forked from MartinSpindler/hdm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDESCRIPTION
34 lines (34 loc) · 1.32 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
Package: hdm
Type: Package
Title: High-Dimensional Metrics
Version: 0.3.1
Date: 2018-12-19
Authors@R: c(person("Martin", "Spindler", email="[email protected]", role=c("cre", "aut")), person("Victor", "Chernozhukov", role="aut"), person("Christian", "Hansen", role="aut"), person("Philipp", "Bach", email = "[email protected]", role="ctb"))
Depends:
R (>= 3.0.0)
Description: Implementation of selected high-dimensional statistical and
econometric methods for estimation and inference. Efficient estimators and
uniformly valid confidence intervals for various low-dimensional causal/
structural parameters are provided which appear in high-dimensional
approximately sparse models. Including functions for fitting heteroscedastic
robust Lasso regressions with non-Gaussian errors and for instrumental variable
(IV) and treatment effect estimation in a high-dimensional setting. Moreover,
the methods enable valid post-selection inference and rely on a theoretically
grounded, data-driven choice of the penalty.
Chernozhukov, Hansen, Spindler (2016) <arXiv:1603.01700>.
License: MIT + file LICENSE
LazyData: TRUE
Imports:
MASS,
glmnet,
ggplot2,
checkmate,
Formula,
methods
Suggests:
testthat,
knitr,
xtable,
mvtnorm
VignetteBuilder: knitr
RoxygenNote: 7.1.1