-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathpredict.py
101 lines (76 loc) · 2.23 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
""" How to use C3D network. """
import numpy as np
import torch
from torch.autograd import Variable
from os.path import join
from glob import glob
import skimage.io as io
from skimage.transform import resize
from C3D_model import C3D
def get_sport_clip(clip_name, verbose=True):
"""
Loads a clip to be fed to C3D for classification.
TODO: should I remove mean here?
Parameters
----------
clip_name: str
the name of the clip (subfolder in 'data').
verbose: bool
if True, shows the unrolled clip (default is True).
Returns
-------
Tensor
a pytorch batch (n, ch, fr, h, w).
"""
clip = sorted(glob(join('data', clip_name, '*.png')))
clip = np.array([resize(io.imread(frame), output_shape=(112, 200), preserve_range=True) for frame in clip])
clip = clip[:, :, 44:44+112, :] # crop centrally
if verbose:
clip_img = np.reshape(clip.transpose(1, 0, 2, 3), (112, 16 * 112, 3))
io.imshow(clip_img.astype(np.uint8))
io.show()
clip = clip.transpose(3, 0, 1, 2) # ch, fr, h, w
clip = np.expand_dims(clip, axis=0) # batch axis
clip = np.float32(clip)
return torch.from_numpy(clip)
def read_labels_from_file(filepath):
"""
Reads Sport1M labels from file
Parameters
----------
filepath: str
the file.
Returns
-------
list
list of sport names.
"""
with open(filepath, 'r') as f:
labels = [line.strip() for line in f.readlines()]
return labels
def main():
"""
Main function.
"""
# load a clip to be predicted
X = get_sport_clip('roger')
X = Variable(X)
X = X.cuda()
# get network pretrained model
net = C3D()
net.load_state_dict(torch.load('c3d.pickle'))
net.cuda()
net.eval()
# perform prediction
prediction = net(X)
prediction = prediction.data.cpu().numpy()
# read labels
labels = read_labels_from_file('labels.txt')
# print top predictions
top_inds = prediction[0].argsort()[::-1][:5] # reverse sort and take five largest items
print('\nTop 5:')
for i in top_inds:
print('{:.5f} {}'.format(prediction[0][i], labels[i]))
# entry point
if __name__ == '__main__':
main()