-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
291 lines (232 loc) · 10.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import os
import pickle
import json
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from transformers import BertModel
ROOT_PATH = '.'
def tsv_to_dict(input_file, output_file):
input = pd.read_csv(input_file, sep='\t', names=['id', 'description'])
fbid_to_desc = {}
for index, sample in input.iterrows():
ent_fb_id = sample['id']
ent_desc = sample['description']
fbid_to_desc[ent_fb_id] = ent_desc
# Save entity2FBid dictionary
save_dict(fbid_to_desc, output_file)
def get_entity_to_FB_id(reside_train_dataset, reside_test_dataset, output_file):
entity2FBid = {}
# Get entities from test dataset
print("Get entities from test set...")
test_samples = []
for line in open(reside_test_dataset, 'r', encoding='utf8'):
test_samples.append(json.loads(line))
for sample in test_samples:
# Append {head_ent, head_FB_id} if not already in dict
head_ent = " ".join(sample['sub'].split("_"))
head_FB_id = sample['sub_id']
if head_ent not in entity2FBid:
entity2FBid[head_ent] = head_FB_id
# Append {head_ent, head_FB_id} if not already in dict
tail_ent = " ".join(sample['obj'].split("_"))
tail_FB_id = sample['obj_id']
if tail_ent not in entity2FBid:
entity2FBid[tail_ent] = tail_FB_id
del test_samples
## Get entities from TRAIN dataset
print("Get entities from train set...")
train_samples = []
for line in open(reside_train_dataset, 'r', encoding='utf8'):
train_samples.append(json.loads(line))
for sample in train_samples:
# Append {head_ent, head_FB_id} if not already in dict
head_ent = " ".join(sample['sub'].split("_"))
head_FB_id = sample['sub_id']
if head_ent not in entity2FBid:
entity2FBid[head_ent] = head_FB_id
# Append {head_ent, head_FB_id} if not already in dict
tail_ent = " ".join(sample['obj'].split("_"))
tail_FB_id = sample['obj_id']
if tail_ent not in entity2FBid:
entity2FBid[tail_ent] = tail_FB_id
del train_samples
# Save entity2FBid dictionary
save_dict(entity2FBid, output_file)
return entity2FBid
def get_relative_position_ids(tokens, head_tokens, tail_tokens, max_length):
cls_token_id = tokens.index("[CLS]")
h_sep_token_id = tokens.index("[H-SEP]")
t_sep_token_id = tokens.index("[T-SEP]")
sep_token_id = tokens.index("[SEP]")
# Get all head token ids
head_tokens_pos = []
for i in range(0, len(head_tokens)):
head_token_pos = np.where(np.array(tokens) == head_tokens[i])[0]
head_tokens_pos.extend(head_token_pos)
head_stp_tokens = sorted(i for i in head_tokens_pos if i > t_sep_token_id)
# Get all tail token ids
tail_tokens_pos = []
for i in range(0, len(tail_tokens)):
tail_token_pos = np.where(np.array(tokens) == tail_tokens[i])[0]
tail_tokens_pos.extend(tail_token_pos)
tail_stp_tokens = sorted(i for i in tail_tokens_pos if i > t_sep_token_id)
head_tail_distance = min(tail_stp_tokens) - max(head_stp_tokens)
## RELATIVE POSITION IDS##
rel_pos_ids = np.zeros(max_length)
# For CLS token, rel_pos = self.max_pos_distance
rel_pos_ids[cls_token_id] = max_length - 1
# Tokens in Head Tokens assigned with i=0
rel_pos_ids[head_tokens_pos] = 0
rel_pos_ids[cls_token_id + 1] = 0
rel_pos_ids[h_sep_token_id] = max_length - 2
# Tokens between head and tail
rel_pos_ids[max(head_stp_tokens) + 1: min(tail_stp_tokens)] = np.arange(1, head_tail_distance)
# Tail Tokens
rel_pos_ids[h_sep_token_id + 1] = head_tail_distance
rel_pos_ids[tail_tokens_pos] = head_tail_distance
rel_pos_ids[t_sep_token_id] = max_length - 2
# SEP Token
rel_pos_ids[sep_token_id] = head_tail_distance + 1
# Rest Tokens
rel_pos_ids[sep_token_id:max_length] = np.arange(head_tail_distance + 1,
max_length - sep_token_id + head_tail_distance + 1)
return rel_pos_ids
def get_rel_positions(tokens, head_tokens, tail_tokens):
cls_token_id = tokens.index("[CLS]")
h_sep_token_id = tokens.index("[H-SEP]")
t_sep_token_id = tokens.index("[T-SEP]")
sep_token_id = tokens.index("[SEP]")
# Get all head token ids
head_tokens_pos = []
for i in range(0, len(head_tokens)):
head_token_pos = np.where(np.array(tokens) == head_tokens[i])[0]
head_tokens_pos.extend(head_token_pos)
head_stp_tokens = sorted(i for i in head_tokens_pos if i > t_sep_token_id)
# Get all tail token ids
tail_tokens_pos = []
for i in range(0, len(tail_tokens)):
tail_token_pos = np.where(np.array(tokens) == tail_tokens[i])[0]
tail_tokens_pos.extend(tail_token_pos)
tail_stp_tokens = sorted(i for i in tail_tokens_pos if i > t_sep_token_id)
head_tail_distance = min(tail_stp_tokens) - max(head_stp_tokens)
## HEAD RELATIVE POSITION ##
h_rel_pos = np.zeros(len(tokens))
# For CLS token, rel_pos = self.max_pos_distance
h_rel_pos[cls_token_id] = 0 # max_pos_distance
# Tokens in Head Tokens assigned with i=0
h_rel_pos[head_tokens_pos] = 0
h_rel_pos[cls_token_id + 1] = 0
h_rel_pos[h_sep_token_id] = 0
# Tokens between head and tail
h_rel_pos[max(head_stp_tokens) + 1: min(tail_stp_tokens)] = np.arange(1, head_tail_distance)
# Tail Tokens
h_rel_pos[h_sep_token_id + 1] = head_tail_distance
h_rel_pos[tail_tokens_pos] = head_tail_distance
h_rel_pos[t_sep_token_id] = head_tail_distance
# SEP Token
h_rel_pos[sep_token_id] = head_tail_distance + 1
## TAIL RELATIVE POSITION ##
t_rel_pos = np.zeros(len(tokens))
# For CLS token, rel_pos = self.max_pos_distance
t_rel_pos[cls_token_id] = 0 # max_pos_distance
# Tokens in Tail Tokens assigned with i=0
t_rel_pos[tail_tokens_pos] = 0
t_rel_pos[h_sep_token_id + 1] = 0
t_rel_pos[t_sep_token_id] = 0
# Tokens between head and tail
t_rel_pos[max(head_stp_tokens) + 1: min(tail_stp_tokens) + 1] = np.arange(-head_tail_distance + 1, 1)
# Head Tokens
t_rel_pos[cls_token_id + 1] = -head_tail_distance
t_rel_pos[head_tokens_pos] = -head_tail_distance
t_rel_pos[h_sep_token_id] = -head_tail_distance
# SEP Token
t_rel_pos[sep_token_id] = 1
return list(h_rel_pos.astype(np.int32)), list(t_rel_pos.astype(np.int32))
def plot_train_val_loss(train_loss, valid_loss, model_name):
output_file = os.path.join(ROOT_PATH, 'experiments/outputs', model_name, 'train_val_loss.png')
# visualize the loss as the network trained
fig = plt.figure(figsize=(10, 8))
plt.plot(range(1, len(train_loss) + 1), train_loss, label='Training Loss')
plt.plot(range(1, len(valid_loss) + 1), valid_loss, label='Validation Loss')
# find position of lowest validation loss
minposs = valid_loss.index(min(valid_loss)) + 1
plt.axvline(minposs, linestyle='--', color='r', label='Early Stopping Checkpoint')
plt.xlabel('epochs')
plt.ylabel('loss')
plt.ylim(0, 0.5) # consistent scale
plt.xlim(0, len(train_loss) + 1) # consistent scale
plt.grid(True)
plt.legend()
plt.tight_layout()
fig.savefig(output_file, bbox_inches='tight')
def plot_precision_recall_curve(precision, recall, auc, model_name):
output_file = os.path.join(ROOT_PATH, 'experiments/outputs', model_name, 'prec_rec_curve.png')
plt.figure()
label = model_name + ' | AUC:' + str(round(auc, 3))
print("Label:", label)
plt.grid(True)
plt.xticks(np.arange(0, 1.1, 0.1))
plt.yticks(np.arange(0, 1.1, 0.1))
plt.xlim(0, 1)
plt.ylim(0, 1)
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.title('Precision-Recall')
plt.plot(recall, precision, 'r', linewidth=1, label=label)
plt.legend(loc="upper right")
plt.savefig(output_file)
def save_precision_recall_values(precision, recall, model_name):
prec_rec_dict = {'prec': precision, 'rec': recall}
# Save dict to file
output_file = os.path.join(ROOT_PATH, 'experiments/outputs', model_name, 'prec_rec_dict.pkl')
save_dict(prec_rec_dict, output_file)
def save_eval_metrics(p100, p200, p300, p500, p1000, p2000, pAll, auc, model_name):
eval_metrics_dict = {'auc': auc, 'p@100': p100, 'p@200': p200, 'p@300': p300, 'p@500': p500, 'p@1000': p1000,
'p@2000': p2000, 'p@all': pAll}
# Save dict to file
output_file = os.path.join(ROOT_PATH, 'experiments/outputs', model_name, 'eval_metrics_dict.pkl')
save_dict(eval_metrics_dict, output_file)
def save_labels_distribution_at_top_300_predictions(labels_distribution, model_name):
# Save dict to file
output_file = os.path.join(ROOT_PATH, 'experiments/outputs', model_name, 'labels_distribution_top300_dict.pkl')
save_dict(labels_distribution, output_file)
def save_model_attention_weights(attentions, model_name):
attentions_dict = {'attention': attentions}
# Save dict to file
output_file = os.path.join(ROOT_PATH, 'experiments/outputs', model_name, 'attention_weights.pkl')
save_dict(attentions_dict, output_file)
def save_dict(dictionary, file_path):
with open(file_path, 'wb') as f:
pickle.dump(dictionary, f, pickle.HIGHEST_PROTOCOL)
def load_dict(file_path):
with open(file_path, 'rb') as f:
return pickle.load(f)
def save_json(sorted_pred_results, output_file):
with open(output_file, 'w') as f:
json.dump(sorted_pred_results, f)
def load_json(file_path):
with open(file_path, 'rb') as f:
return json.load(f)
def save_finetuned_model(finetuned_model, model_name):
# Save fine-tuned model
output_dir = os.path.join(ROOT_PATH, 'experiments/outputs', model_name, 'finetuned_model')
print("Saving model in %s" % output_dir)
finetuned_model.save_pretrained(output_dir)
def save_updated_tokenizer(updated_tokenizer, model_name):
# Save finetuned model
output_dir = os.path.join(ROOT_PATH, 'experiments/outputs', model_name, 'finetuned_model')
print("Saving model in %s" % output_dir)
updated_tokenizer.save_pretrained(output_dir)
def load_finetuned_model(model_dir):
model = BertModel.from_pretrained(model_dir)
# Copy the model to the GPU.
# model.to(device)
return model
def save_relational_facts(rel_facts_dict, model_name):
rel_facts = [k for k, v in rel_facts_dict.items()]
output_file = os.path.join(ROOT_PATH, 'experiments/outputs', model_name, 'rel_facts.json')
save_json(rel_facts, output_file)
def save_sorted_pred_results(sorted_pred_results, model_name):
output_file = os.path.join(ROOT_PATH, 'experiments/outputs', model_name, 'sorted_pred_results.json')
save_json(sorted_pred_results, output_file)