This repository has been archived by the owner on Jun 21, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmain.py
executable file
·204 lines (147 loc) · 5.77 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#!/usr/bin/env python
# MIT License
#
# Copyright (c) 2019 https://github.com/ElmiiiRaa/align_iranian_national_id_card
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#author : Elmira Ghorbani
#email:[email protected]
import cv2
import numpy as np
from face_tracker import FaceTracker
from eye_detector import get_eyes
import os
from os import listdir
from os.path import isfile, join
import shutil
import math
from rotate_crop_with_HoughLines import HoughLines
from information_exteract import card_data
EYE_DIST = 60
input_cards_path = 'input_cards/'
rotated_cards_path = 'outputs/rotated_cards'
cards_cropped_by_eyes_path = 'outputs/cards_cropped_by_eyes'
if __name__ == '__main__':
import sys, getopt
cascade_fn = "data_harr/haarcascade_frontalface_alt2.xml"
scale=1
scaleFactor=1.3
tracker = FaceTracker(cascade_fn,scale,scaleFactor)
files = [f for f in listdir(input_cards_path) if isfile(join(input_cards_path, f))]
#====================#
#read ou image files#
#====================#
for file in files:
img = cv2.imread(input_cards_path + file)
print(file)
#save path
save_rotated_card = os.path.join(rotated_cards_path, file)
save_cropped_by_eyes = os.path.join(cards_cropped_by_eyes_path, file)
npoints,rects,angle= tracker.detect(img)
#img=tracker.draw_rectangle(img,npoints)
#cv2.imwrite(file,img)
face_angle=tracker.face_angle(img,npoints)
#=================================#
# #set right angle to rotate a card#
#=================================#
if angle == 90 or angle == 180:
angle_card = -angle
elif angle == 270 and face_angle == 90:
angle_card = -angle
elif angle == 270 and face_angle < 0:
angle_card = -angle
elif angle == 330 and face_angle>0:
angle_card = 0
elif angle == 330 and face_angle<0:
angle_card = -180
elif angle == 150 and face_angle < 0:
angle_card = -270
elif angle == 270 and face_angle != 90:
face_angle = 90 -face_angle
angle_card = -(angle+face_angle)
elif angle==120:
angle_card = 220
elif angle==300 and face_angle != 90:
angle_card = 90
else:
angle_card = face_angle
#======================================#
# rotated cards according to card angle#
#======================================#
height, width = img.shape[:2] # image shape has 3 dimensions
image_center = (width/2, height/2) # getRotationMatrix2D needs coordinates in reverse order (width, height) compared to shape
rotation_mat = cv2.getRotationMatrix2D(image_center, angle_card, 1.)
# rotation calculates the cos and sin, taking absolutes of those.
abs_cos = abs(rotation_mat[0,0])
abs_sin = abs(rotation_mat[0,1])
# find the new width and height bounds
bound_w = int(height * abs_sin + width * abs_cos)
bound_h = int(height * abs_cos + width * abs_sin)
# subtract old image center (bringing image back to origo) and adding the new image center coordinates
rotation_mat[0, 2] += bound_w/2 - image_center[0]
rotation_mat[1, 2] += bound_h/2 - image_center[1]
# rotate image with the new bounds and translated rotation matrix
rotated_mat = cv2.warpAffine(img, rotation_mat, (bound_w, bound_h))
#===================#
#save rotated image#
#===================#
cv2.imwrite(save_rotated_card,rotated_mat)
rotated=rotated_mat
#===================#
#show rotated image#
#===================#
#cv2.imshow('Image rotated by - ? degrees',cv2.resize(rotated_mat,(1000,630)))
#cv2.waitKey(0)
#=================================================#
#find eyes and resize id cards like it's real size#
#=================================================#
image=rotated
left_eye, right_eye = get_eyes(image)
x1 = left_eye[0] + left_eye[2]/2
x2 = right_eye[0] + right_eye[2] / 2
y1 = left_eye[1] + left_eye[3]/2
y2 = right_eye[1] + right_eye[3] / 2
length = math.sqrt(math.pow(x2 - x1,2) + math.pow(y2 - y1,2))
scale = EYE_DIST / length
image = cv2.resize(image, None, fx=scale, fy=scale)
x1 = int(x1 * scale)
x2 = int(x2 * scale)
y1 = int(y1 * scale)
y2 = int(y2 * scale)
#cv2.rectangle(image, ((x1) , (y1) ) ,((x2) , (y2) ) , (86,170,240) ,3)
idCard = image[int(y1 - 350):int(y1 + 380), int(x1 - 200):int(x2 + 660 +70 +80)]
idCard_h , idCard_w = idCard.shape[:2]
orig_img_h , orig_img_w = image.shape[:2]
#print(image.shape)
if idCard_w < 600 or idCard_h < 600 :
cx1=orig_img_w*4.05
cx2=orig_img_w/4.05
temp_h=orig_img_h/2
cy1=temp_h*1.22
cy2=temp_h/1.22
idCard = image[int(y1 - cy2):int(y1 + cy1), int(x2 - cx2):int(x2 + cx1)]
if orig_img_h < 600 or orig_img_w < 900:
#cv2.imshow('cropped',image)
cv2.imwrite(save_cropped_by_eyes,image)
else:
#cv2.imshow('cropped',idCard)
cv2.imwrite(save_cropped_by_eyes,idCard)
HoughLines()
card_data()
os.system('python ./ctpn/demo_pb.py')