-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathFracTend.m
480 lines (417 loc) · 17 KB
/
FracTend.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
% FracTend.m - script to plot slip and dilatation tendency
%
% Equations & code from:
% Morris et al., 1996 Geology
% Ferrill et al., 1999 GSA Today
% Streit & Hillis, 2004 Energy
% Jolly & Sanderson, 1997 Journal of Structural Geology
% Allmendinger et al., 2012 Structural Geology Algorithms, Cambridge
% University Press
%
% David Healy & Tara Stephens
% July 2018
close all ;
version = 0.9 ;
disp(' ') ;
disp(['*** Started FracTend version ', num2str(version), ' at ', datestr(now), '...']) ;
disp(' ') ;
% read in poles to specific fractures; tab-delimited text file,
% formatted as plunge then trend
disp(' ') ;
disp('Reading input file of poles to planes...') ;
%fnFractures = input('Filename of fracture pole data: ') ;
fnFractures = 'Utah_OA-Sills.txt' ; % 'Utah_Thrusts_TS-RW. Utah_Sills_ArcRW. Utah_DefBands2RW. Utah_OA-Sills
fidFractures = fopen(fnFractures, 'r') ;
[polesFractures, nFractures] = fscanf(fidFractures, '%g %g', [2, inf]) ;
fclose(fidFractures) ;
nFractures = nFractures / 2 ;
polesFractures = polesFractures' ;
polesFracturesRad = polesFractures * pi / 180 ;
disp(['Read ', num2str(nFractures), ' fracture poles']) ;
% read in stress magnitudes
% principal stresses in MPa
disp(' ') ;
disp('Stresses...') ;
sigma1 = 43 ;
sigma2 = 38.86 ;
sigma3 = 25 ;
sorted_sigma = [ sigma1, sigma2, sigma3 ] ;
sigmad = sigma1 - sigma3 ;
disp(['Principal stresses ', num2str(sorted_sigma), ' in MPa']) ;
% pore fluid pressure in MPa, for fracture Opening Angle
% calculations
Pf = 37.24;
% note the implicit convention: x//s1, y//s2, z//s3
stressTensor = [ sorted_sigma(1), 0, 0 ; ...
0, sorted_sigma(2), 0 ; ...
0, 0, sorted_sigma(3) ] ;
% read in stress orientation
% e.g. for old case of SHmax azimuth of 135
% normal fault system: Trend s1=0, Plunge s1=90 - use s3-trend to change orientation of stress field with s1 as the rotation axis
% thrust fault: Trend of s3 must be >90 from s1; Ps1=0
% strike-slip: Trend of s3 must be 90 from Trend of s1
trendS1 = 68 ;
plungeS1 = 3 ;
trendS3 = 265;
disp('Stress orientation:') ;
disp(['sigma1 plunge/trend - ', num2str(plungeS1, '%02d'), '/', num2str(trendS1, '%03d')]) ;
disp(['sigma3 trend - ', num2str(trendS3, '%03d')]) ;
trendS1rad = trendS1 * pi / 180 ;
plungeS1rad = plungeS1 * pi / 180 ;
trendS3rad = trendS3 * pi / 180 ;
% coefficient of friction & cohesion
disp(' ') ;
muStatic = 0.6 ;
C0 = 0 ;
sigmaNMohr = 100 ;
tauMohr = C0 + muStatic * sigmaNMohr ;
% for all directions in 3-space, calculate normal and shear stresses
% on all 3d surfaces
phi_index = 0 ;
theta_index = 0 ;
increment = 1 ;
phi_min = 90 ;
phi_max = 180 ;
theta_min = 0 ;
theta_max = 360 ;
phi_n = (phi_max - phi_min)/increment + 1 ;
theta_n = (theta_max - theta_min)/increment + 1 ;
sigmaN = zeros(theta_n, phi_n) ;
tau = zeros(theta_n, phi_n) ;
for phi = 90:increment:180
phi_index = phi_index + 1 ;
phi_rad = ( phi - 90 ) * pi / 180 ;
theta_index = 0 ;
for theta = 0:increment:360
theta_index = theta_index + 1 ;
theta_rad = theta * pi / 180 ;
% convert pole to strike and dip
[ strike, dip ] = Pole(theta_rad, phi_rad, 0) ;
% calculate normal and shear stress on the plane
[ stressFracture, dcStressFracture, ~ ] = ShearOnPlane(stressTensor, trendS1rad, plungeS1rad, trendS3rad, strike, dip) ;
% save normal and shear stresses for later calculation
sigmaN(theta_index, phi_index) = stressFracture(1,1) ;
tau(theta_index, phi_index) = stressFracture(3,1) ;
end ;
% end for each direction
end ;
% calculate tendencies - slip, dilatation and frac. suscep
% calculate normalised slip tendency (Morris et al., 1996)
TsMax = max(max( tau ./ sigmaN )) ;
Ts = ( tau ./ sigmaN ) / TsMax ;
% calculate dilatation tendency (Ferril et al., 1999)
Td = ( sorted_sigma(1) - sigmaN ) ./ ( sorted_sigma(1) - sorted_sigma(3) ) ;
% calculate shear stress/ dilation displacement ratio
% from Delaney et al.(1988)
TD = tau ./ (sigma3 + Pf) ;
% calculate fracture susceptibility
Sf = sigmaN - ( tau ./ muStatic ) ;
% calculate muOA (opening angle), Jolly & Sanderson, 1997
OA = tau ./ (Pf - sigmaN) ;
muOAfracture = atand(OA) ;
% Calculate and display various stress ratios:
Phi = ( sigma2 - sigma3 ) / ( sigma1 - sigma3 ) ;
R = (sigma1 - sigma2) / (sigma1 - sigma3) ;
Rprime = ( Pf - sigma3 ) / ( sigma1 - sigma3 ) ;
disp(' ') ;
disp(['Stress ratio phi: ', num2str(Phi)]) ;
disp(['Stress ratio R: ' , num2str(R)]) ;
disp(['Stress ratio R'': ', num2str(Rprime)]) ;
% plot azimuthal variation of tendencies, with poles to fractures
% overlain
deltaP = increment * pi / 180 ;
phiP = pi/2:deltaP:pi ;
phiP = phiP - pi/2 ;
thetaP = 0:deltaP:2*pi ;
[phiP, thetaP] = meshgrid(phiP, thetaP) ;
% equal area projection
dp = sqrt(1 - sin(phiP)) ;
xeqarea = dp .* sin(thetaP) ;
yeqarea = dp .* cos(thetaP) ;
rPrim = 1 ;
xPrim = -rPrim:0.0001:rPrim ;
yPrim = sqrt(rPrim^2 - xPrim.^2) ;
% convert Fracture pole plunges and plunge directions to cartesian coords
dp = sqrt(1 - sin(polesFracturesRad(:,1))) ;
newTrend = rem(polesFracturesRad(:,2), 2*pi) ;
xFractures = dp .* sin(newTrend) ;
yFractures = dp .* cos(newTrend) ;
% convert principal stress orientations into cartesian coords for equal
% area
[ pstress, dCp ] = PrincipalStress(stressTensor, trendS1rad, plungeS1rad, trendS3rad) ;
trendS2rad = pstress(2,2) ;
plungeS2rad = pstress(2,3) ;
plungeS3rad = pstress(3,3) ;
[ xS1, yS1 ] = StCoordLine(trendS1rad, plungeS1rad, 1) ;
[ xS2, yS2 ] = StCoordLine(trendS2rad, plungeS2rad, 1) ;
[ xS3, yS3 ] = StCoordLine(trendS3rad, plungeS3rad, 1) ;
lwPrim = 1 ;
sizePoleMarker = 15 ;
sizeStressMarker = 10 ;
ncontours = 20 ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% plot figures
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 1. stereogram of Slip Tendency, Ts
figure ;
set(gcf, 'PaperPositionMode', 'manual') ;
set(gcf, 'PaperUnits', 'inches') ;
set(gcf, 'PaperPosition', [ 0.25 0.25 5 5]) ;
contourf(xeqarea, yeqarea, Ts, ncontours, 'EdgeColor', 'none') ;
hold on ;
plot(xPrim, yPrim, '-k', 'LineWidth', lwPrim) ;
plot(xPrim, -yPrim, '-k', 'LineWidth', lwPrim) ;
plot(xFractures, yFractures, '.r', ...
'MarkerSize', sizePoleMarker ) ;
plot(xS1, yS1, 's', ...
'MarkerSize', sizeStressMarker, 'MarkerEdgeColor','k', 'MarkerFaceColor', 'w') ;
plot(xS2, yS2, 'd', ...
'MarkerSize', sizeStressMarker, 'MarkerEdgeColor','k', 'MarkerFaceColor', 'w') ;
plot(xS3, yS3, '^', ...
'MarkerSize', sizeStressMarker, 'MarkerEdgeColor','k', 'MarkerFaceColor', 'w') ;
hold off ;
cmocean(('thermal'), 20) ;
title({'Slip tendency, T_s';['n=', num2str(nFractures)]}) ;
view(0, 90) ;
axis equal off ;
xlim([-1.05 1.05]) ;
ylim([-1.05 1.05]) ;
caxis([0 1]) ;
cb = colorbar ;
cb.Location = 'SouthOutside' ;
cb.Label.String = 'Normalised slip tendency' ;
print -r600 -dtiff 'FracTend_Ts_stereo.tif' ;
% 2. stereogram of Dilatation Tendency, Td
figure ;
set(gcf, 'PaperPositionMode', 'manual') ;
set(gcf, 'PaperUnits', 'inches') ;
set(gcf, 'PaperPosition', [ 0.25 0.25 5 5]) ;
contourf(xeqarea, yeqarea, Td, ncontours, 'EdgeColor', 'none') ;
hold on ;
plot(xPrim, yPrim, '-k', 'LineWidth', lwPrim) ;
plot(xPrim, -yPrim, '-k', 'LineWidth', lwPrim) ;
plot(xFractures, yFractures, '.r', ...
'MarkerSize', sizePoleMarker ) ;
plot(xS1, yS1, 's', ...
'MarkerSize', sizeStressMarker, 'MarkerEdgeColor','k', 'MarkerFaceColor', 'w') ;
plot(xS2, yS2, 'd', ...
'MarkerSize', sizeStressMarker, 'MarkerEdgeColor','k', 'MarkerFaceColor', 'w') ;
plot(xS3, yS3, '^', ...
'MarkerSize', sizeStressMarker, 'MarkerEdgeColor','k', 'MarkerFaceColor', 'w') ;
hold off ;
cmocean(('thermal'), 20) ;
title({'Dilatation tendency, T_d';['n=', num2str(nFractures)]}) ;
view(0, 90) ;
axis equal off ;
xlim([-1.05 1.05]) ;
ylim([-1.05 1.05]) ;
caxis([0 1]) ;
cb = colorbar ;
cb.Location = 'SouthOutside' ;
cb.Label.String = 'Dilatation tendency' ;
print -r600 -dtiff 'FracTend_Td_stereo.tif' ;
% 3. stereogram of fracture susceptibility, Sf
figure ;
set(gcf, 'PaperPositionMode', 'manual') ;
set(gcf, 'PaperUnits', 'inches') ;
set(gcf, 'PaperPosition', [ 0.25 0.25 5 5]) ;
contourf(xeqarea, yeqarea, Sf, 24,'EdgeColor', 'none') ;
hold on ;
plot(xPrim, yPrim, '-k', 'LineWidth', lwPrim) ;
plot(xPrim, -yPrim, '-k', 'LineWidth', lwPrim) ;
plot(xFractures, yFractures, '.r', 'MarkerSize', sizePoleMarker ) ;
plot(xS1, yS1, 's', ...
'MarkerSize', sizeStressMarker, 'MarkerEdgeColor','k', 'MarkerFaceColor', 'w') ;
plot(xS2, yS2, 'd', ...
'MarkerSize', sizeStressMarker, 'MarkerEdgeColor','k', 'MarkerFaceColor', 'w') ;
plot(xS3, yS3, '^', ...
'MarkerSize', sizeStressMarker, 'MarkerEdgeColor','k', 'MarkerFaceColor', 'w') ;
hold off ;
% Flip the colourbar: most likely to reactivate = warmer colours
colormap(flipud(cmocean(('thermal'), 20))) ;
title({'Fracture susceptibility, S_f';['n=', num2str(nFractures)]}) ;
view(0, 90) ;
axis equal off ;
xlim([-1.05 1.05]) ;
ylim([-1.05 1.05]) ;
cb = colorbar ;
cb.Location = 'SouthOutside' ;
cb.Label.String = '\DeltaP_{f}, MPa' ;
print -r600 -dtiff 'FracTend_Sf_stereo.tif' ;
% 4. stereogram of opening angle, OA
figure ;
set(gcf, 'PaperPositionMode', 'manual') ;
set(gcf, 'PaperUnits', 'inches') ;
set(gcf, 'PaperPosition', [ 0.25 0.25 5 5]) ;
cbOA = cmocean('thermal', 18) ;
cbOA(19, :) = [ 1, 1, 1 ] ; % white for OA < 0
cbOA(20, :) = [ 1, 1, 1 ] ; % white for OA < 0
cbOA = flipud(cbOA) ; % reverse it
contourf(xeqarea, yeqarea, muOAfracture, ncontours, 'EdgeColor', 'none') ;
hold on ;
plot(xPrim, yPrim, '-k', 'LineWidth', lwPrim) ;
plot(xPrim, -yPrim, '-k', 'LineWidth', lwPrim) ;
plot(xFractures, yFractures, '.r', 'MarkerSize', sizePoleMarker) ;
plot(xS1, yS1, 's', ...
'MarkerSize', sizeStressMarker, 'MarkerEdgeColor','k', 'MarkerFaceColor', 'w') ;
plot(xS2, yS2, 'd', ...
'MarkerSize', sizeStressMarker, 'MarkerEdgeColor','k', 'MarkerFaceColor', 'w') ;
plot(xS3, yS3, '^', ...
'MarkerSize', sizeStressMarker, 'MarkerEdgeColor','k', 'MarkerFaceColor', 'w') ;
hold off ;
colormap(cbOA) ;
title({['Opening angle \mu_a for P_f=', num2str(Pf), ' MPa']; ['n=', num2str(nFractures)]}) ;
view(0, 90) ;
axis equal off ;
xlim([-1.05 1.05]) ;
ylim([-1.05 1.05]) ;
caxis([-10 90]) ;
cb = colorbar ;
cb.Location = 'SouthOutside' ;
cb.Label.String = 'Opening angle, \circ' ;
print -r600 -dtiff 'FracTend_OA_stereo.tif' ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% for each plane in the input file
% new loop to calculate specifc values for the supplied poles
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sigmaNFracture = zeros(nFractures,1) ;
tauFracture = zeros(nFractures,1) ;
for i = 1:nFractures
% convert fracture pole to strike and dip
[ strike, dip ] = Pole(polesFracturesRad(i,2), polesFracturesRad(i,1), 0) ;
% calculate normal and shear stress on the plane
[ stressFracture, dcStressFracture, R ] = ShearOnPlane(stressTensor, trendS1rad, plungeS1rad, trendS3rad, strike, dip) ;
% save normal and shear stresses for later calculation
sigmaNFracture(i) = stressFracture(1,1) ;
tauFracture(i) = stressFracture(3,1) ;
% end for each plane
end ;
% calculate normalised slip tendency
TsFractureFile = ( tauFracture ./ sigmaNFracture ) / TsMax ;
% calculate dilatation tendency
TdFractureFile = ( sorted_sigma(1) - sigmaNFracture ) ./ ( sorted_sigma(1) - sorted_sigma(3) ) ;
% calculate fracture susceptibility
SfFractureFile = sigmaNFracture - ( tauFracture ./ muStatic ) ;
% calculate opening angle
OAFile = tauFracture ./ (Pf - sigmaNFracture) ;
muOAfractureFile = atand(OAFile) ;
% write out text file of data values for the specific fracture poles
fidData = fopen('PolesWithValues.txt', 'wt') ;
for i = 1:nFractures
fprintf(fidData, '%2.2f, %3.2f, %1.3f, %1.3f, %5.2f, %5.2f, %5.2f, %5.3f\n', ...
[ polesFractures(i,1), polesFractures(i,2), ...
TsFractureFile(i), TdFractureFile(i), SfFractureFile(i), tauFracture(i), sigmaNFracture(i), muOAfractureFile(i) ] ) ;
end ;
fclose(fidData) ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% plot Mohr diagrams, with fractures & contoured stability measures
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sizePoleMarker = 10 ;
% 1. Ts
figure ;
set(gcf, 'PaperPositionMode', 'manual') ;
set(gcf, 'PaperUnits', 'inches') ;
set(gcf, 'PaperPosition', [ 0.25 0.25 5 5]) ;
plot([0, sigmaNMohr], [C0, tauMohr], '-r', 'LineWidth', 1) ;
hold on ;
contourf(sigmaN, tau, Ts, ncontours, 'EdgeColor', 'none') ;
plotMohr_OA(sigma1, sigma2, sigma3, 1, '-k') ;
cmocean('thermal') ;
for f = 1:nFractures
plot(sigmaNFracture(f), tauFracture(f), '.r', ...
'MarkerSize', sizePoleMarker) ;
end ;
hold off ;
xlim([0 sigma1*1.05]) ;
ylim([0 sigmad*0.75]) ;
xlabel('Effective normal stress, MPa') ;
ylabel('Shear stress, MPa') ;
title({'Slip tendency, T_s';['n=', num2str(nFractures)]}) ;
caxis([0 1]) ;
cb = colorbar ;
cb.Location = 'SouthOutside' ;
cb.Label.String = 'Normalised slip tendency' ;
print -r600 -dtiff 'FracTend_Ts_mohr.tif' ;
% 2. Td
figure ;
set(gcf, 'PaperPositionMode', 'manual') ;
set(gcf, 'PaperUnits', 'inches') ;
set(gcf, 'PaperPosition', [ 0.25 0.25 5 5]) ;
plot([0, sigmaNMohr], [C0, tauMohr], '-r', 'LineWidth', 1) ;
hold on ;
contourf(sigmaN, tau, Td, ncontours, 'EdgeColor', 'none') ;
plotMohr_OA(sigma1, sigma2, sigma3, 1, '-k') ;
cmocean('thermal') ;
for f = 1:nFractures
plot(sigmaNFracture(f), tauFracture(f), '.r', ...
'MarkerSize', sizePoleMarker, 'MarkerEdgeColor', 'r', 'MarkerFaceColor', 'r') ;
end ;
hold off ;
xlim([0 sigma1*1.05]) ;
ylim([0 sigmad*0.75]) ;
xlabel('Effective normal stress, MPa') ;
ylabel('Shear stress, MPa') ;
title({'Dilatation tendency, T_d';['n=', num2str(nFractures)]}) ;
caxis([0 1]) ;
cb = colorbar ;
cb.Location = 'SouthOutside' ;
cb.Label.String = 'Dilatation tendency' ;
print -r600 -dtiff 'FracTend_Td_mohr.tif' ;
% 3. Sf
figure ;
set(gcf, 'PaperPositionMode', 'manual') ;
set(gcf, 'PaperUnits', 'inches') ;
set(gcf, 'PaperPosition', [ 0.25 0.25 5 5]) ;
plot([0, sigmaNMohr], [C0, tauMohr], '-r', 'LineWidth', 1) ;
hold on ;
contourf(sigmaN, tau, Sf, ncontours, 'EdgeColor', 'none') ;
plotMohr_OA(sigma1, sigma2, sigma3, 1, '-k') ;
colormap(flipud(cmocean('thermal'))) ;
for f = 1:nFractures
plot(sigmaNFracture(f), tauFracture(f), '.r', ...
'MarkerSize', sizePoleMarker, 'MarkerEdgeColor', 'r', 'MarkerFaceColor', 'r') ;
end ;
hold off ;
xlim([0 sigma1*1.05]) ;
ylim([0 sigmad*0.75]) ;
xlabel('Effective normal stress, MPa') ;
ylabel('Shear stress, MPa') ;
title({'Fracture susceptibility, S_f';['n=', num2str(nFractures)]}) ;
cb = colorbar ;
cb.Location = 'SouthOutside' ;
cb.Label.String = '\DeltaP_{f}, MPa' ;
print -r600 -dtiff 'FracTend_Sf_mohr.tif' ;
% opening angle Mohr diagram
figure ;
set(gcf, 'PaperPositionMode', 'manual') ;
set(gcf, 'PaperUnits', 'inches') ;
set(gcf, 'PaperPosition', [ 0.25 0.25 5 5]) ;
% modified colourbar for opening angle scale
cbOA = cmocean('thermal', 9) ;
cbOA(10, :) = [ 1, 1, 1 ] ; % white for OA < 0
cbOA = flipud(cbOA) ; % reverse it
plot([0, sigmaNMohr], [C0, tauMohr], '-r', 'LineWidth', 1) ;
hold on ;
fill([0, Pf, Pf, 0], [0, 0, sigma1, sigma1], 'b', 'FaceAlpha', 0.2) ;
contourf(sigmaN, tau, muOAfracture, ncontours, 'EdgeColor', 'none') ;
plotMohr_OA(sigma1, sigma2, sigma3, 1, '-k') ;
for f = 1:nFractures
plot(sigmaNFracture(f), tauFracture(f), '.r', ...
'MarkerSize', sizePoleMarker, 'MarkerEdgeColor', 'r', 'MarkerFaceColor', 'r') ;
end ;
hold off ;
colormap(cbOA) ;
xlim([0 sigma1*1.05]) ;
ylim([0 sigmad*0.75]) ;
xlabel('Effective normal stress, MPa') ;
ylabel('Shear stress, MPa') ;
title({['Opening angle \mu_a for P_f=', num2str(Pf), ' MPa']; ['n=', num2str(nFractures)]}) ;
caxis([-10 90]) ;
cb = colorbar ;
cb.Location = 'SouthOutside' ;
cb.Label.String = 'Opening angle, \circ' ;
print -r600 -dtiff 'FracTend_OA_mohr.tif' ;
disp(' ') ;
disp(['*** ...finished FracTend version ', num2str(version), ' at ', datestr(now), '.']) ;
disp(' ') ;