-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path03b_Run_Cox_Model.R
207 lines (170 loc) · 10.4 KB
/
03b_Run_Cox_Model.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#
adult_vars = c("Sex", "age_gp",
"simd","n_risk_gps", "bmi_gp",
"num_prev_admission_gp", "urban_rural_classification")
cyp_vars = c("Sex", "age_gp",
"simd","n_risk_gps",
"num_prev_admission_gp", "urban_rural_classification")
adult_vars_flu = c("Sex", "age_gp",
"simd","n_risk_gps", "bmi_gp",
"num_prev_admission_gp", "urban_rural_classification")
adult_vars_covid = c("Sex", "age_gp",
"simd","n_risk_gps", "bmi_gp",
"num_prev_admission_gp", "urban_rural_classification")
if (use_vaccination == 1) {
adult_vars_flu = append(adult_vars_flu, "flu_vs")
adult_vars_covid = append(adult_vars_covid, "covid_vs")
}
if (use_smoking == 1) {
#adult_vars = append(adult_vars_covid, "EAVE_Smoking_Status_Best")
#adult_vars_flu = append(adult_vars_flu, "EAVE_Smoking_Status_Best")
#adult_vars_covid = append(adult_vars_covid, "EAVE_Smoking_Status_Best")
adult_vars = append(adult_vars_covid, "EAVE_Smoking_Status_Worst")
adult_vars_flu = append(adult_vars_flu, "EAVE_Smoking_Status_Worst")
adult_vars_covid = append(adult_vars_covid, "EAVE_Smoking_Status_Worst")
}
adult_expression = as.formula(paste0("Surv(time, event) ~ ", paste(adult_vars, collapse=" + ")))
cyp_expression = as.formula(paste0("Surv(time, event) ~ ", paste(cyp_vars, collapse=" + ")))
adult_expression_flu = as.formula(paste0("Surv(tstart, tstop, flu_event) ~ ", paste(adult_vars_flu, collapse=" + ")))
adult_expression_covid = as.formula(paste0("Surv(tstart, tstop, covid_event) ~ ", paste(adult_vars_covid, collapse=" + ")))
# Set up the overall factors
df_all$Sex = factor(df_all$Sex)
# Model for entire population
model_all = coxph(adult_expression,data=df_all, weights=eave_weight)
surv_all = survfit(adult_expression,data=df_all, weights=eave_weight)
# Age specific models
df_adults = df_all %>% filter(ageYear > 17)
df_cyp = df_all %>% filter(ageYear < 18)
print("Number of adult rows")
print(sum(df_adults$eave_weight))
print("Adult control/event split")
print(df_adults %>% group_by(event) %>% summarise(n = sum(eave_weight)))
print("Number of CYP rows")
print(sum(df_cyp$eave_weight))
print("CYP control/event split")
print(df_cyp %>% group_by(event) %>% summarise(n = sum(eave_weight)))
# Reset the age levels
df_adults$age_gp = droplevels(df_adults$age_gp)
df_cyp$age_gp = droplevels(df_cyp$age_gp)
df_cyp$ageYear = factor(df_cyp$ageYear)
df_cyp$ageYear = relevel(df_cyp$ageYear, ref = "17")
df_cyp$age_gp = relevel(df_cyp$age_gp, ref = "6-17")
z_df_adults = df_adults %>% mutate(event = as.factor(event))
z_df_cyp = df_cyp %>% mutate(event = as.factor(event))
cuminc_adults = cuminc(Surv(time, event) ~ 1, data = z_df_adults)
cuminc_cyp = cuminc(Surv(time, event) ~ 1, data = z_df_cyp)
cuminc_plot_adults = cuminc_adults %>% ggcuminc() + add_confidence_interval() + ylim(0, 0.1)
cuminc_plot_cyp = cuminc_cyp %>% ggcuminc() + add_confidence_interval() + ylim(0, 0.1)
ggsave("cuminc_plot_adults.png", cuminc_plot_adults)
ggsave("cuminc_plot_cyp.png", cuminc_plot_cyp)
model_adults = coxph(adult_expression,data=df_adults,weights=eave_weight)
model_fit_adults = cox.zph(model_adults)
coxzph_plot_adults = ggcoxzph(model_fit_adults)
for (i in 1:length(coxzph_plot_adults)) {
ggsave(paste0(paste0("coxzph_plot_adults_", i), ".png"), coxzph_plot_adults[[i]])
}
model_cyp = coxph(cyp_expression,data=df_cyp,weights=eave_weight)
model_fit_cyp = cox.zph(model_cyp)
# Pathogen specific models
# This is a bit more complex because we need to pick out the controls too
if (use_tests == 1) {
df_adults = df_adults %>% mutate(covid_event = if_else(covid_admit_with_test == 1, 1, 0))
df_adults = df_adults %>% mutate(flu_event = if_else(flu_admit_with_test == 1, 1, 0))
} else if (broad_defintion == 1) {
df_adults = df_adults %>% mutate(flu_event = if_else(flu_admit_secondary == 1 | flu_admit == 1, 1, 0))
df_cyp = df_cyp %>% mutate(flu_event = if_else(flu_admit_secondary == 1 | flu_admit == 1, 1, 0))
df_adults = df_adults %>% mutate(covid_event = if_else(covid_admit_secondary == 1 | covid_admit == 1, 1, 0))
df_cyp = df_cyp %>% mutate(covid_event = if_else(covid_admit_secondary == 1 | covid_admit == 1, 1, 0))
} else {
df_adults = df_adults %>% mutate(flu_event = if_else(flu_admit == 1, 1, 0))
df_cyp = df_cyp %>% mutate(flu_event = if_else(flu_admit == 1, 1, 0))
df_adults = df_adults %>% mutate(covid_event = if_else(covid_admit == 1, 1, 0))
df_cyp = df_cyp %>% mutate(covid_event = if_else(covid_admit == 1, 1, 0))
}
# Handle the vaccine status
# Firstly handle this for the flu vaccine as a person only receives one of them
# Set this to the day before our actual start to ensure time is positive
a_begin_cox = as.Date("2022-08-31")
z_flu = df_adults %>% select(-event)
z_flu <- tmerge(z_flu, z_flu, id=EAVE_LINKNO, flu_event = event(event_date, flu_event), tstart=a_begin_cox, tstop=event_date)
z_flu <- tmerge(z_flu,df_adults, id=EAVE_LINKNO, flu_vs=tdc(date_flu_vacc_1))
z_flu$flu_vs = factor(z_flu$flu_vs, labels=c("Unvaccinated", "Vaccinated"))
df_adults_flu = z_flu
df_adults_flu = df_adults_flu %>% mutate(tstart = difftime(tstart, a_begin_cox, unit="days")) %>%
mutate(tstop = difftime(tstop, a_begin_cox, unit="days"))
# Now we do this for COVID - there is a lot more to do due to the 5 doses!
z_covid = df_adults %>% select(-event)
z_covid <- tmerge(z_covid, z_covid, id=EAVE_LINKNO, covid_event = event(event_date, covid_event), tstart=a_begin_cox, tstop=event_date)
z_covid <- tmerge(z_covid,df_adults, id=EAVE_LINKNO, per1=tdc(date_vacc_1))
names(z_covid)[names(z_covid)=="per1"] <- "pv_uv"
z_covid <- tmerge(z_covid,df_adults, id=EAVE_LINKNO, per1=tdc(date_vacc_1 + 14))
names(z_covid)[names(z_covid)=="per1"] <- "pv_v1_0:2"
z_covid <- tmerge(z_covid,df_adults, id=EAVE_LINKNO, per1=tdc(date_vacc_2))
names(z_covid)[names(z_covid)=="per1"] <- "pv_v1_2+"
z_covid <- tmerge(z_covid,df_adults, id=EAVE_LINKNO, per1=tdc(date_vacc_2 + 14))
names(z_covid)[names(z_covid)=="per1"] <- "pv_v2_0:2"
z_covid <- tmerge(z_covid,df_adults, id=EAVE_LINKNO, per1=tdc(date_vacc_3))
names(z_covid)[names(z_covid)=="per1"] <- "pv_v2_2+"
z_covid <- tmerge(z_covid,df_adults, id=EAVE_LINKNO, per1=tdc(date_vacc_3 + 14))
names(z_covid)[names(z_covid)=="per1"] <- "pv_v3_0:2"
z_covid <- tmerge(z_covid,df_adults, id=EAVE_LINKNO, per1=tdc(date_vacc_4))
names(z_covid)[names(z_covid)=="per1"] <- "pv_v3_2+"
z_covid <- tmerge(z_covid,df_adults, id=EAVE_LINKNO, per1=tdc(date_vacc_4 + 14))
names(z_covid)[names(z_covid)=="per1"] <- "pv_v4_0:2"
z_covid <- tmerge(z_covid,df_adults, id=EAVE_LINKNO, per1=tdc(date_vacc_5))
names(z_covid)[names(z_covid)=="per1"] <- "pv_v4_2+"
z_covid <- tmerge(z_covid,df_adults, id=EAVE_LINKNO, per1=tdc(date_vacc_5 + 14))
names(z_covid)[names(z_covid)=="per1"] <- "pv_v5_0:14"
z_covid <- tmerge(z_covid,df_adults, id=EAVE_LINKNO, per1=tdc(event_date))
names(z_covid)[names(z_covid)=="per1"] <- "pv_v5_2+"
z_names <- names(z_covid)[grepl("pv_", names(z_covid))]
z_covid <- z_covid %>% mutate(pv_period = apply(z_covid[,z_names], 1, sum))
z_covid <- z_covid %>% dplyr::select(-all_of(z_names))
z_covid <- z_covid %>%
mutate(pv_period_f = case_when(pv_period==0 ~ "uv",
pv_period==1 ~ "v1_0:2",
pv_period==2 ~ "v1_2+",
pv_period==3 ~ "v2_0:1",
pv_period==4 ~ "v2_2+",
pv_period==5 ~ "v3_0:1",
pv_period==6 ~ "v3_2+",
pv_period==7 ~ "v4_0:1+",
pv_period==8 ~ "v4_2+",
pv_period==9 ~ "v5_0:2",
TRUE ~ "v5_2+")) %>%
mutate(pv_period_f = factor(pv_period_f, levels=c("uv","v1_0:2","v1_2+", "v2_0:1","v2_2+", "v3_0:1", "v3_2+",
"v4_0:2", "v4_2+", "v5_0:2", "v5_2+"))) %>%
mutate(covid_vs = pv_period_f)
# This is a bit ugly, but basically we combine vaccination groups to increase the
# number of events. I haven't done this above as we might want to revert it in the future
z_covid = z_covid %>% mutate(covid_vs = case_when(covid_vs == "uv" ~ 0,
covid_vs == "v1_0:2" ~ 0,
covid_vs == "v1_2+" ~ 0,
covid_vs == "v2_0:1" ~ 0,
covid_vs == "v2_2+" ~ 0,
covid_vs == "v3_0:1" ~ 1,
covid_vs == "v3_2+" ~ 1,
covid_vs == "v4_0:1+" ~ 2,
covid_vs == "v4_2+" ~ 2,
covid_vs == "v5_0:2" ~ 2,
covid_vs == "v5_2+" ~ 2))
z_covid$covid_vs = factor(z_covid$covid_vs)
df_adults_covid = z_covid
df_adults_covid = df_adults_covid %>% mutate(tstart = difftime(tstart, a_begin_cox, unit="days")) %>%
mutate(tstop = difftime(tstop, a_begin_cox, unit="days"))
df_all = df_all %>% mutate(time = difftime(event_date, a_begin, unit="days"))
print("Adult flu control/event split")
z_df_adults_flu = df_adults_flu %>% group_by(EAVE_LINKNO) %>% summarize(case = sum(flu_event), eave_weight = first(eave_weight))
print(z_df_adults_flu %>% group_by(case) %>% summarise(n = sum(eave_weight)))
print("Adult COVID-19 control/event split")
z_df_adults_covid= df_adults %>% group_by(EAVE_LINKNO) %>% summarize(case = sum(covid_event), eave_weight = first(eave_weight))
print(z_df_adults_covid %>% group_by(case) %>% summarise(n = sum(eave_weight)))
model_flu_adults = coxph(adult_expression_flu,data=df_adults_flu,weights=eave_weight)
model_covid_adults = coxph(adult_expression_covid ,data=df_adults_covid,weights=eave_weight)
# Turn the model coefficients into tibbles for display
model_all_coefs = cox_model_to_tibble(model_all, df_all, "event", adult_vars)
model_adults_coefs = cox_model_to_tibble(model_adults, df_adults, "event", adult_vars)
model_cyp_coefs = cox_model_to_tibble(model_cyp, df_cyp, "event", cyp_vars)
model_flu_adults_coefs = cox_model_to_tibble(model_flu_adults, df_adults_flu, "flu_event", adult_vars_flu)
model_covid_adults_coefs = cox_model_to_tibble(model_covid_adults, df_adults_covid, "covid_event", adult_vars_covid)
remove(list=ls(pa="^z"))