-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtransfer_learning.py
296 lines (238 loc) · 11.3 KB
/
transfer_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import os
import argparse
import utilsenc
import math
import DataLoaders
from timm.models import *
from utils import progress_bar
from timm.models import create_model
import timm_pretrain
parser = argparse.ArgumentParser(description='PyTorch CIFAR10/CIFAR100 Training')
parser.add_argument('--lr', default=0.05, type=float, help='learning rate')
parser.add_argument('--wd', default=5e-4, type=float, help='weight decay')
parser.add_argument('--min-lr', default=2e-4, type=float, help='minimal learning rate')
parser.add_argument('--dataset', type=str, default='celeba',
help='cifar10 or cifar100 or celeba or imdb')
parser.add_argument('--b', type=int, default=128,
help='batch size')
parser.add_argument('--resume', '-r', action='store_true',
help='resume from checkpoint')
parser.add_argument('--pretrained', action='store_true', default=False,
help='Start with pretrained version of specified network (if avail)')
parser.add_argument('--num-classes', type=int, default=10, metavar='N',
help='number of label classes (default: 1000)')
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.0)')
parser.add_argument('--drop-connect', type=float, default=None, metavar='PCT',
help='Drop connect rate, DEPRECATED, use drop-path (default: None)')
parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: None)')
parser.add_argument('--drop-block', type=float, default=None, metavar='PCT',
help='Drop block rate (default: None)')
parser.add_argument('--gp', default=None, type=str, metavar='POOL',
help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.')
parser.add_argument('--img-size', type=int, default=224, metavar='N',
help='Image patch size (default: None => model default)')
parser.add_argument('--bn-tf', action='store_true', default=False,
help='Use Tensorflow BatchNorm defaults for models that support it (default: False)')
parser.add_argument('--bn-momentum', type=float, default=None,
help='BatchNorm momentum override (if not None)')
parser.add_argument('--bn-eps', type=float, default=None,
help='BatchNorm epsilon override (if not None)')
parser.add_argument('--initial-checkpoint', default='', type=str, metavar='PATH',
help='Initialize model from this checkpoint (default: none)')
# Transfer learning
parser.add_argument('--transfer-learning', default=False,
help='Enable transfer learning')
parser.add_argument('--transfer-model', type=str, default="./checkpoints/T2t_vit_24_pretrained.pth.tar",
help='Path to pretrained model for transfer learning')
parser.add_argument('--transfer-ratio', type=float, default=0.01,
help='lr ratio between classifier and backbone in transfer learning')
parser.add_argument('--epoch', type=int, default=60, metavar='N',
help='Training Epoch')
# obfuscation transform
parser.add_argument('--transform', type=str, default='None',
help='gdp or blur or None')
parser.add_argument('--transform-value', type=float, default=0,
help='Parameter for gdp for blur transformation')
parser.add_argument('--model', default='timm_pretrain', type=str, metavar='MODEL',
help='Name of model to train (default: "timm_pretrain"')
parser.add_argument('--R', action='store_true',
help='Row shuffle')
parser.add_argument('--RC', action='store_true',
help='Row and Column shuffle')
parser.add_argument('--data', default='../data', type=str,
help='data path')
parser.add_argument('--ckpt', default='./checkpoints/ckpt.pth', type=str,
help='checkpoint path')
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
print("\n\n")
print(device)
print("\n\n")
# Data
print('==> Preparing data..')
if args.dataset=='cifar10':
args.num_classes = 10
elif args.dataset=='svhn':
args.num_classes = 10
elif args.dataset=='cifar100':
args.num_classes = 100
elif args.dataset=='celeba':
args.num_classes = 40
else:
print('Please use cifar10 or cifar100 or celeba dataset.')
data_root=args.data
trainloader=DataLoaders.get_loader(args.dataset,data_root,args.b,attr='train',num_workers=8)
testloader=DataLoaders.get_loader(args.dataset,data_root,args.b,attr='valid',num_workers=8)
print(f'learning rate:{args.lr}, weight decay: {args.wd}')
print('==> Building model..')
if args.model == "timm_pretrain":
net=timm_pretrain.timm_pretrain(RS=args.R+args.RC, CS=0, num_classes=args.num_classes)
net = net.to(device)
# checkpoint = torch.load("./checkpoint_celeba_T2t_vit_24_1.0_1.0/ckpt_0.1_0.0005_88.2114827305884.pth")
# net.load_state_dict(checkpoint['net'])
if device == 'cuda':
cudnn.benchmark = True
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load('./checkpoint/ckpt.pth')
net.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
if args.dataset=='cifar10' or args.dataset=='cifar100' or args.dataset=='imdb' or args.dataset=='svhn':
criterion = nn.CrossEntropyLoss()
else:
criterion = nn.BCEWithLogitsLoss()
# transform
transform=None
if args.transform=='gdp':
transform=utilsenc.add_gdp_noise(args.epoch,args.transform_value,len(trainloader),args.b,1.0)#1e-6)
elif args.transform=='blur':
transform = utilsenc.blur(args.transform_value)
elif args.transform=='gaussian':
transform= utilsenc.add_gaussian_noise(args.transform_value)
elif args.transform=='low_pass':
transform = utilsenc.low_pass_filter(args.transform_value)
elif args.transform=='cutmix':
transform = utilsenc.cutmix(args.transform_value)
# set optimizer
if args.model == "timm_pretrain":
parameters = [{'params': net.model.patch_embed.parameters()},
{'params': net.pos_embed},
{'params': net.model.blocks.parameters(), 'lr': args.transfer_ratio * args.lr},
{'params': net.model.head.parameters()}]
optimizer = optim.SGD(parameters, lr=args.lr,
momentum=0.9, weight_decay=args.wd)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, eta_min=args.min_lr, T_max=args.epoch)
optimizer = optim.SGD(parameters, lr=args.lr,
momentum=0.9, weight_decay=args.wd)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, eta_min=args.min_lr, T_max=args.epoch)
log_loss=[]
log_acc=[]
# Training
def train(epoch):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
if args.dataset=='celeba':
targets=targets.float()
if args.transform == "cutmix":
inputs, target_a, target_b, lam = transform.process(inputs, targets)
outputs = net(inputs)
loss = criterion(outputs, target_a) * lam + criterion(outputs, target_b) * (1. - lam)
else:
if transform is not None:
inputs = transform.process(inputs)
inputs, targets = inputs.to(device), targets.to(device)
outputs= net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
if args.dataset=='cifar10' or args.dataset=='cifar100' or args.dataset=='imdb' or args.dataset=='svhn':
_, predicted = outputs.max(1)
correct += predicted.eq(targets).sum().item()
else:
predicted = (outputs > 0.5).long()
correct += predicted.eq(targets).float().mean(dim=1).sum().item()
total += targets.size(0)
# You can't use it when running on background or Windows
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
print('Loss: %.3f | Acc: %.3f%% (%d/%d)' % (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
global log_loss
log_loss.append(train_loss/(batch_idx+1))
def test(epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
if transform != None and args.transform != "cutmix":
inputs = transform.process(inputs)
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
if args.dataset == 'celeba':
targets = targets.float()
loss = criterion(outputs, targets)
test_loss += loss.item()
if args.dataset=='cifar10' or args.dataset=='cifar100' or args.dataset=='imdb' or args.dataset=='svhn':
_, predicted = outputs.max(1)
correct += predicted.eq(targets).sum().item()
else:
predicted = (outputs > 0.5).long()
correct += predicted.eq(targets).float().mean(dim=1).sum().item()
total += targets.size(0)
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
print('Loss: %.3f | Acc: %.3f%% (%d/%d)' % (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
# Save checkpoint.
acc = 100.*correct/total
if acc > best_acc:
print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir(f'checkpoint_{args.dataset}_{args.model}'):
os.mkdir(f'checkpoint_{args.dataset}_{args.model}')
shuffle_flag = "None"
if args.R:
shuffle_flag = "R"
if args.RC:
shuffle_flag = "RC"
torch.save(state, f'./checkpoint_{args.dataset}_{args.model}/ckpt_{args.lr}_{shuffle_flag}_{args.transform}_{args.transform_value}.pth')
best_acc = acc
#torch.save(net.pos_embed,'pos_embed.pth')
global log_acc
log_acc.append(acc)
def confusion(prediction, truth):
confusion_vector = prediction / truth
true_positives = torch.sum(confusion_vector == 1).item()
false_positives = torch.sum(confusion_vector == float('inf')).item()
true_negatives = torch.sum(torch.isnan(confusion_vector)).item()
false_negatives = torch.sum(confusion_vector == 0).item()
return true_positives, false_positives, true_negatives, false_negatives
for epoch in range(start_epoch, start_epoch+args.epoch):
train(epoch)
test(epoch)
scheduler.step()