-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperceptron.c
86 lines (82 loc) · 2.52 KB
/
perceptron.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#include <stdio.h>
#include <stdlib.h>
typedef struct preceptron {
float bias; //偏置项
float weight[2]; //权重
float rate; //学习率
}preceptron;
preceptron *Init(void) {
int i = 0;
preceptron *p = (preceptron *)malloc(sizeof(preceptron));
p->bias = 0.0; //初始化偏置项为0
for(i = 0; i < 2; ++i) {
p->weight[i] = 0.0; //初始化权重为0
}
p->rate = 0.1; //学习率为0.1
return p;
}
int activator(float x) { //定义激活函数为阶跃函数
if(x > 0) {
return 1;
}
else {
return 0;
}
}
float Output(float inputvec[],preceptron *p) { //计算每次的输出
float sum = 0;
int i;
for(i = 0; i < 2; ++i) {
sum = sum + inputvec[i] * p->weight[i]; //输入向量和权重求内积
}
sum = sum + p->bias; //加上偏置项
return activator(sum); //经过激活函数后返回0或1
}
void Update_weight (float input_vec[], float output, float label, preceptron *p) { //根据感知器算法更新权重
float delta = label - output;
int i;
for(i = 0; i < 2; ++i) {
input_vec[i] = input_vec[i] * delta * p->rate;
}
for(i = 0; i < 2; ++i) {
p->weight[i] = p->weight[i] + input_vec[i];
}
p->bias = p->bias + p->rate * delta;
}
void One_Iteration (float input_vecs[][2], float labels[], preceptron *p) { //一轮迭代
int i;
float output,inputvec[2];
for(i = 0; i < 4; ++i) {
inputvec[0] = input_vecs[i][0];
inputvec[1] = input_vecs[i][1];
output = Output(inputvec, p);
Update_weight(inputvec, output, labels[i], p);
}
}
void Preceptron (float input_vecs[][2], float labels[], preceptron *p, int Itertation) {
int i;
for(i = 0; i < Itertation; ++i) {
One_Iteration(input_vecs, labels, p);
}
}
int main () {
float input_vecs[4][2] = {{1,1},{0,0},{1,0},{0,1}}; //感知器实现与门
float labels[4] = {1,0,0,0}; //对应结果
float inputvec[2];
preceptron *p = Init();
Preceptron(input_vecs, labels, p, 10);
printf("weights:[%.1f, %.1f]\n",p->weight[0],p->weight[1]);
printf("bias :%.6f\n",p->bias);
//测试
inputvec[0] = inputvec[1] = 1;
printf("1 and 1 = %.0f\n",Output(inputvec,p));
inputvec[0] = inputvec[1] = 0;
printf("0 and 0 = %.0f\n",Output(inputvec,p));
inputvec[0] = 1;
inputvec[1] = 0;
printf("1 and 0 = %.0f\n",Output(inputvec,p));
inputvec[0] = 0;
inputvec[1] = 1;
printf("0 and 1 = %.0f\n",Output(inputvec,p));
return 0;
}