-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathImageClass.lua
421 lines (369 loc) · 14.4 KB
/
ImageClass.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
------------------------------------------------------------------------
--[[ ImageClass ]]--
-- A DataLoader for image classification in a flat folder structure :
-- [datapath]/[class]/[imagename].JPEG (folder-name is class-name)
-- Optimized for extremely large datasets (14 million images+).
-- Tested only on Linux (as it uses command-line linux utilities to
-- scale up to 14 million+ images)
-- Images on disk can have different height, width and number of channels.
------------------------------------------------------------------------
local dl = require 'dataload._env'
local ImageClass, parent = torch.class('dl.ImageClass', 'dl.DataLoader', dl)
function ImageClass:__init(datapath, loadsize, samplesize, samplefunc, sortfunc, verbose, excludeFile, excludeDir)
-- 1. arguments
-- one or many paths of directories with images
self.datapath = type(datapath) == 'string' and {datapath} or datapath
assert(torch.type(self.datapath) == 'table')
-- size to load the images to, initially
self.loadsize = loadsize
assert(torch.type(self.loadsize) == 'table')
-- consistent sample size to resize the images.
self.samplesize = samplesize or self.loadsize
assert(torch.type(self.samplesize) == 'table')
-- function f(self, dst, path) used to create a sample(s) from
-- an image path. Stores them in dst. Strings "sampleDefault"
-- "sampleTrain" or "sampleTest" can also be provided as they
-- refer to existing functions
self.samplefunc = samplefunc or 'sampleDefault'
-- display verbose messages
self.verbose = verbose == nil and true or verbose
-- comparison operator used for sorting class dir to get idx.
self.sortfunc = sortfunc -- Defaults to < operator
-- 2. build index
-- will need this package later to load images (faster than image package)
require 'graphicsmagick'
-- need for _.sort
local _ = require 'moses'
-- loop over each paths folder, get list of unique class names,
-- also store the directory paths per class
local classes = {}
local classList = {}
for k,path in ipairs(self.datapath) do
for class in lfs.dir(path) do
local dirpath = paths.concat(path, class)
if class:sub(1,1) ~= '.' and paths.dirp(dirpath) and not classes[class] then
table.insert(classList, class)
classes[class] = true
end
end
end
-- sort classes for indexing consistency
_.sort(classList, self.sortfunc)
local classPaths = {}
for i, class in ipairs(classList) do
classes[class] = i
classPaths[i] = {}
end
for k,path in ipairs(self.datapath) do
for class in lfs.dir(path) do
local dirpath = paths.concat(path, class)
if class:sub(1,1) ~= '.' and paths.dirp(dirpath) then
local idx = classes[class]
table.insert(classPaths[idx], dirpath)
end
end
end
self.classes = classList
if self.verbose then
print("found " .. #self.classes .. " classes")
end
self.iclasses = classes
-- define command-line tools, try your best to maintain OSX compatibility
local wc = 'wc'
local cut = 'cut'
local find = 'find'
if jit and jit.os == 'OSX' then
wc = 'gwc'
cut = 'gcut'
find = 'gfind'
end
---------------------------------------------------------------------
-- Options for the GNU find command
local extensionList = {'jpg', 'png','JPG','PNG','JPEG', 'ppm', 'PPM', 'bmp', 'BMP'}
local findOptions = ' -iname "*.' .. extensionList[1] .. '"'
for i=2,#extensionList do
findOptions = findOptions .. ' -o -iname "*.' .. extensionList[i] .. '"'
end
if excludeFile then -- only ignores patterns in filename
findOptions = '! -iname "'..excludeFile..'" \\(' .. findOptions .. " \\)"
end
if excludeDir then -- only ignores patterns directories
findOptions = '-not -path "'..excludeDir..'" \\(' .. findOptions .. " \\)"
end
-- find the image path names
self.imagePath = torch.CharTensor() -- path to each image in dataset
self.imageClass = torch.LongTensor() -- class index of each image (class index in self.classes)
self.classList = {} -- index of imageList to each image of a particular class
self.classListSample = self.classList -- the main list used when sampling data
if self.verbose then
print('running "find" on each class directory, and concatenate all'
.. ' those filenames into a single file containing all image paths for a given class')
end
-- so, generates one file per class
local classFindFiles = {}
for i=1,#self.classes do
classFindFiles[i] = os.tmpname()
end
local combinedFindList = os.tmpname();
local tmpfile = os.tmpname()
local tmphandle = assert(io.open(tmpfile, 'w'))
-- iterate over classes
for i, class in ipairs(self.classes) do
-- iterate over classPaths
for j,path in ipairs(classPaths[i]) do
local command = find .. ' "' .. path .. '" ' .. findOptions
.. ' >>"' .. classFindFiles[i] .. '" \n'
tmphandle:write(command)
end
end
io.close(tmphandle)
os.execute('bash ' .. tmpfile)
os.execute('rm -f ' .. tmpfile)
if self.verbose then
print('now combine all the files to a single large file')
end
local tmpfile = os.tmpname()
local tmphandle = assert(io.open(tmpfile, 'w'))
-- concat all finds to a single large file in the order of self.classes
for i=1,#self.classes do
local command = 'cat "' .. classFindFiles[i] .. '" >>' .. combinedFindList .. ' \n'
tmphandle:write(command)
end
io.close(tmphandle)
os.execute('bash ' .. tmpfile)
os.execute('rm -f ' .. tmpfile)
---------------------------------------------------------------------
if self.verbose then
print('loading concatenated list of sample paths to self.imagePath')
end
local maxPathLength = tonumber(sys.fexecute(wc .. " -L '"
.. combinedFindList .. "' |"
.. cut .. " -f1 -d' '")) + 1
local length = tonumber(sys.fexecute(wc .. " -l '"
.. combinedFindList .. "' |"
.. cut .. " -f1 -d' '"))
assert(length > 0, "Could not find any image file in the given input paths")
assert(maxPathLength > 0, "paths of files are length 0?")
self.imagePath:resize(length, maxPathLength):fill(0)
local s_data = self.imagePath:data()
local count = 0
for line in io.lines(combinedFindList) do
ffi.copy(s_data, line)
s_data = s_data + maxPathLength
if self.verbose and count % 10000 == 0 then
xlua.progress(count, length)
end
count = count + 1
end
if self.verbose then
xlua.progress(length, length)
end
self.nsample = self.imagePath:size(1)
---------------------------------------------------------------------
if self.verbose then
print('Updating classList and imageClass appropriately')
end
self.imageClass:resize(self.nsample)
local runningIndex = 0
for i=1,#self.classes do
if self.verbose then xlua.progress(i, #(self.classes)) end
local length = tonumber(sys.fexecute(wc .. " -l '"
.. classFindFiles[i] .. "' |"
.. cut .. " -f1 -d' '"))
if length == 0 then
error('Class has zero samples')
else
self.classList[i] = torch.linspace(runningIndex + 1, runningIndex + length, length):long()
self.imageClass[{{runningIndex + 1, runningIndex + length}}]:fill(i)
end
runningIndex = runningIndex + length
end
----------------------------------------------------------------------
-- clean up temporary files
if self.verbose then
print('Cleaning up temporary files')
end
local tmpfilelistall = ''
for i=1,#(classFindFiles) do
tmpfilelistall = tmpfilelistall .. ' "' .. classFindFiles[i] .. '"'
if i % 1000 == 0 then
os.execute('rm -f ' .. tmpfilelistall)
tmpfilelistall = ''
end
end
os.execute('rm -f ' .. tmpfilelistall)
os.execute('rm -f "' .. combinedFindList .. '"')
end
function ImageClass:reset()
parent.reset(self)
self.imgBuffer = nil
end
function ImageClass:size(class, list)
list = list or self.classList
if not class then
return self.imagePath:size(1)
elseif type(class) == 'string' then
return list[self.iclasses[class]]:size(1)
elseif type(class) == 'number' then
return list[class]:size(1)
end
end
function ImageClass:index(indices, inputs, targets, samplefunc)
local imagepaths = {}
samplefunc = samplefunc or self.samplefunc
if torch.type(samplefunc) == 'string' then
samplefunc = self[samplefunc]
end
local inputTable = {}
local targetTable = {}
for i = 1, indices:size(1) do
local idx = indices[i]
-- load the sample
local imgpath = ffi.string(torch.data(self.imagePath[idx]))
imagepaths[i] = imgpath
local dst = self:getImageBuffer(i)
-- note that dst may have different sizes at this point
dst = samplefunc(self, dst, imgpath)
table.insert(inputTable, dst)
table.insert(targetTable, self.imageClass[idx])
end
inputs = inputs or torch.FloatTensor()
targets = targets or torch.LongTensor()
self:tableToTensor(inputTable, targetTable, inputs, targets)
self:collectgarbage()
return inputs, targets, imagepaths
end
-- Sample a class uniformly, and then uniformly samples example from class.
-- This keeps the class distribution balanced.
-- samplefunc is a function that generates one or many samples
-- from one image. e.g. sampleDefault, sampleTrain, sampleTest.
function ImageClass:sample(batchsize, inputs, targets, samplefunc)
local imagepaths = {}
samplefunc = samplefunc or self.samplefunc
if torch.type(samplefunc) == 'string' then
samplefunc = self[samplefunc]
end
local inputTable = {}
local targetTable = {}
for i=1,batchsize do
-- sample class
local class = torch.random(1, #self.classes)
-- sample image from class
local index = torch.random(1, self.classListSample[class]:nElement())
local imgpath = ffi.string(torch.data(self.imagePath[self.classListSample[class][index]]))
imagepaths[i] = imgpath
local dst = self:getImageBuffer(i)
dst = samplefunc(self, dst, imgpath)
table.insert(inputTable, dst)
table.insert(targetTable, class)
end
inputs = inputs or torch.FloatTensor()
targets = targets or torch.LongTensor()
self:tableToTensor(inputTable, targetTable, inputs, targets)
self:collectgarbage()
return inputs, targets, imagepaths
end
-- converts a table of samples (and corresponding labels) to tensors
function ImageClass:tableToTensor(inputTable, targetTable, inputTensor, targetTensor)
assert(inputTable and targetTable and inputTensor and targetTensor)
local n = #targetTable
local samplesPerDraw = inputTable[1]:dim() == 3 and 1 or inputTable[1]:size(1)
inputTensor:resize(n, samplesPerDraw, unpack(self.samplesize))
targetTensor:resize(n, samplesPerDraw)
for i=1,n do
inputTensor[i]:copy(inputTable[i])
targetTensor[i]:fill(targetTable[i])
end
inputTensor:resize(n*samplesPerDraw, unpack(self.samplesize))
targetTensor:resize(n*samplesPerDraw)
return inputTensor, targetTensor
end
function ImageClass:loadImage(path)
-- https://github.com/clementfarabet/graphicsmagick#gmimage
local gm = require 'graphicsmagick'
local lW, lH = self.loadsize[3], self.loadsize[2]
-- load image with size hints
local input = gm.Image():load(path, self.loadsize[3], self.loadsize[2])
-- resize by imposing the smallest dimension (while keeping aspect ratio)
input:size(nil, math.min(lW,lH))
return input
end
function ImageClass:getImageBuffer(i)
self.imgBuffers = self.imgBuffers or {}
self.imgBuffers[i] = self.imgBuffers[i] or torch.FloatTensor()
return self.imgBuffers[i]
end
-- just load the image and return it
function ImageClass:sampleDefault(dst, path)
if not path then
path, dst = dst, nil
end
dst = dst or torch.FloatTensor()
-- TODO if loadsize[1] == 1, converts to greyscale (y in YUV)
local input = self:loadImage(path)
local colorspace = self.samplesize[1] == 1 and 'I' or 'RGB'
local out = input:toTensor('float',colorspace,'DHW', true)
dst:resize(out:size(1), self.samplesize[2], self.samplesize[3])
image.scale(dst, out)
return dst
end
-- function to load the image, jitter it appropriately (random crops etc.)
function ImageClass:sampleTrain(dst, path)
if not path then
path, dst = dst, nil
end
dst = dst or torch.FloatTensor()
local input = self:loadImage(path)
local iW, iH = input:size()
-- do random crop
local oW = self.samplesize[3]
local oH = self.samplesize[2]
local h1 = math.ceil(torch.uniform(0, iH-oH))
local w1 = math.ceil(torch.uniform(0, iW-oW))
local out = input:crop(oW, oH, w1, h1)
-- do hflip with probability 0.5
if torch.uniform() > 0.5 then
out:flop()
end
local colorspace = self.samplesize[1] == 1 and 'I' or 'RGB'
out = out:toTensor('float',colorspace,'DHW', true)
dst:resizeAs(out):copy(out)
return dst
end
-- function to load the image, do 10 crops (center + 4 corners) and their hflips
-- Works with the TopCrop feedback
function ImageClass:sampleTest(dst, path)
if not path then
path, dst = dst, nil
end
dst = dst or torch.FloatTensor()
local input = self:loadImage(path)
iW, iH = input:size()
local oH = self.samplesize[2]
local oW = self.samplesize[3];
dst:resize(10, self.samplesize[1], oW, oH)
local colorspace = self.samplesize[1] == 1 and 'I' or 'RGB'
local im = input:toTensor('float', colorspace, 'DHW', true)
local w1 = math.ceil((iW-oW)/2)
local h1 = math.ceil((iH-oH)/2)
-- center
image.crop(dst[1], im, w1, h1)
image.hflip(dst[2], dst[1])
-- top-left
h1 = 0; w1 = 0;
image.crop(dst[3], im, w1, h1)
dst[4] = image.hflip(dst[3])
-- top-right
h1 = 0; w1 = iW-oW;
image.crop(dst[5], im, w1, h1)
image.hflip(dst[6], dst[5])
-- bottom-left
h1 = iH-oH; w1 = 0;
image.crop(dst[7], im, w1, h1)
image.hflip(dst[8], dst[7])
-- bottom-right
h1 = iH-oH; w1 = iW-oW;
image.crop(dst[9], im, w1, h1)
image.hflip(dst[10], dst[9])
return dst
end