forked from iffyaiyan/Heart-Rate-Variability
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathBIL_HRV.py
213 lines (177 loc) · 7.45 KB
/
BIL_HRV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
def hrv(file, complete_sequence="false", threshold=0.1, x=50, correction="false", fs=4):
'''(file, complete_sequence="false", threshold=0.1, x=50, correction="false") -> {HRV Metrics}
Returns a dictionary of time and frequency domain metrics
file - is the data file with the first column as time, and the second column as IBI
complete_sequence - takes a true or false argument for whether you require the longest sequence of non missing data
threshold - is used to set the permissible difference between IBI
x - is the time in milliseconds for calculating pNN and NN
correction - is to take care of outliers, should be used carefully
fs - for sample rate interpolation in frequency domain
example:
>>> h = hrv("ibi.csv")
{'MeanRR': 1033.9,
'MeanHR': 58.6,
'MinHR': 48.1,
'MaxHR': 89.5,
'SDNN': 103.1,
'RMSSD': 70.9,
'NNx': 2257.0,
'pNNx': 38.7,
'PowerVLF': 1828.85,
'PowerLF': 1852.32,
'PowerHF': 1299.42,
'PowerTotal': 4980.6,
'LF/HF': 1.43,
'PeakVLF': 0.02,
'PeakLF': 0.05,
'PeakHF': 0.27,
'FractionLF': 58.77,
'FractionHF': 41.23}
'''
import numpy as np
import pandas as pd
from scipy.stats import zscore
from scipy.interpolate import interp1d
from scipy import signal
from scipy.integrate import trapz
metrics = {}
# Function for reading csv file and extracting timer and ibi
def readTimerIBI(file, complete_sequence, threshold):
'''(file_location, complete_sequence="false",threshold=0.1) -> {time_domain dictionary}
Returns file in the required format.
file_location is the data file with the first column as time, and the second column as IBI
complete_sequence takes a true or false argument for whether you require the longest sequence of non missing data
threshold is used to set the permissible difference between IBI
'''
file = pd.read_csv(file)
file.columns = ['time', 'IBI']
if complete_sequence == "false":
# ibi = file['IBI']
# timer = file['time']
# timerIBI = {"ibi": ibi, "timer": timer}
# return timerIBI
return file
else:
start = [file['time'][0]]
end = []
for i in range(1, len(file['time'] + 1)):
if abs(file['time'][i] - file['time'][i - 1] - file['IBI'][i]) > threshold:
end.append(file['time'][i - 1])
start.append(file['time'][i])
else:
continue
end.append(file['time'][len(file) - 1])
# get max data sequence
time_diff = list(np.array(end) - np.array(start))
index = [0]
max_cut_off = 0
for i in time_diff:
if i >= max_cut_off:
max_cut_off = i
index[0] = time_diff.index(i)
s = []
e = []
d = []
for i in index:
s.append(start[i])
e.append(end[i])
d.append(end[i] - start[i])
data = {'start': s, 'end': e, 'difference': d}
df = file.loc[(file['time'] >= data['start']) & (file['time'] <= data['end'])]
return (df)
# Function for calculating Time domain
# Takes two parameters: timerIBI, an optional x for NN calculations, and correction, if outliers should be corrected for
def timeDomain(timerIBI, x, correction):
''' (readTimerIBI object, x=50, correction="false") -> Time Domain Dictionary
Returns a time domain dictionary of readTimerIBI object
x is the time in milliseconds for calculating pNN and NN
correction is to take care of outliers, should be used carefully
'''
t = timerIBI['time']
ibi2 = timerIBI['IBI'] * 1000 # converts seconds to ms
ibi = ibi2.rolling(window=10).mean()[10:]
if correction == "true":
ibi_set = ibi.copy()
ibi[np.abs(zscore(ibi_set)) > 2] = np.median(ibi_set)
def pNNX(ibi, x):
differences = abs(np.diff(ibi))
n = np.sum(differences > x)
p = (n / len(differences)) * 100
return (p, n)
def RMSSD(ibi):
differences = abs(np.diff(ibi))
rmssd = np.sqrt(np.sum(np.square(differences)) / len(differences))
return rmssd
maxHrv = round(max(ibi) * 10) / 10
minHrv = round(min(ibi) * 10) / 10
meanHrv = round(np.mean(ibi) * 10) / 10
medianHrv = round(np.median(ibi) * 10) / 10
sdnn = round(np.std(ibi) * 10) / 10
p, n = pNNX(ibi2, x)
nnx = round(n * 10) / 10
pnnx = round(p * 10) / 10
rmssd = round(RMSSD(ibi2) * 10) / 10
hr = 60 / (ibi / 1000)
meanHR = round(np.mean(hr) * 10) / 10
maxHR = round(np.max(hr) * 10) / 10
minHR = round(np.min(hr) * 10) / 10
time_domain = {"MeanRR": meanHrv, "MeanHR": meanHR,
"MinHR": minHR, "MaxHR": maxHR,
"SDNN": sdnn, "RMSSD": rmssd, "NNx": nnx,
"pNNx": pnnx}
return time_domain
# Function for calculating Frequency domain
# Takes two parameters: timerIBI, an optional fs for frequency interpolation
def frequencyDomain(timerIBI, fs):
ibi = timerIBI['IBI'] * 1000
steps = 1 / fs
# create interpolation function based on the rr-samples.
x = np.cumsum(ibi) / 1000.0
f = interp1d(x, ibi, kind='cubic')
# now we can sample from interpolation function
xx = np.arange(1, np.max(x), steps)
ibi_interpolated = f(xx)
# second part
fxx, pxx = signal.welch(x=ibi_interpolated, fs=fs)
'''
Segement found frequencies in the bands
- Very Low Frequency (VLF): 0-0.04Hz
- Low Frequency (LF): 0.04-0.15Hz
- High Frequency (HF): 0.15-0.4Hz
'''
cond_vlf = (fxx >= 0) & (fxx < 0.04)
cond_lf = (fxx >= 0.04) & (fxx < 0.15)
cond_hf = (fxx >= 0.15) & (fxx < 0.4)
# calculate power in each band by integrating the spectral density
vlf = trapz(pxx[cond_vlf], fxx[cond_vlf])
lf = trapz(pxx[cond_lf], fxx[cond_lf])
hf = trapz(pxx[cond_hf], fxx[cond_hf])
# sum these up to get total power
total_power = vlf + lf + hf
# find which frequency has the most power in each band
peak_vlf = fxx[cond_vlf][np.argmax(pxx[cond_vlf])]
peak_lf = fxx[cond_lf][np.argmax(pxx[cond_lf])]
peak_hf = fxx[cond_hf][np.argmax(pxx[cond_hf])]
# fraction of lf and hf
lf_nu = 100 * lf / (lf + hf)
hf_nu = 100 * hf / (lf + hf)
results = {}
results['PowerVLF'] = round(vlf, 2)
results['PowerLF'] = round(lf, 2)
results['PowerHF'] = round(hf, 2)
results['PowerTotal'] = round(total_power, 2)
results['LF/HF'] = round(lf / hf, 2)
results['PeakVLF'] = round(peak_vlf, 2)
results['PeakLF'] = round(peak_lf, 2)
results['PeakHF'] = round(peak_hf, 2)
results['FractionLF'] = round(lf_nu, 2)
results['FractionHF'] = round(hf_nu, 2)
return results
data = readTimerIBI(file, complete_sequence, threshold)
td = timeDomain(data, x, correction)
fd = frequencyDomain(data, fs)
for k, v in td.items():
metrics[k] = v
for k, v in fd.items():
metrics[k] = v
return metrics