-
Notifications
You must be signed in to change notification settings - Fork 159
/
Copy pathtree.py
489 lines (428 loc) · 18.5 KB
/
tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
# coding:utf-8
from math import log
import operator
import treePlotter
from collections import Counter
pre_pruning = True
post_pruning = True
def read_dataset(filename):
"""
年龄段:0代表青年,1代表中年,2代表老年;
有工作:0代表否,1代表是;
有自己的房子:0代表否,1代表是;
信贷情况:0代表一般,1代表好,2代表非常好;
类别(是否给贷款):0代表否,1代表是
"""
fr = open(filename, 'r')
all_lines = fr.readlines() # list形式,每行为1个str
# print all_lines
labels = ['年龄段', '有工作', '有自己的房子', '信贷情况']
# featname=all_lines[0].strip().split(',') #list形式
# featname=featname[:-1]
labelCounts = {}
dataset = []
for line in all_lines[0:]:
line = line.strip().split(',') # 以逗号为分割符拆分列表
dataset.append(line)
return dataset, labels
def read_testset(testfile):
"""
年龄段:0代表青年,1代表中年,2代表老年;
有工作:0代表否,1代表是;
有自己的房子:0代表否,1代表是;
信贷情况:0代表一般,1代表好,2代表非常好;
类别(是否给贷款):0代表否,1代表是
"""
fr = open(testfile, 'r')
all_lines = fr.readlines()
testset = []
for line in all_lines[0:]:
line = line.strip().split(',') # 以逗号为分割符拆分列表
testset.append(line)
return testset
# 计算信息熵
def cal_entropy(dataset):
numEntries = len(dataset)
labelCounts = {}
# 给所有可能分类创建字典
for featVec in dataset:
currentlabel = featVec[-1]
if currentlabel not in labelCounts.keys():
labelCounts[currentlabel] = 0
labelCounts[currentlabel] += 1
Ent = 0.0
for key in labelCounts:
p = float(labelCounts[key]) / numEntries
Ent = Ent - p * log(p, 2) # 以2为底求对数
return Ent
# 划分数据集
def splitdataset(dataset, axis, value):
retdataset = [] # 创建返回的数据集列表
for featVec in dataset: # 抽取符合划分特征的值
if featVec[axis] == value:
reducedfeatVec = featVec[:axis] # 去掉axis特征
reducedfeatVec.extend(featVec[axis + 1:]) # 将符合条件的特征添加到返回的数据集列表
retdataset.append(reducedfeatVec)
return retdataset
'''
选择最好的数据集划分方式
ID3算法:以信息增益为准则选择划分属性
C4.5算法:使用“增益率”来选择划分属性
'''
# ID3算法
def ID3_chooseBestFeatureToSplit(dataset):
numFeatures = len(dataset[0]) - 1
baseEnt = cal_entropy(dataset)
bestInfoGain = 0.0
bestFeature = -1
for i in range(numFeatures): # 遍历所有特征
# for example in dataset:
# featList=example[i]
featList = [example[i] for example in dataset]
uniqueVals = set(featList) # 将特征列表创建成为set集合,元素不可重复。创建唯一的分类标签列表
newEnt = 0.0
for value in uniqueVals: # 计算每种划分方式的信息熵
subdataset = splitdataset(dataset, i, value)
p = len(subdataset) / float(len(dataset))
newEnt += p * cal_entropy(subdataset)
infoGain = baseEnt - newEnt
print(u"ID3中第%d个特征的信息增益为:%.3f" % (i, infoGain))
if (infoGain > bestInfoGain):
bestInfoGain = infoGain # 计算最好的信息增益
bestFeature = i
return bestFeature
# C4.5算法
def C45_chooseBestFeatureToSplit(dataset):
numFeatures = len(dataset[0]) - 1
baseEnt = cal_entropy(dataset)
bestInfoGain_ratio = 0.0
bestFeature = -1
for i in range(numFeatures): # 遍历所有特征
featList = [example[i] for example in dataset]
uniqueVals = set(featList) # 将特征列表创建成为set集合,元素不可重复。创建唯一的分类标签列表
newEnt = 0.0
IV = 0.0
for value in uniqueVals: # 计算每种划分方式的信息熵
subdataset = splitdataset(dataset, i, value)
p = len(subdataset) / float(len(dataset))
newEnt += p * cal_entropy(subdataset)
IV = IV - p * log(p, 2)
infoGain = baseEnt - newEnt
if (IV == 0): # fix the overflow bug
continue
infoGain_ratio = infoGain / IV # 这个feature的infoGain_ratio
print(u"C4.5中第%d个特征的信息增益率为:%.3f" % (i, infoGain_ratio))
if (infoGain_ratio > bestInfoGain_ratio): # 选择最大的gain ratio
bestInfoGain_ratio = infoGain_ratio
bestFeature = i # 选择最大的gain ratio对应的feature
return bestFeature
# CART算法
def CART_chooseBestFeatureToSplit(dataset):
numFeatures = len(dataset[0]) - 1
bestGini = 999999.0
bestFeature = -1
for i in range(numFeatures):
featList = [example[i] for example in dataset]
uniqueVals = set(featList)
gini = 0.0
for value in uniqueVals:
subdataset = splitdataset(dataset, i, value)
p = len(subdataset) / float(len(dataset))
subp = len(splitdataset(subdataset, -1, '0')) / float(len(subdataset))
gini += p * (1.0 - pow(subp, 2) - pow(1 - subp, 2))
print(u"CART中第%d个特征的基尼值为:%.3f" % (i, gini))
if (gini < bestGini):
bestGini = gini
bestFeature = i
return bestFeature
def majorityCnt(classList):
'''
数据集已经处理了所有属性,但是类标签依然不是唯一的,
此时我们需要决定如何定义该叶子节点,在这种情况下,我们通常会采用多数表决的方法决定该叶子节点的分类
'''
classCont = {}
for vote in classList:
if vote not in classCont.keys():
classCont[vote] = 0
classCont[vote] += 1
sortedClassCont = sorted(classCont.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCont[0][0]
# 利用ID3算法创建决策树
def ID3_createTree(dataset, labels, test_dataset):
classList = [example[-1] for example in dataset]
if classList.count(classList[0]) == len(classList):
# 类别完全相同,停止划分
return classList[0]
if len(dataset[0]) == 1:
# 遍历完所有特征时返回出现次数最多的
return majorityCnt(classList)
bestFeat = ID3_chooseBestFeatureToSplit(dataset)
bestFeatLabel = labels[bestFeat]
print(u"此时最优索引为:" + (bestFeatLabel))
ID3Tree = {bestFeatLabel: {}}
del (labels[bestFeat])
# 得到列表包括节点所有的属性值
featValues = [example[bestFeat] for example in dataset]
uniqueVals = set(featValues)
if pre_pruning:
ans = []
for index in range(len(test_dataset)):
ans.append(test_dataset[index][-1])
result_counter = Counter()
for vec in dataset:
result_counter[vec[-1]] += 1
leaf_output = result_counter.most_common(1)[0][0]
root_acc = cal_acc(test_output=[leaf_output] * len(test_dataset), label=ans)
outputs = []
ans = []
for value in uniqueVals:
cut_testset = splitdataset(test_dataset, bestFeat, value)
cut_dataset = splitdataset(dataset, bestFeat, value)
for vec in cut_testset:
ans.append(vec[-1])
result_counter = Counter()
for vec in cut_dataset:
result_counter[vec[-1]] += 1
leaf_output = result_counter.most_common(1)[0][0]
outputs += [leaf_output] * len(cut_testset)
cut_acc = cal_acc(test_output=outputs, label=ans)
if cut_acc <= root_acc:
return leaf_output
for value in uniqueVals:
subLabels = labels[:]
ID3Tree[bestFeatLabel][value] = ID3_createTree(
splitdataset(dataset, bestFeat, value),
subLabels,
splitdataset(test_dataset, bestFeat, value))
if post_pruning:
tree_output = classifytest(ID3Tree,
featLabels=['年龄段', '有工作', '有自己的房子', '信贷情况'],
testDataSet=test_dataset)
ans = []
for vec in test_dataset:
ans.append(vec[-1])
root_acc = cal_acc(tree_output, ans)
result_counter = Counter()
for vec in dataset:
result_counter[vec[-1]] += 1
leaf_output = result_counter.most_common(1)[0][0]
cut_acc = cal_acc([leaf_output] * len(test_dataset), ans)
if cut_acc >= root_acc:
return leaf_output
return ID3Tree
def C45_createTree(dataset, labels, test_dataset):
classList = [example[-1] for example in dataset]
if classList.count(classList[0]) == len(classList):
# 类别完全相同,停止划分
return classList[0]
if len(dataset[0]) == 1:
# 遍历完所有特征时返回出现次数最多的
return majorityCnt(classList)
bestFeat = C45_chooseBestFeatureToSplit(dataset)
bestFeatLabel = labels[bestFeat]
print(u"此时最优索引为:" + (bestFeatLabel))
C45Tree = {bestFeatLabel: {}}
del (labels[bestFeat])
# 得到列表包括节点所有的属性值
featValues = [example[bestFeat] for example in dataset]
uniqueVals = set(featValues)
if pre_pruning:
ans = []
for index in range(len(test_dataset)):
ans.append(test_dataset[index][-1])
result_counter = Counter()
for vec in dataset:
result_counter[vec[-1]] += 1
leaf_output = result_counter.most_common(1)[0][0]
root_acc = cal_acc(test_output=[leaf_output] * len(test_dataset), label=ans)
outputs = []
ans = []
for value in uniqueVals:
cut_testset = splitdataset(test_dataset, bestFeat, value)
cut_dataset = splitdataset(dataset, bestFeat, value)
for vec in cut_testset:
ans.append(vec[-1])
result_counter = Counter()
for vec in cut_dataset:
result_counter[vec[-1]] += 1
leaf_output = result_counter.most_common(1)[0][0]
outputs += [leaf_output] * len(cut_testset)
cut_acc = cal_acc(test_output=outputs, label=ans)
if cut_acc <= root_acc:
return leaf_output
for value in uniqueVals:
subLabels = labels[:]
C45Tree[bestFeatLabel][value] = C45_createTree(
splitdataset(dataset, bestFeat, value),
subLabels,
splitdataset(test_dataset, bestFeat, value))
if post_pruning:
tree_output = classifytest(C45Tree,
featLabels=['年龄段', '有工作', '有自己的房子', '信贷情况'],
testDataSet=test_dataset)
ans = []
for vec in test_dataset:
ans.append(vec[-1])
root_acc = cal_acc(tree_output, ans)
result_counter = Counter()
for vec in dataset:
result_counter[vec[-1]] += 1
leaf_output = result_counter.most_common(1)[0][0]
cut_acc = cal_acc([leaf_output] * len(test_dataset), ans)
if cut_acc >= root_acc:
return leaf_output
return C45Tree
def CART_createTree(dataset, labels, test_dataset):
classList = [example[-1] for example in dataset]
if classList.count(classList[0]) == len(classList):
# 类别完全相同,停止划分
return classList[0]
if len(dataset[0]) == 1:
# 遍历完所有特征时返回出现次数最多的
return majorityCnt(classList)
bestFeat = CART_chooseBestFeatureToSplit(dataset)
# print(u"此时最优索引为:"+str(bestFeat))
bestFeatLabel = labels[bestFeat]
print(u"此时最优索引为:" + (bestFeatLabel))
CARTTree = {bestFeatLabel: {}}
del (labels[bestFeat])
# 得到列表包括节点所有的属性值
featValues = [example[bestFeat] for example in dataset]
uniqueVals = set(featValues)
if pre_pruning:
ans = []
for index in range(len(test_dataset)):
ans.append(test_dataset[index][-1])
result_counter = Counter()
for vec in dataset:
result_counter[vec[-1]] += 1
leaf_output = result_counter.most_common(1)[0][0]
root_acc = cal_acc(test_output=[leaf_output] * len(test_dataset), label=ans)
outputs = []
ans = []
for value in uniqueVals:
cut_testset = splitdataset(test_dataset, bestFeat, value)
cut_dataset = splitdataset(dataset, bestFeat, value)
for vec in cut_testset:
ans.append(vec[-1])
result_counter = Counter()
for vec in cut_dataset:
result_counter[vec[-1]] += 1
leaf_output = result_counter.most_common(1)[0][0]
outputs += [leaf_output] * len(cut_testset)
cut_acc = cal_acc(test_output=outputs, label=ans)
if cut_acc <= root_acc:
return leaf_output
for value in uniqueVals:
subLabels = labels[:]
CARTTree[bestFeatLabel][value] = CART_createTree(
splitdataset(dataset, bestFeat, value),
subLabels,
splitdataset(test_dataset, bestFeat, value))
if post_pruning:
tree_output = classifytest(CARTTree,
featLabels=['年龄段', '有工作', '有自己的房子', '信贷情况'],
testDataSet=test_dataset)
ans = []
for vec in test_dataset:
ans.append(vec[-1])
root_acc = cal_acc(tree_output, ans)
result_counter = Counter()
for vec in dataset:
result_counter[vec[-1]] += 1
leaf_output = result_counter.most_common(1)[0][0]
cut_acc = cal_acc([leaf_output] * len(test_dataset), ans)
if cut_acc >= root_acc:
return leaf_output
return CARTTree
def classify(inputTree, featLabels, testVec):
"""
输入:决策树,分类标签,测试数据
输出:决策结果
描述:跑决策树
"""
firstStr = list(inputTree.keys())[0]
secondDict = inputTree[firstStr]
featIndex = featLabels.index(firstStr)
classLabel = '0'
for key in secondDict.keys():
if testVec[featIndex] == key:
if type(secondDict[key]).__name__ == 'dict':
classLabel = classify(secondDict[key], featLabels, testVec)
else:
classLabel = secondDict[key]
return classLabel
def classifytest(inputTree, featLabels, testDataSet):
"""
输入:决策树,分类标签,测试数据集
输出:决策结果
描述:跑决策树
"""
classLabelAll = []
for testVec in testDataSet:
classLabelAll.append(classify(inputTree, featLabels, testVec))
return classLabelAll
def cal_acc(test_output, label):
"""
:param test_output: the output of testset
:param label: the answer
:return: the acc of
"""
assert len(test_output) == len(label)
count = 0
for index in range(len(test_output)):
if test_output[index] == label[index]:
count += 1
return float(count / len(test_output))
if __name__ == '__main__':
filename = 'dataset.txt'
testfile = 'testset.txt'
dataset, labels = read_dataset(filename)
# dataset,features=createDataSet()
print('dataset', dataset)
print("---------------------------------------------")
print(u"数据集长度", len(dataset))
print("Ent(D):", cal_entropy(dataset))
print("---------------------------------------------")
print(u"以下为首次寻找最优索引:\n")
print(u"ID3算法的最优特征索引为:" + str(ID3_chooseBestFeatureToSplit(dataset)))
print("--------------------------------------------------")
print(u"C4.5算法的最优特征索引为:" + str(C45_chooseBestFeatureToSplit(dataset)))
print("--------------------------------------------------")
print(u"CART算法的最优特征索引为:" + str(CART_chooseBestFeatureToSplit(dataset)))
print(u"首次寻找最优索引结束!")
print("---------------------------------------------")
print(u"下面开始创建相应的决策树-------")
while True:
dec_tree = '1'
# ID3决策树
if dec_tree == '1':
labels_tmp = labels[:] # 拷贝,createTree会改变labels
ID3desicionTree = ID3_createTree(dataset, labels_tmp, test_dataset=read_testset(testfile))
print('ID3desicionTree:\n', ID3desicionTree)
# treePlotter.createPlot(ID3desicionTree)
treePlotter.ID3_Tree(ID3desicionTree)
testSet = read_testset(testfile)
print("下面为测试数据集结果:")
print('ID3_TestSet_classifyResult:\n', classifytest(ID3desicionTree, labels, testSet))
print("---------------------------------------------")
# C4.5决策树
if dec_tree == '2':
labels_tmp = labels[:] # 拷贝,createTree会改变labels
C45desicionTree = C45_createTree(dataset, labels_tmp, test_dataset=read_testset(testfile))
print('C45desicionTree:\n', C45desicionTree)
treePlotter.C45_Tree(C45desicionTree)
testSet = read_testset(testfile)
print("下面为测试数据集结果:")
print('C4.5_TestSet_classifyResult:\n', classifytest(C45desicionTree, labels, testSet))
print("---------------------------------------------")
# CART决策树
if dec_tree == '3':
labels_tmp = labels[:] # 拷贝,createTree会改变labels
CARTdesicionTree = CART_createTree(dataset, labels_tmp, test_dataset=read_testset(testfile))
print('CARTdesicionTree:\n', CARTdesicionTree)
treePlotter.CART_Tree(CARTdesicionTree)
testSet = read_testset(testfile)
print("下面为测试数据集结果:")
print('CART_TestSet_classifyResult:\n', classifytest(CARTdesicionTree, labels, testSet))
break