-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlazy-predict.py
32 lines (23 loc) · 1.2 KB
/
lazy-predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from lazypredict.Supervised import LazyClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import pandas as pd
# Replace 'your_encoded_data_file.xlsx' with the actual file path
encoded_data_file_path = 'concatenated_data1.xlsx' # Replace with your actual file path
# Read the Excel file into a DataFrame
df = pd.read_excel(encoded_data_file_path)
# Features (finger positions)
X = df.iloc[:, :5]
# Target variable (single column with binary numbers representing classes)
y = df['label'] # Replace 'your_target_column_name' with the actual column name
# Split the data into training and testing sets (70% train, 30% test)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Use StandardScaler for normalization
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Use Lazy Predict to automatically select and evaluate models
clf = LazyClassifier(ignore_warnings=True, custom_metric=None)
models, predictions = clf.fit(X_train_scaled, X_test_scaled, y_train, y_test)
# Display the model performance summary
print(models)