.08715135409347269,0.048078676276891795,0
-F1,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,1.0,1.0,0
-FNR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.0,0.0,0.0,0
-FPR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.0,0.0,0.0,0
-IQR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.020699537461522158,0.1631629788229986,0.08279898626011443,0
-Jitter,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.016180904522612526,0.126526751404051,0.06428037624018045,0
-Label_Stability,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.979090909090909,0.8188235294117647,0.9092307692307693,0
-Mean,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.8296441174696434,0.4997150126395015,0.6858288666462482,0
-Overall_Uncertainty,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.03891369064632084,0.2909148674422839,0.14876035745481758,0
-PPV,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,1.0,1.0,0
-Per_Sample_Accuracy,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.9895454545454545,0.9094117647058824,0.9546153846153845,0
-Positive-Rate,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,1.0,1.0,0
-Sample_Size,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,,,39.0,0
-Selection-Rate,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.18181818181818182,0.4117647058823529,0.28205128205128205,0
-Statistical_Bias,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.011749377822083714,0.0985938602586932,0.04960466503804169,0
-Std,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.016282188149421783,0.1394548899182882,0.0699728530230302,0
-TNR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,1.0,1.0,0
-TPR,101,MLPClassifier,"{'activation': 'logistic', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.351,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,1.0,1.0,0
-Accuracy,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.9545454545454546,0.8823529411764706,0.9230769230769231,0
-Aleatoric_Uncertainty,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.019742903314295127,0.049345639638436564,0.03264666017353627,0
-F1,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.8888888888888888,0.8571428571428571,0.8695652173913043,0
-FNR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.0,0.14285714285714285,0.09090909090909091,0
-FPR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.05555555555555555,0.1,0.07142857142857142,0
-IQR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.06900940802527812,0.24723991407771492,0.14669962861223776,0
-Jitter,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.08922795797166976,0.1801123263375284,0.1288442211055247,0
-Label_Stability,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.879090909090909,0.7435294117647058,0.8199999999999998,0
-Mean,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.7366099368767967,0.5436120808232203,0.6524826662893403,0
-Overall_Uncertainty,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.22473388159472832,0.40615594842748426,0.30381529534233986,0
-PPV,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.8,0.8571428571428571,0.8333333333333334,0
-Per_Sample_Accuracy,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.9018181818181819,0.8264705882352942,0.8689743589743592,0
-Positive-Rate,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,1.25,1.0,1.0909090909090908,0
-Sample_Size,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,,,39.0,0
-Selection-Rate,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.22727272727272727,0.4117647058823529,0.3076923076923077,0
-Statistical_Bias,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.09774551706522229,0.17565716092191075,0.131707002848907,0
-Std,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.13941977240459089,0.22519757610811272,0.17681009709586964,0
-TNR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.9444444444444444,0.9,0.9285714285714286,0
-TPR,101,MLPClassifier,"{'activation': 'relu', 'alpha': 0.0001, 'batch_size': 'auto', 'beta_1': 0.9, 'beta_2': 0.999, 'early_stopping': False, 'epsilon': 1e-08, 'hidden_layer_sizes': (100, 100), 'learning_rate': 'constant', 'learning_rate_init': 0.001, 'max_fun': 15000, 'max_iter': 1000, 'momentum': 0.9, 'n_iter_no_change': 10, 'nesterovs_momentum': True, 'power_t': 0.5, 'random_state': 101, 'shuffle': True, 'solver': 'lbfgs', 'tol': 0.0001, 'validation_fraction': 0.1, 'verbose': False, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.460,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,1.0,0.8571428571428571,0.9090909090909091,0
-Accuracy,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,0.8823529411764706,0.9487179487179487,0
-Aleatoric_Uncertainty,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.18366910158974167,0.37661590275368123,0.2677741174817153,0
-F1,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,0.875,0.9166666666666666,0
-FNR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.0,0.0,0.0,0
-FPR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.0,0.2,0.07142857142857142,0
-IQR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.037613636363636356,0.1077941176470588,0.0682051282051282,0
-Jitter,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.0009090909090909094,0.08512562814068413,0.03761886354851622,0
-Label_Stability,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.9990909090909091,0.8647058823529411,0.9405128205128205,0
-Mean,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.8012977272727272,0.48387352941176465,0.6629333333333332,0
-Overall_Uncertainty,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.2068019969806863,0.4254470843134134,0.302108829920593,0
-PPV,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,0.7777777777777778,0.8461538461538461,0
-Per_Sample_Accuracy,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.9995454545454546,0.91,0.9605128205128205,0
-Positive-Rate,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,1.2857142857142858,1.1818181818181819,0
-Sample_Size,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,,,39.0,0
-Selection-Rate,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.18181818181818182,0.5294117647058824,0.3333333333333333,0
-Statistical_Bias,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.04173863636363639,0.1522617647058824,0.08991538461538467,0
-Std,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,0.03511623312054256,0.07721206901672924,0.05346570004964957,0
-TNR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,0.8,0.9285714285714286,0
-TPR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:50:29.341,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.0],0.0,1.0,1.0,1.0,0
-Accuracy,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.9090909090909091,0.7647058823529411,0.8461538461538461,0
-Aleatoric_Uncertainty,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.272845164645452,0.42735904351605347,0.34019736825571417,0
-F1,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.8,0.7777777777777778,0.7857142857142857,0
-FNR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.0,0.0,0.0,0
-FPR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.1111111111111111,0.4,0.21428571428571427,0
-IQR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.08102272727272727,0.15161764705882352,0.1117948717948718,0
-Jitter,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.05041114664229504,0.15307715045813555,0.09516299445948184,0
-Label_Stability,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.93,0.7564705882352941,0.8543589743589743,0
-Mean,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.7103931818181818,0.46307647058823526,0.6025884615384615,0
-Overall_Uncertainty,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.3189058421131603,0.5022520487183918,0.3988259834539022,0
-PPV,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.6666666666666666,0.6363636363636364,0.6470588235294118,0
-Per_Sample_Accuracy,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.9136363636363637,0.7999999999999999,0.864102564102564,0
-Positive-Rate,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,1.5,1.5714285714285714,1.5454545454545454,0
-Sample_Size,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,,,39.0,0
-Selection-Rate,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.2727272727272727,0.6470588235294118,0.4358974358974359,0
-Statistical_Bias,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.12228409090909098,0.22866470588235302,0.1686551282051283,0
-Std,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.06379679289045975,0.10501991561815564,0.08176584638714769,0
-TNR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,0.8888888888888888,0.6,0.7857142857142857,0
-TPR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:52:13.450,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.4],0.4,1.0,1.0,1.0,0
-Accuracy,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.8181818181818182,0.8823529411764706,0.8461538461538461,0
-Aleatoric_Uncertainty,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.3736138589403957,0.49733889404460735,0.4275452844986417,0
-F1,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.6666666666666666,0.875,0.7857142857142857,0
-FNR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.0,0.0,0.0,0
-FPR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.2222222222222222,0.2,0.21428571428571427,0
-IQR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.10521006329529055,0.1409617180205415,0.12079411791911789,0
-Jitter,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.08761534947463821,0.13313922553942825,0.10745909032341451,0
-Label_Stability,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.8600000000000001,0.8029411764705883,0.8351282051282052,0
-Mean,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.6203538533057853,0.5106819312876667,0.5725481437081439,0
-Overall_Uncertainty,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.42535702360304817,0.5548910385593142,0.4818205685839844,0
-PPV,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.5,0.7777777777777778,0.6470588235294118,0
-Per_Sample_Accuracy,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.7995454545454543,0.8585294117647058,0.8252564102564103,0
-Positive-Rate,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,2.0,1.2857142857142858,1.5454545454545454,0
-Sample_Size,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,,,39.0,0
-Selection-Rate,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.36363636363636365,0.5294117647058824,0.4358974358974359,0
-Statistical_Bias,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.21751490702479329,0.21198756429844656,0.21510555250305238,0
-Std,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.07902925444305965,0.09561104175840109,0.08625721301641362,0
-TNR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,0.7777777777777778,0.8,0.7857142857142857,0
-TPR,101,RandomForestClassifier,"{'bootstrap': True, 'ccp_alpha': 0.0, 'class_weight': None, 'criterion': 'gini', 'max_depth': 10, 'max_features': 'sqrt', 'max_leaf_nodes': None, 'max_samples': None, 'min_impurity_decrease': 0.0, 'min_samples_leaf': 1, 'min_samples_split': 5, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': None, 'oob_score': False, 'random_state': 101, 'verbose': 0, 'warm_start': False}",Run_1,Ricci,200,OK,2023-08-06 20:53:03.975,d6a4d686-4369-4bca-95c8-7be5d0740b15,Exp_iter_1,100,100,[0.7],0.7,1.0,1.0,1.0,0
From c9d1d209db0f67ac9ab5a7fc5c8b48ff614f1b88 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Tue, 19 Dec 2023 14:33:29 +0200
Subject: [PATCH 069/148] Removed datapane
---
..._Models_Interface_For_Incremental_ML.ipynb | 55 +++----
.../Multiple_Models_Interface_Use_Case.ipynb | 39 -----
...Models_Interface_With_Error_Analysis.ipynb | 76 ++++------
...butes_Metrics_Report_20230205__153918.html | 60 --------
..._2018_Metrics_Report_20230205__154446.html | 60 --------
...butes_Metrics_Report_20230205__171832.html | 60 --------
...butes_Metrics_Report_20230317__122752.html | 60 --------
...butes_Metrics_Report_20230319__110002.html | 60 --------
...butes_Metrics_Report_20230319__171815.html | 60 --------
...butes_Metrics_Report_20230519__210711.html | 60 --------
...butes_Metrics_Report_20230519__211200.html | 60 --------
...butes_Metrics_Report_20230811__222632.html | 60 --------
...butes_Metrics_Report_20230812__223906.html | 60 --------
...butes_Metrics_Report_20230812__224023.html | 60 --------
...butes_Metrics_Report_20230812__224310.html | 60 --------
...redit_Metrics_Report_20230319__161213.html | 60 --------
...redit_Metrics_Report_20230319__184958.html | 60 --------
...redit_Metrics_Report_20230405__194722.html | 60 --------
...redit_Metrics_Report_20230405__195808.html | 60 --------
..._2018_Metrics_Report_20230205__165240.html | 60 --------
..._2018_Metrics_Report_20230319__131915.html | 60 --------
..._2018_Metrics_Report_20230519__211628.html | 60 --------
lib_base_packages.txt | 1 -
virny/custom_classes/metrics_visualizer.py | 143 ------------------
24 files changed, 49 insertions(+), 1405 deletions(-)
delete mode 100644 docs/examples/results/benchmark/benchmark_reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230205__153918.html
delete mode 100644 docs/examples/results/benchmark/benchmark_reports/Folktables_GA_2018_Metrics_Report_20230205__154446.html
delete mode 100644 docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230205__171832.html
delete mode 100644 docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230317__122752.html
delete mode 100644 docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230319__110002.html
delete mode 100644 docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230319__171815.html
delete mode 100644 docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230519__210711.html
delete mode 100644 docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230519__211200.html
delete mode 100644 docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230811__222632.html
delete mode 100644 docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__223906.html
delete mode 100644 docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__224023.html
delete mode 100644 docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__224310.html
delete mode 100644 docs/examples/results/reports/Credit_Metrics_Report_20230319__161213.html
delete mode 100644 docs/examples/results/reports/Credit_Metrics_Report_20230319__184958.html
delete mode 100644 docs/examples/results/reports/Credit_Metrics_Report_20230405__194722.html
delete mode 100644 docs/examples/results/reports/Credit_Metrics_Report_20230405__195808.html
delete mode 100644 docs/examples/results/reports/Folktables_GA_2018_Metrics_Report_20230205__165240.html
delete mode 100644 docs/examples/results/reports/Folktables_GA_2018_Metrics_Report_20230319__131915.html
delete mode 100644 docs/examples/results/reports/Folktables_GA_2018_Metrics_Report_20230519__211628.html
diff --git a/docs/examples/Multiple_Models_Interface_For_Incremental_ML.ipynb b/docs/examples/Multiple_Models_Interface_For_Incremental_ML.ipynb
index 2c056f40..4066db1e 100644
--- a/docs/examples/Multiple_Models_Interface_For_Incremental_ML.ipynb
+++ b/docs/examples/Multiple_Models_Interface_For_Incremental_ML.ipynb
@@ -147,7 +147,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "d8505edef7184a5a"
},
{
"cell_type": "markdown",
@@ -156,7 +157,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "c84bae470652be94"
},
{
"cell_type": "markdown",
@@ -173,7 +175,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "8b41b746e152c76f"
},
{
"cell_type": "code",
@@ -195,7 +198,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "a878d125e8bfaf4d"
},
{
"cell_type": "code",
@@ -207,7 +211,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "53d2fcd40c862014"
},
{
"cell_type": "markdown",
@@ -307,7 +312,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "8feb498942cc2a8c"
},
{
"cell_type": "code",
@@ -318,7 +324,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "7915190e0847f1a7"
},
{
"cell_type": "markdown",
@@ -581,7 +588,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "ca3fe31f0515a973"
},
{
"cell_type": "code",
@@ -602,7 +610,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "dfc57f1870ed71d1"
},
{
"cell_type": "code",
@@ -647,34 +656,6 @@
")"
]
},
- {
- "cell_type": "markdown",
- "id": "55e6ce42",
- "metadata": {},
- "source": [
- "Create an analysis report. It includes correspondent visualizations and details about your result metrics."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 59,
- "id": "5a3811ff",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": "",
- "text/markdown": "App saved to ./docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__223906.html"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "visualizer.create_html_report(report_type=ReportType.MULTIPLE_RUNS_MULTIPLE_MODELS,\n",
- " report_save_path=os.path.join(ROOT_DIR, \"results\", \"reports\"))"
- ]
- },
{
"cell_type": "code",
"execution_count": 59,
diff --git a/docs/examples/Multiple_Models_Interface_Use_Case.ipynb b/docs/examples/Multiple_Models_Interface_Use_Case.ipynb
index a8bc35c9..1aa89ec1 100644
--- a/docs/examples/Multiple_Models_Interface_Use_Case.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Use_Case.ipynb
@@ -1096,45 +1096,6 @@
")"
]
},
- {
- "cell_type": "markdown",
- "id": "55e6ce42",
- "metadata": {
- "is_executing": true
- },
- "source": [
- "Create an analysis report. It includes correspondent visualizations and details about your result metrics."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "id": "5a3811ff",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-10-21T20:58:36.148703Z",
- "start_time": "2023-10-21T20:58:35.395033Z"
- }
- },
- "outputs": [
- {
- "ename": "AttributeError",
- "evalue": "module 'datapane' has no attribute 'Report'",
- "output_type": "error",
- "traceback": [
- "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m",
- "\u001B[0;31mAttributeError\u001B[0m Traceback (most recent call last)",
- "Cell \u001B[0;32mIn[27], line 1\u001B[0m\n\u001B[0;32m----> 1\u001B[0m \u001B[43mvisualizer\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mcreate_html_report\u001B[49m\u001B[43m(\u001B[49m\u001B[43mreport_type\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mReportType\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mMULTIPLE_RUNS_MULTIPLE_MODELS\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 2\u001B[0m \u001B[43m \u001B[49m\u001B[43mreport_save_path\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mos\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mpath\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mjoin\u001B[49m\u001B[43m(\u001B[49m\u001B[43mROOT_DIR\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mresults\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mreports\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m)\u001B[49m\u001B[43m)\u001B[49m\n",
- "File \u001B[0;32m~/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_visualizer.py:480\u001B[0m, in \u001B[0;36mMetricsVisualizer.create_html_report\u001B[0;34m(self, report_type, report_save_path)\u001B[0m\n\u001B[1;32m 475\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m report_type \u001B[38;5;241m==\u001B[39m ReportType\u001B[38;5;241m.\u001B[39mMULTIPLE_RUNS_MULTIPLE_MODELS:\n\u001B[1;32m 476\u001B[0m boxes_and_whiskers_plot \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mcreate_boxes_and_whiskers_for_models_multiple_runs(\n\u001B[1;32m 477\u001B[0m metrics_lst\u001B[38;5;241m=\u001B[39m[\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mStd\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mIQR\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mJitter\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mLabel_Stability\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mAccuracy\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mTPR\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mTNR\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mFPR\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mFNR\u001B[39m\u001B[38;5;124m'\u001B[39m]\n\u001B[1;32m 478\u001B[0m )\n\u001B[0;32m--> 480\u001B[0m \u001B[43mdp\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mReport\u001B[49m(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m# Fairness and Stability Report\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 481\u001B[0m general_desc,\n\u001B[1;32m 482\u001B[0m \n\u001B[1;32m 483\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m## Model Composed Metrics\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 484\u001B[0m composed_metrics_desc,\n\u001B[1;32m 485\u001B[0m dp\u001B[38;5;241m.\u001B[39mDataTable(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mmodels_composed_metrics_df),\n\u001B[1;32m 486\u001B[0m \n\u001B[1;32m 487\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m## Boxes and Whiskers Plot Based On Multiple Models Runs\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 488\u001B[0m boxes_and_whiskers_plot_desc,\n\u001B[1;32m 489\u001B[0m dp\u001B[38;5;241m.\u001B[39mPlot(boxes_and_whiskers_plot),\n\u001B[1;32m 490\u001B[0m \n\u001B[1;32m 491\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m## Overall Fairness and Stability Model Metrics Comparison\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 492\u001B[0m overall_metrics_desc,\n\u001B[1;32m 493\u001B[0m dp\u001B[38;5;241m.\u001B[39mPlot(fairness_overall_metrics_bar_chart, responsive\u001B[38;5;241m=\u001B[39m\u001B[38;5;28;01mFalse\u001B[39;00m),\n\u001B[1;32m 494\u001B[0m dp\u001B[38;5;241m.\u001B[39mPlot(variance_overall_metrics_bar_chart, responsive\u001B[38;5;241m=\u001B[39m\u001B[38;5;28;01mFalse\u001B[39;00m),\n\u001B[1;32m 495\u001B[0m \n\u001B[1;32m 496\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m## Fairness and Stability Interactive Bar Chart\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 497\u001B[0m individual_metrics_interactive_bar_chart_desc,\n\u001B[1;32m 498\u001B[0m dp\u001B[38;5;241m.\u001B[39mPlot(interactive_bar_chart),\n\u001B[1;32m 499\u001B[0m \n\u001B[1;32m 500\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m## Model Ranks Based On Group Fairness and Stability Metrics\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 501\u001B[0m model_ranked_heatmap_desc,\n\u001B[1;32m 502\u001B[0m dp\u001B[38;5;241m.\u001B[39mPlot(model_rank_heatmap, responsive\u001B[38;5;241m=\u001B[39m\u001B[38;5;28;01mFalse\u001B[39;00m),\n\u001B[1;32m 503\u001B[0m \n\u001B[1;32m 504\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m## Total Ranks Sum For Group Fairness and Stability Metrics\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 505\u001B[0m overall_model_ranked_heatmap_desc,\n\u001B[1;32m 506\u001B[0m dp\u001B[38;5;241m.\u001B[39mPlot(total_model_rank_heatmap, responsive\u001B[38;5;241m=\u001B[39m\u001B[38;5;28;01mFalse\u001B[39;00m),\n\u001B[1;32m 507\u001B[0m )\u001B[38;5;241m.\u001B[39msave(path\u001B[38;5;241m=\u001B[39mos\u001B[38;5;241m.\u001B[39mpath\u001B[38;5;241m.\u001B[39mjoin(report_save_path, report_filename))\n\u001B[1;32m 508\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[1;32m 509\u001B[0m dp\u001B[38;5;241m.\u001B[39mReport(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m# Fairness and Stability Report\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 510\u001B[0m general_desc,\n\u001B[1;32m 511\u001B[0m \n\u001B[0;32m (...)\u001B[0m\n\u001B[1;32m 531\u001B[0m dp\u001B[38;5;241m.\u001B[39mPlot(total_model_rank_heatmap, responsive\u001B[38;5;241m=\u001B[39m\u001B[38;5;28;01mFalse\u001B[39;00m),\n\u001B[1;32m 532\u001B[0m )\u001B[38;5;241m.\u001B[39msave(path\u001B[38;5;241m=\u001B[39mos\u001B[38;5;241m.\u001B[39mpath\u001B[38;5;241m.\u001B[39mjoin(report_save_path, report_filename))\n",
- "\u001B[0;31mAttributeError\u001B[0m: module 'datapane' has no attribute 'Report'"
- ]
- }
- ],
- "source": [
- "visualizer.create_html_report(report_type=ReportType.MULTIPLE_RUNS_MULTIPLE_MODELS,\n",
- " report_save_path=os.path.join(ROOT_DIR, \"results\", \"reports\"))"
- ]
- },
{
"cell_type": "code",
"execution_count": null,
diff --git a/docs/examples/Multiple_Models_Interface_With_Error_Analysis.ipynb b/docs/examples/Multiple_Models_Interface_With_Error_Analysis.ipynb
index 9fe2b8cd..b5bf2600 100644
--- a/docs/examples/Multiple_Models_Interface_With_Error_Analysis.ipynb
+++ b/docs/examples/Multiple_Models_Interface_With_Error_Analysis.ipynb
@@ -154,7 +154,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "76d98eaabfcfc9c0"
},
{
"cell_type": "code",
@@ -202,7 +203,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "ebec7f4488fd3f25"
},
{
"cell_type": "markdown",
@@ -211,7 +213,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "855fb160c6220866"
},
{
"cell_type": "markdown",
@@ -228,7 +231,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "1137cf9bc7be6964"
},
{
"cell_type": "code",
@@ -250,7 +254,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "efc95fa248b9f135"
},
{
"cell_type": "code",
@@ -262,7 +267,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "f3a59ca9319a774d"
},
{
"cell_type": "markdown",
@@ -362,7 +368,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "8ee9e8a8c10245bf"
},
{
"cell_type": "code",
@@ -373,7 +380,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "6dba3327ebe01279"
},
{
"cell_type": "markdown",
@@ -382,7 +390,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "c32119a0992e331c"
},
{
"cell_type": "code",
@@ -406,8 +415,7 @@
"\n",
"2023/08/13, 01:41:39: Tuning XGBClassifier...\n",
"Fitting 3 folds for each of 4 candidates, totalling 12 fits\n",
- "2023/08/13, 01:41:42: Tuning for XGBClassifier is finished [F1 score = 0.6548814644409034, Accuracy = 0.6587752525252525]\n",
- "\n"
+ "2023/08/13, 01:41:42: Tuning for XGBClassifier is finished [F1 score = 0.6548814644409034, Accuracy = 0.6587752525252525]\n"
]
},
{
@@ -426,7 +434,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "f9f77d878f6a94f8"
},
{
"cell_type": "code",
@@ -440,7 +449,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "cdd137541e77686d"
},
{
"cell_type": "markdown",
@@ -449,7 +459,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "ca709f1927e425b5"
},
{
"cell_type": "code",
@@ -483,7 +494,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "8c6061673bb72efa"
},
{
"cell_type": "markdown",
@@ -739,7 +751,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "cdd0a858443ac90e"
},
{
"cell_type": "code",
@@ -760,7 +773,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "5efb9f1d613da1c6"
},
{
"cell_type": "code",
@@ -805,34 +819,6 @@
")"
]
},
- {
- "cell_type": "markdown",
- "id": "55e6ce42",
- "metadata": {},
- "source": [
- "Create an analysis report. It includes correspondent visualizations and details about your result metrics."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 79,
- "id": "5a3811ff",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": "",
- "text/markdown": "App saved to ./docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__224310.html"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "visualizer.create_html_report(report_type=ReportType.MULTIPLE_RUNS_MULTIPLE_MODELS,\n",
- " report_save_path=os.path.join(ROOT_DIR, \"results\", \"reports\"))"
- ]
- },
{
"cell_type": "code",
"execution_count": 79,
diff --git a/docs/examples/results/benchmark/benchmark_reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230205__153918.html b/docs/examples/results/benchmark/benchmark_reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230205__153918.html
deleted file mode 100644
index 07e98a72..00000000
--- a/docs/examples/results/benchmark/benchmark_reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230205__153918.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/benchmark/benchmark_reports/Folktables_GA_2018_Metrics_Report_20230205__154446.html b/docs/examples/results/benchmark/benchmark_reports/Folktables_GA_2018_Metrics_Report_20230205__154446.html
deleted file mode 100644
index af36069b..00000000
--- a/docs/examples/results/benchmark/benchmark_reports/Folktables_GA_2018_Metrics_Report_20230205__154446.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230205__171832.html b/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230205__171832.html
deleted file mode 100644
index 1dc415e7..00000000
--- a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230205__171832.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230317__122752.html b/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230317__122752.html
deleted file mode 100644
index 1cb9bf4f..00000000
--- a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230317__122752.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230319__110002.html b/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230319__110002.html
deleted file mode 100644
index 6f4580f5..00000000
--- a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230319__110002.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230319__171815.html b/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230319__171815.html
deleted file mode 100644
index d630d1c9..00000000
--- a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230319__171815.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230519__210711.html b/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230519__210711.html
deleted file mode 100644
index c5b00fea..00000000
--- a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230519__210711.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230519__211200.html b/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230519__211200.html
deleted file mode 100644
index 353b753e..00000000
--- a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230519__211200.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230811__222632.html b/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230811__222632.html
deleted file mode 100644
index 39ad7304..00000000
--- a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230811__222632.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__223906.html b/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__223906.html
deleted file mode 100644
index 30ffc7c4..00000000
--- a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__223906.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__224023.html b/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__224023.html
deleted file mode 100644
index 1ef02a73..00000000
--- a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__224023.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__224310.html b/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__224310.html
deleted file mode 100644
index e4ca1a4d..00000000
--- a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__224310.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/Credit_Metrics_Report_20230319__161213.html b/docs/examples/results/reports/Credit_Metrics_Report_20230319__161213.html
deleted file mode 100644
index e210de68..00000000
--- a/docs/examples/results/reports/Credit_Metrics_Report_20230319__161213.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/Credit_Metrics_Report_20230319__184958.html b/docs/examples/results/reports/Credit_Metrics_Report_20230319__184958.html
deleted file mode 100644
index 268d0bd3..00000000
--- a/docs/examples/results/reports/Credit_Metrics_Report_20230319__184958.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/Credit_Metrics_Report_20230405__194722.html b/docs/examples/results/reports/Credit_Metrics_Report_20230405__194722.html
deleted file mode 100644
index 9ca76524..00000000
--- a/docs/examples/results/reports/Credit_Metrics_Report_20230405__194722.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/Credit_Metrics_Report_20230405__195808.html b/docs/examples/results/reports/Credit_Metrics_Report_20230405__195808.html
deleted file mode 100644
index c3a45992..00000000
--- a/docs/examples/results/reports/Credit_Metrics_Report_20230405__195808.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/Folktables_GA_2018_Metrics_Report_20230205__165240.html b/docs/examples/results/reports/Folktables_GA_2018_Metrics_Report_20230205__165240.html
deleted file mode 100644
index d21b9ac4..00000000
--- a/docs/examples/results/reports/Folktables_GA_2018_Metrics_Report_20230205__165240.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/Folktables_GA_2018_Metrics_Report_20230319__131915.html b/docs/examples/results/reports/Folktables_GA_2018_Metrics_Report_20230319__131915.html
deleted file mode 100644
index 59d457bd..00000000
--- a/docs/examples/results/reports/Folktables_GA_2018_Metrics_Report_20230319__131915.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/Folktables_GA_2018_Metrics_Report_20230519__211628.html b/docs/examples/results/reports/Folktables_GA_2018_Metrics_Report_20230519__211628.html
deleted file mode 100644
index 6b62b52a..00000000
--- a/docs/examples/results/reports/Folktables_GA_2018_Metrics_Report_20230519__211628.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/lib_base_packages.txt b/lib_base_packages.txt
index 10cbab0f..b851e9f7 100644
--- a/lib_base_packages.txt
+++ b/lib_base_packages.txt
@@ -10,6 +10,5 @@ folktables~=0.0.11
munch~=2.5.0
PyYAML~=6.0
river==0.15.0
-datapane~=0.16.0
requests-toolbelt==1.0.0
colorama~=0.4.6
\ No newline at end of file
diff --git a/virny/custom_classes/metrics_visualizer.py b/virny/custom_classes/metrics_visualizer.py
index 377bcdf9..daed2671 100644
--- a/virny/custom_classes/metrics_visualizer.py
+++ b/virny/custom_classes/metrics_visualizer.py
@@ -2,7 +2,6 @@
import altair as alt
import numpy as np
import pandas as pd
-import datapane as dp
import seaborn as sns
import matplotlib.pyplot as plt
from datetime import datetime, timezone
@@ -378,145 +377,3 @@ def create_model_rank_heatmaps(self, metrics_lst: list, groups_lst):
total_model_rank_heatmap = self.create_total_model_rank_heatmap(sorted_matrix_by_rank, num_models)
if self.__create_report:
return model_rank_heatmap, total_model_rank_heatmap
-
- def create_html_report(self, report_type: ReportType, report_save_path: str):
- """
- Create Fairness and Stability Report depending on report type.
- It includes visualizations and helpful details to them.
- """
- # Create a directory if it does not exist
- if not os.path.exists(report_save_path):
- os.makedirs(report_save_path, exist_ok=True)
-
- self.__create_report = True
-
- # Create plots
- fairness_overall_metrics_bar_chart = self.create_overall_metrics_bar_char(
- metrics_names=['TPR', 'PPV', 'Accuracy', 'F1', 'Selection-Rate', 'Positive-Rate'],
- metrics_title="Fairness Metrics"
- )
- variance_overall_metrics_bar_chart = self.create_overall_metrics_bar_char(
- metrics_names=['Label_Stability'],
- reversed_metrics_names=['Std', 'IQR', 'Jitter'],
- metrics_title="Stability Metrics"
- )
- interactive_bar_chart = self.create_fairness_variance_interactive_bar_chart()
- model_rank_heatmap, total_model_rank_heatmap = \
- self.create_model_rank_heatmaps(metrics_lst=self.fairness_metrics_lst + self.variance_metrics_lst,
- groups_lst=self.sensitive_attributes_dct.keys())
-
- # Set descriptions for the report
- general_desc = dp.Text(
- f"**Date of creation**: {datetime.now().strftime('%m/%d/%Y, %H:%M:%S')}\n\n\n"
- "This report was created based on the following input arguments:\n"
- f"* __Dataset name__: {self.dataset_name}\n"
- f"* __Model names__: {self.model_names}\n"
- f"* __Sensitive attributes__: {list(self.sensitive_attributes_dct.keys())}\n"
- )
- composed_metrics_desc = dp.Text(
- "Below you can find a dataframe of composed group metrics for all defined models and sensitive attributes.\n"
- )
- boxes_and_whiskers_plot_desc = dp.Text(
- "The below boxes and whiskers plot is based on _overall_ subgroup error and stability metrics for all defined models and results after all runs.\n"
- "This plot can give you the following benefits:\n"
- "* You can see combined information on one plot that includes different models, subgroup metrics, and results after multiple runs\n"
- "* You can see all quartiles for each model metric based on multiple runs\n"
- "* You can compare different models for each metric\n"
- "* You can see the stability of each model metric\n"
- )
- overall_metrics_desc = dp.Text(
- "The below bar chart includes all defined models and all _overall_ subgroup error and stability metrics, which are averaged across multiple runs.\n"
- "This plot can give you the following benefits:\n"
- "* You can compare all models for each subgroup error or stability metric\n"
- "* This comparison also includes reversed metrics, in which values closer to zero are better "
- "since straight and reversed metrics in this plot are converted to the same format -- values closer to one are better\n"
- )
- individual_metrics_interactive_bar_chart_desc = dp.Text(
- "The below interactive bar chart includes all groups, all composed group fairness and stability metrics, "
- "and all defined models.\n"
- "This plot can give you the following benefits:\n"
- "* You can select any pair of group fairness and stability metrics and compare them across all groups and models\n"
- "* Since this plot is interactive, it saves a lot of space for other plots. "
- "Also, it could be more convenient to compare each group fairness and stability metric using the interactive mode\n"
- )
- model_ranked_heatmap_desc = dp.Text(
- "The below heatmap includes all group fairness and stability metrics and all defined models.\n"
- "On this plot, colors display ranks where 1 is the best model for the metric. "
- "These ranks are conditioned on difference or ratio operations used to create these group metrics:\n"
- "* If the metric is created based on the difference operation, **closer values to zero** have ranks that are closer to the first rank\n"
- "* If the metric is created based on the ratio operation, **closer values to one** have ranks that are closer to the first rank\n\n"
- "This plot can give you the following benefits:\n"
- "* You can visually compare all models across all group metrics\n"
- "* You can visually understand where one model is better or worse than other models\n"
- "* You can find the best and worst models for each group metric\n"
- )
- overall_model_ranked_heatmap_desc = dp.Text(
- "The below heatmap includes all defined models and sums of their fairness and stability ranks.\n"
- "On this plot, colors display sums of ranks for one model. If the sum is smaller, the model has better fairness or stability characteristics than other models.\n"
- "This plot can give you the following benefits:\n"
- "* You can visually compare all models for fairness and stability characteristics\n"
- "* You can visually understand where one model is better or worse than other models\n"
- "* You can find the best or most balanced model based on fairness or stability metrics\n"
- )
-
- report_filename = f'{self.dataset_name}_Metrics_Report_{datetime.now(timezone.utc).strftime("%Y%m%d__%H%M%S")}.html'
- if report_type == ReportType.MULTIPLE_RUNS_MULTIPLE_MODELS:
- boxes_and_whiskers_plot = self.create_boxes_and_whiskers_for_models_multiple_runs(
- metrics_lst=['Std', 'IQR', 'Jitter', 'Label_Stability', 'Accuracy', 'TPR', 'TNR', 'FPR', 'FNR']
- )
-
- dp.Report("# Fairness and Stability Report",
- general_desc,
-
- "## Model Composed Metrics",
- composed_metrics_desc,
- dp.DataTable(self.models_composed_metrics_df),
-
- "## Boxes and Whiskers Plot Based On Multiple Models Runs",
- boxes_and_whiskers_plot_desc,
- dp.Plot(boxes_and_whiskers_plot),
-
- "## Overall Fairness and Stability Model Metrics Comparison",
- overall_metrics_desc,
- dp.Plot(fairness_overall_metrics_bar_chart, responsive=False),
- dp.Plot(variance_overall_metrics_bar_chart, responsive=False),
-
- "## Fairness and Stability Interactive Bar Chart",
- individual_metrics_interactive_bar_chart_desc,
- dp.Plot(interactive_bar_chart),
-
- "## Model Ranks Based On Group Fairness and Stability Metrics",
- model_ranked_heatmap_desc,
- dp.Plot(model_rank_heatmap, responsive=False),
-
- "## Total Ranks Sum For Group Fairness and Stability Metrics",
- overall_model_ranked_heatmap_desc,
- dp.Plot(total_model_rank_heatmap, responsive=False),
- ).save(path=os.path.join(report_save_path, report_filename))
- else:
- dp.Report("# Fairness and Stability Report",
- general_desc,
-
- "## Model Composed Metrics",
- composed_metrics_desc,
- dp.DataTable(self.models_composed_metrics_df),
-
- "## Overall Fairness and Stability Model Metrics Comparison",
- overall_metrics_desc,
- dp.Plot(fairness_overall_metrics_bar_chart, responsive=False),
- dp.Plot(variance_overall_metrics_bar_chart, responsive=False),
-
- "## Fairness and Stability Interactive Bar Chart",
- individual_metrics_interactive_bar_chart_desc,
- dp.Plot(interactive_bar_chart),
-
- "## Model Ranks Based On Group Fairness and Stability Metrics",
- model_ranked_heatmap_desc,
- dp.Plot(model_rank_heatmap, responsive=False),
-
- "## Total Ranks Sum For Group Fairness and Stability Metrics",
- overall_model_ranked_heatmap_desc,
- dp.Plot(total_model_rank_heatmap, responsive=False),
- ).save(path=os.path.join(report_save_path, report_filename))
-
- self.__create_report = False
From 8fcd8f6df305ddf56f7becde4ba4fb7c3ca292e0 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Tue, 19 Dec 2023 15:02:21 +0200
Subject: [PATCH 070/148] Added gradio to dependencies
---
.../Multiple_Models_Interface_Vis.ipynb | 26 +------------------
...Multiple_Models_Interface_Vis_Income.ipynb | 26 +------------------
...iple_Models_Interface_Vis_Law_School.ipynb | 26 +------------------
...ultiple_Models_Interface_Vis_Pub_Cov.ipynb | 26 +------------------
.../Multiple_Models_Interface_Vis_Ricci.ipynb | 26 +------------------
lib_base_packages.txt | 1 +
.../metrics_interactive_visualizer.py | 5 +---
7 files changed, 7 insertions(+), 129 deletions(-)
diff --git a/docs/examples/Multiple_Models_Interface_Vis.ipynb b/docs/examples/Multiple_Models_Interface_Vis.ipynb
index 14fb79b7..c241a2f4 100644
--- a/docs/examples/Multiple_Models_Interface_Vis.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis.ipynb
@@ -256,7 +256,7 @@
}
],
"source": [
- "visualizer.start_web_app()"
+ "visualizer.create_web_app()"
],
"metadata": {
"collapsed": false,
@@ -267,30 +267,6 @@
},
"id": "678a9dc8d51243f4"
},
- {
- "cell_type": "code",
- "execution_count": 17,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Closing server running on port: 7860\n"
- ]
- }
- ],
- "source": [
- "visualizer.stop_web_app()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-09-29T21:41:49.927075Z",
- "start_time": "2023-09-29T21:41:49.639933Z"
- }
- },
- "id": "277b6d1de837dab7"
- },
{
"cell_type": "code",
"execution_count": 78,
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
index ecd29b0e..3a3ab5d9 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
@@ -225,7 +225,7 @@
}
],
"source": [
- "visualizer.start_web_app()"
+ "visualizer.create_web_app()"
],
"metadata": {
"collapsed": false,
@@ -236,30 +236,6 @@
},
"id": "678a9dc8d51243f4"
},
- {
- "cell_type": "code",
- "execution_count": 11,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Closing server running on port: 7860\n"
- ]
- }
- ],
- "source": [
- "visualizer.stop_web_app()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-11T00:26:17.482944Z",
- "start_time": "2023-12-11T00:26:17.438287Z"
- }
- },
- "id": "277b6d1de837dab7"
- },
{
"cell_type": "code",
"execution_count": 11,
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
index 3b630e94..abcaa7bf 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
@@ -225,7 +225,7 @@
}
],
"source": [
- "visualizer.start_web_app()"
+ "visualizer.create_web_app()"
],
"metadata": {
"collapsed": false,
@@ -236,30 +236,6 @@
},
"id": "678a9dc8d51243f4"
},
- {
- "cell_type": "code",
- "execution_count": 11,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Closing server running on port: 7860\n"
- ]
- }
- ],
- "source": [
- "visualizer.stop_web_app()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-18T17:14:45.583530Z",
- "start_time": "2023-12-18T17:14:45.541605Z"
- }
- },
- "id": "277b6d1de837dab7"
- },
{
"cell_type": "code",
"execution_count": 11,
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Pub_Cov.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Pub_Cov.ipynb
index 6caf5b8b..61298c7a 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Pub_Cov.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Pub_Cov.ipynb
@@ -235,7 +235,7 @@
}
],
"source": [
- "visualizer.start_web_app()"
+ "visualizer.create_web_app()"
],
"metadata": {
"collapsed": false,
@@ -246,30 +246,6 @@
},
"id": "678a9dc8d51243f4"
},
- {
- "cell_type": "code",
- "execution_count": 29,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Closing server running on port: 7860\n"
- ]
- }
- ],
- "source": [
- "visualizer.stop_web_app()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-07T00:15:48.092702Z",
- "start_time": "2023-12-07T00:15:48.056394Z"
- }
- },
- "id": "277b6d1de837dab7"
- },
{
"cell_type": "code",
"execution_count": 29,
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb
index 8e21b6bc..18b24daa 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb
@@ -233,7 +233,7 @@
}
],
"source": [
- "visualizer.start_web_app()"
+ "visualizer.create_web_app()"
],
"metadata": {
"collapsed": false,
@@ -244,30 +244,6 @@
},
"id": "678a9dc8d51243f4"
},
- {
- "cell_type": "code",
- "execution_count": 48,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Closing server running on port: 7860\n"
- ]
- }
- ],
- "source": [
- "visualizer.stop_web_app()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-10-07T13:45:45.264959Z",
- "start_time": "2023-10-07T13:45:45.221841Z"
- }
- },
- "id": "277b6d1de837dab7"
- },
{
"cell_type": "code",
"execution_count": 48,
diff --git a/lib_base_packages.txt b/lib_base_packages.txt
index b851e9f7..7cbd2201 100644
--- a/lib_base_packages.txt
+++ b/lib_base_packages.txt
@@ -5,6 +5,7 @@ altair~=4.2.0
scikit-learn~=1.2.0
tqdm~=4.64.1
sklearn-utils
+gradio==4.10.0
seaborn~=0.12.1
folktables~=0.0.11
munch~=2.5.0
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index 18fee7da..910226ef 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -92,7 +92,7 @@ def __variable_inputs(self, k):
k = int(k)
return [gr.Textbox(visible=True)] * k + [gr.Textbox(value='', visible=False)] * (self.max_groups - k)
- def start_web_app(self):
+ def create_web_app(self):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
# ==================================== Dataset Statistics ====================================
gr.Markdown(
@@ -430,9 +430,6 @@ def start_web_app(self):
self.demo = demo
self.demo.launch(inline=False, debug=True, show_error=True)
- def stop_web_app(self):
- self.demo.close()
-
def __filter_subgroup_metrics_df(self, results: dict, subgroup_metric: str,
selected_metric: str, selected_subgroup: str, defined_model_names: list):
results[subgroup_metric] = dict()
From 933100cb0d23003509335c3f18035c3ffa5c8177 Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Tue, 19 Dec 2023 15:24:47 +0200
Subject: [PATCH 071/148] wip1
---
..._Models_Interface_For_Incremental_ML.ipynb | 55 ++---
.../Multiple_Models_Interface_Use_Case.ipynb | 39 ----
.../Multiple_Models_Interface_Vis.ipynb | 26 +--
...Multiple_Models_Interface_Vis_Income.ipynb | 26 +--
...iple_Models_Interface_Vis_Law_School.ipynb | 192 +++---------------
...ultiple_Models_Interface_Vis_Pub_Cov.ipynb | 26 +--
.../Multiple_Models_Interface_Vis_Ricci.ipynb | 26 +--
...Models_Interface_With_Error_Analysis.ipynb | 76 +++----
...butes_Metrics_Report_20230205__153918.html | 60 ------
..._2018_Metrics_Report_20230205__154446.html | 60 ------
...butes_Metrics_Report_20230205__171832.html | 60 ------
...butes_Metrics_Report_20230317__122752.html | 60 ------
...butes_Metrics_Report_20230319__110002.html | 60 ------
...butes_Metrics_Report_20230319__171815.html | 60 ------
...butes_Metrics_Report_20230519__210711.html | 60 ------
...butes_Metrics_Report_20230519__211200.html | 60 ------
...butes_Metrics_Report_20230811__222632.html | 60 ------
...butes_Metrics_Report_20230812__223906.html | 60 ------
...butes_Metrics_Report_20230812__224023.html | 60 ------
...butes_Metrics_Report_20230812__224310.html | 60 ------
...redit_Metrics_Report_20230319__161213.html | 60 ------
...redit_Metrics_Report_20230319__184958.html | 60 ------
...redit_Metrics_Report_20230405__194722.html | 60 ------
...redit_Metrics_Report_20230405__195808.html | 60 ------
..._2018_Metrics_Report_20230205__165240.html | 60 ------
..._2018_Metrics_Report_20230319__131915.html | 60 ------
..._2018_Metrics_Report_20230519__211628.html | 60 ------
lib_base_packages.txt | 2 +-
.../metrics_interactive_visualizer.py | 5 +-
virny/custom_classes/metrics_visualizer.py | 143 -------------
virny/utils/data_viz_utils.py | 1 -
31 files changed, 79 insertions(+), 1678 deletions(-)
delete mode 100644 docs/examples/results/benchmark/benchmark_reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230205__153918.html
delete mode 100644 docs/examples/results/benchmark/benchmark_reports/Folktables_GA_2018_Metrics_Report_20230205__154446.html
delete mode 100644 docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230205__171832.html
delete mode 100644 docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230317__122752.html
delete mode 100644 docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230319__110002.html
delete mode 100644 docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230319__171815.html
delete mode 100644 docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230519__210711.html
delete mode 100644 docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230519__211200.html
delete mode 100644 docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230811__222632.html
delete mode 100644 docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__223906.html
delete mode 100644 docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__224023.html
delete mode 100644 docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__224310.html
delete mode 100644 docs/examples/results/reports/Credit_Metrics_Report_20230319__161213.html
delete mode 100644 docs/examples/results/reports/Credit_Metrics_Report_20230319__184958.html
delete mode 100644 docs/examples/results/reports/Credit_Metrics_Report_20230405__194722.html
delete mode 100644 docs/examples/results/reports/Credit_Metrics_Report_20230405__195808.html
delete mode 100644 docs/examples/results/reports/Folktables_GA_2018_Metrics_Report_20230205__165240.html
delete mode 100644 docs/examples/results/reports/Folktables_GA_2018_Metrics_Report_20230319__131915.html
delete mode 100644 docs/examples/results/reports/Folktables_GA_2018_Metrics_Report_20230519__211628.html
diff --git a/docs/examples/Multiple_Models_Interface_For_Incremental_ML.ipynb b/docs/examples/Multiple_Models_Interface_For_Incremental_ML.ipynb
index 2c056f40..4066db1e 100644
--- a/docs/examples/Multiple_Models_Interface_For_Incremental_ML.ipynb
+++ b/docs/examples/Multiple_Models_Interface_For_Incremental_ML.ipynb
@@ -147,7 +147,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "d8505edef7184a5a"
},
{
"cell_type": "markdown",
@@ -156,7 +157,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "c84bae470652be94"
},
{
"cell_type": "markdown",
@@ -173,7 +175,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "8b41b746e152c76f"
},
{
"cell_type": "code",
@@ -195,7 +198,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "a878d125e8bfaf4d"
},
{
"cell_type": "code",
@@ -207,7 +211,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "53d2fcd40c862014"
},
{
"cell_type": "markdown",
@@ -307,7 +312,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "8feb498942cc2a8c"
},
{
"cell_type": "code",
@@ -318,7 +324,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "7915190e0847f1a7"
},
{
"cell_type": "markdown",
@@ -581,7 +588,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "ca3fe31f0515a973"
},
{
"cell_type": "code",
@@ -602,7 +610,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "dfc57f1870ed71d1"
},
{
"cell_type": "code",
@@ -647,34 +656,6 @@
")"
]
},
- {
- "cell_type": "markdown",
- "id": "55e6ce42",
- "metadata": {},
- "source": [
- "Create an analysis report. It includes correspondent visualizations and details about your result metrics."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 59,
- "id": "5a3811ff",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": "",
- "text/markdown": "App saved to ./docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__223906.html"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "visualizer.create_html_report(report_type=ReportType.MULTIPLE_RUNS_MULTIPLE_MODELS,\n",
- " report_save_path=os.path.join(ROOT_DIR, \"results\", \"reports\"))"
- ]
- },
{
"cell_type": "code",
"execution_count": 59,
diff --git a/docs/examples/Multiple_Models_Interface_Use_Case.ipynb b/docs/examples/Multiple_Models_Interface_Use_Case.ipynb
index a8bc35c9..1aa89ec1 100644
--- a/docs/examples/Multiple_Models_Interface_Use_Case.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Use_Case.ipynb
@@ -1096,45 +1096,6 @@
")"
]
},
- {
- "cell_type": "markdown",
- "id": "55e6ce42",
- "metadata": {
- "is_executing": true
- },
- "source": [
- "Create an analysis report. It includes correspondent visualizations and details about your result metrics."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "id": "5a3811ff",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-10-21T20:58:36.148703Z",
- "start_time": "2023-10-21T20:58:35.395033Z"
- }
- },
- "outputs": [
- {
- "ename": "AttributeError",
- "evalue": "module 'datapane' has no attribute 'Report'",
- "output_type": "error",
- "traceback": [
- "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m",
- "\u001B[0;31mAttributeError\u001B[0m Traceback (most recent call last)",
- "Cell \u001B[0;32mIn[27], line 1\u001B[0m\n\u001B[0;32m----> 1\u001B[0m \u001B[43mvisualizer\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mcreate_html_report\u001B[49m\u001B[43m(\u001B[49m\u001B[43mreport_type\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mReportType\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mMULTIPLE_RUNS_MULTIPLE_MODELS\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 2\u001B[0m \u001B[43m \u001B[49m\u001B[43mreport_save_path\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mos\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mpath\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mjoin\u001B[49m\u001B[43m(\u001B[49m\u001B[43mROOT_DIR\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mresults\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mreports\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m)\u001B[49m\u001B[43m)\u001B[49m\n",
- "File \u001B[0;32m~/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_visualizer.py:480\u001B[0m, in \u001B[0;36mMetricsVisualizer.create_html_report\u001B[0;34m(self, report_type, report_save_path)\u001B[0m\n\u001B[1;32m 475\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m report_type \u001B[38;5;241m==\u001B[39m ReportType\u001B[38;5;241m.\u001B[39mMULTIPLE_RUNS_MULTIPLE_MODELS:\n\u001B[1;32m 476\u001B[0m boxes_and_whiskers_plot \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mcreate_boxes_and_whiskers_for_models_multiple_runs(\n\u001B[1;32m 477\u001B[0m metrics_lst\u001B[38;5;241m=\u001B[39m[\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mStd\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mIQR\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mJitter\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mLabel_Stability\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mAccuracy\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mTPR\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mTNR\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mFPR\u001B[39m\u001B[38;5;124m'\u001B[39m, \u001B[38;5;124m'\u001B[39m\u001B[38;5;124mFNR\u001B[39m\u001B[38;5;124m'\u001B[39m]\n\u001B[1;32m 478\u001B[0m )\n\u001B[0;32m--> 480\u001B[0m \u001B[43mdp\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mReport\u001B[49m(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m# Fairness and Stability Report\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 481\u001B[0m general_desc,\n\u001B[1;32m 482\u001B[0m \n\u001B[1;32m 483\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m## Model Composed Metrics\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 484\u001B[0m composed_metrics_desc,\n\u001B[1;32m 485\u001B[0m dp\u001B[38;5;241m.\u001B[39mDataTable(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mmodels_composed_metrics_df),\n\u001B[1;32m 486\u001B[0m \n\u001B[1;32m 487\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m## Boxes and Whiskers Plot Based On Multiple Models Runs\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 488\u001B[0m boxes_and_whiskers_plot_desc,\n\u001B[1;32m 489\u001B[0m dp\u001B[38;5;241m.\u001B[39mPlot(boxes_and_whiskers_plot),\n\u001B[1;32m 490\u001B[0m \n\u001B[1;32m 491\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m## Overall Fairness and Stability Model Metrics Comparison\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 492\u001B[0m overall_metrics_desc,\n\u001B[1;32m 493\u001B[0m dp\u001B[38;5;241m.\u001B[39mPlot(fairness_overall_metrics_bar_chart, responsive\u001B[38;5;241m=\u001B[39m\u001B[38;5;28;01mFalse\u001B[39;00m),\n\u001B[1;32m 494\u001B[0m dp\u001B[38;5;241m.\u001B[39mPlot(variance_overall_metrics_bar_chart, responsive\u001B[38;5;241m=\u001B[39m\u001B[38;5;28;01mFalse\u001B[39;00m),\n\u001B[1;32m 495\u001B[0m \n\u001B[1;32m 496\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m## Fairness and Stability Interactive Bar Chart\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 497\u001B[0m individual_metrics_interactive_bar_chart_desc,\n\u001B[1;32m 498\u001B[0m dp\u001B[38;5;241m.\u001B[39mPlot(interactive_bar_chart),\n\u001B[1;32m 499\u001B[0m \n\u001B[1;32m 500\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m## Model Ranks Based On Group Fairness and Stability Metrics\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 501\u001B[0m model_ranked_heatmap_desc,\n\u001B[1;32m 502\u001B[0m dp\u001B[38;5;241m.\u001B[39mPlot(model_rank_heatmap, responsive\u001B[38;5;241m=\u001B[39m\u001B[38;5;28;01mFalse\u001B[39;00m),\n\u001B[1;32m 503\u001B[0m \n\u001B[1;32m 504\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m## Total Ranks Sum For Group Fairness and Stability Metrics\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 505\u001B[0m overall_model_ranked_heatmap_desc,\n\u001B[1;32m 506\u001B[0m dp\u001B[38;5;241m.\u001B[39mPlot(total_model_rank_heatmap, responsive\u001B[38;5;241m=\u001B[39m\u001B[38;5;28;01mFalse\u001B[39;00m),\n\u001B[1;32m 507\u001B[0m )\u001B[38;5;241m.\u001B[39msave(path\u001B[38;5;241m=\u001B[39mos\u001B[38;5;241m.\u001B[39mpath\u001B[38;5;241m.\u001B[39mjoin(report_save_path, report_filename))\n\u001B[1;32m 508\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[1;32m 509\u001B[0m dp\u001B[38;5;241m.\u001B[39mReport(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m# Fairness and Stability Report\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 510\u001B[0m general_desc,\n\u001B[1;32m 511\u001B[0m \n\u001B[0;32m (...)\u001B[0m\n\u001B[1;32m 531\u001B[0m dp\u001B[38;5;241m.\u001B[39mPlot(total_model_rank_heatmap, responsive\u001B[38;5;241m=\u001B[39m\u001B[38;5;28;01mFalse\u001B[39;00m),\n\u001B[1;32m 532\u001B[0m )\u001B[38;5;241m.\u001B[39msave(path\u001B[38;5;241m=\u001B[39mos\u001B[38;5;241m.\u001B[39mpath\u001B[38;5;241m.\u001B[39mjoin(report_save_path, report_filename))\n",
- "\u001B[0;31mAttributeError\u001B[0m: module 'datapane' has no attribute 'Report'"
- ]
- }
- ],
- "source": [
- "visualizer.create_html_report(report_type=ReportType.MULTIPLE_RUNS_MULTIPLE_MODELS,\n",
- " report_save_path=os.path.join(ROOT_DIR, \"results\", \"reports\"))"
- ]
- },
{
"cell_type": "code",
"execution_count": null,
diff --git a/docs/examples/Multiple_Models_Interface_Vis.ipynb b/docs/examples/Multiple_Models_Interface_Vis.ipynb
index 14fb79b7..c241a2f4 100644
--- a/docs/examples/Multiple_Models_Interface_Vis.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis.ipynb
@@ -256,7 +256,7 @@
}
],
"source": [
- "visualizer.start_web_app()"
+ "visualizer.create_web_app()"
],
"metadata": {
"collapsed": false,
@@ -267,30 +267,6 @@
},
"id": "678a9dc8d51243f4"
},
- {
- "cell_type": "code",
- "execution_count": 17,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Closing server running on port: 7860\n"
- ]
- }
- ],
- "source": [
- "visualizer.stop_web_app()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-09-29T21:41:49.927075Z",
- "start_time": "2023-09-29T21:41:49.639933Z"
- }
- },
- "id": "277b6d1de837dab7"
- },
{
"cell_type": "code",
"execution_count": 78,
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
index ecd29b0e..3a3ab5d9 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
@@ -225,7 +225,7 @@
}
],
"source": [
- "visualizer.start_web_app()"
+ "visualizer.create_web_app()"
],
"metadata": {
"collapsed": false,
@@ -236,30 +236,6 @@
},
"id": "678a9dc8d51243f4"
},
- {
- "cell_type": "code",
- "execution_count": 11,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Closing server running on port: 7860\n"
- ]
- }
- ],
- "source": [
- "visualizer.stop_web_app()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-11T00:26:17.482944Z",
- "start_time": "2023-12-11T00:26:17.438287Z"
- }
- },
- "id": "277b6d1de837dab7"
- },
{
"cell_type": "code",
"execution_count": 11,
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
index 90a3a0df..abcaa7bf 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
@@ -6,8 +6,8 @@
"id": "248cbed8",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-18T15:30:30.826849Z",
- "start_time": "2023-12-18T15:30:30.355864Z"
+ "end_time": "2023-12-18T17:11:51.087426Z",
+ "start_time": "2023-12-18T17:11:50.720930Z"
}
},
"outputs": [],
@@ -23,8 +23,8 @@
"id": "7ec6cd08",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-18T15:30:30.836146Z",
- "start_time": "2023-12-18T15:30:30.826225Z"
+ "end_time": "2023-12-18T17:11:51.096433Z",
+ "start_time": "2023-12-18T17:11:51.087934Z"
}
},
"outputs": [],
@@ -41,8 +41,8 @@
"id": "b8cb69f2",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-18T15:30:30.848252Z",
- "start_time": "2023-12-18T15:30:30.836766Z"
+ "end_time": "2023-12-18T17:11:51.105608Z",
+ "start_time": "2023-12-18T17:11:51.096820Z"
}
},
"outputs": [
@@ -76,8 +76,8 @@
"id": "7a9241de",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-18T15:30:32.569645Z",
- "start_time": "2023-12-18T15:30:30.847803Z"
+ "end_time": "2023-12-18T17:11:52.701377Z",
+ "start_time": "2023-12-18T17:11:51.106232Z"
}
},
"outputs": [],
@@ -101,8 +101,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-18T15:30:32.635886Z",
- "start_time": "2023-12-18T15:30:32.573395Z"
+ "end_time": "2023-12-18T17:11:52.766489Z",
+ "start_time": "2023-12-18T17:11:52.704609Z"
}
},
"id": "d3c53c7b72ecbcd0"
@@ -120,8 +120,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-18T15:30:32.664462Z",
- "start_time": "2023-12-18T15:30:32.635793Z"
+ "end_time": "2023-12-18T17:11:52.791981Z",
+ "start_time": "2023-12-18T17:11:52.767057Z"
}
},
"id": "2aab7c79ecdee914"
@@ -153,8 +153,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-18T15:30:32.712298Z",
- "start_time": "2023-12-18T15:30:32.663822Z"
+ "end_time": "2023-12-18T17:11:52.842306Z",
+ "start_time": "2023-12-18T17:11:52.792667Z"
}
},
"id": "833484748ed512e8"
@@ -178,8 +178,8 @@
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-18T15:30:32.759812Z",
- "start_time": "2023-12-18T15:30:32.712204Z"
+ "end_time": "2023-12-18T17:11:52.877906Z",
+ "start_time": "2023-12-18T17:11:52.842425Z"
}
},
"id": "15ed7d1ba1f22317"
@@ -198,8 +198,8 @@
"id": "435b9d98",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-18T15:30:32.808353Z",
- "start_time": "2023-12-18T15:30:32.738229Z"
+ "end_time": "2023-12-18T17:11:52.959909Z",
+ "start_time": "2023-12-18T17:11:52.864927Z"
}
},
"outputs": [],
@@ -219,175 +219,31 @@
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
- "To create a public link, set `share=True` in `launch()`.\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Traceback (most recent call last):\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
- " output = await route_utils.call_process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
- " output = await app.get_blocks().process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
- " result = await self.call_function(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
- " prediction = await anyio.to_thread.run_sync(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
- " return await get_asynclib().run_sync_in_worker_thread(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
- " return await future\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
- " result = context.run(func, *args)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
- " response = f(*args, **kwargs)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 609, in _create_subgroup_model_rank_heatmap\n",
- " model_rank_heatmap, _ = create_model_rank_heatmap_visualization(model_metrics_matrix, sorted_matrix_by_rank)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/utils/data_viz_utils.py\", line 267, in create_model_rank_heatmap_visualization\n",
- " num_ranks = int(sorted_matrix_by_rank.values.max())\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/numpy/core/_methods.py\", line 41, in _amax\n",
- " return umr_maximum(a, axis, None, out, keepdims, initial, where)\n",
- "ValueError: zero-size array to reduction operation maximum which has no identity\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
- " output = await route_utils.call_process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
- " output = await app.get_blocks().process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
- " result = await self.call_function(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
- " prediction = await anyio.to_thread.run_sync(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
- " return await get_asynclib().run_sync_in_worker_thread(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
- " return await future\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
- " result = context.run(func, *args)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
- " response = f(*args, **kwargs)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 593, in _create_subgroup_model_rank_heatmap\n",
- " raise ValueError('Tolerance should be in the [0.001, 0.2] range')\n",
- "ValueError: Tolerance should be in the [0.001, 0.2] range\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
- " output = await route_utils.call_process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
- " output = await app.get_blocks().process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
- " result = await self.call_function(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
- " prediction = await anyio.to_thread.run_sync(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
- " return await get_asynclib().run_sync_in_worker_thread(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
- " return await future\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
- " result = context.run(func, *args)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
- " response = f(*args, **kwargs)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 593, in _create_subgroup_model_rank_heatmap\n",
- " raise ValueError('Tolerance should be in the [0.001, 0.2] range')\n",
- "ValueError: Tolerance should be in the [0.001, 0.2] range\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
- " output = await route_utils.call_process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
- " output = await app.get_blocks().process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
- " result = await self.call_function(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
- " prediction = await anyio.to_thread.run_sync(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
- " return await get_asynclib().run_sync_in_worker_thread(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
- " return await future\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
- " result = context.run(func, *args)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
- " response = f(*args, **kwargs)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 591, in _create_subgroup_model_rank_heatmap\n",
- " tolerance = str_to_float(tolerance, 'Tolerance')\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/utils/common_helpers.py\", line 86, in str_to_float\n",
- " raise ValueError(f\"{var_name} must be a float number with a '.' separator.\")\n",
- "ValueError: Tolerance must be a float number with a '.' separator.\n",
- "Traceback (most recent call last):\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/routes.py\", line 538, in predict\n",
- " output = await route_utils.call_process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/route_utils.py\", line 217, in call_process_api\n",
- " output = await app.get_blocks().process_api(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1553, in process_api\n",
- " result = await self.call_function(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/blocks.py\", line 1191, in call_function\n",
- " prediction = await anyio.to_thread.run_sync(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/to_thread.py\", line 33, in run_sync\n",
- " return await get_asynclib().run_sync_in_worker_thread(\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 877, in run_sync_in_worker_thread\n",
- " return await future\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 807, in run\n",
- " result = context.run(func, *args)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny_env/lib/python3.9/site-packages/gradio/utils.py\", line 659, in wrapper\n",
- " response = f(*args, **kwargs)\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/custom_classes/metrics_interactive_visualizer.py\", line 591, in _create_subgroup_model_rank_heatmap\n",
- " tolerance = str_to_float(tolerance, 'Tolerance')\n",
- " File \"/Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny/virny/utils/common_helpers.py\", line 86, in str_to_float\n",
- " raise ValueError(f\"{var_name} must be a float number with a '.' separator.\")\n",
- "ValueError: Tolerance must be a float number with a '.' separator.\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
+ "To create a public link, set `share=True` in `launch()`.\n",
"Keyboard interruption in main thread... closing server.\n"
]
}
],
"source": [
- "visualizer.start_web_app()"
+ "visualizer.create_web_app()"
],
"metadata": {
"collapsed": false,
"ExecuteTime": {
- "end_time": "2023-12-18T16:02:02.572226Z",
- "start_time": "2023-12-18T15:30:32.768235Z"
+ "end_time": "2023-12-18T17:14:45.540473Z",
+ "start_time": "2023-12-18T17:11:52.892884Z"
}
},
"id": "678a9dc8d51243f4"
},
- {
- "cell_type": "code",
- "execution_count": 11,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Closing server running on port: 7860\n"
- ]
- }
- ],
- "source": [
- "visualizer.stop_web_app()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-18T16:02:02.620717Z",
- "start_time": "2023-12-18T16:02:02.578812Z"
- }
- },
- "id": "277b6d1de837dab7"
- },
{
"cell_type": "code",
"execution_count": 11,
"id": "2326c129",
"metadata": {
"ExecuteTime": {
- "end_time": "2023-12-18T16:02:02.623767Z",
- "start_time": "2023-12-18T16:02:02.619001Z"
+ "end_time": "2023-12-18T17:14:45.584046Z",
+ "start_time": "2023-12-18T17:14:45.581453Z"
}
},
"outputs": [],
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Pub_Cov.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Pub_Cov.ipynb
index 6caf5b8b..61298c7a 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Pub_Cov.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Pub_Cov.ipynb
@@ -235,7 +235,7 @@
}
],
"source": [
- "visualizer.start_web_app()"
+ "visualizer.create_web_app()"
],
"metadata": {
"collapsed": false,
@@ -246,30 +246,6 @@
},
"id": "678a9dc8d51243f4"
},
- {
- "cell_type": "code",
- "execution_count": 29,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Closing server running on port: 7860\n"
- ]
- }
- ],
- "source": [
- "visualizer.stop_web_app()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-07T00:15:48.092702Z",
- "start_time": "2023-12-07T00:15:48.056394Z"
- }
- },
- "id": "277b6d1de837dab7"
- },
{
"cell_type": "code",
"execution_count": 29,
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb
index 8e21b6bc..18b24daa 100644
--- a/docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb
+++ b/docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb
@@ -233,7 +233,7 @@
}
],
"source": [
- "visualizer.start_web_app()"
+ "visualizer.create_web_app()"
],
"metadata": {
"collapsed": false,
@@ -244,30 +244,6 @@
},
"id": "678a9dc8d51243f4"
},
- {
- "cell_type": "code",
- "execution_count": 48,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Closing server running on port: 7860\n"
- ]
- }
- ],
- "source": [
- "visualizer.stop_web_app()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-10-07T13:45:45.264959Z",
- "start_time": "2023-10-07T13:45:45.221841Z"
- }
- },
- "id": "277b6d1de837dab7"
- },
{
"cell_type": "code",
"execution_count": 48,
diff --git a/docs/examples/Multiple_Models_Interface_With_Error_Analysis.ipynb b/docs/examples/Multiple_Models_Interface_With_Error_Analysis.ipynb
index 9fe2b8cd..b5bf2600 100644
--- a/docs/examples/Multiple_Models_Interface_With_Error_Analysis.ipynb
+++ b/docs/examples/Multiple_Models_Interface_With_Error_Analysis.ipynb
@@ -154,7 +154,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "76d98eaabfcfc9c0"
},
{
"cell_type": "code",
@@ -202,7 +203,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "ebec7f4488fd3f25"
},
{
"cell_type": "markdown",
@@ -211,7 +213,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "855fb160c6220866"
},
{
"cell_type": "markdown",
@@ -228,7 +231,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "1137cf9bc7be6964"
},
{
"cell_type": "code",
@@ -250,7 +254,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "efc95fa248b9f135"
},
{
"cell_type": "code",
@@ -262,7 +267,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "f3a59ca9319a774d"
},
{
"cell_type": "markdown",
@@ -362,7 +368,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "8ee9e8a8c10245bf"
},
{
"cell_type": "code",
@@ -373,7 +380,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "6dba3327ebe01279"
},
{
"cell_type": "markdown",
@@ -382,7 +390,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "c32119a0992e331c"
},
{
"cell_type": "code",
@@ -406,8 +415,7 @@
"\n",
"2023/08/13, 01:41:39: Tuning XGBClassifier...\n",
"Fitting 3 folds for each of 4 candidates, totalling 12 fits\n",
- "2023/08/13, 01:41:42: Tuning for XGBClassifier is finished [F1 score = 0.6548814644409034, Accuracy = 0.6587752525252525]\n",
- "\n"
+ "2023/08/13, 01:41:42: Tuning for XGBClassifier is finished [F1 score = 0.6548814644409034, Accuracy = 0.6587752525252525]\n"
]
},
{
@@ -426,7 +434,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "f9f77d878f6a94f8"
},
{
"cell_type": "code",
@@ -440,7 +449,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "cdd137541e77686d"
},
{
"cell_type": "markdown",
@@ -449,7 +459,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "ca709f1927e425b5"
},
{
"cell_type": "code",
@@ -483,7 +494,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "8c6061673bb72efa"
},
{
"cell_type": "markdown",
@@ -739,7 +751,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "cdd0a858443ac90e"
},
{
"cell_type": "code",
@@ -760,7 +773,8 @@
],
"metadata": {
"collapsed": false
- }
+ },
+ "id": "5efb9f1d613da1c6"
},
{
"cell_type": "code",
@@ -805,34 +819,6 @@
")"
]
},
- {
- "cell_type": "markdown",
- "id": "55e6ce42",
- "metadata": {},
- "source": [
- "Create an analysis report. It includes correspondent visualizations and details about your result metrics."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 79,
- "id": "5a3811ff",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": "",
- "text/markdown": "App saved to ./docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__224310.html"
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "visualizer.create_html_report(report_type=ReportType.MULTIPLE_RUNS_MULTIPLE_MODELS,\n",
- " report_save_path=os.path.join(ROOT_DIR, \"results\", \"reports\"))"
- ]
- },
{
"cell_type": "code",
"execution_count": 79,
diff --git a/docs/examples/results/benchmark/benchmark_reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230205__153918.html b/docs/examples/results/benchmark/benchmark_reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230205__153918.html
deleted file mode 100644
index 07e98a72..00000000
--- a/docs/examples/results/benchmark/benchmark_reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230205__153918.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/benchmark/benchmark_reports/Folktables_GA_2018_Metrics_Report_20230205__154446.html b/docs/examples/results/benchmark/benchmark_reports/Folktables_GA_2018_Metrics_Report_20230205__154446.html
deleted file mode 100644
index af36069b..00000000
--- a/docs/examples/results/benchmark/benchmark_reports/Folktables_GA_2018_Metrics_Report_20230205__154446.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230205__171832.html b/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230205__171832.html
deleted file mode 100644
index 1dc415e7..00000000
--- a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230205__171832.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230317__122752.html b/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230317__122752.html
deleted file mode 100644
index 1cb9bf4f..00000000
--- a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230317__122752.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230319__110002.html b/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230319__110002.html
deleted file mode 100644
index 6f4580f5..00000000
--- a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230319__110002.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230319__171815.html b/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230319__171815.html
deleted file mode 100644
index d630d1c9..00000000
--- a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230319__171815.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230519__210711.html b/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230519__210711.html
deleted file mode 100644
index c5b00fea..00000000
--- a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230519__210711.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230519__211200.html b/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230519__211200.html
deleted file mode 100644
index 353b753e..00000000
--- a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230519__211200.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230811__222632.html b/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230811__222632.html
deleted file mode 100644
index 39ad7304..00000000
--- a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230811__222632.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__223906.html b/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__223906.html
deleted file mode 100644
index 30ffc7c4..00000000
--- a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__223906.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__224023.html b/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__224023.html
deleted file mode 100644
index 1ef02a73..00000000
--- a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__224023.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__224310.html b/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__224310.html
deleted file mode 100644
index e4ca1a4d..00000000
--- a/docs/examples/results/reports/COMPAS_Without_Sensitive_Attributes_Metrics_Report_20230812__224310.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/Credit_Metrics_Report_20230319__161213.html b/docs/examples/results/reports/Credit_Metrics_Report_20230319__161213.html
deleted file mode 100644
index e210de68..00000000
--- a/docs/examples/results/reports/Credit_Metrics_Report_20230319__161213.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/Credit_Metrics_Report_20230319__184958.html b/docs/examples/results/reports/Credit_Metrics_Report_20230319__184958.html
deleted file mode 100644
index 268d0bd3..00000000
--- a/docs/examples/results/reports/Credit_Metrics_Report_20230319__184958.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/Credit_Metrics_Report_20230405__194722.html b/docs/examples/results/reports/Credit_Metrics_Report_20230405__194722.html
deleted file mode 100644
index 9ca76524..00000000
--- a/docs/examples/results/reports/Credit_Metrics_Report_20230405__194722.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/Credit_Metrics_Report_20230405__195808.html b/docs/examples/results/reports/Credit_Metrics_Report_20230405__195808.html
deleted file mode 100644
index c3a45992..00000000
--- a/docs/examples/results/reports/Credit_Metrics_Report_20230405__195808.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/Folktables_GA_2018_Metrics_Report_20230205__165240.html b/docs/examples/results/reports/Folktables_GA_2018_Metrics_Report_20230205__165240.html
deleted file mode 100644
index d21b9ac4..00000000
--- a/docs/examples/results/reports/Folktables_GA_2018_Metrics_Report_20230205__165240.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/Folktables_GA_2018_Metrics_Report_20230319__131915.html b/docs/examples/results/reports/Folktables_GA_2018_Metrics_Report_20230319__131915.html
deleted file mode 100644
index 59d457bd..00000000
--- a/docs/examples/results/reports/Folktables_GA_2018_Metrics_Report_20230319__131915.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/docs/examples/results/reports/Folktables_GA_2018_Metrics_Report_20230519__211628.html b/docs/examples/results/reports/Folktables_GA_2018_Metrics_Report_20230519__211628.html
deleted file mode 100644
index 6b62b52a..00000000
--- a/docs/examples/results/reports/Folktables_GA_2018_Metrics_Report_20230519__211628.html
+++ /dev/null
@@ -1,60 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/lib_base_packages.txt b/lib_base_packages.txt
index 10cbab0f..7cbd2201 100644
--- a/lib_base_packages.txt
+++ b/lib_base_packages.txt
@@ -5,11 +5,11 @@ altair~=4.2.0
scikit-learn~=1.2.0
tqdm~=4.64.1
sklearn-utils
+gradio==4.10.0
seaborn~=0.12.1
folktables~=0.0.11
munch~=2.5.0
PyYAML~=6.0
river==0.15.0
-datapane~=0.16.0
requests-toolbelt==1.0.0
colorama~=0.4.6
\ No newline at end of file
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index 18fee7da..910226ef 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -92,7 +92,7 @@ def __variable_inputs(self, k):
k = int(k)
return [gr.Textbox(visible=True)] * k + [gr.Textbox(value='', visible=False)] * (self.max_groups - k)
- def start_web_app(self):
+ def create_web_app(self):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
# ==================================== Dataset Statistics ====================================
gr.Markdown(
@@ -430,9 +430,6 @@ def start_web_app(self):
self.demo = demo
self.demo.launch(inline=False, debug=True, show_error=True)
- def stop_web_app(self):
- self.demo.close()
-
def __filter_subgroup_metrics_df(self, results: dict, subgroup_metric: str,
selected_metric: str, selected_subgroup: str, defined_model_names: list):
results[subgroup_metric] = dict()
diff --git a/virny/custom_classes/metrics_visualizer.py b/virny/custom_classes/metrics_visualizer.py
index 377bcdf9..daed2671 100644
--- a/virny/custom_classes/metrics_visualizer.py
+++ b/virny/custom_classes/metrics_visualizer.py
@@ -2,7 +2,6 @@
import altair as alt
import numpy as np
import pandas as pd
-import datapane as dp
import seaborn as sns
import matplotlib.pyplot as plt
from datetime import datetime, timezone
@@ -378,145 +377,3 @@ def create_model_rank_heatmaps(self, metrics_lst: list, groups_lst):
total_model_rank_heatmap = self.create_total_model_rank_heatmap(sorted_matrix_by_rank, num_models)
if self.__create_report:
return model_rank_heatmap, total_model_rank_heatmap
-
- def create_html_report(self, report_type: ReportType, report_save_path: str):
- """
- Create Fairness and Stability Report depending on report type.
- It includes visualizations and helpful details to them.
- """
- # Create a directory if it does not exist
- if not os.path.exists(report_save_path):
- os.makedirs(report_save_path, exist_ok=True)
-
- self.__create_report = True
-
- # Create plots
- fairness_overall_metrics_bar_chart = self.create_overall_metrics_bar_char(
- metrics_names=['TPR', 'PPV', 'Accuracy', 'F1', 'Selection-Rate', 'Positive-Rate'],
- metrics_title="Fairness Metrics"
- )
- variance_overall_metrics_bar_chart = self.create_overall_metrics_bar_char(
- metrics_names=['Label_Stability'],
- reversed_metrics_names=['Std', 'IQR', 'Jitter'],
- metrics_title="Stability Metrics"
- )
- interactive_bar_chart = self.create_fairness_variance_interactive_bar_chart()
- model_rank_heatmap, total_model_rank_heatmap = \
- self.create_model_rank_heatmaps(metrics_lst=self.fairness_metrics_lst + self.variance_metrics_lst,
- groups_lst=self.sensitive_attributes_dct.keys())
-
- # Set descriptions for the report
- general_desc = dp.Text(
- f"**Date of creation**: {datetime.now().strftime('%m/%d/%Y, %H:%M:%S')}\n\n\n"
- "This report was created based on the following input arguments:\n"
- f"* __Dataset name__: {self.dataset_name}\n"
- f"* __Model names__: {self.model_names}\n"
- f"* __Sensitive attributes__: {list(self.sensitive_attributes_dct.keys())}\n"
- )
- composed_metrics_desc = dp.Text(
- "Below you can find a dataframe of composed group metrics for all defined models and sensitive attributes.\n"
- )
- boxes_and_whiskers_plot_desc = dp.Text(
- "The below boxes and whiskers plot is based on _overall_ subgroup error and stability metrics for all defined models and results after all runs.\n"
- "This plot can give you the following benefits:\n"
- "* You can see combined information on one plot that includes different models, subgroup metrics, and results after multiple runs\n"
- "* You can see all quartiles for each model metric based on multiple runs\n"
- "* You can compare different models for each metric\n"
- "* You can see the stability of each model metric\n"
- )
- overall_metrics_desc = dp.Text(
- "The below bar chart includes all defined models and all _overall_ subgroup error and stability metrics, which are averaged across multiple runs.\n"
- "This plot can give you the following benefits:\n"
- "* You can compare all models for each subgroup error or stability metric\n"
- "* This comparison also includes reversed metrics, in which values closer to zero are better "
- "since straight and reversed metrics in this plot are converted to the same format -- values closer to one are better\n"
- )
- individual_metrics_interactive_bar_chart_desc = dp.Text(
- "The below interactive bar chart includes all groups, all composed group fairness and stability metrics, "
- "and all defined models.\n"
- "This plot can give you the following benefits:\n"
- "* You can select any pair of group fairness and stability metrics and compare them across all groups and models\n"
- "* Since this plot is interactive, it saves a lot of space for other plots. "
- "Also, it could be more convenient to compare each group fairness and stability metric using the interactive mode\n"
- )
- model_ranked_heatmap_desc = dp.Text(
- "The below heatmap includes all group fairness and stability metrics and all defined models.\n"
- "On this plot, colors display ranks where 1 is the best model for the metric. "
- "These ranks are conditioned on difference or ratio operations used to create these group metrics:\n"
- "* If the metric is created based on the difference operation, **closer values to zero** have ranks that are closer to the first rank\n"
- "* If the metric is created based on the ratio operation, **closer values to one** have ranks that are closer to the first rank\n\n"
- "This plot can give you the following benefits:\n"
- "* You can visually compare all models across all group metrics\n"
- "* You can visually understand where one model is better or worse than other models\n"
- "* You can find the best and worst models for each group metric\n"
- )
- overall_model_ranked_heatmap_desc = dp.Text(
- "The below heatmap includes all defined models and sums of their fairness and stability ranks.\n"
- "On this plot, colors display sums of ranks for one model. If the sum is smaller, the model has better fairness or stability characteristics than other models.\n"
- "This plot can give you the following benefits:\n"
- "* You can visually compare all models for fairness and stability characteristics\n"
- "* You can visually understand where one model is better or worse than other models\n"
- "* You can find the best or most balanced model based on fairness or stability metrics\n"
- )
-
- report_filename = f'{self.dataset_name}_Metrics_Report_{datetime.now(timezone.utc).strftime("%Y%m%d__%H%M%S")}.html'
- if report_type == ReportType.MULTIPLE_RUNS_MULTIPLE_MODELS:
- boxes_and_whiskers_plot = self.create_boxes_and_whiskers_for_models_multiple_runs(
- metrics_lst=['Std', 'IQR', 'Jitter', 'Label_Stability', 'Accuracy', 'TPR', 'TNR', 'FPR', 'FNR']
- )
-
- dp.Report("# Fairness and Stability Report",
- general_desc,
-
- "## Model Composed Metrics",
- composed_metrics_desc,
- dp.DataTable(self.models_composed_metrics_df),
-
- "## Boxes and Whiskers Plot Based On Multiple Models Runs",
- boxes_and_whiskers_plot_desc,
- dp.Plot(boxes_and_whiskers_plot),
-
- "## Overall Fairness and Stability Model Metrics Comparison",
- overall_metrics_desc,
- dp.Plot(fairness_overall_metrics_bar_chart, responsive=False),
- dp.Plot(variance_overall_metrics_bar_chart, responsive=False),
-
- "## Fairness and Stability Interactive Bar Chart",
- individual_metrics_interactive_bar_chart_desc,
- dp.Plot(interactive_bar_chart),
-
- "## Model Ranks Based On Group Fairness and Stability Metrics",
- model_ranked_heatmap_desc,
- dp.Plot(model_rank_heatmap, responsive=False),
-
- "## Total Ranks Sum For Group Fairness and Stability Metrics",
- overall_model_ranked_heatmap_desc,
- dp.Plot(total_model_rank_heatmap, responsive=False),
- ).save(path=os.path.join(report_save_path, report_filename))
- else:
- dp.Report("# Fairness and Stability Report",
- general_desc,
-
- "## Model Composed Metrics",
- composed_metrics_desc,
- dp.DataTable(self.models_composed_metrics_df),
-
- "## Overall Fairness and Stability Model Metrics Comparison",
- overall_metrics_desc,
- dp.Plot(fairness_overall_metrics_bar_chart, responsive=False),
- dp.Plot(variance_overall_metrics_bar_chart, responsive=False),
-
- "## Fairness and Stability Interactive Bar Chart",
- individual_metrics_interactive_bar_chart_desc,
- dp.Plot(interactive_bar_chart),
-
- "## Model Ranks Based On Group Fairness and Stability Metrics",
- model_ranked_heatmap_desc,
- dp.Plot(model_rank_heatmap, responsive=False),
-
- "## Total Ranks Sum For Group Fairness and Stability Metrics",
- overall_model_ranked_heatmap_desc,
- dp.Plot(total_model_rank_heatmap, responsive=False),
- ).save(path=os.path.join(report_save_path, report_filename))
-
- self.__create_report = False
diff --git a/virny/utils/data_viz_utils.py b/virny/utils/data_viz_utils.py
index 8cae6f28..56962143 100644
--- a/virny/utils/data_viz_utils.py
+++ b/virny/utils/data_viz_utils.py
@@ -8,7 +8,6 @@
from altair.utils.schemapi import Undefined
from virny.utils.common_helpers import check_substring_in_list
-from IPython.display import display
def rank_with_tolerance(pd_series: pd.Series, tolerance: float = 0.001):
From 986438d26eb59b42f78be520ffbf8e39266ca8cf Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Tue, 19 Dec 2023 15:26:47 +0200
Subject: [PATCH 072/148] Resolved merge conflicts
---
.../Multiple_Models_Interface_Vis.ipynb | 300 ------------------
...Multiple_Models_Interface_Vis_Income.ipynb | 275 ----------------
...iple_Models_Interface_Vis_Law_School.ipynb | 274 ----------------
...ultiple_Models_Interface_Vis_Pub_Cov.ipynb | 284 -----------------
.../Multiple_Models_Interface_Vis_Ricci.ipynb | 282 ----------------
virny/utils/data_viz_utils.py | 1 -
6 files changed, 1416 deletions(-)
delete mode 100644 docs/examples/Multiple_Models_Interface_Vis.ipynb
delete mode 100644 docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
delete mode 100644 docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
delete mode 100644 docs/examples/Multiple_Models_Interface_Vis_Pub_Cov.ipynb
delete mode 100644 docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb
diff --git a/docs/examples/Multiple_Models_Interface_Vis.ipynb b/docs/examples/Multiple_Models_Interface_Vis.ipynb
deleted file mode 100644
index c241a2f4..00000000
--- a/docs/examples/Multiple_Models_Interface_Vis.ipynb
+++ /dev/null
@@ -1,300 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "id": "248cbed8",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-09-29T20:56:16.932083Z",
- "start_time": "2023-09-29T20:56:16.278169Z"
- }
- },
- "outputs": [],
- "source": [
- "%matplotlib inline\n",
- "%load_ext autoreload\n",
- "%autoreload 2"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "id": "7ec6cd08",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-09-29T20:56:16.940086Z",
- "start_time": "2023-09-29T20:56:16.931485Z"
- }
- },
- "outputs": [],
- "source": [
- "import os\n",
- "import warnings\n",
- "warnings.filterwarnings('ignore')\n",
- "os.environ[\"PYTHONWARNINGS\"] = \"ignore\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "id": "b8cb69f2",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-09-29T20:56:16.951831Z",
- "start_time": "2023-09-29T20:56:16.940588Z"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Current location: /Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny\n"
- ]
- }
- ],
- "source": [
- "cur_folder_name = os.getcwd().split('/')[-1]\n",
- "if cur_folder_name != \"Virny\":\n",
- " os.chdir(\"../..\")\n",
- "\n",
- "print('Current location: ', os.getcwd())"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "a578f2ab",
- "metadata": {},
- "source": [
- "# Multiple Models Interface Usage"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "id": "7a9241de",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-09-29T20:56:30.072450Z",
- "start_time": "2023-09-29T20:56:22.772584Z"
- }
- },
- "outputs": [],
- "source": [
- "import os\n",
- "\n",
- "from virny.utils.custom_initializers import read_model_metric_dfs, create_config_obj\n",
- "from virny.custom_classes.metrics_interactive_visualizer import MetricsInteractiveVisualizer\n",
- "from virny.custom_classes.metrics_composer import MetricsComposer"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "outputs": [],
- "source": [
- "ROOT_DIR = os.path.join('docs', 'examples')\n",
- "config_yaml_path = os.path.join(ROOT_DIR, 'experiment_config.yaml')\n",
- "config_yaml_content = \"\"\"\n",
- "dataset_name: COMPAS_Without_Sensitive_Attributes\n",
- "bootstrap_fraction: 0.8\n",
- "n_estimators: 50 # Better to input the higher number of estimators than 100; this is only for this use case example\n",
- "sensitive_attributes_dct: {'sex': 1, 'race': 'African-American', 'sex&race': None}\n",
- "\"\"\"\n",
- "with open(config_yaml_path, 'w', encoding='utf-8') as f:\n",
- " f.write(config_yaml_content)\n",
- "\n",
- "config = create_config_obj(config_yaml_path=config_yaml_path)\n",
- "model_names = ['DecisionTreeClassifier', 'LogisticRegression', 'RandomForestClassifier', 'XGBClassifier']\n",
- "SAVE_RESULTS_DIR_PATH = os.path.join(ROOT_DIR, 'results', 'COMPAS_Without_Sensitive_Attributes_Metrics_20230812__224136')"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-09-29T20:56:30.095448Z",
- "start_time": "2023-09-29T20:56:30.073873Z"
- }
- },
- "id": "d777610462304f63"
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "id": "f94a20dc",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-09-29T20:56:30.121865Z",
- "start_time": "2023-09-29T20:56:30.094816Z"
- }
- },
- "outputs": [],
- "source": [
- "models_metrics_dct = read_model_metric_dfs(SAVE_RESULTS_DIR_PATH, model_names=model_names)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "id": "b04d06cf",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-09-29T20:56:30.139696Z",
- "start_time": "2023-09-29T20:56:30.121071Z"
- }
- },
- "outputs": [],
- "source": [
- "metrics_composer = MetricsComposer(models_metrics_dct, config.sensitive_attributes_dct)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "id": "be6ace22",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-09-29T20:56:30.169575Z",
- "start_time": "2023-09-29T20:56:30.138633Z"
- }
- },
- "outputs": [],
- "source": [
- "# Compute composed metrics\n",
- "models_composed_metrics_df = metrics_composer.compose_metrics()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 185,
- "outputs": [
- {
- "data": {
- "text/plain": " Metric overall sex_priv sex_priv_correct \\\n0 Mean 0.524270 0.578645 0.600790 \n1 Std 0.067963 0.073618 0.072201 \n2 IQR 0.090596 0.099782 0.098402 \n3 Aleatoric_Uncertainty 0.834874 0.846689 0.826891 \n4 Overall_Uncertainty 0.859083 0.876581 0.856843 \n5 Statistical_Bias 0.405041 0.395811 0.314809 \n6 Jitter 0.106917 0.132090 0.112864 \n7 Per_Sample_Accuracy 0.691061 0.711090 0.918452 \n8 Label_Stability 0.851667 0.807393 0.836903 \n9 TPR 0.679406 0.613333 1.000000 \n10 TNR 0.738462 0.801471 1.000000 \n11 PPV 0.676533 0.630137 1.000000 \n12 FNR 0.320594 0.386667 0.000000 \n13 FPR 0.261538 0.198529 0.000000 \n14 Accuracy 0.712121 0.734597 1.000000 \n15 F1 0.677966 0.621622 1.000000 \n16 Selection-Rate 0.447917 0.345972 0.296774 \n17 Positive-Rate 1.004246 0.973333 1.000000 \n18 Sample_Size 1056.000000 211.000000 155.000000 \n\n sex_priv_incorrect sex_dis sex_dis_correct sex_dis_incorrect \\\n0 0.517352 0.510692 0.514399 0.501767 \n1 0.077539 0.066551 0.064791 0.070788 \n2 0.103600 0.088303 0.085977 0.093900 \n3 0.901488 0.831924 0.817170 0.867440 \n4 0.931213 0.854713 0.839203 0.892051 \n5 0.620012 0.407346 0.301656 0.661771 \n6 0.185306 0.100631 0.091351 0.122972 \n7 0.137143 0.686059 0.936918 0.082177 \n8 0.725714 0.862722 0.873970 0.835645 \n9 0.000000 0.691919 1.000000 0.000000 \n10 0.000000 0.719376 1.000000 0.000000 \n11 0.000000 0.685000 1.000000 0.000000 \n12 1.000000 0.308081 0.000000 1.000000 \n13 1.000000 0.280624 0.000000 1.000000 \n14 0.000000 0.706509 1.000000 0.000000 \n15 0.000000 0.688442 1.000000 0.000000 \n16 0.482143 0.473373 0.458961 0.508065 \n17 0.931034 1.010101 1.000000 1.032787 \n18 56.000000 845.000000 597.000000 248.000000 \n\n race_priv race_priv_correct ... race_dis_correct race_dis_incorrect \\\n0 0.597526 0.618185 ... 0.473863 0.484344 \n1 0.069162 0.066865 ... 0.065947 0.070060 \n2 0.093184 0.089451 ... 0.087919 0.091258 \n3 0.821672 0.807043 ... 0.827404 0.880296 \n4 0.847778 0.832001 ... 0.850193 0.903737 \n5 0.393484 0.296788 ... 0.309510 0.650314 \n6 0.107225 0.097218 ... 0.094812 0.134214 \n7 0.708261 0.930526 ... 0.934866 0.091340 \n8 0.848213 0.861316 ... 0.869732 0.817320 \n9 0.585034 1.000000 ... 1.000000 0.000000 \n10 0.816479 1.000000 ... 1.000000 0.000000 \n11 0.637037 1.000000 ... 1.000000 0.000000 \n12 0.414966 0.000000 ... 0.000000 1.000000 \n13 0.183521 0.000000 ... 0.000000 1.000000 \n14 0.734300 1.000000 ... 1.000000 0.000000 \n15 0.609929 1.000000 ... 1.000000 0.000000 \n16 0.326087 0.282895 ... 0.522321 0.536082 \n17 0.918367 1.000000 ... 1.000000 1.155556 \n18 414.000000 304.000000 ... 448.000000 194.000000 \n\n sex&race_priv sex&race_priv_correct sex&race_priv_incorrect \\\n0 0.586391 0.607290 0.529874 \n1 0.068718 0.066018 0.076019 \n2 0.092020 0.088338 0.101975 \n3 0.832383 0.817398 0.872906 \n4 0.857995 0.841790 0.901818 \n5 0.396398 0.302520 0.650263 \n6 0.108871 0.095304 0.145559 \n7 0.708783 0.933073 0.102254 \n8 0.847224 0.866354 0.795493 \n9 0.595745 1.000000 0.000000 \n10 0.804734 1.000000 0.000000 \n11 0.629213 1.000000 0.000000 \n12 0.404255 0.000000 1.000000 \n13 0.195266 0.000000 1.000000 \n14 0.730038 1.000000 0.000000 \n15 0.612022 1.000000 0.000000 \n16 0.338403 0.291667 0.464789 \n17 0.946809 1.000000 0.868421 \n18 526.000000 384.000000 142.000000 \n\n sex&race_dis sex&race_dis_correct sex&race_dis_incorrect \\\n0 0.462617 0.453857 0.482517 \n1 0.067213 0.066631 0.068536 \n2 0.089184 0.088747 0.090175 \n3 0.837346 0.821026 0.874418 \n4 0.860162 0.843933 0.897027 \n5 0.413620 0.306294 0.657422 \n6 0.104978 0.096287 0.124722 \n7 0.673472 0.933152 0.083580 \n8 0.856075 0.866304 0.832840 \n9 0.734982 1.000000 0.000000 \n10 0.647773 1.000000 0.000000 \n11 0.705085 1.000000 0.000000 \n12 0.265018 0.000000 1.000000 \n13 0.352227 0.000000 1.000000 \n14 0.694340 1.000000 0.000000 \n15 0.719723 1.000000 0.000000 \n16 0.556604 0.565217 0.537037 \n17 1.042403 1.000000 1.160000 \n18 530.000000 368.000000 162.000000 \n\n Model_Name Model_Params \n0 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n1 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n2 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n3 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n4 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n5 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n6 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n7 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n8 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n9 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n10 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n11 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n12 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n13 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n14 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n15 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n16 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n17 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n18 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n\n[19 rows x 22 columns]",
- "text/html": "\n\n
\n \n \n | \n Metric | \n overall | \n sex_priv | \n sex_priv_correct | \n sex_priv_incorrect | \n sex_dis | \n sex_dis_correct | \n sex_dis_incorrect | \n race_priv | \n race_priv_correct | \n ... | \n race_dis_correct | \n race_dis_incorrect | \n sex&race_priv | \n sex&race_priv_correct | \n sex&race_priv_incorrect | \n sex&race_dis | \n sex&race_dis_correct | \n sex&race_dis_incorrect | \n Model_Name | \n Model_Params | \n
\n \n \n \n 0 | \n Mean | \n 0.524270 | \n 0.578645 | \n 0.600790 | \n 0.517352 | \n 0.510692 | \n 0.514399 | \n 0.501767 | \n 0.597526 | \n 0.618185 | \n ... | \n 0.473863 | \n 0.484344 | \n 0.586391 | \n 0.607290 | \n 0.529874 | \n 0.462617 | \n 0.453857 | \n 0.482517 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 1 | \n Std | \n 0.067963 | \n 0.073618 | \n 0.072201 | \n 0.077539 | \n 0.066551 | \n 0.064791 | \n 0.070788 | \n 0.069162 | \n 0.066865 | \n ... | \n 0.065947 | \n 0.070060 | \n 0.068718 | \n 0.066018 | \n 0.076019 | \n 0.067213 | \n 0.066631 | \n 0.068536 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 2 | \n IQR | \n 0.090596 | \n 0.099782 | \n 0.098402 | \n 0.103600 | \n 0.088303 | \n 0.085977 | \n 0.093900 | \n 0.093184 | \n 0.089451 | \n ... | \n 0.087919 | \n 0.091258 | \n 0.092020 | \n 0.088338 | \n 0.101975 | \n 0.089184 | \n 0.088747 | \n 0.090175 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 3 | \n Aleatoric_Uncertainty | \n 0.834874 | \n 0.846689 | \n 0.826891 | \n 0.901488 | \n 0.831924 | \n 0.817170 | \n 0.867440 | \n 0.821672 | \n 0.807043 | \n ... | \n 0.827404 | \n 0.880296 | \n 0.832383 | \n 0.817398 | \n 0.872906 | \n 0.837346 | \n 0.821026 | \n 0.874418 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 4 | \n Overall_Uncertainty | \n 0.859083 | \n 0.876581 | \n 0.856843 | \n 0.931213 | \n 0.854713 | \n 0.839203 | \n 0.892051 | \n 0.847778 | \n 0.832001 | \n ... | \n 0.850193 | \n 0.903737 | \n 0.857995 | \n 0.841790 | \n 0.901818 | \n 0.860162 | \n 0.843933 | \n 0.897027 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 5 | \n Statistical_Bias | \n 0.405041 | \n 0.395811 | \n 0.314809 | \n 0.620012 | \n 0.407346 | \n 0.301656 | \n 0.661771 | \n 0.393484 | \n 0.296788 | \n ... | \n 0.309510 | \n 0.650314 | \n 0.396398 | \n 0.302520 | \n 0.650263 | \n 0.413620 | \n 0.306294 | \n 0.657422 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 6 | \n Jitter | \n 0.106917 | \n 0.132090 | \n 0.112864 | \n 0.185306 | \n 0.100631 | \n 0.091351 | \n 0.122972 | \n 0.107225 | \n 0.097218 | \n ... | \n 0.094812 | \n 0.134214 | \n 0.108871 | \n 0.095304 | \n 0.145559 | \n 0.104978 | \n 0.096287 | \n 0.124722 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 7 | \n Per_Sample_Accuracy | \n 0.691061 | \n 0.711090 | \n 0.918452 | \n 0.137143 | \n 0.686059 | \n 0.936918 | \n 0.082177 | \n 0.708261 | \n 0.930526 | \n ... | \n 0.934866 | \n 0.091340 | \n 0.708783 | \n 0.933073 | \n 0.102254 | \n 0.673472 | \n 0.933152 | \n 0.083580 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 8 | \n Label_Stability | \n 0.851667 | \n 0.807393 | \n 0.836903 | \n 0.725714 | \n 0.862722 | \n 0.873970 | \n 0.835645 | \n 0.848213 | \n 0.861316 | \n ... | \n 0.869732 | \n 0.817320 | \n 0.847224 | \n 0.866354 | \n 0.795493 | \n 0.856075 | \n 0.866304 | \n 0.832840 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 9 | \n TPR | \n 0.679406 | \n 0.613333 | \n 1.000000 | \n 0.000000 | \n 0.691919 | \n 1.000000 | \n 0.000000 | \n 0.585034 | \n 1.000000 | \n ... | \n 1.000000 | \n 0.000000 | \n 0.595745 | \n 1.000000 | \n 0.000000 | \n 0.734982 | \n 1.000000 | \n 0.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 10 | \n TNR | \n 0.738462 | \n 0.801471 | \n 1.000000 | \n 0.000000 | \n 0.719376 | \n 1.000000 | \n 0.000000 | \n 0.816479 | \n 1.000000 | \n ... | \n 1.000000 | \n 0.000000 | \n 0.804734 | \n 1.000000 | \n 0.000000 | \n 0.647773 | \n 1.000000 | \n 0.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 11 | \n PPV | \n 0.676533 | \n 0.630137 | \n 1.000000 | \n 0.000000 | \n 0.685000 | \n 1.000000 | \n 0.000000 | \n 0.637037 | \n 1.000000 | \n ... | \n 1.000000 | \n 0.000000 | \n 0.629213 | \n 1.000000 | \n 0.000000 | \n 0.705085 | \n 1.000000 | \n 0.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 12 | \n FNR | \n 0.320594 | \n 0.386667 | \n 0.000000 | \n 1.000000 | \n 0.308081 | \n 0.000000 | \n 1.000000 | \n 0.414966 | \n 0.000000 | \n ... | \n 0.000000 | \n 1.000000 | \n 0.404255 | \n 0.000000 | \n 1.000000 | \n 0.265018 | \n 0.000000 | \n 1.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 13 | \n FPR | \n 0.261538 | \n 0.198529 | \n 0.000000 | \n 1.000000 | \n 0.280624 | \n 0.000000 | \n 1.000000 | \n 0.183521 | \n 0.000000 | \n ... | \n 0.000000 | \n 1.000000 | \n 0.195266 | \n 0.000000 | \n 1.000000 | \n 0.352227 | \n 0.000000 | \n 1.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 14 | \n Accuracy | \n 0.712121 | \n 0.734597 | \n 1.000000 | \n 0.000000 | \n 0.706509 | \n 1.000000 | \n 0.000000 | \n 0.734300 | \n 1.000000 | \n ... | \n 1.000000 | \n 0.000000 | \n 0.730038 | \n 1.000000 | \n 0.000000 | \n 0.694340 | \n 1.000000 | \n 0.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 15 | \n F1 | \n 0.677966 | \n 0.621622 | \n 1.000000 | \n 0.000000 | \n 0.688442 | \n 1.000000 | \n 0.000000 | \n 0.609929 | \n 1.000000 | \n ... | \n 1.000000 | \n 0.000000 | \n 0.612022 | \n 1.000000 | \n 0.000000 | \n 0.719723 | \n 1.000000 | \n 0.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 16 | \n Selection-Rate | \n 0.447917 | \n 0.345972 | \n 0.296774 | \n 0.482143 | \n 0.473373 | \n 0.458961 | \n 0.508065 | \n 0.326087 | \n 0.282895 | \n ... | \n 0.522321 | \n 0.536082 | \n 0.338403 | \n 0.291667 | \n 0.464789 | \n 0.556604 | \n 0.565217 | \n 0.537037 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 17 | \n Positive-Rate | \n 1.004246 | \n 0.973333 | \n 1.000000 | \n 0.931034 | \n 1.010101 | \n 1.000000 | \n 1.032787 | \n 0.918367 | \n 1.000000 | \n ... | \n 1.000000 | \n 1.155556 | \n 0.946809 | \n 1.000000 | \n 0.868421 | \n 1.042403 | \n 1.000000 | \n 1.160000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 18 | \n Sample_Size | \n 1056.000000 | \n 211.000000 | \n 155.000000 | \n 56.000000 | \n 845.000000 | \n 597.000000 | \n 248.000000 | \n 414.000000 | \n 304.000000 | \n ... | \n 448.000000 | \n 194.000000 | \n 526.000000 | \n 384.000000 | \n 142.000000 | \n 530.000000 | \n 368.000000 | \n 162.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n
\n
19 rows × 22 columns
\n
"
- },
- "execution_count": 185,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "models_metrics_dct['RandomForestClassifier'].head(100)"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-10-01T20:57:20.233976Z",
- "start_time": "2023-10-01T20:57:20.133369Z"
- }
- },
- "id": "54a73b4d053334b4"
- },
- {
- "cell_type": "code",
- "execution_count": 135,
- "outputs": [
- {
- "data": {
- "text/plain": " Metric sex race sex&race \\\n0 Equalized_Odds_TPR 0.211919 0.195326 0.183576 \n1 Equalized_Odds_FPR 0.098356 0.104728 0.141078 \n2 Equalized_Odds_FNR -0.211919 -0.195326 -0.183576 \n3 Disparate_Impact 1.234115 1.135965 1.125105 \n4 Statistical_Parity_Difference 0.193535 0.123016 0.115123 \n5 Accuracy_Parity 0.009832 0.006840 -0.010984 \n6 Label_Stability_Ratio 1.024740 0.997454 0.995869 \n7 IQR_Parity 0.000768 -0.004804 -0.003282 \n8 Std_Parity -0.005106 -0.000927 -0.001976 \n9 Std_Ratio 0.931699 0.986984 0.972422 \n10 Jitter_Parity -0.013818 0.007192 0.005364 \n11 Equalized_Odds_TPR 0.166465 0.258440 0.226205 \n12 Equalized_Odds_FPR 0.096129 0.156703 0.186079 \n13 Equalized_Odds_FNR -0.166465 -0.258440 -0.226205 \n14 Disparate_Impact 1.176075 1.341036 1.263916 \n15 Statistical_Parity_Difference 0.145556 0.262157 0.216187 \n16 Accuracy_Parity -0.010286 -0.003747 -0.024119 \n17 Label_Stability_Ratio 1.021988 0.988991 1.003152 \n18 IQR_Parity 0.001712 0.001225 0.001058 \n19 Std_Parity 0.000822 0.000278 0.000170 \n\n Model_Name \n0 DecisionTreeClassifier \n1 DecisionTreeClassifier \n2 DecisionTreeClassifier \n3 DecisionTreeClassifier \n4 DecisionTreeClassifier \n5 DecisionTreeClassifier \n6 DecisionTreeClassifier \n7 DecisionTreeClassifier \n8 DecisionTreeClassifier \n9 DecisionTreeClassifier \n10 DecisionTreeClassifier \n11 LogisticRegression \n12 LogisticRegression \n13 LogisticRegression \n14 LogisticRegression \n15 LogisticRegression \n16 LogisticRegression \n17 LogisticRegression \n18 LogisticRegression \n19 LogisticRegression ",
- "text/html": "\n\n
\n \n \n | \n Metric | \n sex | \n race | \n sex&race | \n Model_Name | \n
\n \n \n \n 0 | \n Equalized_Odds_TPR | \n 0.211919 | \n 0.195326 | \n 0.183576 | \n DecisionTreeClassifier | \n
\n \n 1 | \n Equalized_Odds_FPR | \n 0.098356 | \n 0.104728 | \n 0.141078 | \n DecisionTreeClassifier | \n
\n \n 2 | \n Equalized_Odds_FNR | \n -0.211919 | \n -0.195326 | \n -0.183576 | \n DecisionTreeClassifier | \n
\n \n 3 | \n Disparate_Impact | \n 1.234115 | \n 1.135965 | \n 1.125105 | \n DecisionTreeClassifier | \n
\n \n 4 | \n Statistical_Parity_Difference | \n 0.193535 | \n 0.123016 | \n 0.115123 | \n DecisionTreeClassifier | \n
\n \n 5 | \n Accuracy_Parity | \n 0.009832 | \n 0.006840 | \n -0.010984 | \n DecisionTreeClassifier | \n
\n \n 6 | \n Label_Stability_Ratio | \n 1.024740 | \n 0.997454 | \n 0.995869 | \n DecisionTreeClassifier | \n
\n \n 7 | \n IQR_Parity | \n 0.000768 | \n -0.004804 | \n -0.003282 | \n DecisionTreeClassifier | \n
\n \n 8 | \n Std_Parity | \n -0.005106 | \n -0.000927 | \n -0.001976 | \n DecisionTreeClassifier | \n
\n \n 9 | \n Std_Ratio | \n 0.931699 | \n 0.986984 | \n 0.972422 | \n DecisionTreeClassifier | \n
\n \n 10 | \n Jitter_Parity | \n -0.013818 | \n 0.007192 | \n 0.005364 | \n DecisionTreeClassifier | \n
\n \n 11 | \n Equalized_Odds_TPR | \n 0.166465 | \n 0.258440 | \n 0.226205 | \n LogisticRegression | \n
\n \n 12 | \n Equalized_Odds_FPR | \n 0.096129 | \n 0.156703 | \n 0.186079 | \n LogisticRegression | \n
\n \n 13 | \n Equalized_Odds_FNR | \n -0.166465 | \n -0.258440 | \n -0.226205 | \n LogisticRegression | \n
\n \n 14 | \n Disparate_Impact | \n 1.176075 | \n 1.341036 | \n 1.263916 | \n LogisticRegression | \n
\n \n 15 | \n Statistical_Parity_Difference | \n 0.145556 | \n 0.262157 | \n 0.216187 | \n LogisticRegression | \n
\n \n 16 | \n Accuracy_Parity | \n -0.010286 | \n -0.003747 | \n -0.024119 | \n LogisticRegression | \n
\n \n 17 | \n Label_Stability_Ratio | \n 1.021988 | \n 0.988991 | \n 1.003152 | \n LogisticRegression | \n
\n \n 18 | \n IQR_Parity | \n 0.001712 | \n 0.001225 | \n 0.001058 | \n LogisticRegression | \n
\n \n 19 | \n Std_Parity | \n 0.000822 | \n 0.000278 | \n 0.000170 | \n LogisticRegression | \n
\n \n
\n
"
- },
- "execution_count": 135,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "models_composed_metrics_df.head(20)"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-10-01T11:29:37.410638Z",
- "start_time": "2023-10-01T11:29:37.382980Z"
- }
- },
- "id": "5798eb95fbeaea54"
- },
- {
- "cell_type": "markdown",
- "id": "deb45226",
- "metadata": {},
- "source": [
- "## Metrics Visualization and Reporting"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 322,
- "id": "435b9d98",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-10-02T17:55:10.703782Z",
- "start_time": "2023-10-02T17:55:06.041613Z"
- }
- },
- "outputs": [],
- "source": [
- "visualizer = MetricsInteractiveVisualizer(models_metrics_dct, models_composed_metrics_df,\n",
- " sensitive_attributes_dct=config.sensitive_attributes_dct)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 323,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Running on local URL: http://127.0.0.1:7860\n",
- "\n",
- "To create a public link, set `share=True` in `launch()`.\n",
- "Keyboard interruption in main thread... closing server.\n"
- ]
- }
- ],
- "source": [
- "visualizer.create_web_app()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-10-02T17:55:47.535767Z",
- "start_time": "2023-10-02T17:55:10.703964Z"
- }
- },
- "id": "678a9dc8d51243f4"
- },
- {
- "cell_type": "code",
- "execution_count": 78,
- "id": "2326c129",
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.8.10"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
deleted file mode 100644
index 3a3ab5d9..00000000
--- a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
+++ /dev/null
@@ -1,275 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "id": "248cbed8",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-10T22:37:44.370856Z",
- "start_time": "2023-12-10T22:37:43.972175Z"
- }
- },
- "outputs": [],
- "source": [
- "%matplotlib inline\n",
- "%load_ext autoreload\n",
- "%autoreload 2"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "id": "7ec6cd08",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-10T22:37:44.380242Z",
- "start_time": "2023-12-10T22:37:44.371542Z"
- }
- },
- "outputs": [],
- "source": [
- "import os\n",
- "import warnings\n",
- "warnings.filterwarnings('ignore')\n",
- "os.environ[\"PYTHONWARNINGS\"] = \"ignore\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "id": "b8cb69f2",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-10T22:37:44.391659Z",
- "start_time": "2023-12-10T22:37:44.380644Z"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Current location: /Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny\n"
- ]
- }
- ],
- "source": [
- "cur_folder_name = os.getcwd().split('/')[-1]\n",
- "if cur_folder_name != \"Virny\":\n",
- " os.chdir(\"../..\")\n",
- "\n",
- "print('Current location: ', os.getcwd())"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "a578f2ab",
- "metadata": {},
- "source": [
- "# Multiple Models Interface Usage"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "id": "7a9241de",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-10T22:37:45.918385Z",
- "start_time": "2023-12-10T22:37:44.390547Z"
- }
- },
- "outputs": [],
- "source": [
- "import os\n",
- "import pandas as pd\n",
- "\n",
- "from virny.datasets import ACSIncomeDataset\n",
- "from virny.custom_classes.metrics_composer import MetricsComposer\n",
- "from virny.custom_classes.metrics_interactive_visualizer import MetricsInteractiveVisualizer"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "outputs": [],
- "source": [
- "data_loader = ACSIncomeDataset(state=['GA'], year=2018, with_nulls=False, subsample_size=15_000, subsample_seed=42)\n",
- "sensitive_attributes_dct = {'SEX': '2', 'RAC1P': ['2', '3', '4', '5', '6', '7', '8', '9'], 'SEX&RAC1P': None}"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-10T22:37:47.214487Z",
- "start_time": "2023-12-10T22:37:45.921391Z"
- }
- },
- "id": "d3c53c7b72ecbcd0"
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "outputs": [],
- "source": [
- "ROOT_DIR = os.path.join('docs', 'examples')\n",
- "subgroup_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'income_subgroup_metrics.csv'), header=0)\n",
- "subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
- " subgroup_metrics_df['Intervention_Param'].astype(str))"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-10T22:37:47.242581Z",
- "start_time": "2023-12-10T22:37:47.214727Z"
- }
- },
- "id": "2aab7c79ecdee914"
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "outputs": [
- {
- "data": {
- "text/plain": " Metric SEX RAC1P SEX&RAC1P \\\n0 Accuracy_Parity 0.047756 0.074977 0.065217 \n1 Aleatoric_Uncertainty_Parity -0.039005 -0.011947 -0.009222 \n2 Aleatoric_Uncertainty_Ratio 0.935159 0.979638 0.984220 \n3 Equalized_Odds_FNR 0.030793 -0.110745 -0.052498 \n4 Equalized_Odds_FPR -0.021317 0.000952 -0.007008 \n\n Model_Name \n0 LGBMClassifier__alpha=0.7 \n1 LGBMClassifier__alpha=0.7 \n2 LGBMClassifier__alpha=0.7 \n3 LGBMClassifier__alpha=0.7 \n4 LGBMClassifier__alpha=0.7 ",
- "text/html": "\n\n
\n \n \n | \n Metric | \n SEX | \n RAC1P | \n SEX&RAC1P | \n Model_Name | \n
\n \n \n \n 0 | \n Accuracy_Parity | \n 0.047756 | \n 0.074977 | \n 0.065217 | \n LGBMClassifier__alpha=0.7 | \n
\n \n 1 | \n Aleatoric_Uncertainty_Parity | \n -0.039005 | \n -0.011947 | \n -0.009222 | \n LGBMClassifier__alpha=0.7 | \n
\n \n 2 | \n Aleatoric_Uncertainty_Ratio | \n 0.935159 | \n 0.979638 | \n 0.984220 | \n LGBMClassifier__alpha=0.7 | \n
\n \n 3 | \n Equalized_Odds_FNR | \n 0.030793 | \n -0.110745 | \n -0.052498 | \n LGBMClassifier__alpha=0.7 | \n
\n \n 4 | \n Equalized_Odds_FPR | \n -0.021317 | \n 0.000952 | \n -0.007008 | \n LGBMClassifier__alpha=0.7 | \n
\n \n
\n
"
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "model_names = subgroup_metrics_df['Model_Name'].unique()\n",
- "models_metrics_dct = dict()\n",
- "for model_name in model_names:\n",
- " models_metrics_dct[model_name] = subgroup_metrics_df[subgroup_metrics_df['Model_Name'] == model_name]\n",
- "\n",
- "metrics_composer = MetricsComposer(models_metrics_dct, sensitive_attributes_dct)\n",
- "models_composed_metrics_df = metrics_composer.compose_metrics()\n",
- "models_composed_metrics_df.head()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-10T22:37:47.297089Z",
- "start_time": "2023-12-10T22:37:47.240439Z"
- }
- },
- "id": "44ee5eff6054ce04"
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "outputs": [
- {
- "data": {
- "text/plain": "dict_keys(['LGBMClassifier__alpha=0.7', 'LGBMClassifier__alpha=0.0', 'LGBMClassifier__alpha=0.4', 'LogisticRegression__alpha=0.0', 'LogisticRegression__alpha=0.7', 'LogisticRegression__alpha=0.4', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.7', 'MLPClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.7', 'RandomForestClassifier__alpha=0.0'])"
- },
- "execution_count": 8,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "models_metrics_dct.keys()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-10T22:37:47.328697Z",
- "start_time": "2023-12-10T22:37:47.295950Z"
- }
- },
- "id": "15ed7d1ba1f22317"
- },
- {
- "cell_type": "markdown",
- "id": "deb45226",
- "metadata": {},
- "source": [
- "## Metrics Visualization and Reporting"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "id": "435b9d98",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-10T22:37:47.374721Z",
- "start_time": "2023-12-10T22:37:47.317882Z"
- }
- },
- "outputs": [],
- "source": [
- "visualizer = MetricsInteractiveVisualizer(data_loader.X_data, data_loader.y_data,\n",
- " models_metrics_dct, models_composed_metrics_df,\n",
- " sensitive_attributes_dct=sensitive_attributes_dct)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Running on local URL: http://127.0.0.1:7860\n",
- "\n",
- "To create a public link, set `share=True` in `launch()`.\n",
- "Keyboard interruption in main thread... closing server.\n"
- ]
- }
- ],
- "source": [
- "visualizer.create_web_app()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-11T00:26:17.429094Z",
- "start_time": "2023-12-10T22:37:47.343749Z"
- }
- },
- "id": "678a9dc8d51243f4"
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "outputs": [],
- "source": [],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-11T00:26:17.483195Z",
- "start_time": "2023-12-11T00:26:17.479725Z"
- }
- },
- "id": "21c0ad91536f0af5"
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.8.10"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
deleted file mode 100644
index ea5db318..00000000
--- a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
+++ /dev/null
@@ -1,274 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "id": "248cbed8",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-18T21:27:13.678820Z",
- "start_time": "2023-12-18T21:27:13.369461Z"
- }
- },
- "outputs": [],
- "source": [
- "%matplotlib inline\n",
- "%load_ext autoreload\n",
- "%autoreload 2"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "id": "7ec6cd08",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-18T21:27:13.687293Z",
- "start_time": "2023-12-18T21:27:13.679001Z"
- }
- },
- "outputs": [],
- "source": [
- "import os\n",
- "import warnings\n",
- "warnings.filterwarnings('ignore')\n",
- "os.environ[\"PYTHONWARNINGS\"] = \"ignore\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "id": "b8cb69f2",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-18T21:27:13.698600Z",
- "start_time": "2023-12-18T21:27:13.687813Z"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Current location: /Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny\n"
- ]
- }
- ],
- "source": [
- "cur_folder_name = os.getcwd().split('/')[-1]\n",
- "if cur_folder_name != \"Virny\":\n",
- " os.chdir(\"../..\")\n",
- "\n",
- "print('Current location: ', os.getcwd())"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "a578f2ab",
- "metadata": {},
- "source": [
- "# Multiple Models Interface Usage"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "id": "7a9241de",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-18T21:27:15.048016Z",
- "start_time": "2023-12-18T21:27:13.697484Z"
- }
- },
- "outputs": [],
- "source": [
- "import os\n",
- "import pandas as pd\n",
- "\n",
- "from virny.datasets import LawSchoolDataset\n",
- "from virny.custom_classes.metrics_composer import MetricsComposer\n",
- "from virny.custom_classes.metrics_interactive_visualizer import MetricsInteractiveVisualizer"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "outputs": [],
- "source": [
- "data_loader = LawSchoolDataset()\n",
- "sensitive_attributes_dct = {'male': '0.0', 'race': 'Non-White', 'male&race': None}"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-18T21:27:15.106638Z",
- "start_time": "2023-12-18T21:27:15.051611Z"
- }
- },
- "id": "d3c53c7b72ecbcd0"
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "outputs": [],
- "source": [
- "ROOT_DIR = os.path.join('docs', 'examples')\n",
- "subgroup_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'law_school_subgroup_metrics.csv'), header=0)\n",
- "subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
- " subgroup_metrics_df['Intervention_Param'].astype(str))"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-18T21:27:15.133650Z",
- "start_time": "2023-12-18T21:27:15.106939Z"
- }
- },
- "id": "2aab7c79ecdee914"
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "outputs": [
- {
- "data": {
- "text/plain": " Metric male race male&race \\\n0 Accuracy_Parity -0.024413 -0.158856 -0.162998 \n1 Aleatoric_Uncertainty_Parity -0.016769 0.317464 0.274695 \n2 Aleatoric_Uncertainty_Ratio 0.951019 2.126816 1.880052 \n3 Equalized_Odds_FNR 0.006853 0.089260 0.092334 \n4 Equalized_Odds_FPR 0.027311 -0.289259 -0.156572 \n\n Model_Name \n0 LGBMClassifier__alpha=0.6 \n1 LGBMClassifier__alpha=0.6 \n2 LGBMClassifier__alpha=0.6 \n3 LGBMClassifier__alpha=0.6 \n4 LGBMClassifier__alpha=0.6 ",
- "text/html": "\n\n
\n \n \n | \n Metric | \n male | \n race | \n male&race | \n Model_Name | \n
\n \n \n \n 0 | \n Accuracy_Parity | \n -0.024413 | \n -0.158856 | \n -0.162998 | \n LGBMClassifier__alpha=0.6 | \n
\n \n 1 | \n Aleatoric_Uncertainty_Parity | \n -0.016769 | \n 0.317464 | \n 0.274695 | \n LGBMClassifier__alpha=0.6 | \n
\n \n 2 | \n Aleatoric_Uncertainty_Ratio | \n 0.951019 | \n 2.126816 | \n 1.880052 | \n LGBMClassifier__alpha=0.6 | \n
\n \n 3 | \n Equalized_Odds_FNR | \n 0.006853 | \n 0.089260 | \n 0.092334 | \n LGBMClassifier__alpha=0.6 | \n
\n \n 4 | \n Equalized_Odds_FPR | \n 0.027311 | \n -0.289259 | \n -0.156572 | \n LGBMClassifier__alpha=0.6 | \n
\n \n
\n
"
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "model_names = subgroup_metrics_df['Model_Name'].unique()\n",
- "models_metrics_dct = dict()\n",
- "for model_name in model_names:\n",
- " models_metrics_dct[model_name] = subgroup_metrics_df[subgroup_metrics_df['Model_Name'] == model_name]\n",
- "\n",
- "metrics_composer = MetricsComposer(models_metrics_dct, sensitive_attributes_dct)\n",
- "models_composed_metrics_df = metrics_composer.compose_metrics()\n",
- "models_composed_metrics_df.head()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-18T21:27:15.178725Z",
- "start_time": "2023-12-18T21:27:15.134576Z"
- }
- },
- "id": "833484748ed512e8"
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "outputs": [
- {
- "data": {
- "text/plain": "dict_keys(['LGBMClassifier__alpha=0.6', 'LGBMClassifier__alpha=0.0', 'LogisticRegression__alpha=0.6', 'LogisticRegression__alpha=0.0', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.6', 'RandomForestClassifier__alpha=0.6', 'RandomForestClassifier__alpha=0.0'])"
- },
- "execution_count": 8,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "models_metrics_dct.keys()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-18T21:27:15.201295Z",
- "start_time": "2023-12-18T21:27:15.179038Z"
- }
- },
- "id": "15ed7d1ba1f22317"
- },
- {
- "cell_type": "markdown",
- "id": "deb45226",
- "metadata": {},
- "source": [
- "## Metrics Visualization and Reporting"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "id": "435b9d98",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-18T21:27:15.252561Z",
- "start_time": "2023-12-18T21:27:15.200692Z"
- }
- },
- "outputs": [],
- "source": [
- "visualizer = MetricsInteractiveVisualizer(data_loader.X_data, data_loader.y_data,\n",
- " models_metrics_dct, models_composed_metrics_df,\n",
- " sensitive_attributes_dct=sensitive_attributes_dct)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Running on local URL: http://127.0.0.1:7860\n",
- "\n",
- "To create a public link, set `share=True` in `launch()`.\n",
- "Keyboard interruption in main thread... closing server.\n"
- ]
- }
- ],
- "source": [
- "visualizer.create_web_app()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-18T23:50:34.705984Z",
- "start_time": "2023-12-18T21:27:15.229300Z"
- }
- },
- "id": "678a9dc8d51243f4"
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "id": "2326c129",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-18T23:50:34.805260Z",
- "start_time": "2023-12-18T23:50:34.803259Z"
- }
- },
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.8.10"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Pub_Cov.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Pub_Cov.ipynb
deleted file mode 100644
index 61298c7a..00000000
--- a/docs/examples/Multiple_Models_Interface_Vis_Pub_Cov.ipynb
+++ /dev/null
@@ -1,284 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 19,
- "id": "248cbed8",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-07T00:13:42.978064Z",
- "start_time": "2023-12-07T00:13:42.914700Z"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The autoreload extension is already loaded. To reload it, use:\n",
- " %reload_ext autoreload\n"
- ]
- }
- ],
- "source": [
- "%matplotlib inline\n",
- "%load_ext autoreload\n",
- "%autoreload 2"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "id": "7ec6cd08",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-07T00:13:42.983725Z",
- "start_time": "2023-12-07T00:13:42.954698Z"
- }
- },
- "outputs": [],
- "source": [
- "import os\n",
- "import warnings\n",
- "warnings.filterwarnings('ignore')\n",
- "os.environ[\"PYTHONWARNINGS\"] = \"ignore\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "id": "b8cb69f2",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-07T00:13:43.018895Z",
- "start_time": "2023-12-07T00:13:42.982387Z"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Current location: /Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny\n"
- ]
- }
- ],
- "source": [
- "cur_folder_name = os.getcwd().split('/')[-1]\n",
- "if cur_folder_name != \"Virny\":\n",
- " os.chdir(\"../..\")\n",
- "\n",
- "print('Current location: ', os.getcwd())"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "a578f2ab",
- "metadata": {},
- "source": [
- "# Multiple Models Interface Usage"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 22,
- "id": "7a9241de",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-07T00:13:43.027909Z",
- "start_time": "2023-12-07T00:13:43.006390Z"
- }
- },
- "outputs": [],
- "source": [
- "import os\n",
- "import pandas as pd\n",
- "\n",
- "from virny.datasets import ACSPublicCoverageDataset\n",
- "from virny.custom_classes.metrics_composer import MetricsComposer\n",
- "from virny.custom_classes.metrics_interactive_visualizer import MetricsInteractiveVisualizer"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "outputs": [],
- "source": [
- "data_loader = ACSPublicCoverageDataset(state=['CA'], year=2018, with_nulls=False,\n",
- " subsample_size=15_000, subsample_seed=42)\n",
- "sensitive_attributes_dct = {'SEX': '2', 'RAC1P': ['2', '3', '4', '5', '6', '7', '8', '9'], 'SEX&RAC1P': None}"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-07T00:13:48.771709Z",
- "start_time": "2023-12-07T00:13:43.029632Z"
- }
- },
- "id": "d3c53c7b72ecbcd0"
- },
- {
- "cell_type": "code",
- "execution_count": 24,
- "outputs": [],
- "source": [
- "ROOT_DIR = os.path.join('docs', 'examples')\n",
- "subgroup_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'pub_cov_subgroup_metrics.csv'), header=0)\n",
- "subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
- " subgroup_metrics_df['Intervention_Param'].astype(str))"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-07T00:13:48.805639Z",
- "start_time": "2023-12-07T00:13:48.768740Z"
- }
- },
- "id": "2aab7c79ecdee914"
- },
- {
- "cell_type": "code",
- "execution_count": 25,
- "outputs": [
- {
- "data": {
- "text/plain": " Metric SEX RAC1P SEX&RAC1P \\\n0 Accuracy_Parity 0.026847 0.016299 0.040212 \n1 Aleatoric_Uncertainty_Parity -0.013240 0.027276 0.007235 \n2 Aleatoric_Uncertainty_Ratio 0.983584 1.034689 1.009077 \n3 Equalized_Odds_FNR 0.004275 -0.000359 -0.008617 \n4 Equalized_Odds_FPR -0.012072 -0.024172 -0.040481 \n\n Model_Name \n0 LGBMClassifier__alpha=0.6 \n1 LGBMClassifier__alpha=0.6 \n2 LGBMClassifier__alpha=0.6 \n3 LGBMClassifier__alpha=0.6 \n4 LGBMClassifier__alpha=0.6 ",
- "text/html": "\n\n
\n \n \n | \n Metric | \n SEX | \n RAC1P | \n SEX&RAC1P | \n Model_Name | \n
\n \n \n \n 0 | \n Accuracy_Parity | \n 0.026847 | \n 0.016299 | \n 0.040212 | \n LGBMClassifier__alpha=0.6 | \n
\n \n 1 | \n Aleatoric_Uncertainty_Parity | \n -0.013240 | \n 0.027276 | \n 0.007235 | \n LGBMClassifier__alpha=0.6 | \n
\n \n 2 | \n Aleatoric_Uncertainty_Ratio | \n 0.983584 | \n 1.034689 | \n 1.009077 | \n LGBMClassifier__alpha=0.6 | \n
\n \n 3 | \n Equalized_Odds_FNR | \n 0.004275 | \n -0.000359 | \n -0.008617 | \n LGBMClassifier__alpha=0.6 | \n
\n \n 4 | \n Equalized_Odds_FPR | \n -0.012072 | \n -0.024172 | \n -0.040481 | \n LGBMClassifier__alpha=0.6 | \n
\n \n
\n
"
- },
- "execution_count": 25,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "model_names = subgroup_metrics_df['Model_Name'].unique()\n",
- "models_metrics_dct = dict()\n",
- "for model_name in model_names:\n",
- " models_metrics_dct[model_name] = subgroup_metrics_df[subgroup_metrics_df['Model_Name'] == model_name]\n",
- "\n",
- "metrics_composer = MetricsComposer(models_metrics_dct, sensitive_attributes_dct)\n",
- "models_composed_metrics_df = metrics_composer.compose_metrics()\n",
- "models_composed_metrics_df.head()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-07T00:13:48.849022Z",
- "start_time": "2023-12-07T00:13:48.802693Z"
- }
- },
- "id": "833484748ed512e8"
- },
- {
- "cell_type": "code",
- "execution_count": 26,
- "outputs": [
- {
- "data": {
- "text/plain": "dict_keys(['LGBMClassifier__alpha=0.6', 'LGBMClassifier__alpha=0.0', 'LogisticRegression__alpha=0.0', 'LogisticRegression__alpha=0.6', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.6', 'RandomForestClassifier__alpha=0.0', 'RandomForestClassifier__alpha=0.6'])"
- },
- "execution_count": 26,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "models_metrics_dct.keys()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-07T00:13:48.873723Z",
- "start_time": "2023-12-07T00:13:48.848261Z"
- }
- },
- "id": "15ed7d1ba1f22317"
- },
- {
- "cell_type": "markdown",
- "id": "deb45226",
- "metadata": {},
- "source": [
- "## Metrics Visualization and Reporting"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "id": "435b9d98",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-07T00:13:48.959344Z",
- "start_time": "2023-12-07T00:13:48.871083Z"
- }
- },
- "outputs": [],
- "source": [
- "visualizer = MetricsInteractiveVisualizer(data_loader.X_data, data_loader.y_data,\n",
- " models_metrics_dct, models_composed_metrics_df,\n",
- " sensitive_attributes_dct=sensitive_attributes_dct)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Running on local URL: http://127.0.0.1:7860\n",
- "\n",
- "To create a public link, set `share=True` in `launch()`.\n",
- "Keyboard interruption in main thread... closing server.\n"
- ]
- }
- ],
- "source": [
- "visualizer.create_web_app()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-07T00:15:48.056146Z",
- "start_time": "2023-12-07T00:13:48.898642Z"
- }
- },
- "id": "678a9dc8d51243f4"
- },
- {
- "cell_type": "code",
- "execution_count": 29,
- "id": "2326c129",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-07T00:15:48.095103Z",
- "start_time": "2023-12-07T00:15:48.092153Z"
- }
- },
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.8.10"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb
deleted file mode 100644
index 18b24daa..00000000
--- a/docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb
+++ /dev/null
@@ -1,282 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 37,
- "id": "248cbed8",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-10-07T13:42:22.642940Z",
- "start_time": "2023-10-07T13:42:22.508015Z"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The autoreload extension is already loaded. To reload it, use:\n",
- " %reload_ext autoreload\n"
- ]
- }
- ],
- "source": [
- "%matplotlib inline\n",
- "%load_ext autoreload\n",
- "%autoreload 2"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 38,
- "id": "7ec6cd08",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-10-07T13:42:22.677119Z",
- "start_time": "2023-10-07T13:42:22.641937Z"
- }
- },
- "outputs": [],
- "source": [
- "import os\n",
- "import warnings\n",
- "warnings.filterwarnings('ignore')\n",
- "os.environ[\"PYTHONWARNINGS\"] = \"ignore\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 39,
- "id": "b8cb69f2",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-10-07T13:42:22.689334Z",
- "start_time": "2023-10-07T13:42:22.664188Z"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Current location: /Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny\n"
- ]
- }
- ],
- "source": [
- "cur_folder_name = os.getcwd().split('/')[-1]\n",
- "if cur_folder_name != \"Virny\":\n",
- " os.chdir(\"../..\")\n",
- "\n",
- "print('Current location: ', os.getcwd())"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "a578f2ab",
- "metadata": {},
- "source": [
- "# Multiple Models Interface Usage"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 40,
- "id": "7a9241de",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-10-07T13:42:22.711038Z",
- "start_time": "2023-10-07T13:42:22.687552Z"
- }
- },
- "outputs": [],
- "source": [
- "import os\n",
- "import pandas as pd\n",
- "\n",
- "from virny.custom_classes.metrics_interactive_visualizer import MetricsInteractiveVisualizer"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 41,
- "outputs": [],
- "source": [
- "sensitive_attributes_dct = {'Race': 'Non-White'}"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-10-07T13:42:22.732136Z",
- "start_time": "2023-10-07T13:42:22.711244Z"
- }
- },
- "id": "d3c53c7b72ecbcd0"
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "outputs": [],
- "source": [
- "ROOT_DIR = os.path.join('docs', 'examples')\n",
- "subgroup_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'ricci_subgroup_metrics.csv'), header=0)\n",
- "models_composed_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'ricci_group_metrics.csv'), header=0)"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-10-07T13:42:22.759203Z",
- "start_time": "2023-10-07T13:42:22.732607Z"
- }
- },
- "id": "2aab7c79ecdee914"
- },
- {
- "cell_type": "code",
- "execution_count": 43,
- "outputs": [],
- "source": [
- "subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
- " subgroup_metrics_df['Intervention_Param'].astype(str))\n",
- "models_composed_metrics_df['Model_Name'] = (models_composed_metrics_df['Model_Name'] + '__alpha=' \n",
- " + models_composed_metrics_df['Intervention_Param'].astype(str))"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-10-07T13:42:22.784062Z",
- "start_time": "2023-10-07T13:42:22.759791Z"
- }
- },
- "id": "2d922003e752a4b4"
- },
- {
- "cell_type": "code",
- "execution_count": 44,
- "outputs": [],
- "source": [
- "models_metrics_dct = dict()\n",
- "for model_name in subgroup_metrics_df['Model_Name'].unique():\n",
- " models_metrics_dct[model_name] = subgroup_metrics_df[subgroup_metrics_df['Model_Name'] == model_name]"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-10-07T13:42:22.809161Z",
- "start_time": "2023-10-07T13:42:22.782462Z"
- }
- },
- "id": "833484748ed512e8"
- },
- {
- "cell_type": "code",
- "execution_count": 45,
- "outputs": [
- {
- "data": {
- "text/plain": "dict_keys(['LGBMClassifier__alpha=0.0', 'LGBMClassifier__alpha=0.4', 'LGBMClassifier__alpha=0.7', 'LogisticRegression__alpha=0.0', 'LogisticRegression__alpha=0.4', 'LogisticRegression__alpha=0.7', 'MLPClassifier__alpha=0.7', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.0', 'RandomForestClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.7'])"
- },
- "execution_count": 45,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "models_metrics_dct.keys()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-10-07T13:42:22.831140Z",
- "start_time": "2023-10-07T13:42:22.806994Z"
- }
- },
- "id": "15ed7d1ba1f22317"
- },
- {
- "cell_type": "markdown",
- "id": "deb45226",
- "metadata": {},
- "source": [
- "## Metrics Visualization and Reporting"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 46,
- "id": "435b9d98",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-10-07T13:42:22.859150Z",
- "start_time": "2023-10-07T13:42:22.830292Z"
- }
- },
- "outputs": [],
- "source": [
- "visualizer = MetricsInteractiveVisualizer(models_metrics_dct, models_composed_metrics_df,\n",
- " sensitive_attributes_dct=sensitive_attributes_dct)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 47,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Running on local URL: http://127.0.0.1:7860\n",
- "\n",
- "To create a public link, set `share=True` in `launch()`.\n",
- "Keyboard interruption in main thread... closing server.\n"
- ]
- }
- ],
- "source": [
- "visualizer.create_web_app()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-10-07T13:45:45.222662Z",
- "start_time": "2023-10-07T13:42:22.859325Z"
- }
- },
- "id": "678a9dc8d51243f4"
- },
- {
- "cell_type": "code",
- "execution_count": 48,
- "id": "2326c129",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-10-07T13:45:45.265758Z",
- "start_time": "2023-10-07T13:45:45.264074Z"
- }
- },
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.8.10"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}
diff --git a/virny/utils/data_viz_utils.py b/virny/utils/data_viz_utils.py
index 8cae6f28..56962143 100644
--- a/virny/utils/data_viz_utils.py
+++ b/virny/utils/data_viz_utils.py
@@ -8,7 +8,6 @@
from altair.utils.schemapi import Undefined
from virny.utils.common_helpers import check_substring_in_list
-from IPython.display import display
def rank_with_tolerance(pd_series: pd.Series, tolerance: float = 0.001):
From 68795324b068921526510677410f6767df58376f Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Tue, 19 Dec 2023 15:29:33 +0200
Subject: [PATCH 073/148] Resolved merge conflicts
---
.../Multiple_Models_Interface_Vis.ipynb | 300 ------------------
...Multiple_Models_Interface_Vis_Income.ipynb | 275 ----------------
...iple_Models_Interface_Vis_Law_School.ipynb | 274 ----------------
...ultiple_Models_Interface_Vis_Pub_Cov.ipynb | 284 -----------------
.../Multiple_Models_Interface_Vis_Ricci.ipynb | 282 ----------------
5 files changed, 1415 deletions(-)
delete mode 100644 docs/examples/Multiple_Models_Interface_Vis.ipynb
delete mode 100644 docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
delete mode 100644 docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
delete mode 100644 docs/examples/Multiple_Models_Interface_Vis_Pub_Cov.ipynb
delete mode 100644 docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb
diff --git a/docs/examples/Multiple_Models_Interface_Vis.ipynb b/docs/examples/Multiple_Models_Interface_Vis.ipynb
deleted file mode 100644
index c241a2f4..00000000
--- a/docs/examples/Multiple_Models_Interface_Vis.ipynb
+++ /dev/null
@@ -1,300 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "id": "248cbed8",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-09-29T20:56:16.932083Z",
- "start_time": "2023-09-29T20:56:16.278169Z"
- }
- },
- "outputs": [],
- "source": [
- "%matplotlib inline\n",
- "%load_ext autoreload\n",
- "%autoreload 2"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "id": "7ec6cd08",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-09-29T20:56:16.940086Z",
- "start_time": "2023-09-29T20:56:16.931485Z"
- }
- },
- "outputs": [],
- "source": [
- "import os\n",
- "import warnings\n",
- "warnings.filterwarnings('ignore')\n",
- "os.environ[\"PYTHONWARNINGS\"] = \"ignore\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "id": "b8cb69f2",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-09-29T20:56:16.951831Z",
- "start_time": "2023-09-29T20:56:16.940588Z"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Current location: /Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny\n"
- ]
- }
- ],
- "source": [
- "cur_folder_name = os.getcwd().split('/')[-1]\n",
- "if cur_folder_name != \"Virny\":\n",
- " os.chdir(\"../..\")\n",
- "\n",
- "print('Current location: ', os.getcwd())"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "a578f2ab",
- "metadata": {},
- "source": [
- "# Multiple Models Interface Usage"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "id": "7a9241de",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-09-29T20:56:30.072450Z",
- "start_time": "2023-09-29T20:56:22.772584Z"
- }
- },
- "outputs": [],
- "source": [
- "import os\n",
- "\n",
- "from virny.utils.custom_initializers import read_model_metric_dfs, create_config_obj\n",
- "from virny.custom_classes.metrics_interactive_visualizer import MetricsInteractiveVisualizer\n",
- "from virny.custom_classes.metrics_composer import MetricsComposer"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "outputs": [],
- "source": [
- "ROOT_DIR = os.path.join('docs', 'examples')\n",
- "config_yaml_path = os.path.join(ROOT_DIR, 'experiment_config.yaml')\n",
- "config_yaml_content = \"\"\"\n",
- "dataset_name: COMPAS_Without_Sensitive_Attributes\n",
- "bootstrap_fraction: 0.8\n",
- "n_estimators: 50 # Better to input the higher number of estimators than 100; this is only for this use case example\n",
- "sensitive_attributes_dct: {'sex': 1, 'race': 'African-American', 'sex&race': None}\n",
- "\"\"\"\n",
- "with open(config_yaml_path, 'w', encoding='utf-8') as f:\n",
- " f.write(config_yaml_content)\n",
- "\n",
- "config = create_config_obj(config_yaml_path=config_yaml_path)\n",
- "model_names = ['DecisionTreeClassifier', 'LogisticRegression', 'RandomForestClassifier', 'XGBClassifier']\n",
- "SAVE_RESULTS_DIR_PATH = os.path.join(ROOT_DIR, 'results', 'COMPAS_Without_Sensitive_Attributes_Metrics_20230812__224136')"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-09-29T20:56:30.095448Z",
- "start_time": "2023-09-29T20:56:30.073873Z"
- }
- },
- "id": "d777610462304f63"
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "id": "f94a20dc",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-09-29T20:56:30.121865Z",
- "start_time": "2023-09-29T20:56:30.094816Z"
- }
- },
- "outputs": [],
- "source": [
- "models_metrics_dct = read_model_metric_dfs(SAVE_RESULTS_DIR_PATH, model_names=model_names)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "id": "b04d06cf",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-09-29T20:56:30.139696Z",
- "start_time": "2023-09-29T20:56:30.121071Z"
- }
- },
- "outputs": [],
- "source": [
- "metrics_composer = MetricsComposer(models_metrics_dct, config.sensitive_attributes_dct)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "id": "be6ace22",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-09-29T20:56:30.169575Z",
- "start_time": "2023-09-29T20:56:30.138633Z"
- }
- },
- "outputs": [],
- "source": [
- "# Compute composed metrics\n",
- "models_composed_metrics_df = metrics_composer.compose_metrics()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 185,
- "outputs": [
- {
- "data": {
- "text/plain": " Metric overall sex_priv sex_priv_correct \\\n0 Mean 0.524270 0.578645 0.600790 \n1 Std 0.067963 0.073618 0.072201 \n2 IQR 0.090596 0.099782 0.098402 \n3 Aleatoric_Uncertainty 0.834874 0.846689 0.826891 \n4 Overall_Uncertainty 0.859083 0.876581 0.856843 \n5 Statistical_Bias 0.405041 0.395811 0.314809 \n6 Jitter 0.106917 0.132090 0.112864 \n7 Per_Sample_Accuracy 0.691061 0.711090 0.918452 \n8 Label_Stability 0.851667 0.807393 0.836903 \n9 TPR 0.679406 0.613333 1.000000 \n10 TNR 0.738462 0.801471 1.000000 \n11 PPV 0.676533 0.630137 1.000000 \n12 FNR 0.320594 0.386667 0.000000 \n13 FPR 0.261538 0.198529 0.000000 \n14 Accuracy 0.712121 0.734597 1.000000 \n15 F1 0.677966 0.621622 1.000000 \n16 Selection-Rate 0.447917 0.345972 0.296774 \n17 Positive-Rate 1.004246 0.973333 1.000000 \n18 Sample_Size 1056.000000 211.000000 155.000000 \n\n sex_priv_incorrect sex_dis sex_dis_correct sex_dis_incorrect \\\n0 0.517352 0.510692 0.514399 0.501767 \n1 0.077539 0.066551 0.064791 0.070788 \n2 0.103600 0.088303 0.085977 0.093900 \n3 0.901488 0.831924 0.817170 0.867440 \n4 0.931213 0.854713 0.839203 0.892051 \n5 0.620012 0.407346 0.301656 0.661771 \n6 0.185306 0.100631 0.091351 0.122972 \n7 0.137143 0.686059 0.936918 0.082177 \n8 0.725714 0.862722 0.873970 0.835645 \n9 0.000000 0.691919 1.000000 0.000000 \n10 0.000000 0.719376 1.000000 0.000000 \n11 0.000000 0.685000 1.000000 0.000000 \n12 1.000000 0.308081 0.000000 1.000000 \n13 1.000000 0.280624 0.000000 1.000000 \n14 0.000000 0.706509 1.000000 0.000000 \n15 0.000000 0.688442 1.000000 0.000000 \n16 0.482143 0.473373 0.458961 0.508065 \n17 0.931034 1.010101 1.000000 1.032787 \n18 56.000000 845.000000 597.000000 248.000000 \n\n race_priv race_priv_correct ... race_dis_correct race_dis_incorrect \\\n0 0.597526 0.618185 ... 0.473863 0.484344 \n1 0.069162 0.066865 ... 0.065947 0.070060 \n2 0.093184 0.089451 ... 0.087919 0.091258 \n3 0.821672 0.807043 ... 0.827404 0.880296 \n4 0.847778 0.832001 ... 0.850193 0.903737 \n5 0.393484 0.296788 ... 0.309510 0.650314 \n6 0.107225 0.097218 ... 0.094812 0.134214 \n7 0.708261 0.930526 ... 0.934866 0.091340 \n8 0.848213 0.861316 ... 0.869732 0.817320 \n9 0.585034 1.000000 ... 1.000000 0.000000 \n10 0.816479 1.000000 ... 1.000000 0.000000 \n11 0.637037 1.000000 ... 1.000000 0.000000 \n12 0.414966 0.000000 ... 0.000000 1.000000 \n13 0.183521 0.000000 ... 0.000000 1.000000 \n14 0.734300 1.000000 ... 1.000000 0.000000 \n15 0.609929 1.000000 ... 1.000000 0.000000 \n16 0.326087 0.282895 ... 0.522321 0.536082 \n17 0.918367 1.000000 ... 1.000000 1.155556 \n18 414.000000 304.000000 ... 448.000000 194.000000 \n\n sex&race_priv sex&race_priv_correct sex&race_priv_incorrect \\\n0 0.586391 0.607290 0.529874 \n1 0.068718 0.066018 0.076019 \n2 0.092020 0.088338 0.101975 \n3 0.832383 0.817398 0.872906 \n4 0.857995 0.841790 0.901818 \n5 0.396398 0.302520 0.650263 \n6 0.108871 0.095304 0.145559 \n7 0.708783 0.933073 0.102254 \n8 0.847224 0.866354 0.795493 \n9 0.595745 1.000000 0.000000 \n10 0.804734 1.000000 0.000000 \n11 0.629213 1.000000 0.000000 \n12 0.404255 0.000000 1.000000 \n13 0.195266 0.000000 1.000000 \n14 0.730038 1.000000 0.000000 \n15 0.612022 1.000000 0.000000 \n16 0.338403 0.291667 0.464789 \n17 0.946809 1.000000 0.868421 \n18 526.000000 384.000000 142.000000 \n\n sex&race_dis sex&race_dis_correct sex&race_dis_incorrect \\\n0 0.462617 0.453857 0.482517 \n1 0.067213 0.066631 0.068536 \n2 0.089184 0.088747 0.090175 \n3 0.837346 0.821026 0.874418 \n4 0.860162 0.843933 0.897027 \n5 0.413620 0.306294 0.657422 \n6 0.104978 0.096287 0.124722 \n7 0.673472 0.933152 0.083580 \n8 0.856075 0.866304 0.832840 \n9 0.734982 1.000000 0.000000 \n10 0.647773 1.000000 0.000000 \n11 0.705085 1.000000 0.000000 \n12 0.265018 0.000000 1.000000 \n13 0.352227 0.000000 1.000000 \n14 0.694340 1.000000 0.000000 \n15 0.719723 1.000000 0.000000 \n16 0.556604 0.565217 0.537037 \n17 1.042403 1.000000 1.160000 \n18 530.000000 368.000000 162.000000 \n\n Model_Name Model_Params \n0 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n1 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n2 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n3 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n4 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n5 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n6 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n7 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n8 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n9 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n10 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n11 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n12 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n13 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n14 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n15 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n16 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n17 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n18 RandomForestClassifier {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... \n\n[19 rows x 22 columns]",
- "text/html": "\n\n
\n \n \n | \n Metric | \n overall | \n sex_priv | \n sex_priv_correct | \n sex_priv_incorrect | \n sex_dis | \n sex_dis_correct | \n sex_dis_incorrect | \n race_priv | \n race_priv_correct | \n ... | \n race_dis_correct | \n race_dis_incorrect | \n sex&race_priv | \n sex&race_priv_correct | \n sex&race_priv_incorrect | \n sex&race_dis | \n sex&race_dis_correct | \n sex&race_dis_incorrect | \n Model_Name | \n Model_Params | \n
\n \n \n \n 0 | \n Mean | \n 0.524270 | \n 0.578645 | \n 0.600790 | \n 0.517352 | \n 0.510692 | \n 0.514399 | \n 0.501767 | \n 0.597526 | \n 0.618185 | \n ... | \n 0.473863 | \n 0.484344 | \n 0.586391 | \n 0.607290 | \n 0.529874 | \n 0.462617 | \n 0.453857 | \n 0.482517 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 1 | \n Std | \n 0.067963 | \n 0.073618 | \n 0.072201 | \n 0.077539 | \n 0.066551 | \n 0.064791 | \n 0.070788 | \n 0.069162 | \n 0.066865 | \n ... | \n 0.065947 | \n 0.070060 | \n 0.068718 | \n 0.066018 | \n 0.076019 | \n 0.067213 | \n 0.066631 | \n 0.068536 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 2 | \n IQR | \n 0.090596 | \n 0.099782 | \n 0.098402 | \n 0.103600 | \n 0.088303 | \n 0.085977 | \n 0.093900 | \n 0.093184 | \n 0.089451 | \n ... | \n 0.087919 | \n 0.091258 | \n 0.092020 | \n 0.088338 | \n 0.101975 | \n 0.089184 | \n 0.088747 | \n 0.090175 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 3 | \n Aleatoric_Uncertainty | \n 0.834874 | \n 0.846689 | \n 0.826891 | \n 0.901488 | \n 0.831924 | \n 0.817170 | \n 0.867440 | \n 0.821672 | \n 0.807043 | \n ... | \n 0.827404 | \n 0.880296 | \n 0.832383 | \n 0.817398 | \n 0.872906 | \n 0.837346 | \n 0.821026 | \n 0.874418 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 4 | \n Overall_Uncertainty | \n 0.859083 | \n 0.876581 | \n 0.856843 | \n 0.931213 | \n 0.854713 | \n 0.839203 | \n 0.892051 | \n 0.847778 | \n 0.832001 | \n ... | \n 0.850193 | \n 0.903737 | \n 0.857995 | \n 0.841790 | \n 0.901818 | \n 0.860162 | \n 0.843933 | \n 0.897027 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 5 | \n Statistical_Bias | \n 0.405041 | \n 0.395811 | \n 0.314809 | \n 0.620012 | \n 0.407346 | \n 0.301656 | \n 0.661771 | \n 0.393484 | \n 0.296788 | \n ... | \n 0.309510 | \n 0.650314 | \n 0.396398 | \n 0.302520 | \n 0.650263 | \n 0.413620 | \n 0.306294 | \n 0.657422 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 6 | \n Jitter | \n 0.106917 | \n 0.132090 | \n 0.112864 | \n 0.185306 | \n 0.100631 | \n 0.091351 | \n 0.122972 | \n 0.107225 | \n 0.097218 | \n ... | \n 0.094812 | \n 0.134214 | \n 0.108871 | \n 0.095304 | \n 0.145559 | \n 0.104978 | \n 0.096287 | \n 0.124722 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 7 | \n Per_Sample_Accuracy | \n 0.691061 | \n 0.711090 | \n 0.918452 | \n 0.137143 | \n 0.686059 | \n 0.936918 | \n 0.082177 | \n 0.708261 | \n 0.930526 | \n ... | \n 0.934866 | \n 0.091340 | \n 0.708783 | \n 0.933073 | \n 0.102254 | \n 0.673472 | \n 0.933152 | \n 0.083580 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 8 | \n Label_Stability | \n 0.851667 | \n 0.807393 | \n 0.836903 | \n 0.725714 | \n 0.862722 | \n 0.873970 | \n 0.835645 | \n 0.848213 | \n 0.861316 | \n ... | \n 0.869732 | \n 0.817320 | \n 0.847224 | \n 0.866354 | \n 0.795493 | \n 0.856075 | \n 0.866304 | \n 0.832840 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 9 | \n TPR | \n 0.679406 | \n 0.613333 | \n 1.000000 | \n 0.000000 | \n 0.691919 | \n 1.000000 | \n 0.000000 | \n 0.585034 | \n 1.000000 | \n ... | \n 1.000000 | \n 0.000000 | \n 0.595745 | \n 1.000000 | \n 0.000000 | \n 0.734982 | \n 1.000000 | \n 0.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 10 | \n TNR | \n 0.738462 | \n 0.801471 | \n 1.000000 | \n 0.000000 | \n 0.719376 | \n 1.000000 | \n 0.000000 | \n 0.816479 | \n 1.000000 | \n ... | \n 1.000000 | \n 0.000000 | \n 0.804734 | \n 1.000000 | \n 0.000000 | \n 0.647773 | \n 1.000000 | \n 0.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 11 | \n PPV | \n 0.676533 | \n 0.630137 | \n 1.000000 | \n 0.000000 | \n 0.685000 | \n 1.000000 | \n 0.000000 | \n 0.637037 | \n 1.000000 | \n ... | \n 1.000000 | \n 0.000000 | \n 0.629213 | \n 1.000000 | \n 0.000000 | \n 0.705085 | \n 1.000000 | \n 0.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 12 | \n FNR | \n 0.320594 | \n 0.386667 | \n 0.000000 | \n 1.000000 | \n 0.308081 | \n 0.000000 | \n 1.000000 | \n 0.414966 | \n 0.000000 | \n ... | \n 0.000000 | \n 1.000000 | \n 0.404255 | \n 0.000000 | \n 1.000000 | \n 0.265018 | \n 0.000000 | \n 1.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 13 | \n FPR | \n 0.261538 | \n 0.198529 | \n 0.000000 | \n 1.000000 | \n 0.280624 | \n 0.000000 | \n 1.000000 | \n 0.183521 | \n 0.000000 | \n ... | \n 0.000000 | \n 1.000000 | \n 0.195266 | \n 0.000000 | \n 1.000000 | \n 0.352227 | \n 0.000000 | \n 1.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 14 | \n Accuracy | \n 0.712121 | \n 0.734597 | \n 1.000000 | \n 0.000000 | \n 0.706509 | \n 1.000000 | \n 0.000000 | \n 0.734300 | \n 1.000000 | \n ... | \n 1.000000 | \n 0.000000 | \n 0.730038 | \n 1.000000 | \n 0.000000 | \n 0.694340 | \n 1.000000 | \n 0.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 15 | \n F1 | \n 0.677966 | \n 0.621622 | \n 1.000000 | \n 0.000000 | \n 0.688442 | \n 1.000000 | \n 0.000000 | \n 0.609929 | \n 1.000000 | \n ... | \n 1.000000 | \n 0.000000 | \n 0.612022 | \n 1.000000 | \n 0.000000 | \n 0.719723 | \n 1.000000 | \n 0.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 16 | \n Selection-Rate | \n 0.447917 | \n 0.345972 | \n 0.296774 | \n 0.482143 | \n 0.473373 | \n 0.458961 | \n 0.508065 | \n 0.326087 | \n 0.282895 | \n ... | \n 0.522321 | \n 0.536082 | \n 0.338403 | \n 0.291667 | \n 0.464789 | \n 0.556604 | \n 0.565217 | \n 0.537037 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 17 | \n Positive-Rate | \n 1.004246 | \n 0.973333 | \n 1.000000 | \n 0.931034 | \n 1.010101 | \n 1.000000 | \n 1.032787 | \n 0.918367 | \n 1.000000 | \n ... | \n 1.000000 | \n 1.155556 | \n 0.946809 | \n 1.000000 | \n 0.868421 | \n 1.042403 | \n 1.000000 | \n 1.160000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n 18 | \n Sample_Size | \n 1056.000000 | \n 211.000000 | \n 155.000000 | \n 56.000000 | \n 845.000000 | \n 597.000000 | \n 248.000000 | \n 414.000000 | \n 304.000000 | \n ... | \n 448.000000 | \n 194.000000 | \n 526.000000 | \n 384.000000 | \n 142.000000 | \n 530.000000 | \n 368.000000 | \n 162.000000 | \n RandomForestClassifier | \n {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w... | \n
\n \n
\n
19 rows × 22 columns
\n
"
- },
- "execution_count": 185,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "models_metrics_dct['RandomForestClassifier'].head(100)"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-10-01T20:57:20.233976Z",
- "start_time": "2023-10-01T20:57:20.133369Z"
- }
- },
- "id": "54a73b4d053334b4"
- },
- {
- "cell_type": "code",
- "execution_count": 135,
- "outputs": [
- {
- "data": {
- "text/plain": " Metric sex race sex&race \\\n0 Equalized_Odds_TPR 0.211919 0.195326 0.183576 \n1 Equalized_Odds_FPR 0.098356 0.104728 0.141078 \n2 Equalized_Odds_FNR -0.211919 -0.195326 -0.183576 \n3 Disparate_Impact 1.234115 1.135965 1.125105 \n4 Statistical_Parity_Difference 0.193535 0.123016 0.115123 \n5 Accuracy_Parity 0.009832 0.006840 -0.010984 \n6 Label_Stability_Ratio 1.024740 0.997454 0.995869 \n7 IQR_Parity 0.000768 -0.004804 -0.003282 \n8 Std_Parity -0.005106 -0.000927 -0.001976 \n9 Std_Ratio 0.931699 0.986984 0.972422 \n10 Jitter_Parity -0.013818 0.007192 0.005364 \n11 Equalized_Odds_TPR 0.166465 0.258440 0.226205 \n12 Equalized_Odds_FPR 0.096129 0.156703 0.186079 \n13 Equalized_Odds_FNR -0.166465 -0.258440 -0.226205 \n14 Disparate_Impact 1.176075 1.341036 1.263916 \n15 Statistical_Parity_Difference 0.145556 0.262157 0.216187 \n16 Accuracy_Parity -0.010286 -0.003747 -0.024119 \n17 Label_Stability_Ratio 1.021988 0.988991 1.003152 \n18 IQR_Parity 0.001712 0.001225 0.001058 \n19 Std_Parity 0.000822 0.000278 0.000170 \n\n Model_Name \n0 DecisionTreeClassifier \n1 DecisionTreeClassifier \n2 DecisionTreeClassifier \n3 DecisionTreeClassifier \n4 DecisionTreeClassifier \n5 DecisionTreeClassifier \n6 DecisionTreeClassifier \n7 DecisionTreeClassifier \n8 DecisionTreeClassifier \n9 DecisionTreeClassifier \n10 DecisionTreeClassifier \n11 LogisticRegression \n12 LogisticRegression \n13 LogisticRegression \n14 LogisticRegression \n15 LogisticRegression \n16 LogisticRegression \n17 LogisticRegression \n18 LogisticRegression \n19 LogisticRegression ",
- "text/html": "\n\n
\n \n \n | \n Metric | \n sex | \n race | \n sex&race | \n Model_Name | \n
\n \n \n \n 0 | \n Equalized_Odds_TPR | \n 0.211919 | \n 0.195326 | \n 0.183576 | \n DecisionTreeClassifier | \n
\n \n 1 | \n Equalized_Odds_FPR | \n 0.098356 | \n 0.104728 | \n 0.141078 | \n DecisionTreeClassifier | \n
\n \n 2 | \n Equalized_Odds_FNR | \n -0.211919 | \n -0.195326 | \n -0.183576 | \n DecisionTreeClassifier | \n
\n \n 3 | \n Disparate_Impact | \n 1.234115 | \n 1.135965 | \n 1.125105 | \n DecisionTreeClassifier | \n
\n \n 4 | \n Statistical_Parity_Difference | \n 0.193535 | \n 0.123016 | \n 0.115123 | \n DecisionTreeClassifier | \n
\n \n 5 | \n Accuracy_Parity | \n 0.009832 | \n 0.006840 | \n -0.010984 | \n DecisionTreeClassifier | \n
\n \n 6 | \n Label_Stability_Ratio | \n 1.024740 | \n 0.997454 | \n 0.995869 | \n DecisionTreeClassifier | \n
\n \n 7 | \n IQR_Parity | \n 0.000768 | \n -0.004804 | \n -0.003282 | \n DecisionTreeClassifier | \n
\n \n 8 | \n Std_Parity | \n -0.005106 | \n -0.000927 | \n -0.001976 | \n DecisionTreeClassifier | \n
\n \n 9 | \n Std_Ratio | \n 0.931699 | \n 0.986984 | \n 0.972422 | \n DecisionTreeClassifier | \n
\n \n 10 | \n Jitter_Parity | \n -0.013818 | \n 0.007192 | \n 0.005364 | \n DecisionTreeClassifier | \n
\n \n 11 | \n Equalized_Odds_TPR | \n 0.166465 | \n 0.258440 | \n 0.226205 | \n LogisticRegression | \n
\n \n 12 | \n Equalized_Odds_FPR | \n 0.096129 | \n 0.156703 | \n 0.186079 | \n LogisticRegression | \n
\n \n 13 | \n Equalized_Odds_FNR | \n -0.166465 | \n -0.258440 | \n -0.226205 | \n LogisticRegression | \n
\n \n 14 | \n Disparate_Impact | \n 1.176075 | \n 1.341036 | \n 1.263916 | \n LogisticRegression | \n
\n \n 15 | \n Statistical_Parity_Difference | \n 0.145556 | \n 0.262157 | \n 0.216187 | \n LogisticRegression | \n
\n \n 16 | \n Accuracy_Parity | \n -0.010286 | \n -0.003747 | \n -0.024119 | \n LogisticRegression | \n
\n \n 17 | \n Label_Stability_Ratio | \n 1.021988 | \n 0.988991 | \n 1.003152 | \n LogisticRegression | \n
\n \n 18 | \n IQR_Parity | \n 0.001712 | \n 0.001225 | \n 0.001058 | \n LogisticRegression | \n
\n \n 19 | \n Std_Parity | \n 0.000822 | \n 0.000278 | \n 0.000170 | \n LogisticRegression | \n
\n \n
\n
"
- },
- "execution_count": 135,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "models_composed_metrics_df.head(20)"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-10-01T11:29:37.410638Z",
- "start_time": "2023-10-01T11:29:37.382980Z"
- }
- },
- "id": "5798eb95fbeaea54"
- },
- {
- "cell_type": "markdown",
- "id": "deb45226",
- "metadata": {},
- "source": [
- "## Metrics Visualization and Reporting"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 322,
- "id": "435b9d98",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-10-02T17:55:10.703782Z",
- "start_time": "2023-10-02T17:55:06.041613Z"
- }
- },
- "outputs": [],
- "source": [
- "visualizer = MetricsInteractiveVisualizer(models_metrics_dct, models_composed_metrics_df,\n",
- " sensitive_attributes_dct=config.sensitive_attributes_dct)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 323,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Running on local URL: http://127.0.0.1:7860\n",
- "\n",
- "To create a public link, set `share=True` in `launch()`.\n",
- "Keyboard interruption in main thread... closing server.\n"
- ]
- }
- ],
- "source": [
- "visualizer.create_web_app()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-10-02T17:55:47.535767Z",
- "start_time": "2023-10-02T17:55:10.703964Z"
- }
- },
- "id": "678a9dc8d51243f4"
- },
- {
- "cell_type": "code",
- "execution_count": 78,
- "id": "2326c129",
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.8.10"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
deleted file mode 100644
index 3a3ab5d9..00000000
--- a/docs/examples/Multiple_Models_Interface_Vis_Income.ipynb
+++ /dev/null
@@ -1,275 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "id": "248cbed8",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-10T22:37:44.370856Z",
- "start_time": "2023-12-10T22:37:43.972175Z"
- }
- },
- "outputs": [],
- "source": [
- "%matplotlib inline\n",
- "%load_ext autoreload\n",
- "%autoreload 2"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "id": "7ec6cd08",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-10T22:37:44.380242Z",
- "start_time": "2023-12-10T22:37:44.371542Z"
- }
- },
- "outputs": [],
- "source": [
- "import os\n",
- "import warnings\n",
- "warnings.filterwarnings('ignore')\n",
- "os.environ[\"PYTHONWARNINGS\"] = \"ignore\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "id": "b8cb69f2",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-10T22:37:44.391659Z",
- "start_time": "2023-12-10T22:37:44.380644Z"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Current location: /Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny\n"
- ]
- }
- ],
- "source": [
- "cur_folder_name = os.getcwd().split('/')[-1]\n",
- "if cur_folder_name != \"Virny\":\n",
- " os.chdir(\"../..\")\n",
- "\n",
- "print('Current location: ', os.getcwd())"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "a578f2ab",
- "metadata": {},
- "source": [
- "# Multiple Models Interface Usage"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "id": "7a9241de",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-10T22:37:45.918385Z",
- "start_time": "2023-12-10T22:37:44.390547Z"
- }
- },
- "outputs": [],
- "source": [
- "import os\n",
- "import pandas as pd\n",
- "\n",
- "from virny.datasets import ACSIncomeDataset\n",
- "from virny.custom_classes.metrics_composer import MetricsComposer\n",
- "from virny.custom_classes.metrics_interactive_visualizer import MetricsInteractiveVisualizer"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "outputs": [],
- "source": [
- "data_loader = ACSIncomeDataset(state=['GA'], year=2018, with_nulls=False, subsample_size=15_000, subsample_seed=42)\n",
- "sensitive_attributes_dct = {'SEX': '2', 'RAC1P': ['2', '3', '4', '5', '6', '7', '8', '9'], 'SEX&RAC1P': None}"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-10T22:37:47.214487Z",
- "start_time": "2023-12-10T22:37:45.921391Z"
- }
- },
- "id": "d3c53c7b72ecbcd0"
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "outputs": [],
- "source": [
- "ROOT_DIR = os.path.join('docs', 'examples')\n",
- "subgroup_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'income_subgroup_metrics.csv'), header=0)\n",
- "subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
- " subgroup_metrics_df['Intervention_Param'].astype(str))"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-10T22:37:47.242581Z",
- "start_time": "2023-12-10T22:37:47.214727Z"
- }
- },
- "id": "2aab7c79ecdee914"
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "outputs": [
- {
- "data": {
- "text/plain": " Metric SEX RAC1P SEX&RAC1P \\\n0 Accuracy_Parity 0.047756 0.074977 0.065217 \n1 Aleatoric_Uncertainty_Parity -0.039005 -0.011947 -0.009222 \n2 Aleatoric_Uncertainty_Ratio 0.935159 0.979638 0.984220 \n3 Equalized_Odds_FNR 0.030793 -0.110745 -0.052498 \n4 Equalized_Odds_FPR -0.021317 0.000952 -0.007008 \n\n Model_Name \n0 LGBMClassifier__alpha=0.7 \n1 LGBMClassifier__alpha=0.7 \n2 LGBMClassifier__alpha=0.7 \n3 LGBMClassifier__alpha=0.7 \n4 LGBMClassifier__alpha=0.7 ",
- "text/html": "\n\n
\n \n \n | \n Metric | \n SEX | \n RAC1P | \n SEX&RAC1P | \n Model_Name | \n
\n \n \n \n 0 | \n Accuracy_Parity | \n 0.047756 | \n 0.074977 | \n 0.065217 | \n LGBMClassifier__alpha=0.7 | \n
\n \n 1 | \n Aleatoric_Uncertainty_Parity | \n -0.039005 | \n -0.011947 | \n -0.009222 | \n LGBMClassifier__alpha=0.7 | \n
\n \n 2 | \n Aleatoric_Uncertainty_Ratio | \n 0.935159 | \n 0.979638 | \n 0.984220 | \n LGBMClassifier__alpha=0.7 | \n
\n \n 3 | \n Equalized_Odds_FNR | \n 0.030793 | \n -0.110745 | \n -0.052498 | \n LGBMClassifier__alpha=0.7 | \n
\n \n 4 | \n Equalized_Odds_FPR | \n -0.021317 | \n 0.000952 | \n -0.007008 | \n LGBMClassifier__alpha=0.7 | \n
\n \n
\n
"
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "model_names = subgroup_metrics_df['Model_Name'].unique()\n",
- "models_metrics_dct = dict()\n",
- "for model_name in model_names:\n",
- " models_metrics_dct[model_name] = subgroup_metrics_df[subgroup_metrics_df['Model_Name'] == model_name]\n",
- "\n",
- "metrics_composer = MetricsComposer(models_metrics_dct, sensitive_attributes_dct)\n",
- "models_composed_metrics_df = metrics_composer.compose_metrics()\n",
- "models_composed_metrics_df.head()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-10T22:37:47.297089Z",
- "start_time": "2023-12-10T22:37:47.240439Z"
- }
- },
- "id": "44ee5eff6054ce04"
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "outputs": [
- {
- "data": {
- "text/plain": "dict_keys(['LGBMClassifier__alpha=0.7', 'LGBMClassifier__alpha=0.0', 'LGBMClassifier__alpha=0.4', 'LogisticRegression__alpha=0.0', 'LogisticRegression__alpha=0.7', 'LogisticRegression__alpha=0.4', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.7', 'MLPClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.7', 'RandomForestClassifier__alpha=0.0'])"
- },
- "execution_count": 8,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "models_metrics_dct.keys()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-10T22:37:47.328697Z",
- "start_time": "2023-12-10T22:37:47.295950Z"
- }
- },
- "id": "15ed7d1ba1f22317"
- },
- {
- "cell_type": "markdown",
- "id": "deb45226",
- "metadata": {},
- "source": [
- "## Metrics Visualization and Reporting"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "id": "435b9d98",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-10T22:37:47.374721Z",
- "start_time": "2023-12-10T22:37:47.317882Z"
- }
- },
- "outputs": [],
- "source": [
- "visualizer = MetricsInteractiveVisualizer(data_loader.X_data, data_loader.y_data,\n",
- " models_metrics_dct, models_composed_metrics_df,\n",
- " sensitive_attributes_dct=sensitive_attributes_dct)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Running on local URL: http://127.0.0.1:7860\n",
- "\n",
- "To create a public link, set `share=True` in `launch()`.\n",
- "Keyboard interruption in main thread... closing server.\n"
- ]
- }
- ],
- "source": [
- "visualizer.create_web_app()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-11T00:26:17.429094Z",
- "start_time": "2023-12-10T22:37:47.343749Z"
- }
- },
- "id": "678a9dc8d51243f4"
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "outputs": [],
- "source": [],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-11T00:26:17.483195Z",
- "start_time": "2023-12-11T00:26:17.479725Z"
- }
- },
- "id": "21c0ad91536f0af5"
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.8.10"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
deleted file mode 100644
index abcaa7bf..00000000
--- a/docs/examples/Multiple_Models_Interface_Vis_Law_School.ipynb
+++ /dev/null
@@ -1,274 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "id": "248cbed8",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-18T17:11:51.087426Z",
- "start_time": "2023-12-18T17:11:50.720930Z"
- }
- },
- "outputs": [],
- "source": [
- "%matplotlib inline\n",
- "%load_ext autoreload\n",
- "%autoreload 2"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "id": "7ec6cd08",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-18T17:11:51.096433Z",
- "start_time": "2023-12-18T17:11:51.087934Z"
- }
- },
- "outputs": [],
- "source": [
- "import os\n",
- "import warnings\n",
- "warnings.filterwarnings('ignore')\n",
- "os.environ[\"PYTHONWARNINGS\"] = \"ignore\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "id": "b8cb69f2",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-18T17:11:51.105608Z",
- "start_time": "2023-12-18T17:11:51.096820Z"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Current location: /Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny\n"
- ]
- }
- ],
- "source": [
- "cur_folder_name = os.getcwd().split('/')[-1]\n",
- "if cur_folder_name != \"Virny\":\n",
- " os.chdir(\"../..\")\n",
- "\n",
- "print('Current location: ', os.getcwd())"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "a578f2ab",
- "metadata": {},
- "source": [
- "# Multiple Models Interface Usage"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "id": "7a9241de",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-18T17:11:52.701377Z",
- "start_time": "2023-12-18T17:11:51.106232Z"
- }
- },
- "outputs": [],
- "source": [
- "import os\n",
- "import pandas as pd\n",
- "\n",
- "from virny.datasets import LawSchoolDataset\n",
- "from virny.custom_classes.metrics_composer import MetricsComposer\n",
- "from virny.custom_classes.metrics_interactive_visualizer import MetricsInteractiveVisualizer"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "outputs": [],
- "source": [
- "data_loader = LawSchoolDataset()\n",
- "sensitive_attributes_dct = {'male': '0.0', 'race': 'Non-White', 'male&race': None}"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-18T17:11:52.766489Z",
- "start_time": "2023-12-18T17:11:52.704609Z"
- }
- },
- "id": "d3c53c7b72ecbcd0"
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "outputs": [],
- "source": [
- "ROOT_DIR = os.path.join('docs', 'examples')\n",
- "subgroup_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'law_school_subgroup_metrics.csv'), header=0)\n",
- "subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
- " subgroup_metrics_df['Intervention_Param'].astype(str))"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-18T17:11:52.791981Z",
- "start_time": "2023-12-18T17:11:52.767057Z"
- }
- },
- "id": "2aab7c79ecdee914"
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "outputs": [
- {
- "data": {
- "text/plain": " Metric male race male&race \\\n0 Accuracy_Parity -0.024413 -0.158856 -0.162998 \n1 Aleatoric_Uncertainty_Parity -0.016769 0.317464 0.274695 \n2 Aleatoric_Uncertainty_Ratio 0.951019 2.126816 1.880052 \n3 Equalized_Odds_FNR 0.006853 0.089260 0.092334 \n4 Equalized_Odds_FPR 0.027311 -0.289259 -0.156572 \n\n Model_Name \n0 LGBMClassifier__alpha=0.6 \n1 LGBMClassifier__alpha=0.6 \n2 LGBMClassifier__alpha=0.6 \n3 LGBMClassifier__alpha=0.6 \n4 LGBMClassifier__alpha=0.6 ",
- "text/html": "\n\n
\n \n \n | \n Metric | \n male | \n race | \n male&race | \n Model_Name | \n
\n \n \n \n 0 | \n Accuracy_Parity | \n -0.024413 | \n -0.158856 | \n -0.162998 | \n LGBMClassifier__alpha=0.6 | \n
\n \n 1 | \n Aleatoric_Uncertainty_Parity | \n -0.016769 | \n 0.317464 | \n 0.274695 | \n LGBMClassifier__alpha=0.6 | \n
\n \n 2 | \n Aleatoric_Uncertainty_Ratio | \n 0.951019 | \n 2.126816 | \n 1.880052 | \n LGBMClassifier__alpha=0.6 | \n
\n \n 3 | \n Equalized_Odds_FNR | \n 0.006853 | \n 0.089260 | \n 0.092334 | \n LGBMClassifier__alpha=0.6 | \n
\n \n 4 | \n Equalized_Odds_FPR | \n 0.027311 | \n -0.289259 | \n -0.156572 | \n LGBMClassifier__alpha=0.6 | \n
\n \n
\n
"
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "model_names = subgroup_metrics_df['Model_Name'].unique()\n",
- "models_metrics_dct = dict()\n",
- "for model_name in model_names:\n",
- " models_metrics_dct[model_name] = subgroup_metrics_df[subgroup_metrics_df['Model_Name'] == model_name]\n",
- "\n",
- "metrics_composer = MetricsComposer(models_metrics_dct, sensitive_attributes_dct)\n",
- "models_composed_metrics_df = metrics_composer.compose_metrics()\n",
- "models_composed_metrics_df.head()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-18T17:11:52.842306Z",
- "start_time": "2023-12-18T17:11:52.792667Z"
- }
- },
- "id": "833484748ed512e8"
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "outputs": [
- {
- "data": {
- "text/plain": "dict_keys(['LGBMClassifier__alpha=0.6', 'LGBMClassifier__alpha=0.0', 'LogisticRegression__alpha=0.6', 'LogisticRegression__alpha=0.0', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.6', 'RandomForestClassifier__alpha=0.6', 'RandomForestClassifier__alpha=0.0'])"
- },
- "execution_count": 8,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "models_metrics_dct.keys()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-18T17:11:52.877906Z",
- "start_time": "2023-12-18T17:11:52.842425Z"
- }
- },
- "id": "15ed7d1ba1f22317"
- },
- {
- "cell_type": "markdown",
- "id": "deb45226",
- "metadata": {},
- "source": [
- "## Metrics Visualization and Reporting"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "id": "435b9d98",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-18T17:11:52.959909Z",
- "start_time": "2023-12-18T17:11:52.864927Z"
- }
- },
- "outputs": [],
- "source": [
- "visualizer = MetricsInteractiveVisualizer(data_loader.X_data, data_loader.y_data,\n",
- " models_metrics_dct, models_composed_metrics_df,\n",
- " sensitive_attributes_dct=sensitive_attributes_dct)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Running on local URL: http://127.0.0.1:7860\n",
- "\n",
- "To create a public link, set `share=True` in `launch()`.\n",
- "Keyboard interruption in main thread... closing server.\n"
- ]
- }
- ],
- "source": [
- "visualizer.create_web_app()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-18T17:14:45.540473Z",
- "start_time": "2023-12-18T17:11:52.892884Z"
- }
- },
- "id": "678a9dc8d51243f4"
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "id": "2326c129",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-18T17:14:45.584046Z",
- "start_time": "2023-12-18T17:14:45.581453Z"
- }
- },
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.8.10"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Pub_Cov.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Pub_Cov.ipynb
deleted file mode 100644
index 61298c7a..00000000
--- a/docs/examples/Multiple_Models_Interface_Vis_Pub_Cov.ipynb
+++ /dev/null
@@ -1,284 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 19,
- "id": "248cbed8",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-07T00:13:42.978064Z",
- "start_time": "2023-12-07T00:13:42.914700Z"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The autoreload extension is already loaded. To reload it, use:\n",
- " %reload_ext autoreload\n"
- ]
- }
- ],
- "source": [
- "%matplotlib inline\n",
- "%load_ext autoreload\n",
- "%autoreload 2"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "id": "7ec6cd08",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-07T00:13:42.983725Z",
- "start_time": "2023-12-07T00:13:42.954698Z"
- }
- },
- "outputs": [],
- "source": [
- "import os\n",
- "import warnings\n",
- "warnings.filterwarnings('ignore')\n",
- "os.environ[\"PYTHONWARNINGS\"] = \"ignore\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "id": "b8cb69f2",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-07T00:13:43.018895Z",
- "start_time": "2023-12-07T00:13:42.982387Z"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Current location: /Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny\n"
- ]
- }
- ],
- "source": [
- "cur_folder_name = os.getcwd().split('/')[-1]\n",
- "if cur_folder_name != \"Virny\":\n",
- " os.chdir(\"../..\")\n",
- "\n",
- "print('Current location: ', os.getcwd())"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "a578f2ab",
- "metadata": {},
- "source": [
- "# Multiple Models Interface Usage"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 22,
- "id": "7a9241de",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-07T00:13:43.027909Z",
- "start_time": "2023-12-07T00:13:43.006390Z"
- }
- },
- "outputs": [],
- "source": [
- "import os\n",
- "import pandas as pd\n",
- "\n",
- "from virny.datasets import ACSPublicCoverageDataset\n",
- "from virny.custom_classes.metrics_composer import MetricsComposer\n",
- "from virny.custom_classes.metrics_interactive_visualizer import MetricsInteractiveVisualizer"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "outputs": [],
- "source": [
- "data_loader = ACSPublicCoverageDataset(state=['CA'], year=2018, with_nulls=False,\n",
- " subsample_size=15_000, subsample_seed=42)\n",
- "sensitive_attributes_dct = {'SEX': '2', 'RAC1P': ['2', '3', '4', '5', '6', '7', '8', '9'], 'SEX&RAC1P': None}"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-07T00:13:48.771709Z",
- "start_time": "2023-12-07T00:13:43.029632Z"
- }
- },
- "id": "d3c53c7b72ecbcd0"
- },
- {
- "cell_type": "code",
- "execution_count": 24,
- "outputs": [],
- "source": [
- "ROOT_DIR = os.path.join('docs', 'examples')\n",
- "subgroup_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'pub_cov_subgroup_metrics.csv'), header=0)\n",
- "subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
- " subgroup_metrics_df['Intervention_Param'].astype(str))"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-07T00:13:48.805639Z",
- "start_time": "2023-12-07T00:13:48.768740Z"
- }
- },
- "id": "2aab7c79ecdee914"
- },
- {
- "cell_type": "code",
- "execution_count": 25,
- "outputs": [
- {
- "data": {
- "text/plain": " Metric SEX RAC1P SEX&RAC1P \\\n0 Accuracy_Parity 0.026847 0.016299 0.040212 \n1 Aleatoric_Uncertainty_Parity -0.013240 0.027276 0.007235 \n2 Aleatoric_Uncertainty_Ratio 0.983584 1.034689 1.009077 \n3 Equalized_Odds_FNR 0.004275 -0.000359 -0.008617 \n4 Equalized_Odds_FPR -0.012072 -0.024172 -0.040481 \n\n Model_Name \n0 LGBMClassifier__alpha=0.6 \n1 LGBMClassifier__alpha=0.6 \n2 LGBMClassifier__alpha=0.6 \n3 LGBMClassifier__alpha=0.6 \n4 LGBMClassifier__alpha=0.6 ",
- "text/html": "\n\n
\n \n \n | \n Metric | \n SEX | \n RAC1P | \n SEX&RAC1P | \n Model_Name | \n
\n \n \n \n 0 | \n Accuracy_Parity | \n 0.026847 | \n 0.016299 | \n 0.040212 | \n LGBMClassifier__alpha=0.6 | \n
\n \n 1 | \n Aleatoric_Uncertainty_Parity | \n -0.013240 | \n 0.027276 | \n 0.007235 | \n LGBMClassifier__alpha=0.6 | \n
\n \n 2 | \n Aleatoric_Uncertainty_Ratio | \n 0.983584 | \n 1.034689 | \n 1.009077 | \n LGBMClassifier__alpha=0.6 | \n
\n \n 3 | \n Equalized_Odds_FNR | \n 0.004275 | \n -0.000359 | \n -0.008617 | \n LGBMClassifier__alpha=0.6 | \n
\n \n 4 | \n Equalized_Odds_FPR | \n -0.012072 | \n -0.024172 | \n -0.040481 | \n LGBMClassifier__alpha=0.6 | \n
\n \n
\n
"
- },
- "execution_count": 25,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "model_names = subgroup_metrics_df['Model_Name'].unique()\n",
- "models_metrics_dct = dict()\n",
- "for model_name in model_names:\n",
- " models_metrics_dct[model_name] = subgroup_metrics_df[subgroup_metrics_df['Model_Name'] == model_name]\n",
- "\n",
- "metrics_composer = MetricsComposer(models_metrics_dct, sensitive_attributes_dct)\n",
- "models_composed_metrics_df = metrics_composer.compose_metrics()\n",
- "models_composed_metrics_df.head()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-07T00:13:48.849022Z",
- "start_time": "2023-12-07T00:13:48.802693Z"
- }
- },
- "id": "833484748ed512e8"
- },
- {
- "cell_type": "code",
- "execution_count": 26,
- "outputs": [
- {
- "data": {
- "text/plain": "dict_keys(['LGBMClassifier__alpha=0.6', 'LGBMClassifier__alpha=0.0', 'LogisticRegression__alpha=0.0', 'LogisticRegression__alpha=0.6', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.6', 'RandomForestClassifier__alpha=0.0', 'RandomForestClassifier__alpha=0.6'])"
- },
- "execution_count": 26,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "models_metrics_dct.keys()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-07T00:13:48.873723Z",
- "start_time": "2023-12-07T00:13:48.848261Z"
- }
- },
- "id": "15ed7d1ba1f22317"
- },
- {
- "cell_type": "markdown",
- "id": "deb45226",
- "metadata": {},
- "source": [
- "## Metrics Visualization and Reporting"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "id": "435b9d98",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-07T00:13:48.959344Z",
- "start_time": "2023-12-07T00:13:48.871083Z"
- }
- },
- "outputs": [],
- "source": [
- "visualizer = MetricsInteractiveVisualizer(data_loader.X_data, data_loader.y_data,\n",
- " models_metrics_dct, models_composed_metrics_df,\n",
- " sensitive_attributes_dct=sensitive_attributes_dct)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Running on local URL: http://127.0.0.1:7860\n",
- "\n",
- "To create a public link, set `share=True` in `launch()`.\n",
- "Keyboard interruption in main thread... closing server.\n"
- ]
- }
- ],
- "source": [
- "visualizer.create_web_app()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-12-07T00:15:48.056146Z",
- "start_time": "2023-12-07T00:13:48.898642Z"
- }
- },
- "id": "678a9dc8d51243f4"
- },
- {
- "cell_type": "code",
- "execution_count": 29,
- "id": "2326c129",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-12-07T00:15:48.095103Z",
- "start_time": "2023-12-07T00:15:48.092153Z"
- }
- },
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.8.10"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}
diff --git a/docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb b/docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb
deleted file mode 100644
index 18b24daa..00000000
--- a/docs/examples/Multiple_Models_Interface_Vis_Ricci.ipynb
+++ /dev/null
@@ -1,282 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 37,
- "id": "248cbed8",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-10-07T13:42:22.642940Z",
- "start_time": "2023-10-07T13:42:22.508015Z"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The autoreload extension is already loaded. To reload it, use:\n",
- " %reload_ext autoreload\n"
- ]
- }
- ],
- "source": [
- "%matplotlib inline\n",
- "%load_ext autoreload\n",
- "%autoreload 2"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 38,
- "id": "7ec6cd08",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-10-07T13:42:22.677119Z",
- "start_time": "2023-10-07T13:42:22.641937Z"
- }
- },
- "outputs": [],
- "source": [
- "import os\n",
- "import warnings\n",
- "warnings.filterwarnings('ignore')\n",
- "os.environ[\"PYTHONWARNINGS\"] = \"ignore\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 39,
- "id": "b8cb69f2",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-10-07T13:42:22.689334Z",
- "start_time": "2023-10-07T13:42:22.664188Z"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Current location: /Users/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny\n"
- ]
- }
- ],
- "source": [
- "cur_folder_name = os.getcwd().split('/')[-1]\n",
- "if cur_folder_name != \"Virny\":\n",
- " os.chdir(\"../..\")\n",
- "\n",
- "print('Current location: ', os.getcwd())"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "a578f2ab",
- "metadata": {},
- "source": [
- "# Multiple Models Interface Usage"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 40,
- "id": "7a9241de",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-10-07T13:42:22.711038Z",
- "start_time": "2023-10-07T13:42:22.687552Z"
- }
- },
- "outputs": [],
- "source": [
- "import os\n",
- "import pandas as pd\n",
- "\n",
- "from virny.custom_classes.metrics_interactive_visualizer import MetricsInteractiveVisualizer"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 41,
- "outputs": [],
- "source": [
- "sensitive_attributes_dct = {'Race': 'Non-White'}"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-10-07T13:42:22.732136Z",
- "start_time": "2023-10-07T13:42:22.711244Z"
- }
- },
- "id": "d3c53c7b72ecbcd0"
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "outputs": [],
- "source": [
- "ROOT_DIR = os.path.join('docs', 'examples')\n",
- "subgroup_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'ricci_subgroup_metrics.csv'), header=0)\n",
- "models_composed_metrics_df = pd.read_csv(os.path.join(ROOT_DIR, 'ricci_group_metrics.csv'), header=0)"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-10-07T13:42:22.759203Z",
- "start_time": "2023-10-07T13:42:22.732607Z"
- }
- },
- "id": "2aab7c79ecdee914"
- },
- {
- "cell_type": "code",
- "execution_count": 43,
- "outputs": [],
- "source": [
- "subgroup_metrics_df['Model_Name'] = (subgroup_metrics_df['Model_Name'] + '__alpha=' +\n",
- " subgroup_metrics_df['Intervention_Param'].astype(str))\n",
- "models_composed_metrics_df['Model_Name'] = (models_composed_metrics_df['Model_Name'] + '__alpha=' \n",
- " + models_composed_metrics_df['Intervention_Param'].astype(str))"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-10-07T13:42:22.784062Z",
- "start_time": "2023-10-07T13:42:22.759791Z"
- }
- },
- "id": "2d922003e752a4b4"
- },
- {
- "cell_type": "code",
- "execution_count": 44,
- "outputs": [],
- "source": [
- "models_metrics_dct = dict()\n",
- "for model_name in subgroup_metrics_df['Model_Name'].unique():\n",
- " models_metrics_dct[model_name] = subgroup_metrics_df[subgroup_metrics_df['Model_Name'] == model_name]"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-10-07T13:42:22.809161Z",
- "start_time": "2023-10-07T13:42:22.782462Z"
- }
- },
- "id": "833484748ed512e8"
- },
- {
- "cell_type": "code",
- "execution_count": 45,
- "outputs": [
- {
- "data": {
- "text/plain": "dict_keys(['LGBMClassifier__alpha=0.0', 'LGBMClassifier__alpha=0.4', 'LGBMClassifier__alpha=0.7', 'LogisticRegression__alpha=0.0', 'LogisticRegression__alpha=0.4', 'LogisticRegression__alpha=0.7', 'MLPClassifier__alpha=0.7', 'MLPClassifier__alpha=0.0', 'MLPClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.0', 'RandomForestClassifier__alpha=0.4', 'RandomForestClassifier__alpha=0.7'])"
- },
- "execution_count": 45,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "models_metrics_dct.keys()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-10-07T13:42:22.831140Z",
- "start_time": "2023-10-07T13:42:22.806994Z"
- }
- },
- "id": "15ed7d1ba1f22317"
- },
- {
- "cell_type": "markdown",
- "id": "deb45226",
- "metadata": {},
- "source": [
- "## Metrics Visualization and Reporting"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 46,
- "id": "435b9d98",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-10-07T13:42:22.859150Z",
- "start_time": "2023-10-07T13:42:22.830292Z"
- }
- },
- "outputs": [],
- "source": [
- "visualizer = MetricsInteractiveVisualizer(models_metrics_dct, models_composed_metrics_df,\n",
- " sensitive_attributes_dct=sensitive_attributes_dct)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 47,
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Running on local URL: http://127.0.0.1:7860\n",
- "\n",
- "To create a public link, set `share=True` in `launch()`.\n",
- "Keyboard interruption in main thread... closing server.\n"
- ]
- }
- ],
- "source": [
- "visualizer.create_web_app()"
- ],
- "metadata": {
- "collapsed": false,
- "ExecuteTime": {
- "end_time": "2023-10-07T13:45:45.222662Z",
- "start_time": "2023-10-07T13:42:22.859325Z"
- }
- },
- "id": "678a9dc8d51243f4"
- },
- {
- "cell_type": "code",
- "execution_count": 48,
- "id": "2326c129",
- "metadata": {
- "ExecuteTime": {
- "end_time": "2023-10-07T13:45:45.265758Z",
- "start_time": "2023-10-07T13:45:45.264074Z"
- }
- },
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.8.10"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}
From f4d0f316c63093c82949858a9d7b7e3ff45b6b3c Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Tue, 19 Dec 2023 16:13:30 +0200
Subject: [PATCH 074/148] Added auto-creation of model_composed_metrics_df
---
virny/custom_classes/metrics_interactive_visualizer.py | 7 ++++---
1 file changed, 4 insertions(+), 3 deletions(-)
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index 910226ef..b94bb0b0 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -5,6 +5,7 @@
from virny.configs.constants import *
from virny.utils.common_helpers import str_to_float
+from virny.custom_classes.metrics_composer import MetricsComposer
from virny.utils.protected_groups_partitioning import create_test_protected_groups
from virny.utils.data_viz_utils import (create_model_rank_heatmap_visualization, create_sorted_matrix_by_rank,
create_subgroup_sorted_matrix_by_rank, create_flexible_bar_plot_for_model_selection,
@@ -24,21 +25,21 @@ class MetricsInteractiveVisualizer:
An original target column pandas series
model_metrics_dct
Dictionary where keys are model names and values are dataframes of subgroup metrics for each model
- model_composed_metrics_df
- Dataframe of all model composed metrics
sensitive_attributes_dct
A dictionary where keys are sensitive attributes names (including attributes intersections),
and values are privilege values for these attributes
"""
def __init__(self, X_data: pd.DataFrame, y_data: pd.DataFrame, model_metrics_dct: dict,
- model_composed_metrics_df: pd.DataFrame, sensitive_attributes_dct: dict):
+ sensitive_attributes_dct: dict):
self.X_data = X_data
self.y_data = y_data
self.model_names = list(model_metrics_dct.keys())
self.sensitive_attributes_dct = sensitive_attributes_dct
self.group_names = list(self.sensitive_attributes_dct.keys())
+ model_composed_metrics_df = MetricsComposer(model_metrics_dct, sensitive_attributes_dct).compose_metrics()
+
# Technical attributes
self.demo = None
self.max_groups = 8
From dd72b3d3f74e478061106461981707f2599bed4d Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Tue, 19 Dec 2023 16:21:55 +0200
Subject: [PATCH 075/148] Simplified input for MetricsInteractiveVisualizer
---
.../metrics_interactive_visualizer.py | 23 ++++++++++++++-----
1 file changed, 17 insertions(+), 6 deletions(-)
diff --git a/virny/custom_classes/metrics_interactive_visualizer.py b/virny/custom_classes/metrics_interactive_visualizer.py
index b94bb0b0..9218220c 100644
--- a/virny/custom_classes/metrics_interactive_visualizer.py
+++ b/virny/custom_classes/metrics_interactive_visualizer.py
@@ -23,23 +23,34 @@ class MetricsInteractiveVisualizer:
An original features dataframe
y_data
An original target column pandas series
- model_metrics_dct
- Dictionary where keys are model names and values are dataframes of subgroup metrics for each model
+ model_metrics
+ A dictionary or a dataframe where keys are model names and values are dataframes of subgroup metrics for each model
sensitive_attributes_dct
A dictionary where keys are sensitive attributes names (including attributes intersections),
and values are privilege values for these attributes
"""
- def __init__(self, X_data: pd.DataFrame, y_data: pd.DataFrame, model_metrics_dct: dict,
- sensitive_attributes_dct: dict):
+ def __init__(self, X_data: pd.DataFrame, y_data: pd.DataFrame, model_metrics, sensitive_attributes_dct: dict):
+ # Preprocessed variables
+ if isinstance(model_metrics, dict):
+ model_metrics_dct = model_metrics
+ elif isinstance(model_metrics, pd.DataFrame):
+ model_names = model_metrics['Model_Name'].unique()
+ model_metrics_dct = dict()
+ for model_name in model_names:
+ model_metrics_dct[model_name] = model_metrics[model_metrics['Model_Name'] == model_name]
+ else:
+ raise ValueError('model_metrics argument must be a dictionary or a pandas dataframe of metrics.')
+
+ model_composed_metrics_df = MetricsComposer(model_metrics_dct, sensitive_attributes_dct).compose_metrics()
+
+ # Attributes from input arguments
self.X_data = X_data
self.y_data = y_data
self.model_names = list(model_metrics_dct.keys())
self.sensitive_attributes_dct = sensitive_attributes_dct
self.group_names = list(self.sensitive_attributes_dct.keys())
- model_composed_metrics_df = MetricsComposer(model_metrics_dct, sensitive_attributes_dct).compose_metrics()
-
# Technical attributes
self.demo = None
self.max_groups = 8
From 4bfc40fe25607290114bb3a93edadd2bdadbc35c Mon Sep 17 00:00:00 2001
From: denysgerasymuk799
Date: Wed, 20 Dec 2023 01:09:27 +0200
Subject: [PATCH 076/148] Removed unnecessary dependencies
---
docs/api/incremental-ml/.pages | 1 -
docs/api/overview.md | 2 -
.../user-interfaces/compute-model-metrics.md | 2 +-
.../run-metrics-computation.md | 2 +-
docs/api/utils/validate-config.md | 2 +-
..._Models_Interface_For_Incremental_ML.ipynb | 689 ------------------
lib_base_packages.txt | 3 +-
requirements.txt | 1 -
tests/utils/test_common_helpers.py | 3 +-
.../incremental_overall_variance_analyzer.py | 106 ---
virny/analyzers/subgroup_error_analyzer.py | 2 +-
virny/analyzers/subgroup_variance_analyzer.py | 33 +-
virny/configs/constants.py | 1 -
.../incremental_pandas_dataset.py | 18 -
virny/incremental_ml/__init__.py | 1 -
virny/incremental_ml/river_utils.py | 70 --
virny/metrics/accuracy_metrics.py | 21 +
.../metrics_computation_interfaces.py | 14 +-
virny/utils/common_helpers.py | 27 +-
19 files changed, 45 insertions(+), 953 deletions(-)
delete mode 100644 docs/api/incremental-ml/.pages
delete mode 100644 docs/examples/Multiple_Models_Interface_For_Incremental_ML.ipynb
delete mode 100644 virny/analyzers/incremental_overall_variance_analyzer.py
delete mode 100644 virny/custom_classes/incremental_pandas_dataset.py
delete mode 100644 virny/incremental_ml/__init__.py
delete mode 100644 virny/incremental_ml/river_utils.py
diff --git a/docs/api/incremental-ml/.pages b/docs/api/incremental-ml/.pages
deleted file mode 100644
index 4d6447c3..00000000
--- a/docs/api/incremental-ml/.pages
+++ /dev/null
@@ -1 +0,0 @@
-title: incremental_ml
\ No newline at end of file
diff --git a/docs/api/overview.md b/docs/api/overview.md
index 222222e8..7775f764 100644
--- a/docs/api/overview.md
+++ b/docs/api/overview.md
@@ -53,8 +53,6 @@ The purpose is to provide sample datasets for functionality testing and show exa
- [LawSchoolDataset](../datasets/LawSchoolDataset)
- [RicciDataset](../datasets/RicciDataset)
-## incremental_ml
-
## metrics
diff --git a/docs/api/user-interfaces/compute-model-metrics.md b/docs/api/user-interfaces/compute-model-metrics.md
index 1208b34b..5aa0dc1a 100644
--- a/docs/api/user-interfaces/compute-model-metrics.md
+++ b/docs/api/user-interfaces/compute-model-metrics.md
@@ -36,7 +36,7 @@ Return a dataframe of model metrics.
- **model_setting** (*str*) – defaults to `batch`
- [Optional] Model type: 'batch' or 'incremental'. Default: 'batch'.
+ [Optional] Currently, only batch models are supported. Default: 'batch'.
- **computation_mode** (*str*) – defaults to `None`
diff --git a/docs/api/user-interfaces/run-metrics-computation.md b/docs/api/user-interfaces/run-metrics-computation.md
index 3a46bbff..41a0d489 100644
--- a/docs/api/user-interfaces/run-metrics-computation.md
+++ b/docs/api/user-interfaces/run-metrics-computation.md
@@ -32,7 +32,7 @@ Return a dictionary where keys are model names, and values are metrics for sensi
- **model_setting** (*str*) – defaults to `batch`
- [Optional] Model type: 'batch' or incremental. Default: 'batch'.
+ [Optional] Currently, only batch models are supported. Default: 'batch'.
- **computation_mode** (*str*) – defaults to `None`
diff --git a/docs/api/utils/validate-config.md b/docs/api/utils/validate-config.md
index 39284cb3..1acbe2b7 100644
--- a/docs/api/utils/validate-config.md
+++ b/docs/api/utils/validate-config.md
@@ -2,7 +2,7 @@
Validate parameters types and values in config yaml file.
-Extra details: * config_obj.model_setting is an optional argument that defines a type of models to use to compute fairness and stability metrics. Should be 'batch' or 'incremental'. Default: 'batch'.
+Extra details: * config_obj.model_setting is an optional argument that defines a type of models to use to compute fairness and stability metrics. Currently, only batch models are supported. Default: 'batch'.
* config_obj.computation_mode is an optional argument that defines a non-default mode for metrics computation. Currently, only 'error_analysis' mode is supported.
diff --git a/docs/examples/Multiple_Models_Interface_For_Incremental_ML.ipynb b/docs/examples/Multiple_Models_Interface_For_Incremental_ML.ipynb
deleted file mode 100644
index 4066db1e..00000000
--- a/docs/examples/Multiple_Models_Interface_For_Incremental_ML.ipynb
+++ /dev/null
@@ -1,689 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 37,
- "id": "248cbed8",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The autoreload extension is already loaded. To reload it, use:\n",
- " %reload_ext autoreload\n"
- ]
- }
- ],
- "source": [
- "%matplotlib inline\n",
- "%load_ext autoreload\n",
- "%autoreload 2"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 38,
- "id": "7ec6cd08",
- "metadata": {},
- "outputs": [],
- "source": [
- "import os\n",
- "import warnings\n",
- "warnings.filterwarnings('ignore')\n",
- "os.environ[\"PYTHONWARNINGS\"] = \"ignore\""
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 39,
- "id": "b8cb69f2",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Current location: /home/denys_herasymuk/UCU/4course_2term/Bachelor_Thesis/Code/Virny\n"
- ]
- }
- ],
- "source": [
- "cur_folder_name = os.getcwd().split('/')[-1]\n",
- "if cur_folder_name != \"Virny\":\n",
- " os.chdir(\"../..\")\n",
- "\n",
- "print('Current location: ', os.getcwd())"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "a578f2ab",
- "metadata": {},
- "source": [
- "# Multiple Models Interface For Incremental Models"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "2251a923",
- "metadata": {},
- "source": [
- "In this example, we are going to audit 4 models for stability and fairness, visualize metrics, and create an analysis report. For that, we will use `compute_metrics_with_config` interface that can compute metrics for multiple models. Thus, we will need to do the next steps:\n",
- "\n",
- "* Initialize input variables\n",
- "\n",
- "* Compute subgroup metrics\n",
- "\n",
- "* Make group metrics composition\n",
- "\n",
- "* Create metrics visualizations and an analysis report"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "606df34d",
- "metadata": {},
- "source": [
- "## Import dependencies"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 40,
- "id": "7a9241de",
- "metadata": {},
- "outputs": [],
- "source": [
- "import os\n",
- "import pandas as pd\n",
- "from datetime import datetime, timezone\n",
- "\n",
- "from river.forest import ARFClassifier\n",
- "from river.tree import HoeffdingTreeClassifier\n",
- "\n",
- "from sklearn.compose import ColumnTransformer\n",
- "from sklearn.preprocessing import OneHotEncoder\n",
- "from sklearn.preprocessing import StandardScaler\n",
- "\n",
- "from virny.user_interfaces.metrics_computation_interfaces import compute_metrics_with_config\n",
- "from virny.utils.custom_initializers import create_config_obj, read_model_metric_dfs\n",
- "from virny.preprocessing.basic_preprocessing import preprocess_dataset\n",
- "from virny.custom_classes.metrics_visualizer import MetricsVisualizer\n",
- "from virny.custom_classes.metrics_composer import MetricsComposer\n",
- "from virny.configs.constants import ReportType\n",
- "from virny.datasets.base import BaseDataLoader"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "75699f5f",
- "metadata": {},
- "source": [
- "## Initialize Input Variables"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "e86f6556",
- "metadata": {},
- "source": [
- "Based on the library flow, we need to create 3 input objects for a user interface:\n",
- "\n",
- "* A **dataset class** that is a wrapper above the user’s raw dataset that includes its descriptive attributes like a target column, numerical columns, categorical columns, etc. This class must be inherited from the BaseDataset class, which was created for user convenience.\n",
- "\n",
- "* A **config yaml** that is a file with configuration parameters for different user interfaces for metrics computation.\n",
- "\n",
- "* Finally, a **models config** that is a Python dictionary, where keys are model names and values are initialized models for analysis. This dictionary helps conduct audits of multiple models and analyze different types of models."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 41,
- "outputs": [],
- "source": [
- "TEST_SET_FRACTION = 0.2\n",
- "DATASET_SPLIT_SEED = 42"
- ],
- "metadata": {
- "collapsed": false
- },
- "id": "d8505edef7184a5a"
- },
- {
- "cell_type": "markdown",
- "source": [
- "### Create a config object"
- ],
- "metadata": {
- "collapsed": false
- },
- "id": "c84bae470652be94"
- },
- {
- "cell_type": "markdown",
- "source": [
- "`compute_metrics_with_config` interface requires that your **yaml file** includes the following parameters:\n",
- "\n",
- "* **dataset_name**: str, a name of your dataset; it will be used to name files with metrics.\n",
- "\n",
- "* **bootstrap_fraction**: float, the fraction from a train set in the range [0.0 - 1.0] to fit models in bootstrap (usually more than 0.5).\n",
- "\n",
- "* **n_estimators**: int, the number of estimators for bootstrap to compute subgroup stability metrics.\n",
- "\n",
- "* **sensitive_attributes_dct**: dict, a dictionary where keys are sensitive attribute names (including attribute intersections), and values are privileged values for these attributes. Currently, the library supports only intersections among two sensitive attributes. Intersectional attributes must include '&' between sensitive attributes. You do not need to specify privileged values for intersectional groups since they will be derived from privileged values in sensitive_attributes_dct for each separate sensitive attribute in this intersectional pair."
- ],
- "metadata": {
- "collapsed": false
- },
- "id": "8b41b746e152c76f"
- },
- {
- "cell_type": "code",
- "execution_count": 42,
- "outputs": [],
- "source": [
- "ROOT_DIR = os.path.join('docs', 'examples')\n",
- "config_yaml_path = os.path.join(ROOT_DIR, 'experiment_config.yaml')\n",
- "config_yaml_content = \\\n",
- "\"\"\"dataset_name: COMPAS_Without_Sensitive_Attributes\n",
- "model_setting: 'incremental'\n",
- "bootstrap_fraction: 0.8\n",
- "n_estimators: 10 # Better to input the higher number of estimators than 100; this is only for this use case example\n",
- "sensitive_attributes_dct: {'sex': 1, 'race': 'African-American', 'sex&race': None}\n",
- "\"\"\"\n",
- "\n",
- "with open(config_yaml_path, 'w', encoding='utf-8') as f:\n",
- " f.write(config_yaml_content)"
- ],
- "metadata": {
- "collapsed": false
- },
- "id": "a878d125e8bfaf4d"
- },
- {
- "cell_type": "code",
- "execution_count": 43,
- "outputs": [],
- "source": [
- "config = create_config_obj(config_yaml_path=config_yaml_path)\n",
- "SAVE_RESULTS_DIR_PATH = os.path.join(ROOT_DIR, 'results', f'{config.dataset_name}_Metrics_{datetime.now(timezone.utc).strftime(\"%Y%m%d__%H%M%S\")}')"
- ],
- "metadata": {
- "collapsed": false
- },
- "id": "53d2fcd40c862014"
- },
- {
- "cell_type": "markdown",
- "id": "74f57422",
- "metadata": {},
- "source": [
- "### Create a Dataset class"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "eed149cd",
- "metadata": {},
- "source": [
- "Based on the BaseDataset class, your **dataset class** should include the following attributes:\n",
- "\n",
- "* **Obligatory attributes**: dataset, target, features, numerical_columns, categorical_columns\n",
- "\n",
- "* **Optional attributes**: X_data, y_data, columns_with_nulls\n",
- "\n",
- "For more details, please refer to the library documentation."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 44,
- "id": "9e3d7bf3",
- "metadata": {},
- "outputs": [],
- "source": [
- "class CompasWithoutSensitiveAttrsDataset(BaseDataLoader):\n",
- " \"\"\"\n",
- " Dataset class for COMPAS dataset that does not contain sensitive attributes among feature columns\n",
- " to test blind classifiers\n",
- "\n",
- " Parameters\n",
- " ----------\n",
- " subsample_size\n",
- " Subsample size to create based on the input dataset\n",
- "\n",
- " \"\"\"\n",
- " def __init__(self, dataset_path, subsample_size: int = None):\n",
- " df = pd.read_csv(dataset_path)\n",
- " if subsample_size:\n",
- " df = df.sample(subsample_size)\n",
- "\n",
- " # Initial data types transformation\n",
- " int_columns = ['recidivism', 'age', 'age_cat_25 - 45', 'age_cat_Greater than 45',\n",
- " 'age_cat_Less than 25', 'c_charge_degree_F', 'c_charge_degree_M', 'sex']\n",
- " int_columns_dct = {col: \"int\" for col in int_columns}\n",
- " df = df.astype(int_columns_dct)\n",
- "\n",
- " # Define params\n",
- " target = 'recidivism'\n",
- " numerical_columns = ['juv_fel_count', 'juv_misd_count', 'juv_other_count','priors_count']\n",
- " categorical_columns = ['age_cat_25 - 45', 'age_cat_Greater than 45','age_cat_Less than 25',\n",
- " 'c_charge_degree_F', 'c_charge_degree_M']\n",
- "\n",
- " super().__init__(\n",
- " full_df=df,\n",
- " target=target,\n",
- " numerical_columns=numerical_columns,\n",
- " categorical_columns=categorical_columns\n",
- " )"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 45,
- "id": "6c55c6a0",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": " juv_fel_count juv_misd_count juv_other_count priors_count \\\n0 0.0 -2.340451 1.0 -15.010999 \n1 0.0 0.000000 0.0 0.000000 \n2 0.0 0.000000 0.0 0.000000 \n3 0.0 0.000000 0.0 6.000000 \n4 0.0 0.000000 0.0 7.513697 \n\n age_cat_25 - 45 \n0 1 \n1 1 \n2 0 \n3 1 \n4 1 ",
- "text/html": "\n\n
\n \n \n | \n juv_fel_count | \n juv_misd_count | \n juv_other_count | \n priors_count | \n age_cat_25 - 45 | \n
\n \n \n \n 0 | \n 0.0 | \n -2.340451 | \n 1.0 | \n -15.010999 | \n 1 | \n
\n \n 1 | \n 0.0 | \n 0.000000 | \n 0.0 | \n 0.000000 | \n 1 | \n
\n \n 2 | \n 0.0 | \n 0.000000 | \n 0.0 | \n 0.000000 | \n 0 | \n
\n \n 3 | \n 0.0 | \n 0.000000 | \n 0.0 | \n 6.000000 | \n 1 | \n
\n \n 4 | \n 0.0 | \n 0.000000 | \n 0.0 | \n 7.513697 | \n 1 | \n
\n \n
\n
"
- },
- "execution_count": 45,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "data_loader = CompasWithoutSensitiveAttrsDataset(dataset_path=os.path.join('virny', 'datasets', 'COMPAS.csv'))\n",
- "data_loader.X_data[data_loader.X_data.columns[:5]].head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 46,
- "outputs": [],
- "source": [
- "column_transformer = ColumnTransformer(transformers=[\n",
- " ('categorical_features', OneHotEncoder(handle_unknown='ignore', sparse=False), data_loader.categorical_columns),\n",
- " ('numerical_features', StandardScaler(), data_loader.numerical_columns),\n",
- "])"
- ],
- "metadata": {
- "collapsed": false
- },
- "id": "8feb498942cc2a8c"
- },
- {
- "cell_type": "code",
- "execution_count": 47,
- "outputs": [],
- "source": [
- "base_flow_dataset = preprocess_dataset(data_loader, column_transformer, TEST_SET_FRACTION, DATASET_SPLIT_SEED)"
- ],
- "metadata": {
- "collapsed": false
- },
- "id": "7915190e0847f1a7"
- },
- {
- "cell_type": "markdown",
- "id": "d42b81d1",
- "metadata": {},
- "source": [
- "### Create a models config"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "3deeecfa",
- "metadata": {},
- "source": [
- "**models_config** is a Python dictionary, where keys are model names and values are initialized models for analysis"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 48,
- "id": "b995b73b",
- "metadata": {},
- "outputs": [],
- "source": [
- "models_config = {\n",
- " 'HoeffdingTreeClassifier': HoeffdingTreeClassifier(grace_period=50, delta=0.01),\n",
- " 'AdaptiveRandomForest': ARFClassifier(n_models=20,\n",
- " max_depth=4,\n",
- " split_criterion='gini'),\n",
- "}"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "f445b64a",
- "metadata": {},
- "source": [
- "## Subgroup Metrics Computation"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "c3530f06",
- "metadata": {},
- "source": [
- "After the variables are input to a user interface, the interface uses subgroup analyzers to compute different sets of metrics for each privileged and disprivileged subgroup. As for now, our library supports **Subgroup Variance Analyzer** and **Subgroup Error Analyzer**, but it is easily extensible to any other analyzers. When the variance and error analyzers complete metrics computation, their metrics are combined, returned in a matrix format, and stored in a file if defined."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 49,
- "id": "197eadaa",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": "Analyze models in one run: 0%| | 0/2 [00:00, ?it/s]",
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "50ad9209bd514e02ad2743f4aa9d2ad0"
- }
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/plain": "Classifiers testing by bootstrap: 0%| | 0/10 [00:00, ?it/s]",
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "bd3267ecbfe24a9b850faadb77e2fd87"
- }
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/plain": "Classifiers testing by bootstrap: 0%| | 0/10 [00:00, ?it/s]",
- "application/vnd.jupyter.widget-view+json": {
- "version_major": 2,
- "version_minor": 0,
- "model_id": "76cf1bdd387d471fa8cbfbe1f3597dec"
- }
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "metrics_dct = compute_metrics_with_config(base_flow_dataset, config, models_config, SAVE_RESULTS_DIR_PATH, verbose=0)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "d6a8625a",
- "metadata": {},
- "source": [
- "Look at several columns in top rows of computed metrics"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 50,
- "id": "bea94683",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": " Metric overall sex_priv sex_dis race_priv \\\n0 Mean 0.537943 0.584864 0.526227 0.590310 \n1 Std 0.180603 0.189217 0.178452 0.178636 \n2 IQR 0.177552 0.202525 0.171316 0.187440 \n3 Aleatoric_Uncertainty 0.768384 0.753217 0.772171 0.761192 \n4 Overall_Uncertainty 0.897733 0.899830 0.897210 0.890322 \n5 Statistical_Bias 0.428523 0.424270 0.429585 0.424007 \n6 Jitter 0.232428 0.230016 0.233031 0.205958 \n7 Per_Sample_Accuracy 0.649905 0.659716 0.647456 0.661594 \n8 Label_Stability 0.702083 0.706161 0.701065 0.741546 \n9 TPR 0.566879 0.453333 0.588384 0.408163 \n10 TNR 0.735043 0.794118 0.717149 0.786517 \n11 PPV 0.632701 0.548387 0.647222 0.512821 \n12 FNR 0.433121 0.546667 0.411616 0.591837 \n13 FPR 0.264957 0.205882 0.282851 0.213483 \n14 Accuracy 0.660038 0.672986 0.656805 0.652174 \n15 F1 0.597984 0.496350 0.616402 0.454545 \n16 Selection-Rate 0.399621 0.293839 0.426036 0.282609 \n17 Positive-Rate 0.895966 0.826667 0.909091 0.795918 \n18 Sample_Size 1056.000000 NaN NaN NaN \n\n race_dis \n0 0.504174 \n1 0.181871 \n2 0.171175 \n3 0.773022 \n4 0.902513 \n5 0.431435 \n6 0.249498 \n7 0.642368 \n8 0.676636 \n9 0.638889 \n10 0.691824 \n11 0.678689 \n12 0.361111 \n13 0.308176 \n14 0.665109 \n15 0.658188 \n16 0.475078 \n17 0.941358 \n18 NaN ",
- "text/html": "\n\n
\n \n \n | \n Metric | \n overall | \n sex_priv | \n sex_dis | \n race_priv | \n race_dis | \n
\n \n \n \n 0 | \n Mean | \n 0.537943 | \n 0.584864 | \n 0.526227 | \n 0.590310 | \n 0.504174 | \n
\n \n 1 | \n Std | \n 0.180603 | \n 0.189217 | \n 0.178452 | \n 0.178636 | \n 0.181871 | \n
\n \n 2 | \n IQR | \n 0.177552 | \n 0.202525 | \n 0.171316 | \n 0.187440 | \n 0.171175 | \n
\n \n 3 | \n Aleatoric_Uncertainty | \n 0.768384 | \n 0.753217 | \n 0.772171 | \n 0.761192 | \n 0.773022 | \n
\n \n 4 | \n Overall_Uncertainty | \n 0.897733 | \n 0.899830 | \n 0.897210 | \n 0.890322 | \n 0.902513 | \n
\n \n 5 | \n Statistical_Bias | \n 0.428523 | \n 0.424270 | \n 0.429585 | \n 0.424007 | \n 0.431435 | \n
\n \n 6 | \n Jitter | \n 0.232428 | \n 0.230016 | \n 0.233031 | \n 0.205958 | \n 0.249498 | \n
\n \n 7 | \n Per_Sample_Accuracy | \n 0.649905 | \n 0.659716 | \n 0.647456 | \n 0.661594 | \n 0.642368 | \n
\n \n 8 | \n Label_Stability | \n 0.702083 | \n 0.706161 | \n 0.701065 | \n 0.741546 | \n 0.676636 | \n
\n \n 9 | \n TPR | \n 0.566879 | \n 0.453333 | \n 0.588384 | \n 0.408163 | \n 0.638889 | \n
\n \n 10 | \n TNR | \n 0.735043 | \n 0.794118 | \n 0.717149 | \n 0.786517 | \n 0.691824 | \n
\n \n 11 | \n PPV | \n 0.632701 | \n 0.548387 | \n 0.647222 | \n 0.512821 | \n 0.678689 | \n
\n \n 12 | \n FNR | \n 0.433121 | \n 0.546667 | \n 0.411616 | \n 0.591837 | \n 0.361111 | \n
\n \n 13 | \n FPR | \n 0.264957 | \n 0.205882 | \n 0.282851 | \n 0.213483 | \n 0.308176 | \n
\n \n 14 | \n Accuracy | \n 0.660038 | \n 0.672986 | \n 0.656805 | \n 0.652174 | \n 0.665109 | \n
\n \n 15 | \n F1 | \n 0.597984 | \n 0.496350 | \n 0.616402 | \n 0.454545 | \n 0.658188 | \n
\n \n 16 | \n Selection-Rate | \n 0.399621 | \n 0.293839 | \n 0.426036 | \n 0.282609 | \n 0.475078 | \n
\n \n 17 | \n Positive-Rate | \n 0.895966 | \n 0.826667 | \n 0.909091 | \n 0.795918 | \n 0.941358 | \n
\n \n 18 | \n Sample_Size | \n 1056.000000 | \n NaN | \n NaN | \n NaN | \n NaN | \n
\n \n
\n
"
- },
- "execution_count": 50,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "sample_model_metrics_df = metrics_dct[list(models_config.keys())[0]]\n",
- "sample_model_metrics_df[sample_model_metrics_df.columns[:6]].head(20)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "a7ff67e9",
- "metadata": {},
- "source": [
- "## Group Metrics Composition"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "274c97e2",
- "metadata": {},
- "source": [
- "**Metrics Composer** is responsible for this second stage of the model audit. Currently, it computes our custom group fairness and stability metrics, but extending it for new group metrics is very simple. We noticed that more and more group metrics have appeared during the last decade, but most of them are based on the same subgroup metrics. Hence, such a separation of subgroup and group metrics computation allows one to experiment with different combinations of subgroup metrics and avoid subgroup metrics recomputation for a new set of grouped metrics."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 51,
- "id": "f94a20dc",
- "metadata": {},
- "outputs": [],
- "source": [
- "models_metrics_dct = read_model_metric_dfs(SAVE_RESULTS_DIR_PATH, model_names=list(models_config.keys()))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 52,
- "id": "b04d06cf",
- "metadata": {},
- "outputs": [],
- "source": [
- "metrics_composer = MetricsComposer(models_metrics_dct, config.sensitive_attributes_dct)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "e1a23ece",
- "metadata": {},
- "source": [
- "Compute composed metrics"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 53,
- "id": "be6ace22",
- "metadata": {},
- "outputs": [],
- "source": [
- "models_composed_metrics_df = metrics_composer.compose_metrics()"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "deb45226",
- "metadata": {},
- "source": [
- "## Metrics Visualization and Reporting"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "2f5d4cdb",
- "metadata": {},
- "source": [
- "**Metrics Visualizer** provides metrics visualization and reporting functionality. It unifies different preprocessing methods for result metrics and creates various data formats required for visualizations. Hence, users can simply call methods of the Metrics Visualizer class and get custom plots for diverse metrics analysis. Additionally, these plots could be collected in an HTML report with comments for user convenience and future reference."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 54,
- "id": "435b9d98",
- "metadata": {},
- "outputs": [],
- "source": [
- "visualizer = MetricsVisualizer(models_metrics_dct, models_composed_metrics_df, config.dataset_name,\n",
- " model_names=list(models_config.keys()),\n",
- " sensitive_attributes_dct=config.sensitive_attributes_dct)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 55,
- "id": "5efb1bf2",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": "\n\n",
- "text/plain": "alt.Chart(...)"
- },
- "execution_count": 55,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "visualizer.create_overall_metrics_bar_char(\n",
- " metrics_names=['TPR', 'PPV', 'Accuracy', 'F1', 'Selection-Rate', 'Positive-Rate'],\n",
- " metrics_title=\"Error Metrics\"\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 56,
- "id": "0eb8528e",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": "\n\n",
- "text/plain": "alt.Chart(...)"
- },
- "execution_count": 56,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "visualizer.create_overall_metrics_bar_char(\n",
- " metrics_names=['Label_Stability'],\n",
- " reversed_metrics_names=['Std', 'IQR', 'Jitter'],\n",
- " metrics_title=\"Variance Metrics\"\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "source": [
- "Below is an example of an interactive plot. It requires that you run the below cell in Jupyter in the browser or EDAs, which support JavaScript displaying.\n",
- "\n",
- "You can use this plot to compare any pair of group fairness and stability metrics for all models."
- ],
- "metadata": {
- "collapsed": false
- },
- "id": "ca3fe31f0515a973"
- },
- {
- "cell_type": "code",
- "execution_count": 57,
- "outputs": [
- {
- "data": {
- "text/html": "\n\n",
- "text/plain": "alt.HConcatChart(...)"
- },
- "execution_count": 57,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "visualizer.create_fairness_variance_interactive_bar_chart()"
- ],
- "metadata": {
- "collapsed": false
- },
- "id": "dfc57f1870ed71d1"
- },
- {
- "cell_type": "code",
- "execution_count": 58,
- "id": "df024aed",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": "