-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathprog.py
367 lines (299 loc) · 10.3 KB
/
prog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
#!/usr/bin/env python3
# Copyright 2019 Adam Greig
# Dual licensed under the Apache 2.0 and MIT licenses.
import time
import math
import struct
import binascii
import tempfile
import argparse
import usb.core
from tqdm import trange
class Programmer:
ID_VENDOR = 0x1209
ID_PRODUCT = 0xff50
TYPE_SET = 2 << 5
SET_CS = 1
SET_FPGA = 2
SET_MODE = 3
SET_TPWR = 4
SET_LED = 6
BOOTLOAD = 7
TX_EP = 0x01
RX_EP = 0x81
CHUNK_SIZE = 64
def __init__(self):
self.dev = usb.core.find(
idVendor=self.ID_VENDOR, idProduct=self.ID_PRODUCT)
self.led_on()
def __del__(self):
try:
self.led_off()
except usb.core.USBError:
pass
def _set(self, req, val):
self.dev.ctrl_transfer(
bmRequestType=self.TYPE_SET, bRequest=req, wValue=int(val))
def reset(self):
self._set(self.SET_FPGA, 0)
def unreset(self):
self._set(self.SET_FPGA, 1)
def select(self):
self._set(self.SET_CS, 0)
def unselect(self):
self._set(self.SET_CS, 1)
def led_on(self):
self._set(self.SET_LED, 1)
def led_off(self):
self._set(self.SET_LED, 0)
def fpga_mode(self):
self._set(self.SET_MODE, 2)
def flash_mode(self):
self._set(self.SET_MODE, 1)
def high_z_mode(self):
self._set(self.SET_MODE, 0)
def power_on(self):
self._set(self.SET_TPWR, 1)
def power_off(self):
self._set(self.SET_TPWR, 0)
def bootload(self):
self.dev.ctrl_transfer(
bmRequestType=self.TYPE_SET, bRequest=self.BOOTLOAD)
def write(self, data, progress=False):
# Send hex-coded data
rx = b""
if progress:
prange = trange
else:
prange = range
for chunk in prange(0, len(data), self.CHUNK_SIZE):
txdata = data[chunk:chunk+self.CHUNK_SIZE]
self.dev.write(self.TX_EP, txdata)
rx += self.dev.read(self.RX_EP, self.CHUNK_SIZE)
# Read response
if len(rx) != len(data):
print("Warning: Did not receive as many bytes as transmitted"
f" (rx {len(rx)}, tx {len(data)})")
return rx
class Flash:
def __init__(self, programmer):
self.programmer = programmer
def read_id(self):
# Hold FPGA in reset until we're done
self.programmer.reset()
# Wake up flash and check we can read its ID
self.power_up()
manufacturer, device = self.read_manufacturer()
unique_id = self.read_unique_id()
print(f"Flash: Manufacturer {manufacturer:02X}, device {device:02X}")
print(f" Unique ID: {unique_id}")
def program(self, data, lma):
self.read_id()
# Erase enough space for the data to program
print("Erasing flash...")
self.erase_for_data(lma, len(data))
# Write new image
print("Programming flash...")
self.program_data(lma, data)
# Readback programmed data
print("Verifying flash...")
programmed = self.fast_read(lma, len(data))
if programmed == data:
print("Readback successful. Booting FPGA.")
self.programmer.unreset()
else:
print("Error: Readback unsuccessful.")
with tempfile.NamedTemporaryFile(delete=False) as f:
f.write(programmed)
print(f"Readback data stored in {f.name}")
def reset(self):
self._write(0x66)
self._write(0x99)
def read(self, lma, length):
return self.fast_read(lma, length)
def erase_for_data(self, lma, length):
# Adjust LMA to be 64K-block aligned
length += (lma & 0xFFFF)
lma &= 0xFF0000
blocks = math.ceil(length / (64*1024))
for block in trange(blocks):
self.write_enable()
self.block_erase_64k(lma + block * 64 * 1024)
self.wait_while_busy()
def program_data(self, lma, data):
# Pad data to obtain 256B page alignment
data = b"\xFF" * (lma & 0xFF) + data
lma &= 0xFFFF00
pages = math.ceil(len(data) / 256)
for page in trange(pages):
self.write_enable()
self.page_program(lma + page * 256, data[page*256:(page+1)*256])
self.wait_while_busy()
def power_down(self):
self._write(0xB9)
def power_up(self):
self._write(0xAB)
def write_enable(self):
self._write(0x06)
def write_disable(self):
self._write(0x04)
def fast_read(self, address, length):
length += 1
address = self._pack_address(address)
return self._read(0x0B, length, address)[1:]
def page_program(self, address, data):
assert 1 <= len(data) <= 256
address = self._pack_address(address)
self._write(0x02, address + data)
def sector_erase(self, address):
address = self._pack_address(address)
self._write(0x20, address)
def block_erase_32k(self, address):
address = self._pack_address(address)
self._write(0x52, address)
def block_erase_64k(self, address):
address = self._pack_address(address)
self._write(0xD8, address)
def chip_erase(self):
self._write(0xC7)
def read_manufacturer(self):
data = self._read(0x90, 3+2)
manufacturer, device = struct.unpack("BB", data[3:])
return manufacturer, device
def read_unique_id(self):
data = self._read(0x4B, 4+8)
unique_id = binascii.b2a_hex(data[4:])
return unique_id.decode()
def read_jedec(self):
data = self._read(0x9F, 3)
manufacturer, memtype, capacity = struct.unpack("<BBB", data)
return manufacturer, memtype, capacity
def read_status1(self):
return struct.unpack("B", self._read(0x05, 1))[0]
def read_status2(self):
return struct.unpack("B", self._read(0x35, 1))[0]
def is_busy(self):
return self.read_status1() & 1 == 1
def wait_while_busy(self):
while self.is_busy():
continue
def _read(self, command, nbytes, arguments=b""):
"""
Issue command `command` (integer) followed by `arguments`,
then read `nbytes` of subsequent data.
"""
padding = b"\x00" * nbytes
tx = struct.pack("B", command) + arguments + padding
self.programmer.flash_mode()
self.programmer.select()
rx = self.programmer.write(tx)
self.programmer.unselect()
return rx[1+len(arguments):]
def _write(self, command, data=b""):
"""
Issue command `command` (integer) and write `data` subsequently.
"""
tx = struct.pack("B", command) + data
self.programmer.flash_mode()
self.programmer.select()
rx = self.programmer.write(tx)
self.programmer.unselect()
return rx[1:]
def _pack_address(self, address):
return struct.pack(">I", address)[1:]
class FPGA:
def __init__(self, programmer):
self.programmer = programmer
def program(self, data):
print("Programming FPGA...")
# Bring FPGA into reset
self.programmer.reset()
# Power down attached flash (if not already powered down)
flash = Flash(self.programmer)
flash.power_down()
# Release FPGA from reset in slave SPI mode
self.programmer.fpga_mode()
self.programmer.select()
self.programmer.unreset()
# Wait for FPGA to come out of reset
time.sleep(0.01)
# Send 8 dummy clocks with CS high then assert CS again
self.programmer.unselect()
self.programmer.write(b"\x00\x00")
self.programmer.select()
# Send configuration image
self.programmer.write(data, progress=True)
# Release CS and wait for configuration to be complete
self.programmer.unselect()
self.programmer.write(b"\x00" * 40)
print("Programming complete.")
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--lma",
help="Load memory address (--flash and --read-flash, default 0)",
default="0")
parser.add_argument(
"--flash-read-length",
help="Flash read length (--read-flash only)",
default=1024)
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument(
"--fpga",
help="Bitstream file to program directly to FPGA")
group.add_argument(
"--flash",
help="Bitstream file to save to flash")
group.add_argument(
"--read-flash-id",
help="Just read flash ID",
action='store_true')
group.add_argument(
"--read-flash",
help="Read flash contents to file")
group.add_argument(
"--power",
help="Control target power",
choices=("on", "off"))
group.add_argument(
"--bootload",
help="Reboot FFP to DFU bootloader",
action='store_true')
return parser.parse_args()
def main():
args = get_args()
lma = int(args.lma, 0)
prog = Programmer()
if args.fpga:
with open(args.fpga, "rb") as f:
data = f.read()
fpga = FPGA(prog)
fpga.program(data)
elif args.flash:
with open(args.flash, "rb") as f:
data = f.read()
flash = Flash(prog)
flash.program(data, lma)
elif args.read_flash_id:
flash = Flash(prog)
flash.read_id()
elif args.read_flash:
flash = Flash(prog)
data = flash.read(lma, args.flash_read_length)
with open(args.read_flash, "wb") as f:
f.write(data)
elif args.power:
if args.power == "on":
prog.power_on()
elif args.power == "off":
prog.power_off()
elif args.bootload:
prog.bootload()
# Return to high-z mode after use
# This might error if we just bootloaded so ignore that
try:
prog.high_z_mode()
except usb.core.USBError:
pass
if __name__ == "__main__":
main()