-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtr_helpers.py
58 lines (47 loc) · 1.72 KB
/
tr_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
class LinearValueProcessor:
def __init__(self, start_eps, end_eps, end_eps_frames):
self.start_eps = start_eps
self.end_eps = end_eps
self.end_eps_frames = end_eps_frames
def __call__(self, frame):
if frame >= self.end_eps_frames:
return self.end_eps
df = frame / self.end_eps_frames
return df * self.end_eps + (1.0 - df) * self.start_eps
class DefaultRewardsShaper:
def __init__(self, clip_value = 0, scale_value = 1, shift_value = 0):
self.clip_value = clip_value
self.scale_value = scale_value
self.shift_value = shift_value
def __call__(self, reward):
reward = reward + self.shift_value
reward = reward * self.scale_value
if self.clip_value > 0:
reward = np.clip(reward, -self.clip_value, self.clip_value)
return reward
def discount_with_dones(rewards, dones, gamma):
discounted = []
r = 0
for reward, done in zip(rewards[::-1], dones[::-1]):
r = reward + gamma*r*(1.-done)
discounted.append(r)
return discounted[::-1]
def compute_gae(rewards, dones, values, gamma, tau):
gae = 0
returns = []
for step in reversed(range(len(rewards))):
delta = rewards[step] + gamma * values[step + 1] * (1 - dones[step]) - values[step]
gae = delta + gamma * tau * (1 -dones[step]) * gae
returns.append(gae + values[step])
return returns[::-1]
def flatten_first_two_dims(arr):
if arr.ndim > 2:
return arr.reshape(-1, *arr.shape[-(arr.ndim-2):])
else:
return arr.reshape(-1)
def get_or_default(config, name, def_val):
if name in config:
return config[name]
else:
return def_val