We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
由于时间原因,只使用了5万的样本进行训练。 训练后,使用原测试集的100条进行trainer.evaluate()得到如下结果。
{'eval_loss': 1.2431399822235107, 'eval_accuracy': 0.57, 'eval_runtime': 1.7855, 'eval_samples_per_second': 56.007, 'eval_steps_per_second': 7.281}
再使用 1000条进行evaluate()得到另一个结果。
{'eval_loss': 1.016939640045166, 'eval_accuracy': 0.64, 'eval_runtime': 15.7258, 'eval_samples_per_second': 63.59, 'eval_steps_per_second': 7.949}
https://github.com/simson2010/LLM-quickstart/blob/feature/homework/homework/fine-tune-quickstart.ipynb
同一个数据集fine-tune完后,用不同数量的样本进行评估,结果有较大偏差,这个可以怎么理解,用100条样本,ACC是0.57,用1000条样本时则升到0.64.但这样来做评估,怎么确定训练数据量用多少为好?
The text was updated successfully, but these errors were encountered:
哈哈,我直接大力出奇迹,租个服务器全量数据训练,最高ACC能到0.68,不过听彭老师说,ACC能训练到80%到90%,不知道咋训练的
Sorry, something went wrong.
我用的2080Ti,跑全量数据训练,5轮epochs,30多小时跑完,acc最高也没过0.7,也需要彭老师解惑一下
No branches or pull requests
作业: fine-tune-quickstart.ipynb
由于时间原因,只使用了5万的样本进行训练。
训练后,使用原测试集的100条进行trainer.evaluate()得到如下结果。
{'eval_loss': 1.2431399822235107,
'eval_accuracy': 0.57,
'eval_runtime': 1.7855,
'eval_samples_per_second': 56.007,
'eval_steps_per_second': 7.281}
再使用 1000条进行evaluate()得到另一个结果。
{'eval_loss': 1.016939640045166,
'eval_accuracy': 0.64,
'eval_runtime': 15.7258,
'eval_samples_per_second': 63.59,
'eval_steps_per_second': 7.949}
GPT的解释如下 :
代码:
https://github.com/simson2010/LLM-quickstart/blob/feature/homework/homework/fine-tune-quickstart.ipynb
问题
同一个数据集fine-tune完后,用不同数量的样本进行评估,结果有较大偏差,这个可以怎么理解,用100条样本,ACC是0.57,用1000条样本时则升到0.64.但这样来做评估,怎么确定训练数据量用多少为好?
The text was updated successfully, but these errors were encountered: