-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathconftest.py
87 lines (71 loc) · 2.69 KB
/
conftest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import numpy as np
import os
import pytest
from eo4ai.datasets import Dataset
class DummyDataset(Dataset):
"""Dummy dataset class used in testing to get metadata from all datasets.
Useful for checking dataset metadata."""
def get_scenes(self):
pass
def process_scene(self):
pass
@pytest.fixture
def dummy_dataset():
def _make_dataset(dataset_id):
return DummyDataset(dataset_id, 1)
return _make_dataset
@pytest.fixture
def all_dummy_datasets():
all_dataset_ids = os.listdir(os.path.join(
os.path.dirname(__file__),
'constants',
'datasets'
))
all_datasets = {id: DummyDataset(id, 1) for id in all_dataset_ids}
return all_datasets
class DataGenerator(DummyDataset):
def __init__(self, dataset_id, selected_band_ids=None,
DN_range=None):
super().__init__(
dataset_id=dataset_id,
jobs=1,
selected_band_ids=selected_band_ids
)
self.DN_range = DN_range
if self.selected_band_ids is None:
self.selected_band_ids = list(
self.dataset_metadata['bands'].keys()
)
if self.DN_range is None:
self.DN_range = (1, 256)
def __call__(self, size):
bands, band_ids = self._generate_bands(size)
mask = self._generate_mask(size)
return bands, band_ids, mask
def _generate_bands(self, size):
band_res = [
self.dataset_metadata['bands'][id]['resolution']
for id in self.selected_band_ids
]
bands = [self._generate_band(size, r, self.DN_range) for r in band_res]
return bands, self.selected_band_ids
def _generate_band(self, size, res, DN_range):
X = int(size[0]/res)
Y = int(size[1]/res)
min_DN, max_DN = DN_range
band = np.random.randint(low=min_DN, high=max_DN, size=(X, Y))
return band
def _generate_mask(self, size):
res = self.dataset_metadata['mask']['resolution']
X = int(size[0]/res)
Y = int(size[1]/res)
classes = list(self.dataset_metadata['mask']['classes'].values())
mask = np.array(classes)[np.random.randint(0, len(classes), X*Y)]
mask = np.reshape(mask, (X, Y, -1))
return mask
if __name__ == '__main__':
gen = DataGenerator('L8SPARCS80')
BS, ids, mask = gen((6000, 6000))
for b, id in zip(BS, ids):
print(id, b.shape, b.min(), b.max())
print(mask.shape)