diff --git a/dev/.documenter-siteinfo.json b/dev/.documenter-siteinfo.json index 34799649..f7dee889 100644 --- a/dev/.documenter-siteinfo.json +++ b/dev/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.11.1","generation_timestamp":"2024-10-31T21:37:22","documenter_version":"1.7.0"}} \ No newline at end of file +{"documenter":{"julia_version":"1.11.1","generation_timestamp":"2024-11-03T23:26:16","documenter_version":"1.7.0"}} \ No newline at end of file diff --git a/dev/advection/09a42f74.gif b/dev/advection/09a42f74.gif deleted file mode 100644 index 2057b5e5..00000000 Binary files a/dev/advection/09a42f74.gif and /dev/null differ diff --git a/dev/advection/e2bfbca2.gif b/dev/advection/e2bfbca2.gif new file mode 100644 index 00000000..c10e3e03 Binary files /dev/null and b/dev/advection/e2bfbca2.gif differ diff --git a/dev/advection/index.html b/dev/advection/index.html index be9d3aa9..a3e46205 100644 --- a/dev/advection/index.html +++ b/dev/advection/index.html @@ -17,8 +17,8 @@ @parameters x domain = DomainInfo(constIC(0.0, t ∈ Interval(0, 1.0)), constBC(1.0, x ∈ Interval(0, 1.0)))
Now we convert add advection to each of the state variables. We're also adding a constant wind (ConstantWind
) in the x-direction, with a speed of 1.0.
sys_advection = couple(ExampleSys(), domain, ConstantWind(t, 1.0), Advection())
sys_mtk = convert(PDESystem, sys_advection)
\[ \begin{align} -\frac{\mathrm{d}}{\mathrm{d}t} \mathtt{ExampleSys.y}\left( t, x \right) &= \mathtt{ExampleSys.p} - \mathtt{MeanWind.v\_x}\left( t, x \right) \frac{\mathrm{d}}{\mathrm{d}x} \mathtt{ExampleSys.y}\left( t, x \right) \\ \mathtt{MeanWind.v\_x}\left( t, x \right) &= \mathtt{ConstantWind.v\_1}\left( t, x \right) \\ +\frac{\mathrm{d}}{\mathrm{d}t} \mathtt{ExampleSys.y}\left( t, x \right) &= \mathtt{ExampleSys.p} - \mathtt{MeanWind.v\_x}\left( t, x \right) \frac{\mathrm{d}}{\mathrm{d}x} \mathtt{ExampleSys.y}\left( t, x \right) \\ \mathtt{ConstantWind.v\_1}\left( t, x \right) &= \mathtt{ConstantWind.c\_v1} \end{align} \]
Finally, we can discretize the system and solve it:
using MethodOfLines, DifferentialEquations, Plots
@@ -34,4 +34,4 @@
anim = @animate for k in 1:length(discrete_t)
plot(discrete_x, soly[k, 1:end], title="t=\$(discrete_t[k])", ylim=(0,2.5), lab=:none)
end
-gif(anim, fps = 8)
Settings
This document was generated with Documenter.jl version 1.7.0 on Thursday 31 October 2024. Using Julia version 1.11.1.