forked from jrh13/hol-light
-
Notifications
You must be signed in to change notification settings - Fork 0
/
canon.ml
733 lines (699 loc) · 33.1 KB
/
canon.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
(* ========================================================================= *)
(* Reasonably efficient conversions for various canonical forms. *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* ========================================================================= *)
needs "trivia.ml";;
(* ------------------------------------------------------------------------- *)
(* Pre-simplification. *)
(* ------------------------------------------------------------------------- *)
let PRESIMP_CONV =
GEN_REWRITE_CONV TOP_DEPTH_CONV
[NOT_CLAUSES; AND_CLAUSES; OR_CLAUSES; IMP_CLAUSES; EQ_CLAUSES;
FORALL_SIMP; EXISTS_SIMP; EXISTS_OR_THM; FORALL_AND_THM;
LEFT_EXISTS_AND_THM; RIGHT_EXISTS_AND_THM;
LEFT_FORALL_OR_THM; RIGHT_FORALL_OR_THM];;
(* ------------------------------------------------------------------------- *)
(* ACI rearrangements of conjunctions and disjunctions. This is much faster *)
(* than AC xxx_ACI on large problems, as well as being more controlled. *)
(* ------------------------------------------------------------------------- *)
let CONJ_ACI_RULE =
let rec mk_fun th fn =
let tm = concl th in
if is_conj tm then
let th1,th2 = CONJ_PAIR th in
mk_fun th1 (mk_fun th2 fn)
else (tm |-> th) fn
and use_fun fn tm =
if is_conj tm then
let l,r = dest_conj tm in CONJ (use_fun fn l) (use_fun fn r)
else apply fn tm in
fun fm ->
let p,p' = dest_eq fm in
if p = p' then REFL p else
let th = use_fun (mk_fun (ASSUME p) undefined) p'
and th' = use_fun (mk_fun (ASSUME p') undefined) p in
IMP_ANTISYM_RULE (DISCH_ALL th) (DISCH_ALL th');;
let DISJ_ACI_RULE =
let pth_left = UNDISCH(TAUT `~(a \/ b) ==> ~a`)
and pth_right = UNDISCH(TAUT `~(a \/ b) ==> ~b`)
and pth = repeat UNDISCH (TAUT `~a ==> ~b ==> ~(a \/ b)`)
and pth_neg = UNDISCH(TAUT `(~a <=> ~b) ==> (a <=> b)`)
and a_tm = `a:bool` and b_tm = `b:bool` in
let NOT_DISJ_PAIR th =
let p,q = dest_disj(rand(concl th)) in
let ilist = [p,a_tm; q,b_tm] in
PROVE_HYP th (INST ilist pth_left),
PROVE_HYP th (INST ilist pth_right)
and NOT_DISJ th1 th2 =
let th3 = INST [rand(concl th1),a_tm; rand(concl th2),b_tm] pth in
PROVE_HYP th1 (PROVE_HYP th2 th3) in
let rec mk_fun th fn =
let tm = rand(concl th) in
if is_disj tm then
let th1,th2 = NOT_DISJ_PAIR th in
mk_fun th1 (mk_fun th2 fn)
else (tm |-> th) fn
and use_fun fn tm =
if is_disj tm then
let l,r = dest_disj tm in NOT_DISJ (use_fun fn l) (use_fun fn r)
else apply fn tm in
fun fm ->
let p,p' = dest_eq fm in
if p = p' then REFL p else
let th = use_fun (mk_fun (ASSUME(mk_neg p)) undefined) p'
and th' = use_fun (mk_fun (ASSUME(mk_neg p')) undefined) p in
let th1 = IMP_ANTISYM_RULE (DISCH_ALL th) (DISCH_ALL th') in
PROVE_HYP th1 (INST [p,a_tm; p',b_tm] pth_neg);;
(* ------------------------------------------------------------------------- *)
(* Order canonically, right-associate and remove duplicates. *)
(* ------------------------------------------------------------------------- *)
let CONJ_CANON_CONV tm =
let tm' = list_mk_conj(setify(conjuncts tm)) in
CONJ_ACI_RULE(mk_eq(tm,tm'));;
let DISJ_CANON_CONV tm =
let tm' = list_mk_disj(setify(disjuncts tm)) in
DISJ_ACI_RULE(mk_eq(tm,tm'));;
(* ------------------------------------------------------------------------- *)
(* General NNF conversion. The user supplies some conversion to be applied *)
(* to atomic formulas. *)
(* *)
(* "Iff"s are split conjunctively or disjunctively according to the flag *)
(* argument (conjuctively = true) until a universal quantifier (modulo *)
(* current parity) is passed; after that they are split conjunctively. This *)
(* is appropriate when the result is passed to a disjunctive splitter *)
(* followed by a clausal form inner core, such as MESON. *)
(* *)
(* To avoid some duplicate computation, this function will in general *)
(* enter a recursion where it simultaneously computes NNF representations *)
(* for "p" and "~p", so the user needs to supply an atomic "conversion" *)
(* that does the same. *)
(* ------------------------------------------------------------------------- *)
let (GEN_NNF_CONV:bool->conv*(term->thm*thm)->conv) =
let and_tm = `(/\)` and or_tm = `(\/)` and not_tm = `(~)`
and pth_not_not = TAUT `~ ~ p = p`
and pth_not_and = TAUT `~(p /\ q) <=> ~p \/ ~q`
and pth_not_or = TAUT `~(p \/ q) <=> ~p /\ ~q`
and pth_imp = TAUT `p ==> q <=> ~p \/ q`
and pth_not_imp = TAUT `~(p ==> q) <=> p /\ ~q`
and pth_eq = TAUT `(p <=> q) <=> p /\ q \/ ~p /\ ~q`
and pth_not_eq = TAUT `~(p <=> q) <=> p /\ ~q \/ ~p /\ q`
and pth_eq' = TAUT `(p <=> q) <=> (p \/ ~q) /\ (~p \/ q)`
and pth_not_eq' = TAUT `~(p <=> q) <=> (p \/ q) /\ (~p \/ ~q)`
and [pth_not_forall; pth_not_exists; pth_not_exu] =
(CONJUNCTS o prove)
(`(~((!) P) <=> ?x:A. ~(P x)) /\
(~((?) P) <=> !x:A. ~(P x)) /\
(~((?!) P) <=> (!x:A. ~(P x)) \/ ?x y. P x /\ P y /\ ~(y = x))`,
REPEAT CONJ_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o funpow 2 RAND_CONV) [GSYM ETA_AX] THEN
REWRITE_TAC[NOT_EXISTS_THM; NOT_FORALL_THM; EXISTS_UNIQUE_DEF;
DE_MORGAN_THM; NOT_IMP] THEN
REWRITE_TAC[CONJ_ASSOC; EQ_SYM_EQ])
and pth_exu = prove
(`((?!) P) <=> (?x:A. P x) /\ !x y. ~(P x) \/ ~(P y) \/ (y = x)`,
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM ETA_AX] THEN
REWRITE_TAC[EXISTS_UNIQUE_DEF; TAUT `a /\ b ==> c <=> ~a \/ ~b \/ c`] THEN
REWRITE_TAC[EQ_SYM_EQ])
and p_tm = `p:bool` and q_tm = `q:bool` in
let rec NNF_DCONV cf baseconvs tm =
match tm with
Comb(Comb(Const("/\\",_),l),r) ->
let th_lp,th_ln = NNF_DCONV cf baseconvs l
and th_rp,th_rn = NNF_DCONV cf baseconvs r in
MK_COMB(AP_TERM and_tm th_lp,th_rp),
TRANS (INST [l,p_tm; r,q_tm] pth_not_and)
(MK_COMB(AP_TERM or_tm th_ln,th_rn))
| Comb(Comb(Const("\\/",_),l),r) ->
let th_lp,th_ln = NNF_DCONV cf baseconvs l
and th_rp,th_rn = NNF_DCONV cf baseconvs r in
MK_COMB(AP_TERM or_tm th_lp,th_rp),
TRANS (INST [l,p_tm; r,q_tm] pth_not_or)
(MK_COMB(AP_TERM and_tm th_ln,th_rn))
| Comb(Comb(Const("==>",_),l),r) ->
let th_lp,th_ln = NNF_DCONV cf baseconvs l
and th_rp,th_rn = NNF_DCONV cf baseconvs r in
TRANS (INST [l,p_tm; r,q_tm] pth_imp)
(MK_COMB(AP_TERM or_tm th_ln,th_rp)),
TRANS (INST [l,p_tm; r,q_tm] pth_not_imp)
(MK_COMB(AP_TERM and_tm th_lp,th_rn))
| Comb(Comb(Const("=",Tyapp("fun",Tyapp("bool",_)::_)),l),r) ->
let th_lp,th_ln = NNF_DCONV cf baseconvs l
and th_rp,th_rn = NNF_DCONV cf baseconvs r in
if cf then
TRANS (INST [l,p_tm; r,q_tm] pth_eq')
(MK_COMB(AP_TERM and_tm (MK_COMB(AP_TERM or_tm th_lp,th_rn)),
MK_COMB(AP_TERM or_tm th_ln,th_rp))),
TRANS (INST [l,p_tm; r,q_tm] pth_not_eq')
(MK_COMB(AP_TERM and_tm (MK_COMB(AP_TERM or_tm th_lp,th_rp)),
MK_COMB(AP_TERM or_tm th_ln,th_rn)))
else
TRANS (INST [l,p_tm; r,q_tm] pth_eq)
(MK_COMB(AP_TERM or_tm (MK_COMB(AP_TERM and_tm th_lp,th_rp)),
MK_COMB(AP_TERM and_tm th_ln,th_rn))),
TRANS (INST [l,p_tm; r,q_tm] pth_not_eq)
(MK_COMB(AP_TERM or_tm (MK_COMB(AP_TERM and_tm th_lp,th_rn)),
MK_COMB(AP_TERM and_tm th_ln,th_rp)))
| Comb(Const("!",Tyapp("fun",Tyapp("fun",ty::_)::_)) as q,
(Abs(x,t) as bod)) ->
let th_p,th_n = NNF_DCONV true baseconvs t in
AP_TERM q (ABS x th_p),
let th1 = INST [bod,mk_var("P",mk_fun_ty ty bool_ty)]
(INST_TYPE [ty,aty] pth_not_forall)
and th2 = TRANS (AP_TERM not_tm (BETA(mk_comb(bod,x)))) th_n in
TRANS th1 (MK_EXISTS x th2)
| Comb(Const("?",Tyapp("fun",Tyapp("fun",ty::_)::_)) as q,
(Abs(x,t) as bod)) ->
let th_p,th_n = NNF_DCONV cf baseconvs t in
AP_TERM q (ABS x th_p),
let th1 = INST [bod,mk_var("P",mk_fun_ty ty bool_ty)]
(INST_TYPE [ty,aty] pth_not_exists)
and th2 = TRANS (AP_TERM not_tm (BETA(mk_comb(bod,x)))) th_n in
TRANS th1 (MK_FORALL x th2)
| Comb(Const("?!",Tyapp("fun",Tyapp("fun",ty::_)::_)),
(Abs(x,t) as bod)) ->
let y = variant (x::frees t) x
and th_p,th_n = NNF_DCONV cf baseconvs t in
let eq = mk_eq(y,x) in
let eth_p,eth_n = baseconvs eq
and bth = BETA (mk_comb(bod,x))
and bth' = BETA_CONV(mk_comb(bod,y)) in
let th_p' = INST [y,x] th_p and th_n' = INST [y,x] th_n in
let th1 = INST [bod,mk_var("P",mk_fun_ty ty bool_ty)]
(INST_TYPE [ty,aty] pth_exu)
and th1' = INST [bod,mk_var("P",mk_fun_ty ty bool_ty)]
(INST_TYPE [ty,aty] pth_not_exu)
and th2 =
MK_COMB(AP_TERM and_tm
(MK_EXISTS x (TRANS bth th_p)),
MK_FORALL x (MK_FORALL y
(MK_COMB(AP_TERM or_tm (TRANS (AP_TERM not_tm bth) th_n),
MK_COMB(AP_TERM or_tm
(TRANS (AP_TERM not_tm bth') th_n'),
eth_p)))))
and th2' =
MK_COMB(AP_TERM or_tm
(MK_FORALL x (TRANS (AP_TERM not_tm bth) th_n)),
MK_EXISTS x (MK_EXISTS y
(MK_COMB(AP_TERM and_tm (TRANS bth th_p),
MK_COMB(AP_TERM and_tm (TRANS bth' th_p'),
eth_n))))) in
TRANS th1 th2,TRANS th1' th2'
| Comb(Const("~",_),t) ->
let th1,th2 = NNF_DCONV cf baseconvs t in
th2,TRANS (INST [t,p_tm] pth_not_not) th1
| _ -> try baseconvs tm
with Failure _ -> REFL tm,REFL(mk_neg tm) in
let rec NNF_CONV cf (base1,base2 as baseconvs) tm =
match tm with
Comb(Comb(Const("/\\",_),l),r) ->
let th_lp = NNF_CONV cf baseconvs l
and th_rp = NNF_CONV cf baseconvs r in
MK_COMB(AP_TERM and_tm th_lp,th_rp)
| Comb(Comb(Const("\\/",_),l),r) ->
let th_lp = NNF_CONV cf baseconvs l
and th_rp = NNF_CONV cf baseconvs r in
MK_COMB(AP_TERM or_tm th_lp,th_rp)
| Comb(Comb(Const("==>",_),l),r) ->
let th_ln = NNF_CONV' cf baseconvs l
and th_rp = NNF_CONV cf baseconvs r in
TRANS (INST [l,p_tm; r,q_tm] pth_imp)
(MK_COMB(AP_TERM or_tm th_ln,th_rp))
| Comb(Comb(Const("=",Tyapp("fun",Tyapp("bool",_)::_)),l),r) ->
let th_lp,th_ln = NNF_DCONV cf base2 l
and th_rp,th_rn = NNF_DCONV cf base2 r in
if cf then
TRANS (INST [l,p_tm; r,q_tm] pth_eq')
(MK_COMB(AP_TERM and_tm (MK_COMB(AP_TERM or_tm th_lp,th_rn)),
MK_COMB(AP_TERM or_tm th_ln,th_rp)))
else
TRANS (INST [l,p_tm; r,q_tm] pth_eq)
(MK_COMB(AP_TERM or_tm (MK_COMB(AP_TERM and_tm th_lp,th_rp)),
MK_COMB(AP_TERM and_tm th_ln,th_rn)))
| Comb(Const("!",Tyapp("fun",Tyapp("fun",ty::_)::_)) as q,
(Abs(x,t))) ->
let th_p = NNF_CONV true baseconvs t in
AP_TERM q (ABS x th_p)
| Comb(Const("?",Tyapp("fun",Tyapp("fun",ty::_)::_)) as q,
(Abs(x,t))) ->
let th_p = NNF_CONV cf baseconvs t in
AP_TERM q (ABS x th_p)
| Comb(Const("?!",Tyapp("fun",Tyapp("fun",ty::_)::_)),
(Abs(x,t) as bod)) ->
let y = variant (x::frees t) x
and th_p,th_n = NNF_DCONV cf base2 t in
let eq = mk_eq(y,x) in
let eth_p,eth_n = base2 eq
and bth = BETA (mk_comb(bod,x))
and bth' = BETA_CONV(mk_comb(bod,y)) in
let th_n' = INST [y,x] th_n in
let th1 = INST [bod,mk_var("P",mk_fun_ty ty bool_ty)]
(INST_TYPE [ty,aty] pth_exu)
and th2 =
MK_COMB(AP_TERM and_tm
(MK_EXISTS x (TRANS bth th_p)),
MK_FORALL x (MK_FORALL y
(MK_COMB(AP_TERM or_tm (TRANS (AP_TERM not_tm bth) th_n),
MK_COMB(AP_TERM or_tm
(TRANS (AP_TERM not_tm bth') th_n'),
eth_p))))) in
TRANS th1 th2
| Comb(Const("~",_),t) -> NNF_CONV' cf baseconvs t
| _ -> try base1 tm with Failure _ -> REFL tm
and NNF_CONV' cf (base1,base2 as baseconvs) tm =
match tm with
Comb(Comb(Const("/\\",_),l),r) ->
let th_ln = NNF_CONV' cf baseconvs l
and th_rn = NNF_CONV' cf baseconvs r in
TRANS (INST [l,p_tm; r,q_tm] pth_not_and)
(MK_COMB(AP_TERM or_tm th_ln,th_rn))
| Comb(Comb(Const("\\/",_),l),r) ->
let th_ln = NNF_CONV' cf baseconvs l
and th_rn = NNF_CONV' cf baseconvs r in
TRANS (INST [l,p_tm; r,q_tm] pth_not_or)
(MK_COMB(AP_TERM and_tm th_ln,th_rn))
| Comb(Comb(Const("==>",_),l),r) ->
let th_lp = NNF_CONV cf baseconvs l
and th_rn = NNF_CONV' cf baseconvs r in
TRANS (INST [l,p_tm; r,q_tm] pth_not_imp)
(MK_COMB(AP_TERM and_tm th_lp,th_rn))
| Comb(Comb(Const("=",Tyapp("fun",Tyapp("bool",_)::_)),l),r) ->
let th_lp,th_ln = NNF_DCONV cf base2 l
and th_rp,th_rn = NNF_DCONV cf base2 r in
if cf then
TRANS (INST [l,p_tm; r,q_tm] pth_not_eq')
(MK_COMB(AP_TERM and_tm (MK_COMB(AP_TERM or_tm th_lp,th_rp)),
MK_COMB(AP_TERM or_tm th_ln,th_rn)))
else
TRANS (INST [l,p_tm; r,q_tm] pth_not_eq)
(MK_COMB(AP_TERM or_tm (MK_COMB(AP_TERM and_tm th_lp,th_rn)),
MK_COMB(AP_TERM and_tm th_ln,th_rp)))
| Comb(Const("!",Tyapp("fun",Tyapp("fun",ty::_)::_)),
(Abs(x,t) as bod)) ->
let th_n = NNF_CONV' cf baseconvs t in
let th1 = INST [bod,mk_var("P",mk_fun_ty ty bool_ty)]
(INST_TYPE [ty,aty] pth_not_forall)
and th2 = TRANS (AP_TERM not_tm (BETA(mk_comb(bod,x)))) th_n in
TRANS th1 (MK_EXISTS x th2)
| Comb(Const("?",Tyapp("fun",Tyapp("fun",ty::_)::_)),
(Abs(x,t) as bod)) ->
let th_n = NNF_CONV' true baseconvs t in
let th1 = INST [bod,mk_var("P",mk_fun_ty ty bool_ty)]
(INST_TYPE [ty,aty] pth_not_exists)
and th2 = TRANS (AP_TERM not_tm (BETA(mk_comb(bod,x)))) th_n in
TRANS th1 (MK_FORALL x th2)
| Comb(Const("?!",Tyapp("fun",Tyapp("fun",ty::_)::_)),
(Abs(x,t) as bod)) ->
let y = variant (x::frees t) x
and th_p,th_n = NNF_DCONV cf base2 t in
let eq = mk_eq(y,x) in
let eth_p,eth_n = base2 eq
and bth = BETA (mk_comb(bod,x))
and bth' = BETA_CONV(mk_comb(bod,y)) in
let th_p' = INST [y,x] th_p in
let th1' = INST [bod,mk_var("P",mk_fun_ty ty bool_ty)]
(INST_TYPE [ty,aty] pth_not_exu)
and th2' =
MK_COMB(AP_TERM or_tm
(MK_FORALL x (TRANS (AP_TERM not_tm bth) th_n)),
MK_EXISTS x (MK_EXISTS y
(MK_COMB(AP_TERM and_tm (TRANS bth th_p),
MK_COMB(AP_TERM and_tm (TRANS bth' th_p'),
eth_n))))) in
TRANS th1' th2'
| Comb(Const("~",_),t) ->
let th1 = NNF_CONV cf baseconvs t in
TRANS (INST [t,p_tm] pth_not_not) th1
| _ -> let tm' = mk_neg tm in try base1 tm' with Failure _ -> REFL tm' in
NNF_CONV;;
(* ------------------------------------------------------------------------- *)
(* Some common special cases. *)
(* ------------------------------------------------------------------------- *)
let NNF_CONV =
(GEN_NNF_CONV false (ALL_CONV,fun t -> REFL t,REFL(mk_neg t)) :conv);;
let NNFC_CONV =
(GEN_NNF_CONV true (ALL_CONV,fun t -> REFL t,REFL(mk_neg t)) :conv);;
(* ------------------------------------------------------------------------- *)
(* Skolemize a term already in NNF (doesn't matter if it's not prenex). *)
(* ------------------------------------------------------------------------- *)
let SKOLEM_CONV =
GEN_REWRITE_CONV TOP_DEPTH_CONV
[EXISTS_OR_THM; LEFT_EXISTS_AND_THM; RIGHT_EXISTS_AND_THM;
FORALL_AND_THM; LEFT_FORALL_OR_THM; RIGHT_FORALL_OR_THM;
FORALL_SIMP; EXISTS_SIMP] THENC
GEN_REWRITE_CONV REDEPTH_CONV
[RIGHT_AND_EXISTS_THM;
LEFT_AND_EXISTS_THM;
OR_EXISTS_THM;
RIGHT_OR_EXISTS_THM;
LEFT_OR_EXISTS_THM;
SKOLEM_THM];;
(* ------------------------------------------------------------------------- *)
(* Put a term already in NNF into prenex form. *)
(* ------------------------------------------------------------------------- *)
let PRENEX_CONV =
GEN_REWRITE_CONV REDEPTH_CONV
[AND_FORALL_THM; LEFT_AND_FORALL_THM; RIGHT_AND_FORALL_THM;
LEFT_OR_FORALL_THM; RIGHT_OR_FORALL_THM;
OR_EXISTS_THM; LEFT_OR_EXISTS_THM; RIGHT_OR_EXISTS_THM;
LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM];;
(* ------------------------------------------------------------------------- *)
(* Weak and normal DNF conversion. The "weak" form gives a disjunction of *)
(* conjunctions, but has no particular associativity at either level and *)
(* may contain duplicates. The regular forms give canonical right-associate *)
(* lists without duplicates, but do not remove subsumed disjuncts. *)
(* *)
(* In both cases the input term is supposed to be in NNF already. We do go *)
(* inside quantifiers and transform their body, but don't move them. *)
(* ------------------------------------------------------------------------- *)
let WEAK_DNF_CONV,DNF_CONV =
let pth1 = TAUT `a /\ (b \/ c) <=> a /\ b \/ a /\ c`
and pth2 = TAUT `(a \/ b) /\ c <=> a /\ c \/ b /\ c`
and a_tm = `a:bool` and b_tm = `b:bool` and c_tm = `c:bool` in
let rec distribute tm =
match tm with
Comb(Comb(Const("/\\",_),a),Comb(Comb(Const("\\/",_),b),c)) ->
let th = INST [a,a_tm; b,b_tm; c,c_tm] pth1 in
TRANS th (BINOP_CONV distribute (rand(concl th)))
| Comb(Comb(Const("/\\",_),Comb(Comb(Const("\\/",_),a),b)),c) ->
let th = INST [a,a_tm; b,b_tm; c,c_tm] pth2 in
TRANS th (BINOP_CONV distribute (rand(concl th)))
| _ -> REFL tm in
let strengthen =
DEPTH_BINOP_CONV `(\/)` CONJ_CANON_CONV THENC DISJ_CANON_CONV in
let rec weakdnf tm =
match tm with
Comb(Const("!",_),Abs(_,_))
| Comb(Const("?",_),Abs(_,_)) -> BINDER_CONV weakdnf tm
| Comb(Comb(Const("\\/",_),_),_) -> BINOP_CONV weakdnf tm
| Comb(Comb(Const("/\\",_) as op,l),r) ->
let th = MK_COMB(AP_TERM op (weakdnf l),weakdnf r) in
TRANS th (distribute(rand(concl th)))
| _ -> REFL tm
and substrongdnf tm =
match tm with
Comb(Const("!",_),Abs(_,_))
| Comb(Const("?",_),Abs(_,_)) -> BINDER_CONV strongdnf tm
| Comb(Comb(Const("\\/",_),_),_) -> BINOP_CONV substrongdnf tm
| Comb(Comb(Const("/\\",_) as op,l),r) ->
let th = MK_COMB(AP_TERM op (substrongdnf l),substrongdnf r) in
TRANS th (distribute(rand(concl th)))
| _ -> REFL tm
and strongdnf tm =
let th = substrongdnf tm in
TRANS th (strengthen(rand(concl th))) in
weakdnf,strongdnf;;
(* ------------------------------------------------------------------------- *)
(* Likewise for CNF. *)
(* ------------------------------------------------------------------------- *)
let WEAK_CNF_CONV,CNF_CONV =
let pth1 = TAUT `a \/ (b /\ c) <=> (a \/ b) /\ (a \/ c)`
and pth2 = TAUT `(a /\ b) \/ c <=> (a \/ c) /\ (b \/ c)`
and a_tm = `a:bool` and b_tm = `b:bool` and c_tm = `c:bool` in
let rec distribute tm =
match tm with
Comb(Comb(Const("\\/",_),a),Comb(Comb(Const("/\\",_),b),c)) ->
let th = INST [a,a_tm; b,b_tm; c,c_tm] pth1 in
TRANS th (BINOP_CONV distribute (rand(concl th)))
| Comb(Comb(Const("\\/",_),Comb(Comb(Const("/\\",_),a),b)),c) ->
let th = INST [a,a_tm; b,b_tm; c,c_tm] pth2 in
TRANS th (BINOP_CONV distribute (rand(concl th)))
| _ -> REFL tm in
let strengthen =
DEPTH_BINOP_CONV `(/\)` DISJ_CANON_CONV THENC CONJ_CANON_CONV in
let rec weakcnf tm =
match tm with
Comb(Const("!",_),Abs(_,_))
| Comb(Const("?",_),Abs(_,_)) -> BINDER_CONV weakcnf tm
| Comb(Comb(Const("/\\",_),_),_) -> BINOP_CONV weakcnf tm
| Comb(Comb(Const("\\/",_) as op,l),r) ->
let th = MK_COMB(AP_TERM op (weakcnf l),weakcnf r) in
TRANS th (distribute(rand(concl th)))
| _ -> REFL tm
and substrongcnf tm =
match tm with
Comb(Const("!",_),Abs(_,_))
| Comb(Const("?",_),Abs(_,_)) -> BINDER_CONV strongcnf tm
| Comb(Comb(Const("/\\",_),_),_) -> BINOP_CONV substrongcnf tm
| Comb(Comb(Const("\\/",_) as op,l),r) ->
let th = MK_COMB(AP_TERM op (substrongcnf l),substrongcnf r) in
TRANS th (distribute(rand(concl th)))
| _ -> REFL tm
and strongcnf tm =
let th = substrongcnf tm in
TRANS th (strengthen(rand(concl th))) in
weakcnf,strongcnf;;
(* ------------------------------------------------------------------------- *)
(* Simply right-associate w.r.t. a binary operator. *)
(* ------------------------------------------------------------------------- *)
let ASSOC_CONV th =
let th' = SYM(SPEC_ALL th) in
let opx,yopz = dest_comb(rhs(concl th')) in
let op,x = dest_comb opx in
let y = lhand yopz and z = rand yopz in
let rec distrib tm =
match tm with
Comb(Comb(op',Comb(Comb(op'',p),q)),r) when op' = op && op'' = op ->
let th1 = INST [p,x; q,y; r,z] th' in
let l,r' = dest_comb(rand(concl th1)) in
let th2 = AP_TERM l (distrib r') in
let th3 = distrib(rand(concl th2)) in
TRANS th1 (TRANS th2 th3)
| _ -> REFL tm in
let rec assoc tm =
match tm with
Comb(Comb(op',p) as l,q) when op' = op ->
let th = AP_TERM l (assoc q) in
TRANS th (distrib(rand(concl th)))
| _ -> REFL tm in
assoc;;
(* ------------------------------------------------------------------------- *)
(* Eliminate select terms from a goal. *)
(* ------------------------------------------------------------------------- *)
let SELECT_ELIM_TAC =
let SELECT_ELIM_CONV =
let SELECT_ELIM_THM =
let pth = prove
(`(P:A->bool)((@) P) <=> (?) P`,
REWRITE_TAC[EXISTS_THM] THEN BETA_TAC THEN REFL_TAC)
and ptm = `P:A->bool` in
fun tm -> let stm,atm = dest_comb tm in
if is_const stm && fst(dest_const stm) = "@" then
CONV_RULE(LAND_CONV BETA_CONV)
(PINST [type_of(bndvar atm),aty] [atm,ptm] pth)
else failwith "SELECT_ELIM_THM: not a select-term" in
fun tm ->
PURE_REWRITE_CONV (map SELECT_ELIM_THM (find_terms is_select tm)) tm in
let SELECT_ELIM_ICONV =
let SELECT_AX_THM =
let pth = ISPEC `P:A->bool` SELECT_AX
and ptm = `P:A->bool` in
fun tm -> let stm,atm = dest_comb tm in
if is_const stm && fst(dest_const stm) = "@" then
let fvs = frees atm in
let th1 = PINST [type_of(bndvar atm),aty] [atm,ptm] pth in
let th2 = CONV_RULE(BINDER_CONV (BINOP_CONV BETA_CONV)) th1 in
GENL fvs th2
else failwith "SELECT_AX_THM: not a select-term" in
let SELECT_ELIM_ICONV tm =
let t = find_term is_select tm in
let th1 = SELECT_AX_THM t in
let itm = mk_imp(concl th1,tm) in
let th2 = DISCH_ALL (MP (ASSUME itm) th1) in
let fvs = frees t in
let fty = itlist (mk_fun_ty o type_of) fvs (type_of t) in
let fn = genvar fty
and atm = list_mk_abs(fvs,t) in
let rawdef = mk_eq(fn,atm) in
let def = GENL fvs (SYM(RIGHT_BETAS fvs (ASSUME rawdef))) in
let th3 = PURE_REWRITE_CONV[def] (lhand(concl th2)) in
let gtm = mk_forall(fn,rand(concl th3)) in
let th4 = EQ_MP (SYM th3) (SPEC fn (ASSUME gtm)) in
let th5 = IMP_TRANS (DISCH gtm th4) th2 in
MP (INST [atm,fn] (DISCH rawdef th5)) (REFL atm) in
let rec SELECT_ELIMS_ICONV tm =
try let th = SELECT_ELIM_ICONV tm in
let tm' = lhand(concl th) in
IMP_TRANS (SELECT_ELIMS_ICONV tm') th
with Failure _ -> DISCH tm (ASSUME tm) in
SELECT_ELIMS_ICONV in
CONV_TAC SELECT_ELIM_CONV THEN W(MATCH_MP_TAC o SELECT_ELIM_ICONV o snd);;
(* ------------------------------------------------------------------------- *)
(* Eliminate all lambda-terms except those part of quantifiers. *)
(* ------------------------------------------------------------------------- *)
let LAMBDA_ELIM_CONV =
let HALF_MK_ABS_CONV =
let pth = prove
(`(s = \x. t x) <=> (!x. s x = t x)`,
REWRITE_TAC[FUN_EQ_THM]) in
let rec conv vs tm =
if vs = [] then REFL tm else
(GEN_REWRITE_CONV I [pth] THENC BINDER_CONV(conv (tl vs))) tm in
conv in
let rec find_lambda tm =
if is_abs tm then tm
else if is_var tm || is_const tm then failwith "find_lambda"
else if is_abs tm then tm else
if is_forall tm || is_exists tm || is_uexists tm
then find_lambda (body(rand tm)) else
let l,r = dest_comb tm in
try find_lambda l with Failure _ -> find_lambda r in
let rec ELIM_LAMBDA conv tm =
try conv tm with Failure _ ->
if is_abs tm then ABS_CONV (ELIM_LAMBDA conv) tm
else if is_var tm || is_const tm then REFL tm else
if is_forall tm || is_exists tm || is_uexists tm
then BINDER_CONV (ELIM_LAMBDA conv) tm
else COMB_CONV (ELIM_LAMBDA conv) tm in
let APPLY_PTH =
let pth = prove
(`(!a. (a = c) ==> (P = Q a)) ==> (P <=> !a. (a = c) ==> Q a)`,
SIMP_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL]) in
MATCH_MP pth in
let LAMB1_CONV tm =
let atm = find_lambda tm in
let v,bod = dest_abs atm in
let vs = frees atm in
let vs' = vs @ [v] in
let aatm = list_mk_abs(vs,atm) in
let f = genvar(type_of aatm) in
let eq = mk_eq(f,aatm) in
let th1 = SYM(RIGHT_BETAS vs (ASSUME eq)) in
let th2 = ELIM_LAMBDA(GEN_REWRITE_CONV I [th1]) tm in
let th3 = APPLY_PTH (GEN f (DISCH_ALL th2)) in
CONV_RULE(RAND_CONV(BINDER_CONV(LAND_CONV (HALF_MK_ABS_CONV vs')))) th3 in
let rec conv tm =
try (LAMB1_CONV THENC conv) tm with Failure _ -> REFL tm in
conv;;
(* ------------------------------------------------------------------------- *)
(* Eliminate conditionals; CONDS_ELIM_CONV aims for disjunctive splitting, *)
(* for refutation procedures, and CONDS_CELIM_CONV for conjunctive. *)
(* Both switch modes "sensibly" when going through a quantifier. *)
(* ------------------------------------------------------------------------- *)
let CONDS_ELIM_CONV,CONDS_CELIM_CONV =
let th_cond = prove
(`((b <=> F) ==> x = x0) /\ ((b <=> T) ==> x = x1)
==> x = (b /\ x1 \/ ~b /\ x0)`,
BOOL_CASES_TAC `b:bool` THEN ASM_REWRITE_TAC[])
and th_cond' = prove
(`((b <=> F) ==> x = x0) /\ ((b <=> T) ==> x = x1)
==> x = ((~b \/ x1) /\ (b \/ x0))`,
BOOL_CASES_TAC `b:bool` THEN ASM_REWRITE_TAC[])
and propsimps = basic_net()
and false_tm = `F` and true_tm = `T` in
let match_th = MATCH_MP th_cond and match_th' = MATCH_MP th_cond'
and propsimp_conv = DEPTH_CONV(REWRITES_CONV propsimps)
and proptsimp_conv =
let cnv = TRY_CONV(REWRITES_CONV propsimps) in
BINOP_CONV cnv THENC cnv in
let rec find_conditional fvs tm =
match tm with
Comb(s,t) ->
if is_cond tm && intersect (frees(lhand s)) fvs = [] then tm
else (try (find_conditional fvs s)
with Failure _ -> find_conditional fvs t)
| Abs(x,t) -> find_conditional (x::fvs) t
| _ -> failwith "find_conditional" in
let rec CONDS_ELIM_CONV dfl tm =
try let t = find_conditional [] tm in
let p = lhand(rator t) in
let th_new =
if p = false_tm || p = true_tm then propsimp_conv tm else
let asm_0 = mk_eq(p,false_tm) and asm_1 = mk_eq(p,true_tm) in
let simp_0 = net_of_thm false (ASSUME asm_0) propsimps
and simp_1 = net_of_thm false (ASSUME asm_1) propsimps in
let th_0 = DISCH asm_0 (DEPTH_CONV(REWRITES_CONV simp_0) tm)
and th_1 = DISCH asm_1 (DEPTH_CONV(REWRITES_CONV simp_1) tm) in
let th_2 = CONJ th_0 th_1 in
let th_3 = if dfl then match_th th_2 else match_th' th_2 in
TRANS th_3 (proptsimp_conv(rand(concl th_3))) in
CONV_RULE (RAND_CONV (CONDS_ELIM_CONV dfl)) th_new
with Failure _ ->
if is_neg tm then
RAND_CONV (CONDS_ELIM_CONV (not dfl)) tm
else if is_conj tm || is_disj tm then
BINOP_CONV (CONDS_ELIM_CONV dfl) tm
else if is_imp tm || is_iff tm then
COMB2_CONV (RAND_CONV (CONDS_ELIM_CONV (not dfl)))
(CONDS_ELIM_CONV dfl) tm
else if is_forall tm then
BINDER_CONV (CONDS_ELIM_CONV false) tm
else if is_exists tm || is_uexists tm then
BINDER_CONV (CONDS_ELIM_CONV true) tm
else REFL tm in
CONDS_ELIM_CONV true,CONDS_ELIM_CONV false;;
(* ------------------------------------------------------------------------- *)
(* Fix up all head arities to be consistent, in "first order logic" style. *)
(* Applied to the assumptions (not conclusion) in a goal. *)
(* ------------------------------------------------------------------------- *)
let ASM_FOL_TAC =
let rec get_heads lconsts tm (cheads,vheads as sofar) =
try let v,bod = dest_forall tm in
get_heads (subtract lconsts [v]) bod sofar
with Failure _ -> try
let l,r = try dest_conj tm with Failure _ -> dest_disj tm in
get_heads lconsts l (get_heads lconsts r sofar)
with Failure _ -> try
let tm' = dest_neg tm in
get_heads lconsts tm' sofar
with Failure _ ->
let hop,args = strip_comb tm in
let len = length args in
let newheads =
if is_const hop || mem hop lconsts
then (insert (hop,len) cheads,vheads)
else if len > 0 then (cheads,insert (hop,len) vheads) else sofar in
itlist (get_heads lconsts) args newheads in
let get_thm_heads th sofar =
get_heads (freesl(hyp th)) (concl th) sofar in
let APP_CONV =
let th = prove
(`!(f:A->B) x. f x = I f x`,
REWRITE_TAC[I_THM]) in
REWR_CONV th in
let rec APP_N_CONV n tm =
if n = 1 then APP_CONV tm
else (RATOR_CONV (APP_N_CONV (n - 1)) THENC APP_CONV) tm in
let rec FOL_CONV hddata tm =
if is_forall tm then BINDER_CONV (FOL_CONV hddata) tm
else if is_conj tm || is_disj tm then BINOP_CONV (FOL_CONV hddata) tm else
let op,args = strip_comb tm in
let th = rev_itlist (C (curry MK_COMB))
(map (FOL_CONV hddata) args) (REFL op) in
let tm' = rand(concl th) in
let n = try length args - assoc op hddata with Failure _ -> 0 in
if n = 0 then th
else TRANS th (APP_N_CONV n tm') in
let GEN_FOL_CONV (cheads,vheads) =
let hddata =
if vheads = [] then
let hops = setify (map fst cheads) in
let getmin h =
let ns = mapfilter
(fun (k,n) -> if k = h then n else fail()) cheads in
if length ns < 2 then fail() else h,end_itlist min ns in
mapfilter getmin hops
else
map (fun t -> if is_const t && fst(dest_const t) = "="
then t,2 else t,0)
(setify (map fst (vheads @ cheads))) in
FOL_CONV hddata in
fun (asl,w as gl) ->
let headsp = itlist (get_thm_heads o snd) asl ([],[]) in
RULE_ASSUM_TAC(CONV_RULE(GEN_FOL_CONV headsp)) gl;;
(* ------------------------------------------------------------------------- *)
(* Depth conversion to apply at "atomic" formulas in "first-order" term. *)
(* ------------------------------------------------------------------------- *)
let rec PROP_ATOM_CONV conv tm =
match tm with
Comb((Const("!",_) | Const("?",_) | Const("?!",_)),Abs(_,_))
-> BINDER_CONV (PROP_ATOM_CONV conv) tm
| Comb(Comb
((Const("/\\",_) | Const("\\/",_) | Const("==>",_) |
(Const("=",Tyapp("fun",[Tyapp("bool",[]);_])))),_),_)
-> BINOP_CONV (PROP_ATOM_CONV conv) tm
| Comb(Const("~",_),_) -> RAND_CONV (PROP_ATOM_CONV conv) tm
| _ -> TRY_CONV conv tm;;