-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathauxiliary_functions.py
467 lines (376 loc) · 19.2 KB
/
auxiliary_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.neighbors import NearestNeighbors
from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
import seaborn as sns
import warnings
from sklearn.cluster import KMeans
from kneed import KneeLocator
import collections
import json
from itertools import combinations
import random
from sklearn.preprocessing import MinMaxScaler
###################################################################
## Function to calculate the ranking of new queries
###################################################################
def ranking_calculation(i,index_top_3, value_top_3, user_queries, average_cluster, key, count):
#We define a count vector that keeps track of the number of cases
# Edge case if all top 3 are 0 average of all queries in a given cluster instead for ranking
if all([val == 0 for val in index_top_3]):
#print('we are in case 1\n')
ranking = round(average_cluster[key][0],2)
count[0] += 1
# Weighted ranking based on similarity score of top 3!
elif all([val != 0 for val in index_top_3]):
#print('we are in case 2\n')
rankings = [int(user_queries[str(index_top_3[j])].iloc[i]) for j in range(len(index_top_3))]
ranking = round(np.average(rankings, weights = value_top_3),2)
count[1] += 1
# Edge case if some of the top 3 are 0, don't use them!
else:
#print('we are in case 3\n')
while 0 in index_top_3:
index = index_top_3.index(0)
value_top_3.pop(index)
index_top_3.pop(index)
rankings = [int(user_queries[str(index_top_3[j])].iloc[i]) for j in range(len(index_top_3))]
if len(index_top_3) == 2:
ranking = round(np.average(rankings, weights = value_top_3),2)
else:
ranking = rankings[0]
count[2] += 1
return ranking, count
###################################################################
## Function to represent queries as "sets"
###################################################################
def queries_as_sets(queries, filename):
column_names_queries = queries.columns
dict_queries = {}
for i in range(len(queries)):
set_query = []
for j in range(1, len(queries.columns)-1):
if np.isnan(queries.iloc[i][j]):
continue
else:
for k in range(int(queries.iloc[i][j])):
set_query.append(column_names_queries[j])
dict_queries.update( {str(queries['query_id'].iloc[i]) : set_query} )
with open(str(filename), "w") as outfile:
json.dump(dict_queries, outfile)
return dict_queries
###################################################################
## Function to assign queries to clusters based on tuples
###################################################################
def queries_to_tuples(queries,data,labels,n):
column_names_queries = queries.columns
# We create an empty dataframe where we are going to store the matching outputs
columns_matching = [str(i) for i in np.unique(labels)]
matching_outputs = pd.DataFrame(0, index = range(len(queries)), columns=columns_matching)
for i in range(len(queries)):
# We generate the condition
condition = ""
for j in range(1,n):
if np.isnan(queries.iloc[i][j]):
continue
else:
condition = condition + column_names_queries[j] + " == " + str(int(queries.iloc[i][j])) + ' and '
condition = condition[:-4]
matching = data.query(str(condition))
for k in range(len(matching)):
label_id = data['cluster_id_kmeans'].iloc[k]
matching_outputs[str(label_id)].iloc[i] += 1
return matching_outputs
###################################################################
## Function to sort list based on a different list
###################################################################
def sort_by_indexes(lst, indexes, reverse=False):
return [val for (_, val) in sorted(zip(indexes, lst), key=lambda x: \
x[0], reverse=reverse)]
###################################################################
## Jaccard Similarity
###################################################################
def jaccard_similarity(A, B):
#Find intersection
nominator = intersection(A,B)
#Find union
denominator = union(A,B)
#Take the ratio of sizes
similarity = len(nominator)/len(denominator)
return similarity
def intersection(lst1, lst2):
lst3 = []
for value in lst1:
if ((value in lst2) & (len(lst2) > 0)):
lst3.append(str(value))
lst2.remove(value)
return lst3
def union(lst1, lst2):
lst3 = lst1 + lst2
return lst3
###################################################################
## Function to plot
###################################################################
def plot_data(data, data_normal, kmeans_labels, dbscan_labels):
if data.shape[1] != 2:
pca = PCA(n_components=2)
principalComponents = pca.fit_transform(data_normal)
principalDf = pd.DataFrame(data = principalComponents
, columns = ['principal component 1', 'principal component 2'])
principalDf['color'] = kmeans_labels
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plt.scatter(principalComponents[:,0], principalComponents[:,1], c=kmeans_labels, cmap= "plasma")
plt.xlabel('principal component 1')
plt.ylabel('principal component 2')
plt.title('pca (kmeans)')
plt.subplot(1,2,2)
plt.scatter(principalComponents[:,0], principalComponents[:,1], c=dbscan_labels, cmap= "plasma")
plt.xlabel('principal component 1')
plt.ylabel('principal component 2')
plt.title('pca (DBSCAN)')
plt.savefig('./data_house/figure_dbsacn_pca') # showing the plot
n_components = 2
tsne = TSNE(n_components)
tsne_result = tsne.fit_transform(data_normal)
tsne_result.shape
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plt.scatter(tsne_result[:,0], tsne_result[:,1], c=kmeans_labels, cmap= "plasma")
plt.xlabel('principal component 1')
plt.ylabel('principal component 2')
plt.title('tsne (kmeans)')
plt.subplot(1,2,2)
plt.scatter(tsne_result[:,0], tsne_result[:,1], c=dbscan_labels, cmap= "plasma")
plt.xlabel('principal component 1')
plt.ylabel('principal component 2')
plt.title('tsne (DBSCAN)')
plt.savefig('./data_house/figure_dbsacn_tsne')
else:
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plt.scatter(data[:,0], data[:,1], c=kmeans_labels, cmap= "plasma")
plt.xlabel('principal component 1')
plt.ylabel('principal component 2')
plt.title('kmeans')
plt.subplot(1,2,2)
plt.scatter(data[:,0], data[:,1], c=dbscan_labels, cmap= "plasma")
plt.xlabel('principal component 1')
plt.ylabel('principal component 2')
plt.title('DBSCAN')
plt.savefig('./data_house/figure_dbsacn') # showing the plot
###################################################################
## Combinations
###################################################################
def combination(row):
list_combinations = list()
for n in range(len(row) + 1):
list_combinations += list(combinations(row, n))
for i in range(len(list_combinations)):
if len(list_combinations[i]) == 1:
list_combinations[i] = list_combinations[i][0]
return list_combinations[1:], len(list_combinations) -1
###################################################################
## Matches
###################################################################
def matching_queries(length, query_columns, query, dict_query, queries):
if (length == 1):
print('Case 1: one common value')
idx = list(queries[queries[str(query_columns[0])] == query.iloc[0,0]].index)
dict_query.update( {str(query_columns[0]) : idx} )
print('Dictionary: ', dict_query)
elif (length == 2):
print('Case 2: up to 2 common value')
for i in range(2):
idx = list(queries[queries[str(query_columns[i])] == query.iloc[0,i]].index)
dict_query.update( {str(query_columns[i]) : idx} )
idx = list(queries[queries[str(query_columns[0])] == query.iloc[0,0]][queries[str(query_columns[1])] == query.iloc[0,1]].index)
cond = str(query_columns[0]), str(query_columns[1])
dict_query.update( {str(cond) : idx} )
elif (length == 3):
print('Case 3: up to 3 common value')
for i in range(3):
idx = list(queries[queries[str(query_columns[i])] == query.iloc[0,i]].index)
dict_query.update( {str(query_columns[i]) : idx} )
for j in range(3):
for i in range(j+1,3):
idx = list(queries[queries[str(query_columns[j])] == query.iloc[0,j]][queries[str(query_columns[i])] == query.iloc[0,i]].index)
cond = str(query_columns[j]), str(query_columns[i])
dict_query.update( {str(cond) : idx} )
idx = list(queries[queries[str(query_columns[0])] == query.iloc[0,0]][queries[str(query_columns[1])] == query.iloc[0,1]][queries[str(query_columns[2])] == query.iloc[0,2]].index)
cond = str(query_columns[0]), str(query_columns[1]), str(query_columns[2])
dict_query.update( {str(cond) : idx} )
elif (length == 4):
print('Case 4: up to 4 common value')
for i in range(4):
idx = list(queries[queries[str(query_columns[i])] == query.iloc[0,i]].index)
dict_query.update( {str(query_columns[i]) : idx} )
for j in range(4):
for i in range(j+1,4):
idx = list(queries[queries[str(query_columns[j])] == query.iloc[0,j]][queries[str(query_columns[i])] == query.iloc[0,i]].index)
cond = str(query_columns[j]), str(query_columns[i])
dict_query.update( {str(cond) : idx} )
for j in range(4):
for i in range(j+1,4):
for k in range(i+1,4):
idx = list(queries[queries[str(query_columns[j])] == query.iloc[0,j]][queries[str(query_columns[i])] == query.iloc[0,i]][queries[queries[str(query_columns[k])] == query.iloc[0,k]]].index)
cond = str(query_columns[j]), str(query_columns[i]), str(query_columns[k])
dict_query.update( {str(cond) : idx} )
idx = list(queries[queries[str(query_columns[0])] == query.iloc[0,0]][queries[str(query_columns[1])] == query.iloc[0,1]][queries[str(query_columns[2])] == query.iloc[0,2]][queries[str(query_columns[3])] == query.iloc[0,3]].index)
cond = str(query_columns[0]), str(query_columns[1]), str(query_columns[2]), str(query_columns[3] )
dict_query.update( {str(cond) : idx} )
with open("query_matches_partb.json", "w") as outfile:
json.dump(dict_query, outfile)
return dict_query
###################################################################
## Find k highest values
###################################################################
def find_highest_values(list_to_search, ordered_nums_to_return=None):
if ordered_nums_to_return:
return sorted(set(list_to_search), reverse=True)[0:ordered_nums_to_return]
return [sorted(list_to_search, reverse=True)[0]]
###################################################################
## Remove ranodm values of utility matrix
###################################################################
def remove_numbers(user_queries, len_list, row, columns, list_remove, user_queries_test):
while len_list < 600:
i = random.randint(0,row-1)
j = random.randint(0,columns-1)
if pd.isnull(user_queries.iloc[i,j]):
continue
else:
if [i,j] in list_remove:
continue
else:
list_remove.append([i,j])
user_queries_test.iloc[i,j] = np.nan
len_list = len(list_remove)
return list_remove, user_queries_test
###################################################################
## Remove ranodm values of user in utility matrix
###################################################################
def remove_numbers2(user_queries, len_list, row, columns, user_queries_test):
#We select a random user
user = random.randint(1,len(user_queries))
li = list(user_queries.iloc[user,1:])
li_not_nan = [i for i, element in enumerate(li) if np.isnan(element)]
li_nan = [i for i in range(len(li)) if i not in li_not_nan]
len_list = len(li_nan)
list_remove = []
while len_list < 1400:
j = random.randint(0,len(li_not_nan)-1)
if [user,li_not_nan[j]] in list_remove:
continue
else:
list_remove.append([user,li_not_nan[j]])
user_queries_test.iloc[user,li_not_nan[j]] = np.nan
len_list += len(list_remove)
return user,list_remove, user_queries_test
def remove_numbers3(user_queries, len_list, row, columns, user_queries_test):
#We select a random query
query = random.randint(0,columns-1)
li = list(user_queries.iloc[1:,query])
li_not_nan = [i for i, element in enumerate(li) if np.isnan(element)]
li_nan = [i for i in range(len(li)) if i not in li_not_nan]
len_list = len(li_nan)
list_remove = []
while len_list < 70:
i = random.randint(0,len(li_not_nan)-1)
if [li_not_nan[i],query] in list_remove:
continue
else:
list_remove.append([li_not_nan[i],query])
user_queries_test.iloc[li_not_nan[i],query] = np.nan
len_list += len(list_remove)
return query,list_remove, user_queries_test
###################################################################
## Recommender function
###################################################################
def utility_matrix_rec(path_user_queries_test, labels, n, kmeans_labels, matching_outputs_name, user_queries_fill_name ):
#print('-------------------query assignement-------------\n')
queries = pd.read_csv("./data_house/queries_to_use.csv", sep = ',', index_col = 0)
data = pd.read_csv("./data_house/database.csv", sep = ',')
data['cluster_id_kmeans'] = kmeans_labels
data['cluster_id_dbscan'] = labels
column_names_queries = queries.columns
matching_outputs = queries_to_tuples(queries,data, kmeans_labels, n)
matching_outputs.to_csv(matching_outputs_name, header = False, sep = ',', index=False)
maxValueIndex = matching_outputs.idxmax(axis = 1)
queries['kmeans_label_id'] = maxValueIndex
#print('-------------queries-----------\n')
event_counts = collections.Counter(queries['kmeans_label_id'])
#print('-------------database-----------\n')
event_counts = collections.Counter(data['cluster_id_kmeans'])
#print('--------------jaccard similarity-----------\n')
user_queries = pd.read_csv(path_user_queries_test, sep = ',', index_col = 0)
recomendations_index = pd.DataFrame(0, index = range(len(user_queries)), columns =['user_id','top1', 'top2', 'top3', 'top4', 'top5'])
recomendations_value = pd.DataFrame(0, index = range(len(user_queries)), columns =['user_id','top1', 'top2', 'top3', 'top4', 'top5'])
for i in range(len(user_queries)):
gvn_jsonfile = open("./jsonfiles/query_set.json")
json_data = json.load(gvn_jsonfile)
#print("---------------user {}------------\n ".format(i+1))
dict_cluster = {}
average_cluster = {}
user_queries_non_nan = []
user_queries_nan = []
# We create lists containing the indexes of no ranked queries and ranked queries
for t,j in user_queries.iloc[i][1:].items():
if (np.isnan(j)):
user_queries_nan.append(t)
else:
user_queries_non_nan.append(t)
n_nan_queries = len(user_queries_nan)
count = [0,0,0]
# Create a dictionary
for j in range(len(np.unique(queries['kmeans_label_id']))):
dict_cluster.update({str(np.unique(queries['kmeans_label_id'])[j]) : []})
average_cluster.update({str(np.unique(queries['kmeans_label_id'])[j]) : []})
for k in range(len(user_queries_non_nan)):
dict_cluster[str(queries['kmeans_label_id'].iloc[k])].append(user_queries_non_nan[k])
# We calculate the average ranking of ranked queries in each cluster
for j in range(len(np.unique(queries['kmeans_label_id']))):
key = str(np.unique(queries['kmeans_label_id'])[j])
ranking_temp = []
for query_id in dict_cluster[key]:
ranking_temp.append(user_queries[str(query_id)].iloc[i])
average_cluster[key].append(sum(ranking_temp)/len(ranking_temp))
index_top_ranking = [0,0,0,0,0]
value_top_ranking = [0,0,0,0,0]
for item in user_queries_nan:
set_query_nan = json_data[str(item)]
key = str(queries['kmeans_label_id'].iloc[int(item)])
similarity = []
index_top_3 = [0,0,0]
value_top_3 =[0,0,0]
for query_id in dict_cluster[key]:
set_query_non_nan = json_data[str(query_id)]
similarity_value = jaccard_similarity(set_query_non_nan, set_query_nan)
# similarity.append(similarity_value)
if similarity_value > min(value_top_3):
min_index = value_top_3.index(min(value_top_3))
index_top_3[min_index] = int(query_id)
value_top_3[min_index] = similarity_value
# Fill the ranking of the current nan query for the current user by averaging the top 3 values
ranking, count = ranking_calculation(i,index_top_3, value_top_3, user_queries, average_cluster, key, count)
user_queries.at[i, str(item)] = ranking
min_value = min(value_top_ranking)
if ranking > min_value:
min_index_ranking = value_top_ranking.index(min(value_top_ranking))
index_top_ranking[min_index_ranking] = int(item)
value_top_ranking[min_index_ranking] = float(ranking)
user_queries.to_csv(user_queries_fill_name, header = True, sep = ',')
###################################################################
## Normalizing utility matrix
###################################################################
def scaler_utility_matrix(user_queries):
seq = user_queries['user_id']
x = user_queries.iloc[:,2:].values #returns a numpy array
min_max_scaler = MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x.transpose())
user_queries_minmax = pd.DataFrame(x_scaled.transpose()*100)
user_queries_minmax.insert(0,'user_id',seq)
return user_queries_minmax