Skip to content

Latest commit

 

History

History
81 lines (75 loc) · 2.67 KB

README.md

File metadata and controls

81 lines (75 loc) · 2.67 KB

In test phase we use the config file in: configs/test_phase/* where: data root is the path to train data, which is organized as: train |——optical_flow_depth |——optical_flow_RGB | |——0 | | |——signer0_sample431_color | | | |——flow_x_00001.jpg | | | |——flow_x_00002.jpg | | | |——flow_x_00003.jpg | | | |—— . | | | |—— . | | | |—— . | | | |——flow_y_00001.jpg | | | |——flow_y_00002.jpg | | | |——flow_y_00003.jpg | | | |—— . | | | |—— . | | | |—— . | | |——signer0_sample515_color | | |—— . | | |—— . | | |—— . | |——1 | |——2 | . | . | . | |——226 |——rawframes_align_depth |——rawframes_align_RGB | |——0 | | |——signer0_sample431_color | | | |——img_00001.jpg | | | |——img_00002.jpg | | | |——img_00003.jpg | | | |—— . | | | |—— . | | | |—— . | | |——signer0_sample515_color | | |—— . | | |—— . | | |—— . | |——1 | |——2 | . | . | . | |——226

and data_val_root is the path to val data or test data, which is organized as: val |——optical_flow | |——signer1_sample1_color | | |——flow_x_00001.jpg | | |——flow_x_00002.jpg | | |—— . | | |—— . | |——signer1_sample1_depth | |——signer1_sample2_depth | |—— . | |—— . | |—— .

all data is organized as : AUTSL |—— train |—— test |—— val

Example: train: We use the config file "config/test_phase/slowonly_addvalset_addtestsetv1_lr0.01_cropratio0.08_epoch83_depth.py" if we train a model using whole image as input We use the config file "config/test_phase/slowonly_addvalset_addtestsetv1_detect_lr0.01_cropratio0.2_epoch95_RGB.py" if we train a model using person-cropped image as input test: We use the script "tools/dist_test_recognizer.sh" and input the config file "config/test_phase/slowonly_addvalset_addtestsetv1_lr0.01_cropratio0.08_epoch83_depth.py" and model parameters "work_dirs_testphase/slowonly_addvalset_addtestsetv1_lr0.01_cropratio0.08_epoch83_depth/epoch_71.pth" and finally get the prediction result in folder val_result